
Université de Lille
Ecole Doctorale Sciences Pour L’ingénieur

Thèse de Doctorat
Spécialité: Informatique

Présentée par Nicolas Carrara

Reinforcement learning for dialogue systems optimization with user adaptation

Apprentissage par renforcement pour l’optimisation des systèmes de dialogue via l’adaptation à l’utilisateur

sous la direction du Pr. Olivier Pietquin
et l’encadrement du Dr. Romain Laroche

ainsi que du Dr. Tanguy Urvoy

Soutenue publiquement à Villeneuve d’Ascq, le 18 Décembre 2019 devant le jury composé de :

Pr. Philippe Preux Université de Lille Président du jury
Dr. Alain Dutech INRIA Rapporteur
Pr. Fabrice Lefèvre Université d’Avignon Rapporteur
Dr. Lina Maria Rojas-Barahona Orange Labs Examinatrice
Pr. Olivier Pietquin Université de Lille, Google Research Directeur de thèse
Dr. Romain Laroche Microsoft Research Encadrant industriel
Dr. Tanguy Urvoy Orange Labs Encadrant industriel

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe SequeL, 59650, Villeneuve d’Ascq, France

2

Abstract
The most powerful artificial intelligence systems are now based on learned statistical
models. In order to build efficient models, these systems must collect a huge amount
of data on their environment. Personal assistants, smart-homes, voice-servers and other
dialogue applications are no exceptions to this statement. A specificity of those systems is
that they are designed to interact with humans, and as a consequence, their training data
has to be collected from interactions with these humans. As the number of interactions
with a single person is often too scarce to train a proper model, the usual approach to
maximise the amount of data consists in mixing data collected with different users into a
single corpus.

However, one limitation of this approach is that, by construction, the trained models
are only efficient with an "average" human and do not include any sort of adaptation; this
lack of adaptation makes the service unusable for some specific group of persons and
leads to a restricted customers base and inclusiveness problems. This thesis proposes
solutions to construct Dialogue Systems that are robust to this problem by combining
Transfer Learning and Reinforcement Learning. It explores two main ideas:

The first idea of this thesis consists in incorporating adaptation in the very first dialogues
with a new user. To that extend, we use the knowledge gathered with previous users. But
how to scale such systems with a growing database of user interactions? The first proposed
approach involves clustering of Dialogue Systems (tailored for their respective user)
based on their behaviours. We demonstrated through handcrafted and real user-models
experiments how this method improves the dialogue quality for new and unknown users.
The second approach extends the Deep Q-learning algorithm with a continuous transfer
process.

The second idea states that before using a dedicated Dialogue System, the first in-
teractions with a user should be handled carefully by a safe Dialogue System common
to all users. The underlying approach is divided in two steps. The first step consists in
learning a safe strategy through Reinforcement Learning. To that extent, we introduced a
budgeted Reinforcement Learning framework for continuous state space and the underlying
extensions of classic Reinforcement Learning algorithms. In particular, the safe version of
the Fitted-Q algorithm has been validated, in term of safety and efficiency, on a dialogue
system tasks and an autonomous driving problem. The second step consists in using those
safe strategies when facing new users; this method is an extension of the classic ε-greedy
algorithm.

3

Résumé
Les systèmes d’intelligence artificielle les plus puissants utilisent désormais des modèles
statistiques. Afin de construire des modèles efficaces, ces systèmes doivent collecter une
quantité substantielle de données issues de l’environnement. Les assistants personnels,
maisons connectées, serveurs vocaux et autres systèmes de dialogue ne font pas exception.
Ces systèmes ont pour vocation d’interagir avec des humains, et pour cela, leurs données
d’apprentissage se doivent d’être collectées avec ces mêmes humains. Parce que le nombre
d’interactions avec une seule personne est assez faible, l’approche usuelle pour augmenter
le jeu de données consiste à agréger les données de tous les utilisateurs.

Une des limitations de cette approche vient du fait que, par construction, les mod-
èles entraînés ainsi ne sont efficaces qu’avec un humain "moyen" et n’incluent pas de
système d’adaptation ; cette faiblesse entraîne la restriction du service à certains groupes
de personnes; Par conséquent, cela réduit l’ensemble des utilisateurs et provoque des
problèmes d’inclusion. La présente thèse propose des solutions impliquant la construction
de systèmes de dialogue combinant l’apprentissage par transfert et l’apprentissage par
renforcement. La thèse explore deux pistes de recherche :

La première consiste à inclure un mécanisme d’adaptation dès les premières interac-
tions avec un nouvel utilisateur. Pour ce faire, nous utilisons la connaissance accumulée
avec des utilisateurs déjà connus du système. La question sous-jacente est la suivante :
comment gérer l’évolution du système suite à une croissance interrompue d’utilisateurs
et donc de connaissance? La première approche implique le clustering des systèmes
de dialogue (chacun étant spécialisé pour un utilisateur) en fonction de leurs stratégies.
Nous démontrons que la méthode améliore la qualité des dialogues en interagissant avec
des modèles à base de règles et des modèles d’humains. La seconde approche propose
d’inclure un mécanisme d’apprentissage par transfert dans l’exécution d’un algorithme
d’apprentissage profond par renforcement, Deep Q-learning.

La seconde piste avance l’idée selon laquelle les premières interactions avec un nouvel
utilisateur devraient être gérées par un système de dialogue sécurisé et précautionneux
avant d’utiliser un système de dialogue spécialisé. L’approche se divise en deux étapes.
La première étape consiste à apprendre une stratégie sécurisée avec de l’apprentissage par
renforcement. À cet effet, nous proposons un nouveau framework d’apprentissage par
renforcement sous contrainte en états continus ainsi que des algorithmes les solutionnant.
En particulier, nous validons, en termes de sécurité et d’efficacité, une extension de Fitted-
Q pour les deux applications sous contraintes : les systèmes de dialogue et la conduite
autonome. La deuxième étape implique l’utilisation de ces stratégies sécurisées lors des
premières interactions avec un nouvel utilisateur ; cette méthode est une extension de
l’algorithme classique d’exploration, ε-greedy.

Acknowledgement and Thanks

Je tiens tout d’abord à remercier Olivier pour m’avoir aidé à faire émerger des idées
nouvelles et à leur donner vie ensemble dans une ambiance de grande camaraderie. Un
merci à Romain pour m’avoir guidé dès le début de la thèse ; sa rigueur et ses précieuses
relectures ont grandement contribué à la qualité de mes travaux. J’aimerais aussi remercier
Tanguy pour son enthousiasme et sa volonté d’approndir les concepts les plus techniques,
et Jean-Léon pour son approche alternative et pédagogique de mes travaux.

Je voudrais ensuite remercier Alain Dutech et Fabrice Lefèvre d’avoir accepté d’être
les rapporteurs de cette thèse. Mes remerciements s’adressent aussi à Lina Maria Rojas-
Barahona et Philippe Preux, respectivement examinatrice et Président du jury.

Je tiens également à remercier mes collègues, notamment Edouard pour sa contribution
enrichissante à notre dernier projet, Merwan, Ronan, Hatim, Mathieu, Florian, Xuedong,
Guillaume, Julien, Omar, Pierre, et Odalric pour les discussions techniques qui m’ont
permis d’avancer. Je souhaite aussi remercier les personnes avec qui j’ai partagé mon
quotidien, notamment Masha, William, Tatiana, Lilian, Michal, Mateo, Emilie, Amélie, et
Phillipe.

En outre, je n’oublie pas mes collègues d’Orange Labs, en particulier Myriam pour la
dimension humaine de son encadrement.

Enfin, je suis reconnaissant envers mes proches pour leur soutien et leurs encourage-
ments tout au long de mon cursus universitaire.

Contents

1 Symbols . 13

Acronyms . 15

2 Introduction . 17

2.1 History of dialogue systems 18
2.2 A challenge for modern applications 21
2.3 Contributions 22
2.4 Publications 23
2.5 Outline 24

I Task-oriented Dialogue Systems

3 The pipeline . 27

3.1 A modular architecture 27
3.2 On the slot-filling problem 29
3.2.1 Settings . 29

3.3 The Dialogue Manager 30

4 Training the Dialogue Manager with RL 33

4.1 Assuming a given dialogue corpus 39
4.2 Online interactions with the user 40

4.3 To go beyond 43

5 User adaptation and Transfer Learning 45

5.1 The problem of Transfer Learning 45
5.2 State-of-the-art of Transfer Learning for Dialogue Systems 47
5.2.1 Cross domain adaptation . 48
5.2.2 User adaptation . 49
5.2.3 An aside on dialogue evaluation . 50

II Scaling up Transfer Learning

6 A complete pipeline for user adaptation 55

6.1 Motivation 55
6.2 Adaptation process 56
6.2.1 The knowledge-transfer phase . 56
6.2.2 The learning phase . 57

6.3 Source representatives 57
6.4 Experiments 58
6.4.1 Users design . 60
6.4.2 Systems design . 61
6.4.3 Cross comparisons . 61
6.4.4 Adaptation results . 63

6.5 Related work 65
6.6 Conclusion 66
6.7 Discussion 66

III Safe Transfer Learning

7 The Dialogue Manager as a safe policy 69

7.1 Motivation 70
7.1.1 A remark on deterministic policies . 71

7.2 Budgeted Dialogue Policies 71
7.3 Budgeted Reinforcement Learning 75
7.3.1 Budgeted Fitted-Q . 75
7.3.2 Risk-sensitive exploration . 75

7.4 A scalable Implementation 76
7.4.1 How to compute the greedy policy? . 76
7.4.2 Function approximation . 77
7.4.3 Parallel computing . 78

7.5 Experiments 78
7.5.1 Environments . 80
7.5.2 Results . 82
7.5.3 Budgeted Fitted-Q policy executions . 82

7.6 Discussion 86
7.7 Conclusion 86

8 Transfering safe policies . 89

8.1 Motivation 89
8.2 ε-safe 89
8.3 Experiment 90

IV Closing

9 Conclusion . 95

9.1 Contributions 95
9.2 On the long run 96

10 Appendices . 99

.1 Proofs of Main Results 99

.1.1 Proposition 7.2.1 . 99

.1.2 Theorem 7.2.2 . 100

.1.3 Proposition 7.2.3 . 101

.1.4 Theorem 7.2.4 . 101

.1.5 Theorem 7.2.5 . 102

.1.6 Proposition 7.4.1 . 106

.2 Parameters 108

.3 Repoducibility 110

.3.1 Instructions for reproducibility . 110

.3.2 The Machine Learning reproducibility checklist . 110

A Continuous transfer in Deep Q-learning 113
A.0.1 Deep Q-learning . 113

A.1 The transfer phase. 114
A.1.1 Auto-Encoders . 114
A.1.2 Using the Temporal Difference error . 114

A.2 The learning phase 114
A.2.1 Transferring the transition . 114
A.2.2 Transferring the network . 115

A.3 Conclusion 116
A.3.1 Discussion . 116

Bibliography . 117

Index . 137

List of items

Figures

2.1 The Voder demonstration . 19

3.1 The architecture of a modular Spoken Dialogue System 28
3.2 The pipeline view from the Dialogue Policy . 31

4.1 Example of Markov Decision Processes . 35
4.2 The Dialogue Manager cast as a Reinforcement Learning problem. . . . 39

5.1 Objectives of Transfert Learning (Langley 2006; Lazaric 2012) 47

6.1 Adaptation process . 56
6.2 Some projections of policies optimised versus human-model users 62
6.3 Dialogue quality in the handcrafted and human setup 64

7.1 Example of relaxed Budgeted Markov Decision Process 71
7.2 Representation of πhull. 77
7.3 A Budgeted Fitted-Q Neural-Network . 78
7.4 Results on Corridors . 83
7.5 Results on slot-filling and highway-env 84
7.6 Calibration for Lagragian Relaxation. 87

8.1 ε-safe algorithm. 90
8.2 Half-Gaussian distribution of p values. 90
8.3 Performance of the greedy policies. 91

1 Concavity Example . 102

2 We represent the range of possible solutions Qr2,∗ for any Q2 ∈ Ball(Q1), given
Q1 ∈ Lλ . 104
3 We represent a section [β − κ, β + κ] of F1 and Ball(F1, R). We want to bound
the range of Qr2∗. 105

A.1 Counter example for the Temporal Difference error solution 115

Tables

5.1 Transfer Learning for Dialogue Systems . 51

6.1 Actions distributions of humans . 60
6.2 Cross comparison between handcrafted users and systems 63
6.3 Cross comparison between human-model users and systems 63

7.1 Parameters of Corridors . 80
7.2 Parameters of Slot-Filling . 81
7.3 Parameters of highway-env . 82
7.4 Example of Dialogue Policies executions . 85

1 Algorithms parameters for Corridors . 108
2 Algorithms parameters for slot-filling . 109
3 Algorithms parameters for Highway-Env . 109

Algorithms

1 Value-Iteration . 37
2 Policy-Iteration . 38

3 Budgeted Value-Iteration . 74
4 Budgeted Fitted-Q . 75
5 Risk-sensitive exploration . 76
6 Convex hull policy πhull(a|s;Q) . 77
7 Scalable Budgeted Fitted-Q . 79

1. Symbols

µ⊥ Gaussian mean for the computing of the speech recognition score when the utterance
is missunderstood. 58–61, 63–65, 81

C Constraint function. 70, 72, 74, 81, 86, 101, 106
Gc Discounted return for the constraint signal. 70–73, 80, 82
G Discounted return for the reward signal. 36, 59, 70–73, 80, 82
K Number maximum of iterations. 40, 61, 65
N Number of transitions. 34, 39, 40, 46, 57, 58, 61, 63, 108, 109
P Transition function. 33, 34, 36–40, 45, 72, 74, 86, 101, 114, 116
Qc Constraint Q-function. 72–74, 77–79, 82, 101–106
Qr Reward Q-function. 12, 72–74, 77–79, 100–107
Q Q-function (action-value function). 36–38, 40–42, 46, 48, 50, 51, 71, 74, 89, 96,

113–115
R Reward function. 33, 34, 36–40, 45, 70, 72, 74, 81, 86, 100, 101, 106, 116
Vc Constraint value function. 72, 73, 101
Vr Reward value function. 72, 73, 100
V Value function. 65
α Learning rate. 41, 42
β′ Next budget. 72
βa Budget allocated to an action. 71, 72, 75, 76, 78, 102
β Budget. 12, 70–73, 75–79, 82, 85–87, 101, 103–108
δ Dirac function. 72, 77, 106
ε Probability of taking the random action in the ε-greedy exploration procedure. 11, 13,

23, 24, 41, 42, 57, 61, 65, 75, 76, 78, 89, 90, 92, 96, 137
γ Discount factor. 34, 36–38, 40–42, 59–61, 65, 70, 72–75, 78, 79, 100–105, 108, 109
κ An extra small value (to avoid overriding epsilon symbol). 12, 101, 102, 104, 105
A Set of actions. 34, 36–38, 40–42, 45–47, 70, 71, 74–79, 101, 106
B Binomial distribution. 58, 76

14 Symbols

D Batch of data. 39, 40, 75, 76, 78–80, 108, 109, 114
K Space of knowledge. 46
M Measure. 34, 36, 70, 72, 73, 100, 106
N Normal distribution. 58, 81
S Set of states. 34, 36–38, 40, 45–47, 70, 71, 74, 75, 78, 86, 101
T Bellman operator (∗ for optimality, π for evaluation). 36–38, 40
U Uniform distribution. 76
B Set of admissible budgets. 70, 71, 75, 76, 78, 79, 108, 109
µ> Gaussian mean for the computing of the speech recognition score when the utterance

is understood. 58–61, 63–65, 81
ν Speech Recognition Score. 58, 59, 61, 63, 81, 85, 108
G Augmented return. 72, 99
P Augmented transition function. 72, 73, 75, 100, 102, 105
Q Augmented Q-function. 12, 72–79, 82, 99–107
R Augemented Reward function. 72, 100
R Augmented reward. 72, 73
V Augmented value function. 72–74, 99–101
Π Set of budgeted policies. 72–74, 100, 101, 106, 107
A Set of augmented actions. 71–73, 75, 77, 79, 99–106
S Set of augmented states. 71–75, 79, 100–106
T Augmented Bellman operator (∗ for optimality, π for evaluation). 72–76, 78, 82,

100–103, 105, 106
π∗ Optimal budgeted policy. 75
π Budgeted policy. 11, 12, 72–78, 82, 99–102, 105, 106
Ξ Augmented projection operator. 75
φ Features function. 40, 42, 61
π∗ Optimal policy. 36–38, 65, 70, 71
π Policy. 36–38, 41, 46, 57, 58, 65, 70, 71, 74, 80, 82, 86, 114
U Set of users. 46, 58, 113, 114
θ Parameters to learn. 40, 42, 75, 82
> Matrix transposition. 40, 42
υ Stopping criterion for Value Iteration like algorithm, when successive parameters are

close to each other. 37, 40, 61, 65
ξ Speech Error Rate. 58, 60, 61, 64, 65, 81
i Index of a transition. 33, 34, 36, 39–42, 46, 57, 63, 75, 79, 114
k State of an iterative process. 37, 38, 40, 42
Ξ Projection operator. 38, 40

Acronyms

kNN k Nearest Neighbours. 60, 61

A.I. Artificial Intelligence. 17, 97
API Approximate Policy Iteration. 39
ASR Automatic Speech Recognition. 18, 19, 21, 27, 49, 58, 90
AVI Approximate Value Iteration. 38

BFTQ Budgeted Fitted-Q. 23, 24, 71, 75, 76, 78, 80, 82, 96, 108, 109
BMDP Budgeted Markov Decision Process. 24, 69–72, 74, 75, 78, 80, 86, 101

CMDP Constrainted Markov Decision Process. 70, 71, 80, 86, 106
CPU Central Processing Unit. 23, 76, 79, 110, 111

DM Dialogue Manager. 18, 19, 21, 24, 27–30, 33, 39–41, 43, 45, 46, 48, 49, 95
DP Dialogue Policy. 28–31, 33, 36, 41, 42, 46, 48, 49, 59, 86, 96, 114
DQN Deep Q-learning. 2, 3, 23, 43, 66, 96, 113–116
DRL Deep Reinforcement Learning. 23, 43, 69, 71, 86
DS Dialogue System. 2, 17–24, 29, 30, 33, 39, 47, 49, 65, 66, 69, 87, 89, 90, 95–97
DST Dialogue State Tracking. 21, 28–30, 33, 48, 50, 51, 61
DSTC Dialogue State Tracking Challenge. 21, 29, 39, 96

FTQ Fitted-Q. 2, 3, 40, 42, 50, 57, 58, 61, 64, 65, 75, 80, 82, 84, 86, 108, 109
FVI Fitted-Value-Iteration. 38, 40, 75

GAN Generative Adversarial Network. 19
GD Gradient Descent. 42
GP Gaussian Process. 48–50
GPU Graphics Processing Unit. 17, 110, 111

16 Acronyms

HMM Hidden Markov Model. 19

iid independent and identically distributed. 113

LS Least Squares. 40, 42
LSPI Least Squares Policy Iteration. 40, 51
LSTM Long Short-Term Memory. 19, 27–29

MAB Multi-Armed Bandit. 55, 57
MDP Markov Decision Process. 21, 31, 33, 34, 36, 45, 47, 55, 57, 65, 69–71, 114
ML Machine Learning. 17, 18, 20, 49, 99

NDG Negociation Dialogue Game. 23, 50, 58, 59, 66, 96
NLG Natural Language Generator. 19, 27–29
NLU Natural Language Understanding. 19–21, 27, 28, 30, 81
NN Neural Network. 19, 20, 27, 28, 39, 40, 46, 48, 71, 77, 78, 82, 108, 109, 113

PG Policy Gradient. 43
PI Policy Iteration. 37–40
POMDP Partially Observable Markov Decision Process. 21, 29

RBM Restricted Boltzmann Machine. 114
RL Reinforcement Learning. 2, 17, 22–24, 30, 31, 36, 38–43, 45, 46, 55, 69–71, 74, 77,

80, 86, 89, 95–97, 113, 116
RNN Recurrent Neural Networks. 19, 21, 27, 28, 30

SARSA State–Action–Reward–State–Action. 50
SDS Spoken Dialogue System. 18, 19, 21, 22, 27, 29, 30, 50, 71
SER Sentence Error Rate. 58, 59, 64, 81
SGD Stochastic Gradient Descent. 42
SL Supervised Learning. 46, 115
SRS Speech Recognition Score. 27, 30, 34, 36, 38, 58, 59, 61, 63, 69, 81, 82, 86, 108

TD Temporal Difference. 41, 113–116
TL Transfer Learning. 2, 18, 22–24, 41, 42, 45–49, 55, 95, 96, 113
TTS Text To Speech. 18, 19, 27, 29

UCB Upper Bound Confidence. 50, 57

VI Value Iteration. 37, 38

2. Introduction

In the past few years, Artificial Intelligence (A.I.) has experienced an unprecedented growth
in both industry and research. This was made possible by advances in Machine Learning
(ML) and statistics but also thanks to the computing capacities of modern Graphics
Processing Unit (GPU). A broad spectrum of domains enjoys the fallouts: medicine, law,
digital marketing, finance, automobile industry, and so on. The overwhelming majority
of applications involves predicting outcome given an input in a stateless fashion. For
example, using image recognition, a radiologist may get help finding tumours on an x-ray
image; given a sentence, an automatic translation tool infers the same sentence in an other
language; a trading black-box predicts the next variation of a stock with the knowledge
of all the past variations in stock exchange. When the task involves interacting with
the environment in a sequential fashion, the tools used to solve all the aforementioned
problems do not suffice. This class of problems includes - among others - autonomous
driving, power-grid management, online advertising, video games, robotics, and the domain
this work focuses on: dialogue.

In dialogue applications, two agents interact with each others. A classic use-case is
an agent, called Dialogue System (DS), interacting with a human user. To that end, one
must designs the strategy the DS will adopt. While pioneer methods involve rule-based
DSs, recent solutions involve learning the DS strategy, or policy, using the Reinforcement
Learning (RL) framework. The basic idea is that an agent (the DS) interacts with the
environment (the user). As it is interacting, the agent reinforces its knowledge of the
environment and adapts its policy accordingly. One drawback of this method is it may need
a substantial amount of interactions to construct a good enough policy. This statement
is especially true during early interactions. Correspondingly, if a human tries to solve a
completely new task, for instance, operating weightlessness with a full spacesuit, he will
fail or, at the very best, face some issues in his first interactions, then eventually adapt
to the new environment. Because space missions are expensive and time is critical, and
for probably a lot of additional factors out of the scope of this thesis, an astronaut cannot

18 Chapter 2. Introduction

afford to learn from scratch this new task. To remedy this situation, astronauts are trained
to execute a set of tasks equipped with their suit, in a weightless pool on Earth. That way,
they will be able to transfer their knowledge gathered in the pool environment to quickly
adapt in the space environment. Now, we consider that the astronaut represents the DS,
the pool environment represents a young person used to new technologies and the space
environment represents an elderly person with a very weak control over new technologies.
If one trains a DS enough to interact flawlessly with the young person, then he may be
able to transfer the data, the model or even the learnt world representation (features) to a
new DS, in order to speed-up the learning when interacting with the elderly person. In ML,
this process is called Transfer Learning (TL) and this thesis makes the hypothesis that TL
should be a good fit to improve the learning of DSs.

2.1 History of dialogue systems
In the collective imagination, a robot should walk, execute tasks, interact, and seamlessly
talk with humans. Each of these abilities is actually a whole domain of research. For
now, the separation is clear between each domain1. Science fiction introduced intelligent
agents that can dialogue; while Hal9000 (Clarke 1968) or Kit (Larson 1986) talk and
control a fully mechanical body (a spaceship and a car respectively), the sole purpose of
the Multivac (Asimov 1961) is question answering. In the same fashion, this thesis focuses
on building intelligent agents, known as DSs, where the sole purpose is to interact with
the human through the voice and using text. To build a DS, the designer must solve the
following challenges: process the human voice, extract meanings, decide what to respond,
create a proper semantic for the response and, finally, generate the artificial speech signal
for the response. While this thesis focuses on the decision part (also called Dialogue
Manager (DM)), a lot of research has been conducted on the other domains, independently
from DS in a whole.

Processing and generating speech
While text-based DSs process text information and produce textual answers, Spoken
Dialogue System (SDS) interact with the users through the voice channel. The challenging
task for SDSs is then to understand and generate spoken sentences (text to audio and
audio to text). Solutions incrementally more and more impressive trough the years have
been proposed from the signal processing community in the 20th century. For these
particular tasks, two modules are involved and detailed in Chapter 3, the Automatic Speech
Recognition (ASR) module used to process user spoken language, and the Text To Speech
(TTS) module to produce the system spoken response.

The first solution to the speech synthesis problem, known as TTS, was the Voice
Operating Demonstrator known as Voder (Homer et al. 1939). It is an electronic machine
able to synthesise human speech using a dedicated keyboard. It is based on Dudley’s
work at Bell Lab on the vocoder, a tool to analyse and synthesise speech. The Voder has
been introduced at the 1939 New York World’s Fair as show in Figure 2.1. In 1950, Dr.
Franklin S. Cooper from Haskins Laboratories released the final version of the Pattern
playback (Rubin et al. 2019). This device generates sounds given spectrograms of speech

1Even if one could argue that everything is connected, as for example, it may be hard to converse with a
robot that is running around.

2.1 History of dialogue systems 19

patterns. In the end of the 20th century, the dominating speech synthesizer was DECtalk.
The system is based on early work on KlattTalk (Dennis 1987). The system itself was a
standalone pluggable on any telephone facilitating vocal servers. Recently, DeepMind
showed impressive results with WaveNet (Van Den Oord et al. 2016), a deep Neural
Network (NN) for generating raw audio waveforms. The network is able to generate
speech in many languages but also novel music fragments. The same company introduced
very recently a Generative Adversarial Network (GAN) approach for TTS (Bińkowski
et al. 2019).

Figure 2.1: The Voder demonstration

The earliest attempt at designing an
ASR module was successfully achieved by
the Elmwood Button Company with Ra-
dio Rex. It was a toy dog built to react to
simple sound patterns, like "Rex". In the
late 1940s, the military got involved, when
the U.S. Department of Defense sponsored
the first researches in speech recognition in
order to process automatically intercepted
Russian messages. Following up, numer-
ous systems were able to processing dig-
its (Davis et al. 1952), vowels (W. Forgie
et al. 1959) and finally words (Ben 1966).
It is in the 1970’s that the Defense Ad-
vanced Research Projects Agency (from the
U.S. Department of Defense) ran a massive speech recognition program involving well-
established research groups, this attempt was unsuccessful but it led to a new area of
research around Hidden Markov Models (HMMs) (Jelinek 1976). HMMs were a first step
in the art of learning statistical models based on data. HMMs were a reference in ASR
until the perceptron (Rosenblatt 1958) expanded into NNs. HMM approaches involve
different modules to handle pronunciation, acoustics and language model. NNs shift the
problem to an end to end approach, i.e. sound signal to sentence. To that extent, Recurrent
Neural Networks (RNN) (Rumelhart et al. 1986), and later Long Short-Term Memory
(LSTM) (Hochreiter et al. 1997), have been applied to predict sequences of words (Graves
et al. 2014).

On the semantic problematic

Two components of a DS, the Natural Language Generator (NLG) and the Natural Lan-
guage Understanding (NLU) handle most of the semantics involved in the dialogue process.
The NLU transforms text to concepts/semantics, the NLG does the opposite.

Research in NLGs started growing in 1970. Several applications benefited from the
advances as text summary (Goldberg et al. 1994) and documentation generation (Lavoie
et al. 1977). The SDSs have been using template-based NLG for a long time. The first fully
automated NLG for SDSs were developed in the early 2000s (Oh et al. 2000; Rambow
et al. 2001). In Lemon (2011), the NLG module from the SDS and the DM (as discussed
in Chapter 3) are jointly optimised. Later, Perera et al. (2017) survey described 12 years of
advances in NLGs research. More recently, NNs have been used to automatically generate
behavior explanations of an autonomous agent (Ehsan et al. 2018).

20 Chapter 2. Introduction

Meanwhile, in the same period, research around NLU has been conducted. In 1954, the
Georgetown–IBM experiment has been conducted in order to process automatic translations
of Russian sentences to English using grammar rules. Then, during his Ph.D thesis, Daniel
Bobrow developped STUDENT, a program solving algebra word problems (Bobrow 1964).
In 1969, Roger Schank introduced the conceptual dependency theory (Schank et al. 1969):
the idea was to share the same representation for two sentences with equivalent meaning.
Later, ML methods have been used for NLU with, for example, statistical pattern-matching
(Allen 1995). The next millennium saw IBM Watson, supercomputer champion of the
Jeopardy?!, using the deepQA technology (Ferrucci et al. 2010). Finally, more recent
approaches use NNs.

The Turing-Test
The ground basis of DSs, and computer science in general, has been established by Alan
Turing. He was a mathematician and logician and he is notably known as the first computer
scientist in the modern term’s meaning. His well known contributions are the Turing-
Machine (Turing 1936) and the Turing-Test (Turing 1950) both in scientific world and
popular culture2.

Quote 1 gives a rough idea of what is the Turing-Test. This test is inspired by the
imitation game, where an interrogator must determinate the gender of a human, based only
on written interrogations. While the imitation game discriminates males from females, the
Turing-Test discriminates humans from machines. This test is designed to measure the
human-likelihood of a DS. A human, the tester, dialogues independently with two agents
hidden in a box. One agent is another human, the other is the DS. If the tester is unable to
tell which is the human and which is the artificial system, then the test is successful.

Bliss: Isn’t it possible I may be so cleverly artificial that in every respect,
from largest to smallest, I am indistinguishable from the natural. If I
were, how could you tell the difference between me and a true human
being? ? [. . .]

Janov: It seems to me, then, that a robot that can in no way be distinguished
from a human being is a human being. If you were such a robot, you
would be nothing but a human being to me.

Quote 1: A dialogue between Bliss and Janov Perolat about discriminating Bliss as a
robot or not, in Foundation and Earth (Asimov 1986)

Recent attemps in the dialogue community proposed automatic almost-Turing-Test
or scores. The BLEU score (Papineni et al. 2002) was introduced to measure the human-
likeness of an automatic translation. The ROUGE score (Lin 2004) evaluates the quality
of an automatic text summary. ADEM (Lowe, Noseworthy, et al. 2017) is an automatic
dialogue evaluator learnt on datasets of human evaluations.

2To name a few: in the movie Blade Runner (Scott 1982), the Voight-Kampff test is a Turing-like test
to identify replicants (robots). More recently, the whole plot of Ex-machina (Isaac 2015) is around the
Turing-Test. In the Imitation Game (Moore 2014), we learn how Alan Turing and his team deciphered the
Enigma German machine using a dedicated electro-mechanical device (called the Turing-bombe), potentially
shortening World War II of a few years.

2.2 A challenge for modern applications 21

Dialogue Systems
Previously covered technologies were not DSs strictly speaking but rather individual
technologies later used as components of DSs. The first actual textual DS which was
capable of attempting the Turing-Test is ELIZA (Weizenbaum 1966). It is a text-based DS
(chatbot) used to mimic a Rogerian psychotherapist (Rogers 1942); it reformulates vaguely
what the patient said in order to express empathy. In 1972, the psychiatrist Kenneth
Colby created PARRY (Colby 1975), a textual DS simulating a person with paranoid
schizophrenia. This program also passed the Turing-Test when psychiatrists were unable
to discriminate PARRY from a human patient better than random guessing. In 1972, three
major technologies of the 70s met; during the International Conference on Computer
Communication, PARRY and ELIZA exchanged through the ARPANET, the ancestor
of the Internet. We can already distinguish two types of DSs, a chatbot, ELIZA, and
an user-model, PARRY, which simulates a real human user. In 1977, Daniel Bobrow
introduced the Genial Understander System as one of the first task-oriented DS in the form
of a travel agent (Bobrow et al. 1977). In 1995, the Massachusset Institute of Technology
released Voyager (Glass et al. 1995), an SDS for urban navigation. It was quickly followed
by Jupiter, from the same laboratory, a telephonic SDS for weather information (Zue et al.
2000). Meanwhile, Orange created ARTIMIS (Sadek et al. 1997), a DS based on the idea
of rational agency, where the dialogue can be seen as rational interactions using logical
axioms (Cummings 2010). In 1996, the company Charles Schwab released the eSchwab,
an internet service for stock information (Cortada 2005). They designed the service as a
DS using all the aforementioned modules (ASR, NLU etc) (Pietquin 2004).

Marilyn Walker was the first to cast the DS’s strategy as a stochastic optimization
problem (Walker 1993), followed closely by Biermann et al. (1996), and later by Walker
et al. (1998), with real users experiments. Meanwhile, Esther Levin was the first to formally
describe dialogue management as a Markov Decision Process (MDP) problem (Levin
and Pieraccini 1997). Then Partially Observable Markov Decision Processes (POMDPs)
(Karl Johan 1965) have been extensively used for dialogue management (Roy et al. 2000;
S. J. Young et al. 2013). The DM uses belief tracking (or Dialogue State Tracking (DST)),
i.e. summary of the current state of the dialogue using dialogue history. It led to the
Dialogue State Tracking Challenge (DSTC) (Jason D. Williams et al. 2013), a competition
evaluating the best models for belief tracking. RNNs did very well at this task (Henderson
et al. 2013).

2.2 A challenge for modern applications

Dialogue Systems are autonomous agents intended to converse with humans (or even
another DS). The state-of-the-art algorithms are now data-driven solutions (Lemon and
Pietquin 2012); this ability to automatically process voice or text from a user can improve
considerably any application based on a human-machine interface. In the movie Her (Jonze
2013), the dialoguing entity, an overpowered vocal assistant pretty close to Artificial
General Intelligence, can process or deliver any kind of information and comes along
with a lot a features that cover anything a human could offer and more. In real life, for
now, dialogue applications are divided in three parts, corresponding to three kinds of
problems (Gao et al. 2019):

22 Chapter 2. Introduction

Social chat
The DSs converses with the user like it would do passing the Turing-Test. The conversation
is mainly chit-chat with some recommendations and there is no well-defined goal. The
purpose of these systems is entertainment-driven. To that end, systems are mainly trained
to reproduce human conversation using predictive models or retrieval-based methods (H.
Chen et al. 2017). Mitsuku (Worswick 2005) and Rose (Bruce 2011) are examples of
chit-chat applications available on the market. Chit-chat can be also involved in the other
dialogue problems; in the online shopping domain, while the DS actually performs a task,
80% of the utterances are chit-chat messages (Z. Yan et al. 2017).

Question answering
In a more pragmatic way, the DS must provide a direct and concise answer to user queries
containing all the information needed. Most of the research focuses solely on query
question answering. So the system extracts keywords from the user query with semantic
parsing then consults a database (web documents or knowledge bases such as sales and
marketing datasets) to get the information. It reformulates this information with natural
language paraphrasing in a human way. State-of-the-art vocal assistants (Google assistant,
Amazon Alexa, etc) solve this kind of problems (Neustein et al. 2013). Recently, OpenAI
team introduced GPT-2 (Radford et al. 2019), a Transformer architecture (Vaswani et al.
2017) that is able to do extremly realistic question answering and text-autocompletion.

Task completion
The DS must achieve a task based on the information provided by the user. It usually
takes multiple dialogue turns to gather all the information needed thus involving sequential
decision making paradigm (Chapter 4). The user tasks, called domains, may take various
forms. A DS can collect medical information about the user then pass it to his doctor (Terry
2019). In a similar way, it can collect information about a user’s business then generate
a suitable website (Saeed 2019). It could also turn the light on or set the schedule of the
washing machine in a smart home. In the car, using a DS to setup the GPS trajectory
lets the user free to keep an eye on the road. More recently, Cambridge Dialogue System
Group released PyDial, a full framework for SDS (Ultes, Rojas-Barahona, et al. 2017) for
restaurant reservation (among other domains). Following those ideas, this thesis focuses on
solving task-driven problems using task-oriented DSs. The architecture of these systems is
thoroughly detailed in Chapter 3.

2.3 Contributions
As explained at the very beginning of this manuscript, we focus our attention primarily on
how to jumpstart the performances of a freshly created DS confronted with an unknown
user on a task-completion problem. This problematic can be solved via TL and this thesis
explores two basic paradigms. Both cast the dialogue as an RL problem but they differ
with respect to the safety.

In the first approach, we do not take the safety into account. We propose two different
directions to try and solve the problem: the first proposed method focuses on finding from
a pool of previously learned DSs, which DS is the more efficient with a new user. The
efficiency has no notion of safety and is guided by a signal only capturing the completion
of the task. Then, we transfer the knowledge of this source DS as we call it, to the target

2.4 Publications 23

DS (the freshly created DS that will be specialised in dialoguing with the new user). This
idea has been introduced by Genevay et al. (2016) and extended by Carrara, Laroche,
and Pietquin (2017) for larger DSs pools. The entire framework has been tested on the
Negociation Dialogue Game (NDG) (Laroche and Genevay 2017) on both handcrafted
and human-model users; the second method focuses on incorporating a TL into the Deep
Q-learning (DQN) algorithm. We believe that transferring continuously the knowledge
of the pool of previously learned DSs may greatly improve the learning of online Deep
Reinforcement Learning (DRL) policies.

The second approach turns its attention to the safety of the dialogue. Here, safety is
defined as the ability to keep the mean frequency of user hanging up under a certain level.
Strategies designed with safety in mind naturally enhance the quality of the dialogue and
on a meta point of view, retain the user as a regular customer with ease. Indeed, one does
not want to see a user stop using the service after a series of bad dialogues. At first, one
needs to find a way to design those safe policies. In Carrara et al. (2018a) and Carrara et al.
(2018b) we introduce Budgeted Fitted-Q (BFTQ), an RL algorithm designed to construct
a parametric dialogue strategy (given a certain hangup frequency) using a dialogue corpus.
We introduce the algorithm and give a proof of concept on a simple 2D navigation problem.
We scale this algorithm to larger problems using neural network and Central Processing
Unit (CPU) parallelism and validate it on a dialogue problem and an autonomous driving
problem (Carrara, Leurent, Laroche, Urvoy, Maillard, et al. 2019)3. To operate TL, BFTQ
itself is not enough because it has no mechanism for user adaptation. To overcome this
issue, in Carrara et al. (2018c), we introduce ε-safe, a TL algorithm that uses a previously
learnt safe strategy as the knowledge to transfer when designing from scratch a DS for an
unknown user.

2.4 Publications
The contributions discussed in the previous paragraph have led to various publications in
international conferences. Carrara, Laroche, and Pietquin (2017) has been shared through
an oral presentation at the session on negotiation dialogue at the joint SIGdial/SemDial
conference. Carrara et al. (2018a) led to an oral presentation and a poster in a workshop
in the conference on Uncertainty in Artificial Intelligence. The same work (Carrara et al.
2018b) has been shared at the European Workshop in Reinforcement Learning. It is during
the International Conference on Statistical Language and Speech Processing that Carrara
et al. (2018c) has been published through a poster format. Finally, Carrara, Leurent,
Laroche, Urvoy, Maillard, et al. (2019) has been published at the conference on Neural
Information Processing Systems main track.

Carrara, Nicolas, Romain Laroche, Jean-Léon Bouraoui, Tanguy Urvoy, and Olivier
Pietquin (2018c). “Safe transfer learning for dialogue applications”. In: International
Conference on Statistical Language and Speech Processing (cited on pages 23, 50, 51).

Carrara, Nicolas, Romain Laroche, and Olivier Pietquin (2017). “Online learning and
transfer for user adaptation in dialogue systems”. In: Joint special session on negotia-
tion dialog, Workshop on the Semantics and Pragmatics of Dialogue- Conference of
the Special Interest Group on Discourse and Dialogue (cited on pages 23, 50, 51).

3All 3 publications are grouped as one: Carrara, Leurent, Laroche, Urvoy, Bouraoui, et al. (2019)

24 Chapter 2. Introduction

Carrara, Nicolas, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Jean-Léon Bouraoui,
Odalric Maillard, and Olivier Pietquin (2019). “Budgeted Reinforcement Learning
in Continuous State Space”. In: Workshop on Safety Risk and Uncertainty in Rein-
forcement Learning at Conference on Uncertainty in Artificial Intelligence (2018),
European Workshop on Reinforcement Learning (2018), and Conference on Neural
Information Processing Systems (2019) (cited on page 23).

2.5 Outline
This manuscript is organized as follow: Part I details the state of the art for task-oriented
DSs. Inside Part I, Chapter 3 describes the architecture of such DS, involving the modules
already discussed in introduction. Then Chapter 4 explains why the DM is a sequential
decision making problem and how it can be cast as an RL problem. And finally, Chapter 5
exhibits several TL techniques that can enhance the DM performances in all the stages of
the learning.

Part II lists the several contributions of the thesis to scale DSs to a growing base of users:
Chapter 6 introduces a novel method for scaling TL in user adaptation applications.This
method extends an existing framework with clustering of DSs.

Then, Part III lists contributions to handle user adaptation in a safe way: Chapter 7
proposes BFTQ, an algorithm to solve Budgeted Markov Decision Process (BMDP) in
continuous space. It also adds insights for scaling up the algorithm and tests it on a
slot-filling task; Chapter 8 presents the last contribution, ε-safe.

Finally, the conclusion in Chapter 9, followed by the the appendixes in Chapter 10, and
an early work in progress in Appendix A brings down the curtain on this thesis.

I
3 The pipeline . 27
3.1 A modular architecture
3.2 On the slot-filling problem
3.3 The Dialogue Manager

4 Training the Dialogue Manager with
RL . 33

4.1 Assuming a given dialogue corpus
4.2 Online interactions with the user
4.3 To go beyond

5 User adaptation and Transfer Learn-
ing . 45

5.1 The problem of Transfer Learning
5.2 State-of-the-art of Transfer Learning for Dialogue

Systems

Task-oriented Dialogue
Systems

3. The pipeline

In the introduction, we saw that during the last century, different but related speech tech-
nologies have been developed independently from each other. The major areas of research
were about Automatic Speech Recognition (ASR) and Text To Speech (TTS). Following up
shortly, Natural Language Generator (NLG) and Natural Language Understanding (NLU)
gradually gained interest. Finally, with the addition of the Dialogue Manager (DM), all
those technologies have been gathered to construct a modular Spoken Dialogue System
(SDS) (Jurafsky et al. 2000). In this chapter, we describe briefly all the involved modules
before focusing our attention on the DM.

3.1 A modular architecture
Figure 3.1 described the workflow leading a SDS, processing a speech signal as an input
and outputs an information of the same type.

Automatic Speech Recognition
The ASR module processes the speech signal. It produces interpretation hypotheses, as the
most probable sentences the user could have said. Each hypothesis is associated with a
score we call the Speech Recognition Score (SRS). As recalled in introduction, the state
of the art of ASR includes Neural Network solutions as for example the Connectionist
Temporal Classification (S. Kim et al. 2018), RNN (Graves et al. 2014) and LSTM (J. Kim
et al. 2017). They can also be combined with language modelling (Chorowski et al. 2017;
Lee et al. 2018).

Natural Language Understanding
Given those hypotheses, the NLU can extract meanings, and builds a semantic frame
corresponding to the last user utterance, sometimes paired with a confidence score. Classic
approaches parse the user utterance into predefined handcrafted semantic slots (H. Chen

28 Chapter 3. The pipeline

hypothesisAutomatic Speech
Recognition

Natural Language
Understanding

sentence
Natural Language

Generationspeech signal
Text To Speech

speech signal

Spoken Dialogue System

Dialogue Manager

semantic frame

Dialogue Policy

Dialogue state tracking

dialogue context

dialogue act

Figure 3.1: The architecture of a modular Spoken Dialogue System

et al. 2017). Recent solutions are discriminated between two approaches. The first
one considers using NNs (Deng et al. 2012; Tür et al. 2012; Yann et al. 2014) or even
Convolutional Neural Network (Fukushima 1980; Weng et al. 1993; LeCun et al. 1999) to
directly classify the user sentence from a set a pre-defined intents (Hashemi 2016; Huang
et al. 2013; Shen et al. 2014). The second one, put a label on each word of the user’s
sentence. Deep Belief Networks (Deng et al. 2012) have been applied (Sarikaya et al.
2011; Deoras et al. 2013). RNNs have been also used for slot-filling NLU (Mesnil et al.
2013; Yao, Zweig, et al. 2013) and LSTM (Yao, Peng, et al. 2014). Some approaches
consider bringing together user intent and slot-filling (X. Zhang et al. 2016).

Dialogue Manager
By leveraging from the other modules, the DM can decide the best thing to say, given
the current state of the dialogue. It is divided into two sub-modules, the Dialogue State
Tracking (DST), and the Dialogue Policy (DP).

Dialogue State Tracking The DST keeps track of the history of the dialogue (what
the user already asked, what slot is already filled, etc) and compiles it into a dialogue state
(could be called a belief state or also a dialogue context, depending on the framework).
It usually takes the form of confidence probabilities of each slot. Traditional approaches
are rule-based (Goddeau et al. 1996; Sadek et al. 1997). Statistical methods use Bayesian
networks as recalled in (Thomson 2013; Henderson 2015). A recent approach is to
consider merging NLU and DST into a single RNN. The dialogue state is then the hidden
layer of a RNN (or LSTM) supposed to infer the next word in the dialogue (T. H. Wen
et al. 2017; Barlier et al. 2018a).

Dialogue Policy The next step involves the Dialogue Policy (DP), extensively de-
scribed in Section 3.3, that chooses a dialogue act (Austin 1962; Searle 1969) according
to the dialogue context. The most simple form of dialogue act is a parametric object
used by the NLG module to reconstruct a proper sentence. For example, if the domain

3.2 On the slot-filling problem 29

of application is restaurant reservation, the DM may ask for the area of the restaurant
using the following dialogue act: request(slot=area)1. In some recent work, the
DP actually outputs words (J. Li et al. 2016; Vries et al. 2017). It seems natural to process
this way, but that means the DM must learn the semantic of the language. Without proper
metrics, it may lead to DMs optimising the task with incoherent or ill-formed sentences.

It is worth noting that in the literature, DST and DP are not necessarily exposed as
two distinct modules. For example, in (S. Young et al. 2009), they cast the DST and the
DP as a single POMDP. The embedded Bayesian network of the POMDP acts as the DST.

Natural Language Generation
The NLG module would transcript the dialogue act request(slot=area) as "Where
do you want to eat?". Recently, LSTM for NLG has been used in the SDS context (T.-H.
Wen et al. 2015).

Text To Speech
Finally, the TTS module transforms the sentence returned by the NLG module into a
speech signal. State-of-the-art approaches use generative models (Van Den Oord et al.
2016; Y. Wang et al. 2017; Oord et al. 2018).

3.2 On the slot-filling problem
In this thesis, we more specifically address slot-filling dialogue problems. For instance, we
may consider an online form to book train tickets. The form contains several slots to fill,
as for example birthdate, name, and address. The regular approach consists in filling each
slot manually then send the HTML form to a server. This method exists for decades and
has been used extensively on websites. The advantage of this approach is that it is exact
since forms include checkboxes and radio buttons and all other inputs are filled according
to their labels (name, address, etc). The counterpart is that the filling procedure may feel
cumbersome to the user. Interacting with the form directly through voice or chat instead of
filling each slot may ease the process and this is the approach we consider. It involves a DS
asking the user the value of each slot in order to fill the form, then return the result of the
form to the user, partially or entirely, depending on the user request. The user experience
is enhanced as the user interacts in a natural fashion with the machine. Also, it can speed
up the process as the user can provide several slot values in a single utterance.

3.2.1 Settings
In order to describe the slot-filling problem, we use a taxonomy similar to the Dialogue
State Tracking Challenge (DSTC) taxonomy (Jason D. Williams et al. 2013). The problem
is, for the system, to fill a set of slots (or goals). A slot is said informable if the user can
provide a value for, to use as a constraint on their search. A slot is said requestable if the
user can ask the system the value of a slot. All informable slots are also requestable. In the
book train tickets example, the departure city is an informable with a number of possible
values equal to the number of cities served by the transport. A non informable slot, but
requestable, would be, for example, the identification number of the train.

1More details are provided in Section 3.2

30 Chapter 3. The pipeline

User and system acts
For purposes of conducting the dialogue, the user and the system are given respectively
a set of user acts and system acts. Some acts are common to every dialogues such as
hello, repeat or bye. Others acts depend on the ontology of the domain as they are
direct instances of the requestable and informable slots. Both actors can request the value
of a slot using the generic act request(slot="a slot") and inform the value of
a slot using inform(slot="a slot", value="its value"). The counterpart
of the DS slot-filling procedure is that an utterance may be misunderstood by the system.
As the system is given an NLU or NLU score, it is able to judge if an utterance is worth
asking for repeating. The system can ask the user to repeat with several system acts:
• repeat: the user may repeat the last utterance. For instance "I don’t understand

what you said, please repeat.".
• expl-conf(slot="a slot", value="its value"): the system requests

the user to explicitly acknowledge a slot value. For example "You want to book a
train departing from Paris, is it correct ?".
• impl-conf(slot="a slot", value="its value"): the system reports

a slot value without explicitly asking the user to confirm it. If the user thinks the
value is wrong, then he can decide to fix the mistake. For example "You want to
book a train departing from Paris. Where do you want to go ?".

Note that, in Part II and Part III, experiments will be conducted on slot-filling problems
with a similar taxonomy, but the acts may differ.

3.3 The Dialogue Manager

The particularity of the DM as opposed to the other SDS’s modules, is that it is stateful,
in the sense that it needs to keep track of the dialogue state to operate optimally2. For
example, we do not want to ask the same question twice if we have already got a clear
answer. The DST is stateful by definition but most of the time the DP is stateless (it doesn’t
keep track of a state). This thesis proposes solutions to optimise the DM.

Since the DM is the only module involved, we abstract all the remaining modules into a
single object called environment. Figure 3.2 describes the simplified workflow: we assume
the DM to receive an object o called the observation. It contains the last user dialogue act
ausr (the semantic frame) and the SRS. We assume the DST updates the next dialogue
state s′ given the current state s, the last system act asys and the last observation o. In this
thesis, the DST outputs a simple concatenation of the previous observations and system
acts. Also, we restrict the system acts to dialogue acts only (and not words).

Traditionally, handcrafted approaches have been considered to design the DP. They
just match the dialogue state to a dialogue act using a set of handcrafted rules for the
DP. It has been shown to be unreliable in unknown situations and it requires an expert
knowledge on the domain. Statistical methods may solve these issues. Generative models
have been considered to predict the next dialogue act given the current state. This is
typically how chit-chat bots work (Serban, Sordoni, et al. 2016; R. Yan 2018; Gao et al.
2019). State-of-the-art statistical approaches for task-oriented DSs involve RL.

2With modern approaches, any module using a RNN may be also considered stateful.

3.3 The Dialogue Manager 31

Dialogue
Manager

Environment

Natural Language
generation Text to speech

asr score

Automatic speech
recognition

semantic
frame

nlu score

Natural Language
understanding

o

a

s
dialogue

state
tracking

dialogue
policy

Figure 3.2: The pipeline view from the Dialogue Policy

A Reinforcement Learning problem
The previously cited methods do not really capture the sequential essence of a dialogue. By
inferring the next dialogue act, they just plan one step ahead. In order to plan multiple steps
ahead, one can cast the DP as a sequential decision making problem. Markov Decision
Processes (MDPs) are a good fit to mathematically describe those problems but they require
a model of the environment. Unfortunately, it is not possible to get an analytic model of the
environment since it involves human decision making. To overcome this issue, dialogue
policies can be optimised using Reinforcement Learning (RL) algorithms, where the only
prerequisite is having a dialogue corpus or the ability to directly interact with the user in
an Online fashion.

4. Training the Dialogue Manager with RL

In the previous chapter, we saw that a fully-operational Dialogue System (DS) is a complex
pipeline including several sub-modules. But, this thesis being focused on the Dialogue
Manager (DM), we will abstract all the remaining DS modules, and the user, into a
single entity called the environment. The training of a DS will hence simplify, without
loss of generality, into the optimisation of a Dialogue Policy (DP) interacting with this
"augmented" environment. From now on, we state an equivalence between an environment
and a user and just forget all the other modules.

Usually, in dialogue applications, particularly with task-oriented dialogue applications,
the system must keep track of the history of the dialogue. If we keep the whole dialogue
history in the dialogue state si, the DP has all the information it needs to take the better
decision at time i in order to complete the dialogue task: the dialogue state representation
is said Markovian; more formally, the past states have no additional information to predict
the future. Then, in order to keep track of the dialogue, the DM must update its state
according to the previous state and the current observation raised by the dialogue using the
Dialogue State Tracking (DST) module. Considering that an observation is conditioned
on the current state and the dialogue act, then we have enough elements to represent the
dynamics of the environment, denoted as the transition kernel P . Knowing that taking
an action given a state leads to another state is helpful to predict multiple steps ahead i.e.
which state the DP may reach if it follows a series of dialogue acts. However, it will not
suffice to evaluate the policy. To that end, we add a new signal, the immediate reward
function, denoted as R, that indicates how good was a dialogue act transitioning from one
state to another. By compiling all those information, we are able to optimise the DP using
a mathematical framework called Markov Decision Process (Bellman 1957).

Markov Decision Processes
We first introduce the core concepts used in this manuscript.

34 Chapter 4. Training the Dialogue Manager with RL

Definition 4.0.1 A Markov Decision Process (MDP) is a tuple 〈S,A, R, P , γ〉 where:
• S is the state set,
• A is the action set,
• R ∈ RS×A is the reward function,
• P ∈M(S)S×A is the transition kernel;M(X) denotes the probability measure

over a set X .
• γ is the discount factor.

In the dialogue context, it may be hard to define a good reward function. For example in
chit-chat applications, how to know if a conversation went well for the user? Knowing this
answer implies using sentiment analysis which is not reliable in the current state-of-the-art.
Manual labeling may work, but it requires a costly human labor. Even in those cases, one
cannot really decide whether a user enjoyed the conversation without asking explicitly
users to give feedback1.

For task-oriented situation, if the task is completed, then the environment should yield
a reward (usually discounted with respect to the length of the dialogue). In simulation, it is
easy to know if the task is completed, but in real application, the agent might understood
wrongly the request; a lot a work has been done to takcle this issue (El Asri 2016).

The state of an MDP must contain all past observations. In other words, the agent
would not be able to take a better decision with additional past information to complete
the dialogue task. We say that the process respects the Markov property (or that it is
Markovian).

Definition 4.0.2 Let (Ω,P) a probability space. Then a stochastic process X =
{Xi}i∈N is said to possess the Markov property if

P(Xi = xi|Xi−1 = xi−1, . . . , X0 = x0) = P(Xi = xi|Xi−1 = xi−1). (4.1)

In the context of an MDP, that means:

P (si, a, si+1) = P(si+1|si, a) = P(si+1|si, . . . , s0, a). (4.2)

For example, if the agent is a car, in order to decide how to slow down when it faces
another car, it must know its current speed, its position and the position of the other car. If
the agent only knows its current position and not all other past positions, it will not be able
to know its speed and the process will not be Markovian.

Figure 4.1a shows an example of a generic MDP illustrating Definition 4.0.1 side by
side with Figure 4.1b, a partial view of an MDP from a slot-filling task-oriented dialogue
application. The particularity of an MDP in the dialogue context is that the state space
is actually infinite as the Speech Recognition Score (SRS) is a continuous variable. We
also note that by keeping all the past dialogue acts, user acts and the last SRS for each
slot in the dialogue state, we respect the Markov property. Indeed, there is no interest
in keeping all the SRS from previous utterances as the only thing that matters: whether
the system understood correctly a given slot. However, keeping all the past SRSs may be
useful in a situation where the dialogue act includes the value of the slot. For example,

1Even with explicit surveys, there are several biases that must be corrected.

35

�0

�1

�0
�0

�1�1

�2

� (, ,) = 1�1 �1 �2

�(,) = 100�1 �1� = −1

� = −1

� = −1

� = 1� = 0.05

� = 1

� = 0.95

(a) A generic discrete Markov Decision Process. The
state s2 is final.

initial state
[0,0,0]

[]
[]

[0,0.12,0]
[request(area)]
[inform(area]

ask-repeat

request(area)

[0,0.88,0]
[request(area),

ask-repeat]
[inform(area),
inform(area)]

[0,0.75,0]
[request(area)]
[inform(area)]

request(food)

…

…

final state,
sucess

final state,
fail

� = −1

� = −1

� = 100

� = −300

� = −300

� = 0.65

� = 0.2

� = 0.05

� = 1

� = 0.7

� = 1

� = 0.45

…

(b) A Markov Decision Process in a slot-filling dialogue task. Dashes indicate
potentially infinite possibilities of states, transitions and actions.

Figure 4.1: Example of Markov Decision Processes

36 Chapter 4. Training the Dialogue Manager with RL

if the user responds to a request(area) by two inform(area=Paris) with SRS
0.7 and 0.9 and one inform(area=London) with SRS 0.3, it seems probable that the
actual informed area is Paris.

The behaviour of the dialogue agent, the DP, is then defined as the policy π ∈M(A)S ,
that maps states to actions, which can either be deterministic or stochastic. Solving an MDP
consists in finding a policy π∗ that maximises the amount of rewards gathered by walking
on the MDP. Usually the objective is to maximise the infinite-horizon γ-discounted sum
of rewards, called return, in expectation:

Definition 4.0.3 Let γ ∈ [0, 1[, then the γ-discounted return for the policy π is

Gπ =
∞∑
i=0

γiR(si, ai) (4.3)

where si+1 ∼ P (si, ai, si+1)and ai ∼ π(si).

From a task-oriented dialogue perspective, it may be strange to consider intermediate
rewards. After all, the sole completion of the task matters, but usually, we also want to
solve the task as fast as possible. For that purpose, there are two solutions to the agent
designer (not mutually exclusive): yield a negative reward at each turn of the dialogue or
set a γ strictly smaller than 1 to account for the hazard of the user terminating the dialogue
at each turn (Fedus et al. 2019). In both cases, the longer the dialogue lasts, the lower the
return will be. One may notice that anyway, for most of the following RL theory to apply,
one needs the condition γ < 1.

From the return, one can derive the action-value function, also known as Q-function.
This function yields the expected return after taking an action in a given state and thereafter
following a fixed policy π.

Definition 4.0.4 Let a ∈ A and s ∈ S and π a policy, then

Qπ(s, a) = Eπ[Gπ|s0 = s, a0 = a]. (4.4)

Thanks to the Bellman Evaluation equation, we are able to compute the expected return
of a policy using a simple linear system of equations:

Proposition 4.0.1 Let π be a policy, then ∀s ∈ S and ∀a ∈ A.

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

[P (s, a, s′)
∑
a′

π(a′|s′)Qπ(s′, a′)]. (4.5)

Bellman Evaluation equation can be reformulated as Qπ = T πQπ where T π is the
Bellman Evaluation operator. Being able to evaluate a policy is one thing, but what we
really want is finding the best policy w.r.t. the expected return. We call optimal policy π∗,
a policy that maximises the return in expectation i.e.

37

Definition 4.0.5 The policy π∗ is said optimal if and only if

∀(s, a) ∈ S ×A, Qπ∗(s, a) = max
π

Qπ(s, a). (4.6)

We now present the Bellman Optimality equation (or control equation) (Bellman
1956):

Theorem 4.0.2 Bellman Optimality equation: It exists a unique function, denoted as
Q∗, that verifies the Bellman Optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

[P (s, a, s′) max
a′∈A

Q∗(s′, a′)]. (4.7)

Bellman Optimality equation can be reformulated as Q∗ = T ∗Q∗ where Q∗ is the
optimal Q-function and T ∗ the Bellman Optimality operator (also know as dynamic
programming operator). An important property is that we can construct an optimal policy
as an expression of Q∗:

Proposition 4.0.3 The policy defined by

π∗(s) ∈ arg max
a∈A

Q∗(s, a) (4.8)

is optimal.

All those results allow us construct algorithms that find this optimal policy.

Solving with dynamic programming
If γ < 1, the operator T ∗ is a contraction. Thanks to the Banach theorem (Banach 1922),
it admits a unique solution. Then, one can find Q∗ by iterating on Equation (4.7): the
algorithm is called Value Iteration (VI) (Bellman 1957) and recalled on Algorithm 1.

Algorithm 1: Value-Iteration
Data: an MDP 〈S,A, R, P , γ〉

1 k ← 0

2 Qk ∈ R|S×A|
3 while k = 0 ∨ ||Qk+1 −Qk|| < υ do
4 Qk+1 ← T ∗Qk

5 k ← k + 1;
6 end
7 π(s) ∈ arg maxa∈AQk(s, a) ∀s ∈ S
8 return π

Another approach is to evaluate the policy with Equation (4.5), then improve it greed-
ily over the current Q-function of the policy. The algorithm is called Policy Iteration
(PI) (Howard 1960) and is described in Algorithm 2. Theorem 4.0.4 ensures that the
algorithm converges to the optimal policy. PI and VI are quite similar. One difference is
that VI does evaluation and policy improvement at the same time. The mattering difference

38 Chapter 4. Training the Dialogue Manager with RL

is the stopping criterion: PI stops once the policy has converged which happens earlier
than the convergence of the Q-function in VI.

Algorithm 2: Policy-Iteration
Data: an MDP 〈S,A, R, P , γ〉

1 k ← 0

2 Qk ∈ R|∈S×A|
3 πk any policy
4 while k = 0 ∨ πk+1 6= πk do
5 Qk+1 = T πkQk (evaluation)
6 πk+1(s) ∈ arg maxa∈AQk+1(s, a) ∀s ∈ S (improvement)
7 k ← k + 1

8 end
9 return πk

Theorem 4.0.4 (Policy Improvement Theorem): Let π a policy, Qπ its associated
Q-function and π′ defined as :

∀s ∈ S, π′(s) ∈ arg max
a∈A

(R(s, a) + γEs′ [P (s, a, s′) max
a′∈A

Qπ(s′, a′)]) (4.9)

then ∀(s, a) ∈ S ×A, Qπ′(s, a) ≥ Qπ(s, a)

with Qπ′(s, a) = Qπ(s, a) iif Qπ(s, a) = Qπ∗(s, a).

On the continuous state-space problem
As we already mentioned, the state-space S in the dialogue context is actually infinite since
the SRS is a continuous variable. The tabular solutions of VI and PI are then intractable.
To overcome this issue, we build an approximation of the Q-function. Let F be the set of
representable functions with domain S ×A, || · ||∞ the uniform norm, and Ξ the projection
operator onto F :

Ξf = arg min
f̃∈F

||f − f̃ ||∞. (4.10)

This process is known as function approximation and is heavily used in today RL al-
gorithms. We can naturally extend VI to Fitted-Value-Iteration (FVI) (or Approximate
Value Iteration (AVI), Bellman and Dreyfus (1959)) using a composition of the optimal
Bellman operator with the projection operation. In a nutshell, the algorithm iterates over
the following contraction2: Q∗ = ΞT ∗Q∗. Projection is usually done by sampling S̃ ⊂ S
a finite subset of S and then process a regression over the learning examples S̃ × A. Let
Γ(X, Y) :→ F denotes the regression algorithm, then the update rule is as follows:

Q∗ ← Γ(S̃ × A, {T ∗Q∗(x)}x∈S̃×A). (4.11)

2if the projection is considered perfect, i.e has no bias.

4.1 Assuming a given dialogue corpus 39

�, �
′

�

�, �, � → �
′

Dialogue
Manager

Environment

Figure 4.2: The Dialogue Manager cast as a Reinforcement Learning problem.

If we apply the same idea to PI (on the evaluation only), we obtain Approximate Policy
Iteration (API) (Bertsekas 1996). Please note that the regression algorithm can take various
forms, as for example linear regression, regression trees or even Neural Networks.

Toward Reinforcement Learning solutions for Dialogue Systems
Another problem arises when dealing with dialogue applications. The function R and P
are actually determined by the user (and the plugged pipeline) the system dialogues with.
That means that R and P correspond to a model of the user, which is complex, unknown
and varies a lot from one individual to another. So in a the dialogue context, R and P must
be learnt (or implicitly learnt) using information on the user. RL allows to handle this flow
of information. RL is a framework used to describe an agent (e.g. the DM) interacting
with an environment (e.g. the user and peripheral modules) in a sequential fashion. The
DS pipeline is cast as an RL problem in Figure 4.2. The information contained in an
interaction can be compiled into a single object called transition. This is a tuple of the
form: (s, a, s′, r′) where s is the state of agent, a the action applied on the environment, r′

the reward received from the environment and s′ the next state of the agent. A batch D (a
dialogue corpus) is a collection of N transitions: D = {(si, ai, s′i, r′i)}i∈[0,N [.

Two classes of problems arise depending on how this information is gathered: on one
hand, in Online RL, the objective is to learn on-the-fly a policy using the flow of transitions.
On the other hand, in Offline (or Batch) RL, the objective is to directly learn a policy given
a batch D. In the next sections, we introduce algorithms from both categories that have
been successfully applied to DM. We start with Batch RL.

4.1 Assuming a given dialogue corpus
Dialogue applications involving statistical methods usually assume that the dialogue
corpus is given. A panel of dialogue datasets are available for research. To name the
famous ones, there is the Ubuntu dialogue corpus (Lowe, Pow, et al. 2015) and the DSTC

40 Chapter 4. Training the Dialogue Manager with RL

dataset (Jason D. Williams et al. 2013). Please refer to Serban, Lowe, et al. (2015) for
an extended overview. Usually, the challenge in using dialogue corpora for RL context is
the design of the reward, but this is not the focus here in the thesis, so we assume having
a well-formed dialogue corpus; as stated earlier, we denote it as a batch of transitions:
D = {(si, ai, s′i, r′i)}i∈[0,N]. In model-based approaches, we explicitly learn the unknown
functions P and R using a regression algorithm and D as learning batch, then apply a
planning algorithm (Lison 2013; Peng et al. 2018). In model-free batch RL, we do not
explicitly estimate R and P but we can, among other methods, bootstrap the estimation of
Q with the current reward r and the expected reward in the next state s′. For example, in
Fitted-Q (FTQ) (Ernst et al. 2005; Riedmiller 2005), in addition to the projection operator,
we apply a sampled Bellman Optimality operator on the batch:

Definition 4.1.1 Let (s, a, s′, r′) be a transition, and f : S × A → R a function. The
Sampled Bellman Optimality operator T̂ ∗ is :

T̂ ∗(f(s, a)) = r′ + γmax
a′∈A

f(s′, a′). (4.12)

The general FTQ algorithm (Equation (4.13)) is then an interactive process over the
composed operator: Q∗ = ΞT̂ ∗Q∗ with respect to D.

Q∗ ← Γ({si, ai}i∈N , {r′i + γmax
a′∈A

Q∗(s′i, a
′)}i∈N). (4.13)

As in FVI, the designer is free to choose the regression algorithm suitable to his problem.
Trees (Ernst et al. 2005) and NNs (Riedmiller 2005) have been successfully combined
with general FTQ. If using a Least Squares (LS) linear-regression, the Q-function can be
rewritten as

Qθ(s, a) = θ>φ(s, a), (4.14)

with φ the feature function and θ the parameter to find. Linear LS optimisation results
in computing θ with a simple matrix inversion. Let M = (

∑N
i=0 φ(si, ai)φ((si, ai))

>)−1,
then FTQ is the following iterative process:

θk ←M
N∑
i=0

φ(si, ai)(r
′
i + γmax

a∈A
(θ>k−1φ(s′i, a))). (4.15)

The algorithm stops if k ≥ K where K ∈ [0,∞[the number maximum of iterations, or
if ||θk − θk−1|| ≤ υ. This solution has been adopted in (Pietquin et al. 2011). The authors
chose an LS linear-regression with Gaussian radial basis functions as features in order to
optimise a DM.

We can extend PI using the same idea applied to the Bellman Evaluation operator. The
algorithm is called Least Squares Policy Iteration (LSPI) (Lagoudakis et al. 2003) and has
been applied to dialogue tasks (L. Li, Jason D Williams, et al. 2009; Barlier et al. 2018b).

4.2 Online interactions with the user
Creating a fixed dialogue corpus is a difficult task. A dialogue is by essence an interactive
and evolving process, and the existing corpora may be too expensive or even not suited

4.2 Online interactions with the user 41

for the problem at hands. In consequence, in some situations, it may be of interest to
simply learn, or adapt, on-the-fly the DM strategy while it dialogues with an unknown
user/environment. In this section, we present algorithms to do such interactions with the
user (Ferreira et al. 2013). Those methods belong to the class of Online RL algorithms.

The Exploitation/Exploration dilemma
For a new user, in order to gather the transitions the algorithm will learn with, the DM
adopts decisions dictated by a DP π called the behavioural policy. In order to learn the
optimal policy (target policy), π needs to gather all the transitions that would potentially be
covered by the optimal policy. As we are actually building this policy, it is not possible to
know in advance the useful transitions for learning. The basic idea to cover the state-action
space as the optimal policy would do it is to perform an Exploration/Exploitation strategy.
The exploration phase discovers new areas in the state-action space, while the exploitation
phase directs the agent to a more profitable state-action space. Several implementations
of the Exploration/Exploitation dilemma have been proposed, coming from the Bandit
community most of the time. In this manuscript, we will use the notorious ε-greedy strategy
which works as follows: when the agent is in state s, it chooses a random exploration
action with probability ε, and it chooses the greedy action (the most profitable action
according to some parameters, the Q-function for example) otherwise.

As long as π gathers transitions, the policy in construction (which is not necessarily
π) tends to be a better approximation of the optimal policy. The agent must refine its
knowledge around the profitable states and for that, the ε must decrease with respect
to the number of transitions gathered. Exponential decay is commonly used for such
a decreasing processes. The number ε is then a variable of i, the current number of
transitions3: ε(i) = exp(−λi) with λ dictating the vanishing speed. But, as the exponential
decay procedure does not ensure convergence, it is usually safer to use a linear decay (Auer
et al. 2002a): ε(i) = min{1, 1/(λi)}.

Note that we can already see the limitations of this approach for new users; it is not
profitable to act randomly with a human discovering a new dialogue system, the risk of
abandon is too high. We will see later that we can handle this issue with TL.

On-policy versus Off-policy
Online RL algorithms can be classified into two subcategories depending on the nature of
the behavioural policy. If the algorithm improves this policy as it gathers transitions, then
we say the algorithm is On-policy. If the algorithm optimises a policy distinct from the
behavioural policy, then we say the algorithm is Off-policy.

The classic Off-policy algorithm is Q-learning. It updates the Q-function according to
the Temporal Difference (TD) error. This error captures the difference between the current
estimation of the expected return and the immediate reward summed to the expected return
in the next state. The Q-learning is recalled in Equation (4.16). The hyper-parameter α is
the learning rate and (si, ai, s

′
i, r
′
i) is the last transition i the behavioural policy generated.

Q(si, ai)← Q(si, ai) + α[r′i + γmax
a′∈A

Q(s′i, a
′)−Q(si, ai)]. (4.16)

To ensure convergence, the learning rate must decrease linearly. Q-learning is not fit to
learn the DP as it is a tabular solution and as we saw earlier, the dialogue state contains

3or trajectories, this does not matter.

42 Chapter 4. Training the Dialogue Manager with RL

continuous variables. In the same spirit of tractability in Offline RL, one can extend Online
algorithms using function approximation.

Function approximation
A straightforward approach adopted for Q-learning is the LS linear-regression of a model
of the Q-function using Gradient Descent (GD). The Q-function is approximated with a
linear model: Q(s, a) = φ(s, a)>θ where φ is the feature vector and θ the parameter vector
to optimise. The optimiser is not a GD strictly speaking as we regress Q over the error of a
single transition rather the whole batch. Indeed, the algorithm receives transitions one by
one, so the optimiser actually used is the Stochastic Gradient Descent (SGD). The loss L
is defined as:

L(θ) =
1

2
(r′i + γmax

a′∈A
Q(s′i, a

′)−Q(si, ai))
2 (4.17)

=
1

2
(r′i + γmax

a′∈A
φ(s′i, a

′)>θ − φ(si, ai)
T θ)2. (4.18)

We define Q+ = γmaxa′∈A φ(s′i, a
′)>θ. Then we compute the gradient of the loss consid-

ering Q+ constant with respect to θ. This method is called semi-gradient and is developed
as follow:

∇L(θ) = ∇1

2
(r′i +Q+ − φ(si, ai)

>θ)2 (4.19)

= (r′i +Q+ − φ(si, ai)
>θ) · φ(si, ai). (4.20)

We update θ such that we minimise the loss. The update rule recalled in Equation (4.21)
defines the LS Q-learning algorithm4:

θk+1 ← θk − α∇L(θk) (4.21)

θk+1 ← θk − α(r′i + γmax
a′∈A

φ(si′ , a
′)>θk − φ(si, ai)

>θk) · φ(si, ai) (4.22)

Riedmiller (2005) proposed a natural extension to FTQ in the Online setting; It involves
alternating between two phases: it generates a batch of transitions with an ε-greedy policy
using the current target policy as the greedy component; Then it updates the target policy
with all previous batches. It repeats this operation until ε decays enough.

Learning from scratch
In dialogue system applications, it is not usually easy to learn a DP from scratch using
Online RL algorithms. Indeed, the first interactions with the user are crucials to build a
bond between the service and the user; taking random actions, using ε-greedy, to gather
information about the environment (including the humain) may just end-up with user
dropouts. To tackle this problem, it is possible to contraint the action-space to get the
relevant actions for a given state (Singh et al. 2002; Jason D Williams et al. 2008; Laroche,
Putois, Bretier, and Bouchon-Meunier 2009; Laroche, Putois, and Bretier 2010). As
those solutions necessitate an expertise on RL, new studies introduced techniques suited
to an average developer; to name a few: RL results monitoring (Laroche, Bretier, et al.
2010), convergence speed prediction (El Asri and Laroche 2013) or interaction quality
prediction (El Asri, Khouzaimi, et al. 2014). In this thesis we tackle this problem using
Transfer Learning (TL), as we will see in the next chapter.

4In this context, i = k as the parameters are updated for each new transition.

4.3 To go beyond 43

4.3 To go beyond
There exists a lot of solutions in RL applied to DM that goes beyond the scope of this
thesis. Very popular approaches involve Deep Reinforcement Learning (DRL): action-value
approximation with DQN (Mnih et al. 2015) used to solve "Settlers of Catan" a negotiation
game (Cuayahuitl et al. 2015); Policy Gradient (PG) methods with REINFORCE (R. J.
Williams 1992) to play the the multi-modal game GuessWhat?! (Vries et al. 2017); Actor-
Critic methods with Actor-Critic-Experience-Replay (Z. Wang et al. 2016) have also been
applied to the DM (Weisz et al. 2018).

5. User adaptation and Transfer Learning

In the previous chapter, we introduced Reinforcement Learning (RL) solutions for the
Dialogue Manager (DM). For that, we cast the problem as an agent, the DM, interacting
with an environment: the user. In classic approaches, we actually consider the environment
as any potential user, and then learn a policy able to converse with this generic user.
This approach assumes all users to adopt the same dialoguing behaviour, although this
not necessarily the case. The designer may choose to represent all users as the same
unique entity to accelerate the learning of the DM. It is a fair argument indeed, but
it may impact negatively the overall quality of the dialogue. In consequence, in the
following, we present solutions to overcome this limitation. We adopt the Transfer Learning
(TL) framework (Lazaric 2012; Taylor and Stone 2009) where the objective consists in
improving the learning of a target task, thanks to the knowledge obtained from a set of
similar source tasks. In dialogue, we usually associate a task with a unique user or a
domain. Then, the DM communicates with an unknown user/domain based on its past
experience with other users/domains. One could also consider a setup where there is a
single user with several communication channels making different tasks. For example,
talking through the phone, VoIP, or face to face. That being said, in this manuscript, we
consider one user by task.

5.1 The problem of Transfer Learning

As stated in Lazaric (2012), TL leverages the knowledge collected from a number of
different tasks to improve the learning performance in new tasks. In our case, a task
is defined as "dialoguing with a user u" and as we saw in previous chapter, modelled
as an MDP. We denote this MDP as u = 〈Su,Au, P u, Ru〉1. The TL vocabulary is the

1By abusing the notations, the user u, its MDP and the task describe the same concept.

46 Chapter 5. User adaptation and Transfer Learning

following2: the domain of the task u is the state-action space Su ×Au; The space of tasks
is the set of potential users U = {uj}j∈[0,M]; The environment E = 〈U ,Ω〉, is denoted
as the the probability distribution Ω over the space of tasks. The environment E fully
describes the problem: the DM must find the best strategy to adopt with a target user ut
drawn from the distribution Ω. In order to operate this learning quickly, the DM has access
to the knowledge gathered previously with source users U s = {us}s∈[0,Ms] ∼ E drawn
from the environment. In a sense, we can see the TL problem as a Supervised Learning
(SL) problem where already encountered users stand for the learning base and the new
user is part of the test base. The idea is then to construct a general model, that returns
a DP given a user, which is able to generalise across unseen users. In what follows, the
adjectives source/target may be combined to other notions. For example, a source policy
πs denotes a policy learnt with a source user us, the target transitions {(si, ai, r′i, s′i)}i∈Nt

denote the transitions gathered with the target user ut.
Let K be the space of the knowledge spawned by all users. As we do not access

to the whole space, the target user knowledge may be a part of it and this is where TL
comes in. Two distinct phases constitute a TL algorithm: the knowledge-transfer phase
that extracts from K the relevant subset of knowledge for the target task and the learning
phase that constructs a policy accordingly. The process may be strictly sequential or cyclic.
In the literature, TL approaches differ following three criterions: the type of knowledge
transferred, the objectives, and the setting.

The type of the knowledge
Three types of transfer are reported in the general TL literature: the transfer of transitions
where the interactions with previous tasks are used to learn the policy for a target task (Sun-
mola et al. 2006; Lazaric 2008; Taylor, Jong, et al. 2008); the transfer of representations,
for example state features (Ferguson et al. 2006; Mahadevan et al. 2007; Ferrante et al.
2008), action space (Sherstov et al. 2005), some layers of a NN or temporal abstractions
for policies (Sutton et al. 1999); the transfer of parameters, including meta parameters
(learning rate, discount factor etc), Q-function initialisation (Torrey et al. 2005) or even
source policy transfer (Taylor, Whiteson, et al. 2007).

The objectives
In RL, we can distinguish three objectives that represent the performances of an agent:
the jumpstart performance3, where we measure how well an agent performs in the very
first interactions with the environment (the user); the learning performance, where we
measure how well the agent performs when improving its current policy; finally, the TL
agent monitors an additional objective called asympotic performance, which measure the
performances when the target dataset contains all the knowledge needed to compute the
optimal policy.

The three objectives are displayed in the green circles of Figure 5.1. TL agent may
optimise one, two or three of those objectives. A phenomenon we want to avoid, called
negative transfer, is when the performances of an agent are better without transfer. A
typical instance of this phenomena may occur when transferring transitions. Importing
the source transitions may help to learn an initial generic policy improving jumpstart and

2The notation and the description of TL are largely inspired from the survey Lazaric (2012)
3Also know as bootstrap or coldstart performance.

5.2 State-of-the-art of Transfer Learning for Dialogue Systems 47

Pe
rfo
rm
an
ce
s

Experiences

(a) jumpstart performance
Pe

rfo
rm
an
ce
s

Experiences

without transfer
with transfer

(b) Learning performance

Pe
rfo
rm
an
ce
s

Experiences

(c) Asymptotic performance

Figure 5.1: Objectives of Transfert Learning (Langley 2006; Lazaric 2012)

learning performances, but if the transitions are too far from the target environment, and
the learning algorithm has no mechanism to forget this knowledge, the target model will
be biased and the asymptotic performance will be affected.

The setting
We distinguish TL given two setting properties:
• whereas the domain Su,Au is fixed between the tasks. Usually, if the domain is

not fixed, TL solutions focus on solving a simpler problem where the source task is
unique. The difficulty lies in the mapping between those two tasks;
• whereas there is only one source task or several. The distinction may be hard to

operate as one can consider, for example, a set of different users as a single average
user, hence a single task. So to make things clear, here, we propose three settings:

– mono-task where there is only one source task and one target task. The method
is a direct mapping between those two tasks;

– generic-task, where there is only one source task, but that may be several tasks
seen as a generic task and there are potentially multiple target tasks;

– multi-task, where there is several source tasks, and the distinction between
tasks is made clear and relevant for the knowledge-transfer phase. There are
potentially multiple target tasks.

Please note that given this description, a method defined for a generic-task setting
is not necessarily worse than a method defined for the multi-task purpose. On the
contrary, methods relying on mono-task transfer are by definition limited to the tasks.

In this thesis, we propose solutions for user adaptation TL with fixed domain and we
consider a generic-task and a multi-task setting.

5.2 State-of-the-art of Transfer Learning for Dialogue Systems
We distinguish two main parts in TL for DSs. A whole part of the literature tackles the
problem of compatibility between different domains. Here the term domain stands for
"domain of application" and not the domain Su,Au, even if it is closely related. For
example, how to apply a policy learnt for a restaurant reservation application to a hotel
reservation application. Please note that in this case, the tasks denote MDPs representing

48 Chapter 5. User adaptation and Transfer Learning

different domains and not users (as explained in the previous section). This part will be
discussed briefly. The second part of the literature concerns user adaptation, which will
be further studied in the thesis. Finally, we will discuss a solution for evaluating real-life
dialogues with prior knowledge. All methods discussed are listed in Table 5.1.

5.2.1 Cross domain adaptation

The first application of TL to DM has been proposed by (Gasic, Breslin, et al. 2013) and it
was for cross domain adaptation.

Gasic, Breslin, et al. 2013
This approach considers extending a DP ability of handling several slots from a basic
domain (the source environment), including food-type slot and the area slot for example,
to an extended domain (the target environment) equipped with an additional unknown
slot, the price-range slot. DMs are Gaussian Process (GP) DPs (Rasmussen 2003; Gasic
and S. Young 2013) using a transitions dictionary to keep the problem tractable (Engel
et al. 2006). The DST module is implemented using The Bayesian Update of Dialogue
State (Thomson and S. Young 2010) for tracking belief states.

First, they propose a novel idea which allows a policy trained in the basic domain to be
used in an extended domain: a kernel function that defines the correlation between belief
states from different domains. Then, they investigate two solutions in order to quickly
adapt to the new domain:
• Simply continue the training of the source policy in the extended domain. To that

extent, a zero-mean prior is set on the GP for theQ-function. The knowledge-transfer
phase consists in including transitions from both domains in the dictionary4.
• The prior of the mean of the GP Q-function in the extended domain is the posterior

of the mean from the GP Q-function in the basic domain.
The authors validate both approaches with human experiments showcasing significant

improvements during the jumpstart phase.

To go beyond
Other approaches that go beyond the scope of this thesis have been released in the past
few years. In Keizer and Rieser (2016) and Keizer and Rieser (2018), the authors solve
the cross-domain problem by casting the DM as a multidimensional system. They learn
common transferable skills.

A multi-agent solution is adopted in L. Chen et al. (2018). They learn two types of
agent, slot-dependent and slot-independent agents. Rather than transfering the common
knowledge as in Keizer and Rieser (2018), they transfer slot-dependent agents in the target
domain.

In Ilievski et al. (2018), they propose to operate transfer using the weights of the
policy’s NN from the source domain to the target domain. But because domains are not the
same, they have to extend the dialogue state and action spaces of both domains in order to
render the transferred knowledge compatible.

4It is quite hard to categorise the type of knowledge transferred as GP are nonparametric, so the transitions
represent directly the parameters. But following the author description, it is policy transfer.

5.2 State-of-the-art of Transfer Learning for Dialogue Systems 49

5.2.2 User adaptation

When the different users denotes the space of tasks, we talk about user adaptation. Before
listing the state of the art in user adaptation, we recall why it is essential.

On the need of user adaptation
Dialogue Managers (DMs) are usually trained versus user-models (Eckert et al. 1997;
Levin and Pieraccini 1997; Levin, Pieraccini, and Eckert 2000; Pietquin 2004; El Asri,
He, et al. 2016) , agenda-based user-simulator (Schatzmann 2008; Keizer, Gasic, et al.
2010) or dialogue simulator (Laroche 2017; Khouzaimi et al. 2017). Initially, models were
trained and tested against the same user-model.

In Schatztnann et al. (2005), they demonstrated empirically that testing DPs trained
on poor user-model (the bigram model), against more sophisticated user-models (the
Levin-model or the Pietquin-model) led to poor performances. Assuming humans are more
complex that the finest user-model, it is natural to infer that DM learnt on user-models
may perform poorly in real conditions. Even if the paper focused on the quality of user-
models, we see that any DM cannot be used for any target user-model (or human), thus
a knowledge-transfer phase is essential. The same idea applies if the target environment
is a parametric user-model simulating different kind of users. In Lemon and X. Liu
(2007), they learnt different policies against user-models with 2 types of variations: user
type (Cooperative/Uncooperative), and noise conditions (High/Low). Even if the policies
trained in high-noise conditions generally perform better than those trained for low-noise
conditions, no policies is the best fit for all user-models, thus a knowledge-transfer phase
is also needed. While those two examples are not TL strictly speaking, they clearly show
that user adaptation is essential. There are indeed a handful of published works in this
domain that we survey in the following paragraphs.

Casanueva et al. 2015a
In this paper, they propose to personalise DSs to different speakers suffering from dysarthria.
Users are simulated and their respective dysarthia seriousness is adjusted using the ASR
module. As in Gasic, Breslin, et al. (2013), GPs are GP policies; they are learnt with
Deterministic Training Conditional. In order to adapt the target policy to new users, they
introduce two knowledge-transfer solutions which adress respectively two issues: which
source to transfer from and how to weight the transitions transferred from multiple sources.

To select the source to transfer, they introduce a similarity function between speakers
(along with 3 different speaker features) which is a Radial Basis Function kernel. They also
pick the most similar transitions to the target speaker to reduce the amount of transferred
data.

In order to weight the transitions transferred, they reduce the covariance of two transi-
tions where the source and target speakers are similar. They make it possible by extending
the transitions with the speaker features. Then, they extend the GP kernel defined in the
state-action space with the Radial Basis Function kernel in the speaker space previously
mentioned. The authors show that this method outperforms the source selection.

To design the target policy5, they propose to divide the transferred transitions in two

5Please note that there is no learning phase strictly speaking since GP ML algorithms use lazy learning
(instead of learning a model with the data, then doing inferences with the model, the data is directly used
during the inferences).

50 Chapter 5. User adaptation and Transfer Learning

sets. The first set allows one to learn the posterior of the mean of the source GP Q-function
used as the prior in the target context, which is one of the solutions proposed in Gasic,
Breslin, et al. (2013). The second set is used to initialise the set of points needed to
compute the parameters of the target GP Q-function.

Genevay et al. 2016
The method proposed in this paper embraces the problem of user adaptation by transferring
the transitions of previous encountered users to learn the target policy with FTQ. An algo-
rithm is also proposed to pick the source set of transitions using Upper Bound Confidence
(UCB). Finally, Density-Based, a way of picking the relevant transitions in the source set
for the target task, is also introduced. The overall framework is tested on the Negociation
Dialogue Game (NDG). The main limitation is the following: as the number of source user
grows, the number of arms for the UCB algorithm grows too. It becomes impracticable to
test at least once each arm with the target user. One of the contributions we propose in this
thesis fixes this problem, hence for more details, please refer to Chapter 6.

Carrara, Laroche, and Pietquin 2017
In this work, detailed Chapter 6, we extend Genevay et al. (2016) in order to handle a
larger pool of source policies. We propose a clustering approach and test it on handcrafted
users as well as human-model users.

Mo et al. 2018
The approach introduced in this work, called PETAL, transfers parameters to process user
adaptation with a real-world coffee ordering dataset. To that extent, they model the Q-
function of the target policy as the sum of a common Q-function learnt using data gathered
on several source users and a personalised Q-function learnt on the target transitions. A
weight vector w representing the influence of the common Q-function over the person-
alised Q-function is extracted from the same data. Finally, they construct a DST module
that is a function mapping dialogue history to belief state using a state-projection matrix
denoted M . This matrix is also learnt with the source transitions. In the end, they transfer
three parameters set to learn the target policy: the parameters of the common Q-function,
the matrix M and the vector w. The authors use a State–Action–Reward–State–Action
(SARSA) (Rummery et al. 1994) algorithm to regress the target Q-function. They val-
idate the approach on both simulated and real work data comparing several baselines
(including Casanueva et al. (2015a), Genevay et al. (2016) and Gasic, Breslin, et al. (2013)
modified for user adaptation).

Carrara et al. 2018c
We introduce an approach based on the transfer of a safe policy learnt on the complete
pool of source users. This solution is discussed in Chapter 8.

5.2.3 An aside on dialogue evaluation
On real SDS problems, it is usually hard to infer on-the-fly if the dialogue ended well. For
example, in a task-completion problem, during the dialogue, the system cannot know if a
slot has been understood thus it is impossible to infer if the task is a success or not. If the
recognition score is high, there is more chance that the system understood correctly, but
still, it is not a perfect measure. To that extent, El Asri et al. (2014) proposes to transfer a

5.2 State-of-the-art of Transfer Learning for Dialogue Systems 51

Knowledge Setting Metric
cross domain

Gasic, Breslin, et al. 2013 parameter (transitions/policy)
mono-task
cross-domain all

Keizer and Rieser 2018 parameter (policy)
generic-task
cross-domain all

L. Chen et al. 2018 parameter (policy)
generic-task
cross domain all

Ilievski et al. 2018 parameter (policy)
mono-task
cross-domains all

user adaptation

Casanueva et al. 2015a parameter (transitions/policy)
multi-task
fixed domain all

Genevay et al. 2016
transitions
parameter (policy)

multi-task
fixed domain all

Carrara, Laroche, and Pietquin 2017
transitions
parameter (policy)

multi-task
fixed domain all

Mo et al. 2018 parameter (Q-function, DST)
generic-task
fixed domain all

Carrara et al. 2018c parameter (policy)
generic-task
fixed domain all

dialogue evaluation

El Asri et al. 2014 representation (reward function)
generic-task
fixed domain all

Table 5.1: Transfer Learning for Dialogue Systems

reward function inferred from a set of evaluated dialogues (by experts or other evaluation
techniques). The authors learn this function using Inverse Reinforcement Learning with
the reward shaping algorithm proposed in El Asri et al. (2012). They learn the target policy
using LSPI on a target environment equipped with the learnt reward function.

II

6 A complete pipeline for user adap-
tation . 55

6.1 Motivation
6.2 Adaptation process
6.3 Source representatives
6.4 Experiments
6.5 Related work
6.6 Conclusion
6.7 Discussion

Scaling up Transfer Learning

6. A complete pipeline for user adaptation

6.1 Motivation
In this chapter, we tackle the problem of fast optimisation of user-adapted dialogue
strategies by means of Reinforcement Learning (RL) as stated in Chapter 5 . The main
goal is to improve jumpstart learning of RL-based dialogue management strategies when
facing new users, by transfering data collected from similar users (Lazaric et al. 2008). To
do so, we consider the setting in which a large amount of dialogues have been collected
from several users, and a new user connects to the service (Genevay et al. 2016). This
solution combines techniques from the literature on Multi-Armed Bandit (MAB) (Auer
et al. 2002b), batch RL (Ernst et al. 2005; L. Li, J. Williams, et al. 2009; Chandramohan,
Geist, and Pietquin 2010; Pietquin et al. 2011) and policy/MDP clustering (Chandramohan
et al. 2012; Mahmud et al. 2013).

Instead of clustering user behaviours as in Chandramohan et al. (2012), we propose to
cluster the policies that are trained on the user dialogue datasets. To do so, we define a
novel policy-based distance, called PD-DISTANCE. Then, we investigate several clustering
methods: k-medoids (Kaufmann et al. 1987) and k-means (Steinhaus 1957; MacQueen
1967), which enable the identification of source representatives for the Transfer Learning
(TL). Once clusters representatives have been selected, they are plugged into a multi-armed
bandit algorithm, as proposed in Genevay et al. (2016).

Following previous work where user adaptation (Janarthanam et al. 2010; Ultes, Kraus,
et al. 2015) was used to address negotiation tasks (Sadri et al. 2001; Georgila et al. 2011;
Barlier et al. 2015a; Genevay et al. 2016), we test our methods on different types of users
involved in a negotiation game (Laroche and Genevay 2017). Methods are compared
with two baselines: learning without transfer and transfer from a generic policy learnt
from all the sources. These methods are tested by interacting with handcrafted users and
human-model users learnt from actual human interactions (unlike Genevay et al. (2016)).
These experiments show that our clustering methods provide a better dialogue experience

56 Chapter 6. A complete pipeline for user adaptation

than the generic methods in both setups.
We present the full user adaptation process in Section 6.2. The clustering methods are

described in Section 6.3. Section 6.4 describes the negotiation game and the experiments.

6.2 Adaptation process
Figure 6.1 shows the full process of user adaptation. As an input, we assume the existence
of a database of dialogues with different source users, which allows the training of user
specialised policies. At first, the process consists in searching or constructing policy
representatives for this database so as to reduce the number of possible transfer sources.
This is where the contribution of this chapter mainly stands, the rest being mostly inherited
from Genevay et al. (2016).

6.2.1 The knowledge-transfer phase

The knowledge-transfer phase is operated on two levels: the selection of a source policy
(system) and the selection of the relevant transitions used to learn this source policy.

Figure 6.1: Adaptation process

6.3 Source representatives 57

Source selection
The source selection problem is cast into a MAB algorithm, implemented here as UCB1 (Auer
et al. 2002b), each arm standing for a representative. When the MAB selects an arm, its
corresponding policy π interacts with the user for one full dialogue. The MAB performs
nmab policy selections. Nmab transitions from dialogues, with target user u′, are collected
during this procedure. In the end of this initial MAB step, the representative policy that
yielded the highest empirical reward designates the source from which to transfer. The
algorithm transfers N û transitions from its source û dialogues, to construct a batch of
dialogues. Transitions from the trajectories of the chosen source are added to those already
collected from the target as suggested by Lazaric et al. (2008).

Instance selection
Source transitions are subject to an instance selection to alleviate bias when sufficient target
data has been collected. After instance selection, the N b

û remaining transitions are added
to the target transitions for training a first policy with Fitted-Q (FTQ). The idea is to only
transfer transitions that are not present in the target transition dataset. We use an algorithm
called Density-Based (Genevay et al. 2016) :given a parameter η and given a transition
from the source (s, a, r′, s′), all the transitions from the target MDP which contain action
a are considered. If there is a source transition (si, a, r

′
i, s
′
i) such that ||s− si||2 ≤ η then

the transition is not added to the batch. The choice of η is problem-dependent and should
be tuned carefully. A large value for this parameter leads to adding too few transitions to
the batch, while a small value might make the source bias pertain too long.

6.2.2 The learning phase

The hybrid source-target dataset is used for training the current policy that controls the
behaviour during the next epoch, with an ε-greedy exploration. N b

u′ transitions are collected
this way, and used to refine its training. The algorithm repeats the operation from the
transition selection step for B minibatches. Note that between each minibatch, Density-
Based is used to remove redondant source transitions. Eventually, the final learnt policy
πBu′ on u′ is added to the database. Note that this policy does not explore anymore.

6.3 Source representatives
This section presents the main contributions of the chapter. The adaptation process requires
a setup of several source representatives in order to do the first dialogues, with a target
user, handled by the MAB process. Indeed, setting one arm for every source policy
is not sustainable for real-world systems since the stochastic MAB regret is linear in
number of arms. The initial phase of MAB dialogue collection lasts d ∼ 100 dialogues.
This is the reason why in this chapter we propose to create a set of limited size k of
source representatives from a large user database. Two methods are proposed: one based
on the cost function of k-medoids and the other one based on k-means. Both rely on
PD-DISTANCE, a novel policy-driven distance that we introduce in this chapter:

dpd (u, u′) =

√∑
s∈Ω

1− 1 (πu(s), πu′(s)) (6.1)

58 Chapter 6. A complete pipeline for user adaptation

where u and u′ are source users and πu and πu′ the deterministic policies trained with them.
The state set Ω is obtained by sampling over the states contained in the dialogues database.
The function 1 is the Kronecker delta: 1(x, y) = δxy

In the KMEDOIDS method, we propose to choose directly k representatives into the
systems database. The cost function optimised by the k-medoids algorithm, denoted as J
here, is used. Let Pk(U) denote the ensemble of k combinations of elements among U ,
the set of all source users. If U ∈ Pk(U), and d is a distance, then the cost function is
defined as:

J(U) =
∑
u∈U

min
u′∈U

d(u, u′). (6.2)

Thus, the goal is to find the set Pmin minimising KMEDOIDS. This chapter uses PD-
DISTANCE as the distance d. For performance reasons, instead of optimising over all
U ∈ Pk(U), we sample uniformly on Pk(U) and keep the smallest cost value J(U),
but one could use better optimisation methods to find the best fit according to KMEDOIDS

(like a greedy approach).
In the KMEANS method, we cluster systems with the k-means algorithm using PD-

DISTANCE as a distance. In order to keep using the Euclidean distance in the k-means
algorithm, one must design each vector v to cluster this way: v(s, a) = 1 if a has been
chosen in s, 0 otherwise. Note that KMEDOIDS directly picks elements from the main set
while k-means regroups elements around means of vectors potentially corresponding to
non-existent systems. The KMEANS method must construct the k system representatives
from the clusters. A representative is a new system learnt using FTQ. The training batch
is constructed by gathering N ts transfer transitions (s, a, r′, s′) of each system of the
corresponding cluster.

6.4 Experiments
In order to test the previous methods, experiences are ran on the Negociation Dialogue
Game (NDG) (Laroche and Genevay 2017). It is a slot-filling problem as described in
Section 3.2. In this game, two players must agree on a time-slot for an appointment. For
each player p, each time-slot τ is associated to a cost cp,τ ∈ [0, 1]. Each player knows
its own costs, but does not know the costs associated to the other player. At each turn of
the game, a player can refuse the other player’s time-slot and propose another time-slot:
RefProp(τ), ask the other player to repeat: AskRepeat, terminate the game: EndDial
or accept the other player’s slot: Accept. The noise inherent to spoken dialogues (because
of Automatic Speech Recognition (ASR) errors) is simulated: when a player proposes a
time-slot, there is a probability ξ that the time-slot proposed is corrupted where ξ denotes
the Sentence Error Rate (SER) of this player.

The Speech Recognition Score (SRS) ν of an utterance is then computed according to
the following formula (Khouzaimi et al. 2015):

ν =
1

1 + e−x

where x ∼ N (µ, 0.2), µ = µ> is the probability of a proper understanding,and µ = µ⊥
is the probability of a miss-understanding i.e. µ = (1− z)µ>+ zµ⊥ where z ∼ B(1, ξ). In

6.4 Experiments 59

a nutshell, the SER denotes if an error appears or not, and the SRS denotes how confident
the system is about the transcripted utterance; if there is an error, the confidence score
will be low in expectation (with respect to µ = µ⊥); if there are no errors, the confidence
score will be hight in expectation (with respect to µ = µ>). These parameters are relative
to each player. The further apart the normal distribution centers are, the easier it will be
for the system to know if it understood the right time-slot, given the score. At the end of
the game, if there is an agreement (i.e. there is no misunderstanding on the agreed slot
τ = τu = τv), the system v, receives a immediate reward rv = ωv − cv,τ + %v(ωu − cu,τ),
where u denotes the other player: the user (either real human or a user simulator). For
each player p ∈ {u, v}, ωp ∈ R is the utility of reaching an agreement, and %p ∈ R is the
cooperation parameter. If players, v and u, agreed on different time-slots, the following
formula applies to compute v’s immediate reward rv = −cv,τv +%v(−cu,τu). In this context,
players would better agree on the same time-slot even if it is costly for them to book this
specific time slot.

The return is then Gv = γtvrv where t is the lenght of the dialogue and γv ∈ [0, 1]
his patience. Thanks to the γv parameter, players are inclined to accept a time-slot in a
limited time. In the following, the number of available slots denoted as Nτ ∈ N+, is set to
4 and the maximum number of utterances in a dialogue is set to 50 (once this maximum is
reached, a zero return is given). We set %u = %v = 1 and ωu = ωv = 1. An example of an
NDG execution is displayed in the following listing:

It is a 3 time-slots game (Nτ = 3), 2 players, u and v.
Cooperation rates: %u = %v = 1.
Utilities: ωu = ωv = 1.
Patiences (discount factors): γv = γu = 0.9.
Costs: cu,0 = 0, cu,1 = 0.75, cu,2 = 0.5, cv,0 = 0.75, cv,1 = 0, cv,2 = 0.5.
--
Start of the dialogue.
Turn 0: u says RefProp(0) # There are no errors (z = 1), ν = 0.8.
Turn 1: v says RefProp(1) # There are no errors (z = 1), ν = 0.75.
Turn 2: u says RefProp(2) # There is an error (z = 0), ν = 0.3.
Turn 3: v says AskRepeat.
Turn 4: u says RefProp(2) # There are no errors (z = 1), ν = 0.9.
Turn 5: v says Accept.
End of the dialogue (t = 6).
--
Both players found a compromise.
Immediate rewards: rv = ru = 1− 0.5 + 1− 0.5 = 1.
Returns: Gu = Gv = 0.96 · 1 ≈ 0.53.

Example of an NDG execution.

We will test both KMEANS and KMEDOIDS methods for searching representatives.
The objective is to show that these methods improve the dialogue quality compared to non
adaptive methods. We did all the tests in the following context: a user (human-model user
or handcrafted user) and a system play an NDG. A dialogue is defined as one trajectory of
the game. Slot preferences for users and systems are determined randomly at the beginning
of each dialogue. The collected target dialogues are used to train a DP for the new user
and the baselines and the clustering methods are compared in their ability to enable fast
user adaptation.

60 Chapter 6. A complete pipeline for user adaptation

Merwan Nico Will Alex

Accept 7% 35% 24% 13%
EndDial 0% 0% 0% 0%
AskRepeat 1% 14% 10% 6%
RefProp(0) 88% 45% 60% 64%
RefProp(1) 3% 5% 6% 15%
RefProp(2) 0% 0% 1% 2%
RefProp(3) 1% 0% 0% 0%
learn error 5.2% 5.2% 4.9% 6.8%

Table 6.1: Rounded actions distributions of humans and learn error of their k Nearest Neighbours
(kNN) model.

Before jumping to the results, next section presents the user ensemble design.

6.4.1 Users design
Experiments are split in two parts with different sets of (source and target) users: the
first set is artificially handcrafted (handcrafted users), while the second one is trained on
human-human trajectories (human-model users).

Handcrafted users:
To illustrate the need for user adaptation, different types of handcrafted users are defined:
• The deterministic user (DU) proposes its slots in decreasing order (in term of its

own costs). If a slot proposed by the other user fits in its x% better slots, it accepts,
otherwise it refuses and proposes its next best slot. If the other user proposes twice
the same slot (in other words, he insists), DU terminates the dialogue. Once that DU
proposed all its slots, it restarts with its best slots all over again.
• The random user (RU) accepts any slot with a probability of x, otherwise it refuses

and proposes a random slot.
• The always-refprop-best user (ARPBU) always refuses other user’s slot and proposes

its best slot.
• The always-accept user (AAU) always accept the other user slot. If AAU begins the

dialogue, it proposes its best slot.
• The stop-after-one-turn user (SAOTU) proposes a random slot then ends the dialogue

regardless of the other user response.

Human-model users:
In order to gather dialogues from human users, a multi-human version of the negotiation
game has been created. Making the humans play together avoids too fast adaptation from
the humans (unlike human versus computer setup) and thus keep the experiments in a
stationary environment. Both players know they are playing against another human.

The number of slots available has been set to Nτ = 4 and all human users share the
same parameters from the negotiation game which are γu = 0.9, ω = 1, ξ = 0.3, µ> = 1,
µ⊥ = −1 and % = 1. The game is then fully cooperative. Four humans: Alex, Nico,
Merwan and Will played an average of 100 dialogues each. Using human trajectories, we
design human-model users. State/action couples are extracted from these trajectories.

6.4 Experiments 61

Human-model users can do the following actions: Accept, AskRepeat and End-
Dial. They can also RefProp(τ) to refuse the other user slot and propose their τ th

best slot. For instance, the action RefProp(0) then means that the human-model user
refuses and proposes its best slot. We find the corresponding human-model users actions
with the humans actions. Table 6.1 shows the empirical distribution on the human-model
users actions space for each (real) human. Although humans were neither playing against
the same players, nor starting from the same initial states of the game, some behavioural
differences clearly appear. Merwan tends to insist on his best slot while Nico seems more
compliant. Alex is more versatile in the actions chosen.

Human-model users require an approximate representation, or projection, of the human
state. The dialogue state representation is defined as a vector of the 2 + 3Nτ following
attributes: the SRS ν of the last received utterance, the costs of all slots sorted, the fre-
quencies of all RefProp(i) actions done by this user during the dialogue, the frequencies
of all slot propositions done by the other user (ordered by cost for this user) during the
dialogue and finally the cost of the last slot proposed by the other user.

Each human is modelled with a kNN, with k = 5, fed with their corresponding data
couples state/action. Table 6.1 also shows the training errors.

Finally, handcrafted and human-model users share the following parameter values:
ξ = 0.3, µ> = 1, µ⊥ = −1, ω = 1, % = 1 and γu = 0.9.

6.4.2 Systems design
Each system is trained with the least-square FTQ algorithm. Their actions set is restricted to:
Accept, AskRepeat, EndDial, and two RefProp actions: RefPropNextBest
to refuse the other user’s slot and propose the next best slot after the last slot the system pro-
posed (once all slots have been proposed, the system loops) and InsistCurrentBest
to propose his last proposed slot. The DST module collects three attributes, the current
iteration number of the dialogue t, the SRS and the difference between the cost of the next
slot the system can propose and the cost of the slot currently proposed by the user c. FTQ’s
feature representation is then defined with 7 attributes for each action:

φ(s, a) = (1, c, ν, (1− 1

t
), c · ν, c · (1− 1

t
), ν · (1− 1

t
))

The learning algorithm is described as follows: given a target user u′1, the learning
is done in B minibatches of FTQ (with γ = 0.9, υ = 0.001 and K = 200). For each
minibatch b, a set of N b

u′ dialogues is generated between the system and a user and then
a new policy is computed with FTQ fed with all the dialogues done so far. Policies are
ε-greedy, ε annealing from ε = 0.25 at the 1st batch to ε = 0.01 at the last batch. In
between, ε(b) = 1

ae·b+be where ae = 19.2, be = −15.2. ε is set to 0 during the test phase
(in order to greedily exploit the current policy). In the human setup, B = 6 and N b

u′ = 500.
In the handcrafted setup, B = 6 and N b

u′ = 200.

6.4.3 Cross comparisons
To show the importance of user adaptation, source systems are respectively trained versus
users. Then, each system interacts with all the users and we compare the results. The

1We reuse notations from section 6.2.

62 Chapter 6. A complete pipeline for user adaptation

(a) vsAlex policy’s 2D projection. (b) vsWill policy’s 2D projection.

(c) vsNico policy’s 2D projection.

Figure 6.2: Some projections of policies optimised versus human-model users

6.4 Experiments 63

type µ> µ⊥ x vspu1 vspu2 vspu3 vspu4 vspu5 vspu6 vspu7

pu1 DU 1 -1 0.1 0,62 0,44 0,46 0,40 0,40 0,40 0,59
pu2 DU 5 -5 0.1 0,53 0,82 0,81 0,51 0,70 0,41 0,71
pu3 DU 5 -5 0.2 0,53 0,81 0,81 0,52 0,72 0,42 0,71
pu4 RU 5 -5 0.1 0,42 0,94 0,94 1,00 0,92 0,85 0,94
pu5 ARPBU 1 -1 0,84 0,98 1,00 1,11 1,16 1,13 1,05
pu6 AAU 1 -1 0,95 1,06 1,07 1,29 1,27 1,30 1,06
pu7 SAOTU 1 -1 0,43 0,26 0,27 0,10 0,18 0,03 0,58

Table 6.2: Handcrafted users characteristics and cross comparison between handcrafted users and
systems. For p ∈ [0, 7], vspup is the system trained versus the user pup

vsAlex vsNico vsWill vsMerwan

Alex 1.077 1.041 1.071 1.066
Nico 1.246 1.251 1.246 1.231
Will 1.123 1.109 1.126 1.117
Merwan 0.989 0.903 0.985 0.998

Table 6.3: Cross comparison between human-model users and systems

experiences are repeated for 10 runs. Dialogue testing size is set to 103 for each run. In the
handcrafted setup, as in Genevay et al. (2016), handcrafted users are created. Parameters
of these users are listed in Table 6.2. Also, cross comparisons between source users and
systems are displayed. Results in bold show that each system trained versus a specific user
is the best fit to dialogue with this user. One can see clear similarities between some of the
results. This is where the representatives design method will operate by grouping all these
similar policies.

In the human setup, test systems are trained against the human-model user. Results
are shown in Table 6.3. Note that label Will means model of Will and not Will himself
as well as vsWill means the system trained against Will’s model. Again, trained systems
perform better than others against the user they learnt on. However, differences are not
as clear as in the handcrafted setup. The reason is shown in Figure 6.2a, 6.2b and 6.2c
where learnt policies are quite similar. Computed policies are tested on the states si from
the set of (si, ai, r

′
i, s
′
i)i∈N they learnt from. The (ν, c) projection explains better policy

differences. One can see that vsAlex and vsWill are pretty similar as they insist often when
the cost is negative, in contrary of other policies. On the other hand, vsNico tends to
RefProp instead of Accept when the SRS is high. It is straightforward to remark that
this is because Nico has tendencies to Accept more than others as we saw in Table 6.1.
One can notice that even if statistics gathered from human actions distribution shows
significant differences (in Table 6.1), computed policies are not necessarily different (like
vsAlex and vsWill).

6.4.4 Adaptation results
Now that specialised systems have been shown to lead to better results, we test the full
adaptation process with KMEDOIDS and KMEANS methods. As previously, we performed

64 Chapter 6. A complete pipeline for user adaptation

KMEDOIDS KMEANS AGGLO SCRATCH
0.90

0.95

1.00

1.05

1.10
scores

(a) Overall returns (handcrafted)

KMEDOIDS KMEANS AGGLO SCRATCH
1.40

1.45

1.50

1.55

1.60 dialogue size

(b) Dialogues lenghts (handcrafted)

KMEDOIDS KMEANS AGGLO SCRATCH
0.990

0.992

0.994

0.996

0.998

1.000 task completion

(c) Task completion in % (hand-
crafted)

KMEDOIDS KMEANS AGGLO SCRATCH

1.00

1.05

1.10

1.15

1.20 scores

(d) Overall returns (human)

KMEDOIDS KMEANS AGGLO SCRATCH
1.80

1.85

1.90

1.95

2.00 dialogue size

(e) Dialogues lenghts (human)

KMEDOIDS KMEANS AGGLO SCRATCH
0.990

0.992

0.994

0.996

0.998

1.000 task completion

(f) Task completion in % (human)

Figure 6.3: Dialogue quality in the handcrafted and human setup

tests on both handcrafted and human-model users. But first, the database of source systems
is constructed. We created 100 source handcrafted users and 100 source human-model
users. Those are designed by changing some parameters of the vanilla users. For example,
a model from Alex is changed switching its SER (ξ) from 0.3 to 0.5. Parameters take
random value between the following intervals: µ> ∈ [0, 5] with µ⊥ = −µ>, ξ ∈ [0, 0.5],
% ∈ [0, 1], and x ∈ [0.1, 0.9]. It is useful for human setup because we do not have enough
dialogue corpora to design 100 systems specialized versus 100 unique human-model users.
The same method is applied to generate a large number of handcrafted users as well. For
each user, a source policy is trained after 6 batches of 200 dialogues (for a total of 1200
dialogues). Each system is added to its respective database (human-model or handcrafted).
We end up with 100 source trained policies with 100 source handcrafted users and 100
source trained policies with 100 human-model source users.

KMEANS and KMEDOIDS are tested for the complete adaptation process versus a base
of 500 target users generated randomly (in the same way as users have been generated
to create source systems). As discussed in Section 6.2, the adaptation process implies a
bandit phase: 25 dialogues are done versus the target user then the mean return is saved to
be plotted. Then all the transitions (s, a, r′, s′) are retrieved from the source system winner
of the bandit. The process actually transfers a maximum of 1200 dialogues. Transfer
transitions are submitted to a filtering using Density-Based selection with η parameter
picked in the set {0.1, 0.3, 0.5, 0.7, 0.9} 2. Then, a new policy is learnt with FTQ fed with
transitions from the source system and transitions from the bandit dialogues. To avoid
divergence, a λ-regularisation (Tikhonov 1963; Farahmand et al. 2009) is applied to FTQ
with λ = 1. Once the policy learnt, 25 additional dialogues are sampled versus the target
user. After this sampling, the mean return is saved to be plotted later. The process is
repeated 6 times for a total of 25 + 6 · 25 + 1200 dialogues maximum for the learning

2We kept only η = 0.3 as results are pretty similar with any η

6.5 Related work 65

and 25 + 6 · 25 + 25 dialogues for the evaluation. All systems, sources and targets, share
the following parameters; ω = 1, γu = 0.9, ξ = 0.0, µ> = 5, µ⊥ = −5, % = 1 but
differ in their policy. All systems are learnt with FTQ using the following parameters:
υ = 0.001, K = 200 and γ = 0.9. They all follow an ε-greedy policy with ε defined as in
Section 6.4.2.

In order to compare the previous methods, we introduce two naive ways for user
adaptation, AGGLO and SCRATCH. The first one learns a unique system to represent the
whole systems database and the second one adopts a random policy during the bandit
phase then follows an ε-greedy policy like other methods but without any transfer. Before
running experiment, pre-processing is done for some the methods: for AGGLO, 1200
dialogues are gathered among all source systems in the database. That means 12 dialogues
are collected randomly from the dialogue set of each of the 100 source systems. A policy
is learnt with one batch of FTQ with υ = 10−6, γ=0.9 and K=200. This policy is used to
create one unique system representative for all the database. For KMEANS, PD-DISTANCE

vector representations of each system in the database are created by sampling over 20000
states (picked from source systems). Then these systems are clustered with k=5 using
k-means with euclidean distance. For each cluster the previous AGGLO method is applied
in order to create a cluster representative. Finally, for KMEDOIDS, a random sampling of
five-element sets is ran. The J value of each set is computed and the one who minimizes
this value is kept. Finally, 10 different sets of AGGLO, KMEANS and KMEDOIDS are
created and tested. Results are shown in Figure 6.3. In the handcrafted setup, the overall
dialogue quality of the proposed methods is significantly better than AGGLO and SCRATCH

baselines. Indeed, dialogues are shorter 3, final return is higher and the task is more often
completed. On the other side, returns and task completions are similar in the human setup.
Still, the size of the dialogues is improved by KMEANS and KMEDOIDS offering a better
dialogue experience and thus users keep using the DS.

6.5 Related work

To our knowledge, only one paper treats the subject of searching system representatives
among a systems database: (Mahmud et al. 2013) has a similar adaptation process as the
one presented in this chapter. It is not applied to DSs specifically. In order to choose
good representatives from the policies/MDP/systems database, clustering is done using the
following distance:

dV (Mi,Mj) = max{V π∗i
i − V

π∗j
i , V

π∗j
j − V

π∗i
j },

given two MDPs Mi and Mj , where V π
k is the return of the policy π when executed on

MDP Mk and π∗k refers to the optimal policy for MDP Mk. Thus, to compute all the
systems distances two by two, one needs to sample dialogues between the source users and
all the source systems of the database. In a real life dialogue applications with humans, it
is not possible to do such a thing unless one creates a model of each source user.

3SCRATCH’s dialogue size can be shorter because it use random policy on jumpstart and then ends the
dialogue more often.

66 Chapter 6. A complete pipeline for user adaptation

6.6 Conclusion
In this chapter, user adaptation has been proved to improve DSs performances when users
adopt different behaviours. The chapter shows that indeed, each human adopts a different
way to play the NDG although the shade is subtle. So, a system learnt versus a particular
user is more efficient than other systems for this user, in the handcrafted user setup as in
the human-model user setup.

User adaptation requires selecting source systems to transfer knowledge. This chap-
ter proposed 2 methods: KMEANS and KMEDOIDS combined to a novel distance PD-
DISTANCE to select representative source systems, from a large database, which are
used for transferring dialogue transitions. These methods outperform generic policies
in the handcrafted setup and improve dialogue quality when facing models learnt on
human-human data.

6.7 Discussion
The framework is working but is heavily engineered. Each composant can be tested
and validated which is a good thing. However, each of those composant can generate
errors and approximations. Also the number of meta-parameters make it hard to optimise
from a human perspective. Finally, the effort of implementation is cumbersome. As
a consequence, we will propose solutions to condense the whole pipeline into a single
procedure, by extending the famous DQN algorithm. As it is an early work in progress, we
will see those propositions in an extra chapter: Appendix A.

III

7 The Dialogue Manager as a safe pol-
icy . 69

7.1 Motivation
7.2 Budgeted Dialogue Policies
7.3 Budgeted Reinforcement Learning
7.4 A scalable Implementation
7.5 Experiments
7.6 Discussion
7.7 Conclusion

8 Transfering safe policies 89
8.1 Motivation
8.2 ε-safe
8.3 Experiment

Safe Transfer Learning

7. The Dialogue Manager as a safe policy

In this chapter and in Chapter 8, we formulate the hypothesis that the first dialogues with a
new user should be handled in a conservative way, for two reasons: to avoid user dropout;
and to ensure the gathering of informative dialogues to speedup the learning. We propose
to design and transfer a generic safe policy to handle the early interactions with the target
user. The transfering algorithm is developped in Chapter 8, but first, we study here how
to compute this policy. Therefore, we cast the dialogue problem as a Budgeted Markov
Decision Process (BMDP) and propose a new Reinforcement Learning (RL) framework
to learn safe policies in this context. A BMDP is an extension of an Markov Decision
Process (MDP) to critical applications requiring safety constraints. It relies on a notion of
risk implemented in the shape of a cost signal constrained to lie below an – adjustable –
threshold. For our application, the risk is described as a user hanging up the conversation.
The threshold is then the maximum hangup frequency we can afford with a user. So
far, BMDPs could only be solved in the case of finite state spaces with known dynamics.
However, as we seen earlier, dialogue policies take as input continuous variables as the
SRS and we do not know the dynamic of a human dialoguing. As a consequence, this work
extends the state-of-the-art to continuous spaces environments and unknown dynamics.
We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman
Optimality operator. This observation allows us to introduce natural extensions of Deep
Reinforcement Learning (DRL) algorithms to address large-scale BMDPs. In addition to
the DS application, we validate our approach with an autonomous driving application1

1The work in the chapter has been done in collaboration with Edouard Leurent. I (Nicolas Carrara)
handled the creation and implementation of a novel algorithm (BFTQ) and the early proofs of concept on
2D worlds. I also made the experiments on dialogue systems. Edouard Leurent and I worked togetheir on
the proofs and a novel exploration procedure. Finally, Edouard Leurent handled the autonomous driving
experiments.

70 Chapter 7. The Dialogue Manager as a safe policy

7.1 Motivation
As stated in Chapter 4, RL is a general framework for decision-making under uncertainty.
Formally, we seek a policy π ∈M(A)S that maximises in expectation the γ-discounted
return of rewards Gπ =

∑∞
t=0 γ

tR(st, at).
However, this modelling assumption comes at a price: no control is given over the

spread of the performance distribution (Dann et al. 2019). In many critical real-world
applications, including dialogue systems, failures may turn out very costly. This is an
issue as most decision-makers would rather give away some amount of expected optimality
to increase the performances in the lower-tail of the distribution. This has led to the
development of several risk-averse variants where the optimisation criteria include other
statistics of the performance, such as the worst-case realisation (Iyengar 2005; Nilim et al.
2005; Wiesemann et al. 2013), the variance-penalised expectation (Tamar et al. 2012;
Garcia et al. 2015), the Value at Risk (Mausser et al. 2003; Luenberger 2013), or the
Conditional Value at Risk (Chow, Tamar, et al. 2015; Chow, Ghavamzadeh, et al. 2018).

Reinforcement Learning also assumes that the performance can be described by a
single reward function R. Conversely, real problems typically involve many aspects,
some of which can be contradictory (C. Liu et al. 2014). For instance, a self-driving
car needs to balance between progressing quickly on the road and avoiding collisions.
When aggregating several objectives in a single scalar signal, as often in Multi-Objectives
Reinforcement Learning (Roijers et al. 2013), no control is given over their relative ratios,
as high rewards can compensate high penalties. For instance, if a weighted sum is used
to balance velocity v and crashes c, then for any given choice of weights ω the optimality
equation ωv E[

∑
γtvt] + ωa E[

∑
γtct] = G∗ = maxπ G

π is the equation of a line in
(E[
∑
γtvt],E[

∑
γtct]), and the automotive company cannot control where its optimal

policy π∗ lies on that line. This phenomena also occurs in dialogue systems. Let’s consider
a dialogue system that does not say Hello at the beginning of the dialogue; it increases the
dialogue efficiency (as the task is completed faster) but impacts the dialogue quality, and
may induce more users hanging up and definitive dropouts. Then, with new users, it would
be preferable to say Hello while a straight to the point strategy would be more appropriate
with recurrent users.

Both of these concerns can be addressed in the Constrainted Markov Decision Process
(CMDP) setting (Beutler et al. 1985; Altman 1999). In this multi-objective formulation,
task completion and safety are considered separately. We equip the MDP with a cost
signal C ∈ RS×A and a cost budget β ∈ R. Similarly to Gπ, we define the return of costs
Gc

π =
∑∞

t=0 γ
tC(st, at) and the new cost-constrained objective:

max
π∈M(A)S

E[Gπ|s0 = s] s.t. E[Gc
π|s0 = s] ≤ β (7.1)

This constrained framework allows for better control of the performance-safety trade-off.
However, it suffers from a major limitation: the budget has to be chosen before training,
and cannot be changed afterwards.

To address this concern, the BMDP was introduced in (Boutilier et al. 2016) as an
extension of CMDPs to enable the online control over the budget β within an interval
B ⊂ R of admissible budgets. Instead of fixing the budget prior to training, the objective is
now to find a generic optimal policy π∗ that takes β as input so as to solve the corresponding
CMDP (Eq. (7.1)) for all β ∈ B. This gives the system designer the ability to move the

7.2 Budgeted Dialogue Policies 71

Figure 7.1: On the left hand side, a simple risky-vs-safe BMDP. The probability of picking the
risky action is π1. On the right hand side an attempt to relax the problem with negative
rewards.

optimal policy π∗ in real-time along the Pareto-optimal curve of the different reward-cost
trade-offs.

7.1.1 A remark on deterministic policies
A convenient property of MDPs, is that the optimal policy is unique, deterministic and
greedy: π∗(s) = arg maxaQ(s, a). In a CMDP, and a fortiori in a BMDP, this is in
general not the case. It has been shown indeed that the optimal policy under constraint is a
random mixture of two deterministic policies Beutler et al. (1985, Theorem 4.4).

To illustrate this fact, let us consider the trivial BMDP on the left of Figure 7.1. On this
example we have Gπ = 10π1 and Gc

π = π1. The deterministic policy consisting in always
picking the safe action is feasible for any β ≥ 0. But if β = 1/2, the most rewarding
feasible policy is to randomly pick the safe and risky actions with equal probabilities. If
we attempt to cast this BMDP into an MDP by replacing the costs by negative rewards, the
policy we will obtain will be deterministic, hence sub-optimal.

Our first contribution is to re-frame the original BMDP formulation in the context
of continuous states and infinite discounted horizon. We then propose a novel Budgeted
Bellman Optimality Operator and prove the optimal value function to be a fixed point of
this operator. Second, we use this operator in BFTQ, a batch RL algorithm, for solving
BMDPs Online by interacting with an environment, through function approximation and
a tailored exploration procedure. Third, we scale this algorithm to large problems by
providing an efficient implementation of the Budgeted Bellman Optimality operator based
on convex programming, and by leveraging tools from DRL such as NNs and synchronous
parallel computing. Finally, we validate our approach in two environments that display a
clear trade-off between rewards and costs: a SDS and a problem of behaviour planning for
autonomous driving. The proofs of our main results are provided Appendix .1.

7.2 Budgeted Dialogue Policies
We work in the space of budgeted policies, where π both depends on β and also outputs a
next budget βa. Hence, the budget β is neither fixed nor constant as in the CMDP setting
but instead evolves as part of the dynamics.

We cast the BMDP problem as a multi-objective MDP problem (Roijers et al. 2013) by
considering augmented state and action spaces S = S ×B and A = A×B, and equip

72 Chapter 7. The Dialogue Manager as a safe policy

them with the augmented dynamics P ∈M(S)S×A defined as:

P (s′ | s, a) = P ((s′, β′) | (s, β), (a, βa))
def=P (s′|s, a)δ(β′ − βa), (7.2)

where δ is the Dirac indicator distribution.
In other words, in these augmented dynamics, the output budget βa returned at time

t by a budgeted policy π ∈ Π =M(A)S will be used to condition the policy at the next
timestep t+ 1.

We stack the rewards and cost functions in a single vectorial signal R ∈ (R2)S×A:

Definition 7.2.1 Given an augmented transition (s, a) = ((s, β), (a, βa)), we define:

R(s, a)
def=
[
R(s, a)
C(s, a)

]
∈ R2. (7.3)

Likewise, we augment the return:

Definition 7.2.2 The return Gπ = (Gπ, Gc
π) of a budgeted policy π ∈ Π refers to:

Gπ def=
∞∑
t=0

γtR(st, at). (7.4)

We also augment the value functions:

Definition 7.2.3 The value functions V π, Qπ of a budgeted policy π ∈ Π are defined
as:

V π(s) = (Vr
π, Vc

π)
def=E

[
Gπ
∣∣ s0 = s

]
Qπ(s, a) = (Qr

π, Qc
π)

def=E
[
Gπ
∣∣ s0 = s, a0 = a

]
.

(7.5)

We restrict S to feasible budgets only: Sf
def={(s, β) ∈ S : ∃π ∈ Π, Vc

π(s) ≤ β} that
we assume is non-empty for the BMDP to admit a solution. We still write S in place of Sf
for brevity of notations.

Proposition 7.2.1 — Budgeted Bellman Evaluation. The value functions V π and Qπ

verify:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a) Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′ | s, a)V π(s′).

(7.6)

Moreover, consider the Budgeted Bellman Evaluation operator T π: ∀Q ∈ (R2)SA, s ∈
S, a ∈ A,

T πQ(s, a)
def=R(s, a) + γ

∑
s′∈S

∑
a′∈A

P (s′|s, a)π(a′|s′)Q(s′, a′). (7.7)

Then T π is a γ-contraction and Qπ is its unique fixed point.

7.2 Budgeted Dialogue Policies 73

Proof. The proof is available in Appendix .1.1 �

Definition 7.2.4 — Budgeted Optimality. We now come to the definition of budgeted
optimality. We want an optimal budgeted policy to: (i) respect the cost budget β,
(ii) maximise the γ-discounted return of rewards G, (iii) in case of tie, minimise the
γ-discounted return of costs Gc. To that end, we define for all s ∈ S:

(i) Admissible policies Πa:

Πa(s)
def={π ∈ Π : Vc

π(s) ≤ β} where s = (s, β) (7.8)

(ii) Optimal value function for rewards Vr∗ and candidate policies Πr:

Vr
∗(s)

def= max
π∈Πa(s)

Vr
π(s) Πr(s)

def= arg max
π∈Πa(s)

Vr
π(s) (7.9)

(iii) Optimal value function for costs Vc∗ and optimal policies Π∗:

Vc
∗(s)

def= min
π∈Πr(s)

Vc
π(s), Π∗(s)

def= arg min
π∈Πr(s)

Vc
π(s) (7.10)

We define the budgeted action-value function Q∗ similarly:

Qr
∗(s, a)

def= max
π∈Πa(s)

Qr
π(s, a) Qc

∗(s, a)
def= min

π∈Πr(s)
Qc

π(s, a) (7.11)

and denote V ∗ = (Vr
∗, Vc

∗), Q∗ = (Qr
∗, Qc

∗).

Theorem 7.2.2 — Budgeted Bellman Optimality. The optimal budgeted action-value
function Q∗ verifies:

Q∗(s, a) = T ∗Q∗(s, a)
def=R(s, a)+γ

∑
s′∈S

P (s′|s, a)
∑
a′∈A

πgreedy(a′|s′;Q∗)Q∗(s′, a′),

(7.12)

where the greedy policy πgreedy is defined by: ∀s = (s, β) ∈ S, a ∈ A,∀Q ∈ (R2)A×S ,

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQr

E
a∼ρ

Qc(s, a), (7.13a)

where ΠQ
r

def= arg max
ρ∈M(A)

E
a∼ρ

Qr(s, a) (7.13b)

s.t. E
a∼ρ

Qc(s, a) ≤ β. (7.13c)

Proof. The proof is available in Appendix .1.2 �

74 Chapter 7. The Dialogue Manager as a safe policy

R [Appearance of the greedy policy] In classical RL, the greedy policy takes a simple
form πgreedy(s;Q

∗) = argmaxa∈AQ
∗(s, a), and the term πgreedy(a

′|s′;Q∗)Q∗(s′, a′)
in (7.12) conveniently simplifies to maxa′∈AQ

∗(s′, a′). Unfortunately, in a budgeted
setting the greedy policy requires solving the nested constrained optimisation program
(7.13) at each state and budget in order to apply this Budgeted Bellman Optimality
operator.

Proposition 7.2.3 — Optimality of the greedy policy. The greedy policy πgreedy(· ;Q∗)
is uniformly optimal: for all s ∈ S , πgreedy(· ;Q∗) ∈ Π∗(s). In particular, V πgreedy(·;Q∗) = V ∗

and Qπgreedy(·;Q∗) = Q∗.

Proof. The proof is available in Appendix .1.3 �

Theorem 7.2.4 — Contractivity of T ∗. For any BMDP (S,A, P ,R,C, γ) with |A| ≥
2, T ∗ is not a contraction.

Proof. The proof is available in Appendix .1.4 �

Budgeted Value Iteration
The Budgeted Bellman Optimality equation is a fixed-point equation, which motivates the
introduction of a fixed-point iteration procedure. We introduce Algorithm 3, a Dynamic
Programming algorithm for solving known BMDPs.

Algorithm 3: Budgeted Value-Iteration
Data: P ,R,C
Result: Q∗

1 Q0 ← 0
2 repeat
3 Qk+1 ← T ∗Qk

4 until convergence

Unfortunately, as T ∗ is not a contraction, we can guarantee neither the convergence
of this procedure nor the unicity of its fixed points. Despite those theoretical limitations,
we empirically observed the convergence to a fixed point in our experiments (Section 7.5).
We conjecture a possible explanation:

Theorem 7.2.5 — Contractivity of T ∗ on smooth Q-functions. The operator T ∗ is a
contraction when restricted to the subset Lγ of Q-functions such that "Qr is L-Lipschitz
with respect to Qc", with L < 1

γ
− 1.

Proof. The proof is available in Appendix .1.5 �

7.3 Budgeted Reinforcement Learning 75

7.3 Budgeted Reinforcement Learning
In this section, we consider BMDPs with unknown parameters that must be solved by
interaction with an environment.

7.3.1 Budgeted Fitted-Q
When the BMDP is unknown, we need to adapt Algorithm 3 to work with a batch of
transitions D = {(si, ai, ri, s′i}i∈[0,N] collected by interaction with the environment. Ap-
plying T ∗ in (7.12) would require computing an expectation Es′∼P over next states s′ and
hence an access to the model P . We instead use T̂ ∗, a sampling operator, in which this
expectation is replaced by:

T̂ ∗Q(si, ai, ri, s
′
i)

def= ri + γ
∑
a′i∈A

πgreedy(a′i|s′i;Q)Q(s′i, a
′
i).

We introduce in Algorithm 4 the BFTQ algorithm, an extension of the FTQ algorithm
adapted to solve unknown BMDPs. Because we work with continuous state space S
and budget space B, we need to employ function-approximation in order to generalise
to nearby states and budgets. Following the same idea used in FVI, we introduce a
projection operator Ξ onto F , the set of representable functions with domain S ×A into
R2: Ξf = arg minf̃∈F ||f − f̃ ||∞. BFTQ simply iterates over the following equation:

Qk+1 ← ΞT̂ ∗Qk.
To operate the projection we choose a least-square regression algorithm. Precisely,

given a parametrised model Qθ, we seek to minimise a regression loss L(Qθ, Qtarget;D) =∑
D ||Qθ(s, a) − Qtarget(s, a, r, s

′)||22. Any model can be used, such as linear models,
regression trees, or neural networks.

Algorithm 4: Budgeted Fitted-Q
Data: D
Result: Q∗

1 Q0 ← 0
2 repeat
3 θk+1 ← arg minθ L(Qθ, T̂ ∗Qθk ;D)
4 until convergence

7.3.2 Risk-sensitive exploration
In order to run Algorithm 4, we must first gather a batch of transitionsD. Ideally we would
need transitions from the asymptotic state-budget distribution limt→∞ P (st) induced by
an optimal policy π∗ given an initial distribution P (s0), but as we are actually building
this policy, it is not possible. Following the same idea of ε-greedy exploration for FTQ,
we introduce an algorithm for risk-sensitive exploration. We follow an exploration policy:
a mixture between a random budgeted policy πrand and the current greedy policy πgreedy.
The batch D is split into several minibatches generated sequentially, and πgreedy is updated
by running Algorithm 4 on D upon mini-batch completion. πrand is designed to obtain
trajectories that only explore feasible budgets: we impose that the joint distribution
P (a, βa|s, β) verifies E[βa] ≤ β. This condition defines a probability simplex ∆A from

76 Chapter 7. The Dialogue Manager as a safe policy

which we transition uniformly. Finally, when interacting with an environment the initial
state s0 is usually sampled from a starting distribution P (s0). In the budgeted setting, we
also need to transition the initial budget β0. Importantly, we pick a uniform distribution
P (β0) = U(B) so that the entire range of risk-level is explored, and not only reward-
seeking behaviours as would be the case with a traditional risk-neutral ε-greedy strategy.
The pseudo-code of our exploration procedure is shown in Algorithm 5.

Algorithm 5: Risk-sensitive exploration
Data: An environment, a BFTQ solver, W CPU workers
Result: A batch of transitions D

1 D ← {}
2 for each intermediate batch do
3 split trajectories between W workers
4 for each trajectory in batch do // run this loop on each worker

in parallel
5 sample initial budget β ∼ U(B(1, B).
6 while trajectory not done do
7 update ε from schedule.
8 sample z ∼ U([0, 1]).
9 if z < ε then sample (a, βa) ∼ U(∆A×B). // Explore

10 else sample (a, βa) ∼ πgreedy(a, βa|s, β;Q∗). // Exploit
11 append transition (s = (s, β), a = (a, βa), r = (r, c), s′ = (s′, βa)) to

batch D.
12 step trajectory budget β ← βa
13 end
14 end
15 πgreedy(· ∼; Q∗)← BFTQ(D).
16 end
17 return the batch of transitions D

7.4 A scalable Implementation
In this section, we introduce an implementation of the BFTQ algorithm designed to operate
efficiently and handle large batches of experiences D.

7.4.1 How to compute the greedy policy?
As stated in Section 7.2, computing the greedy policy πgreedy in (7.12) is not trivial since it
requires solving the nested constrained optimisation program (7.13).

However, it can be solved efficiently by exploiting the structure of the set of solutions
with respect to β, that is, concave and increasing.

Proposition 7.4.1 — Equality of πgreedy and πhull. Algorithm 3 and Algorithm 4 can be
run by replacing πgreedy in the equation (7.12) of T with πhull as described in Algorithm 6.

πgreedy(a|s;Q) = πhull(a|s;Q)

7.4 A scalable Implementation 77

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯

�
⎯ ⎯⎯

2

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯

�
⎯ ⎯⎯

1

�

��

��

�
+

 �

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯

⎯ ⎯⎯⎯⎯

Figure 7.2: Representation of πhull. When the budget lies between Q(s, a1) and Q(s, a2), two
points of the top frontier of the convex hull, then the policy is a mixture of these two
points.

Proof. The proof is available in Appendix .1.6 �

Algorithm 6: Convex hull policy πhull(a|s;Q)

Data: s = (s, β), Q
1 Q+ ← {Qc > min{Qc(s, a) s.t. a ∈ arg maxaQr(s, a)}} // dominated

points

2 F ← top frontier of convex_hull(Q(s,A) \Q+) // candidate
mixtures

3 FQ ← F ∩Q(s,A)

4 for points q = Q(s, a) ∈ FQ in clockwise order do
5 if find two successive points ((q1

c , q
1
r), (q

2
c , q

2
r)) of FQ such that q1

c ≤ β < q2
c then

6 p← (β − q1
c)/(q

2
c − q1

c)
7 return the mixture (1− p)δ(a− a1) + pδ(a− a2)

8 end
9 else return δ(a− arg maxaQr(s, a)) // Budget β always respected

The computation of πhull in Algorithm 6 is illustrated in Figure 7.2.

7.4.2 Function approximation
Neural Networks are well suited to model Q-functions in RL algorithms (Riedmiller 2005;
Mnih et al. 2015). We approximate Q = (Qr, Qc) using one single NN. Thus, the two
components are jointly optimised which accelerates convergence and fosters learning of
useful shared representations. Moreover, as in (Mnih et al. 2015) we are dealing with
a finite (categorical) action space A, instead of including the action in the input we add
the output of the Q-function for each action to the last layer. Again, it provides a faster
convergence toward useful shared representations and it only requires one forward pass to

78 Chapter 7. The Dialogue Manager as a safe policy

s0

s1

βa

Qr(a
0)

Qr(a
1)

Qc(a
0)

Qc(a
1)

(s, βa)

Encoder

Hidden
Layer 1

Hidden
Layer 2 Q

Figure 7.3: Neural Network for Q-functions approximation when S = R2 and |A| = 2. Note that
the current budget β is not an input of the network as it has no influence on the returns.

evaluate all action values. Finally, beside the state s there is one more input to a budgeted
Q-function: the budget βa. This budget is a scalar value whereas the state s is a vector of
potentially large size. To avoid a weak influence of the budget βa compared to the state s
in the prediction, we include an additional encoder for the budget, whose width and depth
may depend on the application. A straightforward choice is a single layer with the same
width as the state. The overall architecture is shown in Figure 7.3.

7.4.3 Parallel computing

In a simulated environment, a first process that can be distributed is the collection of
transitions in the exploration procedure of Algorithm 5, as πgreedy stays constant within
each minibatch which avoids the need of synchronisation between workers. Second, the
main bottleneck of BFTQ is the computation of the target T Q. Indeed, when computing
πhull we must perform at each epoch a Graham-scan of complexity O(|A||B̃| log |A||B̃|)
per transition in D to compute the convex hulls of Q (where B̃ is a finite discretisation
of B). The resulting total time-complexity is O(|D||A||B̃|

1−γ log |A||B̃|). This operation
can easily be distributed over several CPUs provided that we first evaluate the model
Q(s′,A× B̃) for each state s extracted from the dataset D, which can be done in a single
forward pass. By using multiprocessing in the computations of πhull, we enjoy a linear
speedup. The full description of our scalable implementation of BFTQ is recalled in
Algorithm 7.

7.5 Experiments
There are two hypotheses we want to validate.

Exploration strategies
We claimed in Section 7.3.2 that a risk-sensitive exploration was required in the setting
of BMDPs. We test this hypotheses by confronting our strategy to a classical risk-neutral
strategy. The latter is chosen to be a ε-greedy policy slowly transitioning from a random

7.5 Experiments 79

Algorithm 7: Scalable Budgeted Fitted-Q

Data: D, B̃ a finite subset of B, γ, a model Q ∈ (R2)S×A, a regression algorithm
fit, a set of CPU workers W

Result: Q∗
1 Q← 0

2 X ← {si, ai)}i∈[0,|D|]

3 S
′ ← {s′i}i∈[0,|D|]

4 repeat
5 Evaluate Q(S

′
,A× B̃) in a single forward pass

6 Split D among workers: D = ∪w∈WDw
7 for w ∈ W do // Run in parallel
8 for (si = (·, βi), ai = (·, βai), ri = (ri, ci), s

′
i = (s′i, ·) ∈ D do

9 P ← {(Qc(s
′
i,A× B̃), Qr(s

′
i,A× B̃))}

10 P .prune() // Remove all dominated points
11 H ← convex_hull(P).vertices() // in cw order
12 k ← min{k : βi ≥ qc with (qc, qr) = H[k]}
13 q2

c , q
2
r , q

1
c , q

1
r ← H[k],H[k − 1]

14 p← (βai − q1
a)/(q

2
c − q1

c)
15 Y w,i

c ← ci + γ((1− p)q1
c + pq2

c)
16 Y w,i

r ← ri + γ((1− p)q1
r + pq2

r)

17 end
18 end
19 Join the results: Y ← ∪w∈W (Y w

c , Y
w
r)

20 Q← fit(X,Y)

21 until convergence

80 Chapter 7. The Dialogue Manager as a safe policy

to a greedy policy2 that aims to maximise Eπ Gπ regardless of Eπ Gc
π. The quality of the

resulting batches D is assessed by training a BFTQ policy and comparing the resulting
performance.

Budgeted algorithms
We compare our scalable BFTQ algorithm described in Section 7.4 to an FTQ(λ) baseline.
This baseline consists in approximating the BMDP by a finite set of CMDPs problems.
We solve each of these CMDP using the standard technique of Lagrangian Relaxation: the
cost constraint is converted to a soft penalty weighted by a Lagrangian multiplier λ in a
surrogate reward function: maxπ Eπ[Gπ − λGc

π]. The resulting MDP can be solved by
any RL algorithm, and we chose FTQ for being closest to BFTQ. In our experiments, a
single training of BFTQ corresponds to 10 trainings of FTQ(λ) policies. Each run was
repeated Nseeds times.

Parameters of the algorithms can be found in Appendix .2

7.5.1 Environments
We evaluate our method on three different environments involving reward-cost trade-offs.

Corridors
This simple environment is only meant to highlight clearly the specificity of exploration in
a budgeted setting. It is a continuous grid-world with Gaussian perturbations, consisting in
a maze composed of two corridors: a risky one with high rewards and costs, and a safe one
with low rewards and no cost. In both corridors the outermost cell is the one yielding the
most reward, which motivates a deep exploration.

Parameter Description Value

- Size of the environment 7 x 6

-
Standard deviation of the Gaussian
noise applied to actions (0.25,0.25)

H Trajectory duration 9

Table 7.1: Parameters of Corridors

Spoken Dialogue Systems
Our second application is a dialogue-based slot-filling simulation that has already benefited
from batch RL optimisation in the past (L. Li, J. Williams, et al. 2009; Chandramohan,
Geist, and Pietquin 2010; Pietquin et al. 2011). As described in Section 3.2, the system
fills in a form of slot-values by interacting a user through speech, before sending them a
response. For example, in a restaurant reservation domain, it may ask for three slots: the
area of the restaurant, the price-range and the food type. The user could respectively provide
those three slot-values: Cambridge, Cheap and Indian-food. In this application,
we do not focus on how to extract such information from the user utterances, we rather
focus on decision-making for filling in the form. To that end, the system can choose among

2We train this greedy policy using FTQ.

7.5 Experiments 81

a set of generic actions. There are two ways of asking for a slot value: a slot value can
be either be provided with an utterance, which may cause speech recognition errors with
some probability, or by requiring the user to fill-in the slots by using a numeric pad. In this
case, there are no speech recognition errors but a counterpart risk of hangup: we assume
that manually filling a key-value form is time-consuming and annoying. The environment
yields a reward if all slots are filled without errors, and a constraint if the user hangups.
Thus, there is a clear trade-off between using utterances and potentially committing a
mistake, or using the numeric pad and risking a premature hangup.

Remark on the speech recognition

As in Section 6.4, when receiving an utterance, the system can either understand it (µ = µ>)
or misunderstand it (µ = µ⊥) with a fixed probability called the SER ξ. Then, the SRS
is simulated: ν = (1 + exp(−x))−1 with x ∼ N (µ, σ). It is the confidence score of the
NLU module about the last utterance. Note that here are no recognition errors (ξ = 0 and
ν = 1) when the user provides information using the numeric pad.

Parameter Description Value

ξ Sentence Error Rate 0.6
µ⊥ Gaussian mean for misunderstanding -0.25
µ> Gaussian mean for understanding 0.25
σ Gaussian standard deviation 0.6
p Probability of hangup 0.25
H Trajectory duration 10
- Number of slots 3

Table 7.2: Parameters of Slot-Filling

Autonomous driving

In our third application, we use the highway-env environment (Leurent et al. 2018) for
simulated highway driving and behavioural decision-making. We define a task that displays
a clear trade-off between safety and efficiency. The agent controls a vehicle with a finite
set of manoeuvres implemented by low-lever controllers: A = {no-op, right-lane, left-lane,
faster, slower}. It is driving on a two-lane road populated with other traffic participants:
the vehicles in front of the agent drive slowly, and there are incoming vehicles on the
opposite lane. Their behaviours are randomised, which introduces some uncertainty with
respect to their possible future trajectories. The task consists in driving as fast as possible,
which is modelled by a reward proportional to the velocity: R(st, at) ∝ vt. This motivates
the agent to try and overtake its preceding vehicles by driving fast on the opposite lane.
This optimal but overly aggressive behaviour can be tempered through a cost function that
embodies a safety objective: C(st, at) is set to 1/H whenever the ego-vehicle is driving
on the opposite lane, where H is the trajectory horizon. Thus, the constrained signal is the
maximum proportion of time that the agent is allowed to drive on the wrong side of the
road.

https://github.com/eleurent/highway-env

82 Chapter 7. The Dialogue Manager as a safe policy

Parameter Description Value

Nv Number of vehicles 2 - 6
σp Standard deviation of vehicles initial positions 100 m
σv Standard deviation of vehicles initial velocities 3 m/s
H Trajectory duration 15 s

Table 7.3: Parameters of highway-env

7.5.2 Results

In the following figures, each patch represents the mean and 95% confidence interval over
Nseeds seeds of the means of (Gπ, Gc

π) ((Gπ, Gc
π) for BFTQ) over Ntrajs trajectories. That

way, we display the variation related to learning (and batches) rather than the variation in
the execution of the policies.

We first bring to light the role of risk-sensitive exploration in the corridors environ-
ment: Figure 7.4 shows the set of trajectories collected by each exploration strategy, and the
resulting performance of a budgeted policy trained on each batch. The trajectories (orange)
in the risk-neutral batch are concentrated along the risky corridor (red) and ignore the safe
corridor (green), which results in bad performances in the low-risk regime. Conversely,
trajectories in the risk-sensitive batch (blue) are well distributed among both corridors and
the corresponding budgeted policy achieves good performance across the whole spectrum
of risk budgets.

In a second experiment displayed in Figure 7.5, we compare the performance of FTQ(λ)
to that of BFTQ in the dialogue and autonomous driving tasks. For each algorithm, we
plot the reward-cost trade-off curve. In both cases, BFTQ performs almost as well as
FTQ(λ) despite only requiring a single model. All budgets are well-respected on slot-
filling, but on highway-env we can observe an underestimation of Qc, since e.g.
E[Gc|β = 0] ' 0.1. This underestimation can be a consequence of two approximations:
the use of the sampling operator T̂ instead of the true environmental operator T , and the
use of the NN function approximation Qθ instead of Q. Still, BFTQ provides a better
control on the expected cost of the policy, than FTQ(λ). In addition, BFTQ behaves more
consistently than FTQ(λ) overall, as shown by its lower extra-seed variance.

7.5.3 Budgeted Fitted-Q policy executions

In Table 7.4, we display two dialogues done with the same BFTQ policy on slot-
filling. The policy is given two budgets to respect in expectation, β = 0 and β = 0.5.
For β = 0, one can see that the system never uses the ask_num_pad action. Instead,
it uses ask_oral , an action subject to recognition errors. The system keeps asking
for the same slot 2, because it has the lowest SRS. It eventually summarises the form
to the user, but then reaches the maximum dialogue length and thus faces a dialogue
failure. For β = 0.5, the system first asks in a safe way, with ask_oral. It may want
to ask_num_pad if one of the SRS is low. Then, the system proceeds to a confirmation
of the slot values. If it is incorrect, the system continues the dialogue using unsafe the
ask_num_pad action to be certain of the slot values.

7.5 Experiments 83

Gπ

r

Gπ

c

Figure 7.4: Trajectories (top) and performances (bottom) of two exploration strategies in the
corridors environment.

84 Chapter 7. The Dialogue Manager as a safe policy

Gπ

r

Gπ

c

Gπ

r

Gπ

c

Figure 7.5: Performance comparison of FTQ(λ) and Budgeted Fitted-Q on slot-filling (top)
and highway-env(bottom)

7.5 Experiments 85

turn β = 0 β = 0.5

turn 0

valid slots: [0, 0, 0]
ν: [None None None]
system says ASK_ORAL(1)
user says INFORM

valid slots: [0, 0, 0]
ν: [None None None]
system says ASK_ORAL(2)
user says INFORM

turn 1

valid slots: [0, 0, 0]
ν: [None 0.48 None]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 0, 1]
srs: [None None 0.56]
system says ASK_ORAL(0)
user says INFORM

turn 2

valid slots: [0, 0, 0]
ν: [None 0.48 0.22]
system says ASK_ORAL(0)
user says INFORM

valid slots: [0, 0, 1]
srs: [0.30 None 0.56]
system says ASK_ORAL(1)
user says INFORM

turn 3

valid slots: [0, 0, 0]
ν: [0.62 0.48 0.22]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 0, 1]
srs: [0.30 0.54 0.56]
system says ASK_ORAL(0)
user says INFORM

turn 4

valid slots: [0, 0, 0]
ν: [0.62 0.48 0.66]
system says ASK_ORAL(1)
user says INFORM

valid slots: [0, 0, 1]
srs: [0.68 0.54 0.56]
system says ASK_NUM_PAD(1)
user says INFORM

turn 5

valid slots: [0, 1, 0]
ν: [0.62 0.56 0.66]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 1, 1]
ν: [0.68 1.00 0.56]
system says SUMMARIZE_AND_INFORM
user says DENY_SUMMARIZE

turn 6

valid slots: [0, 1, 0]
ν: [0.62 0.56 0.14]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 1, 1]
ν: [0.68 1.00 0.56]
system says ASK_NUM_PAD(2)
user says INFORM

turn 7

valid slots: [0, 1, 1]
ν: [0.62 0.56 0.30]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 1, 1]
ν: [0.68 1.00 1.00]
system says SUMMARIZE_AND_INFORM
user says DENY_SUMMARIZE

turn 8

valid slots: [0, 1, 1]
ν: [0.62 0.56 0.49]
system says ASK_ORAL(2)
user says INFORM

valid slots: [0, 1, 1]
ν: [0.68 1.00 1.00]
system says ASK_NUM_PAD(0)
user hangs up !

turn 9

valid slots: [0, 1, 1]
ν: [0.62 0.56 0.65]
system says SUMMARIZE_AND_INFORM
max size reached !

Table 7.4: Two dialogues generated by a safe policy (β = 0) on the left and a risky one (β = 0.5)
on the right

86 Chapter 7. The Dialogue Manager as a safe policy

7.6 Discussion
Algorithm 4 is an algorithm for solving large unknown BMDPs with continuous states. To
the best of our knowledge, there is no algorithm in the current literature that combines all
those features.

Algorithms have been proposed for CMDPs, which are less flexible sub-problems
of the more general BMDP. When the environment parameters (P , R, C) are known
but not tractable, solutions relying on function approximation (Undurti et al. 2010) or
approximate linear programming (Poupart et al. 2015) have been proposed. For unknown
environments, Online algorithms (Geibel et al. 2005; Abe et al. 2010; Achiam et al. 2017;
Chow, Ghavamzadeh, et al. 2018) and a batch algorithm (Thomas et al. 2015; Petrik
et al. 2016; Laroche, Trichelair, et al. 2019; Nadjahi et al. 2019; Le et al. 2019) can solve
large unknown CMDPs. Nevertheless, these approaches are limited in that the constraints
thresholds are fixed prior to training and cannot be updated in real-time at policy execution
to select the desired level of risk.

Budgeted Markov Decision Processes algorithms
To our knowledge, there were only two ways of solving a BMDP. The first one is to
approximate it with a finite set of CMDPs (e.g. see our FTQ(λ) baseline). As explained
on Figure 7.6, the optimal deterministic policy can be obtained by a line-search on the
Lagrange multiplier values λ. Then, according to Beutler et al. (1985, Theorem 4.4),
the optimal policy is a randomised mixture of two deterministic policies: the safest
deterministic policy that violates the constraint πλ− and the riskier of the feasible ones
πλ+. So FTQ can be easily adapted for continuous states CMDP and BMDP through this
methodology, but given the high variance it requires a lot of simulations to get a proper
estimate of the calibration curve. Our solution not only requires one single model but also
avoids any supplementary interaction.

The only other existing BMDP algorithm, and closest work to ours, is the DP algorithm
proposed by Boutilier et al. (2016). However, their work was established for finite state
spaces only, and their solution relies heavily on this property. For instance, they enumerate
and sort the next states s′ ∈ S by their expected value-by-cost, which could not be
performed in a continuous state space S. Moreover, they rely on the knowledge of the
model (P , R, C), and do not address the question of learning from interaction data.

7.7 Conclusion
The BMDP framework is a principled framework for safe decision making under un-
certainty, which could be beneficial to the diffusion of RL in industrial applications,
particularly dialogue systems. However, BMDPs could so far only be solved in finite
state spaces which limits their interest when dealing with continuous variable, as SRS
for example. We extend their definition to continuous states by introducing a novel DP
operator, that we build upon to propose a RL algorithm. In order to scale to large problems,
we provide an efficient implementation that exploits the structure of the value function and
leverages tools from Distributed DRL. We show that on two practical tasks, including a
dialogue application, our solution performs similarly to a baseline Lagrangian relaxation
method while only requiring a single model to train, and relying on an interpretable β
instead of the tedious tuning of the penalty λ. As a control is given over the hanging up

7.7 Conclusion 87

0

0.2

0.4

0.6

0.8

1

1 10 1000 10000

stddev

cost-calibration

Figure 7.6: Calibration of a penalty multiplier according to the budget β. The optimal multiplier
λ∗avg is the smallest one to satisfy the budget constraint on average. Safer policies can
also be selected according to the largest deviation from this mean cost.

frequency of an user, this framework makes a good candidate to design transferable safe
policies for DS and this is the idea of the next chapter3.

3Please note that we will use lagragian relaxation policies first to show if the idea of transferring safe
policies actually works. As it won’t work in our setting, we won’t need to use BMDP policies.

8. Transfering safe policies

In this chapter, we propose to transfer a safe strategy to initiate the first dialogues. We
introduce an extension of the classic ε-greedy exploration strategy. We test the algorithm
on a slot-filling application.

8.1 Motivation

During its early steps of learning, an RL based dialogue agent does a lot of exploration
that may lead to penalising behaviours. However, the first interactions between a user and
a DS are crucial to gain trust. To improve jumpstart performance of an RL agent, one can
transfer a strategy (Taylor and Stone 2009; Lazaric 2012). In dialogue, the strategy focuses
on the success of the dialogue while minimising its length (Chandramohan, Geist, and
Pietquin 2010; Casanueva et al. 2015b; Genevay et al. 2016). Rushing the dialogue may be
problematic with some users and induce premature dialogue hangups. First, it could lead
to the loss of this user once for all. Second, the lack of sucessful dialogues may affect the
learning speed of the RL agent. To this extend, we introduce a novel algorithm: ε-safe. It
transfers a safe strategy which avoid any critical dialogue act to prevent the aforementioned
problems.

8.2 ε-safe

ε-safe (Figure 8.1) is a Q-learning algorithm (J. C. H. Watkins et al. 1992) where each
action is decided by a randomly chosen policy among the greedy policy, an exploratory
policy and the transferred safe policy. The safe policy may be a handcrafted or a trained
policy.

90 Chapter 8. Transfering safe policies

Figure 8.1: ε-safe algorithm.

Figure 8.2: Half-Gaussian distribution of p values.

8.3 Experiment

We test our algorithm on a slot-filling application. It is a simpler version of the one use in
Chapter 7. The agent asks for slot values, but this time, slot by slot in a fixed order. Several
acts are available:
• ask-next: ask next slot (with ASR errors).
• repeat-oral: repeat current slot (with ASR errors).
• repeat-numpad: repeat current slot using numeric pad (without ASR errors).
• summarize-inform: summarise slots values and return the form result. If values

are correct, the dialogue ends successfully, if not, the slot values are reset and the
dialogue continues from the first slot.

repeat-numpad is an unsafe action: the user hangups with probability p. For each
new user, p is randomly generated. An histogram of p values is displayed Figure 8.2.

We define two handcrafted DSs. The safe system uses repeat-oral if the recog-
nition score is bellow 0.5, otherwise ask-next, or summarize-inform after the

8.3 Experiment 91

(a) Dialogue score

(b) Success frequency

Figure 8.3: Performance of the greedy policies.

92 Chapter 8. Transfering safe policies

last slot; The unsafe system uses repeat-numpad instead. We compare two ε-safe
agents. safe-on uses safe as transferred policy while unsafe-on transfers the
unsafe policy.

We test safe-on and unsafe-on with 10 randomly generated users, for 1000
dialogues. We repeat the experiment 10 times. We display the performance of the greedy
policies. The dialogue score (reward penalised by dialogue length) is plotted on Figure 8.3a
while the dialogue success (reward only) is plotted on Figure 8.3b. We see that despite a
slightly difference on the dialogue success, the dialogue score is the same. That means
ε-safe does not improve the learning speed of the greedy policy even if it is conservative
enough to keep the user in the dialogue by avoiding catastrophic acts.

IV
9 Conclusion . 95
9.1 Contributions
9.2 On the long run

10 Appendices . 99
.1 Proofs of Main Results
.2 Parameters
.3 Repoducibility

A Continuous transfer in Deep Q-
learning . 113

A.1 The transfer phase.
A.2 The learning phase
A.3 Conclusion

Bibliography . 117

Index . 137

Closing

9. Conclusion

In this chapter we synthesise the multiple contributions of this manuscript. In Section 9.1,
we recall the several limitations of the current approaches for Dialogue Systems (DSs)
model and we expose how we tackle those limitations. Then we propose insights to
improve or even extend each of those contributions. Finally, in Section 9.2, we foresight
the state of art of further works on dialogue systems and user adaptation.

9.1 Contributions
In Chapter 2, we saw that DS applications are booming. In particular, this is the expansion
of individual smart phones, TVs and car that makes the research in DS very attractive from
the industrial point of view. The current DS technologies in industrial systems mostly rely
on handcrafted strategies, but research’s state of the art is now based on statistical strategies.
For the latter, the Dialogue Manager (DM), defined as the decision making component of
a DS (Chapter 3), is usually cast as an Reinforcement Learning (RL) problem (Chapter 4).
The strategy is trained from conversational data, improving efficiency, robustness, and
facilitating in the meantime the work of the designer. One of the limitations this approach
faces is that the dialogue corpus mixes various users records, hence a system that trains on
this corpus may adopt a too generic strategy.

To overcome this issue, we propose a solution based on Transfer Learning (TL)
(Chapter 5), where we consider a pool of different dialogue corpora corresponding to
several users (Chapter 6). The novelty proposed in this work is to introduce a way to
cluster the dialogue corpora using the similarities in the behaviour of their respective DS.
That way, we can elect representative DSs of the whole database. That allows us to plug the
user adaptation framework proposed in Genevay et al. (2016) to operate Online TL. Despite
good results with handcrafted users, our experiments suffer from the fact that the toy game
we experiment on and the models used are too simple to extract discriminative behaviours
among human-model users. One of our further work could consider more challenging

96 Chapter 9. Conclusion

dialogue simulators as for example the complex Negociation Dialogue Game (Laroche
2017). Another path of research could be a direct experiment with real users instead of
human-model users. In Appendix A, we will propose to cast this pipeline as a single
transfer procedure attached to DQN. Indeed, we believe that extending DQN with TL is
of high interest as the dialogue system should continuously improve itself with recurrent
users and use previous knowledge to handle a growing base of new users.

Another limitation of current RL approaches for DS is that the very first interactions
with a fresh known user are poorly handled. One solution could be using pre-learnt
Dialogue Policy (DP) as in Chapter 6. We come up with another idea. In Chapter 7 and
Chapter 8, we consider the dialogue process as a safe RL problem where the critical aspect
of the dialogue is when a user hangs up. The idea is then to use a generic, but safe policy,
as a proxy to the optimal DS, in the first interactions with the new user. This work is
divided in two parts.

First, in Chapter 7, we introduce a new batch RL algorithm to learn budgeted policies.
We show that those policies managed to contain the hangup frequencies of users bellow
a chosen threshold and could be good candidates for proxies. If this approach shown
promising results, and theoretical optimality, it lacks of theoretical convergence. We show
that it cannot be achieved in the general case. However, we believe that if we restrict
the form of the Q-function to a certain form of smoothness actually encountered in the
experiments, we can achieve convergence. So the next line of research would involve a
deeper theoretical analysis of this convergence. Another issue raised by the algorithm is
that it achieves optimally for a restricted class of budgeted policies. Indeed, compared to
classical RL, the agent has two degrees of freedom, it can choose the action distribution,
and the associated budgets. The problem is, for any next state, the budget given will be the
same. We believe that being able to control the budget the next state receives is crucial to
achieve optimality over any class of policies. This idea is already explored in (Boutilier
et al. 2016) but restricted to known and tractable environment and thus cannot be applied
for DSs.

In a second time, in Chapter 8, we introduce an actual method to transfer safe policies.
In order to validate the approach in the simplest context we can achieve, instead of learning
budgeted policies as proposed in Chapter 7, we design handcrafted policies equipped
with different levels of safety in their behaviour. Then, we propose to transfer those
policies using the same idea of ε-greedy when the agent alternates between a safe, an
exploratory and a greedy policy. Transferring safe policies does not show significant
advantage over transferring regular policies. We believe that the hangup-model, based
on an uniform distribution, is too simple, so we plan to design the hangup-model with
a Poisson distribution. We also want to replace the handcrafted policies by actual RL
policies learned on source users using Lagrangian relaxation or even BFTQ. Finally, we
may consider a real application on the Dialogue State Tracking Challenge corpus.

9.2 On the long run
The most breathtaking milestones achieved in RL primarily include Deep-Learning solu-
tions. A lot of work has been done for games: OpenAI five (OpenAI 2018) managed to win
against the world champion team in Dota 2, a highly competitive Multiplayer Online Battle
Arena; DeepMind AlphaGO beat the world champion of GO (Silver et al. 2016), while

9.2 On the long run 97

AlphaStar (Vinyals et al. 2019) mastered the Real Time Strategy game StarCraft II. While
those approaches rely on high-end engineering solutions and an infinity of simulation
data, the future of A.I. should focus on end-to-end approaches with no supervision nor
plug-n-play simulators (as for real dialogues). The first step in this direction has been done
by OpenAI with GPT-2 (Radford et al. 2019), a Transformer language model (Radford
et al. 2019) so good that the authors did not release the full model afraid of potential
malicious usages. We emphasis on the fact that this model requires no supervision (it is an
unsupervised learning algorithm) using attention mechanisms. A very recent attempt tend
to incorporate such language models into task-oriented DSs (Budzianowski et al. 2019)
and we believe that should be the future of DSs: end-to-end DSs (Serban, Sordoni, et al.
2016; X. Li et al. 2017).

Those DSs will do very well for most of the situation, but will probably fail at user
adaptation as those end-to-end approaches do not incorporate a mechanism to differentiate
the environments and thus the users. User adaptation will greatly benefit from the recent
advances in the robotics field, as one of the main obstacles in RL for robotic is how to
transfer the knowledge from the simulated environment to the real environment. We notice
an upsurge of work on this subject (Kang et al. 2019; Palossi et al. 2019) and this should
continue with the expansion of autonomous driving cars and Unmanned Aerial Vehicules.
That being said, the next step in user adaptation should focus on co-adaptation. When
dealing with humans, we must expect the user to adapt to the DS. It is particularly true
when we want a system dedicated to a specific user as, for example, a vocal assistant. For
the moment, the problem has been tackled by a few (Chandramohan et al. 2014; Barlier
et al. 2015b).

The last research lead, but not least, should focus on the safety of DSs. In this thesis,
one of the first stones was laid, but a lot remains to do. This component is essential to
production DSs as nobody wants to face, for instance, a very rude vocal assistant (Perez
2016).

10. Appendices

Outline

This appendix gathers all the supplementary material of Chapter 7 and goes as follows: Ap-
pendix .1 details all the proofs of the main results. Appendix .2 lists the parameters used in
the experiments. Appendix .3.1 provides instruction to reproduce the experiments. Finally
we fill the Machine Learning Reproducibility Checklist and we justify each statement in
Appendix .3.2. Finally

.1 Proofs of Main Results

.1.1 Proposition 7.2.1

Proof. This proof is the same as that in classical multi-objective MDPs.

V π(s)
def=E

[
Gπ
∣∣ s0 = s

]
=
∑
a∈A

P (a0 = a | s0 = s)E
[
Gπ
∣∣ s0 = s, a0 = a

]
=
∑
a∈A

π(a|s)Qπ(s, a).

100 Chapter 10. Appendices

Qπ(s, a)
def=E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]

= R(s, a) +
∑
s′∈S

P (s1 = s′ | s0 = s, a0 = a) · E

[
∞∑
t=1

γtR(st, at)

∣∣∣∣∣ s1 = s′

]

= R(s, a) + γ
∑
s′∈S

P (s′ | s, a)E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s′

]
= R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V π(s′).

Contraction of T π: Let π ∈ Π, Q1, Q2 ∈ (R2)SA.

∀s ∈ S, a ∈ A,
∣∣T πQ1(s, a)− T πQ2(s, a)

∣∣ =

∣∣∣∣∣∣∣γ E
s′∼P (s′|s,a)
a′∼π(a′|s′)

Q1(s′, a′)−Q2(s′, a′)

∣∣∣∣∣∣∣
≤ γ

∥∥Q1 −Q2

∥∥
∞ .

Hence,
∥∥T πQ1 − T πQ2

∥∥
∞ ≤ γ

∥∥Q1 −Q2

∥∥
∞

According to the Banach fixed point theorem, T π admits a unique fixed point. It can be
easily verified that Qπ is indeed this fixed point by combining the two Bellman Expectation
equations (7.6). �

.1.2 Theorem 7.2.2
Proof. Let s, a ∈ A× S. For this proof, we consider potentially non-stationary policies
π = (ρ, π′), with ρ ∈ M(A), π′ ∈ M(A)N. The results will apply to the particular case
of stationary optimal policies, when they exist.

Qr
∗(s, a) = max

ρ,π′
Qr

ρ,π′(s′, a′) (1)

= max
ρ,π′

R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vr
ρ,π′(s′) (2)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ,π′

∑
a′∈A

ρ(a′|s′)Qr
π′(s′, a′) (3)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

∑
a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qr
π′(s′, a′) (4)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

E
a′∼ρ

Qr
∗(s′, a′) (5)

where π = (ρ, π′) ∈ Πa(s) and π′ ∈ Πa(s
′).

This follows from:
(1). Definition of Q∗.
(2). Bellman Expectation expansion from Proposition 7.2.1.
(3). Marginalisation on a′.

.1 Proofs of Main Results 101

(4). • Trivially maxπ′∈Πa(s′)

∑
a′∈A · ≤

∑
a′∈Amaxπ′∈Πa(s) ·.

• Let π ∈ arg maxπ′∈Πa(s′) Qr
π′(s′, a′), then:∑

a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qr
π′(s′, a′) =

∑
a′∈A

ρ(a′|s′)Qr
π(s′, a′)

≤ max
π′∈Πa(s′)

∑
a′∈A

ρ(a′|s′)Qr
π′(s′, a′).

(5). Definition of Q∗.
Moreover, the condition π = (ρ, π′) ∈ Πa(s) gives

E
a′∼ρ

Qc
∗(s, a) = E

a′∼ρ
Qc

π′(s, a) = Vc
π(s) ≤ β.

Consequently, πgreedy(·;Q∗) belongs to the arg max of (5), and in particular:

Qr
∗(s, a) = r(s, a) + γ

∑
s′∈S

P (s′|s, a) E
a′∼πgreedy(s′,Q∗)

Qr
∗(s′, a′).

The same reasoning can be made for Qc
∗ by replacing max operators by min, and Πa

by Πr.
�

.1.3 Proposition 7.2.3
Proof. Notice from the definitions of T ∗ and T π in (7.12) and (7.7) that T ∗ and T πgreedy(·;Q∗)

coincide onQ∗. Moreover, sinceQ∗ = T ∗Q∗ by Theorem 7.2.2, we have: T πgreedy(·;Q∗)Q∗ =
T ∗Q∗ = Q∗. Hence, Q∗ is a fixed point of T πgreedy(·;Q∗), and by Proposition 7.2.1 it must

be equal to Qπgreedy(·;Q∗)

To show the same result for V ∗, notice that

V πgreedy(Q∗)(s) = E
a∼πgreedy(Q∗)

Qπgreedy(Q∗)(s, a) = E
a∼πgreedy(Q∗)

Q∗(s, a).

By applying the definitions of Q∗ and πgreedy, we recover the definition of V ∗. �

.1.4 Theorem 7.2.4
Proof. In the trivial case |A| = 1, there exits only one policy π and T ∗ = T π, which is a
contraction by Proposition 7.2.1.

In the general case |A| ≥ 2, we can build the following counter-example:
Let (S,A, P ,R,C) be a BMDP. For any 0 < κ < 1, we define Q1

κ and Q2
κ as:

Q1
κ(s, a) =

{
(0, 1), if a = a0

(1
κ
, 1 + κ), if a 6= a0

Q2
κ(s, a) =

{
(1, 0), if a = a0

(1 + 1
κ
, κ), if a 6= a0

102 Chapter 10. Appendices

0 1 β 1 + κ
Qc

1

1
κ

1 + 1
κ

Q
r

Figure 1: Representation of Q1
κ (blue) and Q2

κ (orange)

Then, ‖Q1 −Q2‖∞ = 1. Q1
κ and Q2

κ are represented in Figure 1.
But for a = (a, βa) with βa = 1 + κ/2, we have:

‖T ∗Q1
κ(s, a)−T ∗Q2

κ(s, a)‖∞

= γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1

κ)
Q1
κ(s
′, a′)− E

a′∼πgreedy(Q2
κ)
Q2
κ(s
′, a′)

∥∥∥∥∥
∞

= γ

∥∥∥∥ E
s′∼P (s′|s,a)

(
1

2κ
, 1 +

κ

2
)− (1 +

1

κ
, κ)

∥∥∥∥
∞

= γ(1 +
1

2κ
).

Hence, ‖T ∗Q1
κ − T ∗Q2

κ‖∞ ≥ γ(1 + 1
2κ

).
As a conclusion, there does not exist L > 0 such that:

∀Q1, Q2 ∈ (R2)SA, ‖T ∗Q1 − T ∗Q2‖∞ ≤ L‖Q1 −Q2‖∞
In other words, T ∗ is not a contraction for ‖ · ‖∞. �

.1.5 Theorem 7.2.5

R This proof makes use of insights detailed in the proof of Proposition 7.4.1 (Ap-
pendix .1.6), which we recommend the reader to consult first.

Proof. We now study the contractivity of T ∗ when restricted to the functions of Lγ defined
as follows:

Lγ =

{
Q ∈ (R2)SA s.t. ∃L < 1

γ
− 1 : ∀s ∈ S, a1, a2 ∈ A,

|Qr(s, a1)−Qr(s, a2)| ≤ L|Qc(s, a1)−Qc(s, a2)|

}
. (6)

.1 Proofs of Main Results 103

That is, for all state s, the set Q(s,A) plot in the (Qc, Qr) plane must be the graph of a
L-Lipschitz function, with L < 1/γ − 1.

We impose such structure for the following reason: the counter-example presented
above prevented contraction because it was a pathological case in which the slope of Q
can be arbitrary large. As a consequence, when solving Qr

∗ such that Qc
∗ = β, a vertical

slice of a ‖ · ‖∞ ball around Q1 (which must contain Q2) can be arbitrary large as well.
We denote Ball(Q,R) the ball of centre Q and radius R for the ‖ · ‖∞-norm:

Ball(Q,R) = {Q′ ∈ (R2)SA : ‖Q−Q′‖∞ ≤ R}.

We give the three main steps required to show that T ∗ restricted to Lγ is a contraction.
Given Q1, Q2 ∈ Lγ , show that:

1. Q2 ∈ Ball(Q1, R) =⇒ F2 ∈ Ball(F1, R),∀s ∈ S, where F is the top frontier of
the convex hull of undominated points, as defined in Appendix .1.6.

2. Q ∈ Lγ =⇒ F is the graph of a L-Lipschitz function, ∀s ∈ S.
3. taking the sliceQc = β of a ball Ball(F , R) with F L-Lipschitz results in an interval

on Qr of range at most (L+ 1)R
These three steps will allow us to controlQr

2∗−Qr
1∗ as a function ofR = ‖Q2−Q1‖∞.

Step 1
We want to show that if Q1 and Q2 are close, then F1 are F2 are close as well in the
following sense:

F2 ∈ Ball(F1, R) ⇐⇒ d(F1,F2) ≤ R ⇐⇒ max
q2∈F2

min
q1∈F1

‖q2 − q1‖∞ ≤ R. (7)

Assume Q2 ∈ Ball(Q1, R), we show by contradiction that F2 ∈ Ball(F1, R). Indeed,
assume there exists q1 ∈ F1 such that F2 ∩ Ball(q1, R) = ∅. Denote q2 the unique point
of F2 such that q2

c = q1
c . By construction of q1, we know that ‖q1 − q2‖∞ > R. There are

two possible cases:
• q2

r > q1
r : this also directly implies that q2

r > q1
r + R. But q2 ∈ F2, so there exist

q2
1, q

2
2 ∈ Q2, λ ∈ R such that q2 = (1 − λ)q2

1 + λq2
2 . But since Q2 ∈ Ball(Q1, R),

there also exist q1
1, q

1
2 ∈ Q1 such that ‖q1

1 − q2
1‖∞ ≤ R and ‖q1

2 − q2
2‖∞ ≤ R, and in

particular q1
1r ≥ q2

1r−R and q1
2r ≥ q2

2r−R. But then, the point q1′ = (1−µ)q1
1 +µq1

2

with µ = (q2
c − q1

1c)/(q
2
2c − q1

1c) verifies q1′
c = q1

c and q1′
r ≥ q2

r − R > q1
r which

contradicts the definition of q1 ∈ F1 as defined in (12).
• q2

r < q1
r : then the same reasoning can be applied by simply swapping the indexes 1

and 2.
We have shown that F2 ∈ Ball(F1, R). This is illustrated in Figure 2: given a function

Q1, we show the locus Ball(Q1, R) of Q2. We then draw F1 the top frontier of the convex
hull of Q1 and alongside the locus of all possible F2, which belong to a ball Ball(F1, R).

Step 2
We want to show that if Q ∈ Lγ , F is the graph of an L-Lipschitz function:

∀q1, q2 ∈ F , |q2
r − q1

r | ≤ |q2
c − q1

c |. (8)

104 Chapter 10. Appendices

𝑄𝑟

𝑄𝑐𝛽

ത𝑄1

ത𝑄2

𝐹1

𝐹2

𝑄𝑟
2∗

Figure 2: We represent the range of possible solutions Qr2,∗ for any Q2 ∈ Ball(Q1), given Q1 ∈
Lλ

Let Q ∈ Lγ and s ∈ S, F the corresponding top frontier of convex hull. For all
q1, q2 ∈ F ,∃λ, µ ∈ [0, 1], q11, q12, q21, q22 ∈ Q(s,A) such that q1 = (1 − λ)q11 + λq12

and q2 = (1 − µ)q21 + µq22. Without loss of generality, we can assume q11
c ≤ q12

c and
q21
c ≤ q22

c . We also consider the worst case in terms of maximum qr deviation: q12
c ≤ q21

c .
Then the maximum increment q2

r − q1
r is:

‖q2
r − q1

r‖ ≤ ‖q12
r − q1

r‖+ ‖q21
r − q12

r ‖+ ‖q2
r − q21

r ‖
= (1− λ)‖q12

r − q11
r ‖+ ‖q21

r − q12
r ‖+ µ‖q22

r − q21
r ‖

≤ (1− λ)L‖q12
c − q11

c ‖+ L‖q21
c − q12

c ‖+ µL‖q22
c − q21

c ‖
= L‖q12

c − q1
c‖+ L‖q21

c − q12
c ‖+ L‖q2

c − q21
c ‖

= L‖q2
c − q1

c‖.

This can also be seen in Figure 2: the maximum slope of the F1 is lower than the
maximum slope between two points of Q1.

Step 3
Let F1 be a L-Lipschitz set as defined in (8), and consider a ball Ball(F1, R) around it as
defined in (7).

We want to bound the optimal reward value Qr
2∗ under constraint Qc

2∗ = β (regular
case in Appendix .1.6 where the constraint is saturated), for any F2 ∈ Ball(F1, R). This
quantity is represented as a red double-ended arrow in Figure 2.

Because we are only interested in what happens locally at Qc = β, we can zoom in
on Figure 2 and only consider a thin κ-section around β. In the limit κ→ 0, this section
becomes the tangent to F1 at Qc

1 = β. It is represented in Figure 3, from which we derive
a geometrical proof:

∆Qr
2∗ = b+ c

≤ La+ c (F1 L-Lipschitz)
= 2LR + 2R = 2R(L+ 1).

.1 Proofs of Main Results 105

𝑏

𝑐

𝑎

𝛽 − κ 𝛽 + κ𝛽

𝐹1

𝐹2

𝑄𝑟
2∗

𝑄𝑟
1∗

2𝑅

Figure 3: We represent a section [β − κ, β + κ] of F1 and Ball(F1, R). We want to bound the
range of Qr2∗.

Hence,

|Qr
2∗ −Qr

1∗| ≤ ∆Qr
2∗

2
= R(L+ 1)

and Qc
1∗ = Qc

2∗ = β. Consequently, ‖Q2∗ −Q1∗‖∞ ≤ (L+ 1)R.
Finally, consider the edge case in Appendix .1.6: the constraint is not active, and

the optimal value is simply arg maxq∈F q
r. In particular, since we showed that F2 ∈

Ball(F1, R), and since Q2∗ ∈ F2, there exist q1 ∈ F1 : ‖Q2∗ − q1‖∞ ≤ R and in
particular Q1∗

r ≥ q1
r ≥ Q2∗

r −R. Reciprocally, by the same reasoning, Qr
2∗ ≥ Qr

1∗ −R.
Hence, we have that |Qr

2∗ −Qr
1∗| ≤ R ≤ R(L+ 1).

Wrapping it up
We have shown that for any Q1, Q2 ∈ Lγ , and all s ∈ S, F2 ∈ Ball(F1, ‖Q2 − Q1‖∞)
and F1 is the graph of a L-Lipschitz function with L < 1/γ − 1. Moreover, the solutions
of πgreedy(Q

1) and πgreedy(Q
2) at s are such that ‖Q2∗ −Q1∗‖∞ ≤ (L+ 1)‖Q2 −Q1‖∞.

Hence, for all a,

‖T ∗Q1(s, a)−T ∗Q2(s, a)‖∞

= γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1)

Q1(s′, a′)− E
a′∼πgreedy(Q2)

Q2(s′, a′)

∥∥∥∥∥
∞

= γ
∥∥Q2∗ −Q1∗∥∥

∞

≤ γ(L+ 1)‖Q2 −Q1‖∞.

Taking the sup on SA,

‖T ∗Q1 − T ∗Q2‖∞ ≤ γ(L+ 1)‖Q1 −Q2‖∞

with γ(L+ 1) < 1. As a conclusion, T ∗ is a γ(L+ 1)-contraction on Lγ . �

106 Chapter 10. Appendices

.1.6 Proposition 7.4.1

Definition .1.1 Let A be a set, and f a function defined on A. We define:
• Convex hull of A: C(A) = {

∑p
i=1 λiai : ai ∈ A, λi ∈ R+,

∑p
i=1 λi = 1, p ∈ N}

• Convex edges of A: C2(A) = {λa1 + (1− λ)a2 : a1, a2 ∈ A, λ ∈ [0, 1]}
• Dirac distributions of A: δ(A) = {δ(a− a0) : a0 ∈ A}
• Image of A by f : f(A) = {f(a) : a ∈ A}

Proof. Let s = (s, β) ∈ S and Q ∈ (R2)SA. We recall the definition of πgreedy:

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQr

E
a∼ρ

Qc(s, a) (7.13a)

where ΠQ
r = arg max

ρ∈M(A)

E
a∼ρ

Qr(s, a) (7.13b)

s.t. E
a∼ρ

Qc(s, a) ≤ β (7.13c)

Note that any policy in the arg min in (7.13a) is suitable to compute T ∗. We first reduce
the set of candidate optimal policies. Consider the problem described in (7.13b),(7.13c):
it can be seen as a single-step CMDP problem with reward R = Qr and cost C = Qc.
By (Theorem 4.4 Beutler et al. 1985), we know that the solutions are mixtures of two
deterministic policies. Hence, we can replaceM(A) by C2(δ(A)) in (7.13b).

Moreover, remark that:

{ E
a∼ρ

Q(s, a) :ρ ∈ C2(δ(A))}

= { E
a∼ρ

Q(s, a) : ρ = (1− λ)δ(a− a1) + λδ(a− a2), a1, a2 ∈ A, λ ∈ [0, 1]}

= {(1− λ)Q(s, a1) + λQ(s, a2), a1, a2 ∈ A, λ ∈ [0, 1]}
= C2(Q(s,A))}.

Hence, the problem (7.13b), (7.13c) has become:

Π̃
Qr

= arg max
(qr,qc)∈C2(Q(s,A))

qr s.t. qc ≤ β

and the solution of πgreedy is q∗ = arg min
q∈Π̃

Qr qc.

The original problem in the space of actions A is now expressed in the space of values
Q(s,A) (which is why we use = instead of ∈ before arg min here).

We further restrict the search space of q∗ following two observations:
1. q∗ belongs to the undominated points C2(Q−):

Q+ = {(qc, qr) : qc > q±c = min
q+

q+
c s.t. q+ ∈ arg max

q∈Q(s,A)

qr} (10)

Q− = Q(s,A) \Q+. (11)

Denote q∗ = (1− λ)q1 + λq2, with q1, q2 ∈ Q(s,A). There are three possible cases:

.1 Proofs of Main Results 107

(a) q1, q2 6∈ Q−. Then q∗c = (1 − λ)q1
c + λq2

c > q±c . But then q±c < q∗c ≤ β so

q± ∈ Π̃
Qr

with a strictly lower qc than q∗, which contradicts the arg min.
(b) q1 ∈ Q−, q2 6∈ Q−. But then consider the mixture q> = (1 − λ)q1 + λq±.

Since q±r ≥ q2
r and q±r < q2

r , we also have q>r ≥ q∗r and q>c < q∗c , which also
contradicts the arg min.

(c) q1, q2 ∈ Q− is the only remaining possibility.
2. q∗ belongs to the top frontier F :

FQ = {q ∈ C2(Q−) :6 ∃q′ ∈ C2(Q−) : qc = q′c and qr < q′r}. (12)

Trivially, otherwise q’ would be a better candidate than q∗.
Let us characterise this frontier F . It is both:

1. the graph of a non-decreasing function: ∀q1, q2 ∈ F such that q1
c ≤ q2

c then q1
r ≤ q2

r .
By contradiction, if we had q1

r > q2
r , we could define q> = (1−λ)q1 +λq± where q±

is the dominant point as defined in (10). By choosing λ = (q2
c − q1

c)/(q
±
c − q1

c) such
that q>c = q2

c , then since q±r ≥ q1
r > qr2 we also have q>r > q2

r which contradicts
q2 ∈ F .

2. the graph of a concave function: ∀q1, q2, q3 ∈ F such that q1
c ≤ q2

c ≤ q3
c with λ such

that q2
c = (1− λ)q1

c + λq3
c , then q2

r ≥ (1− λ)q1
r + λq3

r .
Trivially, otherwise the point q> = (1 − λ)q1 + λq3 would verify q>c = q2

c and
q>r > q2

r , which would contradict q2 ∈ F .
We denote FQ = F ∩ Q. Clearly, q∗ ∈ C2(FQ): let q1, q2 ∈ Q− such that q∗ =

(1 − λ)q1 + λq2. First, q1, q2 ∈ Q− ⊂ C2(Q−). Then, by contradiction, if there existed
q1′ or q2′ with equal qc and strictly higher qr, again we could build an admissible mixture
q> = (1− λ)q1′ + λq2′ strictly better than q∗.

q∗ can be written as q∗ = (1 − λ)q1 + λq2 with q1, q2 ∈ FQ and, without loss of
generality, q1

c ≤ q2
c .

Regular case
There exists q0 ∈ FQ such that q0

c ≥ β. Then q1 and q2 must flank the budget: q1
c ≤ β ≤ q2

c .
Indeed, by contradiction, if q2

c ≥ q1
c > β then q∗c > β which contradicts ΠQ

r . Conversely,
if q1

c ≤ q2
c < β then q∗ < β ≤ q0

c , which would make q∗ a worse candidate than
q> = (1− λ)q∗ + λq0 when λ is chosen such that q>c = β, and contradict ΠQ

r again.
Because F is the graph of a non-decreasing function, λ should be as high as possible,

as long as the budget q∗ ≤ β is respected. We reach the highest q∗r when q∗c = β, that is:
λ = (β − q1

c)/(q
2
c − q1

c).
It remains to show that q1 and q2 are two successive points in FQ: 6 ∃q ∈ FQ \{q1, q2} :

q1
c ≤ qc ≤ q2

c . Otherwise, as F is the graph of a concave function, we would have
qr ≥ (1 − µ)q1

r + µq2
r . qr cannot be strictly greater than (1 − µ)q1

r + µq2
r which would

contradict q∗, but it can still be equal, which means the tree points q, q1, q2 are aligned. In
fact, every points aligned with q1 and q2 can also be used to construct mixtures resulting in
q∗, but among these solutions we can still choose q1 and q2 as the two points in FQ closest
to q∗.

Edge case
∀q ∈ FQ, qc < β. Then q∗ = arg maxq∈F qr = q± = arg maxq∈Q− qr. �

108 Chapter 10. Appendices

Parameters BFTQ(risk-sensitive) BFTQ(risk-neutral)

architecture 256x128x64 256x128x64
regularisation 0.001 0.001
activation relu relu
size beta encoder 3 3
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.001
epoch (NN) 1000 5000
normalize reward true true
epoch (FTQ) 12 12
B̃ 0:0.01:1 -
γ 1 1
N = |D| 5000 5000
Nminibatch 10 10
Nseeds 4 4
Ntest 1000 1000
decay epsilon scheduling 0.001 0.001

Table 1: Algorithms parameters for Corridors

.2 Parameters

All algorithm parameters are displayed in Table 1,Table 2 and Table 3.

State-Space

The states s (from s = (s, β)) of the agent are described in the following:

• Corridors: s = (x, y) where x and y are the 2D coordinates of the agent.
• slot-filling: s = (ν,min, au, as, t) where ν is a vector of the SRS for each

slot, min is a one hot vector describing the minimum of the ν vector, au is a one hot
vector of the last user dialogue act and as is the one hot vector of the last system
dialogue act. Finally t ∈ [0, 1] is the fraction of the current turn with the maximum
number of turns authorised.
• Highway-Env: the positions (x, y) and velocities (ẋ, ẏ) of every vehicle on the

road.

A note on the parameters search

We performed a shallow grid-search for the classic NN parameters. Most of the parameters
do not have a strong influence on the results, however in the slot-filling environment,
the choice of the regulation weight is decisive.

.2 Parameters 109

Parameters BFTQ FTQ

architecture 256x128x64 128x64x32
regularisation 0.0005 0.0005
activation relu relu
size beta encoder 50 -
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.001
epoch (NN) 5000 5000
normalize reward true true
epoch (FTQ) 11 11
B̃ 0:0.01:1 -
γ 1 1
N = |D| 5000 5000
Nminibatch 10 10
Nseeds 6 6
Ntest 1000 1000
decay epsilon scheduling 0.001 0.001

Table 2: Algorithms parameters for slot-filling

Parameters BFTQ FTQ

architecture 256x128x64 128x64x32
regularisation 0.0005 0
activation relu relu
size beta encoder 50 -
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.01
epoch (NN) 5000 400
normalize reward true true
epoch (FTQ) 15 15
B̃ 0:0.01:1 -
γ 0.9 0.9
N = |D| 10000 10000
Nminibatch 10 10
Nseeds 10 10
Ntest 150 150
decay epsilon scheduling 0.0003 0.0003

Table 3: Algorithms parameters for Highway-Env

110 Chapter 10. Appendices

.3 Repoducibility
.3.1 Instructions for reproducibility

To reproduce the result displayed in Section 7.5, first install the following conventional
libraries for python3: pycairo, numpy, scipy and pytorch. Then, on a Linux Operating
System, execute the following commands:

1 # Install highway-env
2 pip3 install --user git+https://github.com/eleurent/rl-agents
3 # pull code
4 git clone https://github.com/ncarrara/budgeted-rl.git
5 # Change python path to the path of this repository
6 export PYTHONPATH="budgeted-rl/ncarrara"
7 # Navigate to budgeted-rl folder
8 cd budgeted-rl/ncarrara/budgeted_rl
9 # Run main script using any config file

10 # Choose the range of seeds you want to test on
11 python3 main/egreedy/main-egreedy.py config/slot-filling.json 0 6
12 python3 main/egreedy/main-egreedy.py config/corridors.json 0 4
13 python3 main/egreedy/main-egreedy.py config/highway-easy.json 0

↪→ 10

Instructions to reproduce experiments

The GPU used for experiments is an NVIDIA GeForce GTX 1080 Ti and the
CPU is an Intel Xeon E7.

.3.2 The Machine Learning reproducibility checklist

For all models and algorithms presented, indicate if you include:
• A clear description of the mathematical setting, algorithm, and/or model:

– yes, see Section 7.1, Section 7.2, Section 7.3, and Section 7.4.
• An analysis of the complexity (time, space, sample size) of any algorithm:

– yes, see Section 7.4.3.
• A link to a downloadable source code, with specification of all dependencies, includ-

ing external libraries:
– yes, see Appendix .3.1 and the folder code in the supplementary material zip

file.
For any theoretical claim, indicate if you include:
• A statement of the result:

– yes, see Section 7.2 and Section 7.3.
• A clear explanation of any assumptions:

– we make one assumption in Section 7.2. We assume the program is feasible
for any state. If not, no algorithm would be able to solve it anyway.

• A complete proof of the claim:
– yes, see Appendix .1.

For all figures and tables that present empirical results, indicate if you include:
• A complete description of the data collection process, including sample size:

– yes, see Section 7.5 and Appendix .2.
• A link to a downloadable version of the dataset or simulation environment:

.3 Repoducibility 111

– yes, all environments are fetch from a public repository, see Appendix .3.1 for
details.

• An explanation of any data that were excluded, description of any pre-processing
step:

– it is not applicable as data comes from simulated environments, so pre-
processing steps are not needed.

• An explanation of how samples were allocated for training / validation / testing:
– it is not applicable. The complete dataset is used for training. There is no need

for validation set. Testing is performed in the true environment as in classical
Online learning approaches.

• The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results:

– yes, see Appendix .2.
• The exact number of evaluation runs:

– yes, see Nseeds in the tables from Appendix .2.
• A description of how experiments were run:
• – yes, see the two first paragraphs of Section 7.5.
• A clear definition of the specific measure or statistics used to report results:

– yes, see Section 7.5.2.
• Clearly defined error bars:

– yes, we plot 95% confidence intervals in all figures, see Section 7.5.2.
• A description of results with central tendency (e.g. mean) variation (e.g. stddev):

– yes, we even observe less variability with our novel approach, see Section 7.5.2.
• A description of the computing infrastructure used:

– The GPU used for experiments is an NVIDIA GeForce GTX 1080 Ti
and the CPU is an Intel Xeon E7.

A. Continuous transfer in Deep Q-learning

In this chapter, we include a transfer process inside the workflow of a Deep Q-learning
(DQN) algorithm. As stated in Chapter 5, a Transfer Learning (TL) algorithm consists
of two phases, a transfer phase where we choose what or how to transfer, and a learning
phase where we learn the target policy using the transferred knowledge. There are different
ways of implementing those phases in the DQN algorithm; we introduce some of them
that failed in practice, and we explain why. First, we describe briefly how DQN works.

A.0.1 Deep Q-learning

DQN is an Online Reinforcement Learning (RL) algorithm fit for continuous state-space
and discrete action-space. It uses a Neural Network (NN) as Q-function approximator.
One can see DQN as an adaptation of the Q-learning algorithm using a NN as function
approximator. Indeed, DQN updates the weights online with respect to the Temporal
Difference (TD) error. In order to remember its previous interactions with the environment,
DQN keeps the transitions in a memory called the Experience Replay. So, instead of
considering a single interaction to update the weights, DQN draws a random set of
previously encountered interactions1, called the replay buffer, and computes the mean TD
error over those interactions. To ensure stability, DQN is equipped with two networks:
• the greedy network, updated at each interaction, is used to compute the greedy action

in order to interact with the environment.
• the bootstrap network2, updated at a lower frequencies, is used to compute the

argument of max operator in the TD error.
Now we identified the different components of DQN, we are able to incorporate transfer

knowledge into it. Now let us assume that we are given a set of different users U . For any

1In order to makes the data fed to the neural network independent and identically distributed (iid).
2In the literature, this network is called target network, but this nomenclature conflicts with the idea of

target environment and target policy bought by the TL framework.

114 Chapter A. Continuous transfer in Deep Q-learning

u ∈ U , we know the optimal DP (and underlying greedy network) πu and the batch of
interactions Du used to learn the DP.

A.1 The transfer phase.
First, to operate the transfer phase, we investigate two ideas to choose what source we
transfer from:

A.1.1 Auto-Encoders
For each user u, we learn an Auto-Encoder AEu that reconstruct the transitions contained
in Du. The learning batch takes this form: {ti, ti}i∈[0,|Du|[where t is a concatenation of
corresponding interaction’s components: ti = (si, ai, r

′
i, s
′
i). Then to select the closest

source user to the target user, we forward the target interactions in each source Auto-
Encoder and compute the test error. We postulated at first that the lowest test error would
correspond to the closest source user. That statement showed promising results on a cart-
pole environment and on PyDial. Unfortunately, the discriminative attribute that helped
to select the best source was mostly the action. That makes sense when we think that the
learning of the Auto-Encoder is actually biased by the action distribution in the batch, that
is conditioned by the policy that generated this batch. Another limit of this approach is
the fact that the Auto-Encoder may not really capture the transition function P as it may
learn to reconstruct each s and s′ independently if occurrences of any of those are high
enough. One solution might be using the algorithm proposed in Ammar et al. (2014) based
on Restricted Boltzmann Machines (RBMs), but they only encode (si, ai, s

′
i).

A.1.2 Using the Temporal Difference error
Here, we consider each source greedy Q-network. To select the closest source user, we
compute the TD error of each source greedy network using the target batch of transitions.
We made the hypothesis that the network that minimises this error may perform better with
the target environment. This statement is false and we propose a simple counter example
where the network with the lowest TD error is sub-optimal. Consider the simple target
MDP in Figure A.1 where the starting state is s. As the MDP is deterministic and there are
only two actions, we can represent a transition using its reward. So we assume the target
batch Dut = {1, 0}. Now let us say we have two source networks, Qu0 and Qu1 , and let
Qu0(a0) = −1, Qu0(a1) = 0, Qu1(a0) = 5 and Qu1(a1) = 0. Then the average TD error
of Qu0 w.r.t Dut is 1 and the average TD error of Qu1 is 2. So Qu0 seems better than Qu1 ,
however, the policy based on Qu0 will always choose a1 the sub-optimal action a1 while
the policy based on Qu1 will always choose the best action a0.

A.2 The learning phase
We also proposed two solutions for learning the policy through DQN using the transferred
knowledge. Two questions arise, what data to transfer and when to stop the transfer.

A.2.1 Transferring the transition
In this solution, we tried to transfer the transitions of the best current source user (using
the source selection of our choice, at this moment, we used the Auto-Encoder method). To

A.2 The learning phase 115

�

� = 1 � = 0

�0 �1

Figure A.1: Counter example Markov Decision Process of the Temporal Difference error solution

operate the transfer, we simply fill up the remaining space of the replay buffer with the
source transitions. That way, the target DQN includes source knowledge into its learning.
The advantage of this method is that once the replay buffer is full of target transitions,
there is no more need to transfer source knowledge. Thus, there is no need to control
the transfer through a meta parameter. The direct drawback of this, since replay buffer
rarely exceeds 128 transitions, is that the target DQN prematurely stops using the source
knowledge and the benefit of the transfer is not exploited enough. Another lead of research
could be adding the transitions into the target experience replay directly, and clean it from
source transitions at some point of the learning to avoid negative transfer. In this case, the
question would be when to stop the transfer. Finally, all methods transfering the transitions
face a major issue: at the very beginning of the learning, the policy is sub-optimal as it
dit not have the time to bootstrap. Laroche, Trichelair, et al. (2019) showed recently that
vanilla DQN is actually bad at batch learning. That led us to the next solution, that is
transfering directly the Q-network.

A.2.2 Transferring the network

We tried two solutions for transferring the network.
The first one relies on a simple idea: using the network that minimise the TD error

among all the source networks and the target network. As the target greedy network is
learnt on the batch he is tested on, we must learnt an extra target network on a partial part
of the batch, the learning base, and test it on the other part, the test base. The idea is similar
to slice the learning batch in Supervised Learning (SL) problems. Unfortunatly, as we saw
with the counterexample in Figure A.1, the TD is not an appropriate metric to evaluate
what network is the best fit for the target environment.

The second solution consists on concatenating the current best source network (using
the source selection of our choice) and the target network and weight their output in a single
meta-network. The basic idea is to freeze the gradient of the source network and only learn
the weights of the gate (that weights the output of the source and target network) and the
weights of the greedy target. We also add extra information for the gate, as for example,
the error return by the source Auto-Encoder. We believe that the meta-network should be
able to emphasise the source network when the learning batch of the target environment

116 Chapter A. Continuous transfer in Deep Q-learning

is small and emphasise the target network when it is strong enough to minimise the TD
error. But once again, the foundation of the idea also relies on the fact that a small TD
error should indicate a good fit for the target environment which is false.

A.3 Conclusion
The idea of transferring knowledge continuously into DQN is very tempting, convenient
and does not need many changes to fit the initial framework. However, the Online nature
of the algorithm makes it very hard to select the right source knowledge to transfer as the
processus is not stationary. The two main challenges rely on what source to pick, and when
to stop the transfer. We consider at the moment learning the R and P function using ideas
from the model-based community (Deisenroth et al. 2011) in order to detect the closest
source environment. The idea of combining model of the environments and a model-
free algorithm may be counter-intuitive and unproductive, so a switch to a model-based
algorithms may be appropriate.

A.3.1 Discussion
A lot of related work has been conducted since the beginning of this work. The closest
of ours is Chaplot et al. (2016) where the authors transfer the features of the DQN model
on DOOM 3d environment. To cite a few another recent works: Model-Agnostic Meta-
Learning (Finn et al. 2017) for RL on MuJoCo; Successor Features - a generalisation
of Successor Representations (Dayan 1993) - on the DeepMind Lab platform (Barreto
et al. 2018), or on robot navigation tasks (J. Zhang et al. 2017); generalisation through
simulation (Kang et al. 2019) for vision-based autonomous flight.

Bibliography

Abe, Naoki, Prem Melville, Cezar Pendus, Chandan K. Reddy, David L. Jensen, Vince P.
Thomas, James J. Bennett, Gary F. Anderson, Brent R. Cooley, Melissa Kowalczyk,
Mark Domick, and Timothy Gardinier (2010). “Optimizing Debt Collections Using
Constrained Reinforcement Learning”. In: Conference of the Special Interest Group
on Knowledge Discovery and Data Mining (cited on page 86).

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). “Constrained Policy
Optimization”. In: International Conference on Machine Learning (cited on page 86).

Allen, James (1995). Natural Language Understanding (2Nd Ed.) Benjamin-Cummings
Publishing Co., Inc. (cited on page 20).

Altman, Eitan (1999). Constrained Markov Decision Processes. CRC Press (cited on
page 70).

Ammar, Haitham Bou, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt
Driessens, Gerhard Weiss, and Karl Tuyls (2014). “An automated measure of mdp
similarity for transfer in reinforcement learning”. In: Workshops at the Conference on
Artificial Intelligence of the Association for the Advancement of Artificial Intelligence
(cited on page 114).

Asimov, Isaac (1961). The Machine That Won the War. The Magazine of Fantasy and
Science Fiction (cited on page 18).

— (1986). Foundation and Earth. Doubleday (cited on page 20).

118 Chapter A. Continuous transfer in Deep Q-learning

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002a). “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning (cited on page 41).

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002b). “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning (cited on pages 55, 57).

Austin, John L. (1962). How to do things with words. Cambridge: Harvard University
Press (cited on page 28).

Banach, Stefan (1922). “Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales”. In: Fundamenta Mathematicae (cited on page 37).

Barlier, Merwan, Romain Laroche, and Olivier Pietquin (2018a). “Training Dialogue
Systems With Human Advice”. In: International Conference on Autonomous Agents
and Multiagent Systems (cited on page 28).

— (2018b). “Training Dialogue Systems With Human Advice”. In: International Confer-
ence on Autonomous Agents and Multiagent Systems (cited on page 40).

Barlier, Merwan, Julien Perolat, Romain Laroche, and Olivier Pietquin (2015a). “Human-
Machine Dialogue as a Stochastic Game”. In: Conference of the Special Interest Group
on Discourse and Dialogue (cited on page 55).

— (2015b). “Human-machine dialogue as a stochastic game”. In: Conference of the
Special Interest Group on Discourse and Dialogue (cited on page 97).

Barreto, Andre, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos (2018). “Transfer in deep reinforcement
learning using successor features and generalised policy improvement”. In: (cited on
page 116).

Bellman, Richard (1956). “Dynamic programming and Lagrange multipliers”. In: National
Academy of Sciences of the USA (cited on page 37).

— (1957). “A Markovian decision process”. In: Journal of Mathematics and Mechanics
(cited on pages 33, 37).

Bellman, Richard and S.E. Dreyfus (1959). “Functional Approximations and Dynamic
Programming”. In: Mathematics of Computation (cited on page 38).

Ben, Gold (1966). Word Recognition Computer Program. Technical report. Research
Laboratory of Electronics. Cambrige; M. I. T. (cited on page 19).

Bertsekas, Dimitri P. (1996). Constrained Optimization and Lagrange Multiplier Methods
(Optimization and Neural Computation Series). Athena Scientific (cited on page 39).

A.3 Conclusion 119

Beutler, Frederick J. and Keith W. Ross (1985). “Optimal policies for controlled Markov
chains with a constraint”. In: Journal of Mathematical Analysis and Applications (cited
on pages 70, 71, 86, 106).

Biermann, Alan W and Philip M Long (1996). “The composition of messages in speech-
graphics interactive systems”. In: International Symposium on Spoken Dialogue (cited
on page 21).

Bińkowski, Mikołaj, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman
Casagrande, Luis C. Cobo, and Karen Simonyan (2019). “High Fidelity Speech
Synthesis with Adversarial Networks”. In: arXiv:1909.11646 (cited on page 19).

Bobrow, Daniel G. (1964). Natural Language Input for a Computer Problem Solving
System. Technical report (cited on page 20).

Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson,
and Terry Winograd (1977). “GUS, a Frame-driven Dialog System”. In: Artificial
Intelligence (cited on page 21).

Boutilier, Craig and Tyler Lu (2016). “Budget Allocation using Weakly Coupled, Con-
strained Markov Decision Processes”. In: Conference on Uncertainty in Artificial
Intelligence (cited on pages 70, 86, 96).

Bruce, Wilcox (2011). Rose. http://brilligunderstanding.com/rosedemo.html (cited on
page 22).

Budzianowski, Pawel and Ivan Vulic (2019). “Hello, It’s GPT-2 - How Can I Help You?
Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems”.
In: arxiv:1907.05774 (cited on page 97).

Carrara, Nicolas, Romain Laroche, Jean-Léon Bouraoui, Tanguy Urvoy, and Olivier
Pietquin (2018a). “A Fitted-Q Algorithm for Budgeted MDPs”. In: Workshop on
Safety, Risk and Uncertainty in Reinforcement Learning, Conference on Uncertainty in
Artificial Intelligence (cited on page 23).

— (2018b). “A Fitted-Q Algorithm for Budgeted MDPs”. In: European Workshop on
Reinforcement Learning (cited on page 23).

— (2018c). “Safe transfer learning for dialogue applications”. In: International Confer-
ence on Statistical Language and Speech Processing (cited on pages 23, 50, 51).

Carrara, Nicolas, Romain Laroche, and Olivier Pietquin (2017). “Online learning and
transfer for user adaptation in dialogue systems”. In: Joint special session on negotia-
tion dialog, Workshop on the Semantics and Pragmatics of Dialogue- Conference of
the Special Interest Group on Discourse and Dialogue (cited on pages 23, 50, 51).

120 Chapter A. Continuous transfer in Deep Q-learning

Carrara, Nicolas, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Jean-Léon Bouraoui,
Odalric Maillard, and Olivier Pietquin (2019). “Budgeted Reinforcement Learning
in Continuous State Space”. In: Workshop on Safety Risk and Uncertainty in Rein-
forcement Learning at Conference on Uncertainty in Artificial Intelligence (2018),
European Workshop on Reinforcement Learning (2018), and Conference on Neural
Information Processing Systems (2019) (cited on page 23).

Carrara, Nicolas, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric Maillard,
and Olivier Pietquin (2019). “Budgeted Reinforcement Learning in Continuous State
Space”. In: (cited on page 23).

Casanueva, Inigo, Thomas Hain, Heidi Christensen, Ricard Marxer, and Phil Green (2015a).
“Knowledge transfer between speakers for personalised dialogue management”. In:
Conference of the Special Interest Group on Discourse and Dialogue (cited on pages 49–
51).

— (2015b). “ Knowledge transfer between speakers for personalised dialogue management
”. In: Conference of the Special Interest Group on Discourse and Dialogue (cited on
page 89).

Chandramohan, Senthilkumar, Matthieu Geist, Fabrice Lefevre, and Olivier Pietquin
(2012). “ Clustering behaviors of spoken dialogue systems users ”. In: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (cited on page 55).

— (2014). “Co-adaptation in spoken dialogue systems”. In: Natural interaction with
robots, knowbots and smartphones. Springer (cited on page 97).

Chandramohan, Senthilkumar, Matthieu Geist, and Olivier Pietquin (2010). “Optimizing
Spoken Dialogue Management with Fitted Value Iteration”. In: Conference of the
International Speech Communication Association (cited on pages 55, 80, 89).

Chaplot, Devendra Singh, Guillaume Lample, Kanthashree Mysore Sathyendra, and Ruslan
Salakhutdinov (2016). “Transfer deep reinforcement learning in 3d environments: An
empirical study”. In: Deep Reinforcement Learning Workshop at Conference on Neural
Information Processing Systems (cited on page 116).

Chen, Hongshen, Xiaorui Liu, Dawei Yin, and Jiliang Tang (2017). “A Survey on Dialogue
Systems: Recent Advances and New Frontiers”. In: Exploration Newsletter (cited on
pages 22, 27).

Chen, Lu, Cheng Chang, Zhi Chen, Bowen Tan, Milica Gasic, and Kai Yu (2018). “ Policy
Adaptation for Deep Reinforcement Learning-Based Dialogue Management ”. In:
IEEE International Conference on Acoustics, Speech and Signal Processing (cited on
pages 48, 51).

A.3 Conclusion 121

Chorowski, Jan and Navdeep Jaitly (2017). “Towards better decoding and language model
integration in sequence to sequence models”. In: Conference of the International
Speech Communication Association (cited on page 27).

Chow, Yinlam, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone (2018).
“Risk-Constrained Reinforcement Learning with Percentile Risk Criteria”. In: Journal
of Machine Learning Research (cited on pages 70, 86).

Chow, Yinlam, Aviv Tamar, Shie Mannor, and Marco Pavone (2015). “ Risk-Sensitive
and Robust Decision-Making: a CVaR Optimization Approach ”. In: Conference on
Neural Information Processing Systems (cited on page 70).

Clarke, Arthur Charles (1968). 2001: A Space Odyssey. Hutchinson (cited on page 18).

Colby, Kenneth Mark (1975). Artificial Paranoia: A Computer Simulation of Paranoid
Processes. Elsevier Science Inc. (cited on page 21).

Cortada, James W. (2005). The Digital Hand: Volume II: How Computers Changed
the Work of American Financial, Telecommunications, Media, and Entertainment
Industries. Oxford University Press (cited on page 21).

Cuayahuitl, Heriberto, Simon Keizer, and Oliver Lemon (2015). “Strategic Dialogue
Management via Deep Reinforcement Learning”. In: Workshop on Deep Reinforcement
Learning, Conference on Neural Information Processing Systems (cited on page 43).

Cummings, Louise (2010). The Routledge pragmatics encyclopedia. Routledge (cited on
page 21).

Dann, Christoph, Lihong Li, Wei Wei, and Emma Brunskill (2019). “Policy Certificates:
Towards Accountable Reinforcement Learning”. In: International Conference on
Machine Learning (cited on page 70).

Davis, KH, R Biddulph, and Stephen Balashek (1952). “Automatic recognition of spoken
digits”. In: Journal of the Acoustical Society of America (cited on page 19).

Dayan, Peter (1993). “Improving generalization for temporal difference learning: The
successor representation”. In: Neural Computation (cited on page 116).

Deisenroth, Marc Peter and Carl Edward Rasmussen (2011). “ PILCO: A Model-Based
and Data-Efficient Approach to Policy Search ”. In: International Conference on
Machine Learning (cited on page 116).

Deng, Li, Gökhan Tür, Xiaodong He, and Dilek Z. Hakkani-Tür (2012). “Use of kernel
deep convex networks and end-to-end learning for spoken language understanding.”
In: IEEE Spoken Language Technology Workshop (cited on page 28).

122 Chapter A. Continuous transfer in Deep Q-learning

Dennis, Klatt (1987). “How Klattalk became DECtalk: An Academic’s Experiences in the
Business World”. In: The official proceedings of Speech Technology, New York (cited
on page 19).

Deoras, Anoop and Ruhi Sarikaya (2013). “Deep belief network based semantic taggers
for spoken language understanding.” In: Conference of the International Speech
Communication Association (cited on page 28).

Eckert, Wieland, Esther Levin, and Roberto Pieraccini (1997). “User modeling for spoken
dialogue system evaluation”. In: IEEE Workshop on Automatic Speech Recognition
and Understanding Proceedings (cited on page 49).

Ehsan, Upol, Brent Harrison, Larry Chan, and Mark O. Riedl (2018). “Rationalization: A
Neural Machine Translation Approach to Generating Natural Language Explanations”.
In: Conference on AI, Ethics, and Society, Association for Computing Machinery-
Conference on Artificial Intelligence of the Association for the Advancement of Artificial
Intelligence (cited on page 19).

El Asri, Layla (2016). “Learning the Parameters of Reinforcement Learning from Data
for Adaptive Spoken Dialogue Systems”. PhD thesis. Université de Lorraine (cited on
page 34).

El Asri, Layla, Jing He, and Kaheer Suleman (2016). “A Sequence-to-Sequence Model for
User Simulation in Spoken Dialogue Systems”. In: Conference of the International
Speech Communication Association (cited on page 49).

El Asri, Layla, Hatim Khouzaimi, Romain Laroche, and Olivier Pietquin (2014). “Ordinal
regression for interaction quality prediction”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (cited on page 42).

El Asri, Layla and Romain Laroche (2013). “Will my Spoken Dialogue System be a Slow
Learner?” In: Conference of the Special Interest Group on Discourse and Dialogue
(cited on page 42).

El Asri, Layla, Romain Laroche, and Olivier Pietquin (2012). “Reward Function Learning
for Dialogue Management.” In: Frontiers in Artificial Intelligence and Applications
(cited on page 51).

— (2014). “ Task Completion Transfer Learning for Reward Inference ”. In: Workshop,
Conference on Artificial Intelligence of the Association for the Advancement of Artificial
Intelligence (cited on pages 50, 51).

Engel, Yaakov, Shie Mannor, and Ron Meir (2006). “ Reinforcement learning with
Gaussian processes ”. In: International Conference on Machine Learning (cited on
page 48).

A.3 Conclusion 123

Ernst, Damien, Pierre Geurts, and Louis Wehenkel (2005). “Tree-Based Batch Mode
Reinforcement Learning”. In: Journal of Machine Learning Research (cited on
pages 40, 55).

Farahmand, Amir massoud, Mohammad Ghavamzadeh, Csaba Szepesvari, and Shie Man-
nor (2009). “Regularized fitted Q-iteration for planning in continuous-space Markovian
decision problems”. In: (cited on page 64).

Fedus, William, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo Larochelle
(2019). “Hyperbolic discounting and learning over multiple horizons”. In: arXiv
preprint arXiv:1902.06865 (cited on page 36).

Ferguson, Kimberly and Sridhar Mahadevan (2006). “Proto-transfer learning in markov
decision processes using spectral methods”. In: Computer Science Department Faculty
Publication Series (cited on page 46).

Ferrante, Eliseo, Alessandro Lazaric, and Marcello Restelli (2008). “Transfer of task
representation in reinforcement learning using policy-based proto-value functions”. In:
International Conference on Autonomous Agents and Multiagent Systems (cited on
page 46).

Ferreira, Emmanuel and Fabrice Lefèvre (2013). “Social Signal and User Adaptation in
Reinforcement Learning-based Dialogue Management”. In: Workshop on Machine
Learning for Interactive Systems: Bridging the Gap Between Perception, Action and
Communication (cited on page 41).

Ferrucci, David, Eric Brown, Jennifer Chu-carroll, James Fan, David Gondek, Aditya A
Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, and John Prager (2010).
“Building Watson: An Overview of the DeepQA Project”. In: Conference on Artificial
Intelligence of the Association for the Advancement of Artificial Intelligence (cited on
page 20).

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-agnostic meta-learning
for fast adaptation of deep networks”. In: International Conference on Machine
Learning (cited on page 116).

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position”. In: Biological
cybernetics 36 (cited on page 28).

Gao, Jianfeng, Michel Galley, Lihong Li, et al. (2019). “Neural approaches to conversa-
tional AI”. In: Foundations and Trends R© in Information Retrieval (cited on pages 21,
30).

124 Chapter A. Continuous transfer in Deep Q-learning

Garcia, Javier and Fernando Fernandez (2015). “ A Comprehensive Survey on Safe
Reinforcement Learning ”. In: Journal of Machine Learning Research (JMLR) (cited
on page 70).

Gasic, Milica, Catherine Breslin, Matthew Henderson, Dongho Kim, Martin Szummer,
Blaise Thomson, Pirros Tsiakoulis, and Steve Young (2013). “POMDP-based dialogue
manager adaptation to extended domains”. In: Conference of the Special Interest Group
on Discourse and Dialogue (cited on pages 48–51).

Gasic, Milica and Steve Young (2013). “Gaussian processes for pomdp-based dialogue
manager optimization”. In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing (cited on page 48).

Geibel, Peter and Fritz Wysotzki (2005). “Risk-sensitive reinforcement learning applied
to control under constraints.” In: Journal of Artificial Intelligence Research (cited on
page 86).

Genevay, Aude and Romain Laroche (2016). “Transfer Learning for User Adaptation in
Spoken Dialogue Systems”. In: International Conference on Autonomous Agents and
Multiagent Systems. International Foundation for Autonomous Agents and Multiagent
Systems (cited on pages 23, 50, 51, 55–57, 63, 89, 95).

Georgila, Kallirroi and David R Traum (2011). “Reinforcement Learning of Argumen-
tation Dialogue Policies in Negotiation.” In: Conference of the International Speech
Communication Association (cited on page 55).

Glass, James, Giovanni Flammia, David Goodine, Michael Phillips, Joseph Polifroni,
Shinsuke Sakai, Stephanie Seneff, and Victor Zue (1995). “Multilingual spoken-
language understanding in the MIT Voyager system”. In: Speech Communication
(cited on page 21).

Goddeau, David, Helen M. Meng, Joseph Polifroni, Stephanie Seneff, and Senis Busayapongchai
(1996). “A form-based dialogue manager for spoken language applications”. In: Inter-
national Conference on Spoken Language Processing (cited on page 28).

Goldberg, Eli, Norbert Driedger, and Richard I. Kittredge (1994). “Using Natural-
Language Processing to Produce Weather Forecasts”. In: IEEE Expert: Intelligent
Systems and Their Applications (cited on page 19).

Graves, Alex and Navdeep Jaitly (2014). “Towards End-to-end Speech Recognition with
Recurrent Neural Networks”. In: International Conference on Machine Learning (cited
on pages 19, 27).

Hashemi, Homa Baradaran (2016). “Query Intent Detection using Convolutional Neural
Networks”. In: Workshop on Query Understanding, International Conference on Web
Search and Data Mining (cited on page 28).

A.3 Conclusion 125

Henderson, Matthew (2015). “Machine Learning for Dialog State Tracking: A Review”.
In: International Workshop on Machine Learning in Spoken Language Processing
(cited on page 28).

Henderson, Matthew, Blaise Thomson, and Steve Young (2013). “Deep Neural Network
Approach for the Dialog State Tracking Challenge”. In: Conference of the Special
Interest Group on Discourse and Dialogue (cited on page 21).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In: Neural
computation (cited on page 19).

Homer, Dudley, Riesz R., and Watkins S. (1939). “A Synthetic Speaker”. In: Journal of
Franklin Institute, Philadelphia (cited on page 18).

Howard, Ronald A. (1960). Dynamic Programming and Markov Processes. MIT Press
(cited on page 37).

Huang, Po-Sen, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck (2013).
“Learning Deep Structured Semantic Models for Web Search Using Clickthrough
Data”. In: ACM International Conference on Information & Knowledge Management
(cited on page 28).

Ilievski, Vladimir, Claudiu Musat, Andreea Hossmann, and Michael Baeriswyl (2018).
“Goal-Oriented Chatbot Dialog Management Bootstrapping with Transfer Learning”.
In: International Joint Conference on Artificial Intelligence (cited on pages 48, 51).

Isaac, Oscar (2015). Ex machina (cited on page 20).

Iyengar, Garud N. (2005). “ Robust Dynamic Programming ”. In: Mathematics of
Operations Research (cited on page 70).

J. C. H. Watkins, Christopher and Peter Dayan (1992). “Q-learning”. In: Machine Learning
(cited on page 89).

Janarthanam, Srinivasan and Oliver Lemon (2010). “Adaptive referring expression genera-
tion in spoken dialogue systems: Evaluation with real users”. In: Conference of the
Special Interest Group on Discourse and Dialogue (cited on page 55).

Jelinek, Frederick (1976). “Continuous Speech Recognition by Statistical Methods”. In:
IEEE 64 (cited on page 19).

Jonze, Spike (2013). Her (cited on page 21).

Jurafsky, Daniel and James H. Martin (2000). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall PTR (cited on page 27).

126 Chapter A. Continuous transfer in Deep Q-learning

Kang, Katie, Suneel Belkhale, Gregory Kahn, Pieter Abbeel, and Sergey Levine (2019).
“Generalization through simulation: Integrating simulated and real data into deep rein-
forcement learning for vision-based autonomous flight”. In: arXiv preprint arXiv:1902.03701
(cited on pages 97, 116).

Karl Johan, Astrom (1965). “Optimal control of Markov processes with incomplete
state information”. In: Journal of Mathematical Analysis and Applications (cited on
page 21).

Kaufmann, Leonard and Peter Rousseeuw (1987). “Clustering by Means of Medoids”. In:
Data Analysis based on the L1-Norm and Related Methods (cited on page 55).

Keizer, Simon, Milica Gasic, Filip Jurcicek, Francois Mairesse, Blaise Thomson, Kai Yu,
and Steve Young (2010). “Parameter estimation for agenda-based user simulation”.
In: Conference of the Special Interest Group on Discourse and Dialogue (cited on
page 49).

Keizer, Simon and Verena Rieser (2016). “ The MaDrIgAL Project: Multi-Dimensional
Interaction Management and Adaptive Learning ”. In: International Workshop on
Domain Adaptation for Dialog Agents (cited on page 48).

— (2018). “ Towards Learning Transferable Conversational Skills using Multi-dimensional
Dialogue Modelling ”. In: Workshop on the Semantics and Pragmatics of Dialogue
(cited on pages 48, 51).

Khouzaimi, Hatim, Romain Laroche, and Fabrice Lefevre (2015). “ Optimising turn-taking
strategies with reinforcement learning. ” In: Conference of the Special Interest Group
on Discourse and Dialogue (cited on page 58).

— (2017). “Incremental human-machine dialogue simulation”. In: Dialogues with Social
Robots. Springer (cited on page 49).

Kim, Jaeyoung, Mostafa El-Khamy, and Jungwon Lee (2017). “Residual LSTM: Design
of a Deep Recurrent Architecture for Distant Speech Recognition”. In: Conference of
the International Speech Communication Association (cited on page 27).

Kim, Suyoun and Michael L. Seltzer (2018). “Towards Language-Universal End-to-End
Speech Recognition”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (cited on page 27).

Lagoudakis, Michail G. and Ronald Parr (2003). “Least-squares Policy Iteration”. In:
Journal of Machine Learning Research (cited on page 40).

Langley, Pat (2006). “Transfer of knowledge in cognitive systems”. In: workshop on
Structural Knowledge Transfer for Machine Learning at International Conference on
Machine Learning (cited on page 47).

A.3 Conclusion 127

Laroche, Romain (2017). “The complex negotiation dialogue game”. In: Workshop on the
Semantics and Pragmatics of Dialogue (cited on pages 49, 96).

Laroche, Romain, Philippe Bretier, and Ghislain Putois (2010). “Enhanced monitoring
tools and online dialogue optimisation merged into a new spoken dialogue system
design experience”. In: Conference of the International Speech Communication Asso-
ciation (cited on page 42).

Laroche, Romain and Aude Genevay (2017). “The negotiation dialogue game”. In:
Dialogues with Social Robots. Springer (cited on pages 23, 55, 58).

Laroche, Romain, Ghislain Putois, and Philippe Bretier (2010). “Optimising a handcrafted
dialogue system design”. In: Conference of the International Speech Communication
Association (cited on page 42).

Laroche, Romain, Ghislain Putois, Philippe Bretier, and Bernadette Bouchon-Meunier
(2009). “Hybridisation of expertise and reinforcement learning in dialogue systems”.
In: Conference of the International Speech Communication Association (cited on
page 42).

Laroche, Romain, Paul Trichelair, and Remi Tachet des Combes (2019). “Safe Policy
Improvement with Baseline Bootstrapping”. In: (cited on pages 86, 115).

Larson, Glen Albert (1986). Knight Rider. National Broadcasting Company (cited on
page 18).

Lavoie, Benoit, Owen Ranbow, and Ehud Reiter (1977). “Customizable Descriptions of
Object-Oriented Models.” In: Advances in Natural Language Processing (cited on
page 19).

Lazaric, Alessandro (2008). “Knowledge transfer in reinforcement learning”. PhD thesis.
Poltecnico di Milano (cited on page 46).

— (2012). “Transfer in Reinforcement Learning: a Framework and a Survey”. In:
Reinforcement Learning - State of the art. Edited by Martijn van Otterlo Marco
Wiering. Springer (cited on pages 45–47, 89).

Lazaric, Alessandro, Marcello Restelli, and Andrea Bonarini (2008). “Transfer of samples
in batch reinforcement learning”. In: International Conference on Machine Learning
(cited on pages 55, 57).

Le, Hoang M., Cameron Voloshin, and Yisong Yue (2019). “Batch Policy Learning under
Constraints”. In: International Conference on Machine Learning (cited on page 86).

128 Chapter A. Continuous transfer in Deep Q-learning

LeCun, Yann, Patrick Haffner, L é on Bottou, and Yoshua Bengio (1999). “Object
Recognition with Gradient-Based Learning”. In: Shape, Contour and Grouping in
Computer Vision (cited on page 28).

Lee, Kyungmin, Chiyoun Park, Namhoon Kim, and Jaewon Lee (2018). “Accelerating Re-
current Neural Network Language Model Based Online Speech Recognition System”.
In: IEEE International Conference on Acoustics, Speech and Signal Processing (cited
on page 27).

Lemon, Oliver (2011). “Learning what to say and how to say it: Joint optimisation of
spoken dialogue management and natural language generation”. In: Computer Speech
& Language (cited on page 19).

Lemon, Oliver and Xingkun Liu (2007). “Dialogue policy learning for combinations of
noise and user simulation: transfer results”. In: Conference of the Special Interest
Group on Discourse and Dialogue (cited on page 49).

Lemon, Oliver and Olivier Pietquin (2012). Data-driven methods for adaptive spoken
dialogue systems: Computational learning for conversational interfaces. Springer
Science & Business Media (cited on page 21).

Leurent, Edouard, Yann Blanco, Denis Efimov, and Odalric-Ambrym Maillard (2018).
“ Approximate Robust Control of Uncertain Dynamical Systems ”. In: Workshop
on Machine Learning for Intelligent Transportation Systems, Conference on Neural
Information Processing Systems (cited on page 81).

Levin, Esther and Roberto Pieraccini (1997). “A stochastic model of computer-human
interaction for learning dialogue strategies.” In: European Conference on Speech
Communication and Technology (cited on pages 21, 49).

Levin, Esther, Roberto Pieraccini, and Wieland Eckert (2000). “A stochastic model of
human-machine interaction for learning dialog strategies”. In: IEEE Transactions on
speech and audio processing (cited on page 49).

Li, Jiwei, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao (2016).
“Deep Reinforcement Learning for Dialogue Generation”. In: Conference on Empirical
Methods in Natural Language Processing (cited on page 29).

Li, Lihong, Jason D Williams, and Suhrid Balakrishnan (2009). “Reinforcement learning
for dialog management using least-squares policy iteration and fast feature selection”.
In: International Speech Communication Association (cited on page 40).

Li, Lihong, Jason Williams, and Suhrid Balakrishnan (2009). “Reinforcement Learning for
Dialog Management using Least-Squares Policy Iteration and Fast Feature Selection”.
In: Conference of the International Speech Communication Association (cited on
pages 55, 80).

A.3 Conclusion 129

Li, Xiujun, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz (2017).
“End-to-end task-completion neural dialogue systems”. In: (cited on page 97).

Lin, Chin-Yew (2004). “ROUGE: A Package for Automatic Evaluation of Summaries”.
In: Workshop on Text Summarization Branches Out, Annual Meeting of the Association
for Computational Linguistics (cited on page 20).

Lison, Pierre (2013). “Model-based Bayesian Reinforcement Learning for Dialogue
Management”. In: Conference of the International Speech Communication Association
(cited on page 40).

Liu, Chunming, Xin Xu, and Dewen Hu (2014). “ Multiobjective Reinforcement Learn-
ing: A Comprehensive Overview ”. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems (cited on page 70).

Lowe, Ryan, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua
Bengio, and Joelle Pineau (2017). “Towards an Automatic Turing Test: Learning to
Evaluate Dialogue Responses”. In: Annual Meeting of the Association for Computa-
tional Linguistics (cited on page 20).

Lowe, Ryan, Nissan Pow, Iulian Serban, and Joelle Pineau (2015). The ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems.
Technical report (cited on page 39).

Luenberger, David G. (2013). Investment science. Oxford University Press, Incorporated
(cited on page 70).

MacQueen, James (1967). “Some methods for classification and analysis of multivariate
observations”. In: Berkeley symposium on mathematical statistics and probability
(cited on page 55).

Mahadevan, Sridhar and Mauro Maggioni (2007). “Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision processes”. In:
Journal of Machine Learning Research (cited on page 46).

Mahmud, MM, Majd Hawasly, Benjamin Rosman, and Subramanian Ramamoorthy (2013).
Clustering markov decision processes for continual transfer. Technical report (cited
on pages 55, 65).

Mausser, Helmut and Dan Rosen (2003). “Beyond VaR: from measuring risk to managing
risk”. In: IEEE Conference on Computational Intelligence for Financial Engineering
(cited on page 70).

Mesnil, Gregoire, Xiaodong He, Li Deng, and Yoshua Bengio (2013). “Investigation
of recurrent-neural-network architectures and learning methods for spoken language

130 Chapter A. Continuous transfer in Deep Q-learning

understanding.” In: Conference of the International Speech Communication Association
(cited on page 28).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. (2015). “Human-level control through deep reinforcement learning”. In: Nature
(cited on pages 43, 77).

Mo, Kaixiang, Shuangyin Li, Yu Zhang, Jiajun Li, and Qiang Yang (2018). “ Personalizing
a Dialogue System with Transfer Reinforcement Learning ”. In: Conference on
Artificial Intelligence of the Association for the Advancement of Artificial Intelligence
(cited on pages 50, 51).

Moore, Graham (2014). Imitation Game (cited on page 20).

Nadjahi, Kimia, Romain Laroche, and Remi Tachet des Combes (2019). “Safe Policy
Improvement with Soft Baseline Bootstrapping”. In: European Conference on Machine
Learning (cited on page 86).

Neustein, Amy and Judith A Markowitz (2013). Mobile speech and advanced natural
language solutions. Springer Science & Business Media (cited on page 22).

Nilim, Arnab and Laurent El Ghaoui (2005). “ Robust Control of Markov Decision Pro-
cesses with Uncertain Transition Matrices ”. In: Mathematics of Operations Research
(cited on page 70).

Oh, Alice H and Alexander I Rudnicky (2000). “Stochastic language generation for spoken
dialogue systems”. In: Workshop on Conversational Systems, Advances in Natural
Language Processing -NAACL (cited on page 19).

Oord, Aäron van den, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo, Florian
Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich
Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan
Belov, and Demis Hassabis (2018). “Parallel WaveNet: Fast High-Fidelity Speech
Synthesis”. In: International Conference on Machine Learning (cited on page 29).

OpenAI (2018). OpenAI Five. https://blog.openai.com/openai-five/ (cited on page 96).

Palossi, Daniele, Francesco Conti, and Luca Benini (2019). “An Open Source and Open
Hardware Deep Learning-powered Visual Navigation Engine for Autonomous Nano-
UAVs”. In: arxiv:1905.04166 (cited on page 97).

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (2002). “Bleu: a Method
for Automatic Evaluation of Machine Translation”. In: Annual Meeting of the Associa-
tion for Computational Linguistics (cited on page 20).

 https://blog.openai.com/openai-five/

A.3 Conclusion 131

Peng, Baolin, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu Su
(2018). “Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy
Learning”. In: Annual Meeting of the Association for Computational Linguistics (cited
on page 40).

Perera, Rivindu and Parma Nand (2017). “Recent Advances in Natural Language Gener-
ation: A Survey and Classification of the Empirical Literature”. In: Computing and
Informatics (cited on page 19).

Perez, Sarah (2016). Microsoft silences its new A.I. bot Tay, after Twitter users teach it
racism. URL: https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-
tay-after-twitter-users-teach-it-racism/ (visited on 2016) (cited on page 97).

Petrik, Marek, Mohammad Ghavamzadeh, and Yinlam Chow (2016). “Safe policy improve-
ment by minimizing robust baseline regret”. In: Conference on Neural Information
Processing Systems (cited on page 86).

Pietquin, Olivier (2004). A Framework for Unsupervised Learning of Dialogue Strategies.
Presses Universitaires de Louvain (cited on pages 21, 49).

Pietquin, Olivier, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet
(2011). “Sample-efficient batch reinforcement learning for dialogue management
optimization”. In: ACM Transactions on Speech and Language Processing (TSLP)
(cited on pages 40, 55, 80).

Poupart, Pascal, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh, and Michael
Bowling (2015). “Approximate Linear Programming for Constrained Partially Ob-
servable Markov Decision Processes”. In: Conference on Artificial Intelligence of the
Association for the Advancement of Artificial Intelligence (cited on page 86).

Radford, Alec, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever
(2019). “Language Models are Unsupervised Multitask Learners”. In: (cited on
pages 22, 97).

Rambow, Owen, Srinivas Bangalore, and Marilyn Walker (2001). “Natural Language
Generation in Dialog Systems”. In: International Conference on Human Language
Technology Research (cited on page 19).

Rasmussen, Carl Edward (2003). Gaussian processes in machine learning (cited on
page 48).

Riedmiller, Martin (2005). “Neural Fitted Q Iteration – First Experiences with a Data
Efficient Neural Reinforcement Learning Method”. In: European Conference on
Machine Learning (cited on pages 40, 42, 77).

https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/

132 Chapter A. Continuous transfer in Deep Q-learning

Rogers, Carl (1942). “Counseling and psychotherapy”. In: Cambridge, MA: Riverside
Press (cited on page 21).

Roijers, Diederik M., Peter Vamplew, Shimon Whiteson, and Richard Dazeley (2013).
“A Survey of Multi-Objective Sequential Decision-Making”. In: Journal of Artificial
Intelligence Research (cited on pages 70, 71).

Rosenblatt, Frank (1958). “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain”. In: Psychological Review (cited on page 19).

Roy, Nicholas, Joelle Pineau, and Sebastian Thrun (2000). “Spoken dialogue management
using probabilistic reasoning”. In: Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics (cited on page 21).

Rubin, Philip and Louis Goldstein (2019). The Pattern Playback. URL: http://www.
haskins.yale.edu/featured/patplay.html (visited on 06/08/2019) (cited on page 18).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1”. In:
MIT Press (cited on page 19).

Rummery, Gavin A and Mahesan Niranjan (1994). On-line Q-learning using connectionist
systems. University of Cambridge, Department of Engineering Cambridge, England
(cited on page 50).

Sadek, M David, Philippe Bretier, and Franck Panaget (1997). “ARTIMIS: Natural
dialogue meets rational agency”. In: (cited on pages 21, 28).

Sadri, Fariba, Francesca Toni, and Paolo Torroni (2001). “Dialogues for negotiation: agent
varieties and dialogue sequences”. In: International Workshop on Agent Theories,
Architectures, and Languages (cited on page 55).

Saeed, Hira (2019). RightClick.io Uses AI-Powered Chatbot to Create a Website. URL:
https://chatbotsmagazine.com/rightclick-io-ai-website-builder-82f0e6f3c61c (visited
on 06/03/2019) (cited on page 22).

Sarikaya, Ruhi, Geoffrey E. Hinton, and Bhuvana Ramabhadran (2011). “Deep belief nets
for natural language call-routing”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (cited on page 28).

Schank, Roger C. and Larry Tesler (1969). “A Conceptual Dependency Parser for Natural
Language”. In: Conference on Computational Linguistics (cited on page 20).

Schatzmann, Jost (2008). Statistical User and Error Modelling for Spoken Dialogue
Systems. University of Cambridge (cited on page 49).

http://www.haskins.yale.edu/featured/patplay.html
http://www.haskins.yale.edu/featured/patplay.html
https://chatbotsmagazine.com/rightclick-io-ai-website-builder-82f0e6f3c61c

A.3 Conclusion 133

Schatztnann, Jost, Matthew N Stuttle, Karl Weilhammer, and Steve Young (2005). “Effects
of the user model on simulation-based learning of dialogue strategies”. In: IEEE
Workshop on Automatic Speech Recognition and Understanding (cited on page 49).

Scott, Ridley (1982). Bladerunner (cited on page 20).

Searle, John R. (1969). Speech acts: An essay in the philosophy of language. Cambridge
university press (cited on page 28).

Serban, Iulian Vlad, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau
(2015). A survey of available corpora for building data-driven dialogue systems.
Technical report (cited on page 40).

Serban, Iulian Vlad, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau (2016). “Building end-to-end dialogue systems using generative hierarchical
neural network models”. In: Conference on Artificial Intelligence of the Association
for the Advancement of Artificial Intelligence (cited on pages 30, 97).

Shen, Yelong, Xiaodong He, Jianfeng Gao, Li Deng, and Gr é goire Mesnil (2014).
“Learning Semantic Representations Using Convolutional Neural Networks for Web
Search”. In: International Conference on World Wide Web (cited on page 28).

Sherstov, Alexander A and Peter Stone (2005). “Improving action selection in MDP’s via
knowledge transfer”. In: Conference on Artificial Intelligence of the Association for
the Advancement of Artificial Intelligence (cited on page 46).

Silver, David, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis (2016). “Mastering the game of Go with deep neural networks
and tree search”. In: Nature (cited on page 96).

Singh, Satinder, Diane Litman, Michael Kearns, and Marilyn Walker (2002). “Optimiz-
ing dialogue management with reinforcement learning: Experiments with the NJFun
system”. In: Journal of Artificial Intelligence Research (cited on page 42).

Steinhaus, Hugo (1957). “Sur la division des corps matériels en partie”. In: Bulletin de
l’academie polonaise des sciences (cited on page 55).

Sunmola, Funlade T and Jeremy L Wyatt (2006). “Model transfer for Markov decision
tasks via parameter matching”. In: Workshop of the UK Planning and Scheduling
Special Interest Group (cited on page 46).

134 Chapter A. Continuous transfer in Deep Q-learning

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence (cited on page 46).

Tamar, Aviv, Dotan Di Castro, and Shie Mannor (2012). “ Policy Gradients with Variance
Related Risk Criteria ”. In: International Conference on Machine Learning (cited on
page 70).

Taylor, Matthew E, Nicholas K Jong, and Peter Stone (2008). “Transferring instances
for model-based reinforcement learning”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (cited on page 46).

Taylor, Matthew E and Peter Stone (2009). “Transfer learning for reinforcement learning
domains: A survey”. In: Journal of Machine Learning Research (cited on pages 45,
89).

Taylor, Matthew E, Shimon Whiteson, and Peter Stone (2007). “Transfer via inter-task
mappings in policy search reinforcement learning”. In: International Conference on
Autonomous Agents and Multiagent Systems (cited on page 46).

Terry, Hugh (2019). Baidu’s Melody – AI Powered Conversational Bot for Doctors and
Patients - The Digital Insurer. URL: https://www.the-digital-insurer.com/dia/baidus-
melody- ai- powered- conversational- bot- for- doctors- and- patients- 1/ (visited on
06/03/2019) (cited on page 22).

Thomas, Philip, Georgios Theocharous, and Mohammad Ghavamzadeh (2015). “High
confidence policy improvement”. In: International Conference on Machine Learning
(cited on page 86).

Thomson, Blaise (2013). Statistical Methods for Spoken Dialogue Management. Springer
Publishing Company, Incorporated (cited on page 28).

Thomson, Blaise and Steve Young (2010). “Bayesian update of dialogue state: A POMDP
framework for spoken dialogue systems”. In: Computer Speech & Language (cited on
page 48).

Tikhonov, Andrei Nikolaevich (1963). “Regularization of incorrectly posed problems”. In:
Doklady Akademii Nauk SSSR (cited on page 64).

Torrey, Lisa, Trevor Walker, Jude Shavlik, and Richard Maclin (2005). “Using advice
to transfer knowledge acquired in one reinforcement learning task to another”. In:
European Conference on Machine Learning (cited on page 46).

Tür, Gökhan, Li Deng, Dilek Z. Hakkani-Tür, and Xiaodong He (2012). “Towards
deeper understanding: Deep convex networks for semantic utterance classification”. In:

https://www.the-digital-insurer.com/dia/baidus-melody-ai-powered-conversational-bot-for-doctors-and-patients-1/
https://www.the-digital-insurer.com/dia/baidus-melody-ai-powered-conversational-bot-for-doctors-and-patients-1/

A.3 Conclusion 135

IEEE International Conference on Acoustics, Speech and Signal Processing (cited on
page 28).

Turing, Alan Madison (1936). “On Computable Numbers, with an Application to the
Entscheidungs problem”. In: London Mathematical Society (cited on page 20).

— (1950). “Computing machinery and intelligence”. In: Mind (cited on page 20).

Ultes, Stefan, Matthias Kraus, Alexander Schmitt, and Wolfgang Minker (2015). “Quality-
adaptive spoken dialogue initiative selection and implications on reward modelling”.
In: Conference of the Special Interest Group on Discourse and Dialogue (cited on
page 55).

Ultes, Stefan, Lina Maria Rojas-Barahona, Pei-hao Su, David Vandyke, Dongho Kim, Inigo
Casanueva, Pawel Budzianowski, Nikola Mrksic, Tsung-Hsien Wen, Milica Gasic,
and Steve J. Young (2017). “PyDial: A Multi-domain Statistical Dialogue System
Toolkit”. In: Annual Meeting of the Association for Computational Linguistics (cited
on page 22).

Undurti, Aditya, Alborz Geramifard, Nicholas Roy, and Jonathan P How (2010). Function
Approximation for Continuous Constrained MDPs. Technical report (cited on page 86).

Van Den Oord, A ä ron, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu (2016).
“WaveNet: A generative model for raw audio.” In: Speech Synthesis Workshop (cited
on pages 19, 29).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”. In:
Conference on Neural Information Processing Systems (cited on page 22).

Vinyals, Oriol, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg,
Wojtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh,
Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James
Molloy, Trevor Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias
Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis
Hassabis, and David Silver (2019). AlphaStar: Mastering the Real-Time Strategy Game
StarCraft II. URL: https://deepmind.com/blog/article/alphastar-mastering-real-time-
strategy-game-starcraft-ii (visited on 2019) (cited on page 97).

Vries, Harm de, Florian Strub, A. P. Sarath Chandar, Olivier Pietquin, Hugo Larochelle,
and Aaron C. Courville (2017). “GuessWhat?! Visual Object Discovery through Multi-
modal Dialogue”. In: IEEE Conference on Computer Vision and Pattern Recognition
(cited on pages 29, 43).

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

136 Chapter A. Continuous transfer in Deep Q-learning

W. Forgie, James and Carma D. Forgie (1959). “Results Obtained from a Vowel Recogni-
tion Computer Program”. In: The Journal of the Acoustical Society of America (cited
on page 19).

Walker, Marilyn A (1993). “Informational redundancy and resource bounds in dialogue”.
PhD thesis. University of Pennsylvania, The Institute for Research in Cognitive Science
(cited on page 21).

Walker, Marilyn A, Jeanne C Fromer, and Shrikanth Narayanan (1998). “Learning optimal
dialogue strategies: A case study of a spoken dialogue agent for email”. In: Annual
Meeting of the Association for Computational Linguistics (cited on page 21).

Wang, Yuxuan, R. J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V. Le, Yannis
Agiomyrgiannakis, Robert Clark, and Rif A. Saurous (2017). “Tacotron: Towards End-
to-End Speech Synthesis”. In: Conference of the International Speech Communication
Association (cited on page 29).

Wang, Ziyu, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas (2016). “Sample efficient actor-critic with experience replay”.
In: arXiv preprint arXiv:1611.01224 (cited on page 43).

Weisz, Gellert, Pawel Budzianowski, Pei-Hao Su, and Milica Gasic (2018). “Sample
Efficient Deep Reinforcement Learning for Dialogue Systems With Large Action
Spaces”. In: IEEE/ACM Transactions Audio, Speech and Language Processing (cited
on page 43).

Weizenbaum, Joseph (1966). “Eliza—a computer program for the study of natural language
com- munication between man and machine.” In: Communications of the Association
for Computing Machinery (cited on page 21).

Wen, Tsung - Hsien, Yishu Miao, Phil Blunsom, and Steve J. Young (2017). “Latent
Intention Dialogue Models”. In: International Conference on Machine Learning (cited
on page 28).

Wen, Tsung-Hsien, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young (2015). Semantically conditioned lstm-based natural language generation for
spoken dialogue systems. Technical report (cited on page 29).

Weng, John J., Narendra Ahuja, and Thomas S. Huang (1993). “Learning recognition
and segmentation of 3-D objects from 2-D images”. In: International Conference on
Computer Vision (cited on page 28).

Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem (2013). “Robust Markov Decision
Processes”. In: Mathematics of Operations Research (cited on page 70).

A.3 Conclusion 137

Williams, Jason D, Pascal Poupart, and Steve Young (2008). “Partially observable Markov
decision processes with continuous observations for dialogue management”. In: Recent
Trends in Discourse and Dialogue. Springer (cited on page 42).

Williams, Jason D., Antoine Raux, Deepak Ramachandran, and Alan W. Black (2013).
“The Dialog State Tracking Challenge”. In: Conference of the Special Interest Group
on Discourse and Dialogue (cited on pages 21, 29, 40).

Williams, Ronald J. (1992). “Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning”. In: Machine Learning (cited on page 43).

Worswick, Steve (2005). Mitsuku. https://www.pandorabots.com/mitsuku/ (cited on
page 22).

Yan, Rui (2018). “"Chitty-Chitty-Chat Bot": Deep Learning for Conversational AI”. In:
International Joint Conference on Artificial Intelligence (cited on page 30).

Yan, Zhao, Nan Duan, Peng Chen, Ming Zhou, Jianshe Zhou, and Zhoujun Li (2017).
“Building Task-Oriented Dialogue Systems for Online Shopping”. In: Conference on
Artificial Intelligence of the Association for the Advancement of Artificial Intelligence
(cited on page 22).

Yann, D, G Tur, D Hakkani-Tur, and L Heck (2014). “Zero-shot learning and clustering
for semantic utterance classification using deep learning”. In: International Conference
on Learning Representations (cited on page 28).

Yao, Kaisheng, Baolin Peng, Shuyuan Zhang, Dong Yu, Geoffrey Zweig, and Yangyang
Shi (2014). “Spoken language understanding using long short-term memory neural
networks”. In: IEEE Spoken Language Technology Workshop (cited on page 28).

Yao, Kaisheng, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, and Dong Yu (2013).
“Recurrent neural networks for language understanding”. In: Conference of the Inter-
national Speech Communication Association (cited on page 28).

Young, Steve J., Milica Gasic, Blaise Thomson, and Jason D. Williams (2013). “POMDP-
Based Statistical Spoken Dialog Systems: A Review”. In: IEEE (cited on page 21).

Young, Steve, Milica Gašić, Simon Keizer, François Mairesse, Jost Schatzmann, Blaise
Thomson, and Kai Yu (2009). “The Hidden Information State Model: a practical
framework for POMDP-based spoken dialogue management”. In: Computer Speech
and Language (cited on page 29).

Zhang, Jingwei, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard
(2017). “Deep reinforcement learning with successor features for navigation across
similar environments”. In: International Conference on Intelligent Robots and Systems.
IEEE (cited on page 116).

138 Chapter A. Continuous transfer in Deep Q-learning

Zhang, Xiaodong and Houfeng Wang (2016). “A Joint Model of Intent Determination and
Slot Filling for Spoken Language Understanding”. In: International Joint Conference
on Artificial Intelligence (cited on page 28).

Zue, Victor, Stephanie Seneff, James Glass, Joseph Polifroni, Christine Pao, Timothy J.
Hazen, and Lee Hetherington (2000). “Jupiter: A Telephone-Based Conversational
Interface for Weather Information”. In: IEEE Transactions on Speech and Audio
Processing (cited on page 21).

Index

Symbols

ε-greedy 41, 42, 57, 61, 65, 75, 76, 78, 96

A

adaptation . 48–51
agent17–21, 34, 36, 39, 41, 45, 46, 48, 81,

89, 90, 92, 96, 108

B

batch . . . 39, 40, 42, 55, 57, 58, 61, 64, 65,
71, 75, 76, 78, 80, 82, 86, 96, 114,
115

behavioural policy 41
Bellman Evaluation 36, 40, 72
Bellman Optimality 37, 38, 40, 69, 71
budget 69–72, 96, 107
budgeted policy 71–73, 75, 82, 96

C

clustering 24, 50, 55, 56, 59, 65

D

deterministic . 114
deterministic policy 36, 71, 86, 106

dialogue 19–23, 28–30, 33–36, 38–41, 45,
48–51, 55–61, 63–66, 69, 80, 82,
89, 90, 92, 96

dialogue act 28–31, 33, 34, 89, 108
dialogue corpora 64, 95
dialogue corpus 23, 39, 40, 95
dialogue simulator 96
dialogue state 28, 30, 33, 34, 41, 48

E

environment 17, 18, 30, 31,
33, 34, 39, 41, 45–49, 51, 60, 69,
71, 75, 76, 78, 80–83, 86, 96, 108,
110, 111, 113–115

exploration . 41
Exploration/Exploitation 41

F

feature 18, 21, 40, 42, 46, 49, 61, 86
features . 49

G

greedy . . 41, 42, 58, 71, 73–76, 80, 89, 91,
92, 96, 113–115

140 INDEX

H

handcrafted . 23, 27, 30, 60, 61, 63–66, 89,
90, 95, 96

handcrafted user 23, 50, 55, 59, 60, 63, 64,
66, 95

hang-up . 96
hangup 23, 81, 89, 90, 96
hangup-model . 96
human-model . 64
human-model user . 23, 50, 55, 59–61, 63,

64, 66, 95, 96

J

jumpstart 22, 46, 48, 55, 65, 89

L

Lagrangian Relaxation 80
Lagrangian relaxation 86, 96
linear model . 75
linear-regression . 42

M

model18, 19, 21, 22, 31, 39, 42, 46, 47, 49,
60, 61, 63–66, 75, 77–79, 81, 82,
86, 95, 110, 116

model-based 40, 116
model-free . 40, 116

O

Off-policy . 41
Offline . 39, 42
On-policy . 41
Online31, 39, 41, 42, 71, 86, 95, 111, 113,

116
optimal . 36–38

P

policy . . 17, 36–39, 41, 42, 48, 55–57, 61,
63–65, 78, 80, 96

R

regression 38–40, 75, 79

risk-neutral 76, 78, 82, 108
risk-sensitive 75, 78, 82, 108

S

safe policy 23, 50, 69, 87, 89, 96
semantic 18, 19, 22, 27, 29, 30
slot-filling . . 24, 28–30, 34, 35, 58, 80, 90,

108
speech recognition 19, 81
speech recognition error 81
stochastic . 34, 57
stochastic policy . 36
system act . 30

T

task-oriented . . . 21, 22, 24, 30, 33, 34, 36
trajectory . . . 41, 57, 59, 60, 75, 76, 80–82
transfer . 18, 22, 23, 46–50, 55–58, 64–66,

87, 89, 92, 96, 113–116
Transition. .57
transition39–42, 46–51, 57, 58, 64, 66, 72,

75, 76, 78, 113–115
Turing . 20
Turing-bombe . 20
Turing-Machine . 20
Turing-Test . 20–22
turn 22, 36, 58, 70, 85, 108

U

user . 23, 27–31, 33, 34, 36, 39, 41, 45–51,
55–61, 63–66, 69, 80–82, 89, 90,
92, 95, 96, 108, 113, 114

user act . 30
user adaptation 23, 24, 47–49, 55, 56,

59–61, 65, 66, 95
user-model . 21, 49

	Titre
	Abstract
	Résumé
	Acknowledgement and Thanks
	Contents
	List of items
	1 Symbols
	Acronyms
	2 Introduction
	2.1 History of dialogue systems
	2.2 A challenge for modern applications
	2.3 Contributions
	2.4 Publications
	2.5 Outline

	Part I — Task-oriented Dialogue Systems
	3 The pipeline
	3.1 A modular architecture
	3.2 On the slot-filling problem
	3.3 The Dialogue Manager

	4 Training the Dialogue Manager with RL
	4.1 Assuming a given dialogue corpus
	4.2 Online interactions with the user
	4.3 To go beyond

	5 User adaptation and Transfer Learning
	5.1 The problem of Transfer Learning
	5.2 State-of-the-art of Transfer Learning for Dialogue Systems

	Part II — Scaling up Transfer Learning
	6 A complete pipeline for user adaptation
	6.1 Motivation
	6.2 Adaptation process
	6.3 Source representatives
	6.4 Experiments
	6.5 Related work
	6.6 Conclusion
	6.7 Discussion

	Part III — Safe Transfer Learning
	7 The Dialogue Manager as a safe policy
	7.1 Motivation
	7.2 Budgeted Dialogue Policies
	7.3 Budgeted Reinforcement Learning
	7.4 A scalable Implementation
	7.5 Experiments
	7.6 Discussion
	7.7 Conclusion

	8 Transfering safe policies
	8.1 Motivation
	8.2 E-safe
	8.3 Experiment

	Part IV — Closing
	9 Conclusion
	9.1 Contributions
	9.2 On the long run

	10 Appendices
	.1 Proofs of Main Results
	.2 Parameters
	.3 Repoducibility

	Annex A : Continuous transfer in Deep Q-learning
	A.1 The transfer phase.
	A.2 The learning phase
	A.3 Conclusion

	Bibliography
	Index

	source: Thèse de Nicolas Carrara, Université de Lille, 2019
	d: © 2019 Tous droits réservés.
	lien: lilliad.univ-lille.fr

