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Abstract

Computer vision is a strategic field, in consequence of its great number of potential
applications which could have a high impact on society. This area has quickly
improved over the last decades, especially thanks to the advances of artificial
intelligence and more particularly thanks to the accession of deep learning. These
methods allow machines to deal with complex tasks, to the point that they can
surpass the human mind in some cases. Nevertheless, these methods present two
main drawbacks in contrast with biological brains: they are extremely energy
intensive and they need large labeled training sets. In regard to the energy problem,
to be run these methods call for substantial infrastructures, which sometimes
necessitate thousands of Watts. In comparison with the brain, it represents a huge
gap, as this organ only requires around two dozens of Watts in total for all its
activities. Using deep learning methods on portable devices is not viable at the
moment. When it comes to data sets, the issue is entailed by the means of learning
of algorithms, which are mainly supervised. This kind of algorithms has to know
the information linked to the data to guide its learning process. Deep learning
methods require a large number of labeled data, which entails laborious efforts
to make such datasets. The development of unsupervised rules made this stage
unnecessary.

Spiking neural networks (SNNs) are alternative models offering an answer to
the energy consumption issue. One attribute of these models is that they can
be implemented very efficiently on hardware, in order to build ultra low-power
architectures. In return, these models impose certain limitations, such as the use of
only local memory and computations. It prevents the use of traditional learning
methods, for example the gradient back-propagation. Spike-timing-dependent
plasticity (STDP) is a learning rule, observed in biology, which can be used in
SNNs. This rule reinforces the synapses in which local correlations of spike
timing are detected. It also weakens the other synapses. The fact that it is local
and unsupervised makes it possible to abide by the constraints of neuromorphic
architectures, which means it can be implemented efficiently, but it also provides a
solution to the data set labeling issue. However, spiking neural networks trained
with the STDP rule are affected by lower performances in comparison to those
following a deep learning process. The literature about STDP still uses simple
data (Modified-NIST (MNIST), ETH-80, NORB), but the behavior of this rule has
seldom been used with more complex data, such as sets made of a large variety of
real-world images.

The aim of this manuscript is to study the behavior of these spiking models,
trained through the STDP rule, on image classification tasks. The main goal is to
improve the performances of these models, while respecting as much as possible
the constraints of neuromorphic architectures. The first contribution focuses on the
software simulations of SNNs. Hardware implementation being a long and costly
process, using simulation is a good alternative in order to study more quickly the
behavior of different models. Nevertheless, developing software able to simulate
efficiently spiking models is a tall order. Two simulators are worked on in this
manuscript. Neural network scalable spiking simulator (N2S3) is the first one, it
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was designed to be flexible, so it can simulate a large variety of models. Multiple
approaches are tested on a motion detection task to shows this flexibility. The
second simulator is convolutional spiking neural network simulator (CSNNS), that
is optimized to simulate rapidly some models used in the development of this
manuscript. A comparison is done with N2S3 to prove it efficiency.

Then, the contributions focus on the establishment of multi-layered spiking
networks; networks made of several layers, such as those in deep learning methods,
allow to process more complex data. One of the chapters revolves around the matter
of frequency loss seen in several SNNs. This issue prevents the stacking of multiple
spiking layers, since the fire frequency drops drastically throughout the layers. New
mechanisms are offered to bypass this problem, while maintaining the performances
of the network: a threshold adaptation rule, a neural coding, and a modified STDP
rule. A study of these mechanisms is provided at the end of the chapter.

The center point then switches to a study of STDP behavior on more complex
data, especially colored real-world images (CIFAR-10, CIFAR-100, STL-10). Several
policies of on/off filtering are introduced, which enables SNNs to learn from RGB
images. Then, multiple measurements are used, such as the coherence of filters or
the sparsity of activations, to better understand the reasons for the performance gap
between STDP and the more traditional methods. Sparse auto-encoders are used
to draw these comparisons because these networks are one of the unsupervised
learning methods with the wider range of utilization. Some avenues will be offered
so that the performance gap of the two methods may be bridged. Preliminary results
on the usage of whitening transformation show the potential of this pre-processing
to increase performance on colored images (66.58% on CIFAR-10).

Lastly, the manuscript describes the making of multi-layered networks. To this
end, a new threshold adaption mechanism is introduced, along with a multi-layer
training protocol. A study of different mechanisms (STDP, inhibition, threshold
adaptation) is provided at the end of the chapter. It is proven that such networks can
improve the state-of-the-art for STDP on both MNIST (98.60%) and face/motorbikes
(99.46%) datasets.
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Résumé

La vision par ordinateur est un domaine stratégique, du fait du nombre potentiel
d’applications avec un impact important sur la société. Ce secteur a rapidement
progressé au cours de ces dernières années, notamment grâce aux avancées en
intelligence artificielle et plus particulièrement l’avènement de l’apprentissage pro-
fond. Ces méthodes permettent de traiter des tâches complexes, au point de réussir
à battre l’humain dans certains cas. Cependant, ces méthodes présentent deux
défauts majeurs face au cerveau biologique : ils sont extrêmement énergivores et
requièrent de gigantesques bases d’apprentissage étiquetées. Concernant le prob-
lème de l’énergie, ces méthodes ont besoin d’infrastructures conséquentes pour
tourner, qui peuvent demander plusieurs milliers de watts. Cela représente un
énorme fossé par rapport au cerveau, qui lui ne consomme qu’une vingtaine de
watts pour la totalité de son fonctionnement. Embarquer ces méthodes artificielles
dans des appareils portables n’est pas viable. Le problème des données est quant à
lui causé par le mode d’apprentissage des algorithmes, qui sont majoritairement
supervisés. Ce genre d’algorithme nécessite de connaître les informations associées
aux données pour guider l’apprentissage. Étiqueter un grand nombre de données,
comme le requière l’utilisation de méthode d’apprentissage profonds, représente un
coût important. Le développement de règles non-supervisées permet de se passer
de la nécessité d’étiqueter les données.

Les réseaux de neurones à impulsions sont des modèles alternatifs qui permettent
de répondre à la problématique de la consommation énergétique. Ces modèles ont la
propriété de pouvoir être implémentés de manière très efficace sur du matériel, afin
de créer des architectures très basse consommation. En contrepartie, ces modèles
imposent certaines contraintes, comme l’utilisation uniquement de mémoire et de
calcul locaux. Cette limitation empêche l’utilisation de méthodes d’apprentissage
traditionnelles, telles que la rétro-propagation du gradient. La STDP est une règle
d’apprentissage, observé dans la biologie, qui peut être utilisée dans les réseaux de
neurones à impulsions. Cette règle renforce les synapses où des corrélations locales
entre les temps d’impulsions sont détectées, et affaiblit les autres synapses. La nature
locale et non-supervisée permet à la fois de respecter les contraintes des architectures
neuromorphiques, et donc d’être implémentable de manière efficace, mais permet
également de répondre aux problématiques d’étiquetage des base d’apprentissages.
Cependant, les réseaux de neurones à impulsions entraînés grâce à la STDP souffrent
pour le moment de performances inférieures aux méthodes d’apprentissage profond.
La littérature entourant la STDP utilise très majoritairement des données simples
(MNIST, ETH-80, NORB), mais le comportement de cette règle n’a été que très
peu étudié sur des données plus complexes, tel que sur des bases avec une variété
d’images importante.

L’objectif de ce manuscrit est d’étudier le comportement des modèles impul-
sionnels, entraîné via la STDP, sur des tâches de classification d’images. Le but
principal est d’améliorer les performances de ces modèles, tout en respectant un
maximum les contraintes imposées par les architectures neuromorphiques. Une
première partie des contributions proposées dans ce manuscrit s’intéresse à la
simulation logicielle des réseaux de neurones impulsionnels. L’implémentation
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matérielle étant un processus long et coûteux, l’utilisation de simulation est une
bonne alternative pour étudier plus rapidement le comportement des différents
modèles. Cependant, développer des logiciels capables de simuler efficacement les
modèles impulsionnels représente un défi de taille. Deux simulateurs sont proposés
dans ce manuscrit: le premier, N2S3, est conçu pour être flexible, et donc permet
de simuler une très grande variété de modèles. Afin de démontrer la flexibilité
de ce simulateur, plusieurs approches sont utilisées sur une tâche de détection de
mouvement. Le second simulateur, CSNNS, est quand à lui optimisé pour simuler
rapidement certains modèles utilisés dans la suite de ce manuscrit. Une comparaison
entre N2S3 et CSNNS est effectuée afin de prouver son efficacité.

La suite des contributions s’intéresse à la mise en place de réseaux impulsionnels
multi-couches. Les réseaux composées d’un empilement de couches, tel que les
méthodes d’apprentissage profond, permettent de traiter des données beaucoup
plus complexes. Un des chapitres s’articule autour de la problématique de perte
de fréquence observée dans les réseaux de neurones à impulsions. Ce problème
empêche l’empilement de plusieurs couches de neurones impulsionnels, car la
fréquence de décharge des neurones chute de manière drastique. Sans activité dans
une couche, aucun apprentissage ne peut se faire puisque la STDP ne s’effectuera
pas. De nouveaux mécanismes sont introduits pour répondre à ce problème, tout
en conservant les performances de reconnaissance : une règle d’adaptation du seuil,
un codage d’entrée ainsi qu’une règle STDP modifiée. L’étude de ces mécanismes
est faite à la fin du chapitre.

Une autre partie des contributions se concentre sur l’étude du comportement
de la STDP sur des jeux de données plus complexes, tels que les images naturelles
en couleurs (CIFAR-10, CIFAR-100, STL-10). Dans cette partie sont proposées
plusieurs politiques de filtrage on/off qui permettent aux réseaux de neurones
impulsionnels d’apprendre sur des images RBV. Plusieurs mesures sont utilisées,
telle que la cohérence des filtres ou la dispersion des activations, afin de mieux
comprendre les raisons de l’écart de performances entre la STDP et les méthodes
plus traditionnelles. Les auto-encodeurs épars sont utilisés dans cette comparaison
car ils sont une des méthodes non-supervisées les plus utilisées. Plusieurs pistes sont
ainsi proposées afin de réduire le fossé entre les performances des deux méthodes.
La fin du chapitre montre des résultats préliminaires qui suggèrent que l’utilisation
du whitening permet d’améliorer nettement les performances de la STDP sur les
images couleurs (66.58% sur CIFAR-10).

Finalement, la réalisation de réseaux multi-couches est décrite dans la dernière
partie des contributions. Pour ce faire, un nouveau mécanisme d’adaptation des
seuils est introduit ainsi qu’un protocole permettant l’apprentissage multi-couches.
L’étude des différents mécanismes (STDP, inhibition) est fournie à la fin du chapitre.
Il est notamment démontré que de tels réseaux parviennent à améliorer l’état de l’art
autour de la STDP sur les bases d’apprentissage MNIST (98.60%) et face/motorbikes
(99.46%).
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Chapter 1

Introduction, context, and
motivations

Due to its large number of potential applications, computer vision is a strategic area,
whether it is to guide an autonomous vehicle, to inspect production lines in factories,
to monitor unusual events, to diagnose diseases from medical imaging… All these
applications can be easily mastered by humans, thanks to the brain which has
evolved in order to deal with the critical task that is to improve the survival of
the species [1]. However, creating artificial methods capable of competing with
the human brain is very challenging. Much progress has been made in this area
since the apparition of early artificial approaches such as the perceptron in 1957.
Nowadays, advanced artificial methods, such as artificial neural networks (ANNs)
and, especially, deep learning [2], are able to compete with humans on multiple
tasks. To achieve this feat, such methods are fed with millions of sample images, in
order for them to learn how to generalize to new data.

As an example, to make such a model recognize whether an image contains a
dog or a cat, it is necessary to train it with many examples. Thus, it is necessary to
retrieve thousands of images of cats and dogs under different poses, of different
races, in different contexts…Each image provided to the model necessitates a label
(i.e. dog or cat) in order to guide the algorithm during the learning process. When
the model predicts a wrong label, it has to adjust its parameters in order to give
a better prediction the next time it is presented with this image. By iterating this
process thousands or millions of times, the model should find parameters that allow
it to succeed in this task. However, these methods remain at a disadvantage on
several points compared to the brain. A first drawback is that artificial methods
tend to be task-specific: ANNs are able to recognize only the objects on which
they have been trained. These models have difficulties to evolve. To add new
classes to a trained model, it is generally necessary to start learning again from
the beginning and sometimes to change the network architecture. In opposition,
the brain adapts itself in order to learn new objects. Moreover, when it learns
to recognize a new object, it can do so with very few examples (i.e. sometimes
a single example is enough, this ability is called one-shot learning [3], [4]), and
without restarting the learning from the beginning. A second drawback is the
supervision required by these methods. Each sample provided to the network
needs to be labeled. This involves a lot of efforts in order to label large databases
as required by deep learning [5]. Ensuring a low rate of mislabeled data is also an
endeavoring job. Labeling can be tedious. Sometimes it requires the presence of
experts for certain complex tasks, which is costly. The brain works differently: it
can learn by observing and interacting with the environment, thanks to its ability
to use unsupervised and reinforcement learning [6]. A last drawback is the energy
inefficiency of the artificial methods [5], [7], [8]. Currently, models allowing to solve
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the most complex tasks require huge infrastructures to run. Compared to the brain,
that consumes about 20 W to work [9], [10], artificial methods can require hundreds
or thousands of Watts. The massive use of this kind of models would require a
huge amount of energy. Lots of companies have offered optimized hardware to run
artificial models more efficiency [11], but those can not be embeded directly into
mobile devices, such as smartphones or Internet of things (IoT) sensors, due to
their high energy consumption.

This energy gap between the artificial methods and the brain is especially due
to their operating models. The brain uses massively desynchronized units with
only local computation and memory. Artificial methods use the von Neumann
architecture, which works in a synchronized mode of operation, with the memories
separated from the computation units. Moreover, the performances of these models
are limited by the von Neumann bottleneck: the performance of the system is
limited by the amount of data that can be exchanged on the bus between the
computation unit and the memory.

Von Neumann architectures are also exposed to the end of Moore’s law [12]. In
order to continue to improve the computational power of machines, new alternatives
must be developed. Beside quantum or optical computing, neuromorphic architec-
tures are a promising alternative to von Neumann architectures [13]. Neuromorphic
computing allows dealing with cognitive tasks, while remaining much more efficient
than von Neumann architectures [14]. By using a mode of operation inspired from
the brain, these architectures aim to improve artificial method by taking the advan-
tages observed in biology. Studies show that neuromorphic platforms can consume
up to 300,000 times less energy than traditional von Neumann architectures [15].
Neuromorphic architectures are cited as a breakthrough technologies by the MIT1
and as a highly promising technology by the U.S. government [16].

1.1 Neuromorphic Hardware

The spiking neural network (SNN) is a model that is part of neuromorphic computing.
Unlike ANNs, that perform computation on numerical representations, this model
uses spikes to encode and process information. SNNs are related to hardware
implementation, since one of their main advantages is to allow the development
of energy efficient hardware. Three different approaches are possible: digital
hardware, analog hardware or mixed digital/analog hardware. In order to provide
efficient implementations, these architectures must be massively parallel and weakly
synchronized [17], and must have an optimized routing system between all the units
of the system to avoid the von Neumann bottleneck. However, such architectures
enforce some constraints, such as the locality of the operations, which can prevent
the usage of some mechanisms.

The main advantage of digital approaches is the simplicity of their design
over analog architectures [18]. Unlike analog approaches, simulated models can
be noiseless. Moreover, digital architectures have a good ability to scale up to
large networks. Such architectures use classical boolean logic gates, and most of
the time, one or multiple clocks to synchronize computations. TrueNorth [15],
SpiNNaker [19], or Loihi [20] are projects that already provide digital neuromorphic
architectures. In order to provide efficient simulations, these architectures use
multiple cores connected to each other, each of them able to simulate multiple
neurons and synapses. Such hardware uses an optimized routing system that allows
low-cost communications within the network [21].

Field-programmable gate array (FPGA) are another alternative to implement
digital neuromorphic architectures [22]–[24]. They allow shorter design and fabri-

1https://www.technologyreview.com/s/526506/neuromorphic-chips/
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1.2. Neuromorphic Constraints

cation durations by providing reconfigurable architectures which can be optimized
for different tasks. FPGA can be easily interfaced with host computers or with
other FPGA [25], [26].

Analog hardware has the best potential to produce ultra-low-power chips, by
directly using the physics of silicon to reproduce the behavior of SNNs [27]. Another
advantage of analog design is its compactness: it requires a smaller area in the
integrated circuit [18]. One disadvantage of the analog approach compared to the
digital one is its lower signal-to-noise ratio and the variability of components [18].
However, some work suggests that SNNs are tolerant to these variations [28], so
analog implementation can be suited to neuromorphic computing. Some studies
even report that the noise which can be brought by the hardware components
improves learning in SNN [29]. Another issue with the analog approach is that
it is less flexible: for example, time constants must be fixed in the design, and
cannot be modified during the simulation. Some work uses complementary metal-
oxide semiconductor (CMOS) technology, which has the advantage to have a stable
fabrication process. These circuits can be integrated into very large-scale integration
(VLSI) in order to build large and dense chips. However, many authors use
new microelectronics technologies, with greater potentials (e.g. energy efficient,
compactness…) than CMOS, notably memristive devices, which have a variable
internal resistance based on the previous current that flowed through them [30].
This behavior is interesting for neuromorphic computing, since synapses can also
be considered as a memristive system [31].

Leon Chua predicted in 1971 the memristor [32] as the fourth elemental passive
component. The first practical realization was made by HP labs in 2008 [33]
with a thin titanium dioxide film (𝑇 𝑖𝑂2). It should be noted that the usage
of memristive devices is not limited to synapses, but can also be employed for
neuron modeling [34], [35]. Multiple technologies are in competition to implement
memristive devices: resistive RAM (ReRAM) [36], phase change memory (PCM) [37],
spin-torque transfer RAM (STT-RAM) [38], nanoparticle organic memory field-effect
transistor (NOMFET) [39]…

Field-programmable analog array (FPPA), the analog equivalent of FPGA, is
another interesting technology to implement analog neuromorphic architectures [40]–
[42]. They bring advantages similar to FPGA, such as reduced design duration and
cost. However, only small networks can be currently implemented on FPPA, a few
dozen neurons at most, due to the reduced number of available functional blocks
on commercialized chips.

Finally, some projects try to combine digital and analog implementations, in
order to bypass the disadvantages of the two approaches. However, it is necessary
to have compatible technologies in order to use both analog and digital components
within the same architecture. BrainScaleS [43], Neurogrid [44], and ROLLS [45]
are projects of mixed analog/digital architectures. These projects use analog circuits
to simulate neurons, and thus, benefit from their energy efficiency, and digital
communication systems to facilitate the scaling properties of such architectures.

1.2 Neuromorphic Constraints

Neuromorphic architectures have the potential to significantly reduce the energy
consumption of learning systems. However, this kind of architectures achieves
such performance by enforcing some constraints. These constraints must be taken
into account because they enforce the mechanisms that can be used with SNNs.
The major one, which is present in the vast majority of neuromorphic hardware,
is the locality of computation and memory. This locality varies in the different
architectures: in some digital hardware, locality is restricted to a core, but in others,
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notably in analog architectures, the locality is limited to a single neuron. This
constraint limits the algorithms that can be used, and thus, finding effective local
learning rules is crucial in order to compete with traditional artificial methods. Spike-
timing-dependent plasticity (STDP) is a popular rule in the SNN community that
meets this requirement [10].

Another constraint is the type of communication allowed in the network. Some
architectures allow transmitting small packets, which can contain a few bytes of
information, while others support only spikes as a means of communication. In
addition, the connectivity can be restricted. Some architectures use fixed topologies,
notably when using analog connections. Reconfigurable topology architectures
can also impose some constraints, such as the maximum number of incoming or
outgoing connections per neuron, or the possibility of connecting neurons that are
not located in the same part of the system.

Some architectures tend to be flexible, and allow simulating a significant amount
of neuron and synapse models, but others are limited to specific types, with more
or less flexibility on the setting of model parameters. The different contributions
reported in this manuscript are motivated by the advantages provided by the
neuromorphic architectures. Thus, a particular attention is given to these various
constraints mentioned above, in order to make the contributions suitable to hardware
implementations.

1.3 Motivations

Computer vision applications are of great interest in many sectors, and are likely to
be increasingly used in the coming years. With the parallel democratization of the
IoT, such applications should be embedded in mobile devices. Currently, lots of
applications send requests to distant deep models because they are not usable on
such devices. If the inference of such models could be done locally, it would reduce
the energy consumption, but also improve the data privacy. Moreover, implement-
ing local training is another important challenge, since some applications adapt
themselves to the user habits. Bio-inspired architectures, such as neuromorphic
computing, are trying to meet this challenge. In return, such hardware enforces
some limitations, which prevent the usage of traditional learning methods. However,
learning rules which respect these constraints, like STDP, have not yet succeeded to
compete this advanced artificial methods, like deep learning. The motivation of this
manuscript is to study the behavior of SNNs trained with STDP on image classifica-
tion tasks, in order to offers new mechanisms that improve their performance, while
trying to respect the constraints of the neuromorphic architectures. Notably, it is
recognized that using deep hierarchical representations improves the expressiveness
of models [46], and yields state-of-the-art performance on many tasks [47], [48].
Succeeding in training a multilayer SNN with STDP is an important objective which
can reduce the gap between ANNs and SNNs. A second motivation is the processing
of complex data. Currently, most of the STDP literature uses simple datasets, such
as Modified-NIST (MNIST), and only little work is interested in the use of more
complex datasets. In addition, this manuscript also addresses the problem of the
software simulation of SNNs: since larger networks should be used to process more
complex data, it is important to designing simulators that speed up experimentation
while remaining flexible.

1.4 Outline

This manuscript gives in Chapter 2 an overview the different domains necessary
for understanding the contributions. Notably, this chapter offers an introduction
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to object recognition (Section 2.1) and spiking neural networks (Section 2.2), but
also the literature of image classification with SNNs (Section 2.3) and software
simulation of SNN (Section 2.4). Then the contributions of this manuscript are
detailed. Chapter 3 focuses on the software simulation of SNNs, and presents the
tools developed in order to simulate the models proposed in the manuscript. The
first simulator is the neural network scalable spiking simulator (N2S3) (Section 3.1).
A case study is detailed to show the flexibility brought by this simulator. The second
tool is the convolutional spiking neural network simulator (CSNNS) (Section 3.2),
which allows to efficiently simulate specific models of SNNs. Then, Chapter 4
points out the problem of frequency loss observed with SNNs. This issue is critical
to multilayer SNNs, since the network is not able to learn efficiently without a
sufficient activity. Mechanisms are offered in the remaining of the chapter in order
to maintain spike frequency across the layers, but also the recognition rate of the
network. Chapter 5 introduces mechanisms that allow SNNs to learn patterns on
colored images, and evaluates the performance of STDP on complex datasets. A
second purpose of this chapter is to compare the quality of the features learned by
STDP to features learned by auto-encoders (AEs), and to discuss their differences
in order to open up new perspectives. Finally, Chapter 6 extends the mechanisms
introduced in the previous chapter and provides a protocol that allows to train multi-
layer SNNs with STDP rules. Then, this chapter shows that multilayer SNNs trained
with STDP lead to state-of-the-art results on both MNIST and the faces/motorbikes
dataset.
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Chapter 2

Background

The subject of this manuscript covers several disciplines, such as computer vision,
software simulation, or neurosciences, thus an introduction to the different related
fields is necessary. We first discuss the application, with the introduction of the
object recognition task in order to better understand the challenges of our work,
in Section 2.1. We give an overview of the different methods and datasets used in
this field, and of the state-of-the-art in order to be able to position the different
contributions. Afterward, in Section 2.2, we provide a review of the spiking neural
network models, and of the different mechanisms used in the literature. Then, in
Section 2.3, we focus on the learning methods employed to train spiking neural
networks on images classification tasks, and we list the best results currently achieved
on the different datasets. Finally, in Section 2.4 we outline the software simulator
available to run spiking neural network (SNN), and the underlying challenges.

2.1 Object Recognition

Object recognition is a challenging computer vision task studied for decades. It is an
attractive research field due to the numerous applications: industrial manufacturing
requirements (e.g. quality inspection, object sorting and counting), medical imaging
(e.g. diagnostic from radiography), security (e.g. unusual event detection from
cameras). Object recognition regroups several tasks, such as localization (i.e. find
position of object instances), segmentation (i.e. associate a label to a group of pixels),
or classification. This manuscript focuses on the image classification task, because it
is one of the most studied, due to the large number of possible applications. This
task consists in associating a pre-defined class (e.g. dog, car, flower) to an image,
that best describes the content of the image. In some classification tasks, multiple
labels can be associated with a single image if multiple objects are present in it.
This manuscript is focused only on associating a single class with an image, since
this task is already very challenging for the studied models. Object recognition
tasks can seem easy to humans, because the brain is highly efficient in processing
visual information, but remains challenging for artificial methods. One reason is
that intra-class variations can be huge [1]: two objects belonging to the same class
can have a variety of model instances, but also position, scale, lighting, background,
and pose variations (see Figure 2.1).

Formally speaking, an image 𝐗 is a matrix of pixels. Each pixel is generally
represented by one value, as in grayscale format (see Figure 2.2), or by three values,
as in the red green blue (RGB) format. Thus each image 𝐗 is a 3D array:

𝐗 ∈ [0, 1]𝑥width×𝑥height×𝑥depth (2.1)
with 𝑥width and 𝑥height the width and height of the image, and 𝑥depth the number of
components per pixel.
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Chapter 2. Background

Figure 2.1: Examples of variations between instances of the same object class (cup).
There are positions, scales, poses, lighting, and background variations, but also a
variety of model instances (e.g. tea cup, coffee cup, mug…).
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Figure 2.2: Image classification process. Images are arrays of pixels (e.g. here in
grayscale format, with the highest values representing the brightest pixels). The
feature extractor 𝑓e is responsible for transforming this representation into a vector 𝐠,
containing the different features. Finally, the classifier 𝑓c predicts a class 𝑐, among
all possible classes 𝒞, from 𝐠.
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(a) (b) (c)

Figure 2.3: Image classification process. (a) In the pixel space, classes can not be
easily separated. (b) However, in the feature space the inter-class variations can
become larger than intra-class variations, (c) which allows finding boundaries that
allows a correct separation thanks to a classifier.

The classification task consists in associating a label 𝑐, from a set of 𝑛 possible
classes 𝒞 = {𝑐0, 𝑐1, … , 𝑐𝑛} to an image 𝐗:

𝑓ec ∶ ℝ𝑥width×𝑥height×𝑥depth → 𝒞
𝐗 ↦ 𝑐

(2.2)

Classification requires to find boundaries between classes. However, finding
boundaries that separate the different classes correctly in the pixels space is non-
trivial due to the intra-class variations that can be as large as the inter-class variations.
So, before doing the classification, it is most of the time necessary to map the image
into a feature space that allows a better separation of the classes thanks to a feature
extractor 𝑓e:

𝑓e ∶ ℝ𝑥width×𝑥height×𝑥depth → ℝ𝑛features

𝐗 ↦ 𝐠
(2.3)

with 𝐠 the feature vector of dimension 𝑛features. It defines a dictionary of features of
size 𝑛features.

This step consists in disentangling the data, typically to make the data linearly
separable. This transformation can be done by extracting several features from the
image [49]. Pixels are the lowest level of features, but by applying a sequence of
operations, it is possible to get a higher level of features (i.e. more abstract features),
which may be invariant to some properties (orientation, scale, illumination…), and
so, more informative for the classification (see Figure 2.3).

Then, a classifier 𝑓c can be used on the feature vector 𝐠 to predict a class 𝑐:

𝑓c ∶ ℝ𝑛features → 𝒞
𝐠 ↦ 𝑐

(2.4)

Thus, the image classification can be expressed as 𝑓ec = 𝑓c ∘ 𝑓e.
In the following, Section 2.1.1 enumerates the traditional features extracted from

images and Section 2.1.2 lists the main classification methods. Section 2.1.3 focuses
on multi-layer neural networks, which have the ability to learn both the features to
extract and the boundaries between classes. Finally, section 2.1.4 presents different
datasets frequently used in image classification.

2.1.1 Feature Extraction

Finding features that improve the invariance of the model is crucial to create
an effective image classification system [49]. Features can be separated into two
categories. On the one hand, processes that use all the pixels of the image generate
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Figure 2.4: Examples of interest points in an image.

global features, such as color histograms, texture descriptors or, spectral analysis.
Such features often have the advantage of being fast to compute, and being compact
in memory. On the other hand, local features describe specific parts of the image,
by characterizing only pixels in some region of interest or around densely sampled
regions [50], [51]. Some methods, such as corner or blob detector, allow extracting
a set of interest points (i.e. sometimes called key points or salient points) in the
images that have the potential to be informative (Figure 2.4). Some detectors
work at specific scales (e.g. Harris detector, FAST detector…), while other methods
allow multi-scale detection (i.e. Laplacian-of-Gaussian, Gabor-Wavelet detector…).
Then, a set of descriptors can be computed for each interest point, such as the
local gradient. Local features have the advantage of being able to provide a more
detailed description of the image. Among the most common methods used to extract
local features, the scale-invariant feature transform (SIFT) uses the difference of
Gaussians (DoG) operator as an interest point detector. It then extracts the dominant
orientations around each point. Speeded-up robust features descriptor (SURF) is
another method; it uses an approximation of the determinant of the Hessian blob
detector to detect interest points and use Haar wavelet responses around it as a
descriptor.

Since the rise of deep learning, features tend to be learned by algorithms
rather than designed by human effort. Features learned from data have shown
their superiority on a number of tasks, such as image classification [52], image
segmentation [53], and action recognition [54]. Moreover, hierarchical models tend
to combine some low-level features to generate more abstract features. Each level
of features gives the ability to increase the invariance of the system.

2.1.2 Classification Methods

The key role of the classifier is to generalize the representation of the different classes
to unseen images. To this end, classifiers need to find boundaries in the feature
space that best separate classes. Thus, effective features are required to improve
this separation. The classification process requires a training step. A training set,
composed of the images 𝒳train and the associated labels 𝒴train, is used to create a
model. Once the training is complete, the classifier should be able to predict the
class of unseen samples. In order to test the performance of the classifier, a test
step is performed: a test set, composed of both images 𝒳test and labels 𝒴test, which
are not used during training, is used to measure the generalization capacity of the
model (see Figure 2.5). One performance measure is the classification rate, which
gives the ratio of good predictions over the total number of samples in the test set:
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𝒳train
(𝒴train)

𝒳test
(𝒴test)

𝑓e 𝑓c

train

transform
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transform

predict

Figure 2.5: The first step in an image classification task consists in training the
model. In models which learn the parameters of the feature extractor from the
data, the feature extractor is trained from the training set (blue pathway). Then,
the classifier is trained from the features extracted from the training set (green
pathway). Finally, the performance of the model can be evaluated by using the
classifier to predict the class of each sample in the test set (red pathway).

rr =
∑

𝐗∈𝒳test,𝑐∈𝒴test
[𝑓(𝐗) = 𝑐]

|𝒳test|
(2.5)

Under-fitting and over-fitting are two phenomena that can explain the poor
performance of a classifier. Under-fitting means that the classifier is not able to
generalize to new data because the model is not complex enough to represent the
data well (e.g. when using a linear classifier on a non-linearly separable problem).
In this case, both the accuracies on the training set and on the testing set are low.
In opposition, over-fitting appears when the classifier is not able to generalize well
because it learns a representation too close to the training samples. In this case, the
classifier has a very good accuracy on the training set, but a poor accuracy on the
test set.

There are a lot of classifiers (e.g. the perceptron, decision trees, random forests…),
but not all of them are able to perform well in the image classification context. One of
the most used classifiers for this task, before the advent of the neural networks, was
the support vector machine (SVM). SVM uses a set of hyperplanes which maximizes
the margin between the classes. In its basic form, SVM is a linear classifier. A
transformation into a high-dimensional space is possible according to a defined
kernel to make non-linear classifications. In addition to the used kernel, SVM
depends on a cost parameter svm𝑐, which allows tuning the optimization criterion
between over-fitting and under-fitting. However, predictions made with this method
are not so easily understandable.

However, the improvement brought by artificial neural networks (ANNs) makes
the use of previous feature extraction and classification methods less relevant in
many cases, particularly in object recognition.

2.1.3 Artificial Neural Network

ANNs are a family of models that are able to learn directly the features but also
the class boundaries from the data. Indeed, multi-layer neural networks, some-
times called multi-layer perceptrons (MLPs), have the ability to learn intermediate
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representations. Thanks to their non-linearity, they can learn to extract low-level
features in their first layers, and increase the complexity and the abstraction of the
features across the layers. Finally, the last layers can behave like a classifier, which
allows having a unique model to process images.

These models can be expressed as 𝑓ec(.; Φ), where Φ is a set of parameters that
can be optimized towards a specific goal by a learning algorithm. Φ can be optimized
by minimizing an objective function 𝑓obj. In a supervised task, this optimization
step can be expressed as:

Φ∗ = argmax
Φ

𝑓obj(𝒳train, 𝒳test; Φ) (2.6)

where Φ∗ are the parameters returned by the learning algorithm.
The back-propagation (BP) technique is largely used to train multi-layer net-

works. BP allows the efficient computation of the gradient of all the operations
of the network thanks to the chain rule formula. Then, those gradients are used
by an optimization method to minimize a loss function 𝑓obj. This metric gives the
error between the actual predicted value and the expected value. Gradient descent
(GD) is an optimization algorithm which uses all the training examples to update
the parameters. When used with suitable values of the meta-parameters (e.g. a
small learning rate), this method may find a smaller or equal loss after each step.
However, this method has the disadvantage of being very expensive to compute
and it can get stuck in local minima. Stochastic gradient descent (SGD) is another
optimization method that uses only one image per update step, which reduces the
risk of getting stuck in local minima by constantly changing the loss 𝑓obj. However,
SGD gives a stochastic approximation of the cost gradient over all the data, which
means that the path taken in the descent is not direct (i.e. a zig-zag effect happens).
Finally, a compromise exists between the SGD and GD methods: it averages the
updates of multiple samples (defined by the batch size) to improve the robusness
of SGD without the drawbacks of GD.

Finally, mini-batch gradient descent is a compromise between the two previous
methods, using a subset of samples per update.

ANNs, especially deep learning ones, require large amounts of annotated data to
be trained. This issue can be mitigated by the use of unsupervised learning models.
Unsupervised representation learning is recognized as one of the major challenges
in machine learning [55] and is receiving a growing interest in computer vision
applications [56]–[58].

Such models can also be used with unsupervised learning, where labels are
not available. In this learning mode, one tend to learn 𝑓e instead of 𝑓ec. The
optimization problem becomes:

Φ∗ = argmax
Φ

𝑓obj(𝒳train; Φ) (2.7)

In this case, 𝑓obj cannot be formulated towards a specific application. Instead, some
surrogate objective must be defined, that is expected to produce features that can
fit the problem to be solved. Examples include image reconstruction [59], image
denoising [60], and maximum likelihood [61]. In some cases, learning rules are
defined directly without formulating an explicit objective function (e.g. in k-means
clustering [56]).

One of the most used unsupervised ANN are the auto-encoders (AEs) [59], [62].
Instead of using an expected value that relies on the class of the data, the network
is trained to reconstruct its input, and so, the loss function minimizes the difference
between each input image and the reconstruction of this image at the output of
the network. To do so, the topology of the network is divided into two parts: the
first part, the encoder 𝑓enc, projects the input into a smaller feature space. Then a
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decoder 𝑓dec does the inverse transformation, by projecting this hidden state back
into the input space. By using a smaller space for the intermediate representation,
the network is constrained to compress the data into an efficient representation in
order to be able to correctly reconstruct the input. Using higher feature space is
also possible, but additional constraints need to be added to the model [56], [63].

Other models of neural networks exist. For example, restricted Boltzmann
machines (RBMs) use the contrastive divergence (CD) method to learn a probability
distribution of the input by alternatively sampling the input (called the visible layer)
and the output (hidden layer) [64]. RBMs can be stacked, similarly to multi-layer
neural networks, to learn more abstract features; such a network is called deep belief
network (DBN) [61]. One of the limitations of neural networks, notably the deep
architecture, is the huge amount of data required to learn a model which is able
to generalize well. However, some datasets do not provide enough samples. One
solution is to use data augmentation, by generating new samples by the deformation
of the available samples.

2.1.4 Object Recognition Datasets

Since most of the models are trained on a sample collection to infer a generalization,
a particular attention should be given to the data. For example, if the complexity of
the data is too high according to the number of available samples, finding a correct
model is hard. Also, if the data are biased, the trained model has serious risks to
learn this bias and so to generalize poorly. Nowadays, gathering a huge number
of various images is no longer a real problem, thanks to the search engines and
social networks. However, getting correct labels still requires efforts in the case of
supervised learning. Labeling can be a laborious work since it requires experts on
complex tasks, and it needs to be done by hand to prevent as much as possible
errors.

Multiple datasets, with different specificities, exist to compare the different
methods used in image classification. While some datasets try to constrain the
images in order to limit the variations and so, the classification difficulty, other
datasets aim to be very heterogeneous in order to better represent in the real-world
contexts. The number of samples available for each class is an important criterion
since using more images allows improving the generalization of the model. Thus,
trivial datasets, (i.e. toy datasets) can be limited to a few hundreds or a few
thousands of images, while more complex datasets generally contain millions of
images. A second important criterion is the number of classes. Working with more
classes tends to make the problem more difficult. Some datasets contain only a set
of object classes while others contain a hierarchy of classes, with abstract concepts
gathering multiple object classes. While some datasets provide only the label
associated with each image, others provide more information, such as a multiple
keywords, bounding boxes of the different objects present in the images, or the
segmentation of the pixels belonging to the objects.

An example of a non-challenging dataset is Modified-NIST (MNIST) [65]. MNIST
consists of 60,000 training samples and 10,000 test samples. Each image is a
grayscale, centered, and scaled handwritten digit of 28 × 28 pixels, which limits the
variations to be taken into account (see Figure 2.6). The dataset has 10 classes,
which are the digits from 0 to 9. Variants of this dataset exist, to test models
on different properties. As an example, a permutation-invariant version exists
(PI-MNIST) which prevents the usage of the spatial relationships between the pixels.
Sequential-MNIST is another variant which consist to get one pixel at time [66]; it
is notably used in recurrent approaches in order to evaluate the short-term memory
of the network. NORB [67] and ETH-80 [68] are other toy datasets, which provide
a few images of some objects. Again, the variations are limited (all the objects are
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Figure 2.6: Samples from MNIST.

nearly centered and scaled, lighting conditions are good…). Only a few tens or
hundreds of samples are provided, which is not really a difficulty because of the
low complexity of these datasets. This kind of dataset is no longer used nowadays
in the computer vision literature, because recognition rates are already very close
to the maximum reachable (e.g. 99.82% on MNIST, see Table 2.1). The range of
applications with such data remains also limited, since models trained on them
work correctly only if the same constraints are present. However, these datasets are
still useful for testing methods that are ongoing research efforts, like those detailed
in the rest of this manuscript, because it limits the difficulty and allows to quickly
prototype before starting to work on more complex tasks.

However, the advances of image classification methods have made it possible
to focus on more complex tasks. These models aim to work on unconstrained
data in order to be effective in most situations. But, in order for the models
to be able to successfully generalize to new data, datasets that are intended for
this purpose need to provide many examples for each class. As an example,
Caltech-101 [69] and Caltech-256 [70], offer more diversity in images than previous
datasets, but do not offer a sufficient number of images (i.e. 9,144 and 30,607)
to effectively train current models. Recent datasets, such as ImageNet [71], Open
Image [72], or MS-COCO [73] answer this issue by providing millions of labeled and
unconstrained images (see Figure 2.7). These datasets are currently heavily studied
because they offer real-world challenges and also enough samples to solve them.
In addition, complementary information is provided. For example, ImageNet uses
a vast hierarchy of concepts as classes, which allows gathering similar objects and
testing the scalability to large class sets. Both ImageNet and Open Image provide
the bounding boxes of the objects. MS-COCO gives the segmentation for each object
in the images. Testing methods on such datasets is interesting in order to evaluate
the performance of models in very complex tasks, but also their scalability. However,
such datasets require very large computation times, both due to the high number of
samples and the size of images, which is not adapted for most of the methods [74].

CIFAR-10 and CIFAR-100 [75] are also challenging datasets, still in use today.
Although the number of training images is quite limited (50,000), the main chal-
lenges come from the low resolution of the images (32×32) and the large intra-class
variations (see Figure 2.8). These datasets are an interesting compromise between
the challenge of the task, and the computational power required to process them.

Some datasets are intended for unsupervised learning. This is the case of
STL-10, which is built from ImageNet [56]. These datasets provide a large number
of unlabeled data that can be used to learn features in an unsupervised way, and
a small subset of labeled examples, that are used to train the classifier. Since the
amount of training labeled examples is rather small (5,000 for STL-10), models
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Figure 2.7: Samples from ImageNet.

Figure 2.8: Samples from CIFAR-10.
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Table 2.1: State-of-the-art performances on the different datasets. Deep Convo-
lutional neural networks (CNNs) are the state-of-the-art method on most of the
datasets.

Dataset Author Method Recognition Rate

MNIST Kowsari et al. (2018) [76] Deep CNN 99.82%
PI-MNIST Pezeshki et al.(2016) [77] Augmented MLP 99.43%
Sequential-MNIST Cooijmans et al. (2016) [78] LSTM 99.00%
CIFAR-10 Huang et al. (2018) [74] Deep CNN + transfer learning 99.00%
SVHN Zhang et al. (2019) [79] Deep CNN 98.70%
ETH-80 Hayat et al. (2015) [80] AE+ CNN 98.25%
NORB cirecsan et al. (2011) [81] CNN 97.47%
Caltech-101 Mahmood et al. (2017) [82] Deep CNN + transfer learning 94.70%
CIFAR-100 Huang et al. (2018) [74] Deep CNN + transfer learning 91.30%
ImageNet Huang et al. (2018) [74] Deep CNN 84.30% (Top-1 error)
Caltech-256 Mahmood et al. (2017) [82] Deep CNN + transfer learning 82.10%
STL-10 Danton et al. (2016) [83] Deep semi-supervised CNN 77.80%

need to learn a good intermediate representation on the unlabeled subset (100,000
for STL-10) to get good performance on the test set.

A summary of the datasets for object classification is given in Table 2.1.

2.2 Overview of Spiking Neural Networks

Despite their state-of-the-art performances on multiple tasks, ANNs also have some
drawbacks. One of the most problematic is the energy efficiency of the models.
As an example, deep neural networks require hundreds or even thousands of
Watts to run on a classic architecture. Even tensor processor unit (TPU), which
are optimized to simulate neural networks, consume about a hundred Watts [84].
In comparison, the brain uses about 20 W as a whole. A second issue is the
supervision. Current unsupervised methods are far behind the capacity of the brain.
Studies of models of an intermediate abstraction level, between the precise biological
neural networks and the abstract artificial neural networks, aim to overcome these
limitations. This family of neural network models, SNNs, uses a mode of operation
closer to biology than ANNs, in order to benefit from its advantages, while allowing
a simpler implementation [85], [86]. The main difference between ANNs and SNNs
is their mode of communication. ANNs behave like a mathematical function: they
transform a set of input numerical values into another set of output numerical values
(see Figure 2.9a). Although this model of operation can be easily implemented
on von Neumann architectures, the constraints of such models, like the need for
synchronization, make them difficult to be efficiently implemented on dedicated
architectures. In contrast, SNNs use spikes as the only communication mechanism
between network components (see Figure 2.9b). These spikes, whose principle
comes directly from biology, allow a complete desynchronization of the system,
because each component is only affected by the incoming spikes. Depending on the
model, each spike can be defined by a set of parameters. In its simplest form, a
spike can be considered as a binary event, which means that the intensity or the
shape of the impulse is neglected. Thus, the only parameter is 𝑡, the timestamp of
the spike. A second parameter, the voltage 𝑣exc, can be added to define a spike in
some models. However, using spike computation prevents the usage of traditional
learning methods, which are value-based. New methods need to be introduced in
order to train SNNs. Despite the fact that the performances in terms of classification
rate of these models are currently behind ANNs, the theory shows that SNNs should
be more computationally powerful than their traditional counterparts [87], which
means that SNNs should be able to compete with ANNs.
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Figure 2.9: Comparison between an artificial neuron and a spiking neuron. (a)
An artificial neuron applies operations on a set of numerical values to compute an
output numerical value. (b) A spiking neuron receives a set of input spikes, and
generates a set of output spikes.
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Figure 2.10: Evolution of the membrane potential of an IF neuron according to an
incoming spike train.

2.2.1 Spiking Neurons

Spiking neurons are an intermediate model between biological neurons and artificial
neurons. However, there is no consensus on the best trade-off between these two
extremes. On the one hand, some models try to be biologically accurate, by sacrificing
the simplicity of the model. On the other hand, other models are abstracted from
biology by keeping only the most important principles, and thus, keeping a low
computational complexity. So, there are multiple spiking neuron models, which
offer different trade-offs [88]. This section presents some of the most used spiking
neurons models. A spiking neuron is defined by its response to an input current 𝑧.
In its simplest form, this current can be expressed from the input spikes as:

𝑧(𝑡) = ∑
𝑒∈ℰ

𝑣exc𝑖𝑓spike(𝑡 − 𝑡𝑖) (2.8)

with ℰ the set of incoming spikes, 𝑣exc𝑖 the voltage of the 𝑖th spike, 𝑡𝑖 the timestamp
of the 𝑖th spike and 𝑓spike the kernel of spikes. A straightforward kernel is to use
dirac impulses, denoted 𝛿:

𝛿(𝑥) = { 1 if 𝑥 = 0
0 otherwise (2.9)

More complex kernels exist, which allows to improve the level of details, such
as the difference of exponentials (𝑓spike(𝑡) = 𝑒− 𝑡

𝜏1 − 𝑒− 𝑡
𝜏2 ).

Integrate and Fire model

One of the simplest models is called integrate-and-fire (IF) [89]. This model inte-
grates input spikes to its membrane potential 𝑣. If 𝑣 exceeds a defined threshold 𝑣th,
an output spike is triggered and 𝑣 is reset to it resting potential 𝑣rest. After firing, the
neuron enters a refractory mode for the duration of 𝑡ref. No spikes are integrated
during this period (see Figure 2.10). The model is defined by the following formula:

𝑐m
𝜕𝑣
𝜕𝑡

= 𝑧(𝑡), 𝑣 ← 𝑣rest when 𝑣 ≥ 𝑣th (2.10)

with 𝑐m the membrane capacitance.
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Figure 2.11: Evolution of the membrane potential of a LIF neuron according to an
incoming spike train.

Leaky Integrate and Fire model

Leaky integrate-and-fire (LIF) models are a little bit closer to biology, by adding a
leak to the membrane potential 𝑣. This leak allows neurons to return to the resting
state in the absence of activity (see Figure 2.11). LIF can be expressed as:

𝜏leak
𝜕𝑣
𝜕𝑡

= [𝑣(𝑡) − 𝑣rest] + 𝑟m𝑧(𝑡), 𝑣 ← 𝑣rest when 𝑣 ≥ 𝑣th (2.11)

with 𝜏leak = 𝑟m𝑐m the time constant that controls the shape of the leak and 𝑟m the
membrane resistance.

There are more complex models belonging to the IF neuron family, such as ex-
ponential integrate-and-fire (EIF), quadratic integrate-and-fire (QIF) and adaptive
exponential integrate-and-fire (LIF) neuron models which allows to achieve be-
haviours closer to biological observations.

Izhikevich’s model

More complex spiking neurons exist, such as Izhikevich’s. This model has the
advantage of being relatively simple, but allows reproducing many of the firing
modes observed in vivo [90].

𝜕𝑣
𝜕𝑡

= 0.04𝑣2 + 5𝑣 + 140 − 𝑈 + 𝑧(𝑡), 𝑣 ← 𝑐, 𝑈 ← 𝑈 + 𝑑

when 𝑣 ≥ 30 mV
𝜕𝑈
𝜕𝑡

= 𝑎(𝑏𝑣 − 𝑈)

(2.12)

with 𝑎, 𝑏, 𝑐, 𝑑 the parameters that set the firing mode of the neuron [90].

Hodgkin-Huxley model

The Hodgkin-Huxley model is important in neuroscience, because it is very close
to biology [91]. It uses four equations and tens of parameters that reproduce the
behavior of different ions channels in natural neurons. However, this model is one
of the most complex ones to simulate and requires a high number of operations [88],
which prevents its usage in large scale SNNs [92].
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Figure 2.12: Example of a FF topology.

2.2.2 Topology

Neurons need to be connected to other neurons in order to create a network capable
of performing the desired tasks. A connection is one-way, from an input neuron
to an output neuron. The pattern of connections inside the network is called
the topology. Basically, a neural network is a set of neuron 𝒩 = {𝑛0, 𝑛1, ⋯ , 𝑛𝑖},
connected by a set of synapses 𝒮, with each synapse 𝑠𝑖𝑗 connect an input neuron 𝑛𝑖
to an output neuron 𝑛𝑗. In the majority of topologies, neurons are gathered into
groups, called layers ℒ = {𝑙0, 𝑙1, ⋯ , 𝑙𝑘}, each layer being defined as a set of neurons
𝑙𝑖 = {𝑛0, 𝑛1, ⋯ , 𝑛𝑚}.

Feedforward Networks

In feed-forward (FF) topologies, layers are sequentially ordered in such a way that
neurons in a layer 𝑙𝑖 can only project their connections to subsequent layers 𝑙𝑗, with
𝑖 < 𝑗 (see Figure 2.12). This constraint ensures that no cycle is possible. In this
topology, neurons in early layers react to simple patterns, whereas neuron in deeper
layers tends to react to more abstract or complex features. Most of the time, fully
connected layers (sometimes called dense layers) are used: in this case, neurons of
a layer 𝑙𝑖 are connected to all the neurons of layer 𝑙𝑖+1.

Convolutional Networks

A CNN in the case of image processing, takes advantage of the nature of the data
to improve its performances. In natural images, adjacent pixels have a strong
covariance, which allows applying local filters to extract information. A CNN is a
FF network with specific layers and connection patterns (see Figure 2.14). The
convolution operation (see Figure 2.13) computes the amount of overlap between
two functions and is expressed as: 𝐀 ∗ 𝐁. In the case of images, the functions are
the image and the image features. Thus, a convolution layer is defined by a set of 𝑛
trainable filters ℱ = {ℎ0, ℎ1, ⋯ , ℎ𝑛} of size ℎwidth × ℎheight (also called kernels). For
an input layer of size 𝑙width(𝑖 − 1) × 𝑙height(𝑖 − 1) × 𝑙depth(𝑖 − 1), a convolution layer
will have a set of 𝑛 feature maps of size 𝑙width(𝑖) × 𝑙height(𝑖), following the equation:
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Figure 2.13: The two dimensional discrete convolution operation.

𝑙width(𝑖) =
𝑙width(𝑖 − 1) + 2𝑙pad − ℎwidth

𝑙stride
+ 1

𝑙height(𝑖) =
𝑙height(𝑖 − 1) + 2𝑙pad − ℎheight

𝑙stride
+ 1

𝑙depth(𝑖) = 𝑛

(2.13)

with 𝑙pad the padding (i.e. pixels added at the border to increase the output
dimensionality) and 𝑙stride the stride (i.e. the offset between the convolution position).
Convolution layers preserve the dimensionality of the data and allow to reduce
the number of trainable parameters (i.e. synaptic weights) when using shared
weights. In opposition to dense layers, neurons in convolution layers are connected
only to a subset of the neurons of the previous layer. Each neuron is connected
to ℎwidth(𝑛) × ℎheight(𝑛) × 𝑙depth(𝑛 − 1) neurons of the previous layer, which form
the receptive field of the neuron. Convolution layers can be mimicked with SNNs,
by using the right connection policy. However, sharing the kernel on the different
convolution positions impose to use non local operations or memory. Implementing
such mechanisms on neuromorphic hardware is an issue.

In addition to convolution layers, pooling layers are also used in convolutional
architectures to improve the spatial invariance, to add more non-linearity, but also
to reduce the dimensionality of the data across the layers [65], which improve
image recognition performances. In ANNs, multiple types of pooling exist, such
as max pooling or sum pooling, depending on the neighboring operation used.
For SNNs, both max pooling or sum pooling can be mimicked according to used
models. Finally, one or several dense layers tend to be used the in last layers to act
like a classifier.

Recurrent networks

Finally, some topologies are recurrent, which means that there are some cycles in
the network (see Figure 2.15). Reservoir computing is a typical recurrent topology.
It generally uses an input layer, followed by a reservoir and a readout layer. The
reservoir contains a population of randomly connected neurons, which allows
projecting the input into a higher dimensional space. Then, a linear classifier may
be sufficient in the readout layer to learn the different states of the reservoir [93].
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Figure 2.15: Example of recurrent topology

Long short-term memory (LSTM) is another typical topology, which uses memory
cells to save states. Such topologies use gates which allow to control the impact
of the previous inputs on the current input. Multiple models of LSTM exists with
gates dedicated to forget, to memory, to select, or to ignore the data.

Recurrent networks are not studied in this manuscript, since processing static
images does not require information about the past inputs. However, such a topology
improves performance in applications in which the context is important over time,
such as video processing or speech recognition.

2.2.3 Neural Coding

One of the most crucial mechanisms in SNNs is the neural coding [94]. The meaning
of a spike, or of a population of spike, is an important question to address, since it
plays a central role in the behavior of SNNs, and is related to the computational
power of the network. Understanding the representation carried by a spike allows
adapting the different mechanisms of the model to improve the performance of the
network. Moreover, it is necessary to interpret the output of the network, which
requires to associate values to the output spikes. In some applications, inputs are
directly spike trains (e.g. with dynamic vision sensor (DVS) sensors), but if input
data are not already coded as spikes, an input conversion function 𝑓in is necessary
to generate the spikes that will feed the network:

𝑓in ∶ [0, 1] → ℝ𝑛𝑥
+

𝑥 ↦ (𝑡0, 𝑡1, ⋯ , 𝑡𝑛𝑥
)

(2.14)

In opposition, an output conversion function 𝑓out allows interpreting the output
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spikes:
𝑓out ∶ ℝ𝑁𝑥

+ → [0, 1]

(𝑡0, 𝑡1, ⋯ , 𝑡𝑁𝑥
) ↦ 𝑦

(2.15)

These functions are directly related to the neural coding. Multiple neural codings
are used in the SNN community, with different advantages, which leads to debates
on which coding to use [95], [96]. In biology, the question of the neural coding
is also not clear. Some studies suggest that multiple coding exists, and are used
together in some areas of the brain [97].

Frequency coding

Frequency coding [95], or rate coding, is one of the most used coding because it has
been observed that some biological neurons emit spikes at a frequency proportional
to the intensity of a stimuli (i.e. in the muscles [98], in the visual cortex [99]).
Moreover, it is more straightforward to interpret the values in an ANN as a frequency
of spikes. A common conversion function used to convert a numerical value into a
spike train which respects frequency coding is the Poisson process: 𝑡 ∼ Poisson(𝑥),
which can generate a series of discret events that occurs at a defined frequency
with random timestamps. However, this coding has some limitations. To obtain
an accurate estimate of the encoded values, large numbers of spikes need to be
integrated by the neurons on each input connection. This means that the time
constant must be large enough, or that the mean frequencies must be high. A
related consequence is the introduction of latency into the network: each neuron
needs enough time to integrate several spikes, in order to generate new spikes. Some
authors show that such latency is not compatible with biological measurements, for
example in the visual cortex [100]. However, some authors suggest that frequency
coding allows reducing the noise in the system by averaging the activity over
time [95].

In the case of static image processing, each sample needs to be exposed for a
duration of 𝑡exposition. The spike trains (𝑡0, 𝑡1, ⋯ , 𝑡𝑁𝑥

) are generated by using the
spike interval distribution according to the input value 𝑥. For 𝑥 ∈ [0, 1], the spiking
frequency 𝐹actual is proportionally mapped to [0, 𝐹max]. A pause duration 𝑡pause,
during which no spikes are generated, can be added in order to allow the neurons
to return to a state close to their rest state (i.e. when the model of neurons includes
a leak).

Temporal Coding

In opposition to rate coding, temporal coding assumes that information is directly
carried in the timing of each spike. Therefore, one spike can be enough to represent
an input value. Some work suggests that that the brain uses some kind of temporal
coding [100], [101]. Different methods are used to generate spikes according to
temporal coding. In latency coding [100], earlier spikes encode higher values, while
later spikes represent lower values (see Figure 2.16b). The value that encodes a
spike is the offset of the spike timing according to a time reference, which locates
the beginning of the pattern. Similarly, rank-order coding [102] is another strategy
which considers that the order of spike arrivals is more important than their exact
timings. Input values are sorted and timestamps are generated based on the indices
of the sorted values. These codings have the advantage of bringing more information
with fewer spikes than rates coding. The latency issue, raised in frequency coding, is
also reduced, since neurons can integrate only one spike per input before triggering
an output spike. However, the system is more sensitive to noise because a time lag
of a few milliseconds is enough to change the information carried by a spike.

35



Chapter 2. Background

x1
0.9

x2
0.3

x3
0.7
𝑡

𝑡exposition 𝑡pause

(a) Frequency coding

x1
0.9

x2
0.3

x3
0.7
𝑡

𝑡exposition 𝑡pause

(b) Temporal coding

Figure 2.16: Major neural codings.

Population coding

Some codings use several neurons to encode one value [103]. Such methods have the
advantage of improving the encoding precision, but also of increasing the tolerance
to noise by averaging the activity over a population of neurons.

Population coding, notably sparse population coding, seems to be used in
the higher areas of the visual cortex [1]. Much work uses the grandmother cell
approach in classification: a specific object activates one output unit. However, this
design choice is poorly scalable, and requires as many output neurons as possible
objects. Representing information across multiple neurons increases the amount of
information carried and can reduce the noise of each neuron [104].

Phase Coding

Biological studies have highlighted the presence of oscillations in the brain, notably,
delta (1-3 Hz), theta (4-8 Hz), alpha (∼10 Hz), beta (15-25 Hz), and gamma
(30-100 Hz) frequencies [105]. The different frequency of oscillations may help
the synchronization of the neurons and play an important role in the brain [106].
Thus, based on these studies, some work uses the timing of spikes according to the
background oscillations to code information [107].

2.2.4 Synapses

Alongside neurons, synapses are the second network component that plays a major
role in SNNs. Synapses can be present on the connection between two neurons.
Their role is to modulate the voltage of the spikes transmitted on this connection,
in order to modulate the influence of the input neuron over the output neuron.
The modulation factor is defined by the synapse weight 𝑤. A weak synaptic weight
(i.e. close to zero) will greatly reduce the influence of the input neuron over the
output neuron, since spikes that reach the output neuron will have a low voltage
(i.e. behave the same way as if there was no spike at all). On the contrary, a
strong weight will produce post-synaptic spikes with high voltages, which will
significantly affect the output neuron state. Adapting the weight of the synapse
in the network directly affect the pattern that will excite the neurons, and thus
the tasks that the network is able to solve. Training a network consists notably to
make this adaptation, thanks to learning rules. It is sometimes preferable, even
necessary, to limit the weight range: 𝑤 ∈ [𝑤min, 𝑤max]. A delay 𝑑 can be used as
an additional synapse parameter. This parameter defines the delay added to each
spike that passes through the synapse: 𝑡post = 𝑡pre + 𝑑.
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Figure 2.17: The biological STDP.

One of the first synaptic learning rule in ANNs was introduced by Hebb in
1949 by the sentence: “cells that fire together, wire together” [108]. The idea is
to reinforce synapses between neurons that show correlations in their activation
patterns. This rule can be written as:

Δw = 𝜂w𝑥𝑦 (2.16)

with 𝜂 the learning rate, 𝑥 the value of the input neuron activation and 𝑦 the value
of the output neuron activation.

For SNNs, one of the most studied learning rule is the spike-timing-dependent
plasticity (STDP). This rule was observed by Bi and Poo (1998) [109], and follows
the hebbian principle. STDP suggests that the synaptic connection depends on the
difference of spike timestamps. They formalized the rule as:

Δw =
⎧{
⎨{⎩

𝜂w𝑒− 𝑡pre−𝑡post
𝜏STDP if 𝑡pre ≤ 𝑡post

−𝜂w𝑒− 𝑡post−𝑡pre
𝜏STDP otherwise

(2.17)

with 𝜂w the learning rate and 𝜏STDP the time constant that controls the leak, 𝑡pre
and 𝑡post, respectively the timestamp of fires for input and output neurons. This
rule combines two mechanisms: the long-term potentiation (LTP), when the input
neuron fires just before the output neuron, and the long-term depression (LTD) in
the other case (see Figure 2.17).

2.2.5 Inhibition

Finally, another important mechanism is the inhibition. In biology, the population of
neurons can be divided into excitatory neurons, which constitute about 80% of the
population, and inhibitory neurons, which are the remaining 20% [9]. Inhibitory
neurons act the opposite way to excitatory neurons: inhibitory spikes will decrease
the action potentials of the output neurons. In SNNs, this mechanism is also used,
but with more degrees of freedom. In some work, neurons can both have output
excitatory and inhibitory connections [28]. A frequent case of use of inhibition
is competition: when a neuron reacts to a pattern, it sends inhibitory spikes to
other neurons in competition to prevent them from firing, and thus, increase the
sparsity of the activity. Pushed to the limit, this mechanism can be used to produce
a winner-takes-all (WTA) policy: only one neuron can fire at once.
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2.2.6 Homeostasis

A critical mechanism to ensure reasonable performance is to guarantee the home-
ostasis of the system [110]. When performing unsupervised learning without
homeostasis, some neurons can take advantage over the others and, therefore, fire
more spikes than the others. This phenomenon is intensified when a competitive
mechanism such as inhibition is used, because the winner prevents other neurons
from firing and the network gets stuck in a state where a single neuron is active,
since it reinforces its synaptic connections. To prevent such a positive feedback
loop, mechanisms are necessary to ensure the stability in the network.

Leaky Adaptive Threshold

In SNN, a common way to maintain the homeostasis of the system is to adapt
neuron thresholds [111]. One method to do so is to use a leaky adaptive threshold
(LAT) [112], which defines a new threshold 𝑣th′ from the standard threshold 𝑣th
and an adaptive term Θ as:

𝑣th′(𝑡) = 𝑣th + Θ(𝑡)
𝜕Θ
𝜕𝑡

= − Θ(𝑡)
Θleak

+ Θ+𝑧(𝑡)
(2.18)

with Θleak the leak constant, Θ+ the additive factor, 𝑧 the output current of the
neuron, and Θ(𝑡) the adaptive part of the threshold according to time. This
allows the neurons to regulate their spiking frequencies so that no neuron can
strongly dominate the others. However, this method requires to carefully set Θleak
and Θ+parameters to balance output frequency and classification rates. Generally,
an exhaustive search is required to optimize these parameters [112]. Moreover, it is
not clear whether LAT is a relevant mechanism in all cases.

Intrinsic Plasticity

Some observations in vivo suggest that neurons adjust their excitability according
to their activity. Some work [113]–[115] offers mechanisms which follow this idea.
For example, intrinsic plasticity can be applied to the LIF model from [115]:

𝑟m = 𝑟m + 𝜂1

2𝐹actual𝜏leak𝑣th − 𝑤 − 𝑣th − 1
𝐹expected

𝜏leak𝑣th𝐹actual2

𝑟m𝑤

𝜏leak = 𝜏leak + 𝜂2

2𝑡ref𝐹actual − 1 − 1
𝐹expected

(𝑡ref𝐹actual2 − 𝐹actual)

𝜏leak

(2.19)

with 𝑟m the resistance of the membrane, 𝜏leak, the membrane leak, 𝜂1 and 𝜂2 the
learning rates, 𝐹expected the desired mean of the output firing rate, 𝐹actual the actual
firing rate and 𝑡ref the refractory duration.

Synapse Scaling

One way is to scale the weights of the incoming excitatory synapses of each neuron.
Such methods prevent the summations of excitatory to give an advantage over
the other neurons, which avoids entering into a feedback loop. It is possible to
apply a global scaling, which ensures that all norms are strictly equals, and a
local scaling, which is more biologically plausible and allows efficient hardware
implementation [116]. Global scaling methods generally use the L1 norm [117]:

𝑤𝑖 = 𝑤𝑖
∑𝑗 |𝑤𝑗|

(2.20)
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Local synaptic scaling uses a multiplicative factor [118]:

𝜕𝑤𝑖
𝜕𝑡

= 𝜂𝑤𝑖(𝐹expected − 𝐹actual) (2.21)

with 𝜂 the strength of the scaling, 𝐹expected the target firing rates of the post-synaptic
neuron, and 𝐹actual an estimation of the actual firing rate.

BCM

Bienenstock-Cooper-Munro (BCM) is a model of synapses which uses a moving
threshold to regulate the application of potentiation and depression according to
the post-synaptic activity [119].

𝜏𝜕𝑤
𝜕𝑡

= 𝐹pre𝐹post(𝐹post − 𝜃th) (2.22)

with 𝐹pre and 𝐹post the pre-synaptic and the post-synaptic firing rates, and 𝜃th the
threshold to reach to apply LTD or LTP.

Short-term Synaptic Fatigue

Short term depression is a mechanism observed in biology [120]. Such a phe-
nomenon can be used to prevent synaptic connections to strengthen to rapidly. The
synapse efficiency, which is the ability to apply LTP, decreases when the frequency
of incoming spikes increases [121]; this can modeled with a factor 𝐺(𝑡):

𝐺(𝑡) = 𝑤[1 − 𝐹(𝑡)] (2.23)

with 𝑤 the synaptic weight and 𝐹(𝑡) a function which depends on the history of
pre-synaptic spikes.

2.3 Image Recognition with Spiking Neural Networks

The behavior of SNNs differs from traditional methods. Specifically, in image
recognition, some pre-processing is sometimes necessary to ensure the good behavior
of SNNs (see Section 2.3.1). Moreover, different learning algorithms from ANNs
seem necessary in order to train SNNs. Some work explore the conversion from
traditional models to spiking models (Section 2.3.2). Other work focus on adapting
traditional methods, such as back-propagation, in order to perform training directly
in the spike domain (Section 2.3.3). Finally, some work studies bio-plausible rules,
which allow to implement fully local, and sometimes unsupervised, learning rules
(Section 2.3.4).

2.3.1 Pre-Processing

SNNs can require some pre-processing in order to achieve correct performances in
image classification. A widespread method is on/off filtering, directly inspired from
the bipolar cells situated in the retina. A straightforward method to reproduce the
behavior of the biological retina is to use DoG filters [122]. Basically DoG filters
can be defined as:

DoG(𝑥, 𝑦) = 𝐗(𝑥, 𝑦) ∗ (𝐺DoGsize,DoGcenter
− 𝐺DoGsize,DoGsurround

) (2.24)
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where 𝐗 is the input image, ∗ is the convolution operator and 𝐺𝐾,𝜎 is a normalized
Gaussian kernel of size 𝐾 and scale 𝜎 defined as:

𝐺𝐾,𝜎(𝑢, 𝑣) = 𝑔𝜎(𝑢, 𝑣)
𝜇

∑
𝑖=−𝜇

𝜇
∑

𝑗=−𝜇
𝑔𝜎(𝑖, 𝑗)

, 𝑢, 𝑣 ∈ [−𝜇, 𝜇], 𝜇 = 𝐾
2

, (2.25)

with 𝑔𝜎 the centered 2D Gaussian function of variance 𝜎. The parameters of
the filter are its size DoGsize and the variances of the Gaussian kernels DoGcenter
and DoGsurround. Positive and negative values are generated following the application
DoG filters. Thus, a second step is to separate these values into two channels: one
for the positive values (i.e. representing the on cells), and the other for negative
values (i.e. representing the off cells):

𝑥on = max(0, DoG(𝑥, 𝑦))
𝑥off = max(0, −DoG(𝑥, 𝑦))

(2.26)

However it is not clear how to apply on/off filtering on color images, since
only little work addressed this issue [7]. No work succeeds in managing to learn
efficient features from colored images with an STDP learning to our knowledge.
Biological studies report three opponent channels: black/white, red/green and
yellow/blue [123]. Using similar channels can help to improve the processing of
color images.

2.3.2 Artificial to Spiking Neural Networks Conversions

One of the most straightforward approaches to make an effective SNN that is able
to process a defined task is to train an ANN with traditional methods (e.g. GD) on
that task, and then convert the model into a spiking version. However, since the
training is done offline, only the inference can benefit from the advantages of SNNs
(i.e. the energy efficiency, or the low-latency responses). The main difficulty is to
find a spiking network model that mimics as well as possible artificial network
model, in other words, a conversion method that minimizes the error between the
activities of the two models.

Early work addressed DBN conversion [124]. Since DBNs use binary activation
units, it is straightforward to reproduce this behavior with spiking neurons: units
with an output value of 1 should correspond to a neuron that fires, while the other
neurons (i.e. a value of 0) should not fire. Similarly to a DBN unit that has a
probability to be activated, it is possible to express the probability that a spiking
neuron emits a spike. In [124], LIF neurons are shown to be an equivalent of Siegert
units (i.e. a spiking neuron model) when the fire rate is normalized. This method
allows to achieve performances close to the original model (i.e. 94.09% on MNIST
for the spiking version against 95.2% for the artificial one). However, DBNs are
not able to currently compete with neural networks trained with BP. Some work
used probabilistic units in an ANN in order to facilitate the conversion [125]. Since
the inputs, the synapses, and the units are all expressed as probabilities, it is
possible to find spiking models that approximate the artificial model. By using
only binary weights and bias in the converted spiking network, and by running it
on the TrueNorth architectures, a performance of 99.42% is achieved on MNIST.
Using ternary weights, [126] succeed in reaching 89.32% on CIFAR-10 and 65.48%
on CIFAR-100. However, using binary units does not allow to be as accurate
as continuous units. For this reason, some work offers conversion methods to
transform continue units into a spiking approximated version.

A first difficulty with continuous units is negative values: in an artificial neural
network, input values, weights, and bias, but also activation function outputs, can
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Table 2.2: Performances of ANN-to-SNN conversion methods.

Dataset Authors Method Recognition rate

MNIST

Rueckauer et al. (2017) [129] CNN conversion 99.44%
Esser et al. (2015) [125] CNN conversion 99.42%
Diehl et at. (2015) [127] CNN conversion 99.10%
Diehl et at. (2015) [127] MLP conversion 98.60%
Hunsberger et al. (2015) [128] AE conversion 98.37%
O’Connor (2013) [124] DBN conversion 94.09%

N-MNIST Stromatias et al. (2017) [130] Classifier conversion 97.23%

CIFAR-10

Rueckauer et al. (2017) [129] CNN conversion 90.85%
Esser et al. (2015) [126] CNN conversion 89.32%
Hunsberger et al. (2015) [128] CNN conversion 82.95%
Cao et al. (2015) [7] CNN conversion 77.43%

CIFAR-100 Esser et al. (2015) [126] CNN conversion 65.48%

ImageNet Rueckauer et al. (2017) [129] CNN conversion 74.60%

be negative, which is not easily transformed into a spiking equivalent. A solution
is proposed in [7], which uses the absolute value to prevent inputs to be negative,
discard the usage of bias, and uses rectified linear unit (ReLU) activation functions
(max(0, 𝑥)) to avoid negative output values. In this way, ReLU activation can be
approximated by LIF neurons. Since CNNs lead to state-of-art-performance on
many object recognition datasets, [7] gives indications in order to get a spiking
version of CNNs. Notably, it is necessary to use a sum-pooling layer instead of
max-pooling layer in order to mimic their behavior with LIF neurons. This work
succeeds in reaching 77.43% on CIFAR-10 with a spiking CNN, and shows that
the approximation due to the conversion results only in small loss in performance
(i.e. original CNN yields 79.12%). Other work suggests improvements, such as
weight normalization in order to reduce the approximation error [127], the usage of
a smooth LIF model combined with noise injection to improve results [128], and
the introduction of spiking equivalents of well-used operations in ANNs (i.e. batch
normalization, max-pooling, and softmax layers) [129]. [130] introduces a protocol
to train an ANN on spiking stimuli, and then convert it into a SNN to directly
process these stimuli. This is done by building histograms based on the spike trains
in order to get analog vectors and then, train the ANN, and finally transfer the
weights to a SNN. The results obtained by these authors are reported in Table 2.2.

2.3.3 Adapted Back-propagation

In opposition to ANN-to-SNN conversion methods, some work proposes to apply
to spiking networks training methods similar to the ones used with ANNs. These
methods do not suffer from the performance loss due to the approximation in-
troduced in the ANN-to-SNN conversion process. However, it is not possible to
directly use these methods in SNNs since they are not adapted to spikes. Since BP
is well-used to train ANNs, many authors focus on adapting this method to work
directly in the spike domain. Moreover, some work suggests that the brain can use
mechanisms which mimic BP [6], [131], [132], which motivates the authors to find
BP methods that are compatible with neuromorphic architectures.

Traditionally, BP is incompatible with SNN models for multiple reasons. The
most important one is that back-propagation is not local in space and in time, which
is a requirement to produce efficient hardware. In particular, some work raises the
weight transport problem [133]: to propagate the error signal, a symmetry of the
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synapse weight is required in the feedback connection, because the gradient of the
input is related to the weights. However, some work suggests that BP also works
with asymmetric weights, like in [134], where random feedback weights are used.

Another issue is that spiking neurons are not differentiable [135], which prevents
the computation of the gradients required to optimize the network. To bypass this
issue, some work suggests using approximations of the behavior of spiking neurons
in order to get a derivable function that can be used in the backpropagation process.
This is done in [135], [136] by applying low-pass filters on the membrane potential
of LIF neurons or in [137] by approximating IF neurons by a ReLU activation. Other
work uses event-driven formulation [134], a combination of micro (by using post-
synaptic potential (PSP) values) and macro (i.e. firing rate) information [138], adapt
BP with temporal coding [139], or introduce spatio-temporal version of BP [140],
[141].

BP also requires accurate error signals to correctly converge [135], which seems to
be difficult to code in spike trains. However recent work suggests that approximating
the signal is enough [142]. In [143], this signal is approximated with signed spikes,
thanks to a method called spiking vector quantization. However this method
requires numerous spikes to get an accurate value.

Moreover, defining a biology-plausible objective function is not straightfor-
ward [6]. Some work uses the AE architecture in order to train the network to
reproduce the input spike trains [144]. Other work uses a delay error between firing
timings of neurons and arbitrary timing objectives [145]. Finally, switching between
forward and backward passes is not straightforward in the case of a continuous
input [131].

The performances obtained with these methods are listed in Table 2.3. The
interest of training the network directly on spikes can be shown by N-MNIST,
the neuromorphic version of MNIST [146]. SNNs report better performance than
ANNs (99.53% [141] vs 99.23% [147]) because inputs are already encoded as spikes
(i.e. the conversion from spikes to values used in ANNs lead to an information
loss). However, despite the good performance reported, none of these authors
was successful in addressing all the problems previously raised (the locality of the
computations, the alternance between forward and backward passes, the accurate
propagation of the error signal…), which does not make it possible to implement
such a model on neuromorphic architectures.

2.3.4 Local Training

Finally, much work focuses on fully local in space and time learning rules, in order
to provide models that are both compatible with neuromorphic architectures and
able to learn directly from spikes. Moreover, this work mostly uses unsupervised
learning rules. One of the earliest work by Masquelier et al. [149] uses an HMAX
architecture with a single layer (S2) trained with STDP. Authors use temporal coding
and a radial basis function (RBF) network as classifier. They test the network on
the motorbikes and the faces datasets of Caltech 1. They tested the network in a
face/non-face and motorbike/non-motorbike task, in which they reach 99.1% and
97.8% classification rates. They use a simplified STDP rule:

Δw = { 𝜂w+𝑤(1 − 𝑤) if 𝑡pre ≤ 𝑡post
−𝜂w−𝑤(1 − 𝑤) otherwise (2.27)

with 𝜂w+ and 𝜂w− the learning rates of LTP andLTD. Other work uses STDP with
frequency coding. Querlioz et al. [111] use a multiplicative STDP rule in a single
layer to achieve 93.5% on MNIST with 300 outputs units. This rule avoids the

1http://www.vision.caltech.edu
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Dataset Author Method Recognition Rate

MNIST

Lee et al. (2019) [136] BP on LIF membrane potential (CNN) 99.59%
Jin et al. (2018) [138] Spiking BP 99.49%
Wu et al. (2018) [140] Spatio-temporal BP (CNN) 99.42%
Lee et al. (2016) [135] BP on LIF membrane potential (CNN) 99.31%
Liu et al. (2017) [145] Temporal BP (MLP) 99.10%
Panda et al. (2016) [144] Spiking AE BP 99.08%
Tavanaei et al. (2018) [148] Representation learning and BP (MLP) 98.60%
O’Connor et al. (2016) [143] Spiking BP (MLP) 97.93%
Tavanaei et al. (2019) [137] BP of IF neurons (MLP) 97.20%

PI-MNIST
Neftci et al. (2017) [134] Random feedback BP (MLP) 97.98%
Lee et al. (2016) [135] BP on LIF membrane potential (MLP) 98.77%
Mostafa et al. (2018) [139] Temporal BP (MLP) 97.55%

N-MNIST

Wu et al. (2018) [141] Spatio-temporal BP (CNN) 99.53%
Lee et al. (2019) [136] BP on LIF membrane potential (CNN) 99.09%
Wu et al. (2018) [140] Spatio-temporal BP (MLP) 98.78%
Lee et al. (2016) [135] BP on LIF membrane potential (MLP) 98.66%

CIFAR-10

Lee et al. (2019) [136] BP on LIF membrane potential (CNN) 90.95%
Wu et al. (2018) [141] Spatio-temporal BP (CNN) 90.53%
Panda et al. (2016) [144] Spiking AE BP 70.16%

Table 2.3: Performances of adapted BP training methods.
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Figure 2.18: Multiplicative STDP rule (𝛽 = 1)

saturation effect by introducing a term that depends on the current weight (see
Figure 2.18):

Δw = { 𝜂w+𝑒−𝛽 𝑤−𝑤min
𝑤max−𝑤min if 𝑡pre ≤ 𝑡post and 𝑡post − 𝑡pre ≤ 𝑡LTP

−𝜂w−𝑒−𝛽 𝑤max−𝑤
𝑤max−𝑤min otherwise

(2.28)

with 𝛽 the parameter which controls the saturation effect (increasing 𝛽 reduces the
saturation). A particular form derived from this rule is the additive STDP rule,
when 𝛽 = 0.

Similarly, Dielh et al. [112] reach 95% with 6400 units and a power-law STDP.
They use the synaptic trace 𝑟actual that represents the recent history of spikes that
go through the synapse:

𝜕𝑟actual
𝜕𝑡

= −𝑟actual(𝑡) + ∑
𝑖∈𝑆

𝛿(𝑡 − 𝑡𝑖) (2.29)

Thus, the update rule is:

Δw = 𝜂(𝑟actual − 𝑟expected)(𝑤max − 𝑤)𝜇 (2.30)
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Dataset Author Method Recognition Rate

MNIST

Kheradpisheh et al. (2018) [151] Multilayered STDP 98.40%
Tavanaei et al. (2016) [150] Multilayered STDP (probabilistic rule) 98.36%
Dielh et al. (2015) [112] Single layer STDP 95.00%
Querlioz et al. (2012) [111] Single layer STDP 93.50%

Table 2.4: STDP training methods. Currently, these methods are mainly evaluated
on simple datasets, such as MNIST.

with 𝜂 the learning rate, 𝑟actual and 𝑟expected the actual and the expected spike trace
of the synapse and 𝜇 the parameter to control the slope of the rule.

Recent work succeeds in using STDP to train several layers. Tavanaei et al. [150]
learn convolution filters by a dedicated network, SAILNet, from patches extracted
from input samples. A pooling layer and, then, a fully connected layer using
probabilistic LIF neurons, are stacked. An SVM classifies the output of the last layer.
This model reaches 98.36% on MNIST with 32 convolution filters and 128 output
neurons. However, the usage of an external network to train convolutions remains
an issue. Moreover, probabilistic LIF neurons are used in the feature discovery
layer, which requires some global computation (softmax) to operate.

Kheradpisheh et al. [151] use two convolution layers trained by STDP and
a temporal coding. The network reaches 98.4% on the MNIST dataset with 30
filters in the first convolution and 100 in the second convolution. However, this
model uses some global computation: the potential of neurons is compared to each
other to designate the winner at one time step and the filters are learned across
the convolution columns. This model requires to tune its parameters carefully,
especially the neuron thresholds. Moreover, the values of neuron thresholds must
be manually changed between the training and the testing stages. Finally, the
output neurons use infinite thresholds, which would not be realistic on hardware.

2.3.5 Evolutionary Algorithms

Evolutionary algorithms (EAs) are another family of algorithms inspired from
biology, and in particular the theory of evolution. Some work uses EA in order to
optimize SNN performances. Such algorithms can be used to directly optimize the
synaptic weights 𝑤 and delays 𝑑 [152], or to optimize the network topology and
the model hyperparameters [153], [154]. They can be an alternative to exhaustive
search. However, EAs are very time consuming [155], notably because the fitness
function is computationally expensive (i.e. simulating the performance of SNNs on
a specified task). Thus, such methods are currently only applied to very simple
tasks.

2.4 Software Simulation

Since producing dedicated hardware architectures is long and costly, using software
simulation in the first place is an interesting choice to explore the different configura-
tions. However, since neuromorphic systems are working very differently from von
Neumann architectures, creating an efficient software simulator is challenging. To
facilitate the work of the community, multiple simulation frameworks are available,
each of them with different objectives. Some simulators focus on the level of detail,
to provide an accurate reproduction of the models. Other simulators offer scalable
solutions in order to be able to run large scale networks, often at the expense of
the level of detail. It is possible to implement a neuromorphic simulator in two
ways: by refreshing the models each tick of a clock or by updating the models
at each time an event arises in the system. These two types of simulation will be
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discussed in Section 2.4.1. Then, a tour of the software simulators will be done in
Section 2.4.2.

2.4.1 Event-Driven vs Clock-Driven Simulation

SNNs are essentially defined by standard differential equations, but, because of the
temporal discontinuities caused by the spikes, designing an efficient simulation of
spiking neural networks is a non-trivial problem [156]. There are two families of
simulation algorithms: event-based simulators and clock-based ones. Synchronous,
or clock-driven, simulation simultaneously updates all the neurons at every tick of a
clock; it is easier to code, especially on graphical processing units (GPUs), for getting
an efficient execution of data-parallel learning algorithms. Event-driven simulation
behaves more like hardware, in which conceptually concurrent components are
activated by incoming signals (or events).

Event-driven execution is particularly suitable for untethered devices such as
neurons and synapses, since the nodes can be put into a sleep mode to preserve
energy when no event is triggered. Energy-aware simulation needs information
about active hardware units and event counters to establish the energy usage of each
spike and each component of the neural network. Furthermore, as the learning
mechanisms of spiking neural networks are based on the timings of spikes, the
choice of the clock period for a clock-based simulation may lead either to a lower
precision or to a higher computational cost [92].

There is also a fundamental difference between this event-driven execution
model and the clock-based one: the event-driven execution model is independent
of the hardware architecture of the computers on which it is running. So, event-
driven simulators can naturally run on a cluster of computers, with the caveat of
synchronization issues in the management of event timings.

2.4.2 Neuromorphic Simulators

A first group of software simulators in the neuromorphic community aims to
reproduce the behavior of biological neural network as faithfully as possible. Well-
used simulators in this category are NEURON [157] or GENESIS [158], which allow
modeling multiple compartments in each neuron. However, such tools are able
to simulate only few neurons, and so, do not allow working on neuromorphic
architectures intended to solve complex tasks, which require several thousands
of neurons generally. A second group gathers the clock-driven spiking neural
simulators that are intended to simulate far more neurons by using simpler models.
NEST [159], CarlSim [160], Brian [161], Nengo [162] belong to this category. Finally,
the last group gathers event-driven spiking simulators, which use the sparsity offered
by SNN in order to get more scalable. Examples of event-driven spiking simulators
are Xnet [163] (i.e. recently integrated in N2D2 [164]) and SpikeNet [165].

An important feature provided by these simulators is the hardware architec-
tures that can be used to run them. Basically, all simulators work on standard
central processing unit (CPU) architectures. But some of the simulators bring GPU
support, field-programmable gate array (FPGA) support, or dedicated architecture
support. As an example, GPUs allow speeding up simulations by using single
instruction multiple data (SIMD) processing, and thus, updating multiple units with
a single instruction. However, this operating mode requires to use clock-driven
simulation.

Simulators are also defined by the programming interface compatibility. One
of the most used is PyNN [166], a python interface that allows describing neural
network topologies.
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2.5 Conclusion

Object recognition is a very active research field, due to its large range of applications.
This field has been strongly impacted by the emergence of deep learning methods,
which have greatly improved the performances of artificial methods on complex
tasks (see Section 2.1). However deep neural networks have the disadvantage of
being power hungry, which hampers their usage. SNNs are promising candidates to
bypass this issue, because they allow highly energy efficient-architectures, especially
when the activity inside the network is sparse (see Section 2.2). In return, such
hardware imposes some constraints, such as the locality of computation and memory.
Some work bypasses these requirements by proposing offline training methods
(see Section 2.3.2). However, these models benefit from energy efficiency only
during inference, and not during training. Other approaches use adapted BP
rules to learn directly in the spike domain (see Section 2.3.3), but these models
are not fully compatible with neuromorphic hardware. Finally, some learning
rules match the requirement of neuromorphic architectures, such as STDP (see
Section 2.3.4). However, these rules are currently immature, and so, do not allow
to currently process complex tasks. This manuscript aims to propose new solutions
to improve SNN performance on image classification tasks, in order to be able
to process real-world datasets. Image classification has the advantage of decades
of active studies and of a large number of dataset available. One of the main
motivations throughout this manuscript is to provide multi-layered SNN models
that allow learning from data with STDP.

The following of this manuscript focuses on improving the performance of SNNs
on image classification tasks, while respecting as much as possible the constraints
required by neuromorphic architectures. The aim is to enable the usage of SNNs on
complex datasets. The first contribution focuses on the software simulation of SNNs
(see Chapter 3) to provide tools that facilitate and accelerate the exploration of the
models described in this manuscript. Then, Chapter 4 focuses on the frequency loss
problem, which needs to be addressed to enable the creation of multi-layered SNNs.
Chapter 5 investigates on the quality of the features learned with STDP on complex
datasets, and compares STDP-based SNNs with AE. Finally, Chapter 6 proposes
new mechanisms to make it possible to train multi-layered SNNs with STDP, and
study the impact of the different mechanisms on the networks.
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Chapter 3

Software Simulation of SNNs

As discussed earlier, it is necessary to explore SNN models and parameters, because
they are still immature. It is not possible to carry out this exploration directly on
hardware architectures, since developing dedicated hardware is a long and expensive
process. Thus, creating and using software simulators is a solution which speeds
up the study of SNNs. It is much easier to modify mechanisms or parameters in a
software simulator than in a hardware device.

However, creating SNN simulators is also challenging. It is necessary to design a
simulator which meets a number of criteria. For instance, some simulators should
be very flexible in order to facilitate their adaptation to a maximum of models
and use cases, but, in return, they may lose efficiency due to overheads. Other
simulators require to be scalable, for the purpose of running large networks. While
some simulators tend to model as many details as possible to respect the biology
or hardware fidelity, others use more abstract models to speed-up the simulation.
There is a large number of criteria, and therefore, a significant number of SNN
simulators have been developed to meet them according to the needs.

This chapter presents two SNN simulators developed in parallel of the studies
presented in this manuscript. The first simulator is neural network scalable spiking
simulator (N2S3) (Section 3.1), which aims to be flexible and scalable. The second
simulator, the convolutional spiking neural network simulator (CSNNS) (Section 3.2),
is design to be optimized to run specific SNN models.

3.1 N2S3

The neural network scalable spiking simulator (N2S3) [167] is an open-source
simulator that is built to help the design of spiking neuromorphic circuits based on
nanoelectronics [168], [169]. This simulator is used in Chapter 4. The creation of
this simulator is motivated by multiple criteria. N2S3 should be scalable, in order
to be able to run large networks. It must run in parallel, in order to take advantage
of multi-core architectures, and so, be efficient, and should be distributable, to run
simulations on a cluster when the size of a simulated network exceeds the capacity
of a single computer. The second criterion is the flexibility. N2S3 should be as
little specialized as possible, to allow implementing a large range of models (e.g.
IF and LIF neurons), topologies (e.g. feed-forward and reccurent networks) and
behaviors (e.g. delay, inhibition, weight sharing…). This criterion is required not
to restrict the exploration of SNN models. Finally, N2S3 must be easy to use, in
order to be usable by non-computer scientists. Since SNNs are an interdisciplinary
research area which gather electronics, physics, biology, and neurosciences, software
simulators should be taken in hand by the different communities.

This simulator is based on the Scala programming language [170], which offers
major advantages: the mixture of the oriented-object and functional paradigms,
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the compatibility with the existing Java library, and the multi-platform support
provided by the Java virtual machine (JVM). N2S3 is an event-driven simulator
(see Section 2.4.1), which allows taking advantage of the time and space sparsity
of SNNs in order to be scalable. In N2S3, the event-driven simulation relies on
the actor model. Specifically, the Akka library [171] is used, because of its good
Scala implementation, but also because it allows distributing the computations
easily (so that the simulator can scale out a simulation on several computers to
handle large networks). As a result, most entities of network simulations (neurons,
synapses, inputs), but also most of the features of the simulator (visualization and
measurement tools, reports), are contained in actors. N2S3 uses an abstraction layer
to separate neural network modeling from actor distribution issues (see Figure 3.1)
through containers: each network entity is contained in a container, each container
may contain one or more entities, and each container corresponds to one actor. It
provides complete control over the number of actors, and thus over the parallelism
level of the simulation, independently of the topology of the simulated network.
Each entity in the network has a uniform resource locator (URL), which allows to
query them. Abstraction layers are built over this system in order to facilitate the
creation of experiments. As an example, N2S3 uses NeuronGroup, which contains a
set of neurons, and ConnectionPolicy, which contains a set of synapses, to help with
the creation of the network. These entities automatically manage the creation, the
deployment, the setting, and the destruction of the underlying actors.

Since actors are inherently concurrent, one concern is how the temporal order of
messages is guaranteed during the simulation. To do so, N2S3 allows to configure
several levels of synchronization to be used by the simulation designer. On one end
of the spectrum, N2S3 may make use of a unique synchronizer for the simulation,
which will ensure that no causality issues happen but can create a bottleneck that
will affect the performance of the simulation. On the other end of the spectrum,
N2S3 can be configured to use a synchronization mechanism which is local to each
neuron. The latter policy enables better parallelism, but may cause some temporal
consistency problems. Some work remains to be done in order to guarantee that
no causality errors can happen without using a global synchronizer. A solution to
this problem may be the implementation of parallel synchronizers in the parts of
the network that do not contain cycles (e.g. in a FF network, one synchronizer per
layer can ensure that no causality error arises).

The software is divided into several packages. One first distinction is made
between the library part, which is the main part of the simulator, and the user part,
in which the simulator can be extended with new models, simulations, and features.
Within the library part, the core functions (i.e. minimal functionalities required
to run the simulator) are separated from the optional features and from the basic
models of neural networks.

N2S3 uses a piped stream system to provide stimuli to the network entities.
The input process typically starts by an input reader, which reads data from files
or any external source, followed by a number of streams that filter the input data
before feeding it to the network. Input readers provided with N2S3 allow to read
data in a variety of formats, including standard formats such as address-event
representation (AER), a data format used by spike-based cameras, or MNIST, used
in a standard dataset for handwritten digit recognition. Subsequent filter streams
available in N2S3 include neural coding streams, which convert raw numerical data
into sequences of spike timings, spike presentation streams (e.g., repeating input
spikes over a given period, or shuffling spikes), and modifier streams, that alter the
input spikes (e.g., by adding noise). Users are free to use one or multiple input
readers and to combine any number of filter streams in any order; they may also
easily create their own readers and filters.
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Figure 3.1: In N2S3, a network is organized in specialized actors that may contain
one or more network entities. Such entities could be, for instances, neurons, inputs
or any other. Each entity can be queried thank to its URL.
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Table 3.1: Feature-wise comparison of SNN simulators: N2S3, NEST (Python) [159],
Brian [172], and Xnet [163] (currently integrated to N2D2 [164]).

Feature PyNEST Brian Xnet N2S3

Topologies
Feed Forward X X X X
Reccurent X X ? X
Models creation
Analytics ? X X
Differential equations X X
Inputs
Spike Generators X X ? X
Temporal Coding X X
Others Features
Energy consumption X ? X X
Distributable X X

Table 3.2: Comparison of simulator performances on the same configuration (Ubuntu
14.04, i5 core, 4GB RAM). Results may vary between different runs due to the
software stack.

Experiment Measure PyNEST Brian N2S3

MNIST, 100N CPU time 15:05:16 9:39:15 3:42:03
Memory 85 MB 2822 MB 1331 MB

Freeway, 60N CPU time 10:03:40 3:34:41
Memory 914 MB 1448 MB

Users may observe simulation outputs (spikes, weight values…) through network
observers. Network observers follow the observer pattern by subscribing to events
in the simulation (e.g., when a spike happens), perform some calculations on such
events, and make them visible to the user. Examples of such observers range from
textual loggers to dynamic visualizations of the spikes of each neuron. Concretely,
N2S3 provides a spike activity map of the network, a synaptic weight evolution
visualizer, and the calculation of evaluation metrics (e.g. recognition rates, confusion
matrices…).

It is possible to use N2S3 directly with the Scala interface (see Appendix A.1).
In addition, N2S3 includes a dedicated internal domain specific language (DSL) that
aims to simplify the creation of simulations. At a higher level of abstraction, users can
design experiments (network topology, neuron and synapse properties, observation
units…) without having to deal with core features such as synchronization or actor
policies (see Appendix A.2). The DSL also allows the definition of different stages
for the simulation (e.g., splitting the simulation into a training phase and a test
phase).

Table 3.1 provides a feature-wise comparison of N2S3 with other simulators.
Table 3.2 shows that N2S3 offers a reasonable efficiency: when the neural activity
is sparse enough, it can run quicker than clock-based simulators thanks to its
event-based paradigm. N2S3 is freely available at https://sourcesup.renater.
fr/wiki/n2s3 under the CECILL-B licence.
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Figure 3.2: Example of an input from the motion detection task. The arrow shows
the theoretical orientation and direction of the motion and the squares depict the
pixel activations of this input.

3.1.1 Case study: motion detection

The flexibility of N2S3 is demonstrated by using three different designs of a neural
network to solve a motion detection task. An additional constraint of using small
networks is added, so that these networks can be more easily implemented on
hardware. The task consists in detecting the direction of the motion of a pixel on a
two-dimensional grid. Each benchmark consists in a series of successive movements
of a pixel on the grid, without any overlap between two inputs. Each motion has a
linear trajectory, a constant velocity, and a direction, and so, is represented by the
successive activation of the different pixels of the trajectory.

Two datasets are used in this section, a basic one and a more complex one.
For both datasets, the grid dimension is set to 10 × 10 to maintain a reasonable
size for the networks. The simple dataset includes only four directions (up, down,
left, right), no variability of the orientations of the trajectories (i.e. each input has
an orientation which has an angle to the x-axis of 0, 𝜋

2 , 𝜋, or 3𝜋
2 ) and only one

possible velocity (0.5 pixels/ms). In order to avoid that all the trajectories pass
through the center of the grid, a pixel is chosen at random as the reference point of
the trajectory for each sample. Each trajectory is parallel to one axes of the grid,
and so all samples contain exactly 10 successive stimuli. The complex dataset has
eight possible directions (the diagonals are added), and a velocity range from 0.25
to 0.5 pixels/ms. To introduce some variability, a Gaussian noise is added to the
orientation of each trajectory. Furthermore, a random orthogonal shift is applied to
each trajectory; it follows a normal distribution 𝒢 with the grid center as its mean.
Finally, some jitter noise can be applied to the spike timestamps to observe the
tolerance of the network to temporal variations.

The classification score of the task is computed by taking the ratio between
the number of well-classified motion samples and the total number of samples. A
motion is considered as well classified if the first output neuron to fire since the
beginning of the motion corresponds to the class of the current motion. Neurons
are associated to the class on which they react the most for a set of input sample.

Thanks to the flexibility of N2S3, each approach can be tested and compared to
the others. An interesting property of motion detection is that not only synaptic
weight learning is important: synaptic delays play an essential part in the resolution
task. According to the incoming temporal pattern, delays allow synchronizing
the post-synaptic spikes. Thus, neurons will fire only when some specific input
patterns arise [173]. Therefore, setting and learning the synaptic delays are also a
required feature. Several topologies and several learning processes are used in the
different networks. Three approaches are retained: reservoir computing with both
weight and delay learning, a small feed-forward network with a global unsupervised
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Figure 3.3: Topology used in the reservoir computing approach.

training of delays coupled to a supervised training of weights, and a FF network
without training (i.e. all weights and delays are manually set to solve the task).

3.1.2 Comparison of the Three Approaches

Reservoir Computing Approach

Our first approach to solve this motion detection task is inspired by [174], in which
the authors use reservoir computing (RC) and supervised delay adaptation to learn
two different patterns. The basic principle of RC is to couple a recurrent, randomly
connected, layer (called the reservoir) with a linear classifier (called the readout).
Only the classifier needs to be trained in order to map the state of the reservoir to a
class (see Figure 3.3). More details about the network topology and the training
algorithm are available in [174]. A first study consists in evaluating the influence of
the reservoir size on the classification score. With a larger reservoir, the network
yields a higher classification score: this makes sense since a larger number of
neurons means more states to classify the current input (see Figure 3.6). A second
study is about the impact of STDP on the state of the reservoir. STDP slightly
improves the classification rate when it is activated within the reservoir. STDP will
improve the recognition of repeated patterns inside the reservoir, which helps the
readout to improve classification performances.

Trained Feed-forward Approach

The second approach is an application-specific FF network. This approach aims
to create the smallest topology possible that can perform well on this task. This
topology is a compound of three layers. The first layer reduces the dimensionality
of the inputs. The two orientations, vertical and horizontal, are each mapped to
a different sub-network. The second layer recognizes the input velocity, in every
orientation. Experiments show that ten velocity classifiers per trajectory (five per
direction) are enough. Finally, the third layer classifies the directions by adjusting
its synaptic weights (see Figure 3.4). An unsupervised method is used to adapt the
synapse delays in the second layer:

Δd = 𝜂(𝑡post − 𝑡pre − 𝑑) (3.1)
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Figure 3.4: Topology used in the trained feed-forward approach.
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Figure 3.5: Topology used in the fixed feed-forward approach.

with Δd the variation of the delay, 𝜂 the learning rate, 𝑑 the current synaptic delay,
𝑡pre and 𝑡post the fire timing of input and output neurons.

A supervised STDP rule is used in the third layer to map each velocity to the
correct direction. LTP is applied on the ith output neuron if the current pattern
belongs to the ith class:

Δw =
⎧{
⎨{⎩

𝜂w𝑒− 𝑡pre−𝑡post
𝜏STDP for 𝑛𝑖 if the input is 𝑐𝑖

−𝜂w𝑒− 𝑡post−𝑡pre
𝜏STDP otherwise

(3.2)

Such an application-specific network has the advantage of achieving a better
score with only 44 neurons and 480 synapses (see Figure 3.6), but has to be
designed specifically for a given task.

Fixed Feed-forward Approach

The third approach is a fixed network. All the synaptic weights and delays are
fixed at the creation of the network, and so, the network is not trained at all. Since
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Figure 3.6: Results of classification with the different approaches. Each configuration
is run 100 times. For reservoir computing, the size of the network is indicated (e.g.
4 × 4 × 4 mean that the reservoir consists of 64 neurons). The network topology is
regenerated randomly in each run.

the training algorithms of SNNs are not well mastered yet, manually setting the
parameters can have the advantage to produce a network better suited to solve the
task, as long as the task is simple enough for a human to find optimum parameters.

The network consists of two FF layers. The first layer aims to cover a maximum
of possible cases that can arise from the input data. The neurons of the first layer
cover each a specific case. After testing different configurations, three parameters are
retained to define these cases: the orientation of the trajectory 𝑚Θ, the orthogonal
shift 𝑚S, and the velocity 𝑚V. The incoming synaptic delays and weights are
defined by the following equations:

𝑑𝑖,𝑗 = ||⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥𝑖,𝑗𝑚S|| × cos ( ̂𝑥𝑖,𝑗𝑚Θ) × 𝑚V

𝑤𝑖,𝑗 = { 1 when min(pd(𝑥𝑖,𝑗, 𝑚minΘ), pd(𝑥𝑖,𝑗, 𝑚maxΘ)) < pdmax
0 otherwise

where 𝑖 and 𝑗 are the synapse coordinates on the input grid, 𝑥𝑖,𝑗 the point at
coordinates (𝑖, 𝑗), 𝑚S a reference point of the trajectory, 𝑚V the current velocity, 𝑚V
the current orientation, 𝑚minΘ and 𝑚maxΘ the bounds of the orientation, and pd the
perpendicular distance from a point to a line. The second layer aims to map each
selection neuron to the associated class. According to the orientation parameter of
each neuron of the first layer, a unique outgoing connection will be created to the
classifier neuron associated to the orientation class (see Figure 3.5). This approach
provides excellent results (see Figure 3.6), but requires a large number of neurons
and synapses to cover enough parameters (208 neurons and 20,200 synapses).

3.1.3 Energy Consumption

In many types of applications, using SNNs can help to save a large amount of
energy as compared to the same applications on classic von Neumann architectures.
However, since a comparison with such architectures is very difficult to realize
(estimating the energy consumption of a program instruction is a difficult issue
because of the numerous complex hardware and software mechanisms involved),
only the different SNN approaches are compared to each other.
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Figure 3.7: Comparison of recognition rates of several networks under different
levels of jitter noise. RC networks use a reservoir of size 7×7×7. Each configuration
is run 100 times. STDP improves the recognition rate. As expected, the FF network
performs well against the reservoir computing network, while having fewer neurons
and synapses (44 neurons and 880 synapses vs. 347 neurons and approximately
20,000 synapses).

Table 3.3: Estimation of the basic values of energy consumption for the used
hardware model [175].

Parameter Value

𝑒fire 4 fJ
𝑒spike 4 fJ
𝑝neuron 100 pW
𝑝synapse 100 pW

The estimation of the energy consumption of our models can be computed by
the following equations:

𝑒dynamic = |𝒟| × 𝑒fire + |ℰ| × 𝑒spike
𝑒static = Δ𝑡 × (𝑝neuron × |𝒩| + 𝑝synapse × |𝒮|)
𝑒total = 𝑒dynamic + 𝑒static

(3.3)

with 𝒟 the set of neuron firing events, 𝑒fire the energy consumed when a neuron
fires, ℰ the set of spikes passing through the synapses, 𝑒spike the energy needed to
transmit a spike through a synapse, Δ𝑡 the duration of the measurement, 𝒩 the set
of neurons in the network, 𝑝neuron the power dissipated by one neuron, 𝒮 the set of
synapses in the network, and 𝑝synapse the power dissipated by one synapse.

Table 3.3 lists the properties of our hardware model and Table 3.4 shows
the simulated energy consumption of the three architectures considered. While
conventional artificial neurons exhibit an energy efficiency in the range of 1 pJ/spike,
it is worth noting that the dynamic power is far much lower than the static power in
our case [175]: as described by Table 3.4, the energy efficiency of the implemented
model (4 fJ per spike) is negligible as compared to its static power (100 pW).

Each approach has its own benefits, when comparing its energy consumption
and its performances. On the one hand, reservoir computing is the most general
approach. However, in order to obtain satisfactory results, it is necessary to use a
large reservoir, which rapidly increases the amount of neurons and synapses and so,
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Table 3.4: Estimation of the energy consumption of the different approaches. The
results averaged over 100 runs. Our estimations show that the consumed dynamic
energy is negligible.

Network 𝐞dynamic (mJ) 𝐞static (mJ) 𝐞total (mJ) |𝒩| |𝒮|

RC 4 ⋅ 4 ⋅ 4 2.6𝑒−4 8.5 8.5 68 ~1, 631
RC 7 ⋅ 7 ⋅ 7 1.3𝑒−3 100.30 100.31 347 ~19, 714
RC 10 ⋅ 10 ⋅ 10 4.0𝑒−3 526.24 526.25 1, 004 ~104, 245
Trained FF 2.3𝑒−4 2.62 2.62 44 880
Fixed FF 1.3𝑒−3 102.04 102.04 208 20, 200

the energy consumption. On the other hand, using a fixed network yields excellent
results on the reference dataset, but again, a large network is required to have a
good coverage of the parameters. Thus, the trained feed-forward network is a good
candidate because it provides a very good compromise between the network size,
and so the energy consumption, and the task performance. Even if this trained
feed-forward network remains task-specific, it can be retrained on a different dataset.

3.1.4 Conclusion

N2S3 is a hardware spiking neural network simulator design to be scalable, flexible
and easy to use. The study of a motion detection case allows to demonstrate
the flexibility of this simulator. This flexibility concerns the network topologies
(feed-forward or recurrent) and the learning approaches (local or global, supervised
or unsupervised, weight or delay learning). N2S3 can also evaluate both the
generalization performance and the energy consumption of these various networks
built with a very low power complementary metal-oxide semiconductor (CMOS)
design.

3.2 CSNNS

Since N2S3 is a general purpose and flexible simulator, many optimizations cannot
be used. For example, N2S3 creates an object instance for each neuron and synapse,
in order to allow using different models in the network. In return, such practice
tends to use much memory, and prevent the usage of SIMD instructions. As a
consequence, a specific simulator for the models defined in the following chapters
of this manuscript has been developed, named CSNNS, in order to improve the
simulation time and memory usage of these SNNs. For example, spike timestamps
can be stored in matrix and processed parallelly since the simulator only supports
at most one spike per neuron per sample (i.e. as in temporal coding). Currently,
CSNNS is optimized to run on CPUs, by using SIMD instructions, but other back-
ends, such as GPUs, could be added in the future. This simulator is written in
C++ with the Qt library to manage the plots. In order to facilitate the follow-up of
experiments, a file is automatically created with all the parameters of the models at
the beginning of a simulation (see Appendix A.3). Moreover, it is possible to load
these files to recreate the configuration of a previous experiment, and, so, reproduce
it. This simulator is also event-driven, but unlike N2S3, basic building blocks are
not neurons or synapses, but layers. This allows using SIMD instructions to speed
up the simulation. CSNNS is used in Chapter 5 and Chapter 6. Table 3.5 shows the
comparison in term of memory and execution duration between N2S3 and CSNNS,
which clearly demonstrate the benefits of using CSNNS for simulating these specific
models.
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Table 3.5: Comparison of simulator performances on the same configuration (Mint
19.1, i7 core, 32GB RAM). For each simulator, a convolution column of 64 filters of
size 5 × 5 is trained for 1 epoch (60,000 patches).

Measure N2S3 CSNNS

Execution duration 0:14:36 0:00:08
Memory usage 349 MB 741 MB

Even if this simulator is dedicated to a limited range of models, it was designed
in such a way that it can be optimized for specific cases, thanks to the simulation
policy. In the case of layer-wise learning (i.e. training one layer at a time, from the
input to the output of the network), one of the most straightforward policies allows
using little memory. Each sample is recomputed from the input until the current
layer to train. This policy can be computationally expensive since it requires to
apply the different pre-processing methods, and then simulate all the layers from
the input to the currently trained layer. A second policy allows to speed up the
simulation, but requires much more memory: instead of recomputing each time
the spike trains generated at the different layers, intermediate representations are
saved in memory. So, only one layer is simulated at each step since the input of
this layer is already available. Other optimizations are also available, such as using
dense or sparse tensors to save memory if the current model allows it.

An experiment with this simulator can be defined in the following way. First an
experiment object with a simulation policy should be created. Some pre-processing
operations can be added, such as on/off filtering (see Section 2.3.1), value scaling,
or pooling. These pre-processing operations are responsible for transforming each
input sample into another tensor. After the pre-processing definition, an input
converter should be defined, in order to transform the input tensor into spikes. The
next step is to add the training set and test set to the experiment. The simulator
offers the basic support of the MNIST, CIFAR (10 and 100), Caltech (101 and 265),
and STL datasets. The support of other datasets can be easily added. The next
part of the experiment consists in defining the SNN architecture, by successively
defining the layers and their parameters, and the number of epochs required to
train each layer. Optionally, a list of visualization methods can be specified, such as
the histogram of the distribution of spike timings, the reconstruction of the receptive
field of neurons, or the evolution of the thresholds. Finally, the last part of the
experiment consists in a list of outputs. Each output consists in an output converter
(i.e. to transform back spikes into tensors), a list of post-processing steps, to apply
operations on tensors , and a list of evaluation metrics. For example, it is possible
to get sparsity and coherence metrics, but also get the recognition rate obtained
after classification by an SVM. A complete example of an experiment is given in
Appendix A.3.

Like N2S3, CSNNS is under the CECILL-B licence and so, freely available,
at https://gitlab.univ-lille.fr/bioinsp/falez-csnn-simulator.

3.3 Conclusion

As discussed in the beginning of this chapter, the study of SNNs answers to multiple
challenges, which each have their own specificities. Different simulation tools are
thus required to adapt to the different requirements (see Section 2.4). N2S3 aims to
simulate the behavior of hardware, and thus, focus on such models. This simulator
is intended be flexible, scalable, and easy to use. This flexibility comes to the cost of
some overhead that has an impact on simulation speed and memory usage. N2S3 is
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designed to be scalable, thanks to its actor-oriented paradigm. However, some work
is still needed to make the distribution of simulations really efficient. Finally, thanks
to the DSL feature of Scala, N2S3 offers a friendlier interface to design experiments.
This DSL interface needs to be extended in order to cover all the features offered
by N2S3.

Unlike N2S3, CSNNS is designed to simulate a limited number of models. In
return, this constraint allows to widely optimize the simulation speed or the memory
usage (see Table 3.5). This simulator allows to run large networks in a short time.
Moreover, this simulator helps users archive the experiments metrics according
to the used configurations by generating logging files, and by allowing to reload
previous experiments.

All the experiments described in the following chapters are simulated either
with N2S3 (Chapter 4) or with CSNNS (Chapter 5, Chapter 6).
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Chapter 4

Frequency Loss Problem in SNNs

Introducing multi-layered SNNs seems to be a promising way to reach state-of-the-
art results on computer vision datasets. It is acknowledged that deep hierarchical
representations improve the expressiveness of models [46], and yield state-of-
the-art performance on many tasks [47], [48]. However, most SNNs reported in
the literature are single-layered [176]–[178]. However, using multiple layers is
necessary to perform complex tasks [46]. Although multi-layer SNNs exist, their
performances in many tasks are far behind deep ANN [151], [179], or they rely
on non-spiking mechanisms [7], [150], which limits their benefits. Maintaining a
sufficient spiking activity throughout the layers is crucial, because spikes are used to
transmit information and are also necessary for learning. However, this constraint is
often set aside, as authors rather focus on recognition rates [111], [112]. To illustrate
this, a two-layer SNN is trained (see Table 4.1) using the parameters of [111]. When
using WTA inhibition, the spiking activity becomes null after only two layers. Even
after releasing the inhibition constraint, the output frequency remains much lower
than the input frequency, which does not allow any training in subsequent layers.

New mechanisms are proposed in Section 4.1 which allow maintaining a desired
frequency, while keeping a good classification rate.

• Target frequency threshold adaptation (Section 4.1.1): a method to adapt the
threshold of neurons in order to reach a desired output spiking frequency,
using an online unsupervised learning rule.

• Binary coding (Section 4.1.2): a process to generate input spike trains that
maintains the output spiking frequency within layers and facilitates the setting
of the model parameters.

• Mirrored STDP (Section 4.1.3): a modification of STDP rules that takes
advantage of binary coding to improve the learning speed and to reach a
more stable network state.

Section 4.2 presents the experiments that validate these mechanisms in the case of
single layer SNNs.

Table 4.1: Average frequencies of a two-layer SNN using LIF neurons (see Sec-
tion 2.2.1), multiplicative STDP synapses (see Section 2.3.3), LAT (see Section 2.2.6),
and frequency coding (see Section 2.2.3).

Methods Input Frequency Layer 1 Frequency Layer 2 Frequency

Winner-Take-All 2.0396 0.0484 0.0000
Soft Inhibition 2.0407 0.2362 0.0106
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4.1 Mastering the Frequency

4.1.1 Target Frequency Threshold

We introduce a threshold adaptation mechanism that provides better control over
the output frequency: target frequency threshold (TFT) adaptation. In contrast
to LAT, this method allows the explicit specification of the target frequency. First,
the objective output frequency 𝐹expected that the neuron should reach is defined,
depending on the neural coding used. When using frequency coding, 𝐹expected can
be computed as:

𝐹expected = 𝜌 ×
𝑡exposition

𝑡exposition + 𝑡pause
× 𝐹max (4.1)

with 𝜌 the expected sparsity output factor, which is 1
|𝑙output|

(i.e. |𝑙output| is the number
of neurons in the output layer) in the case of WTA inhibition because only one
neuron can discharge at any given time step. 𝑇exposition and 𝑇pause are respectively
the presentation duration for one sample and the duration of the resting period
between two samples. 𝐹max is the frequency that represents the largest input value.
Then, the actual frequency 𝐹actual can be computed with the following formula:

𝐹actual(𝑡 + 𝑡update) = 𝛾 × 𝐹actual(𝑡) + (1 − 𝛾) × |ℰ|
𝑡update

(4.2)

with 𝛾 the update factor (𝛾 = 0.9 is fixed in all the experiments), 𝑡update the duration
of the update window (𝑡update = 𝑡exposition + 𝑡pause in this chapter) and ℰ the set of
output spikes emitted by a neuron during 𝑡update.

|ℰ|
𝑡pause

gives the current frequency,
added to the previous frequency with weight 1 − 𝛾. From these, the threshold can
be periodically updated to rectify the difference between the actual frequency and
the objective frequency:

𝑣th(𝑡 + 𝑡update) = 𝑣th(𝑡) + 𝜂th ∗ (𝐹actual(𝑡 + 𝑡update) − 𝐹expected) (4.3)

with 𝜂th the threshold learning rate (𝜂th is set to 0.1).
Working at higher frequencies means decreasing integration periods. It decreases

the amount of information carried by the frequency since fewer spikes are available
to trigger a neuron discharge. This may result in a misrepresentation of the input
patterns, and lead to lower recognition rates. For this reason, a neural coding is
introduced that provides a more effective pattern representation at high frequencies.

4.1.2 Binary Coding

In order to improve the synchronization of output spikes, spike trains are generated
as a cycle: a positive phase with spikes and a negative phase without spikes. It
produces ”spike waves” (see Fig. 4.1d). Thus, instead of using the frequencies or
the timings of spikes to code input values, the only presence or absence of spikes
in a wave is used to represent the input sample. The timing of a spike in a wave is
assumed to carry no information in this coding, and so, is meaningless. It makes
the coding more flexible: it is less sensitive to variations in time constants of the
model. Neurons use only the spikes of a single wave to fire, which facilitate the
maintenance of the frequency. Two strategies to determine whether a wave contains
a spike are used:

• deterministic binary coding (see Fig. 4.1a): it uses a fixed threshold 𝑥th on
the input values. If the value is above 𝑥th, the wave contains one spike, and
none otherwise;
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(d) Binary coding example.

Figure 4.1: Generation of a spike train in binary coding by the deterministic (a)
and the non-deterministic (b) strategies, and comparison of spike trains generated
by frequency coding (c) and binary coding (d) from two input samples.

• non-deterministic binary coding (see Fig. 4.1b): the input value is seen as the
probability that the wave contains a spike, independently of the other waves
and inputs.

WTA inhibition requires that spike timings are not simultaneous. To respect this
constraint, the waves are produced by generating spike timings following a normal
distribution, 𝑡 ∼ 𝒢(𝑡wave, 𝜎wave), where 𝑡wave is the mean of spike timing of the wave
and 𝜎wave the variance of spike timings. Thus, the wave 𝑓in for the input value 𝑥 is
generated by the following equation:

𝑓in(𝑥) = { {𝒢(𝑡wave, 𝜎wave)} if cond(𝑥)
∅ otherwise (4.4)

with cond(𝑥) the condition used to determine the presence of a spike in a wave
according to the strategy used.

Such coding is suited to the multiplicative STDP rule (Equation 2.28), because
the exact timing of a spike has no influence in this rule. Instead, multiplicative STDP
reinforces all the connections where an input spike is present in the LTP window,
which can be fixed to match the wave duration 𝑡wave.the learning process only
checks for the presence of a spike in the wave, ignoring its actual timing.. To
enhance performance, the wave of an input sample can be replicated. This reduces
the impact of the randomness of the generation process. The first waves can be
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(b) Mirrored STDP.

Figure 4.2: Difference between the multiplicative STDP rule (Equation 2.28) (a)
and the mirrored STDP rule (Equation 4.6).

used to perform an early classification, and the following waves to improve this first
estimate. The non-deterministic process behaves like a binomial distribution, so a
sufficient number of waves can provide an accurate estimate of input values. With
this coding, the expected output frequency can be estimated as follows:

𝐹expected = 𝜌 × 𝑛wave
𝑛wave × 𝑡wave + 𝑡pause

(4.5)

This coding scheme makes it easier to adjust the parameters of the model, using
the following dependency constraints:

• 𝜏leak should be wide enough to maintain the potential along the wave (𝜏leak =
𝑡wave);

• 𝑡pause should be long enough to let potentials go down before the next input.
For the LIF model, 𝑡pause = 4𝜏leak. Following the analytic form of the model,
𝑣(𝑡 + 𝑡pause) = 𝑣(𝑡) × exp(−4𝜏leak

𝜏leak
) = 0.02𝑣(𝑡), i.e. 𝑣 is decreased by 98%;

• 𝜎wave should be large enough to allow the propagation of inhibition spikes.

4.1.3 Mirrored STDP

The way in which timestamps are generated with binary coding requires to take
into account not only pre-synaptic spikes that occur before post-synaptic spikes, but
all the spikes of the current input wave: pre-synaptic spikes that arrive shortly after
the post-synaptic spike should contribute to the pattern. Based on this statement,
the multiplicative STDP rule (Equation 2.28) was extended by centering the LTP
window on 𝑡post (see Fig. 4.2b). With this new rule, weights increase in the presence
of a spike so that ∣𝑡pre − 𝑡post∣ < 𝑡LTP

2 :

Δw =
⎧{
⎨{⎩

𝜂w+𝑒−𝛽 𝑤−𝑤min
𝑤max−𝑤min ∣𝑡pre − 𝑡post∣ < 𝑡LTP

2

−𝜂w−𝑒−𝛽 𝑤max−𝑤
𝑤max−𝑤min otherwise

(4.6)

Combined to binary coding, 𝑡LTP can be set to cover most of the wave duration.
For instance, 𝑡LTP = 4𝜎wave ensures that over 99.99% of spikes are contained within
the LTP window. This type of learning rule, also called symmetric STDP, was
observed in vivo alongside the original STDP [180].
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Table 4.2: Parameters used during the experiments.

LIF Neuron

𝑣th(0) 10 mv 𝜏leak 100 ms 𝑟m 1 Ω
𝑡ref 10 ms 𝑣rest 0 mV

Multiplicative STDP Synapse

𝜂w+ 0.005 𝜂w− 0.01 𝛽 2.0
𝑤min 0.0 𝑤max 1.0

Frequency Coding

𝑡exposition 350 ms 𝑡pause 150 ms 𝐹max 22 Hz

Binary Coding

𝑡wave 100 ms 𝑡pause 400 ms 𝜎wave 5 ms
𝑥th 0.5

Leaky Adaptive Threshold

Θ+ 0.05 mv Θleak 10,000 seconds

Target Frequency Threshold

𝛾 0.9 𝜂th 0.1

4.2 Experiments

4.2.1 Experimental Protocol

All experiments consist in training one fully connected SNN layer over one epoch
of the MNIST dataset [65]. This network consists of LIF neurons [112] and WTA
inhibition [111] with no delay, which is implemented by lateral inhibition connections.
The neural coding used is either frequency coding (Section 2.2.3) or binary coding
(Section 4.1.2). Classification is performed by assigning to each output neuron
the class for which it is most active, as in [112]. The network has 784 inputs
(corresponding to the pixels of 28 × 28 images), and a variable number of output
neurons |𝑙output|: 16, 32, 64, 128, 256, and 512. The parameters used in the
experiments are given in Table 4.2. All results are averaged over 10 runs. The
experiments are implemented using the N2S3 simulator [167].

The binarization threshold 𝑥th of deterministic binary coding is set to 0.5. This
value has little impact on the MNIST dataset since most pixel values are close to 0
or 1 (Fig. 4.3).

4.2.2 Target Frequency Threshold

Our first study compares the proposed TFT (Section 4.1.1) to LAT (Section 2.2.6).
Table 4.3 shows the recognition rates and the output frequencies of frequency
coding using both LAT and TFT. Up to 128 output neurons, LAT reduces the
output frequency. With 16 neurons, LAT results in a relative difference of 58.96%
between 𝐹actual and 𝐹expected. With TFT, 𝐹actual is very close to the objective fre-
quency 𝐹expected (e.g. a relative difference of −0.79% with 64 neurons). However,
with TFT, the recognition rate is not as good as LAT due to the higher output
frequency (e.g. 78.54% for TFT against 81.74% for LAT with 64 neurons): as
suggested in Section 4.1.1, working with higher output frequencies and frequency
coding decreases the number of integrated incoming spikes and, therefore, the
quality of the pattern representation. However, TFT with 16 output neurons results
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Figure 4.3: Histogram of the values in the MNIST training set in logarithmic scale.
Most of the values are close to 0 or 1.

Table 4.3: Recognition rates and frequencies of LAT and TFT for different layer
sizes. Δ𝐹 is the relative difference between 𝐹expected and 𝐹actual.

|𝐥output| 𝐅expected
LAT TFT

rr 𝐅actual 𝚫𝐅 rr 𝐅actual 𝚫𝐅

16 0.9625Hz 61.68% 0.3950Hz 58.96% 66.89% 0.9607Hz 0.19%
32 0.4813Hz 74.00% 0.2796Hz 41.91% 73.83% 0.4814Hz −0.02%
64 0.2406Hz 81.74% 0.1864Hz 22.53% 78.54% 0.2425Hz −0.79%
128 0.1203Hz 86.08% 0.1171Hz 2.66% 82.78% 0.1224Hz −1.75%
256 0.0602Hz 88.20% 0.0698Hz −15.94% 85.49% 0.0614Hz −1.99%
512 0.0301Hz 88.90% 0.0399Hz −32.56% 87.52% 0.0308Hz −2.32%

in both a better recognition rate and a higher frequency. Frequency loss is less
marked when the number of output neurons increases (e.g. 256 and 512 output
neurons). This can be explained partially by a higher probability of simultaneous
discharges, which leads to multiple winners with our implementation of WTA
inhibition.

4.2.3 Binary Coding

Then, the impact of binary coding on both the recognition rate and the output
frequency is investigated. Frequency coding is used as baseline since state-of-the-
art models mostly use this coding [112] [111]. Fig. 4.4 and Table 4.4 show the
results when using LAT with deterministic and non-deterministic binary coding
against frequency coding. Results show that binary coding yields lower recognition
rates than frequency coding in the presence of LAT, mostly due to the incorrect
output frequencies. Most of the codings result in a difference between 𝐹expected
and 𝐹actual (e.g. −24, 92% of relative difference with deterministic binary coding for
|𝑙output| = 64).

Fig. 4.5 and Table 4.5 show the results when using TFT. Binary coding yields
better recognition rates than frequency coding in presence of TFT, when using
more than one wave.

TFT allows all codings to reach the objective frequency 𝐹expected. Moreover, the
number of waves impacts the recognition rate. On the first wave, fewer neurons
discharge, because some input patterns are too different from the learned patterns.
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Table 4.4: Recognition rates and frequencies of the different neural codings combined
to LAT, for |𝑙output| = 64.

Methods rr 𝐅expected 𝐅actual 𝚫𝐅 |ℰ|

Frequency Coding 81.74% 0.2406Hz 0.1864Hz 22.53% 8.06 × 106

Deterministic (1 wave) 71.61% 0.0313Hz 0.0391Hz −24, 92% 1.06 × 106

Deterministic (3 wave) 78.38% 0.0670Hz 0.0728Hz −8.66% 3.19 × 106

Deterministic (5 wave) 78.87% 0.0868Hz 0.0889Hz −2.42% 5.31 × 106

Non-deterministic (1 wave) 71.02% 0.0313Hz 0.0394Hz −25.87% 1.05 × 106

Non-deterministic (3 wave) 78.36% 0.0670Hz 0.0729Hz −8.81% 3.15 × 106

Non-deterministic (5 wave) 79.74% 0.0868Hz 0.0885Hz −1.96% 5.25 × 106
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Figure 4.4: Recognition rate of the neural coding methods with LAT.
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Figure 4.5: Recognition rate of the neural coding methods with TFT.
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Table 4.5: Performances and frequencies of the different neural coding methods
combined to TFT. All configurations use |𝑙output| = 64.

Methods rr 𝐅expected 𝐅actual 𝚫𝐅 |ℰ|

Frequency Coding 78.54% 0.2406Hz 0.2425 −0.79% 8.08 × 106

Deterministic (1 wave) 71.83% 0.0313Hz 0.0327Hz −4.47% 1.06 × 106

Deterministic (3 waves) 79.36% 0.0670Hz 0.0692Hz −3.28% 3.19 × 106

Deterministic (5 waves) 81.06% 0.0868Hz 0.0902Hz −3.91% 5.31 × 106

Deterministic (10 waves) 81.12% 0.1116Hz 0.1145Hz −2.53% 1.05 × 106

Non-deterministic (1 wave) 70.98% 0.0313Hz 0.0325Hz −3.83% 1.05 × 106

Non-deterministic (3 waves) 79.48% 0.0670Hz 0.0693Hz −3.43% 3.15 × 106

Non-deterministic (5 waves) 80.49% 0.0868Hz 0.0906Hz −4.37% 5.25 × 106

Non-deterministic (10 waves) 80.80% 0.1116Hz .1149Hz −2.88% 1.06 × 106

On average, 7.3% of the test samples do not trigger any discharge on the first
wave. Increasing 𝑛wave reduces this effect because the remaining potential after the
first wave helps neurons reach their threshold. Binary coding also reduces the
number of spikes going through the network compared to frequency coding, and
provides better recognition rates, both with LAT (Table 4.4) and TFT (Table 4.5),
e.g. 8.08 × 106 spikes and 78.54% for frequency coding against 5.31 × 106 spikes
and 81.06% for a five waves deterministic binary coding with |𝑙output| = 64. It can
lead to more efficient simulations on dedicated hardware as the power consumption
depends on the spike dynamics [175]. Also, using a high number of waves yields
performance close to frequency coding and LAT: 87.67% for ten waves binary
coding against 88.2% when |𝑙output| = 256. So, combining TFT and binary coding
provides near-state-of-the-art performance, uses fewer spikes than frequency coding
and maintains the objective output frequency. Finally, Fig. 4.6 shows the output
distribution of the spike timings. The output distribution is nearly Gaussian, close
to the input Gaussian distribution. The mean of the output distribution is higher by
a few milliseconds than the mean of the input distribution: the coding introduces
only a small latency. This coding preserves the representation of the data over the
layers. It makes it possible for subsequent layers to use the same models as the
first layer to process data, which is necessary to stack layers. Finally, the number of
input spikes triggered after output spikes show the need for mirrored STDP.

4.2.4 Mirrored STDP

Fig. 4.7 shows the performance of mirrored STDP combined with binary coding.
Training is faster, i.e. the network can reach a high recognition rate with less
training samples than with the multiplicative STDP (Equation 2.28). However, with
both STDP rules, the network converges to similar recognition rates after a sufficient
amount of training samples. Fig. 4.8 shows that more weights have converged to
extreme values (close to 0 or 1) after the training of the network, which means
that patterns are more stable during training and neurons are more specialized in
recognizing specific patterns.

4.3 Discussion

Binary coding is suited to the MNIST dataset because the values are already nearly
binary (as seen in Fig. 4.3), so the binarization step has only little impact on
performance. The effect of this pre-processing step on more complex datasets (e.g.
CIFAR, ImageNet…) could be questioned.
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Figure 4.6: Spiking timing distribution at the input and output of the layer for
three waves of binary coding. Input timings are Gaussian, and output timings are
nearly Gaussian.
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Figure 4.7: Recognition rate on the test set for each STDP rule against training set
size (|𝑙output| = 64).
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Binary neural networks (BNNs) [181] are a familly of ANNs that use binary
activation units and binary weights in the forward part of the network. Such models
succeed to reach near-state-of-the-art performances on multiple image classification
datasets. However, the training requires to use accurate gradients. Similarly, using
STDP on a neural coding that leads to a loss of information, such as binary coding,
does not seem to be a good solution to process complex data. Temporal coding
seems to be a good alternative candidate as a neural coding since it shares the
property of having at most one spike per input per connection with binary coding,
but without the loss of information.

This chapter only study models of SNNs constituted by a single layer and
with WTA inhibition to ensure that a unique neuron wins at a given time. However,
in image recognition, objects are represented by sets of features, corresponding to
multiple active units [65] [2]. So, multiple neurons should fire at the same time to
have a distributed representation. To do so, further investigation over inhibition
mechanisms is necessary.

4.4 Conclusion

SNNs offer an energy-efficient alternative to ANNs, but currently provide poorer
performances, notably due to the difficulty of training multi-layer SNNs. They have
to maintain a sufficient spiking frequency across their layers, because learning rules
such as STDP rely on the presence of spikes. However, standard models from
the SNN literature tend to strongly reduce the spiking frequency as a side effect.
A three-fold solution is proposed to bypass this problem: TFT adaptation, binary
coding, and mirrored STDP. Experiments show that using these mechanisms allows
us to maintain both performance and output frequency on a single layer. Next
chapters will use these results to set up multi-layered SNNs.

However, the main disadvantage of these mechanisms is the loss of information
introduced with binary coding. Even if some work suggests that binary weights
and units are sufficient to reach near state-of-the-art-results[142], these models still
require accurate floating-point values to propagate errors during training. In the
same way, STDP may require accurate representations to perform well. Temporal
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coding is a good candidate, because it allows to represent continuous values with
only one spike, which helps to avoid the frequency loss problem (see Section 4.1.2).
However, this coding also introduces more difficulties, such as the low tolerance
to jitter noise: an offset of a few milliseconds changes the represented value. In
the next chapters, new mechanisms will be proposed in order to learn complex
patterns thanks to STDP and temporal coding. These models do not suffer from
the frequency loss problem or loss of information due to the coding process.
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Chapter 5

Comparison of the Features
Learned with STDP and with AE

Currently, most of the SNNs in computer vision are only tested on datasets with
limited challenges (rigid objects, limited number of object instances, uncluttered
backgrounds…) such as MNIST, 3D-object, ETH-80, or NORB [111], [112], [151],
[182], [183], or on two-class datasets [151], [183] (see Section 2.3.3). How they
perform on more complex image datasets, what is the performance gap between
them and standard approaches, and what needs to be done to bridge this gap is
yet to be established. In order to answer to these questions, this chapter proposes
mechanisms to train SNNs equipped with STDP on more advanced image recognition
datasets (CIFAR-10, CIFAR-100, and STL-10). To do so, the performances of several
pre-processing methods are studied in order to improve the usage of STDP on
color images. Notably, multiple on/off filtering policies are tested. The whitening
transformation is also investigated in Section 5.5.5. Moreover, a novel threshold
adaptation mechanism will be introduced in order to be able to learn patterns with
temporal coding. This coding avoids the frequency loss problem and the loss of
information. Then, a comparison is done with a standard unsupervised feature
learning algorithm, sparse AE. From this evaluation, some bottlenecks that need to
be addressed are identified in order to push SNNs to the level of standard machine
learning approaches for vision applications. As for the previous chapter, only single-
layer architectures are evaluated because multi-layer SNN with unsupervised STDP
are only very recent and difficult to train, due to the loss of spiking activity across
layers (see Chapter 4). This work is one of the first that evaluates features learned
by unsupervised STDP-based SNNs on recent benchmarks for object recognition.

5.1 Unsupervised Visual Feature Learning

As seen in Section 2.1.3), minimizing an objective function 𝑓obj. However in unsu-
pervised learning, 𝑓obj cannot be formulated towards a specific application. Instead,
some surrogate objective must be defined, that is expected to produce features that
can fit the problem to be solved. Examples include image reconstruction [59], image
denoising [60], and maximum likelihood [61]. In some cases, learning rules are
defined directly without formulating an explicit objective function, e.g. in k-means
clustering [56], but also STDP [109].

In addition to this, additional constraints on the parameters or learning algorithm
can be added to regularize the training process and reach better solutions. These
constraints reflect assumptions on properties that ”good” visual features should
have, such as:

• sparsity: it is often assumed that the extracted features should be sparse,
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i.e. only a small number of the features can be found in a single image or
image region. Sparsity is especially required when the set of features is over-
complete1, to prevent the algorithm from reaching trivial solutions. Sparsity
is commonly imposed in sparse coding [184] and auto-encoders [185];

• coherence of features [63]: features should be different to span the space of
visual patterns with limited redundancy2. Coherence measures the possibility
to reconstruct a given feature as a linear combination of a small number of
other features, i.e. whether features are locally linearly dependent; coherence
should be small, i.e. the dictionary should be incoherent, for the features to
be effective.

In Section 5.5, these properties will serve as a basis for the analysis of the tested
feature extractor.

5.2 STDP-based Feature Learning

The previous chapter discusses about the advantages and drawbacks of different
neural codings. Notably, frequency coding has the disadvantage of needing many
spikes to represent accurate values, which can lead to spiking frequency drops. A
new neural coding has been introduced in order to bypass this issue, binary coding
(see Section 4.1.3). However, the latter has the drawback of losing information,
due to the binary nature of the coding. Using multiple repetitions in order to
generate a binomial distribution allows improving the performance, but remains an
unsatisfactory solution for solving complex tasks. Finally, temporal coding allows
representing continuous values with only one spike, which allows avoiding the
frequency loss, but also avoiding any loss of information (see Section 2.2.3). In
this Chapter and the next, we use latency coding, defined as:

𝑓in(𝑥) = (1.0 − 𝑥) × 𝑡exposition (5.1)

with 𝑥 ∈ [0, 1] the input value and 𝑡exposition the duration of the presentation of a
data sample. By convention, when 𝑥 = 0, no spikes are generated.

However, this coding is highly sensitive to jitter noise, since an offset of few
milliseconds will impact the represented value. Thus, neuron thresholds play a
critical role when using latency coding, since the threshold directly impacts the
neuron firing timings. A low threshold makes neurons fire early, and so, in latency
coding, a high output values is represented. In opposition, high thresholds will
make neurons fire late and so, output spikes represent small output values. The
firing timing also has an impact on the pattern learned by the neurons. If a neuron
tends to fire early, it will have integrated only few spikes, and so, learn almost blank
patterns (see Figure 5.1a). Late firing timings let neurons integrate a larger part of
the input spikes, and thus, they can learn almost plain patterns (see Figure 5.1b).

In order to facilitate the parameter search step, IF neurons are used because
this model uses less parameters compared to other models, such as LIF neurons.
Notably, using IF neurons allows to put aside all the issues that can arise from the
leak (e.g. balancing the leak so that the beginning of the pattern is remembered,
but also being able to forget the previous pattern between two samples). Instead of
setting a 𝑡pause duration to let the membrane potential 𝑣 come back to the resting
state, a forced reset is performed between each input (i.e. 𝑣 is set to zero). As in

1A dictionary of features is over-complete when its dimension (number of features) is larger than
the dimension of the input (size in pixels of the images or image regions processed).

2Some authors [186] claim that redundancy should rather be reached to have a good representation,
but with limited evidence.
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(a) 𝑡expected = 0.5 (b) 𝑡expected = 0.7

Figure 5.1: Filters learned with different 𝑡expected.

the previous chapter, multiplicative STDP is used. In order to add some noise
in the timings of spikes, a synaptic propagation delay 𝑑 is added. In addition
to STDP, WTA inhibition ensures that neurons learn different patterns.

New mechanisms are offered in this section in order to allow STDP to learn
correctly from color images converted to spikes with latency coding. Section 5.2.1
introduces a threshold adaptation rule, section 5.2.2 offers a method to convert
back the spike trains into numerical values and section 5.2.3 presents different
pre-processing steps used to learn from color images.

5.2.1 Neuron Threshold Adaptation

The threshold plays two critical roles in SNNs: it highly influences the firing
timestamps of the neurons and it allows to maintain the homeostasis of the system.
A common method to adapt thresholds in SNNs is to use LAT [112]: when a
neuron fires a spike, its threshold is increased to prevent it from firing too often.
An exponential leak is applied to help neurons with weak activities. However,
this mechanism uses two parameters, which makes the search for suited values
difficult (see Section 2.2.6). Moreover, those parameters do not allow to easily
converge towards the different types of patterns shown in Figure 5.1. Thus, a new
threshold adaptation rule is required to both train the neurons to fire at an objective
time 𝑡expected and maintain the homeostasis of the network. 𝑡expected should be
defined within the exposition interval of the input [0, 𝑡exposition]. Neuron thresholds
will be adapted automatically so that the firing timings 𝑡 converge towards 𝑡expected
and, at the same time, the homeostasis of the system is maintained.

Each time a neuron fires and each time it receives an inhibitory spike, the
threshold is adapted to reduce the difference between the actual time 𝑡 and the
expected time 𝑡expected. In this way, all neurons in the competition will apply the
same change to their thresholds (i.e. the winner and all the losers), which ensures
that the competition is not distorted:

Δ1
th = −𝜂th(𝑡 − 𝑡expected) (5.2)

with 𝑣th the neuron threshold, 𝑡 the timestamp at which the neuron fires, and 𝜂th
the threshold learning rate. This rule corrects the timing error between the actual
firing timestamp 𝑡 and the objective timestamp 𝑡expected at each neuron discharge.
The optimal value for 𝑡expected depends on the dataset; it requires an exhaustive
search in the range [0, 𝑡exposition].

Using local and unsupervised learning requires competition mechanisms in
order to ensure that neurons learn distinct patterns [111]. WTA inhibition is a
straightforward method to do so: only the winning neuron (i.e. the first neuron to
spike, since latency coding is used) will apply the learning rule during a pattern
and, so, will be able to recognize it. However, the risk of the WTA strategy is that
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one neuron can take the advantage over the others, and win on every sample (see
Section 2.2.6). To guarantee the homeostasis of the system, a second update is
applied each time a neuron fires: the winner increases its threshold, while losers
decrease their thresholds a little (i.e. when they receive an inhibitory spike):

Δ2
th = {

𝜂th if 𝑡𝑖 = min{𝑡0, ⋯ , 𝑡𝑁}
− 𝜂th

𝑙depth(𝑛) otherwise (5.3)

with 𝑙depth the number of neurons in competition in the layer, and 𝑡𝑖 the firing
timestamp of neuron 𝑖. WTA inhibition is used during training: only one neuron
is allowed to fire among the |𝑙depth| neurons on each sample. This mechanism is
required to guarantee that neurons will learn different patterns, since only one
neuron will apply STDP per sample.

Then, the threshold of the neurons is updated with the following equation:

𝑣th(𝑡) = 𝑣th(𝑡 − 1) + Δ1
th + Δ2

th (5.4)

Setting large initial values for the thresholds may prevent the neurons from
firing. In the absence of neuronal activity, no learning nor threshold adaptation
can be performed. It is therefore preferable to initialize the thresholds with small
values to promote neuronal activity within the network.

5.2.2 Output Conversion Function

It is necessary to convert back spike trains into numerical values for the usage of a
traditional classifier. Since the spikes are generated with latency coding, an inverse
function is needed to create the feature vector 𝐠 (𝐠𝑖 = 𝑓out(𝑡𝑖)):

𝑓out(𝑡) = 1.0 − 𝑡 − 𝑑min
𝑡exposition + 𝑑max − 𝑑min

(5.5)

with 𝑓𝑖 the 𝑖th output features value, 𝑡 the spike timestamp (if no spike occurs, then
𝑓out return 0), and [𝑑min, 𝑑max] the range of possible synaptic delay values.

5.2.3 On/Off filters

As STDP learns correlations between input spikes, images are usually pre-processed
to help STDP find meaningful correlations. Typically, edges are extracted from
the grayscale images, e.g. through a DoG filter [151] (see Section 2.3.1) or Gabor
filters [182]. This chapter investigates the application of on/off filtering to color
images by offering two strategies. In the first strategy, called RGB color opponent
channels, the coding is applied to channels computed as differences of pairs of RGB
channels: red-green, green-blue, and blue-red. The second strategy is inspired by
biological observations: in the lateral geniculate nucleus, which mainly connects
the retina to the visual cortex, three types of color channels exist: the black-
white opponent channel (which corresponds to the grayscale image), the red-green
opponent channel, and the yellow-blue opponent channel [123]. The second strategy
applies on-center/off-center coding to the red-green and yellow-blue (computed as
0.5 × 𝑅 + 0.5 × 𝐺 − 𝐵) channels. This leads to four possible configurations of image
coding: grayscale only, RGB opponent channels, biological color opponent channels
(referred to as Bio-color), and the combination of the grayscale channel and the
bio-color channels.
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5.3 Learning visual features with sparse auto-encoders

AEs [59] are neural networks that perform unsupervised learning by finding latent
representations that allow to best reconstruct the input data. In this work, among
all variants of AEs and other unsupervised feature learning algorithms, only single-
layer AE are considered, for two reasons. First, they belong to the large family
of neural networks, as SNNs do, and, within this family, they are one of the most
representative models for unsupervised learning (its main competitor being RBMs,
which have been shown to optimize a similar criterion [60] and yield comparable
performance for visual feature learning [56]). Then, the approach is restricted
to single-layer networks, as multi-layer SNNs are only starting to emerge [151];
One-layer SNNs should be well mastered before addressing multi-layer architectures.

The typical architecture of an AE is organized in two parts:

1. An encoder 𝑓enc, that maps the input to its latent representation 𝐠: 𝐠 = 𝑓enc(𝐗).

2. A decoder 𝑓dec, that attempts to reconstruct the input from its latent represen-
tation: �̂� = 𝑓dec(𝐠) = 𝑓dec(𝑓enc(𝐗)).

The objective function (Eq. 2.7) is thus expressed as:

Φ∗ = argmin
Φ

𝑓obj(𝐗, �̂�; Φ) (5.6)

where 𝑓obj(., .; Φ) is some measure of the dissimilarity between the input 𝐗 and its
reconstruction �̂� given the model parametrized by Φ; in other words, the auto-
encoder aims at reconstructing its input with minimal reconstruction error. In
the experiments, reconstruction error is measured by the Euclidean distance. The
encoder 𝑓enc and decoder 𝑓dec can be defined as a single-layer or multilayer neural
network (in the case of stacked AEs). In the following, only single-layer models of
this form are considered:

𝐠 = 𝑓enc(𝐗) = 𝑓𝜎(𝑤enc𝐗 + 𝐛enc)
𝑓dec(𝐠) = 𝑤dec𝐠 + 𝐛dec

(5.7)

where 𝑤enc ∈ ℝ𝑥width×𝑥height,𝑛features (resp. 𝑤dec ∈ ℝ𝑛features,𝑥width×𝑥height) is the weight matrix
of the connections in the encoder (resp. the decoder), 𝐛enc ∈ ℝ𝑛features (resp. 𝐛dec ∈
ℝ𝑥width×𝑥height) is the bias vector of the encoder (resp. the decoder), and 𝑓𝜎(.) is
some activation function3, in this chapter, the sigmoid activation function is used
𝑓𝜎(𝑥) = 1

1+𝑒−𝑥 . The output of the encoder corresponds to the visual features learned
by the auto-encoder: 𝑓e = 𝑓enc(𝐗).

To make the auto-encoder learn useful representations, the initial approach was
to impose an information bottleneck on the model, by learning representations with
dimensionalities lower than the ones of the input data (𝑛features < 𝑥width × 𝑥height).
However, such low-dimensional representations cannot capture the richness of the
visual information, so current approaches tend to use over-complete (𝑛features >
𝑥width × 𝑥height) representations instead. In this case, some additional constraints
must be enforced on the model to prevent it from learning trivial solutions, e.g., the
identity function. These constraints generally take the form of an additional term in
the objective function, for instance: weight regularization, explicit sparsity constraints
(sparse auto-encoders [56], [185], k-sparse auto-encoders [63]) or regularization of
the Jacobian of the encoder output 𝐠 (contractive auto-encoders [187]). Another

3Only models where no activation function is applied to the decoder output are considered as the
input are continuous (image) data in [0, 1].
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approach is to change the objective function from reconstruction to another criterion,
for instance data denoising [60].

In this chapter, sparse AE are considered as a baseline to assess the perfor-
mances of STDP-based feature learning. More recent models (denoising AE [60],
contractive AE [187], etc.) can reach better performance, but sparse AEs are closer
to current STDP-based SNNs, which also feature explicit sparsity constraints, usually
through lateral inhibition. Also, it allows us to set a minimum bound that SNNs
should at least reach to be competitive with regular feature learning algorithms,
and identify some directions to follow to achieve this goal; it constitutes a first step
before taking STDP-based SNNs further. In the following, weight regularization
and sparsity constraint terms used in experiments are described:

• L2 weight regularization: 𝜅
2 (||𝑤enc||22 + ||𝑤dec||22), where ||.||2 denotes the

Frobenius norm and 𝜅 is the weight decay parameter;

• sparsity term [185]: 𝜐.KL(𝜌||𝜌), where 𝜌 is the desired sparsity level of the
system, 𝜌 is the vector of average activation values of the hidden neurons over
a batch, KL(.||.) the Kullback-Liebler divergence, and 𝜐 the weight applied to
the sparsity term in the objective function.

This yields the final objective function for the auto-encoder:

𝑓obj(𝐗, �̂�; Φ) = 1
2

||𝐗 − �̂�||22 + 𝜅
2

(||𝑤enc||22 + ||𝑤dec||22) + 𝜐.KL(𝜌||𝜌) (5.8)

5.4 Experiments

5.4.1 Experimental protocol

The SNN and AE architectures used in experiments are single-layer networks
with 𝑛features hidden units (see Figure 5.2). the experimental protocol proposed by
Coates et al. [56] is used to compare unsupervised feature extractors. It is organized
in two stages, described below: visual feature learning, and the evaluation of the
learned features on image classification benchmarks.

𝑝width

𝑝height

𝑛features

(a) SNN

𝑝width

𝑝height

𝑛features

𝑝width

𝑝height

(b) Auto-encoder

Figure 5.2: (a) SNN architecture used in the experiments. Solid arrows denote
inhibitory connections between hidden units. (b) AE architecture used in the
experiments.

Feature learning From the training image dataset 𝒳train = (𝐗1, 𝐗2, … , 𝐗𝑛),
𝑛patches patches of size 𝑝width × 𝑝height are randomly samples. The patches are
fed to the feature learning algorithm for training, to produce a dictionary of |𝐠|
features.
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Image recognition The learned feature dictionary is used to produce image
descriptors that are fed to a classifier following this process (Figure 5.3):

1. Image patches of size 𝑝width × 𝑝height are densely sampled from the images
with stride 𝑙stride, producing 𝑜width × 𝑜height patches per image (Figure 5.3a).

2. Patches are fed to the feature extractor, producing 𝑜width × 𝑜height feature
vectors of dimension 𝑛features per image, organized into feature maps where
each position corresponds to one patch of the input image (Figure 5.3b).

3. Sum pooling over a grid of size 𝑟width × 𝑟height is applied: the feature vectors of
the patches within each grid cell are summed to produce a unique vector of
size 𝑛features per cell. These vectors are then concatenated to produce a single
feature vector of size 𝑟width × 𝑟height × 𝑛features for each image (Figure 5.3c).

4. The feature vectors of the images are fed to a linear SVM for training (training
set) or classification (test set).
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Figure 5.3: Experimental protocol. (a) Input image, where 𝑜width × 𝑜height patches
of size 𝑝width × 𝑝height are extracted with a stride 𝑙stride. (b) 𝑛features feature maps of
size 𝑜width × 𝑜height produced by the feature extractor from its dictionary of 𝑛features
features. (c) Output vector constructed by sum pooling over 𝑟width × 𝑟height regions
of the feature maps.

5.4.2 Datasets

Experiments are performed on three datasets commonly used to evaluate unsuper-
vised feature learning algorithms: CIFAR-10, CIFAR-100, and STL-10. Table 5.1
provides the properties of these datasets. Since previous work evaluated SNNs only
on grayscale images, experiments are also performed on grayscale versions of the
three datasets, referred to as CIFAR-10-bw, CIFAR-100-bw, and STL-10-bw.

Dataset Resolution |𝒞| |𝒳train| |𝒳test|

CIFAR-10 [75] 32 × 32 10 50,000 10,000
CIFAR-100 [75] 32 × 32 100 50,000 10,000
STL-10 [56] 96 × 96 10 5,000 8,000

Table 5.1: Properties of the datasets used in the experiments.

Contrary to MNIST, which is the preferred dataset in the SNN literature [188],
these datasets provide color images of actual objects rather than just binary images
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Data 𝐧features 𝝆 𝝊 𝜿

Color 64 0.005 0.5 10−4

1024 0.005 0.1 10−5

Grayscale 64 0.01 0.05 10−5

1024 0.005 0.1 10−5

Table 5.2: AE parameters used in the experiments.

Neuron
𝑣th(0) 20 mv 𝑣rest 0 mv

STDP
𝑤min 0.0 𝑤max 1.0 𝑑min 0.0
𝑑max 0.01 𝜂w+ 0.001 𝜂w− 0.001
𝛽 1.0

Neural Coding
𝑡exposition 1.0

Threshold Adaptation
𝑡expected 0.7 𝜂th 0.001

Pre-processing
DoGcenter 1.0 DoGsurround 2.0 DoGsize 7

Table 5.3: SNN parameters used in the experiments.

of digits. It makes it possible to evaluate SNNs in more realistic conditions, in terms
of data richness and importance of image pre-processing. Also, unlike MNIST, but
also other datasets such as NORB, they are not solved or nearly-solved problems
(classification accuracy above 95%), so the results can highlight better the properties
of the algorithms.

5.4.3 Implementation details

Image patches of size 5 × 5 pixels (𝑝width = 5, 𝑝height = 5) and a stride 𝑙stride = 1 are
used in all the experiments. The algorithms are evaluated with two sizes of feature
dictionaries, 𝑛features = 64 and 𝑛features = 1024. To produce final image descriptors,
features are pooled over 2 × 2 image regions (𝑟width = 5, 𝑟height = 5), yielding image
descriptors of size 4 × 𝑛features.

A grid search is used to find the optimal parameters for the AEs and only results
for the best configuration for each experimental setting are reported. Table 5.2
provides the values of the parameters that are retained in this chapter. These
parameters were consistently optimal over datasets. The AEs are trained for 1,000
epochs on 200,000 random patches from the training set considered. Adadelta
optimizer [189] is used with an initial learning rate 𝜂 = 1.0. AEs are implemented
using TensorFlow [190]. Table 5.3 provides the parameters used to train SNNs.
Since SNNs have a large number of parameters but are also time-consuming when
simulated on software, only a greedy search can be used to set the parameters.
The optimal value of each parameter was searched while the values of all other
parameters were fixed. Thus, all the results reported in this section can slightly
change due to the unfair comparison between AEs and SNNs. All SNN models
are trained on 100,000 random patches from the training sets for 100 epochs.
Classification was performed using LibSVM [191] with a linear kernel and default
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Dataset Color coding 𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒

CIFAR-10

RGB opponent 37.66 ± 0.73 45.04 ± 0.06
Bio-color 37.53 ± 0.33 43.54 ± 0.07
Grayscale 45.37 ± 0.13 52.78 ± 0.41

Grayscale + color 48.27 ± 0.47 56.93 ± 0.59

CIFAR-100

RGB opponent 17.14 ± 0.22 19.87 ± 0.03
Bio-color 17.06 ± 0.09 19.19 ± 0.35
Grayscale 18.43 ± 0.34 22.67 ± 0.36

Grayscale + color 25.20 ± 0.76 30.44 ± 0.48

STL-10

RGB opponent 44.13 ± 1.30 51.20 ± 0.30
Bio-color 44.23 ± 0.41 50.95 ± 0.08
Grayscale 44.66 ± 0.87 51.40 ± 0.69

Grayscale + color 49.20 ± 1.04 54.34 ± 0.30

Table 5.4: Classification accuracy (%) w.r.t. to the color coding strategy.

parameters. All reported accuracies are averaged over three runs of the feature
learning algorithms.

5.4.4 Color processing with SNNs

The first experiment evaluates the strategies to encode color information in SNNs that
were discussed in Section 5.2.3: images are first encoded using one of these strategies,
then on-center/off-center coding is applied to each image channel. Table 5.4 shows
the classification accuracies yielded by each color coding strategy on the three
datasets, as well as the results obtained on grayscale images. Both color codings,
biological channels (red/green, yellow/blue) or RGB opponent channels (red/green,
green/blue, blue/red), provide similar recognition rates. However, using grayscale
images yields better results than color images. This is a counter-intuitive result,
since color images contain all the information available from grayscale images. Since
the SNN processes all inputs in the same way, on-center/off-center coding should be
the source of this information loss. However, this preprocessing step is currently
required to extract edges from the images and feed the SNN inputs with spike
trains that represent specific visual information. Training an SNN directly from RGB
images could be an alternative but appears to be very challenging, because the
existing mechanisms are not adapted to learn from this type of data. Notably it is
difficult to find an effective threshold adaptation rule that is able to both maintain
the homeostasis of the system and to add competition between neurons. One reason
is that the sum of input patterns can widely vary from dark patches, where the
sum is close to zero, to the bright patches, where the sum can go high. Figure 5.4
shows examples of filters learned from raw RGB images; since the network has a
single layer, the filter image for one neuron can be obtained by simply interpreting
the normalized weights of its input synapses as RGB values. Many filters converge
towards similar or uninformative patterns. This results in large amounts of dead
units and repeated features.

Finally, the last configuration is evaluated, which combines color and grayscale
images by training half of the features on each input independently. Results in
Table 5.4 show that this strategy provides the best performance, showing that DoG-
filtered color images still contain information that grayscale DoG-filtered images do
not contain. In the remaining of the chapter, this strategy is used for all the runs
performed on color images.
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Figure 5.4: Example of SNN features learned on raw RGB pixels (trained on
CIFAR-10). They are mostly dead units or simple repeated patterns.

Dataset SNN AE

𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒 𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒

CIFAR-10 48.27±0.47 56.93±0.59 57.56±0.08 66.98±0.33
CIFAR-10-bw 45.37±0.13 52.77±0.41 53.69±0.34 59.50±0.17
CIFAR-100 25.20±0.76 30.45±0.48 37.71±0.19 36.43±0.29

CIFAR-100-bw 18.43±0.34 22.67±0.36 23.62±0.18 26.56±0.05
STL-10 49.20±1.04 54.34±0.30 52.28±0.47 55.74±0.25

STL-10-bw 44.66±0.87 51.40±0.69 50.63±0.23 52.88±0.29

Table 5.5: Average classification accuracy (%) and its standard deviation w.r.t. to
the datasets and feature learning algorithms.

5.4.5 SNNs versus AEs

The classification accuracies for each feature learning algorithm and dataset are
reported in Table 5.5. AEs perform consistently better than SNNs4. So, how to
bridge the gap between STDP learning and standard neural network approaches?
Several elements may explain the performance of STDP. The results reported in
Table 5.5 show two trends. First, working with colors always yields better results
than working with grayscale images; a straightforward explanation is that color is
significant to recognize objects in the datasets considered, either because natural
objects (e.g. animals) represented in the datasets have a limited, meaningful set of
colors, either because the contexts of the objects (e.g. the sky behind airplanes) have
meaningful colors. The second trend is that the performance gap between SNNs
and AEs is larger on color images than on grayscale images, showing that SNNs
cannot handle color well, at least not with the straightforward color codings that
were used in the experiments. This result highlights the importance of color in
object recognition, and therefore the need for more efficient neural codings of color
in SNNs.

Looking at the filters learned by SNNs and AEs provides additional information
about the properties of features learned by STDP and potential reasons for the
performance gap. Figures 5.6 and 5.7 show samples of filters learned by SNNs
and AEs, respectively. The filters are different in nature. Filters learned by STDP
are mostly edges, and some blobs, that are well-defined, with one or two dominant
colors. By contrast, AEs learn more complex features; edges and blobs can still
be observed, but they include a larger range of color or gray levels and are not as

4As stated in Section 5.3, a simple sparse auto-encoder is used rather than a state-of-the-art model.
It means that the actual gap between SNNs and state-of-the-art feature learning methods would be
larger than what these experiments show.
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Dataset 𝜷 = 𝟏 𝜷 = 𝟐 𝜷 = 𝟑 𝜷 = 𝟒

CIFAR-10 48.27±0.47 46.56±0.68 43.18±1.60 41.03±0.21
CIFAR-10-bw 45.37±0.13 44.55±0.57 41.74±1.50 38.90±1.57

Table 5.6: SNN recognition rate according to STDP 𝛽 parameter (𝑛features = 64).
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(b) 𝛽 = 4.0

Figure 5.5: Distribution of weights (log. scale) in an SNN (𝑛features = 64) after
training w.r.t. 𝛽. Most weights have values close to 0 or 1 when 𝛽 decreases.

elementary as the ones learned by SNNs. Simple, well-defined features like the ones
learned by STDP are conceptually pleasing because they represent elementary object
shapes that can easily be understood. They suggest better generalization abilities
from the feature extractor, and correspond to biological observations [151]. However,
they are not as effective in practice. AEs can also produce features closer to the ones
obtained with SNNs (although with larger ranges of tones and intensities), but such
features are obtained only by increasing the weight of L2 regularization, usually at
some cost in accuracy. The specific looks of SNN features can be explained in two
ways. First, the use of on-center/off-center coding as a preprocessing step biases
the learning algorithms towards edge-like filters, as it highlights the edges in the
images.

Moreover, the fact that the learned features contain exclusively black or saturated
colors is due to the fact that STDP rules tend towards a saturating regime for weights:
once a given unit has learned a pattern, repeated expositions to this pattern will
reinforce the sensitivity to this pattern until the weights reach either 1 or 0. This is
illustrated in Figure 5.5a, which shows the distribution of weights in an SNN after
training: most weight values are close to 0 or 1. Since AEs perform better and have
more staggered weights, one may believe that saturated weights are detrimental to
the performance of SNNs. To check this, experiments are performed with different
values for the parameter 𝛽: increasing their values allow the weights to ”escape”
more easily from their limit values 𝑤min and 𝑤max. Figure 5.5b shows that the
weights are indeed more staggered, but the classification accuracy decreases as 𝛽
get larger (see Table 5.6). The fact that STDP leads to saturated weights may not
be the only reason for the performance gap with AEs. Finally, the filters shown in
Figure 5.6 also show a good property of SNNs: they do not raise any dead units, i.e.
features that get stuck in a state with average weights that do not correspond to any
significant pattern. By contrast, AEs tend to learn a fair amount of such features,
especially when the number of features increases (see Figure 5.7). This behavior
of SNNs can be due to two factors: lateral inhibition, which prevents neurons from
learning similar patterns (here, becoming dead units), and the saturated regime
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of STDP.

(a) 𝑛features = 64, Grayscale (b) 𝑛features = 1024, Grayscale

(c) 𝑛features = 64, Color (d) 𝑛features = 1024, Color

Figure 5.6: Grayscale and color filters learned by SNNs on CIFAR-10-bw and
CIFAR-10. For 𝑛features = 1024, random samples are shown.

5.5 Result Analysis and Properties of the Networks

5.5.1 On-center/off-center coding

In this section, the impact of on-center/off-center coding on classification accuracy
is investigated. As mentioned in Section 5.4.5, this image coding is responsible for
the type of visual features learned by STDP, but does it impact the final accuracy of
the system? The accuracy of two systems are compared, each with and without
preprocessing images: an AE, under the same protocol as before, and an SVM
performing classification directly from image pixels. The AE parameters for the
on-center/off-center coding runs are: 𝜌 = 0.005, 𝜐 = 1.0, and 𝜅 = 10−4. Results on
CIFAR-10 and CIFAR-10-bw are reported in Table 5.7. Using on-center/off-center
coding decreases the accuracy of the classification in both configurations, which
confirms that this coding is one of the causes of the limited performance of SNNs
in image classification. This is due to the fact that extracting edges with DoG
has the effect of selecting only a subrange of spatial frequencies. In addition, the
accuracies obtained on filtered color images are only on par with (in the case
of AEs) or worse than (with SVM) the results obtained using grayscale images; it
highlights the fact that on-center/off-center coding cannot handle color effectively.
One reason is that edge information is effectively represented by grayscale pixels,
and the additional information brought by color is essentially located in uniform
image regions. Interestingly, the unsupervised SNN models of the literature that
are competitive with traditional approaches are only evaluated on the MNIST
dataset [188], which does not require on-center/off–center coding as the images are
only made of edges (white handwritten digits on black backgrounds). Therefore, to
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(a) 𝑛features = 64, Grayscale (b) 𝑛features = 1024, Grayscale

(c) 𝑛features = 64, Color (d) 𝑛features = 1024, Color

Figure 5.7: Grayscale and color filters learned by AEs on CIFAR-10-bw and
CIFAR-10. For 𝑛features = 1024, random samples are shown.

Dataset Raw pixels AE features 𝑛features = 64

CIFAR-10 37.79 57.56±0.08
CIFAR-10-dog 21.07 52.65±0.30
CIFAR-10-bw 28.38 53.69±0.34
CIFAR-10-dog-bw 25.29 52.76±0.08

Table 5.7: Classification accuracy (%) obtained with raw pixels and AE features
w.r.t. pre-processing methods. Only one run is performed on raw pixels as SVM
training is deterministic.

be effective, SNNs require the design of a suited image coding that preserves as much
visual information as possible. Using alternative methods to extract edges (such as
the image gradient or the image Laplacian) could capture slightly different types
of edge information, which could be processed within a single SNN for improved
performance, in a feature fusion approach. However, this would only process
edge information, which is insufficient to reach optimal classification performances.
Ideally, SNNs should be able to handle raw RGB pixels in order to get all available
information; however, this is not straightforward, as showed in Section 5.4.4.

5.5.2 Sparsity

An investigation of the sparsity properties of SNNs and AEs is done here. To do so,
the following sparseness measure [192] is used:

sp(𝐠) =

√𝑛features − ∑𝑛features
𝑖 |𝑔𝑖|

√∑𝑛features
𝑖 𝑔2

𝑖
√𝑛features − 1

(5.9)
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where 𝐠 is the vector of activations of hidden units (i.e. the visual feature vector)
and 𝑛features is the number of hidden units. sp(𝐠) ∈ [0, 1]; larger values indicate
sparser activations.

Table 5.8 shows the mean sparseness of features computed on the test set of
CIFAR-10. The sparseness is much higher in SNNs than in AEs. Indeed, the
specialization of features in SNNs relies mostly on lateral inhibition, which prevents
units from integrating spikes, leading to very sparse activations of the features.
Sparsity is often cited as a necessary condition for good representations [55], and
has been shown to be correlated to classification accuracy on image datasets [185].
However, some results in [185] show that maximizing sparsity does not always lead
to improvements in classification accuracy in AEs. Similarly, enforcing too much
sparsity on the AEs (e.g., by lowering 𝜌) is detrimental to the classification accuracy.
To push it further, five runs on CIFAR-10 are performed with 𝑛features = 64 and
different values for parameters 𝜅, 𝜐, and 𝜌. The AE parameters were set so that
the sparseness would be close to the sparseness that was measured in SNNs (i.e., in
the range [0.8; 0.9]). In these runs, the classification accuracy varies from 35.53%
to 41.03%, much lower than the 57.56% baseline. To check whether high levels
of sparseness are an issue for SNNs too, an experiment where lateral inhibition is
deactivated during the feature extraction phase is run.

As expected, deactivating inhibition decreased the sparseness of the model (from
0.869 to 0.638 on CIFAR-10). However, the classification rate decreased too (from
48.27% to 47.35%). It shows that, although sparsity is a desirable feature for good
representations, an excessive level of sparseness can be detrimental, and that the
right amount of sparsity should be enforced during training. This calls for the use
of other, less restrictive, inhibition strategies than WTA.

Model 𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒

SNN 0.869±1.96e−5 0.967±3.04e−5
AE 0.352±0.116 0.112±0.077

Table 5.8: Mean and standard deviation of feature sparseness (test set of CIFAR-10).

5.5.3 Coherence

One measure of the quality of the learned feature is their incoherence, i.e. the
fact that one feature cannot be obtained by a sparse linear combination of other
features in the vocabulary. If the incoherence is low, features are redundant, which
is harmful for classification as redundant features will overweight other features.
Inspired by the measure introduced in [63], the coherence 𝜇𝑖𝑗 of two features 𝑔𝑖
and 𝑔𝑗 is measured as their cosine similarity:

𝜇𝑖𝑗 =
| < 𝑔𝑖, 𝑔𝑗 > |
||𝑔𝑖||2.||𝑔𝑗||2

(5.10)

where 𝑔𝑖 is the 𝑖th feature, < ., . > is the dot product operator, and ||.||2 is the L2
vector norm. 𝜇 ∈ [0, 1]; 0 corresponds to orthogonal (incoherent) features and 1 to
similar (coherent) features. The weights span different ranges of values depending
of the feature extractor considered; feature normalization makes coherence measures
comparable from one extractor to another.

Table 5.9 displays the mean and the standard deviation of coherence mea-
sure 𝜇 under all experimental settings. Overall, STDP-based SNNs produce more
coherent features, which is one of the factors that can explain their lower perfor-
mance, since there is a smaller variety of filters. Moreover, the maximum pairwise
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Dataset SNN AE

𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒 𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒

CIFAR-10 0.252±0.252 0.285±0.249 0.154±0.144 0.145±0.109
CIFAR-10-bw 0.313±0.271 0.340±0.234 0.119±0.138 0.225±0.161
CIFAR-100 0.256±0.230 0.289±0.238 0.154±0.149 0.143±0.199

CIFAR-100-bw 0.320±0.238 0.343±0.223 0.121±0.137 0.234±0.166
STL-10 0.263±0.293 0.293±0.246 0.177±0.164 0.151±0.114

STL-10-bw 0.263±0.293 0.293±0.246 0.119±0.132 0.236±0.169

Table 5.9: Mean and standard deviation of feature coherence 𝜇 under all experi-
mental settings.

coherence between two SNN features is higher (max(𝜇𝑖𝑗) = 0.999 in most experi-
mental configurations) than the maximum coherence between AE-produced features
(max(𝜇𝑖𝑗) ∈ [0.898, 0.998]), i.e. SNNs can learn almost identical features; in AEs,
such features mostly correspond to dead units, whereas in SNNs they are significant
features that are repeated. This result shows the limits of WTA inhibition, which
should prevent features from reacting to the same patterns but fails to do so in
practice. This calls for more work on understanding inhibition mechanisms and
designing inhibition models that better prevent the co-adaptation of features.

5.5.4 Objective Function

One issue with STDP learning is that the objective function optimized by the
system is not explicitly expressed, unlike AEs, which minimize reconstruction
error. Identifying the criteria that are optimized by STDP rules would help to
better understand the related learning process and design learning rules for specific
tasks. This section check whether STDP rules embed reconstruction as a training
criterion, by investigating if features learned through STDP are suited for image
reconstruction, as those learned by AEs do.

To do so, the test images is reconstructed from the visual features. First,
individual patches are reconstructed: in AEs, the reconstructed patches are directly
provided by the decoder; in SNNs, patches are reconstructed as a linear combination
of the filters weighted by their activations for the current sample, like in an AE
with tied weights. Images are reconstructed from patches by averaging the values
of overlapping patches at each location.

Table 5.10 shows the reconstruction error of each feature extractor on the test
set of CIFAR-10, computed as the sum of squared errors between input images
and reconstructed images, averaged over the samples. The reconstruction error is
much higher for SNNs than AEs, which suggests that STDP does not learn features
that allow reconstruction. However, qualitatively, the results look different (see
samples in Figure 5.8): the edges of the objects are reconstructed, although with
less details than in the original images, but the global illumination is degraded. The
degradation of pixel intensities explains for a large part the increased reconstruction
error. This is best illustrated by the best and worst reconstructions (in the sense of
the mean squared error (MSE)) that are obtained using SNNs (see Figure 5.9): edges
are reconstructed correctly in both, but not pixel intensities. The reason for this
is that SNNs process DoG-filtered images, in which color intensities are discarded
and only edge information is retained. One could expect the reconstruction error
of SNNs to be much lower if they were able to process raw images directly. Also,
the lack of details around the edges could be blamed on the learned features being
too elementary and sparse, which prevents the reconstruction of complex patterns.
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(a) (b) (c) (d) (e)

Figure 5.8: Image reconstruction samples from the test sets of CIFAR-10 and
CIFAR-10-bw (top: pre-processed input images, bottom: reconstructed images).
(a) SNN features, DoG-filtered grayscale image (b) SNN features, DoG-filtered color
image (c) SNN features, grayscale and color DoG-filtered image (d) AE filters, color
image (e) AE filters, grayscale image.

(a) (b)

Figure 5.9: (a) Best (error: 1.60) and (b) worst (error: 15.38) reconstructions
from SNN features from the test set of CIFAR-10 (left: input images, right: recon-
structions).

These results show that, although this is not explicit in the learning rules, STDP
learns to reconstruct images, among other potential criteria. However, it is known
that minimizing reconstruction error is not sufficient to provide meaningful repre-
sentations [60]. This is why recent AE models include additional criteria such has
sparsity penalties [185] or Jacobian regularization [187]. How such criteria could
be implemented within STDP rules, as well as which other criteria are already
embedded in the STDP rules, are still open questions. Some work already show that
STDP can behave similarly to the independent component analysis (ICA) [193], the
principal component analysis (PCA) [194] and the non-negative matrix factorization
(NNMF) [110].

5.5.5 Using Whitening Transformations with Spiking Neural Networks

As shown previously in Section 5.4.4, it is necessary to apply some pre-processing
in order to learn useful features with natural colored images. Using on/off filtering

Dataset SNN AE

𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒 𝐧features = 𝟔𝟒 𝐧features = 𝟏𝟎𝟐𝟒

CIFAR-10 4.9429 4.4179 0.0802 0.0742
CIFAR-10-bw 4.9797 4.4628 0.00407 0.00472

Table 5.10: Average reconstruction errors on the test set of CIFAR-10.
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Figure 5.10: Histogram of the values after applying ZCA transformation on CIFAR-
10.

helps to improve the performance, but remains an unsatisfactory solution to achieve
good results. This is due to the information loss of this pre-processing. One solution
can be to use multi-scale on/off filtering, in order to increase the number of spatial
frequencies retained [195]. However, this alternative leads to a rapid growth of the
network because connections, and maybe neurons, need to be added for each scale.
A second solution is to use data whitening. This transformation leads to centered,
normalized, and decorrelated data. This pre-processing method has already shown
that it can improve the performance of traditional methods [196]. Zero component
analysis (ZCA) consists of finding a matrix 𝐖whiten that can be applied to data 𝐗
to get the whitened data 𝐗whiten:

𝐗whiten = 𝐖whiten𝐗 (5.11)

𝐖whiten can be computed from the eigenvectors and the eigenvalues of the covariance
matrix computed from 𝒳train:

𝚺 = 𝐔𝚲𝐔−1 (5.12)
with 𝚺 the covariance matrix, 𝐔 the eigenvectors matrix, and 𝚲 the diagonal matrix
of eigenvalues (𝚲 = diag(𝜆1, 𝜆2, … , 𝜆𝑛)). Parameter 𝑝 ∈ [0, 1] is the ratio of the
largest eigenvalues that are retained (i.e. the last remaining eigenvalues are set to
0, as in a PCA compression). Then, 𝐖whiten is computed following Equation 5.13
so that the covariance of the transformed data 𝚺 is 𝐈, the identity matrix:

𝐖whiten = 𝐔√(𝚲 + 𝜖)−1𝐔𝑇 (5.13)

with 𝜖 the whitening coefficient, which adds numerical stability and acts as a low
pass filter.

However, converting directly the whitened data 𝐗whiten into spikes with latency
coding does not allow to learn effective features, which leads to very low classification
rates (10%). But by converting extreme values (see Figure 5.10) as spikes with
the earliest timestamps (i.e. which represent the highest values in latency coding),
performances are greatly improved (54.95%). To do so, the whitened data 𝐗whiten
are scaled in [−1, 1], and then separated into two channels (one for positive values
and the other for negative values, like with on/off filtering):

𝑥on = max(0, 𝑥)
𝑥off = max(0, −𝑥)

(5.14)
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(a) 5 × 5, 𝑝 = 0.2, 𝜖 = 10−3

(b) 9 × 9, 𝑝 = 0.6, 𝜖 = 10−3

(c) 11 × 11, 𝑝 = 1.0, 𝜖 = 10−3

(d) 9 × 9, 𝑝 = 1.0, 𝜖 = 10−1

Figure 5.11: Examples of filter generated from ZCA transformation.

However, applying the whitening transformation is computationally expensive and
is not easily implementable on neuromorphic architectures because it requires a
dot product over the dimensionality of the data5. To bypass this issue, we propose
to replace the DoG kernel used in on/off filtering by a kernel computed with the
whitening transformation. This convolution kernel can be implemented in a way
similar to on/off filtering and can work on different sizes of inputs. To achieve
this, ZCA transformation is computed from patches of size 𝑝width × 𝑝height extracted
from the target dataset, where 𝑝width = DoGsize. It is now necessary to transform
the whitening matrix 𝐖whiten of dimension [𝑝width × 𝑝height, 𝑝width × 𝑝height] into three
kernels (one for each RGB channel) with the same dimensions as the DoG filters
([DoGsize, DoGsize]). An input matrix 𝐗 is created for each RGB channel with a
single value set to 1:

𝐗𝑖,𝑗,𝑘,𝑐 = { 1 if 𝑘 = 𝑐 and 𝑖 = DoGsize
2 and 𝑗 = DoGsize

2
0 otherwise (5.15)

with 𝑖, 𝑗, and 𝑘 the coordinates in matrix 𝐗 and 𝑐 the current RGB channel (Red=1,
Green=2, Blue=3). The dot product of the whitening matrix and these input
matrices (𝐖whiten𝐗) approximates the whitening transformation for each RGB
channel. Examples of kernels generated by this method and the resulting filtered
images are shown in Figure 5.11.

Some preliminary results are already available. However, these studies do
not provide an exhaustive search over the different parameters, but only evaluate

5The whitening transformation is even more expensive to compute than to apply to the data
because its requires to compute a matrix decomposition. However, this issue is not addressed in this
work.
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Figure 5.12: Example of filters learn with multiplicative STDP (𝛽 = 3.0) on whitened
CIFAR-10.

the impact of a subset of parameters when others are arbitrarily fixed. The
first experiments study the impact of the whitening transformation on the single
convolution layer of a SNN with 𝑛features = 128. Figure 5.12 shows examples of filters
learned with a multiplicative STDP. These filters are closer to the ones learned with
AEs (see Figure 5.7). Table 5.13 and Table 5.14 shows the impact of 𝑝 according to
the selected patch size with respectively multiplicative STDP and biological STDP.
Removing the lasts eigenvectors can slightly improve the results. An explanation to
these results may be that retaining only the most important eigenvalues forces STDP
to learn the most important feature of the images. Moreover, the larger dimension
of patches gives better results. Figure 5.11 shows that small patch size results in a
blurred whitened image, which can explain this difference of performances.

Table 5.15 focuses on the impact of the 𝜖 hyper-parameter. Using 10−2 gives
the best result (65.03%). This value removes many of the high spatial frequencies,
which can help again STDP to focus on important patterns. Very low value for 𝜖
(e.g. 10−5) degrades the results, maybe due to the greater numerical instability.

Finally, Table 5.16 shows that late 𝑡expected (0.8-0.9) leads to the best performance,
with 64.25% with 𝑡expected = 0.825. We also tried to measure the performance of a
three-layered SNN (We use the protocol described in Chapter 6 to train the multi-
layered network). On CIFAR-10, the performances are slightly improved (from
63.28% for the first convolution to 66.58% on the second convolution). However,
the results are different on STL-10 for an unknown reason: the performance
decreases at the output of the second convolution layer. These observations show
the benefit of using whitened data as an input to SNNs but calls for more studies in
the case of multi-layered networks.

5.6 Conclusion

In this chapter, SNNs equipped with STDP and AEs are compared for unsupervised
visual feature learning. Experiments on three image classification datasets showed
that STDP cannot currently compete with classical neural networks trained with
gradient descent, but also highlighted a number of properties of SNNs and provided
specific directions towards effective feature learning with SNNs. Specifically, this
chapter showed that:

• STDP-based SNNs are unable to deal naturally with RGB images; some
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Patch size 𝐩

0.2 0.4 0.6 0.8 0.8

5 × 5 55.25 56.70 58.95 59.61 59.50
7 × 7 56.42 59.10 59.77 60.35 59.45
9 × 9 57.62 58.97 59.72 60.22 60.04
11 × 11 56.97 59.05 59.84 60.45 59.90

Figure 5.13: Recognition rates on CIFAR-10 with a multiplicative STDP (𝛽 = 3.0),
using ZCA whitening according to the ratio of eigenvectors 𝑝 used and the patch
size (𝜖 = 0.1, 𝑡expected = 0.85).

Patch size 𝐩

0.2 0.4 0.6 0.8 0.8

5 × 5 57.09 61.94 63.65 63.70 63.20
7 × 7 59.97 63.96 93.91 63.17 63.34
9 × 9 62.34 64.57 63.52 63.9 63.94
11 × 11 62.11 64.39 64.53 64.05 54.53

Figure 5.14: Recognition rates on CIFAR-10 with a biological STDP (𝜏STDP = 0.1),
using ZCA whitening according to the ratio of eigenvectors 𝑝 used and the patch
size (𝜖 = 0.1, 𝑡expected = 0.85).

Patch size 𝝐

10−1 10−2 10−3 10−4 10−5

5 × 5 61.93 64.14 62.42 60.28 54.04
7 × 7 62.76 64.64 63.84 60.24 55.01
9 × 9 63.33 65.03 63.82 60.00 54.85
11 × 11 64.00 64.33 62.84 60.78 54.45

Figure 5.15: Recognition rates on CIFAR-10 with a biological STDP (𝜏STDP = 0.1),
using ZCA whitening according to the whitening coefficient 𝜖 and the patch size
(𝑝 = 1.0, 𝑡expected = 0.85).

𝐭expected
CIFAR-10 SLT-10

conv1 conv2 conv1 conv2

0.700 61.85 60.91 51.1857 44.2500
0.725 61.52 64.63 51.8125 44.7125
0.750 63.12 65.56 52.0125 47.1875
0.775 63.40 65.98 54.8875 50.6000
0.800 63.12 65.61 55.2875 50.3125
0.825 64.25 65.43 54.9875 50.8500
0.850 64.10 66.35 55.5125 49.4000
0.875 64.30 65.88 55.1750 51.1875
0.900 63.28 66.58 54.8750 50.2500
0.925 62.40 65.88 52.2750 48.5000
0.950 57.90 58.47 47.8000 44.3000
0.975 53.21 49.55 44.4000 39.6000

Figure 5.16: Recognition rate on CIFAR-10 with a biological STDP (𝜏STDP = 0.1),
using ZCA whitening according to 𝑡expected (𝑝 = 1.0, size = 9 × 9, 𝜖 = 10−2).
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5.6. Conclusion

pre-processing of the images is required to learn significant visual features.

• the common on-center/off-center image coding used in SNNs results in an
information loss, thus harming the classification accuracy; this information
loss is even more pronounced on color images;

• WTA inhibition results in overly sparse features and does not prevent the
co-adaptation of features in practice;

• STDP-based learning rules produce features that enable to reconstruct images
from the learned features, as AEs do, even though the features are not explicitly
optimized for this task. However, the quality of the reconstruction is harmed
by the limitations of the model.

Whitening is a solution to avoid the loss of information encountered with on/off
filtering. Preliminary results show the potential of this method. However, more
work remains necessary to offer mechanisms that approximate this transformation
while remaining implementable on neuromorphic architectures in an energy-efficient
way. Another direction is to design inhibition rules that promote distinctive patterns
and enforce the right level of activity sparsity; such rules should be “soft”, i.e.
allow more than one neuron to spike at once. Methods that control the level of
sparsity in AEs, as in [63], are good candidates but should be adapted to preserve
the locality of computations, which is a major asset of STDP-based SNNs. The
next chapter investigates different mechanisms of SNNs, such as the inhibition, the
threshold adaptation, and the STDP rule, in order to make effective multi-layered
SNNs. To this end, the threshold adaption rule introduced in this part will be
slightly modified.
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Chapter 6

Training Multi-layer SNNs with
STDP and Threshold Adaptation

Using deep hierarchical representations improves the expressiveness of models [46].
However, setting up a multi-layered SNN trained with STDP remains a challenge,
and only little work succeeds in providing effective models [150], [151]. One reason
is that SNN performances are highly sensitive to the model parameters. Since
SNNs have a large number of parameters and the simulation of these models
is time-consuming, performing an exhaustive search is not yet possible. Thus,
the parameters optimization step is laborious and non optimal explaining the
difficulties of getting SNNs that can compete with traditional methods. Reducing
the impact of parameter values, by using auto-adaptive parameters, or at least,
reducing the number of parameters, seems to be a key point in order to be able to
make SNNs viable. This chapter extends mechanisms developed in the previous
chapter in order to allow learning features in a multi-layer fashion. We modify
the threshold adaptation mechanism in order to improve the performance of the
network (see Section 6.2). Additionally, we propose a protocol to train multi-layered
networks. We experiment with multi-layered SNNs on the Faces/Motorbikes [151]
and MNIST [65] datasets and carry out multiple studies to evaluate the impact of
the threshold adaptation system, but also of the inhibition policy and of the STDP
rule. Finally, we test the combination of multiple networks trained with different
parameters to improve the classification rate thanks to the different patterns learned
by the network.

6.1 Network Architecture

The networks used in this chapter are composed of stacked FF layers. As in the
previous chapter, IF neurons are used in order to reduce the number of parameters.
Moreover, on/off filtering (i.e. only grayscale images are used), but also temporal
coding, are used in order to convert images into spikes train. For a layer 𝑙(𝑛), there
are 𝑙depth(𝑛) feature maps, each of them containing 𝑙width(𝑛) × 𝑙height(𝑛) neurons.
Three types of layers are used in this chapter: convolution, pooling, and fully-
connected layers. In the pooling layers, all the parameters are constant: neuron
thresholds and synaptic weights are fixed to 1. When a spike is triggered in its
receptive field, a pooling neuron directly fires a spike. This mimics a max-pooling
operation. A column 𝑞𝑥,𝑦(𝑛) designates the 𝑙depth(𝑛) neurons present at position
(𝑥, 𝑦) in the 𝑙depth(𝑛) features maps of 𝑙(𝑛).
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6.2 Training Multi-layered Spiking Neural Networks

The mechanisms used in the multi-layered SNNs are similar to these introduced in
the previous chapter. However, in order to simplify the model, no delay is used in
the network. This restriction allows to increase the parallelism in the model and
reduce the number of parameters. However, delays may play a major role in the
learning of temporal patterns. Section 6.2.1 extends the threshold adaptation rule
used in Section 5.2.1. Section 6.2.2 offers a spike-to-value conversion function to
interpret the output of the network and Section 6.2.3 describes the protocol used
to train multi-layered SNNs.

6.2.1 Threshold Adaptation Rule

The threshold adaptation rule described in Section 5.2.1 is reused. However, a
new parameter thmin is added, which limits the minimum value that the threshold
𝑣th can take. This constraint forces the neurons to integrate a minimum number
of spikes, and so, to reinforce a sufficient number of connections. This parameter
is usefull in some case (see Section 6.3.3) to ensure that neurons learn effective
patterns. Thus, the threshold update equation becomes:

𝑣th(𝑡) = max(thmin, 𝑣th(𝑡 − 1) + Δ1
th + Δ2

th) (6.1)

with Δ1
th and Δ2

th the threshold update computed respectively by Equation 5.2 and
Equation 5.2 and 5.3.

WTA inhibition drastically reduces the spiking activity, which can lead to poor
classification performances (see Section 5.5.2). For this reason, the inhibition
mechanism is removed during the inference stage (i.e. for training next layers or
for generating the feature vector 𝐠). An intermediate inhibition policy, named soft
inhibition, is also investigated in this chapter. This policy uses inhibition spikes,
which reduces the membrane voltage 𝑣 of the other neurons by a 𝑣inh constant, but
does not prevent them from firing.

6.2.2 Network Output

A new method is used to interpret the output of the network to take into account
the parameter 𝑡expected. Since latency coding is used, the earliest output spikes
will encode the highest values. Output values 𝑦 are computed according to the
expected 𝑡expected set in the output layer, following this equation:

𝑦 = min⎛⎜
⎝

1,max(0, 1 −
𝑡 − 𝑡expected

𝑡exposition − 𝑡expected
)⎞⎟

⎠
(6.2)

with 𝑡 the spike timestamp (set to +∞ if no spike occurs).

6.2.3 Training

Traditionally, convolution requires to perform non-local operations and to use
non-local memory since they use shared weights: columns need to communicate
with each other to share the same filters. A specific training protocol is used in
order to reduce the cost of the global communication needed by the convolutions.
One layer is trained at a time, from the layer closest to the input to the one at
the output of the network. During the training of a convolution layer, only one
column is activated to discard the usage of inter-column communications. Once the
layer is trained, its parameters (weights and thresholds) are fixed and are copied
onto the other columns of the layer. This operation is necessary since pooling
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SVM

Latency coding Output conversion

Input On/Off filters Convolution Pooling Convolution Pooling Dense Classifier

𝑙height (1)

𝑙width(1)

𝑙depth (1)

Figure 6.1: Network topology

layers require the same filters in adjacent columns. In order to keep the position
invariance brought by shared weights, random patches of size ℎwidth(𝑛) × ℎheight(𝑛)
are extracted from inputs of the layer. Unlike in [151], neurons do not react only to
the most salient part of each image.

6.3 Results

6.3.1 Experimental protocol

The protocol described in Section 5.4 is adapted to multi-layered SNNs. For each
trained layer, the training set is processed 𝑛epoch times. A simulated annealing
procedure is applied after every epoch: the learning rates (i.e. 𝜂w and 𝜂th) are
decreased by a factor 𝛼. This helps to converge to a stable state during the training.
Once the training is finished, the training set and the test set are processed by
the network, which converts all the samples into their output representation. If
the output layer has multiple columns (i.e. 𝑙width(𝑛) > 1 or 𝑙height(𝑛) > 1), sum-
pooling is applied over the positions of the feature maps to produce a feature vector
𝐠 = (𝑔1, ⋯ , 𝑔𝑥):

𝑦𝑘 =
𝑜width
∑
𝑖=0

𝑜height

∑
𝑗=0

𝑦𝑖𝑗𝑘 (6.3)

with 𝑦𝑖𝑗𝑘 the value of output of the network at position (𝑖, 𝑗) in feature map
𝑘 ∈ [0, 𝑜depth]. If the output layer has only one column, it directly outputs vector 𝐠.
An SVM with a linear kernel is trained over the output training set. SVM parameters
are not optimized (svm𝑐 = 1). Figure 6.1 shows the complete network topology.
Besides classification rates, the sparsity of the network is also investigated. The
sparsity is computed over the output vectors 𝐠 of the test set with the following
formula, used in Section 5.5.2.

All the results reported in this chapter are averaged over 10 runs. The default
parameters are reported in Table 6.1.

6.3.2 MNIST

Threshold Target Time

First, the impact of the parameter 𝑡expected is studied. It directly impacts both the
learned filters (Figure 6.2) and the classification performance (Figure 6.3). While
low values of 𝑡expected lead to very local patterns (Figure 6.2a), larger values lead to
more global patterns (Figure 6.2c). Using late 𝑡expected, and, so, training neurons to
integrate a large number of spikes, helps to improve the classification rate. However,
the performance decreases with very late 𝑡expected: the latest spikes, which encode the
lowest input values, are not useful for pattern classification. Networks with 𝑡expected =
0.75 yield state-of-the-art results for SNNs trained with STDP on the MNIST dataset:
98.47% (see Table 6.7 for competing approaches). The two update mechanisms
described in Equation 5.2 and Equation 5.3 are necessary to reach good classification
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Learning
𝛼 0.95 𝑛epoch 100

STDP
𝑤min 0.0 𝑤max 1.0 𝜂w(0) 0.1
𝛽 1.0 𝜏STDP 0.1 𝑤(0) ∼ 𝒰(0, 1)

Neural Coding
𝑡exposition 1.0

Threshold Adaptation
𝑡expected 0.7 𝜂th(0) 1.0 thmin 1.0 mV
𝑣th(0) ∼ 𝒢(5, 1) mV 𝑣inh 1.0 mV

Pre-processing
DoGcenter 1.0 DoGsurround 4.0 DoGsize 7

Table 6.1: Default SNN parameters used in the experiments. 𝒢(𝜇, 𝜎) is a normal
distribution centered in 𝜇 and with variance of 𝜎. 𝒰(𝑎, 𝑏) is a uniform distribution
in [𝑎, 𝑏].

Type 𝐡width × 𝐡height |ℱ| 𝐥stride 𝐥pad
Convolution 5 × 5 32 1 0
Pooling 2 × 2 32 2 0
Convolution 5 × 5 128 1 0
Pooling 2 × 2 128 2 0
Fully-connected 4 × 4 4096 1 0

Table 6.2: Architecture used with the MNIST dataset.

(a) 𝑡expected = 0.3 (b) 𝑡expected = 0.5

(c) 𝑡expected = 0.7 (d) 𝑡expected = 0.9

Figure 6.2: Filters learned w.r.t. 𝑡expected with multiplicative STDP.
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Figure 6.3: Recognition rates according to the 𝑡expected parameter with biologi-
cal STDP (𝜏STDP = 0.1).

rates. When Equation 5.3 is disabled in the threshold update, the homeostasis of
the system is not maintained, which leads to a classification rate of 94.54 ± 1.16%
when 𝑡expected = 0.75. When Equation 5.2 is disabled, controlling the type of pattern
learned becomes difficult and highly dependent on the initial values of the thresholds
𝑣th(0).

Using different 𝑡expected values across the layers decreases the performance (Ta-
ble 6.3). Let Δ𝑡 be the difference between the 𝑡expected parameters of two consecutive
layers. Since neurons of the previous layer are trained to fire at specific timestamps,
setting an earlier 𝑡expected (i.e. Δ𝑡 < 0) on the current layer results in missing spikes
from the previous neurons. Setting a later 𝑡expected (i.e. Δ𝑡 > 0) results in taking
into account spikes that come too late after the 𝑡expected of the previous layer. A
spike which arises too late compared to 𝑡expected means that the current pattern is
not similar to those usually recognized by the input neuron. With small values of
|Δ𝑡|, the performance of the network remains stable, which shows that the threshold
adaptation mechanism is noise-resistant to some extent. However large values for
|Δ𝑡| have a negative impact on the classification rate, especially when Δ𝑡 < 0. Δ𝑡
inversely proportional to the sparsity: positive values of Δ𝑡 tend to let neurons
integrate more spikes and, so, allow more neurons to fire, which decreases sparsity.
For Δ𝑡 = −0.20, the classification rate and sparsity are very low because the network
cannot generates any spike: the 𝑡expected of the second layer is defined at a timestamp
where no spikes have been generated yet by the first layer. Δ𝑡 = 0.01 yields the
best result: 99.53%. This small offset seems to reinforce the resistance to the noise,
without integrating spikes generated by unrelated patterns. These results show
that finding a single value for 𝑡expected is sufficient in the exhaustive search, and the
others 𝑡expected can be defined by using a very small or null Δ𝑡. This makes it easy
to set the threshold adaptation of a multilayer SNN.

Inhibition

Experiments are run in order to show the impact of the inhibition strategy on
recognition rates. The three inhibition policies detailed in Section 6.2.1 are compared.
Table 6.4 shows that increasing the hardness of inhibition during inference tends
to decrease the recognition rate. This can be related to the sparsity level. The
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𝚫𝐭 rr sp

-0.20 11.35 ± 00.00 0.0000 ± 0.0000
-0.10 85.56 ± 2.28 0.5129 ± 0.0230
-0.05 97.68 ± 0.14 0.2855 ± 0.0067
-0.01 98.36 ± 0.05 0.1568 ± 0.0068
0.0 98.47 ± 0.07 0.1365 ± 0.0052
+0.01 98.54 ± 0.10 0.1209 ± 0.0066
+0.05 98.43 ± 0.10 0.0754 ± 0.0082
+0.10 97.24 ± 0.24 0.0176 ± 0.0010
+0.20 92.43 ± 1.70 0.0004 ± 0.0016

Table 6.3: Result with different 𝑡expected variations. Δ𝑡 is the difference of 𝑡expected
between consecutive layers. 𝑇expected of the first layer is fixed to 0.75.

Layer rr sp

Inhibition policy
Conv1 84.28 ± 0.98 0.3389 ± 0.0148
Conv2 89.07 ± 0.74 0.6509 ± 0.0026
FC 61.82 ± 1.92 1.0000 ± 0.0000

Soft inhibition
Conv1 85.47 ± 0.99 0.2806 ± 0.0443
Conv2 96.14 ± 0.68 0.3984 ± 0.0171
FC 94.86 ± 0.17 0.8965 ± 0.0031

No inhibition
Conv1 84.71 ± 1.04 0.1538 ± 0.0069
Conv2 96.15 ± 0.17 0.1621 ± 0.0056
FC 98.47 ± 0.07 0.1365 ± 0.0052

Table 6.4: Recognition rates with the different inhibition policies for 𝑡expected = 0.75
and biological STDP (𝜏STDP = 0.1).
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STDP rule rr sp

Additive STDP 96.10 ± 0.33 0.8057 ± 0.0127
Multiplicative STDP (𝛽 = 2.0) 97.99 ± 0.10 0.6298 ± 0.0052
Multiplicative STDP (𝛽 = 3.0) 98.22 ± 0.06 0.3215 ± 0.0154
Multiplicative STDP (𝛽 = 4.0) 97.67 ± 0.11 0.1203 ± 0.0044
Biological STDP (𝜏STDP = 0.05) 98.04 ± 0.14 0.0622 ± 0.0072
Biological STDP (𝜏STDP = 0.1) 98.47 ± 0.07 0.1335 ± 0.0066
Biological STDP (𝜏STDP = 0.5) 98.16 ± 0.13 0.2220 ± 0.0096

Table 6.5: Recognition rate w.r.t. STDP rules (𝑡expected = 0.75).

(a) Additive STDP (b) Multiplicative STDP (c) Biological STDP

Figure 6.4: Filters learned in the first convolution w.r.t. STDP.

effect of inhibition, which is minimal in the first layer, is accentuated after each
layer. This effect strongly impacts both the sparsity and the recognition rate in the
fully connected layer. This effect is visible with soft inhibition, but is maximal with
the WTA policy: the sparsity of the fully-connected layer is 1, while the recognition
rate is only 63.43%. Maintaining higher levels of activity helps to learn better
representations.

STDP Rule

The effects of the STDP rules on the network classification rates and sparsity are
also tested, by using the three STDP rules described in Section 2.3.4: additive STDP,
multiplicative STDP and biological STDP (Table 6.5). Additive STDP gives a baseline
performance of 96.10% and a relatively high level of sparsity (0.8057). Figure 6.4a
shows that this STDP leads to binary weights (0 or 1) due to a saturation effect.
Multiplicative STDP reduces this effect using the 𝛽 parameter: large values of 𝛽
reduce drastically the number of weights close to 0 or 1 (Figure 6.4b). Table 6.5
shows that increasing 𝛽 decreases the sparsity. 𝛽 = 3.0 gives a classification rate
of 99.22% and a sparsity of 0.3215. Finally, the best performance is reached
with biological STDP with 𝜏STDP = 0.1 (98.47%). Decreasing this parameter also
reduces the sparsity. Figure 6.4c shows that filters learned by biological STDP
look different from the ones learned by other STDP rules. Indeed, additive and
multiplicative STDP rules never learn patterns that overlap on the on and off
channels (i.e. red and green pixels are always separated in the filters), because
the input coding used does not allow to generate a spike from both channels at
the same position. In contrast, biological STDP leads to filters with reinforced
connections on the two channels (yellow pixels), which means that biological STDP
is able to combine multiple patterns. Whatever the STDP rule, multiplicative or
biological STDP, networks with the lowest levels of sparsity do not yield the best
classification performances. The shapes of the fully-connected layer filters also
differ between the STDP rules. While additive and multiplicative STDPs lead to
easily identifiable digits (Figure 6.5a), biological STDP filters appear to be less clear
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(a) Additive STDP (b) Biological STDP

Figure 6.5: Filter reconstructions of units of fully connected layers learned with
different STDP rules.

|𝐚𝐢| 𝐭expected rr

4096 0.750 98.47 ± 0.07
2048 0.300, 0.750 98.51 ± 0.06
2048 0.650, 0.750, 98.53 ± 0.06
1024 0.300, 0.500, 0.700, 0.800 98.59 ± 0.06
1024 0.650, 0.700, 0.750, 0.800 98.60 ± 0.08
512 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.900 98.48 ± 0.05
512 0.675, 0.700, 0.725, 0.750, 0.775, 0.800, 0.825, 0.850 98.57 ± 0.08

Table 6.6: Recognition rates with multiple groups, each of them containing 𝑁
neurons with the same 𝑡expected. Each configuration has a total of 4096 output
neurons.

(Figure 6.5b). It seems that the non-linearity brought by the biological STDP allows
learning more complex features, which improve performances.

Multiple Target Timestamp Networks

Finally, networks that contain several groups of neurons with different 𝑡expected are
investigated. Representations learned with different target timestamps can contain
more diverse patterns, which can help the classifier. To do so, 𝑛 independent
networks are trained, where all neurons are set with a given 𝑡expected value. Then,
the output features of each group 𝑎 are merged by concatenating them into the
feature vector 𝐠. To make a fair comparison, each configuration produce a feature
vector of the same size (|𝐠| = ∑𝑛

𝑖=0 |𝑎𝑖| = 4096). Table 6.6 shows that using multiple
targets improves the classification performance. The network reaches a recognition
rate of 98.60%, which is better than existing comparable methods (Table 6.7). One
explanation can be that the combination of different 𝑡expected allows detecting more
varied patterns.

Model Description rr

Querlioz et al. 2011[111] Single layer SNN 93.50
Dielh et al. 2015[112] Single layer SNN 95.00
Tavanaei et al. 2016[150] Convolutional SNN+SVM 98.36
Kheradpisheh et al. 2018[151] Convolutional SNN+SVM 98.40
This work Convolutional SNN+SVM 98.60

Table 6.7: Comparison of recognition rates of different spiking models with STDP
from the literature.
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Type 𝐡width × 𝐡height |ℱ| 𝐥stride 𝐥pad
Convolution 5 × 5 32 1 2
Pooling 7 × 7 32 6 3
Convolution 17 × 17 64 1 8
Pooling 5 × 5 64 5 2
Convolution 5 × 5 128 1 2

Table 6.8: Architecture used on Faces/Motorbikes.
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Figure 6.6: Recognition rates on Faces/Motorbikes according to the 𝑡expected used.
The baseline is the best result reported in [151].

6.3.3 Faces/Motorbikes

Finally, the model introduced in this chapter is also tests on the Faces/Motorbikes
dataset used in [151], in order to ensure that it also performs well on more realistic
images. The dataset contains two classes extracted from the Caltech-101 dataset:
faces and motorbikes. Similarly to [151], images are resized to 250 × 160 pixels, then
converted into the grayscale format. The training set has 474 samples and the test
set has 759 samples. Since the training protocol introduced in this chapter differs
from [151] (Section 6.2.3), it is necessary to increase the number of filters in the
convolution layer and to use larger values for thmin (in the following experiment,
thmin = 8) to focus on patterns resulting from enough spikes. Additive STDP is
used in all the convolution layers. The detailed architecture is provided in Table 6.8.

This model gives results similar to those reported in [151] (Figure 6.6), where the
best reported result is 99.1%. When using 𝑡expected = 0.8, the model performs better
with an average of 99.46%. The learned filters are similar to [151] (Figure 6.7).

6.4 Discussion

The model introduced in this chapter is almost fully local and is unsupervised
from the input data to the input of the classifier. However, convolutions remain
an issue for implementing multilayered SNNs. Convolution columns are trained
independently from the others, but it is still necessary to copy the weight and
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(a) Convolution 1 (b) Convolution 2

(c) Convolution 3

Figure 6.7: Reconstruction of the receptive fields of filters learned on Faces/Motor-
bikes in the different layers.

threshold values to the other columns after training to mimics the weight sharing
mechanism. This is required to reconstruct the geometry of the feature maps, for
instance to apply pooling. In this work, a linear SVM is used to classify the output
of the network, in order to be able to compare this work to the literature [150],
[151]. However, in order to have a fully hardware-implementable SNN, using
bio-inspired classifiers seems to be inescapable. A recent work has succeeded in
using reward STDP, which is a form of reinforcement learning. This rule allows to
make a multilayered SNNs that includes a spiking classifier [183]. The performance
of this model with such learning rules should be investigated, while respecting
the locality constraint of the computations. Finally, results showed that 𝑡expected
is a parameter that has a strong impact on the classification performance of the
network. An interesting feature could be to introduce an auto-adaptable version of
this parameter, so that neurons can find by themselves the best timing for firing.
Such mechanisms would have the advantage of setting an optimal 𝑡expected value for
each feature independently.

6.5 Conclusion

Previous multilayered SNN models require a particular attention in setting neuron
thresholds, needing an exhaustive search to be optimized. Moreover, the optimal
values vary from one layer to another [151]. The threshold adaptation mechanism
studied in this chapter relies on a single parameter for all the layers and allows to
learn varied patterns. Experiments showed that this model leads to state-of-the-art
results with unsupervised SNNs followed by an SVM on MNIST (98.60%) and on
Faces/Motorbikes (99.46%). Removing the inhibition during the inference step
helps to reduce the sparsity of the model activity, which leads to an improvement
of the performance. Finally, studies of the impact of STDP rules showed that
biological STDP helps to improve the network performance by introducing non-
linearities.
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Chapter 7

Conclusion and future work

7.1 Conclusion

One of the main limitations of spiking neural networks (SNNs) is their poor
performances compared to artificial neural networks (ANNs), and notably deep
learning. This gap does not allow SNNs to process complex data, and so, to be used
in some computer visions applications. The motivation of this manuscript is to study
the spiking models in order to improve the performance of image classification tasks.
The solution must be as compatible as possible with neuromorphic hardware, in
order to take advantage of their energy efficiency. Thus, this manuscript focuses on
the spike-timing-dependent plasticity (STDP) rule, whose hardware implementation
has been extensively studied [28], [197], [198]. One avenue to reach this goal is the
study of multi-layered networks, which have proven their effectiveness with deep
learning. However, only little work succeeds in setting up multi-layered SNN [150],
[151].

The first contribution detailed in this manuscript is the development of SNN
simulators. Since the creation of hardware is a laborious and expensive process,
usage of software simulator is an interesting alternative to explore these models. The
first simulator presented is the neural network scalable spiking simulator (N2S3),
which is designed to be flexible and thus, is able to run a wide range of models
(see Section 3.1). As SNNs are still immature, it is interesting to be able to quickly
modify the different elements in these networks, such as the learning methods,
the neuron models, or the neural coding. This flexibility is exhibited on a case
study, by using three different approaches with different training methods on a
motion detection task. This tool is also intended to be scalable, thanks to the actor
paradigm used in the core of the simulator. However, N2S3 is not yet very effective
for simulating large networks. One of the main reasons is the synchronization
bottleneck, which currently requires that all timed events (e.g. spikes) go through a
global synchronizer. A second simulator, the convolutional spiking neural network
simulator (CSNNS), is intended to simulate a reduced number of models (e.g.
integrate-and-fire (IF) neurons and temporal coding) in a very efficient way (see
Section 3.2). Multi-layered SNNs tends to be large networks, which leads to long
computations times. Optimizing the simulation is critical to study these networks,
in order to be able to run them in a reasonable time. All the experiments reported
in this manuscript are either simulated using N2S3 (Chapter 4) or with CSNNS
(Chapter 5 and Chapter 6).

The next contribution focuses on the frequency loss problem, which prevents the
use of several layers in SNNs (see Chapter 4). Models used in the SNN literature [111],
[112] cannot be stacked because the activity across the layers drops drastically. In
this chapter, three mechanisms are proposed to avoid this issue: the target frequency
threshold (TFT), the binary coding, and the mirrored STDP. TFT is a threshold
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adaptation mechanism which trains neurons to reach a desired output frequency.
Then, binary coding is a way to convert images into spike trains in order to prevent
the loss of frequency. Finally, the mirrored STDP exploits the specificity of the binary
coding to improve the learning speed and the network stability. Section 4.2 shows
that the combination of the three mechanisms allows to maintain the frequency
at the output of the network but also to keep similar recognition rates. However,
binary coding has the drawback of losing information in the conversion process.

Chapter 5 proposes another threshold adaptation rule in order to allow STDP
to learn patterns on samples converted with latency coding. This coding, unlike
frequency and binary coding, allows to encode one continuous value with at most
one spike without any information loss. In the goal of making SNNs able to process
more complex data, the behavior of STDP with colored images is investigated
(CIFAR-10, CIFAR-100 and SLT-10). Training SNNs directly on RGB-images gives
poor filters. On/off filtering is a method that can improve the training of STDP, but
is only used in the literature on greyscale images. Multiple on/off filtering policies
are introduced in this chapter to test their performance on colored images. Different
measures (i.e. recognition rates, activity sparsity, filter coherence, reconstruction
error) are used to compare SNNs with sparse auto-encoders (AEs), a popular
unsupervised ANN. Notably, it is shown that the very high sparsity induced by
winner-takes-all (WTA) inhibition may lead to inefficient representations. Moreover
on/off filters lead to an information loss, which also decreases the performance.
However, Section 5.5.5 explores the replacement of on/off filters with the whitening
transformation, which does not retain only a specific frequency. The preliminary
results show the potential of this method, which reaches 66.58% on CIFAR-10.

Finally, Chapter 6 succeeds in setting up multi-layered SNNs trained with STDP.
The previous threshold adaptation rule is extended in order to better control
this mechanism. In addition, a protocol to train multi-layered SNNs is provided.
Different mechanisms are investigated, such as the STDP rule, the inhibition system,
or the threshold adaptation. This chapter shows that all the thresholds can be
optimized with a single hyperparameter (𝑡expected), and that this hyperparameter
allows to control the type of learned patterns. Moreover, biological STDP improves
the performance compared to additive and multiplicative STDP rules, probably due
to its additional non-linearity. Finally, removing the inhibition after training allows
to reduce the sparsity and to increase the recognition rate. This study allows to
improve the state-of-the-art results on both MNIST (98.60%) and Face/Motorbikes
(99.46%) datasets.

7.2 Future Work

Some points still need to be addressed for the purpose of producing energy-efficient
neuromorphic architectures able to compete with traditional methods. A first avenue
lays in the improvement of the simulation of SNNs (Section 7.2.1). Indeed, large
networks (e.g. deep learning), are required to process state-of-the-art datasets.
Building software simulators able to run efficiently very large SNNs is an important
goal in order to improve SNNs. However, the creation of scalable simulators is
challenging, and require more studies. A second avenue is the enhancement of the
performance of the spiking models (Section 7.2.2). The work begun in Chapter 5
should be continued, in order to address more complex datasets, such as ImageNet.
Different mechanisms still need to be studied in order to better master STDP learning.
A third avenue would aim to make the models described in this manuscript fully
compatible with hardware implementations (Section 7.2.3). To this end, all the
mechanisms used in the model should be in the spike domain and limited to local
computation and memory. The final goal of this avenue would be to realize a
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working hardware demonstrator.

7.2.1 Simulation of Large Scale Spiking Neural Networks

Even if recent studies improved the performances of SNNs on image classification
tasks, the gap between ANNs and SNNs remains huge. It seems important to be
able to test the ability of STDP on state-of-the-art vision datasets, such as ImageNet,
MS-COCO, or OpenImage (see Section 2.1.4). Processing these datasets may require
an increase in the size of networks, just as deep learning has taken advantage of the
addition of layers to surpass the state-of-the-art results. However, simulating large
SNNs on software is not easy at the moment because current software simulators
are not designed to do very large simulations in a reasonable time.

In order to optimize a SNN simulator to run large scale multi-layered networks,
the computations must be parallelized. There are two ways to do this according
to the Flynn taxonomy [199]: by applying the same operation on multiple data
(single instruction multiple data (SIMD)) or by simultaneously executing different
operations (multiple instruction multiple data (MIMD)). ANN simulation tends
to be parallelized in with SIMD, by the use of graphical processing units (GPUs).
Some work already offers implementations of SNN models on GPU [200], or the
integration of SNNs into ANN frameworks [201], so that the use of GPU backends
is possible. However, it is not possible to take advantage of the spatial and temporal
sparsity of SNN in SIMD architectures, since all data are updated at the same time.
It should be noted that some work focuses on optimizing sparse operations on
GPU [202], which can help to make SNN simulation on GPU more efficient.

The second option is the use of MIMD architectures. By using a manycore
processor or a distributed system, the computation can be divided into multiple
execution flows. As explained in Section 3.1, such a tool takes advantage of the
sparsity of SNNs to perform the computation only when it is necessary. However,
the main difficulty of this solution is the requirement of synchronization between the
different parallel units. Notably, such systems require that the messages (e.g. spikes)
exchanged between the different units are temporally coherent. N2S3 currently uses
a global synchronizer in the network, which ensures that no causality error can
arise, but requiring that all timed events pass through the synchronizer. This is the
main bottleneck that makes N2S3 inefficient to simulate large networks. Studies are
necessary to find more scalable systems, by offering a distributed synchronization
system for example. One avenue may be the usage of independent synchronizers
gathering part of the network where cycles exist, and thus, where causality errors
can arise [203].

7.2.2 Improving the Learning in Spiking Neural Networks

SNNs are not yet able to compete with ANNs, but several mechanisms need to be
studied further in order to improve the performance of these models. The work
started in this manuscript about the study of spike frequency and sparsity should
be continued. We have shown that it is both necessary to maintain sufficient activity
throughout the network and that too much sparsity can lead to poor performance.
More work needs to be done on inhibition systems. This system must be present
enough to be able to ensure that neurons are in competition and learn different
patterns, but at the same time it must let enough spikes pass through.

A second avenue, following the work done in this manuscript, is the usage of the
whitening transformation (see Section 5.5.5). The preliminary results presented in
this section show the benefits of using this method instead of on/off filtering, but more
studies are necessary to use zero component analysis (ZCA) with multi-layered SNNs.
A related study is the usage of similar transformations not only at the output of the
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network but also in the hidden layers. In ANNs, the use of batch normalization [204],
or decorrelated batch normalization [205], improves the performances because the
internal covariate shift is removed at the output of the layers. An interesting study
may be to investigate the presence of a similar phenomenon in spikes, and to find
mechanisms that perform a similar transformation in this case. Removing these
covariate shifts if these exist can be a good solution to improve performances of
STDP in the upper layers.

Finally, another solution to improve learning with STDP is the use of feedback
connections. Currently, STDP learns only from feedforward connections. However,
this is a heavy disadvantage compared to traditional methods, such as back-
propagation (BP). These methods use the product of feedforward activations and
feedback errors to update the weights. This way, weights are optimized according
to a global loss function. However, as seen in Section 2.3.3, regular BP, but also
the BP adapted to spikes, are not yet compatible with neuromorphic hardware,
for instance, because of the alternation between forward and backward steps. It
could be possible to find an intermediate system, between BP, which use a global
loss function, and the current STDP rules, which use only information local to the
connection. An intermediate solution can be to use a loss function in each neuron,
and to back-propagate the signal to only the previous layers thanks to feedback
connection. This reduces the issue of the alternation between forward and backward
steps since only two successive layers need to be synchronized. Some studies are
necessary to test whether this intermediate method is effective on complex data and
make sure that all mechanisms use only local memory and computation.

7.2.3 Hardware Implementation of Spiking Neural Networks

Current multi-layered SNNs trained with STDP are not fully implementable on
neuromorphic hardware. An important task is to ensure that these models are
compatible with dedicated architectures in order to take advantage of their energy
efficiency. In the models described in this manuscript, three major mechanisms are
not implemented in the spike domain: the pre-processing step, the shared filters in
convolution layers, and the classifier.

This manuscript mainly uses on/off filters as preprocessing, performed by the
convolution of a difference of Gaussians (DoG) kernel. However, this step can be
realized during the value-to-spike conversion, in order to be implemented directly
on neuromorphic hardware. Studies of the behavior of ganglions cells can be a
solution to find a suitable implementation of on/off filters [206]. In addition, some
studies are necessary to compare the performance of the spiking version of on/off
filters versus the DoG version.

Concerning the convolutions, the issue comes from the weight copy step (see
Section 6.2.3). Such mechanisms are required by the pooling layer, which calls for
a neighborhood of similar features to apply the reduction operation. To bypass
this requirement, two choices are possible: either to remove the pooling layer or
to maintain similar filters in the neighborhood. The first solution is easy to set up
but quickly reduces network performances. Pooling is useful because it reduces
the dimension of the data while improving the position invariance. Moreover,
pooling layers tend to increase the ratio of active neurons since only one spike in the
receptive field of the pooling neurons is able to trigger a fire. Maintaining a correct
frequency seems essential, according to the results presented in this manuscript.
In addition, sharing filters across the layers allows improvements in the positional
invariance of the system [2]. However, learning the filters independently should
not be an issue on natural images, since the geometry is correctly distributed over
the entire image.

Finally, it is necessary to incorporate the classification directly in the spike
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domain. Some existing work focuess on creating spiking classifiers. One of the most
straightforward ways is to use supervised STDP, which uses a teacher signal to force
neuron to learn desired patterns [207]. By forcing output neurons to fire when
they have to (i.e. when the class associated with the output neuron is presented),
the STDP rule will reinforce activated connections. It is also possible to apply
anti-STDP [208] on other neurons to perform the reverse procedure, and, so, to
prevent them firing when they should not. However, no studies exist yet that show
that such a classifier is able to process complex data. Reward-STDP [183] is also a
candidate to implement a spiking classifier. The idea is to modulate each synaptic
weight update according to a reward factor. However, as for BP, some work is
needed to find a solution to propagate the error signal with spikes. Some studies
are required to investigate the performances of the different solutions and their ease
of implementation, or to find a new one if these solutions are not satisfying.
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Appendix A

Code Examples

A.1 N2S3

Listing A.1: Example of an experiment on N2S3 without domain specific language
(DSL).
implicit val timeout = Config.longTimeout

// Creation of the simulator
val n2s3 = new N2S3("N2S3")

// Definition of the input pipeline
val inputStream = InputMnist.Entry >>
SampleToSpikeTrainConverter[Float, InputSample2D
[Float]](0, 22, 150 MilliSecond, 350 MilliSecond) >>
N2S3Entry

// Load datasets
val dataFile = N2S3ResourceManager
.getByName("mnist-train-images").getAbsolutePath

val labelFile = N2S3ResourceManager
.getByName("mnist-train-labels").getAbsolutePath

val dataTestFile = N2S3ResourceManager
.getByName("mnist-test-images").getAbsolutePath

val labelTestFile = N2S3ResourceManager
.getByName("mnist-test-labels").getAbsolutePath

// Creation of the network
val inputLayer = n2s3.createInput(inputStream)
val unsupervisedLayer = n2s3.createNeuronGroup()
.setIdentifier("Layer1")
.setNumberOfNeurons(30)
.setNeuronModel(LIF, Seq(
(MembranePotentialThreshold, 35 millivolts)))

inputLayer.connectTo(unsupervisedLayer,
new FullConnection(() => new SimplifiedSTDP))

unsupervisedLayer.connectTo(unsupervisedLayer,
new FullConnection(() => new InhibitorySynapse))

n2s3.create()

// Add visualizations
val connectionsIndex = new ConnectionIndex(inputLayer, unsupervisedLayer)

n2s3.addNetworkObserver(new SynapticWeightSelectGraphRef(
for(outputI <- 0 until unsupervisedLayer.shape.getNumberOfPoints) yield {
for(inputX <- 0 until InputMnist.shape.dimensions(0)) yield {
for(inputY <- 0 until InputMnist.shape.dimensions(1)) yield {
val input = inputLayer.getNeuronPathAt(inputX, inputY)
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val output = unsupervisedLayer.getNeuronPathAt(outputI)
connectionsIndex.getConnectionsBetween(input, output).head

}
}

},
SynapticWeightSelectGraph.heatMap, 4, 100))

// Run training
println("Start Training ...")
inputStream.append(InputMnist.DataFrom(dataFile, labelFile))
n2s3.runAndWait()

// Run testing
println("Start Testing ...")
unsupervisedLayer.fixNeurons()
val benchmarkMonitor = n2s3.createBenchmarkMonitor(unsupervisedLayer)

inputStream.append(InputMnist.DataFrom(dataTestFile, labelTestFile))
n2s3.runAndWait()

// Export results
println(benchmarkMonitor.getResult.evaluationByMaxSpiking)
benchmarkMonitor.exportToHtmlView("test.html")

// Destroy the simulator
n2s3.destroy()

A.2 N2S3 DSL

Listing A.2: Example of an experiment on N2S3 with DSL.
// Creation of the simulator
implicit val network: N2S3SimulationDSL = N2S3SimulationDSL()

// Definition of the input pipeline
network hasInput InputMnist.Entry >>
SampleToSpikeTrainConverter[Float, InputSample2D[Float]]
(0, 23, 150 MilliSecond, 350 MilliSecond) >>

N2S3Entry

// Load dataset
val dataFile = N2S3ResourceManager
.getByName("mnist-train-images").getAbsolutePath

val labelFile = N2S3ResourceManager
.getByName("mnist-train-labels").getAbsolutePath

val dataTestFile = N2S3ResourceManager
.getByName("mnist-test-images").getAbsolutePath

val labelTestFile = N2S3ResourceManager
.getByName("mnist-test-labels").getAbsolutePath

// Creation of the network
network hasInputNeuronGroup "input"
network hasNeuronGroup "l1" ofSize 30 ofModel LIF
"l1" hasParameters (MembranePotentialThreshold -> 35.millivolts)
"l1" connectsTo "l1" using FullConnection withSynapse InhibitorySynapse
"input" connectsTo "l1" using FullConnection withSynapse SimplifiedSTDP

network buildit

// Create visualizations
observeConnectionBetween("input", "l1")

// Run training
network trainOn MnistFileInputStream(dataFile, labelFile)
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// Run testing
network testOn MnistFileInputStream(dataTestFile, labelTestFile)

// Destroy the simulator
network destroyit

A.3 CSNN Simulator

Listing A.3: Example of an experiment on CSNNS.
// Creation of the experiment
Experiment<OptimizedLayerByLayer> experiment(argc, argv, "mnist");

// Definition of pre-processings
experiment.add_preprocessing<process::DefaultOnOffFilter>(7, 1.0, 4.0);
experiment.add_preprocessing<process::FeatureScaling>();

// Definition of the input converter method
experiment.input<LatencyCoding>();

// Add data to training set and test set
experiment.add_train<dataset::Mnist>(
"train-images.idx3-ubyte", "train-labels.idx1-ubyte");

experiment.add_test<dataset::Mnist>(
"t10k-images.idx3-ubyte", "t10k-labels.idx1-ubyte");

// Construct the network and set parameters
float t_obj = 0.75;
auto& conv1 = experiment.push_layer<layer::Convolution>("conv1", 5, 5, 32);
conv1.parameter<float>("annealing").set(0.95);
conv1.parameter<float>("min_th").set(1.0);
conv1.parameter<float>("t_obj").set(t_obj);
conv1.parameter<float>("lr_th").set(1.0);
conv1.parameter<Tensor<float>>("w").distribution<Uniform>(0.0, 1.0);
conv1.parameter<Tensor<float>>("th").distribution<Gaussian>(10.0, 1.0);
conv1.parameter<STDP>("stdp").set<stdp::Biological>(0.1, 0.1);
experiment.push_layer<layer::Pooling>("pool1", 2, 2, 2, 2);
auto& conv2 = experiment.push_layer<layer::Convolution>("conv2", 5, 5, 128);
conv2.parameter<float>("annealing").set(0.95);
conv2.parameter<float>("min_th").set(1.0);
conv2.parameter<float>("t_obj").set(t_obj);
conv2.parameter<float>("lr_th").set(1.0);
conv2.parameter<Tensor<float>>("w").distribution<Uniform>(0.0, 1.0);
conv2.parameter<Tensor<float>>("th").distribution<Gaussian>(30.0, 1.0);
conv2.parameter<STDP>("stdp").set<stdp::Biological>(0.1, 0.1);
experiment.push_layer<layer::Pooling>("pool2", 2, 2, 2, 2);
auto& fc1 = experiment.push_layer<layer::Convolution>("fc1", 4, 4, 4096);
fc1.parameter<float>("annealing").set(0.95);
fc1.parameter<float>("min_th").set(1.0);
fc1.parameter<float>("t_obj").set(t_obj);
fc1.parameter<float>("lr_th").set(1.0);
fc1.parameter<Tensor<float>>("w").distribution<Uniform>(0.0, 1.0);
fc1.parameter<Tensor<float>>("th").distribution<Gaussian>(30.0, 1.0);
fc1.parameter<STDP>("stdp").set<stdp::Biological>(0.1, 0.1);

// Setting of the number of training epoch per layer
experiment.add_train_step(conv1, 100);
experiment.add_train_step(conv2, 100);
experiment.add_train_step(fc1, 100);

// Add visualizations
conv1.plot_threshold(true);
conv1.plot_reconstruction(true);
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// Create outputs
auto& fc1_out = experiment.output<TimeObjectiveOutput>(fc1, t_obj);
fc1_out.add_postprocessing<process::FeatureScaling>();
fc1_out.add_analysis<analysis::Activity>();
fc1_out.add_analysis<analysis::Coherence>();
fc1_out.add_analysis<analysis::Svm>();

// Run the experiment
experiment.run(10000);

Listing A.4: Example of a log automatically generated with CSNNS.
16:10:24 4/6/2019
Random seed: mnist_27

Run start at 16:10:24 4/6/2019
Input data [28, 28, 1]
Train:
#1: Mnist(/hd-share/datasets/mnist/train-images.idx3-ubyte,
/hd-share/datasets/mnist/train-labels.idx1-ubyte)[60000]

Test:
#1: Mnist(/hd-share/datasets/mnist/t10k-images.idx3-ubyte,
/hd-share/datasets/mnist/t10k-labels.idx1-ubyte)[10000]

Preprocessing 1 [28, 28, 2]:
Process.DefaultOnOffFilter {

center_dev: 1,000000
filter_size: 7
surround_dev: 4,000000

}

Preprocessing 2 [28, 28, 2]:
Process.FeatureScaling {
}

Input layer [28, 28, 2]
InputConverter.LatencyCoding {
}

Layer 1: conv1 [24, 24, 32]
Layer.Convolution {

annealing: 0,950000
filter_height: 5
filter_number: 32
filter_width: 5
lr_th: 1,000000
min_th: 1,000000
padding_x: 0
padding_y: 0
stdp: STDP.Biological {

alpha: 0,100000
tau: 0,100000

}
stride_x: 1
stride_y: 1
t_obj: 0,750000
th: Gaussian(mean: 8,000000, dev: 0,100000) [32]
w: Uniform(min: 0,000000, max: 1,000000) [5, 5, 2, 32]

}

Layer 2: pool1 [12, 12, 32]
Layer.Pooling {

filter_height: 2
filter_number: 32
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filter_width: 2
padding_x: 0
padding_y: 0
stride_x: 2
stride_y: 2

}

Layer 3: conv2 [8, 8, 128]
Layer.Convolution {

annealing: 0,950000
filter_height: 5
filter_number: 128
filter_width: 5
lr_th: 1,000000
min_th: 1,000000
padding_x: 0
padding_y: 0
stdp: STDP.Biological {

alpha: 0,100000
tau: 0,100000

}
stride_x: 1
stride_y: 1
t_obj: 0,750000
th: Gaussian(mean: 10,000000, dev: 0,100000) [128]
w: Uniform(min: 0,000000, max: 1,000000) [5, 5, 32, 128]

}

Layer 4: pool2 [4, 4, 128]
Layer.Pooling {

filter_height: 2
filter_number: 128
filter_width: 2
padding_x: 0
padding_y: 0
stride_x: 2
stride_y: 2

}

Layer 5: fc1 [1, 1, 4096]
Layer.Convolution {

annealing: 0,950000
filter_height: 4
filter_number: 4096
filter_width: 4
lr_th: 1,000000
min_th: 1,000000
padding_x: 0
padding_y: 0
stdp: STDP.Biological {

alpha: 0,100000
tau: 0,100000

}
stride_x: 1
stride_y: 1
t_obj: 0,750000
th: Gaussian(mean: 10,000000, dev: 0,100000) [4096]
w: Uniform(min: 0,000000, max: 1,000000) [4, 4, 128, 4096]

}

Training step:
Layer conv1 -> 100 epochs
Layer conv2 -> 100 epochs
Layer fc1 -> 100 epochs
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Output 3 of fc1 [1, 1, 4096]: mnist_27-fc1
OutputConverter.TimeObjectiveOutput {

t_obj: 0,750000
}

Output 3, Postprocess 1 [1, 1, 4096]:
Process.FeatureScaling {
}

Output 3, Analysis: 1
Analysis.Activity {
}

Output 3, Analysis: 2
Analysis.Svm {

c: 1,000000
}

Load 60000 train samples from Mnist(
/hd-share/datasets/mnist/train-images.idx3-ubyte,
/hd-share/datasets/mnist/train-labels.idx1-ubyte)[60000]

Load 10000 test samples from Mnist(
/hd-share/datasets/mnist/t10k-images.idx3-ubyte,
/hd-share/datasets/mnist/t10k-labels.idx1-ubyte)[10000]

mnist_27-fc1, analysis Activity:
===Activity===
* train set:
Sparsity: 0.151873
Active unit: 88.8559%
Quiet: 0%
* test set:
Sparsity: 0.153138
Active unit: 88.6765%
Quiet: 0%
mnist_27-fc1, analysis Svm:
===SVM===
classification rate: 98.2% (9820/10000)

Run end at 17:50:51 4/6/2019
Duration: 1h 40m 27s
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Acronyms

AE auto-encoder. 17, 24, 28, 41–43, 46, 73, 77,
78, 80, 82–88, 91, 93, 106

AER address-event representation. 50
ANN artificial neural network. 13, 14, 16, 23, 24,

28, 33, 35, 37, 39–42, 61, 70, 105–108

BCM Bienenstock-Cooper-Munro. 39
BNN binary neural network. 70
BP back-propagation. 24, 40–43, 46, 108, 109

CD contrastive divergence. 25
CMOS complementary metal-oxide semiconductor.

15, 58
CNN Convolutional neural network. 28, 32, 34,

41, 43
CPU central processing unit. 45, 58
CSNNS convolutional spiking neural network

simulator. 4, 6, 17, 49, 58–60, 105, 113, 114

DBN deep belief network. 25, 40, 41
DoG difference of Gaussians. 22, 39, 40, 76, 81,

87, 88, 90, 108
DSL domain specific language. 52, 60, 111, 112
DVS dynamic vision sensor. 34

EA evolutionary algorithm. 44
EIF exponential integrate-and-fire. 31

FF feed-forward. 32, 50, 54, 56–58, 95
FPGA field-programmable gate array. 14, 15, 45
FPPA field-programmable analog array. 15

GD gradient descent. 24, 40
GPU graphical processing unit. 45, 58, 107

ICA independent component analysis. 88
IF integrate-and-fire. 30, 31, 42, 43, 49, 74, 95,

105
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IoT Internet of things. 14, 16

JVM Java virtual machine. 50

LAT leaky adaptive threshold. 38, 61, 62, 65–68,
75

LIF adaptive exponential integrate-and-fire. 31
LIF leaky integrate-and-fire. 31, 38, 40–44, 49,

61, 64, 65, 74
LSTM long short-term memory. 34
LTD long-term depression. 37, 39, 42, 43, 64
LTP long-term potentiation. 37, 39, 42, 43, 55,

63, 64

MIMD multiple instruction multiple data. 107
MLP multi-layer perceptron. 23, 41, 43
MNIST Modified-NIST. 3–6, 16, 17, 25, 26, 40, 42,

44, 50, 52, 59, 65, 66, 68, 79, 80, 84, 95, 97,
98, 104

MSE mean squared error. 87

N2S3 neural network scalable spiking simulator.
3, 4, 6, 17, 49–53, 58–60, 105, 107, 111, 112

NNMF non-negative matrix factorization. 88
NOMFET nanoparticle organic memory field-effect

transistor. 15

PCA principal component analysis. 88, 89
PCM phase change memory. 15
PSP post-synaptic potential. 42

QIF quadratic integrate-and-fire. 31

RBF radial basis function. 42
RBM restricted Boltzmann machine. 25, 77
RC reservoir computing. 54, 56–58
ReLU rectified linear unit. 41, 42
ReRAM resistive RAM. 15
RGB red green blue. 19, 76, 81, 82, 85, 90, 91,

106

SGD stochastic gradient descent. 24
SIFT scale-invariant feature transform. 22
SIMD single instruction multiple data. 45, 58, 107
SNN spiking neural network. 3, 4, 14–17, 19, 28,

31, 33–42, 44–46, 49, 50, 52, 56, 58, 59, 61,
65, 70, 73, 75, 77–88, 91, 93, 95–99, 102–108

STDP spike-timing-dependent plasticity. 3–6, 16,
17, 37, 40, 42–44, 46, 54, 55, 57, 61, 63–65,
68–71, 73, 75, 76, 78, 82–84, 86–88, 91–93,
95, 97–109

STT-RAM spin-torque transfer RAM. 15
SURF speeded-up robust features descriptor. 22
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SVM support vector machine. 23, 44, 59, 79, 84,
85, 97, 102, 104

TFT target frequency threshold. 62, 65–68, 70,
105

TPU tensor processor unit. 28

URL uniform resource locator. 50, 51

VLSI very large-scale integration. 15

WTA winner-takes-all. 37, 61–63, 65, 66, 70, 75,
76, 86, 87, 93, 96, 101, 106

ZCA zero component analysis. 89, 90, 92, 107
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List of Symbols

Generic Parameters

𝛼 Annealing factor. 97, 98
∗ Convolution operator. 32, 33, 39, 40
𝛿 Dirac function. 30, 43
𝜂 Learning rate. 37–39, 43, 44, 54, 55, 80
𝛾 Update factor. 62, 65
𝜆 Eigenvalue. 89
𝒢 Normal distribution. 53, 63, 98
𝒰 Uniform distribution. 98
𝜇 Coherence measure. 86, 87
𝐈 Identity matrix. 89
𝐔 Eigenvectors matrix. 89
𝚲 Eigenvalue diagonal matrix. 89
𝚺 Covariance matrix. 89
KL Kullback-Liebler divergence. 78
pdmax Perpendicular distance. 56
pd Perpendicular distance. 56
sp Sparseness measure. 85, 86, 100, 101
𝑚Θ Trajectory orientation. 56
𝑚maxΘ Maximum trajectory orientation. 56
𝑚minΘ Minimum trajectory orientation. 56
𝑚S Trajectory shift. 56
𝑚V Trajectory velocity. 56
𝑛epoch Number of epochs. 97, 98
𝑝 Ratio of non-null eigenvector. 89–92
𝑡 Timestamp. 28–31, 34–36, 38, 39, 43, 53,

62–64, 69, 75, 76, 96
𝑥 Input value. 30, 32, 34–37, 41, 56, 63, 66,

74, 77, 89
𝑦 Output value. 35, 37, 96, 97

Neuron Parameters

𝐹actual Actual frequency. 35, 38, 39, 62, 65–68
𝐹expected Expected frequency. 38, 39, 62, 64–68
𝐹post Post-synaptic frequency. 39
𝐹pre Pre-synaptic frequency. 39
Δ𝐹 Relative frequency difference. 66–68
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Neural Coding Parameters

Δth Threshold update variation. 75, 76, 96
Θ+ Adaptive threshold increase constant. 38, 65
Θleak Adaptive threshold leak time constant. 38,

65
Θ Adaptive threshold. 38
𝜂th Threshold learning rate. 62, 65, 75, 76, 80,

97, 98
thmin Minimum threshold value. 96, 98, 103
𝜏leak Neuron leakage factor. 31, 38, 64, 65
𝜃th Frequency threshold. 39
𝑐m Membrane capacitance. 30, 31
𝑟m Membrane resistance. 31, 38, 65
𝑡ref Refractory duration. 30, 31, 38, 65
𝑣exc Spike voltage. 28, 30
𝑣inh Inhibitory spike voltage. 96, 98
𝑣rest Membrane resting potential. 30, 31, 65, 80
𝑣th Membrane potential threshold. 30, 31, 38,

62, 65, 75, 76, 80, 96, 98, 99
𝑣 Membrane potential. 30, 31, 64, 74, 96
𝑧 Input current. 30, 31, 38

Synapse Parameters

Δd Synaptic delay update. 54, 55
Δw Synaptic weight update. 37, 42, 43, 55, 64
𝛽 STDP parameter that controls the saturation

effect. 43, 64, 65, 80, 83, 91, 92, 98, 101
𝜂w+ Weight learning rate in LTP. 42, 43, 64, 65,

80
𝜂w− Weight learning rate in LTD. 42, 43, 64, 65,

80
𝜂w Weight learning rate. 37, 55, 97, 98
𝜏STDP STDP time constant. 37, 55, 92, 98–101
𝑑max Maximum synaptic delay. 76, 80
𝑑min Minimum synaptic delay. 76, 80
𝑑 Synaptic delay. 36, 44, 54–56, 75
𝑟actual Actual synaptic activity trace. 43, 44
𝑟expected Expected synaptic activity trace. 43, 44
𝑡LTP LTP window duration. 43, 64
𝑡update Update interval duration. 62
𝑤max Maximum synaptic weight. 36, 43, 64, 65,

80, 83, 98
𝑤min Minimum synaptic weight. 36, 43, 64, 65,

80, 83, 98
𝑤 Synaptic weight. 36, 38, 39, 42–44, 56, 64,

70, 77, 78, 83, 98

Neural Coding Parameters

𝐹max Maximum frequency. 35, 62, 65
𝜎wave Wave timing variance. 63–65
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Pre-Processing Parameters

𝑓in Value-to-spike conversion function. 34, 63,
74

𝑓out Spike-to-value conversion function. 34, 35,
76

𝑛wave Number of waves generated for each sample.
64, 68

𝑡exposition Exposition duration. 35, 36, 62, 63, 65,
74–76, 80, 96, 98

𝑡pause Pause duration. 35, 36, 62–65, 74
𝑡wave Wave duration. 63–65
𝑡wave Wave timing. 63
𝑥th Input value threshold. 62, 65

Network Topology

ℱ Filter set. 32, 98, 103
ℒ Layer set. 32
𝒩 Neuron set. 32, 57, 58
𝒮 Synapse set. 32, 57, 58
𝑎 Sub-network. 102
ℎheight Filter height. 32, 33, 97, 98, 103
ℎwidth Filter width. 32, 33, 97, 98, 103
ℎ Filter. 32
𝑙depth Layer depth. 32, 33, 76, 95, 97
𝑙height Layer height. 32, 33, 95, 97
𝑙output Output layer. 62, 65–69
𝑙pad Padding. 33, 98, 103
𝑙stride Stride. 33, 79, 80, 98, 103
𝑙width Layer width. 32, 33, 95, 97
𝑙 Layer. 32, 34, 95
𝑛patches Number of patches. 78
𝑛 Neuron. 29, 32, 34, 55
𝑜depth Output depth. 97
𝑜height Output height. 79, 97
𝑜width Output width. 79, 97
𝑝height Patch height. 78–80, 90
𝑝width Patch width. 78–80, 90
𝑞 Convolution column. 95
𝑟height Pooling y size. 79, 80
𝑟width Pooling x size. 79, 80
𝑠 Synapse. 29, 32

Pre-Processing Parameters

𝜖 Whitening coefficient. 89–92
𝐖whiten Whitening matrix. 89, 90
𝐗whiten Whitened image matrix. 89
DoGcenter Variance of center Gaussian. 39, 40, 80, 98
DoGsize Size of DoG filter. 39, 40, 80, 90, 98
DoGsurround Variance of surround Gaussian. 39, 40, 80,

98
DoG Difference of Gaussians operator. 39, 40
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Spike Parameters

𝑥off Off channel value. 40, 89
𝑥on On channel value. 40, 89

Image Classification

Φ Model hyper-parameters. 24, 77, 78
̂𝜌 Actual sparsity. 78

𝜅 Normalization factor. 78, 80, 84, 86
𝒞 Class set. 20, 21, 79
𝒳test Image test set. 22–24, 79
𝒳train Image train set. 22–24, 78, 79, 89
𝒴test Label test set. 22, 23
𝒴train Label train set. 22, 23
svm𝑐 SVM cost parameter. 23, 97
𝜌 Expected sparsity. 62, 64, 78, 80, 84, 86
𝐗 Image matrix. 19–21, 23, 39, 40, 77, 78, 89,

90
�̂� Image reconstruction. 77, 78
𝐛 Bias. 77
𝐠 Feature vector. 20, 21, 76–78, 85, 86, 96, 97,

102
rr Recognition rate. 23, 56, 57, 66–69, 99–103
𝜐 Sparsity factor. 78, 80, 84, 86
𝑐 Class label. 20, 21, 23, 55
𝑓c Classification function. 20, 21, 23
𝑓dec Decoder function. 25, 77
𝑓ec Image classification function. 21, 24
𝑓enc Encoder function. 24, 77
𝑓e Feature extraction function. 20, 21, 23, 24,

77
𝑓obj Objective function. 24, 73, 77, 78
𝑓𝜎 Activation function. 77
𝑔 Feature. 20, 85, 86, 97
𝑛features Number of features. 21, 77–88, 91
𝑥depth Image depth. 19, 21
𝑥height Image height. 19, 21, 77
𝑥width Image width. 19, 21, 77

Energy Notations

𝑒dynamic Dynamic energy. 57, 58
𝑒fire Energy consumed by a firing event. 57
𝑒spike Energy consumed by a spike. 57
𝑒static Static energy. 57, 58
𝑒total Total energy. 57, 58
𝑝neuron Power dissipated by a neuron. 57
𝑝synapse Power dissipated by a synapse. 57

Spike Parameters

Δ𝑡 Timing difference. 37, 43, 57, 64, 99, 100
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Spike Parameters

𝒟 Fire set. 57
ℰ Spike set. 30, 57, 62, 67, 68
𝑒 Spike. 30
𝑓spike Spike kernel. 30
𝑡expected Expected timestamp. 75, 80, 91, 92, 96–104,

106
𝑡post Post-synaptic timestamp. 36, 37, 42, 43, 54,

55, 64
𝑡pre Pre-synaptic timestamp. 36, 37, 42, 43, 54,

55, 64
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