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«- J’ai retrouvé dans cette bibliothèque baroque un texte que je connaissais depuis tout
petit mais dont je ne savais plus s’il existait vraiment. À force d’oublier, je m’invente parfois
une mémoire. Ce texte s’appelle Les Trois Métamorphoses. Ça commence comme ça :
“Je vous dirai trois métamorphoses de l’esprit : comment l’esprit devient chameau, et le
chameau, lion, et le lion enfant pour finir.”

- Caracole, je t’ai posé une question ! Réponds-moi !
- Qu’est-ce qui est lourd ? demande l’esprit qui respecte et obéit, que je puisse, en héros,

en bon hordier, porter les plus lourdes charges. Ainsi parle le chameau. Je te fais la version
courte, note bien ! Et solidement harnaché, il marche vers son désert et là il devient lion.
Devant lui se dresse le dragon des normes millénaires et sur chacune de ses écailles brillent
en lettres d’or ces valeurs et ces mots : “Tu dois.” Mais le lion dit “Je veux !” - sauf qu’il ne
sait pas encore ce qu’il peut bien vouloir, il n’a fait que se chercher un dernier maître pour
le contredire, que se rendre libre pour un devenir qu’il est encore incapable d’incarner. Alors
survient la troisième métamorphose : le lion devient enfant. Innocence et oubli, premier
mobile, roue qui roule d’elle-même, recommencement et jeu et l’enfant dit “Je crée”. Ou
plutôt, il ne dit plus rien : il joue, il crée. Il a trouvé son Oui, il a gagné son monde.

- Comment on affronte la neuvième forme du vent ? Je m’en fiche de ton histoire !
Réponds à ma question !

- Ces trois métamorphoses peuvent être les étapes d’une vie, d’un amour, d’une quête –
mais tout aussi bien coexister en toi en ce moment même, à différentes vitesses et proportions,
en couches fondues. La neuvième forme tue à coup sûr le chameau. Elle blesse à mort le
lion. Mais l’enfant que tu sauras peut-être devenir pourrait lui survivre. Penses-y quand
ils seront tous morts et que tu resteras debout, seul sur l’alpage avec le ciel nu devant toi.
Pense à moi ce jour-là et rappelle-toi de ce moment que nous vivons ici même, rappelle-toi
de cette phrase que je prononce à haute voix, de chaque mot qui la compose. Tu m’écoutes,
Sov ?

- Oui.
- Rappelle-toi que l’oubli est la seule force vraiment active. Pas la mémoire : l’oubli !»

Alain Damasio, La horde du contrevent.
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Résumé : Cette thèse s’intéresse à la topologie des lissages des singularités non-isolées
de sufaces complexes. La question est celle de la description de la topologie de la variété,
appelée fibre de Milnor, qui survient lors de ce procédé de lissage. Devant la difficulté de
décrire la totalité de cette topologie, beaucoup de recherches se sont concentrées sur le bord
de la fibre de Milnor. Dans le cas des singularités isolées, il est connu depuis les travaux de
Mumford (1961), que ce bord est une variété graphée, isomorphe au bord de la singularité.

Différents résultats (Michel & Pichon 2003, 2014, Némethi & Szilárd 2012) ont par la
suite prouvé que dans le cas des singularités réduites non-isolées de surfaces, si l’espace
total du lissage est lui-même lisse, le bord de la fibre de Milnor est encore une variété
graphée. Fernández de Bobadilla & Menegon-Neto (2014) ont quant à eux élargi le contexte,
considérant le cas d’une surface non réduite dans un espace total à singularité isolée. Dans
ce travail, on poursuit l’extension de ce résultat à un plus large contexte, autorisant l’espace
total du lissage à présenter des singularités non-isolées, tout en imposant à la surface d’être
réduite. Notre preuve s’inspire de celle de Némethi et Szilard, permettant comme chez eux
de produire une méthode pour le calcul du bord de la fibre de Milnor. Ceci rend praticable
le calcul effectif d’une grande quantité d’exemples, représentant un progrès dans la quête de
la compréhension des variétés pouvant apparaître comme bords de fibres de Milnor.

Nous appliquons en particulier la méthode aux singularités Newton-non-dégénérées
définies sur des germes toriques tridimensionnels quelconques. Nous généralisons de cette
manière un théorème de Oka (1986), en exprimant le bord de la fibre de Milnor en termes
du polyèdre de Newton de la singularité.
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Abstract: This thesis is dedicated to the study of the topology of smoothings of non-
isolated singularities of complex surfaces. The question is to describe the topology of the
manifold, called Milnor fiber, which appears during this process of smoothing. Considering
the great difficulty of a description of the whole of this topology, many researches have
focused on the study of the boundary of the Milnor fiber. In the case of isolated singularities,
it is known since the work of Mumford (1961) that this boundary is a graph manifold,
isomorphic to the link of the singularity.

Different results (Michel & Pichon 2003, 2014, Némethi & Szilárd 2012) have then
proved that, in the case of reduced non-isolated singularities of surfaces, the boundary of
the Milnor fiber is again a graph manifold, while restraining to the case of a smooth total
space of smoothing. Fernández de Bobadilla & Menegon-Neto (2014) have widened the
context, considering non-reduced surfaces, and allowing the total space to have an isolated
singularity. In this work, we pursue the extension of this result to a larger context, allowing
the total space to present non-isolated singularities, while restraining ourselves to the study
of reduced surface singularities. Our proof is inspired by the one of Némethi and Szilard,
and allows us furthermore to provide a method for the computation of the boundary of the
Milnor fiber. This makes possible the actual computation of a large number of examples,
representing a step forward in the quest for the comprehension of the manifolds that can
actually appear as boundaries of Milnor fibers.

We apply in particular the method to Newton non-degenerate singularities defined on
3-dimensional toric germs. This is a generalization of a theorem of Oka (1986), expressing
the boundary of the Milnor fiber in terms of the Newton polyhedron of the singularity.
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Chapter 1

Introduction

Version française

L’étude des fibres de Milnor des fonctions holomorphes, débutée dans la seconde moitié du
20ème siècle, a donné lieu a une riche interaction entre l’algèbre et la topologie. Esquissons-en
ici les principaux aspects.

John Milnor a proposé dans [37, 1956] les premiers exemples de sphères exotiques,
c’est-à-dire de variétés lisses homéomorphes mais non difféomorphes à la sphère de dimension
n, dans le cas n = 7. De telles variétés présentaient un intérêt important pour les topologues.
Milnor et Kervaire ont poursuivi leur étude dans [38, 1959], [27, 1963].

À la même époque, un premier lien entre topologie des variétés et lissité analytique
complexe fut exposé par Mumford dans [40, 1961], où il prouva qu’une surface complexe
normale qui est une variété topologique est lisse. En explorant la possibilité d’une générali-
sation d’un tel résultat aux dimensions supérieures, Brieskorn, dans [7, 1963], montra que
ce principe était alors mis en défaut, exhibant de nombreux exemples de singularités qui
sont des variétés topologiques, explicitement, toutes les singularités de la forme

V = {z2
1 + · · ·+ z2

k − z3
0 = 0} ⊂ Ck+1, k impair.

Le link V ∩ Sε de telles singularités est toujours une sphère nouée, et dans certains cas
c’est une sphère exotique, comme il a été démontré par Hirzebruch dans le cas k = 5, voir
[9, p 46-48] et [24]. Voir aussi [39, Chapter 9], et [55, Section 1].

Cette fabrique de potentielles sphères exotiques fascina Milnor, et le poussa à étudier plus
avant la topologie des singularités d’hypersurfaces, cette représentation via des équations
constituant un moyen d’avoir prise sur des objets par ailleurs très abstraits. Cela l’a
finalement mené à l’écriture de son célèbre livre [39] de 1968, destiné à l’étude des singularités
isolées d’hypersurfaces de Cn, V (f) = {f = 0}. Dans ce livre il présenta deux fibrations
équivalentes, faisant intervenir respectivement les niveaux de f/|f | sur les sphères centrées
aux points critiques de f et les niveaux de f dans Cn. Dans le cas où la singularité est
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isolée, le bord de la fermeture de la fibre de chacune de ces fibrations est difféomorphe au
link de la singularité. Son étude en est ainsi réduite à l’étude du bord de la fibre.

La première de ces deux fibrations est connue de nos jours sous le nom de fibration de
Milnor, et la fermeture de sa fibre est appelée fibre de Milnor F de la fonction f .

La seconde a été étendue à des contextes plus généraux par Lê, voir [29], et est connue
sous le nom de fibration de Milnor-Lê. Cependant, elle peut faire apparaître des fibres
génériques singulières, dues au lieu singulier de l’espace ambiant. Hamm, dans [22, 1971], a
proposé un contexte dans lequel la fibration de Milnor-Lê est en fait un lissage de V (f),
c’est-à-dire un moyen de mettre V (f) dans une famille plate de surfaces, telle que la surface
générique est lisse. Explicitement, si (X, 0) est un germe d’espace analytique complexe
équidimensionnel, et si f est une fonction holomorphe quelconque sur (X, 0) telle que
V (f) ⊃ Sing(X), alors la fonction f est un lissage de la singularité (V (f), 0).

Cette vision de la fibration a ouvert de nouveaux territoires pour l’exploration de la
relation entre l’algèbre et la topologie, puisqu’elle permet de définir une fibration dans
différents espaces ambiants, gardant à l’esprit qu’il est très intéressant de réaliser une variété
par des équations, ou même simplement de savoir qu’une variété donnée peut être réalisée
algébriquement. Pour plus de détails concernant les fibrations de Milnor, on est invité à
consulter les survols [64] de Teissier et [55] de Seade.

Cette thèse est dédiée à l’étude des lissages de surfaces complexes analytiques. On part
d’un germe de surface complexe (V, p), et, quand un lissage f : (X, 0) → (C, 0) de cette
singularité existe, on s’interroge sur la topologie de la fibre générique de ce lissage.

Une singularité de surface peut admettre différents lissages, ou n’en admettre aucun.
Remarquons cependant qu’une singularité isolée n’admet au plus qu’un nombre fini de
lissages différents. L’étude de la topologie des fibres des lissages d’une singularité de surface
complexe donnée est très difficile, même dans le cas des singularités isolées, et il n’y a que
quelques cas pour lesquels une description de la fibre dans son entier est connue. C’est le
cas par exemple pour les singularités Kleinéennes A, D, E, où la fibre de Milnor est unique
et difféomorphe à la résolution minimale de la singularité (voir Brieskorn [8]), ainsi que pour
les singularités de surfaces toriques normales, avec une description par chirurgie (voir Lisca,
[30], et Némethi & Popescu-Pampu [45]), ou encore pour les singularités sandwich (De Jong
& Van Straten, [26]). S’agissant des singularités non-isolées, le seul cas connu à ce jour est
celui des singularités d’hypersurfaces de la forme {f(x, y) + z · g(x, y) = 0}, voir Sigurðsson,
[59].

D’un autre côté, l’étude du bord de la fibre de Milnor est depuis quelques décennies
l’objet de recherches très actives.

Comme on l’a dit, le bord de la fibre de Milnor d’un lissage de singularité isolée est
unique, et difféomorphe au link de la singularité. Avec les mots d’aujourd’hui, Mumford a
prouvé dans [40] que le link d’une singularité isolée de surface complexe est une variété
graphée, c’est-à-dire une variété descriptible via un graphe dont les sommets représentent
des fibrations en S1 au-dessus de surfaces compactes. C’est Walhausen, dans [65, 66, 1967],

16



qui a plus tard introduit ce vocabulaire et a commencé à étudier cette classe de variétés en
elle-même. De plus, grâce au travail de Grauert ([21, 1962]), on sait précisément quelles
variétés graphées apparaissent comme links de singularités isolées de surfaces complexes.
Cependant, ce résultat est tempéré par le fait qu’on ne sait pas, par exemple, quelles variétés
apparaissent comme links de singularités d’hypersurfaces de C3.

Tout de même, on rêverait d’aoir en main un résultat analogue pour les fibres de Milnor
de singularités non-isolées de surfaces. Les premiers pas dans la compréhension de la
topologie de ces variétés ont été accomplis par Randell dans [54, 1977], puis Siersma dans
[57, 1991], qui ont calculé l’homologie du bord ∂F de la fibre de Milnor dans certains cas, et
on caractérisé les cas dans lesquels celui-ci est une sphère d’homologie rationelle.

S’agissant de la topologie totale de cette variété, une série de résultats ont visé à prouver
que le bord des fibres de Milnor associées à des singularités non-isolées sont, encore, des
variétés graphées. Une première preuve de ce résultat fut esquissée en 2003 par Michel et
Pichon dans [32], puis corrigée plus tard dans [33] en 2004, pour le cas où l’espace total
de lissage est lui-même lisse et où la fonction f est réduite. En 2016, elles publièrent
les détails de leur preuve dans [34]. En collaboration avec Weber, elles proposèrent des
graphes de plombage explicites pour plusieurs classes de singularités : les singularités de
surfaces d’Hirzebruch en 2007 [36], et les suspensions (f = g(x, y) + zn) en 2009 dans
[35]. Fernández de Bobadilla & Menegon-Neto ont de leur côté prouvé ce fait en 2014, dans
[16], dans le contexte d’un espace total de lissage admettant une singularité isolée, pour une
fonction de la forme f · g, où f et g sont holomorphes. Mais aucune de ces approches n’était
constructive. A contrario, Némethi et Szilárd ont donné une preuve constructive du fait que
∂F est une variété graphée pour le cas d’une fonction holomorphe réduite f : (C3, 0)→ (C, 0)
dans leur livre [46] de 2012. Explicitement, ils proposèrent un algorithme de calcul du bord
de la fibre de Milnor de la fonction f .

Cependant, en général, l’espace total du lissage d’une singularité non-isolée de surface
n’a aucune raison d’être lisse, ou même de n’avoir qu’une singularité isolée. Par exemple,
dès que la singularité générique (V, q) de V le long d’une composante irréductible de son lieu
singulier ne peut pas être plongée holomorphiquement dans C3, cela signifie que l’espace total
d’un lissage sera nécessairement à singularité non-isolée. Il est donc essentiel de généraliser
ce résultat concernant la topologie des bords de fibres de Milnor de singularités non-isolées
à des espaces plus généraux.

Dans ce travail, nous étendons la stratégie proposée par Némethi & Szilárd et nous
prouvons :

Théorème 1. Soit (X, 0) un germe d’espace analytique complexe de dimension 3, et
f : (X, 0) → (C, 0) un germe de fonction holomorphe sur (X, 0), tel que V (f) ⊃ Sing(X).
Alors le bord de la fibre de Milnor de f est une variété orientée de dimension 3, représentable
par un graphe de plombage orientable.

Nous démontrons ce théorème de manière constructive, en adaptant à notre contexte
général la preuve de Némethi & Szilárd. Comme dans leur livre, notre preuve donne lieu
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à un algorithme pour le calcul de ∂F . Elle peut de ce fait représenter un pas en avant
dans la quête de l’obtention d’une caractérisation des variétés graphées qui apparaissent
comme bords de fibres de Milnor. La stratégie de la preuve et les principales différences sont
détaillées au début du Chapitre 4. Insistons simplement ici sur le fait que le lieu singulier
de (X, 0) implique une série de complications de la preuve, imposant en particulier de faire
intervenir plus de données que dans [46] pour mener à bien le calcul, ainsi que l’introduction
de la notion de compagnon, qui est faite pour obtenir l’analogue de la notion d’ICIS pour
des germes qui ne sont pas des intersections complètes. On a aussi abordé les questions
d’orientation d’une manière plus globale, que nous espérons être plus naturelle. Un point
commun important avec la situation de [46] est l’utilisation d’un germe (Sk, 0) de variété
réelle analytique de dimension 4 à singularité non-isolée, ayant pour link la variété ∂F ,
réalisant de fait cette variété comme le link d’une singularité isolée. Le fait que cette variété
soit analytique réelle, et non complexe, impose l’usage de décorations 	 pour certaines arêtes
du graphe, ce qui n’arrive jamais dans le cas des singularités isolées de sufaces complexes.

L’autre résultat de ce travail est l’extension de l’algorithme d’Oka (voir [49, 1986]), qui
calcule le link d’une singularité isolée Newton-non dégénérée de surface complexe dans C3.
En utilisant l’algorithme général et la théorie de la géométrie torique, on produit une
méthode de calcul simple du bord de la fibre de Milnor d’une fonction Newton-non dégénérée
définie sur un germe de variété torique normale de dimension 3. Ceci répond positivement à
la question ouverte posée dans [46, 24.4.20], et ouvre la voie au calcul d’un grand nombre
d’exxemples. En conséquence :

Théorème 2. Soit (X, 0) le germe en son sommet de variété torique normale de dimension
3 définie par un cône de dimension 3 dans un réseau de poids. Soit f : (X, 0)→ (C, 0) une
fonction Newton-non-dégénérée dont le lieu des zéros contient Sing(X). Alors le bord de la
fibre de Milnor de f est une variété graphée déterminée par le polyèdre de Newton local de f .

De plus, ceci nous rapproche de l’extension de ce qui est fait dans [6, 2007], où les auteurs
font le chemin inverse, reconstituant un possible polyèdre de Newton de fonction f : C3 → C
ayant une variété graphée donnée comme bord de fibre de Milnor, sous l’hypothèse que
celui-ci soit une sphère d’homologie rationelle.

Dans les Chapitres 2 et 3, on introduit les principaux outils et notations requis pour la
preuve du Théorème 1 et l’énoncé de la méthode de calcul.

Le Chapitre 4 présente la preuve du Théorème 1.
Le Chapitre 5 expose la manière dont l’algorithme principal peut être appliqué au calcul

du bord de la fibre de Milnor d’une fonction Newton-non dégénérée définie sur un germe de
variété torique normale de dimension 3, prouvant le Théorème 2.
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English version

The study of Milnor fibers of complex-analytic functions, which began in the second half
of the 20th century, gave rise to a rich interaction between algebra and topology. Let us
describe briefly this interaction.

John Milnor provided in [37, 1956] the first examples of exotic spheres, that is, smooth
manifolds homeomorphic but not diffeomorphic to the n-sphere, in the case n = 7. Such
manifolds were of great interest for topologists. Milnor and Kervaire continued their study
in [38, 1959], [27, 1963].

Meanwhile, a first relation between the topology of varieties and complex analytic regu-
larity was discovered by Mumford, in [40, 1961], where he established that a 2-dimensional
normal complex surface which is a topological manifold is nonsingular. Exploring the
possibility of extending such results to higher dimensions, Brieskorn, in [7, 1963], proved
that it is no longer the case, producing many examples of singularities which are topological
manifolds, namely all singularities of the form

V = {z2
1 + · · ·+ z2

k − z3
0 = 0} ⊂ Ck+1, k odd.

The link V ∩ Sε of such singularities is always a knotted sphere, and in some cases it is
an exotic sphere, as was shown by Hirzebruch in the case k = 5, see [9, p 46-48] and [24].
See also [39, Chapter 9], and [55, Section 1].

This potential fabric of exotic spheres fascinated Milnor, and inspired him to study
further the topology of hypersurface singularities, as this presentation by equations represents
a possible way to have a grasp on otherwise very abstract objects. This eventually led
him to write his famous 1968 book [39], aimed at the study of isolated singularities of
hypersurfaces of Cn, V (f) = {f = 0}. In this book he introduced two equivalent fibrations,
using respectively the levels of f/|f | on spheres centered at the critical points of f and
the levels of f in Cn. The point is that, in the case where the singularity is isolated, the
boundary of the closure of a fiber is diffeomorphic to the link ∂V (f) of the singularity . Its
study is therefore reduced to the study of the boundary of the closure of the fiber.

The first of the two fibrations introduced by Milnor is known nowadays as the Milnor
fibration, and the closure of its fiber is called the Milnor fiber F of the function f .

The second one has been extended to more general contexts by Lê, see [29], and is
known as the Milnor-Lê fibration. However, it may produce singular generic fibers, due
to the singularities of the ambient space. Hamm, in [22, 1971], provided a setting in which
the Milnor-Lê fibration is actually a smoothing of V (f), that is, a way to put V (f) in a
flat family of surfaces, where the generic surface is smooth. Namely, if (X, 0) is a germ of
equidimensional complex analytic space, and f is any holomorphic function on (X, 0) such
that V (f) ⊃ Sing(X), then the function f provides a smoothing of the singularity (V (f), 0).

This vision of the fibration opened new areas of exploration for the interplay between
algebra and topology, as it allows the definition of a fibration in different ambient spaces,
keeping in mind the idea that it is very interesting to realize a manifold via equations,
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or even to know that a given manifold is realizable algebraically. For more details about
Milnor fibrations, one may consult the surveys [64] of Teissier and [55] of Seade.

In this work, by Milnor fibration we mean the Milnor-Lê fibration, and we also call its
fiber the Milnor fiber.

This thesis is dedicated to the study of smoothings of complex analytic surface singulari-
ties. We start with some germ of complex surface (V, p), and, when there exists a smoothing
f : (X, 0)→ (C, 0), wonder about the nature of the generic fiber of this smoothing.

A singularity of surface may admit different smoothings, or even none. Note however
that an isolated singularity admits only a finite number of possible smoothings, if any. The
study of the topology of the fibers of the smoothings of a given singularity of complex surface
is very hard, even for isolated ones, and there is only a few types of singularities where a
description of the full fiber is known. It is the case for the Kleinean sigularities A, D, E,
where the Milnor fiber is unique and diffeomorphic to the minimal resolution (see Brieskorn,
[8]), as well as for the singularities of normal toric surfaces, with a description by surgery
(see Lisca, [30] and Némethi & Popescu-Pampu, [45]), and for sandwich singularities (De
Jong & Van Straten, [26]). As for nonisolated singularities, the only known case is that of
hypersurface singularities of the form {f(x, y) + z · g(x, y) = 0}, see Sigurðsson, [59].

On the other hand, the study of the boundary of the Milnor fiber has been a very
active area of resarch in the last decades.

As we already pointed out, the boundary of the fiber of a smoothing of an isolated
singularity is unique, and equal to the link of the singularity. In today’s words, Mumford, in
[40], proved that the link of any isolated singularity of complex surface is a graph manifold,
that is, a manifold describable using a decorated graph whose vertices represent fibrations
in S1 over compact surfaces. It is Waldhausen, in [65, 66, 1967], that later introduced this
vocabulary and began studying this class of varieties in itself. Furthermore, since the work
of Grauert ([21, 1962]), one knows exactly which graph manifolds appear as links of isolated
singularities of complex surfaces. However, this strong point is tempered by the fact that
one still does not know, for example, which of these manifolds appear as links of singularities
of hypersurfaces of C3.

Still, one would dream of having an analogous result for boundaries of Milnor fibers
associated to non isolated singularities. The first steps towards the comprehension of the
topology of these manifolds were made by Randell [54, 1977], then Siersma in [57, 1991],
[58, 2000], who computed the homology of the boundary ∂F of the Milnor fiber in certain
cases, and characterized the cases in which ∂F is a rational homology sphere.

Concerning the general topology of this manifold, a series of results were aimed at
proving that the boundary of the Milnor fibers associated to a non isolated singularity are,
again, graph manifolds. A first proof of this result was sketched in 2003 by Michel and
Pichon ([32]) and corrected later in [33], in 2004, for the case where the total space of the
smoothing is smooth and the function f is reduced. In 2016, they published the details of
their proof in [34]. In collaboration with Weber, they provided explicit plumbing graphs
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for several classes of singularities: Hirzebruch surface singularities in 2007 ([35]), and
the so-called suspensions (f = g(x, y) + zn) in 2009 ([36]). Fernández de Bobadilla and
Menegon Neto, in 2014 ([16]), proved it in the context of smoothings of non-isolated and
not necessarily reduced singularities whose total space has an isolated singularity, for a
function of the form f · g, with f and g holomorphic. But none of these approaches was
constructive. By contrast, Némethi and Szilárd gave a constructive proof for the case of
reduced holomorphic functions f : (C3, 0)→ (C, 0) in their 2012 book [40]. Namely, they
provided an algorithm to compute the boundary of the Milnor fiber of the function f .

However, in general, the total space of a smoothing of a non-isolated singularity of
surface has no reason to be smooth, or even with isolated singularity. For example, as soon
as the generic singularity (V, q) along an irreducible component of the singular locus of
V can not be holomorphically embedded in C3, this means that it can not be seen as a
hypersurface of a variety with isolated singularity. It is therefore essential to generalize this
result concerning the topology of the boundary of the Milnor fiber to more general spaces.

In this work, we extend the strategy developed in [46] by Némethi and Szilárd and we
prove the following:

Theorem 1. Let (X, 0) be a germ of 3-dimensional complex analytic variety, and f : (X, 0)→
(C, 0) a germ of holomorphic function on (X, 0), such that V (f) ⊃ Sing(X). Then the
boundary of the Milnor fiber of f is an oriented 3-manifold, which can be represented by an
orientable plumbing graph.

We prove this theorem in a constructive way, by adapting to our more general context
the method of Némethi and Szilárd. As was the case in their book, our proof gives rise to an
algorithm for the computation of ∂F . It may therefore represent a step in the obtention
of a characterization of the graph manifolds which appear as boundaries of Milnor fibers.
The strategy of proof and the main differences are detailed at the beginning of Chapter 4.
Let us simply insist here on the fact that the singular locus of the ambient germ of variety
(X, 0) induces a series of complications in the proof, implying in particular the need for
more data than in [46] in order to perform the computations, as well as the introduction
of the notion of companion, which is made to obtain the analogue of ICIS on germs which
may not be complete intersections. We also treated the questions of the orientations in a
more global way, which we hope to be more natural. An important common point with the
situation of [46], and the main idea of their proof, is the introduction of a real-analytic germ
(Sk, 0) of dimension 4 with isolated singularity having the same boundary as the Milnor
fiber, therefore actually realizing this manifold as the link of a singularity. The fact that
this variety is real-analytic, and not complex-analytic, imposes the use of 	 decorations
for some edges of the graph, which never happens in the case of isolated complex surface
singularities.

The other result of this work is the extension of Oka’s algorithm (see [49, 1986]), which
computes the link of a non-degenerate isolated singularity of hypersurface of C3. Using the
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general algorithm and the theory of toric geometry, we provide a simple method for the
computation of the Milnor fiber of a Newton-nondegenerate function defined on a normal
3-dimensional toric variety. This answers the open question asked in [46, 24.4.20], and opens
the way for the computation of a great number of examples. As a consequence:

Theorem 2. Let (X, 0) be the germ at its vertex of a 3-dimensional toric variety defined by
a 3-dimensional cone in a weight lattice. Let f : (X, 0)→ (C, 0) be a Newton-nondegenerate
function whose zero locus contains Sing(X). Then the boundary of its Milnor fiber is a graph
manifold determined by the local Newton polyhedron of f .

Furthermore, this gets us closer to the extension of what is done in [6, 2007], where
the authors do the opposite work, retrieving a possible Newton polyhedron of a function
f : C3 → C having a given graph manifold as boundary of Milnor fiber, under the hypothesis
that this manifold is a rational homology sphere.

In Chapters 2 and 3, we introduce the main tools and notations needed for the proof of
theorem 1 and the statement of the method of computation.

Chapter 4 presents the proof of Theorem 1.
Chapter 5 exposes how the main algorithm can be adapted to the computation of the

boundary of the Milnor fiber of a non degenerate function defined on a 3-dimensional toric
variety, proving Theorem 2.
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Chapter 2

Basic tools

In all this work, the spaces considered are real or complex analytic. In the sequel, K denotes
R or C.

2.1 Smooth and singular points

For details about the notions presented in this Section, one can consult [56, Volume I,
Chapter II].

Let us start by defining the central notion of singular point of a variety, through the use
of the maximal ideal at this point.

Definition 2.1.1. The maximal ideal at a point x in a K-analytic space X is the ideal of
the local ring OX,x consisting of the germs of analytic functions at x, cancelling at x. It is
denoted by mx. The quotient mx�(mx)2 is called the Zariski cotangent space of X at x.

Definition 2.1.2. An analytic space X is said to be reduced at x if the local ring OX,x has
no nilpotent element. An analytic space is called reduced if it is reduced at any of its points.

Definition 2.1.3. If X is an analytic space, its dimension is defined as

dim(X) = min
x∈X

dim OX,x

where dim OX,x denotes the Krull dimension of OX,x, i.e. the maximal length of chains
of K-prime ideals in it.
If all the local rings of X have the same Krull dimension, then X is called equidimensional.

Definition 2.1.4. A reduced equidimensional space is called a variety.

In the sequel, we will simply say “variety”, instead of “analytic variety”, unless we need to
specify the field.
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Definition 2.1.5. If X is a variety, let us denote by

Sm(X) := {x ∈ X,dimmx�(mx)2 = dim X}

the smooth locus of X. Its complement, denoted by Sing(X), is called the singular locus
of X. A variety is called smooth if it coincides with its smooth locus.

Proposition 2.1.6. If X is a K-analytic variety, its singular set is a nowhere dense closed
K-analytic subspace.

Remark 2.1.7. The singular set of X is not necessarily equidimensional. Indeed, X may
for example have at the same time isolated and non-isolated singular points.

Proposition 2.1.8. For any variety X, the number n = min
x∈X

dimmx�(mx)2 is equal to

dim X.
The smooth set Sm(X) of a variety X is exactly the set of points x ∈ X where OX,x is
isomorphic to K{z1, . . . , zn}.

2.2 Modifications and resolutions of singularities

Definition 2.2.1. Let X be an irreducible variety. A divisor D on X is a collection of
pairwise different irreducible closed codimension 1 subvarieties D1, · · · , Dn with assigned
multiplicities k1, · · · , kn ∈ Z. We write

D = k1D1 + · · ·+ knDn.

If all ki are nonnegative, the divisor D is called effective.
The union of the Di’s such that ki 6= 0 is called the support Supp(D) of D. The divisor D
is called reduced if all the multiplicities ki are equal to 1.

Definition 2.2.2. A divisor E in a smooth complex variety X is said to be a normal
crossings divisor (NCD) iff for all x ∈ X, there exists a local analytic coordinate system
(z1, . . . , zn) of X based at x such that around this point E admits a local equation of the
form za1

1 · · · zann = 0, with (a1, . . . , an) ∈ Zn

Definition 2.2.3. A divisor in a smooth variety is said to be a simple normal crossings
divisor (SNCD) iff it is a NCD and all its irreducible components are smooth.

Let us introduce a weaker ad hoc notion, which is the one we will actually need in this
work.
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Definition 2.2.4. A reduced divisor D in a variety X is said to be a SNCD at C ⊂ X if:

• Every point p ∈ C is a smooth point of X,

and

• For every p ∈ C , there exists a local analytic coordinate system (z1, . . . , zn) of X
based at p such that around p, D admits an equation of the form zε11 . . . zεnn = 0, with
(ε1, . . . , εn) ∈ {0, 1}n.

Definition 2.2.5. A modification of a variety X is a variety X̃, along with a proper
morphism r : X̃ → X which is bimeromorphic: there exists a dense open subset U of X
such that r : r−1(U)→ U is an analytic isomorphism, and r−1(U) is dense in X̃.

Remark 2.2.6. In particular, by properness, every modification is surjective.

Definition 2.2.7. A modification r : X̃ → X of a variety X is called a resolution of X,
or resolution of the singularities of X, if X̃ is smooth.

Definition 2.2.8. Let r : X̃ → X be a modification of a variety. The critical locus of r
is the subset of X̃ formed by the points y ∈ X̃ such that r is not a local isomorphism at y.
We will also call this set the exceptional locus of the modification.
The critical image or discriminant locus ∆(r) of r is the subset of X which is the image
of the critical locus.

Both sets are closed nowhere dense analytic subsets of their ambient varieties.

Definition 2.2.9. If r : X̃ → X is a modification of X, and S is a closed analytic subset
of X which is not contained in the critical image ∆(r) of r, the strict transform of S by
r is the set

S̃ := r−1(S \∆(r)) ⊂ X̃.

We call total transform of S the set r−1(S ), and exceptional part of r−1(S ) the set
r−1(S ∩∆(r)).

Under these conditions, rS := r|S̃ : S̃ → S is also a modification, this time of S .

Definition 2.2.10. A divisorial modification is a modification of a space whose critical
locus is of pure codimension 1. A divisorial resolution is a resolution which is a divisorial
modification.

For fluidity purposes, let us state here a definition that involves the definition of a
normal variety, introduced in section 2.5.

Definition 2.2.11. Let X, X̃ be normal 3-dimensional varieties, and r : X̃ → X a divisorial
modification of X. Let h be a holomorphic function on X, and r∗h its pullback by r. Then
the irreducible components of the support of div(r∗h) can be separated in two types:
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1. Components whose images by r are points.

2. The rest of the components, with multiplicities, constitute the mixed transform of
div(h). These components are, again, of two types:

(a) Those which get contracted by r on curves ;

(b) Those whose images by r are surfaces. The subdivisor of div(r∗h) supported by
their union is called the strict transform of div(h).

Definition 2.2.12. Let Hn−1 be a hypersurface in a smooth variety X of dimension n.
A good embedded resolution of the singularities of H is a divisorial modification
Π : Y → X such that :

• Y is smooth ;

• the strict transform H̃ of H is smooth ;

• the total transform of H is a SNCD.

Theorem 2.2.13. Every hypersurface of an algebraic or analytic variety over a field of
characteristic zero admits a good embedded resolution.

For this theorem, one can consult the recent book [1] of Aroca, Hironaka and Vicente,
in the complex analytic case. See also the article [3] of Bierstone and Milman as well as the
books [12] of Cutkosky and [28] of Kollár for the case of algebraic varieties of characteristic
zero.

2.3 About deformations and smoothings

In this section, following Fischer ([17]), we present the definitions and some properties of the
notions of deformation and smoothing of a germ of analytic variety. Those definitions
are built in order to properly define the legal way to “bend” a space, obtaining another space
that will be close enough to the initial one. Our main theorem can be formulated in this
framework.
First, we need to summon the algebraic notion of flatness. Let us join Fischer when he
cites Mumford ([41]): “The concept of flatness is a riddle that comes out of algebra, which
technically is the answer to many prayers.”

Definition 2.3.1. Let R be a ring, and M an R-module. The module M is said to be
R-flat, or a flat R-module, if it satisfies one of the three following equivalent conditions:

1. For every exact sequence of R-modules

· · · → Ni−1 → Ni → Ni+1 → . . .
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the induced sequence

· · · → Ni−1 ⊗RM → Ni ⊗RM → Ni+1 ⊗RM → . . .

is again exact.

2. For every short exact sequence of R-modules

0→ N → N ′ → N ′′ → 0

the induced sequence

0→ N ⊗RM → N ′ ⊗RM → N ′′ ⊗RM → 0

is again exact.

3. For every injective morphism of R-modules

N ′ → N

the induced morphism
N ′ ⊗RM → N ⊗RM

is again injective.

This allows us to define the notion of flatness for a morphism:

Definition 2.3.2. An holomorphic map f : X → Y between complex analytic varieties is
said to be flat at x ∈ X if OX,x is a flat OY,f(x)-module.

The following proposition, which is a particular case of the more general corollary of the
section 3.16 of [17], will play a key role in this work:

Proposition 2.3.3. Let (X,x) be a germ of complex analytic variety. Then any f ∈ mx

such that f does not divide zero, seen as a germ of morphism (X,x) → (C, 0), is a flat
morphism.

Definition 2.3.4. A deformation of a germ of complex analytic variety (S, s) is a germ
of flat morphism f : (X,x)→ (Y, y), where (X,x) and (Y, y) are germs of complex analytic
spaces, together with an isomorphism between (S, s) and the special fiber (f−1(y), x).

Definition 2.3.5. Morphisms as in proposition 2.3.3 are called 1-parameter deforma-
tions of (S, s).

Definition 2.3.6. A 1-parameter deformation is called a smoothing whenever its generic
fiber f−1(t), t 6= 0 is smooth. A singularity is callled smoothable if it admits a smoothing.

A smoothing does not always exist, even for isolated singularities of surfaces. This results
for instance from a theorem of Steenbrink ([60]) about the Milnor numbers of smoothings of
Gorenstein normal surface singularities (see [51], Theorem 4.18). However, in the case of
isolated complete intersection singularities, it does. In this work the hypersurfaces considered
will be smoothable, due to the way they are defined.
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2.4 Normal rings

Definition 2.4.1. Let (X, p) be a germ of K-analytic variety. We will call unit at p any
analytic function f ∈ OX,p on this germ which is not zero at p.

This denomination is due to the fact that such functions are units of the local function
ring at that point.

Definition 2.4.2. Let R be a commutative ring. Let S be the multiplicative system consti-
tuted of elements of R that do not divide 0. The total quotient ring of R is defined as
S−1R, denoted QR.

If R is an integral domain, QR = (R \ {0})−1R is called the field of fractions of R.
The integral closure of a ring R is the ring of all elements of QR that are integral

over R.

Definition 2.4.3. A commutative ring R is called normal if it is integrally closed in its
total quotient ring QR, i.e. if any element of QR that is integral over R is in fact an element
of R.

Remark 2.4.4.

1. If R ' K[X1, · · · , Xn] or K{X1, · · · , Xn}, then R is normal.

2. If R ' K[X1, · · · , Xn]/I is an integral domain, the integral closure A of R is a finitely
generated K-algebra and is normal.

3. If R is not an integral domain, then R is not normal.

2.5 Normalization of varieties

In the sequel, K denotes R or C.

Definition 2.5.1. A K-analytic variety X is called normal if, for all x ∈ X, the local ring
OX,x is normal.

Definition 2.5.2. The normal locus of a variety X is the set of its points x such that
OX,x is normal. Its complement is called the non-normal locus of X.

In most contexts, one can associate canonically a normal variety to a given variety,
through a process called normalization.
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2.5.1 Normalization of an affine algebraic variety

Let us start with a definition of normalization that allows us to deal with R-algebraic
varieties.

Definition 2.5.3. (See [4, p.75]). Let V = Specm(R) be an irreducible K-algebraic variety,
where R = K[X1, · · · , Xn]/I. Denote A the integral closure of R. Then A is isomorphic to
some K[X1, · · · , Xp]/I

′, and the surjective morphism

N : XN := Specm(A)→ V

induced by the inclusion R ↪→ A is called the normalization of X.

Remark 2.5.4. The normalization of an irreducible algebraic variety is unique up to
isomorphism of algebraic varieties.

Definition 2.5.5. If V is an equidimensional K-algebraic variety, denote V1, · · · , Vk the
irreducible components of V . Then define the normalization V N of V as

V N := V N
1 t · · · t V N

k .

Lemma 2.5.6. The normalization V N of an algebraic variety V is normal, and the
morphism N : V N → V is finite and is an isomorphism above the normal locus of V .

Definition 2.5.7. Let V = Specm(A) ⊂ Rn and W = Specm(B) ⊂ Rp be two affine
K-algebraic varieties, where A = K[X1, · · · , Xn]/I, B = K[Y1, · · · , Yp]/J .

A map

ϕ :
V 99KW
(x1, · · · , xn) 7→ (ϕ1(x1, · · · , xn), · · · , ϕp(x1, · · · , xn))

where each ϕi is a rational function in the xj’s, is called a rational map from V to W .

The dashed arrow stands for the fact that such a map may have a locus of indeterminacy.

Definition 2.5.8. Let V = Specm(A) ⊂ Rn and W = Specm(B) ⊂ Rp be two affine
equidimensional K-algebraic varieties, where A = K[X1, · · · , Xn]/I, B = K[Y1, · · · , Yp]/J .

A rational map ϕ : V 99K is called birational if there exists a rational map ψ : W 99K V
and dense open subsets U1 ⊂ V and U2 ⊂W such that ψ ◦ ϕ|U1

= Id and ϕ ◦ ψ|U2
= Id. In

these conditons, we call ψ an inverse of φ.

The following is a direct consequence of the definition.

Lemma 2.5.9. The map ϕ∗ : QB → QA induced by a birational map ϕ : Specm(A) 99K
Specm(B) is an isomorphism of field extensions of K.

Finally, we have
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Proposition 2.5.10. Let V = Specm(A) and W = Specm(B) be two affine equidimen-
sional K-algebraic varieties, and ϕ : V 99KW be a birational map. Then there is a unique
birational map ϕN : V N 99KWN such that the following diagram commutes:

V N WN

V W

�NV NW

ϕN

ϕ

Furthermore, let ψ be an inverse of ϕ. If X1, · · · , Xn and Y1, · · · , Yp are respectively
generators of A and B such that for any i, ϕ∗(Yi) is integral over A and for any j, ψ∗(Xj)
is integral over B, then ϕN is an isomorphism of algebraic varieties.

2.5.2 Normalization of complex varieties

Much more can be said about the normalization if we restrict ourselves to complex varieties.
For fluidity purposes, we will define the notion of normalization in the language of germs of
analytic spaces, as well as in the one of global analytic spaces. The definitions provided in
the two different frameworks are of course compatible. One can find more details in Fischer
([17]), chapter 2, or in de Jong & Pfister ([25]) for the case of germs.

Lemma 2.5.11. A complex analytic variety X is normal at any of its smooth points. The
non-normal locus NN(X) of a variety X is a closed nowhere dense analytic subset. In
particular, the set of normal points of a variety X is a dense open subset of X.

Lemma 2.5.12. If X is a normal complex analytic variety, its singular set Sing(X) is of
codimension at least 2.

Definition 2.5.13. Let X be a reduced complex-analytic variety, and denote by A(X) its
non-normal locus. We call a normalization of X any finite, surjective analytic map

N : XN → X

such that

• XN is a normal analytic variety.

• N−1(X \A(X)) is dense in XN .

• The restriction N ′ : N−1(X \A(X))→ X \A(X) is an analytic isomorphism.

This definition of normalization is of course compatible with the one given in the algebraic
setting.
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Proposition 2.5.14. The normalization of an analytic variety is unique up to unique
isomorphism: given two normalizations N1 : XN1 → X and N2 : XN2 → X of a variety,
there exists a unique analytic isomorphism ϕ : XN1

∼−→ XN2 such that the following diagram
commutes.

XN1 −→ XN2∼
ϕ

X

�
N1 N2

Hence, one speaks about the normalization of a variety.

The next result makes explicit one of the main characteristics of the normalization morphism,
which is, at a point of X, to “separate” the local analytic irreducible components.

Lemma 2.5.15. The cardinal of the fiber of the normalization morphism above a point
p ∈ X is equal to the number of local irreducible components of X at p.

Lemma 2.5.16. Let X be a reduced analytic variety, K a closed subset of X, and
N : X → X the normalization of X. Then the restriction NK : N−1(X \ K) → X \ K
is the normalization of X \K.

Normalization of a germ of analytic variety

Definition 2.5.17. A germ of analytic variety (X,x) is said to be normal if the local ring
OX,x is normal.

Definition 2.5.18. A multi-germ of analytic spaces (X,x) is a finite disjoint union
(X,x) = (X1, x1)

⊔
· · ·
⊔

(Xk, xk) of germs of analytic spaces. By definition the ring OX,x is
equal to OX1,x1 ⊕ · · · ⊕OXk,xk . We call k the number of components of the multi-germ.
Once again, a multi-germ (X,x) is called normal if and only if each OXi,xi is normal.

Definition 2.5.19. Let (X,x) be a reduced analytic germ of variety, and denote by (A(X), x)
(maybe empty) the germ of its non-normal locus. The normalization of (X,x) is a normal
multigerm (X,x), together with a finite, surjective analytic map N : (X,x)→ (X,x) such
that N is an analytic isomorphism outside of (A(X), x).

Remark 2.5.20. As in remark 2.5.14, any two such multi-germs are uniquely isomorphic
above (X,x), hence we will call any of them the normalization of the germ (X,x).

Proposition 2.5.21. Let (X,x) be a germ of analytic variety. Its normalization
(X,x)

N−→ (X,x) verifies the following universal property of minimality :
Let (Y,D)

ϕ−→ (X,x) be a normal modification of the germ X. Then there is a unique
analytic morphism ϕ : (Y,D)→ (X,x) such that N ◦ ϕ = ϕ.
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(Y,D)

(X,x) (X,x)

∃! ϕ
ϕ

N

Remark 2.5.22.

1. This universal property is in fact a characterization of the normalization.

2. Note that ϕ is a modification of (X,x)

As a consequence of lemma 2.5.15, we get:

Lemma 2.5.23. The number of components of the normalization of a germ is equal to
the number of irreducible components of this germ. In fact, if (X1, x), · · · , (Xk, x) are the
irreducible components of (X,x), then the normalization of (X,x) is the disjoint union of
the normalizations of the (Xi, x)’s.

2.6 About graph manifolds and plumbing graphs

The purpose of this section is to make clear the notion of graph manifolds, and the
correspondence between them and plumbing graphs. Note that, in the literature, there
are different definitions for the following objects, depending on the level of generality the
author wants to attain, and what they use these objects for. Our choices are aimed to the
description of the boundaries of Milnor fibers of smoothings of non-isolated complex surface
singularities.

2.6.1 Circle bundles over orientable surfaces

We introduce here the Euler number of an S1-bundle above an orientable surface, that
allows one to entirely characterize such a bundle. One can refer to the book [19], especially
Example 4.6.5, for what follows.

Definition 2.6.1. A smooth locally trivial fiber bundle (M,p,B, F ) consists of:

1. A smooth manifold M , called total space.

2. A smooth manifold B, called base space.

3. A smooth surjective map p : M → B, called the projection map.

4. A smooth manifold F , called the fiber.
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The map p is asked to satisfy the following constraint: there exists a collection
{(Uα, φα)}α∈A, called a trivialization cover, where the collection {(Uα)}α∈A is an open
cover of B, and for each α ∈ A, a diffeomorphism

φα : p−1(Uα)→ Uα × F

such that the following diagram is commutative:

p−1(Uα) Uα × F

Uα

φα

p1
p

∀ (x, f) ∈ Uα × F, p ◦ φ−1
α (x, f) = x.

In the diagram, p1 denotes the projection on the first factor.

Remark 2.6.2. One may want to insist on the diffeomorphism type of the fiber, in which
case a fiber bundle of fiber F is called an F -bundle.

Definition 2.6.3. A fiber bundle is said to be orientable if there exists a continuous choice
of orientations of the fibers.

Remark 2.6.4. This does not mean that the global space is orientable. For example, any
space of the form B×F , where B is not orientable, and F is orientable, is a trivial orientable
F -bundle over B, even if the space B × F is not orientable. The condition of orientability
simply means that one can pick orientations of the fibers, and that these orientations will
not be subject to any monodromy phenomenon.

In all this work, by fiber bundle we mean smooth fiber bundle, i.e. so that the total space
is smooth.
Let M p−→ B be an orientable S1-bundle with oriented total space M over an orientable
closed smooth surface B. Set an orientation of the base and one of the fibers so that, taken
together, they give the orientation of M . Let C be a simple closed curve in B, splitting B
in two closed surfaces B1 and B2 with C as their common boundary. Denote

M1 := p−1(B1),M2 := p−1(B2), and T := M1 ∩M2

The torus T is the common boundary of M1 and M2. It can be oriented either as the
boundary of M1 or as the one of M2. The two choices determine opposite orientations of T .

Now, we have the following:

Lemma 2.6.5. Every orientable S1-bundle over a connected compact surface with non-empty
boundary is trivial.
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Using lemma 2.6.5, each Mi can be written as a trivial fibration. In particular they
admit global sections. Let Σi be such a section in each Mi. Each Σi inherits the orientation
of B, and this orients also their boundaries in T .

Definition 2.6.6. In the setting of the previous paragraph, the Euler number of the
fibration M p−→ B is the intersection number ∂Σ1 · ∂Σ2 in H1(T,Z), where T is oriented as
the boundary of M1.

Remark 2.6.7.

1. The definition of the Euler number is the same if one reverses the roles of M1 and M2,
i.e. if one computes ∂Σ2 · ∂Σ1 in H1(T,Z), orienting here T as the boundary of M2.

2. The convention chosen is not arbitrary: if the S1-fibration over an orientable smooth
closed surface considered is made of the unit circles in the tangent fibered space, one
will find the Euler-Poincaré characteristic of the base, which gives its name to the
Euler number.

3. The Euler number is in fact the obstruction to the existence of a global section of the
fibration. Such a section exists if and only if this number is zero.

4. In particular, one can see that reversing the orientation of M changes the sign of the
Euler number, but, if one keeps the orientation of M , changing that of the fibers or of
the base will not change the Euler number.

There is a fundamental correspondence between Euler numbers and self-intersection
numbers, explicited in the following:

Proposition 2.6.8. If B is a smooth oriented closed surface embedded in a smooth oriented
4-manifold M , the Euler number of the normal S1-bundle to B, whose total space is oriented
as boundary of a tubular neighbourhood of B, is equal to the self-intersection of B inside M .

Example 2.6.9. Consider the Hopf fibration on S3, built in the following way: see S3 as the
unit sphere around the origin in C2. Every complex line through the origin will intersect S3

along a circle. Those circles are disjoint. Furthermore, the set of all those lines, being CP1,
can be identified with S2. This provides S3 as an S1-fibration over S2. The Euler number of
this fibration is −1.

Now, one can consider the blowing-up (X,E)
π−→ (C2, 0) of the origin in C2. The

exceptional divisor E is a CP1. What we just saw implies that the normal S1-bundle over E
in X is exactly the Hopf fibration, of Euler number −1. On the other hand, −1 is also the
self-intersection of E in X.

This correspondence plays a key role in the computation of boundaries of isolated
singularities of complex surfaces, or even, in our case, of isolated singularities of real-analytic
4-dimensional varieties, using a more general statement that allows one to compute the
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boundary of a neighbourhood of a configuration of surfaces in a 4-manifold (see theorem
2.7.9).

We can now state the following fundamental proposition about classification of S1-bundles
over surfaces:

Proposition 2.6.10. Given a smooth closed orientable surface B of genus g and e ∈ Z,
there exists, up to orientation-preserving isomorphism of fiber bundles, a unique oriented
S1-bundle M over B with e as its Euler number.

2.6.2 Graphs, decorations and coverings

In this subsection, we recall mostly the material exposed in the first section of [44], also
recalled in [46, Chapter 5].

Definition 2.6.11. A graph Γ is the data of two finite sets V (Γ), and E (Γ), together with
a map end : E (Γ)→ {subsets of V (Γ) with at most two elements}.

The set V (Γ) is called the set of vertices of Γ, E (Γ) is called the set of edges of Γ, and
if e ∈ E (Γ) and end(e) = {v1, v2}, v1 and v2 are called the end-vertices of e.

Remark 2.6.12. Note that we do not talk about first or second end-point, in order to work
in the setting of undirected graphs.

Definition 2.6.13. An edge e such that end(e) has only one element v is called a loop
based at v.

Definition 2.6.14. A topological realization of a graph Γ is a 1-dimensional CW-complex
|Γ| whose 0-cells and 1-cells correspond respectively to the vertices and edges of Γ, with the
appropriate combinatorics.

If |Γ| is a topological realization of Γ, denote cΓ the rank of H1(|Γ|,Z), following [44,
1.2].

Remark 2.6.15. Every graph admits a topological realization, which is unique up to home-
omorphism. Therefore its first Betti number cΓ is well-defined.

Definition 2.6.16. A connected graph Γ such that cΓ = 0 is called a tree.

Definition 2.6.17. A covering tree for a connected graph Γ is a subgraph Γ′ of Γ which
is a tree and such that V (Γ′) = V (Γ).

Remark 2.6.18. A covering tree always exists and is not unique as soon as Γ is not a tree.

Definition 2.6.19. A morphism of graphs p : Γ1 → Γ2 consists of two maps

pV : V (Γ1)→ V (Γ2)
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and
pE : E (Γ1)→ E (Γ2)

such that, if v1, v2 are the end-vertices of e ∈ E (Γ1), then pV (v1) and pV (v2) are the
end-vertices of pE (e).

Such a map is called an isomorphism of graphs if both pV and pE are bijective.

Definition 2.6.20. A decorated graph is a graph Γ with additional data, both on V (Γ)
and on E (Γ). In this work the decorations will be of different natures.

Let Γ be a graph, and
?
Γ be a decoration of Γ. We say that Γ is the graph associated

to
?
Γ.

Example 2.6.21. A very classical decoration, that will be at least implicitly present in
every graph of this work, makes a distinction between two types of vertices. Write the set of
vertices of Γ as a disjoint union

V (Γ) = N (Γ) tA (Γ).

The set N (Γ) is called the set of nodes of Γ, while vertices of A (Γ) are called arrow-
heads. Nodes will be represented by dots while arrowheads are represented by arrowheads

.

In this work, every vertex is a node, unless stated otherwise.

Definition 2.6.22. Let
?

Γ1,
?

Γ2 be two decorated graphs, with associated graphs Γ1 and Γ2.

The decorated graphs
?

Γ1 and
?

Γ2 are said to be isomorphic if there is an isomorphism
between Γ1 and Γ2 that preserves the decorations.

Definition 2.6.23. (See [44, 1.3].) We say that Z acts on a graph Γ if there are group
actions

aV : Z× V (Γ)→ V (Γ)

and
aE : Z× E (Γ)→ E (Γ)

such that if v1 and v2 are the end-vertices of e ∈ E (Γ), then aV (1, v1) and aV (1, v2) are the
end-vertices of aE (1, e).

If Γ1 and Γ2 are both endowed with Z-actions, a morphism p : Γ1 → Γ2 is called
equivariant if the maps pV and pE are both equivariant with respect to the actions of Z, i.e.
if they commute with the action of Z. If, in addition, p is an isomorphism, such a morphism
is called an equivariant isomorphism of graphs.

Definition 2.6.24. Let F be a finite set. A cyclic order on F is an automorphism of F
that generates a transitive group of automorphisms. That is, as a permutation it is a cycle.
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Example 2.6.25. A Z-action on a graph Γ induces a cyclic order on each orbit, made
either of edges or vertices, under this action. Reciprocally, the data of cyclic orders on
sets partitioning V (Γ) and E (Γ), with the appropriate compatibility axioms, gives rise to a
Z-action on Γ.

Definition 2.6.26. Let Γ be a graph, endowed with the trivial action of Z. A Z-covering,
or cyclic covering, of Γ, is a graph G such that Z acts on G, together with an equivariant
map p : G→ Γ, such that the restriction of the action of Z to any set of the type p−1(v) or
p−1(e) is transitive.

Notation 2.6.27. In this setting, if v ∈ V (Γ) and e ∈ E (Γ), then the elements of p−1(v)
are called the vertices associated to v, while the elements of p−1(e) are called the edges
associated to e.

Remark 2.6.28. Let G be a cyclic covering of a graph Γ. For any v ∈ V (Γ) or e ∈ E (Γ),
denote nv, respectively ne, the cardinal of p−1(v), respectively p−1(e). Then if v1, v2 ∈ V (Γ)
are the end-vertices of e ∈ E (Γ), there is de ∈ N∗ such that

ne = de · lcm(nv1 , nv2).

Definition 2.6.29. A covering data for a graph Γ is a system of positive integers
(nv,ne) =

{
{nv}v∈V (Γ), {ne}e∈E (Γ)

}
such that for all e ∈ E (Γ) with end-vertices v1, v2,

the number ne is a multiple of lcm(nv1 , nv2).

Definition 2.6.30. Two cyclic coverings G1, G2 of a graph Γ, with maps pi : Gi → Γ, are
called equivalent if there is an equivariant isomorphism q : G1 → G2 such that p1 = p2 ◦ q.

The set of equivalence classes of cyclic coverings of Γ with covering data (nv,ne) is
denoted G (Γ, (nv,ne)).

Theorem 2.6.31. [44] The set G (Γ, (nv,ne)) has an abelian group structure, and it is
independent of the numbers ne such that (nv,ne) is a covering data for Γ.

See [44, 1.11] for a description of the identity element of this group.
The following results expose cases where the covering data is enough to determine the

isomorphism type of the graph G covering Γ.

Theorem 2.6.32. [44, Theorem 1.19] If Γ is a tree, then for any covering data (nv,ne),
G (Γ, (nv,ne)) = {0}.

Theorem 2.6.33. [44, Theorem 1.20] Let Γ be a graph, and denote Γ 6=1 the subgraph of Γ
obtained from Γ by deleting every v ∈ V (Γ) such that nv = 1, and every edge having one of
those vertices as an endpoint. If Γ 6=1 is a disjoint union of trees, then for any covering data
(nv,ne), G (Γ, (nv,ne)) = {0}.
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The next result exposes a case where the covering data may not be enough for the
determination of the isomorphism type of the covering graph, but where the missing data
is simple to describe. This may be useful in special cases of the method of computation
presented in Chapter 4, although there are no known examples yet.

Definition 2.6.34. A graph is cyclic if V (Γ) = {v1, · · · , vk} and E (Γ) = {e1, · · · , ek},
such that the end points of ei are vi, vi+1, where vk+1 denotes v1. In other words, a graph is
cyclic if its topological realization is homeomorphic to a circle.

It may be shown that any graph Γ with cΓ = 1 has a unique cyclic subgraph.

Proposition 2.6.35. [44, Corollary 1.22] Let Γ be a graph such that cΓ = 1, and let
Γ′ be the unique cyclic subgraph of Γ. Let (nv,ne) be a covering data for Γ, and denote
d := gcd{nv, v ∈ V (Γ′)}. Then

G (Γ, (nv,ne)) = Zd.

In particular, if d = 1, the covering data determines the covering graph uniquely.

2.6.3 Graph manifolds

Let us explain here how, in this work, a decorated graph encodes an oriented 3-manifold. See
[47] for more details. The manifolds described here are also called plumbed manifolds,
explored for the first time in themselves as a special class of 3-manifolds by Waldhausen in
[65], after having been introduced implicitly in the work [40] of Mumford.

Definition 2.6.36. Let Γ be a graph with decorations of the following type:

• Each edge is decorated by a ⊕ or 	 symbol. We may omit the ⊕ decoration when
representing such graphs.

• Each vertex v is decorated by a self-intersection ev ∈ Z and a genus [gv], gv ∈ N. We
may omit the genus decoration if it is 0.

Such a graph is called an orientable plumbing graph.
Define the oriented manifold MΓ associated to Γ in the following way: for each vertex v

of Γ decorated by ([gv], ev), let Mv be an oriented 3-manifold which is a fibration in S1 of
Euler number ev over a closed smooth surface Bv of genus gv. Pick an orientation of the
base and the fibers so that, taken together, they give the orientation of Mv.

Now, let λv be the number of times the vertex v appears as endpoint of an edge. Remove
from Bv disjoint open disks (Di)16i6λv , consequently removing as many open solid tori from
Mv. Each ∂Di is oriented as boundary component of Bv \

⊔
Di. Denote by M b

v the resulting
circle bundle with boundary. Denote ∂M b

v =
⊔
Ti a disjoint union of tori.
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For every edge between the vertices v and v′, glue the manifolds M b
v and M b

v′ in the
following way: pick boundary components T = ∂D × S1 in M b

v , T ′ = ∂D′ × S1 in M b
v′ , and

glue T and T ′ according to the matrix ε
[
0 1
1 0

]
, ε being the sign on the edge.

Finally, if the graph has several connected components, the resulting manifold is the
connected sum of the manifolds corresponding to the different connected components.

The initial graph Γ is what we call a plumbing graph representing the final manifold
MΓ obtained by this construction, and the oriented manifold MΓ is called the manifold
plumbed according to the graph Γ, or the graph manifold associated to Γ.

Remark 2.6.37. Let us insist on the fact that a loop based at v in the graph Γ imposes one
to remove two disjoint open disks form the base Bv.

Note that, in the litterature, one may accept negative genera, corresponding to nonori-
entable surfaces. For the denomination “orientable plumbing graphs”, we follow [47, 3.2(i)].

2.6.4 The plumbing calculus

In this section we introduce a version of Neumann’s plumbing calculus. We follow entirely
the notations of [46, Section 4.2], consistently with [47]. Note that we do not allow moves
[R2], [R4] of [47], as they produce pieces whose bases are non-orientable surfaces.

Proposition 2.6.38. Two manifolds MΓ1 and MΓ2 associated to the plumbing graphs Γ1

and Γ2 are orientation-preserving diffeomorphic if and only if one may obtain one graph
from the other by applying the following operations or their inverses.

[R0](a) Reverse the signs on all edges other than loops adjacent to any fixed vertex.
[R1] (blowing down) Here, ε = ±1, and ε0, ε1, ε2 verify ε0 = −εε1ε2.

...
[g]

e ǫ ...
[g]

e− ǫa)

...
[g1]

e1
ǫ ...

[g1]

e1 − ǫ...
[g2]

e2
ǫ1 ǫ2

e2 − ǫ

[g2]
ǫ0

...b)

...
[g]

e ǫ ...
[g]

e− 2ǫǫ1

ǫ2

ǫ0c)
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[R3] (0-chain absorption) Here, ε′i = εi if the edge in question is a loop, and ε′i = −εεεi
otherwise.

...
[g1]

e1 0 ...

[g1 + g2]

e1 + e2
...

[g2]

e2
ǫ ǫ

ǫ1

ǫs

...

ǫ
0

1

ǫ
0

s

[R5] (oriented handle absorption)

...
[g]

e 0 ...
[g + 1]

e⊖

⊕

[R6] (Splitting) Here, each Γj is a connected graph, and is connected to the vertex e
by kj edges.

Γ1

Γs

.

.

.

.

.

.

e

[g]

0 .
.
.

Γ1 Γs
F F: : : F 0 0 0: : : f

2g +
P
(kj - 1) copies

[R7] (Seifert graph exchange) According to the original graph, one of the six following
modifications:

⊕
⊕ ⊕−1 0

1

−3 −2

−1

−6

−4 −4

−1

−2

−3 −3

−3

−1

⊖
−1

−2

−2

−2 −2 −2 −2 −2

⊖
0

−2 −2 −2 −2 −2 −2 −2

−2
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⊖
1

−2 −2 −2 −2 −2 −2 −2 −2

−2

Remark 2.6.39. In [46], the authors exclude moves [R6],[R7], as operating these moves
changes some invariants they are studying, related to monodromy phenomena. See Paragraph
4.2.3 in [46].

Remark 2.6.40. Observe that the inverse of move [R6] does not preserve the planarity
of graphs. Indeed the three graphs of figure 2.1 are all equivalent, but the first one is not
planar, as it contains the complete graph K5 with five vertices. The two others are planar,
one is connected, the other is not.
However, note that all moves of the plumbing calculus, in the direction in which they are
presented, preserve planarity. Furthermore, the method presented in [47] for the computation
of the normal form of a graph preserves planarity.
Finally, an example of a non-planar graph in normal form is given by the graph K5 with
any decoration. The fact that the operations leading to the normal form of a graph preserve
planarity implies that this graph is not equivalent to a planar graph.

2.7 Boundary of a tubular neighbourhood

The goal of this section is to provide a proper definition of a tubular neigbourhood
of a simple configuration of compact real-analytic surfaces in a 4-dimensional real-
analytic manifold, and to express the correspondence between the curve configuration and
the topology of the boundary of its tubular neighbourhood.

2.7.1 Plumbing graph associated to a simple configuration of surfaces

Let us start with a general definition that will simply be a matter of vocabulary, valid in a
very general setting:

Definition 2.7.1. (Dual graph of a collection.)
Let E =

⋃
finite

Ei be a finite covering of a set E by sets (Ei)i∈I , satisfying the following

two conditions:

1. For any i 6= j, Ei ∩ Ej is finite.

2. For any i 6= j 6= k 6= i, Ei ∩ Ej ∩ Ek = ∅.

The dual graph Γ(E) of the covering is constructed in the following way:
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Figure 2.1: Three equivalent plumbing graphs.

• It has (vEi)i∈I as set of vertices.

• The edges having vEi and vEj as end-points correspond bijectively to the intersection
points of Ei and Ej.

Definition 2.7.2. (Simple configuration of surfaces, and its plumbing dual graphs.)
Let S̃ be a 4-dimensional oriented real-analytic manifold. A simple configuration of

compact real-analytic surfaces in S̃ is a subset E ⊂ S̃ such that:

1. E =
⋃

finite

Ei, such that each Ei is an oriented closed smooth real-analytic surface.

2. For all i 6= j 6= k 6= i, the intersection Ei ∩ Ej ∩ Ek is empty.

3. For all i 6= j, the intersection Ei ∩Ej is either empty or transverse. In particular, it
is a finite union of points.

In this setting, one defines a plumbing dual graph Γ
S̃

(E) of E in S̃ by decorating its
dual graph in the following way:
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1. Decorate each vertex vEi by the self-intersection ei of Ei in S̃ and by the genus [gi]
of the surface Ei.

2. Decorate each edge of Γ(E) corresponding to the intersection point p of Ei ∩ Ej, by ⊕
if the orientation of Ei followed by the orientation of Ej is equal to the orientation of
S̃ at p, and by 	 otherwise.

Remark 2.7.3. For details about the history of the notion of dual graph, one may consult
the article [52].

2.7.2 Computation of self-intersections

In our context, one will compute the desired self-intersections by using the multiplicities of
some special function:

Definition 2.7.4. Let E =
⋃

finite

Ei be a simple configuration of compact oriented real-

analytic surfaces in a 4-dimensional real-analytic manifold S̃ . A real-analytic function
g : S̃ → C is called adapted to E if

1. Etot := g−1(0) is a simple configuration of oriented, not necessarily compact, real-
analytic surfaces, such that Etot ⊃ E.

2. (a) For any component Ei of Etot, ∀ p ∈ Ei \
⋃
j 6=i

Ej, there is a neighbourhood Up of

p in S̃ and complex coordinates (xp, yp) on Up such that Up ∩ Ei = {xp = 0}
and ni ∈ N∗ such that

g = xnip · ϕ

where ϕ : Up → C is a unit at p.

(b) For any components Ei of E, Ej of Etot, ∀ P ∈ Ei∩Ej, there is a neighbourhood
Up of p in S̃ and complex coordinates (xp, yp) on Up such that Up∩Ei = {xp = 0},
Up ∩ Ek = {yp = 0}, and ni, nk ∈ N∗ such that

g = xnip y
nj
p · ϕ

where ϕ : Up → C is a unit at p.

Definition 2.7.5. In this setting, the integer ni of point 2a of Definition 2.7.4, independent
of the point p ∈ Ei \

⋃
j 6=i

Ej, is called the multiplicity of g on Ei, denoted mEi(g).

Remark 2.7.6. In general, there is no reason to believe that an adapted function will exist.
However, in our setting, we will have access to such a function. See Sections 4.11, 4.12.

43



Lemma 2.7.7. (Computing self-intersections.)
Let S̃ , E, g, Etot be as in Definition 2.7.4. Let E(1) be an irreducible component of E.

Then the self-intersection e(1) of the surface E(1) in S̃ verifies the following condition: let
p1, · · · , pn be the intersection points of E(1) with other components of Etot, pj ∈ Ej ∩ E(1),
where the same component may appear several times. Then

n(1) · e(1) =
n∑
i=1

εi · ni

where εi ∈ {−1,+1} refers to the sign associated to the intersection pi in the following sense:
if p ∈ Ei ∩ Ej, associate +1 to p if and only if the combination of the orientations of Ei
and Ej at p provides the ambient orientation of S̃ .

Proof. The proof follows the standard argument in the holomorphic category. The difference
of the two members of the equation is the intersection number of E(1) with the cycle defined
by g = 0. This cycle is homologous with that defined by a nearby level of g, which does not
meet E(1) any more. The intersection number being invariant by homology, one gets the
desired result.

In order to make this argument rigorous, one has to work in convenient tubular neigh-
borhoods of E and to look at the cycles defined by the levels of g in the homology of the
tube relative to the boundary.

2.7.3 Correspondence between neighbourhoods and graphs

Definition 2.7.8. (See [15].) Let E be a simple configuration of compact orientable real-
analytic surfaces in an oriented 4-dimensional real-analytic manifold S . In this context, we
call rug function any real-analytic proper function ρ : S → R+ such that ρ−1(0) = E.

Theorem 2.7.9. Let E be a simple configuration of compact orientable real-analytic surfaces
in an oriented 4-dimensional real analytic manifold S , that admits a rug function ρ as in
Definition 2.7.8. Then, for ε > 0 small enough, the boundary of the oriented 4-manifold
{ρ 6 ε} is orientation-preserving homeomorphic to the graph manifold associated to the
graph Γ

S̃
(E).

Definition 2.7.10. In this setting, the manifold {ρ 6 ε} is called a tubular neighbour-
hood of E.

About the proof of Theorem 2.7.9. This theorem can be seen as an extension of what is
done in [40], in the case of a configuration of complex analytic curves in a smooth complex
surface.

In our case, observe first that we can extend the definition of rug functions to semi-
analytic functions ρ, and still have a unique homeomorphism type for the boundary of the
neighbourhood {ρ 6 ε} of E for ε > 0 small enough, following the proof of [15, Proposition
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3.5]. Now, one can build by hand a semi-analytic neighbourhood whose boundary is
homeomorphic to the manifold Γ

S̃
(E).

This is done by building a rug function for each irreducible component Ei of E, providing
a tubular neighbourhood Ti of each Ei whose boundary is an S1-bundle of Euler class ei over
Ei. One then plumbs those bundles using appropriate normalizations of the rug functions,
building a semi-analytic neighbourhood of E which is homeomorphic to the desired graph
manifold.

Remark 2.7.11. Note that the decorations on the edges of the graph Γ
S̃

(E) depend on the
orientations of the surfaces Ei. However, if the surfaces Ei are only orientable, the different
possible plumbing dual graphs still encode the same graph manifold, see move [R0] of the
plumbing calculus.
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Chapter 3

Elements of toric geometry

What follows is mainly based on the book [18] of Fulton. To go further, one can consult the
books [48] of Oda, [10] of Cox, Little, Schenk, the introductory article [13] of Danilov, as
well as the introductory courses [5] of Brasselet and [43] of Musţată.

3.1 Lattices and cones

Definition 3.1.1. A n-dimensional lattice N is a free group of rank n, that is, a group
isomorphic to (Zn,+). Define the integral length of an element u ∈ N as

l(u) = max{n ∈ N, ∃ v ∈ N \ {0} such that u = n · v}.

An element u ∈ N is called primitive if l(u) = 1.
Denote by NR := N ⊗Z R the R-vector space associated to N .

Remark 3.1.2. Note that l(0) = 0.
Once N is identified with Zn, a vector u ∈ N is primitive iff its coordinates are coprime

as a whole.

Definition 3.1.3. For (S, ·) sub-semigroup of (R, ·), and v1, . . . , vk ∈ N , denote

〈v1, . . . , vk〉S := {r1 · v1 + · · ·+ rk · vk, r1, . . . , rk ∈ S} ⊆ NR.

A rational convex polyhedral cone σ in NR is a set of the form 〈v1, . . . , vk〉R+ , for
some v1, . . . , vk ∈ N , said to be generating σ. Let us define the dimension of the cone σ
as the dimension of 〈v1, . . . , vk〉R, the subvector space of NR generated by (v1, . . . , vk). We
will also refer to the codimension of σ, defined as the codimension of that same space in
NR.

Such a cone will be called strongly convex if it does not contain any vector subspace of
NR.
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In the sequel, all the cones will be rational, convex and polyhedral, so we will omit these
terms.

Definition 3.1.4. A d-dimensional cone σ will be called simplicial if it can be generated by
d vectors. Furthermore, in this case there is a unique set of d primitive vectors v1, . . . , vd ∈ N ,
called its primitive generators, such that σ = 〈v1, . . . , vd〉R+ .

With these notations, the simplicial cone σ is said to be regular if the family (v1, . . . , vd)
generates the semigroup (σ ∩N,+). All other cones are called singular.

Definition 3.1.5. For v1, . . . , vd ∈ N , let us define det(v1, . . . , vd) := l(v1 ∧ · · · ∧ vd) ∈ N,

in the lattice
d∧
N .

If N is identified to Zn, then det(v1, . . . , vd) is equal to the gcd of the d× d minors of
the matrix (v1, . . . , vd).

Lemma 3.1.6. Criterion for regularity.
Let σ be a simplicial cone, and (v1, . . . , vd) its set of primitive generators. Then

σ is regular if and only if det(v1, . . . , vd) = 1.

In other words, σ ⊂ NR is regular if and only if it is generated by a sub family of a basis of
the Z-module N .

Definition 3.1.7. We will usually denote by M := NX = Hom(N,Z) ' Zn the dual
lattice of N .

For σ a convex cone of dimension d in NR of dimension n, let us define its dual cone

σX := {m ∈MR, ∀ n ∈ σ, 〈m,n〉 > 0} ⊂MR

and its orthogonal

σ⊥ := {m ∈MR, ∀ n ∈ σ, 〈m,n〉 = 0} ⊂ σX.

Remark 3.1.8. The cone σX is also a rational convex polyhedral cone, while σ⊥ is a vector
subspace of NR of dimension n− d. It is the maximal linear subspace of the cone σX.

Let us now present some properties of the duality for cones:

Lemma 3.1.9. Let σ, τ be cones in a lattice.

1. (σX)X = σ.
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2. τ ⊂ σ ⇐⇒ σX ⊂ τX.

3. σX is simplicial iff σ is simplicial.

4. Furthermore, if σ is of maximal dimension, σX is regular iff σ is regular.

5. σ is of maximal dimension iff σX is strongly convex. More generally, the codimension
of σ is equal to the dimension of the biggest vector space contained in σX. This vector
space is σ⊥.

Definition 3.1.10. Let σ be a cone. A face of σ is any cone of the form

σ ∩m⊥ = {n ∈ σ, 〈m,n〉 = 0}, for some m ∈ σX.

The fact that τ is a face of σ will be denoted τ � σ. Any face of σ different from σ is called
a proper face, denoted τ ≺ σ.

Define the relative interior of a cone σ to be

◦
σ := σ \

(⋃
τ≺σ

τ

)
.

Remark 3.1.11. Any face of a strongly convex cone is strongly convex.

Remark 3.1.12. There is a 1 − 1 correspondence between faces of σ and faces of σX of
complementary dimension, that reverses inclusion, given by: τ � σ ↔ τ⊥ ∩ σX � σX.

Note also that if τ = σ ∩m⊥, then m ∈ τ⊥.

Lemma 3.1.13. Let σ be a strongly convex cone of dimension d 6 n in N , and τ1, . . . , τk
its faces of codimension 1. Then σX can be written as:

σX = σ⊥ ⊕ 〈v1, . . . , vk〉R+

where vi ∈ (τ⊥i \ σ⊥) ∩ σX. In other words, the vi’s are elements of σX such that

τi = v⊥i ∩ σ.

Proof. It is clear that σX can be written as σX = σ⊥ ⊕ µ, where µ is a strongly convex cone
of dimension d. Let us write µ = 〈w1, . . . , wl〉R+ , and recall that dim(σ⊥) = n− d.

Now, any face of dimension n− d+ 1 of σX is of the form σ⊥ ⊕ 〈wi〉R+ , and corresponds
(by remark 3.1.12) to a face of dimension d− 1 of σ. This shows that k = l.

Using the explicit correspondence gives us that (up to renumbering), τ⊥i ∩ σX = σ⊥ ⊕
〈wi〉R+ , which shows that wi ∈ (τ⊥i \ σ⊥) ∩ σX.
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Remark 3.1.14. Furthermore, if M ′ is a d-dimensional sublattice of M such that M =
M ′⊕

(
σ⊥ ∩M

)
, then all the vi’s can be chosen inM ′. This means that given a complementary

sublattice M ′ of σ⊥ ∩M in M , one gets a decomposition

σX ∩M =
(
σ⊥ ∩M

)
⊕
(
σX ∩M ′

)
.

This decomposition can in fact be seen more intrinsically.

Definition 3.1.15. Denote Nσ the sublattice of N generated by the elements of σ∩N , and
Mσ := NXσ . Then seeing σ as a cone in Nσ, we define its dual σXMσ

in Mσ.

Proposition 3.1.16. Given any complementary sublattice M ′ of σ⊥∩M in M , there is an
isomorphism of semigroups (

σX ∩M ′,+
)
'
(
σXMσ

∩Mσ,+
)
.

We get as a direct consequence the isomorphism of semigroups(
σX ∩M,+

)
' σ⊥ ⊕

(
σXMσ

∩Mσ,+
)
.

3.2 The affine toric variety defined by a cone

Prologue 3.2.1. In the sequel we will consider affine varieties obtained as spectra of
subrings of AM := C[M ]. As a vector space, AM has a basis formed by elements of the form
χm,m ∈M , with the multiplication determined by the addition in M : χm · χm′ = χm+m′ .
Let us introduce now the torus associated to the lattice N , denoted TN . It is the maximal
ideal spectrum of AM . It can be seen more concretely as the set of morphisms of groups
from (M,+) to (C∗, ·). It is non canonically isomorphic as a group to ((C∗)n, ·), which
is an algebraic torus. This denomination comes from the fact that (C∗)n retracts by
deformation to the n-dimensional torus

(
S1
)n. The torus acts on itself by multiplication. If

φ, ψ ∈ TN , then the action is defined by:

∀ m ∈M, (φ · ψ)(m) = φ(m) · ψ(m).

Definition 3.2.2. Let σ ⊂ NR be a cone. Denote by

(Sσ,+) := (σX ∩M,+)

the semigroup associated to this cone, and by

Aσ := C[Sσ]

the algebra generated by this semigroup.
The affine toric variety associated to σ is

Xσ := Spec(C[σX ∩M ]) = Spec(Aσ).
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Remark 3.2.3. We see that dim(Xσ) = dim(σX), hence, as soon as σ is strongly convex,
by lemma 3.1.9, dim(Xσ) = dim(M) = n. In the sequel, on the N side, the only cones we
will consider will be strongly convex.

Remark 3.2.4. A family m1, · · · ,mk ∈M generating the semigroup σX ∩M provides an
embedding Xσ ↪→ Spec (C[χm1 , · · · , χmk ]) = Ckx1,··· ,xk .

Definition 3.2.5. Given a d-dimensional strongly convex cone σ in NR, define the intrinsic
d-dimensional variety

Xσ(Nσ) := Spec(C[σXMσ
∩Mσ]).

Using proposition 3.1.16, we get:

Proposition 3.2.6. There is a non-canonical isomorphism of affine analytic varieties

Xσ ' (C∗)n−d ×Xσ(Nσ).

Proposition 3.2.7. Closed points of Xσ (maximal ideals of Aσ), which form a dense subset
of Xσ, correspond to semigroup morphisms (Sσ,+)→ (C, ·).
This set contains the torus TN defined in 3.2.1, corresponding to the semigroup morphisms
(Sσ,+)→ (C∗, ·).
Furthermore, the torus TN is dense in Xσ.

Proof. By strong convexity of σ, σX is n-dimensional, hence contains a basis of M . So a
semigroup morphism σX ∩M → C∗ is determined by its values on the elements of this
basis. In this way we can identify these points with (C∗)n. Now any semigroup morphism
Sσ ∩M → C can be written as a limit of morphisms Sσ ∩M → C∗, hence the density.

Proposition 3.2.8. The action of the group TN on itself extends to a continuous action
on the whole variety Xσ, making TN the unique n-dimensional orbit.

On closed points, the action is defined as on TN , by multiplication: if φ ∈ Xσ and
ψ ∈ TN , then φ · ψ ∈ Xσ is defined by

∀ m ∈M, (φ · ψ)(m) = φ(m) · ψ(m).

Proposition 3.2.9. If τ ⊂ σ, then the inclusion Aσ ⊂ Aτ gives rise to a canonical birational
morphism of algebraic varieties Xτ → Xσ. This morphism is an injection if and only if τ is
a face of σ.

More precisely:

Proposition 3.2.10. Let τ be a proper face of σ, and u ∈ σX ∩M , u primitive, such that
τ = u⊥ ∩ σ. Then:
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1. Sτ = Sσ + u · Z60.

2. Xτ embeds in Xσ as a principal open subset.

Proof.

1. The inclusion Sτ ⊃ Sσ + u · Z60 is immediate, because σX ⊃ τX, and u ∈ τ⊥.

Now, let w ∈ τX ∩M . We want to prove the following:

∃ p ∈ N,∀ m ∈ σ, 〈w + p · u,m〉 > 0.

Let us write σ = 〈m1, . . . ,mk〉R+ . For p ∈ N, and σ 3 m =
k∑
i=1

aimi,

ai ∈ R+, 〈w + p · u,m〉 =

k∑
i=1

ai(〈w,mi〉+ p · 〈u,mi〉).

Now, ∀ i, 〈u,mi〉 > 0 because u ∈ σX, and as soon as mi /∈ τ, 〈u,mi〉 > 0. If
mi ∈ τ , then 〈w,mi〉 > 0 so we have nothing to do. Hence we just have to choose

p > max
mi /∈τ

(
−〈w,mi〉
〈u,mi〉

)
2. It follows from the first assertion that Aτ = (Aσ)χu , i.e.

Xτ
∼= D(χu) := {q ∈ Specm(Aσ), (χu) * q}.

3.3 The toric variety defined by a fan

Definition 3.3.1. A fan F in NR is a finite set of strongly convex cones such that:

1. If σ ∈ F , any face of σ is in F .

2. The intersection of two cones of F is a face of each.

The support |F | of the fan F is the union
⋃
σ∈F

σ of the cones composing it.

Remark 3.3.2. A cone σ, together with the collection of all its faces, defines a fan. For
short, in the sequel, we will simply call it the fan σ.
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Definition 3.3.3. A fan F in NR defines a toric variety XF in the following way: take
the disjoint union of the Xσ’s, for all σ in F , and, if σ and σ′ are cones of F , glue Xσ and
Xσ′ along Xσ∩σ′ .

XF :=

(⊔
σ∈F

Xσ

)
�
(
Xσ ∼

Xσ∩σ′
Xσ′

)
Proposition 3.3.4. The actions of the torus TN on each Xσ glue together, in agreement
with the gluing of the Xσ’s, giving rise to a global action of the torus on XF , under which
the torus TN is the unique n-dimensional orbit. Furthermore TN is open and dense in XF .

This is why we call it a toric variety. More generally:

Definition 3.3.5. A toric variety is an algebraic variety X containing a torus T (i.e. a
group isomorphic to ((C∗)n, .), for some n) as a Zariski dense open subset, for which the
action of T on itself by multiplication extends to the whole variety X.

Proposition 3.3.6. A toric variety is normal if and only if it can be defined by a fan.

One of the main advantages of such a description of a variety is that much topological
information about the variety is encoded combinatorially:

Proposition 3.3.7. (Decomposition into orbits.)
Let σ be a strongly convex polyhedral cone of dimension d belonging to a fan F in NR,

where N is n-dimensional. Let τ1, . . . , τk be the faces of σ of codimension 1.
Then

Oσ := Xσ \
⋃
Xτi

is an orbit of XF under the action of TN . It is made of all morphisms (σX∩M,+)→ (C,+)
that are different from zero exactly on σ⊥ ∩M .

In other words, a point of Oσ is a maximal ideal of C[σX ∩M ] containing the monomial
χm ∈ C[σX ∩M ] if and only if m /∈ σ⊥∩M .

Furthermore, the variety Oσ can be seen as

Oσ = Spec(C[σ⊥ ∩M ])

providing, non-canonically, the isomorphism

Oσ ' (C∗)n−d.

Remark 3.3.8. In particular, O{0} = TN .
Furthermore, if F = σ, then Oσ is the unique minimal-dimensional orbit in Xσ. If

dim(σ) = n, it is called the origin of Xσ, and denoted 0Xσ .

53



With this notation, if σ is of maximal dimension, we get the germ of toric variety
(Xσ, 0Xσ), or (Xσ, 0), whose local ring of germs of holomorphic functions is

OXσ ,0 = C{σX ∩M}.

Proof of proposition 3.3.7. An element of Xσ \
⋃
Xτi is a semigroup morphism φ : Sσ → C

that is not a semigroup morphism (Sτi ,+)→ (C, ·), for any i. Let us give a characterization
of such morphisms.
We know that σ⊥ ∩M ⊂ Sσ, and is a group, hence the morphism φ must be everywhere
different from 0 here.

On the other hand, if vi ∈ Sσ such that τi = v⊥i ∩ σ, we know by proposition 3.2.10 that
Sτi = Sσ + vi · Z60, hence if φ(vi) 6= 0, φ can be extended to Sτi . This means that we must
have φ(vi) = 0 for all such vi, for all i.

This discussion, combined with the decomposition σX = σ⊥ ⊕ 〈v1, . . . , vk〉R+ provided
by lemma 3.1.13, leads to the following characterization:

A point in Xσ \
⋃
Xτi is a semigroup morphism φ : (σX ∩M,+)→ (C, ·) such that:

∀ m ∈ σX ∩M,φ(m) 6= 0 iff m ∈ σ⊥.

This presents the set of points of Xσ \
⋃
Xτi as an orbit under the action of the torus.

Considering this for any cone of F will give us a decomposition of XF into orbits under
the action of the torus, a cone of F corresponding to an orbit:

XF =
⊔
σ∈F

Oσ.

Proposition 3.3.9. (Closure of an orbit.)
The closure in XF of an orbit corresponding to a cone τ ∈ F is made of the union of

the orbits corresponding to cones of F having τ as a face:

Oτ =
⋃
τ�σ

Oσ.

Remark 3.3.10. In particular, the unique closed orbits are the minimal-dimensional ones,
and we also get again the fact that TN is dense in XF , the cone {0} being a face of every
cone.

Proof of proposition 3.3.9. If τ � σ, then Sσ ⊂ Sτ , and σ⊥ ⊂ τ⊥. An element of Oτ is a
morphism (Sσ,+)→ (C, ·) that is zero exactly outside of τ⊥ ∩M , in particular it is zero
outside of σ⊥ ∩M . Hence any morphism that is zero outside of σ⊥ ∩M can be seen as limit
of elements of Oτ . Hence

τ � σ ⇒ Oσ ⊂ Oτ .
To conclude the equality, observe that every Xσ is an open subset of XF , and that if

τ ⊀ σ, then Oτ ∩Xσ = ∅.
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Remark 3.3.11. Note that this implies that 0Xσ(Nσ) is in the closure of every orbit of
Xσ(Nσ), every cone of the fan associated to σ being a face of σ.

, This leads to the following:

Remark 3.3.12. The geometry of Xσ(Nσ) is reflected in the germ (Xσ(Nσ), 0Xσ(Nσ)).

Proposition 3.3.13. The intrinsic variety Xσ(Nσ) is smooth if and only if σ is regular.

Proof. Indeed, Xσ(Nσ) is regular if and only if σXMσ
∩Mσ ' Nd, if and only if σXMσ

is regular,
if and only if σ is regular.

Proposition 3.3.14. Let σ ∈ F be a d-dimensional cone in an n-dimensional lattice N ,
and p ∈ Oσ ∈ XF . Then there is an isomorphism of analytic germs

(XF , p) ' (Xσ(Nσ), 0Xσ(Nσ))× Cn−d.

Proof. This equality comes from Proposition 3.3.9, implying that the only orbits whose
closure contain p are those corresponding to faces of τ . Hence we can identify XF at p with
the variety Xτ at any point of its minimal-dimensional orbit Oτ ' (C∗)n−d.

The previous results imply in particular the following:

Proposition 3.3.15. Let F be a fan in NR, and σ ∈ F . Then XF is smooth along Oσ, i.e.
at every point of Oσ, if and only if σ is regular.

Proposition 3.3.16. Let τ ∈ F . Then the closure Oτ of the orbit associated to τ in XF is
a toric variety, associated to the fan

F = {σ, τ � σ}

in N(τ), where N(τ) = N�Nτ
, and σ is the image of σ in N(τ)R.

Proof. We already know that any point in Oτ is a morphism (Sσ,+)→ (C, ·) that is zero
outside of τ⊥, for some σ such that τ � σ. It is entirely determined by its restriction to
M(τ) := τ⊥ ∩M . Hence one can see it as a morphism τ⊥ ∩ σX → C. Now note that Nτ is
canonically dual to Mτ , and that

(
σX ∩ τ⊥

)X
= σ.

Let us study compactness properties in toric varieties:

Definition 3.3.17. A cone σ in a fan F is said to be an external cone if σ ⊂ ∂|F |, where
∂|F | denotes the topological boundary of the subset |F | in NR. Any other cone of F is called
internal.

Example 3.3.18. Heuristically, a cone is internal if it is of maximal dimension or “sur-
rounded” by cones of F . In the variety corresponding to the fan represented in figure 3.1,
the only internal cones are τ2, σ1 and σ2.
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τ1

τ2

τ3

τ40

Figure 3.1: A fan in a 2-dimensional lattice.

Proposition 3.3.19. The closure of the orbit Oσ ⊂ XF is compact iff σ is an internal cone
of F .

Recalling that a fan is a finite union of cones, the previous proposition has the following
immediate consequence:

Proposition 3.3.20. The variety XF is compact iff the support |F | of the fan F to which
it is associated is equal to the whole of NR.

3.4 The modification defined by a refinement

Definition 3.4.1. A refinement of a fan F in NR is another fan F ′ in NR such that:

|F | = |F ′| and ∀ σ′ ∈ F ′, ∃ σ ∈ F such that σ′ ⊂ σ.

A refinement of a cone is a refinement of the fan formed by its faces.

Definition 3.4.2. Let F be a fan in N , and F ′ a refinement of F .
The toric morphism ΠF ′,F : XF ′ → XF associated to this refinement is obtained by

gluing the morphisms given by the inclusions of cones of F ′ in the cones of F , defined in
Proposition 3.2.9.

Recall Definition 2.2.5 of a modification.

Proposition 3.4.3. The morphism ΠF ′,F is a modification of XF . It has the following
combinatorial property: if σ′ ∈ F ′, let σ be the minimal cone of F containing σ′. Then
ΠF ′,F (Oσ′) ⊂ Oσ.
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The critical locus EF ′,F of ΠF ′,F is exactly the union⊔
τ∈F ′,τ /∈F

Oτ ∈ XF ′

of orbits of XF ′ corresponding to new cones, and the discriminant locus ∆(ΠF ′,F ) is⊔
τ∈F ,τ /∈F ′

Oτ ∈ XF ,

the union of orbits of XF corresponding to cones that have been subdivided.

3.5 Modification associated to a germ of function

3.5.1 Local Newton polyhedron and the associated modification

Let N be an n-dimensional lattice, σ ⊂ NR be a strongly convex cone, and (Xσ, 0) the germ
of affine normal variety associated to it. Let f ∈ C{σX ∩M}. We want to study the germ
of hypersurface (V (f), 0) ⊂ (Xσ, 0), where V (f) is the zero locus of f on Xσ.

In order to do this, let us introduce the Local Newton Polyhedron of a germ of function
on a germ of normal toric variety. To define this we will refer to the following

Definition 3.5.1. Let A,B be two subsets of an abelian semigroup (S,+). TheirMinkowski
sum A+B ⊂ S is defined by

A+B := {a+ b, a ∈ A, b ∈ B}.

Definition 3.5.2. • Let f =
∑

mi∈σX∩M
aiχ

mi ∈ C{σX ∩M}. The support of f is:

Supp(f) :=
⋃
ai 6=0

{mi} ⊂ σX ∩M

• The Local Newton polyhedron of f at the origin of Xσ is defined as

LNP(f) := Conv
(
Supp(f) + σX

)
where “+′′ denotes the Minkowski sum in σX.

This definition of Newton polyhedron for general germs may be found in [61, Definition
5], or [53, Definition 8.7].
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Lemma 3.5.3. The ideal I(τ) ⊂ C{σX ∩M} of functions cancelling on the orbit Oτ of Xσ

is made of the functions f ∈ C{σX ∩M} such that Supp(f) ∩ τ⊥ = ∅.

Definition 3.5.4. A function f ∈ C{σX ∩M} is called suitable if V (f) does not contain
any (n− 1)-dimensional orbit of Xσ, or equivalently, if Supp(f) has points in each (n− 1)-
dimensional face of σX.

In the sequel, every function considered will be suitable.
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∆1 : br + as = ab

Figure 3.2: The local Newton polyhedron of xa − θ · ybzc ∈ C[x, y, z] in M = Z3
r,s,t.

Example 3.5.5. Figure 3.2 shows the local Newton polyhedron of the function h(x, y, z) =
xa − θ · ybzc defined on (C3, 0) = Spec

(
C{N3

r,s,t}
)
, for θ ∈ C∗. Here, to each point

corresponding to an element of Supp(f), we added the positive octant, corresponding to
(C3, 0). We used lighter colors for the faces situated in the planes of coordinates.

The equations of the faces of codimension 1 will turn out to be important when we will
use this object to define a modification of the ambient germ.
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Definition 3.5.6. Let v ∈ σ, and f ∈ C{σX ∩M}. Define the height of LNP(f) in the
direction v to be

hv(f) := min
m∈LNP(f)

〈m, v〉 ∈ R+.

Definition 3.5.7. A face of LNP(f) is any subset of the form

∆v := {m ∈ LNP (f), 〈m, v〉 = hv(f)}

for some v ∈ σ.

Remark 3.5.8. Note that ∆0 = LNP(f).

Definition 3.5.9. Let σ be a cone in N , and f ∈ C{σX ∩M}. Let ∆ be a face of LNP(f)
of dimension d. Then the set

τ∆ := {v ∈ σ,∆v = ∆} = {v ∈ σ/∀ m ∈ ∆, 〈m, v〉 = hv(f)}

is a cone of codimension d contained in σ. The set

Ff := {τ∆,∆ ⊂ LNP(f)}

is the fan associated to f .
The morphism ΠFf : XFf → Xσ coming from the refinement of σ is called the modifi-

cation of Xσ associated to f .

The fan Ff is a refinement of the cone σ, in the sense of Definition 3.4.1.

Example 3.5.10. Figure 3.3 shows the fan in N associated to the function xa − θybzc ∈
C{x, y, z}. The notation (a, b) stands short for gcd(a, b). This figure shows the fan “seen
from the origin”, i.e. this drawing is meant to be understood as the cone over what is drawn,
with vertex the origin. This is the way we will represent 3-dimensional fans in the following
drawings.

Remark 3.5.11. It is important to notice that, on any cone belonging to the fan Ff , the
height hv(f) is linear in the argument v.

This cutting of σ in domains of linearity of the height function is in fact an alternative
definition of the fan associated to the function f .

Remark 3.5.12. The definition of τ∆ implies that the face ∆ is “parallel” to τ⊥, in the
sense that there is a non-unique element v∆ ∈M such that {v∆}+ τ⊥ is the affine subspace
of MR spanned by ∆.

Furthermore ∆1 ⊂ ∆2 ⇔ τ∆2 � τ∆1. Hence, again, there is a correspondence between
the faces of LNP(f) and the orbits of XFf . This correspondence will not hold anymore as
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Figure 3.3: The fan associated to xa − θ · ybzc ∈ C[x, y, z].

soon as we will refine Ff , but is still pertinent. For ∆ a face of LNP(f), we will sometimes
denote

O∆ := Oτ∆ ∈ XFf .

It is also clear that
O∆ =

⊔
∆′⊂∆

O∆′ .

Now, the modification of Xσ associated to f is adapted to the function f in the following
sense:

3.5.2 Behaviour of the strict tranform, Newton-nondegeneracy

Let F be a refinement of Ff , and τ ⊂ σ a cone of F . Denote

ΠF : (XF , EF )→ (Xσ, 0)

the modification associated to F , and f̃ = f ◦ΠF the pullback of f by this modification.
Let

∆τ := {m ∈ LNP(f), ∀ v ∈ τ, 〈m, v〉 = hv(f)} .
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Note that we may have τ 6= τ ′ and still ∆τ = ∆τ ′ . However, the assumption that F is a
refinement of Ff ensures that this definition makes sense. In fact, if γ is the minimal cone
of Ff containing τ , then ∆τ = ∆γ .

Note also that dim(∆τ ) 6 codim(τ), and that τ � σ ⇒ ∆σ ⊂ ∆τ .
Let us study the intersection of the strict transform of V (f) with the orbit Oτ ∈ XF .

Pick a basis v1, · · · , vn of the Z-module N , such that

∀ i ∈ {1, . . . , d}, vi ∈ τ and ∀ i ∈ {d+ 1, . . . , n}, vi ∈ σ \ τ.

Denote m1, · · · ,mn its dual basis in M , that is, ∀ i, j, 〈mi, vj〉 = δi,j . This implies in
particular that the family (mi)d+16i6n is a basis of the Z-module τ⊥.

Denote M ′ the sub Z-module of M generated by the family v1, · · · , vd. We have

M =
(
M ∩ τ⊥

)
⊕M ′.

Now, if m ∈ σX, then m =
∑
〈m, vi〉vi, and ∀ i, 〈m, vi〉 > 0, because every vi is in σ.

Furthermore,
m ∈ ∆τ ⇔ ∀ 1 6 i 6 d, 〈m, vi〉 = hvi(f).

Remark 3.5.13. Note that Oτ is compact if and only if ∆τ is compact. This comes from
the fact that the only faces that are “surrounded” by other faces are the compact ones.

Furthermore, Proposition 3.4.3 implies

Lemma 3.5.14. The preimage EF of the origin of Xσ by the modification ΠF is equal to⊔
τ :∆τ compact

Oτ .

Definition 3.5.15. For a face ∆ of LNP(f), of any dimension, we define f∆, f trun-
cated relatively to the face ∆, as the function obtained by keeping only the terms of f
corresponding to points of this face:

f∆ :=
∑
mi∈∆

aiχ
mi .

Denoting hi := hvi(f), this definition, combined with the preceding considerations,
provides the factorization

f = χh1m1+···+hdmd
(
f̃τ + g

)
where

f̃τ :=
f∆τ

χh1m1+···+hdmd
∈ C[τ⊥ ∩M ],

and every monomial of g is divisible by χmi , for some 1 6 i 6 d.
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In addition, the orbit Oτ is characterized by:

Oτ = {x ∈ XF , χmi(x) 6= 0 iff d+ 1 6 i 6 n} .

This leads us to:

Lemma 3.5.16. The intersection of the strict transform Ṽ (f) of V (f) with the orbit
Oτ = Spec (C[χ±md+1 , · · · , χ±mn ]) of XF associated to the cone τ ∈ F is given by

Ṽ (f) ∩Oτ =
{
f̃τ = 0

}
.

Furthermore, we can deduce from the previous paragraph:

Lemma 3.5.17. If τ = 〈v〉R+ for some primitive vector v in N , then f̃ := f ◦ΠF vanishes
along Oτ , and the multiplicity of f̃ along this hypersurface is

mOτ
(f̃) = hv(f).

The polynomial f̃τ depends on the initial choice of the basis (vi)16i6n, but it is always,
up to a monomial of C[M ′ ∩ σX], equal to f∆τ .

Remark 3.5.18. A direct consequence is that if F is a refinement of Ff , and τ ∈ F , then

Ṽ (f) ∩Oτ 6= ∅ iff dim ∆τ > 1.

The following elementary lemma establishes then the final link between the regularity of
Ṽ (f) ∩Oτ and the initial function f .

Lemma 3.5.19. Let n > k, and Xm ∈ C[X±1
1 , · · · , X±1

n ]. Then the polynomial f ∈
C[X±1

1 , · · · , X±1
k ] defines a smooth hypersurface of (C∗)k if and only if Xm · f defines a

smooth hypersurface of (C∗)n.

This motivates the following definition, see also [61, Definition 5]:

Definition 3.5.20.

• A germ of suitable function f ∈ C{σX ∩M} is said to be nondegenerate relatively
to a compact face ∆ ⊂ LNP(f) if and only if V (f∆) is smooth in (C∗)n.

• A germ of function is said to be Newton-nondegenerate, or NND if it is nonde-
generate relatively to every compact face of its local Newton polyhedron.

Example 3.5.21. Any suitable binomial is Newton-nondegenerate.

The previous paragraph implies:
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Proposition 3.5.22. Let f ∈ C{σX ∩M} be a NND germ of analytic function on (Xσ, 0),
and F a refinement of Ff , such that XF is smooth along Oτ and ∆τ is compact. Then the
intersection Ṽ (f) ∩ Oτ is smooth, and at any point p of this intersection,

(
Ṽ (f), p

)
is a

germ of smooth hypersurface of XF intersecting Oτ transversally.

Denote E := Ṽ (f) ∩ EF . Lemma 3.5.14 implies that

E =
⊔

∆τ compact

Oτ ∩ Ṽ (f).

Then
π := ΠF |Ṽ (f)

: (Ṽ (f), E)→ (V (f), 0)

is a modification of the germ (V (f), 0), and the previous proposition implies

Corollary 3.5.23. Let f be a germ of NND function on (Xσ, 0) and F a refinement of Ff
such that any cone τ ∈ F such that ∆τ is compact and dim(∆τ ) > 1 is regular. Then the
modification π : (Ṽ (f), E)→ (V (f), 0) is a resolution of the germ (V (f), 0).

Furthermore, lemma 3.5.16 implies the following, that will be heavily used in Chapter 5:

Proposition 3.5.24. Let f be a Newton-nondegenerate function on Xσ, and F be a
refinement of Ff . Let τ be a cone of F , such that ∆τ is compact. Then,

• If codim(τ) = 1, denote l(∆τ ) the integral length of this face in M . Then

Card
(
Ṽ (f) ∩Oτ

)
= l(∆τ ).

• If codim(τ) = 2, denote i(∆τ ) the number of points of M in the interior of ∆τ . Then

C(τ) := Ṽ (f) ∩Oτ

is a smooth curve. Furthermore, if dim(∆τ ) = 2, this curve is irreducible and

g(C(τ)) = i(∆τ ).

If dim(∆τ ) = 1, C(τ) is a disjoint union of l(∆τ ) smooth curves of genus 0.

Remark 3.5.25. Let us remind that, in both cases, if dim(∆τ ) = 0, then Ṽ (f) ∩Oτ = ∅.

Let us conclude this section with a lemma giving a precise meaning to the genericity of
Newton-nondegenerate functions.

Lemma 3.5.26. Let f be a holomorphic function on Xσ. Then in the space of coefficients
of all those functions h such that LNP(h) = LNP(f), those which are non-degenerate are
Zariski-dense.
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3.5.3 Application to some Hirzebruch-Jung singularities

Let us treat as an example the particular case of Hirzebruch-Jung singularities. Such
singularities appear in the proof of the main result (see Subsections 4.11.2 and 4.11.3).

Definition 3.5.27. A Hirzebruch-Jung singularity is any multigerm of the form({
xa − θ · ybzc = 0

}
, 0
)norm

, θ ∈ C∗.

Usually one considers only irreducible Hirzebruch-Jung singularities (i.e when gcd(a, b, c) =
1). Therefore the previous definition is a slight extension of the usual notion.

The tools developed earlier can be applied to compute a description and a resolution of
such singularities.

Denote h(x, y, z) := xa − θybzc, and, as usual, V (h) := {h = 0} ⊂ C3. Denote by V (h)
the strict tranform of V (h) by the modification ΠFh of C3 associated to h. This modification
is given by the fan described in figure 3.3. Denote by

norm : V (h)→ V (h)

the restriction of ΠFh to the strict transform of V (h).

Lemma 3.5.28. (See [20]). The morphism norm is a normalization of V (h).

Example 3.5.29. Figure 3.5.3 shows in blue and orange the preimages by the normalization
of the axes of coordinates contained in V (h). These non-compact curves are represented as
arrows. Proposition 3.5.24 implies that V (h) intersects Oγ = ΠFh

−1(0) in

d := (a, b, c)

points p1, · · · , pd. At each pi ∈ Oγ, the variety V (h) “inherits” the transversal singularity
(Xγ(Nγ), 0) of XFh along Oγ.

The morphism of multigerms

norm :
((
V (h), p1

)⊔
, · · · ,

⊔(
V (h), pd

))
→ (V (h), 0)

is a first step towards a resolution of (V (h), 0). We know that the only singularities of V (h)
are located at its intersections with orbits along which XFh is singular.

The only possible such orbit is Oγ . The variety XFh is singular along it iff the cone γ is
singular.

There is a canonical way to subdivide a singular 2-dimensional cone in regular cones.
See [50, Section 2.2].
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norm∗
(fx = y = 0g)

Oτ1

Oτ2

Oγ

norm∗
(fx = z = 0g)

Xγ(Nγ)

: : :p1
p2

pd

Figure 3.4: Preimages of the axes {x = y = 0} and {x = z = 0} by the normalization of
V (h).

Lemma 3.5.30. Let γ := 〈u, v〉R+ ⊂ NR be a 2-dimensional cone. Let δ = det(u, v). If
δ 6= 1, there is a unique α ∈ {1, · · · , δ − 1} such that

u1 :=
1

δ
· (αu+ v) ∈ N. (3.1)

Let
δ

α
= k1 −

1

k2 −
1

· · · −
1

kl

(3.2)

be the negative continued fraction expansion of
δ

α
. Set u =: u0, u1, · · · , ul, ul+1 := v, such

that ∀ 2 6 i 6 l,
ui := ki−1ui−1 − ui−2. (3.3)

Then ∀ 0 6 i 6 l, the cone
γi := 〈ui, ui+1〉R+

is regular.

Proposition 3.5.31. The collection of 2-dimensional cones obtained by the above process is
the minimal regular subdivision of γ in the sense of refinements. It is called the canonical
regular subdivision of γ. One says that we subdivided γ regularly.
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Figure 3.5: A possible F .

Simple computations lead to:

Lemma 3.5.32. In our case,

δ =
ad

(a, c)(a, b)
(3.4)

and α is the unique integer in [0, δ − 1] such that

ad | αc(a, b) + b(a, c). (3.5)

Now we can use this refinement of γ to build a new fan F , refining Fh, such that
XFh will be regular along the orbits intersected by the strict tranform Ṽ (h) of V (h) by
ΠFh ◦ΠF ,Fh = ΠF . Note that Ṽ (h) is also the strict transform of V (h) by ΠF ,Fh .

Figure 3.5 shows a possible fan F . The only orbits that are intersected correspond to
colored cones, the γi’s or 〈uj〉’s. Proposition 3.5.24 implies that, among them, each orbit of
dimension 2 is intersected by a disjoint union of d = (a, b, c) rational curves, and each orbit
of dimension 1 is intersected in d points. Along each one of these orbits, the variety XF is
smooth. Hence the strict transform Ṽ (h) of V (h) by ΠF ,Fh is also smooth. Denote

π := ΠF ,Fh|Ṽ (h)
: Ṽ (h)→ V (h), and Π := ΠF |Ṽ (h)

.
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The situation is summarized in the diagram of Figure 3.6.

V (h)

V (h)

Ṽ (h)

π

norm

Π

Figure 3.6: The successive toric modifications.

The morphism π is a resolution of V (h), while Π is a resolution of V (h). Their common
exceptional divisor is a disjoint union of (a, b, c) identical chains of smooth ratio-
nal curves intersecting transversally. Furthermore, by compatibility of the complex
orientations, we get:

Lemma 3.5.33. At any intersection point of two such curves, the combination of the
complex orientation of each of them gives the ambient complex orientation of Ṽ (h).

Ohu i

i

Ohu0i

Ohu4i

Oγ0

Oγ1

Oγ2

Oγ3

(norm ◦ π)∗(fx = y = 0g)

(norm ◦ π)∗(fx = z = 0g)

Figure 3.7: The configuration of curves.
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Figure 3.7 shows a visualization of this configuration in the case l = 3, d = 3. The
arrows represent the non-compact curves of intersection of Ṽ (h) with the non-compact
orbits corresponding to 〈u0〉 and 〈ul+1〉.

The self-intersection of each compact curve in Ṽ (h) is given by the number −ki. In order
to see this, let us compute the multiplicities of some regular function g on Ṽ (h) such that g
vanishes on each of those curves. Such a function is adapted to the exceptional divisor of the
resolution in the sense of Definition 2.7.4, allowing the computation of the self-intersections
of its irreducible components by the use of Lemma 2.7.7.

Let n1, n2, n3 ∈ N, and g(x, y, z) := xn1yn2zn3 . Then the multiplicities of the pullback
of g by Π on each curve of one of these chains are indicated on figure 3.8. Each vertex
corresponds to one of the curves, with an arrow for the non-compact ones. The multiplicities
µi = hui(g) are written in parenthesis, and they verify

∀ 1 6 i 6 l, µi+1 = µi−1 − ki · µi (3.6)

because the height function for the monomial g is linear, and because of the relation (3.3)
of lemma 3.5.30. In particular, the linearity of the multiplicity provides the value

µ1 =
αµ0 + µl+1

δ
. (3.7)

In conclusion, starting from the values a, b, c, Equations (3.4), (3.5) provide δ and α,
hence the integers ki via Equation (3.2). If δ = 1, the collection of ki’s is empty. Finally,
Equation (3.7) provides the value of µ1, while (3.6) provides the other multiplicities.

: : :
−k1−k2−k3−kl

(

c·n1+a·n3

(a;c)

)

(

b·n1+a·n2

(a;b)

)

(µ1)(µl) (µ2)(µ3) (µ0) =(µl+1) =

g
C0

g
Cl+1

g
C1

g
C2

g
C3

f
Cl

: : :

Figure 3.8: The string Str(a; b, c|n1;n2, n3).

Notation 3.5.34. The bamboo of figure 3.8 is denoted

Str(a; b, c|n1;n2, n3)

following to a certain extent the notation introduced in [46, Definition 4.3.10].
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3.5.4 Counting points of intersection

In this section, we present the theorem of Bernstein-Koushnirenko-Khovanskii (see [2, 50,
11, 62]), which will be useful for the toric version of the main algorithm.

In the sequel, M is an n-dimensional lattice, and we denote N := MX.

Definition 3.5.35. Denote P(M) the set of convex polytopes in MR with vertices in M .
Call volume the only function

V ol : P(M)→ R+

defined by the following rules:

1. dim(P ) 6 n− 1⇒ V ol(P ) = 0.

2. V ol is invariant by translation.

3. If m1, · · · ,mn is a basis of the Z-module M , V ol (Conv(0,m1, · · · ,mn)) = 1.

4. V ol(P ∪Q) = V ol(P ) + V ol(Q)− V ol(P ∩Q) whenever P ∪Q is convex.

Definition 3.5.36. If P ∈P(M) and λ ∈ Z, denote

λ · P = {λ · a, a ∈ P}.

Relatively to this multiplication and the Minkowski sum, there exists a unique n-linear
form V on P(M) such that

V (P, · · · , P ) = V ol(P ).

If P1, · · · , Pn ∈P(M), the number V (P1, · · · , Pn) is called themixed volume of P1, · · · , Pn.

The mixed volume is a non-negative integer. See [18, Section 5.4], and [11, Theorem
7.4.12] for more properties of the mixed volume.

Let P ∈P(M). Adapting the construction of a fan from a local Newton polyhedron
executed in subsection 3.5.1, we will talk about the inner normal fan FP associated to the
polytope P .

In this context, the fan FP will always be complete, in the sense that its support |FP |
is always equal to MR. The birational map

ΠFP ,MR : XFP → XMR

is a compactification of the torus XMR ' (C∗)n.

Remark 3.5.37. Note that F∑Pi is the minimal fan that is a refinement of each FPi.

Definition 3.5.38. If f ∈ C[M ], denote

P (f) := Conv (Supp(f))

the Newton polytope of f .
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Now, let f1, · · · , fn ∈ C[M ], denote Pi = P (fi), and P =
n∑
i=1

Pi. Denote Ṽ (fi) the strict

tranform of V (fi) by the modification ΠFP ,MR .

Theorem 3.5.39. (The Bernstein-Koushnirenko-Khovanskii theorem, [11, Theo-
rem 7.5.4].)

For a generic choice of coefficients for each fi, with fixed Newton polytopes,

Card
(
Ṽ (f1) ∩ · · · ∩ Ṽ (fn)

)
= V (P1, · · · , Pn)

and this intersection is entirely realized in the n-dimensional orbit O0 of XFP .

Furthermore the union Ṽ (f1) ∪ · · · ∪ Ṽ (fn) is a simple normal crossings divisor at
Ṽ (f1) ∩ · · · ∩ Ṽ (fn), in the sense of Definition 2.2.4.

In this theorem, the genericity of the choice of the coefficients means that each function
should be Newton-nondegenerate, and that the surfaces V (fi) should be in relative generic
positions.

Remark 3.5.40. In the continuity of Remark 3.5.37, note that Ff1···fn = FP1+···+Pn, and
is the minimal refinement of the cone MR which is a refinement of each Ffi .

For us, Theorem 3.5.39 will be used through the following corollary:

Corollary 3.5.41. Let M be a 2-dimensional lattice, and let f ∈ C[M ] be a Newton-
nondegenerate function. Denote P1 := P (f). Then for any P2 ∈P(M), a generic choice
of coefficients for the elements of P2 ∩M will provide a function g such that P (g) = P2

and, denoting P = P1 + P2, the compactifications Ṽ (f) and Ṽ (g) of V (f) and V (g) in XFP
intersect transversally only on O0, in V (P1, P2) points.

Remark 3.5.42. To compute 2-dimensional mixed volumes, one can use the identity

V (P1, P2) =
V ol(P1 + P2)− V ol(P1)− V ol(P2)

2!

which has an analogue in dimension n.
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Chapter 4

The general result and the main
algorithm

4.1 Introduction and strategy

Let (X, 0) be a germ of complex analytic variety of dimension 3, and let f : (X, 0)→ (C, 0)
be a germ of holomorphic function on (X, 0). The function f defines a germ (V (f), 0)
of hypersurface on (X, 0), where V (f) := {x ∈ X, f(x) = 0}. Denote by Sing(V (f)) the
singular locus of V (f), and by Sing(X) the one of X. We are about to introduce the
well-known Milnor fibration associated to f , after a few preliminary definitions. In the
sequel, if (X, 0) is a germ, X will denote a representative of this germ.

Definition 4.1.1. We say that a real-analytic function ρ : X → R+ defines 0 in X if 0
is isolated in ρ−1(0), i.e. if there is another representative X ′ ⊂ X of (X, 0) such that
ρ−1
|X′(0) = {0}.

Theorem 4.1.2. (H. Hamm, [22, Satz 1.6], Lê [29, Theorem 1.1])
Given a real-analytic function ρ defining 0 in X, and ε > 0, denote Xε := X ∩ ρ−1([0, ε)),
and Sε := X ∩ {ρ = ε}. Let f : (X, 0)→ (C, 0) be a germ of holomorphic function, such that
X \ V (f) is smooth. Then there exists ε0 > 0, such that ∀ 0 < ε 6 ε0, ∃ δε > 0 such that
∀ 0 < δ 6 δε, the following two maps are diffeomorphic smooth fibrations:

• f
|f | : Sε \ V (f)→ S1

• f : ∂ ({|f | = δ} ∩Xε)→ ∂ (Dδ), where Dδ denotes the closed disc of radius δ around
0 in C.

Definition 4.1.3. The first of the two fibrations above is referred to as theMilnor fibration
of f , and the second one is called the Milnor-Lê fibration (see [29, Theorem 1.1]). The
closure of the fiber of the Milnor-Lê fibration is called the Milnor fiber of the germ of
function f .
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Remark 4.1.4. The Milnor-Lê fibration is also sometimes referred to as the Milnor fibration.
Using transversality arguments, one may show that the diffeomorphism type of the Milnor

fiber does not depend on the chosen representative, so we speak about the Milnor fiber of
the germ of function f ∈ OX,0

The goal of the present chapter is to generalize:

Theorem 4.1.5. (Michel-Pichon, [32], [33], [34], Némethi-Szilard, [46, 10.2.10])
If (X, 0) = (C3, 0), then the boundary of the Milnor fiber of the reduced function f is an

oriented 3-manifold, which can be represented by an orientable plumbing graph.

The main theorem of this thesis is the following generalization of Theorem 4.1.5:

Theorem 4.1.6. Let (X, 0) be a germ of 3-dimensional complex analytic variety, and
f : (X, 0)→ (C, 0) a germ of holomorphic function on (X, 0), such that V (f) ⊃ Sing(X).
Then the boundary of the Milnor fiber of f is an oriented 3-manifold, which can be represented
by an orientable plumbing graph.

When (X, 0) has isolated singularity, an extension of this theorem to functions of the
type fg was already proved by Fernández de Bobadilla and Menegon Neto in [16]. Our
theorem extends this result to any ambient germ, with possibly non-isolated singularity.
The study of a class of examples of this type is carried out explicitly in Chapter 5, in the
case of toric ambient germs.

4.1.7. The strategy. Our strategy of proof generalizes that developed by Némethi and
Szilárd in [46], with some complications, due to the singular locus of X, along which the
transversal type of X may be arbitrarily complicated. As in [46], our proof provides a
method for the computation of the boundary of the Milnor fiber, but the singular locus of
X imposes the need for additional considerations.

• As a prelude, in section 4.3, we show that the ambient germ X can be assumed to be
normal.

• Then, in section 4.4, with the help of a second function g in general position relatively
to f , we will build a new germ of variety (Sk, 0), which will have the same boundary
as the Milnor fiber. This variety will have an isolated singularity at the origin, but
will be real-analytic, instead of complex-analytic.

• The rest of the proof, from Sections 4.5 to 4.11, essentially consists in building an
adapted resolution of Sk, i.e. a proper map from a 4-dimensional manifold to Sk,
which will be an analytic isomorphism outside the preimage of the origin. The preimage
E of 0 by this resolution will be a simple configuration of smooth surfaces. We obtain
a function g which is adapted to E in the sense of Definition 2.7.4, and therefore allows
the computation of the self-intersections of the irreducible components of E, using
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Lemma 2.7.7. Finally, we also obtain a rug function ρ for E, in the sense of Definition
2.7.8, which defines a tubular neighbourhood of E whose boundary is therefore, by
Theorem 2.7.9, a graph manifold described by E.
Finally, in Section 4.12, using the fact that the resolution is an orientation-preserving
analytic isomorphism outside the origin, one concludes the proof that the link of Sk

is the same graph manifold as the boundary of the tubular neighbourhood of E. This
part is introduced in section 4.5. The resolution is constructed step by step as a
composition of several real-analytic modifications, defined and studied from section
4.6 to section 4.11.

• Along the process, one keeps track of the structure of the preimage of the origin by the
previous modifications, therefore computing a plumbing graph for the boundary of Sk,
hence also for the boundary of the Milnor fiber. This structure will be encoded in a
graph that we will modify at each step of the process, according to the data in it. This
process will be called the main algorithm, because of the possibility in some cases,
as for example the case (X, 0) = (C3, 0), for one to blindly apply calculation rules to
an initial decorated graph in order to obtain a plumbing graph for the boundary of
the Milnor fiber of f . The explicit construction of the initial decorated graph is the
object of section 4.9.

4.1.1 Main contibutions

As mentioned earlier, this work is an extension of the proof carried out by Némethi and
Szilárd in [46] for the case where X is smooth. Before proceeding to our proof, let us stress
out the main differences that had to be introduced to carry out the proof in the general
case:

• The Definition 4.4.2 of a companion is a new ad hoc definition introduced in order
to keep the main properties of an Isolated Complete Intersection Singularity (ICIS),
which is the notion used in [46]. As mentioned in Lemma 4.4.4, if the ambient germ
X is a complete intersection, our definition is a restriction of the one of ICIS. The
proof of the fact that a companion always exists required the use of more results of
the literature, as explained in proof of Lemma 4.4.8.

• Instead of using an embedded resolution as in 6.1.2 of [46], we introduce the notion of
adapted modification, see Definition 4.6.1. This different definition is less restrictive
but still good enough to carry out the computation, and allows simpler computations
in the toric case studied in Chapter 5.

• In the general case, the computation of the Milnor fiber requires the use of data

that do not appear in the decorated graph
?
Γ (C ) which is the starting point of the
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algorithm presented in the Chapter 10 of [46]. Those data, related to the singular
locus of X, are of two kinds.

– The first is the collection of switches associated to a non-rational curve of C ,
introduced in Subsection 4.10.2.

– The second is a datum concerning the global arrangement of irreducible compo-

nents of the variety S̃k when one follows a cycle in the graph
?
Γ (C ). This second

problem is explained in Subsection 4.10.4.

Both these data are unnecessary in the case where X is smooth, as shown by Némethi
and Szilárd. In Chapter 5, we prove that even in the more general case where (X, 0)
is a germ of normal toric variety and the function f is Newton-nondegenerate, one
does not need these data.

• Our approach of the problems of orientations is quite different from the one developed
in [46], because we carefully keep track from the beginning of an orientation for every
object appearing in the process of computation. The questions of orientations represent
one of the main differences with the case of links of isolated singularities of complex
surfaces, and this is a rather delicate point to carry out.

4.2 Deformation theoretical reformulation of our main theo-
rem

The main Theorem 4.1.6 may be reformulated in the language of 1-parameter deformations.
We recall here this language.

Definition 4.2.1. A 1-parameter deformation of a reduced germ of complex surface
(S, s) is a holomorphic morphism f : (X,x) → (C, 0), where (X,x) is an equidimensional
germ of complex 3-dimensional analytic space, together with an isomorphism between (S, s)
and the special fiber (f−1(0), x).

Definition 4.2.2. A 1-parameter deformation is called a smoothing whenever its generic
fibers are smooth in a neighborhood of x in X.

Now, the hypothesis for f : (X,x)→ (C, 0) to be a smoothing of (S, s) implies that one
has the hypotheses of Theorem 4.1.2, and can then talk about the Milnor fiber of f , in the
sense, again, of the Milnor-Lê fibration. In this context it is also referred to as the Milnor
fiber of the smoothing.

Hence, the main theorem can be reformulated as:

Theorem 4.2.3. The boundary of the Milnor fiber of a smoothing of a reduced singularity
of complex surface is a graph manifold which can be represented by an orientable plumbing
graph.
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4.3 The ambient germ can be assumed normal

First, let us show that we can suppose the ambient germ of variety (X, 0) to be normal:

Lemma 4.3.1. Let (X, 0) be a germ of complex variety of dimension 3, and let N : (X,x)→
(X, 0) be its normalization. Let f be a germ of analytic function on (X, 0). Then N provides
an orientation-preserving isomorphism of complex-analytic manifolds from the Milnor fiber
of f̃ : = f ◦N defined on the normal germ (X,x) to the one of f .

Proof. Let (X,x) = (X1, x1)
⊔
· · ·
⊔

(Xk, xk)
N−→ (X, 0) be the normalization of (X, 0). Then

f and r induce analytic functions fi = f ◦N, ri = r ◦N on each Xi, and ri defines xi in Xi.
Now, let ε > 0, δε > 0 be adapted (in the sense of Theorem 4.1.2) to every triple (fi, ri, Xi),
and to (f, r,X).
In this situation, we now have a disjoint union of Milnor fibers F1

⊔
· · ·
⊔
Fk inX1

⊔
· · ·
⊔
Xk,

each associated with the analytic function fi, Fi = f−1
i (δ) ∩Xiε , and N provides a diffeo-

morphism between F , the Milnor fiber of f , and F1
⊔
· · ·
⊔
Fk, because

F = f−1(δ) ∩Xε ⊂ Sm(X),

and Sm(X) is itself contained in the set of normal points of X.

4.4 The real-analytic variety Sk

From now on, unless stated otherwise, the ambient variety X will be assumed normal.
The goal of this section is to introduce a 4-dimensional real analytic variety with isolated

singularity (Sk, 0), which is built in such a way as to have a link diffeomorphic to the
boundary of the Milnor fiber of f .

Let us introduce a second function g, that will be used as a computational tool.

Definition 4.4.1. Let g : (X, 0)→ (C, 0) be a reduced holomorphic function. Together, f
and g define a germ of morphism Φ := (f, g) : (X, 0)→ (C2, 0).

The critical locus of Φ, denoted CΦ, is the closure of the set of smooth points of X
where Φ is not a local submersion.

The discriminant locus of Φ, denoted by ∆Φ, is the image of CΦ by Φ.

For our purposes, the function g must be in a generic position relatively to f , more
precisely we will ask g to be a companion of f in the following sense:

Definition 4.4.2. We say that the holomorphic function g : (X, 0)→ (C, 0) is a companion
of f if it satisfies the following conditions:

1. The surface V (g) is smooth outside the origin.

2. V (g) ∩ Sing(V (f)) = {0}.
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3. The surfaces V (g) and V (f) intersect transversally outside the origin, along a smooth
punctured curve.

4. The discriminant locus ∆Φ is an analytic curve.

Remark 4.4.3. This definition is analogue to that of “Isolated Complete Intersection
Singularity” (ICIS) described in the work [46] of Némethi and Szilárd, in section 3.1, or in
the book [31] of Looijenga. The denomination “companion” is introduced for the first time in
this work. It is a little different from the one of ICIS, mainly to adapt it to any ambient
normal germ (X, 0) while keeping the fundamental properties of Definition 4.4.2 that are
also verified by ICIS.

Theorem 2.8, point (vi) of [31] implies the following:

Lemma 4.4.4. Let (X, 0) be a complete intersection singularity

(X, 0) = (V (f1, · · · , fN−3), 0) ⊂ (CN , 0)

and g a companion of f . Denote F and G holomorphic functions extending respectively
f and g to CN . Then the morphism Φ̃ := (f1, · · · , fN−3, F,G) is an Isolated Complete
Intersection Singularity.

Definition 4.4.5. (See [31, 2.8]) The diffeomorphism type of Φ−1(x, y), (x, y) /∈ ∆Φ is
called the Milnor fiber of Φ. In the same way, the diffeomorphism type of Φ̃−1(x), x /∈ ∆

Φ̃

is called the Milnor fiber of Φ̃.

Note that if (x, y) /∈ ∆Φ, then (0, · · · , 0, x, y) /∈ ∆
Φ̃
. Therefore, we have the following:

Lemma 4.4.6. If (X, 0) is a complete intersection germ and g is a companion of f , the
Milnor fiber of the morphism Φ is the same as the one of a 1-dimensional ICIS.

Finally, we arrive to the following:

Proposition 4.4.7. [31, (5.8)] If (X, 0) is a complete intersection singularity, the Milnor
fiber of Φ is connected.

Lemma 4.4.8. Given a holomorphic function f : (X, 0)→ (C, 0) such that Sing(V (f)) ⊃
Sing(X), there exists a function g : (X, 0)→ (C, 0) that is a companion of f .

Furthermore, given an embedding (X, 0) ⊂ (CN , 0) and a function f on X, there is a
Zariski open dense set Ω in the space of affine hyperplanes of CN at 0 such that if ĝ = 0
belongs to Ω, the restriction to X of ĝ : (CN , 0)→ (C, 0) will be a companion of f .

Proof. To verify Conditions 1, 2 and 3, it is enough to take a hyperplane which contains
neither the tangent cone to V (f) nor that to Sing(X) (which is contained in the first one).
These finite conditions are therefore realized by a dense subset of hyperplanes through 0.

Now, the fact that a generic linear form satisfies Condition 4 follows from the corollary 1
of section 5 of [23] and theorem 2.1 of [29].
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Remark 4.4.9. Note that Condition 2 implies in particular that V (g) ∩ Sing(X) = {0}.

Notation 4.4.10. In the sequel, g will denote a companion of f , and Φ denotes the
morphism (f, g) : (X, 0)→ (C2

x,y, 0).

Definition 4.4.11. For any k ∈ 2N∗, we define the real analytic smooth variety

Zk := {(x, y) ∈ C2, x = |y|k} ⊂ C2.

This variety is a real surface which we orient by taking the pullback of the complex orientation

of the y-axis by the projection on the second coordinate :

{
Zk → {x = 0}

(|y|k, y) 7→ y

Remark 4.4.12. Note that if the integer k is odd, the variety Zk is not analytic.

Lemma 4.4.13. For k ∈ 2N∗ large enough, there is a neighbourhood Uk of the origin in C2

on which:
Uk ∩∆Φ \ V (x) ⊂ Uk ∩ {|x| > |y|k}.

The content of this lemma is represented schematically in figure 4.4.

V (y)

V (x)

Uk

Zk

∆Φ

Figure 4.1: Position of Zk relatively to ∆Φ.
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Definition 4.4.14. In this setting, the neighbourhood Uk of 0C2 is called small enough
for the pair (∆Φ, k), or, if there is no ambiguity, for k.

Note that a neighbourhood that is small enough for k is also small enough for any even
k′ > k.

Before beginning the proof of Lemma 4.4.13, let us note:

Remark 4.4.15. Since V (f) has non-isolated singularities, and because of the properties
of transversality asked to f and g, the x-axis is contained in ∆Φ.

Proof of Lemma 4.4.13. The discriminant locus ∆Φ has a finite number of branches
V (x) =: D1, · · · , Dn. For a branch D 6= D1, let the Puiseux expansion of D be given
by

y =
∑
j>j0

aj · xj/n, aj0 6= 0

Then for any k ∈ N,

|y|k 6 |aj0 |k · |x|k·j0/n + o(|x|k·j0/n)

so if k·j0n > 1,
|y|k − |x| > −|x|+ |aj0 |k · |x|k·j0/n + o(|x|k·j0/n)

which is strictly negative on a neighbourhood of the origin. Now it suffices to choose an
integer k that is big enough for every branch of ∆Φ.

Let us conclude this proof by noting that the exponent n/j0 is the slope of one of the
compact faces of the Newton polygon of the analytic function giving ∆Φ.

Remark 4.4.16. One sees from the proof that a suitable value for k is easily derived from
∆Φ, once one knows the Newton polygon of the corresponding function. Indeed, thanks to
the observation made at the end of the previous proof, it is enough for k to be greater than
the greatest slope of the compact faces of this Newton polygon.

Definition 4.4.17. An even integer k is said to be large enough for Φ = (f, g) if it is
large enough in the sense of Lemma 4.4.13. Note that if k is large enough for Φ, then any
even integer k′ > k is also large enough for Φ.

Denote by k0 the smallest even number that is large enough for Φ = (f, g).

In the sequel, we are going to build an explicit representative of the Milnor fiber of f , in
order to compute its boundary. To do this, we have to build an appropriate representative
of the germ (X, 0), and to take an appropriate value for the level of f .

Definition 4.4.18. If k ∈ 2N is large enough for Φ, a representative Xε of (X, 0) is said
to be small enough for k if Φ(Xε) is small enough for k.
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Condition 1. on ε0. We want ε0 > 0 to be such that Xε0 is small enough for k0.
Given any k ∈ 2N∗ greater than k0, and 0 < ε < ε0, the neighbourhood Φ(Xε) of 0C2

will then also be small enough for k.

More conditions will be imposed on ε0 later.

Definition 4.4.19. Set k > k0. Then we define the germ

(Sk, 0) :=
(
Φ−1(Zk), 0

)
=
(
{f = |g|k}, 0

)
⊂ (X, 0).

Lemma 4.4.20. The germ (Sk, 0) is an isolated singularity of real-analytic 4-variety.
Furthermore there exists a representative Sk of it such that Sk \ {0} is orientable.

Proof. Thanks to Lemma 4.4.13, the variety Sk \ (V (f) ∩ V (g)) ∩Xε0 is a smooth locally
trivial fibration over Zk \ {0} ∩ Φ(Xε0), with fiber a smooth complex curve of the form
f−1(x0) ∩ g−1(y0) ∩Xε0 .

The smoothness of Sk ∩Xε at V (f) ∩ V (g) \ {0} comes from the fact that on V (f) ∩
V (g) \ {0}, because of the conditions of Definition 4.4.2, V (f) and V (g) are smooth surfaces
intersecting transversally. Hence if p ∈ V (f)∩V (g)\{0}, there are local coordinates (u, v, w)
at p such that V (f) = {u = 0} and V (g) = {v = 0}.

Locally,
{
f = If (u, v, w) · u
g = Ig(u, v, w) · v

where If , Ig are units at p. Hence,

at p, Sk = {I(u, v, w)u = |v|k}

where I is a unit at p. This shows that Sk is smooth along V (f) ∩ V (g) \ {0}.
Now, an orientation of Sk \ (V (f) ∩ V (g)) is built by orienting the fibers using the

complex structure, and then taking the product of the orientations of the base and fibers.
This provides an orientation of Sk.

In the sequel, k > k0 is fixed and Sk is considered as an oriented variety, with the
orientation described in the previous proof.

Now we are going to build cautiously actual representatives of Sk and of the Milnor
fiber of f , that will allow us to compare their boundaries.

Recall that for ε > 0, we denote Sε := ρ−1(ε) ⊂ X.

Condition 2. on ε0. From now on, in addition to the Condition 1, we ask ε0 > 0 to be
such that ∀ 0 < ε < ε0, Sk intersects transversally Sε.

Definition 4.4.21. Set 0 < ε < ε0, and take k0 6 k ∈ 2N∗. Then we define the real-analytic
4-dimensional oriented variety

Sk := Φ−1(Zk) ∩Xε = {f = |g|k} ∩Xε ⊂ X
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Definition 4.4.22. In these conditions, the oriented manifold

∂Sk := Sk ∩ Sε,

independent of the choice of 0 < ε < ε0, is called the link of Sk.

Before we can state the final result of this section, allowing us to study the link of Sk

instead of the boundary of F , let us impose a final condition on the neighbourhoods of the
origins of X and C2 that we want to consider.

Condition 3. on ε0. We ask in the sequel the number ε0 > 0 to be as in the fibration
Theorem 4.1.2, and to be such that the intersection V (f) ∩ V (g) is transverse in Xε0 \ {0},
and for all 0 < ε < ε0, the intersection (V (f) ∩ V (g)) ∩ Sε is transverse.

First, let us sum up here the conditions asked to the representative Xε0 of the germ
(X, 0).

Definition 4.4.23. In our context, the representative Xε0 will be called a good represen-
tative of the germ (X, 0) if ε0 > 0 verifies Conditions 1,2 and 3 on ε0 defined above.

From now on, fix a good representative Xε0 of (X, 0) and 0 < ε < ε0. This is enough to
build a convenient variety Sk.

Let us now build an appropriate representative of the Milnor fiber of f .
Condition 3 on ε0 implies that ∃ δ1, δ2 > 0 such that Φ|Sε induces a smooth locally

trivial fibration above Dδ1 ×Dδ2 ⊂ C2. Note that it implies that Dδ1 ×Dδ2 ⊂ Φ(Xε).
Set δ > 0 to be as in Theorem 4.1.2 relatively to ε, and such that δ 6 δ1 and δ1/k 6 δ2.

The representative of the Milnor fiber that we choose will be

F := {f = δ} ∩Xε

with boundary
∂F = f−1(δ) ∩ Sε.

We can now state and prove the following:

Proposition 4.4.24. In the setting described in this section, the oriented manifolds ∂Sk

and ∂F are orientation-preserving diffeomorphic.

Proof. We are going to build an isotopy from ∂F to ∂Sk in the smooth locus Sm(Xε) of
Xε, using vector fields. This isotopy will be built in three steps, represented schematically
in figure 4.2.

In the sequel, we will use the notion of gradient for some functions defined on parts of
Sm(Xε). Take an embedding Xε ⊂ CN . Then this gradient will be defined with respect to
the restriction of the usual hermitian form of TpCN on TpSm(Xε), for any p ∈ Sm(Xε).
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F

Sing(V (f )) ⊃ Sing(X)

1

V (g)

V (f )

Figure 4.2: The isotopy of boundaries.

First, observe that there is an isotopy from F to the manifold with corners

F� := {f = δ} ∩ {|g| 6 δ1/k} ∩Xε (4.1)

This isotopy follows from integrating the vector field provided by the gradient of the
function

|g| : F ∩ {|g| > δ1/k} → R+

To see that this vector field is everywhere non zero on the compact set F ∩ {|g| > δ1/k},
observe that the hypothesis k ≥ k0 ensures that F ∩{|g| > δ1/k}∩CΦ = ∅, which means that
the levels of f and g intersect transversally everywhere on F ∩ {|g| > δ1/k}, guaranteeing
that the same is true for f and |g|.

In the same spirit, there is an isotopy from Sk to the manifold with corners

S �
k := Sk ∩ {|g| 6 δ1/k} ∩Xε (4.2)

This one is obtained, again, by integrating the gradient of the function

|g| : Sk ∩ {|g| > δ1/k} → R+
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which is an everywhere non-zero vector field on the compact Sk ∩ {|g| > δ1/k}.
Now, observe that we have the following two decompositions for the boundaries :

∂F� =
(
{f = δ} ∩ {|g| = δ1/k} ∩Xε

) ⋃
{f=δ}∩{|g|=δ1/k}∩Sε

(
{f = δ} ∩ {|g| 6 δ1/k} ∩ Sε

)

∂S �
k =

(
{f = δ} ∩ {|g| = δ1/k} ∩Xε

) ⋃
{f=δ}∩{|g|=δ1/k}∩Sε

(
{f = |g|k} ∩ {|g| 6 δ1/k} ∩ Sε

)

We now build an isotopy on Sε taking the second part of the decomposition of ∂F� to
the one of ∂S �

k , and preserving {f = δ} ∩ {|g| = δ1/k} ∩ Sε. It will, again, be obtained by
integrating an everywhere non-zero vector field. This one is built in the following way:

At p ∈ {Im(f) = 0} ∩ {|g|k 6 Re(f) 6 δ} ∩ Sε, the vector is given by the gradient of
the function

Re(f) : {g = g(p)} ∩ Sε → R

The fact that this vector field is nowhere zero on the compact {Im(f) = 0} ∩ {|g|k 6
Re(f) 6 δ} ∩ Sε comes from the condition asked on δ. Indeed δ is chosen so that Φ induces
a smooth locally trivial fibration over Dδ ×Dδ1/k , ensuring that at a point of this compact,
the levels of f and g intersect transversally, guaranteeing the same for the levels of Re(f)
and g.

The combination of these three isotopies provides an isotopy between ∂Sk and ∂F ,
hence an orientation-preserving homeomorphism. To conclude this proof, it is enough to
invoke the fact that two 3-manifolds that are orientation-preserving homeomorphic are also
orientation-preserving diffeomorphic. See e.g. Munkres [42].

Let us note however that if one wants to build a diffeomorphism, it can be obtained
using the three isotopies that we composed in this proof, and smoothing the corners at every
step. For more details on this idea of smoothing corners, see [14].

4.5 The tower of morphisms

In the next sections 4.6 to 4.11, we build step by step a proper morphism

Π: (S̃ , E)→ (Sk, 0)

where E is a simple configuration of compact smooth real-analytic oriented surfaces as in
Definition 2.7.2 in a oriented real-analytic manifold S̃ of dimension 4.

This morphism will be an analytic isomorphism outside E, and will therefore allow us to
identify the boundary ∂Sk with its preimage by Π. We then prove that this preimage can
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be seen as the boundary of a tubular neighbourhood of E in S̃ , which is a graph manifold
determined by the configuration E, as explained in Theorem 2.7.9.

At every step, the preimage of the origin will be a configuration of real-analytic oriented
surfaces, that we will represent by its dual graph, with some decorations. Note that until
the penultimate step, some of these surfaces may be singular. However at every step it will
be possible to associate a dual graph to the preimage of the origin.

The first level of this morphism will come from a modification rX of X, respecting
certain conditions relatively to f and g. We will consider the strict transform S̃k of Sk by
rX . Denote the restriction of rX to S̃k by

rS :
(
S̃k,C

)
→ (Sk, 0) .

The second step is the normalization of S̃k

NS :
(
S̃k

N
, N∗

S
(C )

)
→
(
S̃k,C

)
.

Then, using local equations for S̃k, we build local morphisms κp from complex surfaces
to a finite number of open sets covering (S̃k,C ), and use their liftings to the normalizations
of the source and the target to build a global morphism

K :
(
S , (NS ◦K)∗ (C )

)
→
(
S̃k

N
, N∗

S
(C )

)

from a 4-dimensional variety S to S̃k
N
, that will be a diffeomorphism outside N∗

S
(C ).

The variety S will have controlled isolated singularities, namely of Hirzebruch-Jung type.
A standard resolution of such singularities is explained in Subsection 3.5.3, and requires
only few data to be computed, leading to the morphism of the final step

π :
(
S̃ , E

)
→
(
S , (NS ◦K)∗ (C )

)
.

The construction of the composed morphism Π is summarized in the following diagram
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(Zk, 0)

(Sk, 0)

(
S̃k,C

)
(
S̃k

N
, N∗

S
(C )

)
(
S , (NS ◦K)∗ (C )

)
(
S̃ , E

)

⊂

⊂

⊂

(X, 0)

(X̃,D0)

(C2, 0)

(R+, 0)

π

K

NS

rS

Φ

rX

Φ
ρ

Π

Algorithmic aspect

We will decorate the different dual graphs, obtained as in Definition 2.7.1,

Γ(C ),Γ((NS ◦K)∗ (C )),Γ(E)

obtaining the decorated graphs

?
Γ (C ) ,

?
Γ ((NS ◦K)∗ (C )) ,

?
Γ (E) .

The decorations of these graphs will be of different natures.
They are built and decorated in order to get the plumbing graph

?
Γ (E) = Γ

S̃
(E)

for the boundary of a tubular neighbourhood of E in S̃ , which is the aim of this study.
It is very important to notice that, at every step, some of the information needed to

compute a decorated graph is encoded in the previous one. Namely:

•
?
Γ (E) is entirely determined by

?
Γ ((NS ◦K)∗ (Ctot)).

•
?
Γ ((NS ◦K)∗ (Ctot)) is entirely determined by

?
Γ (Ctot) and some information relative

to the singularities of X, namely the collection of switches introduced in Subsection
4.10.2, and the additional covering data mentioned in Subsection 4.10.4. In general,
accessing that information may represent a difficult task, for which one should have,
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among other things, a good understanding of the structure of the initial modification
rX . However this does not stop us from carrying on the proof of the general result.
In some cases, that additional information is unnecessary, as for example in the case
where X is smooth (see [46]), or in the toric case studied in Chapter 5.

In conclusion, this relation between the graphs, which in some cases allows to deduce
one graph from the previous one, permits us to build a method for the computation of

∂F , whose starting point will be the decorated graph
?
Γ (Ctot) together with the required

additional information relative to the singularities of X. The construction and definition of
?
Γ (Ctot) and S̃k is the object of the next section.

4.6 The variety S̃k

Now let us introduce a complex analytic modification (in the sense of Definition 2.2.5)
rX : X̃ → X of X, that will verify some conditions relative to f and g:

Definition 4.6.1. (Modification adapted to Φ.)
A modification rX : (X̃,D0) → (X, 0) is said to be adapted to the morphism Φ = (f, g),
where g is a companion of f , if the two following conditions are simultaneously satisfied:

1. The modification rX is an isomorphism outside of (V (f)\V (g))∪{0}. Or equivalently,
rX may not be an isomorphism only at V (f) \ V (g) or {0}.

2. Denote Df := r−1
X (V (f) \ 0), Dg := r−1

X (V (g) \ 0), as well as

C := Df ∩ D0

and
Ctot := C ∪ (Df ∩ Dg).

In order to emphasize that the global configuration of the irreducible components of
the curves C and Ctot is essential for us, we will say that the two curves are curve
configurations.

With these notations, the second condition imposed on rX is that the total transform

D := r−1
X (Vf ·g)

of Vf ·g shall be a simple normal crossings divisor at Ctot.

Example 4.6.2. Figure 4.3 shows an example of divisor D. The components of Df are
represented in blue, those of Dg in green, and those of D0 in red. Full lines represent
irreducible components of Ctot, and the arrow represents a non-compact component of
Df ∩Dg. The points of intersection of two irreducible components of Ctot are decorated using
signs, anticipating the convention introduced in Definition 4.7.6.
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Figure 4.3: The divisor D, and the curve configurations C , Ctot.

Proposition 4.6.3. (See [46, Corollary 7.1.5], and Proposition 4.6.3). If the germ (X, 0)
is a complete intersection, the curve configurations C and Ctot are connected.

Remark 4.6.4. Both C and Ctot can be seen as complex curve configurations in X̃ or as
real surfaces configurations in Sk. Note that the configuration C is compact.

These configurations will play a key role in the sequel. They are in general complicated
to compute, but in the toric case, exposed in Chapter 5, we can express them with only
combinatorial considerations.

Definition 4.6.5. Orient the irreducible components of C and Ctot by their complex struc-
tures in X̃.

Condition 1 of Definition 4.6.1 implies that we do not want to build an embeddded
resolution of the surface Vf ·g. Indeed we do not want to modify it along V (f) ∩ V (g) \ {0},
where it is singular, but with simple singularities, i.e. it looks locally like a transverse
intersection of smooth surfaces.

The existence of a modification of X adapted to Φ is guaranteed by the following

Lemma 4.6.6. (Resolution Lemma), [63, p.633]
Let X be an irreducible variety over an algebraically closed field of characteristic 0, V a

pure codimension one reduced subvariety of X, and U an open subset of the smooth locus of
X such that U ∩ V has smooth components crossing normally. Then there is a projective
morphism rX : X̃ → X which satisfies the following conditions:
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1. rX is a composition of blowing ups of smooth subvarieties.

2. rX induces an isomorphism over U .

3. X̃ is smooth.

4. r−1
X (V ∪ (X \U)) is a divisor. Moreover, it has smooth components crossing normally.

In our context, one can for example take the open subset U to be X \ Sing(V (f)).

Remark 4.6.7. 1. Because of the properties of the modification rX , Dg is exactly the
strict transform of V (g) by rX . However, Df is the mixed transform, in the sense
of Definition 2.2.11, of V (f) by rX . Indeed it will also contain some components of
the exceptional divisor, the surfaces that get contracted by rX on curves in (V (f) \
V (g)) ∪ {0}, in particular the preimage of the singular locus of V (f).

2. Point 1 of Definition 4.6.1 implies that Df ∩Dg is exactly the intersection of the strict
transforms of V (f) and V (g) by rX .

3. The Resolution Lemma 4.6.6 implies that in general one can always build a modification
rX such that D is globally a SNCD, which will imply Condition 2 on rX . However,
what we really need in order to proceed is this weaker condition.

4. In the same spirit, unlike what is required in [46, 6.1.2], we allow the morphism rX to
modify some curves in (V (f) \ V (g)) ∪ {0} along which V (f) may be smooth. This
point and the previous one will be important for our analysis of Newton nondegenerate
surface singularities in Chapter 5.

5. We get a partition of the set of irreducible components of the total transform D in
three parts: the set of irreducible components of Df ,Dg or D0. By abuse of notation,
we will sometimes refer to an irreducible component of D as “in” (∈) one of these three
surfaces, instead of “subset of” (⊂).

Notation 4.6.8. Denote

fX̃ := f ◦ rX , gX̃ := g ◦ rX : X̃ → C

the pullbacks of f and g to X̃. In the sequel, if Di is an irreducible component of D, we will
denote

mi := multDi(fX̃), ni := multDi(gX̃)

the respective multiplicities of fX̃ , gX̃ along this component.
Note that if D1 ∈ Dg, then necessarily m1 = 0 and n1 = 1.
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The firt step of the construction of the desired morphism Π is the modification of Sk

obtained by restricting rX to the strict transform

(S̃k,C ) :=
(
r−1
X (Sk \ {0}),C

)
⊂ (X̃, 0).

of Sk by rX . It will have non-isolated singularities, being from this point of view more
complicated than (Sk, 0). However we can domesticate these singularities. This is the point
of the next section.

4.7 Local equations of S̃k along Ctot, and complex models

Denote rS := rX |S̃k
: S̃k → Sk.

Proposition 4.7.1. Let k ∈ 2N be such that for every component D1 ∈ D0, kn1 > m1.
Then:

1. The preimage in S̃k of the origin in Sk is

r−1
S

(0) = C = Df ∩ D0. (4.3)

2. The support of the total transform of V (g) ∩Sk by rS is equal to Ctot = (Df ∩ Dg) ∪
(Df ∩ D0). In other words, denoting

g
S̃k

:= g ◦ rS : S̃k → C

the pullback of g to S̃k, we have

g
S̃k

−1(0) = Ctot. (4.4)

The statement of Proposition 4.7.1 implies that we need new conditions on k in order to
proceed to the computation of the boundary of Sk. In the sequel, more will appear. Let us
make those conditions explicit.

Condition 1. on k. The integer k must be even and large enough in the sense of Lemma
4.4.13.

Condition 2. on k. The integer k must be such that, for every component D1 ∈ D0,
kn1 > m1.

Notation 4.7.2. Let H ⊂ C3
u,v,w. Denote Hstr the strict part of H defined as the closure

Hstr := H \ {uvw = 0}.
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Proof of Proposition 4.7.1. Let p be a generic point of a component D1 ∈ D0. Then one
can take local holomorphic coordinates (u, v, w) on a neigbourhood Up of p in X̃ such that
D1 ∩ Up = {u = 0} ∩ Up. Then on Up,{

fX̃ = If (u, v, w)um1

gX̃ = Ig(u, v, w)un1

where If , Ig are units at p, as in Definition 2.4.1.
Then

S̃k ∩ Up = {If · um1 = |Ig|k|u|kn1} \ V (u) ∩ Up.

Now the condition kn1 > m1 implies kn1 6= m1, hence S̃k does not contain p.
The same considerations at generic points of Df or Dg will show, even without conditions

on k, that S̃k does not contain them neither.
Consider a point p ∈ D1 ∩D2, where D1 ∈ D0, D2 ∈ Dg, and p is on no other component

of D. Then, as D is a simple normal crossings divisor at p, we can set local holomorphic
coordinates (u, v, w) on a neighbourhood Up of p in X̃ such thatD1 = {u = 0}, D2 = {v = 0}.
Then on Up, {

fX̃ = If (u, v, w)um1

gX̃ = Ig(u, v, w)un1vn2

where If , Ig are units at p.
On Up, S̃k is then defined by {fX̃ = |gX̃ |k} \ V (u), that is,

S̃k ∩ Up = {If · um1 = |Ig|k|u|kn1 |v|kn2}str ∩ Up.

Then the condition kn1 > m1 shows that S̃k does not contain p.
The rest of this proposition, stating that S̃k contains Ctot, is proved in the following

Subsections 4.7.1 and 4.7.2, where we provide local equations of S̃k along Ctot.

The reason why we want to keep track of the total transform of V (g) ∩Sk in S̃k, is
because the pullback of g by Π will be the adapted function that we use to compute the
self-intersections of the irreducible components of E in S̃ , as explained in Lemma 2.7.7.

We will now determine local equations of S̃k around a point of Ctot, in order to define
and study the morphisms NS and K mentioned in section 4.5.

Let p ∈ Ctot. Because D is a normal crossings divisor at Ctot, p will be on no more than
three irreducible components of D at the same time. We face two different situations. In
each of them we first build local coordinates giving S̃k a simple equation, and use it to
provide a “local algebraic model” of this surface. We then study the lifting of this model to
the normalizations of the source and the target. This lifting, globally, provides the morphism
K.
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Discussion 4.7.3. In the sequel, we show among other things that there is a finite open
covering of (S̃k,Ctot) such that, on each one of these open sets, S̃k can be presented as
an affine real-algebraic variety. This allows us, using Subsection 2.5.1, to speak about the
normalization S̃k

N
of S̃k, which is a real-analytic variety. Denote by NS : S̃k

N
→ S̃k the

normalization morphism of S̃k.

From now on, if x ∈ R+, n ∈ N∗, x1/n will denote the unique n-th root of x in R+.

4.7.1 Generic points of Ctot

Take a point p ∈ D1 ∩D2, where D1 ∈ D0 or Dg, D2 ∈ Df , with the notations of Definition
4.6.1, and p is on no other component of D. Then, as D is a simple normal crossings divisor
at p, we can set local holomorphic coordinates (u′, v′, w′) on a neighbourhood U ′p of p in X̃
such that D1 = {u′ = 0}, D2 = {v′ = 0}. Then locally:{

fX̃ = If (u′, v′, w′)u′m1v′m2

gX̃ = Ig(u
′, v′, w′)u′n1

where If , Ig are units at p, as in Definition 2.4.1.
Now, choose φ, ψ units at p such that φn1 = Ig and ψm2 = If · φ−m1 , and build new

local coordinates (u, v, w) around p defined by
u = φ · u′
v = ψ · v′
w = w′

on a neighbourhood Up ⊂ U ′p where φ and ψ are non-zero.
On Up, S̃k is then defined by {fX̃ = |gX̃ |k} \ V (u), that is,

S̃k ∩ Up = {um1vm2 = |u|kn1}str ∩ Up. (4.5)

Note that Condition 2 on k ensures that p is in S̃k.
Now, we can provide a birational morphism:

κp : {(x, y, z) ∈ C3, xm1 = ym2} → {(u, v, w) ∈ C3, um1vm2 = |u|kn1}str

given by 
u = x

v = y−1|x|kn1/m2 = y−1|y|kn1/m1

w = z


x = u

y = v−1|u|kn1/m2

z = w

(4.6)

If kn1/m2 ∈ 2N∗, the map κp is birational.
We then require
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Condition 3. on k. For every κp to be birational, the integer k must be such that,
∀ D1 ∈ D0 that intersects a component D2 ∈ Df ,

kn1

m2
∈ 2N.

In addition to the birationality of κp, the identity

ym2 = um1

shows that the coordinates x, y, z, x, y and z of the source are integral on the ring of regular
functions of S̃k ∩ Up. Reciprocally, the identity

vm1 = y−m1 |y|kn1

shows that, thanks to Condition 2 on k, the coordinates of the target are integral on the
ring of functions of the source.

Note that these two identities taken together, with the Condition 2 on k, ensure that κp
is a homeomorphism.

Setting UCp := κ−1
p (Up) a neighbourhood of the origin in C3 and using Proposition 2.5.10,

we get:

Lemma 4.7.4. The homeomorphism κp induces an isomorphism of real analytic varieties

κp :
(
{(x, y, z) ∈ C3, xm1 = ym2} ∩ UCp

)norm ∼−→
(
S̃k ∩ Up

)norm
at the level of normalizations.

Discussion 4.7.5. Orientation of S̃k and the model near a generic point.
In section 4.4, we provided a description of the orientation of Sk. This orientation is

pulled-back by rS to provide an orientation of S̃k, making rS orientation-preserving.
Another way to retrieve this orientation on an open Up as in subsection 4.7.1 is to observe

that it is the one that makes ∂S̃k := r−1
S

(∂Sk) ' ∂Sk orientation-preserving diffeomorphic
to ∂F , where the last equivalence symbol denotes an orientation-preserving diffeomorphism.

The modification rX induces a biholomorphic morphism over F , and is hence an
orientation-preserving diffeomorphism from F̃ := r−1

X (F ) to F , both being oriented by
their complex structures. F̃ is a complex manifold, and

F̃ ∩ Up = {I(u, v, w)um1vm2 = δ}

for some holomorphic unit I at p. The complex orientation of F̃ ∩ Up is given by du ∧ du ∧
dw ∧ dw (or, equivalently, dv ∧ dv ∧ dw ∧ dw, but for our purposes the first expression is
more natural).
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Now, the orientation of S̃k on Up is the one that is compatible with this orientation of
F̃ , that is, the one that is given on the smooth part of S̃k ∩ Up by du ∧ du ∧ dw ∧ dw.

One can see now that the morphism κp is orientation-preserving, if the source is taken
with its complex orientation dx ∧ dx ∧ dz ∧ dz.

Furthermore, the normalizations of the source and target of κp are now canonically
oriented by the pullbacks of these orientations, making, again, κp orientation-preserving as
soon as the source is oriented by its complex structure.

Finally, remind that in Definition 4.6.5, we oriented C ∩ Up = {u = v = 0} ∩ Up via its
complex structure, i.e. by dw ∧ dw. Pulling back this orientation to its preimage by κp gives,
again, the complex orientation of the axis {x = y = 0} ⊂ UCp .

Therefore, the pullback of the orientation of Ctot ∩Up by NS ◦κp orients its preimage
(NS ◦ κp)−1(Ctot ∩ Up) by its complex structure.

4.7.2 Double points of Ctot

Let p ∈ D1 ∩D2 ∩D3, where D1 ∈ D0, D2 ∈ Df , D3 ∈ D, with the notations of Definition
4.6.1. Set local holomorphic coordinates (u′, v′, w′) on a neighbourhood U ′p of p in X̃ such
that D1 = {u′ = 0}, D2 = {v′ = 0}, D3 = {w′ = 0}. Then we can write locally:{

fX̃ = If (u′, v′, w′)u′m1v′m2w′m3

gX̃ = Ig(u
′, v′, w′)u′n1w′n3

where If , Ig are units at p.
In the same way as in 4.7.1, we obtain local coordinates (u, v, w) on a neighbourhood
Up ⊂ U ′p such that

S̃k ∩ Up = {um1vm2wm3 = |u|kn1 |w|kn3}str ∩ Up. (4.7)

and S̃k contains p because, again, of Condition 2 on k for D1.
We will provide, again, a local algebraic model for S̃k around p, that will depend on the

nature of the double point p.

Definition 4.7.6. (See [46, section 6.2])
The double point p is said to be of type ⊕ if D3 ∈ Dg or D0, and of type 	 if D3 ∈ Df .
That is, p is of type ⊕ if and only if n3 6= 0.

Example 4.7.7. For the sake of clarity, we repeat here in Figure 4.4 an example of divisor
D. As in Figure 4.3, the components of Df are represented in blue, those of Dg in green,
and those of D0 in red. Full lines represent irreducible components of Ctot, and the arrow
represents a non-compact component of Df ∩ Dg.

Remark 4.7.8. We separate the two types of points using signs, anticipating the fact that
they will give different signs of edges in the final plumbing graph for ∂F . Némethi and Szilárd
use respectively 1 and 2, instead of ⊕ and 	, to designate the two types of double points.
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Figure 4.4: The divisor D, and the curve configurations C , Ctot.

Points of type ⊕.

If p is of type ⊕, things go more or less the same way as in the case of generic points.
Namely, there is a birational map

κ⊕p : {(x, y, z) ∈ C3, ym2 = xm1zm3} → {um1vm2wm3 = |u|kn1 |w|kn3}str

given by 
u = x

v = y−1|x|kn1/m2 |z|kn3/m2

w = z


x = u

y = v−1|u|kn1/m2 |w|kn3/m2

z = w

(4.8)

Condition 3 on k shows that this map is birational. Furthermore it is a homeomorphism.
Moreover, as in 4.7.1, using ym2 = um1wm3 and reciprocally, vm2 = |x|kn1x−m1 |z|kn3z−m3 ,

still with kni > mi, and denoting UCp := κ⊕p
−1

(Up) a neighbourhood of the origin in C3, we
have:

Lemma 4.7.9. The morphism κ⊕p is a homeomorphism, and it induces an isomorphism of
real analytic varieties

κ⊕p :
(
{(x, y, z) ∈ C3, ym2 = xm1zm3} ∩ UCp

)norm ∼−→
(
S̃k ∩ Up

)norm
at the level of normalizations.
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Discussion 4.7.10. Orientation of S̃k and its model near a point ⊕.
An argument analogous to the one developped in discussion 4.7.5, with, this time,

F̃ ∩ Up = {I(u, v, w)um1vm2wm3 = δ}

provides again an orientation of S̃k given by du∧ du∧ dw∧ dw, and κ⊕p is then orientation-
preserving as soon as its source is oriented by its complex structure.

Furthermore, the two irreducible components of Ctot that are visible here, given by
{u = v = 0} and {w = v = 0}, are oriented as complex curves, respectively by dw ∧ dw
and du ∧ du. The morphism κ⊕p then orients their preimages, respectively {x = y = 0} and
{z = y = 0}, by their complex orientations dz ∧ dz and dx ∧ dx. Hence, again, the pullback
of the orientation of Ctot ∩ Up by NS ◦ κ⊕ orients its preimage (NS ◦ κ⊕)−1(Ctot ∩ Up)
by its complex structure.

Points of type 	.

Now if p is a double point of type 	, one can say less, but still provide a local algebraic
model for S̃k. Let us introduce the following morphism:

κ	p : {(x, y, z) ∈ C3, xm1 = ym2zm3} → {um1vm2wm3 = |u|kn1}str

given by 
u = x

v = y−1|y|kn1/m1

w = z−1|z|kn1/m1

(4.9)

Condition 2 on k implies that κ	p is regular. Furthermore it is a homeomorphism. Indeed,
identifying the arguments and moduli, one can get

x = u

y = v−1|v|
kn1�(kn1−m1)

z = w−1|w|
kn1�(kn1−m1)

Remark 4.7.11. However, this morphism is not birational as soon as kn1
kn1−m1

is not an
even integer.

For example if kn1 > 2m1, kn1
kn1−m1 = 1 + m1

kn1−m1
is not an integer.

The morphism κ	p , sending no irreducible component of the source to the non-normal
locus of the target (see Proposition 2.5.10), lifts to a morphism

κ	p :
(
{(x, y, z) ∈ C3, xm1 = ym2zm3} ∩ U

)norm → (
S̃k ∩ Up

)norm
at the level of normalizations.

Although κ	p is not an isomorphism, we have the following:
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Lemma 4.7.12. Setting UCp := κ	p
−1

(Up), the restriction of κ	p induces an isomorphism
of analytic varieties

κ	p
∗
:
(
{(x, y, z) ∈ C3, xm1 = ym2zm3} ∩ UCp \ {0}

)norm
→
(
S̃k ∩ Up \ {0}

)norm
at the level of “punctured” normalizations.

Proof. Cover
(
S̃k ∩ Up \ {0}

)norm
= N−1

S

(
S̃k ∩ Up \ {0}

)
with two sets:(

S̃k ∩ Up \ {0}
)norm

= N−1
S

(
S̃k ∩ Up \ V (v)

) ⋃
N−1

S

(
S̃k∩Up\V (v·w)

)N−1
S

(
S̃k ∩ Up \ V (w)

)

We are going to prove that, in restriction to each of these two sets, κ	p
∗ induces a

diffeomorphism.
In order to do this, consider the birational map

αp,v : {(x′, y′, z′) ∈ C3, x′m1 = y′m2z′m3} \ V (y′)→ {um1vm2wm3 = |u|kn1}str \ V (v)

given by 
u = x′

v = y′−1

w = z′−1|x′|kn1/m3


x′ = u
y′ = v−1

z′ = w−1|u|kn1/m3

Thanks to Condition 3 on k, this map is birational. Furthermore, with Condition 2 on k for
D1, the identities

z′
m3 = um1vm2

and
wm3 = y′

m2 |x′|kn1x′
−m1

show that, setting U ′v := α−1
p,v(Up), it induces an isomorphism of real analytic varieties

αp,v :
(
{(x′, y′, z′) ∈ C3, x′m1 = y′m2z′m3} ∩ U ′v \ V (y′)

)norm ∼−→ N−1
S

(
S̃k ∩ Up \ V (v)

)
We can use this isomorphism to understand the restriction κ	p,v of κ	p to(

{(x, y, z) ∈ C3, xm1 = ym2zm3} ∩ UCp \ V (y)
)norm

.

We use the composition with α−1
p,v to obtain a morphism:

α−1
p,v ◦ κ	p,v : {(x, y, z) ∈ C3, xm1 = ym2zm3} ∩ UCp \ V (y)

95



→ {(x′, y′, z′) ∈ C3, x′m1 = y′m2z′m3} ∩ U ′v \ V (y′)

given by 
x′ = x

y′ = y|y|−kn1/m1

z′ = z · |z|−kn1/m1 |x|kn1/m3 = z|y|kn1m2�m1m3

.

The morphism α−1
p,v ◦ κ	p,v is not, in general, birational, but it induces an isomorphism

of real-analytic varieties at the level of normalizations. Indeed, consider the morphism

N1 : {(x1, y1, z1) ∈ C3, ym2
1 zd3

1 = 1} → {(x, y, z) ∈ C3, xm1 = ym2zm3} \ V (y)

given by 
x = x

m3/d3

1 za1
1

y = y1

z = x
m1/d3

1 zc11

where d3 = gcd(m1,m3), and a1, c1 ∈ N are such that c1m3 − a1m1 = d3.
The morphism N1 is a normalization of {(x, y, z) ∈ C3, xm1 = ym2zm3} \ V (y). In the

same way, build the normalization

N ′1 : {(x′1, y′1, z′1) ∈ C3, y′m2
1 z′d3

1 = 1} → {(x′, y′, z′) ∈ C3, x′m1 = y′m2z′m3} \ V (y′).

Set U1 := N−1
1 (UCp ), U ′1 := N ′−1

1 (U ′v). The morphism α−1
p,v ◦ κ	p,v then lifts to the

normalizations in the following way:

α−1
p,v ◦ κ	p,1 : {(x1, y1, z1) ∈ C3, ym2

1 zd3
1 = 1} ∩ U1 → {(x′1, y′1, z′1) ∈ C3, y′m2

1 z′d3
1 = 1} ∩ U ′1


x′1 = x1|y1|

−a1
kn1m2
m1m3

y′1 = y1|y1|
− kn1
m1

z′1 = z1|y1|
kn1m2
m1d3


x1 = x′1|y′1|

a1
kn1m2

m3(n1−km1)

y1 = y′1|y′1|
kn1

(m1−kn1)

z1 = z′1|y′1|
− kn1m2
d3(m1−kn1)

which is, as claimed, an isomorphism of real-analytic varieties, both functions |y1| and |y′1|
being everywhere different from 0.

Now α−1
p,v ◦ κ	p,v and α−1

p,v are diffeomorphisms, whence κ	p,v also.
The same strategy will prove that the restriction κ	p,w of κ	p to(

{(x, y, z) ∈ C3, xm1 = ym2zm3} ∩ UCp \ V (z)
)norm
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is also an isomorphism of real-analytic varieties. In this chart the required explicit
normalization is provided by the morphism

N2 : {(x2, y2, z2) ∈ C3, yd2
2 z

m3
2 = 1} → {(x, y, z) ∈ C3, xm1 = ym2zm3} \ V (z)

given by 
x = x

m2
d2

2 ya2
2

y = x
m1
d2

2 yb22

z = z2

with d2 = gcd(m1,m2), and a2, b2 ∈ N such that b2m2 − a2m1 = d2, and

αp,w : {(x′, y′, z′) ∈ C3, x′m1 = y′m2z′m3} \ V (z′)→ {um1vm2wm3 = |u|kn1}str \ V (w)

is given by 
u = x′

v = y′−1|x′|
kn1
m2

w = z′−1


x′ = u

y′ = v−1|u|
kn1
m2

z′ = w−1

In conclusion, the images by κ	p
∗ ofN−1

S

(
S̃k ∩ Up ∩ V (v)

)
and ofN−1

S

(
S̃k ∩ Up ∩ V (w)

)
being disjoint, κ	p

∗ is an isomorphism of real-analytic varieties.

Discussion 4.7.13. Orientation of S̃k and its model near a point 	.
Here again, the orientation of S̃k is given by du∧du∧dw∧dw. But in order for κ	p to be

orientation-preserving, we need to orient its source with the opposite of the orientation
given by its complex structure, −dx ∧ dx ∧ dy ∧ dy.

Furthermore, the two irreducible components of Ctot that are visible here, given by
{u = v = 0} and {u = w = 0}, are oriented respectively as complex curves by dw ∧ dw
and dv ∧ dv. The morphism κ	p then orients their preimages, respectively {x = y = 0} and
{x = z = 0}, by the opposite of their complex orientations, −dz ∧ dz and −dy ∧ dy.

So, here, the pullback of the orientation of Ctot ∩Up by NS ◦ κ	 orients its preimage
(NS ◦ κ	)−1(Ctot ∩ Up) by the opposite of its complex structure.

4.8 A variety S

In the previous section is implicitly provided a description of an analytic variety S , as
well as of a morphism K : (S , (NS ◦K)∗ (C ))→ (S̃k

N
, N∗

S
(C )). In this section we make

it more explicit. In particular we explain the orientation of (S , (NS ◦K)∗ (C )) and of the
surfaces of (NS ◦K)∗ (C ).
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4.8.1 Definition of (S , (N
S
◦K)∗ (C ))

Choose a covering of C ⊂ S̃k with connected neighbourhoods of the form Up∩ S̃k providing
equations for S̃k as (4.5) and (4.7) in subsections 4.7.1 and 4.7.2. Such a covering may be
chosen finite because of the compactness of C .

In the sequel, if p ∈ C , κp denotes κp, κ	p or κ⊕p , according to the type of the point p.

Definition 4.8.1. (Local complexification.)
If Up ∩ S̃k is an open subset in this covering, and if p is a generic point of C at the

intersection of D1 ∈ D0 and D2 ∈ Df ,denote

Up := (κp ◦NS )−1
(
Up ∩ S̃k

)
⊂ {(xp, yp, zp) ∈ C3, xm1

p = ym2
p }norm.

In other cases, the definition of Up is the same, with the appropriate equation for the
right-hand term, according to the type of p.

Then we define a real-analytic variety S , called local complexification of S̃k
N
, by

gluing together the open sets
(
Up
)
p
in the following way: if Up ∩ Uq 6= ∅, glue Up and Uq

along

(κp ◦NS )−1
(
Up ∩ Uq ∩ S̃k

)
⊂ Up

and
(κq ◦NS )−1

(
Up ∩ Uq ∩ S̃k

)
⊂ Uq

using κp
−1 ◦ κq, which is an isomorphism of real-analytic varieties in restriction to Up ∩Uq.

The latter is indeed an isomorphism: if p is a point of C , and q 6= p a double point of
Ctot, we may have p ∈ Uq, but never q ∈ Up, because of the equations of S̃k on these open
sets, see section 4.7. The isomorphism follows then from Lemmas 4.7.4, 4.7.9 and 4.7.12.

Remark 4.8.2. Note that the open sets Up are not, in general, connected. See Section 4.10
for more details.

Now, the real-analytic morphism

K : (S , (NS ◦K)∗ (C ))→ (S̃k
N
, N∗

S
(C ))

is defined using the local morphisms κp, on the covering of S by the Up’s.
Lemmas 4.7.4, 4.7.9 and 4.7.12 imply:

Lemma 4.8.3. The real-analytic morphism K is an isomorphism of real-analytic varieties
outside N∗

S
(C ).
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4.8.2 Orientation of S

Although S is only real-analytic, it admits local complex equations, and an orientation of
S can be defined relatively to the local complex orientations, using Discussions 4.7.5, 4.7.10
and 4.7.13:

• On an open Up coming from a generic point of C , S is oriented by its local complex
structure, and the preimage of C also.

• On an open Up coming from a double point ⊕ of Ctot, S is oriented by its local
complex structure, and the components of the preimage of Ctot also.

• On an open Up coming from a double point 	 of Ctot, S is oriented by the opposite of
its local complex structure, and the preimage of Ctot is also oriented by the opposite
of its complex structure.

These choices of orientation are compatible, because by construction they ensure that
every morphism κp

−1◦κq of Definition 4.8.1 is orientation-preserving. Again, by construction,
the choices of orientation for the preimages of the irreducible components of Ctot by NS ◦K
are compatible (see Discussions 4.7.5, 4.7.10 and 4.7.13). Furthermore, as can be checked
using those same discussions,

Lemma 4.8.4. The morphism K is orientation-preserving.

4.9 The decorated graph
?

Γ (Ctot) of configuration of curves

In order to make the description of N∗
S

(Ctot) ⊂ S easier, and in the perspective of the main

algorithm, let us introduce the decorated graph
?
Γ (Ctot).

Definition 4.9.1. Denote Γ(Ctot) the dual graph of the configuration of complex curves Ctot,

as defined in 2.7.1. The decorated graph
?
Γ (Ctot) is obtained from Γ(Ctot) in the following

way:

• If C is an irreducible component of D1 ∩ D2, where D1 ∈ Df and D2 ∈ D0 ∪ Dg,
decorate vC , the vertex corresponding to C, with the triple (m1;m2, n2) (with the
Notation 4.6.8), and with its genus [g], in square brackets. If D2 ∈ Dg, then the vertex
associated to the non-compact curve C is an arrowhead.

• Decorate each edge ep of Γ(Ctot) corresponding to a double point p of Ctot with a ⊕ or
a 	 sign, according to the type of the point p, introduced in Definition 4.7.6.

Note that Proposition 4.6.3 implies:
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Lemma 4.9.2. If the germ (X, 0) is a complete intersection singularity, the graphs Γ(Ctot)
and Γ(C ) are connected.

Remark 4.9.3. 1. If p, q ∈ C1 ∩ C2, then p and q are of the same type. Hence the
different edges between two vertices are all of the same type.

2. By point 2 of Remark 4.6.7, if D2 ∈ Dg, then m1 = n2 = 1. Furthermore, there is a
unique edge containing this arrowhead vertex, and it is decorated with ⊕.

3. Because of the hypothesis of simpleness in the point 2 of Definition 4.6.1, the graph
?
Γ (Ctot) contains no loop.

Definition 4.9.4. Let vC be a vertex of
?
Γ (Ctot). Its star is the subgraph of

?
Γ (Ctot) whose

vertices are vC and its neighbours, with the edges connecting vC to them. It will therefore
have the following form:

(m1;ms, ns)

[gs]

(ms+t;m2, n2)

[gs+t]

(m1;m2, n2)

[g]

(m1;m3, n3)

[g3]

(ms+1;m2, n2)

[gs+1]
...

...⊕
µs

⊕
µ3

	
µs+t

	
µs+1

where the decoration µi means that the edge is repeated µi times.

4.10 Description of
?

Γ ((N
S
◦K)∗ (Ctot))

On a local chart of S of the form Up (see Definition 4.8.1), we know how to recognize the
configuration (NS ◦K)∗ (C ). However, we also need to know it as a global object. Namely,
two questions remain:

1. Given an irreducible curve C ∈ C , what is the structure of (NS ◦K)∗ (C)?

2. Given two irreducible curves C1, C2 ∈ C such that C1 ∩ C2 6= ∅, what can we say
about (NS ◦K)∗ (C1) ∩ (NS ◦K)∗ (C2)?

Let us look here more precisely at the configuration (NS ◦K)∗ (C ) ⊂ S .
We know that in every open set Up, (NS ◦K)∗ (C ) is a configuration of complex curves.
In the sequel, C is an irreducible component of C , contained in D1 ∩D2, where D1 ∈ Df

and D2 ∈ Dg or D0. Denote p3, · · · , pl the double points of C on C, and

d := gcd(m1,m2).
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4.10.1 Cyclic orders on components

In this subsection, we show how one can endow coherently the set of local irreducible
components of S̃k at a generic point of an irreducible component C of C with a cyclic order.
Then we show that the same is true for double points on C, and that the cyclic orders
defined are compatible.

Lemma 4.10.1. (Cyclic order at generic points.)
If p is a generic point of the irreducible component C of D1 ∩D2, (NS ◦K)∗ (C) ∩ Up

is a disjoint union of d complex curves. Furthermore there is a cyclic order (in the sense of
Definition 2.6.24) on them. This order is compatible with the gluings of charts Uq coming
from generic points q ∈ Ctot.

Namely, if S ∩ Up =
({
xm1
p = ym2

p

}
∩ UCp

)norm, then the decomposition in irreducible
components {

xm1
p = ym2

p

}
=

d−1⋃
j=0

{
xm1/d
p = e

2ijπ
d ym2/d

p

}
,

where d denotes gcd(m1,m2), provides S ∩ Up as a disjoint union

S ∩ Up =
d−1⊔
j=0

({
xm1/d
p = e

2ijπ
d ym2/d

p

})norm
∩ Up

and finally

(NS ◦K)∗ (C) ∩ Up =
d−1⊔
j=0

C(j) ∩ Up

where C(j) is the preimage of the curve {xp = yp = 0} by the normalization of {xm1/d
p =

e
2ijπ
d y

m2/d
p }. Each C(j) is a smooth complex curve. The cyclic order on the connected

components of (NS ◦K)∗ (C) is then given by the rule:

C(j+1) follows C(j), where the addition is to be understood in Z/dZ.

or equivalently{
xm1/d
p = e

2i(j+1)π
d ym2/d

p

}
∩ UCp follows

{
xm1/d
p = e

2ijπ
d ym2/d

p

}
∩ UCp

Proof. We want to prove that, given two open subsets Up and Uq, coming from generic
points p, q ∈ C, such that Uq ∩ Up 6= ∅, the orderings on the components of (NS ◦K)∗ (C)
on Up∩Uq are the same. The point is that this ordering on curves is the same as an ordering
on irreducible components.
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First, note that we can relate the coordinates (xp, yp, zp) and (xq, yq, zq) by descending
to S̃k: take coordinates (up, vp, wp) on S̃k ∩ Up and (uq, vq, wq) on S̃k ∩ Uq, as in section
4.7.1. Then there are functions λ, µ, ν, nowhere zero on Up ∩ Uq such that, on Up ∩ Uq,

uq = up · λ(up, vp, wp)
vq = vp · µ(up, vp, wp)
wq = ν(up, vp, wp)

which leads, using equations (4.6) of subsection 4.7.1, to the following identities on UCp ∩UCq :
xq = xp · λ
yq = yp · µ−1|λ|kn1/m2

zq = ν

where λ denotes λ(xp, y
−1
p |xp|kn1/m2 , zp), and similarily for µ, ν. The functions λ, µ−1|λkn1/m2 |, ν

are nowhere zero on UCp ∩ UCq .
Whence the identification{

xm1/d
q = e

2ijπ
d ym2/d

q

}
∩UCp ∩UCq =

{
xm1/d
p λm1/d = e2ijπ/dym2/d

p µ−m2/d|λ|kn1/d
}
∩UCp ∩UCq .

This implies that there exists 0 6 l 6 j − 1 such that

e2ijπ/dµ−m2/d|λ|kn1/dλ−m1/d = e2ilπ/d.

This allows one to identify the j-th irreducible component, as seen in UCq , with the l-th
component, in UCp . And replacing j by j + 1 in the previous computation leads now to the
component l + 1 in UCq .

In other words, we gave a meaning to the expression “the following irreducible component”
at a point of {xm1

p = ym2
p } ∩ UCp , and hence to the expression “the following curve” in

S ∩ Up.

Discussion 4.10.2. (Cyclic order at double points.) Recall the notations introduced
at he beginnning of Section 4.10. Let pi be a double point of Ctot in C, pi ∈ Di. Then
(NS ◦K)−1(pi) is made of di := gcd(m1,m2,mi) points p1

i , · · · , p
di
i , each one of them

corresponding to an irreducible component of κ−1
pi (S̃k ∩ Upi).

Furthermore, one can define a cyclic order on these irreducible components, in the
following way:

If pi is of type ⊕, then

κ−1
pi (S̃k ∩ Upi) =

di−1⋃
j=0

{
y
m2/di
i = e2ijπ/dix

m1/di
i z

m3/di
i

}
∩ UCpi (4.10)

102



where the coordinates (xi, yi, zi) are defined from local coordinates (ui, vi, wi) at pi via
Equation 4.8 applied at pi. This union is the decomposition of κ−1

pi (S̃k ∩ Upi) in irreducible
components.

We define a cyclic order on the set of irreducible components by the following rule:{
y
m2/di
i = e2ijπ/dix

m1/di
i z

m3/di
i

}
is followed by {

y
m2/di
i = e2i(j−1)π/dix

m1/di
i z

m3/di
i

}
.

If pi is of type 	, then

κ−1
pi (S̃k ∩ Upi) =

di−1⋃
j=0

{
x
m1/di
i = e2ijπ/diy

m2/di
i z

m3/di
i

}
∩ UCpi (4.11)

where the coordinates (xi, yi, zi) are defined from local coordinates (ui, vi, wi) at pi via
Equation 4.9 applied at pi.

Then, again, define a cyclic order by the rule: the component{
x
m1/di
i = e2ijπ/diy

m2/di
i z

m3/di
i

}
is followed by the component{

x
m1/di
i = e2i(j+1)π/diy

m2/di
i z

m3/di
i

}
.

The normalization of complex-analytic varieties having the topological effect of separating
local irreducible components (see Lemma 2.5.15), this means that S ∩ Upi is made of a
disjoint union of di normal varieties, with a cyclic order induced by the one on the irreducible
components of κ−1

pi (S̃k ∩ Upi). Incidentally, this provides also a cyclic order on the set{
p1
i , · · · , p

di
i

}
of preimages of pi by (NS ◦K).

Moreover, the intersection of (NS ◦K)∗ (C) with each of these connected components
is an irreducible curve, namely the pullback of {xi = yi = 0} by the normalization of the
irreducible component, with the notations of Equations (4.10) or (4.11). See Subsection
3.5.3 for more details. Recall again the setting of the beginning of Section 4.10. Then:

Lemma 4.10.3. (Compatibility of orders.)
Let pi ∈ C ∩Di be one of the double points of Ctot on C. Let p be a generic point of

C such that Ũ := Up ∩ Upi 6= ∅. Consider the cyclic orders defined above. If an irreducible
component of κ−1

p (S̃k ∩ U) is contained in an irreducible component of κ−1
pi (S̃k ∩ Upi), then

the following component of κ−1
p (S̃k ∩ U) is contained in the following irreducible component

of κ−1
pi (S̃k ∩ Upi).
In particular, two curves in (NS ◦K)∗ (C)∩U are in the same branch of (NS ◦K)∗ (C)∩

Upi if and only if their positions in the cyclic order differ by a multiple of di.

103



Proof of Lemma 4.10.3. Denote (u, v, w) and (ui, vi, wi) coordinates on Up and Upi giving
respectively equations of the form (4.5) and (4.7) for S̃k, as in section 4.7.

Then

S ∩ Up =
(
{xm1 = ym2} ∩ UCp

)norm
=

d−1⊔
j=0

({
xm1/d = e2ijπ/dym2/d

}
∩ UCp

)norm
where 

x = u

y = v−1|u|kn1/m2

z = w

Then there exist functions λ, µ, ν, nowhere zero on Up ∩ Upi , such that, on Up ∩ Upi ,
u = ui.λ(ui, vi, wi)
v = vi.µ(ui, vi, wi)
w = ν(ui, vi, wi)

We face two different situations, according to the type of the double point pi. Denote

δi :=
d

di
.

Case ⊕: If pi is of type ⊕, then

S ∩ Upi =
(
{ym2
i = xm1

i zm3
i } ∩ U

C
pi

)norm
=

di−1⊔
j=0

({
y
m2/di
i = e2ijπ/dix

m1/di
i z

m3/di
i

}
∩ UCpi

)norm
(4.12)

where 
ui = xi
vi = y−1

i |xi|kn1/m2 |zi|kn3/m2

wi = zi

which gives, on UCpi ∩ U
C
p , 

x = xiλ

y = yi|zi|−kn3/m2µ−1|λ|kn1/m2

z = ν

where λ (or µ, ν) denotes λ(xi, y
−1
i |xi|kn1/m2 |zi|kn3/m2 , zi). Hence{

xm1/d = e2ijπ/dym2/d
}
∩ UCp ∩ UCpi =
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{
x
m1/d
i = y

m2/d
i λ−m1/d|λ|kn1/d|zi|−kn3/dµ−m2/de2ijπ/d

}
∩ UCp ∩ UCpi .

Elevating to the power δi shows that{
xm1/d = e2ijπ/dym2/d

}
∩ UCp ∩ UCpi ⊂{

y
m2/di
i = x

m1/di
i λm1/di |λ|−kn1/di |zi|kn3/diµm2/die−2ijπ/di

}
∩ UCp ∩ UCpi .

Now there exists 0 6 l 6 di − 1 such that on UCpi ∩ U
C
p ,

λm1/di |λ|−kn1/di |zi|kn3/diµm2/die−2ijπ/di = e2ilπ/diz
m3/di
i .

The previous inclusion can then be written as{
xm1/d = e2ijπ/dym2/d

}
∩ UCp ∩ UCpi ⊂

{
y
m2/di
i = e2ilπ/dix

m1/di
i z

m3/di
i

}
∩ UCp ∩ UCpi .

Taking the successor of this component, we get indeed{
xm1/d = e2i(j+1)π/dym2/d

}
∩ UCp ∩ UCpi ⊂

{
y
m2/di
i = e2i(l−1)π/dix

m1/di
i z

m3/di
i

}
∩ UCp ∩ UCpi .

Case 	: If pi is of type 	, then

S ∩ Upi =
(
{xm1

i = ym2
i zm3

i } ∩ U
C
pi

)norm
=

di−1⊔
j=0

({
x
m1/di
i = e2ijπ/diy

m2/di
i z

m3/di
i

}
∩ UCpi

)norm
(4.13)

where 
ui = xi
vi = y−1

i |yi|kn1/m1

wi = z−1
i |zi|kn1/m1

which gives, on UCpi ∩ U
C
p ,

x = xiλ

y = yi|yi|−kn1/m1 |xi|kn1/m2µ−1|λ|kn1/m2

z = ν

where λ (or µ, ν) denotes λ(xi, y
−1
i |yi|kn1/m1 , z−1

i |zi|kn1/m1). Hence{
xm1/d = e2ijπ/dym2/d

}
∩ UCp ∩ UCpi ={

x
m1/d
i = y

m2/d
i |yi|−kn1m2/dm1 |xi|kn1/dλ−m1/d|λ|kn1/d|zi|−kn3/dµ−m2/de2ijπ/d

}
∩ UCp ∩ UCpi .
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Elevating to the power δi shows that{
xm1/d = e2ijπ/dym2/d

}
∩ UCp ∩ UCpi ⊂{

x
m1/di
i = y

m2/di
i |yi|−kn1m2/dim1 |xi|kn1/diλ−m1/di |λ|kn1/di |zi|−kn3/diµ−m2/die2ijπ/di

}
∩UCp ∩UCpi .

Now there exists 0 6 l 6 di − 1 such that on UCpi ∩ U
C
p ,

|yi|−kn1m2/dim1 |xi|kn1/diλ−m1/di |λ|kn1/di |zi|−kn3/diµ−m2/die2ijπ/di = e2ilπ/diz
m3/di
i .

The previous inclusion can then be written as{
xm1/d = e2ijπ/dym2/d

}
∩ UCp ∩ UCpi ⊂

{
x
m1/di
i = e2ilπ/diy

m2/di
i z

m3/di
i

}
∩ UCp ∩ UCpi .

Taking the successor of this component, we get indeed{
xm1/d = e2i(j+1)π/dym2/d

}
∩ UCp ∩ UCpi ⊂

{
x
m1/di
i = e2i(l+1)π/diy

m2/di
i z

m3/di
i

}
∩ UCp ∩ UCpi .

Remark 4.10.4. In other words, taking into account a double point pi of C shows that
some of the a priori different components of (NS ◦K)∗ (C) are in the same branch, and
that this identification is made uniformly with respect to the cyclic order.

However, other identifications may occur, due to the fundamental group of C. We make
this aspect more precise in Subsection 4.10.2.

The following lemma describes a favorable situation in which the data contained in
?
Γ (Ctot) is sufficient to determine the structure of (NS ◦K)∗ (C). To state it we need the
following:

Definition 4.10.5. Let (L, 0) be a branch of Sing(V (f)). The transversal type of
(X,V (f)) along L is the equisingularity type of a transverse section of the couple (X,V (f))
along L, where two curves in surfaces (V1, C1) and (V2, C2) are called equisingular if they
admit homeomorphic good embedded resolutions.

Remark 4.10.6. This definition makes sense because there exists a representative X of (X, 0)
such that for any branch L of Sing(V (f)), all transverse sections along L are equisingular.

Lemma 4.10.7. Let C be an ireducible curve of C , and denote D the component of Df
containing C. If D is not contained in the strict transform Ṽ (f) of V (f), denote by L the
curve rX(D). If the transversal type of (X,V (f)) along L has a resolution whose exceptional
divisor is a union of rational curves, then the curve C is rational.
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The proof of this lemma follows the one of [46, Proposition 7.4.8, a)]. In the case studied
by Némethi and Szilárd, it has the following consequence:

Corollary 4.10.8. Let (X, 0) = (C3, 0), and C ∈ C be decorated by a triple of multiplicities
(m1;m2, n2). Then if m1 > 2, then the curve C is rational.

Indeed, in this case all transversal types of the surface V (f) are germs of plane curves,
whose resolutions use only rational curves.

4.10.2 Non-rational curves

However, in general, the curve C will not be rational, whence the need of a little additional
information, namely about the identifications of local irreducible components of S̃k along
loops in C. The goal of this subsection is to make this precise.

Let C be an irreducible curve of C . Again, let p3, . . . , pl be the double points of C on
C. Let p ∈ C \ {p3, . . . , pl}. Then π1(C \ {p3, . . . , pl}, p) acts on the set of local irreducible
components of S̃k at p in the following way: let [γ] ∈ π1(C \ {p3, . . . , pl}, p). Consider

a tubular neighbourhood U =
j⋃
i=0

Ui of γ in X̃ such that, on each Ui, we can have local

coordinates in X̃ in such a way as to get local equations as in 4.7.1 for S̃k. Then one can
follow an irreducible component at p along γ. By consistency of the cyclic order, this action
is completely defined by the data of the number δ such that a component is sent on the one
which is δ further in the cyclic order. Furthermore,

Lemma 4.10.9. For [γ] in π1(C \ {p3, . . . , pl}), the number δ is independent of the choice
of the base point p or the representative γ.

Definition 4.10.10. The number δ defined above is called the switch associated to γ.

Now, π1(C \{p3, . . . , pl}, p) can be generated by α1, . . . , α2g, γ1, . . . , γl, where α1, . . . , α2g

generate π1(C, p), and γi is a “simple loop” around pi, i.e. γi 6= 1 in π1(C \ {p1, . . . , pl}, p)
but γi = 1 in π1(C \ {p1, . . . , pi−1, pi+1, . . . , pl}, p)

Lemmas 4.10.1 and 4.10.3, together with the previous considerations, imply the following:

Theorem 4.10.11. (Structure of (NS ◦K)∗ (C).)
Let C be a curve of C of genus g, and let its star be

(m1;ms, ns)

[gs]

(ms+t;m2, n2)

[gs+t]

(m1;m2, n2)

[g]

(m1;m3, n3)

[g3]

(ms+1;m2, n2)

[gs+1]
...

...⊕
µs

⊕
µ3

	
µs+t

	
µs+1
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Let δi be the switch associated to αi, where α1, . . . , α2g generate π1(C). Then (NS ◦K)∗ (C)
is the union of

nC := gcd(m1, . . . ,ms+t, δ1, . . . , δ2g)

disjoint connected irreducible oriented surfaces.
The set of connected components of (NS ◦K)∗ (C) is endowed with a cyclic order induced

by the one on the local irreducible components of κ−1
p (S̃k ∩ Up) at generic points p of C.

Denote C1, · · · , CnC those surfaces, where the numbering respects the cyclic order.
Furthermore, the common Euler characteristic χ

(
C
)
of each of these surfaces verifies

nC · χ
(
C
)

=

(
2− 2g −

s+t∑
i=3

µi

)
· gcd(m1,m2) +

s+t∑
i=3

gcd(m1,m2,mi) · µi. (4.14)

Proof of the last identity. This identity comes by recognising gcd(m1,m2) as the cardinal
of the preimage of a generic point, and gcd(m1,m2,mi) as the cardinal of the preimage of a
double point, and applying the Riemann-Hurwitz formula for the map NS ◦K restricted to
the irreducible curve C.

Remark 4.10.12. The collection of switches associated to the αi’s is of course not unique,
but the number nC is.

4.10.3 Preimage of an intersection point

Now, the final information we need to define the graph Γ(N∗
S

(C )) is the data above the
double points of C . Let C,C ′ be irreducible curves in C , and p ∈ C ∩C ′, p ∈ D1 ∩D2 ∩D3.
Denote d := gcd(m1,m2,m3). Denote p1, · · · , pd the ordered preimages of p by (NS ◦K)
(see Discussion 4.10.2). Recall the notations of Theorem 4.10.11. Lemma 4.10.3 implies the
following:

Lemma 4.10.13. for any pi ∈ (NS ◦K)−1(p), there are components Cj , C ′l , respectively
of (NS ◦K)∗ (C) and (NS ◦K)∗(C ′), such that pi ∈ Cj ∩ C ′l .

Furthermore, if pl ∈ Ci ∩ C ′j, then pl+1 ∈ Ci+1 ∩ C ′j+1.

4.10.4 The graph
?

Γ ((N
S
◦K)∗ (Ctot))

In this subsection, we sum up what has been developped throughout the previous ones to

describe the decorated graph
?
Γ ((NS ◦K)∗ (Ctot)).

If p is a double point of Ctot, p ∈ D1∩D2∩D3, denote dp = gcd(m1,m2,m3) the cardinal
of (NS ◦K)−1(p).

Recall the notations of Section 4.9. Theorem 4.10.11 and Lemma 4.10.13 imply:
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Lemma 4.10.14. The graph Γ((NS ◦K)∗ (Ctot)) is a cyclic covering of Γ(Ctot) with covering
data ({nC}C∈Ctot , {dp}p double point).

However, in general, this data does not determine Γ((NS ◦K)∗ (Ctot)) uniquely. See
Theorems 2.6.32, 2.6.33 and Proposition 2.6.35 for cases where this data is enough. In
particular, if (X, 0) = (C3, 0), G ({nC}C∈Ctot , {dp}p double point) = 0, hence the covering data
is enough, see [46, Theorem 7.4.16].

If v ∈ V (Γ(Ctot)) is associated to a curve C ∈ Ctot, denote nv := nC , and denote
v1, · · · , vnv the vertices associated to v. In the same fashion, if e ∈ E (Γ(Ctot)) is associated
to a double point p ∈ Ctot, denote de := dp, and denote e1, · · · , ede the edges associated to e.

To help overcome the ambiguity, note that the structure of cyclic covering implies that
if one knows the end-vertices of one of the edges ei for each e ∈ E (Γ(Ctot)), then one knows
Γ((NS ◦K)∗ (Ctot)), up to isomorphism of cyclic coverings. It is therefore enough, for every
double point p ∈ C ∩C ′ of Ctot, to figure out two components Ci and C ′l intersecting at one
of the pj ’s.

Definition 4.10.15. (Decorations of Γ((NS ◦K)∗ (Ctot)).)
Decorate every vertex and every edge of Γ((NS ◦K)∗ (Ctot)) with the decorations of

its image in Γ(Ctot), except for the genus decorations: if v ∈ V (Γ(Ctot)) corresponds
to a curve C, for each vi corresponding to v, replace the genus decoration by the Euler
characteristic χ

(
C
)
of Ci computed in Theorem 4.10.11.

4.11 The resolution step and a variety (S̃ , Et)

4.11.1 A variety (S̃ , Et)

The final step of the construction of the morphism Π announced in section 4.5 is the
resolution π of the remaining isolated singular points of S . For each singular point p of S ,
we are going to decribe a resolution πp of the singularity (S , p), in the following subsections
4.11.2 and 4.11.3.

Once this process is complete, denote (S̃ , Et) the variety obtained from
(S , (NS ◦K)∗ (Ctot)) by resolving its singular points, and

π : (S̃ , Et)→ (S , (NS ◦K)∗ (Ctot))

the global resolution of (S , (NS ◦K)∗ (Ctot)) obtained by gluing the πp’s.
Finally, denote

Π := rS ◦NS ◦K ◦ π : (S̃ , E)→ (Sk, 0)

the composed morphism, which is a resolution of the 4-dimensional real analytic singularity
(Sk, 0).

Note that the construction of Π ensures that it is an isomorphism of real-analytic
varieties outside the origin.
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Let p ∈ C ∩ C ′, where C,C ′ are irreducible real surfaces of (NS ◦K)∗ (Ctot), be a
potentially singular point of S . We face two different situations, according to the type of
the point

p := (NS ◦K)(p) ∈ D1 ∩D2 ∩D3,

where D1 ∈ D0 ∪ Dg, D2 ∈ Df and D3 ∈ D. Denote

C := (NS ◦K)
(
C
)
, C ′ := (NS ◦K)

(
C ′
)
.

Denote also U the connected component of Up containing p, and d := (m1,m2,m3).

4.11.2 Point of type ⊕

If p is of type ⊕, then the edge associated to p in
?
Γ ((NS ◦K)∗ (Ctot)) is of the form

(m2;m1, n1) (m2;m3, n3)

[χ] [χ′]

vC vC′
⊕

and, on U , the equation of S is of the form

S ∩ U =
({
ym2/d = e2ijπ/dxm1/dzm3/d

}
∩ UCp

)norm
.

(see equation (4.12) in the proof of Lemma 4.10.3.)
Denote

πp : Ũ → S ∩ U

the resolution of the surface
({
xm1/d = e2ijπ/dym2/dzm3/d

})norm∩U described in Subsection
3.5.3, up to exchanging the roles of the coordinates x and y. In the sequel we refer to this
Subsection for the notations.

Note that
C ∩ U = (norm∗ ({y = x = 0})) ∩ U

and
C ′ ∩ U = (norm∗ ({y = z = 0})) ∩ U.

Denote C̃, C̃ ′ the strict transforms of C,C ′ by the morphism π.
Denote

gC := g ◦ rS ◦NS ◦ κp

the pullback of the function g to {ym2 = xm1zm3} ∩ UCp . Up to a unit,

gC = xn1zn3 .
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Under the morphism π, the preimage of

(NS ◦K)∗ (Ctot) ∩ U = norm∗ ({xz = y = 0}) ∩ U

is a chain of complex curves, namely

Str
(m2

d
;
m1

d
,
m3

d
|0;n1, n3

)
where the notation Str has been introduced in 3.5.3. The multiplicities on the curves of the
string are those of the function

g̃ := g ◦Π

which is the pullback of the function g to S̃ ∩ π−1(U), and where C̃0 = C̃ ′, and C̃l+1 = C̃.
Denote Ũ := π−1

(
U
)
. Note that the morphism π : Ũ → U is an isomorphism outside of p.

Discussion 4.11.1. Orientation compatibilities, point ⊕.
Let us remind here the choices of orientation made in subsection 4.8.2.
The pullbacks of the orientations of the curves C ∩ U,C ′ ∩ U by the biholomorphism π

are again the orientations given by their local complex structure.
Each new curve C̃i is taken oriented by its complex structure.
The pullback of the orientation of S ∩ U by the bimeromorphism π : Ũ → U is, again,

the orientation given by the complex structure. Now, Lemma 3.5.33 implies that at each
intersection point C̃i ∩ C̃i+1, the combination of the orientations of the two curves gives the
ambient orientation of Ũ .

Remark 4.11.2. It is useful in practice to notice that, if m2 = 1, the point p is already
a smooth point of S . The morphism π described in Subsection 3.5.3 is in this case an
isomorphism.

In the end, the preimage of ((NS ◦K)∗ (Ctot), p) by π is a chain of complex curves,
whose dual decorated graph is the bamboo of figure 4.5, where the ⊕ signs refer to the
orientation compatibilities. The integers µi represent the multiplicities of g̃ on each curve.
For the definition of the multiplicity of g̃ on the real surfaces C̃ and C̃ ′, we refer to Definition
2.7.5.

: : :

(

m2·n3

(m3;m2)

)

(

m2·n1

(m1;m2)

)

(µ1)(µl) (µ2)(µ3) (µ0) =(µl+1) =
⊕ ⊕ ⊕⊕ ⊕ ⊕

v eC
vf
C 0

Figure 4.5: The string Str⊕
(
m2
d ; m1

d ,
m3
d |0;n1, n3

)
.

Recall that (a, b) denotes gcd(a, b).
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4.11.3 Point of type 	

If p is of type 	, then the edge associated to p in
?
Γ ((NS ◦K)∗ (Ctot)) is of the form

(m2;m1, n1) (m3;m1, n1)

[χ] [χ′]

vC vC′
	

and, on U , the equation of S is of the form

S ∩ U =
({
xm1/d = e2ijπ/dym2/dzm3/d

}
∩ UCp

)norm
.

See equation (4.13) in the proof of Lemma 4.10.3.
Denote

πp : Ũ → S ∩ Up
the resolution of the surface

({
xm1/d = e2ijπ/dym2/dzm3/d

})norm∩U described in Subsection
3.5.3. Again, in the sequel we refer to this section for the notations.

Note that
C ∩ U = (norm∗ ({x = z = 0})) ∩ U

and
C ′ ∩ U = (norm∗ ({x = y = 0})) ∩ U.

Denote C̃, C̃ ′ the strict transforms of C,C ′ by the morphism π.
Denote

gC := g ◦ rS ◦NS ◦ κp
the pullback of the function g to {xm1 = ym2zm3} ∩ UCp . Up to a unit,

gC = xn1 .

Under the morphism πp, the preimage of

(NS ◦K)∗ (Ctot) ∩ U = norm∗ ({yz = x = 0}) ∩ U

is a chain of complex curves, namely

Str
(m1

d
;
m2

d
,
m3

d
|n1; 0, 0

)
where the notation Str has been introduced in 3.5.3. The multiplicities on the curves of the
string are those of the function

g̃ := g ◦Π

the pullback of the function g to S̃ ∩ π−1(U), and where C̃0 = C̃ ′, and C̃l+1 = C̃.
Note that the morphism πp : Ũ → U is an isomorphism outside of p.
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Discussion 4.11.3. Orientation compatibilities, point 	.
Let us remind here the choices of orientation made in subsection 4.8.2.
The pullbacks of the orientations of the curves C ∩ U,C ′ ∩ U by the biholomorphism πp

are again the opposites of the orientations given by their local complex structure.
Each new curve C̃i is taken oriented by the opposite of its complex structure.
The pullback of the orientation of S ∩ U by the bimeromorphism πp : Ũ → U is, again,

the opposite of the orientation given by the complex structure. Now, Lemma 3.5.33 implies
that at each intersection point C̃i ∩ C̃i+1, the combination of the orientations of the two
curves gives the opposite of the ambient orientation of Ũ .

: : :

(

m2·n3

(m3;m2)

)

(

m2·n1

(m1;m2)

)

(µ1)(µl) (µ2)(µ3) (µ0) =(µl+1) =

v eC

vf
C 0

⊖ ⊖ ⊖ ⊖ ⊖⊖

Figure 4.6: The string Str	
(
m1
d ; m2

d ,
m3
d |n1; 0, 0

)
.

Recall that (a, b) denotes gcd(a, b).
In the end, the preimage of ((NS ◦K)∗ (Ctot), p) by πp is a chain of complex curves,

whose dual decorated graph is the bamboo of figure 4.6, where the 	 signs refer to the
orientation compatibilities. The integers µi represent the multiplicities of g̃ on each curve.
Again, for the definition of the multiplicity of g̃ on the real surfaces C̃ and C̃ ′, see Definition
2.7.5.

4.11.4 The decorated graph Γµ(Etot)

The nature of the resolution process described in Subsection 3.5.3, affecting each coordinate
axis in only one point, whose preimage is a point, implies:

Lemma 4.11.4. If C is an irreducible surface of (NS ◦K)∗ (Ctot), and C̃ is the strict
transform of C by π, then

χ(C̃) = χ(C). (4.15)

Furthermore, the surfaces added in the resolution process are all of genus 0.

Definition 4.11.5. Denote Γµ(Etot) the graph obtained from
?
Γ ((NS ◦K)∗ (Ctot)) by intro-

ducing the strings described in Subsections 4.11.2 and 4.11.3, where

• Vertices coming from arrowheads are still represented as arrowheads, and every vertex
is decorated with the corresponding multiplicity of g̃.
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• The vertex v
C̃
corresponding to the strict transform of the curve C by π has genus

decoration [
g
C̃

]
= [1− χ(C)

2
]. (4.16)

and the new vertices introduced in the strings have genus decoration 0.

The genus decorations of Equation (4.16) are motivated by the Euler characteristic
identities of Equation (4.15). For the computation of χ

(
C
)
, see Equation (4.14) of Theorem

4.10.11.

4.12 Boundary of the Milnor fiber

Now, one has all the information required to compute the boundary of the Milnor fiber of f .
Recall that this one is identified via Proposition 4.4.24 to ∂Sk = ρ−1

|Sk
(ε), for any ε > 0 as

in Definition 4.4.23.
Denote ρ̃ := ρ◦Π. The fact that Π is an orientation-preserving real-analytic isomorphism

outside 0 allows us to say that ∂Sk is orientation-preserving homeomorphic to its preimage
by Π, which is the boundary ∂T of the tubular neighbourhood

T := {ρ̃ 6 ε}

of the preimage E of the origin by Π.
Now, g̃ and ρ̃ are respectively an adapted and a rug function for the configuration E in

S̃ . Theorem 2.7.9 implies that
∂T 'MΓ

S̃
(E),

where the equivalence symbol denotes an orientation-preserving homeomorphism.
In conclusion, the orientation-preserving diffeomorphism between ∂Sk and ∂T implies

∂Sk 'MΓ
S̃

(E),

where the equivalence symbol denotes an orientation-preserving diffeomorphism.

Definition 4.12.1. Denote
?
Γ (E) the graph obtained from Γµ(Etot) by keeping the genera

decorations and replacing the multiplicity decorations of nodal vertices by the self-intersection
decorations, using Lemma 2.7.7, then removing the arrowhead vertices.

The construction of the decorations of
?
Γ (E) is made in order to have the equality

?
Γ (E) = Γ

S̃
(E).

Finally we get the following generalization of [46, Theorem 10.2.10]:

Theorem 4.12.2. The boundary of F is a graph manifold, and a possible plumbing graph

for ∂F is the decorated graph
?
Γ (E), which has only nonnegative genera decorations.

This implies in particular Theorem 1 of the Introduction, Chapter 1.
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Chapter 5

A toric version of the main algorithm

In this chapter, we describe how the main algorithm can be run in the case of a Newton-
nondegenerate germ of function on a 3-dimensional germ of toric variety. The algorithm
exposed here is a generalization of the algorithm proposed by Oka in [49] to compute the
boundary of a nondegenerate isolated singularity of surface in C3, and answers the following
open question: “Determine ∂F for weighted homogeneous or Newton non-nondegenerate
singularities in terms of their Newton diagram.”, asked by Némethi and Szilárd in [46,
24.4.20].

Let N be a 3-dimensional lattice, σ ⊂ NR be a strongly convex rational cone, and
X := Xσ be the 3-dimensional toric variety associated to σ. Denote M := NX the dual
lattice of N , and denote 0 the origin of X, its only 0-dimensional orbit. More generally,
recall the notations introduced in Chapter 3.

Let f : (Xσ, 0) → (C, 0) be a suitable germ of Newton-non-degenerate function, such
that V (f) ⊃ Sing(Xσ). By Lemma 3.5.3, this last requirement is equivalent to the fact that,
if τ ≺ σ is a singular cone, Supp(f) has no point in the face τ⊥ ∩ σX of σX.

Furthermore, Lemma 3.5.3 implies:

Remark 5.0.1. Let τ be a regular 2-dimensional face of σ. Then the hypersurface V (f) is
singular along Oτ if and only if every element m of Supp(f) can be written as m = m1 +m2,
where m1,m2 ∈

(
σX \ τ⊥

)
∩M.

We propose in this chapter a way to obtain the decorated graph
?
Γ (Ctot) that is the

starting point of the general algorithm described in Chapter 4 from the Newton polyhedron
LNP (f) of f . Furthermore, we show that, in this case, the data of this decorated graph is
sufficient to run the algorithm of computation of the boundary of the Milnor fiber of f .

This provides an algorithm taking as an input the cone σ and the Newton polyhedron of
f , and computing the boundary of the Milnor fiber of f .

A direct consequence of this construction is the planarity of the plumbing graph, explicited
in Proposition 5.3.1.
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5.1 A companion for everyone ?

Although there is no chance to describe a function g that will be a companion (in the sense
of Definition 4.4.2) of each Newton-nondegenerate function f on X, there is indeed some
object that will work for every f .

Definition 5.1.1. For any sequence G = (m1, · · · ,mk) generating the semigroup σX ∩M ,
denote

P (G) := Conv

 ⋃
16i6k

mi + σX

 .

In the sequel, we fix such a family G.
By Remark 3.2.4, the sequence G leads to an embedding (X, 0) ↪→ Ckx1,··· ,xk . From this

viewpoint, P (G) is in fact the local Newton polyhedron of the restriction to X of a generic
linear form of Ckx1,··· ,xk .

Now, Lemmas 4.4.8 and 3.5.26 imply:

Lemma 5.1.2. For any germ of function f on (X, 0), there is a function g that is a
companion of f and such that

LNP (g) = P (G).

Remark 5.1.3. One can note that the Newton-nondegeneracy of f is not required for this
lemma. However, for what follows, the hypothesis of Newton-nondegeneracy is central.

5.2 Computing Ctot

In this section, we explain how to get access to the decorated graph
?
Γ (Ctot). We construct

a fan F̃ refining σ and such that the associated modification

r̃ := ΠF̃ : XF̃ → X

verifies the conditions of Definition 4.6.1.

5.2.1 First refinement of σ

Denote F := Ff ·g the fan associated to the germ f · g. Remark 3.5.37 implies that this fan
is the minimal refinement of both Ff and Fg. Denote X = XF and

r := ΠFf ·g : X → X

the modification associated to this refinement.
Note that we have the following commutative diagram:
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X

XFf XFg

X

ΠFf ΠFg

ΠF ,Ff ΠF ,Fg

r

Denote V (f), V (g) the strict transforms of V (f), V (g) by r. Denote

Df := r−1(V (f) \ {0})

the mixed transform of V (f) by r, which is the analogue at this step of the divisor Df of
Definition 4.6.1.

The fact that the fan Ff ·g is the minimal refinement of both Ff and Fg implies that it
can be computed by “superposing” the two fans Ff and Fg, as in figure 5.1.

σ

Figure 5.1: The fan Ff ·g as a superposition of Ff and Fg.

Let us explain the colours in this figure:

• In orange are drawn the 2-dimensional cones that are in both Ff and Fg.

• The fan Fg is drawn in green and orange.

• The fan Ff is drawn in blue and orange.
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• The red marks correspond to the 2-dimensional compact orbits of XFf ·g that are
intersected by V (f).

• The violet marks correspond to the non compact 2-dimensional orbits whose closures
are irreducible components of Df . They are contained in fact in the exceptional part
Df \ V (f) of this mixed transform.

Indeed, if γ is a 2-dimensional face of σ, V (f) ⊃ Oγ if and only if Ff contains a
1-dimensional cone τ in the interior of γ. In these conditions, Oτ is an irreducible
component of Df \ V (f).

Remark 5.2.1. Note that our construction of g ensures that Fg has no 1-dimensional cone
contained in the interior of a 2-dimensional face of σ.

5.2.2 Second refinement

Now, refine F in such a way as to subdivide regularly every 2-dimensional cone corresponding
to an orbit intersected by V (f), as in Lemma 3.5.30. Denote F̂ the fan obtained at this
step, X̂ := XF̂ , and V̂ (f), V̂ (g), D̂f respectively the strict transforms of f, g and the mixed
transform of V (f) by

r̂ := ΠF̂ : X̂ → X,

the associated modification of X. The following figure 5.2 shows such a possible refinement.
The violet 2-dimensional cones correspond to 1-dimensional orbits whose closures are curves
of Df ∩ D0. The discontinuous ones represent such orbits that are not intersected by V̂ (f).

5.2.3 Last refinement

At this point, the last problems stand at the 0-dimensional orbits contained in the closures
of orbits corresponding to violet 2-dimensional cones. In XF , such points are the orbits 0γi ,
where γi varies among the 3-dimensional cones of the fan F that have a face of dimension 1
which is contained in a 2-dimensional face of σ but in no 1-dimensional face.

Hence the purpose of the last refinement is to subdivide regularly those cones γi. However,
there is no canonical way to refine regularly a cone of dimension 3 or more. For a way to
compute such a refinement, see [49], paragraph 3. A refinement of those cones will always
start with the canonical refinements of their 2-dimensional faces. Denote F̃ this last fan,
and Ṽ (f), Ṽ (g),Df the strict and mixed tranforms. Denote

r̃ := ΠF̃ : XF̃ → X

and
D0 := r̃−1(0).
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σ

γ1

γ2
γ3

γ4

γ5 γ6 γ7

γ8

γ9

γ10

γ11γ12

γ13
γ14

γ15

Figure 5.2: A possible F̂ , refinement of F .

The point is that, up to choosing generic coefficients for g, the modification r̃ is adapted
to the couple (f, g), in the sense of Definition 4.6.1. Denote Df,ex the union of irreducible
components of Df that are not in Ṽ (f). This way, we get a decomposition

Df = Ṽ (f) ∪ Df,ex

of the set of irreducible components of Df .
Figure 5.3 shows a possible fan F̃ . The set Df,ex is the union of the closures of the

2-dimensional orbits of XF̃ corresponding to 1-dimensional cones of F̃ whose minimal
containing cone of σ is of dimension 2. Those orbits are again represented by violet marks.

5.2.4 Reading C

Definition 5.2.2. For τ ∈ F̃ , denote repectively ∆τ (f) and ∆τ (g) the corresponding faces
of LNP (f) and LNP (g).

To make short, if the dimension of those faces is 1 or less, denote

lτ (f) := l(∆τ (f)) and lτ (g) := l(∆τ (g))

with the convention that the length of a 0-dimensional face is 0.
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σ

⊕

⊕

⊕ ⊕

⊕

⊕

⊖

⊖ ⊖ ⊖

Df;ex

Df;ex

Df;ex

Df;ex

Figure 5.3: A possible F̃ , refinement of F̂ .

If dim(∆τ (f)) 6 2, denote iτ the number of interior points of ∆τ (f), with the convention
that the number of interior points of a face of dimension 0 or 1 is 0.

Finally, call τ pertinent if and only if dim(∆τ (f)) > 1 and τ is not contained in a
strict face of σ.

Remark 5.2.3. Remark 3.5.18 implies that the intersection Ṽ (f)∩Oτ is non-empty if and
only if τ is pertinent. In figure 5.3, pertinent 1-dimensional cones are represented by red
marks, while pertinent 2-dimensional cones are represented by either blue or continuous
violet segments.

One can read the configuration C on the fan F̃ , together with LNP (f) and LNP (g).
First, note that the curves of C = Df ∩D0 are of two types, according to the decomposition
Df = Ṽ (f) ∪ Df,ex.

Discussion 5.2.4. (Two types of compact curves.)

1. The first type is made of curves in Df,ex ∩ D0. Such curves are of the form Oγ,
where γ is a 2-dimensional cone with one 1-dimensional face in the interior of σ, and
the other in the interior of a 2-dimensional face of σ. Such cones are represented by
violet lines, continuous or not, in figure 5.3.
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Two such curves intersect if and only if the corresponding cones are faces of a same
3-dimensional cone of F̃ . Our construction ensures that X̃ is smooth along the union
of those curves, and that they intersect transversally in exactly one point. Furthermore,
the nature of their intersection point can be read on the fan: it is ⊕ if and only if they
are in the same component of Df,ex.

2. The second type is made of curves of Ṽ (f) ∩ D0, that is, intersection of Ṽ (f)
with closures of orbits corresponding to 1-dimensional cones in the interior of σ. Let τ
be such a 1-dimensional cone of F̃ . Recall that Oτ is intersected by Ṽ (f) if and only
if dim(∆τ (f)) > 1.

Furthermore, we know the nature of this intersection: by Proposition 3.5.24, given a
pertinent cone τ of dimension 1, the intersection Oτ ∩ Ṽ (f) is

• an irreducible curve Cτ if dim(∆τ (f)) = 2.
• a disjoint union Cτ = Cτ

1⊔ · · ·⊔Cτ lτ (f) of lτ (f) irreducible rational curves if
dim(∆τ (f)) = 1.

By construction of F̃ and the non-degeneracy of f , these curves are smooth, X̃ is
smooth along each of them, and they intersect transversally.

Furthermore, let τ1, τ2 be two 1-dimensional pertinent cones. The possibly disconnected
curves Cτ1 and Cτ2 intersect if and only if τ1 and τ2 are faces of the same 2-dimensional
pertinent cone γ. In these conditions,

Card(Cτ1 ∩ Cτ2) = lγ(f)

and these intersection points are all of type ⊕, because these curves are in the same
component of Df , that is, Ṽ (f).

Note that, in this situation, if dim(τ1) = 1, then lτ1(f) = lγ(f), and each connected
component of Cτ1 intersects Cτ2 in exactly one point.

Lemma 5.2.5. (Intersection of curves of the first and of the second type.)
Let C1 = Oγ be a curve of the first type, and C2 = Cτ be of the second type, for some

2-dimensional cones τ, γ. Then

C1 ∩ C2 6= ∅ ⇔ τ ≺ γ and γ is pertinent.

In these conditions,
Card(C1 ∩ C2) = lγ(f)

and each intersection point is of type 	.

Discussion 5.2.6. The last data required for the description of the configuration C is the
decorations of the curves:
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1. If C = Oγ is a curve of type 1, denoting τ1 the 1-dimensional face of γ that is not in
the boundary of σ and τ2 the one in the interior, the decoration of C is the triple

(hτ1(f);hτ2(f), hτ2(g))

with genus 0.

2. If C ⊂ Cτ is of the second type, then the decoration of C is the triple

(1;hτ (f), hτ (g))

with genus
g(C) = iτ ,

see Proposition 3.5.24.

5.2.5 Non-compact curves

Pick generic coefficients of g so that for any 2-dimensional orbit Oτ of X̃ intersected by
Ṽ (f), the truncations f

∆τ (f)
and g

∆τ (g)
verify the hypothesis of Corollary 3.5.41.

Definition 5.2.7. Denote V (τ) the mixed 2-dimensional volume of ∆τ (f) and ∆τ (g).

With this choice of g, we can access the rest of the configuration Ctot. Indeed,

Lemma 5.2.8. (Adding non-compact curves)
Let Cτ be a curve of C of the second type, possibly a disconnected union of curves. Then

Card
(
Cτ ∩ Ṽ (g)

)
= V (τ),

each of these intersection points being an intersection point of Cτ with a curve in Ṽ (f)∩Ṽ (g).
Furthermore, if dim(∆τ (f)) = 1, ∃ k ∈ N s.t. V (τ) = k · lτ (f), and each connected

component of Cτ is intersected in k points.

Each of these points is of type ⊕, and, in
?
Γ (Ctot), the new curves are represented by

arrowheads decorated with (1; 0, 1).

Remark 5.2.9. If dim(∆τ (g)) = 0, then V (τ) = 0.
If ∆τ (f) and ∆τ (g) are parallel segments, again, V (τ) = 0
If ∆τ (f) and ∆τ (g) are non parallel segments, V (τ) = lτ (f) · lτ (g).

Figure 5.4 shows a possible form of the graph Γ(Ctot), where the decorations ⊕ and the
triples of multiplicities are omitted. Violet marks represent curves of type 1. We respected
to a large extent the form of the fan F̃ , and the reader can follow the construction of
this graph from the fan, with the appropriate values for the lengths and mixed volumes.
Every curve without genus decoration is rational, and the indicated genera gi’s may be zero,
according to the number of integral points of the 2-dimensional compact faces of LNP (f).
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[g1]

[g2]

[g3]
[g4]

[g5]

[g6]

Figure 5.4: A possible graph Γ(Ctot).

5.3 Sufficiency of
?

Γ (Ctot)

Let us conclude this chapter by two observations that show that the data of the decorated

graph
?
Γ (Ctot) computed in the previous sections is sufficient to apply the main algorithm

presented in Chapter 4.

5.3.1 Switches

Observe that, if the genus of a compact irreducible component of Ctot is not 0, then the triple
of multiplicities of this curve is of the form (1;m,n). Combining this with Theorem 4.10.11,
we see that there is only one component in its preimage by the normalization morphism.
This makes the data of the switches of Definition 4.10.10 unnecessary.
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5.3.2 Covering graph

In the same spirit, observe that, by our construction, the graph obtained from
?
Γ (C ) by

removing all vertices corresponding to curves of type 2 is a disjoint union of trees. Again,
each of those curves of type 2 being decorated by a triple of the form (1;m,n), this prevents
by Theorem 2.6.33 any ambiguity in the definition of the covering graph corresponding to
the process of normalization and complexification of S̃k, see Section 4.10.

Hence, one can proceed to the main algorithm with the sole data of
?
Γ (Ctot),

obtained from LNP (f) and σ.
Furthermore, we can observe the following, which comes from our construction and

Remark 2.6.40:

Proposition 5.3.1. In the toric case, the graph produced by our algorithm is planar. The
normal form of this graph in the sense of [47] is also planar.

5.4 Two examples of computation

In this section we give two examples of computation of plumbing graphs of the boundaries
of Milnor fibers of Newton non-degenerate functions on three-dimensional toric germs,
performed using the algorithm described before. In the first example the toric germ is
smooth, therefore we are in the setting of Némethi and Szilárd’s book [46]. Nevertheless,
let us recall that the family of Newton non-degenerate functions was not treated in that
book. In the second example the toric germ is singular, with 1-dimensional singular locus.
Therefore the fact that the boundary of the associated Milnor fiber is a graph manifold is
not a consequence of any previous work.

5.4.1 An example in C3

Consider the function f : (C3, 0)→ (C, 0) given by

f(x, y, z) = x5 + y2 + xyz.

Figure 5.5 shows the local Newton polyhedron of f , while Figure 5.6 shows the local
Newton polyhedron of a generic linear form g(x, y, z) = α · x+ β · y + γ · z.

Figure 5.7 shows the fan Ff ·g, with the conventions introduced in Subsection 5.2.1.
In this example, every blue cone of dimension 2 is already regular. The cone generated

by

 1
1
0

 and

 1
4
0

 is refined by introducing the vectors

 1
2
0

 and

 1
3
0

.

Figure 5.8 shows the refinement F̃ of Ff ·g respecting the conditions asked in Subsection
5.2.3.
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a

b

c

0

@

5

0

0

1

A

0

2

0

1

A

b = 0

a = 0

M

Figure 5.5: LNP (f).

Denote u =

 1
2
1

, v =

 1
3
1

. The number of points of intersection of the strict

transforms Ṽ (f) and Ṽ (g) in the orbit O〈u〉 is equal to the mixed volume of the faces

∆u(f) =

 1
1
1

 ,

 0
2
0

 and ∆u(g) =

 0
0
1

 ,

 1
0
0

, where [AB] denotes the

segment between the points A and B. They are noncolinear segments, both of length 1, so
this mixed volume is equal to 1. In the same way, the number of points of intersection of
Ṽ (f) and Ṽ (g) in O〈v〉 is 1.

The multiplicities of f and g on the closures of the orbits are given either by direct lecture
on the respective Newton polyhedra or using the linearity of each multiplicity function in

each cone of Ff ·g. For example, u =
1

3

 2
5
3

+

 1
1
0

, so mOu
(f) = (10 + 2)/3 = 4.

The graph
?
Γ (Ctot) is represented in Figure 5.9, with the decorations ⊕ omitted. Note
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0

1

1

A

Figure 5.6: LNP (g).

that, in this example, no compact face has interior points, which explains the nullity of all
genera, and the fact that there is no multiple edge.

By equation (4.14), each surface of
?
Γ ((NS ◦K)∗ (Ctot)) has Euler characteristic 2,

which will eventually lead to genus 0, so we omit these decorations. The next step is the
computation of the strings inserted in place of the edges. We explain the computation on
the edge

(3; 5, 1) (4; 5, 1)
	

which is replaced by the string Str	 (5; 3, 4|1; 0, 0). Here, with the notations of Subsection

3.5.3, a = 5, b = 3, c = 4, n1 = 1, n2 = n3 = 0, d = (a, b, c) = 1, and δ =
ad

(a, b)(a, c)
= 5.

Now, α is the only integer between 0 and 4 such that

ad | c(a, b)α+ b(a, c).

In our case, α = 3. Then we compute

δ

α
=

5

3
= 2− 1

3
.

This gives us k1 = 2 and k2 = 3, and l = 2. Finally, we get µ0 =
cn1 + an3

(a, c)
= 4,

µ3 =
bn1 + an2

(a, b)
= 3, and µ1 =

αµ0 + µl+1

δ
= 3. Now µ2 is computed thanks to the identity

µ2 · k2 = µ1 + µ3. We get µ2 = 2. Finally the string Str	 (5; 3, 4|1; 0, 0) is equal to
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Figure 5.7: The fan Ff ·g.

(3) (3) (4)(2)
⊖ ⊖ ⊖

and the graph Γµ(Etot) is the one represented in Figure 5.10, with the decorations ⊕ omitted.
Finally, the plumbing graph Γ

S̃
(E) obtained as a result of the main algorithm is the

one represented in Figure 5.11.
Its normal form in the sense of [47] is

−2 −4 −2

	

Note that, in [46, p. 210], the authors propose the form

2 5

	

These two graphs encode the same graph manifold, and are related by a succession of
blowing-downs and blowing-ups.
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Figure 5.8: The fan F̃ .

5.4.2 An example with X singular

Denote M := Z3, and let

u1 =

 0
1
2

 , u2 =

 0
1
0

 , u3 =

 1
1
−1

 , u4 =

 1
0
0


be vectors in R3, and

σ = 〈u1, u2, u3, u4〉R+ .

Let X := Xσ be the 3-dimensional toric variety corresponding to σ. The cone σ is not
simplicial, hence X is singular at the origin. Furthermore, the face τ1,2 := 〈u1, u2〉R+ of σ is
singular, hence X is singular along 0τ1,2 .

The cone σX is generated by the vectors

U =

 1
0
1

 , V =

 0
1
1

 ,W =

 1
0
0

 , X =

 0
2
−1

 .

The face of σX corresponding to the face τ1,2 of σ is the ray generated by W .

128



⊖
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(1; 0; 1)(1; 0; 1)
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(2; 4; 1) (2; 5; 1) (3; 5; 1) (4; 5; 1) (5; 5; 1)(2; 2; 1)

Figure 5.9: The configuration Ctot.

⊖

⊖
⊖ ⊖ ⊖ ⊖ ⊖ ⊖

⊖

(1)

(1)

(1)

(1)

(1)

(1)

(1) (1)(2) (3) (3)(2) (4)

(2)

(1)

(1)

Figure 5.10: The graph Γµ(Etot).

Furthermore, the semigroup Sσ = σX ∩M is generated by U, V,W,X and Y =

 0
1
0

.

The relations between these vectors provide the description

X = Spec
(
C[U, V,W,X, Y ]�(Y 3 −XV,UX −WY 2)

)
Figure 5.12 shows the local Newton polyhedron of the restriction g to X of a generic

linear form in C5
U,V,W,X,Y . Full black lines represent the cone σ, while dashed lines represent

the axes of coordinates, left for clarity.
Consider the function f ∈ C[σX ∩M ] given by

f = χ

(
1
1
2

)
+ χ

(
2
0
1

)
+ χ

(
0
2
0

)
+ χ

(
0
4
−2

)

Note that V (f) ⊃ Sing(X), since f admits no multiple of W in its support. Figure 5.13
shows the local Newton polyhedron of f , where we kept again the coordinate axes and the
cone σX. Blue marks represent the elements of Supp(f), while black marks represent the
other points of M in the compact faces of LNP (f).
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Figure 5.11: The graph Γ
S̃

(E).

The final refinement of Ffg is represented in Figure 5.14, with the codes of colours
introduced in the description of the general case, see Subsection 5.2.1. Next to each vector
corresponding to a 2-dimensional orbit of XFfg , we indicate the couple of multiplicities of
the pullbacks of the functions f, g on the orbit in question. Again, the missing multiplicities
are computed using the linearity of each multiplicity function on the cones of Ffg. For
example,  1

2
2

 =
1

2

 0
1
2

+

 0
1
0

+ 2 ·

 1
1
1


hence mO

〈
(

1
2
2

)
〉

(g̃) =
1

2
· 2 = 1.

Now, set u =

 1
1
1

 , v =

 1
1
0

 , w =

 1
2
2

.

The face ∆〈u〉(f) is a segment of length 2, and the mixed volume V〈u〉 of ∆〈u〉(f) and
∆〈u〉(g) is equal to 2.

We show an example of computation of the mixed volume by hand in the case of v:

∆〈v〉(f) is the triangle

 1
1
2

 ,

 2
0
1

 ,

 0
2
0

 which can be translated to the triangle 0
0
0

 ,

 1
−1
−1

 ,

 −1
1
−2

.
∆〈v〉(g) can be translated into the polygon

 0
0
0

 ,

 0
0
−1

 ,

 −1
1
0

 ,

 −1
1
−1

.
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Figure 5.12: LNP (g).

Now, choosing the basis x =

 1
−1
−1

 , y =

 0
0
−1

 for the plane containing these two

polygons, we get the picture of Figure 5.15.
The mixed volume is read on Figure 5.16, reminding that an elementary triangle has

volume 1, and that V (P,Q) = (V ol(P +Q)− V ol(P )− V ol(Q)) /2. We get V〈v〉 = 4.
Finally, V〈w〉 = 0 because ∆〈w〉(g) is a point. Keeping in mind that face ∆〈v〉(f) has one

interior point, we get finally the graph of configuration of Figure 5.17.
This leads to the multiplicity graph Γµ(Etot) represented in Figure 5.18. For the

computation of the genera, notice that, by formula 4.14, the genus of a curve where the
multiplicities of f̃ are coprime remains unchanged.
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Figure 5.13: LNP (f).

Finally, we get the plumbing graph Γ
S̃

(E) represented in Figure 5.19. It can be reduced
with blowing-downs to the graph of figure 5.20. Note that this graph is in normal form in
the sense of [47].
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Figure 5.14: Refinement of Ffg.

x

y

0

∆hvi(g

Figure 5.15: Translations of ∆〈v〉(f) and ∆〈v〉(g).
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∆hvi(f ) +∆hvi(g)

Figure 5.16: The Minkowski sum ∆〈v〉(f) + ∆〈v〉(g).
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(1; 0; 1)
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f4×

(2; 4; 1)

⊖

⊖ (1; 4; 1)
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(1; 2; 1)

⊖

Figure 5.17: The configuration Ctot.
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Figure 5.18: The graph Γµ(Etot).
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Figure 5.19: The graph Γ
S̃

(E).
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Figure 5.20: The equivalent normal graph.
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Index

Z-action on a graph, 36

Adapted function, 43
Algebra associated to a cone, 50
Arrowhead vertex, 36

Bernstein-Koushnirenko-Khovanskii theorem,
70

Birational map, 29

Compact curves
of type 1, 120
of type 2, 121

Companion of a function, 75
Complete intersection singularity, 76
Conditions

on ε, 79, 80
on k, 88, 91

Cone
associated to a face of a Newton polyhe-

dron, 59
dual of a cone, 48
generated by elements of a lattice, 47
orthogonal of a cone, 48
rational convex polyhedral, 47
regular, 48
simplicial, 48
singular, 48
strongly convex, 47

Critical locus of an application, 25, 75
Cyclic covering, 109
Cyclic order

at a double point of Ctot, 102
at a generic point of Ctot, 101
on a set, 36

Deformation of a germ, 27, 74
Dimension of an analytic space, 23
Discriminant locus of an application, 25, 75
Divisor in a variety, 24
Divisorial

modification, 25
resolution, 25

Double points of Ctot of type ⊕/	, 92
Dual graph of a collection, 41
Dual lattice, 48

Edges associated to an edge in a covering, 37
Equivariant cyclic coverings, 37
Euler number of an S1-fibration, 34
Exceptional locus of an application, 25

Face
of a cone, 49
of a polyhedron, 59
associated to a vector, 59

proper face of a cone, 49
Fan, 52

associated to a function, 59
complete, 69
support of a fan, 52

Fiber bundle, 32, 33
orientable, 33

Flat
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map, 27
module, 26

Function defining the origin, 71

Generic linear form, 76
Generic point of Ctot, 90
Germ of toric variety, 54
Good embedded resolution of singularities,

26
Good representative of the germ (X, 0), 80
Graph, 35

covering data, 37
cyclic, 38
cyclic covering, 37
decorated, 36
equivariant morphism, 36
isomorphism, 36
of decorated graphs, 36

morphism, 35
Graph manifold, 32, 38, 39

Height of a polyhedron relatively to a vector,
58

Integral closure of a ring, 28
Integral length, 47
Internal/external cone of a fan, 55
Intrinsic variety associated to a cone, 51
Isolated Complete Intersection Singularity

(ICIS), 76

Large enough integer k, 78
Lattice, 47
Local complexification

morphism K, 98
variety S , 98

Local Newton polyhedron of a germ of func-
tion, 57

Loop at a vertex, 35

Milnor
fiber, 71

of a map, 76
of a smoothing, 74

fibration, 71
Milnor-Lê fibration, 71
Minkowski sum, 57
Mixed transform, 26, 87
Mixed volume of a family of convex polytopes,

69
Modification

adapted to a map Φ, 85
associated to a refinement, 56

Modification of a variety, 25
Multi-germ of analytic spaces, 31
Multiplicity of an adapted function, 43

Newton-nondegenerate function, 62
Node vertex, 36
Normal

locus of a variety, 28
ring, 28
toric variety, 53
variety, 28

Normalization
of S̃k, 90
of a complex-analytic variety, 30
of a germ of complex-analytic variety, 31
of an affine variety, 29

Orbit
associated to a cone, 53, 55

Orientable plumbing graph, 38
Orientations

of C and Ctot, 86
of S̃
near a point of type 	, 113
near a point of type ⊕, 111

of S̃k and its normalization near
a generic point, 91
a point of type 	, 97
a point of type ⊕, 94

of S , 99
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of the model near
a generic point, 91
a point of type 	, 97
a point of type ⊕, 94

Origin of an affine toric variety, 53

Pertinent cone, 120
Planar plumbing graphs, 41, 124
Plumbing graph, 32, 39
Primitive element in a lattice, 47

Rational map, 29
Reduced space, 23
Refinement of a fan, 56
Regular subdivision of a 2-dimensional cone,

65
Relative interior of a cone, 49
Resolution of a variety, 25
Rug function, 44

Semigroup associated to a cone, 50
Simple configuration of real-analytic surfaces,

42
Simple normal crossings divisor (SNCD), 24

at C , 25
Singular locus of a variety, 24
Small enough

neighbourhood of 0 in C2, 78
representative of X, 78

Smooth locus of a variety, 24
Smoothing of a singularity, 27, 74
Star of a vertex in a graph, 100
Strict part of a set, 88
Strict transform of a subvariety, 25
Suitable function, 58
Support of a function, 57
Switch associated to a loop, 107

Topological realization of a graph, 35
Toric variety, 53

associated to a cone, 50
associated to a fan, 53

Torus associated to the lattice N , 50
Total transform of a subvariety, 25
Transversal type of (X,V (f)) along a com-

ponent of Sing(V (f)), 106
Tree, 35

covering a graph, 35
Truncation of a function relatively to a face

of its local Newton polyhedron, 61
Tubular neighbourhood of a configuration of

surfaces, 44

Unit function at a point, 28

Variety, 23
Vertices associated to a vertex in a covering,

37
Volume of a convex polytope, 69
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Index of notations

⊕,	 Decorations of edges associated to intersection points of two surfaces in a configuration
of surfaces, page 43

〈v1, . . . , vk〉R+ The cone generated by v1, . . . , vk, page 47

(a, b) gcd(a, b), page 59

(m1;m2, n2) Decoration of vC in
?
Γ (Ctot), page 99

(nv,ne) Covering data of a graph, page 37

0Xσ Origin of the affine toric variety Xσ, page 53

A(X) The non-normal locus of X, page 30

A+B Minkowski sum of A and B, page 57

Aσ The algebra associated to the cone σ, page 50

AM Algebra generated by the elements of the group M , page 50

cΓ Rank of H1(|Γ|,Z), page 35

CΦ Critical locus of Φ, page 75

C ,Ctot , page 85

Ci or C Connected component of (NS ◦K)−1(C), page 108

C̃ Strict transform of C by π, page 113

C{σX ∩M} The local ring of germs of holomorphic functions of the variety Xσ at the point
0, page 54

Conv Convex hull of a subset of a vector space, page 57

∂F The boundary of F , page 80
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∆Φ Discriminant locus of Φ, page 75

∆v Face of LNP(f) associated to the vector v, page 59

D,Df ,D0,Dg , page 85

Dδ Disc of radius δ in C, page 71

E (Γ) Set of edges of the graph Γ, page 35

ei Self-intersection decoration of a surface in the dual graph, page 43

ep Edge of
?
Γ (Ctot) corresponding to the double point p, page 99

F Representative of the Milnor fiber, page 80

f∆ Truncation of f relatively to the face ∆ of LNP(f), page 61

F A fan, page 52

|F | Support of the fan F , page 52

Ff The fan associated to the funciton f , page 59

FP Fan associated to the compact polyhedron P , page 69

fX̃ , gX̃ Pullbacks of f and g to X̃, page 87

g A companion of f , page 75

[gi] Genus decoration of a surface in the dual graph, page 43

g̃ Pullback of the function g to S̃ ∩ π−1(U), page 111

G (Γ, (nv,ne)) Set of equivalence classes of cyclic coverings of Γ with data (nv,ne), page 37

Γ Topological realization of the graph Γ, page 35

Γ(E) Dual graph of the collection E, page 41

?
Γ (Ctot) Decorated dual graph of Ctot, page 99

Γ
S̃

(E) Plumbing dual graph of a simple configuration of surfaces, page 42

?
Γ ((NS ◦K)∗ (Ctot)) The decorated graph associated to the configuration (NS ◦K)∗ (Ctot),

page 108

Γµ(Etot) Dual graph of Etot decorated with the multiplicities of g̃, page 113
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Hstr Strict part of H, page 88

hv(f) Height of LNP(f) relatively to the vector v, page 59

i(∆) Number of interior points of the face ∆ of dimension 2, page 63

K Local complexification morphism of S̃k, page 98

k0 Smallest large enough integer k for Φ, page 78

κp , page 90

κ	p , page 94

κ⊕p , page 93

κp , page 91

κ	p , page 95

κ⊕p , page 93

LNP(f) The local Newton polyhedron of the germ of function f , page 57

l(∆) Integral length of the face ∆ of dimension 1, page 63

l(u) Integral length of the element u of a lattice, page 47

M The dual lattice of N , page 48

MΓ Graph manifold associated to the graph Γ, page 38

Mσ Dual lattice of Nσ, page 50

mi, ni Multiplicities of fX̃ and gX̃ along the irreducible component Di of D, page 87

N Lattice of weights, page 47

NR Vector space associated to the lattice N , page 47

Nσ Lattice generated by elements of σ, page 50

nC Number of connected components of (NS ◦K)−1(C), page 108

NS The normalization morphism of S̃k, page 90

OX,x The local ring of the variety X at the point x, page 23

O∆ The orbit associated to the face ∆, page 59
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Oσ Orbit associated to the cone σ, page 53

Φ The germ of function (f, g), page 75

Π The total modification of Sk, page 109

π Resolution map of S , page 109

ΠF The modification of Xσ associated to the refinement F of σ, page 60

πp resolution of (S , p), page 110

ΠF ′,F Modification of XF associated to the refinement F ′, page 56

p A preimage of the double point p by (NS ◦K), page 110

pE Map of edges, page 35

pV Map of vertices, page 35

ρ Function defining the origin in X, page 71

rX Modification of X adapted to Φ, page 85

rS Restriction of rX to S̃k, page 88

σ⊥ Orthogonal of the cone σ, page 48

σX Dual cone of σ, page 48
◦
σ The relative interior of the cone σ, page 49

Sing(X) Singular locus of X, page 24

Sm(X) Smooth locus of X, page 24

Sk , page 79

S̃k , page 88

S̃k
N

Normalization of S̃k, page 90

S Local complexification of S̃k
N
, page 98

S̃ Resolution of S , page 109

Supp(f) Support of the function f , page 57

Sσ The semigroup associated to the cone σ, page 50
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Sε Sphere in X of radius ε centered at the origin, page 71

τ ≺ σ τ is a proper face of σ, page 49

τ � σ τ is a face of σ, page 49

τ∆ Cone associated to the face ∆, page 59

TN Torus associated to the lattice N , page 50

UCp , page 91

UCp , page 93

UCp , page 95

Up Neighbourhood of a point in S , page 98

Ũ Neighbourhood of a point in S̃ , page 111

Uk A small enough neighbourhood for k, page 78

Up , page 90

V (f) Zero locus of the function f , page 71

V (Γ) Set of vertices of the graph Γ, page 35

V (P ) Volume of the polytope P , page 69

V (P1, · · · , Pn) Mixed volume of the polytopes P1 · · · , Pn, page 69

vC Vertex of
?
Γ (Ctot) corresponding to the curve C, page 99

Xσ(Nσ) The intrinsic variety associated to the cone σ, page 51

X Ambient 3-dimensional germ of complex analytic variety, page 71

XF The toric variety associated to the fan F , page 53

Xσ The affine variety associated to the cone σ, page 50

Xε Open ball in X of radius ε centered at the origin, page 71

Zk , page 77
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