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Abstract

Designing intelligent systems to understand video content has been a hot research topic

in the past few decades since it helps compensate the limited human capabilities of analyzing

videos in an efficient way. In particular, human behavior understanding in videos is receiving

a huge interest due to its many potential applications. At the same time, the detection

and tracking of human landmarks in video streams has gained in reliability partly due to

the availability of affordable RGB-D sensors. This infer time-varying geometric data which

play an important role in the automatic human motion analysis. However, such analysis

remains challenging due to enormous view variations, inaccurate detection of landmarks,

large intra- and inter- class variations, and insufficiency of annotated data. In this thesis, we

propose novel frameworks to classify and generate 2D/3D sequences of human landmarks. We

first represent them as trajectories in the shape manifold which allows for a view-invariant

analysis. However, this manifold is nonlinear and thereby standard computational tools

and machine learning techniques could not be applied in a straightforward manner. As a

solution, we exploit notions of Riemannian geometry to encode these trajectories based on

sparse coding and dictionary learning. This not only overcomes the problem of nonlinearity

of the manifold but also yields sparse representations that lie in vector space, that are

more discriminative and less noisy than the original data. We study intrinsic and extrinsic

paradigms of sparse coding and dictionary learning in the shape manifold and provide a

comprehensive evaluation on their use according to the nature of the data (i.e. face or body

in 2D or 3D). Based on these sparse representations, we present two frameworks for 3D

human action recognition and 2D micro- and macro- facial expression recognition and show

that they achieve competitive performance in comparison to the state-of-the-art. Finally,

we design a generative model allowing to synthesize human actions. The main idea is to

train a generative adversarial network to generate new sparse representations that are then

transformed to pose sequences. This framework is applied to the task of data augmentation



allowing to improve the classification performance. In addition, the generated pose sequences

are used to guide a second framework to generate human videos by means of pose transfer

of each pose to a texture image. We show that the obtained videos are realistic and have

better appearance and motion consistency than a recent state-of-the-art baseline.
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Résumé

Concevoir des systèmes intelligents pour comprendre le contenu des vidéos est devenu

un axe de recherche très important car il permet de compenser les capacités humaines

limitées de l’analyse efficace des vidéos. En particulier, la compréhension du comportement

humain à partir de vidéos suscite un intérêt considérable en raison de ses nombreuses

applications potentielles. Au même temps, la détection et le suivi de marqueurs humains

dans les flux vidéo sont devenus de plus en plus fiables, et c’est en partie grâce à la

disponibilité de capteurs abordables. Cela permet de déduire des données géométriques

qui varient dans le temps et qui jouent un rôle important dans l’analyse automatique

du mouvement humain. Cependant, une telle analyse reste difficile en raison des énormes

variations de vue, de la détection inexacte des marqueurs, des variations importantes des

classes ainsi que de l’insuffisance des données annotées. Dans cette thèse, nous proposons de

nouvelles méthodes permettant de classifier et de générer des séquences 2D/3D de marqueurs

humains. Tout d’abord, nous représentons ces séquences comme étant des trajectoires dans

des variétés de formes permettant ainsi une analyse invariante à la vue. Toutefois, ces variétés

sont non linéaires et, par conséquent, les algorithmes classiques telles que les techniques

d’apprentissage automatique standards ne pourraient pas être appliqués d’une manière

directe vu qu’ils sont conçus pour des données de nature linéaire. En guise de solution,

nous exploitons des notions de la géométrie Riemannienne pour coder ces trajectoires en

appliquant une technique de codage parcimonieux et d’apprentissage de dictionnaires. Cela

permet non seulement de résoudre le problème de non-linéarité des variétés de formes mais

aussi de représenter les trajectoires comme étant des représentations parcimonieuses qui

sont définies dans des espaces vectoriels, qui sont plus discriminantes et moins bruitées

que les données originales. Nous étudions des paradigmes intrinsèques et extrinsèques de

codage parcimonieux et d’apprentissage de dictionnaire dans les variétés de formes et nous

présentons une étude comparative de leur utilisation en fonction de la nature des données
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(i.e. visage ou corps en 2D ou 3D). D’autre part, en se basant sur ces représentations

parcimonieuses, nous proposons deux approches de reconnaissance d’actions humaines en

3D et de reconnaissance d’expressions faciales en 2D, et nous montrons que les résultats

obtenus sont compétitifs avec les méthodes récentes de l’état de l’art. Enfin, nous présentons

un modèle génératif permettant de synthétiser des actions humaines dont l’idée principale

est de concevoir un réseau antagoniste génératif afin de générer de nouvelles représentations

parcimonieuses qui sont ensuite transformées en des séquences de poses. Nous appliquons

cette méthode pour l’augmentation des données ce qui permet d’améliorer les performances

de la classification d’actions. De plus, les séquences de pose générées sont utilisées pour guider

un second modèle générateur dans le but de générer des vidéos humaines par transfert de

chaque pose d’une séquence en une image texture. Nous montrons que les vidéos obtenues

sont réalistes et présentent une meilleure cohérence en termes d’apparence et de mouvement

qu’une méthode récente de l’état de l’art.
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Chapitre 1

Introduction

1.1 Motivation

In recent years, video cameras have become part of our everyday life with the availability

of mobile phones, tablets, and digital photo cameras which all can create, store and

share high quality videos. With great storage capacities and fast internet access, videos

have become easily accessible. Accordingly, designing intelligent systems to understand

their content is attracting more and more attention with the availability of powerful and

affordable computers. Such intelligent systems are also needed to compensate the limited

human capabilities of analyzing videos in an efficient way. In particular, human behavior

understanding in videos is receiving a huge interest due its many potential applications.

For instance, analyzing the motion of the human body and face plays a key role in several

areas such as: Human-Computer Interaction and Entertainment, Visual Surveillance, Video

Retrieval, and Healthcare.

— Human-Computer Interaction and Entertainment: In computer graphics, video

cameras are used for human-machine interaction since they represent a natural and

intuitive way to communicate with a device. Therefore, the accurate recognition of
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Chapitre 1. Introduction

human gestures and facial expressions can guarantee a more natural, less-restrictive

and effective human-computer interfaces. In the entertainment industry, a new

generation of games based on full body play such as dance and sports games have

increased the appeal of gaming to family members of all ages [65]. An example

of popular video camera that enables accurate perception of human actions is the

Microsoft Kinect sensor (see Figure 1.4).

— Visual Surveillance Video surveillance cameras can be found everywhere (see

Figure 1.1). Visual surveillance in dynamic scenes attempts to detect, recognize

and track certain objects from image sequences, and more generally to understand

and describe object behaviors including humans. The aim is to develop intelligent

visual surveillance to replace the traditional passive video surveillance that is proving

ineffective as the number of cameras exceeds the capability of human operators to

monitor them [49]. Therefore, human action and identity recognition are at the core

of video surveillance and monitoring systems.

Figure 1.1 – Examples of video surveillance cameras and a sample monitoring center.

— Video Retrieval Managing and retrieving videos according to video content is

becoming challenging due to the huge amount of videos uploaded on the internet

with every second. Most of the search engines use text data to manage video data

which are usually inaccurate or even incorrect [85]. A potential solution for efficient

video retrieval could be human activity and action recognition systems.

— Healthcare In healthcare, assessing humans physical performance and behavior is

today frequently used for the monitoring of elderly people, rehabilitation, and medical
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examination. In fact, detecting behavior changes in human everyday life allows medical

scientists to suggest strategies related to diet, fall prevention, exercise and medication

adherence. On the other hand, automatic facial expression analysis can assist clinicians

in the estimation of pain intensity from faces which is useful for monitoring patients in

intensive care units and also the assessment of chronic lower back pain. Furthermore,

facial expression analysis can help psychologists to measure the level of depression

severity from faces since reduced facial expressiveness is considered as a behavioral

indicator of depression according to the Diagnostic and Statistical Manual of Mental

Disorders [6].

Choice of data modality In this dissertation, we are interested in the classification and

generation of visual data that describe human motion, i.e. actions and facial expressions,

and we mainly focus our analysis on landmark data that are extracted from the body or

face, i.e. 2D/3D human skeletons and 2D facial landmark configurations, respectively. Our

motivation behind this choice arises from the ability of these data to summarize motion

patterns since humans can recognize many actions and facial expressions directly from

skeletal and facial landmark sequences, respectively. In fact, in the psycho-physical research

work of Johansson [56] on visual perception of motion patterns characteristics of living

organisms in locomotion, it was shown that humans can recognize actions from the motion

of a few moving light displays attached to the human body, describing the motions of the

main body joints. He has found that between 10 and 12 moving light displays in adequate

motion combinations in proximal stimulus evoke a compelling impression of human walking,

running, dancing, etc. (see Figure 1.2).

On the other hand, using landmark data is expected to reduce the computational

complexity of the designed algorithms as instead of treating high-dimensional RGB images

that may contain irrelevant information for the desired tasks, landmark data summarize
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Figure 1.2 – Outline contours of a walking (right) and a running (left) subject and the
corresponding moving light displays attached on the body [56].

the image content in a few 2D/3D landmark points that only describe human-related

information. As a consequence, landmark-based solutions are expected to be relevant and less

computationally expensive than other modalities making them more suitable for real-time

applications. Furthermore, skeletal data estimation solutions and facial landmark detectors

has seen many advancements in recent years making the obtained landmarks often reliable

and accurate. On one hand, a human skeleton which is composed of a set of landmarks

(or joints) that are located on different articulations of the body can be obtained with

different approaches as illustrated in Figure 1.3. For instance, 3D skeletons can be tracked

Figure 1.3 – Skeleton estimation from: (a) depth images [84], (b) Motion Capture systems,
(c) RGB images [17].

in a depth video by extracting the 3D locations of body joints in each frame. This can be

achieved by using cost-effective depth cameras such as the Microsoft Kinect or ASUS Xtion

PRO LIVE sensor as popular examples (see Figure 1.4). However, these sensors can produce

inaccurate results and can also fail to estimate the body joints in the presence of serious
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Figure 1.4 – Depth cameras: ASUS Xtion PRO LIVE (left) and the Microsoft Kinect
(right).

occlusion. More accurate estimation can be yielded with Motion Capture systems based on

body markers for an automatic tracking of 3D skeletons, but this solution is more expensive

in cost and time than depth cameras. Recently, pose estimation approaches [3, 17, 13] have

reached impressive performances inferring 2D/3D skeletons that are in many cases robust

to occlusion and body profile. On the other hand, facial landmarks are located in different

positions of the face such as the mouth, nose, eyes, eyebrows and also the chin in some

methods. The latter can be detected from texture images in 2D [7] or 3D [8]. Figure 1.5

shows examples of 2D facial landmark tracking from RGB images where we can notice the

ability to deal with profile faces and occlusion in some cases.

Figure 1.5 – Examples of facial landmark detection in: (a) 3D [8] and (b) 2D [7].

1.2 Scientific challenges

Human action and facial expression analysis (i.e. recognition and generation) are

important but challenging research topics due to several major issues [65, 89].
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Intra- and inter-class variations It is well known that people perform the same action

in various styles and express their emotions differently through facial expressions. For a

given action such as "hand wave", one can use his left or right hand, can rise it slowly or

quickly, or even turns while waving. On the other hand, a person can smile with different

intensities, can simultaneously close his eyes or move his head. That is to say, one action or

facial expression category may contain various styles of motion which results in large intra-

class pose variations. Moreover, different categories can present strong similarities. As an

example, actions “walking” and “running” involve similar motion patterns. These similarities

would result in small inter-class variations which makes the analysis more challenging. As

a consequence, these issues should be carefully addressed in the analysis in order to make

human motion representations more discriminative.

View-variations Pose sequences belonging to the same categories can be captured from

various viewpoints, see Figure 1.6. They can be taken in front of the subjects, on their side,

or even on top of them. Similarly, facial expression analysis may encounter several head

pose variations making it more complex. In this thesis work, our goal is to go beyond the

non-trivial view-variation challenge.

Figure 1.6 – (a) Samples taken from [94] showing body pose with a variety in camera views.
(b) Facial images with different poses.

Annotated data insufficiency Action and facial expression recognition approaches,

especially those that are based on deep neural networks, usually require large amount of
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annotated training data. Even though some large scale datasets became recently available,

e.g. the NTU-RGBD 120 [72] which contains 114,480 actions belonging to 120 classes, sample

annotation requires a huge human effort. As a remedy, other datasets such as the Youtube-

8M database [1] are annotated by retrieval methods which are not usually accurate, thus

hindering the performance of the designed algorithms. In this thesis work, we address this

problem by presenting a generative framework for data augmentation which alleviates the

burden of data annotation. Given a small annotated dataset, we aim to generate new samples

for each category, yielding new variabilities in terms of motion style and thereby improving

the classification performance.

1.3 Main contributions

The goal of this dissertation is to analyze dynamic human landmarks of the body and

face. We explore sparse representations to model human actions and facial expressions

and present new frameworks to classify and generate them. To summarize, we provide the

following main contributions:

Action and facial expression representations We introduce sparse representations

for landmark-based human actions and facial expressions which are used throughout this

thesis work. Tackling the problem of camera view-variations, we represent sequences of

landmarks as trajectories in the shape manifold to allow for a view-invariant analysis. Since

the resulting manifold is nonlinear, we exploit its well-known Riemannian geometry to study

sparse coding and dictionary learning techniques. The application of these approaches to

encode trajectories yields representations that lie to vector spaces which are more suitable

for the analysis than nonlinear ones. In addition, the obtained time-series are sparse which

represents a suitable computational property for several vision problems.
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Action and facial expression recognition frameworks We apply the proposed sparse

representations to classify 3D actions and 2D facial expressions. We propose two recognition

approaches: 1) a deep learning framework in which we apply Long Short-Term Memory

(LSTM) to model and classify our sparse representations; and 2) a classical pipeline of

methods designed for Euclidean time-series. We perform extensive evaluation on seven

commonly-used datasets that present different challenges such as the MSR-Action 3D [69]

and the NTU-RGBD [94] databases for action recognition, and the CK+ [76] and the

Oulu-CASIA [105] for facial expression recognition. In addition, we evaluate the proposed

framework on the more challenging task of micro-expression recognition. We compare our

methods with each other and with state-of-the-art approaches where we demonstrate their

competitiveness. Moreover, we perform various baseline experiments and ablative studies to

evaluate some properties of the presented techniques.

A comparative study of intrinsic and extrinsic coding techniques in the shape

manifold In Chapter 2, we study two techniques of Riemannian sparse coding and

dictionary learning in the shape manifold known as intrinsic and extrinsic. We use these

approaches to model human actions and facial expressions. Based on the classification

experiments (Chapter 3), we try to find an answer to the question “Depending on the nature

of the data (i.e body or face) and its dimension (i.e 2D or 3D), when and which technique

should we apply?”. This comparative study is provided in Chapter 3.

A generative framework for human motion synthesis We propose a new framework

to generate human pose sequences which is based on the proposed sparse representations.

Specifically, we use a Generative Adversarial Network (GAN) [35] which we train to generate

new sparse representations of human actions. Then, we transform the obtained samples to

pose sequences. We conduct extensive experiments to show the effectiveness of adopting a

sparse representation in a generative model. In addition, we apply this framework to augment
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an action recognition dataset and demonstrate that this improves our classification results.

Furthermore, we use the generated pose sequences to guide the generation of human

videos. Specifically, given an input person image, we transfer each pose of a generated

sequence to an image to obtain a new video. To this end, we use a recently-proposed

person image generation method [130] which we extend in our work to the temporal domain.

Experimentally, we show that our framework yields realistic human videos in terms of motion

and content. We also compare our approach with state-of-the-art and demonstrate that it

improves the quality of the generated videos.

1.4 Organisation of the dissertation

The rest of this dissertation is structured as follows. Chapter 2 begins with formal

studies of sparse representations, Riemannian geometry and the Kendall’s shape space

with various tools that are exploited in this chapter. We also discuss existing solutions to

extend sparse coding and dictionary learning to Riemannian manifolds as well as different

approaches to represent Riemannian trajectories. Then, we present the human motion

modeling frameworks that are used throughout this thesis work. In Chapter 3, we start

by providing a brief literature review of 3D action recognition and 2D facial expression

recognition approaches. Next, we present the adopted temporal modeling and classification

schemes that we apply to our sparse representations. This is followed by an extensive

evaluation of the proposed frameworks with a comparison to state-of-the-art. Moreover,

we present a deep analysis of the proposed methods and the obtained results which includes

a comparison between the adopted intrinsic and extrinsic coding approaches. Chapter 4

begins with a study of generative adversarial networks and a brief literature review of existing

human video generation approaches. Then, we describe the proposed pose sequence and video

generation frameworks followed by their experimental evaluation with a comparison to state-

of-the-art. Finally, Chapter 5 concludes this dissertation, discusses the main limitations of the
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proposed methods and presents possible future directions and perspectives of the proposed

work.
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Coding Human Motion Trajectories

in the Shape Manifold

2.1 Introduction

The availability of real-time skeletal data estimation solutions [17, 97] and reliable

facial landmarks detectors [7, 8, 118] has pushed researchers to study shapes of landmark

configurations and their dynamics. For instance, 3D skeletons have been widely used to

represent human actions due to their ability in summarizing the human motion. Another

example is given by the 2D facial landmarks and their tremendous use in facial expression

analysis. However, human actions and facial expressions observed from visual sensors

are often subject to view variations which makes their analysis complex. Considering

this non-trivial problem, an efficient way to analyze these data takes into account view-

invariance properties, giving rise to shape representations often lying to nonlinear shape

spaces [9, 16, 62]. David G. Kendall [62] defines the shape as the geometric information

that remains when location, scale, and rotational effects are filtered out from an object.

Accordingly, we represent 2D landmark faces and 3D skeletons as points in the 2D and 3D
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Kendall’s spaces, respectively. Further, when considering the dynamics of these points, the

corresponding representations become trajectories in these spaces [9]. However, inferencing

such a representation remains challenging due to the nonlinearity of the underlying

manifolds. In the literature, two alternatives have been proposed to overcome this problem

for different Riemannian manifolds – they are either Intrinsic [18, 19, 45, 107] or Extrinsic

(kernel-based) [42, 44, 55, 68]. On one hand, intrinsic solutions tend to project the manifold-

valued data to a tangent space at a reference point [4, 9, 107]. While it solves the problem of

nonlinearity of the manifold of interest, this solution could introduce distortions, especially

when the projected points are far from the reference point. On the other hand, extrinsic

solutions are based on embeddings to higher dimensional Reproducing Kernel Hilbert Spaces

(RKHS), which are vector spaces where Euclidean geometry applies. These methods bring

the advantage that, as evidenced by kernel methods on Rn, embedding a lower dimensional

space in a higher dimensional one gives a richer representation of the data and helps

capturing complex patterns. Nevertheless, to define a valid RKHS, the kernel function must

be positive definite according to Mercer’s theorem [90]. Several works in the literature have

studied kernels on the 2D Kendall’s space. For instance, the Procrustes Gaussian kernel is

proposed in [55] as positive definite. In contrast, to our knowledge, such a kernel has not

been explored for the 3D Kendall’s space.

Motivated by the success of sparse representations in several recognition tasks [20, 42, 45],

we propose to code shape trajectories using Riemannian sparse coding and dictionary

learning (SCDL) in the shape manifold. We will explore both intrinsic and extrinsic

paradigms of this technique and provide the main benefits of the resulting representations

to model human actions and facial expressions.

In this chapter, we start by presenting some preliminaries and mathematical definitions.

Later on, we review some existing representations of trajectories on Riemannian manifolds

along with scientific challenges on the matter. In Section 2.4, we describe the solutions that

we adopt to code trajectories in the shape manifold before presenting their properties in the
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following section.

2.2 Background and definitions

Data encoding techniques have been broadly studied in literature as they play a crucial

role in data analysis. In this dissertation, we aim to represent human skeletons and facial

landmark configurations with a coding technique that yields sparse representations. This

classical approach assumes that the data are defined in Euclidean space. However in our

study, we are applying important shape transformations on the data which turn to be

elements of a nonlinear space. As a consequence, classical coding approaches could not

directly apply to these data and their nonlinear extension is required. As a solution,

the Riemannian geometry of the well-known shape manifold can be used, offering several

geometric tools which enables the extension of coding to nonlinear spaces. In the following,

we start by describing the aforementioned coding technique. Then, we present basic notions

of Riemannian geometry with a particular focus on the Kendall’s shape space which is our

manifold of interest in this dissertation.

2.2.1 Sparse representations

The notion of sparsity as a way to model signals has generated significant interest in the

past decade [20, 42, 45]. In particular, sparse representations have proved to be successful

in various computer vision and machine learning problems including classification [30],

segmentation [80], image denoising and inpainting [95], visual tracking [71] and face

recognition [125], to cite a few. The basic assumption of this model is that, given a

dictionary D = {d1, d2, ..., dN} with N elements called atoms, a query x has a sparse vector

representation w ∈ RN with k non-zero elements under the dictionary D:

x = Dw, (2.2.1)
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with ‖w‖0 ≤ k, where ‖.‖0 represents the `0-pseudonorm which counts the number of

non-zero elements in a vector. In Equation 2.2.1, the query x is represented as a linear

combination of k atoms of the dictionary D. The set of indices of these k active atoms

is called the support Su. As such, this model assumes that the signal x resides in a low

dimensional subspace, which is spanned by the k atoms of D that correspond to the support

of w. An illustration of this model is given in Figure 2.1.

Figure 2.1 – Schematic sparse model.

A common approach to estimate the optimal representation w is known as sparse coding

which includes a penalty function f(w) in the following optimization problem:

lE(x,D) = min
w
‖x−

N∑
i=1

[w]i di‖
2
2 + λf(w), (2.2.2)

where w ∈ RN denotes the vector of codes comprised of {[w]i}Ni=1, f : RN → R is the sparsity

inducing function defined as the `1 norm, and λ is the sparsity regularization parameter.

Eq. (2.2.2) seeks to optimally approximate x (by x̂) as a linear combination of atoms, i.e.,

x̂ =
∑N

i=1 [w]i di, while tacking into account a particular sparsity constraint on the codes,

f(w) = ‖w‖1. This sparsity function has the role of forcing x to be represented as only a

small number of atoms.

The problem of sparse coding assumes that the dictionary is known. In practice, when

the dictionary is learned from the data, significant improvements can be made on the
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reconstruction of x. This problem is of wide interest and it is known as the dictionary

learning problem. Several techniques have been developed to solve this problem and train

dictionaries from data. Popular examples are the Method of Optimal Directions (MOD) [32]

and the K-SVD method [2], which generalizes the K-means clustering algorithm to learn

overcomplete dictionaries. Besides, using adaptive dictionaries [86] is usually the best choice

in terms of the reconstruction performance that can be achieved. In addition, it enables to

control the amount of induced sparsity over the reconstruction performance.

Formally, given a finite set of t training observations {x1, x2, ..., xt} in Rk, learning

adaptive dictionaries [86] is defined as to jointly minimize the coding cost over all choices of

atoms and codes according to:

lE(D) = min
D,w

t∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

[wi]jdj

∥∥∥∥∥∥
2

2

+ λf(wi). (2.2.3)

To solve this non-convex problem, a common approach alternates between the two sets of

variables, D and w, such that: (1) Minimizing over w while D is fixed is a convex problem

(i.e., sparse coding). (2) Minimizing Eq. (2.2.3) over D while w is fixed is similarly a convex

problem.

In our work, we are interested in the extension of SCDL to the Kendall’s shape space.

Before introducing this manifold, in the following section, we present basic notions on

Riemannian geometry.

2.2.2 Riemannian geometry

A manifoldM is a Hausdorff topological space which locally resembles a Euclidean space

Rn, where n is the dimension of the manifold. The tangent space at a point on the manifold

provides us with a vector space of tangent vectors that give an idea of direction on the

manifold. A Riemannian manifold is differential and equipped with a metric on the tangent

spaces. A Riemannian metric allows us to compute angle and length of directions (tangent

- 35 -



Chapitre 2. Coding Human Motion Trajectories in the Shape Manifold

vectors). A Riemannian metric is a continuous collection of inner products on the tangent

space at each point of the manifold. It is usually chosen to provide robustness to some

geometrical transformations. Furthermore, it makes it possible to define several geometric

notions on a Riemannian manifold such as the geodesic distance between points on the

manifold. In fact, points on a Riemannian manifold are connected with smooth curves.

Assuming the Riemannian metric, one can compute the length of a given curve. The curves

yielding the minimum distance for any two points of the manifold are called geodesics which

are analogous to straight lines in Rn. The length of a geodesic defines the geodesic distance.

The geodesic distance induced by the Riemannian metric is the most natural measure of

dissimilarity between two points lying on a Riemannian manifold. However, in practice, many

other nonlinear distances which do not necessarily arise from Riemannian metrics can also

be useful for measuring dissimilarity on manifolds [54]. Two other essential operations on

Riemannian manifolds are the logarithm map (log) and exponential map (exp). As illustrated

in Figure 2.2, the exponential map expZ(.) : TZM→M projects a tangent vector from the

tangent space at a point Z to the manifold. It guarantees that the length of the tangent

vector is equal to the geodesic distance. The logarithm map logZ(.) = exp−1(.) : M → TZM

projects a point on the manifold to the tangent space TZM at another point.

Figure 2.2 – Exponential map and logarithm map operations on a Riemannian manifold.
The red curve represents the geodesic connecting the points Z and Z1. The green arrow
represents the tangent vector V on the tangent space TZ(M).
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Several Riemannian manifolds have been widely studied in the computer vision literature.

Examples include the Lie group SO(3) formed by 3D rotation matrices, the unit n-sphere

Sn formed by normalized histograms, the manifold of symmetric positive definite (SPD)

matrices, the Grassmann manifold defined as linear subspaces of Rn, and the Kendall’s

shape space (also known as the shape manifold). For an overview on Riemannian geometry

and manifolds, we refer the reader to useful resources on the topic [14, 77]. In the following

section, we will outline the geometric properties of the manifold considered in this work, the

Kendall’s shape space.

2.2.3 Kendall’s shape space

Let us consider a set of n landmarks in Rm (m = 2, 3). To represent its shape, Kendall

[62] proposed to establish equivalences with respect to shape-preserving transformations that

are translations, rotations, and global scaling. Let Z ∈ Rn×m represent a configuration of

landmarks. To remove the translation variability, we follow [26] and introduce the notion of

Helmert sub-matrix, a (n−1)×n sub-matrix of a commonly used Helmert matrix, to perform

centering of configurations. For any Z ∈ Rn×m, the product HZ ∈ R(n−1)×m represents the

Euclidean coordinates of the centered configuration. Let C0 be the set of all such centered

configurations of n landmarks in Rm, i.e., C0 = {HZ ∈ R(n−1)×m|Z ∈ Rn×m}. C0 is a

m(n− 1) dimensional vector space and can be identified with Rm(n−1). To remove the scale

variability, we define the pre-shape space to be: C = {Z ∈ C0|‖Z‖F = 1}; C is a unit sphere

in Rm(n−1) and, thus, is m(n − 1) − 1 dimensional. The tangent space at any pre-shape Z

is given by: TZ(C) = {V ∈ C0|trace(V TZ) = 0}. To remove the rotation variability, for any

Z ∈ C, we define an equivalence class: Z̄ = {ZO|O ∈ SO(m)} that represents all rotations

of a configuration Z. The set of all such equivalence classes, S = {Z̄|Z ∈ C} = C/SO(m)

is called the shape space of configurations. The tangent space at any shape Z̄ is TZ̄(S) =

{V ∈ C0|trace(V TZ) = 0, trace(V TZU) = 0} , where U is any m × m skew-symmetric

matrix. The first condition makes V tangent to C and the second makes V perpendicular

- 37 -



Chapitre 2. Coding Human Motion Trajectories in the Shape Manifold

to the rotation orbit. Together, they force V to be tangent to the shape space S. Assuming

standard Riemannian metric on S, the geodesic between two points Z̄1, Z̄2 ∈ S is defined

as:

α(t) =
1

sin(θ)
(sin((1− t)θ)Z1 + sin(tθ)Z2O

∗), (2.2.4)

where θ = cos−1(〈Z1, Z2O
∗〉), 〈., .〉 is the inner product on S, and O∗ is the optimal rotation

that aligns Z2 with Z1: O∗ = argminO∈SO(m)‖Z1 − Z2O‖2F . θ is also the geodesic distance

between Z̄1 and Z̄2 in the shape space S, representing the optimal deformation to connect

Z̄1 to Z̄2 in S. For t = 0, α(0) = Z̄1 and for t = 1 we have α(1) = Z̄2. Note that Kendall’s

shape space is a complete Riemannian manifold such that the logarithm map operator

logZ̄ is defined for all Z̄ ∈ S (see Section 2.2.3.1 for its definition). As a consequence, the

geodesic distance between two configurations Z̄1 and Z̄2 can be computed as dS(Z̄1, Z̄2) =

‖ logZ̄1
(Z̄2)‖Z̄1

, where ‖.‖Z̄1
denotes the norm induced by the Riemannian metric at TZ̄1

(S).

The case of planar shapes For m = 2, a 2D landmark configuration can be initially

represented as a n-dimensional complex vector whose real and imaginary parts respectively

encode the x and y coordinates of the landmarks. In this case, the pre-shape space is defined,

after removing the translation and scale effects, as: C = {z ∈ Cn−1|‖z‖ = 1}; C is a complex

unit sphere of dimension 2(n − 1) − 1. The rotation removal consists of defining, for any

z ∈ Cn−1, an equivalence class z̄ = {zO|O ∈ SO(2)} that represents all rotations of a

configuration z. The final shape space S is the set of all such equivalence classes S = {z̄|z ∈

C} = C/SO(2). To measure the distance between two shapes z̄1 and z̄2, we define the most

popular distance on the 2D Kendall’s shape space, named the full Procrustes Distance [62],

as

dFP (z̄1, z̄2) = (1− |〈z1, z2〉|2)1/2, (2.2.5)

where 〈·, ·〉 and |.| denote the inner product in S and the absolute value of a complex number,

respectively.
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2.2.3.1 Geometric tools on the manifold

Considering the spherical structure of C, analytic expressions of the logarithm and

exponential maps are well defined [26, 62] and can be easily adapted to S. These operations

allow to compensate the lack of vector structure in the shape manifold by working on tangent

spaces. In this section, we define these operators, then use them to define a useful algorithm

allowing to compute the mean shape of manifold-valued points, namely intrinsic mean.

Exponential map allows projection from a tangent space to the manifold. It applies the

shooting vector to a source shape and provides the deformed (target) shape. It is defined,

for any V ∈ TZ̄(S), by,

expZ̄(V ) =

[
cos(θ)Z +

sin(θ)

θ
V

]
. (2.2.6)

Logarithm map allows to map a point on the manifold to the tangent space at another

point. It represents the shooting vector at the first shape (source) to the second shape

(target). Its mathematical expression is given explicitly by,

logZ̄1
(Z̄2) =

θ

sin(θ)
(Z2O

∗ − cos(θ)Z1), (2.2.7)

for source shape Z̄1 and target Z̄2, with θ as above.

Intrinsic mean An important advantage of the Riemannian approach is the ability to

compute statistics on a set of manifold-valued points. One can use the notion of Karcher

mean [60] to define an average shape. This represents an intrinsic mean and can be used as

representative of a group of points on the manifold. Let {Z̄1, ..., Z̄k} be a set of points on S.

We define an objective function Ψ : S → R, Ψ(Z̄) =
∑k

i=1 dS(Z̄i, Z̄)2. The intrinsic mean is

obtained by minimizing this objective function, which is commonly solved using a standard

algorithm that we describe in Algorithm 1.

As discussed previously, mappings to a tangent space allow to compensate the lack of
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Algorithm 1: Computing intrinsic mean on S
input : A set of shapes Z = {Z̄j}mj=1 and ε1, ε2 small
Initialize µ̂← Z1, i← 0
repeat

Compute vj ← logµ̂i(Z̄j)

Compute average tangent vector v̄ ← 1
k

∑m
j=1 vj

Update µ̂i according to µ̂i+1 ← expµ̂i(ε2v̄)

i← i+ 1

until |v̄| < ε1
return µ̂, a sample Mean of Z = {Z̄j}mj=1

vector structure on the shape manifold. We refer to this solution as an intrinsic approach.

Another solution to seek a vector representation of the data is known as an extrinsic approach

which embeds the manifold-valued data to a higher-dimensional vector space namely the

Hilbert space.

2.2.3.2 Hilbert space embedding of the manifold

A Hilbert space H is an (often infinite-dimensional) inner product space which is

complete with respect to the norm induced by the inner product. A Reproducing Kernel

Hilbert Space (RKHS) is a special kind of Hilbert space of functions on some nonempty set

S in which all evaluation functionals are bounded and hence continuous. The inner product

of an RKHS of functions on S can be defined by a bivariate function on S × S, known as

the reproducing kernel of the RKHS [54].

The SCDL algorithms depend only on the notion of inner product, which allows us to

measure distances. Therefore, they can be easily extended to Hilbert spaces. The embedding

of the shape manifold to RKHS brings the main advantage of transforming the nonlinear

manifold into a vector space where one can directly apply standard (Euclidean) algorithms.

In addition, it gives a richer representation of the data in a higher-dimensional space which

helps identifying complex patterns. To define an inner product in H, one can use a kernel

function f : (S × S) → R which makes the resulting space a RKHS without the need of
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computing the actual vectors. This procedure, known as the kernel trick, is commonly used

in machine learning when the designed algorithm only relies on measures of similarities, i.e.,

on inner products. However, to define a valid RKHS, the kernel function must be positive

definite according to Mercer’s theorem [90]. In particular, for the 2D shape manifold, the

authors in [55] proved the positive definiteness of the Procrustes Gaussian kernel kP : (S ×

S)→ R which is defined as

kP (z̄1, z̄2) := exp(−dFP 2(z̄1, z̄2)/2σ2), (2.2.8)

where dFP is the full Procrustes Distance defined in Eq.(2.2.5) and σ is the kernel parameter.

This kernel is positive definite for all σ ∈ R. In Section 2.4.2, it will be used for the extension

of SCDL to Hilbert space.

2.3 Related work

In this section, we provide a brief literature overview of Riemannian SCDL approaches.

Then, we discuss different representations of trajectories on Riemannian manifolds and

highlight their limitations.

2.3.1 Riemannian sparse coding and dictionary learning

The basic definition of SCDL as defined in Section 2.2.1 assumes that the query points

as well as the dictionary atoms are defined in vector space. However, most suitable image

descriptors often lie to nonlinear manifolds [77]. Thus, to perform SCDL on these data

while respecting the geometric structure of Riemannian manifolds, the classical problem of

SCDL needs to be extended to its nonlinear counterpart. The main issue here arises from

the fact that the linear combination of atoms is not possible on a nonlinear manifold since

the resulting point may not even be in the manifold, as illustrated in Figure 2.3. Previous

works addressed this problem [20, 40, 41, 42, 45, 68, 131]. For instance, a straightforward
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Figure 2.3 – Z is a data point on the manifoldM and the red circles represent the dictionary
atoms. The linear approximation Ẑ with the atoms may be out of the manifoldM.

solution was proposed in [40, 122] by embedding the manifolds of interest into vector space,

the tangent space at a reference point. However, this solution does not take advantage of

the entire Riemannian structure of the manifold since on a tangent space, only distances to

the reference point are equal to true geodesic distances. To overcome this problem, Ho et

al. [45] proposed a general framework for SCDL in Riemannian manifolds by working on the

tangent bundle. Here, each point is coded on its attached tangent space into which the atoms

are mapped. By doing so, only distances to the tangent point are needed. Their proposed

dictionary learning method includes an iterative update of the atoms using a gradient descent

approach along geodesics. This general solution essentially relies on mappings to tangent

spaces using the logarithm map operator. Although it is well defined for several manifolds,

analytic formulation of the logarithm map is not available or difficult to compute for others.

Therefore, some studies [41, 42, 44, 68] proposed to embed the Riemannian manifold into

RKHSs which are vector spaces where linear SCDL becomes possible. Recently, Harandi et

al. [42] proposed to map the Grassmann manifolds into the space of symmetric matrices

to overcome the latter problem and preserve several properties of the Grassmann structure.

They also proposed kernelized versions of the SCDL algorithms to handle the nonlinearity of

the data, similarly proposed in [43] for symmetric positive definite matrices. Throughout this

dissertation, we will investigate two paradigms of Riemannian SCDL in the shape manifold

with the aim of coding trajectories while tackling different challenges that we will discuss in
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the following section.

2.3.2 Trajectory representations on Riemannian manifolds

A sequence of points that evolve over time on a manifold can be seen as a time-series. In

the case of a Riemannian manifold, a time-series is usually denoted by trajectory. Analysis

of these trajectories is challenging due to the nonlinearity of underlying spaces. Several

representations of landmark sequences lie to nonlinear manifolds. In many approaches,

the Riemannian geometry of these manifolds is exploited to analyze the corresponding

representations and a common solution to solve for their nonlinearity consists on mapping

the manifold-valued data to a common tangent space. A popular example is given by the

Lie group and its use for skeletal trajectory analysis. For instance, Vemulapalli et al. [107]

proposed to represent 3D skeletal sequences in the product space of Special Euclidean (Lie)

groups SE(3)n. To this end, for each frame of a sequence, the Euclidean transformation

matrices encoding rotations and translations between different joint pairs are computed.

Hence, the dynamics of these matrices is seen as a trajectory on SE(3) × ... × SE(3). To

overcome the nonlinear nature of this manifold, this representation is mapped to the Lie

algebra se(3)n which is a vector space, the tangent space at the identity element. However,

mapping points to a common tangent space may introduce undesirable distortions, especially

when the mapped points are far from the tangent point. Aware of this limitation, the authors

in [108] proposed a mapping of trajectories on Lie groups combining the usual logarithm map

with a rolling map that guarantees a better flattening of trajectories on Lie groups. Taking

another direction, Anirudh et al. [4] extended the framework of Transported Square-Root

Velocity Fields (TSRVF) [101] by modeling trajectories of human actions on the Grassmann

manifold and the product space of Lie groups SE(3)×...×SE(3). They tackled the problems

of high-dimensionality of the feature space and its nonlinearity and proposed to learn a low-

dimensional embedding using a manifold functional variant of principal component analysis.

Hence, each trajectory is mapped to a single point in a low-dimensional Euclidean space.
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Another approach [9] proposed a different solution by extending the Kendall’s shape theory

to trajectories. Accordingly, translation, rotation, and global scaling are filtered out from

each skeleton to quantify the shape. Then based on the TSRVF, they defined an elastic

metric to jointly align and compare trajectories.

Riemannian trajectories were also considered in the analysis of 2D facial landmark

sequences. Taheri et al. [102] proposed to represent 2D facial landmarks in the Grassmann

manifold which makes the resulting representation invariant to affine transformations and

hence robust to view variations. To capture facial expressions from these representations,

the authors computed the velocity vectors between successive frames using the logarithm

map. To obtain velocities in the same tangent space, they applied a parallel transport of

these velocity vectors to a common tangent space. However, their method depends on the

choice of this tangent space. In another work [59], 2D facial landmark sequences were first

represented as trajectories of Gram matrices in the manifold of positive semidefinite matrices

of rank 2. A similarity measure is then provided by temporally aligning trajectories while

taking into account the geometry of the manifold.

Most of the methods described above share a common drawback which consists on

mapping all the manifold-valued data to a reference tangent space. The major problem of

this strategy is that distortions could be introduced especially when the mapped points are

far from the tangent point. Moreover, comparing the resulting tangent vectors by computing

distances between them is not accurate since only distances to the tangent point are equal

to true geodesics. Therefore, our goal is to go beyond this drawback in the proposed intrinsic

representation. On the other hand, to our knowledge, extrinsic approaches were not studied

in the literature of human modeling with Riemannian trajectories. Hence, we also aim to

explore this direction.
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2.4 Human motion modeling framework

In this section, we present our human motion modeling, i.e. representation of actions

and facial expressions, which is used throughout this thesis work for the tasks of human

motion classification and generation. Given a set of sequences of 2D/3D skeletons or facial

landmarks, our approach consists in three main steps:

— Embedding each frame (i.e. landmark configuration) of a sequence to the Kendall’s

pre-shape space C by filtering out translation and scale.

— Learning a dictionary from all training samples (i.e. static pre-shapes on C). In this

step, when an operation involves two configurations on C such as the logarithm map or

the geodesic distance computation, rotation is filtered out by aligning one pre-shape

into the second by applying the Procrustes algorithm [62]. By doing so, we consider

dictionary learning on the Kendall’s shape space S.

— Using the learned dictionary, each frame (i.e. pre-shapes on C) of a sequence is coded

using Riemannian sparse coding in S after filtering out rotation as done in the previous

step.

As a main result of applying the proposed framework, each frame of an input sequence

gives rise to a sparse code vector and frames that have similar shapes are expected to have

similar code vectors. As a consequence, the input sequence will turn to a smoothly-evolving

time-series (see Figure 2.4).

Figure 2.4 – Example results of the proposed framework. An input sequence is transformed
to a smoothly-evolving sparse time-series. The X-axis represents the time frame. (A) 3D
skeletal sequence. (B) 2D facial landmark sequence.
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In this work, we investigate two approaches of Riemannian SCDL. The first is intrinsic

and is based on projections to tangent spaces, while the second is extrinsic and relies on

embeddings to RKHS. We illustrate these two approaches in Figure 2.5. In the following,

we describe each of them.

Figure 2.5 – Illustration of the adopted solutions to overcome the nonlinearity of the shape
manifold. (A) The intrinsic approach maps the data on the manifold to tangent spaces using
the logarithm map opertor. (B) The extrinsic approach embeds the manifold-valued data to
RKHS by computing the inner product matrix using a positive definite kernel function.

2.4.1 Intrinsic approach

We propose to adapt a general intrinsic formulation of Riemannian SCDL [45] to the

case of Kendall’s shape space. This allows to transform a 2D/3D landmark configuration

lying on the shape manifold to a sparse vector.

2.4.1.1 Intrinsic Sparse Coding

Let D = {d̄1, d̄2, ..., d̄N} be a dictionary on S, and similarly the query Z̄ is a point on S.

Accordingly, the problem of sparse coding involves the geodesic distance defined on S and

thus the Euclidean formulation in Equation (2.2.2) (in Section 2.2.1) becomes

lS(Z̄,D) = min
w

(dS(Z̄, F (D, w))2 + λf(w)). (2.4.1)
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Here, F : SN×RN → S denotes an encoding function that generates the approximated point

ˆ̄Z on S by combining atoms with codes. Note that in the special case of Euclidean space,

F (D, w) would be a linear combination of atoms. However, in the Riemannian manifold S,

we have forsaken the structure of vector space which makes the linear combination of atoms

lying on S no longer applicable, since the approximated ˆ̄Z may lie out of the manifold. An

interesting alternative is the intrinsic formulation of Eq. (2.4.1), when considering that S

is a complete Riemannian manifold, thus, the geodesic distance dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄ (as

explained in Section 2.2.3). As a consequence, the cost function in (2.4.1) can be written as

lS(Z̄,D) = min
w
‖

N∑
i=1

[w]i logZ̄(d̄i)‖2Z̄ + λf(w), (2.4.2)

where logZ̄ denotes the logarithm map operator that maps each atom d̄ ∈ S to the tangent

space TZ̄(S) at the point Z̄ being coded, and ‖.‖Z̄ is the norm induced by the Riemannian

metric at TZ̄(S). Mathematically, this allows to partially compensate the lack of vector

space structure on S, as illustrated in Figure 2.6. To avoid the solution w = 0, we imposed

in Eq. (2.4.2) an important additional affine constraint defined as
∑N

i=1 [w]i = 1. By this

formulation of sparse coding, we only compute distances to the tangent point, hence we

avoid the commonly induced distortions when working in a reference tangent space. By

substituting the logarithm map by its explicit formulation in Eq. (2.4.2), we have

lS(Z̄,D) = min
w
‖

N∑
i=1

[w]i
θ

sin(θ)
(diO

∗ − cos(θ)Z)‖2Z̄ + λf(w). (2.4.3)

In practice, Eq. (2.4.3) is computed by first finding the optimal rotation O∗ between Z and

each atom di via the Procrustes algorithm [62]. Then, we solve for w using the state-of-

the-art CVXPY optimizer [25]. In Algorithm 2, we provide a summary of the sparse coding

approach on the shape manifold.
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Figure 2.6 – Pictorial of the sparse coding approach on the pre-shape space C. The
approximation of x ∈ C could be viewed as a weighted intrinsic mean of the atoms of a
dictionary D = {di}Ni=1.

Algorithm 2: Riemannian sparse coding algorithm
input : Dictionary D = {d̄i}Ni=1, d̄i ∈ S; Z̄ ∈ S (query)
output: Sparse codes vector w∗of the query Z̄
/* Projection of D into TZ̄(S) */
for i = 1 to N do
Vi ← logZ̄(d̄i)

w∗ = argminw ‖
∑N

i=1 [w]i Vi‖22 + λf(w)
return Sparse codes vector w∗of the query Z̄

2.4.1.2 Intrinsic Dictionary Learning

Learning a discriminative dictionary D typically yields accurate reconstruction of

training samples and produces discriminative sparse codes. We propose a dictionary learning

algorithm based on the sparse coding framework described above. Let D = {d̄1, d̄2, ..., d̄N} be

a dictionary on S, and similarly {Z̄1, Z̄2, ..., Z̄t} is a set of t training samples on S. Similarly

to the sparse coding problem, we introduce in Eq. (2.2.3) the geodesic distance defined on S

computed as dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄ . As a consequence, the problem of dictionary learning

on Kendall’s shape space is written as

min
D,w

t∑
i=1

∥∥∥∥∥∥
N∑
j=1

[wi]j logZ̄i
d̄j

∥∥∥∥∥∥
2

Z̄i

+ λf(wi), (2.4.4)
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with the important affine constraint
∑N

j=1 [w]j = 1. Similarly to the Euclidean case, the

optimization problem can be solved by iteratively performing sparse coding while fixing D,

and optimizing D while fixing the sparse codes. Algorithm 3 summarizes the different steps

of dictionary learning.

Algorithm 3: Riemannian dictionary learning algorithm
input : Training set Z = {Z̄j}mj=1, where Z̄j ∈ S;
output: Dictionary D = {d̄i}

N
i=1, d̄i ∈ S

Dictionary initialization using Bayesian clustering and PGA (see Section 2.4.1.2))
/* Processing */
for k = 1 to nIter do

Sparse Coding using Algorithm 2; w∗j are the output sparse codes.
/*Dictionary update Step */
for a = 1 to N do

Updating atom i using line-search algorithm
w∗ = argminw ‖

∑N
i=1 [w]i Vi‖22 + λf(w)

d̄a
∗

= argmind̄a
∑m

j=1 ‖ [wa] logZ̄j
(d̄a)‖2Z̄j

+‖
∑N

i=1;i 6=a [wi] logZ̄j
(d̄i)‖2Z̄j

+λf(wj)

return Dictionary D = {d̄i}
N
i=1, d̄i ∈ S

An efficient dictionary initialization for faster learning The performance of sparse

coding depends on the number of the dictionary elements N , and an empiric choice of N can

be time consuming, especially when it comes to large datasets. As a solution, we propose an

initialization step that enables an automatic inference on N and accelerates the convergence

of the dictionary learning algorithm. To this end, we propose to cluster the training shapes

by adapting the Bayesian clustering of shapes of curves method proposed in [127]. The

latter brings the advantage of automatically inferring the number of clusters from a set of

data. From each cluster, main representatives will then be selected to constitute the initial

dictionary.

Kernel-based clustering of shapes for dictionary learning – In Figure 2.7, we show

a qualitative result of clustering 3D skeletal shapes and 2D facial shapes. To achieve it, an

inner product matrix is first computed from the training data based on the kernel function
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defined in Section 2.2.3.2. Note that in the 3D case, this kernel is positive definite for only

certain values of the kernel parameter σ. Thus, its empiric choice is required to seek positive

definiteness. The inner product matrix is then modeled using a Wishart distribution. To

allow for an automatic inference on the number of clusters, prior distributions are carefully

assigned to the parameters of the Wishart distribution. Then, posterior is sampled using

a Markov chain Monte Carlo procedure based on the Chinese restaurant process for final

clustering. For details, we refer the reader to [127], where the authors presented the Bayesian

clustering method to segment shapes of curves. In our work, we propose to adapt their

approach to cluster shapes of 2D/3D landmark configurations where the only difference

resides on the computation of the distance matrix.

Figure 2.7 – Pictorial of the proposed clustering approach. Landmark configurations (left)
are mapped from the the shape manifold to RKHS by computing the inner product matrix
from the data (Middle). Bayesian clustering is then applied on this matrix to construct the
final clusters (right) whose number is automatically inferred.

Atoms inference from clusters – To select the best representatives of a cluster, the

mean shape is a suitable candidate but it is not sufficient to summarize the intra-cluster

variability. For that, we propose to apply principal geodesic analysis (PGA), first proposed

by [33]. Specifically, all elements of a culster are mapped to the tangent space at the mean
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shape Tµ̄(S). Then, principal component analysis (PCA) is applied in this vector space to

induce the main components (tangent vectors). Finally, the induced vectors are mapped

back to the manifold S using the exponential map operator to represent inital atoms. This

procedure is applied to all the clusters. Note that an important advantage of performing

PGA in each cluster rather than in the whole training set is to avoid the problematic case

of having points in the manifold that are far from the tangent point.

2.4.2 Extrinsic approach

The SCDL algorithms only depend on the notion of inner product. In the following, we

will discuss how they can be easily extended to RKHS using the Procrustes Gaussian Kernel.

2.4.2.1 Kernel Sparse Coding

A closed-form solution of kernel sparse coding is proposed in [42]. To derive it, let us

first define φ : S → H a mapping to RKHS induced by the kernel k(z̄1, z̄2) = φ(z̄1)Tφ(z̄2),

where z̄1, z̄2 ∈ S. For a query shape z̄ ∈ S, extending Eq. 2.2.2 to RKHS yields

lH(z̄,D) = min
w
‖φ(z̄)−

N∑
i=1

[w]i φ(d̄i)‖22 + λf(w), (2.4.5)

with
∑N

i=1 [w]i = 1. In Eq. 2.4.5, since the sparsity term depends entirely on w, only the

reconstruction term needs to be kernelized. Expanding the latter gives

‖φ(z̄)−
N∑
i=1

[w]i φ(d̄i)‖22 = φ(z̄)Tφ(z̄)

= −2

N∑
i=1

[w]i φ(d̄i)
T
φ(z̄) +

N∑
i,j=1

[w]i [w]j φ(d̄i)
T
φ(d̄j)

= k(z̄, z̄)− 2wTk(z̄, D) + wTK(D,D)w, (2.4.6)

where k(z̄,D) is the N -dimensional kernel vector computed between the query z̄ and the

dictionary atoms, and K(D,D) is the N × N kernel matrix computed between the atoms.
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An efficient solution of kernel sparse coding can be obtained by considering UΣUT as the

SVD of the symmetric positive definite kernel K(D,D), and k(z̄, z̄) as a constant term

(independent on w). Thus, Eq. 2.4.6 can be written as the least-squares problem in RN :

minw ‖z̃ − D̃w‖22, where D̃ = Σ1/2UT and z̃ = Σ−1/2UTk(z̄, D) (we refer to [42] for the

proof). In this work, this approach is applied in the Kendall’s shape space by using the

Procrustes Gaussian Kernel defined in Section 2.2.3.2.

2.4.2.2 Kernel Dictionary learning

Similarly to Euclidean dictionary learning, the extrinsic Riemannian formulation is based

on an alternating optimization strategy to update weights and atoms. While the first step

is obtained with extrinsic sparse coding presented above, the second is presented in what

follows. Given the codes from the first step, the problem of dictionary learning can be

viewed as optimizing Eq. (2.4.5) over D. The main idea here is to represent D as a linear

combination of the training samples Y in RKHS according to the Representer theorem [91].

The resulting weights for the M training samples are stacked in a M ×N matrix V , which

gives φ(D) = φ(Y )V . Since only the first term in Eq. 2.4.5 depends on D, the problem of

dictionary update can be written as U(V ) = ‖φ(Y ) − φ(Y )VW‖22, where W is the N ×M

matrix of sparse codes obtained from the first step. The latter can be expanded to:

U(V ) = Tr(φ(Y )(IM − VW )(IM − V A)Tφ(Y )T )

= Tr(K(Y, Y )(IM − VW −W TV T + VWW TV T )).

To obtain the updated dictionary that is now defined by V , the gradient of U(V ) is zeroed

out w.r.t V . This gives V = (WW T )−1W = W †, where † is the pseudo-inverse operator.
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2.5 Properties of the latent space

Sparse coding of trajectories give rise to time-series defined in vector space which we

refer to as the latent space. In this section, we describe the main properties of the obtained

representations in this space.

2.5.1 Reconstruction of trajectories

As illustrated in Figure 2.8, an important advantage of the intrinsic approach is that it

enables to recover a sparse code back to the original manifold. This can be extremely useful

for visualization purposes and for certain tasks such as motion generation, as will be studied

in Chapter 4. Shape reconstruction is achieved with respect to the pre-learned dictionary by

applying the weighted intrinsic mean algorithm described in Algorithm 4. The idea here is

based on the intrinsic mean, i.e. Algorithm 1, where we now: 1) Initialize the approximated

shape µ̂ as the linear combination of codes and the corresponding atoms from the dictionary.

By doing so, we can obtain a good approximation of the original shape, knowing that the

code vector is sparse and supposing that atoms with non-zero coefficients (elements of code

vector) are the closest to the tangent point; 2) Compute tangent vectors as logµ̂i(wjD̄j) and

the mean tangent vector v̄. Then update µ̂ by moving v̄ to the average direction. This is

done iteratively until the norm of v̄ is sufficiently close to zero.

Algorithm 4: Weighted intrinsic mean for shape reconstruction from code
input : A vector of codes shapes {wj}mj=1, a dictionary D = {D̄j}mj=1 and ε1, ε2 small
Initialize µ̂← 1

m

∑m
j=1wjDj , i← 0

repeat
Compute vj ← logµ̂i(wjD̄j)

Compute average tangent vector v̄ ← 1
k

∑m
j=1 vj

Update µ̂i according to µ̂i+1 ← expµ̂i(ε2v̄)

i← i+ 1

until |v̄| < ε1
return µ̂, the reconstructed shape
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Figure 2.8 – Given the pre-trained dictionary D, skeletal trajectories in the shape manifold
can be reconstructed from the space of sparse codes using the weighted intrinsic mean
algorithm.

2.5.2 Efficient tangent space projections

As explained in Section 2.3.2, many approaches that model sequences of human

landmarks as trajectories on Riemannian manifolds [9, 102, 107] share a major drawback,

that of mapping manifold-valued points to a reference tangent space which may introduce

distortions especially when points are far from the tangent point. In contrast, in our coding

approach, each point is coded on its attached tangent space, where the dictionary atoms

are mapped (see Figure 2.9 for illustrations of tangent space approximation strategies). By

doing so, we only compute distances to the tangent point which are equal to true geodesics.

Furthermore, even though we map all the atoms to a tangent space where some of them may

be far from the tangent point, in practice, distortions are usually avoided since our sparse

coding scheme tends to code a point using the closest atoms to it and attributes zeros to

the rest, distant atoms. As a consequence, assuming that the dictionary is well learned (i.e.

the atoms cover all the space of training shapes), our approach considerably alleviates the

non-trivial problem of trajectory distortions caused by tangent space approximations.
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Figure 2.9 – Schematic tangent space projections using our method compared to state-of-
the-art.

2.5.3 Denoising of skeletal shapes

Skeletal joints obtained from low cost sensors are often noisy leading to abnormal skeletal

poses. This is a non-trivial issue for applications as action recognition since the performance

of a landmark-based recognition approach relies essentially on the accuracy of the extracted

landmarks. One advantage of the proposed sparse coding approach is that it naturally enables

denoising of skeletons when assuming a clean dictionary. Figure 2.10 presents an illustration

of this property using data collected from the state-of-the-art MSR-Action 3D dataset [69].

Here, only certain joints are poorly estimated in a body pose, e.g., right and left knees, hence

the global shape is preserved. Sparse coding attempts to approximate this shape using the

closest atoms. Assuming that the dictionary does not contain abnormal shapes, the resulting

approximation is expected to recover the input abnormal shape. The question now is how

to obtain a clean dictionary? Recall that to train a dictionary, skeletons are collected from

all training sequences. We point out that in general, noise appears in only certain frames

of a sequence. In addition, actions usually evolves smoothly over time. Considering these

two information, one can compute distances between successive frames and discard skeletons

with a relatively great distance to the previous.
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Figure 2.10 – Denoising of skeletal shapes using sparse coding. Abnormal skeletons are
presented in the top left. Code vectors (middle) are obtained after sparse coding. They are
then reconstructed with respect to the dictionary (right) to recover the abnormal skeletons.

2.5.4 On the vector structure of the latent space

Standard notions of statistics (e.g., mean computation, interpolation, etc.) and analysis

of time-series (e.g., temporal alignment, temporal modeling, etc.) need significant modifica-

tion to account for the nonlinearity of the shape manifold. In most cases, these operations

become highly involved in terms of computational complexity, and often result in iterative

procedures further increasing the computational load. The proposed sparse coding approach

allows to exploit the linear nature of the latent variables as well as their low-dimensionality

to compute standard statistics on the data and apply standard techniques to process time-

series, rather than performing them directly on the manifold. For instance, one can compute

the mean code linearly and recover it back to the manifold and still obtain a point on the

manifold that is very close to the intrinsic mean shape of the same data. An illustration of

this is given in Figure 2.11. One can also interpolate linearly between latent variables and

obtain meaningful interpolates when mapped back to the shape manifold, see Figure 2.12.

Now, we turn our attention to our main concern which is to consider time-evolving shapes

that represent actions or facial expressions. As explained previously, sparse coding of each
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Figure 2.11 – Mean shape computation on a set of skeletons. Left: Input 3D skeletons in the
Kendall’s shape space. Middle: Mean shape computed using the intrinsic mean algorithm.
Right: Mean shape computed by first sparse coding the input skeletons, then computing the
mean code and reconstruct it with the dictionary.

shape of a trajectory gives rise to a smoothly-varying time-series that is naturally defined

in vector space. Thereby, assuming the linearity of the latent space, one can apply machine

learning techniques as well as post-processing methods dedicated to Euclidean time-series

(up or down temporal resampling, denoising of time-series, temporal alignment of different

time-series, etc.), without any manifold assumption.

Figure 2.12 – An example of linear interpolation between two latent variables: source (left)
and target (right). Shapes in this figure are the result of mapping the interpolates from the
latent space to the manifold.

2.6 Summary

In this chapter, we proposed a novel action and facial expression modeling based on

Riemannian sparse coding and dictionary learning in the shape manifold. This solution

allows to overcome the nonlinear structure of the manifold by mapping a Riemannian

trajectory to an Euclidean time-series. In addition to its sparsity and vector structure,

this representation allows to reconstruct original trajectory from its latent representation
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thanks to the dictionary. In addition, it presents a natural denoising tool allowing to alleviate

the noise present in the data. We explored both intrinsic and extrinsic solutions of SCDL.

The first extends sparse coding to tangent spaces while avoiding a commonly encountered

problem which is to map all manifold-valued data to a common tangent space. The second is

based on embedding the manifold-valued data to Hilbert space via a positive definite kernel

function. In Chapter 3, these two approaches will be further studied and evaluated in the

context of two recognition tasks: 3D action recognition and 2D facial expression recognition.

In Chapter 4, we will exploit the intrinsic approach to generate new skeletal sequences and

show how we can use them to guide the generation of human videos.
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Chapitre 3

Facial Expression and Action

Recognition with Sparse

Representations

3.1 Introduction

In the previous chapter, we proposed a novel framework to encode trajectories in the

shape manifold. We explored two alternatives of Riemannian SCDL allowing to represent

human actions and facial expressions as sparse times-series in vector space. The first is

an intrinsic solution where SCDL is performed on the manifold tangent spaces while the

second is based on embedding the manifold-valued data to Hilbert spaces. In this chapter,

we demonstrate the effectiveness of these sparse representations in two recognition tasks:

the 3D action recognition and 2D facial expression recognition (both micro and macro

expressions). Specifically, we will show that the intrinsic coding approach is efficient to

code 3D shape trajectories while the extrinsic method is suitable for 2D trajectories. In

the context of the addressed classification problems, these coding techniques bring two
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main advantages: (1) Sparse coding of shapes is performed with respect to a Riemannian

dictionary. Hence, the resulting sparse times-series are expected to be more discriminative

than the data themselves. In addition, they are robust to noise, knowing that SCDL is a

powerful denoising tool as demonstrated in Section 2.5.3 of Chapter 2; (2) Using sparse

time-series as discriminative features allows us to perform both temporal modeling and

classification in vector space, avoiding the more difficult task of classification on the manifold.

To this end, we will study and compare two different pipelines for temporal modeling and

classification. The first is based on a standard machine learning technique while the second

is a deep learning approach based on RNNs. An overview of the proposed approaches is

given in Figure 3.1.

Figure 3.1 – Overview of the proposed frameworks. Trajectories of 2D facial expressions
(respectively 3D actions) are encoded using extrinsic (respectively intrinsic) SCDL in the
Kendall’s shape space. Temporal modeling and classification are then performed on the
obtained time-series in vector space.

Our main contributions in this chapter are:

— Application of the framework proposed in Chapter 2 to: 3D action recognition,
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2D micro- and 2D macro- facial expression recognition. Extensive experiments are

conducted on seven commonly-used datasets to show the competitiveness of the

proposed approach to state-of-the-art.

— A comparative study on the intrinsic and extrinsic paradigms of Riemannian SCDL

in the 2D and 3D shape manifolds. To the best of our knowledge, this work is the first

to apply and compare both approaches to dynamic 2D and 3D shapes.

3.2 Related work

The typical framework of human motion recognition using skeletons or faces comprises

the following phases, see Figure 3.2. A feature extraction step to capture lower-level

information from the data. This step can account to the spatial information only or also

considers the temporal dimension. We consider two main categories of features: hand-crafted

features and learned features by means of deep learning. Such representations can be used

as input to a temporal modeling stage to capture the temporal dependencies in time-series.

The output is then fed to a classification stage which can consist on a standard classifier

(e.g. k-nearest neighbors, SVM, etc.) or a deep learning framework.

Figure 3.2 – Overview of a typical landmark-based action/facial expression recognition
approach.

Most of the landmark-based approaches in the literature follow the above pipeline to

represent and classify 3D actions or 2D facial expressions. At large, we can regroup them into
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two main categories: classical methods which are based on hand-crafted feature extraction

and deep learning methods which automatically learn features by designing suitable network

architectures and objectives for the task at hand, see Figure 3.3.

Figure 3.3 – Our categorisation of state-of-the-art approaches. Representations of 2D/3D
sequences of landmarks (skeletons or faces) can be either hand-crafted or learned. The former
representations can be categorised into: kernel-based, graphical models or Riemannian. The
latter can be achieved using deep learning techniques.

In one hand, we categorise the classical methods into three groups:

Graph-based methods Graph is a powerful tool for modeling structured objects. Since

the representation of a human skeleton or face is in essence composed of points that are

connected to each other, it is natural to perceive it as a graph. Therefore, several approaches

opted for graphs to model the spatial dependencies between human joints as well as their

temporal evolution. Probabilistic models such as Hidden Markov models (HMMs), which

also falls in this category, have been widely used to model the temporal evolution of human

pose sequences.

Kernel methods attempt to compute similarities between data-points (e.g. landmark
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configurations, features extracted from them, etc.) using kernel functions. This enable them

to operate in a high-dimensional, implicit feature space. The latter is also called the inner

product space since only inner products between data-points are computed, without ever

computing the coordinates of the data in the new space. These approaches are known to

bring a richer representation of the original data since the inner product space is usually

higher-dimensional which helps classification methods to identify complex patterns.

Riemannian methods Several representations of landmark sequences may lie to nonlinear

manifolds where traditional computational tools and machine learning techniques cannot be

directly applied. In fact, in contrast to vector spaces, these manifolds are characterized with

nonlinear topology that algorithms have to take into account. As an example, to compute

the similarity between two points on a nonlinear manifold, the Euclidean distance is no

longer suitable since it does not represent the real proximity between them. As a solution,

several approaches studied the Riemannian geometry of these manifolds to define a metric

which is obtained by defining a smoothly varying inner product on each tangent space of

the manifold. Hence, the vector space structure of these tangent spaces can be exploited to

overcome the nonlinearity of Riemannian manifolds.

On the other hand, feature learning using deep learning techniques has been receiving

increasing attention in recent years due to their ability of designing powerful features without

the need of heavy human labor and domain expert knowledge to develop effective feature

extraction methods. Their success is also attributed to the access to Graphics Processing

Units (GPUs) as well as to large scale labeled datasets which allow to design networks

with millions of parameters. These deep learning techniques consist of multi-layer neural

networks with a number of connected units (neurons). These layers represent three types:

input layer with input units receiving information to be processed, output layer with output

units giving the result of the network, and hidden layers with hidden units which process

the data. The training objective of these neural networks consists of learning the weights

of the connections between neurons in order to determine the mapping between the input
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and the output. The most popular deep learning methods that are commonly used in action

and facial expression recognition are convolutional neural networks (CNNs) and recurrent

neural networks (RNNs). The former are based on the powerful convolution operation and

belong to the category of feed-forward neural networks where the information moves only in

one direction, that of the output layer. The latter are a kind of neural networks that takes

sequential input and infer sequential output by sharing recurrent connections (parameters)

between time steps, in contrast to CNNs.

In the following, we review some examples of methods from the categories discussed

above in the context of 3D action recognition and 2D facial expression recognition, with a

focus on Riemannian approaches since our proposed framework is also Riemannian.

3.2.1 3D action recognition

Over the last decade, many techniques have been proposed for action recognition from

3D skeletal data. As shown in Figure 3.3, several methods are based on the extraction

of hand-crafted features. Examples include the use of spatio-temporal graphical models to

represent and classify action sequences. Considering a human action as transitions between

body poses over time, G. Hernando et al. [34] proposed a forest-based classifier called

transition forests to discriminate both static pose information and temporal transitions

between pairs of two independent frames. Another work [114] modeled a human action as a

set of semantic parts called motionlets obtained by tracking then segmenting the trajectory

of each joint. By combining the motionlets and their spatio-temporal correlations, they

proposed an undirected complete labeled graph to represent a video, and a subgraph-pattern

graph kernel to measure the similarity between graphs, then to classify videos.

In the category of kernel-based approaches, two kernel-based tensor representations

named sequence compatibility kernel (SCK) and dynamics compatibility kernel (DCK) were

introduced in [66]. These can capture the higher-order relationships between the joints. The
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first captures the spatio-temporal compatibility of joints between two sequences, while the

second models a sequence dynamics as the spatio-temporal co-occurrences of the joints.

Tensors are then formed from these kernels to train SVM.

The above-mentioned approaches did not make any manifold assumptions on the

data representation. However, several shape representations and their dynamics often lie

to nonlinear manifolds. As discussed in the category of Riemannian approaches, many

approaches exploited the Riemannian geometry of nonlinear manifolds to analyze skeletal

sequences. The latter are considered in different Riemannian manifolds such as the Lie

group, the Grassmann manifold, the shape manifold, etc. Since the work presented in this

dissertation is based on a representation in the shape manifold, we consider it as part

of this category. In Section 2.3.2 of Chapter 2, we described some representations of 3D

skeletal sequences on Riemannian manifolds. Here, we discuss their corresponding temporal

modeling and classification steps. In [107], sequences are represented as trajectories in the

product space of Lie groups SE(3)× ...×SE(3) then mapped to the Lie algebra se(3)n, the

tangent space at the identity element. To handle the rate variability in human actions, the

obtained time-series in se(3)n are aligned by means of the popular dynamic time warping

(DTW) algorithm. To handle temporal misalignment as well as the noise present in the

data, the aligned sequences are processed using Fourier temporal pyramid (FTP). Finally,

the obtained features are classified using a one-vs-all SVM. In [108], the authors also applied

DTW on the Lie group representation of actions then classified final curves using a one-

vs-all linear SVM after mapping the curves to the Lie algebra using rolling maps which

ensures a better flattening of the Lie group. DTW and SVM were also used in [4] to

classify their low-dimensional representation of actions which were initially represented as

trajectories in the Lie group. Based on the same trajectory representation on SE(3), the

authors in [51] proposed a deep learning framework in Lie groups to recognize actions.

The proposed architecture includes several special layers (e.g. RotMap layer, RotPooling

layer, etc.) which accounts to the geometry of the manifold. Taking another direction, the
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authors in [9] represented skeletal sequences as trajectories in the Kendall’s shape space then

modeled them using TSRVF. For classification, they computed the mean trajectories of each

class and for each trajectory they extracted a feature vector formed by distances to mean

trajectories of each class. Finally, they used SVM to classify these feature vectors. Recall

that a common drawback of many of these approaches is the mapping of all manifold-valued

data to a reference tangent space which may introduce distortions. In contrast, our coding

approach in the shape manifold avoids such a problem.

On the other hand, RNNs, which belong to the category of deep learning approaches

according to our categorisation in Figure 3.3, have showed promising performance when

applied to 3D action recognition. For instance, HBRNN-L [28] applied bidirectional RNNs

hierarchically by dividing a skeleton into five parts of neighboring joints. Then, each is

separately fed into a bidirectional RNN before fusing their outputs to form the upper-body

and the lower-body. Similarly, these latter were fed into different RNNs and their outputs

fusion form the global body representation. More recently, the spatio-temporal LSTM (ST-

LSTM) [73] extended LSTM to spatio-temporal domains. To this end, the analysis of a 3D

skeleton joint considers spatial information from neighboring joints and temporal information

from previous frames. In addition, a tree-structure based method allows to better describe

the adjacency properties among the joints. This method is further improved by a gating

mechanism to handle noise and occlusion.

3.2.2 2D facial expression recognition

The task of facial expression recognition (FER) consists in recognizing the basic

emotions, e.g., fear, surprise, happiness, etc. Recall that facial landmarks are located in

certain regions of the face such as the mouth, the eyes, eyebrows, etc. As stated in [23], the

motion of these landmarks defining facial expressions allows to characterize the emotional

state of humans. Therefore, representing and classifying sequences of facial landmarks has
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been widely used in the literature of FER.

Falling in the category of graph-based approaches, a geometric approach was proposed

in [116] which introduced a unified probabilistic framework based on an interval temporal

Bayesian network (ITBN) built from the movements of landmark points. Aware of the

small variations along a facial expression, the authors in [53] proposed a method to capture

the subtle motions within facial expressions using a variant of Conditional Random Fields

(CRFs) called Latent-Dynamic CRFs (LDCRFs) on geometric features.

Taking the direction of Riemannian methods, Taheri et al. [102] proposed to represent 2D

facial sequences as parameterized trajectories on the Grassmann manifold of 2-dimensional

subspaces in Rn (n is the number of landmarks) which is an affine-invariant shape

representation. To capture the facial deformations, they used geodesic velocities between

facial shapes and finally, classification was performed by applying LDA then SVM. In the

work of Kacem et al. [59], 2D facial landmark sequences were first represented as trajectories

of Gram matrices in the manifold of positive semidefinite matrices of rank 2. A similarity

measure is then provided by temporally aligning trajectories while taking into account the

geometry of the manifold. This measure is finally used to train a pairwise proximity function

SVM.

More recent approaches exploited deep neural networks. In [57], two neural network

architectures were proposed for image videos (DTAN) and 2D facial landmark sequences

(DTGN) which are combined (forming DTAGN) to predict final emotions. In particular,

DTGN showed to be efficient by using only 2D landmark sequences, when applied separately.

Another approach is proposed in [123] where a Part-based Hierarchical Bidirectional

Recurrent Neural Network (PHRNN) is responsible for analyzing the temporal information

of facial landmark sequences and a Multi-Signal Convolutional Neural Network (MSCNN)

is designed to extract spatial features from still frames. These two networks are combined

to boost the performance of facial expression recognition.
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Although the macro facial expression recognition problem has seen considerable ad-

vances, micro-expression recognition is still a relatively challenging task [83]. Micro-

expressions are brief facial movements characterized by short duration, involuntariness

and subtle intensity. In the literature, previous methods opted for extracting hand-crafted

features from texture videos such as LBP-TOP and HOOF [128].

More recently, deep learning methods were proposed to tackle the problem by applying

CNNs [15, 63] and RNNs [63]. To our knowledge, only the method of [21] is entirely based

on analyzing 2D facial landmark sequences. Their work is based on computing the point-

wise distances between adjacent landmark configurations along a sequence which is stacked

in a matrix. The latter was seen as an input image to a CNN-LSTM-based classifier.

However, their approach was only evaluated on a synthesized dataset produced from a

macro-expression dataset. In our work, we will show that we achieve state-of-the-art results

on a commonly-used micro-expression dataset using only 2D landmark data.

3.3 Temporal modeling and classification

Let {Z̄1, Z̄2, ..., Z̄L} be a sequence of skeletons representing a trajectory on S. As

described previously, we code each skeleton Z̄i into a sparse vector wi ∈ RN with respect to

a dictionary D. As a consequence, each trajectory is mapped to an N -dimensional function

of sparse codes and the problem of classifying trajectories on S is turned to classifying N -

dimensional sparse codes functions in Euclidean space, where standard tools designed for

Euclidean time-series (e.g., temporal modeling, machine learning techniques, etc.) could be

directly applied. We adopt and evaluate two temporal modeling and classification schemes

to recognize actions and facial expressions.
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3.3.1 Dynamic time warping, Fourier pyramid and SVM

A non-trivial challenge in recognizing actions and facial expressions resides in their rate

variability since they can be executed at different speed. Thus, a typical landmark sequence

representation has to be invariant to the execution rate. In other words, sequences belonging

to the same class should typically have similar parametrization. A commonly used technique,

namely Dynamic Time Warping (DTW) can temporally align one sequence into another by

finding the optimal re-parameterization that minimizes a similarity measure between the

two. In our work, we exploit the vector structure of our latent space to directly apply DTW

on the sequential data, avoiding the more difficult task of temporal alignment of trajectories

on the manifold. Another important post-processing is to further filter out noise present

in the data. For instance, Fourier Temporal Pyramid (FTP) [113] have shown to be very

effective for recognition tasks involving noisy data as it maps a time-series to the Fourier

domain and eliminates the high frequency elements. Moreover, FTP is known to be robust

to temporal mis-alignment. In our work, we apply a pipeline of DTW and FTP, then classify

final features using a one-vs-all linear SVM. By doing so, we handle rate variability, temporal

misalignment and noise, and classify final features, respectively.

It is important to note that to be able to apply the FTP approach, the pose sequences

should have the same temporal length. For that, we need to apply a temporal re-sampling

to all sequences which can be achieved in two alternatives:

— After projecting the input sequences to the Kendall’s shape space, we can apply a

Riemannian re-sampling algorithm as described in Algorithm 5. This alternative is

better applied when the dataset contains long sequences. Thus, one can perform down-

sampling of trajectories which will reduce the computational cost of the sparse coding

step.

— As explained in Section 2.5.4 of Chapter 2, one can exploit the vector structure of

the latent space to apply algorithms designed for Euclidean time-series which are in
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most cases faster than their nonlinear equivalent. Thus, one can apply SCDL on the

input trajectories, then perform a Euclidean temporal re-sampling on the obtained

sequences of sparse codes.

Temporal re-sampling of trajectories Temporal up-sampling allows to increase time-

steps in a sequence for more accuracy, while temporal down-sampling decreases them to

reduce the computation complexity of algorithms as an example. Besides, one may need to

have a set of sequences with the same length by applying up or down sampling to each

sequence. This can be achieved in the shape manifold by applying the algorithm described

in Algorithm. 5.

Algorithm 5: Re-sampling of trajectories on S
input : Given a trajectory α(t)t=t1,...,tn , we seek α(s)s=s1,...,sl where l < n for

down-sampling and l > n for up-sampling.
for i = 1 to l do

Find ti1 , ti2 such that ti1 ≤ si ≤ ti2
Compute w1 =

si−ti1
ti2−ti1

and w2 =
ti2−si
ti2−ti1

x = α(i1), y = α(i2), θ = dS(x, y) then
α(si) = 1

sin(θ)(sin(w2θ)x+ sin(w1θ)y)

return Re-sampled trajectory

3.3.2 Long short-term memory network

Modeling sequential data using recurrent neural networks (RNNs) has been widely used

in different computer vision tasks and has led to breakthrough results in natural language

processing [99], speech recognition [36], etc. RNNs are a kind of neural networks that take

sequential input and infer sequential output by sharing parameters between time steps. They

are trained using back-propagation over time. However, standard RNNs lack the ability of

learning long-term dependencies as they suffer from the problem of vanishing gradient [46].

Tackling this problem, Long short-term memory (LSTM) network [47] is equipped with a

gating mechanism that learns which information is relevant to keep or forget during training.
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Thereby they better handle the problem of learning long-term dependencies in sequential

data. In the context of action recognition, many works in the literature opted for LSTMs

to model and classify actions [73, 93, 124]. In [93], the authors propose a part-aware LSTM

where they divide a skeleton configuration into body parts, hence instead of keeping a long-

term memory of the entire body’s motion in the cell, they split it to part-based cells. Another

work [124] tackles the problem of view variations in the captured actions, similarly to our

work but instead of seeking a view-invariant representation then use it for classification, they

proposed a view-adaptive LSTM-based network that automatically regulates observation

viewpoints during the occurrence of an action. In our work, we aim to take advantage of the

view-invariant nature of our representation as well as its compactness (sparsity) and vector

space structure to apply an LSTM directly on the SCDL time-series. Further, we explore the

use of Bi-directional LSTM (Bi-LSTM). Bi-LSTM is an extension of LSTM that presents

each sequence backwards and forwards to two separate recurrent networks, providing context

both from the future and past, respectively [37]. We will experimentally show that Bi-LSTM

can achieve slight improvements over the traditional LSTM in recognizing human motion.

3.3.3 Dictionary structure

In the context of classification, one may exploit the important information of data labels

to construct more discriminative feature vectors. To this end, we propose to build class-

specific dictionaries, similarly to [38]. Formally, let S be a set of labeled sequences on S

belonging to q different classes {c1, c2, ..., cq}, we aim to build q class-specific dictionaries

{D1, D2, ..., Dq} in S such that each Dj is learned using skeletons belonging to training

sequences from the corresponding class cj . In this scenario, coding a query shape Z̄ ∈ S

is done with respect to each Dj,1≤j≤q, independently. As a result, q vectors of codes are

obtained. These vectors are then concatenated to form a global feature vector W . As will be

discussed in Section 3.4.3, this yields more discriminative feature vectors for classification.
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3.4 Experimental evaluation

We perform extensive experiments to evaluate the effectiveness of the proposed

frameworks in the tasks of: 3D action recognition, 2D macro- and micro- facial expression

recognition. We provide comparisons to some state-of-the-art approaches on several publicly

available datasets in addition to comparisons between the intrinsic and extrinsic paradigms

of the proposed SCDL approach. Moreover, we perform baseline experiments to evaluate

some properties of our recognition frameworks.

3.4.1 3D action recognition

3.4.1.1 Datasets

We evaluate the proposed skeletal representation using four benchmark datasets

presenting different challenges: Florence3D-Action [92], UTKinect-Action [117], MSR-Action

3D [69], and the large-scale NTU-RGBD dataset [94].

Florence3D-Action dataset consists of 9 actions performed by 10 subjects. Each subject

performed every action two or three times for a total of 215 action sequences. The 3D

locations of 15 joints collected using the Kinect sensor are provided. The challenges of this

dataset consist of the similarity between some actions and also the high intra-class variations

as same action can be performed using left or right hand.

UTKinect-Action dataset consists of 10 actions performed twice by 10 different subjects

for a total of 199 action sequences. The 3D locations of 20 different joints captured with a

stationary Kinect sensor are provided. The main challenge of this dataset is the variations

in the view point.

MSR-Action 3D dataset consists of 20 actions performed by 10 different subjects. Each

subject performed every action two or three times for a total of 557 sequences. The 3D

locations of 20 different joints captured with a depth sensor similar to Kinect are provided

- 72 -



3.4. Experimental evaluation

with the dataset. This is a challenging dataset because of the high similarity between many

actions (e.g., hammer and hand catch).

NTU-RGB+D is one of the largest 3D human action recognition datasets. It consists of

56, 000 action clips of 60 classes. 40 participants have been asked to perform these actions in a

constrained lab environment, with three camera views recorded simultaneously. Each Kinect

sensor estimates and records 25 joints coordinates reported in the 3D camera’s coordinate

system.

3.4.1.2 Experimental settings

For the first three datasets, we followed the cross-subject test setting of [112], in which

half of the subjects was used for training and the remaining half was used for testing.

Reported results were averaged over ten different combinations of training and test data.

For Florence3D-Action and UTKinect-Action datasets, we followed an additional setting

for each: Leave-one-actor-out (LOAO) [92, 111] and Leave-one-sequence-out (LOSO) [117],

respectively. For MSR-Action3D dataset, we also followed [69] and divided the dataset into

three subsets AS1, AS2, and AS3, each consisting of 8 actions, and performed recognition

on each subset separately, following the cross-subject test setting of [112]. The subsets AS1

and AS2 were intended to group actions with similar movements, while AS3 was intended

to group complex actions together. In all experiments, we performed recognition based on

the two classification schemes: Bi-LSTM and DTW-FTP-SVM.

For NTU-RGB+D, the authors of this dataset recommended two experimental settings

that we follow: 1) Cross-subject (X-Sub) benchmark with 39,889 clips from 20 subjects

for training and 16,390 from the remaining subjects for testing; 2) Cross-view (X-View)

benchmark with 37,462 and 18,817 clips for training and testing. Training clips in this

setting come from the camera views 2 and 3 while the testing clips are all from the camera

view 1. Due to the huge amount of data in this dataset, we construct dictionaries using the
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kernel clustering approach presented in Section 2.4.1.2 since it is less time consuming than

the dictionary learning optimization problem. Note that NTU-RGBD dataset contains two

types of actions: daily activities where performed by one actor and interactions between

two actors. For the latter, we perform sparse coding of each actor’s skeleton separately.

Further, since the closeness between the two actors is a relevant information, we compute

the Euclidean distance between their center of mass and concatenate it to the feature vector

obtained after sparse coding. Moreover, we compute displacement vectors, as described in

Section 3.4.2.2 for micro-expressions, and fuse them with the rest of the features. Finally,

we perform temporal modeling and classification using Bi-LSTM. For this dataset, we do

not suggest using the first classification pipeline as it would be highly consuming in terms of

computation of DTW and FTP due to the huge amount of data that NTU-RGBD contains.

3.4.1.3 Results and discussions

Table 3.1 – Overall recognition accuracy (%) on MSR-Action 3D, Florence Action 3D, and
UTKinect 3D datasets. In the first column: (R): Riemannian approaches; (N): other recent
approaches; Last row: our approach.

Dataset MSR-Action 3D Florence 3D UTKinect 3D
Protocol H-H 3 Subsets H-H LOAO H-H LOSO

(R) T-SRVF on Lie group [4] 85.16 – 89.67 – 94.87 –
(R) T-SRVF on S [9] 89.9 – – – – –
(R) Lie Group [107] 89.48 92.46 90.8 – 97.08 –

(R) Rolling rotations [108] – – 91.4 – – –
(R) Gram matrix [58] – – – 88.85 – 98.49
(N) Graph-based [114] – – – 91.63 97.44 –

(N) ST-LSTM [73] – – – – 95.0 97.0
(N) JLd+RNN [126] – – – – 95.96 –
(N) SCK+DCK [66] 91.45 93.96 95.23 – 98.2 –

(N) Transition-Forest [34] – 94.57 – 94.16 – –
(R) Ours (SVM) 90.01 94.19 92.85 92.27 97.39 97.50

(R) Ours (Bi-LSTM) 86.18 86.18 93.04 94.48 96.89 98.49
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Comparison to Riemannian methods on MSR-Action, Florence3D and UTKinect

datasets The first row of methods in Table 3.1 reports the recognition results of different

Riemannian approaches. Since in [9] human actions are also represented as trajectories in

the Kendall’s shape space, we report additional results of [9] on Florence3D and UTKinect

datasets to give more insights about the strength of our coding approach compared to the

method of [9]. In Table 3.1, it can be seen that we obtain better results than all Riemannian

approaches on the three datasets. We recall that one common drawback of these methods is

to map trajectories on manifolds to a reference tangent space, where they compute distances

between different points (other than the tangent point). This may introduce distortions,

especially when points are not close to the reference point. However, our method avoids

such a non-trivial problem as coding of each shape is performed on its attached tangent

space and the only measures that we compute are with respect to the tangent point. Now,

we discuss our results obtained with the first classification scheme, i.e., DTW-FTP-SVM,

similarly used in [4, 107, 108]. In the three datasets, it is clearly seen that our approach

outperforms existing approaches when using the same classification pipeline, which shows

the effectiveness of our skeletal representation. For instance, we highlight an improvement of

1.73% on MSR-Action 3D (following protocol [69]) and 1.45% on Florence3D-Action. Now,

we discuss the results we obtained using Bi-LSTM. Note that although we do not perform

any preprocessing on the sequences of codes before applying Bi-LSTM, our approach still

outperforms existing approaches on Florence3D, with 1.64% higher accuracy. However, it

performs less well on UTKinect yielding an average accuracy of 96.89% against 97.08%

obtained in [107]. In MSR-Action 3D, our approach performs better than the method of

[4] using the first protocol. Note that in [4], results were averaged over all 242 possible

combinations. However, our average accuracy is lower than other approaches following both

protocols on this dataset (around 3.5% in the first and 0.62% in the second). Here, it is

important to mention that data provided in MSR-Action 3D are noisy [75]. As a consequence,

using Bi-LSTM without any additional processing step to handle the noise (e.g., FTP) could
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not achieve state-of-the-art results on this dataset.

Comparison to State-of-the-art We discuss our results with respect to recent non-

Riemannian approaches. In all datasets, our approach achieved competitive results.

Florence3D-Action – On this dataset, our method outperforms other methods using Bi-

LSTM in the case of LOAO protocol, as shown in Table 3.1. However, using the second

protocol, it is 2.19% lower than [66]. The authors of [66] combine two kernel representations:

sequence compatibility kernel (SCK) and dynamics compatibility kernel (DCK) which

separately achieved 92.98% and 92.77%, respectively. The proposed approach achieves good

performance for most of the actions. However, the main confusions concern very similar

actions, e.g., Drink from a bottle and answer phone, as demonstrated by the confusion

matrix in Figure 3.4.

Figure 3.4 – Confusion matrix on the Florence 3D dataset.

UTKinect – Following the LOSO setting, our approach achieves the best recognition rate,
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yielding an improvement of 2.49% compared to the method of [73], which is based on

an extended version of LSTM. For the second protocol, our best result is competitive to

the accuracy of 98.2% obtained in [66]. Considering the main challenge of this dataset,

i.e., variations in the view point, our approach confirms the importance of the invariance

properties gained by adopting the Kendall’s representation of shape, hence the relevance of

the resulting functions of codes generated using the geometry of the manifold.

MSR-Action 3D – For the experimental setting of [69], our best result is competitive to

recent approaches. In particular, on AS3, we report the highest accuracy of 100%. This result

shows the efficiency of our approach in recognizing complex actions, as AS3 was intended to

group complex actions together. On AS1, we achieved one of the highest accuracies (95.87%).

However, our result on AS2 is about 8.9% lower than state-of-the-art best result. This shows

that our approach performs less well when recognizing similar actions, as AS2 was intended

to group similar actions together. Although our best result is slightly higher than [66], it is

lower than the same method when following the experimental setting of [113]. This shows

that our approach performs better in recognition problems with less classes.

Table 3.2 – Overall recognition accuracy (%) on NTU-RGB+D following the X-sub
and X-view protocols. In the first column: (R): Riemannian approaches; (RN): RNN-based
approaches; (CN): CNN-based approaches.

Protocol X-sub X-view
(R) Lie Group [106] 50.1 52.8
HB-RNN-L [29] 59.1 64.0

(R) Deep learing on SO(3)n [51] 61.3 66.9
(RN)Deep LSTM [93] 60.7 67.3

(RN)Part aware-LSTM [93] 62.9 70.3
(RN)ST-LSTM+Trust Gate [73] 69.2 77.7
(RN)View Adaptive LSTM [124] 79.4 87.6

(CN)Temporal Conv [64] 74.3 83.1
(CN)C-CNN+MTLN [61] 79.6 84.8

(CN)ST-GCN [119] 81.5 88.3
(R) Intrinsic SCDL 73.89 82.95

NTU-RGB+D – We report the obtained results for this dataset in Table. 3.2. For both
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benchmarks, X-view and X-sub, our approach remarkably outperforms other Riemannian

representations. For instance, it outperforms the Lie group representation by 23% and

30% on X-sub and X-view protocols. It also surpasses the deep learning on Lie groups

method by 12% and 16%. This could demonstrate the ability of our approach to deal with

large scale datasets compared to conventional Riemannian approaches. Besides, our method

outperforms RNN-based models, HB-RNN-L, Deep LSTM, PA LSTM and ST-LSTM+TG,

with the exception of [124]. Knowing that we also used an RNN-based model (Bi-LSTM)

for temporal modeling and classification, this shows the efficiency of our action modeling.

In fact, sparse features obtained after SCDL in Kendall’s shape space are remarkably

more discriminative than the original data. In order to have a better insight into their

corresponding data distributions, we used the t-distributed stochastic neighbor embedding

(t-SNE) 1 to visualize original data and SCDL features. From Fig. 3.5, we can observe that

the SCDL features are better clustered than the original data in terms of class labels (colors

in the figure). Besides, it is worth noting that SCDL is an efficient denoising tool, which

is an important advantage when dealing with the often-noisy skeletons extracted with the

Kinect sensor.

Figure 3.5 – Visualization of 2-dimensional features of the NTU-RGB+D dataset. Left:
original data. Right: the corresponding SCDL features. Each class is represented by a
different color.

1. t-SNE is a nonlinear dimensionality reduction technique that allows for embedding high-dimensional
data into two or three dimensional space, which can then be visualized in a scatter plot.
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3.4.1.4 Comparison to extrinsic SCDL

To further evaluate the strength of the proposed intrinsic approach in the context of 3D

action recognition, we compare it to extrinsic SCDL. Recall that instead of coding on tangent

spaces, the extrinsic approach tends to embed the manifold-valued data into Hilbert spaces

which are higher dimensional vector spaces where linear coding becomes possible. The main

difficulty here arises from the fact that this embedding relies on a kernel function which,

according to Mercer’s theorem, should be positive definite. For 2D shapes, we presented

in Section 2.2.3.2 a positive definite kernel. However, to the best of our knowledge, the

existence of such a kernel has not been proved in the literature for 3D shapes. As a remedy,

we adapted the extrinsic SCDL formulation by applying the Procrustes Gaussian kernel

defined in Section 2.2.3.2, in which we also adapted the full Procrustes distance to 3D

shapes as dFP (Z̄1, Z̄2) = sin(θ) (see Section 4.2.1 of [27]) (θ is the geodesic distance defined

in Section 2.2.3). Note that the kernel function relies on a parameter σ. Experimentally, we

checked the positive definiteness of the adapted kernel and found out that it is only positive

definite for some values of σ. We empirically chose 0.1 for Florence3D, 0.2 for UTKinect,

and 0.5 for MSR-Action 3D, as to have valid positive definite kernels. Results reported in

Table 3.3 show superiority of the intrinsic method. We argue that this difference comes from

the fact that for the 3D case, the positive definiteness constraint on the kernel function

reduced the valid space of the kernel parameter σ. Hence, intrinsic SCDL is in this case a

better coding solution. In contrast, for the 2D case where we possess a PD kernel, we will

show in the next section that extrinsic SCDL is more efficient in 2D recognition tasks.

Table 3.3 – Comparative evaluation of intrinsic and extrinsic SCDL in recognizing 3D
actions.

Dataset MSR-Action 3D Florence 3D UTKinect 3D
Protocol H-H 3 Subsets H-H LOAO H-H LOSO

Extrinsic SCDL 82.52 88.53 85.76 89.03 93.97 94.97
Intrinsic SCDL 90.01 94.19 92.85 92.27 97.39 97.50
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3.4.2 2D Facial Expression Recognition

In this application, we extract 49 facial landmarks from human faces in 2D and with

high accuracy using a state-of-the-art facial landmark detector [7]. We first represent the

sequences of landmarks as trajectories in the Kendall’s shape space. Extrinsic SCDL is then

applied to produce sparse time-series that are finally classified in vector space. We evaluate

this approach on two different 2D facial expression recognition tasks, the macro and micro.

3.4.2.1 Macro-Expression Recognition

The task here is to recognize the basic macro emotions, e.g., fear, surprise, happiness, etc.

To this end, we applied our approach on two commonly-used datasets namely the Cohn-

Kanade Extended dataset and the Oulu-CASIA dataset. Our obtained results are then

discussed with respect to state-of-the-art approaches as well as to intrinsic SCDL. For both

datasets, we followed the commonly-used experimental setting in [31, 57, 74, 129] consisting

on a ten-fold cross validation.

Cohn-Kanade Extended (CK+) dataset [76] consists of 327 image sequences performed

by 118 subjects with seven emotion labels: anger, contempt, disgust, fear, happiness, sadness,

and surprise. Each sequence contains the two first temporal phases of the expression, i.e.,

neutral and onset (with apex frames).

Oulu-CASIA dataset [105] includes 480 image sequences performed by 80 subjects. They

are labeled with one of the six basic emotions (those in CK+, except the contempt). Each

sequence begins with a neutral facial expression and ends with the expression apex.

Results and discussions Table 3.4 gives an overview of the obtained results on both

datasets. Overall, our approach achieved competitive results compared to the literature. For

instance, our best result on CK+ (obtained with Bi-LSTM) is by 1.52% lower than the

best state-of-the-art result obtained by the method of [57]. The latter is based on two neural
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network architectures trained on image videos and facial landmark sequences. However, when

using only the landmark architecture (DTGN), our approach obtained a higher accuracy.

Similarly, on Oulu-CASIA, our best result is lower than DTAGN and higher than DTGN. On

the other hand, the method of [59] achieved a better performance on both datasets compared

to our method. Comparing the confusion matrices (see Table 3.5), the same method seems

to better recognize the sadness expression while our method is clearly more efficient in

recognizing the contempt expression. This will be further discussed later on. From Fig. 3.6

and the confusion matrices in Tables 3.6 and 3.5, we can observe that the two expressions:

happiness and surprise are well recognized in the two datasets while the main confusions

happened in the two expressions: fear and sadness, conforming to state-of-the-art results [57,

59]. Besides, we highlight the superiority of extrinsic SCDL compared to intrinsic SCDL.

The first is performed in RKHS which is a higher dimensional vector space. This helps

capturing complex patterns in facial expressions and identifying subtle differences between

similar expressions. For instance, an interesting observation could be seen for the contempt

expression. As stated in [76], the latter is quite subtle and it gets easily confused with other,

strong emotions. For this expression, the recognition accuracy obtained with intrinsic SCDL

is 55%, compared to 90% obtained with extrinsic SCDL, as shown in Figure 3.6. We argue

that this remarkable improvement comes from the mapping to RKHS for the same reasons

mentioned above. This observation has pushed us to further evaluate the performance of our

approach in the task of micro-expression recognition.

3.4.2.2 Micro-Expression Recognition

Micro expressions are brief facial movements characterized by short duration, involuntari-

ness and subtle intensity. We argue that to recognize them, in contrast to macro-expressions,

we are more interested in detecting subtle shape changes along a sequence. To this end, we

applied the extrinsic SCDL framework as in macro-expression recognition, and to further

detect the subtle deformations, we computed displacement vectors as the difference between
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Table 3.4 – Comparison with state-of-the-art on CK+ and Oulu-CASIA datasets. (A):
Appearance-based approaches; (G): Geometric approaches; (R): Riemannian approaches; Last
row: our approach.

Method CK+ Oulu-CASIA
(A) CSPL [129] 89.89 –

(A) ST-RBM [31] 95.66 –
(A) STM-ExpLet [74] 94.19 74.59

(G) ITBN [116] 86.30 –
(G) DTGN [57] 92.35 74.17

(A+G) DTAGN [57] 97.25 81.46
(R)Shape velocity on Grassmannian [102] 82.80 –

(R)Shape traj. on Grassmannian [59] 94.25 80.0
(R)Gram matrix trajectories [59] 96.87 83.13

(R)Intrinsic SCDL (SVM) 91.26 70.37
(R)Intrinsic SCDL (Bi-LSTM) 89.43 70.24

(R)Extrinsic SCDL (SVM) 95.62 77.06
(R)Extrinsic SCDL (Bi-LSTM) 95.73 73.09

Table 3.5 – Confusion matrix on the CK+ dataset.
An Co Di Fe Ha Sa Su

An 97.50 0 2.5 0 0 0 0
Co 10 90.0 0 0 0 0 0
Di 2.5 0 95.83 0 0 1.67 0
Fe 0 0 0 91.67 8.33 0 0
Ha 0 0 0 0 97.5 2.5 0
Sa 5.0 0 5.0 2.5 1.67 85.83 0
Su 0 1.11 0 0 0 0 98.89

successive sparse codes of L-dimensional time-series. Then, the resulting sequences of length

L−1 are finally used for classification. We evaluate our approach on the most commonly-used

dataset, namely CASME II.

CASME II dataset [120] contains 246 spontaneous micro-expression video clips recorded

from 26 subjects and regrouped into five classes: happiness, surprise, disgust, repression

and others. We performed classification based on the commonly used Leave-one-subject-out

protocol.

Recall that previous methods that tackled the problem of micro-expression recognition are

appearance-based (i.e., using texture images) and to our knowledge, only [21] has studied
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Figure 3.6 – Recognition accuracy achieved for each emotion class in the CK+ (left) and the
CASIA (rigth) datasets, and comparison between extrinsic and intrinsic SCDL approaches.

Table 3.6 – Confusion matrix on the Oulu-Casia dataset.
An Di Fe Ha Sa Su

An 72.33 12.33 2.11 1.0 12.22 0
Di 14.22 68.56 6.22 3.0 8.0 0
Fe 5.22 2.0 72.33 5.11 9.33 6.0
Ha 4.0 0 9.33 85.67 1.0 0
Sa 15.22 4.11 6.11 2.0 72.56 0
Su 0 2.1 5.0 0 2.0 90.89

the problem using 2D facial landmarks. However, their approach was only evaluated on a

synthesized dataset produced from CK+ (macro) videos, by selecting the three first frames

of an expression, then interpolating between them. For this reason, we compare our results

with respect to appearance-based methods, as shown in Table 3.7.

We point out the recognition accuracy of 64.62% achieved by our method outperforming

state-of-the-art approaches, with the exception of [50]. This shows the effectiveness of the

adopted extrinsic SCDL in detecting subtle deformations from 2D landmarks, without any

apperance-based information as other approaches in the literature.

Compared to the intrinsic approach, it is clear from Table 3.7 that the extrinsic SCDL

method is better in recognizing micro-expressions. Recall that the use of extrinsic SCDL

to tackle the problem of micro-expression recognition was driven by its good performance
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Table 3.7 – Recognition accuracy on CASME II dataset and comparison with state-of-
the-art methods. In the first column: (A): Appearance-based approaches. (R): Riemannian
approaches. Last row: our approach.

Method Accuracy (%)
(A) STCLQP[50] 58.39

(A) CNN [15] 59.47
(A) CNN (LSTM) [63] 60.98

(A) LBP-TOP, HOOF [128] 63.25
(A) Optical Strain [70] 63.41
(A) DiSTLBP-IIP [50] 64.78

(R)Intrinsic SCDL (SVM) 43.65
(R)Extrinsic SCDL (SVM) 64.62

in recognizing the contempt emotion, in the CK+ dataset which is characterized by subtle

changes along the expression. The obtained results on CASME II hence supports our previous

claims.

3.4.3 Ablation study

We examine the effectiveness of the proposed Kendall SCDL schemes by performing

several baseline experiments on different datasets.

A. Kendall’s shape representation – We evaluate the necessity of the Kendall’s shape

projection. To this end, we perform temporal modeling and classification on raw data, after a

scale and translation normalization, against their application on Kendall SCDL features. On

NTU-RGB+D, we applied Bi-LSTM while on Florence 3D, MSR Action 3D and UTKinect,

we applied the pipeline DTW-FTP-SVM. Performances are reported in the second and fourth

rows of Table 3.8. In all datasets, improvements are remarkably gained with the Kendall’s

space projection. This is clearly seen in particular on the large scale NTU-RBD+D dataset

which presents different view-variations and where the improvement is more than 26%.

B. Nonlinear SCDL – In this experiment, we evaluate the importance of the nonlinear

formulation of SCDL that we applied on Kendall’s space. For that, we compare it to the use

of linear SCDL, i.e., by solving for Eq.2.2.2. Obtained results on the four action recognition
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Table 3.8 – Evaluation of the Kendall’s shape space representation.
Approach NTU-RGB+D Florence MSR 3D UTKinect
Raw data 56.5 84.29 87.36 92.67

Linear SCDL 79.20 87.94 89.23 93.58
Kendall SCDL 82.95 92.85 90.01 97.5

datasets, reported in the third row of Table 3.8, clearly show the interest of accounting for

the nonlinearity of the manifold when applying SCDL.

C. Sparsity regularization – In this experiment, we evaluate the effect of the sparsity

regularization parameter λ (in Eq. (2.4.1) and Eq. (2.4.4)) on recognition accuracies obtained

using both of the adopted classifiers. To do so, we used half of a training set for learning the

dictionary and training the classifiers and the other half for validation. The first graph of

Fig. 3.7 shows the impact of increasing λ from 10−4 to 1 at steps of 10−2. Further, we report

the average sparsity percentage (i.e., number of non-zero codes divided by the total number

of codes) for some values of λ to show the coherence of the obtained codes with the proposed

theory. As expected, the sparsity percentage increases when increasing λ. We remark that

the accuracy reached a maximum value at λ = 0.01 (37% of sparsity) and λ = 0.02 (49% of

sparsity) for SVM and Bi-LSTM, respectively. Note that in all previous experiments, λ was

chosen empirically so to correspond to these latter percentages of sparsity.

D. Dictionary structure – As described in Section 3.3.3, we build class-specific

dictionaries. To show the relevance of this structure in the context of classification, we

compare it to the case of using a global dictionary, e.g., when label(s are not taken into

account. The obtained recognition accuracies using Bi-LSTM and following the LOAO

setting are 94.48% and 91.53% for class-specific and global dictionary, respectively. These

results clearly prove that the adopted structure is better in classifying actions.

E. Dictionary initialization – In this experiment, we evaluate the performance of our

proposed initialization step based on Bayesian clustering of shapes and PGA. To this end, we
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Figure 3.7 – Left: Accuracy when varying the sparsity regularization parameter λ (%
values in the x-axis represent the average sparsity). Right: Dictionary learning objective over
iterations for: (1) Random initialization; (2) Our proposed initialization based on Bayesian
clustering and PGA.

.

compare it to the case of random initialization, where atoms are randomly selected from the

training set. We train a class-specific dictionary (for class tight lace in Florence3D dataset)

with the same training data in both cases. For the case of random initialization, we set the

number of atoms N to 41 to be equal to that of our proposed initialization. Recall that in our

approach, N is automatically inferred to avoid its empiric choice, especially as we build class-

specific dictionaries. In Fig. 3.7, on the right graph, we plot the two corresponding dictionary

learning objectives over iterations. As it is expected, the proposed initialization shows faster

convergence, dividing the overall dictionary learning processing time by approximately two

times, when taking into account the execution time of our initialization step.

F. Performance of Bi-LSTM – We compared average accuracies yielded by Bidirectional

LSTM and a traditional LSTM. Following LOAO experimental setting, using Bi-LSTM

shows an improvement of around 0.7% on Florence Action 3D and 1.2% on NTU-RGBD

dataset, indicating the positive effect of learning both future and past contexts to recognize

actions.

G. Evaluation on the facial landmark detector The task of facial expression recognition

from landmark data relies essentially on the accuracy of the landmark detector. In this
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experiment, we evaluate the performance of the landmark detector that we used in our

experiments (i.e., Chehra [7]) by comparing it to the newly-released Openface2.0 [8],

which gives the option of extracting either 49 or 68 landmarks. In Table 3.9, we report

the classification accuracy obtained by applying the pipeline DTW+FTP+SVM on raw

landmark data (after a simple scale and translation normalization). Results obtained on CK+

and Oulu-CASIA datasets clearly show a better performance using landmarks extracted with

the Chehra detector.

Table 3.9 – Classification performances when using different landmark detectors.
Landmark detector Oulu-CASIA dataset CK+ dataset

Cherha [7] - 49 landmarks 76.41 93.68
Openface [8] - 49 landmarks 70.85 83.73
Openface [8] - 68 landmarks 71.26 82.92

3.5 Discussions

The Kendall’s shape representation has proven the efficiency of adopting a view-invariant

analysis of the given data. Because of the nonlinearity of the Kendall’s manifold, intrinsic

and extrinsic solutions of SCDL were comprehensively studied and compared. Regarding

the extrinsic solution, the advantage of embedding data from the Kendall’s shape space to

RKHS is twofold. First, the latter is vector space, thus it enables the extension of linear

SCDL to the nonlinear Kendall’s space. Second, embedding a lower dimensional space in

a higher dimensional one gives a richer representation of the data and helps extracting

complex patterns. However, to define a valid RKHS, the kernel function must be positive

definite according to Mercer’s theorem. On one hand, for the 2D Kendall’s space, we have

used the Procrustes Gaussian Kernel which is positive definite and shown that for the task

of 2D macro facial expression recognition, extrinsic SCDL performs better than intrinsic

SCDL. We argue that this is due to the kernel embedding. For instance, we highlight the

clear improvement in recognizing the contempt emotion in the CK+ dataset. The latter is
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characterized with subtle deformations that are well captured using the extrinsic approach.

This has drove us to evaluate it on the task of 2D micro-expression recognition where

the shape deformations along expressions are known to be subtle as well. As expected, the

performance of extrinsic SCDL was promising. On the other hand, for the 3D Kendall’s space,

a positive definite kernel function has not been proposed in the literature. Nevertheless,

adapting the PGk to 3D shapes prevented us from exploring the whole space of σ as in this

case, this kernel is positive definite for only certain value of this parameter. As a consequence,

the performance of extrinsic SCDL in the 3D Kendall’s space can be hindered since the

quality of the produced codes depends on the value of σ. We argue that this is the main

reason behind the better performance obtained using intrinsic SCDL for the task of 3D action

recognition. Besides, intrinsic sparse coding of a shape is performed on its attached tangent

space, by mapping atoms into it. Compared to Riemannian approaches of the literature, this

avoids the common drawback of mapping points to a common tangent space at a reference

point which may introduce distortions.

3.6 Conclusion

In this chapter, we have used the sparse representations that we presented in the previous

chapter to classify 3D actions and 2D micro and macro facial expressions. We have used two

temporal modeling and classification schemes on top of the obtained sparse time-series: a

deep learning framework based on Bi-LSTM and a pipeline of DTW-FTP-SVM. We have

conducted extensive experiments on seven commonly-used datasets and showed that our

obtained results are competitive to state-of-the-art. We have compared the two adopted

temporal modeling and classification pipelines and discussed the obtained results for different

datasets. Further, we presented a comprehensive comparative study on the use of intrinsic

and extrinsic SCDL approaches by providing an answer to the question: “Depending on the

nature of the data (i.e body or face) and its dimension (i.e 2D or 3D), when and which
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technique should we apply?”.
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Chapitre 4

Pose-guided Human Video

Generation with Sparse

Representations

4.1 Motivation

Due to the emergence of Generative Adversarial Networks, the task of human video

generation is attracting increasing attention in recent years as it is suitable for several

vision problems. For instance, it can serve as a data augmentation tool which remarkably

relieves the burden of manual annotations and thereby contributes to the development of

various video understanding tasks such as action and activity recognition. On the other

hand, human video synthesis allows for many human-centric applications such as avatar

animation. Problems related to realistic image generation with GANs has already shown

impressive results [52, 67, 82]. However, the extension from generating images to generating

videos turns out to be a highly challenging task with the introduction of the temporal

dimension. Considering this fact, a typical generative model needs to learn the plausible
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physical motion models of objects in addition to learning their appearance models. To this

end, some approaches in the literature opted for a disentangled solution by first generating

plausible motion then synthesizing coherent appearances. For instance, Yang et al. [121]

proposed a two stage approach. In the first stage, pose sequences are used to learn a

generative model due to their ability to encode motion dynamics. The newly generated pose

sequences are then used to guide the generation of video frames while preserving coherent

appearances in the input image. Regarding the first stage, they proposed a pose sequence

GAN (PSGAN) to generate skeletal sequences. Their generator transforms an input pose into

a pose sequence by adopting a encoder-decoder architecture. The output of the decoder is

then fed into a LSTMmodule for temporal pose modeling. However, their resulting sequences

may contain corrupted poses which would affect the synthesis of coherent appearance in the

second stage. In this chapter, we follow the same disentangled solution. In the first stage,

we propose an encoder-GAN model which generates new samples in the encoder latent

space which are then transformed into skeletal sequences. In contrast to previous works, it

guarantees the shape and motion consistencies of the generated pose sequences while having

a simpler architecture. In the second stage, given an input image, each pose of a sequence is

transformed to an image, thereby constitutes the final video. The latter procedure is based

on a recently proposed generative model that learns to transfer a person image to new

poses [130]. The main contributions in this chapter are,

— A novel framework, namely shapeGAN, to generate dynamic human poses. Our model

has a encoder-GAN architecture. The encoder aims to represent the data using SCDL in

the shape manifold yielding sparse time-series that are defined in a latent space with a

vector space structure. These latent variables are then used to train a GAN to generate

new samples in the latent space. The generated samples are then mapped back to the

shape manifold to represent the generated pose sequences.

— A pose-guided human video generation framework, namely shapeVGAN, which exploits

the shapeGAN model to generate novel pose dynamics, then uses a pose transfer
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Figure 4.1 – Schema of the original GAN framework. The generator G takes a noise vector
z as input and outputs generated images x̂. The discriminator D distinguishes x̂ from real
samples x.

model [130] to map each generated pose to an image. We differentiate our work as an

extension of [130] to video generation, while our main novelty consists on the shapeGAN

framework.

— Application of the proposed frameworks to: data augmentation for landmark-based action

recognition and human video generation.

4.2 Background and related work

4.2.1 Generative Adversarial Networks

In recent years, GANs [35] have led to breakthroughs in tasks related to realistic image

generation. Examples include image synthesis [82] which infers multiple possible outputs

for a given input, super-resolution [67], and image to image translation [52]. The original

GAN framework, as demonstrated in Figure 4.1 consists of a generator and a discriminator,

two neural networks that are trained against each other. The generator G aims to generate

samples that resemble to real ones, while the discriminator D tries to distinguish whether a

sample comes from the training data (i.e. real samples) or fromG. In other words,G captures

the data distribution by taking a latent variable z sampled from a prior distribution pz(z)

(e.g. a Gaussian distribution), and generates a fake image x̂ = G(z). x̂ can be seen as a

sample from the learned generative distribution pG. D discriminates between x̂ (as fake

data) and x sampled from real data distribution pdata(x) (as real data). Accordingly, the
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training of G and D is similar to a two-player minimax game where D is trained to maximize

the probability of assigning the correct label to both real samples and generated samples,

and simultaneously, G is trained to minimize log(1 −D(G(z))), according to the following

objective function:

min
G

max
D
La(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (4.2.1)

where La(G,D) denotes the adversarial loss for G and D, and D(x) denotes a probability

that x is real. Note that at early training stage, when G only generates poor images, D tends

to assign them low probability, which makes log(1−D(G(z))) saturate and unable to provide

sufficient gradient to update G. A standard way in practice is to maximize log(D(G(z)) for

better training G.

Training GANs In practice, training the original GANs can be remarkably challenging

and unstable. Empirically, there are three most common failures occurred within the training

process [22]:

1. Non-convergence: the generator and the discriminator fail to reach an equilibrium.

2. Mode collapse: the generator model generates similar samples given different inputs.

3. Quick convergence of the discriminator loss to zero: the optimal discriminator will be

unable to provide sufficient gradient to update the generator.

To address these issues, several authors suggested heuristic approaches to improve GANs

training. For a description of these tricks, we refer the reader to [81, 88]. More recently, a

variant of GANs, called the Wasserstein GAN (WGAN) has shown to be more stable to

train [5]. Different from the above-described vanilla GAN, WGAN optimizes the Wasserstein

distance using Kantorovich Rubinstein duality, instead of optimizing the Jensen-Shannon

divergence in the standard GAN. However, WGANs can sometimes generate low-quality

samples or fail to converge in some settings due to the use of weight clipping to enforce a

Lipschitz constraint on the critic. This problem is alleviated in [39] by the use of a gradient
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penalty. An overview of how GANs and their variants work can be found in [48]. In this

chapter, we will use the improved version of WGAN [39] to train our model.

4.2.2 Human video generation

Early video generation approaches attempted to generate videos directly in pixel space

using GANs or Variational Autoencoders (VAEs) [87, 104, 109]. By doing so, they model all

the structure and scene dynamics at once which may yield uninterpretable results. Recently,

many works proposed to guide the video generation using pose sequences making it a two-

step approach. In the first, human landmarks are exploited to generate novel pose sequences

which, along with an input image, are used to generate frame videos. For instance, Walker

et al. [110] proposed to guide the video forecasting with pose sequences, breaking the video

generation problem into two steps. First, they exploit the effectiveness of landmarks to model

human dynamics and used a VAE to generate possible future poses. Then, the latter are used

to conditioning a GAN to predict future frames of a video in pixel space. The same idea was

applied in [121] to synthesize human videos with a two-stage pose-guided video generation

method. In the first stage, they train a Pose Sequence GAN (PSGAN) to generate sequences

of poses conditioned on the class label. The latter, along with an input image, are used in

the second stage to guide the generation of coherent video frames. Since PSGAN may yield

corrupted poses, a Semantic Consistent GAN (SCGAN) is proposed to impose semantic

consistency between generated pose and ground-truth at a high feature level. In another

work, Wang et al. [115] proposed a Conditional Multi-Mode Network for a diverse smile

video generation, conditioned on landmark sequences. They used a VAE to learn a facial

landmark embedding. A recurrent network is then used to generate landmark embedding

sequences conditioned on a specific expression. The latter are fed into a multi-mode recurrent

landmark generator to produce a set of landmark sequences still associated to the given smile

class but clearly distinct from each other. Finally, these landmark sequences are translated

into face videos. The latter procedure can be achieved by transferring each frame of a pose
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sequence to an image which is know as pose to image translation or pose transfer.

Pose to image translation Transferring a person from one pose to another was first

proposed by [78] to synthesize person images in arbitrary poses. Based on an image of a

person and novel poses, the generation consists of two steps: pose integration and image

refinement. First, the condition image and the target pose are fed into a U-Net-like network

to generate an initial but coarse image of the person with the target pose. Then, the image

refinement is performed on the initial and blurry result by training a U-Net-like generator in

an adversarial way. Based on the same idea, the authors in [98] introduced deformable skip

connections in the generator of the GAN to deal with pixel-to-pixel misalignments caused

by the pose differences. In addition, they proposed a nearest-neighbour loss instead of the

common L1 and L2 losses in order to match the details of the generated image with the

target image. More recently, a progressive pose attention transfer was proposed in [130] to

generate the person image progressively. To do so, the generator of the network comprises a

sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends

to. This yields more realistic images with better appearance and shape consistency than

previous works.

4.3 The proposed approach

Given T training videos {vi}Ti=1 presenting one human action, we aim to train a model

that learns the training data distribution and generates a set of new videos {hi}Mi=1. Typically,

the generated samples would present variations in terms of the style of performing actions

that are different than those of the training videos. This includes variations in terms of

the execution rate of actions. To achieve this goal, we propose a two-step approach. In the

first, pose sequences {pi}Ti=1 are extracted from videos and used to train a generative model,

namely shapeGAN, which learns to generate novel motion dynamics {qi}Mi=1. In the second,
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given an input image Ic of a person, each pose of a generated sequence q is mapped to Ic

giving rise to a new sequence of images (i.e., video). In the following, we give more details

of each step.

4.3.1 shapeGAN: a pose sequence generation framework

Human landmarks have shown to be effective in several vision tasks including action

recognition, as shown in the previous chapter of this thesis. Inspired by its capability to

encode human motion dynamics, we aim to use human skeletons to synthesize novel motion

dynamics. However, the latter are often characterized with high variability, partly due to the

view variations. As a consequence, it is difficult for a generative model to identify shape and

motion patterns directly from raw data. Considering this problem, we propose to encode

landmark data to a more compact representation that lie to a lower-dimensional space by

adopting the sparse coding and dictionary learning scheme that we presented in Chapter 2.

In the context of pose sequence generation, this approach brings three main advantages:

1) Landmark configurations are represented in the shape manifold which discards the view

variations within the data (i.e., rotations, translations, and global scaling of configurations),

hence keeping only information about the shape and its dynamics; 2) SCDL is performed in

the shape manifold and yields a vector space representation while accounting to the nonlinear

nature of the data. Hence, the resulting representation is compact and it is expected to be

more suitable to train a generative model than the original data; 3) This coding technique

enables to recover the latent variables back to the shape manifold. Thereby, we propose to

design a generative model that synthesizes new samples in the latent space, then reconstruct

them to obtain skeletal sequences in the shape manifold.

Figure 4.2 gives an overview of the proposed approach. Given an input video presenting

a human action, we first extract a skeleton from each video frame using a state-of-the-art

detector [17] where each skeleton is represented by 18 body landmarks in 2D. Then, training
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Figure 4.2 – Overview of the proposed shapeGAN framework.

sequences are projected to the shape manifold where they are re-sampled using Algorithm 5

of Chapter 3 to have equal length. The resulting trajectories are encoded using SCDL in

the shape manifold. The obtained latent samples are used to train a Wasserstein GAN [39].

This allows to generate new samples which are then transformed to skeletal sequences in

the shape manifold using the weighted intrinsic mean algorithm as described in Algorithm 4

in Chapter 2. This reconstruction procedure is performed with respect to the pretrained

dictionary which insures that the obtained samples lie in the space of skeletons avoiding

any noisy or corrupted poses. Moreover, the trained GAN model shows its capability to

generate smoothly varying time-series which characterizes human actions. More properties

of the generated samples will be investigated in Section 4.4.2.

4.3.2 shapeVGAN: a pose-guided video generation framework

Once the shapeGAN model is trained, we are able to generate novel pose sequences

that present new variations in terms of style and temporal evolution of human actions. The
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Figure 4.3 – Generator architecture of the progressive pose attention transfer method [130].

following step is to transform each pose of a sequence to an image, hence obtain a video.

Given a generated pose sequence P = {P1, P2, ..., Pl}, where l is the sequence length, and an

input (condition) image Ic, our goal is to transfer the pose of the person in Ic to a target pose

{Pi}li=1. By doing so, we obtain a sequence of images I = {I1, I2, ..., Il} which represents

the final human video. In Figure 4.4, we show an example of transferring a pose (c) to

an input image (a) to obtain a new image (d). This step is achieved by applying a recently

proposed state-of-the-art approach [130] which is based on a GAN whose generator comprises

a sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends

to, generating the person image progressively. An overview of the generator architecture of

this method is given in Figure 4.3. In practice, the latter approach produces more realistic

images compared to previous solutions which motivates us to use it as part of our framework.

During training, the locations of the 18 body landmarks of a human pose are encoded

to a 18-channel heat map H. This model requires different combinations of condition and

target image (Ic, It) and their corresponding condition and target pose heat map (Hc, Ht).

The generator learns a mapping from the condition domain to the target domain. It outputs
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Figure 4.4 – Pose to image transfer. (a): Condition image. (b): Condition pose. (c): Target
pose. (d): Target image.

a person image, which is challenged by the discriminator for its realness. Once this model is

trained, the condition images, along with their corresponding condition heat maps, are taken

from the training set while the poses of a generated sequence obtained with shapeGAN are

used as target poses (heat maps) allowing to obtain target images that will finally represent

a generated video.

4.4 Experimental evaluation

In this section, we conduct extensive experiments to evaluate the efficiency of the

proposed frameworks. We first evaluate the performance of the proposed shapeGAN model

by applying it in a data augmentation task. For that, we used the Florence 3D action

dataset [92] that we presented in Chapter 3. Later on, we evaluate the shapeVGAN model

using data collected from the Weizmann Action database [12] which contains 81 videos of 9

people performing 9 actions, including jumping and waving-hands.
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4.4.1 Implementation details

shapeGAN implementation Recall that shapeGAN has an encoder-GAN architecture.

Regarding the encoder (SCDL), for both datasets, we performed a temporal re-sampling

of pose sequences to have equal length l = 32 using Algorithm 5. For each dataset, we

constructed a dictionary comprised of k = 32 atoms using the k-means approach as presented

in Chapter 2. We set the sparsity parameter λ to 0.1 to perform sparse coding. For a given

pose sequence, the sparse coding step would result in a matrix of dimension 32× 32 which

can be seen as a one-channel image that we transform to a tensor of dimension 1× 32× 32.

Our GAN implementation is based on the improved Wasserstein variant [39]. It is built

upon the popular Pytorch framework. We used batches of size 4 and we trained our model

for 105 epochs. We set the dimension of the input random vector z of the generator to 100.

We design the architecture of our generator as follows. The input latent variable z first

goes through two residual blocks of linear and LeakyRelu [79] layers, followed by a linear

transformation. The obtained vector after these blocks is of dimension sequence length (T )

× feature dimension (dim). It can be seen as T sub-vectors each of dimension dim. Each

sub-vector finally goes through a softmax layer which maps each component to the range

(0, 1) where the components add up to 1. This output layer is important since it guarantees

that the generated sparse code vectors have the same structure as the real ones.

ShapeVGAN implementation We used the Weizmann dataset to validate this model

for which we scaled each image frame to 180 × 140. Our implementation is based on that

of [130] following the same parameter setting.
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Figure 4.5 – Examples of generated pose sequences of actions with shapeGAN. From top
to bottom are actions: hand wave, sit-down, and clap hands.

4.4.2 Pose sequence generation for data augmentation

4.4.2.1 Qualitative evaluation

Figure 4.5 shows some examples of generated pose sequences with shapeGAN. We can

clearly observe that the pose sequences change in a smooth and typical way under each action

scenario, without the presence of any corrupted poses (noise) or temporal interruption. Recall

that the shapeGAN model learns to generate new samples in the latent space (after coding

initial sequences using SCDL in the shape manifold). To help insure that it generalizes well

on the training data and creates variability on the generated samples, in Figure 4.6 and

Figure 4.7, we show two plots of both training and generated data in the latent space after

embedding them in a 2D space. This is achieved by applying the t-SNE embedding that

allows to better visualize data distributions. In the first figure, we have data that belong to

one class (i.e., hand wave). The training data (in blue) represent eight sequences. Around

each of them, we can see the newly generated sequences (in red) which give us evidence

on the generalization capability of our shapeGAN model. In the second figure, we have

data that belong to nine classes of the Florence 3D dataset. The left panel representing

training data (in the encoder latent space) again demonstrates the discrimination ability

of our sparse representation since data-points from each class are regrouped together. The

right panel shows that the generated samples are also regrouped together in terms of class
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Figure 4.6 – 2D visualization of training samples (blue) and generated samples (red).

Figure 4.7 – 2D visualization of data belonging to nine action classes of the Florence 3D
dataset. Left: training samples. Right: training and generated samples.

labels. Note that we train a shapeGAN model for each class separately and the obtained

results encourages us to apply a class-conditional model in a future work. This will allow to

condition the generation process on the class label. Specifically, as input to the generator, in

addition to the random vector z, we can include the class label as one-hot encoded vector.

Similarly, with each sample, the discriminator will receive the same information as input.

Another important criterion that we want to evaluate is the generator ability to create a

temporal variability. Recall that in our model, we do not perform any temporal modeling of

the data. Nevertheless, our model still captures the temporal variability within the data and

is capable of generating new ones. To show our previous claim, in Figure 4.8, we visualize

two feature maps corresponding to two samples in the encoder latent space (i.e., sequences

of sparse codes after SCDL). The first is from the training set while the second is from
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Figure 4.8 – Visualization of a training (left) and a generated (right) feature maps.

the generated set. Note that for each, the X-axis represents the time frame while the Y-axis

represents the codes (or weights) which correspond to the activation of the dictionary atoms.

Comparing these two feature maps, we can notice similar atoms activation in the two while

the main difference resides in the temporal shift between them.

The effect of sparsity In our shapeGAN framework, sparsity plays a crucial role in

making the data representation more compact which facilitates the task of the generator

to learn the training data distribution. In this experiment, we evaluate this property

by performing different experiments with different values of the sparsity regularization

parameter λ. In Figure 4.9, we present some qualitative results. The training samples are

collected from the class hand wave of the Florence 3D dataset. Note that this class presents

a considerable variation since actors can perform the action either with the left or the right

hand, see the first raw of Figure 4.9. We trained three shapeGAN models with the values

0, 10−4 and 10−2 of the parameter λ, respectively. Recall that λ controls the amount of

sparsity in the sparse coding step. The obtained results show that the more λ is higher, the

more the generated samples are realistic. We can notice that for values 0 and 10−4 of λ, the

generated samples combine the two movements: raising the left hand and raising the right

hand in the same action, and even mix both of them by raising the two hands, which do not

resemble to real samples. This phenomenon does not occur for relatively higher value of λ.

- 104 -



4.4. Experimental evaluation

Figure 4.9 – Examples of generated samples with shapeVGAN. Different values of the
sparsity regularization parameter λ (in the sparse coding) were used in each experiment.
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Figure 4.10 – (a) Pose sequence generated after training a GAN directly on raw pose
sequences. (b) Pose sequence generated with shapeGAN.

Baseline experiment In this experiment, we further evaluate the importance of the

coding step in the shapeGAN framework. To this end, we perform a baseline experiment by

training a GAN [39] using raw pose sequences taken from the class hand wave of the Florence

3D dataset. We show some qualitative results in Figure 4.10. We can observe that the pose

sequence in the first raw (i.e. obtained with a GAN trained on raw data) presents some

temporal interruptions where the landmarks are not stable and the bones lengths (e.g. arms

or legs) are not constant. Similarly to the other samples generated with the same model,

this sequence does not evolve smoothly over time, in contrast to samples generated with

shapeGAN as showed in the second raw of Figure 4.10.

4.4.2.2 Quantitative evaluation

To quantitatively evaluate our shapeGAN model, we propose to augment an action

recognition dataset, i.e. the Florence 3D dataset, and evaluate the classification performance

when using: 1) Original training data; and 2) Training data augmented with an increasing

number of generated data. This procedure was proposed in [96] as a metric to evaluate a

GAN’s performance.

We use the same action recognition method that we proposed in Chapter 3. For temporal
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Table 4.1 – Action recognition accuracy (%) using an increasing number of generated
training data.

Data Accuracy
Training data 93.04

Augmented data ×3 93.98
Augmented data ×6 94.56
Augmented data ×9 95.04
Augmented data ×12 95.04

modeling and classification, we choose to use Bi-LSTM rather than the pipeline of DTW-

FTP-SVM since it is known that deep learning methods usually require more data in

order to increase their generalization capability compared to classical approaches. Table 4.1

summarizes the obtained results. Note that, in the different experiments that we performed,

the amount of data was multiplied by 3, 6, 9 and 12, respectively. The obtained results

have seen increasing improvements when increasing the amount of training data. Note

that the classification performance reaches saturation when multiplying the amount of

training samples by 9. These results demonstrate the efficiency of the proposed shapeGAN

model which can be useful as a data augmentation tool for different recognition tasks and

potentially for other vision tasks which relieves the burden of manual annotations.

4.4.3 Human video generation

After evaluating the performance of the proposed shapeGAN framework which showed

promising results in the generation of human pose sequences, we aim to evaluate the final

step of video generation. To this end, in what follows, we present some qualitative results

achieved with the shapeVGAN framework. Recall that the generated pose sequences from

the first step are used to guide the generation of video frames.

In Figure 4.11, we show examples of generated videos with shapeVGAN which belong

to the class wave hands of the Weizmann dataset. The first row of this figure represents a

training video while the two others are taken from the generated set. The latter are generated
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Figure 4.11 – Examples of video frames of action wave hands. The first row represents a
training video while the two others represent videos generated with our approach.

by taking a pose sequence that is generated using shapeGAN, then transferring each pose

to an image to obtain a video. This is achieved by taking a condition image which is the

first image of the training video in Figure 4.11. After extracting the pose of the person from

this condition image, we transfer it to the poses of the generated sequences to obtain the

final videos. Visually, we can clearly observe that our obtained results are realistic in terms

of appearance and temporal consistency since the human shape in a generated video evolves

smoothly over time. This demonstrates the efficiency of the pose transfer approach as well

as the advantage of guiding the video generation process with pose sequences. Besides, if we

compare the two generated videos frame by frame, we can notice that the way of performing

the same action is different which again demonstrates the variability that has been created

in the pose motion thanks to the shapeGAN framework.

To further evaluate our method, we took a generated pose sequence and transferred it

to two images of two different actors aiming to obtain two videos of actors with the motion.

Figure 4.12 presents the obtained results where we can clearly see that these actors perform

the same action with a similar motion. This demonstrates the ability of our framework

in preserving the identity of the person (i.e., visual appearance, size of arms, etc.) in the

condition image while modifying its motion. Here, it is important to mention that since

shapeGAN generates pose sequences in the shape manifold, information regarding scale and
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Figure 4.12 – Example of a generated pose sequence with shapeGAN (Top row). This
sequence is used to guide the generation of the two videos (second and third row) given
condition images (in red).

translation of a pose (i.e., location of a person in the image) are missing. As a remedy,

before the pose transfer step, we align each generated pose into the pose of the person in

the condition image by applying the procrustes algorithm [62].

Comparison to a state-of-the-art method To demonstrate the performance of the

presented shapeVGAN framework, we compare it to a state-of-the-art method namely

MoCoGAN [104]. This method generates a video by mapping a sequence of random vectors

to a sequence of video frames where the motion and content are decomposed in the generation

process. In contrast to our approach which guides the video generation with pose sequences,

MoCoGAN generates videos directly in pixel space.

We train both models using the same videos collected from the Weizmann database.

In Figure 4.13, we show some qualitative results that are randomly taken from generated

samples. We can clearly observe that video frames obtained with our approach are more

realistic than those obtained with MoCoGAN. In fact, the latter contain some blurry images

(e.g. images in last raw of Figure 4.13) as well as some content and motion artifacts (noise).

In contrast, shapeVGAN is able to keep more details in the video images and the person

movements evolve more smoothly and naturally over time. This shows the relevance of the

proposed pose-guided generation framework.
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4.5 Limitations and ongoing study

Since filtering out translations, rotation and scaling from configurations is a necessary

step in our shapeVGAN encoder (to perform SCDL in the shape manifold), these

transformations are still important to recover the location of the generated poses in an

image, as explained in the previous paragraph. In other words, imagine a video where a

person is walking from the left to the right of the scene, its corresponding pose represented in

the shape manifold would result in a centered skeleton moving locally in the same position.

As a consequence, in addition to generating pose sequences in the shape manifold, it is

necessary to generate the filtered transformations (translations, rotation and scaling) then

add them to the generated pose sequences as a post-processing step. As an ongoing study,

we aim to encode these transformations separately and feed them to a second generator that

learns to generate new translations, rotations and scaling of poses. Since these information

are correlated with the pose dynamics, the two generators of our model have to be learned

jointly to guarantee a certain coherence in the final pose sequences.

On the other hand, we are now capable of generating pose sequences without any

assumption on the class labels. Hence, for data augmentation, we have to train a model for

each action class. However, it would be more interesting to condition the shapeGAN model

on the class label by using a conditional GAN which showed to be efficient in different image

generation tasks. This is part of our ongoing work.

4.6 Conclusion

In this chapter, we explored the problem of human motion generation with GANs and

proposed a novel framework namely shapeVGAN that allows to generate human videos in a

two-stage procedure. In the first stage, we presented the shapeGAN model to generate novel

pose sequences which are used in the second stage to guide the video generation. shapeGAN
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has an encoder-GAN architecture. The encoder is based on SCDL in the shape manifold

which in addition to being a discriminative representation that showed promising results

in classification problems, it has been an efficient representation for the human motion

generation task. The GAN generates new samples in the encoder latent space that are then

transformed to pose sequences. Each pose of a sequence is then mapped to an image given

a condition image to obtain a video. The generated videos with shapeVGAN showed to be

realistic and temporally consistent in the case of human actions. As a future work, we aim

to generalize this framework to the task of facial expression generation.
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Conclusions and Perspectives

In this dissertation, we have presented a novel framework to model landmark-based

human actions and facial expressions. We have demonstrated that the proposed methods

are competitive or outperform the state-of-the-art on various and challenging datasets in two

recognition tasks: 3D action recognition, 2D micro and macro facial expression recognition.

We also demonstrated that the proposed action modeling can be efficiently integrated in a

generative model in order to synthesize novel human actions and videos. We conclude our

work pointing out the main contributions in Section 5.1 and their limitations in Section 5.2.

Finally, we discuss future perspectives in Section 5.3, indicating interesting directions for

future work in this field.

5.1 Main contributions

We have proposed sparse representations for landmark-based human actions and facial

expressions. We represented sequences of human landmarks as trajectories in the shape

manifold to allow for a view-invariant analysis. Trajectories are encoded using Riemannian

versions of sparse coding and dictionary learning. This allows to compensate the lack of

vector space structure in the shape manifold and yields Euclidean time-series with suitable
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computational properties, e.g. sparsity and vector space structure.

Application of the presented frameworks to 3D human action recognition and

2D facial expression recognition We have applied the proposed representations in

different classification problems, i.e. 3D action recognition, 2D micro and macro facial

expression recognition. We have adopted two temporal modeling and classification schemes,

a deep learning framework based on LSTM and a classical pipeline of methods designed

for Euclidean time-series. We have conducted extensive evaluation on seven commonly-used

datasets that present different challenges which showed the competitiveness of the proposed

frameworks to state-of-the-art.

Evaluation and comparison of extrinsic and intrinsic coding approaches in the

shape manifold We have explored two paradigms of sparse coding and dictionary learning

in the shape manifold, intrinsic and extrinsic.

The first allows to perform coding on the manifold tangent spaces which solves for a

commonly encountered problem in the literature of Riemannian methods, i.e. trajectories

distortion when mapped to a reference tangent space. It also enables an easy reconstruction

back to the original manifold which allows the visual exploration of the latent variables.

The second performs coding in Hilbert space after mapping the manifold-valued data

using a kernel embedding which gives a richer representation of the data and helps identifying

complex patterns.

We have evaluated and compared these two paradigms in the context of recognition tasks

that we addressed. We showed that the extrinsic approach is more efficient to represent 2D

trajectories while the intrinsic one is more suitable to encode 3D trajectories.

A generative framework for human motion synthesis We have proposed a generative

model to synthesize human pose sequences (namely shapeGAN). shapeGAN first encodes
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training pose sequences using nonlinear SCDL and uses the obtained latent samples to

train a generative adversarial network. The generated samples showed to be realistic while

representing new styles of actions. We have used this model to augment a state-of-the-art

action dataset which improved the action recognition accuracy.

We have used the generated pose sequences with shapeGAN to guide the generation of

human videos. Given an input person image, each pose of a generated sequence is transferred

to an image using a state-of-the-art pose transfer framework. This allowed us to synthesize

new videos.

5.2 Limitations

— The presented techniques assume that human landmarks are available and are

sufficiently accurate since all the datasets that we used are collected in controlled

lab environments. However, the estimation of landmarks could be more challenging

but possible in an uncontrolled setting.

— While the use of an extrinsic approach to represent 2D trajectories in the shape

manifold showed to be more efficient for classification than the intrinsic approach,

its application in the 3D shape manifold is not usually suitable. In fact, this requires

a positive definite kernel to allow mapping manifold-valued data to RKHS. Such valid

kernels are only available in the case of 2D shapes.

— The main limitation of the presented human motion generation framework is its

disability to generate global shape displacements. In fact, encoding data in the shape

manifold discards the global transformations (i.e. translations, rotations, scaling of

configurations).
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5.3 Future work

Several aspects can be investigated in future works in order to improve the proposed

approaches and further evaluate their performance.

— The presented extrinsic approach to code shape trajectories is only suitable for the 2D

shape manifold where a positive definite kernel exists in the literature. This is not the

case for the 3D shape manifold where our extension of the Procrustes Gaussian kernel

is not always valid (see Section 3.4.1.4). Therefore, we would like to further study the

existence of positive definite kernels in the 3D shape manifold.

— The proposed facial expression framework has been evaluated on datasets that were

collected in controlled environments and do not present considerable view-variations

(e.g. the Cohn-Kanade and the Oulu-Casia datasets). Hence, we would like to evaluate

our approach on more challenging datasets such as the AFEW database [24] where

the data were collected from movies showing close-to-real-world conditions, which

simulates the spontaneous expressions in uncontrolled environment. In addition, the

view variations for 2D landmarks yield projective transformations which are more

complex to filter out, thereby it would be interesting to investigate this problem.

— The presented generative framework, i.e. shapeGAN, is only capable to generate local

pose deformations without controlling the skeleton displacement (i.e. location of a

pose in the video). We would like to use the transformations that are filtered out in

the first step (i.e. rotation, translation, and scale) as input to a second generator in

order to generate new ones. The generated samples could then be added up to the

corresponding samples generated from the first generator. The two generators have

to be trained jointly in order to learn the relations between the two information (i.e.

local and global pose deformations).

— We have applied shapeVGAN to generate human actions on the Weizmann dataset

only. Hence, we would like to evaluate it on other, more challenging datasets presenting
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more action variations such as the UCF-101 dataset [100]. Our next goal is to also

apply the shapeVGAN framework on other problems such as the generation of facial

expressions. Moreover, we exploited shapeGAN to augment the Florence3D dataset

and we would like to augment other human actions and facial expressions datasets

and evaluate recognition performances using different state-of-the-art approaches.
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