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Résumé

Dimitri Markushevich et Alexander Tikhomirov ont décrit en 1999 une famille de fibrés
vectoriels de rang 2 à cohomologie "naturelle", appelés instantons, sur une hypersurface
cubique lisse X de P4. L’espace de modules Min

X de ces fibrés instantons s’identifie à
un ouvert d’un tore complexe J(X) de dimension 5, la jacobienne intermédiaire de X.
Stéphane Druel a donné en 2000 une description complète du bord deMin

X dans la com-
pactification de Gieseker-Maruyama MX(2; 0, 2, 0) paramétrant les faisceaux semista-
bles de rang 2. Il se trouve que MX(2; 0, 2, 0) n’est pas J(X), mais un éclatement de
J(X). La question se pose si J(X), la compactification naturelle deMin

X dans la classe
des variétés, s’interprète aussi comme une compactification dans la classe des espaces
de modules d’objets quelconques liés à X. Cela sert de motivation pour la recherche
d’autres compactifications de Min

X qui soient des espaces de modules. Une autre mo-
tivation pour ce problème est de trouver une compactification M̃(X) de Min

X dont la
relation à MX(2; 0, 2, 0) soit similaire à celle, établie par Jun Li, pour les instantons
sur des surfaces algébriques, entre les compactifications de Donaldson-Uhlenbeck et de
Gieseker-Maruyama, dont la seconde est un éclatement de la première. Une troisième
motivation est d’obtenir une compactification plus maniable queMX(2; 0, 2, 0) au cas où
X acquiert des singularités, car dans ce cas le bord deMX(2; 0, 2, 0) devient intraitable.
Enfin, en faisant varier les cubiques X dans la famille des sections hyperplanes d’une
cubique Y de P5, les espaces Min

X se collent en une variété portant une 2-forme holo-
morphe symplectique, d’où l’intérêt de la recherche d’un espace de modules compactifié
susceptible d’être holomorphiquement symplectique.
Dans la thèse on remplace les fibrés instantons par leurs résolutions localement libres
antisymétriques sur P4, qui ne sont autres que les représentations des cubiques comme
les pfaffiens des matrices antisymétriques de taille 6 de formes linéaires sur P4. Les espaces
compactifiés M̃(X) se situent dans le lieu des matrices GIT-semistables quotienté par
le groupe SL(6). La (semi)stabilité des matrices antisymétriques de formes linéaires
sur P4 se réduit à celle des systèmes P4 ("hyperwebs") dans l’espace P14 des formes
alternés, ou encore à celle des quintuplets de matrices antisymétriques complexes de
taille 6. Ce problème est étudié par une méthode similaire à celle de C.T.C.Wall, qu’il a
développée pour les systèmes linéaires de quadriques. Des critères de (semi)stabilité dans
le cas anti-symétrique sont obtenus, ainsi que la classification géométrique des hyperwebs
(semi)stables en fonction de l’intersection de P4 avec la grassmannienne Gr(2, 6) plongée
dans P14 selon Plücker.
L’espace des déformations de la résolution antisymétrique d’un faisceau dans le bord
BX0

deMX0
(2; 0, 2, 0) est étudié. En notant B,Min MGM , M̃ , la réunion des espaces

BX , MX(2; 0, 2, 0), Min
X , M̃(X) respectivement, pour X parcourant une famille com-

plète des déformations de X0, on montre que B est formée de deux diviseurs B′, B′′ et
queMGM est, au point générique de B′, un éclatement d’une sous-variété lisse dans M̃ .
Conjecturalement le même résultat est valable pour B′′. On peut donc considérer M̃
comme une sorte de compactification de Donaldson-Uhlenbeck deMin.
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Abstract

In 1999, Dimitri Markushevich and Alexander Tikhomirov described a family of rank
2 vector bundles with “natural” cohomology on a smooth cubic hypersurface X of P4,
which they called instantons. The moduli space Min

X of instanton bundles is isomor-
phic to an open subset of the intermediate Jacobian J(X) of X, a 5 dimensional com-
plex torus. In 2000, Druel gave a complete description of the boundary of Min

X in the
Gieseker-Maruyama compactificationMX(2; 0, 2, 0) parametrizing semistable sheaves of
rank 2. It turns out that MX(2; 0, 2, 0) is not isomorphic to J(X) but to the blowup
of J(X) along a smooth surface. A natural question arises whether J(X), the simplest
compactification of Min

X in the class of varieties, can also be interpreted as a compact-
ification in the class of moduli spaces of objects related to X. This question motivates
the search for alternative compactifications of Min

X that are moduli spaces. Another
motivation for this problem is to find a compactification M̃(X) of Min

X whose relation
withMX(2; 0, 2, 0) is similar to the one existing between the Donaldson-Uhlenbeck and
the Gieseker-Maruyama compactifications of moduli spaces of instantons on algebraic
surfaces. Jun Li proved that the latter is a blowup of the former. Yet another motivation
is to obtain a compactification that is easier to handle on singular cubics, since in the
singular case the boundary ofMX(2; 0, 2, 0) is intractable. Moreover, when the cubic X
varies in the family of hyperplane sections of a cubic fourfold Y ⊂ P5, the spacesMin

X glue
together into a manifold carrying a holomorphic symplectic 2-form. It is thus interesting
to look for compactified moduli spaces that might be holomorphically symplectic. In the
thesis we replace instanton bundles by their locally free skew-symmetric resolutions in
P4. These are just the representations of cubics as the Pfaffians of 6× 6 skew-symmetric
matrices of linear forms. The compact moduli space M̃(X) is contained in the GIT quo-
tient of the locus of semistable matrices for the action of SL(6). The (semi)stability of
skew-symmetric matrices of linear forms on P4 reduces to the (semi)stability of 4 dimen-
sional linear systems (hyperwebs) in the space P14 of skew-symmetric bilinear forms on
C6 or else, to the (semi)stability of 5-tuples of complex skew-symmetric matrices of size
6. This problem is studied by a method similar to that applied by C.T.C.Wall to linear
systems of quadrics. We obtain (semi)stability criteria in the skew-symmetric case and
present a classification of semistable hyperwebs in terms of the possible intersections of
P4 with the Grassmannian Gr(2, 6), embedded in P14 via the Plücker embedding. The
space of deformations of a sheaf in the boundary BX0 ofMX0(2; 0, 2, 0) is studied. De-
noting by B, Min, MGM , M̃ the union of the spaces BX ,Min

X , MX(2; 0, 2, 0), M̃(X)
respectively, for X varying in a complete family of deformations of X0, we prove that
B is the union of two divisors B′, B′′ and that at the generic point of B′, MGM is the
blowup of M̃ along a smooth subvariety. We conjecture that the same holds for B′′. This
allows us to consider M̃ as a sort of Donaldson-Uhlenbeck compactification ofMin.
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Introduction

Instanton bundles originally appeared in the context of Yang-Mills gauge theory. In their
seminal work [ADHM], Atiyah, Drinfeld, Hitchin and Manin established a correspondence
between the self-dual solutions of the Yang-Mills equations on the four-sphere S4 of
topological charge n ≥ 1 and the stable rank 2 vector bundles F on P3 with Chern
classes c1(F) = 0, c2(F) = n and such that H1(P3,F(−2))= 0. Such a bundle F is
referred to as an instanton. The vanishing condition on H1 guarantees that F can be
represented as the cohomology of a very simple complex with free terms, called monad.
Here and throughout the thesis, when speaking about sheaves on a projective space, we
will call free the sheaves that are direct sums of powers of the tautological sheaf O(1).
Thereafter the investigation of instantons led to several generalizations, including their
definition on other three-dimensional Fano varieties. Though there is no ADHM cor-
respondence for the generalizations of instantons to Fano varieties, different from P3,
they share common features with instantons on P3: they have the maximum of vanish-
ing in cohomology authorized by obvious constraints (Riemann-Roch, Kodaira vanishing
and Serre duality), and they can be represented as the cohomology of a very simple
complex with free terms. For a Fano threefold X with canonical class divisible by two,
a natural generalization of the vanishing condition in the definition of an instanton is
H1
(
X,F

(
1
2KX

))
= 0.

On a smooth cubic hypersurface X in P4, the first constructions of instantons were
studied by Markushevich-Tikhomirov [MT1]. In this case we have KX = OX(−2), thus
the instantons on X are defined as stable rank 2 vector bundles F with c1(F) = 0 and
H1(X,F(−1)) = 0. The lowest charge for which instantons exist is c2 = 2. In loc.
cit., the authors proved that the moduli spaceMin

X of instantons of charge 2 is an étale
cover of an open subset of the intermediate Jacobian J(X). Further results onMin

X were
obtained by Iliev-Markushevich [IM] and Beauville [B1]. This work attracted attention
to relations between different types of objects related to a cubic threefold X: curves on
X, sheaves on X and the intermediate Jacobian J(X). Later Druel [Dr] described the
"natural" compactification ofMin

X : the Gieseker-Maruyama moduli spaceMX(2; 0, 2, 0)
of semistable sheaves of rank 2 and Chern classes c1 = 0, c2 = 2, c3 = 0. He proved that
MX(2; 0, 2, 0) is smooth of dimension 5 and that furthermore it is isomorphic to J(X)
blown up along F (X), the Fano surface parameterizing lines on X.

The growing interest in the moduli spaceMin
X is also motivated by its link with the theory

of irreducible holomorphic symplectic (IHS) manifolds. It follows indeed by the results
obtained by Markushevich-Tikhomirov [MT2] and Kuznetsov-Markushevich [KM], that
on a smooth cubic fourfold Y , the moduli spaceMY of sheaves of the form i∗F , where
[F ] ∈Min

Xh
, Xh = Y ∩h runs over the non-singular hyperplane sections of Y and i stands

for the natural embedding Xh ↪→ Y , is holomorphically symplectic. Moreover, denoting
by U ⊂ P5∗ the open subset parameterizing smooth hyperplane sections Xh of Y , we
obtain the natural map π : MY → U , whose fiber MXh

over every point h ∈ U is a
Lagrangian subvariety ofMY , so that π is a Lagrangian fibration.
A similar phenomenon was observed by Donagi-Markman in [DM]. They proved that
the relative intermediate Jacobian J (XU/U) = {J(Xh)}h∈U has a symplectic structure
and that also in this case the natural map J (XU/U) → U is a Lagrangian fibration. A
compactification of J (XU/U) was constructed by Laza-Saccà-Voisin in [LSV]. This is

9
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done by extending its construction to the hyperplanes h /∈ U and the resulting manifold
J (X/P5∗) is an IHS. However, neither J(Xh), h ∈ U , nor the fibers over P5∗ \U "added"
in the Laza-Saccà-Voisin compactification have acquired an interpretation as moduli
spaces of some objects related to Xh .
As a consequence of these results we ask the following questions:

• Is it possible to find, on a smooth cubic threefold X, a compactification of Min
X

isomorphic to the intermediate Jacobian J(X)?

• Is it possible to find a compactification ofMin
X whose construction can be readily

extended to singular cubics (or at least to cubics acquiring singularities of the types
presented by the varieties of the form Xh = Y ∩ h )?

These questions are the motivation for a search for alternative compactifications ofMin
X .

The Gieseker-Maruyama moduli space, on a smooth cubic threefold X, is birational but
not isomorphic to J(X). Moreover its construction on singular threefolds reveals to be
troublesome: its boundary is too difficult to treat. We therefore look for a new moduli
space associated to cubic threefolds.
The central idea of our construction is to replace instantons by their free skew-symmetric
resolution on P4. To begin with we consider an instanton F on a smooth cubic X. The
twisted bundle E := F(1) is a skew-symmetric Ulrich bundle; this means that it admits
a minimal free resolution in P4 of the form:

0 −→ OP4(−1)
⊕6 M−→ OP4

⊕6 −→ E −→ 0,

where M is a 6×6 skew-symmetric matrix whose entries are linear forms on P4 and such
that X is defined by the equation Pf (M) = 0.
On a smooth cubic hypersurface of P4 defined by an equation F = 0, instanton bundles
are then associated to Pfaffian representations of F , that is, representations of the form
F = Pf (M), whereM is a skew-symmetric matrix of size 6 whose entries are linear forms.
So the moduli space P of free resolutions of instantons, that we construct, is nothing else
than the moduli space of Pfaffian representations of cubic threefolds. Such a moduli space
can be obtained by means of Geometric Invariant Theory (GIT). Considering indeed P,
the 74-dimensional projective space of 6×6 skew-matrices of linear forms, we see that the
group GL(6,C) acts on P by conjugation; therefore P is the compact projective moduli
space of dimension 39 defined as the GIT quotient:

P := Pss // SL(6,C)

where Pss is the open set of semistable matrices.
A further reason justifying our attention to the space P is the following. Denote by
Pin the open set of matrices M ∈ P such that the equation Pf (M) = 0 individuates
an element of |OP4(3)| lying in U , the open set of smooth cubics. Define Min as the
moduli space of torsion sheaves on P4 with supports on smooth cubics X ∈ U and whose
restrictions to X are instanton bundles. We have a commutative diagram:

Pin τ //

Pf
""

Min

ρ

��
U

,

whereM � τ // coker (M)⊗OP4(−1) �
ρ // X = {Pf (M) = 0} = Supp (coker (M)). This

induces the diagram:

P
τ //

Pf ##

M

ρ

��
|OP4(3)| ,

(1)
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where M is the irreducible component of the moduli space of sheaves on P4 containing
Min. The morphsim τ is birational and the rational map Pf is generically a fibration
with five-dimensional fibers. For a cubicX ∈ U , the fiber M̃(X) := Pf

−1
(X) is birational

to the intermediate Jacobian J(X) and provides a compactification ofMin
X obtained by

a new method, different from the "standard" Gieseker-Maruyama one.
The space P, together with the morphisms Pf and τ are the main objects of study of
the entire thesis.
One of the first thing that we observe is that on a smooth X when we compute locally free
resolutions of sheaves in the boundary ofMX(2; 0, 2, 0), skew-symmetric linear complexes
still occur. But unlike the case of instantons these linear complexes are now determined by
elements of Π ⊂ P, the subvariety parametrizing matrices M ∈ P such that Pf (M) = 0.
We pass then to the study of the morphism Pf . This map was known to be surjective onto
the open set U , here we prove that it is indeed surjective onto the entire space |OP4(3)|.
In other words we show that every cubic threefold admits a Pfaffian representation, a
result that has been known before only for general cubics.
The actual description of P starts with the description of the locus Pss. (Semi)-stability
of points in P can be rephrased in terms of (semi)stability of four-dimensional linear sys-
tems (hyperwebs) in the space P14 of skew-symmetric forms on a 6-dimensional complex
vector space. This issue is dealt with by a method similar to the one adopted by Wall
[Wall] for linear systems of quadrics. We show in particular that every point M ∈ P
having Pf (M) 6= 0, hence every Pfaffian representation of a cubic, is semistable and that
Pfaffian representations of smooth cubics are stable.
The converse is not true, namely Π ∩ Pss 6= ∅. We investigate then linear spaces P4

corresponding to points in Π, namely 4-dimensional linear subspaces of the Pfaffian hyper-
surface Pf of P14. We give a complete description of those 4-planes that are strictly stable
and as a remarkable corollary of this result we get that the only strictly stable points
in Π are those appearing in free resolutions of non-instanton sheaves in MX(2; 0, 2, 0)
for a smooth cubic threefold X. Moreover for linear spaces P4 ⊂ Pf , we classify all the
irreducible components of their intersections with the Grassmannian Gr(2, 6) (realized
as a subvariety of P14 by Plücker’s embedding); using this classification we are able to
produce several examples of unstable hyperwebs. Our hope is that this classification will
be helpful in perspective of a more detailed description of Pss.
Finally we analyze the behavior of the birational map τ at generic points of the compo-
nents of the boundary. We are thus focused on the description of τ in neighborhoods of
points in P corresponding to stable orbits contained in Π. This is done by studying the
space of deformations of a sheaf in the boundary BX0 :=MX0(2; 0, 2, 0)\Min

X0
. Denoting

by B, MGM , M̃ , the union of the spaces BX , MX(2; 0, 2, 0), M̃(X) respectively, for X
varying in a complete family of deformations of X0, we prove that B is the union of two
divisors B’ and B”. Furthermore at general points of B’MGM is the blowup of M̃ along
a smooth subvariety; we conjecture that the same holds for B”. The relation between P
and M looks then similar to the one existing between the Donaldson-Uhlenbeck and the
Gieseker-Maruyama moduli spaces of instantons on algebraic surfaces, where the latter
is obtained from the former by a blowup. This allows us to consider P as a sort of
Donaldson-Uhlenbeck compactification of Min.

Contents and main results

Now we will describe the contents of the thesis by chapters.

Chapter 1 The first chapter presents the general setting and the principal objects
of study of the entire thesis. After recalling some basic notions from sheaf theory we
introduce instanton bundles on a smooth cubic threefold X and their moduli spaceMin

X .
We recollect then some of the main results obtained by Markushevich-Tikhomirov and
Druel. In [MT1], the authors studied the Abel-Jacobi map AJH : H → J(X), where H
is the component of the Hilbert scheme Hilb5nX whose generic point is a normal elliptic
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quintic in X and J(X) is the intermediate Jacobian of X, a 5-dimensional principally
polarised abelian variety. They proved that AJH factors as:

H
φ //

AJH !!

Min
X

ψ

��
J(X)

The morphism φ maps a point [C] to the vector bundle E(−1), E being the rank 2 locally
free sheaf obtained from the curve C by Serre’s construction. The map ψ is defined
by the second Chern class with values in the Chow group of 1-cycles modulo rational
equivalence. Moreover ψ is an étale morphism of degree 1 and determines an isomorphism
ofMin

X onto an open subset of J(X).
The standard Gieseker-Maruyama compactification of Min

X , namely the moduli space
MX(2; 0, 2, 0) of semistable sheaves of rank 2 and Chern classes c1 = 0, c2 = 2, c3 = 0,
was studied in [Dr]. In loc.cit, Druel proved that MX(2; 0, 2, 0) is isomorphic to the
intermediate Jacobian J(X) blown up along F (X), the Fano surface of lines on X.
Furthermore he gave a complete description of the boundary BX :=MX(2; 0, 2, 0)\Min

X ,
showing that BX is given by the union of two divisors BX ′ and BX ′′. Sheaves belonging
to BX ′ are parametrized by smooth conics in X and sheaves in BX ′′ are parametrized by
couples of (possibly coincident) lines in X.
In the subsequent sections of the chapter we introduce the main subject of our research:
the moduli space P of Pfaffian representations of 3-dimensional cubics. Considering a
smooth cubic threefold X and looking at minimal free resolutions in P4 of instanton
bundles on X, we describe how instantons correspond to Pfaffian representations of X.
Using Druel’s description of the boundary ofMX(2; 0, 2, 0) we are able to compute free
resolutions (in P4) of sheaves in BX . We show that though these resolutions are not
linear they contain a skew-symmetric linear subcomplex of OP4 -modules which is of the
same shape as for instantons. More precisely every sheaf F ∈ BX fits in a short exact
sequence:

0 −→ F −→ OX⊕2 −→ G −→ 0

where G is a one-dimensional sheaf supported either on a conic or on a couple of lines
and whose minimal free resolution in P4 is the skew-symmetric linear complex:

0→ OP4(−3)
⊕2 γ−→ OP4(−2)⊕6 β−→ OP4(−1)⊕6 α−→ O⊕2

P4 → G → 0. (2)

Here β is 6×6 skew-symmetric matrix such that Pf (β) = 0, namely β ∈ Π and γ = ker(β)
is such that α = γT .
The chapter ends with an appendix on Geometric Invariant Theory.

Chapter 2 Chapter 2 is devoted to the proof of the surjectivity of the morphism Pf
(and consequently of the map Pf too), Pf : P 99K |OP4(3)|. As a cubic X belongs to
Im(Pf ) if and only it is Pfaffian, the surjectivity of Pf is deduced from the following
theorem, one of the main result of the thesis:

Theorem (Theorem 2.2.1). A cubic threefold X ⊂ P4 always admits a Pfaffian repre-
sentation.

It’s known that a smooth cubic threefold is Pfaffian [B2], we then focus our attention
on the singular ones. The strategies that we adopt to prove the existence of a Pfaffian
representation of a non-smooth cubic X differ depending on the singularities that it
presents. We distinguish the following families of singular threefolds:

• Cubic threefolds that are cones;

• Non-normal cubic threefolds;



Introduction 13

• Normal cubic threefolds that present at most double points.

Proving the existence of Pfaffian representations of cubic threefolds that are cones reduces
to the study of Pfaffian representations of lower-dimensional cubic hypersurfaces. But
as every cubic hypersurface of dimension two or less is Pfaffian (see [B2] or [Ta] for a
constructive proof ), we deduce that the same holds for three-dimensional cubics that
are cones.
Whenever X is not normal (and then its singular locus is a linear space of dimension at
least 2) we provide explicitly a matrix MX ∈ P such that X is defined by the equation
Pf (MX) = 0. Proving the existence of a Pfaffian representation of X when X is normal
and presents at most double points requires a more elaborate argument. In these cases we
prove that X carries a rank 2 skew-symmetric Ulrich sheaf E . Indeed if this is the case,
as already mentioned earlier, the minimal free resolution in P4 of E is a skew-symmetric
linear complex of length one:

0 −→ OP4(−1)
⊕6 ϕ1−→ OP4

⊕6 −→ E −→ 0.

The only non-vanishing differential in the resolution of E , ϕ1, provides then a Pfaffian
representation of X. We show that the existence of such a sheaf E is guaranteed whenever
there exists a nondegenerate arithmetically Gorenstein (AG) quintic elliptic curve C on
X: E is indeed obtained from C by means of Serre correspondence.
Proving the following:

Theorem (Theorem 2.3.2). Let X be a normal cubic threefold that is not a cone. Then
there exists a non-degenerate AG elliptic quintic curve C ⊂ X.

we then complete the proof of theorem 2.2.1.
The central part of the chapter is thus committed to showing the existence of quintic
elliptic curves on normal threefolds. To this aim we adapt two different methods used
in [MT1] to show the existence of such curves in the smooth case. The first method is
based on a deformation argument. We first prove that a general hyperplane section S of
X contains a smooth quintic elliptic curve C0 disjoint from the singular locus of S. Then
we prove that C0 deforms to a nondegenerate curve C that is still contained in Xsm, the
smooth locus of X. This argument works exactly as in the smooth case whenever X has
a zero-dimensional singular locus Sing (X). When Sing (X) has dimension 1, a general
hyperplane section S of X is a cubic surface with isolated singularities. In this case we
consider

φ : S̃ → S,

a minimal resolution of singularities of S (the smooth surface S̃ is a so called weak
Del Pezzo surface) and we show that there exists a smooth curve C̃0 ⊂ S̃ such that
C0 := φ(C̃0) ⊂ S̃ is a smooth elliptic quintic disjoint from the singular locus of S.
The second method is a constructive one and allows us to obtain directly a nondegenerate
AG elliptic quintic C ⊂ X. To apply it we first need to show the existence of a rational
quartic Γ ⊂ X. Then we present how, starting from Γ it is possible to construct a cubic
scroll Σ containing Γ and such that the curve C, residual to Γ in Σ∩X, is an AG elliptic
quintic. In the case of a smooth X, this method applies starting from a smooth rational
quartic Γ (assuming that X is non-singular, there always exists a smooth rational quartic
Γ ⊂ X. See [MT1]). Dealing with a singular threefold X the scroll Σ is obtained from
a reducible rational quartic Γ, union of a twisted cubic C and of a line l meeting C
transversely at a point.
A complete classification of 3-dimensional cubic hypersurfaces was obtained by Segre
in [Seg]. With the help of this classification, we analyze in detail the singularities that
a normal threefold can present, depending on the components of its singular locus we
choose which method to apply.

Chapter 3 In chapter 3 we study the semistable locus Pss. To start with we formu-
late a criterion for (semi)stability. This is done adapting to the skew-symmetric case
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the criterion proved by Wall [Wall] for (semi)stability of linear systems of symmetric
forms. Every point in P can be interpreted as a 4-dimensional linear space P(A) ' P4

contained in P(
∧2

W ∗), the 14-dimensional projective space of skew-symmetric forms
on a complex vector space W of dimension 6 (namely as a 4-dimensional linear system
of skew-symmetric forms on W ). A point in P belongs to Π if and only if the cor-
responding 4-plane P(A) is contained in the Pfaffian hypersurface Pf ⊂ P(

∧2
W ∗) or

equivalently if and only if the generic element of the linear system of skew-symmetric
forms that it determines has rank at most 4. Using this geometric characterization of
points in P, we show that our criterion can be formulated in terms of the orthogonal
spaces (P4)⊥ ⊂ P(

∧2
W ), this helps us characterize stable and semi-stable points. We

prove the semistability of Pfaffian representations of cubics (this follows immediately
from the formulation of the stability criterion) and the stability of representations of the
smooth ones. This is deduced from the following result:

Theorem (Theorem 3.2.3). A 4-dimensional linear subspace P(A) of P(
∧2

W ∗) such
that P(A) ∩ Pf is a smooth cubic, is stable.

These results can be rephrased as:

Theorem (Theorem 3.4.1). Every point M /∈ Π is semistable. Moreover every M ∈ Pin
is strictly stable.

For M ∈ P, the condition Pf (M) 6= 0 is thus sufficient to conclude that M is semistable.
The condition is not necessary; indeed, we can find elements of Π that are even stable.
We focus then our attention on points lying in Π, namely linear systems P4(hyperwebs)
of skew-symmetric forms of generic rank 4. We prove that the only ones that are stable
are exactly those that correspond to points in Π occurring in complexes of the form (2)
and hence in locally free resolutions of non-instanton sheaves.

Theorem (Theorem 3.2.4). Let P(A) be a stable 4-dimensional linear system of skew-
symmetric forms of generic rank less then or equal to four. Then P(A) is either SL(W )-
equivalent to the space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4, e1 ∧ e2, e4 ∧ e5〉

or SL(W )-equivalent to the space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6− e3 ∧ e4, e1− e5 ∧ e2 + e4, e1− e5 ∧ e3 + e6〉.

Furthermore in the first case P(A) meets the Grassmannian Gr(2,W ∗) along a smooth
conic P2 ∩ Gr(2, 4); in the second case P(A) intersects the Gr(2,W ∗) along a couple of
disjoint lines.

The idea of the proof is the following. We first show that a necessary condition for the
stability of P(A) is that the intersection P(A)∩Gr(2,W ∗) has dimension 1. This necessary
condition implies that P(A) contains a plane P(B) of tensors of constant rank 4. As a
consequence P(A) might be written as P(A) = 〈P(B), ω3, ω4〉 with ω3, ω4 belonging to
P(A)∩Gr(2,W ∗). The 2-dimensional linear systems of skew-symmetric forms of constant
rank 4 have been classified, up to the action of PGL(W ) in [MM]. The authors proved
that there exist only four distinct PGL(W )-orbits of planes of forms of constant rank
4. We show that if P(A) is stable, P(B) can only belong to one of these orbits, so that
for a suitable choice of independent vectors e1, . . . ,e6 on W ∗, P(B) is generated by the
tensors:

πg = 〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4〉

We study then how to choose a couple of rank 2 tensors ω3, ω4 on Gr(2,W ∗) in such a
way that the 4-plane P(A) := 〈P(B), ω3, ω4〉 is stable.
We first show that in order to obtain a linear system P(A) of generic rank 4, ω3, ω4

must belong to a rational normal scroll S(2,2,2) admitting a structure of a conic bundle
on P(B). This will also imply that P(A)∩Gr(2,W ∗) necessarily consists either of a conic
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or a pair of, possibly coincident, lines. Finally, we will prove that among the hyperwebs
obtained in this way the only ones that are stable are those appearing in the statement
of the theorem.
The study of points in Π that are strictly semistable is still in progress. Anyway we get a
complete classification of the irreducible components of linear sections P(A)∩Gr(2,W ∗),
for P(A) ' P4 corresponding to a point in Π.

Theorem (Theorem 3.3.1). Let P(A) ⊂ P(
∧2

W ∗) be a four-dimensional linear space
of skew-symmetric forms of generic rank ≤ 4. Let Y be an irreducible component of
P4 ∩Gr(2,W ∗). Then one of the following cases is realized:

• Y is a linear space Y ' Pr, 1 ≤ r ≤ 4.

• Y is a variety of minimal degree contained in a smaller Grassmannian Gr(2, k) =
Gr(2, U) ⊂ Gr(2, 6) = Gr(2,W ∗), where U is a vector subspace of W of dimension
k < 6, and Y is a linear section of Gr(2, k) of one of the following types:

– Y = Pd ∩Gr(2, d+ 2), a rational normal curve of degree d, 2 ≤ d ≤ 4.

– Y = Pd+1 ∩Gr(2, d+ 2), a surface of degree d = 2, 3.

– Y = P4 ∩Gr(2, 4), a three-dimensional quadric hypersurface in ∆ = P4.

• Y is an elliptic quintic curve, the image of P4∩Gr(2, 5) under some linear embedding
Gr(2, 5) ↪→ Gr(2,W ∗).

This classification allows us to provide several example of unstable points and we hope
that it will be useful for a more accurate future description of Pss.

Chapter 4 In the last chapter we use all our results to study the local behavior of the
rational map τ̄ : P 99K M. We start considering a sheaf F on a smooth cubic threefold
X corresponding to a point in BX , the boundary of the moduli spaceMX(2; 0, 2, 0), and
we illustrate some properties of its minimal free resolution. It follows from the discussion
held in Chapter 1 that F always admits a minimal free resolution of the form:

0 −→ OP4(−3)⊕2 G−→ OP4(−3)⊕2 ⊕OP4(−2)⊕6 B−→ OP4(−1)⊕6 −→ F −→ 0, (3)

in which B = (β′|β) is a 6-by-8 matrix obtained by concatenation of a 6 × 2 matrix
of quadratic forms β′ with a 6 × 6 skew-symmetric matrix β of linear forms satisfying
Pf (β) = 0. Given a 5-dimensional complex vector space V , the matrix β defines a point in∧2

W ∗⊗V ∗ belonging to Z, where Z is defined as the locus of matricesM ∈
∧2

W ∗⊗V ∗
such that Pf (M) = 0. In other words, β defines an hyperweb of skew-symmetric forms
of generic rank 4 and we show that its intersection with the Grassmanniann Gr(2,W ∗) is
a curve C equal to Sing (F). Moreover, applying Theorem 3.2.4 we see that matrices β
obtained in this way individuate all the stable points (with respect to the SL(W )-action)
lying in Z; this implies in particular that their orbits correspond to points in P.
Given a matrix β as above, we study, in the first part of the chapter, the behavior of
Z,

∧2
W ∗ ⊗ V ∗ and P at β. As the boundary BX of MX(2; 0, 2, 0) is given by the

union of two divisors B′X , B′′X , β might belong to two different families of elements in
Z. We prove that whenever β is obtained from the minimal free resolution of a sheaf
F corresponding to a point [F ] ∈ B′X (resp. [F ] ∈ B′′X), it belongs to a 47-dimensional
component Z ′ (resp. 48-dimensional component Z ′′) of Z, smooth at β. Therefore, the
image of its orbit in P, is a smooth point of a 11-dimensional subvariety B′, quotient of
Z ′, (resp. a 12-dimensional subvariety B′′, quotient of Z ′′,) of P. However we will show
that P is smooth at the orbit of β only when β ∈ Z ′; this due to the fact that if β ∈ Z ′′,
its stabilizer does not consist only of {±Id6}.
In the second part of the chapter we study the behavior of a minimal free resolution
R• of F of the form (3) under deformation. We consider then a polydisk in CN and a
sheaf F∆ on P4 ×∆ flat over ∆, such that ∀ s ∈ ∆, Fs (the restriction of F∆ to P4 × s)
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corresponds to a point [Fs] ∈M and F0 = F . R• lifts to a resolution R•∆ of F∆ of the
form:

0 −→ O(−3)⊕2
P4×∆

G(s)−−−→ OP4×∆(−3)⊕2 ⊕OP4×∆(−2)⊕6 B(s)−−−→ OP4×∆(−1)⊕6 −→ 0,

R•∆ is a complex of sheaves on P4 ×∆, its differentials G(s) and B(s) are matrices with
entries in C{s}[X0, . . . , X4], where C{s} denotes the ring of germs of analytic functions
in s at 0. More precisely B(s) presents a block structure B(s) = (β′(s)|β(s)) where β(s)
is a 6 × 6 matrix whose entries are elements in C{s}[X0, . . . , X4] linear in the variables
X0, . . . , X4. Our aim is to determine when we can deform F in such a way that β(s) is
skew-symmetric ∀ s ∈ ∆. We prove that such a deformation is always possible whenever
the type of the singularity of F is preserved ( Lemma 4.2.1) and whenever F is a sheaf
corresponding to a point in B′X and deforming to a sheaf F∆ such that for generic s ∈ ∆,
Fs is an instanton bundle on a smooth cubic threefold (Lemma 4.2.2). Using this results
we are able to describe the local behavior of the diagram (1) in a neighborhood of a
generic point β0 ∈ Z ′. We prove the following:

Proposition (Prop. 4.2.4). Let β0 ∈ Z ′ be as above, and consider the diagram (1) in
a neighborhood of the orbit [β0] ∈ B′, [β0] = GL(W ) · β0. Then the rational map τ is
equivalent to a blowup with center B′ near [β0]. More precisely: let P̃ denote the blowup
of P with center B′ and B̃′ its exceptional divisor. Then, in a neighborhood of [β0], (1)
can be completed to the diagram

B̃′

|| $$

� � P̃

τ̃

##{{
B′ � � P

Pf $$

44B′ � � M

ρ
{{

|OP4(3)|

(4)

in which the arrows τ̃ and τ̃ |
B̃′

are isomorphisms.

Here B′ is the divisor of M whose generic point is a sheaf F on a smooth cubic threefold
X and corresponding to a point [F ] ∈ B′X . Calling now B′′ the divisor ofM whose generic
point is a sheaf F supported on smooth cubic threefolds X and such that [F ] ∈ B′′X , we
conjecture that Proposition 4.2.4 extends literally to B′′ and B′′ ⊂ P.



Chapter 1

Preliminaries

Introduction
In this chapter we present the general framework of the entire thesis together with its
main motivations and objectives. We start considering a smooth cubic hypersurface
X ⊂ P4 andMX

in the moduli space of instanton bundles, namely stable vector bundles
having rank 2 and Chern classes c1 = 0, c2 = 2. The study of this moduli space relates
different types of objects: the sheaves on X, the curves on X and the intermediate
Jacobian J(X) of X. Markushevich and Tikhomirov proved indeed in [MT1] that the
Abel-Jacobi map AJH : H → J(X), where H is the component of the Hilbert scheme
Hilb 5n

X whose generic point is a normal elliptic quintic in X, factors as:

H
φ //

AJH ""

MX
in

ψ

��
J(X)

. (1.1)

The morphism φ maps a point [C] to the vector bundle E(−1), E being the rank 2 locally
free sheaf obtained from the curve C by Serre’s construction. The map ψ is an étale
morphism of degree 1 and determines an isomorphism ofMX

in onto an open subset of
J(X). In [Dr], Druel constructed the "standard" Gieseker-Maruyama compactification of
MX

in, that is the moduli spaceMX(2; 0, 2, 0) of semistable sheaves of rank 2 and Chern
classes c1 = 0, c2 = 2, c3 = 0. He proved that moreover MX(2; 0, 2, 0) is isomorphic
to the intermediate Jacobian J(X) blown up along F (X), the Fano surface of lines on
X. From these facts it is natural to ask whether it is possible to find a compactification
ofMX

in that is actually isomorphic to J(X). This question leads us to look for a new
moduli space associated to cubic threefolds. Our aim is also to obtain a compactification
of the moduli of stable bundles that can be readily extended to singular cubics. Indeed in
these cases the Gieseker-Maruyama moduli space presents a limit: its boundary becomes
too troublesome to handle. The starting point of our construction is the following: for
every point [F ] ∈ MX

in, the bundle F admits a minimal free resolution in P4 of the
form:

0 −→ OP4(−2)
⊕6 M−→ OP4(−1)

⊕6 −→ F −→ 0,

where M is a 6×6 skew-symmetric matrix whose entries are linear forms on P4 and such
that X is defined by the equation Pf (M) = 0. Hence instanton bundles are associated
to Pfaffian representations of the cubic X. Consequently we construct P, the compact
moduli space of Pfaffian representations of cubic threefolds. P is obtained by means
of Geometric Invariant Theory as follows. We consider P the 74-dimensional projective
space of skew-symmetric matrices of linear forms of size 6; the group SL(6,C) acts on P
by conjugation and the moduli P is then defined as the GIT quotient

P = Pss // SL(6,C)

17
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where Pss is the open of semistable matrices.

1.1 Moduli of instanton bundles on cubic threefolds

1.1.1 Generalities and known results
Stable and semistable sheaves

Let X be a projective scheme of dimension n over C. We fix OX(1) an ample line bundle
on X. (Such an ample line bundle is referred to as a polarization of X.) Throughout the
rest of the section we fix a coherent sheaf F on X. We recall that the Euler characteristic
of F is defined as χ(F) :=

∑
i(−1)ihi(X,F).

Definition 1.1. The Hilbert polynomial PF of F is defined by:

PF (m) = χ(F(m)).

The Hilbert polynomial of F can be uniquely written in the form:

PF (m) =

dim(F)∑
i=0

αi(F)
mi

i!

where the coefficients α0(F), . . . , αdim(F)(F) are rational numbers. (We recall that the
dimension of F is defined as the dimension of its support).

Definition 1.2. Suppose that F has dimension n = dim(X). We call:

pF (m) :=
PF (m)

αn(F)

the reduced Hilbert polynomial of F .
Definition 1.3. If F has dimension n = dim(X), then the rank rk (F) of F is defined
by:

rk (F) =
αn(F)

αn(OX)

and the degree of F is defined by:

deg(F) = αn−1(F)− rk (F)αn−1(OX).

Remark 1. If X is a smooth projective variety, by Hirzebruch-Riemann-Roch formula we
have that the degree of F reduces to the “usual” definition of degree, namely deg(F) =
c1(F)c1(OX(1))n−1.

Definition 1.4. If F has dimension n = dim(X), its slope µ(F) is defined as the ratio:

µ(F) =
deg(F)

rk (F)
.

The Hilbert polynomial and the slope provide two notions of stability for torsion-free
coherent sheaves.

Definition 1.5. Suppose that F has dimension n = dim(X) and that F is torsion free.
We say that F is semistable (resp. stable) if for any proper subsheaf F ′ ⊂ F we have
pF ′ ≤ pF (resp. pF ′ < pF ).

Remember that by pF ′ ≤ pF (resp. pF ′ < pF ), we mean that pF ′(m) ≤ pF (m) (resp.
pF ′(m) < pF (m)) for m >> 0.

Definition 1.6. Suppose that F has dimension n = dim(X) and that F is torsion free.
We say that F is µ-semistable (resp. µ-stable) if for any proper subsheaf F ′ ⊂ F of rank
0 < rk (F ′) < rk (F), we have µ(F ′) ≤ µ(F) (resp. µ(F ′) < µ(F)).

Remark 2. We can easily prove from the definitions that we have the following chain of
implications:

F µ− stable =⇒ F stable =⇒ F semi-stable =⇒ F µ− semi-stable.
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The intermediate Jacobian and the Abel-Jacobi map

We recall here some facts about cubic threefolds. Throughout the rest of the section X
will denote a smooth cubic hypersurfaces in P4. X is an example of a Fano variety, that
is its anticanonical sheaf ω−1

X ' OX(2) is ample, that satisfies the following properties:

hi(OX(k)) = 0, for i = 1, 2, k ∈ Z,
hi,0 = h0,i = 0 for i > 0, h1,2 = h2,1 = 5,

(1.2)

Pic(X) = A2(X) =H2(X,Z) = Z · [OX(1)],

B1(X) =H4(X,Z) = Z · l,
A0(X) =H6(X,Z) = Z · pt.

(1.3)

Here Ai and Bi denote the Chow groups of i-dimensional cycles modulo rational and
algebraic equivalence, respectively; l is the class of a line and pt is the class of a point.
Because of these equalities, given a coherent sheaf F on X, we can identify its Chern
classes ci(F) ∈ H2i(X,Z), i = 1, 2, 3 with integer numbers.
We define the intermediate Jacobian of a cubic threefold X by:

J(X) = (F 2(H3(X,C))∗/im (H3(X,Z)),

where F 2(H3(X,C) = H3,0 +H2,1 and H3(X,Z) is mapped to (F 2(H3(X,C))∗ by inte-
gration over cycles. From (1.2) we have h3,0 = 0, h2,1 = 5, so that the intermediate Jaco-
bian J(X) is a 5 dimensional abelian variety equal to J(X) = (H2,1(X))∗/im (H3(X,Z)).
From the vanishing of H3,0(X) we also deduce, by the Hodge index theorem, that the
intersection form on H3(X) defines a principal polarization on J(X).
Consider now Hom1(X) the group of 1-cycles homologous to 0. the Abel-Jacobi map
AJ : Hom1(X) → J(X) is defined as follows. Given Z ∈ Hom1(X), there exists then
an element Y ∈ H3(X,Z) such that Z = ∂Y . AJ(Z) is given by[

ω 7→
∫
Y

ω

]
, mod im (H3(X,Z)).

If A is a variety parameterizing a family of 1-cycles {Za}a∈A, whenever we fix a ref-
erence point a0 ∈ A, we get a set-theoretic map AJA : A → J(X), b 7→ AJ(Za −
Za0

). This map is analytical whenever A is smooth. A particularly interesting case
occurs when A = F (X), the Fano surface of lines on X. In this circumstance the
map AJF (X) : F (X)→ J(X), t 7→ AJ(lt − ls), where s ∈ F (X) is a fixed point, is a
closed embedding ([Tyu]). Moreover F (X) is a smooth surface, hence the morphism
AJF (X) : F (X)→ J(X) is analytical. As a consequence AJF (X) factors through a mor-
phism ÃJF (X) : Alb(F (X))→ J(X), where Alb(F (X)) is the Albanese variety of F (X).
An accurate description of the Abel-Jacobi map AJF (X) : F (X) → J(X) is presented
in [CG], where the authors proved that the induced map ÃJF (X) determines an isomor-
phism:

ÃJF (X) : Alb(F (X))
∼−→ J(X).

The intermediate Jacobian of a smooth cubic threefold can be characterized in another
useful way. Indeed, according to [Mu], J(X) is isomorphic to A1(0)X , the group of
algebraic 1-cycles of degree 0 modulo rational equivalence. We see then that for any
non negative integer d, denoting by A1(d)X the group of 1-cycles of degree d modulo
rational equivalence, whenever we fix a class [Z0] ∈ A1(d)X , we induce an isomorphism
A1(d)X

∼−→ J(X), [Z]→ [Z − Z0] (this is just the Abel- Jacobi map on algebraic cycles
of degree d). From now on we will denote by Jd(X) ' A1(d)X the translate of J(X)
parameterizing 1-cycles of degree d on X.
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1.1.2 Instanton bundles on smooth cubic threefolds

Definition 1.7. An instanton bundle F on X is a stable rank 2 vector bundle with
Chern classes c1(F) = 0, c2(F) = 2.

On a smooth cubic threefold X, as Pic(X) = Z, a vector bundle F with c1(F) = 0 is
stable if and only if h0(F) = 0 (cf. [H1], Lemma 3.1). Consequently, if F is a stable
vector bundle with first Chern class zero, h0(F(i)) = 0, ∀ i ≤ 0. We consider now
Min

X , the moduli space of instanton bundles of X. Min
X is a quasi-projective variety,

its Gieseker-Maruyama compactification MX(2; 0, 2, 0), parameterizing classes of semi-
stable sheaves with c1 = 0, c2 = 2, c3 = 0, has been described by Druel in [Dr]. The
author proved the following:

Theorem 1.1.1. MX(2; 0, 2, 0) is a smooth scheme of dimension 5 isomorphic to the
blowup of J(X) along the Fano surface.

This theorem states the existence of a birational mapMX(2; 0, 2, 0) 99K J(X); in the up-
coming sections we will give an outline of its construction and of some of its properties. To
start with we see that there is a natural map ψ :MX

in −→ J(X) that can be described
as follows. Consider c2, the second Chern class with values in A1(X); given [F ] ∈MX

in,
c2(F) belongs to A1(2)X ' J2(X) and ψ([F ]) is then defined as ψ([F ]) = c2(F)− [Z0],
where Z0 is a fixed element in A1(2)X . From the results of [MT1] or [IM] we have:

Proposition 1.1.2. The morphism ψ is a quasi-finite étale morphism of degree 1, thus
ψ induces an isomorphism ofMX

in onto an open subset of J(X).

Vector bundles from elliptic quintics

It is possible to give a characterization of the map ψ, or equivalently of the map c2,
by means of certain curves on X associated to instanton bundles. Before doing this
we recollect some known results about instantons. Consider [F ] ∈MX

in and denote
by E the twisted bundle E := F(1). E is a rank 2 vector bundle with Chern classes
c1(E) = 2, c2(E) = 5. We have the following:

Proposition 1.1.3 ([B1], Prop. 1.1). Let F be a sheaf on X with F ∈MX
in. Then:

• h1(F(n)) = h2(F(n)) = 0, ∀ n ∈ Z;

• F(1) is spanned by its global sections.

Proposition 1.1.4. Let F be a sheaf on X with F ∈MX
in. Then:

h0(F(1)) = 6, hi(F(1)) = 0 ∀ i > 0, hi(F(−1)) = 0 ∀ i ∈ Z.

See [MT1] Lemma 5.1.
Take now an element s ∈ P(H0(X, E)) ' P5. Since E is a rank 2 vector bundle on a
smooth 3 dimensional variety, the zero scheme of s is a locally complete intersection curve
C on X. s gives a morphism OX → E that fits into a short exact sequence:

0 −→ OX −→ E −→ IC(2) −→ 0; (1.4)

where IC is the ideal sheaf of C in X. From this short exact sequence we compute that:

1. h0(X, IC(1)) = h0(X,F) = 0 and h0(X, IC) = h0(X,F(−1)) = 0 (from the stabil-
ity assumption on F). The first equality implies that the curve C is non degenerate,
namely not contained in a hyperplane.

2. h1(X, IC) = h1(X,F(−1)) = 0 (due to prop. 1.1.3) and h2(IC) = h3(OX(−2)) = 1.
These equalities imply that h0(OC) = h0(OX) = 1 and h1(OC) = h2(IC) = 1 hence
C is a curve of (arithmetic) genus 1.
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The curve C has degree c2(E) = 5. Note that moreover, we know from proposition 1.1.3
that E is generated by its global sections. Hence, for s general, the curve C is smooth. If
this is the case we get from 2 that C is a curve of geometric genus one so that ωC ' OC .

Conversely, whenever C ⊂ X is a non-degenerate locally complete intersection curve with
trivial canonical sheaf ωC ' OC and h0(OC) = 1, we have isomorphisms:

Ext1(IC(2),OX)
∼−→ Ext1(IC , ωX)

∼−→ Ext2(OC , ωX)
∼−→ H0(C, ωC)

∼−→ H0(C,OC).

Therefore, up to isomorphism, there is a unique non-trivial extension:

0 −→ OX −→ E −→ IC(2) −→ 0. (1.5)

Because of the fact that a generator of H0(C,OC) is nowhere vanishing, the sheaf E is
locally free. This is due to the following lemma (cf. [MT1] Lemma 2.3)

Lemma 1.1.5. Let X be a nonsingular variety, C a locally complete intersection subva-
riety of X of codimension 2, L a line bundle on X and:

0 −→ OX −→ E −→ I ⊗ L −→ 0 (1.6)

an extension given by a class e ∈ Ext1(IC ⊗L,OX). Then E is locally free if and only if
the image of e in H0(C,Ext1OX

(IC ⊗ L,OX)) generates the stalk of Ext1OX
(IC ⊗ L,OX)

at every point of C.

From (1.5) we compute that F := E(−1) is a rank 2 vector bundle with Chern classes
c1 = 0, 1 c2 = 2; the non-degeneracy assumption on C implies the stability of F since
H0(X,F) ' H0(X, IC(1)) = 0.
Summing up we have the following:

Proposition 1.1.6. [[B1], Prop.1.4] Let F be a rank 2 vector bundle corresponding
to a point [F ] ∈ Min

X . The scheme of zeros of a global section s ∈ H0(X,F(1)) is a
non-degenerate locally complete intersection curve C ⊂ X with trivial canonical sheaf
and H0(C,OC) ' C. Conversely, given a curve C satisfying the aforementioned assump-
tions, there exists a rank 2 vector bundle F on X such that [F ] ∈ MX

in and a section
s ∈ H0(X,F(1)) whose scheme of zeros is C.

Remark 3. The construction that we have just described, relating rank 2 sheaves on X
to codimension 2 subschemes of X, is the so called Serre’s construction. We will give a
more detailed account of this construction in Chapter 2 where we will also explain how it
can be generalized to the case where X is a singular cubic threefold ( in this case we are
still able to construct rank 2 vector bundles on X, but sometimes they will be obtained
from curves that are not necessarily locally complete intersections but that satisfy weaker
assumptions).

For an instanton bundle F on X we thus see that c2(F) ∈ J2(X) satisfies the following
equalities:

c2(F) = c2(F(1))− h2 = [C − h2],

where h2 is the class of a plane cubic curve isomorphic to P2 ∩X and C is the zero locus
of an element in H0(X,F(1)).

A factorization of the Abel-Jacobi map

Let Hilb 5n
X be the Hilbert scheme of elliptic quintic curves contained in X, we define H

the locally closed subscheme of Hilb 5n
X :

H =

{
[C] ∈ Hilb 5n

X | (i) C is a locally complete intersection of pure dimension 1,

(ii) ωC ' OC , (iii) h1(IC) = h0(IC(1)) = 0, (iv) h1(IC(2)) = h2(IC(2)) = 0

}
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Curves C ⊂ X corresponding to points in H are usually referred to as normal elliptic
quintics. Note that if C is a normal elliptic quintic, as h1(IC) = h0(IC(1)) = 0, we get
h0(OC) = 1. We see from proposition 1.1.6, that Serre’s construction establishes a well
defined morphism:

φ : H −→MX
in, [C] 7→ F := E(−1),

where E is defined by the short exact sequence (1.5) determined by a generator of the
vector space H0(C, ωC) ' Ext1(IC(2),OX) ' C.

Proposition 1.1.7 ([MT1] Prop. 5.4). The morphism φ : H → MX
in is smooth and

projective and all its fibres are 5-dimensional projective spaces. More precisely the fibre
of φ at [F ] ∈MX

in is P(H0(X,F(1))) ' P5.

Corollary 1.1.8 ([MT1] Prop. 5.5). H, MX
in are smooth of dimension 10, resp. 5;

moreover Hilb 5n
X ,MX(2; 0, 2, 0) are smooth at the points of H, resp. MX

in.

We look at the Abel Jacobi map:

AJH : H −→ J(X)

Theorem 1.1.9 ([MT1], Thm. 5.6). AJH is smooth and every fiber is a disjoint union
of 5-dimensional projective spaces. Moreover AJH factors as:

AJH : H φ−→MX
in ψ−→ J(X).

We are now going to study how c2 behaves on the boundary ofMX(2; 0, 2, 0).

Boundary of the moduli space

We consider BX :=MX(2; 0, 2, 0) \MX
in. In this boundary we find torsion free sheaves

that are not locally free. A sheaf F corresponding to a point [F ] ∈ BX is of one of the
following types.

1. Let C be a smooth conic contained in X. We consider the degree one line bundle
OC(1pt) on C. This line bundle has h0(OC(1pt)) = 2 and it is generated by its
global sections. Hence the evaluation morphism H0(C,OC(1pt))⊗OX → OC(1pt)
is surjective and its kernel FC is a torsion free sheaf on X fitting in a short exact
sequence:

0 −→ FC −→ OX⊕2 −→ OC(1pt) −→ 0. (1.7)

FC is a stable torsion free sheaf, from (1.7) we compute that FC has rank 2 and
that its Chern classes are c1 = 0, c2 = 2, c3 = 0.

2. Let l1, l2 be a couple of (possibly coincident lines) onX. The sheaf Fl1,l2 = Il1⊕Il2
is a rank 2 torsion free sheaf with c1 = 0, c2 = 2, c3 = 0 that is clearly semi-stable
but not stable (pIli = pIl1⊕Il2 ).

Sheaves of type (i) are parametrized by smooth conics on X ( a 4-dimensional family),
hence they give a divisor B′X of MX(2; 0, 2, 0). Sheaves of type (ii) are parametrized
by the symmetric square of F (X) and thus they give an irreducible divisor B′′X of
MX(2; 0, 2, 0).

Proposition 1.1.10 ([Dr], Lemma 4.7). The scheme B′X ⊂MX(2; 0, 2, 0) parameteriz-
ing non locally free stable sheaves is a locally closed irreducible subscheme ofMX(2; 0, 2, 0)
of dimension 4. The scheme B′′X parameterizing non locally free strictly semi-stable
sheaves is a locally closed irreducible subscheme ofMX(2; 0, 2, 0) of dimension 4.

In [Dr], the authors also prove the smoothness of the entire moduli spaceMX(2; 0, 2, 0).

Theorem 1.1.11 ([Dr], Thm. 4.6). Let X be a smooth cubic threefold.The moduli space
MX(2; 0, 2, 0) of semistable sheaves with Chern classes c1 = 0, c2 = 2, c3 = 0 is smooth
of dimension 5.
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We describe the behavior of c2 : MX(2; 0, 2, 0) → J2(X). When [F ] ∈ MX
in, we saw

that in J2(X), c2(F) = [C − h2], where C is an elliptic quintic in φ−1([F ]). (as each
C ∈ φ−1([F ]) is the zero locus of a global section of F(1), is clear that if C, C′ both
belong to φ−1([F ]), [C] = [C′] in A1(X)). Moreover it follows from proposition 1.1.2 that
the restriction of c2 toMX

in is an isomorphism onto an open subset of J2(X). We now
look what happens on the boundary.
We have already mentioned that the Abel-Jacobi maps embeds the Fano surface of lines
F (X) in J(X). Denote by F 2(X) the variety parameterizing conics contained in X.
Given any conic C ⊂ X, the plane 〈C〉, linear span of C, intersects X in a plane cubic
curve of the form C ∪ l, for a line l. Thus in A1(X) we have [C+ l] = h2. The morphism:

F 2(X) −→ F (X), [C] 7→ [l]

mapping the class of a conic C to the class of the line l, its residual in 〈C〉∩X, defines an
isomorphism F 2(X)

∼−→ F (X). Consequently the image of AJF 2(X) : F 2(X) → J2(X)

is isomorphic to F (X) ⊂ J(X) through the isomorphism J2(X)
∼−→ J(X), Z 7→ Z − Z0

(here Z0 is a fixed 1-cycle of degree 2).
A point [FC ] ∈ B′X , associated to a conic is mapped by c2 to [C] ∈ F 2(X) ⊂ J2(X).
Thus c2 contracts the divisor B′X to the smooth surface F 2(X). Considering now a sheaf
Fl1,l2 := Il1 ⊕ Il2 ∈ B′′X , we have that c2(Fl1,l2) = [l1] + [l2]. Hence c2 maps B′′X to the
divisor F (X) + F (X) in J2(X).

Theorem 1.1.12 ([Dr], Thm 4.8). The morphism c2 : MX(2; 0, 2, 0) → J2(X) is iso-
morphic to the blow-up of J2(X) along the surface F 2(X).

1.2 Moduli of Pfaffian representations
According to what has been explained so far, we see that we can identify the moduliMX

in

with an open subset of the intermediate Jacobian J(X), but its Gieseker-Maruyama
compactification is not isomorphic to J(X). We ask then if it is possible to realize J(X)
as a compact moduli space of objects associated to X.

Question. Is it possible to obtain a compactification ofMX
in isomorphic to J(X)?

The Gieseker-Maruyama compactification of the moduli of bundles by means of semistable
torsion free sheaves reveals to be troublesome when applied to threefolds acquiring sin-
gularities. In these cases the boundary seems too difficult to treat. Our aim is thus to
obtain a compactification that can be readily extended to singular cubics.

Question. Is it possible to obtain a compactification ofMX
in whose construction can

be adapted to singular 3-dimensional cubics?

These questions lead us to construct a new moduli space associated to cubic threefolds,
the one parametrizing the skew-symmetric presentation maps for the sheaves that we
study. For the instantons, the minimal skew-symmetric resolution is of length one, so
the resolution is the same as the presentation map in this case. For the sheavs on the
boundary of the compactification, the length of the resolution is 2, and the presentation
map is the first step of the resolution.

1.2.1 Skew-symmetric resolutions of sheaves
The starting point of our construction is the following. We consider a smooth cubic
hypersurface X ⊂ P4 and an instanton F on X. We saw that the twisted vector bundle
E := F(1) is obtained from an elliptic curve C ⊂ X by means of Serre’s construction.
Consider now E as a torsion OP4-module. (by an abuse of notation we identify E with
its direct image i∗E , where i is the inclusion i : X ↪→ P4). It is shown in [B2] that its
minimal free resolution in P4 has the form:

0 −→ OP4(−1)
⊕6 M−→ O⊕6

P4 −→ E −→ 0,
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where M is a 6 × 6 skew-symmetric matrix whose entries are linear forms on P4. Still
denoting by M the morphism of vector bundles O⊕6

P4 (−1)
M−→ O⊕6

P4 , we see that at a
generic point x ∈ P4, M(x) has rank 6; M(x) has rank 4 whenever x belongs to the cubic
hypersurface defined by Pf (M) = 0. This means that E = coker (M) is supported on
Pf (M) = 0 and that therefore the matrix M provides a Pfaffian representation of X.
Conversely, if we are givenM , a skew-symmetric matrix of size 6 whose entries are linear
forms and having generic rank 6, we get a short exact sequence of OP4-modules:

0 −→ OP4(−1)
⊕6 M−→ OP4

⊕6 −→ E −→ 0 (1.8)

where E := coker (M). The sheaf E is supported on the cubic X defined by the equation
Pf (M) = 0; computing the cohomology of E we deduce that its restriction to the smooth
locus of X is a vector bundle. In particular, if X is non-singular, we can easily compute
from (1.8) that F := E(−1) is a rank 2 vector bundle on X with c1 = 0, c2 = 2 and
h0(F) = 0, namely an instanton bundle.
We therefore notice that on a smooth cubic threefold X, instanton bundles are related to
Pfaffian representations of X. We will now see that 6× 6 skew matrices of linear forms
also occur in minimal free resolutions (in P4) of sheaves in the boundary ofMX(2; 0, 2, 0);
but in these cases we will deal with matrices of generic rank 4.

Sheaves on the boundary

Given a smooth cubic X, a sheaf F ∈ BX fits in a short exact sequence (from now on,
whenever G is a sheaf supported on a subscheme of X, resp. P4, we will still denote by
G its direct image in X, resp. P4):

0 −→ F −→ OX⊕2 −→ G −→ 0, (1.9)

with G ' OC(1pt) when [F ] ∈ B′X , F = FC , G ' Ol1⊕Ol2 when [F ] ∈ B′′X , F = Il1⊕Il2 .
In order to obtain a resolution of F we first build resolutions of the middle and of the
right hand terms of (1.9). A resolution of OX⊕2 is immediate, calling indeed F the
polynomial defining X we have:

0 −→ OP4(−3)
⊕2 F ·id2−−−→ OP4

⊕2 −→ OX⊕2 −→ 0. (1.10)

We will now describe skew-symmetric resolutions of G.

• [F ] ∈ B′X . When [F ] belongs to the divisor B′X , F = FC is a stable sheaf associated
to a smooth conic C contained in X. In this case G ' OC(1pt). OC(1pt) is the dual of a
theta characteristic on C, a line bundle associated to a linear symmetric representations
of C. We choose coordinates X0, . . . , X4 on P4 in such a way that the plane 〈C〉 has
equations {X3 = X4 = 0} and that the conic is C := {X3 = 0, X4 = 0, X2

1 −X0X2 = 0}.
The minimal free resolution of OC(1pt) in the plane P2 = 〈C〉 is the complex:

0 −→ OP2(−1)
⊕2

 X2 −X1

−X1 X0


−−−−−−−−−−−−→ O⊕2

P2 −→ OC(1pt) −→ 0. (1.11)

We get thus a resolution of OC(1pt) in P4 (this can be obtained for example starting
from the Koszul resolutions of OP2

⊕2 and OP2
⊕2(−1)) of the form:

0 −→ OP4(−3)
⊕2 γ−→ OP4(−2)

⊕6 β−→ OP4(−1)
⊕6 α−→ OP4

⊕2 −→ OC(1pt) −→ 0; (1.12)

where for our choice of coordinates:

α =

(
−X0 −X1 0 −X3 0 −X4

−X1 −X2 X3 0 X4 0

)
, γ = αT ,
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β =


0 0 0 X4 0 −X3

0 0 −X4 0 X3 0
0 X4 0 0 X2 −X1

−X4 0 0 0 −X1 X0

0 −X3 −X2 X1 0 0
X3 0 X1 −X0 0 0


The matrix β is a skew-symmetric matrix of linear forms such that Pf (β) = 0 (β has
generic rank 4).

• [F ] ∈ B′′X . If [F ] belongs to B′′X , F is a strictly semistable sheaf of the form F = Fl1,l2 ,
F ' Il1 ⊕ Il2 ; where l1, l2 is a couple of lines contained in X. In this case we have
G = Ol1 ⊕ Ol2 , so that a free resolution of G can be easily obtained from the Koszul
resolutions of each sheaf Oli . Suppose that the line li, i = 1, 2, is given by the intersection
of three hyperplanes Hi

A, H
i
B , H

i
C defined respectively by linear equations hiA = 0, hiB =

0, hiC = 0. Each sheaf Oli admits as minimal resolution in P4 the Koszul complex:

0→ OP4(−3)
γi−→ OP4(−2)⊕3 βi−→ OP4(−1)⊕3 αi−→ OP4 → Oli → 0 (1.13)

with:

αi =
(
hiA hiB hiC

)
, γi = αTi

βi =

 0 hiC −hiB
−hiC 0 hiA
hiB −hiA 0


Consequently, we obtain a resolution of the sheaf G = Ol1 ⊕Ol2 :

0→ OP4(−3)
⊕2 γ−→ OP4(−2)⊕6 β−→ OP4(−1)⊕6 α−→ O⊕2

P4 → Ol1 ⊕Ol2 → 0 (1.14)

where:

α =

(
α1 0
0 α2

)
, β =

(
β1 0
0 β2

)
, γ = αT .

Again, β is a skew-symmetric matrix of size 6 of linear forms with Pf (β) = 0.

Remark 4. The linear forms hiA, h
i
B , h

i
C are a basis for H0(P4, Ili/P4(1)). Hence the

linear space 〈h1
A, h

1
B , h

1
C , h

2
A, h

2
B , h

2
C〉 has dimension 5 whenever l1 and l2 are disjoint,

4 whenever l1 and l2 meet at a point and 3 when the two lines coincide.

Summing up we see that each sheaf F in the boundary of the moduli space is the kernel of
a surjective morphism OX⊕2 → G; the sheaf G has one dimensional support and admits
a minimal resolution in P4 of the form:

0→ OP4(−3)
⊕2 γ−→ OP4(−2)⊕6 β−→ OP4(−1)⊕6 α−→ O⊕2

P4 → G → 0. (1.15)

Furthermore β is 6 × 6 skew-symmetric matrix such that Pf (β) = 0 and γ = ker(β) is
such that α = γT . The resolution of G is thus an example of a skew-symmetric linear
complex. These complexes appearing in the resolutions of sheaves in the boundary of
MX(2; 0, 2, 0), together with the matrices β determining them will be studied in detail
in Chapters 3 and 4. The morphism OX⊕2 → G lifts to a map of resolutions providing
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the following commutative diagram with exact rows and columns:

0 0

0 // F // O⊕2
X

OO

// G

OO

// 0

O⊕2
P4

OO

id 2 // O⊕2
P4

ε

OO

OP4(−3)⊕2

F ·id 2

OO

β′ // OP4(−1)⊕6

α

OO

0

OO

// OP4(−2)⊕6

β

OO

OP4(−3)⊕2

γ

OO

0

OO

(1.16)

By an easy diagram chase, we deduce a resolution of F of the form

0 −→ OP4(−3)⊕2 G−→ OP4(−3)⊕2 ⊕OP4(−2)⊕6 B−→ OP4(−1)⊕6 −→ F −→ 0, (1.17)

in which B = (β′|β), the 6-by-8 matrix obtained by concatenation of a 6-by-2 ma-
trix of quadratic forms β′ with the matrix β. Further, G = 0 ⊕ γ, that is the im-
age of G is contained in the summand OP4(−2)⊕6, and G coincides with γ as a map
OP4(−3)⊕2 −→ OP4(−2)⊕6.

1.2.2 The GIT moduli space of Pfaffian representations
LetW and V be two complex vector spaces of dimension 6 and 5 respectively. We denote
by P:

P := P(V ∗ ⊗
2∧
W ∗) ' P74

the projective space of 6× 6 skew-symmetric matrices whose entries are elements in V ∗.
We consider Pin the open parameterizing matrices M ∈ P such that the cubic defined
by the equation Pf (M) = 0 is smooth. Let Min be the moduli space of torsion sheaves
on P4 with supports on smooth cubic hypersurfaces X ⊂ P4, whose restrictions to X are
instanton bundles:

Min := {[F ] | F is an instanton on a smooth cubic X ⊂ P4};

define M as the closure of Min in the moduli space of sheaves on P4. We call U ⊂
|OP4(3)| ' P34 the open subset of |OP4(3)| parameterizing smooth cubics. As for what
was discussed in the previous sections, we deduce that we have a commutative diagram:

Qin τ //

Pf $$

Min

ρ

��
|OP4(3)|
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where M � τ // coker (M) ⊗ OP4(−1) � ρ // X = {Pf (M) = 0} = Supp (coker (M)).
According to [B1], the morphism τ : Pin → Min is a principal bundle with structure
group PGL(6,C). The group GL(6,C) acts on the resolutions of instantons as follows.
Given [F ] ∈Min and twisting (1.8) by OP4(−1) we get a resolution of F of the form:

0 −→ OP4(−2)⊕6 M−→ OP4(−1)⊕6 N−→ F −→ 0. (1.18)

If it clear that this resolution is uniquely determined by (M,N), where (N,F) = coker (M).
We then have:

g · (M,N) = (gMgT , Ng−1), g ∈ GL(6,C).

Note also that looking at the morphism ρ : Min → U , the fibre ρ−1(X) over a smooth
cubic X ∈ U isMX

in.
Since our aim is to construct a new moduli space related to instanton bundles on a 3-
dimensional cubic X and as we saw that taking free resolutions in P4, we can associate
elements in P to each point in MX(2; 0, 2, 0), we study the moduli space P of Pfaffian
representations of cubic threefolds. The group GL(6,C) acts on P by conjugation, there-
fore the moduli space P can be obtained by means of Geometric Invariant Theory (GIT)
as the GIT quotient:

P := Pss // G

where G = SL(6,C) and Pss is the open parameterizing matrices that are semistable
with respect to the action of G. P is a compact projective scheme; from the irreducibility
of P we deduce that P is irreducible as well. We compute now the dimension of P. P is a
linear space of dimension 74, hence the open subset Ps of stable points has dimension 74
too. By the construction of the GIT quotient (see the Appendix at the end of the chapter
for details, Thm 1.3.3), there exists an open subset Ps of P that is a geometric quotient
for the action of SL(6,C) on Ps. Since SL(6,C) has dimension 35 we deduce that Ps

has dimension 39. Therefore P is a compact and irreducible scheme having dimension
39 at its general point. This means that dim(P) = 39. The morphism τ : Pin → Min

extends to a rational map τ : P 99K M, and the latter induces a birational map:

τ : P 99K M.

The morphism Pf , defined on the open subset parameterizing matrices M ∈ P of
generic rank six (or equivalently such that Pf (M) 6= 0), determines a rational map
Pf : P 99K |OP4(3)|. Since for a matrix M ∈ P such that Pf (M) 6= 0, we have
Pf (M) = Pf (GL(6,C) ·M) we have an induced rational map:

Pf : P 99K |OP4(3)|

whose generic fibre is compact and has dimension 5. Summing up, we obtain a commu-
tative diagram:

P
τ //

Pf ##

M

ρ

��
|OP4(3)|.

(1.19)

Theorem 1.2.1. 1. The map ρ in the diagram (1.19), sending each sheaf to its su-
port, is a dominant rational map with connected fibers. Its fiber over a smooth cubic
3-fold X is the five-dimensional Druel’s moduli spaceMX(2; 0, 2, 0), isomorphic to
the blowup of the intermediate Jacobian J(X) with center in a smooth surface.

2. The map Pf is a surjective morphism.

3. The map τ is birational. Its restriction to the locus of skew-symmetric matrices of
linear forms generically of rank 6 is an isomorphism to its image, and its indeter-
minacy locus is that of matrices of generic rank 4.
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4. The locus of stable skew-symmetric matrices of linear forms generically of rank
4 is the union of two irreducible components B′ and B′′; moreover the map τ
is the standard blowup over the generic points of B′ transforming it into a divi-
sor B′. The generic points of this divisors represent non-locally-free sheaves in
MX(2; 0, 2, 0) \MX

in belonging to B′X

Proof. The assertion 1 is the main result of [Dr]. The assertion 2 is proved in Chapter
2, see Theorem 2.2.1. The birationality part of the assertion 3 follows from [B2]: as
explained above, when a cubic 3-fold X is smooth, the open partMX

in ofMX(2; 0, 2, 0)
is isomorphic to the quotient Pf−1(X)//PGL(6,C), and as X runs over the locus of
smooth cubics U , this provides a biregular isomorphism Pf

−1
(U) 'Min via the restric-

tion of τ . The fact that it extends as a bijective morphism to the locus of skew-symmetric
matrices of linear forms generically of rank 6 follows from the results of Chapter 3 on
the description of (semi)stable skew-symmetric matrices of linear forms. We show, in
particular, that all the matrices from the generic rank-6 locus are semistable under the
action of SL(6,C) (Corollary 3.2.2). The fact that this bijection is a biregular isomor-
phism follows from the proof of 4.2.4; this is made by comparison of local deformation
spaces in the GIT quotient).
The assertion 4 is proved by studying the local deformations of the minimal resolutions of
the generic non-locally-free sheaves in the boundary of M. As we mentioned above, the
first step of the resolution for these sheaves, which has the form (1.17), is a 6× 8 matrix
B = (β′|β), where β is a skew-symmetric matrix of linear forms of generic rank 4 and β′
is a 2× 6 matrix of quadratic forms. On the other hand, Chapter 3 provides a criterion
for (semi)stability, which allows us to describe the stable locus Ps and to verify that
the matrices β arising in the resolutions of the form (1.17) are all stable under SL(6,C)
(Theorem 3.2.4). In Chapter 4, we show that in a deformation of a sheaf of type B′X to
instantons, β is the limit of Pfaffian representation of the cubics supporting the nearby
instantons (Propositions 4.2.3).
On the space of presentation matrices B, we have two regular maps, B 7→ FB =
coker (B) ∈ M and B 7→ XB = Supp (FB). We study the local structure of these
maps via the computation of infinitesimal deformations of a randomly chosen element
B0 = (β′0|β0) appearing in a minimal free resolution of a sheaf F0 on a smooth cubic
threefold X0 and corresponding to a point [F0] ∈ B′X0

. Remark that the general de-
formation of the resolution of type (1.17) for the sheaf F0 provides a sheaf of rank 1
over a determinantal sextic in P4. We restrict ourselves only to deformations that keep
the property of the sheaf to be supported on a cubic. We verify that the infinitesimal
deformations with this property are unobstructed and are naturally identified with the
elements of the normal space to the boundary component B′, to which belongs the orbit
of β0. The computation uses Macaulay2 [M2] and boils down to a check that the Jacobian
of some linear map between spaces of polynomial matrices is of expected rank.

Remark 5. We conjecture that an equivalent of 1.2.1 (iii) holds also for B′′ and B′′,
where this latter is the divisor of M whose general point is a sheaf in B′′X for X ∈ U .
However the adaptation of the proofs of 4.2.4 and 4.2.3 in this circumstance presents
some technical complications. We hope to solve these issue in the future, it is a work
still in progress

We have thus constructed a compactification P (resp M̃(X) := P̄f−1
(X)), of the moduli

space Min (resp. Min
X ) of instantons supported on cubics (resp. on a smooth cubic hy-

persurface X) of P4, different from Gieseker’s. We only deal with stable skew-symmetric
matrices of linear forms. Some partial results are also obtained on the behavior of the
maps in the diagram (1.19) at strictly semistable points. We are hoping to turn to a
systematic study of different strata of the strictly semistable locus in the future.
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1.3 Appendix: Geometric Invariant Theory

In this section we recollect some main features of Geometric Invariant Theory, one of the
most efficient way to construct moduli spaces. Using GIT moduli spaces are realized as
quotients of varieties, or more generally schemes, with respect to the action of a reductive
group G. We will describe here briefly how we construct a GIT quotient for the action
of a reductive group on a projective variety. (Our main reference for the section is [Th],
see [DG] or [GIT] for an exhaustive dissertation on the subject.)
Let then X ⊂ Pn be a projective variety and σ : G×X → X be the action of a reductive
group G on X. We suppose that furthermore G acts on X as GL(n+ 1,C); this assump-
tion implies that σ lifts to an action σ̃ on the affine cone X̃ ⊂ An+1, σ̃ : G× X̃ → X̃.
Denote by π : X̃ → X the standard projection. We notice that σ̃ satisfies the following:

(i) ∀x ∈ X, x̃ ∈ π−1(x), g ∈ G, we have that g · x̃ ∈ π−1(g ·x). Moreover, denoting by
lx ⊂ An+1 and by lg·x ⊂ An+1 the lines corresponding respectively to x and g · x,
(namely the fibers of the tautological bundle OX(−1) at x and g · x), we have that
the map:

σ̃x(g) : lx → lg·x

induced by σ̃ is a linear isomorphism.

This condition ensures that the origin 0 ∈ X̃ satisfies G · 0 = 0.

Remark 6. The situation that we have just described extends to a more general setting,
where we have a polarized variety (X,L) and an action σ : G ×X → X of a reductive
group G on X. (In this case the variety X will be embedded in a projective space by
means of some power L⊗n of L). We identify the line bundle L with its total space, that
we still denote by L, and we call π : L → X the projection. It is possible to lift the
action of G to L whenever L is G-linearized. We recall indeed that we say that the line
bundle L is G-linearized if σ lifts to an action σ : G× L → L such that:

• we have a commutative diagram:

G× L L

G×X X

σ̃

id×π π

σ

• The zero section of L is G-invariant.

Note that from the definition, if L is G-linearized, for any x ∈ X and g ∈ G, the induced
morphism on the fibers:

σ̃x(g) : Lx → Lg·x
is a linear isomorphism.

The GIT quotient
We mentioned at the beginning of the section that we aim to obtain a moduli space
as the quotient of an action σ : G × X → X. As furthermore we want our quotient
to have “good geometric properties”, such as being compact or separated, we can’t just
consider the orbit space X/G but we will need a new notion of quotient. We describe
here how the GIT quotient is defined. Again we consider X ⊂ Pn, σ : G×X → X and
we suppose that the reductive group G acts through GL(n + 1,C). As we have already
observed this implies that σ lifts to an action on the affine cone X̃ satisfying (i). Using
the language of remark 6, the line bundle OX(1) is G-linearized. From the fact that the
action is linearized, we see that G acts on each vector space H0(OX(r)); we denote then
by H0(OX(r))G the space of G-invariant forms of degree r on X.

Lemma 1.3.1 ([Th], Lemma 3.3).
⊕

rH
0(OX(r))G is finitely generated.
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⊕
rH

0(OX(r))G is a finitely generated graded C-algebra; we thus define X // G as the
projective variety:

X // G := Proj(⊕rH0(OX(r))G.

Note that by its definition, X // G is endowed with a natural ample line bundle L.

Stable and semi-stable points

Definition 1.8. • A point x ∈ X is called semistable if there exists an integer r > 0
and a section s ∈ H0(OX(r))G, such that s(x) 6= 0.

• A point x ∈ X is called stable if it satisfies the following:

– dim G = dim G · x (namely x has finite stabilizer),

– there exists r > 0 and s ∈ H0(OX(r))G such that s(x) 6= 0 (namely x is
semi-stable),

– the action of G on Xs := {y ∈ X | s(x) 6= 0} is closed.

The last condition of the definition of a stable point x ∈ X consists of requiring the
existence of an integer r > 0 and a section s ∈ H0(OX(r))G that does not vanish at x (this
fact guarantees the semistability of x) and that furthermore “separates the orbits “ near
x. This means that for every point y belonging to the open Xs := {y ∈ X | s(x) 6= 0},
and for all vectors v ∈ TyX/TyG · X, the derivative of s along v is different from zero.
We denote by Xss and Xs the open subsets of semi-stable and stable points respectively.
It is possible to give a more geometric characterization of stability studying the action
of G on X̃.

Theorem 1.3.2 ([Th], Thm. 3.8). Let x be a point in X and x̃ be a point in X̃ belonging
to π−1(x).

• x is semi-stable if and only if 0 /∈ G · x̃;

• x is stable if and only if G · x̃ is closed and x̃ has finite stabilizer.

The inclusion
⊕

rH
0(OX(r))G ↪→

⊕
rH

0(OX(r)) induces a (surjective) morphism

φ : Xss → X // G,

this morphism is called the GIT quotient (sometimes the GIT quotient is simply denoted
by Xss // G). From the definition we see that φ∗(L) = OXss(1).

The main reason why it is convenient to work with the GIT quotient is that it is a good
quotient.

Definition 1.9. Let X be an algebraic variety and G a reductive group acting on X. A
morphism φ : X → Y is a good quotient for the action of G on X if:

• φ is G-invariant.

• φ is surjective.

• OY ' φ∗(OGX); where OGX is the sheaf that on every open U ⊂ X is defined by
OGX(U) := OX(U)

G.

• If W ⊂ X is a G-invariant closed subset of X, φ(W ) is closed in Y .

• If W1 and W2 are two disjoint G-invariant closed subset of X, φ(W1) and φ(W2)
are disjoint.

• φ is affine.
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If moreover the preimage of each point is a single orbit we say that φ : X → Y is a
geometric quotient.

If φ : X → Y is a good quotient, it is also a categorical quotient namely each G-invariant
morphism ψ : X → Z factors uniquely trough φ.

Theorem 1.3.3 (Mumford). The morphism φ : Xss → X // G is a good quotient for
the action of G on Xss. Moreover there exists an open subset Y s ⊂ X // G such that
φ−1(Y s) = Xs and φ : Xs → Y s is a geometric quotient for the action of G on Xs.

The Hilbert-Mumford criterion
The Hilbert-Mumford criterion allows us to detect the stability of a point x ∈ X just by
analyzing its stability with respect to 1-parameter subgroups of G.

Definition 1.10. A one parameter subgroup (1-PS) λ of G is a morphism of algebraic
groups:

λ : Gm → G.

Theorem 1.3.4 (Hilbert-Mumford criterion).

• A point x ∈ X is stable if and only if it is λ-stable for every 1-PS λ of G.

• A point x ∈ X is semistable if and only if it is λ-semistable for every 1-PS λ of G.

The reason for which it is more advantageous to work with 1 parameter subgroups is
that the action of a 1-PS λ of G can always be diagonalized. This means that we can
find integers λ0, · · · , λn such that λ(t) acts as diag(tλ0 , . . . , tλn). Taking now x ∈ X and
x̃ ∈ π−1(x), x̃ = (x0, . . . xn), we have λ(t) · x̃ = (tλ0x0, . . . t

λnxn). We define

µ(x, λ) := min
i
{λi | xi 6= 0}.

It is possible to reformulate the Hilbert-Mumford criterion in terms of the weights µ(x, λ)
as follows:

Theorem 1.3.5.

• x is semistable if and only if µ(x, λ) ≤ 0 ∀ 1-PS λ of G.

• x is stable if and only if µ(x, λ) < 0 ∀ 1-PS λ of G.

We report here the idea of the proof. In order to analyze the stability of x we study the
closure λ · x̃, that is we study the behavior of λ(t) · x̃ for t→ 0 and t→∞. Actually it is
enough to restrict to the former as the latter is deduced from λ−1, the 1 parameter sub-
group defined by λ−1(t) = λ(t−1). We see then that x fails to be stable if and only if there
exists a 1-PS λ such that µ(x, λ) ≥ 0. Indeed, since λ(t) · x̃ = (tλ0x0, . . . t

λnxn), if ever
µ(x, λ) ≥ 0, we would have that λ(t) · x̃ is bounded for t→ 0 implying λ · x̃ ( λ · x̃. Re-
garding semistability, we see from the coordinates of λ(t)·x̃ that the condition µ(x, λ) > 0,
is equivalent to requiring that λ(t) · x̃ tends to 0 as t→ 0, namely 0 ∈ λ · x̃.
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Chapter 2

Pfaffian representations of cubic
threefolds

Introduction
We study Pfaffian representations of a cubic hypersurface X of P4; namely we try to
determine when the polynomial F defining X can be written as the Pfaffian of a 6 × 6
matrix of skew-symmetric forms. It’s known that a smooth cubic threefold is Pfaffian
[B2], we will then be concerned with the singular ones. We prove the following:

Theorem (Theorem 2.2.1). A cubic threefold X ⊂ P4 always admits a Pfaffian repre-
sentation.

To prove the theorem we will distinguish the following families of singular threefolds:

• Cubic threefolds that are cones;

• Non-normal cubic threefolds;

• Normal cubic threefolds that present at most double points.

As every cubic hypersurface of dimension two or less is Pfaffian, we deduce immediately
that the same holds wheneverX is a cone. IfX is not normal (and then it is singular along
a linear space of dimension at least 2), we are able to write explicitly a skew-symmetric
matrix of linear forms MX such that Pf (MX) = F . Things get more interesting when
X is singular in codimension at most 2 and presents just double points. Under these
assumptions the study of Pfaffian representations relies on the proof of the existence of
a rank 2 skew-symmetric Ulrich sheaf E on X. Indeed if such a sheaf E on X exists, its
minimal free resolution in P4 is a “linear” complex of length one:

0 −→ O⊕6
P4 (−1)

ϕ1−→ O⊕6
P4 −→ E −→ 0;

the map ϕ1 (the only non-vanishing differential in the resolution of E) provides then a
Pfaffian representation of X. Ulrich sheaves on a cubic threefold X can be constructed by
means of Serre correspondence, starting from nondegenerate arithmetically Gorenstein
(AG) quintic elliptic curves on X.
We will prove that these curves always exist on a normal threefold that is not a cone:

Theorem (Theorem 2.3.2). Let X be a normal cubic threefold that is not a cone. Then
there exists a non-degenerate AG elliptic quintic curve C ⊂ X.

This result will complete the proof of the existence of Pfaffian representations for all
cubic threefolds.
The central part of the chapter is therefore devoted to the proof of the existence of quintic
elliptic curves on normal threefolds. This is done by adapting two methods used in [MT1]

33
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to show the existence of such curves in the smooth case. The first method is based on a
deformation argument. We first prove that a general hyperplane section S of X contains
a smooth quintic elliptic curve C0 disjoint from the singular locus of S. Then we prove
that C0 deforms to a nondegenerate curve C that is still contained in Xsm, the smooth
locus of X. This arguments works exactly as in the smooth case if Sing (X), the singular
locus of X, has dimension zero. When dim (Sing (X)) = 1, a general hyperplane section
S of X is a cubic surface with isolated singularities. In this case we will consider

φ : S̃ → S,

a minimal resolution of singularities of S (the surface S̃ is a so called weak Del Pezzo sur-
face) and we will prove the existence of a smooth curve C̃0 on S̃ such that C0 := φ(C̃0) ⊂ S̃
is a smooth elliptic quintic disjoint from Sing (S).
The second method is a constructive one and allows us to obtain directly a nondegenerate
AG elliptic quintic C ⊂ X. To apply it we first need to show the existence of a rational
quartic (not necessarily irreducible) Γ ⊂ X. Then we will present a construction of a
cubic scroll Σ containing Γ such that the curve C, residual to Γ in Σ∩X, is an AG elliptic
quintic.
With the help of Segre classification’s of cubic threefolds ([Seg]), we will analyze in detail
the singularities that a normal threefold can present; depending on the components of
Sing (X) we will choose which method to apply.

2.1 Preliminaries

2.1.1 Rudiments from homological algebra: CM, ACM and AG
modules

We give some preliminary algebraic notions that we will use throughout the entire chap-
ter.
Definition 2.1. Let (A,m) be a noetherian local domain and M an A-module. We say
that an A-module M is Cohen-Macaulay (or CM for short) if:

depth (M) = dim (M)

Remark 7. We recall that we can give the following cohomological characterization, that
will come in use later, of the depth and the dimension of a module M over (A,m).

• Hi
m(M) = 0, ∀i < depth (M), ∀i > dim (M).

• Hi
m(M) 6= 0 for i = depth (M) and i = dim (M).

We see then that M is a CM A-module if and only if it has only one non-vanishing local
cohomology group, namely Hi

m(M), i = dim (M).

Definition 2.2. Let A be a noetherian domain and M an A-module. We say that M is
Cohen-Macaulay (or CM) if for all maximal ideals m ⊂ A, Mm is a CM Am-module.

Let now R be the ring of polynomials in n+1 variables, R := C[X0, . . . Xn]; R is a regular
ring hence it is CM. LetM be a graded CM R-module. Localizing at m0 := (X0, . . . , Xn)
and applying Auslander-Buchsbaum formula,

pd (Mm0) + depth (Mm0) = depth (Rm0),

we obtain:
pd (Mm0

) = dim (Rm0
)− dim (Mm0

).

Therefore, M admits a graded minimal free resolution of length c = codim (M):

· · · 0 −→ Fc
ϕc−→ Fc−1

ϕc−1−−−→ · · · ϕ1−→ F0 −→M −→ 0, (2.1)

where each term Fi is of the form Fi =
⊕
j

R(ai,j).
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Remark 8. Summing up, we see that if M is a graded CM R-module, then:

• For every maximal ideal m ⊂ R, the only non-vanishing local cohomology group is
Hi

m(Mm), i = dim (M) (this is due to remark 7).

• For every integer a ∈ Z, Exti(M,R(a)) = 0 whenever i > codim (M) (this is due
to the fact that a minimal free resolution of M is of the form (2.1)).

Let nowX be a closed subscheme of Pn := Proj(R) and denote by R(X) its homogeneous
coordinate ring, R(X) = R/IX , (IX being the saturated ideal of X).

Definition 2.3. A closed subscheme X ⊂ Pn is called arithmetically Cohen-Macaulay
(ACM for short), if its homogeneous coordinate ring R(X) is a Cohen-Macaulay ring.

Remark 9. A projectively embedded curve C ∈ Pn is ACM if and only if it is CM and
H1(IC(k)) = 0 for all k ∈ Z. This is closely related to the projective normality: C is
projectively normal if and only if it is normal and the the restriction maps on global
sections H0(OPn(k))→ H0(OC(k)) are surjective for all k. In particular, if C is smooth,
then it is ACM if and only if it is projectively normal.

Definition 2.4. A closed subscheme X ⊂ Pn of codimension c is called arithmetically
Gorenstein (AG for short) if the following holds:

• X is ACM

• The canonical module of R(X), KX := ExtcS(R(X), R)(−n − 1), is isomorphic to
R(X)(a) for some a ∈ Z.

Remark 10. • The condition that a subscheme X ⊂ Pn of codimension c is AG, is
equivalent to requiring that R(X) admits a graded minimal free resolution of the
form (2.1), such that the term Fc has rank 1.

• If X is AG, from the isomorphism KX ' R(X)(a) we get that the canonical sheaf
ωX = ExtcS(OX ,OPn)(−n− 1) is isomorphic to OX(a), for some a ∈ Z.

ACM, AG and Ulrich sheaves

Definition 2.5. A coherent sheaf E on Pn is an arithmetically Cohen-Macaulay (ACM
for short) sheaf if E :=

⊕
j∈ZH

0(E(j)), its module of twisted global sections, is a (graded)
Cohen-Macaulay module over C[X0, . . . , Xn].

We observe that a coherent sheaf E on Pn is ACM if and only if:

• Ex is a Cohen-Macaulay OPn,x module ∀x ∈ Pn (that is, Emx
is CM for all maximal

ideals mx different from the irrelevant ideal m0 := (X0, . . . , Xn).

• Hi(E(j)) = 0, for 0 < i < dim (Supp (E)), for j ∈ Z. This condition is equivalent
to the fact that Em0

is a Cohen Macaulay C[X0, . . . , Xn]m0
module).

If E is ACM, from a minimal graded resolution of its module of twisted global sections
E of the form (2.1), we get a locally free resolution of E

· · · 0 −→
⊕
j

OPn(ac,j)
ϕc−→
⊕
j

OPn(ac−1,j)
ϕc−1−−−→ · · · ϕ1−→

⊕
j

OPn(a0,j) −→ E −→ 0

(2.2)
of length c = codim (Supp (E)). Note that every differential can be represented as a
matrix whose entries are homogeneus forms on Pn.

Definition 2.6. A coherent sheaf E on Pn is an Ulrich sheaf if:
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• E is ACM.

• Hi(E(−i)) = 0 for i ≥ 1 and Hi(E(−i− 1)) = 0 for i ≤ dim (Supp (E)).

Remark 11. Let E be an ACM sheaf and denote by c the codimension of Supp (E).
Writing a locally free resolution of E as (2.2), from the definition we get that E is Ulrich
if and only if this resolution is linear, that is, if it has the following form:

· · · 0 −→ O⊕rcPn (−c) ϕc−→ O⊕rc−1

Pn (−c+ 1)
ϕc−1−−−→ · · · ϕ1−→ O⊕r0Pn −→ E −→ 0. (2.3)

2.1.2 Linear determinantal representations of hypersurfaces and
Ulrich sheaves

Let V be a complex vector space of dimension n+ 1, F ∈ Sd(V ∗) a homogeneous form of
degree d on P(V ) and r an integer bigger than or equal to one. Denote byMrd×rd the
vector space of square matrices of size rd. It is a classical problem in algebraic geometry
to determine whether some power of F can be written as the determinant of a matrix of
linear forms, that is, whether there exists

M ∈Mrd×rd ⊗C V
∗ such that F r = det(M).

If this is the case, the matrix M is referred to as a linear determinantal representation of
F . The existence of such a determinantal representation of the polynomial F is equivalent
to the existence of a Ulrich sheaf of rank r on X, the hypersurface in P(V ) defined by
the equation {F = 0}.
Proposition 2.1.1. Let X be a degree d hypersurface in P(V ) ' Pn defined by an
equation F = 0, F ∈ Sd(V ∗). The following conditions are equivalent:

• There exists M ∈Mrd×rd ⊗C V
∗ such that F r = det(M)

• There exists an Ulrich sheaf E supported on X and of rank r as an OX-module.

Proof. If F admits a linear determinantal representationM ∈Mrd×rd⊗CV
∗, the matrix

M defines a morphism of vector bunldes over Pn that fits in a short exact sequence:

0 −→ O⊕rdPn (−1)
M−→ O⊕rdPn −→ E −→ 0 (2.4)

so that E := coker (M). E is a coherent sheaf supported onX, and as c1(E) = r[dH] = r[X],
E has rank r on X. E is thus a coherent sheaf admitting a minimal free resolution of
length 1 = codim (Supp (E)), hence it is ACM. Since moreover this resolution is lin-
ear, from remark 11 we deduce that E is Ulrich. Vice versa, let E ∈ Coh (X) be a
rank r Ulrich sheaf; then E admits a linear minimal free resolution of length 1. The
only nonvanishing differential of this resolution O⊕rdPn (−1)

ϕ1−→ O⊕rdPn defines an element
M ∈ Mrd×rd ⊗C V

∗. As X = Supp (E) = {x ∈ Pn | rk (φ(x)) ≤ rd}, det(M) = F r so
that M is a linear determinantal representation of F .

We now look for ε-symmetric determinantal representations of F , namely we ask if ever
we can find an element M ∈M2d×2d ⊗C V

∗ such that:

• F 2 = det(M);

• M is ε-symmetric that is, MT = εM , ε = ±1.

ε-symmetric determinantal representations are associated to rank 2 Ulrich sheaves E on
X that, additionally, are ε-symmetric.
We recall briefly how ε-symmetric sheaves are defined. To start with, consider an ACM-
sheaf E on Pn supported on a hypersurface X and endowed with a morphism of sheaves
φ : E → H om(E ,OX(N)) for some integer N . Applying the functor H om( ·,OX(N))
we get a morphism E∨∨ → E∨(N), composing then with the natural homomorphism
E → E∨∨ we get φT , the transpose of φ:

φT : E → E∨(N).
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Definition 2.7. An ACM sheaf E on Pn, endowed with a sheaf morphism φT : E → E∨(N),
is called ε-symmetric if φT = εφ (ε = ±1).

Proposition 2.1.2. Let X be a degree d hypersurface in P(V ) ' Pn defined by an
equation F = 0, F ∈ Sd(V ∗). The following conditions are equivalent:

• There exists an ε-symmetric matrix M ∈M2d×2d ⊗C V
∗ such that F 2 = det(M).

• There exists a rank 2 ε-symmetric Ulrich sheaf E on X.

Proof. See [B2], theorem 2.B.

Remark 12. As for what has been discussed in Chapter 1, sect. 1.2.1, we see that given
X a smooth cubic threefold and F an instanton on X, the twisted bundle F(1) is a rank
2 skew-symmetric Ulrich bundle on X.

2.2 Pfaffian representations of cubic threefolds
We now study in detail Pfaffian representations of cubic threefolds. Throughout the rest
of the chapter we denote by V a 5-dimensional linear space, by F ∈ S3(V ∗) a homogeneus
form of degree 3 and by X ⊂ P(V ) ' P4 the cubic hypersurface defined by the equation
{F = 0}. We prove the following:
Theorem 2.2.1. A cubic threefold X ⊂ P4 always admits a Pfaffian representation.

This result is known in the case where X is smooth (see for example [B2]); we will then
mainly deal with singular cubic threefolds. The strategy that we adopt in order to prove
that X is Pfaffian changes depending on the singularities that X presents; we will indeed
distinguish the following situations:

• X is a cone. In this case proving that X is Pfaffian reduces to the study of Pfaffian
representations of cubic hypersurfaces of dimension less than or equal to 2.

• X is not normal. In this case we are able to write down explicitely a 6 × 6 skew-
symmetric matrix of linear forms MX such that Pf (MX) = F.

• X is normal and presents at most double points. Under these hypotheses we will
prove the existence of a rank 2 skew-symmetric Ulrich bundle onX. By Proposition
2.1.2, this guarantees that X is Pfaffian.

We now describe how to prove that there exists a rank 2 Ulrich sheaf E on X endowed
with a sheaf isomorphism φ : E → H om(E ,OX(2)), such that φT = −φ (namely a
skew-symmetric Ulrich sheaf ).
As Ulrich sheaves are ACM we start by looking for rank 2 ACM sheaves on X; one
possible way to prove the existence of such sheaves is by means of Serre correspondence.

2.2.1 Serre correspondence

In Chapter 1, sect. 1.1.2, we introduced Serre’s correspondence on a smooth cubic
threefold X: a technique that allowed us to obtain a rank 2 Ulrich bundle E on X (or
equivalently the instanton E(−1)), starting from a locally complete intersection elliptic
quintic curve C on X. We are now going to illustrate this technique in greater detail,
showing how it applies to cubic threefolds which are not necessarily smooth. More
generally, Serre correspondence permits to construct rank 2 ACM sheaves on a variety
X, starting from codimension 2 AG subschemes ofX. In our specific case a codimension 2
AG subscheme ofX is an AG curve C ⊂ X. Note that moreover, sinceX is a hypersurface,
it is an AG scheme. Its canonical sheaf is ωX ' OX(−2). From now on we will suppose
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thatX is integral. To start with, we give a useful characterization of AG curves contained
in X.
Proposition 2.2.2. Let C ⊂ X be an AG curve and let IC be the ideal sheaf of C in X.
For every point x ∈ C, pd (IC,x) = 1.

Proof. By Auslander-Buchsbaum formula, we have:

pd (IC,x) = depth (OX,x)− depth (IC,x).

X is an AG scheme so depth (OX,x) = dim (OX,x) = 3. In order to determine depth (IC,x)
we compute the local cohomology Hi

x(IC,x). Consider the short exact sequence of sheaves
on P4:

0 −→ IX/P4 −→ IC/P4 −→ i∗(IC) −→ 0

where IX/P4 and IC/P4 denote respectively, the ideal sheaves of X and C in P4, and i is the
inclusion i : X ↪→ P4. Localizing at x ∈ C we get a short exact sequence of OP4,xmodules:

0 −→ IX/P4,x −→ IC/P4,x −→ (IC,x) −→ 0. (2.5)

Since H0
x(OP4,x) = 0, we deduce that H0

x(IX/P4,x) = 0 and H0
x(IC/P4,x) = 0. Now,

Hi
x(IX/P4,x) ' Hi−1

x (OX,x) = 0, for i = 1, . . . , 3 (as OX,x is a local 3-dimensional CM
ring). Similarly, H1

x(IC/P4,x) ' H0
x(OC,x) = 0. (as OC,x is a CM local ring of dimension

1). From these computations, we see that, once we take the long exact sequence in local
cohomology from (2.5),

· · · Hi
x(IC/P4,x) Hi

x(IC,x) Hi+1
x (IX/P4,x) · · ·

we get that:

• H0
x(IC,x) = H1

x(IC,x) = 0,

• H2
x(IC,x) ' H2

x(IC/P4,x) ' H1
x(OC,x) 6= 0.

These equalities imply that depth (IC,x) = 2, hence pd (IC,x) = 1.

We will now illustrate how Serre’s correspondence works on a (integral) cubic threefold
X (for a more general description of Serre correspondence we refer to [HC1]).
We start from an AG curve C ⊂ X. The canonical sheaf of C is thus isomorphic to OC(a)
for some integer a ∈ Z. From the isomorphisms

ωC ' Ext2(OC , ωX) ' Ext2(OC ,OX(−2)) ' Ext1(IC ,OX(−2))

we obtain:
OC ' Ext1(IC ,OX(−2− a)).

As C is a codimension 2 AG subscheme ofX, Exti(OC ,OX) ' Exti−1(IC ,OX) = 0, when-
ever i 6= 2; moreover, as Ext2(IC ,OX) is supported on C, Hi(X,Ext1(IC ,OX)) = 0
whenever i 6= 0 or i 6= 1. Therefore, applying the local to global spectral sequence
(cf.[God]. II Th.7.3.3),

Ep,q2 = Hp(X,Extq(OC ,OX(−2− a))) =⇒ Extp+q(OC ,OX(−2− a))

we get isomorphisms:

H0(OC) ' H0(X,Ext1(IC ,OX(−2− a))) ' Ext1(IC ,OX(−2− a)).

The unit element 1 ∈ Ext1(IC ,OX(−2− a)) corresponds to a short exact sequence

0 −→ OX(−2− a) −→ N −→ IC −→ 0. (2.6)
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Proposition 2.2.3. N is a rank 2 ACM sheaf.

Proof. From (2.6) we compute immediately that N has rank 2 and that the following
hold:

• Hi
x(Nx) = 0 for i = 0, 1, ∀ x ∈ X. This is due to the fact that Hi

x(OX,x) = 0, and
Hi
x(IC,x) = 0 for i = 0, 1.

• H1(N (j)) = 0, ∀j ∈ Z. This is due to the fact that C is AG, hence H1
∗ (IC) = 0.

To conclude that N is ACM we still need to check that H2
x(Nx) = 0 ∀ x ∈ X (so that Nx

is Cohen-Macaulay ∀x ∈ X) and that H2(N (j)) = 0, ∀j ∈ Z. It is proved in [H2] 1.11,
that the sheaf N obtained from an extension corresponding to 1 ∈ Ext1(IC ,OX(−2−a))
satisfies:

Ext1(N ,OX) =0.

H1
∗ (N∨) =0.

This allow us to prove that N is ACM since:

• Applying local duality, (cf. [Harl], ch. 6) as OX,x is a local Gorenstein ring, we
get:

H2
x(Nx) ' Hom (Ext1(Nx,OX,x), ωX,x).

This terms are thus both equal to 0 since Ext1(Nx,OX,x) ' Ext1(N ,OX)x and
Ext1(N ,OX) = 0. This implies that N is locally Cohen-Macaulay.

• From the previous point N is locally Cohen-Macaulay. Again, applying local du-
ality we then deduce that ExtiOX,x

(Nx,OX,x) ' ExtiOX,x
(Nx, ωX,x) = 0, ∀ x ∈

X, ∀ i > 0, implying that Exti(N , ωX) = 0, ∀ i > 0. From the local to global
spectral sequence:

Ep,q2 = Hp(X,Extq(N , ωX)) =⇒ Extp+q(N , ωX),

we obtain an isomorphism Exti(N , ωX) ' Hi(X,H om(N , ωX)). By Serre’s du-
ality we get Exti(N , ωX) ' Hn−i(N )∗ and since X is AG with canonical sheaf
ωX = OX(−2), we conclude that Hi(N∨(−2)) is dual to Hn−i(N ) for all i > 0.
Applying this argument to any twist of N we get that, for all j ∈ Z and for
i = 1, H1(N∨(−j − 2)) is dual to H2(N (j)). Since H1

∗ (N∨) = 0 we conclude that
H2
∗ (N ) = 0.

2.2.2 Rank 2 Ulrich sheaves from elliptic quintics
Suppose now that C ⊂ X is an AG curve having arithmetic genus pa(C) = 1 (so that
ωC ' OC) and degree 5. Suppose that moreover C is non-degenerate in P4 (namely C
spans the entire P4). Applying Serre’s construction we get the short exact sequence (2.6)
corresponding to the class of 1 ∈ H0(OC) ' Ext1(IC ,OX(−2)) and consequently a rank
2 ACM sheaf N on X. If now we twist (2.6) by OX(2), we get:

0 −→ OX −→ E −→ IC(2) −→ 0 (2.7)

where E := N (2). From it, since h0(IC(2)) = h0(OX(2))− h0(OC(2)) = 15− 10 = 5, we
compute that h0(E) = 6. Moreover, from the assumption of non-degeneracy of C we have
h0(IC(1)) = 0 so that h0(E(−1)) = 0.
From these fact and as we are assuming that X is integral, we can conclude that E is
Ulrich, due to:
Proposition 2.2.4. Let X ⊂ Pn be an integral hypersurface of degree d, and E an ACM
sheaf of rank r such that h0(E(−1)) = 0 and h0(E) = rd. Then E is Ulrich.
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Proof. See [HC2], Lemma 2.2.

From what we have explained until now, whenever we are able to prove that an integral
cubic threefold X carries an AG elliptic quintic C spanning the entire projective space
P4, we get the existence of a rank 2 Ulrich sheaf E on X.
Now we want to locate the singular points of E , namely those points x ∈ X where Ex (or
equivalently Nx) is not a free OX,x-module, as follows. We start by localizing (2.6) at a
point x ∈ X, getting in this way a short exact sequence of OX,x modules:

0 −→ OX,x −→ Nx −→ IC,x −→ 0. (2.8)

Note that this short exact sequence corresponds to the class 1x ∈ Ext1OX,x
(IC,x,OX,x).

It’s clear that ∀ x /∈ C, Nx is free. Indeed if x /∈ C, we have IC,x ' OX,x, implying that
2.8 splits and that thus Nx ' O⊕2

X,x. Hence if x is a singular point of E , we must have
x ∈ C. Since by proposition 2.2.2, IC,x is a OX,x-module of projective dimension 1, we
can check if x is a singular point of E applying the following proposition, proved by Serre
(see [OSS], Lemma 5.1.2 ):

Proposition 2.2.5 ((Serre)). Let A be a Noetherian local ring, I ⊂ A an ideal admitting
a free resolution of length 1:

0 −→ Ap −→ Aq −→ I −→ 0.

Let e ∈ Ext1(I, A) be represented by the extension

0 −→ A −→M −→ I −→ 0.

Then M is a free A-module if and only if e generates the A-module Ext1(I,A).

Remark 13. We observe that if ever E is locally free, then it is a skew-symmetric Ulrich
bundle of rank 2. This is due to the fact that if E is a vector bundle, it is endowed with
a “natural” skew-form φ, φ : E →H om(E ,OX(2)). φ is just the natural isomorphism:

φ : E '−→ E∨ ⊗
2∧
E

that on each fibre x ∈ X acts as φx : Ex
'−→ E∨x ⊗

∧2 Ex, s 7→ (t 7→ s ∧ t). Furthermore,
whenever E is locally free, from (2.7) we can compute that deg (E) = 2, getting, finally, φ :

E '−→ E∨ ⊗
∧2 E 'H om(E ,

∧2 E) 'H om(E ,OX(2)). From this remark we understand
that the existence of a rank 2 Ulrich bundle on X is sufficient to conclude that X is
Pfaffian. In the next section we will show how to obtain, on certain singular cubic
threefolds, rank 2 Ulrich sheaves that are, for construction, locally free. Anyway note
that conversely, the existence of a Pfaffian representation of a cubic X does not ensure
the existence of a Ulrich bundle on X; we can indeed have Pfaffian representations
corresponding to skew-symmetric Ulrich sheaves that are not necessarily locally free.
Anyway in the thesis we won’t deal with these cases.

The smooth case

Whenever X is smooth, it was proved in [MT1], that there always exists a smooth quintic
elliptic curve not contained in a hyperplane. There are essentially two different ways to
prove this. The first is to prove that there exists a smooth elliptic quintic contained in a
hyperplane section and then show that it deforms to a nondegenerate one, in the sense
that it spans the whole projective space P4. The second method is “constructive” and
produces directly a nondegenerate elliptic quintic. The curve is obtained as the residual
one to a rational normal quartic Γ ⊂ X ∩ S in X ∩Σ , where Σ is a cubic scroll. In next
sections we will describe in greater detail these techniques showing how we can adapt
them to singular cases.
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2.3 Pfaffian representations of normal cubic threefolds
Let X be a normal cubic threefold that does not contain triple points. We show here
that X is always Pfaffian and we do this proving the existence of a rank 2 Ulrich bundle
on X:

Theorem 2.3.1. Let X be a normal cubic threefold that does not contain triple points.
Then there always exists a rank 2 Ulrich bundle E on X.

From this result we deduce immediately the Pfaffian representability of X since, as we
saw in remark 13, a rank 2 Ulrich bundle is always skew-symmetric. The first step to
show the existence of E is to show that on X there always exists a non-degenerate AG
quintic elliptic curve. We will prove the following:

Theorem 2.3.2. Let X be a normal cubic threefold that is not a cone. Then there exists
a non-degenerate AG elliptic quintic curve C ⊂ X.

The Ulrich bundle E is then obtained from C by Serre correspondence. Before illustrating
the proofs of theorems 2.3.1 and 2.3.2 we present, following Segre’s work [Seg], a brief
essay on normal cubic threefolds.

2.3.1 Normal cubic threefolds
We recall here some generalities about singular hypersurfaces. Let X ⊂ P4 be a cubic
hypersurface defined by a homogeneous polynomial F of degree 3; throughout the rest of
the section we will always suppose that X does not contain triple points. If X presents
a singular point x ∈ X, we might then choose homogeneous coordinates X0, . . . , X4 on
P4 in such a way that x is the point [1 : 0 : 0 : 0 : 0]; consequently the polynomial F can
be written as:

F (X0, . . . , X4) = X2
0qx(X1, . . . , X4) + cx(X1, . . . , X4).

The locus Qx defined by the equation qx(X1, . . . X4) = 0 is a quadric hypersurface
called the quadric tangent cone of X at x. It can be characterized as the set of points
Qx = {y ∈ P4 | multx(F |xy) ≥ 3}.

Definition 2.8. We say that the point x ∈ X is a double point of r-th type if Qx, the
quadric tangent cone to X at x is a quadric of rank 5− r.

In the upcoming sections we will also refer to a double point x ∈ X of r-th type, for
r = 3, 2, 1 as, respectively, a conic node, a binode and a unode.
Take now a hyperplane Hx ⊂ P4 not passing through x. Up to a suitable change of
coordinates we might assume that Hx has equation X0 = 0. We consider the locus
D2,3
x ⊂ Hx defined as:

D2,3
x := Hx ∩Qx ∩X.

This is a complete intersection sextic curve and we see that for every point y ∈ Dx,
the polynomial F |xy has a root of multiplicity at least 3 in x and a root in y. Since
deg (F ) = 3, we deduce that the entire line xy is contained in X. This means that the
union of lines passing through x and contained in X is the cone of vertex x over D2,3

x .
Note also that Qx ∩Hx and X ∩Hx meet at a point y ∈ D2,3

x with multiplicity bigger
then one if and only if the line xy ⊂ X passes through a singular point of X different
from x.
If now we suppose that X is normal, we have that the singular locus Sing (X), has
dimension at most 1. If ever X has non-isolated singularities, Sing (X) contains then a
curve Y . Consequently we give the following definition:

Definition 2.9. We say that a curve Y ⊂ Sing (X) is a double curve of r-th type if every
point in Y is a double point and the generic point of each of its irreducible components
is a double point of (r − 1)-th type.
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Under the additional assumption that X is not a cone (namely that X does not contain
triple points), following Segre’s classification of three-dimensional cubic hypersurfaces
([Seg]), we conclude that Sing (X) might consist of:

• N ≤ 10 isolated singular points if dim (Sing (X)) = 0 (including the case when
Sing (X) = ∅).

• The union Y ∪Z of a finite length scheme Z (including the case when Z = ∅) and
a double curve Y , if (dim (Sing (X)) = 1, where Y is one of the following:

– A line of first or second type.
– A conic of first or second type (possibly degenerating into a union of two

incident lines).
– The union of three non-coplanar lines of first type meeting at a point.
– A rational quartic curve of first type (that can possibly degenerate in the union

of two conics meeting at a point but not both contained in a hyperplane).

Remark 14. Note that saying that X has multiplicity 2 along the curve Y ⊂ X, means
that all the partial derivatives of order 1 of F vanishes along Y . In other words, de-
noting by IY ⊂ C[X0, . . . , X4] the homogeneous ideal defining Y , we have that for
i = 0, . . . , 4, ∂F

∂Xi
∈ IY . This implies in particular that the polynomial F can be written

as F =
∑4
i=0XiQi with Qi ∈ IY 2 := (IY ∩ C[X0, . . . X4]2) (the space of homogeneous

forms of degree 2 belonging to IY ). The hypothesis that X has no triple points ensures
that ∀ y ∈ Y , there exists at least one partial derivative of F of order 2 not vanishing at
y.
In the upcoming sections we will need to study the behavior of (general) hyperplane
sections of X and to this aim it is necessary to understand the kind of singularities
that they might present. If ever X has isolated singularities, applying Bertini’s theorem
we have that for a general hyperplane H ⊂ P4, S := H ∩ X is smooth. Whenever
dim(Sing (X)) = 1, a generic hyperplane section of X is a cubic surface with isolated
singularities. More precisely, taking a hyperplane H ⊂ P4 corresponding to a point
h ∈ P4∗ that belongs to the open P4∗ \ (X∗) (here X∗ is the dual variety of X), the
intersection H ∩X will be singular along Sing (X) ∩H. When X is a cubic threefold in
the aforementioned list, following Segre’s classification, we have at most a finite number
of singular points of X not belonging to the curve Y . This means that for a general
hyperplane H ⊂ P4, the intersection S := H ∩ X satisfies Sing (S) = Y ∩ H, therefore
S is a cubic surface with at most 4 double points. In order to define the type of these
singularities it is necessary to describe in greater detail the quadric tangent cones to X
at points belonging to 1-dimensional components of Sing (X). This is done writing down
a normal form for the polynomial F and with the aid of Segre’s work. Our study of the
singularities of S relies on Bruce and Walls classification of cubic surfaces presented in
[BW].

Cubic threefolds singular along a line

We suppose here that X contains a double line Y supported on the line Y = ν1(P1)
where ν1 is defined as:

ν1 : P1 −→P4

[t0 : t1] 7→[0 : 0 : 0 : t0 : t1].

For an appropriate choice of homogeneous coordinates X0, . . . , X4 we can assume that Y
has equations {X0 = X1 = X2 = 0}. We call V := C〈X0, . . . X4〉, V ′ := C〈X0, X1, X2〉,
V ′′ := C〈X3, X4〉. We get a decomposition

S3(V ) =

3⊕
i=0

Si(V ′)⊗ S3−i(V ′′)
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and consequently F can be written as

F =

3∑
i=0

Fi, Fi ∈ Si(V ′)⊗ S3−i(V ′′)

Because of the fact that X has multiplicity 2 along Y , we have F0 = 0, F1 = 0 hence F
can be reduced to the following form:

F (X0, . . . X4) = X3q3(X0, X1, X2) +X4q4(X0, X1, X2) + c(X0, X1, X2).

with deg (q3(X0, X1, X2)) = deg (q4(X0, X1, X2)) = 2 and deg (c(X0, X1, X2)) = 3.
The quadric tangent cones to points in Y draw a pencil of quadrics QY ⊂ |OP4(2)|. The
quadric tangent cone to the point [t0 : t1] ∈ Y is the element Q[t0:t1] ∈ QY defined by:

Q[t0:t1] = t0q3(X0, X1, X2) + t1q4(X0, X1, X2). (2.9)

We observe that every element of QY is singular along the line Y , hence it has rank less
than or equal to 3. We recognize here two subcases:

• A general element in QY has rank 3 (namely the line Y is of first type);

• Every quadric in QY has rank at most 2 (namely the line Y is of second type).

Y is a line of first type
If Y is a line of first type, we see from (2.9), that on Y we have 3 binodes x1, x2, x3.
(These correspond to the three points where the pencil QY meets the locus of quadrics
of rank less than 3).

Proposition 2.3.3. Let X be a cubic threefold singular along a line Y of first type.
Then a general hyperplane section of X is a cubic surface with one A1 singularity.

Proof. We know that for H general, the cubic surface S := H∩X is singular along Y ∩H.
Whenever such a hyperplane H meets the line Y in a point y0 6= xi for i = 0, 1, 2 (again,
all these are “open conditions” on P4∗), the resulting intersection S is a cubic surface
whose only singular point is y0. The condition that Y ∩H = {y0} implies that Y 6⊂ H,
so that the quadric tangent cone to S at y0 is defined by a quadric of rank 3 (singular
along y0), hence y0 is a conic node. S has thus an A1 singularity in y0.

Y is a line of second type
If the line Y is of second type, a general element y0 ∈ Y is a binode; every quadric in
the pencil QY is singular along a plane and is a pair of linear spaces P3. For a suitable
change of coordinates we might suppose that y0 = [1 : 0 : 0 : 0 : 0], so that F can be
written as:

F = X0q0(X3, X4) + c′(X1, X2, X3, X4).

Consider H0 ⊂ P4 an hyperplane orthogonal to y0, that we can assume having equation
{X0 = 0}. All lines passing through y0 are of the form y0x, where x varies along the
sestic curve D2,3

y0
⊂ H0:

D2,3
y0

= {X0 = q0(X3, X4) = c′(X1, X2, X3, X4) = 0}.

We observe that this curve is not irreducible but is the union of two plane cubic curves.
Indeed, denote by S0 the intersection X ∩ H0 and by Q0 the quadric defined by the
equations {X0 = 0, q0(X3, X4) = 0}. Q0 is a union of two planes ∆3, ∆4, so that
D2,3
y0

= (S0 ∩∆3)∪ (S0 ∩∆4) . This also allows us to notice that X can have at most one
other singular point. That’s because all singular points of X lie on lines y0x, where x is
a point in D2,3

y0
and S0, Q0 meet with multiplicity greater than one. As Q0 = ∆3 ∪∆4,

we deduce that all singular points must project to S0 ∩ L3,4 where L3,4 ⊂ H0 is the line
∆3 ∩∆4. This intersection consist of the point Y ∩H0 and of at most one other point
(otherwise we would have X singular along the plane 〈 y0, L3,4 〉).
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Proposition 2.3.4. Let X be a cubic threefold singular along a line of second type. Then
a general hyperplane section of X is a cubic surface with one A2 singularity.

Proof. Consider a hyperplane H such that Sing (X ∩H) consists of Y ∩H = y0 and that
moreover satisfies the condition rk (q0|H) = 2 (H is a general hyperplane through y0).
Under generality assumptions, we might also suppose that H ∩ (L3,4 ∩ S0) = ∅. The
cubic surface S = X ∩ H presents just one singular point at y0, a binode. Following
[BW] Lemma 3, in order to determine the nature of the singularity, we have to look at
the intersection H ∩ (S0 ∩ L3,4). Since for our choice of H this intersection is empty, we
can conclude that the point y0 is an A2 singularity.

Cubic threefolds singular along a conic

Let be X be a cubic threefold containing a double conic Y supported on Y = ν2(P1)
where ν2 is defined as:

ν1 : P1 −→P4

[t0 : t1] 7→[t20 : t0t1 : t21 : 0 : 0].

Choose coordinates on P4 in such a way that Y := {X3 = 0, X4 = 0, q(X0, X1, X2) = 0},
where q(X0, X1, X2) is the polynomial X2

1 −X0X2. We know that if Y ⊂ Sing (X), we
can then write F as F =

∑4
i=0XiQi with Qi ∈ (X3, X4, q(X0, X1, X2))2. Hence

F =
∑

i,j∈{3,4}

lij(X0, . . . X4)XiXj + l012(X0, . . . X4)q(X0, X1, X2) (2.10)

where the lijs and l012 are linear forms. From 2.10 we get:

F = c(X3, X4) +

2∑
i=0

Xiqi(X3, X4) + l(X3, X4)q(X0, X1, X2) + a(X0, X1, X2)

where deg(l(X3, X4)) = 1, deg qi(X3, X4) = deg(q(X0, X1, X2)) = 2, i = 0, . . . , 2 and
deg(c(X3, X4)) = deg(a(X0, X1, X2)) = 3. Call ∆ ' P2 the plane defined by the equa-
tions {X3 = 0, X4 = 0}. As Y ⊂ ∆, the plane cubic X ∩∆ = {a(X0, X1, X2) = 0} must
be singular along Y hence we can conclude that a(X0, X1, X2) must be equal to zero.
Finally we obtain that F can be reduced to the following form:

F = c(X3, X4) +

2∑
i=0

Xiqi(X3, X4) + l(X3, X4)q(X0, X1, X2) (2.11)

This time the quadric tangent cones to X at points on Y describe a conic QY ⊂ |OP4(2)|.
The quadric tangent cone at the point [t0 : t1] ∈ Y is the element Q[t0:t1] ∈ QY :

Q[t0:t1] = (t20q0(X3, X4)+t0t1q1(X3, X4)+t21q2(X3, X4))−(t0
2X2−2t0t1X1+t1

2X0)l(X3, X4)

Y is a conic of first type
We suppose now that the generic element of QY is a quadric of rank 3 (namely Y is
a double conic of first type). If this is so, the conic Y presents two binodes x1, x2.
These are the two points whose coordinates [t0 : t1] are such that the quadric of equation
t20q0(X3, X4) + t0t1q1(X3, X4) + t21q2(X3, X4) contains the hyperplane {l(X3, X4) = 0}.

Proposition 2.3.5. Let X be a cubic threefold singular along a conic of first type. Then
a general hyperplane section of X is a cubic surface with 2 A1 singularities.
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Proof. For y 6= xi, i = 1, 2, the quadric tangent cone at y is a quadric singular along the
line TyY . Consider now a hyperplane H ⊂ P4 such that Sing (X∩H) = Y ∩H consists of
two points y1, y2 different from x1 and x2. Choosing this hyperplane in such a way that
TyiY 6⊂ H, for i = 1, 2; we get that the hyperplane section S := X ∩H is a cubic surface
presenting just two conic nodes y1, y2. S is thus a cubic surface with 2A1 singularities.

Remark 15. The conic Y might also be supported on Y = L0∪L1, the union of two lines
meeting at a point x0. We still can choose coordinates on P4 in a way that F has the
form 2.11, but this time the degree two form q can be written as q(X0, X1) = X0X1. We
assume that the line Li has equations {X3 = X4 = Xi = 0}, for i = 0, 1. The quadric
tangent cones at points in Y define now two pencils of quadrics QLi ⊂ |OP4(2)|, i =
1, 2, meeting at a point. Choose an arbitrary point y on one of these lines, say L0,
y = [0 : t0 : t1 : 0 : 0]. The quadric tangent cone at this point is:

QL0,[t0:t1] = (t0q0(X3, X4) + t1q2(X3, X4)) + l(X3, X4)(t0X1).

Hence a general point on each line is a conic node whether the point x0 is either a binode
or a unode. For a general hyperplane H, X ∩H is again a cubic surface having two A1

singularities in H ∩ Li, i = 0, 1.

Y is a conic of second type
Suppose now that Y is a conic of second type, namely a general point of Y is a bin-
ode. The condition that Y is a double conic of second type is equivalent to having
l(X3, X4)|qi(X3, X4) for i = 0, 1, 2 in the equation 2.11. The polynomial F can then be
written as:

F = c(X3, X4) +X3(

2∑
i=0

(αiX4Xi)) +X3q(X0, X1, X2)

where c(X3, X4) is a form of degree 3 such that X3 - c(X3, X4). This time the conic
QY ⊂ |OP4(2)| parametrizing quadric tangent cones to X at points [t0 : t1] ∈ Y has the
form:

QY [t0:t1] = X3[t20(α0X4 −X2) + t0t1(α1X4 − 2X1) + t21(α2X4 −X0)].

Each of these quadric cones decomposes in the union of two spaces. One of them is a
hyperplane T fixed ( it is the hyperplane of equation X3 = 0), the other varies along a
family of hyperplanes over Y , HY,[t0:t1] ⊂ |OP4(1)|. We denote by h[t0:t1] the linear form
defining HY,[t0:t1].

Proposition 2.3.6. Let X be a cubic threefold singular along a conic of second type.
Then a generic hyperplane section of X is a cubic surface with 2 A2 singularities.

For a general hyperplane H ⊂ P4, the cubic surface S = X ∩ H is singular along 2
binodes {y1, y2} = Y ∩H. Arguing exactly as for the case of cubic threefolds containing
a double line of second type, we can choose H in such a way that at each point yi, the
surface S has an A2 singularity. Indeed taking any point y having coordinates [t0 : t1]
on Y and a plane Hy orthogonal to it defined by a linear equation h(X0, . . . , X4) = 0,
we compute that the intersection Hy ∩X ∩HY,[t0:t1] ∩ T is defined by the equations

h(X0, . . . , X4) = h[t0:t1](X0, . . . X4) = X3 = c(X3, X4) = 0

and consists then in at most 3 points. Imposing the additional (open) condition that H
does not pass through any of these points, we finally have that S = H ∩X presents two
A2 singularities at y1, y2.
Remark 16. Again, the conic Y might also degenerate to the union of two double lines of
second type Y1, Y2 meeting at a point x0. If this is the case, every point y ∈ Y is a binode
except from the point x0 that is a unode. Anyway arguing exactly as in the smooth case
we can conclude that a general hyperplane section of X is still a cubic surface with 2A2

singularities.
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Cubic threefolds singular along three non coplanar lines meeting at a point

Suppose that X contains a double curve Y ⊂ Sing (X) supported on the union of three
lines L0, L1, L2 meeting at a point x0 and not lying in the same plane. Choose linear
coordinates in such a way that the lines Lis are given by:

L0 = {X3 = X1 = X2 = 0} L1 = {X3 = X0 = X2 = 0} L2 = {X3 = X0 = X1 = 0}.

For this choice of coordinates on P4 the homogeneous ideal defining the curve Y is
(X3, X0X1, X0X2, X1X2) and x0 is the point [0 : 0 : 0 : 0 : 1]. F belongs to the ideal
(X3, X0X1, X0X2, X1X2) and since F is singular along each line Li we have

F =
∑

i,j∈{0,1,2}

lij(X0, . . . X4)XiXj + h(X0, . . . X4)X2
3 ,

where deg(lij(X0, . . . X4)) = deg(h(X0, . . . X4)) = 1 leading to:

F = αX3
3 +X2

3 l(X0, X1, X2, X4) +X3q(X0, X1, X2) +X4(

2∑
i=0

βi
X0X1X2

Xi
)

where l is a linear form l =
∑
i6=3

aiXi and q is a degree 2 polynomial q =
2∑

i,j=0
i6=j

bijXiXj .

The quadric tangent cones at points in Y determine three pencils of quadrics
QLi

⊂ |OP4(2)|:

QLi = t0(aiX
2
3 +X3(

2∑
j=0,
i 6=j

bijXj) +X4(

2∑
j=0,
i 6=j

βjXj)) + t1(a4X
2
3 +

2∑
j=0

βj
X0X1X2

Xj
),

with [t0 : t1] ∈ P1, i, j, k ∈ {0, 1, 2}.
We see thus that a general element of each line is a conic node, the point x0 is a unode.

Proposition 2.3.7. Let X be a cubic threefold singular along three non coplanar lines
meeting at a point. Then a general hyperplane section of X is a cubic surface with 3 A1

singularities.

Proof. Arguing exactly as in the previous cases of curves of first type, we see that
for a general hyperplane H, S = H ∩ X is a cubic surface with three conic nodes
{y0, y1, y2, } yi = H ∩ Li ; hence a cubic surface with 3 A1 singularities.

Cubic threefolds singular along a rational normal quartic

We consider X, the secant variety of a rational quartic curve Y . The singular locus of
X is the entire curve Y . We express Y as the image of the embedding:

ν4 : P1 −→P4

[t0 : t1] 7→[t40 : t30t1 : t20t
2
1 : t0t

3
1 : t41].

Y is the intersections of the quadrics:

q0 = X2X4 −X2
3 , q1 = X2X3 −X1X4, q2 = 2X1X3 − 3X2

2 ,

q3 = X1X2 −X0X3, q4 = X0X2 −X2
1 .

defined by the minors of the matrix:(
X0 X1 X2 X3

X1 X2 X3 X4

)
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The polynomial F defining X, secant variety of Y , is the determinant of the matrix:

N =

X0 X1 X2

X1 X2 X3

X2 X3 X4


Therefore we get:

F = X0(X2X4 −X2
3 ) +X2(X1X3 −X2

2 ) +X1(X3X2 −X1X4).

The quadric tangent cones to X at points on Y belong to a rational quartic QY contained
in |OP4(2)|. The quadric tangent cone at the point [t0 : t1] ∈ Y is defined by:

QY,[t0:t1] = t40q0 + 2t30t1q1 + t20t
2
1q1 + 2t0t

3
1q3 + t41q4. (2.12)

Proposition 2.3.8. Let X be the secant cubic threefold. Then a general hyperplane
section of X is a cubic surface with 4 A1 singularities.

Proof. For a general hyperplane H ⊂ P4, the cubic surface S := H ∩X is singular along
Y ∩ H hence it presents 4 singular points y1, . . . y4. From (2.12) we see that a general
point of Y is a conic node, therefore under generality assumptions we can suppose that
S presents 4 A1 singularities at the points yi.

Remark 17. A possible degeneration of the situation we have just studied occurs when
the quartic consists of the union of two conics Y1, Y2 meeting in a point x0 but not lying
in a same hyperplane. The general point of each conic is a conic node (more precisely
every point in Y is a conic node apart from the point x0 that is a binode). Again, a
general hyperplane section is a cubic surface presenting 4 A1 singularities.

Summing up what we have proved so far is the following:

Proposition 2.3.9. Let X be a cubic threefold singular along a curve Y of degree d and
of r-th type. Then for a general hyperplane H ⊂ P4, S := H ∩X is a cubic surface with
d Ar singularities.

The upcoming sections are devoted to the proof of theorem 2.3.2. We will exhibit two
different methods to prove the existence of the AG elliptic quintic C on a normal cubic
threefold X. The first method relies on a deformation argument and allows us to prove
that on certain normal threefolds there always exists a smooth normal elliptic quintic; the
second method is constructive and produces directly AG elliptic quintics. Both methods
are based on the study of curves on a general hyperplane section of X. From what we
have just explained, for a general hyperplane H ⊂ P4, the intersection S := X ∩H is a
cubic surface with isolated singularities that are at most rational double points (RDPs
for short). The study of curves on S will then reduce to the study of curves on a minimal
resolution of singularities of S:

φ : S̃ → S.

A cubic surface S ⊂ P3 presenting rational double points is a del Pezzo surface of degree
3. A minimal resolution S̃ → S is a so called weak Del Pezzo surface of degree 3.

2.3.2 Singular cubic surfaces and weak Del Pezzo surfaces

We recall in this section some properties of Del Pezzo and weak Del Pezzo surfaces. The
main references for the section are [CAG] and [Dem].

Definition 2.10. A Del Pezzo surface S is a nondegenerate irreducible surface of degree
d in Pd that is not a cone and that is not isomorphic to a projection of a surface of degree
d in Pd+1.
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Theorem 2.3.10. Let S be a Del Pezzo surface of degree d in Pd. Then all its singu-
larities are rational double points and ω−1

S is an ample invertible sheaf.

See [CAG] 8.1.3 for a proof.

If S is a singular Del Pezzo surface, a minimal resolution of S, φ : S̃ → S, is a so called
weak Del Pezzo surface. Before describing how the resolution φ is defined, we give some
preliminary notions on weak Del Pezzo surfaces.

Definition 2.11. A weak Del Pezzo surface is a smooth surface S̃ such that the anti-
canonical class −KS̃ is nef and big.

A possible way to construct a weak del Pezzo surface S̃, is from a sequence of blowups
of N points, N ≤ 8:

XN := S̃
πN−−→ XN−1

πN−1−−−→ . . .
π1−→ P2 := X0

where each morphism Xi
πi−→ Xi−1 is the blowup at a point pi ∈ Xi−1. From now on,

whenever pi ∈ Ei−1, Ei−1 := π−1
i (pi−1), we will write pi �1 pi−1. Roughly speaking,

just as for the case of a smooth cubic surface, we are still blowing up an N-tuple of points
p1, . . . pN , but this time we are also allowing configurations with couples of points pi, pj
such that pi is “infinitely near” pj . In order to effectively obtain a weak del Pezzo surface,
we have constraints, that we are going to illustrate, on the N -tuple p1, . . . pN .
More generally, consider a surface XN obtained from an N -tuple of points p1, . . . pN , by
a sequence of blowups:

XN
πN−−→ XN−1

πN−1−−−→ . . .
π1−→ P2 := X0

with:
pi ∈ Xi−1, Xi := BlpiXi−1.

Set:
πki := πi+1 ◦ · · · ◦ πk : Xk → Xi, πN0 := π : XN → P2.

On each surface Xi, for i = 1, . . . , N we denote by Ej the total transform of the point
pj , j ≤ i:

Ej = π−1
j (pj), Ej := πi,j

∗( Ej) for j = 1, . . . , i.

We then define the divisors Ê1, . . . Ên on Xi, as follows. On X1 we define Ê1 as
Ê1 := E1 = π−1

1 (p1), onX2 we define Ê1 to be the strict transform of the divisor Ê1 ⊂ X1

previously defined and we denote Ê2 := E2 = π−1
2 (p2); proceeding in this way, at

the “i-th step”, we will define Ê1, . . . Êi−1 to be the strict transforms of the divisors
Ê1, . . . Êi−1 on Xi−1 and we call Êi := Ei = π−1

i (pi).
So, from the construction we see that the divisors Ê1, . . . Êi are the irreducible compo-
nents of E1, . . . , Ei. Therefore on Xi we have:

Êj = Ej − εj,j+1Ej+1 − · · · − εj,iEi j = 1, . . . , i. (2.13)

We say that the N -tuple p1, . . . pN satisfies the condition (*) if:

• (*) for i = 1, . . . , N , if there exists an index j, j ≤ i−1 such that pi+1 ∈ Xi belongs
to Êj , then Êj = Ej .

The condition is equivalent to require that in each expression (2.13) we have at most one
coefficient εj,k different from zero.
From now on we will suppose that N ≤ 8.

Definition 2.12. We say that the N -tuple of points p1, . . . , pN is in almost general
position if:
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• it satisfies condition (*);

• No lines in P2 passes through four points among the pis;

• No smooth conics in P2 passes through seven points among the pis.

Here, for a curve C ⊂ P2, we say that C passes through the point pi if pi belongs to the
strict transform of C in Xi.

Theorem 2.3.11. Let XN be a surface obtained by blowing up an N -tuple of points,
N ≤ 8, in almost general position.Then we have the following:

• The anticanonical system |−KXN
| has no fixed component for N = 8 and it is base

point free for N < 8.

• The anticanonical divisor −KXN
is big and nef.

See [Dem] III, Thm 1 for a proof.

From this theorem we see that XN obtained by blowing up N points in almost general
position is a weak Del Pezzo surface. The only weak del Pezzo surfaces that do not arise
in this way are a smooth quadric surface Q ' P1×P1 or F2, the blowup of the cone over
a smooth conic.

Theorem 2.3.12 ([CAG]. Thm 8.1.15). A weak del Pezzo surface is isomorphic either
to a smooth quadric surface either to F2, the blowup of the cone over a smooth conic, or
to the blowup of N ≤ 8 points in almost general position.

Suppose now that S is a singular Del Pezzo surface and let φ : S̃ → S be a minimal
resolution of singularities. We recall that this means that S̃ is a smooth surface, φ is a
birational morphism that is an isomorphism outside the singular locus of S and moreover
φ is “minimal” in the sense that it does not factor non-trivially through other resolutions.

Theorem 2.3.13 ([CAG]. Thm 8.1.15). The minimal resolution of a Del Pezzo surface
is a weak Del Pezzo surface.

Remark 18. We say that an N -tuple of points p1, . . . , pN , N ≤ 8, lies in general position
if:

• All the points pi belong to P2, for i = 1, . . . , N .

• No three points among the pis are collinear.

• No six points among the pis lie on a smooth conic.

• No cubic passes through all the points with one of them being a singular point.

Let now XN be the smooth surface obtained by blowing up these points. It is proved in
[Dem], II Thm. I that:

Theorem 2.3.14. The following condition are equivalent:

• The points p1, . . . pN lie in general position.

• The anticanonical system | −KS | is ample.

Therefore a weak del Pezzo surface is a smooth del Pezzo surface if and only if it is
obtained by blowing up N ≤ 8 points on P2 in general position. Under this assumptions,
when N = 6 the surface obtained is a smooth cubic surface.
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The structure of the Picard group

Throughout the rest of the section, we will consider an N -tuple of points p1, . . . pN ,
N ≤ 8, in almost general position and we will denote by XN the weak Del Pezzo surface
obtained blowing them up. We keep the notations adopted so far.
From the construction of XN , we see that its Picard group Pic (XN ) is a free abelian
group of rank N + 1. Indeed, denote by e1, . . . eN the classes of E1, . . . EN and by l be
the class of π∗(L) for a line L ⊂ P2; we have:

Pic (XN ) = π∗(Pic (P2))⊕ Ze1 ⊕ · · · ⊕ ZeN = Zl ⊕ Ze1 ⊕ · · · ⊕ ZeN .

We compute immediately that the canonical class is:

KXN
= −3l + e1 − · · ·+ eN .

The intersection product defines a symmetric bilinear form on Pic (XN ). Since we have:

l2 = 1, e2
i = −1, ei · ej = 0, 0 < i 6= j;

we see that in the basis (l, e1, . . . , eN ), the intersection product is represented by the
matrix diag(1,−1, . . . ,−1). This endows Pic (XN ) with the structure of a unimodular
lattice of signature (1, N).

The EN lattice
We recall here some basics from lattice theory that we will need in the upcoming sections.
Let Λ be a free abelian group of rank N + 1:

Λ = Ze0 ⊕ · · · ⊕ ZeN

endowed with a symmetric bilinear form ( · ) : Λ×Λ→ Z defined by the (N+1)×(N+1)
diagonal matrix of diag(1,−1,−1, · · · ,−1,−1), with respect to the basis e0, · · · eN . Λ is
a unimodular lattice of signature (1, N). Let KN be the vector KN = −3e0 +

∑N
i=1 ei

and denote by EN the sublattice of Λ defined by:

EN := (ZKN )
⊥
.

We introduce the following subsets of Λ:

Exc := {v ∈ Λ | v2 = −1, v ·KN = −1}

R := {α ∈ EN | α2 = −2}

Elements belonging to Exc are called exceptional elements and elements in R are called
roots.

Definition 2.13. A subset β ⊂ R, β = {β1, . . . βr} is called a root basis if the βis are
linearly independent (over R) and βi · βj ≥ 0, ∀ i 6= j. A root basis is called irreducible
if it is not equal to the union of two non-empty subsets β

′
and β

′′
such that βi · βj = 0

whenever βi ∈ β
′
and βj ∈ β

′′
.

Definition 2.14. A subset ∆ ⊂ R is called a simple system if the elements of ∆ are
linearly independent over R, they span EN (namely ∆ form a basis for the R span of R
in EN ⊗ R) and moreover each α ∈ R can be written as linear combination of elements
in ∆ with coefficient all of the same sign (all non-negative or all non-positive).

If ∆ ⊂ R is a simple system, a root α in ∆ is called a simple root. An example of simple
system in EN is provided by the following roots:

β1 = e0 − e1 − e2 − e3, βi = ei−1 − ei for i = 2, · · · .N

The bilinear form ( · ) restricted to EN is negative defined and non degenerate, its matrix
in the basis β1, · · ·βN is:
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CN =



−2 0 0 1 0 0 0 0 · · · 0
0 −2 1 0 0 0 0 0 · · · 0
0 1 −2 1 0 0 0 0 · · · 0
1 0 1 −2 1 0 0 0 · · · 0
0 0 0 1 −2 1 0 0 · · · 0
0 0 0 0 1 −2 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 0 −2 1


(2.14)

We have that CN = −2IN + MN where MN is the incidence matrix of the Coxeter-
Dynkin diagram of type EN .

En

Note that whenever we fix a simple system ∆ = {β1, . . . βN} we obtain a partition of
R, R = R+ t R− where R+ and R− are respectively the sets of non negative and non
positive linear combinations of the βis.

The Weyl group
For every root α ∈ R we denote by rα the orthogonal transformation of Λ given by:

rα(v) := v + (v · α)α.

rα is called the orthogonal reflection relative to α. We observe that rα(α) = −α, r2
α = id

and rα(v) = 0 whenever v · α = 0. Moreover rα preserves the intersection form and it
fixes KN . From these facts we deduce that each rα induces permutations of EN , Exc and
R. The group W (R) (for lattices of type EN it is sometimes just denoted by W (EN ))
generated by all the reflections rα for α ∈ R is called the Weyl group.
We have the following:

Theorem 2.3.15 ( [Dem], II Thm. 3).

• The group W (R) is the group of automorphism of Λ preserving the bilinear form
( · ) ad that fix KN .

• W (R) acts transitively on R and on Exc .

Denote by V the vector space defined as V := Λ ⊗ R; we extend the form ( · ) by
linearity to a bilinear form on V . Given any root α ∈ R, we consider Hα ⊂ V , the
hyperplane orthogonal to α. The hyperplanes Hα partition V into finitely many regions.
The connected components of V \

⋃
α∈RHα are called open Weyl chambers, their clo-

sure are referred to as closed Weyl chambers. If ∆ ⊂ R is any simple system, the set
K∆ := {v ∈ V | v · α > 0 ∀α ∈ ∆} is called the fundamental Weyl chamber associated to
∆ . Fundamental Weyl chambers associated to simple systems satisfy the following:

Theorem 2.3.16 ( [Hum] Thm 1.12).

• For all vectors v ∈ V there exist a unique point u ∈ K∆ such that u = r(v),
∃ r ∈W (R).

• If r(v) = u for u, v ∈ K∆ and r ∈ W (EN ), then v = u and r is a product of
orthogonal reflections rα, α ∈ ∆ fixing v (namely reflections rα with α ∈ ∆).

Remark 19. The theorem applies, in a more general contest, to couples (V, Φ) where V
is an euclidean real vector space and Φ a so called root systems in V . (We refer to [Hum]
for further details).
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Negative curves on Weak del Pezzo surfaces

In this section we study negative curves, namely irreducible and reduced curves having
negative self intersection, on weak Del Pezzo surfaces. As usual we denote by XN a
weak Del Pezzo surface of degree 9−N obtained blowing up N points in almost general
position. Given any curve irreducible and reduced curve C ⊂ XN , by adjunction formula
we have:

KXN
· C + C2 = 2pa(C)− 2 ≥ −2.

The nefness of the anticanonical class −KXN
implies C2 ≥ −2, hence if C is a negative

curve, we can have either C2 = −2 or C2 = −1.
If ever C2 = −1 we have 0 ≤ pa(C) = 1 + 1

2 (C2 +KXN
·C) = 1 + 1

2 (KXN
·C− 1) so that

KXN
· C ≥ −1. −KXN

is nef, hence −1 ≤ KXN
· C ≤ 0; moreover pa(C) is an integer

so that we conclude that KXN
· C = −1, pa(C) = 0 and therefore C ' P1. This means

that every negative curve having self intersection −1 is a rational curve whose class in
Pic(XN ) lies in Exc , the set of exceptional element. A negative curve C with C2 = −1
is called a (−1)−curve.
If C is a negative curve with self intersection equal to −2, so that its class in Pic(XN ) is
a root, we have 0 ≤ pa(C) = 1

2 (KXN
·C) ≤ 0 and this implies that C is a rational curve

satisfying KXN
· C = 0. Vice versa, given any irreducible (reduced) curve C ⊂ XN such

that C ·KXN
= 0, we have 0 ≤ pa(C) = 1 + 1

2 (KXN
· C + C2) = 1 + 1

2 (C2), leading to
C2 ≥ −2. We saw in the previous section that the intersection form is nondegenerate and
negative defined on (ZKS̃)

⊥, thus C2 < 0. Since pa(C) is an integer, C2 must be even,
consequently we conclude that C2 = −2, pa(C) = 0 and hence C ' P1. This also means
that the class of C is a root in Pic(XN ). An irreducible curve C having self intersection
equal to −2 is called a (−2)−curve.

Definition 2.15. An effective root is a root α ∈ Pic (XN ) corresponding to the class
of an effective divisor. An irreducible root is a root α ∈ Pic(XN ) corresponding to the
class of a (−2)−curve. We denote by Re ⊂ R and by Ri ⊂ Re, respectively, the sets of
effective and irreducible roots.

When the points p1, . . . , pN are in general position (namely when XN is a Del Pezzo
surface), Pic (XN ) contains no effective roots, as stated in [Dem], Thm III.1.

Theorem 2.3.17. [[Dem] Thm III.1 (v)] The following conditions are equivalent on XN :

• XN is Del Pezzo;

• There does not exist an effective element α ∈ Pic (XN ) such that α2 = −2,
KXN

· α = 0.

Thus if XN is Del Pezzo, the only negative curves on XN are (−1)-curves. If we ask
for the N -tuple p1, . . . , pN to satisfy the weaker condition of being in almost general
position, XN can also contain (−2)-curves so that in Pic (XN ) there might also exist
effective roots. (Note that as a negative curve does not move in its linear equivalence
class, we can identify it with its class in Pic (XN )). Let now C be any effective divisor
with C2 = −2; write C as

∑
i niRi with the Ris effective and irreducible divisors in XN ,

and ni ≥ 0,∀ i. Since

0 = C ·KXN
=
∑
i

ni(Ri ·KXN
), and ni ≥ 0 ∀ i,

by the fact that KXN
is nef, we get that Ri ·Ks = 0, ∀ i. Therefore, still by adjunction,

deg (KRi
) = R2

i ≥ −2. Now, as the Ris are effective divisors, whenever i 6= j we have
that Ri · Rj ≥ 0. This inequalities together with the condition C2 = −2 implies that
R2
i = −2,∀ i. So, summing up, each effective roots α ∈ Pic (XN ) has a (unique) repre-

sentative expressed as a linear combination, with non negative coefficients, of irreducible
(−2)-curves.
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Definition 2.16. A Dynkin curve on XN is a reduced connected curve R such that
its irreducible components Ri are (−2)-curves and the intersection matrix (Ri · Rj) is a
symmetric integer matrix with:

(Ri ·Rj) ≥ 0 for i 6= j and (Ri ·Ri) = −2.

To a Dynkin curve R we can associate a connected graph ΓR, called
Dynkin-Coxeter diagram. To each irreducible component Ri of R corresponds a ver-
tex vi, weighted by Ri · Ri; the vertices vi and vj are connected by Ri · Rj edges. A
connected graph obtained in this way is of one of the following types:

An

Dn

E6

E7

E8

We will call ADE type of a Dynkin curve R, the ADE type of the corresponding Dynkin-
Coxeter diagram.
We conclude the section stating a useful criterion allowing to determine when an excep-
tional element of Pic(XN ) correspond to the class of a (−1)−curve.

Proposition 2.3.18. [[CAG]. Lemma 8.2.22] Let XN be a weak del Pezzo surface of
degree d = 9 − N > 1 and let D be a divisor class with D2 = D · KXN

= −1. Then
D = E + R where R is a non-negative sum of (−2)-curves, and E is a (−1)-curve.
Morevoer D is a (−1)-curve if and only if for each (−2)-curve Ri ⊂ XN , we have
Ri ·D ≥ 0.
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The anticanonical model

We saw that the anticanonical class of XN is represented in Pic (XN ) by the vector
(3,−1,−1, . . . ,−1) = 3l − (

∑N
i1
ei). It has self intersection K2

XN
= 9−N .

Definition 2.17. Let XN be a weak Del Pezzo surface obtained by blowing up an
N -tuple of points lying in almost general position. The degree of XN is the integer
d = 9−N = K2

XN
.

Recall that, from theorem 2.3.11, whenever N < 8, the anticanonical system is base point
free. If furthermore we restrict to N ≤ 6 we have the following:

Theorem 2.3.19. [[CAG] Thm 8.3.2] Let XN be a weak del Pezzo surface of degree
d ≥ 3 obtained by blowing up N := 9 − d points in almost general position; let R be the
union of (−2)-curves on XN . Then | −KXN

| defines a regular map

φ−KXN
: XN → P(H0(−KXN

)∗) ' Pd

which is an isomorphism outside R. The image S of this map is a Del Pezzo surface of
degree d. The image of each connected component of R is a rational double point of S.

The birational morphism φ−KXN
: XN → S is a resolution of the surface S. This map

contracts each Dynkin curve R ⊂ XN to a RDP pR of S; pR is a a singularity of the type
of the Dynkin diagram of R. Given now a curve C̃ ⊂ XN , let C ⊂ S be its image through
φ. C passes through the singular point pR if and only if C̃ intersects a component of the
Dynkin curve R contracted to pR.

Weak del Pezzo surfaces of degree 3
From now on we will always deal with weak del Pezzo surfaces of degree 3. A degree 3
weak Del Pezzo surface S̃ is obtained as the blowup π : S̃ 99K P2 of 6 points p1, . . . p6 in
almost general position. Keeping the notations previously adopted we write Pic(S̃) as
the rank 7 free abelian group Pic(S̃) = Zl⊕6

i=1 Zei with l the class of π∗(L) for a generic
line L ⊂ P2 and ei the classes of π−1(pi). The orthogonal to KS̃ = −3l +

∑6
i=1 ei is a

lattice of type E6. Following [CAG], Prop. 8.2.7. in E6 there exists 72 roots and they
are all of the following types:

±αij , ±αijk, 2l − e1 − · · · − e6

with:

αij = ei − ej , 1 ≤ i < j ≤ 6, αijk = e0 − ei − ej − ek, 1 ≤ i < j < k ≤ 6.

By theorem 2.3.19, the rational map φ−KS̃
defined by−KS̃ contracts all Dynkin curves on

S̃ to singular points of the cubic surface S := im(φ−KS̃
). All the possible configurations

of Dynkin curves on S̃, or equivalently all the possible configurations of RDPs on S are
the following (see for example [BW]):

A1, A2, A3, A4, A5, 2A1, A1 +A2, 2A2, A3 +A1, A4 +A1, A5 +A1

3A1, 2A1 +A2, 2A2 +A1, 3A2, A3 + 2A1, D4, D5, E6.

2.3.3 Existence of smooth normal elliptic quintics
In this section we use the notions previously introduced to show the existence of smooth
elliptic quintics on certain normal cubic threefolds. The method that we adopt to prove
the existence of these curves relies on a deformation argument: it consists indeed in first
proving that there exists a smooth quintic elliptic curve C0 contained in a hyperplane
section of X; then it is shown that C0 deforms to a nondegenerate curve C in X. A
smooth curve C obtained in this way is always AG. Indeed, any smooth nondegenerate
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elliptic quintic C is ACM by Remark 9 and by the projective normality of the smooth
curves of genus g ≥ 1 embedded by complete linear systems of degree ≥ 2g + 1 (see
[Mum, Corollary from Theorem 6]); as moreover OC ' ωC , C is subcanonical, hence it is
AG. We prove the following:

Theorem 2.3.20. Let X be a normal cubic threefold that is not a cone and that satisfies
one of the following two conditions:

• X has isolated singularities;

• Sing (X) contains a curve Y that is either a line or a conic of first type or the
union of three non-coplanar lines meeting at a point.

Then there exists a smooth nondegenerate quintic elliptic curve C ⊂ X.

From Theorem 2.3.20 we will deduce:

Proposition 2.3.21. Let X be a cubic threefold satisfying one of the hypotheses of
2.3.20. Then there exists a rank 2 skew-symmetric Ulrich bundle E ∈ Coh (X).

Consequently:

Corollary 2.3.22. Let X be a cubic threefold satisfying one of the hypotheses of 2.3.20.
Then X is Pfaffian.

Illustration of the method in the smooth case

The smooth case was treated in detail in [MT1]. As the proof of the singular case is
obtained, in part, by an extension of the method of proof for the smooth case, we start
by recalling it. So, first suppose that X is smooth. Applying Bertini’s theorem, for a
general hyperplane H ⊂ P4, the intersection S := X ∩H is a smooth cubic surface. A
smooth cubic surface S is a Del Pezzo surface of degree 3, hence it can be realized as
the blowup of P2 in 6 points p1, . . . , p6 in general position. Denote by π : S → P2 the
corresponding birational morphism and write Pic(S) = Zl ⊕6

i=1 Zei where as usual l is
the class of π∗(L) for a generic line L ⊂ P2 and the eis are the classes of the exceptional
(−1)-curve E0, . . . , E6, Ei = π−1(pi).
Choose now 4 points p1, . . . p4 among the pis and consider the linear system

|3l − p1 − p2 − p3 − p4| ⊂ |OP2(3)|, |3l − p1 − p2 − p3 − p4| ' P5

of plane cubics passing through them. For every C3 ∈ |3l − p1 − p2 − p3 − p4| the strict
transform π−1(C3) is an elliptic curve (this can be computed on S by adjunction or
from g(π−1(C3)) = g(C3) = 1), belonging to the class (3,−1,−1,−1,−1, 0, 0) ∈ Pic (S).
The linear system |(3,−1,−1,−1,−1, 0, 0)| is base-point free (this can be deduced from
the fact that, by [Hart] Ch. V Thm 4.6, the class (3,−1,−1,−1,−1) is very ample on
Blp1,...p4

P2); thus, by Bertini’s theorem, a general element C0 ∈ |(3,−1,−1,−1,−1, 0, 0)|
is smooth. We compute that:

deg (C0) = (−Ks) · C0 = 5

hence C0 is a smooth elliptic quintic contained in S.

In order to show that C0 deforms in X to a nondegenerate curve C we first need to check
that Hilb 5n

X , the Hilbert scheme of elliptic quintics on X, is smooth at the point [C0].
Consider now the short exact sequence of sheaves on C0:

0 −→ NC0/S −→ NC0/X −→ NS/X |C0 −→ 0. (2.15)

NC0/S ' OC0(C0) is a line bundle of degree C2
0 = 5, the same holds for NS/X |C0 ' OC0(1).

Hence h0(NC0/S) = h0(NS/X |C0) = 5, and h1(NC0/S) = h1(NS/X |C0) = 0. From these
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equalities we get that h1(NC0/X) = 0, h0(NC0/X) = 10 hence Hilb 5n
X is smooth of dimen-

sion 10 at [C0] ([Gro]). The linear system |C0| on S = H ∩ X has dimension 5; letting
the hyperplane H vary in P4∗, we see that the family of elliptic quintics contained in a
hyperplane section of X has dimension 9. As Hilb 5n

X at C0 is smooth and of dimension
10, we can finally conclude that C0 deforms to a nondegenerate smooth elliptic quintic C.

The singular case

We now describe how the method that we have just presented also adapts to certain
singular cases. The idea is the following: we look for a smooth elliptic quintic C0 contained
in a hyperplane section S := X ∩ H of X and such that C0 ∩ Sing (S) = ∅. The fact
that C0 doesn’t pass through any of the singular points of S, implies that C0 is entirely
contained in Xsm, the smooth locus of X. We thus still get the short exact sequence
of line bundles on C0 2.15 that allows us to compute again that Hilb 5n

X at C0 is smooth
and of dimension 10. Arguing as above, we conclude that C0 deforms, in Xsm, to a
nondegenerate smooth elliptic quintic C.
When X is a singular threefold satisfying the hypotheses of theorem 2.3.20, a general
hyperplane section S of X is a cubic surface with at most rA1 singularities, r ≤ 3 (cf.
Prop. 2.3.9). Consider S̃ a degree 3 weak Del Pezzo surface, resolution of S. To start
with we exhibit how to construct a linear system on S̃ whose generic element is a smooth
curve C such that C2 = C · (−KS̃) = 5.
Proposition 2.3.23. Let S̃ be a weak Del Pezzo surface of degree 3, R ⊂ S̃ a (−2)-curve
and E ⊂ S̃ a (−1)-curve such that R · E = 1. Then the linear system |R −KS̃ + 2E| is
base point free.

Proof. The first thing that we show is that |R−KS̃ + 2E| is nef. Given any irreducible
effective divisor D on S̃, we can write: D·(R−KS̃+2E) = (D·R)+(D·(−KS̃))+(2D·E).
As −KS̃ is nef, we have D · (−KS̃) ≥ 0. Since R is a (−2)-curve, D · R < 0 if and only
if R = D. Similarly E ·D < 0 if and only if E = D. Therefore D · (R −KS̃ + 2E) ≥ 0
whenever D 6= E and D 6= R.
Now, if D = E we have:

D · (R−KS̃ + 2E) = 1 + 1− 2 = 0. (2.16)

If D = R we get:
D · (R−KS̃ + 2E) = −2 + 2 = 0. (2.17)

We can thus conclude that |R−KS̃ + 2E| is nef. Given any divisor D ∈ |R−KS̃ + 2E|,
we compute that D · (−KS̃) = 5, D2 = D · (−KS̃) = 5. D is nef, D2 > 0 thus D is
big and nef, consequently D −KS̃ is big and nef as well. Applying Kawamata-Viewheg
vanishing theorem we have hi(OS̃(D) = 0 for i = 1, 2. By Riemann-Roch we get

χ(OS̃(D)) = h0(OS̃(D)) =
1

2
(D2 −KS̃ ·D) + 1 = 6.

We now prove that |R−KS̃+2E| has no fixed component. Indeed, write |R−KS̃+2E| as
F+|M | where F and |M | are, respectively the fixed and the mobile part of |R−KS̃+2E|.
M is a nef effective divisor satisfying M2 ≥ 0 and dim |M | = dim |R − KS̃ + 2E| = 5,
whilst the linear system |F | has dimension 0. By the fact thatM nef, we get thatM−KS̃

is big and nef, therefore by Kawamata-Viewheg:

χ(OS̃(M)) = h0(OS̃(M)) = 6.

By Riemann Roch 5 = 1
2 (M2 −M · KS̃) hence M2 = 10 + M · KS̃ = 5 − F ·KS̃ ≥ 5.

Now, by the nefness of |R−KS̃ + 2E| we get the inequality:

5 = (R−KS̃ + 2E)2 = (R−KS̃ + 2E) · (M + F ) ≥ (R−KS̃ + 2E) ·M ;

whilst from the nefness of M we deduce:

(R−KS̃ + 2E) ·M = (M + F ) ·M = M2 +M · F ≥M2.
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Therefore
M2 = 5 = (R−KS̃ + 2E)2 = (R−KS̃ + 2E) · (M + F ) =

= (R−KS̃ + 2E) · F + (M + F ) ·M = (R−KS̃ + 2E) · F +M · F +M2.

Again, the nefness of R−KS̃ + 2E and M implies (R−KS̃ + 2E) ·F ≥ 0, M ·F ≥ 0 so
that a fortiori (R−KS̃ + 2E) · F = 0, M · F = 0. Since

5 = (M + F )2 = M2 + 2M · F + F 2 = 5 + F 2

we get that F 2 = 0, and as M2 = 5 = 5 − F · KS̃ , we deduce F · KS̃ = 0. As the
intersection form is non-degenerate on (ZKS̃)

⊥, we can conclude that F = 0, and thus
|R − KS̃ + 2E| has no fixed component. By the fact that |R − KS̃ + 2E| has no fixed
component, a general element D in it can be written as a sum D =

∑m
i Di where all the

Dis are numerically equivalent irreducible curves (this follows from [Fr], Ex 5.11). This
implies that ∀ i 6= j, (Di −Dj) ·Di = (Di −Dj) ·Dj = 0 hence D2

i = D2
j = Di ·Dj . Call

a = D2
i . We obtain 5 = D2 = ma + 2(

(
m
2

)
a) = a(m + 2

(
m
2

)
). This can only occur for

m = 1 and a = 5. Consider now the short exact sequence:

0→ OS̃ → OS̃(D)→ OD(D)→ 0. (2.18)

Since H1(OS̃) = 0, H0(OS̃(D))→ H0(OD(D)) is surjective so that if ever |R−KS̃ +2E|
has a base point p, we would have that p ∈ D is a base point of its restriction to D. But
since OD(D) is a line bundle of degree 5 on D, with pa(D) = 1 ≥ g(D), it can’t have
base points (see for example [Dem] IV Lemma 1).

We now show how to construct a smooth elliptic quintic C0 on a cubic surface with at
most rA1 singularities, r ≤ 3, and such that C0 ∩ Sing (S) = ∅.

Proposition 2.3.24. Let S be a cubic surface with rA1 singularities, r ≤ 3. Then there
exists a smooth quintic elliptic curve C0 ⊂ S such that C0 ∩ Sing (S) = ∅.

Proof. We have already illustrated how to obtain elliptic quintics on a smooth cubic
surface, hence we consider the cases where 1 ≤ r ≤ 3. Let S̃ be a degree 3 weak
Del Pezzo surface resolution of S. Denote by p1, · · · pr the singular points of S and by
Rp1

, . . . Rpr the corresponding (−2)−curves on S̃ (since we are assuming that S presents
just A1 singularities, each Dynkin curve on S̃ is a (−2)-curve). We claim the following:
Claim 1. There always exists a (−1)-curve E such that E ·Rp1 = 1 and E ·Rpi = 0 for
i 6= 1.
We first show how, assuming the claim, the proposition follows. If such a (−1)-curve E
exists, we have that, by proposition 2.3.23, the general element C̃0 in |Rp1

−KS̃ + 2E| is
a smooth curve with C̃2

0 = 5 = C̃0 · (−KS̃). We compute that

C̃0 ·Rp1 = R2
p1

+ 2E ·Rp1 = 0, C̃0 ·Rpi = Rp1 ·Rpi + 2E ·Rpi = 0 for i 6= 1.

Therefore the curve C0 := φ−KS̃
(C̃0) is a smooth elliptic quintic curve on S disjoint from

Sing (S). We end the proof of the proposition demonstrating the claim. Showing that a
(−1)-curve E satisfying the hypotheses of the claim exists is equivalent to showing that
on S there always exists a line L passing through p1 and such that pi /∈ L for i 6= 1.
We choose coordinates X0, . . . , X3 on P3 in such a way that p1 = [1 : 0 : 0 : 0]. Let
f ∈ C[X0, . . . , X3] be the homogeneous polynomial of degree 3 defining S. For our choice
of coordinates f can be written as

f(X0, · · · , X3) = X0q(X1, X2, X3) + c(X1, X2, X3)

where q and c are homogeneous forms of degree, respectively, 2 and 3. Since p1 is an
A1 singularity, it is a conic node, hence q is a quadric of rank 3. The intersection
of the hyperplane {X0 = 0} with the cones having equations {q(X0, X1, X2) = 0} and
{c(X0, X1, X2) = 0} is a zero-dimensional scheme Z of length 6. All the lines contained in
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S and passing through p1 are of the form p1q for q ∈ Z. A line p1q, q ∈ Z passes through a
singular point pi different from p1 if and only if the conic C2 := {X0 = q(X1, X2, X3) = 0}
and the plane cubic C3 := {X0 = c(X1, X2, X3)} meet at q with multiplicity greater then
one. Moreover the point pi will be an Ak−1 singularity where k is the multiplicity of the
intersecion of C2 and C3 at q. Since we are assuming that S has at most r A1 singularities,
C2 and C3 meets in r − 1 points with multiplicity 2 implying that Z consists of r − 1
double points and of 6 − 2(r − 1) simple points. Since r ≤ 3 there always exists then
a point q ∈ Z where C2 and C3 meets transversely so that qp1 is a line in S satisfying
p1q ∩ Sing (S) = {p1}.

Remark Claim 1 can also be proved by writing down explicitly an exceptional element
E of Pic(S̃) intersecting just one effective root with multiplicity one and orthogonal to
all others effective roots, for all possible configuration of (−2)-curves leading to r A1

singularities. Such an exceptional element E will then correspond to the class of a (−1)
curve due to proposition 2.3.18. More precisely it is sufficient to show the existence of
E just on one representative S̃ of each W (E6) orbit of weak Del Pezzo surfaces of r A1

type. Indeed let S̃, S̃′ be a couple of weak del Pezzo surfaces containing, respectively, r
pairwise orthogonal (−2)-curves {R1, . . . Rr} and {R′1, · · ·R′r}. Suppose the existence of
an element s ∈W (E6) inducing a bijection between {R1, · · · , Rr} and {R′1, · · ·R′r}. If E
is an exceptional element in Pic(S̃) such that

E ·R1 = 1, E ·Ri = 0 for i 6= 1,

then s(E) is an exceptional element such that

s(E) · s(R1) = 1, s(E) · s(Ri) = 0 for i 6= 1,

hence the class of a (−1)-curve (still by 2.3.18) meeting just one (−2)-curve.
This is particularly easy for r = 1. Indeed in this case, given S̃ and S̃′ each of them
containing just a (−2)-curve R ⊂ S̃, R′ ⊂ S̃′, by the transitivity of the action of W (E6)
on the set of roots, we always get the existence of s ∈ W (E6) such that s(R) = R′.
Without loss of generality we can thus assume that S̃ is obtained as the blowup:

S̃ ' Bl{p1,...,p6}P
2, pi ∈ P2, |h− p1 − p2 − p3| 6= ∅

of 6 proper points p1, . . . p6 on P2 with just 3 of them, say p1, p2, p3 lying on a line L. The
strict transform of L is a (−2)−curve R (represented by the vector (1,−1,−1,−1, 0, 0, 0)
in Pic(S̃))), each exceptional divisor Ei = π−1(pi), i = 1, 2, 3 is a (−1)−curve such that
Ei ·R = 1. Hence the generic elements of the classes

(4, 0,−2,−2, 0, 0, 0), (4,−2, 0,−2, 0, 0, 0), (4,−2,−2, 0, 0, 0, 0)

are mapped by φ−KS̃
to a smooth elliptic quintic disjoint from Sing (S).

Proof of Theorem 2.3.20. Let X be a cubic threefold satisfying the hypotheses of theo-
rem 2.3.20. Then, by proposition 2.3.24, on a general hyperplane section S := H ∩ X
there always exists a smooth elliptic quintic C0 disjoint from Sing (S). The condition
C0 ∩ Sing (S) = ∅ implies that C0 is entirely contained in Xsm, the smooth locus of X.
Applying then to Xsm the same argument used in the smooth case we conclude that C0
deforms in Xsm to a nondegenerate smooth elliptic quintic C ⊂ X.

Applying theorem 2.3.20 we can prove the following:

Proposition 2.3.25 (Prop. 2.3.21). Let X be a cubic threefold satisfying the hypotheses
of 2.3.20. Then there exists a rank 2 skew-symmetric Ulrich bundle E ∈ Coh (X).
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Proof. Let X be a cubic threefold satisfying the hypotheses of theorem 2.3.20. From
what we have just proved, there exists then a smooth quintic elliptic curve C ⊂ X that
is not contained in any hyperplane section of X. Applying Serre’s correspondence, the
class 1 ∈ H0(OC) ' Ext1(IC ,OX(−2)) corresponds to a short exact sequence

0 −→ OX(−2) −→ N −→ IC −→ 0

where N is a rank 2 ACM sheaf. Localizing at a point x ∈ C we get:

0 −→ OX,x −→ Nx −→ IC,x −→ 0,

corresponding to 1x ∈ Ext1OX,x
(IC,x,OX,x). Now, since C is smooth, we have:

C ' H0(OC) ' H0(Ext1(IC ,OX(−2)) ' Ext1(IC ,OX(−2)).

Hence the class 1 ∈ H0(OC) does not vanishes on any point of C, so that for all points
x ∈ C, 1x generates OC,x ' Ext1x(IC ,OX(−2)) ' Ext1OX,x

(IC,x,OX,x). These facts, to-
gether with propositions 2.2.2 and 2.2.5, implies that Nx is free. Therefore N and
E := N (2) are both vector bundles; by proposition 2.2.4 and remark 13 we can finally
conclude that E is a skew-symmetric Ulrich bundle.

2.3.4 Existence of AG elliptic quintics on normal threefolds
We describe now a constructive method to prove the existence of an AG elliptic quintic
curve C ⊂ X. In order to apply this method we need the following couple of geometric
objects:

• A rational quartic curve (not necessarily irreducible) Γ ⊂ X.

• A cubic scroll π : Σ → P1 containing Γ and such that the class of Γ in Pic (Σ) is
Γ ∼ D + 3F , where D and F are, respectively, the classes of the directrix and of a
fiber π−1(x), x ∈ P1.

Recall that a cubic scroll Σ→ P1 is a rational ruled surface whose Picard group is a free
abelian group of rank 2, Pic (S) = ZD ⊕ ZF . The directrix D is a rational (−1)-curve
(namely D2 = −1) meeting transversely each fiber, so that the intersection number D ·F
is equal to one. As two distinct fibers don’t meet, F has self intersection equal to zero.
From these facts we can compute that, by adjunction formula, the canonical class is
KΣ ∼ −2D − 3F and that the class of an hyperplane section is H ∼ D + 2F . Now,
if there exists Γ, a rational quartic curve contained in Σ, for a couple of non negative
integers a, b we can write Γ ∼ aD+ bF . Since Γ has genus 0 and degree 4 we must have:

Γ ·H = 3 and (Γ +KΣ) · Γ = −2.

Hence a and b must satisfy:

(aD+bF )·(D+2F ) = a+b = 4, ((a−2)D+(b−3)F )·(aD+bF ) = 2b(a−1)−a(a+1) = −2.

The only two couple of non negative integers satisfying these equations are (2, 2) and
(1, 3). Suppose now that there exists Γ ⊂ (X ∩Σ) a rational quartic such that in Pic (Σ)
we have Γ ∼ D+ 3F . The intersection X ∩Σ gives a divisor on Σ whose class in Pic (Σ)
is 3H = 3D + 6F ; hence the curve C, residual to Γ in X ∩H is an elliptic quintic such
that C ∼ 2D + 3F . Such elliptic quintic should be necessarily nondegenerate , as:

H0(Σ, IC/Σ(1)) = H0(OΣ(H − C)) = H0(OΣ(−D − F )) = 0.

Theorem 2.3.26. [[MR]Thm 1.3.11] Let Σ be an ACM surface in P4 satisfying the
condition G1 (Gorenstein in codimension 1). Let KΣ be the canonical divisor and let D
be an effective divisor linearly equivalent to mH −KΣ for some m ∈ Z. Then D is an
AG curve whose canonical sheaf ωD is isomorphic to OD(m).
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The condition G1 consists in requiring that each local ring OΣ,x of dimension less than
or equal to 1 is Gorenstein.
We see that a cubic scroll Σ satisfies the hypotheses of the theorem. Indeed it is an
ACM surface ( see [MR], proof of thm 1.3.15 for a classification of smooth rational ACM
surfaces); as moreover Σ is smooth, every local ring is regular hence Gorenstein.
Therefore the curve C obtained as the residual to Γ in X ∩Σ would be an elliptic quintic
curve belonging to the class 2D + 3F = −KΣ; hence an AG curve such that OC ' ωC .
In the next section we will prove the existence of Γ and Σ as above on a normal cubic
threefold X with dim(Sing (X)) = 1. This will lead us to conclude the prove of:

Theorem (2.3.2). Let X be a normal cubic threefold that is not a cone. Then X contains
a non-degenerate AG quintic elliptic curve C.

We will then show that also this time, the Ulrich sheaves constructed from these curves
by mean of Serre’s correspondence are locally free.

Proposition 2.3.27. Let X be a normal cubic threefold that is not a cone. Then there
exists a rank 2 skew symmetric Ulrich bundle E ∈ Coh (X).

Illustration of the method in the smooth case

This time again we will first describe how the method works in the smooth case (where
there always exists a smooth rational quartic) and then we will show how we can adapt
it to singular threefolds, where we will need to consider also reducible quartic curves.
Suppose that X is a smooth cubic threefold. It was proved in [MT1] that on X there
always exists a smooth rational quartic curve Γ ⊂ X.
Starting from a smooth Γ, we can construct a cubic scroll Σ as follows: we take D, a
chord of Γ, D = p0p1, pi ∈ Γ. We fix two points p2, p

′
2 with p2 ∈ Γ, p′2 ∈ D. We consider

then all the lines of the form pp′ where p ∈ Γ, p′ ∈ D is a couple of points satisfying the
cross-ratio equation:

[p0, p1, p2, p] = [p0, p1, p
′
2, p
′].

The lines pp′ obtained in this way draw a cubic scroll Σ ⊂ P4. The directrix of Σ is exactly
the line D; the curve Γ intersect D in two points, namely p0, p1 hence Γ ∼ D + 3F in
Pic (Σ).

The singular case: construction of the rational quartic Γ

In order to adapt the method that we have just described to the case where X is a
singular normal threefold, we will have to consider reducible rational quartics on X. We
now explain how to construct such a curve Γ ⊂ X; Γ is obtained as the union Γ = L∪C
where C is a twisted cubic curve, and L is a line meeting C transversely at a point and
not contained in 〈C〉. Any twisted cubic C ⊂ X is contained in the hyperplane section
〈C〉 ∩X and a general hyperplane section of X always contains a twisted cubic. Indeed
(as we saw in prop. 2.3.9) a general hyperplane section of X has ADE singularities of
the following types:

A1, 2A1, 3A1, 4A1, A2, 2A2,

hence it is a cubic surface presenting only rational double points.
A systematic method to obtain twisted cubic curves on a cubic surface S having at
most RDPs is presented in [LLSV], where the authors described the Hilbert scheme
Hilb 3n+1(S) of curves of degree 3 and arithmetic genus 0 contained in S.
We recall here briefly the construction, exhibited in loc.cit, of these curves.
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Twisted cubics on cubic surfaces with RDPs
The study of curves on a cubic surface S with rational double points, relates to the
study of curves on S̃, a weak Del Pezzo surface resolution of singularities of S. Keeping
the notations adopted in the previous sections, we call R ⊂ Pic(S̃) the set of roots,
Re ⊂ R, Ri ⊂ Re the sets of, resp., effective and irreducible roots and E6 lattice
E6 := (ZKS̃)

⊥. Let R1, . . . Rm the (−2)-curves on S̃ ( these are just the irreducible
components of the exceptional divisor of φ−KS̃

); again, we identify the curves Ri with
their classes in Ri ⊂ Pic(S̃). Define Λe as the sublattice of Pic(S̃) generated by Re (since
roots are orthogonal to KS̃ , ∆e is a sublattice of E6).
We consider now W (Re) the subgroup of the Weyl group W (R) generated by the reflec-
tions rRi

. W (Re) acts on R, the orbits contained in Re are the connected components
of Re; these corresponds to classes of Dynkin curves on S̃ hence to singular points of S.
As the intersection form is nondegenerate on E6, we get a decomposition:

E6 ⊗ R = (Λe ⊗ R)⊕ (Λe)
⊥

hence we can write each root α ∈ R as:

α = α′ + α′′, α′ ∈ Λe ⊗ R, α′′ ·Ri = 0, for i = 1, . . .m.

Therefore ∀ β ∈ Re, rβ(α) = rβ(α′) so that W (Re) · α = W (Re) · α′. The set Ri is a
simple system for Λe ⊗ R, therefore theorem 2.3.16 applies to the orthogonal projection
of any root to Λe ⊗ R.
This implies that given any root α ∈ R and denoting by α′ its orthogonal projection to
Λe ⊗ R, the W (Re) orbit of α′ intersect each closed fundamental Weyl chamber

K−Ri
= {v ∈ Λe⊗R | v·Ri ≤ 0, i = 1, . . .m}, KRi

= {v ∈ Λe⊗R | v·Ri ≥ 0, i = 1, . . .m}

in exactly one point. We single out in this way two vectors α′± defined as:

α′− := (W (Re) · α′) ∩ KRi
α′

+
:= (W (Re) · α′) ∩ K−Ri

.

By construction we have ±α′± ·Ri ≤ 0, ∀ i = 1, . . .m. We define then the vectors α± as
α± := α′

±
+ α′′. α± belong to R as (α±)

2
= α′′

2
+ (α′

±
)
2

= α′′2 + α′
2

= α2 = −2. We
call α+ and α−, respectively, the maximal and the minimal roots of the W (Re) orbit of
α. We can see that α = α+ = α− if and only if α ∈ Λe

⊥, whether α− = −α+ if and only
if α ∈ Re. If now consider a Dynkin curve Rp on S̃ corresponding to a singular point
p ∈ S and an irreducible component Ri of Rp, we see that (W (Re) · Ri) ∩ Ri consist of
the classes of the components of Rp and Ri+ is the class of Rp.
Given α ∈ R, we consider now the linear system |α−−KS̃ | and a divisor D ∈ |α−−KS̃ |.
We have D · (−KS̃) = −KS̃

2 = 3 and D2 = α−
2

+ (−KS̃)2 = 1. By Riemann-Roch we
get χ(OS̃(D)) = 1

2 (D2−KS̃ ·D) + 1 = 2 + 1 = 3 and since 2KS̃ −α′ can not be effective,
h0(OS̃) ≥ 3. For every effective divisor D ∈ |α− −KS̃ |, its image through φ−KS̃

is thus
a curve on S having degree 3 and arithmetic genus pa(D) = 1 + 1

2 (KS̃ · D + D2) = 0,
defining a point in Hilb 3n+1(S).
Twisted cubics on S are obtained as the images through φ−KS̃

of general elements in
a linear system |α− − KS̃ | where α− is the minimal root of the orbit of an element
α ∈ R \ Re.

Proposition 2.3.28 ([LLSV] Prop.2.5). Let α ∈ R\Re, and let α+ and α− denote the
maximal and the minimal root, respectively, of its orbit.

(i) The linear system |α−−KS̃ | does not depend of the choice of α in its W (Re) orbit,
it has dimension 2 and it is base-point free.

(ii) For every curve C̃ ∈ |α− −KS̃ |, C := φ−KS̃
(C̃) is a curve with Hilbert polynomial

PC(n) = 3n+ 1.

(iii) The image C = φ−KS̃
(C̃) of a generic curve C̃ ∈ |α− −KS̃ | is smooth.
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From (i) we see that whenever α ∈ R is not effective, a generic element C̃ ∈ |α−−KS̃ | is
a smooth rational curve on S̃. Since φ−KS̃

is an isomorphism outside Sing (S), the curve
C := φ−KS̃

(C̃) can be singular at most along points belonging to Sing (S). If p ∈ S
is a singular point the multiplicity of C at p is given by the integer (α− − KS̃) · Rp,
Rp being the Dynkin curve contracted to p. As we are assuming that α is not effective
we must have that 0 ≤ α− · Rp ≤ 1, namely α′− (and thus α−) intersect at most 1
irreducible component of Rp. Let indeed Ri1 , · · · , Ris be the irreducible components of
Rp; by construction, α− is a root such that α− ·Rij ≥ 0 for all j = 1, · · · , s.
If ever α− meets more than one component of Rp we would have that α− belongs to
the sublattice generated by the Rij s hence we would get α− ∈ Re contradicting the
assumption α ∈ R \ Re.
Therefore α− ·Rp = 1 whenever α is not orthogonal to Rp otherwise we get α− ·Rp = 1.
Therefore whenever α is a non-effective root orthogonal to Rp, the generic element of
|α− −KS̃ | is mapped by φ−KS̃

to a twisted cubic not passing through p. If α · Rp 6= 0
instead, the generic element of |α−−KS̃ | is mapped to a twisted cubic curve on S having
multiplicity 1 at p. Because of the independence of the linear system |α−−KS̃ | from the
choice of the root in its orbit, given a W (Re) orbit B ∈ R/W (Re) we denote by α−B the
minimal root of the orbit B.
The structure of the Hilbert scheme Hilb 3n+1(S) is described by the following theorem:

Theorem 2.3.29 ([?] Thm 2.1). Let S be a cubic surface with at most rational double
points singularities. Then:

Hilb 3n+1(S) '
⊔

B∈R/W (Re)

|OS̃(α−B −KS̃)| ' (R/W (Re))× P2.

Moreover an orbit of non Cohen-Macaulay or ACM curves depending on whether B
contains effective roots or not. The generic curve in a linear system of ACM curves is
smooth.

We can finally come back to the construction of rational quartics on the cubic threefold
X. Because of the assumptions on X, Sing (X) contains a curve Y , and for a general
hyperplane H ⊂ P4, S := X ∩ H is a cubic surface singular along Y ∩ H and that
has either m A1 singularities, 1 ≤ m ≤ 4 or n A2 singularities, n = 1, 2. Take a root
α ∈ Pic(S̃), where S̃ is a degree 3 weak del Pezzo surface resolution of S, such that α
is not effective; a general element C̃ of |α− −KS̃ | is then mapped by φ−KS̃

to a twisted
cubic C on S. Consider now a point p ∈ C, under generality assumption we can suppose
that p /∈ Sing (S) (so that a fortiori p /∈ Sing (X)) and that there exists 6 lines L1, . . . L6

passing through p and entirely contained in X. As we can not have 6 lines on a cubic
surface all passing through a smooth point, there always exists i ∈ {1, . . . 6} such that
Li 6⊂ S and therefore Li 6⊂ 〈S〉. Li is thus a line on X meeting C transversely at p and
the curve Γ = Li ∪ C is a rational quartic curve entirely contained in X.

The singlar case: construction of the scroll Σ

Let Γ = L ∪ C be a rational quartic on X, where L ⊂ X and C ⊂ X are, respectively, a
line and a twisted cubic in X meeting transversely at a point p̄. We explain here how to
obtain the scroll Σ from Γ. We fix a couple of points p0 ∈ C, p1 ∈ L, pi 6= p̄ and we call
D the line D = p0p1. We take two points p2, p

′
2 with p2 ∈ C and p′2 ∈ D. We join with

a line all the points p ∈ C, p′ ∈ D satisfying:

[p̄, p1, p2, p] = [p0, p1, p
′
2, p
′]. (2.19)

The lines obtained in this way form the ruling of a cubic scroll Σ. The scroll Σ has the
line D as directrix. Computing the intersections, we see that L ∩D consists just of the
point p0 so that L ∼ F in Pic (Σ). C ∼ D + 2F intersect D in p1; the curve Γ is hence
a quartic in the class D+ 3F metting D in p0, p1. In order to see that we are effectively
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drawing a cubic scroll notice that whenever we take a plane ∆ ⊂ P4 orthogonal to D,
the locus of points q ∈ ∆ such that:

q = pp′ ∩∆, p ∈ C, p′ ∈ D satisfying (2.19)

is simply the image of C under the linear projection from D, hence a conic.
We can now prove theorem 2.3.2.

Proof of theorem 2.3.2. Let X be a normal cubic threefold without triple points. Since
we have proved that whenever dim(Sing (X)) = 0, X contains a smooth normal quintic
elliptic, we just need to treat the case where dim(Sing (X)) = 1. We consider then Γ a
rational quartic and Σ the cubic scroll built from Γ as illustrated above. By construction,
the curve C, residual to Γ in X ∩ Σ, belongs to the linear equivalence class 2D + 3F in
Pic(Σ). Applying theorem 2.3.26, we deduce that C is an AG curve with ωC ' OC hence
an AG quintic curve of arithmetic genus 1.

We can now prove theorem 2.3.1

Proof of Thm. 2.3.1. Let X be a cubic threefold as in the statement of the proposition.
Since we have already showed that there always exists a rank 2 Ulrich bundle on X if
ever dim(Sing(X)) ≤ 0, we can focus on the case where dim(Sing(X)) = 1. Applying
theorem 2.3.2, we get the existence of an AG quintic elliptic curve C on X contained in
X∩Σ, where Σ is the cubic scroll constructed from a rational quartic Γ ⊂ X as described
in the previous section. C is an AG curve of (arithmetic) genus 1 and such that ωC ' OC .
Moreover, from its construction, we know that in Pic (Σ), C ∼ −KΣ ∼ 2D+3F . Consider
now the short exact sequence of OΣ-modules:

0 −→ OΣ(KΣ) −→ OΣ −→ OC −→ 0.

Taking the long exact sequence in cohomology we get:

0 −→ H0(OΣ(KΣ)) −→ H0(OΣ) −→ H0(OC) −→ H1(OΣ(KΣ)) −→ · · · .

H0(OΣ(KΣ)) = H0(OΣ(−2D − 3F )) = 0 (KΣ = −2D − 3F is not effective). By Serre’s
duality h1(OΣ(KΣ)) = h1(OΣ) = 0. This implies that H0(OC) ' H0(OΣ) ' C. There-
fore the class 1 ∈ H0(OC) does not vanish on any point of C so that 1x generates
OC,x ' Ext1(IC,x,OX,x) forall x ∈ C. Arguing exactly as in the proof of proposition
2.3.21, we can assert that, by 2.2.2 and 2.2.5, the ACM sheaf N obtained from C by
Serre’s correspondence is locally free. By the non-degeneracy of C and by remark 13 we
can conclude that E := N (2) is a skew-symmetric Ulrich bundle.

As a consequence of theorem 2.3.1 we get:

Corollary 2.3.30. Let X be a normal cubic threefold that is not a cone. Then X is
Pfaffian.

The last sections of the chapter are devoted to the study of Pfaffian representations of
the cubic hypersurfaces we still need to consider, namely:

• Cubic threefolds that are cones over cubic hypersurfaces in Pr, r ≤ 3.

• Non-normal cubic threefolds.
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2.4 Non-normal cubic threefolds and cones
Cubic threefolds presenting triple points

Proposition 2.4.1. Suppose that X is a cone over a cubic hypersurface in Pr, r ≤ 3.
Then X is Pfaffian.

Proof. If a cubic threefold X ⊂ P(V ) ' P4 is a cone, there exists then a vector subspace
U < V ∗ of dimension r + 1 ≤ 4 such that F ∈ S3(U). X has then multiplicity 3
along the linear space P(U⊥) ⊂ X, P(U⊥) ' P3−r. The polynomial F defines an (r−1)-
dimensional cubic hypersurface Y and it is clear that the study of Pfaffian representations
of X reduces to the study of Pfaffian representations of Y . Since it is well known that
a cubic hypersurface of dimension less than or equal to two is always Pfaffian (see for
example [B2]), X is Pfaffian too.

Non-normal cubic threefolds

We still have to analyse the case where X is not normal, namely when Sing (X) has
codimension less than 2. We prove the following:
Proposition 2.4.2. Let X be a non-normal cubic threefold. Then X is Pfaffian.

Whenever codim (Sing (X)) ≤ 1, one of the following occurs:

• codim (Sing (X)) = 1, hence Sing (X) contains a surface S. From the fact that X
contains all the lines generated by points in S we deduce that S must be a plane.

• codim (Sing (X)) = 0, hence X is a non-integral cubic threefold, given by the union
of a 3-plane H and of a quadric hypersurface Q, 1 ≤ rk (Q) ≤ 5.

For each case we will write explicitely a skew matrix of linear forms whose Pfaffian
individuates the threefold we are considering.

Cubic threefolds singular along a plane
Suppose that X contains a double plane ∆ supported on {X3 = 0, X4 = 0}. Up to an
appropriate change of coordinates on P4, the polynomial F has the form:

F (X0, . . . X4) = X0X
2
3 +X1X

2
4 +X2X3X4.

The skew matrix MX defined as:

MX =


0 X3 X4 0 0 X2

−X3 0 0 0 X4 0
−X4 0 0 X3 0 0

0 0 −X3 0 0 X1

0 −X4 0 0 0 X0

−X2 0 0 −X1 −X0 0


satisfies Pf (MX) = F providing then a Pfaffian representation of X.

Non-integral cubic threefolds
Whenever X := {F = 0} is not integral, the polynomial F factors as

F (X0, . . . , X4) = l(X0, . . . X4)Q(X0, . . . X4),

where l is a linear form and Q is a quadratic form of rank less than or equal to five. It
is well know that a quadric Q of rank rk (Q) ≤ 5 is Pfaffian, so that we can find a 4× 4
skew matrix of linear forms MQ such that Pf (MQ) = Q(X0, . . . X4) (such a matrix can
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be easily written down explicitly, otherwise we refer to [B2]). We construct then MX , a
6× 6 skew-symmetric matrix of linear forms such that Pf (MX) = F as follows:

MX =


MQ

0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 l
−l 0


This complete the proof of proposition 2.4.2 and of theorem 2.2.1.

Remark 20. Let P andP := Pss//SL(6,C) be, respectively, the 74-dimensional projective
space of 6×6 skew-symmetric matrices with entries in V ∗ and the moduli space of Pfaffian
representations of cubic threefolds defined in Chapter 1. Consider the rational map
Pf : P 99K |OP4(3)|, M 7→ Pf (M), and the induced rational map Pf : P 99K |OP4(3)|.
As an immediate corollary of theorem 2.2.1, we get:

Corollary 2.4.3. The maps Pf : P 99K |OP4(3)| and Pf : P 99K |OP4(3)| are surjective.
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Chapter 3

Four-dimensional linear systems
of skew-symmetric forms

Introduction

In this chapter we study the four dimensional linear subspaces P4 of the space P(
∧2

W ∗)
of skew-symmetric forms on a complex vector space W of dimension 6. Linear spaces of
such a kind are referred to as 4-dimensional hyperwebs of skew-symmetric forms. The first
part of the chapter is devoted to the study of their GIT stability. Considering indeed
a 4-dimensional linear space P(V ) we see that a hyperweb of skew-symmetric forms
defines uniquely a linear embedding P(V ) ↪→ P(

∧2
W ∗) individuating then a point in the

projective space P(HomC(V,
∧2

W ∗)) ' P(V ∗ ⊗
∧2

W ∗) ' P74. The group SL(W ) acts
on P(V ∗⊗

∧2
W ∗) so that Geometric Invariant Theory provides a notion of (semi)stability

for hyperwebs. Adapting the method used by Wall [Wall], we establish a criterion for
(semi)stability. Applying it we can show that whenever a 4-plane P(A) is not contained
in the Pfaffian hypersurface Pf then it is semistable and that it is stable if moreover
P(A) ∩ Pf is smooth.

Theorem (3.2.3). Let P(A) be a 4-dimensional linear space of skew-symmetric forms
such that the intersection P(A) ∩ Pf individuates a smooth cubic hypersurface in P(A).
Then P(A) is stable.

Afterwards we focus our attention on those linear spaces P(A) ⊂ Pf , namely linear spaces
whose generic point is a tensor of rank at most 4, aiming to determine the stable ones.
We prove the following:

Theorem (3.2.4). Let P(A) be a stable 4-dimensional linear system of skew-symmetric
forms of generic rank less then or equal to four. Then P(A) is either SL(W )-equivalent
to the space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4, e1 ∧ e2, e4 ∧ e5〉

or SL(W )-equivalent to the space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6− e3 ∧ e4, e1− e5 ∧ e2 + e4, e1− e5 ∧ e3 + e6〉.

Furthermore in the first case P(A) meets the Grassmannian Gr(2,W ∗) along a smooth
conic isomorphic to P2∩Gr(2, 4); in the second case P(A) intersects the Gr(2,W ∗) along
a couple of disjoint lines.

The idea of the proof is the following. We first show that a necessary condition for the
stability of P(A) is that P(A)∩Gr(2,W ∗) has dimension 1 (proposition 3.2.6). This neces-
sary condition implies that P(A) contains a plane P(B) such that ∀ ω ∈ P(B), rk(ω) = 4

67
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and that consequently P(A) might be written P(A) = 〈P(B), ω3, ω4〉 with ω3, ω4 belong-
ing to P(A) ∩Gr(2,W ∗). 2-dimensional linear systems of skew-symmetric forms, having
constant rank 4 have been classified, up to the action of PGL(W ) in [MM]. The authors
proved that there exist only four distinct PGL(W )-orbits of planes of forms of constant
rank 4. We show that if P(A) is stable, P(B) can only belong to one of these orbits, so
that for a suitable choice of independent vectors e1, . . . ,e6 on W ∗, P(B) is generated by
the tensors:

πg = 〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4〉

We study then how we can choose a couple of points ω3, ω4 on the Grassmannian in
order to get a stable 4-plane P(A) := 〈P(B), ω3, ω4〉.
We first show that in order to get the inclusion P(A) ⊂ Pf , ω3, ω4 must belong to a
rational normal scroll S(2,2,2) admitting the structure of a conic fibration on P(B). This
will also imply that P(A) ∩Gr(2,W ∗) necessarily consists either of a conic or a pair of,
possibly coincident, lines. Finally, we will prove that among the hyperwebs obtained
in this way the only ones that are stable are those appearing in the statement of the
theorem.
Our classification of stable linear spaces relies on the study of their intersection with
the Grassmannian Gr(2,W ∗). Wondering if a similar approach could help us to deter-
mine strictly semistable hyperwebs, we investigate varieties obtained as linear sections
P(A) ∩Gr(2,W ∗), P(A) being a 4 dimensional linear space contained in Pf . This is the
main issue we deal with in the second part of the chapter.
We prove the following:

Theorem (3.3.1). Let P(A) ⊂ P(
∧2

W ∗) be a four-dimensional linear space of
skew-symmetric forms of generic rank ≤ 4. Let Y be an irreducible component of
P(A) ∩Gr(2,W ∗). Then one of the following cases is realized:

• Y is a linear space Y ' Pr, 1 ≤ r ≤ 4.

• Y is a variety of minimal degree,contained in a smaller Grassmannian Gr(2, k) =
Gr(2, U) ⊂ Gr(2, 6) = Gr(2,W ∗), where U is a vector subspace of W of dimension
k < 6, and Y is a linear section of Gr(2, k) of one of the following types:

– Y = Pd ∩Gr(2, d+ 2), a rational normal curve of degree d, 2 ≤ d ≤ 4.

– Y = Pd+1 ∩Gr(2, d+ 2), a surface of degree d = 2, 3.

– Y = P4 ∩Gr(2, 4), a three-dimensional quadric hypersurface in ∆ = P4.

• Y is an elliptic quintic curve, the image of P4∩Gr(2, 5) under some linear embedding
Gr(2, 5) ↪→ Gr(2,W ∗).

The proof of the theorem reduces to the study of linear sections Pr ∩ Gr(2,W ∗) of the
Grassmannian, for r ≤ 4. More specifically we analyze when Y , an irreducible subvariety
of Gr(2,W ∗), spans a linear space 〈Y 〉 contained in Pf and such that Y = 〈Y 〉∩Gr(2,W ∗).
The classification provided by theorem 3.3.1 allows us to produce several examples of
unstable hyperwebs. In the final part of the chapter we present how these results applies
to the study of P, the moduli space of Pfaffian representation of cubic threefolds.

3.1 Preliminaries
In this section we recollect a few generalities about the Grassmannian, the Pfaffian hy-
persurface and some of their subvarieties. LetW be a complex vector space of dimension
6 and consider

∧2
W ∗, the 15-dimensional vector space of skew-symmetric bilinear forms

on W . Each element ω ∈
∧2

W ∗ determines a linear morphism φω : W → W ∗ repre-
sentable by a 6 × 6 skew-symmetric matrix Mω. We define the rank of ω as the rank
of Mω. Note that, as ω is a skew-symmetric bilinear form, its rank is always even, so
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∀ ω ∈
∧2

W ∗, rk(ω) = 2k, k = 1, 2, 3. Throughout the rest of the chapter, for any
tensor ω ∈

∧2
W ∗, we will denote by Uω the image of the corresponding linear map φω.

Consider now P(
∧2

W ∗) ' P14 the projective space of lines in
∧2

W ∗. Since the rank of
any linear map is invariant under multiplication by a non-zero scalar the notion of rank
is well-defined also for elements in P(

∧2
W ∗).

The locus of all forms having rank less than or equal to 4 individuates an hypersurface,
named the Pfaffian hypersurface, Pf ⊂ P(

∧2
W ∗):

Pf := {ω ∈ P(

2∧
W ∗) | rk(ω) ≤ 4}.

Because of the fact that an arbitrary element ω in P(
∧2

W ∗) is representable by a skew-
symmetric matrix, det ω is a square: |det ω| = Pf (ω)2. Thus the Pfaffian, being deter-
mined by the equation Pf (ω) = 0, is a cubic hypersurface ( as dim(W ∗) = 6). Consider
now Gr(2,W ∗), the Grassmannian of lines in P(W ∗) ' P5. By means of the Plucker’s
embedding, we can realize Gr(2,W ∗) as a smooth subvariety of P(

∧2
W ∗) of dimension

8 and degree 14. As any ω ∈ P(
∧2

W ∗) having rank equal to 2, might be written as
an indecomposable tensor of the form ω = v1 ∧ v2, v1, v2 ∈ W ∗, we see that Gr(2,W ∗)
coincides with the locus:

Gr(2,W ∗) = {ω ∈ P(

2∧
W ∗) | rk(ω) = 2}

Consequently, we can identify Gr(2,W ∗) with Sing (Pf ) (the set of singular points in Pf ).
The Pfaffian may also be described as the secant variety of the Grassmannian Gr(2,W ∗) :

Pf =
⋃

ω0,ω1∈Gr(2,W∗)

ω0ω1;

for a point ω ∈ Pf , having rank 4, the locus of secants to Gr(2,W ∗) passing through ω
is a five dimensional linear space, that we denote by P5

ω ( the space P5
ω is isomorphic to

P(
∧2

(Uω)) ' P(
∧2 C4)). Therefore elements ω′ ∈ Pf belonging to P5

ω are exactly those
such that ωω′ ∩Gr(2,W ∗) consists of two (possibly coincident) points.
We end the paragraph stating some properties of the the linear system generated by
Plucker’s quadrics, Q ⊂ S2(

∧2
W ), |Q| ' P(

∧4
W ) that will come into use later. More

generally, whenever we have a d-dimensional complex vector space Vd, we individuate a
linear system |Q| of quadrics on P(

∧2
Vd), |Q| ' P(

∧4
Vd
∗). |Q| can be spanned by

(
d
4

)
quadrics of rank 6 (the Plucker’s quadrics) whose intersection is Gr(2, Vd). This linear
system determines a rational map γ:

γ : P(

2∧
Vd) 99K P(

4∧
Vd)

whose indeterminacy locus is Gr(2, Vd) (the base locus of |Q|). Whenever d = 6 (as
it happens for W , the case we will principally be concerned with), we have an iso-
morphism

∧4
W ∗ '

∧2
W that induces a rational map (that we still denote by γ)

γ : P(
∧2

W ∗) 99K P(
∧2

W ) that coincides with the Gauss map of the Pfaffian hypersur-
face. γ is a Cremona transformation of bidegree 2 mapping the Pfaffian hypersurface
to Gr(2,W ) and by means of it we can give a further characterization of the spaces P5

ω

associated to a rank 4 tensors ω ∈ Pf . Indeed, given any other point ω′, we can consider
the line L := ωω′ and the linear system |Q − L| (i.e. the linear system of quadrics in Q
containing the line L). ω′ belongs to P5

ω exactly when the inclusion |Q−L| ⊂ |Q− ω| is
actually an equality; hence when the entire line L is mapped to γ(ω). Therefore we have
γ(P5

ω) = γ(ω).
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3.1.1 Basics on the geometry of Gr(2,W ∗) and Pf

Lines in the Pfaffian hypersurface
Lots among the results that we will prove come from the properties of lines contained in
the Pfaffian hypersurface Pf . For a line L ⊂ Pf , one of the following possibilities occurs:

• L ∩Gr(2,W ∗) = ∅
A line L ⊂ Pf that doesn’t meet the Grassmannian (i.e a pencil of skew symmetric forms
having constant rank 4) can be of two types (see for ex. [MM]):

- L is a general line if it is generated by elements ω0, ω1 of the form:

ω0 = e1 ∧ e2 + e3 ∧ e4

ω1 = e1 ∧ e5 + e3 ∧ e6

for an appropriate choice of a basis e1, . . . e6 of W ∗. We notice that Uω0
∩ Uω1

has dimension 2, hence, P5
ω0
∩ P5

ω1
= P(

∧2
(Uω0 ∩ Uω1)) consists of just one point

ω2 belonging to Gr(2,W ∗) (in our case ω2 = e1 ∧ e3 ). ω2 is the unique point of
Gr(2,W ∗) for which we have the inclusion L ⊂ Tω2

Gr(2,W ∗).

- L is a special line if there exists a five dimensional subspace W ′ of W ∗ such that
L ⊂ P(

∧2
W ′). This means that we can find independent vectors e1, . . . , e5 in W ∗

such that L is generated by:

ω0 = e1 ∧ e2 + e3 ∧ e4

ω1 = e1 ∧ e4 + e3 ∧ e5

In this case dim(Uω0
∩ Uω1

) = 3 so that P5
ω0
∩ P5

ω1
= P(

∧2
(Uω0

∩ Uω1
)) ' Gr(2, 3)

and again there exists a unique point ω2 ∈ Gr(2, 3) (for our choice of coordinates
ω2 = e1 ∧ e3) such that L ⊂ Tω2Gr(2,W ∗).

• L ∩Gr(2,W ∗) 6= ∅
Since the Grassmannian is defined by an intersection of quadric hypersurfaces (the
Plucker’s quadrics), L can either intersect Gr(2,W ∗) in at most two points or be en-
tirely contained in Gr(2,W ∗). More precisely we might have:

- L ∩ Gr(2,W ∗) = {ω0}. In this case L can be generated by ω0 and by a tensor ω1

of rank 4 such that ω0 ∈ Tω1
Pf , but ω0 6∈ P5

ω1
. This last condition is equivalent to

dim(Uω0
∩ Uω1

) = 1. We can thus find independent vectors e1, . . . e5 such that:

ω0 = e4 ∧ e5

ω1 = e1 ∧ e2 + e3 ∧ e4

To see this we start choosing coordinates on W ∗ in such a way that ω0 = e4 ∧ e5.
Now, since ω1 ∈ Pf is a rank 4 tensor, it might be written as αω′1 + βω′′1 with ω′1
and ω′′1 in Gr(2,W ∗). Since each tensor in Gr(2,W ∗) is decomposable,we can find
4 independent vectors ε1, . . . ε4 inW ∗ such that ω1 = ε1∧ε2 +ε3∧ε4. The condition
that L ⊂ Pf implies that dim(〈e4, e5〉 ∩ 〈ε1, . . . ε4〉) = 1, hence up to the action of
GL(W ) we can suppose ω1 = e1 ∧ e2 + e3 ∧ e4 for independent vectors e1, e2, e3 in
W ∗ such that dim〈e1, . . . , e5〉 = 5.

- L∩Gr(2,W ∗) = {ω0, ω1}. If L is a secant to the Grassmannian, it can be generated
by a rank 4 tensor ω and by a rank 2 tensor ω0 belonging to P5

ω (this happens if
and only if Uω0 < Uω) implying in particular that L ⊂ P5

ω ' P(
∧2

Uω). If the two
points ω0, ω1 defined by L∩Gr(2,W ∗) are distinct, then ω correspond to the secant
line ω0, ω1. Adopting the method used for unisecant lines, we can show that L is
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spanned by two tensors ω0, ω1 that, picking a basis e1, . . . e4 of Uω, can be written
as:

ω0 = e1 ∧ e2, ω1 = e3 ∧ e4

Otherwise, if ω1 = ω0, ω belongs to Tω0Gr(2,W ∗) (so that the entire line is tangent
to Gr(2,W ∗) in ω0); the generators have then the form:

ω0 = e1 ∧ e2, ω = e1 ∧ e3 + e2 ∧ e4.

- L ⊂ Gr(2,W ∗). A line L of constant rank 2 can be identified with a point in the
Flag variety F (1, 3, 6) (see for example [GH], ch. 5), therefore there always exists
a three dimensional subspace W ′ of W ∗ such that L ⊂ P(

∧2
W ′) ' Gr(2, 3). L

is generated by a couple of rank two tensors ω0, ω1 such that ωi ∈ Gr(2,W ∗) ∩
Tωj

Gr(2,W ∗), i, j ∈ {1, 2}, i 6= j. The 3 dimensional space W ′ coincide with
〈Uω0 , Uω1〉; we can thus find 3 vectors e1, e2, e3 spanning W ′ such that we may
write:

ω0 = e1 ∧ e2, ω1 = e2 ∧ e3

The group PGL(W ) acts on the variety of lines of Pf , each type of line described above
corresponds to an orbit of this action.

Linear subspaces of Gr(2,W ∗)

We remind briefly the structure of linear spaces ∆ ' Pr contained in Gr(2,W ∗). We
described lines contained in Gr(2,W ∗) in the previous section, we now treat the case
r ≥ 2.

• ∆ ' P2

A plane ∆ contained in Gr(2,W ∗) is of one among the two following types:
- ∆ ' Gr(2, 3): in this case we can find 3 independent vectors in W ∗, e1, e2, e3, in
such a way that ∆ is generated by the tensors:

ω0 = e1 ∧ e2, ω1 = e1 ∧ e3, ω3 = e2 ∧ e3.

- ∆ is of the form P(l ∧W ′), being l a line in W ∗ and W ′ a 4 dimensional linear
subspace of W ∗ containing l. ∆ correponds then to a point in the Flag variety
F (1, 4, 6). Consequently, calling e1 the generator of l and picking 3 other inde-
pendent vectors e2, e3, e4 in such a way that W ′ = 〈e1, . . . , e4〉, we can write the
generators of ∆ in the form:

ω0 = e1 ∧ e2, ω1 = e1 ∧ e3, ω3 = e1 ∧ e4.

• ∆ ' P3

A 3-dimensional linear subspace is always of the form P(l ∧W ′) for a line l in W ∗ and a
5-dimensional subspace W ′ of W ∗ containing it. Choosing then e1, . . . e5, a basis of W ′
such that l = 〈e1〉, we can represent the generators of ∆ as follows:

ω0 = e1 ∧ e2, ω1 = e1 ∧ e3, ω3 = e1 ∧ e4, ω3 = e1 ∧ e5.

∆ corresponds to a point in F (1, 5, 6).

• ∆ ' P4

Similarly to the three dimensional case, a linear subspace of Gr(2,W ∗) of dimension 4,
∆ ⊂ Gr(2,W ∗) is always of the form P(l∧W ∗) for a line l inW ∗. Choosing then e1, . . . e6,
a basis of W ∗ such that l = 〈e1〉, we can represent the generators of ∆ as :

ω0 = e1 ∧ e2, ω1 = e1 ∧ e3, ω3 = e1 ∧ e4, ω3 = e1 ∧ e5 ω4 = e1 ∧ e6.
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3.2 Hyperwebs of skew-symmetric forms

Our principal subjects of study are 4-dimensional linear systems of skew-symmetric forms
on W . These linear systems are referred to as hyperwebs of skew-symmetric forms. A
four dimensional hyperweb might equivalently be defined as:

• a 4-dimensional linear subspaces P(A) of P(
∧2

W ∗);

• a 6× 6 skew-symmetric matrix MA whose entries are linear forms on P(A);

• a linear embeddings φ : P(V ) → P(
∧2

W ∗), V being a complex vector space of
dimension 5, whose image is P(A).

Consider a 4-dimensional linear space P(A) ⊂ P(
∧2

W ∗) representing a linear system of
skew-symmetric forms; tensors ω0, . . . , ω4 spanning P(A) are referred to as generators of
the corresponding linear system. Denote by MA the skew-symmetric matrix of linear
forms corresponding to P(A). The intersection of P(A) with the Pfaffian hypersurface
Pf , P(A) ∩ Pf , individuates those tensors ω ∈ P(A) satisfying rk(ω) ≤ 4. The locus
P(A) ∩ Pf is defined by the equation Pf (MA) = 0 and hence it is a cubic hypersurface
in P(A) whenever P(A) 6⊂ Pf .
Tensors ω ∈ P(A) having rank 2 coincide with points belonging to P(A) ∩ Gr(2,W ∗).
The locus P(A) ∩Gr(2,W ∗) is a closed subvariety of P(A) defined by an intersection of
quadrics. Specifically, it is the base locus of |Q|P(A)| (the linear system of quadrics in Q,
restricted to P(A)), so that:

P(A) ∩Gr(2,W ∗) = P(A) ∩ (
⋂
Q∈Q

Q).

The equations defining P(A)∩Gr(2,W ∗) can be written down explicitly taking the 4× 4
minors of MA.

3.2.1 GIT stability

Defining hyperwebs we saw that any 4-dimensional linear space of skew-symmetric forms
defines a linear embedding φ : P(V )→ P(

∧2
W ∗), where P(V ) ' P4, hence it individuates

a point in P(V ∗⊗
∧2

W ∗). P(V ∗⊗
∧2

W ∗) is a projective space of dimension 74 and we
have a natural action of the group GL(V )×GL(W ) on it .We will focus on the GL(W )-
action. This is induced by the GL(W ) action on the affine cone A of P(A), so that given
P(A) ⊂ P(

∧2
W ∗) generated by ω0, . . . ,ω4 we have:

g · P(A) = 〈g · ω0, . . . , g · ω4〉, g ∈ GL(W )

(Recall that given ω ∈
∧2

W ∗, g ∈ GL(W ), g · ω is the skew-symmetric form defined
by g · ω(u, v) = ω(g · u, g · v), for any couple u, v of vectors in W . Therefore, if
Mω, Mg·ω denote the anti-symmetric matrices representing ω and g · ω respectively ,
we have Mg·ω = gMω g

T .) As ∀ λ ∈ C∗, P(λg · A) is clearly equal to P(g · A), we see
that GL(W ) acts as the projective general linear group PGL(W ). Having an action of
GL(W ) on P(V ∗ ⊗

∧2
W ∗) we get, by geometric invariant theory, a notion of stabil-

ity for hyperwebs of skew-symmetric forms with respect to this action. By definition
of GIT stability, a point P(A) is stable (resp. semistable) if and only if every point in
C∗ · A ⊂ V ∗ ⊗

∧2
W ∗ (i. e. every point on the affine cone projecting to P(A)) is stable

(resp. semistable). Therefore the analysis of the stability of P(A) is equivalent to analysis
of the stability of A. In order to apply invariant theory it is convenient to restrict to the
action of SL(W ). Indeed in this way we can, by means of Hilbert-Mumford criterion,
detect stability just by analyzing the behavior under the action of 1-parameter (1-PS)
subgroups of SL(W ).
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Hilbert-Mumford criterion. Let G be a connected reductive complex linear group
acting on a projective variety X. A point x ∈ X is G-(semi)stable if and only if it is
stable with repsect to any 1-parameter subsgroup λ : Gm → G of G.

Therefore, a point P(A) fails to be semistable if and only if there exists a 1-PS λ of
SL(W ) such that 0 = limt→∞ λ(t) · A (so that 0 ∈ λ(Gm) ·A). Therefore A fails to be
stable if and only if there exists a 1-PS λ of SL(W ) such that λ(t) · A is bounded as
t→∞ (as if this is the case (λ(Gm) ·A) \ (λ(Gm) · A) 6= ∅). Denote now by ω0, . . . ,ω4

the generators of A. Since for t ∈ C∗, λ(t) · A is generated by λ(t) · ωi, i = 0, . . . , 4,
we see that A is not λ-(semi)stable if and only if each generator ωi, i = 0, . . . , 4 is not
λ(semi)stable. A 1-PS λ of SL(W ), λ : C∗ → SL(W ), is uniquely determined by a
decreasing six-tuple of complex numbers, λ1 ≥ . . . , ≥ λ6,

∑6
i=1 λi = 0, not all equal

to zero, such that λ(t) = diag(tλ1 , . . . , tλ6)(for this reason we will often denote such a λ
with the 6-tuple of weigths of its action, (λ1, . . . ,λ6)). Adapting the argument used by
Wall in [Wall],we prove the following:

Theorem 3.2.1. Let A be an element of V ∗ ⊗
∧2

W ∗ generated by tensors ω0, . . . ,ω4.
We denote by Mωk

the skew-symmetric matrices representing the forms ωk, Mωk
= (akik),

1 ≤ i, j ≤ 6, k = 0, . . . , 4.

1. A is not stable if and only if, for some choice of coordinates on W , there exists an
integer 1 ≤ s ≤ 3 such that, akij = 0 whenever 1 ≤ i ≤ s, i < j ≤ 6− s, 0 ≤ k ≤ 4.

2. A is not semistable if and only if, for some choice of coordinates on W , there exists
an integer 1 ≤ s ≤ 3 such that akij = 0 whenever 1 ≤ i ≤ s, i < j ≤ 7−s, 0 ≤ k ≤ 4.

Proof. In the first place, notice that given A ∈ V ∗ ⊗
∧2

W ∗ as in the statement and
λ = (λ1, . . . ,λ6) a 1-PS, λ(t) ·A is then generated by λ(t) ·ωk, tensors represented by the
matrices (Mλ(t)·ωk

)
ij

= tλi+λjakij , k = 0, . . . , 4.

1. Suppose that A is unstable, that is, non-semistable, and let λ = (λ1, . . . , λ6) be a
1-PS for which we have 0 ∈ λ(Gm) ·A. We thus have 0 ∈ λ(Gm) · ωk, ∀k = 0, . . . ,4
or, in other words, none among the generators of A is λ-semistable. There exists
then an integer s ∈ {1, 2, 3} such that λi + λ7−i ≥ 0. Indeed, if this was not the
case, we would have

∑6
i=1 λi < 0, which is absurd. For such an s we therefore have

λs+λ7−s ≥ 0 and so, from the assumptions on the λi, λi+λj ≥ 0, ∀1 ≤ i ≤ s, ∀i <
j ≤ 7−s. As we are assuming that A is not λ-semistable, we conclude that aki,j = 0

whenever 1 ≤ i ≤ s, i < j ≤ 7 − s. Conversely, if the coordinates akij of A satisfy
the hypotheses of the theorem, we are able to construct explicitly a 1-PS of SL(W )
refuting the semistability of A. This is the case for λ ∈ HomGr−Alg(Gm, SL(W ))
acting with weights λ1, . . . , λ6 defined as follows:

λi =


6− s 1 ≤ i ≤ s
−1 s+ 1 ≤ i ≤ 7− s
s− 7 8− s ≤ i ≤ 6

2. Suppose now that A is nonstable. This means that there exists a 1-PS
λ = (λ1, . . . ,λ6) for which ∀k = 0, . . . , 4, λ(t) · ωk is bounded as t → ∞ (implying
thus that (λ(Gm) ·A)\λ(Gm) ·A 6= ∅). Now, if ever for all integers s ∈ {1, 2, 3} we
had λs+λ6−s ≤ 0, we would get 2

∑5
i=1 λi ≤ 0 hence

∑5
i=1 λi ≤ 0. As

∑6
i=1 λi = 0

we should then have λ6 ≥ 0. Thus for every 1 ≤ i ≤ 5, λi ≥ λ6 ≤ 0 ∀1 ≤ i ≤ 5,
condition that can be satisfied if and only if all the λi’s are equal to zero, a con-
tradiction. Then there exists an s, 1 ≤ s ≤ 3, for which λs + λ6−s > 0, and
consequently for all i, j with i ≤ s, i < j ≤ 6− s, λi +λj > 0. As the non-stability
requires the boundedness of λ(t) ·ωk as t→∞ for every k = 0, . . . ,4, we must have
akij = 0 whenever 0 ≤ k ≤ 4, i ≤ s, i < j ≤ 6− s.
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For the converse implication, consider A ∈ V ∗ ⊗
∧2

W ∗ whose affine coordinates
akij satisfy the hypotheses of the proposition. Again, we are able to provide a 1-PS
λ for which A is not λ-stable. We can consider for example a 1-PS acting with the
following weigths:

λi =


1 1 ≤ i ≤ s
0 s+ 1 ≤ i ≤ 6− s
−1 6− s+ 1 ≤ i ≤ 6

Representing an element of P(V ∗⊗
∧2

W ∗) as a 6×6 skew-symmetric matrix with entries
in V ∗ we see that for an appropriate choice of coordinates on W , a nonstable hyperweb
is of one of the following forms:

0 0 0 0 0 ∗
0 0 ∗ ∗ ∗ ∗
0 ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0

 (s = 1)


0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0

 (s = 2)


0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0

 (s = 3)

Similarly, a hyperweb that is not semistable might be represented as a skew-symmetric
matrix of one of these types:

0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗
0 ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ ∗ 0

 (s = 1)


0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0

 (s = 2)


0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0

 (s = 3)

Corollary 3.2.2. Let P(A) be a linear space of skew-symmetric forms and denote by MA

the corresponding 6×6 skew-symmetric matrix of linear forms. If P(A) is not semistable
then Pf (MA) = 0.

Proof. Let P(A) be an element in P(V ∗ ⊗
∧2

W ∗) and MA, (MA)ij = lij ,
lij =

∑4
k=0 a

k
ijXk the corresponding matrix of linear forms. Denoting by qij the (ij)−th
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entries of the Pfaffian adjugate of MA, namely qij = Pf (M i,j
A ) is the Pfaffian of the

sub-matrix obtained by deleting the ith and jth rows and columns, we have:

Pf (MA) =

6∑
j=1

(−1)j l1jq1j .

Suppose now thatMA is not semistable. Applying theorem 3.2.1, we might suppose that,
∃ s ∈ {1, 2, 3} such that akij = 0 whenever 1 ≤ i ≤ s, i < j ≤ 7− s, 0 ≤ k ≤ 4. We can
thus easily compute that:

• If s = 1, l1j = 0 ∀ 1 < j ≤ 6 so that Pf (MA) = 0.

• If s = 2, Pf (MA) = l16q16; as l2j = 0, ∀ 2 ≤ j ≤ 5, q16 = 0, we get Pf (MA) = 0

• If s = 3, Pf (MA) = l16q16 − l15q15; as l2j
= 0, ∀ 3 ≤ j ≤ 4, l34 = 0, q15 = q16 = 0,

we get Pf (MA) = 0.

Remark 21. The set of all points A ∈ V ∗⊗
∧2

W ∗ that are not semistable (and thus that
are such that P(A) is not semistable), forms a Zariski closed cone HV ∗⊗∧2 W∗(SL(W ))

in V ∗⊗
∧2

W ∗ called the Hilbert nullcone. It is proven in [BD] that HV ∗⊗∧2 W∗(SL(W ))
has exactly 3 irreducible components Hs, s = 1, 2, 3, each one corresponding to the
couple of integers s, 7− s determined by theorem 3.2.1, namely:

Hs = {A ∈ V ∗ ⊗
2∧
W ∗ | ∃ : U ′ ⊂ U ⊂W, dim(U ′) = s, dim(U) = 7− s,

ω(U ′, U) = 0, ∀ω ∈ A}

The stability criterion can also be rephrased in more geometric terms (this will be
the characterization of stability that we will mainly use). Indeed we observe that
P(A) ∈ V ∗ ⊗

∧2
W ∗ fails to be stable (resp. semistable) if there exists an integer

s ∈ {1, 2, 3} and U ′, U a couple of vector subspaces of W of dimension s and 6 − s
(resp. of dimension s and 7 − s) such that U ′ < U and ω(U ′, U) = 0, ∀ ω ∈ A. Such a
couple of vector spaces satisfies then P(U ′ ∧ U) ⊂ P(A)⊥. Analyzing each possible value
of s we observe that the following situations occur:

• s = 1

For s = 1, P(A) is not stable if and only if there exists a vector u ∈ W different
from 0, for which the forms ω(u, ·) ∈ W ∗, ω ∈ A, satisfy

⋂
ω∈A ker(ω(u, ·)) =

U, dim(U) ≥ 5. P(A) is not even semistable when U = W hence when the vector u
belongs to

⋂
ω∈A ker(ω). P(u∧U) ' Pdim(U)−1 is thus a linear space (of dimension 3

if P(A) is not stable and of dimension 4 if P(A) is not semistable) entirely contained
in P(A)⊥.

• s = 2

For s = 2, P(A) is not stable if and only if there exist two independent vectors
u1, u2 in W and a vector subspace U of W of dimension greater than or equal to
4, such that

⋂
ω∈A ker(ω(ui, ·)) = U i = 1, 2

• s = 3

When s is equal to 3, the linear space P(A) is not stable if and only if there exists
a vector subspace U < W of dimension 3 or 4 that is isotropic with the respect
to every tensor ω ∈ A or equivalently, that satisfies P(

∧2
U) ⊂ P(A)⊥. More

precisely P(A) is not stable when dim(U) = 3, in this case P(
∧2

U) ' Gr(2, U) '
P2. Whenever dim(U) = 4, P(A) fails to be semistable and P(

∧2
U) ' P5. In

this circumstance the condition P(
∧2

U) ⊂ P(A)⊥ yields the inclusion P(A) ⊂
TuGr(2,W ∗), being u := ∧2(U⊥).
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Remark 22. Because of the fact that we are working with skew-symmetric forms, if
P(A) is “destabilized” by a couple of spaces U ′ < U of dimension 2 and 4, then for any
hyperplane U ′′ of U containing U ′, we have P(

∧2
U ′′) ⊂ P(A)⊥. Indeed given any tensor

ω ∈ P(U ′ ∧ U)⊥ and any vector u ∈ U, u 6∈ U ′, since ω(u, u) = 0, the 3-dimensional
space U ′′ := 〈U ′, u〉 always satisfies ω(U ′′, U ′′) = 0. Otherwise we can argue saying that
the existence of the aforementioned couple U ′, U implies that P(A)⊥ ∩ Gr(2, U) defines
an hyperplane section H ∩Gr(2, U) of Gr(2, U) by an hyperplane H ∈ Gr(2, U∗). Such
an hyperplane section is a 4-dimensional quadric of rank 4 that always contains a plane
isomorphic to Gr(2, 3).

Using this "geometric" formulation of our criterion we prove the following.

Theorem 3.2.3. Let P(A) be a 4-dimensional linear space of skew-symmetric forms such
that the intersection P(A) ∩ Pf individuates a smooth cubic hypersurface in P(A). Then
P(A) is stable.

Proof. Let P(A) be a linear space satisfying the hypotheses of the theorem. Since by
assumption P(A)∩Pf is a cubic hypersurface X in P(A), P(A) 6⊂ Pf so that, by corollary
3.2.2, P(A) is semistable. Assume by contradiction that P(A) is not stable (hence that
it is strictly semistable) and denote then by s, s ∈ {1, 2, 3}, the integer consequently
individuated applying the stability criterion 3.2.1. We analyze each possible value of s
showing that in any case we can not get a smooth intersection X = P(A) ∩ Pf .

• s=1 or s=2. We show that whenever s = 1 or s = 2, X is reducible. Call
MA = (lij), 1 ≤ i < j ≤ 6, the 6 × 6 skew-symmetric matrix of linear forms
individuated by P(A) and denote by qij := Pf (M i,j

A ) the Pfaffian of the sub-matrix
obtained by deleting the ith and jth rows and columns. X is defined by the cubic
form Pf (MA) =

∑6
j=1(−1)j l1jq1j . Because of the assumptions we can suppose that

lij = 0 for 1 ≤ s, i < j ≤ 6− s. Now, if s = 1, we have:

Pf (MA) = l16q16

hence X is reducible.

If s = 2, we compute that:

Pf (MA) = l16q16 − l15q15 = l34(l16l25 − l15l26)

so that also in this case we get a reducible cubic X.

• s=3. In order to treat the case where s = 3 we use an approach different from the
previous one, that relies on the "geometric formulation" of the stability criterion.
To start with we recall that if X = P(A)∩Pf is a smooth threefold, the intersection
P(A)⊥ ∩Gr(2,W ) defines a smooth threefold Y of degree 14. We denote by F (X)
the Fano surface of lines on X and by F (Y ) the variety parametrizing conics on Y .
Under smoothness assumptions we have an isomorphism :

F (X) ' F (Y ).

If now we suppose that P(A) is not stable and s = 3 is the integer determined
by 3.2.1, there exists then a 3 dimensional linear subspace U of W , such that
P(
∧2

U) ' P2 is contained in P(A)
⊥. As P(

∧2
U) ' Gr(2, U), the plane P(

∧2
U) is

therefore contained in P(A)
⊥∩Gr(2,W ) = Y . The inclusion P(

∧2
U) ⊂ Y , implies

that Y contains all the conics in the plane P(
∧2

U) and therefore that F (Y ) has
dimension at least 5. This clearly leads to a contradiction.
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3.2.2 Stable hyperwebs of generic rank less than or equal to four
From now on we will work with those 4-dimensional linear subspaces P(A) of P(

∧2
W ∗)

that moreover are such that ∀ ω ∈ A, rk(ω) ≤ 4. This condition is equivalent to requiring
that P(A) is contained in Pf , the Pfaffian hypersurface Pf ⊂ P(

∧2
W ∗). We refer to these

linear systems as hyperwebs of skew-symmetric forms of generic rank less than or equal
to 4.
Our first aim is to determine the stable ones. We prove the following:

Theorem 3.2.4. Let P(A) be a stable 4-dimensional hyperweb of skew-symmetric forms
of generic rank less then or equal to four. Then P(A) is either SL(W )-equivalent to the
space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4, e1 ∧ e2, e4 ∧ e5〉

or SL(W )-equivalent to the space generated by

〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6− e3 ∧ e4, e1− e5 ∧ e2 + e4, e1− e5 ∧ e3 + e6〉.

Furthermore in the first case P(A) meets the Grassmannian Gr(2,W ∗) along a smooth
conic isomorphic to P2∩Gr(2, 4); in the second case P(A) intersects the Gr(2,W ∗) along
a couple of disjoint lines.

The proof of the theorem relies on the study of the intersection P(A)∩Gr(2,W ∗). Given
indeed a linear space P(A) contained in the Pfaffian hypersurface Pf , it is natural to
ask whether it intersects the Grassmannian. It turns out that whenever dim(P(A)) = 4,
the answer is always positive and that moreover, P(A) ∩ Gr(2,W ∗) is a variety having
dimension at least 1. This is essentially due to the following result, by Manivel-Mezzetti
([MM], cor.11 ):

Proposition 3.2.5 (Manivel-Mezzetti). There exists no P3 of skew-symmetric matrices
of order six and constant rank four.

In [MM] the authors prove that, more precisely, a 3-dimensional hyperweb contained in
the Pfaffian hypersurface always meets the Grassmannian along a variety of dimension
bigger than or equal to 0.

Dimension of the intersection with the Grassmannian

From proposition 3.2.5, we get that given P(A), a 4-dimensional linear subspace of Pf ,
the intersection Gr(2,W ∗) ∩ P(A) is a variety whose dimension is always bigger than or
equal to 1. The first step to prove theorem 3.2.4 is to show that if P(A) is stable, then
P(A) ∩Gr(2,W ∗) must have dimension exactly one.
Proposition 3.2.6. Let P(A) be a stable 4-dimensional linear space of skew-symmetric
forms of generic rank less than or equal to 4 and let X be the variety defined as the
intersection X := P(A) ∩Gr(2,W ∗). Then X is a smooth 1 dimensional variety.

Proof. To start with we recall that given any rank two tensor ω ∈ Gr(2,W ∗) we get the
following decomposition of P(

∧2
W ∗) :

P(

2∧
W ∗) = 〈TωGr(2,W ∗),P(

2∧
ker(ω)∗)〉.

Let indeed lω ⊂ P(W ∗) be the line corresponding to ω. The tangent space to Gr(2,W ∗)
at ω, TωGr(2,W ∗), is the 8-dimensional linear subspace of P(

∧2
W ∗) spanned by tensors

corresponding to lines in P(W ∗) meeting lω (namely this tangent space can be interpreted
as the linear span of the Scubert variety parametrizing lines in P(W ∗) intersecting ω).
Consider now the linear space P(ker(ω)∗) ⊂ P(W ∗); this is a 3 dimensional linear space
orthogonal to lω. Lines in this 3-plane define the Grassmannian Gr(2, ker(ω)∗) ' Gr(2, 4),
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a 4 dimensional variety spanning a 5 plane P(
∧2

ker(ω)∗) disjoint from TωGr(2,W ∗).
Consequently we obtain the aforementioned decomposition. Let now P(A) be a linear
space satisfying the hypotheses of the proposition and suppose by contradiction the
existence of a point ω ∈ X such that dimTxX = r ≥ 2. Consider now the linear
projection πω from TωGr(2,W ∗) to P(

∧2
ker(ω)∗):

πω : P(

2∧
W ∗) 99K P(

2∧
ker(ω)∗).

We analyse the behaviour of P(A) under this projection. Because of the assumptions
on ω, dim(TωX) ≥ 2 so that π(P(A)), the image of P(A) under πω is a linear space of
dimension s ≤ 1. (Here we use the convention dim(π(P(A))) = −1 if ever π(P(A)) = ∅).
Since moreover we are supposing that P(A) ⊂ Pf , we must have P(A) ⊂ Qω, con-
dition that is fulfilled if and only if πω(P(A)) ⊂ Gr(2, ker(ω)∗). This last inclusion
implies that P(A)⊥ ∩Gr(2, ker(ω)) is a quadric hypersurface of rank 4 − s of the lin-
ear space P(A)⊥ ∩ P(

∧2
ker(ω)) = (πω(P(A)))⊥ ∩ P(

∧2
ker(ω)) ' P4−s. As such a lin-

ear section of the Grassmannian Gr(2, ker(ω)) ' Gr(2, 4) always contains a plane iso-
morphic to Gr(2, 3), there exists U < ker(ω) a linear space of dimension 3 such that
P(
∧2

U) ⊂ P(A)⊥. We can therefore conclude that P(A) can not be stable.

Destabilizing planes of constant rank 4

The previous proposition ensures that whenever P(A) is stable, we can always find a
plane P(B) ⊂ P(A), such that rk(ω) = 4, ∀ ω ∈ P(B). 2-dimensional linear spaces P(B)

of P(
∧2

W ∗) having constant rank 4 have been classified, up to the action of PGL(W ),
in [MM].
The authors proved that such a P(B) belongs to the PGL(W )-orbit of one of the following
planes

πg =〈e1 ∧ e4 + e2 ∧ e5, e1 ∧ e6 + e3 ∧ e5, e2 ∧ e6 − e3 ∧ e4〉
πt =〈e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 + e2 ∧ e5, e1 ∧ e5 + e2 ∧ e6〉
πp =〈e1 ∧ e4 + e2 ∧ e3, e1 ∧ e5 + e3 ∧ e4, e1 ∧ e6 + e2 ∧ e4〉
π5 =〈e1 ∧ e4 + e2 ∧ e3, e1 ∧ e5 + e2 ∧ e4, e2 ∧ e5 + e3 ∧ e4〉

(3.1)

where e1, . . . ,e6 denotes a basis of W ∗.
Proposition 3.2.7. Let P(A) ⊂ Pf be a 4-dimensional linear space of skew-symmetric
forms of generic rank 4 and P(B) ⊂ P(A) be a plane such that rk(ω) = 4, ∀ ω ∈ B. If
P(B) is PGL(W )-equivalent either to πt, πp, π5, then P(A) can’t be stable.

Proof. We consider γ : P(
∧2

W ∗) 99K P(
∧2

W ), the Gauss map of the Pfaffian hypersur-
face and we look at γ|P(B). Since P(B) has constant rank 4, P(B) ∩ Gr(2,W ∗) = ∅, so
that on P(B), the map γ is everywhere defined (as Gr(2,W ∗) is the indeterminacy locus
of γ). The condition P(A) ⊂ Pf implies that ∀ ω ∈ P(A) \ Gr(2,W ∗), P(A) ⊂ TωPf ,
hence γ(P(B)) ⊂ P(A)⊥ and consequently 〈γ(P(B))〉 ⊂ P(A)⊥. By means of the classi-
fication (3.1), we can compute directly γ(P(B)) ( a detailed description of these images
can be found in [MM] ) and see that whenever P(B) is PGL(W )-equivalent to πp, πt or
π5 we can always find a linear subspace 〈γ(P(B)〉 ⊂ P(A)⊥ that prevents the stability of
P(A).

• P(B) ∈ PGL(W ) · πt. A linear space of this kind is always contained in a tangent
space TωGr(2,W ∗) to Gr(2,W ∗) in a point ω ∈ Gr(2,W ∗) ( for the choice of
coordinates in (3.1), πt ⊂ T(e1∧e3)Gr(2,W ∗).) In this case γ|P(B) is defined by the
complete linear system |OP(B)(2)| and γ(P(B)) is a Veronese surface contained in
Gr(2, ker(ω)) ⊂ P(

∧2
ker(ω)) ' P5. Thus P(

∧2
ker(ω)) ⊂ P(A)⊥ and consequently

P(A) can’t even be semistable.
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• P(B) ∈ PGL(W ) · πp. In this case the plane P(B) contains a pencil of special
lines (namely lines of tensors of constant rank 4 entirely contained in P(

∧
W ′),

for a 5-dimensional subspace W ′ of W ∗). For any couple L1, L2 of genera-
tors of this pencyl, there exists a couple of points ωi ∈ Gr(2,W ∗) such that
Li ⊂ Tωi

Gr(2,W ∗), i = 1, 2. Denote by U12 < W the 3-dimensional space
ker(ω1) ∩ ker(ω2) (For P(B) = πp as in (3.1) we can take for example the lines
L1 = e1 ∧ e4 + e2 ∧ e3, e1 ∧ e5 + e3 ∧ e4, L2 = e1 ∧ e4 + e2 ∧ e3, e1 ∧ e6 + e2 ∧ e4,
so that ω1 = e1 ∧ e3, ω2 = e1 ∧ e2 and U12 = 〈e1, e2, e3〉⊥). The map γ|P(B)

is still a Veronese embedding and the span of Veronese surface γ(P(B)) contains
the plane P(

∧2
U12) ' Gr(2, 3).

• P(B) ∈ PGL(W ) · π5. In this case there exists a vector v ∈ W such that we
have an inclusion P(B) ⊂ P(

∧2
(v)⊥); moreover this time 〈γ(P(B))〉 is equal to

P(v ∧W ) ' P4, the Schubert variety of 2-dimensional subspaces of W containing
v (for the choice of coordinates in (3.1), v will be defined by the intersection of
the hyperplanes e1, . . . ,e5). In this situation the entire space P(A) must thus be
contained in P(

∧2
v⊥); therefore it can’t even be semistable.

From what we have just proved, we see that a stable P(A) ⊂ Pf can only contain 2-
planes of constant rank 4 that are PGL(W )-equivalent to πg. Planes belonging to the
orbit PGL(W ) · πg have a convenient characterization that we will use in the proof of
theorem 3.2.4. Indeed, following [MM], we have that given any P(B) ∈ PGL(W ) · πg,
it is possible to find a couple C, D, of 3-dimensional disjoint subspaces of W ∗, and a
(unique) linear isomorphism u : C → D such that every tensor ω ∈ P(B) can be written
in the form:

ω = x ∧ u(y)− y ∧ u(x), for x, y ∈ C.

This induces an isomorphism:

Gr(2, C) −→P(B)

〈x, y〉 7→x ∧ u(y)− y ∧ u(x).

(Choosing coordinates so that P(B) is written as in 3.1, we have C = 〈e1, e2, e3〉,
D = 〈e4, e5, e6〉, u(e1) = e5, u(e2) = −e4, u(e3) = −e6.) The restriction of the Gauss
map to P(B):

γ|P(B) : P(B) −→ P(

2∧
W )

is defined by the complete linear system |OP(B)(2)|. The Veronese surface SB = γ(P(B))

is the the variety of lines of the form vuT (v) where:

uT : D∗ → C∗, D∗ ' C⊥, C∗ ' D⊥

is the transpose of u.

We now determine which linear subspaces of W destabilize the plane P(B). Throughout
the rest of the section we fix a basis e1, . . . ,e6 of W ∗ in such a way that P(B) is written
as P(B) = πg = 〈ω0, ω1, ω2〉 with the generators ωi, i = 0, 1, 2 of the form appearing in
(3.1). To start with, we prove the following:

Proposition 3.2.8. There is no couple u, U with u ∈ W, U < W, dim(U) = 5 such
that P(u ∧ U) ⊂ π⊥g .

Proof. Denote by v1, . . . ,v6 a basis of W dual to e1, . . . ,e6. As we have already remarked
in section 3.2.1, the existence of a couple u, U as in the statement of the proposition is
equivalent to the existence of a vector u ∈ W such that

⋂
ω∈πg

ker(ω(u, ·)) has dimen-
sion at least 5. We prove that this can never occur. Indeed, take an arbitrary vector
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u ∈W, u =
∑6
i=1 αivi. In the basis e1, . . . ,e6, the linear forms in ω0(u, ·), ω1(u, ·) can

be written as:

ω0(u, ·) = α1e4 + α2e5 − α4e1 − α5e2, ω1(u, ·) = α1e6 + α3e5 − α6e1 − α5e3

ω2(u, ·) = α2e6 + α4e3 − α6e2 − α3e4⋂3
i=1 ker(ωi(u, ·)) has dimension greater than or equal to five if and only if the linear

subspace of W ∗ generated by ω0(u, ·), ω1(u, ·), ω2(u, ·) has dimension at most one or
equivalently, if and only if the matrix−α4 −α5 0 α1 α2 0

−α6 0 −α5 0 α3 α1

0 −α6 +α4 −α3 0 α2


has rank 1. But we can compute directly that this happens if and only if all the αis
vanish.

Because of remark (22), a 4-dimensional hyperweb P(A) ⊂ Pf containing a plane πg is
thus not stable if and only if there exists a 3-dimensional space U isotropic with respect
to any tensor ω ∈ P(A) and consequently with respect to any tensor in πg. Every 3-
dimensional subspace of W isotropic with respect to any form in πg can be characterized
as follows:

Lemma 3.2.9. Fix a basis v1, . . . ,v6 on W dual to e1, . . . ,e6. Every 3-dimensional
subspace U of W such that πg ⊂ P(U)⊥ might be written as:

U = 〈α3v3 + α6v6, α2v2 + α4v4, α1v1 + α5v5〉

with ([α3 : α6], [α2 : α4], [α1 : α5]) ∈ P1 × P1 × P1 , satisfying:

α2α5 − α4α1 =0, (3.2)
α3α5 − α6α1 =0, (3.3)
α6α2 + α3α4 =0. (3.4)

Proof. Denote by ω0, ω1, ω2 the 3 generators of πg appearing in (3.1) and let U < W
be a 3-dimensional linear space isotropic to ωi, i = 0, 1, 2. The first thing that we can
deduce is that every such linear space U is necessarily spanned by 3 independent vectors
in W , u1, u2, u3 with ui ∈ ker(ωi). This is due to the fact that given a rank 4 tensor
ω, if U is a 3-dimensional linear space isotropic with respect to it, then U ∩ ker(ω) 6= 0.
To see this we can argue as follows. Take T , a 4-dimensional linear subspace of W
disjoint from ker(ω). Write then W = ker(ω) ⊕ T and denote by pT the linear pro-
jection pT : W → T . If ω ∈ (

∧2
U)⊥, then ω|T ∈ (

∧2
(pT (U))⊥ ⊂

∧2
T . If ever

U ∩ ker(ω) = 0, we would have dim(pT (U)) = 3 hence P(
∧2

pT (U))⊥ ⊂ Gr(2, T ∗), lead-
ing to a contradiction as rk(ω|T ) = 4. Therefore U ∩ ker(ωi) 6= 0 ∀ωi, i = 1, 2, 3; as
whenever i 6= j, ker(ωi) ∩ ker(ωj) = 0, we conclude that we can find a 3-uple of vectors
in W , u0, u1, u2 with ui,∈ ker(ωi) spanning the space U . For our choice of coordinates,
we have ker(ω0) = 〈v3, v6〉, ker(ω1) = 〈v2, v4〉, ker(ω2) = 〈v1, v5〉, hence 3-dimensional
spaces isotropic with respect to any tensor in P(B) belongs to the family of linear spaces
parametrized by P1 × P1 × P1 of the form:

U = 〈α3v3 + α6v6, α2v2 + α4v4, α1v1 + α5v5〉

with ([α3 : α6], [α2 : α4], [α1 : α5]) ∈ P1 × P1 × P1. Imposing the conditions ωi|U = 0,
we get the 3 equations (2),(3), (4). To see this embed P1 × P1 × P1 in P11 by means
of the linear systems of divisors of type (1, 1, 0), (1, 0, 1), (0, 1, 1). This map is just the
morphism



3.2. HYPERWEBS OF SKEW-SYMMETRIC FORMS 81

P(ker(ω0))× P(ker(ω1))× P(ker(ω2)) −→ P(

2∧
W )

(u1, u2, u3) 7→ u1 ∧ u2 + u1 ∧ u3 + u2 ∧ u3

The conditions ωi ∈ P(
∧2

U)⊥, i = 0, 1, 2 defines 3 hyperplane sections of P11 that
restricted to P1 × P1 × P1 gives the equations (quadratic in the αis ) appearing in the
statement.

Proof of theorem 3.2.4
Proof of theorem 3.2.4. Let P(A) be a 4-dimensional linear space of skew-symmetric
forms satisfying the hypotheses of the theorem. By proposition 3.2.6 P(A) ∩ Gr(2,W ∗)
must have dimension one, hence a general 2-dimensional subspace P(B) of P(A), is a
plane having constant rank 4. Consequently P(A) might be written as

P(A) = 〈P(B), ω3, ω4〉

for a couple of points ω3, ω4 belonging to Gr(2,W ∗) and P(B) PGL(W )-equivalent to
πg. This last assertion is due to 3.2.7, as we are assuming the stability of P(A). We
need then to detect when 2 points ω3, ω4 in the Grassmannian Gr(2,W ∗) are such that
P(A) := 〈P(B), ω3, ω4〉 is a stable subspace of Pf . We start by studying when for such a
couple the space P(A) is effectively contained in Pf . More generally, since Pf is a cubic
hypersurface, we have that for an arbitrary ω ∈ Pf , the locus of points ω′ ∈ P(

∧2
W ∗)

such that ω′ω ⊂ Pf is determined by the intersection:

TωPf ∩Qω ∩ Pf ,

where Qω is a quadric cone in P(
∧2

W ∗) with vertex ω. Therefore, given any linear space
∆ ⊂ Pf , in order to have an inclusion 〈∆, ω〉 ⊂ Pf , it is necessary to have ∆ ⊂ TωPf
and consequently 〈∆, ω〉 ⊂ TωPf . Hence a necessary condition to have P(A) ⊂ Pf is that
∀ ω ∈ P(B), P(A) ⊂ TωPf . What we have just explained can be rephrased by means of
the morphism:

γ|P(B) : P(B)→ P(

2∧
W ),

restriction of the Gauss map to P(B), saying that the inclusion P(A) ⊂ Pf implies
that ∀ ω ∈ P(B), P(A) is contained in the hyperplane corresponding to γ(ω). As we
have already seen, γ|P(B) is a degree 2 Veronese embedding; denote by SB the Veronese
surface γ(P(B)), by T ⊂ P(

∧2
W ), T ' P5 its linear span and by Λ, Λ ⊂ P(

∧2
W ∗) the

8-plane orthogonal to T . From the discussion presented above, the hypothesis P(A) ⊂ Pf
implies that P(A) ⊂ H, ∀ H ∈ SB leading to P(A) ⊂ Λ. This last inclusion occurs if and
only if ω3, ω4 are rank 2 tensors both belonging to Λ. We determine then Gr(2,W ∗)∩Λ.
Recall that since P(B) belongs to PGL(W ) · πg, we can find disjoint subspaces C, D,
of W ∗ of dimension 3 and an isomorhism u : C

∼−→ D (uniquely determined ), such that
every ω ∈ P(B) has the form:

ω = x ∧ u(y)− y ∧ u(x), ∃ x, y ∈ C.

This defines an isomorphim ρ:

ρ : P(B)
∼−→Gr(2, C)

x ∧ u(y)− y∧u(x) 7→ x ∧ y

Let now E ' P1 be a line and consider the morphism:

ψ′ : Gr(2, C)× E −→Gr(2,W ∗)
(x ∧ y, [t0 : t1]) 7→(t0(x) + t1(u(x))) ∧ (t0(y) + t1(u(y))),
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and consequently the map:

ψ : P(B)× E −→Gr(2,W ∗)
(ω, [t0 : t1]) 7→ψ′((ρ(ω), [t0 : t1]))

Denote by Y the variety Im(ψ) = Im(ψ′).
We see from the definition of the maps ψ and ψ′ that Y is a rational normal scroll S(2,2,2).
This a degree 6 variety of dimension 3, non-degenerate in Λ (hence a minimal variety of
dimension 3 in Λ ' P8). Y has the structure of a conic fibration over P(B),

Y
π−→ P(B), Cω := π−1(ω) = ψ({ω} × E).

Note that if ρ(ω) = x ∧ y, the conic Cω is the locus:

Cω = π−1(ω) = t20(x ∧ y) + t0t1(x ∧ u(y) + u(x) ∧ y) + t21(u(x) ∧ u(y)).

Y can also be interpreted as a family of planes over E. Consider the three conics Cωi ⊂ Λ,
i = 0, 1, 2. The Cωi

s are 3 conics lying in 3 disjoint planes, moreover given any point
ω ∈ Ci, TωGr(2,W ∗) ∩ Cj , i 6= j consists of just one point. This means that once
we have fixed an isomorphism φ0 : E → Cω0

, we uniquely determine isomorphisms
φi : E → Cωi , i = 1, 2 sending a point p ∈ E to Tφ0(p)Gr(2,W ∗) ∩ Cωi . Y ' S(2,2,2) is
thus the rational scroll obtained as:

Y =
⋃
p∈E

φ0(p), φ1(p), φ2(p), φ0(p), φ1(p), φ2(p) = ψ(P(B)× {p}).

As every point in the Veronese surface SB = γ(P(B)) is of the form v∧uT (v), where uT :
D∗ → C∗ is the transpose of u, we see that by construction we have Y ⊂ Gr(2,W ∗)∩Λ.
In order to verify that Y is effectively equal to Gr(2,W ∗) ∩ Λ, we first observe that, as
Y ' S(2,2,2), Y is the base locus of a linear system of quadrics on Λ having dimension
h0(IY (2))− 1 = 14.
Consider now Q '

∧4
W the linear system of Plücker’s quadrics on P(

∧2
W ∗). The

variety Λ ∩ Gr(2,W ∗) is the base locus of |Q|Λ|. The inclusion Y ⊂ Gr(2,W ∗) ∩ Λ
implies that |Q|Λ| ⊂ P(H0(IY (2))). In order to compute the dimension of |Q|Λ|, we
start by taking a 9-tuple of points ωi = 0, . . . ,8 spanning Λ; choosing linear coordinates
X0, . . . ,X8, points in Λ ∩Gr(2,W ∗) are defined by:

8∑
i=0

Xiωi ∈ Λ ∩Gr(2,W ∗)⇐⇒ ∧2(

8∑
i=0

Xiωi) = 0.

∧2(
∑8
i=0Xiωi) gives an element in H0(OΛ(2))⊗

∧4
W ∗ ' H0(OΛ(2))⊗

∧2
W that can

thus be written as
∑

1≤i<j≤6Qij(vi ∧ vj), with Qij ∈ H0(OΛ(2)) and with v1, . . . ,v6

vectors forming a basis of W . |Q|Λ| is the linear system generated by the quadrics Qij .
Writing P(B) in the form appearing in (3.1), we can write down explicitly generators
of Λ and compute that dim(|Q|Λ|) = 14. Hence |Q|Λ| = P(H0(IY (2))) from which we
deduce that Y = Λ ∩Gr(2,W ∗).
We show now that if ω3, ω4 are points on Y such that the 4-plane P(A) = 〈P(B), ω3, ω4〉
is a stable 4-plane entirely contained in Pf , we might then suppose that ω3, ω4 belong
either to a conic Cω = π−1(ω) for a point ω ∈ P(B), or to a line ω3ω4 entirely contained
in Y .
From the construction of Y , we have that each of its points belongs to a unique fiber of
Y

π−→ P(B). Now, if ω3, ω4 lie on the same fiber of π, there exists then a point ω ∈ P(B)
such that ωi ∈ Cω, i = 3, 4.
Suppose now that ω3, ω4 don’t belong to the same fiber of π. We claim that we might
assume that these two points span a line ω3ω4 contained in Y (more precisely ω3ω4 will
be the image through ψ of L×{p}, for a line L ⊂ P(B) and a point p ∈ E ' P1.) Without
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loss of generality we can assume that ω3 ∈ π−1(ω0) and ω4 ∈ π−1(ω1). We study now
the conditions imposed on ω3, ω4 by the hypothesis P(A) ⊂ Pf . By the assumptions on
ω3, ω4, P(A) ⊂ Pf holds if and only if 〈ω2, ω3, ω4〉 ⊂ Pf . As we have already remarked
at the beginning of the proof, the plane 〈ω2, ω3, ω4〉 is contained in Pf if and only if
ω3ω4 ⊂ Pf ∩ Qω2

∩ Tω2
Pf , (where Qω2

is a quadric cone with vertex in ω2) and this
occurs if and only if ω4 ∈ Tω3

Qω2
. The conic Cω1

intersects the hyperplane Tω3
Qω2

in
two (possibly coincident) points (these are thus the only two points ω on Cω1

leading
to an inclusion 〈P(B), ω3, ω〉 ⊂ Pf ). We look now at the line ω0ω3: this is a secant
to Gr(2,W ∗) intersecting Gr(2,W ∗) in ω3 and in another point ω′3 (ω3 = ω′3 whenever
ω0 ∈ Tω3Gr(2,W

∗)). The two points ω4, ω
′
4 on Cω1 defined by ω4 := Tω3Gr(2,W ∗)∩Cω1

and ω′4 := Tω′3Gr(2,W ∗) ∩ Cω1
clearly satisfy 〈P(B), ω3, ω4〉 ⊂ Pf , and 〈P(B), ω3, ω

′
4〉 =

〈P(B), ω′3, ω
′
4〉 ⊂ Pf . Hence up to replacing ω3 with ω′3, we might suppose that the

generators ω3, ω4 lie on a line contained in Y . Note that we can moreover suppose that
ω0 /∈ Tω3Gr(2,W ∗), otherwise we would get ω4 = ω′4 hence the space P(A) would intersect
the Grassmannian along the double line ω3ω4. This is not possible by proposition 3.2.6,
since we are assuming the stability of P(A).
We choose now independent vectors e1, . . . ,e6 inW ∗, so that P(B), being PGL(W ) equiv-
alent to πg, might be written in the form appearing in 3.1, namely P(B) = 〈ω0, ω1, ω2〉
with:

ω0 = e1 ∧ e4 + e2 ∧ e5 ω1 = e1 ∧ e6 + e3 ∧ e5, ω2 = e2 ∧ e6 − e3 ∧ e4. (3.5)

From what we have showed so far if P(A) := 〈P(B), ω3, ω4〉 is stable, up to the action of
GL(W ), the only possibilities that might occur are:

i ω3, ω4 belong to the conic Cω0 . Up to an appropriate change of coordinates,
P(A) = 〈ω0, . . . ,ω4〉 with:

ω3 = e1 ∧ e2, ω4 = e4 ∧ e5.

ii ω3 ∈ Cω0 , ω1 = (Cω1 ∩ Tω3Gr(2,W ∗)) and ω0 /∈ Tω3Gr(2,W ∗).
For independent vectors e1, . . . ,e6, P(A) = 〈ω0, . . . ,, ω4〉 with:

ω3 = (e1 − e5) ∧ (e2 + e4) ω4 = (e1 − e5) ∧ (e3 + e6).

Proof of stability. We still need to prove that the orbits listed above are indeed
stable. We start considering a point ω3 ∈ Y , without loss of generalities we assume that
ω3 ∈ Cω0 . ω3 is thus of the form

ω3 = ψ({ω0} × [t0 : t1]) = (t0e1 + t1e5) ∧ (t0e4 − t1e2), [t0 : t1] ∈ E.

We look for 3-dimensional linear subspaces U of W that are isotropic with respect to
ω3 and to every tensor in P(B). By proposition 3.2.9, we know that such a linear space
U , satisfying the condition P(

∧2
U) ⊂ P(B)⊥, necessarily admits a representation in the

form:
U = 〈α3v3 + α6v6, α2v2 + α4v4, α1v1 + α5v5〉,

where the coefficients ([α3 : α6], [α2 : α4], [α1 : α5]) vary in P1 × P1 × P1 and v1, . . . ,v6

is a basis of W dual to e1, . . . ,e6. Embedding P1 × P1 × P1 in P11 by means of the
linear systems of divisors of type (1, 1, 0), (1, 0, 1), (0, 1, 1) (as described in the proof
of proposition 3.2.9)), we see that each condition ωi|U defines a hyperplane section
Hi ∩ P1 × P1 × P1, Hi ⊂ P11. Spaces U isotropic to each ωi, i = 0, . . . , 3 correspond
to points in P1 × P1 × P1

⋂3
i=0Hi, namely to solutions of the quadratic equations:

α2α5 − α4α1 = 0,

α3α5 − α6α1 = 0,

α6α2 + α3α4 = 0

t20α1α2 + t0t1(α2α5 − α1α4) + t21(α4α5) = 0.
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This system admits solutions if and only if t0 = 0 or t1 = 0. In these cases ω3 is one of the
two points in Cω0

whose tangent lines Tω3
Cω0

passes through ω0 or equivalently, ω3 is one
of the two points in Cω0 such that ω0 ∈ Tω3Gr(2,W ∗). Now if ever P(A) realizes (i) there
always exists a tensor ω ∈ Cω0 such that ω0 /∈ TωGr(2,W ∗), so there are no 3 dimensional
spaces U < W isotropic with respect to every point in 〈P(B), ω〉, implying the stability of
P(A). If P(A) realizes (ii) instead, by the assumptions on ω3 and ω4, ω0 /∈ Tω3

Gr(2,W ∗)
(otherwise we would get a double line contained in Gr(2,W ∗)∩P(A)) hence there are no
3 dimensional spaces U isotropic to every tensor in 〈P(B), ω3〉 implying, once again the
stability of P(A).

3.3 Classification of the irreducible components of
P(A) ∩Gr(2,W ∗)

Let P(A) be a 4 dimensional linear system of skew-symmetric forms having generic rank
less than or equal to four. Denote by X the intersection X := P(A) ∩ Gr(2,W ∗). The
starting point of our classification of stable hyperwebs was proposition 3.2.6, where we
proved that if ever dim(X) ≥ 2, the linear span of X is then a subspace of P(A) that
prevents the entire P(A) from being stable. Wondering if a similar strategy might works
also to determine strictly semistable hyperwebs, we study then the varieties obtained as
linear sections P(A) ∩Gr(2,W ∗) of the Grassmannian. We prove the following:
Theorem 3.3.1. Let P(A) ⊂ P(

∧2
W ∗) be a four-dimensional linear space of skew-

symmetric forms of generic rank ≤ 4. Let Y be an irreducible component of
P(A) ∩Gr(2,W ∗). Then one of the following cases is realized:

• Y is a linear space Y ' Pr, 1 ≤ r ≤ 4.

• Y is a variety of minimal degree,contained in a smaller Grassmannian Gr(2, k) =
Gr(2, U) ⊂ Gr(2, 6) = Gr(2,W ∗), where U is a vector subspace of W of dimension
k < 6, and Y is a linear section of Gr(2, k) of one of the following types:

– Y = Pd ∩Gr(2, d+ 2), a rational normal curve of degree d, 2 ≤ d ≤ 4.

– Y = Pd+1 ∩Gr(2, d+ 2), a surface of degree d = 2, 3.

– Y = P4 ∩Gr(2, 4), a three-dimensional quadric hypersurface in ∆ = P4.

• Y is an elliptic quintic curve, the image of P4∩Gr(2, 5) under some linear embedding
Gr(2, 5) ↪→ Gr(2,W ∗).

The proof of theorem reduces to the study of linear sections Pr ∩ Gr(2,W ∗) for r ≤ 4.
Consider indeed P(A), X = P(A)∩Gr(2,W ∗) as above and 〈X〉 the linear span of X, that
is the smallest linear space containing X. 〈X〉 is a hyperweb of dimension at most 4, still
contained in Pf ; it might also be characterized as the smallest linear subspace of P(A)
satisfying P(A)∩Gr(2,W ∗) = 〈X〉 ∩Gr(2,W ∗). Now, given Y an irreducible component
of X we look, just as we did for X, at the linear span 〈Y 〉 of Y . Again, we have that
〈Y 〉 is still a linear space of dimension less than or equal to 4 contained in Pf ; moreover
Y is an irreducible and non-degenerate component of 〈Y 〉 ∩Gr(2,W ∗). This means that
up to replacing P(A) with 〈Y 〉, we can reduce the study of irreducible components of
X to the study of non-degenerate irreducible components of ∆ ∩Gr(2,W ∗), ∆ being an
r-dimensional, r ≤ 4, hyperweb of skew-symmetric forms of generic rank 4.

Remark 23. From now we will always denote by ∆ an hyperweb of generic rank 4 and by
r, r ≤ 4, its dimension. X will denote ∆ ∩Gr(2,W ∗) and Y a non-degenerate and irre-
ducible component of X not consisting of a linear space. (the fact that 〈Y 〉 = ∆, Y 6= ∆
clearly implies that the same holds for X). We also introduce the following notations,
that we will adopt throughout the rest of the chapter: given any variety Z ⊂ Gr(2,W ∗),
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we define UZ ⊂W ∗ as the smallest vector subspace of W ∗ such that Z ⊂ P(
∧2

UZ) and
we indicate by uZ its dimension. For an arbitrary point on a Grassmannian of lines,
ω ∈ Gr(2, n+ 1), lω connotes the corresponding line in Pn.

One of the tools that we will adopt for our classification, is the study of the image of
X (and of its irreducible components) under linear projection from one of its points. In
next section we present some general results about the behavior of this rational maps.

Behavior under projection from a point
Pick a point ω0 ∈ X and H ' Pr−1, an hyperplane in ∆ not passing through ω0 and
consider the linear projection from ω0 to H, π0 : X \{ω0} 99K H. We look at X = π0(X),
(by an abuse of notation, for an arbitrary variety Y passing through ω0, we will always
denote by π0(Y ) the closed variety π0(Y ) := π0(Y \ {ω0})), the image of X through π0.
Recall that a point ω ∈ H belongs to π0(X \{ω0}) if and only if there exists ω′ ∈ X, such
that ω = ω0ω′ ∩H. This means that if ω ∈ X, ω0ω intersect X in at least two (possibly
coincident) point. But since:

ω0ω ∩X = ω0ω ∩ (∆ ∩Gr(2,W ∗)) = ω0ω ∩Gr(2,W ∗),

whenever ω ∈ X, the line ω0ω meet then the Grassmannian in at least two (possibly
coincident) points; hence it is either a line contained in Gr(2,W ∗) either a secant to
Gr(2,W ∗). As for what was discussed in section 3.1 concerning lines contained in Pf , we
see that for a point ω ∈ X, we have the following possibilities:

• If ω has rank 2, then ω ∈ X ∩H. ωω0 ∩X consists of:

– ωω0 if ω ∈ X ∩ Tω0
X

– {ω0, ω} otherwise.

• If ω has rank 4, then ω0ω must be a secant to Gr(2,W ∗), implying that ω0 ∈ P5
ω. In

this case ωω0∩X consists of two points {ω1, ω0} with ω0 = ω1 whenever ω ∈ Tω0
X.

From the above discussion we observe that whenever H 6⊂ Tω0
X, for a general point

ω ∈ X, its preimage π−1
0 (ω) = ω0ω ∩ (X \ {ω0}) consists exactly of one point.

Take now ω0 on Y , such that ω0 doesn’t not belong to any other component of X (points
fulfilling this requirement vary then in an open subvariety of Y ). The assumption that
the only irreducible component passing through ω0 is Y , implies that we have an equality:

Y ∩Gr(2,W ∗) = Y ∩H.

Indeed, if this was not the case, every line ω0ω with ω ∈ (Y ∩ X) \ (Y ∩ H), would
intersect the Grassmannian in at least 3 points and consequently be contained in X (but
not in Y ), contradicting the assumption. Therefore, a general point in Y corresponds to
a secant to Gr(2,W ∗) meeting Gr(2,W ∗) in two (possibly coincident) points lying on Y .
Consequently, we can state the following:

Proposition 3.3.2. The linear projection from a general point ω0 ∈ Y :

π0 : Y \ {ω0} 99K Y ,

is a birational morphism.

Proof. Take ω0 ∈ Y a point not belonging to any other component of X, condition that
implies that Tω0

X = Tω0
Y . In the first place we notice that for such a point, Tω0

Y ' ∆
if and only if X, and thus Y , is a cone with vertex ω0 over X ∩H. Recall indeed that X
is the base locus of |Q|∆|, so that given Q0, . . . Qs a basis for this linear system, we can
write X as:

X =

s⋂
i=0

Qi.
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Therefore:

Tω0Y = Tω0X = (

s⋂
i=0

Tω0qi);

implying that Tω0
Y ' ∆ if and only if ω0 ∈ Sing (Qi), ∀i = 0, . . . s; but this happens

if and only if X is a cone with vertex ω0. From this observation, as we are excluding
the case where Y is a linear space, for ω0 ∈ Y general, Y is not a cone with vertex ω0.
For such a ω0, H ∩ Tω0Y is thus a linear space of dimension at most r − 2, Y = π0(Y )
has dimension equal to the dimension of Y and Y 6⊆ Tω0Y . π0 maps then Y \ {ω0}
birationally to the open set Y \ (Tω0

Y ∩H).

By means of linear projections, we can also describe |Q −H| and |Q −∆|, namely the
linear systems of those quadrics inQ containingH and ∆, respectively. Take a hyperplane
H ⊂ ∆ and again, a point ω0 ∈ Y \(Y ∩H) such that Y is the only irreducible component
of Y passing through it.

Proposition 3.3.3. We have an equality |Q −H| = |Q −∆|.

Proof. It’s clear that |Q−∆| is a subspace of |Q−H|. We pick now a point ω0 ∈ Y not
lying in H and we look at π0, the linear projection from ω0 to H. The reverse inclusion
holds if and only if ∀ Q ∈ |Q − H|, H < Tω0

Q. Choose now r points ω1, . . . ωr on
Y \ (Y ∩ H) spanning the hyperplane H (notice that this is alway possible since from
〈Y 〉 = ∆, we have that 〈Y 〉 = H). The condition ωi ∈ Y , i = 1, . . . r, implies that the
point ω0 belongs then to the intersection:

ω0 ∈
r⋂
i=1

P5
ωi
.

Since ∀ i = 1, . . . , r, ω0 belongs to P5
ωi
, for every quadric Q ∈ |Q − ωi|, the line ω0ωi

is contained in Q. This implies that choosing arbitrarily a generator ωi of H among
ω1, . . . , ωr, we have ωi ∈ Tω0

Q, ∀ Q ∈ |Q − ωi|. Hence whenever i = 1, . . . , r, ωi ∈ Tω0
Q,

∀ Q ∈ |Q −H| and as H is spanned by the ωis, we get H < Tω0Q,∀ Q ∈ |Q −H|.

Corollary 3.3.4. Let H ⊂ ∆ be an hyperplane and let Z ⊂ H be the intersection Y ∩H.
We have equality UZ = UY .

Proof. We clearly have an inclusion UZ ⊂ UY . Arguing as above, we can now choose
r points in ω1, . . . ωr on Y \ Z in general position; for each of these points we have
ω0 ∈ P5

ωi
. As P5

ωi
⊂ P(

∧2
UZ) and ω0 ∈ P(

∧2
UZ) by 3.3.3, we can conclude that

∆ ⊂ P(
∧2

UZ).

Keeping the notations adopted in the previous propositions, we now look at X = π0(X).
This is a variety defined by an intersection of quadric hypersurfaces in H. To see this,
we first look at the line lω0 . Applying 3.3.4 we see that this line is contained in P(UZ).
Denote by Ωlω0

the Schubert variety of 3-planes in P(UZ) containing the line lω0
. Ωlω0

is a subvariety of Gr(4, UZ) and we see that every point [Λ] ∈ Ωlω0
corresponds to a 3

plane Λ ⊂ P(UZ) that can be written as:

Λ = 〈lω0
, lω〉,

for a line lω contained in a (uZ − 3)-plane orthogonal to lω0
. From this we deduce that

we have an isomorphism:
Ωlω0

∼−→ Gr(2, uZ − 2)

and hence that Ωlω0
has dimension 2(uZ − 2). Consider now the rational map:

γ|H : H 99K P(

4∧
W ∗)
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restriction of the Gauss map γ to H. This is the map defined by |Q|H |; its image γ|H(H)
spans a linear space T of dimension equal to the dimension of |Q|H | and moreover, by
the assumptions on X, Y and ω0, we get that this space T is contained in P(

∧4
UZ). An

element [Λ] ∈ T ∩Ωlω0
= T ∩ 〈Ωlω0

〉 ∩Gr(4,W ∗) = γ|H(H)∩Ωlω0
corresponds thus to a

3-plane Λ containing lω0
and that satisfies the additional condition:

Λ = 〈lω, lω′〉, ∃ ω, ω′ ∈ Z.

From the discussion held at the beginning of section 3.2.2 we then deduce that pulling
back by γ|H the linear equation (on T ) individuating T ∩ 〈Ωlω0

〉, we get quadrics on H
whose intersection is X.

Next sections are devoted to the proof of 3.3.1, one of the main result of the chapter, we
describe here briefly the idea. Suppose that Y is an n-dimensional irreducible variety of
degree d, spanning an r-dimensional linear space ∆ ' Pr (therefore we have inequality
d ≥ 1 + (r − n)). Since Y is clearly non-degenerate in ∆, Y meets every hyperplane
H ⊂ ∆ properly (i.e every hyperplane section H ∩ Y has dimension n − 1), hence we
have that:

deg(Y ) = deg(Y )deg(H) =
∑

Z∈Y ∩H
mZ(Y,H)deg(Z), (3.6)

where the sum is taken over the irreducible components Z of Y ∩H andmZ(Y,H) denotes
the intersection multiplicity of Y and H along Z. By the non-degeneracy of Y , we get
the non degeneracy of Y ∩H, H being a general hyperplane. If moreover we assume that
n ≥ 2, a general hyperplane section Z := Y ∩ H is irreducible too. Such a hyperplane
H ' Pr−1 is thus an hyperweb (still having generic rank 4), spanned by Z = Y ∩H, an
n− 1 dimensional irreducible subvariety of Gr(2,W ∗) for which we have equality:

deg(Y ) = mZ(Y,H)deg(Z).

Y is an irreducible component of ∆ ∩ Gr(2,W ∗), thus mZ(Y,H) ≤ mZ(Gr(2,W ∗), H);
this means that whenever Gr(2,W ∗) meets the linear space H along Z with multiplicity
one, we have exactly deg(Y ) = deg(Z). Our classification starts from the case where Y
is an irreducible curve; we will then apply the aforementioned considerations to study,
by the aid of formula 3.6, the higher dimensional cases.

3.3.1 One dimensional components

Throughout the section we will be supposing that Y is an irreducible, non degenerate
1-dimensional component of ∆ ∩Gr(2,W ∗) ' Pr ∩Gr(2, 6), r ≤ 4.
We will prove the following:

Theorem 3.3.5. Let ∆ ' Pr, r ≤ 4 be an r-dimensional hyperweb of generic rank
4 intersecting Gr(2,W ∗) along a closed variety X := ∆ ∩ Gr(2,W ∗) containing a 1-
dimensional, non-degenerate irreducible component Y . Then ∆ is either:

• The r dimensional linear span of Y , a rational normal curve of degree r isomor-
phic to Pr ∩ Gr(2, r + 2), 1 ≤ r ≤ 4. Additionally, if this is the case, we have
Y = ∆ ∩Gr(2,W ∗).

• The 4-dimensional linear span of Y , an elliptic quintic curve isomorphic to
P4 ∩Gr(2, 5). Additionally, if this is the case we have Y = ∆ ∩Gr(2,W ∗).

Remark 24. Since by the discussion presented in section 3.1.1, we see immediately that
the theorem is verified for r = 1 (namely when Y is a line), from now on we will suppose
that Y spans an r-plane of dimension r ≥ 2.

Before demonstrating theorem 3.3.5 we exhibit some generalities about curves contained
in Grassmannians of lines.
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The corresponding ruled surface

We can observe that whenever we have an irreducible curve Y ⊂ Gr(2, UY ) we can define
a surface SY ,

SY :=
⋃
ω∈Y

lω

where lω ⊂ P(UY ) denotes the line corresponding to the point ω. SY is thus a ruled
surface in P(UY ) whose generators are the lines lω, ω ∈ Y . Consider now the incidence
correspondence Σ ⊂ Gr(2, UY )× P(UY )

Σ := {(ω, p) ∈ Gr(2, UY )× P(UY ) | p ∈ lω},

endowed with the 2 projections π1 : Σ → Gr(2, UY ), π2 : Σ → P(UY ). Define π′2 as the
restriction π′2 := π2|π−1

1 (Y ). Suppose now that Y is a curve as in the statement of 3.3.5.

Proposition 3.3.6. The map π′2 is generically bijective and thus establishes a birational
morphism between SY and π−1

1 (Y ) ' Y × P1.

Proof. Given p ∈ SY , we see that the fiber π′−1
2 (p) consists of all the lines in P(UY )

parametrized by points in Y and passing through p. π′−1
2 (p) is hence isomorphic to

(Y ∩ Ωp)× {p}, being Ωp ⊂ Gr(2, UY ), Ωp ' PuY −2 the Schubert variety parameterizing
lines containing p. Denote by Z the scheme Z := Y ∩ Ωp. Z must have dimension zero,
otherwise we would have ∆ ⊂ Ωp ⊂ Gr(2, UY ). Note that since Z ⊂ Ωp, its linear span
〈Z〉 is contained in Ωp as well, therefore 〈Z〉 ⊂ ∆ ∩Gr(2, UY ). If ever Z consits of more
then one point, we would get the existence of a linear subspace 〈Z〉 of ∆ ∩ Gr(2, UY )
having dimension greater than 0 and parametrizing lines passing through p. Therefore
Z would belong to a component of ∆ ∩Gr(2, UY ) different from Y .

We can use the previous proposition to compute the degree of the surface SY .

Lemma 3.3.7. The degree of the surface SY is equal to the degree of the curve Y

Proof. Consider a generic codimension 2 plane Λ in P(UY ), defined by the intersection
of 2 hyperplanes H1 and H2, Hi ∈ P(UY

∗), i = 1, 2. From the generality assumption on
Λ, we might suppose that ∀p ∈ Λ ∩ SY , π′2

−1
(p) consists of just one point. Then points

in SY ∩Λ, corresponds bijectively to points in the intersection of Y with the hyperplane
H1 ∧H2 ∈ Gr(2, UY ∗).

Proof of theorem 3.3.5

Let ∆ be a r-dimensional hyperweb of generic rank 4 such that X := ∆ ∩ Gr(2,W ∗)
contains a one dimensional non-degenerate irreducible component Y . As the curve Y is
irreducible and non-degenerate in a r-plane we have deg(Y ) ≥ r and equality holds if
and only if Y is a rational normal curve of degree r. Studying the behavior of hyperplane
sections of Y and applying formula (3.6) we will try to determine all the possible value of
deg(Y ). By the fact that Y spans the entire space ∆, it is possible to find r+1 points on
Y , ω0, . . . , ωr, lying in general position. Such a r+1-tuple of points might also be chosen
in such a way that no other component of X passes through any of them. Consider now
r points among the ωis, say ω1, . . . ωr, denote by H the hyperplane that they generate
and by Z the intersection H ∩ Y .
Because of the assumptions we made on the ωis, we see that H is a r− 1-plane, spanned
by r points ω1, . . . , ωr, ωi ∈ Gr(2,W ∗) and such that H ∩Gr(2,W ∗) = H ∩X contains
no irreducible components of dimension greater then 0 passing through any of the ωis.

Proposition 3.3.8. Let H = 〈ω1, . . . ωr〉, r ≤ 4, Z = Y ∩H as above. Then we have
the following possibilities:

1. Either Z = {ω1 . . . ωr} and furthermore Z is isomorphic to Pr−1 ∩Gr(2, r + 2).
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2. Either r = 4 and Z is a zero-dimensional subscheme of length 5 isomorphic to
P3 ∩Gr(2, 5).

Proof. We prove the proposition analyzing each possible value of r. For each case we
describe the corresponding configuration of lines lωi

⊂ P(W ∗).

r=2 Given Z = {ω1, ω2}, ωi ∈ Gr(2,W ∗) , if lω1 ∩ lω2 6= ∅ , ω1ω2 would be entirely
contained in the Grassmannian,contradicting our assumptions. Thus lω1

, lω2
are disjoint

and consequently span a 3 dimensional linear space P(UZ) ' P3. ω1ω2 is then a line in
P(
∧2

UZ) that will meet Gr(2, UZ) ' Gr(2, 4) exactly along Z.

r=3 Consider Z = {ω1, ω2, ω3}, ωi ∈ Gr(2,W ∗). Arguing as in the previous point we
must have that the corresponding lines lωi

⊂ P(W ∗), i = 1, 2, 3 are pairwise disjoint. The
condition 〈Z〉 ⊂ Pf imposes that (lωi

∩〈lωj
, lωk
〉) 6= ∅; this intersections must thus consist

of a point. Otherwise if ever lωi
⊂ 〈lωj

, lωk
〉 ' P3 we would have Z ' (P2 ∩Gr(2, 4)) and

thus we would have a conic passing through the ωis.

r=4 Given now Z = {ω1, . . . ω4}, we can apply the same arguments exposed in the
previous points to see that we must have lωi

∩lωj
= ∅, dim(lωi

∩ 〈lωj
, lωk〉) = 0, ∀i, j, k ∈

{1, 2, 3, 4}, i 6= j 6= k (here we are adopting the convention dim∅ = −1). These
requirements ensure that dim(UZ) ≥ 5, so that Y is the irreducible component of a
variety X isomorphic either to P4 ∩Gr(2, 5) or P4 ∩Gr(2, 6).

From these facts, we see that a zero-dimensional scheme Z satisfying the hypotheses of
the proposition might be of two “types’ that will denote by (i) and (ii), respectively.

(i) If Z satisfies (i), then length(Z) = r, dim(UZ) = r + 2 and Z consists of a r-
tuple of points on Gr(2, UZ) in general position. This circumstance occurs when Z
corresponds to a r-tuple of pairwise disjoint lines lω1

, . . . , lωr
, spanning a r+1-plane

P(Vr+2) ' Pr+1 and such that:

∀i, j, k ∈ {1, . . . , r}, i 6= j 6= k, lωi ∩ 〈lωj , lωk
〉 = {pijk}

for a point pijk ∈ P(Vr+2). More generally, whenever we have such a configuration
of lines in a projective space P(Vr+2) ' Pr+1, r ≥ 2, the corresponding tensors
ω1, . . . , ωr defines a zero-dimensional subscheme Z of Gr(2, Vr+2) having length r
and such that 〈Z〉 ' Pr−1. Furthermore, still denoting by Q '

∧4
Vr+2

∗ the vector
space spanned by Plucker’s quadrics on P(

∧2
Vr+2), we can easily compute (for

example by induction on r), that |Q|〈Z〉| ' P(r
2)−1. But since on Pr−1, the space

of quadrics passing through r points (in general position) has dimension
(
r
2

)
− 1 we

have an equality |Q|〈Z〉| = P(H0(IZ(2))) and consequently 〈Z〉 ∩Gr(2, Vr+2) = Z.

(ii) In Z satisfies (ii) instead, we have a 3-plane intersecting Gr(2, UZ) ' Gr(2, 5)
along a zero dimensional scheme. As Gr(2, UZ) is a 6-dimensional subvariety
of P(

∧2
UZ) ' P9 of degree 5, a zero-dimensional linear section isomorphic to

P3 ∩Gr(2, 5) must have length 5. Moreover, for such a linear section H∩Gr(2, UZ),
the restriction |Q| → |Q|H | is injective (hence bijective). As a result, we have that
|Q|H | ' P4 ' P(H0(IZ(2)); this isomorphism leads to the conclusion that again,
H ∩Gr(2, UZ) ' Z.

Suppose now that Z is a zero-dimensional scheme of type (i), namely Z consists of
a r-tuple of distinct points ω1, . . . ωr, ωi ∈ Gr(2,W ∗) lying in general position and
Z ' (Pr−1 ∩Gr(2, r + 2)), 2 ≤ r ≤ 4. Is then always possible to find ωD ∈ Gr(2, UZ)
such that ωi ∈ TωD

Gr(2, UZ), ∀i = 1, . . . r. The result is trivial for r = 2 (it’s enough to
consider ωD corresponding to a line lωD

= uv, u ∈ lω1
, v ∈ lω2

). For higher values of r
we can prove that more in general we have:
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Proposition 3.3.9. Consider a r-tuple, r ≥ 3, of pairwise disjoint lines lω1
, . . . lωr

spanning a r + 1-plane P(Vr+2) ' Pr+1 and such that ∀i, j, k ∈ {1, . . . , r}, i 6= j 6= k,
lωi ∩ 〈lωj , lωk

〉 6= ∅. Then there always exists a line lωD
⊂ P(Vr+2) meeting each lωi ,

1 ≤ i ≤ r exactly in one point.

Proof. We argue by induction on r. If r = 3, consider 3 lines in P5, lω1
, lω2

, lω3
satisfying

the hypotheses of the proposition. Denoting by P(V4) ' P3 the 3-plane generated by lω1

and lω2
, we might then write:

lω3
= uv, u ∈ P(V4), v /∈ P(V4).

Now, as clearly lωD
must be contained in P(V4), it should correspond to a point

ωD ∈ Gr(2, V4) belonging to (Tω1Gr(2, V4) ∩ Tω2Gr(2, V4) ∩ Ωv), Ωv ⊂ Gr(2, V4) being
the Schubert variety of lines in P(V4) passing through v. But as Ωv ' P2 this intersection
consists of just one point.
If r > 3, and we are given lines lω1

, . . . lωr
as in the statement of the proposition, denoting

by P(Vr+1) the r plane spanned by lω1
, . . . , lωr−1

, we see that again we can write:

lωr
= uv, u ∈ P(Vr+1), v /∈ P(Vr+1).

By inductive hypothesis there exists lωD
meeting lωi

in one point ∀i 1 ≤ i ≤ r − 1. Call
P(Vij) ' P3 the 3-planes spanned by lωi , lωj , 1 ≤ i, j ≤ r − 1.These 3-planes correspond
to
(
r−1

2

)
points in Gr(4, Vr+1) belonging to ΩlωD

' Gr(2, r−1), the variety parameterizing
3-planes in P(Vr+1) containing lωD

; note that moreover they intersect exactly along lωD
.

As lωr
must meet each P(Vij),∀i, j 1 ≤ i, j ≤ r − 1 we deduce that the point u belongs

to lωD
.

Corollary 3.3.10. There always exists ωD ∈ Gr(2,W ∗) such that Z ⊂ TωD
Gr(2,W ∗).

Proof of Theorem 3.3.5. . Let Y be a curve satisfying the hypotheses of theorem 3.3.5.
Since Y is irreducible and non-degenerate in ∆ ' Pr, deg(Y ) ≥ r and equality holds if
and only if Y is a rational normal curve of degree r. Consider a r + 1 tuple of points
ω0, . . . ωr on Y spanning ∆ and, as usual, suppose that no other component of X passes
trough any of the ωis. Pick r among these points, say ω1, . . . ωr and let H be the
hyperplane in ∆ spanned by them. We look then at π0 : Pd \ {ω0} 99K H, the linear
projection from the point ω0. Y := π0(Y ) is a non-degenerate curve in H such that:

• g(Y ) = g(Y ). This is due to proposition 3.3.2.

• deg(Y ) = deg(Y ) + 1, as we are supposing that Y is the only component of X
passing through ω0.

Under the previous assumptions we look at Z := H ∩ Y . Such a Z must be a scheme
of the type described in proposition 3.3.8, leading us to distinguish the two following
instances.

• Suppose that Z satisfies (i), hence Z = {ω1, . . . ωr}, Z ' Pr−1 ∩ Gr(2, r + 2).
In this case the curve Y must be a rational normal curve of degree r sat-
isfying Y = ∆ ∩Gr(2,W ∗), Y ' Pr ∩Gr(2, r + 2). Indeed, from 3.3.8, we have
H ∩ Gr(2,W ∗) = Z and so mωi

(Y,H) = mωi
(Gr(2,W ∗), H) = 1, ∀ i = 1, . . . , r.

Therefore, by formula (3.6), we get deg(Y ) = r, allowing us to conclude that Y is
a rational normal curve of degree r.

In order to see that Y is actually equal to ∆ ∩ Gr(2,W ∗), we look at |Q|∆|. The
base locus of this linear system is X, as X := ∆∩Gr(2,W ∗). Since Y is contained
in X, we have an inclusion:

|Q|∆| ⊂ P(H0(IY (2)) ' P(r
2)−1,
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(the last isomoprhism comes from the fact that Y is a rational normal curve of
degree r). By proposition 3.3.3, dim(|Q|H |) = dim(|Q|∆|) so that, by our hypothe-
ses on Z, |Q|∆| has dimension

(
r
2

)
− 1 too. But then this latter linear system of

quadrics is actually equal to P(H0(IY (2)) hence its base locus is exactly the curve
Y . Finally, since dim(UZ) = r+ 2, applying 3.3.4 we have equality UZ = UY hence
Y ' Pr ∩Gr(2, r + 2).

For the moment we have just proved that if ever the intersection of a r-dimensional
hyperweb ∆ ⊂ Pf with the Grassmannian Gr(2,W ∗) has a non-degenerate compo-
nent Y of dimension 1, then, unless if Y is a subvariety of Gr(2, 5) spanning a 4-
plane, Y is a rational normal curve of degree r contained in Gr(2, UY ) ' Gr(2, r + 2)
and such that Y = ∆ ∩Gr(2, UY ) = ∆ ∩Gr(2,W ∗).

We now prove that such a curve Y exists, describing explicitly how to construct it.
We start by r distinct points on Gr(2,W ∗) lying in general position, ω1, . . . ωr corre-
sponding to a configuration of r lines lω1

, . . . lωr
in P(W ∗) satisfying the hypotheses

of proposition 3.3.9. Call Z the zero dimensional scheme Z := {ω1, . . . , ωr}, we
thus have:

UZ ' Cr+2, 〈lω1
, . . . lωr

〉 = P(UZ).

From what we have proved until now, to show the existence of Y , it’s enough to
exhibit a point ω0 ∈ Gr(2, UZ), ω0 6∈ H such that 〈ω0, H〉 ∩ Gr(2, UZ) contains a
non-degenerate irreducible curve Y passing through the ωis, i = 1, . . . , r and such
that Y ∩H = Z.

Applying proposition 3.3.10, we have the existence of a line lD ⊂ P(UZ) such that
∀ i = 1, . . . , r, lωi

∩ lωD
consists of exactly one point. Note that the fact that the

lines lωi
and lωD

intersect at a point is equivalent to having ωi ∈ TωD
Gr(2,W ∗) for

all i = 1, . . . , r implying thus an inclusion Z ⊂ TωD
Gr(2,W ∗).

A general point ω0 ∈ TωD
Gr(2, UZ) will then fulfill the above-mentioned require-

ments. We keep the usual notations, ∆ := 〈ω0, H〉, X := ∆ ∩ Gr(2,W ∗) and
consider the linear projection

π0 : ∆ 99K H.

We can describe X, the image of X under this projection and study the equation
defining it. We saw that these are quadratic equations that can be described
by means of γ|H : H 99K P(

∧4
UZ), rational map defined by |Q|H |. Denote by

T ⊂ P(
∧4

UZ) ' P(
∧4 Cr+2) the linear span of γ|H(H). T is a

(
r
2

)
− 1 plane,

and it’s the linear span of ΩlωD
⊂ Gr(4, UZ), the Schubert variety parameterizing

3-planes in P(UZ) containing the line lωD
. The variety ΩlωD

satisfies:

ΩlωD
' Gr(r − 2, h0(IlωD

(1))) ' Gr(r − 2, r),

therefore it has dimension 2(r− 2). Consider now Ω〈lω0 ,lωD
〉 the subvariety of Ωlω0

parameterizing 3-planes in P(UZ) containing the entire plane 〈lω0
, lωD
〉. We have:

Ω〈lω0 ,lωD
〉 ' Gr(r − 2, h0(I〈lω0 ,lωD

〉(1))) ' Pr−2.

Thus Ω〈lω0
,lωD

〉 is cut by
(
r−1

2

)
hyperplanes in T . Pulling these back by γ|H , we

obtain a linear system of quadrics in Pr−1 spanned by
(
r−1

2

)
quadrics. X is then

the base locus of this linear system, namely a rational curve of degree r−1 passing
through the points ω1, . . . ωr. X has thus dimension 1 and contains an irreducible
non-degenerate curve Y that is projected birationally into X. Hence Y is a rational
normal curve of degree r and applying the same argumentations presented in the
first part of the proof, we get that X=Y and Y ' Pr ∩Gr(2, r + 2).

• We now analyze the case where Y spans a 4-plane ∆ ' P4 and Z := Y ∩ H is a
scheme of type (ii), namely a zero-dimensional scheme of length 5 isomorphic to
P3∩Gr(2, 5). Note that under these assumptions we have (by 3.3.4) UY = UZ ' C5;
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hence ∆ is a 4-plane in P(
∧2

UY ). Irreducible curves in Gr(2, UY ) ' Gr(2, 5)
spanning a 4 dimensional linear space, corresponds to general linear sections of
the Grassmannian. Indeed, as Gr(2, UY ) is a 6-dimensional smooth subvariety of
P(
∧2

UY ) ' P9, a (general) 4-plane ∆ intersect Gr(2, UY ) along an irreducible
curve Y . Moreover, since deg(Gr(2, UY )) = 5, we can compute immediately that
the curve Y has degree 5. Since Y := Gr(2.UY ) ∩ P4, its genus can be computed
by adjunction. We are in P9, hence a linear section Gr(2, UY ) ∩ P4 is realized as
Gr(2, UY ) ∩ (

⋂5
i=1Hi) for five hyperplanes His in P9, i = 1, . . . 5. The canonical

class of Gr(2, UY ) is KGr(2,UY ) = −5H, where H denote the hyperplane class. By
adjunction formula we get that ωY has degree 0 and that thus Y has genus 1.

Also in this case we can get a description of the curve Y by means of Y its image
through the linear projection from a point on Y not lying in H. Recall that H can
be generated by any 4-tuple of points in Z, say ω1, . . . , ω4. We saw in 3.3.8, that
|Q|H | is a 4-dimensional linear system of quadrics equal to P(H0(IZ(2)). |Q|H |
individuates the rational map:

γ|H : H 99K P(

4∧
UY ) ' P(UY

∗) ' P4.

Whenever we take a point ω0 ∈ P(
∧2

UY ), ω0 6∈ H, we individuate Ωlω0
' P2, the

Scubert variety of 3-planes in P(UY ) ' P4, containing the line lω0
. Pulling back

by γ two hyperplanes defining Ωlω0
, we get two quadrics in H whose intersection

is Y . Being a complete intersection of two quadrics in P3, Y is a curve of genus
1 and degree 4, so that ∆ ∩ Gr(2, UY ) is effectively an elliptic quintic curve. To
conclude, we observe that again, applying proposition 3.3.3 we get isomorphisms
|Q|H | ' |Q|∆| ' P4. Y is an elliptic quintic curve, so that h0(IY (2)) = 5, leading
indeed to an equality |Q|∆| ' P(H0(IY (2))) that, once again, allows us to conclude
that Y ' P4 ∩Gr(2, 5).

Construction of the corresponding ruled surfaces
Given Y a curve satisfying the hypotheses of theorem 3.3.5, we describe now in greater
detail the associated ruled surface SY . We already saw, in lemma 3.3.7 that SY is a
surface having degree equal to the degree of Y . From theorem 3.3.5 we know that Y
satisfies Y = ∆∩Gr(2, UY ) = 〈Y 〉∩Gr(2, UY ),so that so that the map π2

′ : π−1
1 (Y )→ SY

is everywhere bijective. Moreover we saw that for Y rational, or in the case Y ' P4 ∩
Gr(2, 5) for ∆ ⊂ P(

∧2
UY ) generic, Y is smooth. In these cases SY is then a geometrically

ruled surface of degree deg(Y ) and irregularity g(Y ) over a smooth curve C ⊂ P(UY ) of
genus g(C) = g(Y ).
Remark 25. In the classical language,( see for example Hedge [Hed]), the irregularity of
SY is referred to as the genus of SY . The genus of a ruled surface SY ⊂ Pn is defined as
the genus of a generic hyperplane section. This notion, that can thus be extended also to
singular surfaces, is well defined since a generic hyperplane section intersect transversally
every generator of the surface SY , so that whenever we take two general hyperplane
sections, they are in (1, 1) correspondence hence birational. Note that this also implies
that the genus of SY coincide with the genus of the associated curve Y ⊂ Gr(2, n+ 1).

• Y ' Pr ∩Gr(2, r + 2).

Whenever Y is a rational normal curve of degree r, SY is a rational normal scroll of
degree r in P(UY ) ' Pr+1. In the proof of theorem 3.3.5, we saw that it is always
possible to find a line lωD

such that Y ⊂ TωD
Gr(2,W ∗). This line will be the

directrix of the scroll SY . The projective space P(UY ) ' Pr+1 can then be written
as:

P(UY ) = 〈lωD
,Γ〉, Γ ' Pr−1, Γ ∩ lωD

= ∅.
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If now we take r + 1 points ω0, . . . ωr on Y , we can express each of these points as
ωi = ui ∧ vi with ui ∈ lωD

and vi ∈ Γ. This r + 1 tuple of points defines uniquely
a degree r − 1 Veronese embedding νr−1:

νr−1 : lωD
−→ Γ, ui 7→ vi, i = 0, . . . r.

The surface SY is therefore the join of the morphism νr−1, namely:

SY =
⋃

u∈lωD

uνr−1(u).

Notice that vice versa, whenever in a projective space Pr+1 we have a line lωD
and

a Veronese embedding νr−1 : lωD
→ Γ, with Γ ' Pr−1, Γ ∩ lωD

= ∅, the join of
this morphism is clearly a rational normal scroll of degree r. This ruled surface
corresponds to the rational normal curve on the Grassmannian obtained from the
morphism:

φ̃ : lωD
→ Gr(2, r + 2), u 7→ (u ∧ νr−1(u)).

• Y ' P4 ∩Gr(2, 5).

In this case the ruled surface SY that we obtain tracing the curve Y on the Grass-
mannian, is a quintic elliptic scroll in P4. Every such a scroll can be realized as
the “translation scroll” associated to a couple (E,P ), being E an elliptic quintic
curve and P ∈ E a 2-torsion point (seeing E as a complex torus we can take as
a 2-torsion point a half period); that is, SY is obtained joining by a line all the
couple of points on E differing by P . In other words:

SY =
⋃
x∈E

x, x+ P .

This is a ruled surface SY → F over the elliptic curve F := E/〈P 〉. For simplicity,
from now on we suppose that F, E and SY are smooth. Under these assumption
SY → F is a geometrically ruled surface over F , isomorphic to P(E)→ F , being E a
vector bundle over F of rank 2 and degree 1. We recall here briefly how to describe
a quintic elliptic scroll as a translation scroll (see [Cil-Hul] for further details).

Starting from SY → F an elliptic quintic scroll over a curve F , we have (see Atiyah
[At]), that SY → F is isomorphic to the fibration:

π : Sym2F → F, {x, y} 7→ x+ y.

Consider now the map ρ : F × F → Sym2F, (x, y) 7→ {x, y}, and denote by
Fi ⊂ F × F, i = 1, 2, 3, the curve:

Fi = {(x, x+ Pi) ∈ F × F | x ∈ F}

being Pi, i = 1, 2, 3 the 2-torsion points on F different from the origin. Choose
one of these curves, say F1, and denote by E, E ⊂ Sym2F its image through ρ.
The map ρ : F1 → E sends the points (P2, P3) and (P3, P2) to the 2-torsion point
P ∈ E, P := {P2, P3}, 2P ∼ 0. The quotient E/〈P 〉, obtained identifying couples
of points on E differing by P , is isomorphic to F , so that we get an unbranched
degree 2 covering E → F . The curve E is a 2-section of the fibration π : SY → F ,
namely ∀ y ∈ F , the fiber π−1(y) ' P1 meets the curve E in 2 points e1, e2,
ei = ej + P, i 6= j, so that we can write:

π−1(y) = e1e2 = e1, e1 + P ,

(more concretely e1, e2 might be written in the form e1 = {x, x + P1},
e2 = {x+ P2, x+ P3}, x ∈ F being a point such that 2x + P1 ∼ y). The curve
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E is an elliptic quintic curve isomorphic to Y ⊂ Gr(2, 5), the curve on the Grass-
mannian corresponding to SY .

Vice versa, starting from a couple (E,P ), E being a smooth quintic elliptic curve
in P4 and P ∈ E a 2-torsion point (note that the translation x 7→ x+ P defines a
fixed-point free involution on E), we consider the quotient q : E → E/P . Define F
as F := E/P , and SY the translation scroll obtained from the couple (E,P ). SY
is then a ruled surface over F , π : SY → F , the fiber over a point y ∈ F is the line
generated by the two points in q−1(y). Thus SY is the union:

SY =
⋃
y∈F

e1e2 with ei = ej + P, q(e1) = q(e2) = y.

Again, we see from the construction that SY is represented by a curve Y on the
Grassmannian Gr(2, 5) isomorphic to E, therefore it’s a ruled surface of degree 5
and irregularity 1, namely a quintic elliptic scroll.

3.3.2 Higher dimensional components
Once we have accomplished the classification of one-dimensional components of X, we
can proceed with the study of higher dimensional cases. Let then Y be an n-dimensional
non-degenerate irreducible component of X, n = 2, 3. As now we are considering Y
of dimension greater than 1, for a general hyperplane H ⊂ ∆, the hyperplane section
H∩Y is still irreducible and non-degenerate, we denote it by Z. Z is then an irreducible,
non-degenerate in H, n−1 dimensional component of H ∩Gr(2,W ∗) = 〈Z〉∩Gr(2,W ∗).
Therefore, by means of theorem 3.3.5, and formula 3.6 we can prove:

Proposition 3.3.11. Let ∆ ' Pr, r = 3, 4 be a hyperweb of generic rank 4, and suppose
that X = ∆ ∩Gr(2,W ∗) contains a 2 dimensional irreducible component Y . Then Y is:

• either a quadric surface (smooth for ∆ general) isomorphic to P3 ∩Gr(2, 4).

• either a rational normal ruled surface of degree 3 isomorphic to P4∩Gr(2, 5). More
precisely Y can be a cone over a twisted cubic or (for ∆ general) a smooth cubic
scroll.

Proof. Let Y be a surface satisfying the hypotheses of the proposition and consider
Z = H ∩ Y an irreducible and non-degenerate hyperplane section. We distinguish the 2
possible value of r := dim(∆):

• r=3. In this case Y is an hypersurface in P3. Applying theorem 3.3.5, we see that
Z must be a conic and that moreover Z = H ∩Gr(2, UZ). By formula 3.6 and pro-
postion 3.3.4 we deduce that ∆ ⊂ P(

∧2
, UY ) ' P(

∧2 C4). Gr(2, UY ) is isomorhic
to Gr(2, 4) hence ∆ ∩ Gr(2, UY ) is a quadric surface. As we are supposing that
Y is not a linear space (or equivalently that it spans the entire ∆), ∆ ∩Gr(2, UY )
must be irreducible hence it must coincide with Y . We observe that Y is smooth
for ∆ general, (rk (Y ) = 4 whenever the pencyl of hyperplanes defining ∆ meets
Gr(2, U∗Y ) in 2 distinct points) and rk (Y ) = 3 whenever this pencyl is tangent to
Gr(2, U∗Y ).

• r=4. When the surface Y spans a 4-dimensional linear space, by theorem 3.3.5,
Z must be a twisted cubic isomorphic to P3 ∩ Gr(2, 5). Consequently, we deduce
that dim(UY ) = 5 (so that Y ⊂ Gr(2, 5)), deg(Y ) = 3 and |Q|∆| ' P2. Y , being
an irreducible and non-degenerate surface of degree 3 in P4, is therefore a surface
of minimal degree. But it is well known that non-degenerate irreducible surfaces of
minimal degree are rational normal ruled surface (see, for example, Harris [Harr]).
Thus

Y ' S(a0,a1), 0 ≤ a0 ≤ a1, a0 + a1 = 3.

We see there are only 2 possibilities that might occur.
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Either Y ' S(0,3), namely is a cone over a twisted cubic, or Y ' S(1,2), that is,
Y is a cubic scroll. A rational normal ruled surface having degree 3 is the base
locus of a 2-dimensional linear system of quadrics (this can be seen, for example,
from its determinantal representation), so that |Q|∆| ' P(H0(IY (2)) from which
we conclude that Y is exactly ∆ ∩ Gr(2, UY ). Choosing 4 points ω1, . . . ω4 on Z,
we know by 3.3.10 that there exists a unique point ωD ∈ Gr(2, UY ) such that ωi ∈
TωD

Gr(2, UY ). ∆ can thus be generated by the ωis, i = 1, . . . 4 and by a fifth point
ω0 /∈ 〈Z〉 belonging to Gr(2, UY )∩TωD

Gr(2, UY ). The surface Y = ∆∩Gr(2, UY ) is
a cubic scroll Y ' S(1,2) for ω0 6= ωD and degenerates to the cone over Z whenever
ω0 = ωD.

For what concerns 3-dimensional components Y ⊂ X, the only case that we have to
consider (as we are excluding the possibility that Y ' P3) is when Y is an hypersurface
in ∆ ' P4. Reasoning as above we can prove:

Proposition 3.3.12. Let ∆ be a four-dimensional hyperweb of generic rank 4 such that
X := ∆ ∩Gr(2,W ∗) has dimension 3. Then X is a quadric hypersurface in ∆ of rank 4
or 5 and moreover X ' P4 ∩Gr(2, 4).

Proof. Consider a variety X as in the statement of the proposition. Applying 3.3.11,
we see that taking a generic hyperplane H ⊂ ∆, the surface Z := H ∩ X is an
irreducible quadric surface (and so necesserily non-degenerate) in H that is isomor-
phic to P3 ∩Gr(2, 4). Consequently dim(UX) = 4 and X is an hyperplane section, in
P(
∧2

U∗X) ' P5 of Gr(2, UX). Gr(2, UX) is a smooth quadric hypersurface in P(
∧2

UX),
hence an hyperplane section migth have rank 5 or 4 (this last instance occurs exactly
when we intersect Gr(2, UX) with an hyperplane in Gr(2, U∗X).)

The results obtained up to this moment (where we studied irreducible subvarieties of
Gr(2,W ∗) not consisting in linear spaces), together with the description of linear sub-
spaces of Gr(2,W ∗) complete the proof of theorem 3.3.1

3.4 Applications to the study of Pss

We are now going to relate the results that we have obtained to the study of the moduli
space P of Pfaffian representation of cubic threefolds.
Recall that P was defined as the GIT quotient Pss//SL(6,C), where P ' P(V ∗⊗

∧2
W ∗)

is the space of 6×6 skew-symmetric matrices whose entries are linear forms on P(V ) ' P4

and Pss is the semistable locus. Keeping the notations introduced in Chapter 1, we call
Π the locus of matrices M ∈ P such that Pf (M) = 0 (namely matrices corresponding
to hyperwebs of generic rank ≤ 4) and Pin the locus of matrices M ∈ P such that
the equation Pf (M) = 0 defines a smooth cubic threefold. Ps denotes the stable locus.
Reformulating the results we got at the beginning of section 3.2.1 we have the following:

Theorem 3.4.1. let M be a point in P. If M 6∈ Π then M ∈ Pss. If moreover M ∈ Pin
then M ∈ Ps.

Proof. If a point M does not belong to Π, Pf (M) 6= 0 so that M is semistable by
corollary 3.2.2. The fact that M does not lie in Π implies that M individuates a linear
space P(A) ⊂ P(

∧2
W ∗) not contained in Pf . The equation Pf (M) = 0 defines then

the cubic hypersurface P(A) ∩ Pf . Assuming M ∈ Pin, the intersection P(A) ∩ Pf is a
smooth cubic threefold so that M is stable by theorem 3.2.3.

In other words we see that every Pfaffian representation of a cubic threefold is semistable
and that moreover every Pfaffian representation of a smooth cubic threefold is strictly
stable.
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Remark 26. Applying theorem 3.2.4, we can see that points in Π ∩ Ps are exactly those
occurring in locally free resolutions of sheaves in BX , the boundary of the Gieseker-
Maruyama moduli space MX(2; 0, 2, 0) on a smooth cubic threefold X. We will give a
detailed geometric description of Π ∩ Ps in chapter 4.

Examples
We present here some explicit examples of points in P and we analyze their stability.

We start by giving examples of striclty semistable Pfaffian representation of cubics. Let
then M ∈ P such that Pf (M) 6= 0 and belonging to Pss \ Ps. Since we are assuming
that M is not stable, we apply theorem 3.2.1 and we denote by s, s ∈ {1, 2, 3}, the
integer consequently individuated. We saw in proof of theorem 3.2.3 that if s = 1
or s = 2, then the cubic hypersurface Pf (M) = 0 is reducible. If M is a strictly
semistable Pfaffian representation of an irreducible cubic we thus must have s = 3.
Example of representations of this kind are provided by cubic threefolds X admitting
a linear determinantal representation. This means that the cubic form F defining X
might be written as the determinant of a 3 × 3 matrix N of linear forms. Every linear
determinantal representation N of the cubic X determines a Pfaffian representation: it
is indeed enough to consider the matrix M ∈ P defined by:

M =


0 N

−N 0

 (3.7)

From (3.7) we check directly that Mij = 0 whenever i = 1, 2, 3, j = 1, 2, 3 so that M
is strictly semistable. Examples of cubic threefolds admitting a linear determinantal
representation are the following:

• X has 6 nodes. A generic cubic threefold X defined by:

X := {det(N) = 0}, N = (lij)1≤i,j≤3

where N is a 3 × 3 matrix of linear forms lij , presents 6 nodes lying in general
position. Conversely every cubic threefold presenting 6 nodes in general positions
admits a linear determinantal representation. This is proved by Segre in [Seg], a
modern reformulation can be found in [H-T]

• X is the secant threefold We consider X, the secant variety of a rational normal
quartic curve Γ. Γ can be defined as the locus of points in P4 where the matrix of
linear forms: (

X0 X1 X2 X3

X1 X2 X3 X4

)
(3.8)

has rank 1. From 3.8 we can determine a linear determinantal representation N of
X:

N =

X0 X1 X2

X1 X2 X3

X2 X3 X4

 (3.9)

We look now to points belonging to Π. Using the classification of the irreducible com-
ponents of 4-dimensional linear sections of Gr(2,W ∗) we provide some explicit exam-
ples of non-stable hyperwebs P(A) ⊂ Pf . More specifically we show that whenever
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X := P(A) ∩ Gr(2,W ∗) contains a component spanning the entire space P(A) (and
from our classification is thus the only component of P(A) ∩ Gr(2,W ∗), P(A) can’t be
semistable.

• X ' P4 
0 0 0 0 0 X0

0 0 0 0 0 X1

0 0 0 0 0 X2

0 0 0 0 0 X3

0 0 0 0 0 X4

−X0 −X1 −X2 −X3 −X4 0



• X is a smooth 3-dimensional quadric


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 X0 X1 X2

0 0 −X0 0 X3 X4

0 0 −X1 −X3 0 X0

0 0 −X2 −X4 −X0 0



• X ' S(0,1,1) is a 3-dimensional quadric of rank 4:
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 X1 X2

0 0 0 0 X3 X4

0 0 −X1 −X3 0 X0

0 0 −X2 −X4 −X0 0



• X ' S(1,2) is a cubic scroll:


0 0 0 0 X0 + 2X4 −X0 +X4

0 0 0 0 X1 + 2X4 X1 +X4

0 0 0 0 X2 X4

0 0 0 0 0 X3 +X4

−X0 − 2X4 −X1 − 2X4 −X2 0 0 0
X0 −X4 −X1 −X4 −X4 −X3 −X4 0 0



• X ' S(0,3) is the cone over a twisted cubic:


0 0 0 0 X0 −X0

0 0 0 0 X1 X1

0 0 0 0 X2 0
0 0 0 0 0 X3

−X0 −X1 −X2 0 0 X4

X0 −X1 0 −X3 −X4 0


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• X is a rational quartic curve:
0 0 0 −X3 − 2X4 X3 −X4 0
0 0 0 −X2 − 2X4 X2 −X4 0
0 0 0 X1 − 2X4 −X4 0

X3 + 2X4 X2 + 2X4 2X4 −X1 0 0 2X4

X4 −X3 X4 −X2 X4 0 0 X0

0 0 0 −2X4 −X0 0



• X is a quintic elliptic curve:
0 0 0 0 0 0
0 0 X0 −X3 +X4 0 −X3 +X4 X2 +X4

0 X3 −X0 −X4 0 −X4 −X4 X3

0 0 X4 0 X1 X2

0 X3 −X4 X4 −X1 0 X3 +X4

0 −X2 −X4 −X3 −X2 −X3 −X4 0


In these examples, except for the cases of the smooth quadric hypersurface and of the
elliptic quintic, X is a rational normal scroll. When X is a rational normal scroll, there
exists a point ω ∈ Gr(2,W ∗) such that X and so the entire linear space P(A) = 〈X〉, are
contained in Tω(Gr(2,W ∗). For our choice of coordinates this is the point e5 ∧ e6. As
we have already observed several times, this implies that P(

∧2
ker(ω)) ' P5 is contained

in P(A)⊥, so that ker(ω) is isotropic with respect to every tensor in P(A). In these cases
the hyperwebs P(A) = 〈X〉 belong to the same component H3 of the Hilbert nullcone
described in remark 21.

3.5 Appendix: The polarization index
From what we have proved in the chapter we see that for a 4-dimensional hyperweb
P(A), the inclusion P(A) ⊂ Pf is a necessary condition for the non-semistability of P(A)
(this is corollary 3.2.2) but not a sufficient one. Theorem 3.2.4 provides indeed stable
hyperwebs of generic rank 4. The fact that the vanishing of the Pfaffian does not prevent
a hyperweb from being stable is due to the value of the polarization index of the action
of SL(W ) on V ∗ ⊗

∧2
W ∗. We recall here briefly how this index is defined (We refer

to [BD], [Po] for further details). To start with, notice that whenever we have a linear
map φ : V ∗ → U , from V ∗ to a complex vector space U of dimension p, p ≤ dim(V ∗),
tensoring by

∧2
W ∗, we obtain a linear map, that we still denote by φ,

φ : V ∗ ⊗
2∧
W ∗ → U ⊗

2∧
W ∗.

These vectors spaces have a SL(W )-module structure, where SL(W ) acts trivially on
V ∗ and U . The map φ : V ∗ ⊗

∧2
W ∗ → U ⊗

∧2
W ∗ is thus an SL(W )-equivariant

morphism. Given now any SL(W ) invariant f ∈ C[U ⊗
∧2

W ∗]SL(W ), we can pull it
back by φ and get f ◦ φ ∈ C[V ∗ ⊗

∧2
W ∗]SL(W ) an SL(W )-invariant on V ∗ ⊗

∧2
W ∗.

The functions obtained in this way, as φ varies in Hom C(V ∗, U) are called polarizations
of f. Consider now U = C. In this case C[U ⊗

∧2
W ∗]SL(W ) = C[

∧2
W ∗]SL(W ) is a

finitely generated C-algebra, generated by the Pfaffian. Denote by pol5C[
∧2

W ∗]SL(W )

the subalgebra of C[V ∗⊗
∧2

W ∗]SL(W ), whose generators are the polarizations of elements
of C[

∧2
W ∗]SL(W ); as this latter is generated by the Pfaffian, pol5C[

∧2
W ∗]SL(W ) is

finitely generated as well and its generators are the polarizations of the Pfaffian.
The inclusions pol5C[

∧2
W ∗]SL(W ) ιp−→ C[V ∗ ⊗

∧2
W ∗]SL(W ), and C[V ∗ ⊗∧2

W ∗]SL(W ) ιG−→ C[V ∗ ⊗
∧2

W ∗] induce dominant morphisms of affine varieties
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V ∗ ⊗
∧2

W ∗
πp−→ (V ∗ ⊗

∧2
W ∗) //p SL(W ) := Spec( pol5C[V ∗ ⊗

∧2
W ∗]SL(W )) and

(V ∗ ⊗
∧2

W ∗)
πG−−→ V ∗ ⊗

∧2
W ∗ // SL(W ) := Spec C[V ∗ ⊗

∧2
W ∗]SL(W ), consequently a

commutative diagram:

V ∗ ⊗
∧2

W ∗ (V ∗ ⊗
∧2

W ∗) // SL(W )

(V ∗ ⊗
∧2

W ∗) //p SL(W )

πG

πp

Denote the Hilbert nullcone by HV ∗⊗∧2 W∗(SL(W )) := π−1
G (πG(0)) (recall that this is

the cone of unstable points in V ∗⊗
∧2

W ∗, namely the closed set of points on which every
element of C[V ∗⊗

∧2
W ∗]G vanishes) and define PV ∗⊗∧2 W∗(SL(W )) := π−1

p (πp(0)) (i.e
the space of points on which every polarization of the Pfaffian vanishes). The points of
PV ∗⊗∧2 W∗(SL(W )) thus represent hyperwebs of generic rank less than or equal to 4.
Note that, calling H∧2 W∗(SL(W )) the nullcone of the action of SL(W ) on

∧2
W ∗, all

the elements of an hyperweb in PV ∗⊗∧2 W∗(SL(W )) belong to H∧2 W∗(SL(W )).

It’s clear that we have an inclusion HV ∗⊗∧2 W∗(SL(W )) ⊆ PV ∗⊗∧2 W∗(SL(W )), more
precisely it’s a strict inclusion; this is due to the fact that the polarization index of

∧2
W ∗

is strictly smaller then 5. Recall that the polarization index of
∧2

W ∗ iz defined by:

pol ind (

2∧
W ∗) := sup n,

where the supremum is taken over all positive integers n such that we have an equality
HCn⊗

∧2 W∗(SL(W )) = PCn⊗
∧2 W∗(SL(W )). We have in particular the following (Lemma

3.6 in [Po]) : for an integer n , pol ind(
∧2

W ∗) ≤ n, if and only if for every linear subspace
L of

∧2
W ∗, with dimL ≤ n and L ⊂ H∧2 W∗(SL(W )), there exists a one-parameter

subgroup λ of SL(W ) such that every element of L is not λ semistable. In [BD], theorem
4.4, the authors assert that pol ind(

∧2
W ∗) = 2, proving at first that pol ind(

∧2
W ∗) ≤ 2

and then constructing a 3-dimensional subspace L = 〈A1, A2, A3〉 of
∧2

W ∗ with L ⊂
H∧2 W∗(SL(W )) but such that the triple (A1, A2, A3) /∈ HC3⊗

∧2 W∗(SL(W )). So, since
pol ind(

∧2
W ∗) < 5 the inclusion HV ∗⊗∧2 W∗(SL(W )) ⊂ PV ∗⊗∧2 W∗(SL(W )) is strict.
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Chapter 4

Boundary of the Moduli Space

Introduction
In this chapter we illustrate some properties of sheaves belonging to the boundary of
the moduli space MX(2; 0, 2, 0), X being a smooth cubic threefold, and of their free
resolutions. We saw in Chapter 1 that a sheaf F of this kind always admits a minimal
free resolution (as a OP4 -module) of the form:

0 −→ OP4(−3)⊕2 G−→ OP4(−3)⊕2 ⊕OP4(−2)⊕6 B−→ OP4(−1)⊕6 −→ F −→ 0, (4.1)

in which B = (β′|β) is a 6-by-8 matrix obtained by concatenation of a 6 × 2 matrix
of quadratic forms β′ with a 6 × 6 skew-symmetric matrix β of linear forms satisfying
Pf (β) = 0. Given a couple of vector spaces W, V of dimension 6 and 5 respectively, the
matrix β defines a point in

∧2
W ∗ ⊗ V ∗ belonging to Z, where Z is defined as the locus

of matrices M ∈
∧2

W ∗ ⊗ V ∗ such that Pf (M) = 0.
Moreover it follows from the results obtained in Chapter 3 that matrices β obtained in
this way individuate all the stable points (with respect to the SL(W )-action) lying in Z.
Because of this fact the orbit of β defines a point in P := P(

∧2
W ∗ ⊗ V ∗)ss // SL(W ),

the moduli space of Pfaffian representations of cubic threefolds.
In the first part of the chapter we study the behavior of Z,

∧2
W ∗ ⊗ V ∗ and P at β.

As the boundary BX of MX(2; 0, 2, 0) is given by the union of two divisors B′X , B′′X ,
matrices β as above belong to two different families of elements in Z. We prove that
whenever β is obtained from the minimal free resolution of a sheaf F corresponding
to a point [F ] ∈ B′X (resp. [F ] ∈ B′′X), it belongs to a 47-dimensional component Z ′
(resp. 48-dimensional component Z ′′) of Z, smooth at β. Therefore, the image of its
orbit in P, is a smooth point of a 11-dimensional subvariety B′, quotient of Z ′, (resp.
a 12-dimensional subvariety B′′, quotient of Z ′′) of P. However we will show that P
is smooth at the orbit of β only when β ∈ Z ′; this due to the fact that if β ∈ Z ′′, its
stabilizer does not consist only of {±Id6}.
In the second part of the chapter we study how a minimal free resolution R• of F of the
form 4.1 behaves under deformation. We consider then a sheaf F∆ on P4 ×∆ flat over
∆, ∆ being a polydisk in CN , such that ∀ s ∈ ∆, Fs (the restriction of F∆ to P4 × s)
belongs to M and F0 = F . R• lifts to a resolution R•∆ of F∆ of the form:

0 −→ O(−3)⊕2
P4×∆

G(s)−−−→ OP4×∆(−3)⊕2 ⊕OP4×∆(−2)⊕6 B(s)−−−→ OP4×∆(−1)⊕6 −→ 0, (4.2)

R•∆ is a complex of sheaves on P4 ×∆, its differentials G(s) and B(s) are matrices with
entries in C{s}[X0, . . . , X4], where C{s} denotes the ring of germs of analytic functions in
s at 0. More precisely B(s) = (β′(s)|β(s)) where β(s) is a 6× 6 matrix whose entries are
elements in C{s}[X0, . . . , X4] linear in the variables X0, . . . , X4. Our goal is to establish
when we can deform F in such a way that β(s) is skew-symmetric ∀ s ∈ ∆. We prove
that such a deformation is always possible whenever the type of the singularity of F is

101
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preserved ( Lemma 4.2.1) and whenever F is a sheaf corresponding to a point in B′X and
deforming to a sheaf F∆ such that for generic s ∈ ∆, Fs is an instanton on a smooth cubic
threefold (Lemma 4.2.2). Using this results we are able to describe the local behavior of
the diagram:

P
τ //

Pf ##

M

ρ

��
|OP4(3)| ,

(4.22)

in a neighborhood of the orbit of a generic point β0 ∈ Z ′. We prove the following:

Proposition 4.0.1. Let β0 ∈ Z ′ be as above, and consider the diagram (4.22) in a
neighborhood of the orbit [β0] ∈ B′, [β0] = GL(W ) · β0. Then the rational map τ is
equivalent to a blowup with center B′ near [β0]. More precisely: let P̃ denote the blowup
of P with center B′ and B̃′ its exceptional divisor. Then, in a neighborhood of [β0],
(4.22) can be completed to the diagram

B̃′

|| $$

� � P̃

τ̃

##zz
B′ � � P

Pf $$

44B′ � � M

ρ
{{

|OP4(3)|

(4.3)

in which the arrows τ̃ and τ̃ |
B̃′

are isomorphisms.

Here B′ is the divisor of M whose generic point is a sheaf F on a smooth cubic threefold
X and corresponding to a point [F ] ∈ B′X . Calling now B′′ the divisor ofM whose generic
point is a sheaf F supported on smooth cubic threefolds X and such that [F ] ∈ B′′X , we
conjecture that Proposition 4.2.4 extends literally to B′′ and B′′ ⊂ P.

4.1 Skew-symmetric resolutions
Throughout the rest of the section we will work on a smooth cubic threefold X. Consider
MX(2; 0, 2, 0) the Gieseker-Maruyama moduli space of instanton bundles on X. As for
what have been illustrated in Chapter 1, we know that two "families" of sheaves appear
in the boundary BX ofMX(2; 0, 2, 0): sheaves associated to conics contained in X and
direct sums of ideal sheaves of lines; these two families individuate two divisors B′X and
B′′X ofMX(2; 0, 2, 0). We also recall that given any point [F ] ∈ BX , the sheaf F fits in
a short exact sequence of OX−modules:

0→ F → O2
X → G → 0; (4.4)

G being a one dimensional sheaf of the form:

• G ' OC(1pt) for C a smooth conic (whenever [F ] ∈ B′X);

• Ol1⊕Ol2 for l1, l2 a couple of (possibly incident or even coincident) lines (whenever
[F ] ∈ BX ”).

Consider nowMP4(2m+2), the moduli space of sheaves in P4 having Hilbert polynomial
2m+ 2. A sheaf G as above is a torsion sheaf on P4 whose support Supp (G) is contained
in X and that determines a point [G] ∈ MP4(2m+ 2). Furthermore we saw that such a
sheaf G admits a minimal free resolution L• in P4 of the form:

0→ OP4(−3)2 γ−→ OP4(−2)6 β−→ OP4(−1)6 α−→ O2
P4 , (4.5)
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in which β is a 6×6 skew-symmetric matrix of linear forms of generic rank 4 and γ = αT .
We will now show that the 1-dimensional sheaves G as above are skew-symmetric ACM
sheaves. Recall that the skew-symmetry of G means that there exists an isomorphism
k : G → G∨(N) (for some integer N), that satisfies kT = −k. Here the dual G∨ is
understood as H omOC

( ·,OC), where C is the support of the sheaf. In general this
property is too weak for G to have a skew-symmetric minimal resolution on P4. A
better characterization of the skew-symmetry is given in terms of the derived category of
OP4-modules. For a d-dimensional sheaf the derived dual is H om(G, ωP4 [d](d + 1)).
The derived dual is quasi-isomorphic to a sheaf if and only if Exti(G, ωP4) = 0 for
i 6= 4 − d, and then G∨ = Ext4−d(G, ωP4)(d + 1). The vanishing condition for the
exts is satisfied when G is an ACM d-dimensional sheaf, so that the sheaf duality functor
G 7→ G∨ := Ext4−d(G, ωP4)(d + 1) is well-behaved when considered on the category of
d-dimensional ACM sheaves on P4; in particular, it is an involution. We work in this
section with ACM sheaves G of codimension 3; the skew symmetry of such a sheaf means
that there is an isomorphism of coherent sheaves k = G ∼−→ Ext3(G, ωP4)(N).

Lemma 4.1.1. Any sheaf G on P4 with minimal free resolution of the form (4.5) is a
1-dimensional ACM sheaf with Hilbert polynomial m 7→ 2m+ 2. If, moreover, the maps
of the resolution satisfy the equalities βT = −β and γ = αT , then G is skew-symmetric.

Proof. Suppose that G admits a minimal free resolution L• of the form (4.5). The
alternating sum of Hilbert polynomials of the terms of the resolution gives the Hilbert
polynoimal of G, equal to m 7→ 2m + 2; this implies that G is a sheaf of dimension 1.
Therefore G is ACM if and only if it is locally Cohen-Macaulay, namely if and only if
∀ x ∈ Supp (G), depth (Gx) = dim(Gx). As L• has length 3, for every x ∈ Supp (G),
pd(Gx) ≤ 3. Applying Auslander-Buchsbaum formula, we get

depth (Gx) ≥ dim(OP4x)− 3 = 1 = dim(Gx),

hence depth (Gx) = dim(Gx). Thus G is ACM.
Let’s now show that G is skew-symmetric if the minimal resolution (4.5) satisfies βT = −β
and γ = αT . Under these assumptions, the resolution L• is a self-dual complex, up to
a twist and a shift by −3: L• ' (L•)∨(−3)[−3]. In our particular case, the following
commutative diagram defines an isomorphism of complexes φ : L• ∼−→ (L•)∨(−3)[−3]:

0 OP4(−3)⊕2 OP4(−2)⊕6 OP4(−1)⊕6 O⊕2
P4 0

0 OP4(−3)⊕2 OP4(−2)⊕6 OP4(−1)⊕6 O⊕2
P4 0

γ

Id

β

Id −Id

α

−Id

γ −β α

(4.6)

φ induces an isomorphism φ0 on the 0-th cohomology of the complexes:

φ0 : G ∼−→ Ext3(G,OP4(−3)).

Applying the functor H om( · ,OP4(−3)) to the diagram 4.6 we get φT0 = −φ0

Remark 27. From the short exact sequence 4.4 we observe that each sheaf F such that
[F ] ∈ BX is obtained as the left mutation through OX of the complex G[−1]. This means
that F is the cone of the evaluation map Ext•(OX ,G[−1])⊗OX → G[−1] and therefore
fits in a distinguished triangle:

Ext•(OX ,G[−1])⊗OX → G[−1]→ F (4.7)

( from which we get 4.4). By abuse of language from now on we will simply say that F
is obtained by mutation of the sheaf G.
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In Chapter 1, section 1.2.1 we showed how to obtain, starting from the complex 4.5, a
minimal free resolution of F . Such a free resolution is a complex of the form:

0 −→ OP4(−3)⊕2 G−→ OP4(−3)⊕2 ⊕OP4(−2)⊕6 B−→ OP4(−1)⊕6 −→ F −→ 0, (4.8)

in which B = (β′|β) is a 6-by-8 matrix obtained by concatenation of a 6-by-2 matrix of
quadratic forms β′ with the matrix β and G = 0⊕ γ. We recall that, more precisely, we
have the following:
• [F ] ∈ B′X . When [F ] belongs to the divisor B′X , F = FC is a stable sheaf associ-
ated to a smooth conic C. Choosing coordinates in such a way that C has equations
{X3 = 0, X4 = 0, X2

1 −X0X2 = 0}, we have:

α =

(
−X0 −X1 0 −X3 0 −X4

−X1 −X2 X3 0 X4 0

)

β =


0 0 0 X4 0 −X3

0 0 −X4 0 X3 0
0 X4 0 0 X2 −X1

−X4 0 0 0 −X1 X0

0 −X3 −X2 X1 0 0
X3 0 X1 −X0 0 0

 (4.9)

• [F ] ∈ B′′X . A general sheaf F corresponding to a point [F ] ∈ B′′X , is the direct sum
of the ideal sheaves of two distinct lines l1 and l2 contained in X. Choosing coordinates
in such a way that l1 is defined by the equations {X0 = 0, X1 = 0, X2 = 0} and l2 is
defined by {X2 = 0, X3 = 0, X4 = 0} we have:

α =

(
X0 X1 X2 0 0 0
0 0 0 X2 X3 X4

)

β =


0 X2 −X1 0 0 0
−X2 0 X0 0 0 0
X1 −X0 0 0 0 0
0 0 0 0 X4 −X3

0 0 0 −X4 0 X2

0 0 0 X3 −X2 0

 (4.10)

Keeping the notations adopted in the previous chapters, we consider W, V two complex
vector spaces of dimension 6 and 5 respectively, we denote by P the projective space
P(
∧2

W ∗ ⊗ V ∗) and by P the GIT quotient Pss // SL(W ). We call Z (resp. Π) the
locus of matrices M ∈

∧2
W ∗⊗V ∗ (resp. M ∈ P) such that Pf (M) = 0 (in other words

Z is the affine cone over Π). The matrices β appearing in the resolution 4.8 of F (or
equivalently in the resolution 4.5 of G) individuate points in

∧2
W ∗ ⊗ V ∗. Moreover, we

proved in chapter 3, Theorem 3.2.4 that these are exactly the only stable points in the
locus Z (recall that stability is equally defined on

∧2
W ∗ ⊗ V ∗ and on P). This fact

implies that their orbit define points in P. We are now going to study the behavior of∧2
W ∗ ⊗ V ∗,Z and P at β.

Remark 28. As the study of the orbit of β is made with the help of Macaulay 2 [M2] it
is now convenient, unlike Chapter 3, to work on the affine space

∧2
W ∗ ⊗ V ∗.

4.1.1 Local study of P
We start to treat the case where β is associated to a sheaf F = FC corresponding to a
point in B′X . Consider the diagram

Z ′47 �
� //

��

∧2
W ∗ ⊗ V ∗

��
B′11 �

� // P39

(4.11)
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in which the superscripts denote the dimension of each variety. Z ′ is the component of
the locus of matrices of generic rank 4 of the same form as β (namely arising from skew-
symmetric resolutions of duals of theta characteristics on smooth conics). The vertical
arrows in 4.12 are the quotient maps by the action of GL(6) = GL(W ). We made
them dashed, because the quotient maps are rational ones: they are defined only on the
semistable loci. The variety B′, was introduced in Chapter 1, stating theorem 1.2.1; the
dimension of P, equal to 39, was determined there; the dimensions of Z ′,B′ follow from
the following lemma.

Lemma 4.1.2. Let B = (β′|β) be the matrix appearing in the minimal free resolution
(4.8) of FC with β of the form (4.9). Then, in a neighborhood of β, the vertical arrows in
the diagram (4.12) are principal bundles for the group GL(W )/{±Id6}, the local dimen-
sions of the four varieties at β are as indicated on the diagram, and the four varieties
are smooth at β.

Proof. The first computation we do is the verification that the stabilizer in GL(W ) of
the special matrix β in the form (4.9) is {±Id6}, that is the same as for a generic point
in
∧2

W ∗ ⊗ V ∗.This implies that β is a stable point of the SL(W ) action (as we already
knew by Theorem 3.2.4)) and that the vertical maps of the diagram are principal bundles
for the group GL(W )/{±Id6} in a neighborhood of β.
Next we verify that the tangent space to Z ′ at β is of dimension 47. This follows
from a linear algebra computation: the vanishing of the 35 coefficients of Pf (β) for
β ∈

∧2
W ∗⊗ V ∗ is a system of 35 cubic equations in 75 variables, which are coordinates

on
∧2

W ∗⊗V ∗; we ask Macaulay2 to compute the rank of the Jacobian matrix at β, of size
35×75, and it turns out that the rank is 28. Hence dimTβZ = 75−28 = 47. We conclude
that dimβ Z ′ ≤ 47, and the equality holds if and only if Z ′ is smooth at β. To prove the
smoothness of Z ′, it is enough to show that dimβ Z ′ ≥ 47 by producing a 47-dimensional
family of distinct elements in a neighborhood of β. A 36 dimensional family "arises"
from the GL(W )-action as follows. The fact that, by stability, the stabilizer of β is finite,
implies that the differential of the "orbit map" θβ : GL(W )→

∧2
W ∗⊗V ∗, M 7→M ·β,

computed at the identity, will be an injective linear map:

dIdθβ : gl(W )→ Tβ

2∧
W ∗ ⊗ V ∗.

We then obtain a 36-dimensional family of independent tangent directions and conse-
quently a 36-dimensional family of deformations of β in Z ′, of the form

exp(tv) · β, v ∈ gl(W ).

We now analyze the GL(V ) action. We denote by GL(V )β the stabilizer of β; using
M2 we can check that the dimension of its Lie algebra is 0 and thus that GL(V )β
is zero-dimensional (once again this means that the differential of the "orbit map"
τβ : GL(V )→

∧2
W ∗ ⊗ V ∗, N 7→ N ·β at the identity is injective, providing a 25 dimen-

sional family of deformations of β inside Z ′). Still using Macaulay, we can compute that
〈dIdθβ , dIdτβ〉 is a vector subspace of Tβ

∧2
W ∗ ⊗ V ∗ of dimension 47. This means that

Z ′ is smooth at β and that in this point it’s isomorphic to the GL(W ) × GL(V ) orbit.
This implies that B′ is smooth of dimension 11 at (the orbit of) β

We pass now to the case where β ∈ Z is a matrix occurring in the minimal free resolution
of a sheaf Fl1,l2 = Il1 ⊕ Il2 , l1 and l2 being two disjoint lines contained in X. In this
circumstance we have a diagram:

Z ′′48 �
� //

��

∧2
W ∗ ⊗ V ∗

��
B′′12 �

� // P39

(4.12)
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where Z ′′ is the component of the locus of matrices of generic rank 4 having the same
form of β (that is, arising from skew-symmetric resolutions of direct sum of structure
sheaves of disjoint lines). We have the following:

Lemma 4.1.3. Let B = (β′|β) be the matrix appearing in the minimal free resolution
(4.8) of Fl1,l2 with β of the form (4.10). Then the local dimensions of the four varieties
at β are as indicated on the diagram, and Z ′′,B′′ are smooth at β.

Proof. The proof of the smoothness of Z ′′ and B′′ at β is almost identical to the case of
sheaves associated to conics. We start indeed writing β in the form (4.10); we know
by Theorem 3.2.4 that β is stable and that thus its stabilizer (with respect to the
GL(W ) action) is finite. However we can see immediately that it can’t consists just
of {±Id6}. Indeed from the block structure of β its stabilizer contains at least four ele-
ments: {±Id3,±Id3}. With the aid of Macaulay we compute that these are indeed all
the elements in the stabilizer. Next we calculate that the rank of the Jacobian of Pf at
β is 27, implying that the tangent space to Z ′′ at β is of dimension 75− 27 = 48. Again
we provide a 48 dimensional family of deformations of β proving smoothness of Z ′′, and
consequently of B′′ at β. Applying the same argument of the proof of lemma 4.1.2, we
try to determine then the dimension of the GL(W ) × GL(V ) orbit of β. Still denoting
by θβ : GL(W ) →

∧2
W ∗ ⊗ V ∗ and τβ : GL(V ) →

∧2
W ∗ ⊗ V ∗ the orbit maps, we

use Macaulay to compute that 〈dIdθβ , dIdτβ〉 is a vector subspace of Tβ
∧2

W ∗ ⊗ V ∗ of
dimension 48. This means that Z ′′ is smooth at β and that in this point it’s isomorphic
to the GL(W )×GL(V ) orbit. This also implies that B′′ is smooth, of dimension 12 at β.
Note that this time, from the fact the stabilizer in GL(W ) of β is different from {±Id6},
we don’t have the smoothness of P at β. Indeed in this circumstance, the quotient map
by the action of GL(W ) is not a principal bundle near Z ′′, but a quotient of a principal
bundle by an involution, the fiber over the points of Z ′′ being GL(W )/{±Id3,±Id3}.

4.2 Deformations of the resolutions

Let X0 be a smooth cubic threefold, F0 a sheaf on X0 corresponding to a point in BX0 ,
and R•0 a minimal free resolution of F0 of the form (4.8). Denote by B0 = (β′0|β0) and G0

the differentials of the complex R•0. Our aim is to study how this complex behaves under
deformation of F0. More precisely we consider the presentation map B0 = (β′0|β0) in R•0;
B0 has a skew-symmetric 6 × 6 block β0, (recall that β0 arises as the middle map of a
minimal free resolution L•0 of a skew-symmetric 1 dimensional ACM sheaf G0). We want
to check the stability of the skew-symmetry of the right 6× 6 block under deformations.
Indeed every deformation of F0 lifts to a deformation R• of the complex R•0. Calling G
and B the differentials of the complex R•, we see that G and B are deformations of the
morphisms G0 and B0.
We explain now better what we mean when we talk about deformations of morphisms of
vector bundles. Let R be the ring of polynomials C[X0, . . . X4] and Rd the vector space
of homogeneous polynomials of degree d. Call Matm,n(R) (resp. Matm,n(Rd)) the ring
of matrices of size m × n with entries in R (resp. with entries in Rd). A morphism of
vector bundles of the form:

O⊕nP4 (k)→ O⊕mP4 (k + d)

is individuated by a matrix M0 ∈ Matm,n(Rd). Let now C{s} be the ring of analytic
functions in s at 0, R̃ = C{s}⊗CR and R̃d = C{s}⊗CRd. A deformationM = M(s) ofM0

(or equivalently of the morphism that it defines) is an element belonging to Matm,n(R̃d)
(in other words we have to think that we are tracing an analytic arc s 7→ Ms := M(s)
passing through M0 at s = 0.) . One can then represents M in the form:

M(s) =
∑
i≥0

Mis
i ∈Matm,n(R̃d).
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The morphism B in R• is thus of the form B = (β′|β) with β ∈ Mat6,6(R̃1). Our goal
is to determine when it is possible to lift R•0 to R• in such a way that the map β is
actually contained Alt6,6(R̃1), the space parameterizing skew-symmetric matrices of size
6 with entries in R̃1 (namely we want βs := β(s) to be skew-symmetric ∀ s). This is
straightforward when the singularity of the sheaf is preserved:

Proposition 4.2.1. Let ∆ be a polydisk in CN and F a sheaf on P4 ×∆, flat over ∆;
denote by Fs the restriction of F to P4 × s, s ∈ ∆. Assume that for each s ∈ ∆, Fs is
a sheaf supported on a smooth cubic 3-fold Xs corresponding to a point [Fs] ∈ BXs that
furthermore can be obtained as the mutation of a skew-symmetric 1-dimensional ACM
sheaf Gs with smooth support (that is, in case [Fs] ∈ B′′Xs

, the support should be the union
of two disjoint lines). Then, possibly after shrinking ∆, the following assertions hold:
1. Any skew-symmetric minimal free resolution L•0 of G0 extends to a complex of analytic
sheaves L• on P4 ×∆ of the form

0→ OP4×∆(−3)2 γ−→ OP4×∆(−2)6 β−→ OP4×∆(−1)6 α−→ O2
P4×∆ −→ 0, (4.13)

whose maps satisfy the skew symmetry conditions β = −βT , γ = αT , and such that for
each s ∈ ∆, the restriction L•s of L• to P4×s is a skew-symmetric minimal free resolution
of Gs.
2. The minimal free resolution R•0 of F0 of the form (4.8) with presentation map
B0 = (β′0|β0), where β0 is the first syzygy map of the resolution L•0, extends to a complex
of analytic sheaves R• of the form

0 −→ O(−3)⊕2
P4×∆

G−→ OP4×∆(−3)⊕2 ⊕OP4×∆(−2)⊕6 B−→ OP4×∆(−1)⊕6 −→ 0, (4.14)

such that B = (β′|β) with β the skew-symmetric first syzygy map in L• and for each
s ∈ ∆ the restriction R•s of R• to P4 × s is a minimal free resolution of Fs.

Proof. Associated to the analytic family of sheaves Fs is X , the analytic family of their
supports; so the cubics Xs are given by a cubic polynomial equation F (s) = 0 whose
coefficients are analytic functions in s ∈ ∆. Similarly the family C, the family of the
curves Cs = SuppGs, is analytic, for it is the locus where F is non-locally-free. From
our hypotheses it follows that C is a family of conics (whenever [Fs] ∈ B′Xs

∀s ∈ ∆) or
of pairs of disjoint lines (whenever [Fs] ∈ B′′Xs

∀s ∈ ∆). Suppose that the central fiber
F0 corresponds to a point [F0] ∈ B′X0

. In the previous section we presented an explicit
construction (4.9) of the resolution L•0, starting from the equations of the conic C0 in
the form X2

1 −X0X2 = X3 = X4 = 0. It is easy to see that given an analytic family of
conics Cs extending the given conic C0, one can find linear forms `i = `i(s)(X0, . . . , X4)
in Xj with coefficients, depending analytically on s, such that the conic Cs is given by
the equations `21− `0`2 = `3 = `4 = 0. Then the wanted skew-symmetric resolution of Gs
is obtained by replacing Xi by `i in the formulas defining the maps in L•0.
Now the sheaf F , viewed as a sheaf on the family of cubic threefolds X → ∆, embeds
in its reflexive hull F∨∨, and for s = 0, we have F∨∨0 ' O⊕2

X0
and F∨∨0 /F0 ' G0 is the

cokernel of this inclusion. This implies that F∨∨ ' O⊕2
X in a neighborhood of the fiber

X0, hence we obtain the exact triple

0→ F → O⊕2
X → G → 0.

The surjection of this exact triple lifts to a morphism from the natural resolution of
O⊕2
X to the resolution L• of G. This gives rise to a diagram of the form (1.16) over

P4 × ∆. By an easy diagram chase we deduce a resolution of the form R• with the
wanted skew-symmetry property for the right 6× 6 bloc of the presentation map B.
The argument for the case of a pair of disjoint lines is completely similar.

This argument does not work when the singularity of the sheaf is smoothed by deforma-
tion, that is when a non-locally-free sheaf from the boundary of the moduli space deforms
to an instanton. In this case we provide another proof.
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Proposition 4.2.2. Let ∆ be a polydisk in CN and F a sheaf on P4 ×∆, flat over ∆.
Denote by Fs the restriction of F to P4 × s, s ∈ ∆, and assume that for each s ∈ ∆,
Fs is a sheaf supported on a smooth cubic 3-fold Xs. Suppose that for s = 0, F0 is a
sheaf corresponding to a point [F0] ∈ BX0 , mutation of a skew-symmetric 1-dimensional
ACM sheaf G0 with smooth support (that is, in case [F0] ∈ B′′X0

, the support should be
the union of two disjoint lines), and that for generic s ∈ ∆, Fs is an instanton on Xs.
Let R•0 be a minimal free resolution of F0 of the form (4.8), with its two maps denoted
B0, G0 such that the block β0 of the presentation map B0 = (β′0|β0) is skew-symmetric
and G0 =

(
0
γ0

)
with zero block of size 2 × 2 and γ0 of size 6 × 2. Then, possibly after

shrinking ∆ (for both [F0] ∈ B′X0
or [F0] ∈ B′′X0

) and after pulling back to a double
covering of ∆ (only whenever [F0] ∈ B′′X0

), R•0 extends to a resolution of the form (4.14)
over P4 ×∆ with the same property of the presentation map B: its right block β of size
6× 6 is skew-symmetric.

Proof. Starting with a minimal free resolution R•0, we can lift it to a minimal free resolu-
tion R• = (R2

G−→ R1
B−→ R0) of the form (4.14) over P4 ×∆. The minimality condition

implies, in particular, that the map between summands of the terms of the resolution of
the same degree is zero, so G =

(
0
γ

)
and B = (β′|β), where β′, β, γ are respectively some

extensions of β′0, β0, γ0 over ∆. We want to show that β can be made skew-symmetric.
As in the previous lemma, we observe that the supports of the sheaves Fs describe an
analytic family X of smooth cubic threefolds Xs over ∆. This time we have that for
generic s ∈ ∆, Fs = F|Xs

is a locally free sheaf and that the locus of points s ∈ ∆ for
which Fs is non-locally-free is a divisor Ξ in ∆, containing 0. For s 6∈ Ξ, the restriction
R•s is not minimal, for we know by [B2] that a minimal resolution is of length 1 and
can be given by a 6 × 6 skew-symmetric matrix Ms of linear forms on P4. A minimal
free resolution, say K•s , embeds as a direct summand in a non-minimal one, so there is a
morphism of complexes giving this embedding:

K•s : 0 // OP4(−2)⊕6 Ms //

��

OP4(−1)⊕6 p //

��

Fs

id
��

// 0

R•s : 0 // R2
Gs // R1

Bs // R0
q // Fs // 0

(4.15)

This implies, in particular, that the 6×6 block βs of Bs is generically of rank 6 for every
s 6∈ Ξ and that the support Xs of Fs is the zero locus of the determinant of βs, which is
a cubic form squared. In this argument we have no control of the dependence of Ms on
s. So we explain how one can skew-symmetrize βs by a change analytic in s.
We have shown that for s 6∈ Ξ, we have the following resolution for Fs:

Ks• : 0 //OP4(−2)⊕6 βs //OP4(−1)⊕6 p //Fs //0 .

The sheaf Fs is skew-symmetric, that is there is an isomorphism ks : Fs → F∨s , such
that k∨s : Fs = F∨∨s → F∨s equals −ks under the canonical identification of F∨∨s with Fs.
Here the duality functor is H omOXs

( ·,OXs
). As in [B2], we lift both isomorphisms to

the resolutions and obtain the diagram

K• : 0 // K1
βs //

a1

��
a∨0
��

K0
p //

a0

��
a∨1
��

F //

k∨s
��
ks=−k∨s
��

0

K∨• : 0 // K∨0
β∨s // K∨1

q // F∨s // 0

(4.16)
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with exact rows, in which the squares with both right hand side (resp. left hand side)
vertical arrows are all commutative; K∨• denotes the complex H omOP4

(K•,OP4(−3))[1].
The commutativity and the relation ks + k∨s = 0 imply that 0 = (ks + k∨s )p = q(a0 + a∨1 ).
The map a0 + a∨1 : OP4(−1)⊕6 → OP4(−1)⊕6 is given by a constant matrix, and the
fact that ker q has no global sections immediately implies that the matrix is zero, hence
a0 = −a∨1 . Now we define Ms = a0βs. We have M∨

s = β∨s a
∨
0 = −β∨s a1 = −a0βs = −Ms,

thus Ms : K1 → K∨1 is a skew-symmetric presentation of Fs. The formula for Ms is
analytic in s.
In the above procedure for skew-symmetrization of β, we assumed that s 6∈ Ξ. In order
to see that it extends to s ∈ Ξ, we have to produce a construction in which a0 extends
on Ξ as an invertible matrix. Let δ = 0 be a local equation of Ξ near 0, and let
ν = min{n ∈ Z | a0δ

n, a1δ
n ∈ Mat6,6(O∆,0)}. Then replacing ai by aiδν , we obtain the

diagram

OP4
∆

(−2)⊕6 β //

a1

��
a∨0

��

OP4
∆

(−1)⊕6

a0

��
a∨1

��
OP4

∆
(−2)⊕6 β∨ // OP4

∆
(−1)⊕6

(4.17)

in which all the maps are regular analytic on the whole of ∆, and moreover, at least one
of the maps a0, a1 is not vanishing on Ξ identically. By continuity, the relation a0 = −a∨1
that we have proved for s 6∈ Ξ holds everywhere in ∆. If we assume that a0s is a nonzero
degenerate matrix at some point s ∈ Ξ, then βs has a diagonal block structure with
blocs of size r and 6 − r, where r = rk a0s, the blokc of size r being skew-symmetric.
The existence of a block decomposition of β0 is detected by the jump of the stabilizer in
GL(W ) = GL(6):

• Whenever [F0] ∈ B′X0
, the stabilizer is ±Id6, (see Lemma 4.1.2) so a decomposition

in blocks is impossible. This proves the invertibility of a0 in a neighborhood of
s = 0, which implies the possibility of the global skew-symmetrization of the map
β.

• Whenever [F0] ∈ B′′X0
, there is a decomposition of β0 in two blocks of size 3. This

does not prevent β0 from being stable, as we proved in Theorem 3.2.4, but the
stabilizer jumps and is of order 4: {±Id3,±Id3} (see Lemma 4.1.3). The fact that
the stabilizer is of order 4 and not bigger implies that the decomposition in blocks
is unique. Assume that in our resolution R•, the map β is a direct sum of two skew-
symmetric blocks of size 3. We can always obtain such a resolution by applying the
construction from Section 1.2.1 to a direct sum of two skew-symmetric resolutions
of two varying families of lines l1(s), l2(s), s ∈ Ξ, and afterwards deforming the
resolution over Ξ to an outer direction.

Let us now work over the analytic local ring O of meromorphic functions on ∆
without pole on Ξ, with local parameter δ. By base change in GL(6,O), we can
reduce a0 to a diagonal form diag(δν1 , . . . , δν6), ν1 ≤ . . . ≤ ν6; moreover up to an
homothety base change on K0, we case suppose that ν1 = ν2 = ν3 = 0 < ν4 ≤ ν5 ≤
ν6. Then on Ξ we have β = α′⊕α′′, the direct sum of two blocks of size 3, with α′
skew-symmetric. Let us write down β, a := a0, M = a0β in blocks of size 3 and
expand them in powers of δ, M =

∑
iM

(i)δi, a0 =
∑
i a

(i)
0 δi, β =

∑
i β

(i)δi. The
terms of order 0 are:

M (0) =

(
α′ 0

0 0

)
, a

(0)
0 =

(
1 0

0 0

)
, β(0) =

(
α′ 0

0 α′′

)
.

Then taking into account the skew-symmetryMT = −M and looking for the lowest
order terms, we find that the expansion the upper-right block of β starts in order
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ν4 + 1 in δ, with the initial term

β
(ν4+1)
12 = −(a

(ν4)
22 β

(1)
21 )T ,

and the expansion of the bloc M22 then has its lower order term in degree ν4. The
skew symmetry relation for M the implies:

a
(ν4)
22 α′′ = −(a

(ν4)
22 α′′)T .

This relation is incompatible with the explicit expression we have for α′′ unless
ν4 = ν5 = ν6 = ν and a22 = δν id 3. Thus M acquires the form

M =

(
α′ δν+1ε

−δν+1ε δνα′′

)
.

If ν is even, by a base change
(

1 0

0 δν/2

)
we reduce M the diagonal form M̃

M̃ =

(
α′ δε̃

−δε̃ α′′

)
,

and if ν is odd, we can lift to a double covering t2 = δ, which brings us to the case
of even ν.

In the next section we apply proposition 4.2.2 to study the deformations of a sheaf F0

such that [F0] ∈ B′X0
. Doing so we are able to describe the behavior of the rational

map τ̄ : P 99K M in a neighborhood of the point [β0] ∈ P, corresponding to the 6 × 6
skew-symmetric matrix β0 appearing in a minimal free resolution of F0 of the form (4.8).

4.2.1 Sheaves associated to conics
We consider a smooth cubic threeofold X0 defined by a cubic polynomial F0 and a sheaf
FC0 on X0 corresponding to a point [FC0 ] ∈ B′X0

. FC0 is obtained as the mutation of
OC0(1pt), the dual of a theta characteristic on a smooth conic C0 contained in X0. Such
sheaves fill the 38-dimensional exceptional divisor B′ in the 39-dimensional moduli space
M of torsion sheaves on P4 compactifying the open set Min of instantons supported on
cubic threefolds. Furthermore FC0

is a flat limit of the instanton bundles F that are
cokernels of Pfaffian representations of X0:

i∗F = coker
(
O(−2)⊕6 M−→ O(−1)⊕6

)
. (4.18)

From now on, as we have already done in the previous sections, we denote by F ,FC0

sheaves onX0 and we omit i∗, where i is the embeddingX0 ↪→ P4, when speaking of them
as sheaves on P4. We want to understand what happens to the Pfaffian representations
(4.18) as F degenerates into FC0

. To this end, we will look at the local deformations of
a minimal free resolution of FC0 .
Example. We can construct an explicit example of such data by choosing:

C0 = {X2
1−X0X2 = X3 = X4 = 0}, F = X1(X2

1−X0X2)+X3(X2
0 +X2

3 )+X4(X2
2 +X2

4 ),

The morphisms G0, B0 appearing in a complex of type 4.8 are then: G0 = 0 ⊕ αT0 ,
B0 = (β′0|β0) with α0, β0 of the form 4.9 and β′0 given by:

β′ =


X1X2 −X2

1

−X2
1 X0X1

0 X2
0 +X2

3

−X2
0 −X2

3 0
0 X2

2 +X2
4

−X2
2 −X2

4 0

. (4.19)
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As usual we consider a minimal free resolution of FC0
of the form (4.8) and we denote

by B0 and G0 its differentials. In the previous section we saw that a flat deformation of
FC0

as a sheaf on P4 can be obtained by a deformation B, s 7→ B(s) := Bs, of the sheaf
homomorphism B0 in such a way that the Hilbert polynomial PcokerBs remains constant
(or equivalently in such a way that there also exists a deformation G of G0 preserving
the exactness: imG = kerB).

Remark 29. Writing explicitly a resolution of type (4.8) of FC0
with differentials given

by the matrices (4.9) and (4.19), we can compute, using Macaulay2, that we have:

dimExt1P4(FC0
,FC0

) = 132 , dimExt2P4(FC0
,FC0

) = 23;

so the deformation space (and the moduli space) of sheaves on P4 is of local dimension
≥ 109 = 132−23 at the point [FC0 ]. The dimension of the space M is 39 and the sheaves
of the form FC0 , which one obtains in varying the pair C0 ⊂ X0 of a conic contained in a
cubic threefold, fill a divisorial 38-dimensional subfamily B′. This dimension count shows
that a generic deformation F of FC0

cannot be supported on a cubic. By the invariance
of the Hilbert polynomial of a sheaf under flat deformations and because the leading
coefficient of the Hilbert polynomial is 1

3! times the degree of the support of F times the
rank of the sheaf as a module over it support, we conclude that the only possibility is that
F is supported on an irreducible sextic hypersurface. Thus the 38-dimensional locus B′
is contained in a component of the moduli space of sheaves, say N, of dimension ≥ 109,
whose generic point represents a rank-1 sheaf F on an irreducible sextic hypersurface. We
will restrict ourselves to the study of only those deformations which preserve the degree
of the support and the rank.

We described in proposition 4.2.1 the deformations of the resolutions inside the 38-
dimensional locus B′, namely the deformations preserving the type of singularity of FC0

.
We showed that, starting from a presentation of FC0

by a matrix B0 = (β′0|β0) as in
(4.8), these are given by the deformations of the map B0 that lift to deformations of the
whole diagram (1.16).
Deformations of FC0

into a locally free sheaf on a smooth cubic were studied in propo-
sition 4.2.2: again, starting from a presentation of FC0

by a matrix B0 = (β′0|β0) as
in (4.8), these are obtained deforming β0 inside the skew-symmetric matrices of linear
forms (we proved that this is always possible whenever [FC0 ] ∈ B′X0

). (Note that from
[Dr], Lemma 4.2, we have Ext2X0

(FC0
,FC0

) = 0, implying the unobstructedness of in-
finitesimal deformations of FC0

, no matter whether the support X0 of the sheaf changes
under deformation or is fixed). But not any such deformation lifts to a deformation of
B0 with flat cokernel. A small deformation β of β0 lifts to a flat deformation B of B0 if
and only if there exists a 6-by-2 matrix of quadratic forms β′ ∈ Mat6,2(R̃2) depending
on s, such that the Hilbert polynomial of coker (β′s|βs) is constant. In particular, if the
cubic Pfaffian Pf (βs) vanishes only at s = 0, then Fs = cokerβs already has the right
Hilbert polynomial for s 6= 0 and adding supplementary columns to the presentation
matrix should not change it, that is:

Pf (βs) 6= 0 ⇒ coker (βs) = coker (β′s|βs) ⇔ rk (β′s|βs)|Xs ≤ 4, (4.20)

where Xs = SuppFs is the cubic defined by Pf (βs) for s 6= 0. (Remark that the family
Xs defines a deformation of Supp (FC0) = X0, and that ∀ s 6= 0, βs is of rank 4 on Xs)
We can characterize this condition by explicit equations. The kernel of a skew-symmetric
6-by-6 matrixM of rank 4 is generated by the columns of its Pfaffian-adjugate matrixM∨

whose (i, j)-th element is m∨ij = (−1)i+j+1+θ(i−j)Pf (Mij), where θ denotes the Heaviside
step function, Mij the submatrix of M obtained by deleting the lines and columns with
numbers i, j, and the Pfaffian of an odd-dimensional matrix is set to be zero. We can
also write m∨ij = ∂Pf (M)/∂mij for i < j. The Pfaffian-adjugate matrix of a rank-4
skew-symmetric matrix of size 6 is automatically skew-symmetric and is of rank 2.
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We thus see that the condition in (4.20) is equivalent to saying that the two-dimensional
space of relations between the columns (or rows) of β′s is generated by the columns of
β∨s , so that we can rewrite (4.20) as follows:

Pf (βs) 6= 0 =⇒ β∨s · β′s|Xs
= 0.

The equations resulting from this condition are nonlinear, so even if we start by a de-
formation β linear in s, the respective β′s may be a power series in s. Remark that the
tangent vector of the deformation ∂sβ(0) may not be arbitrary matrix, for Pf (∂sβ(0))
should be proportional to F0, the polynomial defining X0. Summing up, we obtain the
following proposition

Proposition 4.2.3. Let s 7→ B(s) = Bs be an analytic arc B as above with B(0) = B0,
the matrix from the resolution (4.8) of the sheaf F0 = FC0

.

1. The family of sheaves s 7→ Fs := cokerBs is a flat deformation of sheaves supported
on cubic hypersurfaces in P4 in the neighborhood of s = 0 if and only if

∃ F (s) ∈ R̃3 ∃ M̃(s) ∈ Mat6,8
(
R̃
)
, such that β(s)∨ ·B(s) = F (s) · M̃(s). (4.21)

This condition implies, in particular, that

Pf (β(s)) ∼ F (s) in R̃,

and that the family of supports Xs = SuppFs is an analytic family of 3-dimensional
cubics with equations F (s) = 0.

2. Assume the condition (4.21) verified. Then the deformation of sheaves
s 7→ Fs := cokerBs remains in the exceptional locus B′ for small s if and only
if Pf (β(s)) ≡ 0. If the Pfaffian Pf (β(s)) is not identically zero, then Fs is an
instanton bundle on the smooth cubic

Xs = {F (s) = 0} = {Pf (βs) = 0}

for small s 6= 0.

3. For any n > 0, if B(n) = B0+. . .+Bns
n satisfies the condition (4.21) modulo sn+1,

then there exists Bn+1 such that B(n+1) := B(n) +Bn+1s
n+1 satisfies (4.21) modulo

sn+2. In particular, the first order infinitesimal deformations of F0 are given by
the matrices B1 = (β′1|β1) for which (4.21) is verified modulo s2, and every such
infinitesimal deformation lifts to an analytic deformation, given by a matrix series
B(s) with coefficient of s to the power 1 equal to B1.

This proposition answers the question, how non-locally-free sheaves in B′X0
deform to

instantons.

Example (continued). For the example considered above, we may choose as an admis-
sible first order deformation B(s) = B + s ·∆B, where we denote B(s) =

(
β̃′(s)|β̃(s)∨

)
and set

∆B =


−X1X2 X0X2 0 −X1 −X0 0 0 0
X0X2 0 X1 0 0 0 0 −X2

0 0 X0 0 0 X3 −X2 0
0 X2X3 0 0 −X3 0 0 0

−X0X4 0 0 0 X2 0 0 X4

0 0 0 X2 0 0 −X4 0

.

Then we compute:

Pf (β̃(s)) = −Fs+X2
2X4s

2 −X1X3X4s
3, β̃(s)∨ · β̃′(s) ≡ 0 mod (F, s2).

The computation of B(s) can be continued iteratively on degree of s.
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Description of the map τ̄ at a generic point of B′

We consider the commutative diagram introduced in Chapter 1:

P
τ //

Pf ##

M

ρ

��
|OP4(3)| ,

(4.22)

We will now show how our previous results apply to the study of the rational map
τ̄ : P 99K M. We still consider a sheaf F0 := FC0

on a smooth cubic threefold X0 defined
by the equation {F0 = 0}, corresponding to a point [FC0

] ∈ B′X0
. Taking a minimal free

resolution of the form (4.8), FC0
can be described as the cokernel of a map B0 = (β′0|β0)

with β0 belonging to Z, the locus of matrices in
∧2

W ∗ ⊗ V ∗ having Pfaffian equal to
zero. The matrix β0 is the first syzygy of the minimal free resolution of OC0(1pt) and
for an appropriate choice of coordinates it can be written in the form (4.9) In Lemma
4.1.2 we proved that β0 belongs to a 47-dimensional variety Z ′ ⊂ Z and that its image
[β0] in P is a smooth point of the 11-dimensional variety B′ ⊂ P, quotient of Z ′. We
now study the behavior of τ̄ in a neighborhood of [β0].

Proposition 4.2.4. Let β0 ∈ Z ′ be as above, and consider the diagram (4.22) in a
neighborhood of the orbit [β0] ∈ B′, [β0] = GL(W ) · β0. Then the rational map τ is
equivalent to a blowup with center B′ near [β0]. More precisely: let P̃ denote the blowup
of P with center B′ and B̃′ its exceptional divisor. Then, in a neighborhood of [β0],
(4.22) can be completed to the diagram

B̃′

|| $$

� � P̃

τ̃

##zz
B′ � � P

Pf $$

44B′ � � M

ρ
{{

|OP4(3)|

(4.23)

in which the arrows τ̃ and τ̃ |
B̃′

are isomorphisms.

Proof. It follows from the Lemma 4.1.2 that to identify τ as a blowup, we can work with
Z ′ in place of B′. That is, we can show that there exists a diagram

Z̃ ′

|| $$

� � Λ̃

τ̂

##zz
Z ′ � � Λ

Pf $$

44B′ � � M

ρ{{
|OP4(3)|

(4.24)

in which Λ denotes
∧2

W ∗ ⊗ V ∗, Λ̃ is the blowup of Λ along Z ′, Z̃ ′ is the exceptional
divisor. Note that by Lemma 4.1.2, and τ̂ , τ̂ |Z̃′ are principal GL(W )/{±Id6}-bundles
in a neighborhood of β0. To start with, let us remind that according to the lemma, the
rank of the Jacobian matrix of the 35 equations expressing the vanishing of the Pfaffian
Pf (β) of a matrix β ∈ Λ is equal to 28 at β0. Since the partial derivative ∂Pf (β)/∂bij is
the element b∨ij of the Pfaffian-adjugate matrix β∨, and as β∨0 vanishes on the conic C0,
all the 28 cubics in the image of the differential Pf ∗(β0) of Pf at β0 vanish on C0. But
the whole space of cubics vanishing on C0 is 28-dimensional. Thus Pf ∗ identifies the fiber
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of the normal bundle NZ′/Λ at β0 with the 28-dimensional vector space of cubic forms
vanishing on C0, and the fibers of the blowdown map σ : Λ̃→ Λ are naturally identified
with |IC0/P4(3)| ' P27.
Now we will prove that τ̂ is regular at the points of Z̃ ′ in a neighborhood of σ−1(β0).
Let F0 = FC0 be a generic sheaf corresponding to a point [FC0 ] ∈ B′X0

, for a smooth
cubic X0, B0 its presentation map with block structure B0 = (β′0|β0) such that β0 is a
6× 6 stable skew-symmetric matrix of generic rank 4.
Let U be a small neighborhood of [F0] in M, a biholomorphic image of a 39-dimensional
complex polydisk; we will denote the central point [F0] of U just 0. Then there is a
sheaf F over P4

U = P4 × U , a flat analytic family of sheaves Fs, s ∈ U which is a
locally universal analytic deformation of F0. Starting with the presentation B0 for F0,
by Proposition 4.2.2, we can construct a length-2 free resolution R• of F , possibly after
shrinking U , such that its presentation matrix B, for all s ∈ U , has the same block
structure B = (β′|β) as B0 with β skew-symmetric of generic rank 4. This provides an
analytic map ϕ : U → Λ, s 7→ βs. This map is obviously biholomorphic to its image
when restricted to the instanton locus, as the inverse can be given by βs 7→ [cokerβs].
This formula fails to determine the image of βs when βs ∈ Z ′.
Let us denote ϕ̃ the meromorphic map σ−1 ◦ϕ : U → Λ̃. There is natural way to extend
ϕ̃ to U . Indeed, we saw, that whenever βs ∈ Z ′, the differential Pf ∗(βs) sends the normal
space NZ′/Λ, βs

isomorphically to H0(ICs,/P4(3)), where Cs is the conic of singularities
of Fs. On the other hand, the fiber σ−1(βs) of the blowdown map is naturally identified
with the projectivization of the normal space:

σ−1(βs) = P(NZ′/Λ, βs
) = |ICs/P4(3)| ' P27.

We define ϕ̃(s) to be the point of σ−1(βs) corresponding to the cubic Xs, the support of
Fs. It is obviously continuous, which follows from the continuity of the support map and
Proposition 4.2.3, according to which the derivative of the cubic Fs defining the support
Xs of Fs is proportional to Fs when ϕ(s) ∈ Z ′. The continuity of a meromorphic map
between smooth complex manifolds implies its holomorphy, so ϕ̃ is a holomorphic map,
bimeromorphic on its image.
Next we want to find a lower-dimensional polydisc, on which ϕ̃ is injective and which is
transversal to the action ofGL(W )×GL(V ), in order to construct a tubular neighborhood
of an open part of Z̃ ′ carrying a family of sheaves from M.
As the support map ρ and its restriction to B′ are smooth at 0 = [F0], there is a smaller
polydisc ∆ ⊂ U , 28-dimensional and transversal to B′, such that its image in P34 is an
open subset of P27 = |IC0/P4(3)|, where C0 denotes, as before, the conic of singularities
of F0. We can specify its choice as follows: choose a small 27-dimensional polydisc
∆′ ∈ |IC0/P4(3)| centered at X0, then set ∆′′ to be a cross-section of ρ over ∆′, contained
in U and passing through [F0], and ∆ a germ of a 28-dimensional manifold in ρ−1(P27),
transversal to B′, and fibered in small disks with centers on ∆′, each disk being contained
in a fiber of ρ. With such a choice, the image of the tangent space T0∆ by the differential
of the composed map Pf ◦ ϕ will be the whole 28-dimensional vector space of cubics
passing through C0.
The image ϕ̃(∆′) (resp. ϕ̃(∆)) is then a normal slice to the action of GL(W ) ×GL(V )

on Z̃ ′ (resp. Λ̃), and ϕ̃|∆ : ∆ → ϕ̃(∆) is biholomorphic. Let ψ : ϕ̃(∆) → ∆ be its
inverse. Consider the restriction R•ϕ̃(∆) := R• ×ψ ϕ̃(∆) of the family of resolutions of
the sheaves Fs. The images of ϕ̃(∆) under the action of GL(W ) × GL(V ) sweep out a
tubular neighborhood D of an open part of Z̃ ′, and we can extend R•ϕ̃(∆), via this action,
to a flat analytic family R̃•D of resolutions of sheaves belonging to M. The latter gives
rise to an analytic family of sheaves FD sur P4

D, whose classifying map D →M is regular
and coincides with τ̂ on the instanton locus, that is on the complement of Z̃ ′. Hence it
provides a regular extension of τ̂ to D. The above construction can be applied to any
initial datum F0 represented by a point of the fiber σ−1(β0), so we can get a covering
of an open neighborhood of σ−1(β0) in Λ̃ by open sets D, to which τ̂ extends regularly.
This proves the regularity of τ̂ at generic point of Λ̃.



4.2. DEFORMATIONS OF THE RESOLUTIONS 115

Conjectural description of the map τ̄ at a generic point of B′′

Denote by B′′ ⊂ M the locus of sheaves supported on a cubic threefold and presenting
singularities along a couple of lines (namely we consider the divisor of M whose generic
point is a sheaf of the form Fl1,l2 corresponding to a point in B′′X , X = Supp (Fl1,l2)).
We conjecture that Proposition 4.2.4 extends literally to B′′ ⊂ M and B′′ ⊂ P. We
believe it can be proved along the lines of the proof in the case of hyperwebs belonging
to Z ′′, but there are some technical complications. First, there is no locally universal
family of sheaves on a small polydisk in M through a general point of Z ′′, for this is a
strictly semistable point, and instead of a polydisk ∆ in M we should use a Luna slice
in a Quot scheme in the framework of the GIT construction of M. Second, we have
a weaker version of skew-symmetrization property (Proposition 4.2.2) for resolutions of
sheaves in B′′ , involving a double covering base change, because of which we cannot
affirm, as it happens for hyperwebs appearing resolutions of sheaves in B′ , that the
differential of the Pfaffian map sends isomorphically the normal space to Z ′ onto the
space of cubics containing the rank-2 locus of the hyperweb. We hope to resolve these
issues in the future, it is a work in progress.
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