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Abstract xix

Numerical simulation of the transition to elastic turbulence in viscoelastic inertialess

flows

Abstract

Fluid mixing represents an important component of the field of fluid dynamics, what makes

the understanding of this subject so meaningful from both the fundamental and applied

(e.g. industrial processes) point of view. In miniaturised geometries, under typical conditions,

mixing is a slow, difficult and inefficient process due to the naturally laminar character of

these flows, which forces the homogenisation of different fluid elements to occur via molecular

diffusion instead of faster-acting advective transport. However, recent experimental studies

on low-Reynolds-number viscoelastic flows have shown that efficient mixing can be triggered

in several geometrical configurations (including micro-scale devices), by the phenomenon of

elastic turbulence. The first part of this thesis is devoted to the understanding and investigation

of numerical challenges present in the domain of non-Newtonian fluid dynamics, focusing in

particular on the high-Weissenberg number problem. The latter manifests as a breakdown of

the numerical scheme when the polymeric extra-stress evolution equations are implemented in

a direct way, which poses severe limits to the possibility to accurately simulate elastic turbulent

flows. We provide numerical evidence of the beneficial effect (in terms of increased stability) of

the square-root decomposition of the extra-stress in a finite-volume-based implementation of

the governing equations in a two-dimensional channel. The second part of the thesis reports

about the emergence and characterisation of purely elastic instabilities in numerical simula-

tions of zero-Reynolds-number Oldroyd-B fluids in a two-dimensional cross-slot geometry.

By means of extensive numerical work, we provide a detailed characterisation of the purely

elastic instabilities arising in the system for wide ranges of both the fluid elasticity and the

polymer concentration. For concentrated solutions and large enough Weissenberg numbers,

our simulations indicate the emergence of disordered flow pointing to elastic turbulence. We

analyse the transition to irregular dynamics and characterise the statistical properties of such

highly elastic flows, discussing the similarities and differences with experimental results from

the literature.

Keywords: numerical simulation, elastic turbulence, viscoelastic fluid, cross-slot, high-

Weissenberg number problem, finite-volume method, Oldroyd-B, OpenFOAM, mixing



xx Abstract

Simulation numérique de la transition à la turbulence élastique dans des écoulements

viscoélastiques sans inertie

Résumé

Le mélange de fluides représente un élément important du domaine de la dynamique des

fluides, ce qui rend la compréhension de ce sujet si significative du point de vue fondamental

et appliqué (p. ex., les processus industriels). Dans les géométries miniaturisées (dans des

conditions typiques) le mélange est un processus lent, difficile et inefficace. Cela en raison

du caractère naturellement laminaire de ces écoulements, qui oblige l’homogénéisation de

différents éléments fluides à se produire par diffusion moléculaire au lieu d’un transport advectif,

à l’action plus rapide. Cependant, des études expérimentales récentes sur les écoulements

viscoélastiques à faible nombre de Reynolds ont montré qu’un mélange efficace peut être

déclenché dans plusieurs configurations géométriques (y compris les dispositifs à l’échelle

microscopique), par le phénomène de la turbulence élastique. La première partie de cette thèse

est consacrée à la compréhension et à l’investigation des défis numériques présents dans le

domaine de la dynamique des fluides non newtonienne, en se concentrant plus particulièrement

au problème du haut nombre de Weissenberg. Ce dernier se manifeste par une rupture du

schéma numérique, lorsque les équations d’évolution d’extra-contraintes polymériques sont

évaluées de façon directe. Ceci pose des limites importantes à la possibilité de simuler avec

précision des écoulements turbulents-élastiques. Nous fournissons des preuves numériques de

l’effet bénéfique (en termes de gain en stabilité) de la décomposition en racine carrée de l’extra-

contrainte dans une implémentation en volumes finis des équations régissant l’écoulement

dans un canal bidimensionnel. La deuxième partie de la thèse traite de l’émergence et de la

caractérisation d’instabilités purement élastiques dans des simulations numériques de fluides

Oldroyd-B à nombre de Reynolds zéro dans une géométrie du type cross-slot bidimensionnel.

Grâce à un travail numérique approfondi, nous présentons une caractérisation détaillée des

instabilités purement élastiques. Ces instabilités apparaissant dans le système pour de larges

plages d’élasticité du fluide et de concentration des polymères. Pour les solutions concentrées

et des nombres de Weissenberg assez grands, nos simulations indiquent l’apparition d’un

écoulement désordonné pointant vers la turbulence élastique. Nous analysons le passage à

une dynamique irrégulière et caractérisons les propriétés statistiques de tels écoulements très

élastiques, en discutant des similitudes et des différences avec les résultats expérimentaux de la

littérature.

Mots clés : simulation numérique, turbulence élastique, fluide viscoélastique, cross-slot, pro-

blème du haut nombre de Weissenberg, méthode des volumes finis, Oldroyd-B, Open-

FOAM, mélange
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Introduction

A fluid is a material that is unable to sustain the application of shear stress without

undergoing some kind of deformation. When describing such deformation of fluid

parcels, the term fluid flow is employed. For centuries, the scientific knowledge over

the broad field of Fluid Mechanics has been developed, improved and formalised

focusing mainly on Newtonian fluids, whose flow is accurately described by the famous

Navier-Stokes equation. In the last century though, interest on non-Newtonian fluids

has sharply grown among the scientific community, as more and more unexpected

phenomena related to e.g. viscoelastic flow behaviour were discovered and explained.

Fluid mixing represents an important component of the field of fluid dynamics,

where the association of two or more material components must efficiently and in a

practical way produce homogeneous solutions [1–4]. Understanding of this subject is

thus quite meaningful from both the fundamental and applied (e.g. industrial processes)

point of view. In miniaturised geometries, under typical conditions, mixing is a slow,

difficult and inefficient process due to the naturally laminar character of these flows,

which forces the homogenisation of different fluid elements to occur via molecular

diffusion instead of faster-acting advective transport [5]. However, recent experimental

studies on low-Reynolds-number viscoelastic flows have shown that efficient mixing

(as e.g. in Fig. 1) can be triggered in several geometrical configurations (including

micro-scale devices), by the phenomenon of elastic turbulence [1, 6–8].

In their seminal work, Groisman and Steinberg [9] reported that purely elastic

instabilities produced in a specific geometric setup may lead to a molecular coil-stretch

transition [10, 11] and consequent appearance of chaotic flows corresponding to a

dynamical regime known as elastic turbulence. In particular, this regime is characterised

by a whole range of active scales, irregular temporal behaviour, growth of flow resis-

tance by a factor up to twenty and enhanced mixing properties. Following its pioneer

discovery, the elastic turbulence phenomenon has been induced and characterised in

many different flow setups, numerically and through experiments [7, 12–21]. Heat

transfer processes are known to be enhanced as well in fluid flows undergoing this

disordered regime, as it was recently proved for a von Karman swirling flow [22], a

cross-slot setup [23] and a curvilinear microchannel [24, 25].

1
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(a) Wi = 6 (b) Wi = 10

Figure 1 – Lagrangian particle distributions for different elasticity levels – expressed in
terms of the Weissenberg (Wi) number – in a viscoelastic fluid flow driven by a simple

periodic background force, illustrating its mixing properties (extracted from [8]).

Recently, Samanta et al. [26] pointed out that the inertial turbulence, occurring for

high-Reynolds non-Newtonian fluid flows, seems to be related to the elastic turbulence,

by performing experiments on viscoelastic pipe flows and direct numerical simulation

(DNS) on three-dimensional straight channels. The authors introduced the concept

of elasto-inertial turbulence, since the instability mechanism that was found to delay

the transition point where turbulence would be initially observed relied upon an

interaction between elastic stresses and a non-negligible amount of inertia. Moreover,

it was theorised that making further progresses in the understanding of the turbulent

drag reduction problem can be related to a better comprehension of key features of the

elastic turbulence [27].

However, performing numerical simulations of fluid flows undergoing the elastic-

turbulent regime is far from an easy task. Since the late 1970’s, we know that existing

models of viscoelastic fluids present challenging problems for numerical computa-

tion [28], among which the most outstanding one is the high Weissenberg number

problem (HWNP) [29, 30]. The latter manifests as a breakdown of the numerical

scheme when the polymeric extra-stress evolution equations are implemented in a

direct way [31], which poses severe limits to the possibility to accurately simulate

elastic turbulent flows; after its discovery, it has indeed been considered one of the

biggest obstacles from providing solutions for viscoelastic fluid flows, beyond some

elasticity level. In this context, several miscellaneous attempts were made to improve

numerical stability when solving the constitutive equations of viscoelastic models. An

artificially large global (or local) stress diffusion term can be included into the numerical
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problem [32, 33], although this proposal was very recently found to have a dramatic

effect on the qualitative spatial and temporal dynamics of some fluid flows [34]; instead,

one can employ a mathematical stabilising tool, in which some kind of decomposition

or factorisation of the conformation tensor is taken in account, as in the pioneer strategy

of the log-conformation representation (LCR) by Fattal and Kupferman [35] and its

subsequent adapted versions. In Fig. 2, we can remark the appearance of numerical

oscillations as a consequence of the HWNP.

(a) Wi = 1 (b) Wi = 5

Figure 2 – Kinetic energy as a function of time, for an Oldroyd-B fluid flow in a
lid-driven cavity. As the elasticity increases, strong oscillations arise due to the HWNP,
but the implemented LCR tool guarantees numerical stability (extracted from [36]).

Despite the indisputable progress observed over the last few decades, computing

stable and accurate numerical flow solutions at arbitrarily high elasticity levels remains

a non-trivial and thus unreached task. It is generally acknowledged that much research

is yet to be carried out in the field of numerical simulation of viscoelastic fluid flows, a

fact which provides a strong motivation for the first part of this thesis.

The second part of the present document reports about the emergence and character-

isation of purely elastic instabilities in numerical simulations of inertialess Oldroyd-B

fluids in a two-dimensional cross-slot geometry. The cross-slot, made of two perpendic-

ularly intersecting channels with two inlets and two outlets was chosen as our main

work geometry for the following reasons. Mainly, it is considered as one of the most

representative cases of geometries with stagnation points, with great potential for a

mixing system and a fundamental device for extensional rheometric measurements [37].

So, understanding and characterisation of flow phenomena in this geometry is funda-

mental for developing such fluidic apparatuses. Cross-slot devices were employed even

for the evaluation and improvement of viscoelastic constitutive equations, in numerical

studies and in experiments [38, 39]. Besides that, elastic turbulence states have never

been, to the best of our knowledge, numerically obtained in this geometrical setup.
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Objectives

This document is subdivided in two parts, with distinct objectives from the standpoint

of the expected results.

Part I of this manuscript brings an extensive analysis of the implementation of

stabilising tools into a in-house flow solver code, with the objective of establishing

the powerfulness of mathematical formulations recently derived for that purpose.

These numerical methodologies concern the evolution equation of the extra-stress

tensor for viscoelastic models, coupled with the momentum and the mass conservation

equations. The degree of improvement on the numerical stability of the code, lead by

the implemented tools, will equally be assessed.

Part II of the thesis considers numerical studies performed in a powerful and stable

open-source viscoelastic solver (the OpenFOAM® toolbox), which already possesses

the numerical tools dealt with in the first part. The main objective here is to provide

a comprehensive mapping of the different flow states that arise in a two-dimensional

cross-slot geometry as a function of the variation of several parameters and to establish

through numerical and statistical investigations if, for sufficiently high elasticity levels,

the phenomenon of elastic turbulence can be identified in this geometry.

Organisation of the thesis

I. Improvement of a finite-volume-based flow solver through the
implementation of stabilising numerical tools

The first part of the document starts by presenting, in Chapter 1, the theory behind

the mathematical description employed for modelling viscoelastic fluid flows, following

some of the available constitutive models; then, in the same Chapter, we bring a review

on particular challenges inside the domain of numerical fluid dynamics and introduce

different techniques adopted for stabilising the evolution of the extra-stress equation,

present in constitutive models. In Chapter 2 we present in great detail the structure

of the in-house numerical code named Gilcart and its specificities. The original

methods handled by the algorithm are explained, from which a solver was developed to

simulate three-dimensional unsteady flows in complex geometries. Then, we describe

the mathematical factorisation implemented and provide numerical evidence of the

beneficial effect (in terms of increased stability) of the square-root decomposition of the

extra-stress tensor in a finite-volume-based implementation of the governing equations

in a two-dimensional channel. As a concluding topic of this Chapter, an argumentation

is built concerning the need for substituting our in-house solver to achieve even more

stable simulations and substantial results.
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II. Viscoelastic fluid flows in a two-dimensional cross-slot and
transition to elastic turbulence

In Chapter 3 we present the compilation of a bibliographic review relating to the

second part of the thesis. It encompasses past and recent advances in the study of

purely elastic instabilities and the elastic turbulence phenomenon in itself, for multiple

setups; focus here is given to experiments and numerical simulations in the cross-slot

device. The alternative flow solver and the numerical methods already available on it

are specified in Chapter 4, where we also detail the cross-slot geometric model, specific

boundary and initial conditions of the problem and meshing procedures. Last, but not

least, we provide in Chapter 5, by means of extensive numerical work, a detailed charac-

terisation of the purely elastic instabilities arising in the system for wide ranges of both

the fluid elasticity and the polymer concentration. For concentrated solutions and large

enough Weissenberg numbers, our simulations indicate the emergence of disordered

flow pointing to elastic turbulence. We analyse the transition to irregular dynamics

and characterise the statistical properties of such highly elastic flows, discussing the

similarities and differences with experimental results from the literature. A Section on

the ability of the chaotic cross-slot flows to generate mixing is also provided. In the end,

general conclusions are drawn and future perspectives are offered.
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Chapter1
Mathematical modelling of viscoelastic

fluid flows and numerical challenges

1.1 Navier-Stokes equation

Modelling fluid motion and transport phenomena requires some assumptions and

considerations to be made, regarding physical properties and the dynamics of the fluid

particles. By assuming general assumptions in that regard, the French engineer Claude-

Louis Navier together with the Irish physicist George Stokes derived independently

the prominent Navier-Stokes equation, based on basic principles of classical mechan-

ics – mass and momentum conservation (inherited from Newton’s second law) and

conservation of energy – and whose solution is the flow velocity and pressure fields [40].

The general form of the Navier-Stokes equation (which encompasses both three-

dimensional compressible and incompressible fluid flows) is indeed a set of four coupled

partial differential equations: one for the mass conservation and one for each compo-

nent of the momentum conservation. In a differential index notation for a Cartesian

coordinate system, it writes:

∂ρ

∂t
+
∂ (ρui)
∂xi

= 0 , (1.1)

∂ (ρui)
∂t

+
∂
(
ρujui

)
∂xj

=
∂τij
∂xj
− ∂
∂xi

(
p+

2
3
µ
∂uj
∂xj

)
, (1.2)

where xi is the ith spatial coordinate, ui is the velocity of the flow in the direction of axis

i, p is the pressure field and t the temporal coordinate. τij refers to the jth component

of the total stress acting on the faces of the elementary fluid element perpendicular to

axis i. The physical parameters ρ and µ stand for the mass density and the dynamic

9
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viscosity of the fluid, respectively. Note that in this notation, repeated indices indicate a

summation.

Decades of experimental studies in the most varied and conceivable setups proved

the accuracy of the Navier-Stokes equation for low molecular weight Newtonian fluid

flows. This class of fluids comprises all fluids that obey Newton’s law of viscosity, a

simple equation that dates back to 1687 and was devised by sir Isaac Newton, being

represented mathematically in Eq. 1.3. This formula states that viscous stresses gener-

ated from the fluid flow are linearly proportional to the deformation rate undergone,

with the fluid viscosity µ being the proportionality constant. For these fluids, viscosity

is exclusively dependent on temperature.

τij = µ
(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.3)

The Navier-Stokes equation is more challenging that one may consider. Given

its outstanding complexity, even the existence and smoothness of solutions in three-

dimensional space (given some initial conditions) is an open problem in the fields

of mathematics and physics [41]. In most practical cases, even simplified variants of

Eqs. 1.1 and 1.2 cannot be solved analytically by currently known tools and numerical

methods must be employed to approximate solutions, instead.

1.2 Non-Newtonian fluids

Most of real world fluids are non-Newtonian though, from which the viscoelastic flu-
ids (also known as polymeric fluids) compose quite a large subclass. The rheological

behaviour of viscoelastic flows can be related to strongly non-linear phenomena, also

at vanishingly small inertia, as a consequence of an association of viscous and elastic

effects (hence the viscoelastic designation).

1.2.1 Polymers and polymer solutions

Polymers are large molecules usually formed by the polymerisation of (thousands of)

simple repeating chemical units called monomers [42]. When immersed in fluid solu-

tions where velocity gradients are present, long polymer molecules have the ability to

coil, stretch and tumble, which generally leads to an alteration of the dynamics of the

carrying fluid; the nature of the flow strongly affects the amount of distortion that a sin-

gle polymer molecule may undergo. For instance, pure extensional flows have a greater

ability to stretch and orient flexible polymer molecules compared to simple steady shear

flows [43, 44]. Polymer solutions typically behave as non-Newtonian viscoelastic fluids

and differ from simple Newtonian fluids in a particular aspect called fluid memory:
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the total stress applied to the fluid does not immediately become zero when the fluid

returns to a static regime, but rather decays with a characteristic relaxation time λ.

For polymer solutions, λ actually corresponds to the largest value in the spectrum of

relaxation times displayed by polymer molecules [45].

These non-linear rheological effects can generate enhanced normal stress differ-

ences [46], resulting in complex flow regimes, which can be of major importance in

many scientific and industrial applications. Many special and fascinating phenomena

occur when viscoelastic fluids flow in specific geometries [47] and some of them have

been known for almost a century, like the Weissenberg (or rod-climbing) effect, in which

an extra tension along the flow streamlines forces the fluid to climb a rotating rod put

in contact with it, by opposing both the centrifugal and gravitational forces [48, 49].

Other interesting and complex effects arising due to the flow viscoelasticity include the

turbulent drag reduction [50], the appearance of large recirculation regions in confined

geometries [51] and the elastic turbulence [6, 9].

1.3 Mathematical modelling of viscoelastic fluids

In Section 1.1, we presented a set of equations derived for flow modelling and widely

known as Navier-Stokes equation. Although very accurate when representing Newto-

nian fluid flows, this equation fails in the attempt of reproducing viscoelastic fluid’s

behaviour. Therefore, the objective of this Section is to present general equations for

physical modelling in non-Newtonian Fluid Mechanics. For the ensemble of studies in

the present thesis, an isothermal, incompressible, viscoelastic fluid flow is considered.

Under these conditions, the set of equations that needs to be solved is the conservation

of mass, along with the momentum conservation equation. In standard notation, they

write:


∇ ·u = 0

Du
Dt

=
1
ρ
∇ ·Ξ− 1

ρ
∇p+F

,

(1.4)

(1.5)

where the symbol∇() is the gradient operator, while∇ · () expresses the divergence

operator; u(x, t) = (u(x, t), v(x, t), w(x, t)) at position x = (x, y, z) and time t represents

the velocity field, Ξ is the total (viscous plus elastic) stress tensor, p the pressure, ρ the

mass density and F stands for the body forces.

The special derivative Du/Dt present in Eq. 1.5 is called material derivative and is

expressed by:

Du
Dt

=
∂u
∂t

+u ·∇u . (1.6)
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In general, the stress tensor Ξ can be thought as composed by a Newtonian viscous

solvent component (σ) and an additional elastic extra-stress component (τ ), as Ξ = σ+τ .

In addition to being a physically intuitive reasoning, it allows to change the mathe-

matical structure thus improving the coupling between the elliptical continuity and

momentum equations and the hyperbolic stress equation, for numerical simulation [52].

The Newtonian component of the extra-stress tensor is expressed by:

σ = ηs γ̇ , (1.7)

where ηs is the solvent viscosity and γ̇ is the rate-of-strain tensor, which is twice the

symmetric part of the velocity gradient tensor and is defined as γ̇ =∇u+∇uT [45],

with the superscript T denoting the transpose matrix. It is important to remark that

the velocity gradient tensor has entries ∇uij = ∂uj /∂xi , for Cartesian coordinates.

By taking into account the incompressibility of the velocity field in Eq. 1.5 and

neglecting external body forces, we can find now an alternative formulation for the

momentum conservation equation, as displayed in Eq. 1.8:

ρ

(
∂u
∂t

+u ·∇u
)

=∇ · (ηs∇u) +∇ · τ −∇p . (1.8)

In its turn, the tensor τ can be described in many different ways, depending on

the viscoelastic model chosen. Here, we will adopt and describe three different non-

Newtonian models: the Oldroyd-B constitutive model (as well as its reduced version,

the upper-convected Maxwell model) and the more complex FENE models; note, however,

that there are many other viscoelastic models that have been extensively studied in the

last few decades (e.g. the White-Metzner model [53], the PTT [54] and sPTT [55] models

and the Giesekus model [56]).

1.3.1 Oldroyd-B constitutive model

Rheological models can approximate polymer molecules through a dumbbell model,

composed by two beads joined by an elastic connector, in the form of a linear or non-

linear spring (see Fig. 1.1). Even though very simplified, these models can accurately

describe many rheological properties and largely predict flow dynamics [57]. When a

linear (Hookean) spring is considered, an infinite extensibility of polymers follows. This

consideration gives rise to fluid models like the Oldroyd-B constitutive equation, which

may eventually be simplified into the upper-convected Maxwell (UCM) model [58, 59].

The UCM model represents the simplest rheological constitutive model, which was

first obtained from molecular theory in the work of [60]. It accounts for the dynamics

of highly concentrated solutions, in which no solvent contribution is considered (ηs = 0,

so the first term on the right-hand side of Eq. 1.8 vanishes). In its turn, the Oldroyd-B
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R

Figure 1.1 – Schematic of an elastic dumbbell model, with two beads (dark blue
spheres) joined by a spring. Here, R represents the end-to-end vector (see Eq. 1.10).

model is an extension of UCM fluids and presents a constitutive equation capable of

describing the viscoelastic behaviour of non-Newtonian polymeric solutions under

general flow conditions. The equation for the polymer extra-stress tensor τ in the

Oldroyd-B and UCM models reads [59]:

τ +λ
[
∂τ
∂t

+∇ · (uτ )−∇uT · τ − τ ·∇u
]

= ηp
(
∇u+∇uT

)
, (1.9)

in which λ is the characteristic fluid relaxation time and ηp is the constant polymeric

viscosity. We can define here an useful parameter, which will be used throughout this

document, the solvent-to-total viscosity ratio β. It is expressed as the ratio of the solvent

(ηs) to the fluid total (ηt = ηs + ηp) viscosity and is inversely proportional to the polymer

concentration in a solution. Note that for UCM fluids, β = 0.

Oldroyd-B corresponds to the simplest differential constitutive equation that is

capable of capturing important viscoelastic flow features (e.g. the existence of normal

stress differences), in a quantitative manner. However, this constitutive model displays

well-known deficiencies, such as the absence of shear-dependent viscosity effects and

the infinite extensibility of polymers (resulting from the linear elasticity inherent to

this model). As a result, it features unbounded steady-state extensional viscosity at,

or above a finite strain rate of ε̇ = 1/2λ (even if no singularities inside the geometry

exist) [57, 61, 62].

1.3.1.1 Conformation tensor formulation

Viscoelastic models can also describe polymer molecules conformation by making use

of a second-order, ensemble-averaged configuration tensor named conformation tensor,

which is, by definition, symmetric positive definite (SPD). This tensor is defined as:
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c =
〈RR〉
Req

2 , (1.10)

in which R is the end-to-end vector of a polymer molecule (see Fig. 1.1) and the angle

brackets 〈〉 indicate an ensemble average (over realisations representing thermal noise).

The term Req
2 represents the molecule size in the equilibrium state and is defined by

the relation Req = (3kBT /H)1/2I , where kB, T and H stand for the Boltzmann constant,

the absolute temperature and the dumbbell spring constant, respectively; I represents

the identity tensor. The conformation tensor c carries information about an averaged

configuration of polymer molecules and its trace tr (c) expresses the polymer molecule

elongation. It evolves according to the equation:

∂c
∂t

+∇ · (uc) = c ·∇u+∇uT · c+ s(c) . (1.11)

In a similar way to that of the tensor τ in Eq. 1.8, the tensor s(c) in Eq. 1.11 takes

different forms, depending on the non-Newtonian model assumed. For the Oldroyd-B

model, we have:

s(c) =
1
λ

(I − c) . (1.12)

Following this formulation, the extra-stress tensor τ can be retrieved from the

conformation tensor c using the relation:

τ =
ηp
λ

(c− I) . (1.13)

1.3.2 FENE family of constitutive models

We describe here an alternative viscoelastic fluid model, the so-called Finitely Extensible

Non-linear Elastic (FENE) dumbbell model, which is actually an extensive class of

models. The FENE family of models was developed for kinetic theory calculations [63]

and greatly detailed in the work of Bird et al. [57]. In FENE models, a non-linear

and only finitely extensible spring is employed for the connection between beads in

the dumbbell model, which is more physically realistic (compared to linearly elastic

models). Consequently, they can reproduce additional fluid flow behaviours thus

providing improved prediction of material functions.

Nonetheless, in order to be translated into an equivalent macroscopic constitutive

equation, FENE models need a closure approximation. Among the different closures

proposed in the literature [64–70], we adopt the classical Peterlin closure [64, 71], which

corresponds to:
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s(c) =
1
λ

(I − f (tr(c)) · c) , (1.14)

in which f (tr(c)) is a pre-averaging approximation to the dumbbell spring force law,

called Peterlin function and defined as:

f (tr(c)) =
1

1− tr(c)
L2

, (1.15)

where tr() stands for the trace operation, c is the polymer conformation tensor and

the parameter L2 is proportional to the square of the maximum stretch of the polymer

molecules, with respect to the equilibrium distance.

A typical extensibility value of L2 = 100 has often been adopted in literature works

(e.g. [68, 71, 72]), but quite different values also appear (for instance, Xi and Graham [73]

choose L2 = 1000, which is typical of high molecular weight polymers). Constitutive

models that feature unbounded polymer stretch – like the UCM and Oldroyd-B models

– correspond to the limiting case L2→∞.

The relation between extra-stress tensor τ and the conformation tensor c for the

FENE-P model is given in Eq. 1.16,

τ =
ηp
λ

(f (tr(c)) · c− I) . (1.16)

Several closures for the FENE family have alternatively been proposed, like the

constant-viscosity FENE-CR constitutive model [65], the more theoretically accurate

FENE-L model [66] (capable of reproducing hysteretic behaviours, as opposed to FENE-

P model) and its simplified version, the FENE-LS model [67].

1.3.3 Dimensionless parameters

The equations displayed in Section 1.1 can be made non-dimensional, so they can

allow scaling to real flow conditions. We accomplish that by employing appropriate

normalisations for all dimensional variables using some reference quantities, which will

depend on the study performed. This process will give rise to a set of non-dimensional

quantities that can be useful for assessing the relative importance of the various terms

present in the physical equations.

1.3.3.1 Reynolds number (Re)

Probably the most widely known dimensionless parameter in fluid mechanics, the

Reynolds number (Re) quantifies the relative importance of the inertial forces acting on

a given fluid flow, compared to the internal viscous forces. The Reynolds number is

defined as:
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Re =
ρUcLc
µ

(1.17)

in which Uc and Lc are flow characteristic velocity and length scales, respectively. When

the Reynolds number is specially large – the sense of large depending on the geometry –

the characteristic behaviour of the system tends to be turbulent and many degrees of

freedom are excited, creating irregular patterns in the flow velocity [74].

1.3.3.2 Deborah number (De)

The Deborah number (De) was formally defined by Reiner [75] as being the ratio of the

fluid relaxation time λ to the characteristic time scale of observation. The Deborah

number discriminates how a material will behave in a given period of time, considering

that this material is experiencing a physical deformation over this time frame. The

greater the Deborah number, the more solid-like the material behaves; similarly, the

smaller the Deborah number, the more Newtonian-like it will appear [75]. The definition

for Deborah number is:

De =
λ
tc

=
λUc
Lc

(1.18)

where tc represents the characteristic observation time, tc = Lc/Uc.

1.3.3.3 Weissenberg number (Wi)

Alternatively, the Weissenberg number (Wi) has been defined as the ratio of elastic

to viscous forces in the flow and is a fundamental dimensionless quantity in non-

Newtonian fluid dynamics [76, 77]. Dealy [78] states that the Weissenberg number

represents the degree of non-linearity in the rheological response of a fluid flow, being

written as:

Wi = γ̇λ (1.19)

where γ̇ stands for the shear rate applied to the fluid.

A relevant property which is worth-noting is that in geometries where one single

length scale determines the dynamics of the problem, the definitions for Deborah and

Weissenberg numbers will coincide [77].
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1.4 Challenges in fluid numerical computation:

The high Weissenberg number problem

Computational fluid dynamics (CFD) emerged as a powerful complementary method to

the problem exposed in the last paragraph of Section 1.1. By employing discretisation

tools, one can approximate the equations by a system of algebraic equations, which can

then be solved in a much simpler way. Although being an effective approach to deal

with complex fluid flows, some issues appear when solving partial differential equations

numerically, regarding convergence, accuracy, stability and consistency of the numerical

scheme [79]. This issue can become even more important when dealing with viscoelastic

flows. In the last few decades, the constitutive equations that describe the behaviour

of viscoelastic fluids have been subject of extensive discussion and improvement [80]

and even a comprehensive review on current challenges in computational rheology was

produced by Walters and Webster [81].

Existing models of viscoelastic fluids present challenging problems for numerical

computation, among which the most outstanding obstacle to provide solutions for

complex flows beyond some critical elasticity level is the high Weissenberg number

problem [29, 30]. This problem manifests as a breakdown of the numerical scheme

caused by the loss of positive-definiteness of the conformation tensor when calculating

the evolution of the viscoelastic extra-stress tensor directly [31] and has been one of

the biggest barriers from stably simulating viscoelastic fluid flows, even in simple

geometries, since its discovery in the late 1970’s [82].

Numerical simulations of viscoelastic fluid flows, when performed above a certain

elasticity level, generally face non-physical instabilities, known as Hadamard instabili-
ties [83], in which a sharp growth of short-wave disturbances leads to the loss of the

positive-definiteness of the conformation tensor [31, 84, 85]. Still back in the 1980’s,

the close relationship between the change of type (elliptic, hyperbolic or parabolic)

and the loss of the evolutionary character of the system of flow equations started to be

investigated [86].

Joseph and Saut [87] remarked that a set of conservation and constitutive equations

of the hyperbolic type is more prone to generate this kind of disruption in numerical

simulations. Based upon this knowledge, Hulsen [88] reported a sufficient condition to

be respected in order to keep the polymer stress tensor positive definite, which in its

turn guarantees that the system of equations is mathematically well-posed and thus

provides the necessary requirements for stable solutions of viscoelastic fluid flows at

elasticity levels of practical interest [89]. Posteriorly, Kwon and Leonov [90] proposed

strong stability criteria in the formulation of integral and differential constitutive

models, with regard to Hadamard instabilities.
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1.4.1 The employment of artificial stress diffusivity

In this context, several miscellaneous attempts were made to improve numerical sta-

bility when solving the constitutive equations of viscoelastic fluid models, by better

controlling the high Weissenberg number problem. In the mid 1990’s, Sureshkumar

and Beris [32] firstly proposed the addition of an artificially large global stress diffusion

term into the numerical problem in an attempt to surmount the stability issues. The

authors reported that for large Reynolds number channel flows of an Oldroyd-B model,

the addition of artificial stress diffusion can significantly improve numerical stability

without bringing qualitative discrepancies into the flow dynamics.

This clever and extensively used solution has in fact a mathematical meaning. For

solutions to exist at arbitrary levels of elasticity, El-Kareh and Leal [91] proved that a

given realistic constitutive model must include some quantity of polymer-stress diffu-

sion. Still, a challenging problem that emerges is that this diffusivity term brought into

the equation must be adjusted to be as small as possible, since the amount of diffusivity

needed to attain numerical stability is usually three to six orders of magnitude greater

than that suitable for physical polymer solutions [57, 92]. By performing numerical

studies on a two-dimensional flow driven by simple background forcing, Thomases [93]

showed that the artificial stress diffusivity keeps the conformation tensor (and hence

the polymer stress tensor) bounded and smooth and that this holds true for both the

Oldroyd-B and the FENE-P constitutive models. Furthermore, numerical studies on

turbulent FENE-P and Giesekus fluid flows with artificial stress diffusion reported a

qualitative agreement between numerics and experiments [94, 95].

However, the employment of this artificial method was recently found to have a

dramatic effect on the qualitative spatial and temporal dynamics of two-dimensional

cellular flows, including the formation of some spurious large-scale phenomena (like

the symmetry-breaking in the vorticity field) which are not present when no artificial

diffusivity is used (see Fig. 1.2) [34]. The impact of this method can be remarkable

for some flow settings, particularly in flows characterised by regions of pure strain.

However, the effects of such strategy may reveal less pronounced for other flow con-

ditions, e.g. high Reynolds numbers flows and in setups that mix strain and vorticity,

like the simulation of elastic turbulence in two-dimensional (2D) periodic Kolmogorov

flows [96, 97]. In conclusion, as pointed out by Gupta and Vincenzi [34], “[. . . ] great

caution should be taken in using artificial diffusivity to prevent numerical instabilities

in simulations of elastic turbulence”.

1.4.2 Alternative methods

Because of the physical inaccuracy inherent to the numerical method presented in

Subsection 1.4.1, many alternative possibilities were proposed to alleviate the HWNP,
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(a) κ = 5× 10−5 (b) κ = 0

Figure 1.2 – Snapshots of ln(tr (c)) taken at the same times for simulations of a
two-dimensional cellular flow with (left panel) and without (right panel) artificial

diffusion included, evidencing a substantial qualitative difference in the behaviour of
the polymer stresses. Here, κ is the coefficient of diffusivity, which was set to

κ = 5× 10−5 in the viscoelastic flows with artificial diffusion (extracted from [34]).

e.g. the less intrusive method of locally added artificial diffusion, by which artificial

diffusion is inserted only at critical locations, where the conformation tensor’s positive-

definiteness constraint was being infringed [33].

Nonetheless, the first known method that considered the change of mathematical

type of the constitutive equations was proposed by King et al. [98] and named Explicitly

Elliptic Momentum Equation (EEME) formulation. This methodology restructures

the momentum balance equation by making more explicit the elliptic character of

the mathematical equation and it allowed to obtain numerically stable and accurate

solutions for different two-dimensional UCM fluid flows. Following that, Rajagopalan

et al. [52] introduced the Elastic-Viscous Split Stress (EVSS) formulation, an alternative

numerical scheme which splits the elastic and the viscous components of the polymer

stress tensor, in a procedure previously introduced by Mendelson et al. [99]. Some years

later, Sun et al. [100] presented results for a modified version of the viscoelastic stress

splitting scheme which allows the Newtonian component of the extra-stress tensor to

depend on the magnitude of the local elastic stresses. This novel formulation was called

Adaptive Viscoelastic Stress Splitting (AVSS) scheme and performed very well for higher

Weissenberg values of viscoelastic flows. The merits of this set of methodologies to

stabilise the numerical computation of non-Newtonian flows compared to the addition

of an artificial stress diffusion term have been systematically studied later on, for

Oldroyd-B fluid flows, by Amoreira and Oliveira [101].

Following to the AVSS scheme, other remarkable methodologies have been intro-

duced, in which some kind of decomposition or factorisation of the conformation
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tensor is taken in account; in 2004, Fattal and Kupferman [35] firstly proposed a

logarithmic decomposition of the conformation tensor (whose details are reported in

Subsection 4.2.1 of the present document) and some years later, Balci et al. [102] proved

that a unique square-root factorisation can also be obtained in order to guarantee the

positive-definiteness of the conformation tensor (see Section 2.3 for a deep analysis

on this technique). Moreover, Afonso et al. [103] reported a generic decomposition of

the conformation tensor (from which both the log-conformation representation and

the square-root method can be retrieved) that was called kernel-conformation tensor

transformation. Many other alternative techniques to ensure the positive-definiteness

of the polymer stress tensor followed, based on the pioneering strategy of the LCR with

varied modifications [104–108].

All these promising methods have been applied to a variety of flow conditions featur-

ing (very) low Reynolds and high Weissenberg numbers in two and three-dimensional

cases [109–114], where their performance and effectiveness in stabilising numerical

simulations of turbulent flows was assessed and compared. Despite the indisputable

progress observed over the last few decades, computing stable and accurate numerical

flow solutions at arbitrarily high elasticity levels remains a non-trivial and so far un-

reached task. It is generally acknowledged that much research is yet to be carried out

in this direction.
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Stabilisation methods

2.1 The Gilcart solver and stability issues

In the present Chapter, an extensive analysis is presented for flow simulations per-

formed by means of an in-house numerical flow solver, named Gilcart. The Gilcart

code is a finite-volume algorithm written in Fortran language and developed by Mom-

pean [115], that allows the simulation of three-dimensional flows of Newtonian and

non-Newtonian fluids, in rectilinear Cartesian coordinates [116]. Although very power-

ful and robust in performing simulations even of highly turbulent Newtonian flows,

this software lacks stability for progressively increased levels of elasticity in viscoelastic

flows. The main goal of the study reported here is hence to provide conclusions on

whether the sole implementation of the square-root stabilising tool, introduced in

Subsection 1.4.2, is capable of improving the solver’s overall numerical stability on

varied flow conditions, taking into account the ambitious objective of making it suitable

for stably achieving the levels of elasticity needed when simulating flows undergo-

ing purely elastic instabilities (and elastic turbulence). Potential limitations of this

formulation are also discussed.

In a first moment, a deep scrutiny of the numerical methods behind the original
solver formulation is introduced (original will hereafter denote the algorithm formula-

tion devoid of the stabilising technique) and afterwards, some relevant modifications

are described: the alternative formulation presented in Subsection 1.3.1 (conformation

tensor) and the square-root factorisation method that have been implemented in the

numerical code. After the process of implementing the square-root factorisation intro-

duced by Balci et al. [102], numerical simulations of Oldroyd-B fluid flows in a channel

geometry were performed for validation and benchmark purposes.

21
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2.2 Numerical methods of the Gilcart solver

Gilcart’s numerical method is based upon a finite-volume technique, with a second-

order discretisation in space and explicit first-order discretisation in time using Euler’s

method. This Section provides a brief review on the methods used to discretise the

mathematical equations (in both space and time), whereas a full documentation of this

code’s formulation is presented in the work of Mompean and Deville [116].

2.2.1 Spatial discretisation

The physical equations presented in Section 1.3 are integrated over a staggered con-

trol volume (CV), in order to reduce instabilities in systems containing geometrical

singularities [117]. A representation of a finite-volume cell is displayed in Fig. 2.1. The

pressure (p) and the normal extra-stress tensor components (shown here as τxx, τyy and

τzz) are evaluated at the centre of the CV; the components of the velocity field (u, v and

w) are calculated at the centre of the faces and finally, the remaining components of the

extra-stress tensor (τxy , τxz and τyz) are considered at the mid-edges.

u(i,j,k)

x

z

u(i+1,j,k)

y

v(i,j,k)

w(i,j,k)

w(i,j,k+1)

v(i,j+1,k)

xy
(i,j,k)

xz
(i,j,k)

yz
(i,j,k)

xx
(i,j,k)

yy
(i,j,k)

zz
(i,j,k)

p(i,j,k)

Figure 2.1 – Control volume with the position of all variables (pressure, velocity and
stress components). Blue dots with arrows indicate components of a vector quantity (on

face centres), red dots represent mid-edges and the green dot is the CV centre.
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We perform an integration of the equations of conservation of mass and momentum

over this CV and then, all resulting volume integrals are transformed into surface

integrals using the divergence (or Gauss) theorem,∫
V
∇ ·F dV =

∮
S
F ·ndS , (2.1)

where F is any continuously differentiable vector field, V represents a volume in three-

dimensional (3D) space with smooth boundary S and n is the outward pointing, unitary,

normal vector field of the boundary S. For instance, the divergence theorem applied to

the continuity equation (Eq. 1.4) in three dimensions gives:

(
ui+1,j,k −ui,j,k

)
∆yj∆zk +

(
vi,j+1,k − vi,j,k

)
∆xi∆zk +

(
wi,j,k+1 −wi,j,k

)
∆xi∆yj = 0 , (2.2)

in which ∆xi , ∆yj and ∆zk represent the distances between two neighbour mesh nodes

(of indices i and i+1 for x, j and j+1 for y, and k and k+1 for z), concerning the velocity

components u, v and w, respectively.

2.2.1.1 Discretisation of diffusive terms

Considering both the momentum conservation (Eq. 1.8) and the Oldroyd-B constitutive

equation (Eq. 1.9), the linear diffusive terms are discretised by a second-order accuracy,

centred difference scheme. In order to discretise the diffusive flux term in Eq. 1.8, we

use at first the divergence theorem,∫
V
∇ ·

(
ηs∇uϕ

)
dV = ηs

∮
S

∂uϕ
∂γ
·nγ dS , (2.3)

where uϕ is the velocity component in the ϕ−direction and nγ is the unitary vector in

the γ−direction. Note that repeated indices indicate a summation.

The derivative ∂uϕ/∂γ for e.g. the u velocity component with respect to the x−coor-

dinate, is discretised as follows:

∂u
∂x
'
ui+1,j,k −ui−1,j,k

2∆xi
+O

(
∆xi

2
)
. (2.4)

The discretisation process for the other spatial coordinates, velocity components

and diffusive terms proceeds in an equivalent manner.

2.2.1.2 Discretisation of advective terms

The non-linear terms can be evaluated either by a simple upwind differencing scheme

(UDS) or by applying the more complex QUICK scheme (QUICK being the acronym for

Quadratic Upstream Interpolation Scheme for the Convective Kinematics). While the
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UDS is the most stable among the existing discretisation methods for advection [118],

it only offers first order of accuracy, not suitable in many cases. The QUICK method

for advective modelling, proposed by Leonard [119] is an alternative, higher-order

accuracy, scheme. We describe next the details for both discretisation methods inside

the algorithm.

Upwind differencing scheme (UDS) In the same way we did for the diffusive terms,

the divergence theorem is used to discretise the advective flux term in Eq. 1.8,

∫
V
∇ · (ρuu) dV = ρ

∮
S
uu ·ndS . (2.5)

Then, we can discretise the integral on the right-hand side of Eq. 2.5,

∮
S
uu ·ndS '

∑
i

Ainuin (u ·n)in −
∑
j

Aout uout (u ·n)out , (2.6)

where Ain and Aout represent the surface area of each pair of opposite faces of the

control volume, and uin and uout are the interpolated mean velocities in each direction,

respectively entering and exiting the CV, as follows:

Ain = Aout =


∆yj∆zk in x−direction

∆xi∆zk in y−direction

∆xi∆yj in z−direction

, (2.7)

uin =



1
2

(
ui+1,j,k +ui,j,k

)
in x−direction

1
2

(
vi−1,j+1,k + vi,j+1,k

)
in y−direction

1
2

(
wi−1,j,k+1 +wi,j,k+1

)
in z−direction

, (2.8)

uout =



1
2

(
ui−1,j,k +ui,j,k

)
in x−direction

1
2

(
vi−1,j,k + vi,j,k

)
in y−direction

1
2

(
wi−1,j,k +wi,j,k

)
in z−direction

. (2.9)

So, the complete equation writes:
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∮
S
uu ·ndS '

[1
2

(
ui+1,j,k +ui,j,k

)
·ui+1/2 −

1
2

(
ui−1,j,k +ui,j,k

)
·ui−1/2

]
∆yj∆zk

+
[1
2

(
vi−1,j+1,k + vi,j+1,k

)
·uj+1/2 −

1
2

(
vi−1,j,k + vi,j,k

)
·uj−1/2

]
∆xi∆zk

+
[1
2

(
wi−1,j,k+1 +wi,j,k+1

)
·uk+1/2 −

1
2

(
wi−1,j,k +wi,j,k

)
·uk−1/2

]
∆xi∆yj

, (2.10)

where the terms ui+1/2, uj+1/2 and uk+1/2 are evaluated following the UDS as:

ui+1/2 =

ui,j,k if 1
2

(
ui+1,j,k +ui,j,k

)
> 0

ui+1,j,k if 1
2

(
ui+1,j,k +ui,j,k

)
< 0

, (2.11)

uj+1/2 =

ui,j,k if 1
2

(
vi−1,j+1,k + vi,j+1,k

)
> 0

ui,j+1,k if 1
2

(
vi−1,j+1,k + vi,j+1,k

)
< 0

, (2.12)

uk+1/2 =

ui,j,k if 1
2

(
wi−1,j,k+1 +wi,j,k+1

)
> 0

ui,j,k+1 if 1
2

(
wi−1,j,k+1 +wi,j,k+1

)
< 0

. (2.13)

The terms ui−1/2, uj−1/2 and uk−1/2 are calculated analogously.

QUICK scheme The QUICK scheme provides an improvement in the accuracy offered

by the first-order UDS, exhibiting a third-order accuracy for a regularly spaced grid.

A more detailed description of this method can be found in the work of Leonard

[119]. With respect to the UDS, this method provides a more accurate calculation

for the interpolated values of the terms (u ·n)in and (u ·n)out in Eq. 2.6, replacing

Eqs. 2.11, 2.12 and 2.13 by:

ui+1/2 =
1
2

(
ui,j,k +ui+1,j,k

)
+

∆xi
2

8∆lξ−1

(
uξ+1,j,k −uξ,j,k

∆xξ
−
uξ,j,k −uξ−1,j,k

∆xξ−1

)
, (2.14)

where:

ξ =

i if 1
2

(
ui,j,k +ui−1,j,k

)
≥ 0

i + 1 if 1
2

(
ui,j,k +ui−1,j,k

)
< 0

. (2.15)

Once again, the terms regarding the remaining spatial coordinates are calculated

similarly to Eqs. 2.14 and 2.15.



26 CHAPTER 2. Stabilisation methods

2.2.2 Temporal discretisation

The solution for the discretised equations derived here is obtained by a time-marching

algorithm, which follows a first-order explicit Euler scheme. Expressing the continuity

equation at a specific time step – which will be defined as n+ 1 – we obtain:

∇ ·u(n+1) = 0 . (2.16)

From Eq. 1.8, we can also get the momentum equation discretised in time, which

states that every term on it will be evaluated at the previous time (n), except for the

pressure gradient, which will be calculated at the new time (n+ 1) for each iteration,

u(n+1) −u(n)

∆t
+u(n) ·∇u(n) =

1
ρ

[
∇ ·

(
ηs∇u(n) + τ (n)

)
−∇p(n+1)

]
. (2.17)

We can thus rewrite this equation in a simpler way, grouping the terms to be

considered in the same time step:

u(n+1) = ∆t

[
S (u)(n) − 1

ρ
∇p(n+1)

]
, (2.18)

where S (u) is the explicit part – i.e. evaluated at time (n) – of Eq. 2.17 and contains

both the advective and diffusive terms,

S (u) =
u

∆t
+∇ ·

(
ν0∇u+

1
ρ
τ −uu

)
, (2.19)

where ν0 = ηs/ρ is the kinematic viscosity of the solvent and the last term (uu) indicates

a tensor product.

The equations for the six different components of the viscoelastic extra-stress tensor

τ are also discretised in time using the first-order explicit Euler scheme, applied to

Eq. 1.9, in the following fashion:

τ (n+1) = τ (n) +∆t

[
ηpγ̇ − τ
λ

−∇ · (uτ ) +∇uT · τ + τ ·∇u
](n)

. (2.20)

2.2.2.1 Time-step evaluation

In order to calculate the maximum time step for the non-linear advection, the Courant-
Friedrichs-Lewy (CFL) stability condition [120] is adopted, which gives:

∆ta =
1

max
{
|u|
∆x

+
|v|
∆y

+
|w|
∆z

} . (2.21)

For the diffusion time step, the adopted limit is given by Patankar [121]:
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∆td =
1

3ν0 max
{

1

(∆x)2 +
1

(∆y)2 +
1

(∆z)2

} . (2.22)

The global maximum time step for the numerical simulation is then calculated as

being half of the harmonic mean of both advection and diffusion time steps [79]:

∆t =
1

1
∆ta

+
1
∆td

. (2.23)

When performing non-Newtonian fluid flow simulations, an extra time step restric-

tion must be considered: the global time step determined by Eq. 2.23 cannot be greater

than the polymeric time scale of the problem, expressed by the fluid relaxation time λ,

so the minimum value between Eq. 2.23 and λ is taken. Further, for good accuracy in

time, ∆t should be considerably smaller than λ [122].

2.2.2.2 Velocity-pressure coupling

The procedure for obtaining the pressure in each node is based upon the mass conser-

vation requirement, by decoupling the velocity and pressure variables based on the

SOLA method [123], a numerical solution algorithm for transient fluid flows, which was

designed as a simplified version of the notable Marker-and-Cell (MAC) technique [124–

126]. Firstly, we write the discretised form of Eq. 2.18,

u
(n+1)
ϕ = ∆t

Sϕ (u)(n) − 1
ρ

∂p

∂ϕ

(n+1) , (2.24)

where uϕ and Sϕ are the components of u and S (u), respectively, in the ϕ−direction.

The gradient of the pressure field is evaluated, for each component, using a first-

order finite-difference scheme,



1
ρ

∂p

∂x
=
pi,j,k − pi−1,j,k

∆xi−1/2
in x−direction

1
ρ

∂p

∂y
=
pi,j,k − pi,j−1,k

∆yi−1/2
in y−direction

1
ρ

∂p

∂z
=
pi,j,k − pi,j,k−1

∆zi−1/2
in z−direction

, (2.25)

where the mass density ρ is incorporated to the new pressure variable p. To apply

mass conservation, we replace Eq. 2.24 into the discretised mass conservation equation

displayed in Eq. 2.2, using Eq. 2.25 for the pressure terms:
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∆yj∆zk∆t


S (u)(n)

i+1,j,k −
p

(n+1)
i+1,j,k − p

(n+1)
i,j,k

∆xi+1/2

−
S (u)(n)

i,j,k −
p

(n+1)
i,j,k − p

(n+1)
i−1,j,k

∆xi−1/2


+

∆xi∆zk∆t


S (v)(n)

i,j+1,k −
p

(n+1)
i,j+1,k − p

(n+1)
i,j,k

∆yj+1/2

−
S (v)(n)

i,j,k −
p

(n+1)
i,j,k − p

(n+1)
i,j−1,k

∆yj−1/2


+

∆xi∆yj∆t


S (w)(n)

i,j,k+1 −
p

(n+1)
i,j,k+1 − p

(n+1)
i,j,k

∆zk+1/2

−
S (w)(n)

i,j,k −
p

(n+1)
i,j,k − p

(n+1)
i,j,k−1

∆zk−1/2


 = 0

. (2.26)

By rearranging Eq. 2.26, we can obtain the final form of the equation for the pressure

nodes:

AWi,j,k · p
(n+1)
i−1,j,k +AEi,j,k · p

(n+1)
i+1,j,k +ASi,j,k · p

(n+1)
i,j−1,k +ANi,j,k · p

(n+1)
i,j+1,k

+ABi,j,k · p
(n+1)
i,j,k−1 +ATi,j,k · p

(n+1)
i,j,k+1 −Ai,j,k · p

(n+1)
i,j,k = B(n)

i,j,k

, (2.27)

where:

AWi,j,k =
∆yj∆zk
∆xi−1/2

AEi,j,k =
∆yj∆zk
∆xi+1/2

ASi,j,k =
∆xi∆zk
∆yj−1/2

ANi,j,k =
∆xi∆zk
∆yj+1/2

ABi,j,k =
∆xi∆yj
∆zk−1/2

ATi,j,k =
∆xi∆yj
∆zk+1/2

. (2.28)

Ai,j,k = AWi,j,k +AEi,j,k +ASi,j,k +ANi,j,k +ABi,j,k +ATi,j,k . (2.29)

B
(n)
i,j,k = ∆yj∆zk

[
S (u)(n)

i+1,j,k − S (u)(n)
i,j,k

]
+∆xi∆zk

[
S (v)(n)

i,j+1,k − S (v)(n)
i,j,k

]
+∆xi∆yj

[
S (w)(n)

i,j,k+1 − S (w)(n)
i,j,k

] . (2.30)

Summarising, we have to solve the following linear system, in order to determine

the pressure field:

Ap(n+1) =B(n) . (2.31)
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The Gilcart solver presents two different methods for solving the above linear

equations system: the direct Cholesky decomposition method – which has a prohibitive

memory cost for highly refined meshes – and the iterative conjugate gradient method,

which is based on a minimisation procedure. A step-by-step algorithm detailing each

iteration of the time-marching Gilcart solver can be found in Appendix A.

2.3 Numerical implementation of stabilising tools

Preliminary simulations with the original solver suggested that stability issues related

to the HWNP were strongly affecting our results, which motivated us to proceed to

the implementation of the square-root factorisation of the conformation tensor. This

operation required the pre-implementation of the conformation tensor formulation

for the extra-stresses, as described in Subsection 1.3.1. The square-root method, as

formulated by Balci et al. [102], proposes an alternative way of writing the conformation

tensor, as the product between the transpose matrix of the square-root tensor b and the

tensor itself,

c = bT · b , (2.32)

in which the central dot (·) stands here for the matrix multiplication operator. This

notation will be adopted throughout the present Section.

The tensor c is by definition a SPD tensor, so it possesses a unique positive definite

symmetric square-root b. That being said, we can also write Eq. 2.32 as c = b · b. We

can now derive an evolution equation for b following the Oldoyrd-B constitutive model,

by adapting the mathematical manipulation suggested in the work of Chen et al. [111].

Replacing Eq. 2.32 into Eq. 1.11 and using Eq. 1.12 gives

DbT

Dt
· b+ bT · Db

Dt
− bT · b ·∇u−∇uT · bT · b+

bT · b− I
λ

= 0 , (2.33)

in which I represents the identity matrix.

Multiplying Eq. 2.33 on the left by b−T (= (b−1)T , i.e. the transpose of the inverse of

b) and on the right by b−1, and rearranging, yields

(
Db
Dt
− b ·∇u+

b− b−T

2λ

)
· b−1 = −b−T ·

(
DbT

Dt
−∇uT · bT +

bT − b−1

2λ

)
. (2.34)

Regarding Eq. 2.34, it can readily be shown that one side is minus the transpose of

the other. Therefore, each side of this equation must be anti-symmetric, which gives
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(
Db
Dt
− b ·∇u+

b− b−T

2λ

)
· b−1 = a , (2.35)

or

− b−T ·
(
DbT

Dt
−∇uT · bT +

bT − b−1

2λ

)
= a , (2.36)

where a is an anti-symmetric tensor. Since b = bT and the goal here is to find an

evolution equation for the square-root of the tensor c, one can either multiply Eq. 2.35

by b (on the right) or bT by Eq. 2.36 (on the left), which respectively yields

Db
Dt
− b ·∇u−a · b+

b− b−1

2λ
= 0 , (2.37)

and

Db
Dt
−∇uT · b+ b ·a+

b− b−1

2λ
= 0 , (2.38)

where we remark that the equivalences b−T = (b−1)T = (bT )−1 and bT = b were used.

We can now expand the material derivative of the tensor b in Eq. 2.37 to achieve the

final form of the evolution equation we are looking for:(
∂b
∂t

+u ·∇b
)
− b ·∇u−a · b+

b− b−1

2λ
= 0 . (2.39)

As highlighted by Balci et al. [102], the key point of this factorisation is to ensure the

symmetry of b by suitably choosing the anti-symmetric tensor a. Remark that the first

and the last terms on the left-hand side in Eq. 2.37 are the same as in Eq. 2.38. Defining

r = b ·∇u+a · b, the transpose of r is rT =∇uT · bT + bT ·aT =∇uT · b− b ·a. Looking

closely, we can recognise that the two inner terms in Eq. 2.37 are equal to −r and, in

Eq. 2.38, equal to −rT . Since Eq. 2.37 is equal to Eq. 2.38, r must be equal to rT , which

implies that r is symmetric. Thus, if r = rT , the entries of tensor a can be calculated as

a function of b and∇u (= ∇uij) by the relation rij = rji , which sets the linear system
b11 + b22 b23 −b13

b23 b11 + b33 b12

−b13 b12 b22 + b33



a12

a13

a23

 =


t1
t2
t3

 , (2.40)

where the terms t1,2,3 read (for 3D space):

t1 = (b12∇u11 − b11∇u12) + (b22∇u21 − b12∇u22) + (b23∇u31 − b13∇u32)

t2 = (b13∇u11 − b11∇u13) + (b33∇u31 − b13∇u33) + (b23∇u21 − b12∇u23)

t3 = (b13∇u12 − b12∇u13) + (b23∇u22 − b22∇u23) + (b33∇u32 − b23∇u33)

. (2.41)
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In Appendix A, we can inspect the steps added to the Gilcart algorithm after the

implementation of this stabilising technique.

2.4 Validation of implemented tools: improvement on

numerical stability

To validate the code modifications executed following the procedures exposed in Sec-

tion 2.3, numerical simulations were performed for a standard benchmark geometry, a

two-dimensional planar channel. Mostly due to its simplicity, the planar channel flow

has been a particularly appealing reference flow for both theoretical and experimental

research in fluid dynamics. For that reason, these initial studies that concern validation

of numerical implementations into the flow solver were carried out on this setup. We

start by detailing the geometry and simulation parameters, then we present an analyti-

cal solution for our benchmark problem; following that, we discuss the results obtained

by means of the square-root formulation, by comparing the latter with the original

method; finally, conclusions are drawn.

2.4.1 Geometric configuration and simulation settings

We consider here our two-dimensional channel, whose length-to-width ratio was fixed

at 10 : 1; this proportion is confirmed to be enough for the flow to be fully developed

away from the inlet [127]. A schematic representation of the channel geometry is

displayed in Fig. 2.2.

2L

20L

inlet outlet

x

y

Figure 2.2 – Schematics of the 2D channel geometry, with half-width L and
length-to-width ratio of 10 : 1; the position of a numerical probe located at the centre of

the channel is shown as a red dot.

Fully developed velocity profile (with bulk average magnitude Ub) is applied at the

inlet, where a zero-gradient boundary condition is imposed for the pressure field and

extra-stress is set to zero. At the outlet, a homogeneous Dirichlet boundary condition is

assumed for the pressure (i.e. p = 0), as well as zero-gradient conditions for both velocity

and extra-stress fields. At the walls, we apply the no-slip condition (i.e. u = v = 0). The
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velocity and stress initial condition corresponds to no flow and initial pressure is set to

zero.

For all the results hereafter exposed, we adopted the Oldroyd-B constitutive model

with the classical viscosity ratio of β = 1/9, representing concentrated polymer solutions;

the other control parameters of our flows are the Reynolds Re = ρUbL/ηt and the

Weissenberg Wi = λγ̇ = λUb/L numbers, where L is the channel half-width and ηt =

ηs + ηp.

2.4.2 Mathematical and analytical framework

We present mathematical hypotheses that lead to closed-form analytical solutions of the

governing equations, applied to an Oldroyd-B fluid flow in a two-dimensional channel,

where x and y represent the streamwise and wall-normal directions, respectively, and

u = (u,v) are the corresponding velocity components. The procedures illustrated here

are based on those described in the work of Cruz et al. [128].

In a first moment, we write the momentum conservation equation displayed in

Eq. 1.8 for the relevant momentum component in a laminar flow (here, in the streamwise

x−direction),

ρ

(
∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

)
= ηs

(
∂2u

∂x2 +
∂2u

∂y2

)
+
(
∂τxx
∂x

+
∂τxy
∂y

)
−
∂p

∂x
. (2.42)

We make some considerations at this point:

• Steady state reached, the flow is time-independent
(
∂
∂t

= 0
)
;

• Flow velocity components, other than the main direction are negligible, which

yields v = 0;

• Flow is considered to be fully developed, so velocity and stress fields do not

depend any more on the main flow direction, which implies
∂
∂x

= 0 for all terms

in Eq. 2.42, except the pressure gradient;

• All body forces are neglected, including gravity.

After all the above considerations, Eq. 2.42 is reduced to

∂
∂y

(
ηs
∂u
∂y

+ τxy

)
=
∂p

∂x
, (2.43)

which can be solved analytically for the x−component of the velocity (see Appendix B,

for details on the solution),
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u(y) =
3
2
·uavg

[
1−

(y
L

)2
]
, (2.44)

in which uavg is the mean velocity.

Note that, for the Oldroyd-B model the expression for the flow velocity coincides

with the Poiseuille flow parabolic solution. An explicit analytical expression for the

three components of the symmetric extra-stress tensor τ can be derived as well, in the

case of a steady parallel flow u = u(y) in a planar channel, directly from Eq. 1.9 and

evaluating the derivative of the function displayed in Eq. 2.44,

τxx = 2ηpλ
(
∂u
∂y

)2

= 18ηpλu
2
avg

( y
L2

)2
, (2.45)

τxy = τyx = ηp
∂u
∂y

= −3ηpuavg
( y
L2

)
, (2.46)

τyy = 0 . (2.47)

We remind that the analytical solutions provided above are valid only for steady

laminar flows, with relatively low Re and Wi numbers.

2.4.3 Assessing the code’s spatial accuracy

As a preliminary result, we check the order of convergence of the spatial accuracy

of the numerical methods employed, after the implementation of the square-root

factorisation. The parameters adopted for this first study are Re = 1 and Wi = 0.1,

which was verified as corresponding to a laminar flow. For the spatial accuracy analysis,

a regular quadrilateral mesh was used, with 40 cells in the streamwise (x) direction and

progressively increasing number of cells in the wall-normal (y) direction.

In Fig. 2.3, we verify that solutions for increasingly refined meshes and calculated for

the channel geometry approach the analytical velocity profile. The numerical profiles

were extracted here from the vertical axis passing through the middle of the channel

and the quantity displayed has been made dimensionless by an appropriate parameter.

The normalised average error in this study (εnorm) is obtained in a similar way to

that presented in the work of Duarte et al. [129], by averaging the absolute value of

the difference between numerical streamwise velocity given by the flow solver and

analytical solution provided by Eq. 2.44, over the y−direction, for a fully developed

flow,

εnorm =
1
Ny

Ny∑
j=1

|uj −uaj | , (2.48)
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Figure 2.3 – Convergence of the fully developed normalised velocity profile in the
channel geometry, for meshes with successive refinement in the wall-normal direction;

here Re = 1 and Wi = 0.1.

where uj is the calculated velocity at the point j, uaj is the analytical exact value for

the velocity magnitude at that point and Ny represents the number of cells in the

y−direction. Figure 2.4 shows the convergence of average error as the grid is refined,

in a log-log plot, along with the corresponding fitting curve, whose logarithmic slope

matches with the expected value of a second-order scheme (slope ' 2).

10-3 10-2 10-1 100

∆y ∗

10-5

10-4

10-3

10-2

10-1

ε n
or
m

Slope = 2.1

Figure 2.4 – Normalised average discretisation error εnorm, evaluated by Eq. 2.48, as
function of the normalised grid spacing ∆y∗, for Re = 1 and Wi = 0.1.
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2.4.4 Comparison between different formulations

Multiple analyses were performed to validate the implementation of the square-root

technique into the fluid flow solver. Adopting the same two-dimensional channel

geometry, with the viscosity ratio fixed at β = 1/9, we increased the elasticity parameter

Wi by discrete increments, verifying the usefulness and effectiveness of the stabilising

technique compared to previously validated flow solutions. In order to minimise the

contribution from effects of flow inertia, Reynolds number is fixed once more at a

relatively small value of Re = 1.

For the following results a non-regular mesh was selected, in order to achieve a

(mirrored) geometrical refinement along the cross-stream direction, starting from the

central axis of the geometry; a total of 100× 40 cells composes the grid along the x−
and y−directions, respectively. Fully developed profiles calculated numerically for the

velocity and extra-stresses components have been compared to their analytical counter-

parts, derived in Subsection 2.4.2 and that match with those provided by Dallas et al.

[130]. These profiles are extracted from the vertical axis passing through the middle

of the channel and are depicted in Figs. 2.5 and 2.6, for Wi = 0.1 and 1, respectively.

Concerning the simulations performed following the square-root factorisation, the

extra-stress tensor τ is retrieved from the square-root tensor b by using the relation

shown in Eq. 2.49,

τ =
ηp
λ

(b · b− I) . (2.49)

The velocity profiles exhibited in Figs. 2.5a and 2.6a are normalised by the bulk

velocity Ub, while the extra-stress profiles in Figs. 2.5b to 2.5d and Figs. 2.6b to 2.6d

are non-dimensionalised according to Eq. 2.50,

τ∗ij = τij
2L

Ub
(
ηs + ηp

) . (2.50)

An explicit result presented in Fig. 2.5 is the very good agreement between the two

formulations (standard and square-root) for each one of the four profiles at Wi = 0.1,

which is the expected result due to the absence of elastic instabilities at that level of

elasticity. These formulations are validated by a comparison with the analytical solution

for the same profiles. One can notice that the small difference found in Fig. 2.5c is due

to numerical round-off errors.

Figure 2.6 depicts a similar behaviour, when Wi is increased tenfold (Wi = 1). Both

numerical formulations produce the exact same fully developed profiles, but this time

the numerical solutions start to slightly deviate from analytical curves. We suggest that

this is caused by a decreasing in the accuracy of the numerical methods [131], even with

the mathematical factorisation implemented, manifested also by larger discretisation
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0.0 0.5 1.0 1.5 2.0

y/L

−6

−4

−2

0

2

4

6

τ∗ x
y

Standard

Square-root

Analytical

(d) Shearwise extra-stress component, τ∗xy .

Figure 2.5 – Dimensionless profiles of (a) the streamwise velocity and (b – d) the
components of the extra-stress tensor, extracted from a vertical axis at the middle of

the two-dimensional channel; here Re = 1 and Wi = 0.1.
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Figure 2.6 – Dimensionless profiles of (a) the streamwise velocity and (b – d) the
components of the extra-stress tensor, for Re = 1 and Wi = 1.
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errors for the wall-normal component of the extra-stress tensor (see Fig. 2.6c and

compare it to Fig. 2.5c).

Moreover, simulations have been performed for increasingly more elastic flows

(higher Wi) to detect the appearance of numerical instabilities and inspect to which

extent the square-root formulation could control them. Our analysis here is based on

the measurement of time series of velocity and of the material function N1 at the centre

of the channel, over durations corresponding to at least 40λ and up to 200λ. N1 stands

for the first normal stress difference and is defined as

N1 = τxx − τyy . (2.51)

A first notable result can be seen in Fig. 2.7, showing a non-negligible stabilisation

of the temporal evolution of the measured quantities, for Wi = 3. Remark that the

non-zero N1 output comes from extrapolation errors at the computational cell closest

to the central channel axis.
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Figure 2.7 – Temporal evolution (including initial transient) of the normalised
streamwise velocity component (top panel) and of the first normal stress difference

(bottom panel) at the central point of the channel (see Fig. 2.2), for both formulations
of the evolution of extra-stresses equation; here Re = 1 and Wi = 3.

Even for higher values of Wi (see Fig. 2.8, for Wi = 4), the square-root factorisation

of the extra-stress equation indicates that a stationary state is reached, which provides

evidence that neither the velocity oscillations nor the fluctuations in the first normal

stress difference found by the original solver come from physical elastic instabilities,

a fact that is equally corroborated by previous works [132–134]. Instead, these per-

turbations arise from numerical errors accumulated by the algorithm and comparable

behaviours were investigated and reported elsewhere (e.g. by Chen et al. [111]).
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Figure 2.8 – Temporal evolution (including initial transient) of the normalised
streamwise velocity component (top panel) and of the first normal stress difference

(bottom panel) at the centre of the channel, for both formulations of the evolution of
extra-stresses equation; here Re = 1 and Wi = 4.

When Wi is increased beyond a critical level of Wi ≈ 5, the original formulation

diverges numerically, while the square-root factorisation starts displaying fluctuations

in the velocity field, as seen in the top panel of Fig. 2.9, for Wi = 10. Eventually, the

code version with the stabilising feature will diverge as well, when stronger elasticity

levels are attained.
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Figure 2.9 – Temporal evolution (including initial transient) of the normalised
streamwise velocity component (top panel) and of the first normal stress difference

(bottom panel) at the centre of the channel, for both formulations of the evolution of
extra-stresses equation; here Re = 1 and Wi = 10.
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2.5 Concluding remarks and motivation for an alterna-

tive solver

The results aforementioned could assertively validate the satisfactory implementation

of the square-root method into the numerical algorithm, as well as its reliability and

accuracy for laminar, low-Wi flows, for which the results matched accurately with

those from the original and previously validated in-house solver. Increasing Wi, up to

moderate levels, the formulation presented great success in stabilising the numerical

output, confirming our expectations. A benchmark 2D geometry was adopted for the

task, in order to assess the coverage and performance of this tool.

Even if this mathematical factorisation proved itself as a powerful technique to

increase numerical stability in a finite-volume algorithm, it could not enable stable

simulations in the planar channel for flows above an elasticity level corresponding to

Wi & 5. Furthermore, numerical simulations were performed using the square-root

factorisation in a two-dimensional cross-slot geometry [135] and numerical divergence

was again reported beyond certain limits of elasticity. These limits were found to be

around Wi ≈ 0.1, i.e. at least one order of magnitude smaller than the required Wi to

numerically explore time-dependent instabilities in the cross-slot geometry, according

to previous studies from the literature, in similar setups [136, 137].

The results obtained for these elasticity levels can be compared to those in the

work of Fattal and Kupferman [36], where their original implementation of a different

stabilising methodology (the log-conformation representation) produced enhanced

accuracy at low and moderateWi, but eventually lost stability at tougher conditions (see

Fig. 2 in the introductory Chapter of this document). To numerically explore physical

behaviours that happen at even more elastic flows, like the interesting phenomena

outlined in the introductory Section of this document, one can thus infer that multiple

and advanced numerical tools must be present in a given viscoelastic flow solver.

In order to extend our calculations, we decided to change our main solver for the up-

coming analyses, which forms the second part of this thesis. The open-source numerical

solver rheoTool® [138] was chosen as the alternative code, which is developed within

the C++ OpenFOAM® framework [139]. This solver is equally based on a finite-volume

discretisation and features the square-root method along with many other techniques

for increased stability (including the LCR approach previously mentioned).
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Chapter3
Purely elastic instabilities in the

cross-slot geometry

3.1 Viscoelastic flows: instabilities in the cross-slot ge-

ometry

The elasticity of the flow of polymer solutions can give rise to complex dynamics and

instabilities that are relevant for both fundamental studies and industrial applications,

as e.g. efficient mixing and heat transfer in microdevices [22], or painting and coating

processes [140, 141]. A particular class of instabilities is the so-called purely elastic
one, occurring in the limit of vanishing fluid inertia, in which the flow instabilities

that arise and yield unusual (in comparison to equivalent Newtonian flows) states or

time-dependent behaviour are generated solely by the elasticity of the fluid [142].

Probably, the first experimental evidence of this kind of instabilities was provided

by Giesekus [143], where a secondary flow in non-Newtonian solutions has been pro-

duced by a purely elastic mechanism. The purely elastic instabilities marking the

transitions between different flow regimes have since then been documented in a variety

of geometrical configurations [9, 96, 144–146], including complex ones, such as the

abrupt axisymmetric contraction [147] and the lid-driven cavity [148]. Even some

comprehensive review of purely elastic instabilities have been compiled (e.g. by Shaqfeh

[140]). To illustrate this point and show the richness of purely elastic instabilities, we

display in Fig. 3.1 an extensive flow instability map, as reported by Poole [149]. In that

chart, they have been divided in categories according to the prevalent kinematics of the

setup, e.g. extension-dominated, shear-dominated or mixed kinematics.

Posteriorly, a dimensionless criterion was proposed by McKinley et al. [150], defining

some critical conditions beyond which the onset of purely elastic instabilities can

develop. This non-dimensional parameter, sometimes called Pakdel-McKinley (PMcK)
criterion combines the calculation of flow streamlines’ curvature and normal stresses,

43
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Figure 3.1 – Chart of purely elastic flow instabilities, categorised according to the
prevalent kinematics of the geometric setup (extracted from [149]).

two properties which are thought to be the main responsible for the destabilising

mechanism. In all these cases, small geometrical length scales have great importance

on the appearance and amplification of remarkable non-Newtonian effects, because of

the inherent low Reynolds (Re) and high Weissenberg (Wi) numbers [151].

The standard cross-slot setup is made of two perpendicularly intersecting chan-

nels with two inlets and two outlets, displaying a free (not-pinned) central stagnation

point, in which fluid velocity is zero and strain rate is finite [152]. This geometrical

configuration has attracted considerable attention for practical applications, as e.g. its

employment by Dylla-Spears et al. [153] to trap and stretch single molecules in the

central stagnation point in the purpose of targeting sequences along the DNA back-

bone. Nonetheless, this setup was especially adopted for rheometrical measurements.

Using the cross-slot device, Odell and Carrington [154] proposed an Extensional Flow

Oscillatory Rheometer (EFOR), for the evaluation of the extensional viscosity of low-

viscosity fluids. The apparatus (shown in Fig. 3.2) operates using a combination of the

extensional flow field generated downstream the stagnation point with an oscillatory

flow. This technique proved itself capable of precisely characterising both the shear
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and extensional response of low-viscosity fluids and has actually been used in recent

studies on low-viscosity polymer solutions [155, 156].

Figure 3.2 – Schematics of the Extensional Flow Oscillatory Rheometer (EFOR), in
which a cross-slot geometry is used for rheological measures of low-viscosity fluids

(extracted from [154]).

Due to its relevance for mixing and rheology, it has been the subject of extensive

studies. Indeed, experimental [157–159], theoretical [160, 161] and numerical [68,

72, 136] investigations have reported about the existence of instabilities solely driven

by elasticity in this setup. Two conceptually different types of instabilities have been

reported for low-Reynolds-number polymeric flows in this geometry: a first one, cor-

responding to a steady asymmetric bifurcation [72, 136], and a second one leading

to unsteady oscillatory behaviour [136, 158, 162]. Along with numerical solutions,

analytical solutions for somewhat specific cases have been provided. Such solutions rely

on flow symmetry properties and some simplifications, as in the works of Becherer et al.

[161] and Cruz and Pinho [163], where wall-free purely extensional flows were consid-

ered. Analogously, Chaffin and Rees [164] provided analytical solutions (although not

explicitly) for the stress components in a viscoelastic cross-slot flow under the shallow,

Hele-Shaw flow limit [165].

Recently, this flow configuration has been proposed as a benchmark problem [137],

for its geometrical characteristics and the existence of the instability leading to asym-

metric flow at appropriate β, Re and Wi values. Similar viscoelastic instabilities were
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reported for geometries alike to the cross-slot with minor modifications, as in the case

of a flow-focusing device [166] or a T-junction setup [167].

3.1.1 The asymmetric bifurcation

A stationary bifurcation induced by a purely elastic instability in the cross-slot geometry

(displayed in Fig. 3.3) was detected initially in the work of Gardner et al. [168] and

extensively explored by Arratia et al. [158], where both types (see previous Section) of

flow instabilities were identified experimentally in this planar extensional flow. They

proved also by their experiments that the Poiseuille outflow is strongly perturbed far

downstream of the central stagnation point, due to these purely elastic instabilities.

Later on, Poole et al. [136] showed numerically that even simple differential viscoelastic

models, like the UCM model, could predict such behaviour in two-dimensional flows,

in total absence of inertia.

Figure 3.3 – Patterns of dye advection (a) and (b), and particle streak lines (c) and (d),
comparing a Newtonian fluid flow (left panels) to the flow of a PAA flexible polymer
solution (right panels) at Re < 10−2. A purely elastic, symmetry-breaking steady flow

bifurcation is clearly visible (extracted from [158]).

The asymmetric flow pattern produced in the cross-slot viscoelastic flow for small

and moderate Wi was characterised as arising from a supercritical pitchfork bifurca-
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tion [169, 170], which possesses two stable possible equilibrium states [171] and whose

initial growth rate can be predicted by linear stability analysis [142]. An early theoreti-

cal work addressed Oldroyd-B flows in a simplified, unbounded cross-slot geometry

through linear stability analysis, where disturbances were predicted to occur above a

critical Wi [172].

Moreover, numerical studies suggested that above the critical level of elasticity

necessary for the onset of the asymmetric flow behaviour, the bifurcated state is more

stable than the symmetric one, where less energy is comparatively needed to maintain

the asymmetric pattern [72, 137]. For the same geometry, further numerical studies

have been carried out, using more complex and realistic viscoelastic models, taking

into account the finite extensibility of polymer molecules: the FENE-P [72] and FENE-

CR [72, 173] closures. Recently, Wilson [174] pointed out that the physical mechanism

behind the emergence of this bifurcation remains an important mathematical open

problem in the field of non-Newtonian fluid mechanics.

Additionally, a steady asymmetric bifurcation presenting a spiral-vortex structure

was identified experimentally in a three-dimensional cross-slot [175] and posteriorly

detected in numerical flow simulations adopting various elastic fluid models [176];

this 3D instability was later found to improve heat transfer between the two inlet

streams [23]. Nonetheless, asymmetric bifurcations in the cross-slot do not show up

exclusively for non-Newtonian fluid flows. Poole et al. [177] discovered inertia-driven

symmetry breaking for a Newtonian fluid flow, in which the asymmetries display

different properties when compared to those produced by viscoelastic effects, like an

uncentred stagnation point and a distinct plane of symmetry.

3.1.2 The time-dependent instability

The second (and less documented) cross-slot instability corresponds to an unsteady tran-

sition. Xi and Graham [73] provided numerical evidence that, for a two-dimensional,

highly dilute FENE-P fluid flow, it occurs via a supercritical Hopf bifurcation; by taking

into account deviations in velocity, pressure and stress fields, a mechanism relying on

the role of stress gradients and the existence of a stagnation point at the centre of the

setup was also proposed [73].

The onset of a time-dependent instability has also been found by Afonso et al. [178]

in a slightly modified geometry: a three-dimensional, six-arm cross-slot. For this setup,

the authors associated the mechanism of the transition with large hoop stresses that

develop in geometries with curved streamlines. Oscillatory solutions also appear in

other extensional flows, like the flow of a viscoelastic fluid driven by a simple periodic

background force in a four-roll mill device [8].
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3.2 Regime of elastic turbulence

Above a critical Weissenberg number, meaning for elasticity larger than a threshold,

purely elastic instabilities can lead to the appearance of disordered flows corresponding

to the dynamical regime known as elastic turbulence [6, 9]. As shown in the seminal

work of Groisman and Steinberg [9], where a swirling flow between counter-rotating

parallel disks was considered (from which two snapshots can be seen in Fig. 3.4), and in

subsequent ones also employing different geometries [1, 7], such flows are reminiscent

of the turbulent ones occurring in Newtonian fluids [179]. In particular, they are

characterised by a whole range of active scales, irregular temporal behaviour, growth of

flow resistance by a factor up to twenty and enhanced mixing properties [1].

Figure 3.4 – Snapshots of the flow field in the elastic turbulence regime in a swirling
flow between two parallel disks (extracted from [9]).

Interestingly, however, the spectrum of velocity fluctuations displays power-law

behaviours, in both the temporal (E(f ) ∼ f −δ) and spatial (E(k) ∼ k−δ) domains, with an

exponent δ & 3, corresponding to a smooth flow essentially dominated by the largest

spatial scales (see Fig. 3.5). It is worth to remark that such experimental findings are

supported by theoretical predictions based on a simplified uniaxial model of viscoelastic

fluid dynamics in the absence of walls and in homogeneous isotropic conditions [180].

Elastic turbulent flows have demonstrated an outstanding potential for practical

applications in e.g. industrial processes. Besides the straightforward pertinence for accel-

erating fluid mixing [1, 12, 17], significant enhancement in the intensity of heat transfer

(up to ∼ 4 times, compared to an equivalent state without the development of the

phenomenon) has been reported when fluid flows undergo this dynamical regime [22,

24]. By performing experimental studies in an adapted rheometrical device, Poole et al.

[181] showed that elastic turbulent flows are capable of generating emulsification of

immiscible viscous fluids. Moreover, Mitchell et al. [182] recently reported that elastic

turbulence arising in a fully complex three-dimensional structure directly enhanced

the efficiency of oil recovery in a porous medium.

More recently, the elasticity-driven transition to turbulent-like states was experimen-

tally investigated in cross-slot devices of different aspect ratio (vertical size over channel
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Figure 3.5 – Power spectra in the frequency domain (denoted here as P ) of velocity
fluctuations displaying a power-law decay with exponent δ > 3 (extracted from [1]).

width), for more and less concentrated polymer solutions [20]. Independently of the

aspect ratio, it was found that the more concentrated solution undergoes a transition to

unsteady flows that become progressively more irregular when the Weissenberg number

is increased. The power spectra of velocity fluctuations, obtained from single-point time

series of the streamwise component (with respect to the laminar mean flow) measured

in the outlet channel at midway from the lateral walls (both in the horizontal and

vertical directions), were characterised by the presence of marked peaks (a fundamental

frequency plus some harmonics), and by a power-law behaviour of exponent δ larger

than 3, at small and large Wi values, respectively. In particular, for the smaller as-

pect ratio, continuous spectra and features typical of elastic turbulence were observed

when Wi & 25. For the more dilute solution, although the phenomenology of the

time-dependent transition was similar, the chaotic flow observed at high Wi did not

show similar spectral properties.

3.3 Effects of the variation of flow parameters

By analysing viscoelastic fluid flows in a cross-slot geometry, several physical and

geometrical parameters can play more or less significant roles in the resulting flow

state.

Starting with the Reynolds number, it has been repeatedly reported that differences

between creeping conditions (inertialess flow) and very low Reynolds simulations are
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negligible. Effects of inertia start to be relevant in the form of a stabilising mecha-

nism for unitary values of this dimensionless parameter, for which the onset of the

asymmetric instability is delayed and its strength is attenuated [136]. Instead, one

parameter whose variation can produce remarkable effects on the flow configuration is

the concentration of polymers, which has a decisive destabilising effect on the flow (as

reported in an experimental study by Sousa et al. [159]). The maximum extensibility

of the polymer chains present in the fluid flow also affects the onset of purely elastic

instabilities, with the critical Wi associated to the bifurcation tending to decrease as

maximum extensibility increases, for fixed values of β [72]. When investigating how

the extensibility of polymer molecules present in the solution influences flow regimes,

a non-linear elasticity model must be used for the numerical simulations, like the FENE

family of models (see Subsection 1.3.2).

Furthermore, two main geometrical parameters analysed by recent studies are the

aspect ratio (in 3D models) and the sharpness of internal cross-slot corners, which

have been identified as having a stabilising and marginal effects on the bifurcation

instability, respectively [72, 136]. Cruz et al. [137] also identified a slight decrease in

the necessary flow energy to drive the cross-slot flow through the asymmetric pattern,

when the corners are rounded with a radius of curvature of 5% of the channels’ width.

To summarise, we report in Tab. 3.1 a synthetic review of past works in the litera-

ture concerning the study of purely elastic instabilities, by employing experimental,

numerical and theoretical techniques. The dimensionality of the setup along with the

type of instability investigated (first or second one) are also provided in Tab. 3.1.
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Method Publication Fluid model Dimension Instability

Theoretical Lagnado et al. [172] Oldroyd-B 2D 1

Experimental Arratia et al. [158] – 3D 1

Numerical Poole et al. [136] UCM 2D 1

Numerical Xi and Graham [73] FENE-P 2D 2

Numerical Rocha et al. [72] FENE 2D 1

Numerical Afonso et al. [178] UCM 3D 1 & 2

Numerical Cruz et al. [137] Multiple 2D 1

Experimental Haward et al. [162] – 3D 1 & 2

Experimental Dubash et al. [183] – 3D 1 & 2

Experimental Sousa et al. [159] – 3D 1 & 2

Numerical Junior et al. [113] Oldroyd-B 2D 1

Numerical Cruz et al. [184] UCM & sPTT 3D 1 & 2

Experimental Sousa et al. [20] – 3D 2

Table 3.1 – Summary of recent works on purely elastic instabilities in the cross-slot
geometry.
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Chapter4
OpenFOAM® solver and simulation

settings

4.1 OpenFOAM®

OpenFOAM® [139] (acronym for Open Source Field Operation And Manipulation) is

an open-source CFD software that operates by means of different executables, known

as applications. These applications use packaged functionalities contained within a

collection of approximately one hundred libraries; all applications can be divided in two

main groups: solvers, that are each conceived to solve specific (or a group of) problems in

continuum mechanics; and utilities, mainly designed to handle pre- and post-processing

tasks involving data manipulation and algebraic calculations. Figure 4.1 represents an

overview of the structure of the OpenFOAM® libraries.

Figure 4.1 – Overview of OpenFOAM® structure (extracted from OpenFOAM® user
guide, version 7).

The primary programming language of OpenFOAM® is C + +, which was chosen on

account of its object-oriented features like inheritance, template class, operator over-

loading and virtual classes, highly recommended for practical science and engineering

numerical applications. Since its launching, OpenFOAM® has been extensively used for

53
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scientific research in diversified fields, ranging from heat and mass transfer analyses

(e.g. [185]) to the solution of the Maxwell’s equations of electromagnetism (e.g. [186]).

Among some of the noteworthy features of this toolbox, one can cite its ability to handle

general unstructured polyhedral meshes and perform parallel calculations.

4.1.1 rheoTool® solver – special features

rheoTool® is a solver developed in the OpenFOAM® framework and based on a previ-

ous viscoelastic solver known as viscoelasticFluidFoam [187], which can be found in the

extended version of OpenFOAM®. The latter solver already includes some of the most

known viscoelastic constitutive models, such as Oldroyd-B, Giesekus and FENE. Both

solvers employ a finite-volume discretisation based on pressure-correction solution

techniques, which takes into account their natural conservative properties, generally

recommended for most fluid dynamics problems [121, 138]. rheoTool® was launched

with the premise of having special numerical features that could make previous vis-
coelasticFluidFoam solver more robust and stable, in the intention of making available

to the general public such implemented tools. We resume below some of these features

(for the 1.0 version of the code). All the details about each one of the features in this

initial version of rheoTool® can be found in the work of Pimenta and Alves [138].

• The log-conformation representation approach (see Subsection 4.2.1) is available

for all viscoelastic models, and the square-root method (see Section 2.3) is included

for the Oldroyd-B model. These mathematical approaches are employed to control

the numerical instabilities appearing at high Wi values.

• The pressure-velocity coupling is reinforced: the PISO [188] algorithm imple-

mented in the viscoelasticFluidFoam solver is replaced by the SIMPLEC [189]

algorithm, delivering more stability for transient simulations.

• Higher stability for viscoelastic fluid flows is provided by a new stress-velocity

coupling formulation.

• A powerful high-resolution discretisation scheme (HRS) for the treatment of

advection is implemented: the Convergent and Universally Bounded Interpolation

Scheme for the Treatment of Advection (CUBISTA), devised by Alves et al. [190].

• A normalised variable approach for the HRS is incorporated into the code, in

which some contribution of the discretised advective term is computed implicitly

and the other part is treated explicitly. This technique is known as deferred
correction.
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4.2 Cross-slot geometry and boundary conditions

4.2.1 Governing equations

Firstly, we recall the physical equations that will now be integrated by means of the

OpenFOAM® toolbox. To make sure that no effects of fluid inertia are present in our

two-dimensional model, we remove the non-linear term from Eq. 1.8. So, the velocity

field u(x, t) = (ux(x, t), uy(x, t)) at position x = (x, y) and time t evolves according to the

momentum conservation equation

ρ
∂u
∂t

=∇ · (ηs∇u) +∇ · τ −∇p , (4.1)

and the incompressibility condition∇ ·u = 0.

We adopt the Oldroyd-B model to describe the dynamics of the viscoelastic fluid,

whose evolution equation is displayed in Eq. 1.9. We decided to employ here the LCR

of the extra-stress equation (introduced in Subsection 1.4.2), essentially because it is

included in the rheoTool
® solver for many different fluid models; the square-root

stabilising technique is also present in this numerical code, but available only for the

Oldroyd-B constitutive model. Details on the LCR method are exposed below.

4.2.1.1 Log-conformation representation (LCR)

In addition to the square-root method, scrutinised in Section 2.3, another mathematical

formulation that enables stable simulations of viscoelastic fluid flows at high Weis-

senberg numbers is the so-called log-conformation representation, presented by Fattal

and Kupferman [35]. They suggested that the mechanism behind the computational in-

stability when dealing with high elasticity levels was a poor polynomial approximation

(by the numerical schemes) of the steep exponential growth experienced by the stress

tensor, generated by a combination of deformation and advection. To overcome that, a

stabilisation formulation was proposed, in which the constitutive equation displayed in

Eq. 1.11 is reformulated in terms of the logarithm of the conformation tensor Θ = log c.

The final form of the Oldroyd-B constitutive equation following the LCR is:

∂Θ
∂t

+u · ∇Θ = (ΩΘ −ΘΩ) + 2Ψ +
1
λ

(
e−Θ − I

)
, (4.2)

where the tensors Ψ and Ω form a decomposition of the velocity gradient ∇u. The

tensor Ψ is a symmetric, traceless tensor, while tensor Ω is asymmetric; they generate

pure strain and pure rotation, respectively [36].
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4.2.2 Simulation numerical settings

We describe here our cross-slot setup, consisting of two bisecting channels of identical

width d, with opposing inlets (here, along the x−direction) and outlets (along the

y−direction), shown schematically in Fig. 4.2. Similarly to the reference studies with

this geometry, here we set a length-to-width ratio of 10 : 1 for each of the four “arms”,

which was previously shown to be enough to ensure a fully developed flow away from

the inlet in a channel [127]. The idea of somehow assimilating a cross-slot arm to a

channel is equally found in previous works (see e.g. [177]). We also depict in Fig. 4.2

the positions where most of the time series were recorded: probe 1 (entrance, green),

probe 2 (centre, red) and probe 3 (exit, blue).
1
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Figure 4.2 – Schematic of the cross-slot geometry. The dotted square is the area where
the analyses were conducted, with the three dots indicating our main probes. The
upper right dashed square shows a magnified view of this area and provides an

illustration of a mesh refining towards the centre of the setup – here, the M20 mesh
(see Tab. 4.1); note that the meshes used in the simulations were at least twice finer in

each direction than M20 mesh.

The global mesh adopted for the numerical integration is composed of four blocks,

each of which corresponding to an arm, with increased density of grid points when

approaching the centre of the system, plus a central square with the smallest and

uniform grid size. The mesh refinement towards the centre in each arm is realised via a
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geometric progression relation with specific stretching factors, defined as:∆xi = fs ·∆xi−1 in x−direction

∆yi = fs ·∆yi−1 in y−direction
. (4.3)

The stretching factor fs is determined maintaining a geometric progression for

the mesh length, starting from the first cell near to the inlet or outlet boundary and

finishing with the first cell in the central square. Equation 4.4 is used to implicitly

calculate this index (see Appendix C for details on its derivation),

1− fsN

1− fs
= Ar ·N · fsN , (4.4)

where Ar represents the arm length-to-width aspect ratio and N is the number of cells

in the central square region, which matches the number of elements in the cross-slot

arm, in the direction of refinement.

The reference mesh configuration adopted for the results exposed in Chapter 5

(unless otherwise stated) is highlighted in Tab. 4.1 and includes a total of 12801 com-

putational cells, corresponding to 51× 51 cells in the central square, a minimal grid

spacing ∆xmin = ∆ymin ≈ 0.02d in that same region and fs = 0.931. In order to verify

the robustness of our results, some calculations, and particularly those related to the

instabilities thresholds, were repeated with multiple mesh sizes, including more refined

meshes. The results were qualitatively independent of the mesh refinement and only

slight differences in the values of the critical parameters were found (this topic will be

more extensively addressed in Chapter 5).

The main parameters for all the meshes considered in this work are presented in

Tab. 4.1, including the designation of the mesh, number of cells in the central square

(along the x− and y−directions) and the total number of cells in the computational

domain. For each case, an odd number of cells in the central square and along the arms

width is adopted, allowing the direct calculation of the variables in the cross-slot centre-

lines. Two other parameters are also provided in Tab. 4.1: the approximate minimum

cell size (identical in both directions, normalised by the width d and represented by

∆xmin and ∆ymin) as well as the stretching factors fs. Note that the mesh is not refined

in the direction normal to the walls.

A uniform velocity profile of amplitude Ub is applied at both inlets, where a homo-

geneous Neumann (zero gradient) boundary condition is specified for the pressure field,

whereas polymeric extra-stresses are set to zero. At the outlets, a homogeneous Dirich-

let (zero value) boundary condition is imposed for pressure, as well as zero-gradient

ones for velocity and extra-stress fields. At the walls, a no-slip condition (u = 0) is

applied to the velocity field and a linear extrapolation technique is adopted for the

extra-stresses [138]. The velocity and stress initial conditions correspond to no flow.
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Cross-slot computational meshes

Mesh Nx x Ny (cent. sq.) fs Number of cells ∆xmin = ∆ymin

M20 21× 21 0.8395 2121 0.05

M40 41× 41 0.9149 8241 0.025

M50 51×51 0.9311 12801 0.02

M60 61× 61 0.9422 18361 ≈ 0.017

M80 81× 81 0.9562 32481 ≈ 0.013

M100 101× 101 0.9647 50601 0.01

M150 151× 151 0.9763 113401 ≈ 0.007

M200 201× 201 0.9821 201201 0.005

Table 4.1 – General parameters of cross-slot meshes.



Chapter5
Numerical results on highly elastic

cross-slot flows

A comprehensive numerical characterisation of viscoelastic inertialess fluid flows

through a two-dimensional cross-slot is reported in this Chapter1. In our studies

we integrate the equations displayed in Subsection 4.2.1 by means of the open-source

numerical solver rheoTool
® [138], which was developed in the framework of the

OpenFOAM® CFD software [139]. This robust viscoelastic solver exhibits sophisticated

and crucial features that allow satisfactory control of the numerical instabilities asso-

ciated with large Weissenberg numbers (see Section 1.4). We remark that no polymer

stress-diffusion is included (see Subsection 1.4.1 for details on that methodology).

The Weissenberg number Wi = λUb/d was varied here by changing the fluid re-

laxation time λ only; the polymer concentration (inversely proportional to β = ηs/ηt)

was set by choosing ηs and ηp such that their sum ηt is constant. As specified in Sub-

section 4.2.1, the Reynolds number Re = ρUbd/ηt was kept fixed at Re = 0 for all the

simulations in the present Chapter. However, we have checked that the results did not

strongly depend on it by performing some calculations at Re = 0.1 (in simulations with

the inertial term reinserted, retrieving Eq. 1.8).

5.1 Convergence of the numerical methods

In a preliminary step, we verify the order of accuracy of the numerical methods em-

ployed by the OpenFOAM® software, both in space and time. For this purpose, we

define the benchmark variable Wi0, that expresses a local Weissenberg number at

the fixed location x = x(2)
∗ , corresponding to the geometrical centre of the cross-slot

1Some parts of this Chapter are under revision for publication in Europhysics Letters (EPL), with
co-authors G. Mompean and S. Berti [191]
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(probe 2). The definition adopted here is the same as in the work of Cruz et al. [137]

and is calculated using the strain rate ε̇0 at the stagnation point,

Wi0 = λε̇0 = λ

√(
∂u
∂x

∣∣∣∣∣
0

)2

+
∂u
∂y

∣∣∣∣∣
0

∂v
∂x

∣∣∣∣∣
0
. (5.1)

We consider here a steady, laminar flow with β = 1/9 and Wi = 0.1, which was

verified as corresponding to an elasticity level below critical Weissenberg for instabilities

in this setup (as the flow in Fig. 5.4a). The order of spatial convergence for the HRS

CUBISTA is then evaluated for the benchmark variable in Eq. 5.1, by calculating the

relative error for multiple mesh sizes in comparison to a highly refined reference spacing,

the M200 mesh. In Tab. 4.1, we can see some parameters for each grid considered.

For finer spatial grids, we observe in Fig. 5.1 a convergence order of ≈ 2, which is the

expected output for the discretisation scheme selected.
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Figure 5.1 – Relative error in the calculation of the local Weissenberg number at the
cross-slot centre vs inverse minimum grid spacing, for β = 1/9 and Wi = 0.1. The blue
and brown solid lines are power-law curves, with logarithmic slopes equal to 1 and 2,

respectively.

The order of temporal accuracy is equally investigated, using the same setup and

similar flow parameters. We selected for this analysis a mesh with a substantial refine-

ment (M100 mesh), so we can minimise the effects of the numerical errors due to the
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spatial resolution while assessing the order of convergence of the time discretisation. A

small dimensionless time step of ∆t = 10−6 is adopted as the reference for the calcula-

tion of the temporal relative error and we can remark in Fig. 5.2 a convergence order

of ≈ 1 for the time discretisation scheme employed, the first-order (implicit) backward

Euler scheme. Similar results were reported in the work of Pimenta and Alves [138] on

the determination of the OpenFOAM® spatial and temporal accuracy, using different

geometries and benchmark variables.
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Figure 5.2 – Relative error in the calculation of Wi0 vs the dimensionless time step ∆t,
for β = 1/9, Wi = 0.1 and M100 mesh. The green solid line is a power-law function

with logarithmic slope equal to 1.1.

5.1.1 Time step evaluation

To identify possible issues related to the time step size, several analyses in that direction

were carried out, though not exhaustively shown here. We investigated the influence of

the time step not only for the low-elasticity, laminar flows already introduced, but also

for the varied flow configurations presented later in this Chapter. The OpenFOAM®

code adopts the definition of an appropriate dimensionless quantity for controlling time

steps, the Courant number (C), as displayed in Eq. 5.2. In order to achieve numerical

stability and temporal accuracy, the well-known CFL condition must be fulfilled, which

states that a Courant number smaller than some value, for the entire domain, is required,
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C =
|u|∆t
∆x

≤ Cmax , (5.2)

where |u| represents the magnitude of the velocity through a given cell, ∆t is the time

step, ∆x stands for the minimum cell size and Cmax is the maximum allowed Courant

number.

Typically, the maximum Courant number for an explicit time integration is Cmax = 1,

but several specifications in the numerical methods can modify this constant. For a

result to be reliable, the steady flow conditions must be independent of the time step

chosen and we attempted to verify this property for many different flow cases. We

show one selected result in Fig. 5.3, i.e. the evolution in time of the magnitude of the

velocity at the central stagnation point – as it should numerically approach zero – for

four different Cmax values. Note that indeed, the converged results for a steady-state

flow do not depend on the CFL condition adopted.
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Figure 5.3 – Convergence of the velocity magnitude at the geometrical central point
|u(x(2)

∗ , t)|, for Cmax = 0.05,0.1,0.4,0.8, at β = 8/9 and Wi = 2.

Based on our findings, we decided to fix the CFL condition at Cmax = 0.1 for all

the results hereafter exposed, which revealed itself to be a good compromise between

numerical accuracy and size of the simulations; time steps will thus change from case

to case and be run-time variable, but in our studies they remained roughly at ∆t ∼ 10−4.
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5.2 First instability: an asymmetric bifurcation

When increasing the elasticity of the solution, while keeping the viscosity ratio fixed, in

our numerical integrations, we observe a destabilisation of the flow, in agreement with

previous studies reported in the literature for fixed β [136, 158]. The sequence of flow

states that are selected strongly depends on the polymer concentration, however. We

provide here a full picture of that dynamics, in the form of an original stability portrait

of the system, as a function of both β and Wi. Let us preliminarily remark that below

the onset of purely elastic instabilities, the flow coming from each of the inlets splits

into two streams of equal flow rate, a symmetric state, at the outlets (see Fig. 5.4a).

(a) Wi = 0.35 (b) Wi = 1.48

(c) Wi = 10 (d) Wi = 20

Figure 5.4 – Snapshots of the magnitude of the velocity field (colour) and flow
streamlines (black lines) for β = 1/9. Increasing Wi, different regimes are observed:

steady symmetric (a), steady asymmetric (b), unsteady disordered flow (c, d).

For concentrated solutions (β . 0.56), the flow first transitions to a steady asym-

metric state (Fig. 5.4b, where β = 1/9) and it is possible to measure quantitatively the

degree of the asymmetry as the bifurcation develops, for progressively higher Wi. An

asymmetric flow parameter (Qa) is proposed, in the same way as done by Poole et al.

[136], following:

Qa = 1− 2Qout
Qin

, (5.3)
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whereQin stands for the flow rate supplied to each inlet andQout is the flow rate exiting

by a selected outflow arm. It expresses the amount of flow that takes an opposite

direction from that it would take in a fully symmetric case. In Fig. 5.5, we plot the

calculated value of Qa for several Wi near the critical Weissenberg number for the

transition between steady symmetric and asymmetric regimes; the curves have been

drawn for viscosity ratios of β = 1/9 and 1/3 and are mirrored with respect to the axis

Qa = 0, to indicate that both stable equilibrium states are considered. We confirmed that

the evolution of Qa with Wi, after the transition point, follows a square-root behaviour

as in Eq. 5.4, which is compatible with a supercritical pitchfork bifurcation. Indeed,

transitions via a pitchfork bifurcation are common in physical problems that present a

symmetry [192].

Qa ≈ A
√
Wi −Wi

(I)
c , (5.4)

where A stands for a scale parameter and Wi
(I)
c is the critical Wi for such a steady

instability. Fitting curves following Eq. 5.4 are included in Fig. 5.5 (dashed lines on

both panels). The critical Weissenberg number – at which the bifurcation is at first

observed – and the scaling parameter A can thus be determined by the curve fitting;

our value of Wi
(I)
c for β = 1/9 is in good agreement with that reported in a previous

benchmark study [137] (relative difference of less than 5%).
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Figure 5.5 – Flow parameter Qa vs Wi near the onset of steady asymmetric flow, for
two different values of β, illustrating a supercritical pitchfork bifurcation in both cases;

here A ' 1.97 and Wi
(I)
c ' 0.36 for β = 1/9; and A ' 1.94 and Wi

(I)
c ' 0.60 for β = 1/3.

The situation changes for more diluted solutions (i.e. when β & 0.56). Indeed, in

this case, the steady asymmetric flow regime does not set in and a direct change from

steady symmetric to unsteady flow is observed. Remarkably, the same qualitative

phenomenology is also found in experiments in micro-scale devices [159].



5.3. Second instability: time-dependent behaviour 65

5.3 Second instability: time-dependent behaviour

Further increase of the flow elasticity, corresponding to higher Wi at fixed β, eventually

leads to the onset of time-dependent behaviour. It arises initially as regular and periodic

oscillations of the asymmetric flow pattern, which stays similar to that of Fig. 5.4b. We

remind that, in the range of low β values, the former manifests as a second instability,

whenWi is increased beyond a second threshold value close to 1.5; for β & 0.56, however,

it corresponds to the first and unique instability, which happens at progressively higher

Wi.

Our analysis here is based on the measurement of time series of velocity and stress

components at three different positions, marked as probe 1 (x(1)
∗ , entrance), probe 2

(x(2)
∗ , centre) and probe 3 (x(3)

∗ , exit) (see Fig. 4.2), over long durations corresponding

to 1000λ. We note that an initial transient with a duration of 100λ was removed from

every time series in the post-processing of the numerical results, to avoid taking into

account irrelevant data for the statistics.

We report in Fig. 5.6 the onset of time-dependency, by presenting the behaviour of

the magnitude of the velocity |u(x(3)
∗ , t)| at the exit probe, for two different β (represent-

ing a concentrated and a dilute solution). Remark that, for these temporal series, only a

small subset of the data record is shown.
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Figure 5.6 – Temporal evolution (small subset of the total data set, see text) of the
magnitude of velocity at the outlet (probe 3), normalised by its time average over the

whole time series, after the initial transient, for (a) Wi = 0.3,1.55,1.7 and (b)
Wi = 2,2.5,3 (from top to bottom in each panel).

By measuring the amplitude and frequency of the time series of |u(x(3)
∗ , t)| at the

fixed location x(3)
∗ for Wi close to the onset of the unsteady regime and for different

concentration values, we could assess that the second instability is a supercritical Hopf

bifurcation (see Fig. 5.7, for β = 1/9 and 2/3), as also suggested by Xi and Graham [73]

using a FENE-P model at non-zero Re and larger β. Indeed, the velocity signal displays
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a growth of its amplitude that is fairly well described by (Wi −Wi
(II)
c )1/2, with Wi

(II)
c

the critical Weissenberg number, and an approximately linear decrease of its frequency

with Wi (close to the transition).
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Figure 5.7 – Amplitude and frequency of the oscillations of |u(x(3)
∗ , t)| vs Wi at the onset

of time-dependent flow, evidencing transitions via a supercritical Hopf bifurcation;
here Wi

(II)
c ' 1.54, for β = 1/9 (top panel) and Wi

(II)
c ' 2.22, for β = 2/3 (bottom panel).

In the time-dependent regime, and particularly for low β, an increase of Wi eventu-

ally gives rise to spatially and temporally more complex flows akin to elastic turbulence

ones. Two illustrative examples, at fixed time, are shown in Figs. 5.4c and 5.4d, for

β = 1/9 and two different values of Wi.
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5.4 Influence of polymer concentration on flow states

The complete stability portrait, obtained by spanning the (β,W i) plane with a large

number of simulations, is shown in Fig. 5.8, where the different point types correspond

to the different dynamical regimes observed. The green squares, blue diamonds and

red dots respectively correspond to steady symmetric, steady asymmetric and unsteady

flow; here, we only show a limited subset of the results from the simulations performed.

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 0 1/9 2/9 1/3 1/2 2/3 7/9 8/9  1

W
i

β

Figure 5.8 – Stability diagram in the (β,W i) plane at Re = 0. The green squares, blue
diamonds and red dots respectively correspond to steady symmetric, steady

asymmetric and unsteady flow. Computations were performed in the M50 mesh. The
dashed (Wi

(I)
c ) and continuous (Wi

(II)
c ) lines are fits using Eq. 5.5; here a(I)

0 ' 2.75,

a
(I)
−1 ' −3.94, a(II)

0 ' 0.85, a(II)
−1 ' 0.05.

Recalling the definitions ofWi
(I)
c andWi

(II)
c as the criticalWi for the first and second

cross-slot instabilities, we observe that they both lead to higher Wic with growing β,

which is reasonable since increasing β corresponds to decreasing polymer concentration.

The faster growth of Wi
(I)
c (β) causes the shrinking of the region of steady asymmetric

flow (see Fig. 5.8). Nevertheless, the determination of the functional dependencies

Wi
(i)
c (β) (with i = I, II) from stability analysis is not an easy task. This difficulty is due to

the formation of a birefringent strand (i.e. a narrow and elongated band where polymers

molecules are highly stretched, and which displays particular optical properties in
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experiments [160]) and of a diverging base state associated with the infinite extensibility

of polymers [161].

Since here we are mainly interested in characterising the boundaries, in the (β,W i)

plane, of the regions where elastic turbulence could be excited, we proceed heuristically,

especially focusing onWi
(II)
c (β). In order to account for non-zero β effects, we conjecture

thatWi
(II)
c (β) =Wi

(II)
c (0)f (β), where f (β) is a positive analytic function, except for β→ 1

where a divergence is expected, since the fluid becomes Newtonian and no purely elastic

instability should occur; clearly f (0) = 1. Our numerical results suggest that the data are

compatible with a Laurent expansion at second order around the point β = 1. Somehow

more surprisingly, we find that the same functional shape can also be used to fit the

Wi
(I)
c (β) data, indicating that:

Wi
(i)
c =Wi

(i)
c (0)

a(i)
0 +

a
(i)
−1

1− β
+

a
(i)
−2

(1− β)2

 , (5.5)

where a(i)
−2 = 1−a(i)

0 −a
(i)
−1 using the constraint f (0) = 1, and i = I, II. According to Fig. 5.8,

for β = 0 both instabilities arise and the critical Wi for the transitions can thus be

directly determined. Indeed, we have Wi
(I, II)
c (0) = (0.315,1.285) ± 0.005. Further details

on the dynamics of the instabilities for zero-viscosity-ratio flows are given in Section 5.6.
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Figure 5.9 – Stability diagram in the (β,W i) plane for a mesh twice as refined (M100
mesh). For this diagram, the blue diamonds and red dots now represent the critical Wi
for the transitions to steady asymmetric and unsteady flow, respectively. The dashed
(Wi

(I)
c ) and continuous (Wi

(II)
c ) lines are fits using the same Eq. 5.5; here a(I)

0 ' 2.90,

a
(I)
−1 ' −4.23, a(II)

0 ' 0.97, a(II)
−1 ' −0.03.
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In Fig. 5.8 we report a comparison between fits with function 5.5 (dashed and

continuous lines for i = I, II, respectively) and the numerical data; the agreement is

rather good for both instability types, confirming our conjecture.

To conclude this discussion, we mention that in our calculations with a grid two

times more refined (for which a similar stability diagram is depicted in Fig. 5.9) or at

Re = 0.1 (not shown here), we did not observe any qualitative difference in the dynami-

cal regimes occurring for different values of β and Wi. We report a slight quantitative

deviation of the functional dependency of Wi
(II)
c on β (regarding our conjecture, explic-

itly stated by Eq. 5.5), for concentrated polymer solutions in simulations with the highly

refined M100 mesh. We suggest that the relatively short duration of our simulations,

due to their prohibitive size for such a mesh refinement level, might be the source of

the discrepancy. Fully addressing this question, however, requires deeper analyses.

5.5 Transition to the regime of elastic turbulence

We now consider the transition to turbulent-like flow. In the following, we will present

the results of the analysis performed adopting the M50 mesh for increasing Wi, at

a fixed β = 1/9. Notwithstanding some quantitative differences, the phenomenology

holds similar in the whole range (β . 0.56) of concentrated solutions, including for

UCM (β = 0, whose results are addressed in Section 5.6). In the case of more diluted

solutions, although we observed some hints of the onset of irregular flow, we could not

reach a fully developed regime and we cannot conclude about the emergence of elastic

turbulence. Notice that for such large values of β, the critical Weissenberg number

Wi
(II)
c grows very rapidly, making the simulations more and more delicate.

As for the experiments reported in the work of Sousa et al. [20], we choose to mainly

focus on the axial component uy(x(3)
∗ , t) at the exit probe, whose behaviour is presented

in Fig. 5.10 for several values of Wi. Again, only a subset of the complete time series is

displayed here.

The spectra of uy(x
(3)
∗ , t) are shown in Fig. 5.11. All those corresponding to the

developed regime are averages over 10 spectra computed from consecutive subintervals

(of duration 100λ) of the velocity time series obtained for a given value of Wi (after the

initial transient).

For Wi &Wi
(II)
c , time-dependency manifests in the form of regular oscillations with

a single frequency close to 0.4/λ (see top panel in Fig. 5.10 and inset of Fig. 5.11). At

slightly higher Weissenberg number (Wi = 3, second panel from the top in Fig. 5.10)

the flow is still periodic but it is now characterised by more discrete frequencies; corre-

spondingly, the spectrum shows several distinct peaks associated with a fundamental

frequency and some harmonics (inset of Fig. 5.11). The occurrence of a transitional

periodic regime was also reported in different setups [14, 193]. Above Wi ≈ 5, the flow
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Figure 5.10 – Temporal evolution (subset of the total data set) of the y−component of
velocity at the outlet, normalised by its time average over the whole time series, after

the initial transient, for β = 1/9 and Wi = 1.55,3,6,12 (from top to bottom).
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∗ , t) in the unsteady flow regime at lower elasticity levels. For

Wi = 1.55, i.e. just above the critical value Wi
(II)
c , the spectrum displays a single

frequency peak; at larger Wi = 3 more discrete frequencies are present.
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loses periodicity and the velocity spectra become continuous. Indeed, starting from

5 .Wi . 10 they result to be quite well described by a power-law function (Fig. 5.11).

When elasticity is increased in the range 11 . Wi . 25, the faster fluctuating

behaviour of the flow is accompanied by quite wide and irregular oscillations, over

longer durations. The flow now loses its spatial asymmetry to alternatively select the

outlet in the positive/negative y−direction. Such a phenomenon has a strong impact

on the statistics of the transversal velocity component ux(x
(3)
∗ , t) at the outlet, whose

fluctuations are accompanied by irregular jumps between two mean values of opposite

sign, thus complicating their analysis.

We report qualitatively similar erratic jumps for the wall-normal velocity component

uy(x
(1)
∗ , t) at the inlet, whose behaviour is displayed in Fig. 5.12, for increasing Wi.

Starting at Wi ≈ 11 (top panel in Fig. 5.12), these irregular shifts of flow direction

become more frequent with increasing elasticity. Eventually, around 20 .Wi . 25, the

two-state system ceases and the prior unsteady behaviour is re-established, featuring

faster fluctuations only.
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Figure 5.12 – Temporal evolution (full data set) of the y−component of velocity at the
inlet probe, normalised by its time average over the whole time series, after the initial
transient (represented by the 〈〉t operator), for β = 1/9 and Wi = 11,12,15,20 (from top

to bottom).

In the turbulent-like regime (Wi & 5), the spectrum of velocity fluctuations dis-

plays a power-law behaviour Ey(f ) ∼ f −δ beyond a frequency that, as in experimental

studies [20], slightly increases with Wi. The absolute value of the spectral exponent

is found to be in the range 2 . δ . 3 and shows some tendency to decrease at higher

Wi; the latter feature is also detected in experiments [20, 167]. In particular, we find
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δ ' (2.8,2.7,2.4,2.2)± 0.4 forWi = 6,12,20,25, respectively. The spectra are thus overall

less steep than those previously found in experiments [9, 20] and those theoretically

predicted assuming homogeneity and isotropy [180]. However, they bear an interesting

similarity with those obtained in two-dimensional numerical simulations, without

artificial polymer-stress diffusion, of Oldroyd-B model in the presence of a cellular

forcing generating distinct regions of strain and vorticity [34].

A possible reason for the difference with the prediction of Fouxon and Lebedev

[180] is the lack of the statistical symmetries assumed by the theory in the present case.

Indeed, our flow is neither homogeneous (due to the presence of the walls, but also

of the high-strain region close to the centre of the setup), nor fully isotropic, as we

typically observe that urmsy > urmsx for the root-mean-square (rms) velocity components

(see Fig. 5.13 and its upper left inset, for a comparison at the exit probe). Moreover, it

is shown in the upper right inset of Fig. 5.13 that the turbulent intensity urms/u, here

defined as the ratio of the rms to the mean value of the full velocity modulus u ≡ |u|
(with the overbar denoting a temporal average), can quite easily exceed 0.5, and be as

high as ≈ 0.8 in conjunction with the temporal oscillations of the spatial asymmetry of

the flow.
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Figure 5.13 – Root-mean-square (rms) of both velocity components, ux(x
(3)
∗ , t) (brown

triangles) and uy(x(3)
∗ , t) (blue dots), at the outlet vs Wi. Left inset: Ratio of the rms of

the axial to the transversal component of the velocity vs Wi. Right inset: Turbulent
intensity (see text for its definition) vs Wi, for the exit (dashed magenta line) and

entrance (solid green line) probes. Here we consider 38 different Wi from 1.5 to 50, for
β = 1/9. We remark that general quantitative results for Wi > 25 should be taken with

caution, as they may depend on the length of the inlet/outlet channels.
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Therefore, the validity of Taylor’s hypothesis [194, 195], allowing to convert spectra

from the frequency to the wavenumber domain, appears questionable. It might be the

case that its refined version could be applied, as in the work of Burghelea et al. [196],

but addressing this question requires further investigations. Finally, although previous

numerical studies in two dimensions have revealed that the spectral exponent of elastic

turbulence seems to be quite insensitive to the space dimensionality [21, 96, 197], we

cannot exclude that the 2D nature of our flow has an impact.

To further characterise the statistical properties of our elastic turbulent flows, we

computed the probability density functions (pdf’s) of the fluctuations of the velocities

ux,y(x
(3)
∗ , t), as well as of the local accelerations ∂tux,y(x

(3)
∗ , t), obtained from the tem-

poral signals at probe 3. The results are presented in Figs. 5.14 and 5.16, where all

variables are rescaled with the corresponding standard deviation σ . The statistics of uy
fluctuations weakly deviate from a Gaussian behaviour, with small negative skewness

for large enough Wi (Fig. 5.14a). Some deviation from Gaussianity was previously

reported experimentally in elastic-turbulent flows [18].
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Figure 5.14 – (a) Probability density functions of normalised velocity fluctuations
u′y = (uy −uy)/σuy , where uy ≡ uy(x(3)

∗ , t), the overbar denotes the temporal average and
σ the standard deviation, for different values of Wi and β = 1/9; (b) pdf’s of the same
quantity along x−direction. In both panels the solid black lines are standard Gaussian

pdf’s.

The flow-asymmetry alternation events introduced before and developing for 11 .

Wi . 25 impact the pdf’s of the fluctuations of the transversal velocity components at

probes 1 and 3. Bimodal shapes are visible in Fig. 5.14b (in that range of elasticities)

for ux(x
(3)
∗ , t), though even more pronounced for the component uy(x

(1)
∗ , t), shown in

Fig. 5.15.

The statistics of fluctuations of the accelerations are remarkably less dependent

on the Weissenberg number, the component of velocity and also the probe location,
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Figure 5.15 – Probability density functions of normalised velocity fluctuations
u′y = (uy −uy)/σuy , where uy ≡ uy(x(1)

∗ , t), the overbar denotes the temporal average and
σ the standard deviation, for different values of Wi and β = 1/9.
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Figure 5.16 – (a) Probability density functions of normalised temporal increments of
velocity fluctuations wy = (∂tuy −∂tuy)/σ∂tuy , where uy ≡ uy(x(3)

∗ , t), the overbar denotes
the temporal average and σ the standard deviation, for different values of Wi and

β = 1/9; (b) pdf’s of the same quantity along x−direction. In both panels the solid black
lines are standard Gaussian pdf’s.



5.5. Transition to the regime of elastic turbulence 75

suggesting a faster (with Wi) onset of scaling properties at small scales. As it can

be seen in Fig. 5.16, the corresponding pdf’s display high tails that are indicative of

non-Gaussian statistics, as is typical in turbulent flows [198, 199] and as observed in

elastic turbulence experiments [13] and random 3D flow of polymer solutions [200].

We conclude this Section by presenting some results concerning polymeric extra-

stresses. In Fig. 5.17 we show a steep enhancement (with Wi) of the stretching of

polymer molecules, represented by the time-averaged trace of the conformation tensor

c, as measured for probes 1 and 3. Furthermore, it was observed that the viscometric

function N1 pronouncedly decays in the stagnation point, for increasing Wi, after the

onset of the time-dependency and up to Wi ≈ 10 (see inset of Fig. 5.17); we recall that

N1 represents the first normal stress difference and, in order to be positive, is defined

here as

N1 = τyy − τxx , (5.6)

where τxx and τyy are the two non-zero normal components of the extra-stress tensor τ .
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Figure 5.17 – Temporal average of tr (c) vs Wi at fixed locations x(1)
∗ (orange triangles)

and x(3)
∗ (green dots). Inset: Time-averaged first normal stress difference N1 vs Wi at

the fixed location x(2)
∗ ; here we consider 38 different Wi from 1.5 to 50, for β = 1/9.

Note that quantitative results for Wi > 25 should be taken with caution, as they may
depend on the length of the inlet/outlet channels.

We report also a saturation of the polymer elongation and stresses far beyond Wi
(II)
c ,

in both cases occurring at about the same level of elasticity, i.e. at Wi ≈ 10, for β = 1/9

(see Fig. 5.17 and its inset).
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5.6 Comments on the UCM constitutive model

We remark that in the limit β → 0 of the Oldroyd-B model, one recovers the upper-

convected Maxwell (UCM) model, accounting for the dynamics of very concentrated

solutions [45]. The turbulent-like features identified in Oldroyd-B cross-slot flows were

detected for this even-simpler constitutive model likewise.

We based our analysis here on the measurement of time series of both velocity

components at the fixed location x(3)
∗ (exit probe), over long durations corresponding to

1000λ and again in the M50 mesh. We note that an initial transient with a duration

of 100λ was removed from every simulation.
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Figure 5.18 – Temporal evolution (subset of the total data set) of the y−component of
velocity at the outlet, normalised by its time average over the whole time series, after

the initial transient, for the UCM model and Wi = 0.3,1.3,2.5,5,10 (from top to
bottom).

Firstly, we should recall that both purely elastic flow instabilities arise for this

model (see Section 5.4 and specially Fig. 5.8, for β = 0). By exploring a wide range of

elasticities, through small increments in Wi, the critical Weissenberg number values

for the transitions could be established as Wi
(I)
c ' 0.315 ± 0.005 (a relative difference

of ' 1% compared to a previous benchmark work [137]), and Wi
(II)
c ' 1.285 ± 0.005. We
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depict in Fig. 5.18 the onset of unsteadiness and subsequent irregular flow for UCM

model, by reporting the behaviour of the velocity axial component uy(x(3)
∗ , t) at the fixed

location x(3)
∗ , for increasing Wi. Remark that only a subset of the data record is shown.

The spectra of uy(x
(3)
∗ , t) are shown in Fig. 5.19. All those corresponding to the

developed regime are averages over 10 spectra computed from consecutive subintervals

(of duration 100λ) of the velocity time series obtained for a given value of Wi (after

the initial transient). Reproducing qualitatively the onset of unsteady behaviour en-

countered for Oldroyd-B fluids (for β > 0), time-dependency initially manifests in the

form of periodic, single-frequency oscillations, with some harmonics emerging as Wi

increases (see inset of Fig. 5.19).
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Figure 5.19 – Temporal spectra of fluctuations of the velocity component uy(x(3)
∗ , t) at

the outlet, normalised by their integral Etoty in the elastic turbulence regime for the
UCM model and different values of Wi; the curves have been vertically shifted to ease

readability. The dashed black curves correspond to Ey(f ) ∼ f −δ, the exponents are
δ ' (3.0,2.6,2.5,2.5) ± 0.4 for Wi = 5,10,15,20, respectively. Inset: spectra of

fluctuations of uy(x(3)
∗ , t) in the unsteady flow regime at Wi = 1.3 (dotted purple curve)

and Wi = 1.5 (solid green curve).

AboveWi ≈ 5, the flow loses periodicity and the velocity spectra become continuous,

being quite well described by a power-law function Ey(f ) ∼ f −δ beyond a frequency

that slightly increases with Wi (Fig. 5.19), and starting at higher frequencies, compared
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to the flows of more diluted solutions. Here we find δ ' (3.0,2.6,2.5,2.5) ± 0.4 for

Wi = 5,10,15,20, respectively. It is worth noting that the logarithmic slopes shown in

Fig. 5.19 for Wi & 10 should be considered with caution, as they represent an average

behaviour over a frequency range, from which some deviation is noticeable.

To characterise statistically the UCM chaotic flows as elastic turbulent ones, we

calculated the probability density functions (pdf’s) of the fluctuations of the velocities

ux,y(x
(3)
∗ , t), as well as of the local accelerations ∂tux,y(x

(3)
∗ , t), obtained from the tem-

poral signals at probe 3. The results are presented in Figs. 5.20 and 5.21, where all

variables are rescaled with the corresponding standard deviation σ . The statistics of uy
fluctuations are quite close to Gaussian for Wi ≥ 5, while those of ux are less so (inset

of Fig. 5.20). Notice that for the UCM model, a two-state system develops likewise.

We can see in the inset of Fig. 5.20 that the direction shifts of the flow-asymmetry

impact the pdf of the fluctuations of the transversal velocity component ux(x
(3)
∗ , t), for

Wi = 5, in which bimodality sets in. The statistics of fluctuations of the accelerations in

both directions are, once again, quite less dependent on the Weissenberg number. The

corresponding pdf’s (Fig. 5.21) display high tails that are indicative of non-Gaussian

statistics, a typical feature in turbulent flows.
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Figure 5.20 – Probability density functions of normalised velocity fluctuations
u′y = (uy −uy)/σuy , where uy ≡ uy(x(3)

∗ , t), the overbar denotes the temporal average and
σ the standard deviation, for different values of Wi and following UCM constitutive

equation. Inset: pdf’s of the same quantity along x−direction. In both panels the solid
black lines are standard Gaussian pdf’s.
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Figure 5.21 – Probability density functions of temporal increments of the normalised
velocity fluctuations wy = (∂tuy −∂tuy)/σ∂tuy , where uy ≡ uy(x(3)

∗ , t), the overbar denotes
the temporal average and σ the standard deviation, for different values of Wi and

following UCM constitutive equation. Inset: pdf’s of the same quantity along
x−direction. In both panels the solid black lines are standard Gaussian pdf’s.

We conclude this Section by pointing out that preliminary results on cross-slot flows,

adopting another viscoelastic model (FENE-P) are reported in Appendix E.

5.7 Mixing properties of the turbulent-like flows

In the introductory Chapter, we stressed the relevance of fluid mixing as the main

motivation (from the point of view of practical applications) for the present thesis. In

this Section we report preliminary results about mixing enhancement in the turbulent-

like flows at high Wi.

We considered for this study simple Lagrangian tracers, which are ideal inertialess

particles that are driven by the flow without being subject to any hydrodynamical or

external forces. In other words, Lagrangian tracers behave as fluid parcels (having

indeed the same density as the carrying fluid) and move according to:

ẋL(t) = uL(t) = u(x, t) , (5.7)

where xL and uL are the instantaneous position and velocity of the Lagrangian particle

and u is the fluid velocity vector at the particle position.
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By means of a C++ algorithm, developed as a run-time processing function in the

framework of OpenFOAM®, we seeded the flow with a few hundred of these Lagrangian

tracers in small areas near both cross-slot inlets, in an attempt to simulate pointlike

particle injections, with different colors for each arm.

Appropriate initial and boundary conditions should be described for the Lagrangian

tracers dynamics. After an initial transient of the flow simulations, corresponding to a

duration of 100λ, Lagrangian tracers were randomly discharged in two square areas

of length 0.5d, placed symmetrically with respect to the central y−axis: black tracers

near the left inlet and white ones close to the opposite entry. In Fig. 5.22, we show

a schematic of the initial and final conditions for the particles. The former evolved

following Eq. 5.7, subjected to a reflective boundary condition at the walls and an exit

condition at a distance of 0.5d from both outlets. A systematic validation of the code

algorithm was performed in an initial phase of the work and some details of this process

are reported in Appendix D.

x

y

Figure 5.22 – Schematic of the cross-slot, showing the initial position of each group of
particles (black tracers near the left inlet and white ones close to the opposite entry).

The shaded square area near the upper outlet is the zone displayed in Figs. 5.23
and 5.24.

Time-dependent, viscoelastic flow regimes were considered, following the Oldroyd-

B model (with β = 1/9) and the UCM model, with the Reynolds number fixed at Re = 0

in all cases. We compared the effectiveness of mixing the Lagrangian tracers between

the unsteady fluid flows after the onset of elastic-turbulent features and simple laminar

flows at the same viscosity ratio β. The final distribution of the particles near the upper

outlet is shown in Figs. 5.23 (for the Oldroyd-B model) and 5.24 (for the UCM model).

For both models, the top panel refers to the laminar flow, displaying a total absence of

mixing. However, when a higher-Wi flow, undergoing the elastic turbulence regime is

considered (bottom panel in both cases), a noticeable tracer mixing is observed.
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Figure 5.23 – Final distribution of hundreds of Lagrangian tracers (depicted here as
coloured circles), near the upper outlet, for a laminar flow (Wi = 0.3, top panel) and an
elastic-turbulent flow (Wi = 25, bottom panel). Tracers have been placed near the left
inlet (black particles) and right inlet (white particles). A magnified view around the

central y−axis is presented in the upper right corner. The lengths displayed are
normalised by the cross-slot width d. Here, the Oldroyd-B model is adopted and

β = 1/9.
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Figure 5.24 – Final distribution of hundreds of Lagrangian tracers (depicted here as
coloured circles) near the upper outlet, for a laminar flow (Wi = 0.3, top panel) and an
elastic-turbulent flow (Wi = 10, bottom panel). Tracers have been placed near the left
inlet (black particles) and right inlet (white particles). A magnified view around the

central y−axis is presented in the upper right corner. The lengths displayed are
normalised by the cross-slot width d. Here, the UCM model (equivalent to Oldroyd-B,

β→ 0) is adopted.
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5.8 Concluding remarks

An extensive numerical study has been performed in a two-dimensional cross-slot

geometry, for inertialess flows of viscoelastic fluids. For this setup, we detected two

instabilities: a first one leading to a steady bifurcated flow and a second one driving

the onset of time-dependent flow. While the first one, in agreement with experimental

findings [159], is only present for rather concentrated solutions (including the limiting

case β→ 0, equivalent to the UCM model), the second one, less documented, manifests

for all viscosity ratios β < 1.

Similarly to what was done in previous studies [72, 136, 137], an asymmetric flow

parameter was adopted to quantitatively express the excess flow rate in a stream as

the bifurcation develops with increasing Wi, for a fixed β. It allowed us to provide

numerical evidence that the cross-slot asymmetric instability is compatible with a su-

percritical pitchfork bifurcation. Moreover, for quite concentrated solutions (including

the UCM limit), we found that the second instability corresponds to a supercritical

Hopf bifurcation, which is somehow compatible with what was previously suggested in

numerical work based on dilute 2D FENE-P flows [73].

We explored the transition to turbulent-like flow by means of simulations at pro-

gressively larger Weissenberg number above the critical value for the second (time-

dependent) transition, for quite concentrated solutions (β = 1/9 and β = 0). For both

fluid models considered, the flow lost periodicity and the velocity spectra became

continuous above Wi ≈ 5. Indeed, starting from 5 .Wi . 10 they resulted to be quite

well described by a power-law function, whose spectral exponent was found to be in the

range 2 . δ . 3 and showed some tendency to decrease at higher Wi; the latter feature

was also detected in experiments [20, 167].

To further characterise the statistical properties of our elastic turbulent flows, we

computed the probability density functions (pdf’s) of the fluctuations of velocity com-

ponents and local accelerations, obtained from time series recorded at particular probe

locations (typically at the outlet/inlet). The statistics of fluctuations of the axial compo-

nent were found to be close to Gaussian for large enough Wi and those of fluctuations

of the accelerations showed minimal dependency on the Weissenberg number (and the

probe location), suggesting a faster (with Wi) onset of scaling properties at small scales.

Aiming at a preliminary analysis of the mixing properties of the cross-slot flows at

significant levels of elasticity, we tracked an ensemble of Lagrangian tracers, initially

released in two separated populations at the inlets. Both fluid models were, once again,

considered and a complete absence of particle mixing was found before the onset of

elastic turbulence. However, at sufficiently high Wi (corresponding to turbulent-like

dynamics), a noticeable homogenisation of the spatial distribution of particles (from

the two initial populations) was detected at the outlet, for Oldroyd-B and UCM models.
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General conclusions

The underlying aspects of the numerical simulation of highly elastic viscoelastic fluid

flows have been addressed in this thesis in two distinct contexts.

In the first part of the thesis, we reported a comprehensive scrutiny of a finite-

volume-based viscoelastic solver, which was intended to be applied for simulating

fluid flows at high elasticity levels in complex geometries. However, due to numerical

divergence caused by the challenging high-Weissenberg number problem [29, 30], a

solution was required in order to attain high enough elasticity levels. This led us to

implement a stabilising mathematical tool in the numerical scheme, the square-root

factorisation of the extra-stress evolution equation [102].

We validated the mathematical factorisation implemented and provided numerical

evidence of the beneficial effect (in terms of increased stability) of the square-root

decomposition of the extra-stress in this finite-volume-based implementation of the

governing equations in a 2D channel. Even if the formulation proved itself as a powerful

technique to increase numerical stability, it could not enable stable simulations in the

planar channel for flows above an elasticity level corresponding toWi & 5. Furthermore,

numerical simulations were performed using the square-root factorisation in a two-

dimensional cross-slot geometry [135] and numerical divergence was again reported

beyond certain limits of elasticity. These limits of stable computation were found to be

around Wi ≈ 0.1, i.e. at least one order of magnitude smaller than the required Wi to

numerically explore time-dependent instabilities in the cross-slot geometry, according

to previous studies from the literature, in similar setups [136, 137].

We inferred that complementary advanced numerical tools (other than a factori-

sation of the extra-stress equation) must be present in that in-house viscoelastic flow

solver in order to investigate the interesting phenomena that arise at higher levels of

elasticity, which concluded the first part of this document.

In the second part of the thesis, we adopted the open-source OpenFOAM® CFD

software to investigate numerically the dynamics of Oldroyd-B fluids in a 2D cross-slot

geometry for broad ranges of the Weissenberg number and the polymer concentration

(including the UCM limit) at Re = 0, focusing on the possibility to obtain elastic

turbulence states.

85
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By spanning the (β,W i) plane with a large number of simulations, we could obtain

a full picture of the cross-slot instabilities, in the form of a novel stability portrait

of the system. We then provided a characterisation of the dependence of the critical

Weissenberg number for the time-dependent transition Wi
(II)
c on the viscosity ratio β.

Albeit derived heuristically, this expression allows to quantitatively delimit the regions

Wi >Wi
(II)
c (β) of the parameter space where elastic turbulence may be excited.

We explored the transition to turbulent-like flow by means of simulations at progres-

sively larger Weissenberg number above the critical value Wi
(II)
c , for quite concentrated

solutions (β = 1/9 and the UCM case β = 0). Close to the onset of the second instability

the flow was found to display regular oscillations in time, while at larger elasticities

its dynamics appeared more and more irregular with increasing Wi. To quantitatively

study the transition we examined time series of the fluid velocity at a fixed point located

at the beginning of one of the outlet channels and far from the walls, and the associated

frequency spectra. The latter have a discrete character, showing distinct peaks, for

Wi &Wi
(II)
c , while they subsequently become continuous when Wi > 5, approximately,

pointing to the emergence of elastic turbulence.

In such a large-elasticity range, the spectra display a power-law behaviour beyond a

frequency that moderately increases with Wi, as also observed in experiments [20]. The

spectral exponent δ was found to decrease with Wi, another feature that is common

to experimental findings [20, 167]. However, we obtain values in the range 2 < δ < 3

(and not far from δ = 2.5), somehow smaller than those measured in experiments and

the theoretical prediction for homogeneous isotropic elastic turbulence [180]. While

we cannot exclude that the 2D nature of our flow has an impact on this result, we

remark that the statistical symmetries assumed in the theory clearly do not hold for our

cross-slot geometry. It should also be noted that similarly energetic spectra at small

scales have been recently detected in numerical simulations of 2D Oldroyd-B cellular

flows [34], sharing with our setup both the presence of regions of intense strain and the

absence of artificial polymer-stress diffusion.

We further analysed the statistics of fluctuations of velocities and of their temporal

increments (local accelerations) for Wi > 5. Those of the axial velocity components are

close to Gaussian for all Wi values in the developed regime, those of the transversal

ones have a similar behaviour but they also exhibit a bimodal pdf for 10 < Wi < 20,

which reflects the important alternations of the spatial flow asymmetry occurring in this

range of Weissenberg numbers. The pdf’s of both components of the local accelerations,

instead, definitely deviate from Gaussianity and are characterised by high tails, a typical

feature of turbulent flows. Such a phenomenology is in agreement with that observed

in previous experimental investigations (see e.g. the work of Burghelea et al. [13]).

We tracked an ensemble of synthetic Lagrangian tracers (initially distributed in well

separated populations) inside our cross-slot setup in order to provide a (preliminary)
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characterisation of the mixing effectiveness of the elastic-turbulent flows. We reported a

perceptible mixing of tracer particles (for both Oldroyd-B and UCM fluid models) when

the Lagrangian particles were advected in a flow featuring turbulent-like behaviour.

Furthermore, we noticed that the mixing of tracer particles was more pronounced for

the zero-viscosity ratio solution (equivalent to UCM fluid) in comparison to the β = 1/9

one, even if a smaller Weissenberg number was adopted for the former.

In summary, we have shown the possibility to numerically reproduce the different

dynamical regimes of polymer solutions that are experimentally observed in cross-slot

devices, using simple viscoelastic fluid models (Oldroyd-B and UCM). In particular,

this approach allowed us to obtain turbulent-like states bearing some resemblance

with elastic turbulence for what concerns most of the statistical features considered.

Some quantitative differences have also been put in evidence, which calls for further

theoretical and numerical developments.

Future prospects

We propose miscellaneous paths that would be interesting to explore as an extension of

the work developed in this thesis.

• To provide a more precise comparison with experimental studies, three-dimen-

sional flows should be simulated in the cross-slot geometry.

• A complex and intriguing turbulent-like two-state system was observed and de-

scribed in Section 5.5; a deep understanding of the origin and statistical properties

of that dynamics is currently lacking.

• Only a preliminary inquiry on the mixing properties of the elastic-turbulent

cross-slot flows was carried out. Further and deeper developments are needed, as

e.g. more quantitative measurement using Lagrangian tracers or an inspection of

the Eulerian dynamics of particles, through a passive scalar transport analysis.

• To explore the effects of polymer non-linear elasticity, more complex viscoelastic

fluid models could be considered, like different closures of the FENE family of

models (see Subsection 1.3.2).
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AppendixA
Step-by-step algorithm for the Gilcart

solver

This Appendix provides a detailed description of the algorithm for solving the discre-

tised equations inside the finite-volume-based Gilcart flow solver, concerning a few

different formulations and constitutive models. The numerical methods adopted for

discretising such equations are described in Sections 2.2 and 2.3.

A.1 Standard formulation

• Step 1: Initialise the simulation

The input file is read, main variables are allocated then initialised, the geometric mesh

is created following instructions given in the input file and output files are assigned

with initial printings.

• Step 2: Evaluation of flow quantities

First step inside the main temporal loop: physical quantities such as velocity gradients,

rate-of-strain tensor and fluid parameters are calculated.

• Step 3: Evaluate the extra-stress tensor τ

Here, the solver evolves the constitutive equation for the polymeric extra-stress, follow-

ing the fluid model chosen. For the Oldroyd-B model (see Subsection 1.3.1, for details),

the equation to be discretised is:

τ +λ
[
∂τ
∂t

+∇ · (uτ )−∇uT · τ − τ ·∇u
]

= ηpγ̇ . (A.1)
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In this case, the tensor τ (n+1) is evaluated explicitly for each component, depending

only on the previous time step values of τ (n) and u(n).

For the FENE-P model (whose constitutive equations are shown in Subsection 1.3.2),

we solve the evolution equation for the conformation tensor c(n+1), by discretising the

equation

Dc
Dt

= c ·∇u+∇uT · c+
1
λ

I − c

1− tr(c)
L2

 , (A.2)

for the components of c(n+1), which will depend only on previous time step values of

c(n) and u(n). Afterwards, we recover τ (n+1) from tensor c(n+1), by using the relation

τ =
ηp
λ

 c

1− tr(c)
L2

− I

 . (A.3)

• Step 4: Calculate the global term S (u)

Equation A.4 is evaluated for all three components of this function of the velocity field

and extra-stress tensor,

S (u) =
u

∆t
+∇ ·

(
ν0∇u+

1
ρ
τ −uu

)
. (A.4)

It is important to remark that for this equation, the velocity components and velocity

gradients are evaluated at previous time step u(n), but the extra-stress tensor values

used have already been updated in the previous inner step to τ (n+1).

• Step 5: Solve the implicit equation for the pressure field

The numerical code sets and solves the linear system Ap(n+1) = B(n) (detailed in the

final part of Subsection 2.2.2) for the unknown pressures at current time step.

• Step 6: Evaluate the velocity field u(n+1)

With the pressure field p(n+1) calculated in the previous inner step, the velocity field

u(n+1) is updated at the current time step, using Eq. A.5,

u(n+1) = ∆t

[
S (u)(n) − 1

ρ
∇p(n+1)

]
. (A.5)
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• Step 7: Advance in time

The algorithm then sets n+ 1→ n and repeats steps 2− 7 until numerical convergence

is attained or another stopping criterion is met.

A.2 Square-root technique

Taking into account the code implementations detailed in Section 2.3, some intermediate

procedures have to be executed between steps 2 and 3 of Section A.1.

• Step 2.1: Calculate the square-root tensor and numerically evolve it

Firstly, the conformation tensor c(n) is retrieved from the extra-stress tensor calculated

at previous time step, using Eq. 1.13, and its unique SPD square-root b(n) is determined.

This tensor then evolves following:(
∂b
∂t

+u ·∇b
)
− b ·∇u−a · b+

b− b−1

2λ
= 0 . (A.6)

• Step 2.2: Retrieve the extra-stresses tensor

In this second and final step, the tensors c(n+1) and τ (n+1) are obtained directly from

b(n+1), using Eqs. 2.32 and 1.13, and the algorithm advances to step 3.
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AppendixB
Analytical solution of the steady velocity

field for a channel flow

In Subsection 2.4.2, we have displayed the analytical solution for the steady-state

velocity field, for a plane channel geometry. In the present Appendix, we present the

details of the solution. We rewrite here the momentum equation under fully developed

flow conditions (Eq. 2.43) to be solved analytically,

∂
∂y

(
ηs
∂u
∂y

+ τxy

)
=
∂p

∂x
. (B.1)

The shear component of the extra-stress tensor is directly recovered from the corre-

sponding component of the Oldroyd-B constitutive equation presented in Eq. 1.9,

τxy = ηp
∂u
∂y

. (B.2)

Replacing Eq. B.2 into Eq. B.1 leads to

∂2u

∂y2 =
1
ηt

∂p

∂x
, (B.3)

where we recall that ηt = ηs + ηp.

From the wall-normal component of the Navier-Stokes equation, we can verify that

the derivative ∂p/∂y = 0, which implies that p(x) is a function only of x−component and

hence the gradient dp/dx is a parameter of the problem. Defining the channel superior

and inferior boundaries at +L and −L (see Fig. 2.2), this differential equation can now

be integrated twice, applying the no-slip condition at both walls:

u(−L) = 0, u(+L) = 0 . (B.4)

This operation yields the solution:
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u(y) =
1

2ηt

∂p

∂x

(
y2 −L2

)
. (B.5)

The channel average velocity can be calculated by an integration over the channel

cross section:

uavg =
1

2L

∫ L

−L
u(y)dy =

−L2

3ηt

∂p

∂x
. (B.6)

We can thus express Eq. B.5 in terms of the average velocity defined by Eq. B.6,

finally obtaining a closed-form solution in the form of a parabolic velocity profile, as

we should expect for this problem:

u(y) =
3
2
·uavg

[
1−

(y
L

)2
]
. (B.7)



AppendixC
Stretching factor for geometric meshes

In Subsection 4.2.2, general aspects of the computational mesh created for the cross-slot

geometry were presented. We detail below the derivation procedure of the equation for

the stretching factor, Eq. 4.4.

A general geometric progression (GP) with first term a1 and ratio r has the sequence

formation:

a1, a1 · r,a1 · r2, ... , a1 · rn−1, a1 · rn . (C.1)

In order to find the nth term of such geometric progression, defined here as an, we

use the formula

an = a1 · rn−1 . (C.2)

The nth partial sum of the GP (Sn) is

Sn =
n∑
k=1

ak =
a1 (1− rn)

1− r
, r , 1 . (C.3)

In our analysis, we define the stretching factor we are looking for (fs) as equivalent to

r; the partial sum Sn represents the summation of the lengths of all mesh elements in

the direction under consideration, coinciding with the arm length La.

To obtain a smooth transition to the neighbouring mesh configuration, we consider

the first element of the contiguous mesh to be part of the same GP, as the an+1 term.

Here, such element belongs to the central square of the cross-slot geometry. Taking into

account the uniform grid size in the central zone and Eq. C.2, we have:

an+1 =
d
N

= a1 · fsN , (C.4)
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where d represents the arm width and N is the number of cells in the central square,

which we set to be equal to the number of arm cells (n) in the refining direction. We

recall that we used here r = fs. Substituting Eq. C.4 in Eq. C.3 yields

La =
d
(
1− fsN

)
N · fsN (1− fs)

, (C.5)

identifying here that Sn = La. Defining the length-to-width aspect ratio for the cross-slot

arm as

Ar =
La
d
, (C.6)

and using Eq. C.5, the stretching factor fs is the only positive solution of the non-linear

algebraic equation

1− fsN

1− fs
= Ar ·N · fsN . (C.7)



AppendixD
Validation of the algorithm for

Lagrangian tracers

We report here a validation of the algorithm used for advecting Lagrangian tracers,

written in C++ language inside the OpenFOAM® code. This 2nd order Runge-Kutta

algorithm was employed to evaluate mixing properties of turbulent-like flows in Sec-

tion 5.7.

We consider here a steady and laminar flow through our two-dimensional cross-slot,

with β = 1/9 and Wi = 0.1, thus below the onset of purely elastic instabilities. After an

initial transient corresponding to a duration of 100λ, we place four tracers in specific

locations, represented in Fig. D.1 as T(1,2,3,4). Particles T(1,2,3) are placed in the same

vertical axis x = −5 and at y−positions y(1,2,3) = (0.4,0,−0.15); and particle T4 is placed

at the geometrical centre of the cross-slot (x4 = y4 = 0).

T1

T2

T3 T4

Figure D.1 – Initial position of Lagrangian tracers (see text) for performing a validation
of the algorithm. M50 mesh was adopted here.

Tracers’ path after their injection inside the flow are displayed in Figs. D.2 (nor-

malised x−coordinate) and D.3 (normalised y−coordinate) for all four particles as a
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function of non-dimensional time, with respective analytical solutions for validation

purposes.
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Figure D.2 – Temporal evolution of tracers’ x−coordinate, for β = 1/9 and Wi = 0.1.
The solid black lines are analytical curves for the particles’ path in a laminar

Oldroyd-B channel flow.
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Figure D.3 – Temporal evolution of tracers’ y−coordinate, for β = 1/9 and Wi = 0.1.
The solid black lines are analytical curves for the particles’ path in a laminar

Oldroyd-B channel flow.



AppendixE
Viscoelastic flows of FENE-P fluids

We introduced and detailed the FENE-P model in Subsection 1.3.2, where we presented

it as an improved (in the sense of physical coherence) constitutive equation in compari-

son to the linear elastic Oldroyd-B model. For the sake of comparison, we make here

some brief (and preliminary) comments on this viscoelastic model, for which a concise

numerical study has been performed, using the M50 mesh.

The maximum extensibility of the polymer molecules in this model is controlled

by the L2 parameter, which varied from 400 to 104 in our analysis. We also kept

the viscosity ratio fixed at β = 1/9, Re = 0 and increased Wi aiming to characterise

the levels of elasticity corresponding to the cross-slot purely elastic instabilities. For

the FENE-P concentrated solutions analysed here, we observed that the flow always

transitions initially to the steady asymmetric state, taking into account the range of

the L2 parameter exploited; when Wi is further increased, the second (and unsteady)

transition also sets in, for L2 ≥ 400.

We conclude this discussion by compiling in Tab. E.1 the critical Weissenberg

Wi
(I, II)
c for the transitions to steady asymmetric and unsteady flows, at β = 1/9 and for

increasing values of the L2 parameter (including the limiting case L2→∞, equivalent

to the Oldroyd-B model).
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L2 Wi
(I)
c (±0.005) Wi

(II)
c

400 0.375 2.35 ± 0.05

625 0.375 2.25 ± 0.05

900 0.375 1.75 ± 0.05

1600 0.365 1.65 ± 0.05

2500 0.365 1.65 ± 0.05

10000 0.365 1.55 ± 0.05

∞ 0.365 1.54 ± 0.01

Table E.1 – Wi
(I)
c and Wi

(II)
c for multiple L2 parameters of the FENE-P model, with

β = 1/9. The limiting case L2→∞ is equivalent to the Oldroyd-B model.
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Numerical simulation of the transition to elastic turbulence in viscoelastic inertialess
flows

Abstract

Fluid mixing represents an important component of the field of fluid dynamics, what makes

the understanding of this subject so meaningful from both the fundamental and applied

(e.g. industrial processes) point of view. In miniaturised geometries, under typical conditions,

mixing is a slow, difficult and inefficient process due to the naturally laminar character of

these flows, which forces the homogenisation of different fluid elements to occur via molecular

diffusion instead of faster-acting advective transport. However, recent experimental studies

on low-Reynolds-number viscoelastic flows have shown that efficient mixing can be triggered

in several geometrical configurations (including micro-scale devices), by the phenomenon of

elastic turbulence. The first part of this thesis is devoted to the understanding and investigation

of numerical challenges present in the domain of non-Newtonian fluid dynamics, focusing in

particular on the high-Weissenberg number problem. The latter manifests as a breakdown of

the numerical scheme when the polymeric extra-stress evolution equations are implemented in

a direct way, which poses severe limits to the possibility to accurately simulate elastic turbulent

flows. We provide numerical evidence of the beneficial effect (in terms of increased stability) of

the square-root decomposition of the extra-stress in a finite-volume-based implementation of

the governing equations in a two-dimensional channel. The second part of the thesis reports

about the emergence and characterisation of purely elastic instabilities in numerical simula-

tions of zero-Reynolds-number Oldroyd-B fluids in a two-dimensional cross-slot geometry.

By means of extensive numerical work, we provide a detailed characterisation of the purely

elastic instabilities arising in the system for wide ranges of both the fluid elasticity and the

polymer concentration. For concentrated solutions and large enough Weissenberg numbers,

our simulations indicate the emergence of disordered flow pointing to elastic turbulence. We

analyse the transition to irregular dynamics and characterise the statistical properties of such

highly elastic flows, discussing the similarities and differences with experimental results from

the literature.

Keywords: numerical simulation, elastic turbulence, viscoelastic fluid, cross-slot, high-
Weissenberg number problem, finite-volume method, Oldroyd-B, OpenFOAM, mixing

Unité de Mécanique de Lille - Joseph Boussinesq
(UML) EA 7512 – Université de Lille - Cité Scientifique – Bâtiment ESPRIT – Avenue
Henri Poincaré – 59655 Villeneuve d’Ascq, France



Simulation numérique de la transition à la turbulence élastique dans des écoulements
viscoélastiques sans inertie

Résumé

Le mélange de fluides représente un élément important du domaine de la dynamique des

fluides, ce qui rend la compréhension de ce sujet si significative du point de vue fondamental

et appliqué (p. ex., les processus industriels). Dans les géométries miniaturisées (dans des

conditions typiques) le mélange est un processus lent, difficile et inefficace. Cela en raison

du caractère naturellement laminaire de ces écoulements, qui oblige l’homogénéisation de

différents éléments fluides à se produire par diffusion moléculaire au lieu d’un transport advectif,

à l’action plus rapide. Cependant, des études expérimentales récentes sur les écoulements

viscoélastiques à faible nombre de Reynolds ont montré qu’un mélange efficace peut être

déclenché dans plusieurs configurations géométriques (y compris les dispositifs à l’échelle

microscopique), par le phénomène de la turbulence élastique. La première partie de cette thèse

est consacrée à la compréhension et à l’investigation des défis numériques présents dans le

domaine de la dynamique des fluides non newtonienne, en se concentrant plus particulièrement

au problème du haut nombre de Weissenberg. Ce dernier se manifeste par une rupture du

schéma numérique, lorsque les équations d’évolution d’extra-contraintes polymériques sont

évaluées de façon directe. Ceci pose des limites importantes à la possibilité de simuler avec

précision des écoulements turbulents-élastiques. Nous fournissons des preuves numériques de

l’effet bénéfique (en termes de gain en stabilité) de la décomposition en racine carrée de l’extra-

contrainte dans une implémentation en volumes finis des équations régissant l’écoulement

dans un canal bidimensionnel. La deuxième partie de la thèse traite de l’émergence et de la

caractérisation d’instabilités purement élastiques dans des simulations numériques de fluides

Oldroyd-B à nombre de Reynolds zéro dans une géométrie du type cross-slot bidimensionnel.

Grâce à un travail numérique approfondi, nous présentons une caractérisation détaillée des

instabilités purement élastiques. Ces instabilités apparaissant dans le système pour de larges

plages d’élasticité du fluide et de concentration des polymères. Pour les solutions concentrées

et des nombres de Weissenberg assez grands, nos simulations indiquent l’apparition d’un

écoulement désordonné pointant vers la turbulence élastique. Nous analysons le passage à

une dynamique irrégulière et caractérisons les propriétés statistiques de tels écoulements très

élastiques, en discutant des similitudes et des différences avec les résultats expérimentaux de la

littérature.

Mots clés : simulation numérique, turbulence élastique, fluide viscoélastique, cross-slot, pro-
blème du haut nombre de Weissenberg, méthode des volumes finis, Oldroyd-B, Open-
FOAM, mélange
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