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INTRODUCTION 

The present PhD dissertation deals with the coupled thermo-mechanical behavior 

of rubbers in relation with microstructure. In many common industrial applications, 

rubbers are cyclically loaded and exhibit a complex history-dependent thermo-

mechanical response characterized by fatigue-induced stress-softening and hysteresis 

along with dissipative heating. Establishing the coupling between the different 

inelastic phenomena, usually appearing together during the cyclic loading history, is 

an open issue to be addressed.  

This work is dedicated to the formulation and experimental verification of thermo-

mechanical constitutive models for rubbers. It is divided into three main Chapters. 

Chapter 1 brings a brief review about the necessary contents to understand the 

following chapters. Chapter 2 is focused on the thermo-mechanical response of 

cyclically loaded filled rubbers. Chapter 3 is focused on the thermo-mechanical 

response of stretch-induced crystallizable rubbers. 

Chapter 1 is a succinct summary of classic knowledge which can be found in 

specialized works and that have been selected for their relevancy in the present study 

for the reader convenience. The industrial applications and the research history are 

briefly reported. Moreover, in order to understand the rubber behavior at the macro-

scale from their microscopic architecture, the chemical characterization is presented. 

Then, the thermo-mechanical response of filled rubbers will be drawn. In the last 

section, the well known continuum mechanics theory as well as the laws of the 

thermodynamics are recalled. Finally, some notions about models to describe the 

large strain elastic behavior of rubber-type materials are provided. 

Chapter 2 is focused on filled rubbers. In a first Part, the effects of pre-stretch and 

filler content on the history-dependent cyclic response of a representative carbon-

filled synthetic rubber (styrene-butadiene rubber) are qualitatively and quantitatively 

analyzed by using the internal state variable theory. An interpretation of the 
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underlying physical mechanisms is proposed in which two types of dissipative 

network rearrangements are considered, i.e. recoverable rearrangements inducing 

viscoelasticity and unrecoverable rearrangements inducing damage. In order to 

predict the main set of inelastic fatigue effects (fatigue-induced stress-softening and 

hysteresis along with dissipative heating), in a second Part, we formulate a new 

thermo-viscoelastic-damage constitutive model based on the internal state variable 

theory. The proposed constitutive model is implemented into a finite element 

program and numerical applications on rubber structures are performed. The 

predictive capabilities of the model are verified by comparisons with our 

experimental observations in a third Part.  

Chapter 3 is focused on stretch-induced crystallizable rubbers. In a first Part, we 

develop a new micro-mechanism inspired molecular chain model to describe the 

progressive evolution of the crystallinity degree in rubbers and the history-

dependent thermo-mechanical response within the context of the thermodynamic 

framework. In this model, the molecular configuration of the partially crystallized 

single chain is analyzed and calculated by means of some statistical mechanical 

methods. The micro-macro transition is achieved by means of the microsphere-based 

strategy. The proposed constitutive model is then used to discuss some important 

aspects of the micro-mechanism and the macro-response under the equilibrium state 

and the non-equilibrium state involved during stretching/recovery and continuous 

relaxation. In a second Part, the model simulations are compared to experimental 

data at different stretch levels and temperatures. Local fields in terms of 

crystallization-induced anisotropy are presented on illustrative numerical examples. 

The results show that the proposed model offers a satisfactory way to predict the 

thermo-mechanical response of stretch-induced crystallizable rubbers. 

General conclusions and Research perspectives are presented at the end of the 

document. 
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CHAPTER 1. ELEMENTS OF STRUCTURE, 
MECHANICS AND THERMODYNAMICS 

OF ELASTOMERS 

The Chapter 1 is intended to offer a conceptual frame of reference that allows the reader to deep into the 

posterior contents with a major sensation of comfort. In the generalities section the application and the polymers 

research history, giving relative emphasis to the rubber materials, is briefly reported. Later, the definitions of 

concepts related with the chemistry that characterize the different polymers and that allow to understand their 

behavior in the macroscopic scale from their microscopic architecture are presented. From this characterization, it 

is possible to go more deeply into the particular characteristics of the elastomers and, especially, into the studied 

material: styrene-butadiene rubber filled with carbon-black particles. The thermo-mechanical behavior of the 

elastomers as a result of different test conditions will be drawn in the section dedicated to the filled elastomers 

thermo-mechanical behavior. At the same time, the effects in the thermo-mechanical behavior of elastomers by the 

incorporation of carbon-black fillers are described in this section. In the last section, elements of continuum 

mechanics and thermodynamics, the classic knowledge of finite strain mechanics of continuum medium as well as 

the thermodynamics laws that describe the material behavior in a coherent way regarding the physical laws is 

exposed. Finally, some notions concerning statistical and phenomenological models to describe the large strain 

elastic behavior of rubber-type materials are presented. 
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1.1. Generalities 

1.1.1. Historical background1 

In 1496, after his second voyage to America, Christopher Columbus brought back to 

Europe crude rubber balls after having seen the Haitian natives playing with rubber balls. The 

natives in Haiti made these by cutting into bark of the rubber tree, smearing the latex which 

exuded onto the pointed end of a wooden stick and then drying it near a fire. In fact, it is well 

established that ancient American cultures as the Olmec, the Aztecs, the Mayas and the Incas 

already used the latex to manufacture common objects like boots, containers, covered tiles 

and, especially, balls, as they used to play with them an ancient game representing an 

important aspect of their cosmogony (Ximenez, 1715). Although there was much interest in 

Europe in this material little progress was made concerning its use: the latex would coagulate 

on its long voyage from the New to the Old World and coagulated latex was hard to work 

with. 

The South America exploration by the Frenchman Charles-Marie de La Condamine, in 1736, 

brought again the potential of rubber to the attention of the Europeans. He gallicizes the word 

"cao tchu", meaning tree that cries in the native language, to caoutchouc and bring back some 

samples to the French Guyana. The first scientific studies are attributed to the French engineer 

François Fresneau who has impregnated his boots of latex to waterproof them. Unfortunately, 

the rubber is sensitive to the temperature (i.e. it rigidifies at low temperatures and becomes 

viscous at high temperatures) so its application remained very limited. In 1791, the British 

manufacturer Samuel Peal got a patent of the first industrial application of rubber related with 

the fabric waterproofing by means of a rubber - oil of turpentine solution. Around 1818, 

Charles Macintosh discovered another way to waterproof fabrics: he adhered two fabric 

sheets together using a rubber - coal-tar naphtha solution. The waterproof property is obtained 

when the solvent is evaporated. In 1835, the chloride of vinyl polymerization was accidentally 

discovered by Henri Victor Regnault. A great advance in rubber application was the discovery 

by Charles Goodyear in 1838 that natural rubber containing sulfur turned elastic after heat 

treatment (i.e. vulcanization). In 1862, Alexander Parks made a material named Parkesine 

modifying cellulose with nitric acid to form cellulose nitrate and mixing this polymer with a 

plasticizer. This discovery is the base of the modern plastic industry. The growth of rubber 
                                                      

1 The text is based on the natural rubber history section from Baranwal and Stephens (2001); however, 

additional references have been added. 
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products was increasing and, in 1888, John Dunlop developed a pneumatic rubber tire for 

bicycles hereby initiating the tire age. 

The 20th century marks the beginning of significant studies related with the behavior and 

properties of polymers and, specially, the development of synthetic polymers. In 1905, Leo 

Baekeland made the Bakelite, the first wholly synthetic polymer from phenol and 

formaldehyde. It can be said that the polymer science began in the 20s with the formulation of 

the macromolecular concept by Hermann Staudinger. In the 1930s, Werner Kuhn, Eugene 

Guth and Herman Mark proposed the statistical mechanical theory for rubber elasticity; 

besides, they found evidence that polymer chains in solution were flexible and that the 

viscosity in a solution was related to the molar mass of the polymer. Around 1933, the 

styrene-butadiene rubber was made in Germany; meantime, Wallace Carothers synthesize the 

first aliphatic polyester, and later and more importantly, the polychloroprene and the 

polyamide 6.6 (Nylon). The epoxy resins, the silicone rubbers and the polytetrafluoroethylene 

(Teflon®) were made, respectively, by Pierre Castan, Eugene Rochow and Roy Plunkett in the 

second half of the 30s. The thermodynamics theory for polymer solutions was presented, 

independently, in 1942 by Paul Flory and Maurice Huggins. The low-density polyethylene 

and the glass-fiber reinforced polyester were made during this decade. It is possible to say that 

since 1920 to 1950 a first generation of polymers was developed. Between 1950 and 1965 

polymers of second generation were proposed. Karl Ziegler and Guilio Natta work led to the 

development of linear polyethylene and isotactic polypropylene. Theories for liquid crystals 

of rod-like polymers were proposed by Lars Onsager in 1949 and by Paul Flory in 1956. In 

this same year Michael Szwarc discovered living anionic polymerization - Kraton® is 

prepared by this method. The polyoxymethyle (Delrin®) and the aromatic polyamide 

(Nomex®) were made by DuPont in the first half of the 60s. Finally, a third generation of 

polymers, introduced since 1965, consisting mainly of polymers with a more complex 

chemical structure was developed. These polymers were characterized by high thermal and 

chemical stability and high strength. Meanwhile, existing polymers such as polyethylene have 

undergone significant improvement. In 1971, Pierre-Gilles de Gennes presented the reptation 

model to describe the diffusion of chain molecules in a matrix of similar chain molecules. The 

first melt-processable polymer (Xydar®) was reported by Steven Cottis in 1972. Theories for 

the crystallization of polymers were introduced by John Hoffman and coworkers in the mid-

70s. Paul Morgan and Stefanie Kwolek reported, in 1977, that solutions of poly(phenylene 

terephthalamide) could be spun to super-strong and stiff fibers (Kevlar®). In 1977, the first 

electrically conductive polymer was prepared by Alan MacDiarmid, Alan Heeger and Hideka 



 1. Elements of structure, mechanics and thermodynamics of elastomers  

8 

 

Shirikawa. Nowadays, considering the nearby end of petroleum the industry of polymers 

contemplates, again, the use of natural rubber and searches substitutes to petroleum products 

by means of the synthesis of vegetal-based polymers. 

1.1.2. Polymers 

A polymer is a substance composed of molecules of high relative molecular mass, in which 

the structure essentially consists in the multiple repetition of units derived from molecules of 

low relative molecular mass connected between them in sufficient quantity to provide a set of 

properties that not varies significantly with the addition of one or few repetition units (Jones, 

2008). 

 

Figure 1.1. Polymer architectures: (a) linear polymers, (b) branched polymers, and (c) cross-
linked polymers (Qiu and Bae, 2006). 

 

The polymer architecture, the shape of a single polymer molecule, is constituted by the 

chemical composition of the monomer (repetition unit), the atoms disposition and links, the 

sequence order and the topologic aspects. Common polymer architectures are presented in 

Figure 1.1. The molecular architecture is important to describe many properties:  

AB-type diblock copolymer

BAB-type triblock copolymer

Homopolymer

Random copolymer

Alternating copolymer

Hyperbranched polymer
Polymer networks

Star-shaped polymer

Graft copolymer

Interpenetrating polymer
networks  (IPN)

Semi-IPN
Block dendrimer

ABA-type triblock copolymer

ABC-type triblock copolymer

(a) (b) (c)
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� Short-chain branching tends to reduce crystallinity, 

� Long-chain branching tends to have a profound effects on rheological properties, 

� Hyperbranched polymers consist of molecules with an approximately spherical shape, 

and 

� Cross-linked polymers do not melt. 

Considering the number of repeating units, a homopolymer consists of only one type of 

repeating unit whereas, on the other hand, a copolymer consists of two or more repeating 

units. 

In general, the polymers are constituted by nine chemical elements: the carbon, the hydrogen, 

the sulfur, the oxygen, the fluorine, the silicon, the phosphor, the nitrogen and the chlorine 

(Kausch et al., 2001). The chain framework is constituted principally of carbon atoms linked 

by covalent bonds where the dissociation energy is in the order of EC = 300 kJ/mol. Other 

types of atoms or molecules can be linked to the framework by polar or by van der Waals 

bonds where the dissociation energy is in the order of EP = 10 kJ/mol, see Figure 1.2. The 

large difference in dissociation energy between different molecules is of great importance for 

polymer properties. A polymer preserves its configuration, 'permanent' stereostructure of a 

polymer, until it reacts chemically. The configuration is defined by the polymerization 

method - chemical reaction that converts monomers to a polymer.  

 
Figure 1.2. Schematic representation of a polymer crystal illustrating the bonds type. 

 

The polymerization method can be divided into step-growth and chain-growth 

polymerization. In the step-growth process the kinetics of polymerization is not affected by 

the size of the reacting parts. The number of reacting groups decreases with increasing length 

of the molecules. At any given moment, the system will consist of a mixture of growing 

chains and water. Chain-growth polymerization involves several consecutives stages: 

initiation, propagation and termination. Each chain is individually initiated and grows very 

rapidly to a high molar mass, until its growth is terminated. At a given time, there are 
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essentially only two types of molecules present: monomer and polymer. The number of 

growing chains is always very low. 

1.1.2.1. Amorphous and semi-crystalline polymers 

The flexibility of the molecules allows different kinds of organization that presents an 

order less regular than within the metallic crystals. In fully amorphous polymers the chains 

are randomly arranged in the scale of a set of molecules but with certain order at a smaller 

scale (Figure 1.3). In spite of the random arrangement, the amorphous polymers are isotropic 

and frequently transparent in the macroscopic scale.  

 

 

Figure 1.3. Structural representation of an amorphous polymer: (a) (Flory, 1953), (b) 
(Privalko and Lipatov, 1974), and (c) (Yeh, 1980). 

 

A polymer is called semi-crystalline when the molecules of long chains tend to be arranged in 

packages to form crystallites separated by amorphous regions (Figure 1.4). In order that a 

polymer crystallizes it is necessary that its macromolecular chain has a strong regularity and 

also that its crystallization kinetics is not relatively slow. The crystallizable polymers will 

have a regular configuration and a regular global conformation, planar or helical zigzag in the 

thermoplastic polymers (Haudin, 1995). However, the macromolecular chains are not 

rigorously regular and the minimal irregularity, the enchainment of composing monomers or 

the presence of a ramification into the chain, will modify, limit, or avoid the crystallization. 

From the crystallization, the regular macromolecular chains, that can measure some 

micrometers of length, are organized and fold to form lamellae. The lamella crystallites form 

a superstructure with an average mesh size of 1 µm. They represent zones more resistant than 

the amorphous zones even that they contain an imperfect organization. The thickness and the 

regularity of the lamellae depend on the crystallization conditions and on the chains rigidity, 

ramifications, and the entanglements faults. These imperfections favor the connection 

(a) (b) (c)
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between lamellae, where they are linked by means of chunks of macromolecular chains (link 

chains) that belongs to other lamellae. The partially crystalline polymers are translucent and 

opaque, although the individual crystallites are far too small to scatter visible light 

individually. 

 

Figure 1.4. Structural representation of a semi-crystalline polymer. 
 

A third recently developed group of polymers is the liquid-crystalline polymers, showing 

orientational order but not positional order. They are thus intermediates between the 

amorphous and the crystalline polymers. The nematic is the most probable liquid-crystalline 

phase to be formed directly from an isotropic melt, see Figure 1.5. 

 

 

Figure 1.5. Structural representation of a liquid-crystalline polymer. 

 

The differences in crystallinity can lead to differences in physical properties. A polymer 

can appear in four different states, as a function of the temperature, which corresponds to a 

temperature-function growth of the intermolecular free volume and a decrease of the link 

Amorphous or 
interzonal

Interfacial zone

Crystalline

Orientational 
order

Positional 
disorder
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forces, e.g. analyzing the curve of the density or of the elasticity modulus as a function of 

temperature, different polymer states can be observed (Figure 1.6).  

 
 Figure 1.6. Polymer states. 

 

According to the polymer, the environment temperature can be found into one of the four 

zones. At the glass transition region a fully amorphous polymer shows an important drop in 

modulus. The material state is glassy at temperatures below the glass transition temperature, 

θg. Under these conditions the organic glasses admits uniquely weak deformations 

predominantly due to stretching of secondary bonds and bond angle deformation. The glass 

transition region shows many kinetic peculiarities (e.g., damping behavior) and it is not a true 

thermodynamic phase transition like crystal melting. In this region, the linear thermoplastic 

and cross-linked polymers where the chemical decomposition occurs before fusion are found. 

At temperatures above θg, the materials are rubber-like with a weak modulus. In the rubber 

state region, large groups of atoms can change their conformation, e.g. cross-linked polymers 

show elastic properties due to the high rate at which the conformational changes occurs that 

the strain response to a step stress is instantaneous. On the other hand, the pronounced drop in 

modulus occurring at higher temperatures in uncross-linked polymers is due to the melting of 

the crystalline component. 

1.1.2.2. Polymer categories 

One suitable way to categorize the polymers is in terms of their mechanical and thermal 

behavior as: 

� Thermoplastics are composed of long chains produced by a chain-growth 

polymerization; they typically behave in a plastic-ductile manner. The chains may or 

may not have branches. Individual chains are intertwined. There are relatively weak van 

der Waals bonds between atoms of different chains. This is somewhat similar to a few 
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trees that are tangled up together. The trees may or may not have branches, each tree is 

on its own and not connected to another. The chains in the thermoplastics can be 

untangled by application of a tensile stress. Thermoplastics can be amorphous or 

crystalline. Upon heating, thermoplastics soften and melt. They are processed into 

shapes by heating to elevated temperatures. Thermoplastics are easily recycled. 

� Thermosetting polymers are composed of long chains (linear or branched) of molecules 

that are strongly cross-linked to one another to form three-dimensional network 

structures. Network of thermosetting polymers are like a bunch of strings that are 

knotted to one another in several places and not just tangled up. Each string may have 

other side strings attached to it. Thermosets are generally stronger, but more brittle, than 

thermoplastics. Thermosets do not melt upon heating but begin to decompose. They 

cannot easily be reprocessed after cross-linking reaction has occurred and hence 

recycling is difficult. 

� Elastomers may be thermoplastics or lightly cross-linked thermosets. The polymer 

chains consist of coil-like molecules that can reversible stretch by applying a force. 

They can be stretched easily to high extensions and rapidly recover their original 

dimensions. They are commonly known as rubbers. 

1.1.3. Elastomers 

1.1.3.1. Processes to obtain synthetic elastomers 

The synthetic elastomers are obtained by means of polymerization, polycondensation or 

copolymerization reactions that consist on the creation of chemical bonds between molecules 

to develop other molecules of higher dimensions. 

The polymerization confronts the monomer with activation elements into a reactor2. The 

polymerization takes place in several stages: 

� Activation: this reaction aims to create active centers, A* and B* (Figure 1.7), if R is 

the monomer. 

� Propagation: the active center (ion or radical) is placed at an extremity of the chain and 

reacts little by little with the monomer. 

                                                      

2 The chemical reactors offer the ideal conditions in terms of temperature, pH, solvents, pressure, etc. 

to obtain a certain type of elastomer. 
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� Chain transfer and ending: the active center can be preserved or destroyed during the 

ending stage. 

 

 

Figure 1.7. Polymerization reaction: (a) activation, (b) propagation, and (c) chain transfer and 
ending. 

 

On the other hand, during the polycondensation the macromolecule is produced by the 

reaction of molecules having different chemical nature. Finally, the copolymerization consists 

of associate different types of monomers in order to improve the properties of the final 

material. There are three types of copolymers: alternating copolymer, statistical copolymer 

and block copolymer (Figure 1.1). 

1.1.3.2. Formulation of elastomers 

Seven categories of ingredients in the composition of an elastomer are distinguished:  

A. Elastomeric matrix: The most important ingredient in rubber formulation. The elastomers 

can have natural or synthetic origin. Diverse elastomer grades exist differentiating, for 

example, the molecular distribution, the chain-length, the link rate, the monomer rate – 

copolymers and terpolymers3 – and the oil or carbon-black presence. Specific elastomers 

are selected for desired compound properties. An elastomeric matrix can be used alone or 

associated with one or several elastomeric matrices. 

B. Fillers: They are particles used to reinforce or enhance properties of elastomers while 

reducing cost of the compound. Their ability to interact with the elastomeric matrix 

                                                      

3 Polymer consisting of three distinct monomers. 

* *A B A B− → + * *A R A R+ → −

* *A R R A R R− + → − −

( )* * *A R R R A R R R A R R
n

− − + → − − − → − −

( ) ( )* *A R R B X A R R B Xn n− − + − → − − − + ( ) ( ) ( )* *

2
A R R A R R A R A

n n n
− − + − − → − −

(a)

(b)

(c)

Preserved Destroyed
Active center



 1. Elements of structure, mechanics and thermodynamics of elastomers  

15 

 

confers a, more or less, reinforcing character to the final mixture. Evidently, the 

reinforcing character depends on the filler-matrix chemical compatibility. Usually, the 

used mixtures have a load-rate that place them near the percolation limit, e.g., for a 

mixture containing 100 g of elastomer (ρe = 1000 kg /m3) and 50 g of filler (ρf = 2000 kg 

/m3), the volumetric fraction, φfiller, is 0.2, whereas the limit is 0.3. The average particle 

size of the filler is the most important parameter concerning the capability to impart 

reinforcement to elastomers – reinforcement is obtained with sizes smaller than 100 nm.  

There are two types of fillers commonly used by the rubber industry: Carbon-black and 

white fillers. High-resolution electron microscopy has shown (Leblanc, 2002) that 

carbon-black is built up of complex arrangements of spherical entities (colloidal black) 

whose diameter ranges from 10 to 90 nm (Figure 1.8). In general, the smaller the particle 

size, the more reinforcing the carbon-black, i.e. improvement in tensile, modulus, 

hardness and abrasion strength. The colloidal blacks are spheres made-up of broken 

quasi-graphitic layers whose stacking gives edges with a steps-like structure; depending 

on the manufacturing process, they exist in various forms of aggregation. The aggregates 

– smallest dispersible entity – form complex tri-dimensional objects (structure) which are 

associated into agglomerates. In a rubber compound, the void spaces within the 

aggregates are filled with rubber. This rubber – occluded rubber – is partly shielded from 

deformation and thus acts as part of the filler rather than as part of the rubber matrix 

(Medalia, 1970). 

 

 

Figure 1.8. Relevant dimensions concerning the filler structure. 
 

On the other hand, the non-black fillers contribution to the compound properties depends 

exclusively on the surface area. The first fillers used in rubber products were minerals 

that were naturally available: zinc oxide, clay, mica and asbestos. As in the carbon-black 

fillers, they were added to reduce tack, increase hardness and reduce the cost of the 

Aggregate
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Graphite layer
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properties of rubber compounds are essential for providing acceptable service life. In 

general, the more saturated the main chain of the elastomer matrix, the better are the 

aging properties.  

E. Vulcanizing agents: They are chemical products that, upon heating, crosslink elastomer 

molecules to provide harder, more thermally stable elastic products. The most common 

vulcanizing agent is sulfur. During curing (vulcanization) a three-dimensional crosslinked 

network which imparts properties to compounds is formed. In fact, upon the 

vulcanization the rubber is changed from essentially a plastic material to either elastic or 

hard material (Figure 1.9). 

 

 

Figure 1.10. Effect of cross-link density on common properties of natural rubber. 
 

In general, crosslink density, which is a measure of the extent of vulcanization, increases 

with cure time. Crosslink density and type of crosslinks (polysulfidic or monosulfidic) 

both affect compound properties. In Figure 1.10 it can be seen the cross-link density 

effect on properties. In relation to the type of crosslinks, the polysulfidic crosslink gives 

poor aging properties and poorer long-term flex life. On the other hand, mono- or di-

sulfidic crosslinks provide poor fatigue life.  

F. Accelerators: The chemical accelerators help raise the vulcanization speed by increasing 

the rate of crosslinking reactions. As sulfur alone takes a commercially prohibitive length 

of time to cure a rubber compound then chemical accelerators to speed up the curing rate 

are used. 
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G. Activators: Chemical products used to form complexes with accelerators and further 

activate the curing process. Most commonly used activators are zinc oxide and stearic 

acid. 

1.1.3.3. Carbon-black in rubber 

Carbon-black has been known and produced since antiquity but its discovery is attributed 

to S.C. Mote who came upon this in 1904. When it was discovered that carbon-black 

improves the mechanical properties of rubber compounds, it was extensively manufactured 

and used.  

The carbon-black term refers to a group of industrial products consisting of: 

� Furnace black: Furnace-made by the partial combustion of hydrocarbons. 

� Thermal black: Produced by the thermal decomposition of natural gas. 

� Channel black: Produced by the impingement of natural gas flames on channel irons. 

� Lampblack: Made by burning hydrocarbons in open, shallow pans. 

The most important characteristic of carbon-black, as rubber filler, is its specific surface area 

(total exposed surface per unit mass); it directly impacts the amount of interfacial contact area 

with the rubber. As its measurement involves molecular adsorption – phenomenon influenced 

by the carbon-black surface energy and activity (inhomogeneous across the surface) – the 

measurements of the specific surface area become a physicochemical characteristic as well as 

a geometrical characteristic. The second characteristic is the volume of the carbon-black 

aggregate. Carbon-black is commonly incorporated into rubber by shear forces practiced in an 

open mill. The carbon-black agglomerates become encapsulated by polymer during the first 

stage of incorporation, but the interstices between agglomerates and aggregates are still filled 

with air. Then, the rubber is forced through the channels between agglomerates and 

aggregates to form a reinforced rubber compound. The properties of uncured rubber are 

greatly influenced by the incorporation of carbon-black fillers: they change significantly the 

flow and viscosity. Contrary to unfilled compounds, carbon-black filled compounds have 

highly non-Newtonian flow and high viscosity – when the compound is forced to flow the 

hydrodynamic effect from the filler reduces the volume fraction of the flow medium causing 

shear strain amplification. 

1.1.3.4. Styrene-butadiene rubber 

Styrene and butadiene are co-monomers used in the manufacture of ESBR (emulsion) and 

SSBR (solution) by a chemical reaction (Figure 1.11). 
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Figure 1.11. Styrene-butadiene rubber chemical reaction. 

 

SBR compounding is similar to that of natural rubber (NR). It requires reinforcing fillers, as 

natural rubber, to acquire the necessary modulus and strength. The SBR does not change 

viscosity as much as natural rubber during mixing, extrusion and remilling. As in NR 

compounds, other ingredients such as plasticizers, activators and accelerators are used in SBR 

compounds as well. Compared to NR, SBR requires additional acceleration and less sulfur 

during vulcanization. Additionally, as it takes longer to cure, increasing the primary 

accelerator or adding a second one the required cure rate for the compound is accomplished. 

Whereas sulfur and accelerators are optimized for rapid cure rate, fillers and processing aids 

need to be balanced to attain a smooth extrusion. 

 

Product categories Usage, % of total 

Tires and related products 65 

Belt and Hose 10 

Footwear 5 

Foamed products 5 

Mechanical goods 5 

High Impact Polystyrene – 

Table 1.1. Major applications and uses of SBR by category. 

 

SBR has a higher heat build-up behavior than a comparable NR compound. This is not a 

significant factor in many applications so, additional to their intrinsic advantages, the SBR is 

the preferably selected material. SBR is commonly blended with NR or low-cis polybutadiene 

to get optimum balance of properties for some applications. The major applications and uses 

of SBR are listed in Table 1.1. 
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1.2. Filled elastomers thermo-mechanical behavior 

1.2.1. Thermo-mechanical behavior of elastomers 

1.2.1.1. Finite deformation rubber elasticity 

An unvulcanized elastomer flows easily under applied loads since the interactions between 

the chains are weak – these having great movement freedom under the influence of thermal 

agitation. On the other hand, the vulcanization turns solid the links among macromolecules – 

by means of sulfur and oxygen bridges – then the movements between chains are limited but 

the structure preserves, generally, an enormous flexibility. As a consequence, the elastomers 

behavior is directly related to the possibility of movement between the polymeric chains. 

Besides, this architecture is responsible of the different macroscopic behaviors under variable 

deformation.  

 

 

Figure 1.12. Common stress-extension curve of a vulcanized rubber. 
 

The stress-strain curve obtained from a uniaxial traction test can be divided into two domains: 

linear and, predominantly, non-linear elasticity (Figure 1.12). Under small deformations, the 

stress-strain relation is linear, exhibiting a Young's modulus in the order of 1 MPa. This 

behavior is strongly related with the filler network created into the elastomeric matrix: the 

occluded rubber inside the carbon-black network or carbon-black agglomerates does not take 

part in the deformation – the volumetric fraction of the active elastomeric matrix is smaller 

than expected. If the deformation is superior to 1 or 10% then the filler network is fractured 
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and the initially occluded rubber is activated. Above this limit, the resistance of the mixture 

increases slowly under higher deformations. Besides, the secondary structures of the volume 

fraction of non-occluded rubber, entanglements between macromolecules, are loaded. At high 

deformation the high increase in stress is due largely, if not entirely, to strain-induced 

crystallization (Mark, 1982). Finally, the deformation strength grows highly up to break: the 

chains have attained their extensibility limit – the maximum extensibility for NR usually falls 

within the range 500-1000%. 

1.2.1.2. Thermoelastic effects and temperature-dependent mechanical behavior 

In 1805, James Gough published his results concerning the thermal behavior of natural 

rubber (Gough, 1805) evidencing the following observations: 

� Rubber self-heats under stretching loads. 

� Rubber held in a stretched state, under a constant load, contracts on heating. 

These conclusions were confirmed for vulcanized rubber by Joule (1859). Since then both 

effects are known as the Gough-Joule effects. The rubber heat build-up effect depends on two 

different phenomena. First, the extension work is transformed into heat and, inversely, heat is 

absorbed pending relaxation. Second, if the elongation is considerable, the stretching induces 

the formation of a crystalline phase in the rubber matrix accompanied by the evolution of the 

latent heat of crystallization (Ehrbar and Boissonas, 1955). Concerning the second 

observation, the consequences are given in more detail. 

 

 

Figure 1.13. Stress at constant length, extension 350%, as function of the absolute temperature 
of a vulcanized rubber-sulfur compound (Meyer and Ferri, 1935). 

 

The experiments of Meyer and Ferri (1935) demonstrate that the stretching force, for a given 

state of strain, is proportional to the absolute temperature (Figure 1.13). Such proportionality 

is related with the modification of the conformations of a system of long-chain molecules – 

associated uniquely with changes in the configurational entropy of the system – in passing 

from the unstrained to the strained state. However, under lower strains, the thermo-
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mechanical behavior is inversed, i.e. the force decreases as the temperature raises (Figure 

1.14). It can be seen that the inversion point occurs at an extension of about 10% – the 

thermoelastic inversion point. The negatives slopes at small extensions and the existence of an 

inversion point are due to the volume thermal expansion which is present in both the stretched 

and the unstretched states of rubber, i.e. even that the rubber samples were held at constant 

length it does not mean that they were held at constant elongation – at each temperature the 

unstressed length will have a different value.  

 

Figure 1.14. Stress-temperature curves obtained for elongations ranging from 3% to 38% 
from a vulcanized rubber (Anthony et al., 1943). 

 

Therefore, even though the force at a given strain increases with the temperature, this increase 

is counterbalanced by the associated reduction in strain. Then, if the strain is calculated on the 

basis of the unstrained length at a given temperature, all stress curves pass through a single 

origin and the stress value is proportional to the absolute temperature, Figure 1.15. 

 

Figure 1.15. Stress-elongation curves obtained at various temperatures from a vulcanized 
rubber (Anthony et al., 1943). 

 



 1. Elements of structure, mechanics and thermodynamics of elastomers  

23 

 

1.2.1.3. Time effects 

The elastomers exhibit a strong time-dependent mechanical behavior: response of the 

material under creep and stress-relaxation tests. A creep test consists on following the time 

evolution of the deformation of a test sample under a constant stress σ0 during a sufficiently 

long time interval t before suppressing it. An elastic deformation (segment AB) appears 

instantaneously after the application of the stress (Figure 1.16). The viscoelastic behavior is 

seen under the form of a delayed deformation (segment BC) and a continuous evolution of the 

deformation (segment CD). Posterior to unloading the test sample there is an instantaneous 

recovery of the elastic deformation (segment DE) and, later, a total recovery of the delayed 

deformation (segment EF). From point F the test sample presents a residual deformation that 

is recovered after long periods of time. 

 

Figure 1.16. Creep behavior. 
 

A stress-relaxation test consists on following the time evolution of the stress of a test 

sample under a constant deformation ε0. An elastic stress (segment AB) appears 

instantaneously after the application of the deformation (Figure 1.17). The viscoelastic 

behavior is seen under the form of a progressive decrease of the stress (segment BC) up to a 

constant not-null value (from point C). 

 

Figure 1.17. Stress-relaxation behavior. 
 

The results of these tests demonstrate that to establish a relationship between the stress σ and 

the strain ε it is necessary to account for this time-dependence.  

1.2.1.4. Dynamic properties and hysteretic behavior 

Elastomers exhibit a complex mechanical behavior including both the behavior of a solid 

characterized by an instantaneous response and the viscous behavior of a liquid characterized 
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by a delayed response and a loss of energy at each cycle. The response of an elastomer under 

dynamic loads is better visualized in terms of a specimen undergoing uniform sinusoidal 

deformation as shown in Figure 1.18. The stress response is nearly sinusoidal but out of phase 

with the strain. The total stress response can be resolved into two components: one in-phase 

response (elastic stress) and one out-of-phase response (viscous stress), so at any time the 

measured stress is the algebraic sum of its two components. The phase is expressed by 

defining a cycle as a circle. Dividing the stress amplitudes by the strain amplitude gives the 

modulus components: storage modulus G′  (related with elastic response) and the loss 

modulus G′′  (related with viscous response)4. The storage modulus is related with the stored 

energy that will be recovered during the deformation process compensating partially or 

completely the, previously obtained, deformation of the structure. The loss modulus is related 

with the dissipated energy responsible of the heating-up of the test material – another part 

may be lost in the form of heat to the surrounding environment.  

 

Figure 1.18. Stress components of an elastomer under dynamic loads. 
 

The complex modulus *G  can be calculated as:  

 G G iG∗ ′ ′′= +  (1.1) 

and the absolute value of the complex modulus can be calculated by:  

 * 2 2G G G′ ′′= +  (1.2) 

where *G  is simply called the dynamic modulus. Finally, the loss factor (or damping factor) 

                                                      

4 G or E letters denote the shear and longitudinal modulus, respectively. 
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′
 (1.3) 

is a measure of the loss energy from internal friction of the material.  

If the stress is plotted against strain, for a single cycle, a hysteresis loop is seen (Figure 1.19). 

The area inside the hysteresis loop represents the mechanical energy which is not recovered 

during a cycle but instead is converted into heat. The isolating nature of rubbers can retain this 

heat and generate a thermal gradient (heat build-up). The mechanical energy loss or heat 

generated per cycle in compression-extension tests is the hysteresis (Medalia, 1991): 

 2
tan

4 100

A
H E

π δ′=  (1.4) 

where A is the strain amplitude (see Figure 1.18).  

 

Figure 1.19. Hysteresis loop. 

1.2.1.5. Mullins effect 

The Mullins effect consists in an appreciable change of the mechanical properties of filled 

and non-filled rubber-type materials resulting from the first extension. This change is made 

evident as a stress-softening – lower resulting stress for the same applied strain – after the first 

load which increases progressively with the increasing maximum stretch (Figure 1.20). After 

a few cycles the material responses coincide during the following ones. This property was 

firstly observed by Bouasse and Carrière (1903) and intensively investigated by Mullins and 

his co-workers (Mullins, 1948, 1969; Mullins and Tobin, 1957, 1965). The principal 

phenomenological observations described by Mullins and co-workers can be summarized as 

follows: 

� The softening is uniquely observed under higher elongations than the preceding ones in 

the loading history. 

� An induced anisotropy as a consequence of the softening. 
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� The softening increases with an increasing volume of the initial fraction of filler. 

� The complete recovery of the initial stiffness is never reached. 

� The softening behavior is seen also from non-dilating load conditions, i.e. compression 

and shearing tests. 

 

 

Figure 1.20. Stress-strain response of a filled SBR submitted to a simple uniaxial tension test 
and to a cyclic uniaxial tension test with increasing maximum stretch every 5 cycles (Diani et 

al., 2009). 
 

Several physical interpretations have been proposed in order to explain the Mullins effect 

(Figure 1.21). The numerous interpretations proposed for the Mullins effect evidence that 

there is still no general agreement on the microscopic or mesoscopic origin of this effect. 

Blanchard and Parkinson (1952) related the first pre-strain softening with the rupture of the 

weaker bonds (physical bonds) at the rubber-particle interface while a further pre-strain would 

break the stronger bonds (chemical bonds). Bueche (1960) interpreted the Mullins effect in a 

similar way as Blanchard and Parkinson (1952); however, he has added to his interpretation 

an explanation of the softening in unfilled rubbers considering that the junctions arrange so as 

not to over-stretch the shorter chains. Simo (1987) and Govindjee and Simo (1991), pursuing 

the model proposed by Bueche (1960), estimated that the deformation induced by the relative 

movement between the fillers and the elastomeric matrix was the origin of the stress-

softening. Houwink (1956) argued that the Mullins effect was related with the molecules slip 

over the surface of the fillers, considering the slow recovery of the stress-softening which 

could not be explained by the bond rupture source because, otherwise, this behavior would be 

permanent. During the first extension new bonds are instantaneously created, at different 

places of the original ones, along the rubber molecules. After measuring no significant change 
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in the crosslink density of stretched networks – no reversible part of the Mullins effect results 

in bond breakage – Dannenberg and Brennan (1965) adhered to Houwink model (Houwink, 

1956). Admitting that bond ruptures happen and vacuoles form in the material during the first 

strain, Kraus et al. (1966) have proposed to attribute the main source of the Mullins effect to 

the rupture of the carbon-black structure. 

 

Figure 1.21. Physical interpretations of the Mullins effect (Diani et al., 2009). 

 

Pursuing the interpretation proposed by Kraus et al. (1966), Kluppel and Schramm (2000) 

developed a macromolecular model which uses a strain amplification factor – the filler seen 

as a local strain amplifier – that decreases with an increasing maximum strain. Hanson et al. 

(2005), adopting Hamed and Hatfield (1989) configuration of chain entanglements between 

Bond rupture 
(Blanchard et al., 1952; 

Bueche, 1960)

Molecules slipping
(Houwink, 1956)

Filler rupture
(Kraus et al., 1966)

Desintanglement
(Hanson et al., 2005)

Double-layer model
(Fukahori, 2005)

Physical source Sketch



 1. Elements of structure, mechanics and thermodynamics of elastomers  

28 

 

particles, proposed a new interpretation of the Mullins effect which takes into account the 

induced anisotropy. Finally, Fukahori (2005) proposed an interface model – the material is 

represented by particle aggregates surrounded by a double-layer structure of bound rubber 

embedded in a crosslinked rubbery matrix – to explain the mechanics and mechanisms of 

reinforcement and softening. 

1.2.1.6. Cyclic stress-softening  

Additional to the first pre-strain softening (Mullins effect), the effect of repeated 

deformation leads the rubber to approach asymptotically a steady state with a constant – 

equilibrium – stress response (Figure 1.22). Softening occurs in both filled and non-filled 

rubber-type materials.  

 

 

Figure 1.22. Stress-strain curves of SBR submitted to a cyclic tension test: from the first cycle 
up to 425 cycles (Ayoub et al., 2011a). 

 

Numerous authors (Bouasse and Carrière, 1903; Shedd and Ingersol, 1904; Schwartz, 1907) 

published data demonstrating that stretching resulted in a softening of rubber; however, Holt 

(1931) was the first to describe the effects of repeated stretching and stretching-speed on the 

stress-strain properties of rubber compounds. Together with the progressive softening during 

repeated deformation, Holt also showed that stretching to a series of increasing strains 

resulted in a progressive increase in the observed softening at low strains, as can be deducted 

from Figure 1.20. In both unfilled and filled rubbers, most of the softening appears to be due 

to configurational changes of the rubber molecular network due to displacement of network 

junctions and entanglements during deformation and incomplete recovery to their original 

positions. The remaining and minor part of the softening in filled rubbers can be related to 
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break-down or slippage of filler-filler and filler-rubber linkages – any linkage broken and 

reformed while the rubber is deformed also contribute to softening and incomplete recovery 

after deformation. 

1.2.1.7. Fatigue lifetime of rubber materials 

The rubber lifetime can be seen as the result of three successive phenomena (Legorjujago 

and Bathias, 2002; Mars and Fatemi, 2003; Aït Hocine et al., 2011): 

1. Crack nucleation 

2. Crack propagation, and 

3. Total failure. 

 
Figure 1.23. Fatigue lifetime of a SBR as a function of a multiaxial fatigue predictor Seq and a 

threshold damage stress Sth (Ayoub et al., 2012). 
 

In general, it is considered that the crack precursors are flaws that originally exist in the 

virgin material (Mars and Fatemi, 2006; Naït-Abdelaziz et al., 2012). Besides, the lifetime 

under fatigue depends on many parameters such as the microstructure, the fatigue-induced 

crystallinity, the specimen geometry, the loading conditions, etc.  

In order to account for the lifetime of rubber components under multi-axial loading 

conditions, Ayoub et al. (2012) have proposed a model based on the continuum damage 

mechanics approach, see Figure 1.23. The proposed model was able to unify the multi-axial 

experimental data (tension-torsion) for two specimen geometries (AE2 and AE42), but it fails 

to unify the data regarding the specimen geometry. The divergence was attributed to the 

AE2

AE42
Dimensions in mm
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material heat build-up, as during a fatigue test, the two specimens do not reach the same 

surface stabilized temperature5

1.2.2. Carbon-black effects

1.2.2.1. Carbon-black effect on

It is well known that adding small amounts of filler particles to a rubber can significantly 

improve both the stiffness and the strength of the rubber compound. 

(Smallwood, 1944; Guth, 1945

of filler particles on the stiffness of rubbers

effect on the stress-strain behavior of 

filler concentration, all curves have a lin

0.02. At higher strains all curves showed the characteristic sigmoid shape of rubber

materials with an upward sweep of the curve at strains greater than 1. 

 

Figure 1.24. Stress-strain curves of 

The mechanism by which the stiffness increase occurs is still a subject of debate; it has been 

considered to result from two contributions:

� Continuum level: the stiffness of a rubber

of the stiffnesses of the individual constituent materials, depending on the exact 

microstructure (Bueche, 1960)

                                                      

5 The divergence in both temperatures is related with the difference in the volume of mate

in the fatigue process. 
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up, as during a fatigue test, the two specimens do not reach the same 
5.  

effects on the rubber properties 

on rubber elastic behavior 

It is well known that adding small amounts of filler particles to a rubber can significantly 

improve both the stiffness and the strength of the rubber compound. 

(Smallwood, 1944; Guth, 1945; Vand, 1948; Mooney, 1951) have investigated

stiffness of rubbers compounds. The filler volume has a

strain behavior of NR vulcanizates (Figure 1.24). Independently of the 

filler concentration, all curves have a linear behavior from the origin up to strains of about 

0.02. At higher strains all curves showed the characteristic sigmoid shape of rubber

materials with an upward sweep of the curve at strains greater than 1.  

 

strain curves of NR containing different volumes of carbon
and Tobin, 1965). 

 

The mechanism by which the stiffness increase occurs is still a subject of debate; it has been 

considered to result from two contributions: 

Continuum level: the stiffness of a rubber compound will be the weighted combination 

of the stiffnesses of the individual constituent materials, depending on the exact 

(Bueche, 1960). 

              

The divergence in both temperatures is related with the difference in the volume of mate

ics and thermodynamics of elastomers  

up, as during a fatigue test, the two specimens do not reach the same 

It is well known that adding small amounts of filler particles to a rubber can significantly 

improve both the stiffness and the strength of the rubber compound. Numerous authors 

nvestigated the influence 

The filler volume has an increasing 

Independently of the 

ear behavior from the origin up to strains of about 

0.02. At higher strains all curves showed the characteristic sigmoid shape of rubber-type 

containing different volumes of carbon-black (Mullins 

The mechanism by which the stiffness increase occurs is still a subject of debate; it has been 

compound will be the weighted combination 

of the stiffnesses of the individual constituent materials, depending on the exact 

The divergence in both temperatures is related with the difference in the volume of material implied 
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� Molecular level: the filler acts both to effectively increase the crosslink density of the 

material – providing additional crosslinking sites at the particle-matrix interface – and to 

reduce the segmental mobility close to the filler particles (Kraus, 1978). 

In addition to the volume fraction of filler particles, a number of state variable were supposed 

to influence the stiffness increase magnitude: the size, type and shape of the fillers (Mullins, 

1950), the filler aggregate structure (Smallwood, 1944) and the rubber-filler interface area 

(Medalia and Kraus, 2013). In spite of the diverse number of contributions, Smallwood 

(1944) demonstrated that the main influence is found by changing the aggregate structure. 

The filler effect on the elastic behavior of filled rubbers has been extensively modeled (see 

Figure 1.25). One approach consists on taking into account the increase in viscosity of a 

viscous fluid – rubber matrix – caused by a suspension of colloidal particles – carbon-black. 

Using this concept Smallwood (1944) predicted the small-strain Young's modulus of particle-

filled solids: 

 ( )1 2.5m fE E v= +  (1.5) 

where Em is the Young's modulus of the rubber matrix and vf is the filler volume fraction; 

however, this estimate is valid uniquely for very low filler concentrations. Attempting to 

incorporate interactions between neighboring particles – allowing predictions for higher 

volume fractions – Guth and Gold (1938) have added one more term to the polynomial series 

expansion of the amplification factor: 

 ( )21 2.5 14.1m f fE E v v= + +  (1.6) 

Using an experimental crowding factor k to incorporate particle-particle interactions, Mooney 

(1951) proposed a different method: 

 
2.5

exp
1

f
m

f

v
E E

kv

 
=   − 

 (1.7) 

Guth (1945) have developed a model that accounts for rod-like shapes other than spherical-

shape particles (as the aforementioned models). The shape is characterized by the ratio of the 

length to the width of the particles or the filler aggregate structures, gf: 

 ( )2 21 0.67 1.62m f f f fE E g v g v= + +  (1.8) 

This model attempts to account for the rapid increase with concentration in the viscosity of 

suspensions of rod-like particles, in contrast to the slower increase for spherical particles. 

Govindjee and Simo (1991) have developed another approach based on the concept of 
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amplified strain which, for the case of rigid particles in a neo-Hookean matrix, can be written 

as: 

 
1

2
1

f

m
f

v

E E
v

−
=

−
 (1.9) 

In addition to these models specifically developed for filled rubbers, a number of general 

composite theory model have been developed (Hashin and Shtrikman, 1963; Budiansky, 

1965; Ponte Castañeda, 1989; Bergstrom and Boyce, 1999).  

 

Figure 1.25. Theoretical predictions of the normalized Young's modulus, Efiller = 100Em. 

1.2.2.2. Carbon-black effect on dynamic6 elastic modulus 

Dynamic measurements demonstrate the significant difference between dynamic and static 

properties, e.g. the dynamic elastic modulus E ′  is greater than the static modulus E. This 

effect is considerably greater with black-filled than with gum compounds (Dillon et al., 1944). 

Under a shear dynamic test, pure rubber shows a linear behavior of the storage modulus G′  in 

the domain of deformations below 100 %. The adding of fillers drives the compound to a non-

linear behavior. Figure 1.26 shows the diminution of the storage modulus as a function of 

impose deformation amplitude. The values of G′  remained constant up to about 0.1 to 0.5% 

double strain amplitude (DSA) and thereafter decreased tending to an apparent constant 

                                                      

6 The term dynamic, as applied to rubber-type materials, refers to the response – after reaching a 

pseudo-equilibrium state – to periodic or transient forces which do not cause failure. 
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minimal value G∞′  – this value 

is known as the Payne effect (Payne, 1960)

 

Figure 1.26. Storage modulus
volumes of carbon

 

In Payne's experiments the value of 

range of more than a decade (

Sircar and Lamond (1975a; 1975b) have shown, usin

that of Payne, G′  increasing from a low value at 0.01% DSA to a maximum at about 0.1% 

DSA. At high amplitudes the carbon network structure is broken down 

loading or interaggregate bond strength 

individual carbon-black aggregates. 

where the individual aggregates are well separated, the amplitude effect is very small and the 

storage modulus is governed 

the effect of carbon-black is essentially equivalent to the hydrodynamic effect of isolated 

spheres on the modulus of rubber, corresponding to the effect of perturbation

on the viscosity of liquids. The contribution of 

these conditions depends on structure or bulkiness and is independent of surface area 

(Medalia, 1973; Ulmer et al., 1973; Kraus, 1978

storage modulus is the sum of 

made by still unbroken agglomerates of varying d
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this value is superior to the unfilled rubber modulus. This phenomenon 

(Payne, 1960).  

 

Figure 1.26. Storage modulus-strain amplitude relation for a rubber compound with different 
volumes of carbon-black (Payne, 1963a). 

ents the value of G′  at low amplitudes was constant

(e.g., 0.05 to 0.5% DSA); however, Voet and Cook

(1975a; 1975b) have shown, using an apparatus slightly modified from 

increasing from a low value at 0.01% DSA to a maximum at about 0.1% 

DSA. At high amplitudes the carbon network structure is broken down 

egate bond strength – and the storage modulus is governed by the 

aggregates. Similarly, in a well-dispersed compound at low loadings, 

where the individual aggregates are well separated, the amplitude effect is very small and the 

rage modulus is governed uniquely by the individual aggregates. Under these conditions 

is essentially equivalent to the hydrodynamic effect of isolated 

spheres on the modulus of rubber, corresponding to the effect of perturbation

The contribution of carbon-black to the storage modulus under 

these conditions depends on structure or bulkiness and is independent of surface area 

; Ulmer et al., 1973; Kraus, 1978). At amplitudes between 

storage modulus is the sum of G∞′  and the contribution G′∆ related with the augmentation 

made by still unbroken agglomerates of varying dimensions, e.g. a relatively small amount of 

ics and thermodynamics of elastomers  

superior to the unfilled rubber modulus. This phenomenon 

strain amplitude relation for a rubber compound with different 

at low amplitudes was constant, called 0G′ , over a 

and Cook (1967) and 

g an apparatus slightly modified from 

increasing from a low value at 0.01% DSA to a maximum at about 0.1% 

DSA. At high amplitudes the carbon network structure is broken down – regardless of the 

modulus is governed by the 

dispersed compound at low loadings, 

where the individual aggregates are well separated, the amplitude effect is very small and the 

by the individual aggregates. Under these conditions 

is essentially equivalent to the hydrodynamic effect of isolated 

spheres on the modulus of rubber, corresponding to the effect of perturbation of flow behavior 

to the storage modulus under 

these conditions depends on structure or bulkiness and is independent of surface area 

es between 0G′  and G∞′ , the 

related with the augmentation 

imensions, e.g. a relatively small amount of 
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strain-work would be required to reduce the agglomerate size by a factor of 2 and more work 

is then required to reduce each of the residues by another factor of 2, and so on.

of G′  is greatly affected by loading 

modulus is dominated by the surface area of the 

loadings it is dominated by the 

From a practical point of view,

cause that the modulus-amplitude curve of a high structure

of a low structure-high area black

1.2.2.3. Carbon-black effect on

Along with the amplitude dependence of the storage modulus there is a 

amplitude dependence of the loss factor 

the loading is increased (Figures

maximum at around 5 to 15% DSA in shear

however, it generally remains higher than its value at very low amplitudes.

passes through a maximum, as a

which the storage modulus changes most rapidly 

modulus, the amplitude dependence of the viscous parameters has been i

basis of the interaggregate interaction

results from breakdown and reformation of interaggregate bonds: at low amplitude there is 

little breakdown of bonds, therefore little hysteresis

breakdown and reformation of bonds take place, thus hysteresis is high; and at high 

amplitudes both G′  and tanδ
can become quite low. 

 

Figure 1.27. Phase angle-strain amplitude relation for a rubber compound with different 
volumes of carbon
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work would be required to reduce the agglomerate size by a factor of 2 and more work 

is then required to reduce each of the residues by another factor of 2, and so on.

is greatly affected by loading characteristics, i.e. at high loadings the low

modulus is dominated by the surface area of the carbon-black (Payne, 1963b)

the carbon-black structure (Medalia, 1973; U

point of view, the dependence of G′  on both structure and surface area can 

amplitude curve of a high structure-low area black 

a black. 

on loss parameters and hysteresis 

Along with the amplitude dependence of the storage modulus there is a 

dependence of the loss factor and the loss modulus which is more pronounced as 

ures 1.27 and 1.28). The loss factor at low amplitudes rises to a 

maximum at around 5 to 15% DSA in shear, and then decreases at still higher amplitudes; 

however, it generally remains higher than its value at very low amplitudes.

as an amplitude function, which is reached at the amplitude at 

which the storage modulus changes most rapidly – the inflection point. 

modulus, the amplitude dependence of the viscous parameters has been i

basis of the interaggregate interaction (Ulmer et al., 1998). It is assumed that hysteresis 

results from breakdown and reformation of interaggregate bonds: at low amplitude there is 

little breakdown of bonds, therefore little hysteresis; at intermediate amplitudes considerable 

breakdown and reformation of bonds take place, thus hysteresis is high; and at high 

δ  continue to decrease, thus their product, the loss modul

 

strain amplitude relation for a rubber compound with different 
volumes of carbon-black (Payne, 1963a). 

ics and thermodynamics of elastomers  

work would be required to reduce the agglomerate size by a factor of 2 and more work 

is then required to reduce each of the residues by another factor of 2, and so on. The increase 

t high loadings the low-amplitude 

(Payne, 1963b) while at low 

(Medalia, 1973; Ulmer et al., 1973). 

on both structure and surface area can 

low area black intersects the one 

Along with the amplitude dependence of the storage modulus there is a significant 

which is more pronounced as 

The loss factor at low amplitudes rises to a 

and then decreases at still higher amplitudes; 

however, it generally remains higher than its value at very low amplitudes. The loss modulus 

which is reached at the amplitude at 

the inflection point. As for the storage 

modulus, the amplitude dependence of the viscous parameters has been interpreted on the 

. It is assumed that hysteresis H 

results from breakdown and reformation of interaggregate bonds: at low amplitude there is 

; at intermediate amplitudes considerable 

breakdown and reformation of bonds take place, thus hysteresis is high; and at high 

continue to decrease, thus their product, the loss modulus G′′ , 

strain amplitude relation for a rubber compound with different 
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Figure 1.28. Dynamic parameters-strain amplitude relation for a rubber compound with 23.2 
volume % of carbon-black (Figures 1.26 and 1.27). 

 

Low values of G′′  at high amplitudes have been interpreted on the basis that at high 

amplitude the structure destruction is complete and little energy needs to be expanded (Voet 

and Cook, 1967) – the decrease in loss factor at high amplitudes indicates that less 

reformation of interaggregate bonds takes place than at intermediate amplitudes. Note that in 

comparing different compounds, H is proportional to tanδ  when the compounds are cycled 

at the same energy input, H is proportional to G′′  under equal strain conditions, while under 

equal stress conditions, H is approximately proportional to tan Gδ ′  (Medalia, 2001). 

1.2.2.4. Temperature effect in carbon-black rubber compounds 

Dynamic properties of rubber compounds are important over a wide range of temperatures, 

especially in the so-called rubbery region of polymer behavior (Figure 1.6). In this region, the 

storage modulus of carbon-black filled rubbers increases with lower temperature – 

entanglements and other physical crosslinks become more effective. The loss factor increases 

with lower temperature in the rubber region and passes through a maximum in the region 

where G′  is changing most rapidly (transition to glassy state), while G′′  reaches a maximum 

at somewhat lower temperature.  

Fletcher and Gent (1957) showed, using carbon-black filled NR flat samples, that the 

values of G′  were relatively high at high temperatures and the increase in G′  on going to 

low temperature was less steep than for the gum. Over the temperature range examined (-62 

to 81.5°C), tanδ  passed through a maximum which was much lower and less sharp for the 

filled vulcanizates that for the gum. Similar results were reported by Payne (1958). Using 
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different carbon-blacks at 50 phr

(1973) evidenced the decreasing of the elastic modulus with an increasing temperature

(1963b) experiments over carbon

1.29). Concerning pure gum

increasing of the elastic modulus 

(2005). The temperature dependence of the dynamic parameters has been interpreted on the 

basis of the loading characteristics, e.g.,

dominated by the surface area of the black, while at high temperature it is dominated by 

carbon-black structure. 

 

Figure 1.29. Effect of temperature on strain amplitude dependence of 

1.2.2.5. Carbon-black rubber interactions effect

The carbon-black effect on the dynamic properties of rubbers differs quantitatively from 

one rubber to another and also depends upon various procedures which are known to alter 

interaction of the polymer with the 

both the size and number of agglomerates and the distance of interaggregate separation is the 

most sensible interaction, e.g. reduction in hysteresis after 

treatment, attributed to reduction in carbon

improved (Dannenberg, 1952)

are responsible for the poor ultimate properties of short

of a large amount of rubber, high Mooney viscosity and high vulcanizates modulus at low 

strain. As mixing proceeds the large agglomerates virtually disappear and the now existing 

small agglomerates are gradually dispersed

significant decrease in torsional hysteresis and heat buildup. These changes were related to 

the disappearance of the small agglomerates and the separation of the aggregates from each 

Elements of structure, mechanics and thermodynamics of elastomers

36 

s at 50 phr (parts per hundred of rubber) loading vulc

evidenced the decreasing of the elastic modulus with an increasing temperature

carbon-black filled NR vulcanizates reported similar results (Fig

gum thermo-mechanical behavior, Medalia 

increasing of the elastic modulus with an increasing temperature, as later reported by Treloar 

The temperature dependence of the dynamic parameters has been interpreted on the 

basis of the loading characteristics, e.g., at low temperatures the low-amplitude modulus is 

dominated by the surface area of the black, while at high temperature it is dominated by 

 

Effect of temperature on strain amplitude dependence of G′

rubber interactions effect 

on the dynamic properties of rubbers differs quantitatively from 

one rubber to another and also depends upon various procedures which are known to alter 

ion of the polymer with the carbon-black. The carbon-black dispersion affected by 

both the size and number of agglomerates and the distance of interaggregate separation is the 

, e.g. reduction in hysteresis after increasing time of

attributed to reduction in carbon-carbon frictional losses as the dispersion was 

(Dannenberg, 1952). Boonstra and Medalia (1963) found that large agglomerates 

are responsible for the poor ultimate properties of short-time mixes, interaggregate occlusion 

of a large amount of rubber, high Mooney viscosity and high vulcanizates modulus at low 

strain. As mixing proceeds the large agglomerates virtually disappear and the now existing 

small agglomerates are gradually dispersed. During the later stages of mixing there was a 

significant decrease in torsional hysteresis and heat buildup. These changes were related to 

the disappearance of the small agglomerates and the separation of the aggregates from each 
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loading vulcanizates, Medalia 

evidenced the decreasing of the elastic modulus with an increasing temperature. Payne 

filled NR vulcanizates reported similar results (Figure 

(1978) shown the 

reported by Treloar 

The temperature dependence of the dynamic parameters has been interpreted on the 

amplitude modulus is 

dominated by the surface area of the black, while at high temperature it is dominated by 

 

G′  (Payne, 1963a). 

on the dynamic properties of rubbers differs quantitatively from 

one rubber to another and also depends upon various procedures which are known to alter 

dispersion affected by 

both the size and number of agglomerates and the distance of interaggregate separation is the 

increasing time of mixing or heat 

carbon frictional losses as the dispersion was 

that large agglomerates 

mixes, interaggregate occlusion 

of a large amount of rubber, high Mooney viscosity and high vulcanizates modulus at low 

strain. As mixing proceeds the large agglomerates virtually disappear and the now existing 

During the later stages of mixing there was a 

significant decrease in torsional hysteresis and heat buildup. These changes were related to 

the disappearance of the small agglomerates and the separation of the aggregates from each 
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other. Numerous authors (Payne, 1965; Medalia, 1973; Sommer and Meyer, 1974) have 

confirmed the positive effect of improved dispersion on dynamic properties of rubber 

compounds. It is well known that an undercured rubber is related with high hysteresis 

(Baranwal and Stephens, 2001). In pure rubber vulcanizates this has been generally attributed 

to the slow response of untrapped entanglements and dangling chain ends (Ferry, 1980); 

however, recent studies have related hysteresis to trapped entanglements (Cohen et al., 1977) 

and questioned the importance of dangling chain ends (Sullivan et al., 1978). 

 

 

Figure 1.30. Effect of the elastomer type: (a) on the storage modulus G′ , and (b) on the loss 
factor tanδ  (Sircar and Lamond, 1975a). 

 

Payne et al. (1972) shown that the loss factor of pure rubber vulcanizates decreased 

progressively with increasing cure, and this was reflected in the filled compounds. On the 

other hand, comparing NR compounds at three curative levels, Sommer and Meyer (1974) 

reported increasing values of G′  and G′′  with increasing cure time – increasing level of 

crosslinking. Similar results were found by Medalia (1978) – the author suggests that "the 

viscoelastic behavior of the rubber immobilized by the carbon-black could somehow be 

responsible for this effect". In an interesting study by Sircar and Lamond (1975a; 1975b) 

dynamic parameters of ten elastomers were evaluated (Figure 1.30); however, microscopic 

measurement of dispersion did not help to give a simple explanation of the order. There are 

wide differences in G′ , having the nitrile-butadiene rubber (NBR) the highest value. The 

maximum values of tanδ , for only seven of these compounds, were found at close to 10% 

DSA (in shear). The tanδ  values were in somewhat the same order of G′ . Payne (1964) 
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reported the same rubber-type dependence; however, the values were not in the same order 

different compounding and curing systems were used for each polymer.

1.3. Elements of continuum 

The continuum medium is an infinite set of particles 

that can be studied macroscopicall

in the microscopic level – atomic or molecular level

description of this medium and of his properties can be 

functions.  

  

Figure 1.3
 

The continuum medium configuration 

material points – particles – of the continuum medium occupy in the space at a certain time 

The configuration at a given time 

material or reference configuration 

position vector X of a particle 

 

where Xi are the material coordinates of the particle and 

basis. In the current configuration 

occupies the spatial point P' and his position vector x is given by:

 

where xi are the spatial coordinates of the particle in the time instant 
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type dependence; however, the values were not in the same order 

different compounding and curing systems were used for each polymer. 

continuum mechanics and thermodynamics

is an infinite set of particles (region or part of a solid, fluid or gas)

be studied macroscopically without considering the possible existing discontinuities 

atomic or molecular level. In consequence, the mathematical 

and of his properties can be developed by means of continuous 

 

1.31. Configuration of the continuum medium. 

The continuum medium configuration tΩ  is the geometric place of the positions that the 

of the continuum medium occupy in the space at a certain time 

he configuration at a given time 0t t=  of the time interval of analysis is named initial, 

material or reference configuration 0Ω  (Figure 1.31). In the reference configuration, the 

 that occupies a point P in the space is given by:

ˆi iX=X e  

he material coordinates of the particle and ˆie  is a unit vector of orthonormal 

basis. In the current configuration tΩ , the particle, originally situated in the material point 

and his position vector x is given by: 

ˆi ix=x e  

oordinates of the particle in the time instant t. 

ics and thermodynamics of elastomers  

type dependence; however, the values were not in the same order – 

mechanics and thermodynamics 

r part of a solid, fluid or gas) 

y without considering the possible existing discontinuities 

. In consequence, the mathematical 

by means of continuous 

 

 

is the geometric place of the positions that the 

of the continuum medium occupy in the space at a certain time t. 

of the time interval of analysis is named initial, 

(Figure 1.31). In the reference configuration, the 

in the space is given by: 

(1.10) 

is a unit vector of orthonormal 

, the particle, originally situated in the material point P, 

(1.11) 
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Finally, the mathematical description of the properties of the particles can be done by means 

of two alternative ways according to the configuration: the Lagrangian description (reference 

configuration) and the Eulerian description (current configuration)

1.3.1. Finite deformation 

1.3.1.1. Description of the deformation

A key quantity to describe finite deformation in the continuum mechanics framework is the 

deformation gradient tensor F 

 

The deformation gradient tensor contains the information rela

throughout time, of all the material particles in the differential 

The determinant of F, denoted

is always positive because 

det 0J = >F . On the other hand, the displacement of a particle 

by the vector u which joins the position 

actual position P' (Figure 1.32

the displacement field vector: 

 

 

The relative movement in the neighborhood of a particle through the deformation process 

(characterized by F) can be understood as the composition

deformation – polar decomposition theorem 

 

in which =F VR  is the right polar decomposition, 

orthogonal rotation tensor, and
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Finally, the mathematical description of the properties of the particles can be done by means 

of two alternative ways according to the configuration: the Lagrangian description (reference 

the Eulerian description (current configuration) 

 and stress 

Description of the deformation 

A key quantity to describe finite deformation in the continuum mechanics framework is the 

 defined as:  

∂=
∂

x
F

X
 

The deformation gradient tensor contains the information relative to the movement, 

throughout time, of all the material particles in the differential neighborhood 

denoted J (for Jacobian), represents the local variation of volume and it 

 of the principle of non-interpenetration of 

On the other hand, the displacement of a particle P at a given

the position P of the particle in the reference configuration and 

2). The displacement of all the particles of the 

 

( ) ( ), ,t x t= −u x x X  

 

Figure 1.32. Displacement vector. 

The relative movement in the neighborhood of a particle through the deformation process 

) can be understood as the composition (Figure 1.33) 

polar decomposition theorem – as: 

( )d d d d= = =x F X VR X V R X  

is the right polar decomposition, V is the right stretch tensor and 

orthogonal rotation tensor, and 
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Finally, the mathematical description of the properties of the particles can be done by means 

of two alternative ways according to the configuration: the Lagrangian description (reference 

A key quantity to describe finite deformation in the continuum mechanics framework is the 

(1.12) 

tive to the movement, 

neighborhood of a given one. 

(for Jacobian), represents the local variation of volume and it 

interpenetration of the material: 

at a given time is defined 

of the particle in the reference configuration and its 

The displacement of all the particles of the medium defines 

(1.13) 

The relative movement in the neighborhood of a particle through the deformation process 

 of a rotation and a 

(1.14) 

is the right stretch tensor and R is the 
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and =F RU  is the left polar decomposition and 

 

The time-dependent deformation is described by

 

where D is the stretching rate (symmetric tensor) and 

tensor). The stretching rate tensor gives the rate of stretching of line elements while the spin 

rate tensor indicates the rate of rotation or vorticity of the motion.

Let us consider now a particle situated in 

one situated in his differential 

dX (length dL d d= X X ). The segment

current configuration (Figure 1.31

 
( )

( )

2

2

dl d d d d d d d d

dL d d d d d d d d

= = = =

= = = =X X F x F x xF F x xB x

where T=C F F  and T=B FF are the right and left Cauchy

Subtracting both expressions of Eq. (1.14)

 
( )

(

2 2
dl dL d d d d d d

dl dL d d d d d d

where 

 

is the Green-Lagrange finite strain

 

is the Euler-Almasi finite strain
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( )d d d d= = =x F X RU X R U X  

is the left polar decomposition and U is the left stretch tensor.

 

Figure 1.33. Polar decomposition. 

dependent deformation is described by means of the velocity gradient tensor:

1−= = +L FF D W&  

rate (symmetric tensor) and W is the spin rate (non

The stretching rate tensor gives the rate of stretching of line elements while the spin 

rate tensor indicates the rate of rotation or vorticity of the motion. 

ticle situated in P in the reference configuration, and a second 

his differential neighboring Q separated from the previous one by the segment

. The segment dx (length dl d d= x x ) is its 

1.31), from which some quantities can be defined:

[ ][ ]
1 1 1 1

T

T

dl d d d d d d d d

dL d d d d d d d d− − − − −

= = = =

   = = = =   

x x F X F X XF F X XC X

X X F x F x xF F x xB x

are the right and left Cauchy-Green strain tensors, respectively.

Subtracting both expressions of Eq. (1.14) between them we have: 

( )
) ( )

2 2

2 2 1

2

2

dl dL d d d d d d

dl dL d d d d d d−

− = − =

− = − =

XC X X X XE X

x x xB x xe x
 

( )1

2
= −E C I  

strain tensor,  

( )11

2
−= −e I B  

strain tensor and I  is the unit vector.  
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(1.15) 

is the left stretch tensor. 

means of the velocity gradient tensor: 

(1.16) 

is the spin rate (non-symmetric 

The stretching rate tensor gives the rate of stretching of line elements while the spin 

in the reference configuration, and a second 

separated from the previous one by the segment 

 counterpart in the 

some quantities can be defined: 

dL d d d d d d d dX X F x F x xF F x xB x
 (1.17) 

tensors, respectively. 

(1.18) 

(1.19) 

(1.20) 
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Finally, since each previously defined strain tensor is symmetrical and positive then six 

independent components must be defined to characterize the current configuration of a body; 

however, another way consists on defining the corresponding principal strain invariants 

and I3. Invariants of C and B

functions. The principal strain invariants, considering 

 1 1 2 3 1 2 3I B B B

 ( )2

2 1 2 2 3 1 3 1 2 2 3 1 3

1
tr tr

2
I B B B B B B = − = + + = + +

 
B B

 

where iλ  are stretch ratios of the unit fibers that are initially oriented along the dir

the orthonormal axis in the coordinate system.

1.3.1.2. Description of the stress

The stress at a given point is defined as the resultant of the internal forces 

surface element, relative to a certain configuration (Fig

possible to use a eulerian or lagrangian description, or even a mixed formulation.

Figure 1.34. Stress vectors in the 

In the eulerian description, the inner forces 

region over another one through a deformed surface element 

definition drives us to the Cauchy stress tensor expression:

 

where T  is the Cauchy stress tensor.

the reference configuration, e.g.

the deformed surface element 
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since each previously defined strain tensor is symmetrical and positive then six 

omponents must be defined to characterize the current configuration of a body; 

however, another way consists on defining the corresponding principal strain invariants 

B are often used in the expressions for strain energy 

The principal strain invariants, considering B, are defined as: 

2 2 2
1 1 2 3 1 2 3trI B B B λ λ λ= = + + = + +Β  

2 2 2 2 2 2 2
2 1 2 2 3 1 3 1 2 2 3 1 3tr trI B B B B B B λ λ λ λ λ λ = − = + + = + +

 
B B

2 2 2 2
3 1 2 3 1 2 3detI B B B Jλ λ λ= = = =B  

are stretch ratios of the unit fibers that are initially oriented along the dir

the orthonormal axis in the coordinate system. 

Description of the stress 

point is defined as the resultant of the internal forces 

surface element, relative to a certain configuration (Figure 1.34). As for the deformations, it is 

lagrangian description, or even a mixed formulation.

Stress vectors in the reference and current configuration.

In the eulerian description, the inner forces dt in the current configuration applied by a solid 

region over another one through a deformed surface element nds are considered. 

Cauchy stress tensor expression: 

d ds=t Tn  

is the Cauchy stress tensor. However, it can be useful to describe the stress field 

the reference configuration, e.g., the application of the boundary conditions. The transport of 

the deformed surface element nds to the reference configuration returns: 

d dS=t πN  

ics and thermodynamics of elastomers  

since each previously defined strain tensor is symmetrical and positive then six 

omponents must be defined to characterize the current configuration of a body; 

however, another way consists on defining the corresponding principal strain invariants I1, I2 

are often used in the expressions for strain energy density 

(1.21) 

2 2 2 2 2 2 2
2 1 2 2 3 1 3 1 2 2 3 1 3λ λ λ λ λ λ= − = + + = + +  (1.22) 

(1.23) 

are stretch ratios of the unit fibers that are initially oriented along the directions of 

point is defined as the resultant of the internal forces through a 

the deformations, it is 

lagrangian description, or even a mixed formulation. 

 

and current configuration. 

ion applied by a solid 

are considered. This 

(1.24) 

However, it can be useful to describe the stress field in 

, the application of the boundary conditions. The transport of 

(1.25) 
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where TJ −=π TF  is the first Piola

describes the real cohesion forces applied through a deformed surface element pe

non-deformed surface. The description of the stress field under a total lagrangian formulation 

needs the transport of the real force d

 

where 1 1TJ − − −= =S F TF F π  is the second Piola

1.3.1.3. Equilibrium equations

The continuum mechanics is based 

supposed valid, independently of the type of material and of the range of displacements or of 

deformations. Among them we can find the so

Conservation of momentum, Conservation of mass

Figure 1.35. Boundary conditions in the reference and current configuration.
 

The application of the momentum conservation postulate 

momentum is constant – in the current configuration (Figure 1.35) of a solid sub

gives: 

 

where t is the cohesion forces tensor acting over the surface 

unit volume in the current configuration and 

volume δ . 

From the divergence theorem

possible to establish the equilibrium equations 

                                                      

7 The outward flux of a vector field through a closed surface is equal to the volume integral of the divergence 
over the region inside the surface. 
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is the first Piola-Kirchhoff stress tensor (non-symmetric)

describes the real cohesion forces applied through a deformed surface element pe

deformed surface. The description of the stress field under a total lagrangian formulation 

needs the transport of the real force dt to the reference configuration: 

0d dS=t SN  

π is the second Piola-Kirchhoff stress tensor (symmetric). 

Equilibrium equations 

cs is based upon a series of general postulates or principles that are 

supposed valid, independently of the type of material and of the range of displacements or of 

deformations. Among them we can find the so-called Conservation-Balance postulates: 

Conservation of mass and Energy Balance postulates

Boundary conditions in the reference and current configuration.

The application of the momentum conservation postulate – in a closed system the total 

in the current configuration (Figure 1.35) of a solid sub

0ds dv
δ δ

ρ
∂

+ =∫ ∫t b  

is the cohesion forces tensor acting over the surface δ∂ , ρ  is the mass density per 

unit volume in the current configuration and b is the force density tensor acting over the 

From the divergence theorem7, Eq. (1.24) and considering the boundary conditions

possible to establish the equilibrium equations for the current configuration:

              

eld through a closed surface is equal to the volume integral of the divergence 

ics and thermodynamics of elastomers  

symmetric). This stress 

describes the real cohesion forces applied through a deformed surface element per unit of 

deformed surface. The description of the stress field under a total lagrangian formulation 

(1.26) 

Kirchhoff stress tensor (symmetric).  

a series of general postulates or principles that are 

supposed valid, independently of the type of material and of the range of displacements or of 

Balance postulates: 

postulates. 

 

Boundary conditions in the reference and current configuration. 

in a closed system the total 

in the current configuration (Figure 1.35) of a solid sub-domain d 

(1.27) 

is the mass density per 

is the force density tensor acting over the 

(1.24) and considering the boundary conditions, it is 

for the current configuration: 

eld through a closed surface is equal to the volume integral of the divergence 
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0 over 

over 

over 

x t

tF

tu

ρ∇ + = Ω
= Ω

= Ω0

T b

Tn f

u u

 (1.28) 

On the other hand, if Eq. (1.27) is modified to take into account the sub-domain D then it is 

possible to establish the equilibrium equations for the reference configuration: 

 
0 0

0 0

0

0 over 

over 

over 

X

F

u

ρ∇ + = Ω
= Ω

= Ω0

π b

πN f

u u

 (1.29) 

where  

 0 Jρ ρ=  (1.30) 

is the mass density per unit volume in the reference configuration, as the mass conservation 

postulate – the mass of a closed system must remain constant over time – must be considered. 

1.3.2. Elements of thermodynamics 

1.3.2.1. Fundamental principles of the thermodynamics 

If we consider a solid in a certain configuration tΩ  (respectively 0Ω ) then there is a state 

function E, internal energy of the system, such that its variation per unit time is equal to the 

sum of the inner mechanical power P and the amount of heat supplied to the system Q:  

 = +&E P Q (1.31) 

It is possible to express each term of Eq. (1.31) in the current or reference configuration, e.g. 

the internal energy of the system is given by: 

 
0

0
t

edv edVρ ρ
Ω Ω

= =∫ ∫E  (1.32) 

where e is the specific internal energy. The inner mechanical power is deducted from the 

principle of virtual powers – the virtual power of an acceleration quantity is equal to the sum 

of the virtual power of the internal and external forces – and it is equal to the product of a 

kinematic variable with its corresponding stress: 

 
0 0

: : :
t

dv dV dV
Ω Ω Ω

− = = =∫ ∫ ∫T D S E π F& &P  (1.33) 

Finally, the amount of heat supplied to the system can be decomposed into an energy source 

per unit mass r and a heat flux loss q  (respectively 0q ) in the surface border t∂Ω  

(respectively 0∂Ω ): 
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0 0

0
t t

rdv ds rdV dS
Ω ∂Ω Ω ∂Ω

= − = −∫ ∫ ∫ ∫qn q NQ  (1.34) 

where 0ds dS=qn q N  is the heat flux lagrangian expression. Then, the energy conservation 

expression – first law of thermodynamics – can be defined, in a Eulerian formulation, as: 

 : xe rρ = + −∇T D q&  (1.35) 

in Lagrangian formulation as: 

 0 0: Xe rρ = + − ∇S E q&
&  (1.36) 

and, in a mixed formulation as: 

 0 0: Xe rρ = + − ∇π F q&
&  (1.37) 

It is necessary to add a restriction to the energy balance equation introduced by the second 

principle of the thermodynamics. The second law establishes the following postulates: 

There is a state function called absolute temperature ( ), tθ x  which is strictly positive, i.e. 

0θ > . 

There is a state function called entropy S with the following characteristics: 

It is an extensive variable, i.e. there is a specific entropy η  such that:  

 
0

0
t

S dv dVρη ρ η
Ω Ω

= =∫ ∫  (1.38) 

The following inequality is fulfilled: 

 ext

dS

dt
≥ Q  (1.39) 

where ext θ=Q Q  is the heat rate supplied to the system divided by the absolute temperature.  

If ext

dS

dt
= Q  the process is called reversible – it is possible to return from the final 

thermodynamic state B to the initial thermodynamic state A by the same way – and if 

ext

dS

dt
> Q  the process is called irreversible – it is not possible to return from the final 

thermodynamic state B to the initial thermodynamic state A by the same way, even if it is 

possible to return by a different way. Introducing the corresponding expression of Eqs. (1.34) 

and (1.38) into Eq. (1.39), the abovementioned inequality can be formulated, in the current 

configuration, as: 

 1
0x

rρη
θ θ

− + ∇ ≥q&  (1.40) 

or in the reference configuration: 
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 0 0

1
0X

rρ η
θ θ

− + ∇ ≥q&  (1.41) 

Furthermore, substituting r from Eq. (1.35) into Eq. (1.40) or r from Eqs. (1.36) and (1.37) 

into Eq. (1.41), three new expressions for the second law of thermodynamics are defined: 

 ( ) 1
: 0xeρ θη θ

θ
− − + − ∇ ≥T D q&&  (1.42) 

in the Eulerian formulation, 

 ( )0 0

1
: 0Xeρ θη θ

θ
− − + − ∇ ≥S E q&

&&  (1.43) 

in the Lagrangian formulation, and: 

 ( )0 0

1
: 0Xeρ θη θ

θ
− − + − ∇ ≥π F q&

&&  (1.44) 

in the mixed formulation. 

Introducing a new variable, the specific free energy: 

 eψ θη= −  (1.45) 

it is possible to define the Clausius-Duhem inequality – common way to express the second 

law of thermodynamics – in the mixed formulation, as: 

 ( )0 0

1
: 0Xρ ψ ηθ θ

θ
− + + − ∇ ≥π F q& &

&  (1.46) 

1.3.2.2. Thermodynamics of local state 

The local state method postulates that the thermodynamic state of a point in a continuum 

medium at a given time is completely defined by the values of a certain number of variables 

that depend uniquely on the given material point. The time derivatives of these variables are 

not required to define the thermodynamic state, i.e. any time evolution could be considered as 

a succession of equilibrium states. It is by the choice of the nature and the number of state 

variables that a physical phenomenon can be described. Two types of state variables can be 

distinguished: 

� The observable variables are related with directly measurable properties of the 

continuum. The mechanics and thermodynamics formalism impose the deformation-

temperature variables ( ),θF . 

� The internal variables are introduced to describe the dissipative phenomena, e.g. the 

viscosity or the plasticity, or to describe the inner state of the material, e.g. dislocation 

density, microcracks configuration or cavities, without the possibility to measure the 

aforementioned properties in a direct way. There is not an objective method to choose the 
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nature of the internal variables. Depending on the complexity of the phenomenon, the 

internal variables could be scalar ( )1 2, , kV V VK  or tensorial ( )1 2, , kV V VK . 

Once that the state variables are defined, the existence of a thermodynamic potential – 

specific free energy potential – from which the state laws are derived can now be postulated. 

This function allows checking the conditions of thermodynamic stability imposed by the 

inequalities that can be deduced from the second thermodynamic principle. Then, the specific 

free energy potential, for k tensorial internal variables, can be defined as: 

 ( ), , kψ ψ θ= F V  (1.47) 

and the specific free energy potential rate as:  

 : : k
k

ψ ψ ψψ θ
θ

∂ ∂ ∂= + +
∂ ∂ ∂

F V
F V

&& &
&  (1.48) 

From Eq. (1.48) the thermodynamic force associated with the internal variable kV  is defined 

as follows: 

 k
k

ψρ ∂=
∂

A
V

 (1.49) 

The thermodynamic potential allows writing the state relations between the observable 

variables and its associate variables; however, for the internal variables, it only allows the 

definition of its associate variables. The description of the evolution of the internal variables 

is carried out by means of a complementary formalism: the dissipation potential. The 

dissipation potential (or dissipation pseudo-potential) is expressed as a continuous function in 

which the state variables are introduced as parameters: 

 ( ), ,kϕ ϕ θ= F V q& &  (1.50) 

Then, considering that the thermodynamic forces are the components of the ϕ∇  vector, the 

complementary law can be expressed as: 

 ( )k
k

ϕ ϕ ϕθ
θ

∂ ∂ ∂= = − ∇ = −
∂ ∂ ∂

π A
F V q& &

 (1.51) 

Finally, the Clausius-Duhem inequality can be reduced to a dissipation expression as: 

 0m Tγ = Φ +Φ ≥  (1.52) 

where γ  is the dissipation, 

 : :m k kΦ = −π F A V&  (1.53) 

is the intrinsic dissipation (or mechanical dissipation), and 
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 0

1
T Xθ

θ
Φ = − ∇q  (1.54) 

is the thermal dissipation by conduction. 

1.3.2.3. Heat transfer 

The heat transfer by conduction is a way of inner heat propagation, independent of the 

movement, associated with the thermal gradient inside the continuum medium which is 

characterized by Fourier's Law: 

 0 X Xθ= − ∇q K  (1.55) 

where  

 1 T
X

− −=K F KF  (1.56) 

is the conductivity tensor in the initial configuration, and K  is the Euler conductivity tensor. 

In the isotropic case, this one reduces to κ=K I , where κ  is the material conductivity factor. 

Inserting the specific internal energy rate expressed in mixed formulation, after a series of 

straightforward derivations using Eqs. (1.45) and (1.47), as: 

 
2

2
0 0

1 1
: : : :k

k k ke
ψθ θ θ

ρ ρ θ θ θ
∂∂ ∂ = + − + − ∂ ∂ ∂ 

Aπ
π F A V F V && & &

&  (1.57) 

into the standard formulation of the first thermodynamics law, Eq. (1.37), leads to the heat 

equation: 

 0 0: : :k
k k k X XC rρ θ ρ θ θ

θ θ
∂∂ = − + + + + ∇ ∂ ∂ 

Aπ
A V F V K& & & &  (1.58) 

where C is the specific heat per unit mass: 

 ( )
2

2
, , kC

ψθ θ
θ

∂= −
∂

F V  (1.59) 

1.3.3. Hyperelastic models 

The hyperelasticity is the capability of a material to experience large elastic strains due to 

small forces – nonlinear behavior – without losing its original properties. An elastic material 

is hyperelastic if there is a scalar function – denoted by W and called strain energy function – 

such that: 

 2
W∂=

∂
T

B
 (1.60) 

in the current configuration, 
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 2
W∂=

∂
S

C
 (1.61) 

in the reference configuration, and 

 W∂=
∂

π
F

 (1.62) 

in the mixed configuration.  

1.3.3.1. Statistical mechanics treatments 

The statistical mechanics approach begins by assuming a structure of randomly-oriented 

long molecular chains. In the Gaussian treatment, when deformation is applied, the chain 

structure stretches and its configurational entropy decreases. If one considers the deformation 

of an assembly of n chains by a principal stretch state ( )1 2 3, ,λ λ λ  and the deformation is such 

that the chain length r does not approach its fully extended length Nl, N being the number of 

connected rigid-links in a chain and l the length of each link, then the elastic strain energy 

function can be derived from the change in configurational entropy:  

 ( )2 2 2
1 2 3

1
3

2
W nkθ λ λ λ= + + −  (1.63) 

where k is Boltzmann's constant. At large deformations where r begins to approach Nl, the 

non-Gaussian nature of the chain stretch must be taken into account. Kuhn and Grun (1942) 

accounted for the finite extensibility of chain stretch using Langevin chain statistics which 

account for the effect of the relative chain length on the configuration available to the chain. 

The resulting non-Gaussian force-extension relationship for a chain is given by: 

 1 1k r k
f

l Nl l N

θ θ λ− −   = =   
   

L L  (1.64) 

where 1−
L  is the inverse of the Langevin function given by:  

 ( ) ( )1 coth 1β β β− = −L  (1.65) 

Assuming a representative network structure (Figure 1.36), to link the chain stretch of 

individual chains to the applied deformation, it is possible to incorporate the non-Gaussian 

relationship into a constitutive framework. The models differ in how the chains deformation is 

related to the deformation of the unit cell. 

In the 3-chain model (James and Guth, 1943), the chains deform with the cell and the stretch 

on each chain will then correspond to a principal stretch value. The resulting strain energy 

function is given by: 
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3

1

ln
3 sinh

i
i i

i i

nk
W N N

βθ λ β
β=

  
= +   

  
∑  (1.66) 

where ( )1
i i Nβ λ−= L . In the 4-chain model (Flory and Rehner, 1943), the tetrahedron 

deforms according to the imposed deformation and the chains deform accordingly with the 

interior junction point displacing in a non-affine manner such that the equilibrium is satisfaid. 

 

Figure 1.36. Non-Gaussian networks: (a) 3-chain model, (b) 4-chain model, (c) 8-chain 
model, and (d) full network model. Each model is depicted in its undeformed and deformed 

state. 
 

This model provides a more cooperative network deformation than the 3-chain model as the 

chains stretch and rotate with deformation; however, the individual chain stretch-applied 

stretch relationship is obtained by iterative methods. In the 8-chain model (Arruda and Boyce, 

1993), the chains undergo tensile stretching for all imposed deformations and also rotate 

towards the principal axis of stretch mimicking, in an average sense, what would be expected 

in the cooperative deformation of a real network. Due to the symmetry of the chain structure 

the interior junction point remains centrally located throughout the deformation and the 

resulting strain energy function is given by: 

 ln
sinh

ch
ch ch

ch

W nk N N
βθ β λ

β
  

= +  
  

 (1.67) 

where ( )1
ch ch Nβ λ−= L  and 

 ( )
1/2

2 2 2
1 2 3

1

3chλ λ λ λ = + +  
 (1.68) 



 1. Elements of structure, mechanics and thermodynamics of elastomers  

50 

 

is the stretch on each chain in the structure. In the full-network model (Wu and van der 

Giessen, 1993), the chains are assumed to be randomly distributed in space and to deform in 

an affine manner. The strain energy function is found by integrating over the stress-stretch 

response of all chains.  

1.3.3.2. Invariant-based and stretch-based continuum mechanics treatments 

The continuum mechanics treatment of rubber elasticity is based upon dependence 

between the strain energy density and stretch via one or more of the three invariants of the 

stretch tensor, Eqs. (1.21), (1.22) and (1.23). The elastomer is often approximated to be 

incompressible, thus 3 1I =  and does not contribute to the strain energy. Considering out this 

dependence relation, Rivlin (1948) proposed one general representation of W given by 

 ( ) ( )1 2
, 0

3 3
i j

ij
i j

W C I I
∞

=

= − −∑  (1.69) 

where ijC  are material parameters. By keeping only the first term of the Rivlin expression, it 

returns, 

 ( )10 1 3W C I= −  (1.70) 

which is often called the Neo-Hookean model – note that Eq. (1.70) is the continuum 

mechanics equivalent to the Gaussian model, Eq. (1.63), where 10 2C nkθ= . The often 

referred to as Mooney-Rivlin model is obtained by keeping the second term of the Rivlin 

expression: 

 ( ) ( )10 1 01 23 3W C I C I= − + −  (1.71) 

This equation was first derived by Mooney (1940) by determining an expression for the strain 

energy that would provide a constant modulus in shear, i.e. a modulus that did not depend on 

the shear strain. The apparent success in capturing deviations from the Gaussian/Neo-

Hookean model in uniaxial tension is, perhaps, the responsible of the popularity of the 

Mooney-Rivlin model. Several researchers have used higher order terms in 1I  and, in some 

cases, 2I , to account for the departure from neo-Hookean/Gaussian behavior at large stretches 

– as for the Gaussian model, at large deformation, the real stress-stretch behavior departs 

significantly from that predicted by the neo-Hookean model. Using higher order 1I  terms, 

Yeoh (1993) proposed a strain energy function, 

 ( ) ( ) ( )2 3

10 1 20 1 30 13 3 3W C I C I C I= − + − + −  (1.72) 
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that has been shown to work well in capturing different deformation state from moderate to 

large deformations. An alternate high order 1I  model has been proposed by Gent (1996): 

 1ln 1
6

JE
W

J∞

 
= − − 

 
 (1.73) 

where E is the small-strain tensile modulus, ( )1 1 3J I= −  and J∞  denotes a maximum value 

for 1J   accounting for the limiting extensibility. The natural logarithm term can be expanded 

to yield to the following formulation: 

 
( ) ( ) 1

1
0

1
3

6 1
n

n
n

E
W I

n J

∞
+

= ∞

 
= − + 

∑  (1.74) 

which is a form of the Rivlin expression, with all coefficients, 0iC , now related to the two 

material parameters E and J∞ . Considering that the aforementioned 8-chain model (Arruda 

and Boyce, 1993), is 1I -based since it is a function of chain stretch chλ , which is equivalent 

to 1 3I , then a invariant-based form can be formulated: 

 ( )1
1

3
n

i
i i

i

W C I
=

= −∑  (1.75) 

where the iC  are all determined a priori as functions of the material properties n and N. The 

success of the higher order 1I  continuum mechanics models is due to their mimicking the 

physics of successful non-Gaussian statistics models thus providing the connection between 

the higher order continuum models and the statistical mechanics models – similar to the neo-

Hooken model being equivalent to the Gaussian model. One caution regarding the use of 

phenomenological higher order 1I  continuum mechanics models is that the constants chosen 

must result in physically realistic and stable constitutive responses in all deformation states – 

one judicious choice would be to choose all coefficients to be positive-valued.  

Strain energy density functions based on the principal stretches, as opposed to the stretch 

invariants, have also been proposed by several investigators. Valanis and Landel (1967) 

proposed a strain energy function related with the principal stretches: 

 ( )
3

1
i

i

W w λ
=

=∑  (1.76) 

The functions ( )iw λ  are experimentally obtained. Following a similar approach, Ogden 

(1972) proposed a strain energy function in terms of principal stretches: 
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 ( )1 2 3 3n n nn

n n

W α α αµ λ λ λ
α

= + + −∑  (1.77) 

where nµ  and nα  are data-fit constants. 

Statistical mechanics models which account for the non-Gaussian nature of the molecular 

chain stretch together with and effective or representative network structure provide the most 

predictive model of the larger strain behavior under different states of deformations. 

Furthermore, the physically based foundation of the non-Gaussian statistical mechanics 

network models provides a constitutive law that requires only two material properties – the 

network chain density n, which is determined from the small strain behavior, and the limiting 

chain extensibility N , which is determined from the behavior at large strain. Besides, the 

continuum mechanics invariant-based constitutive models are equivalent phenomenological 

representations of the microstructurally based statistical mechanics models – the first invariant 

1I  is correlated with the average chain stretch in the network model. Strain energy expressions 

which contain a polynomial series in 1I  including higher order 1I  terms capture the non-

Gaussian nature of the network stretch behavior while, on the other hand, strain energy 

expressions which contain the second invariant of stretch 2I  should be used with caution – 

results are stiffer in certain types of deformation.   
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CHAPTER 2. FATIGUE RESPONSE OF 

FILLED RUBBERS 
 

2.1. PRE-STRETCH DEPENDENCY OF THE CYCLIC 

DISSIPATION IN CARBON-FILLED SBR8 

This Part of the Chapter 2 explores the inelastic fatigue process in filled rubbers using the internal state 

variable theory. The theory is used to qualitatively and quantitatively analyze the complex history-dependent 

cyclic response of filled rubbers, but also to reveal the underlying physical mechanisms. Experimental 

observations are reported on a styrene-butadiene rubber (SBR) containing different amounts of carbon-black and 

cyclically loaded under a wide range of pre-stretch levels. The effects of pre-stretch and filler content on the 

carbon-filled SBR history-dependent cyclic response, characterized by stress-softening and hysteresis along with 

dissipative heating, are examined. The intrinsic dissipation, regarded as a consequence of two types of 

rearrangements in the rubber-filler material system, i.e. viscoelastic and damage mechanisms, is quantified and 

used to propose a plausible explanation of the underlying inelastic fatigue mechanisms consistent with our 

experimental observations. 

Keywords: Filled rubbers; cyclic dissipation; pre-stretch. 

                                                      

8 This Part of this Chapter is based on the following paper: Qiang Guo, Fahmi Zaïri, H. Baraket, M. 

Chaabane, Xinglin Guo, 2017. Pre-stretch dependency of the cyclic dissipation in carbon-filled SBR. 

European Polymer Journal 96, 145-158.  
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2.1.1. Partial introduction 

Rubbers have a wide range of engineering applications, such as tires, dampers and hoses, 

and may be cyclically loaded under typical operating conditions (Ward, 1985). While many 

fatigue life predictors were proposed in the literature for rubbers (Mars, 2002; Wang et al., 

2002; Saintier et al., 2006; Verron and Andriyana, 2008; Brunac et al., 2009; Ayoub et al., 

2011a, 2012, 2014a; Zarrin-Ghalami et al., 2013; Grandcoin et al., 2014), the study of the 

coupling between the different underlying inelastic fatigue phenomena is less common. The 

physical essence of the fatigue process is attributed to the damage accumulation within the 

materials, interpreted as the irreversible changes of the microstructure towards degradation 

and failure. In rubbers, the viscoelastic effects may play an important role in the fatigue 

process and both irreversible and reversible network rearrangements are involved (Derham 

and Thomas, 1977; McKenna and Zapas, 1981). Rubbers used in engineering applications 

tend to contain a large concentration of fillers dispersed in the rubber matrix in order to 

improve the mechanical properties and reduce the cost. While unfilled rubbers exhibit quasi 

purely elastic response, filled rubbers exhibit a complex history-dependent cyclic response 

characterized by stress-softening, residual strain and hysteresis (Mullins, 1948; Houwink, 

1956; Bueche, 1960; Kraus et al., 1966; Kraus, 1984; Lion, 1996; Marckmann et al., 2002; 

Laiarinandrasana et al., 2003; Hanson et al., 2005; Chagnon et al., 2006; Ayoub et al., 2011b, 

2014b; Diaz et al., 2014) along with dissipative heating (Gough, 1805; Medalia, 1991; 

Meinecke, 1991; Samaca Martinez et al., 2013; Ovalle-Rodas et al., 2015a, 2016). The fatigue 

analysis of filled rubbers necessitates to consider the evolution of this set of inelastic 

phenomena with the cyclic loading history since the fatigue process is inevitably related to 

cyclic loading histories. Moreover, these inelastic effects usually appearing together should 

not be examined separately of each other but in the sense of a coupling. Establishing this 

coupling is an open issue to be addressed. 

In cyclically loaded filled rubbers a heat quantity may be generated and lead, depending on 

the heat removal rate, to a temperature increment. The heat energy dissipated during a cycle 

originates from the conversion of a large part of the mechanical energy dissipated because of 

a stress difference between unloading and reloading paths. The latter, referred to as hysteresis, 

is due to the presence of a viscous stress component in the rubber-filler medium which 

deviates from the purely elastic stress. Since the hysteretic response and the purely elastic 

response are temperature-dependent, the heat build-up generated in the viscoelastic medium 
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may evidently influence in turn the viscoelastic response. In light of the significance of the 

thermo-mechanical coupling to rubber mechanical response, it is surprising to find only a few 

thermo-mechanical constitutive models presented in the literature (Ovalle-Rodas et al., 2013, 

2014, 2015a, 2016; Meo et al., 2002; Reese, 2003; Behnke et al., 2016; Johlitz et al., 2016; Li 

et al., 2016). 

Nevertheless, from the basic viewpoint of the continuum thermodynamics, all the 

irreversible microstructure motions occurring inside the rubber-filler material system during 

the fatigue loading process can induce energy dissipation. The underlying physical 

mechanisms include the fatigue damage mechanisms with unrecoverable network 

rearrangement towards degradation and failure, but also other physical mechanisms related to 

the hysteretic response due to recoverable network rearrangement. Since it is infeasible by 

means of the existing experimental methods to identify and directly measure these network 

rearrangements which may take place at any location in the rubber-filler material system and 

at any time of the fatigue process, some macroscopic quantities associated with 

microstructure evolution may be employed as indicators of the viscoelastic and damage 

effects, respectively. In this contribution, the internal state variable (ISV) theory, serving as a 

profound basis for the development of thermo-mechanical constitutive models (Ovalle-Rodas 

et al., 2013, 2014, 2015a, 2016; Meo et al., 2002; Reese, 2003; Behnke et al., 2016; Johlitz et 

al., 2016; Li et al., 2016), is adopted to investigate the inelastic fatigue process in filled 

rubbers. The basic idea behind the ISV theory is that the thermodynamics state of the material 

is defined by expanding the dimensions of the state space of deformation and temperature, 

referred to as external state variables due to their measurability and controllability, by the 

addition of state variables, ISVs, describing the microstructure changes and associated with 

the dissipative effects (Coleman and Noll, 1963; Rice, 1971; Horstemeyer and Bammann, 

2010). A similar approach was adopted very recently by Loukil et al. (2018). The ISV theory 

provides a feasible way to qualitatively and quantitatively analyze the complex history-

dependent cyclic response of filled rubbers, but also to reveal the underlying inelastic fatigue 

mechanisms. The application is performed on a styrene-butadiene rubber (SBR) containing 

different amounts of carbon-black and cyclically loaded under a wide range of pre-stretch 

levels.  

This Part is organized as follows. Section 2.1.2 introduces the thermodynamic framework 

including the dissipation concept and the ISV theory. Section 2.1.3 presents the materials and 

the experimental methods. Section 2.1.4 presents and discusses the experimental results, 
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especially related to the dissipative effects and guiding a plausible explanation of the 

underlying physical mechanisms. Concluding remarks are finally given in Section 2.1.5.   

2.1.2. Theory 

2.1.2.1. Thermodynamic framework  

According to the basic viewpoint of continuum thermodynamics, the fatigue process can 

be explored as an irreversible thermodynamic process, which is accompanied with the internal 

microstructure evolution, and has to satisfy the first and second laws of thermodynamics9.  

The first law of thermodynamics requires the following energy balance equation to be 

satisfied10: 

 eρ = : − ∇ ⋅S E&& q          (2.1.1) 

where ρ  is the mass density, e  is the specific internal energy, S is the second Piola-

Kirchhoff stress tensor, E  is the Green-Lagrange strain tensor and ∇⋅q  is the divergence of 

the Piola-Kirchhoff heat flux q . 

The second law requires that the Clausius-Duhem inequality is satisfied: 

 ( ) 0s Tη ρ= − ∇ ⋅ − ≥& q       (2.1.2) 

where s  is the specific entropy, T  is the absolute temperature and η  represents the entropy 

generation rate being equal to the difference between the change rate of the entropy sρ &  and 

the divergence of the entropy flow ( )T∇ ⋅ −q . Thus, to assure that the process is 

thermodynamically admissible, the entropy generation rate η  should be non-negative at every 

instant, and it may be in turn additively split into two parts:  

 

1 2

1
0s

T T
η η

η ρ ∇⋅  = + + ⋅∇ ≥ 
 

&

14243
14243

q
q       (2.1.3) 

in which the first part 1η  is due to the irreversible energy conversion, such as from the 

mechanical energy to the thermal energy, and the second part 2η  is due to the heat flowing in 

non-uniform temperature fields. 

                                                      

9 In all that follows, scalars are denoted by normal italicized letters; vectors are denoted by italicized boldfaced 
letters; tensors are denoted by normal boldfaced letters; and the dot on the letters denotes the time derivative. 
10 The volumetric heat supply is neglected in the first and second laws of thermodynamics.  
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Combining Eqs. (2.1.1) and (2.1.3), we obtain the following hybrid inequality for the total 

energy dissipation d  which may be correspondingly split into two parts: 

 ( )
1 2

0
d d

d e Ts T Tρ ρ= : − + + ∇ ⋅ − ≥S E& & &

1442443
14243

q       (2.1.4) 

in which the first part 1d  represents the intrinsic dissipation induced by the irreversible energy 

conversion and the second part 2d  represents the thermal dissipation induced by the 

irreversible energy flow. 

A stronger constraint can be then imposed by assuming that the two parts 1d  and 2d  satisfy 

the dissipation inequality separately. Therefore, we can write the hybrid inequality (2.1.4) in 

the following form: 

 1 0d e Tsρ ρ= : − + ≥S E& & &  and ( )2 0d T T= ∇ ⋅ − ≥q       (2.1.5) 

which requires that the dissipations 1d  and 2d  
are  non-negative at any particle of a 

deformable body and at all times during the fatigue loading history. 

The existence of a free energy function ψ , a special form of the Helmholtz free energy 

potential, is postulated via the Legendre transformation:  

 e Tsψ = −       (2.1.6) 

Subsequently, the intrinsic dissipation 1d  in the inequality (2.1.5) can be re-written as: 

 1 0d sTρψ ρ= : − − ≥S E& &
&       (2.1.7) 

2.1.2.2. Recoverable and unrecoverable network rearrangements 

The history-dependent effects in filled rubbers involves two types of network 

rearrangements, i.e. the recoverable rearrangement inducing viscoelasticity and the 

unrecoverable rearrangement inducing damage. The precise types of network rearrangements 

remain imprecisely understood as multiple plausible explanations have been proposed to 

explain the origin of the different history-dependent effects. The most popular, namely the 

Mullins effect (Mullins, 1948), is trivially attributed to chain scission mechanism 

(Marckmann et al., 2002; Chagnon et al., 2006; Ayoub et al., 2011b, 2014b) within the rubber 

matrix. The scission of short chains is believed to be activated at stretch values greater than a 

maximum obtained in the previous deformation history. During the first extension due to the 

Mullins effect, short chains reaching the limit of their extensibility breakdown along with 

some weak molecular interactions between chains. The degradation in stress resulting from 

the fatigue loading history has the same origin than that resulting from the first extension due 
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to the Mullins effect, but with a lower intensity as it is extended over time. Short chains being 

stuck between entangled chains progressively breakdown resulting in the progressive stress-

softening. At each cycle, some entanglements between chains split open and some short 

chains being stuck between them breakdown, until the degradation is totally consumed 

leading to the stabilization of the stress (Ayoub et al., 2011b). Although this set of plausible 

fatigue damage mechanisms (i.e. disentanglement of chains, fatigue of weak bonds and chain 

scission but also break of chemical cross-links) may explain the progressive stress 

degradation in pure rubbers, it does not consider the interaction with the fillers. Especially 

considering the fact that inelastic effects are much more present in filled rubbers than in pure 

rubbers. Over the time, various competing views were proposed to explain the origin of the 

Mullins effect by involving the filler: breakage of short chains between two filler aggregates 

(Bueche, 1960), chain "slipping" over the filler surface (Houwink, 1956), rupture of filler 

aggregates (Kraus et al., 1966) and chain disentanglement between two filler aggregates 

(Hanson et al., 2005). In carbon-filled rubbers, the size of the carbon-black filler is generally 

very small (less than 100 nm) but aggregates whose size can reach a few microns can form 

during the production process and influence their strength (Ovalle-Rodas et al., 2015b) or 

fatigue (Ovalle-Rodas et al., 2015a, 2016). Experimental evidence via electrical resistivity 

measurements (Kraus et al., 1966; Pramanik et al., 1992; Diaz et al., 2014) showed that the 

increase in the filler concentration in carbon-filled rubbers leads to the development of a filler 

network across the rubber matrix and a higher number of inter-aggregates links. The higher 

electrical resistivity observed in pre-stretched carbon-filled rubbers in comparison to virgin 

ones may be explained by the rupture of inter-aggregates links during the cyclic loading, 

beginning with the weakest links and progressing into the strongest ones. As the carbon-filled 

rubber is in a deformed state, the filler aggregates form new links in new positions, which are 

again broken and then reformed in other positions. In conclusion, all these network 

rearrangements may contribute to the hysteretic process, which is associated with energy 

dissipation at the macroscopic scale. Further, a large part of the dissipated mechanical energy 

due to the hysteretic effect is converted into dissipative heating which manifests itself in the 

form of a change in temperature. 

The dissipation of energy, and especially the intrinsic dissipation, are closely associated 

with these irreversible thermodynamic processes involving recoverable and unrecoverable 

rearrangements in the rubber-filler material system. The ISV theory is used to accurately 

describe the thermodynamic response of filled rubbers under fatigue loading. The free energy 
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function ψ  is regarded as a thermodynamics function depending on a number of independent 

state variables:  

 ( ), , ,Tψ ψ= E α βα βα βα β      (2.1.8) 

It includes not only two external state variables, the absolute temperature T  and the Green-

Lagrange strain tensor E , but also ISVs represented by the two vectors αααα  and ββββ . Although 

introduced in the free energy function as macroscopic quantities, the two ISVs are actually 

related to the irreversible movement of the internal microstructures and describe the 

deviations from thermodynamic equilibrium. More specifically, αααα  is related to the 

recoverable network rearrangement inducing viscoelasticity, such as the move of free chains 

included in the relaxed network11, the viscous friction between fillers and matrix / fillers, and 

the breakdown and rebound of inter-aggregates links, while ββββ  is related to the unrecoverable 

network rearrangement inducing damage, such as the chain scission and the permanent filler 

aggregate rupture. Nevertheless, it should be noted that the recoverable and unrecoverable 

network rearrangements are two relative concepts dependent on the loading condition, 

especially on the load time-scale. By inserting the time derivative of the free energy function 

ψ&  by means of the chain rule of differentiation: 

 :T
T

ψ ψ ψ ψψ ∂ ∂ ∂ ∂= + + ⋅ + ⋅
∂ ∂ ∂ ∂

E
E

&& &
& &α βα βα βα β

α βα βα βα β
 (2.1.9) 

into the inequality (2.1.7), the intrinsic dissipation 1d  can be re-written as: 

 1 : 0d s T
T

ψ ψ ψ ψρ ρ ρ ρ∂ ∂ ∂ ∂   = − − + − ⋅ − ⋅ ≥   ∂ ∂ ∂ ∂   
S E

E
&& &

&α βα βα βα β
α βα βα βα β

     (2.1.10) 

Applying the Coleman-Noll procedure (Coleman and Noll, 1963) to the inequality (2.1.10), 

we can obtain the constitutive relationships: 

 
ψρ ∂=

∂
S

E
, s

T

ψ∂= −
∂

     (2.1.11) 

and a residual inequality indicating that the intrinsic dissipation 1d  
can originate from two 

types of network rearrangements, i.e. viscoelastic mechanisms and damage mechanisms: 

 1 0d = ⋅ + ⋅ ≥&&α βα βα βα βA B , 
ψρ ∂= −

∂αααα
A , 

ψρ ∂= −
∂

B
ββββ

     (2.1.12) 

                                                      

11 A physical interpretation of the viscosity in a pure rubber is due to the chain reptation concept finding its 
origin from the relaxation of a single entangled chain in a polymer gel (de Gennes et al., 1971). This concept 
attributes the origin of the viscosity in a pure rubber to the slow return of free chains to a more relaxed 
configuration when the rubber network is in a deformed and relaxed state.  
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where A  and B  are the thermodynamic conjugate vectors for αααα  and ββββ , respectively, and 

they can be interpreted as the internal non-equilibrium forces that drive the material towards a 

thermodynamic equilibrium state, thus being referred to as generalized thermodynamic forces. 

Correspondingly, the change rates of the internal variables, &αααα  and &ββββ , can be taken as the 

generalized thermodynamic fluxes. Therefore, the intrinsic dissipation 1d  is actually equal to 

the total amount of the two types of internal thermodynamic works, namely, ⋅ &A αααα  and ⋅ &B ββββ , 

related with the recoverable and unrecoverable network rearrangements, respectively. Due to 

the fact that the irreversible thermodynamic processes in the rubber-filler material system are 

coupled with each other, we cannot conclude that the ⋅ &A αααα  and ⋅ &B ββββ  are simultaneously 

positive. As a matter of fact, a negative internal thermodynamic work is probable during the 

fatigue process, which means that this internal work is stored as thermodynamic potential 

energy by means of the corresponding network rearrangements. 

Based on these constitutive relations and applying the chain rule of differentiation, a coupled 

energy balance equation is deduced from Eqs. (2.1.1) and (2.1.7) in two alternative forms: 

 1 te tiCT dρ = − ∇⋅ + +&

h hq      (2.1.13) 

 1 te tid e CTρ ρ: − = − + +S E& &
& h h      (2.1.14) 

where C  is the specific heat capacity at deformation and internal variables fixed, teh  is the 

structural thermoelastic heating (cooling), tih  is the heating (cooling) induced by the 

coupling effect between the temperature and the internal variables: 

 
s

C T
T

∂=
∂

, te T
T

∂= :
∂
S

E&h , ti T T
T T

∂ ∂= ⋅ + ⋅
∂ ∂

&
&h α βα βα βα βA B

     (2.1.15) 

2.1.2.3.  Dissipations 

Let us consider a flat and thin specimen with a constant cross-section subjected to a 

constant-amplitude cyclic loading. In this case, the temperature variations are relatively low 

(Ovalle-Rodas et al., 2013, 2014, 2015a, 2016). We will therefore assume that the fatigue-

induced temperature variations have no influence on the network rearrangements. Naturally, 

this assumption is quite reasonable as long as the dissipative heating does not reach a very 

high level. Hence, the non-equilibrium thermodynamic forces can be considered to be 

temperature-independent: 

 0
T

∂ =
∂
A

, =0
T

∂
∂
B

     (2.1.16) 
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Also, the specific heat capacity is considered as a constant independent on the state variables, 

i.e. 0C C= . Based on these assumptions, Eqs. (2.1.13) and (2.1.14) become: 

 0 1 teC T dρ = −∇⋅ +&

hq      (2.1.17) 

 1 0 ted e C Tρ ρ: − = − +S E& &
& h      (2.1.18) 

The integration of Eq. (2.1.18) over cn  complete cycles with the loading frequency Lf  gives: 

 ( )L
1 0 te0

cn

fD d e C T dtρ ρ− = − +∫ &
& h      (2.1.19) 

in which D  is the average mechanical dissipation and 
1d  is the average intrinsic dissipation 

given, respectively, by: 

 ( )L

0

1 cn

f

c

D dt
n

= :∫ S E&  and
 

L
1 10

1 cn

f

c

d d dt
n

= ∫      (2.1.20) 

Considering the fact that the accumulation of the thermoelastic heating teh  over one complete 

cycle is imperceptible, the right term of Eq. (2.1.19) may be simplified: 

 ( ) ( )L
0 0 00

1 cn

f

c c

e C T dt e e C
n n

ρρ ρ θ− = − −∫ &
&      (2.1.21) 

in which 0e  is the initial internal energy and 0T Tθ = −  is the average temperature variation 

of the specimen gauge zone, 0T  being the initial temperature. 

Applying the first order Taylor series approximation on the specific internal energy
 

( ), , ,e e T= E α βα βα βα β  leads to:  

 ( ) ( ) ( ) ( )0 0 0 0 0+
e e e e

e e T T
T

∂ ∂ ∂ ∂− = − : − + ⋅ − + ⋅ −
∂ ∂ ∂ ∂

E E
E

α α β βα α β βα α β βα α β β
α βα βα βα β

     (2.1.22) 

Recall that only the constant-amplitude cyclic loading is treated here, and the internal state 

variable αααα  characterizes the recoverable network rearrangement induced by the cyclic 

loading and thus changing with it. Consequently, after one complete cycle, the state variables 

E  and αααα  will return to their original values, i.e. 0=E E  and 0=α αα αα αα α . Considering 

( ) 0e T T s T C∂ ∂ = ∂ ∂ =  and ( )e ψ ρ∂ ∂ = ∂ ∂ = −β ββ ββ ββ β B , Eq. (2.1.19) may be further 

simplified as: 

 ( )1 0
c

D d
n

−− = −B β ββ ββ ββ β      (2.1.23) 

Since the internal state variable ββββ  is related to the unrecoverable network rearrangement, it 

can be concluded from Eq. (2.1.23) that the difference between the average mechanical 
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dissipation D  and the average intrinsic dissipation 
1d  characterizes the process of the fatigue 

damage evolution.  

Moreover, on basis of Eq. (2.1.17), a local zero-dimensional thermal equilibrium equation 

was proposed by Boulanger et al. (2004): 

 
0 te 1C d

θρ θ
τ

 + = + 
 
&

h

 (2.1.24) 

where τ  is a time constant characterizing the heat exchanges of the zone with the 

surroundings. 

Considering that the time integral of the temperature change rate is equal to the final 

temperature increment and again that the accumulation of the thermoelastic heating eh  over 

one complete cycle is imperceptible, the average intrinsic dissipation 
1d  over the cyclic 

loading process can be calculated by processing the temperature data: 

( )L0
1 0

1
c

n

f
n

c

C
d t dt

n

ρ θ θ
τ

 
= + 

 
∫                                                           (2.1.25) 

where 
cnθ  is the temperature increment at the end of the cyclic loading history cn . 

2.1.3. Experiments 

A series of fatigue tests were achieved on carbon-filled SBR containing different amounts 

of carbon-black in order to gain insight into pre-stretch and filler content effects on the 

different cyclic history-dependent effects.  

 

 SBR15 SBR25 SBR43 
SBR 100 100 100 
Carbon-black 15 25 43 
Processing oil 37.5 37.5 37.5 
Antioxidant  5.5 5.5 5.5 
Zinc oxide 5 5 5 
Accelerators 4 4 4 
Stearic acid 3 3 3 

Table 2.1.1. Compound formulation (value in phr, in weight). 
 

2.1.3.1. Materials and specimen 

Rubber sheets, produced by compression moulding, were supplied by the Trelleborg 

Group. The investigated rubber is a sulfur-vulcanized SBR filled with three different amounts 
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of carbon-black: 15, 25 and 43 phr (part per hundred of rubber in weight), denoted by SBR15, 

SBR25 and SBR43, respectively. The details about the compound formulation, provided by 

the manufacturer, are given in Table 2.1.1.  

Dog-bone shaped specimens were cut from the rubber sheets with a thickness of 2 mm. 

Although material isotropy is expected, the specimens were cut along the same direction. The 

specimen dimensions are given in Figure 2.1.1. The specimen gauge zone allows locating the 

highest strain in this region and, as a consequence, the highest temperature increase. 

Furthermore, its small thickness allows avoiding a high temperature gradient in the transverse 

direction.  

 

 

Figure 2.1.1. Specimen geometry (dimensions in mm). 
 

2.1.3.2. Methods 

2.1.3.2.1. Mechanical measurements   

The fatigue tests were performed with the help of an electro-pulse testing machine Instron-

5500 and consist in three loading steps as illustrated in Figure 2.1.2.  

 

Figure 2.1.2. Stretch vs. time, stage I: ramp to λmin, stage II: relaxation period with hold time 
of 3 minutes, stage III: cyclic loading. 
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The stretch was first ramped to the prescribed minimum value minλ . After a hold time of 3 

minutes guarantying thermo-mechanical equilibrium, the stretch was ramped, repetitively, to 

a maximum value maxλ  and then ramped down to the minimum value minλ , load and 

displacement versus time being recorded during the cyclic tests. The same absolute axial 

strain rate was imposed to the loading and unloading paths. The pre-stretch dependency was 

quantified using the ratio between the minimum applied stretch minλ  and the maximum 

applied stretch maxλ  defined as: 

 min

max

1

1
R

λ
λ

−=
−

            (2.1.26) 

Five stretch ratios were considered: R = [0.286, 0.444, 0.545, 0.615, 0.667], in which the 

stretch amplitude 
amp max minλ λ λ= −  is set to be the same. All tests were performed at ambient 

conditions. Unless explicitly otherwise stated, the amplitude and the axial strain rate are 
ampλ = 

1.25 and ε& = 1 s-1, respectively. 

2.1.3.2.2. Temperature-field measurements 

Full-field surface temperature of the specimen gauge zone was monitored by means of an 

infrared camera Flir SC300 with the following main characteristics: Spectrum response 

ranged from 7.5 to 13 µm, resolution of 320 × 240 pixel, sensitivity / NETD less than 25 mK 

and image update rate of 9 Hz. The camera was located at a distance of about 0.5 m from the 

specimen surface in order to reduce the reflected radiation due to surrounding humidity. To 

improve accuracy a dummy specimen made of the same material was positioned close to the 

tested one to monitor the environmental changes and further to eliminate their effects on the 

temperature data. In addition, the set-up was packed in a relatively closed space using a 

special thermal insulation material to reduce the external radiation sources. The stored images 

were post-processed to determine the temperature evolution in the region of interest of the 

gauge zone. Thermal equilibrium is ensured by a hold time of 10 minutes before testing. 

Pre-conditioning tests were initially run, with R = 0, in which an overstretch of 1.0 at a 

frequency of 1 Hz was applied for 15 cycles. The pre-conditioning was applied, previous to 

measurements, in order to eliminate the surface flake that appears in the specimen during 

cyclic loading, which can alter the temperature-field measurements because of the surface 

emissivity variation. 
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2.1.4. Results and discussion 

2.1.4.1. Large-strain viscoelastic relaxations 

The large-strain viscoelastic behavior is examined in Figure 2.1.3 in which multi-step 

stress relaxations under a loading-unloading cycle were performed for the three carbon-filled 

SBR materials. At each relaxation period, the stretch is maintained constant during only 10 

seconds. The figure provides a quantitative judgment of the nonlinear response and the 

material viscosity related to both the relaxation response and the hysteresis loop, i.e. the stress 

difference between loading and unloading paths. Due to the strain-amplifying effect of the 

fillers, the material becomes stiffer, the hysteresis loop area gets larger and the strain-

hardening increases with increasing filler content. The stress during the relaxation periods 

seems to evolve towards an end, if the hold time is sufficiently long, corresponding to a 

stabilized relaxed-stress, which is a function of the stretch level (Laiarinandrasana et al., 

2012). The stress evolution during the relaxation periods is much less marked in the 

unloading path than in the loading one since the required time to reach the equilibrium 

exceeds the magnitude of the applied hold time. 

 

Figure 2.1.3. Multi-step stress relaxations under a loading-unloading cycle (1: SBR15, 2: 
SBR25, 3: SBR43). 

 

The carbon-filled SBR history-dependence can be also examined with the relaxation periods 

of the stage II of Figure 2.1.2. As an example, the stress evolution, normalized by the 

maximum value, is presented for the SBR43 material in Figure 2.1.4. It can be observed that 

the normalized maximum stress depends on the pre-stretch level. The higher the minimum 
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stretch, the smaller the decrease in stress. This pre-stretch dependency of the plots points out 

the nonlinearity of the material viscosity.  

 

Figure 2.1.4. Normalized stress under relaxation for SBR43 corresponding to stage II of 
Figure 2.1.2 (1: λmin = 1.1, 2: λmin = 1.2, 3: λmin = 1.3, 4: λmin = 1.4, 5: λmin = 1.5). 

 

2.1.4.2. Fatigue-induced stress-softening 

The fatigue-induced stress-softening is shown in Figure 2.1.5 for the SBR43 at different 

stretch ratios material subjected to multi-step cyclic tests in which the stages II and III of 

Figure 2.1.2 were repeated 5 times.  

                     

Figure 2.1.5. Normalized stress under cyclic loading for SBR43 corresponding to stage III of 
Figure 2.1.2 (1: R = 0.286, 2: R = 0.444, 3: R = 0.545, 4: R = 0.615, 5: R = 0.667). 

 

The figure provides the stress evolution during the stage III normalized by the maximum 

value. We firstly focus on the first block in which a substantial decrease in stress is observed 

during the first few cycles. Following this rapid decrease in stress, the rubber undergoes a 
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more gradual softening and tends towards a stabilized state for which there is no significant 

change in stress. The degree to which the material is softened depends strongly on the stretch 

ratio. The smaller the stretch ratio experienced during the cyclic loading history, the softer the 

stabilized response. The rapid initial decrease in stress, as well as the associated development 

of a slight residual strain, is generally regarded as a damage effect related to the irreversible 

breakage of various types of bonds in the rubber network (Mullins, 1948; Houwink, 1956; 

Bueche, 1960; Kraus et al., 1966; Kraus, 1984; Lion, 1996; Marckmann et al., 2002; 

Laiarinandrasana et al., 2003; Hanson et al., 2005; Chagnon et al., 2006; Ayoub et al., 2011b, 

2014b; Diaz et al., 2014). Due to their time-dependent memory effects, the inelastic 

phenomena in polymers can be recovered as long as ageing (Belbachir et al., 2010; Ben 

Hassine et al., 2014) or inelastic volumetric effects (Aït Hocine et al., 2011; Zaïri et al., 2008, 

2011) are avoided. An illustrative example concerns the plastic deformation in thermoplastic 

polymers which can be recovered with heating. In the same way, it was reported in the review 

of Mullins (1969) that the original stiffness of filled rubbers is partially or totally recovered, 

very slowly at ambient temperature and very rapidly with heating. At each block of Figure 

2.1.5 the first few cycles invariably induce a considerable decrease in stress which cannot be 

attributed solely to the effect of the damage. Indeed, a large portion of the initial transient 

softening is recovered when one passes from one block to another. The recovery in fatigue-

induced stress-softening, which could increase with the magnitude of the applied hold time of 

the stage II of Figure 2.1.2, can be only associated with viscoelastic relaxations, i.e. 

recoverable mechanisms. Therefore, the observable decrease in stress is believed to be 

associated in part with unrecoverable breakage of bonds and in another part with recoverable 

viscoelastic mechanisms. It can be also observed that the portion of the recoverable stress-

softening diminishes with the block number. In addition, after the initial transient softening, 

the stress tends further to recapture the same path as that corresponding to the interrupted 

cyclic test. This observation poses a challenge for the development of predictive constitutive 

models. Although current theoretical works on the stress-softening may contain the 

underlying physical structure and damage mechanisms, they typically ignore the stress-

softening recovery which would require to consider the material viscosity, significant in filled 

rubbers as shown in the previous sub-section. In addition to the move of free chains included 

in the relaxed network and the viscous friction between fillers and matrix / fillers, during the 

network rearrangement some broken chains may be transformed into dangling chains which 

contributes to increase the material viscosity. 
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The strain-amplifying effect of the fillers acts both on damage intensity and on viscoelastic 

relaxations. The dependence of both stretch ratio and filler effects on the degree to which the 

material is softened may be quantified by the softening rate expressed by the following 

parameter: 

 
1-

cn

cn

δ
δ =          (2.1.27) 

in which 
cnδ  is the normalized stress at the end of the cyclic loading history cn . 

This parameter is plotted as a function of the stretch ratio in Figure 2.1.6 such that a straight-

line fit adequately describes the results. Although its value is significantly amplified by the 

filler content, the rate of the decrease in the δ  parameter with the stretch ratio is observed to 

slightly vary with the filler content.  

  

Figure 2.1.6. Softening rate as a function of stretch ratio (1: SBR15, 2: SBR25, 3: SBR43). 
 

2.1.4.3. Dissipations 

As introduced in the theory section, the mechanical dissipation due to the hysteretic 

process in the carbon-filled SBR cyclic response is a consequence of the internal network 

rearrangements during the cyclic loading. Although being an irreversible process in 

thermodynamics, the rearrangement of the network in the rubber-filler material system leads 

to both recoverable and unrecoverable mechanisms. As an illustrative example, Figure 2.1.7 

presents the hysteretic response for the SBR43 material at a given cycle of the stage III of 

Figure 2.1.2. The pre-stretch dependency of the hysteresis loop area is evidenced in the figure. 

The smaller the stretch ratio, the higher the loop area. The decrease of the loop area with the 
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stretch ratio is mainly due to the nonlinear material response which also induce a slight effect 

on the shape of the hysteresis loop. 

 

Figure 2.1.7. Hysteretic response at 250th cycle for SBR43 (1: R = 0.286, 2: R = 0.444, 3: R = 
0.545, 4: R = 0.615, 5: R = 0.667). 

 

The mechanical energy dissipated during one hysteresis loop is quantified by its area. Figure 

2.1.8 shows the evolution of the mechanical dissipation with the cycle number after reaching 

different assigned pre-stretches.  

                    

Figure 2.1.8. Mechanical dissipation under cyclic loading for SBR43 (1: R = 0.286, 2: R = 
0.444, 3: R = 0.545, 4: R = 0.615, 5: R = 0.667).  

 

By virtue of the fatigue-induced stress-softening, the hysteresis during the first few cycles is 

much greater than that under subsequent steady-state cyclic loading. Indeed, as shown in the 

figure the strongest decrease in mechanical dissipation occurs during the first few cycles. 

Following this rapid decrease, the mechanical dissipation tends towards a stabilized state for 

which the rate of the decrease with the cycles is observed to decrease with the pre-stretch. In 
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order to give an indication of the average mechanical energy dissipated during the cyclic 

loading history, the mechanical dissipation is averaged over all cycles via Eq. (2.1.20). The 

average mechanical dissipation D  is plotted as a function of stretch ratio in Figure 2.1.9 such 

that a straight-line fit adequately describes the results. It can be observed in the figure that the 

slope, characterizing the stretch ratio dependency of the mechanical dissipation, increases 

with the filler content. 

 

Figure 2.1.9. Mechanical dissipation as a function of stretch ratio (1: SBR15, 2: SBR25, 3: 
SBR43).  

 

Figure 2.1.10. Temperature increment under cyclic loading for SBR43 (1: R = 0.286, 2: R = 
0.444, 3: R = 0.545, 4: R = 0.615, 5: R = 0.667). 

 

When the carbon-filled rubber is cyclically loaded, parts of the applied mechanical energy are 

converted into thermal energy which drives to a temperature evolution within the material. As 

illustrative examples, Figures 2.1.10 and 2.1.11 report the surface temperature evolution 

extracted in the specimen gauge zone with the pre-stretch and filler content effects, 

respectively.  
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Figure 2.1.11. Temperature increment under cyclic loading for R = 0.545 (1: SBR15, 2: 
SBR25, 3: SBR43). 

 

It can be clearly observed that an abrupt temperature increase occurs in the beginning of the 

cyclic loading and then the temperature tends to stabilize because of the equality of the 

generated heat and the heat lost into the environment. A global view at these results indicates 

that there is a quite significant effect of the two above factors on the stabilized temperature 

which increases with the stretch ratio decrease and with the filler content increase. The 

average intrinsic dissipation 
1d  was evaluated by processing the temperature data via Eq. 

(2.1.25) and plotted as a function of the stretch ratio in Figure 2.1.12 such that a straight-line 

fit adequately describes the results. Indeed, the intrinsic dissipation decreases with the stretch 

ratio following a linear relationship for which the slope increases with the filler content.  

 

Figure 2.1.12. Intrinsic dissipation as a function of stretch ratio (1: SBR15, 2: SBR25, 3: 
SBR43).  
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The inherent inelastic fatigue mechanisms may be studied under the guidance of the 

intrinsic dissipation estimation with the pre-stretch dependency. The carbon-filled SBR has 

different intrinsic dissipation mechanisms which, as introduced in the theory section, may be 

classified into two types, namely, viscoelastic mechanisms corresponding to recoverable 

network rearrangement and damage mechanisms corresponding to unrecoverable network 

rearrangement.  

The level of interactions between the chains and the fillers, the chains and the fillers 

themselves plays an important role in the viscoelastic mechanisms. Its degree depends, 

respectively, on the rubber-filler interface, the chain entanglement density (viscous friction 

between chains), and the contact surface area between fillers inside the aggregates (viscous 

friction between carbon-black fillers). Also, as explained in the theory section, the 

breakdown-rebound of inter-aggregates links completes this set of recoverable network 

rearrangements. The latter mechanism is a progressive process, beginning with the weakest 

links and progressing into the strongest ones. Indeed, the breakdown of inter-aggregates links 

and the formation of new links in new positions are two irreversible processes in 

thermodynamics viewpoint, but the whole breakdown-rebound process may be considered in 

a large part as a recoverable mechanism highly dependent on the load time-scale. The increase 

in filler content is related to a higher number of inter-aggregates interactions which leads thus 

to a higher additional energy dissipated within the breakdown and rebound of inter-aggregates 

links, and, a higher viscous friction between carbon-black fillers inside the aggregates.  

We can illustrate these inelastic fatigue mechanisms by the scenario presented in Figure 

2.1.13. In the initial state (Figure 2.1.13a), the filled rubber is represented by entangled chains 

between two filler aggregates. It is believed that the application of a pre-stretch (Figure 

2.1.13b) has for main consequences to decrease the rubber-filler interaction (chain "slipping" 

over the filler surface, desorption at the filler surface, bond breakage at the filler surface12), 

the chain entanglement density and the contact surface area between fillers inside the 

aggregates. Therefore, the viscous friction degree decreases with the applied pre-stretch level 

and, consequently, a higher pre-stretch implies a lower intrinsic dissipation. During the cyclic 

loading (Figure 2.1.13c), some damage happens. It is believed that the chains between two 

                                                      

12 High resolution solid-state NMR experiments provide insights into the existence of mobility gradients in filled 
rubbers, through variations in the glass transition temperature as a function of the distance to the filler surface 
(Berriot et al., 2002, 2003; Boutaleb et al., 2009). The degradation of this perturbed region of chains around the 
fillers due the application of the pre-stretch is potentially an additional cause of the weaker matrix-filler 
interactions (Diaz et al., 2014; Boutaleb et al., 2009; Zaïri et al., 2011).  
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filler aggregates progressively breakdown, and in the meantime, a part of the breakdown of 

the inter-aggregates links cannot be reformed on the time scale of measurements. 

 

 

(a) 

 

(b) 

 

(c) 
Figure 2.1.13. Physical mechanisms in pre-stretched cyclically loaded filled rubbers:  

(a) initial network, (b) pre-stretched network and (c) network rearrangement after pre-
stretched cyclic loading. 

 

These two unrecoverable network rearrangements contribute to the intrinsic dissipation, but in 

a lower extent than the recoverable ones in consistence with our experimental observations. 

Some of broken chains may be transformed into dangling chains and potentially contribute to 

increase the viscous friction and, therefore, to increase the dissipation. The permanent filler 

aggregate rupture acts as an antagonist mechanism since it leads to a lower contact surface 

area and then to a lower energy dissipated. The decrease in dissipation with the cyclic loading 
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as shown in Figure 2.1.8 is a sign that the permanent filler aggregate rupture dominates 

among the two possible damage effects. 

As a final point, the effects of stretch amplitudes and strain rates on the dissipations are 

presented in Figures 2.1.14 to 2.1.16 for the three carbon-filled SBR.  

 

                                         (a)                                                                   (b) 
Figure 2.1.14. Amplitude and strain rate effect on stretch ratio dependency of SBR43 

dissipations: (a) mechanical dissipation and (b) intrinsic dissipation (1: 
ampλ = 1.25, ε& = 1 s-1; 

2: 
ampλ = 1.25, ε& = 2 s-1; 3: 

ampλ = 2.5, ε& = 1 s-1; 4: 
ampλ = 2.5, ε& = 2 s-1). 

 

                                         (a)                                                                   (b) 
Figure 2.1.15. Amplitude and strain rate effect on stretch ratio dependency of SBR25 

dissipations: (a) mechanical dissipation and (b) intrinsic dissipation (1: 
ampλ = 1.25, ε& = 1 s-1; 

2: 
ampλ = 1.25, ε& = 2 s-1; 3: 

ampλ = 2.5, ε& = 1 s-1; 4: 
ampλ = 2.5, ε& = 2 s-1). 

 

Both mechanical and intrinsic dissipations manifest a good linear correlation with the pre-

stretch whatever the strain amplitude experienced during the loading history and the strain 

rate. Higher strain amplitude or strain rate results in amplified effects at the scale of the above 

physical mechanisms and then in more dissipations. From these figures, it can be also 
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observed that the mechanical dissipation is higher than the intrinsic dissipation. In the theory 

section, the difference between the two dissipations was considered as a fatigue damage 

indicator, but our experimental observations point out a weak difference. That means that the 

viscoelastic recoverable rearrangement is the dominate mechanism of the carbon-filled SBR 

fatigue. 

 

                                        (a)                                                                     (b) 
Figure 2.1.16. Amplitude and strain rate effect on stretch ratio dependency of SBR15 

dissipations: (a) mechanical dissipation and (b) intrinsic dissipation (1: 
ampλ = 1.25, ε& = 1 s-1; 

2: 
ampλ = 1.25, ε& = 2 s-1; 3: 

ampλ = 2.5, ε& = 1 s-1; 4: 
ampλ = 2.5, ε& = 2 s-1). 

2.1.5. Partial conclusions 

The internal state variable theory was adopted for the first time to investigate the inelastic 

fatigue process in carbon-black filled SBR. The theory accounts for the two types of 

rearrangements in the rubber-filler material by introducing the internal state variables related 

to the recoverable rearrangement inducing viscoelasticity and the unrecoverable 

rearrangement inducing damage. The intrinsic dissipation was quantified by considering the 

respective influence of filler content and pre-stretch level. The underlying physical 

mechanisms, consistent with our experimental observations, are proposed by involving 

plausible recoverable and unrecoverable rearrangements in the rubber-filler material system.  
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CHAPTER 2. FATIGUE RESPONSE OF 

FILLED RUBBERS 

2.2. A THERMO-VISCOELASTIC-DAMAGE 

CONSTITUTIVE MODEL. FORMULATION AND 

NUMERICAL EXAMPLES13 

Cyclically loaded rubbers exhibit a complex history-dependent response characterized by fatigue-induced 

stress-softening and hysteresis along with dissipative heating. The coupling between these different inelastic 

effects usually appearing together is far from being fully established. In this Part of the Chapter 2, we present a 

new thermo-viscoelastic-damage approach, in accordance with the thermodynamic principles, for the prediction 

of this set of inelastic fatigue phenomena. An interpretation of the underlying physical mechanisms is proposed 

in which two types of dissipative network rearrangements are considered, i.e. recoverable rearrangements 

inducing viscoelasticity and unrecoverable rearrangements inducing damage. The recoverable viscoelastic 

rearrangements are assumed to be induced by the move of entangled and non-entangled free chains 

superimposed on a purely elastic perfect rubber network. Each population of free chains is considered to be the 

main source of one aspect of the history-dependent mechanical cyclic features, i.e. stress-softening and hysteresis, 

respectively. The thermo-mechanical coupling is defined by postulating the existence of a free energy in which 

two internal state variables are introduced to account for the two types of dissipative network rearrangements. 

Network thermal kinetics, induced by the dissipative heating, as well as network damage kinetics, induced by the 

fatigue damage, are defined and used to alter the cyclically loaded perfect rubber network. The proposed 

constitutive model is implemented into a finite element program and a parametric study is presented via 

numerical applications on rubber structures in order to analyze the effects of key model parameters on the rubber 

inelastic fatigue response. A focus is especially made on the respective influence of temperature, viscoelasticity 

and damage on the rubber softening. 

Keywords: Thermo-viscoelastic-damage coupling; fatigue; dissipative heating; rubbers. 

                                                      

13 This Part of this Chapter is based on the following paper: Qiang Guo, Fahmi Zaïri, Xinglin Guo, 

2018. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model 

formulation and numerical examples. International Journal of Plasticity 101, 106-124. 
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2.2.1. Partial introduction 

Rubbers used in engineering applications are often cyclically loaded and exhibit a complex 

history-dependent fatigue response characterized by fatigue-induced stress-softening and 

hysteresis along with dissipative heating. Establishing the coupling between these different 

inelastic fatigue phenomena, usually appearing together during the cyclic loading history, is 

an open issue to be addressed. 

The physical essence of the fatigue-induced stress-softening is generally attributed to the 

network degradation, interpreted as an accumulation of the damage effects within the rubber 

medium (Bouasse and Carrière, 1903; Mullins, 1948; Houwink, 1956; Bueche, 1960; Kraus et 

al., 1966; Simo, 1987; Govindjee and Simo, 1991; Wineman and Huntley, 1994; Miehe, 

1995a; Ogden and Roxburgh, 1999; Drozdov and Dorfmann, 2001; Marckmann et al., 2002; 

Laiarinandrasana et al., 2003; Chagnon et al., 2004, 2006; Goktepe and Miehe, 2005; Hanson 

et al., 2005; Dargazany and Itskov, 2009; Ayoub et al., 2011a, 2014; Freund et al., 2011; 

Lorenz and Kluppel, 2012; Dargazany et al., 2014; Osterlof et al., 2016; Raghunath et al., 

2016; Khiem and Itskov, 2017; Makki et al., 2017; Plagge and Kluppel, 2017). Paradoxically, 

the partial or total recovery in stress-softening gives significance of the viscoelastic effects 

(Mullins, 1969; Derham and Thomas, 1977; McKenna and Zapas, 1981; Guo et al., 2017). It 

should be then recognized that the underlying physical process in the fatigue of rubbers is 

attributed to both unrecoverable damage mechanisms and recoverable viscoelastic 

mechanisms. In the meantime, cyclically loaded rubbers exhibit an hysteretic response, 

manifested by a stress difference between loading and unloading paths, and induced by the 

presence of the viscous stress in the rubber medium which deviates from the purely elastic 

response. During the fatigue process, a large part of the dissipated mechanical energy due to 

the hysteretic effect may be converted into heat energy which manifests itself in the form of a 

change in temperature (Gough, 1805; Medalia, 1991; Meinecke, 1991). The temperature 

increment generated in the viscoelastic medium may evidently influence in turn the rubber 

mechanical response due to its thermo-dependence.  

A literature survey shows that there exists very few contributions dealing with the thermo-

mechanical constitutive modeling of polymers in spite of the significance of the thermo-

mechanical coupling (Miehe, 1995b; Holzapfel and Simo, 1996a; Lion, 1997, 2000; Khan et 

al., 2006; Anand et al., 2009; Ames et al., 2009; Drozdov and Christiansen, 2009; 

Laiarinandrasana et al., 2009; Kim et al., 2010; Srivastava et al., 2010; Zaïri et al., 2010; 

Bouvard et al., 2013; Krairi and Doghri, 2014; Lion et al., 2014; Maurel-Pantel et al., 2015; 
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Ovalle-Rodas et al., 2015a; Garcia-Gonzalez et al., 2017; Yu et al., 2017a, 2017b; Gudimetla 

and Doghri, 2017). Most of these contributions do not consider the change in temperature due 

to dissipative heating. The situation is more critical for cyclically loaded rubbers for which 

the modeling of the thermo-mechanical response has been little investigated to date (Reese 

and Govindjee, 1998; Boukamel et al., 2001; Meo et al., 2002; Reese, 2003; Ovalle-Rodas et 

al., 2013, 2014, 2015b, 2016; Dippel et al., 2014; Behnke et al., 2016; Johlitz et al., 2016; Li 

et al., 2016). In this Part I of the present two-part paper, we propose a thermo-viscoelastic-

damage approach, in accordance with the thermodynamic principles, for the prediction of the 

inelastic fatigue effects in rubbers. The inelastic fatigue phenomena at the macroscopic scale 

are assumed to be the consequence of two types of network rearrangements, i.e. recoverable 

viscoelastic mechanisms and unrecoverable damage mechanisms. The move of entangled and 

non-entangled free chains superimposed on the relaxed network is considered to be the main 

source of the history-dependent mechanical cyclic features, i.e. stress-softening and 

hysteresis, respectively. The thermo-mechanical coupling is defined by postulating the 

existence of a free energy in which two internal state variables are introduced to account for 

the two types of dissipative network rearrangements. In the thermo-viscoelastic-damage 

coupling, network thermal kinetics and network damage kinetics are defined and used to alter 

the relaxed network during the fatigue loading process. In the network alteration, both the 

average chain length and the average chain density are taken as functions of the temperature 

and the fatigue damage. The proposed constitutive model is implemented into a finite element 

code and a parametric study is presented via numerical applications on rubber structures in 

order to put in light the respective effects of key model parameters on the rubber inelastic 

fatigue response. 

This part is organized as follows. Section 2.2.2 presents the main elements of the constitutive 

theory. Section 2.2.3 is devoted to numerical examples and the parametric study. Concluding 

remarks are finally given in Section 2.2.4. 

2.2.2. Model formulation 

The rubber is constituted by a perfect network and superimposed free chains as illustrated 

in Figure 2.2.1. The perfect network consists of randomly distributed chains interlinked with 

cross-links and is responsible to the entropic resistance to deformation. It is recognized that 

the rubber viscosity is attributed to the slow return of the free chains to a more relaxed 

configuration when the rubber network is deformed at a high enough rate and then held 
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constant in the deformed state (de Gennes, 1971; Doi and Edwards, 1986; Bergstrom and 

Boyce, 1998; Li et al., 2016).  

 

 

 
Figure 2.2.1. Decomposition of the rubber network into three superimposed chain 

populations. 
 

In the present model, the physical origin of the history-dependent cyclic features in rubbers 

is attributed to the move of both entangled and non-entangled free chains. The distinct 

mobility degree of these two populations of free chains leads to distinct rates of relaxation, 

and affects differently the different inelastic fatigue phenomena at the macroscopic scale. The 

three chain populations are supposed to participate to deformation via the Taylor assumption, 

i.e. the perfect network alignment is in parallel with the free chains moving. 

The following notation is used throughout the text. Tensors and vectors are denoted by 

normal boldfaced letters and italicized boldfaced letters, respectively, while scalars and 

individual components of vectors and tensors are denoted by normal italicized letters. The 

superposed dot designates the time derivative. 

2.2.2.1. Kinematics 

Before the formulation of the fully three-dimensional constitutive theory, the kinematics is 

briefly addressed in this subsection. Let us first consider the rubber medium as a 

homogeneous continuum body with the reference configuration 0Ω  and a current 

configuration Ω . The mapping of the initial position vector X
 
of a given material point in 

Cross-linked chains Non-entangled free chains Entangled free chains 
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the configuration 0Ω  to the current position vector ( ),t=x φ X  in the configuration Ω  is 

given by the deformation gradient tensor F:  

 X= ∇F φ  (2.2.1) 

The time derivative of the deformation gradient tensor F is given by: 

 =&F LF  (2.2.2) 

where L  is the gradient tensor of the spatial velocity t= ∂ ∂v ϕϕϕϕ : 

 x= ∇L v  (2.2.3) 

The multiplicative decomposition considers a conceptual sequence of configurations as 

proposed by several authors (Lee, 1969; Sidoroff, 1974; Lu and Pister, 1975; Miehe, 1995b; 

Holzapfel and Simo, 1996b; Lion, 1997). The multiplicative decomposition of the 

deformation gradient F is schematically illustrated in Figure 2.2.2.  

 

 

 

 

 
Figure 2.2.2. Multiplicative decomposition of the volumetric-isochoric and elastic-inelastic 

deformations. 
 

The volumetric-isochoric configuration Ω  is related to both the thermal-induced dilatation 

and the mechanical-induced dilatation of the continuum body. The volumetric-isochoric 

response is described as the multiplicative decomposition of the deformation gradient tensor 

into an isochoric part isoF  and a volumetric part volF  as: 

 iso vol=F F F  (2.2.4) 

in which the isochoric part isoF  is given by: 

 1/3
iso J−=F F  (2.2.5) 

and the volumetric part volF  is expressed, in the isotropic case, by: 

 1/3
vol J=F I  (2.2.6) 

in which I  is the unit tensor and ( )det 0J = >F  denotes the determinant of the deformation 

gradient tensor F. 

Ω0Ω

Ω Ω

F
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The isochoric part isoF  can be in turn decomposed into stretching and rotation components: 

 iso iso iso=F V R  (2.2.7) 

The corresponding kinematic rate can be additively decomposed as: 

 iso vol= +L L L  (2.2.8) 

in which isoL  is the isochoric part of the spatial velocity gradient tensor L : 

 1
iso iso iso

−=L F F&  (2.2.9) 

and volL  is the volumetric part of the spatial velocity gradient tensor L : 

 1 1
vol iso vol vol iso 3

J

J
− −= =L F F F F I

&

&  (2.2.10) 

The elastic-inelastic configuration Ω  is related to the obtained configuration during a 

spontaneous virtual elastic unloading of the isochoric part which can be written using a 

multiplicative form and decomposed into an elastic part eF  and a viscous part vF : 

 iso e v=F F F  (2.2.11) 

This multiplicative decomposition of the isochoric deformation gradient tensor isoF  accounts 

for the viscoelastic damping mechanisms due to the presence of the superimposed entangled 

and non-entangled free chains. The elastic part eF  and the viscous part vF  can be in turn 

decomposed into stretching and rotation components: 

 e e e=F V R  (2.2.12) 

 v v v=F V R  (2.2.13) 

The viscous flow is assumed incompressible, i.e. the corresponding determinant vJ  of the 

viscous deformation gradient vF  is: 

 ( )v vdet 1J = =F  (2.2.14) 

Hence, using Eqs. (2.2.5), (2.2.11) and (2.2.14), the determinant eJ  of the elastic deformation 

gradient eF  is: 

 ( )e edet 1J = =F  (2.2.15) 

Introducing the elastic and viscous parts of the corresponding kinematic rates leads to: 

 iso e v= +L L L  (2.2.16) 

in which eL  is the elastic velocity gradient tensor: 

 1
e e e

−=L F F&  (2.2.17) 
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and vL  is the viscous velocity gradient tensor: 

 1 1
v e v v e

− −=L F F F F&  (2.2.18) 

The viscous velocity gradient tensor vL , characterizing constitutively the history-dependent 

effects induced by the free chains, can be further decomposed into a viscous stretching rate 

vD  and a viscous spin rate vW : 

 v v v= +L D W  (2.2.19) 

where: 

 ( )T
v v v

1

2
= +D L L  (2.2.20) 

 ( )T
v v v

1

2
= −W L L  (2.2.21) 

in which the superscript T indicates the transpose quantity.  

During the unloading step, the viscous flow does not change and remains frozen. With no loss 

in generality, the viscous flow is assumed irrotational and, consequently the viscous spin rate 

vW  drops out (Gurtin and Anand, 2005):  

 v =W 0  (2.2.22) 

and Eq. (2.2.19) becomes: 

 v v=L D  (2.2.23) 

In addition, the different contributions of the right and left Cauchy-Green deformation 

tensors, T=C F F  and T=B FF , are defined in the corresponding configurations: 

 T
iso iso iso=C F F , T

iso iso iso=B F F  (2.2.24) 

 2/3
vol J=C I , 2/3

vol J=B I  (2.2.25) 

 T
e e e=C F F , T

e e e=B F F  (2.2.26) 

 T
v v v=C F F , T

v v v=B F F  (2.2.27) 

2.2.2.2. Stress decomposition 

The Cauchy stress σσσσ  in the rubber medium is additively split into a volumetric part volσσσσ  

and an isochoric part isoσσσσ  as: 

 vol iso= +σ σ σσ σ σσ σ σσ σ σ  (2.2.28) 

The volumetric Cauchy stress volσσσσ  is given by: 



2.2. A thermo-viscoelastic-damage constitutive model. Formulation and numerical examples 

91 

 

 vol p= Iσσσσ  (2.2.29) 

in which p  is the hydrostatic pressure: 

 ( )1
trace

3
p = σσσσ  (2.2.30) 

Hence, the isochoric Cauchy stress isoσσσσ  is expressed as: 

 iso p= − Iσ σσ σσ σσ σ  (2.2.31) 

In line with our decomposition of the rubber network, the isochoric Cauchy stress isoσσσσ  may be 

additively split into a relaxed part Rσσσσ  and a viscous part vσσσσ : 

 iso R v= +σ σ σσ σ σσ σ σσ σ σ  (2.2.32) 

The relaxed part Rσσσσ  originates from the entropic resistance to the perfect network alignment, 

and results in the purely elastic response, whereas the viscous part vσσσσ  originates from the 

history-dependent movements of the free chains and results in the time-dependent deviation 

from the relaxed state. Because they are related to the isochoric deformation gradient isoF  and 

its elastic part eF  (also being isochoric), the two parts of the isochoric Cauchy stress isoσσσσ  can 

be considered as two traceless tensors: 

 ( ) ( )R vtrace trace 0= =σ σσ σσ σσ σ   (2.2.33) 

2.2.2.3. Thermodynamics 

According to the basic viewpoint of the continuum thermodynamics, the fatigue process in 

the rubber medium is an irreversible thermodynamic process accompanied with the internal 

network rearrangements, and has to satisfy the first and second thermodynamic principles. 

The second thermodynamic principle restricts the constitutive model via the so-called 

Clausius-Duhem inequality, written in the reference configuration, as: 

 0XP e T T
T

η− + − ⋅∇ ≥&&

q
 (2.2.34) 

in which P  is the stress power, e is the specific internal energy per unit volume, η  is the 

specific entropy per unit volume, q is the Piola-Kirchhoff heat flux, T  is the absolute 

temperature and XT∇  is the temperature gradient. 

The stress power is expressed as:  

 
1

: :
2

P = =S C L& ττττ   (2.2.35) 

in which S is the second Piola-Kirchhoff stress tensor: 
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 1 T− −=S F Fττττ      (2.2.36) 

and ττττ  is the Kirchhoff stress tensor: 

 J=τ στ στ στ σ  (2.2.37) 

The stress power P  is additively split into a volumetric part volP  and an isochoric part isoP  as: 

 vol isoP P P= +   (2.2.38) 

in which the isochoric part isoP  is given by: 

 iso iso iso:P = Lττττ  (2.2.39) 

and the volumetric part volP  is given by: 

 vol vol vol:P = Lττττ  (2.2.40) 

The terms volττττ  and isoττττ  denote the volumetric and isochoric Kirchhoff stresses, respectively: 

 vol volJ=τ στ στ στ σ  (2.2.41) 

 iso isoJ=τ στ στ στ σ   (2.2.42) 

Using Eqs. (2.2.10), (2.2.29), (2.2.40) and (2.2.41), the volumetric stress power volP  reads: 

 volP pJ= &   (2.2.43) 

Considering Eqs. (2.2.16), (2.2.23), (2.2.32) and (2.2.39), it is also possible to obtain, after a 

series of lengthy but straightforward derivations, the following expression of the isochoric 

stress power isoP : 

 iso R iso v e v v

1 1
: : :

2 2
P = + +S C S C D

&
& ττττ   (2.2.44) 

in which the three terms are defined in the volumetric-isochoric configuration Ω , the elastic-

inelastic configuration Ω  and the current configuration Ω , respectively.  

In the first term of Eq. (2.2.44), 
RS  is the relaxed second Piola-Kirchhoff stress tensor 

defined by: 

 1 T
R iso R iso

− −=S F Fττττ   (2.2.45) 

Rττττ  being the relaxed Kirchhoff stress tensor: 

 R RJ=τ στ στ στ σ  (2.2.46) 

In the second term of Eq. (2.2.44), vS  is the viscous second Piola-Kirchhoff stress tensor 

defined by: 

 1 T
v e v e

− −=S F Fττττ  (2.2.47) 
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vττττ  being the viscous Kirchhoff stress tensor: 

 v vJ=τ στ στ στ σ  (2.2.48) 

The existence of a free energy potential function is postulated. More specifically, the specific 

Helmholtz free energy per unit volume is defined by the Legendre transformation e Tψ η= − . 

The presented constitutive theory is based on an additive split of the Helmholtz free energy 

function ψ  into two contributions: 

 vol isoψ ψ ψ= +  (2.2.49) 

The volumetric contribution volψ  is associated with the temperature T  and the volumetric 

effects characterized by the determinant J  which considers both the thermal-induced 

dilatation and the mechanical-induced dilatation14:  

 ( )vol volˆ ,T Jψ ψ=  (2.2.50) 

The isochoric contribution isoψ  is additively split into a relaxed part Rψ  and a viscous part 

v:ψ  

 iso R vψ ψ ψ= +  (2.2.51) 

in which the two parts Rψ  and vψ  are related to the energy storages in the perfect network 

and the free chains due to the corresponding configuration transformation, respectively. 

As an irreversible thermodynamic process that involves dissipation, it is well known that the 

thermodynamic state during the fatigue process cannot be adequately described by only the 

current deformation and temperature, since the current thermodynamic state heavily depends 

on the thermo-mechanical history that the rubber experienced. In order to solve this problem, 

the internal state variable theory is further developed and applied to the inelastic process 

modeling of cyclically loaded rubbers. The basic idea behind this theory is that the 

thermodynamics state of the material is defined by expanding the dimensions of the state 

space of deformation and temperature, referred to as external state variables due to their 

measurability and controllability, by adding state variables describing the microstructure 

changes and associated with the dissipative effects, referred to as internal state variables 

(Horstemeyer and Bammann, 2010). Thus, the relaxed free energy Rψ  and the viscous free 

energy vψ  are assumed to depend on a number of independent state variables: 

                                                      

14 The mechanical-induced dilatation considers only the bulk modulus effect and the cavitational-

induced volumetric effects (Aït Hocine et al., 2011; Zaïri et al., 2008, 2011), which can interact with the 

other inelastic fatigue effects, are not considered. 
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 ( )R R isoˆ , ,Tψ ψ χ= C  (2.2.52) 

 ( )v v eˆ ,Tψ ψ= C  (2.2.53) 

where χ  is an internal state variable introduced to account for the unrecoverable network 

rearrangements occurring in the perfect network and inducing the fatigue damage, and eC  

may be considered as another internal state variable introduced to account for the viscoelastic 

damping mechanisms due to the presence of the superimposed (entangled and non-entangled) 

free chains. 

By inserting the time derivative of the internal energy: 

 e T Tψ η η= + +&
& &&  (2.2.54) 

with: 

 vol vol v vR R R
iso e

iso e

ˆ ˆ ˆ ˆˆ ˆ ˆ
: :T J T T

T J T T

ψ ψ ψ ψψ ψ ψψ χ
χ

∂ ∂ ∂∂ ∂ ∂= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂∂

C C
C C

&
&

& & & &
& &  (2.2.55) 

into Eq. (2.2.34), it leads to:  

 

vol R v
R iso v e

iso e

vol R v R
v v

ˆ ˆ ˆ1 1
: :

2 2

ˆ ˆ ˆ ˆ
: 0X

p J
J

T T
T T T T

ψ ψ ψ

ψ ψ ψ ψη χ
χ

  ∂ ∂ − + − + −     ∂ ∂  ∂   

∂ ∂ ∂ ∂ − + + + + − − ⋅∇ ≥ ∂ ∂ ∂ ∂ 

S C S C
C C

D

&
&

&

&
&ττττ q

 (2.2.56) 

In order to satisfy the inequality (2.2.56) for arbitrary variations of temperature and 

deformation, the usual Coleman-Noll procedure (Coleman and Noll, 1963) is used. From the 

first three terms of the inequality (2.2.56), the following potential relations, depending on the 

earlier defined independent state variables, are derived: 

 ( ) ( )volˆ ,
ˆ ,

T J
p p T J

J

ψ∂
= =

∂
 (2.2.57) 

 ( ) ( )R iso

R R iso
iso

ˆ , ,ˆ , , 2
T

T
ψ χ

χ
∂

= =
∂

C
S S C

C
 (2.2.58) 

 ( ) ( )v e

v v e

e

ˆ ,ˆ
, 2

T
T

ψ
= =

∂

C
S S C

C
 (2.2.59) 

The fourth term of the inequality (2.2.56) leads to: 

 vol R vη η η η= + +  (2.2.60) 

in which volη , Rη  and vη  are the volumetric, relaxed and viscous parts of the entropy η , 

respectively, which depend on the earlier defined independent state variables: 
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 ( ) ( )vol
vol vol

ˆ ,
ˆ ,

T J
T J

T

ψ
η η

∂
= = −

∂
 (2.2.61) 

 ( ) ( )R iso

R R iso

ˆ , ,
ˆ , ,

T
T

T

ψ χ
η η χ

∂
= = −

∂
C

C  (2.2.62) 

 ( ) ( )v e

v v e

ˆ ,
ˆ ,

T
T

T

ψ
η η

∂
= = −

∂

C
C  (2.2.63) 

The remainder of the inequality (2.2.56) leads the following inequality for the dissipation Φ : 

 v v

1
: 0XT

T
κχΦ + − ⋅∇ ≥D q&= τ= τ= τ= τ  (2.2.64) 

in which κ  denotes the thermodynamic conjugate quantity for χ : 

 ( ) ( )R iso

iso

ˆ , ,
ˆ , ,

T
T

ψ χ
κ κ χ

χ
∂

= = −
∂

C
C  (2.2.65) 

In Eq. (2.2.64), the quantity:  

 1 v v: κχΦ = +D &ττττ  (2.2.66) 

corresponds to the intrinsic dissipation, induced by the irreversible energy conversion, in 

which the term v v: Dττττ  is the dissipation related to the viscoelastic material response, while 

the term κχ&  is the internal work related to the damage-induced unrecoverable network 

rearrangement.  

In Eq. (2.2.64), the quantity:  

 2 XT
T

Φ = − ⋅∇q
 (2.2.67) 

corresponds to the thermal dissipation, induced by the irreversible energy flow, in which the 

Piola-Kirchhoff heat flux q  is given by the Fourier law: 

 X XT= − ⋅ ∇Kq       (2.2.68) 

where: 

 1 T
X

− −=K F KF      (2.2.69) 

is the conductivity tensor in the reference configuration, K  being the Eulerian conductivity 

tensor. In the isotropic case, the tensor K  reduces to: 

 Tk=K I      (2.2.70) 

where Tk  is the coefficient of thermal conductivity.  
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The intrinsic dissipation 1Φ  and the thermal dissipation 2Φ  are assumed to satisfy the 

inequality condition separately, i.e. 1 0Φ ≥  and 2 0Φ ≥ . Furthermore, the first law of 

thermodynamics requires the following energy balance equation to be satisfied: 

 Dive P= −& q  (2.2.71) 

Introducing Eqs. (2.2.35) and (2.2.54) into Eq. (2.2.71) and taking into account the 

constitutive relationships (2.2.57) to (2.2.63) with the chain rules of differentiation, we get: 

 T 1 DivC T = Φ − +&

hq  (2.2.72) 

 

where TC  is a heat capacity-related coefficient15: 

 vol vR
T

ˆ ˆˆ
C T

T T T

η ηη∂ ∂∂ = + + ∂ ∂ ∂ 
 (2.2.73) 

and h  is a thermo-visoelastic-damage coupling coefficient: 

 vR
iso e

ˆˆ ˆˆ 1 1
: :

2 2

p
T J

T T T T

κ κ
 ∂∂∂ ∂ = + + −
 ∂ ∂ ∂ ∂
 

SS
C C&

&
&h  (2.2.74) 

2.2.2.4. Constitutive equations 

2.2.2.4.1. Free energy functions 

In order to take into consideration the rubber network properties, the relaxed free energy 

function is given by the Arruda and Boyce (1993) formulation based on the eight-chain 

network of non-Gaussian chains: 

 ( ) iso iso
R R iso R B R iso

isoR

ˆ , , ln
sinh

T n k TN
N

λ ζψ ψ χ ζ
ζ

 
= = +  

 
C  (2.2.75) 

In Eq. (2.2.75), Rn  and RN  are the average number of chains in the perfect network per unit 

volume (i.e. average chain density) and the average number of segments in the chain (i.e. 

average chain length), which are consider to dependent on the temperature T and the fatigue 

damage χ  (as described in the subsection 2.2.2.4.3), Bk  is the Boltzmann’s constant, isoλ  is 

                                                      

15 Note that by considering Eqs. (2.2.91), (2.2.92), (2.2.93), and the selected parameters (see Section 2.2.3), 

R T0
ˆ T C Tη∂ ∂ <<  and vˆ 0Tη∂ ∂ = , such that T vol T0ˆC T T Cη≈ ∂ ∂ = , the constant T0C  being the specific heat 

capacity at constant deformation. 
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the average stretch on each chain in the network: 

 ( )iso iso

1
tr

3
λ = C  (2.2.76) 

and isoζ  is the inverse of the Langevin function:  

 ( ) ( ) iso
iso iso

iso R

1
coth

N

λζ ζ
ζ

= − =L  (2.2.77) 

which is approximated by its Padé approximation (Cohen, 1991): 

 
2

1 iso iso R iso
iso 2

R isoR R

3N

NN N

λ λ λζ
λ

−
  −= ≈   − 

L  (2.2.78) 

The viscous free energy function is also expressed using the Arruda and Boyce (1993) 

formulation:  

 ( ) e v
v v e v B v v

vv

ˆ , ln
sinh

T n k TN
N

λ ζψ ψ ζ
ζ

 
= = + 

 
 

C  (2.2.79) 

The terms vn  and vN  are the viscous material constants, corresponding to the average 

number of free chains superimposed on the perfect network per unit volume and the average 

number of segments in the free chain, respectively, the term eλ  is the elastic stretch expressed 

as: 

 ( )e e

1
tr

3
λ = C  (2.2.80) 

and vζ  is given by the inverse Langevin function:  

 
2

1 e e v e
v 2

v ev v

3N

NN N

λ λ λζ
λ

−
  −= =   − 

L  (2.2.81) 

The volumetric free energy function is the sum of three contributions (Miehe, 1995b; 

Holzapfel and Simo, 1996b): 

 
( ) ( ) ( )

( )( )

2
vol vol T0 0

0

0

1ˆ , 1 2ln ln
4

3 1

T
T J k J J C T T T

T

k J T T

ψ ψ

α

  
= = − − + − −  

  

− − −

 (2.2.82) 

in which the first term corresponds to the purely volumetric contribution, the second term is 

the purely thermal contribution and the third term is an energetic contribution due to the 

thermal-volumetric coupling. The constants k , α  and T0C  are the bulk modulus, the thermal 
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dilatation coefficient and the specific heat capacity at constant deformation, respectively, and 

0T  is the reference temperature. 

2.2.2.4.2. Temperature and damage-induced network rearrangements 

The thermo-mechanical response in cyclically loaded rubbers results from network 

rearrangements modifying the original network to another one at each new cycle. The 

damage-induced network rearrangements, accompanied by diverse breakdown of bonds, may 

be introduced into the model formulation by considering both the average chain length and 

the average chain density as functions of the internal state variable χ . In the same manner, 

due to its thermo-dependence, the rubber network may be also modified if the dissipative 

heating reaches a high level. The temperature and damage effects are introduced into the 

chain-scale material constants of the perfect network through the following general kinetics: 

 ( ) ( ) ( )R R0 R R, TN T N N T N χχ χ= + +  (2.2.83) 

which is restricted by the mass conservation law, such that the total number of segments per 

unit volume remains constant: 

 ( ) ( )
R0 R0

R
R

,
,

n N
n T

N T
χ

χ
=  (2.2.84) 

where R0n  and R0N  are the reference values,
 ( )RTN T  is the network thermal kinetics and 

( )RN χ χ  is the network damage kinetics. 

In our previous work (Ovalle-Rodas et al., 2015a), the temperature dependence of the relaxed 

stress-strain relation of filled rubbers was emphasized and an experimentally-based linear 

evolution of the network thermal kinetics ( )RTN T  was designed16: 

 ( ) ( )R 0,T TN T N T T= −           (2.2.85) 

where ,TN  is a temperature-rate sensitivity coefficient. 

The internal state variable χ  is incorporated in a phenomenological way, in order to 

represent the damage-induced stress-softening macroscopically observed in rubbers, by using 

the following network damage kinetics ( )RN χ χ : 

 ( )R R0N Nχ χ χ=           (2.2.86) 

                                                      

16 The mobility enhancement of the free chains at higher temperatures merited to be considered in 

future works. 
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with 
0

0 0
t t

χ χ
=

= = . 

2.2.2.4.3. Constitutive relationships 

The volumetric, relaxed and viscous Cauchy stresses are obtained from the differentiation 

of the free energy functions with respect to the corresponding deformations. The details of the 

derivation are provided in Appendix A. The Cauchy stresses are given by the following set of 

constitutive equations:  

 ( ) ( )2
vol 0

1
1 3

2
k J k T T

J
α = − − −  

Iσσσσ  (2.2.87) 

 ( )( )2RR B
R iso iso iso

iso3

Nn k T

J
ζ λ

λ
= −B Iσσσσ  (2.2.88) 

 ( )( )2vv B
v v e e

e3

Nn k T

J
ζ λ

λ
= −B Iσσσσ  (2.2.89) 

According to Eq. (2.2.65), the thermodynamic conjugate quantity κ  for the internal state 

variable χ  takes the following specific expression: 

 iso
R B R0 iso

R

1

2
n k TN

N

λκ ζ=           (2.2.90) 

Using Eqs. (2.2.61), (2.2.62) and (2.2.63), the volumetric, relaxed and viscous parts of the 

entropy η  are, respectively, expressed as follows: 

 ( )vol T0
0

ln 3 1
T

C k J
T

η α
 

= + − 
 

          (2.2.91) 

 iso iso
R R B R iso

R isoR

,
1 ln

2 sinh
TTN

n k N
NN

λ ζη ζ
ζ

  
= − − +     

          (2.2.92) 

 e v
v v B v v

vv

ln
sinh

n k N
N

λ ζη ζ
ζ

 
= − + 

 
 

          (2.2.93) 

2.2.2.4.4. Flow rules 

The internal state variables eC  and χ  are introduced to characterize the history-dependent 

effects of the cyclically loaded rubbers. To complete the constitutive description, the 

evolutions of these internal state variables during the fatigue process must be constitutively 

specified. 
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The viscous stretching rate vD , related to the recoverable viscoelastic rearrangements of the 

superimposed entangled and non-entangled free chains, are defined by the following general 

flow rule: 

 v v vγ=D N&  (2.2.94) 

in which vγ&  is the accumulated viscous strain rate and vN  is the direction tensor of viscous 

flow. Noting that vD  is defined in the current configuration Ω , the viscous flow direction 

tensor vN  is aligned with the viscous Kirchhoff stress tensor vττττ : 

 v
v

v

=N
ττττ
ττττ

 (2.2.95) 

where ( )T
v v vtr=τ τ ττ τ ττ τ ττ τ τ  is the effective viscous Kirchhoff stress by the Frobenius norm.  

By analogy between viscoplasticity and viscoelasticity, the accumulated viscous strain rate vγ&   

may be expressed as a function of the effective viscous Kirchhoff stress vττττ  using the 

viscoplasticity theory but without yield surface such that the elastic and inelastic strain rates 

are non-zero at all stages of loading (Zaïri et al., 2005, 2007):  

 ( )v v v
ˆγ γ=& & ττττ  (2.2.96) 

The mechanism responsible for the recoverable viscoelastic rearrangements is the move of 

free chains that have lower resistance to deformation than the relaxed (perfect) network and 

have the capability to significantly change conformation by Brownian motion in a 

combination of reptation motion, as described by Doi and Edwards (1986). More precisely, if 

the rubber network is stretched at a high enough rate, both free chains and perfect network 

move affinely. Then, the free chains tend to slowly return to a more relaxed configuration, if 

the stretch is held constant. The Doi-Edwards tube concept (Doi and Edwards, 1986), 

considered to be the most successful theory in polymer physics from the past thirty years, 

assumes that the lateral motion of individual free chains is restricted within a tube-like region 

due to chains from its neighborhood. Thus, instead of moving randomly in space, an 

individual free chain can only move back and forth, or reptate, along the centerline of its tube 

by reptational Brownian motion. 

The accumulated viscous strain rate vγ&  takes the form of the Bergstrom-Boyce power law 

(Bergstrom and Boyce, 1998):  

 v v v1
d m

rγ λ= −& ττττ  (2.2.97) 
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where r  is a positive viscous multiplier parameter, d  and m  are viscous power parameters, 

and vλ  is the viscous stretch:  

 ( )v v

1
tr

3
λ = B  (2.2.98) 

The term v 1
dλ −  is motivated by reptational dynamics to capture the stretch-dependency of 

the effective viscosity, and the term v
mττττ  is another key component to capture the nonlinear 

history-dependent effect which is introduced by considering the reptational Brownian motion 

of free chains as energy activated. 

In our network decomposition, the free chains are superimposed on the perfect network, i.e. 

the three networks act in parallel and without interaction. The constitutive relationship for 

each network is then deduced independently - see Eqs. (2.2.84) and (2.2.85) - and the intrinsic 

dissipation 1Φ  is the sum of the viscoelastic dissipation v v: Dττττ  induced by the move of the 

free chains and the damage-related internal work κχ&  occurring in the perfect network - see 

Eq. (2.2.66). However, the objectively existing interaction between the networks should not 

be ignored in the formulation of the thermo-viscoelastic-damage constitutive model. To this 

end, it is assumed that the internal work κχ&  is proportional to the viscoelastic dissipation
 

v v: Dττττ  according to the following relationship: 

 ( ) v v1 :κχ β= − D& ττττ       (2.2.99) 

where β  is a non-negative proportionality coefficient and the viscoelastic dissipation term 

v v: Dττττ  
becomes using the flow rule (2.2.94): 

 
1

v v v v: 1
d m

r λ += −Dτ ττ ττ ττ τ  (2.2.100) 

Then, the intrinsic dissipation 1Φ  can be rewritten as: 

 
1

1 v v1 0
d m

rβ λ +Φ = − ≥ττττ  (2.2.101) 

which satisfies the thermodynamics consistency. 

Combining Eqs. (2.2.93), (2.2.99) and (2.2.100), the following equation is obtained for the 

evolution of the internal state variable χ : 

 
( ) 1

v v R

R B R0 iso iso

2 1 1
d m

r N

n k TN

β λ
χ

ζ λ

+− −
=&

ττττ
 (2.2.102) 

Note that if the proportionality coefficient β  is superior to unity ( 1β > ), the internal work 

κχ&  is positive ( 0κχ >& ) and the internal variable rate χ&  is then also positive ( 0χ >& ). In this 
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condition, the free energy is dissipated resulting to a softening. If the proportionality 

coefficient β  is lesser than unity (0 1β≤ < ), these quantities κχ&  and χ&  become negative (

0κχ <&  and 0χ <& ) which means that the internal work is stored resulting to a stiffening17. In 

the specific case where the proportionality coefficient β  is null ( 0β = ), the cyclic loading 

process metamorphoses into a reversible thermodynamic process without any energy 

dissipation. Otherwise, if the proportionality coefficient β  is equal to unity ( 1β = ), the 

viscoelastic dissipation is fully transformed into heat energy without internal work and 

network damage kinetics. Furthermore, from the viewpoint of thermodynamics, the cyclically 

loaded rubber actually carries out two synchronous irreversible thermodynamic processes, 

that are, the recoverable viscoelastic rearrangements of the free chains and the unrecoverable 

rearrangements of the perfect network inducing damage. Accordingly, the two generalized 

thermodynamic fluxes, vD  and χ& , are driven jointly by the two generalized thermodynamic 

forces vττττ  and κ , reflecting the complex coupling between the two physical mechanisms. The 

proportionality coefficient β  may be regarded as a parameter quantifying the coupling effect. 

2.2.2.4.5. Three-network decomposition  

As described earlier in Figure 2.2.1, the rubber network is decomposed into three parallel 

networks: a perfect (relaxed) network constituted by cross-linked chains on which entangled 

and non- entangled free chains are superimposed. The perfect network is the source of the 

purely elastic response, governed by the relaxed Cauchy stress Rσσσσ , and the free chains are the 

source of the history-dependent effects, governed by the viscous Cauchy stress vσσσσ  which is 

in turn additively decomposed into two distinct contributions dedicated to the two populations 

of free chains: 

 v v_1 v_ 2= +σ σ σσ σ σσ σ σσ σ σ  (2.2.103) 

where v_1σσσσ  is the viscous Cauchy stress of the entangled free chains to which we confer the 

subscript 1 and v_2σσσσ  is the viscous Cauchy stress of the non-entangled free chains to which 

we confer the subscript 2. This notation will be used in the whole paper. The viscous Cauchy 

stresses of the entangled and non-entangled free chains are given, respectively, by: 

                                                      

17 The softening may be associated to damage effects whereas the stiffening may be associated to the 

formation of ordered crystalline regions whose the stiffening effects are amplified if they initiate and 

develop in a rubbery medium (Ayoub et al., 2010, 2011b; Hachour et al., 2014).  
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 ( )( )2v _1v _1 B
v _1 v_1 e_1 e_1

e _13

Nn k T

J
ζ λ

λ
= −B Iσσσσ  (2.2.104) 

 ( )( )2v _ 2v _ 2 B
v _ 2 v_2 e _ 2 e _ 2

e _ 23

Nn k T

J
ζ λ

λ
= −B Iσσσσ  (2.2.105) 

where 
v _1n , 

v _1N , 
v _ 2n  and 

v _ 2N  are the corresponding viscous parameters of the free chains. 

The non-entangled free chains have higher capability to change conformation by reptational 

Brownian motion than the entangled free chains. According to the Doi-Edwards tube concept 

(Doi and Edwards, 1986), the entanglements can effectively restrict the lateral motion of an 

individual free chain into the tube (Li et al., 2016). In other words, the higher the chain 

entanglement degree, the smaller the tube diameter and the lower the mobility of free chains. 

Thus, compared to the non-entangled free chains, the entangled free chains have a lower 

viscous strain rate and take a longer time to return to a more relaxed configuration. That may 

be taken into account by considering distinct rates of relaxation between the two populations 

of free chains: 

 v _1 1 v _1 v _11
d m

rγ λ= −& ττττ  (2.2.106) 

 v _ 2 2 v _ 2 v _ 21
d m

rγ λ= −& ττττ  (2.2.107) 

in which the chain dynamics imposes that the viscous multiplier parameter of the entangled 

free chains 1r  is significantly lower than that of the non-entangled free chains 2r .  

For the sake of completeness, Eqs. (2.2.99), (2.2.101) and (2.2.102) may be also 

particularized, respectively, as follows: 

  ( )( )v_1 v_1 v_2 v_21 : :κχ β= − +D D& τ ττ ττ ττ τ  (2.2.108) 

 ( )1 1

1 1 v_1 v_1 2 v_2 v_21 1 0
d m d m

r rβ λ λ
+ +

Φ = − + − ≥τ ττ ττ ττ τ  (2.2.109) 

 
( ) ( )1 1

R 1 v_1 v_1 2 v_2 v_2

R B R0 iso iso

2 1 1 1
d m d m

N r r

n k TN

β λ λ
χ

ζ λ

+ +
− − + −

=&

τ ττ ττ ττ τ
 (2.2.110) 

Due to their distinct viscous properties, the two populations of chains have different elastic 

and viscous stretches and thus contribute differently to the total viscous stress (2.2.103), the 

internal work (2.2.108), the intrinsic dissipation (2.2.109) and the damage kinetics (2.2.110). 
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2.2.3. Numerical examples 

For a rubber structure, the finite element computation is essential to appreciate the local 

fields of the different inelastic effects and the associated network rearrangements during the 

cyclic loading history. The general thermo-viscoelastic-damage constitutive model, described 

in the previous section, was implemented into the finite element code MSC.Marc to simulate 

the fatigue response in rubber structures. The main calculation steps are summarized in the 

flowchart of Figure 2.2.3a.  

 

                                               (a)                                                                     (b) 
Figure 2.2.3. Flowchart of the thermo-mechanical algorithm (a) and simulation models with 

boundary conditions (b). 
 

Numerical examples on rubber structures, a dog-bone shaped specimen without and with a 

central hole, are presented to illustrate the capability of the approach. The gauge dimensions 

are 25 mm (length) × 4 mm (width) × 2 mm (thickness) and the hole diameter is 2 mm. Figure 

2.2.3b shows the three-dimensional finite element mesh of the specimens using 8-node 

meshing elements, isoparametric and arbitrarily hexahedrics. The mechanical boundary 

conditions consist of fixing one specimen end, and imposing to the other a displacement-

controlled cyclic loading. The thermal boundary conditions consist of a constant temperature 

T0 = 296 K applied at both specimen ends, the remaining frontiers being subjected to a 

Variable displacement + Constant temperature 

Fixed displacement + Constant temperature 

Free displacement + Natural convection 
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convection heat transfer. The naturally induced-convention sq  is related to the coefficient of 

thermal convection h by: 

 ( )s h T T∞= − −q n      (2.2.111) 

in which T∞ = 296 K is the environment temperature and n is the normal vector to the surface 

of the element. 

In what follows, a numerical parametric study is presented to examine the influence of 

selected material constants on the fatigue response of a fictive rubber medium. Unless 

explicitly otherwise stated, the values of the different input constants required by the 

modeling are: 

• The network parameters of the cross-linked chains:  

 R0 B 0n k T  = 0.6 MPa 

 R0N
 
= 5.0 

• The viscous parameters of the free chains:  

 v _1 B 0n k T  = 0.2 MPa 

 v _ 2 B 0n k T  = 0.4 MPa 

 v _1N
 
= 

v _ 2N
 
= 5.0 

 1r  = 2.5 MPa-2 s-1 

 2r  = 250 MPa-2 s-1 

 d  = -0.01 

 m  = 2.0 

• The coupling parameter:  

 β  = 1.003 

• The volumetric parameters: 

 α  = 3.6×10-4 K-1 

 k  = 200 MPa 

• The thermal parameters: 

 ,TN  = 0.02 

 Tk  = 0.2 W m-1 K-1 

 T0C  = 1.5×106 J m-3 K-1 

 h  = 10 W m-2 K-1 
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2.2.3.1. Rubber fatigue response: stress-softening, hysteresis and heat build-

up 

The contribution of the two free chain populations on the inelastic effects is investigated 

while disregarding in this subsection the temperature and damage effects, i.e. ,TN  = 0.0 and 

β  = 1.0. By decoupling them from the temperature and damage effects, the focus is made 

only on the viscoelasticity effects. Figures 2.2.4 and 2.2.5 present the effect of key 

parameters, related to the entangled and non-entangled free chains, on the viscoelasticity-

induced rubber fatigue response. Each material parameter is varied independently while 

keeping the others constant. A global view at these results confirms that the stress-softening is 

mainly due to the move of the entangled free chains, whereas the hysteresis originates from 

the move of the non-entangled free chains. The two inelastic effects have different time-scales 

reproduced by the distinct relaxation rates of the two populations of free chains. 

                    
                                    (a)                                                                           (b) 
Figure 2.2.4. Maximum stress evolution during cyclic loading with the effect of (a) r1 and (b) 

C1 = nv_1kBT0. 
 

Figure 2.2.4 shows the evolution of the maximum stress for various values of the two main 

parameters controlling the stress-softening, i.e. 1r  and 
1 v _1 B 0C n k T= . A substantial decrease in 

stress is observed during the first few cycles. Following this rapid decrease in stress, the 

rubber undergoes a more gradual softening and tends towards a stabilized state for which 

there is no significant change in stress. The higher the values of 1r  and 
1 v _1 B 0C n k T= , the 

stronger the impact on the degree to which the rubber is softened. The parameter 1r  has nearly 

no effect on the initial stiffness and the stabilized state, whereas the parameter 
1 v _1 B 0C n k T=  

can control them due to its role on the overstress. 
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                                     (a)                                               (b) 

 
  (c)                                               (d) 

Figure 2.2.5. Hysteretic response at the 5th cycle and temperature evolution during cyclic 
loading with the effect of (a), (b) r2 and (c), (d) C2 = nv_2kBT0. 

 

Figure 2.2.5 presents the hysteretic process in the rubber cyclic response, and the associated 

change in temperature, for various values of the two main parameters affecting the hysteresis 

loop area, i.e. 2r  and 
2 v _ 2 B 0C n k T= . The higher the values of 2r  and 

2 v _ 2 B 0C n k T= , the higher 

the loop area. Our predictions show that a small variation of the loop area has a strong impact 

on the temperature increment in the material. 

2.2.3.2. Temperature and damage effects on the rubber fatigue response 

The temperature increment and the damage evolution are given in Figure 2.2.6 together 

with their effects on the network thermal kinetics and the network damage kinetics, 

respectively.  
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                                     (a)                                               (b) 
Figure 2.2.6. Heat build-up and fatigue damage during cyclic loading: (a) temperature 

evolution and associated network thermal kinetics, (b) damage evolution and associated 
network damage kinetics. 

 

The contribution of these two effects on the network rearrangements during the cyclic loading 

is analyzed in Figure 2.2.7a under different couplings for the simulation:  

• viscoelasticity: ,TN  = 0.0 and β  = 1.0, 

• viscoelasticity-temperature: ,TN  = 0.02 and β  = 1.0,  

• viscoelasticity-damage: ,TN  = 0.0 and β  = 1.003,  

• viscoelasticity-temperature-damage: ,TN  = 0.02 and β  = 1.003. 

The consequences of the internal network rearrangements on the degree to which the rubber is 

softened are given in Figure 2.2.7b. The addition of the dissipative heating and / or damage 

effects at the chain-scale may have an important effect at the macroscopic scale, in particular 

manifested by a deviation from the viscoelasticity-induced stabilized state. The inelastic 

effects during the cyclic loading in a tensile specimen containing a central hole are further 

analyzed in order to illustrate the adopted approach. The capability of the approach to 

simulate the temperature and damage fields in the vicinity of the hole is shown in Figure 

2.2.8. The predicted profiles of the temperature and the fatigue damage along the width and 

the length of the specimen are also plotted in the figure. The temperature distribution along 

the specimen width shows a maximum value located at a certain distance from the hole.  
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                                     (a)                                                (b) 
Figure 2.2.7. Network rearrangement during cyclic loading and resulting stress-softening: (a) 

network kinetics and (b) maximum stress evolution for different couplings (I: induced by 
temperature, II: induced by damage, III: induced by viscoelasticity). 

 

Along the specimen length, the temperature distribution slightly increases while moving from 

the hole and then progressively decreases. The damage distribution exhibits a higher gradient 

level along the specimen width. After an increase while moving from the hole, the damage 

distribution along the specimen length becomes progressively uniform. 

2.2.4. Partial conclusions 

In this part, we have presented a new thermo-viscoelastic-damage approach for the 

prediction of fatigue thermo-mechanical response in rubbers in connection to the network 

rearrangements. The constitutive model was incorporated into a finite element code and a 

numerical analysis was carried out for both a tensile configuration specimen and a specimen 

containing a central hole. The parametric study highlighted the respective role of key model 

parameters on the rubber inelastic fatigue response, i.e. stress-softening and hysteresis along 

with dissipative heating. In particular, the capability of the implemented constitutive model to 

simulate the effects of the recoverable viscoelastic rearrangements and the unrecoverable 

damage rearrangements, and their link with the global behavior, was demonstrated. The 

implemented constitutive model is presented in its most general form with the aim of being 

applicable to all rubbers and it provides a useful tool for thermal, viscoelastic and damage 

patterns estimation in cyclically loaded rubber structures.  
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T (℃) 

χ 

 
(a) 

 
(b) 

Figure 2.2.8. Heat build-up and fatigue damage distribution in the perforated specimen at the 
500th cycle: (a) temperature distribution, (b) damage distribution. 

 

In the following part, the efficiency of the proposed constitutive model to predict the 

experimental response of filled rubbers will be demonstrated. The application will be 

performed on a styrene-butadiene rubber containing different amounts of carbon-black and 

cyclically loaded under different pre-stretch levels. The effective role of carbon-black fillers 

dispersed in the rubber matrix will be especially emphasized not only on the inelastic fatigue 

response but also on the underlying physical mechanisms with their pre-stretch dependency. 

 

2.2.5. Appendix 

The volumetric, relaxed and viscous Cauchy stresses are obtained from the differentiation 

of the free energy functions with respect to the corresponding deformations, and are, 

respectively, given by: 

χ 

T 
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 vol
vol

ˆ

J

ψ∂=
∂

Iσσσσ  (2.2.A1) 

 TR
R iso iso

iso

ˆ2

J

ψ∂=
∂

F F
C

σσσσ  (2.2.A2) 

 Tv
v e e

e

ˆ2

J

ψ∂=
∂

F F
C

σσσσ  (2.2.A3) 

The volumetric Cauchy stress, expressed in Eq. (2.2.87), is obtained by substituting Eq. 

(2.2.82) into Eq. (2.2.A1). The relaxed and viscous Cauchy stresses, expressed in Eqs. 

(2.2.88) and (2.2.89), are obtained in a similar manner. Substituting Eq. (2.2.75) into Eq. 

(2.2.A2) and applying the chain rules of differentiation, the relaxed Cauchy stress is written as 

follows: 

 TRR B 1
R iso iso iso

iso iso3

Nn k T I

J
ζ

λ
∂=

∂
F F

C
σσσσ  (2.2.A4) 

where ( )1 isotraceI = C . 

Considering the kinematic constraint of the isochoric deformation tensor isoC , i.e.

( )3 isodet 1I = =C , Eq. (2.2.A4) can be rewritten as:  

 
( )1 3 TRR B

R iso iso iso
iso iso

1

3

I INn k T

J

ω
ζ

λ
∂ − −  =

∂
F F

C
σσσσ  (2.2.A5) 

where ω  serves as a Lagrange multiplier, which may be only found by means of the 

boundary conditions. 

Eq. (2.2.A5) can be also rewritten as follows: 

 ( )RR B
R iso iso

iso

=
3

Nn k T

J
ζ ω

λ
−B Iσσσσ  (2.2.A6) 

Finally, since the relaxed Cauchy stress tensor Rσσσσ  is traceless (see Eq. (2.2.33)), ω  is 

identified as 
iso

2λ  and the expression provided in Eq. (2.2.88) is obtained. The same derivation 

process is used to obtain the viscous Cauchy stress from Eq. (2.2.A3). 
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CHAPTER 2. FATIGUE RESPONSE OF 

FILLED RUBBERS 

 

2.3. A THERMO-VISCOELASTIC-DAMAGE 

CONSTITUTIVE MODEL. EXPERIMENTS AND 

IDENTIFICATION18 

Cyclically loaded styrene-butadiene rubber containing different amounts of carbon-black is experimentally 

examined under different pre-stretch levels at room temperature. The experimental observations, especially 

related to both the multi-step cyclic response interrupted by relaxation periods and the dissipative heating, 

provide valuable insights into the pre-stretch and filler effects on the underlying physical mechanisms of this 

rubber-filler material system. According to the active role of carbon-black fillers dispersed in the rubber matrix on 

the inelastic phenomena via the local microscopic interactions, the constitutive theory formulated in the previous 

Part of the Chapter 2 is modified in order to incorporate explicitly the filler effects. A deterministic identification 

procedure is proposed to extract the physically interpretable model parameters of the rubber matrix. The 

properties of the perfect network and the superimposed (entangled and non-entangled) free chains are identified 

via an amplification-inspired procedure using, respectively, the relaxed-stress data as a function of the filler 

content and the history-dependent mechanical cyclic response at the highest filler content. The identified rubber 

matrix properties are introduced into the finite element simulations as input constants and the same thermo-

mechanical boundary conditions regarding the experimental tests are simulated. The capabilities of the proposed 

constitutive model to predict the thermo-mechanical response under two cyclic loading blocks with different pre-

stretch levels are verified by comparisons with experiments. The constitutive model is found able to successfully 

capture the pre-stretch and filler effects on the fatigue-induced stress-softening, the hysteresis and the change in 

temperature. 

Keywords: Fatigue; dissipative heating; rubbers; carbon-black; pre-stretch level.  

                                                      

18 This Part of this Chapter is based on the following paper: Qiang Guo, Fahmi Zaïri, Xinglin Guo, 

2018. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part II: 

Experimental studies and parameter identification. International Journal of Plasticity 101, 58-73. 
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2.3.1. Partial introduction 

Rubbers used in engineering applications contain a large proportion of fillers in order to 

improve the mechanical properties and reduce the cost (Vilgis et al., 2009). The concentration 

of fillers dispersed in the rubber matrix, and more especially of filler aggregates, has a strong 

impact on the inelastic fatigue phenomena due to the active role of fillers via the viscous 

sliding between fillers and filler-rubber matrix, the breakdown-rebound mechanism of inter-

aggregates links and, the breakdown and disentanglement of chains between aggregates. 

Although remaining imprecisely understood to date, these internal recoverable or 

unrecoverable rearrangements occurring inside the rubber-filler material system during the 

fatigue loading history induce mechanical response evolution and energy dissipation, whose 

amounts depend on the filler content. Because it is impossible to directly measure these 

rearrangements in filled rubbers taking place at any location inside the material and at any 

time of the fatigue loading process, multiple competing views have been proposed, based 

upon macroscopic observations, to explain the origin of the stress-softening / hysteresis and 

the dissipative heating in filled rubbers (see the references in the first Part). Although current 

theoretical works may contain the rubber network properties and damage effects, they 

typically ignore the recoverable viscoelastic rearrangements, being significant in filled 

rubbers. 

In the previous Part, a new thermo-viscoelastic-damage approach, in accordance with the 

thermodynamic principles, is proposed to predict the inelastic effects in cyclically loaded 

rubbers in connection to the network rearrangements. The proposed formalism enables 

correlation of the history-dependent cyclic response of rubbers with their microstructure 

characteristics while taking into account the viscoelasticity effects and the unrecoverable 

network rearrangements. In the proposed formulation, we assumed the existence of two free 

chain populations, superimposed to the purely elastic perfect rubber network, to give a 

physical origin of the inelastic fatigue effects, each being related to one aspect of 

observations. According to the active role on the inelastic phenomena of the local microscopic 

interactions in filled rubbers acting between fillers and rubber matrix but also between fillers 

themselves, the explicit consideration of the presence of fillers may be seen as the second step 

succeeding the constitutive theory proposed in the previous Part. In this Part, the inelastic 

fatigue process of styrene-butadiene rubber (SBR) containing different amounts of carbon-

black is experimentally described under different pre-stretch levels at room temperature. The 

experimental observations provide valuable insights into the relationships between the 
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carbon-black content and the inelastic fatigue effects of this pre-stretched rubber-filler 

material system. The inherent inelastic fatigue mechanisms with their dependencies on the 

filler content and the pre-stretch level are studied under the guidance of both the history-

dependence multi-step cyclic tests interrupted by relaxation periods and the dissipative 

heating. After identification of the relative small number of physically interpretable 

parameters using an original deterministic procedure, the predictive capabilities of the 

proposed constitutive model formulated in the Part I are also critically discussed by 

comparisons with the experimental data obtained under two cyclic loading blocks with 

different pre-stretch levels. 

This Part is organized as follows. Section 2.3.2 presents the experimental investigations on a 

carbon-filled SBR containing different amounts of carbon-black and cyclically loaded under 

different pre-stretch levels. Section 2.3.3 is dedicated to the comparison between simulation 

results and experimental data. Finally, some concluding remarks are given in Section 2.3.4. 

2.3.2. Experimental 

2.3.2.1. Materials and specimen 

A sulfur-vulcanized SBR filled with three different amounts of carbon-black (15, 25 and 

43 phr, parts per hundred rubber in weight) is selected for a test program. The compound 

formulation, provided by the manufacturer (Trelleborg Group), is given in Table 2.1.1. The 

different SBR-filler material systems are referred to as SBRx, where x is the filler content in 

phr. The phr values are used to calculate the carbon-black volume fraction in the tested 

specimens, the direct input in the constitutive equations, by using the following densities of 

the carbon-black fillers and the unfilled SBR material: ρf  
= 1.8×103 kg m-3 (Abe et al., 2003) 

and ρm  = 1.21×103 kg m-3 (Wood et al., 1943), respectively. The equation allowing the proper 

conversion of phr to carbon-black volume fraction is given by: 

 

1

phr 100 phr
f

f m f

v
ρ ρ ρ

−
 

= +  
 

     (2.3.1) 

Dog-bone shaped specimens with gauge dimensions of 25 mm (length) × 4 mm (width) × 2 

mm (thickness) were cut from 2 mm thickness sheets, allowing to obtain both a highest 

temperature increase in the specimen gauge zone and a nearly homogeneous temperature 
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across the transverse direction, as evidenced in Section 2.2.3. Although material isotropy is 

expected, the specimens were cut along the same direction. 

2.3.2.2. Experimental method 

All the mechanical tests were achieved at room temperature using an electro-pulse testing 

machine Instron-5500. During the fatigue loading, the axial stretch was ramped, repetitively, 

to a prescribed maximum value maxλ  and then ramped down to a prescribed minimum value 

minλ . The same absolute axial strain rate of 1 /s was imposed to the loading and unloading 

segments. The surface temperature evolution on the specimen gauge zone was measured 

using an infrared camera Flir SC300 with the following main characteristics: Spectrum 

response ranged from 7.5 to 13 µm, resolution of 320 × 240 pixel, sensitivity / NETD less 

than 50 mK and image update rate of 9 Hz. 

In order to measure the effects of the carbon-black content and the loading conditions on the 

SBR inelastic features, different mechanical tests were performed: 

� Multi-step stress relaxation tests under a loading-unloading cycle were performed in 

order to identify the relaxed response. During both the loading and unloading 

segments, the axial stretch was interrupted at four prescribed levels. At each relaxation 

period, the stretch was maintained constant during 1 hour. Both the number of 

prescribed stretch levels and the holding time were found sufficient to reach the 

stabilized relaxed-response. 

� Fatigue tests of 500 cycles under different pre-stretch levels were performed in order 

to identify the viscous parameters of the proposed constitutive model. Further, in order 

to provide insights into the fatigue-induced stress-softening, multi-step cyclic tests 

interrupted by relaxation periods were also performed. Five blocks of 500 cycles were 

applied between which the minimum axial stretch was interrupted for a holding time 

of 3 minutes.  

� Two-block tests under different pre-stretch levels were performed in order to verify 

the proposed constitutive model. Low-High and High-Low pre-stretch levels of 250 

cycles for each block were considered in which the stretch amplitude 
amp max minλ λ λ= −  

is set to be the same: 

 { }min maxLow 1.2, 1.45λ λ= = = , { }min maxHigh 1.5, 1.75λ λ= = =  (2.3.2) 
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Previous to all measurements, 15 cycles up to an overstretch of 1.0 at a frequency of 1 Hz 

were performed to cancel the prime Mullins effect. This pre-conditioning was also applied to 

eliminate the flake that appears on the specimen surface after the first few cycles and that may 

alter the temperature-field measurements because of the surface emissivity variation. The 

infrared camera was located at a distance of 0.5 m in order to reduce the reflected radiation 

due to surrounding humidity. In order to monitor the environmental changes and further 

eliminate their effects on the fatigue self-heating measurements, a dummy specimen with the 

same material but not loaded was positioned close to the tested one. The external radiation 

sources were reduced by packing the set-up in a relatively closed space using a special 

thermal insulation material. The stored infrared images were post-processed to extract the 

surface temperature evolution in the region of interest on the specimen gauge zone. Thermal 

equilibrium was ensured by a holding time of 10 minutes before measurements. 

2.3.2.3. Experimental results 

The effects of the carbon-black content on the inelastic phenomena in pre-stretched 

cyclically loaded SBR are discussed in this subsection. These measurements allow to provide 

valuable insights into the modifications of the fatigue mechanisms in the rubber-filler material 

system due to the presence of carbon-black fillers. 

2.3.2.3.1. Stress relaxation 

The multi-step stress relaxation response under a loading-unloading cycle is presented in 

Figure 2.3.1 for the three carbon-filled SBR materials. In the unloading segment, the stress 

evolution during the relaxation periods is much more affected by the stretch level than that in 

the loading segment. During the relaxation periods, the stress evolves towards an end 

corresponding to an obvious stabilized relaxed-stress pointed out by a filled point in the 

figure. The obtained relaxed-stress data are function of the strain level and provide a 

quantitative judgment of the material nonlinear elastic response. Due to the strain-amplifying 

effect of the fillers, the large-strain viscoelastic response of carbon-filled SBR is strongly 

affected by the filler content by acting both on the elasticity and on the viscosity. In particular, 

the higher the filler content, the higher both the stabilized relaxed-stress and the hysteresis 

loop area. The viscoelastic mechanisms are strongly dependent on the level of interactions 

between the chains and the fillers, the chains and the fillers themselves. 

 



2.3. A thermo-viscoelastic-damage constitutive model. Experiments and identification 

122 

 

 

                      (a)                                          (b)                                       (c) 
Figure 2.3.1. Multi-step stress relaxation response under a loading-unloading cycle: (a) 

SBR15, (b) SBR25, SBR43. Hysteresis loops at 250th cycle for pre-stretch levels of min 1.2λ =  

and min 1.5λ =  are also plotted. 

 

The stress evolution during the relaxation periods of the multi-step cyclic tests, normalized by 

the maximum value, is presented in Figure 2.3.2 for the three carbon-filled SBR materials.  

 

                                      (a)                                  (b) 
Figure 2.3.2. Stress evolution during the relaxation periods of the multi-step cyclic tests at 

different pre-stretch levels: (a)min 1.2λ = , (b) min 1.5λ = . 

 

The stress decreases in the first relaxation period and it increases in the others. At each 

relaxation period and after the initial transient change in stress, the relaxation response tends 

towards a stabilized state for which there is no significant change in stress. This tendency of 

stress stabilization is more pronounced in the test with higher pre-stretch level, and especially 

for the last four relaxation periods. Since the relaxation response is clearly affected by the pre-

stretch level, the nonlinear viscoelasticity of the material is further evaluated. Furthermore, it 

is observed that the concentration in carbon-black fillers has an important effect on the 
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normalized stress evolution, which may be explained by the promotion effect of rigid particles 

on macroscopic viscoelastic strain (Laiarinandrasana et al., 2012). 

2.3.2.3.2. Fatigue-induced stress-softening 

The fatigue-induced stress-softening response issued from the multi-step cyclic tests, after 

reaching different assigned pre-stretches, is presented in Figure 2.3.3 for the three carbon-

filled SBR materials.  

  

                                      (a)                     (b) 
Figure 2.3.3. Fatigue-induced stress-softening response of the multi-step cyclic tests at 

different pre-stretch levels: (a)min 1.2λ = , (b) min 1.5λ = . 

 

At each cyclic loading block, the stress-softening is substantial during the first few cycles and 

is followed by a more gradual stress-softening which tends towards a stabilized stress 

dependent on the reinforcement and the applied pre-stretching. The softening magnitude 

increases with the filler content and decreases with the pre-stretch level. Recall that the 

stabilized response was associated in our theory to a viscous-related feature. From one block 

to another and after the initial transient softening, the stress tends further to recapture the path 

of the interrupted cyclic response. More interestingly, a considerable recovery in fatigue-

induced stress-softening is evidenced by means of the multi-step cyclic tests. Indeed, from 

one block to another, a large part of the initial transient stress-softening is recovered. The 

underlying physical mechanism is therefore recoverable and associated to material 

viscoelasticity. The recovery extent of stress-softening is believed to increase with the 

magnitude of the holding time in the relaxation periods. In the meantime, it can be observed 

that the recovery in fatigue-induced stress-softening diminishes with the block number. As a 

consequence, the observable decrease in stress may be associated in part with recoverable 
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viscoelastic mechanisms and in another part with unrecoverable damage mechanisms. These 

two types of dissipative network rearrangements occurring inside the rubber-filler material 

system are two relative mechanisms whose quantification depends on the load time-scale. 

These observations give significance to the constitutive theory of the previous Part 

considering these two types of mechanisms in the form of two distinct internal state variables. 

The unrecoverable rearrangements inducing damage find several plausible explanations in the 

literature. The scission mechanism of short chains within the rubber matrix is probably the 

most trivial (Mullins, 1948; Marckmann et al., 2002; Chagnon et al., 2006; Ayoub et al., 

2011, 2014a). This mechanism is activated when the extensibility limit of short chains is 

reached. More specifically, the decrease in stress observed in the first extension (i.e. Mullins 

effect) is activated for stretch levels greater than a maximum obtained in the previous 

deformation history. A similar origin may be associated to the progressive stress degradation 

in pure rubbers, resulting from the fatigue loading history, but with a lower intensity as it is 

extended over time. The progressive stress-softening may be associated to the progressive 

breakdown of short chains being stuck between entangled chains. At each cycle, some 

entangled chains progressively split open. The chain disentanglement leads to the progressive 

scission of short chains being stuck between them and reaching their extensibility limit 

(Ayoub et al., 2011). The process of chain disentanglement / chain scission continues until it 

is totally consumed leading to the observable stabilized stress. The carbon-black fillers act on 

the SBR fatigue-induced stress-softening response due to their strain-amplifying effect. As 

clearly illustrated in Figure 2.3.3, the increase in carbon-black content has a strong effect on 

the degree to which the material is softened. As a consequence, the previous set of plausible 

fatigue mechanisms must also consider the filler-matrix interactions. Several competing views 

were proposed to explain the origin of the stress-softening by involving the fillers in the 

underlying physical mechanisms: breakdown of short chains between two filler aggregates 

(Bueche, 1960), chain "slipping" over the filler surface (Houwink, 1956), breakdown of filler 

aggregates (Kraus et al., 1966) and chain disentanglement between two filler aggregates 

(Hanson et al., 2005).  

2.3.2.3.3. Hysteresis and mechanical dissipation 

The cyclic stress-strain response of the rubber-filler material system leads to energy 

dissipation which results from dissipative network rearrangements modifying the original 

network to another one at each new cycle. Illustrative examples of the hysteresis loop are 

provided in Figure 2.3.1 for the three carbon-filled SBR materials, indicating the filler effects 
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on hysteresis. The breakdown-rebound process of inter-aggregates links may be considered to 

be the main source of the observable hysteretic response at the macroscopic scale, due to the 

strong effects of carbon-black fillers on the response. Electrical resistivity measurements 

showed that the increase in filler content leads to the development of a filler network across 

the rubber matrix and a higher number of inter-aggregates links (Kraus, 1984; Pramanik et al., 

1992; Diaz et al., 2014). The increase in electrical resistivity when the carbon-filled rubber is 

cyclically loaded is a sign of the breakdown of inter-aggregates links, beginning with the 

weakest ones and progressing to the strongest ones. The filler aggregates form new inter-

aggregate links in new positions inside the rubber-filler material system, which are again 

broken during the cyclic loading and then reformed in other positions. All these network 

rearrangements contribute to the hysteretic process leading to energy dissipation at the 

macroscopic scale. The mechanical energy D  dissipated during one complete cycle of 

cyclically loaded SBR is quantified by the area of the stress-strain hysteresis loop σ -ε : 

 D dσ ε= :∫�      (2.3.3) 

Figure 2.3.4 presents the variations of the mechanical dissipation as a function of the cycle 

number, issued from the multi-step cyclic tests, after reaching different assigned pre-stretches.  

 
   (a)                                                                (b) 

Figure 2.3.4. Mechanical dissipation of the multi-step cyclic tests at different pre-stretch 
levels: (a) min 1.2λ = , (b) min 1.5λ = . 

 

By virtue of the fatigue-induced stress-softening, the strongest decrease in mechanical 

dissipation occurs during the first few cycles of each cyclic loading block and then the 

mechanical dissipation tends towards a stabilized state. The pre-stretch level dependency of 

the mechanical dissipation is evidenced in the figure. The higher the pre-stretch level, the 

smaller the mechanical dissipation. The decrease of the hysteresis loop area with the pre-
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stretch level is mainly due to the nonlinear material response (Figure 2.3.1). In addition, the 

mechanical dissipation and the rate of the decrease with the cycles are observed to increase 

with the carbon-black content.  

2.3.2.3.4. Intrinsic dissipation 

When the carbon-filled SBR is cyclically loaded a portion of the mechanical dissipation is 

converted into heat which leads to an increase in temperature. An abrupt temperature increase 

occurs during the first few cycles and then tends towards a stabilized state with an equality of 

the generated heat and the heat lost into the environment (Ovalle-Rodas et al., 2014, 2016). 

The heat build-up increases with the filler content and the pre-stretch level. Actually, the 

temperature increase is induced by the intrinsic dissipation (Lion, 1997; Guo et al., 2017), 

which is closely associated with all irreversible thermodynamic processes involving both 

damage mechanisms, corresponding to unrecoverable network rearrangements, and 

viscoelastic mechanisms, corresponding to recoverable network rearrangements. From Eq. 

(2.2.72), a local zero-dimensional thermal equilibrium equation can be derived for flat and 

thin specimens with a constant cross-section (Boulanger et al., 2004): 

 T0 1C
θθ
τ

 + = Φ + 
 
&

h  (2.3.4) 

where τ  is a time constant characterizing the heat exchanges of the specimen gauge zone 

with the surroundings and 0T Tθ = −  is the average temperature variation of the specimen 

gauge zone, 0T  being the initial temperature. The terms T0C , 1Φ  and h  are the specific heat 

capacity at constant deformation, the intrinsic dissipation and the thermo-visoelastic-damage 

coupling coefficient, respectively. Considering that the accumulation of the thermo-

visoelastic-damage coupling over one complete cycle is imperceptible, the average intrinsic 

dissipation 
1Φ  over the cyclic loading process can be evaluated: 

 ( )T0
1 0

1 nc

c

t

n
c

C
t dt

n
θ θ

τ
 Φ = + 
 

∫  (2.3.5) 

where cn  and 
cnθ  are the cycle number and the temperature increment at the end of the cyclic 

loading history 
cnt , respectively. 

The average intrinsic dissipation 
1Φ  is evaluated for the first cyclic block of the multi-step 

cyclic tests by processing via Eq. (2.3.5) the surface temperature data extracted in the 

specimen gauge zone. It is plotted in Figure 2.3.5 with the average mechanical dissipation D : 
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1

1 cn

c

D D
n

= ∑      (2.3.6) 

The dependences of the mechanical and intrinsic dissipations on the carbon-black content and 

on the pre-stretch level are relatively similar. In particular, the increase in dissipations is not 

linearly dependent on the carbon-black content which suggests modifications in the filler-

rubber matrix interactions. It can be clearly observed that the intrinsic dissipation is smaller 

than the mechanical dissipation. Even it is relatively weak, the difference between the two 

dissipations gives an indication of the energy quantity stored in the rubber-filler material 

system, and, by this way, it gives insights into the unrecoverable network rearrangements 

inducing damage. In the theory formulated in the previous Part - Eqs. (2.2.99) and (2.2.102) - 

the damage-induced softening implies energy dissipation, i.e. the damage-related internal 

work κχ&  is positive and the proportionality coefficient β  is superior to unity. The energy 

quantity stored in the cyclically loaded material highlights the complex role of fillers and the 

implication of the breakdown of inter-aggregates interactions creating new surfaces, this 

process increasing with the pre-stretch. A pre-stretch effect on the fatigue-life of carbon-filled 

SBR was earlier reported (Ayoub et al., 2012, 2014b). Indeed, as shown in Figure 2.3.5, 

higher pre-stretching leads to smaller dissipations but to higher differences between the two 

dissipations accelerating the damage accumulation towards degradation and failure.  

 
 (a)        (b) 

Figure 2.3.5. Average dissipations at different pre-stretch levels: (a) min 1.2λ = , (b) min 1.5λ = . 

2.3.2.4. Discussions on inelastic fatigue mechanisms 

A plausible explanation of the inherent inelastic fatigue mechanisms with the pre-stretch 

dependency is proposed in this subsection under the guidance of our experimental 
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observations. An illustration of the physical mechanisms in pre-stretched cyclically loaded 

carbon-filled SBR is provided in Figure 2.3.6. 

  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2.3.6. Physical mechanisms in pre-stretched cyclically loaded filled rubbers: (a) initial 
network, (b) pre-stretched network and (c) network rearrangement after pre-stretched cyclic 

loading. 
 

A global view at all presented experimental observations (Figures 2.3.1-2.3.5) indicates that 

there is a quite significant effect of the two examined factors (i.e. filler content and pre-stretch 

level) on the reported inelastic phenomena, namely, stress relaxation, fatigue-induced stress-

softening, hysteretic response and related mechanical dissipation along with dissipative 

heating. All these inelastic effects increase with the carbon-black content increase and with 

the pre-stretch level decrease 

From the basic viewpoint of the continuum thermodynamics, the intrinsic dissipation is a 

consequence of two types of rearrangements in the rubber-filler material system, i.e. 

recoverable network rearrangements inducing viscoelasticity and unrecoverable network 

rearrangements inducing damage. The dissipation quantification in Figure 2.3.5 points out 

that the viscoelastic recoverable rearrangements may be the dominate inelastic fatigue 

mechanisms in the studied carbon-filled rubber. This is consistent with the stress-softening 

recovery observed in Figure 2.3.3 from the multi-step cyclic tests. The viscoelastic 

mechanisms depend on the filler-rubber matrix interactions, the chain-chain interactions and 

Low pre-stretch High pre-stretch 

Low pre-stretch High pre-stretch 

Initial state 
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the filler-filler interactions. The degree of these three types of interactions are highly 

dependent on, respectively, the filler-rubber matrix interface (chain "slipping" over the filler 

surface, desorption at the filler surface and bond breakdown at the filler surface), the chain 

entanglement density (viscous sliding between chains), and the contact surface area between 

fillers inside the aggregates (viscous sliding between carbon-black fillers). Besides, it has 

been shown that the addition of fillers impedes the segmental mobility of chains in a rubber 

compound (Kraus and Gruver, 1970; Thiele and Cohen, 1980). The interfacial interaction 

between rubber matrix and fillers forms a region where the chain mobility is gradually 

reduced, through variations in the glass transition temperature as a function of the distance to 

the filler surface (Berriot et al., 2002, 2003).  

The increase in filler content is related to higher interactions between carbon-black fillers 

inside the aggregates. The internal network rearrangements between aggregates during the 

cyclic loading leads to the mechanical dissipation manifested by the hysteretic process in the 

carbon-filled SBR cyclic response. The breakdown-rebound process of inter-aggregates 

interactions, from which originate the hysteretic response of the rubber-filler material system, 

is also a recoverable mechanism highly dependent on the load time-scale. As a consequence 

of the increase in inter-aggregates interactions with the carbon-black content, a higher 

additional energy is dissipated within the breakdown-rebound process of inter-aggregates 

links. 

The internal network rearrangements during the cyclic loading are schematically illustrated in 

Figure 2.3.6 at different pre-stretch levels, by involving the plausible recoverable and 

unrecoverable rearrangements in the rubber-filler material system. The application of a pre-

stretch decreases the filler-rubber matrix interactions, the chain entanglement density and the 

contact surface area between fillers inside the aggregates. As a consequence, the viscous 

motion degree in the rubber-filler material system decreases with the applied pre-stretch level, 

leading to the decrease of the inelastic effects at the macroscopic scale. Although the 

viscoelastic recoverable rearrangements dominate over the inelastic fatigue mechanisms, 

some damage effects may contribute to the intrinsic dissipation. The possible unrecoverable 

mechanisms may be induced by the progressive breakdown of short chains between two filler 

aggregates as well as by the breakdown-rebound process of inter-aggregates links. The latter 

mechanism may be due to a part of the breakdown of the inter-aggregates links that cannot be 

reformed on the time-scale of measurements, as evidenced by the fatigue-induced stress-

softening response issued from the multi-step cyclic tests (Figure 2.3.3). The pre-stretch level 
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increases both the number of chain scission between two filler aggregates and the number of 

permanent filler aggregate ruptures. The two possible damage effects may also potentially 

modify the material viscosity in two antagonist ways. Indeed, the transformation of some 

broken chains into dangling chains during the network rearrangements may increase the 

viscosity, i.e. higher energy dissipated. The rupture of filler aggregates, decreasing the contact 

surface area between fillers inside the aggregates, may decrease the viscous sliding between 

fillers, i.e. lower energy dissipated. Among these two possible damage effects, it is believed 

that the permanent filler aggregate rupture dominates since the dissipation, estimated in 

Figure 2.3.4 from the multi-step cyclic tests, decreases with the block number. In addition, the 

degradation of the interphase around the fillers is potentially an additional cause of the weaker 

filler-rubber matrix interactions (Boutaleb et al., 2009; Zaïri et al., 2011a).  

2.3.3. Modeling results and discussion 

We propose herein a numerical modeling of the inelastic effects in cyclically loaded SBR 

and to discuss how the fillers may be included in the constitutive model formulated in the 

previous Part. 

2.3.3.1. Filled network 

In addition to a stiffening effect, the concentration in carbon-black fillers enhances the 

viscosity in the rubber-filler material system due to the viscous sliding between fillers and 

fillers / free chains. In order to consider the effective contribution of the fillers the Bergstrom 

and Boyce (1999) amplification procedure may be applied to the average micro-stretch 

imposed on chains. The right and left Cauchy-Green deformation tensors, given by Eqs. 

(2.2.24) and (2.2.26), become: 

 ( )iso isoX= − +C C I I , ( )iso isoX= − +B B I I  (2.3.7) 

 ( )e _1 e _1X= − +C C I I , ( )e _1 e _1X= − +B B I I  (2.3.8) 

 ( )e _ 2 e _ 2X= − +C C I I , ( )e _ 2 e _ 2X= − +B B I I  (2.3.9) 

where X  is the amplification factor related to the concentration / distribution of fillers in the 

rubber network. The empirical form of the amplification factor X  initially proposed by Guth 

(1945) is given by the following general formula: 

 ( ) 2 21 0.67 1.62f f fX v cv c v= + +      (2.3.10) 
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in which  ≥ 1 is a shape factor considering the filler agglomeration.  

The average free energy function of the carbon-filled SBR material is given by: 

 ( ) ( ) ( ) ( )
( )

R iso v_1 e_1 v_2 e_ 2

SBR

vol

ˆ ˆ ˆ, , , ,
1

ˆ ,
f

T T T
v

T J

ψ χ ψ ψ
ψ

ψ

 + + = −  
 + 

C C C
     (2.3.11) 

where ( )R isoˆ , ,Tψ χC  is the amplified relaxed free energy function of Eq. (2.2.75), 

( )v_1 e_1ˆ ,Tψ C  and ( )v_2 e_ 2ˆ ,Tψ C  are the amplified viscous free energy functions of Eq. 

(2.2.79) (entangled and non-entangled free chains, respectively) and ( )volˆ ,T Jψ  is the 

volumetric free energy function given by Eq. (2.2.82). 

The average Cauchy stress of the carbon-filled SBR material is given by: 

  (2.3.12) 

in which  is the average relaxed Cauchy stress,  and  are the average viscous 

Cauchy stresses and  is the average volumetric Cauchy stress expressed, respectively, as: 

 ( ) ( )( )2RR B
R iso iso iso

iso

1
3f

Nn k T
v X

J
ζ λ

λ
= − −B Iσσσσ      (2.3.13) 

 ( ) ( )( )2v _1v_1 B
v _1 v _1 e_1 e_1

e_1

1
3f

Nn k T
v X

J
ζ λ

λ
= − −B Iσσσσ      (2.3.14) 

 ( ) ( )( )2v_ 2v_ 2 B
v_ 2 v _ 2 e_ 2 e_ 2

e_ 2

1
3f

Nn k T
v X

J
ζ λ

λ
= − −B Iσσσσ      (2.3.15) 

  (2.3.16) 

where isoλ  is given by Eq. (2.2.76), isoζ  is given by Eq. (2.2.78), e _1λ  and e _ 2λ  are 

given by Eq. (2.2.80) and v _1ζ  and v_ 2ζ  are given by Eq. (2.2.81).
 

In what follows, the proposed constitutive model is identified and verified using the carbon-

filled SBR experimental data. The results of the finite element simulations are also criticized 

by comparing the predicted values provided by the proposed model with the experimental 

data obtained from the two-block tests. A view of the finite element mesh of the tested dog-

bone shaped specimen is given in Figure 2.2.3b of the Part I, in which the same thermo-

mechanical boundary conditions regarding the experimental tests are simulated for the model 

identification and verification. 

c

R v _1 v _ 2 volSBR = + + +σ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ

Rσσσσ v _1σσσσ v _ 2σσσσ

volσσσσ

( ) ( ) ( )2
vol 0

1
1 1 3

2fv k J k T T
J

α = − − − −  
Iσσσσ
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2.3.3.2. Identification  

In this subsection, the SBR thermo-mechanical parameters are identified (sometimes 

specified) in the order of the model parameter list provided in Section 2.2.3. As revealed by 

our experimental observations, the recoverable and unrecoverable network rearrangements are 

two relative mechanisms dependent on the loading condition, especially on the load time-

scale. In light of the significance of the viscoelastic effects in the carbon-filled SBR inelastic 

fatigue process, the damage effects on the chain-scale material constants are not considered in 

the present identification. Furthermore, the temperature-induced network rearrangements are 

also not considered due to the relative low level in measured dissipative heating.  

The numerical parametric study presented in Figures 2.2.4 and 2.2.5 of the previous Part 

revealed the respective role of selected material constants on the stress-softening, the 

hysteresis and the heat build-up in the tested dog-bone shaped specimen without alteration of 

the rubber network by damage-dissipative heating effects. In this part of the work, an original 

deterministic procedure is proposed to extract using the SBR experimental data the physically 

interpretable model parameters of the rubber matrix: R Bn k T , RN , v _1 Bn k T , v_ 2 Bn k T , 
v _1N ,

 

v _1N , 1  r , 2r ,  m  and d . The properties of the perfect network are identified via an 

amplification-inspired procedure using the relaxed-stress data whereas the history-dependent 

mechanical cyclic features of one filler content serve to the identification of the properties of 

the entangled and non-entangled free chains. 

2.3.3.2.1. Network parameters of the cross-linked chains 

In the case of incompressible uniaxial deformation, the uniaxial average relaxed Cauchy 

stress Rσ  is given from Eq. (2.3.13), as a function of the uniaxial stretch λ , as follows: 

 ( ) 2RR B
R

1
1

3f

Nn k T
v Xσ ζ λ

λ λ∗
∗

 = − − 
 

 (2.3.17) 

where: 

 
2

1 R
2

R R R

3N

N N N

λ λ λ
ζ

λ
− ∗ ∗ ∗

∗
∗

  −
= ≈   − 
L  (2.3.18) 

 ( )2
* 1 1Xλ λ∗ = − +  (2.3.19) 

in which: 

 21 2

3
λ λ

λ∗
 = + 
 

 (2.3.20) 



2.3. A thermo-viscoelastic-damage constitutive model. Experiments and identification 

133 

 

In light of the difficulty to regress simultaneously the experimental data of the three carbon-

filled SBR materials according to Eq. (2.3.17), a convenient approach is proposed to identify 

the network parameter  and the filler agglomeration shape factor c. By considering the 

rubber-filler material system as a homogeneous medium, the static stiffness RC  
may be 

extracted from the following formula: 

 

1

R 2
R R

1
3

N
C σ ζ λ

λ λ

−

∗
∗

   = −  
   

 (2.3.21) 

where: 

 
2

1 R
2

RR R

3N

NN N

λ λ λζ
λ

− ∗ ∗ ∗
∗

∗

  −= ≈   − 
L  (2.3.22) 

Using the relaxed-stress deduced from the multi-step stress relaxation, the value of the static 

stiffness RC  for each carbon-filled SBR material is obtained. The amplification effect of 

carbon-black fillers on micro-stretch imposed on chains can be considered as an equivalent 

amplification effect applied on the static stiffness RC  
at the macroscopic scale. Figure 2.3.7a 

presents the static stiffness RC  as a function of the filler content and the fitting with the 

following equation:  

 ( ) ( )R R R B
ˆ 1f fC C v v Xn k T= = −  (2.3.23) 

Considering that the relaxed-stress is deduced from the multi-step stress relaxation, in which 

the holding time is sufficient for restoring the temperature up to the initial value (i.e. room 

temperature 0T ), the network parameter  and the filler agglomeration shape factor c 

can be extracted by means of parametric regression with least square method: 

 R B 0 0.34 MPan k T =  (2.3.24) 

 3.69c =  (2.3.25) 

By combining Eqs. (2.3.21) and (2.3.23), the uniaxial average relaxed Cauchy stress can be 

alternatively expressed as: 

  ( ) R 2R B
R

1
1

3f

Nn k T
v Xσ ζ λ

λ λ∗
∗

 = − − 
 

 (2.3.26) 

The uniaxial average relaxed Cauchy stress given by Eq. (2.3.17), and issued from the 

Bergstrom and Boyce (1999) amplified procedure, is compared in Figure 2.3.7b with the 

proposed formula given by Eq. (2.3.26). The two solutions give very similar results for the 

three amounts of carbon-black. This micromechanical treatment introducing the nonlinear 

R Bn k T

R B 0n k T
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dependence on the volume fraction was earlier used for other types of material responses 

(Ayoub et al., 2010; Zaïri et al., 2010, 2011b). 

 

                                 (a)              (b) 
Figure 2.3.7. Identification of the network parameters of the cross-linked chains: (a) static 

stiffness as a function of the filler volume fraction, (b) relaxed-stress response considering the 
two amplified models (1: SBR15, 2: SBR25, 3: SBR43).  

 

The value of RN  can be further determined by considering that the denominator of the Padé 

approximation given by Eq. (2.3.22) is equal to zero: 

 2
R

1 2
6.0

3
N λ

λ∞
∞

 
= + = 

 
 (2.3.27) 

in which λ∞  is the uniaxial stretch for which the stress increases in an exponential way. 

2.3.3.2.2. Viscous parameters of the free chains 

The identification exercise of viscous parameters is not trivial and its difficulty is 

proportional with the complexity of the constitutive model itself (Pyrz and Zaïri, 2007; 

Abdul-Hameed et al., 2014a, 2014b).  

From a micromechanical viewpoint, we assume that the network properties in the rubber-

filler material system are the same as those of the pure rubber network. The remarkable effect 

of the filler reinforcement on the cyclic dissipation and the stress-softening is seen in Figures 

2.3.8 and 2.3.9, in which are plotted the evolutions of the stresses in each sub-network, as a 

function of time and strain, respectively, for the SBR43 material and the pure rubber network. 
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      (a)                            (b) 
Figure 2.3.8. Stress as a function of time in: (a) entangled free chains, (b) non-entangled free 

chains.  

                                     
      

 (a)                            (b) 
Figure 2.3.9. Stress as a function of strain in: (a) entangled free chains, (b) non-entangled free 

chains. 
 

The magnitude of these two phenomena can be also predicted in a given material point of the 

meshed specimen. As an illustrative example, Figure 2.3.10 gives the local viscous stretch 

fields. The reduced section in the gauge length allows locating the highest viscous stretch in 

this region and, as a consequence, the highest stress-softening and hysteresis. The highest 

magnitude of the intrinsic dissipation related to thermo-hysteretic effects (mainly induced by 

the non-entangled free chains) occurs in this zone. 
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(a)   

(b)  

Figure 2.3.10. Contours of the viscous stretches in the flat specimen: (a) SBR43, (b) matrix 
(1: entangled free chains, 2: non-entangled free chains).  

 

The properties of the entangled and non-entangled free chains are identified via the 

amplification-inspired procedure. Analogous to the static stiffness RC , the viscous parameters 

v_1C
 
and v_2C , related, respectively, to the entangled and non-entangled free chains, are 

defined by considering the rubber-filler material system as a homogeneous medium. In the 

case of incompressible uniaxial deformation, the viscoelastic response can be analogous to the 

harmonic response of a simple mechanical model consisting to two parallel Maxwell 

elements, each constituted by an elastic spring in series with a viscous dashpot. Let us 

consider the Maxwell element of the entangled free chains cyclically loaded from the 

minimum strain min minlnε λ=  to the maximum strain max maxlnε λ= . Due to the low relaxation 

rate of the viscous dashpot, the maximum stretch in the elastic spring tends to decrease during 

the cyclic loading and the middle point of the elastic spring moves monotonously towards the 

stretch direction until reaching ( )max min 2ε ε− . The decrease of the maximum stretch in the 

elastic spring leads to the decrease of the macroscopic stress from the stress 
max_1σ  of the first 

cycle to the stress max_ nc
σ  of the last cycle. The viscous stiffness v_1C

 
is roughly estimated 

from the stress-softening response by: 

2 

1 

2 

1 

vλ

vλ
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 ( )
max_1 max_ n

v _1
max min 2

cC
σ − σ
ε ε

=
−

 (2.3.28) 

The viscous stiffness v_2C  is determined from a loading-unloading cycle. Using the tangent 

modulus of the instantaneous unloading uE d dσ ε=  and the static stiffness 

( )2
R 2 1 3u uC λ λ+  at the uniaxial stretch reversal uλ , the viscous stiffness v_2C  is estimated 

by the following equation: 

 2R
v _ 2 v_1

1
2

3u u
u

C
C E Cλ

λ
 

= − + − 
 

 (2.3.29) 

The viscous stiffness values, identified using the SBR43 experimental data, are: 

  (2.3.30) 

 ( )v _ 2 SBR43
0.47 MPaC =  (2.3.31) 

The distribution of the carbon-black fillers is considered identical inside the three parallel 

networks. In other words, the magnitude of strain-amplifying effect of the fillers is assumed to 

be the same for the cross-linked chains, the entangled free chains and the non-entangled free 

chains. Thus, the amplification equation identified for the cross-linked chains may be applied 

to the two other networks by using similar formulae: 

 ( ) ( )v _1 v _1 v _1 B
ˆ 1f fC C v v Xn k T= = −  (2.3.32) 

 ( ) ( )v _ 2 v _ 2 v _ 2 B
ˆ 1f fC C v v Xn k T= = −  (2.3.33) 

Combining Eqs. (2.3.30), (2.3.31), (2.3.32) and (2.3.33), and ignoring the temperature effect, 

the material properties of the entangled and non-entangled free chains are easily extracted: 

  (2.3.34) 

  (2.3.35) 

The values of 
v _1N

 
and 

v _ 2N
 
for the entangled and non-entangled free chains, respectively, 

are assumed to be equal and to be the same than that identified for : 

 v_1 v _ 2 6.0N N= =  (2.3.36) 

The values of the other viscous parameters are obtained through the adjustment of the best 

response for the highest filler content by means of trial and error: 

 2 1
1 3.0 MPa sr − −=  (2.3.37) 

 2 1
2 265 MPa sr − −=  (2.3.38) 

( )v _1 SBR43
0.22 MPaC =

v _1 B 0 0.11 MPan k T =

v _ 2 B 0 0.24 MPan k T =

RN
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 0.01d = −  (2.3.39) 

   2.0m=  (2.3.40) 

The damage kinetics of the chain-scale material constants given by Eq. (2.2.102) is set to zero 

and hence the coupling parameter takes the following value: 

   1.0β =  (2.3.41) 

The identification results of the properties of the entangled and non-entangled free chains are 

provided in Figures 2.3.11 and 2.3.12, respectively. The ability of the model to capture the 

SBR43 experimental data can be verified for the two pre-stretch levels.  

 

      (a)       (b) 
Figure 2.3.11. Identification of the viscous parameters of the entangled free chains using the 

SBR43 stress-softening response: (a) min 1.2λ = , (b) min 1.5λ = .   

 
       (a)       (b) 

Figure 2.3.12. Identification of the viscous parameters of the non-entangled free chains using 
the SBR43 hysteresis loop at the 250th cycle: (a) min 1.2λ = , (b) min 1.5λ = .  

The properties of the rubber network in the rubber compound are supposed to be the same as 

those of the pure rubber network, for which the responses are also provided in Figures 2.3.11 
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and 2.3.12. The remarkable effect of the fillers on the increases of fatigue-induced stress-

softening and hysteresis is pointed out. 

 

 

(a) 

 

(b) 

 
(c) 

Figure 2.3.13. Experimental and simulated stress-softening (maximum and minimum stresses) at 
different minimum stretches (1: λmin=1.1, 2: λmin=1.2, 3: λmin=1.3, 4: λmin=1.4, 5: λmin=1.5): 

(a) SBR15, (b) SBR25, (c) SBR43. 
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Remind that the model parameters were fitted to the SBR43 cyclic experimental data, and 

then the same material parameters were used to predict the SBR15 and SBR25 cyclic 

responses using the amplified-inspired approach. Therefore, except the relaxed-response 

parameters, the verification consists in a study of the capability of the model to fit the SBR43 

experimental data and, to predict the SBR15 and SBR25 experimental data. The simulations 

are compared with the experiments in Figures 2.3.13, 2.3.14 and 2.3.15.  

 

  

       (a)       (b) 

 
(c) 

Figure 2.3.14. Experimental and simulated hysteretic response at 250th cycle and at different 
minimum stretches (1: λmin=1.1, 2: λmin=1.2, 3: λmin=1.3, 4: λmin=1.4, 5: λmin=1.5): (a) SBR15, 

(b) SBR25, (c) SBR43. 
 

The responses given by the proposed model and the experiments are shown for a material 

point taken on the gauge length of the dog-bone shaped specimen surface. A global view at 

these figures shows the ability of the model to capture, over the entire range of minimum 

stretch levels, the filler content effect on, respectively, the stress-softening, the hysteresis and 

the surface heat build-up as a function of the cycle number. The model is found able to 

capture during the fatigue loading history the antagonist effects of minimum stretch and filler 
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content on stress-softening, hysteresis loop and heat build-up, decreasing with minimum 

stretch and increasing with filler content. It can be observed in Figure 2.3.13 that the strongest 

stress-softening occurs at the first cycles in which both the maximum and minimum stresses 

involve linearly. After a certain number of cycles, the rubber tends towards a stabilized state 

for which there is no significant change in stress. Although, the general trends provided by the 

simulations are satisfactory, we must to recognise that the initial rapid transient softening is 

not well reproduced by the model whose accuracy would be improved by increasing the 

number of networks.  

 

  

       (a)       (b) 

 

(c) 

Figure 2.3.15. Experimental and simulated surface temperature at different minimum 
stretches (1: λmin=1.1, 2: λmin=1.2, 3: λmin=1.3, 4: λmin=1.4, 5: λmin=1.5): (a) SBR15, (b) 

SBR25, (c) SBR43. 
 

The model is found to describe in a satisfactory manner both the hysteretic response and the 

temperature evolution due to the heat build-up as highlighted in Figures 2.3.14 and 2.3.15. In 

particular, the mechanical dissipation, depicted by the hysteresis loop area is well reproduced 
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by the model, including the dependency vis-à-vis the filler content and the minimum stretch. 

Almost all the mechanical dissipation is transferred into heat energy inducing the temperature 

increase reported in Figure 2.3.15. When the amount of generated heat is equal to the amount 

of heat lost into the environment, the temperature reaches the stabilization observed 

experimentally as well as numerically. Note that although the model is also able to describe 

the well-known oscillating temperature, only the average value of the temperature is presented 

for the sake of simplicity. 

2.3.3.2.3. Volumetric and thermal parameters 

The volumetric and thermal parameters are assumed to be not dependent on the filler 

content. The thermal expansion coefficient α  of the studied material was obtained in our 

previous work (Ovalle-Rodas et al., 2015) by means of constant-temperature tests under 

temperatures ranging from 293 up to 353 K:  

 4 1

0

1
3.6 10 K

dL

L d
α

θ
− −  = = ×  

  
 (2.3.42) 

where 0L  is the initial specimen length and dL dθ  is the uniaxial dilatation-absolute 

temperature slope. 

The bulk modulus k , significantly higher than the rubber stiffness, takes the following value: 

 R B 0500 200MPak n k T= ≈  (2.3.43) 

Contrary to the observed trend on pure rubbers (Meyer and Ferri, 1935; Treloar, 2005), a 

thermal softening of the relaxed stress-strain relation may be observed in filled rubbers 

(Drozdov and Christiansen, 2009; Li et al., 2011; Ovalle-Rodas et al., 2015). The decrease in 

stiffness with temperature, acts as an additional softening effect to those induced by 

viscoelasticity and damage as illustrated in Figure 2.2.7b. The thermal softening may be 

attributed to the reduction in the effective number of chains per unit volume (Fischer and 

Henderson, 1967), as described by Eqs. (2.2.84) and (2.2.85). In contrast to pure rubbers, in 

which the thermo-mechanical response is explained uniquely by the contribution of the 

entropy-related energy (Meyer and Ferri, 1935; Treloar, 2005), the thermo-mechanical 

response of filled rubbers can be explained, in addition, by the contribution of the viscosity 

(Clément et al., 2001). The amount of the viscosity contribution depends on the filler fraction, 

and can be related to filler-rubber matrix / filler-filler interactions. In the present experimental 

investigation, the fatigue-induced temperature variations are relatively low and hence should 

have no significant influence on the chain-scale material constants, such that: 
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 , 0.0TN =  (2.3.44) 

Finally, the following values are, respectively, adopted for the coefficient of thermal 

conductivity, the specific heat capacity at constant deformation and the coefficient of thermal 

convection: 

 1 1
T 0.19 W m Kk − −=  (2.3.45) 

 6 3 1
T0 1.78 10 J m KC − −= ×  (2.3.46) 

 2 119 W m Kh − −=  (2.3.47) 

To check the implemented constitutive model, the simulated responses are compared in what 

follows with the experimental results obtained under two cyclic loading blocks with different 

pre-stretch levels. 

2.3.3.3. Comparison with two-blocks experimental data 

The model parameters identified on the SBR matrix are introduced into the finite element 

simulations as input constants and the quantitative predictions of the constitutive model are 

compared in Figures 2.3.16-2.3.20 with the experimental data of the three carbon-filled SBR 

materials cyclically loaded under Low-High (LH) and High-Low (HL) two-block tests. A 

global view at these results shows that the general trends provided by the model for the 

prediction of the carbon-filled SBR history-dependent cyclic response are satisfactory for the 

different pre-stretch levels including the filler-dependency. 

 

     (a)       (b) 
Figure 2.3.16. Stress-strain curves at the 250th cycle of two blocks with different pre-stretch 

levels: (a) LH, (b) HL (1: SBR15, 2: SBR25, 3: SBR43).  
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Figure 2.3.16 presents the comparison regarding the stress-strain hysteresis loop at the 250th 

cycle. It is satisfactory to observe that the model predictions are in reasonable agreement with 

the hysteretic responses of the three carbon-filled SBR materials for both LH and HL pre-

stretch levels. This observation indicates that the constitutive model can accurately capture 

the effects of fillers and pre-stretch levels on mechanical dissipative mechanisms. In Figures 

2.3.17-2.3.19, the model predictions of the fatigue-induced stress-softening are compared 

with our experimental data.  

 

     (a)       (b) 
Figure 2.3.17. Maximum and minimum stress evolution in SBR15 under two blocks with 

different pre-stretch levels: (a) LH, (b) HL. 

 
     (a)       (b) 

Figure 2.3.18. Maximum and minimum stress evolution in SBR25 under two blocks with 
different pre-stretch levels: (a) LH, (b) HL. 

 

A reasonable agreement between simulated and measured stress-softening can be observed. In 

particular, the general trends in the second block are well reproduced by the simulation, 

showing a decrease in stress under LH pre-stretch levels and an increase in stress under HL 
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pre-stretch levels. However, the deviation between the experimental stress-softening 

responses and the numerical ones, satisfactory in the first block, increases in the second block. 

It may be induced by the identification of the material viscous properties which should be 

performed under a wider history-dependent features. 

 
     (a)       (b) 

Figure 2.3.19. Maximum and minimum stress evolution in SBR43 under two blocks with 
different pre-stretch levels: (a) LH, (b) HL. 

 

The change in temperature, measured in the mid region of the specimen surface, is compared 

with the numerical results in Figure 2.3.20.  

 
     (a)       (b) 

Figure 2.3.20. Temperature evolution (simulation: red solid line, experiment: blue dots) under 
two blocks with different pre-stretch levels: (a) LH, (b) HL (1: SBR15, 2: SBR25, 3: SBR43). 
 

It is found that the temperature evolution is successfully predicted by the model, especially 

for its dependencies on the filler content and the pre-stretch level which are consistent with 

the observations on the intrinsic dissipation (see Figure 2.3.5). We first focus on the first 
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block of each test. The temperature rapidly increases during the first few cycles, and then its 

rate gradually decreases with the cyclic loading. This phenomenon can be explained by the 

evolutions of the heat production and loss rates. In the beginning, the thermal equilibrium is 

suddenly broken by the cyclic self-heating, and so that the temperature rises rapidly. With the 

temperature increase, the heat loss induced by the thermal conduction and convection is 

accelerated, whereas the heat production rate related with the intrinsic dissipation is almost 

not affected by the temperature evolution.  

 
(a) 

 
(b) 

Figure 2.3.21. Zoom of Figure 2.3.20 showing the simulation in the transition zone between 
the two blocks: (a) LH, (b) HL. 

 

Hence, the temperature rise gradually becomes slow and slow, and the specimen tends to 

attain a dynamic thermal equilibrium with a stabilized temperature between the heat 

production and loss. When the test enters into the second block, the intrinsic dissipation is 

suddenly changed in a different way between the LH and HL two-block tests. Indeed, for the 

LH two-block test, a sudden reduction of the heat production rate can be expected when the 

test passes from the low pre-stretch level to the high one, and the heat loss starts to dominate 

resulting in the temperature decrease. By contrast, for the HL two-block test, the heat 

production rate is suddenly increased and hence accelerates the temperature rise, which 

permits the temperature to reach a higher stabilized level with a new dynamic thermal 

equilibrium. Moreover, it should be noted that the temperature evolution predicted by the 

model is actually accompanied with a periodical fluctuation with the same frequency than the 

SBR15 SBR25 SBR43 

SBR15 SBR25 SBR43 
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cyclic loading as shown in Figure 2.3.21. It can be observed in the figure that the transition 

from one block to the other is accompanied by a sudden temperature change. The temperature 

increases in the HL two-block transition and decreases in the LH two-block transition. These 

thermal features are actually induced by the thermo-elastic heating and cooling effect 

dependent on the filler content, and satisfy the characteristics of entropic elasticity. The close 

agreement between simulated results and test findings validates the capability of the proposed 

constitutive model to predict the pre-stretched fatigue response of carbon-filled SBR. That 

indicates that the proposed constitutive theory captures the physical mechanisms occurring 

inside this rubber-filler material system during the fatigue loading history. 

It is worth noting that the model capabilities were only examined for flat and thin 

specimens with a constant cross-section subjected to a constant-amplitude pre-stretched cyclic 

loading. The model needs to be further verified under more complex loading conditions and 

other specimen geometries for which the heat build-up and the damage effects could turn 

sufficiently important to modify the overall cyclic response of the material.  

 

                                        (a)                                                               (b) 
Figure 2.3.22. Simulated temperature increment in the flat specimen (surface: continuous 

lines, center: dashed lines) at a minimum stretch of (a) λmin=1.1, (b) λmin=1.5 (1: SBR15, 2: 
SBR25, 3: SBR43). 

2.3.4. Cyclic dissipation in thick rubber specimens19 

The above results show the ability of the model to capture and predict the significant 

features of the cyclic response and the heat build-up of carbon-filled SBR. The predictive 

                                                      

19 This Part of this Chapter is based on the following paper: Qiang Guo, Fahmi Zaïri, Cristian Ovalle-

Rodas, Xinglin Guo, 2018. Constitutive modeling of the cyclic dissipation in thin and thick rubber 

specimens. ZAMM - Journal of Applied Mathematics and Mechanics 98, 1878-1899. 
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capability of the model over a range of filler concentrations is also demonstrated. That 

indicates that the proposed thermo-mechanical theory captures the intrinsic constitutive 

response and the basic mechanisms involved during cyclic loading of carbon-filled SBR. The 

constitutive theory is presented in its most general form with the aim of being applicable to all 

thermo-viscoelastic filled rubbers, but also to all kinds of rubber structures. The thin 

specimens involve very weak gradients in the transverse direction, as shown in Figures 2.3.10 

and 2.3.22 for viscous stretches and temperature, respectively.  

In the case of thick structures significant gradients may be generated. In order to illustrate 

this aspect, we propose now to analyze how the triaxial stress state may influence the inelastic 

fatigue effects in relation with the cyclic deformation mechanisms. Triaxial stress states 

different from the uniaxial state can be induced by the specimen shape: The cylindrical 

hourglass-shaped specimens, R2 and R42, shown in Figure 2.3.23 present two different 

curvature radii in order to set different triaxial stress states in the median cross-section. The 

lower the curvature radius, the higher are the triaxial stresses in the specimen. The three 

specimens are meshed using 3D 8-node meshing elements, isoparametric and arbitrarily 

hexahedrics. One specimen end is fixed and the other is subjected to a displacement-

controlled cyclic loading. In our simulations, the same equivalent strain in the median cross-

section is applied for the two specimens. A constant temperature T0 = 296 K is applied at both 

specimen ends and the remaining frontiers are subjected to a convection heat transfer 

condition, see Eq. (2.2.111). 
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                              R42                                                     R2 
 

 
Figure 2.3.23. Boundary conditions for flat and thick specimens.  

 

The fatigue damage and temperature fields inside the simulation model are shown in 

Figure 2.3.24 for the two thick specimen shapes. Because of symmetry, only one-eighth of the 

three-dimensional specimen is considered. surface than in the center due to thermal 

convection.  

       

(a) 

χ  χ  

Increasing displacement 

Fixed displacement Constant temperature 

Convection condition 

 

  

 



2.3. A thermo-viscoelastic-damage constitutive model. Experiments and identification 

150 

 

       

(b) 
Figure 2.3.24. Contours of (a) damage and (b) temperature in the AE42 and AE2 specimens. 

 

At the beginning of the cyclic loading, large dissipation gradients induce higher surface 

temperature on the surface than in the center. Figure 2.3.25 illustrates the damage and 

temperature evolution predictions at material points in the center and on the surface of the 

median cross-section. The cyclic dissipation depends on the stress state induced by the 

specimen shape. A center-to-surface gradient is therefore expected according to the specimen 

curvature radius, with a dissipation higher on the surface than in the center. Indeed, the 

damage distribution presented in Figure 2.3.24a exhibits higher damage values on the 

specimen surface whatever the specimen shape and with a center-to-surface gradient higher 

for the smallest specimen curvature radius. Figure 2.3.25a shows a nonlinear evolution of the 

damage under cyclic loading with a continuous increase of the difference between the center 

and the surface. Although the cyclic dissipation transferred into heat energy is larger on the 

specimen surface, the thermal convection at the surface with the environment makes the heat 

energy concentrates in the core and causes the temperature higher on the specimen center, as 

shown in Figure 2.3.25b. This thermal insulator feature of the rubber makes the bigger 

specimen with significant thermal gradients. Besides, the high temperatures inside the 

specimen could be sufficiently important to induce thermal aging effects (Neuhaus et al., 

2017). As shown in Figure 2.3.25b, the temperature increases nonlinearly under cyclic 

loading with a decreasing rate larger on the surface than in the center due to thermal 

convection. At the beginning of the cyclic loading, large dissipation gradients induce higher 

surface temperature on the surface than in the center. 

 

T(ºC) T(ºC) 
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(a) 

 

(b) 
Figure 2.3.25. Simulated (a) damage and (b) temperature increment in the AE42 and AE2 

specimens (surface: continuous lines, center: dashed lines). 

2.3.5. Partial conclusions 

In this Part of this work, the constitutive model was compared to our experimental data 

obtained on a carbon-filled SBR containing different amounts of carbon-black and cyclically 

loaded under different pre-stretch levels at room temperature. The respective influence of pre-

stretch level and filler content on the inelastic effects (relaxation, stress-softening and 

dissipations) in carbon-filled SBR was experimentally reported, and the underlying physical 

mechanisms were deduced. An original amplification-inspired procedure was proposed for 

the identification of the rubber matrix properties, then used as direct input constants of the 

constitutive model modified to incorporate explicitly the filler effects. The predictive model 

capabilities were verified from the comparison between the numerical predictions and the 

carbon-filled SBR experimental response obtained under two cyclic loading blocks with 

different pre-stretch levels. The simulated results compared favorably with those obtained 

from experiments. Numerical applications were carried out on thick specimens with two 
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different curvature radii in order to set different triaxial stress states in the median cross-

section.  

The presented model provides a useful tool for damage and thermal patterns estimation in 

rubber structures. A quantitative evaluation of the model remains however an important issue 

for future works. 
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CHAPTER 3. STRETCH-INDUCED 

CRYSTALLIZATION IN RUBBERS 

 

3.1. THERMODYNAMICS AND MECHANICS OF 

STRETCH-INDUCED CRYSTALLIZATION IN 

RUBBERS20 

The aim of this Part of the Chapter 3 is to provide a quantitative prediction of the stretch-induced 

crystallization in natural rubber, the exclusive reason of its history-dependent thermo-mechanical features. A new 

constitutive model based on a micro-mechanism inspired molecular chain approach is formulated within the 

context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is 

analyzed and calculated by means of some statistical mechanical methods. The random thermal oscillation of the 

crystal orientation, considered as a continuous random variable, is treated by means of a representative angle. 

The physical expression of the chain free energy is derived according to a two-step strategy by separating 

crystallization and stretching. This strategy ensures that the stretch-induced part of the thermodynamic 

crystallization force is null at the initial instant and allows, without any additional constraint, to formulate a 

simple linear relationship for the crystallinity evolution law. The model contains very few physically 

interpretable material constants to simulate the complex mechanism: two chain-scale constants, one crystallinity 

kinetics constant, three thermodynamic constants related to the newly formed crystallites and a function 

controlling the crystal orientation with respect to the chain. The model is used to discuss some important aspects 

of the micro-mechanism and the macro-response under the equilibrium state and the non-equilibrium state 

involved during stretching/recovery and continuous relaxation. 

Keywords: Chain configuration; thermodynamics; crystallization; melting; history-dependent effects. 

                                                      

20 This Part of this chapter is based on the following paper: Guo Qiang, Zaïri Fahmi, Guo Xinglin, 2018. 

Thermodynamics and mechanics of stretch-induced crystallization in rubbers. Physical Review E 97, 

052501.  
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3.1.1. Partial introduction 

Firstly observed in 1925 by Katz (1925), the stretch-induced crystallization in natural 

rubber has a long research history. Although it concerns also synthetic rubbers, it is now well 

recognized that the ability of this biopolymer to crystallize under stretching is mainly due to 

the highly regular macromolecular structure. The transformation of the chain from its 

amorphous to crystalline state can be understood from the thermodynamic viewpoint. When 

the chain is stretched from its most probable conformation, its alignment results in a decrease 

in the conformational entropy. Thus, less entropy is needed to be sacrificed in the 

transformation of the chain from its amorphous to crystalline state. Due to this decrease in 

total entropy of fusion, the stretch-induced crystallization is allowed to occur at higher 

temperatures than under quiescent conditions. The process of stretch-induced crystallization 

has a depth impact on the mechanical properties, and in particular, it contributes to superior 

fatigue properties and crack growth resistance (Hamed et al., 1996; Mars and Fatemi, 2004; 

Le Cam and Toussaint, 2008) as well as history-dependent mechanical features such as 

hysteretic effects (Clark et al., 1940; Murakami et al., 2002; Trabelsi et al., 2003; Albouy et 

al., 2005, 2014; Rault et al., 2006a, 2006b; Candau et al., 2015a, 2015b) and continuous 

relaxation (Toki et al., 2005; Tosaka et al., 2012; Bruning et al., 2015; Xie et al., 2017). There 

are considerable qualitative experimental observations on the stretch-induced crystallization 

in natural rubber, as reported in recent literature reviews (Huneau, 2011; Toki, 2014; Albouy 

and Sotta, 2017), but the quantitative predictive modeling of this fascinating phenomenon is 

far from being fully established and remains a challenging task.  

A predictive constitutive theory is, indeed, fundamental to better understand the 

relationship between the thermo-mechanical response at the macro-scale and the stretch-

induced crystallization at the micro-scale, for which numerous phenomena accompanying the 

material transformation are still misunderstood. A literature survey shows that there exists 

only five recent contributions dealing with this task in rubbers (Kroon, 2010; Dargazany et 

al., 2014a, 2014b; Mistry and Govindjee, 2014; Guilie et al., 2015; Rastak and Linder, 2018) 

and all the proposed constitutive models can be distinguished by the restrictive assumptions, 

the theoretical approach and the predictive capabilities. The development of a rigorous 

physically-based predictive model of this mechanism has to take into account, within the 

context of the thermodynamic framework, the particular chain configuration by means of the 

statistical mechanics. In this regard, three main aspects have to be taken into account such as 
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(i) the definition of a pertinent single chain configuration that can be then translated to the 

chain network, (ii) the derivation of the chain free energy becoming that of the chain network 

and (iii) the proposition of an appropriate crystallization kinetics and its evolution law. The 

second point is the key element in the thermodynamic formulation of the constitutive relations 

between various thermodynamic quantities, and is related to the micro-structural specificities 

of the rubber gum by means of the first point. The third point introduces into the constitutive 

relationships the micro-structural evolution using either a purely phenomenological evolution 

law or a more physically realistic evolution law, its physical consistency allowing especially 

to limit the number of parameters with no direct physical meaning. 

The stretch-induced crystallization in a rubber chain was investigated, using the statistical 

mechanics and within the thermodynamic framework, for the first time in 1947 by Flory in his 

early work (Flory, 1947). In his theory, bounded by several simplifying assumptions, Flory 

(1947, 1949) considered that the final partially crystallized chain is achieved from an initially 

fully amorphous chain by two separate and distinct steps, namely, stretching and 

crystallization, and the crystallized part in the chain was assumed to be fully extended and 

oriented in the stretching direction. The Flory theory (Flory, 1947, 1949) predicts the 

equilibrium crystallization as a function of stretch and temperature, and was verified with 

experimental observations (Arlman and Goppel, 1951; Xie et al., 2016). Later, other models 

based on the Flory theory (Flory, 1947, 1949) were proposed by vanishing some assumptions. 

Roe et al. (1961), Gaylord (1976) and Gaylord and Lohse (1976) considered the crystallite 

morphology in crystallized polymer chains whereas Smith (1976) taken into account the 

orientation of the extended crystallized part with respect to the chain. In the previous models, 

the crystallization occurs in a thermodynamically most favorable condition, i.e. in a 

thermodynamic equilibrium condition. Since this equilibrium crystallization is assumed 

without time evolution and achieved only under infinitesimal change rates, it is necessary to 

extend the theory to non-equilibrium conditions where the crystallinity evolution should be 

described in a certain kinetics theory21. Different descriptions of the crystallization kinetics 

were proposed in the five recent contributions (Kroon, 2010; Dargazany et al., 2014a, 2014b; 

Mistry and Govindjee, 2014; Guilie et al., 2015; Rastak and Linder, 2018). Kroon (2010) 

                                                      

21 The crystallization kinetics in solids was firstly investigated by Avrami (1939, 1940, 1941) and classical 
equations have emerged for spherulitic growth in thermally-induced crystallization but are not useful for all 
kinetics of newly formed crystals due to differences in morphology and in size. As a matter of fact, the micron-
sized spherulites in semi-crystalline thermoplastic polymers resulting from quiescent melt crystallization are 
different than the newly formed nano-sized crystallites in natural rubbers due to stretching. 
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proposed a model by defining the crystallinity degree as the fraction of the partially 

crystallized chains with fixed-size nucleated crystallites without crystallite growth. In his 

model, the contribution of the crystallites to the free energy is neglected and a 

phenomenological Arrhenius-type kinetics is introduced to govern the crystallinity evolution. 

Dargazany et al. (2014a, 2014b) also took the crystallite size in a single chain as a material 

constant whereas the crystallinity evolution law was formulated on the basis of the chain 

length statistic distribution. Mistry and Govindjee (2014) proposed a model in which the free 

energy is considered to only consist of a purely thermodynamic part and an elastic part. In 

their model, the crystallization kinetics is formulated based on the free energy gradient with 

respect to the crystallinity degree, and a yield-like threshold is introduced to additionally 

restrict the evolution law. Guilie et al. (2015) also related the crystallization kinetics with the 

free energy gradient, but they formulated the evolution law using a plastic-like flow rule and 

made a distinction between the processes of crystallization and melting. Very recently, Rastak 

and Linder (2018) derived the chain free energy by integrating the chain force with respect to 

the chain length and adding an integration constant only dependent on the crystallinity degree. 

In their approach, a linear relationship between the free energy gradient and the crystallization 

rate was directly adopted to capture the rate-dependent crystallinity evolution.  

In this Part of the Chapter 3, we present a new micro-mechanism inspired molecular chain 

model to describe the progressive evolution of the crystallinity degree in rubbers and the 

history-dependent thermo-mechanical response within the context of the thermodynamic 

framework. In our model, the orientation of the crystallization domain with respect to the 

chain is considered as a continuous random variable which is treated by means of a 

representative angle. In the spirit of the Flory theory (Flory, 1947, 1949), we derive the chain 

free energy via a two-step strategy by separating crystallization and stretching. Although 

hypothetical, the method allows to derive a physically realistic model insuring that the free 

energy gradient, used to formulate the crystallinity evolution law, is null at the initial state 

under the melting temperature, ignoring the crystallite surface energy. The method avoids the 

introduction of any additional constraint to describe the progressive evolution of the 

crystallinity degree which obeys to a linear relationship between the crystallization rate and 

the corresponding thermodynamic force. 

The outline of the present Part is as follows. We give the main elements of the developed 

model in Section 3.1.2. Section 3.1.3 presents and discusses the model results. Concluding 

remarks are finally given in Section 3.1.4. 
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3.1.2. Theory 

Let us consider a single chain with a total number of N segments each of length l , for a 

fully extended chain length of Nl . During the crystallization, a portion of the molecular chain 

crystallizes while the remaining remains amorphous as illustrated in Figure 3.1.1.  

 
 
 
 

 
III: Final configuration 

 

 
II: Intermediate configuration 

 

 
I: Initial configuration 

 
Figure 3.1.1. Configuration changes in the proposed two-step strategy: I II→  thermal-

induced crystallization step and II III→  absolutely mechanical stretching step. 
 

The two amorphous subparts are present from either side of the crystallized portion and, are 

assumed to not interact and to have a random distribution. We confer the subscript 1 to the 

left amorphous subpart and the subscript 2 to the right amorphous subpart. The conservation 

of the total number of segments leads to: 

 
c a _1 a _2N N N N= + +  (3.1.1) 

where cN  is the number of crystallized segments and, 
a a _1 a _2N N N= +  is the total number of 

amorphous segments:  

 ( )a 1N N χ= −  (3.1.2) 



Chapter 3. Stretch-induced crystallization in rubbers 

160 

 

in which [ ]0,1χ ∈  is the crystal fraction in the single chain given by the following ratio22:  

 cN

N
χ =  (3.1.3) 

The chain end-to-end vector r  is the sum of three parts: 

 
c a _1 a _2= + +r r r r  (3.1.4) 

in which cr  is the end-to-end vector of the crystallized part and, 
a a _1 a _2= +r r r  is the sum of 

the end-to-end vectors of the two amorphous subparts. Introducing [ ]0,πθ ∈  as the angle 

between r  and cr , a simple relationship between the lengths of these end-to-end vectors is 

given: 

 2 2
a c c2 cosr r r rr θ= + −  (3.1.5) 

where r = r , c cr = r  and a ar = r . 

3.1.2.1. Configuration 

As a matter of fact, the partially crystallized chain continuously oscillates due to thermal 

fluctuations. Owing to the internal rotation of molecular bonds, a huge number of molecular 

chain configurations are possible which requires statistical mechanical methods to establish 

the average mechanical properties. In our micro-mechanism inspired molecular chain model, 

the configurations of the crystallized part and the two amorphous subparts are assumed to be 

independent from each other, and hence, the configuration of the whole chain can be 

identified by comprehensively analyzing the individual oscillation of the amorphous and 

crystallized parts.  

The amorphous segments are assumed to be rotationally jointed with complete freedom of 

orientation and with no interaction (Wang and Guth, 1952), i.e. the rotation is free at each 

bond junction and all bond angles take the same probability with no preferred bond angle in 

the absence of external forces. The non-Gaussian statistical method is used to calculate the 

configurations of the two amorphous subparts. Contrary to a Gaussian treatment, the non-

Gaussian probability density function of the molecular chain configuration allows us to 

                                                      

22 We can notice that the single chain crystallization can be generalized to define the material crystallinity degree 
by implementing the actual chain structure for all chains in the network. This procedure gives us a spatially 
averaged measure of the material crystallinity. 
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introduce the values of 
a_1 a _1r = r  and 

a_2 a _2r = r  over their whole ranges up to the fully 

extended lengths 
a_1N l  and 

a_2N l : 

 ( )
3 2

a_1
a_1 a_1 a_12

a_1 a_1

3
exp

2π

r
N

N l N l

     Ρ = − ℜ       
     

r  (3.1.6) 

 ( )
3 2

a_2
a_2 a_2 a_22

a_2 a_2

3
exp

2π

r
N

N l N l

     Ρ = − ℜ       
     

r  (3.1.7) 

in which we define ( )xℜ  as a function depending on the inverse function ( )1 x−
L  of the 

Langevin function ( ) ( )coth 1x x x= −L : 

  ( ) ( ) ( )
( )( )

1
1

1
ln

sinh

x
x x x

x

−
−

−
ℜ = +

L
L

L
 (3.1.8) 

where the Padé approximation ( ) ( ) ( )1 2 23 1x x x x− ≈ − −L
 
is used. 

Considering that the two amorphous subparts have independent configurations, the 

probability density function of the whole amorphous part ( )a aΡ r  can be derived through the 

convolution integration of the two probability density functions ( )a_1 a_1Ρ r  and ( )a_2 a_2Ρ r : 

 ( ) ( ) ( ) ( ) ( )3a a a_1 a_1 a_2 a_2 a_1 a_1 a_2 a a_1 a_1R
dΡ = Ρ ∗Ρ = Ρ Ρ −∫r r r r r r r  (3.1.9) 

After a series of lengthy but straightforward derivations, we obtain the following expression: 

 ( )
3 2

a
a a a2

a a

3
exp

2π

r
N

N l N l

     Ρ = − ℜ    
     

r  (3.1.10) 

The formula (3.1.10) points out that the probability density of the amorphous part is invariant 

with respect to the position of the crystallized domain inside the single chain. In other words, 

all the possible configurations of the amorphous segments have been taken into account 

including those induced by the various possible partitions of each amorphous subpart. 

In the absence of external forces, the most probable end-to-end distance of the amorphous part 

ar , according to Eq. (3.1.10), has the root mean square value al N . Thus, a kinematic 

variable aλ  of the amorphous part can be introduced through the effective stretch definition: 

 a
a

a

r

l N
λ =  (3.1.11) 

Similarly, with regard to the partially crystallized chain, the whole stretch λ  can be defined 

as: 
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r

l N
λ =  (3.1.12) 

In our micro-mechanism inspired molecular chain model, the crystallized part is considered as 

a rigid entity with fully extended segments and its length cr  is identically equal to the 

algebraic sum of the length of cN  crystallized segments: 

 c cr N l=  (3.1.13) 

Moreover, the configuration of the crystallized part may be characterized by the angle θ  

between r  and cr . Due to the thermal fluctuations, this angle is in nature a continuous 

random variable whose probability density function ( )Pθ θ  is related to the number of the 

crystallized segments cN . Thus, for a partially crystallized single chain with a given crystal 

fraction χ , all the possible configurations of the crystallized segments can be taken into 

account only by considering the probability distribution of the angle θ . As a consequence, the 

probability density function ( )c cΡ r  of the crystallized domain is identical with that of the 

angle θ : 

 ( ) ( )c c Pθ θΡ =r  (3.1.14) 

Again, considering the configuration-independence between amorphous and crystallized 

domains, the probability density function of the partially crystallized single chain ( )Ρ r  is 

derived through the convolution integration of the amorphous and crystallized probability 

density functions ( )a aΡ r  and ( )c cΡ r : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3a a c c a c c c c

3 2 2
π 2

2 0

3 1
exp 1 2 cos P

2 1 π 1

R
d

N d
Nl N N

θ
λ λχ χ χ θ θ θ

χ χ

Ρ = Ρ ∗Ρ = Ρ − Ρ

       = − − ℜ + −       − −       

∫

∫

r r r r r r r

 (3.1.15) 

Obviously, due to the complexity of the functional form, it is almost impossible to directly 

obtain a compact expression of the probability density function ( )Ρ r  from Eq. (3.1.15), even 

if an explicit expression of ( )Pθ θ  is given. In order to overcome this difficulty, we introduce 

a representative angle θ%  by considering the basic property of the probability density function 

( )Pθ θ ,
 
i.e. ( )π

0
P 1dθ θ θ =∫ . Then, Eq. (3.1.15) is rewritten as: 
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( ) ( ) ( )
3 2 2

2
2

3 2

a
a2

a a

3 1
exp 1 2 cos

2 1 π 1

3
exp

2π

N
Nl N N

N
N l N

λ λχ χ χ θ
χ χ

λ

       Ρ = − − ℜ + −       − −       

     = − ℜ          

%

%

r

  

(3.1.16) 

in which aλ%  can be regarded as the representative effective stretch corresponding to the angle 

θ% : 

 
2 2

a

2 cos

1

N Nλ χ λ χ θλ
χ

+ −=
−

%

%  (3.1.17) 

Above all, the molecular configuration of the partially crystallized single chain has been 

analyzed and calculated by means of some statistical mechanical methods. Especially for the 

random thermal oscillation of the crystal orientation, the probability density function ( )Pθ θ  is 

treated by introducing the representative angle θ% , which is a non-random variable depending 

on both the stretch λ  and the crystal fraction χ : 

  ( )cos ,θ λ χ= Ω%  (3.1.18) 

Using the function (3.1.18), the evolution of the random crystal orientation can be captured 

and analyzed during the stretch-induced crystallization process, for which the exact 

expression will be specified later. 

3.1.2.2. Free energy 

A key point in the thermodynamic treatment of the partially crystallized single chain is the 

identification of the physical expression of its free energy. Taking the stretch-free amorphous 

state as the reference state, a two-step strategy is adopted to derive the free energy as 

illustrated in Figure 3.1.1. Within the proposed two-step strategy, the description of the first 

step is very similar to a thermal-induced crystallization and that of the second step is similar 

to an absolutely mechanical stretching. 

3.1.2.2.1. First-step: thermal-induced crystallization 

In the first step, the transformation of cN  amorphous segments into crystallized segments 

is performed on the condition that the ends of the remaining amorphous subparts keep free to 
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occupy most probable locations. This step can be achieved by applying, in a certain manner, a 

thermodynamic force driving crystallization, and the free energy change can be given by: 

 ( )I II c m m sN H T S Uψ →∆ = − ∆ − ∆ +  (3.1.19) 

where mH∆  and mS∆  are the enthalpy and entropy changes associated with the fusion of 

equivalent segments from a perfect crystal. These two material constants are obtained from 

the thermodynamic equilibrium state between crystallized and melted segments in the stretch-

free state, and their ratio 0
m m mT H S= ∆ ∆  corresponds to a characteristic temperature, namely, 

the equilibrium melting temperature. This temperature is associated to a critical state in which 

all crystallites can melt theoretically when heated very slowly. In reality, however, the rubber 

chains without stretching can maintain the fully amorphous state even in a large temperature 

range quite lower than 0
mT . This phenomenon is usually attributed to the additional 

requirements of the free energy for the formation of the interface between the crystallite and 

the surrounding amorphous phase, and for the formation of the crystallite surface. These 

interfacial free energies are totally considered in our theory by introducing sU  in Eq. (3.1.19) 

as a general form. Due to the fact that all the interfacial free energies depend heavily on the 

crystallite morphology, different crystallization theories can give different expressions for sU

(Candau et al., 2014; Dolynchuk et al., 2015) . In this work, considering the form of the fully 

extended crystallization, a linear relationship between the surface free energy sU  and the 

crystallized segment number cN  is adopted as a specific example to simplify the simulation, 

i.e. , su  being the proportionality coefficient. Accordingly, Eq. (3.1.19) can be 

rewritten as: 

 I II c m s c0
m

1
T

N H u N
T

ψ →

 
∆ = − ∆ − + 

 
 (3.1.20) 

Besides, recall that after this step, the amorphous subparts occupy the most probable 

locations. It means that, the end-to-end distance of the amorphous part ar  is identically equal 

to the root mean square value al N . Under this constraint condition, the chain configuration 

after the first step is identified and the corresponding probability density IIΡ  can be calculated 

by degenerating the convolution integration in Eq. (3.1.15):  

 
3 2

II a2
a a

3 1
exp

2π
N

N l N

     Ρ = − ℜ           

 (3.1.21) 

s s cU u N=
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3.1.2.2.2. Second-step: absolutely mechanical stretching 

In the second step, the ends of the partially crystallized chain are dragged to the expected 

position, the crystal fraction remaining unchanged. Since the crystal is considered as a rigid 

entity and substantially stiffer than the amorphous part, we assume no stored strain energy 

during the stretching. The free energy change is fully attributed to the change of the 

conformational entropy: 

 ( )II III III IIT s sψ →∆ = − −  (3.1.22) 

where ( )III IIIln PBs k=  and ( )II IIlnBs k= Ρ  are the conformational entropies related to the 

probability densities ( )IIIP = Ρ r  and IIP . The term Bk  is the Boltzmann’s constant. 

Substituting Eqs. (3.1.16) and (3.1.21) into Eq. (3.1.22), we can obtain: 

 a
II III B a

a a

1
k TN

N N

λψ →

     ∆ = ℜ −ℜ       
     

%

 (3.1.23) 

which represents the stored free energy resulting from the change of the representative 

effective stretch (3.1.17) without any chemical energy change. 

3.1.2.2.3. Final expression 

The free energy of the partially crystallized chain ψ  is identified as the sum of the two 

previous free energy changes, i.e. I II II IIIψ ψ ψ→ →= ∆ + ∆ . Consequently, it takes the following 

final expression: 

 a
c m s c B a0

m a a

1
1

T
N H u N k TN

T N N

λψ
       = − ∆ − + + ℜ − ℜ                

%

 (3.1.24) 

It is worth noting that, although the two-step strategy applied for the free energy derivation is 

hypothetical, it results in a real and accurate physical expression of the free energy. As a 

thermodynamic potential, the value of the free energy is only dependent on the initial and 

final states and independent on the thermo-mechanical history during processing. The original 

intention of conceiving this two-step strategy is to employ the thermodynamic material 

parameters coming from the stretch-free equilibrium state and, to satisfy the physical 

consistency. 

3.1.2.3. Kinetics 

In general, the stretch-induced crystallization is a recoverable micro-mechanism associated 

with a dissipative hysteretic response, which can be viewed as an irreversible thermodynamic 
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process accompanied with energy dissipation (Guo et al., 2017). In order to exactly describe 

this process in a single chain, the set of the selected independent state variables23 includes not 

only the temperature T  and the stretch λ , but also the crystal fraction χ . As an internal state 

variable, the crystal fraction χ  can effectively capture the crystallization-induced micro-

structural evolution of the single chain, which leads to the history-dependent thermo-

mechanical response at the macro-scale. According to the internal state variable theory, the 

non-negative intrinsic dissipation D  during the stretch-induced crystallization process can be 

expressed as: 

 0D κχ= ≥&  (3.1.25) 

where χ&  is the crystallization rate and can be regard as a generalized thermodynamic flux, 

and κ ψ χ= −∂ ∂  is a thermodynamic entity conjugated to the crystal fraction χ  and can be 

correspondingly regard as a generalized thermodynamic force. In line with Eq. (3.1.24), the 

specific expression of the thermodynamic force κ  can be deduced as: 
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in which we define ( ),Z x y  as a function written as: 
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and the term α  is expressed as:  
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 (3.1.28) 

From the (non-equilibrium) thermodynamic viewpoint the partially crystallized single chain 

tends towards a thermodynamic equilibrium state, which may be considered as a limiting case 

where all the thermodynamic quantities do not depend upon time. This implies that the 

internal state variable χ  has a tendency to reach a stable value under the prescribed stretch λ  

i.e. 0χ =& . This tendency, characterized by the thermodynamic flux χ& , can be considered to 

                                                      

23 All the other thermodynamic quantities are regarded as functions of these selected independent state variables, 
and especially, the free energy function ( ), ,Tψ λ χ  contains all thermodynamic information about the partially 

crystallized single chain. 
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be driven by the thermodynamic force κ . On the condition that the deviation from the 

thermodynamic equilibrium state is small and considering that the intrinsic dissipation D  

must be non-negative, a linear relationship is assumed between the thermodynamic flux χ&  

and the force κ :  

 Aχ κ=&  (3.1.29) 

where A  is a positive coefficient. 

Moreover, from Eq. (3.1.26), we can find that the thermodynamic force  consists of three 

parts. The first part  is the thermally-activated crystallization force correlated to the process 

activation at temperatures lower than 0
mT  and to the process impedance at temperatures higher 

than 0
mT . The second part  is the crystallization resistance which is produced by the 

interface and surface formation and, accounts for the delay of crystallization in temperature 

and stretch. The last and third part λκ  is the stretch-induced crystallization force, which 

should vanish to zero at the initially fully amorphous state without stretching, 1λ =  and 

0χ = . This initial condition related to the material thermodynamic stability is crucial for the 

model formulation. It can be satisfied by letting ( )cos 1,0 1 2 Nθ = Ω =%  in Eq. (3.1.18), 

which may reveal that, for a single chain with sufficiently large length, the crystallite forms 

initially in a direction nearly perpendicular to the chain axis. However, considering the fact 

that the newly formed crystal after stretching tends to orient itself towards the chain direction, 

we formulate the specific dependence of θ%  on both λ  and χ  as follows: 

 ( ) ( ) ( )2 1 1
cos , 1 +

2 1 2

N
e

N e N
γω

γθ λ χ −
−

−= Ω = −
−

%  (3.1.30) 

where the parameter γ  is a coefficient controlling the orientation rate of the newly formed 

crystal with the chain axis, and the variable ω  is given by: 
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+
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a b
N

λω χ−=
−

 (3.1.31) 

in which [ ]0,1a∈  and [ ]0,1b∈  are the weight coefficients for the stretch and crystallization 

effects on the angle θ% , respectively, and the sum of them is unit, i.e. 1a b+ = . Figure 3.1.2 

presents the cosθ%  evolution with the variable ω  in which we can appreciate the γ -

dependence of the rate in crystal orientation with the chain axis. Although exponential 

κ

Tκ

Sκ
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functions are introduced in Eq. (3.1.30) to describe the evolution of the crystal orientation, 

other functional expressions satisfying the requirements could be employed. In the remaining 

of the paper, the following values are retained: a= 0.2, b = 0.8 and 10γ = . 

 
Figure 3.1.2. Crystal orientation with the ω  parameter, 1: γ =1, 2: γ =2, 3: γ =5, 4: γ =10, 5: 

γ =20.  
 

The normalized force f  in the single chain is obtained from the differentiation of the free 

energy function (3.1.24) with respect to the chain stretch: 
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in which the term β  is expressed as:  
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 (3.1.33) 

The macro-kinematic variables are obtained through an averaging over all possible 

orientations of the micro-stretch λ . In this procedure, the average number of chains per unit 

reference volume n  is introduced and N  becomes the average number of segments in the 

chain network. 

3.1.3. Model results and discussion 

In this section, the main factors governing the crystallinity and the macro-response are 

examined using the proposed model under the equilibrium state and the non-equilibrium state 

involved during stretching/recovery and continuous relaxation. In the bellow discussion, the 



Chapter 3. Stretch-induced crystallization in rubbers 

169 

 

term λ  corresponds to the uniaxial stretch applied at the macro-level. Several inputs related to 

micro-structural and thermodynamic properties24 are required by the modeling: B 0nk T = 0.06 

MPa ( 0T = 20°C), N = 150, A = 5.0×1016 MPa-1 s-1, mH∆ = 4400 J mol-1, 0
mT = 25°C, su = 

1500 J mol-1.   

3.1.3.1. Equilibrium state 

Prior to examine the crystallinity evolution, numerical simulations are carried out to 

address the influence of temperature as well as stretch on the equilibrium crystallization. A 

key point of our theory is the thermodynamic force κ  in Eq. (3.1.26) which is a decreasing 

function of the crystallinity and an increasing function of the stretching. These two opposite 

evolutions are shown in Figure 3.1.3. Since the thermodynamic force drives the crystallinity 

evolution by the kinetics law (3.1.29), the equilibrium state corresponds to a free 

thermodynamic force, i.e. κ =0. From the experimental viewpoint, the true thermodynamic 

equilibrium state at a certain temperature T  and a certain stretch λ  may require a quasi-

infinite duration in an isothermal monotonic stretching. 

 
                                        (a)                                                                 (b) 

Figure 3.1.3. Thermodynamic force at T=20°C (a) as a function of crystallinity degree for 
different stretches, 1: λ=1, 2: λ=3, 3: λ=5, 4: λ=7, 5: λ=9, (b) and as a function of stretch for 

different crystallinity degrees, 1: χ=0%, 2: χ=10%, 3: χ=20%, 4: χ=30%, 5: χ=40%. 
 

                                                      

24 It is important to note that non-realistic values for the melting enthalpy mH∆
 
and the melting temperature 0mT

 
must be used as inputs of existing constitutive theories in order to obtain correct quantitative comparisons with 
experiments (Flory, 1947, 1949; Arlman and Goppel, 1951; Mistry and Govindjee, 2014; Xie et al., 2016). More 
realistic values are used in this work by introducing in our theory the crystallite surface free energy. A 
quantitative evaluation of our theory remains however an important issue for further studies. 
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In order to overcome this difficulty, two experimental protocols in two steps have been used 

in the literature (Huneau, 2011; Toki, 2014; Albouy and Sotta, 2017). The first method 

consists of a cooling of a sample loaded at constant stretch λ  well below a certain 

temperature T  and the quasi-equilibrium state can be then reached after progressively 

warming back up to T . The second method consists of a stretching of a sample at constant 

temperature T  well above a certain stretch λ  and the quasi-equilibrium state can be then 

reached after relaxation to λ . However, the equilibrium state obtained by means of the two 

experimental protocols is usually different, which indicates the great complexity of the 

history-dependent thermo-mechanical response during the stretch-induced crystallization 

process. 

The evolution of the simulated equilibrium state is presented in Figure 3.1.4 as a function of 

stretch and in Figure 3.1.5 as a function of temperature.  

 
(a)                                                             (b) 

Figure 3.1.4. Equilibrium crystallization: (a) crystallinity vs. stretch, (b) temperature vs. 
critical stretch, 1: T=0°C, 2: T=20°C, 3: T=40°C; 4: T=60°C, 5: T=80°C. 

 

 
 (a)                                                             (b) 

Figure 3.1.5. Equilibrium crystallization: (a) crystallinity vs. temperature, (b) stress vs. 
temperature, 1: λmax=5, 2: λmax=6, 3: λmax=7, 4: λmax=8, 5: λmax=9. 
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The plots in Figure 3.1.4a show a quasi-linear relationship between the crystallinity degree 

and the stretch. It can be observed that the higher the temperature, the lower the crystallinity 

degree and the higher the critical stretch at which the crystallization is non-zero. The critical 

stretch deduced from Figure 3.1.4a is plotted with the corresponding temperature in Figure 

3.1.4b such that a straight-line fit adequately describes the results. This is a well-known 

experimental observation (Trabelsi et al., 2003). Figure 3.1.5 demonstrates that both the 

crystallinity degree and the stress evolve linearly with temperature but in an opposite manner. 

This opposite evolution was experimentally highlighted by several authors (Trabelsi  et al., 

2003; Albouy and Sotta, 2017). The stress increase with temperature is due to two 

concomitant factors, the decrease in crystallinity degree and the increase in entropy stiffness 

Bnk T  of the amorphous domain. That explains why the slope decreases for the two lower 

stretch levels after a temperature where the crystallization does not take place. Indeed, in the 

absence of crystallization, the slope only depends on the entropy effect. Interestingly, this 

difference in slope was experimentally highlighted by Toki et al. (2005). 

3.1.3.2. Non-equilibrium state 

The question which arises now is how the above factors could affect the kinetics of 

crystallization during the course of a stretching followed by a recovery. During these 

simulations, the stretch λ  is ramped to a maximum level maxλ  and then ramped down to one. 

Figures 3.1.6, 3.1.7 and 3.1.8 provide the stretching/recovery response for different key 

factors (namely stretch-level maxλ , stretch-rate λ&  and temperature T) governing the micro-

mechanism and the macro-response. It is satisfactory to point out that the model is able to 

reproduce the delay in the onset of crystallization by using a simple kinetics law given by Eq. 

(3.1.29) with no additional threshold or restriction. A global view at these plots shows that the 

stretch-induced crystallization during stretching and the stretch-induced melting during 

recovery differ which is the exclusive reason of the observed stress hysteresis. This result 

reveals that the mechanical hysteresis loop is entirely controlled by the crystallization/melting 

process and not due to viscous effects of the amorphous rubber network since no viscous 

component is introduced in our theory, which is in accordance with experimental evidences 

(Clark et al., 1940; Murakami et al., 2002; Trabelsi et al., 2003). Actually, all history-

dependent thermo-mechanical features at macro-scale or micro-scale originate from the rate-

dependent crystallinity evolution governed by Eq. (3.1.29).  
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(a)                                                             (b) 

Figure 3.1.6. Stretch-level influence on stretching/recovery: (a) crystallization kinetics, (b) 
macro-response, T=20°C, λ&=0.05/s, 1: λmax=5, 2: λmax=6, 3: λmax=7, 4: λmax=8, 5: λmax=9. 

 
(a)                                                             (b) 

Figure 3.1.7. Stretch-rate influence on stretching/recovery: (a) crystallization kinetics, (b) 
macro-response, T=20°C, 1: λ&=0.025/s, 2: λ&=0.05/s, 3: λ&=0.1/s, λmax=8. 

 
(a)                                                             (b) 

Figure 3.1.8. Temperature influence on stretching/recovery: (a) crystallization kinetics, (b) 
macro-response, 1: T=0°C, 2: T=20°C, 3: T=40°C; 4: T=60°C, 5: T=80°C, λ&=0.05/s, λmax=8. 

 

More specifically, the crystallization rate depends on the thermodynamic crystallization force 

expressed by Eq. (3.1.26). The latter, obtained from the differentiation of the proposed free 
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energy in Eq. (3.1.24) with respect to the crystallization, is a function of stretch level and 

temperature. Furthermore, the fact that the crystallinity degree at a given stretch is higher 

during unloading than during loading is a feature well described by our theory. By decreasing 

the effective stretch in Eq. (3.1.17) the crystallinity thus induces a stress-softening, resulting 

in the stress difference between the loading path and the unloading path. The stress hysteresis 

and the crystallization hysteresis can be related from an energetic viewpoint by considering 

the two scales. At the scale of the micro-mechanism, the crystallization evolution driven by 

the thermodynamic force induces a local energy dissipation formulated in Eq. (3.1.25). This 

local thermodynamic dissipation is the exclusive reason of the energy dissipation at the 

macro-scale manifested by the stress hysteresis. 

Figure 3.1.6 presents the crystallinity evolution and the macro-response for various maximum 

stretch levels. If the maximum stretch level is lower than a certain critical stretch (equal to 4.7 

at 20°C as shown in Figure 3.1.4b) for the onset of crystallization the response during 

stretching/recovery coincide with that of the amorphous rubber network, provided in a dashed 

line in Figure 3.1.6b. At levels of stretch greater than the crystallization-onset stretch, a 

hysteretic response is observed whose area increases with the maximum stretch. The 

crystallinity affects the form of the macro-response by the apparition of a stress inflexion 

from which the strain-hardening decreases. The stress upturn experimentally observed at very 

large stretches requires to account for a crystallization-induced stiffening effect since it is not 

due to the contribution of the remaining amorphous fraction (Albouy et al., 2014). The same 

mechanism is responsible of two antagonist phenomena, which render it unique, a softening 

inducing a stress inflexion at moderate stretches and a stiffening inducing a stress upturn at 

very large stretches. Solely the crystallization-induced softening is accounted for in our 

theory. As illustrated in Figure 3.1.3b, the thermodynamic force given by Eq. (3.1.26) 

increases monotonically with the stretch level. During the course of a stretching, the stretch 

level increases the crystallinity which consequently decreases the strain hardening. The 

macro-response is strongly related to the crystallinity but also to the crystal form. The 

stiffening could be accounted for by introducing explicitly the crystal form into the molecular 

configuration of the partially crystallized chain. Consequently, in addition to the crystallinity 

and the crystal orientation, the effective stretch in Eq. (3.1.17) could be reformulated to take 

into account the crystal form. 

Let us now focus on the stretch-rate effects. Remind that no viscous component is 

introduced in our theory to reproduce any time-dependent feature. Figure 3.1.7a shows a 
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strong influence of the stretch-rate on the crystallinity evolution. The crystallization hysteresis 

loop area gets smaller and the crystallinity degree increases with decreasing stretch-rate. This 

feature was already experimentally highlighted in (Rault et al., 2006a; Candau et al., 2015a, 

2015b). The rate-dependency of the stretch-induced crystallization is a consequence of the 

time-dependency of the crystallization kinetics driven by the thermodynamic force given in 

Eq. (3.1.26). Large stretch-rate leads to less time for crystallization and melting, and vice-et-

versa. The stretch at complete melting is also found sensitive to the stretch-rate whereas the 

onset of crystallization is found independent on that. A stretch-rate dependence of the 

nucleation may be predicted by inserting that in the energy barrier to the surface formation of 

newly formed crystallites. In addition, the stretch-rate dependency of the stretch-induced 

material transformation leads to the rate-dependent stress response observed in Figure 3.1.7b. 

Indeed, it can be seen that both the amount of stress hysteresis loop area and the magnitude of 

strain-hardening decrease with decreasing stretch-rate. If the stretch-rate tends to an 

infinitesimal value the stretch-induced crystallization appears in the form of equilibrium state 

and no difference between crystallization and melting happens, that is to say that no 

mechanical hysteresis is observed. This response is provided in dashed lines in Figure 3.1.7. 

This is again a confirmation that the crystallization/melting process is the source of the stress 

hysteresis and more generally of all history-dependent thermo-mechanical features. It is now 

interesting to focus on the temperature effects during stretching/recovery. Figure 3.1.8 

presents the crystallinity evolution and the macro-response for various temperatures. It can be 

observed a regular decrease of the crystal content with temperature which is consistent with 

experimental observations (Albouy et al., 2005; Rault et al., 2006a, 2006b). The temperature 

effect on the macro-stress implies numerous phenomena yet misunderstood in the literature, 

resulting in a high difference in strain-hardening ability due to chain stretching. Basically, the 

temperature affects the macro-response by entropy effect of the amorphous domain. This 

phenomenon is concomitant with an increase in crystallinity degree by decreasing the 

temperature, as a consequence of the temperature dependency of the thermodynamic force 

given in Eq. (3.1.26). Recall that solely the crystallization-induced softening is introduced in 

our theory via to the effective stretch expressed in Eq. (3.1.17). Therefore, both phenomena 

contribute to an increase in stress with temperature. Furthermore, both the onset of 

crystallization and the completion of melting are strongly affected by the temperature, and 

increase regularly. The delay m cT T T∆ = −  in crystallization is typically termed supercooling 

under temperature-induced crystallization. The melting temperature mT  is usually considered 
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as a thermodynamic property whereas the crystallization temperature cT  is not since it 

depends on the experimental conditions, in particular on the cooling rate. The origin of the 

supercooling comes from the energy barrier to the surface formation of crystallites, which 

depends on the crystallite form and dimension, both being sensitive to the loading conditions. 

Under isothermal stretch-induced crystallization, the crystallites completely melt at a lower 

stretch than at which crystallization starts. This delay m cλ λ λ∆ = −  in crystallization can be 

seen as a superstretching phenomenon as named by Candau et al. (2014). The stretch data for 

the onset of crystallization cλ  and the completion of melting mλ  extracted from Figure 3.1.8a 

are plotted in Figure 3.1.9 such that two nearly parallel straight-line fits appear and illustrate 

these two phenomena. This temperature dependence of crystallization and melting is 

consistent with the experimental observations of Albouy et al. (2005). 

 
Figure 3.1.9. Supercooling T∆  and superstretching λ∆  phenomena deduced from Figure 

3.1.8, 1: onset of crystallization, 2: completion of melting. 
 

As a final point of discussion, we propose to examine the crystallization response under 

continuous relaxation. These simulations consist firstly to apply a stretching up to a pre-

determined level under constant stretch-rate and secondly to keep constant this stretch for a 

prescribed delay during which the evolutions in crystallinity and in stress are computed. The 

stretching is performed at a sufficiently high rate to limit the crystallization before relaxation. 

As shown in Figures 3.1.10a and 3.1.11a, the crystallization during relaxation starts to 

increase linearly with the time but it rapidly exhibits a curved profile and tends towards a 

stabilized state for which there is no change in crystallinity. The reached maximum 

crystallinity degree corresponds to the equilibrium state plotted in Figures 3.1.4a and 3.1.5a. 

This crystallization evolution process, corresponding to the course of the thermodynamic state 

from non-equilibrium to equilibrium, is driven in our theory by the thermodynamic force 

given by Eq. (3.1.26). The latter decreases monotonically with crystallinity degree as shown 
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in Figure 3.1.5a. Recently, Bruning et al. (2015) measured the crystallinity evolution under 

continuous relaxation for different stretch-levels and temperatures, but without providing the 

stress evolution. Our simulations in Figures 3.1.10a and 3.1.11a give similar tendencies.  

 
(a)                                                             (b) 

Figure 3.1.10. Stretch-level influence on continuous relaxation: (a) crystallization kinetics, (b) 
macro-response, T=20°C, 1: λmax=5, 2: λmax=6, 3: λmax=7, 4: λmax=8, 5: λmax=9. 

 

 
(a)                                                             (b) 

Figure 3.1.11. Temperature influence on continuous relaxation: (a) crystallization kinetics, (b) 
macro-response, 1: T=0°C, 2: T=20°C, 3: T=40°C; 3: T=60°C, 4: T=80°C, λmax=8. 

 

More recently, Xie et al. (2017) measured the stretch-level and temperature dependencies of 

the continuous stress relaxation as a signature of the crystallinity evolution in a crystallizing 

rubber, but without definitely providing the crystallinity degree. The authors reported the same 

trends as those observed in Figures 3.1.10b and 3.1.11b. As for the stress hysteresis for which 

the viscous effects of the amorphous rubber network must be not invoked, according to our 

simulations the stress relaxation is believed to be solely controlled by the crystallization 

process under relaxation. Quite interestingly, the normalization of the stress with its 

maximum value points out a nonlinearity of the stretch-level and temperature effects. 
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3.1.3.3. Discussion 

Our theory provides significant physical insights about a fascinating phenomenon still 

misunderstood and involves very few physically interpretable material constants: two chain-

scale constants, one crystallinity kinetics constant, three thermodynamic constants related to 

the newly formed crystallites and a function controlling the crystal orientation with respect to 

the chain. The complex history-dependent thermo-mechanical response of natural rubbers 

necessitates to provide a set of formulae, not to increase the flexibility of the resulting model 

but in the aim to describe the entire set of phenomena in connection to the real system. Our 

theory, based on a micro-mechanism inspired molecular chain approach, formulated within 

the context of the thermodynamic framework, requires a few assumptions, e.g. rotationally 

joints of amorphous segments, fully extension of crystallized segments and proportionality of 

surface free energy. In spite of these assumptions, our model provides significant insights 

about the relationship between the micro-mechanism of crystallization in stretched rubbers 

and the history-dependent thermo-mechanical response at the macro-scale. The satisfactory 

simulation results provided by our theory can be attributed to its solid physical foundation. 

More specifically, the molecular configuration of the partially crystallized chain is objectively 

analyzed and reasonably described by means of some statistical mechanical methods, 

especially considering the random thermal oscillation of the crystal orientation. The present 

theory treats the stretch-induced crystallization as an irreversible thermodynamic process 

driven by a thermodynamic crystallization force induced by the non-equilibrium 

thermodynamic state. A realistic physical expression of the chain free energy is derived 

according to a two-step strategy by separating crystallization and stretching. This strategy can 

ensure that the theory satisfies a crucial physical condition related to the material 

thermodynamic stability, that is, the thermodynamic crystallization force is null at the initial 

state under the melting temperature. This is a key point that earlier Flory (1947) pointed out 

as a weakness of his theory, and to date only Mistry and Govindjee (2014) try to solve this 

issue by introducing a “phenomenological” yield-like function in their theory. As far as we 

know, this key point is treated from a physical viewpoint for the first time in our theory. 

More work is however needed to introduce into our theory the micro-structure of 

crystallites and its evolution. In particular, in addition to the crystal fraction and orientation, it 
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is believed that the crystallite morphology, in terms of form25 and size, could also control the 

thermo-mechanical macro-response. It is a way to account for in our theory the 

crystallization-induced stiffening. Moreover, a morphology-dependence of the surface free 

energy would be interesting to establish in order to propose a more realistic onset of 

crystallization, in particular in terms of rate-dependency which can be also viewed as a rate-

dependency of the necessary supercooling or superstretching. This effect has been 

experimentally highlighted recently by Candau et al. (2015b). Also, we must recognize that 

the crystallization kinetics, inherently dominated by the formula (3.1.29) that we have 

proposed to relate the thermodynamic force and the crystallization rate, is too simple to 

represent the complex phenomenon. The kinetics law would consider at least: (i) a nonlinear 

relationship that introduces an increase in crystallization resistance during the stretch-induced 

crystallization, (ii) a difference between the crystallization path during stretching and the 

melting path during recovery and, (iii) an explicit temperature-dependency. Further work is 

needed to incorporate these important ideas in a comprehensive constitutive theory. 

3.1.4. Partial conclusions 

In this work, we present a new micro-mechanism inspired molecular chain model to 

describe the thermodynamics and mechanics of stretch-induced crystallization in rubbers. Key 

factors governing the phenomenon were investigated to better understand the relation between 

micro-mechanism and macro-response under the equilibrium state and the non-equilibrium 

state involved during stretching/recovery and continuous relaxation. The proposed approach 

contains very few physically interpretable material constants and seems to be sufficiently rich 

to provide important indications concerning this fascinating phenomenon.  

A quantitative evaluation of our approach remains however an important issue for further 

studies. Furthermore, the capability of our approach needs to be further verified under more 

complex loading conditions. Especially, the coupling between stored/dissipated energy and 

material transformation during cycling loading could be investigated using the constitutive 

theory that we have proposed in a recent work (Guo et al., 2018a, 2018b). Moreover, as 

introduced in the discussion section, our approach, although quite sophisticated, needs 

                                                      

25 In Anoukou et al. (2014) the incidence of the crystal form on the stiffening has been studied by means of the 
concepts of micromechanical homogenization without molecular configuration. It would be interesting to 
consider this aspect into the present theory in our future works. 
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improvement for a fully realistic description of the micro-structure, such as size and form of 

crystallites, and its evolution. 
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CHAPTER 3. STRETCH-INDUCED 

CRYSTALLIZATION IN RUBBERS 
 

3.2. A MICRO-MACRO CONSTITUTIVE MODEL FOR 

STRETCH-INDUCED CRYSTALLIZABLE RUBBERS26 

In this Part of the Chapter 3, a physically-based constitutive model, considering the crystallization micro-

mechanism at the chain-scale, is formulated within the framework of the continuum thermodynamics. The 

stretch-induced formation of crystallized segments in the molecular chain is regarded as an irreversible 

thermodynamic process accompanied with energy dissipation. The microsphere-based strategy is employed to 

realize the transition from chain-scale to macro-scale, and to account for the crystallization anisotropy induced by 

the preferred network orientation. The two antagonist phenomena, i.e. the crystallization-induced softening and 

stiffening, are well reproduced by controlling the spatial orientation and form of the crystallized segments at the 

chain-scale. The micro-macro constitutive model fully tridimensional is implemented into a finite element 

program and a quantitative evaluation of the model is performed by comparisons with a few illustrative 

experiments. A fairly well agreement of the model is shown with tensile experiments under stretching/recovery, 

in terms of stress-stretch curves and crystallization kinetics, at different stretch levels and temperatures. To 

illustrate further the capability of the model, numerical simulations are compared to experimental non-

homogeneous tensile response in terms of local crystallization/orientation fields of a specimen containing cracks. 

Keywords: Stretch-induced crystallization; rubbers; thermodynamics; micro-macro transition; crystallization 

anisotropy. 

 

                                                      

26 This Part of this chapter is based on the following paper: Guo Qiang, Zaïri Fahmi, Guo Xinglin, 2019. 

A micro-macro constitutive model for stretch-induced crystallizable rubbers.  
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3.2.1. Partial introduction 

The stretch-induced crystallization in rubbers is a fascinating phenomenon, observed firstly 

by Katz in the first quarter of the last century (Kartz, 1925). Nonetheless, still to date, several 

features accompanying the relationship between the stretch-induced phase transformation in 

the material and the overall thermo-mechanical response are still misunderstood (Huneau, 

2011; Toki, 2014; Albouy and Sotta, 2017; Le Cam, 2017). The formulation of physically-

based constitutive models, including a detailed knowledge of the separate and synergistic 

effects of key parameters that govern the response of the stretch-induced crystallizable rubber, 

is of prime importance. 

In the mid of the last century, Flory (1947, 1949) proposed the first theory using the 

statistical mechanics to describe the crystallization micro-mechanism in rubbers. The Flory 

theory was verified experimentally in several papers (e.g. Arlman and Goppel, 1951; Xie et 

al., 2016). Then, some refinements of the Flory theory were proposed (Roe et al., 1961; 

Gaylord, 1976; Gaylord and Lohse, 1976; Smith, 1976) but restricted to the context of the 

most thermodynamically favorable condition by focusing only on the equilibrium stretch-

induced crystallization (i.e. infinitesimal change rate). However, the crystallization micro-

mechanism is the solely origin of the inelastic effects (e.g. stress hysteresis and relaxation) in 

stretch-induced crystallizable rubbers (Clark et al., 1940; Murakami et al., 2002; Trabelsi et 

al., 2003; Albouy et al., 2005, 2014; Toki et al., 2005; Rault et al., 2006a, 2006b; Tosaka et 

al., 2012; Samaca Martinez et al., 2013a, 2013b; Rublon et al., 2014; Bruning et al., 2015; 

Candau et al., 2014, 2015a, 2015b; Laghmach et al., 2015; Le Cam, 2017; Xie et al., 2017). 

The stretch-induced crystallization is a history-dependent phenomenon. Therefore, the 

crystallization kinetics is a key physical feature to introduce into any modeling to reproduce 

the non-equilibrium process. It is only in very recent years that constitutive models were 

proposed to reproduce the stretch-induced crystallization in rubbers with an intensification the 

last two years (Kroon, 2010; Dargazany et al., 2014a, 2014b; Mistry and Govindjee, 2014; 

Guilie et al., 2015; Behnke et al., 2018; Guo et al., 2018; Khiem and Itskov, 2018; Nateghi et 

al., 2018; Rastak and Linder, 2018; Gros et al., 2019a, 2019b). The foundation of any 

constitutive model is the formulation of the free energy, from which the constitutive law is 

obtained. All proposed constitutive models in the literature are distinguished by the final 

expression of the free energy and the way it is derived. The phenomenon of transformation of 

the chain from its amorphous state to the partially crystalline state is a multi-scale problem 
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which may be investigated from the thermodynamic viewpoint. As a common point of all 

proposed constitutive models, the primary observation of the newly formed nano-sized 

crystallite is made at the chain-scale. In that sense, the previous models are physically-based. 

The only difference between the models is the representation of the partially crystallized 

molecular chain. The transition from the chain-scale to the continuum body scale is realized 

by translating the partially crystallized single chain to the chain network through an averaging 

over all possible orientations. The evolution law for the crystallization kinetics is also a key 

point treated differently in the previous models. For two main reasons, a physically realistic 

evolution law cannot employ the classical Avrami (1939) formulation for micron-sized 

spherulite formation in semi-crystalline thermoplastic polymers. The first reason is a 

difference in morphology and in size of crystals. The second reason is a difference in 

crystallization condition. The phenomenon in rubbers is allowed to occur at higher 

temperatures than under quiescent conditions due to a stretch-induced decrease of the 

conformational entropy. 

In this Part of the Chapter 3, a physically-based thermo-mechanical constitutive model, 

considering the crystallization micro-mechanism at the chain-scale, is formulated within the 

framework of the continuum thermodynamics. A two-step strategy, separating crystallization 

and stretching, is implemented to derive the free energy of the partially crystallized single 

chain. Although this two-step strategy is hypothetical, the derived free energy is only 

dependent on the initial and final states while containing as input the thermodynamic features 

coming from the stretch-free equilibrium state. The stretch-induced formation of crystallized 

segments in the molecular chain is regarded as an irreversible thermodynamic process 

accompanied with energy dissipation and the crystal fraction is introduced as an internal state 

variable in our theory. The microsphere-based strategy is employed to realize the transition 

from the crystallization-induced micro-structural evolution of the single chain to the history-

dependent thermo-mechanical macro-response. The constitutive model, fully tridimensional, 

is implemented into a finite element program. A quantitative evaluation of the model is 

performed by comparisons with tensile experiments, in terms of stress-stretch curves and 

crystallization kinetics, at different stretch levels and temperatures. The example of a 

specimen containing cracks is presented to illustrate further the model capability.  

The outline of the present Part is as follows. The different aspects of the theory at the 

macro-scale, at the chain-scale and the transition from chain-scale to macro-scale are provided 
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in Section 2. The model results are given in Section 3. Section 4 closes the paper with some 

concluding remarks. 

3.2.2. Theory 

3.2.2.1. Macro-scale: thermodynamics and mechanics of a continuum body 

In this subsection, a constitutive model for stretch-induced crystallizable rubbers is 

formulated within the framework of the continuum thermodynamics considering the stretch-

induced crystallization as an exclusive irreversible thermodynamic mechanism. 

The following notation is used throughout the text. Tensors and vectors are denoted by 

normal boldfaced letters and italicized boldfaced letters, respectively, while scalars and 

individual components of vectors and tensors are denoted by normal italicized letters. The 

superposed dot designates the time derivative. Simple contraction of two vectors is denoted 

by a dot ‘‘⋅ ’’, double contraction of two tensors by a colon‘‘:’’, and a direct (outer) product 

by the symbol ⊗ . Superscript ( )T• denotes transposition, and •
 
is the norm of a vector 

defined as • = •⋅• . 

3.2.2.1.1. Kinematics 

Consider a rubber material at the scale of the continuum body. If x  is the actual position 

of a material point located at 0X  in the reference configuration, the deformation gradient is: 

0= ∂ ∂F x X . Considering the intermediate position
 TX  at a thermal stress-free configuration, 

but at a homogeneous absolute temperature T  different from the initial temperature 0T , the 

deformation gradient can be further multiplicatively split into the isothermal mechanical 

response of the continuum body and the stress-free thermal dilatation of the continuum body: 

 M T=F F F  (3.2.1) 

in which M T= ∂ ∂F x X  is the mechanical deformation gradient and T T 0= ∂ ∂F X X  is the 

thermal deformation gradient given in the case of thermally isotropic conditions by (Holzapfel 

and Simo, 1996): 

 T TF=F I , ( )( )
0

T Texp
T

T
F u duα= ∫  (3.2.2) 

where ( )T Tα  is the thermal expansion coefficient and I  is the unit tensor. 

The volume change detJ = F  is defined as: 
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 M TJ J J=  (3.2.3) 

where the mechanical volume change is M Mdet 1J = =F  due to the mechanical 

incompressibility of the continuum body, and the thermal volume change is: 

  ( )( )
0

T T Tdet exp 3
T

T
J u duα= = ∫F  (3.2.4) 

3.2.2.1.2. Thermodynamics  

As an irreversible thermodynamic process, the stretch-induced crystallization can cause 

energy dissipation (Guo et al., 2017), and hence the process has to conform to the first and 

second laws of thermodynamics involving the following fields defined in the continuum 

body: the stress and strain fields, the internal energy E , the entropy S , the absolute 

temperature T  and the heat flux Q . 

The first law of thermodynamics requires the following energy balance equation to be 

satisfied: 

 := − ∇ ⋅& &

XE P F Q          (3.2.5) 

where P  is the first Piola-Kirchhoff stress tensor and ∇ ⋅X Q  is the divergence of the Piola-

Kirchhoff heat flux Q . 

The second law requires that the Clausius-Duhem inequality is satisfied: 

 ( )g 0= −∇ ⋅ − ≥&

XS S TQ       (3.2.6) 

where gS  represents the entropy generation rate being equal to the difference between the 

change rate of the entropy &S  and the divergence of the entropy flow ( )∇ ⋅ −X TQ . 

Combining Eqs. (3.2.5) and (3.2.6), we obtain the following hybrid inequality for the total 

energy dissipation D  which may be correspondingly split into two parts: 

 ( )
1

2

: 0= − + + ∇ ⋅ − ≥&& &

1442443

1442443

X
D

D

D E TS T TP F Q       (3.2.7) 

in which the first part 1D  represents the intrinsic dissipation induced by the irreversible 

energy conversion, such as from the mechanical energy to the thermal energy,  and the second 

part 2D  represents the thermal dissipation induced by the irreversible energy flow, such as 

heat flowing in non-uniform temperature fields. 
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The intrinsic dissipation 1D  is given in a stronger form via the so-called Clausius-Planck 

inequality, in which the existence of a free energy for a unit reference volume (a special form 

of the Helmholtz free energy potential ψ = −E TS) is postulated: 

 1 : 0ψ= − − ≥& &
&D STP F       (3.2.8) 

All thermodynamic quantities are considered to be dependent on three independent state 

variables, two external variables: T  and MF , and one internal variable related to the 

crystallization micro-mechanism X . The latter vector characterizes the crystallization 

anisotropy, i.e. the crystallinity in any direction of a material point. In this regard, the free 

energy function ψ , as a thermodynamics function, is:
 

( )M, ,Tψ ψ= F X . By introducing the 

time derivative of the free energy function ( ) ( ) ( )M M:T Tψ ψ ψ ψ= ∂ ∂ + ∂ ∂ + ∂ ∂ ⋅F F& & &
& X X  

and the time derivative of the deformation gradient T M TF α= +F F F& &  into the inequality (3.2.8), 

the intrinsic dissipation 1D  can be re-written as: 

 1 T M T
M

: 0D F S T
T

ψ ψ ψα ϕ
 ∂ ∂ ∂ = − − + − − ⋅ ≥   ∂ ∂ ∂  

P F
F

& & &X
X

      (3.2.9) 

in which :ϕ = P F . 

Applying the Coleman-Noll procedure (Coleman and Noll, 1963) to the inequality (3.2.9), we 

can obtain the constitutive relationships: 

 T
M

T M

1 ψ −∂= −
∂

p
F

P F
F

, T

ψα ϕ ∂= −
∂

S
T

     (3.2.10) 

where p  is a Lagrange multiplier, which may be only found by means of the boundary 

conditions. 

A residual inequality indicating that the intrinsic dissipation 1D  originates entirely from the 

crystallization mechanism is obtained:  

 1 0= ⋅ ≥&D K X       (3.2.11) 

in which K
 
is the thermodynamic conjugate vector for X : 

 
ψ∂= −

∂
K

X
      (3.2.12) 

Based on Eq. (3.2.10), and applying the chain rule of differentiation, Eq. (3.2.5) may be 

written in an alternative form: 

 1 T T M T
M

+ :XCT D T F T
T T

φα α ϕ ∂  = − ∇ ⋅ − − +   ∂   

∂ ∂ ∂
∂ ∂ ∂

P
F

F
& & &

K
Q X

X
      (3.2.13) 
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where = ∂ ∂C T S T is a heat capacity-related coefficient and φ ϕ ψ= −  is the complementary 

energy function. 

The free energy function can be written using an additive form:  

 ( ) ( ) ( )M T M M, , , ,T T Tψ ψ ψ= +F FX X       (3.2.14) 

in which the thermal contribution Tψ  is given by:  

 ( ) ( )( )
0

T T

T

T

du
T C u T u

u
ψ = − −∫       (3.2.15) 

where TC  is the specific heat capacity. 

The mechanical contribution ( )M M, ,Tψ F X  is specified in the next subsection. 

3.2.2.2. Micro-scale: thermodynamics and mechanics of a single chain 

In this subsection, a new micro-mechanism inspired molecular chain approach is 

developed within the thermodynamic framework in the aim to describe the thermo-

mechanical response of a partially crystallized single chain. 

 

 

                               (a)                                                                 (b) 

Figure 3.2.1. Configuration changes due to stretching along the e1-axis of the microsphere:  
(a) initial and amorphous state, (b) stretched and partially-crystallized state.  
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3.2.2.2.1. Description of a single chain 

The partially crystallized molecular chain consists of aN  
amorphous segments, each of 

length l , and cN  crystallized segments as illustrated in Figure 3.2.1. The crystallization 

degree χ  in the chain is defined as the ratio between the numbers of crystallized segments 

cN  and the total number of segments c aN N N= + : 

 cN

N
χ =  (3.2.16) 

in which χ  varies between 0 (totally amorphous state, i.e. aN N= ) and 1 (fully crystallized 

state, i.e. a 0N = ) with ( )a 1N N χ= − . 

The chain end-to-end vector r  is the sum of the chain end-to-end vectors of the crystallized 

part cr  and of the amorphous part ar  such that c a= +r r r . The angle θ
 
between the chain end-

to-end vectors r  and cr  is given by the following expression: 

 
2 2

a c c2 cosθ= + −r r r r r  (3.2.17) 

As a representative molecular description, two amorphous subparts from either side of the 

crystallized part are considered. With continuous oscillations due to thermal fluctuations, a 

huge number of configurations are possible due to rotation of molecular bonds. The statistical 

mechanical approach is required to establish the relationship between the configurations of 

the partially crystallized chain and the average chain response. Following Wang and Guth 

(1952), the amorphous segments have a random distribution with no interaction and they are 

rotationally jointed with complete freedom of orientation. By this way, there is no preferred 

bond angle when no external force is applied. That is to say, all bond angles take the same 

probability in the un-stretched condition. To calculate the respective molecular chain 

conformations of the two amorphous subparts the following probability density functions are 

proposed:  

 ( )
3 2

a_

a_ a_ a_2
a_ a_

3
exp

2π
i

i i i
i i

N
N l N l

     
 Ρ = − ℜ           

r
r  (3.2.18) 

in which the subscript i  denotes the respective amorphous subparts, 1 and 2. 

In Eq. (3.2.18), the function ( )xℜ  is defined as follows: 

 ( ) ( ) ( )
( )( )

1
1

1
ln

sinh

x
x x x

x

−
−

−
ℜ = +

L
L

L
 (3.2.19) 
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where ( )1 x−
L  is the inverse Langevin function given by a Padé approximant 

( ) ( ) ( )1 2 23 1x x x x− ≈ − −L .  

The probability density function of the whole amorphous part ( )a aΡ r  is derived through the 

convolution integration of the probability density functions of the two amorphous subparts, 

( )a_1 a_1Ρ r  and ( )a_2 a_2Ρ r : 

 ( ) ( ) ( )3

3 2

a
a a a_1 a_1 a_2 a a_1 a_1 a2

a a

3
exp

2πR
d N

N l N l

     Ρ = Ρ Ρ − = − ℜ   
     

∫
r

r r r r r  (3.2.20) 

Because the partition of the two amorphous subparts is arbitrary, the probability density 

function (3.2.20) actually considers all the possible configurations of the amorphous 

segments, and its expression is not affected by the position of the crystallized part inside the 

single chain. Analogously, the probability density function of the partially crystallized single 

chain ( )Ρ r  is also derived through the convolution integration of the probability density 

functions of the amorphous part ( )a aΡ r  and the crystallized part ( )c cΡ r : 

 ( ) ( ) ( )3 a c c c cR
dΡ = Ρ − Ρ∫r r r r r  (3.2.21) 

The crystal can be considered as a rigid entity of length c cξ= N lr  in which ξ  is a factor 

controlling the extension degree of the segments and determined by the stretch level and the 

crystallization degree; for 1ξ =  the crystallized segments are fully extended. By this way, the 

crystallized potion is assimilated as an equivalent segment, replacing the transformed 

amorphous segments. For the partially crystallized single chain, there is no external effect to 

restrict the thermal fluctuations of the crystallized segments, even though the rotation of 

internal bonds is fixed due to the crystallization effect. Nevertheless, the new links between 

the remaining amorphous subparts and the crystallized portion are different from the 

rotationally jointed links between amorphous segments. The continuous random thermal 

fluctuations of the crystal orientation related to the probability distribution of the angle θ  

gives therefore all the possible conformations of the crystallized part. That is to say that 

( ) ( )c c Pθ θΡ =r . Eq. (3.2.21) is thus re-written as follows: 

 ( ) ( )
3 2

π
a

a2 0
a a

3
exp P

2π
N d

N l N
θ

λ θ θ
     Ρ = − ℜ          

∫r  (3.2.22) 

in which aλ  is the effective stretch corresponding to the angle θ : 
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2 2 2

a
a

a

2 cos

1

λ χ ξ λ χξ θλ
χ

+ −= =
−

N N

l N

r
 (3.2.23) 

where l Nλ = r  is the total stretch of the single chain. 

The basic property of the probability density function ( )Pθ θ ,
 

i.e. ( )π

0
P 1dθ θ θ =∫ , is 

considered to reformulate Eq. (3.2.22) in the following form: 

 ( )
3 2

a
a2

a a

3
exp

2π
N

N l N

λ     Ρ = − ℜ          

%

r  (3.2.24) 

To ensure the material thermodynamic stability as well as the trend of the newly formed 

crystal to orient itself towards the chain direction, the term aλ%  in Eq. (3.2.24) is regarded as a 

representative effective stretch whose expression is given in Eq. (3.2.23) by replacing the 

angle θ  by a representative angle θ% : 

  ( ) ( ) ( )2 1 1
cos , 1 +

2 1 2
γω

γ
θ λ χ −

−

−= Θ = −
−

%

N
e

N e N
 (3.2.25) 

where γ  is a coefficient controlling the orientation rate of the newly formed crystal with the 

chain axis, and the variable ω  is given by: 

 
1

+
1

a b
N

λω χ−=
−

 (3.2.26) 

in which [ ]0,1a∈  and [ ]0,1b∈  are the weight coefficients for the stretch and crystallization 

effects, respectively, and the sum of them is unit, i.e. 1a b+ = . By this way, we translate the 

characterization related to the random thermal oscillation of the crystal orientation into that of 

the non-random variable θ% , i.e. Eq. (3.2.25). Besides, in order to consider the stiffening 

observed at large strains, we can control the extension degree of the crystallized part, for 

which the following expression of the factor ξ  is proposed: 

 ( ), 1 ηξ λ χ δω= Ω −=  (3.2.27) 

whereδ  and η  are coefficients. In order to simplify, the weight coefficients for the stretch 

and crystallization effects are considered equal, i.e. 0.5= =a b . 

Remark 1: In the models of Kroon (2010), Mistry and Govindjee (2014) and, Rastak and 

Linder (2018), the chain end-to-end vectors of the crystallized part is constrained to be 

parallel to the chain end-to-end vector. In the Flory model (Flory, 1947), the chain traverses 

the crystallite in the same direction as the displacement between the ends of the chain located 
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at cross-linkages. These models actually neglect the random thermal fluctuations of the 

crystal orientation, and thus underestimate the possible configurations of the partially 

crystallized single chain. The probability of the crystal orientation was also introduced into 

the probability density function by Smith (1976) but in the context of equilibrium 

crystallization as a function of stretch and temperature. 

3.2.2.2.2. Free energy of a single chain 

The derivation of the free energy of a partially crystallized single chain is inspired from the 

Flory two-step strategy (Flory, 1947). In his theory, Flory considered the fully crystallized 

single chain as the reference state. The partially crystallized chain is achieved by two separate 

and distinct steps, namely, (i) melting to form the amorphous part and (ii) stretching to assign 

the expected position of the chain ends. In this subsection, we reformulate the Flory 

derivation by considering the stretch-free fully amorphous state as the reference state. The 

latter represents a notable difference with the Flory theory. Also a hypothetical two-step 

strategy is formulated. The first step is very similar to a thermal-induced crystallization and 

the second step is similar to a purely mechanical stretching. As a potential function, the free 

energy cψ
 
is determined only by the current thermodynamic state, independent on the loading 

history, and hence it is the sum of the contributions of the two steps: 

 c I II II III

thermal-induced mechanical-induced

ψ ψ ψ→ →= ∆ + ∆
123 14243

 (3.2.28) 

In the first step, a thermodynamic force driving crystallization is applied, in a certain manner, 

to transform cN  amorphous segments into crystallized segments, the remaining amorphous 

subparts keeping free to occupy most probable locations. The free energy change in this step 

has the following expression: 

 I II c m s c0
m

1
T

N H u N
T

ψ →

 
∆ = − ∆ − + 

 
 (3.2.29) 

in which 0
m m mT H S= ∆ ∆  is the equilibrium melting temperature corresponding to the ratio 

between enthalpy change mH∆  and entropy change mS∆  both associated with the fusion of 

segments from a perfect crystal, and obtained from the thermodynamic equilibrium process 

between crystallized and melted states under the stretch-free condition. The term su  is a 

proportionality coefficient between the surface free energy sU  and the crystallized segment 

number cN . Although different crystallization theories give different expressions for sU  
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(Candau et al., 2014; Dolynchuk et al., 2015), the linear relationship is adopted as a specific 

example to simplify the simulation. 

In the second step, the expected position of the chain ends is achieved by stretching without 

modification of the crystal fraction. Considering the crystallites as infinitely stiff compared to 

the amorphous part, the free energy change is fully attributed to the change of the 

conformational entropy:
 ( )II III III IIT s sψ →∆ = − −  in which IIIs  and IIs  are the conformational 

entropies related to the final state and the intermediate state, respectively: 

 ( )( )
3 2

a
III a2

a a

3
ln ln exp

2πB Bs k k N
N l N

λ       = Ρ = − ℜ            

%

r  (3.2.30) 

 ( )
3 2

II II a2
a a

3 1
ln ln exp

2πB Bs k k N
N l N

       = Ρ = − ℜ            

 (3.2.31) 

where Bk  is the Boltzmann’s constant. In the intermediate state, the amorphous subparts 

occupy the most probable locations and the probability density IIΡ  may be considered as a 

special case of Eq. (3.2.30) in which the representative effective stretch aλ%  = 1. As a 

consequence, the free energy change in the second step can be expressed as: 

 a
II III B a

a a

1
k TN

N N

λψ →

     ∆ = ℜ −ℜ       
     

%

 (3.2.32) 

Remark 2: The free energy function of the partially crystallized single chain is formulated in 

the literature by using two methods. In the first method, the free energy function is considered 

as the sum of two parts (Kroon, 2010; Mistry and Govindjee, 2014). The first part is related to 

the melting enthalpy in the crystallized portion of the single chain, and the second part is 

related to the configurational entropy in the remaining amorphous portion. By considering 

only nucleated crystallites, the Kroon (2010) model is formulated by neglecting the 

contribution of the crystallization-induced enthalpy and entropy changes in the free energy of 

the single chain. Mistry and Govindjee (2014) considered the enthalpy and entropy 

contributions by directly introducing the melting temperature in the free energy expression. 

This method considers only the current molecular structure and neglects the description of the 

crystallization process. That results in an ambiguous, and even inconsistent, reference state 

for the calculation of the free energy change. In fact, the method attempts to calculate the free 

energy of each part separately. However, the configuration of the whole partially crystallized 

single chain depends simultaneously on the two parts. Calculating separately the 
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configurational entropy change of each part is meaningless, and the resulting free energy is 

not accurate. In the line of the Flory (1947, 1949) theory, the second method calculates the 

free energy based on the studying of the crystallization process and integrally treat with the 

configuration change of the whole partially crystallized single chain (Guo et al., 2018; 

Nateghi et al., 2018; Rastak and Linder, 2018). In order to deduce its expression, some 

hypothetical steps are used to separate the respective changes related with different 

mechanisms. The key point of the two-step method is to reasonably describe the configuration 

change of the whole partially crystallized single chain and accurately calculate the free energy 

change in each step. Although imaginary, the steps are reasonable while considering 

infinitesimal evolution. Nateghi et al. (2018) considered the fully crystallized single chain as 

the reference state. Nevertheless, the calculation of the free energy change in the second step 

does not introduce the configuration after the first step, and hence results in the 

overestimation of the corresponding configurational entropy change. Rastak and Linder 

(2018) derived the free energy of the partially crystallized single chain by integrating the 

force in the chain with respect to its length. But, the method requires an integration constant 

dependent on the stretch-free state of the single chain, e.g. the crystal degree and the initial 

chain force. In fact, the most important point of the two-step method is to describe the 

configuration after the first step whatever it is crystallization or melting. This is because that 

the nature of the second step is dragging the two ends of the single chain to the expected 

position, and the configuration after the first step is indentified as the starting condition of the 

dragging process. The second heuristic term (i.e. the penalty term) of the integration constant 

in the Rastak and Linder (2018) model is actually related to this intermediate state although it 

was interpreted as the effect of the surrounding chains. 

3.2.2.2.3. Thermodynamics 

The stretch-induced crystallization is regarded as an irreversible thermodynamic process 

accompanied with energy dissipation (Guo et al., 2017). The Clausius-Planck inequality 

(3.2.8) can be expressed for a single chain as follows: 

 1 c 0λ ψ= − − ≥& &
&d f sT       (3.2.33) 

in which 1d  is the corresponding intrinsic dissipation and f  is the chain force conjugated to 

the chain stretch λ . 

All thermodynamic quantities at the chain-scale are considered to be dependent on three 

independent state variables, temperature T , stretch λ  and crystallinity degree χ . In this 
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regard, the free energy function cψ , as a thermodynamics function, is: ( )c c , ,ψ ψ λ χ= T . By 

introducing the time derivative of the free energy function 

c c c cψ ψ λ ψ λ χ ψ χ= ∂ ∂ + ∂ ∂ + ∂ ∂&&
& &T T , the intrinsic dissipation 1d  can be re-written as: 

 c c c
1 0

ψ ψ ψλ χ
λ χ

∂ ∂ ∂   = − − + − ≥   ∂ ∂ ∂   
& &

&d f s T
T

      (3.2.34) 

Again applying the Coleman-Noll procedure (Coleman and Noll, 1963) to the inequality 

(3.2.34), we can obtain the constitutive relationships: 

 cψ
λ

∂=
∂

f , cψ∂= −
∂

s
T

     (3.2.35) 

and a residual inequality: 

 1 0d κχ= ≥&       (3.2.36) 

in which κ
 
is the thermodynamic entity conjugated to the crystallinity degree χ , referenced 

as crystallization force: 

 cψκ
χ

∂= −
∂

      (3.2.37) 

Considering the expression of the chain free energy defined in the previous subsection, the 

chain force f , the entropy s and the crystallization force κ  are given, respectively, by: 

 1 a
B

a

f k TN
N

λβ −
 

=   
 

%

L  (3.2.38) 
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 (3.2.40) 

The crystallization force is composed of a thermally-activated part , a surface energy-

induced part  and a stretch-induced part λκ . The terms α  and β  in Eqs. (3.2.38) and 

(3.2.40) are expressed as:  

 

2 2

2

2 2 2

λ λ λχ χ χ χ
χ χα

λ λχ χ

∂Θ ∂Ω ∂ΩΩΘ + Ω − Ω − Ω + Θ
∂ ∂Ω ∂=

  + Ω − ΩΘ 
 

N N N

N N

 (3.2.41) 

Tκ

Sκ
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In Eq. (3.2.40), the function ( ),ℑ x y  is defined as follows: 

 ( ) ( ) ( )
( )

1
1

1
, ln

sinh

−
−

−ℑ = +
y

x y x y
y

L
L

L
 (3.2.43) 

From the irreversible thermodynamic viewpoint, the crystallization evolution, regarded as a 

generalized thermodynamic flux, is driven by the thermodynamic crystallization force and 

should obey the second thermodynamic law. To this end, we formulate a linear relationship 

between the crystallization rate χ&  and the corresponding force κ : 

 cχ κ=& A  and mχ κ=& A  (3.2.44) 

where cA  and mA  are coefficients related to crystallization path and melting path, 

respectively, with c 0≥A and m 0≥A  to satisfy condition (3.2.36). The crystallization kinetics 

defined in Eq. (3.2.44) reflects the intrinsic trend of irreversible thermodynamic process, that 

is, the trend from a non equilibrium thermodynamic state to an equilibrium state where all the 

thermodynamic quantities do not depend upon time. 

In order to reveal the thermodynamic essence of the partially crystallized molecular chain 

model, the free energy and the corresponding thermodynamic force are plotted in the stretch-

crystallinity space, as shown in Figure 3.2.2. A global view at these plots shows that the 

formulated free energy function is a concave function and the thermodynamic force has 

opposition trend for the increase of stretch and crystallinity. These characteristics of the 

thermodynamic potential and force ensure the existing of a stable equilibrium state for any 

stretch condition. More precisely, the free energy in the stretched condition first decreases 

with the crystallinity and then increases. The minimum free energy value corresponds to the 

equilibrium state in which the thermodynamic force is null. Nevertheless, in the un-stretched 

condition, the free energy immediately increases with the crystallinity and the minimum value 

occurs in the fully amorphous state. For the rubbers under stretch-free condition with melting 

temperature, all the internal molecular chains are in a critical state where the un-stretched 

fully amorphous chain can immediately crystallize once it is subjected to stretching or 

cooling. This critical state is achieved by formulating the evolution function of the 
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representative angle θ%  to satisfy the initial condition ( )cos 1,0 1 2 Nθ = Θ =% , see Eq. 

(3.2.25). In conclusion, our model ensures that the stretch-induced crystallizable rubbers have 

thermodynamic stability without the introduction of any additional heuristic constraint. 

 

(a) 

 

(b) 
Figure 3.2.2. Surface of (a) free energy and (b) thermodynamic force in the stretch-

crystallinity space.  
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Remark 3: In their models, Kroon (2010) and Dargazany et al. (2014a, 2014b) introduced the 

crystallinity evolution as an evolution of the number of fixed-size nucleated crystallites. In the 

Kroon (2010) model the crystallinity evolution is governed by a phenomenological 

Arrhenius-type kinetics, coming from the classical mathematical formulation of thermally-

induced crystallization processes. In the Dargazany et al. (2014a, 2014b) model the 

crystallinity evolution is governed by the chain length statistic distribution. Mistry and 

Govindjee (2014), Guilie et al. (2015) and, Rastak and Linder (2018) use the same 

crystallization kinetics than Eq. (3.2.44) in their models. Nevertheless, in order to ensure the 

crystallization does not develop spontaneously on the stretch-free condition, some additional 

conditions have to be made to offset the positive thermodynamic force in the initial state. 

Those constructed additional conditions are often interpreted as the crystallization resistance 

induced by the interface or surface formation, which actually do not being considered at all in 

their model formulation. Mistry and Govindjee (2014) and, Guilie et al. (2015) introduced a 

yield-like threshold to additionally restrict the evolution law whereas Rastak and Linder 

(2018) introduced the surrounding chain effect by formulating a differentiable logarithmic 

penalty function. Furthermore, Guilie et al. (2015) introduced different evolution laws to 

capture crystallization and melting processes. In the same manner, the model proposed by 

Gros et al. (2019a, 2019b) introduced nucleation, crystallization and melting thresholds using 

the theory proposed by Candau et al. (2014) in which the form and surface energy of 

nucleated crystallites is considered (Laghmach et al., 2015). 

3.2.2.3. Transition from micro to macro-scale 

Our description of the partially crystallized single chain can be implemented into all 

molecular chains of the network to get the spatially averaged rubber response. All macro-

quantities at every material point are derived from micro-quantities by means of the transition 

scale microsphere-based method (Bazant and Oh, 1986; Miehe et al., 2004). A schematic 

representation of the microsphere is provided in Figure 3.2.1. The method consists in the 

symbolization of a material point by a unit sphere 0O  considering a perfect random-in-space 

distribution of molecular chains. As a result of a preferred network orientation, a non-uniform 

distribution of the crystallization micro-mechanism at the chain-scale is expected. The 

initially isotropic network becomes thus anisotropic.  



3.1. Thermodynamics and mechanics of stretch-induced crystallization in rubbers 

199 

 

Let us introduce the material unit vector N which is considered to be embedded with a un-

stretched molecular chain and oriented from the centre to the surface of the microsphere. The 

material unit vector N  in the referential orientation space 0O  may be expressed as: 

 1 2 3cos sin sin sin cosφ υ φ υ υ= + +N e e e  (3.2.45) 

where [ ]0,πυ ∈  and [ ]0,2πφ ∈
 
are the classical spherical angles, and { }1 2 3, ,e e e

 
denote the 

axes of a Cartesian coordinate system. Furthermore, the differential area element of the unit 

sphere Π  takes in terms of these angles the following expression: 2 sinυ φ υϒ =d d d  which is 

referenced as the solid angle and whose integral provides the unit sphere total area 

π 2π

u 0 0
sin 4πυ φ υ= =∫ ∫S d d . 

Subsequently, the internal state variable X  related to the crystallization micro-mechanism 

can be considered as a vector whose components are the crystallinity degrees at the chain-sale 

in all directions in the referential orientation space ( )χ N : 

 ( ){ }χ=X N  (3.2.46) 

and hence the macroscopic crystallinity degree X  at the material point can be defined as the 

average value of the crystallinity degree in all directions ( )χ N , which is obtained by 

integrating ( )χ N
 
over the unit sphere surface: 

 ( )1

4π
χ

Π
= ϒ∫X dN  (3.2.47) 

Upon application of the macro-deformation MF , the referential orientation space 0O  

transforms to the spatial orientation space ∗O  with the corresponding referential unit vectors 

mapping to spatial stretch vectors as: 

 Mλ = Fn N , Mλ = ⋅CN N  (3.2.48) 

where T
M M M=C F F  is the right Cauchy-Green deformation tensor and n  is a unit vector 

characterizing the orientation of the material vector N  in the current conformation:  

 1 2 3cos sin sin sin cosφ υ φ υ υ∗ ∗ ∗ ∗ ∗= + +n e e e  (3.2.49) 

Consequently, the referential unit sphere transforms to a ellipsoid and the corresponding solid 

angle in the spatial orientation space ∗O  is 2 sinυ φ υ∗ ∗ ∗ ∗ϒ =d d d . The change in the oriented 

surface, from that on the referential unit sphere d dA=A N  to that on the current ellipsoid 

= %d daa n , is given by: 
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 T
M
−=d dFa A, 

λ
= dA

da  (3.2.50) 

where %n  is a unit vector characterizing the orientation of the material surface N  in the 

current conformation. The vectors N  fill the solid angle 2d ϒ  and the vectors n  fill the solid 

angle 2d ∗ϒ . Their relationship can be obtained by the infinitesimal surface obtained by the 

projection of %dan over n  divided by the square of the sphere radius intersecting the ellipsoid 

at the given point, i.e., 2λ : 

 

( ) 2
2

2 3 3

da dA d
d

λ λ λ∗

⋅ ϒϒ = = =
%n n

 (3.2.51) 

Since in the experiments the stretch-induced crystallization is measured in the current 

configuration, the crystallization degree in different orientations must be present in spatial 

orientation space, which ( )χ∗ n satisfies this relation ( ) ( )χ χ∗ ∗ϒ = ϒd dn N . So that: 

 ( ) ( )3χ λ χ∗ =n N  (3.2.52) 

Similarly to the definition of the macroscopic crystallinity degree, the free energy function 

Mψ
 
can be obtained by integrating the chain free energy function cψ  over the unit sphere 

surface: 

 ( ) ( ) ( )( )M M c M, , , , ,
4π

ψ ψ λ χ
Π

= ϒ∫
n

T T dF FX N N  (3.2.53) 

in which n  is the chain density. 

The average stress, the average entropy and the average thermodynamic force at the material 

point are, respectively, given by: 

 
( ) ( )( )c M T

M
T M

, , ,

4π

ψ λ χ −

Π

∂
= ϒ −
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Tn

d p
F

F
P F

F

N N
     (3.2.54) 

 
( ) ( )( )c M

T

, , ,

4π

ψ λ χ
α ϕ

Π

∂
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Tn

S d
T

F N N
     (3.2.55) 

 
( ) ( )( )c M, , ,

4π

ψ λ χ
Π

∂
= − ϒ
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Tn

d
F N N

K
X

     (3.2.56) 

After a series of straightforward derivations, these macroscopic quantities take the form: 

 
( ) ( )( )

( ) ( )M T
M M

T M

, , ,

4π ,

χ
λ

λ −

Π
= ϒ −⊗∫

f Tn
d p

F

F
P F F

F
N N

N N

N
     (3.2.57) 

 ( ) ( )( )T M, , ,
4π

α ϕ λ χ
Π

= − ϒ∫
n

S s T dF N N      (3.2.58) 
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 ( ) ( )( ){ }M, , ,Tκ λ χ= FK N N      (3.2.59) 

The intrinsic dissipation at the two scales 1D = ⋅ &K X  and 1d κχ= & can be also related: 

 ( ) ( )( )1 1 M, , ,
4π

n
D d T dλ χ

Π
= ϒ∫ F N N      (3.2.60) 

3.2.3. Results and discussion 

Experimental studies on the stretch-induced crystallization are usually performed by means 

of the in-situ wide-angle X-ray scattering (WAXD) technique (Huneau, 2011; Toki, 2014; 

Albouy and Sotta, 2017). The high intensity of synchrotron X-rays allowed the collection of 

two-dimensional WAXD patterns during the deformation of stretch-induced crystallizable 

rubbers. After a series of process and analysis on the scattering intensity of the WAXD 

patterns, the crystallinity degree can be quantitatively obtained, as well as the crystallization 

anisotropy. On basis of experiment data in the literature, we perform some simulations and 

make some discussions. 

The micro-macro constitutive model has ten parameters, each of which has a clear micro-

structural or thermodynamic interpretation: the chain-scale constants: n  and N , the crystal 

kinetics constants: cA  and mA , the crystal thermodynamic constants: mH∆ , 0
mT  and su , the 

crystal orientation constant: γ , and the crystal form constants: δ  and η . 

3.2.3.1. Key features of stretch-induced crystallization  

The capability of the model to account for key features governing the phenomenon of 

stretch-induced crystallization can be highlighted by a stretching to a maximum stretch level 

at a certain stretch-rate followed by a recovery at the same absolute stretch-rate. Figure 3.2.3 

presents the crystallization kinetics and the stress-stretch curve during stretching/recovery 

using the following set of model parameters: B 0nk T = 0.6 MPa ( 0T = 20°C), N = 75.0, cA = 

50.0×1016 MPa-1 s-1, mA = 15.0×1016 MPa-1 s-1, mH∆ = 7.0×10-21 J, 0
mT = 25°C, su = 3.5×10-21 

J, γ =10.0, δ =1.5, η =5.0. The model shows that the stress response during stretching 

exhibits a relatively stable stress when the crystallization occurs (point B) and a gradual 

hardening when the crystallization continues from point C to point D. During recovery, the 

crystallinity degree at a given stretch is higher than during stretching that leads to a hysteretic 

response in the crystallization kinetics. The stress response exhibits a relatively stable value 
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from point E to point F and the hysteresis loop is closed at the melting point F. Due to this 

difference between crystallization path and melting path, a stress hysteresis loop occurs. The 

latter is not induced by viscosity effects since no viscous component is introduced in the 

model. 

 

 

                                        (a)                                                                (b) 
Figure 3.2.3. Typical stages in (a) crystallization kinetics and (b) stress-stretch curve. 

 

Obviously, the crystallization evolution law (see Eq. (3.2.44)) is formulated by means of a 

rate-dependent theory, which allows the crystallization to evolve consistently with time until 

reaching the equilibrium thermodynamic state with the crystallization force being null. 

Longer time duration hence indicates lager crystallization evolution under the same condition. 

In the extreme case, the crystallization can evolve along a single path keeping in the state of 

thermodynamic equilibrium. Consequently, we can expect that an infinitesimal loading rate 

would drive to no difference between crystallization path and melting path, and to the stress 

hysteresis vanishing. 

The relationship between the crystallization micro-mechanism and the macro-response seems 

well described by the proposed physically-based model. Especially, the appearance of the 

stress inflexion (from point B to point C) and the hardening (from point C to point D) during 

the course of the stretching are entirely due to crystallization-induced softening at large 

stretches and crystallization-induced stiffening at larger stretches. The two antagonist 

phenomena, i.e. the crystallization-induced softening and stiffening, are well reproduced by 

formulating skill fully the governing equations to control the spatial orientation and form of 

the crystallized segments at the chain-scale (see Eqs. (3.2.25) and (3.2.27)). More precisely, 

the decrease of the representative angle θ%  is response for the crystallization-induced softening 

whose rate is controlled by the crystal orientation constants γ , whereas the decrease of the 
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extension degreeξ  is response for the crystallization-induced hardening whose rate is 

controlled by the crystal form constants δ  and η . 

 

 

Figure 3.2.4. Typical microsphere evolution and crystallinity distribution at different stages of 
stretching-recovery indicated by letters in Figure 3.2.3; The WAXD pattern is taken from 

(Rublon et al., 2014). 
 

The realistic description of the microstructure at the chain-scale comes with a deformation-

induced anisotropy. In the experiments, the crystallization anisotropy is evidenced by the 

scattering intensity distribution with the azimuthal angle that is read out from the WAXD 

pattern. With regard to the uniaxial stretch, the orientation with the maximum scattering 

intensity is along the tensile direction and the dispersion of the scattering intensity reflects 

thecrystallinity distribution around the tensile direction, which is the nature of crystallization 

anisotropy (Trabelsi et al., 2003; Tosaka et al., 2004). The stretch-induced crystallization 

process simulated by the model is recorded in Figure 3.2.4 in the form of contour plots at 

different stages of stretching/recovery. Once the crystallization begins at the macro-scale, it is 

initiated at the microsphere pole (Figure 3.2.4B) where the molecular chains are oriented in 
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the stretching direction. Due to the progressive crystallization of other molecular chains 

induced by their progressive ordering, the local crystallization increases (Figures 3.2.4C and 

3.2.4D) in intensity and in extent as the stretching increases. As expected, but quite 

interestingly, in the microsphere equator, where the molecular chains are in the perpendicular 

plan of the stretching direction, the molecular chains remain amorphous. During the melting 

process (Figures 3.2.4E and 3.2.4F), the crystallization degree decreases to reach the initial 

amorphous state (Figure 3.2.4A) and the ellipsoid microsphere re-becomes spherical. 

3.2.3.2. Comparison with experiments 

The question which arises now is the capability of the model to reproduce experimental 

data. In what follows, a quantitative evaluation of the model is presented. 

3.2.3.2.1. Homogeneous tests 

The stretching/recovery response constitutes the most common homogeneous experiment, 

for which a large variety of material behaviors and of crystallization kinetics exist as reported 

in some literature reviews (Huneau, 2011; Toki, 2014; Albouy and Sotta, 2017). That is 

mainly due to a strong, and complex, relationship between the material microstructure, the 

molecular ordering and the loading conditions such as the maximum stretch level and the 

stretching temperature. The capability of the model to account for the respective influence of 

these two important factors governing the stretching/recovery response is quantitatively 

evaluated in Figures 3.2.5 and 3.2.6. The model is compared to experimental data of Rault et 

al. (2006a) and Marchal (2006) who measured, respectively, the maximum stretch level effect 

and the stretching temperature effect on the in-situ material response of crystallizable rubbers 

and the inherent crystallization. From the adjustment of the best response with the database of 

Rault et al. (2006a), the following set of model parameters are deduced: B 0nk T = 0.6 MPa ( 0T

= 20°C), N = 75.0, cA = 50.0×1016 MPa-1 s-1, mA = 15.0×1016 MPa-1 s-1, mH∆ = 7.0×10-21 J, 

0
mT = 25°C, su = 3.5×10-21 J, γ =10.0, δ =1.5, η =5.0. From the database of Marchal (2006), 

the model parameters are: B 0nk T = 0.52 MPa ( 0T = 20°C), N = 70.0, cA = 100.0×1016 MPa-1 s-

1, mA = 10.0×1016 MPa-1 s-1, mH∆ = 15.0×10-21 J, 0
mT = 25°C, su = 1.33×10-23 J, γ =10.0, δ

=0.8, η =5.0. A global view at Figures 3.2.5 and 3.2.6 shows that the hysteresis in 

crystallization and in stress is greatly affected by the effects of the maximum stretch level and 

the stretching temperature. It is satisfactory to observe that the model is able to adequately 

reproduce both effects. In particular, the hysteretic response is remarkably well described 
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while accounting for the stretch-induced anisotropy accompanied with molecular ordering. In 

the light of this result, the model is verified. Nonetheless, the verification of model 

capabilities under more complex loading conditions is an important issue. 

 

 

      (a)                                                             (b) 
Figure 3.2.5. Experiments (symbols) and simulations (lines) of the (a) crystallization kinetics 
and (b) stress-stretch curve at different maximum stretch levels; The experimental points are 

taken from (Rault et al., 2006a). 
 
 

 
   (a)                                                           (b) 

Figure 3.2.6. Experiments (symbols) and simulations (lines) of the (a) crystallization kinetics 
and (b) stress-stretch curve at different stretching temperatures; The experimental points are 

taken from (Marchal, 2006). 
 

Moreover, our simulation results indicate that the intrinsic dissipation is always non-negative 

whether during stretching or recovery. This appearance accords with the second 

thermodynamic law which requires non-negativity of intrinsic dissipation for any 

thermodynamic process. Evidently the accumulation of intrinsic dissipation after the process 

of stretching/recovery is equivalent to the mechanical dissipation identified by the area of the 

stress-stretch hysteresis loop. Since only stretch-induced crystallization is introduced as an 

irreversible thermodynamic mechanism into our proposed model, the energy dissipated by 

crystallization or melting cannot be stored in other physical mechanisms, but transform into 
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thermal energy inducing temperature variation. Based on temperature measurement and 

quantitative calorimetry, Le Cam and Toussaint (2008), Samaca Martinez et al. (2013a, 2013b) 

and Le Cam (2017) experimentally studied the evolution of intrinsic dissipation during 

mechanical tests and proposed a method to determine rubber crystallinity. In those 

experiments the accumulation of intrinsic dissipation was found to be null after any one load 

cycle. The physical interpretation for this phenomenon was given, that is, the mechanical 

dissipation is entirely used by the material to change its microstructure and stored as the 

internal energy accompanying with crystallization evolution. However it is incredible that 

those experiments exhibited negative intrinsic dissipation during recovery, which obviously 

goes against the second thermodynamic law. 

 

3.2.3.2.2. Non-homogeneous tests 

As a final illustrative example, the non-homogeneous tensile response of a cracking 

specimen made of a crystallizable rubber is examined. Rublon et al. (2014) studied 

experimentally the crystallization and orientation in a specimen containing cracks. The 

specimen dimensions are 157 mm (length) × 13 mm (width) × 2 mm (thickness). They 

introduced three cracks, two 20 mm-long cracks at the edge and one 30 mm-long at the 

middle. A numerical analysis of this "classical" problem is performed using the developed 

constitutive model.  

 

 

Figure 3.2.7. Mesh of the specimen containing cracks. 
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Figure 3.2.7 presents the three-dimensional finite element mesh of the specimen with a view 

of one of the four crack-tips. We consider the crack-tip as a 0.2 mm-radius mid-cylinder. 

Three-dimensional, eight node, brick solid elements were used with a gradient in mesh size 

and a refined mesh near the crack-tip. The set of model parameters in Section 3.1 is used, 

except for the crystal kinetics constants, cA = 5000.0×1016 MPa-1 s-1 and mA = 5000.0×1016 

MPa-1 s-1. They are set quite large to simulate a quasi-static loading condition. 

 

 

(a) 

 

(b) 
Figure 3.2.8. Distribution of (a) crystallization and (b) orientation around the crack-tip; right: 

experimental findings from (Rublon et al., 2014), left: our simulation. 
 

The left plot of Figure 3.2.8a presents the predicted distribution of crystallization by our 

model near the crack-tip at an applied stretch of 1.92. As expected, the crystallinity 

distribution exhibits the highest value at the crack-tip with a high gradient level and becomes 

progressively null while moving from this zone. The crystallization zone is confined around 

the crack-tip and expands upon increasing the applied stretch. This simulation result is quite 

acceptable, comparing with the experimental data presented in the right plot of Figure 3.2.8a. 

The left plot of Figure 3.2.8b presents the model-predicted angle between the crystallization 

orientation and the loading direction illustrated by thin bands. The crystallization orientation 

identified by the microsphere model is defined as the orientation with the maximum 

crystallization degree in the spatial orientation space. This orientation is actually equivalent to 



3.1. Thermodynamics and mechanics of stretch-induced crystallization in rubbers 

208 

 

the principal strain direction corresponding to the maximum stretch ratio, due to the quasi-

static loading condition. We can find that the angle is null at the pole of the crack-tip and 

progressively evolves while moving around it. By this way, the stretch-induced crystallization 

anisotropy is further demonstrated. The right plot of Figure 8b is the experimental results, in 

which the orientation with the maximum scattering intensity extracted from the WAXD 

pattern is considered as the crystallinity orientation. The agreement between simulation and 

experiment is obviously acceptable. 

3.2.4. Partial conclusions 

The stretch-induced phase transformation in rubbers is a fascinating phenomenon implying 

multi-scale features which cannot be treated by purely phenomenological approaches for a 

rigorous modeling. A micro-macro constitutive model with physically interpretable material 

constants was proposed in the current paper to describe the crystallization anisotropy and the 

hysteretic response induced by the molecular ordering in stretch-induced crystallizable 

rubbers. Our approach is based upon the thermodynamic framework. Key micro-structural 

and thermodynamic parameters, governing the crystallization micro-mechanism, were 

introduced in the proposed physically-based model. It was found that the model correctly 

simulates tensile experiments, in terms of stress-stretch curves and crystallization kinetics, at 

different stretch levels and temperatures. The example of a specimen containing cracks was 

presented in order to show the capability of the model to simulate the local 

crystallization/orientation fields in the vicinity of cracks.  

The proposed model seems to be a powerful tool to predict the macro-response along with 

the micro-structural evolution in rubbers induced by the molecular ordering and the phase 

transformation. The verification of model capabilities under more complex loading conditions 

is in progress, but restricted by the scarcity of the literature experimental data. Adding fillers 

(e.g. carbon-black particles) to reinforce the rubber compound is a common industrial 

practice, and taking into account the effects of the filler-rubber gum and filler-filler 

interactions on the material response modeling of stretch-induced crystallizable rubbers is a 

valuable challenge for future works.  
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GENERAL CONCLUSIONS 

This PhD dissertation is a contribution to the thermo-mechanical coupling of 

rubbers. Both the inelastic cyclic response of carbon-filled rubbers and the stretch-

induced crystallization of natural rubbers were investigated. 

In Chapter 2, a combined approach including experimental investigation and 

constitutive theory was developed to study the heat build-up due to thermo-

mechanical coupling in carbon-filled rubbers. The internal state variable theory was 

adopted and the intrinsic dissipation was quantified to investigate the carbon-filled 

SBR history-dependent cyclic response. The intrinsic dissipation was regarded as a 

consequence of two types of rearrangements, i.e. recoverable rearrangement 

inducing viscoelasticity and unrecoverable rearrangement inducing damage. The 

effects of pre-stretch and filler content on the macro-response and the underlying 

inelastic fatigue mechanisms were highlighted. A new constitutive model was 

proposed for thermal, viscoelastic and damage patterns estimation in cyclically 

loaded rubber structures. The thermo-viscoelastic-damage model, fully three-

dimensional and implemented into a finite element code by means of a strain energy 

function subroutine, was presented in its most general form with the aim of being 

applicable to all carbon-filled rubbers. The model was based upon the assumption 

that the two types of dissipative network rearrangements exist in the rubber: 

unrecoverable damage rearrangement and recoverable viscoelastic rearrangement. 

The latter was assumed to be induced by the move of entangled and non-entangled 

free chains superimposed on a purely elastic perfect rubber network. Each 

population of free chains was considered to be the main source of one aspect of the 

history-dependent mechanical cyclic features, i.e. stress-softening and hysteresis, 

respectively. It was shown that the proposed model provides a useful tool to 

simulate the effects of the network rearrangements on the inelastic fatigue response, 

i.e. stress-softening and hysteresis along with dissipative heating. The effect of the 
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filler content over the thermo-mechanical response was explicitly taken into account. 

The efficiency of the model to predict the inelastic fatigue response of carbon-filled 

SBR with different filler amounts was demonstrated. A first step towards the study 

of cyclically loaded thick specimens was provided via numerical simulations. 

In Chapter 3, a new micro-mechanism inspired molecular chain model was 

proposed within the context of the thermodynamic framework to describe the 

thermo-mechanical response of stretch-induced crystallizable rubbers. The stretch-

induced crystallization was considered as an irreversible thermodynamic process 

driven by a thermodynamic crystallization force induced by the non-equilibrium 

thermodynamic state. In the spirit of the Flory theory, a realistic physical expression 

of the chain free energy was derived via a two-step strategy by separating 

crystallization and stretching. The major weakness of the Flory theory was 

eliminated since the thermodynamic crystallization force in our approach is well null 

at the initial state under the melting temperature. The microsphere-based strategy 

was used by implementing the proposed chain free energy to make the micro-macro 

transition. It was shown that the proposed model provides a useful tool to simulate 

the macro-response under the equilibrium state and the non-equilibrium state 

involved during stretching/recovery and continuous relaxation. A quantitative 

evaluation of the model was performed by comparisons with experiments. The 

proposed approach contains very few physically interpretable material constants and 

seems to be sufficiently rich to provide important indications concerning this 

fascinating phenomenon in terms of crystallization-induced anisotropy and 

dissipation. The satisfactory simulation results provided by our theory can be 

attributed to its solid physical foundation. More specifically, the molecular 

configuration of the partially crystallized chain is objectively analyzed and 

reasonably described by means of some statistical mechanical methods, especially 

considering the random thermal oscillation of the crystal orientation.  
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RESEARCH PERSPECTIVES 

The results of the present work open the way to several perspectives:   

• The first concerns the filled rubbers. The coupled effect of the temperature and 

the filler content on the time-dependent response of the material could enhance the 

model capability. Besides, notice that, a higher temperature is related with a smaller 

hysteresis loop. Likewise, the hysteresis loop characteristics depend upon the 

analysis material point, as a consequence of the inner temperature gradient. 

Thereafter, the experimental study of an inner temperature field will bring light 

about the heterogeneous thermo-mechanical behavior of the material. The model 

capability to describe and predict the dissipative heating of filled rubbers during 

different fatigue conditions is a subject to be investigated. In order to understand the 

thermo-mechanical origins of the stress-softening due to cyclic loading, the study of 

the time-effect of the dissipative heating on the stress will bring some light about. 

Besides, the thermo-mechanical model scope could be improved by considering the 

dissipative heating path from the reference configuration until failure. Then, the 

proposed model could be enhanced by adding the well-known sudden heat build-up 

before failure. Since the thermal degradation could play an important role, the 

dissipative heating effects on the material lifetime is an additional interesting subject 

to be investigated. Finally, the potential of the model to predict the dissipative 

heating due to crack initiation or crack growth is a subject to be studied. 

• The second concerns the stretch-induced crystallizable rubbers. Our theory 

provided significant physical insights about a fascinating phenomenon still 

misunderstood and involved very few physically interpretable material constants. 

More work is however needed to introduce into our theory the micro-structure of 

crystallites and its evolution. In particular, in addition to the crystal fraction and 

orientation, it is believed that the crystallite morphology, in terms of form and size, 

could also control the thermo-mechanical macro-response. A morphology-
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dependence of the surface free energy would be interesting to establish in order to 

propose a more realistic onset of crystallization, in particular in terms of rate-

dependency which can be also viewed as a rate-dependency of the necessary 

supercooling or superstretching. Bu using our model, we can predict the stress 

hysteresis evolution and the temperature evolution during cyclic loading. These 

predictions could bring a better understanding of the relationship between the two 

evolutions in the aim to better understand the origin of the stress hysteresis (Le Cam, 

2017) in relation with possible microstructure changes. In this regard, the coupling 

between stored/dissipated energy and microstructure changes during cycling 

loading could be investigated using the constitutive theory that we have proposed in 

Chapter 2. Finally, the potential of the model to predict the crack initiation or crack 

growth in crystallizable rubbers is also a subject to be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

216 

 

Abstract 

This PhD thesis is focused on the fatigue and the stretch-induced crystallization in rubbers. 

For these two aspects, new thermo-mechanical constitutive models are mathematically 

formulated, and incorporated into a computer code in the aim to perform numerical 

simulations on rubber structures. The models are physically-based in the sense that some key 

elements of the actual microstructure and the mechanisms (viscoelasticity, damage, heat 

build-up, crystallization) are incorporated. The input data needed by the models are identified 

on experimental observations performed on different loading conditions and the predictive 

capabilities are verified on other experiments. The cyclic dissipation, the fatigue damage and 

the anisotropy are key points of the PhD thesis. 
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Résumé 

Cette thèse porte sur la fatigue et la cristallisation induite par étirement dans les caoutchoucs. 

Pour ces deux aspects, de nouveaux modèles de comportement thermo-mécaniques sont 

formulés mathématiquement et incorporés dans un code informatique dans le but de réaliser 

des simulations numériques sur des structures en caoutchouc. Les modèles sont physiquement 

fondés en ce sens que certains éléments clés de la microstructure réelle et des mécanismes 

(viscoélasticité, endommagement, auto-échauffement, cristallisation) sont incorporés. Les 

données d'entrée nécessaires aux modèles sont identifiées à partir d'observations 

expérimentales effectuées dans différentes conditions de chargement et les capacités 

prédictives sont vérifiées sur d'autres expériences. La dissipation cyclique, l’endommagement 

par fatigue et l'anisotropie sont des points clés de la thèse. 

 

Mots-clés: Caoutchoucs; Dissipation cyclique; Théorie constitutive; Cristallisation; 

Anisotropie.  
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