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Abstract

The turbulent state of a flow is commonly associated with a dynamical con-
dition where the viscous forces have a negligible role compared to the non-
linear inertial forces that are at work on the system (large Reynolds num-
bers). However, due to the concurrent effect of elastic forces, dilute suspen-
sion of polymers can exhibit erratic fluctuations of their flow even in the case
where the viscous forces dominate the inertial ones (i.e. vanishing Reynolds
number). Such a flow state, first detected in a series of experiments by Gro-
isman and Steinberg around 2000, has been called, by analogy, elastic turbu-
lence. Elastic turbulence can be generated in small-scale laboratory settings
and has appeared from the very beginning as being relevant to enhancing
the mixing efficiency in microfluidic devices.
Turbulent-like fluctuations have indeed the effect of increasing the diffusiv-
ity, e.g. of a dye or a of chemical substance, from its molecular value to
an effective value that can be several orders of magnitude larger. However,
when the mixing components are much larger than the molecular scale, they
are not simply passively transported (advected) by the flow, and a quantifi-
cation of the quality of the mixing process is a daunting task. This applies
in particular to the situation where the suspension also contains impurities
with non-zero size, such as dust, or other solid impurities, or in general any
micro-particle whose inertia can not be considered as negligible. Due to
their non-vanishing inertia, such particles have a tendency to unmix even
when advected by a vigorously fluctuating and unpredictable flow. Fur-
thermore, particles in such a condition are not suitably modelled in terms
of fields, and one can not avoid adopting an individual or Lagrangian point
of view.
The Lagrangian studies of the dynamics of so-called inertial particles, such
as dust, drops and bubbles transported by flows, has undergone major de-
velopments in recent years. By means of experimental, numerical and the-
oretical research, it has been possible to characterize and model the phe-
nomenon of particle accumulations, or segregation if different types of par-
ticles are considered. This has been performed particularly in turbulent
flows at high Reynolds numbers. However, the dynamics of particles in
elastic turbulent flows is still relatively unexplored. The present thesis aims
at filling this gap by investigating the aggregation properties of material
particles that are heavier than the carrying fluid, in visco-elastic fluids in
elastic turbulence conditions.
With this aim we carry out extensive direct numerical simulations of a di-
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lute polymer solution, described by the Oldroyd-B rheological model, in a
two-dimensional Kolmogorov flow setting seeded with point-like inertial
particles. Our analysis focusses both on the small- and large-scale features
of the resulting inhomogeneous particle distribution and on its connections
with the underlying flow structures.
The analysis reveals that particles cluster preferentially in regions of instan-
taneously maximally stretched polymers and highly strained flow field. The
intensity of such a phenomenon depends on the interplay between the in-
ertia of the particles and the typical time scale associated with the elastic
turbulent flow, which is parametrized by the Stokes number, and is maxi-
mal for intermediate values of the inertia of the particles. In particular, it
is shown that the preferential concentration of inertial particle suspensions
in such turbulent-like flows follow from the dissipative nature of their dy-
namics. We provide a quantitative characterization of the dimensionality of
thin filamentary particle clusters by using fractal dimension indicators.
The non-homogeneity of the turbulent flow along the direction orthogonal
to the direction of the forcing has a marked effect on the average particle dis-
tribution. Particles appear to experience the so-called turbophoretic forcing,
an overall migration from regions of large turbulent fluctuations to regions
of small turbulent fluctuations. Indeed, we show that the mean particle con-
centration profiles are peaked in the regions of the lowest turbulent eddy
diffusivity. This large-scale inhomogeneity of the particle distribution pro-
files can be interpreted in the framework of a mean-field model derived in
the limit of small, but non-zero, particle inertia. The main characteristics of
different observables, notably the root-mean-squared deviation of the par-
ticle distribution relative to the uniform one, are, to a good extent, indepen-
dent of the flow elasticity.

Keywords: Direct numerical simulations, Elastic turbulence, Inertial
particles, Lagrangian dynamics
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Résumé

Les expériences de laboratoire montrent que, même dans des solutions
très diluées, l’interaction des polymères avec des écoulements fluides peut
modifier considérablement les propriétés des écoulements turbulents ou,
si l’écoulement est laminaire, peut déclencher un nouveau type de mouve-
ment irrégulier appelé "turbulence élastique". Les écoulements dans un tel
régime dynamique sont prometteurs pour améliorer l’efficacité du mélange
dans les applications microfluidiques, qui impliquent souvent la présence
d’impuretés de taille finie en suspension, telles que des particules solides
petites et lourdes. La compréhension de la dispersion des particules dans
les écoulements à grand nombre de Reynolds des fluides newtoniens et non
newtoniens a déjà été abordée dans des études antérieures, qui ont mis
en évidence des effets à la fois à grande et à petite échelle et est un sujet
d’intérêt è la fois fondamental et pour des applications environnementales
ou industrielles par exemple. Cependant, la dynamique des particules dans
les écoulements élastiques et turbulents reste encore peu explorée.
L’étude ici vise à étudier les propriétés d’agrégation de particules
matérielles ponctuelles (plus lourdes que le fluide porteur) dans les flu-
ides viscoélastiques dans des conditions de turbulence élastique (c’est-
à-dire dans le cas de faible inertie du fluide et de grande élasticité).
Nous effectuons des simulations numériques directes bi-dimensionelles
d’écoulements périodiques avec cisaillement moyen de Kolmogorov avec
des solutions de polymères dilués décrites par le modèle Oldroyd-B. Les
caractéristiques à petite et grande échelle de la distribution résultante inho-
mogène de particules sont examinées, en se concentrant sur leur connex-
ion avec la structure sous-jacente de l’écoulement . Notre analyse révèle
que les particules sont préférentiellement regroupées dans des régions
où les polymères sont instantanément maximalement étirés. L’intensité
d’un tel phénomène dépend de l’interaction paramétrée par le nombre de
Stokes, entre l’inertie des particules et l’échelle de temps typique associée à
l’écoulement de turbulence élastique, et est la plus grande pour des valeurs
intermédiaires d’inertie de particules.

En particulier, il est montré que la concentration préférentielle de
suspensions de particules inertielles dans de tels écoulements ressemblant
à la turbulence découle de la nature dissipative de leurs dynamiques.
Nous établissons une caractérisation quantitative de ce phénomène (util-
isant la corrélation et la dimension de Kaplan-Yorke) qui permet de le
relier á l’accumulation de particules dans des régions de l’écoulement
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filamenteuses fortement déformées produisant des grappes de dimension
fractale faiblement supérieure à 1.

Á plus grande échelle, les particules subissent une ségrégation de type
turbophorétique dans la direction non-homogéne de l’écoulement. En ef-
fet, nos résultats indiquent que la distribution des particules est fortement
liée aux structures moyennes de l’écoulement de type turbulent. En rai-
son de la turbophorèse, les profils de densité moyenne atteignent leur
maximum dans les régions où la diffusivité turbulente est la plus faible.
L’inhomogénéité á grande échelle de la distribution des particules est in-
terprétée dans le cadre d’un modèle dérivé dans la limite d’inertie des par-
ticules, petite mais finie. Les caractéristiques qualitatives de différents ob-
servables (telles que L’écart quadratique moyen de la distribution des par-
ticules par rapport à la distribution uniforme) sont, dans une large mesure,
indépendantes de l’élasticité du l’écoulement. Quand celle-ci est augmen-
tée, on constate cependant que cette dernière diminue légèrement le degré
global moyen de mélange turbophorétique.

Mots clés: Simulations numériques directes, Turbulence élastique,
Particules inertielles, Dynamique lagrangienne
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A guide to this thesis

Mixing processes aim at generating homogeneous solutions of multiple ma-
terial components in natural and engineering flows [1–4]. Such processes
are widely applied in microfluidic devices for heat and mass transfer [5–8],
mixing in a porous medium [9, 10], and numerous relevant research ar-
eas. Efficient mixing is often desired in lab-on-a-chip platforms for com-
plex chemical reactions, and mixing and transfers of small volumes at pore
scales [11].

Chaotic and turbulent flow instabilities are recognized to be effective
mechanisms for mixing and have been well studied for Newtonian flu-
ids [12, 13]. However, due to the small scales, such flows are difficult to
achieve in microfluidic systems. The realization of turbulent flow in mi-
crochannels is a lot more complicated and challenging than in large ducts,
wherein the driving pressure critically limits the flow rate. Flows of a New-
tonian fluid in microchannels are consequently limited to the laminar flow
regime and difficult to mix [14,15]. At low flow rates, where flows are often
in a laminar, low Reynolds number regime, mixing must rely on molecu-
lar diffusion between the different fluid layers, the thicknesses of which are
much larger than the characteristic diffusion length. As well, chaotic ad-
vection needs external actuators and complex channel structures [16]. Both
ideas lead to complex and costly fabrication processes. The lack of mixing
is then often a key obstacle to achieving good performance in microfluidic
applications. Thus, instead of relying on inertial effects, other strategies to
induce mixing, such as introducing an elastic effect into a micro-scale lami-
nar flow, may enhance the mixing effect [17, 18].
Over the last few decades, it has been recognized that a solution with a
minute amount of deformable polymers, i.e. a viscoelastic fluid, can re-
sult in elastic flow instability [18–24]. Viscoelastic fluids are known to be
characterized by non-Newtonian behaviour under appropriate conditions.
In particular, dilute polymer solutions may display non-negligible elastic
forces when the suspended polymeric chains are sufficiently stretched by
fluid velocity gradients. Interestingly, a polymer with a sufficiently long re-
laxation time or a high Weissenberg number can give rise to an irregular
flow state with velocity fluctuations spanning a broad range of spatial and
temporal scales even at low Reynolds numbers (absence of fluid inertia).
This irregular flow state at high Wi and low Re is known as elastic turbu-
lence [21] and is caused by an instability due to the polymer stresses. Elastic
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turbulence has been experimentally observed in different flow configura-
tions [21, 22, 25–28]. On the basis of its similarity with turbulent fluid mo-
tion, elastic turbulence has been proposed as an efficient system to enhance
mixing in low Reynolds number flows [22]. Moreover, it has been shown
that it can increase heat transfer [6, 7] and promote emulsification [29]. Re-
cently, the potential use of elastic turbulence in the oil industry has emerged
as a very promising application. Dilute polymer solutions are indeed used
to recover the oil that remains trapped inside the pores of reservoir rocks
after an initial water flooding, and elastic turbulence has been proposed as
a mechanism to explain the unexpectedly high efficiency of this oil recovery
method [30].

Understanding transport phenomena at small scales is of importance
and wide interest principally for two reasons: first, the particle dynamics
relevant for the biological and chemical processes that take place at these
scales; second, microfluidic devices are playing a very important role in
research and industrial technologies, typically together with complex flu-
ids and flows whose dynamics still lack a detailed description. Transport
and mixing processes in fluids, however, often involve the presence of sus-
pended impurities, such as small and heavy solid particles. To achieve a fun-
damental understanding of the mixing and transport phenomena in elastic
turbulence flows, it then seems necessary to accurately characterize how the
inertia of the particles affects the concentration of the transported species.
Indeed, it is known that in turbulent flows the difference between the mass
density of the impurities and that of the carrier fluid typically induces un-
mixing effects. To be specific, it produces non-homogeneous particle distri-
butions at small scales, as well as at large ones when turbulence spatial inho-
mogeneities are present (as, e.g. in a duct or in a boundary-layer flow). Al-
though both types of inhomogeneities can be simultaneously present, they
correspond to essentially different phenomena. While at small scales they
give rise to complex clustered distributions due to the combined effect of
small-scale turbulence and particle inertia [31], at large scales they manifest
themselves in the accumulation of particles in regions of minimal turbulent
intensity, whose locations are closely related to the structure of the mean
flow (turbophoresis) [32–35].

The dynamics of particles suspended in random or turbulent flows has
been intensively studied for several decades. In recent years, substan-
tial progress in understanding the dynamics of inertial particles has been
achieved in turbulent flows of both Newtonian (see, e.g. [31, 36–38]) and
non-Newtonian (e.g. in [39, 40]) fluids. The phenomenon of spatial cluster-
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ing of independent point particles subject to Stokes drag in turbulent flows
(where the fluid flow is smooth) is now well understood by means of nu-
merical simulations as well as theoretical approaches [41, 42]. Despite the
potential of elastic turbulence for mixing in microfluidics, the dynamics of
particles in this regime are still quite unexplored, see [43]. The present the-
sis presents the results of an investigation of heavy inertial particle transport
at low Reynolds numbers in a non-homogeneous flow of elastic turbulence
in two dimensions.

The main subject of this thesis is to study and provide a detailed descrip-
tion of the statistical properties of passive inertial particles heavier than the
carrying fluid in two-dimensional inhomogeneous elastic turbulent fluids
by means of numerical and analytical tools, and to relate them to the be-
haviour of the main observables associated with the dynamics of the flow
fields. This thesis is organized in 6 chapters.
The first chapter is dedicated to an introduction to viscoelastic fluids. Af-
ter a brief description of polymers and their structural properties, their be-
haviour in a flow is considered. We introduce the models needed to describe
the main features of the viscoelastic fluids starting from the dumbbell model
and from this we construct hydrodynamic models such as Oldroyd-B model
and the FENE-P model.
The second chapter is a review of the theoretical basis of the models used
to describe the motion of inertial particles. An overview of several ways of
quantifying the preferential concentration of particles, such as the correla-
tion dimension and the Kaplan–Yorke dimension, is presented.
The third chapter deals with the phenomenon of elastic turbulence. Di-
rect numerical simulations of the two-dimensional Oldroyd-B model are
performed, at low Reynolds numbers and high Weissenberg numbers to
develop elastic turbulence. The results of the numerical study of two-
dimensional dilute polymer solutions are presented.
The fourth chapter presents a numerical and statistical analysis of heavy
inertial particle clustering in an elastic turbulent fluid, to describe the ag-
gregation properties of particle spatial distributions. We present the prop-
erties of the particle spatial distributions in relation with the main features
of the flow fields, separately focusing on preferential concentration effects,
measurements of Lyapunov exponents, small-scale fractal clustering, and
segregation distance.
In the fifth chapter, a detailed numerical and theoretical investigation of
tubophoresis in elastic turbulent flow is presented. We observed that large-
scale inhomogeneities can be revealed in the form of regions of low particle
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concentration. The differences between this mechanism, causing inhomo-
geneity at large scales, and the small-scale clustering are presented.
Lastly, in the sixth chapter, we will discuss the conclusions of this research
and perspectives on how it can be further continued.



Chapter 1

Visco-elastic fluids and elastic
turbulence

Contents
1.1 Polymer solutions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The Weissenberg number . . . . . . . . . . . . . . . . . . . . . 10

1.3 Visco-elastic models . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The elastic dumbbell model . . . . . . . . . . . . . . . . 13

1.3.2 Hydrodynamic models . . . . . . . . . . . . . . . . . . 14

1.4 Elastic turbulence: An overview . . . . . . . . . . . . . . . . . 18

1.4.1 Experiments and theoretical investigations . . . . . . . 18

1.4.2 Numerical investigations . . . . . . . . . . . . . . . . . 24

1.1 Polymer solutions
Polymers are molecules of high molecular mass, structurally composed of
repeated units derived from molecules of relatively low molecular mass.
There are both natural and synthetic polymers: among the naturally occur-
ring polymers are DNA, proteins, starches, cellulose, and latex. Synthetic
polymers are produced commercially on a very large scale and have a wide
range of properties and applications. For example, the materials commonly
called plastics are all synthetic polymers.

Polymers are formed by chemical reactions where the repeating units,
called monomers, are joined sequentially, creating a chain. In many poly-
mers, only one type of monomer is used. In others, two or three different
monomers may be combined [44,45].

A large number of experiments have been performed in the past decades
to exploit the accessibility of the microscopic properties of these macro-
molecules (including very important biomolecules such as DNA). As a
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Figure 1.1: Example of the Weissenberg effect with fluid climbing the rotat-
ing rod (picture from web.mit.edu).

result, many of the theoretical polymer models proposed in the past 60
years have been verified and refined. Phenomenological models predict-
ing the elasticity of macromolecules have been confirmed by many experi-
ments [46]. Furthermore, much effort has been devoted to the detailed anal-
ysis of the motion of macromolecules in fluid flows [47].

Since the end of the 1940s it has been known that the addition of poly-
mer additives to a fluid can drastically change its properties, and thus much
effort has been devoted to the detailed analysis of the motion of macro-
molecules in fluid flows and to the rheological behaviour of the solution.
Due to their molecular structure, polymers have elastic degrees of freedom
which must be taken into account in the description of the mechanical re-
sponse of the fluid to which they are added. Indeed, while for an ideal
Newtonian fluid the stress is proportional to the deformation rate, the con-
stant of proportionality being the viscosity, in an elastic material, the stress
is proportional to the deformation itself, the constant of proportionality be-
ing the Hooke modulus. A solution of polymers in a Newtonian fluid can
be thought of as a mixture of these idealized situations, because it presents
characteristics of both viscous and elastic materials, and it is thus called a
visco-elastic fluid.

This structural difference in the dependence of the stress on the deforma-
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(a) (b)

Figure 1.2: (a) A Newtonian fluid is slowly extruded from a syringe. (b)
The polymer solution which has been dyed green is slowly extruded from
a syringe. On exiting, a noticeable swelling in the polymer solution stream
several times larger than the diameter of the orifice is observed. Such a
phenomenon is referred to as the Barus effect (Die swell) linked to non-zero
normal stresses [48]. On the other hand, a Newtonian fluid does not exhibit
the Barus effect.

tion properties is the source of the distinctive behaviour of visco-elastic and
Newtonian fluids. Among the large number of notable phenomena which
are known to appear when dealing with visco-elastic fluids there is the rod-
climbing (or Weissenberg) effect, the very large extrudate swelling at the
exit of a die (as shown in Fig. 1.2), and many others (entanglement and
turbulent drag reduction).

Let us briefly consider the Weissenberg effect, also known as the rod-
climbing effect [49] and the die swell effect [48].

Weissenberg effect: When a Newtonian fluid is placed in rotation, it is
pushed away from the centre by the centrifugal force, and a dip appears on
the free surface, which takes the shape of a paraboloid. In contrast, visco-
elastic fluids tend to climb the rod [49]. Rod climbing is exhibited by liquids
that show a normal stress difference (as shown in Fig. 1.1). In Newtonian
liquids, the normal stresses (pressure) are isotropic even in flow, whereas
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polymeric liquids, upon the application of a shear flow, begin to develop
normal stress differences between the flow and flow-gradient directions.

Die swell effect: Analysing the motion of a fluid coming out from a cap-
illary, a big difference can be observed between a Newtonian fluid and a
visco-elastic fluid, as shown in Fig. 1.2. When a visco-elastic fluid flows
out of a die, the diameter of the extrudate is usually greater than the size of
the orifice. This is called die swell, extrudate swell, or the Barus effect [48]
(as shown in Fig. 1.2). The degree of extrudate swell is generally of a dif-
ference between the diameter of the extrudate and the diameter of the die.
For a fully developed flow of a visco-elastic fluid in a tube, there is tension
along the streamlines. When the fluid exits the tube, it relaxes the tension
along the streamlines by contracting in a longitudinal direction. For an in-
compressible liquid, this results in a lateral expansion, giving rise to the
die-swell phenomenon.

The effects produced by adding a polymer to a Newtonian fluid cover a
wide range: they can modify the transport of heat, mass and momentum,
influence the formation or depletion of vortices, and can change the stabil-
ity of laminar motion and the transition to turbulence. A visco-elastic fluid
can show a very interesting behaviour from a practical point of view, and a
number of papers have been devoted to the understanding of the behaviour
of visco-elastic fluids (see the references in [50]). The addition of a small
amount of long-chain polymers to a Newtonian fluid flowing in a pipe can
produce a dramatic reduction of the skin friction between the walls of the
pipe and the fluid [51]. Drag reduction by polymer additives has been stud-
ied for more than half a century [52–54].

In this chapter, I will introduce the basics of polymer dynamics in flu-
ids. Starting from a microscopic description in terms of the dynamics of
a single polymer, the simple hydrodynamic models which have been typ-
ically used to describe visco-elastic solutions will be constructed. Further,
I will briefly review the emergence of elasticity-driven turbulent-like states
at small Reynolds numbers, which has been called elastic turbulence.

1.2 The Weissenberg number

Since the end of the 1940s, it has been known that gradients of a velocity
field can affect polymers and strongly deform them in fluid flow. A poly-
mer in a fluid at rest typically resembles a spongy ball of size R0, i.e. it
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Figure 1.3: Snapshots of single DNA molecule relaxing to a coiled state. In
this experiment, a latex bead is tethered to an end of the molecule. The
DNA molecule, coloured with a fluorescent dye, is stretched by a uniform
flow and once the DNA molecule is fully elongated, the flow is turned off
and the relaxation of the molecule is measured at different times [55].

is in a coiled configuration. In principle, all the configurations are permit-
ted (even the fully stretched one) but in probabilistic terms, highly coiled
configurations are much more probable. In contrast, when strong velocity
gradients are imposed across a polymer, highly stretched states occur with
large probabilities.

The entropic tendency to return to a coiled state is indicated by an intrin-
sic parameter of the polymer, which is the time required by the molecule to
reach the steady state in the absence of flow, starting from a non-coiled con-
figuration. Polymer relaxation can be characterized by various measures of
the relaxation time. Zimms’s time (relaxation time) is the largest of these. It
depends on the temperature and viscosity of the solvent, on the number of
monomers in the molecule, and on the effective length of the bonds between
the monomers. The deformation of the polymer molecule is the result of the
competition between the stretching exerted by the gradients of the velocity,
and the relaxation of the polymer to its equilibrium configuration. Exper-
iments with DNA molecules [55] have shown that this relaxation is linear,
provided that the elongation is small compared to the maximum extension,
i.e. R ≪ Rmax (see Fig. 1.3).
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Clearly the stretching rate of a given velocity field must be compared to
the relaxation time of the molecule. If the velocity gradients are weak, then
the restoring force predominates and the polymer molecule is not stretched.
In contrast, if the stretching rates are very high the polymer molecules will
be stretched. One should note that at least dimensionally, velocity gradients
correspond to stretching rates.

The whole concept of the relative strength of stretching with respect to
relaxation can be quantified in terms of the non-dimensional Weissenberg
number, named after the German physicist Karl Weissenberg:

Wi =
τ

τf
(1.1)

where τf stands for the typical time scale of the flow and τ is the largest
relaxation time [56]:

τ =
µR3

0

kBT
(1.2)

where kB is Boltzmann’s constant, T is the temperature, and µ is the dy-
namic viscosity of the solvent.

When Wi ≪ 1, the relaxation is fast, and thus a polymer stays in its
coiled configuration. But Wi ≫ 1 corresponds to an entirely stretching-
dominated dynamics, and thus the polymers are substantially elongated.

What happens for Wi ≈ 1, i.e. when the relaxation and the stretch-
ing are competing with each other, is a natural question. Hinch and De
Gennes were the first to address this question [57,58], claiming that there is
a sharp transition between stretching-dominated and relaxation-dominated
states in strong flows, known as the coil stretch transition. A typical example
cited by De Gennes where the transition is expected in the time-independent
elongational flow. Chu and co-workers performed one of the first exper-
iments where single-molecule measurements of the coil–stretch transition
were taken in steady shear and elongational flows [59, 60]. There is also a
coil–stretch transition for random flows [47], but the transition between the
coiled and stretched configurations is not as sharp as in the elongational
flows, because a random flow has a fluctuating extension rate, resulting in a
broader distribution of polymer elongations. Many theoretical and numer-
ical studies have also addressed the statistical nature of the polymer dy-
namics in random [61–63], simple shear or laminar [64–66], and turbulent
flows [67–69].
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Figure 1.4: Dumbbell model

1.3 Visco-elastic models

1.3.1 The elastic dumbbell model
A simplified model to represent the polymer molecule, which is often used,
is the elastic dumbbell model. The model consists of a spring with elastic
constant H = 3kBT

2Rmaxb
connecting a couple of beads of length b, negligible

mass, and the same radius. Here Rmax is the maximum extension of the
polymer molecule. Despite its simplicity, it can reproduce several rheologi-
cal properties of dilute suspensions of polymers. The evolution of a dumb-
bell end-to-end separation vector R = x2 − x1, where xi is the position of
the bead, is characterized by the following forces:

• the hydrodynamic drag force represents the drag experienced by the
massless beads as they move through the solvent,

• the Brownian force due to thermal fluctuations,

• the elastic spring restoring force, which tends to bring the polymer
molecule back to its equilibrium configuration.

Moreover, assuming that in a homogeneous flow field the velocity gradi-
ents do not change appreciably over a distance comparable to the size of a
massless bead, the evolution equation for R can be written as

Ṙ = −H
β
R+Bξ (1.3)
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where β is the friction coefficient and ξ is a zero-mean Brownian process
modelling the Brownian forces with correlation < ξi(t)ξj(t

′) >= δijδ(t− t′).
The constant B =

√
2R2

0

τ
depends on the average size of a polymer molecule

in its coiled state R0 and the relaxation time of the polymer τ , where

τ =
β

H
. (1.4)

If we assume that the flow field is inhomogeneous, it is reasonable to expect
that polymers can also be stretched because of the differing velocities of the
beads. Therefore, we must add an extra term Ṙ = u(x2, t)− u(x1, t) to Eq.
(1.3) to take into account the stretching due to the different velocities of the
two beads. Here, u(x1, t) and u(x2, t) represent the velocities of beads at
position x1 and x2, respectively. Since the flow is smooth at the scale of the
polymer, we can approximate this stretching term by the velocity gradient.
The equation of motion of polymer can be rewritten as

Ṙ = (R · ∇)u− 1

τ
R+

√
2R2

0

τ
ξ (1.5)

This linear description of the dumbbell model is appropriate only for small
elongations in the regime R ≪ Rmax. The description is no longer appro-
priate when the elongations develop to a great extent and become of the or-
der of Rmax, because of the dependence of the friction coefficient β and the
relaxation time τ on the elongation itself. Thus to take into account these
effects, one of the possibile generalizations is to consider the Finite Exten-
sible Non-Linear Elastic model (FENE model) [49]. This model assumes
τ → τ Rmax

2−R2

Rmax
2−R2

0
. The friction coefficient β is estimated as β = 6πµR0, which

on plugging into Eq. (1.4) gives the Zimm relaxation time τ =
µR3

0

kBT
[56].

This unique characteristic time has to be seen as the largest relaxation time
of the polymer dynamics. Higher oscillatory modes, with faster relaxation
times, have been experimentally observed in DNA [70]. They can be only
weekly excited by the gradients of the velocity in a turbulent flow. Thus in a
simplified rheological model it is enough to keep only the principal mode,
with the largest relaxation time.

1.3.2 Hydrodynamic models
The previous description of the polymer dynamics accounts for the be-
haviour of a single polymer in a fluid, but does not take into account the
back reaction of the polymers on the fluid. In order to take into account this



1.3. Visco-elastic models 15

feedback mechanism, it is necessary to move to a macroscopic hydrody-
namic description. Several models have been introduced (see, e.g. [49, 71]).
These models describe the fluid as non-Newtonian, taking into account the
back reaction of the polymers on the flow by including an extra stress term
in the momentum conservation equation.

1.3.2.1 The Oldroyd-B model

A model that is often adopted, due to its simplicity, is the linear visco-
elastic Oldroyd-B model, which can be derived from the elastic dumb-
bell model [49]. The passage from the microscopic behaviour of a single
molecule to a macroscopic description requires getting rid of the micro-
scopic degrees of freedom, such as the thermal noise. The macroscopic dy-
namics of the polymer is conveniently described in terms of the conformation
tensor

σij =
⟨RiRj⟩
R2

0

(1.6)

where the average is taken over the thermal noise or, equivalently, over a
small volume containing a large number of molecules. By definition, the
conformation tensor σ is symmetric positive definite, and its trace tr (σ) is
a measure of the elongation of the molecules of the polymer.

The evolution equation for the conformation tensor σ can be derived
from Eq. (1.5) (see Bird et al. 1987 [49]):

∂tσ + (u ·∇)σ = (∇u)T · σ + σ · (∇u)− 2
σ − 1

τ
. (1.7)

where τ is the polymer relaxation time defined in Eq. (1.4). It is important to
remark that the matrix of the velocity gradient tensor has entries∇u = ∂iuj .
Here the conformation tensor σ is normalized by the equilibrium sizeR0 of
the molecules, so that in the absence of an external fluid flow it relaxes to
the unit tensor 1.

Equation (1.7) must be supplemented by the evolution equation for the
velocity field, which is derived from the momentum conservation law:

Dui
Dt

=
1

ρf

∂Tij
∂xj

+ fi (1.8)

where ρf is the density of the fluid, u is the velocity field, T is the stress
tensor of the fluid and f is the sum of the body forces per unit mass.
The symbol D

Dt
in Eq. (1.8) is known as the material derivative and is expressed

as follows:
Du

Dt
=
∂u

∂t
+ u · ∇u (1.9)
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The total stress tensor of the fluid is given by

T = TN + T P (1.10)

where TN is the viscous stress tensor and T P is an extra elastic stress tensor.
The stress tensor in a Newtonian fluid is proportional to the rate of de-

formation, with constant of proportionality the viscosity of the fluid, and in
the incompressible case, is usually expressed as

TN
ij = −Pδij + µ (∂jui + ∂iuj) (1.11)

where µ is the dynamic viscosity of the solvent and P is the pressure.
In the case of a visco-elastic solution, in the presence of polymers, the

elastic stress tensor T P takes into account the elastic forces. In the Hookean
approximation for the elasticity of the single polymer, the elastic stress
tensor is proportional via the Hooke modulus to the deformation tensor
T P = nHRiRj . The elastic stress tensor per unit volume of fluid is obtained
by summing the average contribution given by each polymer:

T P = nH ⟨RiRj⟩ = nHR2
0σ (1.12)

where n is the concentration of polymer molecules.
For an incompressible fluid of constant density ρf , substituting the ex-

pression for the elastic stress tensor into the momentum conservation law
yields

∂tu+ (u ·∇)u = −∇p

ρf
+ νs∆u+

2ηνs
τ

∇ · σ + f (1.13)

where νs = µ/ρ is the kinematic viscosity of the solvent and η is the zero-
shear contribution of the polymers to the total viscosity of the solution ν =

νs(1 + η):

η =
nHR2

0τ

2µ

Equation (1.7) together with Eq. (1.13) completely determines the dy-
namics of the Oldroyd-B model.

1.3.2.2 The FENE-P model

The Oldroyd-B model is based on the assumption that the molecules of the
polymer can be modelled as Hookean springs, and consequently it allows
for infinite extensions of the polymers. This is unphysical because the maxi-
mum length Rmax bounds the polymer end-to-end separation R. Moreover,
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the linear dumbbell model fails, and non-linearity becomes essential, when
the polymer extension R approaches Rmax. A more refined, but still con-
ceptually simple, description is that of the Finite Extensible Nonlinear Elastic
model (FENE model), where the elastic constantH is replaced by the function

H(R2) = H
R2

max −R2
0

R2
max −R2

(1.14)

diverging for R → Rmax, which means that the restoring force becomes in-
finite when the polymer is extremely stretched.

Nevertheless, the introduction of non-linearities yields a non-linear evo-
lution equation for the conformation tensor ⟨RiRj⟩, which is not closed. A
commonly accepted closure is the Peterlin approximation [72], consisting in
a pre-averaging in the non-linear function:

H(R2) = H
R2

max −R2
0

R2
max − ⟨R2⟩

(1.15)

This approximation leads to the following coupled equations for the veloc-
ity field u and the conformation tensor σ, in the FENE-P model:

∂tu+ (u ·∇)u = −∇p

ρf
+ νs∆u+

2ηνs
τ

H(tr(σ))∇ · σ + f (1.16)

∂tσ + (u ·∇)σ = (∇u)T · σ + σ · (∇u)− 2
H(tr(σ))σ − 1

τ
. (1.17)

where the non-linear factor H(tr(σ)) is

H(tr(σ)) =
trmax − tr(1)

trmax − tr(σ)
(1.18)

with trmax = R2
max/R

2
0.

The FENE-P model is more accurate than the Oldroyd-B model in repro-
ducing some of the features of polymer solutions, such as shear thinning,
which are not included in the Oldroyd-B model. This model generally re-
produces a more accurate scaling behaviour for the shear viscosity and the
normal stress differences, and hence agrees well with the experimental mea-
surements. Moreover, in numerical applications, the finite molecular exten-
sibility reduces the onset of numerical instabilities due to the strong gradi-
ents of the conformation tensor field. For these reasons, this model is usu-
ally adopted in numerical simulations of visco-elastic channel flows [73–75].
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1.4 Elastic turbulence: An overview

1.4.1 Experiments and theoretical investigations
One of the remarkable effects of polymers is that polymers with a long re-
laxation time τ and sufficiently high Weissenberg numberWi are capable of
giving rise to an irregular flow regime with velocity fluctuations spanning
a broad range of spatial and temporal scales even in the limit of vanishing
Reynolds number Re. The Reynolds number accounts for inertial instabili-
ties and is defined by

Re =
UL

ν
(1.19)

where U and L are, respectively, characteristic velocity and length scales
and ν is the total viscosity of the solution.

This irregular state caused by an instability due to the polymer stresses
at high Wi and in the limit of vanishing inertia, i.e. low Re, is known as
elastic turbulence. The first quantitative experiments to demonstrate the on-
set of elastic turbulence were performed in a swirling visco-elastic flow of
polymer solutions between two plates with a wide gap, in [21].

Steinberg and coworkers have identified a principal measure of elastic
turbulence by measuring the ratio between the average shear stress and its
corresponding value for a laminar flow between two rotating circular plates
(see Ref. [21]). When the relative angular velocity between the two plates is
increased, the average rescaled shear stress grows significantly, showing a
sharp transition. The same maximum stress value is found in a correspond-
ing flow of a Newtonian fluid forRe ∼ 104, whereas the measurements were
taken at Re < 1, showing that these effects are due to fluid elasticity.

The frequency power spectrum of the velocity fluctuations in elastic tur-
bulence displays a power-law decay, which spans about a decade in frequen-
cies (see Fig. 1.5). The power-law dependence indicates that there is a broad
range of timescales of the motion. It resembles that of the developed turbu-
lence of a Newtonian fluid at highRe, but the energy spectrum has a steeper
slope, i.e. the velocity fluctuations in elastic turbulence are concentrated at
low wave numbers [8, 18, 21, 76]. This indicates that the flow is temporally
irregular and driven by a few large scales.

Qualitatively, the polymers are stretched by the shear flow, thus trigger-
ing purely elastic instabilities. These instabilities give rise to a secondary
flow that acts back on the polymer molecules, stretching them further, and
becomes increasingly turbulent, until a kind of saturated dynamic state is
finally reached [18, 21, 23]. The fluctuating velocity field can be seen in the
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Figure 1.5: Power spectra of velocity fluctuations. The data were obtained
at different shear rates ε̇. Curves 1 − 5 correspond to ε̇ = 1.25, 1.85, 2.7, 4

and 5.9s−1, respectively. The spectrum of fluctuations is fitted by a power
law, P ≈ f−3.5, for ε̇ = 4s−1. The figure is taken from the experiments of
Groisman and Steinberg [21].

snapshots of the flow of the polymer solution above the transition, as shown
in Fig. 1.6. The authors established that the onset of this new flow regime
is due to a large elastic stress. Subsequently, a detailed experimental inves-
tigation was carried out by the same authors in three different systems: a
shear flow between two circular plates, a Couette–Taylor flow, and a flow
in a curvilinear channel (Dean flow) [25] (as shown in Fig. 1.7). The elastic
turbulent flows are found to be highly correlated over space and the Eule-
rian temporal auto-correlation function decays rather fast with characteris-
tic correlation times comparable to the largest polymer relaxation time [76].
Later, in 2006, a detailed experimental study of the previously unexplored
transitional pathway from laminar to elastic turbulence provided a rich se-
ries of secondary flow states connecting the simple torsional shearing flow
in a parallel plate device with elastic turbulence [77]. It has been found that
the secondary-flow states involve axisymmetric rolls and non-axisymmetric
spirals that compete at high Weissenberg number, producing oscillations,
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Figure 1.6: Two representative snapshots of the polymer flows at Wi = 13,
Re = 0.7 taken from below. Figures are taken from the experiments of Gro-
isman and Steinberg [21].

(a) (b)

Figure 1.7: (a) Epifluorescent microphotograph of the entrance area of a
microchannel used in experiments on mixing. Wide triangular region in
front of a curvilinear channel allows adjusting equal flow rates for polymer
solutions. (b) Confocal image of mixing in chaotic flow in the microchannel.
Figures are taken from the experiments in a curvilinear micro-channel of a
dilute solution of a high molecular weight polymer [18].
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(a)

(b)

Figure 1.8: Sample snapshots of dye advection experiments in straight mi-
crochannel system at Re < 0.01. (a) Newtonian case, (b) polymeric case,
with Wi = 10.9. The figure is taken from [26].

Figure 1.9: Flow patterns of visco-elastic fluid in the cross-slot geometry (i)
Newtonian-like symmetric flow behaviour, (ii) steady asymmetric flow, and
(iii) time-dependent flow. The figure is taken from [78].

apparent chaotic flow, and, eventually, apparent elastic turbulent flow with
a broad spectrum of temporal fluctuations. The elastic turbulent flows are
also characterized by divergent Lagrangian trajectories and, positive finite
time Lyapunov exponents, could be measured by direct tracking of fluid
particles in the flow and numerical integration of the measured flow ve-
locity fields [23]. Systematic experiments performed in a von Karman flow
between two disks by means of Laser Doppler Velocimetry and Digital Parti-
cle Image Velocimetry revealed a new characteristic space scale of the elastic
turbulence, namely the width of the stress boundary layer [76]. A qualita-
tive agreement with the theory of the elastic turbulence (discussed later) is
found in terms of a saturation of the root mean square of fluctuations of the
velocity gradients in the bulk of the flow [27].
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Since the pioneering work by Steinberg and coworkers, various microflu-
idic experiments have been performed to study elastic turbulence. In recent
publications [18, 22, 27, 28, 79–82], it has been shown how these features of
turbulence came into view in a highly elastic polymer solution at low Re in
curvilinear flows, straight streamlines (as shown in Fig. 1.8), pipe flows and
a cross-slot device (as shown in Fig. 1.9) [26, 78]. The behaviour of the flow
observed for visco-elastic fluids is far more complex than that found for a
Newtonian fluid. It is observed that visco-elasticity can lead to the onset of
different types of purely elastic instabilities, depending on the rheological
properties of the fluid. Other than in polymer solutions containing the usual
high-molecular weight polymers (polyacrylamide, polyethylene oxide), the
turbulent-like behaviour has also been perceived in complex fluids, in par-
ticular, using worm-like micelles for the elastic particles [83, 84].
The only existing theory of elastic turbulence in dilute polymer solutions
with linear elasticity and the feedback reaction on the flow was published
shortly after its discovery by Fouxon, Lebedev and Balkovsky [85, 86]. The
major ingredient if the theory of the elastic turbulence is to relate the dy-
namics if the polymer stress tensor σ to the dynamics of a vector field with
a linear damping [85–87]. The theory of elastic turbulence is restricted to
unbounded flow of a polymer solution and is based upon the major assump-
tion that the local feedback of the stretched polymer molecules on the flow
field leads to a statistically stationary state by a saturation of both the poly-
mer contribution to the stress tensor σ and the rms of the fluctuations of
the velocity gradients (observed experimentally). With this assumption the
theory explained the experimentally observed algebraic decay of the spectra
of the velocity fluctuations and revealed the existence of an elastic turbulent
regime. Latter a systematic description of these elastic instabilities (subcrit-
ical) in parallel shear flows of viscoelastic fluids is presented in Ref. [88].
Very recently a theory composed of a microscopic description of the poly-
mer statistics and a macroscopic description of the stresses in a polymer
solution has been proposed to investigate the boundary layer properties of
elastic turbulence. Theory shows that in contrast to high Re , where the
fluctuating velocity if always of the order of the mean flow in the viscous
sublayer, wall-bounded elastic turbulence possesses a non-trivial relation
between the mean and the fluctuating velocity components [89].
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(a) (b)

Figure 1.10: Snapshot of vorticity field in numerical simulations of the two-
dimensional Oldroyd-B model (a) Re = 0.7 and Wi = 22.4 and with a Kol-
mogorov forcing f = (F cos(y/L), 0), with L = 1/4 and where F = 64 is the
forcing amplitude. The source of the figure is [90]; (b) Re = 1 and Wi = 20

with a cellular forcing f = −Fn [cos(nx) + cos(ny)] with n = 4 and F = 0.16

the forcing amplitude. The figure is taken from [91].
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1.4.2 Numerical investigations

Elastic turbulence can also be numerically reproduced at least qualitatively
in simulations using polymer solution models, for instance using the two-
dimensional Oldroyd-B model, in which only the largest relaxation time of
the polymer is retained and the polymer elasticity is assumed to be linear.
Preliminary attempts to simulate the elastic turbulence regime have been
successful, for simplified 2D flow arrangements, such as the periodic Kol-
mogorov shear flow ( [90–93], Chapter 3). The Kolmogorov force produces
a sinusoidal mean flow even in the presence of elastic polymers.

Other constitutive models have been also used to simulate elastic tur-

(a)

(b)

Figure 1.11: (a) Contour plot of vorticity field for Wi = 10 before and after
the onset of a symmetry breaking transition. The study was performed by
simulating the dynamics of the Oldroyd-B model, in a simple four-roll mill
geometry [94]. (b) Snapshots of the normalized radial velocity component
ur/umax for Weissenberg numbers of Wi = 12.6, Wi = 50.3 and Wi = 106.8

(from left to right) in the 2D Taylor–Couette geometry. The figure is taken
from [95].

bulence, such as those with a non-linear elastic force (FENE-P model), by
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taking into account the finite extensibility of polymers [96–98]. Numeri-
cal studies considering different flow geometries also display the presence
of elastic instabilities [91, 94, 95] (see the snapshots of the vorticity field in
Fig. 1.10(b) (cellular forcing), Fig. 1.11(a) (four-roll mill geometry) and Fig.
1.11(b) (2D Taylor-Couette geometry) ). Very recently, the occurrence of elas-
tic turbulence of a visco-elastic fluid in a 2D Taylor–Couette geometry us-
ing the Oldroyd-B model has been investigated [95]. Numerical simulations
show that for increasing fluid elasticity, i.e. increasing Weissenberg number
Wi, the Taylor–Couette or base flow becomes unstable. A secondary flow
is created, which strongly fluctuates in time and which has a non-zero ra-
dial component. Snapshots of the normalized radial velocity component
ur/umax are shown in Fig. 1.11(b).

In fact, even a low-dimensional shell model of visco-elastic fluid repro-
duces elastic turbulence qualitatively [99]. Consistent with experimental
results, numerical simulations indicate that the polymers stretch and apply
stronger elastic forces to the flow if Wi is sufficiently high. Numerically,
it has been observed that the source of the turbulent stress comes from
elasticity and elastic stresses play the role usually played by the Reynold
stress in the usual inertial turbulence, which is the hallmark of elastic tur-
bulence [90].

These experimental and subsequent numerical developments demon-
strate that based on its similarity with turbulent fluid motion, elastic turbu-
lence has been proposed as an efficient framework to enhance mixing in low
Reynolds number flows [22].

The numerical investigation of elastic turbulence in two-dimensional
Kolmogorov flows will be the subject of Chapter 3.
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2.1 Introduction
Particle-laden flows are everywhere, both in natural systems (sediments,
plankton, aerosols, cloud droplets, etc.) and in human industrial activities
(sprays, powders, combustion, extraction of oils, etc.). Predicting the dy-
namics of an ensemble of material particles transported in turbulent and
non-turbulent flows remains a significant problem, which has motivated
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countless studies over more than a century. Among the many situations
where the transport of particles is of critical importance, a few environmen-
tal and industrial issues are worth being highlighted.

For instance, the preferential concentration of inertial particles may
enhance the probability of collision (and hence of coalescence) of water
droplets in clouds, and therefore play an essential role in the initiation of
rain [100, 101]. Similarly, it is believed that it can promote the agglomera-
tion of fine particles in accretion disks, hence accelerating the formation of
planetesimals [102]. In industrial applications, it can play a role in the coa-
lescence of fuel droplets in diesel engines, and therefore affect the energetic
efficiency, with significant economic and environmental implications [103].
The properties of particle suspensions are affected by the particle concen-
tration as well as the by the properties of the suspending fluid. Indeed, vari-
ations of these characteristics induce important qualitative and quantitative
changes in the behaviour of the suspension.

It is intuitive that the scenario is even more complex when the sus-
pending fluid itself has a complex rheological behaviour. Several industrial
and daily-life materials fall in this category, including rubbers, detergents,
paints, foods, and biological suspensions. The usual non-Newtonian prop-
erties, such as shear-thinning and the appearance of a normal stress differ-
ence, may strongly alter the micro-structure in flowing suspensions, even
at low concentrations of particles. On the other hand, the peculiar particle
dynamics induced by the complex rheology of the suspending fluid can be
cleverly exploited to perform operations that would be difficult in Newto-
nian fluids. It is worthwhile to mention as an example the emerging use of
non-Newtonian fluids in microfluidics to guide the suspended particles to
some regions of the devices for counting, targeted drug delivery, diagnos-
tics, the extraction of oils and gases from porous rocks, and particle separa-
tion applications [104]. Depending on the size and density of the particles
relative to the fluid (eventually responsible for a non-zero response time of
the particle due to its inertia), the particles will interact with the structures of
the flow of the carrier at different time and spatial scales. Understanding the
global dynamics of a particle suspended in Newtonian and non-Newtonian
fluid flows is a topic of primary importance.

This chapter is a review of some of the theoretical basis of the model
equations which are currently employed to describe the motion of inertial
particles under conditions of dilute suspension. This chapter also reviews
the basic phenomenology of particle transport in turbulent flows, address-
ing, for instance, preferential concentration, and the tools currently used for
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Figure 2.1: Visualization of turbulence by seeding the flow by 10 micron flu-
orescent polystyrene particles in a turbulent flow experiment (von Karman).
The figure is taken from http://nicolas.mordant.free.fr/turbulence.
html.

its quantitative characterization.

2.2 The equations of motion for material particles
transported by a flow

2.2.1 Lagrangian tracer particles

Fluid tracers are ideal particles which are transported by the flow without
being subjected to any hydrodynamical or external force. Such particles,
also called non-inertial tracers, are carried by the flow without having any
effect on the flow field itself or on other quantities transported by the flow.
Consequently, tracers can be thought of as identical to the fluid elements,
and with the same density as that of the fluid (ρp = ρf ). These particles are
ideally point-like and have the same velocity as the underlying fluid:

dx

dt
= v(t) = u(x(t), t) (2.1)

where x and v are the position and velocity of tracer, respectively, and u is
the velocity field of the fluid.

http://nicolas.mordant.free.fr/turbulence.html
http://nicolas.mordant.free.fr/turbulence.html
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2.2.2 Inertial particles
Unlike these fluid tracers, particles with a mass density that has a mismatch
with that of the fluid (ρp ̸= ρf ) (either smaller, e.g. bubbles, or greater, e.g.
sand grains) or with a size comparable to the characteristic scales of the flow
(such as its smallest eddies) do not follow the flow exactly. Such particles
are generally referred to as inertial particles. Particles with a density much
greater than the density of the carrier fluid (ρp ≫ ρf ) are known as heavy
inertial particles. In this thesis we only study heavy inertial particles.

The formulation of the problem can be given in the following terms: con-
sidering a rigid sphere (density ρp and radius a) in a viscous Newtonian
flow governed by the Navier–Stokes equations, with no-slip boundary con-
ditions on the surface of the sphere, can we formalize the instantaneous
action of the flow on the sphere?

An answer to this longstanding question was formulated successively
by Stokes [105] and Basset [106], and later refined by Boussinesq [107] and
Oseen [108], who examined the motion of a sphere settling under gravity in
a fluid at rest. Their analysis started from the unsteady situation of a sphere
settling from rest in a quiescent viscous fluid, which concerns the transient
acceleration until it reaches its terminal settling velocity. The difficulties en-
countered in this problem are independent of the dynamical regime of the
fluid flow. The disturbance flow produced by the motion of the sphere was
considered to have a sufficiently low Reynolds number (Rep ≪ 1) so that
the fluid force on the sphere could be estimated from a Stokes flow (so that
a second Reynolds number based on the spatial scale of shear is also small
(ReS < 1)). Tchen extended this work to a sphere settling under gravity in a
non-uniform flow, with a view already to turbulent flows [109]. The result-
ing model (known as BBOT, Basset–Boussinesq–Oseen–Tchen) was revised
in 1983 and proper account taken of the Faxen correction for the unsteady
Stokes flow, simultaneously by Maxey and Riley [110] and Gatignol [111],
leading to the following equation of motion for a particle in a flow:

mp
dv

dt
= 6πµa(u− v) +

1

2
mf

d(u− v)

dt
+mf

Du

Dt
+ (mp −mf )g+

6a2
√
πρfµ

∫ t

−∞

d(u− v)

dt

dt∗√
t− t∗

(2.2)

where v is the velocity of the particle, u is the velocity field of the unper-
turbed flow of the carrier, a is the radius of the particle, mp is the mass of
the particle, ρf is the density of the carrier fluid, mf is the mass of the fluid
displaced by the particle, and µ is the dynamic viscosity of the carrier fluid.
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The terms on the right hand side of Eq. (2.2) are, in order of appearance,

• the Stokes drag force (due to the relative velocities of the particle and
fluid), also called the steady drag term,

• the added mass force, which is purely inertial, and corresponds to the
force exerted by the displaced fluid,

• a pressure gradient term, which is equivalent to the acceleration of a
particle of the fluid at the position of the centre of the particle,

• the buoyancy force,

• a history term (an unsteady drag term), which takes into account the
entire history of the motion of the particle in the carrier fluid up to the
instant t and mainly takes into account the interaction of the particle
with its own wake.

The actual range of validity of this equation is, however, limited, as it is only
valid for vanishing particle Reynolds number Rep = 2a |u− v| /ν ≪ 1, as it
assumes a Stokes flow around the particle due to the relative velocity (u−v)
between the fluid and particle, and that the particles are much smaller than
the local non-uniformities of the flow, so that ReS = 2aLs/ν (with Ls the
scale of the variation of the flow) is small, i.e. ≪ 1. In spite of these severe
limitations, apart from some first order corrections to take into account the
effects of a non-zero Rep and local non-uniformities of the flow around the
particle, the model still remains the best analytical expression we have to
describe the fluid–particle interaction.

A commonly used version of Eq. (2.2) for passively advected particles of
non-zero size is 

ẋ = v(t)

v̇ =
u(x, t)− v(t)

τp

(2.3)

where τp is the viscous relaxation time of the particle [110]. This simpli-
fied model is also referred to as a Stokesian model. The main assumption
required by this model is the validity of the following approximation:

• the velocity field is well-defined at the particle scale, allowing, for in-
stance, defining the velocity of the fluid at the position of the particle.

Note that this equation is valid for small Rep. The dynamics of inertial par-
ticles have been studied extensively in the past either numerically [112–117]



32
Chapter 2. Inertial particles in flows: Equations of motion and

measurements of their concentration

or experimentally [116, 118–120] and the most important phenomenon ob-
served in these studies, which is a direct result of the simplified Eq. (2.3),
is that particles with a density different from the fluid density tend not to
remain uniformly distributed, even in homogeneously isotropic turbulent
flows.

2.3 The Stokes number
In the conditions under which Eq. (2.3) is valid, the inertia of the particle is
quantified by a single dimensionless parameter, namely the Stokes number
St, defined as the response time τp of the particle relative to some charac-
teristic time scale of the underlying flow (for instance, the dissipative time
scale in turbulence) τf .

St =
τp
τf

with τp =
2ρpa

2

9ρfν
(2.4)

Throughout this thesis, we define τf ≡ τγ̇ in terms of the strain rate ex-
erted by the flow, so that St = τp/τγ̇ , with τγ̇ = 1/γ̇ and γ̇ given by

γ̇ =
1

TL2
0

∫ T

0

dt

∫ L0

0

dy

∫ L0

0

dx
√

2[∇u+ (∇u)T ]2, (2.5)

where (...) denotes taking the average over the spatial coordinates and time,
L0 being the size of the domain in each direction.

2.4 The distribution of the particles in a flow
As mentioned earlier, the collective motion of material particles whose den-
sity is different from that of the fluid is expected to behave differently than
fluid tracers. In particular, drag forces make the dynamics of such impuri-
ties dissipative. Dissipative dynamics implies that the particle trajectories
asymptotically evolve to a dynamical attractor in the phase space spanned
by the positions and velocities of the particles. Consequently, even if the
fluid flow u is incompressible, solid impurities, i.e. heavy inertial parti-
cles, can eventually become distributed very inhomogeneously. Both from
a fundamental and an applied point of view, the most interesting feature
that emerges is the appearance of strongly inhomogeneous particle distri-
butions, namely clustering. The clustering mechanisms of inertial particles
have been studied in the context of turbulent as well as laminar flow field
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Figure 2.2: Spatial distribution of particles inside a thin layer (width 5ηk)
for 8 different Stokes numbers. (a) Sn = 0.05, (b) Sn = 0.1, (c) Sn = 0.1, (d)
Sn = 0.2, (e) Sn = 0.5, (f) Sn = 1, (g) Sn = 5, (h) Sn = 10. Simulation results
are from [122].

models [36, 121]. It is useful to briefly discuss the clustering mechanism of
inertial particles.

2.4.1 The mechanism of preferential concentration

The origin of the preferential concentration of inertial particles in a car-
rier fluid can be understood at several levels, from very fundamental and
generic considerations related to the dissipative nature of the particle dy-
namics, to more intuitive arguments based on the interaction between the
particles and the structures of the carrier fluid. The following discussion
will briefly address some of these aspects.

Inertial particle dynamics as a dissipative dynamical system: Consider
a system whose state is specified by a point q = (q1, q2, ...) in a given state
spaceQ. For a dynamical system, the state can evolve in time, and the evolu-
tion from one state to another follows a vectorial differential equation given
by a rule g such that

dq

dt
= G(q) (2.6)
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where q ∈ Q and with the initial condition q (t = 0) = q0. An initial prob-
ability density of states can be defined as P (q, t = 0), such that

∫
Q
P (q, t =

0)dq = 1 and P (q, t = 0)dq is the probability of finding the system in an ele-
mentary volume dq around the state q at time t = 0. The evolution equation
for the density of states P (q, t) at time t is

DGP

Dt
= ∂tP +G ·∇P = −P∇ ·G. (2.7)

Equation (2.7) is nothing but a continuity equation ensuring that for all
times t > 0, P (q, t) defines a probability density, i.e.

∫
Q
P (q, t)dq = 1. Note

that DGP
Dt

can be seen as the material derivative in the flow G. Depending on
the value of the term ∇ ·G = ∂qiGi, the dynamical system has two distinct
kinds of behaviour:

• If ∇ · G = 0, then Eq. (2.7) becomes DP
Dt

= 0, which implies that
P = const for an incompressible flow. This also implies that volumes
in phase space are conserved. In particular, if the initial states are uni-
formly distributed, then they remains uniformly distributed at all sub-
sequent times. This result is known as Liouville’s theorem. Dynamical
systems such that ∇ · g = 0 are conservative.

• If ∇ · G < 0, then DP
Dt

> 0 and eventually the density along the fluid
trajectories in the state space grows exponentially. Dynamical systems
such that ∇·G < 0 are dissipative. As the integral of P over the whole
state space is 1, this means that the density of states in other regions
must decrease. In particular, if the initial density is uniform, this will
result in the long term in there being regions with a high density of
states and depleted regions. This resulting contraction is related to the
existence of attractors.

This completely general mechanism can be applied to the dynamics of
Lagrangian tracers and inertial particles in flows:

• for Lagrangian tracers, the dynamical system is simply defined by the
state variable q = x (where x denotes the position of a tracer) and
the flow G = u is the fluid flow itself. The evolution equation of
the dynamical system (Eq. (2.6)) thus implies dx

dt
= u (x, t). For in-

compressible flows ∇ · u = 0, thus in the terminology of dynamical
systems, the system is conservative, and an initially uniform distri-
bution of particles remains uniform. Hence, in incompressible flows,
Lagrangian tracers do not form clusters.
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• In contrast, for inertial particles, the dynamical system is dissipative.
To understand this, we consider the minimal Stokesian model given by
Eq. (2.3), where the particle dynamics are coupled to that of the fluid
by the Stokes drag τp. In this case, we can define a dynamical system
based on the state variable q = (x,v) in position–velocity phase space:
the flow function is G = (v, (u− v) /τp). Therefore, one has ∇ ·G =

−d/τp < 0, where d is the dimension of physical space. As a result,
the system is dissipative, meaning that an initially uniform probability
density will evolve to a clustered one.

In general, as will be shown, even if the fluid flow is incompressible,
the velocity field v of spatially distributed particles is weakly compress-
ible. The non-zero divergence of the particle velocity is the central origin
of the well-known phenomenon of preferential concentration, which occurs
in physical space. Mehlig and Wilinkson [123, 124], Bec [125] and many
others [31, 116, 120, 126] have studied the dissipative nature of the inertial
particle dynamics in turbulent flows. These studies show that the underly-
ing attractors depend on the topology of the carrier flow u and the particle
response time τp.

2.4.2 Correlation of preferential concentration with the
fluid flow

The usual intuitive understanding of the clustering of inertial particles relies
on the centrifugal expulsion of inertial particles. As the outcome, heavier
particles are expected to accumulate preferentially in regions of low vor-
ticity, whereas light particles are expected to accumulate preferentially in
regions of high vorticity. This process is schematically illustrated in Fig.
2.3. Maxey [127] has formalized the observed phenomenology, in the limit
of small τp. One can formally write a perturbative expansion for small τp of
Eq. (2.3) [85]

In the limit of τp → 0,v ≈ u

=⇒ τpu̇ ≃ u− v

=⇒ v ≃ u− τp(∂tu+ u ·∇u) (2.8)

which correctly reproduces the tracer limit v = u for τp = 0, i.e. ρp = ρf .
Within the limits of validity of this approximation, similar to that for tracers,
the phase space reduces to the position space and inertia is accounted for by
the particle velocity field v(x, t), that is the same as that for the fluid u(x, t).
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Figure 2.3: Schematic illustration, as proposed by Squires and Eaton
(1994) [112] of the mechanism of the ejection of a heavy particle from a
region of high vorticity (right) to one dominated by strain (left) in a two-
dimensional flow. The right diagram shows streamlines around a vortex
and the trajectory of a particle being ejected. The left diagram shows that
this puts the particle into a region of high strain (between vortices). The
source of the figure is [112].

From non-zero τp, the compressibility of the velocity field v can be estimated
by taking the divergence in physical space of Eq. (2.8), which results in

∇ · v = −τp tr
[
∇u · (∇u)T

]
, (2.9)

Those regions can be identified by switching to index notation. On decom-
posing the fluid velocity gradient γ into its symmetricS and anti-symmetric
Ω parts, we then have

∇ · v = 2τpQ, (2.10)

where, up to redefining by employing a prefactor,

Q =
1

2
(ΩijΩij − SijSij) (2.11)

is the Okubo–Weiss parameter [128,129]. In the above equation, Sij , respec-
tively, Ωij indicate the elements of the rate-of-strain (S) and rate-of-rotation
(Ω) tensors, and summation over repeated indices is assumed. Particles con-
centrate due to the (weak) compressibility of their velocity, that is where
∇ · v < 0. From Eq. (2.10) it is seen that this condition translates into neg-
ative values of Q, meaning that the particles are expected to preferentially
accumulate in strain-dominated regions (using Eq. (2.11)).
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We would like to remark that small-scale particle clustering has also been
observed in laminar flows, both in steady and in time-dependent/chaotic
ones [36, 130]. In these types of flows, including spatially smooth and tem-
porally random ones like those of elastic turbulence, there are regions where
Q ̸= 0. The parameter Q = 1

2
(ΩijΩij − SijSij) is zero only if the terms SijSij

and ΩijΩij compensate exactly, as for instance in plane shear flows.

2.4.3 Assessment of preferential concentration

In this section, we will describe the many methods used to study and charac-
terize preferential concentration and clustering in flows (mainly in numeri-
cal studies). First, we focus on direct methods that are all more or less linked
to measurements of the concentration. Then we present some indirect meth-
ods that use dynamical measurements to evidence a preferential concentra-
tion of the flow by inertial particles. It is implicitly assumed that all the
methods described here try to quantify the difference between an uniform
particle distribution and the considered concentration fields (actual particle
density fields). Most of the usual approaches to quantify the level of cluster-
ing are based on the local concentration fields. There are several methods
to characterize clustering, including visualizations, the clustering index, box-
counting, pair correlation, often referred as the radial distribution function,
and Voronoi analysis.

Visualizations: In studies based on numerical simulations, often a qual-
itative analysis of the preferential concentration of inertial particles is
made through visualization. In two-dimensional [133, 134] and three-
dimensional [37, 118, 122, 125, 135, 136] direct numerical simulations, there
has been provided a qualitative analysis associated with increasing St, from
the tracer limit up to values on the order of 10. In this strand of the litera-
ture, the results have been consistent even for different ways of modelling
the forces acting on the particles. For the Lagrangian tracers, the particles
are homogeneously distributed and as St increases, some areas start get-
ting denser and denser while others become empty. The maximum of the
concentration gradients is observed for St around unity.

Box-counting methods: In these methods, starting from n-dimensional
data, whatever value of n (an integer), the n-dimensional space is divided
into N boxes of equal size, defined by an arbitrarily chosen length scale r,
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Figure 2.4: Dependence of the box index on the box size for different exper-
iments at different Stokes numbers. The source of the figure is [131], where
the results come from experiments performed in a large wind tunnel [132].



2.4. The distribution of the particles in a flow 39

so that N boxes fill the whole space of the data. To measure the concentra-
tion and/or characterize the preferentially concentrated regions, one counts
how many particles belong to each box of size r. In the case of uniformly
distributed particles, the probability density function (PDF) of the number
of particles per box is described by a Poisson distribution. In the presence
of clustering, boxes with very high and very low numbers of particles will
be much more likely to exist than in the Poisson case, and so the associated
PDF will differ from the Poisson distribution. It is then possible to calcu-
late the distance between these two PDFs using some appropriate norm to
obtain a single scalar that characterizes how far the particle distribution is
from an uniform one. Such a scalar is referred to as a box indexBI [131,137].
The dependence ofBI on the box size obtained in [131] is shown in Fig. 2.4.
All the curves acquire a similar shape, regardless of the Stokes number, and
one notes that the curves associated to Stokes numbers closer to 1 are shifted
upward, evidencing the enhancement of the preferential concentration.

Voronoi analysis: This is a recently introduced method and has been
found to be particularly well suited to investigating the preferential con-
centration phenomenon. A Voronoi diagram is the unique decomposition of
n-dimensional space into cells associated to each particle. Each Voronoi cell
is defined as the ensemble of points that are closer to a particular particle
than to any other. In the Voronoi diagrams, the area A of a Voronoi cell
is the inverse of the local 2D-concentration of particles; therefore the in-
vestigation of the field of Voronoi areas is strictly equivalent to that of the
local concentration field. The use of Voronoi diagrams is very classical in
the study of granular systems, and has also been used to identify galaxy
clusters. Usually, local concentration fields are obtained through a coarse-
graining procedure over a minimal length scale, which has several disad-
vantages over Voronoi analysis. Box-counting methods are computationally
inefficient, and they require selecting an arbitrary length scale, whereas in
Voronoi analysis, no length scale is chosen a priori. For more details on
Voronoi analysis, see [132].

Correlation dimension: The basic idea of measuring the tendency of par-
ticles to concentrate inhomogeneously in space comes from the theory of
dissipative systems [138, 139]. This quantity was introduced to the field of
preferential concentration by [140] and has since been used by many oth-
ers [125,141,142].

The Grassberger–Procaccia (GP) algorithm [138] is used to estimate the
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Figure 2.5: Numerical results of correlation dimension D2 as a function of
the Stokes number Sη = τp/τη, for three different Reynolds numbers Reλ.
Here, τη is the characteristic time of the small turbulent eddies andReλ is the
Taylor-scale based Reynolds number. The blue dots show the probability P
of finding particles in non-hyperbolic regions of the flow, for Reλ = 185

(multiplied by an arbitrary factor for purposes of visualization). The source
of the figure is [125].

correlation (fractal) dimension of a set of points. The main idea of this algo-
rithm is to compute C(r) the correlation sum:

C(r) =
2

Np(Np − 1)

∑
i<j

θ(r − |xi − xj|) (2.12)

whereNp denotes the number of points x1,x2, . . . ,xN in space, |xi − xj| de-
notes the distance between any pair of points, and θ is the Heaviside step
function. The fraction of pairs whose distance is smaller than r is then de-
fined as C(r). This sum is monotonically decreasing to zero as r → 0. If
C(r) decreases according to a power law, C(r) ∼ rD2 , then the correlation
dimension can be written in the form

D2 = lim
r→0

d logC(r)

d log r
. (2.13)

The correlation dimensionD2 gives information about the distance from
the random uniform distribution. Figure (2.5) shows the dependence of D2

on the Stokes number in an incompressible isotropic and homogeneous 3D
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turbulent flow, from numerical simulations [125]. More information on the
correlation dimension can be found in [139].

The accurate calculation of D2 is notoriously difficult because the value
of the derivative d logC(r)

d log r
often converges very slowly for r → 0, where the

number of particle pairs is small. Also the lacunarity [143] of the fractal
attractors causes C(r) to oscillate. To overcome this problem, an alternative
approach to studying clustering is to examine the link between the structure
of the fractal attractor in phase space and the distribution of the particles in
coordinate space.

Kaplan–Yorke dimension: In general, the fractal set in phase space is char-
acterized by its fractal dimensionDF . It has been shown [144] that the fractal
dimension of the projection of a set of dimensionDF onto a hyper-surface of
dimensionD (e.g. that of physical space) isDF ifDF < D andD ifDF > D.
Therefore, if the fractal dimension of the attractor in 2D dimensional phase
space is DF > D, the distribution of particles in coordinate space will be
space-filling. But if the fractal dimension of the attractor is smaller than D,
DF will provide us the dimension of the particle clusters.

Bec [36] has computed such a fractal dimension in numerical simula-
tions of inertial particles in random smooth flows, which give clear indica-
tions that a consistent explanation of particle clustering can be addressed
in terms of the properties of the attractors of particle dynamics. The fractal
dimension of the attractor in phase space can be determined as the so-called
Kaplan–Yorke dimension [145–147], defined as

DKY = K +

∑K
i=1 λi

|λK+1|
(2.14)

where the λi are the Lyapunov exponents of the dynamical system Eq. (2.3).
The Lyapunov exponents are ordered from the largest (most positive) to the
smallest (most negative). It is a simple matter to count the maximum num-
berK of exponents whose sum is positive, i.e.

∑K
i=1 λi ≥ 0, and this number

K is a lower bound on the dimension of the attractor. DKY can be inter-
preted as the largest dimension of a set whose volume is left invariant by
time evolution. It can be obtained by means of a linear interpolation of the
sum of Lyapunov exponents between the two integer values for which nei-
ther expansion (positive sum) nor contraction (negative sum) occurs [144].

Segregation scale: When there are different types of particle (either dif-
ferent densities or different Stokes numbers) in the same flow (polydisper-
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sity), the different types of particles exhibit different flow structures. For
instance, light particles (e.g. air bubbles in water) preferentially concentrate
in regions of high vorticity, whereas heavier ones (e.g. sand grains in water)
are expelled by rotating regions. This leads to a segregation of the different
particle types, which intuitively is characterized by some segregation length
scale. Calzavarini and collaborators [37] have also provided a new indicator
for the quantitative characterization of the segregation of inertial particles
evolving in a turbulent flow. The indicator allows defining a segregation
length scale rseg between different classes of particles. The further details of
this indicator are given in Section 4.5.

2.4.4 Large scale clustering: Turbophoretic aggregation

(a) (b)

Figure 2.6: Comparison of the instantaneous particle distribution of (a)
tracer particles, (b) inertial particles (St = 0.1) in the near-wall region. The
particle distribution is plotted on top of the time-averaged ∂2y⟨u2y⟩ field. The
snapshots are taken from direct numerical simulations of a turbulent chan-
nel flow [148].

The computation of the correlation dimension and Lyapunov exponents
to characterize preferential clustering in numerical simulations of elastic
turbulent flows will be addressed in this thesis, in Chapter 4. Let us re-
mark that these computations only provide information about the small
scale properties of the particle distribution, while the large scale properties
can be influenced in a nontrivial way by the structure of the flow. There are
several types of large-scale particle accumulation mechanisms, which have
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been studied not only in homogeneous turbulent flows but also inhomoge-
neous turbulent flows. Turbhophoresis is one of them, that is, the migration
of particles due to fluctuations of the flow. In this section, we mainly focus
on the phenomenology of turbophoresis and what is already known to us.

Small-scale clustering has also been observed in inhomogeneous
flows [33], leading, together with turbophoresis, to the formation of streaky
particle patterns [149]. In the one-way coupling regime [150] (i.e. when the
solid phase has a negligible effect on the fluid phase) and mainly in wall-
bounded flows, it has been shown that particles migrate from regions of
high turbulence to regions of low turbulence [151–153]. A net flux of parti-
cles from a region of high turbulence intensity to a region of low turbulence
intensity has been observed, and a quantitative description of turbophore-
sis was derived from the basic conservation equations of the fluid–particle
system [153]. Using this approach, it is possible to show that one obtains
the following expression for the turbophoretic velocity:

Vp,turbo = −τp
dV

′2
py

dy
(2.15)

where V ′2
py is the particle mean-square velocity fluctuation. Importantly, the

turbophoretic term depends on the particle mean-square velocity, which
might be different from the corresponding fluid velocity if the particle in-
ertia is large [154]. In the limit τp → 0 in Eq. (2.15) one has Vp,turbo → 0.
Turbophoresis is thus negligible for not very heavy particles even if there
is a gradient in the fluid turbulence intensity. As τp increases, the tur-
bophoretic velocity increases, thereby raising the possibility of migration
in the direction opposite to the gradient of velocity fluctuations by a few
orders of magnitude. However, as τp increases, the particles are less able to
follow fluid fluctuations, and the difference between the particle and fluid
root-mean-square velocities becomes progressively more significant. The
turbophoretic velocity vanishes (Vp,turbo = 0) for all particles, irrespective of
their inertia, when the flow is either not turbulent or when the turbulence
is homogeneous. This turbophoretic phenomenon has been shown to be
stronger when the turbulent near-wall characteristic time and the particle
characteristic time scale are similar [155].

In a channel flow [148], it has been observed that inertial particle mi-
gration due to turbophoresis changes the initially random distribution of
the particles by driving particles toward the wall. A snapshot of the dis-
tribution of tracer and inertial particles in the x − y plane near the wall
shows qualitatively the increased concentration of inertial particles near the
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wall (see Fig. 2.6). It is visible that the tracer particles shown in Fig. 2.6(a)
are distributed randomly in space and appear uniformly distributed, while
the inertial particles (Fig. 2.6(b)) accumulate near the wall. Turbophore-
sis has been mainly studied in wall-bounded flows, because of their rele-
vance for industrial and environmental applications related to particle de-
position [32,148, 151,156, 157].

Interestingly, using a three-dimensional (3D) Newtonian turbulent Kol-
mogorov flow, it was recently shown that turbophoretic segregation is inde-
pendent of the presence of walls [34] (this was also confirmed in simulations
employing a random inhomogeneous forcing [35]). Also in that case, parti-
cles accumulate in regions of minimum turbulent diffusivity, but the spatial
distribution of the latter with respect to the mean flow differs from the one
found in geometrically confined flows [34]. Large scale segregation in the
context of elastic turbulence will be addressed in Chapter 5.
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3.1 Introduction
It is known that the presence of polymers can change the stability proper-
ties of laminar flows, due to purely elastic instabilities [158, 159]. A notable
effect observed both experimentally and numerically is the onset of the so
called elastic turbulence [160, 161] which, despite its name, occurs in the
limit of very low Reynolds numbers, provided that the elasticity is large
enough. In this regime, polymer solutions have features typical of turbu-
lent flows (for instance, a broad range of active scales and an apparently
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random character). Consequently, elastic turbulence has found important
applications in microfluidics given the fact that it can create chaotic flows
and strongly enhance mixing in the absence of fluid inertia (i.e. for van-
ishing Re) [6, 7, 18, 29, 162]. Despite its broad technological interest, elastic
turbulence is still quite poorly understood from a theoretical point of view;
there are some predictions based on simplified dynamical equations and
constitutive laws for visco-elastic fluids [86, 88, 163].

In this chapter, I will present numerical results on the direct numeri-
cal simulation of a visco-elastic Kolmogorov flow in two dimensions at low
Reynolds numbers. As will be seen, the basic phenomenology observed in
laboratory experiments is reproduced using the simple geometrical setup
and adopting the Oldroyd-B model to account for visco-elasticity.

3.2 Problem formulation and numerical method

3.2.1 Governing equations
We consider the dynamics of a dilute polymer solution as described by the
visco-elastic Oldroyd-B model (Eq. (1.7) and Eq. (1.13), recalled below):

∂tu+ (u ·∇)u = −∇p

ρf
+ νs∆u+

2ηνs
τ

∇ · σ + f , (3.1)

∂tσ + (u ·∇)σ = (∇u)T · σ + σ · (∇u)− 2
σ − 1

τ
. (3.2)

In the above equations, u is the incompressible velocity field, the symmet-
ric positive definite matrix σ represents the normalized conformation ten-
sor of the polymer molecules, and 1 is the unit tensor corresponding to the
equilibrium configuration of the polymers attained in the absence of flow
(u = 0). The trace tr (σ) gives the local polymer (square) elongation and τ is
the largest polymer relaxation time. The fluid density is denoted by ρf and
the total viscosity of the solution is ν = νs(1 + η), with νs the kinematic vis-
cosity of the solvent and η the zero-shear contribution of the polymer (which
is proportional to the concentration of the polymer). The extra stress term
2ηνs
τ

∇ · σ takes into accounts elastic forces providing a feedback mechanism
on the flow, which can lead to flow destabilization even in the limit Re→ 0.

3.2.2 Kolmogorov flow
As we are interested to study the bulk properties of the flow, we limit the
present study to the configuration of periodic Kolmogorov flow [164]. Such



3.2. Problem formulation and numerical method 47

Figure 3.1: The Kolmogorov flow profile.

a complications are not only numerical in character but also concern the
modeling aspect of the proper expression to be adopted for the confor-
mation tensor on solid walls. The Kolmogorov flow, introduced by Kol-
mogorov around the 1960’s [164], is a parallel flow with sinusoidal profile
(Fig. 3.1) as a model to study the transition to turbulence in Newtonian
fluids. This flow can be realized physically under laboratory conditions by
means of magneto-hydrodynamic drive [165]. An advantage of using Kol-
mogorov flow to investigate elastic turbulence is that its stability properties
are known for both the Newtonian [166] and the visco-elastic case [161]. The
Kolmogorov flow is obtained by imposing a forcing in the x direction (the
horizontal one), sinusoidally in the y direction (a transversal one) which re-
sults in a sinusoidal velocity profile (see Fig. 3.1).

The two-dimensional (2D) Oldroyd-B model with Kolmogorov forcing
has been previously shown [90–92] to provide an effective theoretical frame-
work to reproduce the basic phenomenology of elastic turbulence. Using
the Kolmogorov forcing f = (F cos(y/L), 0) in Eq. (3.1), there is a laminar
fixed point, i.e. a stationary solution, corresponding to the velocity field and
the conformation tensor components respectively:

u(0) = (U0 cos(y/L), 0) (3.3)

σ
(0)
11 = 1 +

τ 2U2
0

2L2
sin2(y/L) (3.4)

σ
(0)
12 = σ

(0)
21 = −τU0

2L
sin(y/L) (3.5)

σ
(0)
22 = 1 (3.6)

with F = νU0/L
2 [161]. From these expressions, characteristic length and

velocity scales L and U0, respectively, can be identified. In the elastic tur-
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bulence regime, the mean velocity and conformation tensor fields main-
tain similar trigonometric functional forms but with different amplitudes
( [90, 92], see also Section 3.4.2). Writing U for the mean velocity ampli-
tude in such states, we define the Reynolds number as Re = UL/ν and the
Weissenberg number as Wi = Uτ/L. As previously documented, the lami-
nar flow becomes unstable [161] for sufficiently high values of the elasticity,
even in the absence of fluid inertia, and eventually has features typical of
turbulent flows [90–92].

3.2.2.1 Elastic instabilities

Let us briefly recall here the main results about the linear stability of the
Oldroyd-B Kolmogorov flow (for more details see [161]). The considered
flow is unstable to large-scale perturbations, i.e. with wavelengths much
larger thanL. In the Newtonian case, the instability arises atRec =

√
2 [166].

For the visco-elastic (Oldroyd-B) case, analytical and numerical investiga-
tions have found the complete stability diagram in the Re−Wi plane [161]
(see Fig. 3.2). For Wi = 0, the Newtonian value Rec =

√
2 above which the

flow is linearly unstable is recovered and the curve of the diagram starting
at Re =

√
2 in the region Wi ∼ 0 defines the region of inertial instabilities.

A significant difference is observed in that the critical value above which
the flow is unstable is increased, i.e. for a given small Wi the critical Rec is
larger than

√
2. However, in the right-hand side of Fig. 3.2 the instabilities

are generated for Re <
√
2 and for large Wi and are known as elastic in-

stabilities. Further, the analytical calculations are validated with numerical
results (black triangles in Fig. 3.2).

As can be seen from Fig. 3.2, for sufficiently large elasticity (i.e. large
values of Wi), the Kolmogorov flow can be unstable even at vanishing
Reynolds numbers. The existence of such purely elastic instabilities sug-
gests the possibility of exciting some turbulent-like flow resembling elastic
turbulence, provided Re is small enough and Wi is larger than a threshold
value of order 1− 10.

3.2.3 Numerical method

The numerical integration of visco-elastic models is a challenging task since
it is necessary to solve at the same time the Navier–Stokes equation with an
extra stress term and the equation for the components of the conformation
tensor. Moreover, the linear visco-elastic Oldroyd-B model allows for in-
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Figure 3.2: Linear stability diagram of the visco-elastic Kolmogorov flow, as
predicted by multi-scale analysis (solid lines) and computed by the numeri-
cal solution of the exact linearized equations (triangles) in the planeRe−Wi.
Different regions are observed: at small Weissenberg number Wi = Uτ

L
the

critical Reynolds numberRec increases for increasingWi, i.e. polymers have
a stabilizing effect; at large enough Wi, Rec decreases, i.e. instabilities are
driven by the polymer-flow interaction (elastic turbulence). In the region
denoted by U the flow is unstable, in that denoted by S it is stable. Inside
the area denoted by CSL the flow is stable with respect to large-scale per-
turbations, but unstable with respect to generic perturbations. The figure is
adapted from Ref. [161].

finite polymer elongation, and consequently, the stretching exerted by the
velocity gradients can generate singularities in the conformation tensor. In-
deed, the eigenvectors of the conformation tensor tend to align in the direc-
tions of the Lyapunov vectors, and the eigenvalues can experience exponen-
tial growth, leading to the formation of sharp fronts of polymer quantities
with diverging gradients which are involved in the feedback on the veloc-
ity field. The consequence is a sudden occurrence of numerical instabilities,
also known as Hadamard instabilities [167], in the simulations, which can
blow up after a short time.

These instabilities are associated with the loss of positive definiteness of
the conformation tensor and become particularly important at high elastic-
ity, thus limiting the possibility of investigating the elastic turbulent regime
by direct implementation of Eq. (3.1) and Eq. (3.2). To overcome this prob-
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lem, we use an algorithm based on a Cholesky decomposition of the con-
formation matrix that ensures the symmetry and positive definiteness of σ,
implemented earlier in [90, 168]. This consists in writing σ as the product
of a lower triangular matrix with its transpose:

σ = LLT (3.7)

where L =

[
l11 0

l21 l22

]
, and in deriving a transport equation for the tensor

L. In the equations of motion for the three non-zero elements of L can be
derived from those for the elements of σ sequentially, starting with l11 =
√
σ11 and then proceeding to l21 = σ12/

√
σ11 and l22 =

√
σ22 − σ2

12/σ11 [168]:

l̇11 = γ11l11 + γ21l21 −
1

τ

(
l11 −

1

l11

)
(3.8)

l̇21 = γ12l11 + γ22l21 + γ21
l222
l11

− 1

τ

(
l21 +

l21
l211

)
(3.9)

l̇22 = γ22l22 − γ21
l21l22
l11

− 1

τ

(
l22 −

1

l22
− l221
l211l22

)
(3.10)

where γij are the elements of the velocity gradient tensor. The matrix σ will
remain positive definite as long as the diagonal components ofL are greater
than zero. A way to satisfy this constraint is to implement a logarithmic
transformation of the diagonal elements:

l̃11 = log (l11) → l11 = el̃11 (3.11)
l̃21 = l21 → l21 = l̃21 (3.12)

l̃22 = log (l22) → l22 = el̃22 . (3.13)

Exponentiation, after numerical integration of l̃ij , ensures positive diagonal
elements. The equations for l̃11, l̃12 and l̃22 are found by the chain rule for
derivatives. The resulting equations for l̃ij are

˙̃l11 = γ11 + γ21l̃21e
−l̃11 +

1

τ

(
−1 + e−2l̃11

)
(3.14)

˜̇l21 = γ12e
l̃11 + γ22l̃21 + γ21e

2l̃22−l̃11 − 1

τ
l̃21

(
1 + e−2l̃11

)
(3.15)

˙̃l22 = γ22 − γ21l̃21e
−l̃11 +

1

τ

(
−1 + e−2l̃22 + l̃221e

−2(l̃11+l̃22)
)

(3.16)
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3.2.3.1 Artificial polymer diffusivity: The Schmidt number

Equations (3.14), (3.15) and (3.16) preserve the symmetric positive definite
(SPD) nature of the conformation tensor σ: its eigenvalues remain positive
by construction. Another critical aspect is the fact that since the smallest
eigenvalue can become arbitrarily close to zero, infinitesimal errors aris-
ing from the integration scheme can bring it below zero, producing a new
source of numerical instabilities.

As a cure to the problem of these instabilities, Beris et al. [167, 169, 170]
introduced an artificial polymer diffusivity, i.e. a Laplacian termDp∆σ into
the equation of motion for σ, where Dp is a space-independent coefficient,
that can be chosen so that it stabilizes the numerics and to have a negligible
influence on the results. The importance of such a diffusive term for viscous
dissipation is quantified by the non-dimensional parameter known as the
Schmidt number:

Sc =
νs
Dp

. (3.17)

For computational reasons, we decided to add diffusivity to the equations
for the lij fields. In terms of the l̃ij fields, i.e. those that are actually updated
by the numerical method, this choice implies the appearance of square gra-
dient terms in the equations for the diagonal elements, due to the exponen-
tial transformation. The resulting extra terms that then need to be added
are summarized by the following relations:

D∆l11 = D
(
∂2x + ∂2y

)
el̃11

=⇒ Del̃11
[(
∂2x l̃11

)
+
(
∂xl̃11

)2

+
(
∂2y l̃11

)
+
(
∂y l̃11

)2
]

D∆l11 = Del̃11
(∣∣∣∇l̃11∣∣∣2 +∆l̃11

)
(3.18)

D∆l12 = D∆l̃12 (3.19)

D∆l22 = Del̃22
(∣∣∣∇l̃22∣∣∣2 +∆l̃22

)
. (3.20)

On substituting the above relations into Eqs (3.14), (3.15) and (3.16), the evo-
lution equations for l̃ij become

˙̃l11 = γ11 + γ21l̃21e
−l̃11 +

1

τ

(
−1 + e−2l̃11

)
+D

∣∣∣∇l̃11∣∣∣2 +D∆l̃11 (3.21)

˜̇l21 = γ12e
l̃11 + γ22l̃21 + γ21e

2l̃22−l̃11 − 1

τ
l̃21

(
1 + e−2l̃11

)
+D∆l̃21 (3.22)
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˙̃l22 = γ22 − γ21l̃21e
−l̃11 +

1

τ

(
−1 + e−2l̃22 + l̃221e

−2(l̃11+l̃22)
)
+D

∣∣∣∇l̃22∣∣∣2 +D∆l̃22.

(3.23)
We numerically verified that the value of the diffusion coefficient appearing
in Eqs (3.21–3.23) and the actual polymer diffusivity involved in the Dp∆σ

term do not differ considerably. Indeed, using the value D = 10−3νs in
Eqs (3.21—3.23) we obtain an effective Schmidt number, as defined in Eq.
(3.17), νs/Dp = O(103). The details of the numerical computation of the ef-
fective polymer diffusivity acting on the σij fields and the related estimation
of the Schmidt number can be found in Section 3.3.2.1.

3.2.4 Control parameters

Here we recall the definitions of the Reynolds and Weissenberg numbers in
terms of the flow variables:

Re =
UL

νs(1 + η)
, (3.24)

Wi =
τU

L
. (3.25)

We have numerically integrated the evolution equations for the vorticity ζ ,
which can be derived by taking the curl of Eq. (3.1) and for the conforma-
tion tensor σ, Eq. (3.2) in a square domain of size L0 = 2π with doubly
periodic boundary conditions, by means of a pseudo-spectral method, with
second-order Runge–Kutta scheme with time step δt at different resolutions,
ranging from 1282 to 10242 spatial discretization points. The vorticity field
in two dimensions has only one nonzero component, normal to the plane of
velocity, which is related to the stream function ζ = −∆ψ. We fix Re0 = 1

(using the value of U0 to obtain an a priori estimate of it), which is smaller
than the critical value

√
2 of the Newtonian case, and we varyWi in a range

of values larger than a critical one Wic ≈ 10 corresponding to the onset of
purely elastic instabilities [171]. In all simulations, the other parameters of
the visco-elastic dynamics are U0 = 4, L = 1/4, νs = 0.769, η = 0.3. The
initial condition is obtained by adding a uniform random perturbation to
the fixed point solution u(0) (Eq. (3.3)), σ(0) (Eqs (3.4—3.6)) and the system
is evolved in time until a statistically steady state is reached.
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3.3 Numerical validation tests

3.3.1 Spatial resolution

To resolve the sharp gradients that form in the polymer-stress tensor field,
a high spatial resolution is needed. We have tested explicitly that the statis-
tical properties we measure are more or less independent of the resolution
(N ) for (N ≥ 512) we use for our DNS. Some initial qualitative indications
are shown in Fig. 3.3 (a snapshot of the vorticity field) and Fig. 3.4 (a snap-
shot of the trace of the conformation tensor). The presence of numerical
noise is noticeable for the snapshots of the vorticity field and the trace of
the conformation tensor field for spatial resolutions N ≤ 256. This granu-
larity of the images is associated with scales that are not well resolved. To
learn better the effect of the spatial resolution on the statistical quantities,
we measured the spectrum of kinetic energy (KE) and of the trace of the
conformation tensor at different resolutions N for a fixed value of Wi. The
spectrum in Fig. 3.5 is calculated by averaging over several times in the sta-
tistically stationary state of the velocity field (Fig. 3.5(a)) and of the trace of
the conformation tensor field (Fig. 3.5(b)). For small N , an accumulation
of energy at large wavenumbers due to errors associated with unresolved
small scales can be seen. As N increases, the spectrum smoothly decreases
over a broader and broader range of wavenumbers. For a large enough res-
olution N (N ≥ 512) it does not considerably depend on the spatial resolu-
tion. The choice of N = 512 for our simulations then represents a compro-
mise between the need to resolve small spatial scales and the computational
cost (increasing roughly as N2).

3.3.2 Effects of artificial polymer diffusivity

The addition of an artificial diffusivity can have a substantial impact on the
qualitative spatial and temporal properties of the flow. In a recent numeri-
cal study adopting a forcing that gives rise to a cellular flow structure [172],
it was found that in the absence of artificial polymer diffusivity, the polymer
stress is mainly located in the straining regions, whereas in the presence of
diffusivity it spreads outside the strain regions. This may yield mislead-
ing results even with relatively high values of the Schmidt number. There-
fore it is important to understand how artificial polymer diffusivity affects
the numerical results. For this purpose, numerical computations have been
carried out at fixed Re = 0.702, Wi = 22.5 at resolution N = 512 and vary-
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(a) (b)

(c) (d)

Figure 3.3: Snapshots of vorticity field at (a) N = 128; (b) N = 256; (c)
N = 512; (d) N = 1024 for Re = 0.702 and Wi = 22.5.
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(a) (b)

(c) (d)

Figure 3.4: Snapshots of trace of the conformation tensor tr(σ) = σ11 + σ22
at (a) N = 128; (b) N = 256; (c) N = 512; (d) N = 1024 for Re = 0.702 and
Wi = 22.5.
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Figure 3.5: Comparison of spectra (a) of the velocity fluctuations E(k) and
(b) of the trace of the conformation tensor Σ(k) from direct numerical simu-
lation of elastic turbulence forRe = 0.702,Wi = 22.5 at resolutionsN = 128;
N = 256; N = 512 and N = 1024.
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ing the ‘polymeric’ diffusivity such that the Schmidt number based on it is:
Sc = 103, Sc = 1250, Sc = 1667, Sc = 2500, Sc = 5000 and Sc = 104. The
smallest value of the Schmidt number is chosen to be Sc = 103, to compare
with previous results [90].

To see the effect of artificial diffusivity, it is enough to observe the qual-
itative properties of the flow. Figure 3.6 compares the instantaneous snap-
shots of the vorticity field from the numerical results obtained using differ-
ent Schmidt numbers. When Sc is increased, small intense gradients pro-
gressively appear in both the flow (see Fig. 3.6 for vorticity) and the poly-
mer (see Fig. 3.7 for the trace of the polymer conformation tensor) fields.
The latter fields then appear to be more noisy and numerical instabilities
become less well controlled. This is particularly evident for Sc = 104 (but
also visible for Sc = 5000, though to a lesser extent), while for Sc = O(103))
the fields appear smoother and more comparable with each other. We can
also notice, however, that the filamentary structures associated with large
polymer elongations tend to become thicker when Sc is decreased from 104

to 103.

The temporal behaviour of the kinetic energy for the different consid-
ered cases is shown in Fig. 3.8(a). It is here evident that it attains a definitely
larger value when Sc = 104, a feature probably associated with the presence
of numerous small spurious scales. The kinetic energy spectrum, shown in
Fig. 3.8(b), allows accessing the scale-by-scale energy content. Its measure
reveals that when Sc ≥ 5000, energy piles up at the smallest scales, again in
association with the presence of small unresolved scales. For smaller val-
ues of Sc, small differences between the different curves are still present at
the highest wavenumbers but the spectra progressively tend to converge.
This means simulations require even higher resolutions to resolve the small
scales. From the present analysis we can conclude that for Sc ≤ 2500 the
numerical instabilities are reasonably well controlled, and the effect of arti-
ficial diffusivity is less dramatic than for higher values of Sc. Let us remark
that this conclusion is flow-dependent and the effects on simulations forced
in a different way, as in the case of cellular flows [172], may be different.
This detailed study as a function of Sc motivates our choice of Sc ≈ 103 as
the numerical results appear to correspond to well resolved and physically
sound simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Snapshots of vorticity field at a resolution 5122 (a) Sc = 10000;
(b) Sc = 5000; (c) Sc = 2500; (d) Sc = 1667; (e) Sc = 1250; (f) Sc = 1000 for
Re = 0.702 and Wi = 22.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Snapshots of trace of the conformation tensor tr(σ) at a resolu-
tion 5122 (a) Sc = 10000; (b) Sc = 5000; (c) Sc = 2500; (d) Sc = 1667; (e)
Sc = 1250; (f) Sc = 1000 for Re = 0.702 and Wi = 22.5.
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Figure 3.8: (a) Temporal behaviour of kinetic energy E(t) and (b) kinetic
energy spectrum E(k) from direct numerical simulations at Re = 0.702,
Wi = 22.5,N = 512 and different values of the artificial diffusivityDp∗ such
that Sc ≡ νs/Dp∗ varies between 103 and 104.
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3.3.2.1 Numerical measurement of effective polymer diffusivity

As already discussed earlier, for numerical purposes we add an artificial
diffusivity term Dp∆σ to the polymers. The implementation in the code of
the polymer diffusion term is not directly related to σ, but is in fact directly
related to the l̃ij fields.

Therefore we expect that there will be an effective polymer diffusivity
(Dpeff ) onσ resulting from the addition of a diffusivity to the lij fields, which
might be different from Dp or of the same order (Dpeff ∼ O(Dp)).

Therefore it is interesting to study how does the effective polymer diffu-
sion Dpeff differ from Dp. To achieve this we integrate the equations for σij
in the absence of forcing and feedback, starting from an initial condition cor-
responding to zero flow and sinusoidal conformation tensor components,
as shown in the equations below,

ζ0 = 0 (3.26)
σ0
11 = 1 + A0 sin(

x

L
) (3.27)

σ0
12 = A0 sin(

x

L
) (3.28)

σ0
22 = 1 + A0 sin(

x

L
) (3.29)

where A0 is the initial amplitude of the sinusoidal profile. For this case the
value of D is kept fixed νs × 10−3 in the code, which gives Sc = 103 (notice
that this is not the one we defined, initially, as Sc in Eq. (3.17)).

In the absence of the flow, and no coupling between the flow and the
polymers Eq. (3.2) reduces to the simplified equation:

∂tσ = −2
σ − 1

τ
+Dpeff∆σ (3.30)

On integrating Eq. (3.30), we obtain the following analytical solution for the
components of σ:

σ′
11(t) = σ11(t)− 1 = A0 sin(

x

L
)e

−
(

2
τ
+

Dpeff

L2

)
t

(3.31)

σ12(t) = A0 sin(
x

L
)e

−
(

2
τ
+

Dpeff

L2

)
t

(3.32)

σ′
22(t) = σ22(t)− 1 = A0 sin(

x

L
)e

−
(

2
τ
+

Dpeff

L2

)
t

(3.33)

By comparing the analytical solution Eqs (3.31—3.33) with the obtained nu-
merical results for σ′

11, σ12, σ
′
22, we have extracted the value of amplitude
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Wi Dpeff (σ
′
11) Dpeff (σ12) Dpeff (σ

′
22) Sc(σ′

11) Sc(σ12) Sc(σ′
22)

19.1 0.000726 0.000741 0.000446 1058.76 1038.25 1723.31
22.5 0.000721 0.000737 0.000403 1066.39 1043.14 1906.25
23.9 0.000719 0.000736 0.000385 1069.58 1045.17 1996.42
24.9 0.000717 0.000734 0.000369 1996.41 1046.97 2086.02

Table 3.1: Measurement of effective polymer diffusivity Dpeff for all the
components of σ and for differentWi and Sc = νs/Dpeff is the estimated ef-
fective Schmidt number. Here the wavenumber is k = 4. The measurement
clearly shows that the effective polymer diffusion Dpeff ∼ O(Dp).

A(t) = A0e
−
(

2
τ
+

Dpeff

L2

)
t
of the sin(x/L) profiles, shown in (Fig. 3.9) (red line).

The amplitude A(t) of the σ fields decays exponentially with given initial
amplitudeA0 and polymer diffusion fitting constantDpeff . Further, the dif-
fusion constantDpeff is obtained by making a fit ofA(t) for σ′

11, σ12, σ
′
22 with

their analogous analytical solutions, shown in (Fig. 3.9) (black dashed line).
The estimated values of Dpeff for the different components of σ are sum-
marized in Table 3.1.

3.4 Numerical results for two-dimensional elastic
turbulence

3.4.1 Eulerian characterization of a 2D elastic turbulent Kol-
mogorov flow

The transition from laminar states to elastic turbulence of the system speci-
fied by Eqs (3.1) and (3.2) was previously studied in detail in [92]. Note that
in the elastic turbulence regime the mean flow amplitude turns out to be de-
creased (U < U0) (this will be shown in one of the following sections), and
in the following Re and Wi will be defined using the a posteriori measured
value U . Here, we are interested in working in the regime corresponding to
Weissenberg numbers well above the threshold value Wic. We recall that
numerically it is found to be close to 10 ( [90, 92]) not far from the value
predicted by the linear stability analysis (Section 3.2.2.1)); the highest Wi

that we can ‘safely reach’ considering the previous discussions about nu-
merical issues in the present conditions is Wi ≈ 25. For such values of Wi

the flow develops temporally and spatially irregular fluctuations associated
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Figure 3.9: Estimation of Dpeff from the exponential decay of A(t)/A0 as a
function of time by making a fit with an exponentially decaying function,
Dpeff is a fitting parameter (a) σ′

11; (b) σ12 (a) σ′
22 components. Here Wi =

22.5.
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with the chaotic and mixing dynamics reminiscent of turbulence. In order
to get more insight into the elastic turbulent flow, in Fig. 3.11 we present
two snapshots of the two-dimensional flow vorticity field at two different
Weissenberg numbers Wi.

The first simulation atWi = 19.1 is above the elastic instability threshold.
The flow in this regime is unstable but still not very turbulent. A striking
feature is that there are highly elastic filaments, propagating along the di-
rection of the mean flow (see Fig. 3.10), associated with the stretching of
the polymers by the largest gradients of the mean velocity field [92]. Simi-
lar wavy patterns also characterize the vorticity field ζ(x, y) = ∂xuy − ∂yux
(see Fig. 3.11), due to the coupling between the polymer dynamics and the
velocity dynamics. At higher values of the elasticity, these vorticity pat-
terns become progressively more erratic, carrying out a chaotic motion. At
Wi = 24.9 we observe a considerably more irregular vorticity field. This is
the regime of elastic turbulence, in which the flow develops active modes
over a broad range of scales.

(a) (b)

Figure 3.10: Snapshots of trace of the conformation tensor tr(σ) atWi = 19.1

(left) and Wi = 24.9 (right).

From a statistical point of view, these turbulent-like features are de-
scribed by the spectrum of kinetic energy E(k) and the specturm of the
polymer elongation, which is proportional to that of elastic energy and is
given by the trace of the conformation tensor Σ(k) at wavenumber k. For
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(a) (b)

Figure 3.11: Snapshots of vorticity field at Wi = 19.1 (left) and Wi = 24.9

(right).

both quantities we find power-law behaviour as E(k) ∼ k−γ (Fig. 3.12(a))
and Σ(k) ∼ k−δ (Fig. 3.12(b)), indicating a whole range of active scales.
The kinetic energy spectrum is characterized by an exponent 3.5 < γ < 3.6

larger than 3, pointing to a smooth flow, and in reasonable agreement with
the value measured in (three-dimensional) experiments (see, e.g. [21]) and
with theoretical predictions [173] based on an uniaxial model correspond-
ing to the large polymer elongation limit of the Oldroyd-B model. The spec-
tral exponent of Σ(k) is found to be δ ≈ 2, similar to what is observed in
numerical simulations of visco-elastic turbulence at higher Re (and with fi-
nite extensibility models of the polymer dynamics) [174, 175], and roughly
in agreement with experimental results [176].

In the insets of Fig. 3.12, we show the behaviour of global quantities,
namely the (temporally and spatially averaged) kinetic energy E = |u|2/2
and the (temporally and spatially averaged) trace of the conformation tensor
Σ = tr(σ), normalized by their laminar values ELAM = U2

0/4 and ΣLAM =

2 +Wi2/4, as functions of the Weissenberg number. Here, (...) represents
an average over spatial coordinates and time:

(...) =
1

TL2
0

∫ T

0

dt

∫ L0

0

dy

∫ L0

0

dx(...). (3.34)

In agreement with previous observations [90,92], we find that while the ki-
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Figure 3.12: Time averaged spectra of kinetic energyE(k) (a) and trace of the
conformation tensor Σ(k) at wavenumber k (b), normalized by their max-
imum values, for different values of Wi in the elastic turbulence regime.
Inset of panel (a): temporally averaged kinetic energy E = |u|2/2 normal-
ized by its laminar value ELAM = U2

0/4. Inset of panel (b): temporally and
spatially averaged square polymer elongation Σ = tr(σ) normalized by its
laminar value ΣLAM = 2 + Wi2

4
.
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netic energy decreases with Wi, the square polymer elongation grows and
this occurs faster than in laminar conditions. This suggests that the poly-
mers elongate by draining energy from the mean flow and, once sufficiently
stretched, they are capable of modifying the carrier flow through the term
2ηνs
τ

∇ · σ in Eq. (3.1). The faster than laminar growth means that such elas-
tic coupling is very efficient in sustaining the stretching of the polymers.

3.4.2 Flow structure and velocity profiles

In the present case, due to the inhomogeneity induced by the Kolmogorov
forcing, it is also important to know the mean flow in some detail, for in-
stance, measurements of the velocity field (u(x, y)) at different instants of
time, where x is the direction of the mean flow and y the transverse direc-
tion over which its intensity varies. We indicate profiles with ⟨(...)⟩. Note
that this type of average is related to the global one introduced before by

(...) =
1

L0

∫ L0

0

⟨(...)⟩dy.

The mean profiles of the flow in the y direction averaged along the x direc-
tion and time and the profiles of the velocity fluctuations, ⟨u′2

y ⟩(y) at differ-
ent values of the Weissenberg number are shown in Fig. 3.13. To accelerate
the convergence, indeed quite slow, of the velocity profiles, the results are
obtained by further averaging over an ensemble of 7 independent data sets,
each of which was obtained from slightly different random initial condi-
tions. The mean flow profile ⟨ux⟩(y) at Wi ≤ 10 is virtually indistinguish-
able from the laminar fixed point solution U0 cos(y/L), with U0 = 4 and
L = 1/4 (solid black line in Fig. 3.13(a)). The elastically-driven turbulent
flow has a similar cosine shape but with reduced amplitude, U < U0. While
U gradually decreases as the Weissenberg number is increased, the average
intensity of the transversal velocity fluctuations simultaneously grows. Due
to the very slow convergence of the profiles of the fluctuations, it is not easy
to assess their functional dependence on y. To overcome this problem, we
further averaged the profiles over one forcing wavelength ℓ = L0/4 = 2π.
As is clear from Fig. 3.14(b), this approach allows us to put in evidence that
also the profile ⟨u′2

y ⟩(y) can be reasonably well described by a trigonomet-
ric function, but with a periodicity that is twice that of ⟨ux⟩(y). It is worth
remarking that an analogous behaviour has been found for the turbulent
velocity fluctuations of the Newtonian Kolmogorov flow [34]. These results
shows the need to provide a priori estimates of the non-dimensional pa-
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rameters, we will refer to them asRe0 andWi0, which can be different from
the one in the presence of velocity fluctuations superimposed on a non-zero
mean flow U (i.e. the a posteriori estimates of Re andWi), once the average
velocity U has been computed. In Table 3.2 we provide the a priori and a
posteriori measures of the Reynolds and Weissenberg numbers used in this
thesis to capture the phenomenology of elastic turbulence.

τ U Re0 Wi0 Re Wi

1.125 3.483885 1 18 0.871 15.7
1.25 3.30861 1 20 0.827 16.5
1.375 3.20632 1 22 0.801 17.6
1.5 3.17946 1 24 0.795 19.1
2 2.80765 1 32 0.702 22.5
2.25 2.65692 1 36 0.664 23.9
2.5 2.4769 1 40 0.619 24.9

Table 3.2: DNS parameters: resolution 5122, τ polymer relaxation time, U
are a posteriori estimates of mean flow intensity, Re0, Wi0 are a priori es-
timates of the Reynolds number and Weissenberg number, Re, Wi are a
posteriori estimates of the Reynolds number and Weissenberg number.

Further interesting information can be extracted from the behaviour of
the ratio of the root-mean-square velocity fluctuation to the amplitude of the
mean flow,

√
u′2y /U as a function of the Weissenberg number. This quan-

tity is shown in Fig. 3.15, where a change in behaviour is clearly visible
for Wi ≈ 20. Such a transition is associated with an increase in the rela-
tive weight of the typical velocity fluctuation with respect to the mean flow.
Also, recalling that, as observed from previous visualizations, at Wi = 19

the flow still presents intense coherent structures, the value Wi ≈ 20 may
be interpreted as the one beyond which a developed turbulent state sets in,
where the statistical features of the flow attain a somewhat universal be-
haviour essentially independent of Wi (e.g. the spectra in Fig. 3.12, and see
also [82, 176]). We remark that the lines in Fig. 3.15 are only for guidance;
here we do not claim to explain the corresponding scaling exponents and
we think that this technical point deserves more research.

We have further measured the probability distribution function (PDF) of
the square polymer elongation, i.e. the trace of the polymer conformation
tensor σ shown in Fig. 3.16. We observe a broad distribution of the exten-
sion of polymer molecules in Fig. 3.16 (a)), which results in the turbulent-
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like structures in the flow even at low Re. The results of the PDF upon re-
scaling are also shown in Fig. 3.16(b). The results shows that even this sta-
tistical quantity shows a behaviour that is independent of Wi for Wi > 20,
in accordance with Fig. 3.15.

3.4.3 The Lyapunov exponent for elastic turbulence
Laboratory experiments in curvilinear channels have demonstrated that
very viscous polymer solutions in the elastic turbulence regime allow
efficient mixing [22]. The mixing efficiency of polymer solutions has
been studied in other setups, including microchannel flows [18] and two-
dimensional, magnetically driven flows [177]. In a smooth flow, as is the
case of elastic turbulence given that the kinetic energy spectrumE(k) ∼ k−γ

decays faster than k−3 with the wavenumber, the dispersion properties are
essentially governed by the largest scales and, dimensionally, only one time
scale can be constructed. The typical time over which mixing takes place
can then be identified with the inverse of the rate of spreading, due to their
chaotic dynamics in a Lagrangian sense, of initially close fluid elements. The
quantitative understanding of the degree of chaoticity (from a Lagrangian
point of view) in a fluid flow is the maximal Lagrangian Lyapunov expo-
nent (LLE), which defines the average rate of exponential separation of two
initially neighbouring trajectories followed by Lagrangian tracer particles:

λ = lim
t→∞

lim
δ(0)→0

1

t
log

[
δ(t)

δ(0)

]
(3.35)

where δ(t) =∥ x2(t) − x1(t) ∥ is the Euclidean distance between the two
trajectories at time t and δ(0) its value at the initial time. In experimental
and numerical simulations, the infinite time limit required by Eq. (3.35) is
unattainable. A way to overcome these difficulties is to use the finite-time
Lyapunov exponent (FTLE). This is defined by removing the t→ ∞ limit in
Eq. (3.35).

λ∗ = lim
δ(0)→0

1

t

[
δ(t)

δ(0)

]
(3.36)

For sufficiently small initial separations δ(0) between the particles, at large
times the FTLE becomes a rather good estimate of the LLE [178,179].

Figure 3.17 shows the behaviour of the Lyapunov exponent rescaled by
the polymer relaxation time τ as a function of Wi at fixed Re = 1. Nu-
merical Lagrangian fluid trajectories were obtained by integrating over time
dx
dt

= u(x, t), using a second-order Runge–Kutta method. The instantaneous
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Figure 3.13: (a) Mean flow profile averaged along x direction and time. (b)
Profile of velocity fluctuations along the direction of inhomogeneity of the
flow for different Wi. Here, temporal averages were performed over 80 in-
dependent realizations corresponding to different instants of time. All the
profiles shown have been further averaged over the wavelength defining the
periodicity of the mean flow ℓ = LL0 = π/2. The black solid line represents
the mean flow profile U0 cos(y/L) with (U0 = 4 and L = 1/4) corresponding
to the laminar fixed point solution.
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Figure 3.14: (a) Mean flow profile averaged along x direction and time. (b)
Profile of velocity fluctuations along the direction of inhomogeneity of the
flows for different Wi. Here, temporal averages were performed over 80

independent realizations corresponding to different instants of time. All
the profiles shown were further averaged over the wavelength defining the
periodicity of the mean flow ℓ = LL0 = π/2. The black solid line represents
the mean flow profile U0 cos(y/L) with (U0 = 4 and L = 1/4) corresponding
to the laminar fixed point solution.
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Figure 3.16: (a) The PDF of square polymer elongation tr(σ), (b) The PDF
of square polymer elongation normalized by its mean value tr(σ)/tr(σ).
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nent from the present DNS results (red dots) with previous results (black
dots) [90], obtained in the same setup but varying the flow stability param-
eters (Re and Wi) in a different way.

velocity at a fluid tracer position was obtained by bilinear interpolation in
space of the velocity field known at regularly gridded points. The results
demonstrate that the mixing becomes more efficient asWi increases. We re-
mark that this behaviour is in some way contrary to that observed in the case
of visco-elastic flows at high Reynolds numbers, where it has been seen that
the injection of polymers reduces the degree of chaoticity [67]. Of course,
this cannot be valid in the present situation because λ = 0 in the absence
of a polymer, and therefore, at least in some range, the chaoticity must in-
crease with Wi. Consequently, we expect that the dependence of the FTLE
onWiwill have a jump corresponding to the first flow reorganization in the
intermediate regime, followed by a slower increase in the fully developed
elastic turbulent states. This result is comparable with previous numerical
results obtained in the same flow setup but where, unlike the present case,
Wi was varied keeping the ratio Wi/Re fixed [90].
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4.1 Introduction
One of the most distinguishing characteristics of turbulence is its ability to
efficiently mix transported substances. As we discussed earlier in Chap-
ter 2, particles with non-zero size and inertia do not exactly follow the flow.
In fact, due to their inertia, such particles behave differently from fluid the
particles and become inhomogeneously distributed. This happens because
particles heavier than the carrier fluid are expelled from the cores of vortical
structures, because of centrifugal forces, while the opposite is observed for
particles lighter than the carrier flow. This results in highly non-uniform
particle distributions, where particles concentrate in regions of high strain
rate and low vorticity. This process is schematically illustrated in Fig. 2.3.
Let us remark, here, that Lagrangian tracers (i.e. non-inertial particles for
which St = 0) evolve according to ẋ = u (with ∇ · u = 0) only and,
consequently, homogeneously sample the flow field over sufficiently long
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times. It is worth remarking that this phenomenon is independent of tur-
bulence and has also been observed in laminar flows, both steady and time-
dependent/chaotic ones [36, 130].

In this chapter, we will discuss the particle dynamics in elastic turbu-
lence, starting from an analysis of the statistical properties of their spatial
distribution in relation with the main dynamical features of the visco-elastic
fluid flow. We present the statistical results obtained from the same simu-
lations as illustrated in the earlier chapter (see Chapter 3) for a 2D inhomo-
geneous visco-elastic Kolmogorov flow model.

4.2 Preferential concentration: Numerical simu-
lations

To explore the dynamics of inertial particles in elastic turbulence, we have
performd some direct numerical simulations. Equation (3.1) and Eq. (3.2)
have been integrated using a pseudospectral method on a grid of side L0 =

2π with periodic boundary conditions at a resolution of 5122.
Once the flow is in statistically stationary conditions, it is seeded with an

ensemble of inertial particles, initially uniformly distributed in space and
having randomly chosen velocities. The particle dynamics, Eq. (2.3), are
integrated by means of a standard Lagrangian approach using a second-
order Runge-Kutta time-marching scheme; the velocity at the particle posi-
tion is obtained by bilinear interpolation in space. Periodic boundary con-
ditions are imposed on the positions of the particles. A rather large number
of Stokes time (τp) values have been examined, allowing exploring almost
three decades in St (for each considered flow, i.e. for each Wi). In the re-
sults reported in the following sections, the number of particles is Np = 104

(tests withNp = 105 did not show any appreciable difference in the statistics
of the single-particle observables).

Qualitatively, it is evident from Fig. 4.1, where Wi = 23.9 and St in-
creases from left to right, that due to their inertia, the particles become non-
homogeneously distributed in space. In the presence of inertia, the non-
homogeneous character of the particle distribution appears to vary non-
monotonically with St, with a maximum for intermediate values of this pa-
rameter. This is in agreement with intuitive expectations: for very small
St one should recover tracer dynamics, while for very large St the particle
dynamics should be essentially insensitive to the flow. Because in the limit
(τp → ∞) the particle velocity converges to zero (v → 0), the particles will
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Figure 4.1: Particle distributions (black dots) for St = 0.016, St = 0.657 and
St = 5.75 (from left to right) at a fixed instant of time at Wi = 23.9 and
Re = 0.664; the number of particles is Np = 104.

filter all the temporal scales of the flow. Ultimately in the large St limit,
the particles will behave ballistically, and stay homogeneously distributed
in time (if they were distributed homogeneously at the beginning).

We now discuss the particle dynamics, starting from an analysis of the
statistical properties of their spatial distribution in relation with the main
dynamical features of the visco-elastic fluid flow. We recall here the def-
inition of the Stokes number St = τp/τγ̇ as introduced in Chapter 2 (see
Eq. (2.4)). Throughout this study, τγ̇ ≈ 0.1 (computed numerically using
the definition introduced in Eq. (2.5)) and the polymer relaxation time τ is
typically larger than both τγ̇ and τp. In Fig. 4.2 both the small-scale inho-
mogeneities and the larger scale modulations of the particle distributions
are seen. A striking feature is, however, the accumulation of particles along
thin filamentary structures characterized by large polymer elongations, i.e.
large values of tr(σ) (see the upper panel of Fig. 4.2). Such highly elas-
tic filaments, propagating along the mean flow direction, are associated
with the stretching of polymers by the largest gradients of the mean ve-
locity field [171]. Similar wavy patterns also characterize the vorticity field
ζ = ∂xuy − ∂yux (see the bottom panel of Fig. 4.2), due to the coupling be-
tween the polymer dynamics and the velocity dynamics. The strong correla-
tion between the spatial organization of the particle distribution and that of
the polymer conformation tensor field is further evidenced by plotting the
latter by means of an ellipsoid representation of the local (in space) princi-
pal elongations (the central line of Fig. 4.2). Here the axes of the ellipses
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are oriented in the directions of the eigenvectors of σ and their sizes are
proportional to the corresponding eigenvalues.

In order to quantitatively assess this point, we computed the trace of the
conformation tensor tr(σ), averaged over the entire spatial domain and a
long time history, experienced by the inertial particles as a function of the
Stokes number and for different values of Wi. The curves shown in Fig.
4.3 have a non-monotonic behaviour, with a maximum of tr(σ) for St ≈ 1.
Their qualitative features are generic with respect to the value of the Weis-
senberg number. Indeed, as shown in the inset of Fig. 4.3, after rescaling
tr(σ) by the same quantity tr(σ)St=0 computed for the tracers in the same
flow (for each Wi) we obtain a good collapse of the data, indicating the
independence from Wi of this observable. These results demonstrate that
when the inertia is increased, yet not too large, meaning not larger than the
characteristic time scale in the flow, which is τγ̇ , particles have an increasing
tendency to concentrate where the polymers are highly stretched. More-
over, as is clear from the inset of the figure, independently of St, the inertial
particles have larger values of tr(σ) than fluid-flow Lagrangian tracers.

In our flow model, the particles are not directly coupled to the polymers,
therefore to understand the phenomenology described above, one has to re-
late the elastic filaments to the velocity field that transports the particles. A
hint in this regard comes from inspection of the ellipsoid-glyph visualiza-
tions of the polymer conformation tensor (see the central line of Fig. 4.2,
where the axes of the ellipses are oriented in the directions of the eigen-
vectors of σ and their sizes are proportional to the corresponding eigen-
values). In these plots, the presence of regions of recirculating motion is
evident, with elastic filamentary structures playing the role of flow separa-
trices (as is also observed in numerical simulations of visco-elastic cellular
flows [130]). A more detailed description of the formation of vortices in an
elastic turbulence flow, using different forcings, can be found in [130,171].

Moreover, as discussed earlier in Section 2.4.2, a few quantitative predic-
tions drawn from the particle equations of motion given by Eq. (2.3) capture
the main features of the behaviour of heavy inertial particles. At least in the
limit of small St (where a field approach to the description of the particle
velocity can be considered) the behaviour of the particles can be explained
in the terms of Okubo–Weiss parameter Q [128, 129]. We recall here the
definition of Q:

Q =
1

2
(ΩijΩij − SijSij). (4.1)

In this equation, Sij and Ωij respectively indicate the elements of the rate-
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Figure 4.2: Particle distributions (black dots) for St = 0.016, St = 0.657

and St = 5.75 (from left to right) at a fixed instant of time in statisti-
cally stationary conditions at Wi = 23.9 and Re = 0.664; the number of
particles is Np = 104. The pseudocolour plots in the upper and bottom
panels correspond to instantaneous snapshots of [tr(σ)](x, y) and vorticity
ζ(x, y) = ∂xuy −∂yux at the same time for which the particles are plotted. In
the central panel, the particles are plotted together with an ellipsoid-glyph
visualization of the polymer conformation tensor σ.
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Figure 4.3: Average trace of the conformation tensor tr(σ) experienced by
particles as a function of St and for different Weissenberg numbers. Here
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neous particle distributions) corresponding to different instants of time sep-
arated by an interval larger than the typical flow time scale. The inset shows
the same after rescaling tr(σ) by its value computed using Lagrangian trac-
ers tr(σ)St=0.

of-strain (S) and rate-of-rotation (Ω) tensors, and summation over repeated
indices is assumed. The particles concentrate due to the (weak) compress-
ibility of their velocity, that is, where ∇·v < 0. From Eq. (2.10) it is seen that
this condition translates into negative values of Q, meaning that the parti-
cles are expected to concentrate preferentially in strain dominated regions
(using Eq. (4.1)). Figure 4.4 shows the spatially and temporally averaged
Okubo–Weiss parameter measured at particle positions versus St and for
different Weissenberg numbers. The results support the above argument
and provide a quantitative confirmation of what was observed from Fig. 4.2.
Indeed, Q is found to be always negative, which suggests that particles are
ejected from recirculating regions to become more concentrated in regions
dominated by strain, where the polymers are highly elongated. Also in this
case, the effect is a maximum (i.e. Q is a minimum) for St ≈ 1. The effect of
varyingWi is found to be quite weak. In the left inset of Fig. 4.4 we show the
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St=0 is the root-mean-square value of the Q of the Lagrangian trac-
ers. Right inset: probability that a particle is in strain dominated region
P (Q < 0) as a function of the Stokes number.

behaviour, versus St, of the Okubo–Weiss parameter rescaled by its root-
mean-square (rms) value computed for the tracers Qrms

St=0 (since Q = 0 for
Lagrangian tracers and, equivalently, for an Eulerian fluid flow, from nu-
merical simulations). After rescaling, the results are only very weakly de-
pendent onWi. In the right inset of Fig. 4.4, the plot presents the probability
P (Q < 0) that a particle is in a strain dominated region, which is computed
as the ratio between the number of particles at positions where Q < 0 and
the total number of particles, as a function of St. This probability P (Q < 0)

generally takes values larger than realized in the limit of very small St. De-
spite its not being large, such an increase of P (Q < 0) [114, 125] indicates
that inertial particles are more concentrated than tracers in regions where
Q < 0. Finally, we observe that the effect is, again, a maximum for St ≈ 1

and weakly dependent on Wi.
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4.3 The correlation dimension

The previous analysis allowed us to see some relations between the inho-
mogeneities of the particle distribution and the flow structures. The fine
scale properties of particle clustering are, however, a more general conse-
quence of the contraction of volumes in the phase space of the dissipative
system of Eq. (2.3) [36]. In both laminar unsteady and turbulent flows, it has
been shown that the motion of inertial particles at small scales is highly non-
trivial and, at sufficiently large times, occurs on a fractal set [36,37,180]. One
should note that this is true both for particles that are heavier and lighter
than the fluid [37]. A way to quantitatively characterize the clustering is
then to measure the fractal dimension of the projection, in physical space,
of the attractor of the dynamics. When this is smaller than the dimension
of the full physical space, particle pairs are more likely separated by small
distances. Within this framework, we recall that a useful indicator is the
correlation dimension D2 [138], which is defined as

D2 = lim
r→0

d logC(r)

d log r
, (4.2)

with the correlation sum C(r) (for details, see Section 2.4.3).
The behaviour ofD2 as a function of the Stokes number for different val-

ues of Wi is presented in Fig. 4.5. It is seen that the correlation dimension
decreases from a value, which is realized in the limit of very small St, close
toD2 = 2 (corresponding to tracers homogeneously filling the whole spatial
domain) to attain a minimum value of D2 ≈ 1 for St ≈ 1. We remark that
for very low particle inertia, the decrease of D2 is quadratic in St (see the
inset of Fig. 4.5), as typically happens in correlated flows [100]. For even
larger values of the Stokes number, D2 grows to approach again the space
filling value of 2 (expected for particles with large inertia, which are insen-
sitive to the flow) in the limit of very large St. We find that the correlation
dimension is weakly dependent on the Weissenberg number, for the val-
ues of Wi explored here. The maximum difference, for fixed St, is found
to not exceed 0.15. We can therefore conclude that small-scale clustering is
a generic and quite effective phenomenon in elastic turbulence flows, pro-
ducing, at its maximum, particle accumulation on quasi one-dimensional
fractal sets. Our results are qualitatively similar to previous ones obtained
in simulations of 2D smooth random flows [181].
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4.4 The Kaplan–Yorke dimension DKL

We further examined the small-scale clustering behaviour by considering
the quantification of the fractal dimension of the particle dynamics’ at-
tractor, which is measured by the Kaplan–Yorke dimension. In the con-
text of particle laden flows, such a measurement has been considered for
smooth chaotic flows [36, 181] and for 3D turbulent flows [39, 115] (de-
tails can be found in Chapter 2). The Kaplan–Yorke dimension can be de-
fined as the fractional dimension in which a cluster of initial conditions
will neither expand nor contract as it evolves in time. To measure the
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Lyapunov spectrum numerically in a d-dimensional flow, which is needed
to estimate the Kaplan–Yorke dimension, we follow along each particle
trajectory the time evolution of 2 × d infinitesimal displacements in the
position–velocity phase space obtained by linearizing the particle dynam-
ics (Eq. (2.3)). The infinitesimal 2d-volume V2d, defined by 2d linearly in-
dependent tangent vectors, grows in time at an exponential rate

∑2d
i=1 λi =

limt→∞(1/t) log [V2d(t)/V2d(0)], where λi are the Lyapunov exponents. In or-
der to prevent numerical errors from accumulating and the length of the
infinitesimal separations from increasing rapidly, their calculation indeed
requires the adoption of frequent renormalizations in order to avoid numer-
ical blow-ups. This is done by means of a Gram–Schmidt procedure [147].
A convenient and widely used algorithm for the evaluation of Lyapunov ex-
ponents was proposed by Benettin et al. [182], see also the book by Crisanti
et al. [147] for a precise description of this method.

Fig. 4.6(a) shows the behaviour of the first two Lyapunov exponents
(λ1, λ2) after normalizing by τγ̇ as a function of the Stokes number for dif-
ferent values of the Weissenberg number Wi. The other two normalized
Lyapunov exponents (λ3, λ4) are shown in Fig. 4.6(b). Before discussing
the Kaplan–Yorke dimension measured using the Lyapunov spectrum, we
would like to provide some of the observations about the λi that are sup-
ported by our data.

• For the range of Stokes numbers studied here, we observeλ3 ∼ λ4 scale
as −1/St, indicating the relaxation of particle velocities to the fluid
(see Fig. 4.6(b)). It appears as if the corresponding eigendirections
align with the velocity.

• The other two directions (λ1, λ2) would account for the time evolu-
tion of the volume in physical space (in the small Stokes limit), which
means the first two exponents (λ1 and λ2) rule the time evolution of in-
finitesimal elements in the physical space. Our numerical data shows
that the sum of λ1 + λ2 is not very far from zero in the small St limit,
shown in the inset of Fig. 4.6(a).

• As in the smallSt limit the component (λ1+λ2) of the sum of Lyapunov
exponents (λ1 + λ2 + λ3 + λ4) represents the volume in physical space
(shown above), it is also reasonable to say that one of the Lyapunov
exponents λ1 is related to one direction in physical space. Roughly
speaking, the largest Lyapunov exponent λ1 estimates the chaotic sep-
aration of particle trajectories in physical space.
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– As emphasized in the inset of Fig. 4.7, for St < 0.1, λ1 is not
very different than the Lyapunov exponent of the fluid tracers
(St = 0).

– If St → 1, we have a maximum of clustering, and if we consider
separation in the whole space it’s less chaotic (because of cluster-
ing, the particles do not go everywhere), hence for 0.1 < St < 1,
we observe that the Lyapunov exponent of the fluid tracers be-
comes larger than λ1.

It is worth commenting that this behaviour of the Lyapunov exponents is
just an observation supported by our data, which still awaits a full theoreti-
cal understanding. The same kind of behaviour for the Lyapunov exponents
of inertial particles has already been seen in 3D homogeneous and isotropic
turbulent flows [115].

The fractal dimension of this attractor is estimated by means of the
Kaplan–Yorke dimension [145–147]. We recall the definition of DKY in-
troduced in Section 2.4.3: DKY = K +

∑K
i=1 λi

|λK+1|
, where the λi are the Lya-

punov exponents and K is the largest index such that
∑K

i=1 λi ≥ 0, once the
Lyapunov exponents λi are ranked in decreasing order. The k-dimensional
hyper-volumes should either increase or remain constant, while the K + 1-
dimensional ones should contract to zero (see Section 2.4.3 for a detailed
discussion). Note that this formula (Eq. (2.14)) is a simple linear interpola-
tion between K and K + 1. Our results are analogous to those in [36, 183]
and are shown in Fig. 4.8. The minimum at St ≈ 1 corresponds to maxi-
mal clustering. For Stokes numbers St > 4, the fractal dimension becomes
greater than d = 2, indicating that the spatial distribution of the particles is
no longer fractal.

Another important observation in these results is that the Kaplan–Yorke
dimension DKY at low Stokes numbers behaves as DKY ∼ a − bSt2, a ≈ 2.
Such a quadratic behaviour for vanishingly small Stokes number has been
obtained theoretically by Balkovsky et al. [113] under the approximation of
advection by a synthetic compressible flow. The correlation dimension D2,
studied in Section 4.3, has a qualitatively similar behaviour in the Stokes
number to that of DKY , but they have, however, a different amplitude
(D2 ≤ DKY ). A plausible explanation for their quantitative difference is that
they are different measurements of different fractal sets: D2 is for a spatial
set of particle positions in physical space, theDKY is for the dimension of the
particle dynamical system attractor in the phase space. Several theoretical
arguments and numerical results claims that the Kaplan–Yorke dimension
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is close to other types of fractal dimension, such as the capacity dimension
(DC), the information dimension (DI), and the correlation dimension (D2),
for typical strange attractors [138,184], so that there is a hierarchy of fractal
dimensions (D2 ≤ DI ≤ DC ≈ DKY ) [181]. Grassberger and Procaccia [138]
have also argued that there is a direct connection in the form of an inequal-
ity (D2 ≤ DKY ) between the correlation dimension and the Kaplan–Yorke
dimension. This inequality is consistent with our numerical results.

4.5 The segregation indicator
In Section 4.2 and Section 4.3 we found that in 2D elastic turbulent flows,
particles with density larger than that of the advecting fluid cluster and
preferentially concentrate in different regions of the flow, due to the differ-
ent responses of heavy particles to turbulent fluctuations. When the flow is
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Figure 4.9: Particle distributions (blue dots) for St = 0.468 and (red dots)
St = 0.936 at a fixed instant of time in statistically stationary conditions at
Wi = 19.1 and Re = 0.795; the number of particles is Np = 104.

seeded with particles of different inertia, the particles, depending on their
inertia, concentrate in different flow structures. This leads to a segregation
of the different particle types, which intuitively is characterized by some
segregation length scale. An example of heavy inertial particle segregation
is shown in Fig. 4.9, where snapshots of particle distributions with different
inertias are depicted. From the qualitative point of view, the two particle
distributions do not look very different at large scales, but have significant
differences at smaller scales (as shown in the zoom of the main plot). Par-
ticle segregation in visco-elastic fluids has attracted much attention in the
context of biomedical and biotechnology applications, where the separa-
tion of organic particles is very important for the early detection of diseases
and their diagnosis [185–187]. Also, in other applications like mixing, heat
transfer, hydraulic fracturing, droplet generation and sorting, the character-
ization of inertial particle segregation plays an important role.

The segregation length of the particle distributions depends on both the
size and mass densities (ρf ≪ ρp (heavy inertial particles) or ρ ≫ ρp (light
inertial particles)) of the corresponding inertial particles. However, in the
present study we consider only heavy inertial particles (i.e. the density ρp
is fixed), therefore the segregation length will depend only on the parti-
cle Stokes number St. There are some classical and natural observables to
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quantify the particle segregation, such as, e.g. the minimal distance between
different types of particles, the density correlation function, mixed pair cor-
relation function and mixed radial distribution function [100,188]. The dis-
advantages of these methods is the absence of robustness, as the results are
highly dependent on the particle number densities and the quantitative ef-
fect of the coarse-graining scale (to define the Eulerian density fields) on
the estimates. Therefore, the description of robust observables to measure
segregation is definitely required.

This approach to segregation length is inspired by Kolmogorov’s dis-
tance between two distributions [189] and is based on particle densities
coarse-grained over a scale r, which can be understood as the resolution
of a magnifying lens used to look at the distribution of particles. To quan-
tify the segregation of the particles, we partitioned the whole area L2

0 into
M(r) = (L0/r) boxes. The segregation indicator is defined as follows [37]:

SSt1,St2(r) =
1

NpSt1
+NpSt2

M(r)∑
i=1

∣∣ni
(St1) − ni

(St2)
∣∣ . (4.3)

The subscriptsSt1 andSt2 represent the particle parameter, i.e. its Stokes
number. The total number of particles of type Stj is given by NpStj

, while
n
(Stj)
i is the number of particles of a given type j contained in each box i.

In the following discussion, the case of St1 = St2 should be considered
as taking independent realizations of the particle distribution so that SSt1,St1

gives the minimum detectable segregation degree. Otherwise, computed
on the same realization, such an indicator would give SSt1,St1 ≡ 0. The
segregation indicator SSt1,St2(r) is a meaningful indicator only if it does not
depend too severely on the total number of particles Np, as shown in [37].

In Fig. 4.10 we plot SSt1,St2(r) for distributions composed of heavy iner-
tial particles with St1 = 0.016 and heavy inertial particles with different St2.
The segregation indicator SSt1,St2(r) has both upper and lower bounds, and
can vary in the range [0, 1]. We first discuss the limiting cases.

• For small enough scales, i.e. r ≪ 1/ρ1/2, where r is the mean dis-
tance between particles of any type with the particle number density
ρ = Np/L

2
0, SSt1,St2 = 1. This relation holds for any realization and

means that two particle distributions are not overlapping when looked
at with a resolution of r. This limiting case is clearly observed in Fig.
4.10.

• In contrast, when the scale r is of the order the size of the box L0,
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the number of particles of two types looks the same, globally, i.e.
limr→L0 SSt1,St2 = 0.

The advantage offered by the segregation indicator is that it allows us to
extract a segregation scale rseg. This is done by fixing an arbitrary threshold
value for S; we employed SSt1,St2(rseg) = 0.5 [37]. With this definition we
extract the value of rseg for truly segregated pairs of two different classes of
heavy inertial particles, shown in the inset of Fig. 4.10. From the main plot
of Fig. 4.10 we observe that SSt1,St2 increases with the difference between the
two considered Stokes numbers, but rseg ≈ rseg,d (see dashed black line) for
St2 < 0.08 (see the inset of Fig. 4.10), where rseg,d is the mean inter-particle
distance, computed from two different random distributions of the particles.
This means that heavy inertial particles withSt2 < 0.08 andSt1 = 0.016 visit
the same locations in the flow, irrespective of their inertia. Furthermore, a
noticeable increase of rseg is observed (Fig. 4.10, inset), and the maximal
segregation length is obtained for heavy inertial particles of St = 1, where
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Figure 4.11: Segregation distance, rseg between pairs of heavy inertial parti-
cle distributions with different Stokes numbers. The colour scale gives the
intensity of rseg. The simulations correspond to Wi = 24.9 and Re = 0.619.

rseg ≈ 0.7L0. This is consistent with our expectations, because up to here,
one type of particle (St1) is quite close to being a Lagrangian tracer and
from the previous analysis of D2 and DKY we know particles are highly
concentrated for St2 ≈ 1.

We have further extended the study of segregation to several values of
St1. In Fig. 4.11 we show the value of the segregation scale rseg by fixing
St1 for one type of heavy inertial particle and varying St2 for another type
of heavy inertial particle. The emerging picture is as follows. Particle pairs
with St1 ≈ St2 close to the diagonal have a segregation length close to the
mean inter-particle distance, i.e. rseg ≈ rseg,d, and this shows that the parti-
cles are poorly segregated. But as soon as the difference between the Stokes
numbers becomes significant, i.e. outside the diagonal regions, the segre-
gation length increases, i.e. (rseg > rseg,d). These results confirm the one
shown in Fig. 4.10. The maximum segregation is observed when one of the
two (either St1 or St2) is very small and the other is of the orderO(1), which
means that the characteristic time scale of the flow τγ̇ is the best candidate
for generating strong correlations between particle positions and flow struc-
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ture, and consequently segregation.

4.6 Summary
In this chapter, we have analysed the small-scale properties of particle ag-
gregation in an inhomogeneous 2D elastic turbulent flow. We have provided
in detail the statistics of the flow and polymer regions explored by the parti-
cles. A strong correlation between the particle distribution and the polymer
(square) elongation field was detected, with large particle concentrations
occurring along thin highly elastic filamentary structures. Since the inter-
action between the polymers and the particles is not direct in the adopted
model dynamics, but rather mediated by the fluid flow, we found that the
well-known mechanism of vortex ejection is here at play and that, for the
polymer statistics, corresponds to preferential particle concentration in the
region where the polymers are highly stretched.

Also, we have found the presence of structures in the inertial particle
distribution, and the structures are related to the presence of the typical
timescale of our flow τγ̇ . We have found that the geometry of inertial par-
ticle clusters in a developed elastic turbulence regime is controlled by the
effective dissipative dynamics of the particle motion at small scales. The
quantification of small-scale clustering is provided using the well-known
correlation dimension D2 and the Kaplan–Yorke dimension DKY . Further,
we introduced an indicator able to quantify the segregation degree and to al-
low the definition of a segregation length scale rseg between different classes
of particles.

The maximum small-scale clustering (in terms of the correlation dimen-
sion, Kaplan–Yorke dimension and segregation length) for heavy inertial
particles is obtained for a Stokes number of around unity.
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5.1 Introduction

In this chapter we investigate the large-scale properties of the spatial distri-
bution of the particles in terms of the averaged profiles. It has been observed
that large-scale inhomogeneities cannot be explained directly in terms of the
averaged profiles: in fact, they are a manifestation of turbophoresis [151].
In a nutshell, this corresponds to the migration of inertial particles from re-
gions of high eddy diffusivity to regions of low eddy diffusivity that occurs
in turbulent flows with a non-homogeneous mean flow. Turbophoresis can
be understood by analogy with thermophoresis [190–192]. Thermophore-
sis is the motion of Brownian particles governed by gradients in tempera-
ture [193], well understood within the framework of local thermodynamic
equilibrium in statistical mechanics [192].

Turbophoresis has been mainly studied in wall-bounded flows, because
of their relevance for industrial and environmental applications related to
particle deposition [32,151,156]. Interestingly, using the three-dimensional
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(3D) Newtonian turbulent Kolmogorov flow it was recently shown that tur-
bophoretic segregation is independent of the presence of walls [34] (this was
also confirmed in simulations employing a random inhomogeneous forc-
ing [35]). Also in that case particles accumulate in regions of minimum tur-
bulent diffusivity, but the spatial distribution of the latter with respect to the
mean flow differs from the one found in geometrically confined flows [34].
All these works demonstrate that the regions of particle accumulation at
large scales depend on the details of the flow.

This chapter mainly focusses on the effect of the spatial non-
homogeneity of the elastic turbulent flow on the average local concentration
of the particles. For the analysis of the numerical results, we took a statistical
approach aimed at characterizing the mean particle concentration profiles,
and at assessing their correlation with the mean turbulent-like fluctuations
of the flow field, as a function of the particle inertia and for several values
of the polymer elasticity.

5.2 Particle distribution and flow structures
To study the large-scale properties of the spatial distribution of the particles
and to analyse how this is related to the features of the flow, we introduce
the particle number density field ρ(x, t) and focus on the profiles along the
direction of inhomogeneity y of both ρ and flow statistics.

The mean density profiles ρ(y) along the direction of inhomogeneity of
the flow correspond to averaging the particle number density fields (ρ(x, t))
along the mean-flow direction x and time:

⟨ρ⟩(y) = 1

L0

1

T

∫ T

0

∫ L0

0

ρ(x, t)dxdt. (5.1)

Similarly to what is done for ρ, things are computed the same for the
other considered quantities. Note that this type of averaging is related to
the global one introduced in Chapter 3, see Eq. (3.34) by

(...) =
1

L0

∫ L0

0

⟨(...)⟩dy.

Figure 5.1 presents the profiles of ρ (panel (a)) for three different Stokes
numbers, as well as those of several flow related quantities (panels (b) and
(c)), in a state of elastic turbulence (with Wi = 23.9 and Re = 0.664). All
profiles are normalized by their global average value to stress the devia-
tions from it. We remark that ⟨uy⟩(y) = 0 with very good accuracy in the
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numerics, as expected from symmetry considerations. We also note that
the results shown were obtained by further averaging them over one forc-
ing wavelength ℓ = LL0 = π/2. Comparing panels (a) and (b) of Fig. 5.1, we
see that, consistently with the previous analysis (see Section 4.2) for the av-
erage Okubo–Weiss parameterQ, the particles are most concentrated where
the longitudinally averaged profile of the Okubo–Weiss parameter ⟨Q⟩(y) is
a minimum. Note that here ⟨Q⟩(y) is normalized by Qrms

St=0 due to the fact
that QSt=0 = 0. Nevertheless, in such regions of minimal ⟨Q⟩(y), the pro-
file of the trace of the conformation tensor ⟨tr(σ)⟩(y) is now found to be
a minimum too. This apparently contradicts the observation made in Sec-
tion 4.2 that particles aggregate in regions of highly elongated polymers.
This contradiction is resolved by taking into consideration the fact that the
profiles result from a spatial averaging procedure. Indeed, all the informa-
tion about the spatial structure along the longitudinal direction is lost in
them, as they are functions of the transversal direction only. This partic-
ularly applies to the information about the extent of the vortices along x,
from which the particles are expelled, and about the orientation, with re-
spect to x, of the separatrices, by which the particles tend to be attracted
and that collocate with high polymer elongation regions. While the profile
⟨Q⟩(y) receives contributions only from the transverse fluctuating compo-
nent of the velocity field, indeed ⟨Q⟩(y) = −∂2y⟨u′2y ⟩(y) (with prime indi-
cating the fluctuation), the trace of the conformation tensor is dominated
by the contribution of the mean flow, ⟨ux⟩(y), to polymer stretching and
⟨tr(σ)⟩(y)/tr(σ) ≃ ⟨σ11⟩(y)/σ11.
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Figure 5.1: (a) Particle number density profiles ⟨ρ⟩(y)/ρ, normalized by the
global mean uniform density (ρ = 1/L0), for three different Stokes numbers.
(b) Normalized profile of the trace of the conformation tensor ⟨(σ)⟩(y)/tr(σ)
(blue dashed line, left axis) and of Okubo–Weiss parameter ⟨Q⟩(y)/Qrms

St=0

(red solid line, right axis). (c) Normalized profiles of the longitudinal veloc-
ity ⟨ux⟩(y)/ux, where ux = U , (dashed blue line, left axis) and of the fluc-
tuations of the shear-normal kinetic energy ⟨u′2y ⟩(y)/u′2y (red solid line, right
axis) of the fluid flow. The plots in (a–c) refer to statistically stationary condi-
tions for Wi = 23.9, Re = 0.664. All the profiles were further averaged over
the wavelength defining the periodicity of the mean flow ℓ = LL0 = π/2.
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5.3 Elastically driven turbophoresis

From the above discussion it should be clear that the large-scale inhomo-
geneities of ρ cannot be explained directly in terms of the averaged profiles
ofσ oru. In fact, they are a manifestation of the turbophoresis phenomenon
related to the fluctuation profiles of the velocity (a second order statistical
quantity).

As in the previous section, we found modulations of the density profiles
that vary sinusoidally, with a periodicity twice that of the mean flow. We
tried to fit these density profiles with a sinusoidal fitting function Eq. (5.2),
which has been recently suggested by De Lillo and coworkers [34], Fig. 5.2
clearly shows that a sinusoidal function can closely fit the averaged density
profiles and the periodicity seems to be well captured.

f(y) = (1 + a(St)cos(
2y

L
)) (5.2)

Here, a(St) is a free parameter, which accounts for the dependence on the
particle inertia.

5.3.1 Theoretical modelling of turbophoresis

In order to make our analysis more quantitative and to understand the cor-
relation between the regions of high concentration and the mean flow, let us
start by recalling the theoretical predictions for the dynamics of inertial par-
ticles in turbulence. The theoretical understanding of turbophoresis relies
on statistical approaches. The models available in the literature are typically
derived either from the Fokker–Planck equation obeyed by the probability
density to find a particle at position x with velocity v at time t (as in [194]),
or on the application of a decomposition into mean and fluctuating com-
ponents, in the spirit of Reynolds averaging, in fluid momentum and par-
ticle mass conservation equations (as in [151]). Here we follow the second
approach which, in spite of its more heuristic character, is perhaps more
physically transparent. After the appropriate correspondence is made, both
models provide the same results in what concerns the present discussion.
We then write g(x, t) = ⟨g⟩(y) + g′(x, t) for each field quantity of interest
g(x, t), where the prime indicates the fluctuation. Defining as J = ρv the
flux associated with the number density of particles, we have

⟨Jy⟩(y) = ⟨ρ⟩(y)⟨vy⟩(y) + ⟨ρ′v′y⟩(y) (5.3)
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Figure 5.2: Comparison of normalized particle number density profiles
⟨ρ⟩(y)/ρ (red points) with fitting function Eq. (5.2) (black solid line) for
Wi = 23.9, Re = 0.664 and different values of St (increasing from top to
bottom). The values of the a obtained from the best fit are a = 0.024 (a),
a = 0.087 (b), a = 0.104 (c). All the particle density profiles were further
averaged over the wavelength defining the periodicity of the mean flow
ℓ = LL0 = π/2.
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Figure 5.3: Comparison of normalized particle number density profiles
⟨ρ⟩(y)/ρ (red points) with the normalized profiles of transversal velocity
fluctuations ⟨u′2y ⟩−α(y)/⟨u′2y ⟩−α(y) (black solid line) for Wi = 23.9, Re =

0.664 and different values of St (increasing from top to bottom). The val-
ues of the exponents obtained from the best fit are α = 0.229 (a), α = 0.839

(b), α = 1 (c). The inset in (a) is a zoom around ⟨ρ⟩(y)/ρ = 1. All the profiles
were further averaged over the wavelength defining the periodicity of the
mean flow ℓ = LL0 = π/2.
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for its component in the direction of inhomogeneity y. As is often done
[151, 153], we adopt a gradient diffusion model for the second term on the
right-hand side of Eq. (5.3):

⟨ρ′v′y⟩(y) = −Dp
d

dy
⟨ρ⟩(y), (5.4)

where Dp is the diffusion coefficient of the inertial particles. This is typ-
ically assumed to be close to that of fluid tracers (i.e. the eddy diffusion
coefficient)Df , which is completely justified only in the limit of vanishingly
small Stokes number. Estimating Df dimensionally, one has

Dp ≈ Df ≈ τc⟨u′2y ⟩(y), (5.5)

where τc is a correlation time associated with the fluid flow. We expect it
to be proportional to τγ̇ (Eq. (2.5)), so that τγ̇/τc = a with a some constant
of order 1. Still in the limit of τp → 0, using v ≃ u − τp(∂tu + u ·∇u), the
turbophoretic velocity in Eq. (5.3) can be expressed as

⟨vy⟩(y) = −τp
d

dy
⟨u′2y ⟩(y). (5.6)

Inserting Eqs (5.4—5.6) into Eq. (5.3), for the fluxless steady state (i.e.
⟨Jy⟩(y) = 0), we finally obtain

⟨ρ⟩(y) ∼ ⟨u′2y ⟩−α(y), (5.7)

giving the relation between the inhomogeneities of the particle distribution
and those of the fluid velocity fluctuations. In this expression, the exponent
α = τp/τc = aSt controls the amplitude and shape of the spatial modulation
of the particle density transversal profile.

The numerical results, shown in Fig. 5.3, are in quite good agreement
with the expectation from Eq. (5.7), providing quantitative support to the
claim that the large-scale inhomogeneities of the particle distribution are
controlled by a turbophoretic mechanism. The small asymmetries observ-
able in ⟨ρ⟩(y) are due to the very slow convergence of the particle statistics.
As in Fig. 5.1, the results shown here were obtained by further averaging
the profiles over one forcing wavelength. The exponent α, measured by a
least squares fitting procedure, is found to increase with the Stokes number
and to approach α ≃ 1 for St ≈ 1 or larger (Fig. 5.4). The growth of α
with St means that the amplitude of the large-scale modulations of ⟨ρ⟩(y),
and hence the importance of turbophoresis, grows with increasing particle
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Figure 5.4: Exponent α as a function of St and for different Weissenberg
numbers. The black dashed line represents the linear prediction in the limit
of small St. The black solid line represents the modified non-linear predic-
tion; a = 4.4 is obtained from the best fit.

inertia. For the smallest values of St, α is found to linearly grow with St,
with a value of the fitted proportionality constant a = 4.4 (see the dashed
black line in Fig. 5.4). Hence, in this range of small particle inertia, the nu-
merical results are commensurate with the model prediction α ∼ St valid
in the limit of vanishingly small St. For larger St, the data are no longer
described by this linear relation, with α tending to saturate to 1. To account
for this behaviour, we follow [151] and [195], where it was suggested that
the shear-normal particle kinetic energy is different from the fluid one, be-
ing proportional to it by a constant κ that depends on St. The turbophoretic
velocity in Eq. (5.6) should then be modified as follows:

⟨vy⟩(y) = −κτp
d

dy
⟨u′2y ⟩(y), (5.8)

where κ = 1/(1+ τp/τc) [151,194]. Reasoning as before, we obtain a fluxless
steady solution like the one in Eq. (5.7) but with

α =
aSt

1 + aSt
. (5.9)

Note that, from this, α ≃ aSt for St ≃ 0 and α → 1 for very large St.
This modified dependence on the Stokes number captures quite well the
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behaviour of the exponentα in a considerably broader range ofSt extending
to unity and beyond, as shown in Fig. 5.4 (solid black line, with a = 4.4 as
for the linear behaviour). For even larger values of St, we were unable to
obtain particle statistics that converged satisfactorily. We note that these
results depend weakly on Wi. To quantitatively assess the overall intensity
of the turbophoresis, as in [34], we measure the rms relative deviation of the
mean particle density profile ⟨ρ⟩(y) from the uniform distribution ρ = 1/L0,
defined as

χ ≡
σ⟨ρ⟩(y)
ρ

=

[
1

L0

∫ L0

0

(
1− ⟨ρ⟩(y)

ρ

)2

dy

] 1
2

, (5.10)

where σ⟨ρ⟩(y) is the standard deviation of ⟨ρ⟩(y). The global parameter χ as
a function of St for different Wi is presented in Fig. 5.5. Consistently with
the behaviour of α, we find that χ grows with St and eventually reaches an
approximately constant value for St ≥ 1. In the limit as St→ ∞, we would
expect χ to be a decreasing function of St, due to the fact that, practically,
very heavy particles should not interact with the flow field. However, this
point could not be verified within this study, due to the difficulty of attain-
ing density profiles that converged well for large enough Stokes numbers.
The approximately constant behaviour of χ for St ≥ 1 appears nevertheless
reasonable from its definition, considering that in the same range of Stokes
numbers the exponent α characterizing ⟨ρ⟩(y) is at a plateau value.

Finally, we observe that χ displays some dependence on Wi, which be-
comes more evident as St increases. Indeed, as seen from Fig. 5.5, χ de-
creases with increasing Wi, suggesting that the large-scale accumulation
of particles (quantified by χ) decreases with increasing polymer elasticity.
This trend can be possibly connected to the changes in ⟨u′2y ⟩(y) at growing
Wi, which correspond to an increase of its mean accompanied by a weak
reduction of its peak-to-peak excursions. Indeed, if we focus on the region
St = O(1) where the effect of varyingWi is most important, and we replace
⟨ρ⟩(y) with ⟨u′2y ⟩−1(y) (note that α ≃ 1 for St = O(1)) in the expression for
χ, we then should have a decrease of its plateau value with Wi. As shown
in the inset of Fig. 5.5, the computation of χ⟨u′2

y ⟩−1 , i.e. the one based on
⟨u′2y ⟩−1(y), confirms this expectation.

5.4 Summary
In this chapter we have shown the results for the large-scale properties of
the particle aggregation obtained from numerical simulations of inertial
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Figure 5.5: Root-mean-square (rms) relative deviation χ of ⟨ρ⟩ from the
mean uniform distribution ρ as a function of St and for different Weis-
senberg numbers. Here, temporal averages were performed over 80 inde-
pendent realizations corresponding to different instants of time separated
by an interval larger than the typical flow time scale. The inset shows the
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y ⟩−1/⟨u′2y ⟩−1, as a function of Wi.

(heavy) particle dynamics in a two-dimensional inhomogeneous viscoelas-
tic Kolmogorov flow. Our findings reveal that at larger scales, the particle
distribution is strongly related to the mean turbulent-like structures of the
flow.

It has been found that the large-scale particle distribution has a maxi-
mum in correspondence with the minima of both the averaged parameter
⟨Q⟩(y) and ⟨tr(σ)⟩(y), in sharp contrast with the analogous finding for the
location of the maximum particle accumulation at small scale found from
instantaneous imaging.

This large-scale modulation of the particle distribution along the shear
direction is caused by the periodic distribution of fluctuations of the shear-
normal kinetic energy (averaged along the stream direction x and in time
t).

Thus, the large-scale inhomogeneity of the spatial distribution of the par-
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ticles is interpreted as the result of a turbophoretic mechanism: the accu-
mulation of particles at minima of turbulent diffusivity. Remarkably, this
phenomenon can then also occur in elastic turbulence, due to the signifi-
cance of the fluctuations in the fluid velocity. Moreover, we have provided
a theoretical model that allows quantitatively explaining the observed in-
homogeneous mean particle distribution at large scales, for a broad range
of values of St.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The present study has aimed at investigating the yet unexplored situation
of the dispersion of inertial particles in visco-elastic fluids under conditions
of elastic turbulence [21, 90], i.e. of vanishing Reynolds number and high
Weissenberg numbers, using numerical and statistical tools.

In order to obtain elastic turbulent flows, we considered a bi-
dimensional flow with periodic boundary conditions. The chosen setup,
corresponding to an Oldroyd-B fluid forced by a sinusoidal shear (Kol-
mogorov) flow, has proven useful to reproduce the main phenomenological
features of elastic turbulence.

In the context of the dynamics of individual particles, Lagrangian statis-
tics have been identified as the key quantities for understanding the under-
lying coupling with the carrier flow. A detailed (qualitative and quantita-
tive) analysis of the effect of the particle inertia on the behaviour of the dif-
ferent clustering measures has been addressed, showing that particles with
both small and large particle Stokes numbers tend to follow an uniform dis-
tribution filling the full 2D space. On the other hand, particles with Stokes
numbers around unity tend to preferentially accumulate in certain regions
of the flow field. We found a strong correlation between the instantaneous
locations of the particles and the polymer elongation field, with large par-
ticle concentrations occurring along thin highly stretched polymeric struc-
tures. Since the interaction between the polymers and particles is not direct
in the adopted models, but rather mediated by the fluid flow, it has been
possible to interpret such a phenomenon in terms of the preferential con-
centration of particles outside elliptical regions (vortices, in short), in strain
dominated regions. It ends up being that the strain dominant regions coin-
cide with those wherein the polymers are effectively stretched.
We have further analysed the small scale behaviour of the system, in terms
of the fractal dimension of the particle dynamics attractor. Firstly, the geo-
metrical features in physical space of small-scale clustering were addressed,
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measuring the correlation dimension of the fractal sets in which the parti-
cles accumulate, i.e. the scaling exponent of the probability density to find
particle pairs at small distances. The analysis revealed particularly effec-
tive clustering for Stokes numbers of order unity, for which the correlation
dimension decreases to approximately 1, pointing to the aggregation of par-
ticles on almost one-dimensional structures (filaments). We have also used
another tool commonly used for dissipative dynamical systems, namely, the
Kaplan–Yorke dimension, to perform a detailed characterization of the par-
ticle distribution in position–velocity phase space. The detailed analysis has
shown that for small values of St, the first two Lyapunov exponents control
the exponential growth rate of physical (2D) volumes and the last two Lya-
punov exponents are close to λ3 ≈ λ4 ∼ −1/τp, thus quantifying the rate
of adjustment of the Lagrangian velocity to the Eulerian one. All of these
results are found to be in qualitative agreement with the ones observed in
smooth random flows, and in 3D turbulent flows [36, 39, 115, 181]. All the
considered statistical indicators display only rather weak dependences on
the Weissenberg number in the range of parameters we have explored.
At large scales, a turbophoretic mechanism associated with the gradients
of the intensity of the turbulence, which can also be expressed in terms
of a spatially dependent eddy diffusivity, was found to be responsible for
the segregation, as in Newtonian fluids at high Reynolds numbers [32–35].
To describe the kind of large-scale inhomogeneity which characterizes the
distributions of the particles we, therefore, focused on the density profiles
of the particle distribution along the direction of the inhomogeneity of the
flow. Furthermore, in the considered inhomogeneous elastic turbulence set-
ting, the spatial distribution of the particles has maxima that correspond
with the minima of the (elastic) turbulence velocity fluctuations. A detailed
analysis allowed us to measure the exponent characterizing the relation be-
tween the mean particle density profile and the turbulence intensity within
the direction transversal to the mean flow. In a way different from the case
of the 3D Newtonian turbulent Kolmogorov flow, this exponent was found
to depend on the particle inertia, i.e. on the Stokes number. Such a depen-
dence turned out to be non-linear in St and could be explained by adapting
previous theoretical approaches [151, 194] to construct a predictive model
by means of a Reynolds averaging procedure. A similar non-linear depen-
dence is also seen in the overall intensity of the turbophoresis phenomenon,
quantified by using the global parameter χ accounting for the rms deviation
of the particle distribution, relative to the uniform one. This quantity shows
a decreasing dependence on the Weissenberg number, suggesting a reduc-
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tion of the segregation for larger values of Wi. This behaviour is possibly
associated with the progressively (with growingWi) homogeneous charac-
ter of the transversal fluid velocity fluctuations.

6.2 Perspectives

We have already mentioned some of the drawbacks of the Oldroyd-B model
in Chapter 1. One of them has been regarded as particularly unphysical: the
lack of a limit to the maximum accessible elongation. Indeed, the Oldroyd-
B model is only valid in the limit of small elongations, but one would like to
use it even for the dynamical states where extreme stretching ought to take
place. To overcome this limitation, it has been proposed to use a non-linear
restoring force that imposes a maximal polymer elongation and is able to
reproduce some more realistic features of polymer solutions (such as finite
extensional viscosity and shear thinning) that the Oldroyd-B model does
not take into account. This is called the FENE-P model.
Kolmogorov flow has been shown to be useful for assessing some of the
properties of elastic turbulence, and it can be used again in the future, in
combination with other rheological models, such as FENE-P, to further in-
vestigate the Eulerian and Lagrangian properties of elastic turbulence, and
in particular to address still currently open issues concerning scaling inter-
mittent properties of this peculiar flow state. To achieve this, we have, as a
first step, started some simulations by implementing the FENE-P model in
our two-dimensional pseudo-spectral code. Some interesting perspectives
have emerged, which are still under investigation. Simulations have been
performed for a wide range of Weissenberg numbers to obtain a database
that, it is hoped, will shed light on the dependence of flow instability,
turbulent-like structures, and mixing properties on the additional param-
eter introduced by employing the FENE-P model, which is Lmax, the max-
imum extension of the polymer molecule. The main question to be ad-
dressed numerically is how does the instability diagram of a polymer so-
lution depend on Lmax, and how does it differ significantly from that of
the Oldroyd-B model (where Lmax → ∞). The above considerations raise
the question of whether the power-law form of the kinetic energy spectrum
is universal for the changes in the mechanical properties of the polymer
model. In particular, we will focus on the spectra of the polymer energy
and on the modification of the dissipation scale through the presence of ad-
ditional flow parameter Lmax.
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Moreover, it is known that linear elasticity models, such as Oldroyd-B, can
underestimate the experimentally measured elastic stresses [196]. Further-
more, the effect of the latter on the particle dynamics might not be unim-
portant. In particular, rheological models accounting for shear-dependent
viscosity effects (such as FENE models) could bring in additional dynamical
couplings between the flow and the particles [40]. One could indeed expect
that, e.g. in a shear-thinning fluid, the varying effective viscosity would re-
duce the drag force experienced by the particles in the regions of the flow
where the polymers are maximally stretched, and this might in turn affect
the particle unmixing properties. This is a subject that deserves future in-
vestigation in order to assess to what extent the phenomenology described
in this thesis would apply.
In a broader context, apart from adopting the FENE-P model, this study
could be extended in other directions as well. In this thesis we have only in-
vestigated the case of impurities which are much heavier than the fluid, but
it would be interesting to see what happens when the mass density contrast
is changed, a condition where the added mass force has a role. In a recent
paper, De Lillo, Boffetta and Musacchio [39] investigated the effects of poly-
mer additives on small-scale clustering of heavy and light inertial particles
in homogeneous isotropic turbulence. They have shown that depending on
the particle and flow parameters (namely the particle relaxation time, fluid
particle density ratio and the polymer relaxation time), the clustering of the
polymer can either increase or decrease. Through the effects of the polymers
on the particles, the Lyapunov exponents for light particles are observed to
behave qualitatively differently from those for heavy particles. Hence, it is
most probably interesting to understand whether bubbles have a distinct
behaviour from that of the significantly heavy inertial particles in fully de-
veloped elastic turbulence regime, both at small and large scales, and if so,
then the quantification of their segregation properties could be interesting
for mixing applications.
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