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Abstract

In combination with Deep Neural Networks (DNNs), several Reinforcement Learning (RL)

algorithms such as ”Q-learning” or ”Policy Gradient” are now able to achieve super-human

performances on most Atari Games as well as the game of Go. Despite these outstanding

and promising achievements, such Deep Reinforcement Learning (DRL) algorithms require

millions of samples to perform well, thus limiting their deployment to all applications where

data acquisition is costly . The lack of sample efficiency of DRL can partly be attributed to

the use of DNNs, which are known to be data-intensive in the training phase. But more im-

portantly, it can be attributed to the type of Reinforcement Learning algorithm used, which

usually perform a very inefficient undirected exploration of the environment. For instance,

Q-learning and Policy Gradient rely on randomization for exploration. In most cases, this

strategy turns out to be very ineffective to properly balance the exploration needed to discover

unknown and potentially highly rewarding regions of the environment, with the exploitation

of rewarding regions already identified as such. Other RL approaches with theoretical guaran-

tees on the exploration-exploitation trade-off have been investigated. It is sometimes possible

to formally prove that the performances almost match the theoretical optimum. This line

of research is inspired by the Multi-Armed Bandit literature, with many algorithms relying

on the same underlying principle often referred to as ”optimism in the face of uncertainty”.

Even if a significant effort has been made towards understanding the exploration-exploitation

dilemma generally, many questions still remain open. In this thesis, we generalize existing

work on exploration-exploitation to different contexts with different amounts of prior knowl-

edge on the learning problem. We introduce several algorithmic improvements to current

state-of-the-art approaches and derive a new theoretical analysis which allows us to answer

several open questions of the literature. We then relax the (very common although not very

realistic) assumption that a path between any two distinct regions of the environment should

always exist. Relaxing this assumption highlights the impact of prior knowledge on the in-

trinsic limitations of the exploration-exploitation dilemma. Finally, we show how some prior

knowledge such as the range of the value function or a set of macro-actions can be efficiently

exploited to speed-up learning. In this thesis, we always strive to take the algorithmic com-

plexity of the proposed algorithms into account. Although all these algorithms are somehow

computationally ”efficient”, they all require a planning phase and therefore suffer from the

well-known ”curse of dimensionality” which limits their applicability to real-world problems.

7



Contents

Nevertheless, the main focus of this work is to derive general principles that may be combined

with more heuristic approaches to help overcome current DRL flaws.
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Résumé

Combinés à des réseaux de neurones profonds (”Deep Neural Networks”), certains algo-

rithmes d’apprentissage par renforcement tels que ”Q-learning” ou ”Policy Gradient” sont

désormais capables de battre les meilleurs joueurs humains à la plupart des jeux de con-

sole Atari ainsi qu’au jeu de Go. Malgré des résultats spectaculaires et très prometteurs,

ces méthodes d’apprentissage par renforcement dit ”profond” (”Deep Reinforcement Learn-

ing”) requièrent un nombre considérable d’observations pour apprendre, limitant ainsi leur

déploiement partout où l’obtention de nouveaux échantillons s’avère coûteuse. Le manque

d’efficacité de tels algorithmes dans l’exploitation des échantillons peut en partie s’expliquer

par l’utilisation de réseaux de neurones profonds, connus pour être très gourmands en don-

nées. Mais il s’explique surtout par le recours à des algorithmes de renforcement explo-

rant leur environnement de manière inefficace et non ciblée. Ainsi, des algorithmes tels que

Q-learning ou encore Policy-Gradient exécutent des actions partiellement randomisées afin

d’assurer une exploration suffisante. Cette stratégie est dans la plupart des cas inappro-

priée pour atteindre un bon compromis entre l’exploration indispensable à la découverte

de nouvelles régions avantageuses (aux récompenses élevées), et l’exploitation de régions

déjà identifiées comme telles. D’autres approches d’apprentissage par renforcement ont été

développées, pour lesquelles il est possible de garantir un meilleur compromis exploration-

exploitation, parfois proche de l’optimum théorique. Cet axe de recherche s’inspire no-

tamment de la littérature sur le cas particulier du problème du bandit manchot, avec des

algorithmes s’appuyant souvent sur le principe ”d’optimisme dans l’incertain”. Malgré les

nombreux travaux sur le compromis exploration-exploitation, beaucoup de questions restent

encore ouvertes. Dans cette thèse, nous nous proposons de généraliser les travaux existants

sur le compromis exploration-exploitation à des contextes différents, avec plus ou moins de

connaissances a priori . Nous proposons plusieurs améliorations des algorithmes de l’état de

l’art ainsi qu’une analyse théorique plus fine permettant de répondre à plusieurs questions

ouvertes sur le compromis exploration-exploitation. Nous relâchons ensuite l’hypothèse peu

réaliste (bien que fréquente) selon laquelle il existe toujours un chemin permettant de relier

deux régions distinctes de l’environnement. Le simple fait de relâcher cette hypothèse per-

met de mettre en lumière l’impact des connaissances a priori sur les limites intrinsèques du

compromis exploration-exploitation. Enfin, nous montrons comment certaines connaissances

a priori comme l’amplitude de la fonction valeur ou encore des ensembles de macro-actions
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peuvent être exploitées pour accélérer l’apprentissage. Tout au long de cette thèse, nous nous

sommes attachés à toujours tenir compte de la complexité algorithmique des différentes méth-

odes proposées. Bien que relativement efficaces, tous les algorithmes présentés nécessitent une

phase de planification et souffrent donc du problème bien connu du ”fléau de la dimension”, ce

qui limite fortement leur potentiel applicatif (avec les méthodes actuelles). L’objectif phare

des présents travaux est d’établir des principes généraux pouvant être combinés avec des

approches plus heuristiques pour dépasser les limites des algorithmes actuels.
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gentilezza mostratemi in ogni occasione. Senza te, questo lavoro non avrebbe preso vita! Le

tue osservazioni mi hanno spronato ad andare in profondità ed esigere coerenza da me stesso.
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1 Introduction

1.1 Topic of the thesis

In this thesis we study the problem of a “rational agent” evolving in an unknown “environ-

ment”. The goal of the agent is to learn a “good” behavior (according to some notion of

preferences) from the experience directly collected while exploring the environment.

Reinforcement Learning (RL) formalizes this problem through an “economic” perspective:

the agent aims at maximizing some notion of cumulative reward (or equivalently, at min-

imizing a cumulative loss). In order to account for the presence of random events in the

environment, it is usually assumed that the agent satisfies Von Neumann–Morgenstern’s

axioms of rationality (Von Neumann and Morgenstern, 1947). Under these axioms, Von

Neumann–Morgenstern’s “utility theorem” implies that the “preferences” of the agent can be

expressed as maximizing the expectation of a certain utility function (which corresponds to

the cumulative reward in an RL context).

The environment of an RL problem, or RL “task”, is traditionally modeled by a Markov

Decision Process (MDP). An MDP consists of a set of states (usually functions of some

observables) and actions. When the agent decides to “play” a certain action in a given state,

it receives some (possibly random) reward and moves to the next state according to a certain

probability distribution over the state space. By definition, this type of process satisfies the

Markov property i.e., future events depend only upon the present state and chosen action,

and not the whole past history. This restrictive assumption enables to considerably simplify

the problem. It is always possible to expand the state space so as to enforce the Markov

property, at the expense of increasing the complexity of the problem. In practice, the size of

the state space must be traded-off with the accuracy of the Markov property.

While evolving in an MDP, an agent aims at identifying which control policy to execute

i.e., which action to perform depending on past observations. When the MDP is completely

known, finding an “optimal” policy is a dynamic programming problem (Bellman, 1954). An

even more challenging setting is when the MDP is unknown and has to be learned (RL

problem). In this thesis, we restrict attention to online RL. In this setting, data about the

environment becomes available in a sequential order as the agent explores the MDP. As the
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MDP is being explored, the agent needs to update its behavior so as to be able to make better

decisions. But unlike in other branches of Machine Learning like supervised learning , any

present decision impacts future observations. As a consequence, the agent has to deal with

two conflicting objectives, namely:

1. collecting information about the dynamics and reward of the environment which may

allow to make better decisions in the future (exploration),

2. using the experience gathered so far to maximize the chances to gain as much reward

as possible quickly (exploitation).

This problem is known as the exploration-exploitation dilemma. The work presented in this

thesis focuses on the exploration-exploitation dilemma in an on-line RL setting, under various

assumptions, and in different contexts. This problem was first studied in the simplified case

of Multi-armed bandit (MAB) in the seminal works of Thompson (1933a); Lai and Robbins

(1985). Since then, considerable progress has been made although many open questions still

remain unanswered.

1.2 Motivations

One of the long-standing goal of Artificial Intelligence (AI) is to design robust, autonomous

agents able to perform well in complex, real-world environments. Reinforcement Learning

provides a promising framework to achieve some of these goals as evidenced by recent empiri-

cal achievements. In combination with Deep Learning techniques, RL algorithms are now able

to achieve super-human performances on Atari games (Mnih et al., 2015b) or the challenging

game of Go (Silver et al., 2016, 2017; Silver et al., 2017). Nevertheless, Deep Reinforcement

Learning (DRL) algorithms require millions of samples to be trained, and can perform very

poorly in environments with sparse reward like Atari 2600 game Montezuma’s Revenge. In

such environments, the agent only observes a reward signal after completing specific series

of actions over extended periods of time, making the exploration of the environment very

challenging. In other domains, samples can be expensive to collect (computationally or in

terms of actual cost). Unfortunately, most of potential real-world applications of RL have

these characteristics.

The lack of sample efficiency of DRL is a major obstacle to its deployment in real-world

applications. This lack of sample efficiency mainly comes from the exploration strategy used,

which often relies on randomization to discover unknown regions of the environment (e.g.,

ε-greedy strategies may require an exponential amount of time in the parameters of the MDP

to converge). We say that the exploration is undirected . A major open question in RL is

how to design efficient directed exploration strategies that make best use of all the prior

information available about the problem being solved. The work of this thesis is motivated

by a better understanding of the exploration-exploitation dilemma in RL, and the impact of

prior knowledge on the intrinsic difficulty of this dilemma. We hope this work helps suggest

promising research directions to improve the sample-efficiency of existing RL algorithms.
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1.3. Scientific approach

1.3 Scientific approach

Instead of restricting attention to very specific RL tasks/applications, we analyse the the-

oretical properties of some general RL problems. We study various settings, which mostly

differ by the amount of prior knowledge available to the learning agent. For all these different

settings, we analyse the learning limitations (e.g., impossibility results) and derive learning

algorithms that attempt to achieve the best possible exploration-exploitation performance

given these limitations.

While efficient exploration-exploitation strategies in RL are directly inspired by the MAB

literature, RL poses specific challenges (e.g., how “local” uncertainty propagates through

the Markov dynamics), which requires a more sophisticated theoretical analysis. Most of the

algorithms that have been analysed theoretically belong to one of the following two categories:

1. optimistic algorithms,

2. posterior sampling (also known as Thomson sampling) algorithms.

Optimistic algorithms implement the “Optimism in the face of uncertainty” principle which

essentially prescribes to play the optimal policy of the most rewarding environment com-

patible with the current level of uncertainty (often quantified by confidence sets). Posterior

sampling is a Bayesian approach that involves sampling a statistically plausible set of envi-

ronments (a posterior distribution) and selecting the best policy. The sampling distribution is

then updated based on new observations. While both methods can be proved to achieve good

exploration-exploitation performance in MAB (Kaufmann et al., 2012), so far optimistic ap-

proaches appear more promising in the general RL setting. For this reason, all the algorithms

presented in this thesis are of optimistic nature.

For all the proposed algorithms, we apply a unified statistical analysis and systematically

rely on the same mathematical tools/arguments. This allows to easily compare settings and

to better understand the impact of assumptions on the learning capabilities.

The statistical analysis of RL algorithms help make a clear distinction between the intrinsic

difficulty of an RL task (e.g., Montezuma) and the lack of efficiency of the algorithm used

(e.g., DQN). Unfortunately, none of the algorithms proposed in this thesis scale to large

dimensional problems due to the notorious “curse of dimensionality” that also appear in

dynamic programming (Bellman, 1954). Despite this lack of scalability, we hope to provide

insightful principles that can inspire future research and algorithm design.

1.4 Open research questions of the literature

We list two very general research questions that were open at the beginning of this work in

2015 and will be only partly answered in the rest of the thesis.

• What is the best exploration-exploitation trade-off an RL algorithm can achieve

and how? This question is the main leitmotiv of the thesis. In the next chapter we
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will see that the learning capabilities of any learning algorithm are intrinsically limited,

and these limitations can be statistically quantified. One natural objective is to design

algorithms that can achieve the best trade-off given these inherent restrictions. Back

in 2015, no existing algorithm had been proved “optimal” in this sense. This question

is very general and the answer is of course problem-dependent and depends on many

different aspects of the setting studied. For a more technical and detailed overview of

some specific sub-questions, one may refer to the presentation given by Ortner (2016).

• Under which conditions hierarchical approaches (such as options) help speed-up

the learning process? The option framework was developed to incorporate temporally

extended actions and hierarchical reasoning to RL. The motivation is to mimic the

ability of humans to identify and exploit the hierarchical structure of many RL tasks

which naturally decompose into easier subtasks. It is believed that this partly explains

how we (humans) manage to learn so well. Unfortunately, a formal understanding of

how and when options are efficient was still missing.

1.5 Outline of the thesis

The thesis is organized as follows:

• Chapter 2. This chapter provides a brief introduction to the exploration-exploitation

dilemma in RL and reviews the state-of-the-art literature relevant for the rest of the

thesis. At first, we review the concept of Markov Decision Process and several optimality

criteria. After the introduction of a dynamic programming algorithm known as value

iteration, we briefly review the stochastic shortest path problem. In the second part,

we focus on the exploration-exploitation literature in the specific case of infinite horizon

undiscounted setting. We formally define a useful exploration-exploitation performance

measure named “regret” and present several regret upper and lower-bounds. The reader

who is already familiar with these topics may skip this chapter.

• Chapter 3. In this chapter, we present and analyse UCRLB, a variant of the learning

algorithm UCRL2 (Jaksch et al., 2010). We prove that our version of the algorithm

achieves better regret guarantees (i.e., exploration-exploitation trade-off), thus answer-

ing some of the open-questions on the gap between upper and lower regret bounds.

All the other learning algorithms presented in this thesis will share many algorithmic

bricks with UCRLB, and the structure of the regret proofs will be re-used across all

chapters. In order to prepare for subsequent chapters, we prove intermediate results

in their full generality. Several key passages of the regret proofs are presented from a

slightly different perspective than is usually done in the existing literature (e.g., proof

of optimism, bound on the optimistic bias). We recommend to carefully go through the

entire chapter before reading the rest of the thesis.

• Chapter 4. In this chapter, we provide the first learning algorithm achieving near-

optimal regret guarantees when the diameter of the MDP is infinite i.e., some states

cannot be reached. This answers one of the open questions of the literature. We show
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that such setting poses specific challenges and we derive an impossibility result that we

believe is new to the exploration-exploitation literature. This is all the more surprising

as it appears to apply to most RL tasks encountered in practice.

• Chapter 5. This chapter extends the work of Bartlett and Tewari (2009) by showing

how to exploit prior knowledge on the range of the optimal bias span of the MDP to

improve the learning performance (the regret). The methodology and mathematical

tools used in this chapter provide a lot of insights on the minimal key properties needed

to derive regret guarantees using an optimistic UCRL2-like approach. It also highlights

the importance of focusing on operators (rather than MDPs) to derive and analyse RL

algorithms. This follows the initial ideas of Bellman (1954) developed in the context of

planning, and later extended to different RL settings.

• Chapter 6. In this last chapter, we analyze the exploration-exploitation trade-off in the

presence of options. Our results show when options provide a useful prior knowledge

to address the exploration-exploitation dilemma.
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2 Statistical analysis of the exploration-
exploitation dilemma in RL

In this chapter we give a brief overview of the state-of-the-art literature on exploration–

exploitation in RL. In Sec. 2.1, we formally define the notion of Markov Decision Process

(MDP) used to mathematically describe the environment in which the learning agent evolves.

An MDP describes a discrete-time decision problem where at each time step, the agent can

choose between different available “actions” and is given some form of immediate motivation

encoded into a “reward function”. Because some decisions may have long-term consequences,

it is not always easy to identify the best “policy” (mapping observations to actions) even

when the MDP is completely known (planning setting). We describe how to perform efficient

planning in this case. Identifying the optimal policy becomes even more challenging when the

MDP is unknown (learning setting). This problem is the focus of Sec. 2.2, where we survey the

literature on exploration–exploitation in the infinite horizon undiscounted setting. We present

several algorithms that can be proved to efficiently balance exploration and exploitation, and

discuss their limitations.

2.1 Markov Decision Processes

In this section we briefly introduce the formalism of Markov Decision Processes and present

several notions of optimality . We also recall all well-known results that will be useful for the

next chapters (see e.g., Puterman, 1994; Bertsekas, 2007). We mainly follow the notations of

Puterman (1994).

2.1.1 Definitions

States, actions, rewards and transitions

A Markov Decision Process M is formally defined as a 4-tuple 〈S,A, r, p〉. S andA =
⋃
s∈S As

respectively denote the state and action space. When in state s, an agent can choose to play

any of the actions contained in As. After playing action a in state s, the agent receives a
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Figure 2.1: Graphical illustration of an MDP with 3 states (s0, s1 and s2) and 2 actions per
state (a0 and a1).

random reward with expected value r(s, a), and then moves to a new state in S sampled

according to a stationary distribution p(·|s, a). More precisely, the probability that the new

state is s′ is denoted p(s′|s, a). By definition, p(·|s, a) ∈ ∆S where

∆S :=
{
q ∈ [0, 1]S :

∑
s∈S q(s) = 1

}
is the S-dimensional probability simplex.

Definition 2.1

The sampled reward and next state only depend on s and a and are independent of every-

thing else. In this thesis, we restrict attention to MDPs with finite state space and denote

by S = |S| the total number of states. We will consider MDPs with finite as well as compact

action spaces1. When the action space is finite, we will denote by A = maxs∈S |As| the

maximal number of actions available in every state. All sampled rewards are assumed to be

bounded and without loss of generality, we assume that they lie in [0, rmax] where rmax > 0.

When the action space is compact , we further assume that for any two states s, s′ ∈ S,

a 7→ r(s, a) and a 7→ p(s′|s, a) are continuous functions of a. Under these assumptions and

–unless stated otherwise– all the results of this Chapter hold for both finite and compact

action spaces. Although the action space is state-dependent, in the rest of the thesis, we will

slightly abuse notation and denote by S ×A the set of “admissible” state-action pairs i.e., the

set {(s, a) : s ∈ S, a ∈ As}. An example of graphical representation of an MDP is given in

Fig. 2.1.

Sequential decision making

In this thesis, we assume that an agent can only make “decisions” at discrete time steps (often

called “epochs”) and so we exclusively focus on discrete sequences indexed by t ∈ N+, where

N+ := N\{0} is the set of (strictly) positive integers. At any time t ≥ 1, the agent is in state

st and plays action at. The (random) reward earned by the agent and the next state are

respectively denoted by rt and st+1. This procedure is repeated thus generating a sequence

of the form (s1, a1, r1, . . . , st, at, rt, . . . ) that we call a “history” (sometimes called a “sampled

path”). The set of all possible histories up to time t ≥ 1 is formally defined as

Ht :=
{

(s1, a1, r1, . . . st−1, at−1, rt−1, st) : ∀l ≤ t, sl ∈ S, al ∈ Asl , rl ∈ [0, rmax]
}
. (2.1)

1In this thesis, a compact set always refer to the compact subset of a metric space.
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Policies and induced stochastic processes

The set of all probability distributions over the state space S (resp. action space A) is

denoted by P(S) (resp. P(A)). For any t ≥ 1, a decision rule dt : Ht → P(A) maps

histories of past observations (i.e., past states, actions and rewards) to distributions over

actions. The set of decision rules is denoted DHR where HR stands for “history-dependent”.

This is the most general definition of decision rule we can think of. Decisions based on future

events are forbidden to avoid causal inconsistency. We also introduce two specific types of

decision rules. A Markov randomized decision rule d : S → P(A) maps states to distributions

over actions while a Markov deterministic decision rule d : S → A maps states to actions.

Markov decision rules only take into account the current state and completely ignore previous

observations. The subset of Markov randomized decision rules is denoted DMR, while the

subset of Markov deterministic decision rules is denoted DMD. For any Markov decision rule

d ∈ DMR, Pd ∈ RS×S and rd ∈ RS denote the transition matrix and reward vector associated

with d i.e.,

Pd(s′|s) :=
∑
a∈As

d(a|s)p(s′|s, a) and rd(s) :=
∑
a∈As

d(a|s)r(s, a), for all s, s′ ∈ S, (2.2)

where d(a|s) is the probability to sample a in state s when using d.

A policy π = (d1, d2, d3 . . . ) ∈
(
DHR

)N+
is a sequence of decision rules. At every time step

t ≥ 1, an agent executing policy π samples an action at from the distribution dt(ht) that

only depends on the past “observed” trajectory ht ∈ Ht. The set of all policies is denoted

by Π. A stationary policy π = (d, d, . . .) =: d∞ repeatedly applies the same Markov decision

rule d ∈ DMR over time. The set of stationary policies defined by Markov randomized (resp.

deterministic) decision rules is denoted by ΠSR (resp. ΠSD). In the rest of the thesis, we will

slightly abuse notations and use d and π interchangeably when π = d∞ ∈ ΠSR is stationary.

For a given MDP M , a policy π ∈ Π and an initial distribution over states µ1 ∈ P(S),
the induced sequence (s1, a1, r1, . . . , st, at, rt, . . . ) is a stochastic process with a well-defined

probability distribution (Puterman, 1994, Section 2.1.6) (in particular, the items st, at and

rt are random variables). In the rest of the thesis, we will denote by Pπ(·|s1 ∼ µ1) the

probability measure associated with this stochastic process and denote by Eπ[·|s1 ∼ µ1] the

corresponding expectation. When there is ambiguity on which MDP we are considering, we

use M as a subscript PπM (·|s1 ∼ µ1) to denote the probability in MDP M .

In the special case where the policy π ∈ ΠSR is stationary, the induced sequence of visited

states (s1, s2, . . . ) is a specific stochastic process called a (discrete-time stationary) Markov

Chain (MC). On the other hand, the stochastic process corresponding to the sequence of states

and rewards (s1, r1, s2, r2, . . . ) is a (discrete-time stationary) Markov Reward Process (MRP).

The interested reader may refer to Puterman (1994, Appendix A) for a brief overview of the

theory on Markov Chains and Markov Reward Processes, and to Bremaud (1999); Grinstead

and Snell (2003) for more details.

We classify MDPs depending on the chain structure of stationary policies (i.e., depending

on how states are connected to each other through the dynamics). For the following definition,
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we assume the reader to be familiar with the notions of transient and (positive) recurrent

states and/or class of a Markov Chain (for more details, refer to Puterman (1994, Appendix

A)).

We say that an MDP is:

1. ergodic if the Markov Chain induced by any deterministic stationary policy consists

of a single recurrent class (i.e., all states are visited infinitely often with probability

1 independently of the starting state)

2. unichain if the Markov Chain induced by any deterministic stationary policy consists

of a single recurrent class plus a –possibly empty– set of transient states (i.e., there

exists a subset of states that are visited infinitely often with probability 1 independently

of the starting state)

3. communicating if for every pair of states (s, s′) ∈ S, there exists a deterministic

stationary policy under which s′ is accessible from s in finite time with non-zero

probability,

4. weakly communicating if the state space can be partitioned into two subsets SC

and ST (with ST possibly empty), such that for every pair of states (s, s′) ∈ SC,

there exists a deterministic stationary policy under which s′ is accessible from s in

finite time with non-zero probability, and all states in ST are transient under all

deterministic stationary policies.

When we want to emphasize that we do not make any of the above assumptions but rather

consider a general MDP, we will use the terminology “multi-chain” MDP.

Definition 2.2 (Classification of MDPs)

In this thesis, we will see that the chain structure of the MDP can limit the performance

of an (optimal) RL algorithm.

2.1.2 Finite horizon problems

Now that we have formally defined how an agent sequentially interacts with its environment

in the MDP framework, we need to formulate the problem we want to solve i.e., the goal of

the agent. Intuitively, the agent aims at executing a policy maximizing the sum of collected

rewards
∑
t rt. Unfortunately, this series will often diverge as t → +∞ and it is a priori

not obvious how to compare infinite quantities. A first simple setting where this problem

does not occur is when the agent maximizes the cumulative reward up to a fixed horizon

H i.e., maximizes
∑H
t=1 rt. Since (rt)t≥1 is a stochastic process, this sum cannot always

be maximized and the agent will try to maximize the expected value instead (in line with

Von Neumann–Morgenstern’s axioms of rationality (Von Neumann and Morgenstern, 1947)).

Formally, in the finite horizon setting –with horizon H– the goal is to solve the following

optimization problem:

sup
π∈Π

{
Eπ
[
H∑
t=1

rt

∣∣∣∣∣s1 ∼ µ1

]}
(2.3)
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Algorithm 1 Backward Induction

Input: Operators L : RS 7→ RS and G : RS 7→ DMR, horizon H
Output: Optimal n-step expected cumulative sum of rewards v∗n and n-step optimal policy

π∗n for n ∈ {1 . . . H}
1: Initialize vH+1 := 0
2: for n = H . . . 1 do
3: (v∗n, d∗n) := (Lv∗n+1, Gv

∗
n+1) . Lv∗n+1 and Gv∗n+1 can be computed simultaneously

4: π∗n ← (d∗n, . . . , d∗H)
5: end for

where the initial state s1 is sampled from distribution µ1 ∈ P(S). It is well known (see e.g.,

Puterman, 1994, Chapter 4) that there always exists an optimal policy π∗ = (d∗1, d∗2, . . . , d∗H)
solution to (2.3) for any µ1 ∈ P(S) and such that for all H ≥ t ≥ 1, d∗t ∈ DMD i.e., d∗t is

Markov deterministic and independent of the initial state distribution.

For any Markov decision rule d ∈ DMR, we define Ld the Bellman evaluation operator of d

as

∀v ∈ RS , Ldv := rd + Pdv. (2.4)

We also define L the optimal Bellman operator

∀v ∈ RS , Lv := max
d∈DMD

{
Ldv

}
, (2.5)

as well as the greedy operator2

∀v ∈ RS , Gv ∈ arg max
d∈DMR

{
Ldv

}
. (2.6)

It is always possible to compute an optimal policy π∗ of (2.3) by backward induction as

described in Alg. 1. The following proposition is a well-known result of the literature on

dynamic programming (Puterman, 1994, Section 4.3).

Proposition 2.1

For all n = 1 . . . H and all s ∈ S, the value functions v∗n and policies π∗n returned by Alg. 1

satisfy

v∗n(s) = max
π∈Π

Eπ
[
H∑
t=n

rt

∣∣∣∣∣sn = s

]
and π∗n = (d∗n, . . . , d∗H) ∈ arg max

π∈Π
Eπ
[
H∑
t=n

rt

∣∣∣∣∣sn = s

]

A direct consequence of Prop. 2.1 is that π∗ = (d∗1, . . . , d∗H) is a maximizer of (2.3) for any

µ1 ∼ P(S) and µᵀ1v
∗
1 is the corresponding maximum.

2We break ties arbitrarily when several greedy decision rules exist. It is always possible to choose d ∈ DMD

but for the sake of generality, we allow any greedy randomized decision rule DMR.
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2.1.3 Infinite horizon problems

Maximizing the cumulative sum of rewards only up to a pre-defined horizon H is not adapted

to all problems. In many scenarios, there is no “obvious” way to define what a “good” horizon

is. Most of the time, we ideally want an horizon that is as big as possible i.e., such as

H → +∞. In this section, we review several well-established optimality criteria in the

infinite horizon setting .

Discounted optimality

One of the most commonly used optimality criterion in infinite horizon problems is discounted

optimality . Instead of maximizing a finite sum of rewards, the idea is to maximize an infinite

sum of rewards discounted by a fixed pre-defined discount factor 0 < γ < 1 i.e.,

sup
π∈Π

{
Eπ
[+∞∑
t=1

γt−1rt

∣∣∣∣∣s1 ∼ µ1

]}
(2.7)

Since 0 < γ < 1 and rt ∈ [0, rmax], the infinite sum of rewards is a geometric series and

remains bounded between 0 and rmax/(1 − γ). The series always converges and is called

the value function of policy π. It will be denoted vπγ . The maximization of (2.7) is therefore

well-defined. It has long been known (Puterman, 1994, Chapter 6) that there always exists an

optimal policy π∗ solution to (2.7) for all initial distributions µ1 ∈ P(S) such that π∗ ∈ ΠSD

i.e., there exists a stationary deterministic optimal policy that does not depend on the initial

distribution µ1 ∈ P(S). This makes the solution of (2.7) even “simpler” than the solution

of (2.3) (the optimal policy associated to (2.3) is not stationary in general). Moreover, the

following proposition holds.

Proposition 2.2

There exists a unique solution v∗γ to the fixed-point equation v∗γ = Lγv
∗
γ where Lγ is the

discounted optimal Bellman operator i.e., Lγv := maxd∈DMD

{
rd + γPdv

}
for all v ∈ RS

(see Eq. 2.5). In addition, for all s ∈ S,

v∗γ(s) = max
π∈Π

{
Eπ
[+∞∑
t=1

γt−1rt

∣∣∣∣∣s1 = s

]}

Finally, a stationary policy π∗ = (d∗)∞ ∈ ΠSR is optimal (i.e., solution to (2.7)) if and

only if d∗ = Gγv
∗
γ ∈ arg maxd∈DMR

{
rd + γPdv

∗
γ

}
i.e., π∗ is a greedy policy with respect

to v∗γ.

Prop. 2.2 holds both for finite and compact action spaces and is merely a direct consequence

of Banach fixed-point theorem applied to the γ-contractive operator Lγ in `∞-norm (0 < γ <

1). Due to Prop. 2.2, it is always possible to compute an optimal policy π∗ of (2.7) by first

finding a solution v∗γ to the discounted Bellman optimality equation v∗γ = Lγv
∗
γ and then
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Algorithm 2 (Discounted) Value Iteration

Input: Operators Lγ : RS 7→ RS and Gγ : RS 7→ DMD, discount factor γ ∈]0, 1[, accuracy
ε ∈]0, rmax[

Output: Value function v ∈ RS and stationary deterministic policy π ∈ ΠSD

1: Initialize n = 0 and v0 := 0
2: v1 := Lγv0

3: while sp (vn+1 − vn) := max{vn+1 − vn} −min{vn+1 − vn} > (1−γ)ε
γ do . Loop until

termination
4: Increment n← n+ 1
5: (vn+1, dn) := (Lγvn, Gγvn) . Lγvn and Gγvn can be computed simultaneously
6: end while
7: Set v := vn and π := (dn)∞

considering a greedy policy w.r.t. v∗γ . In order to find an ε-approximate solution (in `∞-norm)

to (2.7), it is possible to apply the same iterative scheme as in the finite horizon case (Alg. 1)

but with few modifications, as reported on Alg. 2. This algorithm is known as value iteration.

Since Lγ is a γ-contraction, value iteration always converges: limn→+∞ vn = v∗γ (this is also a

consequence of the Banach fixed point theorem). Therefore, Alg. 2 always stops after a finite

number of iterations and the policy π returned by Alg. 2 is such that ‖vπγ − v∗γ‖ ≤ ε. Finally,

the maximum of (2.7) is equal to µᵀ1v
∗
γ .

The discounted setting is particularly well-suited for problems with a pre-defined random

horizon H that follows a geometric distribution with parameter 1−γ (note that in Sec. 2.1.2,

H is deterministic). In this view, the agent is seen as“tossing a coin”at every time steps t ≥ 1
and stopping collecting rewards in the MDP with probability 1 − γ (and keeping collecting

rewards with probability γ). Then, the expected discounted sum of rewards corresponds

exactly to the expected total sum of rewards (accounting for the random horizon H) i.e.,

Eπ
[+∞∑
t=1

γt−1rt

∣∣∣∣∣s1 ∼ µ1

]
= Eπ

[
H∑
t=1

rt

∣∣∣∣∣s1 ∼ µ1, H ∼ Geom(1− γ)
]
.

The expected value of H is 1/(1 − γ) and so the discounted setting somehow resembles the

finite horizon setting with H = Θ(1/(1 − γ)). As a result, it suffers the same problem as

before: in many scenarios there is no obvious way to define γ and we want to set it as close

to 1 as possible i.e., γ → 1.

Gain optimality

We now present the infinite horizon undiscounted setting which uses the gain –or long-term

average reward– as optimality criterion. Formally, in this setting the agent aims at solving

the following optimization problem:

sup
π∈Π

{
lim inf
T→+∞

Eπ
[

1
T

T∑
t=1

rt

∣∣∣∣∣s1 ∼ µ1

]}
. (2.8)
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Since for all t ≥ 1, rt lies in [0, rmax] (by assumption), so does 1/T ·
∑T
t=1 rt. When the policy

is stationary i.e., π ∈ ΠSR, the lim inf in Eq. 2.8 actually matches the lim sup. The limit is

therefore well-defined and is called the gain (Puterman, 1994, Section 8.2.1). More precisely,

the gain of policy π ∈ ΠSR starting from initial state s ∈ S is defined as

gπ(s) := lim
T→+∞

Eπ
[

1
T

T∑
t=1

rt

∣∣∣∣∣s1 = s

]
. (2.9)

The gain gπ(s) corresponds to the asymptotic per-step reward earned when executing policy

π starting from s ∈ S. This notion generalizes both the finite and the discounted setting

when H → +∞ and γ → 1 respectively since it can be shown (Puterman, 1994, Sections

8.2.1 and 8.2.2) that for all s ∈ S

Eπ
[
H∑
t=1

rt

∣∣∣∣∣s1 = s

]
∼

H→+∞
gπ(s) ·H and Eπ

[+∞∑
t=1

γt−1rt

∣∣∣∣∣s1 = s

]
∼
γ→1

gπ(s)/(1− γ).

As a result, if π, π′ ∈ ΠSR are two stationary policies such that µᵀ1g
π ≥ µᵀ1gπ

′
, then for H big

enough and γ close enough to 1 we have that Eπ
[∑H

t=1 rt
∣∣∣s1 ∼ µ1

]
≥ Eπ′

[∑H
t=1 rt

∣∣∣s1 ∼ µ1
]

and Eπ
[∑+∞

t=1 γ
t−1rt

∣∣∣s1 ∼ µ1
]
≥ Eπ′

[∑+∞
t=1 γ

t−1rt
∣∣∣s1 ∼ µ1

]
.

Any stationary policy π ∈ ΠSR also has an associated bias function defined for all s ∈ S as

hπ(s) := C- lim
T→+∞

Eπ
[
T∑
t=1

(
rt − gπ(st)

)∣∣∣∣∣s1 = s

]
, (2.10)

that measures the expected cumulative difference between the immediate reward rt and

the long term asymptotic reward gπ(s) in Cesaro-limit (denoted C- lim). The Cesaro-limit

is always well-defined unlike the “classical” limit as the series may cycle i.e., have sev-

eral accumulation points3. Accordingly, the difference of bias values hπ(s) − hπ(s′) quan-

tifies the (dis-)advantage of starting in state s rather than s′. We denote by sp (hπ) :=
maxs hπ(s)−mins hπ(s) the span (i.e., range) of the bias function. It is well-known (Puter-

man, 1994, Section 6.6) that the span defines a semi-norm on RS .

For any d ∈ DMR, we also define the limiting matrix P ∗d := C- lim
n→+∞

Pnd (Puterman, 1994,

Appendix A.4). The Cesaro limit always exists and so P ∗d is always well-defined. It is possible

to express gπ (where π = d∞) in terms of P ∗d and rd i.e., gπ = P ∗d rd. The matrix (I−Pd+P ∗d )
is always invertible and hπ = (I − Pd + P ∗d )−1(I − P ∗d )rd (Puterman, 1994, Appendix A).

The matrix HPd := (I − Pd + P ∗d )−1(I − P ∗d ) is called the deviation matrix and is the Drazin

inverse of the matrix I − Pd.

In the rest of the thesis, we will define vector e := (1, . . . , 1)ᵀ ∈ Rd as the d-dimensional

vector of all ones (d can vary depending on the context) and ei := (0, . . . , 1, . . . , 0)ᵀ as the

i-th Cartesian coordinate in Rd.

Definition 2.3

3Accumulation points are sometimed called “cluster points”. Note that for policies with an aperiodic chain,
the standard limit exists.
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Proposition 2.3 (Theorem 8.2.6 of Puterman (1994))

For any policy π = d∞ ∈ ΠSR, the gain gπ and bias hπ satisfy the following system of

Bellman evaluation equations:

g = Pdg and h+ g = Ldh. (2.11)

Conversely, if (g, h) ∈ R× RS is a solution to (2.11), then g = gπ and h = hπ + u where

u = Pdu. Finally, if P ∗d h = 0 then h = hπ.

Similarly to the discounted case, there always exists an optimal policy π∗ ∈ ΠSD (stationary

deterministic) solution to (2.8) for any µ1 ∈ P(S). Prop. 2.4 extends Prop. 2.2 to the

undiscounted setting.

Proposition 2.4

Let M be a weakly communicating MDP and denote by Π∗ ⊆ ΠSD the set of maximizers

of (2.8) in ΠSD. If any of the following assumptions hold:

1. the action space A is finite,

2. Π∗ 6= ∅ and supπ∈Π∗ sp (hπ) < +∞,

then there exists a solution (g∗, h∗) ∈ R × RS to the fixed point equation h∗ + g∗e = Lh∗.

Moreover, for any such solution (g∗, h∗) and for all s ∈ S,

g∗ = max
π∈Π

{
lim inf
T→+∞

Eπ
[

1
T

T∑
t=1

rt

∣∣∣∣∣s1 ∼ s
]}

.

Finally, any stationary policy π∗ = (d∗)∞ satisfying d∗ ∈ arg maxd∈DMR {rd + Pdh
∗} (i.e.,

greedy policy) is optimal i.e., π∗ ∈ Π∗.

The proof of Prop. 2.4 is not as straightforward as the proof of Prop. 2.2 (discounted case).

A complete proof of Prop. 2.4 can be found in (Puterman, 1994, Chapter 9) for finite action

spaces, and (Schweitzer, 1985, Theorem 1) for compact action spaces4. Schweitzer (1985,

Example 2) also presents a counter-example of weakly-communicating MDP for which the

optimality equation does not admit any solution and supπ∈Π∗ sp (hπ) = +∞. In order to

relax assumption 2 in Prop. 2.4, one needs to further assume that the MDP is unichain5

(communicating is still not enough) as shown by Schweitzer (1985, Theorem 2). Note that

the assumption that the MDP is weakly communicating is essential to show that the optimal

gain is state-independent i.e., sp (g∗) = 0. In the general case where the MDP is multi-chain,

the fixed point equation h∗+g∗ = Lh∗ no longer characterizes optimality i.e., other equations

are needed (see (Puterman, 1994, Chapter 9) and (Schweitzer, 1985, Equation 1.1)). Note also

4Schweitzer (1985) actually proves a more general theorem from which Prop. 2.4 can be deduced.
5If the MDP is unichain, then assumption 2 is always satisfied and so Prop. 2.4 holds (Schweitzer, 1985,

Theorem 2).
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Algorithm 3 (Relative) Value Iteration

Input: Operators L : RS 7→ RS and G : RS 7→ DMR, accuracy ε ∈]0, rmax[, initial vector
v0 ∈ RS , arbitrary reference state s ∈ S

Output: Gain g ∈ [0, rmax], bias vector h ∈ RS and stationary deterministic policy π ∈ ΠSD

1: Initialize n = 0
2: v1 := Lv0
3: while sp (vn+1 − vn) > ε do . Loop until termination
4: Increment n← n+ 1
5: Shift vn ← vn − vn(s)e . Avoids numerical instability (vn 6→ +∞)
6: (vn+1, dn) := (Lvn, Gvn) . Lvn and Gvn can be computed simultaneously
7: end while
8: Set g := 1

2

(
max{vn+1 − vn}+ min{vn+1 − vn}

)
, h := vn and π := (dn)∞

that unlike Prop. 2.2, Prop. 2.4 only claims uniqueness of g∗ but not of h∗ in the optimality

equation h∗ + g∗e = Lh∗. For example, h∗ can be shifted by any arbitrary constant without

affecting the validity of the equation. But there may also exist other solutions that do not

just differ by a constant shift (see Prop. 2.3). There is also no strict equivalence between

optimal stationary policies and greedy policies (d∗)∞ with d∗ ∈ arg maxd∈DMR {rd + Pdh
∗}

(some optimal policies may rather satisfy an optimality equation with a different h∗, or may

not even satisfy any optimal policy).

Topology of the optimal Bellman operator. In Prop. 2.5, we present few important prop-

erties of the optimal Bellman operator L that are central for the rest of the thesis. The proofs

can be found in (Puterman, 1994).

Proposition 2.5

Let v and u be any two vectors in RS, then:

(a) L is monotone: v ≥ u =⇒ Lv ≥ Lu.

(b) L is non-expansive both in span semi-norm and `∞-norm:

sp (Lv − Lu) ≤ sp (v − u) and ‖Lv − Lu‖∞ ≤ ‖v − u‖∞.

(c) L is linear6: ∀λ ∈ R, L(v + λe) = Lv + λe.

Computing a near optimal policy. To compute an ε-approximate solution to (2.8), we can

use Alg. 3 –also known as relative value iteration, see Section 8.5.5 of Puterman (1994)–

which is very similar to Alg. 2. Note that by definition, sp (vn+1 − vn) = max{vn+1 − vn} −
min{vn+1−vn} and so the stopping condition of Alg. 3 is comparable to the stopping condition

of Alg. 2 (without involving γ). At line 5 of Alg. 3, just before computing vn+1, the vector

vn is “shifted” by subtracting the value vn(s) to vn(s) for every s ∈ S (s is an arbitrary

6Operator L is not a linear operator (like in linear algebra) but the property that L(v + λe) = Lv + ce for

any (λ, v) ∈ R× RS is often called the “linearity” property of L.
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“reference” state). This is because the optimal Bellman operator L is not a contraction w.r.t.

any-norm –unlike Lγ– and in general vn asymptotically grows as ng∗e when n → ∞ (see

Section 8.2.1 of Puterman (1994)). Since in most MDPs g∗ > 0, this means that vn → +∞
as n → +∞, potentially causing numerical instabilities. However, under the conditions of

Prop. 2.6 below, vn will converge in span semi-norm i.e., will converge in the quotient space

induced by the semi-norm sp (·) on RS . This is related to the remark we made earlier about

h∗ being defined up to a constant shift in the optimality equation (h∗ is uniquely defined

in the quotient space when there is a single optimal policy for example). Shifting vn before

any new update ensures convergence in the original space RS (convergence in `∞-norm as

opposed to span semi-norm). Note that neither the stopping condition (line 3 of Alg. 3) nor

the other outputs g and π of Alg. 3 are affected by the shift of line 5. If line 5 was removed,

Alg. 3 would stop after the same number of iterations and would return the same gain g and

policy π. Only the final bias h as well as all the intermediate vectors vn are shifted by a big

constant (which grows linearly with n). Indeed, the difference Lvn − vn remains unchanged

after a constant shift in vn: for all c ∈ R, L(vn+ce)−(vn+ce) = Lvn−vn due to the linearity

property of the optimal Bellman operator (Prop. 2.5 (c)). Prop. 2.6 and Lem. 2.7 below also

hold if line 5 of Alg. 3 (constant shift) is removed (except that in this case vn diverges in RS

and converges only in the quotient space, as explained above). These results hold both for

MDPs with finite and compact action spaces.

Proposition 2.6 (Theorems 9.4.5 of Puterman (1994) adapted by Jaksch et al. (2010))

Consider the sequences of vectors (vn)n∈N and Markov decision rules (dn)n∈N obtained

while executing Alg. 3. If Prop. 2.4 holds and either:

1. every average optimal stationary deterministic policy has an aperiodic transition

matrix,

2. or the transition matrices Pdn are aperiodic for all n ≥ 1,

then there exists h∗ ∈ RS such that limn→+∞ vn = h∗ and Lh∗ = h∗ + g∗e.

Proof. In his Section 9.4.1, Puterman (1994) provides a complete proof in the general multi-

chain case with finite action space and when every average optimal stationary deterministic

policy has an aperiodic transition matrix (assumption 1). However, the proof only uses the

existence of a solution of the Bellman optimality equation, which is always guaranteed under

the assumptions of Prop. 2.4. Only his Lemma 9.4.3 uses the finiteness of DMD and ΠSD but

this lemma trivially holds when M is weakly communicating (instead of just multi-chain).

Therefore, the result also holds for compact action spaces as long as all the assumptions of

Prop. 2.4 are satisfied. While Puterman (1994) only provides a proof in the case where every

average optimal stationary deterministic policy has an aperiodic transition matrix (assump-

tion 1), Jaksch et al. (2010, Appendix B) showed how to extend it to the case where the

transition matrices Pdn are aperiodic for all n ≥ 1 (assumption 2). �

Since sp (g∗e) = 0 and sp () is a continuous function (as a semi-norm), when the assumptions

of Prop. 2.6 hold the stopping condition of Alg. 3 is necessarily met after a finite number of

iterations. Moreover, it is possible to characterize by how much the gain g returned by Alg. 3
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differs from g∗.

Proposition 2.7

Consider the gain g and bias h returned by Alg. 3. Under the same assumptions as

Prop. 2.6, |g − g∗| ≤ ε/2 and for all s ∈ S, |Lh(s) − h(s) − g| ≤ ε, where ε ∈]0, rmax[ is

the accuracy given as input of Alg. 3.

Proof. The fact that |g − g∗| ≤ ε/2 is just the application of Theorem 8.5.6 and Corollary

9.4.6 of Puterman (1994) (see also Section 9.5). For the other inequalities, we introduce the

quantities M := max{Lh − h} and m := min{Lh − h}. The condition sp (Lh− h) ≤ ε (line

3 of Alg. 3) is equivalent to M−m ≤ ε. Using inequality |g− g∗| ≤ ε/2 and the definition of

g (line 8 of Alg. 3) we deduce

1
2(M + m) ≥ g∗ − ε

2 =⇒ m ≥ g∗ − ε

2 −
1
2(M−m) ≥ g∗ − ε

1
2(M + m)− g∗ ≤ ε

2 =⇒ M ≤ g∗ + ε

2 + 1
2(M−m) ≤ g∗ + ε.

In conclusion, for all s ∈ S, g∗ − ε ≤ m ≤ Lh(s) − h(s) ≤ M ≤ g∗ + ε which concludes the

proof. �

Prop. 2.7 states that not only g is an ε-approximation of g∗ but (g, h) ∈ R × RS approxi-

mately satisfies the Bellman optimality equation as ‖Lh− h− ge‖∞ ≤ ε. The condition that

Pdn is aperiodic for all n ≥ 1 is not always satisfied. Fortunately, there is a way to modify

the transition probabilities of the MDP to enforce this property while impacting neither the

optimal gain g∗ nor the stationary optimal policy(ies) π∗. This modification is called the

aperiodicity transformation (Puterman, 1994, Section 8.5.4).

Aperiodicity transformation. Instead of applying Alg. 3 to the original MDP M , we first

construct a transformed MDP Mα where α ∈]0, 1]. Mα is similar to M with the only difference

that for all Markov decision rules d ∈ DMR, the transition matrix Pd is transformed into

Pαd := αPd + (1 − α)I where I is the S × S identity matrix. We first note that if M is

weakly-communicating, so is Mα as long as 1 ≥ α > 0 (more generally, the aperiodicity

transformation does not change the chain structure of the MDP). As shown by Puterman

(1994, Proposition 8.5.8), this transformation does not affect the gain of any stationary policy

meaning that for any π ∈ ΠSR, gπα = gπ.7 We denote by Lα the optimal Bellman operator of

Mα. We note that:

∀v ∈ RS , Lαv := max
d∈DMD

{rd + αPαd v}+ (1− α)v. (2.12)

For α ∈]0, 1[, all the transition matrices of Mα are aperiodic and so Prop. 2.6 and Lem. 2.7

apply. If gα and hα denote the gain and bias returned by Alg. 3 applied to Mα, and if (vαn)n∈N
7The transformation introduced by (Puterman, 1994, Section 8.5.4) is slightly different as the rewards are

all multiplied by α. Therefore, Proposition 8.5.8 of Puterman (1994) states that the gain is also multiplied by
α i.e., gπα = α · gπ. However, it is straightforward to adapt the proof of Proposition 8.5.8 of Puterman (1994)
to our case.
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is the sequence of vectors obtained while executing the algorithm, then limn→+∞(vαn+1−vαn) =
g∗ (since g∗α = g∗), |gα − g∗| ≤ ε/2 and ‖Lhα − hα − gαe‖∞ ≤ ε. Note that this holds for any

α ∈]0, 1[ but in practice, the closer α is to 0, the slower the convergence of value iteration

(more iterations are needed to meet the stopping condition of line 3).

Episodic problems. To conclude this section, we highlight the connection between the

undiscounted infinite horizon setting and the episodic setting . It is very common in practice

that an RL task ends as soon as a certain termination condition is met, after which the

problem is reset to an initial state (or initial distribution over states). Each reset defines a

new “episode”. The restart condition is often assumed to be Markovian i.e., to depend only

on the current state and action. The goal is then to maximize the cumulative reward over

episodes. If the restart condition satisfies the Markov property, it can simply be interpreted

as a transition probability of the MDP, in which case the gain is a good optimality criterion.

Actually, in the episodic setting, it is a well-known result of renewal theory that the gain

gπ(s) of a policy π starting in state s ∈ S is equal to the ratio Eπ[R|s1 = s]/Eπ[τ |s1 = s],
where R and τ denote respectively the total reward accumulated during an episode and the

total duration of the episode. It seems reasonable that we should not just aim at maximizing

Eπ[R|s1 = s], but we should also take into account Eπ[τ |s1 = s]. Indeed, it might sometimes

be more rewarding on the long-term to run short episodes with relatively small cumulative

reward rather than episodes with high reward but extremely long duration.

Refined optimality (Bias and Blackwell optimality)

In many MDPs, there is not a single gain-optimal policy although it is clear that among the

gain-optimal policies, some are preferable in terms of reward. For example, while two different

policies may have the same asymptotic per-step reward, one of them may accumulate more

reward while converging to the asymptotic gain. It turns out that this is formally described by

the notion of bias optimality (Lewis and Puterman, 2002) which refines gain optimality (bias

optimal implies gain optimal but not conversely). Bias optimality can be further refined

by the notions of sensitive discount optimality and Blackwell optimality which provides a

comprehensive understanding of infinite horizon problems in the absence of a discount factor.

All these refinements go beyond the scope of this thesis and from now on we will restrict

attention to gain optimality.

2.1.4 Stochastic shortest path

In this section we review some important results on the stochastic shortest path problem

(Bertsekas, 1995, Chapter 2). These results will be extremely useful to understand how

difficult it is for an agent to navigate between the states of an MDP. Unlike in previous

sections, we assume that the rewards of the MDP are all non-positive and lie in [−rmax, 0].
When action a is played in state s, the absolute value of the reward |r(s, a)| should be

interpreted as the expected time before reaching the next state in the MDP. |r(s, a)| can be

seen as the “length” or expected “duration” of a transition (which only depends on the current
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state s and action a, and not on the next state). In the stochastic shortest path problem, we

consider an agent travelling from a state x to a state s. The total length of a sampled path

(s1 = x, a1, r1, . . . , sτ = s) is defined as |
∑τ
t=1 rt| =

∑τ
t=1 |rt| = −

∑τ
t=1 rt. We introduce the

following definition:

For any state s ∈ S, we define τ(s) := inf{t ≥ 1 : st = s} the first hitting time of s. Note

that τ(s) ∈ N ∪ {+∞}.

Definition 2.4

The goal of the stochastic shortest path problem is to find the shortest expected distance be-

tween states x and s in the MDP i.e., to solve

inf
π∈Π

Eπ
τ(s)−1∑

t=1
|rt|
∣∣∣∣∣s1 = x

 ⇔ sup
π∈Π

Eπ
τ(s)−1∑

t=1
rt

∣∣∣∣∣s1 = x

 . (2.13)

Although the optimization problem in Eq. 2.13 seems very different from the optimization

problem in Eq. 2.8, the two problems are related through the Bellman optimality equation.

The stochastic shortest path problem can somehow be interpreted as a specific case of finding

a bias-optimal policy when the optimal gain g∗ is 0. The optimality equation can then be

written as Lh∗ = h∗. This statement is made more formal in Prop. 2.8 below. For all pairs

of states (x, s) ∈ S × S, the value of the supremum in (2.13) (right-hand side) is denoted

h∗7→s(x). By definition, h∗7→s(x) ≤ 0 for all x ∈ S and h∗7→s(s) = 0.

Proposition 2.8

Let M = {S,A, r, p} be a communicating MDP (finite or compact A) with negative re-

wards r(s, a) ∈ [−rmax, 0] for all (s, a) ∈ S×A. For any state s ∈ S, consider the Bellman

shortest path operator L7→s : RS 7−→ RS defined for all v ∈ RS as:

∀x ∈ S, L7→sv(x) :=

maxa∈Ax
{
r(x, a) +

∑
y∈S p(y|x, a)v(y)

}
if x 6= s

v(s) otherwise
. (2.14)

h∗7→s is the (component wise) maximal non-positive solution of the Bellman shortest path

optimality equation L7→sh
∗
7→s = h∗7→s. Moreover, if d∗7→s is a greedy decision rule w.r.t.

h∗7→s i.e., d∗7→s(x) ∈ arg maxa∈Ax
{
r(x, a) +

∑
y∈S p(y|x, a)h∗7→s(y)

}
for all x 6= s, then

π∗7→s := (d∗7→s)∞ is an optimal solution to Eq. 2.13.

Proof. L7→s corresponds to the optimal Bellman operator of a modified MDP M 7→s where

all actions are unchanged except the actions in state s. These actions are assigned a reward

0 i.e., r(s, a) = 0 for all a ∈ As, and loop on s with probability 1 i.e., p(s|s, a) = 1 for all

a ∈ As. In M 7→s, problem (2.13) can be equivalently formulated with τ(s) replaced by +∞
(the reward is always zero once state s is reached). Therefore, (2.13) is an instance of an

expected total-reward problem with negative model (Puterman, 1994, Section 7.3). Since M is

communicating, there exists a policy π such that Eπ
[∑+∞

t=1 rt
∣∣∣s1 = x

]
> −∞ in M 7→s (e.g.,

any policy reaching s in finite time almost surely) and so Assumption 7.3.1. of Puterman

(1994) holds. The fact that h∗7→s is the maximal non-positive solution of L7→sh
∗
7→s = h∗7→s is a
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consequence of Theorem 7.3.3. (a) of Puterman (1994) (proved for both finite and compact

action spaces). The fact that π∗7→s is optimal is a consequence of Theorem 7.3.5 of Puterman

(1994). �

Value iteration (Alg. 3) converges to h∗7→s (for both finite and compact A) but no aperiod-

icity condition is needed in this case.

Proposition 2.9

Let MDP M satisfy the assumptions of Prop. 2.8. If Alg. 3 is run with operator L7→s,

v0 := 0 and reference state s := s, then vn converges monotonically to h∗7→s and so Alg. 3

stops after a finite number of iterations. Moreover, the vector h output by Alg. 3 satisfies

−εe ≤ L7→sh− h ≤ 0.

Proof. Since the reference state is s and v0 = 0, by induction vn(s) = 0 for all n ≥ 0 so

that line 5 of Alg. 3 (constant shift) can be ignored i.e., vn = Ln0. Then, the monotone

convergence of (vn)n∈N is a direct consequence of Theorem 7.3.10. (a) of Puterman (1994).

Therefore, v0 = 0 ≥ v1 ≥ ... ≥ h ≥ L7→sh ≥ h∗7→s (first inequality). When Alg. 3 terminates,

we have sp (L 7→sh− h) ≤ ε. We introduce the quantities M := max{L7→sh − h} and m :=
min{L7→sh − h} so that sp (L7→sh− h) = M − m ≤ ε. Since v0 = 0 and L7→sv(s) = v(s) for

all v ∈ RS by definition, vn(s) = 0 for all n ≥ 0 and so L7→sh(s) = h(s) = 0 and M = 0. The

condition sp (L7→sh− h) ≤ ε implies L 7→sh− h ≥ me ≥ −εe. �

Bias and aperiodicity transformation. We already showed that the aperiodicity transfor-

mation (Sec. 2.1.3) does not affect the gain, we will now investigate the impact on the shortest

path. Although such a transformation is not needed to enforce convergence of value iteration

in a stochastic shortest path setting, Thm. 2.1 (below) will later be useful in this thesis.

Theorem 2.1

Let MDP M satisfy the assumptions of Prop. 2.8. Let α ∈]0, 1] and Mα be the MDP

obtained after applying the aperiodicity transformation of parameter α to M . Mα also

satisfies the assumptions of Prop. 2.8 and so hα∗7→s is well-defined for all s ∈ S. Moreover,

α · hα∗7→s = h∗7→s.

Proof. One way to interpret the aperiodicity transformation is that at every time step, an

agent evolving in Mα “loops” on the current state with probability 1 − α, and follows the

dynamics of M with probability α. Therefore, all the paths that exist in M also exist in Mα

but they are “longer”. So if M is communicating, Mα is communicating as well. The rewards

are not affected by the transformation so if the rewards of M are non-positive, so are the

rewards of Mα. Furthermore, by definition, hα∗7→s is a fixed point of Lα7→s and h∗7→s is a fixed

33



Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

x s

a0, r = −rmax

a1, r = 0

a0, r = −rmax

a1, r = 0

Figure 2.2: Example of communicating MDP where the “shortest path” from x to s (2.13)
is such that π∗(x) = a1 and h∗7→s(x) = 0. Under π∗, τ(s) = +∞ almost surely.

point of L7→s. Let’s denote by p 7→s the transition probability of M 7→s (see proof of Prop. 2.8).

Lα7→sh
α∗
7→s = hα∗7→s ⇔ max

a∈Ax

{
r(x, a) + α

∑
y

p 7→s(y|x, a)hα∗7→s(y)
}

+ (�1− α)hα∗7→s(x) = ���hα∗7→s(x)

⇔ max
a∈Ax

{
r(x, a) +

∑
y

p7→s(y|x, a) (αhα∗7→s(y))
}

= αhα∗7→s(x)

⇔L7→s (αhα∗7→s) = αhα∗7→s.

So αhα∗7→s is a fixed point of L7→s and conversely h∗7→s/α is a fixed point of Lα7→s. Moreover,

α > 0, hα∗7→s ≤ 0 and h∗7→s ≤ 0 implying that αhα∗7→s ≤ 0 and h∗7→s/α ≤ 0. Since h∗7→s is

the maximum non-positive fixed point of L 7→s and αhα∗7→s ≤ 0, necessarily h∗7→s ≥ αhα∗7→s.

Symmetrically, hα∗7→s is the maximum non-positive fixed point of Lα7→s and h∗7→s/α ≤ 0 so

necessarily hα∗7→s ≥ h∗7→s/α. In conclusion, αhα∗7→s = h∗7→s. �

Infinite hitting time. In this section we considered a slightly more general formulation of

the shortest path problem than Bertsekas (1995, Chapter 2). In our formulation, it is possible

that the policy π∗ achieving the maximum in (2.13) satisfies Eπ∗ [τ(s)|s1 = x] = +∞, while

the maximum in (2.13) is always bounded (under the assumption that M is communicating).

In this case, the solution of (2.13) does not exactly match the intuitive notion that we have

of a “shortest path” to a target state s. We give an example of such a scenario in Fig. 2.2.

Nevertheless, all the results presented in this section hold whether τ(s) is almost surely finite

or not. This is because the problem can be expressed as as a specific instance of expected total-

reward problem with negative model (Puterman, 1994, Section 7.3) (see proof of Prop. 2.8).

Note that if all the rewards are strictly negative (as opposed to just non-positive), then

necessarily Eπ∗ [τ(s)|s1 = x] < +∞ and the solution of the problem is a “proper” shortest

path (this is the specific case analysed in Bertsekas (1995, Chapter 2)).

2.1.5 Uncertain MDPs: between discrete and continuous MDPs

In this thesis, we will have to deal with MDPs with unknown r and p but for which we know

some confidence sets. A convenient way to describe an uncertain MDP is through the notions

of “bounded-parameter MDPs” and “extended MDPs”.
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2.1. Markov Decision Processes

Bounded-parameter MDP. A bounded-parameter MDP is a collection of MDPs –with iden-

tical state-action spaces– specified by confidence bounds on the parameters (rewards and tran-

sition probabilities) representing the uncertainty about the true values. Formally, a bounded

parameter MDP M is usually characterized by some compact sets Br(s, a) ⊆ [0, rmax] and

Bp(s, a) ⊆ ∆S (see Def. 2.1):

M =
{
M = 〈S,A, r, p〉 : r(s, a) ∈ Br(s, a), p(·|s, a) ∈ Bp(s, a), ∀(s, a) ∈ S ×A

}
. (2.15)

Bounded-parameter MDPs were first introduced by Givan et al. (2000) in the infinite horizon

discounted setting, and later used by Tewari and Bartlett (2007a) in the undiscounted setting.

The bounded parameter MDP will typically be constructed so as to include the true MDP

with high probability (w.h.p.).

Extended MDP. As pointed out by Jaksch et al. (2010, Section 3.1.1), any bounded param-

eter MDP can be equivalently represented by an “extended MDP”. The idea is to combine all

MDPs into a single MDP with identical state space S but with an extended compact action

space A+. The extended MDP corresponding to the bounded parameter MDPM defined in

Eq. 2.15 is formally defined as M+ = 〈S,A+, r+, p+〉 where for all s ∈ S:

A+
s :=

⋃
a∈As
{a} ×Br(s, a)×Bp(s, a)

∀a+ = (a, r, p) ∈ A+
s ,

r
+(s, a+) := r

p+(·|s, a+) := p
.

(2.16)

Every possible value in the compact sets Br(s, a) and Bp(s, a) is considered as an “extended”

action in M+. For any MDP M = 〈S,A, r, p〉 ∈ M and any stationary deterministic policy

π ∈ ΠSD
M defined on M , let’s define the stationary deterministic policy π+ ∈ ΠSD

M+ on M+

by π+(s) :=
(
π(s), r(s, π(s)), p(·|s, π(s)

)
. It is immediate to see that the Markov Reward

Processes (MRP) induced by π on M is exactly the same as the MRP induced by π+ onM+.

Conversely, for any policy π+ ∈ ΠSD
M+ , the MDP M = 〈S,A, r, p〉 ∈ M and policy π ∈ ΠSD

M

defined as follows induce the same MRP as π+:

∀s ∈ S,


π(s) := a

r(s, a) := r

p(·|s, a) := p

where (a, r, p) := π+(s), and ∀b 6= a

r(s, b) ∈ Br(s, b) (any value)

p(·|s, b) ∈ Bp(s, b) (any value)

There is a one-to-one correspondence between the pairs (M,π) ∈ M× ΠSD
M and the policies

π+ ∈ ΠSD
M+ . In the rest of the thesis, we will use the same notation M for an extended MDP

(2.16) and the corresponding bounded-parameter MDP (2.15) (they are essentially the“same”

mathematical object). We will also slightly abuse terminology and say that an MDP “belongs

to” an extended MDP when it is actually contained in the corresponding bounded-parameter

MDP.

35



Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Extended optimal Bellman operator. The optimal Bellman operator L of an extended

MDP is called an “extended optimal Bellman operator” and is defined as:

∀v ∈ RS , ∀s ∈ S, Lv(s) := max
a∈As

{
max

r∈Br(s,a)
r + max

p∈Bp(s,a)
pᵀv

}
(2.17)

In the specific case where the confidence sets Bp(s, a) are polytopes, the inner maximum

maxp∈Bp(s,a) {pᵀv} is reached on at least one vertex 8, meaning that we can restrict Bp(s, a) to

its vertices without impacting the result (there are only finitely many vertices on a polytope).

Moreover, maxr∈Br(s,a){r} is always reached on the maximal value of Br(s, a) and so it can

be replaced by a singleton without changing anything. In conclusion, L can be expressed as

an optimal Bellman operator with finite action space. In this thesis, all the extended optimal

Bellman operators that we will deal with will satisfy satisfy this property. This simplifies a

lot the theoretical analysis (see Prop. 2.4 and 2.6).

2.2 On-line Reinforcement Learning in the infinite hori-

zon undiscounted setting

In the previous section, we used the formalism of MDPs to describe an agent interacting with

its environment. Depending on the chosen optimality criterion, we showed how to compute a

(near-)optimal policy when the parameters of the MDP are fully known. In this section, we

will address the case when all or part of the MDP is unknown and needs to be learned by the

agent. We restrict attention to the infinite horizon undiscounted setting which will be the

main focus of this thesis. Although it is not always the most appropriate setting (e.g., when

there is a pre-defined horizon or discount factor), it is perhaps the most general (in the limit,

see Sec. 2.2) among all the settings presented in Sec. 2.1. It is also the most challenging to

analyse.

2.2.1 The learning problem

We consider the learning problem where S, A and rmax are known, while rewards r and

transition probabilities p are unknown and need to be estimated on-line i.e., in a sequential

fashion. The planning algorithms presented in Sec. 2.1 cannot be used directly to compute

an optimal policy and samples of r and p need to be collected first.

Rather than focusing on learning a (near-)optimal policy (e.g., with the best possible accu-

racy given an horizon T ), we will be interested in maximizing the cumulative reward
∑T
t=1 rt

collected up to time T . As T grows to infinity, maximizing
∑T
t=1 rt amounts to learning a

gain-optimal policy since in the limit the series eventually grows as Tg∗ (Puterman, 1994,

Chapter 8), which is the best asymptotic growth rate achievable. But in the meanwhile,

the learning agent needs to efficiently trade-off the exploration needed to collect information

about the dynamics and reward, and the exploitation of the experience gathered so far to

8This is a well-known property of linear programs.
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rewards rt

g∗

T

Per-step reward

Regret ∆(T )

Figure 2.3: Graphical illustration of Def. 2.5.

gain as much reward as possible. In order to quantitatively assess the exploration-exploitation

performance we use the concept of regret which compares the rewards accumulated by the

agent and an optimal policy i.e., µᵀ1v
∗
T −

∑T
t=1 rt. To simplify this definition, we observe that

v∗T = LT 0 = LTh∗ + LT 0− LTh∗ = Tg∗e+ h∗ + LT 0− LTh∗.

Using the fact that L is non-expansive in `∞-norm (property (b) of Prop. 2.5) we obtain

‖v∗T − Tg∗e‖∞ ≤ ‖h∗‖∞ + ‖LT 0− LTh∗‖∞ ≤ 2‖h∗‖∞.

h∗ is independent of T and measures the expected cumulative difference between the optimal

asymptotic stationary regime g∗ and the actual reward at time step t. It somehow quantifies

the unavoidable expected regret incurred when the optimal policy is executed starting from

a distribution different than the optimal asymptotic regime. We therefore introduce the

following definition.

Let (rt)t≥1 denote the sequence of rewards collected while executing learning algorithm A

in MDP M , with initial state distribution µ1. The regret after T time steps is defined as

∆(M,A, µ1, T ) :=
T∑
t=1

(g∗ − rt) = Tg∗ −
T∑
t=1

rt.

Definition 2.5

Graphically, the regret corresponds to the hatched area between the black and red curves on

Fig. 2.3. Given that the term Tg∗ is algorithm-independent , maximizing
∑T
t=1 rt is equivalent

to minimizing the regret.

Since the regret is a random variable, we cannot minimize it directly. One possibility is

to analyse the expected regret EA
[
∆(M,A, µ1, T )

∣∣s1 ∼ µ1
]
, where A ∈ Π is interpreted as an

(priori non-stationary) policy. Another possibility is to bound the regret in high probability

i.e., with probability 1 − δ where δ is a level of confidence given as input to A. A high

probability bound is usually considered a stronger result: it is always possible to convert a

high probability bound into a bound on expectation by carefully tuning the confidence δ.
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The analysis of the regret in expectation and in high probability both belong to the frequen-

tist approach: the result gives an indication of what happens if the learning process is repeated

several times in the same conditions with different random samplings (different “seeds”). An-

other line of research consists in analysing the expected Bayesian regret . With this approach,

the true unknown MDP is assumed to be sampled from a known prior distribution and the

goal is to minimize EM
[
EA
[
∆(M,A, µ1, T )

∣∣s1 ∼ µ1
]]

where EM is the expectation over the

prior. Bayesian regret bounds provide weaker guarantees since they only hold on expectation

over a set of plausible MDPs, and not always for a specific instance. In this thesis, we will

exclusively focus on frequentist approaches, mainly high probability regret bounds.

2.2.2 Theoretical benchmarks

We say that an algorithm learns if and only if ∆(M,A, µ1, T ) = o(T ) when T → +∞ (either

in expectation or with high probability). But we also care about how fast the algorithm

can learn. Before describing learning algorithms and analysing their regret, we first discuss

fundamental limitations of the learning abilities of any algorithm. We summarize several

existing regret lower-bounds which provide insightful benchmarks when designing algorithms.

Asymptotic lower-bounds

The first regret lower-bound in an RL setting was proved by Burnetas and Katehakis (1997).

The lower-bound is proved for the restricted family of ergodic MDPs. In such MDPs, the

optimal bias h∗ is unique up to a constant shift (Lewis and Puterman, 2002, Proposition 2.3)

and all gain-optimal stationary deterministic policies are greedy w.r.t. Lh∗ i.e., the Bellman

optimality equation fully characterizes gain-optimal policies (Lewis et al., 1999). We define

Π∗ ⊆ ΠSD the set of such greedy policies i.e., the set of all stationary deterministic gain-

optimal policies in M . Because h∗ is unique up to constant shift, for any ergodic MDP

M = 〈S,A, r, p〉 we can define the state-action gaps for all state-action pairs (s, a) ∈ S × A
without any ambiguity

δ(s, a) := max
b∈As

{r(s, b) + p(·|s, b)ᵀh∗}︸ ︷︷ ︸
=Lh∗(s)=h∗(s)+g∗

−r(s, a)− p(·|s, a)ᵀh∗, (2.18)

where h∗ is any optimal bias of M . Burnetas and Katehakis (1997) assume that the reward

function is known and only the transition probabilities need to be learned. They also define

the state-action KL divergences between two MDPs M and M ′ that differ only by their

dynamics p and p′

KLM‖M ′(s, a) := KL
(
p(·|s, a)

∥∥p′(·|s, a)
)
. (2.19)
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Finally, the sets of confusing models w.r.t. M are defined as

Φ(s, a) :=
{
M ′ = 〈S,A, r, p′〉 : p′(·|x, b) = p(·|x, b) for all (x, b) 6= (s, a),

δ(s, a) > 0 and δ′(s, a) = 0
}
.

(2.20)

We report the lower-bound of Burnetas and Katehakis (1997) in Prop. 2.10 below.

Proposition 2.10 (Theorem 1 of Burnetas and Katehakis (1997))

Let M be an ergodic MDP with finite state and action spaces S and A, and rmax = 1.

Let A be a learning algorithm s.t. EA
[
∆(M ′,A, µ1, T )

∣∣s1 ∼ µ1
]

= o(Tα) for all α > 0,

all ergodic MDPs M ′ and initial state distribution µ1. The expected regret of A is lower

bounded as

lim inf
T→∞

EA
[
∆(M,A, µ1, T )

∣∣s1 ∼ µ1
]

log T ≥
∑
s,a

Φ(s,a)6=∅

δ(s, a)
infM ′∈Φ(s,a) KLM‖M ′(s, a) .

In Prop. 2.10, the learning algorithm A is assumed to be uniformly good i.e., to achieve

sub-polynomial regret on all ergodic MDPs. Since A is constrained to perform well on all

instances, it cannot perform arbitrarily well on any specific instance, hence the lower-bound.

This is reminiscent of the “No Free Lunch” theorem in supervised learning. Prop. 2.10 shows

that the expected regret will eventually grow at least logarithmically with time.

The more sub-optimal sate-action (s, a) (i.e., the higher δ(s, a)), the bigger the lower-

bound: the regret incurred when playing this action is higher by definition. When the

transition probability vector p(·|s, a) associated with a sub-optimal action a can easily be

confused with another probability vector q that makes a optimal, the lower bound is also

bigger (term KLM‖M ′(s, a)). This is because a small error in the estimation of p(·|s, a) can

lead to a potentially very sub-optimal behaviour. As shown by Ok et al. (2018, Section 4.1),

the lower-bound of Prop. 2.10 can be upper-bounded by 2SA(sp(h∗)+1)2

δmin
with the minimum

gap

δmin := min
s,a: δ(s,a)>0

δ(s, a). (2.21)

δmin > 0 except if ΠSD = Π∗.

Ok et al. (2018) also extended Prop. 2.10 to any class of ergodic MDPs with arbitrary

structure where the reward function is also unknown (see Prop. 2.11). We denote byM such

a class of ergodic MDPs with rmax = 1 (and potentially continuous state and action spaces).

We generalize the definition of the set of confusing MDPs:

Φ :=
{
M ′ = 〈S,A, r, p′〉 : p′(s′|s, a) = 0 =⇒ p(s′|s, a) = 0, ∀s, s′ ∈ S, ∀a ∈ A

p′(·|s, π∗(s)) = p(·|s, π∗(s)), ∀s ∈ S,∀π∗ ∈ Π∗,

and Π∗ ∩Π′∗ = ∅
}
.
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Proposition 2.11 (Theorem 1 of Ok et al. (2018))

Let M ∈ M and A be a learning algorithm s.t. EA
[
∆(M ′,A, µ1, T )

∣∣s1 ∼ µ1
]

= o(Tα) for

all α > 0, all M ′ ∈ M and initial state distribution µ1. The expected regret of A is lower

bounded as

lim inf
T→∞

EA
[
∆(M,A, µ1, T )

∣∣s1 ∼ µ1
]

log T ≥ K

where

K = inf
η≥0

∑
s,a

η(s, a)δ(s, a)

s.t.
∑
s,a

η(s, a)KLM‖M ′(s, a) ≥ 1 ∀M ′ ∈ Φ.

WhenM is unstructured (class of all ergodic MDPs), one can show (Ok et al., 2018, Section

4.1) that Prop. 2.11 allows to recover Prop. 2.10. Ok et al. (2018, Section 4.2) also analysed

the case where S and A are subset of metric spaces and r and p are Lipschitz-continuous.

There are several major limitations to Prop. 2.10 and Prop. 2.11. The lower-bounds

are derived only for ergodic MDPs and it is an open question whether the lower-bound

increases when extended to more general chain structures (like communicating or weakly-

communicating). But perhaps the main limitation is the asymptotic nature of the lower-

bounds. These bounds provide no indication on the regret performance in finite time.

Minimax lower-bounds

We will now present a different type of lower-bound proved by Jaksch et al. (2010). Before

that, we need to introduce the notion of diameter of an MDP.

The diameter of an MDP is defined as

D := max
s,s′

min
π∈ΠSD

Eπ
[
τ(s′)

∣∣s1 = s
]
− 1 (2.22)

where τ(s′) := inf{t ≥ 1 : st = s′} is the first hitting time in s′.

Definition 2.6

From Def. 2.2 and Proposition 8.3.1 of Puterman (1994), it is clear that D < +∞ if and

only if M is communicating. The diameter of an MDP is the length of the longest shortest

path in the MDP. In other words, it is the length of the shortest path between the two states

that are the most distant from each other. It quantifies the difficulty to navigate in the MDP.

We provide a graphical illustration on Fig 2.4.
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s

s′

D = 10

Figure 2.4: Graphical illustration of Def. 2.6. The MDP is a grid-world where every square
represents a state. The four cardinal actions can be played in any state with success proba-
bility 1, except when there is a wall (red).

Proposition 2.12 (Theorem 5 of Jaksch et al. (2010))

For any algorithm A, any integers S,A ≥ 10, D ≥ 20logA(S), and T ≥ DSA, there is

an MDP M with at most S states, A actions, and diameter D, such that for any initial

distribution µ1 ∈ ∆S, the expected regret of A after T time steps is lower-bounded as

EA [∆(M,A, µ1, T )
∣∣s1 ∼ µ1

]
≥ 0.015 · rmax

√
DSAT.

Prop. 2.12 significantly differ from Prop. 2.10 and 2.11. It shows that for any number of

states S, number of actions A and diameter D, it is always possible to construct a worst-

case MDP with these features that achieves a regret of order at least Ω
(
rmax
√
DSAT

)
.

Unlike the bounds of Burnetas and Katehakis (1997) and Ok et al. (2018), Prop. 2.12 is not

problem-dependent but it is also not asymptotic. Problem-dependent non-asymptotic bounds

would combine the best of both worlds but to the best of our knowledge, no such bounds are

currently available in the RL literature. Bounds on the worst-case regret are often referred as

“minimax” bounds. Minimax bounds usually scale as
√
T while problem dependent bounds

scale logarithmically with T .9

The term D (diameter) appearing in the bound of Prop. 2.12 can be deceiving. The

specific worst-case MDP constructed by Jaksch et al. (2010) to prove the lower-bound satisfies

D = 2sp (h∗) and so it is not clear whether to interpret the lower-bound in terms of diameter,

range of the bias or yet another term. This ambiguity is one of the major issues with minimax

lower-bounds.

Bartlett and Tewari (2009, Theorem 6) tried to improve the bound of Jaksch et al. (2010)

but Osband and Van Roy (2016) later showed that their proof contains a mistake. The work

presented in this thesis together with other recent work (Ortner, 2018; Tossou et al., 2019)

9In the bandit literature,“problem-dependent” bounds are said to be distribution-dependent , as opposed to
minimax bounds which are said to be distribution-free (Garivier et al., 2018).
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suggest that the lower-bound of Prop. 2.12 cannot be improved (without restricting the family

of possible MDPs).

2.2.3 (Near) Optimal algorithms

A common strategy to efficiently balance exploration and exploitation in RL is to apply the

optimism in face of uncertainty (OFU) principle: the agent maintains optimistic estimates

of the MDP parameters and, at each step, executes the policy with highest optimistic “value”

(e.g., gain, discounted value function, etc.). In this section, we will review some of the existing

RL algorithms relying on OFU.

An alternative approach is posterior sampling (Thompson, 1933b), which maintains a

Bayesian distribution over MDPs (i.e., dynamics and expected reward) and, at each step,

samples an MDP and executes the corresponding optimal policy (e.g., Osband et al., 2013;

Abbasi-Yadkori and Szepesvári, 2015; Osband and Roy, 2017; Ouyang et al., 2017a). Un-

fortunately, so far all existing posterior sampling algorithms only provide guarantees on the

Bayesian regret. A notable exception is the work of (Agrawal and Jia, 2017) which successfully

combines posterior sampling with OFU to obtain guarantees on the frequentist regret. How-

ever, their algorithm requires to sample multiple times the posterior distribution over MDPs

so as to obtain empirical high-probability confidence bounds, which somehow resembles what

OFU methods do in a computationally more efficient way.

Asymptotically optimal algorithms

Burnetas and Katehakis (1997) proposed Optimal Adaptive Policies (OAP) that achieve the

lower-bound of Prop. 2.10 i.e.,

lim sup
T→∞

EA
[
∆(M,OAP, µ1, T )

∣∣s1 ∼ µ1
]

log T ≤
∑
s,a

Φ(s,a)6=∅

δ(s, a)
infM ′∈Φ(s,a) KLM‖M ′(s, a) . (2.23)

At each time step t, OAP computes an estimate M̂t = 〈S,A, r, p̂t〉 of the unknown MDP

M based on past-observations (p̂t is the maximum-likelihood estimator of p). An optimal

solution (ĝt, ĥt) ∈ R× RS of the optimality equation of M̂t is then computed i.e., a solution

to L̂tĥt = ĥt + ĝte where L̂t is the optimal Bellman operator of M̂t. Let Nt(s, a) denote the

number of past visits in state-action pair (s, a) and Lt : RS 7→ RS be the operator defined for

all v ∈ RS and all s ∈ S by

Ltv(s) := max
a∈As

{
r(s, a) + max

q∈Btp(s,a)
qᵀv

}
, (2.24)

where Bt
p(s, a) := {q ∈ ∆S : KL(p̂t(·|s, a)‖q) ≤ ln (t) /Nt(s, a)} is a high probability confi-

dence set for p(·|s, a). Lt is an extended optimal Bellman operator (Sec. 2.1.5). At every

time step t, the current state is denoted st and OAP plays any greedy action w.r.t. Ltĥt(st).
To avoid under-exploration of some state-action pairs, OAP sometimes needs to play an action

42



2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting

that have not been visited “sufficiently often” instead i.e., amonga ∈ A : Nt(s, a) < ln2

∑
b∈As

Nt(s, b) + 1

 ⊆ As.
Tewari and Bartlett (2007b) derived a similar algorithm called OLP (Optimistic Linear

Programming) that defines confidence sets Bt
p(s, a) using the `1-norm instead of the Kullback-

Leibler divergence: Bt
p(s, a) :=

{
q ∈ ∆S : ‖p̂t(·|s, a)− q‖1 ≤

√
2 ln (t) /Nt(s, a)

}
. The regret

guarantees are slightly worse: the term KLM‖M ′(s, a) in (2.23) is replaced by a similar term

depending on the distance in `1-norm rather than Kullback-Leibler divergence. However,

computing the maximum over q in (2.24) becomes computationally easier: it can be expressed

as a linear programming problem (hence the name OLP).

Both OAP and OLP implement the OFU maxim through the extended Bellman operator

Lt which is an “optimistic” version of L (at least in high probability). Ok et al. (2018) derived

Directed Exploration Learning (DEL) which is able to achieve the lower-bound of Prop. 2.11

with an explicit explore versus exploit strategy instead. Depending on past observation, DEL

decides to exploit i.e., to take the greedy policy w.r.t. L̂tĥt(st) (rather than Ltĥt(st)), or

to explore by explicitly using the expression of the estimated lower-bound K̂t (solution to

optimization problem in Prop. 2.11 with M replaced by M̂t). Unlike OAP and OLP, DEL

does not rely on OFU.

Optimal algorithms with finite time guarantees

UCRL. The first algorithm with provable finite time regret guarantees is UCRL (Upper

Confidence Bounds Reinforcement Learning) introduced by Auer and Ortner (2007). For any

ergodic MDP M , let Π∗ ⊆ ΠSD be the set of stationary deterministic gain-optimal policies in

M and

τmax := max
s,s′

max
π∈ΠSD

Eπ
[
τ(s′)

∣∣s1 = s
]
− 1

the worst case mixing time. Unlike the diameter (Def. 2.6), τmax is a double maximum and

so τM < +∞ only when M is ergodic. We also define

κmax := 1
2 max
π∈ΠSD

max
s′

maxs Eπ [τ(s′)|s1 = s]− 1
Eπ [τ2(s′)|s1 = s′]− 1

the worst-case condition number of M (Kirkland et al., 2008, condition number κ8), where

τ2(s′) := inf{t ≥ 2 : st = s′} is the first return time in s′. Finally, the gap in gains is

δg := g∗ − max
π∈ΠSD\Π∗

{
max

s: gπ(s)<g∗
gπ(s)

}
.

Auer and Ortner (2007, Theorem 2) proved that there exists a numerical constant β > 0 such

that for any ergodic MDP M , for all initial state distribution µ1 ∈ P(S) and for all T > 1:

E [∆(M,UCRL, µ1, T )] ≤ β · S
5Aτmaxκ

2
max

δg
ln (T ) + 3S2A2τmax log2

(
T

SA

)
. (2.33)
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Algorithm 4 UCRL2

Input: Confidence δ ∈]0, 1[, maximal reward rmax, set of states S, set of actions A
1: Set initial time t := 1, observe initial state s1 and initialize for all (s, a, s′) ∈ S ×A× S:

• counters N1(s, a) := 0,
• empirical averages p̂1(s′|s, a) := 0 and r̂1(s, a) := 0.

2: for episodes k = 1, 2, ... do
3: Set the starting time of the episode tk := t and initialize for all (s, a, s′) ∈ S ×A×S:

episode counters νk(s, a, s′) := 0 and νk(s, a) := 0, and cumulative rewards Rk(s, a) := 0.
4: For all (s, a, s′) ∈ S ×A× S, compute upper confidence bounds:

βsas
′

p,k :=

√√√√14S ln
(

2Atk
δ

)
N+
k (s, a)

(2.25)

βsar,k :=

√√√√7 ln
(

2SAtk
δ

)
2N+

k (s, a)
(2.26)

5: SetMk := {S,A, rk, pk} to be the extended MDP defined by the confidence intervals

pk(s′|s, a) ∈ Bk
p (s, a) :=

{
q ∈ ∆S :

∥∥q − p̂k(s′|s, a)
∥∥

1 ≤ β
sa
p,k

}
(2.27)

rk(s, a) ∈ Bk
r (s, a) :=

[
r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k

]
∩
[
0, rmax

]
(2.28)

6: Compute policy πk using (“extended”) value iteration (Alg. 3):

(gk, hk, πk) := EVI

(
Lk,Gk,

rmax√
tk
, 0, s1

)
(2.29)

7: while νk(st, πk(st)) ≤ N+
k (st, πk(st)) do

8: Execute action at := πk(st), obtain reward rt, and observe next state st+1.
9: Increment episode counters:

νk(st, at, st+1)← νk(st, at, st+1) + 1 and νk(st, at)← νk(st, at) + 1
10: Increment cumulative reward: Rk(st, at)← Rk(st, at) + rt
11: Increment time t← t+ 1
12: end while
13: Update counters, empirical averages and sample variances for all (s, a, s′) ∈ S×A×S:

Nk+1(s, a) := Nk(s, a) + νk(s, a) (2.30)

p̂k+1(s′|s, a) := Nk(s, a)
N+
k+1(s, a)

· p̂k(s′|s, a) + νk(s, a, s′)
N+
k+1(s, a)

(2.31)

r̂k+1(s, a) := Nk(s, a)
N+
k+1(s, a)

· r̂k(s, a) + Rk(s, a)
N+
k+1(s, a)

(2.32)

14: end for
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2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting

Although it is difficult to compare (2.33) with the lower-bound of Prop. 2.10, the regret bound

of UCRL is likely to be much worse given the dependency in S (among other things).

Similarly to OAP and OLP, UCRL maintains maximum-likelihood estimates of r and p

as well as confidence sets Br(s, a) and Bp(s, a) based on high probability confidence bounds.

But unlike OAP and OLP, UCRL updates the policy only once the confidence bounds of at

least one state-action pair have been halved since the last policy update. The time interval

between two policy updates is called an “episode”. At each episode k, UCRL2 computes a

policy

πk ∈ arg max
π∈ΠSD

sup
M ′∈Mk

gπM ′

where

Mk :=
{
M ′ = 〈S,A, r, p〉 : M is ergodic, r(s, a) ∈ Bk

r (s, a), Bk
p (s, a)

}
is the set of plausible ergodic MDPs compatible with the confidence sets. It is a bounded-

parameter MDP (see Sec. 2.1.5) with the additional constraint that the MDPs it contains

should all be ergodic. The confidence sets are constructed so that M ∈ Mk with high

probability implying supM ′∈Mk
g∗M ′ ≥ g∗ i.e., πk is gain-optimistic. UCRL is therefore another

instance of RL algorithm relying on OFU.

UCRL2. Jaksch et al. (2010) later improved UCRL with UCRL2. Since all the RL algorithms

presented in this thesis are variants of UCRL2, we report the detailed pseudo-code in Alg. 4.

To improve the readability of the algorithm, we use the notation n+ := max{1, n} for any

positive integer n ∈ N.

UCRL2 and UCRL share a similar structure. Both algorithms proceed through episodes.

At the beginning of each episode, a stationary policy is computed by taking into consider-

ation the past observations. The policy computed also takes into account the uncertainty

of observed data by constructing a bounded-parameter MDP Mk (similar to the bounded-

parameter of UCRL without the constraint on ergodicity). This policy is executed until the

end of the episode. A new episode then starts and the policy is updated based on the new

observations gathered during the last episode. This procedure is repeated until the desired

time horizon is reached.

When the MDP is communicating but not ergodic, switching stationary policies too often

can cause a large –even linear– regret as shown by Ortner (2010, Example 1). To avoid too

many non-stationarities in the policy executed by the algorithm, the episodes are designed

to have a length that grows exponentially with time. This way, the number of episodes (i.e.,

the number of policy switches) is at most logarithmic in time causing only a minor increase

in the regret. More precisely, an episode ends when the number of visit in a state-action pair

has doubled since the end of the previous episode.

Given the bounded parameter MDPMk, UCRL2 executes a policy πk which is an approx-

imate solution to the following optimization problem:

max
π∈ΠSD

{
sup

M ′∈Mk

gπM ′

}
= sup

M ′∈Mk

{
max
π∈ΠSD

gπM ′

}
= sup

M ′∈Mk

g∗M ′ . (2.34)
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

If M ∈ Mk (with high probability), the solution of (2.34) is an upper-bound to g∗ and so

πk is (nearly) gain-optimistic (like in UCRL). Since we do not restrictMk to ergodic MDPs

(like in UCRL), the associated optimal gain might not be state-independent and so the gains

of two different MDPs might not always be comparable10. One might wonder whether (2.34)

is well-posed and admits maximizer (Mk, π
∗
k) ∈ Mk × ΠSD. Using the mapping between

bounded-parameters MDPs and extended MDPs (Sec. 2.1.5), it is possible to interpret Mk

as an MDP. Eq. 2.16 can then be rewritten11 as finding the optimal policy of Mk:

max
π∈ΠSD

Mk

gπMk
= g∗Mk

(2.35)

Since M ∈ Mk (with high probability) and M is communicating, so is Mk. Moreover, the

confidence sets Bk
p (s, a) (2.27) are polytopes and we already explained in Sec. 2.1.5 that in

this case, the action space can be restricted to a finite set. We can thus apply the tools of

Sec. 2.1.3: we know that a maximizer of (2.35) always exists (Prop. 2.4) and we can compute

an approximate solution using value iteration12 (Alg. 3). Since value iteration is run with

the extended optimal Bellman operator Lk of Mk, we call the algorithm “extended” value

iteration (EVI). The accuracy εk and extended greedy operator Gk given as input to EVI are

respectively rmax/
√
tk and

∀s ∈ S,∀v ∈ RS , Gkv(s) ∈ arg max
a∈As

{
max

r∈Bkr (s,a)
r + max

p∈Bkp (s,a)
pᵀv

}
. (2.36)

Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of Prop. 2.6 hold so that EVI

converges and gk approximates g∗Mk
with an rmax/

√
tk-accuracy. Enumerating the vertices

of the sets Bk
p (s, a) is not the most computationally efficient method to implement EVI.

The maximization of pᵀv under the constraint p ∈ Bk
p (s, a) can be expressed as a linear

programming (LP) problem (which can be solved efficiently using a generic solver). Strehl

and Littman (2008a) provide a better algorithm that exploits the specific structure of this

LP (see also Jaksch et al., 2010, Figure 2). It runs in O(S) once the vector v has been sorted

in descending order. The sorting operation requires O(S ln (S)) operations but needs only be

done once for all (s, a).

UCRL2 enjoys the following regret guarantees.

Proposition 2.13 (Theorem 4 of Jaksch et al. (2010))

For any communicating MDP, there exists a constant C(M) such that with probability at

least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all time horizons

T > 1:

E [∆(M,UCRL2, µ1, T )] ≤ 342 · rmaxD
2S2A

δg
ln (T ) + C(M). (2.37)

10If the MDPs M1 and M2 both belong to Mk but have non constant optimal gains g∗M1 and g∗M2 , it is
possible that g∗M1 (s) > g∗M2 (s) while g∗M1 (s′) < g∗M2 (s′) for some s′ 6= s.

11Eq. 2.34 and Eq. 2.35 are equivalent.
12In Alg. 4, we refer to value iteration applied to an extended Bellman operator as “extended” value iteration

(EVI) even though this is just a specific instance of value iteration.
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2.2. On-line Reinforcement Learning in the infinite horizon undiscounted setting

The exact expression of the constant C(M) can be found in (Jaksch et al., 2010). It

depends on some form of worst-case mixing time of M (different than τM ). The logarithmic

term in 2.37 is tighter than (2.33) and holds for the broader class of communicating MDPs

(rather than just ergodic MDPs). The bound is still difficult to compare with Prop. 2.10

but we can easily compare it with the worst-case upper-bound 2rmax(sp(h∗)+1)2SA
δmin

of Ok et al.

(2018, Section 4.1) mentioned earlier. As shown by Bartlett and Tewari (2009, Theorem 4)

(more details will be given in Sec. 3.3 of Chap. 3), the range of the bias function is at most

rmaxD i.e., sp (h∗) ≤ rmaxD, and the equality holds in some MDPs. Moreover, the gap in

gain δg is always smaller than δmin as shown in the following lemma.

For any ergodic MDP, δg ≤ δmin.

Lemma 2.1

Proof. If Π∗ = ΠSD then δg = δmin = 0. Otherwise, we denote by (s−, a−) ∈ S × A the

state-action pair achieving the minimum in (2.21) i.e., such that δmin = δ(s−, a−). We define

the action space A− such that A−s = As for all s 6= s− and A−s− := {a ∈ As− : δ(s−, a) > 0}.
A− contains all actions except optimal actions in state s−. Let M− := 〈S,A−, r, p〉 be the

MDP defined on the action space A−, with L− and g− the corresponding optimal Bellman

operator and optimal gain (the gain is state-independent since both M and M− are ergodic).

By construction, g∗ > g− and based on (2.18) we can write

δmin = g∗ − L−h∗(s−) + h∗(s−) = g∗ −min
s

{
L−h∗(s)− h∗(s)

}
Theorem 8.5.5. of Puterman (1994) implies that

g− ≥ min
s

{
L−h∗(s)− h∗(s)

}
and so necessarily δmin ≥ g∗− g− = g∗− gπ− where π− ∈ ΠSD is any gain-optimal stationary

deterministic policy of M−. π− is also a valid policy in the original MDP M with gπ
−
< g∗.

As a result, maxπ∈ΠSD\Π∗ {gπ} ≥ gπ
−

which implies that δmin ≥ δg. �

Finally, Multi-Armed Bandit problems are specific instances of ergodic MDPs (with a single

state) satisfying δg = δmin. In conclusion, the bound of Prop. 2.13 is always worse than
2rmax(sp(h∗)+1)2SA

δmin
but in the worst case the two expressions are comparable up to a factor

S. This suggests that asymptotically, UCRL2 is at least S-loose in terms of regret, which

is not so bad. The regret analysis of OAP is very different from the proof of Prop. 2.13.

We conjecture that the proofs techniques of Burnetas and Katehakis (1997) can probably be

applied to the analysis of UCRL2 and lead to an asymptotic regret bound almost matching

the lower bound of Prop. 2.10 (probably up to a factor S).

In addition to the logarithmic regret bound of Prop. 2.13, Jaksch et al. (2010) also proved

a minimax bound for UCRL2.
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Chapter 2. Statistical analysis of the exploration-exploitation dilemma in RL

Proposition 2.14 (Theorem 2 of Jaksch et al. (2010))

For any communicating MDP, with probability at least 1 − δ, it holds that for all initial

state distributions µ1 ∈ ∆S and for all time horizons T > 1:

∆(M,UCRL2, µ1, T ) ≤ 34 ·DS
√
AT ln

(
T

δ

)
. (2.38)

Compared to the minimax lower-bound of Prop. 2.12, the bound of Prop. 2.14 is looser by

a factor
√
DS (ignoring logarithmic terms).

Extensions. Bartlett and Tewari (2009) tried to extend UCRL2 to the case where an upper-

bound c ≥ sp (h∗) on the optimal bias span is known. The regret bound then scales with

c instead of D. This will be the focus of Chap. 5. Filippi et al. (2010) derived a variant

of UCRL2 (called KL-UCRL) that uses concentration inequalities on the Kullback-Leibler

divergence (instead of Hoeffding/Weissman inequality) to construct confidence bounds. The

regret upper-bound they prove is the same as in Prop. 2.14. Despite proving the same

bound, the authors empirically observe the superiority of KL-UCRL over UCRL2. They

provide some intuition to explain their results and Talebi and Maillard (2018b) later showed

that the regret analysis can be refined. Talebi and Maillard (2018b) indeed showed that the

regret of KL-UCRL scales as Õ
(√

S
∑
s,a V

∗
s,aT +D

√
T
)

(ignoring logarithmic terms) where

V ∗s,a := VX∼p(·|s,a) (h∗(X)) is the variance of the optimal bias w.r.t. the next state. Since

V ∗s,a ≤ sp (h∗) ≤ rmaxD, the bound is smaller than in Prop. 2.14. Nevertheless, the bound

only holds for ergodic MDPs and the logarithmic terms hidden in the Õ-notation can be very

big. More recently, Ortner (2018) derived an algorithm called OSP (Optimistic Sample Path)

which leverages Markov Chain concentration inequalities. When run on an unknown ergodic

MDP with mixing time tmix (the definition differ from τmax), the regret can be bounded

(w.h.p.) as O(
√
tmixSAT ln (T/δ)). In some specific MDPs, tmix is comparable to D so that

OSP achieves the minimax lower-bound (up to logarithmic factors).13 However, OSP requires

explicitly enumerating all AS policies which makes it intractable. Finally, the work of Tossou

et al. (2019) (still unpublished) suggests that it is possible to design a tractable algorithm

(variant of UCRL2) called UCRL-V with optimal minimax regret guarantees under additional

assumptions on transition probabilities.

13One example where tmix is of the same order as D is actually the family of MDPs used by Jaksch et al.
(2010) to prove Prop. 2.12.
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3 Improved exploration-exploitation
with Bernstein bounds

In the previous chapter, we gave a high-level overview of UCRL2 (Jaksch et al., 2010) and

compared its regret performance (Prop. 2.13 and 2.14) to existing lower-bounds (Prop. 2.10

and 2.12). In this chapter, we introduce several modifications to the algorithm and improve

the minimax regret guarantees of Prop. 2.14. Our proposed algorithm, UCRL2-Bernstein

(UCRLB for short), leverages empirical Bernstein inequality as well as recent contributions

of the literature (including from other settings e.g., infinite horizon discounted and finite

horizon) to make a significant step towards closing the gap between minimax regret upper

and lower-bounds. For any communicating MDP with S states, A actions, Γ ≤ S possible next

states and diameter D, we show that UCRLB suffers at most Õ
(√

DΓSAT
)

regret (ignoring

logarithmic terms). This saves a factor
√
DS/Γ compared to the regret bound of UCRL2.

Since in many MDPs Γ = O(1)� S, this bound is also almost matching the minimax lower-

bound of Prop. 2.12. Although many ideas presented in this chapter are not new, we make

several important contributions to the regret analysis of this type of algorithms, and provide

new insights on existing proofs techniques. For example, we provide a more generic and

insightful proof of gain-optimism relying on the properties of the extended Bellman operator

rather than the extended MDP. We also refine the regret analysis by introducing a new

quantity called “travel-budget” of an MDP, that replaces the diameter in the bound.

Another objective of this chapter is to present a unified framework for the analysis of

UCRL2-like algorithms. All the algorithms presented in the next chapters of this thesis will

be variants of UCRLB and most of the analysis will be unchanged. To minimize redundancies

and improve clarity, this is the only chapter where we will provide a fully detailed analysis. In

subsequent chapters, we will refer to this chapter for the parts of the analysis that are similar,

and only focus on what significantly differs. In order to keep the structure of the regret proofs

identical across chapters, we consider a very general version of the algorithm, more than is

actually needed for the setting of this chapter. For example, we allow the optimal optimistic

policy to be stochastic although a deterministic policy always exists. This will be useful in

Chap. 5. We will also apply the aperiodicity transformation in EVI even if this is not strictly

necessary with the extended MDP considered here.
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

Most of the work presented in this chapter has not been published in any venue so far.

3.1 Upper Confidence Reinforcement Learning with Bern-

stein bounds

UCRL2 and UCRLB are very similar from an algorithmic point of view. The main difference

lies in the definition of the extended MDP. In the regret analysis (Sec. 3.4 and 3.5), we

will show that the modifications that we propose result in a much more sample efficient

algorithm. In this section, we start by giving an overview of the main features of UCRLB.

We also highlight and explain the main differences with UCRL2.

3.1.1 Detailed algorithm and notations

The detailed pseudo-code of UCRLB is reported in Alg. 5. In what follows, we give additional

explanations and we introduce several notations.

Time steps and visit counts. The time steps (occurrences of a new state) are indexed by

T ≥ t ≥ 1. The state visited at time t is denoted st while the action played at time t is denoted

at. The episodes (corresponding to policy switches like in UCRL2, see Sec. 2.2.3) are indexed

by k, and πk is the policy executed during episode k. In some specific applications (see for

example Chap. 5), it is too restrictive to constrain πk to belong to the set of deterministic

policies ΠSD. For this reason, we allow πk to be a stationary randomized policy (even though

in most cases this level of generality is not needed). At every time step t of episode k, at

is sampled from the distribution πk(·|st). After action at has been played, a reward rt is

earned and the next state st+1 is observed. For all k ≥ 1, we denote by tk the starting time

of episode k. The first episode starts at t1 := 1. A new episode starts whenever the stopping

condition of the current episode is met i.e., whenever the number of visits in the state-action

pair (st, at) has doubled during the episode. Formally, for all k ≥ 1,

tk+1 := inf

T ≥ t > tk :
t−1∑
τ=1

1 {sτ , aτ = st, at} ≥ max

1, 2
tk−1∑
τ=1

1 {sτ , aτ = st, at}




= inf

T ≥ t > tk :
t−1∑
τ=tk

1 {sτ , aτ = st, at} ≥ max

1,
tk−1∑
τ=1

1 {sτ , aτ = st, at}




(3.11)

where inf{∅} ← T + 1 by convention. Note that by construction, the stopping condition of

episode k is always met after at most tk steps. For all T > t ≥ 1, we define the episode at

time t by

kt := sup{k ≥ 1 : t ≥ tk}. (3.12)
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3.1. Upper Confidence Reinforcement Learning with Bernstein bounds

Algorithm 5 UCRL-Bernstein (UCRLB)

Input: Confidence δ ∈]0, 1[, maximal reward rmax, set of states S, set of actions A
1: Set initial time t := 1, observe initial state s1 and initialize for all (s, a, s′) ∈ S ×A× S:

• counters N1(s, a, s′) := 0 and N1(s, a) := 0,
• empirical averages p̂1(s′|s, a) := 0 and r̂1(s, a) := 0,
• sample variances σ̂2

p,1(s′|s, a) := 0 and σ̂2
r,1(s, a) := 0.

2: for episodes k = 1, 2, ... do
3: Set the starting time of the episode tk := t and initialize for all (s, a, s′) ∈ S ×A×S:

episode counters νk(s, a, s′) := 0 and νk(s, a) := 0, and cumulative (squared) rewards
Rk(s, a) := 0 and Sk(s, a) := 0. . Initialization of episode k

4: For all (s, a, s′) ∈ S ×A× S, compute upper confidence bounds:

βsas
′

p,k := 2

√√√√ σ̂2
p,k(s′|s, a)
N+
k (s, a)

ln
(

6SAN+
k (s, a)
δ

)
+

6 ln
(

6SAN+
k

(s,a)
δ

)
N+
k (s, a)

(3.1)

βsar,k := 2

√√√√ σ̂2
r,k(s, a)
N+
k (s, a)

ln
(

6SAN+
k (s, a)
δ

)
+

6rmax ln
(

6SAN+
k

(s,a)
δ

)
N+
k (s, a)

(3.2)

5: SetMk := {S,A, rk, pk} to be the extended MDP defined by the confidence intervals

pk(s′|s, a) ∈ Bk
p (s, a, s′) :=

[
p̂k(s′|s, a)− βsas′p,k , p̂k(s′|s, a) + βsas

′
p,k

]
∩
[
0, 1
]

(3.3)

rk(s, a) ∈ Bk
r (s, a) :=

[
r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k

]
∩
[
0, rmax

]
(3.4)

6: Compute policy πk using extended value iteration (see Eq. 3.20 and Alg. 6):

(gk, hk, πk) := EVI

(
Lkα,Gkα,

rmax
tk

, 0, s1

)
(3.5)

7: Sample action at ∼ πk(·|st). . Stochastic policies are allowed
8: while True do . Execute policy πk until the end of episode k
9: Execute action at, obtain reward rt, and observe next state st+1.

10: Increment episode counters:
νk(st, at, st+1)← νk(st, at, st+1) + 1 and νk(st, at)← νk(st, at) + 1

11: Increment cumulative (squared) reward
Rk(st, at)← Rk(st, at) + rt and Sk(st, at)← Sk(st, at) + r2

t
12: if νk(st, at) ≥ N+

k (st, at) then . Stopping condition of episode k
13: Increment time t← t+ 1 and Break
14: else
15: Increment time t← t+ 1 and sample action at ∼ πk(·|st).
16: end if
17: end while
18: Update counters, empirical averages and sample variances for all (s, a, s′) ∈ S×A×S:

Nk+1(s, a, s′) := Nk(s, a, s′) + νk(s, a, s′) and Nk+1(s, a) := Nk(s, a) + νk(s, a) (3.6)

p̂k+1(s′|s, a) := Nk(s, a)
N+
k+1(s, a)

· p̂k(s′|s, a) + νk(s, a, s′)
N+
k+1(s, a)

(3.7)

r̂k+1(s, a) := Nk(s, a)
N+
k+1(s, a)

· r̂k(s, a) + Rk(s, a)
N+
k+1(s, a)

(3.8)

σ̂2
p,k+1(s′|s, a) := p̂k+1(s′|s, a)

(
1− p̂k+1(s′|s, a)

)
(3.9)

σ̂2
r,k+1(s, a) := Sk(s, a)

N+
k+1(s, a)

+ Nk(s, a)
N+
k+1(s, a)

·
(
σ̂2
r,k(s, a) + r̂k(s, a)

)
− (r̂k+1(s, a))2 (3.10)

19: end for 51
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UCRLB keeps track of the number of observations of the sequence (s, a, s′) ∈ S × A × S
strictly before and during episode k (respectively Nk(s, a, s′) and νk(s, a, s′)):

νk(s, a, s′) :=
tk+1−1∑
t=tk

1
{
st = s, at = a, st+1 = s′

}
and Nk(s, a, s′) :=

k−1∑
l=1

νl(s, a, s′). (3.13)

UCRLB also keeps track of the number of visits in every state-action pair (s, a) ∈ S × A
before and during episode k (respectively Nk(s, a) and νk(s, a)):

νk(s, a) :=
∑
s′∈S

νk(s, a, s′) and Nk(s, a) :=
∑
s′∈S

Nk(s, a, s′). (3.14)

In Alg. 5, νk(s, a, s′) (resp. νk(s, a)) is incremented after every new visit in (s, a, s′) (resp.

(s, a)) while Nk(s, a, s′) (resp. Nk(s, a)) is updated at the end of every episode using the

recurrence relation Nk+1(s, a, s′) := Nk(s, a, s′) + νk(s, a, s′) (resp. Nk+1(s, a) := Nk(s, a) +
νk(s, a)), with N1(s, a, s′) := 0 by definition (resp. N1(s, a) := 0). To simplify notations we

define N+
k (s, a) := max{1, Nk(s, a)}. Finally, Rk(s, a) (resp. Sk(s, a)) denote the cumulative

sum of rewards (resp. squared rewards):

Rk(s, a) :=
tk+1−1∑
t=tk

1 {st, at = s, a} · rt and Sk(s, a) :=
tk−1∑
t=1

1 {st, at = s, a} · r2
t . (3.15)

Episodes. The stopping condition of episodes implemented in UCRLB slightly differ from

the stopping condition used in UCRL2. In UCRL2, an episode k stops whenever the algorithm

is about to play an action a in a state s that already satisfies νk(s, a) = N+
k (s, a). Action a is

therefore never played and a new policy is computed instead. In UCRL2, for all state-action

pairs (s, a) ∈ S × A, νk(s, a) ≤ N+
k (s, a) and νk(s, a) = N+

k (s, a) holds true for at least

one (s, a). However, it is possible that the equality holds for several state-action pairs. In

UCRLB, an episode k stops as soon as the action a that has just been played (i.e., most

recently) e.g., in state s, satisfies νk(s, a) = N+
k (s, a). Action a is therefore played and a new

policy is computed just after that. The reason we modified the doubling scheme of UCRL2

is only to simplify the theoretical analysis of the algorithm in the general case where the

policy πk played at episode k may be stochastic. Our stopping condition avoids introducing

two actions at time t: the action that “could have been played” (if the episode had not been

ended) and the one which is actually played.

Confidence bounds and extended MDP. At the beginning of every episode k, UCRLB uses

the sample means p̂k and r̂k as (unbiased) estimators of p and r respectively. These estimators

can be efficiently updated at the end of every episode using the usual update rule of the sample

mean (see Eq. 3.7 and 3.8). While UCRL2 relies on Hoeffding’s concentration inequality (HI)

(Boucheron et al., 2013, Chapter 2.6) and Weissman’s concentration inequality (Weissman

et al., 2003, Theorem 2.1) to derive the confidence intervals needed to define the extended

MDP Mk (see Eq. 2.25 and 2.26), UCRLB leverages on empirical Bernstein’s concentration

inequality (EBI) (Audibert et al., 2007; Maurer and Pontil, 2009) to derive the confidence

bounds of Eq. 3.1 and 3.2 used in the definition of Mk. EBI is tighter than HI (at least for
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a sufficiently high number of observations). We recall both inequalities below.

Proposition 3.1 (Hoeffding inequality, Theorem 2.8 of Boucheron et al. (2013))

Let (Xi)1≤i≤n be a collection of independent random variables s.t. ∀i ∈
{1, ..., n}, P (Xi ∈ [ai, bi]) = 1 and E[Xi] = µi. Then with probability at least 1 − δ it

holds that ∣∣∣∣∣
n∑
i=1

(Xi − µi)
∣∣∣∣∣ ≤

√√√√1
2

n∑
i=1

(bi − ai)2 ln
(2
δ

)
. (3.16)

Proposition 3.2 (Empirical Bernstein inequality, Theorem 1 of Audibert et al. (2009))

Let (Xi)1≤i≤n be a collection of i.i.d. r.v. s.t. ∀i ∈ {1, ..., n}, P (Xi ∈ [a, b]) = 1 and

E[Xi] = µ. Then with probability at least 1− δ it holds that

∣∣∣∣∣
n∑
i=1

(Xi − µ)
∣∣∣∣∣ ≤

√
2Vn(X) ln (3/δ)

n
+ 3(b− a) ln (3/δ)

n
,

whee Vn(X) is the population variance1: V ′n(X) := 1
n

∑n
i=1

(
Xi − 1

n

∑n
i=1Xi

)2
.

For any state-action pair (s, a) ∈ S ×A, UCRLB uses EBI to bound
∣∣p̂k(s′|s, a)−p(s′|s, a)

∣∣
for all s′ w.h.p.. The `1-deviation

∥∥p̂k(·|s, a) − p(·|s, a)
∥∥

1 =
∑
s′∈S

∣∣p̂k(s′|s, a) − p(s′|s, a)
∣∣

between the empirical and true transition probability is bounded (w.h.p.) by taking a union

bound over all s′ ∈ S and summing. Instead, UCRL2 uses a variant of Hoeffding’s bound

derived by Weissman et al. (2003) that directly bounds the `1-deviation. The use of EBI

significantly improves the learning performances (see Sec. 3.4). Notice that Lattimore and

Hutter (2012); Dann and Brunskill (2015); Lattimore and Hutter (2014) already proposed

variants of UCRL2 that leverages on EBI. However, Lattimore and Hutter (2012, 2014)

introduced and analysed their algorithm in the discounted setting (when a discount factor γ

is given as input to the algorithm, see Sec. 2.1.3) while Dann and Brunskill (2015) focused

on the finite horizon setting (when an horizon H is given as input to the algorithm, see

Sec. 2.1.3). They both proved a bound on the sample complexity while we will analyse the

regret of UCRLB.

Extra multiplicative factors appear in the logarithmic terms of (3.1) and (3.2) compared to

the bound of Prop. 3.2. This is due to the use of union bounds (see Sec. 3.5 for more details).

In Alg. 5, the population variances of p̂k(s′|s, a) and r̂k(s, a) are denoted by σ̂2
p,k(s′|s, a)

and σ̂2
r,k(s, a) respectively. The estimated transition probability p̂k(s′|s, a) correspond to

the sample mean of Nk(s, a) i.i.d. Bernoulli r.v. with mean p(s′|s, a) 2 and therefore the

1Unlike the sample variance V ′n(X) := 1
n−1

∑n

i=1

(
Xi − 1

n

∑n

i=1 Xi
)2

, the population variance Vn(X) is a

biased estimator of the true variance. The two estimators are equal up to a multiplicative factor n/(n − 1)
called “Bessel’s correction”: V ′n(X) := n

n−1Vn(X).
2The discussion at the beginning of the proof of Thm. 3.1 explains why the r.v. can be interpreted as
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population variance can be easily computed as σ̂2
p,k(s′|s, a) := p̂k(s′|s, a) (1− p̂k(s′|s, a)) (3.9).

The population variance of the reward can be computed recursively at the end of every episode

(3.10):

σ̂2
r,k+1(s, a) := 1

N+
k+1(s, a)

(
k∑
l=1

Sl(s, a)
)
− (r̂k+1(s, a))2

= Sk(s, a)
N+
k+1(s, a)

+ Nk(s, a)
N+
k+1(s, a)

(
σ̂2
r,k(s, a) + (r̂k(s, a))2

)
− (r̂k+1(s, a))2 .

The extended MDP Mk is defined by the compact sets Bk
r (s, a) (3.4) and

Bk
p (s, a) :=

{
p ∈ ∆S : p(s′) ∈ Bk

p (s, a, s′), ∀s′ ∈ S
}

(3.17)

where Bk
p (s, a, s′) is defined in Eq. 3.3. UCRLB uses the known bound rmax on the reward

in order to construct the confidence intervals Bk
r (s, a)3 (Eq. 3.2 and 3.4).

Like UCRL2, UCRLB relies on extended value iteration (EVI) to find such an approximate

solution (3.5). More details are given in the next section.

3.1.2 Extended value iteration

Like in UCRL2 (Sec. 2.2.3), the purpose of EVI is to find an approximate optimal policy

of the extended MDP Mk.
4 EVI is not the only algorithm able to solve this problem. For

example, Lattimore and Szepesvári (2018, Section 37.3.1) describe how to solve this problem

using the ellipsoid method . In this section (as well as in the whole thesis), we will focus

exclusively on EVI. We recall that EVI is an instance of value iteration (Alg. 3) with an

extended optimal Bellman operator Lk given as input, namely

∀v ∈ RS , ∀s ∈ S, Lkv(s) := max
a∈As

{
max

r∈Bkr (s,a)
{r}+ max

p∈Bkp (s,a)
{pᵀv}

}
. (3.18)

The inner optimization problem maxp∈Bkp (s,a) {pᵀv} is a linear programming (LP) problem

since p 7−→ pᵀv is linear and Bk
p (s, a) is only defined by linear constraints on p. It is possible

to use a generic solver to find the solution of this problem. However, given that we need to

solve SA different LP (one for every state-action pair) with the same objective function and

with very simple constraints (the sets Bk
p (s, a, s′) are real intervals), it is computationally

more efficient to first sort the vector v and then use the LProba algorithm described in

Sec. 3.1.3 below. If u := Sort(v) is the vector v sorted in descending order, then (3.18) can

be re-written:

Lkv(s) := max
a∈As

{
max

r∈Br(s,a)
{r}+ LProba

(
u,
(
Bk
p (s, a, s′)

)
s′∈S

)}
. (3.19)

independent.
3If UCRLB is given as input an (s, a)-dependent range [rmin(s, a), rmax(s, a)], it is straightforward to

adapt Eq. 3.2 and 3.4 in order to take advantage of this additional knowledge.
4It is sufficient to find a rmax/tk-approximation of optimization problem (2.35) in order to derive regret

guarantees, see Sec.chap:ucrlb:sec:regret.proof.
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Extended optimality equation. Since Bk
p (s, a) is a polytope, Lk can be interpreted as an

optimal Bellman operator with finitely many actions (see Sec. 2.1.5). Then, a sufficient con-

dition to apply Prop. 2.4 (guaranteeing existence of a solution to the Bellman optimality

equation) is to show thatMk is weakly-communicating . Since the true MDP M is communi-

cating by assumption, if M ∈Mk (which holds with high probability as will be shown later,

see Prop. 3.1), then Mk is communicating as well (and therefore weakly-communicating).

Even when M 6∈ Mk, Mk is still communicating because for all 3-tuple (s, a, s′), there

exists q(·|s, a) ∈ Bk
p (s, a) such that q(s′|s, a) > 0. Indeed, as will be clear in the next

section, such q(·|s, a) can always be obtained by running LProba on es′ (the s′-th Cartesian

basis vector). This only works because Bk
p (s, a, s′) are real intervals. However, in some

problems it is possible that some transitions p(s′|s, a) of the true MDP are perfectly known

beforehand. To remove the burden of learning these specific transitions (s, a, s′), we would

like to restrict the corresponding intervals Bp(s, a, s′) to a singleton, potentially making Mk

not communicating. In this case, it is preferable to expand the singletons by ±1/tk, thus

ensuring that Mk is communicating (no matter whether M ∈ Mk or not), while forbidding

values too distant from p(s′|s, a).

Convergence of EVI. Jaksch et al. (2010, Section 3.1.3) showed that assumption 2 of

Prop. 2.6 (guaranteeing convergence of value iteration) always holds for UCRL2 (aperiod-

icity of the transition matrices encountered in EVI). This assumption also holds with the

confidence sets Bk
p (s, a) defined in Eq. 3.17. As we just mentioned, we might be tempted to

reduce Bk
p (s, a) to singletons, potentially violating assumption 2 of Prop. 2.6. To overcome

this issue, we apply the aperiodicity transformation presented in Sec. 2.2, with aperiodicity

coefficient α arbitrarily set to 0.9 The corresponding aperiodic optimal Bellman operator Lkα
can be computed using the expression below.

Lkαv(s) := max
a∈As

{
max

r∈Br(s,a)
{r}+ α · LProba

(
u,
(
Bk
p (s, a, s′)

)
s′∈S

)}
+ (1− α) · v(s). (3.20)

Similarly, we denote the aperiodic extended MDPMk
α. Assumption 1 of Prop. 2.6 holds and

so EVI converges. Prop. 2.7 also holds i.e.,5

|gk − g∗k| ≤ εk/2 := rmax
2tk

(where g∗k is the optimal gain of Mk) (3.21)

and ‖Lkαhk − hk − gke‖∞ ≤ εk := rmax
tk

. (3.22)

Greedy policy. It is very likely that several greedy policy exist, especially at the beginning

of the learning process when the uncertainty on p and r is high (so that many actions are

equally optimistically optimal). When there is ambiguity on which action to play (there

can be several optimal policies), UCRL2 break ties arbitrarily by playing only one of the

actions (see Eq. 2.36). Thus the policy is always deterministic. The choice of the greedy

policy that will be executed during the episode does not seem to impact the regret bound.

Nevertheless, since all policies are in some sense equivalent , it is reasonable to play them

5We recall that the optimal gains of Mk
α and Mk are equal (denoted by g∗k), see Sec. 2.2.
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Algorithm 6 Greedy operator used in UCRLB (Gkα)

Input: Vector v ∈ RS , confidence sets Br(s, a) and Bp(s, a, s′) for all (s, a, s′), aperiodicity
coefficient α ∈]0, 1]

Output: Policy π ∈ ΠSR

1: for s ∈ S do . This loop can be parallelized to speed up running time

2: A+(s) := Arg max
a∈As

{
max

r∈Br(s,a)
{r}+ α · LProba

(
un, (Bp(s, a, s′))s′∈S

)}
3: for a ∈ A do
4: if a ∈ A+(s) then
5: Set π(a|s) := 1∣∣A+(s)

∣∣ . All greedy actions are played with equal probability

6: else
7: Set π(a|s) := 0
8: end if
9: end for

10: end for

with equal probability in order to have a more balanced exploration. The implementation of

the greedy operator Gαk given as input to EVI (Eq. 3.5) is reported in Alg. 6. Our goal in

considering randomized policies is not just to artificially complexity the analysis but also to

generalize UCRL2’s analysis. This will be needed in Chap. 5 for example. It could also be

useful for future work where no deterministic policy is optimal.

3.1.3 Linear Programming for extended value iteration

The detailed pseudo-code of LProba is reported in Alg. 7. Given an input vector v ∈ RS

and S intervals
(
[ai, bi]

)
1≤i≤S satisfying 1 ≥ bi ≥ ai ≥ 0 and

∑S
i=1 ai ≤ 1 ≤

∑S
i=1 bi, LProba

solves the following LP:

max {pᵀv}

s.t.


∑S
i=1 pi = 1

ai ≥ pi ≥ bi,∀i ∈ S

(3.23)

The vector v is assumed to be sorted in decreasing order i.e., v1 ≥ v2 ≥ · · · ≥ vS , which

simplifies the resolution. The assumptions that
∑S
i=1 ai ≤ 1 ≤

∑S
i=1 bi and 1 ≥ bi ≥ ai ≥ 0

ensure that the feasible region defined by the constraints is non-empty. These assumptions

are always met in UCRLB because p̂(·|s, a) ∈ Bk
p (s, a) by construction, 0 ≤ p̂(s′|s, a) ≤ 1

for all s′ ∈ S, and
∑
s′∈S p̂(s′|s, a) = 1. Alg. 7 was first introduced by Dann and Brunskill

(2015) (the validity of the algorithm is proved in their Appendix A). The idea is to initialize

pi to its minimum value ai for all i ∈ {1, . . . , S} and then allocate the remaining probability

mass 1 −
∑S
i=1 ai to p1 which corresponds to the maximal value v1. If there is still some

probability mass left, it is assigned to p2 (which corresponds to the second maximal value v2)

and so on in decreasing order until
∑S
i=1 pi = 1 (LProba is therefore an instance of “greedy”

procedure).
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Algorithm 7 Linear Programming for probability maximization (LProba)

Input: A vector v ∈ RS sorted in decreasing order v(1) ≥ v(2) ≥ · · · ≥ v(S), S closed
intervals

(
[ai, bi]

)
1≤i≤S s.t. 1 ≥ bi ≥ ai ≥ 0 and

∑S
i=1 ai ≤ 1 ≤

∑S
i=1 bi

Output: A scalar w
1: Set w0 :=

∑S
i=1 ai × v(i), ∆0 := 1−

∑S
i=1 ai and i := 1 . Initialization

2: while ∆i−1 > 0 do . Main loop
3: Set δi := min {∆i−1, bi − ai}
4: Update wi ← wi−1 + δi × v(i) . Assign allowed weights to highest values of v first
5: Update ∆i ← ∆i−1 − δi
6: Increment i← i+ 1
7: end while
8: Set w := wi−1

Computational complexity. LProba terminates after at most S iterations. Therefore, the

worst-case complexity of a single iteration of EVI is O(S2A+S ln(S)) where the S ln(S) term

appears because of the sorting of vn (the input vector of Alg. 7 should be sorted). Fortunately,

the loop over states (line 9 of Alg. 3) can be parallelized, reducing the time complexity to

O(SA+S ln(S)). This is of the same order of magnitude as for value iteration (with discrete

instead of compact action spaces) which has a computational complexity of order O(S2A) per

iteration and time complexity O(SA) when parallelized. Value iteration usually converges

exponentially fast (Schweitzer and Federgruen, 1979) and so EVI is computationally efficient .

3.2 Gain-optimism in UCRLB

UCRLB implements the OFU principle. More precisely, it is gain-optimistic meaning that

the optimal gain g∗k of the extended MDPMk is (w.h.p.) bigger than or equal to the optimal

gain g∗ of the true MDP (at every episode k). As briefly hinted in Sec. 2.2.3, this property is

essential to guarantee a good exploration-exploitation trade-off , and more precisely to derive

near-optimal minimax regret bounds (see Sec. 3.5). In this section we formally prove that

UCRLB is gain-optimistic.

3.2.1 A new argument: optimistic Bellman operator

The way that optimism is proved in UCRL2 (Jaksch et al., 2010) is by showing that the

true MDP M belongs to Mk w.h.p., which automatically implies that g∗k ≥ g∗ w.h.p. (see

Sec. 2.1.5 and the equivalence between bounded parameter MDP and extended MDP). This

all-or-none argument seems very restrictive. Indeed, to bound the regret it is sufficient to

show that g∗k ≥ g − η provided η is sufficiently small (the impact on the regret is not bigger

than η · T ). Yet, a small perturbation in the definition of the extended MDP may cause the

true MDP to be excluded and the argument of Jaksch et al. (2010) no longer applies. This

would suggest that the regret can no longer be bounded which is rather unexpected. The

difference g∗k− g∗ should intuitively vary continuously as the extended MDP changes. In this

section, we present a new proof of optimism that only relies on the properties of the optimal
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Bellman operator of the extended MDP 6. We no longer require that the true MDP belongs to

the extended MDP although it is a sufficient condition to apply our proof (our proof is there-

fore more general). We operate a paradigm shift in the way to prove (near) gain-optimism and

to interpret the extended MDP: we show that what matters is not the inclusion of the true

MDP in the corresponding bounded parameter MDP, but only the relationship between the

Bellman operator of the extended MDP and the one of the true MDP. One might argue that

this change of perspective does not result in a much different implementation since in the end,

the policy executed is always the optimal policy of an extended MDP that will most likely

contain the true MDP. But in some situations (see for example Chap. 5), our new argument

allows to restrict the extended MDP (smaller confidence intervals that do not necessarily

include the true parameters of the MDP). The optimism is therefore tighter which results in

an improvement of the performance of the algorithm.

Our proof relies on the following very simple theorem proved by Puterman (1994):

Proposition 3.3 (Theorem 8.4.1 of Puterman (1994)7)

Let L be the optimal Bellman operator of an MDP with S states and assume that the

optimal gain g∗ of this MDP is state-independent. If there exists a scalar g and a vector

h ∈ RS such that Lh ≥ h + ge (where e = (1, . . . , 1)ᵀ is the S-dimensional vector of all

ones), then g∗ ≥ g.

Let (g∗, h∗) be a solution of the Bellman optimality equation of the true MDP i.e., Lh∗ =
h∗+g∗e where L is the optimal Bellman operator of the true MDP. Using Prop. 3.3, if we can

show that Lkh∗ ≥ h∗+ g∗e then g∗k ≥ g∗. Since h∗+ g∗e = Lh∗, this is equivalent to showing

that Lkh∗ ≥ Lh∗. In other words, in order to prove gain-optimism we only need to show that

the optimal Bellman operator of the extended MDP Mk is optimistic w.r.t. to the optimal

Bellman operator of the true MDP, when applied to one optimal bias vector . Trivially, if the

true MDP belongs to the extended MDP then this condition is satisfied. More generally, if

there exists η ≥ 0 such that Lkh∗ ≥ Lh∗ − ηe = h∗ + (g∗ − η)e, then by applying Prop. 3.3

we have that g∗k ≥ g∗ − η.

We call the statement of Lem. 3.3 the “dominance property” of operator L. As we just

showed, it plays a key role in ensuring gain-optimism. It is also a much more “refined”

argument than the one usually used (“inclusion” argument: M ∈Mk). In this thesis we will

make an extensive use of this property and prove similar results for other operators than L.

6We note that a similar proof is used in Lemma 4.2 of (Agrawal and Jia, 2017).
7The theorem proved by Puterman (1994) is more general but we only need this simplified version for our

purpose.
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3.2.2 Proof of optimism with concentration inequalities

We now prove that M ∈ Mk w.h.p. (Thm. 3.1) which implies that Lkh∗ ≥ Lh∗ w.h.p.

Thm. 3.1 is similar to Lemma 17 proved by Jaksch et al. (2010) except that we bound the

probability of event
⋃
k≥1{M 6∈ Mk} while they only bound the probability of {M 6∈ Mk} by

a term that decreases with tk. They then take a union bound in the regret proof. Thm. 3.1

will simplify the regret analysis and our proof allows to use confidence bounds that only grows

logarithmically with Nk instead of tk (Eq. 3.1 and 3.2). As a consequence, the confidence

bounds associated to (s, a) do not increase over time when (s, a) is not visited (they remain

constant) and UCRLB will not visit all (s, a) infinitely often. This is not surprising since we

want to show a uniform high probability regret bound as opposed to a uniform expected regret

bound . A uniform expected regret bound requires to visit all state-action pairs infinitely often

and so to have a term tk in the logarithm of the confidence bounds (3.1) and (3.2). For a

more thorough discussion on this, see for example Dann et al. (2017, Section 4.1).

Theorem 3.1

The probability that there exists k ≥ 1 s.t. the true MDP M does not belong to the extended

MDP Mk defined by Eq. 3.3 and 3.4 is at most δ
3 , that is

P (∃k ≥ 1, s.t. M 6∈ Mk) ≤
δ

3 .

Proof. We want to bound the probability of event E :=
⋃+∞
k=1 {M 6∈ Mk}. As explained

by Lattimore and Szepesvári (2018, Section 4.6, “The canonical Bandit Model”), when (s, a)
is visited for the n-th times, the reward that we observe is the n-th element of an infinite

sequence of i.i.d. r.v. lying in [0, rmax] with expected value r(s, a). Similarly, the next state

that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying in S with

probability density function (pdf) p(·|s, a). In Alg. 5, we defined the sample means p̂k and

r̂k (Eq. 3.7 and 3.8), and the confidence intervals Bk
p and Bk

r (Eq. 3.3 and 3.4) as depending

on k. Actually, this quantities depends only on the first Nk(s, a) elements of the infinite i.i.d.

sequences that we just mentioned. For the rest of the proof, we will therefore slightly change

our notations and denote by p̂n(s′|s, a), r̂n(s, a), Bn
p (s′|s, a) and Bn

r (s, a) the sample means

and confidence intervals after the first n visits in (s, a). Thus, the r.v. that we denoted by

p̂k in Alg. 5 actually corresponds to p̂Nk(s,a) with our new notation (and similarly for r̂k, B
k
p

and Bk
r ). This change of notation will make the proof easier.

M 6∈ Mk means that there exists k ≥ 1 s.t. either p(s′|s, a) 6∈ BNk(s,a)
p (s, a, s′) or r(s, a) 6∈

B
Nk(s,a)
r (s, a) for at least one (s, a, s′) ∈ S ×A×S. This means that there exists at least one

value n ≥ 0 s.t. either p(s′|s, a) 6∈ Bn
p (s, a, s′) or r(s, a) 6∈ Bn

r (s, a). As a consequence we have

the following inclusion

E ⊆
⋃
s,a

+∞⋃
n=0
{r(s, a) 6∈ Bn

r (s, a)} ∪
⋃
s′

{
p(s′|s, a) 6∈ Bn

p (s, a, s′)
}

(3.24)
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Using Boole’s inequality we thus have:

P (E) ≤
∑
s,a

+∞∑
n=0

(
P (r(s, a) 6∈ Bn

r (s, a)) +
∑
s′

P
(
p(s′|s, a) 6∈ Bn

p (s, a, s′)
))

(3.25)

Let’s fix a 3-tuple (s, a, s′) ∈ S ×A× S and define for all n ≥ 0

εsas
′

p,n := σ̂p,n(s′|s, a)

√
2 ln (30S2A(n+)2/δ)

n+ + 3 ln
(
30S2A(n+)2/δ

)
n+ (3.26)

εsar,n := σ̂r,n(s, a)

√
2 ln (30SA(n+)2/δ)

n+ + 3rmax ln
(
30SA(n+)2/δ

)
n+ (3.27)

where σ̂p,n(s′|s, a) and σ̂r,n(s, a) denote the population variances obtained with the first n

samples. It is immediate to verify that εsas
′

p,n ≤ βsas
′

p,n and εsar,n ≤ βsar,n a.s. (see Eq. 3.1 and 3.2

with Nk(s, a) replaced by n). Using Prop. 3.2 we have that for all n ≥ 1:

P
(
|p(s′|s, a)− p̂n(s′|s, a)| ≥ βsas′p,n

)
≤ P

(
|p(s′|s, a)− p̂n(s′|s, a)| ≥ εsas′p,n

)
≤ δ

10n2S2A
(3.28)

P
(
|r(s, a)− r̂n(s, a)| ≥ βsar,n

)
≤ P

(
|r(s, a)− r̂n(s, a)| ≥ εsar,n

)
≤ δ

10n2SA
(3.29)

Note that when n = 0 (i.e., when there hasn’t been any observation of (s, a)), εsas′p,0 ≥ 1
and εsar,0 ≥ rmax so P

(
|p(s′|s, a)− p̂0(s′|s, a)| ≥ εsas′p,0

)
= P

(
|r(s, a)− r̂0(s, a)| ≥ εsar,0

)
= 0 by

definition. Since in addition (also by definition)

Bn
p (s, a, s′) ⊆

[
p̂n(s′|s, a)− βsas′p,n , p̂n(s′|s, a) + βsas

′
p,n

]
(see Eq. 3.3)

and

Bn
r (s, a) ⊆

[
r̂n(s, a)− βsar,n, r̂k(s, a) + βsar,n

]
(see Eq. 3.4)

we conclude that for all n ≥ 1

P
(
p(s′|s, a) /∈ Bn

p (s, a, s′)
)
≤ δ

10n2S2A
and P (r(s, a) /∈ Bn

r (s, a)) ≤ δ

10n2SA

and these probabilities are equal to 0 if n = 0. Plugging these inequalities into Eq. (3.25) we

obtain:

P (∃T ≥ 1, ∃k ≥ 1 s.t.M 6∈ Mk) ≤
∑
s,a

(
0 +

+∞∑
n=1

(
δ

10n2SA
+
∑
s′

δ

10n2S2A

))
= 2π2δ

60 ≤ δ

3

which concludes the proof. �

3.3 Bounding the optimistic bias of UCRLB: diameter

and refinements

At every episode k ≥ 1, EVI returns both a policy πk, a gain gk and a bias vector hk. We

refer to gk as the (near) optimistic gain and hk as the (near) optimistic bias vector . Note
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that the optimistic gain gk is indeed (near) optimistic i.e., satisfies gk ≥ g∗k−εk/2 ≥ g∗−εk/2
(by combining Eq. 3.21 with the results of Sec. 3.2), while the optimistic bias vector hk does

not necessarily satisfy hk & h∗.8 Actually, hk is defined up to a constant shift . Nevertheless,

we will use the terminology “optimistic bias” to refer to hk.

We will see in Sec. 3.5 that the shape of the optimistic bias hk has a substantial impact

on the regret analysis. In this section we focus on bounding the range of hk i.e., bounding

sp (hk).

3.3.1 Diameter

In this section we bound sp (hk) using the concept of diameter of an MDP (Def. 2.6). We

start by recalling an important result proved by Bartlett and Tewari (2009):

Proposition 3.4 (Theorem 4 of Bartlett and Tewari (2009))

Let M be a communicating MDP with non-negative rewards and (g∗, h∗) a solution of

the Bellman optimality equation i.e., Lh∗ = h∗ + g∗e. For any states s and s′ and any

stationary policy π ∈ ΠSR, we have:

h∗(s′)− h∗(s) ≤ g∗ · Eπ[τ(s′)− 1|s1 = s]

where τ(s′) := inf {t ≥ 1 : st = s′} is the first hitting time of s′.

As a direct consequence of Prop. 3.4, we have the following corollary:

Under the same assumptions as Prop. 3.4, the range of h∗ can be bounded as sp (h∗) ≤ g∗D
where D is the diameter of M .

Corollary 3.1

Proof. By definition

sp (h∗) := max
s∈S
{h∗(s)} −min

s∈S
{h∗(s)} = max

s,s′
{h∗(s′)− h∗(s)} ≤ g∗ ·max

s,s′
Eπ[τ(s′)− 1|s]

where the last inequality is a direct consequence of Prop. 3.4 and the fact that g∗ ≥ 0. �

Let’s first assume that EVI computes an exact solution (g∗k, h∗k) of the Bellman optimality

equation Lkαh∗k = h∗k + g∗k. According to Cor. 3.1 we have sp (h∗k) ≤ g∗k ·Dk
α (where Dk

α is the

diameter of Mk
α). We now need to relate the parameters of the extended MDP g∗k and Dk

α

with the parameters of the true MDP.

Bounding g∗
k. The optimal gain g∗k is always smaller than rmax by definition but can be as

big as rmax. For example at the beginning of the learning process, the uncertainty is maximal

8(g∗, h∗) is a solution to the Bellman optimality equation of the true MDP M .
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in all state-action pairs and so all optimistic rewards are set to rmax implying g∗k = rmax. But

even after a rather long exploration phase, it is sufficient that one state-action pair is poorly

visited to have g∗k = rmax. This is because the gain is a global quantity of the MDP (as opposed

to the local rewards). As long as at least one state-action pair (s, a) is poorly visited, UCRLB

will optimistically set the reward rk(s, a)← rmax and transition pk(s|s, a)← 1 causing g∗k to

be maximal (if one policy of a communicating MDP loops on a single state with reward rmax,

then the optimal gain is rmax independently of the rest of the MDP as shown in Theorem 8.3.2

of Puterman (1994)). Since in general we cannot control how UCRLB explores the MDP, the

tightest upper-bound that we can derive for g∗k is rmax.

Bounding Dk. Jaksch et al. (2010, Section 4.3.1) showed that the diameter Dk of the

extended MDP constructed by UCRL2 at every episode k ≥ 1 is smaller than or equal to

the diameter of the true MDP D. Their proof relies on the same argument used to prove

optimism (inclusion argument): since M ∈ Mk w.h.p., the shortest path to go from any

state to any other state is always shorter in the extended MDP and so Dk ≤ D. We can use

the same argument in our case to show that under the same event as in Thm. 3.1, Dk ≤ D

(where Dk is the diameter ofMk). However, as already argued in Sec. 3.2.1, this “inclusion”

argument is rather restrictive and “non-smooth”. Proving a more general result helps provide

better intuitions and opens the way for extensions. Similarly to what we did in Sec. 3.2,

we generalize the argument of Jaksch et al. (2010) by showing that it is sufficient to analyze

the relationship between the Bellman operator of the extended MDPMk and the true MDP

M to connect Dk with D. We no longer require that M ∈ Mk. The following proposition

is another declination of the dominance property (analogue to Prop. 3.3) in the context of

(generalized) stochastic shortest path problems (see Sec. 2.1.4).

Proposition 3.5 (Theorem 7.3.2. of Puterman (1994))

Let M = 〈S,A, r, p〉 be a communicating MDP (finite or compact A) with negative re-

wards. For any state s ∈ S, consider the Bellman shortest path operator L 7→s with

maximal non-positive fixed point h∗7→s (see Prop. 2.8). If there exists h ∈ RS such that

h ≤ 0 and L7→sh ≥ h then h∗7→s ≥ h.

Let’s consider M ′ = {S,A, r′, p} the MDP with identical transition probabilities p than

the true MDP M and rewards r′ equal to −1 everywhere (for all state and actions). For

all s ∈ S, denote by L7→s the Bellman shortest path operator of M ′ and h∗7→s′ its fixed point

(Prop. 3.5). By Prop. 2.8, −h∗7→s′(s) := minπ∈ΠSR Eπ[τ(s′)|s1 = s] − 1 for all s, s′ ∈ S (see

Eq. 2.13), and so by definition D := maxs∈S{‖h∗7→s‖∞}. Let’s denote by Lk7→s the analogue

of L 7→s for the extended MDP M′k (identical to Mk with all rewards replaced by −1), and

by hk7→s its maximal non-positive fixed-point. Under the high probability event of Thm. 3.1,

Lk7→sh∗7→s ≥ L7→sh
∗
7→s = h∗7→s and so by Prop. 3.5, hk7→s ≥ h∗7→s (h∗7→s ≤ 0 by definition). It

follows that Dk ≤ D.

As in the case of gain-optimism (Sec. 3.2), we see that in order to show that Dk ≤ D, it is

sufficient to prove that Lk7→sh∗7→s ≥ L7→sh
∗
7→s for all s ∈ S (optimism of the Bellman operator

62



3.3. Bounding the optimistic bias of ucrlb: diameter and refinements

on a specific vector). More generally, let’s assume that there exists 1 > η ≥ 0 such that

Lk7→sh∗7→s ≥ L7→sh∗7→s − ηe|s (where e|s is the S-dimensional vector of all ones, except the s-th

coordinate which is zero). Let’s define Lk,η7→s the analogue of Lk7→s with all rewards equal to

−1 + η instead of −1, and hk,η7→s the corresponding maximal non-positive fixed point. It is

immediate from the definition of the operators that Lk7→sh∗7→s ≥ L7→sh
∗
7→s − ηe|s is equivalent

to Lk,η7→sh∗7→s ≥ L7→sh
∗
7→s. According to Prop. 3.5, we therefore have hk,η7→s ≥ h∗7→s. Since the

rewards associated to Lk,η7→s are the same for all policies and they only differ from the rewards

of Lk7→s by a multiplicative factor (1 − η), it is immediate to see that hk,η7→s = (1 − η)hk7→s. In

conclusion, (1 − η)hk7→s ≥ h∗7→s and so Dk ≤ D/(1 − η). The impact of a small perturbation

1 > η > 0 on the diameter is non-linear in η while the impact on the gain is linear (see

Sec. 3.2).

Diameter and aperiodicity transformation: Dk vsDk
α. So far, we have bounded the di-

ameter of the extended MDPMk, ignoring the aperiodicity transformation. Thm. 2.1 shows

how to relate Dk with Dk
α: Dk

α = Dk/α. After combining all the inequalities derived in

Sec. 3.3.1, we obtain sp (h∗k) ≤ rmaxD/α.

Approximate solution of the optimal Bellman equation. As we showed at the beginning

of Sec. 3.3, EVI only computes an approximate solution (gk, hk) of the optimality equation i.e.,

‖Lkαhk−hk−gke‖∞ ≤ εk as opposed to an exact solution (g∗k, h∗k) satisfying Lkαh∗k = h∗k+g∗ke.

Jaksch et al. (2010, Section 4.3.1) proved by induction the following proposition (which is a

specific case of Thm. 3.3 proved in the next section).

Proposition 3.6

Let L be the optimal Bellman operator of a communicating MDP with diameter D. Con-

sider the sequences of vectors (vn)n∈N obtained while executing value iteration (Alg. 3) with

operator L and initial vector v0 := 0 as inputs. It holds that for all π ∈ ΠSR, all s, s′ ∈ S
and all n ≥ 0:

vn(s′)− vn(s) ≤ rmax · Eπ
[
τ(s′)− 1

∣∣s1 = s
]
≤ rmaxD. (3.30)

EVI is run starting from the null vector and so sp (hk) ≤ rmaxD
k
α ≤ rmaxD/α. Note that in

order to apply Prop. 3.6 to the extended MDP, it is essential for the rewards to be contained

in [0, rmax].9

3.3.2 Refinement of the diameter: travel-budget

The bound sp (hk) ≤ rmaxD/α derived in Sec. 3.3.1 assumes that while trying to reach a target

state, an agent receives zero rewards in all but the target state (where it receives rmax). This

can be very loose as the agent usually has the opportunity to collect rewards on the way to

9In the original version of UCRL2, (Jaksch et al., 2010) forgot to enforce this constrain.
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s′ s

a0, r = 3
4rmax

a1, r = 1
2rmax

a0, r = 0

Figure 3.1: Counter-example illustrating the need of ΠSD
7→s′ in Thm. 3.2. Only one action a0

can be played in s′ while two actions a0, a1 can be played in s. All transitions are deterministic
and M is communicating. It is immediate to verify that the optimal policy corresponds to
π∗(s) = a1 and moreover g∗ = 1

2rmax, h∗(s) = 0 and h∗(s′) = 1
4rmax. We also notice that

π∗ 6∈ ΠSD
7→s′ and Eπ∗

[∑τ(s′)−1
t=1 g∗ − rt

∣∣∣s1 = s
]

= 0 < 1
4rmax = h∗(s′)− h∗(s) and so (3.33) does

not hold.

the target state. In this section we introduce a new quantity that better accounts for the

reward discrepancy in the MDP. We call this new quantity the travel-budget10 and denote it

by Λ. We derive theorems analogue to those of Sec. 3.3.1 and show that sp (hk) ≤ Λ/α.

We first define the set of stationary deterministic policies reaching a state in finite time

(a.s.) and prove a theorem analogue to the one proved by Bartlett and Tewari (2009) (see

Prop. 3.4).

For any MDP M , we define for all s, s′ ∈ S

ΠSD
s 7→s′ :=

{
π ∈ ΠSD : Pπ(τ(s′) < +∞|s1 = s) = 1

}
(3.31)

ΠSD
7→s′ :=

⋂
s∈S

ΠSD
s 7→s′ =

{
π ∈ ΠSD : Pπ(τ(s′) < +∞|s1 = s) = 1,∀s ∈ S

}
(3.32)

where τ(s′) := inf {t ≥ 1 : st = s′} is the first hitting time of s′. If M is communicating,

then ΠSD
7→s′ 6= ∅ for all s′ ∈ S.

Definition 3.1

Proof. We prove the statement by contraposition. If Pπ(τ(s′) = +∞|s) > 0 then by the law

of total expectations:

Eπ
[
τ(s′)|s1 = s

]
=Eπ

[
τ(s′)

∣∣∣s1 = s, τ(s′) < +∞
]
· Pπ(τ(s′) < +∞|s1 = s)

+ Eπ
[
τ(s′)

∣∣∣s1 = s, τ(s′) = +∞
]

︸ ︷︷ ︸
=+∞

·Pπ(τ(s′) = +∞|s1 = s) = +∞

Therefore, if ΠSD
7→s′ = ∅ for at least one s′ ∈ S, then D = +∞. This concludes the proof. �

10We acknowledge that Dai and Walter (2019) independently and simultaneously introduced the same
quantity with a different name “maximum expected hitting cost”.
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Theorem 3.2 (Analogue of Prop. 3.4)

Let M be a communicating MDP with optimal Bellman operator L and (g∗, h∗) ∈ R× RS

a solution to the optimality equation h∗+ g∗e = Lh∗. For any two states s and s′ and any

stationary policy π ∈ ΠSD
7→s′, we have:

h∗(s′)− h∗(s) ≤ Eπ
τ(s′)−1∑

t=1
g∗ − rt

∣∣∣∣∣s1 = s

 (3.33)

where τ(s′) := inf {t ≥ 1 : st = s′} is the first hitting time of s′.

Proof. The arguments are similar to the one used by Bartlett and Tewari (2009, Theorem

4). The rigorous proof can be found in App. A.1.1. �

We first notice that Prop. 3.4 can be deduced from Thm. 3.2 since when all rewards are

non-negative

∀π ∈ ΠSD
7→s′ , Eπ

τ(s′)−1∑
t=1

g∗ − rt

∣∣∣∣∣s1 = s

 ≤ g∗ · Eπ [τ(s′)− 1
∣∣s1 = s

]

and if π /∈ ΠSD
7→s′ then Eπ

[
τ(s′)− 1

∣∣s1 = s
]

= +∞ and so the inequality still holds. The

difference between Eπ
[∑τ(s′)−1

t=1 g∗ − rt
∣∣s1 = s

]
and Eπ

[
τ(s′)− 1

∣∣s1 = s
]

can be arbitrarily

loose. For example, when all the rewards are identical, the optimal gain takes the same value

and the term on the left handside is 0 while the term on the right handside can be arbitrarily

large. When π 6∈ ΠSD
7→s′ , the term Eπ

[∑τ(s′)−1
t=1 g∗ − rt

∣∣∣s1 = s
]

might be equal to +∞ but

when this is the case, Thm. 3.2 still holds and so one might wonder why we need to restrict

attention to policies belonging to ΠSD
7→s′ . In Fig. 3.1 we provide a counter-example showing

that Thm. 3.2 does not always hold for policies outside ΠSD
7→s′ .

Since Thm. 3.2 refines Prop. 3.4, we would like to use this theorem to refine the bound on

sp (hk) derived in Sec. 3.3.1. As we already discussed in Sec. 3.3.1, in general the best upper

bound that we have for g∗k is rmax and so we define the travel-budget as follows:

The travel-budget of a communicating MDP M (denoted Λ) is defined as

Λ := max
s,s′

min
π∈ΠSD

Eπ
τ(s′)−1∑

t=1
rmax − r(st, at)

∣∣∣∣∣s1 = s

 . (3.34)

Λ ≥ 0 and if all the rewards are non-negative, Λ ≤ rmaxD.

Definition 3.2

Proof. The proof is trivial since for all t ≥ 1, rmax − r(st, π(st)) and under the assumption

that the rewards are all positive, −r(st, π(st)) ≤ 0. �

Notice that in Eq. 3.34 of Def. 3.2, we do not restrict the policy space. Instead, we take the

minimum over the entire space ΠSD and not over ΠSD
7→s′ . Therefore, τ(s′) might be equal to
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s s′

3
4rmax

r = 0

3
4rmax

Figure 3.2: Example illustrating the difference between rmaxD and Λ. In this example,

minπ Eπ
[∑τ(s′)−1

t=1 rmax − rt
∣∣s1 = s

]
= 1

2rmax < rmax = rmax ·minπ Eπ
[
τ(s′)− 1

∣∣s1 = s
]
.

+∞ with non-zero probability but everything is still well-defined as explained in Sec. 2.1.4.

It turns out that despite the counter-example of Fig. 3.1, when replacing g∗ by rmax and

considering the iterates of value iteration starting from the null vector, this definition is

sufficient for our purpose (see Thm. 3.3 below). On Fig. 3.2 we illustrate the difference

between rmaxD and Λ on a simple MDP.

Similarly to Sec. 3.3.1, we can combine (3.34) with Thm. 3.5 to prove that Λk := ΛMk
≤ Λ

for all k ≥ 1 (where Λ is the travel-budget of the true unknown MDP). Since we no longer

restrict the policy space, we can express Λ as a function of the fixed points of some Bellman

shortest path operators (as we did for D in Sec. 3.3.1).

Let’s consider M ′ = {S,A, r′, p} the MDP with identical transition probabilities p than the

true MDP M and rewards r′ equal to r − rmax ≤ 0 (for all state and actions). For all s ∈ S,

denote by L 7→s the Bellman shortest path operator of M ′ and h∗7→s′ its (unique) fixed point

(Thm. 3.5). By Prop. 2.8,

∀s′ ∈ S, − h∗7→s(s′) = min
π∈ΠSD(M)

EπM

τ(s′)−1∑
t=1

rmax − rt

∣∣∣∣∣s


for all s, s′ ∈ S, and so Λ := maxs ‖h∗7→s‖∞. Similarly to rmaxD, the travel-budget Λ is

obtained as the solution of a stochastic shortest path problem where the “lengths” are not

always equal to rmax but the actual reward r is subtracted i.e., rmax− r. Let’s denote by Lk7→s
the analogue of L7→s for the extended MDP M′k (identical to Mk with rewards replaced by

r − rmax ≤ 0), and by hk7→s its fixed point. Under the high probability event of Thm. 3.1,

Lk7→sh∗7→s ≥ L7→sh∗7→s = h∗7→s and so by Thm. 3.5, hk7→s ≥ h∗7→s. Therefore, Λk ≤ Λ and a direct

application of Thm. 2.1 shows that Λkα = Λk/α (where Λkα denotes the travel-budget ofMk
α).

Unlike for the diameter, it is difficult to quantify the impact of an η-perturbation of Lk
on the travel-budget Λk. This is not surprising since the travel-budget carries much more

information about the MDP than the diameter. It also suggests that it is a more relevant

quantity to consider for the regret analysis.

We conclude this section with Thm. 3.3 (from which Prop. 3.6 can be deduced).
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Theorem 3.3 (Analogue of Prop. 3.6)

Let L be the optimal Bellman operator of a communicating MDP with travel-budget Λ.

Consider the sequences of vectors (vn)n∈N obtained while executing value iteration (Alg. 3)

with operator L and initial vector v0 := 0 as inputs. It holds that for all π ∈ ΠSR, all

s, s′ ∈ S and all n ≥ 0:

vn(s′)− vn(s) ≤ Eπ
τ(s′)−1∑

t=1
rmax − rt

∣∣∣∣∣s1 = s

 ≤ Λ. (3.35)

Proof. The detailed proof can be found in App. A.1.2. �

3.4 Regret guarantees for UCRLB

We opened Chap. 3 with a detailed presentation of the algorithmic structure of UCRLB

(Sec. 3.1). In a nutshell, at every episode k, UCRLB computes an approximate solution

(gk, hk) ∈ R × RS of the Bellman optimality equation of an extended MDP Mk that is

constructed based on past observations. In Sec. 3.2 and 3.3 we analysed the properties of

respectively gk and hk. We showed that under a single high probability event (Thm. 3.1),

gk ≥ g∗ and sp (hk) ≤ Λ/α ≤ rmaxD/α where g∗, Λ and D are respectively the optimal gain,

travel-budget and diameter of the true unknown MDP . We are now ready to state (and prove)

the main results of this chapter, namely two high probability minimax uniform regret bounds

satisfied by UCRLB (Thm. 3.4 and Thm. 3.5). “Uniform” refers to the fact that the high

probability bound holds for all time horizons T ≥ 1. Thm. 3.4 and Thm. 3.5 only assume

knowledge of the state space S, action space A and maximal reward rmax, even if we already

explained in Sec. 3.1 how UCRLB can take advantage of some additional prior knowledge

about the rewards and transition probabilities. We assume that the initial state s1 is sampled

according to a probability distribution µ1 ∈ ∆S . For any state-action pair (s, a) ∈ S ×A, we

introduce the notation Γ(s, a) for the support of p(·|s, a) i.e.,

Γ(s, a) := ‖p(·|s, a)‖0 =
∑
s′∈S

1
{
p(s′|s, a) > 0

}
.

We also denote by Γ := maxs,a∈S×A Γ(s, a) the maximal support over all (s, a). Our first
regret bound is reported in Thm. 3.4.

Theorem 3.4

There exists a numerical constant β > 0 such that for any communicating MDP, with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

time horizons T > 1:

∆(UCRLB, T ) ≤ β ·max {rmax,Λ}

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)

+ β ·max {rmax,Λ}S2A ln
(
T

δ

)
ln (T ) .

(3.36)
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Jaksch et al. (2010, see Prop. 2.14) showed that up to a multiplicative numerical constant,

the regret of UCRL2 is bounded by rmaxDS
√
AT ln (T/δ). After noticing that Λ ≤ rmaxD

and
∑
s,a Γ(s, a) ≤ ΓSA we can simplify the bound in (3.36) as

β · rmaxD
√

ΓSAT ln (T/δ) + β · rmaxDS
2A ln (T/δ) ln (T )

Let’s compare the bounds of UCRL2 (Prop. 2.14) and UCRLB (Thm. 3.4) in terms of Õ
(i.e., ignoring logarithmic terms, meaning that ln(T/δ) is equivalent to a constant). For

T ≤ DS2A, a trivial bound on the regret is

∆(UCRLB, T ) ≤ rmaxT = rmax
√
T 2 ≤ rmaxS

√
DAT ≤ rmaxDS

√
AT

while for T ≥ DS2A we have rmaxDS
√
AT ≥ rmaxS

√
DAT ≥ rmaxDS

2A. Since by definition

Γ ≤ S, in either case the regret of UCRLB can be bounded by rmaxDS
√
AT just like the

regret of UCRL2. But in general, UCRLB clearly enjoys better regret guarantees than UCRL2

as for the dependency in S. This is a consequence of the use of Bernstein bounds for the

transition probabilities (Eq. 3.1) instead of Hoeffding/Weissman bounds in UCRL2. This

improvement can be quite significant in practice since in most MDPs, ΓSA = Θ(SA) or at

least
∑
s,a Γ(s, a) = Θ(SA) i.e., Γ(s, a) = O(1) for all but only O(1) state-action pairs. An

environment that would satisfy Γ(s, a) = Ω(S) for Ω(S) state-action pairs would have a very

chaotic dynamics which is not what we usually observe in “real-world” environments. The

other improvement brought by Thm. 3.4 compared to the existing literature is the substitution

of rmaxD by max{rmax,Λ} ≤ rmaxD in the regret bound. Notice however that unlike the

improvement in S, the improvement in D is only due to the analysis and not to the algorithm

(improved bound on sp (hk) shown in Sec. 3.3). The same improvement can be shown for

UCRL2.

Our second regret bound is reported in Thm. 3.5. This regret bound holds for UCRLB with-

out any modification of the algorithm. The difference with Thm. 3.4 is due to a more careful

analysis.

Theorem 3.5

There exists a numerical constant β > 0 such that for any communicating MDP, with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

time horizons T > 1

∆(UCRLB, T ) ≤ β ·max
{
rmax,

√
rmaxΛ

}√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
ln (T )

+ β ·max
{
rmax,

Λ2

rmax

}
S2A ln

(
T

δ

)
ln (T )

(3.37)

Since the dependency in rmax and Λ of (3.37) may appear non-trivial, we start with a
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simple dimensional analysis to check the consistency of the bound. The regret is always

homogeneous to a reward and as a consequence, so should be the regret bound. Since both

Λ and rmax are homogeneous to a reward, it is immediate to see that the bounds of Thm. 3.5

and Thm. 3.4 have the correct dimension. Compared to the bound of Thm. 3.4, the dominant

term of Thm. 3.5 has a better dependency in Λ. Indeed, when rmax ≥ Λ, then

max
{
rmax,

√
rmaxΛ

}
= rmax = max {rmax,Λ}

and so the dominant terms of (3.36) and (3.37) are the same. However, when rmax < Λ then

max
{
rmax,

√
rmaxΛ

}
=
√
rmaxΛ < Λ = max {rmax,Λ}

and so (3.37) is tighter. In conclusion: max
{
rmax,

√
rmaxΛ

}
≤ max {rmax,Λ}. As the im-

provement in the S-dependency, the improvement in the Λ-dependency of the regret bound

is a consequence of the use of Bernstein bounds instead of Hoeffding/Weissman bounds for

the transition probabilities. Notice also that in the case where Λ = rmaxD (worst-case), then

max
{
rmax,

√
rmaxΛ

}
= rmax

√
D ≤ rmaxD = max {rmax,Λ} .

Symmetrically, max
{
rmax,Λ2/rmax

}
≥ max {rmax,Λ}, meaning that the improvement in the

dominant term comes at the expense of an increase in the lower order (logarithmic) term.

This term becomes negligible after only D2S2A steps (ignoring the multiplicative log term).

Using the same argument as in the discussion of Thm. 3.4 (see above), we can show that the

bound (3.37) can be upper-bounded by rmaxDS
√
AT for all T . In conclusion, the regret of

UCRLB grows at most as rmax
√
DΓSAT for T big enough which is clearly better than the

regret of UCRL2 i.e., rmaxDS
√
AT . The additional “burn-in” of order (Λ2/rmax)S2A which

dominates when T is small is not bigger than the burn-in of UCRL2, but in UCRL2, it is

“hidden” by the dominant term rmaxDS
√
AT . An additional

√
ln (T ) multiplicative factor

also appears in the dominant term of (3.37) that was not present in (3.36). Whether this

extra cost is an artefact of the analysis or cannot be removed is left as an open question.

Impact of the aperiodicity transformation. Neither of the regret bounds (3.36) and (3.37)

depend on the aperiodicity parameter α. The 1/α factor that appears in the bound of sp (hk)
disappears in the regret proof when introducing the optimality equation (see Sec. 3.5.2).

As expected, the aperiodicity transformation has absolutely no impact on the regret, its

only impact is on the convergence (and speed of convergence) of EVI as already argued in

Sec. 3.1.2.

Comparison with other settings. In the finite horizon setting , Azar et al. (2017) derived

an algorithm –UCBVI 2– for which they proved a high-probability regret bound scaling as

(up to multiplicative numerical constants):

rmax
√
HSAT ln

(
T

δ

)
+ rmaxH

2S2A ln2
(
T

δ

)
+ rmaxH

√
T ln

(
T

δ

)
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Chapter 3. Improved exploration-exploitation with Bernstein bounds

where H is the horizon (known to the algorithm). It is common to compare rmaxH with

rmaxD as both terms respectively upper-bound the range of the optimal “value function” (the

bias in the infinite horizon undiscounted case). It is thus natural to compare rmaxH with

Λ in our case. After substituting the former by the latter, the bound they derived looks

very similar to the bound of Thm. 3.5. The first difference is the absence of the support Γ
in the dominant term of the regret. The second difference is the presence of an additional

Õ(rmaxH
√
T ) term. When T is big enough, their bound saves a

√
Γ factor compared to ours

when H ≤ SA. It is not clear whether this improvement is specific to the finite horizon

setting or not. In particular, extending their proof to the infinite horizon setting does not

seem straightforward as the definition of regret differ and several parts of the proof heavily

rely on the existence of a known time horizon H. In the same setting, Kakade et al. (2018)

introduced vUCQ that achieves a regret of the form rmax
√
HSAT + rmaxH

5SA (ignoring

multiplicative logarithmic terms). This bound is similar to the one of Azar et al. (2017) but

the time needed to reach the
√
T -regime (burn-in) is of order Õ(H5SA).

In the discounted infinite horizon setting, the common measure of performance of on-line

learning algorithms is the sample complexity . A regret bound of the form C
√
T is usually

interpreted as comparable to a sample complexity of order C2

ε2(1−γ)2 . For the same reason

as in the finite horizon setting, it is natural to compare rmaxΛ with rmax/(1 − γ) (bound

on the discounted value function). Using a UCRL2-like algorithm, Lattimore and Hutter

(2012) achieved a sample complexity bound rmaxSA
ε2(1−γ)3 ln (1/δ) assuming that Γ ≤ 2 (Lattimore

and Hutter, 2012, Assumption 1) and later generalized their result to
rmax

∑
s,a

Γ(s,a)
ε2(1−γ)3 ln (1/δ)

(Lattimore and Hutter, 2014). This is comparable to the bound of Thm. 3.5.

Finally, Dann and Brunskill (2015) showed that their algorithm UCFH –similar to UCRLB–

suffer a sample complexity of order at most rmax
H2ΓSA
ε2 ln

(
1
δ

)
where H is the (known) finite

horizon. Unlike in the discounted setting, in the finite horizon case a regret bound of the form

C
√
T is usually interpreted as comparable to a sample complexity of order C2

ε2 . Therefore, the

bound of Thm. 3.5 saves a factor H compared to their bound. However, given the similar-

ities between UCFH and UCRLB –both algorithms use Bernstein bounds for the transition

probabilities– it is possible this additional H-factor could be removed by a better analysis

i.e., without requiring any change in the algorithm.

In conclusion, the regret bound of Thm. 3.5 is consistent with state-of-the-art results in

the discounted setting , but is worse than the state-of-the-art in the finite horizon setting by

a factor
√

Γ.

3.5 First regret proof of UCRLB

We start with the proof of Thm. 3.4 which is both simpler and closer to the proof of Theorem

2 of Jaksch et al. (2010). We follow their proof structure, use similar notations and highlight

the main differences. Many arguments will be reused for the proof of Thm. 3.5. In order

to increase readability, we postpone the detailed proof of some intermediate results to the

appendix (see App. A). To be able to reuse this material in Chap. 5, we assume πk my not
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3.5. First regret proof of ucrlb

always be deterministic (i.e., we assume πk may be stochastic) although this is not strictly

needed so far.

We recall two well-known results useful for the proof. We will extensively use Azuma’s

inequality (see for example Jaksch et al. (2010, Lemma 10)) which we recall below (see

Prop. 3.7).

Proposition 3.7 (Azuma’s inequality)

Let (Xn,Fn)n∈N be an Martingale Difference Sequence (MDS) such that |Xn| ≤ a a.s. for

all n ∈ N. Then for all δ ∈]0, 1[,

P
(

n∑
i=1

Xi ≥ a
√

2n ln
(1
δ

))
≤ δ

An MDS is a sequence of r.v. Xn that are Fn-integrable for every n ∈ N, and such that

E [Xn+1|Fn] = Xn.

We will also use Cauchy-Schwartz inequality several times i.e.,
∑
i |aibi| ≤

√∑
i a

2
i

∑
i b

2
i or

equivalently
∑
i
√
ai
√
bi ≤

√∑
i ai

∑
i bi if ai, bi ≥ 0 for all i.

3.5.1 Splitting into episodes

The regret after T time steps is defined as ∆(UCRLB, T ) =
∑T
t=1

(
g∗ − rt

)
. To begin with,

we replace rt by its expected value conditioned on the current state st using the following

lemma:

With probability at least 1− δ
6 :

∀T ≥ 1, −
T∑
t=1

rt ≤ −
T∑
t=1

∑
a∈Ast

πkt(st, a)r(st, a) + 2rmax

√
T ln

(4T
δ

)
(3.38)

Lemma 3.1

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). �

Lem. 3.1 enables to“remove”from the analysis all the randomness due to the stochasticity of

the observed rewards and the executed policy, at the expense of a small Õ(
√
T ) term. Jaksch

et al. (2010, Section 4.1) use a different argument to obtain a similar bound. They claim that

once conditioned on the r.v. (NkT+1(s, a))(s,a)∈S×A corresponding to the visit counts in all

state-action pairs after T time steps, the r.v. (rt(st, at))T≥t≥1 are independent . Although we

do not claim that the sampled rewards are not independent conditioned on the visit counts

as argued by the authors, they never formally prove this result and it is not fully clear why

this property holds. For this reason, we prefer to use a martingale argument which is both

simple and rigorous.
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Let’s denote by νk(s) :=
∑
a∈As νk(s, a) the total number of visits in state s during episode

k. Defining ∆k :=
∑
s∈S νk(s)

(
g∗ −

∑
a∈Ast πk(a|s)r(s, a)

)
the pseudo-regret of episode k, it

holds with probability at least 1− δ
6 that for all T ≥ 1 (using eq. 3.38):

∆(UCRLB, T ) ≤
T∑
t=1

(
g∗ −

∑
a∈Ast

πkt(st, a)r(st, a)
)

+ 2rmax

√
T ln

(4T
δ

)

=
kT∑
k=1

∑
s∈S

νk(s)
(
g∗ −

∑
a∈As

πk(a|s)r(s, a)
)

+ 2rmax

√
T ln

(4T
δ

)

=
kT∑
k=1

∆k + 2rmax

√
T ln

(4T
δ

)
(3.39)

3.5.2 Plugging the optimistic Bellman optimality equation

In this section we derive a high probability bound for
∑kT
k=1 ∆k. The first step consists in

replacing the true optimal gain g∗ by the optimistic gain gk. To do this, we rely on the

optimism property proved in Sec. 3.2. We assume that the complementary event of Thm. 3.1

holds i.e., M ∈ Mk for all T ≥ 1 and for all k ≥ 1. We will denote this event E in the rest

of the regret proof. As shown in Sec. 3.2, under event E, we have that g∗k ≥ g∗. Moreover, as

shown in Eq. 3.21, |gk − g∗k| ≤ εk/2 implying that gk ≥ g∗ − εk/2. As a result we can write:

∆k ≤
∑
s∈S

νk(s)

gk − ∑
a∈As

πk(a|s)r(s, a) + εk
2

 (3.40)

We will now replace gk (optimistic gain) by hk (optimistic bias) using the optimistic optimality

equation.

We denote by pk and rk the transition probabilities and rewards satisfying

∀s ∈ S, Lkαhk(s) =
∑
a∈As

πk(a|s)rk(s, a) + α
∑
a∈As

∑
s′∈S

πk(a|s)pk(s′|s, a)hk(s′) + (1− α)hk(s)

As shown in Eq. 3.22, the pair (gk, hk) ∈ R×RS returned by EVI is an approximate solution

to the Bellman optimality equation of Lkα i.e., ‖Lkαhk−hk− gke‖∞ ≤ εk implying that for all

s ∈ S:

−
∑
a∈As

πk(a|s)rk(s, a)− α
∑
s′∈S

∑
a∈As

πk(a|s)pk(s′|s, a)hk(s′)− (�1− α)hk(s) +���hk(s) + gk ≤ εk

⇒

gk − ∑
a∈As

πk(a|s)rk(s, a)

+ α

hk(s)− ∑
a∈As

∑
s′∈S

πk(a|s)pk(s′|s, a)hk(s′)

 ≤ εk (3.41)

Plugging Eq. 3.41 into Eq. 3.40 yields:
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∆k ≤
∑
s∈S

νk(s)

gk − ∑
a∈As

πk(a|s)rk(s, a) + εk
2

+
∑
s∈S

∑
a∈As

νk(s)πk(a|s)
(
rk(s, a)− r(s, a)

)

≤ α
∑
s∈S

νk(s)

∑
a∈As

∑
s′∈S

πk(a|s)pk(s′|s, a)hk(s′)− hk(s)


︸ ︷︷ ︸

:=∆p
k

+
∑
s∈S

∑
a∈As

νk(s)πk(a|s)
(
rk(s, a)− r(s, a)

)
︸ ︷︷ ︸

:=∆r
k

+3εk
2
∑
s∈S

νk(s) (3.42)

In the next two sections (Sec. 3.5.3 and 3.5.4), we will bound the sums
∑kT
k=1 ∆p

k and
∑kT
k=1 ∆r

k.

3.5.3 Bounding the transition probabilities

We start by further decomposing ∆p
k into two different terms:

∆p
k = α

∑
s,a,s′

νk(s)πk(a|s)
(
pk(s′|s, a)− p(s′|s, a)

)
hk(s′)︸ ︷︷ ︸

:=∆p1
k

+α
∑
s

νk(s)

∑
a,s′

πk(a|s)p(s′|s, a)hk(s′)− hk(s)


︸ ︷︷ ︸

:=∆p2
k

(3.43)

Since by construction
∑
a,s′∈S pk(s′|s, a)πk(a|s) =

∑
a,s′∈S p(s′|s, a)πk(a|s) = 1, the terms

∆p1
k and ∆p2

k remain unchanged if hk is arbitrarily shifted by a constant vector, respectively

λ1
ke and λ2

ke (λ1
k, λ

2
k ∈ R are arbitrary scalars and e = (1, . . . , 1)ᵀ is the vector of all ones).

To obtain the tightest possible upper bounds, we choose

λ1
k = λ2

k = −1
2

(
max
s∈S

hk(s) + min
s∈S

hk(s)
)

which minimizes the `∞-norm of wk := hk + λ1
ke = hk + λ2

ke. Indeed, it is immediate to see

that sp (wk) = sp (hk) and ‖wk‖∞ = sp (hk) /2. Under event E, we showed in Sec. 3.3.2 that

sp (wk) = sp (hk) ≤ Λ/α and so ‖wk‖∞ ≤ Λ/(2α). To keep
∑kT
k=1 ∆p1

k under control, we need

to replace νk(s)πk(a|s) by νk(s, a) i.e., reintroduce the randomness of the executed policy. To

that end, we define ∆p3
k := α

∑
s,a,s′ νk(s, a) (pk(s′|s, a)− p(s′|s, a))hk(s′), analogue of ∆p1

k

with νk(s)πk(a|s) replaced by νk(s, a), and we use the following lemma:

Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,
kT∑
k=1

∆p1
k ≤

kT∑
k=1

∆p3
k + 4Λ

√
T ln

(6T
δ

)
(3.44)

Lemma 3.2
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Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). �

Using Hölder’s inequality , the term ∆p3
k can be bounded as follows:

∆p3
k ≤�α

∑
s,a

νk(s, a) · ‖pk(·|s, a)− p(·|s, a)‖1 · ‖wk‖∞︸ ︷︷ ︸
≤Λ/(2�α)

≤ Λ
2
∑
s,a

νk(s, a) · ‖pk(·|s, a)− p(·|s, a)‖1

Using the triangle inequality , we can decompose the `1-norm into two terms:

∥∥pk(·|s, a)− p(·|s, a)
∥∥

1 ≤
∥∥pk(·|s, a)− p̂k(·|s, a)

∥∥
1 +

∥∥p̂k(·|s, a)− p(·|s, a)
∥∥

1 (3.45)

By construction, pk(·|s, a) ∈ Bk
p (s, a) (see Eq. 3.17) implying that for all states s′ ∈ S,

|pk(s′|s, a)−p̂k(s′|s, a)| ≤ βsas′p,k and so ‖pk(·|s, a)−p̂k(·|s, a)‖1 ≤ βsap,k :=
∑
s′∈S β

sas′
p,k . Similarly,

under event E, p(·|s, a) ∈ Bk
p (s, a) (by definition) and so |p̂k(s′|s, a) − p(s′|s, a)| ≤ βsas

′
p,k for

all s′ ∈ S implying that ‖pk(·|s, a)− p̂k(·|s, a)‖1 ≤ βsap,k. In conclusion,

∆p3
k ≤ Λ

∑
s,a

νk(s, a) · βsap,k (3.46)

We now focus on the last term ∆p2
k and do the following decomposition:

∆p2
k = α

tk+1−1∑
t=tk

∑
a,s′

πk(a|st)p(s′|st, a)wk(s′)− wk(st)


= α

tk+1−1∑
t=tk

∑
a,s′

πk(a|st)p(s′|st, a)wk(s′)− wk(st+1)


︸ ︷︷ ︸

:=∆p4
k

+α
tk+1−1∑
t=tk

wk(st+1)− wk(st)︸ ︷︷ ︸
telescopic sum

= ∆p4
k + α

(
wk(stk+1)− wk(stk)

)︸ ︷︷ ︸
≤sp(wk)≤Λ/α

≤ ∆p4
k + Λ

We then notice that
∑kT
k=1 ∆p4

k is an MDS and so

Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,
kT∑
k=1

∆p4
k ≤ 2Λ

√
T ln

(4T
δ

)
(3.47)

Lemma 3.3

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). �
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After combining Lem. 3.2, Eq. 3.46 and Lem. 3.3 and taking a union bound, we conclude

that with probability at least 1− δ
3 (and assuming event E holds):

∀T ≥ 1,
kT∑
k=1

∆p
k ≤ Λ

kT∑
k=1

∑
s,a

νk(s, a)βsap,k + 6Λ
√
T ln

(5T
δ

)
+ ΛkT . (3.48)

3.5.4 Bounding the rewards

Similarly to what we did to bound ∆p1
k , we define an analogue of ∆p3

k for the rewards i.e.,

∆r1
k :=

∑
s,a νk(s, a) (rk(s, a)− r(s, a)) (similar to ∆r

k with νk(s)πk(a|s) replaced by νk(s, a))
and we show the following lemma:

With probability at least 1− δ
6 :

∀T ≥ 1,
kT∑
k=1

∆r
k ≤

kT∑
k=1

∆r1
k + 4rmax

√
T ln

(8T
δ

)
Lemma 3.4

Proof. We use a martingale argument and Prop. 3.7 (see App. A.2 for further details). �

Similarly to the bound in (3.45), we notice that rk(s, a) − r(s, a) can be expressed as the

sum of rk(s, a)− r̂k(s, a) with r̂k(s, a)−r(s, a). Since rk(s, a) ∈ Bk
r (s, a) (3.4) by construction,

rk(s, a) − r̂k(s, a) ≤ βkr (s, a). Moreover, under event E we have r̂k(s, a) − r(s, a) ≤ βkr (s, a)
by definition. After summing up the two inequalities we obtain:

∆r1
k =

∑
s,a

νk(s, a)
(
rk(s, a)− r(s, a)

)
≤ 2

∑
s,a

νk(s, a)βsar,k

In conclusion, with probability at least 1− δ
6 (and assuming event E holds):

∀T ≥ 1,
kT∑
k=1

∆r
k ≤ 2

kT∑
k=1

∑
s,a

νk(s, a)βsar,k + 4rmax

√
T ln

(4T
δ

)
(3.49)

3.5.5 Bounding the number of episodes

As in UCRL2, in UCRLB the inequality νk(s, a) ≤ N+
k (s, a) holds for all state-action pairs

(s, a) ∈ S × A. However, the equality νk(s, a) = N+
k (s, a) holds true for exactly one state-

action pair (never more).

In Appendix C.2, Jaksch et al. (2010, Proposition 18) proved that the stopping condition

of UCRL2 ensures that when T ≥ SA, kT ≤ SA log2

(
8T
SA

)
a.s. The proof of this result only

relies on the fact that there exists at least one (s, a) satisfying νk(s, a) ≥ N+
k (s, a). Since
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UCRLB also enjoys this property, the same proof applies and the bound still holds:

Proposition 3.8

For all T ≥ SA, kT ≤ SA log2

(
8T
SA

)
.

3.5.6 Summing over episodes

As proved in Thm. 3.1, event E occurs with probability at least 1− δ
3 . After taking a union

bound and gathering inequalities (3.48) and (3.49) into inequality (3.42) we conclude that

with probability at least 1− 5δ
6 , for all T ≥ SA:

kT∑
k=1

∆k ≤ Λ
kT∑
k=1

∑
s,a

νk(s, a)βsap,k︸ ︷︷ ︸
(3)

+ 2
kT∑
k=1

∑
s,a

νk(s, a)βsar,k︸ ︷︷ ︸
(2)

+ 3
2rmax

kT∑
k=1

∑
s∈S

νk(s)
tk︸ ︷︷ ︸

(1)

+ 6Λ
√
T ln

(5T
δ

)
+ 4rmax

√
T ln

(5T
δ

)
+ ΛSA log2

( 8T
SA

) (3.50)

We will now expand the first three terms appearing in the bound of Eq. 3.50.

(1) Since tk ≥ N+
k (s, a) for all (s, a), we deduce that:

kT∑
k=1

∑
s∈S

νk(s)
tk

=
∑
s,a

kT∑
k=1

νk(s, a)
tk

≤
∑
s,a

kT∑
k=1

νk(s, a)
N+
k (s, a)

(2) Using the definition of βsar,k:

kT∑
k=1

∑
s,a

νk(s, a)βsar,k =
kT∑
k=1

∑
s,a

[
2

√√√√σ̂2
r,k(s, a) ln

(
6SAN+

k (s, a)
δ

)
︸ ︷︷ ︸

≤2rmax
√

ln( 6SAT
δ )

νk(s, a)√
N+
k (s, a)

+ 6rmax ln
(

6SAN+
k (s, a)
δ

)
︸ ︷︷ ︸

≤ln( 6SAT
δ )

νk(s, a)
N+
k (s, a)

]

≤ 2rmax

√ln
(6SAT

δ

)∑
s,a

kT∑
k=1

νk(s, a)√
N+
k (s, a)

+ 3 ln
(6SAT

δ

)∑
s,a

kT∑
k=1

νk(s, a)
N+
k (s, a)



(3) Similarly using the fact that βsap,k =
∑
s′∈S β

sas′
p,k :
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kT∑
k=1

∑
s,a

νk(s, a)βsap,k ≤ 2
√

ln
(6SAT

δ

)∑
s,a

kT∑
k=1

νk(s, a)√
N+
k (s, a)

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))

+6S ln
(6SAT

δ

)∑
s,a

kT∑
k=1

νk(s, a)
N+
k (s, a)

It holds almost surely that for all k ≥ 1 and for all (s, a, s′) ∈ S ×A× S:

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a)) ≤

√
Γ(s, a)− 1 (3.51)

Lemma 3.5

Proof. The result is a direct consequence of Cauchy-Schwartz inequality (for further details,

see App. A.3). �

As a consequence of Lem. 3.5,

kT∑
k=1

∑
s,a

νk(s, a)βsap,k ≤ 2
√

ln
(6SAT

δ

)∑
s,a

√
Γ(s, a)

kT∑
k=1

νk(s, a)√
N+
k (s, a)

+6S ln
(6SAT

δ

)∑
s,a

kT∑
k=1

νk(s, a)
N+
k (s, a)

Two sums appear in the bounds of the terms (1), (2) and (3):

kT∑
k=1

νk(s, a)√
N+
k (s, a)

and
kT∑
k=1

νk(s, a)
N+
k (s, a)

.

Lem. 3.6 provides upper-bounds for those sums.

It holds almost surely that for all k ≥ 1 and for all (s, a) ∈ S ×A×:

kT∑
k=1

νk(s, a)√
N+
k (s, a)

≤ 3
√
NkT+1(s, a) and

kT∑
k=1

νk(s, a)
N+
k (s, a)

≤ 2 + 2 ln
(
N+
kT+1(s, a)

)
(3.52)

Lemma 3.6

Proof. The proof follows from the rate of divergence of the series
∑n
i=1

1√
i
∼
√
n and∑n

i=1
1
i ∼ ln (n) respectively when n→ +∞. �

Using Lem. 3.6 together with Cauchy-Schwartz inequality we have:

∑
s,a

√
Γ(s, a)

√
NkT+1(s, a) ≤

√√√√(∑
s,a

Γ(s, a)
)
·
∑
s,a

NkT+1(s, a) =

√√√√(∑
s,a

Γ(s, a)
)
T .
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Using Lem. 3.6 together with Jensen’s inequality on the concave function ln(·) (with a nor-

malization factor SA) and the fact that N+
kT+1(s, a) ≤ T , we have(for T, SA ≥ 2):

∑
s,a

ln
(
N+
kT+1(s, a)

)
≤ SA ln

(∑
s,aN

+
kT+1(s, a)
SA

)
≤ SA ln (T ) .

In conclusion, with probability at least 1− 5δ
6 , for all T ≥ SA:

kT∑
k=1

∆k ≤ 6Λ

√√√√(∑
s,a

Γ(s, a)
)
T ln

(6SAT
δ

)
+ 12ΛS2A ln

(6SAT
δ

)
(1 + ln(T ))

+ 6rmax

√
SAT ln

(6SAT
δ

)
+ 12rmaxSA ln

(6SAT
δ

)
(1 + ln(T ))

+ 4(Λ + rmax)
√
T ln

(5T
δ

)
+ ΛSA log2

(
T

SA

)
+ 3rmaxSA · (1 + ln(T )).

(3.53)

3.5.7 Completing the regret bound of Thm. 3.4

For T ≥ 6SA we have 6SAT ≤ T 2 so that ln
(

6SAT
δ

)
≤ ln

(
T 2

δ

)
≤ 2 ln

(
T
δ

)
i.e., the logarith-

mic terms appearing in (3.53) no longer depend on SA but a factor 2 appears. For T ≤ 6SA
we can use the trivial upper-bound rmaxT on the regret (which holds with probability 1) and

so

∆(UCRLB, T ) ≤ rmaxT = rmax
√
T ·
√
T ≤ rmax

√
6SAT ≤

√√√√6
(∑
s,a

Γ(s, a)
)
T .

After combining (3.39) with (3.53) and using a union bound, we obtain that there exists an

absolute numerical constant β > 0 (i.e., independent of the MDP instance) such that for any

MDP M , with probability at least 1− δ, for all T > 1 the regret of UCRLB after T steps is

bounded as

∆(UCRLB, T ) ≤ β ·max {rmax,Λ} ·

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
+ S2A ln

(
T

δ

)
ln (T )

 .

3.6 Improved regret analysis for UCRLB using variance

reduction methods

We now prove Thm. 3.5. In order to improve the dependency of the regret bound in Λ (i.e.,

replace Λ by
√

Λ), we refine our analysis with three key improvements:

1. We leverage on Freedman’s inequality (Freedman, 1975) instead of Azuma’s inequality

to bound all MDS. We recall this inequality in Prop. 3.9 below.

2. We use a tighter bound than Hölder’s inequality to upper-bound the sum
∑kT
k=1 ∆p3

k (see

Sec. 3.5.3).
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3.6. Improved regret analysis for ucrlb using variance reduction methods

3. We shift the optimistic bias hkt by a different constant at every time step t ≥ 1 rather

than only at every episode k ≥ 1. More precisely, the optimistic bias is shifted by a

different constant for every episode k ≥ 1 and for every visited state s ∈ S.

To the best of our knowledge, Thm. 3.5 and its proof are new although it is largely inspired by

what is often referred to as “variance reduction methods” in the literature (Munos and Moore,

1999; Lattimore and Hutter, 2012, 2014; Azar et al., 2017; Kakade et al., 2018). Similar

techniques are used by (Azar et al., 2017) to achieve a similar bound but in the finite horizon

setting . Our approach also borrows intuitions from the work of Talebi and Maillard (2018a)

and Maillard et al. (2014).

Proposition 3.9 (Freedman’s inequality)

Let (Xn,Fn)n∈N be an MDS such that |Xn| ≤ a a.s. for all n ∈ N. Then for all δ ∈]0, 1[,

P

∀n ≥ 1,
∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ 2

√√√√( n∑
i=1
V
(
Xi

∣∣Fi−1
))
· ln

(4n
δ

)
+ 4a ln

(4n
δ

) ≤ δ

To bound the rewards
∑kT
k=1 ∆r

k, we keep the same derivation as in Sec. 3.5.4 (see Eq. 3.49).

On the other hand, we derive a completely different bound for the transition probabilities∑kT
k=1 ∆p

k. Our new derivation will make appear some sums of variances.

For any vector u ∈ RS , we slightly abuse notation and write u2 := u ◦ u the Hadamard

product of u with itself. For any probability distribution p over states S and any vector

u ∈ RS we define Vp (u) := pᵀu2 − (pᵀu)2 = EX∼p[u(X)2]−
(
EX∼p[u(X)]

)2
the “variance” of

u with respect to p.11 For the sake of clarity we introduce new notations for the transition

probabilities: pk(s′|s) :=
∑
a∈As πk(a|s)pk(s

′|s, a), pk(s′|s) :=
∑
a∈As πk(a|s)p(s

′|s, a) and

p̂k(s′|s) :=
∑
a∈As πk(a|s)p̂k(s

′|s, a), for every s, s′ ∈ S and every k ≥ 1 (i.e., we drop the

summation over a).

We start with a new bound relating ∆p1
k and ∆p3

k (as in Lem. 3.2):

Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,
kT∑
k=1

∆p1
k ≤

kT∑
k=1

∆p3
k + 4Λ ln

(24T
δ

)

+ 2
√
S ln

(24T
δ

)
√√√√ T∑
t=1
Vpkt (·|st) (αhkt) +

√√√√ T∑
t=1
Vpkt (·|st) (αhkt)

 (3.54)

Lemma 3.7 (Analogue of Lem. 3.2)

Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details). �

11In (Maillard et al., 2014), the authors define the “distribution-norm” of an MDP which is related to the
variances Vp(·|s,a) (h∗).
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We also refine the upper-bound of ∆p3
k derived in Eq. 3.46. Instead of bounding the scalar

product (pk(·|s, a)−p(·|s, a))ᵀwk by ‖pk(·|s, a)−p(·|s, a)‖ᵀ1‖wk‖∞ using Hölder’s inequality as

in Sec. 3.5.3, we bound it by
∑
s′ |pk(s′|s, a)−p(s′|s, a)| · |wk(s′)| using the triangle inequality.

Since
∑
a,s′ pk(s′|s, a) =

∑
a,s′ p(s′|s, a) = 1 we can shift hk by an arbitrary scalar λsk ∈ R

for all k ≥ 1 and all s ∈ S, i.e., wsk := hk + λske. Unlike in Sec. 3.5.3, we choose a state-

dependent shift, namely λsk := −
∑
a,s′ p̂k(s′|s, a)πk(a|s)hk(s′) = −p̂k(·|s)ᵀhk. It is easy to see

that sp (wsk) = sp (hk) and ‖wsk‖∞ ≤ sp (hk) implying that under event E, ‖wsk‖∞ ≤ Λ/α.

Using the triangle inequality and the fact that pk(·|s, a) ∈ Bk
p (s, a) by construction and

p(·|s, a) ∈ Bk
p (s, a) under event E:

∣∣pk(s′|s, a)− p(s′|s, a)
∣∣ ≤ ∣∣pk(s′|s, a)− p̂k(s′|s, a)

∣∣+ ∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ ≤ 2βsas′p,k .

As a result we can write:

∆p3
k ≤ α

kT∑
k=1

∑
s,a,s′

νk(s, a)
∣∣∣pk(s′|s, a)− p(s′|s, a)

∣∣∣ · ∣∣wsk(s′)∣∣
≤ 2α

kT∑
k=1

∑
s,a

νk(s, a)
∑
s′

βsas
′

p,k ·
∣∣wsk(s′)∣∣

= 4α
kT∑
k=1

∑
s,a

νk(s, a)
[√

ln (6SAT/δ)
N+
k (s, a)

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2

+ 3 ln (6SAT/δ)
N+
k (s, a)

∑
s′

∣∣wsak (s′)
∣∣︸ ︷︷ ︸

≤Λ/α

]

We denote by Vk(s, a) := α2∑
s′ p̂k(s′|s, a)wsk(s′)2. Similarly to Lem. 3.5, we can prove the

following inequality:

It holds almost surely that for all k ≥ 1 and for all (s, a, s′) ∈ S ×A× S:

α
∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2 ≤

√
Vk(s, a) · (Γ(s, a)− 1) (3.55)

Lemma 3.8 (Analogue of Lem. 3.5)

Proof. The result is a direct consequence of Cauchy-Schwartz inequality (for further details,

see App. A.3). �

As a consequence of Lem. 3.8,

kT∑
k=1

∆p3
k ≤ 4

kT∑
k=1

∑
s,a

νk(s, a)
[√

Vk(s, a) Γ(s, a)
N+
k (s, a)

ln
(6SAT

δ

)
+ 3ΛS
N+
k (s, a)

ln
(6SAT

δ

)]

= 4
kT∑
k=1

tk+1−1∑
t=tk

[√
Vk(st, at)

Γ(st, at)
N+
k (st, at)

ln
(6SAT

δ

)
+ 3ΛS
N+
k (st, at)

ln
(6SAT

δ

)]
.

Applying Cauchy-Schwartz gives
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kT∑
k=1

tk+1−1∑
t=tk

√
Vk(st, at)

√
Γ(st, at)
N+
k (st, at)

≤

√√√√√ kT∑
k=1

tk+1−1∑
t=tk

Γ(st, at)
N+
k (st, at)

kT∑
k=1

tk+1−1∑
t=tk

Vk(st, at)

=

√√√√ kT∑
k=1

∑
s,a

Γ(s, a)νk(s, a)
N+
k (s, a)

T∑
t=1

Vkt(st, at).

Using Lem. 3.6, Jensen’s inequality and the fact that N+
kT+1(s, a) ≤ T (as in Sec. 3.5.6),

we can bound the first sum

∑
s,a

kT∑
k=1

Γ(s, a)νk(s, a)
N+
k (s, a)

≤ 2
∑
s,a

Γ(s, a)
(
1 + ln

(
N+
kT+1(s, a)

))

≤ 2
(

1 + ln
(∑

s,a Γ(s, a)N+
kT+1(s, a)∑

s,a Γ(s, a)

))∑
s,a

Γ(s, a)

≤ 2(1 + ln (T ))
∑
s,a

Γ(s, a).

To bound the second sum
∑T
t=1 Vkt(st, at), we rely on the following Lemma:

Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,
T∑
t=1

Vkt(st, at) ≤
T∑
t=1
Vp̂kt (·|st) (αhkt) + 2Λ2

√
T ln

(4T
δ

)
(3.56)

Lemma 3.9

Proof. We notice that for all k ≥ 1 and s ∈ S,
∑
a πk(a|s)Vk(s, a) = Vp̂k(·|s) (αhk). The

concentration inequality then follows from a martingale argument and Prop. 3.7 (see App. A.2

for further details). �

From Lem. 3.9 it follows that

kT∑
k=1

∆p3
k ≤4

√√√√2
(
1 + ln(T )

)
ln
(6SAT

δ

)(∑
s,a

Γ(s, a)
)(

Λ2

√
2T ln

(
T

δ

)
+

T∑
t=1
Vp̂kt (·|st) (αhkt)

)

+ 24ΛS2A ln
(6SAT

δ

)
(1 + ln(T )) (3.57)

It now remains to bound
∑kT
k=1 ∆p2

k . As shown in Sec. 3.5.3:
∑kT
k=1 ∆p2

k ≤
∑kT
k=1 ∆p4

k + ΛkT .

We refine the bound on
∑kT
k=1 ∆p4

k derived in Eq. 3.48 using Freedman’s inequality instead of

Azuma’s.

Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,
kT∑
k=1

∆p4
k ≤ 2

√√√√( T∑
t=1
Vpkt (·|st) (αhkt)

)
· ln

(24T
δ

)
+ 4Λ ln

(24T
δ

)
(3.58)

Lemma 3.10 (Analogue of Lem. 3.3)
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Proof. We use a martingale argument and Prop. 3.9 (see App. A.2 for further details). �

3.6.1 Bounding the sum of variances

The main terms appearing respectively in (3.54), (3.57) and (3.58) all have the form of a

sum of variances over time
∑T
t=1Vpt (αhkt) with pt a distribution over states (respectively

pkt(·|st), pkt(·|st) and p̂kt(·|st)), and hkt the optimistic bias of episode kt. A first näıve upper

bound of this sum can be derived using Popoviciu’s inequality that we recall in Prop. 3.10.

Proposition 3.10 (Popoviciu’s inequality on variances)

Let M and m be upper and lower bounds on the values of a random variable X i.e.,

P (m ≤ X ≤M) = 1. Then V(X) ≤ 1
4(M −m)2.

Using Popoviciu’s inequality and under event E,

Vpt (αhkt) ≤ sp (αhk)2 /4 = α2sp (hk)2 /4 ≤ Λ2/4

and so
∑T
t=1Vpt (αhkt) ≤ Λ2T/4. Unfortunately, this would result in a regret bound scaling

as Õ(Λ
√
T ) (ignoring all other terms like S, A, logarithmic terms, etc.) which is not better

than the bound of Thm. 3.4. In this section, we show that the cumulative sum of variances

only scales as Õ(ΛT+Λ2√T ) resulting in a regret bound of order Õ
(√

ΛT + ΛT 1/4
)

(ignoring

all other terms).

We start by analyzing the variance term Vp̂k(·|st) (αhk). The other variance terms Vpk(·|st) (αhk)
and Vpk(·|st) (αhk) can be addressed in the same way. We do the following decomposition:

Vp̂k(·|st) (αhk) = α2
(
p̂k(·|st)ᵀh2

k − (p̂k(·|st)ᵀhk)2
)

= α2
(

(p̂k(·|st)− pk(·|st))ᵀ h2
k︸ ︷︷ ︸

(1)

+ pk(·|st)ᵀh2
k − h2

k(st+1)︸ ︷︷ ︸
(2)

+h2
k(st+1)− (p̂k(·|st)ᵀhk)2︸ ︷︷ ︸

(3)

)

Notice that for any r.v. X and any scalar a ∈ R, V(X + a) = V(X). Thus, the term

Vp̂k(·|st) (αhk) remains unchanged when hk is shifted by an arbitrary constant vector i.e.,

when hk is replaced by wk := hk + λke. As in Sec. 3.5.3, we minimize the `∞-norm of

wk by choosing λk = −1
2 (maxs∈S hk(s) + mins∈S hk(s)). We recall that under event E,

‖wk‖∞ ≤ Λ/(2α) and so ‖w2
k‖∞ ≤ Λ2/(4α2).

(1) The first term α2∑kT
k=1

∑tk+1−1
t=tk (p̂k(·|st)− pk(·|st))ᵀw2

k is similar to
∑kT
k=1 ∆p1

k (see

Sec. 3.5.3) except that αwk is replaced by α2w2
k and pk(·|st) is replaced by p̂k(·|st). In

Sec. 3.5.3 we had to decompose pk(·|st) − pk(·|st) into the sum of pk(·|st) − p̂k(·|st) and

p̂k(·|st) − pk(·|st). Here we no longer need this decomposition and we can use the same

derivation with sp
(
α2w2

k

)
≤ Λ2/4 instead. Therefore, with probability at least 1 − δ

6 (and
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under event E):

α2
kT∑
k=1

tk+1−1∑
t=tk

(p̂k(·|st)− pk(·|st))ᵀw2
k ≤

3
2Λ2

√√√√(∑
s,a

Γ(s, a)
)
T ln

(6SAT
δ

)
+ Λ2

√
T ln

(5T
δ

)

+3Λ2S2A ln
(6SAT

δ

)
(1 + ln (T ))

(2) The second term α2∑kT
k=1

∑tk+1−1
t=tk pk(·|st)ᵀw2

k − w2
k(st+1) is identical to

∑kT
k=1 ∆p4

k (see

also Sec. 3.5.3) except that αwk is replaced by α2w2
k. With probability at least 1 − δ

6 (and

under event E):

α2
kT∑
k=1

tk+1−1∑
t=tk

pk(·|st)ᵀw2
k − w2

k(st+1) ≤ Λ2

2

√
T ln

(5T
δ

)

(3) The last term α2∑kT
k=1

∑tk+1−1
t=tk w2

k(st+1)− (p̂k(·|st)ᵀwk)2 is the dominant one and re-

quires more work. Unlike the first two terms, it scales linearly with T (instead of Õ(
√
T )).

We first notice that p̂k(·|st)ᵀwk = wk(st)+ p̂k(·|st)ᵀwk−wk(st). Using the fact that (a+b)2 =
a2 + b(2a + b) with a = wk(st) and b = p̂k(·|st)ᵀwk − wk(st) (and therefore 2a + b =
wk(st) + p̂k(·|st)ᵀwk) we obtain:

(p̂k(·|st)ᵀwk)2 = w2
k(st) + (p̂k(·|st)ᵀwk − wk(st)) · (wk(st) + p̂k(·|st)ᵀwk)

and so applying the reverse triangle inequality :

(p̂k(·|st)ᵀwk)2 ≥ w2
k(st)− |p̂k(·|st)ᵀwk − wk(st)| · |wk(st) + p̂k(·|st)ᵀwk| (3.59)

For all k ≥ 1 and s ∈ S, we define rk(s) :=
∑
a πk(a|s)rk(s, a). Using the (near-)optimality

equation (see Sec. 3.5.2) we can write:

∣∣gk − rk(st) + α
(
wk(st)− pk(·|st)ᵀwk

)∣∣ =
∣∣gk − rk(st) + α

(
hk(st)− pk(·|st)ᵀhk

)∣∣ ≤ εk
Moreover, εk = rmax

tk
≤ rmax. As a result, since α > 0:

α
∣∣p̂k(·|st)ᵀwk − wk(st)∣∣

=
∣∣gk − rk(st) + α

(
wk(st)− pk(·|st)ᵀwk

)
− gk + rk(st) + α (pk(·|st)− p̂k(·|st))ᵀwk

∣∣
≤
∣∣gk − rk(st) + α

(
wk(st)− pk(·|st)ᵀwk

)∣∣︸ ︷︷ ︸
≤rmax

+ |rk(st)− gk|︸ ︷︷ ︸
≤rmax

+α |(pk(·|st)− p̂k(·|st))ᵀwk|

≤ 2rmax + α |(pk(·|st)− p̂k(·|st))ᵀwk|

It is also immediate to see that |wk(st) + p̂k(·|st)ᵀwk| ≤ 2‖wk‖∞ ≤ Λ/α. Plugging these

inequalities into (3.59) and adding w2
k(st+1) we obtain:

α2
(
w2
k(st+1)− (p̂k(·|st)ᵀwk)2

)
≤ (2rmax + α |(pk(·|st)− p̂k(·|st))ᵀwk|) Λ

+ α2
(
w2
k(st+1)− w2

k(st)
) (3.60)
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It is easy to bound the telescopic sum

α2
tk+1−1∑
t=tk

w2
k(st+1)− w2

k(st) = α2
(
w2
k(stk+1)− w2

k(stk)
)
≤ α2w2

k(stk+1) ≤ Λ2/4 (3.61)

Finally, the sum α
∑kT
k=1

∑tk+1−1
t=tk |(pk(·|st)− p̂k(·|st))ᵀwk| can be bounded in the exact same

way as
∑kT
k=1 ∆p1

k (see Sec. 3.5.3). With probability at least 1− δ
6 :

α
kT∑
k=1

tk+1−1∑
t=tk

|(pk(·|st)− p̂k(·|st))ᵀwk| ≤3Λ

√√√√(∑
s,a

Γ(s, a)
)
T ln

(6SAT
δ

)
+ 4Λ

√
T ln

(5T
δ

)

+ 6ΛS2A ln
(6SAT

δ

)
(1 + ln (T )) (3.62)

After gathering (3.61) and (3.62) into (3.60)) we conclude that with probability at least

1− δ
6 (and under event E):

α2
kT∑
k=1

tk+1−1∑
t=tk

w2
k(st+1)− (p̂k(·|st)ᵀwk)2 ≤ 2rmaxΛT︸ ︷︷ ︸

main term

+kTΛ2

4 + Õ

Λ2

√√√√(∑
s,a

Γ(s, a)
)
T



In conclusion, there exists an absolute numerical constant β > 0 (i.e., independent of the

MDP instance) such that with probability at least 1− 5δ
6 :

T∑
t=1
Vp̂kt (·|st) (αhkt) ≤ β ·

rmaxΛT + Λ2

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
+ Λ2S2A ln

(
T

δ

)
ln (T )

 .
We can prove the same bound (possibly with a different multiplicative constant β) for∑T
t=1Vpkt (·|st) (αhkt) and

∑T
t=1Vpkt (·|st) (αhkt) using the same derivation.

3.6.2 Completing the regret bound of Thm. 3.5

After plugging the bound derived for the sum of variances in the previous section (Sec. 3.6.1)

into (3.54), (3.57) and (3.58), we notice that (3.54) and (3.58) can be upper-bounded by

(3.57) up to a multiplicative numerical constant ans so it is enough to restrict attention to

(3.57). The dominant term that we obtain is (ignoring numerical constants):

√√√√√(∑
s,a

Γ(s, a)
)

ln
(
T

δ

)
ln (T )

rmaxΛT + Λ2

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
+ Λ2S2A ln

(
T

δ

)
ln (T )



Using the fact that
√∑

i ai ≤
∑
i
√
ai for any ai ≥ 0, we can bound the above square-root

84



3.7. Comparison between upper and lower-bounds

term by the sum of three simpler terms:

(1) A
√
T -term (dominant):

√√√√rmaxΛ
(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
ln (T )

(2) A T 1/4-term: Λ
(∑
s,a

Γ(s, a)
)3/4

T 1/4
(

ln
(
T

δ

))3/4√
ln (T )

(3) A logarithmic term: Λ

√√√√S2A

(∑
s,a

Γ(s, a)
)

ln
(
T

δ

)
ln (T ) ≤ ΛS2A ln

(
T

δ

)
ln (T )

When T ≥
(

Λ
rmax

)2 (∑
s,a Γ(s, a)

)
ln
(
T
δ

)
, we notice that the T 1/4-term (2) is actually upper-

bounded by the
√
T -term (1), while for T ≤

(
Λ

rmax

)2 (∑
s,a Γ(s, a)

)
ln
(
T
δ

)
we can use the

following trivial upper-bound rmaxT on the regret:

∆(UCRLB, T ) ≤ rmaxT ≤
Λ2

rmax

(∑
s,a

Γ(s, a)
)

ln
(
T

δ

)
≤ Λ2

rmax
S2A ln

(
T

δ

)
.

To complete the regret bound of Thm. 3.5 we also need to take into consideration (3.39)

and (3.49) as well as the lower order terms of (3.54), (3.57) and (3.58). It turns out that

the only terms that are not already upper-bounded by (1), (2) and (3) (up to multiplicative

numerical constants) sum as:

rmax

√
SAT ln

(
T

δ

)
+ rmaxSA ln

(
T

δ

)
ln (T ) + ΛS2A ln

(
T

δ

)
ln (T )

If Λ ≤ rmax then Λ2/rmax ≤ Λ ≤ rmax, while if Λ ≥ rmax then Λ2/rmax ≥ Λ ≥ rmax. There-

fore, all the above logarithmic terms can be bounded by: max
{
rmax,

Λ2

rmax

}
S2A ln

(
T
δ

)
ln (T ).

Moreover, all the
√
T -terms can be bounded by

max
{
rmax,

√
rmaxΛ

}√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
ln (T )

To conclude, we only need to adjust δ to obtain an event of probability at least 1− δ. This

will only impact the multiplicative numerical constants of the above terms.

3.7 Comparison between upper and lower-bounds

We recall the minimax lower-bound of Prop. 2.12: for any learning algorithm, it is possible

to find a specific worst-case MDP for which the regret suffered is at least Ω(rmax
√
DSAT ) on

expectation. The intermediate MDP constructed by Jaksch et al. (2010, Figure 3) to prove

Prop. 2.12 satisfies Λ = rmaxD and so Prop. 2.12 can also be written as

E [∆(M,A, µ1, T )] ≥ 0.015 ·
√
rmaxΛ

√
SAT (3.63)
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i.e., D can be replaced by Λ.

The upper bound of Theorem. 3.5 (see Sec. 3.4) holds with probability 1 − δ but it is

possible to obtain the same bound in expectation using the law of total expectations and

setting δ = 1/
√
T :

EM [∆M (A, T )] = Õ
(

(1− δ)︸ ︷︷ ︸
≤1

·max{rmax,
√
rmaxΛ}

√∑
s,a

Γ(s, a)T
)

+ δ · rmaxT︸ ︷︷ ︸
≤rmax

√
T

(3.64)

If we ignore multiplicative numerical constants and logarithmic terms, (3.63) matches the

dominant term of (3.64) up to a factor
√

Γ. Unlike UCRL2, UCRLB is minimax optimal

in Λ (or D). To the best of our knowledge, it is the first bound with this property for

the undiscounted infinite horizon setting. Although the dependency in S dropped from S

(UCRL2) to
√

ΓS ≤ S (UCRLB), it is still not matching the lower bound (3.63).

Until very recently, it was still an open question of the literature whether
√
S is achievable

when Γ = Ω(S). Quite remarkably, the same question remained open in the discounted

setting. Lattimore and Hutter (2014) indeed proved a Ω̃
(

SA
ε2(1−γ)3

)
lower-bound on the sample

complexity and derived an upper-bound matching the lower-bound up to a factor Γ.12

In the finite horizon setting , this question was answered by Azar et al. (2017); Kakade et al.

(2018) who proved a regret bound of order Õ
(√

HSAT
)

for their algorithm. Unfortunately,

it is not easy to extend their approach to the infinite horizon case as it seems to heavily rely

on the existence of a known horizon H.

In the infinite horizon undiscounted setting , there had been several notable attempts to

try to fill the gap between lower and upper-bounds. For example, Agrawal and Jia (2017)

initially claimed that the optimistic version of PSRL they designed incurs a regret bounded by

Õ
(
rmaxD

√
SAT

)
. This improvement was obtained thanks to the use of tighter concentration

inequalities proved by the same authors (Agrawal and Jia, 2017, Lemma C.1 & C.2). To

better understand the main challenge of the proof, it is important to recall that the term
√

Γ
appears when bounding ∆p3

k in the regret decomposition (see Sec. 3.5 and 3.6). Bounding this

term requires to bound (p̂k(·|s)− pk(·|s))ᵀ hk where p̂k is the estimated transition probability

under policy πk, pk is the true transition probability under πk and hk is the optimistic bias at

episode k. While for a fixed vector v, (p̂k(·|s)− pk(·|s))ᵀ v . sp (v)
√

1
N+
k

(Hoeffding bound),

this concentration inequality may no longer hold when v and p̂k are correlated (which is the

case for v = hk). To overcome this issue, in the regret proof we used a worst-case bound:

max
sp(v)≤D

(p̂k(·|s)− pk(·|s))ᵀ v . sp (v)
√

Γ
N+
k

which introduces
√

Γ in the final regret bound. Agrawal and Jia (2017, Lemma C.2) claimed

that the
√

Γ could be removed in the above bound. Unfortunately, there seem to be a major

mistake in the proof of both Lemma C.1 and Lemma C.2. We showed both theoretically

12We recall that a regret bound of order C
√
T should be compared with a sample complexity bound of order

C2

(1−γ)3ε2 and D is comparable to 1
1−γ .
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and empirically an anti-concentration scaling linearly with
√
S when Γ = Ω(S) (Qian et al.,

2018a). This anti-concentration suggested that in order to remove the
√

Γ factor, new argu-

ments were needed that do not involve bounding maxsp(v)≤D (p̂k(·|s)− pk(·|s))ᵀ v.

Despite the failed attempts, Tossou et al. (2019) seem to have finally solved this problem

(the paper is still unpublished). Not long before, Ortner (2018) derived a Γ-free bound for

ergodic MDPs.

Posterior sampling vs optimism. Agrawal and Jia (2017) points out that their Lemma

C.1 is essentially Lemma 3 of Osband and Roy (2017) re-written. Osband and Roy (2017)

used Lemma 3 to show a bound Õ
(
H
√
SAT

)
on the Bayesian regret of PSRL for finite

horizon problems. Unfortunately, the proof of Lemma 3 is also mistaken and our anti-

concentration result also applies here. Osband and Roy (2017) further claimed that the

improved S-dependency of their bound illustrates the superiority of posterior sampling meth-

ods over OFU methods: the latter will always suffer a regret scaling linearly with S while

the former suffers a regret scaling linearly with
√
S. Our result questions the validity of this

claim. Osband and Roy (2017) showed that their claim is empirically verified. However, they

run UCRL2 which indeed suffers S due to the use of Hoeffding/Weissman bounds. Moreover,

they run experiments on a family of MDPs (known as “River Swim”) with increasing S but

Γ = 2 in all MDPs. Therefore, on this specific family of MDPs, the regret of UCRLB will

empirically grow as Θ(
√
S) just like the regret of PSRL. The problem of the S dependency

in the regret bound does not seem to be linked to the family of algorithm used (posterior

sampling vs OFU).

3.8 Conclusion

In this chapter we introduced UCRLB, a variant of UCRL2 that leverages Bernstein concen-

tration inequality to construct the confidence bounds used in the definition of the extended

MDP. We showed that this simple modification allows to save a
√
DS/Γ factor in the regret

bound, implying that the best known minimax lower bound (Prop. 2.12) is somehow tight.

We also generalized the notion of diameter by introducing the concept of travel-budget and

made several contributions to the proof techniques used in the regret analysis of UCRL2-

like algorithms. In the rest of the thesis, we will make an extensive use of all the material

presented in this chapter in different contexts.

For future work, it would be very helpful to simplify and understand better the proof of

Thm. 3.5 (second regret bound). For example, it could be insightful to provide a unified view

of variance reduction methods in RL by relating our analysis to the other works mentioned

in Sec. 3.6.
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4 Exploration–exploitation in MDPs with
infinite diameter

4.1 Introduction

4.1.1 Motivations

In the undiscounted infinite horizon setting, a major limitation of UCRL2-like algorithms is

that the true unknown MDP M needs to be communicating i.e., its diameter D (see Def. 3.1)

should be finite. For example, when D = +∞, the regret bounds of Thm. 3.4 and 3.5 are

worthless1. This is not just an artefact of the regret analysis as whenever D = +∞, UCRLB

(as well as UCRL2 and its variants) will indeed suffer a linear regret i.e., will never learn.

One can easily verify this claim by running the algorithms on any non-communicating MDP,

but this behaviour is more easily understood by looking at Example 1 of Ortner (2008).

Their example (see Fig. 4.1a) is a slight modification of the stochastic Multi-Armed Bandit

problem with only two arms/actions in state s –a0 and a1– that both have a reward strictly

bounded by rmax, and a third action that can only be played in a different state s′. If s′ is not

reachable from s, s′ will never be visited and any UCRL2-like algorithm will expect to receive

maximal reward rmax in that state (by optimism). As a consequence, it will always choose a

model assigning as much probability mass as allowed by the confidence intervals to go from

s to s′ (by optimism). The “best” action to play in this optimistic model is the one that is

expected to cause a transition to s′ with highest probability. In the optimistic model, the

probability to go to s′ when playing action ai (i ∈ {0, 1}) decreases as the number of times

the action is played (N(s, ai)) increases. Therefore, the “best” action keeps changing: it is a0

half of the time (when N(s, a0) < N(s, a1)), a1 the other half (when N(s, a0) > N(s, a1)).
The regret incurred is therefore linear whenever the problem is non-trivial i.e., whenever

r(s, a0) 6= r(s, a1).

One might be tempted to think that the poor performance of UCRLB in the example of

Fig. 4.1a is only a drawback of the algorithm and that the problem is not intrinsically more

1When D = +∞, there exists at least one state s ∈ S such that ΠSD
7→s = ∅ (see Def. 3.2) and so Λ = +∞.

Since the bounds of Thm. 3.4 and 3.5 scale linearly with respectively Λ and
√

Λ, they are worthless.
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s s′

Optimism

Ground truth
a0, r < rmax

a1, r < rmax

a0, r = rmax

(a) Failure of UCRL2-like algorithms.

s s′

a1, r = 0

a0, r = 1
2rmax

?
a0, r = rmax

(b) Challenging exploration–exploitation.

Figure 4.1: Examples inspired by (Ortner, 2008, Example 1). Fig. 4.1a illustrates why
UCRLB fail to learn when some states are not reachable. Fig. 4.1b illustrates the additional
difficulty of the exploration–exploitation dilemma when the diameter is potentially infinite.
In both examples, two actions can be played in state s (a0 and a1) and only one in state s′

(a0).

difficult than any RL task where D < +∞. Let’s slightly modify the previous example (see

Fig. 4.1b): in state s, action a0 yields reward 1
2rmax and action a1 yields reward 0 ; in state

s′, action a0 yields reward rmax. We further assume that the learning agent knows all the

parameters of the MDP except the transition probability to move from s to s′ after playing

a1 (dashed arrows on Fig. 4.1). State s′ can only be reached when playing a1 in s but might

also not be reachable at all. If the probability to go to s′ is non-zero, the agent should play

a1 in order to move to s′ as quickly as possible. On the other hand, if the probability to

go to s′ is zero, then playing a1 only increases the regret and a0 should be played instead.

Unfortunately, as long as no transition to s′ has ever been observed, and no matter how many

times action a1 has already been played, the statement “the probability to go to s′ is non-zero”

can never be refuted as this probability can be arbitrarily small . In other words, while in

state s and independently of past observations, it is impossible for the agent to distinguish

between the two scenarios: arbitrarily low probability versus absence of a transition to s′.

This is not specific to an algorithm but it is a fundamental difficulty of the learning problem.

In the example of Fig. 4.1, an “efficient” algorithm should carefully balance the exploration of

a1 with the exploitation of a0 while in s. When in addition the other parameters of the MDP

are unknown, this comes as an extra “cost” compared to the usual exploration–exploitation

trade-off that occurs when D < +∞. In conclusion, the exploration-exploitation dilemma

becomes intrinsically more challenging in non-communicating MDPs.

Notice that the problems described in Fig. 4.1 does not occur in the discounted or finite

horizon settings since the exploration is directly tailored to the states that are reachable within

the known horizon2. Then, it does not matter whether the transition to s′ exists or not. It

is sufficient to test whether the probability to go to s′ is smaller than 1 − γ (discounted)

or 1/H (finite horizon). This only requires to play a1 for a finite number of times. The

problem of Fig. 4.1 can also be overcome by leveraging on additional prior knowledge about

the MDP (s.t. knowledge of the value of the smallest probability of transition, etc.) given to

the learning agent. In this Chapter, we will assume that no such knowledge is available to

the learning agent and we will analyse the general problem.

2The discount factor γ implicitly defines an “horizon” of order 1
1−γ .
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(a) Initial state s1 (b) State reachable from s1 (c) State not reachable from s1

Figure 4.2: Example of non-communicating RL environment: game of Breakout (Mnih et al.,
2015a). The state space is the set of all possible configurations of the brick wall, the paddle
and the ball. Fig. a: The initial state of the game. Fig. b: An example of state reachable
after playing the game for some time. Fig. c: An example of state not reachable from the
initial state due to the presence of a “hole” in the brick wall.

One might wonder whether the example of Fig. 4.1 is not artificial and whether MDPs with

non-reachable states (like s′ on Fig. 4.1) are frequently encountered in RL. While assuming

that all states are reachable may seem a reasonable assumption at first sight, it is rarely

verified in practice. In fact, it requires a designer to carefully define a state space S that

contains all reachable states (otherwise it may not be possible to learn the optimal policy), but

that excludes unreachable states (otherwise the resulting MDP would be non-communicating).

This requires a considerable amount of knowledge about the environment and its dynamics,

and may be against the main purpose of RL which is to learn in an unknown environment

with limited human supervision. Consider for example a problem where we learn from images

e.g., the Atari Breakout game (Mnih et al., 2015a). A somehow simple “intuitive” state space

could be the set of all “plausible” configurations of the brick wall, ball and paddle. The

situation in which the wall has an hole in the middle is a valid state (e.g., as an initial

state) but it cannot be observed/reached starting from a dense wall (see Fig. 4.2). As such,

it should be removed to obtain a “well-designed” state space. While it may be possible to

design a suitable set of reachable states that define a communicating MDP, this is often a

difficult and tedious task, sometimes even impossible. Now consider a continuous domain

e.g., the Mountain Car problem (Moore, 1990). The state is described by the position x and

velocity ẋ of the car along the x-axis. The state space of this domain is usually defined as

the Cartesian product (x, ẋ) ∈ [−1.2, 0.6] × [−0.07, 0.07]. Unfortunately, this set contains

configurations that are not physically reachable as shown on Fig. 4.3. The dynamics of the

system is constrained by the evolution equations (law of motion). Therefore, the car can not

go arbitrarily fast. On the leftmost position (x = −1.2) the speed ẋ cannot exceed 0 because

this position can be reached only with velocity ẋ ≤ 0. To reach a higher velocity, the car

would need to acquire momentum from further left (i.e., x < −1.2) which is impossible by

design (−1.2 is the left-boundary of the position domain). The maximal speed reachable for

x > −1.2 can be attained by applying the maximum acceleration at any time step starting

from the state (x, ẋ) = (−1.2, 0). This identifies the boundary of an unreachable region (red

area on Fig. 4.3). Note that other states may not be reachable either.

As shown on the example of Fig. 4.1a, whenever the state space is “misspecified” or the

MDP is non-communicating (i.e., D = +∞), OFU-based algorithms (e.g., UCRLB) opti-
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(a) Mountain Car domain

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4

−0.05

0

0.05

Unreachable states

s1

Position x

V
el
o
ci
ty

ẋ

(b) Mountain Car state space

Figure 4.3: Example of non-communicating RL environment: Mountain Car (Moore, 1990;
Brockman et al., 2016). Fig. a: The (red) car needs to reach the (green) flag on the top
of the hill. The car does not have enough power and first needs to acquire momentum by
reversing. Fig. 4.3b: x and ẋ denote respectively the position and velocity of the car along
the x-axis. The state space is defined by (x, ẋ) ∈ [−1.2, 0.6]× [−0.07, 0.07]. The state labeled
s1 (in blue) corresponds to the initial state (car at the bottom of the hill at rest). From the
law of motion of the car, it is possible to show that the sates in the red area can never be
reached from s1.

mistically attribute large rewards and non-zero probability to reach states that have never

been observed, and thus they tend to repeatedly attempt to explore unreachable states. This

results in poor performance and linear regret. In this chapter, we will describe and analyse

an “efficient” algorithm that achieves a sublinear regret in both communicating and non-

communicating MDPs without any prior knowledge on the diameter.

4.1.2 Previous work

Surprisingly, the problem of infinite diameter has received very little attention in the RL

literature. The few papers dealing with this issue do not focus explicitly on this problem.

They incidentally –and only partially– address it by attempting to solve a different –often

more general– problem. Unfortunately, most of this literature is either incomplete (i.e., leaves

a lot of open questions) or not fully accurate (e.g., makes questionable assumptions).

A first attempt to overcome the case D = +∞ is Regal.C (Bartlett and Tewari, 2009)

which requires prior knowledge of an upper-bound c ≥ 0 to the span (i.e., range) of the

optimal bias function h∗ (this setting will be the focus of Chap. 5). The optimism of UCRL2

is then “constrained” to policies whose bias has span smaller than c. This implicitly “re-

moves” non-reachable states, whose large optimistic reward would cause the span to become

too large. Unfortunately, an accurate knowledge of the bias span may not be easier to ob-

tain than designing a well-specified state space. Bartlett and Tewari (2009) proposed an

alternative algorithm – Regal.D– that leverages on the doubling trick (Auer et al., 1995;

Cesa-Bianchi and Lugosi, 2006) to avoid any prior knowledge on the span. Nonetheless, we

noticed a major flaw in the proof of Bartlett and Tewari (2009, Theorem 3) that questions

the validity of the algorithm (Fruit et al., 2018a, Appendix A). PS-based algorithms also

suffer from similar issues. To the best of our knowledge, the only regret guarantees available
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in the literature for this setting are3 (Abbasi-Yadkori and Szepesvári, 2015; Ouyang et al.,

2017b; Theocharous et al., 2017). However, the counter-example of Osband and Roy (2016)

invalidates the result of Abbasi-Yadkori and Szepesvári (2015). On the other hand, Ouyang

et al. (2017b) and Theocharous et al. (2017) present PS algorithms with expected Bayesian

regret scaling linearly with c, where c is an upper-bound on the optimal bias spans of all

the MDPs that can be drawn from the prior distribution ((Ouyang et al., 2017b, Asm. 1)

and (Theocharous et al., 2017, Sec. 5)). Ouyang et al. (2017b, Remark 1) claim that their

algorithm does not require the knowledge of c to derive the regret bound. However, in (Fruit

et al., 2018a, Appendix B) we show on a very simple example that for most continuous

prior distributions (e.g., commonly used uninformative priors like Dirichlet), it is very likely

that c = +∞ implying that the regret bound may not hold (and similarly for the work of

Theocharous et al. (2017)). As a result, similarly to Regal.C, the prior distribution should

contain prior knowledge on the bias span to avoid poor performance.

In this chapter, we present TUCRL, an algorithm designed to trade-off exploration and

exploitation in weakly-communicating and multi-chain MDPs (e.g., MDPs with misspecified

state space) without any prior knowledge and under the only assumption that the agent starts

from a state in a communicating subset of the MDP (Sec. 4.2). In communicating MDPs, TU-

CRL eventually (after a finite number of steps) performs as UCRL2, thus achieving problem-

dependent logarithmic regret (Prop. 2.13). When the true MDP is weakly-communicating,

we prove that TUCRL achieves a Õ(
√
T ) regret with polynomial dependency on the MDP

parameters. We also show that it is not possible to design an algorithm achieving logarithmic

regret in weakly-communicating MDPs without having an exponential dependence on the

MDP parameters (see Sec. 4.5). TUCRL is the first computationally tractable algorithm in

the OFU literature that is able to adapt to the MDP nature without any prior knowledge.

The theoretical findings are supported by experiments on several domains (see Sec. 4.4).

The work presented in this chapter extends the conference paper (Fruit et al., 2018a).

4.2 Truncated Upper-Confidence RL (TUCRL)

4.2.1 Formalisation of the problem

In all this chapter, we relax the assumption that the true MDP M should be communicating

(see Chap. 3). Instead, we only assume that M is weakly communicating . This is more

general as communicating implies weakly communicating but not conversely. We recall the

definition of a weakly communicating MDP in Def. 4.1 below (Puterman, 1994, Section 8.3.1

3We recall that the problem of weakly-communicating MDPs and misspecified states does not hold in the
more restrictive setting of finite horizon (e.g., Osband et al., 2013) since exploration is directly tailored to the
states that are reachable within the known horizon, or under the assumption of the existence of a recurrent
state (e.g., Gopalan and Mannor, 2015). Therefore, we ignored this part of the literature.
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and Proposition 8.3.1).

An MDP M = {S,A, r, p} is said to be weakly communicating if the state space S can be

partioned into two subsets, SC and ST (i.e., SC ∩ ST = ∅ and SC ∪ ST = S), such that:

1. Every state in SC is accessible from every other state in SC under at least one deter-

ministic stationary policy,

2. Either ST is empty or every state in ST is transient under every policy.

Equivalently, M is weakly communicating if and only if the Markov Chain induced by any

stationary policy that plays every action with non-zero probability is unichain. Under such

policy, all states in SC are recurrent while, all states in ST are transient.

Definition 4.1 (Weakly communicating MDP)

By definition, the states in ST are not accessible from the states in SC and so it is possible to

restrict the state space S to SC while still preserving the “properties” of an MDP. The MDP

defined on the restricted state space SC is always communicating by definition and we denote

by DC its diameter i.e.,

DC := max
(s,s′)∈SC×SC

min
π∈ΠSD

Eπ[τ(s′)
∣∣s1 = s]− 1 (4.1)

where τ(s′) := inf {t ≥ 1 : st = s′} is the first hitting time of s′ (see Sec. 3.3). Similarly, we

denote by Λ its travel-budget i.e.,

ΛC := max
s,s′∈SC×SC

min
π∈ΠSD

Eπ
τ(s′)−1∑

t=1
rmax − r(st, π(st))

∣∣∣∣∣s1 = s

 (4.2)

where the sum should be interpreted as a Cesaro limit when P (τ(s′) = +∞|s) < 1. We

denote by SC = |SC| (resp. ST = |ST|) the number of states in SC (resp. ST). ΓC =
maxs∈SC,a∈A ‖p(·|s, a)‖0 is the maximum support of all transition probabilities p(·|s, a) with

s ∈ SC. As in Chap. 3, the state and action spaces –S and A– are still assumed to be finite,

and the rewards are assumed to lie in [0, rmax].

Learning problem. Similarly to Chap. 3, we consider the learning problem where S, A and

rmax are known, while sets SC and ST, rewards r and transition probabilities p are unknown

and need to be estimated on-line. As shown by Puterman (1994, Theorem 8.3.2), the following

proposition holds

Proposition 4.1

In any weakly-communicating MDP, the optimal gain g∗ is state independent.

Since g∗ is state-independent , we can still evaluate the performance of a learning algorithm

A by its cumulative regret ∆(A, T ) =
∑T
t=1 g

∗ − rt. Furthermore, we state the following

assumption:

The initial state s1 belongs to the communicating subset of states, i.e., s1 ∈ SC.

Assumption 4.1
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While this assumption somehow restricts the scenario we consider, it is fairly common in

practice. For example, all the domains that are characterized by the presence of a resetting

distribution (e.g., episodic problems) satisfy this assumption (e.g., Mountain Car, Cart Pole,

Atari games, taxi, etc.). Under Asm. 4.1, DC < +∞.

Multi-chain MDPs. While we consider weakly-communicating MDPs for ease of notation,

all the results presented in this Chapter extend to the more general case of multi-chain

MDPs.4 In this case, there may be multiple communicating and transient sets of states and

the optimal gain g∗ is different in each communicating subset. We then define SC as the set

of states that are accessible –with non-zero probability– from the initial state s1 (s1 included)

under some stationary deterministic policy. ST is defined as the complement of SC in S i.e.,

ST := S \SC. With these new definitions of SC and ST, Asm. 4.1 needs to be reformulated as

follows:

The initial state s1 is accessible from any other state in SC under some stationary deter-

ministic policy. Equivalently, SC is a communicating set of states (i.e., DC < +∞).

Assumption 4.2 (Equivalent of Asm. 4.1 for Multi-chain MDPs.)

Note that the states belonging to ST can either be transient or belong to other communicating

subsets of the MDP disjoint from SC. It does not really matter because the states in ST will

never be visited by definition. As a result, the regret is still defined as before, where the

learning performance is compared to the optimal gain g∗(s1) related to the communicating

set of states SC 3 s1. We highlight that g∗(s1) = g∗(s) for all s ∈ SC.

4.2.2 Algorithm

In this section we present our solution to the problem of learning in an MDP with infinite

diameter. We introduce Truncated Upper-Confidence for Reinforcement Learning (TUCRL),

an optimistic online RL algorithm that efficiently balances exploration and exploitation in

non-communicating MDPs without prior knowledge. Because TUCRL is very similarly to

UCRLB (same structure, confidence bounds, etc.), we do not repeat the full pseudo-code of

Alg. 5 and only stress the differences between the two algorithms which i.e., the extended

MDP constructed at each episode and the stopping condition of an episode. We recall that

the extended MDP constructed by UCRLB is denoted Mk (Eq. 3.3 and 3.4).

Estimation of reachable states. UCRLB is optimistic w.r.t. the confidence intervals so that

for all states s that have never been visited (i.e., s.t.
∑
aNk(s, a) = 0), the optimistic reward

rk(s, a) will automatically be set to rmax by optimism (see example on Fig. 4.1a), while all

transitions to s are set to the largest value compatible with Bk
p . Unfortunately, some of

4This is the most general category of MDPs that we can define (Puterman, 1994, Section 8.3.1)). It includes
all possible MDPs.
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the states with
∑
aNk(s, a) = 0 may actually be unreachable (i.e., s ∈ ST) and UCRLB

would uniformly explore the policy space with the hope that at least one policy reaches

those (optimistically desirable) states with non-zero probability (see example on Fig. 4.1a).

TUCRL addresses this issue by first constructing empirical estimates of SC and ST (i.e., the

set of communicating and transient states, see Sec. 4.2.1) using the states that have been

visited so far, that is

SCk :=

s ∈ S :
∑
a∈As

Nk(s, a) > 0

 ∪ {stk} and STk := S \ SCk (4.3)

where we recall that tk is the starting time of episode k (see Eq. 3.11). All states in SCk are

for sure reachable from s1 and so under Asm. 4.1 (or Asm. 4.2), SCk ⊆ SC. In the rest of this

chapter, we will denote by SC
k (resp. ST

k) the cardinal of SCk (resp. STk).

Truncated transition probabilities. In order to avoid that optimism drives the algorithm

into attempting to reach unreachable states, we could simply execute UCRLB on SCk , which is

guaranteed (by design and under Asm. 4.1 or 4.2) to contain only states in the communicating

set SC. Nonetheless, with such a strategy, the algorithm could under-explore some state-action

pairs that would allow discovering other states in SC, thus getting stuck in a strict subset

of SC and suffering linear regret . While the states in SCk are guaranteed to be in SC, it is

not possible to know whether the states in STk are actually reachable from SCk or not (see

the example of Fig. 4.1b and the impossibility to distinguish between a zero and arbitrarily

small transition probability). To account for the eventuality that some states in STk actually

belong to SC, TUCRL first “guesses” a lower bound on the probability of transition from

states s ∈ SCk to s′ ∈ STk and whenever the maximum transition probability from s to s′

compatible with the confidence intervals (i.e., min{1, p̂k(s′|s, a) + βsas
′

p,k }, see Alg. 5) is below

the lower bound, it assumes that such transition is not possible. This strategy is based

on the intuition that a transition either does not exist or it should have a sufficiently “big”

mass. However, these transitions should be periodically reconsidered in order to avoid under-

exploration issues. More formally, let (ρt(s, a))t≥1 be positive non-increasing sequences to be

defined later. For all (s, a, s′) ∈ S × A× S, we define p+
k (s′|s, a) to be the largest (i.e., most

optimistic) probability of transition from s to s′ through action a that belongs to Bk
p (s, a, s′)

(see Eq. 3.3 in Alg. 5) i.e.,

p+
k (s′|s, a) := max

p∈Bkp (s,a,s′)
{p} . (4.4)

For all s′ ∈ STk , s ∈ SCk and a ∈ As, the empirical mean p̂k(s′|s, a) and variance σ̂2
p,k(s′|s, a) are

by definition zero (since this transition has never been observed so far, see Eq. 3.7 and 3.9),

so that p+
k (s′|s, a) = min

{
1, 6 ln(6SAN+

k
(s,a)/δ)

N+
k

(s,a)

}
(see Eq. 3.1 and. 3.3). Since in that case

p+
k (s′|s, a) does not depend on s′, we will drop the dependency on the next state and write

p+
k (s, a) := min

{
1, 6 ln(6SAN+

k
(s,a)/δ)

N+
k

(s,a)

}
. For all (s, a) ∈ SCk × As, TUCRL compares p+

k (s, a)
to ρtk(s, a) and, whenever the latter is strictly bigger than the former, forces all transition

probabilities to STk to be zero (i.e., whenever p+
k (s, a) < ρtk(s, a), pk(s′|s, a) ← 0 for all s′ ∈
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STk). The confidence intervals of all other transitions are kept unchanged. This corresponds

to constructing the alternative restricted confidence intervals

B
k
p(s, a, s′) :=

{0} if s ∈ SCk , p
+
k (s, a) < ρtk(s, a), and s′ ∈ STk , otherwise:

Bk
p (s, a, s′) =

[
p̂k(s′|s, a)− βsas′p,k , p̂k(s′|s, a) + βsas

′
p,k

]
∩ [0, 1].

(4.5)

With the new confidence sets B
k
p(s, a, s′), Thm. 3.1 of Chap. 3 no longer holds as some of

the probabilities set to 0 might actually be non-zero in the true MDP. In this case, it may be

difficult to relate the optimistic bias hk with the travel-budget of the true MDP (see Sec. 3.3).

To overcome this issue, we slightly increase the confidence intervals Bk
p (s, a, s′). For all s ∈ S

and a ∈ As we define

ζsap,k :=
∑
s′∈ST

k

p+
k (s′|s, a) = ST

k · p+
k (s, a) (4.6)

ζsap,k simply corresponds to the maximal cumulative probability mass that could be assigned

to the transition (s, a)→ STk if we were using the same confidence intervals Bk
p (s, a, s′) as in

UCRLB. In TUCRL, for all (s, a) ∈ SCk × A such that p+
k (s, a) < ρtk(s, a), the probability

pk(s′|s, a) is set to 0 for all s′ ∈ STk . We thus redistribute this “optimistic probability mass” on

all other states. This amounts to defining the following confidence intervals (for all (s, a, s′) ∈
S ×A× S)

Z
k
p(s, a, s′) :=:=



Bk
p (s, a, s′) if s ∈ STk ,

Bk
p (s, a, s′) if s ∈ SCk and p+

k (s, a) ≥ ρtk(s, a),

{0} if s ∈ SCk , p
+
k (s, a) < ρtk(s, a), and s′ ∈ STk ,[

p̂k(s′|s, a)− βsas′p,k , p̂k(s′|s, a) + βsas
′

p,k +ζsap,k
]
∩
[
0, 1
]

otherwise.

(4.7)

With the new confidence intervals Z
k
p(s, a, s′), we will show that the travel-budget of the asso-

ciated extended MDP is bounded by the travel-budget ofMk (the extended MDP constructed

by UCRLB) which is itself bounded (with high probability) by the travel-budget of the true

MDP as shown in Chap. 3. Moreover, the increase of ζsap,k in the confidence bounds only

impacts the logarithmic terms of the regret bound since ζsap,k ≤
6S ln(6SAN+

k
(s,a)/δ)

N+
k

(s,a) . Finally,

the confidence intervals of the rewards Bk
r (s, a) will remain unchanged.

Extended value iteration. With some transitions set to 0, it is possible that the associated

extended MDP is not communicating and not even weakly-communicating . The gain of such

an MDP is not necessarily state-independent . Therefore, Lem. 2.7 (see Sec. 3.1.2) no longer

holds and the stopping condition of EVI (Alg. 3) can no longer be used. This problem can

be fixed by restricting the state space of the extended MDP to the set SEVI
k defined as the

set of states that are reachable from the communicating set SCk . Since by design (see Eq. 4.7)

all states in S are reachable from STk , in practice there are only two possible cases: either all

the transitions from SCk to STk are forbidden in which case SEVI
k = SCk , otherwise SEVI

k = S.

Formally, we have:
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SEVI
k :=

S
C
k if for all (s, a) ∈ SCk ×As, p

+
k (s, a) < ρtk(s, a)

S otherwise
(4.8)

We can now define the extended MDP Mk as

Mk :=
{
SEVI
k , A, rk(s, a) ∈ Bk

r (s, a), pk(s′|s, a) ∈ Zkp(s, a, s′)
}

(4.9)

Compared to the extended MDP Mk constructed by UCRLB, only the state space (4.8)

and the confidence intervals of transition probabilities (4.7) change. By construction, Mk

is always communicating and so its optimal gain is constant, EVI is guaranteed to converge

and Lem. 2.7 applies. TUCRL executes EVI on the extended MDP Mk. In TUCRL, line 9

of Alg. 5 (Eq. 3.5) is replaced by

(gk, hk, πk) := EVI

(
Lkα,G

k
α,
rmax
tk

, 0, s1

)
(4.10)

where Lkα denotes the optimal Bellman operator of Mk with aperiodicity transformation of

parameter α ∈]0, 1] (and Gkα is the associated greedy operator). We will also denote by pk

and rk the transition probabilities and rewards satisfying

∀s ∈ S, Lkαhk(s) =
∑
a∈As

πk(s, a)rk(s, a) + α
∑
a∈As

∑
s′∈S

πk(s, a)pk(s′|s, a)hk(s′) + (1− α)hk(s).

Finally, we denote by (g∗k, h∗k) a solution of the Bellman optimality equation Lkαh∗k = h∗k +
h∗ke. Since Lem. 2.7 holds, gk ≥ g∗k −

rmax
tk

.

Stopping condition of episodes. Besides the change in the definition of Bk
p , the stopping

condition of episodes is also slightly modified compared to UCRLB (line 12 in Alg. 5). In

addition to ending the current episode as soon as νk(st, at) ≥ N+
k (st, at), TUCRL also stops

whenever
∑
aNk(st+1, a) = 0. Equivalently, TUCRL forces an episode to terminate as soon

as a state previously in STk is visited (the state is then added to SCk). In TUCRL, line 12 of

Alg. 5 is then rewritten as:

if νk(st, at) ≥ N+
k (st, at) or

∑
a

Nk(st+1, a) = 0
(
⇐⇒ st+1 ∈ STk

)
(4.11)

This minor change guarantees that for every episode k ≥ 1 and for all the states s ∈ STk and

all actions a ∈ As, we have Nk(s, a) = 0 (when the condition is about to be violated, episode

k stops). Furthermore, the number of episodes is hardly impacted as we will see.

Communicating MDPs. In the next section, we will show that under Asm. 4.1 (or Asm. 4.2),

and with a carefully tuned sequences (ρt(s, a))t≥1, TUCRL is always able to learn i.e., to

achieve sublinear regret: ∆(TUCRL, T ) = o(T ). When the true MDP is communicating ,

this means that all states are eventually visited at least once and so there exists an episode
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k s.t. for all k ≥ k, STk = ∅. When this condition is met, we notice that SEVI
k = S and

Z
k
p(s, a, s′) = Bk

p (s, a, s′) for all 3-tuple (s, a, s′) ∈ S × A × S (since ζsap,k = 0). So for all

k ≥ k, Mk = Mk (see Eq. 4.9) and the condition
∑
aNk(st+1, a) = 0 is always false mean-

ing that the stopping condition of episodes implemented by TUCRL (4.11) is the same as

the one implemented by UCRLB. For all k ≥ k, TUCRL naturally reduces to UCRLB.

This seems reasonable since UCRLB is known to efficiently learn under the prior knowledge

that the MDP is communicating. When STk = ∅, this prior knowledge is not needed and is

automatically deduced from the observations.

Sequences of thresholds. In practice, we set

ρt(s, a) := min

1,
6 ln

(
6SAN+

kt
(s,a)

δ

)
N+
kt

(s, a)

 ·N+
kt

(s, a) ·

√
SA

t
(4.12)

for all t ≥ 1, so that the condition to remove transition reduces to N+
k (s, a) >

√
tk/SA. This

shows that only transitions from state-action pairs that have been poorly visited so far are

enabled, while if the state-action pair has already been tried often and yet no transition to

s′ ∈ STk is observed, then it is assumed that s′ is not reachable from (s, a). When the number

of visits in (s, a) is big, the transitions to “unvisited” states (STk) should be discarded because

if the transition actually exists, it is most likely extremely small and so it is worth exploring

other parts of the MDP first. Symmetrically, when the number of visits in (s, a) is small, the

transitions to “unvisited” states should be enabled because the transitions are quite plausible

and the algorithm should try to explore the outcome of taking action a in s and possibly

reach states in STk . We denote the set of state-action pairs that are not sufficiently explored

by

Ek :=
{

(s, a) ∈ SCk ×A : N+
k (s, a) ≤

√
tk
SA

}
. (4.13)

Executed policy πk. The policy πk may be stochastic but all actions that are played with

non-zero probability satisfy the (near-)optimality equation. This will simplify the regret proof

compared to Chap. 3.

4.3 Analysis of TUCRL

4.3.1 Optimistic gain and bias

Gain-optimism

The first technical difficulty in the analysis of TUCRL is that whenever some transitions are

disabled (i.e., forced to be 0), the plausible set of MDPsMk may actually be biased and not
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contain the true MDP M . In other words, Thm. 3.1 does not hold forMk (i.e., it is possible

that M 6∈ Mk for at least one k ≥ 1 with probability strictly bigger than δ
3). However, since

Mk is still defined as in Chap. 3, Thm. 3.1 still holds for Mk i.e., M ∈ Mk for all k ≥ 1
with probability at least 1− δ

3 . We denote by E this high probability event as in Chap. 3. In

this section we prove that TUCRL is always gain-optimistic (i.e., g∗k ≥ g∗) despite “wrong”

confidence intervals Z
k
p (4.7). A first approach would be to use Prop. 3.3 as suggested in

Sec. 3.2.1. Intuitively, the “truncation” of the confidence intervals operated by TUCRL only

perturbs the vector Lkαh∗ by a term of order ηk ∼ sp (h∗)
√

SA
tk

ln
(
SAtk
δ

)
compared to Lkαh∗

i.e., Lkαh∗ ≥ Lh∗−ηke and so g∗k ≥ g∗−ηk (see Sec. 3.2.1). The problem is that the additional

regret created by the term
∑kT
k=1(tk+1 − tk)ηk is of order Θ

(
sp (h∗)S2A

√
T ln

(
T
δ

))
in the

worst case. In order to avoid such a bad dependency in S and A in the regret bound, we rely

on completely different arguments to prove optimism. The following lemma helps to identify

the possible scenarios that TUCRL can produce.

Let episode k be such that M ∈Mk, STk 6= ∅ and

tk ≥ Ck := 36 ·
(
DC
)2
· SA ·

(
ST
k

)2
· ln

(6SAtk
δ

)2
. (4.14)

Then, either STk = ST (case I) or Ek 6= ∅, i.e., ∃(s, a) ∈ SCk ×A for which transitions to STk
are allowed (case II).

Lemma 4.1

Proof. We prove the result by showing that under the assumptions of Lem. 4.1, we have the

implication Ek = ∅ =⇒ STk = ST. Assume that episode k is such that inequality (4.14) holds

and that M ∈Mk, STk 6= ∅ and Ek = ∅ i.e., for any state-action pair (s, a) ∈ SCk ×As

N+
k (s, a) >

√
tk
SA
≥

√
Ck
SA

= 6DCST
k ln

(6SAtk
δ

)
.

Since STk 6= ∅ and M ∈Mk, for any (s, a, s′) ∈ SCk ×As×STk , p(s′|s, a) ∈ Bk
p (s, a, s′) implying

p(s′|s, a)︸ ︷︷ ︸
transition probability in M

≤ p̂k(s′|s, a)︸ ︷︷ ︸
=0

+βsas′p,k = 2

√√√√ σ̂2
p,k(s′|s, a) ln(6SAtk/δ)

N+
k (s, a)︸ ︷︷ ︸
=0

+
6 ln

(
6SAN+

k
(s,a)

δ

)
N+
k (s, a)

≤
6 ln

(
6SAtk
δ

)
N+
k (s, a)

<
1

DCST
k

where we have exploited the fact that p̂(s′|s, a) = 0 and σ̂2
p,k(s′|s, a) = 0 for any state s′ ∈ STk

(Nk(s, a, s′) = 0, see (3.13)), and the fact that tk ≥ N+
k (s, a) > 6DCST

k ln
(

6SAtk
δ

)
.

As in Sec. 2.1.4, for all s ∈ S, we denote by h∗7→s the maximal non-positive fixed point

of the Bellman shortest path operator L7→s of the true MDP M where all rewards are set

to −1 (see Thm. 2.8). As shown in Sec. 2.1.4, for all (s, a, s′) ∈ S × As × S, −h∗7→s′(s) =
minπ∈ΠSR(M) EπM [τ(s′)|s1 = s]−1 i.e., h∗7→s′(s) is the expected length of the stochastic shortest
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path going from s to s′ in the true MDP M . Fix an arbitrary target state s ∈ STk and define

hmax(s) := maxs∈SC
k
h∗7→s(s). By construction, h∗7→s(s) = 0 and for all s ∈ SCk

h∗7→s(s) = max
a∈As

−1 +
∑
s′∈S

p(s′|s, a)h∗7→s(s′)︸ ︷︷ ︸
≤0

 ≤ −1 + max
a∈As


∑
s′∈SC

k

p(s′|s, a) h∗7→s(s′)︸ ︷︷ ︸
≤hmax(s)



≤ −1 + hmax(s) ·min
a∈A


∑
s′∈SC

k

p(s′|s, a)

 = −1 + hmax(s) ·min
a∈A

1−
∑
s′∈ST

k

p(s′|s, a)︸ ︷︷ ︸
< 1
DCST

k


< −1 + hmax(s) ·

1−
∑
s′∈ST

k

1
DCST

k

 = −1 + hmax(s) ·
(

1− 1
DC

)

Applying the above inequality to the state s ∈ SCk achieving h∗7→s(s) = hmax(s) we obtain

−hmax(s) > DC. By definition, −hmax(s) is the minimum expected time it takes to go from

SCk to s in M . Therefore, the shortest path between any state s ∈ SCk ⊆ SC and any state in

s ∈ STk is strictly longer than DC in expectation. But by definition DC is the longest shortest

path between any pair of states in SC. Therefore, s ∈ ST. Since s ∈ STk was chosen arbitrarily,

then STk = ST. �

Lem. 4.1 basically excludes the case where ST  STk (i.e., some states in SC have not been

visited yet). Let’s assume that event E holds i.e., M ∈ Mk for all k ≥ 1. As pointed out

in Sec. 4.2.2 (paragraph on “Communicating MDPs”), when STk = ∅, Mk = Mk and so

M ∈ Mk. Using the same argument as in Sec. 3.2, we have that g∗k ≥ g∗. We now analyze

separately the two cases of Lem. 4.1.

Case 1. If STk = ST then M ∈Mk (under event E) because TUCRL only forbids transitions

that indeed do not exist in M itself. Formally, for any (s, a, s′) ∈ SCk × As × STk we have

p(s′|s, a) = pk(s′|s, a) = 0 and M ∈Mk so p(s′|s, a) ∈ Zkp(s, a, s′) for all (s, a, s′) ∈ S×As×S.

In conclusion, g∗k ≥ g∗.

Case 2. If Ek = ∅, SEVI
k = S and every state in S is accessible from any other state in S (in

the extended MDPMk). Thus, g∗k is the optimal gain of all the states in S and in particular

the states in STk (Puterman, 1994, Theorem 8.3.2). For all (s, a) ∈ STk×As, Z
k
p(s, a, s) = [0, 1]

and Bk
r (s, a) = [0, rmax] meaning that we can set pk(s|s, a) ← 1 and rk(s, a) = rmax. There-

fore the optimal gain in such states is clearly rmax and so g∗k = rmax.

In conclusion, under event E and for tk ≥ Ck, TUCRL is always optimistic i.e., g∗k ≥ g∗.

Note that Lem. 4.1 is not true with DC replaced by ΛC/rmax (take for example ΛC = 0 i.e.,

all rewards equal to rmax).
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Range of the optimistic bias

The second technical difficulty in the analysis of TUCRL is to bound the range of hk i.e.,

sp (hk). While in communicating MDPs, it is possible to bound this quantity by the travel-

budget of the MDP as sp (hk) ≤ Λ (see Sec. 3.3.2), in weakly-communicating MDPs Λ = +∞,

thus making this bound uninformative. As a result, we need to restrict our attention to the

subset of communicating states SC, where the travel-budget ΛC is finite. We will actually see

in the regret proof that we only need to bound the range of hk on the subset of states SCk
i.e., spSC

k
(hk) := maxs∈SC

k
{hk(s)} −mins∈SC

k
{hk(s)}. Since the true MDP M belongs to the

extended MDPMk w.h.p. but may not belong toMk, we bound spSC
k

(hk) by first comparing

the Bellman shortest path operators of Mk and Mk (rather than directly comparing the

operators of M and Mk like in Sec. 3.3).

Define the extended MDPM′k :=
{
S, A, r(s, a) ∈ Bk

r
′(s, a), p(s′|s, a) ∈ Bk

p (s, a, s′)
}

where

Bk
r
′(s, a) :=

{
r − rmax s.t. r ∈ Bk

r (s, a)
}

and Bk
r (s, a) (3.4) and Bk

p (s, a, s′) (3.3) are the con-

fidence intervals used to constructMk in UCRLB. We defineM′k similarly where Bk
p (s, a, s′)

is replaced by Z
k
p(s, a, s′) (4.7). For any state in SCk , we denote by Lk7→s (resp. Lk7→s) the Bell-

man shortest path operator to s in M′k (resp. M′k) as defined in Thm. 3.5. We also denote

by hk7→s (resp. h
k
7→s) the fixed point of Lk7→s (resp. Lk7→s). The fixed points exist and are unique

because every state in SCk is accessible from any state in S (see Thm. 3.5). Furthermore, we

prove the following lemma:

For all s ∈ SCk we have h
k
7→s ≥ hk7→s (component-wise).

Lemma 4.2

Proof. hk7→s is a fixed point of Lk7→s and so for all x ∈ S \ {s},

hk7→s(x) = Lk7→shk7→s(x) = max
a∈As

 max
r∈Bkr (x,a)

{r} − rmax + max
p∈Bkp (x,a)

∑
s′ 6=s

p(s′)hk7→s(s′)




where Bk
p (x, a) =

{
p ∈ ∆S : p(s′) ∈ Bk

p (x, a, s′), ∀s′ ∈ S
}

(see Eq. 3.17). Similarly, we define

Z
k
p(x, a) :=

{
p ∈ ∆S : p(s′) ∈ Zkp(x, a, s′), ∀s′ ∈ S

}
. Our goal is to show that for all x ∈ S,

Lk7→shk7→s(x) ≥ hk7→s(x) where by definition

Lk7→shk7→s(x) = max
a∈As

 max
r∈Bkr (x,a)

{r} − rmax + max
p∈Zkp(x,a)

∑
s′ 6=s

p(s′)hk7→s(s′)




Denote by p′k(·|x, a) ∈ Bk
p (x, a) the probability distribution achieving the maximum in the

fixed point equation of hk7→s i.e.,

∑
s′ 6=s

p′k(s′|x, a)hk7→s(s′) := max
p∈Bkp (x,a)

∑
s′ 6=s

p(s′)hk7→s(s′)

 (4.15)
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and denote by p′k(·|x, a) ∈ Zkp(x, a) the analogue of p′k(·|x, a) for Z
k
p(x, a) i.e.,

∑
s′ 6=s

p′k(s′|x, a)hk7→s(s′) := max
p∈Zkp(x,a)

∑
s′ 6=s

p(s′)hk7→s(s′)

 (4.16)

If x ∈ STk or p+
k (s, a) ≥ ρtk(s, a) then Z

k
p(x, a) = Bk

p (x, a) by definition (4.7), and so (4.15)

and (4.16) are equal. On the other hand, if x ∈ SCk and p+
k (x, a) < ρtk(x, a) (see Eq. 4.7),

then we might not have equality. Define p̃′k(·|x, a) as

p̃′k(s′|x, a) :=


p′k(s′|x, a) if s′ ∈ SCk \ {s}

0 if s′ ∈ STk
p′k(s′|x, a) +

∑
y∈ST

k
p′k(y|x, a) if s′ = s

p′k(y|x, a) ∈ Bk
p (x, a, y) and it is clear from the definition of Bk

p (x, a, y) for y ∈ STk that

∑
y∈ST

k

p′k(y|x, a) ≤
∑
y∈ST

k

p+
k (y|x, a) = ST

k · p+
k (s, a) = ζsap,k

and so p̃′k(s′|x, a) ∈ Zkp(x, a) when x ∈ SCk and p+
k (x, a) < ρtk(x, a). Moreover, by construction

(see Sec. 3.3) hk7→s(s′) ≤ 0 for all s′ ∈ S. In conclusion we can write:

∑
s′ 6=s

p′k(s′|x, a)hk7→s(s′) ≤
∑
s′ 6=s

p̃′k(s′|x, a)hk7→s(s′) ≤
∑
s′ 6=s

p′k(s′|x, a)hk7→s(s′)

and as a consequence, Lk7→shk7→s(x) ≥ Lk7→shk7→s(x). This proves that Lk7→shk7→s ≥ Lk7→shk7→s =
hk7→s and Thm. 3.5 implies that h

k
7→s ≥ hk7→s. �

From Sec. 3.3.2 we know that spSC
k

(hk) ≤ maxs,x∈SC
k

∣∣∣hk7→s(x)
∣∣∣ (see Eq. 3.35 of Thm. 3.3).

Applying Lem. 4.2 and since hk7→s ≤ 0 we have that
∣∣∣hk7→s(x)

∣∣∣ ≤ ∣∣∣hk7→s(x)
∣∣∣ and so spSC

k
(hk) ≤

maxs,x∈SC
k

∣∣∣hk7→s(x)
∣∣∣. Finally, we already showed in Sec. 3.3.2 that

∣∣∣hk7→s(x)
∣∣∣ ≤ |h∗7→s(x)| (where

h∗7→s is the fixed point of the Bellman shortest path operator in the true MDP M). In

conclusion, since SCk ⊆ SC, spSCk (hk) ≤ maxs,x∈SC
k
|h∗7→s(x)| ≤ maxs,x∈SC |h∗7→s(x)| := ΛC.
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4.3.2 Regret guarantees

We prove that the regret of TUCRL is bounded as follows.

Theorem 4.1 (Analogue to Thm. 3.4)

There exists a numerical constant β > 0 such that for any weakly-communicating MDP

(resp. multi-chain MDP), with probability at least 1 − δ, it holds that for all initial state

distribution µ1 ∈ ∆S satisfying Asm. 4.1 (resp. Asm. 4.2) and for all time horizons T > 1

∆(TUCRL, T ) = β ·max{rmax,ΛC}
√√√√ ∑
s∈SC,a∈As

Γ(s, a)T ln
(
T

δ

)

+ β · rmax
(
DC
)2
S3A ln2

(
T

δ

) (4.17)

The first term in the regret shows the ability of TUCRL to adapt to the communicating

part of the true MDP M by scaling with the communicating travel-budget ΛC and MDP

parameters SC and ΓC (more precisely the sum of all Γ(s, a) with s ∈ SC). The second term

mainly corresponds to the regret incurred in the early stage where the regret grows linearly .

When M is communicating, we match the square-root term of UCRLB (first term) since

ΛC = Λ and SC = S while in the worst-case where Λ = rmaxD, the second term is bigger than

the one appearing in UCRLB by a multiplicative factor DS (ignoring logarithmic terms). It

is not clear whether DC can be replaced by ΛC in general.

Unfortunately, we were not able to adapt the proof techniques of Thm. 3.5 to show a

Õ
(√

rmaxΛSCΓCAT
)

regret bound in general. Perhaps surprisingly, the problem is not com-

ing from variance reduction methods or any new tool that we introduced in Sec. 3.6. All

the steps of Sec. 3.6 are still valid but the dependency in ΛC cannot be trivially improved.

The linear (instead of square-root) dependency in ΛC arises because the telescopic sum ap-

pearing in the decomposition of the term ∆p2
k no longer telescopes in our analysis, and can

only be bounded by a Õ
(
ΛC
√
SCAT

)
term. At first sight, this may seem to be an artefact

of the proof, but it could also be an intrinsic limitation of the algorithm, or even an intrinsic

limitation of the setting (i.e., infinite diameter). In order to avoid spending too much time

attempting to visit unreachable states, TUCRL periodically ignores some transitions that

have never been observed but may lead to highly rewarding state. Yet, TUCRL eventually

takes these transitions into account again if they have not been visited enough (less than√
T/SA times) so as to prevent under-exploration. By doing so, the algorithm may move

back and forth multiple times in the environment (even when only nonexistent transitions

have not been observed), each time suffering a regret of order sp (h∗) (in the worst case). The

frequency at which useless transitions are considered is of order
√
T/SA. This may be the

cause for the unavoidable linear dependency in ΛC. We leave this problem as an open ques-

tion. Note that if all states have been visited, then TUCRL eventually becomes completely

equivalent to UCRLB and so the regret scales with
√

ΛC instead.
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4.3.3 Regret proofs

We now provide a sketch of the proof of Thm. 4.1. In order to preserve readability, all following

inequalities should be interpreted up to minor approximations and in high probability.

We follow the same steps as the first regret proof of UCRLB (Sec. 3.5).

Isolating poorly visited state-action pairs. For any state-action pair (s, a), we denote by

1Ek {s, a} := 1 {(s, a) ∈ Ek} the indicator function equal to 1 if and only if (s, a) ∈ Ek and 0
otherwise (see Eq. 4.13 for the definition of Ek). We also denote by 1Ek {s, a} := 1 {(s, a) 6∈ Ek}
the complement of 1Ek {s, a} i.e., 1Ek {s, a}+1Ek {s, a} = 1. We use this equality to decompose

the regret as:

∆(TUCRL, T ) =
T∑
t=1

(g∗ − rt(st, at))1Ekt {st, at}+
T∑
t=1

(g∗ − rt(st, at))1Ekt {st, at} (4.18)

The first term isolates state-action pairs that have been visited a small number of times i.e.,

such that N+
k (s, a) ≤

√
tk
SA . Whenever such a sate-action pair is visited, the corresponding

visit count N+
k (s, a) will be incremented by 1 at the end of episode k. But if N+

k (s, a) is

incremented too much, we will eventually haveN+
k (s, a) >

√
tk
SA and so intuitively 1Ekt {st, at}

cannot be equal to 1 too often. Lem. 4.3 indeed shows that the number of times 1Ekt {st, at} =
1 occurs is cumulatively “small”.

For any T ≥ 1 and any sequence of states and actions {s1, a1, . . . . . . sT , aT } we have:

T∑
t=1

1Ekt {st, at} ≤ 2
√
SCAT. (4.19)

Lemma 4.3

Proof. We first notice that by definition tkt ≤ t where kt := sup{k ≥ 1 : tk ≤ t} is the

current episode at time t. As a result,

1Ekt {st, at} := 1

{
N+
kt

(st, at) ≤
√
tkt/SA

}
≤ 1

{
N+
kt

(st, at) ≤
√
t/SA

}
.

Instead of directly bounding
∑T
t=1 1Ekt {st, at} we will bound the number of visits ZT in

state-action pairs that have been visited less than
√
t/SA times

ZT :=
T∑
t=1

1

{
N+
kt

(st, at) ≤
√
t/SA

}
.

We recall that the quantity Nk(s, a) is updated only after the end of episode k and the

stopping condition of episodes used by TUCRL implies that

∀k ≥ 1, ∀(s, a) ∈ S ×A, νk(s, a) ≤ N+
k (s, a). (4.20)
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Moreover, for all (s, a) /∈ SC ×A, νk(s, a) = 0 implying that only the states s ∈ SC should be

taken care of. We first decompose ZT as:

ZT :=
∑
s,a

T∑
t=1

1

{
N+
kt

(s, a) ≤
√
t/SA

}
· 1
{

(st, at) = (s, a)
}

=
∑
s∈SC

∑
a

ZT (s, a)

where ZT (s, a) :=
T∑
t=1

1

{
N+
kt

(s, a) ≤
√
t/SA

}
· 1
{

(st, at) = (s, a)
}
.

Using the fact that for all τ ≥ 1, tkτ ≤ τ ≤ tkτ+1 − 1 and eq. 3.13 and 3.14 we have:

∀T ≥ τ ≥ 1, Zτ (s, a) =
τ∑
t=1

1

{
N+
kt

(s, a) ≤
√
t/SA

}
︸ ︷︷ ︸

≤1

·1{(st, at) = (s, a)}︸ ︷︷ ︸
≥0

≤
τ∑
t=1

1{(st, at) = (s, a)} ≤
tkτ+1−1∑
t=1

1{(st, at) = (s, a)}

= Nkτ+1(s, a) (4.21)

Let’s define ts,a as the last time that Zt(s, a) was incremented by 1:

ts,a := max
{
T ≥ t ≥ 1 : N+

kt
(s, a) ≤

√
t/SA and (st, at) = (s, a)

}
= min

{
T ≥ t ≥ 1 : Zt(s, a) = ZT (s, a)

}
.

We denote by ms,a := kts,a the corresponding episode. By definition and using (4.21),

ZT (s, a) = Zts,a(s, a) ≤ Nms,a+1(s, a) and N+
ms,a(s, a) ≤

√
ts,a/SA. (4.22)

Moreover, by definition of Nk(s, a) (see eq. 3.13 and 3.14) and (4.20):

Nms,a+1(s, a) = Nms,a(s, a)︸ ︷︷ ︸
≤N+

ms,a (s,a)

+ νms,a(s, a)︸ ︷︷ ︸
≤N+

ms,a (s,a)

≤ 2N+
ms,a(s, a). (4.23)

Gathering (4.22), and (4.23) we obtain:

ZT (s, a) = Zts,a(s, a) ≤ Nms,a+1(s, a) ≤ 2N+
ms,a(s, a) ≤ 2

√
ts,a
SA
≤ 2

√
T

SA

=⇒ ZT =
∑
s∈SC

∑
a

ZT (s, a) ≤ 2
√
SCAT

where for the last inequality we used the fact that SC ≤ S (by definition) implying SC/
√
S =√

SC/S ·
√
SC ≤

√
SC. �

When 1Ekt {st, at} = 1, TUCRL suffers at most the maximum per-step regret rmax ≥
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g∗ − r(s, a) and so combined with Lem. 4.3:

T∑
t=1

(g∗ − rt(st, at))︸ ︷︷ ︸
≤rmax

1Ekt {st, at}︸ ︷︷ ︸
≥0

≤ rmax

T∑
t=1

1Ekt {st, at} ≤ 2rmax
√
SCAT (4.24)

We now have to deal with the second term appearing in the inequality (4.18) i.e., state-action

pairs that have been frequently visited. The whole purpose of restricting attention to those

pairs will be clear later after we expand this term. We slightly change the definition of the

per-episode regret ∆k compared to Sec. 3.5 to account for 1Ek {s, a}:

∆k :=
∑

s∈S,a∈A
νk(s, a) (g∗ − r(s, a)) · 1Ek {s, a}

=
∑

s∈SC
k
,a∈A

νk(s, a) (g∗ − r(s, a)) · 1Ek {s, a} .

The reason why the sum over all states can be restricted to a sum over states in SCk is

because νk(s) = 0 for all s ∈ STk by definition of the stopping condition of episode k (4.11).

Furthermore, inequality (3.1) in Lem. 3.38 (Sec. 3.5) is based on an MDS argument and

remains valid even with the additional multiplicative factor 1Ekt
{st, at} and if we keep νk(s, a)

instead of taking the conditional expectation νk(s)πk(a|s). In the end,

T∑
t=1

(g∗ − rt(st, at))1Ekt {st, at} ≤
kT∑
k=1

∆k + 2rmax

√
T ln

(4T
δ

)
.

Isolating non-optimistic episodes. In order to be able to use the optimism property

proved in Sec. 4.3.1, we need to separate the episodes where tk < Ck (Ck is defined in

Eq. 4.14 of Lem. 4.1) from the other episodes i.e., we decompose the sum of ∆k as

kT∑
k=1

∆k ≤
kT∑
k=1

∆k · 1{tk < Ck}+
kT∑
k=1

∆k · 1{tk ≥ Ck}.

The episodes where tk < Ck define a full exploratory phase, where the agent may suffer linear

regret . However, this phase is somehow “short”. Define kT := max{kT ≥ k ≥ 1 : tk < Ck}
to be the last episode kT ≥ k ≥ 1 satisfying tk < Ck. Because of the stopping condition of

episodes (4.11), νk(s, a) ≤ 2N+
k (s, a) for all (s, a) and so tk+1 ≤ 2tk implying that

kT∑
k=1

∆k · 1 {tk < Ck} =
kT∑
k=1

∆k ≤ rmax

kT∑
k=1

(tk+1 − tk) = rmaxtkT+1 ≤ 2rmaxtkT < 2rmaxCkT

≤ 72rmax
(
DC
)2
S3A ln

(6SAT
δ

)2
(4.25)

where the last inequality follows from the definition of Ck.

Per-episode regret. It now remains to bound the dominant term
∑kT
k=1 ∆k · 1{tk ≥ Ck} =∑kT

k=kT+1 ∆k. We do this by first analyzing individually the regret ∆k of each episode k (as
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we did for UCRLB). We proceed as in Sec. 3.5.2: we bound g∗ by gk + εk/2 and plug-in the

(approximate) optimality equation of the extended MDPMk involving gk, hk, rk and pk (we

recall that all the actions played with non-zero probability satisfy an optimality equation).

The same terms ∆p
k and ∆r

k appear except that the sum is over s ∈ SCk and a multiplicative

factor 1Ek {s, a} appears e.g.,

∆p
k := α

∑
s∈SCk
a∈As

νk(s, a)

∑
s′∈S

pk(s′|s, a)hk(s′)− hk(s)

1Ek {s, a}

and similarly for ∆r
k. We further notice that for all (s, a) 6∈ Ek (i.e., satisfying 1Ek {s, a} 6= 0)

and s′ ∈ STk , we have pk(s′|s, a) = 0 by construction ofMk (see Eq. 4.7). The whole point of

having 1Ek {s, a} in factor is that the sum over s′ ∈ S can be restricted to a sum over s′ ∈ SCk
i.e.,

∆p
k = α

∑
s∈SCk
a∈As

νk(s, a)

 ∑
s′∈SC

k

pk(s′|s, a)hk(s′)− hk(s)

1Ek {s, a} .

In the case of UCRLB, the travel-budget of the whole MDP Λ appears because the range of

hk can only be bounded by Λ. But since in the case of TUCRL s′ lies in SCk , only the range of

hk on this subset matters. We already proved in Sec. 4.1 that (under event E) spSC
k

(hk) ≤ ΛC.

This explains why ΛC appears instead of Λ when bounding the regret of TUCRL.

We now proceed as in eq. 3.43 i.e., we add and subtract the term

α
∑
s∈SCk
a∈As

νk(s, a)
∑
s′∈SC

k

p(s′|s, a)hk(s′)1Ek {s, a}

in order to obtain two terms ∆p1
k and ∆p2

k . Note that s and s′ are summed over SCk (as we just

explained) and there is an additional indicator function 1Ek {s, a} compared to Sec. 3.5.3. The

indicator function does not impact the bound of ∆p1
k (the same analysis as for UCRLB can

be carried out, where we eventually bound 1Ek {s, a} ≤ 1 once the difference pk − p has been

bounded by a positive term). However, the term ∆p2
k is more problematic. We decompose

this term as follows:

∆p2
k = α

tk+1−1∑
t=tk

 ∑
s′∈SC

k

p(s′|st, at)wk(s′)− wk(st+1) · 1
{
st+1 ∈ SCk

} · 1Ek {st, at}︸ ︷︷ ︸
:=∆p4

k

+ α

tk+1−1∑
t=tk

(
wk(st+1) · 1

{
st+1 ∈ SCk

}
− wk(st)

)
· 1Ek {st, at} .︸ ︷︷ ︸

not telescopic!
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Despite the indicator functions 1Ek {st, at} and 1
{
st+1 ∈ SCk

}
, the term ∆p4

k is still an MDS

because kt (the episode at time t) is Ft−1-measurable where Ft−1 := σ(s1, a1, r1, . . . , st) (see

App. A.2) and moreover

E

[
wkt(st+1)1Ek {st, at}1

{
st+1 ∈ SCkt

}∣∣∣Ft−1
]

=
∑
s′∈SC

kt

p(s′|st, at)wkt(s′)1Ek {st, at} .︸ ︷︷ ︸
Ft−1−measurable

As a result, Lem. 3.3 still applies. However, the second term is no longer a telescopic sum

although the problem is not coming from the indicator function 1
{
st+1 ∈ SCk

}
. Indeed, due

to the new stopping condition implemented by TUCRL, for all episodes k ≥ 1 and time

steps tk ≤ t < tk+1 − 1, st 6∈ SCk and so wk(st) = wk(st) · 1
{
st ∈ SCk

}
. On the other hand,

the presence of the second indicator function 1Ek {st, at} is an issue. Using the fact that

1Ek {st, at} = 1− 1Ek {st, at} we can make a telescopic sum appear:

tk+1−1∑
t=tk

wk(st+1) · 1
{
st+1 ∈ SCk

}
− wk(st) · 1

{
st ∈ SCk

}
︸ ︷︷ ︸

≤ΛC (telescopic sum)

+
tk+1−1∑
t=tk

(
wk(st+1) · 1

{
st+1 ∈ SCk

}
− wk(st)1

{
st ∈ SCk

})
︸ ︷︷ ︸

≤ΛC

·1Ek {st, at}

Using Lem. 4.3, this term can be bounded by ΛC + 2ΛC
√
SCAT . The presence of this term is

the reason why we were not able to obtain a regret bound scaling linearly with
√

ΛC instead of

ΛC. All our attempts to either refine the current analysis, or modify the algorithm to improve

the dependency in ΛC have failed so far.

The fact that the sum
∑kT
k=kT+1 ∆k starts from k = kT + 1 (instead of k = 1) has no impact

on the final bound and the increase in the number of episodes due to the modification of the

stopping condition of UCRLB is negligible.

The final regret bounds in Thm. 4.1 is then obtained by combining all different terms (4.24),

(4.25) and the bound on the sum
∑kT
k=kT+1 ∆k.

4.4 Experiments

In this section, we present experiments to validate the theoretical findings of Sec. 4.3 (Thm. 4.1).

We compare TUCRL against UCRLB. To the best of out knowledge, there exists no imple-

mentable algorithm to solve the optimization step of Regal and Regal.D and so we do not

report any experiments with these algorithms. We are not aware of any other algorithm that

addresses the problem of infinite diameter to compare with.
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Figure 4.4: Cumulative regret in the taxi with misspecified states (Fig. 4.4a) and in the
communicating taxi (Fig. 4.4b). Confidence intervals βr,k and βp,k are respectively shrunk by
a factor 0.05 and 0.01. Results are averaged over 20 runs and 95% confidence intervals are
reported.
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Figure 4.5: Family of three-state MDPs characterized by a single parameter δ. When δ > 0,
the MDP is communicating, when δ = 0 it is weakly-communicating. Only two stationary
deterministic policies can be played (corresponding to the two actions available in s2).

Taxi Problem. We first consider the taxi problem (Dietterich, 2000) implemented in OpenAI

Gym (Brockman et al., 2016). Even such a simple domain contains misspecified states. The

state space is constructed as the outer product of the taxi position, the passenger position

and the destination and this leads to states that cannot be reached from any possible starting

configuration (all the starting states belong to SC). More precisely, out of 500 states in S,

100 are non-reachable. On Fig. 4.4 we compare the regret of UCRLB and TUCRL when the

misspecified states are present (Fig. 4.4a) and when they are removed from the definition of

the state space (Fig. 4.4b). In the presence of misspecified states (Fig. 4.4a), the regret of

UCRLB clearly grows linearly with T (as expected, see Sec. 4.1) while TUCRL is able to

learn as expected. On the other hand, when the MDP is communicating (Fig. 4.4b) TUCRL

performs similarly to UCRLB. The small loss in performance is most likely due to the initial

exploration phase during which the confidence intervals on the transition probabilities used

by UCRLB (extended MDP Mk) are tighter than those used by TUCRL (extended MDP

Mk). Indeed, TUCRL slightly increases some confidence bounds by ζsap,k (4.6) compared to

UCRLB (see Eq. 4.7).

Simple three-state domain. In order to better understand the empirical behaviour of the

algorithm, We further study the regret of TUCRL in the simpler three-state domain of

Fig. 4.5. The environment is composed of only three states (s0, s1 and s2) and one action
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per state, except in s2 where two actions are available. As a result, the agent only has the

choice between two possible policies. We first consider the case the MDP is communicating

by defining δ = 0.005 > 0. Fig. 4.6a shows that, as expected, TUCRL behaves similarly to

UCRLB. In this example it is able to outperform UCRLB since the preliminary phase in

which transitions to non-observed states are forbidden leads to a less explorative behaviour

that, due to the structure of the problem (s1 is difficult to reach but it is also non-optimal),

results in a smaller regret.

Fig. 4.6b shows the cumulative regret achieved by TUCRL when the diameter is infinite

i.e., SC = {s0, s2} and ST = {s1}. Similarly to the taxi problem, UCRLB fails to learn in this

setting (i.e., suffers linear regret) and for the sake of clarity, we do not report its regret on the

figure. TUCRL quickly achieves sub-linear regret as predicted by theory. However, TUCRL

seem to achieve different regret growth rates depending on whether s1 is removed or not.

While the regret curve of Fig. 4.6b quickly achieves an asymptotic regime (slow logarithmic

increase), the regret curve of Fig. 4.6b)seems to keep growing as
√
T (no matter for how

long we run the experiment), with periodic “jumps” that are increasingly distant (in time)

from each other. The time between two consecutive “jumps” grows exponentially fast and the

increase in regret at every “jump” also grows exponentially fast. This can be explained by the

way the algorithm works: while most of the time TUCRL is optimistic on the restricted state

space SC = {s0, s2} (i.e., SCk = SC), it periodically allows transitions to the set ST = {s1}
(i.e., SCk = S), which is indeed not reachable. Enabling these transitions triggers “aggressive”

exploration during an entire episode. The policy played is then sub-optimal creating a “jump”

in the regret. At the end of this exploratory episode, SCk will be set again to SC and the regret

will stop increasing until the condition N+
k ≤

√
tk/SA occurs again. The cumulative regret

incurred during exploratory episodes (when transitions to ST are allowed) can be bounded

by the term plotted in green on Fig. 4.6b (
∑T
t=1 1Ekt {st, at}). In Lem. 4.3 we proved that

this term is always bounded by O(
√
SCAT ). Therefore, it is not surprising to observe a

√
T

increase of both the green and red curves.

Unfortunately, the growth rate of the regret will keep increasing as
√
T and will never

become logarithmic unlike when the MDP is communicating (in which case both UCRLB

and TUCRL seem to perform equally well). This is because the condition N+
k ≤

√
tk/SA

will always be triggered Θ(
√
T ) times for any T . When ST 6= ∅, TUCRL will restrict the

extended MDP every time the condition is triggered while when ST = ∅, all state-action pairs

will eventually be visited and so this condition will no longer be used to restrict the extended

MDP. In Sec. 4.5 we show that this is not just a drawback specific to TUCRL, but it is rather

an intrinsic limitation of learning in weakly-communicating MDPs.

Note that the big periodic jumps observed in Fig. 4.6b appear because the domain contains

only one state in ST and deterministic transitions (only the rewards are random). For more

complex environments (with random transitions) it is very difficult to predict in advance

what the behaviour of TUCRL will be. However, for MDPs with high randomness in the

transitions, it is likely that we do not observe “jumps” and just a smooth
√
T increase (the

green/red curves should always be of the same order of the orange curve as proved by Lem. 4.3,

but they can be arbitrarily smooth or sharp).
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Figure 4.6: Cumulative regret of TUCRL and UCRLB on the MDPs of Fig. 4.5. Fig. 4.6a
corresponds to the case where δ = 0.005 > 0. Fig. 4.6a corresponds to the case where δ = 0.

T

E[∆(M,UCRL2, µ1, T )] O(T ) O(DS
√
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O
(
D2S2A

γ ln(T )
)

0 T †M T ∗M

Regret upper-bound

Figure 4.7: Expected regret of UCRL2 (with known horizon T given as input) as a function
of T .

4.5 Learning limitations with infinite diameter

In this section we further investigate the empirical difference in the regret growth of TUCRL

when the diameter is finite and infinite. We prove an impossibility result characterizing the

exploration-exploitation dilemma when the diameter is infinite.

We first recall that the expected regret E[∆(M,UCRL2, µ1, T )] of UCRL2 (with input

parameter δ = 1/3T ) after T ≥ 1 time steps and for any finite MDP M can be bounded in

several ways:

E[∆(M,UCRL2, µ1, T )] ≤


rmaxT (by definition)

34 · rmaxDS
√
AT ln(3T 2) + 1

3 (Prop. 2.14)

342 · rmax
D2S2A
δg

ln(T ) + C(M) (Prop. 2.13).

(4.26)

Note that D can be replaced by Λ without changing the algorithm. The three different
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Figure 4.8: Toy example illustrating the difficulty of learning non-communicating MDPs. We
represent a family of possible MDPs M = (Mε)ε∈[0,1] where the probability ε to go from x
to y lies in [0, 1].

bounds lead to three different growth rates for the function T 7−→ E[∆(M,UCRL2, µ1, T )]
(see Fig. 4.7):

1. for T †M ≥ T ≥ 0, the expected regret is linear in T ,

2. for T ∗M ≥ T ≥ T
†
M the expected regret grows as

√
T ,

3. finally for T ≥ T ∗M , the increase in regret is only logarithmic in T .

These different “regimes” can also be observed empirically (both for UCRL2 and UCRLB).

Using (4.26), it is easy to show that the time it takes for UCRL2 to achieve sub-linear regret

is at most T †M = Õ(D2S2A). We say that a learning algorithm is efficient when it achieves

sublinear regret after a number of steps that is polynomial in the parameters of the MDP

i.e., both UCRL2 and UCRLB are efficient . We now show with an example –similar to the

example of Fig. 4.1b presented in introduction of this chapter– that without prior knowledge,

any efficient learning algorithm must satisfy T ∗M = +∞ when M has infinite diameter (i.e.,

it cannot achieve logarithmic regret if D = +∞).

Example We consider a family of weakly-communicating MDPs M = (Mε)ε∈[0,1] repre-

sented on Fig. 4.8. Every MDP instance inM is characterised by a specific value of ε ∈ [0, 1]
which corresponds to the probability to go from x to y. For ε > 0 (Fig. 4.8a), the optimal

policy of Mε is such that π∗(x) = b and the optimal gain is g∗ε = 1 while for ε = 0 (Fig. 4.8b)

the optimal policy is such that π∗(x) = d and the optimal gain is g∗0 = 1/2. We assume that

the learning agent knows that the true MDP M belongs toM but does not know the specific

value ε associated to M = Mε∗ . We assume that all rewards are deterministic and that the

agent starts in state x (coloured).
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Theorem 4.2

Let C1, C2, α, β > 0 be positive real numbers and f a function defined for all ε ∈]0, 1] by

f(ε) = C1(1/ε)α. There exists no learning algorithm AT (with known horizon T ) satisfying

both
1. for all ε ∈]0, 1], there exists T †ε ≤ f(ε) such that E[∆(Mε,AT , x, T )] < 1/6 · T for all

T ≥ T †ε ,

2. and there exists T ∗0 < +∞ such that E[∆(M0,AT , x, T )] ≤ C2(ln(T ))β for all T ≥ T ∗0 .

Proof. We prove the statement by contradiction: we assume that there exists a learning

algorithm denoted AT satisfying

1. for all ε ∈]0, 1], there exists T †ε ≤ f(ε) such that E[∆(Mε,AT , x, T )] < 1/6 · T for all

T ≥ T †ε ,

2. there exists T ∗0 < +∞ such that E[∆(M0,AT , x, T )] ≤ C2(ln(T ))β for all T ≥ T ∗0 .

Any randomised strategy for choosing an action at time t is equivalent to an (a priori) random

choice from the set of all deterministic strategies. Thus, it is sufficient to show a contradiction

when the action played by AT at any time t is a deterministic function of the past trajectory

ht := {s1, a1, r1, . . . , st}. In the rest of the proof we assume that AT maps any sequence of

observations ht = {s1, a1, r1, . . . , st} to a (single) action at.

By trivial induction it is easy to see that as long as state y has not been visited, the history

ht is independent of ε (AT cannot distinguish between different values of ε and plays exactly

the same action when the past history is the same).

Let’s define N0
T (x, b) :=

∑T
t=1 1{(st, at) = (x, b)} the number of visits in (x, b) with at =

AT (ht) and ε = 0. Note that N0
T (x, b) is not random since when ε = 0 both action b and

action d loop on x with probability 1. For any ε ∈ [0, 1] and any horizon T define the event:

F (T, ε) :=
⋂

1≤t≤T
{st 6= y}

where the sequence of states st is obtained by executing AT on MDP Mε. We will denote by

F (T, ε) the complement of F (T, ε).

For any horizon T , and independently of ε, there is only one possible trajectory hT =
{s1, a1, r1, . . . , sT } that never goes to y and which corresponds to the trajectory observed

when ε = 0. When ε = 0, the probability of this trajectory is 1 and so P (F (T, 0)) = 1 (recall

that everything is deterministic in this case) while in general we have (using the Markov

property):

∀T ≥ 1, ∀ε ∈ [0, 1], P (F (T, ε)) = (1− ε)N
0
T (x,b) . (4.27)
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We now prove by contradiction that

lim
T→+∞

N0
T (x, b) = +∞. (4.28)

Let’s assume that C := max
{
10,maxT≥1{N0

T (x, b)}
}
< +∞. Taking ε = 1/C and applying

the law of total expectation we obtain:

∀T ≥ 1, E[∆(M1/C ,AT , x, T )] = E

[
∆(M1/C ,AT , x, T )

∣∣F (T, 1/C)
]

︸ ︷︷ ︸
=T/2+1/2·N0

T (x,b)≥T/2

·P (F (T, 1/C))︸ ︷︷ ︸
=(1−1/C)N

0
T

(x,b)

+E

[
∆(M1/C ,AT , x, T )

∣∣F (T, 1/C)
]
·P

(
F (T, 1/C)

)
︸ ︷︷ ︸

≥0

≥ T

2 ·
(

1− 1
C

)N0
T (x,b)

≥ T

2 ·
(

1− 1
C

)C
︸ ︷︷ ︸

≥1/3 by Lem. B.1

≥ T

6

where we used the fact that

• N0
T (x, b) ≤ C and (1−1/C) ∈ [0, 1] by definition, implying

(
1− 1

C

)N0
T (x,b)

≤
(
1− 1

C

)C
,

• since C ≥ 10 we have
(
1− 1

C

)C
≥ 1/3 by Lem. B.1 (App. B.2) applied to x = 1/C,

• and finally under event F (T, 1/C), the regret incurred is exactly T/2 + 1/2 ·N0
T (x, b) ≥

T/2.

This contradicts our assumption that there exists T †1/C < +∞ such that for all T ≥ T †1/C ,

E[∆(AT ,M1/C , x, T )] < T/6 and so (4.28) holds.

Since limT→+∞N
0
T (x, b) = +∞, it is possible to construct a strictly increasing sequence

(Tn)n∈N such that:

∀n ∈ N, N0
Tn+1(x, b) > N0

Tn(x, b), T0 = T ∗0 , T1 ≥ C2, T1 ≥ C2(ln(T1))β and N0
T1(x, b) ≥ 10

We also define the (strictly decreasing) sequence: εn := 1/N0
Tn

(x, b), ∀n ≥ 1. By the law of

total expectation:

E[∆(ATn ,Mεn , x, Tn)] = E [∆(ATn ,Mεn , x, Tn)|F (Tn, εn)]︸ ︷︷ ︸
≥Tn/2

·P (F (Tn, εn))︸ ︷︷ ︸
=(1−εn)N

0
Tn

(x,b)

+E

[
∆(ATn ,Mεn , x, Tn)|F (Tn, εn)

]
·P

(
F (Tn, εn)

)
︸ ︷︷ ︸

≥0

≥ Tn
2 · (1− εn)N

0
Tn

(x,b) = Tn
2 · (1− εn)1/εn︸ ︷︷ ︸

≥1/3 by Lem. B.1

≥ Tn
6 (4.29)

where we applied Lem. B.1 (App. B.2) to x = εn ≤ 1/10 since N0
Tn

(x, b) ≥ 10 for all n ≥ 1.
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Moreover, since by construction for all n ≥ 1, Tn > T0 = T ∗0 we have by assumption that

∀n ≥ 1, E[∆(ATn ,M0, x, Tn)] = 1
2N

0
Tn(x, b) = 1

2εn
≤ C2(ln(Tn))β

=⇒ Tn ≥ exp
(

1
(2C2 · εn)1/β

)

Since limn→+∞ 1/εn = +∞ and limx→+∞ exp
(
x1/β

)
/xα = +∞ there exists N ∈ N such

that for all n ≥ N , Tn ≥ f(εn). By assumption, for all n ≥ N ,

E[∆(ATn ,Mεn , x, Tn)] < Tn
6

which contradicts (4.29) therefore concluding the proof. �

Note that point 1. in Lem. 4.2 formalizes the concept of “efficient learnability” introduced

by Sutton and Barto (2018, Section 11.6) i.e.,“learnable within a polynomial rather than

exponential number of time steps”. All the MDPs in M share the same number of states

S = 2, number of actions A = 2, and gap in average reward γ = 1/2. As a result, any

function of S, A and δg will be considered as constant. For ε > 0, the diameter and travel-

budget coincide with the optimal bias span of the MDP and Λ = D = sp (h∗) = 1/ε < +∞,

while for ε = 0, Λ = D = +∞ but sp (h∗) = 1/2. As shown in Eq. 4.26 and Thm. 4.1,

UCRL2, UCRLB and TUCRL satisfy property 1. of Lem. 4.2 with α = 2 and C1 = O(S2A)
but do not satisfy 2. Lem. 4.2 proves that no algorithm can actually achieve both 1. and 2.

As a result, since TUCRL satisfies 1., it cannot satisfy 2. This matches the empirical results

presented in Sec. 4.4 where we observed that when the diameter is infinite, the growth rates

of the regret of TUCRL is of order Θ(
√
T ). An algorithm that does not satisfy 1. could

potentially satisfy 2. but, by definition of 1., it would suffer linear regret for a number of

steps that is more than polynomial in the parameters of the MDP (more precisely, eD
1/β

).

This is not a very desirable property and we claim that an efficient learning algorithm should

always prefer finite time guarantees (1.) over asymptotic guarantees (2.) when both cannot

be accommodated .

4.6 Conclusion

In this chapter we introduced TUCRL, an algorithm that efficiently balances exploration and

exploitation in weakly-communicating and multi-chain MDPs, when the starting state s1

belongs to a communicating set (Asm. 4.1). We showed that TUCRL achieves a square-root

regret bound scaling with parameters (DC, SC, ΓC) of the communicating part of the MDP

and that, in the general case, it is not possible to design algorithm with logarithmic regret

and polynomial dependence on the MDP parameters. Several questions remain open:

1. relaxing Asm. 4.1 by considering a transient initial state (i.e., s1 ∈ ST),

2. investigating whether a regret scaling as Õ
(√

ΛCSCΓCAT
)

is achievable,
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3. refining the lower bound of Jaksch et al. (2010) to finally understand whether it is

possible to scale with sp (h∗) (at least in communicating MDPs) instead of Λ ≥ sp (h∗)
(the flaw in Regal.D may suggest it is indeed impossible).

In the next chapter, we will show that achieving a regret scaling with sp (h∗) instead of Λ is

at least possible when the value sp (h∗) is known and given as input to the learning algorithm.
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5 Exploration–exploitation with prior
knowledge on the optimal bias span

5.1 Introduction

5.1.1 Bias span versus travel-budget

While the travel-budget Λ quantifies the total “cost” incurred to “recover” from a bad state in

the worst case (i.e., when g∗ = rmax), the actual regret incurred while “recovering” is related

to the difference in potential reward between “bad” and “good” states, which is accurately

measured by the span (i.e., the range) sp (h∗) of the optimal bias function h∗. While the

travel-budget is an upper bound on the bias span (Sec. 3.3.2), it could be arbitrarily larger

(e.g., weakly-communicating MDPs may have finite span and infinite travel-budget) thus sug-

gesting that algorithms whose regret scales with the span may perform significantly better.1

Building on the idea that the OFU principle should be mitigated by the bias span of the opti-

mistic solution, Bartlett and Tewari (2009) proposed three different algorithms (referred to as

Regal) achieving regret scaling with sp (h∗) instead of Λ. The first algorithm defines a span

regularized problem, where the regularization constant needs to be carefully tuned depending

on the state-action pairs visited in the future, which makes it unfeasible in practice. Alter-

natively, they propose a constrained variant, called Regal.C, where the regularized problem

is replaced by a constraint on the span. Assuming that an upper-bound c on the bias span

of the optimal policy is known (i.e., sp (h∗) ≤ c), Regal.C achieves a regret upper-bounded

by Õ(cS
√
AT ). Unfortunately, they do not propose any computationally tractable algorithm

solving the constrained optimization problem, which may even be ill-posed in some cases.

Finally, Regal.D avoids the need of knowing the future visits by using a doubling trick, but

we argued in Chap. 4 that the analysis is flawed and probably difficult to fix.

In this chapter, we take inspiration from Regal.C and propose a constrained optimization

problem for which we derive a computationally efficient algorithm, called ScOpt (analogue

1The proof of the minimax lower-bound (Prop. 2.12) relies on the construction of an MDP whose travel-
budget actually coincides with the bias span (up to a factor 2), thus leaving the open question whether the
“actual” lower-bound depends on Λ or the bias span (or an even tighter quantity).
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to EVI). We identify conditions under which ScOpt converges to the optimal solution and

propose a suitable stopping criterion to achieve an ε-optimal policy. Finally, we show that

the convergence conditions are always satisfied and the learning algorithm obtained by in-

tegrating ScOpt into a UCRL2-like scheme (resulting into SCAL) achieves regret scaling as

Õ(
√

min{Λ, c}ΓSAT ) when an upper-bound c on the optimal bias span is available.

5.1.2 Exploration bonus

In Sec. 5.7, we build on ScOpt to derive SCAL+, a variant of Regal.C which enforces

optimism through the use of an exploration bonus rather than an extended MDP. Regal.C

estimates the true MDP (rewards and transition probabilities) and adds a state-action depen-

dent high probability confidence bound to the reward function (not the transition probability).

Strehl and Littman (2008b) were the first to exploit the idea of enforcing exploration in RL

by using a “bonus” on the reward. They analysed the infinite-horizon γ-discounted setting

and introduced the Model Based Interval Estimation with Exploration Bonus (MBIE-EB)

algorithm. MBIE-EB plays the optimal policy of the empirically estimated MDP where

for each state-action pair (s, a), a bonus b(s, a) is added to the empirical average reward

r̂(s, a) i.e., the immediate reward associated to (s, a) is r̂(s, a) + b(s, a). The goal of RL is

to find a policy maximizing the cumulative reward i.e., the Q-function. Therefore, the bonus

needs to account for the uncertainty in both the rewards and transition probabilities and so

b(s, a) = Θ̃
(
rmax
1−γ

√
1

N(s,a)

)
where rmax

1−γ is the range of the Q-function. Strehl and Littman

(2008b) also derived PAC guarantees on the sample complexity of MBIE-EB. More recently,

count-based methods (e.g., Bellemare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017;

Martin et al., 2017) tried to combine the idea of MBIE-EB with Deep RL (DRL) techniques

to achieve a good exploration-exploitation trade off in high dimensional problems. The ex-

ploration bonus usually used has a similar form Θ̃
(

β√
N

)
where β is now an hyper-parameter

tuned for the specific task at hand, and the visit count N is approximated using discretization

(e.g., hashing) or density estimation methods.

Exploration bonuses have also been successfully applied to finite-horizon problems (Azar

et al., 2017; Kakade et al., 2018; Jin et al., 2018). In this setting, the planning horizon H is

known to the learning agent and the range of the Q-function is rmaxH. A natural choice for

the bonus is then b(s, a) = Θ̃
(
rmaxH/

√
N(s, a)

)
. UCBVI 1 introduced by Azar et al. (2017)

uses such a bonus and achieves near-optimal regret guarantees Õ
(
H
√
SAT

)
. Extensions of

UCBVI 1 exploiting the variance instead of the range of the Q-function achieve a better

regret bound Õ
(√
HSAT

)
(Azar et al., 2017; Kakade et al., 2018; Jin et al., 2018).

Both the finite horizon setting and infinite horizon discounted setting assume that there

exists an intrinsic horizon (respectively H and 1
1−γ ) known to the learning agent. Unfortu-

nately, in many common RL problems it is not clear how to define H or 1
1−γ and it is often

desirable to set them as big as possible (e.g., in episodic problem, the time to the goal is not

known in advance and random in general). As H tends to infinity the regret (of UCBVI 1,

etc.) will become linear while as γ tends to to 1 the sample complexity (of MBIE-EB, etc.)

tends to infinity (not to mention the numerical instabilities that may arise). In this chapter
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we analyze the exploration bonus approach in the infinite horizon undiscounted setting which

generalizes the two previous settings to the case where H → +∞ and γ → 1 respectively (see

Sec. 2.2). Although Regal.C can be efficiently implemented in the tabular case, it is difficult

to extend it to more scalable approaches like DRL. In contrast, as already mentioned, the

exploration bonus approach is simpler to adapt to large scale problems and inspired count

based methods in DRL.

SCAL+ is the first algorithm that relies on an exploration bonus to efficiently balance

exploration and exploitation in the infinite-horizon undiscounted setting. All the exploration

bonuses that were previously introduced in the RL literature explicitly depend on γ or H

which are known to the learning agent. In the infinite-horizon undiscounted case, there

is no predefined parameter informing the agent about the range of the Q-function. This

makes the design of an exploration bonus very challenging. To overcome this limitation,

we make the same assumption as in Regal.C and SCAL i.e., we assume that the agent

knows an upper-bound c on the span (i.e., range) of the optimal bias (i.e., value function).

The exploration bonus used by SCAL+ is thus b(s, a) = Θ̃
(

max{c, rmax}/
√
N(s, a)

)
. In

comparison, other algorithms in the infinite horizon undiscounted setting like UCRLB or

SCAL can, to a certain extent, be interpreted as virtually using an exploration bonus of order

Θ̃
(

max{Λ, rmax}
√

Γ/N(s, a)
)

and Θ̃
(

max{c, rmax}
√

Γ/N(s, a)
)

respectively. This is bigger

by a multiplicative factor
√

Γ. As a result, to the best of our knowledge, SCAL+ achieves

a “tighter” optimism than any other existing algorithm in the infinite horizon undiscounted

setting and is therefore less prone to over-exploration. Surprisingly, the tighter optimism

introduced by SCAL+ compared to SCAL and UCRLB is not reflected in the final regret

bound with the current statistical analysis (
√

Γ appears in the bound although not being

included in the bonus). We isolate and discuss where the term
√

Γ appears in the proof sketch

of Sect. 5.7.3. While Azar et al. (2017); Kakade et al. (2018); Jin et al. (2018) managed to

remove the
√

Γ term in the finite horizon setting, it remains an open question whether their

result can be extended to the infinite horizon case (for example, the two definitions of regret

do not match and differ by a linear term). Finally, the analysis of Sec. 3.6 does not apply to

SCAL+ because c explicitly appears outside the square-root in the expression of the bonus.

Overall, SCAL only achieves a regret of order Õ(max{rmax, c}
√

ΓSAT ) which is worse than

SCAL.

Despite achieving a looser regret bound, SCAL+ achieves a tighter optimism. In Sec. 5.8

we show how to combine the advantages of SCAL and SCAL+ into a single algorithm named

SCAL?.

The work presented in this chapter extends the conference paper (Fruit et al., 2018b) and

the paper under submission (Qian et al., 2018b).

121



Chapter 5. Exploration–exploitation with prior knowledge on the optimal bias
span

5.2 Span-constrained exploration–exploitation in RL:

REGAL.C and relaxations

5.2.1 The approach of REGAL.C

Our first algorithm SCAL (Sec. 5.5) is a tractable variant of Regal.C. We therefore start by

recalling the algorithmic structure of Regal.C. Regal.C follows the same steps as UCRL2

(and UCRLB) but instead of solving problem (2.34) at each episode (see Chap. 2 and 3), it

tries to find the best optimistic model M ∈Mc having constrained optimal bias span i.e.,

sup
M∈Mc

{
max
π∈ΠSD

gπM

}
= sup

M∈Mc

g∗M (5.1)

where the bounded parameter MDPMc is the set of plausible MDPs with span of the optimal

bias bounded by c i.e.,

Mc := {M ∈M : sp (h∗M ) ≤ c}. (5.2)

Regal.C discards any MDP M ∈M whose optimal policy has a span larger than c (i.e., such

that sp (h∗M ) > c) and looks for the MDP with highest optimal gain g∗M among all remaining

MDPs.

Well-posedness. There is no guarantee that all the MDPs inMc are weakly communicating

and thus have state-independent gain.2 This could make the comparison of policies difficult.

Two policies π1, π2 ∈ ΠSR with state-dependent gain cannot necessarily be compared since

we might have gπ1
M (s) > gπ2

M (s) for some state s ∈ S while gπ1
M (s′) < gπ2

M (s′) for some other

state s′ 6= s. When there is no constraint on the bias, this is not a problem as we can prove

that there always exists a policy that dominates all others component-wise (Puterman, 1994,

Chapter 9).3 When there exists a constraint on the bias, this may no longer be the case. As

a result, unlike in the case of UCRL2 and UCRLB, the supremum (5.1) might not always

be well-defined4 and we suspect the problem to be ill-posed in general. This intuition comes

from Ex. 5.1a (that will be presented in Sec. 5.3) where we show the necessity of enforcing

a state-independent gain (i.e., as a constraint of the optimization problem). Moreover, even

if we ignored all the problems in the formulation of Regal.C and assumed that (5.1) was

well-posed , searching the spaceMc seems to be computationally intractable. Finally, for any

M ∈ M, there may exist several optimal policies with different bias and some of them may

not satisfy the Bellman optimality equation (see Prop. 2.4) and are thus difficult to compute.

In the next section, we introduce a relaxation of problem 5.1 that is both well-posed and

easier to analyse.

2For example, the extended MDPs that we have considered so far contain multi-chain MDPs.
3If the MDP is weakly-communicating, the optimal gain is even state-independent as shown in Prop. 2.4

which is why (2.34) is well-posed.
4Making the problem well-posed would require to fix a “reference” state or a distribution over states.
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5.2.2 A first relaxation of REGAL.C

The high-level idea of our relaxation is to replace the constraint on the set of plausible

MDPs (bounded parameter MDP) by a constraint on the policy space. Formally, we modify

problem (5.1) as follows:

sup
M∈M

{
sup

π∈Πc(M)
gπM

}
(5.3)

where the policy space Πc(M) is defined as

Πc(M) :=
{
π ∈ ΠSR : sp (hπM ) ≤ c and sp (gπM ) = 0

}
. (5.4)

By convention, we set maxπ∈Πc(M){gπM} to −∞ when Πc(M) = ∅. The condition sp (gπM ) =
0 makes sure that the policy space only contains policies with state-independent gain. As a

result, two policies can always be compared by comparing their gains (and so problem (5.3)

is well-posed). Note that we do not restrict attention to deterministic stationary policies, but

consider also randomized policies. It will quickly become clear that considering randomized

policies makes the problem easier to solve and analyze.

Equivalent extended formulation. One of the advantages of (5.3) over (5.1) is that it

can be reformulated as finding a gain-maximizing policy of an extended MDP . Just as solv-

ing (2.34) is equivalent to solving (2.35) (see Chap. 2), problem (5.3) is equivalent to solving

the following optimization problem:

sup
π+∈Πc(M+)

gπM+ (5.5)

where M+ is the extended MDP associated with the bounded parameter MDP M. Un-

like (5.1), for every MDP in M (not just those in Mc), (5.3) considers all (stationary)

policies with constant gain satisfying the span constraint (not just the deterministic optimal

policies).

Existence of the maximum and relaxation. Since (M,π) 7→ gπM and (M,π) 7→ sp (hπM )
are in general non-continuous functions, the argmax in (5.1) and (5.3) may not exist (i.e., the

maximum may not be reached). Despite this technical difficulty, we can show that (5.3) is

always a relaxation of (5.1) in terms of supremum value (provided we enforce the additional
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constraint of state-independent gain in (5.1)).

Proposition 5.1

Define Mc := Mc ∩ {M ∈ M : sp (g∗M ) = 0} the restriction of Mc to MDPs that have

state-independent optimal gain. Then

sup
M∈Mc

{
max
π∈ΠSD

gπM

}
= sup

M∈Mc

{g∗M} ≤ sup
M∈M

{
sup

π∈Πc(M)
gπM

}
.

Proof. Let M ∈ Mc and denote by π∗ an optimal policy of M , with g∗M and h∗M the

associated gain an bias. By definition sp (g∗M ) = 0 and sp (h∗M ) ≤ c and so π∗ ∈ Πc(M).
Therefore, g∗M ≤ supπ∈Πc(M) g

π
M . Since g∗M is the optimal gain of M (maximum over all

policies), we actually have an equality: g∗M = supπ∈Πc(M) g
π
M . Since this is true for all

M ∈Mc, we have

sup
M∈Mc

{g∗M} = sup
M∈Mc

{
sup

π∈Πc(M)
gπM

}
≤ sup

M∈M

{
sup

π∈Πc(M)
gπM

}

where the inequality follows from the fact that Mc ⊆M. �

Due to Prop. 5.1, if the solution of (5.1) is optimistic i.e., bigger than the optimal gain g∗

of the true unknown MDP, so is the solution of (5.3). As a result, any algorithm solving (5.3)

should intuitively enjoy the same regret guarantees as Regal.C (which solves (5.1)). In

the following we further characterize problem (5.3), introduce a truncated value iteration

algorithm to solve it (called ScOpt), and finally integrate it into a UCRL2-like scheme to

recover Regal.C regret guarantees.

5.3 The Optimization Problem

In the previous section, we showed that our new optimization problem (Eq. 5.3) can be

equivalently formulated as a span-constrained gain-maximization problem on the extended

MDP (Eq. 5.5). In this section we analyze some properties of the following optimization

problem (of which (5.5) is an instance),

sup
π∈Πc(M)

gπM := g∗c (M) (5.6)

where M is any MDP (with discrete or compact action space) such that Πc(M) 6= ∅. Prob-

lem (5.6) aims at finding a policy that maximizes the gain gπM within the set of randomized

policies with constant gain (i.e., sp (gπM ) = 0) and bias span smaller than c (i.e., sp (hπM ) ≤ c).
Since gπM ∈ [0, rmax] (i.e., gπM is bounded), the supremum always exists and we denote it by

g∗c (M). The set of maximizers is denoted by Π∗c(M) ⊆ Πc(M), with elements π∗c (M) (if

Π∗c(M) is non-empty). In order to give some intuition about the solution(s) of problem (5.6),

we introduce the following illustrative MDP.
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Figure 5.1: Toy example illustrating the properties of optimization problem (5.6). Fig. 5.1a:
The MDP is communicating and only has deterministic transitions and rewards for all ac-
tions (2 actions per state). Fig. 5.1b: Maximum gain achievable g∗c (y-axis) as a function
of the span constraint c (x-axis) with all (randomized) stationary policies (blue line) and
only deterministic policies (dashed red line). Only policies with state-independent gain are
considered (i.e., the policy playing a1 in both states is ignored).

Example Consider the two-state MDP depicted in Fig. 5.1a. Since there are only two

actions a0 and a1 in both states, for any stationary policy π = (d)∞ ∈ ΠSR, the associated

decision rule d ∈ DMR can be parameterized by two quantities: x (the probability to play a0

in s0) and y (the probability to play a0 in s1). With this parametrization:

Pd =
[
1− x x

y 1− y

]
, rd =

[ 1−x
2

1− y

]
.

We can compute the gain g = [g1, g2] and the bias h = [h1, h2] by solving the linear

system (2.11). For any x > 0 or y > 0, we obtain

g1 =g2 = 1
2 + x(1− 3y)

2(x+ y) ; h2 − h1 = 1
2 + 1− 3y

2(x+ y) ,

while for x = 0, y = 0, we have g1 = 1/2 and g2 = 1, with h2 = h1 = 0. Note that

0 ≤ sp (hπ) ≤ 1 for any π ∈ ΠSR. By considering different values for x and y, this example

allows us to analyze the properties of optimization problem (5.6). For example, on Fig. 5.1b

we show how the solution of (5.6) varies with the span constraint c. We also show the

evolution when the policy space is restricted to deterministic policies. This curves can be

easily deduced from the above formulas for g1/g2 and h2 − h1. Note that Fig. 5.1b ignores

the case x = y = 0 since it corresponds to the only policy with state-dependent gain.

Randomized policies. When the bias span is unconstrained, there always exist an optimal

stationary deterministic policy (see Sec. 2.2). In contrast, the following lemma shows that

there may not exist any deterministic policy solution to (5.6) even if a randomized solution
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exists.

There exists an MDP M and a scalar c ≥ 0, such that Π∗c(M) 6= ∅ and Π∗c(M)∩ΠSD(M) =
∅ (i.e., the solution of (5.6) is not a deterministic policy).

Lemma 5.1

Proof. Consider Ex. 5.1a with constraint 1/2 < c < 1 (see Fig. 5.1b for a graphical repre-

sentation). The only deterministic policy πD with constant gain and bias span smaller than c

corresponds to x = 0 and y = 1, which leads to gπD = 1/2 and sp (hπD) = 1/2. On the other

hand, the randomized policy πR corresponding to x = 1 and y = (1 − c)/(1 + c), satisfies

sp (hπR) = c and gπR = c > gπD , thus proving the statement. �

Constant gain. The following lemma shows that if we consider non-constant-gain policies,

the supremum in (5.6) may not be well defined, as no dominating policy exists. A policy

π ∈ ΠSR is dominating if for any policy π′ ∈ ΠSR, gπ(s) ≥ gπ′(s) in all states s ∈ S.

There exists an MDP M and a scalar c ≥ 0, such that there exists no dominating policy π

in ΠSR with constrained bias span (i.e., sp (hπ) ≤ c).

Lemma 5.2

Proof. Consider Ex. 5.1a with constraint 1/2 < c < 1 (see Fig. 5.1b for a graphical represen-

tation). As shown in the proof of Lem. 5.1, the optimal stationary policy πR with constant

gain satisfies g∗c = [c, c]. On the other hand, the only policy π with non-constant gain is

x = 0, y = 0, which has sp (hπ) = 0 < c and gπ(s0) = 1/2 < c = g∗c and gπ(s1) = 1 > c = g∗c ,

thus proving the statement. �

Lem. 5.2 shows that when the search space is not restricted to policies with state-independent

gain, problem (5.6) is not well-posed . We suspect that the same problem arises with Regal.C

(see (5.1)) although it is much more difficult to derive a counter-example in that case (Mc is

a more complex mathematical object).

Existence of a maximizer. Whether problem (5.6) always admits a maximizer (i.e., whether

Π∗c(M) 6= ∅) when the search space is not empty (i.e., when Πc(M) 6= ∅) is left as an open

question. This question may not be easy to answer since in general, π 7→ gπ is not a continuous

map and Πc is not a closed set (and therefore classical results of topology do not apply). For

instance in Ex. 5.1a, although the maximum is attained, the point x = 0, y = 0 does not

belong to Πc (i.e., Πc is not closed) and gπ is not continuous at this point. Notice that in

the particular case where the MDP is unichain (see Def. 2.2), Πc is compact, π 7→ gπ is

continuous, and we can prove the following lemma:

If M is unichain then Π∗c(M) 6= ∅.

Lemma 5.3
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Proof. The proof can be found in (Fruit et al., 2018b, Appendix A.1). �

The goal of this section was to better understand problem (5.5) (equivalent to (5.3)) by

analyzing the more general problem (5.6). We saw that this problem is not as easy as its

unconstrained counterpart (2.35). In the next sections, we will show how to construct an

extended MDP so that (5.5) admits a maximizer (e.g., the extended MDP will be unichain

so that Lem. 5.3 holds) and the problem can be efficiently solved.

5.4 Planning with SCOPT

In this section, we introduce ScOpt and derive sufficient conditions for its convergence to the

solution of (5.6). In Fruit et al. (2018b, Appendix B) we show examples where convergence

to the solution of (5.6) does not hold when these conditions are not satisfied, implying that

these conditions are also necessary in some sense. In the next section, we will show that these

conditions always hold when ScOpt is carefully integrated into UCRLB.

5.4.1 Span-constrained value and policy operators

ScOpt is a version of (relative) value iteration (Puterman, 1994; Bertsekas, 1995), where

the optimal Bellman operator is modified (“truncated”) to return value functions with span

bounded by c, and the stopping condition is tailored to return a constrained greedy policy

with near-optimal gain.

Topology of the span “truncation” operator. Let Bc := {v : sp (v) ≤ c} be the “semi-ball”

of span constrained value functions (we recall that sp (·) is a semi-norm).

For any vector v ∈ RS and any c ≥ 0, the span-truncation operator Γc : RS → Bc is

defined as: Γcv(s) := min {v(s),minx v(x) + c} for all v ∈ RS and s ∈ S.

Definition 5.1

The following lemma shows that Γc can be seen as a projection operator (in span semi-norm)

on the semi-ball Bc.

For any vector v ∈ RS and c ≥ 0, Γcv is a projection of v on the semi-ball Vc in span

semi-norm i.e.,

Γcv ∈ arg min
z∈Bc

sp (z − v) .

Lemma 5.4

Proof. See App. C. �

Note that the projection is not uniquely defined: for any λ ∈ R, Γcv + λe is also the

projection of v on the semi-ball Bc (because sp (e) = 0). We provide a geometric illustration
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v(s1)

v(s2)

c−c
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Figure 5.2: Geometric representation of projection Γc in the 3-dimensional case (S = 3).

of Γc in the three-dimensional case (S = 3) on Fig. 5.2. For simplicity we represent Γc in

the normed quotient space induced by the semi-norm sp (·) on R3. In the quotient space,

sp (·) is an actual norm and Bc is an actual ball of radius c for that norm. Since the null

space of sp (·) is the set of vectors of the form λe with λ ∈ R, it is immediate to see that

the quotient space is in bijection with R2 × {0} (one coordinate is set to 0 and the others

are free variables). In Fig. 5.2 the third dimension v(s3) is set to 0 while v(s1) and v(s2) are

represented on the x and y axis respectively. The ball Bc is represented by a blue line and

the red arrows correspond to the projection Γc on Bc. We can divide R2 in different areas

(separated by dashed red lines on the figure) where projecting a point located outside the

ball onto the ball has a different effect. By definition of Γc, every point inside the ball is an

invariant of Γc.

Like L, Γc satisfies 3 important properties that are key to apply the tools of Chap. 3 while

enforcing the constraint on the bias: monotonicity , non-expansiveness and “linearity”.

Let v and u be any two vectors in RS, then:

(a) Γc is monotone: v ≥ u =⇒ Γcv ≥ Γcu.

(b) Γc is non-expansive both in span semi-norm and `∞-norm:

sp (Γcv − Γcu) ≤ sp (v − u) and ‖Γcv − Γcu‖∞ ≤ ‖v − u‖∞.

(c) Γc is linear5: ∀λ ∈ R, Γc (v + λe) = Γcv + λe.

Lemma 5.5 (Analogue of Prop. 2.5)

Proof. The proof can be found in (Fruit et al., 2018b, Lemma 15, Appendix D.2). �

5We recall that the word “linear” is an abuse of terminology and does not refer to the same property as in

linear algebra (see Prop. 2.5).
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Span truncated greedy operator. We now introduce a constrained (truncated) version of

the optimal Bellman operator by composing L with the span truncation (projection) Γc.

Given c ≥ 0, we define operator Tc : RS → RS as: Tcv := Γc(Lv), for all v ∈ RS.

Definition 5.2

In other words, operator Tc applies a span truncation to the one-step application of L, that is,

for any state s ∈ S, Tcv(s) = min{Lv(s),minx Lv(x)+ c}, which guarantees that sp (Tcv) ≤ c
(by definition). A first major observation is that unlike L, operator Tc is not always associated

with a decision rule d s.t. Tcv = Ldv.

We say that Tc is feasible at v ∈ RS and s ∈ S if there exists a Markov decision rule

d ∈ DMR such that Tcv(s) = Ldv(s). When Tc is feasible at v and all states s ∈ S (i.e.,

when there exists a Markov decision rule d ∈ DMR such that Tcv = Ldv component wise)

we say that Tc is globally feasible at v.

Definition 5.3

In the following lemma, we identify sufficient and necessary conditions for (global) feasibility

of Tc.

Operator Tc is feasible at v ∈ RS and s ∈ S if and only if

min
a∈As
{r(s, a) + p(·|s, a)T v} ≤ min

s′
{Lv(s′)}+ c. (5.7)

Furthermore, let

D(c, v) :=
{
d ∈ DMR | sp (Ldv) ≤ c

}
(5.8)

be the set of randomized decision rules d whose associated operator Ld returns a span-

constrained value function when applied to v. Tcv is globally feasible if and only if D(c, v) 6=
∅, in which case we have

Tcv = max
d∈D(c,v)

Ldv. (5.9)

Lemma 5.6

Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.1). �

Lem. 5.6 shows that it is sufficient to have sp (Ldv) ≤ c for at least one decision rule

d ∈ DMR in order to guarantee that Tcv = Lδv for some δ ∈ DMR (potentially different than

d). This result is a priori not so obvious although it is not difficult to prove. The last part

of this lemma shows that when Tc is globally feasible at v (i.e., when D(c, v) 6= ∅), Tcv is the

component wise maximal value function of the form Ldv with decision rule d ∈ DMR satisfying

sp (Ldv) ≤ c. Surprisingly, even in the presence of a constraint on the one-step value span,

such a component wise maximum still exists. This is not as obvious as in the case of the

greedy operator L since the constraint on the span creates a correlation between states (while
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Algorithm 8 Span truncated greedy operator (Tc, Gc)

Input: MDP M (with optimal Bellman operator L), span constraint c, vector v ∈ RS
Output: Span constrained vector w ∈ RS , Decision rule dvc ∈ DMR

1: Compute u← Lv and d+ ∈ arg maxd∈DMD{Ldv} . Break ties arbitrarily
2: Set umin ← mins∈S {u(s)}
3: for s ∈ S do . This loop can be parallelized
4: if u(s) > umin + c then
5: w(s)← umin + c . See Def. 5.2
6: m← mina∈As{r(s, a) + p(·|s, a)ᵀv}
7: a− ∈ arg mina∈As{r(s, a) + p(·|s, a)ᵀv} . Break ties arbitrarily

8: dvc(a−|s)← min
{

(u(s)− umin − c)/(u(s)−m), 1
}

9: dvc(d+(s)|s)← max
{

(umin + c−m)/(u(s)−m), 0
}

10: dvc(a|s)← 0 for all a 6= a−, d+(s)
11: else
12: w(s)← u(s) . See Def. 5.2
13: dvc(d+(s)|s)← 1 . Greedy action
14: dvc(a|s)← 0 for all a 6= d+(s)
15: end if
16: end for

all states are independent in the case of operator L). As a consequence, whenever D(c, v) 6= ∅,
optimization problem (5.9) can be seen as the solution of the following LP-problem:

max
d∈D(c,v)

{(Ldv)ᵀe} (5.10)

where d 7→ Ldv is a linear map and the set D(c, v) can be expressed as a set of S × (S − 1)
linear constraints on Ldv:

Ldv(s)− Ldv(s′) ≤ c, ∀s 6= s′.

It goes without saying that it is computationally more efficient to calculate Tcv using

Def. 5.2 than solving the LP (5.10). Moreover, to compute the decision rule dvc ∈ D(c, v)
achieving the maximum value Tcv in (5.9), there is also a much more efficient algorithm than

using a generic LP solver on (5.10). Alg. 8 describes how to simultaneously (and efficiently)

compute Tcv and the associated policy dvc when D(c, v) 6= ∅. In the states s ∈ S where

the span constraint c is not violated, dvc(·|s) just plays the greedy action with probability 1
(associated to the optimal Bellman operator L). In the states s ∈ S where the constraint is

violated, dvc(·|s) assigns non-zero probability mass to the greedy action as well as the “anti-

greedy” action (i.e., the action achieving the minimum value instead of the maximum, see line

7 of Alg. 8). The probability mass is tuned so as to ensure that the expected value is exactly

equal to min{Lv(s)} + c, therefore matching the value of Tcv(s). More precisely, using the

notation in Alg. 8, whenever D(c, v) 6= ∅ and u(s) > umin + c = min{Lv(s)} + c, we always

have (as a consequence of Eq. (5.7) in Lem. 5.6):
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dvc(a−|s) = min
{
u(s)− umin − c

u(s)−m , 1
}

= u(s)− umin − c
u(s)−m

and dvc(d+(s)|s) = max
{
umin + c−m
u(s)−m , 0

}
= umin + c−m

u(s)−m

and therefore:

(
�
��u(s)− umin − c
u(s)−m

)
·m+

(
umin + c−��m

u(s)−m

)
· u(s) = umin + c = w(s) = Tcv(s).

On the other hand, whenever D(c, v) 6= ∅, there exists at least one state s ∈ S such that

u(s) ≥ m > umin + c (as a consequence of Eq. (5.7) in Lem. 5.6). In this case, dvc(·|s) just

plays the “anti-greedy” action with probability 1 and Tcv 6= Ldvc v but there exists no decision

rule satisfying the equality in any case (Lem. 5.6). However, it is immediate to verify that

dvc ∈ arg mind∈DMR{|Tcv(s) − Ldv(s)|} for all states s ∈ S and so in some sense, dvc is the

decision rule that is the “closest” to Tcv.

We define the operator Gc : RS → DMR by Gcv := dvc for all v ∈ RS, where dvc is the

decision rule output by Alg. 8 (with c and v as inputs).6

Definition 5.4

We conclude this paragraph with three useful properties satisfied by operator Tc (analogue

of Lem. 5.5).

Let v and u be any two vectors in RS, then:

(a) Tc is monotone: v ≥ u =⇒ Tcv ≥ Tcu.
(b) Tc is non-expansive both in span semi-norm and `∞-norm:

sp (Tcv − Tcu) ≤ sp (v − u) and ‖Tcv − Tcu‖∞ ≤ ‖v − u‖∞.

(c) Tc is linear: ∀λ ∈ R, Tc (v + λe) = Tcv + λe.

Lemma 5.7

Proof. Both L and Γc satisfy (a), (b) and (c) and since Tc = ΓcL (Def. 5.2), the result

follows by composition of operators. �

Span truncated value iteration. We are now ready to introduce ScOpt (Alg. 9). Given a

vector v0 ∈ RS and a reference state s, ScOpt implements relative value iteration where L is

replaced by Tc, i.e., vn+1 = Tcvn − Tcvn(s)e for some arbitrary reference state s ∈ S. Notice

that the term (Tcvn)(s)e subtracted at any iteration n prevents vn from increasing linearly

with n and thus avoids numerical instability . However, the subtraction can be dropped

without affecting the convergence properties of ScOpt (see Alg. 3 and the discussion in

Sec. 2.1.3). If the stopping condition is met at iteration n, ScOpt returns a policy πn = (dn)∞

where dn = Gcvn (among other things).

6When there are multiple greedy and anti-greedy actions, Alg. 8 break ties arbitrarily.
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Algorithm 9 Span-Constrained Optimization (ScOpt)

Input: Operators Tc : RS 7→ RS and Gc : RS 7→ ΠSR, accuracy ε ∈]0,+∞[, arbitrary
reference state s ∈ S, initial vector v0 ∈ RS , contractive factor γ ∈ [0, 1[

Output: Gain g ∈ [0, rmax], bias h ∈ RS , stationary policy π ∈ ΠSR

1: Initialize n = 0
2: v1 := Tcv0
3: while sp (vn+1 − vn) + 2γn

1−γ sp (v1 − v0) > ε do . Loop until termination
4: Increment n← n+ 1
5: Shift vn ← vn − vn(s)e . Avoids numerical instability (vn 6→ +∞)
6: Compute (vn+1, dn) := (Tcvn, Gcvn) . Alg. 8
7: end while
8: Set g := 1

2

(
max{vn+1 − vn}+ min{vn+1 − vn}

)
, h := vn and π := (dn)∞

5.4.2 Convergence and Optimality Guarantees

In order to derive convergence and optimality guarantees for ScOpt we need to analyze the

properties of operator Tc. We start by proving that Tc preserves the one-step span contraction

property of L. Note that in general L is not a contractive operator (in span semi-norm). In

the special case where the MDP is unichain and aperiodic, L is a J-stage contraction with

S ≥ J ≥ 1 (Puterman, 1994, Theorem 8.5.2). In Asm. 5.1 we assume that J = 1.

The optimal Bellman operator L is a 1-step γ-span-contraction, i.e., there exists a γ < 1
such that for any vectors u, v ∈ RS, sp (Lu− Lv) ≤ γsp (u− v).

Assumption 5.1

Under Asm. 5.1, Tc is a γ-span contraction.

Lemma 5.8

Proof. Since Γc is non-expansive (property (b) in Lem. 5.5) and L is γ-contractive, the result

follows by composition. �

As a consequence of Lem. 5.8 and the Banach fixed point theorem, Tc admits a unique fixed

point in the quotient space induced by the span semi-norm on RS . In RS , the fixed point

equation has the same form as the Bellman optimality equation satisfied by L (see Prop. 2.4),

with an associated gain (unique) and bias (unique up to a constant shift). Moreover, ScOpt

converges to the fixed point of this equation and we also show that the associated “gain” is an

upper-bound on the solution of (5.6) (due to the monotonicity property of Tc, see property
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(a) of Lem. 5.7). We formally state these results in Lem. 5.9.

Under Asm. 5.1, the following properties hold:

1. Optimality equation and uniqueness: There exists a solution (g+, h+) ∈ R × RS to

the optimality equation

Tch
+ = h+ + g+e. (5.11)

If (g, h) ∈ R× RS is another solution of (5.11), then g = g+ and there exists λ ∈ R
s.t. h = h+ + λe.

2. Convergence: For any initial vector v0 ∈ RS, the sequence (vn) generated by ScOpt

converges to a solution vector h+ of the optimality equation (5.11), and

lim
n→+∞

Tn+1
c v0 − Tnc v0 = g+e.

3. Dominance: If there exists a scalar g and a vector h ∈ RS such that Tch ≥ h + ge

then g+ ≥ g. As a consequence, the gain g+ is an upper-bound on the supremum

of (5.6), i.e., g+ ≥ g∗c .

Lemma 5.9

Proof. The formal proof can be found in (Fruit et al., 2018b, Appendix D.3). �

Point 3 of Lem. 5.9 is the analogue of Prop.3.3 stated in Sec. 3.2. Prop.3.3 was a key

step in the proof of optimism for UCRLB. Lem. 5.9 will play a similar role for SCAL. A

direct consequence of point 2 of Lem. 5.9 (convergence) is that ScOpt always stops after a

finite number of iterations. Nonetheless, Tc may not always be globally feasible at h+ (Fruit

et al., 2018b, Appendix B) and thus there may not exist a policy associated to optimality

equation (5.11). Furthermore, even when there is one, Lem. 5.9 provides no guarantee on

the performance of the policy returned by ScOpt after a finite number of iterations. To

overcome these limitations, we introduce an additional assumption, which leads to stronger

performance guarantees for ScOpt.

Operator Tc is globally feasible at any vector v ∈ RS such that sp (v) ≤ c.

Assumption 5.2

Theorem 5.1

Assume Asm. 5.1 and 5.2 hold and let γ denote the contractive factor of Tc (Asm. 5.1).

For any v0 ∈ RS such that sp (v0) ≤ c, any s ∈ S and any ε > 0, the policy πn output by

ScOpt(v0, s, γ, ε) is such that ‖g+e − gπn‖∞ ≤ ε. Furthermore, if in addition the policy

π+ = (Gch+)∞ is unichain, g+ is the solution to optimization problem (5.6) i.e., g+ = g∗c
and π+ ∈ Π∗c .

Proof. The proof can be found in (Fruit et al., 2018b, Appendix D.4). �
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The first part of the theorem shows that with the stopping condition used in Alg. 9 (line

3), ScOpt returns an ε-optimal policy πn.

The second part is more subtle. Although it may seem counter-intuitive at first, even though

sp
(
h+) = sp

(
Tch

+) ≤ c (by definition of Tc), in general when the policy π+ = (Gch+)∞

associated to h+ is not unichain, we might have sp
(
h+) < sp

(
hπ

+
)
. This is because hπ

+
is

not necessarily the unique solution (up to constant shift) to the Bellman evaluation equation

associated to π+ and so it is possible that sp
(
h+) 6= sp

(
hπ

+
)
. Consequently, we cannot

guarantee that g+ is the solution of (5.6) (the constraint sp
(
hπ

+
)
≤ c should be satisfied).

On the other hand, Corollary 8.2.7. of Puterman (1994) ensures that if π+ is unichain then

sp
(
h+) = sp

(
hπ

+
)
, hence g+ = gπ

+
.

Notice that no matter whether π+ is unichain or not, we cannot guarantee that πn satisfies

the span constraint, i.e., sp (hπn) may be arbitrary larger than c. Nonetheless, the proof of

UCRLB only requires to bound the span of a vector h solution to an (approximate) Bellman

equation Ldh w h+ g with g ≥ g∗ (optimism), no matter whether h matches the definition of

bias (Eq. 2.10) for policy π = d∞. Similarly, in the next section we show that the condition

sp (hπn) ≤ c is not needed and Thm. 5.1 is sufficient to derive regret bounds when ScOpt is

integrated into UCRL2.

5.5 Learning with SCAL

In this section we introduce SCAL, an optimistic online RL algorithm that employs ScOpt

to compute policies that efficiently balance exploration and exploitation. We prove that the

assumptions stated in Sec. 5.4.2 hold when ScOpt is integrated into the optimistic framework.

Finally, we show that SCAL enjoys the same regret guarantees as Regal.C, while being

the first implementable and efficient algorithm to solve bias-span constrained exploration-

exploitation.

5.5.1 Learning algorithm

For any extended MDP M (see Sec. 2.1.5), based on Def. 5.2 we define Tc as the span trun-

cation of the optimal Bellman operator L of M. In the rest of this chapter, we will refer

to this operator as the “span-truncated Bellman operator”. In particular, we denote by Lk
and T kc the operators associated to Mk. Given the structure of problem (5.3), one might

consider applying ScOpt to the extended MDP Mk (using T kc ). Unfortunately, in general

Lk does not satisfy Asm. 5.1 and 5.2 and thus T kc may not enjoy the properties of Lem. 5.9

and Thm. 5.1. To overcome this problem, we slightly modify Mk as described in Def. 5.5.
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Let M be an extended MDP defined by the confidence intervals Br(s, a) =[
r(s, a)−, r(s, a)+] and Bp(s, a, s′) =

[
p(s′|s, a)−, p(s′|s, a)+] for all state-action pairs

(s, a). Let 1 ≥ η > 0 and s ∈ S an arbitrary “reference” state. We define the “modi-

fied” MDP M̃ associated to M by

∀(s, a, s′) ∈ S ×A× S, B̃r(s, a) :=
[
0, r(s, a)+

]
, (5.12)

B̃p(s, a, s′) :=

Bp(s, a, s
′) if s′ 6= s,

Bp(s, a, s) ∩ [η, 1] otherwise,
(5.13)

where we assume that η is small enough so that:

Bp(s, a, s) ∩ [η, 1] 6= ∅, and
∑
s′∈S

p(s′|s, a)− ≤ 1 ≤
∑
s′∈S

p(s′|s, a)+

We denote by L̃ the optimal Bellman operator of M̃ and by T̃c the span truncation of L̃
(see Def. 5.2).

Definition 5.5

We will now justify the two transformations introduced in Def. 5.5: the “perturbation” of

the transition probabilities (5.13) as well as the “augmentation” of the rewards (5.12)7.

By slightly perturbing the confidence intervals Bp of the transition probabilities, we enforce

that the “attractive” state s is reached with non-zero probability from any state-action pair

(s, a). A direct implication is that the ergodic coefficient of M̃ defined as

γ := 1− min
s,x ∈S,
a,b ∈A
p,q ∈B̃p


∑
y∈S

min {p(y|s, a), q(y|x, b)}︸ ︷︷ ︸
≥η if y=s


is smaller than 1−η < 1, so that L̃ is γ-contractive (Puterman, 1994, Thm. 6.6.6). Therefore,

Asm. 5.1 holds. Moreover, for any policy π ∈ ΠSR(M̃), the state s necessarily belongs to all

recurrent classes of π implying that π is unichain. Thus, M̃ is a unichain MDP. As we will

later show, the η-perturbation of Bp only introduces a small bias ηc in the optimism. Given

that c is known and η > 0 can be tuned, the magnitude of this bias can be controlled .

Let’s now ignore the η-perturbation of Bp and focus on the augmentation of Br. By

augmenting (without perturbing) the confidence intervals Br of the rewards, we ensure two

useful properties. First of all, the maximal reward r(s, a)+ of B̃r(s, a) is unchanged and so

for any vector v ∈ RS , L̃v = Lv and thus T̃cv = Tcv (by definition of Tc). Secondly, let

d ∈ DMD(M̃) be any (Markov deterministic) decision rule such that ∀s ∈ S, r̃(s, d(s)) = 0
(such a decision rule always exists given the definition of B̃r(s, a) in Eq. 5.12). We denote by

L̃d the Bellman evaluation operator of decision rule d in the extended MDP M̃ (see Eq. 2.4:

7It is immediate to see that B̃r(s, a) ⊆ Br(s, a), hence the name “augmentation”.
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L̃dv := r̃d + P̃dv for all v ∈ RS). Since the reward associated to d is 0 in all states, we have

sp
(
L̃dv

)
= sp

(
P̃dv

)
≤ sp (v) (the last inequality is a direct consequence of Proposition 6.6.1

of Puterman, 1994). Therefore, if sp (v) ≤ c then sp
(
L̃dv

)
≤ c meaning that d ∈ D̃(c, v) 6= ∅

(where D̃(c, v) 6= ∅ is defined in Lem. 5.6). By Lem. 5.6, D̃(c, v) 6= ∅ implies that T̃c is globally

feasible at v. To summarize, for all v ∈ RS satisfying sp (v) ≤ c, T̃c is globally feasible at v.

This matches the statement of Asm. 5.2.

When combining both the perturbation of Bp and the augmentation of Br, both Asm. 5.1

and 5.2 hold and we obtain Thm. 5.2 (see Fruit et al., 2018b, Theorem 11).

Theorem 5.2

LetM be an extended MDP and M̃ its “modified” counterpart with perturbation η ≥ 0 (see

Def. 5.5). Then

1. L̃ is a γ-span contraction with γ ≤ 1−η < 1 (i.e., Asm. 5.1 holds) and thus Lem. 5.9

applies to T̃c. We denote by (g+, h+) a solution to equation (5.11) for T̃c.
2. T̃c is globally feasible at any v ∈ RS satisfying sp (v) ≤ c (i.e., Asm. 5.2 holds) and

M̃ is unichain implying that π+ = (Gch+)∞ is unichain.

Thus Thm. 5.1 applies to T̃c.

Proof. The proof can be found in (Fruit et al., 2018b, Appendix E). �

SCAL is a variant of UCRLB that applies ScOpt (see Alg. 9) instead of EVI on the

extended MDP M̃k obtained by modifying Mk (see Def. 5.5) in each episode k in order to

solve the optimization problem8

max
M∈M̃k, π∈Πc(M)

gπM := g+
k (5.14)

where the maximum always exists (Thm. 5.2 applies to M̃k). The maximizing policy is

denoted π+
k . The intervals B̃k

p of M̃k are constructed using parameter9 ηk = rmax/(c · tk) and

an arbitrary attractive state s ∈ S. ScOpt is then run with an initial value function v0 = 0,

the same reference state s used for the construction of B̃k
p , contraction factor γk = 1 − ηk,

and accuracy εk = rmax/tk. ScOpt finally returns a policy which is executed until the end of

episode k.

More precisely, SCAL implements Alg. 5 (UCRLB) with the difference thatMk should be

replaced by M̃k in line 5 (see Def. 5.5 for how to compute M̃k based on Mk). Also, line 9

(Eq. 3.5) should be replaced by:

(gk, hk, πk) := ScOpt

(
T̃ kc , G̃kc ,

rmax
tk

, s1, 0, γk
)
. (5.15)

The rest of Alg. 5 is unchanged. Note that in theory, the aperiodicity transformation

8This optimization problem is a specific instance of (5.3) in Sec. 5.2 with M← M̃k.
9Notice that given that βsas

′
p,k ≥ ηk for all (s, a, s′) ∈ S ×A× S, the assumptions of Def. 5.5 hold.
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is useless in ScOpt because the η-perturbation of Bk
p already ensures aperiodicity of M̃k.

In our experiments, η is set to 0 since ScOpt still converges (see Sec. 5.6). In that case,

it may be useful to integrate the aperiodicity transformation into ScOpt. The aperiodicity

transformation affects both L̃k and the truncation Γc since the constraint c should be replaced

by c/(1− α) as a consequence of the following theorem.

Theorem 5.3

Let M be an MDP and Mα the MDP obtained after aperiodicity transformation of param-

eter α. For any (stationary) policy π ∈ ΠSR: hπMα
= 1/(1− α)hπM where hπMα

and hπM are

the bias associated to policy π in M and Mα respectively. In particular, h∗Mα
= 1/(1−α)h∗M

and so sp
(
h∗Mα

)
= 1/(1− α)sp (h∗M ).

Proof. See App. C.2. �

5.5.2 Analysis of SCAL

Gain optimism

Thm. 5.2 only guarantees gain-optimism (i.e., g+
k ≥ g∗) when M ∈ M̃k. Unfortunately,

although M ∈Mk with high probability by construction (see Thm. 3.1), this may no longer

be true for M̃k due to the ηk-perturbation of Bk
p . Since the “inclusion argument” seem to

fail here, we will use the new proof technique introduced in Sec. 3.2.1 that relies on the

“dominance property” of Lk (we will need to use the dominance property of T̃ kc instead). As

discussed in Sec. 3.2, a direct consequence of Thm. 3.1 is that with probability at least 1− δ
3 :

∀k ≥ 1, Lkh∗ ≥ Lh∗ = h∗ + g∗e.

where we recall that g∗ and h∗ respectively denote the optimal gain and bias of the true

(unknown) MDP M . In Chap. 3 we argued that this simple inequality and the “dominance

property” of Prop. 3.3 are sufficient to show that UCRLB is gain-optimistic. We proceed

similarly for SCAL.

By assumption sp (Lh∗) = sp (h∗) ≤ c implying that Γc(Lh∗) = Lh∗ by definition of Γc
(see Sec. 5.4.1). Using the monotonicity property of Γc (property (a) in Lem. 5.5) we deduce

that with probability at least 1− δ
3 :

∀k ≥ 1, T kc h∗ = Γc(Lkh∗) ≥ Γc(Lh∗) = Lh∗ = h∗ + g∗e (5.16)

The idea is to now use point 3 of Lem. 5.9 (“dominance property”) in order to prove optimism.

The problem is that ScOpt uses T̃ kc instead of T kc to compute policy πk. The following lemma
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shows that the two operators give similar results up to a small bias of order ηk · c.

Let M be an extended MDP and M̃ its “modified” counterpart with perturbation η ≥ 0
(see Def. 5.5). Denote by Tc and T̃c the span-truncated Bellman operators of M and M̃
respectively (see Def. 5.2). For any vector h ∈ RS:∥∥∥Tch− T̃ch∥∥∥∞ ≤ η · sp (h) (5.17)

Lemma 5.10

Proof. See (Fruit et al., 2018b, Lemma 19, Appendix E). �

When the transition probabilities are perturbed by η, the application of T̃c on h results in

a perturbation of η amplified by sp (h) i.e., η · sp (h).

As a direct consequence of Lem. 5.10 and Eq. 5.16 and the assumption that sp (h∗) ≤ c,

with probability at least 1− δ
3 :

∀k ≥ 1, T̃ kc h∗ ≥ h∗ + (g∗ − ηk · c) e and so g+
k ≥ g

∗ − ηk · c = g∗ − rmax
tk

(5.18)

where the second inequality is a direct application of the dominance property proved in

Lem. 5.9. SCAL is therefore approximately gain-optimistic. As shown in Chap. 3, the term

rmax/tk only has a negligible impact on the regret (negligible logarithmic term).

Bound on the range of the optimistic bias

Due to Thm. 5.2, (gk, hk) (see Eq. 5.15) satisfies an approximate Bellman equation (similar

to (3.22) for UCRLB) i.e.,

∥∥∥T̃ kc hk − hk − gke∥∥∥∞ ≤ rmax
tk

. (5.19)

Thm. 5.2 also shows that T̃ kc is globally feasible at hk implying that T̃ kc hk = L̃dkk hk with

πk = (dk)∞. Finally, sp (hk) ≤ c since either hk = v0 = 0 or there exists v ∈ RS such that

hk = T̃ kc v (by design of ScOpt).
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Regret guarantees

We are now ready to prove two regret bounds for SCAL (as we did for UCRLB).

Theorem 5.4

There exists a numerical constant β > 0 such that for any weakly communicating MDP

satisfying sp (h∗) ≤ c, with probability at least 1 − δ, it holds that for all initial state

distributions µ1 ∈ ∆S, and for any time horizon T > 1, the regret of SCAL is bounded as

∆(SCAL, T ) ≤ β ·max {rmax, c}

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)

+ β ·max {rmax, c}S2A ln
(
T

δ

)
ln (T ) .

(5.20)

Proof. The proof is identical to the proof of Thm. 3.4 for UCRLB. The only difference is

that we bound sp (hk) by c instead of Λ and a factor 2 appear when using the optimism

property since gk ≥ g∗ − 2rmax/tk (ηk-perturbation combined with εk-approximation). �

Theorem 5.5

There exists a numerical constant β > 0 such that for any weakly communicating commu-

nicating MDP satisfying sp (h∗) ≤ c, with probability at least 1 − δ, it holds that for all

initial state distributions µ1 ∈ ∆S and for all time horizons T > 1, the regret of SCAL is

bounded as

∆(UCRLB, T ) ≤ β ·max {rmax,
√
rmaxc}

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
ln (T )

+ β ·max
{
rmax,

c2

rmax

}
S2A ln

(
T

δ

)
ln (T ) .

(5.21)

Proof. The proof is identical to the proof of Thm. 3.5 for UCRLB with the same two (minor)

differences mentioned in the proof of Thm. 5.4. �

The previous bound shows that when c ≤ Λ, SCAL scales linearly with c, while UCRLB

scales linearly with Λ (all other terms being equal). Notice that the gap between sp (h∗) and

Λ can be arbitrarily large, and thus the improvement can be significant in many MDPs. As

an extreme case, in weakly communicating MDPs the travel-budget can be infinite, leading

UCRLB to suffer linear regret (see Chap. 4), while SCAL is still able to achieve sub-linear

regret without requiring the algorithmic modifications presented in Chap. 4 (TUCRL). SCAL

is able to learn in any weakly-communicating MDP like TUCRL and unlike UCRLB (which

is only able to learn in a communicating MDP). However, we conjecture that SCAL (unlike

TUCRL) does not suffer from the limitations mentioned in Sec. 4.5 of Chap. 4 i.e., while the

regret of TUCRL will always grow as
√
T when the true MDP is not communicating , the

regret of SCAL eventually grows logarithmically with T . SCAL is able to exploit additional
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prior knowledge about sp (h∗) that TUCRL does not have. Since TUCRL is solving a more

difficult problem, it is reasonable to expect the algorithm to perform worse than SCAL (at

least asymptotically). More precisely, we make this conjecture for two reasons. The first

reason is that it seems straightforward to extend the proof of Jaksch et al. (Theorem 4

2010) to SCAL (and UCRLB). We recall that this theorem shows that the regret of UCRL2

eventually grows logarithmically with T (for T big enough) and not as
√
T . We keep the

formal proof of this conjecture for future work. The second reason is that the experiments

presented in the next section tend to validate the conjecture.

When c > Λ, due to the ηk-perturbation pf Bk
p , it seems not trivial to relate the span of

hk with Λ (unlike in the case of UCRLB, see Sec. 3.3). Nevertheless, we can slightly modify

SCAL to address this issue: at the beginning of any episode k, we run both ScOpt (with

the same inputs) and EVI (as in UCRLB) in parallel and pick the policy associated to the

optimistic bias with smallest span. With this modification, SCAL enjoys the best of both

worlds, i.e., the regret scales with min{c,Λ} instead of c.

When c is wrongly chosen (c < sp (h∗)), SCAL learns a span-constrained optimal policy

with an associated gain g∗c (solution to (5.6)) that can potentially be arbitrary smaller than

g∗. In this scenario, the regret is bounded as

Õ

√√√√rmax min{c,Λ}
(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)
ln (T )

+ (g∗ − g∗c ) · T

For a given horizon T , there is clearly a trade-off in the choice of c: a big value minimizes

the linear term (g∗ − g∗c ) · T but increases the
√
T -term, and conversely. The best way to

choose c depends on the amount of prior knowledge about the true MDP.

To conclude this section, we emphasize that the benefit of SCAL over UCRL2 comes at

a negligible additional computational cost (EVI and ScOpt have comparable time and space

complexities).

5.6 Numerical Experiments

In this section, we numerically validate our theoretical findings. In particular, we show

that the regret of UCRLB indeed scales with the travel-budget, while SCAL achieves much

smaller regret that only depends on the span. This result is even more extreme in the case

of non-communicating MDPs, where Λ = +∞.

5.6.1 Toy MDP

Consider the simple but descriptive three-state domain shown in Fig. 4.5 (Chap. 4) where

instead of being deterministic, all rewards are Bernoulli random variables (with the same

means). This small change slightly increases the complexity of the problem. The optimal

policy π∗ is such that π∗(s2) = a1 with gain g∗ = 2
3 and bias h∗ =

[
−2−δ
3(1−δ) ,

−1
1−δ , 0

]
. If δ is

140



5.6. Numerical Experiments

102 103 104

104

105

106

1/δ

R
eg
re
t
(U

C
R
L
B
)

Figure 5.3: Cumulative regret incurred by UCRLB after T = 2.5 · 107 steps as a function of
1/δ ∝ Λ (averaged over 20 runs).

small, sp (h∗) = 1
1−δ ≈ 1, while Λ ∝ 1

δ . Fig. 5.3 shows that, as predicted by theory, the

regret of UCRLB (for a fixed horizon T ) grows with 1
δ ≈ Λ. The optimal bias span however

is roughly equal to 1. Therefore, we expect SCAL to clearly outperform UCRLB on this

example. In all the experiments, we noticed that perturbing the extended MDP was not

necessary to ensure convergence of ScOpt and so we set ηk = 0. We also set γk = 0 to

speed-up the execution of ScOpt (see stopping condition in Alg. 9).

Communicating MDPs. We first set δ = 0.005 > 0, giving a communicating MDP (Fig. 5.4).

With such a small δ, visiting state s1 is rather unlikely. Nonetheless, UCRLB keeps trying to

visit s1 (i.e., play a0 in s2) until it collects enough samples to understand that s1 is actually

a bad state (before that, UCRLB“optimistically” assumes that s1 is a highly rewarding state).

Therefore, UCRLB plays a0 in s2 for a long time and suffers large regret. This problem is

particularly challenging for any learning algorithm solely employing optimism like UCRLB

(cf. (Ortner, 2008) for a more detailed discussion on the intrinsic limitations of optimism in

RL). In contrast, SCAL is able to mitigate this issue when an appropriate constraint c is used.

More precisely, whenever s1 is believed to be the most rewarding state, the value function

(bias) is maximal in s1 and ScOpt applies a “truncation” in that state and “mixes” deter-

ministic actions. In other words, SCAL leverages on the prior knowledge of the optimal bias

span to understand that s1 cannot be as good as predicted (from optimism). The exploration

of the MDP is greatly affected as SCAL quickly discovers that action a0 in s2 is suboptimal.

Therefore, SCAL is always performing better than UCRL (Fig. 5.4b) and the smaller c, the

better the regret. Surprisingly the actual policy played by SCAL in this particular MDP is

always deterministic. ScOpt mixes actions in s1 where only one true action is available but

the mixing happens in the extended MDP M̃k where the action set is compact. The policy

that ScOpt outputs is thus stochastic in the extended MDP but deterministic in the true

MDP.

Infinite travel-budget. By selecting δ = 0 (Fig. 5.5) the diameter becomes infinite (D =
+∞) but the MDP is still weakly communicating (with transient state s1). UCRLB is not
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Figure 5.4: Results in the three-states domain with δ = 0.005. We report the span of the
optimistic bias (Fig. 5.4a) and the cumulative regret (Fig. 5.4b) as a function of T .
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Figure 5.5: Results in the three-states domain with δ = 0. We report the span of the
optimistic bias (Fig. 5.5a) and the cumulative regret (Fig. 5.5b) as a function of T .

able to handle this setting and suffers linear regret. On the contrary, SCAL is able to quickly

recover the optimal policy (see Fig. 5.5). Note that unlike with TUCRL, the regret of SCAL

seems to achieve a logarithmic “plateau” even in the non-communicating case. This may

seem paradoxical but actually Thm. 4.2 does not apply in the case where a bound on the

optimal bias span is known since the MDPs with sufficiently small ε in Fig. 4.8 (used to prove

Thm. 4.2) do not satisfy sp (h∗) ≤ c. We conjecture that a logarithmic regret bound similar

to Thm. 2.37 can be derived for SCAL, SCAL+ and SCAL?, with D replaced by c/rmax. This

simple example shows the dramatic impact of prior knowledge on the exploration-exploitation

performance.

5.6.2 Knight Quest

We now consider a second environment that takes inspiration from classical arcade games.

The goal is to rescue a prisoner in the shortest time without being killed by the dragon. To

achieve this task, the knight needs to collect gold, buy a key and deliver the prisoner. A
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Agent

Objects at the shop

Figure 5.6: Representation of the Knight Quest 4× 4 map. The grey shadowed cells are the
locations where the dragon can move.

representation of the environment is provided in Fig. 5.6. The elements of the game are: a

knight, a prisoner, a dragon patrolling around the prisoner, a gold mine and, a shop, a key

and a shield.

Shop, Prisoner and Gold Mine. These elements are special states of the environment. The

shop is the place where the knight can buy objects. Every time the knight is killed by the

dragon or delivers the prisoner, it restarts from the shop. The prisoner is located behind the

locked door in the terminal state. The knight can collect gold at the gold mine.

Dragon. The dragon is the enemy and it is randomly moving around the prisoner’s location.

Let’s denote with d ∈ {0, 1, 2} the position of the dragon such that: d = 0 is the bottom left

grey cell, d = 1 is the bottom right grey cell and d = 2 the top grey cell. The transition

probabilities of the dragon are:

p(·|0) = [0.4, 0, 0.6]ᵀ; p(·|1) = [0, 0.4, 0.6]ᵀ; p(·|2) = [0.4, 0.2, 0.4]ᵀ.

The dragon kills the knight when they are both at the same position and the knight does not

have the shield.

Knight. The knight is the only player of the game. He or she moves in the environment

using the four cardinal actions (i.e.,, right , down, left and up) plus an action to keep the

current position (stay). We refer to these 5 actions as movement actions. Additionally, the

knight can collect the gold (action CG), buy a key (action BK ) or buy a shield (action BS ).

State representation, actions and reward. A state of the game is represented by the fol-

lowing elements:

• Knight position: coordinates of the grid (row, col), row, col ∈ 0, 1, 2, 3;

• Gold level: the amount of gold owned by the knight, g ∈ {0, 1};
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• Dragon position: d ∈ {0, 1, 2};

• Object identifier: object(s) carried by the knight, o = {0, 1, 2, 3} where 0 ⇔ nothing,

1⇔ key, 2⇔ armour and 3⇔ key and armour.

We can now can explain the effects of actions, i.e., how the next state is generated. The

movement actions have the trivial effect of changing the knight position. The action CG

changes the state only when the knight is at the mine. In this case the level of gold is

incremented by one, formally, g ← min{1, g + 1}. Actions BK and BA alter the state only

when executed in the shop with gold-level equal to 1. All the actions are deterministic when

the knight does not carry the shield. When the knight carries the shield, he or she cannot be

killed by the dragon (i.e., knight and dragon can occupy the same cell). However, due to the

weight of the armour, the knight’s gait is unsteady and other tasks are more challenging i.e.,

• the cardinal actions result in a normal (correct) transition with probability 0.5, other-

wise the current position is kept,

• CG fails with probability 0.99, i.e., with probability 0.01 the gold level is incremented,

• actions BK and BS are not modified.

The basic reward signal is −1 at each time step. The knight also receives a reward of −10
when he or she executes CG, BK or BA outside the designed location (i.e., mine and shop).

Finally, he or she obtains a reward of 20 when reaching the prisoner with the key and −20
when killed by the dragon. For the experiments, we rescaled the reward to lie in [0, 1].

Features of the game. The state and action space size are S = 360 and A = 8, while the

travel-budget of the MDP is Λ ≈ 130. The associated shortest path starts from the shop

with the shield and no gold, and eventually delivers the prisoner with one unit of gold and

the key. In contrast, the optimal strategy simply consists in collecting gold, buying the key

and rescuing the prisoner (there is no need to buy the shield as the dragon can be bypassed).

We have: g∗ ≈ 0.5, sp (h∗) ≈ 3.28.

This game is challenging since the worst shortest path (achieving the travel-budget) is

“orthogonal” to the optimal policy (achieving optimal gain). Many common real-world RL

tasks appear to share this property: the agent can face several choices (actions) and most of

them are useless. The span constraint c can somehow be interpreted as a prior on the level

of difficulty of the game.

Results. We run UCRLB and SCAL over an horizon T = 4 · 108, with different priors c.

As in the toy example, SCAL is run with the augmented reward but no perturbation of the

transition matrix (ηk = 0), and γk is set to 0. Results are reported in Fig. 5.7. We can notice

that SCAL is able to outperform UCRL2 by a big margin. This is because unlike UCRLB,

SCAL can leverage the knowledge of c to better direct the exploration.
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Figure 5.7: Behaviour of UCRLB and SCAL in the knight quest game. Figures show the
span of the optimistic bias (Fig. 5.7a) and the cumulative regret (Fig. 5.7b) as a function of
T . Results are averaged over 15 runs and 95% confidence intervals of the mean are shown for
the regret.

5.7 SCAL+: SCAL with exploration bonus

In this section, we introduce SCAL+, an online RL algorithm that leverages an exploration

bonus to achieve near-optimal regret guarantees. Similar to SCAL, SCAL+ takes as input

an upper-bound c on the optimal bias span (i.e., sp (h∗) ≤ c) to constrain the planning

problem solved over time. The crucial difference with SCAL is that SCAL+ does not require

planning with an extended Bellman operator, but it directly computes the optimal policy of

the estimated Bellman operator, where the reward is increased by an exploration bonus. As

proved in Sec. 5.7.2 the bonus is carefully tuned so as to guarantee optimism and small regret

at the same time (Thm. 5.6).

5.7.1 The algorithm

The pseudo-code of SCAL+ is reported in Alg. 10. Similarly to SCAL and UCRLB, SCAL+

proceeds in episodes (indexed by k). At the beginning of each episode k, SCAL+ constructs

an estimated MDP Mk = (S,A×{0, 1}, pk, rk) (line 5 of Alg. 10). Unlike the extended MDP

used in SCAL, Mk has a finite action space. The maximum likelihood estimator would be

the natural choice to define the transition probabilities and rewards of Mk i.e., pk ← p̂k and

rk ← r̂k. Unfortunately, this choice does not guarantee that the optimal gain g∗k of Mk is

bigger or equal than the optimal gain of the true unknown MDP g∗. To ensure gain-optimism

(see Lem. 5.12), we increase the reward by an exploration bonus bk (Eq. 5.22) i.e., we define

rk ← r̂k + bk (Eq. 5.25). Intuitively, the exploration bonus is large for poorly visited state-

action pairs, while it decreases as the number of visits increases. A crucial aspect in the

formulation of bk is that it scales with the bound on the bias span c ≥ sp (h∗). In fact,

the exploration bonus is tailored to guarantee the dominance property Lkh
∗ ≥ Lh∗ holds

with high probability, where Lk is the optimal Bellman operator of Mk. Therefore bk is not
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Algorithm 10 SCAL+ (SCAL with exploration bonus)

Input: Confidence δ ∈]0, 1[, maximal reward rmax, set of states S, set of actions A, positive
scalar c ≥ 0

1: Set initial time t := 1, observe initial state s1 and initialize for all (s, a, s′) ∈ S ×A× S:
• counters N1(s, a, s′) := 0 and N1(s, a) := 0,
• empirical averages p̂1(s′|s, a) := 0 and r̂1(s, a) := 0,

2: for episodes k = 1, 2, ... do
3: Set the starting time of the episode tk := t and initialize for all (s, a, s′) ∈ S ×A×S:

episode counters νk(s, a, s′) := 0 and νk(s, a) := 0, and cumulative rewards Rk(s, a) := 0.
4: For all (s, a, s′) ∈ S ×A× S, compute exploration bonus:

bk(s, a) := c ·min
{
βsak + 1

Nk(s, a) + 1 , 2
}

+ rmax ·min {βsak , 1} (5.22)

with βsak :=

√√√√ 1
N+
k (s, a)

ln
(

20SAN+
k (s, a)
δ

)
(5.23)

5: Set Mk := {S,A × {0, 1}, rk, pk} to be the “augmented” and ”perturbed” estimated
MDP defined by

pk(s′|s, ai) := Nk(s, a)p̂k(s′|s, a)
Nk(s, a) + 1 + 1(s′ = s1)

Nk(s, a) + 1 , (5.24)

rk(s, ai) := (r̂k(s, a) + bk(s, a)) · 1(i = 1) (5.25)

for all s ∈ S, ai = (a, i) ∈ A× {0, 1}.
6: Compute policy πk using ScOpt (see Alg. 9):

(gk, hk, πk) := ScOpt

(
Lk, Gk,

rmax
tk

, s1, 0,
1

tk + 1

)
(5.26)

7: Sample action at ∼ πk(·|st).
8: while True do . Execute policy πk until the end of episode k
9: Execute action at, obtain reward rt, and observe next state st+1.

10: Increment episode counters:
νk(st, at, st+1)← νk(st, at, st+1) + 1 and νk(st, at)← νk(st, at) + 1

11: Increment cumulative reward Rk(st, at)← Rk(st, at) + rt
12: if νk(st, at) ≥ N+

k (st, at) then . Stopping condition of episode k
13: Increment time t← t+ 1 and Break
14: else
15: Increment time t← t+ 1 and set action at ∼ πk(·|st).
16: end if
17: end while
18: Update counters, empirical averages and sample variances for all (s, a, s′) ∈ S×A×S:

Nk+1(s, a, s′) := Nk(s, a, s′) + νk(s, a, s′) and Nk+1(s, a) := Nk(s, a) + νk(s, a) (5.27)

p̂k+1(s′|s, a) := Nk(s, a)
N+
k+1(s, a)

· p̂k(s′|s, a) + νk(s, a, s′)
N+
k+1(s, a)

(5.28)

r̂k+1(s, a) := Nk(s, a)
N+
k+1(s, a)

· r̂k(s, a) + Rk(s, a)
N+
k+1(s, a)

(5.29)

19: end for
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just designed as an upper-confidence bound on the reward10, but it is designed to take into

consideration how estimation errors on both p and r may propagate to the bias function

through application of the Bellman operator. As the constant c provides prior knowledge

about the span of the optimal bias vector, the exploration bonus is obtained by considering

that “local” estimation errors may be amplified up to a factor c.

The planning problem. To further exploit the prior knowledge sp (h∗) ≤ c we would like

to solve the optimization problem

g∗c (Mk) := sup
π∈Πc(Mk)

{gπMk
}, (5.30)

which is an instance of problem (5.6). We recall that SCAL also requires solving an instance

of (5.6) but on an extended MDP (see problem (5.5)). We extensively studied (5.6) in Sec. 5.4

and derived ScOpt to solve the problem. While in general ScOpt may fail to converge or

may return a value function whose associated greedy policy is not a solution to the original

optimization problem (Fruit et al., 2018b, Appendix B), we provided a series of sufficient

conditions on the MDP for which convergence and optimality properties are recovered (see

Sec. 5.4.2). We follow the same approach as in Sec. 5.5.1 and design Mk so as to enforce

these sufficient conditions (as we did with the extended MDP of SCAL).

Instead of defining pk ← p̂k, we slightly perturb the transition probability to ensure that

the ergodic coefficient γk of Mk is strictly less than 1 (see Asm. 5.1). More precisely, we

set pk ←
(
1− 1

Nk+1

)
p̂k + 1

Nk+1es1 (see Eq. 5.24), where es1 is the vector with zero values

everywhere except at the s1-th coordinate (s1 is the initial state at the beginning of the

learning process). Note that pk is a biased but asymptotically consistent estimator of p.

While in the extended MDP of SCAL, the perturbations of transition probabilities were the

same in all state-action pairs (s, a), here the perturbation depends on Nk(s, a). In this case

we cannot directly apply Lem. 5.10 to show that optimism is preserved up to an η-accuracy.

However, we can adjust the exploration bonus in order to compensate for this small bias by

adding a term of order c/Nk (see Eq. 5.22). This will only have a minor impact on the final

regret (logarithmic term). Finally, since tk ≥ Nk, we have γk ≤ 1 − 1
tk+1 < 1 and so we can

give this value as input to ScOpt (see (5.26)).

We also augment the rewards by duplicating every action (the action space of Mk is A ×
{0, 1}). For every ai = (a, i) ∈ A× {0, 1}, the reward rk(s, ai) is r̂k(s, a) + bk(s, a) for i = 1,

and 0 for i = 0, while the transition probability is unchanged (same for both a0 and a1).

By construction, there always exists a policy achieving 0 reward in every state in Mk (any

policy taking action a0). Such a policy has zero gain and bias and so according to Lem. 5.6,

Πc(Mk) 6= ∅.

Following similar steps as in Sec. 5.5, we can prove that Mk satisfies all sufficient conditions

10In that case, setting bk(s, a) = rmaxβ
sa
k (see Eq. 5.23) would be enough.
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for ScOpt to converge and return an approximate solution to (5.30).

The MDP Mk satisfies the following properties:

1. the optimal Bellman operator Lk is a γk-span-contraction with γk ≤ 1− 1
tk+1 < 1,

2. all policies are unichain,

3. the operator T kc := ΓcLk is globally feasible at any vector v ∈ RS such that sp (v) ≤ c.
Therefore, Thm. 5.1 holds. In particular, ScOpt converges and returns a policy πk (ap-

proximately) solving (5.30).

Lemma 5.11

Proof. See (Qian et al., 2018b, Proposition 2). �

The policy πk returned by ScOpt is obtained by projecting the policy π̃k obtained in the

augmented set A× {0, 1} and it can be “projected” on A as πk(s, a)← π̃k(s, a1) + π̃k(s, a2).
The associated greedy operator is denoted Gk.

Comparison to SCAL. While SCAL+ runs (relative) value iteration directly on the MDP

Mk, which has a similar structure as the original MDP (finite action space), SCAL runs

extended value iteration on an extended MDP, whose (uncountable) action space is augmented

to take into consideration the confidence intervals on rewards and transition probabilities.

As a result, at each iteration of ScOpt, SCAL applies the optimal Bellman operator of

the extended MDP to the current value vector. This requires to solve SA different linear

programs to find the optimistic transition probabilities. Using LProba (see Alg. 7), this can

be done in at most O(S ln(S)+S2A) = O(S2A) computations by first sorting the value vector

and then applying LProba (which requires O(S) computations) to all (s, a) pairs. Overall,

every iteration of ScOpt requires O(S2A) computations in SCAL. In comparison, in SCAL+,

every iteration of ScOpt can also be done in O(S2A) computations. Therefore, even though

SCAL+ requires fewer computations at every iteration of ScOpt, the order of magnitude is

the sameO(S2A). Nevertheless, SCAL+ is conceptually simpler and has a simpler algorithmic

structure, which makes it potentially more flexible and easier to generalize to more complex

tasks.

5.7.2 Optimistic Exploration Bonus

We now formally show that g∗c (Mk) (see Eq. 5.30) is upper-bounding g∗. As explained in the

previous section, the exploration bonus was tailored to enforce this property. We denote by

Lk (resp. T kc ) the (resp. truncated) Bellman operator of Mk.

With probability at least 1 − δ
5 , for all k ≥ 1, Lkh

∗ ≥ Lh∗ and therefore by monotonicity

of Γc, T kc h∗ ≥ Lh∗. If in addition, sp (h∗) ≤ c, then g∗c (Mk) ≥ g∗ as a consequence of

property 3. of Lem. 5.9 (dominance of operator Tc).

Lemma 5.12
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Tightness of optimism. Although this might not be straightforward from the statement

of Lem. 5.12, SCAL+ achieves a “tighter” optimism (i.e., is less prone to over-exploration)

than SCAL. More precisely, T kc h
∗ upper-bounds Tch

∗ = Lh∗ by a term approximately scaling

as Θ̃
(
max{rmax, c}/

√
Nk(s, a)

)
(corresponding to the exploration bonus). In contrast, the

truncated Bellman operator used by SCAL applied to h∗ i.e., T̃c
k
h∗, is bigger than Tch

∗ = Lh∗

by approximately Θ̃
(
max{rmax, c}

√
Γ(s, a)/Nk(s, a)

)
. The optimism in SCAL+ is therefore

tighter by a multiplicative factor
√

Γ. Unfortunately, the tighter degree of optimism is not

sufficient to remove the
√

Γ in the final regret bound . In the next section (see proof sketch of

Thm. 5.6), we will explain why the
√

Γ cannot be removed with the current analysis.

5.7.3 Regret Analysis of SCAL+

We now prove a regret bound similar to SCAL (Thm. 5.4).

Theorem 5.6

There exists a numerical constant β > 0 such that for any weakly communicating MDP

satisfying sp (h∗) ≤ c, with probability at least 1 − δ, it holds that for all initial state

distributions µ1 ∈ ∆S, and for any time horizon T > 1, the regret of SCAL+ is bounded

as

∆(SCAL+, T ) ≤ β ·max {rmax, c}

√√√√(∑
s,a

Γ(s, a)
)
T ln

(
T

δ

)

+ β ·max {rmax, c}S2A ln
(
T

δ

)
ln (T )

(5.31)

Proof. The detailed proof can be found in (Qian et al., 2018b, Theorem 6, Appendix B). In

the following, all inequalities should be interpreted up to minor approximations and in high

probability. Let νk(s, a) be the number of visits in (s, a) during episode k and kT be the total

number of episodes before time T . Using Lem. 5.12, we have:

∆(SCAL+, T ) .
kT∑
k=1

∑
s,a

νk(s, a)
(
gk −

∑
a

r(s, a)πk(s, a)
)

(5.32)

where gk, hk and πk are respectively the gain, bias and policy returned by ScOpt (see

Eq. 5.26). ScOpt ensures that: gk+hk(s) '
∑
a πk(s, a) (rk(s, a) + pk(·|s, a)ᵀhk) . By plugging

this inequality into (5.32) we obtain two terms: r̂k(s, a) − r(s, a) + bk(s, a) and (p̂k(·|s, a) −
es)ᵀhk (where es is the unit vector with all zeros except at the s-th coordinate). We can then

add and subtract the true probability (pk(·|s, a) − p(·|s, a))ᵀhk + (p(·|s, a) − es)ᵀhk. Since

sp (hk) ≤ c, the second term is of order Õ(c
√
T + cSA) when summed over S, A and episodes

k (martingale difference sequence bounded with Azuma’s inequality). On the other hand, the

term (pk(·|s, a) − p(·|s, a))ᵀhk represents the error of using pk in place of p in ScOpt. It is
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the dominant term in the regret bound. Since hk depends on pk, we cannot apply Hoeffding-

Azuma inequality as done in the proof of Lem. 5.12 to prove gain-optimism. Instead, we use

Hölder’s inequality and bound separately ‖pk(·|s, a)−p(·|s, a))‖1 .
√

Γ(s, a)βsak (see Eq. 5.23)

and sp (hk) ≤ c. This eventually introduce a
√

Γ factor in the final regret bound. It is worth

pointing out that Γ only appears due to statistical fluctuations that we cannot control , and

not from the optimism (i.e., exploration bonus) that is explicitly encoded in the algorithm.

For the reward we have |rk(s, a)−r(s, a)| ≤ rmaxβ
sa
k . As a consequence, we can approximately

write that:

∆(SCAL+, T ) .
m∑
k=1

∑
s,a

νk(s, a)πk(s, a)
(
bk(s, a)︸ ︷︷ ︸
≤dk(s,a)

+
(
c
√

Γ(s, a) + rmax

)
βsak + c

(Nk(s, a) + 1)︸ ︷︷ ︸
:=dk(s,a)

)

The remaining terms can be bounded as in SCAL (and UCRLB). �

Γ-dependency. Since the optimism in SCAL+ is tighter than in SCAL by a
√

Γ-factor,

one might have expected to get a regret bound scaling as c
√
SAT instead of c

√
SΓAT (as

pointed out in Sec.5.7.2), thus matching the lower bound of Jaksch et al. (2010) as for the

dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL+ (and

even SCAL) for the reason explained in the proof sketch (correlation between hk and pk).

We refer to the discussion in Sec. 3.7 for more details on closing the gap between lower and

upper bounds. The analysis of SCAL+ suggests that the
√

Γ-factor arises due to unavoidable

statistical fluctuations (and not to gain-optimism). We leave as an open question whether

the current analysis of SCAL+ could be refined or whether a bigger lower bound should be

derived. It is also possible that a c
√
SAT regret bound can only be achieved with a different

algorithm.

c-dependency. The regret bound of SCAL+ does not scale with min{Λ, c} like SCAL (when

SCAL is modified as explained in Sec. 5.5.2). The difference resides in the fact SCAL builds

an extended MDP with Bellman shortest path operator (see Sec. 3.3) upper-bounding the

Bellman shortest path operator of the true unknown MDP. In this case, the fact that Λk ≤ Λ
(i.e., the “optimistic” travel-budget is bigger than the true travel-budget) is a consequence

of Thm. 3.5. Unfortunately, it is not clear how to apply Thm. 3.5 to Mk. In this MDP,

the reward is no longer bounded by rmax and the MDP is not communicating (unlike the

extended MDPMk) implying that the assumptions of Thm. 3.5 no longer hold. We leave as

an open question whether this analysis can be refined.

Finally, it also seems difficult to prove a regret bound analogue to (5.20) for SCAL+ i.e.,

scaling with
√
c instead of c (see Thm. 5.5 for SCAL). This is because the exploration bonus

itself scales linearly with c and explicitly appears in the regret bound when introducing the

(approximate) Bellman optimality equation of Mk in the equations. We can no longer make

appear a sum of variances like in Sec. 3.6.
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5.8 SCAL*: SCAL with tighter optimism

In the previous section, we showed that SCAL+ is less prone to over-exploration than SCAL

due to a tighter degree of optimism. Although this improvement was not reflected in the

final regret bound due to the presence of higher order terms, one should expect to observe it

empirically . Unfortunately, it seems that SCAL+ does not achieve the optimal dependency in

c and Λ. It is therefore challenging to compare SCAL and SCAL+ in general (even empirically)

as the
√

Γ-advantage in optimism could be alleviated by the worsening in the c-dependency.

In this section, we present SCAL?, a variant of SCAL that achieves the best of both al-

gorithms by leveraging insights from SCAL+ to further constrain the confidence intervals

used to construct the extended truncated Bellman operator. Moreover, the computational

complexity of SCAL? is comparable to the one of SCAL (if not better).

5.8.1 Combining the confidence sets of SCAL with the exploration

bonus of SCAL+

Intuition

As we recalled in Sec. 5.5.2, the confidence sets used to build the extended MDP Mk of

UCRLB (see Eq. 3.3 and 3.4 in Alg. 5) ensure that with high probability, the dominance

property Lkh∗ ≥ h∗+ g∗e holds for all k. The dominance property is a sufficient condition to

guarantee gain-optimism and derive regret guarantees (see Sec. 3.2). By Hoeffding’s inequal-

ity, we also know that for all all pairs (s, a) ∈ S ×A and with high probability, the inequality

pk(·|s, a)ᵀh∗ ≤ p̂k(·|s, a)ᵀh∗+sp (h∗)βsak holds for all k, where βsak is defined in Eq. 5.23. When

sp (h∗) ≤ c with c known, these inequalities are used to define the exploration bonus bk(s, a) of

SCAL+, and it is also tempting to try to refine the definition of Lk by adding the constraints

pk(·|s, a)ᵀhk ≤ p̂k(·|s, a)ᵀhk + cβsak . The main difficulty is that these constraints involve both

pk and hk. One idea could be to enforce the constraint pk(·|s, a)ᵀvn ≤ p̂k(·|s, a)ᵀvn + βsak at

every iteration n ≥ 0 of EVI. For a fixed vn, the constraint is linear in pk and so with this

additional constraint, the optimization problem maxp∈Bkp (s,a){pᵀv} is still a linear program.

Unfortunately, the operator associated to this refined confidence set is no longer an (extended)

Bellman operator. This is because the confidence set now depends on the specific vector v

and can no longer be mapped to an extended action space (see Sec. 2.1.5). Nevertheless, in

the rest of this section we show that after applying the transformations already introduced

for SCAL+ (e.g., η-perturbation of the transition probabilities), all the useful properties of

Bellman operators that we have been exploiting in this thesis still hold (e.g., convergence of

value iteration, dominance, etc.).

Refined operator

We now formally define the new operator discussed in the previous paragraph:
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∀v ∈ RS , ∀s ∈ S, Lkv(s) := max
a∈As

{
max

r∈Bkr (s,a)
{r}+ max

p∈Bkp (s,a)∩Θkp(s,a,v)
{pᵀv}

}
(5.33)

where Θk
p(s, a, v) := {p ∈ ∆S : p(·|s, a)ᵀv ≤ p̂k(·|s, a)ᵀv + cβsak }. The only difference with

the extended Bellman operator Lk (2.17) is that the initial confidence set Bk
p (s, a) is inter-

sected with Θk
p(s, a, v). Since the set Θk

p(s, a, v) depends on v, it is clear that Lk is not a

Bellman operator (the “extended action space” now depends on v). Fortunately, Lk share a

lot of properties with Lk as shown in the following lemmas.

Let v and u be any two vectors in RS, then:

(a) Lk is monotone: v ≥ u =⇒ Lkv ≥ Lku.

(b) Lk is non-expansive both in span semi-norm and `∞-norm:

sp (Lkv − Lku) ≤ sp (v − u) and ‖Lkv − Lku‖∞ ≤ ‖v − u‖∞.

(c) Lk is linear: ∀λ ∈ R, Lk(v + λe) = Lkv + λe.

Lemma 5.13 (Analogue to Lem. 2.5 and 5.7)

Proof. See App. C.3. �

Similarly to Sec. 5.5.1, we define L̃k by replacing Bk
r (s, a) and Bk

p (s, a) by respectively

B̃k
r (s, a) and B̃k

p (s, a) in Eq. 5.33 (see Def. 5.5), with the choice ηk = rmax/(c · tk) (as in

Sec. 5.5) so that B̃k
p (s, a) 6= ∅. To define L̃k, we also substitute Θk

p(s, a, v) by Θ̃k
p(s, a, v)

defined by:

Θ̃k
p(s, a, v) := {p ∈ ∆S : p(·|s, a)ᵀv ≤ p̃k(·|s, a)ᵀv + cβsak }

where p̃k(·|s, a) is any `1-projection of p̂k(·|s, a) onto B̃k
p (s, a) (convex set). Since by defi-

nition p̃k(·|s, a) ∈ B̃k
p (s, a), the intersection B̃k

p (s, a) ∩ Θk
p(s, a, v) is never empty and L̃k is

well-defined. The projection satisfies ‖p̃k(·|s, a)−p̂k(·|s, a)‖1 = 2·max{0, ηk−p̂k(s|s, a)} ≤ 2ηk
where s is the reference state used to construct B̃k

p (s, a) (see Def. 5.5 and the ηk-perturbation).

In particular, it always holds that p̃k(s|s, a) − p̂k(s|s, a) = max{0, ηk − p̂k(s|s, a)}. To sum-

marize, L̃k is formally defined by:

∀v ∈ RS , ∀s ∈ S, L̃kv(s) := max
a∈As

 max
r∈B̃kr (s,a)

{r}+ max
p∈B̃kp (s,a)∩Θ̃kp(s,a,v)

{pᵀv}

 . (5.34)

L̃k also satisfies Lem. 5.13 (the proof is similar, see App. C). Moreover, unlike Lk, L̃k is

always contractive (by construction) while being not too different from Lk as shown in the

following lemma.

The operator L̃k is a 1-step γk-span-contraction with γk ≤ 1− ηk < 1, and for any vector

h ∈ RS, ‖Lkh− L̃kh‖∞ ≤ ηk · sp (h).

Lemma 5.14 (See Def. 5.5 and Lem. 5.10)
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Proof. See App. C.4. �

Finally, we define the associated “truncated operators” by composing L̃k (resp. Lk) with

the span truncation Γc defined in Def. 5.1: T̃kc := ΓcL̃k (resp. Tkc := ΓcLk). Due to Lem. 5.5,

T̃kc also satisfies Lem. 5.13 and 5.14 (by composition). We can then deduce the following

corollary.

The following properties hold for T̃kc :

1. Optimality equation and uniqueness: There exists a solution (g+
k , h

+
k ) ∈ R × RS to

the optimality equation

T̃kch
+
k = h+

k + g+
k e. (5.35)

If (g, h) ∈ R× RS is another solution of (5.35), then g = g+
k and there exists λ ∈ R

s.t. h = h+
k + λe.

2. Convergence: For any initial vector v0 ∈ RS, the sequence (vn) generated by ScOpt

(with operator L̃k instead of L) converges to a solution vector h+
k of the optimality

equation (5.35), and

lim
n→+∞

(
T̃kc

)n+1
v0 −

(
T̃kc

)n
v0 = g+

k e.

3. (Approximate) Dominance: If sp (h∗) ≤ c and Lkh
∗ ≥ Lh∗ then g+

k ≥ g∗ − ηk · c.

Corollary 5.1 (See Lem. 5.9)

5.8.2 Implementation and performance

Algorithm

The pseudo-code of SCAL? is similar to SCAL except that ScOpt is called with the refined

operator L̃k instead of L̃k. In SCAL, line 9 of Alg. 5 (Eq. 3.5) was replaced by Eq. 5.15. In

SCAL? this equation becomes:

(gk, hk, πk) := ScOpt

(
L̃k, G̃k,

rmax
tk

, s1, 0, γk
)
. (5.36)

We also introduce RLProba (Alg. 11), a slight modification of LProba that can solve the

refined optimization problem max
p∈B̃kp (s,a)∩Θ̃kp(s,a,v) {p

ᵀv}. Compared to LProba, RLProba

takes an additional input ζ. The scalar w output by RLProba is identical to the scalar output

by LProba if smaller than ζ, otherwise it is set equal to ζ (line 9 of Alg. 11). Since the value

of w is increased at every iteration i (denoted wi in Alg. 11, see e.g., line 4), it is possible

to reduce the number of iterations of RLProba by checking whether the value is bigger

than ζ and terminating the algorithm accordingly (line 2). Therefore, the computational
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Algorithm 11 Refined Linear Programming for probability maximization (RLProba)

Input: A vector v ∈ RS sorted in decreasing order v(1) ≥ v(2) ≥ · · · ≥ v(S), S closed
intervals

(
[ai, bi]

)
1≤i≤S s.t. 1 ≥ bi ≥ ai ≥ 0 and

∑S
i=1 ai ≤ 1 ≤

∑S
i=1 bi, a scalar ζ ∈ R

Output: A scalar w
1: Set w0 :=

∑S
i=1 ai × v(i), ∆0 := 1−

∑S
i=1 ai and i := 1 . Initialization

2: while ∆i−1 > 0 and wi−1 < ζ do . Main loop
3: Set δi := min {∆i−1, bi − ai}
4: Update wi ← wi−1 + δi × v(i) . Assign allowed weights to highest values of v first
5: Update ∆i ← ∆i−1 − δi
6: Increment i← i+ 1
7: end while
8: if wi−1 > ζ then
9: Set w := ζ

10: else
11: Set w := wi−1
12: end if

complexity of RLProba is comparable to the one of LProba, and sometimes even smaller.

The correctness of Alg. 11 is a direct consequence of the proof of Lem. 5.13 in App. C.

In practice, at every iteration n ≥ 0 of ScOpt, and for all state-action pairs (s, a) ∈ S ×A,

RLProba is called with ζ = p̃k(·|s, a)ᵀvn + cβsak . The outputs of RLProba are then used to

compute L̃kvn and then T̃kcvn (see Alg. 8).

Regret guarantees

By construction, SCAL? satisfies exactly the same regret guarantees as SCAL (Thm. 5.4

and 5.5) but the degree of optimism is now potentially tighter due to the restriction pk(·|s, a) ∈
Θ̃k
p(s, a, hk) for all state-action pairs (s, a) ∈ S×A and all episodes k. As discussed in Sec. 5.7,

this restriction does not allow to refine the final regret bound with current proof techniques.

5.9 Conclusion

In this chapter we introduced SCAL, a UCRL2-like algorithm that is able to efficiently balance

exploration and exploitation in any weakly communicating MDP for which a finite bound c

on the optimal bias span sp (h∗) is known. While UCRLB exclusively relies on optimism and

uses EVI to compute the exploratory policy, SCAL leverages the knowledge of c through the

use of ScOpt, a new planning algorithm specifically designed to handle constraints on the

bias span. We showed both theoretically and empirically that SCAL achieves smaller regret

than UCRL2, with a negligible additional computational cost. Although SCAL was inspired

by Regal.C, it is the only implementable approach so far. Therefore, this paper answers

the long-standing open question of whether it is actually possible to design an algorithm

that does not scale with the diameter (or the travel-budget) in the worst case. SCAL also

paves the way for implementable algorithms able to learn in an MDP with continuous state
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space (Qian et al., 2018b). Indeed, existing algorithms achieving regret guarantees in this

framework (Ortner and Ryabko, 2013; Lakshmanan et al., 2015) all rely on Regal.C.

Inspired by SCAL we derived SCAL+, the first analysis of exploration bonus in infinite-

horizon undiscounted problems. We showed that SCAL+ achieves the tightest level of opti-

mism for OFU algorithms by achieving the optimal dependence in the bonus w.r.t. the state

dimensionality (it cannot further reduced while preserving theoretical guarantees given the

lower-bound of Prop. 2.12). Unfortunately, this tighter optimism does not imply a tighter

bound.

We combined the advantages of both SCAL and SCAL+ into a single algorithm: SCAL?.

For all the algorithms presented in this chapter (SCAL, SCAL+ and SCAL?), it is an open

question whether the assumption that c is known can be relaxed. We conjecture that the

knowledge of sp (h∗) is necessary to improve the regret upper-bound of UCRLB (i.e., replace

the travel-budget by the optimal bias span), even though we leave this question for future

work.

In Chap. 4, we showed that when the MDP is not communicating, the regret of any “ef-

ficient” learning algorithm cannot grow logarithmically with time. However, Thm. 4.2 does

not apply in the case where a bound on the optimal bias span is known since the MDPs with

small ε in Ex. 4.5 (used to prove Thm. 4.2) do not satisfy sp (h∗) ≤ c. We conjecture that a

logarithmic regret bound similar to Thm. 2.37 can be derived for SCAL, SCAL+ and SCAL?,

with D replaced by c/rmax.
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6 Hierarchical exploration–exploitations
with options

6.1 Introduction

Tractable learning of how to make good decisions in complex domains over many time steps

almost definitely requires some form of hierarchical reasoning. One powerful and popular

framework for incorporating temporally-extended actions and hierarchical structures in the

context of reinforcement learning is the options framework (Sutton et al., 1999). An important

feature of this framework is that MDP planning and learning algorithms can be easily ex-

tended to accommodate options, thus obtaining algorithms such as option value iteration and

Q-learning (Sutton et al., 1999), LSTD (Sorg and Singh, 2010), and actor-critic (Bacon and

Precup, 2015). Temporally extended actions are particularly appealing for high dimensional

problems that naturally decompose into a hierarchy of subtasks. Creating and leveraging

options has been the subject of many papers over the last two decades (see e.g., McGov-

ern and Barto (2001); Menache et al. (2002); Şimşek and Barto (2004); Castro and Precup

(2012); Levy and Shimkin (2011); Sairamesh and Ravindran (2012); Mann et al. (2014)) and

it has been of particular interest recently in combination with deep reinforcement learning,

with a number of impressive empirical successes. For instance, Tessler et al. (2016) recently

obtained promising results by combining options and deep learning for lifelong learning in

the challenging domain of Minecraft.

Intuitively (and empirically) temporal abstraction can help speed up learning (reduce the

amount of experience needed to learn a good policy) by shaping the actions selected towards

more promising sequences of actions (Stolle and Precup, 2002), and it can reduce planning

computation through reducing the need to evaluate over all possible actions (see e.g., Mann

and Mannor (2014)). A large body of the literature has focused on how to automatically

construct options that are beneficial to the learning process within a single task or across

similar tasks. An alternative approach is to design an initial set of options and optimize

it during the learning process itself (see e.g., interrupting options (Mann et al., 2014) and

options with exceptions (Sairamesh and Ravindran, 2012)).

Despite the empirical evidence of the effectiveness of most of these methods, it is well
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known that options may as well worsen the performance w.r.t. learning with “primitive” ac-

tions (Jong et al., 2008). Intuitively, limiting action selection only to temporally-extended

options might hamper the exploration of the environment by restricting the policy space.

Moreover, most of the proposed methods are heuristic in nature and the theoretical under-

standing of the actual impact of options on the learning performance is still fairly limited.

Notable exceptions are the recent results of Mann and Mannor (2014) and Brunskill and Li

(2014). Nonetheless, Mann and Mannor (2014) rather focus on a batch setting and they

derive a sample complexity analysis of approximate value iteration with options. Brunskill

and Li (2014) derived sample complexity bounds for an RMax-like exploration-exploitation

algorithm for semi-Markov decision processes (SMDPs). While MDPs with options can be

mapped to SMDPs, we will later show that their analysis cannot be immediately translated

into the PAC-MDP sample complexity of learning in an MDP with options, which makes it

harder to evaluate their potential benefit. Therefore, we argue that in addition to the exciting

work being done in heuristic and algorithmic approaches that leverage and/or dynamically

discover options, it is important to build a formal understanding of how and when options

may help or hurt reinforcement learning performance, and that such insights may also help in-

form empirically motivated options-RL research. In this chapter, we consider the case where

a fixed set of options is provided and we study their impact on the learning performance

w.r.t. learning without options. In particular, we derive the first regret analyses of learning

with options.

Relying on the fact that using options in an MDP induces a semi-Markov decision process

(SMDP), we first introduce a variant of UCRLB for SMDPs and we upper and lower-bound

its regret. While this result is of independent interest for learning in SMDPs, its most in-

teresting aspect is that it can be translated into a regret bound for learning with options in

MDPs and it provides a first understanding on the sufficient conditions for a set of options

to reduce the regret w.r.t. learning with primitive actions. The resulting analysis explicitly

shows how options can be beneficial whenever the navigability among the states in the orig-

inal MDP is not compromised (i.e., the MDP travel-budget is not significantly increased),

the level of temporal abstraction is high (i.e., options have long durations, thus reducing the

number of decision steps), and the optimal policy with options performs as well as the opti-

mal policy using primitive actions. While this result makes explicit the impact of options on

the learning performance, the proposed algorithm (SUCRL in short) needs prior knowledge

on the parameters of the distributions of cumulative rewards and durations of each option to

construct confidence intervals and compute optimistic solutions. In the second part of this

chapter, we remove the limitations of having prior knowledge on options by introducing a

“prior knowledge-free”version of SUCRL named FSUCRL. We derive regret bounds for FSU-

CRL that clarify the regret bound of SUCRL. Finally, we provide illustrative experiments

where the empirical results support the theoretical findings. We also empirically compare

FSUCRL to SUCRL and UCRLB (i.e., learning without options).

The work presented in this chapter extends the conference papers (Fruit and Lazaric, 2017)

and (Fruit et al., 2017).
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6.2 The option framework

6.2.1 Formal definition of options

We start this section with the formal definition of an option.

A (Markov) option is a 3-tuple o = {Io, βo, πo} where

• Io ⊆ S is the set of states where the option can be initiated,

• βo : S → [0, 1] is the probability distribution that the option ends in a given state,

• πo ∈ ΠSR is the policy followed until the option ends.

Definition 6.1 (Sutton et al. (1999))

An agent can decide to play option o in any state belonging to Io. Once option o has been

initiated, policy πo is executed until the termination condition of the option is triggered.

During the execution of option o, a Bernoulli random variable with success probability βo(s)
is sampled independently from the past history every time a new state s ∈ S is visited . The

execution of the option ends if and only if the outcome of the Bernoulli is a success. It is worth

pointing out that any “primitive” action a ∈ As available in state s ∈ S can be interpreted as

an option with an arbitrary initial state space Ia 3 s, a stopping distribution βa(s) = 1 for

all s ∈ S, and any arbitrary policy πa ∈ ΠSR satisfying πa(s) = a. The converse is of course

not true: all options are not primitive actions since an option can last for more than just

1 time step (unlike a primitive action). Since the only restriction is that all 3 components

of an option should satisfy the Markov property1, Def. 6.1 provides a very rich and flexible

definition of temporally extended actions. It is possible to extend Def. 6.1 by relaxing the

Markov constraint, although it is unclear whether such a level of generality can be of any

interest given the Markov structure of the underlying MDP.

In this chapter, we assume that the original action space A of the MDP is replaced by a

set of options O given (i.e., known) to the learning agent, and possibly containing primitive

actions. This new framework is therefore a generalization of the MDP framework considered

so far (and introduced at the beginning of the thesis, see Sec. 2.1). Given a set of (Markov)

options O satisfying Def. 6.1, we denote by Os the set of options available in state s ∈ S i.e.,

Os := {o ∈ O : s ∈ Io}. In the previous chapters, we have always considered state-action

pairs (s, a) ∈ S × A rather than isolated actions. Similarly, in this chapter the state-option

pairs (s, o) ∈ S × O will be the fundamental bricks of the decision problem at hand. In the

rest of this chapter, we will slightly abuse notation and denote by S×O the set of“admissible”

state-option pairs i.e., the set {(s, o) : o ∈ O, s ∈ Io}.

As shown in the seminal work of Sutton et al. (1999), one possible way to describe the

decision process induced by a set of options O onto an MDP M is through the notion of

Semi-Markov Decision Process (SMDP). We will make this statement formal later and start

by briefly presenting the concept of SMDP in the next section.

1The starting state, the terminal condition and the policy all depend exclusively on the current state.
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6.2.2 Semi-Markov Decision Processes

Definition

A Semi-Markov Decision Process (SMDP) M is a 5 -tuple2 〈S,A, r, p, τ〉. As in the definition

of an MDP (see Sec. 2.1.1), S and A denote respectively the state and action space of the

SMDP, and r and p the expected rewards and transition probabilities. The last term τ in the

definition of an SMDP refers to holding times. After playing action a in state s, the agent

waits for an expected duration τ(s, a) > 0 before observing the next state s′ with probability

p(s′|s, a) and receiving the expected reward r(s, a). We make the same assumptions on S and

A as in Sec. 2.1 i.e., S is assumed to be finite while A is either finite or compact depending

on the context. When A is a compact set, we also assume that for all s, s′ ∈ S, the maps

a 7→ r(s, a), a 7→ τ(s, a) and a 7→ p(s′|s, a) are continuous functions of a. A major difference

with Sec. 2.1 is that we assume that all sampled (as opposed to expected) rewards and holding

times are positive but not necessarily bounded , although we will also study this specific case

in detail. The reason is that this assumption is too restrictive to model options, as will be

clear in the next section. Nevertheless, we always assume that the expected value τ(s, a) are

uniformly bounded on S × A3 i.e., τmax := sups,a τ(s, a) < +∞, and we also assume that

there exists rmax > 0 such that r(s, a) ≤ rmaxτ(s, a) for all (s, a) ∈ S ×A. As a consequence,

r(s, a) is also uniformly bounded on S × A. Finally, we assume that there exists τmin > 0
such that for all state-action pairs (s, a) ∈ S ×A, τ(s, a) ≥ τmin.

Since the classification of MDPs presented in Def. 2.2 (see Sec. 2.1.1) only depends on p (i.e.,

on transition probabilities), we can also apply it to SMDPs. SMDPs can thus be classified

according to their chain structure just like MDPs: ergodic, unichain, communicating , weakly

communicating or multi-chain.

Note that an MDP can be interpreted as a particular case of an SMDP where τ(s, a) = 1
for all state-action pairs. SMDPs are therefore a generalization of MDPs with a temporal

component .

Gain optimality

Like in the MDP case (see Sec. 2.2), in the undiscounted setting the goal is to maximize the

long-term average reward which is now expressed as an average over elapsed time (and not

just over time steps as in Eq. 2.8):

sup
π∈Π

lim inf
n→+∞

Eπ
[∑n

i=1 ri
∣∣∣s1 ∼ µ1

]
Eπ
[∑n

i=1 τi
∣∣∣s1 ∼ µ1

]
 . (6.1)

If τ(s, a) = 1 for all state-action pairs, then (6.1) is equivalent to (2.8). Similarly, for any

stationary randomized policy π ∈ ΠSR, the gain of π is defined as

2In comparison, an MDP is usually described as a 4-tuple, see Sec. 2.1.1.
3As in the MDP case (see Sec. 2.1.1), we will slightly abuse notation and denote by S × A the set of

“admissible” state-action pairs i.e., the set {(s, a) : s ∈ S, a ∈ As}.
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gπ(s) := lim
n→+∞

Eπ
[∑n

i=1 ri
∣∣∣s1 = s

]
Eπ
[∑n

i=1 τi
∣∣∣s1 = s

] (6.2)

where the limit always exists. On the other hand, the bias is defined as

hπ(s) := C- lim
n→+∞

Eπ
[
n∑
i=1

(
ri − τi · gπ(si)

)∣∣∣∣∣s1 = s

]
, (6.3)

where the Cesaro-limit always exists. For any randomized Markov decision rule d ∈ DMD,

we denote by τd ∈ RS the vector of holding times i.e., τd(s) = τ(s, d(s)) for all s ∈ S. The

following proposition is the generalization of Prop. 2.4 to SMDPs (see (Schweitzer, 1985,

Theorem 1) for the proof).

Proposition 6.1

Let M be a weakly communicating MDP and denote by Π∗ ⊆ ΠSD the set of maximizers

of (6.1) in ΠSD. If any of the following two assumptions hold:

1. the action space A is finite,

2. Π∗ 6= ∅ and supπ∈Π∗ sp (hπ) < +∞,

then there exists a solution (g∗, h∗) ∈ R× RS to the fixed point equation:

h∗ = max
d∈DMD

{rd − τd · g∗ + Pdh
∗}.

Moreover, for any such solution (g∗, h∗) and for all s ∈ S,

g∗ = max
π∈Π

lim inf
n→+∞

Eπ
[∑n

i=1 ri
∣∣∣s1 = s

]
Eπ
[∑n

i=1 τi
∣∣∣s1 = s

]
 .

Finally, any stationary greedy policy π∗ = (d∗)∞ satisfying d∗ ∈
arg maxd∈DMR {rd + Pdh

∗} is optimal i.e., π∗ ∈ Π∗.

We recall that unlike g∗, h∗ is not unique (see Sec. 2.2).

A natural next step is to derive an algorithm to compute an optimal policy. To that end,

we first introduce a transformation called uniformization.

Uniformization of an SMDP

We call “uniformization” the transformation of an SMDP M = 〈S,A, r, p, τ〉 into an MDP

Meq = 〈S,A, req, peq〉 with identical state and action spaces, and such that ∀(s, a) ∈ S ×A:
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req(s, a) := r(s, a)
τ(s, a)

peq(·|s, a) := α

τ(s, a)
(
p(·|s, a)− es

)
+ es

(6.4)

where α < τmin. The assumption τ(s, a) ≥ τmin ensures that peq(·|s, a) is a well-defined

transition probability. Furthermore, since peq(s|s, a) > 0 for all (s, a) ∈ S × A, the Markov

Chain induced by any Markov randomized decision rule d ∈ DMR is aperiodic. In the follow-

ing, we denote by Leq the optimal Bellman operator of Meq.

We first notice that the transformation preserves the chain structure e.g., if M is weakly

communicating/unichain/etc., so is Meq. This is immediate to see since the chain structure

of M only depends on which transition probabilities p(s′|s, a) with s′ 6= s are equal to 0, and

p(s′|s, a) = 0 ⇐⇒ peq(s′|s, a) = 0 whenever s′ 6= s.

In the case of a compact action space A, a 7→ req(s, a) and a 7→ peq(·|s, a) are continuous

mappings since a 7→ r(s, a), a 7→ τ(s, a) and a 7→ p(s′|s, a) are assumed to be continuous (see

above). Moreover, the condition r(s, a) ≤ rmaxτ(s, a) implies that req(s, a) ∈ [0, rmax]. As a

result, if SMDP M satisfies the assumptions stated earlier, Meq satisfies the assumptions of

all the MDPs studied so far in this thesis (see Sec. 2.1.1).

Uniformization allows to analyze an SMDP as if it was an MDP (Puterman, 1994, Section

11.4.3). We illustrate this claim with the following lemma.

Proposition 6.2 (Proposition 11.4.5 of Puterman (1994))

If there exists (g∗eq, h∗eq) ∈ R× RS solution to optimal Bellman equation of Meq i.e.,

h∗eq + g∗eqe = Leqh
∗
eq,

then (g∗eq, αh∗eq) is solution to the optimal Bellman equation of M i.e.,

αh∗eq = max
d∈DMD

{
rd − τd · g∗eq + Pd

(
αh∗eq

)}
.

Instead of looking for a solution to the optimality equation of SMDP M , we can search

for a solution to the optimality equation of MDP Meq using the tools of Sec. 2.2. Rather

than checking whether M satisfies the assumptions of Prop. 6.1, we can verify whether Meq

satisfies the assumptions of Prop. 2.4 (existence of a solution to the MDP Bellman optimality

equation). Whenever Prop. 2.4 holds for Meq, it is clear that Prop. 2.6 holds as well (i.e.,

value iteration converges) since all stationary deterministic decision rule in Meq are aperiodic

(see above).
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Figure 6.1: MDP with a state-option (s0, o) executing a0 in all states with termination
probabilities βo(s0) = β0, βo(s1) = β1 and βo(s2) = 1 (Fig. 6.1a), and dynamics of the SMDP
associated to this state-option (Fig. 6.1b).

6.2.3 Markov options as absorbing Markov Chains

Markov Chain of an option. Any option defined on an MDP can be described by a Markov

Reward Process (MRP) i.e., a Markov Chain (MC) together with a reward function. The

state space of the MC contains all states that are reachable by the option and all terminal

states are absorbing states of the MC (see Fig. 6.1 and 6.2). More formally, for any state-

option pair (s, o) ∈ S ×O the set of inner states Ss,o includes the initial state s and all states

x with βo(x) < 1 that are reachable by executing πo starting from s (e.g., Ss,o = {s0, s1}
in Fig. 6.1), while the set of absorbing states Sabss,o includes all states with βo(x) > 0 (e.g.,

Sabss,o = {s0, s1, s2} in Fig. 6.2). We denote by Ss,o (resp. Sabs
s,o ) the cardinality of Ss,o (resp.

Sabss,o ). The MC associated to (s, o) is characterized by a transition matrix Ps,o of dimension

(Ss,o + Sabs
s,o )× (Ss,o + Sabs

s,o ) with canonical form

Ps,o :=
[
Qs,o Vs,o

0 I

]
where


Qs,o(x, y) := (1− βo(y)) ·

∑
a p(y|x, a)πo(a|x), ∀x, y ∈ Ss,o

Vs,o(x, y) := βo(y) ·
∑
a p(y|x, a)πo(a|x), ∀(x, y) ∈ Ss,o × Sabss,o

.

Qs,o is the transition matrix between inner states (dimension Ss,o×Ss,o), Vs,o is the transi-

tion matrix from inner states to absorbing states (dimension Ss,o×Sabs
s,o ), and I is the identity

matrix (dimension Sabs
s,o × Sabs

s,o ). Note that some states x may belong both to Ss,o and Sabss,o

if 1 > βo(x) > 0 (i.e., Ss,o ∩ Sabss,o 6= ∅), and therefore Ss,o + Sabs
s,o is not always smaller than S

(even though it is always upper-bounded by 2S). We also denote by rs,o := (r(x, πo(x)))x∈Ss,o
the vector of rewards associated to state-option pair (s, o) ∈ S ×O.
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1 1 1

Figure 6.2: Absorbing MC associated to state-option (s0, o) of Fig. 6.1.

Absorbing property. Nothing in Def. 6.1 guarantees that a state-option pair (s, o) ∈ S ×O
will ever end once initiated. This problem will occur if for example βo(x) = 0 for all states

x ∈ S, or if βo(x) > 0 only for some states x ∈ S that are reached with probability 0
under policy πo. Mathematically, this means that Ps,o is not an absorbing Markov Chain

i.e., absorbing states are reached in finite time with probability strictly less than 1. A never-

ending option will be problematic if πo is very suboptimal compared to other options: once

this “pathological” option has started, no other option can ever be played (it is a sort of

“deadlock”). For this reason, we make the following assumption.

All options terminate in finite time with probability 1, or equivalently, Ps,o is an absorbing

Markov Chain for all state-option pair (s, o) ∈ S ×O.

Assumption 6.1

The MC Ps,o is absorbing if and only if Qs,o is strictly substochastic i.e., Qs,oe ≤ e with the

inequality strict in at least one coordinate. If βo(x) > 0 for all states x ∈ S, Asm. 6.1 always

holds by definition of Qs,o. It is thus not necessary to know the dynamics of the MDP to

enforce this property, even though having some prior knowledge is usually useful to define a

well-behaved option.

Characterization of an absorbing MC. When Qs,o is strictly substochastic, I − Qs,o is

always invertible since the spectral radius of Qs,o –ρ(Qs,o)– is strictly smaller than 1. In the

theory of absorbing MCs (Grinstead and Snell, 2003, Section 11.2), the fundamental matrix

associated to Ps,o is defined as

Ns,o := (I −Qs,o)−1 (6.5)

i.e., Ns,o(j|i) (i-th row and j-th column) is the expected number of times inner state j ∈ Ss,o
is visited when starting from inner state i ∈ Ss,o. The absorbing transition matrix

Bs,o := Ns,oVs,o (6.6)
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contains the probability of terminating in an absorbing state j ∈ Sabss,o when starting from an

inner state i ∈ Ss,o. The i-th entry of the vector

τs,o := Ns,oe (6.7)

corresponds to the expected number of steps before absorption when starting from inner state

i ∈ Ss,o. For example, τs,o(s) is the expected duration of state-option (s, o) while Bs,o(j|s) is

the probability that it ends in state j ∈ Sabss,o . The set of possible terminal states of (s, o) is:

Sterms,o := {j ∈ Sabss,o : Bs,o(j|s) > 0}. (6.8)

Finally, we denote by rs,o :=
(∑

a r(x, a)πo(x|a)
)
x∈Ss,o

the reward vector associated to

(s, o). The i-th entry of the vector

Rs,o := Ns,ors,o (6.9)

is the expected cumulative reward collected before absorption when starting from inner state

i ∈ Ss,o. In particular, Rs,o(s) is the expected cumulative reward of state-option (s, o).

6.2.4 MDP with options as an SMDP

Availability of options. When we consider an arbitrary set of options O, it is possible that

some options terminate in states where no other option is available. In this case, the decision

process is somehow ill-posed . To avoid this situation, we make an additional assumption.

For any state-option pair (s, o) ∈ S ×O, x ∈ Sterms,o =⇒ Ox 6= ∅.

Assumption 6.2

Asm. 6.2 is not really restrictive since we can always use primitive actions as default options.

Even under Asm. 6.2, it is not a problem that Os = ∅ for some s ∈ S as long as state s is

not a terminal state for any other state-option pair. Given an initial distribution over states

µ1 ∈ P(S), we recursively define the set of reachable states at the level of options Sµ1
O ⊆ S:

Sµ1
O :=

+∞⋃
k=1
Sk where

S1 := {s ∈ S : µ1(s) > 0}

Sk+1 :=
⋃
s∈Sk

⋃
o∈Os S

term
s,o

. (6.10)

165



Chapter 6. Hierarchical exploration–exploitations with options

Main results. We are now ready to state the main result of this section which relates an

MDP with (Markov) options to an SMDP.

Proposition 6.3 (Sutton et al. 1999)

Let M = 〈S,A, r, p〉 be an MDP with bounded rewards 0 ≤ r ≤ rmax, O a set of (Markov)

options satisfying both Asm. 6.1 and 6.2, and µ1 ∈ P(S) an initial distribution over

states. For all states s, s′ ∈ SO and options o ∈ Os, we define the transition probabilities

b(s′|s, o) := Bs,o(s′|s), reward R(s, o) := Rs,o(s) and holding time τ(s, o) := τs,o(s). The

decision process Mµ1
O =

{
Sµ1
O ,O, b, R, τ

}
is an SMDP satisfying τ ≥ 1 and 0 ≤ R ≤ rmaxτ .

In SMDP Mµ1
O , τmin = 1. In the rest of this chapter, we set α = 0.9 < τmin for the

uniformization coefficient (this choice is arbitrary). We will often remove the dependency in

µ1 and use the notations MO and SO to denote the SMDP and the state space respectively.

Any stationary policy πO ∈ ΠSR
MO

can be interpreted as a policy π ∈ ΠM so that at each

step, π selects an action available in M based on the policy of the current option being ex-

ecuted. Although, πO is stationary, the primitive actions played by π not only depend on

the current state in S, but also on the option being executed, potentially inducing a non-

stationary policy. The two reward processes induced by π and πO in respectively M and MO

are strongly related as shown in Cor. 6.1.

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and MO the

corresponding SMDP (Prop. 6.3). Let πO ∈ ΠSR
MO

be any stationary policy on MO and

π ∈ ΠM the equivalent policy on M (not necessarily stationary). For any state s ∈ SO, we

have: gπOMO(s) = gπM (s).

Corollary 6.1

Proof. The proof is straightforward (Fruit et al., 2017, Lemma 2). �

As a result of Cor. 6.1, it makes sense to compare the performances of policies in ΠSR
MO

and

policies in ΠM .

Distribution of holding times and rewards. We will now extend the result of Prop. 6.3

by analyzing the distribution of τ and R in MO. By construction, for any state-option pair

(s, o) ∈ SO × O, the holding time corresponds to the time before absorption starting in the

equivalent absorbing MC (described in Sec. 6.2.3). Such discrete random variables (r.v.)

are said to follow a discrete phase-type distribution (Nielsen, 2012). The probability mass

function can be expressed using powers of Qs,o (Nielsen, 2012, Section 1.3.1)4:

∀k ∈ N∗, P(τ(s, o) = k) = eᵀs(Qs,o)k−1Vs,oe. (6.11)

4We denote by N∗ the set of strictly positive integers.
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Discrete phase-type r.v. are almost surely finite but not almost surely bounded (for any ar-

bitrarily large k, the probability mass in Eq. 6.11 may be non-zero). This is the reason why

we did not assume that the sampled holding times of an SMDP are bounded , but only that

they have a finite expectation (see above). In all the learning algorithms we have presented

so far in this thesis, we used concentration inequalities on bounded r.v. To apply the same

approach in the context of options, we need to rely on more general inequalities that hold

for unbounded r.v. We introduce the notions of sub-exponential and sub-Gaussian random

variables.

A random variable X with mean µ < +∞ is said to be sub-exponential, if one of the

following equivalent conditions is satisfied:

1. (Laplace transform condition) There exists5 (σ, d) ∈ R+ × R+∗ such that:

E
[
eλ(X−µ)

]
≤ e

σ2λ2
2 for all λ ∈ R s.t. |λ| < 1

d
. (6.12)

We use the notation X ∈ subExp(σ, d).
2. There exists c0 > 0 such that E[eλ(X−µ)] < +∞ for all λ ∈ R s.t. |λ| ≤ c0.

Definition 6.2 (Wainwright (2015))

A random variable X with mean µ < +∞ is said to be sub-Gaussian if and only if there

exists σ ∈ R+ such that:

E[eλ(X−µ)] ≤ e
σ2λ2

2 for all λ ∈ R. (6.13)

We use the notation X ∈ subGauss(σ) to denote a sub-Gaussian r.v. with parameter σ.

Definition 6.3 (Wainwright (2015))

By definition, if X ∈ subGauss(σ) then X ∈ subExp(σ, d) for any d > 0 but the reverse

is not true i.e., Def. 6.2 is more general than Def. 6.3. Also, if X ∈ subGauss(σ) (resp.

X ∈ subExp(σ, d)) then −X ∈ subGauss(σ) (resp. −X ∈ subExp(σ, d)). Finally, if X ∈
subExp(σ1, d1) (resp. X ∈ subGauss(σ1)), σ2 ≥ σ1 and d2 ≥ d1 then X ∈ subExp(σ2, d2)
(resp. X ∈ subGauss(σ2)).

It is possible to generalize Hoeffding and Bernstein inequalities to respectively sub-exponential

and sub-Gaussian random variables.

5We denote by R+ and R+∗ the set of nonnegative and strictly positive reals respectively.
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Proposition 6.4 (“Bernstein inequality”, Wainwright (2015))

Let (Xi)1≤i≤n be a collection of independent sub-Exponential random variables s.t. ∀i ∈
{1, ..., n}, Xi ∈ subExp(σi, di) and E[Xi] = µi. The following concentration inequality

holds:

∀t ≥ 0, P
(

n∑
i=1

(Xi − µi) ≥ t
)
≤

e
− t2

2nσ2 , if 0 ≤ t ≤ σ2

d

e−
t

2d , if t > σ2

d

(6.14)

where σ =
√∑n

i=1 σ
2
i

n and d = max1≤i≤n{di}.

Proposition 6.5 (“Hoeffding inequality”, Wainwright (2015))

Let (Xi)1≤i≤n be a collection of independent sub-Gaussian random variables s.t. ∀i ∈
{1, ..., n}, Xi ∈ subGauss(σi) and E[Xi] = µi. The following concentration inequality

holds:

∀t ≥ 0, P
(

n∑
i=1

(Xi − µi) ≥ t
)
≤ e−

t2
2nσ2 (6.15)

where σ =
√∑n

i=1 σ
2
i

n .

The question that arises is whether the holding times τ and rewards R of MO satisfy either

Def. 6.2 or Def. 6.3 so that we can apply Prop. 6.4 or 6.5. Lem. 6.1 gives a complete answer

to this question.

The holding times τ and rewards R of MO are sub-exponential random variables. More-

over, the holding time of an option is sub-Gaussian if and only if it is almost surely

bounded.

Lemma 6.1

Proof. The full proof can be found in App. D.1. We distinguish between two possible cases:

either ρ(Qs,o) = 0 (the spectral radius of Qs,o is 0), or 1 > ρ(Qs,o) > 0. The first case

characterizes the absence of cycles in the absorbing MC i.e., all states are visited at most

once with probability 1. This means that the holding time is bounded by S almost surely

and is therefore sub-Gaussian. In the second case, the absorbing MC contains cycles i.e.,

some states are visited at least twice with non-zero probability. The holding time is then

sub-exponential but not sub-Gaussian. �

Thanks to Lem. 6.1, we know that we can always bound τ and R using Prop. 6.4. We

also know that Prop. 6.5 is useless since when τ is sub-Gaussian, it is also bounded and so

we can directly apply the inequalities used in previous chapters. Brunskill and Li (2014)
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addressed the problem of on-line learning with options under the assumption that τ and R

are sub-Gaussian. Lem. 6.1 indicates that this assumption is restrictive in general, and very

loose when it holds (bounded is preferable). Despite its simplicity and importance, it seems

that Lem. 6.1 has never been pointed out before in the literature.

6.3 Learning in Semi-Markov Decision Processes

Inspired by the mapping of Prop. 6.3, we now aim at analyzing the exploration-exploitation

trade-off in an MDP with options by first analyzing that same trade-off in a generic SMDP

(satisfying the assumptions of the previous section). We start by presenting the learning

problem and later derive and analyze a UCRL-like learning algorithm.

6.3.1 The learning problem

To avoid any confusion, we use different notations for time and decision steps: the (possibly

continuous) time elapsed is denoted by t while (discrete) decision steps will be indexed by i.

At every decision step i, the learning agent is in state si and plays an action ai ∈ Asi . The

agent then receives reward ri and ends up in a new state si+1 after a time period τi. For

any n ≥ 1, we denote by Tn :=
∑n
i=1 τi the total time elapsed before the n + 1-th decision

step. Symmetrically, for any t ≥ 0, we denote by Nt := sup
{
n ∈ N,

∑n
i=1 τi ≤ t

}
the number

of decision steps that occurred before time t. Tn and Nt are random variables that depend

on the policy being executed. The time variable t can either be an integer or a real scalar

depending on the SMDP (e.g., in the SMDP MO of the previous section, t is discrete by

construction).

We evaluate a learning algorithm acting in an SMDP in terms of cumulative regret .

For any SMDP M , any initial state distribution µ1 ∈ P(S), and any number of decision

steps n ≥ 1, let {τi}ni=1 (resp. {ri}ni=1) be the random holding times (reps. rewards)

observed along the trajectory generated by a learning algorithm A. Let g∗ be the optimal

gain of M (Prop. 6.1). The cumulative regret of A after n decision steps is defined as

∆(M,A, µ1, n) :=
n∑
i=1

(
τi · g∗ − ri

)
= Tn · g∗ −

n∑
i=1

ri. (6.16)

The regret of A after T time steps is defined as ∆(M,A, µ1, T ) := ∆(M,A, µ1, NT ).

Definition 6.4

Intuitively, the regret should measure the difference in cumulative reward obtained by an

optimal (possibly non-stationary) policy and the learning algorithm after n decision steps

(or T time steps). Def. 6.4 is consistent with this requirement although other definitions

seem equally (if not more) relevant at first sight e.g., replacing Tn by its expectation.6 In

6The total duration Tn after n decision steps is a random variable that depends on the algorithm A just
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the MDP case the optimal expected value function after T time steps v∗T (see Sec. 2.1.2) is

at most sp (h∗)-far from Tg∗ and it makes sense to substitute v∗T by Tg∗ in the definition

of the regret. In the SMDP case, v∗n is at most sp (h∗)-far from Eπ∗n [Tn] · g∗ where π∗n is

the optimal (non-stationary) policy after n decision steps (note that Eπ∗n [Tn] 6= EA [Tn] in

general). However, the distance between v∗n and Tn · g∗ is not bounded since the (random)

holding times are potentially unbounded . To justify our definition, we first notice that in the

specific case where the SMDP is an MDP, τi = 1 for all i ≥ 1 (i.e., actions always terminate in

one step) implying that Tn and n coincides, and Def. 6.4 reduces to the standard MDP regret.

This is also true if we replace Tn by Eπ∗n [Tn] in Eq. 6.16. But in addition to being consistent

with Def.2.5 when all options are primitive actions, Def. 6.4 also satisfies the compatibility

condition of Lem. 6.2.

Let M be an MDP, O a set of options satisfying both Asm. 6.1 and 6.2 and MO the

corresponding SMDP (Prop. 6.3). For any state distribution µ1 ∈ P(SO), any learning

algorithm A on MO, and any number of decision steps n we have

∆(M,A, µ1, Tn) = ∆(MO,A, µ1, n) + Tn ·
(
g∗M − g∗MO

)
. (6.17)

Lemma 6.2

Proof. The proof is straightforward (Fruit and Lazaric, 2017, Lemma 2). �

Since a learning algorithm is nothing more than a policy, any SMDP-learning algorithm

AO applied to MO can be interpreted as a learning algorithm A on M so that at each time

step t, A selects an action available in M based on the policy associated to the option started

at decision step Nt (see Sec. 6.2.4). In Lem. 6.2, we used the same notation for both AO

and A for simplicity. In view of Eq. 6.17, whenever g∗M = g∗MO the two notions of regret for

MDP with options and induced SMDP match. Moreover, as a direct consequence of Cor. 6.1,

g∗M ≥ g∗MO and the equality holds if and only if there exists a policy over options that yields

an optimal long-term average reward in M . A trivial example where g∗M = g∗MO is when

A ⊆ O though in general, the introduction of options usually constrains the space of policies

that can be expressed in M . The additional term Tn ·
(
g∗M − g∗MO

)
in Eq. 6.17 corresponds

to an unavoidable approximation error . This is similar to supervised learning where the true

function being learned may not belong to the class considered. In the rest of this chapter,

we will be focusing on minimizing the regret ∆(MO,A, µ1, n) which is the only part that can

actually be controlled.

Brunskill and Li (2014) followed a similar approach but in the discounted setting : instead

of directly analyzing the learning performance of an MDP with options, they analyzed the

learning performance of the corresponding SMDP. Because of the discount factor, the crite-

rion they used is not the regret but the sample complexity (). They also provide a definition

of sample complexity for an SMDP (analogue of Def. 6.4 for the sample complexity). Un-

fortunately, we show in App. D.2 that unlike what the authors claim, the SMDP sample

complexity bound cannot be immediately translated into a sample complexity in the origi-

like
∑n

i=1 ri. One idea is to replace Tn by its expectation under algorithm A (interpreted as a non-stationary
policy) or under an optimal (possibly non-stationary) policy.
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nal MDP. No analogue of Lem. 6.2 seem to exist with their definition of sample complexity.

Whether the definition can be adjusted to recover the compatibility condition of Lem. 6.2

is beyond the scope of this thesis. However, this incompatibility shows the importance of

carefully mapping SMDPs to MDPs with options as we did with Lem. 6.2.

6.3.2 SUCRL: Semi-Markov Upper Confidence RL

We introduce SUCRL (Alg. 12), a UCRL2-like algorithm which is able to learn in any commu-

nicating SMDP. The algorithm is very similar to UCRLB (Alg. 5) with few notable differences

(highlighted in Alg. 12).

SUCRL requires additional inputs like τmax, τmin and the sub-exponential parameters of

the rewards and holding times. SUCRL can accommodate very tight state-action dependent

sub-exponential parameters as well as very loose uniform upper bounds. The tighter the

parameters, the tighter the confidence bounds (6.18) and (6.19). As shown in Sec. 6.2.4,the

rewards and holding times can sometime be bounded almost surely in which case we can rather

use empirical Bernstein confidence bounds like in UCRLB (the bounds should be known and

given as input to SUCRL instead of the sub-exponential parameters).

A key idea of the algorithm is to rely on the transformation introduced in Sec. 6.2.2 to

deal with an extended MDP Meq
k rather than an extended SMDP Mk. This allows to use

EVI in order to compute πk (as in UCRLB). To construct the extended SMDP Mk (line

5 of Alg. 12), we enforce the additional constraint rmaxτk(s, a) ≥ rk(s, a). This guarantees

that Meq
k has a reward function bounded in [0, rmax] but creates a correlation between τk

and rk (while pk can be computed independently from τk and rk like in UCRLB). We now

discuss how to implement the constraint rmaxτk(s, a) ≥ rk(s, a). For all v ∈ RS and s ∈ S,

the optimal Bellman operator of Meq
k can be written as (see Eq. 6.4)

Leqk v(s) := max
a∈As

 max
r∈Bkr (s,a)
τ∈Bkτ (s,a)
r≤rmaxτ

{
r

τ
+ α

τ

(
max

p∈Bp(s,a)
{pᵀv} − v(s)

)}+ v(s). (6.24)

The maximization over r and τ in (6.24) takes the following form:

max
r∈[r−,r+]
τ∈[τ−,τ+]
r≤rmaxτ

{
r + c

τ

}
(6.25)

where c is a scalar which can be positive, negative or null.7 For (6.25) to admit a solution

7In Eq. 6.24, c = α
(
maxp∈Bp(s,a) {pᵀv} − v(s)

)
.
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Algorithm 12 SUCRL

Input: Confidence δ ∈]0, 1[, maximal holding time τmax and per-time step reward rmax,
minimal holding time τmin, set of states S, set of actions A, sub-exponential parameters
σr(s, a), dr(s, a), στ (s, a) and dτ (s, a)

1: Set initial decision step i := 1, observe initial state s1 and initialize for all (s, a, s′) ∈
S×A×S: counters N1(s, a, s′) := 0 and N1(s, a) := 0, empirical averages p̂1(s′|s, a) := 0,
r̂1(s, a) := 0 and τ̂k(s, a) := 0, sample variances σ̂2

p,1(s′|s, a) := 0.
2: for episodes k = 1, 2, ... do
3: Set the starting step of the episode ik := i and initialize for all (s, a, s′) ∈ S ×A× S:

episode counters νk(s, a, s′) := 0 and νk(s, a) := 0, and cumulative rewards Rk(s, a) := 0
and holding times Tk(s, a) := 0. . Initialization of episode k

4: For all (s, a, s′) ∈ S ×A× S, compute upper confidence bounds:

βsar,k := 2σr(s, a)

√√√√ ln
(
7SAN+

k (s, a)/δ
)

N+
k (s, a)

+ 4dr(s, a)
ln
(
7SAN+

k (s, a)/δ
)

N+
k (s, a)

(6.18)

βsaτ,k := 2στ (s, a)

√√√√ ln
(
7SAN+

k (s, a)/δ
)

N+
k (s, a)

+ 4dτ (s, a)
ln
(
7SAN+

k (s, a)/δ
)

N+
k (s, a)

(6.19)

5: SetMk := {S,A, rk, pk} to be the extended SMDP defined by the confidence intervals
pk(s′|s, a) ∈ Bk

p (s, a, s′) (see Eq. 3.3),

rk(s, a) ∈ Bk
r (s, a) :=

[
r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k

]
∩
[
0, rmaxτmax

]
(6.20)

τk(s, a) ∈ Bk
τ (s, a) :=

[
τ̂k(s, a)− βsaτ,k, τ̂k(s, a) + βsaτ,k

]
∩
[
τmin, τmax

]
(6.21)

and the additional constraint τk(s, a) ≥ rk(s, a)/rmax.
6: Compute policy πk using (extended) value iteration on the extended MDP Meq

k ob-
tained by uniformization of Mk (see Sec. 6.2.2)

(gk, hk, πk) := EVI

(
Leqk ,G

eq
k ,

rmax
τmaxik

, s1, 1
)

(6.22)

7: Sample action ai ∼ πk(·|si).
8: while True do . Execute policy πk until the end of episode k
9: Execute action ai, obtain reward ri, and observe duration τi and next state si+1.

10: Increment episode counters:
νk(si, ai, si+1)← νk(si, ai, si+1) + 1 and νk(si, ai)← νk(si, ai) + 1

11: Increment cumulative reward and holding time
Rk(st, at)← Rk(si, ai) + ri and Tk(si, ai)← Tk(si, ai) + τi

12: if νk(si, ai) ≥ N+
k (si, ai) then . Stopping condition of episode k

13: Increment time i← i+ 1 and Break
14: else
15: Increment time i← i+ 1 and sample action ai ∼ πk(·|si).
16: end if
17: end while
18: Update counters (see Eq. 3.6), empirical averages and sample variances for all

(s, a, s′) ∈ S ×A×S (see Eq. 3.8 for the rewards and Eq. 3.9 for the transition probabil-
ities)

τ̂k+1(s, a) := Nk(s, a)
N+
k+1(s, a)

· τ̂k(s, a) + Tk(s, a)
N+
k+1(s, a)

(6.23)

19: end for
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we need to assume that r− ≤ rmaxτ
+.8

The pair (r?, τ?) ∈ [r−, r+]× [τ−, τ+] defined as follows is a solution to (6.25):

r? :=

min
{
r+, rmaxτ

+} if c ≤ 0

max
{
min

{
r+, rmaxτ

−} , r−} if c > 0
and τ? :=

max
{
τ−, r?

rmax

}
if r? + c > 0

τ+ if r? + c ≤ 0
.

Lemma 6.3

Proof. Since r− ≤ rmaxτ
+ by assumption, it is clear that (r?, τ?) ∈ [r−, r+] × [τ−, τ+]. If

r ≥ rmaxτ
+ it is obvious that there exists no τ ∈ [τ−, τ+] such that r ≤ rmaxτ and so we can

restrict attention to [r−,min{r+, rmaxτ
+}]. Note that r? belongs to this interval by definition.

For any fixed r ∈ [r−,min{r+, rmaxτ
+}], consider the problem

max
τ∈[τ−,τ+]
r≤rmaxτ

{
r + c

τ

}
. (6.26)

If r + c > 0, the maximizer τ?(r) of (6.26) is given by τ?(r) = max
{
τ−, r

rmax

}
while if

r+ c ≤ 0, τ?(r) = τ+. Since this is true for all r ∈ [r−,min{r+, rmaxτ
+}], if we show that r?

is an optimal value for r in (6.25) then τ? = τ?(r?) is an optimal value for τ .

Consider the function fc : r 7→ r+c
τ?(r) . By construction, any maximizer of fc gives an optimal

value for r in (6.25). Plugging the expression of τ∗(r) we obtain:

fc(r) =


r+c
τ+ if r ≤ −c
r+c
τ− if − c < r < rmaxτ

−

rmax
(
1 + c

r

)
if r ≥ rmaxτ

− and r > −c

. (6.27)

No matter whether c > rmaxτ
− or c ≤ rmaxτ

−, the function fc is continuous with fc(−c) = 0
and fc(rmaxτ

−) = rmax + c
τ− . If c ≤ 0, fc is increasing on every separate interval and so

fc is also “globally increasing” (by continuity), implying that the maximum of fc is reached

for r = min{r+, rmaxτ
+}. If c > 0, then necessarily c < rmaxτ

− since τ− > 0, and fc is

increasing for r ≤ rmaxτ
− and decreasing for r ≥ rmaxτ

−. As a consequence, if r− ≤ rmaxτ
−

then the maximizer of fc is r = min
{
r+, rmaxτ

−}, otherwise it is r = r−. This concludes the

proof. �

Using Lem. 6.3, it is very easy to compute Leqk v (see Eq. 6.24). Moreover, rk and τk

can only take finitely many possible values (the set of possible values does not depend on

v). Therefore, Meq
k can be expressed as a discrete MDP just like the extended MDP used

in UCRL2. In addition, Mk is communicating (same argument as in Sec. 3.1.2) and so is

Meq
k (the transformation preserves the chain structure) implying existence of a solution to the

Bellman optimality equation and convergence of (extended) value iteration inMeq
k (Prop. 2.4

and 2.6). Using Prop. 6.2, any optimality equation inMk can be converted into an optimality

8This assumption is always satisfied as soon as there exists r ∈ Bkr (s, a) and τ ∈ Bkτ (s, a) such that
r ≤ rmaxτ . With high probability, Bkr (s, a) and Bkτ (s, a) contain the true expectated values r(s, a) and τ(s, a),
and r(s, a) ≤ rmaxτ(s, a) by assumption.
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equation in Mk (and so existence in Mk is guaranteed as well). Finally, the outputs of EVI

(Eq. 6.22) satisfy the following inequality (Lem. 2.7):

∀s ∈ S,

∣∣∣∣∣∣∣
∑
a∈As πk(a|s)

(
rk(s, a) + α

(
pk(·|s, a)ᵀhk − hk(s)

))
∑
b∈As πk(b|s)τk(s, b)

− gk

∣∣∣∣∣∣∣ ≤
rmax
τmaxik

.

After multiplying both side of the above inequality by the expected holding time and using

the fact that τk(s, a) ≤ τmax for all state-action pairs we obtain an inequality similar to (3.41):

∀s ∈ S,
∑
a∈As

πk(a|s)
∣∣∣τ(s, a)gk − rk(s, a)− α

(
pk(·|s, a)ᵀhk − hk(s)

)∣∣∣ ≤ rmax
ik

. (6.28)

The rest of Alg. 12 is pretty standard in comparison with previous chapters.

6.3.3 Regret guarantees of SUCRL

To simplify the regret analysis we define στ := maxs,a {στ (s, a)} and dτ := maxs,a {dτ (s, a)}
the maximal sub-exponential parameters given as inputs of SUCRL (and we define similarly

σr and br). For any state-action pair (s, a) ∈ S × A, the support of p(·|s, a) is still denoted

Γ(s, a). We also need to extend the concepts of diameter and travel-budget to SMDPs.

Unsurprisingly, Def. 6.5 and 6.6 almost match the definitions of Sec. 3.3 with the presence of

holding times.

If Eπ[·|s1 = s] denotes the expectation under policy π starting from s in SMDP M , the

diameter of M is defined as

D := max
s,s′

min
π∈ΠSD

Eπ
ν(s′)−1∑

i=1
τ(si, ai)

∣∣∣∣∣s1 = s

 (6.29)

where ν(s′) := inf {n ≥ 1 : sn = s′}.

Definition 6.5

The diameter is defined in terms of actual expected time (to reach a state starting from an-

other state) rather than expected number of decision steps. Like in the MDP case, D < +∞
if and only if M is communicating. Moreover, D := maxs ‖h∗7→s‖∞ where h∗7→s is the maximal

non-positive fixed point of the Bellman shortest path operator L7→s in MDP M ′ = 〈S,A, r′, p〉
where r′ = −rmaxτ ≤ 0 (note that M ′ is an MDP and not an SMDP).

The travel-budget of SMDP M is defined as

Λ := max
s,s′

min
π∈ΠSD

Eπ
ν(s′)−1∑

i=1
rmaxτ(si, ai)− r(si, ai)

∣∣∣∣∣s1 = s

 . (6.30)

Definition 6.6

Like in the MDP case, 0 ≤ Λ ≤ rmaxD. Similarly to D, Λ := maxs ‖h∗7→s‖∞ where h∗7→s is
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the maximal non-positive fixed point of the Bellman shortest path operator L7→s in MDP

M ′ = 〈S,A, r′, p〉 where r′ = r − rmaxτ (which is negative by assumption).

We now present two regret bounds similar to Thm. 3.4 and 3.5 (the main differences are

highlighted).

Theorem 6.1 (Analogue of Thm. 3.4)

There exists a numerical constant β > 0 such that for any communicating SMDP M , with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

n > 1:

∆(M,SUCRL, µ1, n) ≤ β ·

max {rmax,Λ}

√√√√(∑
s,a

Γ(s, a)
)

+ (rmaxστ + σr)
√
SA+ rmaxτmax

√n ln
(
n

δ

)

+ β ·
(

max {rmax,Λ}S + rmaxdτ + dr
)
SA ln

(
n

δ

)
ln (n) .

(6.31)

Theorem 6.2 (Analogue of Thm. 3.5)

There exists a numerical constant β > 0 such that for any communicating SMDP M , with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

n > 1:

∆(M,SUCRL, µ1, n) ≤ β ·

{rmax,
√
rmaxΛ

}√√√√(∑
s,a

Γ(s, a)
)

ln (n)

+ (rmaxστ + σr)
√
SA+ rmaxτmax

√n ln
(
n

δ

)

+ β·
(

max
{
rmax,

Λ2

rmax

}
S + rmaxdτ + dr

)
SA ln

(
n

δ

)
ln (n) .

(6.32)

In the special case where options are almost surely bounded (see Lem. 6.1) by a known

upper-bound tmax, the main terms in the bounds of Thm. 6.1 and 6.2 remain unchanged but

dr = dτ = 0 and σr = rmaxστ = rmaxtmax.

6.3.4 Regret analysis of SUCRL

Gain optimism

According to Prop. 6.2, the optimal gains of the true SMDP M and the MDP Meq obtained

by uniformization (Eq. 6.4) are equal i.e., g∗ = g∗eq. We now show that with high probability,

g∗k,eq ≥ g∗eq where g∗k,eq is the optimal gain ofMeq
k . We first derive a slightly looser version of
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concentration inequality (6.14).

Let (Xi)1≤i≤n be a collection of sub-Exponential random variables satisfying the same as-

sumptions as in Prop. 6.4. For all n ≥ 1 and δ ∈]0, 1[,

P

∣∣∣∣∣
n∑
i=1

Xi − µi

∣∣∣∣∣ ≥
√√√√2

(
n∑
i=1

σ2
i

)
ln
(2
δ

)
+ 2d ln

(2
δ

) ≤ δ (6.33)

.

Corollary 6.2

Proof. We recall that d := max1≤i≤n{di}.

If
∑n
i=1 σ

2
i ≥ 2d2 ln

(
2
δ

)
we set t :=

√
2
(∑n

i=1 σ
2
i

)
ln
(

2
δ

)
≤
∑n
i=1 σ

2
i /d and so the first inequal-

ity in Eq. 6.14 of Prop. 6.4 holds implying that P
(
|
∑n
i=1Xi − µi| ≥

√
2
(∑n

i=1 σ
2
i

)
ln
(

2
δ

))
≤

δ.

If on the other hand
∑n
i=1 σ

2
i < 2d2 ln

(
2
δ

)
we set t := 2d ln

(
2
δ

)
>
∑n
i=1 σ

2
i /d and so the second

inequality in Eq. 6.14 of Prop. 6.4 holds implying that P
(
|
∑n
i=1Xi − µi| ≥ 2d ln

(
2
δ

))
≤ δ.

In conclusion, Eq. 6.14 holds for all n ≥ 1. �

Theorem 6.3 (Analogue of Thm. 3.1)

he probability that there exists n ≥ 1 and k ≥ 1 s.t. Meq does not belong to the extended

MDP Meq
k is at most δ

3 , that is

P
(
∃n ≥ 1,∃k ≥ 1, s.t. Meq 6∈ Meq

k

)
≤ δ

3 .

Proof. The proof is almost identical to the proof of Thm. 6.3 but we have to account for the

possibility that τ(s, a) 6∈ Bk
τ (s, a). We use Cor. 6.2 with δ ← δ

20SA(N+
k

(s,a))2 for both r and τ .

We notice that ln
(

40SA(N+
k

(s,a))2

δ

)
≤ 2 ln

(
7SAN+

k
(s,a)

δ

)
and after taking a union bound we

obtain:

P
(
∃n ≥ 1,∃k ≥ 1, s.t. Meq 6∈ Meq

k

)
≤
∑
s,a

+∞∑
n=1

(
δ

20n2SA
+ δ

20n2SA
+
∑
s′

δ

10n2S2A

)
= 2π2δ

60

≤ δ

3 .

�

As a direct consequence of Thm. 6.3, with probability at least 1− δ
3 , for all k ≥ 1, Leqk h∗eq ≥

Leqh
∗
eq and so g∗k,eq ≥ g∗eq (Prop. 3.3) and moreover gk ≥ g∗k,eq −

rmax
2ik (Prop. 2.7) implying

gk ≥ g∗ − rmax
2ik .
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Range of the optimistic bias

Under the same high probability event as Thm. 6.3, Leqk,7→sheq7→s ≥ Leq
7→sh

eq
7→s = heq7→s for all

k ≥ 1 and all s ∈ S where Leq
7→s and Leqk,7→s are the Bellman shortest path operators of Meq

andMeq
k with rewards r/τ (see (6.4)) replaced by r/τ − rmax ≤ 0, and where heq7→s ≤ 0 is the

maximal non-positive fixed point of Leq
7→s. Due to Prop. 3.5, Λeq

k ≤ Λeq and due to Thm. 3.35,

sp (hk) ≤ Λeq
k implying sp (hk) ≤ Λeq. It remains to relate Λeq and Λ.

Theorem 6.4

For all 0 < α < τmin, it holds that Λeq ≤ Λ/α.

Proof. By definition, Λeq = maxs ‖heq7→s‖∞ and Λ = maxs ‖h∗7→s‖∞ where heq7→s is the maximal

non-positive fixed point of Leq
7→s and h∗7→s the maximal non-positive fixed point of L7→s. As

shown in the proof of Prop. 2.8 (Sec. 2.1.4), L7→s and Leq
7→s are the Bellman operators of

the modified MDPs M 7→s and M eq
7→s respectively, where s is an absorbing state with reward

zero (the optimal gains of M 7→s and M eq
7→s are zero). Prop. 6.2 implies that αheq7→s is a fixed

point of L7→s and moreover αheq7→s ≤ 0 since heq7→s ≤ 0 and α > 0. Since h∗7→s is the maximal

non-positive fixed point of L7→s, necessarily h∗7→s ≥ αheq7→s which concludes the proof. �

In conclusion, we obtain the same bound as in the proof of UCRLB (see Sec. 3.3) i.e.,

sp (hk) ≤ Λ/α. Thm. 6.4 actually provides a tight bound since the equality holds Λeq = Λ/α
(we omit the proof since this result is never needed to bound the regret, the interested reader

may refer to Thm. 2.1 for an analogy). Note that in Sec. 3.3, α denotes the aperiodicity

coefficient while here it corresponds to the uniformization coefficient . Both coefficients play

a similar role and have no impact on the regret analysis (they eventually cancel).

Splitting into episodes

Using MDS concentration inequalities for sub-exponential r.v. (Prop. 6.6 below), we substitute

the sampled holding times τi and rewards ri (appearing in the definition of the regret) by

their expectations.

Proposition 6.6 (Theorem 2.3. Wainwright (2015))

Let (Xn,Fn)n∈N be an MDS such that E
[
eλXn

∣∣∣Fn−1
]
≤ e

σ2
nλ

2
2 a.s. for any |λ| < 1/dn and

n ∈ N. For all n ≥ 1 and t ≥ 0,

P

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥
√√√√2

(
n∑
i=1

σ2
i

)
ln
(2
δ

)
+ 2 max

1≤i≤n
{di} ln

(2
δ

) ≤ δ. (6.34)

.

177



Chapter 6. Hierarchical exploration–exploitations with options

We leverage Prop. 6.6 to bound the sum of rewards and holding times as in Lem. 3.1.

With probability at least 1− δ
6 :

∀n ≥ 1, −
n∑
i=1

ri ≤ −
n∑
i=1

∑
a∈Asi

πki(a|si)r(si, a) + 2σr

√
n ln

(6n
δ

)
+ 4dr ln

(6n
δ

)
n∑
i=1

τi ≤
n∑
i=1

∑
a∈Asi

πki(a|si)τ(si, a) + 2στ

√
n ln

(6n
δ

)
+ 4dτ ln

(6n
δ

) (6.35)

.

Lemma 6.4

Proof. We use a martingale argument and Cor. 6.2. �

Since the rewards r and holding times τ of M satisfy 0 ≤ r ≤ rmaxτ (by assumption), the

rewards req of Meq satisfy 0 ≤ req ≤ rmax and consequently 0 ≤ g∗ = g∗eq ≤ rmax. We can

now decompose the regret of SUCRL as we did with the regret of UCRLB in (3.39):

∆(SUCRL, n) ≤
kn∑
k=1

∆k + 2 (rmaxστ + σr)
√
n ln

(6n
δ

)
+ 4 (dr + rmaxdτ ) ln

(6n
δ

)
, (6.36)

where the per-episode regret is now defined as ∆k :=
∑
s,a νk(s)πk(s, a)

(
τ(s, a)g∗ − r(s, a)

)
.

We then introduce rk and τk:

τ(s, a)g∗ − r(s, a) = τk(s, a)g∗ − rk(s, a) + (τk(s, a)− τ(s, a)) g∗︸︷︷︸
≤rmax

+ (rk(s, a)− r(s, a))

By analogy with Sec. 3.5, we define ∆r
k :=

∑
s,a νk(s)πk(a|s)

(
rk(s, a) − r(s, a)

)
and ∆r1

k :=∑
s,a νk(s, a) (rk(s, a)− r(s, a)) (similar to ∆r

k with νk(s)πk(s, a) replaced by νk(s, a)). We

proceed similarly to define ∆τ
k and ∆τ1

k .

With probability at least 1− δ
6 :

∀n ≥ 1,
kn∑
k=1

∆r
k ≤

kn∑
k=1

∆r1
k + 4rmaxτmax

√
n ln

(5n
δ

)
kn∑
k=1

∆τ
k ≤

kn∑
k=1

∆τ1
k + 4τmax

√
n ln

(5n
δ

)

Lemma 6.5 (Analogue to Lem. 3.4)

Proof. We use a martingale argument and Prop. 3.7. �

We then bound ∆r1
k and ∆τ1

k :

g∗∆τ1
k + ∆r1

k ≤
∑
s,a

νk(s, a)
(

2(σr + rmaxστ )
√

ln (7SAn/δ)
N+
k (s, a)

+ 4(dr + rmaxdτ ) ln (7SAn/δ)
N+
k (s, a)

)
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Using Lem. 3.6, we obtain (the inequality should be interpreted up to multiplicative numerical

constants):

kn∑
k=1

g∗∆τ1
k + ∆r1

k . (σr + rmaxστ )
√
SAn ln

(
n

δ

)
+ (dr + rmaxdτ )SA ln

(
n

δ

)
ln (n) .

To bound τk(s, a)g∗ − rk(s, a) we use gain optimism gk ≥ g∗ − rmax
2ik and Eq. 6.28 so that:

∑
a∈As

πk(a|s) (τk(s, a)g∗ − rk(s, a)) ≤ α
∑
a∈As

πk(a|s)
(
pk(·|s, a)ᵀhk − hk(s)

)
+ 3rmax

2ik
. (6.37)

We recover the exact same term ∆p
k as in Eq. 3.42. The same analysis as in Sec. 3.5.3

(Thm. 6.1) and Sec. 3.6 can be carried out (with i and n replacing t and T ) leading to the

same regret bounds.

6.3.5 Minimax lower bound for SMDPs

We have already seen that UCRLB achieves rather tight regret guarantees (in a minimax

sense). Due to the similarities in the regret analysis of SUCRL and UCRLB, we can expect

the bounds of Thm. 6.1 and 6.2 to be as tight. This is confirmed in the following lower bound .

Theorem 6.5

There exists a constant β > 0 such that for any algorithm A, any integers S,A ≥ 10,

any reals tmax ≥ 3tmin ≥ 3, rmax > 0, Λ > rmax · max{20tminlogA(S), 12tmin}, and for

n ≥ max{Λ/rmax, tmax}SA, there is an SMDP M with at most S states, A actions, and

travel-budget Λ, with holding times in [tmin, tmax] and rewards in
[
0, 1

2rmaxtmax
]

satisfying

∀s ∈ S, ∀a ∈ As, r(s, a) ≤ rmaxτ(s, a), such that for any initial distribution µ1 ∈ ∆S, the

expected regret of A after n decision steps is lower-bounded by:

E [∆(M,A, µ1, n)] ≥ β ·
((√

rmaxΛ + rmax
√
tmax

)√
SAn

)
.

Proof. The proof (Fruit and Lazaric, 2017, Appendix C) is based on (Jaksch et al., 2010,

Section 6) but it requires to perturb transition probabilities and rewards at the same time to

create a family of SMDPs with different optimal policies that are difficult to discriminate. The

contributions of the two perturbations can be made independent. More precisely, the lower

bound is obtained by designing SMDPs where learning to distinguish between “good” and

“bad” transition probabilities and learning to distinguish between “good” and “bad” rewards

are two independent problems, leading to two additive terms
√
rmaxΛ and rmax

√
tmax in the

lower bound. �

This lower bound reveals a gap with the upper bound of order
√

Γ on the first term (similar

to UCRLB) and
√
tmax on the second term. While closing this gap remains a challenging

open question, it is a problem beyond the scope of this thesis.

Thm. 6.5 may not be very relevant for MDPs with options since the resulting SMDPs only
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account for a strict subset of all possible SMDPs. The rewards and holding times of such

SMDPs are always correlated due to the inner Markov structure of options. This is not the

case for all SMDPs. Actually, the specific family of SMDPs constructed to prove Thm. 6.5

cannot be mapped to any MDP with options for that reason. Nevertheless, we show that a

similar lower bound also holds for SMDPs resulting from MDPs with options.

Theorem 6.6

There exists a constant β > 0 such that for any algorithm A, any integers S,A ≥ 10,

any reals tmax ≥ 3tmin ≥ 3, rmax > 0, Λ > rmax · max{20tminlogA(S), 12tmin}, and for

n ≥ max{Λ/rmax, tmax}SA, there is an SMDP M resulting from an MDP with options

with at most S states, A actions, and travel-budget Λ, with holding times in [tmin, tmax]
and rewards in

[
0, 1

2rmaxtmax
]

satisfying ∀s ∈ S, ∀a ∈ As, r(s, a) ≤ rmaxτ(s, a), such that

for any initial distribution µ1 ∈ ∆S:

E [∆(M,A, µ1, n)] ≥ β ·
((√

rmaxΛ + rmax
√
tmax − tmin

)√
SAn

)
.

Proof. See (Fruit and Lazaric, 2017, Appendix C). �

6.3.6 Analyzing the impact of options on the learning process

We are now ready to proceed with the comparison of the bounds on the regret of learning

with options versus primitive actions. To facilitate the comparison, we ignore all logarithmic

terms and assume that all options are almost surely bounded by tmax. We recall that the

regret of UCRLB is of order ∆(UCRLB, Tn) = Õ
(√

rmaxΛΓSATn
)
. In contrast, SUCRL

achieves ∆(SUCRL, Tn) = Õ
((√

rmaxΛOΓO + rmaxtmax
)√

SOOn+ Tn · (g∗ − g∗O)
)
. We first

notice that since SO ⊆ S we have that SO ≤ S. Furthermore, we introduce the simplifying

conditions g∗ = g∗O (i.e., the options do not prevent from learning the optimal policy).

While in general comparing upper bounds is potentially loose, we notice that both upper-

bounds are derived using similar techniques and thus they would be“similarly” loose and they

both have almost matching worst-case lower bounds. Let R(n) denote the ratio between the

regret upper bounds of SUCRL using options O and UCRLB. Up to numerical constants we

have

R(n) .
(√
rmaxΛOΓO + rmaxtmax

)√
SOOn√

rmaxΛΓSATn
=

√ΛOΓO
ΛΓ + rmaxtmax√

rmaxΛΓ

√SOOn

SATn
. (6.38)

R(n) ≤ 1 indicates that using options is potentially beneficial (compared to using primitive

actions).

Eq. 6.38 reveals that options can improve the learning speed by reducing the size of the

support Γ of the dynamics of the environment, for example when options are designed so

as to reach a specific goal (very “sparse” transition dynamics). This potential advantage

matches the intuition on “good” options often presented in the literature (see e.g., the concept

of “funnel” actions introduced by Dietterich (2000)). However, Γ is absent from the lower
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6.4. Learning in MDPs with Options without prior knowledge

bounds which raises the question whether reducing the size of the support is an actual source

of improvement. On the other hand, both upper-bounds and lower-bounds suggest that

designing options which reduce the travel-budget Λ will have a positive effect on the learning

performance. When SO = S and A ⊆ O, ΛO = Λ which implies that the two quantities

are indeed comparable (they both measure an expected number of time steps). If SO = S,

ΛO ≥ Λ and so the only case when ΛO < Λ is when SO  S. In this case, SO ≤ S and so the

regret is all the more reduced. The ratio (6.38) also shows that the number of options should

not be excessively high compared to the number of actions to preserve some advantage in

using options.

Besides the fact that options can potentially reduce the travel-budget Λ, the support Γ
of transition probabilities, the number of states S or the number of actions A, the main

contribution of this analysis is to exhibit the ratio n
Tn

of number of decision steps over number

of time steps. This ratio formalizes the concept of temporal abstraction in RL. When using

options, the transition dynamics of the environment need only be estimated at the level of

macro-actions (i.e., options) causing the regret to grow with the number of decision steps

rather than time steps like with primitive actions.9 The longer the options, the lower the

regret although this is mitigated by the presence of the additional term rmaxtmax (rmax
√
tmax

in the lower bound) which quantifies the difficulty of estimating the parameters of a macro-

action. Since lim inf
n→+∞

Tn
n ≥ mins,a τ(s, a), then (6.38) gives an (asymptotic) sufficient condition

for reducing the regret when using options, that is√ΛOΓO
ΛΓ + rmaxtmax√

rmaxΛΓ

√ SOO

SAmins,a τ(s, a) ≤ 1. (6.39)

Perhaps not surprisingly, options are not always beneficial and can even worsen the learning

performance if not carefully chosen. This is a form of no-free lunch which reminds the

supervised learning setting (we recall that defining a set of options amounts to constrain the

policy space, which can be seen as the equivalent of the function class in supervised learning).

Accordingly, only adding options to the set of primitive actions is often a bad strategy (the

policy space is the same in that case). This is confirmed by our analysis since in that case

O ≥ A, ΓO ≥ Γ SO = S and ΛO = Λ.

6.4 Learning in MDPs with Options without prior knowl-

edge

At each episode, SUCRL solves an “optimistic” version of the optimality equation of Meq

(obtained by uniformization of SMDPMO, see Prop. 6.2) i.e., an optimistic version of equation

h∗eq+g∗eqe = Leqh
∗
eq. Gain optimism is achieved by constructing confidence intervals on R(s, o)

and τ(s, o) using parameters (σr(s, o), dr(s, o)) and (στ (s, o), dτ (s, o)) (Eq. 6.18 and 6.19).

Without any prior knowledge on the distribution of options, such confidence intervals cannot

be directly constructed and SUCRL cannot be run. Similarly, confidence intervals need to be

9The main term of the regret comes from the uncertainty in the environment dynamics
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so,0 so,1

(1−β1)p
p′

p′′

(1−p)(1−β1)

Figure 6.3: Irreducible MC obtained by transforming the absorbing MC of Fig. 6.2 with
p′ = (1− β0)(1− p) + β0(1− p) + pβ1 and p′′ = β1(1− p) + p.

computed for b(·|s, o), but this does not require any prior knowledge on the SMDP since the

transition probabilities naturally belong to the simplex over states.

In practice, having access to tight sub-exponential parameters is often a strong requirement

and any incorrect parametrization (e.g., loose upper-bounds on the true parameters) directly

translates into a poorer regret performance. Furthermore, even if a hand-designed set of

options may come with accurate estimates of their parameters, this would not be possible for

automatically generated options, which are of increasing interest to the RL community. Fi-

nally, SUCRL views each option as a distinct and atomic macro-action (with sub-exponential

distribution), thus losing the potential benefit of considering the inner structure and the in-

teraction between options (correlated discrete phase-type distributions with shared states

and primitive actions, see Sec. 6.2.3), which could be used to significantly improve sample

efficiency.

In this section, we combine the semi-Markov decision process view on options and the

intrinsic MDP structure underlying their execution (see Sec. 6.2.3) to achieve temporal ab-

straction without relying on sub-exponential parameters that are typically unknown. The

optimality equation of Meq can be rewritten as:

∀s ∈ SO, g∗eq = max
o∈Os

{
R(s, o)
τ(s, o) + α

τ(s, o)
(
b(·|s, o)ᵀh∗eq − h∗eq(s)

)}
. (6.40)

The term on the right-hand side of Eq. 6.40 is therefore “homogeneous” to a gain. We will

introduce a transformation mapping each state-option pair (absorbing Markov Chain) to an

associated irreducible Markov chain, where the gain of this Markov chain is the right-hand

side term of Eq. 6.40. We will show that optimistic policies can be computed using only

the irreducible chains and the SMDP dynamics (i.e., state to state transition probabilities

through options). This approach does not need to explicitly estimate cumulative rewards and

duration of options and their confidence intervals.

6.4.1 From absorbing to irreducible Markov Chains

From Eq. 6.40, we notice that computing the optimal policy only requires computing the

ratio R(s, o)/τ(s, o) ∈ [0, rmax] and the inverse 1/τ(s, o) ∈ [0, 1]. Starting from the absorbing

Markov Chain Ps,o (Sec. 6.2.3), we can construct an irreducible MC whose stationary distri-

bution is directly related to these terms. We proceed as illustrated in Fig. 6.3: all terminal

states are “merged” together and their transitions are “redirected” to the initial state s ∈ Ss,o.
More formally, vs,o := Vs,oe ∈ RSs,o contains the cumulative probability to transition from an

182



6.4. Learning in MDPs with Options without prior knowledge

inner state to any terminal state. Then we define Q′s,o ∈ RSo×So as equal to Qs,o with vs,o

added to the s-th column of Qs,o. Q
′
s,oe = Qs,oe+Vs,oe = e and Q′s,o ≥ 0 implying that Q′s,o is

a stochastic matrix and the associated MC is necessarily irreducible since all states in Ss,o are

reachable form s by construction (definition of Ss,o), and s is reachable from any state in Ss,o
due to the addition of vs,o. Therefore, Q′s,o admits a unique stationary distribution µs,o i.e.,

a unique solution to the system of equations µᵀs,oQ
′
s,o = µᵀs,o and µᵀs,oe = 1 (Bremaud, 1999,

Chapter 3). In order to relate µs,o to the optimality equation (6.40), we need an additional

assumption on options.

For any state-option pair (s, o) ∈ SO ×O, the starting state s is also a terminal state i.e.,

βo (s) = 1.

Assumption 6.3

We now analyze the implications of Asm. 6.3. Let O be a set of options, possibly not

satisfying Asm. 6.3, and O′ a slightly different set of options obtained by forcing βo(s) = 1
for all state-options pairs (s, o) ∈ SO × O. It is straightforward to prove the following

equivalence.

Proposition 6.7

Let π be a stationary deterministic policy over options O. There exists a stationary de-

terministic policy π′ over options O′ such that the induced process over states, actions and

rewards (in the original MDP M) is the same for both π and π′, i.e., for any sequence

Ht = (s1, a1, r1 . . . , st), Pπ(Ht) = Pπ′(Ht).

Proof. For any option o ∈ O in the original set of options, let’s denote by o′ ∈ O′ the

same option after forcing βo(s) = 1. For any stationary policy π over O, let’s define a

corresponding stationary policy π′ over O′ by: π′(s) = (π(s))′, ∀s ∈ SO. For any option

o such that π(s) = o and βo(s) < 1, the state s ∈ Ss,o might be visited while o is being

executed and o is not stopped in s. But since πo (policy of option o) is stationary Markov ,

the distribution on the sequence of states and actions visited after s is exactly the same as if

the option was first stopped and executed again (in both cases the policy πo and the starting

state s are the same). So the process over states and actions is the same for π and π′. �

Since the optimal policy over options O is stationary deterministic (optimal policy of SMDP

MO), Prop. 6.7 implies that Asm. 6.3 is not very restrictive. We are now ready to prove an

important lemma.
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Under Asm. 6.3, let µs,o ∈ [0, 1]So be the unique stationary distribution of the irreducible

MC Q′s,o associated to state-option (s, o), then

1
τ(s, o) = µs,o(s) and

R(s, o)
τ(s, o) =

∑
x∈Ss,o
a∈Ax

r(x, a)πo(a|x)µs,o(x). (6.41)

Lemma 6.6

Proof. Under Asm. 6.3, Qs,o(x, s) = (1 − βo(s)) ·
∑
a p(s|x, a)πo(a|x) = 0 for all x ∈ Ss,o

implying that Q′s,o(x, s) = vs,o(x). So state s can only be reached when the option is “reset”.

Q′s,o has a finite number of states and is thus recurrent positive (see e.g., Thm. 3.3 of Bremaud

(1999, Chapter 3)). Moreover, 1/µs,o(s) corresponds to the mean return time in state s, i.e.,

the expected time to reach s starting from s (see e.g., Theorem 3.2 in Bremaud (1999, Chapter

3)). Finally, τ(s, o) is the expected time before reaching an absorbing states starting from

s in the original absorbing Markov chain Ps,o. Since all absorbing states of Qs,o are merged

with s in MC Q′s,o, 1/µs,o(s) is exactly equal to τ(s, o) in this case.

Let (st)t∈N be the sequence of states visited while executing Q′s,o starting from s and let

rt =
∑
a∈Ast r(st, a)πo(a|st). By the Ergodic Theorem for Markov chains (see e.g., Thm. 4.1

of Bremaud (1999, Chapter 3)):

lim
T→+∞

∑T−1
t=0 rt
T

=
∑

x∈Ss,o
a∈Ax

r(x, a)πo(a|x)µs,o(x) a.s. (6.42)

Let T0 = 0, T1, T2, ... be the successive times of visit to s (random stopping times) i.e., T0 := 0
and Tn+1 := inf{t > Tn : st = s}. From the Regenerative Cycle Theorem for Markov chains

(see e.g., Thm. 7.4 of Bremaud (1999, Chapter 2)) we have that the pieces of trajectory(
sTn , ..., sTn+1−1

)
n≥0 are i.i.d. By the Law of Large Numbers we thus have:

∑Tn−1
t=0 rt
n

=
∑n−1
k=0

(∑Tk+1−1
t=Tk rt

)
n

−→
n→+∞

R(s, o) a.s.

The same arguments can be used to show that

Tn
n

=
∑n−1
k=0 (Tk+1 − Tk)

n
−→

n→+∞
τ(s, o) a.s.

By taking the ratio, the term n disappears and we obtain:

∑Tn−1
t=0 rt
Tn

−→
n→+∞

R(s, o)
τ(s, o) a.s. (6.43)

All sub-sequences of a convergent sequence converge to the limit of that sequence. Extracting
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the subsequence (Tn)n∈N in (6.42) we obtain:

∑Tn−1
t=0 rt
Tn

−→
n→+∞

∑
x∈Ss,o
a∈Ax

r(x, a)πo(a|x)µs,o(x) a.s. (6.44)

We then use the uniqueness of the limit ((6.43) and (6.44)) to conclude the proof of (6.41). �

Lem. 6.6 makes explicit the relationship between the stationary distribution of Q′s,o and

the key terms appearing in Eq. 6.40. More precisely, we have shown that:

R(s, o)
τ(s, o) + α

τ(s, o)
(
b(·|s, o)ᵀh∗eq − h∗eq(s)

)
=

∑
x∈Ss,o
a∈Ax

r(x, a)πo(a|x)µs,o(x)

+ α
(
b(·|s, o)ᵀh∗eq − h∗eq(s)

)
µs,o(s).

This confirms our first intuition that the term R(s,o)
τ(s,o) + α

τ(s,o)

(
b(·|s, o)ᵀh∗eq − h∗eq(s)

)
corre-

sponds to a long term average gain, namely the gain of the Markov Reward Process (MRP)

characterized by the MC Q′s,o and the reward function defined by


∑
a∈Ax r(x, a)πo(a|x) for x 6= s,∑
a∈As r(s, a)πo(a|s) + α

(
b(·|s, o)ᵀh∗eq − h∗eq(s)

)
for x = s.

6.4.2 Optimistic bilevel Bellman operator

Inspired by the mapping between options and irreducible MRPs highlighted in the previous

section, we will now define an optimistic Bellman operator Leqk that uses confidence intervals

on b(·|s, o), as well as confidence intervals on Q′s,o and r(x, a) (rather than τ(s, o) and R(s, o)).
For the rewards we use the same confidence intervals as in UCRLB i.e., rk(s, a) ∈ Bk

r (s, a),
while for the transition probabilities at the level of options we use the same confidence bounds

as in SUCRL (and in UCRLB) i.e., bk(·|s, o) ∈ Bk
p (s, o). We also use Bk

p (s, a) for Q′s,o.

Inner Bellman operators. We start with the formal definition of a“local”extended Bellman

operator Ls,ok characterizing the inner dynamics and reward of state-option pair (s, o) ∈
SO ×O. Ls,ok takes two inputs: a scalar c ∈ R and a vector u ∈ RSs,o . For all x ∈ Ss,o,

Ls,ok (c, u)(x) :=
∑
a∈Ax

πo(a|x)
(

max
r∈Bkr (x,a)

{r}+ max
p∈Bkp (x,a)

{
pᵀ
(
(e− βo) ◦ u+ u(s)βo

)})

+ c1{x = s}.
(6.45)

The vector βo appearing in Eq. 6.45 corresponds to the stopping condition of option o

restricted to the subset of states Ss,o. ◦ denotes the Hadamard product i.e., (e − βo) ◦ u =(
(1− βo(x))u(x)

)
x∈Ss,o . The scalar c appears only in state s.
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Although this may not be obvious at first sight, for any fixed c ∈ R, Ls,ok (c, ·) is an (ex-

tended) optimal Bellman operator. The scalar c can indeed be interpreted as an additional

reward in state s, while the scalar product pᵀ
(
(e− βo) ◦ u+ u(s)βo

)
can be expressed as qᵀu

where q := p◦(e−βo)+pᵀβoes is a probability vector (i.e., q ≥ 0 and qᵀe = 1). p is also a prob-

ability vector and can be easily computed using LProba with input vector (e−βo)◦u+u(s)βo
(sorted in decreasing order). Since Bk

p (x, a) is a polytope, p and q take values in a finite set

that is independent of u, implying that Ls,ok (c, ·) can be expressed as an optimal Bellman

operator with finitely many actions. Furthermore, the associated MDPMs,o
k (c) is communi-

cating . Due to Prop. 2.4, there exists a solution (gs,ok (c), hs,ok (c)) ∈ R×RSs,o to the fixed point

equation hs,ok (c) + gs,ok (c)e = Ls,ok
(
c, hs,ok (c)

)
, where gs,ok (c) is unique and can be expressed as:

gs,ok (c) = µs,ok (s)c+
∑

x∈Ss,o
a∈Ax

πo(a|x)µs,ok (x) · max
r∈Bkr (x,a)

{r}, (6.46)

with µs,ok the stationary distribution of any optimal policy (e.g., a greedy policy w.r.t. hs,ok (c)).

Even though the true Markov Chain Q′s,o is irreducible by construction (and so µs,o is

unique with µs,o(s) > 0), it is not necessarily the case for the optimistic chain. This chain

can happen to contain transient states and/or several recurrent classes. µs,ok is not uniquely

defined10 (but exists) and µs,ok (s) can happen to be 0.

Outer Bellman operator. We define the“global”operator Leqk relating all options as follows:

∀v ∈ RSO , ∀s ∈ SO, Leqk v(s) := max
o∈Os

{
gs,ok

(
α · max

b∈Bkp (s,o)
{bᵀv} − α · v(s)

)}
+ v(s). (6.47)

Leqk accounts for the outer rewards and dynamics at the “SMDP level”. Using (6.46), we

can rewrite (6.47) as

max
o∈Os

{
max
µ

{ ∑
x∈Ss,o
a∈Ax

πo(a|x)µ(x) · max
r∈Bkr (x,a)

{r}

︸ ︷︷ ︸
reward in [0,rmax]

+ αµ(s) · max
b∈Bkp (s,o)

{bᵀv}+ (1− αµ(s)) · v(s)︸ ︷︷ ︸
=pᵀv, with probability vector p=αµ(s)b+(1−αµ(s))es

}}
,

where µ is constrained to be a stationary distribution of a (not necessarily irreducible) MC

contained in the confidence intervals of Q′s,o (see above). As we explained earlier, q can be

constrained to lie in a finite space without impacting the final result, and therefore so does µ.

In conclusion, Leqk is an (extended) optimal Bellman operator which can be expressed with

only finitely many actions. The associated extended MDPMeq
k is communicating and so due

to Prop. 2.4, there exists a solution (geqk , h
eq
k ) ∈ [0, rmax] × RSO to the optimality equation

heqk + geqk e = Leqk h
eq
k . Unlike in the SMDP formulation of SUCRL where the holding times

and cumulative rewards must lie in bounded confidence intervals, in this new formulation µ(s)
can be equal to 0 (corresponding to an infinite holding time and cumulative reward) without

10Although µs,ok is not unique, the value in Eq. 6.46 is the same for all possible values of µs,ok .
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compromising the solution of the optimality equation. Furthermore, this new approach im-

plicitly leverages over the correlations between cumulative reward and holding time, which

is ignored when estimating R(s, o) and τ(s, o) separately.

SinceMeq
k is aperiodic by construction (see Eq. 6.4), Prop. 2.6 implies that EVI converges to

a solution of the optimality equation. The limit of the sequence of vectors vn generated by EVI

when started from vector v0 = 0 will be denoted heqk . Due to Thm. 3.3, sp
(
heqk
)
≤ Λeq

k . To sim-

plify notations, whenever c = α ·
(
maxb∈Bkp (s,o)

{
bᵀheqk

}
− heqk (s)

)
we drop the dependency in c

in Eq. 6.45 i.e., we simply denote the inner operator by Ls,ok . Let (gs,ok , hs,ok ) be any solution to

hs,ok +gs,ok e = Ls,ok hs,ok . We cannot use Thm. 3.3 to bound sp
(
hs,ok

)
because we have no guaran-

tee that the reward
∑
a∈As πo(a|s)

(
maxr∈Bkr (s,a){r}+ α ·

(
maxb∈Bkp (s,o)

{
bᵀheqk

}
− ·heqk (s)

))
is

bounded by rmax. However, combining the inner and outer optimality equations, we obtain

that geqk = maxo∈Os
{
gs,ok

}
for all s ∈ SO so that gs,ok ≤ geqk ≤ rmax. Thm. 3.2 then shows

that sp
(
hs,ok

)
≤ Λs,ok where Λs,ok is the “travel-budget” of the extended MDP Ms,o

k but with

policies restricted in ΠSD
7→y(M

s,o
k ):

Λs,ok := max
x,y∈Ss,o

min
π∈ΠSD

7→y(Ms,o
k

)
EπMs,o

k

τ(y)−1∑
t=1

rmax − r(st, at)
∣∣∣∣∣s1 = x

 . (6.48)

Gain optimism. We use the same argument as for SUCRL: with high probability, Leqk h∗eq ≥
Leqh

∗
eq implying geqk ≥ g∗eq = g∗MO .

Range of optimistic biases. The travel-budget Λs,o of any state-option pair (s, o) ∈ SO×O
is defined as

Λs,o := max
x,y∈Ss,o

EQ′s,o

τ(y)−1∑
t=1

rmax −
∑
a∈Ast

r(st, a)πo(a|st)
∣∣∣∣∣s1 = x

 . (6.49)

EQ′s,o denotes the expectation in the irreducible Markov Chain Q′s,o. Since by construction

all states are positive recurrent , PQ′s,o
(
τ(y) < +∞

∣∣∣s1 = x
)

= 1 so that Λs,o < +∞. Under

the same high probability event for which geqk ≥ g∗eq, Λeq
k ≤ Λ/α (same arguments as in

SUCRL). A similar reasoning can be used to show that Λs,ok ≤ Λs,o.

6.4.3 FSUCRL: SUCRL with Irreducible Markov Chains

Algorithm

FSUCRL combines the confidence bounds Bk
p (s, o) (of the state-option transition b(·|s, o))

used in SUCRL, with the confidence bounds Bk
r (s, a) and Bk

p (s, a) (of the state-action reward

r(s, a) and transition p(·|s, a)) used in UCRLB. FSUCRL does not build confidence intervals

on τ(s, o) and R(s, o) and so no prior knowledge on the distribution of holding times and
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cumulative rewards of options is needed11 (e.g., sub-exponential parameters στ , bτ , σr and

br). The confidence sets define the extended MDP Meq
k described in Sec. 6.4.2.

We will assume that FSUCRL computes heqk and hs,ok exactly instead of approximately using

EVI (see Eq. 6.22 in Alg. 12). The policy πk played at episode k is therefore a greedy policy

with respect to heqk i.e., πk = Geq
k h

eq
k .12 Computing heqk and hs,ok exactly allows to bound the

range (span) of hs,ok by Λs,o (see Sec. 6.4.2). It is unclear whether we can approximate heqk
and hs,ok using an efficient iterative procedure (similar to EVI) while preserving the property

sp
(
hs,ok

)
≤ Λs,o. The main challenge is that we have intricated equations e.g., the term c used

in the definition of Ls,ok (c, v) changes at every iteration. Nevertheless, we will later provide a

convergent algorithm to approximate heqk and hs,ok .

Finally, the stopping condition used to end an episode combines the stopping conditions

used by both UCRLB and SUCRL i.e., an episodes stops whenever either νk(st, at) ≥
N+
k (st, at) for the last state-action pair (st, at) played or νk(si, oi) ≥ N+

k (si, oi) for the last

state-option pair (si, oi) played. Since when the first condition νk(st, at) ≥ N+
k (st, at) is trig-

gered the current option being played oNt may not be over, FSUCRL waits for the option to

end .

Regret guarantees

We present two regret bounds for FSUCRL (like for SUCRL). Like in Thm. 6.1 and 6.2, the

bounds are composed of two distinct terms: one reflects the difficulty to learn the dynamics

of the corresponding SMDP MO, while the other characterizes the uncertainty of the options

themselves. To simplify the bound, we introduce Λmax := maxs,o Λs,o.

Theorem 6.7 (Analogue of Thm. 3.4)

There exists a numerical constant β > 0 such that for any communicating MDP M , with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

time horizons T > 1:

∆(M,FSUCRL, µ1, Tn) ≤ β ·max {rmax,ΛO}

√√√√(∑
s,o

Γ(s, o)
)
n ln

(
n

δ

)

+ β ·max {rmax,Λmax}

√√√√(∑
s,a

Γ(s, a)
)
Tn ln

(
Tn
δ

)

+ β ·max {rmax,ΛO}S2
OO ln

(
n

δ

)
ln (n)

+ β · SA ln
(
Tn
δ

)
ln (Tn)

(
max {rmax,Λmax}S + rmax(τmax + στ + dτ )

)
.

11FSUCRL is somehow a “parameter-Free” version of SUCRL (hence the acronym).
12Unlike in SUCRL and UCRLB, πk is chosen deterministic so that Prop. 6.7 applies.
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Theorem 6.8 (Analogue of Thm. 3.5)

There exists a numerical constant β > 0 such that for any communicating MDP M , with

probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all

time horizons T > 1:

∆(M,FSUCRL, µ1, Tn) ≤β ·max
{
rmax,

√
rmaxΛO

}√√√√(∑
s,o

Γ(s, o)
)
n ln

(
n

δ

)

+ β ·max
{
rmax,

√
rmaxΛmax

}√√√√(∑
s,a

Γ(s, a)
)
Tn ln

(
Tn
δ

)

+ β ·max
{
rmax,

Λ2
O

rmax

}
S2
OO ln

(
n

δ

)
ln (n)

+ β · SA ln
(
Tn
δ

)
ln (Tn)

(
max

{
rmax,

Λ2
max
rmax

}
S + rmax(τmax + στ + dτ )

)
.

The bounds presented above illustrate how options implicitly implement the divide-and-

conquer paradigm. The main regret term of UCRLB Õ
(√

rmaxΛΓSATn
)

sees the travel-

budget reduced to Λmax while another term Õ
(√

rmaxΛOΓOSOOn
)

appears, which only

scales with the number of decision steps n instead of the number of time steps Tn. The ratio

introduced in Sec. 6.3.6 is now roughly bounded as

R(n) .
√

ΛOΓOSOOn
ΛΓSATn

+

√
Λmax

Λ . (6.50)

The conclusions that we can draw from (6.50) are similar to the one of Sec. 6.3.6 except that

we removed the dependency in the potentially loose sub-exponential parameters of options.

We replace these terms by intrinsic and a priori unknown properties of options (namely their

travel-budget) which provide more insights. It is clear from the bounds that unlike SUCRL,

FSUCRL leverages the inner correlation between the cumulative reward and duration of a

single option, as well as the outer correlation between different options that share inner state-

action pairs. The worst-case travel-budget of options Λmax is a very loose upper-bound in

practice but difficult to improve while preserving the readability and interpretability of the

regret bound.

Regret analysis

Stopping condition of episodes. FSUCRL uses two condition to terminate an episodes

and so the total number of episodes kn can be decomposed as kn = k1
n + k2

n, where k1
n is the

number of episodes for which the first condition νk(st, at) ≥ N+
k (st, at) is triggered, while k2

n

is the number of episodes for which the second condition νk(si, oi) ≥ N+
k (si, oi) is triggered.

k2
n can be bounded as in SUCRL i.e., k2

n ≤ SOO log2

(
8n
SOO

)
(see Prop. 3.8). Moreover, this
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stopping condition ensures that at every episode k, νk(s, o) ≤ N+
k (s, o) for all pairs (s, o).

Let’s now analyze the first stopping condition. Once the number of visits has doubled in one

state-action pair, FSUCRL needs to wait for the option being executed to end before starting

the next episode. This can only decrease the number of episodes compared to UCRLB.

Indeed, at the end of every episode k, the condition νk(x, a) ≥ N+
k (x, a) is always satisfied for

at least one state-action pair (x, a) and so Prop. 3.8 (which only relies on this property) also

holds i.e., k1
n ≤ SA log2

(
8Tn
SA

)
. Although the bound on the number of episodes is unchanged,

the condition νk(x, a) ≤ N+
k (x, a) for all state-action pairs (x, a) no longer holds and we

cannot apply Lem. 3.6 to bound the series
∑kT
k=1

νk(x,a)√
N+
k

(x,a)
and

∑kT
k=1

νk(x,a)
N+
k

(x,a) . Nevertheless,

this condition can only be violated while executing an option oi that is the last of the episode.

There is at most one such option in every episode and we will bound the regret in each time

step of this option by rmax. Using Cor. 6.2 with a union bound over all i = 1 . . . n we have

that with probability at least 1− δ

∀i = 1 . . . n, τi ≤ τmax + 2στ

√
ln
(2n
δ

)
+ 4dτ ln

(2n
δ

)
.

This means that with high probability, the total regret incurred while executing the last

option in all episodes where the first condition is triggered is (cumulatively) at most (ignoring

multiplicative numerical constants)

rmax · k1
n ·
(
τmax + στ

√
ln
(
n

δ

)
+ dτ ln

(
n

δ

))
. (6.51)

During the execution of all other options, we can use Lem. 3.6 to bound
∑kT
k=1

νk(x,a)√
N+
k

(x,a)
and∑kT

k=1
νk(x,a)
N+
k

(x,a) . We will account for the term (6.51) in the final regret bound and in the rest

of the proof, we will always assume that the condition νk(x, a) ≤ N+
k (x, a) is never violated .

Regret decomposition. The regret of FSUCRL can be decomposed as follows:

∆(FSUCRL, Tn) =
Tn∑
t=1

g∗M − rt = Tn · (g∗M − g∗MO) +
Tn∑
t=1

g∗MO − rt.

To bound the sum
∑Tn
t=1 g

∗
MO
− rt we first follow the same steps as for UCRLB (Sec. 3.5.1

and 3.5.2). More precisely, we use a martingale argument (see Lem. 3.1) to bound −
∑Tn
t=1 rt

and we use the optimism property to bound g∗MO . We also introduce the optimistic rewards

rk(s, a) and we use another martingale argument (see Lem. 3.5.4) to bound the cumulative

differences rk(s, a) − r(s, a). We set T0 := 1 and we recall that for all n ≥ 1, Tn :=
∑n
i=1 τi

where τi is the duration of the i-th option played by the learning algorithm (denoted oi).

The state sTi−1 visited at time step Ti−1 is the state in which oi is started and is therefore

abbreviated si (by analogy with SUCRL). The current episode at decision step i is denoted

ki (like in the analysis of SUCRL). The policy πk played by FSUCRL at episode k is
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deterministic and so oi = πki(si). There is no particular reason to believe the analysis

cannot be extended to randomized policies although it would be slightly more involved since

we have to deal with several optimality equations as well as several policies which can all

be stochastic: πk and (πo)o∈O. In the end we obtain (with high probability and up to

multiplicative numerical constants):

Tn∑
t=1

g∗MO − rt .
n∑
i=1

Ti−1∑
t=Ti−1

geqki − ∑
a∈Ast

πoi(a|st)rki(st, a)


+ rmax

√
SATn ln

(
SATn
δ

)
+ rmaxSA ln

(
SATn
δ

)
.

Unlike in Sec. 6.3.4, a denotes a primitive action in the original MDP M as opposed to

a macro-action in SMDP MO (denoted by o). Accordingly, rk(s, a) denotes the optimistic

reward associated to state-action pair (s, a) and lies in [0, rmax]. If option oi is played in

state si at decision step i then gsi,oiki
= geqki due to the outer optimality equation geqk =

maxo∈Os
{
gs,ok

}
(see Sec. 6.4.2). We now use the inner optimality equations hs,ok + gs,ok e =

Ls,ok hs,ok which can be expanded as

gsi,oiki
−

∑
a∈Ast

πoi(a|st)rki(st, a) =
∑
a∈Ast

πoi(a|st)q
si,oi
ki

(·|st, a)ᵀhsi,oiki
− hsi,oiki

(st)

+ α ·
(
bk(·|si, oi)ᵀheqk − h

eq
k (si)

)
· 1{t = Ti−1}.

The additional term α ·
(
bk(·|si, oi)ᵀheqk − h

eq
k (si)

)
only appears in the initial state si i.e.,

for t = Ti−1. For the sake of clarity, we use the simplifying notation qsi,oiki
(·|st) to denote∑

a πoi(a|st)q
si,oi
ki

(·|st, a). The main regret term becomes:

n∑
i=1

Ti−1∑
t=Ti−1

(
geqki−

∑
a∈Ast

πoi(a|st)rki(st, a)
)

=

α
n∑
i=1

(
bki(·|si, oi)ᵀh

eq
ki
− heqki (si)

)
+

n∑
i=1

Ti−1∑
t=Ti−1

(
qsi,oiki

(·|st)ᵀhsi,oiki
− hsi,oiki

(st)
)
.

The first sum (on the left-hand side) is analogue to the main term appearing in Eq. 6.37 in

the analysis of SUCRL (with different notations: b replaces p). It can be bounded in the

same way (we refer to the analysis of UCRLB). This term quantifies the uncertainty on the

dynamics between options at SMDP level. The main novelty in the analysis of FSUCRL is the

second sum (on the right-hand side) which arises due to the uncertainty within options. This

new term resembles the first sum: it corresponds to the difference between an “optimistic”

expectation of hsi,oiki
(st+1) given state st and hsi,oiki

(st). We will apply a very similar analysis.

Analysis of the new term. We start by adding and subtracting the true transition proba-

bility in the MC Q′s,o i.e., qsi,oi(·|st) =
∑
a πoi(a|st)qsi,oi(·|st, a).
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n∑
i=1

Ti−1∑
t=Ti−1

(
qsi,oiki

(·|st)ᵀhsi,oiki
− hsi,oiki

(st)
)

=
n∑
i=1

Ti−1∑
t=Ti−1

(
qsi,oiki

(·|st)− qsi,oi(·|st)
)ᵀ
hsi,oiki

+
n∑
i=1

Ti−1∑
t=Ti−1

(
qsi,oi(·|st)ᵀh

si,oi
ki

(st)− hsi,oiki
(st)

) (6.52)

The first term in Eq. 6.52 corresponds to the difference between the optimistic and estimated

transition probability of irreducible MC Q′s,o, amplified by the optimistic bias hs,ok :

kn∑
k=1

∑
s,o

∑
x∈Ss,o

νk(s, o, x)
∑
a

πo(a|x)
(
qs,ok (·|x, a)− qs,o(·|x, a)

)ᵀ
hs,ok , (6.53)

where νk(s, o, x) denote the total number of visits in state x while executing state option

(s, o) during episode k. We then use the definition of qs,ok and qs,o to reveal the optimistic

and true transition probabilities pk and p in the MDP (not the MC Q′s,o):

(
qs,ok (·|x, a)− qs,o(·|x, a)

)ᵀ
hs,ok =

∑
y

[
βo(y) ·

(
pk(y|x, a)− p(y|x, a)

)
· hs,ok (y)

+ (1− βo(y)) ·
(
pk(y|x, a)− p(y|x, a)

)
· hs,ok (s)

]
≤ Λmax ·min

{
2, βxap,k

}
The term (6.53) is therefore similar to the term ∆p1

k appearing in the regret proof of UCRLB.

We can apply Lem. 3.2 to obtain the bound

Λmax

kn∑
k=1

∑
x,a

νk(x, a)βxap,k + 4Λmax

√
Tn ln

(5Tn
δ

)
.

For a tighter bound, we can apply Lem. 3.7 and the decomposition of Sec. 3.6 instead. The

final bound is obtained as in UCRLB.

The second term in Eq. 6.52 is the difference between qsi,oi(·|st)ᵀh
si,oi
ki

and hsi,oiki
(st). We

define the process (xt)t∈[Ti−1,Ti−1] by xt = st if Ti−1 ≤ t < Ti and xTi = si = xTi−1 . The

process (xt) follows the dynamics of option oi until the stopping condition is triggered in

which case xt goes back to the initial state of the option si. In other words, (xt) follows the

distribution of Markov Chain Q′s,o. We can then write

Ti−1∑
t=Ti−1

(
qsi,oi(·|st)ᵀh

si,oi
ki
− hsi,oiki

(st)
)

=
Ti−1∑
t=Ti−1

(
qsi,oi(·|st)ᵀh

si,oi
ki
− hsi,oiki

(xt+1)
)

+
���������������
Ti−1∑
t=Ti−1

(
hsi,oiki

(xt+1)− hsi,oiki
(st)

)

=
Ti−1∑
t=Ti−1

(
qsi,oi(·|xt)ᵀh

si,oi
ki
− hsi,oiki

(xt+1)
)
.

The telescopic sum appearing after adding hsi,oiki
(xt+1) is zero because xTi = si = xTi−1 . Since
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Algorithm 13 Nested (Relative) Value Iteration

Input: Operators Ls,o(·, ·) : R × RSs,o 7→ RSs,o and Gs,o : RS 7→ DMR, confidence inter-
vals (Bp(s, o, s′))s′∈SO , accuracies (εn)n≥−1 ∈]0, rmax[N, initial vector v0 ∈ RS , arbitrary
reference state s ∈ S

Output: Gain g ∈ [0, rmax], bias vectors h ∈ RS and hs,o ∈ RSs,o and stationary deterministic
policy π ∈ ΠSD

1: Initialize n = −1, v−1 := −∞
2: while sp (vn+1 − vn) > ε−1 − 3

2εn+1 do
3: Increment n← n+ 1
4: Shift vn ← vn − vn(s)e
5: for s ∈ S do
6: for o ∈ O do
7: c← α ·

(
LProba

(
vn, (Bp(s, o, s′))s′∈SO

)
− vn(s)

)
8:

(
ĝs,o, ĥs,o, π̂s,o

)
← EVI

(
Ls,o(c, ·), Gs,o, εn+1, 0, s

)
. Inner value iteration

9: end for
10: vn+1(s) := vn(s) + maxo∈O ĝs,o . Outer value iteration
11: end for
12: dn := Gvn
13: end while
14: Set g := 1

2

(
max{vn+1 − vn}+ min{vn+1 − vn}

)
, h := vn and π := (dn)∞

(xt) follows the distribution of MC Q′s,o, the remaining term (summed over i = 1 . . . n):

n∑
i=1

Ti−1∑
t=Ti−1

(
qsi,oi(·|st)ᵀh

si,oi
ki
− hsi,oiki

(xt+1)
)

=
Tn∑
t=1

(
qsNt ,oNt (·|xt)

ᵀh
sNt ,oNt
kNt

− hsNt ,oNtkNt
(xt+1)

)
,

is an MDS. It can bounded like the sum
∑kT
k=1 ∆p4

k appearing in the analysis of UCRLB (see

Lem. 3.3 and 3.10), knowing that sp
(
h
sNt ,oNt
kNt

)
≤ Λst,ot ≤ Λmax.

Nested value iteration

If EVI is run with the exact Bellman operator Leqk , both Prop. 2.6 and 2.7 hold and so

we obtain an efficient and convergent algorithm. The main challenge is that applying Leqk
requires computing the optimal gains gs,ok (c) of extended MDPs Ms,o

k (c). EVI can be used

to approximate these gains with an arbitrary accuracy ε > 0. We therefore propose the

nested iterative scheme of Alg. 13 with operators Ls,ok , confidence intervals Bk
p (s, o, s′), and

initial vector 0 as inputs (we call this algorithm NEVI for Nested Extended Value Iteration).

Operator Gs,o can be any greedy operator associated to Ls,ok . We pick a sequence of accuracies

(εn)n≥0 such that
∑
n≥0 εn < +∞. With such a sequence, we can prove the following theorem.

Theorem 6.9

If Nested Value Iteration (Alg. 13) is run with operators Ls,ok , confidence intervals

Bk
p (s, o, s′) and if

∑
n≥0 εn < +∞, there exists heqk ∈ RSO such that limn→+∞ vn = heqk

and Leqk h
eq
k = heqk + geqk e.
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Proof. To simplify notations, we denote Leqk by L and we define (un) the sequence obtained

using the same algorithm without line 4 (shift) i.e., u0 = v0 and vn = un − un(s)e for all

n ≥ 1. Prop. 2.7 shows that ĝs,o is an εn+1/2-approximation to gs,ok and so for all n ≥ 0,

‖un+1 − Lun‖∞ ≤ εn+1/2. Since L is non-expansive in `∞-norm (see Prop. 2.5 (b)) we have

‖un+2 − L2un‖∞ ≤ ‖un+2 − Lun+1‖∞ + ‖Lun+1 − L2un‖∞

≤ εn+2/2 + ‖un+1 − Lun‖∞ ≤
εn+2 + εn+1

2 .

By trivial induction, ‖un+k − Lkun‖∞ ≤ 1
2
∑n+k
i=n+1 εi for all n, k ≥ 0 and so

‖vn+k − vn‖∞ = ‖ (un+k − un+k(s)e)− (un − un(s)e) ‖∞

≤ ‖Lkun − Lkun(s)e− (un − un(s)e) ‖∞ +
n+k∑
i=n+1

εi. (6.54)

We know from Prop. 2.6 that Lkun − Lkun(s)e converges as k → +∞ (as an instance of

relative value iteration with initial vector un). A convergent sequence is a Cauchy sequence

which means that (by definition)

sup
k≥0
‖Lkun − Lkun(s)e− (un − un(s)e) ‖∞ −→

n→+∞
0.

Conversely, in a Banach space such that RSO , any Cauchy sequence converges. Since by

assumption
∑
n≥0 εn < +∞, necessarily supk≥0

{∑n+k
i=n+1 εi

}
=
∑+∞
i=n+1 εi −→

n→+∞
0 and

we conclude from Eq. 6.54 that (vn) is a Cauchy sequence, and thus converges. Because

limn→+∞ εn = 0 (otherwise the series
∑
n≥0 εn diverges), the limit of (vn) must satisfy the

optimality equation of L. �

One of the interesting features of NEVI is its hierarchical structure. NEVI is operating on

two different time scales by iteratively considering every option as an independent optimistic

planning sub-problem (line 8 of Alg. 13) and gathering all the results into a higher level

planning problem (line 10 of Alg. 13). This idea is at the core of the hierarchical approach

in RL, but it is not always present in the algorithmic structure, while NEVI naturally arises

from decomposing EVI in two value iteration algorithms.

6.5 Numerical Experiments

In this section we compare the regrets of FSUCRL, SUCRL and UCRLB to empirically

demonstrate the advantage of temporal abstraction.

6.5.1 Simple grid world.

In order to isolate temporal abstraction from other potential sources of improvements (e.g.,

number of states, diameter, etc.), we first design a domain that preserves most parameters.
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Target state

d

Figure 6.4: Navigation problem with the four cardinal actions represented as continuous arrows and
options (temporally extended actions) of length 2 as dashed arrows.

We consider the simple navigation problem of Fig. 6.4. In any of the d2 states of the grid

except the target, the four cardinal actions are available, each of them being successful with

probability 1. If the agent hits a wall then it stays in its current position with probability 1.

When the target state is reached, the state is reset to any other state with uniform probability.

The reward of any transition is 0 except when the agent leaves the target in which case it

equals rmax. The optimal policy simply takes the shortest path from any state to the target

state. The travel-budget Λ of the MDP is equal to rmaxD in this domain and D = 2(d− 1).

Let m be any non-negative integer smaller than d and in every state but the target we

define four macro-actions: LEFT, RIGHT, UP and DOWN (dashed arrows in the figure).

When LEFT is taken, primitive action left is applied up to m times (similar for the other

three options). For any state s′ which is k ≤ m steps on the left of the starting state s, we

set βo(s′) = 1/(m − k + 1) so that the probability of the option to be interrupted after any

k ≤ m steps is 1/m. If the starting state s is l steps close to the left border with l < m then

we set βo(s′) = 1/(l − k + 1) for any state s′ which is k ≤ l steps on the left. As a result,

for all options started m steps far from any wall, tmax = m and τmax = (m + 1)/2, (while it

is respectively l and (l + 1)/2 for an option started l < m step from the wall and moving

towards it). More precisely, all options have an expected duration of τmax in all but in m× d
states, which is small compared to the total number of d2 states if m � d. The SMDP

formed with this set of options preserves the number of state-action pairs (SO = S = d2 and

O = A = 4) as well as the optimal average reward g∗ = g∗O, while it slightly perturbs the

diameter DO ≤ D + m(m + 1) (Fruit and Lazaric, 2017, Appendix F). Finally, to remove

the impact of the support Γ, we consider Hoeffding rather than empirical Bernstein bounds

for the transition probabilities (for all algorithms). In conclusion: ignoring the impact of

temporal abstraction, the two problems seem to be almost equally hard to learn.

While a rigorous analysis of the ratio between the number of option decision steps n and

number of primitive actions Tn is difficult, we notice that as d increases w.r.t. m, the chance

of executing options close to a wall decreases, since for any option only m × d out of d2

states will lead to a duration smaller than τmax and thus we can conclude that n/Tn tends to

1/τmax = 2/(m + 1) as n and d grow. This suggests that if d is big enough, there is always

195



Chapter 6. Hierarchical exploration–exploitations with options

Algorithms Description (level of prior knowledge)

FSUCRL Uses nested EVI to achieve optimism (no prior knowledge)

SUCRLv1 Maximal reward rmax and actual duration tmax

SUCRLv2 Maximal expected duration τmax, maximal variance of holding
time στ = maxs,o στ (s, o) and reward σR = rmax

√
τmax + σ2

τ

SUCRLv3 τmax and ∀s, o, στ (s, o) and σR(s, o) = rmax
√
τ(s, o) + στ (s, o)2

SUCRLv4 Same as SUCRLv2 with σR = 0
SUCRLv5 Same as SUCRLv3 with σR(s, o) = 0

Table 6.1: Detailed description of the different algorithms used for the experiments. The
SUCRL-like algorithms are sorted by ascending level of prior knowledge. στ (s, o) can easily
be computed exactly using an analytical formula. Note that the options are all almost surely
bounded so that maxs,o bR(s, o) = maxs,o bτ (s, o) = 0. All options have 0 reward so that the
tightest prior knowledge we can have corresponds to σR = 0.
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Figure 6.5: Ratio of regrets after Tn = 2 · 109 steps normalized for different option durations
tmax in a 20× 20 grid-world.

an appropriate choice of m for which learning with options becomes significantly better than

learning with primitive actions.

In Fig. 6.5 we plot the ratio between the regrets of SUCRL/FSUCRL and the regret of

UCRLB, as tmax = m varies and d = 20. The value of Tn is fixed and chosen big enough for

all d. The versions of SUCRL appearing on the plot differ in the amount of prior knowledge

given to the algorithm to construct the parameters σR and στ that are used in building

the confidence intervals (see table 6.1). Unlike FSUCRL which is “parameter-free”, SUCRL is

highly sensitive to the prior knowledge about options and in theory, could perform even worse

than UCRL2. The ratio R(n) decreases as m increases showing that temporal abstraction

improves as tmax increases. This behaviour matches the theoretical predictions.

Discussion. Despite its simplicity, the most interesting aspect of this example is that the

improvement on the regret is not obtained by trivially reducing the number of state-action

pairs, but it is intrinsic in the way options change the dynamics of the exploration process.

196



6.5. Numerical Experiments

0 2 4 6 8 10
·108

0

1

2

3

4

·106

Duration Tn

R
eg

re
t

∆
(T

n
)

UCRL

FSUCRL

SUCRLv2

SUCRLv3

Figure 6.6: Evolution of the regret as Tn increases for a 14x14 four-rooms maze.

The two key elements in designing a successful set of options O is to preserve the average

reward of the optimal policy and the travel-budget. The former is often a weaker condition

than the latter. In this example, we achieved both conditions by designing a set O where the

termination conditions allow any option to end after only one step. This preserves the travel-

budget of the original MDP (up to a small additive term), since the agent can still navigate

at the level of granularity of primitive actions. Consider a slightly different set of options O′,
where each option moves exactly by m steps (no intermediate interruption). The number of

steps to the target remains unchanged from any state and thus we can achieve the optimal

performance. Nonetheless, having π∗ in the set of policies that can be represented with O′

does not guarantee that the UCRL-SMDP would be as efficient in learning the optimal policy

as UCRL2. In fact, the expected number of steps needed to go from a state s to an adjacent

state s′ may significantly increase. Despite being only one primitive action apart, there may

be no sequence of options that allows to reach s′ from s without relying on the random restart

triggered by the target state. A careful analysis of this case shows that the travel-budget is

as large as DO′ = D(1 +m2) (Fruit and Lazaric, 2017, Appendix F).

6.5.2 Four -room maze.

We now consider the classical 4-room maze that was initially introduced by Sutton et al.

(1999) to illustrate the concept of options. The domain is a grid-world of dimension 14× 14
with walls separating each 7 × 7 “room” (see Fig. 2.1). The four cardinal actions fail with

probability 0.2 (uniformly in any other direction). In every state of every room, we define

four options: two are leading to the two exit doors, one is leading to the center of the room,

and the last one leads to the unique corner of the grid in the room. Thus, the number of

state-options is slightly bigger than the number of state-actions. The optimal policy takes

the shortest path to the target state which is located in one of the 4 corners of the grid and

the rewards are the same as in the previous experiment. Once the target is reached, the next
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state is chosen uniformly at random in the grid.

On Fig. 6.6, we plot the regret ∆(A, n) as a function of Tn for A ∈ {UCRL2, SUCRL,

FSUCRL }. The two versions of SUCRL are exactly the same as in the previous experiments:

SUCRLv2 uses maxs,o στ (s, o) while SUCRLv3 uses στ (s, o). Note that the other versions of

SUCRL are not valid in this domain since the options are not almost surely bounded. We

use Bernstein bounds (as in the original versions of the algorithms presented in this thesis).

Version 2 of SUCRL fails to beat UCRL2, and it is likely that version 3 will also eventually

suffer higher regret. For FSUCRL, we plot all 20 runs (as well as the average in bold). Except

in one run, FSUCRL always outperforms UCRL2. The variance is clearly higher than for any

other algorithm. The choice of options is probably not the best.

In both experiments, UCRL and FSUCRL had similar running times meaning that the

improvement in cumulative regret is not at the expense of the computational complexity.

More experiments can be found in (Fruit et al., 2017).

6.6 Conclusion

In this chapter, we started by deriving upper and lower-bounds on the regret of learning in

SMDPs and we showed how these results apply to learning with options in MDPs. Comparing

the regret bounds of SUCRL with UCRLB, we provided sufficient conditions on the set of

options and the MDP (i.e., similar travel-budget and average reward) to reduce the regret

w.r.t. learning with primitive actions. To the best of our knowledge, this is the first attempt

of explaining when and how options affect the learning performance.

Then, we introduced FSUCRL, a parameter-free algorithm to learn in MDPs with op-

tions by combining the SMDP view to estimate the transition probabilities at the level of

options –b(·|s, o)– and the MDP structure of options to estimate the stationary distribu-

tion of an associated irreducible MC which allows to compute the optimistic policy at each

episode. We show both theoretically and empirically that FSUCRL is actually competitive

with SUCRL and it retains the advantage of temporal abstraction w.r.t. learning without

options. Since FSUCRL does not require strong prior knowledge about options and its re-

gret bound is partially computable, we believe the results of this chapter could be used as

a basis to construct more principled option discovery algorithms that explicitly optimize the

exploration-exploitation performance of the learning algorithm (e.g., in a transfer setting).

Although FSUCRL does not require prior knowledge on sub-exponential parameters, it needs

to know the outer state space SO (reachable states from µ1 using only options) as well as

inner state spaces Ss,o (states reachable while executing state-option (s, o)). If additional

states are added to these sets, we face the same problem as with non-communicating MDPs

(infinite diameter and travel-budget). Nevertheless, in this case we can apply the techniques

developed in Chap. 4 for infinite diameter/travel-budget.

As future work, it would be interesting to extend the current analyses to more sophisticated

hierarchical approaches to RL such as MAXQ (Dietterich, 2000).
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A Appendix of Chapter 3

A.1 Bias and travel-budget

A.1.1 Proof of Thm. 3.2

If h∗ + g∗e = Lh∗ then L2h∗ = L(h∗ + g∗e) = Lh∗ + g∗e = h∗ + 2g∗e using the “linearity” of

L (Prop. 2.5). So by induction we have Lnh∗ = h∗ + ng∗e for all n ≥ 1.

As shown in Prop. 2.1, for any vector v ∈ RS ,

Lnv(s) = max
π∈ΠHR

Eπ
[
n∑
t=1

rt + v(sn+1)
∣∣∣∣s1 = s

]
(A.1)

Note that the maximum in (A.1) is over all history-dependent randomized policies.

Fix an arbitrary state s′ 6= s and define the policy π′ ∈ ΠHR that executes an arbitrary

stationary randomized policy π ∈ ΠSD as long as t < τ(s′) and a greedy policy π∗ = (d∗)∞ ∈
ΠSD s.t. Lh∗ = Ld∗h

∗ for t ≥ τ(s′). We denote by n ∧ (τ(s′) − 1) := min{n, τ(s′) − 1} the

minimum between n and τ(s′)− 1. Due to Eq. A.1 we have:

Lnh∗(s) ≥ Eπ′
[
n∑
t=1

rt + h∗(sn+1)
∣∣∣∣∣s1 = s

]

= Eπ
′

n∧(τ(s′)−1)∑
t=1

rt

∣∣∣∣∣s1 = s

+ Eπ′
 n∑
t=n∧(τ(s′)−1)+1

rt + h∗(sn+1)
∣∣∣∣∣s1 = s


= Eπ

n∧(τ(s′)−1)∑
t=1

rt

∣∣∣∣∣s1 = s


︸ ︷︷ ︸

(1)

+Eπ′
 n∑
t=n∧(τ(s′)−1)+1

rt + h∗(sn+1)
∣∣∣∣∣s1 = s


︸ ︷︷ ︸

(2)

(A.2)

The fact that we can change π′ into π in the first expectation is because the MRP has the

same distribution under π and π′ for t < τ(s′) by definition. We now analyze the second term

in (A.2). Due to the Markov property, what happens for t ≥ τ(s′) depends only on sτ(s′) = s′

and π∗, and not on the states, actions and rewards observed before τ(s′). Mathematically,
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this means that

(2) = Eπ
′
[

n∑
t=n∧(τ(s′)−1)+1

rt + h∗(sn+1)
∣∣∣∣∣s1 = s

]

= Eπ
Eπ∗

n−τ(s′)+1∑
l=1

rl + h∗(sn−τ(s′)+2)
∣∣∣∣∣s1 = s′, τ(s′)

 · 1 {τ(s′) ≤ n+ 1
}

+ h∗(sn+1) · 1
{
τ(s′) > n+ 1

} ∣∣∣∣∣s1 = s

]

= Eπ
[
Ln−τ(s′)+1h∗(s′) · 1

{
τ(s′) ≤ n+ 1

}
+ h∗(sn+1) · 1

{
τ(s′) > n+ 1

} ∣∣∣s1 = s
]

Note that it is possible to condition on τ(s′) since τ(s′) is a stopping time and so the sigma-

algebra at stopping time τ(s′) is well-defined. Since Lnh∗ = h∗ + ng∗e for all n ≥ 1, we have

(a.s.)

Ln−τ(s′)+1h∗(s′) = h∗(s′) + (n− τ(s′) + 1) · g∗

Combining these last two equalities and using the law of total expectation, we can write:

(2) = h∗(s′) · Pπ
(
τ(s′) ≤ n+ 1

∣∣s1 = s
)

+ Eπ
[
h∗(sn+1) · 1

{
τ(s′) > n+ 1

} ∣∣∣s1 = s
]

+ g∗ · Eπ
[(
n− τ(s′) + 1

)
· 1
{
τ(s′) ≤ n+ 1

} ∣∣∣s1 = s
]
. (A.3)

Replacing Lnh∗(s) by h∗(s) +ng∗ in inequality A.2 and plugging (A.3) we have for all n ≥ 1:

h∗(s) ≥ Eπ
n∧(τ(s′)−1)∑

t=1
rt

∣∣∣∣∣s1 = s

+ Eπ
[
h∗(sn+1)1

{
τ(s′) > n+ 1

} ∣∣∣s1 = s
]

+ g∗ · Eπ
[(
n− τ(s′) + 1

)
· 1
{
τ(s′) ≤ n+ 1

}
− n

∣∣∣s1 = s
]

(A.4)

+ h∗(s′) · Pπ
(
τ(s′) ≤ n+ 1

∣∣s1 = s
)
.

We notice that
(
n− τ(s′) + 1

)
·1 {τ(s′) ≤ n+ 1} = n−n∧ (τ(s′)− 1) and so (A.4) becomes:

h∗(s) ≥ Eπ
n∧(τ(s′)−1)∑

t=1
rt − g∗

∣∣∣∣∣s1 = s

+ Eπ
[
h∗(sn+1)1

{
τ(s′) > n+ 1

} ∣∣∣s1 = s
]

+ h∗(s′) · Pπ
(
τ(s′) ≤ n+ 1

∣∣s1 = s
)
.

(A.5)

If π ∈ ΠSD
7→s′ then τ(s′) is a.s. finite by definition i.e., Pπ(τ(s′) < +∞) = 1. As a consequence,

lim
n→+∞

Pπ
(
τ(s′) ≤ n+ 1

∣∣s1 = s
)

= 1.

Since h∗(sn+1) is bounded (by ‖h∗‖∞) it also holds that∣∣∣Eπ [h∗(sn+1)1
{
τ(s′) > n+ 1

} ∣∣∣s1 = s
]∣∣∣ ≤ ‖h∗‖∞ · Pπ (τ(s′) > n+ 1

∣∣s1 = s
)
−→

n→+∞
0.

Finally, the term Eπ
[∑n∧(τ(s′)−1)

t=1 rt − g∗
∣∣∣s1 = s

]
tends to Eπ

[∑τ(s′)−1
t=1 rt − g∗

∣∣∣s1 = s
]

as n

tends to infinity. We conclude the proof by taking n→ +∞ in (A.5).
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A.1.2 Proof of Thm. 3.3

We use the same arguments as in the previous section (App. A.1.1, proof of Thm. 3.2). We

consider a policy π′ ∈ DHR which first executes π ∈ ΠSD until s′ is visited for the first

time, and then executes the non-stationary policy π+ = (d1, . . . , dn, . . . ) ∈ (ΠSR)N such that

Ldn+1vn = Lvn for all n ≥ 1, with v0 := 0 and vn+1 := Lvn. We can write (see Eq. A.2):

vn(s) := Lnv0(s) ≥ Eπ
n∧(τ(s′)−1)∑

t=1
rt

∣∣∣∣∣s1 = s


︸ ︷︷ ︸

(1)

+Eπ′
 n∑
t=n∧(τ(s′)−1)+1

rt

∣∣∣∣∣s1 = s


︸ ︷︷ ︸

(2)

Since rt ≤ rmax for all t ≥ 1 then we can bound the first term as follows:

(1) ≥ Eπ
τ(s′)−1∑

t=1
rt −

τ(s′)−1∑
t=n∧(τ(s′)−1)+1

rmax

∣∣∣∣∣s1 = s


= Eπ

τ(s′)−1∑
t=1

(rt − rmax)−
n∧(τ(s′)−1)∑

t=1
rmax

∣∣∣∣∣s1 = s


= Eπ

τ(s′)−1∑
t=1

(rt − rmax)
∣∣∣∣∣s1 = s

+ rmaxEπ
[
n ∧ (τ(s′)− 1)

∣∣∣s1 = s
]
.

Note that all the inequalities and equalities remain true even when τ(s′) is not almost surely

finite. In this case, the terms on the right-hand side may either be finite (convergent series)

or be equal to −∞, but this is a trivial lower bound to (1).

Similarly to (A.3) the second term can be expressed as follows:

(2) = Eπ
Eπ+

n−n∧(τ(s′)−1)∑
l=1

rl

∣∣∣∣∣s1 = s′, τ(s′)

 ∣∣∣∣∣s1 = s


≥ Eπ

[
Eπ

+
[
n∑
l=1

rl

∣∣∣∣∣s1 = s′
]

︸ ︷︷ ︸
=vn(s′)

−rmax ·
(
n ∧ (τ(s′)− 1)

)∣∣∣∣∣s1 = s

]

= vn(s′)− rmax · Eπ
[
n ∧ (τ(s′)− 1)

∣∣∣s1 = s
]

Summing (1) and (2), the term n ∧ (τ(s′)− 1) cancels and so we have

vn(s) ≥ vn(s′)− Eπ
τ(s′)−1∑

t=1
rt − rmax

∣∣∣∣∣s1 = s


which concludes the proof.
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A.2 Concentration bounds using a martingale argument

For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards

up to time t (included) is denoted Ft = σ(s1, a1, r1, . . . , st, at, rt, st+1) where by convention

F0 = σ (∅) and F∞ := ∪t≥0Ft. Trivially, for all t ≥ 0, Ft ⊆ Ft+1 and the filtration (Ft)t≥0
is denoted by F. We recall that kt is the integer-valued r.v. indexing the current episode at

time t (3.12). It is immediate from the termination condition of episodes that for all t ≥ 1, kt

is Ft−1-measurable i.e., the past sequence (s1, a1, r1, . . . , st−1, at−1, rt−1, st) fully determines

the ongoing episode at time t. As a consequence, the stationary (randomized) policy πkt
executed at time t is also Ft−1-measurable.

A.2.1 Proofs of Lem. 3.1 and 3.4

Let’s consider the stochastic stochastic process Xt := rt(st, at)−
∑
a∈Ast πkt(a|st)r(st, a). The

term
∑
a∈Ast r(st, a)πkt(a|st) is Ft−1-measurable and moreover

E[rt(st, at)|Ft−1] =
∑
a∈Ast

πkt(a|st)r(st, a)

so that E [Xt|Ft−1] = 0. Since in addition |Xt| ≤ rmax, (Xt,Ft)t≥1 is a Martingale Difference

Sequence (MDS) and we can apply Azuma’s inequality (Prop. 3.7):

P

 T∑
t=1

rt(st, at) ≤
T∑
t=1

∑
a∈Ast

πkt(a|st)r(st, a)− rmax

√
4T ln

(4T
δ

) ≤ ( δ

4T

)2
≤ δ

16T 2 . (A.6)

After taking a union bound over all possible values of T ≥ 1, we obtain that with probability

at least 1−
∑+∞
T=1

δ
16T 2 = 1− π2δ

96 ≥ 1− δ
6

∀T ≥ 1,
T∑
t=1

rt(st, at) ≥
T∑
t=1

∑
a∈Ast

πkt(a|st)r(st, a)− 2rmax

√
T ln

(4T
δ

)
. (A.7)

To prove Lem. 3.4 we consider similar stochastic processes: r(st, at)−
∑
a∈Ast πkt(a|st)r(st, a)

and rkt(st, at) −
∑
a∈Ast πkt(a|st)rkt(st, a). Both are also MDS bounded by rmax and so we

can apply Azuma’s inequality, use a union bound and take the difference.

A.2.2 Proofs of Lem. 3.2 and 3.7

Let’s consider the stochastic process

Xt := α
∑
a,s′

πkt(a|st)pkt(s′|st, a)hkt(s′)− α
∑
s′

pkt(s′|st, at)hkt(s′)

= α
∑
a,s′

πkt(a|st)pkt(s′|st, a)wkt(s′)− α
∑
s′

pkt(s′|st, at)wkt(s′).
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Since πkt is Ft−1-measurable, E[Xt|Ft−1] = 0 and moreover |Xt| ≤ 2α‖wkt‖∞ ≤ Λ a.s. for all

t. (Xt,Ft)t≥1 is an MDS and using Azuma’s inequality (Prop. 3.7):

P
(

T∑
t=1

Xt ≥ 2Λ
√
T ln

(6T
δ

))
≤ δ

36T 2 .

We then notice that

T∑
t=1

Xt = α
kT∑
k=1

∑
s,a,s′

νk(s)πk(a|s)pk(s′|s, a)hk(s′)− α
kT∑
k=1

∑
s,a,s′

νk(s, a)pk(s′|s, a)hk(s′).

We proceed similarly with the stochastic process

Xt :=
∑
a,s′

πkt(st, a)p(s′|st, a)hkt(s′)−
∑
s′

p(s′|st, at)hkt(s′)

where pk is replaced by p and take a union bound to conclude the proof of Lem. 3.2.

To prove Lem. 3.7, we consider the same stochastic processes but we apply Freedman’s

inequality (Prop. 3.9) instead of Azuma’s.

Let’s define λt := −
∑
a,s′ πkt(a|st)pkt(s′|st, a)hkt(s′) and wt = hkt +λte. Since by definition∑

s′ pkt(s′|st, at) = 1, we have

Xt = −α
∑
s′

pkt(s′|st, at)wt(s′).

Since E [Xt|Ft−1] = 0 we have:

V
(
Xt

∣∣Ft−1
)

=
∑
a

πkt(a|st)
(
α
∑
s′

pkt(s′|st, a)wt(s′)
)2

.

Proposition A.1

For any n ≥ 1 and any n-tuple (a1, . . . , an) ∈ Rn, (
∑n
i=1 ai)

2 ≤ n
(∑n

i=1 a
2
i

)
.

Proof. The statement is trivially true for n = 1. For n = 2 we have (a1 − a2)2 = a2
1 + a2

2 −
2a1a2 ≥ 0 implying that 2a1a2 ≤ a2

1 +a2
2. Therefore, (a1 +a2)2 = a2

1 +a2
2 +2a1a2 ≤ 2(a2

1 +a2
2)

and so the result holds. We prove the result for n ≥ 2 by induction. Assumed that it is true

for any n ≥ 2. Then we have:

(
n+1∑
i=1

ai

)2

=
(

n∑
i=1

ai

)2

︸ ︷︷ ︸
≤n(

∑n

i=1 a
2
i )

+a2
n+1 + 2an+1

n∑
i=1

ai

≤ n
(

n∑
i=1

a2
i

)
+ a2

n+1 +
n∑
i=1

2aian+1︸ ︷︷ ︸
≤a2

i+a
2
n+1

≤ (n+ 1) ·
(
n+1∑
i=1

a2
i

)
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where the first inequality follows from the induction hypothesis and the second inequality

follows from the inequality for n = 2 that we proved. This concludes the proof. �

For the sake of clarity we will now use the notation pk(s′|s) :=
∑
a∈As πk(a|s)pk(s

′|s, a) for

every s, s′ ∈ S and every k ≥ 1. Using Prop. A.1 we have that

V
(
Xt

∣∣Ft−1
)
≤ α2S

∑
a,s′

πkt(a|st) pkt(s′|st, a)2︸ ︷︷ ︸
≤pkt (s′|st,a)

wkt(s′)2

≤ α2S
∑
a,s′

πkt(a|st)pkt(s′|st, a)wkt(s′)2 = S · Vpkt (·|st) (αhkt)

After applying Freedman’s inequality (Prop. 3.9) to the MDS (Xt,Ft)t≥1 we obtain that

with probability at least 1− δ
12 , for all T ≥ 1:

α
kT∑
k=1

∑
s,a,s′

νk(s)πk(s, a)pk(s′|s, a)hk(s′) ≤α
kT∑
k=1

∑
s,a,s′

νk(s, a)pk(s′|s, a)hk(s′) + 2Λ ln
(48T

δ

)

+ 2

√√√√S ln
(48T

δ

) T∑
t=1
Vpkt (·|st) (αhkt) (A.8)

As we did before, we can do exactly the same analysis with pk replaced by p so that with

probability at least 1− δ
12 , for all T ≥ 1:

−α
kT∑
k=1

∑
s,a,s′

νk(s)πk(s, a)p(s′|s, a)hk(s′) ≤− α
kT∑
k=1

∑
s,a,s′

νk(s, a)p(s′|s, a)hk(s′) + 2Λ ln
(48T

δ

)

+ 2

√√√√S ln
(48T

δ

) T∑
t=1
Vpkt (·|st) (αhkt) (A.9)

with the notation pk(s′|s) :=
∑
a∈As πk(a|s)p(s

′|s, a) for every s, s′ ∈ S and k ≥ 1. To

conclude the proof of Lem. 3.7 we take a union bound.

A.2.3 Proofs of Lem. 3.3 and 3.10

Let’s consider the stochastic process

Xt := α
∑
a,s′

πkt(a|st)p(s′|st, a)wkt(s′)− αwkt(st+1).

Once action at ∼ πkt(a|st) has been sampled, the next state is sampled according to the

distribution st+1 ∼ p(·|st, a). Thus, E [Xt|Ft−1] = 0 and |Xt| ≤ 2α‖wkt‖∞ ≤ Λ. Using

Azuma’s inequality (Prop. 3.7):

P
(

T∑
t=1

Xt ≥ 2Λ
√
T ln

(4T
δ

))
≤ δ

16T 2 .
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A.3. Proofs of Lem. 3.5 and 3.8 (Cauchy-Schwartz)

and we conclude the proof of Lem. 3.3 as usual (see previous sections).

The conditional variance can be written as

V
(
Xt

∣∣Ft−1
)

= Vpkt (·|st) (αhk)

Using Freedman’s inequality we have that with probability at least 1− δ
6 :

T∑
t=1

∆p4
k ≤ 2

√√√√( T∑
t=1
Vpkt (·|st) (hk)

)
· ln

(24T
δ

)
+ 4Λ ln

(24T
δ

)
(A.10)

which concludes the proof of Lem. 3.10.

A.2.4 Proofs of Lem. 3.9

Let’s now consider the stochastic process

Xt := Vp̂kt (·|st,at) (αhkt)−
∑
a

πkt(a|st)Vp̂kt (·|st,a) (αhkt) .

(Xt,Ft)t≥1 is an MDS. Since Vp̂kt (·|st,at) (αhkt) ≥ 0 and sp (hkt) ≤ Λ/α, it follows from

Prop. 3.10 that |Xt| ≤ Λ2/4. Applying Azuma’s inequality (Prop. 3.7), we have that with

probability at least 1− δ
6 , for all T ≥ 1:

T∑
t=1
Vp̂kt (·|st,at) (hkt) ≤

T∑
t=1
Vp̂kt (·|st) (hkt) + 2Λ2

√
T ln

(4T
δ

)
.

A.3 Proofs of Lem. 3.5 and 3.8 (Cauchy-Schwartz)

Denote by Sk(s, a) := {s′ ∈ S : p̂k(s′|s, a) > 0} the set of observed next states starting

from s when playing a, and Γk(s, a) := |Sk(s, a)| = ‖p̂k(s′|s, a)‖0 the cardinal of Sk(s, a). By

Cauchy-Schwartz inequality1

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a)) =

∑
s′∈Sk(s,a)

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))

≤

√√√√√( ∑
s′∈Sk(s,a)

p̂k(s′|s, a)
)
·
( ∑
s′∈Sk(s,a)

1− p̂k(s′|s, a)
)

≤
√

Γk(s, a)− 1 ≤
√

Γk(s, a)− 1.

Note that the observed next states s′ ∈ Sk(s, a) necessarily satisfy p(s′|s, a) > 0 and so

Γk(s, a) ≤ Γ(s, a). This concludes the proof of Lem. 3.5.

1The inequality obtained is somehow tight since when p̂k(·|s, a) is uniform on its support, it becomes an
equality.

205



Appendix A. Appendix of Chapter 3

Using Cauchy-Schwartz inequality we have:

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2 =

∑
s′∈Sk(s,a)

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2

≤

√√√√√( ∑
s′∈Sk(s,a)

1− p̂k(s′|s, a)
)
·
( ∑
s′∈Sk(s,a)

p̂k(s′|s, a)wsk(s′)2

)

=

√√√√(Γk(s, a)− 1
)
·
( ∑
s′∈S

p̂k(s′|s, a)wsk(s′)2

)
≤
√

(Γ(s, a)− 1) ·
∑
s′∈S

p̂k(s′|s, a)wsk(s′)2

By definition, α2∑
s′∈S p̂k(s′|s, a)wsk(s′)2 = Vk(s, a) which concludes the proof of Lem. 3.8.

A.4 Proof of Lem. 3.6

We slightly change our notations and denote by Nt(s, a) the number of visits in state-action

pair (s, a) strictly before t (i.e., t not included). With this convention, what was denoted

Nk(s, a) (3.14) actually corresponds to Ntk(s, a). The stopping condition of episodes ensures

that for all t ≥ 1, Nt(s, a) ≤ 2Nkt(s, a). Therefore, similarly to what is done in (Ouyang

et al., 2017a, Proof of Lemma 5)

kT∑
k=1

νk(s, a)
N+
k (s, a)

≤ 2
T∑
t=1

1 {st = s, at = a}
N+
t (s, a)

= 2
[
1 {NT+1(s, a) ≥ 1}+

NT+1(s,a)−1∑
j=1

1
j︸ ︷︷ ︸

≤1+ln(NT+1(s,a))1{NT+1(s,a)≥1}

]

≤ 2 + 2 ln
(
N+
T+1(s, a)

)
(A.11)

where (A.11) follows from the rate of divergence of an harmonic series.

We proceed similarly for the second series:

kT∑
k=1

νk(s, a)√
N+
k (s, a)

≤
√

2
T∑
t=1

1 {st = s, at = a}√
N+
t (s, a)

=
√

2
(
1 {NT+1(s, a) ≥ 1}+

NT+1(s,a)−1∑
j=1

1√
j︸ ︷︷ ︸

≤2
√
NT+1(s,a)−1−1

)

≤ 2
√

2
√
NT+1(s, a)− 1 ≤ 3

√
NT+1(s, a).
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B Appendix of Chap. 4

B.1 Number of episodes

The stopping condition of episodes used by TUCRL (4.11) combines the original stopping

condition of UCRLB with the condition st+1 ∈ STkt . Using only the fact that νk(s, a) ≥
Nk(s, a) for at least one pair (s, a), Jaksch et al. (2010, Proposition 18) proved that for

T ≥ SA, the number of episodes is bounded by log2

(
8T
SA

)
(Prop. 3.8). The total number

of episodes in TUCRL can be bounded by the same quantity (with S replaced by SC since

no sate in ST is ever visited) plus the number of times the event st+1 ∈ STkt occurs. Since

whenever st+1 ∈ STkt state st+1 is removed from STkt+1 and st+1 necessarily belongs to SC (by

definition), this event can happen at most SC times. We thus have:

∀T ≥ SA, kT ≤ SCA log2

( 8T
SCA

)
+ SC. (B.1)

B.2 Proof of Thm. 4.2

We prove the following lemma used in the proof of Thm. 4.2.

For all x ∈]0, 1/10], we have (1− x)1/x ≥ 1/3.

Lemma B.1

Proof. It is easy to verify that the derivative of x 7−→ (1− x)1/x is:

∀x ∈]0, 1/10], d

dx

(
(1− x)1/x

)
= − (1− x)1/x−1

x2︸ ︷︷ ︸
≥0

· ((1− x) ln(1− x) + x)

It is well known that for all x ∈]0, 1[, x < − ln(1−x) < x
1−x implying that (1−x) ln(1−x)+x

is positive. Therefore, d
dx

(
(1− x)1/x

)
is negative on ]0, 1/10] implying that x 7−→ (1− x)1/x

is decreasing. As a result: ∀x ∈]0, 1/10], (1− x)1/x ≥ 0.910 > 1/3. �
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C Appendix of Chap. 5

C.1 Projection on a semi-ball (proof of Lem. 5.4)

Let v ∈ RS and define u = Γcv. If sp (v) ≤ c then u = v and so the result holds.

If sp (v) > c then for all s ∈ S such that v(s) > minx v(x) + c we have u(s) = minx v(x) + c

(there exists at least one such state since sp (v) > c) while for all other states we have

u(s) = v(s) (there also exists at least one such state). This implies that max{v − Γcv} =
maxx v(x)−minx v(x)− c = sp (v)− c and min{v − Γcv} = 0. As a result, we also have

sp (u− v) = sp (v − u) = max{v − Γcv} −min{v − Γcv} = sp (v)− c− 0 = sp (v)− c.

For any vector z ∈ Bc i.e., such that sp (z) ≤ c, by reverse triangle inequality1 we have that:

sp (z − u) ≥ sp (u)− sp (z) ≥ sp (u)− c = sp (w − u)

which concludes the proof.

C.2 Aperiodicity transformation (proof of Lem. 5.3)

We prove a slightly more general result.

Theorem C.1

Let P be any stochastic matrix and HP its associated deviation matrix i.e., the Drazin

inverse of I − P : HP := (I − P + P ∗)−1(I − P ∗) (see Sec. 2.2). For any 0 ≤ α < 1
we denote by Pα := (1 − α)P + αI the aperiodic transform of P with parameter α. The

deviation matrix of Pα can be expressed as HPα = 1/(1− α)HP .

Proof. Let A be a square matrix and assume there exists a matrix A# that satisfies the

following properties:

1The triangle inequality for the span is proved in (Puterman, 1994, Section 6.6.1).
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• AA#A = A

• AA# = A#A

• A#AA# = A#

then A# is the Drazin inverse of A. We know from App. A of Puterman (1994) that these

properties hold for A = P and A# = HP .

By definition: I − Pα = (1− α)P + αI − I = (1− α)(I − P ). Based on this result and using

the properties of P and HP , we can derive the same relations for Pα and HPα :

(I − Pα) (1/(1− α)HP ) (I − Pα) = (1− α)(I − P ) · (1/(1− α)HP ) · (1− α)(I − P )

= (1− α)(I − P ) = (I − Pα)

(I − Pα) (1/(1− α)HP ) = (1− α)(I − P ) · (1/(1− α)HP ) = (I − P )HP = HP (I − P )

= (1/(1− α)HP ) (1− α)(I − P ) = (1/(1− α)HP ) (I − Pα)

(1/(1− α)HP ) (I − Pα) (1/(1− α)HP ) = (1/(1− α)HP ) · (1− α)(I − P ) · (1/(1− α)HP )

= 1/(1− α)HP (I − P )HP = 1/(1− α)HP

In conclusion: HPα = 1/(1− α)HP . �

As a consequence of Thm. C.1 and by definition of the bias (Eq. 2.10), for any π = d∞ ∈ ΠSR

we have: hπM = HPdrd and hπMα
= HP dα

rdα. The aperiodicity transformation applies only to

the transition kernel of the MDP not the reward, so rdα = rd and hπMα
= 1/(1− α)hπM .

C.3 Operator of SCAL* (proof of Lem. 5.13)

We start the proof of Lem. 5.13 with a simple definition.

Let B ⊆ ∆S be a non-empty compact convex subset of the probability simplex, q ∈ B a

probability vector in B and β ≥ 0 a positive scalar. For all vectors v ∈ RS we define

Bq
β(v) := {p ∈ B : pᵀv ≤ qᵀv + β} ⊆ B.

Definition C.1

Since q ∈ B and β ≥ 0 by assumption, q ∈ Bq
β(v) for all v ∈ RS and so Bq

β(v) is never empty.

For any vector v ∈ RS , we define pv ∈ arg maxp∈Bq
β

(v) p
ᵀv (we drop the dependency in β

and q for simplicity) and pv ∈ arg maxp∈B pᵀv. Since B ⊆ Bβ(v), pᵀvv ≤ pᵀvv. The following

lemma provides a sufficient condition for the equality to hold.
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C.3. Operator of scal* (proof of Lem. 5.13)

If pᵀvv < qᵀv + β then pᵀvv = pᵀvv.

Lemma C.1

Proof. We define the function f : [0, 1] 7→ R mapping x to
(
(1 − x) · pv + x · pv

)ᵀ
v. Since

B is convex, for all x ∈ [0, 1], f(x) ∈ B. By assumption, f(0) = pᵀvv < qᵀv + β. If in

addition we assume that pᵀvv > pᵀvv then f is strictly increasing. If f(1) = pᵀvv ≤ qᵀv + β

then pv ∈ Bq
β(v) by definition implying that pᵀvv = pᵀvv which contradicts the assumption

that pᵀvv > pᵀvv and so f(1) > qᵀv + β. By the intermediate value theorem, ∃x ∈ [0, 1] s.t.

f(x) = qᵀv+β and so obviously (1−x) · pv +x · pv ∈ B
q
β(v). Since pv achieves the maximum

value of pᵀv for all p ∈ Bq
β(v), this contradicts the assumption that pᵀvv < qᵀv + β, implying

that pᵀvv = maxp∈B pᵀv = pᵀvv. In conclusion, under the assumption that pᵀvv < qᵀv + β,

necessarily pᵀvv = pᵀvv. �

Thanks to Lem. C.1, we know that whenever the constraint pᵀv ≤ qᵀv + β is strict, the

maximum of pᵀv over Bq
β(v) matches the maximum over B. We deduce the following lemma.

If u, v ∈ RS and v ≤ u then

max
p∈Bq

β
(v)
pᵀv ≤ max

p∈Bq
β

(u)
pᵀu.

Lemma C.2

Proof. We distinguish two possible cases:

1. If pᵀuu < qᵀu+ β:

From Lem. C.1, we have that pᵀuu = pᵀuu ≥ pᵀvu ≥ pᵀvv. The first inequality follows from

the fact that pu is the argmax over all p ∈ B and pv ∈ B, while the second inequality

follows from the fact that u ≥ v (by assumption).

2. If pᵀuu = qᵀu+ β:

pᵀuu = qᵀu+ β ≥ qᵀv + β ≥ pᵀvv where the first inequality follows from the assumption

u ≥ v and the second inequality is a consequence of the fact that pv ∈ Bq
β(v) by

definition.

�

If we take B ← Bk
p (s, a), q ← p̂k(·|s, a) and β ← cβsak all the requirements of Def. C.1

are satisfied and all the above lemmas hold with Bq
β(v) ← Bk

p (s, a) ∩ Θk
p(s, a, v). Given the

definition of Lk (see Eq. 5.34), it is immediate to see that the monotonicity of Lk is a direct

consequence of Lem. C.2. The linearity simply follows from the fact that pᵀ(v+λe) = pᵀv+λe
for all p ∈ ∆S and λ ∈ R. To prove the non-expansiveness of Lk, we denote v(s+)−u(s+) :=
maxs∈S {v(s)− u(s)} and v(s−)− u(s−) := mins∈S {v(s)− u(s)}. By definition,

u+ (v(s−)− u(s−))e ≤ v ≤ u+ (v(s+)− u(s+))e

=⇒ Lku+ (v(s−)− u(s−))e ≤ Lkv ≤ Lku+ (v(s+)− u(s+))e
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where the implication is a direct application of the monotonicity and linearity of Lk. It follows

that:

max
s∈S
{Lkv(s)− Lku(s)} ≤ v(s+)− u(s+),

min
s∈S
{Lkv(s)− Lku(s)} ≥ v(s−)− u(s−).

In conclusion, sp (Lkv − Lku) ≤ sp (v − u). Using the fact that

‖v − u‖∞ = max{v(s+)− u(s+), u(s−)− v(s−)},

we deduce that ‖Lkv − Lku‖∞ ≤ ‖v − u‖∞.

If we replace Bk
p (s, a) by B̃k

p (s, a) and p̂k(·|s, a) by p̃k(·|s, a), the requirements of Def. C.1

are still satisfied and so we can prove the same results for L̃k.

C.4 Perturbation of SCAL* operator (proof of Lem. 5.14)

We use the same notations as in App. C.3 above.

To prove that L̃k is a (1− ηk)-contraction we first prove the following lemma.

For all u, v ∈ RS there exists pu,v ∈ B such that

max
p∈Bq

β
(v)
pᵀv − max

p∈Bq
β

(u)
pᵀu ≤ pᵀu,v(v − u).

Lemma C.3

Proof. We distinguish between two cases:

1. If pᵀuu < qᵀu+ β:

From Lem. C.1, we have that pᵀuu = pᵀuu ≥ pᵀvu. We deduce that pᵀvv− pᵀuu ≤ pᵀv(v−u).
Since pv ∈ B, we can take pu,v ← pv.

2. If pᵀuu = qᵀu+ β:

pᵀvv− pᵀuu = pᵀvv− (qᵀu+β) ≤ qᵀv+ ��β− qᵀu− ��β = qᵀ(v−u) where the inequality holds

because pv ∈ Bq
β(v). Since q ∈ B, we can take pu,v ← q.

�

Just like Lem. C.2, Lem. C.3 can be applied to operators Lk and L̃k. In the case of L̃k,

B = B̃k
p (s, a) ⊆ {p ∈ ∆S : p(s) ≥ η} where s ∈ S is an arbitrary reference state and

η > 0. We then use similar arguments as Puterman (1994, Theorem 6.6.6). Let’s denote

L̃k by L (for the sake of clarity) and Lv(s+) − Lu(s+) := maxs∈S {Lv(s)− Lu(s)} and

Lv(s−)− Lu(s−) := mins∈S {Lv(s)− Lu(s)}. Applying Lem. C.2, we obtain that

Lv(s+)− Lu(s+) ≤ p+
u,v
ᵀ(v − u) and Lu(s−)− Lv(s−) ≤ p−v,u

ᵀ(u− v)
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where p+
u,v, p

−
v,u ∈ B and in particular p+

u,v(s), p−v,u(s) ≥ η. More generally, for any s ∈ S,

we can bound Lv(s)−Lu(s) using corresponding vectors psu,v and psv,u. If we concatenate all

the S probability vectors, we obtain two transition matrices Pu,v and Pv,u. Like in the proof

of Theorem 6.6.6 of Puterman (1994) we have

sp (Lv − Lu) ≤ p+
u,v
ᵀ(v − u)− p−u,v

ᵀ(v − u) ≤ max
s∈S

psu,v
ᵀ(v − u)−min

s∈S
psv,u

ᵀ(v − u)

≤ sp
([
Pu,v

Pv,u

]
(v − u)

)
≤ (1− η)sp (v − u) .

The last inequality follows from Proposition 6.6.1 of Puterman (1994) and the fact that

B ⊆ {p ∈ ∆S : p(s) ≥ η}.

To quantify the impact of the perturbation, we rely on the proof of Lem. 5.10 (Fruit

et al., 2018b, Lemma 19, Appendix E). We denote by p̃v ∈ arg max
p∈B̃q

β
(v) p

ᵀv and p̃v ∈
arg max

p∈B̃ p
ᵀv (a tilde indicates an η-perturbation). We bound the difference pᵀvv− p̃ᵀvv (the

opposite can be bounded in the same way).

1. If p̃ᵀvv < q̃ᵀv + β:

Lem. C.2 shows that p̃ᵀvv = p̃
ᵀ
vv and so

pᵀvv − p̃ᵀvv = pᵀvv − p̃
ᵀ
vv ≤ pᵀvv − p̃

ᵀ
vv ≤ ‖pv − p̃v‖1 ×

sp (v)
2 ≤ η · sp (v)

where the last inequality is proved in (Fruit et al., 2018b, Lemma 19, Appendix E).

2. If p̃ᵀvv = q̃ᵀv + β:

pᵀvv − p̃ᵀvv = pᵀvv − q̃ᵀv − β ≤ qᵀv + ��β − q̃
ᵀv − ��β ≤ ‖q − q̃‖1 ×

sp (v)
2 ≤ η · sp (v)

where the last inequality follows from the fact that q̃ is an `1-projection of q onto B̃

(see Sec. 5.8).
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D.1 Sub-exponential options (proof of Lem.6.1)

We use the second definition of sub-exponential r.v. in Def. 6.2. In the following we drop the

notation s, o and denote by τ the random realization of the holding time and τ its expectation.

Using eq. 6.11, the Laplace transform of the holding time can be computed as follows:

E
[
eλ(τ−τ)

]
=
∞∑
k=1

eλ(k−τ)eᵀsQ
k−1V e = eλ(1−τ)eᵀs

[ ∞∑
k=0

(
eλQ

)k]
V e

The term
∑∞
k=0

(
eλQ

)k
is finite if and only if eλρ(Q) < 1, in which case we have:

E
[
eλ(τ−τ)

]
= eλ(1−τ)eᵀs

(
I − eλQ

)−1
V e,

and otherwise E
[
eλ(τ−τ)

]
= +∞. Note that eλρ(Q) < 1 if and only if either λ < − log (ρ(Q))

or ρ(Q) = 0. We will now analyse the two cases separately:

1. ρ(Q) = 0 if and only if all the eigenvalues of Q in C are 0, if and only if Q is nilpotent

(∃n > 0 s.t. Qn = 0). This is because Q can always be triangularized in C: Q = UTU−1

where T is upper-triangular with the eigenvalues of Q on the diagonal that is, only zeros

if ρ(Q) = 0. This implies that ∃n > 0 s.t. Tn = U−1QnU = 0 =⇒ Qn = 0 hence Q

is nilpotent. The reverse is obviously true: if Q is nilpotent then ρ(Q) = 0, (otherwise

there would exist λ 6= 0, v 6= 0 and n > 0 s.t. Qn = 0 and Qv = λv =⇒ Qnv =
λnv = 0, which is absurd). By definition, matrix Q is nilpotent of order n if and only if

the Markov Chain reaches an absorbing state in at most n steps (a.s.). In conclusion,

ρ(Q) = 0 if and only if the option is almost surely bounded. This happens if and only if

there is no cycle in the option (with probability 1, every non-absorbing state is visited

at most once).

2. In the case where ρ(Q) > 0: it is clear that E
[
eλ(τ−τ)

]
can not be bounded by a

function of the form λ→ e
σ2λ2

2 for λ ≥ − log (ρ(Q)) so τ is not sub-Gaussian (Definition

6.3). However, since ρ(Q) < 1 we can choose 0 < c0 < − log (ρ(Q)) and we have

E
[
eλ(τ−τ)

]
< +∞ for all |λ| < c0, which implies that τ is sub-exponential (Definition
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6.2).

In conclusion, either the option contains inner-loops (some states are visited several times

with non-zero probability) in which case the distribution of τ is sub-Exponential but not

sub-Gaussian, or it has no inner-loop in which case τ is bounded (and thus sub-Gaussian).

There is no other alternative.

The distribution of rewards R is not as simple: the reward of an option is the sum of all

micro-rewards obtained at every time step before the option ends, and every micro-reward

earned at each time step can have a different distribution. The only constraint is that all

micro-rewards should be (a.s.) bounded between 0 and rmax. As a result, if τ is a.s. bounded

(by let’s say tmax) then R is also a.s. bounded (by rmaxtmax). But if τ is unbounded then

R may still be bounded if for example, all micro-rewards are 0. If however all micro-rewards

are equal to rmax then R has a discrete phase-type distribution just like τ . R can thus

be unbounded (and even not sub-Gaussian). However, we will show that R is always sub-

Exponential. Using the law of total expectations and the fact that p (R ≤ rmaxτ) = 1 we

have:

∀λ > 0, E
[
eλ(R−R)

]
=
∞∑
k=1

E
[
eλ(R−R)∣∣τ = k

]
p(τ = k) ≤

∞∑
k=1

E
[
eλ(rmaxτ−R)∣∣τ = k

]
p(τ = k)

=
∞∑
k=1

E
[
eλ(rmaxk−R)∣∣τ = k

]
p(τ = k)

=
∞∑
k=1

eλ(rmaxk−R)p(τ = k)

= eλ(rmax−R)eᵀs

[ ∞∑
k=0

(
eλrmaxQ

)k]
V e

We can now conclude as we did for τ : let 0 < c0 < − log(ρ(Q))
rmax

, for all 0 < λ < c0 the quantity

E
[
eλ(R−R)

]
is finite. Note that for λ ≤ 0: eλR ≤ 1 so E

[
eλ(R−R)

]
< +∞. According to

Def. 6.2, R is sub-Exponential.

D.2 Comparison of the MDP-sample complexity and

the SMDP-sample complexity

Let M be a MDP and O a set of options on M . We denote by MO the SMDP formed by

M and O. If an option is chosen at time step t, we denote by τt the (random) duration

of that option. The set of all time steps is N (t = 1, 2, ...) and the set of time steps corre-

sponding to decision steps (i.e., when an option is started) is denoted by T . The set T is

a random variable since it depends on the duration of the options. T is defined recursively:

T = {1, τ1 + 1, τ1 + 1 + ττ1+1, , ...} ⊆ N. The first option is taken at time t1 = 1, the second

option is taken at the end of the first option (i.e. at time t2 = τ1 + 1, where τ1 is a random

variable), and so on. The i-th option is played at time step ti ∈ T recursively defined as:

ti+1 = ti + τti and t1 = 1.
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s0 s1 s2 s3 s4
a0, r = 0 a1, r = 0 a2, r = 0

a3, r = 0

a3
∗, r = 1

a4, r = 0

Figure D.1: MDP of counter-example 1.

For any learning algorithm A on an MDP M , the MDP-sample complexity is defined as:

+∞∑
t=0

1

{
vAtγ (st) ≤ v∗γ(st)− ε

}
. (D.1)

Let’s assume that algorithm A is SMDP-RMAX (Brunskill and Li, 2014) applied to SMDP

MO formed by MDP M and option set O. A can indeed be seen as a learning algorithm on M

(see Lem. 6.2) and so the sample complexity given in (D.1) is correctly defined. However, we

can also choose to ”ignore” what is happening within an option (we only look at the epochs,

i.e. times t ∈ T ). Thus, we can also interpret A as a learning algorithm on the SMDP MO.

The corresponding SMDP-sample complexity is defined as (Brunskill and Li, 2014):

∑
t∈T

τt1
{
vAtγ (st) ≤ v∗O(st)− ε

}
=

+∞∑
i=0

τti1
{
v
Ati
γ (sti) ≤ v∗O(sti)− ε

}
. (D.2)

Brunskill and Li (2014) use the quantity given in equation (D.2) instead of the quantity

given in equation (D.1) to derive the final bound on their algorithm (Theorem 3). The implicit

assumption is that the following inequality holds:

+∞∑
t=0

1

{
vAtγ (st) ≤ v∗γ(st)− ε

}
≤
∑
t∈T

τt1
{
vAtγ (st) ≤ v∗O(st)− ε

}
(D.3)

Inequality (D.3) should hold with probability 1 (or at least with probability 1 − δ) for

Theorem 3 to hold true. This requirement is never mentioned in the article. We give two

counter-examples showing that this inequality will not hold in general (not even with high

probability), even if we assume that the set of options is optimal, i.e. if v∗O = v∗γ . The problem

arises when the algorithm is ε-optimal at an epoch but there exists at least a step before the

next epoch where the algorithm is not ε-optimal.

D.2.1 Counter-example 1

In this example we have: S = {s0, s1, s2, s3, s4} and A = {a0, a1, a2, a3, a3
∗, a4}. We assume

the MDP is fully deterministic: p(s1|s0, a0) = p(s2|s1, a1) = p(s3|s2, a2) = p(s4|s3, a3) =
p(s4|s3, a3

∗) = p(s4|s4, a4) = 1. The graph of the MDP is represented on Figure D.1. We

define R as follows:
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• r(s1|s0, a0) = r(s2|s1, a1) = r(s3|s2, a2) = r(s4|s3, a3) = r(s4|s4, a4) = 0,

• r(s4|s3, a3
∗) = 1.

We define policy π ∈ ΠSD by: π(s3) = a3 (we don’t need to specify the actions taken in

other states since there is only one possible action in those states). The optimal policy is

such that: π∗(s3) = a3
∗. Trivially we have:

• v∗γ(s0) = γ3, vπγ (s0) = 0,

• v∗γ(s3) = 1, vπγ (s3) = 0.

Now if we set 1 ≥ ε > γ3, we have: vπγ (s0) > v∗γ(s0) − ε and vπγ (s3) ≤ v∗γ(s3) − ε. In other

words, π is ε-optimal in s0 but not in s3.

Let’s define two options, o and o∗, by:

• Io = Io∗ = {s0} ,

• βo(s) = 0 if s 6= s4 and 1 otherwise, βo∗ = βo,

• πo = π and πo∗ = π∗.

If we denote by MO the SMDP formed by M and the set of options O = {o, o∗, a4}, we

have that v∗O = v∗γ (O is an optimal set of options). Suppose we execute a SMDP-learning

algorithm A (e.g. SMDP-RMAX) which starts in s0. The SMDP-sample complexity is

always 0 because both o and o∗ are ε-optimal in s0, and a4 is optimal in s4. However, the

MDP-sample complexity of A is at least equal to 1 if option o is taken (and equals 0 when o∗

is chosen instead). There is no reason that the algorithm should select o∗ rather than o (the

SMDP is initially unknown). So we can not guarantee that the event {o is taken in s0} will

happen with probability lower than δ. In this example, the SMDP-sample complexity is not

upper bounding the MDP-sample complexity (not even with high probability).

It is true that γ is usually close to one (e.g. γ = 0.9) and thus, in the previous example,

ε cannot be too small ( ε > γ3 ' 0.73). But it is possible to consider longer options in a

bigger MDP and apply the same kind of reasoning. We would then obtain ε ≥ γk with γk

sufficiently small when k is sufficiently big.

One might argue that our example is not relevant since the cumulative reward does not

increase after s4 is reached (i.e. after step t = 4) because we have an absorbing state. But

it is possible to make some minor changes and assume for example that action a4 leads back

to state s0 instead of looping on state s4. We would then need to choose 1 ≥ ε >
γ3

1− γ5 , or

more generally 1 ≥ ε > γk

1− γk+2 with a longer chain, because in that case:

• v∗γ(s0) = γk

1− γk+2 , v
π
γ (s0) = 0,

• v∗γ(sk) = 1
1− γk+2 , v

π
γ (sk) = 0.
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s0

s1

s2

s3
r = 1

r = 1

r = 0

r = 0

r = 0

r = 0

Figure D.2: Graph of the MDP of Example 2

Assuming A starts with option o:

• vA0
γ (s0) ≥ 0 > v∗γ(s0)− ε,

• vAkγ (sk) ≤
γk+2

1− γk+2 ≤ v
∗
γ(sk)− ε.

The SMDP-sample complexity is again 0 because in s0 the algorithm is necessarily ε-optimal

since 0 > v∗γ(s0)− ε. But the MDP sample complexity is at least 1 if A0(s0) = o. The same

holds as long as o is chosen at least once in s0 (not necessarily at t0 = 0). Indeed, at the

iteration where o is chosen in s0, the value function in sk is upper bounded by
γk+2

1− γk+2 ≤

v∗γ(sk)− ε .

D.2.2 Counter-example 2

In Example 1, we had deterministic transitions. We now consider the case where the tran-

sitions are random. To simplify the calculations, we assume that γ = 1. The graph of

the MDP is represented on Figure D.2. In this example we have: S = {s0, s1, s2, s3} and

A = {a0, a0
∗, a1, a1

∗, a2, a3}. Let 1/2 > ε > 0. We define p as follows:

• action a0: p(s1|s0, a0) = 1/3, p(s2|s0, a0) = 2/3,

• action a∗0: p(s1|s0, a
∗
0) = 1 + ε

3 + 2ε , p(s2|s0, a
∗
0) = 2 + ε

3 + 2ε ,

• action a1: p(s2|s1, a1) = p(s3|s1, a1) = 1/2,

• action a∗1: p(s2|s1, a∗1) = 1/2− ε, p(s3|s1, a
∗
1) = 1/2 + ε.

We define r as follows:

• r(s1|s0, a0) = r(s1|s0, a
∗
0) = r(s3|s1, a1) = r(s3|s1, a

∗
1) = 1,

• r(s2|s0, a0
∗) = r(s2|s0, a0

∗) = r(s2|s1, a1) = r(s2|s1, a1
∗) = r(s2|s2, a2) = r(s3|s3, a3) =

0.

Note that in this example all rewards depend only on the initial and final state of the tran-

sitions (it does not depend on the action taken). There are four deterministic policies:

• policy π1: π1(s0) = a0, π1(s1) = a1,

• policy π2: π2(s0) = a∗0, π2(s1) = a∗1,
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• policy π3: π3(s0) = a∗0, π3(s1) = a1,

• policy π4: π4(s0) = a0, π4(s1) = a∗1.

The value functions associated to these policies are:

• vπ1
γ (s0) = 1

2 ,

• vπ2
γ (s0) = 1 + ε

2 ,

• vπ3
γ (s0) = 1 + ε

2 + 4/3ε ,

• vπ4
γ (s0) = 1

2 + 1
3ε,

• vπ1
γ (s1) = vπ3

γ (s1) = 1
2 ,

• vπ2
γ (s1) = vπ4

γ (s1) = 1
2 + ε.

We deduce that: π∗ = π2, v∗γ(s0) = 1 + ε

2 and v∗γ(s1) = 1
2 + ε. Furthermore: vπ1

γ (s0) >
v∗γ(s0)− ε and vπ1

γ (s1) ≤ v∗γ(s1)− ε. In other words, π1 is ε-optimal in s0 but not in s1.

Let’s define the following options o and o∗:

• Io = Io∗ = {s0},

• βo(s2) = βo(s3) = 1 and 0 otherwise, βo∗ = βo,

• πo = π1 and πo∗ = π∗ = π2.

If we denote by MO the SMDP formed by M and the set of options O = {o, o∗, a2, a3}, we

have that v∗O = v∗γ (O is an optimal set of options). Suppose we execute a SMDP-learning

algorithm A which starts in s0. The SMDP-sample complexity is always 0 because both o

and o∗ are ε-optimal in s0, and a2 and a3 are optimal in s2 and s3 respectively. However, the

MDP-sample complexity of A is equal to 1 when option o is taken and s1 is reached (when

option o is chosen in s0, s1 is reached with probability 1/3). There is no reason that the

algorithm should select o∗ rather than o (the SMDP is initially unknown). So we can not

guarantee that o will be chosen with probability lower than δ. So the expected MDP-sample

complexity will be (strictly) positive. In this example, the SMDP-sample complexity is not

upper bounding the MDP-sample complexity.

It should be possible to change Example 2 as we did with Example 1 to make sure that

the cumulated reward keeps increasing (i.e. delete all absorbing states), but this is likely to

require tedious calculations. The purpose of this example was only to show that the MDP-

sample complexity can be higher than its SMDP analogue for other reasons than the presence

of a discounting factor (namely, the presence of random transitions).
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D.2.3 Conclusion

In the previous examples we have shown that in an MDP with options, the SMDP-sample

complexity does not upper-bound the MDP-sample complexity in general, even when the set

of option is optimal. It is not difficult to show that the opposite is also true: the MDP-

sample complexity does not upper-bound the SMDP-sample complexity. Thus, without any

additional assumptions on the options and/or the algorithm, it is not possible to use the

SMDP-sample complexity to prove that options can be beneficial to learn a MDP.
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