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Introdution

Quantum topology is an area of mathematis and theoretial physis founded

by Jones and Witten in the 1980s. This subjet is a modern tool used for

studying problems of low-dimensional topology via so-alled quantum invari-

ants of topologial objets suh as knots, links, manifolds, homeomorphisms,

et. Quantum invariants are onstruted using an ingredient of algebrai na-

ture (for example the ategory of representations of a quantum group) and via

a ombinatorial desription of the studied objets.

A fundamental example of a quantum invariant of ompat oriented 3-man-

ifolds is due to Turaev and Viro in 1992, see [TV℄. Their onstrution is

losely related to the Ponzano-Regge quantum gravity state sum model. This

approah (in its general form due to Barrett and Westbury, see [BW℄) uses a

spherial fusion ategory as the main ingredient and onsists in a state sum

on skeletons of 3-manifolds whose verties are olored by the 6j-symbols of

the ategory. Reall that a pivotal fusion ategory is a �nitely semisimple

monoidal linear ategory endowed with a left duality and a right duality whih

are monoidally equivalent. A spherial fusion ategory is a pivotal fusion at-

egory whose left and right dimensions of objets are equal.

The goal of the present thesis is to extend the Turaev-Viro onstrution to

ombed 3-manifolds. A ombed 3-manifold is a ompat oriented 3-manifold

endowed with a nowhere-zero vetor �eld. The initial ingredient we use to

onstrut this extension is a pivotal fusion ategory (not neessarily spheri-

al). The additional data of the vetor �eld on the 3-manifold allows us to

remove the hypothesis of spheriity of the ategory. Our onstrution onsists

in a state sum on branhed spines of ombed 3-manifolds, whih are a om-

binatorial presentation of ombed 3-manifolds developed by Ishii, Benedetti,

and Petronio.

This monograph omprises �ve hapters and one appendix. Chapter 1 is

devoted to monoidal ategories, with partiular attention to those that are

pivotal and fusion. We desribe the Penrose graphial alulus whih allows to

replae lengthy algebrai omputations by elementary topologial arguments.

In Chapter 2, we review an invariant of olored planar graphs whih takes

values in tensor produts of multipliity modules. This invariant generalizes

6j-symbols. Also, we study duality pairings for olored graphs and their asso-

iated ontration vetors. The invariant of olored graphs and the ontration

vetors are the main tool in our topologial onstrutions.

In Chapter 3, we review the theory of branhed spines and the theory of

o-graphs. The o-graphs are enhaned graphs that enode spei� branhed

iii



iv INTRODUCTION

spines. In partiular, we explain how branhed spines and o-graphs represent

ombed 3-manifolds.

In Chapter 4, we onstrut of a state sum invariant of ombed 3-manifolds

whih generalizes the Turaev-Viro onstrution. More preisely, we assoiate

to any pivotal fusion ategory C a salar topologial invariant IC(M, ν) of a

ombed 3-manifold (M, ν), see Theorem 4.1. This invariant is de�ned in terms

of a state sum on a branhed spine of (M, ν). If the ategory C is spherial,

then IC(M, ν) does not depend on the vetor �eld ν and is equal to the Turaev-

Viro invariant TVC(M) of the 3-manifoldM de�ned using C. We also give an

algorithm to ompute IC(M, ν) starting from o-graphs (see Theorem 4.2).

In Chapter 5, we fous on the ase of a spei� pivotal fusion ategory:

the ategory Gd
k
assoiated with a harater d of a �nite group G. We study

in detail the invariant IGd
k

of ombed 3-manifolds de�ned with this ategory.

In partiular, we prove (by examples) that IGd
k

is non-trivial and does depend

on the vetor �eld: it may distinguish two non-homotopi vetor �elds on the

same 3-manifold (see Theorem 5.2). Finally, we give an interpretation of the

state sum invariant IGd
k

(M, ν) in terms of lassial topologial invariants: we

prove that it orresponds to the evaluation by the harater d on the Euler

lass of a real vetor bundle of rank 2 assoiated to the vetor �eld ν (see

Theorem 5.5).

We end with an appendix on the unordered tensor produts of modules.



CHAPTER 1

Pivotal fusion ategories

In this hapter, we review the notions of a monoidal ategory (Setion 1.1)

and of a pivotal ategory (Setion 1.2), with partiular attention to the ase of

a fusion ategory (Setion 1.4). We also disuss a way to represent morphisms:

the graphial alulus (Setion 1.3).

1.1. Monoidal ategories

We disuss some basis on monoidal ategories. We also study non-degenerate

pairings in monoidal ategories.

1.1.1. Categories. A ategory C onsists of the following data:

• a lass Ob(C), whose elements are alled objets of C;
• for any X, Y ∈ Ob(C), a set HomC(X, Y ), whose elements are alled

morphisms from X to Y and represented by arrows X → Y ;
• for any X, Y, Z ∈ Ob(C), a map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z)

alled omposition. The image of a pair (g, f) under this map is

denoted g ◦ f or just gf ;
• for every X ∈ Ob(C), a morphism idX ∈ HomC(X,X), alled the

identity of X .

It is required that the omposition is assoiative and unitary in the following

sense:

(h ◦ g) ◦ f = h ◦ (g ◦ f) and f ◦ idX = f = idY ◦ f

for all morphismsf : X → Y , g : Y → Z, h : Z → T with X, Y, Z, T ∈ Ob(C).
Given a morphism f : X → Y in a ategory C, the objet X is alled the

soure and the objet Y the target of f . Two morphisms g, f in C are om-

posable if the soure of g oinides with the target of f . For X ∈ Ob(C),
the set HomC(X,X) is denoted by EndC(X), and its elements are alled en-

domorphisms of X . The set EndC(X) is a monoid with produt gf = g ◦ f
for any f, g ∈ EndC(X) and unit idX . A morphism f : X → Y in C is an

isomorphism if there exists a morphism g : Y → X in C suh that gf = idX

and fg = idY . Suh a g is uniquely determined by f , is alled the inverse

of f and denoted f−1
. Two objets X, Y of C are isomorphi if there exists

an isomorphism X → Y . Isomorphism of objets is an equivalene relation

on Ob(C) denoted by ≃.

1



2 1. PIVOTAL FUSION CATEGORIES

1.1.2. Funtors and natural transformations. Funtors are morphisms

of ategories and natural transformations are morphisms of funtors. More pre-

isely, a funtor F : C → D from a ategory C to a ategory D assigns to eah

objet X of C an objet F (X) of D and to eah morphism f : X → Y in C a

morphism F (f) : F (X)→ F (Y ) in D so that

F (gf) = F (g)F (f) and F (idX) = idF (X)

for all omposable morphisms g, f in C and all X ∈ Ob(C). For example, the

identity funtor 1C : C → C arries every objet/morphism in C to itself. The

omposition of two funtors F : C → D and G : D → E is de�ned in the obvious

way and yields a funtor GF : C → E .
A natural transformation F → G between two funtors F,G : C → D is a

family

ϕ = {ϕX : F (X)→ G(X)}X∈Ob(C)

of morphisms in D suh that

ϕY F (f) = G(f)ϕX

for all morphisms f : X → Y in C. A natural transformation ϕ : F → G is

invertible if ϕX is an isomorphism for all X ∈ Ob(C). Then the family of

morphisms

{ϕ−1
X : G(X)→ F (X)}X∈Ob(C)

is a natural transformationG→ F alled the inverse of ϕ and denoted by ϕ−1
.

Invertible natural transformations of funtors are alled natural isomorphisms.

Clearly, the inverse of a natural isomorphism is a natural isomorphism. Two

funtors C → D are isomorphi if there is a natural isomorphism between

them.

1.1.3. Isomorphisms and equivalenes of ategories. Let C and D
be ategories. A funtor F : C → D is an isomorphism if there is a funtor

G : D → C suh that GF = 1C and FG = 1D. Suh a funtor G is uniquely

determined by F , is an isomorphism, and is alled the inverse of F . Two

ategories are isomorphi if there is an isomorphism between them.

A quasi-inverse of a funtor F : C → D is a funtor G : D → C suh that

there are natural isomorphisms GF ≃ 1C and FG ≃ 1D. A funtor is an

equivalene if it has a quasi-inverse. Note that any quasi-inverse of an equiv-

alene is an equivalene and the omposition of two omposable equivalenes

is an equivalene. Two ategories are equivalent if there is an equivalene be-

tween them. It is lear from the de�nitions that isomorphisms of ategories

are equivalenes and isomorphi ategories are equivalent.

Any equivalene of ategories F : C → D is essentially surjetive in the

sense that eah objet of D is isomorphi to F (X) for some X ∈ Ob(C) and
fully faithful in the sense that for all X, Y ∈ Ob(C), the map

HomC(X, Y )→ HomD(F (X), F (Y )), f 7→ F (f)

is bijetive. If one assumes the axiom of hoie, then all essentially surjetive

and fully faithful funtors are equivalenes.
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1.1.4. Monoidal ategories. A monoidal ategory is a ategory C en-

dowed with

• a funtor ⊗ : C ×C → C, alled the monoidal produt (or tensor prod-

ut);

• an objet 1 ∈ Ob(C), alled the unit objet ;

• a family of isomorphisms

a = {aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)}X,Y,Z∈Ob(C)

alled the assoiativity onstraint ;

• a family of isomorphisms l = {lX : 1⊗X → X}X∈Ob(C), alled the left

unitality onstraint ;

• a family of isomorphisms r = {rX : X ⊗ 1 → X}X∈Ob(C), alled the

right unitality onstraint.

It is required that:

(i) (Pentagon oherene) For all objets X, Y, Z,W of C, the following

diagram ommutes:

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W ).

X ⊗ (Y ⊗ (Z ⊗W ))

aX⊗Y ,Z,W

aX,Y,Z⊗idW

aX,Y ⊗Z,W

idX⊗aY,Z,W

aX,Y,Z⊗W

(ii) (Triangle oherene) For all objets X, Y of C, the following diagram

ommutes:

X ⊗ Y

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y ).

rX⊗idY

aX,1,Y

idX⊗lY

(iii) The assoiativity onstraint a is a natural isomorphism from the fun-

tor ⊗(⊗× 1C) to the funtor ⊗(1C ×⊗).
(iv) The left unitality onstraint l is a natural isomorphism from the fun-

tor 1⊗− : C → C to the funtor 1C : C → C.
(iv) The right unitality onstraint r is a natural isomorphism the fun-

tor −⊗ 1 : C → C to 1C.
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Here, the funtors 1⊗− et −⊗ 1 are de�ned by

(1⊗−)(X) = 1⊗X, (−⊗ 1)(X) = X ⊗ 1,

(1⊗−)(f) = id
1

⊗ f, (−⊗ 1)(f) = f ⊗ id
1

,

for any X ∈ Ob(C) and any morphism f in C.
Eah monoidal ategory C = (C,⊗,1, a, l, r) gives rise to three opposite

monoidal ategories:

Cop = (Cop,⊗,1, aop, lop, rop),

C⊗op = (C,⊗op,1, a⊗op, l⊗op, r⊗op),

Crev = (Cop,⊗op,1, arev, lrev, rrev).

Here, Cop is the ategory opposite to C de�ned by Ob(Cop) = Ob(C) and

HomCop(X, Y ) = HomC(Y,X) for all X, Y ∈ Ob(C) with omposition ◦op de-

�ned by g ◦op f = fg. The funtor ⊗op : C × C → C is the opposite monoidal

produt of C de�ned by X ⊗op Y = Y ⊗X for all X, Y ∈ Ob(C) and similarly

for morphisms. The above assoiativity and unitality onstraints are given for

all X, Y, Z ∈ Ob(C) by

(aop)X,Y,Z = (aX,Y,Z)
−1, (lop)X = (lX)

−1, (rop)X = (rX)
−1,

(a⊗op)X,Y,Z = (aZ,Y,X)
−1, (l⊗op)X = rX , (r⊗op)X = lX ,

(arev)X,Y,Z = aZ,Y,X , (lrev)X = (rX)
−1, (rrev)X = (lX)

−1.

The transformations C 7→ Cop, C 7→ C⊗op
, and C 7→ Crev are involutive,

ommute with eah other, and eah of them is the omposition of the other

two. In partiular, Crev = (C⊗op)op = (Cop)⊗op
.

1.1.5. Ations of the ground monoid. A monoidal ategory C = (C,⊗,
1, a, l, r) determines a ommutative monoid EndC(1), alled the ground monoid

of C. Its produt is the omposition of morphisms and its unit is id
1

. For any

X, Y ∈ Ob(C), the set HomC(X, Y ) arries left and right ations of the monoid

EndC(1) de�ned by

α · f = lY (α⊗ f)l
−1
X and f · α = rY (f ⊗ α)r

−1
X

for any α ∈ EndC(1) and f ∈ HomC(X, Y ). The left and right ations of

EndC(1) on itself are given by the monoid produt in EndC(1).
The ations of EndC(1) on the sets of morphisms are ompatible with

monoidal produt of morphisms in the following sense: for any α ∈ EndC(1)
and any morphisms f, g in C, we have

α · (f ⊗ g) = (α · f)⊗ g and (f ⊗ g) · α = f ⊗ (g · α).

1.1.6. Pure ategories. A monoidal ategory C is pure if the left and

right ations of EndC(1) on the sets of morphisms in C oinide. Thus, C is

pure if α · f = f · α for any α ∈ EndC(1) and any morphism f in C. In

fat, it su�es to require that α · idX = idX · α for any α ∈ EndC(1) and any
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X ∈ Ob(C). Indeed, this ondition implies that for any morphism f : X → Y
in C, we have

α · f = α · (f ◦ idX) = f ◦ (α · idX) = f ◦ (idX · α) = (f ◦ idX) · α = f · α.

For a pure monoidal ategory C, hold the following identities:

α · (f ⊗ g) = (α · f)⊗ g = f ⊗ (α · g)

for all α ∈ EndC(1) and all morphisms f, g in C.

1.1.7. Conventions. Ma Lane's oherene theorem asserts that every

diagram in a monoidal ategory made up of the assoiativity and unitality

onstraints ommutes, see [ML1, ML2℄. In the sequel we suppress in our

formulas the assoiativity and unitality onstraints of monoidal ategories.

This does not lead to ambiguity beause by Ma Lane's oherene theorem, all

legitimate ways of inserting these onstraints give the same results. For any

objets X1, . . . , Xn of a monoidal ategory with n ≥ 2, we set

X1 ⊗X2 ⊗ · · · ⊗Xn = (. . . ((X1 ⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn,

and similarly for morphisms.

1.1.8. Monoidal funtors and natural transformations. Let C =
(C,⊗,1, a, l, r) andD = (D,⊗′,1′, a′, l′, r′) be monoidal ategories. Amonoidal

funtor from C to D is a funtor F : C → D endowed with a morphism

F0 : 1
′ → F (1) in D and with a natural transformation

F2 = {F2(X, Y ) : F (X)⊗′ F (Y )→ F (X ⊗ Y )}X,Y ∈Ob(C)

between the funtors F ⊗′ F = ⊗′(F × F ) : C × C → D and F⊗ : C × C → D
suh that for all X, Y, Z ∈ Ob(C), the following three diagrams ommute:

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z)),

a′
F (X),F (Y ),F (Z)

F2(X,Y )⊗′idF (Z) idF (X)⊗
′F2(Y,Z)

F2(X⊗Y,Z) F2(X,Y⊗Z)

F (aX,Y,Z )

1

′ ⊗′ F (X) F (X)

F (1)⊗′ F (X) F (1⊗X),

l′
F (X)

F0⊗idF (X)

F2(1,X)

F (lX)
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F (X)⊗′
1

′ F (X)

F (X)⊗′ F (1) F (X ⊗ 1).

r′
F (X)

idF (X)⊗F0

F2(1,X)

F (rX)

The morphisms F0 and F2 are alled the monoidal onstraints assoiated

with F . Reall that the naturality of F2 means that for arbitrary morphisms

f : X → X ′
and g : Y → Y ′

in C, the following diagram ommutes:

F (X)⊗′ F (Y ) F (X ⊗ Y )

F (X ′)⊗′ F (Y ′) F (X ′ ⊗′ Y ′).

F2(X,Y )

F (f)⊗F (g) F (f⊗g)

F2(X′,Y ′)

The omposition of two monoidal funtors F : C → D and G : D → E is

the monoidal funtor GF : C → E with

(GF )0 = G(F0)G0 and (GF )2(X, Y ) = G(F2(X, Y ))G2(F (X), F (Y ))

for all X, Y ∈ Ob(C). The omposition of monoidal funtors is assoiative

with identity funtors being the units.

A monoidal funtor (F, F2, F0) from a monoidal ategory C to a monoidal

ategory D is strit if F0 and F2(X, Y ) are identity morphisms for all X, Y ∈
Ob(C). For example, the identity funtor 1C : C → C is strit.

A monoidal funtor (F, F2, F0) is strong if F0 and F2(X, Y ) are isomor-

phisms for all X, Y ∈ Ob(C). Clearly, all strit monoidal funtors are strong.

The omposition of two strit (respetively, strong) monoidal funtors is strit

(respetively, strong). A strong monoidal funtor (F, F2, F0) from C to D in-

dues a morphism of monoids EndC(1) → EndD(1
′) by α 7→ F−1

0 F (α)F0 for

all α ∈ EndC(1).
Eah monoidal funtor F : C → D indues a monoidal funtor F⊗op : C⊗op →

D⊗op
, whih is the same funtor F with monoidal onstraints

(F⊗op)0 = F0 and (F⊗op)2(X, Y ) = F2(Y,X)

for all X, Y ∈ Ob(C). A strong monoidal funtor F : C → D indues strong

monoidal funtors F op : Cop → Dop
and F rev : Crev → Drev

. Both are equal to

F as funtors and have the following monoidal onstraints:

(F op)0 = (F rev)0 = F−1
0

and for all X, Y ∈ Ob(C),

(F op)2(X, Y ) = F2(X, Y )−1
and (F rev)2(X, Y ) = F2(Y,X)−1.

Note that F rev = (F⊗op)op = (F op)⊗op
.
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A natural transformation ϕ from a monoidal funtor F : C → D to a

monoidal funtor G : C → D is monoidal if

ϕ
1

F0 = G0 and ϕX⊗Y F2(X, Y ) = G2(X, Y )(ϕX ⊗ ϕY )

for all X, Y ∈ Ob(C). If the map ϕX : F (X) → G(X) is an isomorphism

for all X ∈ Ob(C), then suh a ϕ is a monoidal natural isomorphism. The

funtors F and G are monoidally isomorphi if there is a monoidal natural

isomorphism F → G.

1.1.9. Example. Consider the ategory Modk of k-modules and k-linear

homomorphisms. It is equipped with the usual tensor produt ⊗k, the unit

objet k. For all k-modules X, Y, Z, the monoidal onstraints are given by

aX,Y,Z((x⊗ y)⊗ z) = x⊗ (y ⊗ z),

lX(λ⊗ x) = λx = rX(x⊗ λ),

where x ∈ X , y ∈ Y , z ∈ Z and λ ∈ k. Then Modk is a monoidal ategory.

1.1.10. Pairings. Let C = (C,⊗,1) be a monoidal ategory. A pairing

between two objets X, Y of C is a morphism X ⊗ Y → 1 in C. A pairing

ω : X ⊗ Y → 1 is non-degenerate if there is a morphism Ω: 1 → Y ⊗X in C
suh that

(1.1) (idY ⊗ ω)(Ω⊗ idY ) = idY and (ω ⊗ idX)(idX ⊗ Ω) = idX .

The morphism Ω is alled the inverse of ω and is uniquely determined by ω.
Indeed, if we suppose that Ω′ : 1→ Y ⊗X is another morphism in C with the

same property of Ω, then

Ω′ = idY⊗XΩ
′ = (idY ⊗ idX)Ω

′ = (idY ⊗ (ω ⊗ idX)(idX ⊗ Ω))Ω′

= (idY ⊗ ω ⊗ idX)(Ω
′ ⊗ Ω) = ((idY ⊗ ω)(Ω

′ ⊗ idY )⊗ idX)Ω

= (idY ⊗ idX)Ω = idY⊗XΩ = Ω.

1.1.11. Pairings in Modk. By Setions 1.1.9 and 1.1.10, a pairing ω be-

tween k-modules X and Y is a k-linear homomorphism ω : X ⊗k Y → k.

The pairing ω is non-degenerate if there exists a k-linear homomorphism

Ω: 1→ Y ⊗k X satisfying (1.1). In this ase, the vetor

∗ω = Ω(1k) ∈ Y ⊗k X

is alled the ontration vetor of ω.
Reall that the dual of a k-module X is the k-module X⋆ = Homk(X, k)

onsisting of all k-linear homomorphisms X → k with the k-module struture

given by (kf)(x) = kf(x) for all k ∈ k, f ∈ X⋆
, x ∈ X . A k-module is

projetive of �nite type if it is a diret summand of a free k-module of �nite

rank. The next lemma reformulates the non-degeneray ondition of a pairing

between k-modules in terms of dual modules and matries.

Lemma 1.1 ([TVi℄). Let ω : X ⊗k Y → k be a pairing in Modk between

k-modules X and Y . The following three onditions are equivalent:

(a) ω is non-degenerate;
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(b) X is a projetive k-module of �nite type and the homomorphism Y →
X⋆

adjoint to ω a is an isomorphism;

() Y is a projetive k-module of �nite type and the homomorphism X →
Y ⋆

adjoint to ω a is an isomorphism.

Assume now that the k-modules X and Y are free. Then the pairing ω is non-

degenerate if and only if X and Y have the same �nite rank n and for some

bases (xi)
n
i=1 of X and (yj)

n
j=1 of Y , the matrix [ω(xi ⊗k yj)]

n
i,j=1 is invertible.

If suh is the ase, the ontration vetor of ω is then omputed by

∗ω =
n∑

i,j=1

Ωi,j yj ⊗k xi ∈ Y ⊗k X,

where [Ωi,j ]
n
i,j=1 is the inverse of the matrix [ω(xi ⊗k yj)]

n
i,j=1.

1.2. Pivotal ategories

In this setion, we reall the notion of a pivotal ategory. We also disuss

traes of endomorphisms and dimensions of objets in pivotal ategories.

1.2.1. Rigid ategories. A left dual of an objet X of a monoidal ate-

gory C is a pair (∨X, evX), where
∨X is an objet of C and evX : ∨X⊗X → 1 is

a non-degenerate pairing. The pairing evX is alled the left evaluation and its

inverse coevX : 1→ X ⊗ ∨X the left oevaluation. A left dual of the objet X ,

if it exists, is unique up to a unique isomorphism preserving the evaluation

pairing. More preisely, if (Y, e : Y ⊗X → 1) is another left dual of X , then

(e⊗ id∨X)(idY ⊗ coevX) : Y →
∨X

is the unique isomorphism a : Y → ∨X suh that e = evX(a⊗ idX).
A left duality in a monoidal ategory C is a family {(∨X, evX)}X∈Ob(C)

where, for every X ∈ Ob(C), the pair (∨X, evX) is a left dual of X. A left

rigid ategory is a monoidal ategory admitting a left duality. A left rigid

ategory with distinguished left duality is a left rigid ategory endowed with a

left duality.

Similarly, a right dual of X ∈ Ob(C) is a pair (X∨, ẽvX) where X
∨ ∈ Ob(C)

and ẽvX : X ⊗X∨ → 1 is a non-degenerate pairing. The pairing ẽvX is alled

the right evaluation and its inverse c̃oevX : 1→ X∨⊗X the right oevaluation.

A right dual of an objet of C, if it exists, is unique up to a unique isomorphism

preserving the evaluation pairing. A right duality in a monoidal ategory C is

a family {(X∨, ẽvX)}X∈Ob(C) where, for every X ∈ Ob(C), the pair (X∨, ẽvX)
is a right dual of X . A right rigid ategory is a monoidal ategory admitting a

right duality. A right rigid ategory with distinguished right duality is a right

rigid ategory endowed with a right duality.

A rigid ategory is a monoidal ategory whih is both left rigid and right

rigid, that is, whih admits both a left duality and a right duality. A rigid

ategory with distinguished duality is a rigid ategory endowed with a left

duality and a right duality.
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1.2.2. Dual funtors. A left duality in a left rigid ategory C determines

a funtor

∨? : Crev = (Cop,⊗op,1)→ C

whih arries eah X ∈ Ob(C) = Ob(Crev) to

∨X and arries eah morphism

f : X → Y in C (that is a morphism Y → X in Crev) to its left dual

∨f = (evY ⊗ id∨X)(id∨Y ⊗ f ⊗ id∨X)(id∨Y ⊗ coevX) :
∨Y → ∨X.

The funtor

∨? is strong monoidal with monoidal onstraints

∨?0 = coev : 1→
∨
1 and

∨?2(X, Y ) :
∨X ⊗ ∨Y → ∨(Y ⊗X) de�ned by

∨?2(X, Y ) = (evX ⊗ id∨(Y⊗X))(id∨X ⊗ evY ⊗ idX⊗∨(Y⊗X))(id∨X⊗∨Y ⊗ coevY⊗X).

The funtor

∨? is alled the left dual funtor assoiated with the given left

duality. The uniqueness of the left duals of objets implies that the left dual

funtors assoiated with di�erent left dualities are monoidally isomorphi in a

anonial way.

A right duality in a right rigid ategory C determines a funtor ?∨ : Crev → C
arrying eah objet X of C to X∨

and eah morphism f : X → Y in C to its

right dual

f∨ = (idX∨ ⊗ ẽvY )(idX∨ ⊗ f ⊗ idY ∨)(c̃oevX ⊗ idY ∨) : Y ∨ → X∨.

The funtor ?∨ is strong monoidal, with monoidal onstraints ?∨0 = c̃oev
1

: →
1

∨
and ?∨2 (X, Y ) : X

∨ ⊗ Y ∨ → (Y ⊗X)∨ de�ned by

?∨2 (X, Y ) = (id(Y⊗X)∨ ⊗ ẽvY )(id(Y⊗X)∨⊗Y ⊗ ẽvX ⊗ idY ∨)(c̃oevY⊗X ⊗ idX∨⊗Y ∨).

The funtor ?∨ is alled the right dual funtor assoiated with the given right

duality. The right dual funtors assoiated with di�erent right dualities are

monoidally isomorphi in a anonial way.

For a rigid ategory C with distinguished duality, the left and right dual

funtors

∨? : Crev → C and ?∨ : Crev → C are strong monoidal equivalenes

with respetive quasi-inverses (?∨)rev : C → Crev and (∨?)rev : C → Crev. For

X ∈ Ob(C), the orresponding monoidal natural isomorphisms

∨(X∨) ≃ X ≃
(∨X)∨ are

(ẽvX ⊗ id∨(X∨))(idX ⊗ coevX∨) : X → ∨(X∨),

(id(∨X)∨ ⊗ evX)(c̃oev∨X ⊗ idX) : X → (∨X)
∨
.

1.2.3. Duality and monoidal funtor. Note that a strong monoidal

funtor F : C → D between monoidal ategories arries any objet having a

left (respetively, right) dual to an objet having a left (respetively, right)

dual. Indeed, onsider an objet X of C with left dual (∨X, evX). By [TVi,

Lemma 1.5℄, the non-degeneray of evX implies the non-degeneray of the

pairing

(evX)
F = F0

−1F (evX)F2(
∨X,X) : F (∨X)⊗ F (X)→ 1.

Thus (F (∨X), (evX)
F ) is a left dual of F (X). Similarly, if X ∈ Ob(C) has a

right dual (X∨, ẽvX), then (F (X∨, (ẽvX)
F ) is a right dual of F (X).
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A strong monoidal funtor F : C → D between left rigid ategories with

distinguished left duality determines a monoidal natural isomorphism

F l = {F l(X) : F (∨X)→ ∨F (X)}X∈Ob(C)

from the funtor F∨? : Crev → D to the funtor

∨?F rev : Crev → D. It is de�ned
as follows. For eah X ∈ Ob(C), both (F (∨X), (evX)

F ) and (∨F (X), evF (X))
are left duals of F (X). By the uniqueness of a left dual, there is a unique

isomorphism

F l(X) : F (∨X)→ ∨F (X)

preserving the evaluation pairing, i.e., suh that

(evX)
F = evF (X)(F

l(X)⊗ idF (X)).

The isomorphism F l(X) is omputed by

F l(X) = ((evX)
F ⊗ id∨F (X))(idF (∨X) ⊗ coevF (X)).

Likewise, a strong monoidal funtor F : C → D between right rigid ate-

gories with distinguished right duality determines a monoidal natural isomor-

phism

F r = {F r(X) : F (X∨)→ F (X)∨}X∈Ob(C)

from F ?∨ : Crev → D to ?∨F rev : Crev → D. It is omputed by

F r(X) = (idF (X)∨ ⊗ (ẽvX)
F )(c̃oevF (X) ⊗ idF (X∨))

for any X ∈ Ob(C).

1.2.4. Pivotal ategories. A pivotal ategory is a rigid ategory with

distinguished duality suh that the indued left and right dual funtors oin-

ide as monoidal funtors. In other words, a pivotal ategory is a monoidal

ategory C endowed with a pivotal duality, that is, a family of triples

{(X∗, evX , ẽvX)}X∈Ob(C),

where

• X∗
is an objet of C alled the dual of X ;

• evX : X∗ ⊗X → 1 is a non-degenerate pairing in C;
• ẽvX : X ⊗X∗ → 1 is a non-degenerate pairing in C;

suh that the left dual funtor assoiated with the left duality {(X∗, evX)}X∈Ob(C)

and the right dual funtor assoiated with the right duality {(X∗, ẽvX)}X∈Ob(C)

oinide as monoidal funtors. The pairings evX and ẽvX are alled the left

evaluation and the right evaluation, respetively. Let coevX : 1→ X⊗X∗
and

c̃oevX : 1 → X∗ ⊗X be the inverses of these pairings. These two morphisms

are alled respetively the left oevaluation and the right oevaluation. The

equality of the left and right dual funtors means that:

(i) for any morphism f : X → Y in C,

f ∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX)

= (idX∗ ⊗ ẽvY )(idX∗ ⊗ f ⊗ idY ∗)(c̃oevX ⊗ idY ∗) : Y ∗ → X∗;

(ii) coev
1

= c̃oev
1

: 1→ 1

∗
;



1.2. PIVOTAL CATEGORIES 11

(iii) for all X, Y ∈ Ob(C), we have the following equality of morphisms

from X∗ ⊗ Y ∗ → (Y ⊗X)∗:

(evX ⊗ id(Y⊗X)∗)(idX∗ ⊗ evY ⊗ idX⊗(Y⊗X)∗)(idX∗⊗Y ∗ ⊗ coevY⊗X)

=(id(Y⊗X)∗ ⊗ ẽvY )(id(Y⊗X)∗⊗Y ⊗ ẽvX ⊗ idY ∗)(c̃oevY⊗X ⊗ idX∗⊗Y ∗).

Clearly, a pivotal ategory is, in partiular, a rigid ategory with dis-

tinguished duality. The left and right dual funtors form a single funtor

?∗ : Crev → C alled the dual funtor of C. It arries any objet X ∈ Ob(Crev) =
Ob(C) toX∗

and any morphism f : X → Y in C (that is a morphism Y → X in

Crev) to its dual f ∗ : Y ∗ → X∗
de�ned as the left-hand side (or the right-hand

side) of the equality in (i) above. The monoidal onstraints

?∗0 : 1→ 1

∗
and ?∗2(X, Y ) : X∗ ⊗ Y ∗ → (Y ⊗X)∗

of the dual funtor ?∗ are the morphisms de�ned by (ii) and (iii), respetively.
The duality identities

(idX ⊗ evX)(coevX ⊗ idX) = idX = (ẽvX ⊗ idX)(idX ⊗ c̃oevX),

(evX ⊗ idX∗)(idX∗ ⊗ coevX) = idX∗ = (idX∗ ⊗ ẽvX)(c̃oevX ⊗ idX∗)

imply that (?∗0)
−1 = ev

1

= ẽv
1

: 1∗ → 1 and

(?∗2(X, Y ))−1

= (evY⊗X ⊗ idX∗⊗Y ∗)(id(Y⊗X)∗⊗Y ⊗ coevX ⊗ idY ∗)(id(X⊗Y )∗ ⊗ coevY )

= (idX∗⊗Y ∗ ⊗ ẽvY⊗X)(idX∗ ⊗ c̃oevY ⊗ idX⊗(Y⊗X)∗)(c̃oevX ⊗ id(Y⊗X)∗).

If C is a pivotal ategory, then the opposite monoidal ategories

Cop = (Cop,⊗,1), C⊗op = (C,⊗op,1), Crev = (Cop,⊗op,1)

are pivotal in a anonial way. The dual objets in them are the same as in C
and the evaluation morphisms are

evopX = c̃oevX , ev⊗op
X =ẽvX , evrev

X = coevX ,

ẽvopX = coevX , ẽv⊗op
X =evX , ẽvrev

X = c̃oevX .

For eah X ∈ Ob(C), we set X∗∗ = (X∗)∗ and onsider a morphism

ψX : X → X∗∗
by

ψX = (ẽvX ⊗ idX∗∗)(idX ⊗ coevX∗).

The pivotal struture is the following monoidal natural isomorphism:

ψ = {ψX : X → X∗∗}X∈Ob(C).

The expressions given above for the dual f ∗ : Y ∗ → X∗
of a morphism

f : X → Y in C and the duality identities imply the dual morphism identities:

evX(f
∗ ⊗ idX) = evY (idY ∗ ⊗ f), (idY ⊗ f

∗)coevY = (f ⊗ idX∗)coevX ,

ẽvX(idX ⊗ f
∗) = ẽvY (f ⊗ idY ∗), (f ∗ ⊗ idY )c̃oevY = (idX∗ ⊗ f)c̃oevX .
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Lemma 1.2. Let φ = {φX : X → X}X∈Ob(C) be a monoidal natural endo-

morphism of the identity funtor 1C of C. Then φ is an automorphism and

(1.2) φX∗ = (φ∗
X)

−1 = (φ−1
X )

∗

for all X ∈ Ob(C)

Proof. For any objet X of C onsider the left evaluation pairing

evX : X∗ ⊗X → 1.

evX
(i)
= φ

1

evX
(ii)
= evXφX∗⊗X

(iii)
= evX(φX∗ ⊗ φX)

(iv)
= evX(φ

∗
X φX∗ ⊗ idX),

here (ii) follows from the naturality of φ, (i) and (iii) from the monoidality of φ
and (iv) from dual morphism identities. Sine evX is invertible, φ∗

X φX∗ = idX∗

and so φX is an isomorphism and φX∗ = (φ∗
X)

−1
. One proves similarly the other

equality. �

1.2.5. Remark. A pivotal ategory may be equivalently de�ned as a left

rigid ategory C with distinguished left duality {(∨X, evX)}X∈Ob(C) and distin-

guished monoidal natural isomorphism ψ : 1C →
∨∨? where

∨∨? : C → C is the

strong monoidal funtor de�ned by

∨∨? = ∨?◦(∨?)rev. Indeed, this data turns C
into a pivotal ategory (in the sense of Setion 1.2.4) with pivotal duality

{(X∗ = ∨X, evX , ẽvX = ev∨X(ψX ⊗ id∨X) : X ⊗X
∗ → 1)}X∈Ob(C).

1.2.6. Pivotal funtor. Let C and D be pivotal ategories. A pivotal

funtor from C to D is a strong monoidal funtor F : C → D suh that the

assoiated monoidal natural isomorphisms F l
and F r

de�ned in Setion 1.2.3

are equal. Set then F 1 = F l = F r
. The omposition of two pivotal funtors is

pivotal. If F is a pivotal funtor, then so are F⊗op, F op, F rev
, see Setion 1.1.8.

A stritly pivotal funtor from C to D is a pivotal funtor F : C → D suh

that F 1
is the identity, that is, F (X∗) = F (X)∗ and F 1(X) = idF (X)∗ for all

X ∈ Ob(C). For example, given a pivotal ategory C, the identity funtor

1C : C → C and the dual funtor ?∗ : Crev → C are stritly pivotal. Note that a

strit monoidal funtor F : C → D between pivotal ategories is stritly pivotal

if and only if F (X∗) = F (X)∗, F (evX) = evF (X), and F (ẽvX) = ẽvF (X) for all

X ∈ Ob(C).
Two pivotal ategories C and D are equivalent if there is a pivotal equiv-

alene C → D, that is, a pivotal funtor C → D whih is an equivalene

of the underlying ategories. For example, for any pivotal ategory C, the

dual funtor ?∗ : Crev → C is a pivotal equivalene. Consequently, the pivotal

ategories C and Crev are pivotal equivalent and so are the pivotal ategories

C⊗op = (Cop)rev and Cop.

1.2.7. Trae and dimensions. Let C be a pivotal ategory. Reall

that the monoid EndC(1) is ommutative. For an endomorphism f in C of

an objet X of C are de�ned the left trae tr
l

(f) ∈ EndC(1) and the right

trae tr
r

(f) ∈ EndC(1) in the following way:

tr
l

(f) = evX(idX∗ ⊗ f)c̃oevX and tr
r

(f) = ẽvX(f ⊗ idX∗)coevX .
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Both traes are symmetri, that is for any morphisms g : X → Y and h : Y →
X in C we have:

tr
l

(gh) = tr
l

(hg) and tr
r

(gh) = tr
r

(hg)

We denote the left/right ations of the ground monoid EndC(1) with a dot.

Furthermore, for any α ∈ EndC(1) and for any endomorphism f, g in C of an

objet X of C we have that:

tr
l

(α) = tr
r

(α) = α, tr
l

(f · α) = α tr
l

(f), tr
r

(α · f) = α tr
r

(f),

tr
l

(f ⊗ g) = tr
l

(tr
l

(f) · g), tr
l

(f) = tr
r

(f ∗),

tr
r

(f ⊗ g) = tr
r

(f · tr
r

(g)), tr
r

(f) = tr
l

(f ∗).

These formulas imply the identities

tr
l

(f) = tr
l

(f ∗∗) and tr
r

(f) = tr
r

(f ∗∗).

If C is pure (see 1.1.6), then the traes tr
l

and tr
r

are ⊗-multipliative:

tr
l

(f ⊗ g) = tr
l

(f)tr
l

(g) and tr
r

(f ⊗ g) = tr
r

(f)tr
r

(g)

for all endomorphisms f and g of objets of C.
The left dimension and right dimension of an objet X of C is de�ned by

dim
l

(X) = tr
l

(idX) and dim
r

(X) = tr
r

(idX).

We observe that dim
l

(1) = dim
r

(1) = id
1

. Clearly, we have that if C is pure

then the dimensions are ⊗-multipliative, i.e., for any X, Y ∈ Ob(C)

dim
l

(X ⊗ Y ) = dim
l

(X) dim
l

(Y ) and dim
r

(X ⊗ Y ) = dim
r

(X) dim
r

(Y ).

1.2.8. Spherial ategories. A spherial ategory is a pivotal ategory

whose left and right traes are equal, that is, tr
l

(f) = tr
r

(f) for every endo-

morphism f in the ategory. Then

tr(f) = tr
l

(f) = tr
r

(f)

is the trae of f . In a spherial ategory, the left and right dimensions of any

objet X are equal. Then dim(X) = dim
l

(X) = dim
r

(X) is the dimension of

X . The properties of the traes imply that in any spherial ategory, tr and

dim are ⊗-multipliative. Indeed, for any endomorphisms f, g ∈ EndC(X),

tr(f⊗g) = tr
l

(f⊗g) = tr
l

(tr
l

(f)·g) = tr
r

(tr
l

(f)·g) = tr
l

(f)tr
r

(g) = tr(f)tr(g).

1.3. Graphial alulus

In this setion, we brie�y disuss a method �rstly suggested by Penrose [Pe℄

that allows to represent morphisms in ategories by diagrams. We fous on

the ase of pivotal ategories.
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1.3.1. Pitorial representation. We present morphisms in a pivotal

ategory C by plane diagrams alled Penrose diagrams, that must be read

from the bottom to the top. The diagrams are made of two elements:

• oriented ars, eah of them olored with an objet of C,
• boxes, eah of them olored with a morphism of C.

The ars onnet the boxes and have no self or mutual intersetions. We

represent the identity idX of an objet X of C, a morphism f : X → Y , and

the omposition of two morphisms f : X → Y and g : Y → Z as follows:

idX =
PSfrag replaements

X

, f =PSfrag replaements

X

Y

f , and g ◦ f =

PSfrag replaements

X

Y

Z

f

g

.

The monoidal produt of two morphisms f : U → V and g : W → Z is repre-

sented by juxtaposition of the diagrams:

f ⊗ g =
PSfrag replaements

U

V

f

PSfrag replaements

W

Z

g .

We also use boxes with several ars attahed to their horizontal sides, for

example a morphism f : A⊗B⊗C → A′⊗B′⊗C ′
in C an be represented in

various ways:

PSfrag replaements

A′ B′ C ′

f

A B C

, or

PSfrag replaements

C

A′ B′ ⊗ C ′

f

A⊗B

, or

PSfrag replaements

A′ B′ C ′

A⊗ B ⊗ C

f .

The dual of an objet is enoded by the orientation of the ar olored by

that objet. That is, an ar olored with X ∈ Ob(C) and oriented downward

ontributes X to the soure/target of morphisms. An ar olored with X ∈
Ob(C) and oriented upward ontributes X∗

to the soure/target of morphisms.

For example, idX∗
and a morphism f : X∗ ⊗ Y → A∗ ⊗ B ⊗ C∗

in C an be

represented as:

idX∗ =
PSfrag replaements

X∗

=
PSfrag replaements

X

and f =

PSfrag replaements

A B C

f

X Y

The left/right evaluations and the left/right oevaluations for an objet X
of C, are depited as follows:

evX =PSfrag replaements

X
, ẽvX =PSfrag replaements

X
,

coevX =PSfrag replaements X , c̃oevX =PSfrag replaements X.
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The dual f ∗ : Y ∗ → X∗
of a morphism f : X → Y in C are graphially

presented as follows:

f ∗ =
PSfrag replaements

X

Y

f =

PSfrag replaements

X

Y

f .

The fat that coevX and c̃oevX are the inverses of pairings evX and ẽvX for

X ∈ Ob(C) is graphially expressed by the following identities:

PSfrag replaements

X

=
PSfrag replaements

X

=
PSfrag replaements

X

.

For the dual objet X∗
of X we have:

PSfrag replaements

X

=
PSfrag replaements

X

=

PSfrag replaements

X

.

The previous relations are alled duality identities. The dual morphism iden-

tities may be represented graphially as:

PSfrag replaements

XY

f ∗ =
PSfrag replaements

XY

f ,
PSfrag replaements

XY

f ∗ =

PSfrag replaements

XY

f ,

PSfrag replaements

X Y

f ∗ =
PSfrag replaements

X Y

f ,
PSfrag replaements

X Y

f ∗ =

PSfrag replaements

X Y

f .

The left and right traes of a morphism g : X → X are depited as follows:

tr
l

(g) =
PSfrag replaements

X g
and tr

r

(g) =

PSfrag replaements

Xg .

In the partiular ase in whih g = idX , the left/right dimensions of X are

represented as follows:

dim
l

(X) =
PSfrag replaements

X

and dim
r

(X) =PSfrag replaements

X

.
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The following theorem is due to Joyal and Street [JS1, JS2℄.

Theorem 1.3. If C is a pivotal ategory, then the morphism represented

by a Penrose diagram P is invariant under isotopies of P in the 2-dimensional

plane.

1.3.2. Signed objets. A signed objet of a pivotal ategory C is a pair (X, ε)
where X ∈ Ob(C) and ε ∈ {+,−}. The orresponding objet in C of pair (X, ε)
is noted by Xε

and de�ned as follow:

Xε =

{
X if ε = +,

X∗
if ε = −.

We extend, for n ≥ 1, this notation to any tuple

S = ((X1, ε1), . . . , (Xn, εn))

of signed objets of C, we set

XS = Xε1
1 ⊗ · · · ⊗X

εn
n ∈ Ob(C).

For an empty tuple of signed objets S = ∅, we set X∅ = 1. The dual of a

tuple S of signed objets of C is

S∗ = ((Xn,−εn), . . . , (X1,−ε1)).

1.3.3. Generalized evaluations. For any tuple S = ((X1, ε1), . . . , (Xn, εn))
of a signed objet we onsider the following pairing

(1.3) evS : XS∗ ⊗XS → 1 :

alled evaluation. Let

(1.4) coevS : 1→ XS ⊗XS∗

be a morphism in C alled oevaluation. They are respetively represented by

the following Penrose diagrams:

PSfrag replaements

X1
X2 Xn

···

and

PSfrag replaements

X1 X2

Xn

···

Here the ar labeled with Xi is oriented toward the right endpoint if εi = +
and toward the left endpoint if εi = −.

Using graphial alulus, we prove that

(idXS
⊗ evS)(coevS ⊗ idXS

) = idXS

and

(evS ⊗ idXS∗ )(idXS∗ ⊗ coevS) = idXS∗ .

Thus, the pairing evS is non-degenerate with inverse coevS. By de�nition, for

n = 0, we have: ∅∗ = ∅ and ev∅ = coev∅ = id
1

. The tuple S also determines

an isomorphism

ΨS : XS → (XS∗)∗.
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For n = 0, we set Ψ∅ = coev
1

= c̃oev
1

: 1 → 1

∗
. For n = 1 and X ∈ Ob(C),

set

Ψ(X,−) = idX∗ : X∗ → X∗
and Ψ(X,+) = ψX : X → X∗∗,

where

ψX = (ẽvX ⊗ idX∗∗)(idX ⊗ coevX∗).

For n ≥ 2, we de�ne ΨS as the omposition of the isomorphism

Ψ(X1,ε1) ⊗ · · · ⊗Ψ(Xn,εn) : XS = Xε1
1 ⊗ · · · ⊗X

εn
n → (X1

−ε1)
∗
⊗ · · · ⊗ (Xn

−εn)
∗

with the isomorphism

(X1
−ε1)

∗
⊗ · · · ⊗ (Xn

−εn)
∗
≃ (Xn

−εn ⊗ · · · ⊗X1
−ε1)

∗
= (XS∗)∗.

By [TVi, Lemma 2.4℄, for any tuple S of signed objets of C,

evXS
(ΨS∗ ⊗ idXS

) = evS = ẽvXS∗(idXS∗ ⊗ΨS),

(idXS
⊗ΨS∗

−1)coevXS
= coevS = (ΨS

−1 ⊗ idXS∗)c̃oevXS∗

1.4. Fusion ategories

In this setion we reall some basis on linear and fusion ategories. We

reall that the symbol k is used for a non-zero ommutative ring.

1.4.1. Linear ategories. A ategory C is k-linear if for all objets X, Y
of C, the set HomC(X, Y ) is endowed with a struture of a left k-module so

that the omposition of morphisms in C is k-bilinear. For shortness, k-linear

ategories are alled k-ategories. A funtor F : C → D between k-ategories

is k-linear if its ation on the Hom-sets is k-linear, that is, if for all X, Y ∈
Ob(C), the map

HomC(X, Y )→ HomD(F (X), F (Y )), f 7→ F (f)

is k-linear. For example, the identity funtor of a k-ategory is k-linear.

Clearly, the omposition of k-linear funtors is a k-linear funtor. By a monoidal

(respetively, left/right rigid, rigid, pivotal, spherial) k-ategory, we mean a k-

ategory whih is monoidal (respetively, left/right rigid, rigid, pivotal, spher-

ial) and suh that monoidal produt of morphisms is k-bilinear. Clearly, any

monoidal subategory of a monoidal k-ategory is a monoidal k-ategory. If C
is a monoidal k-ategory, then so are Cop, C⊗op

, and Crev (see Setion 1.1.4).

Equivalenes of monoidal/pivotal k-ategories are always required to be

k-linear. In partiular, two pivotal k-ategories are equivalent if there is a k-

linear pivotal funtor between them whih is an equivalene of the underlying

ategories.

It follows from the de�nitions that all left/right dual funtors of a left/right

rigid k-ategory are k-linear. In partiular, given a pivotal k-ategory C, the
dual funtor ?∗ : Crev → C is k-linear, and so Crev and C are equivalent piv-

otal k-ategories (see Setion 1.2.6). Consequently, C⊗op = (Cop)rev and Cop

are equivalent pivotal k-ategories.
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1.4.2. Diret sum. Let (Xα)α∈A be �nite family of objets in a pivotal

k-ategory C. An objet X ∈ Ob(C) is a diret sum of the family (Xα)α∈A if

there is a family (pα, qα)α∈A of morphisms in C with:

pα : X → Xα and qα : Xα → X

for all α ∈ A, suh that

idX =
∑

α∈A

qαpα and pαqβ = δα,β idXα
for all α, β ∈ A,

where δα,β is the Kroneker symbol. If suh X exists, it is unique, up to a

unique isomorphism ommuting with pα and qα. We denote X as

⊕
α∈AXα.

1.4.3. Simple objets in linear ategories. Let C be a k-ategory. An

objet X of C is simple if the map k → EndC(X) that sends k 7→ k idX is

an isomorphism of k-modules. Let X be an objet of C, then the following

onditions are equivalent:

(i) X is simple;

(ii) the map k → EndC(X) that sends k 7→ k idX is an isomorphism of

k-modules;

(iii) the k-algebra EndC(X) is isomorphi to k;

(iv) the k-module EndC(X) is free of rank 1.

The k-bilinearity of the omposition of morphisms in C implies that all ob-

jets of C isomorphi to a simple objet are simple. Any monoidal k-ategory

whose unit objet 1 is simple is pure (see Setion 1.1.6). The left and right

traes of endomorphisms in a pivotal k-linear ategory are k-linear. This fol-

lows from the k-linearity of the monoidal produt and omposition of mor-

phisms.

1.4.4. Non-degenerate ategories. Let C be a monoidal k-ategory.

Any pairing e : X ⊗ Y → 1 between objets X and Y of C indues a k-linear

homomorphism

HomC(1, X)⊗k HomC(1, Y )→ EndC(1), α⊗k β 7→ e(α⊗ β).

If the unit objet 1 of C is simple we identify EndC(1) = k (see Setion 1.4.3)

and so we get a pairing in Modk

(1.5) HomC(1, X)⊗k HomC(1, Y )→ k, α⊗k β 7→ e(α⊗ β).

A monoidal k-ategory C is non-degenerate if its unit objet is simple and

for eah non-degenerate pairing e : X ⊗ Y → 1 in C, the indued pairing (1.5)

is non-degenerate in the monoidal ategory Modk.

Lemma 1.4. Let C be a non-degenerate pivotal k-ategory. Then the left

and right dimensions of any simple objet of C are invertible in k.

Proof. Let i be a simple objet of C. Consider the right evaluation of i
given by ẽvi : i⊗ i

∗ → 1. By the following bijetion

HomC(1, i
∗ ⊗ i)→ HomC(i

∗, i∗), α 7→ (idi∗ ⊗ ẽvi)(α⊗ idi∗)
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whose inverse is given by the map that sends any β ∈ EndC(i
∗) to

β 7→ (β ⊗ idi)c̃oevi

we have that HomC(1, i
∗⊗ i) ≃ HomC(i

∗, i∗). Sine i∗ is simple, HomC(1, i
∗⊗ i)

is a free k-module of rank 1 with basis vetor c̃oevi : 1→ i∗⊗ i. Consider now
the pairing in the ategory Modk:

ωi : HomC(1, i
∗ ⊗ i)⊗k HomC(1, i

∗ ⊗ i)→ k

given by

ωi(c̃oevi ⊗k c̃oevi) =
PSfrag replaements

i

= dim
l

(i) ∈ k.

The non-degeneray of ωi and Lemma 1.1 imply that dim
l

(i) is invertible in k.

Using a similar argument for the pairing evi : i
∗ ⊗ i → 1 we dedue the same

result for dim
r

(i). �

1.4.5. Fusion ategories. A fusion k-ategory is a rigid k-ategory C
suh that there is a �nite set I of simple objets of C satisfying the following

onditions:

(a) the unit objet 1 ∈ Ob(C) belongs to I;
(b) HomC(i, j) = 0 for any distint i, j ∈ I, ;
(c) every objet of C is a diret sum of a �nite family of elements of I.

Suh a set I is alled a representative set of simple objets of C.
Let C be a fusion k-ategory and let I be a representative set of simple ob-

jets of C. Condition (a) implies that C is pure and EndC(1) ≃ k. Condition (c)
implies that for eah objet X of C, there is a �nite family of morphisms

(pα : X → iα, qα : iα → X)α∈A

suh that

iα ∈ I , idX =
∑

α∈A

qαpα and pαqβ = δα,β idiα for all α, β ∈ A.

We all suh a family an I-partition of X .

Given a simple objet i of C, an i-partition of X ∈ Ob(C) is a family

of morphisms (pα : X → i, qα : i → X)α∈A′
suh that (pα)α∈A′

is a basis

of HomC(X, i), (qα)α∈A′
is a basis of HomC(i, X), and pαqβ = δα,βidi for all

α, β ∈ A′
. Note that the ardinality of the set A′

is equal to the number

of simple objets isomorphi to i in a I-partition of X . For any I-partition
(pα : X → iα, qα : iα → X)α∈A of X and any i ∈ I, the family (pα, qα)α∈Ai

is an i-partition of X , where Ai = {α ∈ A | iα = i}. Conversely, a union of

i-partitions of X over all i ∈ I is an I-partition of X .

Let C be a pivotal fusion k-ategory. Sine C is pure (beause 1 is simple),

the traes of endomorphisms and the dimensions of objets are⊗-multipliative.

By [TVi, Lemma 4.3℄, C is non-degenerate. Then it follows from Lemma 1.4

that the left/right dimensions of any simple objet of C are invertible in

EndC(1) ≃ k.
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Two pivotal fusion k-ategories are equivalent if there is a k-linear pivotal

equivalene between them. If C is a pivotal fusion k-ategory, then so are its

opposites

Cop = (Cop,⊗,1), C⊗op = (C,⊗op,1), Crev = (Cop,⊗op,1).

By Setion 1.2.6, Crev is equivalent to C, and Cop is equivalent to C⊗op
.

1.4.6. Enrihed graphial alulus. Let C be a pivotal fusion k-ategory.

Consider a simple objet i of C and an i-partition (pα : X → i, qα : i→ X)α∈A
of an objet X of C. Consider a (�nite) formal sum of C-olored Penrose

diagrams

(1.6)

∑

α∈A
PSfrag replaements

X

X i

i

pα qα

where the area outside the dotted line represents a part of these diagrams

independent of α ∈ A and, in partiular, not involving (pα, qα). By the

Penrose graphial alulus and the k-linearity of C, the sum (1.6) represents a

morphism in C. Using hanges of basis, we obtain that the tensor

(1.7)

∑

α∈A

pα ⊗ qα ∈ HomC(X, i)⊗k HomC(i, X)

does not depend on the hoie of the i-partition of X . The morphism (1.6) in C
also does not depend on this hoie. Therefore we an eliminate the C-olors
pα, qα of the two boxes, keeping in mind only the order of the boxes and the

fat that they jointly stand for the tensor (1.7). We will graphially represent

this pair of boxes by two urvilinear boxes (a semi-disk and a ompressed

retangle) standing respetively for pα and qα where α runs over A:

PSfrag replaements

X

X i

i

=
∑

α∈A

PSfrag replaements

X

X i

i

pα qα

The area outside the dotted line in the piture are the same as above. We will

also use similar notation obtained from (1.7) by reorienting the X-labeled ars

upward and replaing (pα, qα)α∈A with an i-partition of X∗
, or by reorienting

the i-labeled ars upward and replaing (pα, qα)α∈A with an i∗-partition of X .

We will allow several ars to be attahed to the bottom of the semi-disk and to
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the top of the ompressed retangle in (1.7). We will allow to erase i-labeled
ars for i = 1. In partiular,

PSfrag replaements

X

X

=
∑

α∈A
PSfrag replaements

X

X

pα qα

where (pα, qα)α∈A is any 1-partition of X .

1.4.7. Properties. For any objet X of a pivotal fusion k-ategory C and
any simple objet i of C, we have

(1.8)

PSfrag replaements

X

i

i

= N i
X

PSfrag replaements

i

where N i
X is the rank of the free k-modules HomC(X, i) and HomC(i, X). This

equality follows from the fat that given an i-partition (pα, qα)α∈A of X , we

have pαqα = idi for all α ∈ A and card(A) = N i
X . Next, pik a representative

set I of simple objets of C. Sine the union of i-partitions of X ∈ Ob(C) over
all i ∈ I is an I-partition of X , we have

(1.9)

∑

i∈I
PSfrag replaements

i

X

X

=

PSfrag replaements

X

.
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This formula and the fat that HomC(1, i) = 0 = HomC(i,1) for all i ∈ I \ {1}
imply that for any f ∈ HomC(1, X) and g ∈ HomC(X,1),

(1.10)

PSfrag replaements

X

X

f

=

PSfrag replaements

XX

f

and

PSfrag replaements

X

X

g

=

PSfrag replaements

X

g

.

Finally, for any objet X of C and any simple objet i of C, we have:

(1.11)

PSfrag replaements

X

X i

i

= dim
l

(i)
PSfrag replaements

X

X
i

i

.

This equality follows from the fat that if (pα, qα)α∈A is a 1-partition of i∗⊗X ,

then (Pα, Qα)α∈A is a i-partition of X , where

Pα = dim
l

(i)
PSfrag replaements

X

i

pα
and Qα =

PSfrag replaements

X

i

qα
.

Similarly, we have:

(1.12)

PSfrag replaements

X

X i

i

= dim
r

(i)
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X

X

i

i

.



CHAPTER 2

Invariants of olored graphs

In this hapter, we assoiate with eah linear pivotal ategory a family of

modules alled multipliity modules (Setion 2.1). Then we review an invariant

of olored planar graphs whih takes values in tensor produts of multipliity

modules (Setion 2.2). Finally, we study in detail duality pairings for olored

graphs and their assoiated ontration vetors (Setion 2.3). The invariant

of olored graphs and the ontration vetors will be our main tools in the

topologial onstrutions of Chapter 4.

2.1. Multipliity modules

In this setion we assoiate with eah linear pivotal ategory a family of

modules alled multipliity modules.

2.1.1. Cyli sets. A yli C-set is a triple (E, c, ε) onsisting of a

nonempty �nite set E endowed with a yli order and two maps c : E → Ob(C)
and ε : E → {+,−}. In other words, a yli C-set is a nonempty ylially

ordered �nite set whose elements are equipped with a signed objet of C. For
shortness, we will often write E for (E, c, ε).

An isomorphism between two yli C-sets E and E ′
is a bijetion E →

E ′
preserving the yli order and ommuting with the maps to Ob(C) and

{+,−}. More generally, a weak isomorphism between yli C-sets (E, c, ε) and
(E ′, c′, ε′) is a pair φ = (ρ, ϕ) onsisting of a bijetion ρ : E → E ′

preserving

the yli order and a family of isomorphisms in C

ϕ = {ϕe : c(e)
ε(e) → c′(ρ(e))ε

′(ρ(e))}e∈E.

2.1.2. Permutation maps. ForX, Y ∈ Ob(C) we de�ne the permutation

map

πX,Y : HomC(1, X ⊗ Y )→ HomC(1, Y ⊗X)

to be the map arrying any element α ∈ HomC(1, X ⊗ Y ) to

πX,Y (α) = (evX ⊗ idY⊗X)(idX∗ ⊗ α⊗ idX)c̃oevX .

Note that, using the isotopy invariane of the graphial alulus, we have:

πX,Y (α) = (idY⊗X ⊗ ẽvY )(idY ⊗ α⊗ idY ∗)coevY .

The permutation maps are k-linear isomorphisms and for any X, Y, Z ∈ Ob(C)
have the following properties:

(a) πX,Y
−1 = πY,X ;

(b) πX,1 = π
1,X = idHomC(1,X);

23
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() πX⊗Y,Z = πY,Z⊗XπX,Y⊗Z and πX,Y⊗Z = πZ⊗X,Y πX⊗Y,Z .

2.1.3. Multipliity modules. Let E = (E, c, ε) be a yli C-set, we

derive from this data a k-module H(E). For e ∈ E, set

He(E) = HomC(1, c(e1)
ε(e1) ⊗ c(e2)

ε(e2) ⊗ · · · ⊗ c(en)
ε(en)),

where n is the ardinality of E and e = e1 < e2 < · · · < en are the elements

of E in the given yli order starting from e. If f ∈ E \ {e}, then f = ek for

some integer k ∈ {2, . . . , n}. Set

[e, f) = c(e1)
ε(e1) ⊗ c(e2)

ε(e2) ⊗ · · · ⊗ c(ek−1)
ε(ek−1)

and

[f, e) = c(ek)
ε(ek) ⊗ c(ek+1)

ε(ek+1) ⊗ · · · ⊗ c(en)
ε(en).

Clearly

He(E) = HomC(1, [e, f)⊗ [f, e)) and Hf(E) = HomC(1, [f, e)⊗ [e, f)).

De�ne pe,f : He(E)→ Hf(E) by

pe,f =

{
π[e,f),[f,e) if e 6= f,
idHe

if e = f.

The properties of the permutation maps imply that pe,f is a k-linear isomor-

phism and that pf,g pe,f = pe,g for all e, f, g ∈ E. Thus the family

({He(E)}e∈E, {pe,f}e,f∈E)

is a projetive system of k-modules and k-linear isomorphisms. The multipli-

ity module H(E) is the projetive limit of this system:

H(E) = lim←−He(E).

The k-module H(E) depends only on E and it is endowed with a family of

k-linear isomorphisms

{τEe : H(E)→ He(E)}e∈E

suh that pe,f τ
E
e = τEf for all e, f ∈ E. We all τEe the one isomorphism and

the family {τEe }e∈E the universal one.

An isomorphism φ = (ρ, ϕ) between two yli C-sets E and E ′
indues a

family of k-linear isomorphisms

{ϕe : He(E)→ Hρ(e)(E
′)}e∈E

whih ommute with the maps pe,f as above. These isomorphisms indue a

k-linear isomorphism H(E)→ H(E ′) denoted H(φ).

2.2. An invariant of olored planar graphs

In this setion, we de�ne an invariant of olored planar graphs. Throughout

this setion, we orient the plane R2
ounterlokwise and C is a k-linear pivotal

ategory.
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2.2.1. Graphs. By a graph we mean a topologial spae G obtained from

a �nite number of disjoint opies of the losed interval [0, 1] by identi�ation of

ertain endpoints. The images of the opies of [0, 1] in G are alled edges of G.
The endpoints of the edges of G (that is, the images of 0, 1 ∈ [0, 1]) are alled

verties of G. Eah edge of G onnets two (possibly, oiniding) verties, and

eah vertex of G is inident to at least one edge. By half-edges of G, we mean

the images of the losed intervals [0, 1/2] ⊂ [0, 1] and [1/2, 1] ⊂ [0, 1] in G.
The number of half-edges of G inident to a vertex v of G is alled the valene

of v and for any vertex is greater then or equal to 1. A graph is oriented if

all its edges are oriented. An half edge inident to v is said to be inoming if

it is oriented towards and outgoing otherwise. The empty set is viewed as an

oriented graph with no verties and no edges.

2.2.2. Colored graphs. A C-olored graph is an oriented graph suh that

eah edge is endowed with an objet of C alled the olor of this edge. Let Σ
be an oriented surfae. A C-olored graph in Σ is a graph embedded in Σ. For
shortness, by a C-olored planar graph we mean a C-olored graph embedded

in an oriented plane (i.e., an oriented surfae homeomorphi to R2
).

2.2.3. The k-module assoiated to C-olored graphs. Let Σ be an

oriented surfae and let G be a C-olored graph in Σ. A vertex v of G deter-

mines a yli C-set Ev = (Ev, cv, εv) as follows: Ev is the set of half-edges of

G inident to v with the yli order indued by the opposite orientation of Σ,
the map cv : Ev → Ob(C) assigns to a half-edge e ∈ Ev the olor of the edge

of G ontaining e and the map εv : Ev → {+,−} assigns to e ∈ Ev the sign +
if e is oriented towards v and − otherwise. Note that the ardinality of Ev is

equal to the valene of v. Let Hv(G) = H(Ev) be the multipliity module of

Ev, and set

H(G) =
⊗

v

Hv(G),

where⊗ is the unordered tensor produt of k-modules, that run over all verties

v of G. By de�nition, for G = ∅, we have H(G) = k.

For a vertex v of G, the k-module Hv(G) an be desribed as follows. Let

n ≥ 1 be the valene of v and let e1 < e2 < · · · < en < e1 be the half-edges

of G inident to v with yli order indued by the opposite orientation of Σ.
Then we have the one isomorphism

τEv

e1
: Hv(G)

≃
−−−−→ HomC(1, cv(e1)

εv(e1) ⊗ · · · ⊗ cv(en)
εv(en)).

By de�nition ofHv(G), the one isomorphism determined by di�erent elements

of Ev are related via omposition with the permutation maps. For example,
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the trivalent vertex v of the following C-olored graph:

PSfrag replaements

i j

k

v .

with i, j, k ∈ Ob(C), give rise to the k-module Hv(G) isomorphi,via the one

isomorphism, to the k-modules

HomC(1, i⊗ j
∗ ⊗ k) ≃ HomC(1, j

∗ ⊗ k ⊗ i) ≃ HomC(1, k ⊗ i⊗ j
∗).

For any disjoint C-olored graphs G1 and G2 in Σ, there is a anonial

k-linear isomorphism between the k-modules

H(G1 ⊔G2) ≃ H(G1)⊗H(G2).

2.2.4. The invariant FC. Let G be a C-olored graph in R2
. For eah

vertex v of G, pik a half-edge ev ∈ Ev and deform G near v so that the half-

edges inident to v lie above v with respet to the seond oordinate on R
2

and ev is the leftmost of them. Pik any αv ∈ Hv(G) and replae v by a box

olored with τEv
ev

(αv), where τ
Ev

is the universal one of Hv(G):

PSfrag replaements

ev

v

7→
PSfrag replaements

ev

v 7→
PSfrag replaements

τEv
ev

(αv) .

This transforms G into a C-olored Penrose diagram without free ends.

Let FC(G)(⊗vαv) ∈ EndC(1) be the assoiated morphism omputed via the

Penrose graphial alulus. This extends by linearity to a k-linear homomor-

phism

FC(G) : H(G) = ⊗vHv(G)→ EndC(1).

By de�nition, for G = ∅, the map FC(G) : H(G) = k→ EndC(1) is the k-linear
homomorphism arrying 1k to id

1

.

By [TVi, Lemma 12.2℄, the homomorphism FC(G) : H(G)→ EndC(1) is a
well-de�ned isotopy invariant of the C-olored graph G in R2

.
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2.2.5. Example. Consider the following C-olored planar graph with four

verties a, b, c, d and four edges olored by X, Y, Z, T ∈ Ob(C):

G =
PSfrag replaements

X Y

Z

Ta

b

c d

The half-edges ea1, e
a
2 inident to a, eb1 and eb2 inident to b, ec1, e

c
2, e

c
3 inident to

c and ed1 inident to d are reported below:

ea1 =
PSfrag replaements

a

ea2 =
PSfrag replaements

a

eb1 =
PSfrag replaements

b

eb2 =
PSfrag replaements

b

ec1 =
PSfrag replaements

c
ec2 =

PSfrag replaements

c

ec3 =
PSfrag replaements

c

ed1 =
PSfrag replaements

d
.

The total order ompatible with the yli order on Ea = {ea1, e
a
2} is ea1 < ea2,

on Eb = {e
b
1, e

b
2} is e

b
1 < eb2 and on Ec = {e

c
1, e

c
2, e

c
3} is e

c
1 < ec2 < ec3. There are

several one isomorphisms assoiated with eah vertex:

τEa

ea1
: Ha(G)→ HomC(1, X ⊗ T

∗),

τEb

eb1
: Hb(G)→ HomC(1, X

∗ ⊗ Y ),

τEc

ec1
: Hc(G)→ HomC(1, T ⊗ Y

∗ ⊗ Z),

τEd

ed1
: Hd(G)→ HomC(1, Z

∗) .

These isomorphisms are related to eah other via omposition with the per-

mutation maps, see Setion 2.1.3.
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By de�nition, H(G) = Ha(G) ⊗ Hb(G) ⊗ Hc(G) ⊗ Hd(G). For any α ∈
Ha(G), β ∈ Hb(G), γ ∈ Hc(G) and δ ∈ Hd(G) we have

FC(α⊗ β ⊗ γ ⊗ δ) =
PSfrag replaements

X Y
Z

T

τEa

ea1
(α)

τEb

eb1
(β)

τEc

ec1
(γ) τEd

ed1
(δ)

.

2.2.6. Properties of FC. We state some properties of the invariant FC of

C-olored graphs in R2
.

(A) Let G′
be the C-olored graph in R2

obtained from a C-olored graph

G ⊂ R2
by replaing the olor X of an edge e by an isomorphi ob-

jet X ′
of C. Any isomorphism X ′ ≃ X indues a weak isomorphism

between the yli C-sets (see Setion 2.1.1) assoiated with the end-

points of e in G and G′
, and the latter indues a k-linear isomorphism

Φ: H(G′)→ H(G). Then

FC(G
′) = FC(G)Φ.

We all this property the naturality of C.
(B) If an edge e of a C-olored graph G in R2

is olored with 1 and the

endpoints of e are also endpoints of other edges of G, then G′ =
G \ Int(e) ⊂ R2

inherits from G the struture of a C-olored graph,

there is a anonial k-linear isomorphism ∆: H(G′)→ H(G), and

FC(G
′) = FC(G)∆.

Indeed, by the Penrose alulus, an edge olored with 1 an be deleted

without hanging the assoiated morphism.

(C) If G,G′
are disjoint C-olored graphs in R2

lying on di�erent sides of

a straight line, then

FC(G∐G
′) = µ(FC(G)⊗ FC(G

′))Θ

where Θ: H(G∐G′)→ H(G)⊗H(G′) is the anonial isomorphism

and µ is multipliation in EndC(1). We all this property the ⊗-
multipliativity of FC.

(D) If C is pure, then

FC




PSfrag replaements

i




= FC




PSfrag replaements

i



.
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where the C-olored graphs on the left and on the right oinide outside

the big retangles and the small retangles on both sides stand for the

same C-olored graph.

2.2.7. The ase of a pivotal fusion k-ategory. Suppose that C is a

pivotal fusion k-ategory. Reall that EndC(1) ≃ k. For any C-olored graph

G in R2
, the k-module H(G) is free of �nite rank and

FC(G) ∈ H(G)⋆ = Homk(H(G), k).

For any non-isomorphi simple objets i and j of C we have

(2.1) FC




PSfrag replaements

i

j


 = 0

where the white box stands for any piee of a C-olored graph with one input

and one output as in the piture. Formula (2.1) holds beause in a fusion

ategory for non-isomorphi simple objets we have HomC(i, j) = 0.

Lemma 2.1. For any simple objet i of C, the following equalities hold:

FC




PSfrag replaements

i

i


 = dim

l

(i)−1
FC




PSfrag replaements

i


⊗ FC




PSfrag replaements

i




and

FC




PSfrag replaements

i

i


 = dim

r

(i)−1
FC




PSfrag replaements

i


⊗ FC




PSfrag replaements

i


 .

In the above equalities, the small white boxes represent piees of C-olored pla-

nar graphs whih are the same in both sides.

Proof. Sine i is a simple objet of C, any endomorphism ϕ ∈ HomC(i, i)
expands as ϕ = λ idi with λ ∈ k. The k- linearity of the trae implies tr

l

(ϕ) =
λ tr

l

(idi) = λ dim
l

(i) and tr
r

(ϕ) = λ tr
r

(idi) = λ dim
r

(i). Sine dim
l

(i)
and dim

r

(i) are invertible by Lemma 1.4, we dedue λ = dim
l

(i)−1 tr
l

(ϕ)
and λ = dim

r

(i)−1 tr
r

(ϕ). We obtain ϕ = dim
l

(i)−1 tr
l

(ϕ) idi and ϕ =
dim

r

(i)−1 tr
r

(ϕ) idi. The statement follows from the ⊗-multipliativity of FC

(see Setion 2.2.6). �

2.3. Duality and ontration vetors

In this setion, we de�ne ontration vetors assoiated to edges of olored

graphs.
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2.3.1. Duality pairings. Let C be a pivotal k-ategory. Every tuple S
of signed objets of C (see Setion 1.3.2) gives rise to a pairing in Modk

ωS : HomC(1, XS∗)⊗k HomC(1, XS)→ EndC(1)

alled duality pairing and de�ned by

ωS(α⊗k β) = evS(α⊗k β)

for all α ∈ HomC(1, XS∗) and β ∈ HomC(1, XS), where evS is the generalized

evaluation disussed in Setion 1.3.3. By the isotopy invariane of the graphial

alulus,

ωS(α⊗k β) = ωS∗(β ⊗k α)

for all S, α, β, where S∗
is the dual of S (see Setion 1.3.2).

The dual of a yli C-set (E, c, ε) is the yli C-set (Eop, c,−ε) where Eop

is the set E endowed with the opposite yli order of E. For eah element e in
a yli C-set E = (E, c, ε), we de�ne SE

e to be the tuple of signed objets of C
obtained by enumerating the elements of E in the given yli order starting

with e and reording the value of c and ε. Let e∗ be the element in (Eop, c,−ε)
preeding e in the given yli order on E. In this way, by onstrution we

have that

SEop

e∗ = (SE
e )

∗
.

For eah e ∈ E, set

ω̃e
E = ωSE

e
(τE

op

e∗ ⊗ τ
E
e ) : H(Eop)⊗k H(E)→ EndC(1),

where

τEe : H(E)→ HomC(1, XSE
e
) and τE

op

e∗ : H(Eop)→ HomC(1, X(SE
e )∗).

are the one isomorphisms. The pairings ω̃e
E and

ω̃e∗

Eop : H(E)⊗k H(Eop)→ EndC(1)

are equal up to permutation of tensor fators. Consequently, they indue a

k-bilinear pairing

ωe
E : H(Eop)⊗H(E)→ EndC(1).

where ⊗ is the unordered tensor produt (see Appendix A) of k-modules.

Notie that it follows from the de�nition that

ωe∗

Eop = ωe
E.

In general, the pairing ωe
E does depend on the hoie of e ∈ E. If the ategory C

is spherial, then the pairing ωe
E does not depend on the hoie of e ∈ E (see

[TVi, Lemma 12.4℄).



2.3. DUALITY AND CONTRACTION VECTORS 31

2.3.2. Contration vetors. Let C be a non-degenerate pivotal k-ategory.
Then all pairings onsidered in Setion 2.3.1 take values in EndC(1) ≃ k. Let E
be a yli C-set and e ∈ E. The ontration vetors

∗ω̃e
E
∈ H(E)⊗k H(Eop) and ∗ω̃e∗

Eop
∈ H(Eop)⊗k H(E)

(see Setion 1.1.11) of the pairings

ω̃e
E : H(Eop)⊗k H(E)→ k and ω̃e∗

Eop : H(E)⊗k H(Eop)→ k.

are equal up to permutation of the tensor fators. Consequently they determine

a vetor

∗eE ∈ H(E)⊗H(Eop).

2.3.3. Duality pairing for C-olored graphs. Let C be a pivotal k-

ategory. Reall that an element e of a yli C-set E determines a tuple SE
e

of signed objets of C (see Setion 2.3.1). Also reall the dual S∗
of a tuple S

of signed objets of C (see Setion 1.3.2).

Let G and G′
be C-olored graphs in the oriented surfaes Σ and Σ′

. Let u
be a vertex of G and v be a vertex of G′

. A duality between u and v onsists

in an half-edge eu inident to u and an half-edge ev inident to v suh that

SEv(G′)
ev

= (SEu(G)
eu

)
∗
.

Here Eu(G) and Ev(G
′) are the yli C-sets assoiated with the verties u

and v (see Setion 2.2.3). We say that u and v are in duality if there is a

duality between u and v.
A duality between u and v indues a k-bilinear pairing

ωu,v : Hu(G)⊗Hv(G
′)→ EndC(1)

de�ned as follows. The omposition of the one isomorphism

τEv(G′)
ev

: Hv(G
′) = H(Ev(G

′))→ HomC(1, XS
Ev(G′)
ev

)

with the inverse of the one isomorphism

τEu(G)op

eu
: H((Eu(G))

op)→ HomC(1, XS
(Eu(G))op
eu

)

indue a k-linear isomorphism

ϕu,v : Hv(G
′)→ H(Eu(G)

op).

The pairing

ωeu
Eu(G) : H(Eu(G)

op)⊗H(Eu(G))→ EndC(1).

from Setion 2.3.1 indues a pairing

ωu,v = ωeu
Eu(G)(ϕu,v ⊗ idHu(G)) : Hv(G

′)⊗Hu(G)→ EndC(1).

It follows from the de�nition that ωv,u = ωu,v.

If C is non-degenerate, then the ontration vetor

∗eu
Eu(G) ∈ H(Eu(G))⊗H(Eu(G)

op).



32 2. INVARIANTS OF COLORED GRAPHS

from Setion 2.3.2 indues a ontration vetor

∗u,v = (idHu(G) ⊗ ϕ
−1
u,v)(∗

eu
Eu(G)) ∈ Hu(G)⊗Hv(G

′).

Note that this vetor does depend on the duality between u and v. It follows
from the de�nition that ∗v,u = ∗u,v.

2.3.4. Graphial representation of evaluations. Let C be a non-de-

generate pivotal k-ategory. Consider two C-olored planar graphs G and G′
.

Consider a duality between a vertex u of G and a vertex v of G′
. Reall that

it onsists in an half-edge eu inident to u and an half-edge ev inident to v
satisfying some ondition (see Setion 2.3.3). We represent the evaluation

(
FC(G)⊗ FC(G

′)
)
(∗u,v) = FC(G ⊔G

′)(∗u,v)

by adding to a diagram of G ⊔ G′
a red ar whose endpoints determine the

duality. This means that the endpoints of this added ar are points near u and v
suh that by starting from these points and following the opposite orientation

of the plane, the �rst enountered half-edges are eu and ev. If there are several
evaluations, we graphially represent them with several red ars (one for eah

evaluation). For example:

FC




PSfrag replaements

ii

jj

s

s

rr

kk

tt




= FC




PSfrag replaements

ii

jj

s

s

rr

kk

tt

u v

u′
v′

eu

ev

eu′

ev′




(∗u,v ⊗ ∗u′,v′).

2.3.5. The ase of a fusion ategory. Let C be a pivotal fusion k-

ategory. Reall that C is non-degenerate (see Setion 1.4.5).

Lemma 2.2. Let S be a tuple of signed objets of C and let

ωS : HomC(1, XS∗)⊗k HomC(1, XS)→ EndC(1) ≃ k

be the pairing de�ned by S in Setion 2.3.1. Then the ontration vetor

∗ωS
∈ HomC(1, XS)⊗k HomC(1, XS∗)

of ωS is omputed by

∗ωS
=

PSfrag replaements

S

· · · ⊗
PSfrag replaements

· · ·

S∗

,

where the ars are olored and oriented so that S is the tuple of signed ob-

jets determined by the horizontal side of the urvilinear boxes, and where the

notation of Setion 1.4.6 is used for a 1-partition of XS.
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Proof. Let ∗S ∈ HomC(1, XS)⊗k HomC(1, XS∗) be the vetor de�ned in

the right-hand side of the equality above. For any f ∈ HomC(1, XS),

(idHomC(1,XS) ⊗k ωS)(∗S ⊗ f)
(i)
=

PSfrag replaements

f

· · ·

· · ·

(ii)
=

PSfrag replaements · · ·

· · ·

f

(iii)
=

PSfrag replaements

· · ·

f

.

Here, (i) follows from the de�nitions of ωS and ∗S, (ii) from the isotopy in-

variane of the graphial alulus, and (iii) from formula (1.10). Similarly, we

have that:

(ωS ⊗k idHomC(1,XS∗))(g ⊗ ∗S) = g

This prove that ∗S is the ontration vetor of ωS. �

Lemma 2.3. Let I be a representative set of simple objets of C. Then:

(a) FC




PSfrag replaements

· · ·


 =

∑

i∈I

dim
l

(i) FC


PSfrag replaements

· · ·

· · ·

i


.

(b) FC




PSfrag replaements

· · ·


 =

∑

i∈I

dim
r

(i) FC


PSfrag replaements

· · ·

· · ·

i


.

() FC




PSfrag replaements

· · ·


 = FC




PSfrag replaements

· · ·

· · ·




where white box stands for a piee of a C-olored graph (the same on

the left-hand and right hand side).

Proof. To prove the lemma we only need to ompare the ontributions

to FC of the depited piees of C-olored graphs for both expressions (a)

and (b). Let S = ((X1, ε1), . . . (Xn, εn)) be the tuple of signed objets of C
determined by the left-hand side of the equality (a). Consider the dual tuple

S∗ = ((Xn,−εn), . . . , (X1,−ε1)) and the morphisms

evS∗ : XS ⊗XS∗ → 1, coevS∗ : 1→ XS∗ ⊗XS and ΨS∗ : XS∗ → X∗
S

de�ned in Setion 1.3.3. For i ∈ I, set Si = ((i,−), (X1, ε1), . . . (Xn, εn)). Then

S∗
i = ((Xn,−εn), . . . , (X1,−ε1), (i,+)) XSi

= i∗⊗XS and XS∗
i
= XS∗⊗i.

Next, onsider the non-degenerate pairing

ωi : HomC(1, XS∗
i
)⊗k HomC(1, XSi

)→ k.
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Let ∗i ∈ HomC(1, XSi
)⊗k HomC(1, XS∗

i
) be the assoiated ontration vetor.

Consider the following isotopy between C-olored graphs:

PSfrag replaements

· · ·

· · ·

i
u

v
∼=

PSfrag replaements

· · ·

· · ·

i u

v

Using the de�nitions of FC and of the ontration vetor ∗u,v between the

verties u and v, we redue assertion (a) to the following laim: for some

expansion

∗i =
∑

α

ei,α ⊗k fi,α

with ei,α ∈ HomC(1, XSi
) and fi,α ∈ HomC(1, XS∗

i
) we have

(2.2)

∑

i∈I

∑

α

dim
l

(i)
PSfrag replaements

· · ·· · ·

· · ·

S

Si

fi,α ei,α = idXS
,

where the top (respetively bottom) free ends of the Penrose diagram are

olored and oriented so that the orresponding tuple of signed objets is S
(respetively S∗

). We verify (2.2) for the expansion

∗i =
PSfrag replaements

· · ·

S
i

⊗k

PSfrag replaements · · ·

S∗

i

provided by Lemma 2.2. The left-hand side of (2.2) is equal to

∑

i∈I

dim
l

(i)

PSfrag replaements

· · ·

· · ·

· · ·

i
(i)
=

∑

i∈I

dim
l

(i)
PSfrag replaements

· · ·

· · ·

i
(ii)
=

∑

i∈I

PSfrag replaements

· · ·

· · ·

i
(iii)
= idXS

.

Here (i) follows from the isotopy invariane of graphial alulus, (ii) from

formula (1.11) and (iii) from formula (1.9). This proves formula (a).

To prove formula (b), we proeed as follows. For i ∈ I, set

S̃i = ((X1, ε1), . . . (Xn, εn), (i,−)).
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Then

S̃∗
i = ((i,+), (Xn,−εn), . . . , (X1,−ε1)) XS̃i

= XS⊗i
∗

and XS̃∗
i
= i⊗XS∗ .

Consider the non-degenerate pairing

ω̃i : HomC(1, XS̃∗
i
)⊗k HomC(1, XS̃i

)→ k.

Let ∗̃i ∈ HomC(1, XS̃i
)⊗kHomC(1, XS̃∗

i
) be the assoiated ontration ve-

tor. Consider the following isotopy between C-olored graphs:

PSfrag replaements

· · ·

· · ·

i
ũ

ṽ
∼=

PSfrag replaements

· · ·

· · ·

i

ũ

ṽ

Using the de�nition of FC and the ontration vetor ∗ũ,ṽ, between the ver-

ties ũ and ṽ of the pairing ω̃i we redue the lemma to the following laim: for

some expansion

∗̃i =
∑

β

ẽi,α ⊗k f̃i,α

with ẽi,α ∈ HomC(1, XS̃i
) and f̃i,α ∈ HomC(1, XS̃∗

i
) we have

(2.3)

∑

i∈I

∑

α

dim
r

(i)

PSfrag replaements

· · ·· · ·

· · ·

S

S
i

f̃i,α ẽi,α

= idXS
,

where the top (respetively bottom) free ends of the Penrose diagram are

olored and oriented so that the orresponding tuple of signed objets is S.
We verify (2.3) for the expansion

∗̃i =
PSfrag replaements

· · ·

S

i

⊗k

PSfrag replaements

· · ·

S∗

i
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provided by Lemma 2.2. The left-hand side of (2.3) is equal to

∑

i∈I

dim
r

(i)
PSfrag replaements

· · ·

· · ·

i

(i)
=

∑

i∈I

dim
r

(i)PSfrag replaements

· · ·

· · ·

i

(ii)
=

∑

i∈I
PSfrag replaements · · ·

· · ·

i
(iii)
= idXS

.

Here (i) follows from the isotopy invariane of graphial alulus, (ii) from

formula (1.12) and (iii) from formula (1.9). This proves formula (b).

Next we prove formula (). This equality follows from the previous points

sine dim
l

(1) = dim
r

(1) = 1k and HomC(i,1) = 0 for all i ∈ I di�erent

from 1. �



CHAPTER 3

Combed 3-manifolds

This hapter is devoted to the theory of ombed 3-dimensional manifolds,

whih are 3-manifolds endowed with a non-vanishing vetor �eld. Branhed

spines have been �rstly onsidered by Gillman and Rolfsen [GR1, GR2℄ and

more expliitly by Ishii [Is1, Is2, Is3℄. In [BP1, BP2℄, Benedetti and Petro-

nio, besides having given substantial ontributions to the theory of branhed

spines, introdue and develop the theory of o-graphs whih enode a speial

kind of branhed spines.

In Setion 3.1, we review the theory of spines of 3-manifolds. Then, we dis-

uss the presentation of ombed 3-manifolds via branhed spines in Setion 3.2

and via o-graphs in Setion 3.3.

3.1. Spines of 3-manifolds

In this setion, we review the theory of spines of 3-manifolds. The main

ontributors to this theory are Casler, Matveev, and Piergallini.

3.1.1. Manifolds. For n ≥ 1, by a n-manifold, we mean a manifold of

dimension n with or without boundary. The boundary ∂M of a manifoldM is

then a (n−1)-manifold without boundary. IfM is oriented, then its boundary

∂M is oriented in suh a way that at any point of ∂M , the orientation of M
is given by a diretion away from M followed by the orientation of ∂M . A

losed manifold is a ompat manifold with empty boundary. The empty set ∅
is onsidered as a losed oriented manifold of arbitrary dimension.

It is a well-known result that all ompat 3-manifolds have a smooth stru-

ture unique up to ambient isotopy, therefore every time that we need the hy-

pothesis of smoothness we refer impliitly to that one.

3.1.2. Polyhedra. A 2-polyhedron is a ompat topologial spae P that

an be triangulated using a �nite number of simplies of dimension ≤ 2 so that
all 0-simplies and 1-simplies are faes of 2-simplies. For a 2-polyhedron P ,
denote by Int(P ) the subspae of P onsisting of all points having a neighbor-

hood homeomorphi to R2
. By the de�nition of a 2-polyhedron, the surfae

Int(P ) is dense in P . A strati�ation of a 2-polyhedron P is an (unoriented)

graph P (1)
embedded in P so that P \ Int(P ) ⊂ P (1)

. The verties and edges

of P (1)
are alled respetively the verties and edges of P . We denote the set

of verties of P as P (0)
. To speify a strati�ation of P it su�es to speify

the edges of P beause the verties of P are just the endpoints of the edges.

Note that any 2-polyhedron an be endowed with a strati�ation. A strati�ed

polyhedron is a 2-polyhedron endowed with a strati�ation.

37
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Cutting a strati�ed polyhedron P along the graph P (1) ⊂ P we obtain a

ompat surfae P̃ with interior P \P (1)
. The 2-polyhedron P an be reovered

by gluing P̃ to P (1)
along a surjetive map π : ∂P̃ → P (1)

. The set

π−1(P (0)) ⊂ ∂P̃

is losed and disrete, and therefore is �nite. The points of this set split ∂P̃
into ars whose interiors are mapped by π homeomorphially onto the interiors

of edges of P . The onneted omponents of P̃ are alled the regions of P .
Eah omponent of P \ P (1) ⊂ P̃ is the interior of a unique region. We let

Reg(P ) be the �nite set of all regions of P .
A branh of a strati�ed 2-polyhedron P at a vertex x of P is a germ at x

of an adjaent region. More formally, a branh of P at x is a homotopy lass

of paths [0, 1] → P starting in x and arrying (0, 1] to P \ P (1)
. The number

of branhes of P at x is equal to ard(π−1(x)), where π : ∂P̃ → P (1)
is the

map above. Similarly, a branh of P at an edge e of P is a germ at e of an

adjaent region. Formally, a branh of P at e is the homotopy lass of paths

[0, 1]→ P starting in the interior of e and arrying (0, 1] to P \ P (1)
. There is

an obvious bijetive orrespondene between the branhes of P at e and the

onneted omponents of π−1(interior of e). The set of branhes of P at P is

denoted Pe. This set is �nite and non-empty. The number of elements of Pe

is alled the valene of e.
An orientation of a region r of P indues an orientation for eah edge e

of P adjaent to r in the following way: the orientation of e followed by a

vetor at a point of e direted inside r is the given orientation of r.
An orientation of a strati�ed polyhedron P is an orientation of the surfae

P \ P (1)
. To orient P , one must orient all its regions. An oriented polyhedron

is a strati�ed polyhedron endowed with an orientation.

3.1.3. Simple polyhedra. Let S be the following subset of R3
:

S = {(x1, x2, x3) ∈ R
3 | x3 = 0, or x1 = 0 and x3 > 0, or x2 = 0 and x3 < 0}

that is

S =
PSfrag replaements

x1

x2

x3

.

A point v of a topologial spae is said to be speial if there is a homeomorphism

of S onto a neighborhood of v arrying the origin (0, 0, 0) to v.
A simple polyhedron is an oriented onneted polyhedron P with at least

one speial point suh that eah point of P has a neighborhood homeomorphi

to an open subset of S.
A simple polyhedron P has a anonial strati�ation given by the graph

P (1) = P \ Int(P ) whose verties are the speial points of P . Note that all
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edges of P have valene ≥ 2. In what follows, we endow any simple polyhedron

with this anonial strati�ation.

3.1.4. Standard polyhedra. A standard polyhedron is a simple polyhe-

dron suh that its regions are disks. Any standard polyhedron has 6 branhes

at every vertex, 3 branhes at every edge, and an empty boundary.

3.1.5. Spines of 3-manifolds. A spine of a ompat onneted 3-man-

ifold M is a simple polyhedron P embedded in M suh that M \ P is home-

omorphi to an open 3-ball if ∂M = ∅ or to ∂M × [0, 1) if ∂M 6= ∅. Note

that if P is a spine of a losed onneted 3-manifold M , then P is a spine of

M \ Int(B3), where B3
is a 3-ball embedded in M . A spine of M is standard

if the underlying polyhedron is standard.

A result due to Casler [Ca℄, Matveev [Ma1℄, and Piergallini [Pi℄ asserts

that any ompat onneted 3-manifold has a standard spine.

Let P be a spine of a ompat onneted 3-manifoldM . Any vertex x of P
has a losed ball neighborhood Bx ⊂ M suh that ∆x = P ∩ ∂Bx is a non-

empty graph and P ∩Bx is the one over ∆x with vertex x. The verties of ∆x

are the intersetion points of the 2-sphere ∂Bx with the edges of P inident

to x. The edges of ∆x are the intersetions of ∂Bx with the branhes of P
at x. Sine all edges of P have valene ≥ 2, so do all verties of ∆x. We all

Bx a P -one neighborhood of x and all ∆x ⊂ ∂Bx the link graph of x.

3.1.6. Moves on spines. Let M be a ompat onneted oriented 3-

manifold. We de�ne two loal transformations (moves) on a spine P of M
transforming P into a new spine of M . Eah of these moves modi�es P inside

a losed 3-ball in M .

The move MP(0,2) (also alled lune move) pushes a branh of P at an edge

of P through an edge of P :

MP(0,2)
−→ .

This move inreases the number of verties of P by 2, inreases the number

of edges of P by 4, and inreases the number of regions of P by 2. The new

region reated is a disk. This move keeps the orientations of the regions and,

the new region reated is arbitrarily oriented. The inverse move MP(0,2)

−1
is

allowed only when the orientations of two regions united under this move are

ompatible.
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The move MP(2,3) pushes a branh of P at a vertex of P through another

vertex of P :

MP(2,3)
−→ .

This move inreases the number of verties of P by 1, inreases the number

of edges of P by 2, and inreases the number of regions of P by 1. The new

region reated is a disk. This move keeps the orientations of the regions, and

the new region reated is arbitrarily oriented. The inverse move MP(2,3)

−1

an always be applied.

By Matveev-Piergallini moves or MP -moves on spines of M , we mean

ambient isotopies of spines in M together with the moves MP(0,2), MP(2,3),

and their inverses. Note that all MP-moves transform standard spines into

standard spines.

Theorem 3.1 ([Ma2, Pi℄). Any two standard spines of a ompat on-

neted oriented 3-manifold are related by a �nite sequene of MP-moves.

3.2. Combed 3-manifolds via branhed spines

In this setion, we review the theory of ombed 3-manifolds and their

presentation via branhed spines. For more details, we refer to [Is1, Is2,

BP1, BP2, BP3℄.

3.2.1. Combed 3-manifolds. A ombing on a 3-manifoldM is a vetor

�eld ν onM (that is, a setion ν : M → TM of the tangent bundle ofM) suh

that:

(i) ν is always nonzero;

(ii) ν is tangent to ∂M exatly at the points of a ompat 1-dimensional

submanifold γ ⊂ ∂M ;

(iii) ν is never tangent to γ;
(iv) if ∂M 6= ∅, then the orbits of ν are losed intervals.

This de�nition agrees with that of a onave traversing vetor �eld given

in [BP2, De�nition 4.1.8℄. Note that if M is losed, then a ombing on M is

just a nowhere-zero vetor �eld on M .

A ombed 3-manifold is a pair (M, ν) where M is a ompat oriented on-

neted 3-manifold and ν a ombing on M .

Two ombed 3-manifolds (M, ν) and (M ′, ν ′) are equivalent if there is an

orientation-preserving di�eomorphism φ : M → M ′
suh that the ombings

φ∗ ◦ ν ◦ φ
−1

and ν ′ are homotopi within the lass of ombings on M ′
. Here,

the map φ∗ : TM → TM ′
is indued by φ. We write (M, ν) ∼ (M ′, ν ′). Note

that ∼ is an equivalene relation on the lass of ombed 3-manifolds.
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3.2.2. Branhed polyhedra. Eah edge e of a standard polyhedron P
arries three orientations, eah of them being indued by the orientation of the

branh of P at e as in Setion 3.1.2.

A branhed polyhedron is a standard polyhedron P suh that at any edge

of P , two of the three indued orientations are opposite to the third one.

Branhed polyhedra, an be viewed as the smoothed version of standard

polyhedra. Let P be a branhed polyhedron. Consider an edge e of P :
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e

.

The orientation on P allows to de�ne a tangent plane at every point of P and

we represent this as follows:
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e

.

With this onvention, there are two possible on�gurations for a vertex of P :
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and
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.

3.2.3. Combed 3-manifolds assoiated to branhed polyhedra.

Following [BP2, Setion 2.1℄, to every branhed polyhedron P is assoiated a

ombed 3-manifold (MP , νP ) with boundary suh that:
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(i) P is a spine of MP ;

(ii) the ombing νP is positively transverse to P . This means that νP is

transverse to eah region r of P and the orientation of r together with
the orientation of νP gives the orientation of MP .

The 3-manifoldMP is de�ned as follows. Replae eah region of P (whih is a

disk) by the piee:

.

Replae eah edge of P by the piee:

.

Replae eah vertex of P by one of the following two piees aording to their

possible on�guration (see Setion 3.2.2):

and .

Then the 3-manifoldMP is obtained by gluing these piees along the grey sides

by respeting the smoothing of Setion 3.2.2. The boundary of MP is then the

union of the white sides of the above piees. Note that P is a spine of MP .

The vetor �eld νP is de�ned to be transverse to P as follows:

, ,
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, ,

and is extended to MP as follows:
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MP

MP νP

∂MP

∂MP

∂MP

P

P

P .

Finally, we orient MP so that its orientation is given by the orientation of

any region together with the orientation of νP at this region (suh an orienta-

tion exists sine P is branhed).

3.2.4. Branhed spines of ombed 3-manifolds with boundary. A

branhed spine of a ombed 3-manifold (M, ν) with boundary is a branhed

polyhedron P suh that (MP , νP ) is equivalent to (M, ν) in the sense of Se-

tion 3.2.1.

Theorem 3.2 ([BP3, Theorem 4.3.1℄). Any ombed 3-manifold with bound-

ary has a branhed spine.

3.2.5. Combed 3-manifolds with trivial spherial boundary. We

say that a ombed 3-manifold (M, ν) has trivial spherial boundary if

(i) the boundary ∂M of M is a 2-dimensional sphere;

(ii) the ompat 1-dimensional submanifold of ∂M where ν is tangent (see

Setion 3.2.1) is a irle.

This tangeny irle splits ∂M into two disks. The vetor �eld is positively

transverse to one disk and negatively transverse to the other one.

For example, onsider the 3-ball

B3 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 ≤ 1}.

This is a ompat onneted 3-manifold with boundary the 2-sphere

S2 = ∂B3 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.
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We endow B3
with the orientation indued by the right-hand orientation of R3

.

Consider the vetor �eld νtriv on B3
whih is onstant equal to (0, 0, 1):
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x

y

z

B3

νtriv

.

Then the pair (B3, νtriv) is a ombed 3-manifold with trivial spherial bound-

ary.

Any ombed 3-manifold (M, ν) with trivial spherial boundary gives rise

to a losed ombed 3-manifold

(M̂, ν̂) = (M, ν) ∪f (B
3, νtriv).

Here, the gluing is de�ned by an orientation reversing di�eomorphism f : ∂M →
S2 = ∂B3

preserving the tangeny irle. The following lemma is straightfor-

ward.

Lemma 3.3. (a) Any losed ombed 3-manifold is equivalent to (M̂, ν̂)
for some ombed 3-manifold (M, ν) with trivial spherial boundary.

(b) Let (M, ν) and (M ′, ν ′) be ombed 3-manifolds with trivial spheri-

al boundary. Then (M̂, ν̂) and (M̂ ′, ν̂ ′) are equivalent if and only

if (M, ν) and (M ′, ν ′) are equivalent.

3.2.6. Branhed spines of losed ombed 3-manifolds. By a losed

branhed polyhedron, we mean a branhed polyhedron P suh that its assoi-

ated ombed 3-manifold (MP , νP ) (see Setion 3.2.3) is a ombed 3-manifold

with trivial spherial boundary.

A branhed spine of a losed ombed 3-manifold (M, ν) is a losed branhed

polyhedron P suh that (M̂P , ν̂P ) is equivalent to (M, ν).
The following result is a diret onsequene of Theorem 3.2 and Lemma 3.3(a).

Theorem 3.4. Any losed ombed 3-manifold has a branhed spine.

3.2.7. Moves on branhed spines. Let (M, ν) be a ombed 3-manifold.

We de�ne moves on a branhed spine P of (M, ν) transforming P into a new

branhed spine of (M, ν). These moves are the branhed versions of the moves

on standard spines of Setion 3.1.6. Eah of these moves modi�es P inside a

losed 3-ball in M .

The moves BMP(2,3) are branhed versions of the move MP(2,3). They

are the moves M1, . . . ,M5 depited in Figure 3.1, together with their mirror

images M̃1, . . . , M̃5.
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Figure 3.1. Branhed moves BMP(2,3)

The moves BMP(0,2) are branhed versions of the move MP(0,2). They

are the moves L1, L2, L3 depited in Figure 3.2. Note that these moves are

self-mirror (the mirror image of Li is Li).

By BMP-moves on branhed spines of (M, ν), we mean ambient isotopies

of branhed spines in M together with the moves BMP(0,2), BMP(2,3) and

their inverses.

The following result provides a alulus for ombed 3-manifolds:

Theorem 3.5 ([BP3, Theorem 4.3.2℄). Any two branhed spines of a

ombed 3-manifold are related by a �nite sequene of BMP-moves.
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L1 L2 L3

Figure 3.2. Branhed moves BMP(0,2)

3.3. Combed 3-manifold via o-graphs

The theory of o-graphs has been introdued and developed in [BP2, BP1℄.

The o-graphs enode a partiular lass of standard polyhedra whih is su�ient

to enode all ombed 3-manifolds.

In what follows, we always orient the plane R2
ounterlokwise.

3.3.1. o-graphs. A vertex v of an oriented graph G is said to be of ross-

ing type if:

• v is quadrivalent with 2 inoming half-edges and 2 outgoing half-edges;
• the set Ev of half-edges inident to v is endowed with a yli order;

• there are 2 distinguished half-edges whih are not onseutive (with

respet to the yli order on Ev) and suh that one is inoming and

the other is outgoing.

A vertex of rossing type of an oriented graph G is positive if the dis-

tinguished outgoing half-edge is followed (with respet to the yli order on

half-edges) by an outgoing half-edge. Otherwise, it is said to be negative. In

what follows, we depit a vertex of rossing type by a rossing, the overrossing

strand representing the distinguished half-edges:

Positive:

PSfrag replaements

Negative:

PSfrag replaements

.

Here, the yli order of the set of half-edges is given by the ounterlokwise

orientation of the plane.

Equivalently, a vertex v of a graph G is of rossing type if there is an

embedding of a neighborhood of v into the oriented plane �resembling� to

a rossing of an oriented urve (i.e., a multiple point whih is double and

transverse with a distinguished strand).

An o-graph is a non-empty onneted oriented graph where all verties are

of rossing type. (This notion of an o-graph orresponds to that of a normal

o-graph in [BP2℄). An isomorphism between two o-graphs is an isomorphism

between their underlying oriented graphs whih preserves the rossing types.
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Any o-graph an be represented by a planar diagram obtained by immers-

ing generially the o-graph into the oriented plane. (Here generially means

that the multiple points of the immersion are double transverse and distint

from the image of the verties). For example, the diagram

represents an o-graph with 3 verties and 6 edges.

Two suh diagrams represent isomorphi o-graphs if and only if one an

be obtained from the other by a �nite sequene of isotopies and the following

Reidemeister-type moves:

7→ 7→ 7→

7→ 7→

Here, the orientations (not depited) must agree before and after the moves.

For example, the diagrams

and

represent two non-isomorphi o-graphs with 1 vertex and 2 edges.

3.3.2. From o-graphs to branhed polyhedra. To eah o-graph Γ is

assoiated a branhed polyhedron PΓ de�ned as follows. Replae eah positive

vertex v of Γ with the following portion of a branhed polyhedron :
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7−→
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.
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Replae eah negative vertex of Γ with the following portion of a branhed

polyhedron :
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7−→

PSfrag replaements

.

Replae eah edge of Γ with the following portion of a branhed polyhedron :
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e 7−→
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.

Finally, the branhed polyhedron PΓ is obtained by gluing together this piees

aording to smoothing (i.e., in suh a way to respet the orientations).

3.3.3. Combed 3-manifold assoiated to o-graphs. To any o-graph Γ
is assoiated a ombed 3-manifold (MΓ, νΓ) with non-empty boundary. This

ombed 3-manifold is de�ned by

(MΓ, νΓ) = (MPΓ
, νPΓ

)

where PΓ is the branhed polyhedron assoiated to Γ (see Setion 3.3.2) and

(MPΓ
, νPΓ

) is the ombed 3-manifold assoiated to PΓ (see Setion 3.2.3).

3.3.4. Moves on o-graphs. The loal transformations on o-graphs de-

pited in Figures 3.3 and 3.4 turn any o-graph into another o-graph. In these

�gures, if the orientations of some edges are omitted, then these edges an be

oriented arbitrarily but in a same way before and after the move. By sliding

moves, we mean moves in Figures 3.3 and 3.4 and their inverses together with

isomorphisms of o-graphs.

The following result provides a alulus for ombed 3-manifolds with non-

empty boundary:

Theorem 3.6 ([BP2, Corollary 4.3.5℄). (a) Any ombed 3-manifold with

non-empty boundary is equivalent to (MΓ, νΓ) for some o-graph Γ.
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7→

Figure 3.3. Snake move

7→ 7→

7→ 7→

Figure 3.4. Sliding moves

(b) The ombed 3-manifolds assoiated to two o-graphs are equivalent if

and only if the o-graphs are related by a �nite sequene of sliding

moves.

3.3.5. Closed ombed 3-manifolds via losed o-graphs. In this se-

tion, we onsider a lass of o-graph whih enodes losed ombed 3-manifolds.

By a iruit, we mean an oriented losed immersed plane urve suh that

all its multiple points are double and transverse.

An o-graph Γ is losed if it satis�es the following three onditions:

(i) The number of iruits obtained from Γ by removing all its verties is

exatly one.

(ii) The (trivalent) graph obtained from Γ by applying the rules of Fig-

ure 3.5 is onneted.

(iii) The number of iruits obtained from Γ by applying the rules of Fig-

ure 3.6 is exatly one more than the number of verties of Γ.

For example, the following o-graph:
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7→
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is losed. Indeed, Condition (i) is lear and Conditions (ii) and (iii) are

respetively veri�ed by

and .

The ombed 3-manifold (MΓ, νΓ) assoiated with a losed o-graph Γ has

trivial spherial boundary. Indeed, Condition (i) implies that the Euler hara-

teristi of the boundary ∂MΓ is 2. Condition (ii) implies that ∂MΓ is onneted

and so together with (i) implies that ∂MΓ is homeomorphi to a 2-sphere. Fi-
nally, Condition (iii) implies that the submanifold of ∂MΓ where νΓ is tangent

is a irle. (For details, we refer to [BP2, Setion 5.2℄.)

Consequently, by Setion 3.2.5, to any losed o-graph Γ is assoiated the

losed ombed 3-manifold

(M̂Γ, ν̂Γ) = (MΓ, νΓ) ∪ (B3, νtriv).
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7−→

Figure 3.7. Pontrjagin move

Note that any sliding move (see Setion 3.3.4) transforms a losed o-graph

into a losed o-graph. Combining Theorem 3.6 and Lemma 3.3, we obtain the

following alulus for losed ombed 3-manifolds:

Theorem 3.7 ([BP2, Theorem 1.4.1℄). (a) Any losed ombed 3-ma-

nifold is equivalent to (M̂Γ, ν̂Γ) for some losed o-graph Γ.
(b) The losed ombed 3-manifolds assoiated to two losed o-graphs are

equivalent if and only if the o-graphs are related by a �nite sequene

of sliding moves.

3.3.6. The Pontrjagin move. The loal transformation on o-graphs de-

pited in Figure 3.7 is alled the Pontrjagin move. Note that this move trans-

forms any losed o-graph into another losed o-graph, but their assoiated

losed ombed 3-manifolds may be non-equivalent.

The Pontrjagin move allows to relate all ombings on the same underlying

losed 3-manifold (see [BP2, Theorem 6.3.1℄). More preisely, let Γ and Γ′
be

losed o-graphs. Consider their assoiated losed ombed 3-manifolds (M̂Γ, ν̂Γ)

and (M̂Γ′ , ν̂Γ′). Then the 3-manifolds M̂Γ and M̂Γ′
are homeomorphi if and

only if Γ and Γ′
are related by a �nite sequene of sliding moves and Pontrjagin

moves.

3.3.7. Summary. We summarize the main results of this hapter as fol-

lows:

Theorem (Non-empty boundary ase). There is a one-to-one orrespon-

dene between:

(1) Combed 3-manifolds with non-empty boundary up to equivalene;

(2) Branhed polyhedra up to BMP-moves;

(3) o-graphs up to sliding moves.

Theorem (Closed ase). There is a one-to-one orrespondene between:

(1') Closed ombed 3-manifolds up to equivalene;

(2') Closed branhed polyhedra up to BMP-moves;

(3') Closed o-graphs up to sliding moves.





CHAPTER 4

A state sum invariant of ombed 3-manifolds

Fix, throughout this hapter, a pivotal fusion k-ategory C and a represen-

tative set I of simple objets of C. We derive from this data a salar topologial

invariant of ombed 3-manifolds.

4.1. An invariant of ombed 3-manifolds

In this setion, we onstrut a state sum topologial invariant of ombed

3-manifolds.

4.1.1. The state sum invariant via branhed spines. Let (M, ν) be
a ombed 3-manifold (with or without boundary). Pik a branhed spine P
of (M, ν), see Setions 3.2.4 and 3.2.6. Reall from Setion 3.1.2 the set Reg(P )
of regions of P .

A oloring of P is a map c : Reg(P ) → I. The objet c(s) ∈ I assigned

to s ∈ Reg(P ) is alled the -olor of s. We assoiate a salar |c| ∈ k to eah

oloring c of P as follows.

By de�nition P has at least one vertex and so it has at least one edge

(strati�ed 2-polyhedra have no isolated verties). By an oriented edge of P
we mean an edge of P endowed with an orientation. Eah oriented edge e
of P yields a yli C-set de�ned as follows. The orientations of e and M
determine a positive diretion on a small loop inM enirling e. The resulting
oriented loop determines a yli order on the set Pe of branhes of P at e (see
Setion 3.1.2). To eah branh δ ∈ Pe, we assign the c-olor of the region of P
ontaining δ and a sign equal to + if the orientation of δ indues the one of

e ⊂ ∂δ (that is, the orientation of δ is given by the orientation of e followed

by a vetor at a point of e direted inside δ) and equal to − otherwise. In

this way, Pe beomes a yli C-set and we onsider its multipliity module

Hc(e) = H(Pe). Let

Hc =
⊗

e

Hc(e)

be the unordered tensor produt (see Appendix A) of the k-modules Hc(e)
over all oriented edges e of P . Sine eah k-module Hc(e) is projetive of �nite
type and there are �nitely many oriented edges of P , Appendix A yields a

anonial k-linear isomorphism

H⋆
c ≃

⊗

e

Hc(e)
⋆.

53
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Figure 4.1. The olored graph Γc
x

Next, we assoiate to eah (unoriented) edge e of P a vetor

∗e ∈ Hc(e1)⊗Hc(e2),

where e1 and e2 are the two opposite oriented edges of P orresponding to e.
Reall from Setion 3.2.2 that there is a branh be of P at e whih indues

an orientation on e whih is opposite to the orientations indued by the other

two branhes of P at e. We hoose notation so that e1 is e endowed with the

orientation indued by be. By Setion 2.3.2, the element be ∈ Pe1 determines

a vetor

∗e = ∗
be
Pe1
∈ H(Pe1)⊗H(P op

e1
) = Hc(e1)⊗Hc(e2).

Set

∗c = ⊗e ∗e ∈ Hc,

where ⊗e is the unordered tensor produt over all the (unoriented) edges e
of P .

For a vertex x of P , onsider the link graph ∆x ⊂ ∂Bx where Bx ⊂ M
is a P - one neighborhood of x (see Setion 3.1.5). Here we endow ∂Bx with

the orientation indued by that of M restrited to M \ Int(Bx). Every edge a
of ∆x lies in a region ra of P . We olor a with c(ra) ∈ I and endow a with the

orientation indued by that of ra\Int(Bx). In this way, ∆x beomes a C-olored
graph in ∂Bx denoted by ∆c

x. The ombing ν at x determines a onneted

omponent of ∂Bx \ ∆x. (This follows from the de�nition of the ombing ν
at x, see Setion 3.2.3, and the fat that Bx is a P - one neighborhood of x.)
Pik a point p in this onneted omponent. The image of ∆c

x under the

(orientation-preserving) stereographi projetion ∂Bx \ {p} → R2
with pole p

is a C-olored planar graph denoted by Γc
x. (An example is given in Figure 4.1).

Setion 2.2.4 yields a vetor
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FC(Γ
c
x) ∈ H(Γc

x)
⋆ = Homk(H(Γc

x), k).

Note that the yli C-set assoiated with any vertex v of Γc
x (see Setion 2.2.3)

is anonially isomorphi to the yli C-set Pe, where e = e(v) is the edge

of P ontaining v and oriented away from x. Therefore, there are anonial

isomorphisms

H(Γc
x) ≃

⊗

ex

Hc(ex) and H(Γc
x)

⋆ ≃
⊗

ex

Hc(ex)
⋆

where ex runs over all edges of P inident to x and oriented away from x. (An
edge with both endpoints in x appears in eah of these tensor produt twie

with opposite orientations.) The tensor produt of the previous isomorphisms

over all verties x of P yields a k-linear isomorphism

⊗

x

H(Γc
x)

⋆ ≃
⊗

x

⊗

ex

Hc(ex)
⋆ ≃

⊗

e

Hc(e)
⋆ ≃ H⋆

c

where e runs over all oriented edges of P . The image under this k-linear

isomorphism of the unordered tensor produt

⊗
x FC(Γ

c
x), where x runs over

all verties of P , is a vetor Vc ∈ H
⋆
c . We evaluate Vc on ∗c and set

|c| = Vc(∗c) ∈ k.

Finally, let

dim
l

(c) =
∏

s∈Reg(P )

dim
l

(
c(s)

)

and set

(4.1) IC(M, ν) =
∑

c

diml(c) |c| ∈ k,

where c runs over all olorings of P . Note that the right-hand side of (4.1) is

well de�ned beause there are �nitely many olorings of P (sine both Reg(P )
and I are �nite).

Theorem 4.1. The salar IC(M, ν) is a topologial invariant of (M, ν)
independent of the hoie of P and I.

We will prove Theorem 4.1 in Setion 4.2.

4.1.2. Properties. 1. Let (M, ν) be a ombed 3-manifold with trivial

spherial boundary. Consider the losed ombed 3-manifold (M̂, ν̂) assoiated
to (M, ν) as in Setion 3.2.5. Then

IC(M̂, ν̂) = IC(M, ν).

This follows from the fat that any branhed spine of (M, ν) is a branhed

spine of (M̂, ν̂).
2. By onsidering some examples, we prove in Setion 5.3 that the invari-

ant IC is non-trivial and does depend on the ombing: it may distinguish two

non-homotopi ombings on the same 3-manifold (see Theorem 5.2).
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3. Suppose that C is spherial (see Setion 1.2.8). Then for any ombed 3

-manifold (M, ν), the invariant IC(M, ν) does not depend on ν and

IC(M, ν) = TVC(M),

where TVC is the Turaev-Viro invariant of ompat oriented 3-manifolds de-

�ned using C (in the formulation of [TVi, Setion 13.2.2℄ denoted by ‖ · ‖C).
4. It follows from the de�nitions that for any ombed 3-manifold (M, ν),

IC(−M, ν) = IC⊗op(M, ν)

where −M is M with opposite orientation and C⊗op = (C,⊗op,1).
5. The naturality of the invariant FC of C-olored graphs (see Setion 2.2.6)

implies that

IC′(M, ν) = IC(M, ν)

for any ombed 3-manifold (M, ν) and any pivotal fusion k-ategory C′ equiv-
alent to C. In partiular

ICop(M, ν) = IC⊗op(M, ν) = IC(−M, ν) and ICrev(M, ν) = IC(M, ν),

sine Cop = (Cop,⊗,1) is equivalent to C⊗op
and Crev = (Cop,⊗op,1) is equiva-

lent to C, see Setion 1.4.5.

4.1.3. Computation via o-graphs. In this setion, we provide an algo-

rithm to ompute the invariant IC of Theorem 4.1 starting from the presenta-

tion of ombed 3-manifolds by means of o-graphs (see Setion 3.3).

Let (M, ν) be a ombed 3-manifold. Let Γ be an o-graph suh that (M, ν)

is equivalent to (MΓ, νΓ) if ∂M 6= ∅ (see Setion 3.3.3) or to (M̂Γ, ν̂Γ) if ∂M = ∅
(see Setion 3.3.5).

Denote by Circ(Γ) the set of the iruits obtained from Γ by applying

the rules of Figure 3.6. A oloring of Γ is a map c : Circ(Γ) → I. The

objet c(γ) ∈ I assigned to γ ∈ Circ(Γ) is alled the c-olor of γ. We assoiate

a salar |c| ∈ k to eah oloring c of Γ as follows.

Eah edge e of Γ yields a yli C-set Γe de�ned in the following way. Set

Γe = {1, 2, 3} with yli order 1 < 2 < 3 < 1. There are four types of

edges of Γ, depending on the nature (distinguished/undistinguished, inom-

ing/outgoing) of the two half-edges forming an edge:

PSfrag replaements

.

Reall that the rules of Figure 3.6 assoiate to e three portions of iruits

(eventually oiniding) in Circ(Γ). De�ne fe : Γe → Circ(Γ) aording to the

type of e:
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De�ne εe : Γe → {+,−} by setting εe(1) = εe(2) = + and εe(3) = −. Then

Γe = (Γe, c ◦ fe, εe)

is a yli C-set. Consider the unordered tensor produt of the multipliity

modules assoiated with Γe and Γop
e :

Hc(e) = H(Γe)⊗H
(
Γop
e

)
.

By Setion 2.3.2, the element 3 ∈ Γe determines a vetor

∗e = ∗
3
Γe
∈ H(Γe)⊗H

(
Γop
e

)
= Hc(e).

Set

Hc = ⊗eHc(e) and ∗c = ⊗e ∗e ∈ Hc,

where ⊗e is the unordered tensor produt over all the edges e of Γ.
Next, we assoiate to eah vertex x of Γ a C-olored planar graph Γc

x as

follows. If the vertex x is positive, we assoiate:

PSfrag replaements

x
 

PSfrag replaements

m

j

n

l

ki

7−→ Γc
x =

PSfrag replaements

m

j

n

l

ki

.

If the vertex x is negative, we assoiate:
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Here, the middle pitures represent the portions of iruits assoiated with x
together with their c-olors i, j, k, l,m, n ∈ I. Setion 2.2.4 yields a vetor

FC(Γ
c
x) ∈ H(Γc

x)
⋆ = Homk(H(Γc

x), k).
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Note that the yli C-set assoiated with any vertex v of Γc
x (see Setion 2.2.3)

is anonially isomorphi to the yli C-set Γ
ǫ(e)
e , where e = e(v) is the edge

of Γ ontaining v, ǫ(e) = ∅ if e is oriented away from x, and ǫ(e) = op if e is
oriented towards x. Therefore, there are anonial isomorphisms

H(Γc
x) ≃

⊗

ex

H
(
Γǫ(ex)
ex

)
and H(Γc

x)
⋆ ≃

⊗

ex

H
(
Γǫ(ex)
ex

)⋆

where ex run over all edges of Γ inident to x. The tensor produt of the latter
isomorphisms over all verties x of Γ yields a k-linear isomorphism

⊗

x

H(Γc
x)

⋆ ≃
⊗

x

⊗

ex

H
(
Γǫ(ex)
ex

)⋆
≃

⊗

e

H(Γe)
⋆ ⊗H

(
Γop
e

)⋆
≃

⊗

e

Hc(e)
⋆ ≃ H⋆

c

where e runs over all the edges of Γ. The image under this isomorphism of the

unordered tensor produt

⊗
x FC(Γ

c
x), where x runs over all verties of Γ, is a

vetor Vc ∈ H
⋆
c . Reall the vetor ∗c ∈ Hc. Set

diml(c) =
∏

γ∈Circ(Γ)

diml(c(γ)) ∈ k and |c| = Vc(∗c) ∈ k.

Theorem 4.2. We have:

IC(M, ν) =
∑

c

dim
l

(c) |c|

where c runs aver all olorings of Γ.

We prove Theorem 4.2 in Setion 4.2.

In Setion 5.2, we apply Theorem 4.2 for a partiular pivotal fusion k-

ategory C = Gd
k
(see Theorem 5.1).

4.2. Proof of Theorem 4.1 and Theorem 4.2

Let (M, ν) be a ombed 3-manifold and P be a branhed spine of (M, ν).
Denote the right hand side of (4.1) by IC(P ), that is,

IC(P ) =
∑

c

diml(c) |c|

where c runs over all olorings of P .
In Setion 4.2.1, we prove the invariane of IC(P ) under the appliation of a

BMP(2,3) move to P . In Setion 4.2.2, we prove the invariane of IC(P ) under
the appliation of a BMP(0,2) move to P . Finally, we prove Theorem 4.1 in

Setion 4.2.3 and Theorem 4.2 in Setion 4.2.4.

4.2.1. Invariane under BMP(2,3). The appliation of a BMP(2,3)

move transforms P into another branhed spine P ′
of (M, ν). The move ats

loally on P leaving unhanged all the regions of P exept those involved in

the move. For this reason, we only onsider the ontribution of the verties

involved in the move to the quantity IC(P ). We denote by x, y the two verties
of P and by u, v, z the three verties of P ′

that are involved in the move.
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Pik a oloring c of P . In what follows, we denote by a, b, c, d, f, g, h, i, l ∈ I
the c-olors of the regions of P involved in the moves. The oloring c of P
extends to a oloring c′ of P ′

by adding a olor j ∈ I to the new region reated

by the move.

We now analyze in detail the ontribution given to the state sum by eah

BMP(2,3) move (see Setion 3.2.7).

Invariane under the move M1:

The move P
M1−−→ P ′

is represented by
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ii
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j
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By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

a b

d g

h l
and Γc

y =

PSfrag replaements

b c

fg

il .

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC
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(ii)
= FC
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d f

g
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l




.

Here, the equality (i) follows from the⊗-multipliativity of FC (see Setion 2.2.6)

and from the graphial representation of evaluations (see Setion 2.3.4), and

(ii) from Lemma 2.3().
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Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

d
f

gh

i

j , Γc′

v =

PSfrag replaements

a
b

c

h

i

j , Γc′

z =

PSfrag replaements

a c

d f

lj .

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC
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(ii)
=

∑

j∈I

dim
l

(j) FC
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(iii)
=

∑

j∈I

dim
l

(j) FC
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(iv)
= FC
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b
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.

Here, (i) follows from the ⊗-multipliativity of FC and the graphial rep-

resentation of evaluations, (ii) and (iii) from Lemma 2.3(), and (iv) from

Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invariane under the move M̃1:

The move P
M̃1−−→ P ′

is represented by
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By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

c b

f g

i l
and Γc

y =

PSfrag replaements

b a

dg

hl .

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC
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(ii)
= FC
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.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().

Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

b

c j

h

i

, Γc′

v =

PSfrag replaements

d

jf

g h

i

, Γc′

z =

PSfrag replaements

ac

d

j

f

l .

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC
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(ii)
=

∑

j∈I

dim
l

(j) FC
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(iii)
= FC
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 .

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) Lemma 2.3(), and (iii) from Lemma 2.3(a).
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We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invariane under the move M2:

The move P
M2−−→ P ′

is represented by
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By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

a b

d g

h l
and Γc

y =

PSfrag replaements

b c

fg

i
l .

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC
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.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().
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Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

d
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h
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, Γc′

v =

PSfrag replaements

a
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h
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z =
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l
j .

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC
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(ii)
=

∑

j∈I

dim
l
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(iii)
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Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invariane under the move M̃2:

The move P
M̃2−−→ P ′

is represented by
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By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are
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Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC
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df

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().

Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a
bc

h

i

j

, Γc′

v =

PSfrag replaements

d

f g

h

i

j

, Γc′

z =

PSfrag replaements

ac

df

l j .
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Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

c

d

d

f

f g

h

h

i

i

l j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

b

c

d

f

g

h

h

i

i

l
j




(iii)
= FC




PSfrag replaements

c
b

a

fd

g

i

h

l


 .

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invariane under the move M3:

The move P
M3−−→ P ′

is represented by

PSfrag replaements

a
a

bb cc

dd

gg

hh

ii

ll

j
x

y u
v

z

ff

M3



4.2. PROOF OF THEOREM 4.1 AND THEOREM 4.2 67

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

a b

d

f

g

i
and Γc

y =

PSfrag replaements

b c

f

g

h

l

.

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

a b
b c

d

f

fg

g

h

i l




(ii)
= FC




PSfrag replaements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().

Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

d

f h

l
j

, Γc′

v =

PSfrag replaements

a

b c

i

l

j , Γc′

z =

PSfrag replaements

c

d g

hi
j

.
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Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

d

f

g

h

i l

l

j




(iii)
= FC




PSfrag replaements

a

b

c

d

f

g

h

i

l




.

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invariane under the move M̃3:

The move P
M̃3−−→ P ′

is represented by

PSfrag replaements

a ab bc c

d d

g g

h h

i i

l l

jx y
u

v
z

f f

M̃3

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

bc

f

g

h

l

and Γc
y =

PSfrag replaements

ab

d

f

g

i
.

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

ab

bc

d

f

f g

g

h

i
l




(ii)
= FC




PSfrag replaements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().
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Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

bc

i

l

j , Γc′

v =

PSfrag replaements

a

d

fh

l

j

, Γc′

z =

PSfrag replaements

c

dg

h i
j

.

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements a

a

b

c

d

f

g

h

il

l

j




(iii)
= FC




PSfrag replaements

c

b

a

f

d

g

i

h

l




.

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).
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We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invariane under the move M4:

The move P
M4−−→ P ′

is represented by

PSfrag replaements

a ab bc c

d d

g g
h h

i i

l l

j
u

v
z

f f

M4

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

a b

d

f

g

i
and Γc

y =

PSfrag replaements

b c

f

g

h

l

.

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

a b b c

d

f

fg

g

h

i l
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(ii)
= FC




PSfrag replaements a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().

Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

d

f h

l
j

, Γc′

v =

PSfrag replaements

a

b c

i

l

j , Γc′

z =

PSfrag replaements

c

d g

hi
j

.

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

d

f

g

h

i l

l

j
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(iii)
= FC




PSfrag replaements a

b

c

d

f

g

h

i

l




.

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invariane under the move M̃4:

The move P
M̃4−−→ P ′

is represented by

PSfrag replaements

aa bb cc

dd

g
g

hh

ii

ll

j
x y

u

v
z

ff

M̃4

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

bc

f

g

h

l

and Γc
y =

PSfrag replaements

ab

d

f

g

i
.
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Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

ab bc

df

f

g

gh

il




(ii)
= FC




PSfrag replaements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().

Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

bc

i

l

j
, Γc′

v =

PSfrag replaements

a

d

fh

l

j

, Γc′

z =

PSfrag replaements

c

dg

h
i

j

.

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)
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(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

b

c

d

d

f

g

h

h i

l

j




(iii)
= FC




PSfrag replaements c

b

a

f

d

g

i

h

l




.

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invariane under the move M5:

The move P
M5−−→ P ′

is represented by

PSfrag replaements

a ab bc c

d d
g g

h h

i i

l l

jx
y u

v
z

f f

M5

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

a b

d

f

g

i and Γc
y =

PSfrag replaements

b c

f

g

h

l

.

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

a bb c

d f

f

g

g h

i l




(ii)
= FC




PSfrag replaements

a

b

c
d

f

g
h

i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().
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Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

d

f h

l
j

, Γc′

v =

PSfrag replaements

a

b c

i

l

j

, Γc′

z =

PSfrag replaements

c

d g

h i

j

.

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a
b

c

d

f

g

h

i

l

l

j




(iii)
= FC




PSfrag replaements

a

b

c
d

f

g
h

i

l


 .

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invariane under the move M̃5:

The move P
M̃5−−→ P ′

is represented by

PSfrag replaements

a ab bc c

d dh h

i i

l l

j
x

y u
v

z

f f

M̃5

By Setion 4.1.1, the C-olored planar graphs Γc
x and Γc

y assoiated to the

verties x, y of P are

Γc
x =

PSfrag replaements

bc

f

g

h

l

and Γc
y =

PSfrag replaements

ab

dg

i l .

Consequently, the ontribution to the state sum of the verties x, y and of the

edge e onneting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag replaements

abbc

df g

g

h

i
l

l




(ii)
= FC




PSfrag replaements

a

b

c
d

f

g

h
i

l




.

Here, the equality (i) follows from the ⊗-multipliativity of FC and from the

graphial representation of evaluations, and (ii) from Lemma 2.3().
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Now, the C-olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z assoiated to the verties u, v, z
of P ′

are

Γc′

u =

PSfrag replaements

a

bc

i

l

j

, Γc′

v =

PSfrag replaements

a

d

fh

l

j

, Γc′

z =

PSfrag replaements

c

dg

h
i

j

.

Consequently, the ontribution to the state sum of the verties u, v, z, of the
three edges e1, e2, e3 onneting them, and of the new reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag replaements

a

b

c

c

d

f

g

h

i

i

l

j




(iii)
= FC




PSfrag replaements

c

b

a
f

d

g

i
h

l


 .

Here, (i) follows from the ⊗-multipliativity of FC and the graphial represen-

tation of evaluations, (ii) from Lemma 2.3(), and (iii) from Lemma 2.3(a).

We dedue that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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4.2.2. Invariane under BMP(0,2). The appliation of a BMP(0,2)

move transforms P into another branhed spine P ′
of (M, ν). The move ats

loally on P leaving unhanged all the regions of P exept those involved in

the move. For this reason, we only onsider the ontribution of the verties

involved in the move to the quantity IC(P ). We denote by u, v the two verties

of P ′
that are involved in the move.

Pik a oloring c of P . In what follows, we denote by i, k, l,m, n ∈ I the

c-olors of the regions of P involved in the moves. The oloring c of P extends

to a oloring c′ of P ′
by onsidering two new olors j, k′ ∈ I. The small region

of P ′
reated by the move is olored by j. The region r of P whose c-olor is k

splits into to regions r′ and r′′ of P ′
that we olor by k′ and k, respetively.

We now analyze in detail the ontribution given to the state sum by every

BMP(0,2) move (see Setion 3.2.7).

Invariane under the move L1:

The move P
L1−→ P ′

is represented by

PSfrag replaements

ii

ll

j

m
m nnk

k′r

k

r′

r′′

u

v

L1

By Setion 4.1.1, the ontribution to the state sum of the edges of P rep-

resented in the move L1 is

∑

k∈I

diml(k) FC




PSfrag replaements
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Now, the C-olored planar graphs Γc′

u and Γc′

v assoiated to the verties u
and v of P ′

are

Γc′

u =

PSfrag replaements

i
l
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k′
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n
, Γc′

v =

PSfrag replaements

i

l
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Consequently, the ontribution to the state sum of the verties u and v, of all
theall the edges involved in the move (i.e., the two edges onneting u, v and
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the other four edges represented in move L1), and of the new reated region is

∑

j,k,k′∈I
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(iv)
=

∑

k∈I

dim
l
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Here, (i) and (iv) follow from Lemma 2.3() and the graphial representa-

tion of evaluations (see Setion 2.3.4), (ii) from Lemma 2.3(a), (iii) from

Lemma 2.1 using the fat that HomC(k, k
′) = 0 if k 6= k′, and (v) from the ⊗-

multipliativity of FC (see Setion 2.2.6). We dedue that the ontributions to

the state sum before and after the move L1 are equal.

This proves that IC(P ) = IC(P
′).

Invariane under the move L2:

The move P
L2−→ P ′

is represented by
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By Setion 4.1.1, the ontribution to the state sum of the edges of P rep-

resented in the move L2 is

∑

k∈I

diml(k) FC
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Now, the C-olored planar graphs Γc′

u and Γc′

v assoiated to the verties u
and v of P ′

are

Γc′

u =
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v =
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Consequently, the ontribution to the state sum of the verties u and v, of all
the edges involved in the move (i.e., the two edges onneting u, v and the

other four edges represented in move L2), and of the new reated region is

∑

j,k,k′∈I
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(iii)
=

∑

k∈I

dim
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Here, (i) and (iv) follow from Lemma 2.3() and the graphial representation

of evaluations, (ii) from Lemma 2.3(a), (iii) from Lemma 2.1, and (v) from

the ⊗-multipliativity of FC. We dedue that the ontributions to the state

sum before and after the move L2 are equal.

This proves that IC(P ) = IC(P
′).

Invariane under the move L3:

The move P
L3−→ P ′

is represented by

PSfrag replaements
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By Setion 4.1.1, the ontribution to the state sum of the edges of P rep-

resented in the move L3 is

∑

k∈I

diml(k) FC
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Now, the C-olored planar graphs Γc′

u and Γc′

v assoiated to the verties u
and v of P ′

are

Γc′

u =

PSfrag replaements
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, Γc′

v =
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.

Consequently, the ontribution to the state sum of the verties u and v, of all
the edges involved in the move (i.e., the two edges onneting u, v and the

other four edges represented in move L3), and of the new reated region is

∑

j,k,k′∈I
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(ii)
=

∑

k,k′∈I
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(iii)
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(iv)
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(v)
=

∑

k∈I

diml(k) FC
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Here, (i) and (iv) follow from Lemma 2.3() and the graphial representation

of evaluations, (ii) from Lemma 2.3(a), and (iii) from Lemma 2.1, and (v)
from the ⊗-multipliativity of FC. We dedue that the ontributions to the

state sum before and after the move L3 are equal.

This proves that IC(P ) = IC(P
′).

4.2.3. Proof of Theorem 4.1. Let (M, ν) be a ombed 3-manifold. Let P
be a branhed spine of (M, ν). It follows from the de�nitions that IC(P ) re-
mains unhanged under the appliation of an ambient isotopy in M . Also

IC(P ) remains unhanged under the appliation of a BMP(2,3) move (by Se-

tion 4.2.1) or a BMP(0,2) move (by Setion 4.2.2). Therefore, by Theorem 3.5,
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the salar IC(M, ν) = IC(P ) is well de�ned, i.e., does not depend on the hoie

of P .
If I ′ is another representative set of simple objet of C, then there is a

unique bijetion ϕ : I → I ′ suh that the objets i and ϕ(i) are isomorphi

for all i ∈ I. Consequently, the naturality of FC (see Setion 2.2.6) implies

that IC(M, ν) does not depend on the hoie of the representative set I.
Let (M, ν) and (M ′, ν ′) be two equivalent ombed 3-manifolds (see Se-

tion 3.2.1). There is an orientation-preserving di�eomorphism φ : M → M ′

suh that the ombings ν ′′ = φ∗ ◦ ν ◦ φ
−1

and ν ′ are homotopi within the

lass of ombings on M ′
. Pik a branhed spine P of (M, ν) and a branhed

spine P ′
of (M ′, ν ′). Then P ′′ = φ(P ) is a branhed spine of (M ′, ν ′′). Clearly

IC(P ) = IC(P
′′). Also, sine ν ′′ and ν ′ are homotopi within the lass of omb-

ings onM ′
, it follows from the de�nition of the state sum that IC(P

′′) = IC(P
′).

Consequently,

IC(M, ν) = IC(P ) = IC(P
′′) = IC(P

′) = IC(M
′, ν ′).

4.2.4. Proof of Theorem 4.2. It follows from Setions 3.3.2 and 4.1.3

that there are

• a bijetion between the set of verties of the o-graph Γ and the set of

verties of the branhed polyhedron PΓ assoiated to Γ;
• a bijetion between the set of edges of Γ and the set of edges of PΓ;

• a bijetion between the set Circ(Γ) and the set of regions of PΓ.

By pre-omposing with the latter bijetion, any oloring c of Γ indues a

oloring c̃ of PΓ. Clearly diml(c) = diml(c̃). By de�nition, for any vertex x
of Γ, the assoiated graph Γc

x (see Setion 4.1.3) is equal to the graph Γc̃
x̃

assoiated to the vertex x̃ of PΓ orresponding to x (see Setion 4.1.1). Also,

the ontration vetor ∗c provided by Setion 4.1.3 is equal to the ontration

vetor ∗c̃ provided by Setion 4.1.1. It follows that |c| = |c̃|. Now, the above

map c 7→ c̃ is a bijetion between the set of olorings of Γ and the set of

olorings of PΓ. Consequently, we dedue that

∑

c

dim
l

(c) |c| =
∑

c

diml(c̃) |c̃| = IC(PΓ) = IC(M, ν),

where c runs over all olorings of Γ.





CHAPTER 5

A partiular ase

In this hapter, we onsider a pivotal fusion ategory Gd
k
assoiated with a

harater d of a �nite group G and study in detail the invariant IGd
k

(M, ν) of
ombed 3-manifolds de�ned with this ategory. In partiular, we prove that

this invariant is non-trivial and orresponds to the evaluation by the harater d
on the Euler lass of the real vetor bundle of rank 2 assoiated to ν.

Throughout this hapter, G is a �nite group and d is a harater of G over

the (non-zero) ommutative ring k, that is, a group homomorphism from G to

the multipliative group k∗
of k.

5.1. The pivotal fusion ategory Gd
k

In this setion, we de�ne a pivotal fusion k-ategory Gd
k
as follows. The

objets of Gd
k
are the elements of G. By de�nition,

EndGd
k

(g) = k and HomGd
k

(h, l) = {0} ⊂ k

for all g ∈ G and distint h, l ∈ G. The omposition of morphisms in Gd
k
is

indued by multipliation in k. The identity of an objet g ∈ G is idg = 1k.
The ategory Gd

k
is strit monoidal with monoidal produt de�ned by

g ⊗ h = gh and λ⊗ µ = λµ

for all g, h ∈ G and all morphisms λ, µ in C (whih are elements of k). The

unit objet of Gd
k
is the unit element 1 ∈ G.

The monoidal ategory Gd
k
is pivotal with pivotal duality

{(g∗ = g−1, evg = 1k, ẽvg = d(g)−1)}g∈G.

More preisely,

evg = 1k ∈ k = HomGd
k

(g−1 ⊗ g, 1),

ẽvg = d(g)−1 ∈ k = HomGd
k

(g ⊗ g−1, 1).

The orresponding oevaluation morphisms are omputed by

coevg = 1k ∈ k = HomGd
k

(1, g ⊗ g−1),

c̃oevg = d(g) ∈ k = HomGd
k

(1, g−1 ⊗ g).

Note that the dual funtor of Gd
k
ats as the inversion on objets and as the

identity on morphisms. By de�nition, the dimensions of an objet g ∈ G are

omputed by

dim
l

(g) = d(g) ∈ k and dim
r

(g) = d(g)−1 ∈ k.

89
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Consequently, Gd
k
is spherial if and only if d(g)2 = 1k for all g ∈ G.

We endow Gd
k
with a struture of monoidal k-ategory de�ned by provid-

ing eah Hom-set (whih is either k or 0) with the left k-module struture

given by multipliation. The pivotal k-ategory Gd
k
is then fusion with G as a

representative set of simple objets.

5.2. A diret omputation of IGd
k

Let (M, ν) be a ombed 3-manifold. Let Γ be an o-graph suh that (M, ν)

is equivalent to (MΓ, νΓ) if ∂M 6= ∅ (see Setion 3.3.3) or to (M̂Γ, ν̂Γ) if ∂M = ∅
(see Setion 3.3.5).

Reall from Setion 4.1.3 that a oloring of Γ is a map from the set Circ(Γ)
of the iruits obtained from Γ by applying the rules of Figure 3.6 to the set G.
We say that a oloring c of Γ is admissible if

c
(
fe(3)

)
= c

(
fe(1)

)
c
(
fe(2)

)
∈ G

for all edge e of Γ, where the map fe : Γe = {1, 2, 3} → Circ(Γ) is de�ned in

Setion 4.1.3.

Let c be an admissible oloring of Γ. For γ ∈ Circ(Γ), set

dc(γ) = d(c(γ)).

We assoiate to a vertex x of Γ a salar κc(x) de�ned as follows. If x is positive,

then

PSfrag replaements

x
 

PSfrag replaements

m

j

n

l

ki

7→ κc(x) = d(k)−1d(m)−1d(n)−1.

If x is negative, then

PSfrag replaements

x
 

PSfrag replaements

m

j

n

l

ki

7→ κc(x) = d(i)−1d(m)−1d(n)−1.

Here, the middle pitures represent the portions of iruits assoiated with x
together with their c-olors i, j, k, l,m, n ∈ I.

We assoiate to an edge e of Γ a salar θc(e) de�ned as follows. Reall from

the de�nition of the map fe that to e is assoiated three portions of iruits

(eventually oiniding) in Circ(Γ). The rightmost portion is a portion of the

iruit fe(3) ∈ Circ(Γ). Set

θc(e) = d
(
c
(
fe(3)

))
.

In the next theorem, we ompute the invariant IGd
k

(M, ν) of (M, ν) derived

from Gd
k
using the salars dc(γ), κc(x), and θc(e) de�ned above.
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Theorem 5.1. We have:

IGd
k

(M, ν) =
∑

c

(∏

γ

dc(γ)
)(∏

x

κc(x)
)(∏

e

θc(e)
)
,

where c runs over all admissible olorings of Γ, γ runs over all iruits in

Circ(Γ), x runs over all verties of Γ, and e runs over all edges of Γ.

Proof. By Theorem 4.2, we have that

IGd
k

(M, ν) =
∑

c

diml(c) |c|

where c runs over all olorings of Γ. Sine

diml(c) =
∏

γ∈Circ(Γ)

dc(γ),

it su�es to prove that if c is a non-admissible oloring of Γ, then |c| = 0, and
that if c is an admissible oloring of Γ, then

(5.1) |c| =
(∏

x

κc(x)
)(∏

e

θc(e)
)

where x runs over all verties of Γ and e runs over all edges of Γ. Fix a

oloring c of Γ.
Reall from Setion 4.1.3 the yli Gd

k
-set Γe = ({1, 2, 3}, c ◦ fe, εe) assoi-

ated to an edge e of Γ. It follows from the de�nitions that

H(Γe) ≃ HomGd
k

(
1, c

(
fe(1)

)
c
(
fe(2)

)
c
(
fe(3)

)−1
)

and so

Hc(e) = H(Γe)⊗H
(
Γop
e

)
≃

{
k if c

(
fe(1)

)
c
(
fe(2)

)
= c

(
fe(3)

)
,

0 if c
(
fe(1)

)
c
(
fe(2)

)
6= c

(
fe(3)

)
.

Therefore

Hc =
⊗

e

Hc(e) ≃

{
k if c is admissible,

0 otherwise.

Consequently, if c is not admissible, then |c| = 0.
Assume that c is admissible. Let x be a vertex of Γ. Reall from Se-

tion 4.1.3 the Gd
k
-olored planar graph Γc

x assoiated to x. Then

H(Γc
x) = H(Γǫ(e1)

e1
)⊗H(Γǫ(e2)

e2
)⊗H(Γǫ(e3)

e3
)⊗H(Γǫ(e4)

e4
) ≃ k

⊗4,

where e1, . . . , e4 are the edges inident to x. Therefore the ontribution of x
to |c| is

FGd
k

(Γc
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k) ∈ H(Γc

x)
⋆ ≃ k.
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If x is positive, then

Γc
x =

PSfrag replaements

m

j

n

l

ki

,

where i, j, k, l,m, n ∈ I are c-olors of the iruits assoiated with x and so

FGd
k

(Γc
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k)

(i)
=

PSfrag replaements

i

j

kl

m n

1k

1k

1k

1k

(ii)
= d(k)−1d(m)−1d(n)−1 (iii)

= κc(x).

Here, (i) follows from the de�nition of FGd
k

, (ii) from the de�nition of the

pivotal duality of Gd
k
, and (iii) from the de�nition of κc(x). If x is negative,

then

Γc
x =

PSfrag replaements

m

j

n

l

ki

,
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where i, j, k, l,m, n ∈ I are c-olors of the iruits assoiated with x and so

FC(Γ
c
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k)

(i)
=

PSfrag replaements

i

j

kl

m n

1k

1k

1k

1k

(ii)
= d(k)−1d(j)−1d(m)−1d(n)−1 (iii)

= d(i)−1d(m)−1d(n)−1 (iv)
= κc(x).

Here, (i) follows from the de�nition of FGd
k

, (ii) from the de�nition of the piv-

otal duality of Gd
k
, (iii) from the admissibility of c, and (iv) from the de�nition

of κc(x).
Reall from Setion 4.1.3 that the ontration vetor assoiated to an edge e

of Γ is

∗e = ∗
3
Γe
∈ H(Γe)⊗H

(
Γop
e

)
= Hc(e) ≃ k.

It is omputed by

∗e
(i)
=

PSfrag replaements

g g
h hk k

(ii)
= d(g)d(h)

(iii)
= d(k)

(iv)
= θc(e),

where g = c
(
fe(1)

)
, h = c

(
fe(2)

)
, and k = c

(
fe(3)

)
. Here, (i) follows from

Lemma 2.2, (ii) from the de�nition of the pivotal duality of Gd
k
, (iii) from the

admissibility of c, and (iv) from the de�nition of θc(e).
Consequently, sine |c| is the evaluation of ∗c = ⊗e∗e, where e runs over all

edges of Γ, by
⊗

x FC(Γ
c
x), where x runs over all verties of Γ, we obtain that

the equality (5.1) is satis�ed. �
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5.3. Non-triviality of IGd
k

Consider the following two o-graphs:

Γ =

PSfrag replaements

e1 e2

e3
e4

e5
e6

e7

e8
e9

e10

x1

x3

x5

x2

x4

Γ′ =

PSfrag replaements

e′1

e′2

e′3

e′4

e′5

e′6

e′7

e′8
e′9

e′10

e′11

e′12

e′13

e′14

x′1

x′2

x′3

x′4

x′5

x′6 x′7

.

The o-graphs Γ and Γ′
are losed and so enode losed ombed 3-manifolds

(M, ν) and (M ′, ν ′), respetively (see Setion 3.3.5).

Theorem 5.2. (a) The 3-manifolds M and M ′
are homeomorphi.

(b) The ombed 3-manifolds (M, ν) and (M ′, ν ′) are not equivalent.

() We have:

IGd
k

(M, ν) =
∑

g∈G

d(g)2 and IGd
k

(M ′, ν ′) = |G| 1k.

(d) There are examples of a �nite group G and of a harater d of G suh

that IGd
k

(M, ν) 6= IGd
k

(M ′, ν ′).

Note that the parts (a),(b),(d) of Theorem 5.2 implies that the invariant IC
of Theorem 4.1 is non-trivial and does depend on the ombing: it may distin-

guish two non-homotopi ombings on the same 3-manifold.

Proof. Part (a) follows from Setion 3.3.6 sine Γ′
is obtained from Γ by

applying a Pontrjagin move.

Let us prove part (). We ompute IGd
k

(M, ν) by using its expression given

by Theorem 5.1. Let c be an admissible oloring of Γ. There are 6 iruits
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γ1, . . . , γ6 obtained from Γ by applying the rules of Figure 3.6:

PSfrag replaements

i

j

k n

m t

.

Here, the c-olors of the iruits are denoted as follows:

i = c(γ1) red, j = c(γ2) green,

k = c(γ3) blue, m = c(γ4) blak,

n = c(γ5) grey, t = c(γ6) pink.

The salars assoiated to the verties x1, . . . , x5 of Γ are:

κc(x1) = d(j)−1d(m)−1d(i)−1, κc(x2) = d(i)−1d(t)−1d(j)−1,

κc(x3) = d(j)−3, κc(x4) = d(i)−1d(k)−1d(j)−1,

κc(x5) = d(j)−1d(i)−1d(n)−1.

The salars assoiated to the edges e1, . . . , e10 are:

θc(e1) = d(m), θc(e2) = d(t), θc(e3) = d(j), θc(e4) = d(j),

θc(e5) = d(j), θc(e6) = d(j), θc(e7) = d(k), θc(e8) = d(i),

θc(e9) = d(n), θc(e10) = d(i).

The salars assoiated to the iruits γ1, . . . , γ6 are:

dc(γ1) = d(i), dc(γ2) = d(j), dc(γ3) = d(k),

dc(γ4) = d(m), dc(γ5) = d(n), dc(γ6) = d(t).

Now, the admissibility of c imposes onditions on the olors, one for eah of

the 10 edges of Γ:

e1  m = ji, e2  t = ij, e3  j = ji, e4  j = ij,

e5  j = ij, e6  j = ji, e7  k = ij, e8  i = i2,

e9  n = ji, e10  i = i2,

that is,

i = 1 and j = k = m = n = t.
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Therefore

IGd
k

(M, ν) =
∑

c

6∏

q=1

dc(γq)

5∏

r=1

κc(xr)

10∏

s=1

θc(es)

=
∑

i,j,k,m,n,t∈G

δi,1δj,kδj,mδj,nδj,t d(i)
−1d(j)−2d(k)d(m)d(n)d(t) =

∑

j∈G

d(j)2.

We ompute similarly IGd
k

(M ′, ν ′). Let c be an admissible oloring of Γ′
.

There are 8 iruits γ′1, . . . , γ
′
8 obtained from Γ′

by applying the rules of Fig-

ure 3.6:

PSfrag replaements

i

j

k

n

m

t

u v

.

Here, the c-olors of the iruits are denoted as follows:

i = c(γ′1) red, j = c(γ′2) green,

k = = c(γ′3) pink, m = c(γ′4) blak,

n = c(γ′5) blue, t = c(γ′6) yellow,

u = c(γ′7) grey, v = c(γ′8) light blue.

The salars assoiated to the x′1, . . . , x
′
7 are:

κc(x
′
1) = d(i)−1d(u)−1d(n)−1, κc(x

′
2) = d(i)−1d(j)−1d(m)−1,

κc(x
′
3) = d(m)−1d(j)−1d(k)−1, κc(x

′
4) = d(i)−1d(j)−2,

κc(x
′
5) = d(i)−1d(k)−1d(v)−1, κc(x

′
6) = d(i)−2d(m)−1,

κc(x
′
7) = d(n)−1d(t)−1d(i)−1.
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The salars assoiated to the edges e′1, . . . , e
′
14 are:

θc(e
′
1) = d(t), θc(e

′
2) = d(i), θc(e

′
3) = d(i), θc(e

′
4) = d(m),

θc(e
′
5) = d(v), θc(e

′
6) = d(i), θc(e

′
7) = d(k), θc(e

′
8) = d(j),

θc(e
′
9) = d(j), θc(e

′
10) = d(m), θc(e

′
11) = d(j), θc(e

′
12) = d(i),

θc(e
′
13) = d(u), θc(e

′
14) = d(n).

The salars assoiated to the iruits γ′1, . . . , γ
′
8 are:

dc(γ
′
1) = d(i), dc(γ

′
2) = d(j), dc(γ

′
3) = d(k),

dc(γ
′
4) = d(m), dc(γ

′
5) = d(n), dc(γ

′
6) = d(t),

dc(γ
′
7) = d(u), dc(γ

′
8) = d(v).

Now, the admissibility of c imposes onditions on the olors, one for eah of

the 14 edges of Γ:

e′1  t = ni, e′2  i = ni, e′3  i = ji, e′4  m = ij,

e′5  v = ik, e′6  i = nm, e′7  k = jk, e′8  j = ik,

e′9  j = mk, e′10  m = ij, e′11  j = nj, e′12  i = in,

e′13  u = in, e′14  n = n2,

that is,

i = m = t = u, j = n = v = 1, and k = i−1.

Therefore

IGd
k

(M ′, ν ′) =
∑

c

8∏

q=1

dc(γq)
7∏

r=1

κc(xr)
14∏

s=1

θc(es)

=
∑

i,j,k,m,n,t,u,v∈G

δi,mδi,tδi,uδj,1δn,1δv,1δk,i−1 d(i)−2d(t)d(u)d(v)

=
∑

i∈G

1k = |G| 1k.

Let us prove Part (d). Consider the yli group G = Z/3Z and the

harater d : Z/3Z→ C∗
de�ned by k 7→ exp(2iπk/3). By Part (b), we have:

IC(M, ν) = d
(
0
)2

+ d
(
1
)2

+ d
(
2
)2

= 1 + exp(4iπ/3) + exp(2iπ/3) = 0

and

IC(M
′, ν ′) = |Z/3Z| 1C = 3 6= 0.

Finally, Part (b) follows from part (d) and the fat that IGd
k

is an invariant

of ombed 3-manifolds. �

5.4. An interpretation of IGd
k

In this setion, we give an interpretation (in terms of lassial topologial

invariants) of the state sum invariant IGd
k

de�ned with the ategory Gd
k
.

Throughout this setion, we �x a losed ombed 3-manifold (M, ν).
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5.4.1. The Euler lass of a ombing. The ombing ν : M → TM is

a nowhere zero vetor �eld on the (losed oriented onneted) 3-manifold M .

Therefore ν generates a vetor sub-bundle Lν → M of rank 1 of the tangent

bundle TM →M . Then the quotient bundle

F ν = TM/Lν →M

is a vetor bundle on M of rank 2. By de�nition, for any x ∈M ,

F ν
x = TxM/Lν

x = TxM/Rνx.

The Euler lass of ν is the Euler lass of the vetor bundle F ν
:

Eν = e(F ν) ∈ H2(M ;Z).

Reall that this lass is de�ned as follows (e.g., see [Ha, Chapter 4℄). Con-

sider a generi setion s of F ν
. Then s−1(0) is a losed submanifold of M of

dimension 3-2=1. Its homology [s−1(0)] ∈ H1(M,Z) does not depend on the

hoie of s. The image of this lass under the Poinaré duality isomorphism

H1(M,Z) ≃ H2(M ;Z) is the Euler lass e(F ν) ∈ H2(M ;Z) of F ν
.

5.4.2. Computation of the Euler lass from losed o-graphs. Let Γ

be a losed o-graph suh that (M, ν) is equivalent to (M̂Γ, ν̂Γ) (see Setion 3.3.5).

In this setion, we ompute the Euler lass Eν of ν from Γ.
The branhed polyhedron P = PΓ assoiated to Γ (see Setion 3.3.2) is a

branhed spine of (M, ν). Reall that there is a bijetion between the set of

edges of Γ and the set of edges of P . Let e be an edge of P . Then e inherits

an orientation from its orresponding edge of Γ. The orientations of e and M
determine a positive diretion on a small loop inM enirling e. The resulting
oriented loop determines a yli order on the set {δe, δe−, δ

e
+} of branhes of P

at e. We hoose notation so that this yli order is δe < δe− < δe+ < δe

and the orientation of e oinide with that indued by δe− and δe+. Denote

by ∆e,∆e
−,∆

e
+ the regions of P (eventually oiniding) ontaining δe, δe−, δ

e
+

respetively:

PSfrag replaements

∆e

∆e
+

∆e
−

e

1
23
M

.

Lemma 5.3 ([BP2, Lemma 10.1.1℄). H2(P ;Z) is the Z-module generated

by the regions ∆ of P subjet to the relations

∆e = ∆e
+ +∆e

−,

as e runs over the edges of P .
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Reall that there is a bijetion between the set VΓ of verties of Γ and the

set of verties of P . Reall that the set Circ(Γ) of iruits obtained from Γ by

applying the rules of Figure 3.6 is in bijetion with the set Reg(P ) of regions
of P . Assoiate to any vertex x of Γ the following ohomology lass:

λ(x) = ∆x
1 +∆x

2 +∆x
3 ∈ H

2(P ;Z).

Here, ∆x
1 ,∆

x
2 ,∆

x
3 are regions of P orresponding to three portions of iruits

in Circ(Γ) indued by x when applying the rule of Figure 3.6.

If x is positive, then:

PSfrag replaements

x
 

PSfrag replaements

∆x
2 ∆x

3

∆x
1

.

If x is negative, then:

PSfrag replaements

x
 

PSfrag replaements

∆x
2 ∆x

3

∆x
1

.

Denote by EΓ the set of edges of Γ (whih is in bijetion with the set of edges

of P ).

Lemma 5.4. The Euler lass Eν of ν is the image of

µΓ =
∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e ∈ H2(P ;Z)

under the isomorphism H2(P ;Z) ≃ H2(M ;Z) indued by the inlusion of P
in M .

Proof. Sine P is branhed, it may be provided with a C1
-struture (see

Setion 3.2.2). The Euler lass is the image of a lass µΓ ∈ H
2(P ;Z) under

the isomorphism H2(P ;Z) ≃ H2(M ;Z) indued by the inlusion of P in M .

The lass µΓ is just the obstrution to the existene of a nowhere-zero tangent

vetor �eld on P . For eah region ∆ of P , remove the interior of a disk

embedded in ∆. The result is a regular neighborhood N of the verties and

edges of P . The boundary of N is the disjoint union of the irles bounding

the disks. Following [BP2, Propositin 7.1.1℄, onstrut a nowhere-zero tangent

vetor �eld near on N using the following rules:

.
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The red points represent the points where the vetor �eld is tangent to the

irles bounding the removed disks. For a region ∆ of P , let n∆ be the number

of red dots in ∆. By onstrution, the red points in ∆ split the irle bounding

the removed disk in ∆ into segments on whih the �eld points alternatively

inside and outside the disk. Thus n∆ is even. If n∆ = 0, then we an extend

the vetor �eld on ∆ with a zero of index 1. If n∆ > 0, then we an extend

the vetor �eld on ∆ with

n∆

2
− 1 zeros of index -1. Consequently,

(5.2) µΓ =
∑

∆∈Reg(P )

(
1−

n∆

2

)
∆ ∈ H2(P ;Z).

Let x be a vertex of Γ. Sine x is of rossing type (see Setion 3.3), it has

two inoming half-edges hin1 , h
in
2 and two outgoing half-edges hout1 , hout2 . We

hoose notation so that the distinguished half-edges are hin1 and hout1 . Denote

the orresponding edges of Γ by ex,in1 , ex,in2 , ex,out1 , ex,out2 . Sine the edges of Γ
are oriented, we have:

ex,in1 6= ex,in2 and ex,out1 6= ex,out2 .

Denote by Ax
1 , A

x
2 , A

x
3 , A

x
4, A

x
5 , A

x
6 the regions of P orresponding to the portions

of iruits in Circ(Γ) indued by x when applying the rule of Figure 3.6. We

hoose notation aording to the sign of x. If x is positive, then:

PSfrag replaements
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ex,out2
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If x is negative, then:

PSfrag replaements
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2
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1
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4
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Sine any edge is outgoing from a unique vertex, sine there are exatly two

half-edges outgoing from a vertex, and sine ex,out1 6= ex,out2 , we have:

∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,out
1 + ∆e

x,out
2

)
.

Similarly, ∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,in
1 + ∆e

x,in
2

)
.

Consequently,

2
∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,out
1 + ∆e

x,out
2 + ∆e

x,in
1 + ∆e

x,in
2

)
.
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Now, if x is positive, then

∆e
x,out
1 = Ax

3 , ∆e
x,out
2 = Ax

5 , ∆e
x,in
1 = Ax

1 , ∆e
x,in
2 = Ax

3 ,

if x is negative, then

∆e
x,out
1 = Ax

1 , ∆e
x,out
2 = Ax

3 , ∆e
x,in
1 = Ax

3 , ∆e
x,in
2 = Ax

5 .

Therefore

2
∑

e∈EΓ

∆e =
∑

x∈VΓ

(
Ax

1 + 2Ax
3 + Ax

5

)
.

By de�nition, for any vertex x of Γ,

λ(x) = Ax
1 + Ax

3 + Ax
5 .

Sine n∆ is the number of red dots in ∆, we have:

∑

∆∈Reg(P )

n∆ ∆ =
∑

x∈VΓ

(
Ax

1 + Ax
5

)
.

Consequently,

−2
∑

x∈VΓ

λ(x) + 2
∑

e∈EΓ

∆e = −
∑

x∈VΓ

(
Ax

1 + Ax
5

)
= −

∑

∆∈Reg(P )

n∆∆.

Using the expression (5.2), we onlude that

µΓ =
∑

∆∈Reg(P )

(
1−

n∆

2

)
∆ =

∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e. �

5.4.3. Interpretation of IGd
k

. Let BG be the (pointed) lassifying spae

of the group G. The harater d : G→ k∗
represents an element

[d] ∈ H1(G; k∗) ∼= H1(BG; k∗).

Pik a point ∗ ∈M . Denote by Hom(π1(M, ∗), G) the set of group homomor-

phisms from the fundamental group π1(M, ∗) to G. Any f ∈ Hom(π1(M, ∗), G)

indues a pointed map f̃ : M → BG and so a homomorphism

f̃ ∗ : H1(BG; k∗)→ H1(M ; k∗).

Consider the pairing

〈·, ·〉 : H1(M ; k∗)×H2(M ;Z)→ k

indued by the Poinaré duality isomorphism H2(M ;Z) ≃ H1(M ;Z) and the

evaluation pairing H1(M ; k∗)×H1(M ;Z)→ k.

Theorem 5.5. We have:

IGd
k

(M, ν) =
∑

f∈Hom(π1(M,∗),G)

〈f̃ ∗([d]), Eν〉,

where Eν is the Euler lass of the ombing ν.
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Proof. Let Γ be a losed o-graph suh that (M, ν) is equivalent to (M̂Γ, ν̂Γ)
(see Setion 3.3.5). Let P = PΓ be the branhed polyhedron assoiated to Γ.
The setM \P is homeomorphi to an open 3-ball. We may assume that ∗ ∈M
is the enter of this ball. For any region ∆ of P , pik a loop γ∆ in M based

in ∗ whih is positively transverse to ∆. The fundamental group π1(M, ∗) is
generated by the homotopy lasses [γ∆] with ∆ ∈ Reg(P ). The only relations

are [γe] = 1 with e an edge of P , where γe = γ∆e
−
γ∆e

+
(γ∆e)−1

:

PSfrag replaements

γe

∗

∆e

∆e
+
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−

e

1
23
M
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Consequently,

π1(M, ∗) =
〈
[γ∆], ∆ region of P

∣∣∣ [γ∆e ] = [γ∆e
−
][γ∆e

+
], e edge of P

〉
.

Thus any f ∈ Hom(π1(M, ∗), G) indues an admissible oloring cf of Γ de�ned

by

cf(∆) = f([γ∆]) ∈ G

for all region ∆ of P (through the obvious bijetion between Circ(Γ) and

Reg(P )). Also the assignment f 7→ cf is bijetive.

Let f ∈ Hom(π1(M, ∗), G) and denote by c = cf its assoiated admissible

oloring of Γ. By Theorem 5.1, it su�es to prove that

(5.3) 〈f̃ ∗([d]), Eν〉 =
∏

∆∈Reg(P )

dc(∆)
∏

x∈VΓ

κc(x)
∏

e∈EΓ

θc(e),

where VΓ is the set of verties of Γ and EΓ is the set of edges of Γ. Reall the
presentation of H2(P ;Z) given by Lemma 5.3 and de�ne a group homomor-

phism

ϕc : H
2(P ;Z)→ k

∗

by setting ϕc(∆) = d(c(∆)) for all ∆ ∈ Reg(P ). By Lemma 5.4, the Euler

lass Eν is the image of

µΓ =
∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e ∈ H2(P ;Z)
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(with the notation of Setion 5.4.2) under the isomorphismH2(P ;Z) ≃ H2(M ;Z)
indued by the inlusion of P in M . Then, we have:

〈f̃ ∗([d]), Eν〉 = ϕc(µΓ) =
∏

∆∈Reg(P )

ϕc(∆)
∏

x∈VΓ

ϕc(λ(x))
−1

∏

e∈EΓ

ϕc(∆
e).

Now it follows from the de�nitions that

ϕc(∆) = dc(∆), ϕc(λ(x))
−1 = κc(x), ϕc(∆

e) = θc(e)

for all regions ∆ of P , all verties x of Γ, and all edges e of Γ. Therefore (5.3)

holds. �

5.4.4. Remark. Reall from Setion 4.1.2 that if the pivotal fusion k-

ategory Gd
k
is spherial, then IGd

k

(M, ν) does not depend on ν. This an be

reovered from Theorem 5.5 as follows. It is well-known (see for example [Tu℄)

that the Euler lass Eν is even, that is, Eν = 2Dν with Dν ∈ H2(M ;Z).
Therefore, for any f ∈ Hom(π1(M, ∗), G),

〈f̃ ∗([d]), Eν〉 = 〈f̃
∗([d2]), Dν〉.

Consequently, if Gd
k
is spherial, or equivalently if d(g)2 = 1k for all g ∈ G (see

Setion 5.1), then 〈f̃ ∗([d]), Eν〉 = 1 and Theorem 5.5 gives that

IGd
k

(M, ν) = |Hom(π1(M, ∗), G)| 1k.

In partiular, IGd
k

(M, ν) does not depend on ν.





APPENDIX A

Unordered tensor produts of modules

By a module we mean a left module over the ommutative ring k. Given

a �nite family E of modules, we de�ne the unordered tensor produt ⊗M∈EM
as follows. Let n = #E be the number of elements of E, and let S = S(E)
be the set of bijetions {1, . . . , n} → E. For any bijetion σ ∈ S, onsider the
module

Eσ = σ(1)⊗k · · · ⊗k σ(n).

For σ, µ ∈ S, let pσ,µ : Eσ → Eµ be the k-linear isomorphism indued by the

permutations of modules: given any vetors mi ∈ σ(i) with i = 1, . . . , n,

pσ,µ(m1 ⊗k · · · ⊗k mn) = mσ−1µ(1) ⊗k · · · ⊗k mσ−1µ(n).

It follows from the de�nitions that for arbitrary σ, µ, ν ∈ S,

pµ,νpσ,µ = pσ,ν : Eσ → Eν and pσ,σ = idEσ
.

The unordered tensor produt of the modules M ∈ E is the projetive limit of

the system (Eσ, pσ,µ)σ,µ∈S :

⊗M∈EM = lim
←−

Eσ.

This is a module (over k) equipped with an isomorphism ⊗M∈EM ∼= Eσ for

eah σ ∈ S. The latter isomorphisms are alled the one isomorphisms. They

ommute with pσ,µ for all σ, µ ∈ S. If all modules M ∈ E are projetive of

�nite type, then so is ⊗M∈EM and there is a anonial isomorphism

(
⊗M∈EM

)⋆
≃ ⊗M∈EM

⋆.

The unordered tensor produt of an empty set of modules is the ground ring k.

Given a bijetion ϕ : E → F between two �nite families of modules, an

arbitrary family {fM : M → ϕ(M)}M∈E of k-linear homomorphisms indues a

k-linear homomorphism

⊗M∈EfM : ⊗M∈E M → ⊗N∈FN.

It is uniquely determined by the property that for all σ ∈ S(E), the following
diagram ommutes:

⊗M∈EM ⊗N∈FN

Eσ Fϕσ

⊗M∈EfM

∼= ∼=

fσ(1)⊗k···⊗kfσ(1)

105
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where the vertial isomorphisms are the one isomorphisms. If all fM are

isomorphisms, then so is ⊗M∈EfM .
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Invariants par somme d'états des 3-variétés peignées

Cette thèse onerne la topologie quantique, une branhe des mathématiques

née dans les années 1980 suite aux travaux de Jones, Drinfeld et Witten. Un ex-

emple fondamental d'invariant quantique des 3-variétés est due à Turaev-Viro

en 1992. Leur approhe, dans sa forme générale due à Barrett et Westbury,

utilise une atégorie de fusion sphérique omme ingrédient prinipal et onsiste

en une somme d'états sur un squelette de la 3-variété dont les sommets sont

oloriés par les 6j-symboles de la atégorie.

Le résultat prinipal de la thèse est la onstrution d'un invariant topologique

des 3-variétés peignées ('est-à-dire des 3-variétés munies d'un hamp de veteurs

jamais nuls) qui généralise elui de Turaev-Viro. Ce nouvel invariant est dé�ni

au moyen d'une atégorie de fusion pivotale et onsiste en une somme d'états

sur un squelette rami�é représentant la 3-variété peignée.

Lorsque la atégorie de fusion pivotale n'est pas sphérique, l'invariant per-

met en général de distinguer des hamps de veteurs non homotopes sur une

même 3-variété. Cei est montré en onsidérant une atégorie de fusion piv-

otale assoiée à un aratère d'un groupe �ni. Pour ette atégorie, l'invariant

orrespond à l'évaluation par le aratère de la lasse d'Euler d'un ertain �bré

vetoriel de rang 2 assoié au hamp de veteurs.

State sum invariants of ombed 3-manifolds

This thesis onerns quantum topology, a branh of mathematis born in the

1980s after the work of Jones, Drinfeld and Witten. A fundamental example

of a quantum invariant of 3-manifolds is due to Turaev-Viro in 1992. Their

approah, in its general form due to Barrett and Westbury, uses a spherial

fusion ategory as the main ingredient and onsists in a state sum on a skeleton

of the 3-manifold whose verties are olored by the 6j-symbols of the ategory.

The main result of the thesis is the onstrution of a topologial invariant

of ombed 3-manifolds (that is, of 3-manifolds endowed with a nowhere-zero

vetor �eld) whih generalizes that of Turaev-Viro. This new invariant is

de�ned by means of a pivotal fusion ategory and onsists in a state sum on a

branhed skeleton representing the ombed 3-manifold.

When the pivotal fusion ategory is not spherial, the invariant allows in

general to distinguish non homotopi vetor �elds on the same 3-manifold. This

is proved by onsidering a pivotal fusion ategory assoiated with a harater of

a �nite group. For this ategory, the invariant orresponds to the evaluation by

the harater of the Euler lass of a ertain vetor bundle of rank 2 assoiated

to the vetor �eld.
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