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Résumé

La théorie statistique de l’apprentissage est un domaine de la statistique inférentielle dont
les fondements ont été posés par Vapnik à la fin des années 60. Il est considéré comme un
sous-domaine de l’intelligence artificielle. Dans l’apprentissage automatique, les machines
à vecteurs de support (SVM) sont un ensemble de techniques d’apprentissage supervisé
destinées à résoudre des problèmes de discrimination et de régression.

Dans cette thèse, notre objectif est de proposer deux nouveaux problèmes d’apprentissage
statistique: un portant sur la conception et l’évaluation d’une extension des SVM multi-
classes et un autre sur la conception d’un nouveau noyau pour les machines à vecteurs de
support.

Dans un premier temps, nous avons introduit une nouvelle machine à noyau pour la
reconnaissance de modèle multi-classe: la machine à vecteur de support hyperbolique.
Géométriquement, il est caractérisé par le fait que ses surfaces de décision dans l’espace
de redescription sont définies par des fonctions hyperboliques. Nous avons ensuite établi
ses principales propriétés statistiques. Parmi ces propriétés nous avons montré que les
classes de fonctions composantes sont des classes de Glivenko-Cantelli uniforme, ceci en
établissant un majorant de la complexité de Rademacher. Enfin, nous établissons un
risque garanti pour notre classifieur.

Dans un second temps, nous avons créé un nouveau noyau s’appuyant sur la trans-
formation de Fourier d’un modèle de mélange gaussien. Nous procédons de la manière
suivante: d’abord, chaque classe est fragmentée en un nombre de sous-classes pertinentes,
ensuite on considère les directions données par les vecteurs obtenus en prenant toutes les
paires de centres de sous-classes d’une même classe. Parmi celles-ci, sont exclues celles
permettant de connecter deux sous-classes de deux classes différentes. On peut aussi voir
cela comme la recherche d’invariance par translation dans chaque classe. Nous l’avons
appliqué avec succès sur plusieurs jeux de données dans le contexte d’un apprentissage
automatique utilisant des machines à vecteurs support multi-classes.

Mots-clés. Apprentissage statistique, Classifieur multi-classe à marge, Glivenko-
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Cantelli uniforme, Risque garanti, Complexité de Rademacher.
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Abstract

Statistical learning theory is a field of inferential statistics whose foundations were laid by
Vapnik at the end of the 1960s. It is considered a subdomain of artificial intelligence. In
machine learning, support vector machines (SVM) are supervised learning models with
associated learning algorithms that analyze data used for classification and regression
analysis.

In this thesis, our aim is to propose two new statistical learning problems: one on the
conception and evaluation of a multi-class SVM extension and another on the design of a
new kernel for support vectors machines.

First, we introduced a new kernel machine for multi-class pattern recognition : the
hyperbolic support vector machine. Geometrically, it is characterized by the fact that
its decision boundaries in the feature space are defined by hyperbolic functions. We
then established its main statistical properties. Among these properties we showed that
the classes of component functions are uniform Glivenko-Cantelli, this by establishing an
upper bound of the Rademacher complexity. Finally, we establish a guaranteed risk for
our classifier.

Second, we constructed a new kernel based on the Fourier transform of a Gaussian
mixture model. We proceed in the following way: first, each class is fragmented into
a number of relevant subclasses, then we consider the directions given by the vectors
obtained by taking all pairs of subclass centers of the same class. Among these are
excluded those allowing to connect two subclasses of two different classes. We can also
see this as the search for translation invariance in each class. It successfully on several
datasets in the context of machine learning using multiclass support vector machines.

Keywords. Machine learning, Margin multi category classifiers, Uniform Glivenko-
Cantelli, Guaranteed risk, Rademacher complexity.
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Outline of the thesis

This thesis is organized in four main chapters that can be read independently of the others
to some extent.

Chapter 1 is an autonomous introductory chapter, we will first present the state
of the art in the field of statistical learning introducing the scientific context: supervised
and unsupervised learning. Then we will present the problem of binary classification
in both cases: linearly and non-linearly separable, and we will discuss the problem of
multi-class classification. Finally, we will present the capacity measures among these, the
Rademacher complexity.

Chapter 2, will introduce fundamental elements of kernel theory. The goal of this
chapter is to explain the interest of kernel methods through motivating examples, to in-
troduce essential notions such as kernels, positive semidefinite property of kernel function
and kernel matrix and reproducing kernel Hilbert spaces. We also give the properties of
the operations on the kernel function that will provide a new kernel. Finally we provide
several examples of kernels that includes a large number of widely used kernels such as
the polynomial kernels and the Gaussian kernel.

Chapter 3, we will introduce a new kernel machine for multi-class pattern recogni-
tion: the hyperbolic support vector machine. Its decision boundaries in the feature space
are defined by hyperbolic functions. We will establish its main statistical properties.

Chapter 4, we will construct a novel kernel function obtained as a Fourier transform
of a Gaussian mixture model with the purpose of detecting translation invariance inside
classes, which is applied successfully on several datasets in the context of machine learning
using multiclass support vector machines (MSVM).



4 Introduction



5

Chapter 1

Preliminaries

Abstract In this chapter, some concepts, background methods and results are pre-
sented. We begin first with an introduction about the data classification method. Then
we present the problem of discrimination. Support vector machines (SVM) are then pre-
sented in two steps: the algorithms of the SVM bi-classes and the use of SVM to realize
polytomies. Finally, we presented the capacity measures that will help us in chapter 3.

1.1 Introduction

Statistical learning [35] is a paradigm that combines a set of methods and algorithms for
extracting relevant information from the data, or learning behaviors from examples. Its
applications are numerous and present in fields as varied as the search for information in
large data sets (thematic segmentation of text, image mining, etc.) or biology (behavior
of population, DNA chips, etc.). We distinguish two main issues in statistical learning:
supervised learning on the one hand, and unsupervised learning on the other hand.

Supervised learning is a type of machine learning that involves establishing rules of
behaviour from a database containing examples of previously labelled cases. More pre-
cisely, this database is a set of input-output pairs {(xi, yi)}16i6n ∈ X ×Y where X is the
input space and Y is the output space. The objective is then to learn how to predict, for
any new input x, the output y.

According to the structure of Y we can be in two typical situations:

• When the space Y (which we will also call space of predictions) is finite, we call this
task a problem of discrimination or classification, which is to assign a label to each
input [42]. A function from X to Y is usually called a classifier or a decision rule.

• When Y is a continuous set, typically Y = R, we are talking about problem of
regression [41], the prediction function is then called a regressor.
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The unsupervised learning theory is a branch of machine learning that deals with the
case where only the inputs {xi}16i6n are available, without the outputs, i.e that learns from
test data that has not been labeled. The most important problem is then to partition the
data, also called clustering. This is to group the observations into different homogeneous
groups (clusters), by ensuring that the data in each subset share common characteristics.

As part of this thesis, we focus specifically on the supervised learning problem.

1.2 Data classification methods

Data classification sets the basic steps for anticipating corresponding labels of new points
on the basis of a pre-defined set of labeled training points specially in the domain of
machine learning and statistics. It is considered to be one of the supervised learning
problems and it is applied in various domains such as document classification, handwriting
recognition, internet search engines, etc.

Instance-based learning methods, neural networks, decision trees, support vector ma-
chines and many other methods have been developed to deal with data classification
problems.

Instance-based learning is a family of learning algorithms that compares instances seen
in training, which have been stored in memory with new problem instances, instead of
performing explicit generalization. The idea is based on the assumption that features
which are used to describe labels are similar when instances are close. It is reasonable to
use labels of closest instances to predict labels of new instances. However, it is tough to
understand the relationship between labels and features from the unstructured algorithms.
Such methods are very efficient to manage real life problems, for example handwritten
digits and satellite image scenes. For example the k-nearest neighbor (k-NN) method,
given a training set, to predict the label of a new data point, one assigns k closest points
of the new point in the training set, and labels it with the majority label in the k closest
neighbors. The closest neighbors are found with a distance which can be seen as a sim-
ilarity measurement. For example, the distance can be chosen as the Lp distance or the
Minkowski distance. k is usually chosen using cross-validation [4] in real applications. A
detailed discussion of instance based methods can be found in [[1], [2], [3]].

Neural Networks (NNets) were firstly defined by the neurophysiologist Warren Mc-
Culloch and the logician Walter Pitts in 1943. NNets are basically modeled referring to
the model of the neural structure in the brain. In human brain, a neuron collects signals
from other neurons through structures called dendrites, and sends out electrical activities
through an axon which has thousands of branches. A synapse which is at the end of
each branch converts activities from the axon to the connected neurones. The brain can
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perform highly complex computations due to the complication of the neurons networks.
We focus on NNets which contain no cycles, called feedforward networks. NNets can be
described as directed acyclic graphs, in which the nodes correspond to neurons and edges
correspond to links between them. Each node accepts a weighted sum of outputs of the
connected nodes related to the coming edges as input. NNets may contain several layers
of nodes. In recent years, NNets have proven to be extremely proficient for numerous
learning tasks because of the increased computational power to handle large datasets,
and developments of new algorithms. Networks with multiple hidden layers, or what is
called "Deep networks", have been successfully applied to many practical domains. A
detailed overview can be found in [[5], [6]].

Decision trees (DT) are tree models that describe the classification paths for training
data, which are constructed by nodes and directed edges. DT tasks are an admired method
for various machine learning. A node is called a leaf node if it has no children. A leaf
node presents a label of one of the classes, otherwise it is an internal node. Each internal
node shows a rule for splitting the input space by one of the features or a predefined
criterion. A classification tree predicts the label of a new point by going from the root
node of the tree model to a leaf. A general method for constructing a classification tree
is a recursive procedure that allows you to choose the "best characteristic" on each node,
then split the feature space in reference of the "best feature". The best decision is made
at each node by following this way. Applying it recursively, until all learning points are
well classified or no proper feature can be used as a node, a classification tree is obtained.
Occasionally, classification trees may discriminate training data well, considering a high
prediction error. However, limiting the number of nodes generated helps avoiding errors.
A commonly used methodology in practice is to prune the tree after it is built. Algorithms
for building a decision tree include C4.5 [9], ID3 [10] , and CART [11]. Classification trees
are simple but powerful. With each division on each node, the feature space partition
is fully described, which makes the classification path more readable. Yet, the partition
is sensitive to small changes in input data points. Due to the hierarchical nature of the
process, small changes can guide to a significantly different series of splits.

The random forest (RF) algorithm [6] [7], proposed in 2001 by Leo Breiman and Adèle
Cutler, a general purpose classification and regression method has been extremely success-
ful. The approach, which combines several randomized decision trees and aggregates their
predictions by averaging, has shown excellent performance in settings where the number
of variables is much larger than the number of observations. These trees are grown sepa-
rately with randomly selected subsets of input data points and randomly selected subsets
of variables. To predict a label of a new data point, RF takes the majority vote from the
predicted labels of all trees therein. RF can handle many input variables without doing a
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feature selection that’s why it is said to run efficiently on large scale datasets and that is
one of its greatest advantages. It can approximate missing data effectively as well, even
when the missing data correspond to a large portion of the dataset. Interestingly, RF
provides a measure of the importance of each variable.

Support vector machines (SVM) aim to construct a linear separation maximizing the
margin between data belonging to different classes. They can be applied to a nonlinear
separation problem by using a kernel function to transform the input space to a higher
feature space (see "kernel trick", based on Mercer’s Theorem [40]) which makes the prob-
lem linear. SVMs have already been well studied and achieve high accuracy in many
applications. A detailed discussion of SVMs can be found in [[12], [13], [14], [15], [16],
[17]].

In this thesis, we are interested among these methods, in the classification problem
based on the support vector machine, we give a detailed introduction of this method in
the next section.

1.3 Support Vector Machines

In machine learning, SVM are supervised learning models with associated learning algo-
rithms that analyze data used for classification and regression analysis. SVM were first
invented by Vapnik and Chervonenkis [[17]]. They have been widely studied by many
researchers [[18], [19],[12],[20], [21], [22], [23], [24], [25], [26]]. In 1992, Bernhard E. Boser,
Isabelle M. Guyon and Vladimir N. Vapnik suggested a way to create non-linear clas-
sifiers by applying the kernel trick to maximum-margin hyperplanes [27]. The current
standard incarnation (soft margin) was proposed by Corinna Cortes and Vapnik in 1993
and published in 1995 [28].

1.3.1 General operating principle of the SVMs

The perceptron is an algorithm for supervised learning of binary classifiers . A SVM, as
a perceptron, finds a linear separator between the data points of two differents classes. In
general, there may be several separators possible between classes (assuming the problem
linearly separable) and a perceptron has no preference among them. In the SVM, however,
we make a particular choice among all the possible separators: we want the one with the
maximum "margin" [29].
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1.3.1.1 Basic knowledge: Hyperplane, margin and support vectors

For two classes of examples given, the goal of SVM is to find a classifier that will separate
the data and maximize the distance between these two classes. With SVM, this classifier
is a linear classifier called hyperplane. In the following figure, we determine a hyperplane
that separates the two sets of points.

Figure 1.1: The hyperplane H that separates the two sets of points.

The nearest points, which alone are used for determining the hyperplane, are called sup-
port vectors.

Figure 1.2: Support vectors.

There are many hyperplanes that separate the two classes of examples. The principle
of the SVM is to choose the one that will maximize the minimum distance between the
hyperplane and the training examples (i.e. the distance between the hyperplane and the
support vectors), this distance is called the margin [30].
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Figure 1.3: Optimal separating hyperplane, Support vectors and maximal margin.

1.3.1.2 Why maximize the margin?

Intuitively, having a wider margin provides more security when classifying a new example.
Moreover, if we find the classifier that behaves best with respect to the learning data, it is
clear that it will also be the one that will best classify the new examples. In the following
figure, the right side shows us that with an optimal hyperplane, a new example remains
well classified so that it falls in the margin. We see on the left side that with a smaller
margin, the example is misclassified.

Figure 1.4: Best separating hyperplane.
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1.3.1.3 Linearity and non-linearity

Among the SVM models, one can observe linearly separable cases and nonlinearly sep-
arable cases. The first ones are the simplest of SVM because they allow to easily find
the linear classifier. In most real problems there isn’t possible linear separation between
the data, the maximum margin classifier can not to be used because it only works if the
classes of training data are linearly separable.

(a) Linearly separable case (b) Non-Linearly Separable case

To overcome the disadvantages of non-linearly separable case, the idea of SVM is to change
the data space. The nonlinear transformation of the data can allow a linear separation of
the examples in a new space. So we will have a change of dimension. This new space is
called "feature space" (redescription space). Indeed, intuitively, the larger the dimension
of the redescription space, the greater the probability of finding a separating hyperplane
between examples is high. This is illustrated by the following figure 1.6.

Figure 1.6: The nonlinear transformation of the data.

So we have a transformation of a problem of nonlinear separation in the representation
space into a problem of linear separation in a space of redescription of larger dimension.
This nonlinear transformation is performed via a kernel function. In practice, some fam-
ilies of kernel functions are known and it returns to the user of SVM to perform tests
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to determine which one is best for their application. Examples of the following kernel:
polynomial, Gaussian, sigmoïd and Laplacian.

We consider problems of discrimination in C categories. Let X denote the description
space and Y the set of categories. Each object is represented by its description x ∈ X
and the set Y of the categories y can be identified with the set of indices of the categories:
[[1, C ]].

1.3.2 SVM for binary classification

In the first part, we will talk about the hard-SVM which are used for linearly separable
training sets, next we introduce soft-SVM for non-linearly separated datasets. Finally we
present Soft-SVM with kernels.

1.3.2.1 Hard-SVM

In this section, we consider a binary classification problem (C = 2), for which the set
of categories Y is identifiable at {−1,+1}. Assume that we are given n observations
(x1, y1), · · · , (xn, yn) ∈ X × {−1, 1}. Given a test point x ∈ X , the goal is to guess the
corresponding y ∈ {−1,+1} based on the n observations.
Consider for instance X = Rd, with d ∈ N?. A way of fulfilling this goal is to find the
"maximum-margin hyperplane" that divides the group of points xi for which yi = 1 from
the group of points for which yi = −1, which is defined so that the distance between the
hyperplane and the nearest point xi from either group is maximized.

We define the function g be a classifier, with real values from a class of functions G by:
g(x) = 〈w, x〉 + b, where w ∈ Rd is the normal vector to the hyperplane and b ∈ R is its
relative position to the origin.

The separating hyperplane defined by {x ∈ Rd : g(x) = 0}. Thus a new point x ∈ Rd is
assigned to the prediction function drg defined as

drg (x) = sgn(g(x)),

with sgn() is the the sign function of its argument.

We assume that the two classes are linearly separable, which means that there is a hy-
perplane able to classify the data. However, there is usually an infinity of separator
hyperplanes that classify the data correctly. From all these hyperplanes, we seek to find
a hyperplane that maximizes the margin between the samples and the separating hyper-
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plane.

One approach is to maximize the margin between two parallel hyperplanes that separate
the two classes of data. This method is called the Hard-SVM. Since the separating
hyperplane is g(x) = 0, the supporting hyperplane can be written as g(x) > k for class
yi = 1 and g(x) 6 −k for class yi = −1, in which k > 0. After a rescaling, we require
the supporting hyperplane to be g(x) > 1 for class yi = 1 and g(x) for class yi = −1.
Geometrically, the distance between these two hyperplanes is 2/‖w‖2, so to maximize the
distance between the planes (margin) is equivalent to minimize ‖w‖2/2. Therefore, we
obtain the following Hard-SVM formulation:min

w,b

1
2
‖w‖2

subject to yi (〈w, xi〉+ b) > 1, i = 1, . . . , n.
(1.1)

Figure 1.7: Linearly separable classification problem in the (x1, x2) space. Green squares
and red dots represent different classes of points. The graph shows that for linearly
separable training set, there are many possible hyperplanes separators and that the margin
of two parallel supporting hyperplanes is equal to 2/‖w‖2.

In general, it is also not possible to find a linear separator in the redescription space.
It may also be that samples are mislabeled and that the separating hyperplane is not
the best solution to the problem of classification. In 1995, Corinna Cortes and Vladimir
Vapnik [12] proposed a technique called the Soft-SVM, which tolerates bad classifications.

1.3.2.2 Soft-SVM

If the two classes are not separable linearly, these two classes are found mixed around the
separation hyperplane. The technique of the Soft-margin looks for a separator hyperplane
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that minimizes the number of errors (points on the wrong side of the supporting hyper-
planes) by introducing slack variables ξi, which make it possible to release the constraints
on the learning vectors.
Let ξi > 0, i = 1, . . . , n, be slack variables. The constraints in the Hard-SVM formulation
can be reformulated as:

yi (〈w, xi〉+ b) + ξi > 1,

ξi > 0, i = 1, . . . , n.

Figure 1.8: Non-linearly separable classification problem. Green squares and red dots are
on the wrong side of the separating hyperplane. Soft-SVMs minimize the distances (ξi )
of the points on the wrong side of the hyperplane and maximize the margin at the same
time.

We see that a slack variable ξi penalizes an error vector (see Figure 1.8). Therefore
the optimization problem in the case of non-separable data (Soft-SVM) is [12, 13, 26]:

min
w,b,ξ

1
2
‖w‖2 + ζ

n∑
i=1

ξi

subject to yi (〈w, xi〉+ b) + ξi > 1, i = 1, . . . , n

ξi > 0, i = 1, . . . , n,

(1.2)

where ζ is a penalty parameter for misclassified points that compromise between margin
width and misclassified points.

In constraints of Problem (1.2), since ξi > 0 and ξi > 1 − yi (〈w, xi〉+ b), we get an
equality as follows:

ξi = max{0, 1− yi (〈w, xi〉+ b)}. (1.3)
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So we have two situations:

• No error: ξi = 0, which means that the i-th point is either correctly classified,

• Error: ξi = 1− yi (〈w, xi〉+ b).

Using Eq. 1.3, we can now formulate the problem of optimization 1.2 as an unconstrained
optimization problem:

min
w,b

1

2
‖w‖2 + ζ

n∑
i=1

max{0, 1− yi (〈w, xi〉+ b)}. (1.4)

The term max{0, 1− yi (〈w, xi〉+ b) is called "hinge loss" in statistics. From the problem
(1.4), the SVM can be considered as regularized minimization problems where ‖w‖2 is a
part of the regulation. In general, we can write SVM as follows,

min
w,b

1

2
‖w‖2 + ζ

n∑
i=1

l (yi, (〈w, xi〉+ b)) ,

where l is a loss function.

To obtain the dual formulation of problem 1.2, we introduce the multipliers of Lagrange
βi and µi, the Lagrangian function is given by:

L(w, b, ξ, β, µ) =
1

2
‖w‖2 + ζ

n∑
i=1

ξi −
n∑
i=1

βi (yi (〈w, xi〉+ b)− 1 + ξi)−
n∑
i=1

µiξi. (1.5)

The Lagrangian must be optimized with respect to w ,b, ξi and the multipliers of Lagrange
βi and µi. By setting the partial derivatives to zero of the Lagrangian with respect to w
,b, ξi , we obtain the following:

∂L

∂w
= 0 ⇒ w =

n∑
i=1

βiyixi,

∂L

∂ξi
= 0 ⇒ βi = ζ − µi, ∀i,

∂L

∂b
= 0 ⇒ 0 =

n∑
i=1

βiyi,

βi, µi, ξi > 0, ∀i.

Substituting these results in the equation of Lagrangian 1.5 we obtain the dual problem
as follow: 

max
β

− 1
2

n∑
i=1

n∑
j=1

βiβjyiyj〈xi, xj〉+
n∑
i=1

βi

subject to

n∑
i=1

βiyi = 0

ζ > βi > 0, i = 1, . . . , n.

(1.6)
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The decision function to classify a new observation x is always

drg (x) = sgn (〈
n∑
i=1

βiyixi, x〉+ b) .

1.3.2.3 Soft-SVM with kernels

In the case where the two classes are slightly non-linearly separable, the Soft-SVM are suf-
ficient as the figure 1.8. In this part, we present a method, called soft-SVM with kernels,
deals with the case where the two classes are strongly non-linearly separable (as Figure
1.9). In order to remedy the problem of the absence of a linear separator, the idea of
kernel trick is to reconsider the problem in a space high-dimensional, possibly of infinite
dimension. In this new space, it is then probable that there is a linear separation.

Figure 1.9: Classification case when two classes are strongly non-linearly separable.

The projection on a space of higher dimension makes it possible to perform linear opera-
tions equivalent to nonlinear operations on the input space, this projection is performed
by the function of projection Φ defined as:

Φ : X −→ H

xi −→ Φ(xi)

where the mapping space H is a Hilbert space and dim(H)� d. Hence the optimization
problem 1.6 will be reformulated as:

max
β

− 1
2

n∑
i=1

n∑
j=1

βiβjyiyj〈Φ(xi),Φ(xj)〉+
n∑
i=1

βi

subject to

n∑
i=1

βiyi = 0

ζ > βi > 0, i = 1, . . . , n.

(1.7)
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The inner product imposed by the projection is more complex and very expensive in
computing due to the large dimension of Φ, other functions called Kernel function can
realize this computation without making explicit projection towards other spaces, the use
of function Kernel to avoid projection is known as "Kernel Trick" [15]. In the following ,
the image space H through Φ is instantiated by Hκ, where the mapping space Hκ is the
corresponding reproducing kernel Hilbert space (RKHS), with κ is a real-valued positive
type function/kernel.

A kernel function is defined as:

κ : X × X −→ R
(xi, xj) −→ κ(xi, xj) = 〈Φ(xi),Φ(xj)〉Hκ .

To replace the projection function, a Kernel function must verify the Mercer’s theorem
which states that a kernel function represents the scalar product if it is positive definite.

We present some examples of kernel functions:

Degree d polynomial:
κ(u, v) = (1 + 〈u, v〉)d,

Radial Basis (RBF kernel):

κ(u, v) = exp

(
−‖u− v‖2

2σ2

)
,

Two-layer Neural Network:
κ(u, v) = S (η〈u, v〉+ c) ,

in which S is the sigmoïd function,

S(t) =
1

1 + et
.

We will present in Chapter 2 more details on the kernel theory.

By substituting the Kernel trick into the dual problem 1.6, the optimization problem is
formulated as: 

max
β

− 1
2

n∑
i=1

n∑
j=1

βiβjyiyjκ(xi, xj) +
n∑
i=1

βi

subject to

n∑
i=1

βiyi = 0

ζ > βi > 0, i = 1, . . . , n.

(1.8)
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The decision function is given by:

drg (x) = sgn (
n∑
i=1

βiyiκ(xi, x) + b) .

1.3.3 SVM for multi-class classification

We place ourselves in the context of discrimination in C categories with C > 3 .
The principle of the SVM explained in the previous section is summarised in solving
of binary classification problems, but the most classification problems are a multi-class
problem. Hence the importance of extending the principle of SVM to the problems of more
than two classes, there have been several attempts to combine binary classifiers to identify
this problem (multi classes) [32], there are also attempts to incorporate the classification
of several classes into the SVM process so that all classes are treated simultaneously [33].

In this section, we will discuss on strategies based on reducing the multi-class problem
to multiple binary classification problems. We will then briefly explain some of the most
widely used methods.

1.3.3.1 The combination of SVM bi-classes: a first step towards multi-class
SVM

Decomposition methods can be used to address a multi-category discrimination problem
(C > 3) as a combination of dichotomous calculation problems. We are dealing here only
with the two main decomposition methods.

1.3.3.2 One versus All

We are given a training dataset of n points of the form (x1, y1), · · · , (xn, yn) where xi,
i = 1, · · · , n is a vector of length d and yi ∈ Y = {1, · · · , C} representing the class of
the sample. A first approach is to create a classifier for each class, which separates the
points of this class from all the other points. This method is called one-versus-rest (OVR
abbreviated) or one-versus-all (OVA abbreviated).

It consists in using a binary classifier (with real values) by category. The kth classifier
is intended to distinguish the index category k from all the others. To assign an example,
it is thus presented to C classifiers, and the decision is obtained according to the principle
winner-takes-all: the label chosen is that associated with the classifier who returned the
highest value. It is commonly quoted as older works evoking the use of this strategy with
SVM [34] (see also [35]). In [35], the authors support the thesis that this approach, as sim-
ple as it is, when implemented with correctly parameterized SVM, obtains performances
that are not significantly lower than those of the other methods. It should be emphasized,
however, that it involves learning to allocate to very unbalanced categories, which often
raises practical difficulties.
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Figure 1.10: Three classes separated by the method of one versus all with linear separator.

1.3.3.3 One versus one

Another approach of decomposition, just as intuitive, is the "one-versus-one" method
(OVO for short) [37]. Usually attributed to Knerr and his coauthors [38], it consists in
using a classifier by couple of categories. The classifier indexed by the pair (k, l) (with
1 6 k < l 6 C), is intended to distinguish the index category k from that of index l. To
assign an example, so it is presented to C(C − 1)/2 classifiers, and the decision is usually
obtained by performing a majority vote (max-wins voting).

Figure 1.11: Multi-class classification by the method of one versus one.

There are several models of SVMmulti classes (M-SVM) includingWeston andWatkins
model (WW) [33], Crammer and Singer (CS) [43], model of Lee, Lin and Wahba (LLW)
[44] and Guermeur and Monfrini (MSVM2) [45]. We now describe the model of Weston
and Watkins.

1.3.3.4 Weston and Watkins model

The first publication describing a multiclass SVM is [33] (see also [39]). It presents a
model proposed independently by Vapnik and Blanz in slightly earlier oral communica-
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tions (personal communication by Volker Blanz), and later by other authors in various
forms.

The binary SVM optimisation problem [35] is generalised to the following:
min
w,b,ξ

1
2

C∑
k=1

‖wk‖2 + ζ

n∑
i=1

∑
k 6=yi

ξik

subject to ∀i, k 6= yi, 〈wyi ,Φ(xi)〉+ byi > 〈wk,Φ(xi)〉+ bk + 2− ξik,

ξik > 0, i = 1, . . . , n, k = {1, . . . , C}\yi.

(1.9)

This gives the decision function :

drg (x) = argmax
k

[〈wk,Φ(x)〉+ bk], k = 1, . . . , C.

We can use the Lagrangian to find the solution to this optimisation problem.

In the first part of thesis, we are interested in the problem of multiclass classification,
we introduced a new margin multi category classifier based on classes of vector valued
functions with one component function per category, it is a kernel machine. We found
that separation surfaces are hyperbolic and this classifier generalizes the SVMs. We also
exhibited the statistical properties of this classifier, among which Fisher consistency [50]
and we showed that the classes of component functions are uniform Glivenko-Cantelli [51].

1.4 Hyperbolic kernel machine

This section presents the essential of our contributions to the theory of multi class SVM.
We initially present the definition of Uniform Glivenko-Cantelli class . The definition of
this property calls for the introduction of an intermediate definition.

Definition 1.1. (Empirical probability measure) Let (T ,AT ) be a measurable space
and let T be a random variable with values in T , distributed according to a probability
measure PT on (T ,AT ). For n ∈ N∗, let Tn = (Ti)16i6n be an n-sample made up of
independent copies of T . The empirical measure supported on this sample, PT,n, is given
by

PT,n =
1

n

n∑
i=1

δTi ,

where δTi denotes the Dirac measure centered on Ti.
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Definition 1.2 (Uniform Glivenko-Cantelli class [46, 47]). Let the probability measures
PT and PT,n be defined as in Definition 1.1. Let F be a class of real-valued functions on
T . Then for ε ∈ R∗+, F is an ε-uniform Glivenko-Cantelli class if

lim
n−→+∞

sup
PT

P
(

sup
n′>n

sup
f∈F

∣∣∣ET ′∼PT,n′ [f (T ′)]− ET∼PT [f (T )]
∣∣∣ > ε

)
= 0,

where P denotes the probability with respect to the sample. F is said to be a uniform
Glivenko-Cantelli class if F is an ε-Uniform Glivenko-Cantelli class for all value of ε.

In this following, we shall refer to Uniform Glivenko-Cantelli classes by the abbreviation
"GC classes". We can use the following three capacity measures to demonstrate that the
component function class is GC class.

1.4.1 Capacity measures

We start by giving the definition of the capacity measures which are the covering-numbers
that characterize "GC classes". The definition of these concepts, as well as those of the
underlying concepts of cover and net, have been originally introduced in [52].

Definition 1.3. (ε-cover, ε-net, covering numbers, and ε-entropy) Let (E, ρ) be a
pseudo-metric space, E ′ ⊂ E and ε ∈ R∗+. An ε-cover of E ′ is a coverage of E ′ with open
balls of radius ε the centers of which belong to E. These centers form an ε-net of E ′. A
proper ε-net of E ′ is an ε-net of E ′ included in E ′. If E ′ has an ε-net of finite cardinality,
then its covering number N (ε, E ′, ρ) is the smallest cardinality of its ε-nets:

N (ε, E ′, ρ) = min {|E ′′| : (E ′′ ⊂ E) ∧ (∀e ∈ E ′, ρ (e, E ′′) < ε)} .

If there is no such finite net, then the covering number is defined to be infinite. The cor-
responding logarithm, log2 (N (ε, E ′, ρ)), is called the minimal ε-entropy of E ′, or simply
the ε-entropy of E ′. N (p) (ε, E ′, ρ) will designate a covering number of E ′ obtained by
considering proper ε-nets only. In the finite case, we have thus:

N (p) (ε, E ′, ρ) = min {|E ′′| : (E ′′ ⊂ E ′) ∧ (∀e ∈ E ′, ρ (e, E ′′) < ε)} .

In the following, we will define the functional pseudo-metric based on the L2-norm
and on the uniform convergence norm.

Definition 1.4. (Pseudo-distance d2,tn and d∞,tn) Let F be a class of real-valued
functions on T . For n ∈ N∗, let tn = (ti)16i6n ∈ T n. Then,

∀ (f, f ′) ∈ F2, d2,tn (f, f ′) = ‖f − f ′‖L2(µtn ) =

(
1

n

n∑
i=1

(f (ti)− f ′ (ti))2

) 1
2

,
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∀ (f, f ′) ∈ F2, d∞,tn (f, f ′) = ‖f − f ′‖L∞(µtn ) = max
16i6n

|f (ti)− f ′ (ti)| .

where µtn denotes the uniform probability measure on {ti : 1 6 i 6 n}.

Definition 1.5. (Uniform covering numbers [49]) Let F be a class of real-valued
functions on T and F̄ ⊂ F . For p ∈ {2,∞}, ε ∈ R∗+, and n ∈ N∗, the uniform covering
number Np

(
ε, F̄ , n

)
is defined as follows:

Np
(
ε, F̄ , n

)
= sup

tn∈T n
N
(
ε, F̄ , dp,tn

)
.

We define accordingly N (p)
p

(
ε, F̄ , n

)
as:

N (p)
p

(
ε, F̄ , n

)
= sup

tn∈T n
N (p)

(
ε, F̄ , dp,tn

)
.

There are several results which connect the Uniform Glivenko-Cantelli condition of a
given class of functions to estimates on the covering numbers of that class. All the results
are stated for classes of functions which are bounded by 1 . The results remain valid for
classes of functions with a uniformly bounded range up to a constant which depends only
on that bound.
The next result gives the notion of GC class and the covering numbers, this result is due
to Dudley, Ghiné and Zinn [47].

Theorem 1.1. Let F be a class of real-valued bounded functions on T . Then, the follow-
ing are equivalent:

1. F is a GC class.

2. For 1 6 p 6∞,

lim
n→∞

log2 (Np (ε,F , n))

n
= 0 , for all ε > 0.

Another important of the capacity measure used to analyse GC classes is the general-
ization of the Vapnik-Chervonenkis (VC) dimension [53]. It characterizes the learnability
of the class of real-valued (binary) classifiers is the fat-shattering dimension [48], also
known as the γ-dimension.

Definition 1.6. (Fat-shattering dimension [48]) Let F be a class of real-valued func-
tions on T . For γ ∈ R∗+, a subset sT n = {ti : 1 6 i 6 n} of T is said to be γ-shattered
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by F if there is a vector bn = (bi)16i6n in Rn such that, for all vector ln = (li)16i6n in
{−1, 1}n, there is a function fln in F satisfying

∀i ∈ [[1, n ]] , li (fln (ti)− bi) > γ.

The vector bn is called a witness to the γ-shattering. The fat-shattering dimension with
margin γ of the class F , γ-dim (F), is the maximal cardinality of a subset of T γ-shattered
by F , if such maximum exists. Otherwise, F is said to have infinite fat-shattering dimen-
sion with margin γ.

The connection between GC classes and the notion of the fat-shattering dimension
defined above is the following fundamental result [53]:

Theorem 1.2. Let F be a class of uniformly bounded real-valued functions on T , then it
is a GC class if and only if it has a finite fat-shattering dimension for every γ > 0 , i.e.
for every γ ∈ R∗+, γ-dim (F) is finite.

The last capacity measure that gives the Uniform Glivenko Cantelli class is the
Rademacher complexity. For n ∈ N∗, a Rademacher sequence σn is a sequence (σi)16i6n

of independent random signs, i.e., independent and identically distributed (i.i.d.) ran-
dom variables taking the values −1 and 1 with probability 1

2
(symmetric Bernoulli or

Rademacher random variables).

Definition 1.7. (Rademacher complexity)
Let (T ,AT ) be a measurable space and let T be a random variable with values in T ,

distributed according to a probability measure PT on (T ,AT ). For n ∈ N∗, let Tn =

(Ti)16i6n be an n-sample made up of independent copies of T and let σn = (σi)16i6n be
a Rademacher sequence. Let F be a class of real-valued functions with domain T . The
empirical Rademacher complexity of F is

R̂n (F) = Eσn

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

∣∣∣∣∣ Tn

]
.

The Rademacher complexity of F is

Rn (F) = ETn

[
R̂n (F)

]
= ETnσn

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

]
.

Theorem 1.3 ([55]). Let F be a class of uniformly bounded real-valued functions on T .
Then, the following are equivalent:

1. F is a GC class.
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2. For n ∈ N∗,
lim
n→∞

Rn (F) = 0.

Chapter 3 shows that the class of function of our classifier is GC class by using the
third capacity measure which is the Rademacher complexity. It means that we use the the-
orem 1.3, it suffices to establish that the Rademacher complexity of this class of function
converges to 0, as n goes to infinity.

1.4.2 Useful properties of the (empirical) Rademacher complex-
ity

The following theorem summarizes some of the properties of the Rademacher averages we
shall use.

Theorem 1.4. Let (T ,AT ) be a measurable space. Let F and F ′ be classes of real-valued
functions on T . Then, for n ∈ N∗,

1. If F ⊂ F ′,
Rn (F) 6 Rn (F ′) .

2. For every c ∈ R, let c F = {cf : f ∈ F},

Rn (cF) = |c| Rn (F) .

3. Let F + F ′ = {f + f ′ : f ∈ F , f ′ ∈ F ′} ,

Rn (F + F ′) 6 Rn (F) +Rn (F ′) .

4. If φ : R→ R is a Lipschitz function with a constant Lφ and satisfies φ(0) = 0, then

Rn (φ ◦ F) 6 2 Lφ Rn (F) ,

where φ ◦ F = {φ(f(.)) : f ∈ F}.

In the next section, we want to upper bound of the empirical Rademacher complexity
of kernel classes.

1.4.3 Empirical Rademacher complexity of the kernel classes

Theorem 1.5. Let κ : X ×X −→ R be a positive definite, continuous functions. Suppose
that κ is a bounded kernel with supx∈X

√
κ(x, x) = B < ∞, and let (Hκ, 〈, 〉Hκ) be its

RKHS. For M > 0 be fixed, let F = {f ∈ Hκ : ‖f‖Hκ 6 M} . Then for any S =

(x1, · · · , xn),

RS (F) 6
MB√
n
. (1.10)
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Proof. Fix S = (x1, . . . , xn). Then

RS(F) =
1

n
Eσn

[
sup
f∈F

n∑
i=1

σif(xi)

]

=
1

n
Eσn

[
sup
f∈F

n∑
i=1

σi 〈f, κ(., xi)〉Hκ

]

=
1

n
Eσn

[
sup
f∈F
〈f,

n∑
i=1

σiκ(., xi)〉Hκ

]
(linearity of inner product)

6
1

n
sup
f∈F
‖f‖Hκ Eσn

∥∥∥∥∥
n∑
i=1

σiκ(., xi)

∥∥∥∥∥
Hκ

 (Cauchy Schwarz inequality )

6
M

n
Eσn

∥∥∥∥∥
n∑
i=1

σiκ(., xi)

∥∥∥∥∥
Hκ


6
M

n

Eσn
∥∥∥∥∥

n∑
i=1

σiκ(., xi)

∥∥∥∥∥
2

Hκ

 1
2

(Jensen’s inequality)

=
M

n

Eσn
〈 n∑

i=1

σiκ(., xi),
n∑
j=1

σjκ(., xj)

〉
Hκ

 1
2

=
M

n

[
Eσn

[
n∑
i=1

n∑
j=1

σiσj 〈κ(., xi), κ(., xj)〉Hκ

]] 1
2

=
M

n

[
n∑
i=1

n∑
j=1

κ(xi, xj)Eσn [σiσj]

] 1
2

=
M

n

[
n∑
i=1

n∑
j=1

κ(xi, xj)δi,j

] 1
2

(where δi,j is the Kronecker symbol)

=
M

n

[
n∑
i=1

‖κ(., xi)‖2
Hκ

] 1
2

(Eσn [σiσj] = 0, i 6= j)

=
M

n

[
n∑
i=1

κ(xi, xi)

] 1
2

(reproducing property 2.4)

6
M

n

√
nB2

=
MB√
n
.

Inequality 1.5 has been established, which concludes the proof.
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Note. M
n

√
n∑
i=1

κ(xi, xi) = M
n

√
trace(K), where K is the kernel matrix with entries

Kij = κ(xi, xj).

The proof of this theorem 1.5 will help us in the proof of the lemma 3.1 of chapter
3.
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Chapter 2

Background: an Overview of Kernel
Methods

Abstract In this chapter, we provide the fundamental theory of kernel methods. Firstly,
we give a short introduction of kernel method. We then recall the basic concepts necessary
for the kernel theory. We will present the positive semidefinite property of kernel function
and kernel matrix, and we give some operations on kernel function which will provide a
new kernel. Finally we introduce some popular kernels in applications.

2.1 Introduction

In machine learning, kernel methods are a class of pattern recognition algorithms, whose
best known member is the support vector machine (SVM). The idea of kernel trick is to
transform the representation space of input data into a higher dimension space, where a
linear classifier can be used and obtain good performance. The linear discrimination in
high-dimensional space (also called feature space) is equivalent to a non-linear discrimina-
tion in the original space. However, the computation of the inner product in the feature
space can be calculated by the kernel function.

A kernel is a two-argument real-valued function over X × X (κ : X × X −→ R) such
that for any x, y ∈ X

κ(x, y) = 〈Φ(x),Φ(y)〉H (2.1)

for some inner-product space H such that Φ is a mapping from X to a feature space H

Φ : X −→ H (2.2)
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Kernel methods have achieved great success and should clarify the following aspects:

• Data points are mapped from an input space to a higher-dimensionnal feature space

• It is not necessary to know the coordinates in the feature space, we could be obtained
by similarity information which are the inner products.

• Pairwise inner products can be calculated by the kernel function.

• The initial problem is anticipated to be a linear problem in the feature space even
though it is not linear in the input space.

This can be illustrated by the Figure 2.1.

Figure 2.1: The initial data are transformed from the input space, by the transformation
Φ, to a large space where the nonlinear problem becomes linear.

Example 2.1.1. In this example, we consider a feature space two-dimension input space
X ⊆ R2 and its corresponding feature map

Φ : x = (x1, x2) −→ Φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ H ⊆ R3
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We can compute the inner product between two points in the feature space, then we get

〈Φ(x),Φ(y)〉H = 〈(x2
1, x

2
2,
√

2x1x2), (y2
1, y

2
2,
√

2y1y2)〉H
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2

= 〈x, y〉2H .

So the kernel function is

κ(x, y) = 〈Φ(x),Φ(y)〉H = 〈x, y〉2H .

2.2 Fundamental elements of the theory of kernel func-
tions

This section presents the definitions and properties essential to understanding the theory
of kernel. To well comprehend the kernel theory, the following fundamental elements need
to be presented.

2.2.1 Hilbert space

Definition 2.1. (Inner Product Space) An inner product space X is a vector space
with an associated inner product 〈., .〉 : X × X −→ R that satisfies:

1. Symmetry
〈x, y〉 = 〈y, x〉 ∀x, y ∈ X .

2. Bilinearity

〈αx+ βy, z〉 = α〈x+, z〉+ β〈y, z〉 ∀x, y, z ∈ X , ∀α, β ∈ R.

3. Positive Semi-Definiteness
〈x, x〉 > 0 ∀x ∈ X .

The inner product space is strict if

〈x, x〉 = 0⇔ x = 0.

Note.

• A strict inner product space X has a natural norm given by ‖x‖2 =
√
〈x, x〉. The

associated metric is d(x, y) = ‖x− y‖2.
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• The space Rd has the inner product 〈x, y〉 = xTy which yields the
Euclidien norm:

‖x‖2
2 =

d∑
i=1

x2
i .

We now give the definition of Hilbert space.

Definition 2.2. A strict inner product space H is a Hilbert space if it is

• Complete: Every Cauchy sequence {hi ∈ H}∞i=1 such that

lim
n−→∞

sup
m>n
‖hn − hm‖ = 0.

• Separable: There is a countable subset Ĥ = {hi ∈ H}∞i=1 such that for all h ∈ H
and ε > 0, there exists hi ∈ Ĥ such that

‖hi − h‖ < ε.

Example 2.2.1. (Hilbert Space Examples:) We give here several examples of Hilbert
space

• 〈x, y〉 = xTy.

• 〈x, y〉 =
∞∑
i=1

xiyi.

• Inner-product generalized as

〈f, g〉 =

∫
X
f(x)g(x)dx,

where functions f satisfy
∫
X f(x)2dx <∞.

2.2.2 Reproducing Kernel Hilbert Space

The definition of a Reproducing Kernel Hilbert Space (RKHS) calls for the following
concepts that are essential in kernel definition.

Definition 2.3. (Positive Semi-Definite Matrix) Matrix A is positive semi-definite
(PSD) [1] if all its eigenvalues are non-negative (∀ i λi(A) > 0), i.e., for all x ∈ X :

xTAx > 0.

Definition 2.4. (Positive Definite Matrix) Matrix A is positive definite if all its
eigenvalues are positive (∀ i λi(A) > 0), i.e., A is PSD and

xTAx = 0⇔ x = 0.
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Definition 2.5. A symmetric function f : X × X −→ R is positive semi-definite if
n∑
i=1

n∑
j=1

αiαjf(xi, xj) = αTFα > 0,

∀ (α1, · · · , αn) ∈ Rn,∀ (x1, · · · , xn) ∈ X n.

In the following, we introduce the main property of reproducing kernel Hilbert spaces:

Definition 2.6. (Reproducing Kernel Function [3]) κ(., .) is a reproducing kernel
[2] of a Hilbert space H if

f(x) = 〈f, κ(x, .)〉H , ∀f ∈ H. (2.3)

Further, the space is called a Reproducing Kernel Hilbert Space (RKHS).

Remark. A reproducing kernel κ is finitely positive semi-definite function (FPSD).

Proof. The reproducing property is given by:

∀x, y ∈ X , 〈κ(x, .), κ(y, .)〉H = κ(x, y). (2.4)

∀ α1, · · · , αn ∈ R, ∀ x1, · · · , xn ∈ X we have:
n∑
i=1

n∑
j=1

αiαjκ(xi, xj) =
n∑
i=1

n∑
j=1

αiαj〈κ(xi, .), κ(xj, .)〉H

= 〈
n∑
i=1

αiκ(xi, .),
n∑
j=1

αjκ(xj, .)〉H

= ‖
n∑
i=1

αiκ(xi, .)‖2
H > 0.

Definition 2.7. (Reproducing Kernel Hilbert Space [5]) A Reproducing Kernel
Hilbert Space is a Hilbert space with a reproducing kernel, where the evaluation functions
f(.) are bounded, i.e.

∃M > 0 : |δx(f)| = |f(x)| 6M‖f‖H .

2.2.3 Characterization of kernels

In this section, we characterize the kernel function using another way, which also allows
us to build new kernels.
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Theorem 2.1. [4] κ : X × X −→ R is finitely positive semi-definite (FPSD) if and only
there exists a Hilbert space H with feature map Φ : X −→ H such that

κ(x, y) = 〈Φ(x),Φ(y)〉H .

Theorem 2.2. (Moore-Aronszajn Theorem)
If κ is symmetric and positive definite kernel on a set X . Then there is a unique

Hilbert space of functions on X for which κ is a reproducing kernel.

Theorem 2.3. (Mercer Theorem) Let κ is a continuous kernel function that takes two
variables x and y and map them to a real value such that κ(x, y) = κ(y, x).
A kernel is non-negative definite if and only if:∫ ∫

f(x)κ(x, y)f(y)dxdy > 0.

In association with a kernel κ, we can define an integral operator Tκ, which, when applied
to a function f(x), generates another function:

Tκ(f(x)) =

∫
κ(x, y)f(y)dy = [Tκ f ](x).

The eigenvalues and their correponding eigenfunctions of this operation are defined as:

Tκ(φi(x)) =

∫
κ(x, y)φ(y)dy = λiφi(x).

The eigenvalues λi are non-negative and the eigenfunctions φi(x) are orthonomal:∫
φi(x)φj(x)dx = δij.

The eigenfunctions corresponding to the non-zero eigenvalues form a set of basis functions
so that the kernel can be decomposed in terms of them:

κ(x, y) =
∞∑
i=1

λiφi(x)φj(y).

2.2.4 Kernel matrix

Given the fundamental concepts mentioned above which are necessary to build the theory
of kernel, now we offer a formal definition of the kernel:

Definition 2.8. κ : X × X −→ R is a valid kernel if it satisfies the following conditions

• κ is symmetric: ∀x, y ∈ X , κ(x, y) = κ(y, x).
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• κ is positive semi-definite.

Definition 2.9. A kernel matrix (or Gram matrix) K is the matrix that results from
applying κ to all pairs of data points in set {xi}ni=1 ∈ X n

K =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)

κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)
...

... . . . ...
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


that is, Kij = 〈Φ(xi),Φ(xj)〉H = κ(xi, xj).

Remark. The Gram matrix is symmetric sinceKij = Kji and it is positive semi-definite.

Proof. For any vector α we have

αTKα =
n∑

i,j=1

αiαjKij

=
n∑

i,j=1

αiαj〈Φ(xi),Φ(xj)〉H

= 〈
n∑
i=1

αiΦ(xi),
n∑
j=1

αjΦ(xj)〉H

= ‖
n∑
i=1

αiΦ(xi)‖2
H > 0.

This property ensures that we have a valid kernel (positive semidefinite property),
which allows us to manipulate the kernels regardless of the feature space.

2.3 Kernel constructions

In the previous section, we have seen that the necessary and sufficient condition for a
function to be a reproducing kernel is that it be semi-definite positive. In this section we
present some aspects of kernel engineering. More examples and properties can be found
in [6, 7]. We will enumerate some properties also called closure properties, which allow
us to manipulate kernel functions to create more complex kernels.

Proposition 2.1. (Closure Properties of Kernels [8, 9]) κ1 and κ2 are assumed to
be valid kernel functions on X × X , let f : X −→ R, Φ : X −→ RN , and κ3 is a valid
kernel on RN × RN . Then, the function κ : X × X −→ R which is defined by one of the
following expressions for any x, y ∈ X is also a valid kernel.
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1. κ(x, y) = κ1(x, y) + κ2(x, y).

2. κ(x, y) = aκ1(x, y), ∀a ∈ R+.

3. κ(x, y) = κ1(x, y)κ2(x, y).

4. κ(x, y) = f(x)f(y).

5. κ(x, y) = κ3(Φ(x),Φ(y)).

Proof. Let K1 and K2 be the (n×n) Gram matrices of kernels κ1 and κ2 respectively and
α ∈ Rn be any vector. Recall that K is a positive semi-definite matrix if and only if ∀α,
αTKα > 0.

1. K1 +K2 is kernel matrix corresponding to κ1 + κ2 . We have

αTKα = αTK1α + αTK2α > 0.

So K1 + K2 is the positive semi-definite, i.e. the sum of two symmetric positive
kernel is a valid kernel function.

2. K = aK1 =⇒ αTKα = a.αTK1α > 0. Then the validity of a kernel is conserved
after multiplication by a positive scalar.

3. Schur product theorem states that the Schur product (Hadamard product) of two
positive semi-definite matrix is a also positive semi-definite matrix since the eigen-
values of the product are product of corresponding eigenvalues of the two matrices
which are positive. Then the product of two kernel functions is a valid kernel func-
tion.

4. Using the feature map Φ : x −→ f(x), we have

κ(x, y) = f(x)f(y) = 〈Φ(x),Φ(y)〉,

thus κ is PSD.

5. Since κ3 is a kernel, applying it to any set of vectors {Φ(xi)}ni=1 yields a PSD matrix.

Proposition 2.2. (Polynomial functions of a kernel output) Given a polynomial
P : R −→ R with positive coefficients and let κ1 is a valid kernel, then the function

κ(x, y) = P (κ1(x, y))

is a valid kernel.
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Proof. The polynomial P is a linear combination of powers of the kernel κ1 with positive
coefficients. Since the powers of κ1 are products of κ1 by itself and thus valid kernels,
their linear combination is also a valid kernel.

Proposition 2.3. (Exponential function of a kernel output) Let κ1 is a valid kernel,
the function

κ(x, y) = exp(κ1(x, y))

is a valid kernel.

Proof. We consider the Taylor series of exp(x) = 1 + x + x2

2!
+ · · · . Thus, it is a limit of

polynomials case.
For more details of the proof of propositions 2.2 and 2.3 could be found in [7].

We have seen in this subsection some methods for modifying kernel from existing kernels
while maintaining properties of symmetry and positivity.

2.4 Basic kernels

In this section, we introduce a family of symmetric, positive definite functions (hence
kernels): translation-invariant kernels, and give examples of most popular kernel functions.

2.4.1 Polynomial kernel

Example 2.4.1. For a polynomial of degree s (s ∈ N?), the polynomial kernel is defined
as

κ(x, y) = (〈x, y〉+R)s ∀x, y ∈ X = Rd,

where R > 0 is a free parameter trading off the influence of higher-order versus lower-
order terms in the polynomial. This kernel is called Inhomogeneous Polynomial kernel.
When R = 0 the kernel is called homogeneous.

The following kernels are also very popular in applications that are actually special
cases of polynomial kernel.

Example 2.4.2. (Linear kernels:) The Linear kernel is the simplest kernel function.
It is given by the inner product.

κ(x, y) = 〈x, y〉.

The linear kernel is a special case of polynomial kernels with R = 0 and s = 1. The
mapping function Φ is the identity function, i.e. Φ(x) = x ∀x ∈ X .
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It is obvious to show that the linear kernel is positive definite since
n∑
i=1

n∑
j=1

αiαjκ(xi, xj) =
n∑
i=1

n∑
j=1

αiαj〈xi, xj〉 = ‖
n∑
i=1

αixi‖2 > 0,

by linearity of the dot product.

Example 2.4.3. (Quadratic kernels:) Quadratic kernels are widely used in Speech
Recognition.

κ(x, y) = 〈x, y〉2.

2.4.2 Translation-invariant kernels

We consider the class of translation invariant kernel functions which includes the class of
radial kernels. This class contains exactly the kernels which can be defined only according
to the difference of the kernel arguments. The property of this kernel as follow:

Proposition 2.4. Let us set X = Rd for some d > 1 and define κ as

∀x, y ∈ X , κ(x, y) = K(x− y),

where K : Rd −→ R.

The function K is said to be positive definite if the corresponding kernel κ is positive
definite. The general form of continuous translation invariant kernels on Rd was discovered
by Bochner [13]. Suppose thatK is continuous, Bochner’s theorem states thatK is positive
definite if and only if K is the Fourier transform of a bounded positive measure on Rd

([14], Theorem 20), that is

K(z) =

∫
Rd
eiw

T z dV (w),

for some bounded positive measure V on Rd.

Several instances of the family of translation-invariant kernels used kernels on Rd such
as:

Example 2.4.4. (Gaussian kernel)
Gaussian kernels have been proposed by Boser, Guyon and Vapnik [10, 11, 12], they

are the most used kernels in the field of machine learning. The definition of a gaussian
kernel is given in the following definition 2.10.

Definition 2.10. A Gaussian kernel is defined as

κ(x, y) = e−
‖x−y‖2

2σ2 , (2.5)

where σ is the positive parameter, called the kernel width, which controls the flexibility of
gaussian kernels.
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Alternatively, it could also be implemented using

κ(x, y) = e−γ‖x−y‖
2

. (2.6)

This type of kernel corresponds to K(z) = e−
‖z‖2

2σ2 which is positive definite since K is the
characteristic function of a N (0, 1

σ2 Id) Gaussian distribution.

The properties of Gaussian kernel are given as follow:

• As ‖Φ(x)‖2 = κ(x, x) = 1, ∀x ∈ X , then all the points have a norm equal to 1 in
the feature space induced by a gaussian kernel.

• As 〈Φ(x),Φ(y)〉 = κ(x, y) > 0, ∀x, y ∈ X , then, all the points lie inside the same
orthant in feature space.

• The mapping function Φ can not been given explicitly, because the feature space
induced by a gaussian kernel is infinite-dimensional.

Example 2.4.5. (Exponential Kernel) The Exponential Kernel is closely related to
the Gaussian kernel, with only the square of the norm left out.

κ(x, y) = e−
‖x−y‖
2σ2 . (2.7)

It is also a translation-invariant kernel with K(z) = e−
‖z‖
2σ2 .

Example 2.4.6. (Laplace kernel) The Laplace kernel is completely equivalent to the
exponential kernel, except that it is less sensitive to changes in the sigma parameter.

κ(x, y) = e−
‖x−y‖
σ . (2.8)

Here K(z) = e−
‖z‖
σ corresponds to the characteristic function of a random vector rU ,

where U is uniform on the unit sphere of Rd and r is independent of U and follows a
Cauchy distribution with density function f(t) = σ

π(1+(σt)2)
.

Example 2.4.7. (Cauchy kernel:) The Cauchy kernel comes from the Cauchy distri-
bution [15]. It is a long-tailed kernel and can be used to give long-range influence and
sensitivity over the high dimension space.

The Cauchy kernel is a parametric kernel (with parameter σ > 0) with formula

κ(x, y) =
1

1 + ‖x−y‖2
σ2

, (2.9)

for every x, y ∈ Rd.
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Example 2.4.8. (B-spline kernels:) Let B0 = 1B1,d
denoting the indicator function

of the unit ball B1,d of Rd. For every function f, g : Rd −→ R, let f ~ g denote the
convolution of f and g, that is (f ~ g)(x) =

∫
Rd f(x′)g(x′ − x) dx′. Then, the B-Spline

kernel is given by the recursive formula:

κ(x, y) = B2p+1(x− y) forallx, y ∈ Rd,

where p ∈ N with Bi is a real-valued function on Rd such that Bi+1 = Bi ~ B0 for each
i > 0.

The function B2p+1 are positive definite and the kernel κ defines a translation-invariant
kernel [16].

Some translation-invariant kernels such as the Gaussian kernel, the exponential kernel,
the Laplace kernel and the Cauchy kernel admit actually in the more specific form

κ(x, y) = f(d(x, y)),

where d is a metric on X , and f : R+ −→ R is a function. Usually, the metric arises from
the dot product, d(x, y) = ‖x− y‖ =

√
〈x, y〉.

These particular kernels are called radial kernels or radial basis function kernels (RBF
kernels).

We will present several examples in chapter 4 as the kernels on graphs, fisher kernel,
jittering kernels, etc. and we will construct a new kernel based on a Gaussian mixture
model. We recall in the following the definition of the gaussian mixture model.

Definition 2.11. (Gaussian Mixture Model) A Gaussian Mixture Model (GMM)
is a parametric probability density function represented as a weighted sum of Gaussian
component densities. The density of a Gaussian mixture model is given by:

f(x) =
M∑
j=0

τjgj(x),

where τj is a mixture proportion such that
M∑
j=0

τj = 1, and gj(x) is a Gaussian function.
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Chapter 3

Hyperbolic Kernel Machine

A new kernel machine for multi-class pattern recognition is introduced: the hyperbolic
kernel machine. Its decision boundaries in the feature space are defined by hyperbolic
functions. We establish its main statistical properties.

3.1 Introduction

The support vector machine (SVM) [5] is the first and main kernel machine [25] for pattern
classification. Over the last two decades, a great many multi-class extensions (M-SVMs)
have been introduced (see [6, 4] for a survey). They were assessed in the framework of
comparative experimental studies [8, 4]. Their statistical properties and generalization
performance were also extensively investigated (see for instance [12, 11]). This chapter
introduces a new kernel machine inspired by the M-SVMs. From a geometrical point of
view, it is characterized by the fact that its decision boundaries in the feature space are
defined by hyperbolic functions. We establish its main statistical properties.

The chapter is organized as follows. Section 3.2 is devoted to the definition of the
new machine. Its statistical properties are established in Section 3.3. At last, we draw
conclusions and outline our ongoing research in Section 3.4.

3.2 Hyperbolic kernel machine

The new classifier is devised in the following theoretical framework.

3.2.1 Theoretical framework

The learning problems we are interested in are C-category pattern classification problems.
Let X denote the description space and Y the set of categories. Y can be identified with
the set of indices of the categories, i.e., the set of the integers ranging from 1 to C,
hereafter denoted by J1;CK (we do not assume any structure in Y). We assume that
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(X ,AX ) and (Y ,AY) are measurable spaces and denote by AX ⊗AY the tensor-product
sigma-algebra on the Cartesian product Z = X × Y . We make the hypothesis that the
link between descriptions and categories can be characterized by an unknown probability
measure P on the measurable space (X × Y ,AX ⊗AY). Let Z = (X, Y ) be a random
pair with values in Z = X × Y , distributed according to P . The only access to P is via
an m-sample Zm = (Zi)16i6m = ((Xi, Yi))16i6m made up of independent copies of Z (in
short Zm ∼ Pm). In this context of agnostic learning [9], a classifier is characterized by
a triplet made up of a function class, a decision rule and an inductive principle. We now
introduce the new kernel machine through the specification of the corresponding triplet.

3.2.2 Function class and decision boundaries

In the sequel, κ is a real-valued positive type function/kernel [3] on X 2 and
(
Hκ, 〈·, ·〉Hκ

)
is the corresponding reproducing kernel Hilbert space (RKHS).

Definition 3.1 (Function classes H̃ and H). Let κ be a kernel. The function class H̃ is
the class of all real-valued functions h̃ on X such that

∀x ∈ X , h̃(x) = R− ‖O − κx‖Hκ
,

for some R ∈ R∗+ and O ∈ Hκ. Then the function class at the basis of a C-category
hyperbolic kernel machine is the class H = H̃C.

Definition 3.2 (Decision rule). For every function h = (hk)16k6C ∈ H, a decision rule
drh is specified in the following way:

∀x ∈ X ,


∣∣∣∣argmax

16k6C
hk (x)

∣∣∣∣ = 1 =⇒ drh (x) = argmax
16k6C

hk (x)∣∣∣∣argmax
16k6C

hk (x)

∣∣∣∣ > 1 =⇒ drh (x) = ∗

where |·| returns the cardinality of its argument and ∗ stands for a dummy category.

Let the function h of H be characterized by the vectors RC = (Rk)16k6C ∈
(
R∗+
)C

and OC = (Ok)16k6C ∈ (Hκ)
C . It stems from Definitions 3.1 and 3.2 that the boundaries

between pairs of categories associated with h are either hyperbolic or linear in the feature
space, depending on the value of Rk − Rl. Indeed, the formula defining the decision
boundary between the categories k and l (for {k, l} ⊂ J1;CK) is

Rk − ‖Ok − κx‖Hκ
−Rl + ‖Ol − κx‖Hκ

= 0.

When Rk = Rl, this simplifies into

‖Ok‖2
Hκ
− ‖Ol‖2

Hκ
+ 2〈Ol −Ok, κx〉Hκ

= 0,
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meaning that the classifier is linear in Hκ. If Rk 6= Rl, the boundary is a sheet of a
hyperboloid of two sheets, whose foci are Ok and Ol. The nature of the sheet depends on
the sign of Rk −Rl. For further details, see Appendix .1

3.2.3 Function selection

To perform function selection on the class H, we specify a training problem that consists
in minimizing a penalized data-fit term. This calls for the selection of a (margin) loss
function. We use the parameterized truncated hinge loss, applied to the margin functions,
a choice that bears the advantage to ensure Fisher consistency (see Section 3.3).

Definition 3.3 (Class of margin functions). Let G be a class of functions from X into
RC. For every g ∈ G, the margin function ρg is the real-valued function on Z defined by:

∀ (x, k) ∈ Z, ρg (x, k) =
1

2

(
gk (x)−max

l 6=k
gl (x)

)
.

Then, the class ρG is defined as follows: ρG = {ρg : g ∈ G} .

Definition 3.4 (Parameterized truncated hinge loss φ2,γ). For γ ∈ (0, 1], the parameter-
ized truncated hinge loss φ2,γ is defined by:

∀t ∈ R, φ2,γ (t) = 1{t60} +

(
1− t

γ

)
1{t∈(0,γ]}.

When using a margin loss function, the behavior of the margin functions outside the
interval [0, γ] becomes irrelevant to characterize the generalization performance. The idea
to exploit this property by means of a combination with a piecewise-linear squashing
function can be traced back to [1]. The piecewise-linear squashing function that fits best
with φ2,γ is the function πγ.

Definition 3.5 (Piecewise-linear squashing function πγ). For γ ∈ (0, 1], the piecewise-
linear squashing function πγ is defined by:

∀t ∈ R, πγ (t) = t1{t∈(0,γ]} + γ1{t>γ}.

Thus, when possible, the class ρG is replaced with the following function class.

Definition 3.6 (Function class ρG,γ). Let G be a class of functions from X into RC and
ρG the corresponding class of margin functions. For every pair (g, γ) ∈ G × (0, 1], the
function ρg,γ from Z into [0, γ] is defined by:

ρg,γ = πγ ◦ ρg.

Then, the class ρG,γ is defined as follows:

ρG,γ = {ρg,γ : g ∈ G} .
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With these definitions at hand, the training problem can be defined as follows.

Definition 3.7 (Training problem of the hyperbolic kernel machine). Let κ be a kernel and
H the function class associated with κ according to Definition 3.1. For zm = (zi)16i6m ∈
Zm, γ ∈ (0, 1] and λ ∈ R∗+, the hyperbolic kernel machine associated with κ, zm, γ and
λ, is obtained by solving the following optimization problem:

Problem 1.

min
h∈H

{
m∑
i=1

φ2,γ ◦ ρh (zi) + λ ‖RC‖2
2

}
s.t. ∀k ∈ J1;CK, Ok ∈ conv ({κxi : yi = k}) .

Problem 1 is a non-convex optimization problem. There are many methods to solve
it, among which: Metropolis-Hastings algorithm, Constrained Optimization by Linear
Approximations (cobyla) with R, Solve Optimization problem with Nonlinear Objective
and Constraints (solnl) with R, etc...

3.3 Statistical properties

The statistical properties considered in the sequel regard the consistency of the induc-
tive principle and the generalization performance. Central in their formulations are the
concepts of risk and margin risk, that we define now.

Definition 3.8 (Risk and margin risk). Let G be a class of functions from X into RC.
The expected risk of any function g ∈ G, L(g), is given by:

L (g) = E(X,Y )∼P
[
1{ρg(X,Y )60}

]
= P (drg (X) 6= Y ) .

Its empirical risk measured on the m-sample Zm is:

Lm (g) = EZ′∼Pm
[
1{ρg(Z′)60}

]
=

1

m

m∑
i=1

1{ρg(Zi)60}

(where Pm is the empirical measure supported on Zm). Given a class of margin loss
functions φγ parameterized by γ ∈ (0, 1], for every (ordered) pair (g, γ) ∈ G × (0, 1], the
risk with margin γ of g, Lγ (g), is defined as:

Lγ (g) = EZ∼P [φγ ◦ ρg (Z)] .

Lγ,m (g) designates the corresponding empirical risk, measured on the m-sample Zm:

Lγ,m (g) = EZ′∼Pm [φγ ◦ ρg (Z ′)] =
1

m

m∑
i=1

φγ ◦ ρg (Zi) .

The first property we establish is Fisher consistency [12].
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3.3.1 Fisher consistency

Proposition 3.1. Let G be the class of all the functions from X into RC. The minimizer
g∗ of E(X,Y ) [φ2,γ ◦ ρg (X, Y )] over G satisfies the following:

∀x ∈ X ,∃k (x) ∈ argmax
16k6C

P (Y = k | X = x) : ρg∗ (x, k (x)) > γ.

Proof. By disintegration (see Lemma 1.2.1 in [5]), there exists a map x 7→ P (· | x) from
X into the set of all probability measures on Y such that P is the joint distribution of
(P (· | x))x∈X and of the marginal distribution PX of P on X . Consequently,

E(X,Y ) [φ2,γ ◦ ρg (X, Y )] =

∫
X×Y

φ2,γ ◦ ρg (x, y) dP (x, y)

=

∫
X

{
C∑
k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x)

}
dPX (x)

= EX

[
C∑
k=1

φ2,γ ◦ ρg (X, k)P (Y = k | X)

]
,

from which it springs that

∀x ∈ X , g∗ ∈ argmin
g∈G

C∑
k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x) .

Given x ∈ X and g ∈ G, by definition of ρg, there is at most one value of k in J1;CK such
that ρg (x, k) > 0. Suppose that there is none. Then according to Definition 3.4,

C∑
k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x) =
C∑
k=1

P (Y = k | X = x)

= 1. (3.1)

Suppose on the contrary that there exists k∗ ∈ J1;CK such that ρg (x, k∗) > 0. Then

C∑
k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x) = 1 + (φ2,γ ◦ ρg (x, k∗)− 1)P (Y = k∗ | X = x)

(3.2)

< 1. (3.3)

It springs from (3.1) and (3.3) that g∗ satisfies:

∀x ∈ X ,∃! k (x) ∈ J1;CK : ρg∗ (x, k (x)) > 0.
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Furthermore, due to (3.2),

∀x ∈ X ,

k (x) ∈ argmax16k6C P (Y = k | X = x)

ρg∗ (x, k (x)) > γ
,

so that

C∑
k=1

φ2,γ ◦ ρg∗ (x, k)P (Y = k | X = x) = 1− max
16k6C

P (Y = k | X = x) .

We now establish a guaranteed risk for our classifier.

3.3.2 Guaranteed risk

The capacity measure involved in our guaranteed risk is a Rademacher complexity.

Definition 3.9 (Rademacher complexity). Let (T ,AT ) be a measurable space and let T
be a random variable with values in T , distributed according to a probability measure PT
on (T ,AT ). For m ∈ N∗, let Tm = (Ti)16i6m be an m-sample made up of independent
copies of T and let σm = (σi)16i6m be a Rademacher sequence. Let F be a class of real-
valued functions with domain T . The empirical Rademacher complexity of F given Tm

is

R̂m (F) = Eσm

[
sup
f∈F

1

m

m∑
i=1

σif (Ti)

∣∣∣∣∣ Tm

]
.

The Rademacher complexity of F is

Rm (F) = ETm

[
R̂m (F)

]
= ETmσm

[
sup
f∈F

1

m

m∑
i=1

σif (Ti)

]
.

Theorem 3.1 (Theorem 5 in [7]). Let G be a class of functions from X into RC. For
γ ∈ (0, 1], let ρG,γ be the function class deduced from G according to Definition 3.6. For a
fixed γ ∈ (0, 1] and a fixed δ ∈ (0, 1), with Pm-probability at least 1− δ,

sup
g∈G

(L (g)− Lγ,m (g)) 6
2

γ
Rm (ρG,γ) +

√
ln
(

1
δ

)
2m

, (3.4)

where the margin loss function defining the empirical margin risk is the parameterized
truncated hinge loss (Definition 3.4).

To upper bound the Rademacher complexity of interest, Rm (ρH,γ), we resort to a
structural result. The sharpest result of this kind is due to Maurer [13]. It is an improve-
ment of the ones introduced in [10, 11].
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With Theorem 3.1 and Lemma 3.1 at hand, deriving a guaranteed risk for the hyper-
bolic kernel machine boils down to bounding from above Rm

(
H̃
)
.

Lemma 3.1. Let H̃ be a function class satisfying Definition 3.1 with the following re-
strictions: sup

x∈X
‖κx‖ |Hκ 6 ΛX , sup

h̃∈H̃
R 6 Rmax and sup

h̃∈H̃
‖O‖Hκ

6 ΛO. Then,

Rm

(
H̃
)
6
Rmax

2
√
m

+
1

2m
1
4

(
1 +

Λ2
O

2
+ Λ2

X + 2ΛOΛX

)
. (3.5)

3.4 Conclusion

We are introduced a novel kernel machine for multi-class pattern recognition. First, the
new margin multi category classifier is presented. This classifier is a kernel machine whose
separation surfaces are hyperbolic and generalizes the SVM. Then, we exhibited its main
statistical properties. We established an upper bound of the Rademacher complexity for
this classifier. Finally, we deduced a guaranteed risk for the hyperbolic kernel machine.
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3.5 Proof of Lemma 3.1

Proof. Due to the subadditivity of the supremum,

R̂m

(
H̃
)

= Eσm

[
sup
h̃∈H̃

1

m

m∑
i=1

σih̃ (xi)

]

6
1

m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σiR + sup
h̃∈H̃

m∑
i=1

σi ‖O − κxi‖Hκ

]

=
1

m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σiR

]
+

1

m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O − κxi‖Hκ

]
. (3.6)

The first Rademacher complexity in the right-hand side of (3.6) can be upper bounded
thanks to Lemma 3.2, which gives:

1

m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σiR

]
6
Rmax

2
√
m
.

To upper bound the second Rademacher complexity, we resort to Lemma 3.3 and choose
Φ to be the square root.

This is possible due to the following inequality:

∀ (u, v, w) ∈ R3
+,

∣∣√v −√u∣∣ 6 √w +
1

2
√
w
|v − u| , (3.7)

which enables us to set c = m−
1
4 and LΦ = 1

2
m

1
4 (corresponding to w = m−

1
2 ). Then,

1

m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O − κxi‖Hκ

]
6

1

2m
1
4

(
1 +

1√
m
Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O − κxi‖
2
Hκ

])
.

(3.8)
We now bound the expectation in the right-hand side of (3.8).

Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O − κxi‖
2
Hκ

]

6 Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O‖2
Hκ

+
m∑
i=1

σi ‖κxi‖
2
Hκ

+ 2 sup
h̃∈H̃

m∑
i=1

σi〈O, κxi〉Hκ

]

6
Λ2
O

2

√
m+ Eσm

[
m∑
i=1

σi ‖κxi‖
2
Hκ

]
+ 2Eσm

[
sup
h̃∈H̃

m∑
i=1

σi〈O, κxi〉Hκ

]
, (3.9)

where Eσm

[
sup
h̃∈H̃

m∑
i=1

σi ‖O‖2
Hκ

]
has been bounded from above by means of Lemma 3.2.

The first expectation in the right-hand side of (3.9) can be bounded by means of Jensen’s
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inequality, which gives:

Eσm

[
m∑
i=1

σi ‖κxi‖
2
Hκ

]
6

Eσm

( m∑
i=1

σi ‖κxi‖
2
Hκ

)2
 1

2

6
√
mΛ2

X .

At last, the second expectation in the right-hand side of (3.9), associated with a class of
linear functions, can be bounded by means of the Cauchy-Schwarz inequality and Jensen’s
inequality.

Eσm

[
sup
h̃∈H̃

m∑
i=1

σi〈O, κxi〉Hκ

]
= Eσm

[
sup
h̃∈H̃

〈
O,

m∑
i=1

σiκxi

〉
Hκ

]

6 ΛOEσm

[∥∥∥∥∥
n∑
i=1

σiκxi

∥∥∥∥∥
Hκ

]
6 ΛOΛX

√
m.

Putting things together gives (3.5), thus concluding the proof.

3.6 Technical lemmas

Lemma 3.2. Let F be the class of constant functions on T whose values range from 0

to MF . Then

∀m ∈ N∗, Rm (F) 6
MF

2
√
m
.

Proof. Let tm = (ti)16i6m ∈ T m.

Rm (F) = Eσm

[
sup
f∈F

1

m

m∑
i=1

σif (ti)

]

6
1

m
Eσm

[
MF1{ m∑

i=1
σi>0

} m∑
i=1

σi

]

=
MF
2m

Eσm
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m∑
i=1

σi

∣∣∣∣∣
]
. (3.10)

The expectation in (3.10) can be upper bounded in the classical way using Jensen’s
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inequality and the linearity of the expectation:

Eσm

[∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]
6

Eσm

( m∑
i=1

σi

)2
 1

2

=

(
m∑
i=1

m∑
j=1

Eσm [σiσj]

) 1
2

=

(
m∑
i=1

m∑
j=1

δi,j

) 1
2

=
√
m. (3.11)

A substitution of (3.11) into (3.10) concludes the proof.

Lemma 3.3. Let F be a class of real-valued functions on T . If Φ : R −→ R is a function
such that there exist LΦ ∈ R∗+ and c ∈ R satisfying:

∀ (u, v) ∈ R2, |Φ (u)− Φ (v)| 6 LΦ |u− v|+ c,

then
R̂m (Φ ◦ F) 6 LΦR̂m (F) +

c

2
.

The proof is basically that of Talagrand’s contraction lemma (see for instance Lemma 4.2
in [14]).

Proof.

R̂m (Φ ◦ F) = Eσm

[
sup
f∈F

1

m

m∑
i=1

σiΦ ◦ f (ti)

]

=
1

2m

{
Eσm−1

[
sup
f∈F

(
m−1∑
i=1

σiΦ ◦ f (ti) + Φ ◦ f (tm)

)]

+Eσm−1

[
sup
f ′∈F

(
m−1∑
i=1

σiΦ ◦ f ′ (ti)− Φ ◦ f ′ (tm)

)]}

=
1

2m
Eσm−1

[
sup

(f,f ′)∈F2

(
m−1∑
i=1

σi (Φ ◦ f (ti) + Φ ◦ f ′ (ti)) + Φ ◦ f (tm)− Φ ◦ f ′ (tm)

)]

6
c

2m
+

1

2m
Eσm−1

[
sup

(f,f ′)∈F2

(
m−1∑
i=1

σi (Φ ◦ f (ti) + Φ ◦ f ′ (ti)) + LΦ |f (tm)− f ′ (tm)|

)]
.

Since f and f ′ are interchangeable, the absolute value can be removed, so that the in-
equality simplifies into

R̂m (Φ ◦ F) 6
c

2m
+

1

m
Eσm

[
sup
f∈F

(
m−1∑
i=1

σiΦ ◦ f (ti) + LΦσmf (tm)

)]
.

Iterating the process for i equal to m− 1 down to 1 concludes the proof.
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Proof of Equation 3.7.
For all w > 0 as the derivative is always decreasing. Indeed, if we suppose without loss
of generality v > u. The formula is obtained by considering the following various cases:

• If, u < w 6 v, then
√
v 6
√
w + 1

2
√
w

(v − w) 6
√
w + 1

2
√
w

(v − u). Then,
√
v −
√
u 6
√
w + 1

2
√
w

(v − u).

• If, u 6 v < w, then
√
v −
√
u 6
√
w and thus

√
v −
√
u 6
√
w + 1

2
√
w

(v − u).

• Otherwise, if w 6 u 6 v, then
√
v −
√
u 6 1

2
√
w

(v − u) and thus
√
v −
√
u 6

√
w + 1

2
√
w

(v − u).

For our application we will take w = 1√
m
.
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Appendices
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.1 Geometric locus

Definition .10 (Hyperbola Definition). Formally, a hyperbola can be defined geometri-
cally as follows: For two given points, the foci, a hyperbola is a set of points (locus of
points) such that the difference between the distances to each focus is constant.

Shape of the separation surface We will determine the geometric locus of the
points such that hk(x)− hl(x) = 0 to know the type of classifier. There are two cases:

In the first case if Rk = Rl then, hk(x) − hl(x) = ‖Ok − κx‖Hκ − ‖Ol − κx‖Hκ .
Consequently if, hk(x) − hl(x) = 0 then we have, ‖Ok − κx‖Hκ − ‖Ol − κx‖Hκ = 0, this
implies ‖Ok‖2

Hκ
− ‖Ol‖2

Hκ
+ 2〈Ol − Ok, κx〉Hκ = 0. Thus, in this case the classifier is

linear, and we recognize the classical form of a SVM. Other way, we can find the type of
classifier geometrically. The geometric locus of the points such that hk(x)− hl(x) = 0 is
the mediator plane on segment [OkOl], so it is a linear classifier.

In the second case if Rk 6= Rl, the geometric locus of the points such that hk(x) −
hl(x) = 0 is a hyperbola by definition .10, so in this case it is a non linear classifier.

Eccentricity of a hyperbola We have ‖Ol − κx‖Hκ − ‖Ok − κx‖Hκ = Rl − Rk,
then a = Rl−Rk

2
, where a is the distance between the center of the hyperbola and one of

its vertices. The distance c of the foci to the center is called the focal distance, it’s given
by: c =

‖Ol−Ok‖Hκ
2

. Thus, the eccentricity e of a hyperbola is given by: e = c
a

=
‖Ol−Ok‖Hκ
Rl−Rk

.

.1.1 Geometric locus in dimension 2

Let (−c, 0) and (c, 0) be the foci of a hyperbola centered at the origin. The hyperbola is
the set of all points (x, y) such that the difference of the distances from (x, y) to the foci
is constant.

If (a, 0) is a vertex of the hyperbola, the distance from (−c, 0) to (a, 0) is a− (−c) =

a + c. The distance from (c, 0) to (a, 0) is c− a. The sum of the distances from the foci
to the vertex is

(a+ c)− (c− a) = 2a.

If (x, y) is a point on the hyperbola, we can define the following variables:

d2 = the distance from (c, 0) to (x, y)

d1 = the distance from (c, 0) to (x, y)

By definition of a hyperbola, d2− d1 is constant for any point (x, y) on the hyperbola.
We know that the difference of these distances is 2a for the vertex (a, 0). It follows that
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d2 − d1 = 2a for any point on the hyperbola. we will begin by applying the distance
formula.

d2 − d1 =
√

(x− (−c))2 + (y − 0)2 −
√

(x− c)2 + (y − 0)2 =
√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a

Move radical to opposite side√
(x+ c)2 + y2 =

√
(x− c)2 + y2 + 2a

Square both sides

(x+ c)2 + y2 = (x− c)2 + y2 + 4a2 + 4a
√

(x− c)2 + y2

x2 + 2cx+ c2 + y2 = x2 − 2cx+ c2 + y2 + 4a2 + 4a
√

(x− c)2 + y2

4cx− 4a2 = 4a
√

(x− c)2 + y2

Divide by 4

cx− a2 = a
√

(x− c)2 + y2

Square both sides

(cx− a2)2 = a2
(
(x− c)2 + y2

)
c2x2 − 2a2cx+ a4 = a2

(
x2 − 2cx+ c2 + y2

)
Set b2 = c2 − a2

(c2 − a2)x2 − a2y2 = a2(c2 − a2)

x2b2 − a2y2 = a2b2

Divide both sides by a2b2

x2b2

a2b2
− a2y2

a2b2
=
a2b2

a2b2

x2

a2
− y2

b2
= 1.
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This equation defines a hyperbola centered at the origin with vertices (±a, 0) and co-
vertices (0,±b).

.1.2 Geometric locus in dimension 3

Let Ok = (0, 0, c) and Ol = (0, 0,−c) be the foci of a hyperboloid. The hyperboloid of
two sheets is the set of all points (x, y, z) such that the difference of the distances from
(x, y, z) to the foci is constant.

‖Ok − κx‖ − ‖Ol − κx‖ = Rk −Rl. We set K = Rk −Rl,

‖Ok − κx‖ = ‖Ol − κx‖+K√
x2 + y2 + (z − c)2 =

√
x2 + y2 + (z + c)2 +K

Square both sides

x2 + y2 + (z − c)2 = x2 + y2 + (z + c)2 +K2 + 2K
√
x2 + y2 + (z + c)2

x2 + y2 + z2 − 2cz + c2 = x2 + y2 + z2 + 2cz + c2 +K2 + 2K
√
x2 + y2 + (z + c)2

Simplify expressions

− 4cz −K2 = 2K
√
x2 + y2 + (z + c)2

Square both sides

(−4cz −K2)2 =
(

2K
√
x2 + y2 + (z + c)2

)2

16c2z2 + 8cK2z +K4 = 4K2
(
x2 + y2 + (z + c)2

)
Divide by 4

4c2z2 + 2cK2z +
K4

4
= K2

(
x2 + y2 + (z + c)2

)
4c2z2 + 2cK2z +

K4

4
= K2

(
x2 + y2 + z2 + 2cz + c2

)
−K2x2 −K2y2 + (4c2 −K2)z2 = K2c2 − K4

4
= K2

(
c2 − K2

4

)
= K2

(
4c2 −K2

4

)
Set b2 = c2 − K2

4
=

4c2 −K2

4

−K2x2 −K2y2 + 4b2z2 = K2b2

If K2 6= 0, divide both sides by K2b2

− 1

b2
x2 − 1

b2
y2 +

4

K2
z2 = 1.

This equation defines a hyperboloid of two sheets. Also, this equation has one positive
eigenvalue and two negative eigenvalues.
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.1.3 Geometric locus in dimension n

Let Ok = (0, 0, · · · , 0, c) and Ol = (0, 0, · · · , 0,−c) be the foci of a hyperboloid, The
hyperboloid of two sheets is the set of all points (x1, · · · , xn) such that the difference of
the distances from (x1, · · · , xn) to the foci is constant.
‖Ok − κx‖ − ‖Ol − κx‖ = Rk −Rl. We set K = Rk −Rl,

‖Ok − κx‖ = ‖Ol − κx‖+K√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn − c)2 =
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2 +K

Square both sides

x2
1 + x2

2 + · · ·+ x2
n−1 + (xn − c)2 = x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2 +K2

+ 2K
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2

(xn − c)2 = (xn + c)2 +K2 + 2K
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2

x2
n − 2cxn + c2 = x2

n + 2cxn + c2 +K2 + 2K
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2

Simplify expressions

− 4cxn −K2 = 2K
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2

Square both sides

(−4cxn −K2)2 =

(
2K
√
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2

)2

16c2x2
n + 8cK2xn +K4 = 4K2

(
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2
)

Divide by 4

4c2x2
n + 2cK2xn +

K4

4
= K2

(
x2

1 + x2
2 + · · ·+ x2

n−1 + (xn + c)2
)

4c2x2
n + 2cK2xn +

K4

4
= K2

(
x2

1 + x2
2 + · · ·+ x2

n−1 + x2
n + 2cxn + c2

)
−K2x2

1 −K2x2
2 − · · · −K2x2

n−1 + (4c2 −K2)x2
n = K2c2 − K4

4
= K2

(
c2 − K2

4

)
= K2

(
4c2 −K2

4

)
Set b2 =

4c2 −K2

4

−K2x2
1 −K2x2

2 − · · · −K2x2
n−1 + (4c2 −K2)x2

n −K2b2 = 0.

This equation is a quadratic form. The matrix form of this equation is:

A =


−K2 0 · · · 0

0 −K2 · · · 0
...

... . . . ...
0 0 · · · 4c2 −K2


The eigenvalues of A are: λ1 = −K2, · · · , λn−1 = −K2 and λn = 4c2 −K2.
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Thus, there are one positive eigenvalue because c > K
2
and (n − 1) negative eigenvalues,

then the locus of the set of all points (x1, · · · , xn) is a two-sheet hyperboloid.
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Chapter 4

Consolidation Kernel

In this chapter, we introduce a novel kernel function obtained as a Fourier transform
of a Gaussian mixture model with the purpose of detecting translation invariance inside
classes. It is close to existing kernels but has never been expressed in this precise way. We
have applied it successfully on several datasets in the context of machine learning using
multiclass support vector machines.

4.1 Introduction

Kernel methods are robust statistical learning techniques [25, 27], widely applied to var-
ious learning problems due to their versatility and good performance. Applications are
wide and cover all possible structured or unstructured data types, e.g., general discrete
structures [12], strings [18], weighted automata [4], etc. The only theoretical constraint
is to have a positive type function or symmetric positive semidefinite (PSD) kernel [3],
which implicitly specify an inner product in a reproducing kernel Hilbert space (RKHS).
Thus, every data analysis algorithm that only makes use of inner products between data
vectors can be transformed into a kernel method by the kernel trick, which consists in
replacing the inner product by an arbitrary kernel function.

Kernel methods have become popular for various kinds of machine learning tasks, the
most famous being the support vector machine (SVM) for classification [5]. SVM with
a positive semidefinite kernel matrix has been applied successfully in many classification
tasks including image retrieval, face recognition, and micro-array gene expression data
analysis ([6, 25, 31]). Furthermore, in practice, it can prove successful even with indefinite
kernels [1, 8, 10, 19, 28].

In this chapter, we address the problem of incorporating transformation invariance in
a kernel used for classification. We introduce a new kernel constructed from the Fourier
transform of a Gaussian mixture function. The underlying principle is that if a translation
inside a class cannot be used to make closer points of different classes, then it could be



68 4. Consolidation Kernel

used as a translation invariant. This is achieved by clustering classes into subclasses and
reviewing the translations between subclasses centers. The simplest example we have in
mind is the XOR case.

The rest of the chapter is organized as follows. In the following section, we review
existing work dealing with the kernel design. Section 4.3 presents our kernel. The com-
parative study allowing its evaluation is the subject of Section 4.4. At last, we draw
conclusions in Section 4.5.

4.2 State of the art on the transformation invariant ker-
nels

We give a brief review of existing literature on kernel design. Kernels have been designed
for a variety of data: graphs [15, 9, 30], string kernels [18, 14, 23] and hidden Markov
models [13, 32], to name just a few. For a good review, we can refer to the article of [16].

When it comes to transformation invariance, the simplest idea is based on the gener-
ation of virtual examples [22, 21]. In this approach, new examples are created using the
transformation at hand (translation or rotation for example) to enlarge the training set.
A variant of it is the virtual support vector method [24]. There, the virtual examples
are only generated from the support vectors (that utterly define the boundaries between
the categories). The drawback is the enlarged memory and time complexities due to
additionnal points.

Very close kernels to the virtual support vector method are the jittering kernels [7, 8],
where the transformation invariance is in the kernel itself, for instance κ∗(x, x′) may be
computed from a kernel κ using T ∗ = argminT∈T κ(x, x) +κ(Tx′, Tx′)− 2κ(x, Tx′), where
T is a transformation group and κ∗(x, x′) is equal to κ(x, T ∗x′). A similar approach is the
tangent distance kernels which rely on the computation of the distance between sets of
points Rx and R′x associated to the original points x and x′ and obtained by all possible
transformations. This has been originally incorporated in SVMs as TD kernels in [10] and
extensively studied in [29] for neural networks.

All these kernels can be generalized by computing an average kernel over all trans-
formations. This gives rise to the Haar-integration kernel [26, 11] defined for a standard
kernel κ0 and a transformation group T , which contains the admissible transformations
[?, see]for a complete definition]ShulzMirbach1994. The idea is to compute the average of
the kernel output κ0 (Tx, T ′x′) over all pairwise combinations of the transformed examples
(Tx, T ′x′), ∀ (T, T ′) ∈ T 2 . The HI-kernel κ of κ0 with respect to T is thus∫

T 2

κ0 (Tx, T ′x′) dTdT ′,

under the condition of existence of the integral.
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Finally, in this chapter we will make a particular use of the spectral mixture base
kernels [34, 35] in Equation (4.1):

κSM(x, x′) =

Q∑
q=1

aq
|Σq|1/2

(2π)p/2
exp
{
−1

2

∥∥Σ1/2
q (x− x′)

∥∥2

2

}
cos (〈x− x′, 2πµq〉2) . (4.1)

The kernel κSM has been defined for any parameters θ = (aq, µq,Σq)16q6Q thanks to
Bochner’s theorem and the flexibility of Gaussian mixture models. The underlying idea
was to mimick the expressive power of deep learning architectures. Here, we will benefit
from its flexibility to express translation invariance in data sets.

4.3 Consolidation kernel

The present work is inspired from a simple observation: a class can be so sparse that
it becomes separated into several clusters. The idea is here to design a kernel bringing
together these clusters.

We proceed in the following way. First, each class is fragmented into a number of
relevant subclasses. Second, we consider the directions given by all the vectors c1c2

obtained in the following way:

1. c1 and c2 are subclass centers associated with the same class;

2. the vector c1c2 does not connect two subclasses of two different classes.

Let {ci1ci2 : i ∈ J1;MK} be the set of all such vectors.
Along each of them, we want the kernel value to oscillate somehow according to the

periodic function hd defined on R as follows:

∀k ∈ Z, ∀t ∈ [0, d) , hd (kd+ t) =
4

d2
t2 − 4

d
t+ 1,

and depicted in Figure 4.1.
As, hd(t) is too complex to handle, we resort to a m-order Fourier expansion of hd

which stands as follows:

hmd (t) =
1

3
+

m∑
j=1

aj cos

(
2πjt

d

)
where aj are the Fourier coefficients of hd and are given by aj = 4

j2π2 . The details are
provided in the appendix. More precisely, our kernel, named consolidation kernel, is
defined in the following way:

Definition 4.1. The consolidation kernel κ is defined by: ∀(x, x′) ∈ (Rp)2 ,

κ(x, x′) = τ0 exp
{
−1

2
σ2

0‖x− x′‖
2
2

}
+

M∑
i=1

τihdi

(〈ci1 − ci2
di

, x− x′
〉

2

)
exp{−1

2
σ2
i ‖x− x′‖

2
2}

with
∑M

i=0 τi = 1 and di = ‖ci1 − ci2‖2.
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Figure 4.1: Graph of function hd.

Then, kernel κ is truncated into kernel κm in the following way by replacing hd(t) by
hmd (t).

Definition 4.2. The consolidation kernel κm is defined as: ∀(x, x′) ∈ (Rp)2 ,

κm (x, x′) = τ0 exp{−1

2
σ2

0‖x− x′‖
2
2}+

M∑
i=1

τi

m∑
j=0

aj cos
(
〈µij, x− x′〉

)
exp{−1

2
σ2
i ‖x− x′‖

2
2},

where a0, . . . , am are the first terms of the Fourier series of hdi and µij =
ci1−ci2
‖ci1−ci2‖

2
2

j2π.

Proposition 4.1 (Properties of the kernel κ).

1. k(x, x) = 1 for all x ∈ Rp.

2. If M = 1 and τ0 = 0, the kernel is translation invariant in the following sense
κ(x+ ν1j, y) = κ(x, y) with ν1j = j(c11 − c12).

Proof. This is immediate, indeed on one hand we have:

κ(x, x) = τ0e
0 +

M∑
i=1

τihdi(0)e0 = 1

and on the other hand:

κ(x+ ν1j, y) =hd1

(〈c11 − c12

d1

, x+ ν1j − y
〉)

=hd1

(
jd1 +

〈c11 − c12

d1

, x− y
〉)

=k(x, y) by periodicity of hd1(t)

Now, we just have to show that kernel κm is close to kernel κ.
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Proposition 4.2 (Properties of the kernel km).
If τ0 = · · · = τM = 1

M+1
then:

|κ(x, y)− κm(x, y)| 6 4

π2m
.

Proof.

|κm(x, y)− κ(x, y)| =

∣∣∣∣∣
M∑
i=1

τi

∞∑
j=m+1

aj cos(µTij(x− y)) exp{−1

2
σ2
i ‖x− x′‖

2
2}

∣∣∣∣∣
6

1

M + 1

∣∣∣∣∣
M∑
i=1

∞∑
j=m+1

4

j2π2
cos(µTij(x− y))

∣∣∣∣∣
6

1

M + 1

M∑
i=1

∞∑
j=m+1

4

j2π2

6
4

π2m
by series integral comparison .

Consequently, in practice if one wants ε lower than 10−2, m should be taken at least
equal to 41. By the preceding Proposition 4.2, we deduce that the kernel is not compu-
tationally too demanding as the number of terms is linear in M .

4.4 Application

4.4.1 Experimental Setup

The new kernel is assessed in the framework of a comparative study where the reference
is provided by the Gaussian kernel. Both kernels are incorporated in a multi-class SVM
(M-SVM): the one of [33], hereafter referred to as the WW-M-SVM. The package im-
plementing it is MSVMpack [17]. For each data set and each class, five subclasses are
obtained by means of the k-means algorithm.

4.4.2 XOR Problem

To gain insight into the way our method works, we start by studying a toy example: the
well-known XOR problem. Then, the number of subclasses can be obviously set to two. In
each subclass in the square [1, 9]2, 20 points are taken represented by rounds and crosses
according to their class. This is the training set which is represented in the first drawing,
once training is done, we test the classifier for the grid of 1000000 points represented in
Figure 4.2 with the consolidation kernel km and the Gaussian kernel. The translation
invariance on this example can be clearly observed.
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Figure 4.2: WW-M-SVM applied to XOR with both the consolidation kernel and the
Gaussian kernel

4.4.2.1 Data Set Description

We have used different data sets in the experiments: Yeast, glass identification, BUPA
liver disorders,vertebral column, abalone, madelon, letter recognition, avila, breast, image
segmentation, MAGIC Gamma Telescope, credit, EEG Eye Statex, HTRU2, wine and
covertype datasets from the UCI machine learning repository [2] and the Banana dataset
and Digit Recognizer from Kaggle.com. The USPS-500 data set is a subset of the USPS
data provided with the MCSVM1 software (K. Crammer’s own implementation in C of
his M-SVM model (CS) named MCSVM).

Each data set is divided into a training set and a test set. These data sets we used in
this experiment are described in Table 4.1. In this table, the names of the real data sets
are shown with the size of the data sets, number of attributes and number of classes.

1http://www.cis.upenn.edu/∼crammer/code-index.html
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Datasets Train Test #Attributes #Classes
Banana 4240 1060 2 2
Yeast 1187 297 8 10
Glass 171 43 9 6
Liver 276 69 6 2
Vertebral
Column

248 62 6 2

Abalone 3341 836 8 3
Madelon 2080 520 500 2
Digit
Recognizer

42000 28000 784 10

Letter
Recogni-
tion

16000 4000 16 26

Avila 16693 4174 10 12
USPS-500 500 500 256 10
Breast 92 24 9 2
Segmentation 1848 462 19 7
Magic 15216 3804 10 2
Credit 24000 6000 23 2
Eye 11984 2996 14 2
Htru 14318 3580 8 2
Wine 142 36 13 3
Covertype 522911 58101 54 7

Table 4.1: Information about the UCI data sets and Kaggle used in the experiments.
The results produced by the WW-M-SVM for these data sets are given in Table 4.1. For
each data set, we compare in Table 4.2 the training error rate and the recognition rate
on the test set for the two kernels, with the parameter of σ given by

√
5 ∗ dim(data).

We observe that the Gaussian kernel is systematically outperformed.
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Gaussian kernel Kernel km

Datasets Training
error rate

[%]

Recognition
rate [%]

Training
error rate

[%]

Recognition
rate [%]

Banana 22.2406 77.64 8.0660 89.91
Yeast 50.7161 47.47 1.4322 53.87
Glass 38.5965 55.81 5.8480 81.40
Liver 23.9130 69.57 23.9130 75.36
Vertebral
Column

14.1129 85.48 13.7097 90.32

Abalone 45.4355 52.87 40.3771 54.31
Madelon 22.2596 55.38 8.1250 65.00
Digit
Recognizer

4.2083 94.65 2.5167 96.09

Letter
Recogni-
tion

4.5 92.08 0.00 95.67

Avila 31.9954 68.04 8.9139 80.69
USPS-500 28.6250 66.50 0.00 92.00
Breast 16.3043 58.33 17.3913 66.67
Segmentation 8.1710 93.51 5.3571 95.67
Magic 14.0641 86.17 13.5844 86.88
Credit 17.95 81.95 17.8958 82.05
Eye 31.6923 69.63 30.2904 70.46
Htru 2.0534 97.85 2.0324 97.85
Wine 0.00 100.00 0.00 100.00
Covertype 23.8970 76.11 23.6960 76.70

Table 4.2: Comparison of WW-M-SVM with Gaussian kernel and km

To ascertain that the score difference between the Gaussian kernel and the consolidation
kernel, we have tested statistically whether the difference in performance of two kernels
is significant or not. Let p1 and p2 be the recognition rates of the Gaussian kernel and km

respectively. The hypothesis tests are given by:

H0 : p1 = p2 against H1 : p1 6= p2

The test statistic is calculated by the following formula:

T =
p1 − p2√

2 (pc(1− pc)/n
,

with
pc =

p1 + p2

2
.
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Decision rule: Reject H0 at the level 5% if |T | > 1.96, this means that there is a
significant difference the two proportions.
The test statistic and p-values are given in the following table for each data sets.

Datasets Test Statistic (T) p-value
Banana 7.661837 1.832917e-14
Yeast 1.559955 0.1187704
Glass 2.55671 0.01056674
Liver 0.7613449 0.4464511
Vertebral Column 0.8263025 0.4086325
Abalone 0.590341 0.554962
Madelon 3.168863 0.001530364
Digit Recognizer 8.108306 5.133039e-16
Letter Recognition 6.695475 2.149715e-11
Avila 13.23582 5.449987e-40
USPS-500 6.288275 3.210138e-10
Breast 0.5967618 0.5506664
Segmentation 1.451238 0.1467137
Magic 0.9068353 0.3644939
Credit 0.1425665 0.8866326
Eye 0.7013112 0.4831088
Htru 0 1
Wine NaN NaN
Covertype 2.368416 0.01786445

Table 4.3: Test Statistic and p-values of the data sets
So, in 8 cases, the difference is significant and in favour of the consolidation kernel.
Besides, for some datasets results can also be found in the literature for sanity check,
they are reported in table 4.4.

Datasets Recognition rate of
literature [%]

Recognition rate of
km [%]

Glass 71.028 81.40
Abalone 27.51 54.31
Digit Recognizer 91.84 96.09
Segmentation 97.576 98.05 (σ =

√
2)

Wine 98.876 100.00
Covertype 72.40 76.70

Table 4.4: Comparison of WW-M-SVM with literature and km



76 4. Consolidation Kernel

4.5 Conclusion

In this chapter, we have introduced a particular case of the spectral mixture kernel where
emphasis has been put on translation invariance. Experimental results have proved that
this kernel is worth being used considering in particular that it does not involve much
more computation compared to a simple kernel as the Gaussian kernel. Perspectives would
involve other ways of adding properties to the kernels and dealing with high-dimensional
data.
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Proposition .3. The Fourier series associated to the function of hd is written as follows:

hd(t) =
1

3
+

+∞∑
j=1

4

j2π2
cos(jtw) with w =

2π

d
.

Proof. Since the function hd is even then its coefficients bj(hd) = 0 and the coefficients
a0(hd) and aj(hd) stand as follows:

a0(hd) =
1

d

∫ d

0

hd(t) dt =
1

3
.

aj(hd) =
2

d

∫ d

0

hd(t) cos(jtw) dt =
2

d

[∫ d

0

4

d2
l2 cos(jtw) dt−

∫ d

0

4

d
t cos(jtw) dt+

∫ d

0

cos(jtw) dt

]
=

8

d3

∫ d

0

t2 cos(jtw) dt− 8

d2

∫ d

0

t cos(jtw) dt+
2

d

∫ d

0

cos(jtw) dt

=
8

d3

d3

2j2π2

=
4

j2π2
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Conclusion

This thesis contributes to provide a new kernel machines inspired by the multi-class sup-
port vector machine (M-SVM) and a novel kernel function obtained as a Fourier transform
of a Gaussian mixture model.

In chapters 3, we are interested in are C-category pattern classification problems, under
the assumption that all categories are finite. We introduced a new margin multi category
classifier based on classes of vector valued functions with one component function per
category. For each description, it provides a score per category and the selected category
is the one associated with the highest score. This classifier is a kernel machine whose
separation surfaces are hyperbolic and generalizes the SVM. We then established its
main statistical properties. We founded an upper bound of the Rademacher complexity
of this classifier this establishing by used Ledoux Talagrand Lemma. This bound
converges to 0 at infinity, this showed that the classes of component functions are uniform
Glivenko-Cantelli. We focus on parameterized truncated hinge loss function and we
showed the Fisher consistency of this loss function. Finally, we established a guaranteed
risk for our classifier using the bound of the Rademacher complexity.

Furthermore, in chapter 4 we have introduced a new kernel function which obtained by
the transform fourier of the gaussian mixture where emphasis has been put on translation
invariance. We have applied this kernel on several datasets using multiclass support vec-
tor machines package and the results are compared to those obtained with the Gaussian
kernel. Then, the experimental results proved that this kernel is worth being used con-
sidering in particular that it does not involve much computation in addition to a simple
kernel as the Gaussian kernel.



84 Conclusion and Perspectives



85

Perspectives

The work presented in this thesis has an interesting potential for future research:

In chapter 3, we have presented a new hyperboloïd kernel machine for multi-class pattern
recognition. We introduced an optimization problem of the hyperbolïd kernel machine.
We reformulate the Problem 1 to obtain optimization problem with a slack variables ξi .

Problem 2.
min
h∈H,ξ

{
λ ‖RC‖2

2 +
m∑
i=1

ξi

}

s.t. ∀k ∈ J1;CK, Ok ∈ conv ({κxi : yi = k}) .

∀i ∈ [[1,m ]] ,

[
1

γ
ρh (zi)

]
+

≥ 1− ξi,

ξi > 0.

Indeed,

• if ρh (zi) 6 0, then ξi > 1 =⇒ ξi = 1 and φ2,γ◦ρh (zi) = 1, therefore ξi = φ2,γ◦ρh (zi).

• if ρh (zi) > γ, then ξi > 1− ρh(zi)
γ

, so ξi = 0, therefore ξi = φ2,γ ◦ ρh (zi).

• if ρh (zi) ∈ (0, γ), then ξi > 1− ρh(zi)
γ

, therefore ξi = 1− ρh(zi)
γ

= φ2,γ ◦ ρh (zi).

As a perspective, further studies will be needed to solve this optimization problem. We
will use the method of Metropolis Hasting.

Furthermore, we will use the consolidation kernel of the chapter 4 on this optimization
problem and compare this result with another kernel.
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