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Abstract 

Throughout this work, the influence of microstructures of non-overlapping aligned fiber 

reinforced composites on macroscopic elastic properties has been quantified with numerical 

homogenization on FEM simulations. The radial distribution function (Rdf) has proven to be 

the best second order correlation to describe fiber spatial distributions. Numerical samples 

with controlled Rdfs were built with simulated annealing and their effective values were 

evaluated. Due to the non-overlapping condition, Rdf exhibits a peak for distances from 1 to 

1.5 diameter.  

When Rdf peak increases, elastic moduli increase as well. From this result, new bounds that 

frame any equilibrium system of aligned fiber composites were established. The 

corresponding microstructures for lower and upper bounds were respectively a Percus-

Yevick distribution of fibers and packed fibers. 

 

 

Résumé 

L’influence de la microstructure sur l’élasticité à l’échelle macroscopique de matériaux 

composites renforcés par des fibres alignées sans chevauchement est quantifiée par 

homogénéisation numérique (FEM). La fonction de paires (Rdf) s’est montrée comme étant 

la corrélation du second ordre la plus efficace pour décrire la répartition spatiale des fibres. 

Des échantillons numériques dont la Rdf est contrôlée ont été construits par « «simulated 

annealing » et leurs propriétés effectives calculées. La condition de non-chevauchement 

entraine un pic de la Rdf pour des distances comprises entre 1 et 1,5 diamètre. 

Les coefficients d’élasticité augmentent avec le pic de la Rdf. Ces résultats ont conduit à 

établir de nouvelles bornes pour les systèmes de fibres parallèles en équilibre. Les 

microstructures correspondant aux bornes inférieures et supérieures sont respectivement 

une répartition des fibres de Percus-Yevick et une agglomération des fibres. 
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The first materials used by Men were wood and leather due to availability and 

interesting mechanical properties. These organic composites are naturally produced with no 

control over their composition and physical behavior. With fire domestication, metals and 

ceramics were created to obtain stiffer but inevitably heavier materials. It is until the 

nineteenth century that the first elastomers were used, namely natural rubber and later, 

with the progress of petrochemical industries, its synthetic version. While being very light, 

the mechanical behavior of elastomers restrained their use to very specific applications. The 

ever growing industrial demand in the twentieth century has led to the production of new 

stiff and still light materials: the composites. They mimic internal structures of natural 

materials such as wood and are made by adding stiff reinforcements (fibers, grains,…) to a 

light matrix. The obtained materials have enhanced mechanical properties with both the 

density of elastomers and stiffness of metals and ceramics. As composites are built with at 

least two phases of different properties, it is difficult to predict their exact response to 

external strains or stresses but generally possible to approximately determine the properties 

of a fictive homogeneous equivalent material (HEM).  

The homogenization process was first initiated by Einstein (Einstein 1906) in his 

calculations of the viscosity of suspensions based on the analogy between momentum flux 

density tensors and stress tensors. In case of elasticity of heterogeneous media, the crucial 

work was that carried out by Eshelby (Eshelby 1957) about the stress and strain fields in an 

infinite elastic matrix containing an elastic inclusion. He suggested an analytical solution for 

effective values based on the uniformity of both strain and stress fields inside the inclusion. 

This pioneer work by Eshelby has spawned a large amount of studies about homogenization 

techniques.  

Homogenization has since been the focus of many works given that the effective properties 

of the composite also equivalent to those of the HEM are very sensitive to the distribution of 

each phase. Due to fabrication processes, this distribution or microstructure is often not well 

known and effective properties can only be determined in the frame of bounds, the most 

known being those of Hashin and Shtrikman (Hashin-Shtrikman (1962) (1963)). 

 

The aim of this study is to quantify the influence of microstructure on mechanical 

behavior of two-phased composites by numerical simulations on adequate samples. This 

necessitates in addition of the laws of the behavior of each individual component, a 

mathematical modelization of the spatial distribution of each phase.  

For simplicity, mechanical behavior will be limited to linear elasticity and sample geometries 

to similar parallel fiber reinforced composites for which the physical problem can be reduced 
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to a two dimensional one. All the results and the tools developed in this study can easily be 

generalized to 3D situations in which fibers are replaced by spheres. More complex laws of 

behavior can also be tackled. Though the restriction to 2D situations does not include all 

fiber reinforced composites, it is of high interest when strong anisotropy is required in 

mechanical behavior.  

 

 

 

 

 

 

 

 

 

 

 

The present study is on non-overlapping fiber composites which correspond to real industrial 

composites, nevertheless, overlapping configurations will be used for comparison as their 

microstructures are described by very simple statistics according to a Poisson law.  

This manuscript will be structured in two parts: part I will tackle the statistical tools 

for morphology description, homogenization techniques and finite element methods and 

part II will provide a detailed presentation of this work. As the knowledge used in this work 

comes from different fields of science: mechanical engineering, statistical physics of liquid 

state, optimization processes,… The sources from literature will not be provided in a 

dedicated chapter but rather introduced when necessary.    

In part I, tighter bounds than those of Hashin and Shtrikman will be introduced. They 

usually take the microstructures into account through the two and three-point probability 

functions. It will be shown that for identical aligned fiber reinforced composites, the radial 

distribution function (Rdf) contains more information about microstructure and could be a 

more suitable morphological descriptor. The heuristic simulated annealing method initially 

developed for optimization processes will be adapted to generate samples controlled by 

their Rdf. The tools based on numerical homogenization that will allow the determination of 

effective elastic moduli will be validated. 

Fiber-reinforced ceramic composed of SIC fibers and SIC matrix 

(Wikipedia) 



Introduction 

 

35 
 

 

Part II is structured in four chapters in which the reasoning is progressively built leading 

up to the determination of new bounds on effective elastic moduli suitable for non-

overlapping equilibrium systems. The following questions will be addressed in the different 

chapters. 

 

- What are the relevant tools to describe microstructures from a physical point of 

view?  

 

- Is contrast an important parameter in elaborating models of elastic behavior for 

composites? 

 

- How does the Rdf of fibers capture microstructure features that affect the elasticity 

of composites? 

 

- What microstructures correspond to the highest and lowest stiffness of composites? 



 

 
 

  



 

 
 

  

Part 1 
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The macroscopic properties of heterogeneous materials are determined not only by 

the characteristics of each of their components but also highly by the details of the 

microstructure itself. Hence, the quantitative morphological characterization of random 

media, especially two-phased media in our case, becomes important. The different 

morphological parameters that affect the effective properties are the shape and the local 

distribution of each phase. Over the years, the significant effect that the microstructure has 

on the properties of composites had made predicting their reliability and their behavior 

questionable and led to the use of high safety factors in real applications. An accurate 

modelling of composite materials in different industrial sectors has then become a priority. 

 

In the two-phase case of disconnected inclusions within a matrix, a way to describe 

the morphologies of heterogeneous media is the statistical mechanics, a fundamental field 

of modern physics. It was developed in the second half of the 19th century and was mainly 

the work of Ludwig Boltzmann along with other scientists such as J.C Maxwell and J.W Gibbs. 

It is an approach based on statistical methods that allow a microscopic description of the 

physical behavior. Statistical mechanics is defined as a set of pure mathematical techniques 

that can be applied to almost any physical system even with large degrees of freedom, no 

matter what laws that system obeys. This aspect of statistical mechanics is what makes it 

one of the pillars of modern physics:  it almost certainly remains valid throughout the 

changes between old theories, laws and approximations and newly discovered ones, making 

it a highly reliable tool regardless of the constant occurring updates in the scientific domain. 

 

The focus in this work is on two-phase heterogeneous microstructures for which the 

morphological descriptors are different types of correlation functions, see Torquato (1998). 

This chapter is divided into two sections. The first one introduces the morphological 
descriptors provided by statistical-physics literature and the second describes the methods 
we used in this study to generate samples according to specific morphological descriptors.
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I- Morphological descriptors 
 

In this section, we start with describing general two-phase media and progressively focus on 

the special case of equilibrium two-dimensional disk systems which is a good representation 

of cross-sections of parallel fiber reinforced composites. As these tools are initially used in 

statistical physics, an intermediate sub-section for identical particles will be introduced.  

 

I-1   Two-phase media 

I-1-1   Characteristic function  

 

Each sample of a total volume 𝑉 = 𝑉1 ∪ 𝑉2 representative of a heterogeneous random 

medium is composed of two regions: a phase 1 region 𝑉1 and a phase 2 region 𝑉2. 

In practical situations, composite materials are rarely made of two phases as shown on 

figure I-1 of a cemented granular media in which variation in the granular phase properties 

can be observed.  

 

 

 

 

 

 

 

 

 

A means for modelling such composites is to consider two uniform phases by introducing the 

characteristic function 𝐼(𝒙) of phase 1 defined by : 

 

𝐼(𝒙) = {
1, 𝒙 ϵ V1

 0,        𝒙 ϵ V2
 

 

Phase 1 

Phase 2 

Figure I-1.  A cross-section of a cemented granular media 

(1) 
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𝐼(𝒙)  is a separate random variable that takes the values 0 or 1 according to whether the 
position vector is in V1 or V2 (figure I-2).  

 

 

 

 

 

 

 

 

 

 

 

 

A complete knowledge of 𝐼(𝒙) gives a full description of the sample’s morphology. 

 

The first information given by the characteristic function is the volume fraction of phase 1: 

 

𝑉𝑓 =
1

𝑉
∫ 𝐼(𝒙)
𝑉

𝑑𝒙 

 

I-1-2   The 𝒏 −point probability functions 

 

Further than the integral form of 𝑉𝑓 in equation (2), the characteristic function 𝐼(𝑥) can 

provide finer information about the microstructure through the 𝑛 −point probability 

functions 𝑆𝑛 that are statistical specifications of two-phased microstructures Torquato and 

Stell (1982). The 𝑛 −point probability functions are defined according to the relation: 

 

Figure I-2.  The characteristic function 𝐼(𝑥) of a cross-section of the cemented 
granular media in figure I-1 

(2) 
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𝑆𝑛(𝒙𝟏, … , 𝒙𝒏) = 〈∏ (𝐼(𝒙𝒊) − 𝑉𝑓)𝑛
𝑖=1 〉 

Where the brackets 〈 〉 denote volume averaging. 

 

The physical interpretation of  𝑆𝑛(𝒙𝟏, … , 𝒙𝒏) is the probability of simultaneously finding 

𝑛 points with positions 𝑥1, … , 𝑥𝑛 all in one phase, namely the particle phase 1.  

For statistically homogeneous and isotropic media, the 𝑛 −point probability function 

depends solely on the relative positions with regard to an arbitrary point  𝒙𝟏: 

 

  𝑆𝑛 = 𝑆𝑛(𝒙𝟏𝟐, … , 𝒙𝟏𝒏)  

 

Where 𝒙𝟏𝒊 = 𝒙𝒊 − 𝒙𝟏 

 

When 𝑛 → ∞ and all the 𝑆𝑛 are known, the 𝑛 −point probability functions provide a full 

description of the heterogeneous medium.  

The 𝑛 −point probability functions 𝑆𝑛  is a statistical method used to describe any given two-

phased random heterogeneous media based only on the relative position of each phase. 

However, calculating the different 𝑆1,…,𝑆𝑛 remains a difficult task that requires a highly 

significant computational time.  

 

I-2   Systems of identical particles 

 

For a macroscopic system consisting of 𝑁 identical particles enclosed in a volume 𝑉, the 

particle density 𝜌 =
𝑁

𝑉
 holds the same information as volume fraction 𝑉𝑓. 

For such systems, the required information is limited to the particle-center distribution and 

the 𝑛 −point probability functions 𝑆𝑛  can be replaced by a mathematically more simplified 

tool, namely the 𝑛 −particle distribution functions also called the 𝑛 −body distribution 

functions in cases of more general distributions of inclusions that are not necessarily 

particles. 

 

 

 

(3) 

(4) 
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I-2-1   The 𝒏 -particle densities 

 

Let 𝐫𝑛 = 𝐫1, … , 𝐫𝑛 be the coordinates of the 𝑁 particles. The 𝑛 −particle densities  𝜌𝑁
(𝑛)(𝐫𝑛)  

are defined by the probability density of finding 𝑛 particles  (𝑛 ≤ 𝑁)  of the system with 

coordinates in the volume element 𝑑𝐫𝑛  of Gibbs space regardless of the positions of the 

𝑁 − 𝑛 remaining particles 𝜌𝑁
(𝑛)(𝐫𝑛)𝑑𝐫𝑛 . It results from integration on the whole volume 𝑉 

that: 

∫ 𝜌𝑁
(𝑛) (𝐫𝑛)𝑑𝐫𝑛 =

𝑁!

(𝑁−𝑛)!
 

 

We note that the Gibbs space is usually a 6𝑁 space, 3𝑁 coordinates and 3𝑁 velocities or 

momentums in which a point corresponds to a state of the system. In this study, we focus 

on the localization of particles and the above definitions are obtained by summing on all the 

possible velocities. 

 

Since the particles are identical, 
𝑁!

(𝑁−𝑛)!
  is the ratio of permutations between 𝑁 and the 

𝑁 − 𝑛 particles. The sum of the probability of placing 𝑛 particles among 𝑁 shows all the 

possibilities of permuting all the 𝑁 particles and also the remaining  𝑁 − 𝑛 . 

From equation (5) we can write:  

∫ 𝜌𝑁
(1) (𝐫)𝑑𝐫 = 𝑁 

 

The single particle density of a homogeneous system is then equal to the overall number 

density: 

𝜌𝑁
(1)(𝐫) =  

𝑁

𝑉
= 𝜌 

 

In the special case of a uniform low density (without interaction) system of particles, the pair 

density becomes: 

𝜌𝑁
(2)

= 𝜌2( 
𝑁 − 1

𝑁
 ) 

The second particle density being  𝜌(
𝑁−1

𝑁
). 

(5) 

(6) 

(7) 

(8) 
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The particle densities can also be defined in terms of 𝛿-functions of position. The ensemble 

average < 𝛿(𝐫 − 𝐫1) > is a function of the coordinate 𝐫 but is independent of the particle 

label (𝑛 = 1). Summing over all the 𝑁 particles is then equal to 𝑁 times the contribution 

from any single particle and we have: 

𝜌𝑁
(1)(𝐫) = 〈∑ 𝛿(𝐫 − 𝐫𝑖)

𝑁

𝑖=1

〉 

Which implies that the probability density of finding one particle at 𝐫 and one at 𝐫’ is: 

 

𝜌𝑁
(2)(𝐫, 𝐫′) = 〈∑ ∑ 𝛿(𝐫 − 𝐫𝑖)𝛿(𝐫′ − 𝐫𝑗)

𝑁
𝑗=1

𝑁
𝑖=1 〉 

With 𝑖 ≠ 𝑗. 

From equation (10) we have: 

〈
1

𝑁
∑ ∑ 𝛿(𝐫 − 𝐫𝑗 + 𝐫𝑖)

𝑁
𝑗=1

𝑁
𝑖=1 〉 =

1

𝑁
∫ 𝜌𝑁

(2)(𝐫′ + 𝐫, 𝐫′)𝑑𝐫′ 

Actually : 

〈
1

𝑁
∑ ∑ 𝛿(𝐫 − 𝐫𝑗 + 𝐫𝑖)

𝑁

𝑗=1

𝑁

𝑖=1

〉 = 〈
1

𝑁
∫ ∑ ∑ 𝛿(𝐫′ + 𝐫 − 𝐫𝑗)𝛿(𝐫′ − 𝐫𝑖)𝑑𝐫′

𝑁

𝑗=1

𝑁

𝑖=1

〉 

 

In the next section, equation (11) will allow a representation of the radial distribution 
function (equation (15)). 

 

I-2-2   The 𝒏 -particle distribution functions 

 

In the case of 𝑁 identical particles, the 𝑛 −particle distribution function is an easier and less 

time costly representation of the system than the  𝑛 −point probability function 𝑆𝑛 Hansen 

and McDonald (2006) .  

The 𝑛 −particle distribution function 𝑔𝑁
(𝑛)

(𝐫𝑛) = 𝑔𝑁
(𝑛)

(𝐫1, … , 𝐫𝑛) is defined in regards to the 

corresponding densities of particles by: 

 

𝑔𝑁
(𝑛)(𝐫𝑛) =

𝜌𝑁
(𝑛)

(𝐫1,…,𝐫𝑛)

∏ 𝜌𝑁
(1)

(𝐫𝑖)
𝑛
𝑖=1

 

(9) 

 (10) 

(11) 

(12) 



Chapter 1 : Morphology 

 

47 
 

 

Where ∏ 𝜌𝑁
(1)

(𝐫𝑖)
𝑛
𝑖=1   is the probability of placing 𝑛  particles among 𝑁. 

 

When particles are randomly placed one by one according to a Poisson law in which each 

position within the volume is equiprobable, ∏ 𝜌𝑁
(1)

(𝐫𝑖)
𝑛
𝑖=1  is the probability of placing a first 

one times the probability of placing a second and so on till 𝑖 = 𝑛 and 𝜌𝑁
(1)(𝐫𝑖) becomes 

independent of position 𝒓𝑖  so 𝜌𝑁
(1)(𝐫𝑖) = 𝜌 and equation (12) reduces to: 

 

𝜌𝑛𝑔𝑁
(𝑛)(𝐫𝑛) = 𝜌𝑁

(𝑛)
(𝐫𝑛) 

 

The particle distribution function measures the deviation of a system from utter 

randomness. Unlike the 𝑛 −point probability function 𝑆𝑛 , the 𝑛 –particle distribution 

function 𝑔𝑁
(𝑛)

 is only used to statistically describe systems of identical particles. 

In the case of homogeneous systems of particles, the pair distribution function 𝑔𝑁
(2)

(𝒓1, 𝒓2) 

depends only on the distance between two particles   𝒓𝟏𝟐 = |𝒓1 − 𝒓2|. Moreover, if these 

systems are isotropic, the pair distribution function is reduced to the radial distribution 

function 𝑔(𝑟) (Rdf) by a simple angular integration in the cross-plane section in which 𝒓𝟏𝟐 

can be replaced by the distance 𝑟 = |𝒓𝟏𝟐|.  

So, 

gN
(2)(r1, r2) = g(r) 

From equations (11) and (13), 𝑔(𝑟) can be expressed in terms of  𝛿 functions: 

 

𝑔(𝑟) =
1

𝜌
〈

1

𝑁
∑ ∑ 𝛿(𝐫 − 𝐫𝑗 + 𝐫𝑖)

𝑁
𝑗=1

𝑁
𝑖=1 〉 

 

The simplest form possible of Rdf assumes that no correlation exists between particles which 

could be the case for non-interacting penetrable or, in the dilute limit, impenetrable 

particles giving: 

𝑔(𝑟) = 1 

 

   (13) 

   (14) 

   (15) 
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In statistical mechanics, the radial distribution function 𝑔(𝑟) of a system of particles  (atoms, 

molecules, etc.), describes how the system’s density 𝜌 varies as a function of the distance 𝑟 

from a reference particle. Rdf is the easiest two-point correlation function and was initially 

introduced for pairwise additive interactions in liquids. However, as any spatial correlation 

function, 𝑔(𝑟) could be used to describe both spatial distributions of moving or unmoving 

bodies.  

 

A simple physical interpretation of 𝑔(𝑟) is the number of fiber centers located in a volume 

𝑑𝑟 at a distance 𝑟 from a test fiber, divided by the number of fibers given by a uniformly 

distributed fiber field. 𝑔(𝑟) can then be defined as: 

 

𝑔(𝑟) =  
𝑛𝑐

𝑛𝑝
 

Where 𝑛𝑐  is the number of fiber centers within the area of the circle (blue disks in figure I-3) 

and 𝑛𝑝 is the number of fiber centers within the circle’s area following a Poisson law as 

shown in figure I-3. 

 

 

 

 

 

 

 

 

 

 

 

In any case, particles separated by a large distance, much larger than the range of particle 

interactions, can be expected to have no influence on one another’s position (figure I-3) and 

therefore approach the ideal-gas limit 𝑔(𝑟) = 1  ∀ 𝑟 when 𝑟 is higher than the interaction 

range: 

𝑔(𝑟) = 1 

Circle area 

Figure I-3.  Illustration of pair distribution function 𝑔(𝑟) in which the 
blue particles are those which contribute to the value of  𝑔(𝑟) 

 

   (16) 

   (17) 

https://en.wikipedia.org/wiki/Particles
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Rdf is directly related to the local density around a single particle (equation (16)). Though its 

physical interpretation could let think that Rdf bears resemblance with inter-fiber spacing 

probability, they are fundamentally different as it will be shown in chapter 6. Actually, Rdf 

contains relevant information about how particles interact.   

Lu and Torquato (1990b) have introduced a generalized formula of 𝑆𝑛 based on the 𝑛 −body 

distribution functions 𝑔𝑛 of identical particles as follows: 

 

𝑆𝑛(𝒙𝒏) = 1 + ∑
(−1)𝑘𝜌𝑘

𝑘!

∞
𝑘=1 ∫ … ∫ 𝑔𝑘(𝒓𝒌) × ∏ [[1 − ∏ [1 − 𝐼(𝒙𝒊 − 𝒓𝒋)]

𝑛
𝑖=1 ]] 𝑑𝒓𝒋

𝑘
𝑗=1  

 

Where 𝐫𝑁 ≡ {𝐫1, … , 𝐫𝑁} are the center-of-mass coordinates specifying the positions of 

particles.   

This relation allows both the 𝑛 −body distribution function 𝑔𝑛  and the 𝑛 −point probability 

function 𝑆𝑛 to be deduced from each other. 

In the case of identical particles, 𝑔𝑛 provides as much information about the microstructure 

of the random system as 𝑆𝑛, while being an easier statistical characterization tool to 

determine and requiring less computational time. That is why, in our case, we chose to work 

with 𝑔𝑛 that is going to be detailed in the next section. 

For the sake of numerical convergence accuracy, our work will be limited to 𝑛 = 2 for both 

functions.  

 

I-3   Equilibrium systems 

 

Equilibrium systems are systems in which the particle distribution leads to minimal energy. 

These systems are those observed in nature, for instance: molecules of ideal gases and 

liquids. Their typical radial distribution functions are sketched in figure I-4. 

 

 

 

 

 

 

   (18) 
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Perfect gases are theoretically composed of many randomly moving point particles whose 

only interactions are perfectly elastic collisions and 𝑔(𝑟) = 1 while for liquids, 𝑔(𝑟) is the  

result of the balance between molecular attraction and repulsion such as the forces derived 

from the Leonard-Jones potential. For both cases, 𝑔(𝑟) = 0 at very short distances 

(molecular diameter) due to the Pauli Exclusion Principle which is equivalent to a non-

overlapping condition for solid particles. 

When particles interact through an ensemble of forces that derive from an interaction 
potential 𝑈(𝑟), this potential can be built with successive contributions of two-body 
interaction and many-body interactions (figure I-5): 

 

𝑈(𝑟) = ∑ 𝑢𝑖,𝑗(𝑟)𝑖,𝑗 + 𝑚𝑎𝑛𝑦 − 𝑏𝑜𝑑𝑦 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

 

Where 𝑢𝑖,𝑗 is the direct interaction potential between particles 𝑖 and 𝑗. 

All 𝑢𝑖,𝑗  are identical for homogeneous and isotropic systems: 𝑢𝑖,𝑗 = 𝑢 

 

 

 

 

 

 

Figure I-4. Pair distribution function 𝑔(𝑟) for a monoatomic: (a) ideal gas and (b) 

liquid 

Figure I-5. Two-body interaction (red) and many-body interactions (blue) 

   (19) 

https://en.wikipedia.org/wiki/Scientific_theory
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Elastic_collision
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For equilibrium systems, Ornstein-Zernike suggested similar decomposition for correlation 

functions in which the total correlation function ℎ(𝑟) = 𝑔(𝑟) − 1   is defined by: 

 

ℎ(𝑟) = 𝑐(𝑟) + 𝑏(𝑟) 

 

Where 𝑐(𝑟) is the direct correlation function between two single particles and 𝑏(𝑟) is a 

convolution product that represents the many-body interactions: 

𝑏(𝑟) =  𝜌 ∫ 𝑐(𝑟 − 𝑟′)ℎ(𝑟′)𝑑𝑟′ 

 

Due to screening effect, the direct correlation function 𝑐(𝑟) is at short range while 𝑏(𝑟) can 

be at long range depending on the interaction potential. The influence of 𝑐(𝑟) is often 

greater than that of 𝑏(𝑟). In order to determine ℎ(𝑟) or 𝑔(𝑟), the Ornstein-Zernike equation  

requires an additional closure relation such as the well-known Percus-Yevick (PY) (1958) 

approximation:  

𝑐(𝑟) = 𝑔(𝑟)[1 − 𝑒[−𝛽𝑢(𝑟)]] 

 

In the case of hard spheres of diameter 𝑑, the two-particle interaction potential is: 

 

{
𝑢(𝑟) = 0     𝑓𝑜𝑟  𝑟 > 𝑑

𝑢(𝑟) → +∞ 𝑓𝑜𝑟 𝑟 < 𝑑
 

 

The first evaluation of 𝑐(𝑟) for hard spheres was given by Percus and Yevick by determining 
local density fluctuations leading to a minimal energy of the system. 

For 3-dimensional systems of particles: 

 

𝑐(𝑟) = 0     𝑓𝑜𝑟  𝑟 > 𝑑

𝑐(𝑟) =
−(1 + 2𝑉𝑓)

2

(1 − 𝑉𝑓)
4 (

𝑉𝑓

2
𝑟3 + 1) + 6𝑉𝑓

− (1 +
𝑉𝑓

2 )
2

(1 − 𝑉𝑓)
4 𝑟 𝑓𝑜𝑟 𝑟 < 𝑑

 

 

(20) 

(21) 

(22) 

   (23) 
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𝑔(𝑟) can then be calculated by Fourier or Laplace transforms of  (20) and (21). 

For 2-dimensional systems, the calculations are similar but with no analytical solutions, and 
the corresponding  𝑔(𝑟) is sketched on figure I-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this work, equilibrium systems will be solutions of the Ornstein-Zernike equation 

supplemented by PY approximation. 

 

I-4   Systems of disks (2-Dimensional systems) 

 

In cross-sections of parallel fiber reinforced media, the morphologies are similar to 2D disk 

systems which can either be overlapping (fully penetrable disks) or non-overlapping (hard 

disks). Their microstructures can be described with the aforementioned morphological 

descriptors applied in a 2D plane.  

 

 

Figure I-6.  Percus-Yevick pair distribution function for volume fractions 

𝑉𝑓  =  63%, 𝑉𝑓 = 50% and 𝑉𝑓 = 25% John R. and Kamal  (1990) 
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I-4-1   Radial distribution function  

 

Rdf is the easiest two-point correlation function that can be rapidly extracted from both 

simulated and practical samples. In case of dispersion in fiber sizes, the covariance or 𝑆2 is 

more suitable than Rdf, however for identical ones, it does not contain more information 

and is very time costly in terms of computations 

For isotropic systems built with parallel fibers of identical circular section, the radial 

distribution function 𝑔(𝑟) is given by: 

 

𝑔(𝑟) =
1

𝜌𝑁
∑ ∑ 𝛿(|𝐫 − 𝐫𝑖𝑗|)

𝑗≠𝑖𝑖
 

 

Where 𝑟𝑖 is the position of fiber centers in a transverse plane perpendicular to the fiber 

direction. 

 

ρ =
N

S
    is the number 𝑁 of fibers per unit transverse surface 𝑆 of the specimen and 𝒓 the 

dimensionless position vector such as |𝒓| is equal to 1 at contact between fibers.  

 

As long as the fiber distribution is not structured by 𝑛 −fiber groups (𝑛 > 2) such as clusters 

(figure I-7), the radial distribution function is known for its skill to capture all principal 

information on microstructure Rintoul and Torquato (1997). 

 

 

 

 

 

 

 

 

   (24) 

Figure I-7. Examples of 𝑛 −fiber groups (clusters) : 9 −fibers group 
surrounded by the red circle 
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For overlapping fibers, the equilibrium system follows a Poisson law and all the 𝑛 −particle 

distribution functions 𝑔𝑁
(𝑛)

 are equal to 1 for all values of 𝑟, especially  𝑔(𝑟) = 1   Ɐ𝑟. Non-

overlapping fiber equilibrium systems are equivalent to the full hard disk fluid problems for 

which full solutions have been determined. Among these solutions, the Percus-Yevick 

approximation is one of the most used in order to evaluate Rdf.  

Many have carried out the work, Boyer et al. (1995), by solving the Ornstein-Zernike the PY 

approximation for various dimensions D. 

Unlike for rods (𝐷 = 1) and spheres (𝐷 = 3), there are no analytical solutions for systems 

of disks (𝐷 = 2) and only numerical solutions are available in literature (figure I-8).  

 

 

 

 

 

 

 

 

 

 

For dispersion in fiber sizes or shapes, which will not be the case in this work, the Rdf is not 

fully suitable for it only takes into account the fiber centers coordinates but fails to identify 

the nature of the inclusions. In this case, the 2 −point probability function 𝑆2 is more useful. 

However 𝑆2 is generally time costly in terms of computations. 

 

I-4-2    The 𝟐 −point probability function 𝑺𝟐 

 

The 2 −point probability function S2 is equivalent in nature to the central covariance 
function defined with the relation: 

 

CI(𝐫) =< (I(𝐱). I(𝐱 + 𝐫)) > 

Figure I-8.  The correlation function g(r) computed from the PY equation for 

𝑉𝑓 = 36.29%  Adda-Bedia et al. (2008) 

  (25) 
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Where I(𝐱) is the characteristic function. 

From equation (2) we have: 

CI(0) =< (I(𝐱). I(𝐱)) > = Vf 

 

When 𝐫 → ∞ the solution is obtained by introducing: 

𝐽 = 𝐼 − 〈𝐼〉 

 

〈𝐽〉 = 0 so  𝐶𝐽 is an autocorrelation function , hence : 𝐶𝐽(𝑟 → ∞) = 0 and: 

 
 

𝐶𝐽(𝒓) = 〈𝐽(𝒙). 𝐽(𝒙 + 𝒓)〉 

 
 

𝐶𝐽(𝒓) =< (𝐼(𝒙)−< 𝐼 >)(𝐼(𝒙 + 𝒓)−< 𝐼 >) > 

 

We can then deduce that for isotropic systems: 

 

𝐶𝐼(𝑟 → ∞) = 𝐶𝐽 = 𝑉𝑓
2 

 

The 2 −point probability function S2 can be linked to the covariance CI and 𝐶𝐽.  

It is proportionate to 𝐶𝐽 :  

𝑆2(𝑟) = 𝑘1. 𝐶𝐽(𝑟) 

 

S2  being a probability function, the value of  𝑘1 is determined by the normalization 

condition: 

∫ 𝑆2(𝑥)𝑑𝑥 = 1
∞

0

 

and naturally: 

lim𝑟→∞ 𝑆2(𝑟) = 0    

 (26) 

 (27) 

 (28) 

 (29) 

 (30) 

(31) 

 (32) 

 (33) 
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For overlapping fibers, 𝑆2 can be determined through equation (18) introduced above, with 

all  𝑔𝑁
(𝑛)

(𝑟) = 1 and is given by Lu and Torquato (1990) plotted in figure I-9. 

𝑆𝑛(𝑥𝑛) = exp [−𝜌𝑉𝑛(𝑥𝑛)] 

Where 𝑉𝑛(𝑥𝑛) is the union volume of 𝑛 identical particle centered at 𝑥𝑛 . 

 And especially for 𝑛 = 2 we have: 

𝑆2(𝑟) = exp (−𝜌𝑉2(𝒓)) 

 

Where 𝑉2(𝐫) is the union volume of two fibers whose centers are separated by a distance 𝑟. 

 

𝑉2(𝑟) =
𝜋𝐷2

2
−

𝐷2

2
[cos−1 𝑟

𝐷
−

𝑟

𝐷
√1 −

𝑟2

𝐷2
] 𝐻(𝐷 − 𝑟) 

Unlike 𝑔(𝑟), 𝑆2(𝒓) does not contain connectedness information Torquato (1998).  

With 𝑟 being the distance between two observation region centers, 𝐷 the fiber diameter and 

𝐻(𝑥)  the Heaviside step function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-9.  The theoretical 2 − point probability function 𝑆2(𝒓) for 𝑉𝑓 = 25.18% for 

overlapping disks plotted from Lu and Torquato (1990) 

 (34) 

 (35) 

 (36) 
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While for non-overlapping fibers, the 𝑔𝑁
(𝑛)

(𝑟) are difficult to determine for 𝑛 > 2, therefore, 

an analytical expression of 𝑆2 is unknown. 

 

II- Sample generation 
 

The virtually generated numerical image samples representing the real heterogeneous media  

have saved tremendous time and money. In order to give satisfying and usable results, these 

numerical samples and the microstructures under study must have similar morphological 

descriptors. It could be based on real microstructures Sanei et al. (2017) or purely numerical 

samples as it was the case throughout this work.  

 

II-1   Microstructure samples 

 

The generated 2D samples synthetically represent the cross-sections of composite materials 

built with continuous longitudinally arranged parallel and identical fiber inclusions. This 

allowed the study to be reduced to a two-dimensional one. The disks were randomly 

distributed within a lattice of square cross-section in order to control the volume fraction 𝑉𝑓. 

These samples were referred to as the framed samples. 

 

Two kinds of image samples were built with regard to chosen statistical distributions: systems 

of fully penetrable disks (overlapping) and others of hard disks (non-overlapping) as depicted 

in figure I-10. 

 
 
 
 
 

 

 

 

 

 

 

 

Figure I-10. (a) Overlapping and (b) Non-overlapping samples 

(a) (b) 
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II-1-1   Overlapping microstructures 

 

The overlapping samples were generated by simply distributing the fiber centers according to 

a Poisson law for which each position within the square is equiprobable. The difficulty in 

such method is to reach the wanted volume fraction.  

Typically two processes are used to better approach the wanted 𝑉𝑓 value : one where fibers 

keep being added until the final 𝑉𝑓 is the closest to the desired one and a second in which 

the number of fibers is previously deduced from the rate of overlapping Lu and Torquato 

(1990). The first method is suitable for samples with a large enough number of inclusions to 

which adding an inclusion does not significantly increase 𝑉𝑓. The second method is used in 

the case of smaller samples where ensemble averaging leads to the right value of 𝑉𝑓.  

If the inclusion diameter is not relevant, the exact volume fraction can easily be obtained by 

adjusting the fiber diameter.  

As the inclusions centers are distributed following a Poisson law so the 𝑛 −body distribution 

functions are all equal to 1: 

𝑔𝑁
(𝑛)(𝐫𝐧) = 1  ∀𝑛 

  

 

Especially the radial distribution function:   

𝑔(𝐫) = 1  ∀𝐫 

 

For example, for a volume fractions of 30%, 25 samples of 49 inclusions were generated and 

the resulting averaged 𝑔(𝑟) plotted on figure I-11 shows a good agreement with the 

expected value of 1. 

 

 

 

 

 

 

   (37) 

   (38) 
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As all 𝑔𝑁
(𝑛)

are equal to 1, according to equation (18), the 𝑛 −point probability functions 

𝑆𝑛 are fully determined and depend only on volume fraction for overlapping random 

samples. This is confirmed by figure I-12 presenting the correlation functions of the 

characteristic function of the fiber phase for two different numbers of inclusions namely 

𝑁 = 200 and 𝑁 = 400 and hence two distinct fiber diameters  at the same volume fraction. 

These numbers of fibers allow to reach the convergence of 𝑆2. 

In this case of overlapping fibers at a given volume fraction, the obtained covariance values 

with regard to a dimensionless abscissa (
𝑟

𝑑
), are always identical independently of the fiber 

diameter or else the number of fibers. 

 

 

 

 

 

 

 

Figure I-11. Pair distribution function for overlapping systems 
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The numerical results are also compared to the theoretical correlation function deduced 

from the 2 −point probability function 𝑆2(𝒓) given by Lu and Torquato (1990) in equations 

(35) and (36). The observed discrepancies are due to edge effect on our small samples of 49 

inclusions. 

II-1-2   Non-overlapping microstructures 

 

The non-overlapping microstructures were built following a process in which particles were 

sequentially and randomly introduced, subjected to a condition of non-overlapping up to the 

desired volume fraction or number of particles. The non-overlapping condition is based on a 

repulsion criterion |𝑟𝑖𝑗| > 1 where r is the dimensionless position vector such as |𝑟𝑖𝑗| is equal 

to 1 at contact between fibers 𝑖 and 𝑗.  

To take account of this repulsion criterion while in a random fiber-distribution process, the 

classical method is the Random sequential adsorption (RSA). It refers to a process where 

particles are one by one introduced into the system. First, a random point in the volume is 

chosen where a first hard disk is placed. A second point is then randomly chosen where a 

second hard disk is placed if not overlapping on the first, otherwise it gets rejected and a 

new point is again chosen following the same process until the desired number of particles 

within the volume is reached.  

The RSA method was first studied for one-dimensional models such as the attachment of 

pendant groups in a polymer chain by Flory (1969) and the car-parking problem by Rényi 

(1958). For higher dimensions (𝐷 ≥ 2),  Widom (1966) demonstrated that the RSA method 

is fundamentally different from the random cases generated following a Poisson law 

Figure I-12. Correlation functions of the characteristic function of the fiber phase 

for 𝑁 = 200 and 𝑁 = 400 compared to theoretical 2 point probability function 

𝑆2(𝒓) for 𝑉𝑓 = 25.18% 

https://en.wikipedia.org/wiki/Alfréd_Rényi
https://en.wikipedia.org/wiki/Benjamin_Widom
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(overlapping) for same densities. He also showed that the density at which the RSA systems 

become jammed is lower than that of agitated non-overlapping random systems. This 

limitation in density appears with occurrence of gaps that are about the size of the disks. For 

high densities, these gaps considerably reduce the jamming limit in comparison to agitated 

systems where all the space is filled until no significant gap is left. This puts a restriction on 

the volume fraction that can be attained M. R. Islam (2016).  

These limits are shown in Table 1. 

 

 

 

 

 

 

 

 

Later works discussed the geometrical properties of the RSA configuration Hinrichsen et al. 

(1986). Many other systems have been studied by computer simulation, including in 2D 

disks, randomly oriented squares, rectangles, ellipses, and various other shapes Ricci et al. 

(1992). Systems generated by RSA are in a nonequilibrium state except at very low density 

Torquato  (2002). 

The inherent gaps in RSA systems are clearly revealed by the covariance on the characteristic 

function 𝐼(𝑥) (figure I-13) where unlike overlapping systems, negative values appear around 

the abscissa ℎ/𝑑 = 1 denoting an increase in the rate of finding two points separated by a 

distance h in two different phases.  

 

 

 

 

 

 

 

 

 

  

Jamming Limit RSA Limit 

 𝑽𝒇𝒎𝒂𝒙  

D=1 1 0.75 

D=2 0.83 0.55 

D=3 0.64 0.38 

Figure I-13. Covariance on 𝐼 for overlapping and non-overlapping composites 

Table I-1. Comparison of the maximal volume fraction 𝑉𝑓limit for 

equilibrium and RSA systems Torquato (2002) 
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II-2   Modification of microstructure: Simulated annealing 

 

The aim of the heuristic method presented in this section is to bring a random distribution of 

fibers to another one according to a chosen microstructure. Among the optimization 

methods developed for solving combinatorial minimization problems, the simulated 

annealing (SA) is especially well suited for reaching microstructures described by given Rdfs 

Rintoul and Torquato (1997). Actually, the microstructure of a composite can be considered 

as a frozen picture of a dynamic system of particles driven by a potential energy directly 

related to their Rdf by the means of the canonical probability that will be introduced by 

equation (40).  

SA consists of rearranging particles in order to evolve toward a desired new configuration. It 

mimics the process of atoms rearrangements or annealing during steel production and 

naturally corresponds to a stationary state of energy. Unlike purely statistical methods such 

as the Monte-Carlo method, with a suitable energy criterion, SA converges heuristically to 

the desired state. This method initially developed by Metropolis et al. (1953), Kirkpatrick et 

al. (1983), Bertsimas and Tsitsilis (1993) can be applied to any systems driven by random 

variables and allows them to remain in a state of equilibrium after the modification of their 

microstructures. Recent work by Erchiqui (2017) aiming to optimize heaters during the 

thermoforming process has proven the SA technique to be a very efficient optimization tool. 

Technically, the ensemble of fibers is assimilated to a canonical ensemble where the energy 

fluctuates around a constant mean value. The fibers are moved in order to minimize their 

virtual inter-fiber interaction potential 𝑈(𝑟). A randomly chosen fiber is displaced by a 

random distance ∆𝑟 in a random direction, both provided by a Poisson law. The maximum 

value of ∆𝑟 is adjusted to optimize the efficiency of the global process by never exceeding 

the value of the mean free path in statistical physics. At each move of a fiber, a change in 

energy of the system ∆𝑈 is evaluated and calls on a probabilistic law of accepting the move 

(∆𝑈) : 

𝑃(𝛥𝑈) = {
1,                   ∆𝑈 ≤ 0

𝑒−𝛽𝛥𝑈, ∆𝑈 > 0
 

In which 𝛽 is the Boltzmann factor.  

As this process was purely numerical, both ∆𝑈 and 1 𝛽  ⁄ are not necessarily real energies and 

no physical forces had to be derived from ∆𝑈 .  

The values of ∆𝑟 and 𝛽  are manually adjusted to optimize the efficiency of the global 

process. ∆𝑟  has to be large enough not to slow the evolution.  The adjustment of  β values is 

more sensitive. Actually, when  𝛽  becomes large, the system evolves faster toward the 

wanted state but can be out of equilibrium.  

   (39) 
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The process is repeated until the desired state is reached. Naturally, the choice of the 

potential depends on this state. 

For instance, in the special case of pairwise additive energy potential, the canonical 

probability of a state in the Gibbs space provides a simple relation between Rdf and the 

potential: 

𝑔(𝑟) = 𝑒[−𝛽𝑈(𝑟)] 

Which leads to: 

𝑈(𝑟) ∞ − 𝑙𝑛 [𝑔(𝑟)] 

Such type of potential allows a RSA system to evolve toward a PY one as illustrated on figure 

I-14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (40) 

  (41) 

Figure I-14. Representation of a system of hard particles: (a) generated according to a RSA 
process, (b) under agitation by SA and (c) in equilibrium  
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Using different potentials throughout this work, the SA method will allow to build various 

microstructures such as clusters, sticky disks, etc.. 

Validation of the simulated annealing method 
 
In order to validate the accuracy of our SA method, we compared our results to systems for 

which correlation functions are known. As the focus is on non-overlapping systems, the 

knowledge of correlation functions is reduced to PY solutions so SA was used to bring the 

non-equilibrium RSA samples to equilibrium PY systems. We then compared our Rdf results 

to those of PY solutions available in literature.  

 

Five large samples of 𝑁 = 500 particles were generated with 𝑉𝑓 = 36.30%, a volume 

fraction for which a numerical two dimensional solution of the PY equation for randomly 

distributed hard disks exists in literature Bravo and Santos (1993). Other solutions for higher 

volume fractions are also available in literature Adda-Bedia et al. (2008), however, they were 

not chosen due to hardware limitations (figure I-15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(c) 

Figure I-15. The correlation function 𝑔(𝑟) interpolated between the PY distribution 

functions for hard spheres for (a)  𝑉𝑓 = 36.30%, (b)  𝑉𝑓 = 54.4%, (c)  𝑉𝑓 = 46.20% and 

(d)  𝑉𝑓 = 79.40%, Bravo and Santos (1993) and Adda-Bedia et al. (2008) 

(a) 

(d) 
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Figure I-16 shows an example of a sample’s initial and final states before and after applying 

SA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Here, the desired state is reached by increasing the values of 𝑔(𝑟) within the range of 

 1 <  𝑟 < 1.5  and the potential is as follows: 

𝑈 ∞ − 𝑙𝑛 [𝑔(1 < 𝑟 < 1.5)] 

It was noticed that by adjusting this peak value, the remaining values of 𝑔(𝑟) for 𝑟 > 1.5 

converge toward the Percus-Yevick Rdf by simple agitation. 

(a) (b) 

(c) 

Figure I-16.  Non-overlapping samples of 𝑉𝑓 = 36.30% : (a) Initial state (before 

SA), (b) final state (after SA) and (c) superposition of (a) (red) and (b) (green) 
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Figure I-17 shows a comparison between our Rdf results and those available in literature for 

𝑉𝑓 = 36.30%.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I-16 above shows that the Rdf averaged on the five final samples Rdf results, 

calculated after applying SA, is in very good agreement with the PY solution plotted from 

literature Bravo and Santos (1993) as a histogram. Despite averaging on the 5 images 

samples of 500 disks, 𝑔(𝑟) converged hardly, so the histogram steps were set at a value of 1 

(roughly the inclusion diameter). The corresponding values of 𝑔(𝑟) for PY were obtained by 

integration on curve (a) in figure I-14. The sample building method by SA is well validated by 

the obtained results as the distribution of fiber centers on these samples accurately fits the 

expected 𝑔(𝑟), nevertheless, the samples can slightly deviate from a PY distribution due to 

the heuristic nature of SA which does not take into account higher order correlations. 

 

 

In the following chapters, all samples were built with RSA and adjusted by SA with the 

suitable potential. 

Figure I-17. Comparison of Rdf results between literature (histogram) and the 

generated numerical sample, before (red curve) and after (green curve) SA for 

𝑉𝑓 = 36.30% 
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In engineering mechanics and applied physics, the materials used for structural 

applications are rarely homogeneous, thus, the knowledge of elastic and thermal effective 

properties of heterogeneous or composite media is of high importance. The focus here was 

on the influence of microstructures rather than complex behavior laws. The small 

deformations hypothesis was considered and both elastic and thermal behaviors were 

presumed linear for predicting the deformations and internal stresses within a 

heterogeneous material under a given set of external strains such as pure shear, pure 

compression or heat fluxes under a temperature gradient.  

 

The aim in this chapter is to predict the effective properties of heterogeneous 

materials using homogenization techniques. This can be done either analytically or 

numerically. However, only analytical homogenizations issued from literature will be 

presented in the course of this chapter as the specifications of numerical homogenizations 

used in this work to evaluate the influence of microstructure on effective properties will be 

detailed in the upcoming chapter.   

Several considerations and assumptions regarding the physics of the studied media 

are required in order to apply the homogenization methods to each phase.  

In case of elasticity, the effective coefficients are elastic bulk and shear moduli for isotropic 
materials while for heat transfer it is the thermal conductivity. 

 

To introduce the notation, this chapter will begin with a brief reminder of linear 

elasticity and thermal conductivity. 
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I- Basics of physical behaviors 

 

I-1   Linear elasticity 

Let us consider a homogeneous material (single phase) with a linear elastic respond to a 
homogeneous mechanical loading on its outer contour.  

In a linear elasticity framework, the law of behavior relation is expressed locally for each 
phase using the generalized Hooke’s law: 

 

𝜎 = 𝑐 ∶ 휀 

with 휀 second-order symmetric strain tensor, 𝑐  fourth-order tensor of elastic moduli, also 

known as the elastic stiffness tensor and 𝜎 the second-order symmetric Cauchy stress 

tensor. 

The strain can be expressed as a function of stress using the compliance tensor 𝑠  defined as 

the inverse of equation (1-a) : 

휀 = 𝑠 ∶ 𝜎 

On a macroscopic level, the set of equations (1) can be written as follows: 

 

Ʃ = 𝐶ℎ ∶ 𝑬 

And 

𝑬 = 𝑆ℎ ∶  Ʃ 

 

Where Ʃ and 𝑬 represent the macroscopic strain and deformation and the index ℎ denotes 

the homogenized tensors. 

The elastic potential energy stored in a material is: 

𝑈𝐸 =
1

2
∫ 𝜎𝑖𝑗  휀𝑖𝑗  𝑑𝑉
𝑉

 

And with Hill-Mandel’s lemma: 

𝑈𝐸 =
1

2
 𝑬. Ʃ 

 (1-a) 

(1-b) 

   (2-a) 

 (2-b) 

 (3) 
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I-2   Thermal conductivity: 

In the case of thermal conductivity of homogeneous materials, let us consider 𝒒  the heat 

flux and 𝜵𝑇 the gradient of temperature. We assume that heat transfer takes place within 

the material and the local thermal linear behavior of the heterogeneous medium can be 

defined according to Fourier’s law: 

 

𝒒 = −𝜆 . 𝜵𝑇 

Where 𝜆 is the thermal conductivity. 

Both the microscopic local gradients of temperature and local heat fluxes can be related to 

the macroscopic gradient of temperature 𝐺 and heat flux 𝑄 by means of localization tensors 

that contain all the geometrical information. 

The thermal potential energy is given by: 

𝑈𝑇 = −𝒒. 𝜵𝑇 

 

II- Effective physical properties of heterogeneous media 
 

To determine the effective properties of heterogeneous media based on the properties of 

their various elementary components, namely, the behavior of the matrix and that of 

inclusions in the case of two-phased composites, a set of averaging operations are used. The 

general idea behind this process called homogenization is to substitute the inhomogeneous 

material with a fictional equivalent homogeneous one called the homogeneous equivalent 

material (HEM) by taking a closer look at the local behavior variations of the heterogeneities.  

Random microstructured materials are described by two main scales: the micro scale which 

is the size of inclusions and the macro scale which is the size of the sample.  

Supposing a full separation of micro and macro scales, the HEM takes all the heterogeneities 

into account and has the same overall macroscopic response to loadings as the initial 

heterogeneous material. This method could be applied to many problems in physics such as 

thermal conductivity, linear elasticity, plasticity, visco - plasticity, electromagnetism, etc. 

Figure II-1. shows a simplified illustration of the transitioning method from a heterogeneous 

medium to the HEM using the homogenization technique.  

 

 

 (4) 

 (5) 
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In order to obtain reliable homogenized values, the macro scale has to be large enough to be 

representative of the whole microstructure and the sample is referred to as the 

representative volume element (RVE).  

 

II-1   Homogenization  

 

This method has first been developed in various fields of science and technology for periodic 

spacial distributions for which the problems and calculations are facilitated and reduced to 

analytical solutions for a single elementary cell Eshelby (1957). However, in the course of the 

last decades, this technique has been improved considerably and has extended to random 

morphologies of materials. It has since been applied to all kinds of disordered media and not 

just restricted to the periodic cases. 

The issue with transitioning from heterogeneous media to their fictional equivalent 

homogeneous ones lies in the capacity of capturing all the different heterogeneities within. 

For a homogeneous material, we assume the outer constraint as uniform while in practice, it 

is the sum of all the constraints applied on the surface: 

 

𝐹

𝑆
= 𝑁𝑖 =

1

𝑆
∬ 𝜎𝑖𝑗𝑛𝑗𝑑𝑆

𝑆
 

Where 𝑁𝑖 is the total tension.  

Figure II-1. The homogenization principle for a heterogeneous microstructure 

 

HEM 
 Homogenization 

Heterogeneous material Fictional homogeneous 

equivalent material 

 (6) 



Chapter 2 : Homogenization method and bounds determination 

 

75 
 

Unless this first mandatory step is mastered, no effective properties of the composite 

material can be deduced. When of a set of external strains such as pure shear or pure 

compression or a difference of temperature is applied on the outer boundary of a domain, 

the heterogeneities within the volume are hidden which makes it difficult to take them into 

account and the accurate effective properties of the material are therefore impossible to 

determine (figure II-2).  

 

 

 

 

 

 

 

 

 

  

 

 

 

However, external strains are mathematically linked to local internal behaviors through an 

equality between the integral on the outer surface of the material and a volume one, as 

shown in the equation (6). This allowed to quantify the local behavior at the heterogeneities 

level and constitutes the base of the homogenization as we know it today.  

 

< 𝜎𝑖𝑗 >=
1

𝑉
∭ 𝜎𝑖𝑗𝑑𝑉 =

1

𝑆
∬ 𝜎𝑖𝑗𝑑𝑆

𝑆𝑉
 

 

The homogenization process seeks an average formulation of the properties of 

inhomogeneous media starting with a microscopic description and evolving toward a 

macroscopic, also called effective, one. This operation is known as the Micro-Macro passage. 

Many have taken interest in the subject, namely Eshelby (1957) in his early works that have 

later inspired many others. 

In this way, homogenization can be regarded as a highly advanced version of the averaging 

methods. In case of elasticity, the effective parameters are the ratio of the spatial average 

𝑭    

 𝑭     

Figure II-2. A 3D sample of a composite material under traction  𝐹  

 (7) 
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stresses to the spatial average strains within the medium when subjected to forces of pure 

mechanical nature on its outer boundary and in case of thermal conductivity, the ratio of 

heat fluxes to temperature gradient.  

Throughout this work, all the following quantities will be supposed linear hence additive and 

their effective values can be determined by spatial average: 

 

• Lengths, surfaces and volumes 

 

• Strain, stress, forces and displacement fields 

 

• Heat flux and temperature fields 

 

For microstructures with simple geometries, the averaging process can be done analytically 

while for more complex geometries, the only way is to homogenize effective properties from 

numerical results. Analytical methods were the first homogenization techniques to be 

developed for estimating the properties of heterogeneous materials and they can be 

categorized into two distinct types: analytical models when the microstructure is well-known 

and bounds when the microstructure is much less obvious, with an unknown behavior that 

can only be approached. Analytical methods often involve a variety of assumptions regarding 

the studied microstructures Buryachenko (2006). 

 

Our study was limited to the case of two-phased materials: a phase 𝑖 of volume fraction 𝑉𝑓 

and a phase 𝑚 of volume fraction 1 − 𝑉𝑓.  

Let us consider an elastic medium composed of two isotropic phases characterized by 

compression moduli  𝐾𝑖    and 𝐾𝑚 and shear moduli 𝜇𝑖  and  𝜇𝑚 or Young’s moduli  𝐸𝑚 and 

𝐸𝑖 and Poisson ratios   𝜐𝑚 and 𝜐𝑖. 

A large range of analytical methods is available in literature. However, the choice of a given 

method over others is highly related to the properties of the medium and the morphology of 

the microstructure. For linear behavior, these methods are essentially governed by the 

geometrical conditions of the medium, the contrast 𝐶 between the properties of both 

phases and the volume fraction 𝑉𝑓 and are often asymptotic estimations for very specific 

microstructures.  For instance, for cylindrical, ellipsoidal or plane fibers within an isotropic 

matrix, analytical models were introduced by Mori-Tanaka (1973). A wide range of other 

empirical models exists, namely the Halpin and Tsai (1967) one that takes the fiber length 
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effect on the elastic properties of composites into account and the Maxwell (1873) and 

Bruggeman (1935) models for the thermal properties. For high volume fractions, there is 

usually a divergence between analytical models which is directly linked to the decrease of 

spacing hence the increase of interactions between inclusions. These exact analytic models 

are therefore not suitable for higher volume fractions or more complex configurations. 

 

II-2   Representative Volume Element  

 

The RVE can be defined as the smallest volume 𝑉 for which the integral (7) reaches 

convergence, in other words, its value remains constant with an increasing 𝑉. The choice of 

samples is always bound to how representative they are of the material under study. For 

homogeneous materials, the samples can be of any size, they will still show the same 

properties and responses as the initial material. For the heterogeneous ones however, the 

heterogeneities make the choice of a representative size more difficult. This is why the size 

of the samples must be large enough to separate micro and macro scales in order to take 

into account the heterogeneities that influence the properties of materials and allow an 

accurate estimation of their macroscopic behaviors. 

In literature, this size is called RVE, Representative Volume Element and has numerous 

definitions. Several of these definitions are found in Gitman et al. (2007). 

One of the classical definitions was given by Hill (1963) where the RVE of a given material is 

introduced as a structurally typical sample of the whole microstructure, containing enough 

heterogeneities for the macroscopic properties to be independent of boundary conditions. 

A later definition by Sab (1992) stated that the previous definition only stands when the 

RVE’s properties tend towards those of a periodic medium and are independent of boundary 

conditions. Ostoja-Starzewski (1998) added later on that the RVE should only be defined in 

the case of a periodic unit-cell or a non-periodic cell containing an infinite number of 

heterogeneities. Drugan and Willis (1996) also gave a definition of the RVE as being the 

smallest volume element of the composite for which the apparent properties of the 

microstructure converge.  

Many definitions have also appeared in literature over the years, Hashin (1983) , Terada et 

al. (2000) etc. One of the latest is purely statistical and numerical and was introduced by 

Kanit et al. (2003) where it is stated that size is closely related to: statistical parameters such 

as the absolute error on effective values, morphological parameters such as volume fraction 

𝑉𝑓, and mechanical properties : the contrast between phases for linear behavior. 

 

 



Chapter 2 : Homogenization method and bounds determination 

 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated on figure II-3, the different sub-sizes ranging from 1 to 5 are a result of the 
increase in the side length from one sample to the other. 

Figure II-4 emphasizes the evolution of a given apparent property towards convergence 

depending on the chosen sample size. The apparent property starts converging around 

sample 4. Therefore, it can be said that sample 4 is a good RVE that gives accurate effective 

properties of the represented microstructure.      

 

 

 
 
 

 
 
 

 
 

 

 

 

 

 

Figure II-3. Different sub-volumes sizes of the microstructure 
 

Figure II-4. Evolution of 
𝑘

𝐾𝑚
 for the different sample sizes shown in figure II-3. 
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For the numerical study of heterogeneous materials, the RVE is a highly important 

parameter that ensures accurate calculation of their properties. The samples should be 

neither too small thus compromising the accuracy of homogenization nor too big acquiring 

longer calculation time or introducing larger errors on the local values. 

 

III-   Bounds on physical moduli 

 

The geometric details are usually the most difficult to know or measure, in which case, the 

only available option is to estimate upper and lower bounds on the moduli within which all 

microstructures are included.  

Naturally, the largest and perhaps most obvious bounds for a heterogeneous material with a 

compression moduli 𝑘 and a shear moduli µ  composed of inclusions within a matrix are the 

compression moduli 𝐾𝑚 and 𝐾𝑖 and shear moduli 𝜇𝑚 and  𝜇𝑖 . They are called 0 order bounds 

and are expressed as follows: 

𝑚𝑖𝑛(𝐾𝑖, 𝐾𝑚) < 𝑘 < 𝑚𝑎𝑥 (𝐾𝑖, 𝐾𝑚) 

 

𝑚𝑖𝑛(µ𝑖, µ𝑚) < µ < 𝑚𝑎𝑥 (µ𝑖, µ𝑚) 

Given that one phase is stiffer than the other, the homogenized elasticity modulus 𝑘 and 

shear modulus µ are then bounded by the moduli of the hardest phase as an upper bound 

and that of the softest as a lower one. 

The bounds of order 0 do not take volume fraction into account and do not provide an 

estimation of the effective properties. They rather frame the elastic moduli, only providing a 

maximum and a minimum value of the actual properties. 

Therefore, such bounds are of limited interest since they fail to give any useful estimation of 

the homogenized properties and any tighter and more useful bounds require information 

about the microstructure. 

 

III-1   First order bounds  

 

The well-known classic examples are Voigt (1889), and Reuss (1929) bounds. They are 

associated to a strictly empirical basis defining a power law average for a given property of 

each phase of a heterogeneous medium to obtain the resulting effective one. This is 

commonly referred to as the law of mixtures.  

 (8) 
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Let 𝜑 be a given effective property of a heterogeneous medium composed of the two phases 
𝑖 and 𝑚. The bounds are defined by: 

 

𝜑𝛼 = 𝑉𝑓𝜑𝑖
𝛼 + (1 − 𝑉𝑓)𝜑𝑚

𝛼  , 𝛼 ∈ [−1,0[ ∪ ]0,1] 

 

The negative and positive values of 𝛼 define respectively lower and upper bounds. 

𝛼 = 1 corresponds to the upper bound (Voigt) and -1 to the lower bound (Reuss).  

The first order bounds match the arithmetic and harmonic means of the two phases’ 
properties, pondered by the volume fraction 𝑉𝑓.  

If 𝜑𝑐 is any resulting linear behavior property of the composite, then:  

 

 

(
𝑉𝑓

𝜑𝑓
+

(1−𝑉𝑓)

𝜑𝑚
)

−1

≤ 𝜑𝑐 ≤ 𝑉𝑓𝜑𝑓 + (1 − 𝑉𝑓)𝜑𝑚 

 

 

These first order bounds do not presume any information about the microstructure and only 

require knowledge of the volume fractions of each of the phases. In this way, they are an 

improved version of the bounds of order 0 aforementioned.  

The Voigt and Reuss bounds are ratios of the averaged stress and strain applied to a 

heterogeneous material. For complex microstructures, the stress and strain are usually 

unknown and are unlikely to be uniform. Voigt’s upper bound was built upon the 

assumption that the strain field is homogeneous throughout the medium, while Reuss’s 

lower bound presumed the stress field uniform everywhere in the medium. 

The geometrical interpretation of Voigt’s bound corresponds to a parallel model of 

laminated materials (axial loading) for which the deformations are supposed homogeneous 

(figure II-5). 

 

 

 

 

 (9) 

 (10) 
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We have the generalized Hooke law: 

𝜎 = 𝐶 ∶ 휀 

 

Where 𝜎 and 휀 are second order strain and deformations tensors, and 𝐶 the fourth order 

elastic behavior tensor. 

It follows from Hooke’s generalized law and the uniform strain assumption that: 

 

𝐶 = ∑ 𝑉𝑓𝑖 . 𝜎𝑖 ∶  휀 = ∑ 𝑉𝑓𝑖 . (휀 . 𝐸𝑖) ∶  휀 

And we have: 

𝐶 = ∑ 𝑉𝑓𝑖 . 𝐸𝑖  

 

Reuss’s bound corresponds to a geometrical model in series for laminated materials 

(transverse loading) and for which the stress field is presumed uniform throughout the 

medium (figure II-6). 

 

 

 Figure II-5. Voigt’s uniform strain 

 (11) 

 (12) 

 (13) 
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And we have again: 

𝐶 = 𝜎: (∑ 𝑉𝑓𝑖  . 휀𝑖) = 𝜎 ∶ (∑ 𝑉𝑓𝑖 . (
𝜎

𝐸𝑖
)) 

So, 

𝑆 = ∑
𝑉𝑓𝑖

𝐸𝑖
 

 

III-2   Bounds of Hashin-Shtrikman  

 

The first bounds on elastic coefficients tighter than those of Voight and Reuss were 

introduced by Hashin-Shtrikman (1962) (1963) following Brown’s work on the electrical 

permittivity of solid mixtures Brown (1955). 

Hashin-Shtrikman (HS) and Walpole (1966) for shear modulus are the tightest bounds of 

effective elastic moduli that do not call for any assumptions on the geometry of the 

materials (geometrically independent bounds) and necessitate the sole knowledge of the 

volume fraction 𝑉𝑓𝑖 of both phases 𝑖. These “second order” bounds are physically interesting 

as they emphasize the frame of improvement in the effective properties of composite media 

as a result to the variation of their structures. It is also noticeable that the aforementioned 

Voigt and Reuss first order bounds are wider than HS.  

 Figure II-6. Reuss’s uniform stress model 

 (14) 

  (15) 
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Hashin and Shtrikman have defined second order bounds for both bulk and shear moduli, 

respectively 𝑘 and µ based on the general theory of energy minimization for linear elasticity.  

These calculations will be detailed below as they are the basics of any bound calculations. 

Let an elastic homogeneous and isotropic medium of arbitrary geometry be subjected to 

surface tractions associated to a homogeneous stress tensor (figure II-7.). 

 

 

 

 

 

 

 

 

 

The strain energy 𝑈 is given by the following integral: 

 

𝑈 =
1

2
∫ 𝑇𝑖 . 𝑢𝑖𝑑𝑆
(𝑆)

 

Where: 

 

𝑇𝑖 = 𝜎𝑖𝑗 . 𝑛𝑗 are the components of the surface stress vector with 𝜎𝑖𝑗 constant stresses and 𝑛𝑗  

the components of the normal to the outer surface. 

 𝑢𝑖 = 휀𝑖𝑗. 𝑛𝑗  are the elastic displacements. 

Using the equation (7) that links the integral of surface to that of volume, applied to the case 

of energy, we can write: 

 

𝑈 =
1

2
∫ 𝜎𝑖𝑗 . 휀𝑖𝑗𝑑𝑉
(𝑉)

 

 

Figure II-7. (1) Reference state (pure matrix), (2) Strains applied to a homogeneous 

material, and (3) Displacements applied to the same material 

(1) (2) 

T T U U 

(3) 

  (16) 

   (17) 
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The strain energy density may then be written as follows: 

𝑤 =
1

2
 𝜎𝑖𝑗 . 휀𝑖𝑗  

 

𝑤 =
1

2
 (k trace(ε) + 2µeij. eij) 

Where 𝑒𝑖𝑗 is the deviatoric part of the stress tensor. 

Hook’s law introduces: σ = 3kε and sij = 2µeij 

 

𝑤 =
1

2
(

σ2

9k
+

sij.sij

2µ
) 

 

Where k = λ +
2

3
µ is the bulk modulus of the medium and µ its shear modulus. 

The differences of energy between the 3 cases shown in figure II-7 above are then 

evaluated: 

𝛿𝑈2 = 𝑈2 − 𝑈1 and  𝛿𝑈3 = 𝑈3 − 𝑈1 

 

Stationary solutions for  𝛿𝑈2 and 𝛿𝑈3 answering the principle of least action, also called 

the principle of stationary action (Fermat's principle in optics) are sought. This variational 

principle applied to our case aims to minimize the two energy differences.  

In the case of two-phased materials subjected to surface tractions (stress approach), it has 

been proven by Eshelby (1956) (1957) that the difference of elastic energy stored in the two 

cases is given by: 

 

𝛿𝑈2 =
1

2
∫ (𝑇1𝑖𝑢�̅�(𝑆̅)

− �̅�𝑖𝑢1𝑖)𝑑𝑆 

 

Where 𝑆̅ is the surface of an inclusion and 𝑇�̅� and 𝑢�̅� the stress and displacement vectors on 

its surface. This formula is general and applies to any inclusion geometry and boundary 

tractions. 

 

   (18) 

   (19) 

   (20) 

   (21) 

   (22) 

https://en.wikipedia.org/wiki/Variational_principle
https://en.wikipedia.org/wiki/Variational_principle
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Another form of the above mentioned equation has also been given by Eshelby. It has been 

reduced to the volume of an inclusion and calls for the bulk and shear moduli of the 

composite’s two phases as well as the stresses: 

 

𝛿𝑈2 =
1

2
∫ [

𝐾𝑚−𝐾𝑖

9𝐾𝑚𝐾𝑖
𝜎1𝜎 +

µ𝑚−µ𝑖

2µ𝑚µ𝑖
𝑆1𝑖𝑗𝑠𝑖𝑗] 𝑑𝑉

(�̅�)
 

 

With �̅� being the volume of an inclusion. 

When surface displacements are prescribed to the medium (displacement approach), 

Eshelby’s formula is written as follows: 

 

𝛿𝑈3 = − 
1

2
∫ (𝑇1𝑖𝑢�̅�(𝑆̅)

− �̅�𝑖𝑢1𝑖)𝑑𝑆 

 

Minimizing 𝛿𝑈2 gives an upper bound for the bulk modulus  𝐾(𝐻𝑆+) while minimizing 𝛿𝑈3 

provides a lower bound 𝐾(𝐻𝑆−). 

To determine minima of equations (23) and (24), assumptions had to be made regarding the 

medium. In the simplest one, the homogeneous matrix contains a number of inclusions large 

enough to obliterate the anisotropies within. The material was therefore presumed 

homogeneous and isotropic with 휀𝑖𝑗 = 0. 

The calculations then lead to easier formulas: 

For the stress approach:                                  
1

𝑘(𝐻𝑆+)
=

1

𝐾𝑚
+

𝛿𝑈2

𝜎0
2

18
  𝑉

 

 

For the displacement approach:                     𝑘(𝐻𝑆−) = 𝐾𝑚 +
𝛿𝑈3

𝜀0
2

2
  𝑉

 

 

Let us consider a composite medium which consists of 𝑛 different elastic phases and which 

may be regarded as quasi-homogeneous and quasi-isotropic.  

These assumptions allow for easier calculations and so the solutions to the formulas (25) and 

(26) are presented for the bulk and shear moduli as follows: 

   (23) 

   (24) 

   (25) 

   (26) 
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For the bulk modulus 𝑘,    𝑘𝐻𝑆−
< 𝑘 < 𝑘𝐻𝑆+

 and:  

 

𝑘(𝐻𝑆−) = 𝑘1 +
𝐴1

1+𝛼1𝐴1
 

 

𝑘(𝐻𝑆+) = 𝑘𝑛 +
𝐴𝑛

1 + 𝛼𝑛𝐴𝑛
 

 

Exponents 1 denote the lowest moduli while exponents 𝑛 denote the highest. Thus, it is 
assumed that 𝑘𝑛−1 < 𝑘𝑛 and µ𝑛−1 < µ𝑛.  

And we have: 

𝛼1 = −
3

3𝑘1 + 4µ1
 

𝛼𝑛 = −
3

3𝑘𝑛+4µ𝑛 
 

𝐴1 = ∑
𝐴𝐴

𝑖

1

𝑘𝑖−𝑘1−𝛼1

𝑛
𝑖=2  

𝐴𝑛 = ∑
𝐴𝐴

𝑖

1

𝑘𝑖−𝑘𝑛−𝛼𝑛

𝑛−1
𝑖=1  

 

With 𝐴𝐴
𝑖  the surface fraction of phase 𝑖 in 2𝐷 and 𝑉𝑓

𝑖 the volume fraction of the same phase 

in 3𝐷. 

For the shear modulus µ,    µ𝐻𝑆−
< µ < µ𝐻𝑆+

 and: 

 

µ𝐻𝑆−
= µ1 +

𝐵1

2(1 + 𝛽1𝐵1)
 

 

µ𝐻𝑆+
= µ𝑛 +

𝐵𝑛

2(1 + 𝛽𝑛𝐵𝑛)
 

 

Where 𝐵1, 𝐵𝑛, 𝛽1 and 𝛽𝑛 are defined by: 

   (27) 

   (28) 

   (29) 

   (30) 

   (31) 

   (32) 

   (33) 

   (34) 
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𝛽1 = −
3(𝑘1+2µ1)

5µ1(3𝑘1+4µ1)
 

𝛽𝑛 = −
3(𝑘𝑛 + 2µ𝑛)

5µ𝑛(3𝑘𝑛 + 4µ𝑛)
 

𝐵1 = ∑
𝐴𝐴

𝑖

1

2(µ𝑖−µ1)
−𝛽1

𝑛
𝑖=2  

𝐵𝑛 = ∑
𝐴𝐴

𝑖

1

2(µ𝑖−µ𝑛)
−𝛽𝑛

𝑛−1
𝑖=1  

In the case of two-phased materials in 2𝐷, the Hashin-Shtrikman bounds formulas for both 

bulk and shear moduli are: 

 

𝑘(𝐻𝑆−) = 𝐾𝑚 +
𝑉𝑓

1

𝐾𝑖−𝐾𝑚
+

3(1−𝑉𝑓)

3𝐾𝑚+4µ𝑚

 

 

𝑘(𝐻𝑆+) = 𝐾𝑖 +
1 − 𝑉𝑓

1
𝐾𝑚 − 𝐾𝑖

+
3𝑉𝑓

3𝐾𝑖 + 4µ𝑖

 

 

µ(𝐻𝑆−) = µ𝑚 +
𝑉𝑓

1
µ𝑖 − µ𝑚

+
6(1 − 𝑉𝑓)(𝐾𝑚 + 2µ𝑚)

5µ𝑚(3𝐾𝑚 + 4µ𝑚)

 

 

µ(𝐻𝑆+) = µ𝑖 +
1 − 𝑉𝑓

1
µ𝑚 − µ𝑖

+
6𝑉𝑓(𝐾𝑖 + 2µ𝑖)
5µ𝑖(3𝐾𝑖 + 4µ𝑖)

 

 

When the information on the microstructure is reduced to the volume fraction, the finest 

bounds are those of Hashin and Shtrikman, their typical microstructures are illustrated on 

figure II-8. 

 

 

   (35) 

   (36) 

   (37) 

   (38) 

   (39) 

  (40) 

   (41) 

   (42) 
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At high contrasts however, these bounds are less suitable because of the divergence of the 

upper one. If more details on the microstructures are known, tighter bounds can be 

expected. 

Similar bounds were obtained by Hill (1963) by a slightly different method. 

 

III-3   Tighter bounds for 2D fiber reinforced composites 

 

At this point, in order to obtain better bounds, it is necessary to introduce information about 

the geometry of inclusions: shape and distribution. Improved bounds including finer 

microstructures were given by Beran (1965), Beran and Molyneux (1966), Miller 

(1969)…and were reviewed by McCoy (1970). 

The work of Miller (1969) introduced a shape factor in the expression of his bounds for 3D 

microstructures. The schematic form of these bounds presented here for bulk modulus is as 

follows. The shape factor is introduced through the functions 𝐴 and 𝐵 of material properties 

and geometry. 

𝐾+ = (〈𝑘〉 −
〈𝑘′2〉

𝐴
) 

 
 

𝐾− = (〈
1

𝑘
〉 −

〈
1

𝑘′2〉

𝐵
)

−1

 

 

In which : 

〈𝑘〉 = 𝑉𝑓𝐾𝑖 + (1 − 𝑉𝑓)𝐾𝑚         is the Voigt bound 

 

〈
1

𝑘
〉 = 𝑉𝑓

1

𝐾𝑖
+ (1 − 𝑉𝑓)

1

𝐾𝑚
          is the Reuss bound 

 

Figure II-8. Microstructures for HS bounds: lower (left) and upper (right) 

   (44) 

   (43) 
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〈𝑘′2〉 and 〈
1

𝑘′2
〉 are respectively the variance of the local bulk modulus and its inverse 

generally approximated Brown (1955) by 𝑉𝑓(1 − 𝑉𝑓)(𝐾𝑖 − 𝐾𝑚)2 and  𝑉𝑓(1 − 𝑉𝑓) (
1

𝐾𝑖
−

1

𝐾𝑚
)

2

. 

According to Brown (1955) and Beran (1965), this estimation of the local variances is only 

relevant for composite media with a very low contrast  𝐶 =
𝑘𝑖

𝑘𝑚
 . 

Figure II-9 shows the importance of this factor in the intrinsic behavior of bounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The specific geometry of 2D fiber reinforced composites was first introduced into bound 

calculations by Beran and Silnutzer (1971) including fiber shape and distribution factors.  

Similar bound calculations were carried out for thermal conductivity Corson (1974). As their 

determination uses exactly the same mathematics as those of shear modulus (Hashin 1970) 

the former will not be detailed in the next sections and results will be presented in this work 

when necessary.   

In the case of homogeneous and isotropic distribution of non-overlapping disks, a pure 

random distribution corresponds to the lower bound while the upper one was suspected to 

be related to the formation of clusters. This supposition was confirmed by Elsayed and 

 

Figure II-9. Bounds on effective bulk modulus for a symmetric-cell 

material where the shape factor G =
1

3
 ,

1

9
 is respectively for plates and 

spheres Miller (1969) 
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McCoy (1973) who showed the influence of clustering through a packing coefficient. Later, 

Milton (1982) formulated exact expressions of these shape and distribution factors up to the 

third order for elasticity moduli and fourth order for electrical permittivity. These bounds are 

suitable for any microstructure with known 𝑛 −point probability functions 𝑆2, 𝑆3 and even 𝑆4 

for the electrical permittivity. For the upper bound, he showed that the dominant shape 

factor was independent of the cluster’s localization.  

These bounds, which will be called “Milton bounds” throughout this manuscript, were later 

interpreted for elasticity of aligned fiber reinforced materials. The difficulties were to obtain 

suitable expressions of 𝑆2, 𝑆3 for realistic materials. They were evaluated for: 

- Overlapping fibers, using a Poisson distribution or “fully penetrable cylinders” by 

Joslin and Stell (1986) and Torquato and Beasley (1986).  

 

- Non-overlapping inclusions, using a distribution of fibers driven by a PY 

approximation by Torquato and Lado (1988) and Miller and Torquato (1991). 
 

The simplified expressions of these bounds are expressed as follows:  
 
For the bulk modulus 𝑘 :  
 

𝐾+ = (〈𝑘〉 −
𝑉𝑓(1−𝑉𝑓)(𝐾𝑖−𝐾𝑚)2

〈𝐾〉+〈µ〉𝜉
) 

 
 

𝐾− = (〈
1

𝐾
〉 −

𝑉𝑓(1−𝑉𝑓)(
1

𝐾𝑖
−

1

𝐾𝑚
)

2

〈
1

�̃�
〉+〈

1

µ
〉𝜉

)

−1

 

With 𝐾− ≤ 𝑘 ≤ 𝐾+ 

 

For the shear modulus  µ : 

µ+ = (〈µ〉 −
𝑉𝑓(1−𝑉𝑓)(µ𝑖−µ𝑚)2

〈µ̃〉+Ѳ
) 

 

µ− = (〈
1

µ
〉 −

𝑉𝑓(1−𝑉𝑓)(
1

µ𝑖
−

1

µ𝑚
)

2

〈
1

µ̃
〉+Ф

)

−1

 

 
With µ− ≤ µ ≤ µ+  

   (45) 

   (46) 

   (47) 

  (48) 
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And : 

Ѳ =
2〈𝑘〉𝜉  〈µ〉2 + 〈𝑘〉2〈µ〉ƞ

〈𝑘 + 2µ〉2
 

Ф = 2 〈
1

𝑘
〉𝜉 + 〈

1

µ
〉ƞ 

 

Here we define the following:      

  

〈𝑏〉 = 𝑉𝑓𝑏𝑖 + (1 − 𝑉𝑓)𝑏𝑚 

 

〈�̃�〉 = (1 − 𝑉𝑓)𝑏𝑖 + 𝑉𝑓𝑏𝑚 

 

〈𝑏〉𝜉 = 𝑏𝑚𝜉1 + 𝑏𝑖𝜉2 

 

〈𝑏〉ƞ = 𝑏𝑚ƞ1 + 𝑏𝑖ƞ2 

 

The transverse bulk modulus of a phase 𝑖  can be expressed in terms of the isotropic phase 

moduli as:  

 

𝑘𝑖 = 𝐾𝑖 +
µ𝑖

3
 

 

The parameters 𝜉2 = 1 − 𝜉1 and ƞ2 = 1 − ƞ1 are integrals over the two and three-point 

probability functions 𝑆2(𝑟) and 𝑆3(𝑟, 𝑠, 𝑡). 

 

In these bounds, the first terms < 𝑘 >, < 1/𝑘 >, <  > and < 1/ > are similar to the 

Reuss and Voight first order ones. The second terms or correction terms are the ratio of an 

estimation of the local variances of < 𝑘 >, < 1/𝑘 >, <  > and < 1/ >  by a function of 

the microstructure’s parameters 𝑆2 and 𝑆3. The local variances were estimated by the same 

expressions as in equations (43) and (44). 

 

As the contrast 𝐶 increases, the upper bounds diverge including Voigt bounds. 

 

According to Joslin and Stell (1986) for the fully penetrable (overlapping) inclusions and 

Miller and Torquato (1991) for the non-overlapping (N-O) inclusions as previously 

mentioned, the coefficients for the Milton bounds are shown in figure II-10: 

 

 

 

 (49) 



Chapter 2 : Homogenization method and bounds determination 

 

92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third order bounds take into account the microstructure details through the two and 

three-point probability functions 𝑆2 and 𝑆3 hence the difference in formulas for the 

overlapping and non-overlapping microstructures as shown below for 𝑉𝑓  =  25% and 

various contrasts. Our evaluations of these coefficients have shown very little differences 

between the 𝑆3 estimations by Torquato and Lado (1988) and Miller and Torquato (1991). 

Figure II-11 depicts the Hashin and Shtrikman and Milton bounds kM and µM for bulk and 

shear moduli 𝑘 and µ for overlapping and non-overlapping cases. 

These bounds for both overlapping and non-overlapping samples are relevant to very 

specific ensembles of microstructures, however, they become wide for high volume fractions 

and/or contrasts between physical properties of matrix and fibers.  

 

 

 

 

 

 

 

 

 

 Figure II-10. The Milton bounds parameters with regard to volume 

fraction for overlapping (O) and non-overlapping (NO) cases 
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Figure II-11. Milton bounds for 
𝑘

𝐾𝑚
 and 

µ

µ𝑚
   for overlapping and non-

overlapping for 𝑉𝑓 = 25.18% and varying contrasts 𝐶  
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The lower bounds for non-overlapping are very close to HS
-
. Actually, for stiffer fibers than 

the matrix at a given volume fraction, the geometry of fiber reinforced composites are very 

similar to the HS
- geometry sketched in figure II-8 (left). 

 

The upper bounds were not built with suitable microstructures but by an “inversion” of the 

lower bounds through the variational process. The upper bounds could be significantly more 

accurate based on their real microstructures but can hardly be analytically calculated due to 

the complexity of the geometry. Other methods of homogenization by numerical 

approaches are required; they will be the main topic of the next chapter. 
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The ever growing interest for composite materials in industrial, technological and 

scientific fields in the course of the last century has led to the significant development of a 

large variety of computational homogenization techniques in order to precisely establish the 

effective properties of heterogeneous media. Today, digital homogenization has become 

one of the strongest tools for determining these properties especially being a method 

applicable to any type of composites and characterized by its fast and highly accurate 

results. One of the most commonly used numerical homogenization methods, also the one 

chosen for this work, consists of applying finite element calculations (FEM) on numerical 

samples built by image processing. These samples have to be of a sufficient size to better 

represent the full microstructure and mimic its response to various loadings. For this 

purpose, the knowledge of the Representative Volume Element (RVE) is crucial for 

determining the effective properties of heterogeneous materials. 

 

In this chapter, the numerical homogenization by finite elements using RVE for 

parallel, circular fiber reinforced composites will be detailed, starting with a brief 

presentation of the FEM simulations followed by validation of our numerical results. These 

simulations were carried out using an existing FEM code however all post processing was 

developed as a part of this work using the Matlab software. 
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I- Finite element method 
 

For homogenization of effective properties, both elastic and thermal, the knowledge of 
respectively stress and displacement fields and temperature and heat flux fields is necessary.  

The usual numerical method to calculate these fields is FEM which is based on the weak 
formulation and can be interpreted as the virtual work principle for a deformable body.  

 

I-1   Boundary conditions 

 

Three types of classical boundary conditions are usually considered to be prescribed on the 

boundary of the domain. In the case of linear elasticity, these conditions are: static uniform 

boundary conditions (SUBC) in which a traction vector is applied at the boundary of the 

sample, kinematic uniform boundary conditions (KUBC) and periodic conditions (PBC).  

Convergence of the results is faster for KUBC and PBC, therefore the focus in this chapter 

was on these boundary conditions which will be detailed below.   

In the thermal case, similar boundary conditions are commonly used, namely: uniform heat 

flux (UHF), uniform gradient of temperature (UGT) and the thermal periodic conditions 

(PBCT). Similar to the SUBC, the UHF will not be used within our framework. 

The size of the RVE is known (Kanit et al. (2003)) to be sensitive to boundary conditions and 

comparison of results under different boundary conditions, KUBC and PBC or UGT and PBCT, 

allows verifying the convergence of effective properties.  

 

I-1-1   Mechanical boundary conditions 

 

The applied boundary conditions used in our computations in the case of linear elasticity are 

strains. The displacement could either be uniform KUBC or periodic PBC. 

𝑉 denotes the surface of the considered domain in a 3D case.  

- KUBC is described by imposing the displacement 𝐮 at a point 𝐱 which belongs to the 

boundary ∂V (figure III-1.): 

𝐮 = 𝐸 𝐱  Ɐ𝐱 ∈ 𝜕𝑉 

 

(1) 
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where 𝐸 is a symmetrical second-order tensor independent of  𝐱 which implies: 

𝐸 = 〈휀〉 =
1

𝑉
∫ 휀 𝑑𝑉
𝑉

 

 

The macroscopic stress tensor is defined by the spatial average: 

Ʃ = 〈𝜎〉 =
1

𝑉
∫ 𝜎 𝑑𝑉
𝑉

 

 

- PBC has the same displacement field as KUBC but a periodic fluctuation 𝛖 is added into the 

equation. The particularity with the PBC is that the fluctuation takes the same values at two 

homologous points on opposite edges of the microstructure (figure III-2.): 

 

𝐮 = 𝐸 𝐱 + 𝛖  Ɐ𝐱 ∈ 𝜕𝑉 

 

 

 

 

 

 

 

 

𝑢 𝑢 

   Figure III-1. Uniform displacement applied on ∂V 

𝑢 𝑢 

 Figure III-2. Periodic displacement applied on ∂V 

(2) 

(3) 

(4) 
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It should be noted that in this work, calculations are strictly linear elastic with a plane strain 

hypothesis. This implies that for each boundary condition, only a single solution is admitted. 

To determine the apparent mechanical properties, strain tensors 𝐸 are defined for the 

calculation of each elastic modulus. For both KUBC and PBC, these macroscopic strain 

tensors are applied as follows for 2D: 

 

 

Then homogenization of apparent macroscopic plane bulk and shear moduli 𝑘 and µ can be 
obtained from the elastic stress field using the Hell-Mandel lemma:  

 

𝑘 = 〈𝜎〉: 𝐸𝑘 =
1

2
[𝑡𝑟𝑎𝑐𝑒(〈𝜎〉)] and µ = 〈𝜎〉: 𝐸µ = 〈𝜎12〉 

Where  ⟨ .. ⟩ brackets indicate volume averaging of macroscopic 〈𝜎〉 and local stress 𝜎. 

 

I-1-2   Thermal boundary conditions 

Following Fourier’s law, the thermal flux vector 𝐪 is related to the temperature gradient by 

means of the thermal conductivity tensor as follows: 

 

𝐪 = −𝜆 𝛁𝑇   

With 𝑇 the temperature and 𝛁𝑇 its gradient.   

-In the case of the Uniform Gradient of Temperature at the boundaries (UGT), a uniform 

temperatures 𝑇1 and 𝑇2 are applied on two opposite outer sides of the volume 𝑉 linked by a 

uniform gradient 𝛁𝑇 on the adjacent sides (figure III-3) : 

 

 

 

 

 

 

𝐸𝑘 =
1

2
(

1 0 0
0 1 0
0 0 0

)        𝐸µ =
1

2
(

0 1 0
1 0 0
0 0 0

)         

 

𝑇1 𝑇2 

∇T 

∇T 

       Figure III-3. Uniform gradient of temperature applied on ∂V 

(5) 

(6) 

(7) 
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The vector of macroscopic heat flux is defined by the surface average that can be replaced 

by a volume average as follows: 

𝐐 =̂ 〈𝐪〉 =
1

𝑉
∫ 𝐪 𝑑𝑉

𝑉

 

-The Periodic Boundary Conditions (PBCT) are similar to UGT with temperatures 𝑇1 + 𝑡 and 

𝑇2 + 𝑡 instead of 𝑇1 and 𝑇2, where 𝑡 is a temperature fluctuation (figure III-4.):  

 

 

 

 

 

 

 

 

 

In the upcoming chapters, only the uniform boundary conditions for both the mechanical 

and thermal behaviors are going to be used,  given the very slight differences between the 

uniform and periodic boundary conditions shown by the results in the following sections.  

 

I-2   Meshing 

After generating the 2D image samples described in chapter 1, the meshing process is 

carried out using the multi-phase element technique that consists of superposing square 

element grids with 8 nodes on microstructure image samples instead of triangular ones since 

it requires less finite elements to reach the convergence of elastic properties. The proper 

phase property is then allocated to each integration point of the mesh. This meshing 

technique was chosen for simplicity and time saving purposes. 

With this meshing technique, there are no degrees of freedom at the interface between 

phases which denotes a perfect adhesion or a continuity of stress and displacement fields 

hence the study of inter-fiber contacts was not necessary. To ensure accurate results, even 

in high stress gradient situations, the mesh was of 5002
 quadratic finite elements. 

∇T 

∇T 

𝑇2 + 𝑡 𝑇1 + 𝑡 

       Figure III-4. Periodic boundary conditions applied on ∂V 

(8) 
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Previous works have shown that from a macroscopic perspective, the properties obtained 

while using the multi-phase meshing technique are similar to those for which the free 

meshing (Delaunay triangle elements) is used Kanit et al. (2003). However, the two 

techniques show slight local field discrepancies where the free meshing technique happens 

to be more accurate Lippmann et al. (1997). Still, in our case of macroscopic properties, this 

difference is not of great importance.  

The application of periodic boundary conditions (PBC) on boundaries of the domain also calls 

for the use of square elements that ensure regular node distributions on the mesh edges 

rather than triangular ones for which this condition is not sure to be fulfilled, hence securing 

a uniform distribution and the proper functioning of the PBC. 

An example of a multiphasic meshed image sample with a square grid is shown in figure III-5.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a

(c) 

Figure III-5. Description of the multi-phase meshing technique: (a) Square 

meshing grid applied to (b) image sample and (c) the final meshed image sample 
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The mesh quality was also verified by controlling the final volume fraction of the meshed 
sample. 

 

II- Validation of simulations 
 
 

In this section, only the validation of the samples will be presented. Actually, the FEM code 
used to obtain the numerical results is known to be highly accurate (ref. Kanit ???) yet the 
ratio between the characteristic sizes of inclusions and the mesh, the typical size of the RVE 
and the edge effect on the effective values had to be quantified. 
 

II-1   Mesh density 

With the multiphase mesh technique, the possibility of having two different phases in the 

same finite element is a disadvantage that can skew the results. Thus, to ensure accuracy, 

even in high stress gradients situations, the finite element mesh must be fine enough to 

avoid dependence of results on mesh scales. It is then mandatory to study the different 

mesh resolutions. For this matter, a wide range of increasing mesh grids were tested for the 

same non-overlapping microstructure, namely here: 502, 1002, 1502, 2002, 2502, 3002, 4002 

and 5002. The bulk modulus was calculated on the previous different mesh grids for a 

volume fraction 𝑉𝑓 = 30% until the convergence stabilized as shown in figure III-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-6. Evolution of the bulk moduli as a function to the number of 

finite elements for 𝑉𝑓 = 30% 
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It is noticed that the bulk modulus tends to stabilize for large node densities, starting at the 

3002 mesh grid.  

The study was conducted on the bulk moduli because shear modulus is known to converge 

faster.   

The mesh density used for all the studies conducted and presented in this manuscript was 

that of 5002 finite elements ensuring an accurate representation of the geometry. 

 

II-2   Study of RVE 

 

In the following work, a study to determine the representative volume element RVE of our 

microstructures has been conducted on 3 generated overlapping image samples of different 

sizes (figure III-7) where 𝑁 is the number of inclusions. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

Figure III-7. Different overlapping sample sizes (a) 𝑁 = 200, (b) 𝑁 = 300 

and (c) 𝑁 = 400 
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As an example, the following table 1 summarizes the numerical results for a volume fraction 

𝑉𝑓 = 30% with Young moduli 𝐸𝑚 = 10 𝐺𝑃𝑎, 𝐸𝑖 = 1000 𝐺𝑃𝑎 and Poisson ratio 𝜐𝑚 = 𝜐𝑖 =

0.3 and thermal conductivity 𝜆𝑖 = 1000 𝑊𝑚−1𝐾−1  and 𝜆𝑚 = 10 𝑊𝑚−1𝐾−1. 

 

 

Bulk Shear Thermal Conductivity 

𝑵 KUBC PBC KUBC PBC UGT PBCT  

200 15.8 15.62 6.85 6.68 19.95 19.63  

300 15.73 15.59 6.91 6.78 20.61 20.21  

400 14.04 13.94 6.02 5.91 17.64 17.26 

 

 

 

 

Table 1 shows that for 𝑁 = 200, we reach a good convergence of the results and the 

discrepancy between uniform and periodic boundary conditions  is generally less than 2%.  

This sample size can be considered an RVE and used for later work.   

In the upcoming studies, and due to computer hardware limitations (the previous 

calculations were carried out on a more performant computer), the samples will be limited 

to 𝑁 = 49 fiber inclusions beyond which the results lose precision and become inaccurate 

and the simulations will be studied under KUBC boundary conditions. 

To overcome this limitation, the results presented in this work, for any given physical 

property, were averaged on 25 different samples that were necessary to reach convergence 

of the overall elastic and thermal properties. Thus the numerical accuracy and the precision 

of calculations were preserved. 

However, with samples (𝑁 = 49) significantly smaller than the RVE (𝑁 = 200) the issue of 

boundary conditions also referred to later as the edge effect becomes highly relevant and 

necessitates a closer study which is going to be the subject of the next section. 

 

II-3   Edge effects  

Because the RVE is not reached on the scale of a single image of 𝑁 = 49, local effects in the 

zones adjacent to borders could affect the effective properties and were to be looked at 

closely.  

Table 1. Results under different boundary conditions for the 3 overlapping 
image samples in GPa 
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On plane samples where the centers of inclusions were randomly generated following a 

Poisson law, some inclusions can be truncated on the edges of the sample as figure III-8 

shows. 

 

 

 

  

 

 

 

 

 

 

 

 

Another way to create samples is to impose an additional condition of staying strictly within 

the frame for the fibers. They are referred to as framed samples (figure III-9). 

 

 

 

 

                   

  

 

 

 

 

 

 

Figure III-8. Plane (a) overlapping and (b) non-overlapping 

samples 

(a) (b) 

Figure III-9. Framed (a) overlapping and (b) non-overlapping samples 

(a) (b) 
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The plane samples were not considered in this work due to difficulties in controlling the 

volume fraction and only the framed samples were studied.  

To characterize the edge effects on numerical results, the study was only carried on the bulk 

elastic property case, which is representative of the problem. For this, partial samples of the 

original ones were generated in order to compare the results for both samples.  

The original 3002 pixels sample was cropped by 𝐿 = 26.5 pixels as sketched on figures III-10 

and III-11 which corresponds to the diameter of an inclusion and then cropped by 𝐿 = 30 

pixels for the second sample that aims to go a little further into the structure and would help 

determine the limits of these edge effects. The error on 𝑉𝑓 was always kept lower than 1%. 

The presented results were averaged on 3 image samples for both overlapping (𝑉𝑓 =

25.7% 𝑁 = 49) and non-overlapping (𝑉𝑓 = 30% 𝑁 = 49) examples.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

L 

(a) 

 (b) 

(c) 

Figure III-10. Overlapping: (a) Initial sample, (b) Embedded sample (𝐿 = 26.5) and 

(c) Embedded sample (𝐿 = 30) 
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The following table 2 summarizes the obtained results: 

  

Overlapping Non-Overlapping 

  

Bulk Bulk 

Framed sample 15.53 15.81 

Partial 
samples 

L=26.5 22.73 20.84 

L=30 22.79 20.68 

 

                  

 

L 

(a) 

(b)

L 

(c)

L 

Figure III-11. Non- overlapping: (a) Initial sample, (b) Embedded sample (𝐿 = 26.5) and 

(c) Embedded sample (𝐿 = 30) 

 

Table 2. Results for bulk modulus for overlapping 𝑉𝑓 = 25.7% and non-

overlapping 𝑉𝑓 = 30% samples  
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The comparison of the two partial samples shows that edge effects are of very low influence 

on effective bulk moduli. The relative discrepancies are of same order than those of volume 

fraction (less than 1%). However, the behavior of the framed samples is significantly 

different with effective bulk moduli 30% lower due to the absence of inclusions on the 

boundaries.  

 

The results of Part 2 will all be obtained on framed samples that are more representative of 

materials in real applications in which all fibers are located within the matrix. 

 



 

 
 



 

 
 



 

 
 



 

 
 

 

 

 
 

 

 

 

 

Part 2 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

Characterization 
of samples 



 

 
 



Chapter 4 : Characterization of samples 

 

119 
 

 

 

 

 

 

The aim of this chapter is to characterize the microstructures of the 49 inclusion samples 

which will be used for non-overlapping aligned fiber reinforced composites.  

Two main results stand out:  

 

- The influence of inclusions on bulk modulus is at longer range for RSA samples than 

for PY ones for which stresses are minimized.  

 

- For well-defined microstructures, the RVE minimum size is reduced to less than 49 

inclusions. 

 

 

As in the previous chapter, the overlapping case will be used as a reference given its 

trivial fiber distribution following a Poisson law. 

All the results are presented for a contrast between fibers and matrix Young moduli 

𝐶 =
𝐸𝑖

𝐸𝑚
= 100. This contrast is the same for bulk and shear moduli as the Poisson ratios for 

both phases were chosen equal. 
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I- Integral range 

As mentioned in chapter 1, contrary to 𝑔(𝑟), the two-point correlation function 𝑆2 alone 

contains little information. Nevertheless, 𝑆2 allows a measure of the characteristic length 

scales of the variation of physical quantities such as bulk modulus called the integral range. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-1 shows the covariance on the characteristic function I for overlapping, RSA and PY 

samples. These results were obtained by ensemble averaging on 25 samples of 49 inclusions. 

Covariance is equivalent to 𝑆2 but is summable with null values at long distance. Negative 

values appear around the abscissa ℎ/𝑑=1 for the non-overlapping systems denoting an 

increase in the rate of finding two points separated by a distance h in two different phases 

unlike for the overlapping ones in which the probability of finding two points in the same 

phase is higher, especially in the inclusion phase for volume fractions less than 50%.  

PY and RSA covariance curves are very similar so 𝐶(ℎ) or 𝑆2 are not suitable tools to 

compare different non-overlapping structures, higher 𝑛 −point probability functions are 

required (at least 𝑆3 as it was the case in Milton bound calculations). Therefore, in this study 

of non-overlapping composites, Rdf will be favored as the second order correlation.  

An efficient tool to measure the discrepancies between characteristic functions is the 

integral range Jeulin (2016) that is the sphere of influence through the characteristic  

 

Figure IV-1. Covariance on 𝐼 for overlapping and non-overlapping 

composites for 𝑉𝑓 = 25.18% and 𝐶 = 100 
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functions of the considered physical quantity. For two dimensional problems, the sphere is 

reduced to a circle. 

Let 𝐶 be the covariance of these functions in 2D: 

𝐴 =
1

𝐶(0)
∬ 𝐶(√𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝑆
 

Which becomes in cylindrical coordinates: 

𝐴 =
2𝜋

𝐶(0)
∫ 𝐶(ℎ) ℎ 𝑑ℎ

+∞

0
 

For the covariance on figure IV-1, the integral ranges on the characteristic function are 

respectively 𝐴 = 0.71d2 and 𝐴 = 0.97d2 for PY and overlapping samples. The highest value 

denotes connectedness between fibers.  

 

 

 

 

 

 

 

 

 

 

 

 

As for covariance on 𝐼, covariance on 𝑘 shows a higher value for overlapping than non-

overlapping cases (figure IV-2). The corresponding integral ranges are 𝐴 = 8.72𝑑2 and  

𝐴 = 3.74𝑑2, denoting again the connectedness of the overlapping system. 

 

 

Figure IV-2. Covariance on bulk modulus 𝑘 for overlapping and non-

overlapping PY samples for 𝑉𝑓 = 25.18% and 𝐶 = 100 

(1) 

(2) 
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The integral range evaluated from figure IV-3 for PY and RSA are respectively 𝐴 = 3.7 𝑑2 and 

𝐴 = 11.7 𝑑2 denoting larger areas of high stresses around fibers for RSA sample due to 

occurrence of fiber close-together as it is confirmed by the Rdf on figure IV-4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-3. Covariance on bulk modulus 𝑘 for non-overlapping PY 

and RSA samples for 𝑉𝑓 = 25.18% and 𝐶 = 100 

Figure IV-4. Rdf for PY and RSA samples of 𝑉𝑓 = 25.18% 
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The peak 𝑔(1 < 𝑟 < 1.5) is 1.5 times higher for RSA than PY and denotes the formation of 

chains of fibers where higher stresses occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-5 confirms the previous deduction from 𝑔(𝑟). For PY, high stresses appear only 

between pairs of fibers while for RSA, these high stresses form line segments aligned in the 

direction of the strain. The PY sample is more homogeneous than the RSA one where large 

areas of matrix characterized by low stresses occur but are still insufficient to compensate 

for the high stress chains. The effective values for RSA are higher than those of PY of about 

10%.  

 

 

 

(a) (b) 

Figure IV-5. Normal stress 𝜎11 maps for (a) PY and (b) RSA samples (GPa) 

for 𝐶 = 100 and 𝑉𝑓 = 25.18% 



Chapter 4 : Characterization of samples 

 

124 
 

 

 

 

 

 

 

 

 

 

 

 

 

For each of the random variables 𝐼, 𝑘 and λ, the shape of the covariance curves on the PY 

samples is different indicating different integral ranges (figure IV-6). For 𝐼, 𝐴 = 0.71𝑑2 which 

is close to the surface area of inclusions 
𝜋𝑑2

4
 while for 𝑘 and λ, we have respectively 

𝐴 = 3.74𝑑2 and 𝐴 = 4.32𝑑2 which corresponds to a diameter slightly higher than 2𝑑. The 

integral range of the thermal conductivity is higher than that of bulk modulus, however, 

there is a large uncertainty on the integral range due to integration with cylindrical 

coordinates that amplifies the small fluctuations at long distance. The variation in elasticity 

damps more rapidly than in thermal conductivity.  

The shear stress corresponds to a “rotation” within the solid so covariance on shear modulus 

is irrelevant and was not studied. 

 

II- Homogeneity of samples  

 

At the scale of a chosen sample, the macroscale, the volume fraction is well defined while at 

smaller scales, ranging from those of inclusions (microscale) to intermediate ones 

(mesoscale), the local volume fraction may fluctuate. On small samples of only 49 inclusions, 

these fluctuations might significantly affect physical effective properties unlike samples of 

RVE size where local fluctuations are overshadowed by the large number of inclusions. 

Figure IV-6. Covariance on the characteristic function 𝐼, bulk modulus 

𝑘 and thermal conductivity λ for non-overlapping PY samples for 

𝑉𝑓 = 25.18% and 𝐶 = 100 

𝜆 

 

𝑘 

 

𝐼 
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A measure of these fluctuations was introduced by Lu and Torquato (1990) by means of an 

adimensioned standard deviation 𝜎𝑉𝑓1
of the local volume fraction called coarseness 𝐶𝑆1. 

Let 𝑆1 be the area of a sliding window swept across the whole surface 𝑆 of the sample, a 

local volume fraction 𝑉𝑓1 is associated to each 𝒙 position of 𝑆1(𝒙): 

 

𝑉𝑓1(𝒙) =
1

𝑆1
∬ 𝐼(𝒙)𝑑𝒙

𝑆1
 

The coarseness is defined by: 

𝐶𝑆1
=

𝜎𝑉𝑓1

𝑉𝑓
 

Where  𝑁1 positions were chosen depending on the size of the window: 

 

                                            𝜎𝑉𝑓1
= √

1

𝑁1
∑ (𝑉𝑓1𝑖 − 𝑉𝑓)

2𝑁1

𝑖=1  

 

And with the properties of the characteristic function 𝐼(𝒙): 

 

𝜎𝑉𝑓1
= √

1

𝑁1
∑ 𝑉𝑓1𝑖

2𝑁1

𝑖=1 − 𝑉𝑓
2 

 

 

 

 

 

 

 

 

 

(3) 

(6) 

(5) 

(4) 
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Typical examples of coarseness are presented in figure IV-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Naturally for small windows, the coarseness is high with frequent changes of phase. As 

window size increases, 𝐶𝑆1
 decreases down to zero for 𝑆1 = 𝑆. Thus, very small and very 

large window sizes with regard to inclusion size are not relevant.  

The following results are presented for three windows of sizes:  

𝑆1 = 1.2 𝑆𝐼𝑛𝑐𝑙 = 0.0062 𝑆 , 𝑆1 = 5.0 𝑆𝐼𝑛𝑐𝑙 = 0.0257 𝑆   and 𝑆1 = 11.2 𝑆𝐼𝑛𝑐𝑙 = 0.0576 𝑆 

As it will be shown in chapter 6, the peak of 𝑔(1 < 𝑟 < 1.5) is a significant parameter for 

determining the values of the effective properties, therefore, figure IV-7 are phase diagrams 

between coarseness and 𝑔(1 < 𝑟 < 1.5). 

 

 

 

 

 

Figure IV-7. Typical coarseness curves for overlapping and non-overlapping 

PY samples for 𝑉𝑓 = 25.18% 
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𝐒𝟏 = 𝟏.𝟐 𝐒𝐈𝐧𝐜𝐥 

𝐒𝟏 = 𝟓  𝐒𝐈𝐧𝐜𝐥 
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On figure IV-8, the whole ensemble of points are scattered indicating that coarseness is 

uncorrelated with the peak of Rdf and could be a complementary tool to characterize 

influence of microstructure on homogenization.  

Naturally for the small window 𝑆1 = 1.2 𝑆𝐼𝑛𝑐𝑙, the overlapping and non-overlapping 

populations are clearly distinct due to connectedness of fibers in the former. As the window 

size increases, the two populations merge and even at mesoscale 𝑆1 = 11.2 𝑆𝐼𝑛𝑐𝑙, the 

overlapping samples are still more inhomogeneous. From 𝑆1 = 1.2 𝑆𝐼𝑛𝑐𝑙 to  11.2 𝑆𝐼𝑛𝑐𝑙, the 

coarseness evolves from respectively 12 and 18% for non-overlapping and overlapping to 

about 5% for both which denotes an expected change in the shape of the  probability density 

of the local volume fraction as sketched on figure IV-8. 

 

 

 

 

 

𝐒𝟏 = 𝟏𝟏.𝟐 𝐒𝐈𝐧𝐜𝐥 

Figure IV-8. Peak of Rdf with regard to coarseness for three window sizes: 

𝑆1 = 1.2 𝑆𝐼𝑛𝑐𝑙 , 𝑆1 = 5.0 𝑆𝐼𝑛𝑐𝑙   and 𝑆1 = 11.2 𝑆𝐼𝑛𝑐𝑙 for 𝑉𝑓 = 25.18% 
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For windows at microscale 𝑆1 < 𝑆𝐼𝑛𝑐𝑙, the probability density frequencies of 𝑉𝑓1 exhibits two 

Dirac distributions for 𝑉𝑓1 = 0 and 𝑉𝑓1 = 𝑉𝑓 corresponding respectively to the windows in 

the matrix and the inclusions. When both matrix and inclusion phases are within the 

window, a continuous probability density frequencies between the two peaks is expected, 

schematically represented in figure IV-9 by a straight line. This window size does not provide 

new information on microstructures and will not be used for the study of coarseness 

influence on effective values. Actually, the inhomogeneity in volume fraction can only be 

revealed at mesoscales. 

For large windows at mesoscale, the probability density frequencies of 𝑉𝑓 behaves as a 

maxwellian distribution centered on 𝑉𝑓 with decreasing widths as the window size increases 

(from the red curve to the blue).  

 

 

 

 

 

 

 

Figure IV-9. Schematic probability density frequencies 𝑃(𝑉𝑓1) 
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𝐒𝟏 = 𝟏𝟏.𝟐  𝐒𝐈𝐧𝐜𝐥 

𝐒𝟏 = 𝟓.𝟎  𝐒𝐈𝐧𝐜𝐥 

Figure IV-10. Bulk modulus with regard to coarseness for two window sizes: 

𝑆1 = 5.0 𝑆𝐼𝑛𝑐𝑙   and 𝑆1 = 11.2 𝑆𝐼𝑛𝑐𝑙 for 𝑉𝑓 = 25.18% 
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𝐒𝟏 = 𝟏𝟏.𝟐  𝐒𝐈𝐧𝐜𝐥 

𝐒𝟏 = 𝟓.𝟎  𝐒𝐈𝐧𝐜𝐥 

Figure IV-11. Shear modulus with regard to coarseness for two window sizes: 

𝑆1 = 5.0 𝑆𝐼𝑛𝑐𝑙   and 𝑆1 = 11.2 𝑆𝐼𝑛𝑐𝑙 for 𝑉𝑓 = 25.18% 
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The homogenized values of bulk moduli are uncorrelated with coarseness as figure IV-10 

shows. Coarseness is not able to capture the relevant inhomogeneities that affect the bulk 

effective values. However, shear moduli clearly increase with coarseness as illustrated on 

figure IV-11 by the tendency arrows evaluated with the help of least square regression but 

the reason why shear is more sensitive than bulk to local density inhomogeneity is still not 

explained. 

For both window sizes, this tendency is significant enough to be taken into account in 

modelization of microstructures for homogenization of shear stresses. 

 

III- RVE minimum size 

 

For bulk modulus the PY values, shown on figure IV-10, are less dispersed than those of RSA. 

The extreme PY values deviate by 5% from the mean value while those of RSA deviate by 

15% due to a better control of microstructures on PY systems. The shear stress seems less 

sensitive to dispersion in microstructures as RSA and PY values on figure IV-10 show. Thus, 

for bulk modulus, it is expected that a controlled microstructure leads to a smaller RVE.  

The PY samples in this study were built with a SA that only controlled the peak 𝑔(1 < 𝑟 <

1.5). Their second order correlations can slightly differ from those of real PY 

microstructures. That explains the above mentioned dispersion of their bulk moduli.  

Among the 25 samples built according to a PY distribution with 𝑉𝑓 = 25.18%, three were 

selected and are sketched on figure VI-12. The (a) sample has a bulk modulus close to the 

value averaged on the 25 samples while for (b) and (c) samples, the bulk moduli are 

respectively higher and lower, both deviating from the average value by 5%. 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure IV-12. Three PY samples: (a) with a bulk modulus close to the mean 

value and (b) and (c) samples with bulk moduli respectively higher and lower. 
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At mesoscale, all three samples seem to present inhomogeneity characterized by large voids 

so their coarseness was evaluated (figure IV-13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

No significant differences between the three samples are observed but surprisingly, slightly 

higher coarseness values for sample (a). For a family of samples that already tends toward a 

PY distribution, the coarseness is not a relevant tool hence the study of their Rdf (figure IV-

14). 

 

Figure IV-13. Coarseness on the three PY samples (a), (b) and (c) for 

𝑉𝑓 = 25.18%   
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Rdf on sample (a) suits very well the mean values that are those of the RVE. For samples (b) 

and (c), Rdf values are respectively too high at a very short distance less than two diameters 

and larger distances around three diameters. For sample (b), local areas of high stresses 

appear while for sample (c) high stresses are avoided. 

A sample of 49 non-overlapping inclusions with an efficient control of its Rdf such as sample 

(a) allows to reach RVE according to a high enough precision to observe fluctuations lower 

than 1% while the usual (without fine Rdf control) RVE sizes for RSA samples are around 300 

inclusions, 6 times larger. This confirms the efficiency of Rdf to describe and control 

microstructures of fiber reinforced composites. It could be expected that reaching RVE could 

Figure IV-14. Comparison between the mean Rdf and Rdfs of the three PY 

samples (a), (b) and (c) for 𝑉𝑓 = 25.18% 
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require even smaller samples if higher order correlations such as 𝑔𝑁
(𝑛)

 with 𝑛 > 2 are 

controlled as well. In the following chapters, all random samples will be built according to 

the PY Rdfs. 
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In terms of contrast 𝐶, the elastic behavior of reinforced composites is not trivial:  the 

matrix cushions the deformation of inclusions. The two simple situations of 𝐶 = 1 and 

𝐶 → ∞ lead to easy interpretation, respectively the obvious homogeneous elastic behavior 

and displacements of rigid bodies. One can expect the field of stresses at infinite contrast to 

mathematically behave as the characteristic function 𝐼, meaning, only two discrete values of 

local elastic coefficients are observed, one in the matrix and the other within the inclusions.   

Generally, the homogenized elastic coefficients 𝑘 and µ could be expected at first order to 

be given by simple arithmetic or harmonic averaged values, respectively:  

 

𝑘 = 𝑉𝑓𝐾𝑖 + (1 − 𝑉𝑓)𝐾𝑚       𝑜𝑟       µ = 𝑉𝑓µ𝑖 + (1 − 𝑉𝑓)µ𝑚 

And 

 

1

𝑘
= 𝑉𝑓

1

𝐾𝑖
+ (1 − 𝑉𝑓)

1

𝐾𝑚
       𝑜𝑟       

1

µ
= 𝑉𝑓

1

µ𝑖
+ (1 − 𝑉𝑓)

1

µ𝑚
 

 

In reality, these expressions are only valid for laminated composites with stresses and 

deformations in the plane aligned with the composites layers for the arithmetic average 

(Voigt (1889)) and perpendicular to the layers for the harmonic one (Reuss (1929)). 

Obviously, when 𝐶 → ∞, these expressions are respectively: 𝑘 = 𝐾𝑖  and 𝑘 =   
𝐾𝑚

(1−𝑉𝑓)
.   

For more complicated materials such as fiber reinforced composites, the influence of 

microstructure cannot be overlooked and additional information is required. It will be shown 

again that the two-point probability function 𝑆2 or similarly the covariance 𝐶(ℎ) that provide 

a first knowledge of the geometry, for instance, the distinction between overlapping and 

non-overlapping systems (figure I-12) are still not sufficient when describing elastic behavior 

at high contrasts.  

 

In this chapter, the focus will be on identifying the elastic and rigid body behaviors. In 

overlapping situations, the connection between fibers creates large rigid areas that reduce 

the elasticity of the composite especially at high contrasts. Therefore, a comparison between 

overlapping and PY non-overlapping systems will also be carried out.
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I- Effective elastic values with regard to contrast 

 

Effective values of bulk and shear moduli with regard to contrast are presented on figure V-1 

below. These results were obtained by ensemble averaging on 25 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-1. 
𝑘

𝐾𝑚
 and 

µ

µ𝑚
  with regard to contrast for overlapping and non-

overlapping fibers for  𝑉𝑓 = 25.18% 
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Figure V-1 shows similar tendencies for both bulk and shear moduli:  a continuous increase 

of effective values. For contrasts ranging from 1 to 5 where it is assumed that the behavior is 

purely elastic, effective values increase very rapidly with contrast. Above 𝐶 = 30, effective 

values seem to stabilize. 

Figures V-2 and V-3 present the same curves as figure V-1 with a more suitable logarithmic 

abscissa compared to the Milton lower bounds for bulk and shear moduli. For all contrasts, 

the homogenized values fit very well with the lower Milton bound kM- for the overlapping 

cases whereas for non-overlapping ones, these values slightly deviate (2% at 𝐶 = 100) from 

the lower bounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-2.  Milton lower bounds and bulk modulus with regard to 

contrast for overlapping and non-overlapping systems for 𝑉𝑓 = 25.18% 
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Just like bulk stresses, shear stresses fit very well with the lower Milton bound µM- for 

overlapping systems while for non-overlapping ones, the discrepancies between effective 

values and µM- can reach 18% at 𝐶 = 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The logarithmic abscissa plots prove that the stabilization of effective values around 𝐶 = 30 

was an artifact especially for non-overlapping samples. 

Further simulations for higher contrasts have shown no evolution of 𝑘 and µ values for 

contrasts over 𝐶 = 100 while micro scale physical processes continue to evolve as the 

following observations of stress distributions within samples will demonstrate. 

Figure V-3.  Milton lower bounds and shear modulus with regard to 

contrast for overlapping and non-overlapping systems for 𝑉𝑓 = 25.18% 
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Compared to the commonly admitted threshold for pure rigid body behavior of fibers in 

industrial applications, these contrast values are surprisingly high as it will be shown on 

Table V-1. 

The first tool used to closely detail the stress distributions is their histograms or probability 

density frequencies (figure V-4). 
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All histograms of local values of bulk stress in figure V-4 exhibit two peaks. These two peaks 

correspond to the values  𝑘𝑚 = 9.615 𝐺𝑃𝑎 and 𝑘𝑖 = 𝐶 𝑘𝑚 of bulk moduli of matrix and 

inclusions but only at the very low contrast of 𝐶 = 1.1.  

Figure V-4. Histograms of local values of bulk modulus for (a) 𝐶 = 1.1, (b) 

𝐶 = 2, (c) 𝐶 = 10 and (d) 𝐶 = 100 for 𝑉𝑓 = 25.18% 
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Let us consider 𝐾𝐿 the most probable value of the lower peak and 𝐾𝑈 that of the upper one 

and they are plotted on figure V-5. 

 

 

 

 

 

 

 

 

 

 

Naturally, the gap between 𝐾𝐿 and 𝐾𝑈 tends toward 0 as the contrast tends towards 1 and 

increases. It can be assumed, as shown on stress maps of figure V-7 that 𝐾𝐿 and 𝐾𝑈 are 

respectively the relevant elasticities of the matrix and the inclusions. Rapidly at 𝐶 = 10, 𝐾𝐿 

stabilizes suggesting that the matrix behaves as if surrounding rigid bodies.  

The values of 𝐾𝐿 and 𝐾𝑈 in themselves are not significant unless compared to 𝐾𝑖 and 𝐾𝑚 as 

plotted in figure V-6. 

 

 

 

 

 

 

 

 

 

 

Figure V-5. Most probable values 𝐾𝐿 and 𝐾𝑈 (GPa) with regard to contrast 

𝐶 for 𝑉𝑓 = 25.18% 

Figure V-6.  
𝑘𝐿

𝑘𝑚
 and 

𝑘𝑈

𝑘𝑖
 as a function of the contrast 𝐶 for 𝑉𝑓 = 25.18% 
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For inclusions, the rigid body behavior seems to occur at 𝐶 = 60 where 𝐾𝑈 becomes 

constant. These observations are confirmed by the curves on figure V-6. 

𝐾𝐿 stabilizes at 1.3 𝑘𝑚 and so denotes higher rates of deformation of the matrix which 

correspond exactly to the expected  
𝐾𝑚

(1−𝑉𝑓)
. 

  
𝑘𝑈

𝑘𝑖
 tends toward 0 for high contrasts denoting that the local stresses are not strong enough 

to deform the inclusions and confirming pure rigid body motions. The comparison between 

𝐾𝑈 and 𝑘𝑖  suggests that these motions occur around 𝐶 = 30 rather than 𝐶 = 60 but it is 

difficult to determine a real threshold.  

On the maps of figure V-7 that compare bulk stresses at 𝐶 = 30 and 𝐶 = 100, discrepancies 

are still noticeable.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

The differences of bulk stresses between contrasts of 30 and 100 shown on map (c) can 

reach 18% of the local stress. The same map comparison for 𝐶 = 60 and 𝐶 = 100 gives 

insignificant differences and were not presented. 

 

Figure V-7. Bulk stress maps: (a) for contrasts of 30 (b) for contrasts of 100 and map 

(c) of the differences between maps (a) and (b) for 𝑉𝑓 = 25.18% 

(a) (b) (c) 



Chapter 5 : Contrast 

 

147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

N
u

m
b

e
r 

o
f 

o
cc

u
rr

e
n

ce
s 

Local values of shear stress µ (GPa) 

(b) 

Local values of shear stress µ (GPa) 

N
u

m
b

e
r 

o
f 

o
cc

u
rr

e
n

ce
s 



Chapter 5 : Contrast 

 

148 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At low contrasts, the histograms of figure V-8 on shear modulus show two peaks of most 

probable values close to µ𝑚 = 3.84 𝐺𝑃𝑎 for the lower peak and always lower than µ𝑖 for the 

upper one. Rapidly for higher contrasts 𝐶 > 2, a single mode of deformation is observed. 

(c) 

Local values of shear stress µ (GPa) 
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Figure V-8.  Histograms of local values of shear stress and their corresponding 

stress maps on 𝜎12 for (a) 𝐶 = 1.1, (b) 𝐶 = 2, (c) 𝐶 = 10 and (d) 𝐶 = 100 for 

𝑉𝑓 = 25.18% 
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This is suggesting two behavior modes with transitions that occur for 2 < 𝐶 < 10 rather 

than 30 < 𝐶 < 60 for bulk stress.  

The common contrast, around 𝐶 = 10, for a transition from elastic deformation to rigid 

body motion seems to be relevant for shear stress but highly unsuitable for normal 

deformation (traction-compression).   

 

II-   Local variance C(0) 

 

A usual measure of histogram ranges is the square root of the local variance noted 𝐶(0), 

namely the standard deviation. Its knowledge is of great importance in modelization as it 

appears in the basic expressions of every bound of high order. 

𝐶(0) is extracted from each of the 𝑁𝐺  FEM Gauss points providing local values of the 

effective property under consideration.  

 

𝐶(0) =
1

𝑁𝐺
∑ (𝑎𝑖 − 〈𝑎〉)2𝑁𝐺

𝑖=1  

 

In which 𝑎 is the physical property under study. 
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Up to 𝐶 = 2, the fiber deformations occur continuously along with those of the matrix and a 

low dispersion of the local values is observed. For higher contrasts, 𝐶(0) increases abruptly 

and no asymptotic behaviors are noticed as it was the case for effective bulk and shear 

moduli. 

Further studies were carried out for higher contrasts in order to determine the threshold at 

which the local variance stabilizes (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

Figure V-9. Local variance 𝐶(0) on bulk and shear moduli in (GPa2) 

with regard to contrast with a log abscissa for 𝑉𝑓 = 25.18% 

Table 1. Local variance 𝐶(0) on bulk and shear moduli for different contrasts for 

overlapping and non-overlapping cases for 𝑉𝑓 = 25.18% 
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𝐶(0) stabilizes for a contrast around 𝐶 = 50000, a surprisingly high value.  

A detailed study of this phenomenon was carried out on the following sample in figure V-10. 

 

 

 

 

 

 

 

 

 

 

The local normal stresses (𝜎11 + 𝜎22)/2 along the segment [AB] are plotted for different 

contrasts on figure V-11. 

 

 

 

Figure V-10. Localization of the segment [AB] 
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Figure V-11. Local normal stresses along segment [AB] in GPa for 

different contrasts 
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Though effective values stabilize around 𝐶 = 60, the local normal stresses continue to 

slightly evolve from 𝐶 = 100 to 𝐶 = 100000 and then no change is observed between 

𝐶 = 100000 and 𝐶 = 200000. As small as they are, the inclusion deformations still cushion 

the occurrence of very high local stresses at C= 100: the highest peak at abscissa 18 

increases from 35 𝐺𝑃𝑎 at 𝐶 = 100 to 48 𝐺𝑃𝑎 at 𝐶 = 100000 for which also appear 

negative stresses at abscissa 44. The first peak is very likely to have appeared due to the 

presence of the inclusion right above the segment [AB] while the negative one occurred in 

the small area of matrix between the two inclusions on [AB]. 

As long as the cushioning is able to even the local stresses, the local variance 𝐶(0) increases 

with contrast. 

Despite being very high, these values are always significantly lower than the usual 

theoretical values of 𝐶(0) = 𝑉𝑓(1 − 𝑉𝑓)(𝑘𝑖 − 𝑘𝑚)2  for bulk modulus and 𝐶(0) =

𝑉𝑓(1 − 𝑉𝑓)(µ𝑖 − µ𝑚)2 for shear modulus. These asymptotic expressions are known to be 

valid only for very low contrasts Brown (1955), Milton (1982) and quickly diverge with 

increasing contrasts. The comparisons are presented on figure V-12 in which the ordinates 

are in log scale in order to capture the differences at high contrasts. 
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The discrepancies between the numerical and theoretical values of 𝐶(0) are very significant 

and appear at a surprisingly low contrast: at 𝐶 = 1.1, the ratio between these values is 

already higher than 30. This theoretical formulation of local variance that is efficient for the 

characteristic function is not valid for effective elastic coefficients. It could be explained by 

the previously observed differences between real moduli  𝐾𝐿 and 𝐾𝑈 and the properties of 

matrix 𝐾𝑚 and inclusions 𝐾𝑖. A substitution of 𝐾𝑚 and 𝐾𝑖 by 𝐾𝐿 and 𝐾𝑈 in the theoretical 

formula of 𝐶(0) was tested and remained higher than the simulation values. 

 

The well-fitting Milton lower bounds and effective values on figures V-2 and V-3 are 

surprising especially at high contrasts knowing that the expressions of Milton bounds call for 

this theoretical approximation of 𝐶(0).  

 

Figure V-12. Local variance 𝐶(0) as a function of bulk and shear moduli for overlapping 

and non-overlapping versus the theoretical 𝐶(0) for 𝑉𝑓 = 25.18% 
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For a fine comprehension of the microphysical behavior of materials, non-

overlapping samples with statistically controlled microstructures are required Melro et al. 

(2008), Romanov et al. (2013) and Knight et al. (2003). The first difficulties in building 

theoretical models for random distributions of fibers occur with the non–overlapping 

condition that deviates the fiber distribution from a Poisson distribution Ohser and Mücklich 

(2000). At low volume fractions, a random material built with fibers stiffer than the matrix 

fits very well with the classical lower bound 𝐻𝑆− of Hashin and Shtrikman (1962) but 

discrepancies appear with increasing volume fraction. According to Beicha et al. (2016), on 

the elastic bulk modulus, this discrepancy can reach more than 25% at 𝑉𝑓 > 30% especially 

for high Young moduli contrasts. However, Milton lower bounds calculated with a PY 

distribution of fibers fit very well with samples of the same distribution. 

The shear modulus is subject to similar observations but the discrepancy seems less 

sensitive. 

In the upcoming studies, the focus will only be cast on elastic bulk and shear moduli from 

which thermal conductivity can be deduced.  

 

The aim of this chapter is to characterize the influence of Rdf on effective elastic 

properties of non-overlapping fiber reinforced materials. As the characteristic peak of Rdf 

increases, effective values increase as well. This process can be taken further as it will be 

seen in chapter 7 with the formation of clusters. 

 

The results presented in the next two sections were initially published in Lakhal et al. 

(2019) in International Journal of Modern Physics C. 
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I- Generation and morphology of samples 

 

The studied microstructures were an arrangement of non–overlapping parallel identical fiber 

inclusions randomly located by RSA within the frame of a square matrix.  

On figure VI-1, typical shapes of Rdf worked out on RSA samples of various volume fractions 

are represented as histograms with abscissa steps of width Δr = 0.5. The number of steps is 

reduced to 6 for 𝑉𝑓 = 30% and 5 for 𝑉𝑓 = 50% due to the increasing diameters in 

dimensionless r abscissa. At  𝑉𝑓 = 10% , Rdf (except for r < 1) is like that of ideal gas. At 

higher volume fractions, the non-overlapping constraint induces higher values of 𝑔(𝑟) for r 

between 1 and 1.5 fiber diameters. These values increase with 𝑉𝑓 denoting frequent 

occurrences of close-together fibers. According to Knight et al. (2003) and Baouane et al. 

(2016) this rise of near neighbor occurrences can increase the stiffness of the materials. 

On the results obtained for RSA samples, the peaks are always higher than those of a Percus-

Yevick distribution. The discrepancies in Rdf peaks increase with 𝑉𝑓. For low volume fractions 

such as 𝑉𝑓 = 10%, the results are almost similar while for high volume fractions, RSA results 

stray considerably from the PY ones.  

RSA samples are non-equilibrium systems but will be used in this chapter for the sole 

purpose of quantify the influence of Rdf shapes. 
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The composite samples microstructures were transformed using the SA method in order to 

change the shape of Rdf by increasing the peak of 𝑔(𝑟) within the range of 1 <  𝑟 < 1.5.  

To reach the desired states, the fiber-center locations were rearranged with SA under the 

following potential: 

𝑈∞ − ln [𝑔(1 < 𝑟 < 1.5)] 

 

For 𝑉𝑓 = 30% , the highest number of moves was limited to 20000 for which clusters started 

to form, as it clearly appears on Figure VI-2 (c) and the overall uniform and random aspect of 

the samples was lost. 

 

 

 

 

 

 

 

 

Figure VI-1. Values of 𝑔(𝑟) for 𝑉𝑓 = 10%, 30% and 50% 

 

(a) (b) 
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At 𝑉𝑓 = 50% , the clusters occurred after 4000 displacements as depicted in figure VI-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI-2. (a) Initial image sample, (b) same image after 4000 moves, (c) image after 

20000 moves for 𝑉𝑓 = 30% 

 

(c) 

Figure VI-3. (a) Initial image sample, (b) same image after 4000 moves, (c) image 

after 15000 moves for Vf = 50% 

 

(a) 

(c) 

(b) 
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Beyond this number of fiber displacements, the general shapes of the samples such as their 

radial distribution function became unchanged at a constant Boltzmann factor. But it is still 

possible to accentuate the fiber aggregation by increasing Boltzmann factor or decreasing 

the amplitude Δr of the displacement, however the final microstructure would not 

necessarily correspond to an equilibrium state in which statistical properties are well known. 

For both volume fractions 𝑉𝑓 = 30% and 𝑉𝑓 = 50% the Rdf of figures VI-4 (a) and VI-5 (a) 

result from ensemble averaging on 25 samples. The fiber distributions of each sample were 

then rearranged by SA providing new microstructure whose Rdf are sketched figures VI-4 (b), 

VI-4 (c), VI-5 (b) and VI-5 (c). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

(b) (a) 

Figure VI-4. Values of g(r) for Vf = 30% at (a) initial state, (b) after 4000 moves 

and (c) after 20000 moves 
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As expected, figures VI-4 and VI-5 show the increase of the values of g(1 < r < 1.5) with the 

number of moves for both volume fractions. This increase is of the same order as the 

difference of g(r) values between RSA and PY distributions. 

A direct consequence of higher concentration of fibers close together is the apparition of a 

larger voids at a short range distance, characterized by a deficient of the Rdf around 

𝑟 = 1.75. 

The same tendency is observed on the probability of inter-fiber spacing at a short range 

1 < 𝑟 < 1.5 for 𝑉𝑓 = 30% but at 𝑉𝑓 = 50%, the microstructure started to aggregate after 

Figure VI-5. Values of g(r) for Vf = 50% at (a) initial state, (b) after 4000 

moves and (c) after 15000 moves 

 (c) 

(b) (a) 
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only 4000 displacements and reached a state of saturation for higher numbers of moves 

(figure VI-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI-6. Probability of inter-fiber spacing at short range for (a) initial 

state, (b) after 4000 moves and (c) after 20000 moves for 𝑉𝑓  = 30% and 

respectively 4000 and 15000 moves for 𝑉𝑓 = 50% 
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Although inter-fiber spacing captures less information about microstructures compared to 

Rdf or the covariance, it can still provide a useful length scale for physical modeling.  

Like previous observations at a volume fraction of 50% Seyed Hamid Reza et al. (2017), the 

probability of nearest neighbors is uncorrelated with 𝑔(𝑟) as  shown in figure VI-7. It could 

be assumed that it was due to a fiber density too close to the jamming limit. Whereas at a 

volume fraction of 30%, the fiber mobility allowed a significant effect of the 𝑔(1 < 𝑟 < 1.5) 

values on the occurrence of nearest neighbors, that in average, increases of 19% from case 

(a) to case(c).  
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For the remainder of this work, particular attention will be cast on the same 3 cases 
characterized by (a) 𝑔(1 < 𝑟 < 1.5) = 1.5, (b) 1.9 and (c) 2.3 at 𝑉𝑓 = 30%.  

 

II- Elasticity and thermal conductivity 
 

In order to verify the similarity of behavior with elastic properties as the cross-property 

linking conductivity and elastic moduli suggests, the results for thermal conductivity will be 

presented along with those for bulk and shear moduli. 

The first rigorous cross-property bounds were first obtained by Milton (1984), Berryman 

and Milton (1988) and Torquato (1991) and later improved upon by Gibiansky and Torquato 

(Gibiansky and Torquato, 1993, 1994, 1995, 1996a).  

 

Figure VI-7. Probability of the 1st nearest neighbor distances as function of 
𝑔(1 < 𝑟 < 1.5) values for 𝑉𝑓 = 30% and 𝑉𝑓 = 50% 
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The images samples studied contained 49 inclusions at a volume fraction of 30%. Young's 

moduli, Poisson's ratios and thermal conductivities were respectively for the matrix and the 

fibers:  

𝐸𝑚 = 10𝐺𝑃𝑎,  𝐸𝑖  =  𝐶 𝐸𝑚  , 𝜐𝑚 = 𝜐𝑖 = 0.3,  𝜆𝑚 = 10 𝑊/𝑚𝐾  and 𝜆𝑖 = 𝐶 𝜆𝑚 with 𝐶 = 100 

 

Contrast is the only significant parameter for linear elasticity and thermal conductivity. At 

low contrasts, the bounds on effective properties such as HS bounds are very narrow and no 

significant evolution of effective properties with microstructure can be expected. Therefore, 

the present contrasts were set at 100 even if it is a relatively high value in practical 

applications. 

Figure VI-8 describes the evolution of the effective values of bulk moduli, shear moduli and 

thermal conductivity with regard to the values of Rdf 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 30%. The 

coordinates of each point of the curves correspond to the value of 𝑔(1 < 𝑟 < 1.5) and their 

physical properties obtained by FEM homogenizations for a given number of moves. These 

results were averaged on the 25 samples. 

These results always agree with the second order bounds of HS. As expected, results tend to 

be much closer to the lower bound HS  that is known to well fit the behavior of common 

random fiber reinforced composites. 

To check whether these increases in elastic coefficients and thermal conductivity are 

significant, it is interesting to compare them to the 𝐻𝑆− bounds.  

For the bulk modulus the value  𝑘 = 17.67 𝐺𝑃𝑎 obtained without any fiber displacement is 

equal to the values of  𝐻𝑆−  bound for a volume fraction  𝑉𝑓 = 37%  instead of the real 

𝑉𝑓 = 30%. Exactly the same observation 37% instead of 30% is observed on shear modulus 

whereas for thermal conductivity, the homogenized value remains very close to the lower 

bound 𝐻𝑆−. 

In spite of a light dispersion, the overall evolutions on figure VI-8 clearly show an increase of 

effective physical properties with the height of 𝑔(𝑟).  

From 𝑔(1 < 𝑟 < 1.5) = 1.5 to 𝑔(1 < 𝑟 < 1.5) = 2.3 the bulk modulus increases of 1.5%, 

the shear modulus of 2.6% and the thermal conductivity of 2.7%. 

It is surprising that the thermal conductivity is more sensitive than the bulk modulus given 

the simple nature of thermal conductivity tensors. Actually, thermal conductivity is driven by 

first order tensor (heat fluxes are along temperature gradient) while elasticity by second 

order (elastic stresses are related to strain in all directions). However, the same tendencies 

are observed as suggested by cross-properties. 

 

-a- 

(a) 
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At, 𝑉𝑓 = 50%  the mobility of inclusions was restrained; hence, the study tackled only two 

values of 𝑔(1 < 𝑟 < 1.5): 1.6 for the initial sample and 2 after simulated annealing. At this 

volume fraction, no significant influence of 𝑔(𝑟) on the physical properties was observed. 

This could be linked to the minor evolution of the probability of nearest neighbors between 

the two states. 

Sketched on figure VI-9 are the maps of normal stresses  σ11 given by FEM. σ11 that are 

aligned with the imposed displacement are presented rather than σ22 because they are 

better fitted to depict the local physical behavior.  

 

Figure VI-8. Evolution of macroscopic bulk modulus 𝑘, macroscopic shear modulus 
µ and macroscopic thermal conductivity λ with regard to 𝑔(1 < 𝑟 < 1.5) 
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The applied displacement fields were for each sample a same horizontal contraction. The 

paths of high stresses always form line segments aligned in the direction of stresses under 

consideration. These lines are built by succession of jumps from one fiber to the closest and 

generate high stresses not only in the stiff fibers but in the inter–fiber spaces as well. A 

simple look at the maps shows that the rates of high stresses increase with the values of 

𝑔(1 < 𝑟 < 1.5) and consequently with the 19% increase of the number of near–touching 

fibers from case (a) to case (c). These observations are confirmed by the Probability Density 

Functions (P.D.F) of local stresses sketched on figure VI-10.  

Scale depicting the colors on the stress maps according to the values of microscopic 

σ11(GPa) 

Figure VI-9. Normal stresses σ11 map for 𝑔(1 < 𝑟 < 1.5) = 1.5 (a), 1.9 (b) and 2.3 (c) 

(a) (b) 

(c) 
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These P.D.F. are built from stresses collected on each node of a single sample of 49 fiber 

inclusions given the regular mesh used in FEM simulations. Histogram (a) is the initial sample 

(𝑔(1 < 𝑟 < 1.5) = 1.5), (b) the same sample after 4000 moves (𝑔(1 < 𝑟 < 1.5) = 1.9) and 

(c) after 20000 moves (𝑔(1 < 𝑟 < 1.5) = 2.3).  

As a single sample does not allow reaching the RVE, these P.D.F. are roughly converged and 

provide only qualitative observations. Therefore the histograms were built with local values 

of normal stresses σ11 which are the dominant part of the bulk stress moduli as they are 

aligned with the main displacement. Even if the range increase is low from case (a) to case 

(b) and (c), the standard deviations remain appreciably constant. The only noticeable 

difference is an evolution of P.D.F. shapes from case (a) to (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

          Figure VI-10. Probability density functions of local stresses for 𝑔(1 < 𝑟 < 1.5) = 1.5 

(a), 1.9 (b) and 2.3 (c) 
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The ratios of high stresses increase with 𝑔(1 < 𝑟 < 1.5), and even without any clue of fiber 

aggregation as in case (b),  the occurrence frequencies of very high stresses (around 

27.5 GPa) is more than four times higher than in case (a). On another hand, the most 

probable stresses of the P.D.F (around 12.5 GPa) decrease. 

For case (a) with the smaller value of 𝑔(1 < 𝑟 < 1.5), the sample deformation is dominated 

by matrix effect while for cases (b) and (c) the collective effects between fibers occur 

resulting in high stress values. It is assumed that the appearance of these interactions 

between fibers is responsible for the increase in effective elastic properties.  

Even if it does not strongly affect the effective behavior, another remark is that the 

probability of low stresses (around 10 GPa) increases from case (a) to (b) corresponding to 

larger areas with no fibers. This formation of large pores might be included in modelization 

of materials characterized by high agglomeration of fibers. Similar observations have already 

been reported by Botsis et al. (1994) about strength. No noticeable differences are observed 

between case (b) and case (c), in which fibers begin to aggregate. 

The SA method is a numerical process and so cannot be used in production of practical 

composites, such as fiber reinforced resins. However it is easy to extract Rdf from snapshot 

of real composite section by image processing Sanei et al. (2017). Then the values of 𝑔(𝑟) at 

short range (1 < 𝑟 < 1.5) could be a good indicator of the relative stiffness between 

different samples. 2 to 3% variations on effective properties are rather small compared to 

typical fabrication scatter and cannot be expected to optimize production processes. 

Nevertheless, in specific cases, Rdf could allow a selection among irregular samples. 

 

III- The sticky-disk samples 

 

To further investigate the increase of the Rdf peak on samples in which fibers are distributed 

on their whole sections, a new SA potential was introduced to connect non-overlapping 

fibers called the sticky-dicks (SD) Rintoul and Torquato (1997). Figure VI-11 presents an 

example of a SD sample. 
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To generate the SD samples, the chosen energy in SA method was the adhesive potential of 

Seaton and Glandt (1986) defined as: 

 

𝑈 = {
∞,                𝑟 < 𝑑
𝑎, 𝑑 < 𝑟 < 𝑑′
0,                 𝑟 > 𝑑′

 

 

Where 𝑎 = −
1

𝛽
ln (

𝑑′

12𝜏(𝑑′−𝑑)
) and (𝑑′ − 𝑑) is the thickness of the adhesive layer. 

 𝜏−1 the adhesiveness of the potential. 

Despite accurate values of 𝑑′ and 𝜏, the SA fails to connect disks with this potential. For 

𝑟 > 𝑑′ the potential allows all the displacements as in highly agitated systems. Therefore, it 

is necessary to reduce the probability of ineffective displacements for which 𝑟 > 𝑑′. The 

fibers then start to connect but the final system can be out of equilibrium. 

The peak of Rdf for SD samples is higher than that of RSA samples, still, the value of  

𝑔(1 < 𝑟 < 1.5) rarely reaches that of the previous section samples after 20000 

displacements: the high values of Rdf for 𝑟 = 1 is compensated by the redistribution of 

fibers within the sample. Nevertheless, it is interesting to compare effective values of SD 

samples to overlapping and non-overlapping ones in an attempt to explain the role of fiber 

connections. SD systems are expected to be an intermediate state in which fibers are 

connected but do not overlap. Actually, overlapping cases always exhibit a stiffer behavior 

than non-overlapping ones. At least at high enough volume fractions, this result was 

expected due to the fiber connections that build low deformation areas in overlapping 

samples.  

Figure VI-11. A sticky disks image sample 
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On figure VI-12 are compared the homogenized values for bulk and shear moduli of 

overlapping, sticky and non-overlapping PY samples with regard to contrast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For both bulk and shear moduli, the effective values for the sticky disks are higher than 

those of non-overlapping PY samples. The Rdf peak increases with the rate of connected 

fibers leading to an increase of the homogenized elastic properties as expected from the 

results of the previous section. However, the SD systems were not the initially expected 

intermediate state as their effective values were also found higher than those of overlapping 

Figure VI-12.  
𝑘

𝐾𝑚
 and 

µ

µ𝑚
 with regard to contrast for overlapping, non-

overlapping and sticky disks for 𝑉𝑓 = 30% 
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samples. Therefore, fiber connection alone cannot entirely explain the differences of 

behavior between overlapping and non-overlapping systems.  

The high effective values of the sticky disks samples suggest that for non-overlapping 

systems, the higher the rate of packed fibers the higher the elastic moduli. 

As the SA method for sticky disks does not guarantee equilibrium, the results on effective 

values can be irrelevant compared to natural or industrials systems. 
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In practical situations, microstructures of fiber reinforced composites and the exact 

values of their effective properties cannot be fully determined but only evaluated in the 

frame of bounds.   

To determine tight and useful bounds for effective elasticity coefficients of any random 

aligned fiber distribution of reinforced composites, it is interesting to know what 

microstructures correspond to each of the upper and lower ones. 

It was shown in chapter 4 that the integral range on bulk modulus is minimum for PY 

distributions preventing the occurrence of high stress areas and the lower bounds can 

coincide with equilibrium systems without interaction between fibers with correlation 

functions given by the PY approximation for non-overlapping systems.  

It is confirmed by the spatial distribution of local elastic properties ki and km or 𝜇𝑖 and 𝜇𝑚 

that is similar in shape to the characteristic function I with discontinuities at the interfaces. 

For PY distributions, the hard-disk potential energy is minimum and the elastic energy is 

expected to reach a minimum as well. 

This reasoning obvious for high contrasts might not apply for lower ones but it was found by 

Torquato and Lado (1988) and Miller and Torquato (1991) that the PY approximation 

provides the lowest bounds for random non-overlapping aligned fiber distribution of 

reinforced composites. Likewise, a Poisson distribution of fibers (fully penetrable cylinders) 

was found to correspond to the lower bound for overlapping systems by Joslin and Stell 

(1986) and Torquato and Beasley (1986). 

It is more difficult to conceive the upper-bound microstructures. Results from chapter 6 

suggest that the effective values increase with the peak of 𝑔(1 < 𝑟 < 1.5) deviating from 

the lower bound. The sticky-disk cases suggest that the more in contact are the fibers the 

higher are the effective properties and for equilibrium systems, the upper bounds are likely 

to correspond to packed fiber samples as it was first suggested by Beran and Silnutzer 

(1971) and then shown by Elsayed and McCoy (1973), the real difficulty being the 

determination of the type of clustering that leads to the highest effective values. 

In the following sections, PY and clustered distributions will be studied in order to determine 

efficient microstructures for bounds tighter than Milton ones that include all the equilibrium 

systems. These bounds were finally obtained via FEM simulations. 
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I- Microstructures for the lower bound  

 

The aim here is to generate fiber distributions similar to those given by the PY approximation 

with the hard-disk potential. Such fiber distribution cannot be directly provided by RSA (cf. 

Chapter I, section II-1-2.) but can easily be accurately approached with SA. In this case, SA 

consists of a simple agitation of fibers governed by the hard disk potential and controlled by 

second order correlations. However, for volume fractions close to the jamming limit 

(Chapter I, table 1.), typically 𝑉𝑓 > 50%, the fiber mobility is highly reduced and a repulsion 

criterion between fibers is required in order to accelerate the process. The resulting fiber 

distribution might slightly be out of equilibrium and necessitate successive checkings of the 

final state since the method is no longer heuristic. Examples are given in figure VII-1. 

 

 

 

 

 

 

 

 

 

 

 

Due to FEM limitations, samples were reduced to 49 inclusions and Rdf are not fully 

converged and the comparison to the correlations given by the PY approximation available in 

literature has to result from an integration on a large enough distances 𝑟. However, the 

efficiency of SA has been previously proven on larger samples (cf. Chapter I, section II-2.). 

This restriction calls for a statistical analysis of several samples with relevant peaks of Rdf in 

the range 1 < 𝑟 < 1.5 in order to select the one with the lowest effective values (figures VII-

2 and VII-3). 

 

Figure VII-1. PY image samples for (a) 𝑉𝑓 = 24.3% and (b) 𝑉𝑓 = 54.4% 

(a) (b) 
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Though the exact value of PY 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 24.3% is not available in literature, 

this value was estimated as just short of 1.55 which is the PY 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 =

36.30% (cf. Chapter I, section II-2). 

For 𝑉𝑓 = 54.4%, PY 𝑔(1 < 𝑟 < 1.5) is available in literature and its value is of 1.7 (cf. 

Chapter I, section II-2). 

 

Figure VII-2. Bulk and shear moduli with regard to 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 24.3% 
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All samples in figures VII-2 and VII-3 present a peak of 𝑔(𝑟) within an acceptable range to be 

the PY solution. The dispersion around the one with the lowest effective values was 

expected and confirms the relevance of a statistical analysis given the downsides of SA which 

does not take into account correlations of orders higher than 2 and is not fully converged on 

small samples of 49 inclusions.  

The samples with the lowest effective values for both volume fractions were those selected 

to determine the lower bounds. The FEM simulations were carried out for various contrasts 

on bulk and shear moduli of matrix and inclusions. 

Figure VII-3. Bulk and shear moduli with regard to 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 54.4% 
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II- Microstructures for the upper bound 

 

The first bounds for non-overlapping aligned fiber reinforced composites were introduced by 

Beran and Silnutzer (1971) who suggested that the upper bounds corresponded to packing 

of fibers. This hypothesis was then confirmed by Elsayed and McCoy (1973) and then by 

Milton (1982) who also noticed that the values of the upper bounds are independent of the 

cluster positions.  

Samples corresponding to the upper bounds can be regarded as infinite (very large) 

equilibrium homogeneous media where many clusters of, at this point, undetermined sizes 

are randomly scattered within the cross section. Such samples can be numerically 

represented a single cell surrounding a single cluster. 

In order to determine numerical values of the upper bounds, samples with clusters were 

built and the primary step was to select the relevant clusters by studying their various sizes 

and compactness.  

All these clusters were generated with the help of SA with an attraction potential:  

 

𝑈 ≡ {
+∞,                   𝑥 < 𝑑

−
1

𝑥𝑛
,                𝑥 > 𝑑

 

In which 𝑛 > 1  

 

The exact value of 𝑛 is not of great important because it is balanced out by the agitation 

energy in the probability of accepting the displacements. The difficulty with SA in such 

situations is that for a given value of 𝑛, the choice of the agitation energy will condition the 

internal microstructure  of the cluster and other tools are required in order to select the 

optimal cluster.  

 

Two examples are sketched on figure VII-4 . 

 

 

 

(1) 
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FEM simulations were performed on the generated cluster samples to determine the 

existence of a minimum size of clusters that allows reaching the upper bound for both 𝑘 and 

µ. 

To obtain clusters of various sizes on samples of 49 inclusions provided by RSA, the 

distribution of fibers was subjected to SA in which the agitation was applied to all fibers 

while the attractive potential was restricted to 𝑛 fibers resulting in a 𝑛 − fiber cluster as 

shown in figure VII-5 below. 

 

 

 

 

 

 

 

 

 

 

Figure VII-4. Cluster image samples for (a) 𝑉𝑓 = 24.3% and (b) 𝑉𝑓 = 54.4% 

(a) (b) 

(c) 

Figure VII-5.  𝑛 − fiber Clusters for (a)  𝑛 = 10, (b)  𝑛 = 30  and (c) 𝑛 = 49 

(a) (b) 
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Naturally, due to the heuristic SA character, the 𝑛 −fiber clusters exhibit various internal 

structures that lead to different effective values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-6 shows scatter points of effective values for different cluster sizes. This dispersion 

of results is due to different internal structures of clusters of same size. With no finer control 

over these fiber distributions, the RVE is not reached. 

For rates of clustered fibers higher than 0.6 the bulk modulus of some clusters saturates. 

This rate of 30 to 49 fibers (30 −fiber clusters) is the minimum number of packed fibers 

required for the sample to fit for the upper bound. In the following sections, clusters of 

𝑁 = 49 inclusions, corresponding to a rate of 1, were arbitrary chosen for determination of 

the upper bound.  

 

Figure VII-6. Bulk and shear moduli 𝑘 and µ versus the rate of clustered fibers 

for 𝑉𝑓 = 24.3% and 𝐶 = 100 
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This cluster size criterion is not sufficient so the internal structure of clusters has to be 

investigated through compactness in order to select the optimal ones.  

To evaluate the compactness of the clusters, we can either study their size or their RDF at 

short distance.  The former tool is hardly accurate because of the irregularity in cluster 

shapes and the latter loses its classical significance when applied on inhomogeneous 

samples. Nevertheless, for a given volume fraction, it is expected that the highest peaks of 

𝑔(1 < 𝑟 < 1.5) would lead to the upper-bound clusters. 

However, when the clustering process is pushed to the limits of SA, with very short fiber 

displacements, the fibers start forming a hexagonal network which is known for lower 

effective elasticity values Beicha et al. (figure VII-7). 

 

 

 

 

 

 

 

 

 

 

 

The low effective values (k=14.683 GPa and µ=6.479 GPa) obtained for the artificially 

induced hexagonal structure on figure VII-8 confirm the results of Beicha’s work.  

A means to characterize hexagonal networks is the knowledge of 𝑔(𝑟) at very short 

distances (𝑟 ≈ 1). The values of 𝑔(𝑟) cannot be accurately accessed due to convergence 

difficulties. To overcome this limitation, local volume fractions were measured using a sliding 

window method in which various sizes of windows can be swept across the whole image. For 

simplicity, squared windows were used. For this purpose, it was found that the optimal side 

length of the windows was five times the radius of fibers. Smaller windows gave disparate 

results while larger ones failed to capture the details of the microstructure. This optimal size 

is suitable for all volume fractions as long as the cluster size is large enough with regard to 

that of the sliding window.  

Figure VII-7. Hexagonal image sample obtained with SA for 

𝑉𝑓 = 54.4% 
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The most probable local volume fractions for random and hexa-structured clusters are 

respectively centered around 78% (percolation threshold) and 86%. Here, random refers to 

clusters without hexagonal structuration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-8. Artificial hexagonal image sample for 𝑉𝑓 = 24.3% 
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Figure VII-9.  Histograms of number of occurrences as function of the local volume 

fractions (%) for the hexagonal sample versus the cluster NB+ for 𝑉𝑓 = 24.3% 

Zoom 
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The histograms represent the number of occurrences of given local volume fractions 

determined by sliding the window over the whole image sample. For both random and hexa-

structured clusters, unlike figure VII-10 for 𝑉𝑓 = 54.4%,  figure VII-9 for 𝑉𝑓 = 24.3%  

naturally exhibits numerous occurrences of very low local volume fractions due to larger 

areas of matrix on edge of the sample.  

For both volume fractions, the focus on local volume fractions higher than 70%, figures VII-9 

and VII-10 show two different behaviors. For random clusters, local volume fraction exhibit a 

Figure VII-10.  Histograms of number of occurrences as function of the local 

volume fractions (%) for the hexagonal sample versus the cluster NB+ for 

𝑉𝑓 = 54.4% 

Zoom 
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peak of occurrence at 78% and go up close to the jamming limit for two dimensional 

disordered media (83%, table 1. Chapter I) while for the hexa-structured clusters, the peak is 

situated around 86% with a wider range going up to 90% which is approximately the 

maximum volume fraction for hexagonal networks 90.7%  (
𝜋

2√3
). 

Local volume fraction histograms are a relevant criterion for hexagonal structuration of a 

cluster and can be an efficient tool to select the optimal compactness of clusters. 

On figures VII-11 and VII-12, the random clusters are sketched in green triangles and the 

hexa-structured ones in red squares. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure VII-11. Bulk and shear moduli with regard to 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 24.3% and 

𝐶 = 100 
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Regardless of 𝑔(1 < 𝑟 < 1.5), the bulk and shear moduli for hexa-structured clusters are 

lower than those of random ones. This confirms the above mentioned results from 

literature.  

Discarding the hexa-structured clusters, the highest 𝑔(1 < 𝑟 < 1.5) among the remaining 

ones is that of the optimal random cluster for the upper bound and will be the one used in 

the next section.  

 

Figure VII-12. Bulk and shear moduli with regard to 𝑔(1 < 𝑟 < 1.5) for 𝑉𝑓 = 54.4% and 

𝐶 = 100 
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III-  Comparison to existing bounds 
 

The numerical NB+ and NB- bounds were evaluated with FEM simulations applied on the 

samples built with the above-mentioned microstructures. It is assumed that any equilibrium 

system in which the correlation functions are solutions to the Ornstein-Zernike equation is 

framed by NB+ and NB-. 

Although Milton bounds were derivate from a single microstructure, the PY one, they are 

still wider than NB+ and NB- as shown on figures VII-13 and VII-14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-13. Numerical bounds for non-overlapping systems NB- and NB+ 

compared to Milton bounds for 
𝑘

𝑘𝑚
 and 

µ

µ𝑚
 with regard to contrast for 𝑉𝑓 = 24.3% 
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Figure VII-14. Numerical bounds for non-overlapping systems NB- and NB+ 

compared to Milton bounds for 
𝑘

𝑘𝑚
 and 

µ

µ𝑚
 with regard to contrast for 𝑉𝑓 = 54.4% 



Chapter 7 : Numerical bounds for non-overlapping equilibrium systems 

 

194 
 

As expected, these bounds coincide at low contrasts 𝐶 < 5, while at high contrasts, the 

upper Milton bounds (kM+ and µM+) diverge. Though the NB bounds are fit for a wide range 

of microstructures, they are still very tight and never diverge.  

At 𝐶 = 100, NB+ is still increasing with contrast suggesting that the threshold for rigid-body 

models occurs for a higher contrast than the common expectation. This phenomenon could 

be explained by a collective effect of compressibility at the scale of the whole cluster where 

some fibers can roll around other ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-15 allows a comparison between normal stresses 𝜎11 on the lower (a) and upper 

(b) bounds. On these maps, it is not obvious that the effective values for case (a) are lower 

than those for case (b) as homogenization has shown. The cluster spatially structures the 

stresses along the strain for 𝜎11 and perpendicular to 𝜎22(map not presented here) and 

forms a large horizontal strip of 𝜎11 stresses that increases stiffness.     

 

 

Figure VII-15. Normal stress 𝜎11 maps for (a) PY sample and (b) cluster 

(GPa) for 𝐶 = 100 and 𝑉𝑓 = 24.30% 

(a) (b) 
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It is necessary to precise that these bounds do not all microstructures of aligned fiber 

reinforced composites. As mentioned before, NB+ and NB- are only fit for equilibrium 

systems which are expected to occur in any process of fiber arrangements without educated 

interventions. Effective values of non-equilibrium systems can be either within or out of NB+ 

and NB- bounds. Examples with effective values higher than NB
+
 are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

The samples of figure VII-16 are easy to obtain with SA by introducing a repulsion potential 

between fibers without any agitation (out of equilibrium). The effective bulk moduli are 

respectively 40% and 42% higher than NB+ for 𝑉𝑓 = 24.3% and 𝑉𝑓 = 54.4% and for the 

former volume fraction, it is also higher than Milton’s upper bound by 12%. In this particular 

case, these results are not surprising given the aligned chains along the edges. Knowing that 

the applied displacement was horizontal, the chains along the upper and lower edges could 

be vaguely assimilated to the Voigt configuration. 

 

 

 

 

 

Figure VII-16. First examples of non-equilibrium systems:  

(a) 𝑉𝑓 = 24.3% and (b) 𝑉𝑓 = 54.4% 

(a) (b) 
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The second example of figure VII-17 (a) contains two clusters that are individually close of 

the upper bound NB
+
. However this artificially induced arrangement within the cell leads to 

a strong anisotropy on a periodic medium built by juxtaposition of this single cell (figure VII-

16 (b)). The effective values of sample (a) are respectively for bulk and shear moduli 5 and 

15% higher than NB
+
. 

Frequently, it is admitted that a large medium is equivalent to a periodic one built with an 

elementary RVE extracted from the initial medium Sanei et al. (2017), Cavalcante and 

Pindera (2014). The present example shows the limits of such method in which the 

elementary RVE has to remain isotropic and homogeneous.  

 

 

 

 

 

 

 

Figure VII-17. Second example of non-equilibrium systems for 𝑉𝑓 = 24.3%  

(a) Elementary cell and (b) Periodic medium 

(a) (b) 
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The third example of less obvious non-equilibrium systems is sketched on figure VII-18. It is a 

cluster built with SA where the agitation energy was kept very low. Among all “low-

agitation” clusters, some fall within the NB+ and NB- bounds and others do not. This is not 

fully predictable, however, visual observation can give hints on the effective properties. For 

this example, due to the low agitation energy, the lack of freedom in displacements of fibers 

leads to the formation of large voids within the cluster characteristic of non-equilibrium. In 

this case, the size of the area with a rigid behavior is enlarged increasing the homogenized 

values as would an increase in volume fraction.   

 

 

Figure VII-18. Second example of non-equilibrium systems for 

𝑉𝑓 = 24.3% 
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Throughout this work, the influence of microstructure of non-overlapping aligned 

fiber reinforced composites on macroscopic elastic properties has been quantified with the 

help of numerical homogenization on FEM simulations. Unusual tools in the field of 

mechanics were used both to characterize and generate microstructures: the radial 

distribution function and simulated annealing respectively provided by the theory of liquids 

and optimization processes. Rdf has proven to be the best second order correlation to 

describe spatial distributions of identical fibers.  

The first main result is that effective elasticity increases with the peak of Rdf 

characteristic of non-overlapping conditions. Even a small fiber rearrangement by SA can 

increase stiffness. 2 to 3% variations on effective properties are rather small compared to 

typical fabrication scatter and cannot be expected to optimize production processes. 

However it is easy to extract Rdf from snapshots of real composite sections by image 

processing and in specific cases, it could be a good indicator of relative stiffness allowing 

selection among irregular samples.  

The second main result has required several intermediate studies leading to the 

determination of new numerical bounds (NB) that frame any configuration of non-

overlapping aligned fibers for equilibrium systems. These systems are observed in both 

nature and industrial processes; they result from natural arrangements under specific 

constraints and their correlation functions are solutions to the Ornstein-Zernike equation. 

With suitable potentials, any system will evolve toward equilibrium by SA rearrangement. 

Among equilibrium systems, following Beran and Silnutzer (1971) hints, it was found that 

packed fibers correspond to the upper bound NB+ while Percus-Yevick PY distribution of 

fibers to the lower one NB-. These bounds are tighter than the existing high order analytical 

ones called Milton bounds in this manuscript. Milton lower and upper bounds are built with 

the PY distribution hence the small discrepancies between NB- and the Milton lower bounds. 

The efficiency of NB bounds lies in the tightness of their upper bound compared to the 

existing ones. The NB+ bound could be of great interest in production processes where fiber 

agglomeration is not always easy to avoid, increasing the composite’s stiffness with effective 

elastic moduli closer to the upper bound. At high contrasts, the upper Milton bounds diverge 

and do not frame real composites. Actually, these bounds are built as a correction of 

Voight’s expression that diverges as well. This correction is based on an asymptotic model of 

the local variance 𝐶(0) that infinitely increases and is not sufficient to avoid this divergence. 

This model of 𝐶(0) is only valid for contrasts close to 1 but surprisingly, the local variance 

evaluated by FEM keeps increasing up to 𝐶 around 100000 while rigid body behavior occurs 

for contrasts lower than 100. 

As the microstructures corresponding to NB bounds are well defined, obtaining effective 

values only required a small RVE of 49 inclusions. 
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The NB bounds can be used in various fields of physics Torquato (1991) not only 

elasticity and thermal conductivity as shown in chapter 6 but also electrical conductivity, 

magnetic and fluid permeability … 

 

Perspectives 

 

The study presented here can easily be extended to 3D situations in which fibers are 

replaced by spheres granted that hardware resources are sufficient. The radial distribution 

functions and simulated annealing remain suitable tools. Moreover, the Rdf of the required 

PY distributions for the lower bounds are analytical and can be obtained for any volume 

fraction.  

 

It is expected that for both 2D and 3D situations, the microstructures corresponding to the 

upper and lower bounds are the same for any elastic behavior. The relevant elastic law only 

needs to be implemented in the FEM software.  

 

For the visco-elastic behavior, the same final state is delayed by a relaxation time and again, 

for time stationary problems, the same microstructures are expected to be relevant.   

 

 As this study only dealt with time stationary strains applied on sample boundaries, an 

interesting continuation of the work can be an analysis of time-dependent elasticity (cycle 

loading). Actually, an efficient measure of liquid compressibility is the limit when the wave 

number 𝑘 tends to 0 of the structure factor 𝑆(𝑘) (Hansen and McDonald (2006)): 

lim𝑘→0 𝑆(𝑘) that is the Fourier transform of the total correlation function ℎ(𝑟) = 𝑔(𝑟) − 1.  

Jiang et al. (2010) used 𝑆(𝑘) for macroscopic systems to measure the elastic response of 

suspension of particle in a fluid. For system of aligned fibers, as systems of particles in 

suspensions,  𝑆(𝑘) can easily be evaluated from direct position of fiber or particle centers 𝑟𝑖 

by: 

 

𝑆(𝑘) = 1 + 〈
1

𝑁
∑ ∑ 𝑒−𝑖𝑘(𝑟𝑗−𝑟𝑖)

𝑗≠𝑖𝑖=1

〉 
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The ensemble averaging is only necessary when the RVE is not reached. 

 

 

 

 

 

 

 

 

 

 

 

The lowest values of 𝑆(𝑘) are characteristic of the resonant frequencies 𝑓 =
𝑘𝐶

2𝜋
  in which 𝐶 

is the speed of sound in the medium. Similarly for solid composites, 𝑆(0) is expected to be 

an indirect measure of elastic moduli and shapes of 𝑆(𝑘) could still indicate the resonant 

frequencies for cycle loading. 

From a modeling perspective, the local behavior exhibited by stress maps and stress 

P.D.F. of chapter 6 suggests that pertinent scaling for fiber reinforced material stiffness 

cannot be reduced to the macroscopic scale (volume fraction) and has to be supplemented 

by a micro–scale such as the inclusion size or equivalently the nearest neighbors distance 

that is able to capture the occurrence of small area of high stresses.  

 

This study was limited to equilibrium systems as defined by statistical physics (Ornstein-

Zernike). The potentials driving the fiber distributions in industrial productions of composites 

can be very different from those used in this work and uncontrolled. In this case, local 

inhomogeneity could appear with areas of large voids between fibers (as shown on figure 

VII-18 for a non-equilibrium system) and an intermediate scale might be required for 

modelling the elastic behavior. 

 

Typical example of structure factor 𝑆(𝑘) for an 

anisotropic suspension (Jiang et al. (2010)) 
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In this study, 25 examples of both overlapping and non-overlapping cases were studied and 

were necessary to reach convergence of previously introduced effective values. The aim of 

this appendix is to present the results on each sample. 

A special attention was cast on the samples with extreme bulk moduli, either higher or lower 

than the mean value 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 averaged on the results of the 25 examples.  

These examples will be presented below for overlapping and non-overlapping, with a 

comparison of their evaluated coarseness to the averaged one (here referred to as 

“coarseness moyenne”). 
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𝒌 = 16.16  𝐺𝑃𝑎    
 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 15.02  𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 15.22  𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 15.16  𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 15.43  𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 15.14  𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 17.94 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 17.97 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 17.59 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 17.79 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 18.61 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 17.99 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 16.49  𝐺𝑃𝑎 
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𝒌 = 14.61 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 15.81 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 15.85 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 16.15 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 14.52 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 16.85 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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𝒌 = 14.48 𝐺𝑃𝑎    
 

 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 = 15.22  𝐺𝑃𝑎 
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The following histograms of local bulk and shear moduli were evaluated for the sample 
below:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study was carried out for different contrasts. 
 

 

 

 

 

 

 

Non-overlapping image sample of 𝑉𝑓 = 24.36% 
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Contraste 1.1 

 

𝑪(𝟎) = 𝟎. 𝟎𝟏𝟔𝟓 𝑮𝑷𝒂𝟐 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contraste 1.5 

 

𝑪(𝟎) = 𝟎. 𝟑𝟏𝟏𝟐𝑮𝑷𝒂𝟐 
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Contraste 2 

 

𝑪(𝟎) = 𝟎. 𝟗𝟐𝟓𝟓𝑮𝑷𝒂𝟐 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contraste 5 

 

𝑪(𝟎) = 𝟒. 𝟔𝟔𝟓𝟓 𝑮𝑷𝒂𝟐 
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Contraste 10 

 

𝑪(𝟎) = 𝟖. 𝟔𝟐𝟗𝟕𝑷𝒂𝟐 
 

 

 

 

 

 

 

 

 

 

 

 

 

Contraste 30 

 

𝑪(𝟎) = 𝟏𝟒. 𝟔𝟓𝟖𝟐 𝑮𝑷𝒂𝟐 
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Contraste 60 

 

𝑪(𝟎) = 𝟏𝟗. 𝟎𝟎𝟎𝟐 𝑮𝑷𝒂𝟐 
 

 

 

 

 

 

 

 

 

 

 

 

Contraste 85 

 

𝑪(𝟎) = 𝟐𝟏. 𝟔𝟓𝟏𝟏 𝑮𝑷𝒂𝟐 
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Contraste 100 

 

𝑪(𝟎) = 𝟐𝟒. 𝟎𝟕𝟏𝟗 𝑮𝑷𝒂𝟐 
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Contraste 1.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contraste 1.1 
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Contraste 1.5 

 

 

 

 

Contraste 2 
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Contraste 10 

 

 

 

 

Contraste 30 
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Contraste 60 

 

 

 

 

Contraste 85 
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Contraste 100 
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