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Introduction

Quantum topology is an area of mathematics and theoretical physics founded

by Jones and Witten in the 1980s. This subject is a modern tool used for
studying problems of low-dimensional topology via so-called quantum invari-
ants of topological objects such as knots, links, manifolds, homeomorphisms,
etc. Quantum invariants are constructed using an ingredient of algebraic na-
ture (for example the category of representations of a quantum group) and via
a combinatorial description of the studied objects.

A fundamental example of a quantum invariant of compact oriented 3-man-
ifolds is due to Turaev and Viro in 1992, see [T'V]. Their construction is
closely related to the Ponzano-Regge quantum gravity state sum model. This
approach (in its general form due to Barrett and Westbury, see [BW]) uses a
spherical fusion category as the main ingredient and consists in a state sum
on skeletons of 3-manifolds whose vertices are colored by the 6j-symbols of
the category. Recall that a pivotal fusion category is a finitely semisimple
monoidal linear category endowed with a left duality and a right duality which
are monoidally equivalent. A spherical fusion category is a pivotal fusion cat-
egory whose left and right dimensions of objects are equal.

The goal of the present thesis is to extend the Turaev-Viro construction to
combed 3-manifolds. A combed 3-manifold is a compact oriented 3-manifold
endowed with a nowhere-zero vector field. The initial ingredient we use to
construct this extension is a pivotal fusion category (not necessarily spheri-
cal). The additional data of the vector field on the 3-manifold allows us to
remove the hypothesis of sphericity of the category. Our construction consists
in a state sum on branched spines of combed 3-manifolds, which are a com-
binatorial presentation of combed 3-manifolds developed by Ishii, Benedetti,
and Petronio.

This monograph comprises five chapters and one appendix. Chapter 1 is
devoted to monoidal categories, with particular attention to those that are
pivotal and fusion. We describe the Penrose graphical calculus which allows to
replace lengthy algebraic computations by elementary topological arguments.

In Chapter 2, we review an invariant of colored planar graphs which takes
values in tensor products of multiplicity modules. This invariant generalizes
6j-symbols. Also, we study duality pairings for colored graphs and their asso-
ciated contraction vectors. The invariant of colored graphs and the contraction
vectors are the main tool in our topological constructions.

In Chapter 3, we review the theory of branched spines and the theory of
o-graphs. The o-graphs are enhanced graphs that encode specific branched

iii
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spines. In particular, we explain how branched spines and o-graphs represent
combed 3-manifolds.

In Chapter 4, we construct of a state sum invariant of combed 3-manifolds
which generalizes the Turaev-Viro construction. More precisely, we associate
to any pivotal fusion category C a scalar topological invariant Io(M,v) of a
combed 3-manifold (M, v), see Theorem Il This invariant is defined in terms
of a state sum on a branched spine of (M, v). If the category C is spherical,
then I¢(M, v) does not depend on the vector field v and is equal to the Turaev-
Viro invariant TV (M) of the 3-manifold M defined using C. We also give an
algorithm to compute I (M, v) starting from o-graphs (see Theorem [£.2)).

In Chapter 5, we focus on the case of a specific pivotal fusion category:
the category G associated with a character d of a finite group G. We study
in detail the invariant IG]? of combed 3-manifolds defined with this category.
In particular, we prove (by examples) that Ia is non-trivial and does depend
on the vector field: it may distinguish two non-homotopic vector fields on the
same 3- manifold (see Theorem [5.2]). Finally, we give an interpretation of the
state sum invariant I5q(M, v) in terms of classical topological invariants: we
prove that it corresponds to the evaluation by the character d on the Euler
class of a real vector bundle of rank 2 associated to the vector field v (see
Theorem [5.5).

We end with an appendix on the unordered tensor products of modules.

lilliad.univ-lille.fr
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CHAPTER 1

Pivotal fusion categories

In this chapter, we review the notions of a monoidal category (Section [L.1])

and of a pivotal category (Section [[2]), with particular attention to the case of

a fusion category (Section [[.4]). We also discuss a way to represent morphisms:
the graphical calculus (Section [L3)).

1.1. Monoidal categories

We discuss some basics on monoidal categories. We also study non-degenerate

pairings in monoidal categories.

1.1.1. Categories. A category C consists of the following data:

e a class Ob(C), whose elements are called objects of C;

e for any XY € Ob(C), a set Hom¢(X,Y'), whose elements are called
morphisms from X to Y and represented by arrows X — Y

e for any X, Y, Z € Ob(C), a map

o: Home(Y, Z) x Home(X,Y) — Home (X, Z)

called composition. The image of a pair (g, f) under this map is
denoted g o f or just gf;

e for every X € Ob(C), a morphism idy € Home (X, X), called the
wdentity of X.

It is required that the composition is associative and unitary in the following
sense:
(hog)of=ho(gof) and foidy=f=idyof

for all morphismsf: X - VY, ¢:Y — Z, h: Z — T with XY, Z, T € Ob(C).

Given a morphism f: X — Y in a category C, the object X is called the
source and the object Y the target of f. Two morphisms g, f in C are com-
posable if the source of g coincides with the target of f. For X € Ob(C),
the set Home (X, X) is denoted by Ende(X), and its elements are called en-
domorphisms of X. The set Ende(X) is a monoid with product gf = go f
for any f,g € End¢(X) and unit idy. A morphism f: X — Y in C is an
tsomorphism if there exists a morphism ¢g: Y — X in C such that gf = idx
and fg = idy. Such a g is uniquely determined by f, is called the inverse
of f and denoted f~!. Two objects X,Y of C are isomorphic if there exists
an isomorphism X — Y . Isomorphism of objects is an equivalence relation
on Ob(C) denoted by ~.

lilliad.univ-lille.fr
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2 1. PIVOTAL FUSION CATEGORIES

1.1.2. Functors and natural transformations. Functors are morphisms

of categories and natural transformations are morphisms of functors. More pre-
cisely, a functor F: C — D from a category C to a category D assigns to each
object X of C an object F/(X) of D and to each morphism f: X — Y inC a
morphism F(f): F(X) — F(Y) in D so that

F(gf) =F(g)F(f) and F(idx) =idp)

for all composable morphisms ¢, f in C and all X € Ob(C). For example, the
identity functor 1¢: C — C carries every object/morphism in C to itself. The
composition of two functors F': C — D and G: D — £ is defined in the obvious
way and yields a functor GF': C — &.

A natural transformation F' — G between two functors F,G: C — D is a
family

¢ ={px: F(X) = G(X)}xeon(c)

of morphisms in D such that

ey F(f) = G(f)ex

for all morphisms f: X — Y in C. A natural transformation ¢: F — G is
invertible if ¢x is an isomorphism for all X € Ob(C). Then the family of
morphisms
{vx': G(X) = F(X)}xeon(e)

is a natural transformation G — F called the inverse of ¢ and denoted by L.
Invertible natural transformations of functors are called natural isomorphisms.
Clearly, the inverse of a natural isomorphism is a natural isomorphism. Two
functors C — D are isomorphic if there is a natural isomorphism between
them.

1.1.3. Isomorphisms and equivalences of categories. Let C and D
be categories. A functor F': C — D is an isomorphism if there is a functor
G: D — C such that GF = 1¢ and FG = 1p. Such a functor G is uniquely
determined by F, is an isomorphism, and is called the inverse of F. Two
categories are isomorphic if there is an isomorphism between them.

A quasi-inverse of a functor F': C — D is a functor G: D — C such that
there are natural isomorphisms GF ~ 1. and FFG ~ 1p. A functor is an
equivalence if it has a quasi-inverse. Note that any quasi-inverse of an equiv-
alence is an equivalence and the composition of two composable equivalences
is an equivalence. Two categories are equivalent if there is an equivalence be-
tween them. It is clear from the definitions that isomorphisms of categories
are equivalences and isomorphic categories are equivalent.

Any equivalence of categories F': C — D is essentially surjective in the
sense that each object of D is isomorphic to F(X) for some X € Ob(C) and
fully faithful in the sense that for all X,Y € Ob(C), the map

HomC(X7 Y) — Hom’D(F(X)’F(Y))’ [ F(f)

is bijective. If one assumes the axiom of choice, then all essentially surjective
and fully faithful functors are equivalences.

lilliad.univ-lille.fr
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1.1.4. Monoidal categories. A monoidal category is a category C en-
dowed with

e a functor ®: C x C — C, called the monoidal product (or tensor prod-
uct);

e an object 1 € Ob(C), called the unit object;

e a family of isomorphisms

a={axyz: (X®Y)®Z = X (Y ®2Z)}xyzeobe)

called the associativity constraint;
e a family of isomorphisms | = {Ix: 1® X — X} xcop(e), called the left
unitality constraint;
e a family of isomorphisms r = {rx: X ® 1 — X}xcop(e), called the
right unitality constraint.
It is required that:

(i) (Pentagon coherence) For all objects X,Y,Z, W of C, the following
diagram commutes:

(XY)®(ZeW)
aX®V K;/Z@W
(X@Y)Z) W XoY®((ZaWw)

ax YZ®1dVV\ /dx®ayzw

(XY R2)W —— = X (Y Z)W).

ax\yezw

(ii) (Triangle coherence) For all objects X, Y of C, the following diagram
commutes:

T}y wy
(Xl ®R(I®Y).

ax,1,Y

(iii) The associativity constraint a is a natural isomorphism from the func-
tor ®(® X 1¢) to the functor @(1¢ X ®).

(iv) The left unitality constraint [ is a natural isomorphism from the func-
tor 1 ® —: C — C to the functor 1¢: C — C.

(iv) The right unitality constraint r is a natural isomorphism the func-
tor —® 1: C — C to 1.

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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4 1. PIVOTAL FUSION CATEGORIES

Here, the functors 1 ® — et — ® 1 are defined by
(1®-)(X)=1® X, (—)(X)=X®1,
Te-)(f)=idi®f, (—e1)(f)=/Ff®id,

for any X € Ob(C) and any morphism f in C.

Each monoidal category C = (C,®, 1,a,l,r) gives rise to three opposite
monoidal categories:

CP? = (C®, ®,1,a®, [P, r°P),
C®op — (C, ®op’ ]1’ a®op’ l®op’ 7,®op>’
CreV — (Cop’ ®Op’ 1’ areV’ lreV’ TreV>.
Here, C° is the category opposite to C defined by Ob(C?) = Ob(C) and
Homeor (X, Y) = Home(Y, X) for all X, Y € Ob(C) with composition o°P de-
fined by g o°? f = fg. The functor ®°?: C x C — C is the opposite monoidal
product of C defined by X @Y =Y ® X for all X,Y € Ob(C) and similarly

for morphisms. The above associativity and unitality constraints are given for
all X,Y,Z € Ob(C) by

(@) xy.z = (axy.z) " (IP)x = (Ix)~1, (rP)x = (rx) ™
(a®0p)X,Y,Z = (GZ,Y,X)A, (I%P) x = ry, (r®P)x =Ix
(@)xyv.z = azyx, (I*)x = (rx) ™", (r)x = (I )

The transformations C — C°, C — C®°P, and C — C™ are involutive,
commute with each other, and each of them is the composition of the other
two. In particular, C™¥ = (C®°P)°P = (C°P)®°P,

1.1.5. Actions of the ground monoid. A monoidal category C = (C, ®,
1,a,l,r) determines a commutative monoid End¢ (1), called the ground monoid
of C. Its product is the composition of morphisms and its unit is idy. For any
X,Y € Ob(C), the set Hom¢(X,Y') carries left and right actions of the monoid
Endc(1) defined by

a-f=ly(a® )y and f-a=ry(f®a)ry

for any o € Ende(1) and f € Home(X,Y). The left and right actions of
Endc(1) on itself are given by the monoid product in End¢(1).

The actions of End¢(1) on the sets of morphisms are compatible with
monoidal product of morphisms in the following sense: for any a € End¢(1)
and any morphisms f, g in C, we have

a-(feg =@ fleg and (f®g) - a=f® (g ).

1.1.6. Pure categories. A monoidal category C is pure if the left and
right actions of Endc(1) on the sets of morphisms in C coincide. Thus, C is
pure if a - f = f -« for any a € Ende(1) and any morphism f in C. In
fact, it suffices to require that o -idy = idy - a for any a € End¢(1) and any

lilliad.univ-lille.fr
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X € Ob(C). Indeed, this condition implies that for any morphism f: X — Y
in C, we have

a-f=a-(foidy)=fo(a-idy)= fo(idx -a)=(foidy) -a=f-a.
For a pure monoidal category C, hold the following identities:

a-(feg =(a-fleg=fo(a-g)
for all @ € End¢(1) and all morphisms f, g in C.

1.1.7. Conventions. Mac Lane’s coherence theorem asserts that every
diagram in a monoidal category made up of the associativity and unitality
constraints commutes, see [ML1, [ML2|. In the sequel we suppress in our
formulas the associativity and unitality constraints of monoidal categories.
This does not lead to ambiguity because by Mac Lane’s coherence theorem, all
legitimate ways of inserting these constraints give the same results. For any
objects X1,..., X, of a monoidal category with n > 2, we set

and similarly for morphisms.
1.1.8. Monoidal functors and natural transformations. Let C =
(C,®,1,a,l,r)and D = (D,®',1',d',l',r") be monoidal categories. A monoidal

functor from C to D is a functor F': C — D endowed with a morphism
Fy: 1" — F(1) in D and with a natural transformation

FER={RX,)YY): FX) F(Y) > F(X® Y)}x veob(e)
between the functors F'®@ F = Q@' (F X F):CxC —Dand FR :CxC — D
such that for all XY, Z € Ob(C), the following three diagrams commute:

a/
F(X),F(Y),F(Z)

(F(X)® F(Y))® F(Z) FX)& (F(Y)®' F(Z))

P (X,Y)®'idp(z) idp(x)® F2(Y,Z)
F(X®Y)& F(Z) F(X)&' F(Y © 2)
F(XR®Y,Z) (X Y®Z)

F((X®/Y)®Z) > F(X®€i/®Z)),

Flax,v,z)

l}«‘(X)

1'® F(X)

F0®idF(X)J/ )I\F(lx)

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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6 1. PIVOTAL FUSION CATEGORIES

TR(X)

F(X)& 1 F(X)

idF(X)®FOJ/ )[F(TX)

/

The morphisms Fy and F5 are called the monoidal constraints associated
with F'. Recall that the naturality of I, means that for arbitrary morphisms
f: X —= X"and ¢g: Y — Y’ in C, the following diagram commutes:

FX) & FY) -2 4 pixgy)

F(f)®F(g)l lF(f®g)

/ / / / / /
The composition of two monoidal functors F': C — D and G: D — £ is
the monoidal functor GF': C' — & with

(GF)o =G(Fo)Go and  (GF)2(X,Y) = G(F2(X,Y))Go(F(X), F(Y))

for all X, Y € Ob(C). The composition of monoidal functors is associative
with identity functors being the units.

A monoidal functor (F, Fy, Fy) from a monoidal category C to a monoidal
category D is strict if Fy and F»(X,Y) are identity morphisms for all X|Y €
Ob(C). For example, the identity functor 1¢: C — C is strict.

A monoidal functor (F, Fy, Fp) is strong if Fy and F(X,Y) are isomor-
phisms for all X|Y € Ob(C). Clearly, all strict monoidal functors are strong.
The composition of two strict (respectively, strong) monoidal functors is strict
(respectively, strong). A strong monoidal functor (F, Fy, Fy) from C to D in-
duces a morphism of monoids End¢(1) — Endp(1") by a + F; 'F(a)F, for
all o € Ende(1).

Each monoidal functor F': C — D induces a monoidal functor F®°P: C®P —
D®°P, which is the same functor F' with monoidal constraints

(F®Op)0 = FQ and (F®Op)2(X, Y) = FQ(Y,X)

for all X,Y € Ob(C). A strong monoidal functor F': C — D induces strong
monoidal functors F°P: C? — D°P and F™V: C™ — D'". Both are equal to
I as functors and have the following monoidal constraints:

(Fop>0 — (Frev)o — Fofl
and for all X,Y € Ob(C),
(FP)y(X,Y) = F5(X,Y)™" and (F™)y(X,Y) = F(Y, X))
Note that Frev = (F®oP)op — ([Fop)®op,

lilliad.univ-lille.fr
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A natural transformation ¢ from a monoidal functor F': C — D to a
monoidal functor G: C — D is monoidal if
p1Fo =Gy and  @xgy Fa(X,Y) = Go(X,Y)(px @ py)

for all X,Y € Ob(C). If the map px: F(X) — G(X) is an isomorphism
for all X € Ob(C), then such a ¢ is a monoidal natural isomorphism. The
functors ' and G are monoidally isomorphic if there is a monoidal natural
isomorphism F' — G.

1.1.9. Example. Consider the category Mody of k-modules and k-linear
homomorphisms. It is equipped with the usual tensor product ®, the unit
object k. For all k-modules X, Y, Z, the monoidal constraints are given by

axyz(r®y)®z2) =2 (y® 2),
Ix(A®x)=x=rx(z®\),
where z € X, y €Y, z€ Z and A € k. Then Mody is a monoidal category.

1.1.10. Pairings. Let C = (C,®, 1) be a monoidal category. A pairing
between two objects X,Y of C is a morphism X ® Y — 1 in C. A pairing
w: X ®Y — 1 is non-degenerate if there is a morphism 2: 1 —- Y ® X in C
such that

The morphism (2 is called the inverse of w and is uniquely determined by w.
Indeed, if we suppose that Q': 1 — Y ® X is another morphism in C with the
same property of €2, then

Q, = idY®XQ/ = (ldy & ldx)Q/ = (ldy & (w & ldx)(ldx & Q))Q,
= (ldy ® w®idx)(Q ® Q) = ((idy ® w)(? ®idy) ® idx )
= (idy ® idx)Q = idygx = Q.

1.1.11. Pairings in Mod,. By Sections and [LT.I0, a pairing w be-
tween k-modules X and Y is a k-linear homomorphism w: X ®; Y — k.
The pairing w is non-degenerate if there exists a k-linear homomorphism
Q: 1 — Y ® X satisfying (II)). In this case, the vector

*, = Q(l]k) ceY X

is called the contraction vector of w.

Recall that the dual of a k-module X is the k-module X* = Homy (X, k)
consisting of all k-linear homomorphisms X — k with the k-module structure
given by (kf)(z) = kf(x) for all k € k, f € X*, z € X. A k-module is
projective of finite type if it is a direct summand of a free k-module of finite
rank. The next lemma reformulates the non-degeneracy condition of a pairing
between k-modules in terms of dual modules and matrices.

LEMMA 1.1 ([TVi]). Let w: X ®x Y — k be a pairing in Mody between
k-modules X and Y. The following three conditions are equivalent:

(a) w is non-degenerate;

lilliad.univ-lille.fr
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8 1. PIVOTAL FUSION CATEGORIES

(b) X is a projective k-module of finite type and the homomorphismY —
X* adjoint to w a is an isomorphism;

(c) Y is a projective k-module of finite type and the homomorphism X —
Y™ adjoint to w a is an isomorphism.

Assume now that the k-modules X and Y are free. Then the pairing w is non-
degenerate if and only if X and Y have the same finite rank n and for some
bases (z;)i=, of X and (y;)j—, of Y, the matriz [w(x; ®y y;)|} =, is invertible.
If such s the case, the contraction vector of w s then computed by

X, = ZQi’j yj®]kﬂfi€Y®kX,

ij=1

where [ 5]7,_, is the inverse of the matriz [w(x; @y y;)]} = -

1.2. Pivotal categories

In this section, we recall the notion of a pivotal category. We also discuss
traces of endomorphisms and dimensions of objects in pivotal categories.

1.2.1. Rigid categories. A left dual of an object X of a monoidal cate-
gory C is a pair (VX,evy), where VX is an object of C and evx: VX ® X — 1 is
a non-degenerate pairing. The pairing evy is called the left evaluation and its
inverse coevy: 1 — X ® VX the left coevaluation. A left dual of the object X,
if it exists, is unique up to a unique isomorphism preserving the evaluation
pairing. More precisely, if (Y,e: Y ® X — 1) is another left dual of X, then

(e ®idvx)(idy ® coevx): Y — VX

is the unique isomorphism a: Y — VX such that e = evx(a ® idx).

A left duality in a monoidal category C is a family {(VX,evx)}xcon)
where, for every X € Ob(C), the pair (YX,evy) is a left dual of X. A left
rigid category is a monoidal category admitting a left duality. A left rigid
category with distinguished left duality is a left rigid category endowed with a
left duality.

Similarly, a right dual of X € Ob(C) is a pair (X", évy) where XV € Ob(C)
and evy: X ® XV — 1 is a non-degenerate pairing. The pairing évy is called
the right evaluation and its inverse coevy: 1 — XV ®X the right coevaluation.
A right dual of an object of C, if it exists, is unique up to a unique isomorphism
preserving the evaluation pairing. A right duality in a monoidal category C is
a family {(X",evx)}xeobc) where, for every X € Ob(C), the pair (XY, evy)
is a right dual of X. A right rigid category is a monoidal category admitting a
right duality. A right rigid category with distinguished right duality is a right
rigid category endowed with a right duality.

A rigid category is a monoidal category which is both left rigid and right
rigid, that is, which admits both a left duality and a right duality. A rigid
category with distinguished duality is a rigid category endowed with a left
duality and a right duality.

lilliad.univ-lille.fr
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1.2.2. Dual functors. A left duality in a left rigid category C determines
a functor
V2.0 = (CP, @, 1) = C
which carries each X € Ob(C) = Ob(C™) to YX and carries each morphism
f: X — Y in C (that is a morphism Y — X in C™) to its left dual

vf = (eVy &® ide)(idvy & f & ide)(idvy &® COGVx)Z VY — VX.

The functor V7 is strong monoidal with monoidal constraints ¥7q = coev: 1 —
VI and Y75(X,Y): X ® VY — V(Y ® X) defined by

V?Q (X, Y) = (GVX (024] idV(Y®X))(ide Xevy & idX®V(Y®X))(idVX®vy & COGVY®X).

The functor “?7 is called the left dual functor associated with the given left
duality. The uniqueness of the left duals of objects implies that the left dual
functors associated with different left dualities are monoidally isomorphic in a
canonical way.

A right duality in a right rigid category C determines a functor ?¥: C* — C
carrying each object X of C to XV and each morphism f: X — Y in C to its
right dual

fv = (ldX\/ ®é\7y)(ldxv ® f & idyv)(CB\a/X X idyv): YV — XV.

The functor ?" is strong monoidal, with monoidal constraints ?j = coevy: —
1V and 7(X,Y): XV®YV = (Y ® X)" defined by

The functor ?" is called the right dual functor associated with the given right
duality. The right dual functors associated with different right dualities are
monoidally isomorphic in a canonical way.

For a rigid category C with distinguished duality, the left and right dual
functors V?: C* — C and ?V: C™ — C are strong monoidal equivalences
with respective quasi-inverses (?V)™: C — C™ and (Y?): C — C™. For
X € Ob(C), the corresponding monoidal natural isomorphisms Y(XV) ~ X ~
(VX)" are

(é{/'X X ld\/(X\/))(ldX X coeva): X — V(Xv),
(idvx)y ®evx)(coevvy ®@idx): X — (VX)".

1.2.3. Duality and monoidal functor. Note that a strong monoidal
functor F': C — D between monoidal categories carries any object having a
left (respectively, right) dual to an object having a left (respectively, right)
dual. Indeed, consider an object X of C with left dual (VX, evy). By [TVi
Lemma 1.5|, the non-degeneracy of evy implies the non-degeneracy of the
pairing

(evx)f' = Fy ' Fevx)Fo(YX, X) : F(YX)® F(X) — 1.
Thus (F(VX), (evx)") is a left dual of F(X). Similarly, if X € Ob(C) has a
right dual (XV,évy), then (F(XV, (évx)) is a right dual of F(X).

lilliad.univ-lille.fr
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A strong monoidal functor F': C — D between left rigid categories with
distinguished left duality determines a monoidal natural isomorphism
F'={F(X): F("X) = YF(X)}xeob()
from the functor FV?: C* — D to the functor V?F*V: C* — D. It is defined
as follows. For each X € Ob(C), both (F(VX), (evx)") and (YF(X),evp(x))
are left duals of F'(X). By the uniqueness of a left dual, there is a unique
isomorphism
FY(X): F(YX) = VF(X)
preserving the evaluation pairing, i.e., such that
(er)F = GVF(X)(FZ(X) X ldF(X))
The isomorphism F'(X) is computed by
FZ(X) = ((GVX)F & ldvF(X))(ldF(vx) (%9 COGVF(X)).

Likewise, a strong monoidal functor F': C — D between right rigid cate-
gories with distinguished right duality determines a monoidal natural isomor-
phism

Fr={F"(X): F(XY) = F(X)"}xeon)
from F?V: C™ — D to ?YF*™ : C* — D. It is computed by
F'(X) = (idp(xy» @ (6vx)")(coevr(x) @ idp(xv))
for any X € Ob(C).

1.2.4. Pivotal categories. A pivotal category is a rigid category with
distinguished duality such that the induced left and right dual functors coin-
cide as monoidal functors. In other words, a pivotal category is a monoidal
category C endowed with a pivotal duality, that is, a family of triples

{(X*, evx,evx)} xeob(c),

where

e X* is an object of C called the dual of X;
e evy: X*® X — 1 is a non-degenerate pairing in C;
e evy: X ® X* — 1 is a non-degenerate pairing in C;

such that the left dual functor associated with the left duality {(X™*, evx)} xcob(c

and the right dual functor associated with the right duality {(X™*, evx)} xcob(c)
coincide as monoidal functors. The pairings evy and evy are called the left
evaluation and the right evaluation, respectively. Let coevy: 1 — X ® X* and
coevy: 1 — X* ® X be the inverses of these pairings. These two morphisms
are called respectively the left coevaluation and the right coevaluation. The
equality of the left and right dual functors means that:
(i) for any morphism f: X — Y in C,
f* = (evy ® idy+)(idy+ ® f ® idx+)(idy+ ® coevy)

(ii) coevy = coevy: 1 — 1%

)

lilliad.univ-lille.fr
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(iii) for all X, Y € Ob(C), we have the following equality of morphisms
from X*@Y* = (Y @ X)"
(eVX X 1d(Y®X)*)(1dX* XK evy K idX@(Y@X)*)(idX*(X)Y* & COGVY@X)
=(idyex) ®evy)(idyex) ey ® vy ® idy-)(coevygx ® idx+gy+).

Clearly, a pivotal category is, in particular, a rigid category with dis-
tinguished duality. The left and right dual functors form a single functor
7" C™ — C called the dual functor of C. Tt carries any object X € Ob(C™) =
Ob(C) to X* and any morphism f: X — Y in C (that is a morphism Y — X in
C™) to its dual f*: Y* — X* defined as the left-hand side (or the right-hand
side) of the equality in (i) above. The monoidal constraints

715 1% and %(X,Y): XY > (Y@ X)*

of the dual functor 7* are the morphisms defined by (i¢) and (ii7), respectively.
The duality identities

<1dX X er)<CO€VX X ldx) = ldX = (é{fx &® ldx)<1dX X Cﬁx),
(GVX X ldx*)(ldx* (29 COGVX) = ldx* = (ldx* X é\{fx)(C,O\é;/X ® ldx*)
imply that (75)"! =evy =évy: 1* — 1 and
(75(X, V)~
= (evygx ®idx«gy+)(idygx) ey ® coevy ® idy+)(idxgy)* ® coevy)
= (idx*@)y* (29 &Y®X>(idX* (29 C?)\G/VY X idX®(y®X)*)<C%X (29 id(Y@X)*)-
If C is a pivotal category, then the opposite monoidal categories
C® = (C®,®,1), C®P=(C,®%" 1), C* = (CP &% 1)

are pivotal in a canonical way. The dual objects in them are the same as in C
and the evaluation morphisms are

evy = coevy, evy® =évy, evy' = coevy,
P — ~ ®op __ ~rev _ —~—
evy = coevy, evyt =evy, evy = coevy.

For each X € Ob(C), we set X** = (X*)" and consider a morphism
vx: X — X* by

Yy = (vy ® idx«)(idy ® coevx).
The pivotal structure is the following monoidal natural isomorphism:
Y ={x: X = X }xcone)-

The expressions given above for the dual f*: Y* — X* of a morphism
f: X — Y in C and the duality identities imply the dual morphism identities:

evx(f* ®idx) = evy (idy- ® f), (idy ® f*)coevy = (f ®idx+)coevy,
evx(idy ® f*) = évy (f @ idy+), (f* ®idy)coevy = (idx~ ® f)coevy.

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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LEMMA 1.2. Let ¢ = {¢x: X — X}xeone) be a monoidal natural endo-
morphism of the identity functor 1¢ of C. Then ¢ is an automorphism and

(1.2) ox = (0%) 7 = (6%))
for all X € Ob(C)

PROOF. For any object X of C consider the left evaluation pairing
evy: X" X — 1.

) i) : . ‘
evy © ¢1 evy © evVxPx X (& evx(px+ ® dx) ) evx (Y ¢x- ®idx),
here (i) follows from the naturality of ¢, () and (7i7) from the monoidality of ¢
and (iv) from dual morphism identities. Since evy is invertible, ¢% ¢x+ = idx-
and so ¢x is an isomorphism and ¢x« = (¢%)~*. One proves similarly the other
equality. O

1.2.5. Remark. A pivotal category may be equivalently defined as a left
rigid category C with distinguished left duality {(VX,evx)}xcob() and distin-
guished monoidal natural isomorphism ¢: 1¢ — VV? where VV7: C — C is the
strong monoidal functor defined by V7 = Y70 (¥7)™". Indeed, this data turns C
into a pivotal category (in the sense of Section [[L2.4)) with pivotal duality

{(X* ="YX, evx,evy = evvx(¢x ®@idvx): X @ X* — 1)} xeone)-

1.2.6. Pivotal functor. Let C and D be pivotal categories. A pivotal
functor from C to D is a strong monoidal functor F': C — D such that the
associated monoidal natural isomorphisms F' and F" defined in Section
are equal. Set then F'' = F' = F". The composition of two pivotal functors is
pivotal. If F'is a pivotal functor, then so are F®P [P F' gee Section [L1.8l

A strictly pivotal functor from C to D is a pivotal functor F': C — D such
that F' is the identity, that is, F(X*) = F(X)" and F'(X) = idp(x)- for all
X € Ob(C). For example, given a pivotal category C, the identity functor
l¢: C — C and the dual functor 7*: C* — C are strictly pivotal. Note that a
strict monoidal functor F': C — D between pivotal categories is strictly pivotal
if and only if F(X*) = F(X)", F(evy) = evp(x), and F(évx) = évp(x) for all
X € Ob(C).

Two pivotal categories C and D are equivalent if there is a pivotal equiv-
alence C — D, that is, a pivotal functor C — D which is an equivalence
of the underlying categories. For example, for any pivotal category C, the
dual functor 7*: C*¥ — C is a pivotal equivalence. Consequently, the pivotal
categories C and C*" are pivotal equivalent and so are the pivotal categories
C®P = (C°P)*¥ and C°P.

1.2.7. Trace and dimensions. Let C be a pivotal category. Recall
that the monoid Ende(1) is commutative. For an endomorphism f in C of
an object X of C are defined the left trace tr)(f) € Ende(1) and the right
trace tr.(f) € Ende(1) in the following way:

tr(f) = evx(idy+ ® f)coevy and tr.(f) = evy(f ® idx«)coevy.
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Both traces are symmetric, that is for any morphisms g: X — Y and h: Y —
X in C we have:

tr;(gh) = try(hg) and tr.(gh) = tr.(hg)

We denote the left/right actions of the ground monoid End¢(1) with a dot.
Furthermore, for any o € End¢(1) and for any endomorphism f, ¢ in C of an
object X of C we have that:

tr(a) =tr(a) =, tr(f -a)=atr(f), tr(a-f)=atr.(f),
tr(f ®g) = tr(tr(f) - 9),  tri(f) = (),
tr (f ® g) = tro(f - tre(g)), tr(f) = tr(f7).

These formulas imply the identities

try(f) = tr(f™) and tr.(f) = tr.(f").
If C is pure (see [L1.6]), then the traces tr; and tr, are ®-multiplicative:

try(f © g) = tri(f)tr(g) and  tr(f @ g) = tre(f)tr.(g)

for all endomorphisms f and g of objects of C.
The left dimension and right dimension of an object X of C is defined by

dim)(X) = tr)(idx) and dim,(X) = tr.(idx).

We observe that dim;(1) = dim,(1) = id;. Clearly, we have that if C is pure
then the dimensions are ®-multiplicative, i.e., for any X,Y € Ob(C)

dim)(X ® Y) = dimy(X) dimy(Y) and dim,(X ® Y) = dim,(X) dim,(Y).

1.2.8. Spherical categories. A spherical category is a pivotal category
whose left and right traces are equal, that is, tr;(f) = tr.(f) for every endo-
morphism f in the category. Then

tr(f) = tr(f) = tr(f)

is the trace of f. In a spherical category, the left and right dimensions of any
object X are equal. Then dim(X) = dim;(X) = dim,(X) is the dimension of
X. The properties of the traces imply that in any spherical category, tr and
dim are ®-multiplicative. Indeed, for any endomorphisms f, g € End¢(X),

tr(f®g) = tri(f@g) = tri(tri(f) - g) = tro(tri(f)-g) = tri(f)tre(g) = tr(f)tr(g).

1.3. Graphical calculus

In this section, we briefly discuss a method firstly suggested by Penrose [Pe]
that allows to represent morphisms in categories by diagrams. We focus on
the case of pivotal categories.

lilliad.univ-lille.fr
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1.3.1. Pictorical representation. We present morphisms in a pivotal
category C by plane diagrams called Penrose diagrams, that must be read
from the bottom to the top. The diagrams are made of two elements:

e oriented arcs, each of them colored with an object of C,
e boxes, each of them colored with a morphism of C.

The arcs connect the boxes and have no self or mutual intersections. We
represent the identity idyx of an object X of C, a morphism f: X — Y, and
the composition of two morphisms f: X — Y and ¢g: Y — Z as follows:

dx =y, [f=[L1]

The monoidal product of two morphisms f: U — V and g: W — Z is repre-
sented by juxtaposition of the diagrams:

feg=017] [«]

We also use boxes with several arcs attached to their horizontal sides, for
example a morphism f: AQ BRC — A'® B'® C" in C can be represented in

various ways:
A B o 2 {pec Ay o
, or , or -
A B YC A®BYC A@B®C

The dual of an object is encoded by the orientation of the arc colored by
that object. That is, an arc colored with X € Ob(C) and oriented downward
contributes X to the source/target of morphisms. An arc colored with X €
Ob(C) and oriented upward contributes X* to the source/target of morphisms.
For example, idy~ and a morphism f: X*®Y — A*® B ® C* in C can be
represented as:

A B yC

ide- = =1 and f=[_7 |
X Y
X X

The left/right evaluations and the left/right coevaluations for an object X
of C, are depicted as follows:

evxzm , é‘{,X:m ,
X X
coevxzwx, co/\e/vxzwx.

lilliad.univ-lille.fr
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The dual f* : Y* — X* of a morphism f: X — Y in C are graphically
presented as follows:

X X
fr= f = f .
Y Y

The fact that coevy and coevy are the inverses of pairings evx and evy for
X € Ob(C) is graphically expressed by the following identities:

X X X

The previous relations are called duality identities. The dual morphism iden-
tities may be represented graphically as:

Y + X +Y X
- (_\f 7 = f ,
S PR R B

+X Y X fy

f* - f 5 I = f

x4y Yy y

The left and right traces of a morphism ¢g: X — X are depicted as follows:

tr)(g) = x 9 and tr.(g)=| X.

In the particular case in which ¢ = idy, the left/right dimensions of X are
represented as follows:

dim(X) = and dim,(X) =
X X

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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The following theorem is due to Joyal and Street |[JS1, [JS2].

THEOREM 1.3. If C is a pivotal category, then the morphism represented
by a Penrose diagram P is invariant under isotopies of P in the 2-dimensional
plane.

1.3.2. Signed objects. A signed object of a pivotal category C is a pair (X €)
where X € Ob(C) and € € {+, —}. The corresponding object in C of pair (X, ¢)
is noted by X¢ and defined as follow:

S E
We extend, for n > 1, this notation to any tuple
S=((X1,e1),. -, (Xn,en))
of signed objects of C, we set
Xs=X{"®---®X;" € Ob(C).

For an empty tuple of signed objects S = (), we set Xy = 1. The dual of a
tuple S of signed objects of C is

S* = ((Xn, —€n), -, (X1, —€1)).
1.3.3. Generalized evaluations. For any tuple S = ((X1,¢1),..., (X, n))

of a signed object we consider the following pairing
(1.3) evg: Xg- @ Xg — 1:
called evaluation. Let

(1.4) coevg 1 I — Xg® Xg=

be a morphism in C called coevaluation. They are respectively represented by
the following Penrose diagrams:

1
Here the arc labeled with X, is oriented toward the right endpoint if ¢; = +
and toward the left endpoint if ¢, = —.
Using graphical calculus, we prove that

(idx, ® evg)(coevs ® idx,) = idx,
and
(evg ®idxy,, )(idx,. ® coevg) = idx...
Thus, the pairing evg is non-degenerate with inverse coevg. By definition, for
n = 0, we have: (* = () and evy = coevy = id;. The tuple S also determines

an isomorphism
Pe: Xg — (XS*)*

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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For n = 0, we set Wy = coevy = coevy: 1 — 1*. Forn =1 and X € Ob(C),
set

\I/(X,,) = idX*: X" — X" and ‘II(X,+) = wX: X — X**,
where
Yy = (vy ® idx«)(idy ® coevy).

For n > 2, we define Wg as the composition of the isomorphism

\I](X1,€1) ® e ® \II(Xnﬁn) : XS — Xfl ® e ® X:;n N (Xl—El)* ® e ® (Xn—8n>

*

with the isomorphism
() @@ (X ) = (X, @ X,) = (K]
By |[TVi, Lemma 2.4], for any tuple S of signed objects of C,
evxy (Vs ®@idxy) = evg = evy,, (dx, ®@ ¥g),

(idxs ® \Ifsfl)coevxs =coevg = (Vg ' ® idx . )coevxy,,

1.4. Fusion categories

In this section we recall some basics on linear and fusion categories. We
recall that the symbol k is used for a non-zero commutative ring.

1.4.1. Linear categories. A category C is k-linear if for all objects X, Y
of C, the set Hom¢(X,Y') is endowed with a structure of a left k-module so
that the composition of morphisms in C is k-bilinear. For shortness, k-linear
categories are called k-categories. A functor F': C' — D between k-categories
is k-linear if its action on the Hom-sets is k-linear, that is, if for all X,Y €
Ob(C), the map

Home(X,Y) — Homp(F(X), F(Y)), [+~ F(f)

is k-linear. For example, the identity functor of a k-category is k-linear.
Clearly, the composition of k-linear functors is a k-linear functor. By a monoidal
(respectively, left /right rigid, rigid, pivotal, spherical) k-category, we mean a k-
category which is monoidal (respectively, left/right rigid, rigid, pivotal, spher-
ical) and such that monoidal product of morphisms is k-bilinear. Clearly, any
monoidal subcategory of a monoidal k-category is a monoidal k-category. If C
is a monoidal k-category, then so are C?, C®°P, and C™" (see Section [LT.4)).

Equivalences of monoidal/pivotal k-categories are always required to be
k-linear. In particular, two pivotal k-categories are equivalent if there is a k-
linear pivotal functor between them which is an equivalence of the underlying
categories.

It follows from the definitions that all left /right dual functors of a left /right
rigid k-category are k-linear. In particular, given a pivotal k-category C, the
dual functor ?*: C*¥ — C is k-linear, and so C*" and C are equivalent piv-
otal k-categories (see Section [L2Z.6]). Consequently, C®P = (C°)*¥ and C°P
are equivalent pivotal k-categories.

lilliad.univ-lille.fr
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1.4.2. Direct sum. Let (X,)aca be finite family of objects in a pivotal
k-category C. An object X € Ob(C) is a direct sum of the family (X,)aca if
there is a family (pa, ¢a)aca of morphisms in C with:

Pa: X = Xy and ¢, Xy = X
for all o € A, such that

idy = anpa and p,gs = b pidy, forall a,fp € A,
aEA
where ¢, 5 is the Kronecker symbol. If such X exists, it is unique, up to a

unique isomorphism commuting with p, and ¢,. We denote X as @ 4 Xa-

1.4.3. Simple objects in linear categories. Let C be a k-category. An
object X of C is simple if the map k — End¢(X) that sends k& — k idy is
an isomorphism of k-modules. Let X be an object of C, then the following
conditions are equivalent:

(i) X is simple;
(ii) the map k — Endc(X) that sends k& — k idy is an isomorphism of
k-modules;

(iii) the k-algebra End¢(X) is isomorphic to k;

(iv) the k-module End¢(X) is free of rank 1.

The k-bilinearity of the composition of morphisms in C implies that all ob-
jects of C isomorphic to a simple object are simple. Any monoidal k-category
whose unit object 1 is simple is pure (see Section [[IT.6). The left and right
traces of endomorphisms in a pivotal k-linear category are k-linear. This fol-
lows from the k-linearity of the monoidal product and composition of mor-
phisms.

1.4.4. Non-degenerate categories. Let C be a monoidal k-category.
Any pairing e: X ® Y — 1 between objects X and Y of C induces a k-linear
homomorphism

Home (1, X) ®x Home(1,Y) — Ende(1), a®gf — e(a® B).
If the unit object 1 of C is simple we identify End¢(1) = k (see Section [[43)
and so we get a pairing in Mody
(1.5) Home(1, X) ®x Home(1,Y) = k, a®xf—e(la® p).
A monoidal k-category C is non-degenerate if its unit object is simple and

for each non-degenerate pairing e: X ® Y — 1 in C, the induced pairing (L)
is non-degenerate in the monoidal category Mody.

LEMMA 1.4. Let C be a non-degenerate pivotal k-category. Then the left
and right dimensions of any simple object of C are invertible in k.

PROOF. Let ¢ be a simple object of C. Consider the right evaluation of ¢
given by ev;: i ® i* — 1. By the following bijection

Home(1,i" ® i) — Home(i%,7%), o+ (idx ® ev;)(a ® id;)
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whose inverse is given by the map that sends any 5 € End¢(i*) to

we have that Home (1, i*®14) ~ Home/(i*,4*). Since ¢* is simple, Home (1, i* ®1)
is a free k-module of rank 1 with basis vector coev;: 1 — i* ® i. Consider now
the pairing in the category Mody:

w;: Home(1,7" ® 1) @, Home(1,i" ®14) — k
given by

wi(cfo\e/vi R C,O\é/VZ) = = dlml(l) € k.
7
The non-degeneracy of w; and Lemma [T imply that dim,(¢) is invertible in k.

Using a similar argument for the pairing ev;: i* ® ¢ — 1 we deduce the same
result for dim,(7). O

1.4.5. Fusion categories. A fusion k-category is a rigid k-category C
such that there is a finite set I of simple objects of C satisfying the following
conditions:

(a) the unit object 1 € Ob(C) belongs to I;
(b) Home (4, j) = 0 for any distinct i,j € 1, ;
(c) every object of C is a direct sum of a finite family of elements of .
Such a set [ is called a representative set of simple objects of C.
Let C be a fusion k-category and let I be a representative set of simple ob-
jects of C. Condition (a) implies that C is pure and End¢(1) ~ k. Condition (c)
implies that for each object X of C, there is a finite family of morphisms

(Pa: X = G0y o ta = X)aca
such that
o €1, idy = anpa and  pagp = 0 p id;, forall o, € A.

acA
We call such a family an [-partition of X.

Given a simple object i of C, an i-partition of X € Ob(C) is a family
of morphisms (po: X — 4, ¢o: i — X)aea such that (pa)acar is a basis
of Home (X, ), (ga)acas is a basis of Home (7, X), and p,qs = 0aid; for all
a,3 € A'. Note that the cardinality of the set A’ is equal to the number
of simple objects isomorphic to 7 in a [-partition of X. For any [I-partition
(Pa: X = la, Ga:ia = X)aca of X and any ¢ € I, the family (pa, ¢a)aca,
is an i-partition of X, where A; = {a € A|i, = i}. Conversely, a union of
i-partitions of X over all ¢ € [ is an [-partition of X.

Let C be a pivotal fusion k-category. Since C is pure (because 1 is simple),

the traces of endomorphisms and the dimensions of objects are @-multiplicative.

By |[TVi, Lemma 4.3|, C is non-degenerate. Then it follows from Lemma [[.4]
that the left/right dimensions of any simple object of C are invertible in
Ende(1) ~ k.

lilliad.univ-lille.fr



© 2019 Tous droits réservés.

Thése de Giulio Calimici, Université de Lille, 2019

20 1. PIVOTAL FUSION CATEGORIES

Two pivotal fusion k-categories are equivalent if there is a k-linear pivotal
equivalence between them. If C is a pivotal fusion k-category, then so are its
opposites

CP = (Cop’ ®’ ]1)7 C®op — (C, ®op’ ]1)7 crev — (COP, ®op7 ]1)_
By Section [[L2.6, C*V is equivalent to C, and C°P is equivalent to C®°P.

1.4.6. Enriched graphical calculus. Let C be a pivotal fusion k-category.

Consider a simple object i of C and an i-partition (po: X — 4, ¢a: @ = X)aca
of an object X of C. Consider a (finite) formal sum of C-colored Penrose
diagrams

(1.6) > [7]

a€A X | i

where the area outside the dotted line represents a part of these diagrams
independent of « € A and, in particular, not involving (p,, ¢.). By the
Penrose graphical calculus and the k-linearity of C, the sum (L6]) represents a
morphism in C. Using changes of basis, we obtain that the tensor

Y o ® ¢a € Home (X, ) @, Home(i, X)

a€cA

does not depend on the choice of the i-partition of X. The morphism (L8] in C
also does not depend on this choice. Therefore we can eliminate the C-colors
Pay (o Of the two boxes, keeping in mind only the order of the boxes and the
fact that they jointly stand for the tensor (L7). We will graphically represent
this pair of boxes by two curvilinear boxes (a semi-disk and a compressed
rectangle) standing respectively for p, and g, where « runs over A:

(1.7)

/

12

X

X

P

1

\

L .

v

The area outside the dotted line in the picture are the same as above. We will
also use similar notation obtained from (7)) by reorienting the X-labeled arcs
upward and replacing (pa, ¢a)aca With an i-partition of X*, or by reorienting
the i-labeled arcs upward and replacing (pa, ¢a)aca With an i*-partition of X.
We will allow several arcs to be attached to the bottom of the semi-disk and to
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the top of the compressed rectangle in (7). We will allow to erase i-labeled
arcs for : = 1. In particular,

e ™ e ™
= Eal ]
X acA X
N J N Y

where (P, ¢a)aca is any L-partition of X.

1.4.7. Properties. For any object X of a pivotal fusion k-category C and
any simple object ¢ of C, we have

(1.8) T X =N, Y

where N% is the rank of the free k-modules Home (X, i) and Home (7, X). This
equality follows from the fact that given an i-partition (pa, ¢a)aca of X, we
have p,q, = id; for all @ € A and card(A) = N%. Next, pick a representative
set I of simple objects of C. Since the union of i-partitions of X € Ob(C) over
all © € I is an [-partition of X, we have

lilliad.univ-lille.fr
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This formula and the fact that Home(1,7) = 0 = Home(4, 1) for alli € I\ {1}

imply that for any f € Hom¢ (1, X) and g € Home (X, 1),

(1.10)

(1.11) A

\

This equality follows from the fact that if (pa, ¢a)aca is a 1-partition of i* @ X,
then (P,,Q4)aca is a i-partition of X, where

Pa = d1ml(z)

Similarly, we have:

(1.12) Py

© 2019 Tous droits réservés.
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CHAPTER 2

Invariants of colored graphs

In this chapter, we associate with each linear pivotal category a family of
modules called multiplicity modules (Section2.1)). Then we review an invariant
of colored planar graphs which takes values in tensor products of multiplicity
modules (Section [22]). Finally, we study in detail duality pairings for colored
graphs and their associated contraction vectors (Section [23]). The invariant
of colored graphs and the contraction vectors will be our main tools in the
topological constructions of Chapter 4]

2.1. Multiplicity modules

In this section we associate with each linear pivotal category a family of
modules called multiplicity modules.

2.1.1. Cyclic sets. A cyclic C-set is a triple (F,c,e) consisting of a
nonempty finite set £ endowed with a cyclic order and two maps ¢: E — Ob(C)
and €: £ — {+,—}. In other words, a cyclic C-set is a nonempty cyclically
ordered finite set whose elements are equipped with a signed object of C. For
shortness, we will often write E for (E,c,¢).

An isomorphism between two cyclic C-sets E and E’ is a bijection £ —
E’ preserving the cyclic order and commuting with the maps to Ob(C) and
{+, —}. More generally, a weak isomorphism between cyclic C-sets (F, ¢, €) and
(E',c,€") is a pair ¢ = (p,¢) consisting of a bijection p: E — E’ preserving
the cyclic order and a family of isomorphisms in C

p = {pe: c(e) = (p(e)” "}
2.1.2. Permutation maps. For XY € Ob(C) we define the permutation
map
mx,y: Home(1, X ® Y) — Home(1,Y ® X)

to be the map carrying any element o € Home(1, X ® V) to

7TX7y<Oé) = (eVX X idygg()(idx* Ra idx)C/(—)\eij.
Note that, using the isotopy invariance of the graphical calculus, we have:

7TX7y(O[) = (idY®X & a/y)(ldy Ra® idy*)CO@Vy.

The permutation maps are k-linear isomorphisms and for any X,Y, Z € Ob(C)
have the following properties:
(a) mx,y ' = Ty,x;
(b) mx1 = m1,x = idHome(1,%);
23
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(C) TXQY,Z = TY,ZXTXYQZ and TXY®RZ = TZX,YTXQY,Z-

2.1.3. Multiplicity modules. Let £ = (E,c,¢) be a cyclic C-set, we
derive from this data a k-module H(E). For e € E, set
H.(E) = Home(1, ¢(e1)*) @ ¢(e3)* @ - - - @ ¢(e,)5)),

where n is the cardinality of £ and e = e; < e5 < --- < ¢, are the elements
of E in the given cyclic order starting from e. If f € E'\ {e}, then f = ¢ for
some integer k € {2,...,n}. Set

le, f) = 0(61)6(61) ® 0(62)5(62) R ® C(ek_l)a(ek_l)
and
[f,€) = clex)* ) @ clepe1)FE ) @ - - @ cle,)*E).
Clearly
HQ(E) :Homc(]l,[e, f)® [f7€)) and Hf(E> :HOmc(ﬂ,[f,€)® [67 f))
Define p, ¢: H.(E) — H;(E) by
_ | Tepire ife#f,
Pet = { idy,  ife=f.

The properties of the permutation maps imply that p. s is a k-linear isomor-
phism and that py, pe f = pey for all e, f, g € E. Thus the family

({He(E)}eeEa {pe,f}e,feE)

is a projective system of k-modules and k-linear isomorphisms. The multiplic-
ity module H(FE) is the projective limit of this system:

H(E) = lim H,(E).
The k-module H(E) depends only on E and it is endowed with a family of

k-linear isomorphisms

{r: H(E) = H.(E)}eer

e

such that p. ;77 = 77 for all e, f € E. We call 77 the cone isomorphism and

the family {7.5}.cp the universal cone.
An isomorphism ¢ = (p, ¢) between two cyclic C-sets E and E’ induces a
family of k-linear isomorphisms

{@e: H(E) — Hp(e)<E/)}eeE

which commute with the maps p. s as above. These isomorphisms induce a
k-linear isomorphism H(FE) — H(E') denoted H(¢).

2.2. An invariant of colored planar graphs

In this section, we define an invariant of colored planar graphs. Throughout
this section, we orient the plane R? counterclockwise and C is a k-linear pivotal
category.
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2.2.1. Graphs. By a graph we mean a topological space G obtained from
a finite number of disjoint copies of the closed interval [0, 1] by identification of
certain endpoints. The images of the copies of [0, 1] in G are called edges of G.
The endpoints of the edges of G (that is, the images of 0, 1 € [0, 1]) are called
vertices of G. Each edge of G connects two (possibly, coinciding) vertices, and
each vertex of G is incident to at least one edge. By half-edges of G, we mean
the images of the closed intervals [0,1/2] C [0,1] and [1/2,1] C [0,1] in G.
The number of half-edges of G incident to a vertex v of GG is called the valence
of v and for any vertex is greater then or equal to 1. A graph is oriented if
all its edges are oriented. An half edge incident to v is said to be incoming if
it is oriented towards and outgoing otherwise. The empty set is viewed as an
oriented graph with no vertices and no edges.

2.2.2. Colored graphs. A C-colored graph is an oriented graph such that
each edge is endowed with an object of C called the color of this edge. Let X
be an oriented surface. A C-colored graph in ¥ is a graph embedded in >. For
shortness, by a C-colored planar graph we mean a C-colored graph embedded
in an oriented plane (i.e., an oriented surface homeomorphic to R?).

2.2.3. The k-module associated to C-colored graphs. Let 3 be an
oriented surface and let G be a C-colored graph in ». A vertex v of G deter-
mines a cyclic C-set E, = (E,, c,,&,) as follows: E, is the set of half-edges of
G incident to v with the cyclic order induced by the opposite orientation of X,
the map ¢,: E, — Ob(C) assigns to a half-edge e € FE, the color of the edge
of G containing e and the map ¢,: E, — {+, —} assigns to e € E, the sign +
if e is oriented towards v and — otherwise. Note that the cardinality of E, is
equal to the valence of v. Let H,(G) = H(F,) be the multiplicity module of
FE,, and set

H(G) = Q) H.(G),

where ® is the unordered tensor product of k-modules, that run over all vertices
v of G. By definition, for G = (), we have H(G) = k.

For a vertex v of G, the k-module H,(G) can be described as follows. Let
n > 1 be the valence of v and let e; < ey < --- < e, < e; be the half-edges
of G incident to v with cyclic order induced by the opposite orientation of X.
Then we have the cone isomorphism

B Hy(G) —=—— Home (1, ¢y(1)% ) @ - - - @ ¢ ()77 )).

€1

By definition of H,(G), the cone isomorphism determined by different elements
of E, are related via composition with the permutation maps. For example,
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the trivalent vertex v of the following C-colored graph:

with i, 7, k € Ob(C), give rise to the k-module H,(G) isomorphic,via the cone
isomorphism, to the k-modules

Home(1,i® 5 ® k) ~ Home(1, 5 ® k ® i) ~ Home(1, k ® i ® 7).

For any disjoint C-colored graphs (G; and Gy in ¥, there is a canonical
k-linear isomorphism between the k-modules

2.2.4. The invariant Fc. Let G be a C-colored graph in R%2. For each
vertex v of GG, pick a half-edge e, € F, and deform G near v so that the half-
edges incident to v lie above v with respect to the second coordinate on R?

and e, is the leftmost of them. Pick any «, € H,(G) and replace v by a box
Ey

colored with 72 («,), where 7% is the universal cone of H,(G):

"'y

— ‘r("f" (v

This transforms G into a C-colored Penrose diagram without free ends.

Let Fe(G)(®,a,) € Ende(1) be the associated morphism computed via the
Penrose graphical calculus. This extends by linearity to a k-linear homomor-
phism

Fe(G): H(G) = ©,H,(G) — Ende(1).

By definition, for G = (), the map F¢(G): H(G) =k — Endc(1) is the k-linear
homomorphism carrying 1y to id;.

By |[TVi, Lemma 12.2], the homomorphism F¢(G): H(G) — Ende(1) is a
well-defined isotopy invariant of the C-colored graph G in R

© 2019 Tous droits réservés. lilliad.univ-lille.fr
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2.2.5. Example. Consider the following C-colored planar graph with four
vertices a, b, ¢, d and four edges colored by X, Y, Z,T € Ob(C):

The half-edges €4, €% incident to a, € and €} incident to b, €5, €5, €5 incident to
c and e¢ incident to d are reported below:

The total order compatible with the cyclic order on E, = {ef, €5} is e < €4,
b ob) e b b Z :

on B, = {e],e5} is €] < e3 and on E. = {e], €5, €5} is e < €5 < €§. There are

several cone isomorphisms associated with each vertex:

H,(G) — Home(1, X @ T7),
Hy(G) — Home(1, X" ®Y),
H,(G) = Home(1,T © V" @ 7).
H4.(G) — Home (1, Z7) .

Ty -

These isomorphisms are related to each other via composition with the per-
mutation maps, see Section 2.1.3

© 2019 Tous droits réservés.
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By definition, H(G) H,(G) ® Hb(G) ® H.(G) ® Hy(G). For any a €
H.(G), p € Hy(G), v € H.(G) and § € Hy(G) we have

X 74 (B)
Fela®B®y®4) = m

() ()

2.2.6. Properties of Fr.. We state some properties of the invariant Fe of
C-colored graphs in R2.

(A) Let G’ be the C-colored graph in R? obtained from a C-colored graph
G C R? by replacing the color X of an edge e by an isomorphic ob-
ject X’ of C. Any isomorphism X’ ~ X induces a weak isomorphism
between the cyclic C-sets (see Section 2.1.1]) associated with the end-
points of e in G and G’, and the latter induces a k-linear isomorphism
¢: H(G') — H(G). Then

Fe(G') = Fe(G).
We call this property the naturality of C.

(B) If an edge e of a C-colored graph G in R? is colored with 1 and the

endpoints of e are also endpoints of other edges of G, then G' =

G \ Int(e) C R? inherits from G the structure of a C-colored graph,
there is a canonical k-linear isomorphism A: H(G') — H(G), and

Fe(G") = Fe(G)A.

Indeed, by the Penrose calculus, an edge colored with 1 can be deleted
without changing the associated morphism.

(C) If G, G’ are disjoint C-colored graphs in R? lying on different sides of
a straight line, then

Fe(GIG') = p(Fe(G) @ Fe(G))O

where ©: H(GIIG') - H(G) ® H(G') is the canonical isomorphism
and g is multiplication in Ende(1). We call this property the ®-
multiplicativity of Fe.

(D) If C is pure, then
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where the C-colored graphs on the left and on the right coincide outside
the big rectangles and the small rectangles on both sides stand for the
same C-colored graph.

2.2.7. The case of a pivotal fusion k-category. Suppose that C is a
pivotal fusion k-category. Recall that Ende(1) ~ k. For any C-colored graph
G in R?, the k-module H(G) is free of finite rank and

Fe(G) € H(G)" = Homy (H(G), k).

For any non-isomorphic simple objects ¢ and j of C we have

where the white box stands for any piece of a C-colored graph with one input
and one output as in the picture. Formula (2] holds because in a fusion
category for non-isomorphic simple objects we have Home (i, 7) = 0.

LEMMA 2.1. For any simple object © of C, the following equalities hold:

In the above equalities, the small white boxes represent pieces of C-colored pla-
nar graphs which are the same in both sides.

PROOF. Since i is a simple object of C, any endomorphism ¢ € Home(4, 1)
expands as ¢ = A id; with A € k. The k- linearity of the trace implies tr;(¢) =
A try(id;) = A diny(é) and tr(¢) = A try(id;) = A dim,(é). Since dim(7)
and dim,(7) are invertible by Lemma [[L4 we deduce A\ = dimy(:)~! try(p)
and A = dim,(i)7! tr.(¢). We obtain ¢ = dimy(i)™" tr)(p) id; and ¢ =
dim,(2)7! tr(p) id;. The statement follows from the ®@-multiplicativity of Fe

(see Section 2.2.6). O

2.3. Duality and contraction vectors

In this section, we define contraction vectors associated to edges of colored
graphs.
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2.3.1. Duality pairings. Let C be a pivotal k-category. Every tuple S
of signed objects of C (see Section [[3.2)) gives rise to a pairing in Mody

wg: Home (1, Xg+) ®k Home (1, Xg) — Ende(1)
called duality pairing and defined by

ws(a @y B) = evs(a @y B)

for all @ € Home(1, Xg+) and 8 € Home (1, Xg), where evg is the generalized
evaluation discussed in Section[[L3.3l By the isotopy invariance of the graphical
calculus,

ws(a @y B) = ws+(B R a)

for all S, a, 3, where S* is the dual of S (see Section [[L3.2).

The dual of a cyclic C-set (E, ¢, ) is the cyclic C-set (E°P, ¢, —¢) where E°P
is the set F endowed with the opposite cyclic order of E. For each element e in
a cyclic C-set E = (E, c,¢), we define SE to be the tuple of signed objects of C
obtained by enumerating the elements of F in the given cyclic order starting
with e and recording the value of ¢ and €. Let e* be the element in (E°P, ¢, —¢)
preceding e in the given cyclic order on F. In this way, by construction we
have that

SE” = (55"
For each e € E, set
05 = wsg(Tﬁop ®77): H(E®) ® H(E) — Endc(1),
where

77 H(E) — Home(1, Xgz) and  727: H(E®) — Home (1, Xgry+).

€ €

are the cone isomorphisms. The pairings w§ and
0%on: H(E) @ H(E®P) — Ende(1)

are equal up to permutation of tensor factors. Consequently, they induce a
k-bilinear pairing
wy: H(E®?) @ H(E) — Ende(1).

where ® is the unordered tensor product (see Appendix [A]) of k-modules.
Notice that it follows from the definition that

Whep = W

In general, the pairing w$, does depend on the choice of e € E. If the category C
is spherical, then the pairing w¢ does not depend on the choice of e € E (see
ITVi, Lemma 12.4|).
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2.3.2. Contraction vectors. Let C be a non-degenerate pivotal k-category.
Then all pairings considered in Section 2.3.T]take values in End¢(1) ~ k. Let E
be a cyclic C-set and e € E. The contraction vectors

*ge, € H(E)®x H(E?) and o € H(E®) @y H(E)
(see Section [[LTIT]) of the pairings
0% HE®) @y H(E) =k and  @&%.,: H(E) ® H(E®) — k.

are equal up to permutation of the tensor factors. Consequently they determine
a vector

xp € H(E) ® H(EP).

2.3.3. Duality pairing for C-colored graphs. Let C be a pivotal k-
category. Recall that an element e of a cyclic C-set E determines a tuple S
of signed objects of C (see Section 2:3.1]). Also recall the dual S* of a tuple S
of signed objects of C (see Section [[.3.2).

Let GG and G’ be C-colored graphs in the oriented surfaces > and ¥'. Let u
be a vertex of G and v be a vertex of G'. A duality between u and v consists
in an half-edge e, incident to u and an half-edge e, incident to v such that

va(G/) = (Sfu(G))*'

Here E,(G) and E,(G’) are the cyclic C-sets associated with the vertices u
and v (see Section Z2.3)). We say that v and v are in duality if there is a
duality between v and v.

A duality between u and v induces a k-bilinear pairing

Wun Hy(G) ® H,(G') — Ende(1)
defined as follows. The composition of the cone isomorphism
s Hy(G') = H(E,(G')) — Home(1, X s, @)

with the inverse of the cone isomorphism

Tejiu(G)oP . H((EW(G))*?) = Home(1, Xséfu(c))op)
induce a k-linear isomorphism

Pup: Hy(G') = H(EL(G)™).

The pairing

wE(G): H(E,(G)?)® H(E,(G)) — Ende(1).
from Section 2.3.1] induces a pairing

W = W3 6y (P @ 1di, )+ Ho(G') © Hy(G) = Ende(1).

It follows from the definition that w,, ., = way,.
If C is non-degenerate, then the contraction vector

i) € H(Eu(G)) @ H(EL(G)*).
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from Section 2.3.2induces a contraction vector
*up = (ldHu(G) ® QDJ,}))(*%U(G)) € Hu(G) ® HU(G,)

Note that this vector does depend on the duality between uw and v. It follows
from the definition that x,, = *,,.

2.3.4. Graphical representation of evaluations. Let C be a non-de-
generate pivotal k-category. Consider two C-colored planar graphs G and G'.
Consider a duality between a vertex u of G and a vertex v of G'. Recall that
it consists in an half-edge e, incident to u and an half-edge e, incident to v
satisfying some condition (see Section [23.3)). We represent the evaluation

(Fe(G) @ Fe(G)) (tuw) = Fe(G U G) ()

by adding to a diagram of G LI G’ a red arc whose endpoints determine the
duality. This means that the endpoints of this added arc are points near v and v
such that by starting from these points and following the opposite orientation
of the plane, the first encountered half-edges are e, and e,. If there are several
evaluations, we graphically represent them with several red arcs (one for each
evaluation). For example:

i N i i Uy e i
€y
s s .
J EoAr O J EAr O\
3 — X s
IFC T T - IFC r k;v/ r (*Uﬂ] ® *ulyvl)'
u
N ew U
t t t t
O O

2.3.5. The case of a fusion category. Let C be a pivotal fusion k-
category. Recall that C is non-degenerate (see Section [L4.5]).

LEMMA 2.2. Let S be a tuple of signed objects of C and let
wg: Home (1, Xg+) ®k Home (1, Xg) — Ende(1) ~ k
be the pairing defined by S in Section[2.3.1. Then the contraction vector
kg € Home (1, Xg) ®x Home (1, Xg+)

S*
S
*ws i H ® w |

where the arcs are colored and oriented so that S is the tuple of signed ob-
jects determined by the horizontal side of the curvilinear boxes, and where the
notation of Section [1.].6 is used for a 1-partition of Xg.

of ws 1s computed by
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PROOF. Let xg € Home(1, Xs) ®x Home (1, Xg+) be the vector defined in
the right-hand side of the equality above. For any f € Homc(]l Xs),

(ldHOmC(]l Xs) ®]k wS *S@f (l H w ll)l ml)

Here, (i) follows from the definitions of wg and xg, (i) from the isotopy in-
variance of the graphical calculus, and (iii) from formula (LI0). Similarly, we
have that:

(wS Ok idHOl’nc(]l,Xs*))(.q & *S) =4g
This prove that *g is the contraction vector of wg. ]

LEMMA 2.3. Let I be a representative set of simple objects of C. Then:

(c) Fe [ ] = F¢ @

, N

where white box stands for a piece of a C-colored graph (the same on
the left-hand and right hand side).

PROOF. To prove the lemma we only need to compare the contributions
to Fe of the depicted pieces of C-colored graphs for both expressions (a)
and (b). Let S = ((Xi,e1),...(Xn,e,)) be the tuple of signed objects of C
determined by the left-hand side of the equality (a). Consider the dual tuple
S* = ((Xn, —€n), ..., (X1, —¢1)) and the morphisms

evge: Xg® Xg« = 1, coevgs: 1 = Xg« ® Xg and Wge: Xg« — Xg
defined in Section .33l Fori € I, set S; = ((¢, —), (X1,€1), ... (Xn,€n)). Then
Sz* = ((Xn,—gn),,<X1,—€1),<Z, +)) XSZ IZ*®XS and XSZ* IXS*®Z

Next, consider the non-degenerate pairing

w;: Home (1, Xgx) @ Home (1, Xs,) — k.
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Let x; € Home (1, Xs,) ®x Home(1, Xs:) be the associated contraction vector.
Consider the following isotopy between C-colored graphs:

1%

Using the definitions of Fe and of the contraction vector *,, between the
vertices v and v, we reduce assertion (a) to the following claim: for some

expansion
*p = E Cia Ok fia
«

with e; o € Home (1, Xg,) and f; o € Home(1, Xg+) we have

i s
ei,a

(22) ) dimy(i)

i€l «

S

where the top (respectively bottom) free ends of the Penrose diagram are
colored and oriented so that the corresponding tuple of signed objects is §
(respectively S*). We verify (2.2)) for the expansion

S*

el

Here (i) follows from the isotopy invariance of graphical calculus, (i7) from
formula (LIT]) and (¢4i) from formula (L9). This proves formula (a).
To prove formula (b), we proceed as follows. For i € I, set

Si = ((X1,e1), ... (Xp, ), (i,—)).
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Then
St=((i,+), (X, —2n), .., (X1, —1))  Xg, = Xg@i* and X5 =i®Xg-.
Consider the non-degenerate pairing

w;: Home(1, Xg.) ®x Home(1, Xg) — k.

Let *; € Home(1, Xg,) ®x Home (1, Xg.) be the associated contraction vec-
tor. Consider the following isotopy between C-colored graphs:

1%

Using the definition of Fe and the contraction vector *;;, between the ver-
tices @ and v of the pairing w; we reduce the lemma to the following claim: for
some expansion

* = Z €ia Ok fia
B

with €;, € Home(1, X5 ) and fi,a € Home(1, Xg.) we have
(2.3)

) dim, (i)

i€l «

S

where the top (respectively bottom) free ends of the Penrose diagram are
colored and oriented so that the corresponding tuple of signed objects is S.
We verify (2.3) for the expansion

S*
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provided by Lemma 22l The left-hand side of (Z3)) is equal to

Here (7) follows from the isotopy invariance of graphical calculus, (i) from
formula (LI2) and (i) from formula (L9). This proves formula (b).

Next we prove formula (¢). This equality follows from the previous points
since dim;(1) = dim,(1) = 1y and Home(i, 1) = 0 for all i € I different
from 1. O
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CHAPTER 3

Combed 3-manifolds

This chapter is devoted to the theory of combed 3-dimensional manifolds,
which are 3-manifolds endowed with a non-vanishing vector field. Branched
spines have been firstly considered by Gillman and Rolfsen [GR1l, (GR2| and
more explicitly by Ishii [Is1), Is2, Is3|. In [BP1, BP2|, Benedetti and Petro-
nio, besides having given substantial contributions to the theory of branched
spines, introduce and develop the theory of o-graphs which encode a special
kind of branched spines.

In Section [3.1] we review the theory of spines of 3-manifolds. Then, we dis-
cuss the presentation of combed 3-manifolds via branched spines in Section [3.2]
and via o-graphs in Section 3.3

3.1. Spines of 3-manifolds

In this section, we review the theory of spines of 3-manifolds. The main
contributors to this theory are Casler, Matveev, and Piergallini.

3.1.1. Manifolds. For n > 1, by a n-manifold, we mean a manifold of
dimension n with or without boundary. The boundary OM of a manifold M is
then a (n—1)-manifold without boundary. If M is oriented, then its boundary
OM is oriented in such a way that at any point of 0M, the orientation of M
is given by a direction away from M followed by the orientation of OM. A
closed manifold is a compact manifold with empty boundary. The empty set ()
is considered as a closed oriented manifold of arbitrary dimension.

It is a well-known result that all compact 3-manifolds have a smooth struc-
ture unique up to ambient isotopy, therefore every time that we need the hy-
pothesis of smoothness we refer implicitly to that one.

3.1.2. Polyhedra. A 2-polyhedron is a compact topological space P that
can be triangulated using a finite number of simplices of dimension < 2 so that
all O-simplices and 1-simplices are faces of 2-simplices. For a 2-polyhedron P,
denote by Int(P) the subspace of P consisting of all points having a neighbor-
hood homeomorphic to R?. By the definition of a 2-polyhedron, the surface
Int(P) is dense in P. A stratification of a 2-polyhedron P is an (unoriented)
graph P embedded in P so that P\ Int(P) C PY. The vertices and edges
of P are called respectively the vertices and edges of P. We denote the set
of vertices of P as P, To specify a stratification of P it suffices to specify
the edges of P because the vertices of P are just the endpoints of the edges.
Note that any 2-polyhedron can be endowed with a stratification. A stratified
polyhedron is a 2-polyhedron endowed with a stratification.

37
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Cutting a stratified polyhedron P along the graph P C P we obtain a
compact su~rface P with interior P\ P!, The 2—p91yhedr0n P can be recovered
by gluing P to P along a surjective map m: 9P — P, The set

1P c oP

is closed and discrete, and therefore is finite. The points of this set split 9P
into arcs whose interiors are mapped by m homeomorphically onto the interiors
of edges of P. The connected components of P are called the regions of P.
Each component of P\ P1 P is the interior of a unique region. We let
Reg(P) be the finite set of all regions of P.

A branch of a stratified 2-polyhedron P at a vertex x of P is a germ at x
of an adjacent region. More formally, a branch of P at x is a homotopy class
of paths [0,1] — P starting in z and carrying (0,1] to P\ P®. The number
of branches of P at x is equal to card(7~!(z)), where 7: 9P — P is the
map above. Similarly, a branch of P at an edge e of P is a germ at e of an
adjacent region. Formally, a branch of P at e is the homotopy class of paths
[0,1] — P starting in the interior of e and carrying (0, 1] to P\ P, There is
an obvious bijective correspondence between the branches of P at e and the
connected components of 7! (interior of e). The set of branches of P at P is
denoted P.. This set is finite and non-empty. The number of elements of P,
is called the valence of e.

An orientation of a region r of P induces an orientation for each edge e
of P adjacent to r in the following way: the orientation of e followed by a
vector at a point of e directed inside r is the given orientation of r.

An orientation of a stratified polyhedron P is an orientation of the surface
P\ PW. To orient P, one must orient all its regions. An oriented polyhedron
is a stratified polyhedron endowed with an orientation.

3.1.3. Simple polyhedra. Let S be the following subset of R?:
S = {(z1,79,23) ER*| 23 =0, or 1y =0 and 3 >0, or 15 = 0 and z3 < 0}
that is

T3

T2

A point v of a topological space is said to be special if there is a homeomorphism
of § onto a neighborhood of v carrying the origin (0,0,0) to v.

A simple polyhedron is an oriented connected polyhedron P with at least
one special point such that each point of P has a neighborhood homeomorphic
to an open subset of S.

A simple polyhedron P has a canonical stratification given by the graph
PMU = P\ Int(P) whose vertices are the special points of P. Note that all
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edges of P have valence > 2. In what follows, we endow any simple polyhedron
with this canonical stratification.

3.1.4. Standard polyhedra. A standard polyhedron is a simple polyhe-
dron such that its regions are disks. Any standard polyhedron has 6 branches
at every vertex, 3 branches at every edge, and an empty boundary.

3.1.5. Spines of 3-manifolds. A spine of a compact connected 3-man-
ifold M is a simple polyhedron P embedded in M such that M \ P is home-
omorphic to an open 3-ball if IM = @ or to OM x [0,1) if OM # (. Note
that if P is a spine of a closed connected 3-manifold M, then P is a spine of
M \ Int(B?), where B? is a 3-ball embedded in M. A spine of M is standard
if the underlying polyhedron is standard.

A result due to Casler [Cal, Matveev [Mal], and Piergallini [Pi] asserts
that any compact connected 3-manifold has a standard spine.

Let P be a spine of a compact connected 3-manifold M. Any vertex x of P
has a closed ball neighborhood B, C M such that A, = PN 0B, is a non-
empty graph and PN B, is the cone over A, with vertex x. The vertices of A,
are the intersection points of the 2-sphere 0B, with the edges of P incident
to x. The edges of A, are the intersections of 0B, with the branches of P
at z. Since all edges of P have valence > 2, so do all vertices of A,. We call
B, a P-cone neighborhood of x and call A, C 0B, the link graph of x.

3.1.6. Moves on spines. Let M be a compact connected oriented 3-
manifold. We define two local transformations (moves) on a spine P of M
transforming P into a new spine of M. Each of these moves modifies P inside
a closed 3-ball in M.

The move MP(0,2) (also called lune move) pushes a branch of P at an edge
of P through an edge of P:

MP(0,2)

This move increases the number of vertices of P by 2, increases the number
of edges of P by 4, and increases the number of regions of P by 2. The new
region created is a disk. This move keeps the orientations of the regions and,
the new region created is arbitrarily oriented. The inverse move MP(0,2)! is
allowed only when the orientations of two regions united under this move are
compatible.
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The move MP(2,3) pushes a branch of P at a vertex of P through another
vertex of P:

This move increases the number of vertices of P by 1, increases the number
of edges of P by 2, and increases the number of regions of P by 1. The new
region created is a disk. This move keeps the orientations of the regions, and
the new region created is arbitrarily oriented. The inverse move MP(2,3)~!
can always be applied.

By Matveev-Piergallini moves or M P-moves on spines of M, we mean
ambient isotopies of spines in M together with the moves MP(0,2), MP(2,3),
and their inverses. Note that all MP-moves transform standard spines into
standard spines.

THEOREM 3.1 ([Ma2, [Pi|). Any two standard spines of a compact con-
nected oriented 3-manifold are related by a finite sequence of MP-moves.

3.2. Combed 3-manifolds via branched spines

In this section, we review the theory of combed 3-manifolds and their
presentation via branched spines. For more details, we refer to [Is1, Is2),
BP1, BP2, BP3|.

3.2.1. Combed 3-manifolds. A combing on a 3-manifold M is a vector
field v on M (that is, a section v: M — T'M of the tangent bundle of M) such
that:

(i) v is always nonzero;
(ii) v is tangent to OM exactly at the points of a compact 1-dimensional
submanifold v C OM;
(iii) v is never tangent to ~;
(iv) if OM # (), then the orbits of v are closed intervals.

This definition agrees with that of a concave traversing vector field given
in [BP2, Definition 4.1.8]. Note that if M is closed, then a combing on M is
just a nowhere-zero vector field on M.

A combed 8-manifold is a pair (M, v) where M is a compact oriented con-
nected 3-manifold and v a combing on M.

Two combed 3-manifolds (M, v) and (M’, V') are equivalent if there is an
orientation-preserving diffeomorphism ¢: M — M’ such that the combings
¢y ov oo ! and v/ are homotopic within the class of combings on M’. Here,
the map ¢.: TM — TM’ is induced by ¢. We write (M,v) ~ (M',v'). Note
that ~ is an equivalence relation on the class of combed 3-manifolds.
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3.2.2. Branched polyhedra. Each edge e of a standard polyhedron P
carries three orientations, each of them being induced by the orientation of the
branch of P at e as in Section B.1.2

A branched polyhedron is a standard polyhedron P such that at any edge
of P, two of the three induced orientations are opposite to the third one.

Branched polyhedra, can be viewed as the smoothed version of standard
polyhedra. Let P be a branched polyhedron. Consider an edge e of P:

[T

The orientation on P allows to define a tangent plane at every point of P and
we represent this as follows:

/ %

With this convention, there are two possible configurations for a vertex of P:

N

and

3.2.3. Combed 3-manifolds associated to branched polyhedra.
Following [BP2| Section 2.1|, to every branched polyhedron P is associated a
combed 3-manifold (Mp,vp) with boundary such that:
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(i) P is a spine of Mp;

(i) the combing vp is positively transverse to P. This means that vp is
transverse to each region r of P and the orientation of r together with
the orientation of vp gives the orientation of Mp.

The 3-manifold Mp is defined as follows. Replace each region of P (which is a
disk) by the piece:

Replace each edge of P by the piece:

Replace each vertex of P by one of the following two pieces according to their
possible configuration (see Section B.2.2):

B

z

and

Then the 3-manifold Mp is obtained by gluing these pieces along the grey sides

by respecting the smoothing of Section The boundary of Mp is then the

union of the white sides of the above pieces. Note that P is a spine of Mp.
The vector field vp is defined to be transverse to P as follows:
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OMp

Finally, we orient Mp so that its orientation is given by the orientation of
any region together with the orientation of vp at this region (such an orienta-
tion exists since P is branched).

3.2.4. Branched spines of combed 3-manifolds with boundary. A
branched spine of a combed 3-manifold (M, v) with boundary is a branched
polyhedron P such that (Mp,vp) is equivalent to (M, v) in the sense of Sec-
tion [3.2.1]

THEOREM 3.2 (|BP3| Theorem 4.3.1]). Any combed 3-manifold with bound-
ary has a branched spine.

3.2.5. Combed 3-manifolds with trivial spherical boundary. We
say that a combed 3-manifold (M, v) has trivial spherical boundary if

(i) the boundary OM of M is a 2-dimensional sphere;
(ii) the compact 1-dimensional submanifold of OM where v is tangent (see

Section B.2T) is a circle.

This tangency circle splits OM into two disks. The vector field is positively
transverse to one disk and negatively transverse to the other one.
For example, consider the 3-ball

B = {(z,y,2) e R®|2® +y* + 2 < 1}.
This is a compact connected 3-manifold with boundary the 2-sphere

S? =0B* = {(z,y,2) e R*|2* + ¢* + 2* = 1}.
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We endow B3 with the orientation induced by the right-hand orientation of R3.
Consider the vector field v;, on B? which is constant equal to (0,0, 1):

A A A

B3

b

Then the pair (B2, 14,4,) is a combed 3-manifold with trivial spherical bound-
ary.

Any combed 3-manifold (M, ) with trivial spherical boundary gives rise
to a closed combed 3-manifold

(M, D) = (M, v) Uy (B®, sy
Here, the gluing is defined by an orientation reversing diffeomorphism f: OM —

S? = OB3 preserving the tangency circle. The following lemma is straightfor-
ward.

LEMMA 3.3. (a) Any closed combed 3-manifold is equivalent to (M, V)
for some combed 3-manifold (M, v) with trivial spherical boundary.
(b) Let (M,v) and (M',v') be combed 3-manifolds with trivial spheri-
cal boundary. Then (M, V) and (Z\//T’,;’) are equivalent if and only
if (M,v) and (M',V") are equivalent.

3.2.6. Branched spines of closed combed 3-manifolds. By a closed
branched polyhedron, we mean a branched polyhedron P such that its associ-
ated combed 3-manifold (Mp,vp) (see Section B.2.3)) is a combed 3-manifold
with trivial spherical boundary.

A branched spine of a closed combed 3-manifold (M, v) is a closed branched
polyhedron P such that (ﬁp, vp) is equivalent to (M, v).

The following result is a direct consequence of Theorem B:2land Lemma33](a).

THEOREM 3.4. Any closed combed 3-manifold has a branched spine.

3.2.7. Moves on branched spines. Let (M, ) be a combed 3-manifold.
We define moves on a branched spine P of (M, v) transforming P into a new
branched spine of (M, v). These moves are the branched versions of the moves
on standard spines of Section Each of these moves modifies P inside a
closed 3-ball in M.

The moves BMP(2,3) are branched versions of the move MP(2,3). They
are the moves My, ..., M; depicted in Figure Bl together with their mirror

images My, ..., Ms.
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FIGURE 3.1. Branched moves BMP(2,3)

The moves BMP(0,2) are branched versions of the move MP(0,2). They
are the moves Li, Ly, L3 depicted in Figure B2l Note that these moves are
self-mirror (the mirror image of L; is L;).

By BMP-mouves on branched spines of (M, v), we mean ambient isotopies
of branched spines in M together with the moves BMP(0,2), BMP(2,3) and
their inverses.

The following result provides a calculus for combed 3-manifolds:

THEOREM 3.5 (|[BP3, Theorem 4.3.2|). Any two branched spines of a
combed 3-manifold are related by a finite sequence of BMP-moves.

lilliad.univ-lille.fr



© 2019 Tous droits réservés.

Thése de Giulio Calimici, Université de Lille, 2019

46 3. COMBED 3-MANIFOLDS

/ //
//é /

FIGURE 3.2. Branched moves BMP(0,2)

3.3. Combed 3-manifold via o-graphs

The theory of o-graphs has been introduced and developed in [BP2, BP1].
The o-graphs encode a particular class of standard polyhedra which is sufficient
to encode all combed 3-manifolds.

In what follows, we always orient the plane R? counterclockwise.

3.3.1. o-graphs. A vertex v of an oriented graph G is said to be of cross-
ing type if:
e v is quadrivalent with 2 incoming half-edges and 2 outgoing half-edges;
e the set F, of half-edges incident to v is endowed with a cyclic order;
e there are 2 distinguished half-edges which are not consecutive (with
respect to the cyclic order on F,) and such that one is incoming and
the other is outgoing.

A vertex of crossing type of an oriented graph G is positive if the dis-
tinguished outgoing half-edge is followed (with respect to the cyclic order on
half-edges) by an outgoing half-edge. Otherwise, it is said to be negative. In
what follows, we depict a vertex of crossing type by a crossing, the overcrossing
strand representing the distinguished half-edges:

i f

Positive: ——e—— Negative: ——e——.

i +

Here, the cyclic order of the set of half-edges is given by the counterclockwise
orientation of the plane.

Equivalently, a vertex v of a graph G is of crossing type if there is an
embedding of a neighborhood of v into the oriented plane “resembling” to
a crossing of an oriented curve (i.e., a multiple point which is double and
transverse with a distinguished strand).

An o-graph is a non-empty connected oriented graph where all vertices are
of crossing type. (This notion of an o-graph corresponds to that of a normal
o-graph in [BP2]). An isomorphism between two o-graphs is an isomorphism
between their underlying oriented graphs which preserves the crossing types.
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Any o-graph can be represented by a planar diagram obtained by immers-
ing generically the o-graph into the oriented plane. (Here generically means
that the multiple points of the immersion are double transverse and distinct
from the image of the vertices). For example, the diagram

L

represents an o-graph with 3 vertices and 6 edges.

Two such diagrams represent isomorphic o-graphs if and only if one can
be obtained from the other by a finite sequence of isotopies and the following
Reidemeister-type moves:

) HHU Vo
SN NEEEIN

Vo= Yo

~ N ]

Here, the orientations (not depicted) must agree before and after the moves.
For example, the diagrams

@ "

represent two non-isomorphic o-graphs with 1 vertex and 2 edges.

3.3.2. From o-graphs to branched polyhedra. To each o-graph I' is
associated a branched polyhedron Pr defined as follows. Replace each positive
vertex v of I' with the following portion of a branched polyhedron :

lilliad.univ-lille.fr



Thése de Giulio Calimici, Université de Lille, 2019

48 3. COMBED 3-MANIFOLDS

Replace each negative vertex of I' with the following portion of a branched
polyhedron :

Replace each edge of I' with the following portion of a branched polyhedron :

Finally, the branched polyhedron Pr is obtained by gluing together this pieces
according to smoothing (i.e., in such a way to respect the orientations).

3.3.3. Combed 3-manifold associated to o-graphs. To any o-graph I'
is associated a combed 3-manifold (Mr, vr) with non-empty boundary. This
combed 3-manifold is defined by

(MF, VF) = (MPN VPF)

where Pr is the branched polyhedron associated to I' (see Section B.3.2]) and
(Mp.,vp.) is the combed 3-manifold associated to Pr (see Section B.2.3).

3.3.4. Moves on o-graphs. The local transformations on o-graphs de-
picted in Figures and B.4] turn any o-graph into another o-graph. In these
figures, if the orientations of some edges are omitted, then these edges can be
oriented arbitrarily but in a same way before and after the move. By sliding
moves, we mean moves in Figures 3.3 and and their inverses together with
isomorphisms of o-graphs.

The following result provides a calculus for combed 3-manifolds with non-
empty boundary:

THEOREM 3.6 (|[BP2, Corollary 4.3.5]). (a) Any combed 3-manifold with
non-empty boundary is equivalent to (Mr,vr) for some o-graph T'.
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Y

FIGURE 3.3. Snake move
(I

FIGURE 3.4. Sliding moves

(b) The combed 3-manifolds associated to two o-graphs are equivalent if
and only if the o-graphs are related by a finite sequence of sliding
Moves.

3.3.5. Closed combed 3-manifolds via closed o-graphs. In this sec-
tion, we consider a class of o-graph which encodes closed combed 3-manifolds.

By a circuit, we mean an oriented closed immersed plane curve such that
all its multiple points are double and transverse.

An o-graph T is closed if it satisfies the following three conditions:

(i) The number of circuits obtained from I' by removing all its vertices is
exactly one.
(ii) The (trivalent) graph obtained from T' by applying the rules of Fig-
ure is connected.
(iii) The number of circuits obtained from I' by applying the rules of Fig-
ure is exactly one more than the number of vertices of I'.

For example, the following o-graph:
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| l

FIGURE 3.6.

is closed. Indeed, Condition (i) is clear and Conditions (i) and (iii) are

respectively verified by
and .

The combed 3-manifold (Mr, vr) associated with a closed o-graph I' has
trivial spherical boundary. Indeed, Condition (i) implies that the Euler charac-
teristic of the boundary OMr is 2. Condition (i) implies that OMr is connected
and so together with (i) implies that M is homeomorphic to a 2-sphere. Fi-
nally, Condition (i77) implies that the submanifold of M where vr is tangent
is a circle. (For details, we refer to [BP2| Section 5.2].)

Consequently, by Section B.2.5 to any closed o-graph I' is associated the
closed combed 3-manifold

(My, D) = (Mp, vr) U (B?, iy ).
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e N

FIGURE 3.7. Pontrjagin move

Note that any sliding move (see Section B.3.4)) transforms a closed o-graph
into a closed o-graph. Combining Theorem and Lemma 3.3, we obtain the
following calculus for closed combed 3-manifolds:

THEOREM 3.7 (|BP2, Theorem 1.4.1]). (a) Any closed combed 3-ma-

nifold is equivalent to (Mr,vr) for some closed o-graph T.

(b) The closed combed 3-manifolds associated to two closed o-graphs are
equivalent if and only if the o-graphs are related by a finite sequence
of sliding moves.

3.3.6. The Pontrjagin move. The local transformation on o-graphs de-
picted in Figure [3.7is called the Pontrjagin move. Note that this move trans-
forms any closed o-graph into another closed o-graph, but their associated
closed combed 3-manifolds may be non-equivalent.

The Pontrjagin move allows to relate all combings on the same underlying
closed 3-manifold (see [BP2, Theorem 6.3.1]). More precisely, let I and TV be
closed o-graphs. Consider their associated closed combed 3-manifolds (]/\/[\p, Ur)

and (MF/,/I/\[‘/>. Then the 3-manifolds ]\//TF and Mp/ are homeomorphic if and
only if I and I are related by a finite sequence of sliding moves and Pontrjagin
moves.

3.3.7. Summary. We summarize the main results of this chapter as fol-
lows:

THEOREM (Non-empty boundary case). There is a one-to-one correspon-
dence between:

(1) Combed 3-manifolds with non-empty boundary up to equivalence;
(2) Branched polyhedra up to BMP-moves;
(3) o-graphs up to sliding moves.

THEOREM (Closed case). There is a one-to-one correspondence between.:

(1’) Closed combed 3-manifolds up to equivalence;
(2°) Closed branched polyhedra up to BMP-moves;
(3”) Closed o-graphs up to sliding moves.
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CHAPTER 4

A state sum invariant of combed 3-manifolds

Fix, throughout this chapter, a pivotal fusion k-category C and a represen-
tative set I of simple objects of C. We derive from this data a scalar topological
invariant of combed 3-manifolds.

4.1. An invariant of combed 3-manifolds

In this section, we construct a state sum topological invariant of combed
3-manifolds.

4.1.1. The state sum invariant via branched spines. Let (M, v) be
a combed 3-manifold (with or without boundary). Pick a branched spine P
of (M, v), see SectionsB.2Z4land B.2.6l Recall from Section B.I.2the set Reg(P)
of regions of P.

A coloring of P is a map c¢: Reg(P) — I. The object c¢(s) € I assigned
to s € Reg(P) is called the c-color of s. We associate a scalar |c| € k to each
coloring ¢ of P as follows.

By definition P has at least one vertex and so it has at least one edge
(stratified 2-polyhedra have no isolated vertices). By an oriented edge of P
we mean an edge of P endowed with an orientation. Each oriented edge e
of P yields a cyclic C-set defined as follows. The orientations of e and M
determine a positive direction on a small loop in M encircling e. The resulting
oriented loop determines a cyclic order on the set P. of branches of P at e (see
Section B.I.2)). To each branch § € P,, we assign the c-color of the region of P
containing ¢ and a sign equal to + if the orientation of § induces the one of
e C 96 (that is, the orientation of § is given by the orientation of e followed
by a vector at a point of e directed inside §) and equal to — otherwise. In
this way, P, becomes a cyclic C-set and we consider its multiplicity module

H.(e) = H(P.). Let
Hc = ®Hc(€)

be the unordered tensor product (see Appendix [A]) of the k-modules H.,(e)
over all oriented edges e of P. Since each k-module H,(e) is projective of finite
type and there are finitely many oriented edges of P, Appendix [A] yields a
canonical k-linear isomorphism

H: ~ ® H.(e)".

53
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— 1Y =

xT

FIGURE 4.1. The colored graph I'¢

Next, we associate to each (unoriented) edge e of P a vector
*e - Hc(el) ® Hc(eg),

where e; and ey are the two opposite oriented edges of P corresponding to e.
Recall from Section that there is a branch b, of P at e which induces
an orientation on e which is opposite to the orientations induced by the other
two branches of P at e. We choose notation so that e; is e endowed with the
orientation induced by b.. By Section 2.3.2] the element b, € P., determines
a vector

*e = x5, € H(P.y) @ H(PP) = He(er) @ He(es).
Set

ke = Qe *e € Hca

where ®, is the unordered tensor product over all the (unoriented) edges e
of P.

For a vertex x of P, consider the link graph A, C 0B, where B, C M
is a P-cone neighborhood of = (see Section B.ILH). Here we endow 0B, with
the orientation induced by that of M restricted to M \ Int(B,). Every edge a
of A, lies in a region r, of P. We color a with ¢(r,) € I and endow a with the
orientation induced by that of r,\Int(B,). In this way, A, becomes a C-colored
graph in 0B, denoted by AS. The combing v at x determines a connected
component of 9B, \ A,. (This follows from the definition of the combing v
at x, see Section B.2.3] and the fact that B, is a P-cone neighborhood of z.)
Pick a point p in this connected component. The image of AS under the
(orientation-preserving) stereographic projection B, \ {p} — R? with pole p
is a C-colored planar graph denoted by I'S. (An example is given in Figure[d.T]).
Section 2.2.4] yields a vector
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Fe(T¢) € H(TS)" = Homy (H(T), k).

Note that the cyclic C-set associated with any vertex v of I'S (see Section 2.2.3)
is canonically isomorphic to the cyclic C-set P, where e = e(v) is the edge
of P containing v and oriented away from x. Therefore, there are canonical
isomorphisms

where e, runs over all edges of P incident to x and oriented away from z. (An
edge with both endpoints in x appears in each of these tensor product twice
with opposite orientations.) The tensor product of the previous isomorphisms
over all vertices x of P yields a k-linear isomorphism

®HPC ®®H ea)" ~ (X) He(e)

where e runs over all oriented edges of P. The image under this k-linear
isomorphism of the unordered tensor product ), F¢(I'S), where x runs over
all vertices of P, is a vector V. € H}. We evaluate V_. on %, and set

le| = Vi(*.) € k.
Finally, let
dim,(c H dlml
s€Reg(P)
and set
(4.1) Ie(M,v) = dim(c)|c| €k,

where ¢ runs over all colorings of P. Note that the right-hand side of (41]) is
well defined because there are finitely many colorings of P (since both Reg(P)
and [ are finite).

THEOREM 4.1. The scalar 1c(M,v) is a topological invariant of (M,v)
independent of the choice of P and 1.

We will prove Theorem in Section [4.2]

4.1.2. Properties. 1. Let (M,v) be a combed 3-manifold with trivial

spherical boundary. Consider the closed combed 3-manifold (M , V) associated
to (M, v) as in Section Then

Ie(M,D) = Te(M,v).
This follows from the fact that any branched spine of (M, v) is a branched
spine of (M, 7).
2. By considering some examples, we prove in Section that the invari-

ant Iz is non-trivial and does depend on the combing: it may distinguish two
non-homotopic combings on the same 3-manifold (see Theorem [(.2)).
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3. Suppose that C is spherical (see Section [L2.8). Then for any combed 3
-manifold (M, v), the invariant Iz(M, ) does not depend on v and

Ic(M, I/) = TVC<M),

where TV, is the Turaev-Viro invariant of compact oriented 3-manifolds de-
fined using C (in the formulation of [TV1, Section 13.2.2| denoted by || - [|c)-
4. Tt follows from the definitions that for any combed 3-manifold (M, v),

IC(—M, 7/) = Ic®op (M, I/)

where —M is M with opposite orientation and C®? = (C, ®°P, 1).
5. The naturality of the invariant F¢ of C-colored graphs (see Section 2.2.6))
implies that

IC/(M, I/) = Ic(M, l/)

for any combed 3-manifold (M, v) and any pivotal fusion k-category C’ equiv-
alent to C. In particular

Leon (M, v) = logon (M, v) =1c(—M,v) and lge(M,v) =1c(M,v),

since CP = (C°P, ®, 1) is equivalent to C®°P and C™¥ = (C°P, ®°P, 1) is equiva-
lent to C, see Section [I.4.5]

4.1.3. Computation via o-graphs. In this section, we provide an algo-
rithm to compute the invariant Iz of Theorem [4.1] starting from the presenta-
tion of combed 3-manifolds by means of o-graphs (see Section [3.3]).

Let (M, v) be a combed 3-manifold. Let I be an o-graph such that (M, v)
is equivalent to (Mr, vr) if M # ) (see Section [3.3.3) or to (]\/4}, vp) it oM =0
(see Section [3.3.9)).

Denote by Circ(I") the set of the circuits obtained from I' by applying
the rules of Figure B.6l A coloring of I' is a map c¢: Circ(I') — I. The
object ¢(7y) € I assigned to v € Circ(T") is called the c-color of . We associate
a scalar |c| € k to each coloring ¢ of I as follows.

Each edge e of I yields a cyclic C-set I'. defined in the following way. Set
. = {1,2,3} with cyclic order 1 < 2 < 3 < 1. There are four types of
edges of T, depending on the nature (distinguished/undistinguished, incom-
ing/outgoing) of the two half-edges forming an edge:

Recall that the rules of Figure associate to e three portions of circuits
(eventually coinciding) in Circ(I'). Define f.: I' — Circ(I") according to the
type of e:
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R fe(1) £(2) fe(3) R fe(1) fe(2) 1e(3)
- il -
‘ fe(2) fe(1) fe(3) ‘ fe(2) f(1) fe(3)
Define ¢.: I'. — {4, —} by setting €.(1) = €.(2) = + and .(3) = —. Then

Pe = (Fea co fea 56)

is a cyclic C-set. Consider the unordered tensor product of the multiplicity
modules associated with I'. and I'¢P:

H(e) = H(T.) @ H(T).
By Section 2.3.2] the element 3 € I'. determines a vector
xe = #p, € H(D.) ® H(I'P) = He(e).
Set

Hc - ®eHc(€) and *o = Qe ke € HC7

where ®, is the unordered tensor product over all the edges e of T'.
Next, we associate to each vertex x of I' a C-colored planar graph I'S as
follows. If the vertex x is positive, we associate:

4 : )
N )
4 ! )
N " )

Here, the middle pictures represent the portions of circuits associated with x
together with their c-colors i, j, k,l,m,n € I. Section 2.2.4] yields a vector

Fe(IS) € H(I')" = Homy(H (%), k).
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Note that the cyclic C-set associated with any vertex v of 'S (see Section 2.2.3)

is canonically isomorphic to the cyclic C-set T&”, where e = e(v) is the edge
of T' containing v, €(e) = () if e is oriented away from z, and €(e) = op if e is
oriented towards x. Therefore, there are canonical isomorphisms

)~ Q) H(I)) and H(TS)* ®H (Tele))

where e, run over all edges of I" incident to z. The tensor product of the latter
isomorphisms over all vertices x of I yields a k-linear isomorphism

®HPC ®®HF6<%*:®H( * @ H(TP)" ®H

where e runs over all the edges of I". The image under this isomorphism of the
unordered tensor product @), Fe(I'$), where = runs over all vertices of T', is a
vector V., € H}. Recall the vector x. € H,.. Set

dim,(c H dim;(c(y)) € k and |c¢| = Ve(x.) € k.

~€Circ(T")

THEOREM 4.2. We have:
= Z dimy(c) |e

where ¢ runs aver all colorings of T'.

We prove Theorem in Section (4.2l
In Section (5.2 we apply Theorem for a particular pivotal fusion k-
category C = G (see Theorem [B.T)).

4.2. Proof of Theorem 4.1 and Theorem 4.2

Let (M, v) be a combed 3-manifold and P be a branched spine of (M, v).
Denote the right hand side of (4T]) by I-(P), that is,

= Z dimy(c) |c

where ¢ runs over all colorings of P.

In Section [£.2.1] we prove the invariance of I¢(P) under the application of a
BMP(2,3) move to P. In Section [£.2.2] we prove the invariance of Io(P) under
the application of a BMP(0,2) move to P. Finally, we prove Theorem [4.1] in
Section 4.2.3] and Theorem in Section

4.2.1. Invariance under BMP(2,3). The application of a BMP(2,3)
move transforms P into another branched spine P’ of (M, v). The move acts
locally on P leaving unchanged all the regions of P except those involved in
the move. For this reason, we only consider the contribution of the vertices
involved in the move to the quantity Io(P). We denote by x, y the two vertices
of P and by u,v, z the three vertices of P’ that are involved in the move.
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Pick a coloring ¢ of P. In what follows, we denote by a,b,c,d, f, g, h,i,l € I
the c-colors of the regions of P involved in the moves. The coloring ¢ of P
extends to a coloring ¢’ of P’ by adding a color j € I to the new region created
by the move.

We now analyze in detail the contribution given to the state sum by each
BMP(2,3) move (see Section B.2.7).

Invariance under the move M;:

The move P 2% P/ is represented by

g S f

By Section LI.T] the C-colored planar graphs I'; and I'; associated to the
vertices x,y of P are

re=| ' and T¢= ) '
g

O N

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

b a
c c () g A ‘ ,
(Fe(Ts) © Fe(T)) (x) “Fe || |

(”) h a c i

Here, the equality (¢) follows from the ®-multiplicativity of F¢ (see Section [2.2.6])

and from the graphical representation of evaluations (see Section 23.4]), and
(#7) from Lemma [Z3](c).
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Now, the C-colored planar graphs FZ', Ff)', 1“;’ associated to the vertices u, v, z
of P are

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges ey, €5, e3 connecting them, and of the new created region is

> " dimy(j) (Fe(T%) @ Fe(TS) @ Fe(TS)) (e, ® #e, @ *ey)

jel

jel

w Z dimy(j) Fe

jel

S dimy(j) Fe N
jel P

o/

© 2019 Tous droits réservés.
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/ N
b
(w) h a c i
= Fe¢ ;
d f
g
O
. /

Here, (i) follows from the ®-multiplicativity of Fe and the graphical rep-
resentation of evaluations, (i7) and (i7) from Lemma [23|(c), and (iv) from
Lemma [Z3](a).

We deduce that

(Fe(I'5) @ Fe(Ty)) ()
= " dimy(j) (Fe(IS) @ Fe(I5) @ Fe(T9)) (ke, @ e @ #e,)-

jer
This proves that Io(P) = I¢(P').

Invariance under the move M;:

The move P 2% P/ is represented by

By Section [L.1.1] the C-colored planar graphs I'; and I'; associated to the
vertices x,y of P are

/
c __ i c __ h
F:v = ' and Fy =
g g

N O

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

(Fe(T%) @ Fe(T%)) (x.) L e
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b
(“) i c a h
= [Fc ;
f d
! x

Here, the equality (i) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (iz) from Lemma [23](c).

Now, the C-colored planar graphs Ff;, Ff;, 1“;" associated to the vertices u, v, z
of P are

b h :
c
¢ ool GO m<| G,
he @ LN T )
f
- /
3

O g [ O O

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges eq, eg, e3 connecting them, and of the new created region is

> " dimy(j) (Fe(TS) @ Fe(TS) @ Fe(T'9)) (ke @ %oy @ ey)

Jjel

jel

3" dim(j) Fe bONA ]
P <

(i) e 1\
- ]FC 1

-

9

O

Here, (7) follows from the ®-multiplicativity of F¢ and the graphical represen-
tation of evaluations, (i) Lemma 2.3|(c), and (i) from Lemma 2Z3](a).
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We deduce that
(Fe(T5) @ Fe(Ty)) (+)
= dimy(j) (Fe(T5) @ Fe(TS) @ Fe(T'9)) (e, ® *ey ® *ey).
This proves that Io(P) = I¢(P').

Invariance under the move Ms:

The move P 22 P’ is represented by

By Section [L.1.1] the C-colored planar graphs I'; and I'; associated to the
vertices x,y of P are

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

(Fe(T2) @ Fe(T)) () 2L Fe

Y

(i) IFC ; h !

A

By

Here, the equality (i) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma 2.3](c).

© 2019 Tous droits réservés. lilliad.univ-lille.fr



Thése de Giulio Calimici, Université de Lille, 2019

64 4. A STATE SUM INVARIANT OF COMBED 3-MANIFOLDS

Now, the C-colored planar graphs FZ', Ff)', 1“;’ associated to the vertices u, v, z
of P are

j : ,
f J ¥

O O O

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges e1, eg, e3 connecting them, and of the new created region is

> dimy(j) (Fe(T5) @ Fe(T5) @ Fe(T9)) (%o, @ #e, ® %ey)

jel

4 ,. A

25" dimy(j) Fe

jel

L
T

\&

—~

(]

o

8

Q
NL—0TV

G

O

Here, (i) follows from the ®@-multiplicativity of Fe and the graphical represen-

tation of evaluations, (ii) from Lemma 2.3(c), and (éi7) from Lemma 2.3](a).
We deduce that

(Fe(T) @ Fe(T5)) ()
= " dimy(j) (Fe(T) @ Fe(T) @ Fe(T'9)) (ko) © %oy @ cy).

jel

This proves that I¢(P) = I¢(P').
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Invariance under the move Ms:

The move P 2 P/ is represented by

co

By Section [L.1.1] the C-colored planar graphs I'; and I'y associated to the
vertices x,y of P are

F; = ; and F; = A

Consequently, the contribution to the state sum of the vertices x,y and of the

edge e connecting them is
b
h
9
o

(Fe(TS) ® Fe(TS)) (x.) £ Fe ( |

Here, the equality (7) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma [2.3](c).

Now, the C-colored planar graphs Ff;, Ff)/, Fgl associated to the vertices u, v, z
of P’ are
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Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges ey, es, €3 connecting them, and of the new created region is

Z dlml IE‘C Fc ) ® FC(cm;/) ® FC(P?I)) (*61 ® *ey ® *63)

jel
\
‘
4 D N
(ﬁ) Z dlml(j) Fc
jel
f 3 |

N

(#12) 1 1

= F !

C 1 A Yy s

O

Here, (i) follows from the ®@-multiplicativity of Fe and the graphical represen-
tation of evaluations, (ii) from Lemma [2.3(c), and (4i7) from Lemma 2.3((a).
We deduce that

(Fe(T5) @ Fe(T5)) ()
= " dimy(j) (Fe(T) @ Fe(TS) @ Fo(T'9)) (ke, @ #ey ® *ey)-

Jjel

This proves that Io(P) = I¢(P').

Invariance under the move Ms:

The move P 22 P’ is represented by
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By Section .11l the C-colored planar graphs I'; and T associated to the
vertices x,y of P are

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

(Fe(T) @ Fe(T%)) (x.) 2 e

N .

Here, the equality (7) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (iz) from Lemma 2.3|(c).
Now, the C-colored planar graphs Ff:, Ffjl, Fgl associated to the vertices u, v, z

of P’ are
a J
C
o _ o _ o _| i
i o RNV
g
d o o o
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Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges ey, €5, e3 connecting them, and of the new created region is

> " dimy(j) (Fe(T4) @ Fe(TS) @ Fe(T'9)) (ke @ %oy @ ey)

jel
4 N
Jjel
\_ °J
e ; N
(i) Z dlml(j) Fc ‘ !
jel /
O
N , J

(ii)

N °)

Here, (i) follows from the ®@-multiplicativity of Fe and the graphical represen-

tation of evaluations, (ii) from Lemma 2.3(c), and (éi7) from Lemma 2.3](a).
We deduce that

(Fe(T5) @ Fe(Ty)) ()
= dimy(j) (Fe(T5) @ Fe(TS) @ Fe(T'9)) (e, © *ey ® *ey).

Jjel

This proves that I¢(P) = I¢(P').
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Invariance under the move Mj:

The move P 2 P/ is represented by

By Section BLI.T] the C-colored planar graphs I'; and I, associated to the
vertices z,y of P are

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

(Fe(T%) @ Fe(T%)) (x.) 2 e

@ p

N o
Here, the equality (i) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma 2.3](c).
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Now, the C-colored planar graphs FZ', Ff)', 1“;’ associated to the vertices u, v, z
of P are

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges ey, €5, e3 connecting them, and of the new created region is

Z dlml IE‘C Fc ) ® FC(FS;/) ® IFC(F;/)) (*61 ® *ey ® *63)

Jjel

jel

(i)

O

- /

Here, (7) follows from the ®-multiplicativity of F¢ and the graphical represen-
tation of evaluations, (i7) from Lemma 2:3(c), and (éi7) from Lemma 2:3](a).
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We deduce that

(Fe(T) @ Fe(T5)) ()
— Z dimy(j) (Fe(T9) @ Fe(TS) @ Fe(T9)) (%ey @ %y @ ey)-

This proves that Io(P) = I¢(P').

Invariance under the move Mjy:

The move P 22 P’ is represented by

By Section [L.1.1] the C-colored planar graphs I'; and I'y associated to the
vertices z,y of P are

b
o L0 | s

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

(Fc(ff;) ® FC(P;))(*e) () F.
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a4 N

_ W,

Here, the equality (i) follows from the ®-multiplicativity of F¢ and from the
graphical representation of evaluations, and (iz) from Lemma [23](c).

Now, the C-colored planar graphs Ff;, Ffjl, 1“;’ associated to the vertices u, v, z
of P are

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges e1, eg, e3 connecting them, and of the new created region is

> " dimy(j) (Fe(TS) @ Fe(TS) @ Fe(T'9)) (ke @ %oy @ e,)

Jjel

jel

°/

N dimy(j) Fe | | AN

jel f
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4 N

a
(ﬁ) i f

O

- /

Here, (i) follows from the ®-multiplicativity of Fe and the graphical represen-
tation of evaluations, (ii) from Lemma 2.3(c), and (éi7) from Lemma 2.3](a).
We deduce that

(Fe(I'5) @ Fe(Ty)) ()
= " dimy(j) (Fe(IS) @ Fe(I5) @ Fe(T9)) (ke, @ e @ #e,)-

jel

This proves that Io(P) = I¢(P').

Invariance under the move Mjy:

The move P 4 P/ is represented by

Co

By Section [L.1.1] the C-colored planar graphs I'; and I'y associated to the
vertices z,y of P are
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Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

a N

( () & q‘/\@
Fe(T5) @ Fe(Ty)) (*e) = Fe /

g

_ .

_ W,

Here, the equality (7) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma [2.3](c).

Now, the C-colored planar graphs Ffj, Ff)/, Fgl associated to the vertices u, v, z
of P’ are

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges ey, €5, e3 connecting them, and of the new created region is

> " diny(j) (Fe(TS) ® Fe(T) @ Fe(I'9)) (+e, @ #e, ® #e,)

jel
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Z dimy(j

JjeI
\ °J
4 . h
| i
@ Z dimy(j) Fe || - S
jeI < )
N : / | °)
4 N
(i) F, . | i .\
:
N "

Here, (7) follows from the ®-multiplicativity of F¢ and the graphical represen-
tation of evaluations, (ii) from Lemma 2.3(c), and (4i7) from Lemma 2.3((a).
We deduce that

(Fe(T5) @ Fe(T5)) ()
— Z dimy(§) (Fe(TS) @ Fe(TS) @ Fe(TY)) (*ey ® ey @ *ey).

This proves that I¢(P) = I¢(P').
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Invariance under the move M5:

The move P % P/ is represented by

By Section BLI.TL the C-colored planar graphs I'; and I, associated to the
vertices z,y of P are

b ¢
(N
c __ c __
F:v = ' i and Fy = u
d

O g 9

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

a4 N

(Fe(T) @ Fe(T%)) (x.) 2 e

Here, the equality (i) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma 2.3](c).
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Now, the C-colored planar graphs FZ', Ff)', 1“;’ associated to the vertices u, v, z
of P are

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges e1, eg, e3 connecting them, and of the new created region is

D> dimi(j) (Fe(T) & Fe(T) @ Fe(I9)) (rey @ ey @ ca)

’ I
(e
(:’)Zdiml(j) Fe < /

&

(@) »

d A hA

S

Here, (i) follows from the ®@-multiplicativity of Fe and the graphical represen-

tation of evaluations, (ii) from Lemma 2.3(c), and (éi7) from Lemma 2.3](a).
We deduce that

(Fe(T) @ Fe(T5)) ()
= " dimy(j) (Fe(T) @ Fe(T) @ Fe(T'9)) (ko) © %oy @ cy).

jel

This proves that I¢(P) = I¢(P').
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Invariance under the move M5:

The move P % P’ is represented by

By Section [L.1.1] the C-colored planar graphs I'; and I'; associated to the
vertices x,y of P are

c b
ro| ALY | ama o] 0D

g

Consequently, the contribution to the state sum of the vertices x,y and of the
edge e connecting them is

a4 N

(Fe(T) @ Fe(T%)) (x.) 2 Fe : v

(#) F, d

Here, the equality (i) follows from the ®-multiplicativity of Fe and from the
graphical representation of evaluations, and (i7) from Lemma 2.3](c).
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Now, the C-colored planar graphs FZ', Ff)', 1“;’ associated to the vertices u, v, z
of P are

i

. ﬂ .
J a

O

Consequently, the contribution to the state sum of the vertices u, v, z, of the
three edges eq, eg, e3 connecting them, and of the new created region is

Z dimy () (FC(FC ) ® FC(F$/> ® FC<F2«/))<*61 ® *ep @ *ey)

f'
- ;dimlu) Fe ( "
()

-

d O/
; A
b
) qr
(i) Z dlml(j) IFC : N 1
JeI !
d h
. o
N J
\b
(iii) y | Y
—= FC 1’1
J “ Yi Y

O

Here, (i) follows from the ®-multiplicativity of Fe and the graphical represen-

tation of evaluations, (ii) from Lemma 2.3(c), and (éi7) from Lemma 2.3](a).
We deduce that

(Fe(T'5) ® Fe(I'y)) (xe)
= dimy(j) (Fe(T5) @ Fe(TS) @ Fe(T'9)) (xe, ® *ey ® %ey).

Jjel

This proves that Io(P) = I¢(P').
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4.2.2. Invariance under BMP(0,2). The application of a BMP(0,2)
move transforms P into another branched spine P’ of (M, v). The move acts
locally on P leaving unchanged all the regions of P except those involved in
the move. For this reason, we only consider the contribution of the vertices
involved in the move to the quantity I¢(P). We denote by u, v the two vertices
of P’ that are involved in the move.

Pick a coloring ¢ of P. In what follows, we denote by i, k,I[,m,n € I the
c-colors of the regions of P involved in the moves. The coloring c of P extends
to a coloring ¢’ of P’ by considering two new colors j, k' € I. The small region
of P’ created by the move is colored by j. The region r of P whose c-color is k
splits into to regions r’ and r” of P’ that we color by &’ and k, respectively.

We now analyze in detail the contribution given to the state sum by every

BMP(0,2) move (see Section B.2.7).

Invariance under the move Lq:

The move P =% P’ is represented by

By Section [£1.1], the contribution to the state sum of the edges of P rep-

resented in the move L is
wk k\\in/m

3 dimy (k) Fe ( ® Fe

kel N\ Am
O O

Now, the C-colored planar graphs I'¢ and Ff)/ associated to the vertices u
and v of P are

- ~
1 k
N °) N

Consequently, the contribution to the state sum of the vertices u and v, of all
theall the edges involved in the move (i.e., the two edges connecting u, v and
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the other four edges represented in move L), and of the new created region is

> dimy(j)dim;(k)dimy(k') Fe

Gk kel

ST dimy(j)dimy(k)dimy(k) Fe

Gk kel

=N dimy(k)dimy(K) Fe

kk'el

kel
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GINVERENTI
[

kel

n

\
Y
Ny J N
S dimy (k) Fe < ® Fe
i

- .

Here, (i) and (iv) follow from Lemma 2.3|c) and the graphical representa-
tion of evaluations (see Section [23.4), (i7) from Lemma [23(a), (iii) from
Lemma [ZT] using the fact that Home(k, k') = 0 if k # £/, and (v) from the ®-
multiplicativity of Fe (see Section [Z22.6]). We deduce that the contributions to
the state sum before and after the move L; are equal.

This proves that Io(P) = I¢(P').

jv
(€

Invariance under the move Ls:

The move P =2 P’ is represented by

By Section [4.1.1, the contribution to the state sum of the edges of P rep-
resented in the move L is

W k mw n

3 dimy(k) Fe ( ® Fe

kel . k
i © m k n RS
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Now, the C-colored planar graphs Ffj and Fﬁ’ associated to the vertices u
and v of P are

Consequently, the contribution to the state sum of the vertices u and v, of all
the edges involved in the move (i.e., the two edges connecting u, v and the
other four edges represented in move L), and of the new created region is

> dimy(j)dimy(k)dim(k') Fe

,wg
) |
J,k,k'el /)@]/
A
ng
[

ST dimy(j)dimy(k)dimy(k) Fe
1.k,k'el

N dimy(k)dimy(K) Fe

k.k'el
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RNy AL )

( )

S dimy(k) Fe @ @

kel / N

\ /
NI A
SRV

/ \

«‘/ \‘»‘

kel //
N (b 2

kel

\\
\
® Fe >

AN Ty .

Here, (i) and (iv) follow from Lemma [2.3|(c) and the graphical representation
of evaluations, (i7) from Lemma 23|(a), (ii7) from Lemma 2] and (v) from
the ®-multiplicativity of Fo. We deduce that the contributions to the state
sum before and after the move Ly are equal.

This proves that I¢(P) = I¢(P’).

Invariance under the move Ls:

The move P 2% P’ is represented by

™,
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By Section [£1.1], the contribution to the state sum of the edges of P rep-
resented in the move L is

N N

3 dimy(k) Fe ( ® Fe

kel :
m/\' .\ " m’b |

Now, the C-colored planar graphs I'¢ and Ff)/ associated to the vertices u
and v of P are

4 _ N
J n
e = , I‘f}' =
L m O/ ©

Consequently, the contribution to the state sum of the vertices u and v, of all
the edges involved in the move (i.e., the two edges connecting u, v and the
other four edges represented in move L3), and of the new created region is

S dimy(j)dinn(k)din (k) Fe YO

s

A
A
|

@ Z dimy, (5)dim;(k)dim;(k') Fe ‘\“f T
Gk el |
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SENT v

N dimy(k)dimy(K) Fe

k.k'el

7
\
() > dimy(k) Fe @

kel

w . (
@ Z dimy(k) Fe |

:
\
|
\
kel \ /

/
NI T D

iwk "’w n

kel i .
l d ) m k n o

Here, (i) and (iv) follow from Lemma [2.3](c) and the graphical representation
of evaluations, (i) from Lemma 23|(a), and (éiz) from Lemma 2], and (v)
from the ®-multiplicativity of F.. We deduce that the contributions to the
state sum before and after the move L3 are equal.

This proves that Io(P) = I¢(P').

4.2.3. Proof of Theorem 4.1. Let (M, v) be a combed 3-manifold. Let P
be a branched spine of (M,v). It follows from the definitions that I¢(P) re-
mains unchanged under the application of an ambient isotopy in M. Also
I¢(P) remains unchanged under the application of a BMP(2,3) move (by Sec-
tion [L.2.1]) or a BMP(0,2) move (by Section 4.2.2)). Therefore, by Theorem B.5]
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the scalar Io(M,v) = I¢(P) is well defined, i.e., does not depend on the choice
of P.

If I’ is another representative set of simple object of C, then there is a
unique bijection ¢: I — I’ such that the objects ¢ and (i) are isomorphic
for all ¢ € I. Consequently, the naturality of F¢ (see Section 2.2.6) implies
that Ic(M, v) does not depend on the choice of the representative set .

Let (M,v) and (M',v') be two equivalent combed 3-manifolds (see Sec-
tion B:2.I)). There is an orientation-preserving diffeomorphism ¢: M — M’
such that the combings v/ = ¢, o v o ¢! and v/ are homotopic within the
class of combings on M’. Pick a branched spine P of (M, v) and a branched
spine P’ of (M',v'). Then P" = ¢(P) is a branched spine of (M’,v"). Clearly
Ie(P) = Ic(P"). Also, since " and v/ are homotopic within the class of comb-
ings on M’ it follows from the definition of the state sum that Io(P”) = Io(P’).
Consequently,

Ic(M, I/) = Ic(P) = Ic(P”) = Ic(P/) = Ic(M’, l//).

4.2.4. Proof of Theorem 4.2. It follows from Sections and 4.1.3
that there are

e a bijection between the set of vertices of the o-graph I' and the set of
vertices of the branched polyhedron Pr associated to I';

e a bijection between the set of edges of I' and the set of edges of Pr;

e a bijection between the set Circ(I') and the set of regions of Pr.
By pre-composing with the latter bijection, any coloring ¢ of I'" induces a
coloring ¢ of Pr. Clearly dim;(c) = dim,;(¢). By definition, for any vertex x
of T, the associated graph I'¢ (see Section EL1.3) is equal to the graph T'¢
associated to the vertex & of Pr corresponding to x (see Section [LTT]). Also,
the contraction vector . provided by Section is equal to the contraction
vector *z provided by Section LTl Tt follows that |¢| = |¢|. Now, the above
map ¢ — ¢ is a bijection between the set of colorings of I' and the set of
colorings of Pr. Consequently, we deduce that

> dimy(c) |ef =) dimy (&) || = Te(Pr) = Ie(M, v),

where ¢ runs over all colorings of T
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CHAPTER 5

A particular case

In this chapter, we consider a pivotal fusion category G¢ associated with a
character d of a finite group G and study in detail the invariant I (M, v) of
combed 3-manifolds defined with this category. In particular, we prove that
this invariant is non-trivial and corresponds to the evaluation by the character d
on the Euler class of the real vector bundle of rank 2 associated to v.

Throughout this chapter, G is a finite group and d is a character of G over
the (non-zero) commutative ring k, that is, a group homomorphism from G to
the multiplicative group k* of k.

5.1. The pivotal fusion category G

In this section, we define a pivotal fusion k-category G¢ as follows. The
objects of G{ are the elements of G. By definition,

Endga(9) =k and Homga(h,l) = {0} Ck
for all ¢ € G and distinct h,l € G. The composition of morphisms in G¢ is

induced by multiplication in k. The identity of an object g € G is id, = 1i.
The category G¢ is strict monoidal with monoidal product defined by

g@h=gh and A®@u=>Au

for all g,h € G and all morphisms A,z in C (which are elements of k). The
unit object of G is the unit element 1 € G.
The monoidal category G¢ is pivotal with pivotal duality

{(g" =97 evy = 1,6V, = d(9) ) }gec-
More precisely,

ev, =1 ek = Homgﬂc(z(g_1 ®g,1),

&v,=d(g) ek = Homga(g @ g 1),
The corresponding coevaluation morphisms are computed by

coevy =1y e k= HomGﬁg(l,g ®g Y,

coevy, =d(g) ek = HomGﬁ(l,g_l ®g).

Note that the dual functor of G{ acts as the inversion on objects and as the
identity on morphisms. By definition, the dimensions of an object g € G are
computed by

dim;(g) = d(g) €k and dim,(g) =d(g9)"" €k
89
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Consequently, G¢ is spherical if and only if d(g)? = 1 for all g € G.

We endow G with a structure of monoidal k-category defined by provid-
ing each Hom-set (which is either k or 0) with the left k-module structure
given by multiplication. The pivotal k-category G¢ is then fusion with G as a
representative set of simple objects.

5.2. A direct computation of Iq

Let (M, v) be a combed 3-manifold. Let I be an o-graph such that (M, v)
is equivalent to (Mr, vr) if M # 0 (see SectionB.3.3) or to (M, op) if OM = ()
(see Section B.3.0).

Recall from Section A.T.3 that a coloring of I" is a map from the set Circ(I)
of the circuits obtained from I' by applying the rules of Figure 3.0l to the set G.
We say that a coloring ¢ of I' is admissible if

c(fe(3)) = c(fe(D)e(fe(2)) € G
for all edge e of I', where the map f.: I'. = {1,2,3} — Circ(I') is defined in

Section LT3
Let ¢ be an admissible coloring of I'. For v € Circ(T"), set

de(y) = d(c(v))-
We associate to a vertex x of I a scalar k.(z) defined as follows. If z is positive,
then

} A

Here, the middle pictures represent the portions of circuits associated with x
together with their c-colors ¢, 7, k, [, m,n € I.

We associate to an edge e of I' a scalar 6.(e) defined as follows. Recall from
the definition of the map f. that to e is associated three portions of circuits
(eventually coinciding) in Circ(I"). The rightmost portion is a portion of the
circuit f(3) € Circ(I"). Set

bule) = d(e(£.(3))).
In the next theorem, we compute the invariant I (M, v) of (M, v) derived
from G¢ using the scalars d.(7), k.(z), and 6.(e) defined above.
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THEOREM 5.1. We hawve:
Lo (M, v) Z (Hd )(H mc@)) (H ec(e)),

where ¢ runs over all admissible colorings of I, ~v runs over all circuits in
Circ(I"), « runs over all vertices of ', and e runs over all edges of T.

PROOF. By Theorem [4.2] we have that

IGd (M,v) Zdlml

where ¢ runs over all colorings of I'. Since

dim,(c H de(

~€Circ(T")

it suffices to prove that if ¢ is a non-admissible coloring of I, then |¢| = 0, and
that if ¢ is an admissible coloring of I", then

(5.1) el = ([T xe()) (TT %))

where z runs over all vertices of I' and e runs over all edges of I'. Fix a

coloring c of T'.
Recall from Section the cyclic Gl-set T'. = ({1,2, 3}, co f.,&.) associ-
ated to an edge e of I'. It follows from the definitions that

H(T,) = Homgy (1,e(fo(1)e(£(2)e(£.3)) )

kif e(£.(1)e(£(2)

- b\ :C(fe(3) )
Hc(e) - H(Fe) ® H(Fe ) - {0 ifC(fe<1))C(fe(2) (

c(fe(3))-

S— —r
N
S—" —r

Therefore

otherwise.

Kk ifei <sibl
Hc:®Hc(e) 2{ if ¢ is admissible,

Consequently, if ¢ is not admissible, then |c| = 0.
Assume that ¢ is admissible. Let x be a vertex of I'. Recall from Sec-
tion 1.3 the G¢-colored planar graph I'¢ associated to z. Then

H(F;) _ H<FZ(161)> ® H(r;é@)) ® H(r;&eg)) ® H<FZS64)> ~ ]k®47

where eq,...,e4 are the edges incident to x. Therefore the contribution of x
to |c| is

Foo(T) (e @ e ® 1, ® 1) € H(TS)" ~ k.
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If x is positive, then

where 7, j, k,[,m,n € I are c-colors of the circuits associated with z and so

Fao(T9)(Le ® 1, © 1, ® 1) 2

~

Here, (i) follows from the definition of Fga, (i7) from the definition of the

pivotal duality of G¢, and (i74) from the definition of r.(z). If z is negative,
then

k m n S J

© 2019 Tous droits réservés. lilliad.univ-lille.fr



© 2019 Tous droits réservés.

Thése de Giulio Calimici, Université de Lille, 2019

5.2. A DIRECT COMPUTATION OF IGE 93

where 7, 7, k, 1, m,n € I are c-colors of the circuits associated with z and so

i

FeT)(@ L@ Lk®@ 1) =

—~
=

)

D d(k)d() " dm)rd(n) 2 @) d(m) T d(n) Y k().

Here, (i) follows from the definition of Fa, (i7) from the definition of the piv-

otal duality of G¢, (iii) from the admissibility of ¢, and (iv) from the definition
of k.(z).

Recall from Section LT3 that the contraction vector associated to an edge e
of I'is

xe =+ € H(.) @ H(TP®) = H.(e) ~ k.

It is computed by

) i o w)
v U @ A D a(g)ach) = dak) 2 o, (),

where g = ¢(fe(1)), h = ¢(f(2)), and k = ¢(f.(3)). Here, (i) follows from
Lemma 2.2, (i) from the definition of the pivotal duality of G¢, (iii) from the
admissibility of ¢, and (iv) from the definition of 6.(e).

Consequently, since |c| is the evaluation of %, = ®*., where e runs over all
edges of I', by @, Fc(I'S), where x runs over all vertices of I', we obtain that
the equality (B.)) is satisfied. O
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5.3. Non-triviality of I

Consider the following two o-graphs:

/
€14

The o-graphs I' and I are closed and so encode closed combed 3-manifolds
(M,v) and (M’ 1), respectively (see Section B.3.5)).

THEOREM 5.2. (a) The 3-manifolds M and M' are homeomorphic.
(b) The combed 3-manifolds (M,v) and (M',V') are not equivalent.
(c) We have:

IG’E?(M, V) = Z d(g)2 and IG’E‘Z(Mlayl) = |G| L.

geG

(d) There are examples of a finite group G and of a character d of G such
that 1ga(M,v) # lga(M',1/).

Note that the parts (a),(b),(d) of Theorem (5.2 implies that the invariant I
of Theorem is non-trivial and does depend on the combing: it may distin-
guish two non-homotopic combings on the same 3-manifold.

PROOF. Part (a) follows from Section since I is obtained from I" by
applying a Pontrjagin move.

Let us prove part (c). We compute I;q(M, v) by using its expression given
by Theorem Gl Let ¢ be an admissible coloring of I'. There are 6 circuits

lilliad.univ-lille.fr



© 2019 Tous droits réservés.

Thése de Giulio Calimici, Université de Lille, 2019

5.3. NON-TRIVIALITY OF IG@ 95

1, - - -, obtained from I' by applying the rules of Figure

Here, the c-colors of the circuits are denoted as follows:

i=c(m) red, j=c(r2) green,
k= c(ys3) blue, m = c(4)  black,
n=c(y) grey, t=c(v) pink.
The scalars associated to the vertices x1,..., x5 of I' are:
ke(r1) = d(j) " d(m) " d(i) ", fie(r2) = d(i) " d(t) " d(5) ",
ke(rs) = d(j) >, o) = d(i) " d(k) " d(5) ",
kie(rs) = d(j) (i)~ d(n) .
The scalars associated to the edges ey, ..., e are:

Oc(e1) =d(m),  O(e2) = d(t), Oc(es) = d(j),  Ocles) =d(j),
Oc(es) = d(5), Oc(es) = d(j),  bcler) =d(k),  Oc(es) = d(i),
Ouleg) = d(n),  O.(ew) = d(i).

The scalars associated to the circuits 7y, ..., are:
dc('71) = d(l)a dc(IYQ) - d(])a dc(73) - d(k)a
dc</74) = d<m>7 dc</75) = d(”)v dc</76) = d<t>

Now, the admissibility of ¢ imposes conditions on the colors, one for each of
the 10 edges of I':

€1Wm:ji, €2Wt:ij7 €3Wj:j’i, €4Wj:ij7
es ~ J = 1], eg ~ ] = Ji, er ~ k=1, es ~ 1 =17,
ey~ M = ji, elp ~ 1 =12,

that is,

t=1 and j=k=m=n=t
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Therefore
6 5 10
Toa(M,v) =Y [ de(ve) T] telan) T 0cles)
c q=1 r=1 s=1
= Y 6i10;k0jm0ine d(i) 7 d(5) 2 d(k)d(m)d(n)d(t) = > d(j)>.
1,7,k,m,nteG JjEG

We compute similarly I5a(M’,v'). Let ¢ be an admissible coloring of I".

There are 8 circuits v, .. .
ure 3.6}

,7% obtained from I” by applying the rules of Fig-

i=c(y) red, j=cl(yy) green,
k==c(y3) pink, m = c(v)) black,
n=-c(v) blue, t =c(vg) yellow,
u=-c(y;) grey, v=c(yg) light blue.
The scalars associated to the ', ..., 2% are:

ke(7h) = d(i) " d(u)"Hd(n) ", he(rh) = d(i)~'d(5) " d(m) ™",

k() = d(m) ™ d(5) " d(k) ™", () = d(i)~'d(j)~,

re(w5) = d(i) " d(k) " d(v) ™", kie(g) = d(i)*d(m)~",

kie(7) = d(n)d(t)"'d(i) ™
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The scalars associated to the edges €}, ..., ¢}, are
Oc(er) =d(t),  Ocles) =d(i),  Oc(ey) = d(@),  Ocle)) = d(m),
Oc(es) = d(v),  Ocleg) =d(i),  Oe(er) = d(k),  Ocle) = d(i),
Oc(eg) = d(5),  Oelerg) =d(m),  be(eh) =d(j),  Oeclers) = d(i),

Oc(ehs) = d(u),  belely) = d(n).

The scalars associated to the circuits v{, ..., 4 are:
de(71) = d(i), de(73) = d(j), de(v3) = d(k),
de(v3) = d(m), de(v5) = d(n), de(75) = d(t),

de(v7) = d(u), de(vs) = d(v).
Now, the admissibility of ¢ imposes conditions on the colors, one for each of
the 14 edges of I":

/ . / . . / . .. / ..

ey~ t=ni, ey ~ 1 = N, es ~ 1= Ji, ey~ M = 1ij,
! . ! . ! . ! . .

es ~ v =1k, eg ~ 1 =mnm, er ~ k= jk, eg ~ J =ik,
! - ! i ! c . ! <

ey~ u=1n, ey~ n=n

that is,
i=m=t=u, j=n=v=1 and k=il
Therefore
8 7 14
Tea(M' V) =" [ detva) [T relan) ] Oces)
¢ q=1 r=1 s=1

= Z 0i.m05,405,1,07,10p,104,10) ;-1 d(i)*2d(t)d(u)d(v)

i,9,k;mntuveEG
i€G
Let us prove Part (d). Consider the cyclic group G = Z/3Z and the
character d: Z/37Z — C* defined by k +— exp(2ink/3). By Part (b), we have:

le(M,v) = al(ﬁ)2 + al(T)2 + d(§)2 = 1+ exp(4in/3) + exp(2im/3) =0
and
le(M', V') = |Z/3Z| 1c = 3 # 0.

Finally, Part (b) follows from part (d) and the fact that 14 is an invariant
of combed 3-manifolds. O

5.4. An interpretation of I

In this section, we give an interpretation (in terms of classical topological
invariants) of the state sum invariant Iga defined with the category G

Throughout this section, we fix a closed combed 3-manifold (M, v).
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5.4.1. The Euler class of a combing. The combing v: M — T'M is
a nowhere zero vector field on the (closed oriented connected) 3-manifold M.
Therefore v generates a vector sub-bundle I — M of rank 1 of the tangent
bundle "M — M. Then the quotient bundle

F'=TM/L" - M
is a vector bundle on M of rank 2. By definition, for any x € M,
F =T,M/L? =T,M/Ru,.
The Euler class of v is the Euler class of the vector bundle F":
E, =e(F") € H*(M;Z).

Recall that this class is defined as follows (e.g., see [Hal Chapter 4|). Con-
sider a generic section s of F”. Then s71(0) is a closed submanifold of M of
dimension 3-2=1. Tts homology [s7'(0)] € H,(M,Z) does not depend on the

choice of s. The image of this class under the Poincaré duality isomorphism
H\(M,Z) ~ H*(M;Z) is the Euler class e(F") € H*(M;Z) of F".

5.4.2. Computation of the Euler class from closed o-graphs. Let I

be a closed o-graph such that (M, v) is equivalent to (Mp, ) (see Section333).

In this section, we compute the Euler class F, of v from T'.

The branched polyhedron P = Pr associated to I' (see Section B.3.2) is a
branched spine of (M, v). Recall that there is a bijection between the set of
edges of I' and the set of edges of P. Let e be an edge of P. Then e inherits
an orientation from its corresponding edge of I'. The orientations of e and M
determine a positive direction on a small loop in M encircling e. The resulting
oriented loop determines a cyclic order on the set {0°,d¢,0¢} of branches of P
at e. We choose notation so that this cyclic order is §¢ < 0¢ < 07 < ¢°
and the orientation of e coincide with that induced by ¢¢ and ¢7. Denote
by A°, A®, A% the regions of P (eventually coinciding) containing 06°,d¢, 0%
respectively:

2 M

2

LEMMA 5.3 (|[BP2, Lemma 10.1.1]). H*(P;Z) is the Z-module generated
by the regions A of P subject to the relations

A® = A%+ A°,

as e runs over the edges of P.
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Recall that there is a bijection between the set Vi of vertices of I and the
set, of vertices of P. Recall that the set Circ(I") of circuits obtained from I' by
applying the rules of Figure is in bijection with the set Reg(P) of regions
of P. Associate to any vertex = of I' the following cohomology class:

Az) = AT + A5+ AL € HX(P; 7).

Here, A7, A7, A§ are regions of P corresponding to three portions of circuits
in Circ(I") induced by x when applying the rule of Figure B.6l

If x is positive, then:
A ; ~ ; Af
_)_ .
T /
A A{é} A Ag

Y AT Y k
_)_

—_———a——— A —>—

T
Y Y
x x
INDAAON:

Denote by Er the set of edges of T' (which is in bijection with the set of edges
of P).

If x is negative, then:

LEMMA 5.4. The Euler class E, of v is the image of

pr= Y A=Y Mz)+ Y A€ H(P;Z)

A€Reg(P) z€VP e€Er

under the isomorphism H?*(P;Z) ~ H*(M;Z) induced by the inclusion of P
in M.

PROOF. Since P is branched, it may be provided with a Cl-structure (see
Section B.2.2). The Euler class is the image of a class ur € H*(P;Z) under
the isomorphism H?(P;Z) ~ H?*(M;Z) induced by the inclusion of P in M.
The class pur is just the obstruction to the existence of a nowhere-zero tangent
vector field on P. For each region A of P, remove the interior of a disk
embedded in A. The result is a regular neighborhood N of the vertices and
edges of P. The boundary of N is the disjoint union of the circles bounding
the disks. Following [BP2| Propositin 7.1.1|, construct a nowhere-zero tangent
vector field near on N using the following rules:
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The red points represent the points where the vector field is tangent to the
circles bounding the removed disks. For a region A of P, let na be the number
of red dots in A. By construction, the red points in A split the circle bounding
the removed disk in A into segments on which the field points alternatively
inside and outside the disk. Thus na is even. If nao = 0, then we can extend
the vector field on A with a zero of index 1. If nn > 0, then we can extend
the vector field on A with % — 1 zeros of index -1. Consequently,

(5.2) =y (1 - %) A € HX(P; 7).

A€cReg(P)

Let = be a vertex of I'. Since x is of crossing type (see Section B.3)), it has
two incoming half-edges A", hY* and two outgoing half-edges h$™, h9"™. We
choose notation so that the distinguished half-edges are h* and h$"*. Denote

z,in _x,in _x,out x,out

the corresponding edges of I" by 7", e5”, ;" ", €5 . Since the edges of I'
are oriented, we have:

e:f,in ?é e;,in and ef,out % e;,out.
Denote by A7, A3, A3, A7, AZ, A% the regions of P corresponding to the portions

of circuits in Circ(I") induced by = when applying the rule of Figure B.6. We
choose notation according to the sign of x. If x is positive, then:

x,out x x
€ Ag ’ k Az
z,in z,0out

€1 1

If x is negative, then:

z,in

x,in x,out
€ €1 - A3
! A% * ‘ A7
+€$7OUt 3 !
2 Ag
Since any edge is outgoing from a unique vertex, since there are exactly two
half-edges outgoing from a vertex, and since e7°" # €5, we have:
x,out x,out
ST W]
ecFEr zeVr
Similarly,
S At Y (a7 a7,
ecEr zeVr
Consequently,

23 A= ST (AT AT AT AT,

e€Ep zeVr
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Now, if x is positive, then

x,out x,out n

x,in x,i
ATTE AT ASTS AT AT AT ASTS AT

if x is negative, then

x,out x,out

e o x e o x ez’in_ T ez’in_ T
A= AT A= AT A= AT A= AL
Therefore

23 A=Y (AT 245 + A7),

ecbkr zeVp
By definition, for any vertex x of I,

Az) = AT + AT + AL,

Since na is the number of red dots in A, we have:

D onaA=) (A7 + AD).

A€Reg(P) zeVr
Consequently,
—2) @) 42D AT=—D (AT + AL =— > naA
zeVp ecEp xeVp A€Reg(P)

Using the expression (5.2), we conclude that

=y (1—%)A: YA - A+ Y A O

A€Reg(P) A€Reg(P) z€VP e€Er
5.4.3. Interpretation of I.. Let BG be the (pointed) classifying space
of the group G. The character d: G — k* represents an element
[d] € HY(G;k*) = H'(BG;k").

Pick a point * € M. Denote by Hom(m (M, *),G) the set of group homomor-
phisms from the fundamental group 71 (M, %) to G. Any f € Hom(m (M, ), G)

induces a pointed map f: M — BG and so a homomorphism
/5 HY(BG;k*) — H'(M;k*).
Consider the pairing
(.Y HY(M;K*) x H*(M;Z) — k
induced by the Poincaré duality isomorphism H?(M;Z) ~ H,(M;Z) and the
evaluation pairing H*(M;k*) x H,(M;Z) — k.
THEOREM 5.5. We have:
lggMv)= " > (F(d). B,
feHom(m1 (M,%),G)

where E, is the Euler class of the combing v.
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PROOF. Let I' be a closed o-graph such that (M, v) is equivalent to (Z/\/[\p, or)
(see Section B30]). Let P = Pr be the branched polyhedron associated to I.
The set M\ P is homeomorphic to an open 3-ball. We may assume that « € M
is the center of this ball. For any region A of P, pick a loop ya in M based
in * which is positively transverse to A. The fundamental group 7 (M, x) is
generated by the homotopy classes [ya] with A € Reg(P). The only relations
are [7.] = 1 with e an edge of P, where 7. = yac ac (yac) ™"

Consequently,
m(M, ) = ([yal, A vegion of P | [rac] = [yac]l7ac], e edge of P).

Thus any f € Hom(m (M, *), G) induces an admissible coloring ¢y of I' defined
by

cr(A) = f(hal) € G

for all region A of P (through the obvious bijection between Circ(I') and
Reg(P)). Also the assignment f — ¢y is bijective.

Let f € Hom(m (M, x),G) and denote by ¢ = ¢y its associated admissible
coloring of I'. By Theorem [5.1], it suffices to prove that

(5.3) (D) By = T de(d) T #el@) I 6ele),

A€Reg(P) z€VDP e€kEr

where VT is the set of vertices of I' and Er is the set of edges of I'. Recall the
presentation of H?(P;Z) given by Lemma [5.3] and define a group homomor-
phism

¢e: H(P;Z) — k*
by setting ¢.(A) = d(c(A)) for all A € Reg(P). By Lemma [5.4], the Euler
class E, is the image of

pr= Y A=Y Mz)+ Y A€ H(P;Z)

A€Reg(P) z€VP e€kEr
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(with the notation of Section[5.4.2)) under the isomorphism H?*(P;Z) ~ H*(M;Z)
induced by the inclusion of P in M. Then, we have:

) B =eelpr) = T ee@) T eer@)™ [T eo(2%).
A€Reg(P) AS%N e€Er

Now it follows from the definitions that

pe(D) = d (D), pe(M@)) ™" = kel(@), (D) = bc(e)
for all regions A of P, all vertices x of T', and all edges e of T'. Therefore (5.3)
holds. O]

5.4.4. Remark. Recall from Section that if the pivotal fusion k-
category G¢ is spherical, then IGH?(M, v) does not depend on v. This can be
recovered from Theorem [5.5] as follows. It is well-known (see for example [Tul)
that the Euler class F, is even, that is, £, = 2D, with D, € H*(M;Z).
Therefore, for any f € Hom(m (M, %), G),

(fr((d]), Ev) = (f*([@°]), Dy).
Consequently, if G¢ is spherical, or equivalently if d(g)? = 1y for all g € G (see
Section (1), then (f*([d]), E,) = 1 and Theorem [B.5] gives that

Iga(M,v) = [Hom(m (M, %), G)| L.

In particular, IGg(M, v) does not depend on v.
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APPENDIX A

Unordered tensor products of modules

By a module we mean a left module over the commutative ring k. Given
a finite family E of modules, we define the unordered tensor product ®ycpM
as follows. Let n = #F be the number of elements of £, and let S = S(E)
be the set of bijections {1,...,n} — E. For any bijection o € S, consider the
module

E,=0(1)® - Qko(n).

For o, € S, let p,,,: E, — E, be the k-linear isomorphism induced by the
permutations of modules: given any vectors m; € o(i) withi=1,... n,

po,,u(ml Rk -+ - Ok mn) = Mg—1u(1) Rk -« - - Ok Mo=14(n)-
It follows from the definitions that for arbitrary o, u,v € S,
PuvPop = Pow: Ee = E, and  p,, =idg,.

The unordered tensor product of the modules M € E is the projective limit of
the system (Ey, pou)oues:

®M€EM = l.&nE}'

This is a module (over k) equipped with an isomorphism ®ycpM = E, for
each 0 € §. The latter isomorphisms are called the cone isomorphisms. They
commute with p,, for all o, € S. If all modules M € E are projective of
finite type, then so is ®p;cgM and there is a canonical isomorphism

(@MGEM)* ~ QmerM™.

The unordered tensor product of an empty set of modules is the ground ring k.

Given a bijection ¢: ' — F between two finite families of modules, an
arbitrary family {fa: M — ¢(M)}ner of k-linear homomorphisms induces a
k-linear homomorphism

Qmerfym: Qumer M — QnepN.

It is uniquely determined by the property that for all o € S(E), the following
diagram commutes:

®
QmeeM venu ®nerN
l fo(1)®k @k fo(1) l
E, > Flog

105
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where the vertical isomorphisms are the cone isomorphisms. If all fj, are
isomorphisms, then so is @y far.
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Invariants par somme d’états des 3-variétés peignées

Cette thése concerne la topologie quantique, une branche des mathématiques
née dans les années 1980 suite aux travaux de Jones, Drinfeld et Witten. Un ex-
emple fondamental d’invariant quantique des 3-variétés est due a Turaev-Viro
en 1992. Leur approche, dans sa forme générale due a Barrett et Westbury,
utilise une catégorie de fusion sphérique comme ingrédient principal et consiste
en une somme d’états sur un squelette de la 3-variété dont les sommets sont
coloriés par les 6j-symboles de la catégorie.

Le résultat principal de la thése est la construction d’un invariant topologique
des 3-variétés peignées (c’est-a-dire des 3-variétés munies d’un champ de vecteurs

jamais nuls) qui généralise celui de Turaev-Viro. Ce nouvel invariant est défini
au moyen d’une catégorie de fusion pivotale et consiste en une somme d’états
sur un squelette ramifié représentant la 3-variété peignée.

Lorsque la catégorie de fusion pivotale n’est pas sphérique, I'invariant per-
met, en général de distinguer des champs de vecteurs non homotopes sur une
méme 3-variété. Ceci est montré en considérant une catégorie de fusion piv-
otale associée a un caractére d’un groupe fini. Pour cette catégorie, I'invariant
correspond a I’évaluation par le caractére de la classe d’Euler d’un certain fibré
vectoriel de rang 2 associé au champ de vecteurs.

State sum invariants of combed 3-manifolds

This thesis concerns quantum topology, a branch of mathematics born in the
1980s after the work of Jones, Drinfeld and Witten. A fundamental example
of a quantum invariant of 3-manifolds is due to Turaev-Viro in 1992. Their
approach, in its general form due to Barrett and Westbury, uses a spherical
fusion category as the main ingredient and consists in a state sum on a skeleton
of the 3-manifold whose vertices are colored by the 67-symbols of the category.

The main result of the thesis is the construction of a topological invariant
of combed 3-manifolds (that is, of 3-manifolds endowed with a nowhere-zero
vector field) which generalizes that of Turaev-Viro. This new invariant is
defined by means of a pivotal fusion category and consists in a state sum on a
branched skeleton representing the combed 3-manifold.

When the pivotal fusion category is not spherical, the invariant allows in
general to distinguish non homotopic vector fields on the same 3-manifold. This
is proved by considering a pivotal fusion category associated with a character of
a finite group. For this category, the invariant corresponds to the evaluation by
the character of the Euler class of a certain vector bundle of rank 2 associated
to the vector field.
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