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Introdu
tion

Quantum topology is an area of mathemati
s and theoreti
al physi
s founded

by Jones and Witten in the 1980s. This subje
t is a modern tool used for

studying problems of low-dimensional topology via so-
alled quantum invari-

ants of topologi
al obje
ts su
h as knots, links, manifolds, homeomorphisms,

et
. Quantum invariants are 
onstru
ted using an ingredient of algebrai
 na-

ture (for example the 
ategory of representations of a quantum group) and via

a 
ombinatorial des
ription of the studied obje
ts.

A fundamental example of a quantum invariant of 
ompa
t oriented 3-man-

ifolds is due to Turaev and Viro in 1992, see [TV℄. Their 
onstru
tion is


losely related to the Ponzano-Regge quantum gravity state sum model. This

approa
h (in its general form due to Barrett and Westbury, see [BW℄) uses a

spheri
al fusion 
ategory as the main ingredient and 
onsists in a state sum

on skeletons of 3-manifolds whose verti
es are 
olored by the 6j-symbols of

the 
ategory. Re
all that a pivotal fusion 
ategory is a �nitely semisimple

monoidal linear 
ategory endowed with a left duality and a right duality whi
h

are monoidally equivalent. A spheri
al fusion 
ategory is a pivotal fusion 
at-

egory whose left and right dimensions of obje
ts are equal.

The goal of the present thesis is to extend the Turaev-Viro 
onstru
tion to


ombed 3-manifolds. A 
ombed 3-manifold is a 
ompa
t oriented 3-manifold

endowed with a nowhere-zero ve
tor �eld. The initial ingredient we use to


onstru
t this extension is a pivotal fusion 
ategory (not ne
essarily spheri-


al). The additional data of the ve
tor �eld on the 3-manifold allows us to

remove the hypothesis of spheri
ity of the 
ategory. Our 
onstru
tion 
onsists

in a state sum on bran
hed spines of 
ombed 3-manifolds, whi
h are a 
om-

binatorial presentation of 
ombed 3-manifolds developed by Ishii, Benedetti,

and Petronio.

This monograph 
omprises �ve 
hapters and one appendix. Chapter 1 is

devoted to monoidal 
ategories, with parti
ular attention to those that are

pivotal and fusion. We des
ribe the Penrose graphi
al 
al
ulus whi
h allows to

repla
e lengthy algebrai
 
omputations by elementary topologi
al arguments.

In Chapter 2, we review an invariant of 
olored planar graphs whi
h takes

values in tensor produ
ts of multipli
ity modules. This invariant generalizes

6j-symbols. Also, we study duality pairings for 
olored graphs and their asso-


iated 
ontra
tion ve
tors. The invariant of 
olored graphs and the 
ontra
tion

ve
tors are the main tool in our topologi
al 
onstru
tions.

In Chapter 3, we review the theory of bran
hed spines and the theory of

o-graphs. The o-graphs are enhan
ed graphs that en
ode spe
i�
 bran
hed

iii



iv INTRODUCTION

spines. In parti
ular, we explain how bran
hed spines and o-graphs represent


ombed 3-manifolds.

In Chapter 4, we 
onstru
t of a state sum invariant of 
ombed 3-manifolds

whi
h generalizes the Turaev-Viro 
onstru
tion. More pre
isely, we asso
iate

to any pivotal fusion 
ategory C a s
alar topologi
al invariant IC(M, ν) of a


ombed 3-manifold (M, ν), see Theorem 4.1. This invariant is de�ned in terms

of a state sum on a bran
hed spine of (M, ν). If the 
ategory C is spheri
al,

then IC(M, ν) does not depend on the ve
tor �eld ν and is equal to the Turaev-

Viro invariant TVC(M) of the 3-manifoldM de�ned using C. We also give an

algorithm to 
ompute IC(M, ν) starting from o-graphs (see Theorem 4.2).

In Chapter 5, we fo
us on the 
ase of a spe
i�
 pivotal fusion 
ategory:

the 
ategory Gd
k
asso
iated with a 
hara
ter d of a �nite group G. We study

in detail the invariant IGd
k

of 
ombed 3-manifolds de�ned with this 
ategory.

In parti
ular, we prove (by examples) that IGd
k

is non-trivial and does depend

on the ve
tor �eld: it may distinguish two non-homotopi
 ve
tor �elds on the

same 3-manifold (see Theorem 5.2). Finally, we give an interpretation of the

state sum invariant IGd
k

(M, ν) in terms of 
lassi
al topologi
al invariants: we

prove that it 
orresponds to the evaluation by the 
hara
ter d on the Euler


lass of a real ve
tor bundle of rank 2 asso
iated to the ve
tor �eld ν (see

Theorem 5.5).

We end with an appendix on the unordered tensor produ
ts of modules.



CHAPTER 1

Pivotal fusion 
ategories

In this 
hapter, we review the notions of a monoidal 
ategory (Se
tion 1.1)

and of a pivotal 
ategory (Se
tion 1.2), with parti
ular attention to the 
ase of

a fusion 
ategory (Se
tion 1.4). We also dis
uss a way to represent morphisms:

the graphi
al 
al
ulus (Se
tion 1.3).

1.1. Monoidal 
ategories

We dis
uss some basi
s on monoidal 
ategories. We also study non-degenerate

pairings in monoidal 
ategories.

1.1.1. Categories. A 
ategory C 
onsists of the following data:

• a 
lass Ob(C), whose elements are 
alled obje
ts of C;
• for any X, Y ∈ Ob(C), a set HomC(X, Y ), whose elements are 
alled

morphisms from X to Y and represented by arrows X → Y ;
• for any X, Y, Z ∈ Ob(C), a map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z)


alled 
omposition. The image of a pair (g, f) under this map is

denoted g ◦ f or just gf ;
• for every X ∈ Ob(C), a morphism idX ∈ HomC(X,X), 
alled the

identity of X .

It is required that the 
omposition is asso
iative and unitary in the following

sense:

(h ◦ g) ◦ f = h ◦ (g ◦ f) and f ◦ idX = f = idY ◦ f

for all morphismsf : X → Y , g : Y → Z, h : Z → T with X, Y, Z, T ∈ Ob(C).
Given a morphism f : X → Y in a 
ategory C, the obje
t X is 
alled the

sour
e and the obje
t Y the target of f . Two morphisms g, f in C are 
om-

posable if the sour
e of g 
oin
ides with the target of f . For X ∈ Ob(C),
the set HomC(X,X) is denoted by EndC(X), and its elements are 
alled en-

domorphisms of X . The set EndC(X) is a monoid with produ
t gf = g ◦ f
for any f, g ∈ EndC(X) and unit idX . A morphism f : X → Y in C is an

isomorphism if there exists a morphism g : Y → X in C su
h that gf = idX

and fg = idY . Su
h a g is uniquely determined by f , is 
alled the inverse

of f and denoted f−1
. Two obje
ts X, Y of C are isomorphi
 if there exists

an isomorphism X → Y . Isomorphism of obje
ts is an equivalen
e relation

on Ob(C) denoted by ≃.

1



2 1. PIVOTAL FUSION CATEGORIES

1.1.2. Fun
tors and natural transformations. Fun
tors are morphisms

of 
ategories and natural transformations are morphisms of fun
tors. More pre-


isely, a fun
tor F : C → D from a 
ategory C to a 
ategory D assigns to ea
h

obje
t X of C an obje
t F (X) of D and to ea
h morphism f : X → Y in C a

morphism F (f) : F (X)→ F (Y ) in D so that

F (gf) = F (g)F (f) and F (idX) = idF (X)

for all 
omposable morphisms g, f in C and all X ∈ Ob(C). For example, the

identity fun
tor 1C : C → C 
arries every obje
t/morphism in C to itself. The


omposition of two fun
tors F : C → D and G : D → E is de�ned in the obvious

way and yields a fun
tor GF : C → E .
A natural transformation F → G between two fun
tors F,G : C → D is a

family

ϕ = {ϕX : F (X)→ G(X)}X∈Ob(C)

of morphisms in D su
h that

ϕY F (f) = G(f)ϕX

for all morphisms f : X → Y in C. A natural transformation ϕ : F → G is

invertible if ϕX is an isomorphism for all X ∈ Ob(C). Then the family of

morphisms

{ϕ−1
X : G(X)→ F (X)}X∈Ob(C)

is a natural transformationG→ F 
alled the inverse of ϕ and denoted by ϕ−1
.

Invertible natural transformations of fun
tors are 
alled natural isomorphisms.

Clearly, the inverse of a natural isomorphism is a natural isomorphism. Two

fun
tors C → D are isomorphi
 if there is a natural isomorphism between

them.

1.1.3. Isomorphisms and equivalen
es of 
ategories. Let C and D
be 
ategories. A fun
tor F : C → D is an isomorphism if there is a fun
tor

G : D → C su
h that GF = 1C and FG = 1D. Su
h a fun
tor G is uniquely

determined by F , is an isomorphism, and is 
alled the inverse of F . Two


ategories are isomorphi
 if there is an isomorphism between them.

A quasi-inverse of a fun
tor F : C → D is a fun
tor G : D → C su
h that

there are natural isomorphisms GF ≃ 1C and FG ≃ 1D. A fun
tor is an

equivalen
e if it has a quasi-inverse. Note that any quasi-inverse of an equiv-

alen
e is an equivalen
e and the 
omposition of two 
omposable equivalen
es

is an equivalen
e. Two 
ategories are equivalent if there is an equivalen
e be-

tween them. It is 
lear from the de�nitions that isomorphisms of 
ategories

are equivalen
es and isomorphi
 
ategories are equivalent.

Any equivalen
e of 
ategories F : C → D is essentially surje
tive in the

sense that ea
h obje
t of D is isomorphi
 to F (X) for some X ∈ Ob(C) and
fully faithful in the sense that for all X, Y ∈ Ob(C), the map

HomC(X, Y )→ HomD(F (X), F (Y )), f 7→ F (f)

is bije
tive. If one assumes the axiom of 
hoi
e, then all essentially surje
tive

and fully faithful fun
tors are equivalen
es.
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1.1.4. Monoidal 
ategories. A monoidal 
ategory is a 
ategory C en-

dowed with

• a fun
tor ⊗ : C ×C → C, 
alled the monoidal produ
t (or tensor prod-

u
t);

• an obje
t 1 ∈ Ob(C), 
alled the unit obje
t ;

• a family of isomorphisms

a = {aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)}X,Y,Z∈Ob(C)


alled the asso
iativity 
onstraint ;

• a family of isomorphisms l = {lX : 1⊗X → X}X∈Ob(C), 
alled the left

unitality 
onstraint ;

• a family of isomorphisms r = {rX : X ⊗ 1 → X}X∈Ob(C), 
alled the

right unitality 
onstraint.

It is required that:

(i) (Pentagon 
oheren
e) For all obje
ts X, Y, Z,W of C, the following

diagram 
ommutes:

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W ).

X ⊗ (Y ⊗ (Z ⊗W ))

aX⊗Y ,Z,W

aX,Y,Z⊗idW

aX,Y ⊗Z,W

idX⊗aY,Z,W

aX,Y,Z⊗W

(ii) (Triangle 
oheren
e) For all obje
ts X, Y of C, the following diagram


ommutes:

X ⊗ Y

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y ).

rX⊗idY

aX,1,Y

idX⊗lY

(iii) The asso
iativity 
onstraint a is a natural isomorphism from the fun
-

tor ⊗(⊗× 1C) to the fun
tor ⊗(1C ×⊗).
(iv) The left unitality 
onstraint l is a natural isomorphism from the fun
-

tor 1⊗− : C → C to the fun
tor 1C : C → C.
(iv) The right unitality 
onstraint r is a natural isomorphism the fun
-

tor −⊗ 1 : C → C to 1C.
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Here, the fun
tors 1⊗− et −⊗ 1 are de�ned by

(1⊗−)(X) = 1⊗X, (−⊗ 1)(X) = X ⊗ 1,

(1⊗−)(f) = id
1

⊗ f, (−⊗ 1)(f) = f ⊗ id
1

,

for any X ∈ Ob(C) and any morphism f in C.
Ea
h monoidal 
ategory C = (C,⊗,1, a, l, r) gives rise to three opposite

monoidal 
ategories:

Cop = (Cop,⊗,1, aop, lop, rop),

C⊗op = (C,⊗op,1, a⊗op, l⊗op, r⊗op),

Crev = (Cop,⊗op,1, arev, lrev, rrev).

Here, Cop is the 
ategory opposite to C de�ned by Ob(Cop) = Ob(C) and

HomCop(X, Y ) = HomC(Y,X) for all X, Y ∈ Ob(C) with 
omposition ◦op de-

�ned by g ◦op f = fg. The fun
tor ⊗op : C × C → C is the opposite monoidal

produ
t of C de�ned by X ⊗op Y = Y ⊗X for all X, Y ∈ Ob(C) and similarly

for morphisms. The above asso
iativity and unitality 
onstraints are given for

all X, Y, Z ∈ Ob(C) by

(aop)X,Y,Z = (aX,Y,Z)
−1, (lop)X = (lX)

−1, (rop)X = (rX)
−1,

(a⊗op)X,Y,Z = (aZ,Y,X)
−1, (l⊗op)X = rX , (r⊗op)X = lX ,

(arev)X,Y,Z = aZ,Y,X , (lrev)X = (rX)
−1, (rrev)X = (lX)

−1.

The transformations C 7→ Cop, C 7→ C⊗op
, and C 7→ Crev are involutive,


ommute with ea
h other, and ea
h of them is the 
omposition of the other

two. In parti
ular, Crev = (C⊗op)op = (Cop)⊗op
.

1.1.5. A
tions of the ground monoid. A monoidal 
ategory C = (C,⊗,
1, a, l, r) determines a 
ommutative monoid EndC(1), 
alled the ground monoid

of C. Its produ
t is the 
omposition of morphisms and its unit is id
1

. For any

X, Y ∈ Ob(C), the set HomC(X, Y ) 
arries left and right a
tions of the monoid

EndC(1) de�ned by

α · f = lY (α⊗ f)l
−1
X and f · α = rY (f ⊗ α)r

−1
X

for any α ∈ EndC(1) and f ∈ HomC(X, Y ). The left and right a
tions of

EndC(1) on itself are given by the monoid produ
t in EndC(1).
The a
tions of EndC(1) on the sets of morphisms are 
ompatible with

monoidal produ
t of morphisms in the following sense: for any α ∈ EndC(1)
and any morphisms f, g in C, we have

α · (f ⊗ g) = (α · f)⊗ g and (f ⊗ g) · α = f ⊗ (g · α).

1.1.6. Pure 
ategories. A monoidal 
ategory C is pure if the left and

right a
tions of EndC(1) on the sets of morphisms in C 
oin
ide. Thus, C is

pure if α · f = f · α for any α ∈ EndC(1) and any morphism f in C. In

fa
t, it su�
es to require that α · idX = idX · α for any α ∈ EndC(1) and any
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X ∈ Ob(C). Indeed, this 
ondition implies that for any morphism f : X → Y
in C, we have

α · f = α · (f ◦ idX) = f ◦ (α · idX) = f ◦ (idX · α) = (f ◦ idX) · α = f · α.

For a pure monoidal 
ategory C, hold the following identities:

α · (f ⊗ g) = (α · f)⊗ g = f ⊗ (α · g)

for all α ∈ EndC(1) and all morphisms f, g in C.

1.1.7. Conventions. Ma
 Lane's 
oheren
e theorem asserts that every

diagram in a monoidal 
ategory made up of the asso
iativity and unitality


onstraints 
ommutes, see [ML1, ML2℄. In the sequel we suppress in our

formulas the asso
iativity and unitality 
onstraints of monoidal 
ategories.

This does not lead to ambiguity be
ause by Ma
 Lane's 
oheren
e theorem, all

legitimate ways of inserting these 
onstraints give the same results. For any

obje
ts X1, . . . , Xn of a monoidal 
ategory with n ≥ 2, we set

X1 ⊗X2 ⊗ · · · ⊗Xn = (. . . ((X1 ⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn,

and similarly for morphisms.

1.1.8. Monoidal fun
tors and natural transformations. Let C =
(C,⊗,1, a, l, r) andD = (D,⊗′,1′, a′, l′, r′) be monoidal 
ategories. Amonoidal

fun
tor from C to D is a fun
tor F : C → D endowed with a morphism

F0 : 1
′ → F (1) in D and with a natural transformation

F2 = {F2(X, Y ) : F (X)⊗′ F (Y )→ F (X ⊗ Y )}X,Y ∈Ob(C)

between the fun
tors F ⊗′ F = ⊗′(F × F ) : C × C → D and F⊗ : C × C → D
su
h that for all X, Y, Z ∈ Ob(C), the following three diagrams 
ommute:

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z)),

a′
F (X),F (Y ),F (Z)

F2(X,Y )⊗′idF (Z) idF (X)⊗
′F2(Y,Z)

F2(X⊗Y,Z) F2(X,Y⊗Z)

F (aX,Y,Z )

1

′ ⊗′ F (X) F (X)

F (1)⊗′ F (X) F (1⊗X),

l′
F (X)

F0⊗idF (X)

F2(1,X)

F (lX)
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F (X)⊗′
1

′ F (X)

F (X)⊗′ F (1) F (X ⊗ 1).

r′
F (X)

idF (X)⊗F0

F2(1,X)

F (rX)

The morphisms F0 and F2 are 
alled the monoidal 
onstraints asso
iated

with F . Re
all that the naturality of F2 means that for arbitrary morphisms

f : X → X ′
and g : Y → Y ′

in C, the following diagram 
ommutes:

F (X)⊗′ F (Y ) F (X ⊗ Y )

F (X ′)⊗′ F (Y ′) F (X ′ ⊗′ Y ′).

F2(X,Y )

F (f)⊗F (g) F (f⊗g)

F2(X′,Y ′)

The 
omposition of two monoidal fun
tors F : C → D and G : D → E is

the monoidal fun
tor GF : C → E with

(GF )0 = G(F0)G0 and (GF )2(X, Y ) = G(F2(X, Y ))G2(F (X), F (Y ))

for all X, Y ∈ Ob(C). The 
omposition of monoidal fun
tors is asso
iative

with identity fun
tors being the units.

A monoidal fun
tor (F, F2, F0) from a monoidal 
ategory C to a monoidal


ategory D is stri
t if F0 and F2(X, Y ) are identity morphisms for all X, Y ∈
Ob(C). For example, the identity fun
tor 1C : C → C is stri
t.

A monoidal fun
tor (F, F2, F0) is strong if F0 and F2(X, Y ) are isomor-

phisms for all X, Y ∈ Ob(C). Clearly, all stri
t monoidal fun
tors are strong.

The 
omposition of two stri
t (respe
tively, strong) monoidal fun
tors is stri
t

(respe
tively, strong). A strong monoidal fun
tor (F, F2, F0) from C to D in-

du
es a morphism of monoids EndC(1) → EndD(1
′) by α 7→ F−1

0 F (α)F0 for

all α ∈ EndC(1).
Ea
h monoidal fun
tor F : C → D indu
es a monoidal fun
tor F⊗op : C⊗op →

D⊗op
, whi
h is the same fun
tor F with monoidal 
onstraints

(F⊗op)0 = F0 and (F⊗op)2(X, Y ) = F2(Y,X)

for all X, Y ∈ Ob(C). A strong monoidal fun
tor F : C → D indu
es strong

monoidal fun
tors F op : Cop → Dop
and F rev : Crev → Drev

. Both are equal to

F as fun
tors and have the following monoidal 
onstraints:

(F op)0 = (F rev)0 = F−1
0

and for all X, Y ∈ Ob(C),

(F op)2(X, Y ) = F2(X, Y )−1
and (F rev)2(X, Y ) = F2(Y,X)−1.

Note that F rev = (F⊗op)op = (F op)⊗op
.
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A natural transformation ϕ from a monoidal fun
tor F : C → D to a

monoidal fun
tor G : C → D is monoidal if

ϕ
1

F0 = G0 and ϕX⊗Y F2(X, Y ) = G2(X, Y )(ϕX ⊗ ϕY )

for all X, Y ∈ Ob(C). If the map ϕX : F (X) → G(X) is an isomorphism

for all X ∈ Ob(C), then su
h a ϕ is a monoidal natural isomorphism. The

fun
tors F and G are monoidally isomorphi
 if there is a monoidal natural

isomorphism F → G.

1.1.9. Example. Consider the 
ategory Modk of k-modules and k-linear

homomorphisms. It is equipped with the usual tensor produ
t ⊗k, the unit

obje
t k. For all k-modules X, Y, Z, the monoidal 
onstraints are given by

aX,Y,Z((x⊗ y)⊗ z) = x⊗ (y ⊗ z),

lX(λ⊗ x) = λx = rX(x⊗ λ),

where x ∈ X , y ∈ Y , z ∈ Z and λ ∈ k. Then Modk is a monoidal 
ategory.

1.1.10. Pairings. Let C = (C,⊗,1) be a monoidal 
ategory. A pairing

between two obje
ts X, Y of C is a morphism X ⊗ Y → 1 in C. A pairing

ω : X ⊗ Y → 1 is non-degenerate if there is a morphism Ω: 1 → Y ⊗X in C
su
h that

(1.1) (idY ⊗ ω)(Ω⊗ idY ) = idY and (ω ⊗ idX)(idX ⊗ Ω) = idX .

The morphism Ω is 
alled the inverse of ω and is uniquely determined by ω.
Indeed, if we suppose that Ω′ : 1→ Y ⊗X is another morphism in C with the

same property of Ω, then

Ω′ = idY⊗XΩ
′ = (idY ⊗ idX)Ω

′ = (idY ⊗ (ω ⊗ idX)(idX ⊗ Ω))Ω′

= (idY ⊗ ω ⊗ idX)(Ω
′ ⊗ Ω) = ((idY ⊗ ω)(Ω

′ ⊗ idY )⊗ idX)Ω

= (idY ⊗ idX)Ω = idY⊗XΩ = Ω.

1.1.11. Pairings in Modk. By Se
tions 1.1.9 and 1.1.10, a pairing ω be-

tween k-modules X and Y is a k-linear homomorphism ω : X ⊗k Y → k.

The pairing ω is non-degenerate if there exists a k-linear homomorphism

Ω: 1→ Y ⊗k X satisfying (1.1). In this 
ase, the ve
tor

∗ω = Ω(1k) ∈ Y ⊗k X

is 
alled the 
ontra
tion ve
tor of ω.
Re
all that the dual of a k-module X is the k-module X⋆ = Homk(X, k)


onsisting of all k-linear homomorphisms X → k with the k-module stru
ture

given by (kf)(x) = kf(x) for all k ∈ k, f ∈ X⋆
, x ∈ X . A k-module is

proje
tive of �nite type if it is a dire
t summand of a free k-module of �nite

rank. The next lemma reformulates the non-degenera
y 
ondition of a pairing

between k-modules in terms of dual modules and matri
es.

Lemma 1.1 ([TVi℄). Let ω : X ⊗k Y → k be a pairing in Modk between

k-modules X and Y . The following three 
onditions are equivalent:

(a) ω is non-degenerate;
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(b) X is a proje
tive k-module of �nite type and the homomorphism Y →
X⋆

adjoint to ω a is an isomorphism;

(
) Y is a proje
tive k-module of �nite type and the homomorphism X →
Y ⋆

adjoint to ω a is an isomorphism.

Assume now that the k-modules X and Y are free. Then the pairing ω is non-

degenerate if and only if X and Y have the same �nite rank n and for some

bases (xi)
n
i=1 of X and (yj)

n
j=1 of Y , the matrix [ω(xi ⊗k yj)]

n
i,j=1 is invertible.

If su
h is the 
ase, the 
ontra
tion ve
tor of ω is then 
omputed by

∗ω =
n∑

i,j=1

Ωi,j yj ⊗k xi ∈ Y ⊗k X,

where [Ωi,j ]
n
i,j=1 is the inverse of the matrix [ω(xi ⊗k yj)]

n
i,j=1.

1.2. Pivotal 
ategories

In this se
tion, we re
all the notion of a pivotal 
ategory. We also dis
uss

tra
es of endomorphisms and dimensions of obje
ts in pivotal 
ategories.

1.2.1. Rigid 
ategories. A left dual of an obje
t X of a monoidal 
ate-

gory C is a pair (∨X, evX), where
∨X is an obje
t of C and evX : ∨X⊗X → 1 is

a non-degenerate pairing. The pairing evX is 
alled the left evaluation and its

inverse coevX : 1→ X ⊗ ∨X the left 
oevaluation. A left dual of the obje
t X ,

if it exists, is unique up to a unique isomorphism preserving the evaluation

pairing. More pre
isely, if (Y, e : Y ⊗X → 1) is another left dual of X , then

(e⊗ id∨X)(idY ⊗ coevX) : Y →
∨X

is the unique isomorphism a : Y → ∨X su
h that e = evX(a⊗ idX).
A left duality in a monoidal 
ategory C is a family {(∨X, evX)}X∈Ob(C)

where, for every X ∈ Ob(C), the pair (∨X, evX) is a left dual of X. A left

rigid 
ategory is a monoidal 
ategory admitting a left duality. A left rigid


ategory with distinguished left duality is a left rigid 
ategory endowed with a

left duality.

Similarly, a right dual of X ∈ Ob(C) is a pair (X∨, ẽvX) where X
∨ ∈ Ob(C)

and ẽvX : X ⊗X∨ → 1 is a non-degenerate pairing. The pairing ẽvX is 
alled

the right evaluation and its inverse c̃oevX : 1→ X∨⊗X the right 
oevaluation.

A right dual of an obje
t of C, if it exists, is unique up to a unique isomorphism

preserving the evaluation pairing. A right duality in a monoidal 
ategory C is

a family {(X∨, ẽvX)}X∈Ob(C) where, for every X ∈ Ob(C), the pair (X∨, ẽvX)
is a right dual of X . A right rigid 
ategory is a monoidal 
ategory admitting a

right duality. A right rigid 
ategory with distinguished right duality is a right

rigid 
ategory endowed with a right duality.

A rigid 
ategory is a monoidal 
ategory whi
h is both left rigid and right

rigid, that is, whi
h admits both a left duality and a right duality. A rigid


ategory with distinguished duality is a rigid 
ategory endowed with a left

duality and a right duality.
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1.2.2. Dual fun
tors. A left duality in a left rigid 
ategory C determines

a fun
tor

∨? : Crev = (Cop,⊗op,1)→ C

whi
h 
arries ea
h X ∈ Ob(C) = Ob(Crev) to

∨X and 
arries ea
h morphism

f : X → Y in C (that is a morphism Y → X in Crev) to its left dual

∨f = (evY ⊗ id∨X)(id∨Y ⊗ f ⊗ id∨X)(id∨Y ⊗ coevX) :
∨Y → ∨X.

The fun
tor

∨? is strong monoidal with monoidal 
onstraints

∨?0 = coev : 1→
∨
1 and

∨?2(X, Y ) :
∨X ⊗ ∨Y → ∨(Y ⊗X) de�ned by

∨?2(X, Y ) = (evX ⊗ id∨(Y⊗X))(id∨X ⊗ evY ⊗ idX⊗∨(Y⊗X))(id∨X⊗∨Y ⊗ coevY⊗X).

The fun
tor

∨? is 
alled the left dual fun
tor asso
iated with the given left

duality. The uniqueness of the left duals of obje
ts implies that the left dual

fun
tors asso
iated with di�erent left dualities are monoidally isomorphi
 in a


anoni
al way.

A right duality in a right rigid 
ategory C determines a fun
tor ?∨ : Crev → C

arrying ea
h obje
t X of C to X∨

and ea
h morphism f : X → Y in C to its

right dual

f∨ = (idX∨ ⊗ ẽvY )(idX∨ ⊗ f ⊗ idY ∨)(c̃oevX ⊗ idY ∨) : Y ∨ → X∨.

The fun
tor ?∨ is strong monoidal, with monoidal 
onstraints ?∨0 = c̃oev
1

: →
1

∨
and ?∨2 (X, Y ) : X

∨ ⊗ Y ∨ → (Y ⊗X)∨ de�ned by

?∨2 (X, Y ) = (id(Y⊗X)∨ ⊗ ẽvY )(id(Y⊗X)∨⊗Y ⊗ ẽvX ⊗ idY ∨)(c̃oevY⊗X ⊗ idX∨⊗Y ∨).

The fun
tor ?∨ is 
alled the right dual fun
tor asso
iated with the given right

duality. The right dual fun
tors asso
iated with di�erent right dualities are

monoidally isomorphi
 in a 
anoni
al way.

For a rigid 
ategory C with distinguished duality, the left and right dual

fun
tors

∨? : Crev → C and ?∨ : Crev → C are strong monoidal equivalen
es

with respe
tive quasi-inverses (?∨)rev : C → Crev and (∨?)rev : C → Crev. For

X ∈ Ob(C), the 
orresponding monoidal natural isomorphisms

∨(X∨) ≃ X ≃
(∨X)∨ are

(ẽvX ⊗ id∨(X∨))(idX ⊗ coevX∨) : X → ∨(X∨),

(id(∨X)∨ ⊗ evX)(c̃oev∨X ⊗ idX) : X → (∨X)
∨
.

1.2.3. Duality and monoidal fun
tor. Note that a strong monoidal

fun
tor F : C → D between monoidal 
ategories 
arries any obje
t having a

left (respe
tively, right) dual to an obje
t having a left (respe
tively, right)

dual. Indeed, 
onsider an obje
t X of C with left dual (∨X, evX). By [TVi,

Lemma 1.5℄, the non-degenera
y of evX implies the non-degenera
y of the

pairing

(evX)
F = F0

−1F (evX)F2(
∨X,X) : F (∨X)⊗ F (X)→ 1.

Thus (F (∨X), (evX)
F ) is a left dual of F (X). Similarly, if X ∈ Ob(C) has a

right dual (X∨, ẽvX), then (F (X∨, (ẽvX)
F ) is a right dual of F (X).
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A strong monoidal fun
tor F : C → D between left rigid 
ategories with

distinguished left duality determines a monoidal natural isomorphism

F l = {F l(X) : F (∨X)→ ∨F (X)}X∈Ob(C)

from the fun
tor F∨? : Crev → D to the fun
tor

∨?F rev : Crev → D. It is de�ned
as follows. For ea
h X ∈ Ob(C), both (F (∨X), (evX)

F ) and (∨F (X), evF (X))
are left duals of F (X). By the uniqueness of a left dual, there is a unique

isomorphism

F l(X) : F (∨X)→ ∨F (X)

preserving the evaluation pairing, i.e., su
h that

(evX)
F = evF (X)(F

l(X)⊗ idF (X)).

The isomorphism F l(X) is 
omputed by

F l(X) = ((evX)
F ⊗ id∨F (X))(idF (∨X) ⊗ coevF (X)).

Likewise, a strong monoidal fun
tor F : C → D between right rigid 
ate-

gories with distinguished right duality determines a monoidal natural isomor-

phism

F r = {F r(X) : F (X∨)→ F (X)∨}X∈Ob(C)

from F ?∨ : Crev → D to ?∨F rev : Crev → D. It is 
omputed by

F r(X) = (idF (X)∨ ⊗ (ẽvX)
F )(c̃oevF (X) ⊗ idF (X∨))

for any X ∈ Ob(C).

1.2.4. Pivotal 
ategories. A pivotal 
ategory is a rigid 
ategory with

distinguished duality su
h that the indu
ed left and right dual fun
tors 
oin-


ide as monoidal fun
tors. In other words, a pivotal 
ategory is a monoidal


ategory C endowed with a pivotal duality, that is, a family of triples

{(X∗, evX , ẽvX)}X∈Ob(C),

where

• X∗
is an obje
t of C 
alled the dual of X ;

• evX : X∗ ⊗X → 1 is a non-degenerate pairing in C;
• ẽvX : X ⊗X∗ → 1 is a non-degenerate pairing in C;

su
h that the left dual fun
tor asso
iated with the left duality {(X∗, evX)}X∈Ob(C)

and the right dual fun
tor asso
iated with the right duality {(X∗, ẽvX)}X∈Ob(C)


oin
ide as monoidal fun
tors. The pairings evX and ẽvX are 
alled the left

evaluation and the right evaluation, respe
tively. Let coevX : 1→ X⊗X∗
and

c̃oevX : 1 → X∗ ⊗X be the inverses of these pairings. These two morphisms

are 
alled respe
tively the left 
oevaluation and the right 
oevaluation. The

equality of the left and right dual fun
tors means that:

(i) for any morphism f : X → Y in C,

f ∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX)

= (idX∗ ⊗ ẽvY )(idX∗ ⊗ f ⊗ idY ∗)(c̃oevX ⊗ idY ∗) : Y ∗ → X∗;

(ii) coev
1

= c̃oev
1

: 1→ 1

∗
;
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(iii) for all X, Y ∈ Ob(C), we have the following equality of morphisms

from X∗ ⊗ Y ∗ → (Y ⊗X)∗:

(evX ⊗ id(Y⊗X)∗)(idX∗ ⊗ evY ⊗ idX⊗(Y⊗X)∗)(idX∗⊗Y ∗ ⊗ coevY⊗X)

=(id(Y⊗X)∗ ⊗ ẽvY )(id(Y⊗X)∗⊗Y ⊗ ẽvX ⊗ idY ∗)(c̃oevY⊗X ⊗ idX∗⊗Y ∗).

Clearly, a pivotal 
ategory is, in parti
ular, a rigid 
ategory with dis-

tinguished duality. The left and right dual fun
tors form a single fun
tor

?∗ : Crev → C 
alled the dual fun
tor of C. It 
arries any obje
t X ∈ Ob(Crev) =
Ob(C) toX∗

and any morphism f : X → Y in C (that is a morphism Y → X in

Crev) to its dual f ∗ : Y ∗ → X∗
de�ned as the left-hand side (or the right-hand

side) of the equality in (i) above. The monoidal 
onstraints

?∗0 : 1→ 1

∗
and ?∗2(X, Y ) : X∗ ⊗ Y ∗ → (Y ⊗X)∗

of the dual fun
tor ?∗ are the morphisms de�ned by (ii) and (iii), respe
tively.
The duality identities

(idX ⊗ evX)(coevX ⊗ idX) = idX = (ẽvX ⊗ idX)(idX ⊗ c̃oevX),

(evX ⊗ idX∗)(idX∗ ⊗ coevX) = idX∗ = (idX∗ ⊗ ẽvX)(c̃oevX ⊗ idX∗)

imply that (?∗0)
−1 = ev

1

= ẽv
1

: 1∗ → 1 and

(?∗2(X, Y ))−1

= (evY⊗X ⊗ idX∗⊗Y ∗)(id(Y⊗X)∗⊗Y ⊗ coevX ⊗ idY ∗)(id(X⊗Y )∗ ⊗ coevY )

= (idX∗⊗Y ∗ ⊗ ẽvY⊗X)(idX∗ ⊗ c̃oevY ⊗ idX⊗(Y⊗X)∗)(c̃oevX ⊗ id(Y⊗X)∗).

If C is a pivotal 
ategory, then the opposite monoidal 
ategories

Cop = (Cop,⊗,1), C⊗op = (C,⊗op,1), Crev = (Cop,⊗op,1)

are pivotal in a 
anoni
al way. The dual obje
ts in them are the same as in C
and the evaluation morphisms are

evopX = c̃oevX , ev⊗op
X =ẽvX , evrev

X = coevX ,

ẽvopX = coevX , ẽv⊗op
X =evX , ẽvrev

X = c̃oevX .

For ea
h X ∈ Ob(C), we set X∗∗ = (X∗)∗ and 
onsider a morphism

ψX : X → X∗∗
by

ψX = (ẽvX ⊗ idX∗∗)(idX ⊗ coevX∗).

The pivotal stru
ture is the following monoidal natural isomorphism:

ψ = {ψX : X → X∗∗}X∈Ob(C).

The expressions given above for the dual f ∗ : Y ∗ → X∗
of a morphism

f : X → Y in C and the duality identities imply the dual morphism identities:

evX(f
∗ ⊗ idX) = evY (idY ∗ ⊗ f), (idY ⊗ f

∗)coevY = (f ⊗ idX∗)coevX ,

ẽvX(idX ⊗ f
∗) = ẽvY (f ⊗ idY ∗), (f ∗ ⊗ idY )c̃oevY = (idX∗ ⊗ f)c̃oevX .
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Lemma 1.2. Let φ = {φX : X → X}X∈Ob(C) be a monoidal natural endo-

morphism of the identity fun
tor 1C of C. Then φ is an automorphism and

(1.2) φX∗ = (φ∗
X)

−1 = (φ−1
X )

∗

for all X ∈ Ob(C)

Proof. For any obje
t X of C 
onsider the left evaluation pairing

evX : X∗ ⊗X → 1.

evX
(i)
= φ

1

evX
(ii)
= evXφX∗⊗X

(iii)
= evX(φX∗ ⊗ φX)

(iv)
= evX(φ

∗
X φX∗ ⊗ idX),

here (ii) follows from the naturality of φ, (i) and (iii) from the monoidality of φ
and (iv) from dual morphism identities. Sin
e evX is invertible, φ∗

X φX∗ = idX∗

and so φX is an isomorphism and φX∗ = (φ∗
X)

−1
. One proves similarly the other

equality. �

1.2.5. Remark. A pivotal 
ategory may be equivalently de�ned as a left

rigid 
ategory C with distinguished left duality {(∨X, evX)}X∈Ob(C) and distin-

guished monoidal natural isomorphism ψ : 1C →
∨∨? where

∨∨? : C → C is the

strong monoidal fun
tor de�ned by

∨∨? = ∨?◦(∨?)rev. Indeed, this data turns C
into a pivotal 
ategory (in the sense of Se
tion 1.2.4) with pivotal duality

{(X∗ = ∨X, evX , ẽvX = ev∨X(ψX ⊗ id∨X) : X ⊗X
∗ → 1)}X∈Ob(C).

1.2.6. Pivotal fun
tor. Let C and D be pivotal 
ategories. A pivotal

fun
tor from C to D is a strong monoidal fun
tor F : C → D su
h that the

asso
iated monoidal natural isomorphisms F l
and F r

de�ned in Se
tion 1.2.3

are equal. Set then F 1 = F l = F r
. The 
omposition of two pivotal fun
tors is

pivotal. If F is a pivotal fun
tor, then so are F⊗op, F op, F rev
, see Se
tion 1.1.8.

A stri
tly pivotal fun
tor from C to D is a pivotal fun
tor F : C → D su
h

that F 1
is the identity, that is, F (X∗) = F (X)∗ and F 1(X) = idF (X)∗ for all

X ∈ Ob(C). For example, given a pivotal 
ategory C, the identity fun
tor

1C : C → C and the dual fun
tor ?∗ : Crev → C are stri
tly pivotal. Note that a

stri
t monoidal fun
tor F : C → D between pivotal 
ategories is stri
tly pivotal

if and only if F (X∗) = F (X)∗, F (evX) = evF (X), and F (ẽvX) = ẽvF (X) for all

X ∈ Ob(C).
Two pivotal 
ategories C and D are equivalent if there is a pivotal equiv-

alen
e C → D, that is, a pivotal fun
tor C → D whi
h is an equivalen
e

of the underlying 
ategories. For example, for any pivotal 
ategory C, the

dual fun
tor ?∗ : Crev → C is a pivotal equivalen
e. Consequently, the pivotal


ategories C and Crev are pivotal equivalent and so are the pivotal 
ategories

C⊗op = (Cop)rev and Cop.

1.2.7. Tra
e and dimensions. Let C be a pivotal 
ategory. Re
all

that the monoid EndC(1) is 
ommutative. For an endomorphism f in C of

an obje
t X of C are de�ned the left tra
e tr
l

(f) ∈ EndC(1) and the right

tra
e tr
r

(f) ∈ EndC(1) in the following way:

tr
l

(f) = evX(idX∗ ⊗ f)c̃oevX and tr
r

(f) = ẽvX(f ⊗ idX∗)coevX .
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Both tra
es are symmetri
, that is for any morphisms g : X → Y and h : Y →
X in C we have:

tr
l

(gh) = tr
l

(hg) and tr
r

(gh) = tr
r

(hg)

We denote the left/right a
tions of the ground monoid EndC(1) with a dot.

Furthermore, for any α ∈ EndC(1) and for any endomorphism f, g in C of an

obje
t X of C we have that:

tr
l

(α) = tr
r

(α) = α, tr
l

(f · α) = α tr
l

(f), tr
r

(α · f) = α tr
r

(f),

tr
l

(f ⊗ g) = tr
l

(tr
l

(f) · g), tr
l

(f) = tr
r

(f ∗),

tr
r

(f ⊗ g) = tr
r

(f · tr
r

(g)), tr
r

(f) = tr
l

(f ∗).

These formulas imply the identities

tr
l

(f) = tr
l

(f ∗∗) and tr
r

(f) = tr
r

(f ∗∗).

If C is pure (see 1.1.6), then the tra
es tr
l

and tr
r

are ⊗-multipli
ative:

tr
l

(f ⊗ g) = tr
l

(f)tr
l

(g) and tr
r

(f ⊗ g) = tr
r

(f)tr
r

(g)

for all endomorphisms f and g of obje
ts of C.
The left dimension and right dimension of an obje
t X of C is de�ned by

dim
l

(X) = tr
l

(idX) and dim
r

(X) = tr
r

(idX).

We observe that dim
l

(1) = dim
r

(1) = id
1

. Clearly, we have that if C is pure

then the dimensions are ⊗-multipli
ative, i.e., for any X, Y ∈ Ob(C)

dim
l

(X ⊗ Y ) = dim
l

(X) dim
l

(Y ) and dim
r

(X ⊗ Y ) = dim
r

(X) dim
r

(Y ).

1.2.8. Spheri
al 
ategories. A spheri
al 
ategory is a pivotal 
ategory

whose left and right tra
es are equal, that is, tr
l

(f) = tr
r

(f) for every endo-

morphism f in the 
ategory. Then

tr(f) = tr
l

(f) = tr
r

(f)

is the tra
e of f . In a spheri
al 
ategory, the left and right dimensions of any

obje
t X are equal. Then dim(X) = dim
l

(X) = dim
r

(X) is the dimension of

X . The properties of the tra
es imply that in any spheri
al 
ategory, tr and

dim are ⊗-multipli
ative. Indeed, for any endomorphisms f, g ∈ EndC(X),

tr(f⊗g) = tr
l

(f⊗g) = tr
l

(tr
l

(f)·g) = tr
r

(tr
l

(f)·g) = tr
l

(f)tr
r

(g) = tr(f)tr(g).

1.3. Graphi
al 
al
ulus

In this se
tion, we brie�y dis
uss a method �rstly suggested by Penrose [Pe℄

that allows to represent morphisms in 
ategories by diagrams. We fo
us on

the 
ase of pivotal 
ategories.
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1.3.1. Pi
tori
al representation. We present morphisms in a pivotal


ategory C by plane diagrams 
alled Penrose diagrams, that must be read

from the bottom to the top. The diagrams are made of two elements:

• oriented ar
s, ea
h of them 
olored with an obje
t of C,
• boxes, ea
h of them 
olored with a morphism of C.

The ar
s 
onne
t the boxes and have no self or mutual interse
tions. We

represent the identity idX of an obje
t X of C, a morphism f : X → Y , and

the 
omposition of two morphisms f : X → Y and g : Y → Z as follows:

idX =
PSfrag repla
ements

X

, f =PSfrag repla
ements

X

Y

f , and g ◦ f =

PSfrag repla
ements

X

Y

Z

f

g

.

The monoidal produ
t of two morphisms f : U → V and g : W → Z is repre-

sented by juxtaposition of the diagrams:

f ⊗ g =
PSfrag repla
ements

U

V

f

PSfrag repla
ements

W

Z

g .

We also use boxes with several ar
s atta
hed to their horizontal sides, for

example a morphism f : A⊗B⊗C → A′⊗B′⊗C ′
in C 
an be represented in

various ways:

PSfrag repla
ements

A′ B′ C ′

f

A B C

, or

PSfrag repla
ements

C

A′ B′ ⊗ C ′

f

A⊗B

, or

PSfrag repla
ements

A′ B′ C ′

A⊗ B ⊗ C

f .

The dual of an obje
t is en
oded by the orientation of the ar
 
olored by

that obje
t. That is, an ar
 
olored with X ∈ Ob(C) and oriented downward


ontributes X to the sour
e/target of morphisms. An ar
 
olored with X ∈
Ob(C) and oriented upward 
ontributes X∗

to the sour
e/target of morphisms.

For example, idX∗
and a morphism f : X∗ ⊗ Y → A∗ ⊗ B ⊗ C∗

in C 
an be

represented as:

idX∗ =
PSfrag repla
ements

X∗

=
PSfrag repla
ements

X

and f =

PSfrag repla
ements

A B C

f

X Y

The left/right evaluations and the left/right 
oevaluations for an obje
t X
of C, are depi
ted as follows:

evX =PSfrag repla
ements

X
, ẽvX =PSfrag repla
ements

X
,

coevX =PSfrag repla
ements X , c̃oevX =PSfrag repla
ements X.
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The dual f ∗ : Y ∗ → X∗
of a morphism f : X → Y in C are graphi
ally

presented as follows:

f ∗ =
PSfrag repla
ements

X

Y

f =

PSfrag repla
ements

X

Y

f .

The fa
t that coevX and c̃oevX are the inverses of pairings evX and ẽvX for

X ∈ Ob(C) is graphi
ally expressed by the following identities:

PSfrag repla
ements

X

=
PSfrag repla
ements

X

=
PSfrag repla
ements

X

.

For the dual obje
t X∗
of X we have:

PSfrag repla
ements

X

=
PSfrag repla
ements

X

=

PSfrag repla
ements

X

.

The previous relations are 
alled duality identities. The dual morphism iden-

tities may be represented graphi
ally as:

PSfrag repla
ements

XY

f ∗ =
PSfrag repla
ements

XY

f ,
PSfrag repla
ements

XY

f ∗ =

PSfrag repla
ements

XY

f ,

PSfrag repla
ements

X Y

f ∗ =
PSfrag repla
ements

X Y

f ,
PSfrag repla
ements

X Y

f ∗ =

PSfrag repla
ements

X Y

f .

The left and right tra
es of a morphism g : X → X are depi
ted as follows:

tr
l

(g) =
PSfrag repla
ements

X g
and tr

r

(g) =

PSfrag repla
ements

Xg .

In the parti
ular 
ase in whi
h g = idX , the left/right dimensions of X are

represented as follows:

dim
l

(X) =
PSfrag repla
ements

X

and dim
r

(X) =PSfrag repla
ements

X

.
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The following theorem is due to Joyal and Street [JS1, JS2℄.

Theorem 1.3. If C is a pivotal 
ategory, then the morphism represented

by a Penrose diagram P is invariant under isotopies of P in the 2-dimensional

plane.

1.3.2. Signed obje
ts. A signed obje
t of a pivotal 
ategory C is a pair (X, ε)
where X ∈ Ob(C) and ε ∈ {+,−}. The 
orresponding obje
t in C of pair (X, ε)
is noted by Xε

and de�ned as follow:

Xε =

{
X if ε = +,

X∗
if ε = −.

We extend, for n ≥ 1, this notation to any tuple

S = ((X1, ε1), . . . , (Xn, εn))

of signed obje
ts of C, we set

XS = Xε1
1 ⊗ · · · ⊗X

εn
n ∈ Ob(C).

For an empty tuple of signed obje
ts S = ∅, we set X∅ = 1. The dual of a

tuple S of signed obje
ts of C is

S∗ = ((Xn,−εn), . . . , (X1,−ε1)).

1.3.3. Generalized evaluations. For any tuple S = ((X1, ε1), . . . , (Xn, εn))
of a signed obje
t we 
onsider the following pairing

(1.3) evS : XS∗ ⊗XS → 1 :


alled evaluation. Let

(1.4) coevS : 1→ XS ⊗XS∗

be a morphism in C 
alled 
oevaluation. They are respe
tively represented by

the following Penrose diagrams:

PSfrag repla
ements

X1
X2 Xn

···

and

PSfrag repla
ements

X1 X2

Xn

···

Here the ar
 labeled with Xi is oriented toward the right endpoint if εi = +
and toward the left endpoint if εi = −.

Using graphi
al 
al
ulus, we prove that

(idXS
⊗ evS)(coevS ⊗ idXS

) = idXS

and

(evS ⊗ idXS∗ )(idXS∗ ⊗ coevS) = idXS∗ .

Thus, the pairing evS is non-degenerate with inverse coevS. By de�nition, for

n = 0, we have: ∅∗ = ∅ and ev∅ = coev∅ = id
1

. The tuple S also determines

an isomorphism

ΨS : XS → (XS∗)∗.
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For n = 0, we set Ψ∅ = coev
1

= c̃oev
1

: 1 → 1

∗
. For n = 1 and X ∈ Ob(C),

set

Ψ(X,−) = idX∗ : X∗ → X∗
and Ψ(X,+) = ψX : X → X∗∗,

where

ψX = (ẽvX ⊗ idX∗∗)(idX ⊗ coevX∗).

For n ≥ 2, we de�ne ΨS as the 
omposition of the isomorphism

Ψ(X1,ε1) ⊗ · · · ⊗Ψ(Xn,εn) : XS = Xε1
1 ⊗ · · · ⊗X

εn
n → (X1

−ε1)
∗
⊗ · · · ⊗ (Xn

−εn)
∗

with the isomorphism

(X1
−ε1)

∗
⊗ · · · ⊗ (Xn

−εn)
∗
≃ (Xn

−εn ⊗ · · · ⊗X1
−ε1)

∗
= (XS∗)∗.

By [TVi, Lemma 2.4℄, for any tuple S of signed obje
ts of C,

evXS
(ΨS∗ ⊗ idXS

) = evS = ẽvXS∗(idXS∗ ⊗ΨS),

(idXS
⊗ΨS∗

−1)coevXS
= coevS = (ΨS

−1 ⊗ idXS∗)c̃oevXS∗

1.4. Fusion 
ategories

In this se
tion we re
all some basi
s on linear and fusion 
ategories. We

re
all that the symbol k is used for a non-zero 
ommutative ring.

1.4.1. Linear 
ategories. A 
ategory C is k-linear if for all obje
ts X, Y
of C, the set HomC(X, Y ) is endowed with a stru
ture of a left k-module so

that the 
omposition of morphisms in C is k-bilinear. For shortness, k-linear


ategories are 
alled k-
ategories. A fun
tor F : C → D between k-
ategories

is k-linear if its a
tion on the Hom-sets is k-linear, that is, if for all X, Y ∈
Ob(C), the map

HomC(X, Y )→ HomD(F (X), F (Y )), f 7→ F (f)

is k-linear. For example, the identity fun
tor of a k-
ategory is k-linear.

Clearly, the 
omposition of k-linear fun
tors is a k-linear fun
tor. By a monoidal

(respe
tively, left/right rigid, rigid, pivotal, spheri
al) k-
ategory, we mean a k-


ategory whi
h is monoidal (respe
tively, left/right rigid, rigid, pivotal, spher-

i
al) and su
h that monoidal produ
t of morphisms is k-bilinear. Clearly, any

monoidal sub
ategory of a monoidal k-
ategory is a monoidal k-
ategory. If C
is a monoidal k-
ategory, then so are Cop, C⊗op

, and Crev (see Se
tion 1.1.4).

Equivalen
es of monoidal/pivotal k-
ategories are always required to be

k-linear. In parti
ular, two pivotal k-
ategories are equivalent if there is a k-

linear pivotal fun
tor between them whi
h is an equivalen
e of the underlying


ategories.

It follows from the de�nitions that all left/right dual fun
tors of a left/right

rigid k-
ategory are k-linear. In parti
ular, given a pivotal k-
ategory C, the
dual fun
tor ?∗ : Crev → C is k-linear, and so Crev and C are equivalent piv-

otal k-
ategories (see Se
tion 1.2.6). Consequently, C⊗op = (Cop)rev and Cop

are equivalent pivotal k-
ategories.
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1.4.2. Dire
t sum. Let (Xα)α∈A be �nite family of obje
ts in a pivotal

k-
ategory C. An obje
t X ∈ Ob(C) is a dire
t sum of the family (Xα)α∈A if

there is a family (pα, qα)α∈A of morphisms in C with:

pα : X → Xα and qα : Xα → X

for all α ∈ A, su
h that

idX =
∑

α∈A

qαpα and pαqβ = δα,β idXα
for all α, β ∈ A,

where δα,β is the Krone
ker symbol. If su
h X exists, it is unique, up to a

unique isomorphism 
ommuting with pα and qα. We denote X as

⊕
α∈AXα.

1.4.3. Simple obje
ts in linear 
ategories. Let C be a k-
ategory. An

obje
t X of C is simple if the map k → EndC(X) that sends k 7→ k idX is

an isomorphism of k-modules. Let X be an obje
t of C, then the following


onditions are equivalent:

(i) X is simple;

(ii) the map k → EndC(X) that sends k 7→ k idX is an isomorphism of

k-modules;

(iii) the k-algebra EndC(X) is isomorphi
 to k;

(iv) the k-module EndC(X) is free of rank 1.

The k-bilinearity of the 
omposition of morphisms in C implies that all ob-

je
ts of C isomorphi
 to a simple obje
t are simple. Any monoidal k-
ategory

whose unit obje
t 1 is simple is pure (see Se
tion 1.1.6). The left and right

tra
es of endomorphisms in a pivotal k-linear 
ategory are k-linear. This fol-

lows from the k-linearity of the monoidal produ
t and 
omposition of mor-

phisms.

1.4.4. Non-degenerate 
ategories. Let C be a monoidal k-
ategory.

Any pairing e : X ⊗ Y → 1 between obje
ts X and Y of C indu
es a k-linear

homomorphism

HomC(1, X)⊗k HomC(1, Y )→ EndC(1), α⊗k β 7→ e(α⊗ β).

If the unit obje
t 1 of C is simple we identify EndC(1) = k (see Se
tion 1.4.3)

and so we get a pairing in Modk

(1.5) HomC(1, X)⊗k HomC(1, Y )→ k, α⊗k β 7→ e(α⊗ β).

A monoidal k-
ategory C is non-degenerate if its unit obje
t is simple and

for ea
h non-degenerate pairing e : X ⊗ Y → 1 in C, the indu
ed pairing (1.5)

is non-degenerate in the monoidal 
ategory Modk.

Lemma 1.4. Let C be a non-degenerate pivotal k-
ategory. Then the left

and right dimensions of any simple obje
t of C are invertible in k.

Proof. Let i be a simple obje
t of C. Consider the right evaluation of i
given by ẽvi : i⊗ i

∗ → 1. By the following bije
tion

HomC(1, i
∗ ⊗ i)→ HomC(i

∗, i∗), α 7→ (idi∗ ⊗ ẽvi)(α⊗ idi∗)
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whose inverse is given by the map that sends any β ∈ EndC(i
∗) to

β 7→ (β ⊗ idi)c̃oevi

we have that HomC(1, i
∗⊗ i) ≃ HomC(i

∗, i∗). Sin
e i∗ is simple, HomC(1, i
∗⊗ i)

is a free k-module of rank 1 with basis ve
tor c̃oevi : 1→ i∗⊗ i. Consider now
the pairing in the 
ategory Modk:

ωi : HomC(1, i
∗ ⊗ i)⊗k HomC(1, i

∗ ⊗ i)→ k

given by

ωi(c̃oevi ⊗k c̃oevi) =
PSfrag repla
ements

i

= dim
l

(i) ∈ k.

The non-degenera
y of ωi and Lemma 1.1 imply that dim
l

(i) is invertible in k.

Using a similar argument for the pairing evi : i
∗ ⊗ i → 1 we dedu
e the same

result for dim
r

(i). �

1.4.5. Fusion 
ategories. A fusion k-
ategory is a rigid k-
ategory C
su
h that there is a �nite set I of simple obje
ts of C satisfying the following


onditions:

(a) the unit obje
t 1 ∈ Ob(C) belongs to I;
(b) HomC(i, j) = 0 for any distin
t i, j ∈ I, ;
(c) every obje
t of C is a dire
t sum of a �nite family of elements of I.

Su
h a set I is 
alled a representative set of simple obje
ts of C.
Let C be a fusion k-
ategory and let I be a representative set of simple ob-

je
ts of C. Condition (a) implies that C is pure and EndC(1) ≃ k. Condition (c)
implies that for ea
h obje
t X of C, there is a �nite family of morphisms

(pα : X → iα, qα : iα → X)α∈A

su
h that

iα ∈ I , idX =
∑

α∈A

qαpα and pαqβ = δα,β idiα for all α, β ∈ A.

We 
all su
h a family an I-partition of X .

Given a simple obje
t i of C, an i-partition of X ∈ Ob(C) is a family

of morphisms (pα : X → i, qα : i → X)α∈A′
su
h that (pα)α∈A′

is a basis

of HomC(X, i), (qα)α∈A′
is a basis of HomC(i, X), and pαqβ = δα,βidi for all

α, β ∈ A′
. Note that the 
ardinality of the set A′

is equal to the number

of simple obje
ts isomorphi
 to i in a I-partition of X . For any I-partition
(pα : X → iα, qα : iα → X)α∈A of X and any i ∈ I, the family (pα, qα)α∈Ai

is an i-partition of X , where Ai = {α ∈ A | iα = i}. Conversely, a union of

i-partitions of X over all i ∈ I is an I-partition of X .

Let C be a pivotal fusion k-
ategory. Sin
e C is pure (be
ause 1 is simple),

the tra
es of endomorphisms and the dimensions of obje
ts are⊗-multipli
ative.

By [TVi, Lemma 4.3℄, C is non-degenerate. Then it follows from Lemma 1.4

that the left/right dimensions of any simple obje
t of C are invertible in

EndC(1) ≃ k.
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Two pivotal fusion k-
ategories are equivalent if there is a k-linear pivotal

equivalen
e between them. If C is a pivotal fusion k-
ategory, then so are its

opposites

Cop = (Cop,⊗,1), C⊗op = (C,⊗op,1), Crev = (Cop,⊗op,1).

By Se
tion 1.2.6, Crev is equivalent to C, and Cop is equivalent to C⊗op
.

1.4.6. Enri
hed graphi
al 
al
ulus. Let C be a pivotal fusion k-
ategory.

Consider a simple obje
t i of C and an i-partition (pα : X → i, qα : i→ X)α∈A
of an obje
t X of C. Consider a (�nite) formal sum of C-
olored Penrose

diagrams

(1.6)

∑

α∈A
PSfrag repla
ements

X

X i

i

pα qα

where the area outside the dotted line represents a part of these diagrams

independent of α ∈ A and, in parti
ular, not involving (pα, qα). By the

Penrose graphi
al 
al
ulus and the k-linearity of C, the sum (1.6) represents a

morphism in C. Using 
hanges of basis, we obtain that the tensor

(1.7)

∑

α∈A

pα ⊗ qα ∈ HomC(X, i)⊗k HomC(i, X)

does not depend on the 
hoi
e of the i-partition of X . The morphism (1.6) in C
also does not depend on this 
hoi
e. Therefore we 
an eliminate the C-
olors
pα, qα of the two boxes, keeping in mind only the order of the boxes and the

fa
t that they jointly stand for the tensor (1.7). We will graphi
ally represent

this pair of boxes by two 
urvilinear boxes (a semi-disk and a 
ompressed

re
tangle) standing respe
tively for pα and qα where α runs over A:

PSfrag repla
ements

X

X i

i

=
∑

α∈A

PSfrag repla
ements

X

X i

i

pα qα

The area outside the dotted line in the pi
ture are the same as above. We will

also use similar notation obtained from (1.7) by reorienting the X-labeled ar
s

upward and repla
ing (pα, qα)α∈A with an i-partition of X∗
, or by reorienting

the i-labeled ar
s upward and repla
ing (pα, qα)α∈A with an i∗-partition of X .

We will allow several ar
s to be atta
hed to the bottom of the semi-disk and to
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the top of the 
ompressed re
tangle in (1.7). We will allow to erase i-labeled
ar
s for i = 1. In parti
ular,

PSfrag repla
ements

X

X

=
∑

α∈A
PSfrag repla
ements

X

X

pα qα

where (pα, qα)α∈A is any 1-partition of X .

1.4.7. Properties. For any obje
t X of a pivotal fusion k-
ategory C and
any simple obje
t i of C, we have

(1.8)

PSfrag repla
ements

X

i

i

= N i
X

PSfrag repla
ements

i

where N i
X is the rank of the free k-modules HomC(X, i) and HomC(i, X). This

equality follows from the fa
t that given an i-partition (pα, qα)α∈A of X , we

have pαqα = idi for all α ∈ A and card(A) = N i
X . Next, pi
k a representative

set I of simple obje
ts of C. Sin
e the union of i-partitions of X ∈ Ob(C) over
all i ∈ I is an I-partition of X , we have

(1.9)

∑

i∈I
PSfrag repla
ements

i

X

X

=

PSfrag repla
ements

X

.
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This formula and the fa
t that HomC(1, i) = 0 = HomC(i,1) for all i ∈ I \ {1}
imply that for any f ∈ HomC(1, X) and g ∈ HomC(X,1),

(1.10)

PSfrag repla
ements

X

X

f

=

PSfrag repla
ements

XX

f

and

PSfrag repla
ements

X

X

g

=

PSfrag repla
ements

X

g

.

Finally, for any obje
t X of C and any simple obje
t i of C, we have:

(1.11)

PSfrag repla
ements

X

X i

i

= dim
l

(i)
PSfrag repla
ements

X

X
i

i

.

This equality follows from the fa
t that if (pα, qα)α∈A is a 1-partition of i∗⊗X ,

then (Pα, Qα)α∈A is a i-partition of X , where

Pα = dim
l

(i)
PSfrag repla
ements

X

i

pα
and Qα =

PSfrag repla
ements

X

i

qα
.

Similarly, we have:

(1.12)

PSfrag repla
ements

X

X i

i

= dim
r

(i)
PSfrag repla
ements

X

X

i

i

.



CHAPTER 2

Invariants of 
olored graphs

In this 
hapter, we asso
iate with ea
h linear pivotal 
ategory a family of

modules 
alled multipli
ity modules (Se
tion 2.1). Then we review an invariant

of 
olored planar graphs whi
h takes values in tensor produ
ts of multipli
ity

modules (Se
tion 2.2). Finally, we study in detail duality pairings for 
olored

graphs and their asso
iated 
ontra
tion ve
tors (Se
tion 2.3). The invariant

of 
olored graphs and the 
ontra
tion ve
tors will be our main tools in the

topologi
al 
onstru
tions of Chapter 4.

2.1. Multipli
ity modules

In this se
tion we asso
iate with ea
h linear pivotal 
ategory a family of

modules 
alled multipli
ity modules.

2.1.1. Cy
li
 sets. A 
y
li
 C-set is a triple (E, c, ε) 
onsisting of a

nonempty �nite set E endowed with a 
y
li
 order and two maps c : E → Ob(C)
and ε : E → {+,−}. In other words, a 
y
li
 C-set is a nonempty 
y
li
ally

ordered �nite set whose elements are equipped with a signed obje
t of C. For
shortness, we will often write E for (E, c, ε).

An isomorphism between two 
y
li
 C-sets E and E ′
is a bije
tion E →

E ′
preserving the 
y
li
 order and 
ommuting with the maps to Ob(C) and

{+,−}. More generally, a weak isomorphism between 
y
li
 C-sets (E, c, ε) and
(E ′, c′, ε′) is a pair φ = (ρ, ϕ) 
onsisting of a bije
tion ρ : E → E ′

preserving

the 
y
li
 order and a family of isomorphisms in C

ϕ = {ϕe : c(e)
ε(e) → c′(ρ(e))ε

′(ρ(e))}e∈E.

2.1.2. Permutation maps. ForX, Y ∈ Ob(C) we de�ne the permutation

map

πX,Y : HomC(1, X ⊗ Y )→ HomC(1, Y ⊗X)

to be the map 
arrying any element α ∈ HomC(1, X ⊗ Y ) to

πX,Y (α) = (evX ⊗ idY⊗X)(idX∗ ⊗ α⊗ idX)c̃oevX .

Note that, using the isotopy invarian
e of the graphi
al 
al
ulus, we have:

πX,Y (α) = (idY⊗X ⊗ ẽvY )(idY ⊗ α⊗ idY ∗)coevY .

The permutation maps are k-linear isomorphisms and for any X, Y, Z ∈ Ob(C)
have the following properties:

(a) πX,Y
−1 = πY,X ;

(b) πX,1 = π
1,X = idHomC(1,X);

23
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(
) πX⊗Y,Z = πY,Z⊗XπX,Y⊗Z and πX,Y⊗Z = πZ⊗X,Y πX⊗Y,Z .

2.1.3. Multipli
ity modules. Let E = (E, c, ε) be a 
y
li
 C-set, we

derive from this data a k-module H(E). For e ∈ E, set

He(E) = HomC(1, c(e1)
ε(e1) ⊗ c(e2)

ε(e2) ⊗ · · · ⊗ c(en)
ε(en)),

where n is the 
ardinality of E and e = e1 < e2 < · · · < en are the elements

of E in the given 
y
li
 order starting from e. If f ∈ E \ {e}, then f = ek for

some integer k ∈ {2, . . . , n}. Set

[e, f) = c(e1)
ε(e1) ⊗ c(e2)

ε(e2) ⊗ · · · ⊗ c(ek−1)
ε(ek−1)

and

[f, e) = c(ek)
ε(ek) ⊗ c(ek+1)

ε(ek+1) ⊗ · · · ⊗ c(en)
ε(en).

Clearly

He(E) = HomC(1, [e, f)⊗ [f, e)) and Hf(E) = HomC(1, [f, e)⊗ [e, f)).

De�ne pe,f : He(E)→ Hf(E) by

pe,f =

{
π[e,f),[f,e) if e 6= f,
idHe

if e = f.

The properties of the permutation maps imply that pe,f is a k-linear isomor-

phism and that pf,g pe,f = pe,g for all e, f, g ∈ E. Thus the family

({He(E)}e∈E, {pe,f}e,f∈E)

is a proje
tive system of k-modules and k-linear isomorphisms. The multipli
-

ity module H(E) is the proje
tive limit of this system:

H(E) = lim←−He(E).

The k-module H(E) depends only on E and it is endowed with a family of

k-linear isomorphisms

{τEe : H(E)→ He(E)}e∈E

su
h that pe,f τ
E
e = τEf for all e, f ∈ E. We 
all τEe the 
one isomorphism and

the family {τEe }e∈E the universal 
one.

An isomorphism φ = (ρ, ϕ) between two 
y
li
 C-sets E and E ′
indu
es a

family of k-linear isomorphisms

{ϕe : He(E)→ Hρ(e)(E
′)}e∈E

whi
h 
ommute with the maps pe,f as above. These isomorphisms indu
e a

k-linear isomorphism H(E)→ H(E ′) denoted H(φ).

2.2. An invariant of 
olored planar graphs

In this se
tion, we de�ne an invariant of 
olored planar graphs. Throughout

this se
tion, we orient the plane R2

ounter
lo
kwise and C is a k-linear pivotal


ategory.
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2.2.1. Graphs. By a graph we mean a topologi
al spa
e G obtained from

a �nite number of disjoint 
opies of the 
losed interval [0, 1] by identi�
ation of


ertain endpoints. The images of the 
opies of [0, 1] in G are 
alled edges of G.
The endpoints of the edges of G (that is, the images of 0, 1 ∈ [0, 1]) are 
alled

verti
es of G. Ea
h edge of G 
onne
ts two (possibly, 
oin
iding) verti
es, and

ea
h vertex of G is in
ident to at least one edge. By half-edges of G, we mean

the images of the 
losed intervals [0, 1/2] ⊂ [0, 1] and [1/2, 1] ⊂ [0, 1] in G.
The number of half-edges of G in
ident to a vertex v of G is 
alled the valen
e

of v and for any vertex is greater then or equal to 1. A graph is oriented if

all its edges are oriented. An half edge in
ident to v is said to be in
oming if

it is oriented towards and outgoing otherwise. The empty set is viewed as an

oriented graph with no verti
es and no edges.

2.2.2. Colored graphs. A C-
olored graph is an oriented graph su
h that

ea
h edge is endowed with an obje
t of C 
alled the 
olor of this edge. Let Σ
be an oriented surfa
e. A C-
olored graph in Σ is a graph embedded in Σ. For
shortness, by a C-
olored planar graph we mean a C-
olored graph embedded

in an oriented plane (i.e., an oriented surfa
e homeomorphi
 to R2
).

2.2.3. The k-module asso
iated to C-
olored graphs. Let Σ be an

oriented surfa
e and let G be a C-
olored graph in Σ. A vertex v of G deter-

mines a 
y
li
 C-set Ev = (Ev, cv, εv) as follows: Ev is the set of half-edges of

G in
ident to v with the 
y
li
 order indu
ed by the opposite orientation of Σ,
the map cv : Ev → Ob(C) assigns to a half-edge e ∈ Ev the 
olor of the edge

of G 
ontaining e and the map εv : Ev → {+,−} assigns to e ∈ Ev the sign +
if e is oriented towards v and − otherwise. Note that the 
ardinality of Ev is

equal to the valen
e of v. Let Hv(G) = H(Ev) be the multipli
ity module of

Ev, and set

H(G) =
⊗

v

Hv(G),

where⊗ is the unordered tensor produ
t of k-modules, that run over all verti
es

v of G. By de�nition, for G = ∅, we have H(G) = k.

For a vertex v of G, the k-module Hv(G) 
an be des
ribed as follows. Let

n ≥ 1 be the valen
e of v and let e1 < e2 < · · · < en < e1 be the half-edges

of G in
ident to v with 
y
li
 order indu
ed by the opposite orientation of Σ.
Then we have the 
one isomorphism

τEv

e1
: Hv(G)

≃
−−−−→ HomC(1, cv(e1)

εv(e1) ⊗ · · · ⊗ cv(en)
εv(en)).

By de�nition ofHv(G), the 
one isomorphism determined by di�erent elements

of Ev are related via 
omposition with the permutation maps. For example,
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the trivalent vertex v of the following C-
olored graph:

PSfrag repla
ements

i j

k

v .

with i, j, k ∈ Ob(C), give rise to the k-module Hv(G) isomorphi
,via the 
one

isomorphism, to the k-modules

HomC(1, i⊗ j
∗ ⊗ k) ≃ HomC(1, j

∗ ⊗ k ⊗ i) ≃ HomC(1, k ⊗ i⊗ j
∗).

For any disjoint C-
olored graphs G1 and G2 in Σ, there is a 
anoni
al

k-linear isomorphism between the k-modules

H(G1 ⊔G2) ≃ H(G1)⊗H(G2).

2.2.4. The invariant FC. Let G be a C-
olored graph in R2
. For ea
h

vertex v of G, pi
k a half-edge ev ∈ Ev and deform G near v so that the half-

edges in
ident to v lie above v with respe
t to the se
ond 
oordinate on R
2

and ev is the leftmost of them. Pi
k any αv ∈ Hv(G) and repla
e v by a box


olored with τEv
ev

(αv), where τ
Ev

is the universal 
one of Hv(G):

PSfrag repla
ements

ev

v

7→
PSfrag repla
ements

ev

v 7→
PSfrag repla
ements

τEv
ev

(αv) .

This transforms G into a C-
olored Penrose diagram without free ends.

Let FC(G)(⊗vαv) ∈ EndC(1) be the asso
iated morphism 
omputed via the

Penrose graphi
al 
al
ulus. This extends by linearity to a k-linear homomor-

phism

FC(G) : H(G) = ⊗vHv(G)→ EndC(1).

By de�nition, for G = ∅, the map FC(G) : H(G) = k→ EndC(1) is the k-linear
homomorphism 
arrying 1k to id

1

.

By [TVi, Lemma 12.2℄, the homomorphism FC(G) : H(G)→ EndC(1) is a
well-de�ned isotopy invariant of the C-
olored graph G in R2

.
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2.2.5. Example. Consider the following C-
olored planar graph with four

verti
es a, b, c, d and four edges 
olored by X, Y, Z, T ∈ Ob(C):

G =
PSfrag repla
ements

X Y

Z

Ta

b

c d

The half-edges ea1, e
a
2 in
ident to a, eb1 and eb2 in
ident to b, ec1, e

c
2, e

c
3 in
ident to

c and ed1 in
ident to d are reported below:

ea1 =
PSfrag repla
ements

a

ea2 =
PSfrag repla
ements

a

eb1 =
PSfrag repla
ements

b

eb2 =
PSfrag repla
ements

b

ec1 =
PSfrag repla
ements

c
ec2 =

PSfrag repla
ements

c

ec3 =
PSfrag repla
ements

c

ed1 =
PSfrag repla
ements

d
.

The total order 
ompatible with the 
y
li
 order on Ea = {ea1, e
a
2} is ea1 < ea2,

on Eb = {e
b
1, e

b
2} is e

b
1 < eb2 and on Ec = {e

c
1, e

c
2, e

c
3} is e

c
1 < ec2 < ec3. There are

several 
one isomorphisms asso
iated with ea
h vertex:

τEa

ea1
: Ha(G)→ HomC(1, X ⊗ T

∗),

τEb

eb1
: Hb(G)→ HomC(1, X

∗ ⊗ Y ),

τEc

ec1
: Hc(G)→ HomC(1, T ⊗ Y

∗ ⊗ Z),

τEd

ed1
: Hd(G)→ HomC(1, Z

∗) .

These isomorphisms are related to ea
h other via 
omposition with the per-

mutation maps, see Se
tion 2.1.3.
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By de�nition, H(G) = Ha(G) ⊗ Hb(G) ⊗ Hc(G) ⊗ Hd(G). For any α ∈
Ha(G), β ∈ Hb(G), γ ∈ Hc(G) and δ ∈ Hd(G) we have

FC(α⊗ β ⊗ γ ⊗ δ) =
PSfrag repla
ements

X Y
Z

T

τEa

ea1
(α)

τEb

eb1
(β)

τEc

ec1
(γ) τEd

ed1
(δ)

.

2.2.6. Properties of FC. We state some properties of the invariant FC of

C-
olored graphs in R2
.

(A) Let G′
be the C-
olored graph in R2

obtained from a C-
olored graph

G ⊂ R2
by repla
ing the 
olor X of an edge e by an isomorphi
 ob-

je
t X ′
of C. Any isomorphism X ′ ≃ X indu
es a weak isomorphism

between the 
y
li
 C-sets (see Se
tion 2.1.1) asso
iated with the end-

points of e in G and G′
, and the latter indu
es a k-linear isomorphism

Φ: H(G′)→ H(G). Then

FC(G
′) = FC(G)Φ.

We 
all this property the naturality of C.
(B) If an edge e of a C-
olored graph G in R2

is 
olored with 1 and the

endpoints of e are also endpoints of other edges of G, then G′ =
G \ Int(e) ⊂ R2

inherits from G the stru
ture of a C-
olored graph,

there is a 
anoni
al k-linear isomorphism ∆: H(G′)→ H(G), and

FC(G
′) = FC(G)∆.

Indeed, by the Penrose 
al
ulus, an edge 
olored with 1 
an be deleted

without 
hanging the asso
iated morphism.

(C) If G,G′
are disjoint C-
olored graphs in R2

lying on di�erent sides of

a straight line, then

FC(G∐G
′) = µ(FC(G)⊗ FC(G

′))Θ

where Θ: H(G∐G′)→ H(G)⊗H(G′) is the 
anoni
al isomorphism

and µ is multipli
ation in EndC(1). We 
all this property the ⊗-
multipli
ativity of FC.

(D) If C is pure, then

FC




PSfrag repla
ements

i




= FC




PSfrag repla
ements

i



.
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where the C-
olored graphs on the left and on the right 
oin
ide outside

the big re
tangles and the small re
tangles on both sides stand for the

same C-
olored graph.

2.2.7. The 
ase of a pivotal fusion k-
ategory. Suppose that C is a

pivotal fusion k-
ategory. Re
all that EndC(1) ≃ k. For any C-
olored graph

G in R2
, the k-module H(G) is free of �nite rank and

FC(G) ∈ H(G)⋆ = Homk(H(G), k).

For any non-isomorphi
 simple obje
ts i and j of C we have

(2.1) FC




PSfrag repla
ements

i

j


 = 0

where the white box stands for any pie
e of a C-
olored graph with one input

and one output as in the pi
ture. Formula (2.1) holds be
ause in a fusion


ategory for non-isomorphi
 simple obje
ts we have HomC(i, j) = 0.

Lemma 2.1. For any simple obje
t i of C, the following equalities hold:

FC




PSfrag repla
ements

i

i


 = dim

l

(i)−1
FC




PSfrag repla
ements

i


⊗ FC




PSfrag repla
ements

i




and

FC




PSfrag repla
ements

i

i


 = dim

r

(i)−1
FC




PSfrag repla
ements

i


⊗ FC




PSfrag repla
ements

i


 .

In the above equalities, the small white boxes represent pie
es of C-
olored pla-

nar graphs whi
h are the same in both sides.

Proof. Sin
e i is a simple obje
t of C, any endomorphism ϕ ∈ HomC(i, i)
expands as ϕ = λ idi with λ ∈ k. The k- linearity of the tra
e implies tr

l

(ϕ) =
λ tr

l

(idi) = λ dim
l

(i) and tr
r

(ϕ) = λ tr
r

(idi) = λ dim
r

(i). Sin
e dim
l

(i)
and dim

r

(i) are invertible by Lemma 1.4, we dedu
e λ = dim
l

(i)−1 tr
l

(ϕ)
and λ = dim

r

(i)−1 tr
r

(ϕ). We obtain ϕ = dim
l

(i)−1 tr
l

(ϕ) idi and ϕ =
dim

r

(i)−1 tr
r

(ϕ) idi. The statement follows from the ⊗-multipli
ativity of FC

(see Se
tion 2.2.6). �

2.3. Duality and 
ontra
tion ve
tors

In this se
tion, we de�ne 
ontra
tion ve
tors asso
iated to edges of 
olored

graphs.
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2.3.1. Duality pairings. Let C be a pivotal k-
ategory. Every tuple S
of signed obje
ts of C (see Se
tion 1.3.2) gives rise to a pairing in Modk

ωS : HomC(1, XS∗)⊗k HomC(1, XS)→ EndC(1)


alled duality pairing and de�ned by

ωS(α⊗k β) = evS(α⊗k β)

for all α ∈ HomC(1, XS∗) and β ∈ HomC(1, XS), where evS is the generalized

evaluation dis
ussed in Se
tion 1.3.3. By the isotopy invarian
e of the graphi
al


al
ulus,

ωS(α⊗k β) = ωS∗(β ⊗k α)

for all S, α, β, where S∗
is the dual of S (see Se
tion 1.3.2).

The dual of a 
y
li
 C-set (E, c, ε) is the 
y
li
 C-set (Eop, c,−ε) where Eop

is the set E endowed with the opposite 
y
li
 order of E. For ea
h element e in
a 
y
li
 C-set E = (E, c, ε), we de�ne SE

e to be the tuple of signed obje
ts of C
obtained by enumerating the elements of E in the given 
y
li
 order starting

with e and re
ording the value of c and ε. Let e∗ be the element in (Eop, c,−ε)
pre
eding e in the given 
y
li
 order on E. In this way, by 
onstru
tion we

have that

SEop

e∗ = (SE
e )

∗
.

For ea
h e ∈ E, set

ω̃e
E = ωSE

e
(τE

op

e∗ ⊗ τ
E
e ) : H(Eop)⊗k H(E)→ EndC(1),

where

τEe : H(E)→ HomC(1, XSE
e
) and τE

op

e∗ : H(Eop)→ HomC(1, X(SE
e )∗).

are the 
one isomorphisms. The pairings ω̃e
E and

ω̃e∗

Eop : H(E)⊗k H(Eop)→ EndC(1)

are equal up to permutation of tensor fa
tors. Consequently, they indu
e a

k-bilinear pairing

ωe
E : H(Eop)⊗H(E)→ EndC(1).

where ⊗ is the unordered tensor produ
t (see Appendix A) of k-modules.

Noti
e that it follows from the de�nition that

ωe∗

Eop = ωe
E.

In general, the pairing ωe
E does depend on the 
hoi
e of e ∈ E. If the 
ategory C

is spheri
al, then the pairing ωe
E does not depend on the 
hoi
e of e ∈ E (see

[TVi, Lemma 12.4℄).
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2.3.2. Contra
tion ve
tors. Let C be a non-degenerate pivotal k-
ategory.
Then all pairings 
onsidered in Se
tion 2.3.1 take values in EndC(1) ≃ k. Let E
be a 
y
li
 C-set and e ∈ E. The 
ontra
tion ve
tors

∗ω̃e
E
∈ H(E)⊗k H(Eop) and ∗ω̃e∗

Eop
∈ H(Eop)⊗k H(E)

(see Se
tion 1.1.11) of the pairings

ω̃e
E : H(Eop)⊗k H(E)→ k and ω̃e∗

Eop : H(E)⊗k H(Eop)→ k.

are equal up to permutation of the tensor fa
tors. Consequently they determine

a ve
tor

∗eE ∈ H(E)⊗H(Eop).

2.3.3. Duality pairing for C-
olored graphs. Let C be a pivotal k-


ategory. Re
all that an element e of a 
y
li
 C-set E determines a tuple SE
e

of signed obje
ts of C (see Se
tion 2.3.1). Also re
all the dual S∗
of a tuple S

of signed obje
ts of C (see Se
tion 1.3.2).

Let G and G′
be C-
olored graphs in the oriented surfa
es Σ and Σ′

. Let u
be a vertex of G and v be a vertex of G′

. A duality between u and v 
onsists

in an half-edge eu in
ident to u and an half-edge ev in
ident to v su
h that

SEv(G′)
ev

= (SEu(G)
eu

)
∗
.

Here Eu(G) and Ev(G
′) are the 
y
li
 C-sets asso
iated with the verti
es u

and v (see Se
tion 2.2.3). We say that u and v are in duality if there is a

duality between u and v.
A duality between u and v indu
es a k-bilinear pairing

ωu,v : Hu(G)⊗Hv(G
′)→ EndC(1)

de�ned as follows. The 
omposition of the 
one isomorphism

τEv(G′)
ev

: Hv(G
′) = H(Ev(G

′))→ HomC(1, XS
Ev(G′)
ev

)

with the inverse of the 
one isomorphism

τEu(G)op

eu
: H((Eu(G))

op)→ HomC(1, XS
(Eu(G))op
eu

)

indu
e a k-linear isomorphism

ϕu,v : Hv(G
′)→ H(Eu(G)

op).

The pairing

ωeu
Eu(G) : H(Eu(G)

op)⊗H(Eu(G))→ EndC(1).

from Se
tion 2.3.1 indu
es a pairing

ωu,v = ωeu
Eu(G)(ϕu,v ⊗ idHu(G)) : Hv(G

′)⊗Hu(G)→ EndC(1).

It follows from the de�nition that ωv,u = ωu,v.

If C is non-degenerate, then the 
ontra
tion ve
tor

∗eu
Eu(G) ∈ H(Eu(G))⊗H(Eu(G)

op).
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from Se
tion 2.3.2 indu
es a 
ontra
tion ve
tor

∗u,v = (idHu(G) ⊗ ϕ
−1
u,v)(∗

eu
Eu(G)) ∈ Hu(G)⊗Hv(G

′).

Note that this ve
tor does depend on the duality between u and v. It follows
from the de�nition that ∗v,u = ∗u,v.

2.3.4. Graphi
al representation of evaluations. Let C be a non-de-

generate pivotal k-
ategory. Consider two C-
olored planar graphs G and G′
.

Consider a duality between a vertex u of G and a vertex v of G′
. Re
all that

it 
onsists in an half-edge eu in
ident to u and an half-edge ev in
ident to v
satisfying some 
ondition (see Se
tion 2.3.3). We represent the evaluation

(
FC(G)⊗ FC(G

′)
)
(∗u,v) = FC(G ⊔G

′)(∗u,v)

by adding to a diagram of G ⊔ G′
a red ar
 whose endpoints determine the

duality. This means that the endpoints of this added ar
 are points near u and v
su
h that by starting from these points and following the opposite orientation

of the plane, the �rst en
ountered half-edges are eu and ev. If there are several
evaluations, we graphi
ally represent them with several red ar
s (one for ea
h

evaluation). For example:

FC




PSfrag repla
ements

ii

jj

s

s

rr

kk

tt




= FC




PSfrag repla
ements

ii

jj

s

s

rr

kk

tt

u v

u′
v′

eu

ev

eu′

ev′




(∗u,v ⊗ ∗u′,v′).

2.3.5. The 
ase of a fusion 
ategory. Let C be a pivotal fusion k-


ategory. Re
all that C is non-degenerate (see Se
tion 1.4.5).

Lemma 2.2. Let S be a tuple of signed obje
ts of C and let

ωS : HomC(1, XS∗)⊗k HomC(1, XS)→ EndC(1) ≃ k

be the pairing de�ned by S in Se
tion 2.3.1. Then the 
ontra
tion ve
tor

∗ωS
∈ HomC(1, XS)⊗k HomC(1, XS∗)

of ωS is 
omputed by

∗ωS
=

PSfrag repla
ements

S

· · · ⊗
PSfrag repla
ements

· · ·

S∗

,

where the ar
s are 
olored and oriented so that S is the tuple of signed ob-

je
ts determined by the horizontal side of the 
urvilinear boxes, and where the

notation of Se
tion 1.4.6 is used for a 1-partition of XS.
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Proof. Let ∗S ∈ HomC(1, XS)⊗k HomC(1, XS∗) be the ve
tor de�ned in

the right-hand side of the equality above. For any f ∈ HomC(1, XS),

(idHomC(1,XS) ⊗k ωS)(∗S ⊗ f)
(i)
=

PSfrag repla
ements

f

· · ·

· · ·

(ii)
=

PSfrag repla
ements · · ·

· · ·

f

(iii)
=

PSfrag repla
ements

· · ·

f

.

Here, (i) follows from the de�nitions of ωS and ∗S, (ii) from the isotopy in-

varian
e of the graphi
al 
al
ulus, and (iii) from formula (1.10). Similarly, we

have that:

(ωS ⊗k idHomC(1,XS∗))(g ⊗ ∗S) = g

This prove that ∗S is the 
ontra
tion ve
tor of ωS. �

Lemma 2.3. Let I be a representative set of simple obje
ts of C. Then:

(a) FC




PSfrag repla
ements

· · ·


 =

∑

i∈I

dim
l

(i) FC


PSfrag repla
ements

· · ·

· · ·

i


.

(b) FC




PSfrag repla
ements

· · ·


 =

∑

i∈I

dim
r

(i) FC


PSfrag repla
ements

· · ·

· · ·

i


.

(
) FC




PSfrag repla
ements

· · ·


 = FC




PSfrag repla
ements

· · ·

· · ·




where white box stands for a pie
e of a C-
olored graph (the same on

the left-hand and right hand side).

Proof. To prove the lemma we only need to 
ompare the 
ontributions

to FC of the depi
ted pie
es of C-
olored graphs for both expressions (a)

and (b). Let S = ((X1, ε1), . . . (Xn, εn)) be the tuple of signed obje
ts of C
determined by the left-hand side of the equality (a). Consider the dual tuple

S∗ = ((Xn,−εn), . . . , (X1,−ε1)) and the morphisms

evS∗ : XS ⊗XS∗ → 1, coevS∗ : 1→ XS∗ ⊗XS and ΨS∗ : XS∗ → X∗
S

de�ned in Se
tion 1.3.3. For i ∈ I, set Si = ((i,−), (X1, ε1), . . . (Xn, εn)). Then

S∗
i = ((Xn,−εn), . . . , (X1,−ε1), (i,+)) XSi

= i∗⊗XS and XS∗
i
= XS∗⊗i.

Next, 
onsider the non-degenerate pairing

ωi : HomC(1, XS∗
i
)⊗k HomC(1, XSi

)→ k.
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Let ∗i ∈ HomC(1, XSi
)⊗k HomC(1, XS∗

i
) be the asso
iated 
ontra
tion ve
tor.

Consider the following isotopy between C-
olored graphs:

PSfrag repla
ements

· · ·

· · ·

i
u

v
∼=

PSfrag repla
ements

· · ·

· · ·

i u

v

Using the de�nitions of FC and of the 
ontra
tion ve
tor ∗u,v between the

verti
es u and v, we redu
e assertion (a) to the following 
laim: for some

expansion

∗i =
∑

α

ei,α ⊗k fi,α

with ei,α ∈ HomC(1, XSi
) and fi,α ∈ HomC(1, XS∗

i
) we have

(2.2)

∑

i∈I

∑

α

dim
l

(i)
PSfrag repla
ements

· · ·· · ·

· · ·

S

Si

fi,α ei,α = idXS
,

where the top (respe
tively bottom) free ends of the Penrose diagram are


olored and oriented so that the 
orresponding tuple of signed obje
ts is S
(respe
tively S∗

). We verify (2.2) for the expansion

∗i =
PSfrag repla
ements

· · ·

S
i

⊗k

PSfrag repla
ements · · ·

S∗

i

provided by Lemma 2.2. The left-hand side of (2.2) is equal to

∑

i∈I

dim
l

(i)

PSfrag repla
ements

· · ·

· · ·

· · ·

i
(i)
=

∑

i∈I

dim
l

(i)
PSfrag repla
ements

· · ·

· · ·

i
(ii)
=

∑

i∈I

PSfrag repla
ements

· · ·

· · ·

i
(iii)
= idXS

.

Here (i) follows from the isotopy invarian
e of graphi
al 
al
ulus, (ii) from

formula (1.11) and (iii) from formula (1.9). This proves formula (a).

To prove formula (b), we pro
eed as follows. For i ∈ I, set

S̃i = ((X1, ε1), . . . (Xn, εn), (i,−)).



2.3. DUALITY AND CONTRACTION VECTORS 35

Then

S̃∗
i = ((i,+), (Xn,−εn), . . . , (X1,−ε1)) XS̃i

= XS⊗i
∗

and XS̃∗
i
= i⊗XS∗ .

Consider the non-degenerate pairing

ω̃i : HomC(1, XS̃∗
i
)⊗k HomC(1, XS̃i

)→ k.

Let ∗̃i ∈ HomC(1, XS̃i
)⊗kHomC(1, XS̃∗

i
) be the asso
iated 
ontra
tion ve
-

tor. Consider the following isotopy between C-
olored graphs:

PSfrag repla
ements

· · ·

· · ·

i
ũ

ṽ
∼=

PSfrag repla
ements

· · ·

· · ·

i

ũ

ṽ

Using the de�nition of FC and the 
ontra
tion ve
tor ∗ũ,ṽ, between the ver-

ti
es ũ and ṽ of the pairing ω̃i we redu
e the lemma to the following 
laim: for

some expansion

∗̃i =
∑

β

ẽi,α ⊗k f̃i,α

with ẽi,α ∈ HomC(1, XS̃i
) and f̃i,α ∈ HomC(1, XS̃∗

i
) we have

(2.3)

∑

i∈I

∑

α

dim
r

(i)

PSfrag repla
ements

· · ·· · ·

· · ·

S

S
i

f̃i,α ẽi,α

= idXS
,

where the top (respe
tively bottom) free ends of the Penrose diagram are


olored and oriented so that the 
orresponding tuple of signed obje
ts is S.
We verify (2.3) for the expansion

∗̃i =
PSfrag repla
ements

· · ·

S

i

⊗k

PSfrag repla
ements

· · ·

S∗

i
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provided by Lemma 2.2. The left-hand side of (2.3) is equal to

∑

i∈I

dim
r

(i)
PSfrag repla
ements

· · ·

· · ·

i

(i)
=

∑

i∈I

dim
r

(i)PSfrag repla
ements

· · ·

· · ·

i

(ii)
=

∑

i∈I
PSfrag repla
ements · · ·

· · ·

i
(iii)
= idXS

.

Here (i) follows from the isotopy invarian
e of graphi
al 
al
ulus, (ii) from

formula (1.12) and (iii) from formula (1.9). This proves formula (b).

Next we prove formula (
). This equality follows from the previous points

sin
e dim
l

(1) = dim
r

(1) = 1k and HomC(i,1) = 0 for all i ∈ I di�erent

from 1. �



CHAPTER 3

Combed 3-manifolds

This 
hapter is devoted to the theory of 
ombed 3-dimensional manifolds,

whi
h are 3-manifolds endowed with a non-vanishing ve
tor �eld. Bran
hed

spines have been �rstly 
onsidered by Gillman and Rolfsen [GR1, GR2℄ and

more expli
itly by Ishii [Is1, Is2, Is3℄. In [BP1, BP2℄, Benedetti and Petro-

nio, besides having given substantial 
ontributions to the theory of bran
hed

spines, introdu
e and develop the theory of o-graphs whi
h en
ode a spe
ial

kind of bran
hed spines.

In Se
tion 3.1, we review the theory of spines of 3-manifolds. Then, we dis-


uss the presentation of 
ombed 3-manifolds via bran
hed spines in Se
tion 3.2

and via o-graphs in Se
tion 3.3.

3.1. Spines of 3-manifolds

In this se
tion, we review the theory of spines of 3-manifolds. The main


ontributors to this theory are Casler, Matveev, and Piergallini.

3.1.1. Manifolds. For n ≥ 1, by a n-manifold, we mean a manifold of

dimension n with or without boundary. The boundary ∂M of a manifoldM is

then a (n−1)-manifold without boundary. IfM is oriented, then its boundary

∂M is oriented in su
h a way that at any point of ∂M , the orientation of M
is given by a dire
tion away from M followed by the orientation of ∂M . A


losed manifold is a 
ompa
t manifold with empty boundary. The empty set ∅
is 
onsidered as a 
losed oriented manifold of arbitrary dimension.

It is a well-known result that all 
ompa
t 3-manifolds have a smooth stru
-

ture unique up to ambient isotopy, therefore every time that we need the hy-

pothesis of smoothness we refer impli
itly to that one.

3.1.2. Polyhedra. A 2-polyhedron is a 
ompa
t topologi
al spa
e P that


an be triangulated using a �nite number of simpli
es of dimension ≤ 2 so that
all 0-simpli
es and 1-simpli
es are fa
es of 2-simpli
es. For a 2-polyhedron P ,
denote by Int(P ) the subspa
e of P 
onsisting of all points having a neighbor-

hood homeomorphi
 to R2
. By the de�nition of a 2-polyhedron, the surfa
e

Int(P ) is dense in P . A strati�
ation of a 2-polyhedron P is an (unoriented)

graph P (1)
embedded in P so that P \ Int(P ) ⊂ P (1)

. The verti
es and edges

of P (1)
are 
alled respe
tively the verti
es and edges of P . We denote the set

of verti
es of P as P (0)
. To spe
ify a strati�
ation of P it su�
es to spe
ify

the edges of P be
ause the verti
es of P are just the endpoints of the edges.

Note that any 2-polyhedron 
an be endowed with a strati�
ation. A strati�ed

polyhedron is a 2-polyhedron endowed with a strati�
ation.

37
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Cutting a strati�ed polyhedron P along the graph P (1) ⊂ P we obtain a


ompa
t surfa
e P̃ with interior P \P (1)
. The 2-polyhedron P 
an be re
overed

by gluing P̃ to P (1)
along a surje
tive map π : ∂P̃ → P (1)

. The set

π−1(P (0)) ⊂ ∂P̃

is 
losed and dis
rete, and therefore is �nite. The points of this set split ∂P̃
into ar
s whose interiors are mapped by π homeomorphi
ally onto the interiors

of edges of P . The 
onne
ted 
omponents of P̃ are 
alled the regions of P .
Ea
h 
omponent of P \ P (1) ⊂ P̃ is the interior of a unique region. We let

Reg(P ) be the �nite set of all regions of P .
A bran
h of a strati�ed 2-polyhedron P at a vertex x of P is a germ at x

of an adja
ent region. More formally, a bran
h of P at x is a homotopy 
lass

of paths [0, 1] → P starting in x and 
arrying (0, 1] to P \ P (1)
. The number

of bran
hes of P at x is equal to 
ard(π−1(x)), where π : ∂P̃ → P (1)
is the

map above. Similarly, a bran
h of P at an edge e of P is a germ at e of an

adja
ent region. Formally, a bran
h of P at e is the homotopy 
lass of paths

[0, 1]→ P starting in the interior of e and 
arrying (0, 1] to P \ P (1)
. There is

an obvious bije
tive 
orresponden
e between the bran
hes of P at e and the


onne
ted 
omponents of π−1(interior of e). The set of bran
hes of P at P is

denoted Pe. This set is �nite and non-empty. The number of elements of Pe

is 
alled the valen
e of e.
An orientation of a region r of P indu
es an orientation for ea
h edge e

of P adja
ent to r in the following way: the orientation of e followed by a

ve
tor at a point of e dire
ted inside r is the given orientation of r.
An orientation of a strati�ed polyhedron P is an orientation of the surfa
e

P \ P (1)
. To orient P , one must orient all its regions. An oriented polyhedron

is a strati�ed polyhedron endowed with an orientation.

3.1.3. Simple polyhedra. Let S be the following subset of R3
:

S = {(x1, x2, x3) ∈ R
3 | x3 = 0, or x1 = 0 and x3 > 0, or x2 = 0 and x3 < 0}

that is

S =
PSfrag repla
ements

x1

x2

x3

.

A point v of a topologi
al spa
e is said to be spe
ial if there is a homeomorphism

of S onto a neighborhood of v 
arrying the origin (0, 0, 0) to v.
A simple polyhedron is an oriented 
onne
ted polyhedron P with at least

one spe
ial point su
h that ea
h point of P has a neighborhood homeomorphi


to an open subset of S.
A simple polyhedron P has a 
anoni
al strati�
ation given by the graph

P (1) = P \ Int(P ) whose verti
es are the spe
ial points of P . Note that all
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edges of P have valen
e ≥ 2. In what follows, we endow any simple polyhedron

with this 
anoni
al strati�
ation.

3.1.4. Standard polyhedra. A standard polyhedron is a simple polyhe-

dron su
h that its regions are disks. Any standard polyhedron has 6 bran
hes

at every vertex, 3 bran
hes at every edge, and an empty boundary.

3.1.5. Spines of 3-manifolds. A spine of a 
ompa
t 
onne
ted 3-man-

ifold M is a simple polyhedron P embedded in M su
h that M \ P is home-

omorphi
 to an open 3-ball if ∂M = ∅ or to ∂M × [0, 1) if ∂M 6= ∅. Note

that if P is a spine of a 
losed 
onne
ted 3-manifold M , then P is a spine of

M \ Int(B3), where B3
is a 3-ball embedded in M . A spine of M is standard

if the underlying polyhedron is standard.

A result due to Casler [Ca℄, Matveev [Ma1℄, and Piergallini [Pi℄ asserts

that any 
ompa
t 
onne
ted 3-manifold has a standard spine.

Let P be a spine of a 
ompa
t 
onne
ted 3-manifoldM . Any vertex x of P
has a 
losed ball neighborhood Bx ⊂ M su
h that ∆x = P ∩ ∂Bx is a non-

empty graph and P ∩Bx is the 
one over ∆x with vertex x. The verti
es of ∆x

are the interse
tion points of the 2-sphere ∂Bx with the edges of P in
ident

to x. The edges of ∆x are the interse
tions of ∂Bx with the bran
hes of P
at x. Sin
e all edges of P have valen
e ≥ 2, so do all verti
es of ∆x. We 
all

Bx a P -
one neighborhood of x and 
all ∆x ⊂ ∂Bx the link graph of x.

3.1.6. Moves on spines. Let M be a 
ompa
t 
onne
ted oriented 3-

manifold. We de�ne two lo
al transformations (moves) on a spine P of M
transforming P into a new spine of M . Ea
h of these moves modi�es P inside

a 
losed 3-ball in M .

The move MP(0,2) (also 
alled lune move) pushes a bran
h of P at an edge

of P through an edge of P :

MP(0,2)
−→ .

This move in
reases the number of verti
es of P by 2, in
reases the number

of edges of P by 4, and in
reases the number of regions of P by 2. The new

region 
reated is a disk. This move keeps the orientations of the regions and,

the new region 
reated is arbitrarily oriented. The inverse move MP(0,2)

−1
is

allowed only when the orientations of two regions united under this move are


ompatible.
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The move MP(2,3) pushes a bran
h of P at a vertex of P through another

vertex of P :

MP(2,3)
−→ .

This move in
reases the number of verti
es of P by 1, in
reases the number

of edges of P by 2, and in
reases the number of regions of P by 1. The new

region 
reated is a disk. This move keeps the orientations of the regions, and

the new region 
reated is arbitrarily oriented. The inverse move MP(2,3)

−1


an always be applied.

By Matveev-Piergallini moves or MP -moves on spines of M , we mean

ambient isotopies of spines in M together with the moves MP(0,2), MP(2,3),

and their inverses. Note that all MP-moves transform standard spines into

standard spines.

Theorem 3.1 ([Ma2, Pi℄). Any two standard spines of a 
ompa
t 
on-

ne
ted oriented 3-manifold are related by a �nite sequen
e of MP-moves.

3.2. Combed 3-manifolds via bran
hed spines

In this se
tion, we review the theory of 
ombed 3-manifolds and their

presentation via bran
hed spines. For more details, we refer to [Is1, Is2,

BP1, BP2, BP3℄.

3.2.1. Combed 3-manifolds. A 
ombing on a 3-manifoldM is a ve
tor

�eld ν onM (that is, a se
tion ν : M → TM of the tangent bundle ofM) su
h

that:

(i) ν is always nonzero;

(ii) ν is tangent to ∂M exa
tly at the points of a 
ompa
t 1-dimensional

submanifold γ ⊂ ∂M ;

(iii) ν is never tangent to γ;
(iv) if ∂M 6= ∅, then the orbits of ν are 
losed intervals.

This de�nition agrees with that of a 
on
ave traversing ve
tor �eld given

in [BP2, De�nition 4.1.8℄. Note that if M is 
losed, then a 
ombing on M is

just a nowhere-zero ve
tor �eld on M .

A 
ombed 3-manifold is a pair (M, ν) where M is a 
ompa
t oriented 
on-

ne
ted 3-manifold and ν a 
ombing on M .

Two 
ombed 3-manifolds (M, ν) and (M ′, ν ′) are equivalent if there is an

orientation-preserving di�eomorphism φ : M → M ′
su
h that the 
ombings

φ∗ ◦ ν ◦ φ
−1

and ν ′ are homotopi
 within the 
lass of 
ombings on M ′
. Here,

the map φ∗ : TM → TM ′
is indu
ed by φ. We write (M, ν) ∼ (M ′, ν ′). Note

that ∼ is an equivalen
e relation on the 
lass of 
ombed 3-manifolds.
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3.2.2. Bran
hed polyhedra. Ea
h edge e of a standard polyhedron P

arries three orientations, ea
h of them being indu
ed by the orientation of the

bran
h of P at e as in Se
tion 3.1.2.

A bran
hed polyhedron is a standard polyhedron P su
h that at any edge

of P , two of the three indu
ed orientations are opposite to the third one.

Bran
hed polyhedra, 
an be viewed as the smoothed version of standard

polyhedra. Let P be a bran
hed polyhedron. Consider an edge e of P :

PSfrag repla
ements

e

.

The orientation on P allows to de�ne a tangent plane at every point of P and

we represent this as follows:

PSfrag repla
ements

e

.

With this 
onvention, there are two possible 
on�gurations for a vertex of P :

PSfrag repla
ements

and

PSfrag repla
ements

.

3.2.3. Combed 3-manifolds asso
iated to bran
hed polyhedra.

Following [BP2, Se
tion 2.1℄, to every bran
hed polyhedron P is asso
iated a


ombed 3-manifold (MP , νP ) with boundary su
h that:
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(i) P is a spine of MP ;

(ii) the 
ombing νP is positively transverse to P . This means that νP is

transverse to ea
h region r of P and the orientation of r together with
the orientation of νP gives the orientation of MP .

The 3-manifoldMP is de�ned as follows. Repla
e ea
h region of P (whi
h is a

disk) by the pie
e:

.

Repla
e ea
h edge of P by the pie
e:

.

Repla
e ea
h vertex of P by one of the following two pie
es a

ording to their

possible 
on�guration (see Se
tion 3.2.2):

and .

Then the 3-manifoldMP is obtained by gluing these pie
es along the grey sides

by respe
ting the smoothing of Se
tion 3.2.2. The boundary of MP is then the

union of the white sides of the above pie
es. Note that P is a spine of MP .

The ve
tor �eld νP is de�ned to be transverse to P as follows:

, ,
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, ,

and is extended to MP as follows:

PSfrag repla
ements

MP

MP νP

∂MP

∂MP

∂MP

P

P

P .

Finally, we orient MP so that its orientation is given by the orientation of

any region together with the orientation of νP at this region (su
h an orienta-

tion exists sin
e P is bran
hed).

3.2.4. Bran
hed spines of 
ombed 3-manifolds with boundary. A

bran
hed spine of a 
ombed 3-manifold (M, ν) with boundary is a bran
hed

polyhedron P su
h that (MP , νP ) is equivalent to (M, ν) in the sense of Se
-

tion 3.2.1.

Theorem 3.2 ([BP3, Theorem 4.3.1℄). Any 
ombed 3-manifold with bound-

ary has a bran
hed spine.

3.2.5. Combed 3-manifolds with trivial spheri
al boundary. We

say that a 
ombed 3-manifold (M, ν) has trivial spheri
al boundary if

(i) the boundary ∂M of M is a 2-dimensional sphere;

(ii) the 
ompa
t 1-dimensional submanifold of ∂M where ν is tangent (see

Se
tion 3.2.1) is a 
ir
le.

This tangen
y 
ir
le splits ∂M into two disks. The ve
tor �eld is positively

transverse to one disk and negatively transverse to the other one.

For example, 
onsider the 3-ball

B3 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 ≤ 1}.

This is a 
ompa
t 
onne
ted 3-manifold with boundary the 2-sphere

S2 = ∂B3 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.
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We endow B3
with the orientation indu
ed by the right-hand orientation of R3

.

Consider the ve
tor �eld νtriv on B3
whi
h is 
onstant equal to (0, 0, 1):

PSfrag repla
ements

x

y

z

B3

νtriv

.

Then the pair (B3, νtriv) is a 
ombed 3-manifold with trivial spheri
al bound-

ary.

Any 
ombed 3-manifold (M, ν) with trivial spheri
al boundary gives rise

to a 
losed 
ombed 3-manifold

(M̂, ν̂) = (M, ν) ∪f (B
3, νtriv).

Here, the gluing is de�ned by an orientation reversing di�eomorphism f : ∂M →
S2 = ∂B3

preserving the tangen
y 
ir
le. The following lemma is straightfor-

ward.

Lemma 3.3. (a) Any 
losed 
ombed 3-manifold is equivalent to (M̂, ν̂)
for some 
ombed 3-manifold (M, ν) with trivial spheri
al boundary.

(b) Let (M, ν) and (M ′, ν ′) be 
ombed 3-manifolds with trivial spheri-


al boundary. Then (M̂, ν̂) and (M̂ ′, ν̂ ′) are equivalent if and only

if (M, ν) and (M ′, ν ′) are equivalent.

3.2.6. Bran
hed spines of 
losed 
ombed 3-manifolds. By a 
losed

bran
hed polyhedron, we mean a bran
hed polyhedron P su
h that its asso
i-

ated 
ombed 3-manifold (MP , νP ) (see Se
tion 3.2.3) is a 
ombed 3-manifold

with trivial spheri
al boundary.

A bran
hed spine of a 
losed 
ombed 3-manifold (M, ν) is a 
losed bran
hed

polyhedron P su
h that (M̂P , ν̂P ) is equivalent to (M, ν).
The following result is a dire
t 
onsequen
e of Theorem 3.2 and Lemma 3.3(a).

Theorem 3.4. Any 
losed 
ombed 3-manifold has a bran
hed spine.

3.2.7. Moves on bran
hed spines. Let (M, ν) be a 
ombed 3-manifold.

We de�ne moves on a bran
hed spine P of (M, ν) transforming P into a new

bran
hed spine of (M, ν). These moves are the bran
hed versions of the moves

on standard spines of Se
tion 3.1.6. Ea
h of these moves modi�es P inside a


losed 3-ball in M .

The moves BMP(2,3) are bran
hed versions of the move MP(2,3). They

are the moves M1, . . . ,M5 depi
ted in Figure 3.1, together with their mirror

images M̃1, . . . , M̃5.
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M3
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M5

Figure 3.1. Bran
hed moves BMP(2,3)

The moves BMP(0,2) are bran
hed versions of the move MP(0,2). They

are the moves L1, L2, L3 depi
ted in Figure 3.2. Note that these moves are

self-mirror (the mirror image of Li is Li).

By BMP-moves on bran
hed spines of (M, ν), we mean ambient isotopies

of bran
hed spines in M together with the moves BMP(0,2), BMP(2,3) and

their inverses.

The following result provides a 
al
ulus for 
ombed 3-manifolds:

Theorem 3.5 ([BP3, Theorem 4.3.2℄). Any two bran
hed spines of a


ombed 3-manifold are related by a �nite sequen
e of BMP-moves.
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L1 L2 L3

Figure 3.2. Bran
hed moves BMP(0,2)

3.3. Combed 3-manifold via o-graphs

The theory of o-graphs has been introdu
ed and developed in [BP2, BP1℄.

The o-graphs en
ode a parti
ular 
lass of standard polyhedra whi
h is su�
ient

to en
ode all 
ombed 3-manifolds.

In what follows, we always orient the plane R2

ounter
lo
kwise.

3.3.1. o-graphs. A vertex v of an oriented graph G is said to be of 
ross-

ing type if:

• v is quadrivalent with 2 in
oming half-edges and 2 outgoing half-edges;
• the set Ev of half-edges in
ident to v is endowed with a 
y
li
 order;

• there are 2 distinguished half-edges whi
h are not 
onse
utive (with

respe
t to the 
y
li
 order on Ev) and su
h that one is in
oming and

the other is outgoing.

A vertex of 
rossing type of an oriented graph G is positive if the dis-

tinguished outgoing half-edge is followed (with respe
t to the 
y
li
 order on

half-edges) by an outgoing half-edge. Otherwise, it is said to be negative. In

what follows, we depi
t a vertex of 
rossing type by a 
rossing, the over
rossing

strand representing the distinguished half-edges:

Positive:

PSfrag repla
ements

Negative:

PSfrag repla
ements

.

Here, the 
y
li
 order of the set of half-edges is given by the 
ounter
lo
kwise

orientation of the plane.

Equivalently, a vertex v of a graph G is of 
rossing type if there is an

embedding of a neighborhood of v into the oriented plane �resembling� to

a 
rossing of an oriented 
urve (i.e., a multiple point whi
h is double and

transverse with a distinguished strand).

An o-graph is a non-empty 
onne
ted oriented graph where all verti
es are

of 
rossing type. (This notion of an o-graph 
orresponds to that of a normal

o-graph in [BP2℄). An isomorphism between two o-graphs is an isomorphism

between their underlying oriented graphs whi
h preserves the 
rossing types.
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Any o-graph 
an be represented by a planar diagram obtained by immers-

ing generi
ally the o-graph into the oriented plane. (Here generi
ally means

that the multiple points of the immersion are double transverse and distin
t

from the image of the verti
es). For example, the diagram

represents an o-graph with 3 verti
es and 6 edges.

Two su
h diagrams represent isomorphi
 o-graphs if and only if one 
an

be obtained from the other by a �nite sequen
e of isotopies and the following

Reidemeister-type moves:

7→ 7→ 7→

7→ 7→

Here, the orientations (not depi
ted) must agree before and after the moves.

For example, the diagrams

and

represent two non-isomorphi
 o-graphs with 1 vertex and 2 edges.

3.3.2. From o-graphs to bran
hed polyhedra. To ea
h o-graph Γ is

asso
iated a bran
hed polyhedron PΓ de�ned as follows. Repla
e ea
h positive

vertex v of Γ with the following portion of a bran
hed polyhedron :

PSfrag repla
ements

7−→

PSfrag repla
ements

.
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Repla
e ea
h negative vertex of Γ with the following portion of a bran
hed

polyhedron :

PSfrag repla
ements

7−→

PSfrag repla
ements

.

Repla
e ea
h edge of Γ with the following portion of a bran
hed polyhedron :

PSfrag repla
ements

e 7−→

PSfrag repla
ements

.

Finally, the bran
hed polyhedron PΓ is obtained by gluing together this pie
es

a

ording to smoothing (i.e., in su
h a way to respe
t the orientations).

3.3.3. Combed 3-manifold asso
iated to o-graphs. To any o-graph Γ
is asso
iated a 
ombed 3-manifold (MΓ, νΓ) with non-empty boundary. This


ombed 3-manifold is de�ned by

(MΓ, νΓ) = (MPΓ
, νPΓ

)

where PΓ is the bran
hed polyhedron asso
iated to Γ (see Se
tion 3.3.2) and

(MPΓ
, νPΓ

) is the 
ombed 3-manifold asso
iated to PΓ (see Se
tion 3.2.3).

3.3.4. Moves on o-graphs. The lo
al transformations on o-graphs de-

pi
ted in Figures 3.3 and 3.4 turn any o-graph into another o-graph. In these

�gures, if the orientations of some edges are omitted, then these edges 
an be

oriented arbitrarily but in a same way before and after the move. By sliding

moves, we mean moves in Figures 3.3 and 3.4 and their inverses together with

isomorphisms of o-graphs.

The following result provides a 
al
ulus for 
ombed 3-manifolds with non-

empty boundary:

Theorem 3.6 ([BP2, Corollary 4.3.5℄). (a) Any 
ombed 3-manifold with

non-empty boundary is equivalent to (MΓ, νΓ) for some o-graph Γ.
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7→

Figure 3.3. Snake move

7→ 7→

7→ 7→

Figure 3.4. Sliding moves

(b) The 
ombed 3-manifolds asso
iated to two o-graphs are equivalent if

and only if the o-graphs are related by a �nite sequen
e of sliding

moves.

3.3.5. Closed 
ombed 3-manifolds via 
losed o-graphs. In this se
-

tion, we 
onsider a 
lass of o-graph whi
h en
odes 
losed 
ombed 3-manifolds.

By a 
ir
uit, we mean an oriented 
losed immersed plane 
urve su
h that

all its multiple points are double and transverse.

An o-graph Γ is 
losed if it satis�es the following three 
onditions:

(i) The number of 
ir
uits obtained from Γ by removing all its verti
es is

exa
tly one.

(ii) The (trivalent) graph obtained from Γ by applying the rules of Fig-

ure 3.5 is 
onne
ted.

(iii) The number of 
ir
uits obtained from Γ by applying the rules of Fig-

ure 3.6 is exa
tly one more than the number of verti
es of Γ.

For example, the following o-graph:
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is 
losed. Indeed, Condition (i) is 
lear and Conditions (ii) and (iii) are

respe
tively veri�ed by

and .

The 
ombed 3-manifold (MΓ, νΓ) asso
iated with a 
losed o-graph Γ has

trivial spheri
al boundary. Indeed, Condition (i) implies that the Euler 
hara
-

teristi
 of the boundary ∂MΓ is 2. Condition (ii) implies that ∂MΓ is 
onne
ted

and so together with (i) implies that ∂MΓ is homeomorphi
 to a 2-sphere. Fi-
nally, Condition (iii) implies that the submanifold of ∂MΓ where νΓ is tangent

is a 
ir
le. (For details, we refer to [BP2, Se
tion 5.2℄.)

Consequently, by Se
tion 3.2.5, to any 
losed o-graph Γ is asso
iated the


losed 
ombed 3-manifold

(M̂Γ, ν̂Γ) = (MΓ, νΓ) ∪ (B3, νtriv).
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7−→

Figure 3.7. Pontrjagin move

Note that any sliding move (see Se
tion 3.3.4) transforms a 
losed o-graph

into a 
losed o-graph. Combining Theorem 3.6 and Lemma 3.3, we obtain the

following 
al
ulus for 
losed 
ombed 3-manifolds:

Theorem 3.7 ([BP2, Theorem 1.4.1℄). (a) Any 
losed 
ombed 3-ma-

nifold is equivalent to (M̂Γ, ν̂Γ) for some 
losed o-graph Γ.
(b) The 
losed 
ombed 3-manifolds asso
iated to two 
losed o-graphs are

equivalent if and only if the o-graphs are related by a �nite sequen
e

of sliding moves.

3.3.6. The Pontrjagin move. The lo
al transformation on o-graphs de-

pi
ted in Figure 3.7 is 
alled the Pontrjagin move. Note that this move trans-

forms any 
losed o-graph into another 
losed o-graph, but their asso
iated


losed 
ombed 3-manifolds may be non-equivalent.

The Pontrjagin move allows to relate all 
ombings on the same underlying


losed 3-manifold (see [BP2, Theorem 6.3.1℄). More pre
isely, let Γ and Γ′
be


losed o-graphs. Consider their asso
iated 
losed 
ombed 3-manifolds (M̂Γ, ν̂Γ)

and (M̂Γ′ , ν̂Γ′). Then the 3-manifolds M̂Γ and M̂Γ′
are homeomorphi
 if and

only if Γ and Γ′
are related by a �nite sequen
e of sliding moves and Pontrjagin

moves.

3.3.7. Summary. We summarize the main results of this 
hapter as fol-

lows:

Theorem (Non-empty boundary 
ase). There is a one-to-one 
orrespon-

den
e between:

(1) Combed 3-manifolds with non-empty boundary up to equivalen
e;

(2) Bran
hed polyhedra up to BMP-moves;

(3) o-graphs up to sliding moves.

Theorem (Closed 
ase). There is a one-to-one 
orresponden
e between:

(1') Closed 
ombed 3-manifolds up to equivalen
e;

(2') Closed bran
hed polyhedra up to BMP-moves;

(3') Closed o-graphs up to sliding moves.





CHAPTER 4

A state sum invariant of 
ombed 3-manifolds

Fix, throughout this 
hapter, a pivotal fusion k-
ategory C and a represen-

tative set I of simple obje
ts of C. We derive from this data a s
alar topologi
al

invariant of 
ombed 3-manifolds.

4.1. An invariant of 
ombed 3-manifolds

In this se
tion, we 
onstru
t a state sum topologi
al invariant of 
ombed

3-manifolds.

4.1.1. The state sum invariant via bran
hed spines. Let (M, ν) be
a 
ombed 3-manifold (with or without boundary). Pi
k a bran
hed spine P
of (M, ν), see Se
tions 3.2.4 and 3.2.6. Re
all from Se
tion 3.1.2 the set Reg(P )
of regions of P .

A 
oloring of P is a map c : Reg(P ) → I. The obje
t c(s) ∈ I assigned

to s ∈ Reg(P ) is 
alled the 
-
olor of s. We asso
iate a s
alar |c| ∈ k to ea
h


oloring c of P as follows.

By de�nition P has at least one vertex and so it has at least one edge

(strati�ed 2-polyhedra have no isolated verti
es). By an oriented edge of P
we mean an edge of P endowed with an orientation. Ea
h oriented edge e
of P yields a 
y
li
 C-set de�ned as follows. The orientations of e and M
determine a positive dire
tion on a small loop inM en
ir
ling e. The resulting
oriented loop determines a 
y
li
 order on the set Pe of bran
hes of P at e (see
Se
tion 3.1.2). To ea
h bran
h δ ∈ Pe, we assign the c-
olor of the region of P

ontaining δ and a sign equal to + if the orientation of δ indu
es the one of

e ⊂ ∂δ (that is, the orientation of δ is given by the orientation of e followed

by a ve
tor at a point of e dire
ted inside δ) and equal to − otherwise. In

this way, Pe be
omes a 
y
li
 C-set and we 
onsider its multipli
ity module

Hc(e) = H(Pe). Let

Hc =
⊗

e

Hc(e)

be the unordered tensor produ
t (see Appendix A) of the k-modules Hc(e)
over all oriented edges e of P . Sin
e ea
h k-module Hc(e) is proje
tive of �nite
type and there are �nitely many oriented edges of P , Appendix A yields a


anoni
al k-linear isomorphism

H⋆
c ≃

⊗

e

Hc(e)
⋆.

53
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Figure 4.1. The 
olored graph Γc
x

Next, we asso
iate to ea
h (unoriented) edge e of P a ve
tor

∗e ∈ Hc(e1)⊗Hc(e2),

where e1 and e2 are the two opposite oriented edges of P 
orresponding to e.
Re
all from Se
tion 3.2.2 that there is a bran
h be of P at e whi
h indu
es

an orientation on e whi
h is opposite to the orientations indu
ed by the other

two bran
hes of P at e. We 
hoose notation so that e1 is e endowed with the

orientation indu
ed by be. By Se
tion 2.3.2, the element be ∈ Pe1 determines

a ve
tor

∗e = ∗
be
Pe1
∈ H(Pe1)⊗H(P op

e1
) = Hc(e1)⊗Hc(e2).

Set

∗c = ⊗e ∗e ∈ Hc,

where ⊗e is the unordered tensor produ
t over all the (unoriented) edges e
of P .

For a vertex x of P , 
onsider the link graph ∆x ⊂ ∂Bx where Bx ⊂ M
is a P - 
one neighborhood of x (see Se
tion 3.1.5). Here we endow ∂Bx with

the orientation indu
ed by that of M restri
ted to M \ Int(Bx). Every edge a
of ∆x lies in a region ra of P . We 
olor a with c(ra) ∈ I and endow a with the

orientation indu
ed by that of ra\Int(Bx). In this way, ∆x be
omes a C-
olored
graph in ∂Bx denoted by ∆c

x. The 
ombing ν at x determines a 
onne
ted


omponent of ∂Bx \ ∆x. (This follows from the de�nition of the 
ombing ν
at x, see Se
tion 3.2.3, and the fa
t that Bx is a P - 
one neighborhood of x.)
Pi
k a point p in this 
onne
ted 
omponent. The image of ∆c

x under the

(orientation-preserving) stereographi
 proje
tion ∂Bx \ {p} → R2
with pole p

is a C-
olored planar graph denoted by Γc
x. (An example is given in Figure 4.1).

Se
tion 2.2.4 yields a ve
tor
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FC(Γ
c
x) ∈ H(Γc

x)
⋆ = Homk(H(Γc

x), k).

Note that the 
y
li
 C-set asso
iated with any vertex v of Γc
x (see Se
tion 2.2.3)

is 
anoni
ally isomorphi
 to the 
y
li
 C-set Pe, where e = e(v) is the edge

of P 
ontaining v and oriented away from x. Therefore, there are 
anoni
al

isomorphisms

H(Γc
x) ≃

⊗

ex

Hc(ex) and H(Γc
x)

⋆ ≃
⊗

ex

Hc(ex)
⋆

where ex runs over all edges of P in
ident to x and oriented away from x. (An
edge with both endpoints in x appears in ea
h of these tensor produ
t twi
e

with opposite orientations.) The tensor produ
t of the previous isomorphisms

over all verti
es x of P yields a k-linear isomorphism

⊗

x

H(Γc
x)

⋆ ≃
⊗

x

⊗

ex

Hc(ex)
⋆ ≃

⊗

e

Hc(e)
⋆ ≃ H⋆

c

where e runs over all oriented edges of P . The image under this k-linear

isomorphism of the unordered tensor produ
t

⊗
x FC(Γ

c
x), where x runs over

all verti
es of P , is a ve
tor Vc ∈ H
⋆
c . We evaluate Vc on ∗c and set

|c| = Vc(∗c) ∈ k.

Finally, let

dim
l

(c) =
∏

s∈Reg(P )

dim
l

(
c(s)

)

and set

(4.1) IC(M, ν) =
∑

c

diml(c) |c| ∈ k,

where c runs over all 
olorings of P . Note that the right-hand side of (4.1) is

well de�ned be
ause there are �nitely many 
olorings of P (sin
e both Reg(P )
and I are �nite).

Theorem 4.1. The s
alar IC(M, ν) is a topologi
al invariant of (M, ν)
independent of the 
hoi
e of P and I.

We will prove Theorem 4.1 in Se
tion 4.2.

4.1.2. Properties. 1. Let (M, ν) be a 
ombed 3-manifold with trivial

spheri
al boundary. Consider the 
losed 
ombed 3-manifold (M̂, ν̂) asso
iated
to (M, ν) as in Se
tion 3.2.5. Then

IC(M̂, ν̂) = IC(M, ν).

This follows from the fa
t that any bran
hed spine of (M, ν) is a bran
hed

spine of (M̂, ν̂).
2. By 
onsidering some examples, we prove in Se
tion 5.3 that the invari-

ant IC is non-trivial and does depend on the 
ombing: it may distinguish two

non-homotopi
 
ombings on the same 3-manifold (see Theorem 5.2).
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3. Suppose that C is spheri
al (see Se
tion 1.2.8). Then for any 
ombed 3

-manifold (M, ν), the invariant IC(M, ν) does not depend on ν and

IC(M, ν) = TVC(M),

where TVC is the Turaev-Viro invariant of 
ompa
t oriented 3-manifolds de-

�ned using C (in the formulation of [TVi, Se
tion 13.2.2℄ denoted by ‖ · ‖C).
4. It follows from the de�nitions that for any 
ombed 3-manifold (M, ν),

IC(−M, ν) = IC⊗op(M, ν)

where −M is M with opposite orientation and C⊗op = (C,⊗op,1).
5. The naturality of the invariant FC of C-
olored graphs (see Se
tion 2.2.6)

implies that

IC′(M, ν) = IC(M, ν)

for any 
ombed 3-manifold (M, ν) and any pivotal fusion k-
ategory C′ equiv-
alent to C. In parti
ular

ICop(M, ν) = IC⊗op(M, ν) = IC(−M, ν) and ICrev(M, ν) = IC(M, ν),

sin
e Cop = (Cop,⊗,1) is equivalent to C⊗op
and Crev = (Cop,⊗op,1) is equiva-

lent to C, see Se
tion 1.4.5.

4.1.3. Computation via o-graphs. In this se
tion, we provide an algo-

rithm to 
ompute the invariant IC of Theorem 4.1 starting from the presenta-

tion of 
ombed 3-manifolds by means of o-graphs (see Se
tion 3.3).

Let (M, ν) be a 
ombed 3-manifold. Let Γ be an o-graph su
h that (M, ν)

is equivalent to (MΓ, νΓ) if ∂M 6= ∅ (see Se
tion 3.3.3) or to (M̂Γ, ν̂Γ) if ∂M = ∅
(see Se
tion 3.3.5).

Denote by Circ(Γ) the set of the 
ir
uits obtained from Γ by applying

the rules of Figure 3.6. A 
oloring of Γ is a map c : Circ(Γ) → I. The

obje
t c(γ) ∈ I assigned to γ ∈ Circ(Γ) is 
alled the c-
olor of γ. We asso
iate

a s
alar |c| ∈ k to ea
h 
oloring c of Γ as follows.

Ea
h edge e of Γ yields a 
y
li
 C-set Γe de�ned in the following way. Set

Γe = {1, 2, 3} with 
y
li
 order 1 < 2 < 3 < 1. There are four types of

edges of Γ, depending on the nature (distinguished/undistinguished, in
om-

ing/outgoing) of the two half-edges forming an edge:

PSfrag repla
ements

.

Re
all that the rules of Figure 3.6 asso
iate to e three portions of 
ir
uits

(eventually 
oin
iding) in Circ(Γ). De�ne fe : Γe → Circ(Γ) a

ording to the

type of e:
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De�ne εe : Γe → {+,−} by setting εe(1) = εe(2) = + and εe(3) = −. Then

Γe = (Γe, c ◦ fe, εe)

is a 
y
li
 C-set. Consider the unordered tensor produ
t of the multipli
ity

modules asso
iated with Γe and Γop
e :

Hc(e) = H(Γe)⊗H
(
Γop
e

)
.

By Se
tion 2.3.2, the element 3 ∈ Γe determines a ve
tor

∗e = ∗
3
Γe
∈ H(Γe)⊗H

(
Γop
e

)
= Hc(e).

Set

Hc = ⊗eHc(e) and ∗c = ⊗e ∗e ∈ Hc,

where ⊗e is the unordered tensor produ
t over all the edges e of Γ.
Next, we asso
iate to ea
h vertex x of Γ a C-
olored planar graph Γc

x as

follows. If the vertex x is positive, we asso
iate:

PSfrag repla
ements

x
 

PSfrag repla
ements

m

j

n

l

ki

7−→ Γc
x =

PSfrag repla
ements

m

j

n

l

ki

.

If the vertex x is negative, we asso
iate:
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Here, the middle pi
tures represent the portions of 
ir
uits asso
iated with x
together with their c-
olors i, j, k, l,m, n ∈ I. Se
tion 2.2.4 yields a ve
tor

FC(Γ
c
x) ∈ H(Γc

x)
⋆ = Homk(H(Γc

x), k).
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Note that the 
y
li
 C-set asso
iated with any vertex v of Γc
x (see Se
tion 2.2.3)

is 
anoni
ally isomorphi
 to the 
y
li
 C-set Γ
ǫ(e)
e , where e = e(v) is the edge

of Γ 
ontaining v, ǫ(e) = ∅ if e is oriented away from x, and ǫ(e) = op if e is
oriented towards x. Therefore, there are 
anoni
al isomorphisms

H(Γc
x) ≃

⊗

ex

H
(
Γǫ(ex)
ex

)
and H(Γc

x)
⋆ ≃

⊗

ex

H
(
Γǫ(ex)
ex

)⋆

where ex run over all edges of Γ in
ident to x. The tensor produ
t of the latter
isomorphisms over all verti
es x of Γ yields a k-linear isomorphism

⊗

x

H(Γc
x)

⋆ ≃
⊗

x

⊗

ex

H
(
Γǫ(ex)
ex

)⋆
≃

⊗

e

H(Γe)
⋆ ⊗H

(
Γop
e

)⋆
≃

⊗

e

Hc(e)
⋆ ≃ H⋆

c

where e runs over all the edges of Γ. The image under this isomorphism of the

unordered tensor produ
t

⊗
x FC(Γ

c
x), where x runs over all verti
es of Γ, is a

ve
tor Vc ∈ H
⋆
c . Re
all the ve
tor ∗c ∈ Hc. Set

diml(c) =
∏

γ∈Circ(Γ)

diml(c(γ)) ∈ k and |c| = Vc(∗c) ∈ k.

Theorem 4.2. We have:

IC(M, ν) =
∑

c

dim
l

(c) |c|

where c runs aver all 
olorings of Γ.

We prove Theorem 4.2 in Se
tion 4.2.

In Se
tion 5.2, we apply Theorem 4.2 for a parti
ular pivotal fusion k-


ategory C = Gd
k
(see Theorem 5.1).

4.2. Proof of Theorem 4.1 and Theorem 4.2

Let (M, ν) be a 
ombed 3-manifold and P be a bran
hed spine of (M, ν).
Denote the right hand side of (4.1) by IC(P ), that is,

IC(P ) =
∑

c

diml(c) |c|

where c runs over all 
olorings of P .
In Se
tion 4.2.1, we prove the invarian
e of IC(P ) under the appli
ation of a

BMP(2,3) move to P . In Se
tion 4.2.2, we prove the invarian
e of IC(P ) under
the appli
ation of a BMP(0,2) move to P . Finally, we prove Theorem 4.1 in

Se
tion 4.2.3 and Theorem 4.2 in Se
tion 4.2.4.

4.2.1. Invarian
e under BMP(2,3). The appli
ation of a BMP(2,3)

move transforms P into another bran
hed spine P ′
of (M, ν). The move a
ts

lo
ally on P leaving un
hanged all the regions of P ex
ept those involved in

the move. For this reason, we only 
onsider the 
ontribution of the verti
es

involved in the move to the quantity IC(P ). We denote by x, y the two verti
es
of P and by u, v, z the three verti
es of P ′

that are involved in the move.
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Pi
k a 
oloring c of P . In what follows, we denote by a, b, c, d, f, g, h, i, l ∈ I
the c-
olors of the regions of P involved in the moves. The 
oloring c of P
extends to a 
oloring c′ of P ′

by adding a 
olor j ∈ I to the new region 
reated

by the move.

We now analyze in detail the 
ontribution given to the state sum by ea
h

BMP(2,3) move (see Se
tion 3.2.7).

Invarian
e under the move M1:

The move P
M1−−→ P ′

is represented by

PSfrag repla
ements

aa bb cc

dd
g

g

hh

ii

ll

j
x

y

u

v

z

f

f

M1

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

a b

d g

h l
and Γc

y =

PSfrag repla
ements

b c

fg

il .

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

aa bb

dd gg

hh ll




(ii)
= FC




PSfrag repla
ements

a

b

c

d f

g

h i

l




.

Here, the equality (i) follows from the⊗-multipli
ativity of FC (see Se
tion 2.2.6)

and from the graphi
al representation of evaluations (see Se
tion 2.3.4), and

(ii) from Lemma 2.3(
).
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Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

d
f

gh

i

j , Γc′

v =

PSfrag repla
ements

a
b

c

h

i

j , Γc′

z =

PSfrag repla
ements

a c

d f

lj .

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

f

g

h

h

i

i

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

f

g

h i lj j




(iii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

d

d

f

f

g

h i

l

j



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(iv)
= FC




PSfrag repla
ements

a

b

c

d f

g

h i

l




.

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al rep-

resentation of evaluations, (ii) and (iii) from Lemma 2.3(
), and (iv) from

Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invarian
e under the move M̃1:

The move P
M̃1−−→ P ′

is represented by

PSfrag repla
ements

aa bb cc

dd gg

hh

ii

ll

jx

y

u

v
z

f
f

M̃1

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

c b

f g

i l
and Γc

y =

PSfrag repla
ements

b a

dg

hl .

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

abbc

df gg

h

i
ll



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(ii)
= FC




PSfrag repla
ements

c

b

a

f d

g

i h

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).

Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

b

c j

h

i

, Γc′

v =

PSfrag repla
ements

d

jf

g h

i

, Γc′

z =

PSfrag repla
ements

ac

d

j

f

l .

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

f

g h

h

i

i

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

d

d

f

f

g

hi

l

j




(iii)
= FC




PSfrag repla
ements

c

b

a

f d

g

i h

l


 .

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) Lemma 2.3(
), and (iii) from Lemma 2.3(a).
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We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invarian
e under the move M2:

The move P
M2−−→ P ′

is represented by

PSfrag repla
ements

aa bb cc

dd g
g

hh ii

ll

jx y

u

v
z

f
f

M2

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

a b

d g

h l
and Γc

y =

PSfrag repla
ements

b c

fg

i
l .

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

a
bb c

d fgg

h
i

ll




(ii)
= FC




PSfrag repla
ements

a

b

c

d fg

h
i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).
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Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

d

fg

h

i

j

, Γc′

v =

PSfrag repla
ements

a
b c

h

i

j

, Γc′

z =

PSfrag repla
ements

a c

d f

l
j .

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b c

c

d

d

f

f

g

h

h

i

i

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

d

f

g

h

h

i

i

l
j




(iii)
= FC




PSfrag repla
ements

a

b

c

d fg

h
i

l


 .

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).



4.2. PROOF OF THEOREM 4.1 AND THEOREM 4.2 65

Invarian
e under the move M̃2:

The move P
M̃2−−→ P ′

is represented by

PSfrag repla
ements

aa bb cc

dd gg

hh
ii

ll

jx y

u

v
z

ff

M̃2

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

bc

f g

i
l

and Γc
y =

PSfrag repla
ements

ab

dg

h
l

.

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

abbc

df gg

hi
ll




(ii)
= FC




PSfrag repla
ements

a
b

c

df

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).

Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a
bc

h

i

j

, Γc′

v =

PSfrag repla
ements

d

f g

h

i

j

, Γc′

z =

PSfrag repla
ements

ac

df

l j .
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Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

f g

h

h

i

i

l j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

d

f

g

h

h

i

i

l
j




(iii)
= FC




PSfrag repla
ements

c
b

a

fd

g

i

h

l


 .

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invarian
e under the move M3:

The move P
M3−−→ P ′

is represented by

PSfrag repla
ements

a
a

bb cc

dd

gg

hh

ii

ll

j
x

y u
v

z

ff

M3
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By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

a b

d

f

g

i
and Γc

y =

PSfrag repla
ements

b c

f

g

h

l

.

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

a b
b c

d

f

fg

g

h

i l




(ii)
= FC




PSfrag repla
ements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).

Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

d

f h

l
j

, Γc′

v =

PSfrag repla
ements

a

b c

i

l

j , Γc′

z =

PSfrag repla
ements

c

d g

hi
j

.
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Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

d

f

g

h

i l

l

j




(iii)
= FC




PSfrag repla
ements

a

b

c

d

f

g

h

i

l




.

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invarian
e under the move M̃3:

The move P
M̃3−−→ P ′

is represented by

PSfrag repla
ements

a ab bc c

d d

g g

h h

i i

l l

jx y
u

v
z

f f

M̃3

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

bc

f

g

h

l

and Γc
y =

PSfrag repla
ements

ab

d

f

g

i
.

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

ab

bc

d

f

f g

g

h

i
l




(ii)
= FC




PSfrag repla
ements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).
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Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

bc

i

l

j , Γc′

v =

PSfrag repla
ements

a

d

fh

l

j

, Γc′

z =

PSfrag repla
ements

c

dg

h i
j

.

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements a

a

b

c

d

f

g

h

il

l

j




(iii)
= FC




PSfrag repla
ements

c

b

a

f

d

g

i

h

l




.

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).
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We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invarian
e under the move M4:

The move P
M4−−→ P ′

is represented by

PSfrag repla
ements

a ab bc c

d d

g g
h h

i i

l l

j
u

v
z

f f

M4

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

a b

d

f

g

i
and Γc

y =

PSfrag repla
ements

b c

f

g

h

l

.

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

a b b c

d

f

fg

g

h

i l



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(ii)
= FC




PSfrag repla
ements a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).

Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

d

f h

l
j

, Γc′

v =

PSfrag repla
ements

a

b c

i

l

j , Γc′

z =

PSfrag repla
ements

c

d g

hi
j

.

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

d

f

g

h

i l

l

j



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(iii)
= FC




PSfrag repla
ements a

b

c

d

f

g

h

i

l




.

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).

Invarian
e under the move M̃4:

The move P
M̃4−−→ P ′

is represented by

PSfrag repla
ements

aa bb cc

dd

g
g

hh

ii

ll

j
x y

u

v
z

ff

M̃4

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

bc

f

g

h

l

and Γc
y =

PSfrag repla
ements

ab

d

f

g

i
.
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Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

ab bc

df

f

g

gh

il




(ii)
= FC




PSfrag repla
ements

a

b

c

d

f

g

h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).

Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

bc

i

l

j
, Γc′

v =

PSfrag repla
ements

a

d

fh

l

j

, Γc′

z =

PSfrag repla
ements

c

dg

h
i

j

.

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)
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(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

d

d

f

g

h

h i

l

j




(iii)
= FC




PSfrag repla
ements c

b

a

f

d

g

i

h

l




.

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invarian
e under the move M5:

The move P
M5−−→ P ′

is represented by

PSfrag repla
ements

a ab bc c

d d
g g

h h

i i

l l

jx
y u

v
z

f f

M5

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

a b

d

f

g

i and Γc
y =

PSfrag repla
ements

b c

f

g

h

l

.

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

a bb c

d f

f

g

g h

i l




(ii)
= FC




PSfrag repla
ements

a

b

c
d

f

g
h

i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).
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Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

d

f h

l
j

, Γc′

v =

PSfrag repla
ements

a

b c

i

l

j

, Γc′

z =

PSfrag repla
ements

c

d g

h i

j

.

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

b

c

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a
b

c

d

f

g

h

i

l

l

j




(iii)
= FC




PSfrag repla
ements

a

b

c
d

f

g
h

i

l


 .

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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Invarian
e under the move M̃5:

The move P
M̃5−−→ P ′

is represented by

PSfrag repla
ements

a ab bc c

d dh h

i i

l l

j
x

y u
v

z

f f

M̃5

By Se
tion 4.1.1, the C-
olored planar graphs Γc
x and Γc

y asso
iated to the

verti
es x, y of P are

Γc
x =

PSfrag repla
ements

bc

f

g

h

l

and Γc
y =

PSfrag repla
ements

ab

dg

i l .

Consequently, the 
ontribution to the state sum of the verti
es x, y and of the

edge e 
onne
ting them is

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

(i)
= FC




PSfrag repla
ements

abbc

df g

g

h

i
l

l




(ii)
= FC




PSfrag repla
ements

a

b

c
d

f

g

h
i

l




.

Here, the equality (i) follows from the ⊗-multipli
ativity of FC and from the

graphi
al representation of evaluations, and (ii) from Lemma 2.3(
).
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Now, the C-
olored planar graphs Γc′

u ,Γ
c′

v ,Γ
c′

z asso
iated to the verti
es u, v, z
of P ′

are

Γc′

u =

PSfrag repla
ements

a

bc

i

l

j

, Γc′

v =

PSfrag repla
ements

a

d

fh

l

j

, Γc′

z =

PSfrag repla
ements

c

dg

h
i

j

.

Consequently, the 
ontribution to the state sum of the verti
es u, v, z, of the
three edges e1, e2, e3 
onne
ting them, and of the new 
reated region is

∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3)

(i)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

a

bc

c

d

d

f

g

h

h

i

i

l

l

j

j

j




(ii)
=

∑

j∈I

dim
l

(j) FC




PSfrag repla
ements

a

b

c

c

d

f

g

h

i

i

l

j




(iii)
= FC




PSfrag repla
ements

c

b

a
f

d

g

i
h

l


 .

Here, (i) follows from the ⊗-multipli
ativity of FC and the graphi
al represen-

tation of evaluations, (ii) from Lemma 2.3(
), and (iii) from Lemma 2.3(a).

We dedu
e that

(
FC(Γ

c
x)⊗ FC(Γ

c
y)
)
(∗e)

=
∑

j∈I

diml(j)
(
FC(Γ

c′

u )⊗ FC(Γ
c′

v )⊗ FC(Γ
c′

z )
)
(∗e1 ⊗ ∗e2 ⊗ ∗e3).

This proves that IC(P ) = IC(P
′).
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4.2.2. Invarian
e under BMP(0,2). The appli
ation of a BMP(0,2)

move transforms P into another bran
hed spine P ′
of (M, ν). The move a
ts

lo
ally on P leaving un
hanged all the regions of P ex
ept those involved in

the move. For this reason, we only 
onsider the 
ontribution of the verti
es

involved in the move to the quantity IC(P ). We denote by u, v the two verti
es

of P ′
that are involved in the move.

Pi
k a 
oloring c of P . In what follows, we denote by i, k, l,m, n ∈ I the

c-
olors of the regions of P involved in the moves. The 
oloring c of P extends

to a 
oloring c′ of P ′
by 
onsidering two new 
olors j, k′ ∈ I. The small region

of P ′

reated by the move is 
olored by j. The region r of P whose c-
olor is k

splits into to regions r′ and r′′ of P ′
that we 
olor by k′ and k, respe
tively.

We now analyze in detail the 
ontribution given to the state sum by every

BMP(0,2) move (see Se
tion 3.2.7).

Invarian
e under the move L1:

The move P
L1−→ P ′

is represented by

PSfrag repla
ements

ii

ll

j

m
m nnk

k′r

k

r′

r′′

u

v

L1

By Se
tion 4.1.1, the 
ontribution to the state sum of the edges of P rep-

resented in the move L1 is

∑

k∈I

diml(k) FC




PSfrag repla
ements

i

i

l

l

k

k


⊗ FC




PSfrag repla
ements

k

k

m

m

n

n


 .

Now, the C-
olored planar graphs Γc′

u and Γc′

v asso
iated to the verti
es u
and v of P ′

are

Γc′

u =

PSfrag repla
ements

i
l

j

k′

m

n
, Γc′

v =

PSfrag repla
ements

i

l

j

k

m

n .

Consequently, the 
ontribution to the state sum of the verti
es u and v, of all
theall the edges involved in the move (i.e., the two edges 
onne
ting u, v and
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the other four edges represented in move L1), and of the new 
reated region is

∑

j,k,k′∈I

dim
l

(j)dim
l

(k)dim
l

(k′) FC
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(ii)
=

∑

k,k′∈I

dim
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(k′) FC
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(iii)
=

∑

k∈I

dim
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(iv)
=

∑

k∈I

dim
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(v)
=

∑

k∈I

diml(k) FC
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PSfrag repla
ements
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.

Here, (i) and (iv) follow from Lemma 2.3(
) and the graphi
al representa-

tion of evaluations (see Se
tion 2.3.4), (ii) from Lemma 2.3(a), (iii) from

Lemma 2.1 using the fa
t that HomC(k, k
′) = 0 if k 6= k′, and (v) from the ⊗-

multipli
ativity of FC (see Se
tion 2.2.6). We dedu
e that the 
ontributions to

the state sum before and after the move L1 are equal.

This proves that IC(P ) = IC(P
′).

Invarian
e under the move L2:

The move P
L2−→ P ′

is represented by

PSfrag repla
ements
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nnk
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By Se
tion 4.1.1, the 
ontribution to the state sum of the edges of P rep-

resented in the move L2 is

∑

k∈I

diml(k) FC
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Now, the C-
olored planar graphs Γc′

u and Γc′

v asso
iated to the verti
es u
and v of P ′

are

Γc′

u =

PSfrag repla
ements

i

l j

k′
m

n

, Γc′

v =

PSfrag repla
ements

i

l j

k

m

n

.

Consequently, the 
ontribution to the state sum of the verti
es u and v, of all
the edges involved in the move (i.e., the two edges 
onne
ting u, v and the

other four edges represented in move L2), and of the new 
reated region is

∑

j,k,k′∈I

dim
l

(j)dim
l

(k)dim
l

(k′) FC
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=

∑
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dim
l

(j)dim
l

(k)dim
l

(k′) FC




PSfrag repla
ements

i

i

i

l

l

l

l

j

m

m
m

m

n

n

n

k′

k′

k′

k

kk




(ii)
=

∑
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(iii)
=

∑

k∈I

dim
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(iv)
=

∑

k∈I

dim
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(v)
=

∑

k∈I

diml(k) FC
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Here, (i) and (iv) follow from Lemma 2.3(
) and the graphi
al representation

of evaluations, (ii) from Lemma 2.3(a), (iii) from Lemma 2.1, and (v) from

the ⊗-multipli
ativity of FC. We dedu
e that the 
ontributions to the state

sum before and after the move L2 are equal.

This proves that IC(P ) = IC(P
′).

Invarian
e under the move L3:

The move P
L3−→ P ′

is represented by

PSfrag repla
ements
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l l
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m m

n nk
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r k′
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u
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By Se
tion 4.1.1, the 
ontribution to the state sum of the edges of P rep-

resented in the move L3 is

∑

k∈I

diml(k) FC
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Now, the C-
olored planar graphs Γc′

u and Γc′

v asso
iated to the verti
es u
and v of P ′

are

Γc′

u =

PSfrag repla
ements

i

l

j

k′

m

n

, Γc′

v =

PSfrag repla
ements

i

l

j

k

m

n

.

Consequently, the 
ontribution to the state sum of the verti
es u and v, of all
the edges involved in the move (i.e., the two edges 
onne
ting u, v and the

other four edges represented in move L3), and of the new 
reated region is

∑

j,k,k′∈I

dim
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(j)dim
l
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(ii)
=

∑

k,k′∈I
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(iii)
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(iv)
=

∑
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dim
l

(k) FC




PSfrag repla
ements

i

i

l

l

m

m

n

n

k

k

k

k




(v)
=

∑

k∈I

diml(k) FC


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ements
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Here, (i) and (iv) follow from Lemma 2.3(
) and the graphi
al representation

of evaluations, (ii) from Lemma 2.3(a), and (iii) from Lemma 2.1, and (v)
from the ⊗-multipli
ativity of FC. We dedu
e that the 
ontributions to the

state sum before and after the move L3 are equal.

This proves that IC(P ) = IC(P
′).

4.2.3. Proof of Theorem 4.1. Let (M, ν) be a 
ombed 3-manifold. Let P
be a bran
hed spine of (M, ν). It follows from the de�nitions that IC(P ) re-
mains un
hanged under the appli
ation of an ambient isotopy in M . Also

IC(P ) remains un
hanged under the appli
ation of a BMP(2,3) move (by Se
-

tion 4.2.1) or a BMP(0,2) move (by Se
tion 4.2.2). Therefore, by Theorem 3.5,
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the s
alar IC(M, ν) = IC(P ) is well de�ned, i.e., does not depend on the 
hoi
e

of P .
If I ′ is another representative set of simple obje
t of C, then there is a

unique bije
tion ϕ : I → I ′ su
h that the obje
ts i and ϕ(i) are isomorphi


for all i ∈ I. Consequently, the naturality of FC (see Se
tion 2.2.6) implies

that IC(M, ν) does not depend on the 
hoi
e of the representative set I.
Let (M, ν) and (M ′, ν ′) be two equivalent 
ombed 3-manifolds (see Se
-

tion 3.2.1). There is an orientation-preserving di�eomorphism φ : M → M ′

su
h that the 
ombings ν ′′ = φ∗ ◦ ν ◦ φ
−1

and ν ′ are homotopi
 within the


lass of 
ombings on M ′
. Pi
k a bran
hed spine P of (M, ν) and a bran
hed

spine P ′
of (M ′, ν ′). Then P ′′ = φ(P ) is a bran
hed spine of (M ′, ν ′′). Clearly

IC(P ) = IC(P
′′). Also, sin
e ν ′′ and ν ′ are homotopi
 within the 
lass of 
omb-

ings onM ′
, it follows from the de�nition of the state sum that IC(P

′′) = IC(P
′).

Consequently,

IC(M, ν) = IC(P ) = IC(P
′′) = IC(P

′) = IC(M
′, ν ′).

4.2.4. Proof of Theorem 4.2. It follows from Se
tions 3.3.2 and 4.1.3

that there are

• a bije
tion between the set of verti
es of the o-graph Γ and the set of

verti
es of the bran
hed polyhedron PΓ asso
iated to Γ;
• a bije
tion between the set of edges of Γ and the set of edges of PΓ;

• a bije
tion between the set Circ(Γ) and the set of regions of PΓ.

By pre-
omposing with the latter bije
tion, any 
oloring c of Γ indu
es a


oloring c̃ of PΓ. Clearly diml(c) = diml(c̃). By de�nition, for any vertex x
of Γ, the asso
iated graph Γc

x (see Se
tion 4.1.3) is equal to the graph Γc̃
x̃

asso
iated to the vertex x̃ of PΓ 
orresponding to x (see Se
tion 4.1.1). Also,

the 
ontra
tion ve
tor ∗c provided by Se
tion 4.1.3 is equal to the 
ontra
tion

ve
tor ∗c̃ provided by Se
tion 4.1.1. It follows that |c| = |c̃|. Now, the above

map c 7→ c̃ is a bije
tion between the set of 
olorings of Γ and the set of


olorings of PΓ. Consequently, we dedu
e that

∑

c

dim
l

(c) |c| =
∑

c

diml(c̃) |c̃| = IC(PΓ) = IC(M, ν),

where c runs over all 
olorings of Γ.





CHAPTER 5

A parti
ular 
ase

In this 
hapter, we 
onsider a pivotal fusion 
ategory Gd
k
asso
iated with a


hara
ter d of a �nite group G and study in detail the invariant IGd
k

(M, ν) of

ombed 3-manifolds de�ned with this 
ategory. In parti
ular, we prove that

this invariant is non-trivial and 
orresponds to the evaluation by the 
hara
ter d
on the Euler 
lass of the real ve
tor bundle of rank 2 asso
iated to ν.

Throughout this 
hapter, G is a �nite group and d is a 
hara
ter of G over

the (non-zero) 
ommutative ring k, that is, a group homomorphism from G to

the multipli
ative group k∗
of k.

5.1. The pivotal fusion 
ategory Gd
k

In this se
tion, we de�ne a pivotal fusion k-
ategory Gd
k
as follows. The

obje
ts of Gd
k
are the elements of G. By de�nition,

EndGd
k

(g) = k and HomGd
k

(h, l) = {0} ⊂ k

for all g ∈ G and distin
t h, l ∈ G. The 
omposition of morphisms in Gd
k
is

indu
ed by multipli
ation in k. The identity of an obje
t g ∈ G is idg = 1k.
The 
ategory Gd

k
is stri
t monoidal with monoidal produ
t de�ned by

g ⊗ h = gh and λ⊗ µ = λµ

for all g, h ∈ G and all morphisms λ, µ in C (whi
h are elements of k). The

unit obje
t of Gd
k
is the unit element 1 ∈ G.

The monoidal 
ategory Gd
k
is pivotal with pivotal duality

{(g∗ = g−1, evg = 1k, ẽvg = d(g)−1)}g∈G.

More pre
isely,

evg = 1k ∈ k = HomGd
k

(g−1 ⊗ g, 1),

ẽvg = d(g)−1 ∈ k = HomGd
k

(g ⊗ g−1, 1).

The 
orresponding 
oevaluation morphisms are 
omputed by

coevg = 1k ∈ k = HomGd
k

(1, g ⊗ g−1),

c̃oevg = d(g) ∈ k = HomGd
k

(1, g−1 ⊗ g).

Note that the dual fun
tor of Gd
k
a
ts as the inversion on obje
ts and as the

identity on morphisms. By de�nition, the dimensions of an obje
t g ∈ G are


omputed by

dim
l

(g) = d(g) ∈ k and dim
r

(g) = d(g)−1 ∈ k.

89
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Consequently, Gd
k
is spheri
al if and only if d(g)2 = 1k for all g ∈ G.

We endow Gd
k
with a stru
ture of monoidal k-
ategory de�ned by provid-

ing ea
h Hom-set (whi
h is either k or 0) with the left k-module stru
ture

given by multipli
ation. The pivotal k-
ategory Gd
k
is then fusion with G as a

representative set of simple obje
ts.

5.2. A dire
t 
omputation of IGd
k

Let (M, ν) be a 
ombed 3-manifold. Let Γ be an o-graph su
h that (M, ν)

is equivalent to (MΓ, νΓ) if ∂M 6= ∅ (see Se
tion 3.3.3) or to (M̂Γ, ν̂Γ) if ∂M = ∅
(see Se
tion 3.3.5).

Re
all from Se
tion 4.1.3 that a 
oloring of Γ is a map from the set Circ(Γ)
of the 
ir
uits obtained from Γ by applying the rules of Figure 3.6 to the set G.
We say that a 
oloring c of Γ is admissible if

c
(
fe(3)

)
= c

(
fe(1)

)
c
(
fe(2)

)
∈ G

for all edge e of Γ, where the map fe : Γe = {1, 2, 3} → Circ(Γ) is de�ned in

Se
tion 4.1.3.

Let c be an admissible 
oloring of Γ. For γ ∈ Circ(Γ), set

dc(γ) = d(c(γ)).

We asso
iate to a vertex x of Γ a s
alar κc(x) de�ned as follows. If x is positive,

then

PSfrag repla
ements

x
 

PSfrag repla
ements

m

j

n

l

ki

7→ κc(x) = d(k)−1d(m)−1d(n)−1.

If x is negative, then

PSfrag repla
ements

x
 

PSfrag repla
ements

m

j

n

l

ki

7→ κc(x) = d(i)−1d(m)−1d(n)−1.

Here, the middle pi
tures represent the portions of 
ir
uits asso
iated with x
together with their c-
olors i, j, k, l,m, n ∈ I.

We asso
iate to an edge e of Γ a s
alar θc(e) de�ned as follows. Re
all from

the de�nition of the map fe that to e is asso
iated three portions of 
ir
uits

(eventually 
oin
iding) in Circ(Γ). The rightmost portion is a portion of the


ir
uit fe(3) ∈ Circ(Γ). Set

θc(e) = d
(
c
(
fe(3)

))
.

In the next theorem, we 
ompute the invariant IGd
k

(M, ν) of (M, ν) derived

from Gd
k
using the s
alars dc(γ), κc(x), and θc(e) de�ned above.
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Theorem 5.1. We have:

IGd
k

(M, ν) =
∑

c

(∏

γ

dc(γ)
)(∏

x

κc(x)
)(∏

e

θc(e)
)
,

where c runs over all admissible 
olorings of Γ, γ runs over all 
ir
uits in

Circ(Γ), x runs over all verti
es of Γ, and e runs over all edges of Γ.

Proof. By Theorem 4.2, we have that

IGd
k

(M, ν) =
∑

c

diml(c) |c|

where c runs over all 
olorings of Γ. Sin
e

diml(c) =
∏

γ∈Circ(Γ)

dc(γ),

it su�
es to prove that if c is a non-admissible 
oloring of Γ, then |c| = 0, and
that if c is an admissible 
oloring of Γ, then

(5.1) |c| =
(∏

x

κc(x)
)(∏

e

θc(e)
)

where x runs over all verti
es of Γ and e runs over all edges of Γ. Fix a


oloring c of Γ.
Re
all from Se
tion 4.1.3 the 
y
li
 Gd

k
-set Γe = ({1, 2, 3}, c ◦ fe, εe) asso
i-

ated to an edge e of Γ. It follows from the de�nitions that

H(Γe) ≃ HomGd
k

(
1, c

(
fe(1)

)
c
(
fe(2)

)
c
(
fe(3)

)−1
)

and so

Hc(e) = H(Γe)⊗H
(
Γop
e

)
≃

{
k if c

(
fe(1)

)
c
(
fe(2)

)
= c

(
fe(3)

)
,

0 if c
(
fe(1)

)
c
(
fe(2)

)
6= c

(
fe(3)

)
.

Therefore

Hc =
⊗

e

Hc(e) ≃

{
k if c is admissible,

0 otherwise.

Consequently, if c is not admissible, then |c| = 0.
Assume that c is admissible. Let x be a vertex of Γ. Re
all from Se
-

tion 4.1.3 the Gd
k
-
olored planar graph Γc

x asso
iated to x. Then

H(Γc
x) = H(Γǫ(e1)

e1
)⊗H(Γǫ(e2)

e2
)⊗H(Γǫ(e3)

e3
)⊗H(Γǫ(e4)

e4
) ≃ k

⊗4,

where e1, . . . , e4 are the edges in
ident to x. Therefore the 
ontribution of x
to |c| is

FGd
k

(Γc
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k) ∈ H(Γc

x)
⋆ ≃ k.
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If x is positive, then

Γc
x =

PSfrag repla
ements

m

j

n

l

ki

,

where i, j, k, l,m, n ∈ I are c-
olors of the 
ir
uits asso
iated with x and so

FGd
k

(Γc
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k)

(i)
=

PSfrag repla
ements

i

j

kl

m n

1k

1k

1k

1k

(ii)
= d(k)−1d(m)−1d(n)−1 (iii)

= κc(x).

Here, (i) follows from the de�nition of FGd
k

, (ii) from the de�nition of the

pivotal duality of Gd
k
, and (iii) from the de�nition of κc(x). If x is negative,

then

Γc
x =

PSfrag repla
ements

m

j

n

l

ki

,
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where i, j, k, l,m, n ∈ I are c-
olors of the 
ir
uits asso
iated with x and so

FC(Γ
c
x)(1k ⊗ 1k ⊗ 1k ⊗ 1k)

(i)
=

PSfrag repla
ements

i

j

kl

m n

1k

1k

1k

1k

(ii)
= d(k)−1d(j)−1d(m)−1d(n)−1 (iii)

= d(i)−1d(m)−1d(n)−1 (iv)
= κc(x).

Here, (i) follows from the de�nition of FGd
k

, (ii) from the de�nition of the piv-

otal duality of Gd
k
, (iii) from the admissibility of c, and (iv) from the de�nition

of κc(x).
Re
all from Se
tion 4.1.3 that the 
ontra
tion ve
tor asso
iated to an edge e

of Γ is

∗e = ∗
3
Γe
∈ H(Γe)⊗H

(
Γop
e

)
= Hc(e) ≃ k.

It is 
omputed by

∗e
(i)
=

PSfrag repla
ements

g g
h hk k

(ii)
= d(g)d(h)

(iii)
= d(k)

(iv)
= θc(e),

where g = c
(
fe(1)

)
, h = c

(
fe(2)

)
, and k = c

(
fe(3)

)
. Here, (i) follows from

Lemma 2.2, (ii) from the de�nition of the pivotal duality of Gd
k
, (iii) from the

admissibility of c, and (iv) from the de�nition of θc(e).
Consequently, sin
e |c| is the evaluation of ∗c = ⊗e∗e, where e runs over all

edges of Γ, by
⊗

x FC(Γ
c
x), where x runs over all verti
es of Γ, we obtain that

the equality (5.1) is satis�ed. �
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5.3. Non-triviality of IGd
k

Consider the following two o-graphs:

Γ =

PSfrag repla
ements

e1 e2

e3
e4

e5
e6

e7

e8
e9

e10

x1

x3

x5

x2

x4

Γ′ =

PSfrag repla
ements

e′1

e′2

e′3

e′4

e′5

e′6

e′7

e′8
e′9

e′10

e′11

e′12

e′13

e′14

x′1

x′2

x′3

x′4

x′5

x′6 x′7

.

The o-graphs Γ and Γ′
are 
losed and so en
ode 
losed 
ombed 3-manifolds

(M, ν) and (M ′, ν ′), respe
tively (see Se
tion 3.3.5).

Theorem 5.2. (a) The 3-manifolds M and M ′
are homeomorphi
.

(b) The 
ombed 3-manifolds (M, ν) and (M ′, ν ′) are not equivalent.

(
) We have:

IGd
k

(M, ν) =
∑

g∈G

d(g)2 and IGd
k

(M ′, ν ′) = |G| 1k.

(d) There are examples of a �nite group G and of a 
hara
ter d of G su
h

that IGd
k

(M, ν) 6= IGd
k

(M ′, ν ′).

Note that the parts (a),(b),(d) of Theorem 5.2 implies that the invariant IC
of Theorem 4.1 is non-trivial and does depend on the 
ombing: it may distin-

guish two non-homotopi
 
ombings on the same 3-manifold.

Proof. Part (a) follows from Se
tion 3.3.6 sin
e Γ′
is obtained from Γ by

applying a Pontrjagin move.

Let us prove part (
). We 
ompute IGd
k

(M, ν) by using its expression given

by Theorem 5.1. Let c be an admissible 
oloring of Γ. There are 6 
ir
uits
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γ1, . . . , γ6 obtained from Γ by applying the rules of Figure 3.6:

PSfrag repla
ements

i

j

k n

m t

.

Here, the c-
olors of the 
ir
uits are denoted as follows:

i = c(γ1) red, j = c(γ2) green,

k = c(γ3) blue, m = c(γ4) bla
k,

n = c(γ5) grey, t = c(γ6) pink.

The s
alars asso
iated to the verti
es x1, . . . , x5 of Γ are:

κc(x1) = d(j)−1d(m)−1d(i)−1, κc(x2) = d(i)−1d(t)−1d(j)−1,

κc(x3) = d(j)−3, κc(x4) = d(i)−1d(k)−1d(j)−1,

κc(x5) = d(j)−1d(i)−1d(n)−1.

The s
alars asso
iated to the edges e1, . . . , e10 are:

θc(e1) = d(m), θc(e2) = d(t), θc(e3) = d(j), θc(e4) = d(j),

θc(e5) = d(j), θc(e6) = d(j), θc(e7) = d(k), θc(e8) = d(i),

θc(e9) = d(n), θc(e10) = d(i).

The s
alars asso
iated to the 
ir
uits γ1, . . . , γ6 are:

dc(γ1) = d(i), dc(γ2) = d(j), dc(γ3) = d(k),

dc(γ4) = d(m), dc(γ5) = d(n), dc(γ6) = d(t).

Now, the admissibility of c imposes 
onditions on the 
olors, one for ea
h of

the 10 edges of Γ:

e1  m = ji, e2  t = ij, e3  j = ji, e4  j = ij,

e5  j = ij, e6  j = ji, e7  k = ij, e8  i = i2,

e9  n = ji, e10  i = i2,

that is,

i = 1 and j = k = m = n = t.
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Therefore

IGd
k

(M, ν) =
∑

c

6∏

q=1

dc(γq)

5∏

r=1

κc(xr)

10∏

s=1

θc(es)

=
∑

i,j,k,m,n,t∈G

δi,1δj,kδj,mδj,nδj,t d(i)
−1d(j)−2d(k)d(m)d(n)d(t) =

∑

j∈G

d(j)2.

We 
ompute similarly IGd
k

(M ′, ν ′). Let c be an admissible 
oloring of Γ′
.

There are 8 
ir
uits γ′1, . . . , γ
′
8 obtained from Γ′

by applying the rules of Fig-

ure 3.6:

PSfrag repla
ements

i

j

k

n

m

t

u v

.

Here, the c-
olors of the 
ir
uits are denoted as follows:

i = c(γ′1) red, j = c(γ′2) green,

k = = c(γ′3) pink, m = c(γ′4) bla
k,

n = c(γ′5) blue, t = c(γ′6) yellow,

u = c(γ′7) grey, v = c(γ′8) light blue.

The s
alars asso
iated to the x′1, . . . , x
′
7 are:

κc(x
′
1) = d(i)−1d(u)−1d(n)−1, κc(x

′
2) = d(i)−1d(j)−1d(m)−1,

κc(x
′
3) = d(m)−1d(j)−1d(k)−1, κc(x

′
4) = d(i)−1d(j)−2,

κc(x
′
5) = d(i)−1d(k)−1d(v)−1, κc(x

′
6) = d(i)−2d(m)−1,

κc(x
′
7) = d(n)−1d(t)−1d(i)−1.
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The s
alars asso
iated to the edges e′1, . . . , e
′
14 are:

θc(e
′
1) = d(t), θc(e

′
2) = d(i), θc(e

′
3) = d(i), θc(e

′
4) = d(m),

θc(e
′
5) = d(v), θc(e

′
6) = d(i), θc(e

′
7) = d(k), θc(e

′
8) = d(j),

θc(e
′
9) = d(j), θc(e

′
10) = d(m), θc(e

′
11) = d(j), θc(e

′
12) = d(i),

θc(e
′
13) = d(u), θc(e

′
14) = d(n).

The s
alars asso
iated to the 
ir
uits γ′1, . . . , γ
′
8 are:

dc(γ
′
1) = d(i), dc(γ

′
2) = d(j), dc(γ

′
3) = d(k),

dc(γ
′
4) = d(m), dc(γ

′
5) = d(n), dc(γ

′
6) = d(t),

dc(γ
′
7) = d(u), dc(γ

′
8) = d(v).

Now, the admissibility of c imposes 
onditions on the 
olors, one for ea
h of

the 14 edges of Γ:

e′1  t = ni, e′2  i = ni, e′3  i = ji, e′4  m = ij,

e′5  v = ik, e′6  i = nm, e′7  k = jk, e′8  j = ik,

e′9  j = mk, e′10  m = ij, e′11  j = nj, e′12  i = in,

e′13  u = in, e′14  n = n2,

that is,

i = m = t = u, j = n = v = 1, and k = i−1.

Therefore

IGd
k

(M ′, ν ′) =
∑

c

8∏

q=1

dc(γq)
7∏

r=1

κc(xr)
14∏

s=1

θc(es)

=
∑

i,j,k,m,n,t,u,v∈G

δi,mδi,tδi,uδj,1δn,1δv,1δk,i−1 d(i)−2d(t)d(u)d(v)

=
∑

i∈G

1k = |G| 1k.

Let us prove Part (d). Consider the 
y
li
 group G = Z/3Z and the


hara
ter d : Z/3Z→ C∗
de�ned by k 7→ exp(2iπk/3). By Part (b), we have:

IC(M, ν) = d
(
0
)2

+ d
(
1
)2

+ d
(
2
)2

= 1 + exp(4iπ/3) + exp(2iπ/3) = 0

and

IC(M
′, ν ′) = |Z/3Z| 1C = 3 6= 0.

Finally, Part (b) follows from part (d) and the fa
t that IGd
k

is an invariant

of 
ombed 3-manifolds. �

5.4. An interpretation of IGd
k

In this se
tion, we give an interpretation (in terms of 
lassi
al topologi
al

invariants) of the state sum invariant IGd
k

de�ned with the 
ategory Gd
k
.

Throughout this se
tion, we �x a 
losed 
ombed 3-manifold (M, ν).
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5.4.1. The Euler 
lass of a 
ombing. The 
ombing ν : M → TM is

a nowhere zero ve
tor �eld on the (
losed oriented 
onne
ted) 3-manifold M .

Therefore ν generates a ve
tor sub-bundle Lν → M of rank 1 of the tangent

bundle TM →M . Then the quotient bundle

F ν = TM/Lν →M

is a ve
tor bundle on M of rank 2. By de�nition, for any x ∈M ,

F ν
x = TxM/Lν

x = TxM/Rνx.

The Euler 
lass of ν is the Euler 
lass of the ve
tor bundle F ν
:

Eν = e(F ν) ∈ H2(M ;Z).

Re
all that this 
lass is de�ned as follows (e.g., see [Ha, Chapter 4℄). Con-

sider a generi
 se
tion s of F ν
. Then s−1(0) is a 
losed submanifold of M of

dimension 3-2=1. Its homology [s−1(0)] ∈ H1(M,Z) does not depend on the


hoi
e of s. The image of this 
lass under the Poin
aré duality isomorphism

H1(M,Z) ≃ H2(M ;Z) is the Euler 
lass e(F ν) ∈ H2(M ;Z) of F ν
.

5.4.2. Computation of the Euler 
lass from 
losed o-graphs. Let Γ

be a 
losed o-graph su
h that (M, ν) is equivalent to (M̂Γ, ν̂Γ) (see Se
tion 3.3.5).

In this se
tion, we 
ompute the Euler 
lass Eν of ν from Γ.
The bran
hed polyhedron P = PΓ asso
iated to Γ (see Se
tion 3.3.2) is a

bran
hed spine of (M, ν). Re
all that there is a bije
tion between the set of

edges of Γ and the set of edges of P . Let e be an edge of P . Then e inherits

an orientation from its 
orresponding edge of Γ. The orientations of e and M
determine a positive dire
tion on a small loop inM en
ir
ling e. The resulting
oriented loop determines a 
y
li
 order on the set {δe, δe−, δ

e
+} of bran
hes of P

at e. We 
hoose notation so that this 
y
li
 order is δe < δe− < δe+ < δe

and the orientation of e 
oin
ide with that indu
ed by δe− and δe+. Denote

by ∆e,∆e
−,∆

e
+ the regions of P (eventually 
oin
iding) 
ontaining δe, δe−, δ

e
+

respe
tively:

PSfrag repla
ements

∆e

∆e
+

∆e
−

e

1
23
M

.

Lemma 5.3 ([BP2, Lemma 10.1.1℄). H2(P ;Z) is the Z-module generated

by the regions ∆ of P subje
t to the relations

∆e = ∆e
+ +∆e

−,

as e runs over the edges of P .
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Re
all that there is a bije
tion between the set VΓ of verti
es of Γ and the

set of verti
es of P . Re
all that the set Circ(Γ) of 
ir
uits obtained from Γ by

applying the rules of Figure 3.6 is in bije
tion with the set Reg(P ) of regions
of P . Asso
iate to any vertex x of Γ the following 
ohomology 
lass:

λ(x) = ∆x
1 +∆x

2 +∆x
3 ∈ H

2(P ;Z).

Here, ∆x
1 ,∆

x
2 ,∆

x
3 are regions of P 
orresponding to three portions of 
ir
uits

in Circ(Γ) indu
ed by x when applying the rule of Figure 3.6.

If x is positive, then:

PSfrag repla
ements

x
 

PSfrag repla
ements

∆x
2 ∆x

3

∆x
1

.

If x is negative, then:

PSfrag repla
ements

x
 

PSfrag repla
ements

∆x
2 ∆x

3

∆x
1

.

Denote by EΓ the set of edges of Γ (whi
h is in bije
tion with the set of edges

of P ).

Lemma 5.4. The Euler 
lass Eν of ν is the image of

µΓ =
∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e ∈ H2(P ;Z)

under the isomorphism H2(P ;Z) ≃ H2(M ;Z) indu
ed by the in
lusion of P
in M .

Proof. Sin
e P is bran
hed, it may be provided with a C1
-stru
ture (see

Se
tion 3.2.2). The Euler 
lass is the image of a 
lass µΓ ∈ H
2(P ;Z) under

the isomorphism H2(P ;Z) ≃ H2(M ;Z) indu
ed by the in
lusion of P in M .

The 
lass µΓ is just the obstru
tion to the existen
e of a nowhere-zero tangent

ve
tor �eld on P . For ea
h region ∆ of P , remove the interior of a disk

embedded in ∆. The result is a regular neighborhood N of the verti
es and

edges of P . The boundary of N is the disjoint union of the 
ir
les bounding

the disks. Following [BP2, Propositin 7.1.1℄, 
onstru
t a nowhere-zero tangent

ve
tor �eld near on N using the following rules:

.
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The red points represent the points where the ve
tor �eld is tangent to the


ir
les bounding the removed disks. For a region ∆ of P , let n∆ be the number

of red dots in ∆. By 
onstru
tion, the red points in ∆ split the 
ir
le bounding

the removed disk in ∆ into segments on whi
h the �eld points alternatively

inside and outside the disk. Thus n∆ is even. If n∆ = 0, then we 
an extend

the ve
tor �eld on ∆ with a zero of index 1. If n∆ > 0, then we 
an extend

the ve
tor �eld on ∆ with

n∆

2
− 1 zeros of index -1. Consequently,

(5.2) µΓ =
∑

∆∈Reg(P )

(
1−

n∆

2

)
∆ ∈ H2(P ;Z).

Let x be a vertex of Γ. Sin
e x is of 
rossing type (see Se
tion 3.3), it has

two in
oming half-edges hin1 , h
in
2 and two outgoing half-edges hout1 , hout2 . We


hoose notation so that the distinguished half-edges are hin1 and hout1 . Denote

the 
orresponding edges of Γ by ex,in1 , ex,in2 , ex,out1 , ex,out2 . Sin
e the edges of Γ
are oriented, we have:

ex,in1 6= ex,in2 and ex,out1 6= ex,out2 .

Denote by Ax
1 , A

x
2 , A

x
3 , A

x
4, A

x
5 , A

x
6 the regions of P 
orresponding to the portions

of 
ir
uits in Circ(Γ) indu
ed by x when applying the rule of Figure 3.6. We


hoose notation a

ording to the sign of x. If x is positive, then:

PSfrag repla
ements

x

ex,in2

ex,out1

ex,out2

ex,in1
 

PSfrag repla
ements

Ax
1

Ax
2

Ax
3

Ax
4

Ax
5Ax

6

.

If x is negative, then:

PSfrag repla
ements

x

ex,out2

ex,out1

ex,in2

ex,in1
 

PSfrag repla
ements

Ax
3

Ax
2

Ax
1

Ax
4

Ax
6Ax

5

.

Sin
e any edge is outgoing from a unique vertex, sin
e there are exa
tly two

half-edges outgoing from a vertex, and sin
e ex,out1 6= ex,out2 , we have:

∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,out
1 + ∆e

x,out
2

)
.

Similarly, ∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,in
1 + ∆e

x,in
2

)
.

Consequently,

2
∑

e∈EΓ

∆e =
∑

x∈VΓ

(
∆e

x,out
1 + ∆e

x,out
2 + ∆e

x,in
1 + ∆e

x,in
2

)
.
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Now, if x is positive, then

∆e
x,out
1 = Ax

3 , ∆e
x,out
2 = Ax

5 , ∆e
x,in
1 = Ax

1 , ∆e
x,in
2 = Ax

3 ,

if x is negative, then

∆e
x,out
1 = Ax

1 , ∆e
x,out
2 = Ax

3 , ∆e
x,in
1 = Ax

3 , ∆e
x,in
2 = Ax

5 .

Therefore

2
∑

e∈EΓ

∆e =
∑

x∈VΓ

(
Ax

1 + 2Ax
3 + Ax

5

)
.

By de�nition, for any vertex x of Γ,

λ(x) = Ax
1 + Ax

3 + Ax
5 .

Sin
e n∆ is the number of red dots in ∆, we have:

∑

∆∈Reg(P )

n∆ ∆ =
∑

x∈VΓ

(
Ax

1 + Ax
5

)
.

Consequently,

−2
∑

x∈VΓ

λ(x) + 2
∑

e∈EΓ

∆e = −
∑

x∈VΓ

(
Ax

1 + Ax
5

)
= −

∑

∆∈Reg(P )

n∆∆.

Using the expression (5.2), we 
on
lude that

µΓ =
∑

∆∈Reg(P )

(
1−

n∆

2

)
∆ =

∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e. �

5.4.3. Interpretation of IGd
k

. Let BG be the (pointed) 
lassifying spa
e

of the group G. The 
hara
ter d : G→ k∗
represents an element

[d] ∈ H1(G; k∗) ∼= H1(BG; k∗).

Pi
k a point ∗ ∈M . Denote by Hom(π1(M, ∗), G) the set of group homomor-

phisms from the fundamental group π1(M, ∗) to G. Any f ∈ Hom(π1(M, ∗), G)

indu
es a pointed map f̃ : M → BG and so a homomorphism

f̃ ∗ : H1(BG; k∗)→ H1(M ; k∗).

Consider the pairing

〈·, ·〉 : H1(M ; k∗)×H2(M ;Z)→ k

indu
ed by the Poin
aré duality isomorphism H2(M ;Z) ≃ H1(M ;Z) and the

evaluation pairing H1(M ; k∗)×H1(M ;Z)→ k.

Theorem 5.5. We have:

IGd
k

(M, ν) =
∑

f∈Hom(π1(M,∗),G)

〈f̃ ∗([d]), Eν〉,

where Eν is the Euler 
lass of the 
ombing ν.
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Proof. Let Γ be a 
losed o-graph su
h that (M, ν) is equivalent to (M̂Γ, ν̂Γ)
(see Se
tion 3.3.5). Let P = PΓ be the bran
hed polyhedron asso
iated to Γ.
The setM \P is homeomorphi
 to an open 3-ball. We may assume that ∗ ∈M
is the 
enter of this ball. For any region ∆ of P , pi
k a loop γ∆ in M based

in ∗ whi
h is positively transverse to ∆. The fundamental group π1(M, ∗) is
generated by the homotopy 
lasses [γ∆] with ∆ ∈ Reg(P ). The only relations

are [γe] = 1 with e an edge of P , where γe = γ∆e
−
γ∆e

+
(γ∆e)−1

:

PSfrag repla
ements

γe

∗

∆e

∆e
+

∆e
−

e

1
23
M

.

Consequently,

π1(M, ∗) =
〈
[γ∆], ∆ region of P

∣∣∣ [γ∆e ] = [γ∆e
−
][γ∆e

+
], e edge of P

〉
.

Thus any f ∈ Hom(π1(M, ∗), G) indu
es an admissible 
oloring cf of Γ de�ned

by

cf(∆) = f([γ∆]) ∈ G

for all region ∆ of P (through the obvious bije
tion between Circ(Γ) and

Reg(P )). Also the assignment f 7→ cf is bije
tive.

Let f ∈ Hom(π1(M, ∗), G) and denote by c = cf its asso
iated admissible


oloring of Γ. By Theorem 5.1, it su�
es to prove that

(5.3) 〈f̃ ∗([d]), Eν〉 =
∏

∆∈Reg(P )

dc(∆)
∏

x∈VΓ

κc(x)
∏

e∈EΓ

θc(e),

where VΓ is the set of verti
es of Γ and EΓ is the set of edges of Γ. Re
all the
presentation of H2(P ;Z) given by Lemma 5.3 and de�ne a group homomor-

phism

ϕc : H
2(P ;Z)→ k

∗

by setting ϕc(∆) = d(c(∆)) for all ∆ ∈ Reg(P ). By Lemma 5.4, the Euler


lass Eν is the image of

µΓ =
∑

∆∈Reg(P )

∆ −
∑

x∈VΓ

λ(x) +
∑

e∈EΓ

∆e ∈ H2(P ;Z)
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(with the notation of Se
tion 5.4.2) under the isomorphismH2(P ;Z) ≃ H2(M ;Z)
indu
ed by the in
lusion of P in M . Then, we have:

〈f̃ ∗([d]), Eν〉 = ϕc(µΓ) =
∏

∆∈Reg(P )

ϕc(∆)
∏

x∈VΓ

ϕc(λ(x))
−1

∏

e∈EΓ

ϕc(∆
e).

Now it follows from the de�nitions that

ϕc(∆) = dc(∆), ϕc(λ(x))
−1 = κc(x), ϕc(∆

e) = θc(e)

for all regions ∆ of P , all verti
es x of Γ, and all edges e of Γ. Therefore (5.3)

holds. �

5.4.4. Remark. Re
all from Se
tion 4.1.2 that if the pivotal fusion k-


ategory Gd
k
is spheri
al, then IGd

k

(M, ν) does not depend on ν. This 
an be

re
overed from Theorem 5.5 as follows. It is well-known (see for example [Tu℄)

that the Euler 
lass Eν is even, that is, Eν = 2Dν with Dν ∈ H2(M ;Z).
Therefore, for any f ∈ Hom(π1(M, ∗), G),

〈f̃ ∗([d]), Eν〉 = 〈f̃
∗([d2]), Dν〉.

Consequently, if Gd
k
is spheri
al, or equivalently if d(g)2 = 1k for all g ∈ G (see

Se
tion 5.1), then 〈f̃ ∗([d]), Eν〉 = 1 and Theorem 5.5 gives that

IGd
k

(M, ν) = |Hom(π1(M, ∗), G)| 1k.

In parti
ular, IGd
k

(M, ν) does not depend on ν.





APPENDIX A

Unordered tensor produ
ts of modules

By a module we mean a left module over the 
ommutative ring k. Given

a �nite family E of modules, we de�ne the unordered tensor produ
t ⊗M∈EM
as follows. Let n = #E be the number of elements of E, and let S = S(E)
be the set of bije
tions {1, . . . , n} → E. For any bije
tion σ ∈ S, 
onsider the
module

Eσ = σ(1)⊗k · · · ⊗k σ(n).

For σ, µ ∈ S, let pσ,µ : Eσ → Eµ be the k-linear isomorphism indu
ed by the

permutations of modules: given any ve
tors mi ∈ σ(i) with i = 1, . . . , n,

pσ,µ(m1 ⊗k · · · ⊗k mn) = mσ−1µ(1) ⊗k · · · ⊗k mσ−1µ(n).

It follows from the de�nitions that for arbitrary σ, µ, ν ∈ S,

pµ,νpσ,µ = pσ,ν : Eσ → Eν and pσ,σ = idEσ
.

The unordered tensor produ
t of the modules M ∈ E is the proje
tive limit of

the system (Eσ, pσ,µ)σ,µ∈S :

⊗M∈EM = lim
←−

Eσ.

This is a module (over k) equipped with an isomorphism ⊗M∈EM ∼= Eσ for

ea
h σ ∈ S. The latter isomorphisms are 
alled the 
one isomorphisms. They


ommute with pσ,µ for all σ, µ ∈ S. If all modules M ∈ E are proje
tive of

�nite type, then so is ⊗M∈EM and there is a 
anoni
al isomorphism

(
⊗M∈EM

)⋆
≃ ⊗M∈EM

⋆.

The unordered tensor produ
t of an empty set of modules is the ground ring k.

Given a bije
tion ϕ : E → F between two �nite families of modules, an

arbitrary family {fM : M → ϕ(M)}M∈E of k-linear homomorphisms indu
es a

k-linear homomorphism

⊗M∈EfM : ⊗M∈E M → ⊗N∈FN.

It is uniquely determined by the property that for all σ ∈ S(E), the following
diagram 
ommutes:

⊗M∈EM ⊗N∈FN

Eσ Fϕσ

⊗M∈EfM

∼= ∼=

fσ(1)⊗k···⊗kfσ(1)
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where the verti
al isomorphisms are the 
one isomorphisms. If all fM are

isomorphisms, then so is ⊗M∈EfM .
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Invariants par somme d'états des 3-variétés peignées

Cette thèse 
on
erne la topologie quantique, une bran
he des mathématiques

née dans les années 1980 suite aux travaux de Jones, Drinfeld et Witten. Un ex-

emple fondamental d'invariant quantique des 3-variétés est due à Turaev-Viro

en 1992. Leur appro
he, dans sa forme générale due à Barrett et Westbury,

utilise une 
atégorie de fusion sphérique 
omme ingrédient prin
ipal et 
onsiste

en une somme d'états sur un squelette de la 3-variété dont les sommets sont


oloriés par les 6j-symboles de la 
atégorie.

Le résultat prin
ipal de la thèse est la 
onstru
tion d'un invariant topologique

des 3-variétés peignées (
'est-à-dire des 3-variétés munies d'un 
hamp de ve
teurs

jamais nuls) qui généralise 
elui de Turaev-Viro. Ce nouvel invariant est dé�ni

au moyen d'une 
atégorie de fusion pivotale et 
onsiste en une somme d'états

sur un squelette rami�é représentant la 3-variété peignée.

Lorsque la 
atégorie de fusion pivotale n'est pas sphérique, l'invariant per-

met en général de distinguer des 
hamps de ve
teurs non homotopes sur une

même 3-variété. Ce
i est montré en 
onsidérant une 
atégorie de fusion piv-

otale asso
iée à un 
ara
tère d'un groupe �ni. Pour 
ette 
atégorie, l'invariant


orrespond à l'évaluation par le 
ara
tère de la 
lasse d'Euler d'un 
ertain �bré

ve
toriel de rang 2 asso
ié au 
hamp de ve
teurs.

State sum invariants of 
ombed 3-manifolds

This thesis 
on
erns quantum topology, a bran
h of mathemati
s born in the

1980s after the work of Jones, Drinfeld and Witten. A fundamental example

of a quantum invariant of 3-manifolds is due to Turaev-Viro in 1992. Their

approa
h, in its general form due to Barrett and Westbury, uses a spheri
al

fusion 
ategory as the main ingredient and 
onsists in a state sum on a skeleton

of the 3-manifold whose verti
es are 
olored by the 6j-symbols of the 
ategory.

The main result of the thesis is the 
onstru
tion of a topologi
al invariant

of 
ombed 3-manifolds (that is, of 3-manifolds endowed with a nowhere-zero

ve
tor �eld) whi
h generalizes that of Turaev-Viro. This new invariant is

de�ned by means of a pivotal fusion 
ategory and 
onsists in a state sum on a

bran
hed skeleton representing the 
ombed 3-manifold.

When the pivotal fusion 
ategory is not spheri
al, the invariant allows in

general to distinguish non homotopi
 ve
tor �elds on the same 3-manifold. This

is proved by 
onsidering a pivotal fusion 
ategory asso
iated with a 
hara
ter of

a �nite group. For this 
ategory, the invariant 
orresponds to the evaluation by

the 
hara
ter of the Euler 
lass of a 
ertain ve
tor bundle of rank 2 asso
iated

to the ve
tor �eld.
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