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Résumé 

Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes 

de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le 

domaine du transporte. En raison des limites des différents systèmes de stockage et de 

conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes 

pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées  

• un sous-système de stockage d'énergie hybride combinant des batteries et des 

supercondensateurs (SC) ;  

• et un sous-système de traction hybride parallèle combinant moteur à combustion interne 

et entraînement électrique.  

Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de 

stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation 

présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. 

Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, 

ce qui peut être difficile à réaliser dans des applications réelles. 

L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur 

l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par 

des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont 

réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de 

réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie 

du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps 

réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont 

systématiques et performantes. Les performances des SGE proposées sont vérifiées en 

simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, 

les capacités en temps réel des SGE développées sont validées via des expériences en 

« hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des 

stratégies proposées développées par l'approche unifiée de la thèse. 

 

Mots-clés : véhicule électrique hybride, véhicule électrique, stratégie de gestion de l'énergie, 

optimisation en temps réel, batterie, supercondensateur (SC), système de stockage d'énergie 

hybride, représentation énergétique macroscopique (REM), simulation « hardware-in-the-loop 

(HIL) ». 
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Abstract 

Electric and hybrid vehicles are among the keys to solve the problems of global warming and 

exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and 

energy converters in terms of power and energy, hybridizations are of interest for future 

electrified vehicles. Two typical hybridizations are studied in this thesis:  

• hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and 

• hybrid traction subsystem combining internal combustion engine and electric drive.  

Such combined energy sources and converters must be handled by energy management 

strategies (EMSs). In which, optimization-based methods are of interest due to their high 

performance. Nonetheless, these methods are often complicated and computation consuming 

which can be difficult to be realized in real-world applications. 

The objective of this thesis is to develop simple but effective real-time optimization-based 

EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The 

complexities of the studied system are tackled by using Energetic Macroscopic Representation 

(EMR) which helps to conduct reduced models for energy management at the supervisory level. 

Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. 

These strategies are simple due to the suitable model reductions but systematic and high-

performance due to the optimization-based methods. The performances of the proposed 

strategies are verified via simulations by comparing with off-line optimal benchmark deduced 

by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated 

via experiments by using reduced-scale power hardware-in-the-loop simulation. The results 

confirm the advantages of the proposed strategies developed by the unified approach in the 

thesis. 

 

Keywords: Hybrid electric vehicle (HEV), electric vehicle (EV), energy management strategy 

(EMS), real-time optimization, battery, supercapacitor (SC), hybrid energy storage system (H-

ESS), Energetic Macroscopic Representation (EMR), Hardware-In-the-Loop (HIL) simulation. 
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1 

Introduction 

The world is facing critical issues of environmental pollution and exhaust of fossil fuel 

resources. Meanwhile transportation systems play an important role in the both figures of 

environmental care and fuel consumption [Bauer 2016]. Electric and hybrid vehicles are among 

the most promising solutions for these problems.  

In fact, electric vehicles (EVs) have a long history counted from the 19th century [DoE 2014]. 

At their early days, EVs were suitable urban transportations with short traveling distances. 

However, EVs then dramatically lost their market due to the competition of gasoline cars. The 

main factors are mature internal combustion engine (ICE) technology and cheap oil mass 

production. Since 2000s, EVs have been becoming more and more promising. It is a result of 

technology developments in energy storage systems, power electronics, and electrical drives (in 

terms of power and energy). It can be predicted that EVs will be an important part of the future 

of sustainable green transportation.  

Nevertheless, there are still gaps between energy storage devices and ICE (with fuel tank) 

in terms of power and energy densities [Whittingham 2012]. Hence, today has not been yet the 

day of full EVs without any fossil fuel consumption. Thus, hybridizations are of interest in this 

transition stage. This thesis studies two types of hybridizations:  

• different electrical energy storages (battery/supercapacitor) are combined to form hybrid 

energy storage subsystem (H-ESS); and 

• mechanical converters (ICEs) combine with electrical converters (electrical drives) to 

form hybrid traction subsystem of hybrid electric vehicles (HEVs). 

The different H-ESSs and hybrid traction subsystems must be handled by energy 

management strategies (EMSs). This topic has been attracting numerous efforts from both 

academics and industry [Salmasi 2007; Tie 2013]. In this context, the thesis is conducted in the 

collaborations between French and Canadian research programs and institutions. Firstly, it is 

within the French network on hybrid and electric vehicles (MEGEVH) and Canada Research 

Chair (CRC) in Efficient Electric Vehicles with Hybridized Energy Storage Systems. In 

MEGEVH, the work is conducted at the Laboratory of Electrical Engineering and Power 

Electronics (L2EP), University of Lille, France. Whereas in CRC, the thesis is carried out at the 

electric – Transport, Energy Storage and Conversion laboratory (e-TESC lab.), University of 

Sherbrooke (UdeS), Québec, Canada. This thesis has inherences and interactions with several 

works developed at MEGEVH, L2EP and CRC, e-TESC on energy management, energy storage 

systems, optimization methods, power electronics, and electrical drives. Moreover, the studied 

systems of the thesis are of the common interest between the French program CE2I (Integrated 

Intelligent Energy Converters) and the Canadian one Mitacs Accelerate which is multi-source 

hybrid vehicles. 
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EMS development methods – the topic of this thesis – can be classified into two main 

groups: rule-based and optimization-based methods [Salmasi 2007]. Rule-based methods are 

developed based on human knowledge and experiences on the behaviors of the systems. For 

instance, it is known that batteries prefer smooth current while supercapacitors (SCs) can work 

with fluctuated power profile [Christen 2000]. Thus, a rule for battery/SC H-ESSs is defined 

that high-frequency parts of the demanded power should be provided by the SCs, while the low-

frequency parts are the duty of the batteries. A low-pass filter is often employed to realize this 

rule, e.g., [Schaltz 2009]. The rules can be deterministic, like filtering, or based on artificial 

intelligence such as fuzzy logic [Li X. 2009; Martinez 2011] and neural networks [Moreno 2006; 

Tian 2016]. Rule-based methods are often intuitive, straightforward, and suitable for real-time 

implementation. However, they depend on human expertise which are not always the most 

proper. Furthermore, methods like neural networks often require long training time with huge 

data and strong computational resources.  

Optimization-based methods are developed in the way that the energy management 

problems are formulated in forms of optimization problems; then optimization techniques are 

applied to solve the problems. For example, to save fuel of an HEV, the studied vehicle is 

modeled as a dynamical system and the fuel consumption is defined as the cost function. The 

batteries energy variation is also charged as a penalty in the cost function. For that, an equivalent 

factor must be introduced. Then, optimal control theory is applied to solve that problem to obtain 

the so-called equivalent consumption minimization strategy (ECMS) [Sciarretta 2004]. The 

strategies can be off-line optimal [Vinot 2014] or real-time sub-optimal [Ettihir 2016]. The most 

advantage of the optimization-based methods is that it allows developing EMSs by an organized 

approach. That means the developer just has to follow an “automatic” procedure to obtain the 

strategy. Moreover, since the EMSs are based on optimization techniques, they are optimal (off-

line strategies) or often close-to-optimal (real-time strategies) with high performances reported. 

The drawbacks are often due to the complexities of the methods and high computational efforts 

which may prevent them from real-world applications.  

Within this context, the thesis aims to develop simple but effective real-time optimization-

based EMSs for an electric car and a hybrid truck supplied by battery/SC H-ESS. In order to 

tackle the complexity of the studied systems, Energetic Macroscopic Representation (EMR) 

[Bouscayrol 2013; EMR 2019] will be employed as a unified formalism. The approach is to use 

EMR to systematically deduce suitable reduced models for energy management; then applying 

optimal control theory to develop real-time strategies. These strategies, on one hand, inherit the 

systematic approach and high performances of optimization-based methods; on the other hand, 

benefit the simplifications due to EMR-based model reduction. The performances of the 

developed strategies will be verified by comparing with the off-line optimal strategies as the 

benchmarks. Dynamic programming (DP) will serve as these benchmarks due to its ability to 

deduce optimal solutions [Kirk 1970; Sundström 2009]. Since DP is an off-line method, the 

comparisons will be done by simulations. Moreover, the real-time ability of the developed EMSs 

will be validated via experiments by using reduced-scale power hardware-in-the-loop (HIL) 

simulation [Bouscayrol 2011]. 

The thesis will be presented in three chapters. Chapter 1 will address the background of the 

thesis and a literature review on energy management methods. In which, the global context and 

the scientific context of the thesis will be presented. Based on that, the issue of energy 
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management for the studied systems which are a battery/SC EV and a battery/SC hybrid truck 

will be figured out. Then, the chapter will review the state-of-the-art developments in EMSs of 

HEVs and H-ESS where the pros and cons of each method will be analyzed. Finally, the 

objective and approach of the thesis will be addressed.  

Chapter 2 will present the development and validations of a real-time optimization-based 

current distribution strategy for a battery/SC EV based on Hamiltonian minimization. The 

studied system will be modeled and controlled by using EMR and inversion-based control 

scheme. Then model reduction and transformations steps will be done to obtain a reduced 

mathematical model. Next, the third necessary condition of Pontryagin’s minimum principle 

will be applied to deduce a real-time strategy. With the EMR-based reduced model and by using 

only the condition of Hamiltonian minimization, the proposed strategy is simple and does not 

require any more feedback adaptation scheme for real-time implementation. The new EMS will 

be compared to the conventional real-time strategies, the DP-based optimal benchmark, and the 

case of battery-only EV by simulations. Finally, the power HIL experiments will validate the 

real-time ability of the novel strategy. 

In Chapter 3, a real-time optimization-based torque distribution strategy for a parallel hybrid 

truck supplied by batteries and SCs will be proposed and validated. Modeling, EMR, and 

inversion-based control scheme of the studied system will be presented. Next, the reduced 

mathematical model will be achieved after several steps of model reduction and transformations. 

Thereafter, to simultaneously accomplish the objective of fuel consumption and the requirement 

of charge sustaining, the cost function will be reformulated. As a result, the optimal control 

problem can be solved by using linear quadratic regulation (LQR) technique. The obtained 

solution will be in the form of a closed-loop control of the battery state-of-charge (SoC) which 

is ready to serve as a real-time EMS. DP-based optimal solution and the conventional ICE truck 

will be used to define the performances of the proposed strategy. The real-time ability of the 

new EMS will then be experimentally validated by using power HIL simulation.   
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1. Background and literature review 

This chapter aims to address the context, the objective, and the approach of the thesis. The global 

context will be firstly presented to point out the necessity of developing electric and hybrid 

vehicles. Then the hybridizations of mechanical and electrical sources will be addressed. Next, 

it will be the scientific and technical context of research networks and programs which the thesis 

is based on. Afterwards a state-of-the-art review on methods to develop energy management 

strategies (EMSs) will be presented. Based on that, the objective and the approach of the thesis 

will be figured out. 

1.1. Context of the thesis 

1.1.1. Electrified vehicles: why electric and why not yet full electric? 

a. Why electric vehicles? 

Electric vehicle (EV) is not a new concept. The history of EVs can be counted from the late 19th 

century [DoE 2014; Ehsani 2010] (Figure 1.1). At that time, long-distance traveling was being 

responsible of trains with steam locomotive, as a result of the first industrial revolution. Urban 

transportations, however, were still dominated by horse-drawn vehicles (steam-engine cars 

existed, nevertheless, their limits on efficiency, sizes and masses of boilers prevented them from 

the market.) There was a need of machines to replace horses on the roads. With previous 

inventions of lead-acid battery and electrical DC machine, electric cars appeared as a solution. 

The first commercial electric car in New York could reach a maximal speed of 32 km/h and an 

autonomy range of 40 km [Ehsani 2010]. That was suitable for urban transportations that days. 

EVs therefore rapidly developed and had a “golden age” during the first decade of the 

20th century.  

EVs were not the only solution for automotive industry at that time, but also gasoline cars. 

The first commercial internal combustion engine (ICE)-powered car was released in 1886 in 

Germany [Melosi 2010]. Nonetheless, ICE vehicles had significant drawbacks. One of the most 

important problems was that ICEs needed manual starting by a hand crank. Besides, manual 

gearshift was difficult to be handled. Their noise and emission also mattered. Thus, at the 

beginning, EVs were advanced over gasoline cars. The game-changer was Henry Ford’s Model-

T released in 1908, which was a reliable and cheaper ICE car. Then the electric starter, patented 

in 1911 and implemented in the year after, completed the mature ICEs since hand crank was no 

longer needed. Other factors also contributed to the downgrading of EVs. Oil became cheaper 

thanks to the discovery of massive fossil fuel resources and effective oil productions. Besides, 

long-distance traveling via roads, instead of only railways as before, was more and more in 

demand due to the developments of cities-connecting roads. Battery and charging technologies 

at that time did not allow EVs satisfying such traveling. As a consequence, EVs totally lost the 

market by about 1935 [DoE 2014]. 
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Figure 1.1: A brief history of the interest on EVs in terms of power and energy. 

The “ice age” of EVs had been continuing until 1970s. The oil crisis made people aware of 

the risk of depending on that sort of energy. It was also realized the fact that fossil fuel is not 

unlimited. Additionally, environmental issues raised concerns of pollution caused by cars [Chan 

2009; Ehsani 2010]. The interests on EVs came back; the “ice” began melting. Automotive 

manufactures started producing versions of electric cars, such as GM EV1, the most notable 

electric car at that time. However, EVs were still low-speed short-range cars, mostly due to the 

limits of battery technology. Lead-acid and even nickel metal hydride batteries are not capable 

for EVs to be close to gasoline cars, in terms of both power (in recharge) and energy. Thus, the 

interests on EVs was growing, but not yet so strongly.  

Tesla, Inc. has been a game-changer by making EV a reliable car with Tesla Roadster 

released in 2008 in the United States. Right after that, Mitsubishi i-MiEV (2009) and Nissan 

Leaf (2010) were introduced in Japan have been being the examples of successful EVs accepted 

by customers. Then, EVs of European automotive manufacturers have been in market such as 

BMW i3 and Renault ZOE. The most important factor for a reliable EV, which means in fact 

highway-capable EV, has been the developments in battery technologies. Lithium-ion (Li-ion) 

batteries have become mature for EVs applications. Batteries capacity this day can allow vehicle 

autonomy ranges up to 400 km (Renault ZOE, since 2016)1, and even more than 500 km (Tesla 

Model S, since 2017). Battery charging technologies, including batteries management and 

power electronics chargers, enable quick-charge mode which can charge batteries up to 80% of 

SoC within about 30 minutes2. Besides, high-performance electrical drives contribute on 

providing attractive characteristics for EVs, such as very high efficiency powertrains and in-

                                                 
1 With New European Driving Cycle (NEDC). 
2 However, fast charging normally degrades batteries life-time. 
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wheel machines. EV now is the important trend, in which most of big automotive manufacturers 

have been producing their versions of electric cars. A future of sustainable green transportation 

worldwide is growing.  

b. Why not yet electric vehicles? 

It has been concluded that EVs are the possible future of the world for personal vehicles. 

However, today, or even near future, is still not the day of pure EVs without any fossil fuel-

powered vehicles. On the engineering aspect, the reason mostly lies on the limits of energy 

storage devices. 

Figure 1.2 illustrates these limits in terms of power and energy adapted from [Trovão 2017; 

Werkstetter 2015]. The horizontal axis is specific power measured in W/kg. The vertical axis 

represents specific energy with the unit of Wh/kg. The crossed lines depict typical dynamics of 

these sources and storages. For example, it shows that fuel cells are the electrical energy source 

that can store the highest energy per mass but has mostly the lowest ability to generate power.  
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Figure 1.2: Power and energy densities comparison of common sources used for vehicles 

(adapted from [Trovão 2017; Werkstetter 2015]). 

 



Chapter 1: Background and literature review 

 

7 

It is shown by Figure 1.2 that so far none of electrical energy source or storage can 

completely replace ICE. The most common ESSs used in modern EVs are Li-ion batteries, 

which have less capability than ICE in terms of energy. The autonomy range of one of the most 

luxury EVs (Tesla model S, up to more than 500 km) is just close to a common conventional 

gasoline car (up to 600 km). To produce the same power, batteries packs are more heavy and 

larger than ICEs with fuel tanks, due to the difference in specific power. In terms of customers 

convenience, it takes commonly about five minutes to totally fill-up the fuel tank of a gasoline 

car; whereas it is 30 minutes for an EV to charge about 80% of its batteries in case of fast 

charging mode. The number is about 7 to 8 hours for EVs in case of normal charge at home. 

c. Hybridizations of energy sources and storages 

Electrification of vehicles is necessary but not yet completed as discussed above. While waiting 

breakthrough technologies on energy storage devices that can be commercialized, 

hybridizations are solutions for current electrified vehicles. Two sorts of hybridizations are 

addressed in this thesis:  

• hybridization of mechanical converters (ICEs) and electrical converters (electrical 

drives) to form hybrid traction subsystem in hybrid electric vehicles (HEVs); and 

• hybridization of different electrical energy storages (battery/SC) to form hybrid energy 

storage subsystem (H-ESS) used in EVs and/or HEVs. 

Hybrid electric vehicles configurations 

HEVs can be classified into three configurations: series, parallel, and series-parallel as 

illustrated in Figure 1.3, Figure 1.4, and Figure 1.5, respectively [Chan 2010]. Each topology 

has its own pros and cons which are suitable for different applications. 

Series HEVs are composed of an ICE and two electrical machines (EM) (see Figure 1.3). 

The drivetrain is propelled by EM 1 which is supplied by power electronics converter 1. The 

DC power, which supplies converter 1, is provided by the DC bus. The ICE mechanically 

coupled with EM 2 serving as a generator; the generated electrical power is then supplied to the 

DC bus via converter 2. The DC bus is the parallel coupling between converter 2 and the ESS.  
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Figure 1.3: General configuration of series HEVs. 
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In the series configuration (see Figure 1.3), there is no mechanical coupling between the 

vehicle drivetrain and the ICE. That enables the ICE to work at its optimal operation region. The 

disadvantage lies on the size of the EMs. EM 1 must provide all the traction power required by 

the drivetrain. EM 2 must be able to convert all the power generated by the ICE. Sizing the ESS 

is also challenging. Series HEVs are therefore efficient but expensive and bulky. Thus, this 

configuration is suitable for large vehicles, e.g., buses [Hu 2014; Li J. 2017], locomotive [Mayet 

2014b], and military vehicle [Boulon 2010, 2013].  

In parallel HEVs, the ICE, the EM, and the drivetrain are mechanically coupled (see Figure 

1.4). The machine is supplied by the converter and the ESS. Because the mechanical power is 

provided by the machine and the engine, they can provide higher power than their own maximal 

capabilities. This configuration has drawback in term of efficiency since the ICE speed is 

directly linked to the vehicle velocity. That prevent the ICE working in its optimal operation 

region. Clutch and variable transmission (e.g., multi-speed gearbox) are therefore often required. 

Due to its pros and cons, the applications of the parallel configuration are on cars and on the 

heavy-duty vehicles working mainly in stationary driving conditions, such as trucks [Biasini 

2013; Mayet 2019; Mullem 2010; Suzuki 2008]. 
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Figure 1.4: General configuration of parallel HEVs. 

Series-parallel HEVs, as its name, are the combination of series and parallel configurations, 

in which the ICE and the EMs are coupled both mechanically and electrically (see Figure 1.5). 

A typical mechanical device, called planetary gear set, can be used to connect EM 1, EM 2, the 

ICE, and the drivetrain. The DC bus is also the electrical coupling of the ESS and the generation 

subsystem like series HEVs.  
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Figure 1.5: A configuration of series-parallel HEVs. 
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This sort of HEVs can gain advantages of both series and parallel configurations. Due to the 

mechanical parallel connection, the drivetrain can be driven by both the EM 1 and the ICE. 

Besides, the planetary gear set allows controlling speed of the ICE within its optimal operation 

range. However, the gear set is complex and difficult to be sized for heavy-duty vehicles 

(multiple sets are required, that is even more complex, e.g., [Lhomme 2017; Xiang 2017]). Thus, 

series-parallel configuration is most suitable for cars [Borhan 2012; Chen Zh. 2014a] (such as 

Toyota Prius [Montazeri-Gh 2015]). 

Hybrid energy storage subsystems configurations 

H-ESS is the combinations of two or several electrical ESSs and/or sources to gain 

advantages of both high-power-density and high-energy-density sorts of devices. An H-ESS 

uses the different ESS as a function of the situation. The goal can be to extend the main ESS 

lifetime. Hybridization between batteries and SCs is among the most promising solutions for H-

ESSs for electrified vehicles (EVs and HEVs) [Allègre 2013; Trovão 2015a]. Batteries are the 

most expensive component of an electric or hybrid vehicle nowadays. Degradations of batteries 

over driving cycles are therefore costly. Hence, adding SCs to reduce the aging stresses on 

batteries is of interest. In fact, the battery/SC H-ESS has been installed in commercial products 

such as Bolloré Bluecar® [Bolloré 2012]. Batteries and SCs can be combined by mainly three 

ways: passive, semi-active, and active topologies (Figure 1.6, Figure 1.7, and Figure 1.8, 

respectively). 

Passive configuration (see Figure 1.6) is the simplest topology of battery/SC H-ESSs. The 

batteries and the SCs are directly connected in parallel at the DC bus and supply power to the 

traction subsystem. Since the internal impedance of the SCs is much lower and the dynamics of 

the SCs are much faster than those of the batteries, the SCs can compensate the high fluctuated 

current demanded by the traction part. 

The solution is relatively cheap for H-ESSs. It is simple, highly reliable, and there is no need 

of control and energy management. However, the current compensation is passive, instead of 

being controlled. Moreover, the SCs voltage is fixed to the batteries voltage, hence very few of 

SCs energy, which is directly related to their voltage, can be used. Thus, this topology is 

commonly used for application requiring simplicity and high reliability such as [Ehsani 2006; 

Henson 2008; Pagano 2007; Trovão 2016]. 
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Figure 1.6: General configuration of passive battery/SC H-ESS. 

To effectively use SCs to support batteries, a bidirectional DC/DC converter should be added 

to control the SCs power; that forms the semi-active configuration (see Figure 1.7). The SCs are 

connected in series with an inductor which is followed by the low-voltage side of a power 
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electronics chopper. The high-voltage side of the chopper is connected in parallel with the 

batteries. The DC bus voltage is fixed by the batteries voltage.  
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Figure 1.7: General configuration of semi-active battery/SC H-ESS. 

This topology allows the SCs power being controlled to obtain optimal power profile of the 

batteries with only one DC/DC converter added. This solution offers good trade-off between 

performance and price and/or complexity. Hence, it is widely used in many applications such as 

[Ibrahim 2016; Kollmeyer 2014; Vinot 2013; Vulturescu 2013]. The drawback of semi-active 

configuration is that the batteries voltage must be high enough to supply the traction subsystem. 

Heavy-duty vehicles like truck or bus need high DC bus voltages which can be challenging for 

batteries sizing. Additionally, uncontrolled DC bus voltage can lead to non-optimal operation 

of EM drive of the traction subsystem.  

To overcome the above drawback of the semi-active topology, active configuration is often 

of interest (see Figure 1.8). One more DC/DC converter is added to batteries and coupled in 

parallel with the chopper of the SCs branch. They supply power to the traction subsystem via a 

DC bus capacitor. The DC bus voltage must therefore be controlled.  

With this configuration, the batteries voltage is lower than the DC bus one; that cause the 

batteries sizing less challenging for high voltage applications. The DC bus voltage can be 

controlled to be stationary, or to vary following the optimal operation of the machine drive 

subsystem. Due to its high performances, the active topology is popular in many applications 

e.g., [Dai 2016; De Castro 2012; Hredzak 2014]. Its disadvantages lie on the complexity of 

control scheme with more voltage and current controls and the cost of additional devices. 
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Figure 1.8: General configuration of active battery/SC H-ESS. 

1.1.2. Energy management strategies: why and where is the thesis? 

As previously discussed, hybridization is promising for efficient electrified vehicles nowadays, 

in both mechanical and electrical parts of the vehicles. However, the hybridized systems must 

be coordinated so that their subsystems cooperate correctly and effectively to achieve certain 
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objectives. Such mandatory coordination is energy management strategy (EMS) which is the 

focus of this thesis. 

Due to the importance of EMSs in hybridized electrified vehicles, they are of study interest 

of various research institutions, networks, and programs. This thesis is within a collaborated 

framework of the French network on hybrid and electric vehicles (MEGEVH) and the Canada 

Research Chair in Efficient Electric Vehicles with Hybridized Energy Storage Systems. In 

MEGEVH, the thesis is conducted at the Laboratory of Electrical Engineering and Power 

Electronics of Lille (L2EP), University of Lille, France. For Canada side, the thesis is conducted 

at the electric – Transport, Energy Storage and Conversion laboratory (e-TESC lab.), University 

of Sherbrooke (UdeS), Québec, Canada. 

MEGEVH stands for Energy Modeling and Energy Management of Hybrid and Electric 

Vehicles [MEGEVH 2019]. The network, initiated in 2004, is composed of 10 academic 

laboratories and 8 industrial partners in France (Figure 1.9). It aims to develop modeling and 

energy management methods for electric and hybrid vehicles which are validated in laboratory 

experimental platforms with real reference vehicles. 

The common formalism used in MEGEVH is Energetic Macroscopic Representation (EMR) 

which is a formalism for modeling, control, and energy management of complex and multi-

physical energetic systems [Bouscayrol 2000, 2013; EMR 2019]. EMR highlights the 

interactions between subsystems in terms of power flows respecting the principles of causality 

and interaction [Hautier 2004; Iwasaki 1994]. More details on EMR are given in Appendix A.1. 

In MEGEVH and in this thesis, EMR is used as the unified formalism for modeling, control, 

and EMSs development. 

 

Figure 1.9: The map of MEGEVH network [MEGEVH 2019]. 
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This thesis is in the intersection of MEGEVH “Strategy” and MEGEVH “Multi-source” 

(Figure 1.10). The framework MEGEVH “Strategy” is the researches on modeling, control and 

EMSs of HEVs [Letrouvé 2013; Lhomme 2007] and multi-source EVs [Dépature 2017; Marx 

2017]. The framework MEGEVH “Multi-source” focuses on the EMSs for EVs and HEVs 

supplied by multiple sources (Hybrid-ESS). Studied H-ESSs have been fuel cells and SCs 

[Dépature 2017], multi-stack fuel cells [Marx 2017], and fuel cell/battery/SC subsystem 

[Castaings 2016b], all for EVs. Interests on EMSs of fuel cell/battery H-ESSs have been also 

addressed in a scientific contest [Dépature 2018a] organized by MEGEVH.  

Additionally, this thesis shares the common research interest with MEGEVH “Storage” on 

the studied systems of energy storages [Allègre 2010a; Castaings 2016b; Gauchia 2011]. 

Furthermore, the thesis inherits from MEGEVH “Optim” the methods on development of global 

optimization and real-time optimization-based EMSs for HEVs [Horrein 2015; Kermani 2009]. 

Within this framework, this thesis studies development methods of optimization-based EMSs 

for EVs and HEVs supplied by batteries and SCs. 
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Figure 1.10: Scientific context of the thesis within MEGEVH network. 

 

The thesis is also under the Canada Research Chair program in Efficient Electric Vehicles 

with Hybridized Energy Storage Systems conducted in UdeS [CRC 2017] (Figure 1.11). The 

research project aims to study the subsystems of EVs including electrical machines [Shah 

Mohammadi 2018], power electronics [Beraki 2017; Daouda 2018], and batteries and H-ESSs 
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[LeBel 2018; Pelletier 2018]. To coordinate these subsystems in an efficient EV, there are works 

on energy management [De Castro 2012; Gomozov 2017; Machado 2016; Trovão 2013b, 

2015b, 2017] those the thesis is based on.  

The technical context of the thesis is also in the common interest of French and Canadian 

research programs, under CE2I (Integrated Intelligent Energy Converters) and Mitacs 

Accelerate, respectively. Within CE2I program, a multi-source hybrid truck is studied as a 

concept of integrated intelligent transportation. Meanwhile, within Mitacs Accelerate program, 

the project focuses on multi-machine multi-source vehicles. That context leads to the studied 

systems of this thesis those are an EV and a hybrid truck supplied by H-ESSs combining Li-ion 

batteries and SCs. 

This section has already discussed the global context of studying EVs and HEVs, the needs 

of hybridizations, the scientific context of the research networks and programs, and the technical 

context on the studied systems of the thesis. It has been figured out that energy management 

plays an essential role in hybridized electrified vehicles. In the next section, a state-of-the-art 

review on methods for EMSs development will be presented.  
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Figure 1.11: Scientific context of the thesis within Canada Research Chair program. 
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1.2. State-of-the-art review on energy management strategies 

Before addressing the energy management methods, a general description of studied hybrid 

systems with EMSs could be useful (Figure 1.12). The general system can be considered as a 

combination of a primary source and a secondary source. The former is the energy source or 

storage that provides the main long-term energy to guarantee the driving range of the vehicle. 

For example, in an HEV, the ICE is the primary source, whereas in an EV, the batteries play 

this role. The secondary source is the ESS that can be frequently charged/discharged during the 

operations of the vehicles. The role of the secondary source is to support the primary source to 

achieve energy management objectives. For instance, in HEVs, batteries are secondary source 

that provide electrical power to help the ICEs to reduce fuel consumption and/or emission. 

Meanwhile in battery/SC EVs, SCs are the secondary one to extend batteries life-time by 

compensating high fluctuated power request.  
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Figure 1.12: EMR-based general description of multi-source vehicles with EMSs. 

Energy sources and storages can produce and store energy in different physical forms, e.g., 

ICEs impose mechanical energy whereas batteries exchange electrical energy. To work in a 

system, they need to be associated with multi-physical energy converters. For example, 

electrical machines convert electrical energy to mechanical energy and vice versa, so that 

batteries can work with ICEs in HEVs. Furthermore, to effectively operate multi-source 

systems, the energy flows should be controlled (by EMSs). The energy conversions should be 

controllable, such as electrical drives (electric machines, power electronics converters, and their 

control). The controlled energy flows combine at the energy coupling to supply energy to the 

traction subsystem or the drivetrain. EMSs are implemented in the strategy block. The EMSs 

measure and/or estimate the system variables to impose the energy flows references in order to 

obtain the objectives while satisfying the constraints.  

In this study, the development methods are organized based on the traditional classification 

proposed in [Salmasi 2007]. In this work, a more detailed classification of energy management 

methods is presented (Figure 1.13). 



Chapter 1: Background and literature review 

 

15 

ENERGY 

MANAGEMENT

Rule-based 

methods

Optimization-

based methods

Deterministic

Artificial 

intelligence

Frequency-

based

Mode-based

Feedback 

control

Fuzzy logic

Artificial neural 

network (ANN)

Global optimal

Dynamic 

programming 

(DP)

Pontryagin’s 

minimum principle 

(PMP)

Other methods

Real-time

near-optimal

Optimal 

control-based

Meta-heuristic 

optimization

Equivalent consumption 

minimization strategy 

(ECMS)

Model predictive 

control (MPC)

• Filtering-based

• Wavelet-based

• DP solution-based

• Stochastic DP

• PMP-based

• Linear control

• Non-linear control

 

Figure 1.13: Classification of energy management methods. 

1.2.1. Rule-based methods 

Rule-based methods are classified into deterministic and artificial intelligent (AI)-based groups. 

The former ones are explicit rules deduced from user’s knowledge of the systems behaviors. 

Whereas the rules of the latter ones are based on AI methods to simulate the human behaviors 

and learning abilities. Rule-based strategies are often easy to be implemented in real-time which 
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is suitable for real-world applications. However, they are not optimal and dependent on human 

expertise. 

a. Deterministic rule-based methods 

Frequency-based methods 

H-ESS and HEVs are the combinations of energy sources; in which there are often sources 

preferable to work at low frequency (LF) and the other ones more suitable for high frequency 

(HF). Hence, it is straightforward to develop EMS based on frequencies of power references 

(Figure 1.14). LF power demand corresponds to the steady state driving and HF power demand 

corresponds to the variations (acceleration and regenerative braking). The methods can be 

classified as filtering-based and wavelet-based regarding the most common used techniques of 

frequency separation. 
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Figure 1.14: General description of EMSs with frequency-based methods. 

 

Filtering-based methods 

Frequency separation can be realized by using low-pass or high-pass filters (LPFs/HPFs) to 

generate the power references for energy storage devices. This is a very simple but effective 

method for energy management.  

Two LPFs are used for a fuel-cell/battery/SC energy storage subsystem, in which one is for 

fuel-cell and one is for batteries power references [Schaltz 2009]. Two EMSs, which are with 

or without batteries, are investigated. The objective of batteries life-time extension is examined 

in terms of number of cycles and depth-of-discharge (DoD). Two configurations of fuel-cell/SC 

and battery/SC H-ESSs are studied in [Tani 2012] using LPFs. The performances of DC bus 

voltage control, storage devices currents control, and EMS are verified by experiments.  
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An adaptive mechanism for the time constant of the LPF of battery/SC H-ESS energy 

management is proposed in [Florescu 2015]. The time constant is adapted regarding the SCs 

voltage. The time constants of the LPFs can be chosen based on the Ragone plot [Christen 2000] 

as addressed in [Akli 2009] for flywheel, batteries, and SCs, in [Dépature 2018b] for fuel-cells 

and SCs, and in [Allègre 2013; Nguyễn 2016] for battery/SC H-ESS. 

Not only for energy storage subsystems, filtering-based strategy can be also applied to 

energy management of HEVs. In [Kim Y. 2014], the so-called frequency-domain power 

distribution strategy is investigated for hybrid powertrains. The studied system is examined by 

several hardware-in-the-loop experiments including the so-called battery-in-the-loop and 

engine-in-the-loop.  

Wavelet-based methods 

To separate the frequencies of the energy sources, wavelet transformation technique can be used. 

The Haar wavelet is used in [Zhang 2008] for energy management of a fuel-cell/battery/SC H-

ESS. The three-level wavelet-based scheme decomposes the demanded traction power into 3 

frequency components for fuel-cells, batteries, and SCs. A similar multi-level decomposition is 

also applied in [Uzunoglu 2008] for a fuel-cell/SC system. Wavelet transformation is used in 

cooperation with a nonlinear auto-regressive neural network for a battery/SC military hybrid 

vehicle in [Ibrahim 2016]. The neural network predicts the requested power for the wavelet 

transformation to decompose the power frequency. 

The advantage of wavelet technique is the localized signal decomposition in both time and 

frequency domain. This sort of methods requires wavelet transformations which make it more 

complicated to be implemented in on-board embedded systems in comparison to the filtering-

based approach. 

Mode-based methods 

This group addresses the mode-based methods which are developed by heuristic approaches. 

They are normally in a general form like “if the system is in this state then the strategy should 

be in that mode” (Figure 1.15). Mode-based methods can be considered as the simplest approach 

to develop EMSs. The strategies can be easily implemented thanks to their intuitive approach. 

There is, however, almost no systematic methodology to develop them. 

Baseline control strategy, which is used in ADVISOR, is applied in [Johnson 2000] for 

HEVs. Maximal and minimal torque envelopes are defined. The operation of the engine depends 

on these envelopes and batteries SoC levels. An 8-state mode-based strategy is proposed for 

energy management of a full-active fuel-cell/battery H-ESS for a tramway [Garcia 2010]. The 

operation modes are defined based on the batteries SoC and the load power. A similar 7-state 

EMS is presented in [Hannan 2012] for a multi-source system combining fuel-cells, batteries, 

and SCs. A series HEV using H-ESS combining batteries and SCs are studied in [Yoo 2008]. 

The mode-based EMS manages both mechanical and electrical couplings. Hence, the strategy 

is considered as composition approach even though the voltage and current controls are 

separated from the EMS. Mode-based strategies are also of interest for managing the operations 

of batteries and SCs in other applications like smart DC grid [Sechilariu 2013; Yin 2017]. 
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Figure 1.15: General description of EMSs with mode-based methods. 

Feedback control-based methods 

The subject of energy management is dynamical systems. It is therefore reasonable to develop 

EMSs using automatic control theory (Figure 1.16). The methods can be classified as linear and 

non-linear control. In which, linear control is often applied with decomposition approach; while 

non-linear control frequently goes with composition approach. 
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Figure 1.16: General description of EMSs with feedback control-based methods. 

Linear control 

The linear control scheme is applied for energy management of the H-ESS combining fuel-cells, 

batteries, and SCs in [Thounthong 2009]. The proportional controllers are employed for SCs 

and batteries voltage control. The studied systems are well examined by experiments. However, 
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it could be noted that while the SCs voltage directly relates to their SoC, the batteries voltage 

does not. Hence, the batteries voltage control loop could be appropriately replaced by their SoC 

control with the estimation of the batteries SoC from their voltage. 

Proportional-integral (PI) controller with anti-windup mechanism is used to control the SCs 

voltage that is called “compensation loop” for fuel-cell/SC H-ESS in [Azib 2010]. DC bus 

voltage and SCs current control loops are developed independently with the outer supervisory 

control of SCs voltage. PI controller for batteries and SCs SoC management are also investigated 

for a hybrid vehicles in [Wang L. 2011]. 

In [Nguyễn 2018b], the author proposed a merging control of an H-ESS for EVs. It is 

developed based on the principle of inversion of EMR. A closed-loop voltage control for SCs 

has been introduced to couple with the traditional open-loop current control of the batteries. The 

trade-off between the two different objectives is addressed by a weighting factor. 

Non-linear control 

In [Thounthong 2010], the DC bus and the SCs voltages are considered in the same framework 

of non-linear flatness-based control for a fuel-cell/SC system. Similarly, non-linear control is 

also applied in [Ayad 2010; Benmouna 2018; Hilairet 2013] with the passivity-based control 

technique. 

A fuel-cell/battery/SC H-ESS is considered as a multi-input multi-output (MIMO) system 

that is controlled by a control Lyapunov function (CLF) in [Rajabzadeh 2016]. Non-linear 

control with CLF and sliding mode control technique are also investigated by the authors of 

[Song 2017] for battery/SC EVs. With the similar composition approach, an H-ESS can be 

treated as a port-controlled Hamiltonian system as in [Dai 2016]. Disturbance rejection for 

energy management of the system is then developed. 

Feedback control-based methods are model-based strategies which can be systematically 

deduced by using control theory and system dynamical models. They are therefore promising 

for EMSs development. Nevertheless, it often causes confusions when the low-level (local) 

controls are mixed with high-level (supervisory) EMSs. The plants can therefore become huge 

non-linear MIMO systems which make the control laws very complicated. It could be better if 

the two levels are decomposed regarding their objectives, functions, and dynamics. It is also 

interesting to note that there is a lack of feedback control-based strategies developed for HEVs 

energy management. This could be therefore promising to initiate applications of advanced 

control technique to EMSs of HEVs.  

b. Artificial intelligence-based methods 

Fuzzy logic-based methods 

It is reasonable that fuzzy logic is widely used for EMSs development since it is close to human 

decision making. It can be stated that fuzzy logic-based EMSs are mode-based strategies but in 

the language of fuzzy logic. The mode-based approach has been already addressed in the 
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previous subsection. Hence, works on fuzzy logic-based strategy development are not presented 

in detail here, despite numerous works using this method. 

Artificial neural network-based methods 

Beside fuzzy logic, artificial neural network (ANN) is also an artificial intelligent method that 

can be used for EMSs development (Figure 1.17). Normally, ANN-based EMSs can achieve 

high performances; however, they often require hard computational efforts. 
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Figure 1.17: General description of EMSs with artificial neural network-based methods. 

A simple two-layer network is used to calculate the SCs current reference for a battery/SC 

H-ESS in [Moreno 2006]. The results are compared with an optimal EMS based on PMP. One 

of the strong abilities of ANN is pattern recognition; thus, it is often used for identification 

and/or prediction. The two-part papers [Murphey 2012, 2013] propose an intelligent energy 

management approach for power-split HEVs. ANNs are used for both driving conditions 

predictions and for power distribution. The first-part paper presents the driving environment 

learning and DP optimal control-based training of the ANNs. The second-part paper addresses 

the on-line implementation of the developed ANN-based EMS. Even though the authors 

demonstrated well the real-time implementation of the proposed EMS, its complexities make it 

challenging to be realized for real-world applications. 

Using DP to deduce optimal solutions for training the ANN to be implemented in real-time 

is also the approach presented in [Tian 2016]. The studied system is a parallel HEV supplied by 

a battery/SC H-ESS. The optimization problem is to minimize the total cost of fuel consumption 

and electrical consumption with a penalty of the final energy state of the H-ESS. A length ratio-

based ANN is implemented with the claim of reduction of computational efforts for real-time 

realization in micro-controller. 

1.2.2. Optimization-based methods 

The objective of energy management is to minimize/maximize certain performance criteria. 

Optimization-based methods are therefore naturally of interest. They are classified into two 

main groups: off-line global optimal and real-time near-optimal methods. The former can 
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deduce optimal solutions; however, they are off-line computation methods which cannot be 

directly used for real-world applications. The optimal solutions are therefore often used as 

benchmarks to evaluate the real-time strategies. The latter give only sub-optimal solutions but 

can be implemented in real-time. The real-time optimization-based methods are complicated, 

but they can be closer to the optimal than rule-based strategies. Methods of the both groups are 

widely used and are attracting more and more interests from researchers.   

Before addressing optimization-based EMSs, the optimal control problem formulation 

should be presented. An energy management problem can be formulated by adopting the form 

of optimal control [Kirk 1970; Sciarretta 2007] as follows: 

Find the control laws 𝑢(𝑡) for the system 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡), 𝑡]; (1.1) 

in which 𝑥(𝑡) is the state variables and 𝑤(𝑡) is the disturbances; that minimize the cost functions 

{ 𝐽1⋯𝐽n } given as: 

𝐽 = [ 𝐽1⋯𝐽n ]
𝑇 (1.2) 

with the constraints: 

{ 
𝑝[𝑥(𝑡), 𝑢(𝑡), 𝑡] ≤ 0

𝑞[𝑥(𝑡), 𝑢(𝑡), 𝑡] = 0
; (1.3) 

where 𝑝 and 𝑞 are sets of functions expressing the inequality and equality constraints of the 

system, respectively. The cost functions (1.2) are expressed by: 

𝐽𝑖 = ℎ𝑖[𝑥(𝑡f), 𝑡f]⏟      
Cost of the final state

+∫ 𝑔𝑖[𝑥(𝑡), 𝑢(𝑡), 𝑡]𝑑𝑡
𝑡f

𝑡0⏟            
Cost of the whole procedure

 

with 𝑖 ∈ {1,2, … , 𝑛}; 

(1.4) 

where 𝑔 and ℎ denote arbitrary functions; 𝑡0 and 𝑡f are the initial and the final time, respectively.  

When the problem is properly formulated, one can use various types of methods to solve it 

depending upon the study purpose. It could be worth to note that optimization methods can be 

used not only for EMSs, but also for sizing problems, e.g. [Hu 2015b]. The two problems, energy 

management and sizing, can be combined into multi-layer design problems as surveyed in 

[Sylvas 2017]. In which, the combinations are classified as alternating, nested, and simultaneous 

coordination. Whereas the multi-layer architecture is considered as topological optimization, 

sizing optimization, and optimization-based strategy. This combination could be a trend; 

however, this thesis focuses on EMSs development, thus, the sizing problem is not discussed. 
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a. Global optimal methods 

Global optimal EMSs using optimal control and optimization techniques are addressed here. 

Two main approaches of optimal control frequently in use are dynamic programming (DP) and 

Pontryagin’s minimum principle (PMP). Besides, the other optimization techniques are also 

employed for off-line energy management. 

Dynamic programming 

DP is based on the Bellman principle of optimality [Kirk 1970]. Considering the above general 

system (1.1) the discrete form, DP is expressed by Bellman equation as follows: 

𝐽𝑘,𝑁
∗ [𝑥(𝑘)] = min

𝑢(𝑘)

{
 
 

 
 

𝑔D[𝑥(𝑘), 𝑢(𝑘)]⏟        
Cost-to-go from current stage

𝑘 to next stage 𝑘+1

+ 𝐽𝑘+1,𝑁
∗ [𝑓 (𝑥(𝑘), 𝑢(𝑘))]⏟              

Optimal cost-to-go from next stage
𝑘+1 to final stage 𝑁 }

 
 

 
 

; (1.5) 

in which the subscript 𝑘,𝑁 denotes the procedure going from the 𝑘th stage to the final 𝑁th stage, 

similar for 𝑘 + 1,𝑁; 𝑔D is the discrete form of the function 𝑔 mentioned in (1.4). The optimal 

control 𝑢∗(𝑘) is deduced as a control law with the feedback of the state variable [Kirk 1970]: 

𝑢∗(𝑘) = 𝑢[𝑥(𝑘), 𝑘]. (1.6) 

The Bellman equation (1.5) is normally solved by numerical computation. The optimal 

control (1.6) is then stored as a look-up table. Figure 1.18 illustrates the solving procedure for 

an arbitrary scalar component of 𝑥. It is to find the optimal path from the current state 𝑥𝑖(𝑘) to 

the final state 𝑥(𝑁). The optimal paths from all possible next states 𝑥(𝑘 + 1) to 𝑥(𝑁) must be 

a priori known. The operation of DP is to repeat this procedure from 𝑥(𝑁) to the initial state 

𝑥(0). Due to computation in discrete time, the system must be discretized and quantized.  
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Figure 1.18: General description of EMSs with dynamic programming. 
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An improved DP was proposed with a fixed states number for better numerical calculation 

in [Fares 2015]. Multiple costs of a fuel-cell/battery system are considered: fuel-cell hydrogen 

consumption, its life-time and batteries energy consumption. However, the compromises 

between these costs are not addressed. A real-time EMS using PID controller is used for 

comparison with the DP solution. 

In [Santucci 2014], DP is used to generate a benchmark for a parallel HEV supplied by a 

semi-active battery/SC H-ESS. The decomposition methodology is adopted for energy 

management of the mechanical coupling, while the composition approach is used for power 

sharing between batteries and SCs. MPC and mode-based strategies are developed for the H-

ESS. An ECMS is deduced for HEV. The MPC strategy addresses two objectives of SoC 

tracking errors and batteries power with corresponding weighting matrices. A battery aging 

model is put in the cost function of DP to minimize the batteries degradation. The cost functions 

of MPC and DP are therefore different, whereas, they should be the same for performance 

comparison. 

Power-split HEV using Toyota hybrid system is studied in [Liu 2008]. Both deterministic 

and stochastic DP strategies address two objectives: fuel consumption and battery SoC variation 

with a fixed penalty factor. ECMS is used to minimize a total fuel consumption combining 

engine fuel consumption and equivalent fuel consumption of the electric machine. They are 

considered equally. 

By using EMR, the complex model of multi-physical systems can be systematically 

organized in backward representations (proposed in [Horrein 2015a]) for DP problem statement 

and solving. The approach has been used for optimal benchmark solutions deductions for 

battery/SC H-ESS-based EVs [Nguyễn 2017b], parallel HEVs [Nguyễn 2018c; Pam 2017], and 

HEVs supplied by batteries and SCs [Nguyễn 2018a]. 

Most of previous works in H-ESSs develop improved EMSs with only one objective 

(batteries life–time). However, at least the costs on SCs operation also could be considered. 

Generally, a methodology to develop multi-objective EMS is demanded. In this thesis, 

Appendix A.2 presents a procedure to develop multi-objective EMS of H-ESS for an EV. SCs 

system losses are considered as the second cost function. The DP generates a Pareto front to be 

used in order to compare with another on-line EMS. 

Thanks to its ability to generate global optimal solutions regarding all types of constraints 

for all types of dynamical systems, DP is the most used method to deduce the optimal benchmark 

for energy management problems. The drawback of DP is that it is costly in term of computation. 

Moreover, this method requires the a priori known disturbances which is not realistic for 

vehicular applications. Thus, DP is used only for off-line simulation. In order to be applied for 

real-time EMSs, it must be modified as will be presented later in this subsection.  

Pontryagin’s minimum principle 

To solve the optimal control problem stated by (1.1)–(1.4), PMP was proposed as necessary 

conditions of the optimal solutions [Athans 1966; Bryson 1975; Kirk 1970]. An 𝑚-dimension 

co-state vector λ(𝑡) is defined to form the Hamiltonian expressed as: 
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𝐻 = 𝑔[𝑥(𝑡), 𝑢(𝑡), 𝑡] +∑λ𝑖(𝑡)𝑓𝑖[𝑥(𝑡), 𝑢(𝑡), 𝑡]

𝑚

𝑖=1

 (1.7) 

where 𝑚 is the order of the system (1.1). PMP states that if a control 𝑢∗(𝑡) is the optimal control 

that cause the optimal state trajectory 𝑥∗(𝑡), there must exist an optimal co-state λ(𝑡) so that 

they satisfy the following three necessary conditions: 

𝑑

𝑑𝑡
𝑥∗(𝑡) =

∂𝐻

∂λ(𝑡)
; (1.8) 

𝑑

𝑑𝑡
λ∗(𝑡) = −

∂𝐻

∂𝑥(𝑡)
; (1.9) 

𝐻[𝑢∗(𝑡), 𝑥∗(𝑡), λ∗(𝑡), 𝑡] ≤ 𝐻[𝑢(𝑡), 𝑥∗(𝑡), λ∗(𝑡), 𝑡]. (1.10) 

By solving the above equations, one can find a set of solutions which can be compared to 

find the global optimal solution. Normally, the disturbance 𝑤(𝑡) must be known in advance to 

determine the co-state variable λ(𝑡). When there exist constraints, numerical computations are 

required for solving the differential equations. Generally, the solutions are in open-loop form. 

PMP is widely used to develop off-line strategies for energy management of HEVs and H-

ESSs. In [Hou 2014], an approximate PMP with the restricted five Hamiltonian candidates is 

proposed for energy management of a plug-in parallel HEV. A reduction of calculating time 

from six hours to four minutes is reported. However, the method still required the driving cycle 

known in advance. Thus, it is considered an off-line method even though the authors claim the 

feasibility of real-time implementation. 

The authors of [Fontaine 2013] study a parallel HEV supplied by a battery/SC H-ESS. Two 

strategies are proposed to minimize either fuel consumption or battery power using PMP. A 

novel numerical solution for PMP is applied for HEV energy management problem [Van Keulen 

2014]. Results are compared with DP solution. The study seems to be focused on the 

mathematical optimal control theory that EMS is just a case study to examine the applicability 

of the theoretical method. 

An HEV using battery/SC H-ESS is investigated in [Vinot 2013]. PMP is used to develop 

an EMS that minimizes both fuel consumption and battery root-mean-square (rms) current. The 

optimal control problem with two independent control laws is solved simultaneously. Pareto 

fronts in the cases without and with battery are generated. A simple mode-based strategy for 

determining engine power requirement is implemented. Filtering-based strategy for battery/SC 

H-ESS with various cut-off frequencies is examined.  

Normally, PMP can deduce the close results in comparison with DP. The advantage of PMP 

is that it is less computationally demanding than DP. However, PMP requires the guess of initial 

value of the co-state variable that makes it not a total systematic approach.  
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The other methods 

Beside DP and PMP, several other optimization methods are also of interest for off-line EMS 

development. The authors of [Wei 2017] studied a series HEV with bi-directional DC/DC 

converter connecting battery to the DC bus. The Radau pseudo-spectral method is used to 

translate the optimal control problem to a non-linear programming problem. The conjugate 

gradient-based BPTT-like optimal control algorithm is used to develop an EMS for a power-

split HEV in [Cipek 2013]. For the same kind of vehicle, in [Wu 2014], the optimal control 

problem is formulated and solved in form of a mixed-integer linear programming problem. 

Battery state-of-health model is considered in [Hu 2015a] for energy management of a fuel-

cell/battery/SC H-ESS. A convex optimization framework is proposed to solve the energy 

management problem.  

b. Real-time near-optimal methods  

The global optimization approaches mentioned above give only off-line solutions for energy 

management problems that cannot be realized for real-world applications. To develop real-time 

EMSs, sub-optimal methods are investigated. There are five groups addressed in this report: the 

methods based on global optimal control, model predictive control (MPC), meta-heuristic 

optimization, equivalent consumption minimization strategy (ECMS), and the other methods. 

Global optimal control-based methods 

One way to develop the real-time strategies is to adapt the off-line EMSs produced by global 

optimal control methods. They can be categorized as DP solution-based, stochastic DP, and 

PMP-based methods as presented in the followings. 

DP solution-based methods 

Optimal solutions can be computed off-line, then implemented in some forms like look-up table 

as real-time strategies (Figure 1.19). DP solution-based methods combine the systematic 

approach of optimization-based methods and the real-time implementable ability of rule-based 

approaches. However, the DP solution is obtained from one or several specific driving 

conditions. Hence, it is hard to ensure that real-time adaptations can work well with the real-

world driving cycles.  

In [Chen Zh. 2014], an intelligent EMS for a power-split plug-in HEV is developed using 

DP and ANN. DP deduce the optimal solutions for six standard driving cycles that are used to 

train the neural networks. Two ANNs are developed with and without specific trip information. 

The proposed EMS is validated by simulation. The lack of experimental results in this paper 

implies the difficulty to realize the ANNs in a real-time platform. DP is computed via off-line 

simulation to generate data for training the ANNs. The off-line training processes do not affect 

the real-time implementation but increase the complexity of the method. 

The fuel consumption of plug-in HEVs is minimized using DP in [Qiuming 2008]. Traffic-

data-based trip modeling is used to give information about the future traffic condition. However, 

the ability of on-board implementation for real-time energy management has not been fully 
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discussed. In [Song 2015], DP is used for designing of a battery/SC H-ESS and then for 

development of an optimal EMS. After that, a near-optimal mode-based strategy is produced 

based on the DP solutions. Results confirm the good performances of the proposed strategy in 

comparison to the DP optimal solution. However, the strategy is tested with the same two driving 

cycles used for development of DP solutions. Whereas the rule-based strategy is deduced based 

on these solutions. It could be more convinced to evaluate the proposed strategy with the other 

unknown driving cycles. 
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Figure 1.19: General description of real-time EMSs with DP solution-based methods. 

Stochastic DP-based methods 

The DP mentioned previously is deterministic DP in which all the disturbances must be a priori 

known in finite horizon. Meanwhile, real-time strategies must be in infinite horizon with 

unknown disturbances. In order to adopt DP for real-time EMS, stochastic DP is a suitable 

approach. In this method, unknown disturbances are modeled as random processes. Statistical 

techniques like Markov chain are normally employed. The drawbacks of this approach lie on 

the high computational efforts of both DP calculation and stochastic model prediction.  

Stochastic DP with Markov chain forecast is used for energy management of a fuel-

cell/battery H-ESS in [Kim M. 2007]. The hydrogen mass and battery energy usage are 

minimized with equal weighting factors. Sets of initial parameters and variable are provided as 

inputs to a Markov chain model of which the output is used to build a cost table. The optimal 

control problem is then solved by DP based on this cost table. Based on this process, the authors 

proposed a close-to-optimal “pseudo stochastic DP” that can be implemented in real-time. In 

[Moura 2013], a plug-in HEV is managed using multi-objective stochastic DP with varied 

weighting factor to trade-off the batteries life-time and the fuel consumption. Electrical 

consumption is also taken into account by a fixed penalty factor.  

Due to the essence of random-process simulated disturbances, stochastic DP strategies are 

very suitable to be applied for fixed-routine vehicle like trains, buses, and delivery trucks.   
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PMP-based methods 

As examined previously, PMP is often used to solve the energy management problem as an 

optimal control one. Nevertheless, this principle is originally suitable only for development of 

off-line strategies since it requires all the knowledge of disturbances in advance. To overcome 

the mentioned drawback, works on PMP-based real-time EMSs have been studied. Adaptive 

and/or predictive techniques are often employed (Figure 1.20). 
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Figure 1.20: General description of real-time EMSs with PMP-based methods. 

The most frequently used approach is 𝜆-control initiated in [Delprat 2002] then developed 

by [Kermani 2011; Kessels 2008] for energy management of HEVs. The main idea of 𝜆-control 

can be summarized as followings: 

• PMP is used to solve the optimal control problem of energy management. 

• An optimal value of the co-state variable 𝜆∗ is calculated by off-line computation. 

Normally, 𝜆∗ is claimed to be constant. The control law is in open-loop form that 

consider only the initial value of the state variable 𝑥(𝑡0).  

• To be implemented in real-time, the control law should be in closed-loop form. It is the 

feedback of the state variable 𝑥(𝑡) to deal with real-world constraints and unpredicted 

disturbances. The co-state variable is then in form of 𝜆0 + Δ𝜆(𝑡) in which Δ𝜆(𝑡) is 

imposed by a PI controller and 𝜆0 is initial “guessed” [Kessels 2008]. This value can be 

the optimal 𝜆∗ which is calculated for a known driving cycle [Castaings 2016a]. 
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The authors of [Nguyen 2014] used this method to realize an on-line optimal control-based 

strategy for battery/SC storage system supplying for HEVs. In [Castaings 2016a], 𝜆-control is 

examined and compared with the conventional filtering strategy for H-ESS using battery and 

SC. Recently, this method is applied for energy management of a fuel-cell/battery vehicle 

[Ettihir 2016].  

𝜆-control is an interesting way to develop an on-line adaptive mechanism for PMP-based 

strategies. However, it still requires an initial calculated value of the co-state variable which is 

not very straightforward for real-world applications. Furthermore, the adaptive mechanism acts 

only for charge sustaining and for constraints assurance [Castaings 2016a; Nguyen 2014]. The 

real-time dynamical behavior of the state variable is therefore not fully considered for the whole 

working progression. The method requires off-line iterative simulations to determine 𝜆0 for a 

learning driving cycle. Then the obtained solution can be implemented in on-board processor 

with a simple feedback adaptational scheme. Thus, this method is suitable for real-time 

implementation. The complexity is mostly on the step of the off-line optimal solution for a 

learning cycle known in advance. Improvement in this step could make the method more 

realistic for real-world applications. 

Other methods have been also proposed. An ANN-based adaptive mechanism is developed 

for an optimal control-based EMS of fuel-cell/SC systems [Lin 2011]. The ANN predicts the 

next-stage variables then updates the information to the optimal controller. In [Hemi 2015], a 

Markov chain is used to predict the required fuel-cell power regarding the future demanded 

traction power. This prediction is then added to the optimal fuel-cell power calculated by PMP. 

The EMS is then validated by simulation. The approaches are advanced but complicated. ANN 

and Markov chain both require high computational efforts that challenges the ability of real-

time realization.  

PMP is attractive thanks to its analytical approach. It can be adopted to deduce close-form 

analytical solution which can be easily implemented in real-time. Such a solution could be of 

interest despite the sub-optimal essence of real-time strategies. This approach has been applied 

in [Nguyễn 2019] and will be presented in the next chapter of this thesis. 

Model predictive control 

Model predictive control (MPC) is a promising approach to develop real-time optimization-

based EMS. The idea of MPC is to convert the original optimal control problem into an 

optimization problem, then solve it for a predicted time horizon in each discrete control step.  

Figure 1.21 describes the MPC scheme and Figure 1.22 illustrates the principle of receding 

horizon control which is the core of MPC. At the current 𝑘th step, a predictive model forecasts 

the future disturbance 𝑤 in 𝑁p next predicted steps. Based on this prediction and the information 

of the current state 𝑥(𝑘), an optimization solver computes the optimal control 𝑢 for 𝑁c control 

steps. Only the first computed control 𝑢(𝑘) is imposed on the system. The prediction horizon 

and the control horizon are then receded one step (see Figure 1.22). The procedure is repeated 

for the next (𝑘 + 1)th step. Many predictive methods can be employed in MPC framework 

[Zhou 2019].  
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The article [Gomozov 2017] proposes a non-uniform sampling method for MPC for energy 

management of semi-active H-ESS combining battery and SC. The sampling is distributed from 

small to large sampling time to achieve long horizon with precise prediction. This work 

considers both batteries and SCs SoCs as state variables. Linear MPC is used for EMS of a fuel-

cell/SC H-ESS in [Greenwell 2010]. It is developed with a model in which only SCs SoC is 

treated as the state variables. The local control level is independently decomposed from the 

energy management (supervisory) level. Multi-objective approach is investigated with two cases 

of weighting factor of the SCs SoC called “low SoC penalty” and “high SoC penalty”. 
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Figure 1.21: General description of EMSs with model predictive control. 
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Figure 1.22: Illustration of receding horizon principle. 
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Non-linear MPC and linear time-varying MPC are developed and compared in [Borhan 

2012] for energy management of power-split HEVs. Only batteries SoC is controlled as the state 

variable. Fuel consumption and SCs SoC are minimized simultaneously. In the linear time-

varying MPC, the quadratic form of cost function is formulated, and then quadratic 

programming is used to solve the problem. With the non-linear MPC, PMP is used to 

reformulate the cost function, then DP is used to solve the problem in the prediction horizon.  

In [Pant 2014] the EMS of a battery/SC H-ESS is decomposed into two levels. The high-

level control defines a peak threshold for battery power. This level is realized by using MPC. 

The low-level control is a rule-based strategy to decide the power references to batteries and 

SCs based on the defined peak threshold. In [Sun 2015], the MPC strategy takes into account 

the traffic-data for battery SoC planning for HEVs, in which the computational effort is much 

reduced. The EMS is decomposed into the long-term level with traffic flow velocity information 

for SoC planning and the short-term level with horizon velocity prediction. The batteries SoC 

trajectory and the predicted velocity are inputted to the MPC to calculate the engine torque and 

speed references. Fuel consumption and the engine state switching are aimed to be minimized.  

MPC is a promising technique due to its unique principle of solving optimization problems 

in predicted scopes. The main challenge lays on the high required computational performance 

to solve the optimization problems every sampling period. It could be noted that MPC-based 

EMSs are often validated by off-line simulations or signal HIL simulations. That indirectly 

shows the difficulty of real-time implementation of MPC strategies. Besides, many current MPC 

strategies are based on third-party optimization solvers which limit them from real-world 

applications. Fast optimization solving and disturbance predicting are still of interest to do 

research to make MPC possible for on-board embedded systems. 

Meta-heuristic optimization 

Beside MPC mentioned above, for solving optimization problems in real-time, it is also of 

interest to employ meta-heuristic methods (Figure 1.23). They are numerical searching 

techniques that can be considered as beyond heuristic searching. These methods are often 

inspired from natural phenomena such as metal annealing or swarm behaviors. In the followings, 

a number of works on energy management using meta-heuristic optimization methods are 

addressed. 

A dynamic neighborhood particle swarm optimization algorithm is used to calculate the 

optimal value of the engine power for plug-in series HEVs [Chen Ze. 2015]. It is to minimize 

the energy consumption including the cost of engine energy, the cost of electrical grid energy to 

charge the battery, and the cost of engine energy to charge the battery. These costs are summed 

with a proportionality factor. A fuzzy logic controller is used to evaluate the performances of 

the prediction of the driving cycle by a correction factor. When the prediction performance is 

poor, a mode-based strategy is used to ensure the robustness of the system. In [Chen S. 2015], 

improved particle swarm optimization is implemented and compared to a mode-based strategy 

and an ECMS strategy for HEVs. The improvement is to consider the worst experience of the 

particles to increase the convergent performance of the search algorithm. To maximize the 

efficiency of the battery/SC H-ESS, simulated annealing optimization is used to improve the 

performances of a mode-based strategy [Wang B. 2016]. 
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Figure 1.23: General description of EMSs with meta-heuristic optimization. 

Several meta-heuristic real-time EMSs for battery/SC H-ESS are studied with a multi-level 

hierarchical structure [Denis 2018; Trovão 2013a, 2015b]. The strategies are decomposed into 

two layers which are tactical and strategical, respectively. The strategical layer is responsible 

for energy planning, while the tactical layer manages the power behavior of the system. Energy 

planning is realized by certain rules to restrict the search space of the optimization-based lower 

layer for power planning. Thanks to decomposing the strategies into layers, these developed 

EMSs can be realized via power HIL simulation despite of their complexity. 

Meta-heuristic optimization techniques are of interest because they do not require to know 

the systems models. Whereas in complex applications like vehicles, these models are often not 

easy to be exactly deduced. However, there are drawbacks. One is on the computational 

complexity. This sort of methods is generally based on the generation and evaluation of a 

population of great number of candidates in every single sampling time step. This approach can 

overcome the complexity of system model, but unfortunately not suitable for common 

embedded electronics control units in vehicles. The another is on the convergence of the 

searching algorithms. Due to the relatively short sampling time step, it is hard to ensure the 

algorithms can converge to the optimal solutions.   

Equivalent fuel consumption minimization strategy 

ECMS was originally proposed as an instantaneous optimization-based energy management 

approach for HEVs [Paganelli 2000, 2002]. It is then extended for the fuel-cell-based H-ESS 

e.g. [Han 2014]. The idea is to minimize an instantaneous cost function containing the fuel rate 
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and an equivalent electrical consumption. That means, instead of minimizing the fuel 

consumption: 

𝐽fuel = ∫ 𝑚̇fuel(𝑡)𝑑𝑡
𝑡f

𝑡0

; (1.11) 

where 𝑚̇fuel is the fuel mass flow rate, an instantaneous cost function can be defined by: 

𝐽inst = 𝑚̇fuel(𝑡) + 𝑝(𝑡)𝑆𝑂𝐶̇ (𝑡); (1.12) 

in which 𝑆𝑂𝐶̇  is the derivative of the SoC of the electrical energy storage; 𝑝(𝑡) is the equivalent 

factor to calculate the equivalent electrical consumption. The instantaneous cost function has a 

similar form with the Hamiltonian (see (1.7)). Hence, PMP is often used to develop ECMS.  

A pre-transmission parallel HEV is studied in [Nüesch 2014] with a multi-objective ECMS 

by minimizing fuel consumption and NOx emissions. Trade-offs are given with different values 

of the weighting factor. The emissions and batteries SoC are considered as the state variables. 

It is therefore the blend of control and energy management. A fuel-cell/battery H-ESS is 

investigated in [Han 2014]. The authors use DP to calculate the equivalent factor for ECMS by 

off-line computation. The ECMS then can be applied on-line by a map-based generated 

equivalent factor. Both DP and PMP are used to evaluate the performances of the proposed 

method. 

ECMS was originally proposed intuitively as a rule-based method, however, it was soon 

transformed to an optimal control problem which is solved by using PMP. The method therefore 

has mostly the same pros and cons as PMP. A notable point of ECMS is that the fuel 

consumption rate 𝑚̇fuel is often given by a look-up table. Thus, it requires numerical 

computations which are a drawback in term of real-time ability. This problem is often overcome 

by approximating the look-up table by polynomial functions, e.g. [Kermani 2011].  

1.3. Objective and approach of the thesis 

1.3.1. Objective of the thesis 

Within the research context of MEGEVH network and Canada Research Chair program and 

with the applications of the CE2I and Mitacs programs, the studied systems of the thesis have 

been figured out. They are an EV and a parallel hybrid truck supplied by battery/SC H-ESS 

(Figure 1.24). The semi-active H-ESS configuration is used due to its good trade-off between 

performance and cost.   

It can be seen from the state-of-the-art review that among numerous methods, real-time 

optimization-based strategies have been attracting the most researchers’ efforts. There are 

several reasons of this attractiveness. Firstly, the EMSs can be implemented in real-time that is 

able for real-world applications. Secondly, optimization approaches offer systematical ways to 

develop EMSs. Once the strategies developers can formulate the energy management problems 

in terms of optimization problems, various optimization methods can be applied to solve the 
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problems. These methods normally do not depend on the expertise of the developers on the 

studied system. Finally, thanks to optimization methods, the EMSs are of high performances 

which are often close to optimal.  

However, it is also figured out in the review that optimization-based methods are usually 

complex. They are complicated to develop, often computational consuming, and hard for on-

board implementation. These drawbacks could limit them from real-world applications. 

Hence, within the context addressed above, the objective of this thesis is to develop simple 

but effective real-time optimization-based EMSs for an EV and a hybrid truck supplied by 

battery/SC H-ESS. 
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(b) Parallel hybrid truck supplied by battery/SC H-ESS 

Figure 1.24: Studied systems of the thesis. 

1.3.2. Methodology of the thesis 

a. System representation 

In order to develop real-time optimization-based EMSs, optimal control methods should be 

applied. For that, the following terms must be figured out: 

• State variables to be controlled; 

• Control variables to be imposed; 

• Disturbances to be compensated; 

• Constraints (physical limitations) to be respected; 

• Objectives, i.e., cost functions, to be minimized. 
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Furthermore, the aim of the thesis is to develop simple easy-to-implement EMSs. To deal 

with the complexity of the studied systems and to overcome the drawbacks of using optimization 

methods, EMR is used. It is an effective formalism to deal with complex systems (see 

Appendix A.1 for more details on the EMR). The approach is using EMR to formulate the 

systems in term of optimal control to develop real-time optimization-based EMSs which are 

easy-to-implement. 

Hence, an EMR-based representation of the studied system, shown in Figure 1.25, is 

deduced. The output of the strategy block is the control variables. The constraints and objectives 

are defined by technical requirements. The output of the primary source can be either 

controllable (e.g., ICE torque) or uncontrollable (e.g., batteries voltage). In case of 

uncontrollable, it could be optionally measured or estimated which is depicted as a dashed line. 

 

 

ss2 

es2 

Sec. S. 

Prim. S. 

ss1 

es1 econ1 

scon1 

econ2 

scon2 

ecoup 

scoup 

Trac. ss 

Constraints Objectives 

Accumulation element, which represents the 

system dynamics to be controlled 

Energy distribution, which is the direct 

inversion of energy coupling block 

ss2 

es2 

Sec. S. 

Prim. S. 

ss1 

es1 econ1 

scon1 

econ2 

scon2 

ecoup 

scoup 

Trac. ss 

Constraints Objectives 

The initial representation The representation used in this thesis 

State 

variable 

Disturbance 

Disturbance 

Control 

variable 

Energy management strategy 

Disturbance 

Disturbance? 

State variable? 

Control of multi-

variable system? 

Energy management strategy 

 

Figure 1.25: EMR-based general system representation used in the thesis. 

The secondary source always has its state-of-energy varying during the system operation. 

This variation must be controlled to ensure the constrains and to achieve the objectives. The 

secondary source is therefore depicted as an accumulation element (crossed rectangle) of which 

the output is the state variable to be controlled. Thus, the feedback measurement of this variable 

is mandatory which is represented by a solid line. 

The coupling element (overlapped squares) is the “node” which is vital for energy 

management. Based on the principle of inversion, its inverted element (overlapped 

parallelograms) distribute the power requirement between the primary and the secondary 
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sources. This distribution is based on respecting the control variable and compensating the 

disturbances. These disturbances can be measured, or estimated, or injected as references from 

the drivetrain. The signal for compensation is therefore presented as a dashed line. 

b. Thesis development approach 

Energy management is at the supervisory level, which is higher than local control [Bouscayrol 

2005; Salmasi 2007; Trovão 2013a]. The systems will therefore be firstly modeled and 

controlled. Afterwards they will be transformed to the mentioned above representation for 

developing EMSs. From the transformed representations, mathematical models will be deduced 

for optimal control formalism. These steps, which are based on EMR, are modeling for energy 

management.  

An advantage of real-time optimization-based strategies is that they are close to optimal. To 

validate this performance, optimal solutions should be deduced. Hence, DP will be applied to 

obtain off-line optimal benchmarks to evaluate the performances of the developed real-time 

EMSs. Since DP is a backward computational method, EMR-based backward representations 

([Horrein 2015; Mayet 2014a], see Figure 1.26) of the systems will be deduced. The 

representations are used to organize the DP program implemented by using an available toolbox 

developed in [Sundström 2009]. 

 

ss2 

es2 

Sec. S. 

Prim. S. 

ss1 

es1 econ1 

scon1 

econ2 

scon2 

ecoup 

scoup 

Trac. ss 

Energy management strategy 

Constraints Objectives 

ss2 

es2 

Sec. S. 

Prim. S. 

ss1 

es1 econ1 

scon1 

econ2 

scon2 

ecoup 

scoup 

Trac. ss 

DP optimal strategy 

Constraints Objectives 

Driving cycle 

known in advance 

Backward representation for applying DP  Forward representation of the dynamical system  

 

Figure 1.26: Backward representation deduction from forward representation in the thesis. 

Then optimal control theories will be applied to deduce real-time optimization-based EMSs. 

Theses EMSs will be validated by simulations and then experiments. Experiments will be 

carried out by using reduced-scale power hardware-in-the-loop (HIL) simulation. The objective 

of experimental validations is to verify the real-time implementation ability of the developed 

EMSs. Simulations and experiments will be conducted using MATLAB/Simulink-based EMR 

library [EMR 2019]. Figure 1.27 presents a summary of the methodology for thesis 

development. 
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Figure 1.27: Methodology for thesis development. 

 

1.4. Conclusion 

In this chapter, it has been figured out that due to the trend of electrified vehicles and the limits 

of electrical ESSs, hybridizations are promising. In which, H-ESSs and HEVs configurations 

have been addressed to point out the necessity of EMSs. The scientific context of the thesis 

within collaborated research networks and programs has been given. It defines the studied 

problems on EMSs of EV and a hybrid truck supplied by battery/SC H-ESS. Then, the state-of-

the-art review has considered various strategies development methods. It could be concluded 

that real-time optimization-based EMSs are of interest but often complicated. The objective of 

the thesis has been therefore stated to develop less complex but effective real-time optimization-

based EMSs for the studied system. Based on these context and objective, the approach to 

develop the thesis has been presented. 
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2. Real-time optimization-based 
energy management strategy 
for a battery/supercapacitor 
electric vehicle 

The objective of this chapter is to develop a less complex but effective real-time optimization-

based energy management strategy for a battery/supercapacitor electric vehicle. Firstly, the 

system model for energy management will be deduced. For that, the full dynamical model of 

the studied system will be modeled and controlled using energetic macroscopic representation 

and inversion-based control. Model reduction and transformation will be done to obtain the 

reduced mathematical model. Secondly, a novel method based on Hamiltonian minimization 

will be proposed to develop a near-optimal strategy. This method will deduce an analytical 

closed-form control law which can directly serve as a real-time strategy. The performances of 

the proposed strategy will be validated by simulations and reduced-scale power hardware-in-

the-loop experiments. Dynamic programming will serve as an off-line optimal benchmark 

whereas conventional real-time filtering and 𝜆-control strategies will be used for comparisons.  

2.1. Model for energy management strategy 

2.1.1. Studied system 

The studied system is an EV supplied by an H-ESS combining Li-ion batteries and SCs (Figure 

2.1). It is a semi-active configuration in which the batteries directly connected to the DC bus. 

Hence, the DC bus voltage is fixed by the batteries one. The SCs are added to the system via a 

bi-directional DC/DC converter composed by an inductor and a power electronics chopper. 

Since SC capacitance drops dramatically when the current frequency increases [Devillers 2014], 

SCs are often connected in series with a power inductor for current smoothing. Thus, the boost 

DC/DC converter topology is usually used for SCs, in which the SCs are connected to the low-

voltage side of this converter.  

The battery/SC H-ESS supplies the electrical drive composed by the electrical machine and 

its inverter. This electrical drive propels the vehicle via a mechanical transmission driveline 

which is the combination of shafts, fixed gearbox, and wheels. The driveline transmits 

mechanical power to drive the chassis, which is assumed to represent all the mechanical 

dynamics of the vehicle. The resistive force is imposed by the environment which is normally 

air and road.  
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Figure 2.1: Studied system: an EV supplied by a battery/SC H-ESS. 

 

2.1.2. Modeling and energetic macroscopic representation of the studied system 

a. Components modeling and representation 

Following the EMR philosophy of “divide and conquer,” a complex system can be decomposed 

into subsystems to be controlled. Components of the studied system can thereby be represented 

by EMR pictograms as shown in Figure 2.2. 
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Figure 2.2: EMR of the studied EV components. 
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Batteries 

The equivalent circuit of batteries model is given in Figure 2.3. The batteries output the voltage 

𝑢𝑏𝑎𝑡 and inputs the current 𝑖bat. There is a voltage drop in the equivalent series resistance (ESR) 

𝑟𝑏𝑎𝑡. The ESR is in fact different in charging and discharging modes; and it is a non-linear 

function of the state-of-charge (SoC). The open-circuit voltage (OCV) 𝑢bat OC is also a non-

linear function of the batteries SoC 𝑆𝑜𝐶bat. In this work, the relationships 𝑟bat(𝑆𝑜𝐶bat) and 

𝑢bat OC(𝑆𝑜𝐶bat) are given by look-up tables. The SoC is calculated by Coulomb counting with 

the capacitance 𝐶bat. Hence, the batteries model is given as follows: 

{

𝑢bat = 𝑢bat OC(𝑆𝑜𝐶bat) − 𝑟bat(𝑆𝑜𝐶bat)𝑖bat

𝑆𝑜𝐶bat = 𝑆𝑜𝐶bat init −
1

𝐶bat eq
∫ 𝑖bat

𝑡

0

𝑑𝑡
; (2.1) 

in which  

𝐶bat eq = 3600𝐶bat (2.2) 

where 𝐶bat is the batteries capacitance in Ah; 𝐶bat eq the equivalent capacitance in Farad. The 

batteries are represented by a source element (oval) which receives the current 𝑖bat as the input 

and outputs the voltage 𝑢bat (see Figure 2.2).  

 

 rbat 

ubat OC = f(SoCbat) ubat 

ibat 

 

Figure 2.3: Batteries equivalent circuit model. 

Supercapacitors 

Unlike battery, the SoC of SC is almost proportional to its voltage. Thus, the SCs model can be 

simply given by the equivalent circuit model (Figure 2.4). The current 𝑖SC charges/discharges 

the SCs with the capacitance 𝐶SC. The SCs capacitance can be considered to vary with their 

voltage as modeled in [Grbovic 2011]. However, the coefficient of the capacitance variation is 

neglectable. In this work, for energy management purpose, the capacitance 𝐶SC is considered a 

constant. The SC resistance 𝑟SC causes an internal voltage drop and is quite independent of the 

SCs SoC. The mathematical model is expressed as: 

𝑢SC = 𝑢SC init −
1

𝐶SC
∫ 𝑖SC

𝑡

0

𝑑𝑡 − 𝑟SC𝑖SC (2.3) 
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where 𝑢SC is the SCs output voltage and 𝑢SC init their initial voltage. For local control 

development, the SCs energy does not aim to be controlled. Thus, the SCs is here depicted by a 

source element3, similar to the batteries (see Figure 2.2). It is a voltage source in which the SCs 

voltage 𝑢SC is the output. 
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Figure 2.4: SCs equivalent circuit model. 

Inductor 

The inductor equivalent circuit model is considered as a pure inductance 𝐿 and its parasitic 

resistance 𝑟L (Figure 2.5). The inductor is assumed to work in linear conditions (unsaturated). 

Their parameters 𝐿 and 𝑟L are therefore constant. The inductor voltage is set by the difference 

between the SCs voltage 𝑢SC and the chopper voltage 𝑢ch sc. Since the inductor is connected in 

series with the SCs, its current is the SCs current 𝑖SC. The inductor model is therefore given by: 

𝑢SC = 𝐿
𝑑

𝑑𝑡
𝑖SC + 𝑟L𝑖SC + 𝑢ch sc. (2.4) 

The inductor introduces a delay on the current response. It is therefore represented by an 

accumulation element4 (crossed rectangle). In this sort of elements, the principle of causality 

must be respected. The output is an integral function of the input. Thus, the inductor inputs are 

the voltages 𝑢SC and 𝑢ch sc and its output is the current 𝑖SC (see Figure 2.2). 

 rL L 

uch sc uSC 

iSC 

 

Figure 2.5: Inductor equivalent circuit model. 

Chopper 

The chopper modulates the low-side voltage 𝑢ch sc from the high-side voltage 𝑢bat by its 

modulation function 𝑚ch sc. The chopper current 𝑖ch sc is therefore linked to the SCs current 𝑖SC 

via this function. In this study, the average model of the chopper is used as follows: 

                                                 
3 In EMR, a source element is a terminal of the studied system.  
4 The output of the accumulation element is the state variable of the system model. Each accumulation element has 

only one output. 
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{
𝑢ch sc = 𝑚ch sc𝑢bat

𝑖ch sc = 𝑚ch sc𝜂ch sc
𝑘ch sc𝑖sc

 with  𝑘ch sc = {
1   if  𝑢bat𝑖ch sc ≥ 0
−1 if  𝑢bat𝑖ch sc < 0

;  (2.5) 

in which 𝜂ch sc is the chopper efficiency; the coefficient 𝑘ch sc depends on the power flow 

direction. The chopper modulates electrical power at its both sides. Thus, it is depicted by a 

mono-physical conversion element (square) with an input signal (modulation function 𝑚ch sc) 

to tune the system (see Figure 2.2).  

Parallel connection 

The parallel connection is simply the summation of the batteries current 𝑖bat and the chopper 

current 𝑖ch sc to yield the traction current 𝑖trac as follows: 

{
𝑢bat  common

𝑖trac = 𝑖bat + 𝑖ch sc
. (2.6) 

The batteries voltage 𝑢bat is commonly shared between the three sides. The parallel connection 

is depicted by a coupling element (overlapped squares) which couples the power flows of 

subsystems in EMR (see Figure 2.2).  

Electrical drive 

The drive converts the electrical power into the mechanical power and vice versa. It is therefore 

represented by a multi-physical element (circle, see Figure 2.2). In this study, the electrical drive 

is considered to be properly controlled. Thus, the drive is given by the static model as: 

{

𝑇EM = 𝑇EM ref

𝑖trac =
𝑇EMΩEM

𝜂ED
𝑘ED𝑢bat

  with  𝑘ED = {
1 if 𝑇EMΩEM ≥ 0
−1 if 𝑇EMΩEM < 0

; (2.7) 

in which the machine torque 𝑇EM is considered responding perfectly to the reference 𝑇EM ref; ΩEM 

is the machine rotational speed; 𝜂ED the electrical drive efficiency; the coefficient 𝑘ED depends 

on the power flow direction. 

Mechanical transmission 

The mechanical transmission is modeled by a constant ratio 𝑘tran, combining the final drive ratio 

and wheel transmission as follows: 

{
𝐹trac = 𝑇EM𝜂tran

𝑘eff tran𝑘tran
ΩEM = 𝑣veh𝑘tran

  with  𝑘eff tran = {
1  if  𝐹trac𝑣veh ≥ 0
−1 if  𝐹trac𝑣veh < 0

 (2.8) 

where 𝐹trac is the traction force; 𝑣veh the vehicle velocity; 𝜂tran the efficiency; the coefficient 

𝑘eff tran depends on the power flow direction. A mono-physical element is used to depict the 

mechanical transmission, which links the mechanical power at its both side (see Figure 2.2). 
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Chassis 

The vehicle chassis dynamics is addressed by the second Newton law of the relationship 

between the traction force 𝐹trac, the resistant force 𝐹res, and the vehicle velocity 𝑣veh as:  

𝑣veh =
1

𝑀veh
∫ (𝐹trac − 𝐹res)𝑑𝑡
𝑡

0

. (2.9) 

The total mass 𝑀veh is considered as the summation of the vehicle net weight and passengers. 

An accumulation element represents the chassis due to its dynamical behaviors (see Figure 2.2). 

Regarding the principle of causality, the chassis inputs are the forces 𝐹trac and 𝐹res and its output 

is the vehicle velocity 𝑣veh. 

Environment 

The environment imposes the total resistant force on the vehicle as a combination of rolling 

resistant force, air drag resistant force, and gravitational resistant force cause by slope as: 

𝐹res = 𝑘roll𝑀veh𝑔 + 0.5𝜌𝑐x𝐴(𝑣veh + 𝑣wind)
2 +𝑀veh𝑔 sin 𝛼 ; (2.10) 

in which 𝑘roll is the rolling coefficient; 𝑔 the gravitational acceleration; 𝜌 the air density; 𝑐x air 

drag coefficient; 𝐴 the efficient front area of the vehicle; 𝑣wind the wind velocity; and 𝛼 the slope 

angle. The environment terminates the system under study; hence it is represented by a source 

element (see Figure 2.2). 

b. Studied system representation 

EMR elements depict components and subsystems, then they are connected to represent the 

system as the interactions of subsystems. EMR of the studied system is shown in Figure 2.6. 
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Figure 2.6: EMR of the studied battery/SC EV. 
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2.1.3. Local control of the studied system 

EMR method offers a systematic approach to deduce control scheme from the system 

representation. Firstly, the tuning paths and control paths should be figured out. Then, the 

control element of each subsystem is obtained. Finally, the complete control scheme is 

accomplished.  

a. Tuning paths and control paths 

Tuning paths are the routes going from the tuning variables to the objective variables. The tuning 

variables are the ones which can be tuned to control the system. In this studied system (see 

Figure 2.6), there are two tuning variables which are the modulation functions 𝑚ch sc and the 

machine torque reference 𝑇EM ref. The objective variables are the ones to be controlled. Here, 

there are two objective variables which are the batteries current 𝑖bat and the vehicle velocity 

𝑣veh. Meanwhile the latter is clear, the former should be more explained. The objective of adding 

the SCs subsystem is to support the batteries, so the aim of controlling the SCs subsystem should 

be to indirectly control the batteries current 𝑖bat.  

There are two tuning paths of the studied system defined as in Figure 2.7. In the H-ESS, the 

𝑚ch sc modulates the chopper voltage 𝑢ch sc to control the SCs current 𝑖SC for tuning the chopper 

current 𝑖ch sc to control the batteries current 𝑖bat. For the traction part, the reference 𝑇EM ref tunes 

the machine torque 𝑇EM to obtain the traction force 𝐹trac for controlling the vehicle velocity 𝑣veh. 

From the tuning paths of the system, the control paths can be constructed by the principle of 

inversion. The control paths are the routes going from the references of the objective variables 

to the tuning variables to impose the references on the system. They are like symmetrical via a 

“mirror” (see Figure 2.7). 
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Figure 2.7: Tuning paths and control paths for local control of the studied battery/SC EV. 
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b. Control element as an inversion of system model element 

The control of the system is built along the control paths defined above. Each subsystem 

represented by an EMR element is controlled by a control element which is the inversion of the 

model element5. There are two types of inversions: 

• Direct inversion used for the elements containing no dynamical delay; thus, the 

mathematical models can be directly inverted; 

• Indirect inversion used for the accumulation elements which contain the dynamical 

delays of the system; the direct inverted mathematical model is therefore non-causal. 

Hence indirect inversions are normally realized by feedback controllers. 

Here, the vehicle speed controller is presented to illustrate how an indirect inversion is 

deduced and realized. The left part of Figure 2.8 is the chassis and its controller represented in 

EMR.  Inversion of the accumulation element is a crossed parallelogram.  
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Figure 2.8: Velocity controller as an indirect inversion of the vehicle chassis. 

The right part of Figure 2.8 illustrate the realization of indirect inversion by a velocity 

feedback controller 𝐶chas(𝑠) as: 

𝐹trac ref = 𝐶chas(𝑠)(𝑣veh ref − 𝑣veh) + 𝐹res meas; (2.11) 

In real-world applications, the resistive force cannot be measured; instead, they can be estimated 

or neglected.  

c. Local control scheme of the studied system 

Following the defined control paths, by inverting the subsystems models as illustrated above, 

the inversion-based control scheme of the system can be deduced by mirror effect as shown in 

Figure 2.9.  

                                                 
5 Except the source element. It is the terminal of the system which is never inverted to be controlled. 
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Figure 2.9: EMR and inversion-based control of the studied battery/SC EV. 

Traction subsystem 

The velocity control has been introduced above. The mechanical transmission is a conversion 

element which can be directly inverted as: 

𝑇EM ref =
𝐹trac ref
𝑘tran

. (2.12) 

The machine drive is assumed that the torque responds perfectly to the reference, thus there 

is no need of controller. The 𝑇EM ref is imposed to the drive. 

H-ESS subsystem 

The parallel connection is directly inverted (overlapped parallelograms) as follows: 

𝑖ch sc ref = 𝑖trac meas − 𝑖bat ref. (2.13) 

In this inversion, the traction current is the measurable disturbance to be compensated. 

The current relationship of the chopper is inverted (parallelogram) by: 

𝑖SC ref =
𝑖ch sc ref
𝑚ch sc

; (2.14) 

in which the modulation function 𝑚ch sc is considered as a disturbance. 
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The inductor is an accumulation element with dynamical delay, hence the inversion must be 

indirect (crossed parallelogram). It is realized by a closed-loop controller 𝐶ind(𝑠) as follows: 

𝑢ch sc ref = 𝑢SC meas − 𝐶ind(𝑠)(𝑖SC ref − 𝑖SC meas). (2.15) 

Here, the SCs voltage is measured as a disturbance to be compensated. 

Finally, the modulation function is obtained by the direct inversion of the chopper voltage 

relationship given by: 

𝑚ch sc =
𝑢ch sc ref
𝑢bat meas

. (2.16) 

The batteries voltage is measured as a disturbance. 

The local control scheme has been developed. The batteries current reference 𝑖bat ref is 

imposed by a strategy block which is at the higher layer than local control. This is where EMSs 

are realized. 

2.1.4. Model modification for energy management strategy development 

In the previous subsections, the full dynamical system has been considered to develop local 

dynamical control. The EMSs should be then developed at the supervisory level. However, this 

full dynamical model may not be suitable for EMSs development. The EMSs impose references 

to the local control; thus, they correspond to the slower dynamics. Model modification for 

energy management is thereby introduced. 

a. Model reduction 

Since energy management is at the higher level than the local control, considering all dynamics 

of the system may not be effective6. There are three reasons: 

• First, the full dynamical model is complex which is often a multi-variable high-order 

model. That can make the EMSs development complicated and hard to be realized. 

• Second, dynamics of the system at each level are different. The dynamics at the higher 

level (strategy) are normally slower than the one at the lower level (control) [Bouscayrol 

2005; Trovão 2013a]. Addressing all the fast dynamics can cause huge computational 

consuming for the EMSs which could be difficult for on-board implementation. 

• Third, when the local control is properly developed, the controlled variables can be 

considered as being perfect response to the references. Thus, it is unnecessary to address 

these fast dynamics at the supervisory level.   

                                                 
6 That is not obvious. Some previous works, e.g., [Dai 2016], have addressed all the dynamics in a single model to 

develop control and energy management simultaneously. 



Chapter 2: Real-time optimization-based EMS for a battery/SC electric vehicle 

 

47 

Hence, the model should be reduced to eliminate the fast dynamics at the local control level 

[Castaings 2016b; Horrein 2015; Mayet 2014a]. In the studied system, the bidirectional DC/DC 

converter can be reduced as illustrated in Figure 2.10.  

When the current controller perfectly performs, the inductor, the chopper, and their 

inversions can be reduced to an equivalent converter, in which: 

𝑖ch sc = 𝑖ch sc ref. (2.17) 

The SCs current is given by: 

𝑖SC
𝑢bat𝑖ch sc
𝑢SC

 (2.18) 

in which, the converter efficiency is neglected. It is because the reduced model is used only for 

developing real-time strategy. Whereas the efficiency depends on the power flow direction. In 

real-time implementation, that may cause the chattering phenomenon when the current is around 

zero. When validating the developed strategy, the simulation is implemented with the full 

dynamical model which addresses all the efficiencies of the system. 
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Figure 2.10: Model reductions of DC/DC converter assuming perfect control performances. 

b. Model transformation 

The system fast dynamics have been addressed at the local control level and have been therefore 

reduced. The EMSs, at the supervisory level, deal with the dynamical behaviors which are the 

dynamics of the secondary source, i.e., the SCs. The SCs model representation is therefore 

transformed to address these considered dynamics as shown in Figure 2.11. 

When the SCs are modeled for local control purpose, their energy variation is not considered. 

The SCs are therefore represented as a source element of which the voltage 𝑢SC is the disturbance 

of the current control loop. At the supervisory level, the energy variation of the secondary source 

is treated by the EMSs. Hence the SCs should be depicted by an accumulation element which 

represents the system dynamics under study. The SCs voltage 𝑢SC is therefore the state variable 
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to be controlled by the EMSs (since it is the output of the accumulation element). The 

mathematical model here remains. 
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Figure 2.11: Model transformation to highlight the considered dynamics at supervisory level. 

On the other hand, the strategy, at the supervisory level, deals with current distribution 

problem of the H-ESS. In which, the traction current 𝑖trac is the disturbance input. Thus, the 

traction subsystem can be considered as an equivalent current source which enforces the current 

𝑖trac to the H-ESS (Figure 2.12). It should be noted that here there is no need of assuming that 

the vehicle velocity 𝑣veh perfectly follows its reference 𝑣veh ref. Furthermore, inside the 

equivalent source element of the traction subsystem, the vehicle dynamics can still be fully 

considered. Hence, the model here is transformed rather than reduced as the case of the DC/DC 

converter.  
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Figure 2.12: Model transformation to highlight the disturbance at supervisory level. 

 

c. Model for energy management strategy development 

Reduced EMR of the studied system 

Applying model modifications addressed above, the system model can be reduced (Figure 2.13). 

The traction subsystem enforces the traction current 𝑖trac as a disturbance to the H-ESS, in which 

the batteries couple with the equivalent converter and the SCs. The EMS, in the strategy block, 

imposes the batteries current reference 𝑖bat ref. The coupling inversion element (overlapped 
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parallelograms) compensates the measured disturbance 𝑖trac to deduce the chopper current 

reference 𝑖ch sc ref imposed to the converter. 
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Figure 2.13: Reduced EMR of the studied battery/SC EV. 

Reduced mathematical model for optimal control-based strategy development 

From the reduced EMR, a reduced mathematical model can be obtained to apply optimal control 

for strategy development. The mathematical model is obtained by step-by-step combining the 

models of EMR system elements except the source elements which are terminal of the system. 

Here, they are the models of the SCs, the equivalent converter, and the parallel connection (see 

Figure 2.13). The process should be started from the accumulation element of which the output 

is the state variable to be controlled. The reduced mathematical model is therefore deduced as 

the follows. From (2.3), assuming that the SCs series resistance 𝑟SC is neglectable, the SCs main 

dynamics are given by: 

𝑑

𝑑𝑡
𝑢SC = −

1

𝐶SC
𝑖SC. (2.19) 

Besides, from (2.18), the SCs current can be calculated as: 

𝑖SC =
𝑢bat𝑖ch sc
𝑢SC

. (2.20) 

As a result, the SCs dynamics can be expressed as: 

𝑑

𝑑𝑡
𝑢SC = −

𝑢bat𝑖ch sc
𝐶SC𝑢SC

. (2.21) 

From (2.13) and (2.17), the chopper current is given by: 

𝑖ch sc = 𝑖trac − 𝑖bat ref. (2.22) 
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Finally, that leads to the reduced mathematical model of the studied system by combining (2.21) 

and (2.22) as the follows: 

𝑑

𝑑𝑡
𝑢SC =

𝑢bat
𝑢SC𝐶SC

(𝑖bat ref − 𝑖trac). (2.23) 

This mathematical model can be express as: 

𝑑

𝑑𝑡
𝑢SC =

1

𝑢SC⏟
State
variable

1

𝐶SC⏟
Parameter

(𝑖bat ref⏟  
Control
variable

− 𝑖trac⏟
Disturbance

) 𝑢bat⏟
Disturbance

 (2.24) 

in order to give some remarks: 

• This model is in non-linear structure (see Appendix A.3) but less complex than the full 

dynamical model; 

• There is only one parameter which is given by system datasheet; 

• There are only two disturbances which are both measurable. 

Cost function 

With the above model, various control methods can be applied for different purposes. Since the 

objective is to develop an optimization-based EMS, optimal control theory is used. Optimal 

control is to find a control law for a dynamical system so that the cost function is minimized 

while satisfying the constraints. The cost function of the studied optimal control problem should 

therefore be defined. 

The objective of adding the SCs subsystem is to extend the batteries life-time. There are 

various factors affecting batteries life-time [Barré 2013]. From the viewpoint of control and 

energy management, the rms value of batteries current is an appropriate stress index factor: 

𝐼bat rms = √
1

𝑡f − 𝑡0
∫ 𝑖bat

2 𝑑𝑡
𝑡f

𝑡0

. (2.25) 

In fact, for a certain interval from 𝑡0 to 𝑡f, the minimization of the integration term leads to 

the minimization of the rms value. Furthermore, quadratic functions are of interest for many 

optimization techniques [Bryson 1975]. Hence, the cost function of the studied energy 

management problem can be defined by: 

𝐽 = ∫ 𝑖bat
2 𝑑𝑡

𝑡f

𝑡0

. (2.26) 
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2.2. Optimal benchmark using dynamic programming 

The objective of the thesis is to develop real-time optimization-based EMSs. The EMSs are 

expected having near-optimal performances which should be validated by comparing to the 

optimal strategies. In order to deduce such benchmarks, DP is used thanks to its ability to obtain 

optimal solutions.  

2.2.1. Backward representation 

In this thesis, EMR is used as the unified formalism for modeling, control, and energy 

management. However, it is a forward representation respecting physical causality, meanwhile, 

DP is a non-causal backward method. Thus, the EMR-based backward representation [Horrein 

2015; Mayet 2014a] is used to organize the system model for DP computation.  

The backward representation (Figure 2.14) is transformed from the reduced EMR of the 

studied system (see Figure 2.13) by the following rules: 

• Merging the system elements and their inversions; 

• Changing the directions of the variables needed to be controlled to the directions of their 

references. Here, only the chopper current 𝑖ch sc is changed to the backward direction. 

With these rules, the coupling element of the backward model has the relationship given by: 

{
𝑖bat = 𝑖bat ref

𝑖ch sc = 𝑖trac − 𝑖bat
. (2.27) 

This backward representation is used to organize the model of the system in the numerical 

program for problem solving. 
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Figure 2.14: EMR-based backward representation of the studied system. 
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2.2.2. Dynamic programming implementation 

The DP problem is implemented and solved by using the MALTB-based dpm function toolbox 

[Sundström 2009]. The EMR and the backward representation of the system help to organize 

the system model as illustrated in Figure 2.15.  
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% SCs MODEL 
% SCs open circuit voltage u_sc_ocv as the state variable 
u_sc_ocv  =  u_sc_ocv + inp.Ts.*(- i_sc / (SC_C)) ; 
% Update the state variable x(t) 
X{1} = u_sc_ocv ; 
% SCs terminal voltage u_sc 
u_sc = u_sc_ocv - i_sc.*SC_r ; 
% Infeasible case (for limitation) 
in_SCs = (u_sc > SC_umax) + (u_sc < SC_umin) ; 

 

An example on implementation of the system 

model in dpm function toolbox for DP organized 

by using EMR-based backward representation 

 

Figure 2.15: Implementation of DP using EMR-based backward representation and dpm 

function toolbox [Sundström 2009]. 

The traction subsystem is simulated in advance to obtain the traction current 𝑖trac as the 

disturbance enforced to the H-ESS. For that, the traction subsystem is assumed to be supplied 

by batteries as the approximation of the H-ESS. The system model is then implemented in form 

of MATLAB scripts which are organized by the backward representation (see Figure 2.15). 

2.3. Real-time strategy based on Hamiltonian minimization 

In this section, a novel real-time optimization-based EMS is proposed based on Hamiltonian 

minimization, which is an adaptation of PMP [Nguyễn 2019]. The methodology will be 

addressed first to explain the main idea of the method. Then the strategy development will be 
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presented to deduce an analytical close-form near-optimal control law. Next, the co-state 

variable will be determined based on its physical meaning. Finally, the strategy implementation 

will be described to show how simple it is.  

2.3.1. Approach 

Since the studied system is a single-variable system, the PMP, generally described in (1.7)–

(1.10), can be stated with the Hamiltonian defined by scalar variable as: 

𝐻 = 𝑔[𝑥(𝑡), 𝑢(𝑡), 𝑡] + 𝜆(𝑡)𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑡]. (2.28) 

The PMP claims that if 𝑢∗ is an optimal control law, it must satisfy the following three necessary 

conditions: 

𝑑

𝑑𝑡
𝑥∗(𝑡) =

∂𝐻[𝑢∗(𝑡), 𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡]

∂𝜆(𝑡)
; (2.29) 

𝑑

𝑑𝑡
𝜆∗(𝑡) = −

∂𝐻[𝑢∗(𝑡), 𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡]

∂𝑥(𝑡)
; (2.30) 

𝐻[𝑢∗(𝑡), 𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡] ≤ 𝐻[𝑢(𝑡), 𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡]. (2.31) 

Conditions (2.29) and (2.30) compose the dynamics of a Hamiltonian system. Condition 

(2.31) means the minimization of the Hamiltonian function7. Conventional methods satisfy all 

conditions to obtain an off-line open-loop control law; an additional state feedback scheme is 

then used for implementation in real-time. The strategies are therefore no longer optimal.  

Here, an alternative approach is proposed [Nguyễn 2019]. Only condition (2.31) is used to 

directly deduce a real-time strategy. The Hamiltonian function contains a relationship between 

the control variable 𝑖bat ref and the state variable 𝑢SC. Hence, applying (2.31) by a partial 

derivative with respect to the control variable can eventually carry out an analytical closed-form 

strategy. The co-state variable  is then determined based on its physical meaning without 

considering the Hamiltonian system dynamics (2.29) and (2.30). 

The obtained strategy is indeed sub-optimal as the PMP theory is not strictly satisfied. 

However, since the obtained control law is analytical closed-form with state feedback, no more 

additional feedback scheme is required. The close-to-optimal performance of the proposed 

strategy will be examined by comparing to the DP-based optimal benchmark addressed in the 

previous section. 

2.3.2. Strategy development 

From (2.23), (2.26), and (2.28), the Hamiltonian of the studied system is given as the 

combination of the cost and the dynamics of the system as the follows: 

                                                 
7 To be mathematically strict, Hamiltonian is a functional, which is a function of functions.  
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𝐻 = 𝑖bat
2 + 𝜆

1

𝑢SC𝐶SC
(𝑖bat ref − 𝑖trac)𝑢bat. (2.32) 

Since the 𝑖ch sc ref is given by the 𝑖bat ref compensating the 𝑖trac (see Figure 2.13), it is suitable 

to obtain the control law 𝑖ch sc ref then to deduce the 𝑖bat ref. The condition (2.31) can therefore be 

realized by: 

∂𝐻

∂𝑖ch sc ref
= 0. (2.33) 

The 𝑖trac is the disturbance enforced from the traction subsystem which is totally independent 

on the chopper current. Hence, considering (2.22) and by assuming perfect response of the 

chopper current control, that leads to: 

∂(𝑖bat
2 )

∂𝑖ch sc
= −2𝑖bat. (2.34) 

The partial derivative to be calculated therefore becomes: 

∂𝐻

∂𝑖ch sc
= −2𝑖bat − 𝜆

𝑢bat
𝐶SC

𝑖ch sc
∂𝑢SC
∂𝑖ch sc

− 𝑢SC

𝑢SC
2 . (2.35) 

The partial derivative of 𝑢SC with respect to 𝑖ch sc is calculated by: 

∂𝑢SC
∂𝑖ch sc

=
1

∂ (
𝑢SC
𝑢bat

𝑖SC)

∂𝑢SC

 

=
1

𝑖SC
𝑢bat

+
𝑢SC
𝑢bat

∂𝑖SC
∂𝑢SC

. 

(2.36) 

In which, the partial derivative of 𝑖SC with respect to 𝑢SC is adopted from [Nguyen 2014]. In 

which, the relationship between SCs current and voltage is given by: 

𝑖SC =
𝑢SC −√𝑢SC

2 − 4𝑟SC𝑃SC
2𝑟SC

 (2.37) 

where 𝑃SC is the SCs terminal power. Thus,  

∂𝑖SC
∂𝑢SC

= −
𝑖SC

√𝑢SC
2 − 4𝑟SC𝑃SC

. (2.38) 

That leads to: 
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∂𝑢SC
∂𝑖ch sc

=
𝑢bat√𝑢SC

2 − 4𝑟SC𝑃SC

𝑖SC√𝑢SC
2 − 4𝑟SC𝑃SC − 𝑃SC

. (2.39) 

Applying (2.39) to (2.35), the partial derivative of the Hamiltonian is then carried out: 

∂𝐻

∂𝑖ch sc
= −2𝑖bat − 𝜆

𝑢bat
𝐶SC

𝑖ch sc
𝑢bat√𝑢SC

2 − 4𝑟SC𝑃SC

𝑖SC√𝑢SC
2 − 4𝑟SC𝑃SC − 𝑃SC

− 𝑢SC

𝑢SC
2 . 

(2.40) 

Considering that (by neglecting efficiency): 

𝑢bat𝑖ch sc
𝑖SC

= 𝑢SC; (2.41) 

and by applying the Hamiltonian minimization condition (2.33), it follows as: 

2𝑖bat + 𝜆
𝑢bat
𝐶SC

𝑢SC√𝑢SC
2 − 4𝑟SC𝑢SC𝑖SC

√𝑢SC
2 − 4𝑟SC𝑢SC𝑖SC − 𝑢SC

− 𝑢SC

𝑢SC
2 = 0. 

(2.42) 

The control law is therefore obtained as: 

𝑖bat ref = 𝜆
𝑢bat
2𝐶SC

𝑢SC −
𝑢SC√𝑢SC

2 − 4𝑟SC𝑢SC𝑖SC

√𝑢SC
2 − 4𝑟SC𝑢SC𝑖SC − 𝑢SC

𝑢SC
2 . 

(2.43) 

It can be seen that the control law 𝑖bat ref is a function of the state variable 𝑢SC. Thus, the control 

law is closed-form which does not require any additional state feedback adaptation scheme. 

Once the co-state variable  is determined, (2.43) is ready to serve as a real-time strategy. 

2.3.3. Co-state variable physical meaning and determination 

This approach determines  not by the Hamiltonian dynamics (2.29) and (2.30), but by its 

physical meaning. The physical essence of the co-state variable has been pointed out in the 

literature [Ross 2015]. It is an equivalent factor to convert the dynamical function of the system 

to an equivalent cost to be minimized. Such a physical explanation has been also figured out by 

previous works, e.g. [Nguyen 2014]. It is used here to calculate . 

The Hamiltonian (2.32) can be analyzed in terms of physical units as the follows: 

𝐻 = 𝑖bat
2
⏟
A2

+ 𝜆
𝑢bat
𝑢SC

1

𝐶SC⏟
1/F

(𝑖bat ref − 𝑖trac)⏟        
A

; 
(2.44) 
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whereas the cost term 𝑖bat
2  has a dimension of Ampere squared, the dimension of the dynamics 

term is Ampere per Farad. To perform a proper subtraction, the co-state variable, as an 

equivalent factor, should have a form of  equals Capacitance times Current. On the right-hand 

side, the former term can be chosen as the SCs capacitance which is the only capacitive quantity 

of the studied system.  

The latter term of current is more flexible to be determined. In [Nguyễn 2017a], it is given 

by the expected maximal batteries current when the SCs can no longer support the batteries. 

This value is set by the proportions of the batteries C-rate regarding the driving modes. This 

approach leads to a high-performance strategy validated by the reported simulation results. 

However, C-rate is an indicator of batteries energy rather than their power. The justification of 

this approach is therefore not so convinced.  

To overcome the issue mentioned above,  is determined from the traction rms current: 

𝜆 = 𝐶SC𝑖trac rms; (2.45) 

in which, 𝑖trac rms depends on the driving modes and should be pre-calculated. The pre-

calculation can be done with a standard driving cycle. In this work, the Worldwide harmonized 

Light duty driving Test Cycle (WLTC) is used. Based on the studied vehicle, the WLTC class 2 

(Figure 2.16) is used for the pre-calculation of the 𝑖trac rms. It can be classified as three parts 

“Low,” “Middle,” and “High” according to [Tutuianu 2014]. They are corresponding to urban, 

rural, and highway driving modes of the studied vehicle, respectively. 

In a summary, the co-state variable  is determined as follows. The traction subsystem of 

the vehicle is simulated off-line with the WLTC class 2 driving cycle. The three values of 

𝑖trac rms, as well as , are computed regarding the three parts of the cycle mentioned above. The 

co-state variable is then implemented in the EMS as a function of driving modes. In this study, 

the driving modes (urban, rural, and highway) in real-time implementations are determined 

manually. In real-world applications, it is reasonable to assume that the driver knows what kind 

of driving modes the vehicle is working. An intelligent automatic recognition of the driving 

modes could be interesting; however, it is out of the scope of this study. 

 

 

Low power Middle power 
High 

power 

 

Figure 2.16: WLTC class 2 used for co-state variable  determination. 
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2.3.4. Strategy implementation 

The proposed EMS is implemented as illustrated in Figure 2.17. Four sensors are required for 

the measurements of the SCs voltage 𝑢SC, the batteries voltage 𝑢bat, the SCs current 𝑖SC, and the 

traction current 𝑖trac. The three former variables are imposed to (2.43) and (2.45) to conduct the 

calculated batteries current reference 𝑖bat ref cal. The last measured variable, i.e., 𝑖trac, is used only 

when the SCs voltage reaches maximal or minimal limitations. When the 𝑢SC is between the two 

boundaries, the 𝑖bat ref is the 𝑖bat ref cal; otherwise, it is switched to the 𝑖trac meas. The smooth 

switching can be realized by using conventional method presented in [Lhomme 2009]. 
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Figure 2.17: Implementation of the proposed Hamiltonian minimization-based EMS. 

2.4. Simulations and results 

2.4.1. Examined system 

The reference vehicle used for this work is Tazzari Zero with the main parameters given in Table 

2.1. The car is originally supplied by a pack of Li-ion batteries TS-LFP160AHA from Thunder 

Sky. The batteries have been sized for a real driving range around 100 km. For studies of H-

ESSs, it is modified to the semi-active configuration by adding a SCs subsystem with the module 

BMOD0165 P048 BXX from Maxwell Technologies. SCs and batteries sizes are constant 

during the study to fairly compare the different EMS strategies. 

Three standard driving cycles are considered for testing: 

• WLTC class 2, which is utilized to determine the co-state variable , with urban, rural, 

and highway parts. This is the result of a statistical study that addressed various standard 

and real-world driving cycles from different countries in Europe, Asia, and America 

[Tutuianu 2014].  

• NEDC with urban and highway parts. This driving cycle is used in many studies because 

it can clearly examine the acceleration and deceleration behaviors of vehicles. This cycle 

is however too smooth in comparison with real world-based cycles. 

• ARTEMIS urban which is an urban cycle. This cycle addresses better than NEDC the 

fluctuations especially in urban areas.  
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Table 2.1: Examined system parameters for simulation of the battery/SC EV. 

Parameters  Values 

Vehicle (Tazzari Zero) 

Vehicle total mass 𝑀veh 692 kg 

Aerodynamic standard 𝑐x𝐴 0.7 m2 

Rolling coefficient 𝑘roll 0.02 

Air density (at 20°C) 𝜌 1.223 kg/m3 

Electrical drive (induction machine) 

Maximal power 𝑃ED max 15 kW 

Nominal efficiency 𝜂ED nom 85 % 

Batteries (Thunder Sky TS-LFP160AHA cells) 

Battery bank capacitance 𝐶bat 160 Ah 

Battery bank resistance (at 80% SoC) 𝑟bat 28 mΩ 

Battery bank OCV (at 80% SoC) 𝑢bat OC 78 V 

SCs subsystem (Maxwell BMOD0165 P048 BXX module) 

Inductor inductance 𝐿 0.2 mH 

Inductor parasitic resistance 𝑟L 10.0 mΩ 

SC series resistance 𝑟SC 6.3 mΩ 

SC nominal voltage 𝑢SC nom 48 V 

SC nominal capacitance 𝐶SC 165 F 

 

 

 

Moreover, a real-world driving cycle was recorded through driving around the campus of 

University of Lille. It can be considered as a rural cycle.  

The evaluation criterion is the batteries rms current; the lower the 𝑖bat rms is, the better the 

battery life-time is. It is because the rms current cause self-heating in batteries due to Joule losses 

in their internal resistance. Whereas the degradation of the batteries increases with the rise of 

temperature [Baghdadi 2016; Waldmann 2014]. Five cases are compared: 

• conventional EV with batteries only; 

• filtering strategy as a popular rule-based EMS; 

• -control as an adaptive PMP-based real-time EMS;  

• the proposed real-time near-optimal strategy; 

• DP as an off-line optimal benchmark.  
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Considering a previous work with the same examined system [Castaings 2016a], this study 

uses the cut-off frequency 𝑓LPF = 48 mHz and the same -control parameters for adaptive PMP-

based EMS. The parameters for DP problem solving is given in Table 2.2 which is implemented 

by using the available toolbox [Sundström 2009]. The simulations are carried out in 

MATLAB/SimulinkTM with the EMR library [EMR 2019] shown in Figure 2.18. 

 

Table 2.2: Parameters for DP problem solving of the battery/SC EV. 

Parameters  Range Step 

State variable 𝑢SC 24 to 48 V 0.1 V 

Control variable 𝑖bat ref −350 to 350 A 1 A 

Time 𝑡 0 to 𝑡f 1 s 

Initial state 𝑢SC init 48 V - 

Final state constraint 𝑢SC final 48 V - 

𝑡f is the length of the driving cycle under study 

 

 

Figure 2.18: Simulation of the battery/SC EV in MATLAB/SimulinkTM with the EMR library. 
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2.4.2. Results and discussions 

The goal of the H-ESS is to minimize the batteries rms current which is stress index factor for 

batteries. By simulations, the different strategies for H-ESS power distribution are compared 

with the rms value of the batteries current during the full cycles. Figure 2.19 reports a 

comparative evaluation of the studied strategies with four driving cycles. The cycles can be 

classified by their velocity dynamics: 

• NEDC which is the smoothest cycle; 

• WLTC class 2 which is more fluctuated than NEDC in all parts;  

• ARTEMIS urban which has more oscillations than WLTC class 2 in urban areas; 

• The real-world cycle which is the highest fluctuated cycle recorded in a real driving. 

Main results are presented and discussed in this subsection. Additional results are also 

provided in Appendix A.4, see Figure A.7–Figure A.9. Figure 2.19 shows a comparative 

evaluation of the four examined EMSs and the case of battery EV. The pure battery EV always 

leads to the highest battery rms current; meanwhile, the DP offers the lowest 𝑖bat rms thanks to 

its optimal solution. These tests are used as a double benchmark for maximal (battery EV) and 

minimal (DP) batteries rms current. 

The strategies used in combination with the defined H-ESS (see Table 2.1) has significant 

effectiveness with driving cycles having high-dynamics velocity profile (ARTEMIS urban and 

the tested real-world cycle). The proposed strategy can reduce up to 50% of the 𝑖bat rms that 

means noteworthy life-time extension for this fluctuated real-world cycle. In the less oscillated 

cycles like NEDC and WLTC, the H-ESS is less effective. For the case of NEDC, even the ideal 

solution given by DP can reduce only 11.4% of the 𝑖bat rms; whereas it is 10% by using the 

proposed real-time strategy. It could therefore be seen that the battery/SC H-ESS is more 

suitable for city cars than for the other sorts of vehicles working with smoother driving 

conditions. 

The most important is that the proposed strategy obtains the lowest batteries rms current in 

comparison to the other real-time strategies with all the tested driving cycles. By comparing to 

the optimal benchmark given by DP, the near-optimal performance of the new strategy can be 

verified. 

Figure 2.20–Figure 2.22 show the detailed results of the five studied cases with the real-

world driving cycle. The vehicle is controlled to follow the velocity reference (Figure 2.20). 

Figure 2.21 gives the SCs voltage evolutions of four examined strategies. Figure 2.22 presents 

the batteries current evolutions in the case of pure battery EV and the four strategies.  

DP, serving as a benchmark, obtains a very smooth batteries current 𝑖bat and guarantees 

charge sustaining of the SCs. The proposed strategy achieves the 𝑖bat close to the one from DP 

with smooth variation and low peak values. Moreover, this EMS get the final value of 𝑢SC equal 

to the initial value like the case of DP. Besides, it can be also seen that the evolution of the SCs 

voltage of the proposed strategy follows quite closely the one obtained by using DP. Even 
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though the proposed method is totally independent of DP. The strategy is therefore close-to-

optimal not only in terms of batteries current, but also in terms of SCs voltage variation.  

In -control, initially PMP also aims to satisfy the final state constraint of the SCs voltage. 

However, when it is adapted for unknown cycles, the constraint is not ensured to be satisfied. 

As a result, at the end of the cycle, the SCs voltage is not charged to the initial value. In 

[Castaings 2016a], the feedback control loop of the SCs voltage is developed to respect the 

voltage limitations rather than to ensure charge sustaining. Furthermore, the batteries current 

suffers from several peaks since the SCs often reach the lower boundary of their voltage.  

In the case of filtering strategy, this method smoothens the oscillations of the 𝑖bat, however, 

it is still more fluctuated than the other EMSs. Charge sustaining is also not achieved. (In fact, 

an additional rule-based recharging scheme is added, but it takes a period after the end of the 

driving cycle to recharge the SCs.) 

 

 

 

Figure 2.19: Comparative evaluation of the studied EMSs for battery/SC EV by simulations. 
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Figure 2.20: (Simulation results) the real-world driving cycle under study. 

 

 

 

Figure 2.21: (Simulation results) SCs voltage evolutions with examined strategies. 
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Figure 2.22: (Simulation results) batteries current evolutions with examined strategies. 
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2.5. Experiments and results 

2.5.1. Experimental system 

Experimental validations are carried out by using reduced-scale power hardware-in-the-loop 

(HIL) simulation [Bouscayrol 2011]. Figure 2.23 illustrates the principle of the reduced-scale 

power HIL simulation used in this work. The full-scale studied system can be considered as 

composed by three parts: the SCs subsystem, the batteries, and the traction subsystem. In order 

to validate EMSs by experiments, the system should be simulated by a reduced-scale power 

system available in the laboratory. Since the impact of SCs subsystem is under study, its 

topology is remained. This study focuses on the EMSs of the H-ESS; the traction subsystem 

therefore plays the role of generating the traction current which is the disturbance of the studied 

system. Thus, the traction subsystem, including the vehicle dynamics, can be emulated by using 

a controllable current source. Similarly, a controllable voltage source is used to emulate the 

batteries since batteries are not under study and their behaviors are assumed to be known 

perfectly. Moreover, it is to ensure that the studied SCs subsystem and the EMS is tested in the 

same conditions for each driving cycle. 

The HIL simulation is realized by using the experimental setup illustrated in Figure 2.24. 

Main parameters of the components are given in Table 2.3. The experimental setup in the 

laboratory is shown in Figure 2.25. The software control panel is implemented in dSPACE 

ControlDesk as shown in Figure 2.26. 
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Figure 2.23: Principle of reduced-scale power HIL simulation for the battery/SC EV. 
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The controllable current source to emulate the traction subsystem is composed by a SCs 

pack, an inductor, and a chopper. The SCs consume the traction power by being charged during 

the experiments. The emulator is controlled by a current controller to follow the reference 

generated by the traction model. The full-scale traction model, including the vehicle inertia, 

generates the traction current reference. Via the power adaptation block, this reference is 

imposed to the current controller. If the current of the emulator follows the reference generated 

by the traction model, the emulator can emulate well the traction dynamics, as will be verified 

in Subsection 2.5.2.  

The controllable voltage source to emulate the batteries is composed by a SCs pack, an 

inductor, a chopper, and a DC bus capacitor. The voltage of the emulator is controlled to follow 

the voltage reference generated by the batteries model via a power adaptation block. 

Voltage and currents controllers are realized by using the classical PI controllers. The 

models and the controllers are implemented in the controller board (dSPACE DS1103). The SCs 

are used to emulate the batteries and the traction subsystems thanks to their fast dynamics. It is 

noteworthy that the dynamics of the components used for emulation should be faster than that 

of the emulated system.  
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Figure 2.24: Experimental system configuration for the battery/SC EV. 
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Table 2.3: Reduced-scale power HIL system parameters for the battery/SC EV. 

Parameters   Values 

Adaptation ratio 
 

35 

SCs for batteries and traction emulators 

SCs capacitance 𝐶SC bat/trac 130 F 

SCs nominal voltage 𝑢SC bat/trac nom 54 V 

SCs subsystem 

SCs capacitance 𝐶SC 14.5 F 

SCs nominal voltage 𝑢SC nom 60 V 

SCs internal resistance 𝑟SC 73.0 mΩ 

Inductor 

Inductor inductance 𝐿 0.751 mH 

Inductor parasitic resistance 𝑟L 0.18 Ω 

Inductor of the batteries emulator 

Inductor inductance 𝐿bat emu 0.758 mH 

Inductor parasitic resistance 𝑟L bat emu 0.20 Ω 

Inductor of the traction emulator 

Inductor inductance 𝐿trac emu 0.752 mH 

Inductor parasitic resistance 𝑟L trac emu 0.20 Ω 

DC bus capacitor of the batteries emulator 

Capacitor capacitance 𝐶bat emu 2200 μF 

 

The power HIL simulation is a complex system. EMR is therefore used for modeling and 

control of the system as given in Figure 2.27. The SCs packs, the inductors, the choppers, and 

the DC bus capacitor are represented by using the corresponding EMR pictograms. The control 

scheme of the HIL system is conducted by inversions of EMR elements. The DC bus capacitor 

is an accumulation element of which the output is a voltage; its inversion is therefore a closed-

loop voltage control. The other of the control scheme is similar to the control of the SCs 

subsystem presented in Subsection 2.1.3. 

The full-scale models of the batteries and the traction subsystem are depicted by the 

model/estimation elements (purple ovals). The full-scale models interact with the reduced-scale 

system via power adaptation blocks. In practice, i.e., practical control scheme, the currents 

𝑖bat HIL and 𝑖trac HIL cannot be directly measured because they are choppers currents (which are 

pulses, and there is no sensor installed). These currents are therefore estimated by using the 

corresponding measured SC currents 𝑖SC bat and 𝑖SC trac. That is obtained by the estimation blocks 
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(purple squares) which are model-copy of the chopper. The voltages and the currents of all the 

SC banks and the emulated batteries voltage (on the capacitor 𝐶bat emu) are measured by voltage 

probes and current sensors.  
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Figure 2.25: Experimental test bench for the battery/SC EV. 

 

Figure 2.26: Control panel of the experimental system in dSPACE ControlDesk. 
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Figure 2.27: EMR of the reduced-scale power HIL experimental system for the battery/SC EV. 
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2.5.2. Results and discussions 

The main results are presented and discussed in this subsection. Additional results are given in 

Appendix A.4, see Figure A.7–Figure A.9.  

The real-time simulation (in dSPACE card) of the vehicle velocity control is presented in 

Figure 2.28. The simulation and experimental emulated batteries voltages 𝑢bat simu and 𝑢bat HIL 
are respectively plotted in Figure 2.29. This figure also provides the SCs voltages evolutions in 

full-scale simulation 𝑢SC simu and in reduced-scale HIL experiment 𝑢SC HIL. Finally, traction and 

batteries currents, in both simulation and experiment, are given (Figure 2.30). 

The first objective of experiment is to demonstrate the real-time implementation ability of 

the proposed EMS. It can be seen that the developed strategy operates successfully in the real-

time platform for the real-world driving cycle (and all the other cycles, see Appendix A.4). 

Moreover, experimental results can validate if the simulations examine well the system 

performances. For that purpose, simulation and experimental results should be plotted in the 

same figure respecting the reduction ratios as being explained in the follows.  

The power and the energy of the studied system are scaled down by a reduction ratio for 

power HIL implementation [Allègre 2010b]. The adaptation ratio is determined regarding the 

power and energy limitation of the available power components. It must ensure that the SCs 

used for traction emulation can absorb all the energy delivered by the SCs for the batteries 

emulation. The required energy storage capabilities are calculated with the WLTC class 2, which 

is the longest driving cycle under study. Regarding that, the adaptation ratio is set to 35 (see 

Table 2.3).  

The emulated batteries voltage is equal to that voltage of the full-scale system (they can be 

plotted in the same axis). Thus, the currents 𝑖trac and 𝑖bat, (and 𝑖ch sc) are scaled down exactly by 

the power ratio (see the scale between the two y-axes of the plot of the batteries and the tractions 

currents, Figure 2.30). It is noteworthy that the batteries emulator emulates not only the nominal 

batteries voltage (78 V) but also the fluctuations caused by the batteries current (see Figure 

2.29). That confirms the reduced-scale power HIL simulation can emulate properly the 

behaviors of the studied full-scale system. 

It is more complicated for scaling the SCs voltage. The SCs energy must be scaled down by 

the same reduction ratio as that of the power. The simplest way is to reduce the SCs capacitance 

by that ratio. The SCs voltage range can be therefore remained as in the full-scale system. 

Unfortunately, the SCs pack available in the laboratory has higher capacitance than it should do. 

Thus, the SCs voltage range must be reduced. The upper boundary 𝑢SC max are set the same for 

both full-scale simulations and reduced-scale experiments. Yet the lower boundary 𝑢SC min of 

the reduced-scale system is higher than that of the full-scale system. (See the two y-axes of the 

plot of the SCs voltage, Figure 2.29.) 

The well-matched results between simulation and experiment verify the advantages of the 

proposed real-time EMS and accuracy of the examination method. 
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Figure 2.28: (Experimental results) vehicle velocity obtained by real-time simulation in 

dSPACE DS1103 card. 

 

 

 

Figure 2.29: (Experimental results) batteries and SCs voltages with the proposed strategy. 
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Figure 2.30: (Experimental results) traction and batteries currents with the proposed strategy. 
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2.6. Conclusion 

This chapter has proposed and validated a new approach of using PMP to develop a real-time 

EMS for battery/SC H-ESSs in EVs. The near-optimal strategy has been obtained with the 

following process: 

• Modeling and control of the full dynamical system. 

• Model reduction and transformation steps for reduced mathematical model deduction. 

In fact, most of previous works have to deduce a reduced mathematical model. The 

authors have done this step by using various ways in literature. In this study, the 

reduction, transformation, and mathematical deduction follow the rules of EMR. That 

helps to deduce a simple model respecting physical meaning. 

• Applying analytical optimal control theory to the obtained reduced mathematical model 

to deduce the strategy.  

The first two steps are based on EMR. Meanwhile modeling and control are classical, the 

step of model reduction and transformation contributes to the advantages of the proposed 

method. In which, the reduced mathematical model allows the simplification of strategies 

development. That benefits to overcome the issue of complexity of optimization-based methods. 

At the step of optimal control applying, the traditional methodology is to get the off-line 

optimal solution by fully using PMP, then to add an extra adaptive mechanism. This chapter has 

proposed an alternative approach. By only applying the Hamiltonian minimization condition of 

PMP, an analytical closed-form solution containing the state variable can be deduced. Thus, no 

additional adaptation of the co-state variable is required for real-time applications.  

This novel strategy has been compared to the conventional EMSs including filtering, -

control, and DP. The filtering and -control strategies are inherited from the previous works of 

the research group due to the common studied system for fair comparison. DP for the studied 

system has been developed and implemented using the EMR-based backward model 

representation and an available toolbox.  

Simulation results have figured out that the proposed EMS gives the highest benefit in term 

of batteries rms current reduction (up to 50% on a real-world driving cycle compared to the 

battery EV). By comparing to the off-line optimal benchmark given by DP, the proposed EMS 

has been verified to be close-to-optimal. Furthermore, the real-time performances of the 

proposed strategy have been demonstrated by reduced-scale power HIL experiments organized 

by using EMR. 
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3. Real-time optimization-based 
energy management strategy 
for a battery/supercapacitor 
parallel hybrid truck  

This chapter aims to develop a real-time optimization-based energy management strategy for a 

parallel hybrid truck with the electrical drive supplied by batteries and supercapacitors. 

Energetic macroscopic representation will be used for modeling and control of the system. 

Thereafter, this full dynamical model will be reduced to achieve the reduced mathematical 

model for energy management strategy development. A torque distribution strategy will be 

developed for energy management of the hybrid traction subsystem. The hybrid energy storage 

system will be handled by the strategy developed in Chapter 2. Since the obtained model of the 

studied hybrid traction subsystem is linear, linear quadratic regulator method will be used to 

develop a real-time optimization-based strategy. An off-line optimal benchmark based on 

dynamic programming will be used to evaluate the real-time strategy. Simulations and reduced-

scale hardware-in-the-loop experiments will confirm the performances of the proposed method.  

3.1. Model for energy management strategy  

3.1.1. Studied system 

The studied system is a parallel hybrid truck supplied by a semi-active H-ESS combining 

batteries and SCs (Figure 3.1). The chassis, with the wheels and the brake, is driven through a 

6-level gearbox. The gearbox is connected with the ICE and the EM via a torque converter which 

can be considered working as a clutch. The torque converter is driven by a shaft connected with 

the ICE. The EM, supplied by an inverter, is coupled with the engine via a belt. The electrical 

drive is supplied by DC power from a semi-active H-ESS which is already studied in Chapter 2 

(see Subsection 2.1.1).    
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Figure 3.1: Studied system: a parallel hybrid truck supplied by a battery/SC H-ESS. 



Chapter 3: Real-time optimization-based EMS for a battery/SC parallel hybrid truck 

 

74 

3.1.2. Modeling and energetic macroscopic representation of the studied system 

The studied battery/SC parallel hybrid truck is mathematically modeled and graphically 

represented by using EMR (Figure 3.2). 

Battery/supercapacitor hybrid energy storage system 

The H-ESS has been studied in Chapter 2. Modeling, control, and energy management of this 

subsystem are conserved (see Subsection 2.1.2 for modeling and EMR). The H-ESS imposes 

the battery voltage 𝑢bat to the electrical drive of the hybrid traction subsystem; the drive reacts 

by imposing the traction current 𝑖trac to the H-ESS. 

Electrical drive 

The electrical drive consists of a permanent magnet synchronous machine and a three-phase 

inverter. By assuming that the drive is correctly controlled, it can be addressed by using a static 

model as follows: 

{

𝑇ED = 𝑇ED ref

𝑖trac =
𝑇EDΩED

𝑢batηED
𝑘ED

  with  𝑘ED = {
1 if 𝑇EDΩED ≥ 0
−1 if 𝑇EDΩED < 0

 (3.1) 

where 𝑇ED is the electrical drive torque; 𝑇ED ref the reference torque; ΩED the rotational speed; 

and ηED the efficiency of the drive. The factor 𝑘ED depends on the power flow direction. The 

drive is represented by a multi-physical conversion element (circle). 

Internal combustion engine 

In this study, the ICE is examined by using a static model as a mechanical source of torque 

(oval). In which, the engine torque 𝑇ICE is considered to perfectly follow the torque reference 

𝑇ICE ref. The engine imposes its torque while the system reacts the rotational speed ΩICE to the 

engine. The inertia of the engine shaft is assumed to be reported with the mass of the vehicle. 

Besides, the fuel consumption of the ICE is computed by using a map of consumption rate 

𝑚̇fuel which is a function of the engine torque and speed. The static model of the ICE is given 

as follows: 

{

𝑇ICE = 𝑇ICE ref

𝑚fuel = ∫ 𝑚̇fuel(𝑇ICE, ΩICE)𝑑𝑡
𝑡

𝑡0

; (3.2) 

in which 𝑚̇fuel(𝑇ICE, ΩICE) is given by a look-up table. 
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Figure 3.2: EMR of the studied battery/SC parallel hybrid truck. 
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Belt 

The ICE directly drives the vehicle via its shaft; whereas the electrical drive is coupled via a belt 

(see Figure 3.1). The belt is represented by a coupling element (overlapped squares) with the 

following model: 

{
𝑇belt = 𝑇ICE + 𝑇ED𝑘belt𝜂belt

𝑘η belt

ΩICE = Ωbelt
ΩED = Ωbelt𝑘belt

  with  𝑘η belt = {
1 if 𝑇EDΩED ≥ 0
−1 if 𝑇EDΩED < 0

 (3.3) 

where 𝑇belt is the belt torque; Ωbelt the belt speed; 𝑘belt the fixed belt ratio; 𝜂belt the belt 

efficiency; 𝑘ηbelt the efficiency factor depending on the power direction. 

Torque converter 

The torque converter engages the engine shaft to the gearbox. The full dynamical model of the 

torque converter can be complicated. However, its dynamical behaviors matter only during the 

gear transmissions [Lhomme 2008]. In this study, a simple model of the torque converter, 

depicted by a mono-physical conversion element (square), is adopted as: 

{
𝑇TC = 𝑇belt𝑘TC𝜂TC

𝑘η TC

Ωbelt = ΩTC𝑘TC
with  𝑘η TC = {

1 if 𝑇beltΩbelt ≥ 0
−1 if 𝑇beltΩbelt < 0

; (3.4) 

in which 𝑇TC is the torque of the torque converter; ΩTC the torque converter rotational speed; 𝑘TC 
the controlled engagement ratio; 𝜂TC the torque converter efficiency; and the coefficient 𝑘η TC 

depends on the power direction. 

Gearbox 

The traditional discrete gearbox is employed with the model as follows: 

{
𝑇gear = 𝑇TC𝑘gear𝜂gear

𝑘η gear

ΩTC = Ωgear𝑘gear
with  𝑘η gear = {

1 if 𝑇TCΩTC ≥ 0
−1 if 𝑇TCΩTC < 0

 (3.5) 

where 𝑇gear is the gearbox torque; Ωgear the gearbox speed; 𝑘gear the controlled gearbox ratio; 

𝜂gear the gearbox efficiency; and the coefficient 𝑘η gear is a function of the power direction. The 

gearbox is assumed to be shifted immediately (no shifting delay). It is represented by a mono-

physical conversion element (square).  

Mechanical transmission and wheels 

The mechanical transmission and the wheels are considered as a mechanical transmission with 

the model: 
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{
𝐹wh = 𝑇gear𝑘tran𝜂tran

𝑘η tran

Ωgear = 𝑣veh𝑘tran
with  𝑘η tran = {

1 if 𝑇gearΩgear ≥ 0

−1 if 𝑇gearΩgear < 0
; (3.6) 

in which 𝐹wh is the force of the wheels; 𝑣veh the vehicle velocity; 𝑘tran the fixed transmission 

ratio combining the final drive ratio and the wheels radius; 𝜂tran the transmission efficiency; and 

𝑘η tran the factor depending on the power direction. They are represented by a mono-physical 

conversion element (square). 

Brake 

The mechanical brake imposes the braking force 𝐹br to the wheel of the vehicle by following 

the reference 𝐹br ref as: 

𝐹br = 𝐹br ref (3.7) 

with 𝐹br ref ≤ 0. Here it is assumed that there is no dynamical delay between the reference and 

the response of the braking force. The brake is depicted by a source element (oval) which 

receives the reaction 𝑣veh from the system. 

Chassis and environment 

The force of the wheel 𝐹wh and the braking force 𝐹br are coupled during the braking mode of 

the vehicle as follows: 

{
𝐹trac = 𝐹wh + 𝐹br
𝑣veh  common 

 with  𝐹br ≤ 0 (3.8) 

where 𝐹trac is the traction force. 

The chassis dynamics are the total equivalent mass of the vehicle (including goods, driver, 

and the equivalent rotational masses of the ICE and the electrical drive). The environment, 

including air and road, imposes the resistive force 𝐹res to the system. Their model has been 

already addressed in Chapter 2 (see Subsection 2.1.2) as well as their EMR. 

 

3.1.3. Local control of the studied system 

Based on the EMR of the studied system (see Figure 3.2), there are two objective variables to 

be controlled which are the vehicle velocity 𝑣veh and the batteries current 𝑖bat. There are two 

independent tuning paths, and therefore two control paths, to control them (Figure 3.3). Since 

the control of the H-ESS has been already developed in Chapter 2 (see Subsection 2.1.3), this 

subsection mainly discusses the development of the local control scheme for the hybrid traction 

subsystem. 
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a. Tuning paths and control paths 

There are five tuning variables to control the objective variable 𝑣veh; which are 𝑇ED ref, 𝑇ICE ref, 
𝑘TC, 𝑘gear, and 𝐹br ref. The reference torques 𝑇ED ref and 𝑇ICE ref enforce the corresponding torques 

𝑇ED and 𝑇ICE which are coupled to conduct the belt torque 𝑇belt. This torque is then converted to 

the 𝑇TC via the torque converter governed by the 𝑘TC. Thereafter, shifting the gearbox by turning 

the 𝑘gear produce the torque 𝑇gear. The gearbox torque is then transformed to the force 𝐹wh via 

the final drive and the wheel. Whereas the braking force reference 𝐹br ref imposes the 𝐹br during 

the braking mode. The braking force, in this mode, is then coupled with the force produced in 

the wheel 𝐹wh to produce the traction force 𝐹trac which controls the vehicle velocity 𝑣veh. 

The control paths are then deduced from the tuning paths by inverting them via the “mirror 

effect” (Figure 3.3). For the traction subsystem, the control path is the route from the vehicle 

velocity reference 𝑣veh ref to the drive and the engine torques references 𝑇ED ref and 𝑇ICE ref.  

b. Local control scheme of the studied system 

The local control scheme is built based on the control paths as shown in Figure 3.4. The closed-

loop velocity control, as an indirect inversion of the chassis, is the same as the one presented in 

Subsection 2.1.3 (see Figure 2.8 and (2.11)).  

The braking coupling is directly inverted (overlapped parallelogram) as follows: 

{
𝐹wh ref = 𝐹trac ref𝑘br

𝐹br ref = 𝐹trac ref(1 − 𝑘br)
 (3.9) 

where 𝑘br is the braking ratio computed from a braking strategy. In which 𝑘br = 1 means fully 

electrical, i.e., regenerative, braking while 𝑘br = 0 means fully mechanical braking. In fact, with 

this studied parallel hybrid truck, the electrical drive power is not enough to perform fully 

electrical braking.  

The gearbox torque reference 𝑇gear ref is deduced by directly inverting the final drive and 

wheel (parallelogram) as: 

𝑇gear ref =
𝐹wh ref
𝑘tran

. (3.10) 

The gearbox is then inverted (parallelogram) by: 

𝑇TC ref =
𝑇gear ref

𝑘gear
 (3.11) 

where 𝑘gear is the disturbance denoted by the dashed arrow. The ratio 𝑘gear is imposed by a 

gearshift strategy. 
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Figure 3.3: Tuning paths and control paths for local control of the studied battery/SC parallel hybrid truck. 
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Figure 3.4: EMR and inversion-based control of the studied battery/SC parallel hybrid truck. 
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Similarly, the 𝑘TC plays the role of a disturbance for computing the belt torque reference 

𝑇belt ref by inverting the torque converter as follows: 

𝑇belt ref =
𝑇TC ref
𝑘TC

. (3.12) 

A torque converter engagement strategy defines the ratio 𝑘TC. 

Finally, the belt is inverted to distribute its torque reference 𝑇belt ref into the electrical drive 

and the engine: 

𝑇ED ref =
𝑇belt ref − 𝑇ICE ref

𝑘belt
 (3.13) 

where the engine torque reference  𝑇ICE ref is computed by a torque distribution strategy which 

is the objective of this study. 

3.1.4. Model modification for energy management strategy development 

Model modification is a key point of efficient EMS development (see Subsection 2.1.4). It is 

even more important due to the complexity of the studied H-ESS-based parallel hybrid truck. In 

this subsection, the system model is reduced to obtain a proper mathematical model for 

developing an optimal control-based EMS. 

a. Model reduction assuming perfect control performances  

By assuming that the inductor and the chopper are perfectly controlled, they and their inversions 

can be reduced to an equivalent converter (Figure 3.5). The reduction of this bidirectional 

DC/DC converter is the same as presented in Subsection 2.1.4. In which the equivalent 

conversion element represents a static model of the DC/DC converter. 
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Figure 3.5: Model reductions of the DC/DC converter assuming perfect control performances. 
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b. Model transformation 

Model transformation regarding concerned dynamics 

Similar to Subsection 2.1.4, the EMSs, at the supervisory level, in this study do not deal with 

the dynamics of the chassis. Those dynamics are handled by the inversion-based controller at 

the local control level. Thus, the chassis and its velocity controller can be considered as an 

equivalent mechanical source (Figure 3.6). This subsystem imposes the traction current force 

reference 𝐹trac ref as a disturbance input. 
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Ftrac ref vveh ref 
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Figure 3.6: Model transformation of the chassis subsystem to highlight the disturbance. 

The EMS does not consider the dynamics of the inductor or the chassis, which are already 

controlled at the local control layer. Instead, the dynamics of the SCs and the batteries are taken 

into account at the supervisory layer. Thus, their representations are transformed from source 

elements to accumulation elements (Figure 3.7). The model transformation of the SCs has been 

already addressed in Subsection 2.1.4.  

In the case of the batteries, in fact, the state variable to be controlled is the SoC. However, 

SoC is not an energetic variable, i.e., it cannot produce power. It is just a dimensionless indicator 

of energy level. Hence, SoC is not a variable to be represented by using EMR. On the other 

hand, batteries voltage 𝑢bat is a function of their SoC meanwhile the SoC is an integral of 

batteries current 𝑖bat (see batteries model (2.1)). That is why batteries can be represented by an 

accumulation element with 𝑖bat as the input and 𝑢bat as the output. Furthermore, in fact, the SoC 

is always estimated by measuring batteries current. Thus, the objective of controlling the SoC 

as a state variable is warranted. 

As a result, the first step reduced EMR of the studied system is given in Figure 3.8. 

Model transformation regarding decomposed strategies 

A global multi-objective multi-variable strategy for the studied system (Figure 3.8) is complex. 

There are two objectives with two state variables and five control variables which cause a 

complicated problem. To achieve the objective of developing a simple-but-effective EMS, 

decomposition method [Castaings 2016b; Horrein 2015] is adopted. The global strategy is 

decomposed into five local mono-objective strategies as shown in Figure 3.9. 
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Figure 3.7: Model transformations of the energy storages to represent the dynamics considered at supervisory level. 
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Figure 3.8: Reduced EMR of the studied battery/SC parallel hybrid truck by assuming perfect control performances. 
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Figure 3.9: Decomposed EMSs for the studied battery/SC parallel hybrid truck. 
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The current distribution strategy has been developed in Chapter 2. For torque converter 

engagement (TC shift), gearshift, and braking strategies, traditional rule-based and/or DP-based 

optimal strategies can be used. By assuming that the gearbox can be shifted immediately, the 

torque converter disengagement can be neglected. Thus, in this study, the clutch of the torque 

converter is considered always being closed.  

Besides, gearshift strategy has effects on the engine fuel consumption. The objective is to 

keep the ICE operating within its optimal efficiency region while the vehicle velocity and torque 

demand varies in a wide range. In case of parallel HEV, it has been shown that a decomposition 

of gearshift and power distribution strategies is a suitable approach [Ngo 2012]. Hence, it is 

suitable to inherit this decomposed cascade scheme. In which the gearshift strategy decides the 

engine speed and the total torque reference. Then the torque distribution strategy computes the 

torques references for the engine and the electrical drive. In this study, DP is used to develop an 

optimal gearshift strategy, then it is realized in real-time by using look-up table. 

Finally, the objective of braking strategy is to regenerate as much as possible the energy 

during braking mode. In this work, a DP-based strategy is adopted, like gearshift, for fair 

comparison. In fact, it has been shown that a rule-based braking strategy can be combined 

(hybridized) with optimization-based power distribution strategy for HEVs to obtain the optimal 

results [Horrein 2015b]. So, real-time implementation, in any case, is not a problem for the 

braking strategy. 

Once these strategies are correctly developed, the torque converter, the gearbox, and the 

brake can be considered working properly. Thus, the model of the drivetrain subsystem, 

including these components, the final drive and wheel, and the chassis, can be reduced to an 

equivalent mechanical source (see Figure 3.10).  
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Figure 3.10: Model transformation of the drivetrain subsystem; assuming perfect control 

performances and properly developed strategies. 
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Also, the H-ESS model can be reduced to an equivalent ESS with the capacitance 𝐶ESS eq 

expressed in Farad (Figure 3.11). Since the SCs capacitance (in Farad) is much smaller than that 

of the batteries (in kilo-Farad), the equivalent ESS capacitance 𝐶ESS eq can be considered to equal 

the batteries capacitance 𝐶bat eq.  
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Figure 3.11: Model reduction of the H-ESS; considering dominant capacitance of the batteries. 

 

c. Model adaptation for energy management strategy development 

Reduced EMR of the studied system for torque distribution strategy development 

By reducing the H-ESS and the drivetrain subsystem, the EMR of the studied system for 

developing torque distribution strategy can be deduced as shown in Figure 3.12. The drivetrain 

imposes the rotational speed Ωbelt and the belt torque reference 𝑇belt ref to the system. In which, 

the electrical drive speed ΩED and the engine speed ΩICE are fixed to that belt speed by the 

constant ratio 𝑘belt (see (3.3)). Meanwhile the torque distribution strategy defines the control 

law to distribute the 𝑇belt ref into the 𝑇ED ref and the 𝑇ICE ref.  

In non-plug-in HEVs, the EMS should ensure the charge sustaining of the ESS; which means 

the final SoC should be close to its initial value.  

Reduced mathematical model for optimal control-based strategy development 

A mathematical model can be deduced from the aforementioned reduced EMR of the studied 

system. By neglecting the parasitic resistances and losses of the H-ESS, the equivalent ESS can 

be modeled as follows: 
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Figure 3.12: Reduced EMR for torque distribution strategy development. 

 

𝑑

𝑑𝑡
𝑆𝑜𝐶ESS =

−𝑖trac
𝐶ESS eq

; (3.14) 

where 𝑆𝑜𝐶ESS is the equivalent SoC of the H-ESS. In fact, by considering the dominant 

capacitance of the batteries in comparison to the SCs, the 𝑆𝑜𝐶ESS can be approximated by the 

𝑆𝑜𝐶bat. Thus, the model of the equivalent ESS can be given by: 

𝑑

𝑑𝑡
𝑆𝑜𝐶bat =

−𝑖trac
𝐶bat eq

. (3.15) 

From the electrical drive model (3.1) and the belt model (3.3), by neglecting the efficiency, 

the traction current can be calculated as follows: 

𝑖trac =
ΩED𝑇ED
𝑢bat

 

 

=
𝑘beltΩICE𝑇ED

𝑢bat
. 

(3.16) 

Considering the belt coupling with the assumptions of perfect response of the drive and the 

engine torque, that leads to: 

𝑖trac =
𝑘beltΩICE
𝑢bat

(𝑇belt ref − 𝑇ICE ref). (3.17) 

Replacing the 𝑖trac in (3.17) to (3.15), the reduced mathematical model of the system can be 

deduced as follows: 
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𝑑

𝑑𝑡
𝑆𝑜𝐶bat =

𝑘beltΩICE
𝐶bat eq𝑢bat

(𝑇ICE ref − 𝑇belt ref); (3.18) 

in which, the ΩICE and the 𝑢bat are measurable disturbances; the 𝑇belt ref determined; the 𝑘belt the 

given data; the 𝑆𝑜𝐶bat the state variable; and the 𝑇ICE ref the control variable. This is a linear 

model (see Appendix A.3) which is convenient for optimal control application.  

Cost function 

The objective of the EMS is to reduce the fuel consumption of the ICE. Thus, the cost function 

to develop the strategy is: 

𝐽 = 𝑚fuel 
 

= ∫ 𝑚̇fuel(𝑇ICE, ΩICE)𝑑𝑡
𝑡

𝑡0

 
(3.19) 

where the fuel consumption rate 𝑚̇fuel(𝑇ICE, ΩICE) is computed by using a look-up table. 

3.2. Optimal benchmark using dynamic programming 

DP is used to achieve the off-line optimal benchmark to evaluate the developed real-time 

strategies. Decomposition approach is continued to be applied to form a bi-level scheme EMS 

[Nguyễn 2018]. The DP optimization problem of the hybrid traction subsystem is solved first. 

Then the electrical traction power is the disturbance input to solve the DP optimization problem 

of the H-ESS.  

3.2.1. Backward representation 

The reduced EMR of the system, i.e., forward representation, (Figure 3.12) is transformed to the 

backward representation [Horrein 2015a] (Figure 3.13). The belt and its inversion are merged 

to form a backward coupling element (overlapped squares) with the following model: 

{
 
 

 
 

𝑇ICE = 𝑇ICE ref

𝑇ED =
𝑇belt − 𝑇ICE

𝑘belt𝜂belt
𝑘η belt

ΩICE = Ωbelt
ΩED = 𝑘beltΩbelt.

 (3.20) 

In which, the belt torque and speed 𝑇belt and Ωbelt are known in advance since it is imposed by 

the drivetrain with the vehicle velocity reference 𝑣veh ref a priori known. The torque distribution 

of the electrical drive and the ICE are therefore determined by backward computations (see the 

arrows directions in Figure 3.13). The backward representation of the H-ESS is inhered from 

Chapter 2 (see Figure 2.14 in Subsection 2.2.1). 
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Figure 3.13: EMR-based backward representation of the studied system. 

 

3.2.2. Dynamic programming implementation 

Figure 3.14 illustrates the implementation and solving process of DP problem by using the 

EMR-based backward representations and the dpm function toolbox [Sundström 2009].  
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Figure 3.14: Implementation of DP to obtain the off-line optimal torque distribution and 

optimal current distribution strategies. 
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The two optimal control problems are solved sequentially in two steps. Firstly, the forward 

simulation of the drivetrain subsystem is conducted to compute the 𝑇belt and the Ωbelt in advance. 

The torque distribution problem is solved based on the knowledge of these disturbance inputs. 

Secondly, the traction current 𝑖trac calculated from this problem solving is employed as the 

disturbance to solve the current distribution problem of the H-ESS.   

3.3. Real-time strategy based on linear quadratic regulator 

3.3.1. Approach 

Original problem statement 

The energy management problem of the parallel hybrid truck can be stated as follows. Find an 

optimal control law 𝑇ICE ref
∗  for the system: 

𝑑

𝑑𝑡
𝑆𝑜𝐶bat =

𝑘beltΩICE
𝐶bat eq𝑢bat

(𝑇ICE ref − 𝑇belt ref) (3.21) 

to minimize the cost function: 

𝐽 = ∫ 𝑚̇fuel(𝑇ICE, ΩICE)𝑑𝑡
𝑡

𝑡0

. (3.22) 

Applying directly optimal control theory to solve this problem leads to a trivial solution in 

which 𝑇ICE ref
∗ = 0 [Delprat 2004]. This solution can be intuitively explained as: the best way to 

save fuel is not to use the ICE. However, it is not an expected solution because the batteries will 

be fully discharged after few kilometers.  

To overcome this issue, two methods are often used in literature. The first one is to add the 

final constrain of the batteries SoC: 

𝑆𝑜𝐶bat final = 𝑆𝑜𝐶bat init. (3.23) 

Then, optimal control techniques such as DP (see Section 3.2) or PMP [Delprat 2004] are 

applied. This approach, however, is suitable only for off-line strategies when the driving cycles 

are known in advance. The final state constrain is warranted only in finite time horizon. There 

is in fact no way to ensure this constrain in real-time since the final time is unknown. To develop 

real-time EMSs, 𝜆-control is often applied to adapt the PMP-based optimal solution to real-time 

operation [Kermani 2011; Castaings 2016a]. The strategies therefore become sub-optimal.   

The second approach is to charge the cost of SoC variation by adding to the cost function a 

penalty like [Borhan 2012]: 

𝐽 = ∫ [𝑎(𝑚̇fuel(𝑇ICE, ΩICE))
2
+ 𝑏(𝑆𝑜𝐶 − 𝑆𝑜𝐶ref)

2] 𝑑𝑡
𝑡

𝑡0

 (3.24) 
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where 𝑎 and 𝑏 are weighting factors. This is in fact an ECMS method, in which the batteries 

energy variation is converted to an equivalent fuel consumption. The problem is then solved by 

using MPC [Borhan 2012] or PMP [Kim N. 2011] with 𝜆-control scheme [Kessels 2008].  

There is a common drawback of these approaches that the fuel consumption rate 

𝑚̇fuel(𝑇ICE, ΩICE) must be calculated to develop the strategies. For numerical methods like DP, 

the look-up table of this map is directly used. For analytical methods like PMP, the map is 

approximated by polynomial functions of which derivatives can be analytically calculated. It is 

because PMP method requires analytical expression of the partial derivative. In both cases, a 

data map of ICE fuel consumption is required. This is a drawback in real-world applications 

since such data are not often available.  

Strategy development using these approaches is also often complicated. Moreover, methods 

like MPC require strong computational efforts that may prevent them from on-board 

implementation.  

As a consequence, the problem should be reformulated for simplification without 

requirement of fuel consumption map and low computational efforts.   

Problem reformulation 

This study proposes an alternative approach, firstly by reformulating the problem. It is known 

that the fuel consumption rate is mainly proportional to the ICE power [Kessels 2008; Koot 

2005]. In other words, for a given speed, the higher the engine torque is, the higher the fuel 

consumption rate is (e.g., see Figure 3.15). The datasheet of the engine shows an almost linear 

behavior of the fuel consumption as a function of the torque and the speed. 

 

Figure 3.15: An example of fuel consumption rates of the ICE used in this study (Detroit 

Diesel Corp. Series 50 8.5 (205 kW) Diesel Engine). 



Chapter 3: Real-time optimization-based EMS for a battery/SC parallel hybrid truck 

 

91 

Hence, it can be considered that, with the same speed, minimizing the engine torque will 

minimize the fuel consumption. That means instead of using the original cost function (3.22) of 

fuel consumption rate 𝑚̇fuel, it can be approximated by using the ICE torque as follows: 

𝐽 = ∫ 𝑇ICE ref

𝑡

𝑡0

𝑑𝑡. (3.25) 

The approximation may cause some reductions in computational accuracy, which make the 

strategy sub-optimal. However, this formulation allows deducing analytical solution; whereas 

the map of 𝑚̇fuel requires numerical computations. The strategy will be therefore simpler for 

development and easier for real-time implementation. 

Additionally, as discussed above, a term of SoC variation should be penalized in order to 

ensure the charge sustaining of the energy storage as follows: 

𝐽 = ∫ [𝑇ICE ref
2 + 𝑄(𝑡)(𝑆𝑜𝐶bat − 𝑆𝑜𝐶bat ref)

2]𝑑𝑡
𝑡

𝑡0

; (3.26) 

in which 𝑄(𝑡) is an equivalent conversion factor to convert the SoC variation to the engine 

torque. Thus, the method can be considered as an adaptation of ECMS approach. 

Since the reduced mathematical model (3.21) is linear (see Appendix A.3) while the cost 

function (3.26) is in a quadratic form of state and control variables, the linear quadratic regulator 

(LQR) method can be employed. That can deduce a simple analytical control law which is 

suitable for on-board real-time implementation.  

3.3.2. Strategy development 

Linear quadratic regulator 

The LQR control law [Bryson 1975] is developed for the linear system in the following form: 

𝑑

𝑑𝑡
𝑥 = 𝐴𝑥 + 𝐵𝑢; (3.27) 

in which 𝑥 generally denotes state variables vector; 𝑢 the control variables vector; 𝐴 the 

dynamical matrix; 𝐵 the control matrix; with the cost function in the form given by: 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

𝑜

 (3.28) 

where 𝑄 and 𝑅 are weighting matrices; ∞ denotes infinite time horizon; 𝑇 the transpose of the 

matrix. In real-world real-time applications, the final time 𝑇end of the driving cycle is unknown. 

Thus, the formulation with infinite time horizon is suitable.  

By applying PMP to this system, the control law is obtained as follows: 
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𝑢 = −𝑅−1𝐵𝑇𝑃(𝑥 − 𝑥ref); (3.29) 

in which 𝑃 is the solution of the algebraic Riccati equation: 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0. (3.30) 

LQR-based strategy development 

Applying the reduced mathematical model (3.21) and the reformulated cost function (3.26) to 

the general form (3.27) and (3.28), the system coefficients are defined by: 

{
 
 

 
 

𝐴 = 0

𝐵 =
𝑘beltΩICE(𝑡)

𝐶bat eq𝑢bat(𝑡)

𝑄 = 𝑄(𝑡)
𝑅 = 1.

 (3.31) 

Replacing (3.31) to (3.30), the Riccati equation for the studied system can be given by: 

−𝑃(𝑡)2𝐵(𝑡)2 + 𝑄(𝑡) = 0. (3.32) 

Thus, 

𝑃(𝑡) =
√𝑄(𝑡)

𝐵(𝑡)
. (3.33) 

By replacing (3.33) to the general form (3.29) of the control law, the ICE torque reference 

can be deduced as follows: 

𝑇ICE ref = −
𝑘beltΩICE(𝑡)

𝐶bat eq𝑢bat(𝑡)

√𝑄(𝑡)

𝑘beltΩICE(𝑡)
𝐶bat eq𝑢bat(𝑡)

(𝑆𝑜𝐶bat − 𝑆𝑜𝐶bat ref) 

 

= √𝑄(𝑡)(𝑆𝑜𝐶bat ref − 𝑆𝑜𝐶bat). 

(3.34) 

It is seen that, eventually, the LQR-based control law has a form of a proportional (P) 

controller of the batteries SoC.  

Weighting factor determination 

The square-root of the weighting factor 𝑄 can be determined by using the conventional pole-

placement technique for the P controller (Figure 3.16). The system model (3.21) can be rewritten 

in Laplace domain as follows: 
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Figure 3.16: P controller form of the LQR control law. 

 

𝑆𝑜𝐶bat =
𝑘beltΩICE(𝑡)

𝐶bat eq𝑢bat(𝑡)𝑠
(𝑇ICE ref − 𝑇belt ref) (3.35) 

where 𝑠 is the Laplace operator. Since the belt torque reference 𝑇belt ref is the disturbance of the 

studied control loop, it is neglected while synthesizing the controller. The closed-loop transfer 

function is:  

𝐺closed-loop =

𝑘beltΩICE(𝑡)
𝐶bat eq𝑢bat(𝑡)𝑠

√𝑄(𝑡)

1 +
𝑘beltΩICE(𝑡)
𝐶bat eq𝑢bat(𝑡)𝑠

√𝑄(𝑡)
 

 

=
1

𝐶bat eq𝑢bat(𝑡)

𝑘beltΩICE(𝑡)√𝑄(𝑡)
𝑠 + 1

. 

(3.36) 

The closed-loop system is a first-order transfer function; in which its response time (to 95% 

of the step reference) is five times of the time constant, as given by: 

𝑇res = 3
𝐶bat eq𝑢bat(𝑡)

𝑘beltΩICE(𝑡)√𝑄(𝑡)
 (3.37) 

where 𝑇res is the response time of the closed-loop system. Hence, the square-root of the 

weighting factor can be determined as: 

√𝑄(𝑡) = 3
𝐶bat eq𝑢bat(𝑡)

𝑘beltΩICE(𝑡)𝑇res
. (3.38) 

The weighting factor 𝑄(𝑡) varies with time and is totally calculated by the measurable variables 

𝑢bat meas and ΩICE meas. The batteries capacitance 𝐶bat eq and the belt ratio 𝑘belt are known 

parameters. The response time 𝑇res is the only parameter needed to be defined by the strategy 
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developer. It is in fact a trade-off between the fuel consumption reduction (longer 𝑇res) and 

charge sustaining of the batteries (shorter 𝑇res).  

Finally, by replacing (3.38) to (3.34), the LQR-based control law for the studied parallel 

hybrid truck is obtained as follows: 

𝑇ICE ref = 3
𝐶bat eq𝑢bat(𝑡)

𝑘beltΩICE(𝑡)𝑇res
(𝑆𝑜𝐶bat ref − 𝑆𝑜𝐶bat est). (3.39) 

3.3.3. Strategy implementation 

The proposed real-time LQR-based strategy is implemented as illustrated in Figure 3.17. The 

limitations of the electrical drive torque and the batteries SoC are treated by using the 

conventional switching method. When the system reaches its limitations, the ICE must provide 

all the demanded traction power. The strategy is simple and straightforward without requiring 

complex data like engine fuel consumption map. Thus, it is suitable for on-board real-time 

implementation for real-world applications. 
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Figure 3.17: Implementation of the proposed LQR-based EMS. 

3.4. Simulations and results 

3.4.1. Examined system 

The studied vehicle is based on a parallel hybrid delivery truck designed in [Hofman 2008] with 

the main parameters given in Table 3.1. A traditional 6-level gearbox is employed. A 205-kW 

series 50 8.5 diesel engine of Detroit Diesel Corporation is coupled with a 58-kW permanent 

magnet synchronous machine (PMSM) drive via a belt with the 1:1 ratio. The electrical drive is 

originally supplied by a 300-V 62-Ah batteries pack consisting of LiPho A123 20Ah 2010 cells. 

To form a semi-active H-ESS, a 195-V 13.4-F SCs subsystem is added to the system by using 

Maxwell BMOD0058 E016 B02 modules. 
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Table 3.1: Examined system parameters for simulation of the battery/SC hybrid truck. 

Parameters  Values 

Vehicle (based on the hybrid delivery truck designed in [Hofman 2008]) 

Vehicle total mass 𝑀veh 7514 kg 

Aerodynamic standard 𝑐x𝐴 0.73×6.9 m2 

Rolling coefficient 𝑘roll 0.008 

Final drive ratio 𝑘FD 3.33 

Wheel radius 𝑅wh 0.397 m 

Gearbox 

Gearbox ratio 𝑘gear [7.14 4.17 2.50 1.59 1.00 0.78] 

Efficiency 𝜂gear [0.94 0.95 0.9 0.95 0.91 0.91] 

Belt 

Belt ratio 𝑘belt 1 

Efficiency 𝜂belt 0.95 

ICE (Detroit Diesel Corp. Series 50 8.5 Diesel Engine) 

Maximal power 𝑃ICE max 205 kW 

Maximal speed ΩICE max 2100 rpm 

Idle speed ΩICE idle 650 rpm 

Maximal torque 𝑇ICE max 1100 Nm 

Mass density of diesel 𝑀vol 850 g/L 

Electrical drive (PMSM) 

Maximal power 𝑃ED max 58 kW 

Maximal torque 𝑇ED max 400 Nm 

Nominal speed ΩED nom 1500 rpm 

Maximal speed ΩED max 4000 rpm 

Nominal efficiency in traction mode 𝜂ED trac 96 % 

Nominal efficiency in regenerative mode 𝜂ED regen 90 % 

Batteries (LiPho A123 20Ah 2010 cells) 

Battery bank capacitance 𝐶bat 62 Ah (equivalent 223.2 kF) 

Battery bank resistance (at 70% SoC) 𝑟bat 26 mΩ 

Battery bank OCV (at 70% SoC) 𝑢bat OC 300 V (maximum 303.5 V) 

SCs subsystem (Maxwell BMOD0058 E016 B02 modules) 

Inductor inductance 𝐿 0.2 mH 

Inductor parasitic resistance 𝑟L 10.0 mΩ 

SC series resistance 𝑟SC 88 mΩ 

SC nominal voltage 𝑢SC nom 195 V 

SC nominal capacitance 𝐶SC 13.4 F 
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This study examines the system with three standard driving cycles: 

• Urban Dynamometer Driving Schedule (UDDS) as an American standard driving cycle; 

• NEDC as a European standard driving cycle; and 

• WLTC class 2 as a statistical combination of standard and real-world driving cycles from 

different countries in Europe, Asia, and America [Tutuianu 2014].  

In fact, WLTC class 2 is developed for testing of light-duty vehicles, including passenger 

cars and light vans. However, this cycle is used in this study since it reflects real driving behavior 

with many oscillations in a wide velocity range. 

For each driving cycle, three cases are compared: 

• Conventional truck driven by ICE only, in which all braking energy is consumed by the 

mechanical brake; 

• Hybrid truck with the proposed LQR-based torque distribution strategy; and 

• Hybrid truck with DP-based optimal strategy as an off-line benchmark.  

The parameters for DP problem solving is given in Table 3.2 which is implemented by using 

the dpm function toolbox developed by [Sundström 2009]. The forward simulations are carried 

out in MATLAB/SimulinkTM with the EMR library [EMR 2019] as shown in Figure 3.18.  

 

Table 3.2: Parameters for DP problems solving of the battery/SC hybrid truck. 

Parameters  Range Step 

Time 𝑡 0 to 𝑡f 1 s 

Torque distribution problem 

State variable 𝑆𝑜𝐶bat 20% to 80% 0.1% 

Control variable  𝑇ICE ref 0 to 1100 Nm 10 Nm 

Initial state 𝑆𝑜𝐶bat init 70% - 

Final state constraint 𝑆𝑜𝐶bat final 70% - 

Current distribution problem 

State variable 𝑢SC 97.5 to 195 V 1 V 

Control variable 𝑖bat ref −190 to 190 A 1 A 

Initial state 𝑢SC init 195 V - 

Final state constraint 𝑢SC final 195 V - 

𝑡f is the length of the driving cycle under study 
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Figure 3.18: Simulation of the studied truck in MATLAB/SimulinkTM with the EMR library. 

3.4.2. Results and discussions 

The objective of the torque distribution strategies is to minimize the engine fuel consumption. 

Hence, with different driving cycles, fuel consumption per 100 km is the criteria to evaluate and 

compare the different EMSs.  Figure 3.19 shows a comparative evaluation of the proposed LQR-

based strategy with the DP-based optimal solution and the case of conventional ICE-only truck 

as a double benchmark. In comparison to the conventional truck, the hybrid one can save up to 

6.8% the fuel consumption with DP in the case of driving with UDDS cycle. Whereas the 

proposed real-time strategy saves 5.2% without a priori knowing the driving cycle. The numbers 

are 6.7% and 4.5% with NEDC; and 7.8% and 4.6% with WLTC class 2, respectively.  

To have better understanding of the system behavior with the proposed torque distribution 

strategy, the results with NEDC are presented here in detail. NEDC is chosen because it is the 

simplest cycle among the studied ones. The system behaviors can therefore be seen and analyzed 

clearly. The main results are presented and discussed in this subsection. Additional results with 

UDDS and WLTC class 2 are given in Appendix A.5, see Figure A.10 and Figure A.11. 

Figure 3.20–Figure 3.23 show the vehicle velocity, the engine torque, the machine torque, 

and the batteries SoC evolutions, respectively. Figure 3.24 and Figure 3.25 present the evolution 

of the SCs voltage, and the H-ESS currents, in cases of using the Hamiltonian minimization-

based strategy (Chapter 2), correspondingly. 

The examined NEDC contains four repeated urban cycles and a highway part (see Figure 

3.20). During every urban cycle, the ICE torque (Figure 3.21) and the electrical drive torque 

(Figure 3.22) perform in the same patterns. That confirms the consistency of the proposed EMS. 
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The strategy let the machine support the engine as much as possible during the accelerations, 

then the ICE produce power to recharge the batteries. The electrical drive torque 𝑇ED is kept 

within the torque constraints due to the drive power limitation. It should be noted that the 

electrical drive torque limitations reduce when its speed is higher than the machine nominal 

speed. Furthermore, it is seen that the drive torque is balanced in traction and regenerative 

braking mode. It indirectly shows the charge sustaining of the energy storage which is often a 

requirement of the non-plug-in HEVs. 

The charge sustaining can be witnessed clearly by looking at the SoC evolution, in a 

comparison with the result deduced by DP (Figure 3.23). DP strategy “knows” that at the end 

of the cycle there is a huge amount of regenerative energy. Thus, it allows the batteries SoC to 

continuously reduce after each urban cycle. Meanwhile the real-time EMS does not “know” the 

driving condition in advance. Hence, it “tries” to ensure the charge sustaining after every urban 

cycle. The proposed LQR-based EMS perform well in both fuel saving and batteries charge 

sustaining. Yet the DP-based strategy can save more fuel by a priori knowing the driving cycle. 

At the end of the cycle, the batteries SoC is recovered to exactly the initial value. This is just a 

“lucky” case for the real-time strategy. In fact, the 𝑆𝑜𝐶bat is controlled in real-time so that its 

final value is close to the initial one. With the other driving cycles, the final SoC can be slightly 

higher or lower than the initial value (see Appendix A.5 for the results with UDDS and WLTC). 

The SCs subsystem supports the batteries by charging and discharging the SCs within their 

voltage limitations (see Figure 3.24). Figure 3.25 shows that the real-time Hamiltonian 

minimization-based strategy (Chapter 2) works well in the traction mode to smoothen the 

batteries current. Meanwhile in the regenerative mode, since the batteries need to be recharged 

to ensure charge sustaining, they take the most duty of consuming the negative current. 

 

Figure 3.19: Comparative evaluation of the torque distribution strategies by simulation results. 
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Figure 3.20: (Simulation results) vehicle velocity. 

 

Figure 3.21: (Simulation results) ICE torque with the proposed LQR-based strategy. 

 

Figure 3.22: (Simulation results) electrical drive torque with the proposed LQR-based strategy. 
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Figure 3.23: (Simulation results) batteries SoC. 

 

Figure 3.24: (Simulation results) SCs voltage with Hamiltonian minimization strategy 

(proposed in Chapter 2). 

 

Figure 3.25: (Simulation results) traction and batteries currents with the real-time Hamiltonian 

minimization strategy (proposed in Chapter 2). 
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3.5. Experiments and results 

3.5.1. Experimental setup 

The experiments are conducted to validate the proposed real-time torque distribution strategy 

by using reduced-scale power HIL simulation [Bouscayrol 2011]. The principle of the HIL of 

the studied system is illustrated in Figure 3.26. The full-scale studied H-ESS-based hybrid truck 

is considered as a combination of four subsystems. The traction subsystem, including the ICE, 

is mechanically coupled with the electrical drive. The drive is electrically coupled with the 

batteries and the SCs subsystem. The HIL simulation is realized by using reduced-scale power 

system available in the laboratory to validate the developed EMS. Power adaptation factors are 

applied to each subsystem. 

The electrical drive configuration is remained in the HIL system, while the traction 

subsystem is emulated. Similarly, the SCs subsystem topology is remained, while the batteries 

are emulated. The traction emulator should be a controllable mechanical source that imposes the 

drive rotational speed ΩED HIL as the reaction of the traction subsystem to the electrical drive. 

The batteries emulator is a controllable voltage source as already implemented in Section 2.5. 
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Figure 3.26: Principle of reduced-scale power HIL simulation for the studied system. 
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Figure 3.27 illustrates the experimental setup that realizes the reduced-scale power HIL 

simulation. The batteries emulators and the SCs subsystem configurations are the same as 

described in Section 2.5. The electrical drive is realized by a three-phase wound rotor induction 

machine (IM) and a voltage-source inverter. The DC bus of the inverter is connected in parallel 

with the DC bus capacitor of the batteries emulator. The IM is connected in delta-connection 

scheme to increase the speed range since the emulated batteries voltage 𝑢bat HIL is much lower 

than the nominal DC bus voltage of the machine. The traction emulation is realized by using a 

DC machine of which the armature is connected to a chopper to control the armature current 

𝑖DCM. That DC machine drive is supplied by a voltage source composed by a SCs pack, an 

inductor, a chopper, and a DC bus capacitor. The SCs pack charges and discharges to consume 

and to provide the emulated traction power, respectively. The traction DC bus voltage 𝑢dc trac is 

controlled to be constant. The electrical drive and the traction emulator are mechanically 

connected via a single shaft with a speed sensor.  

The model and control program are implemented in a dSPACE DS1005 card. Via the power 

adaptation blocks, the full-scale traction model imposes the drive speed and torque references 

ΩED ref and 𝑇ED ref to the system. The DC machine is controlled by a speed controller to follow 

the ΩED ref; whereas the IM is controlled by a torque controller to follow the 𝑇ED ref. The emulated 

torque 𝑇ED HIL is estimated from the measured currents of the IM. It is then imposed to the full-

scale traction model via a power adaptation block. It should be noted that only the most 

important blocks of the control program are illustrated in Figure 3.27. In fact, the experiments 

content many other controllers such as IM flux, DC machine current, traction DC bus voltage, 

etc. There are totally ten state variables to be controlled to realize these experimental tests.  

The complexity of the HIL system is dealt with by using EMR as shown in Figure 3.28. The 

batteries emulation and the SCs subsystem is the same as they are in Subsection 2.5.1. The 

inverter is depicted by a conversion element. The traction current 𝑖trac HIL is estimated via the 

model of this inverter, with the measured line currents 𝑖EM and the modulation functions 𝑚inv. 

The IM is modeled in the rotational d-q frame with the transformation block “abc2dq” 

represented by a conversion element. The machine armature in d- and q-axes and the 

magnetization are depicted by accumulation elements which represents the dynamics of the 

machine to be controlled. The electromagnetic conversion and coupling are depicted by a multi-

physical coupling element (overlapped circles). The IM is controlled by using indirect vector 

control method organized in the inversion-based control scheme with the control (light blue 

parallelograms) and estimation (purple filled, blue lines) blocks. The common shaft of the IM 

and the DC machine is represented by an accumulation element which reflects the mechanical 

dynamics of the machines. The mechanical power is transformed to the electrical power of the 

DC machine via an electromagnetic conversion block (multi-physical conversion element). 

Next, the DC machine armature is represented by an accumulation element. Then the chopper 

of the DC machine is depicted by a conversion element with a modulation tuning input. Finally, 

the DC/DC converter and the SCs for traction emulation are represented and controlled in the 

same scheme as the batteries emulation. The full-scale model of the traction subsystem (purple 

blocks) and its control and strategies impose the references via power adaptation blocks.    

The experimental system parameters are given in Table 3.3. Figure 3.29 is the photo of the 

setup in the laboratory. The software control panel is built in dSPACE ControlDesk as shown 

in Figure 3.30. 
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Table 3.3: Reduced-scale power HIL system parameters for the battery/SC hybrid truck. 

Parameters   Values 

Induction machine (wound rotor, 400 V – 50 Hz – 1.5 kW) 

Stator resistance 𝑟s 7.7 Ω 

Rotor resistance (transformed to stator side) 𝑟r
,
 0.264 Ω  

Mutual inductance  𝐿m 0.1061 H 

Stator cyclic inductance 𝐿s 0.7090 H 

Rotor cyclic inductance 𝐿r 0.0189 H 

Number of poles pairs 𝑝p 2 

Moment of inertia (common with DC machine) 𝐽 0.00432 kgm2 

DC machine (separated excitation: 220 V – 0.6 A) 

Nominal voltage 𝑈DCM nom 220 V 

Nominal current 𝐼DCM nom 9 A 

Nominal speed 𝑛DCM nom 1500 rpm 

Armature resistance 𝑟arm 3.6 Ω 

Armature inductance 𝐿arm 49.3 mH 

SCs for the batteries and traction emulators 

SCs capacitance 𝐶SC bat/trac 260 F 

SCs nominal voltage 𝑢SC bat/trac nom 108 V 

SCs subsystem 

SCs capacitance 𝐶SC 7.75 F 

SCs nominal voltage 𝑢SC nom 120 V 

SCs internal resistance 𝑟SC 146 mΩ 

Inductor 

Inductor inductance 𝐿 0.795 mH 

Inductor parasitic resistance 𝑟L 0.20 Ω 

Inductor of the batteries emulator 

Inductor inductance 𝐿bat emu 0.800 mH 

Inductor parasitic resistance 𝑟L bat emu 0.20 Ω 

Inductor of the traction emulator 

Inductor inductance 𝐿trac emu 0.831 mH 

Inductor parasitic resistance 𝑟L trac emu 0.17 Ω 

DC bus capacitors of the batteries and traction emulators 

Capacitor capacitance 𝐶bat/trac emu 4400 μF 
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Figure 3.27: Experimental system configuration for the battery/SC hybrid truck. 
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Figure 3.28: EMR of the reduced-scale power HIL experimental system for the battery/SC hybrid truck. 
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Figure 3.29: Experimental test bench for the battery/SC hybrid truck. 

 

Figure 3.30: Control panel of the experimental system in dSPACE ControlDesk. 
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3.5.2. Results and discussions 

The main results are presented and discussed in this subsection. Additional results are given in 

Appendix A.5, see Figure A.10 and Figure A.11.  

The full-scale model of the traction subsystem is simulated in real-time in the dSPACE rapid 

prototyping card. The vehicle velocity 𝑣veh is controlled by an IP controller to follow its 

reference 𝑣veh ref as shown in Figure 3.31.  

During the driving cycle, the gearbox is shifted by a DP-based look-up table which causes 

the electrical drive speed, and therefore also the ICE speed, as shown in Figure 3.32. The 

rotational speed is scaled with the ratio of 1.8 due to the limitations of the electrical machine 

used for the experiments. The left axis, in blue, indicates the experimental results, while the 

right axis, in red, shows the simulation results. A period from 580 s to 780 s is zoomed in to 

show the results in more details. The experimental speed matches with the simulation. Some 

small differences appear when the engine is shifted too fast. It is because the DP-based gearshift 

strategy is developed with the assumption that the gearbox can be shifted immediately without 

any delay. Figure 3.33 presents the emulated batteries voltage which slightly differs from its 

simulation counterpart.  

The results of electrical drive torque with the proposed LQR-based torque distribution 

strategy are plotted in Figure 3.34. The torque is scaled 80 times by considering the power 

limitation of the experimental IM drive. The experimental and simulation torques are kept within 

the boundaries of the electrical drive torque limitations. These torques are the functions of the 

batteries SoCs plotted in Figure 3.35. It is seen that the evolution of the experimental SoC 

follows the simulation one. The low efficiency of the IM drive, including mechanical losses by 

friction, losses of the IM itself, and leakage currents of the inverter causes some gaps between 

experimental and simulation results. However, the experimental evolution of the estimated 

batteries SoC follow the simulation one. That confirms the LQR-based strategy works properly 

in real-time.  

Figure 3.36 shows the batteries currents. The difference between the experimental and 

simulation results are more in the negative quadrant than that in the positive one. Due to the 

high losses in the regenerative mode, even the machine produces high negative torque, only low 

negative current regenerated. But in the traction mode, the experimental results fit well with the 

simulation one. Figure 3.37 also demonstrates the matched results between the power HIL 

experiment and the computer simulation. In which, the SCs voltage evolution is limited between 

the higher and lower boundary. Thus, the Hamiltonian minimization-based current distribution 

strategy proposed in Chapter 2 is confirmed to work in real-time for the H-ESS of the parallel 

hybrid delivery truck.  

The software program of the experiments is implemented in the dSPACE DS1005 card with 

the sampling time of 𝑇s = 0.2 ms. In fact, most of the computational resource of the card is 

devoted for the complex control schemes of the batteries and traction emulators and for the full-

scale model of the traction subsystem. Very little computational effort is required for performing 

the LQR-based strategy. That proves the real-time ability of the proposed EMS which is the 

main objective of the experiments.  
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Figure 3.31: (Experimental results) vehicle velocity obtained by real-time simulation in 

dSPACE DS1005 card. 

 

  

Figure 3.32: (Experimental results) electrical drive speed (also emulated ICE speed) with the 

DP-based gearshift strategy. 
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Figure 3.33: (Experimental results) batteries voltage. 

 

  

Figure 3.34: (Experimental results) electrical drive torque with the proposed LQR-based 

torque distribution strategy. 
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Figure 3.35: (Experimental results) batteries SoC with the proposed LQR-bases strategy. 

 

Figure 3.36: (Experimental results) batteries current with the Hamiltonian minimization 

strategy (proposed in Chapter 2). 

 

Figure 3.37: (Experimental results) SCs voltage with the Hamiltonian minimization strategy 

(proposed in Chapter 2). 
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3.6. Conclusion 

In this chapter, a novel real-time torque distribution strategy has been proposed and validated 

for a parallel hybrid truck supplied by a battery/SC H-ESS. Firstly, the truck has been modeled 

and controlled considering its full dynamical behaviors. To overcome the complexity of the 

system, the model, represented by using EMR, has been reduced to obtain a suitable 

mathematical model. Then optimal control theory has been applied to this reduced mathematical 

model to deduce the real-time EMS.  

To avoid the requirement of using ICE fuel consumption data which is hard to achieve in 

real-world applications, the cost function has been reformulated. Furthermore, the variation of 

the batteries SoC has been added to the function as a penalty. Eventually, the cost is in form of 

a quadratic function of the control and the state variables. Since the reduced model is linear, the 

LQR method has been applied to obtain the optimization-based control law of the ICE torque 

reference. The obtained strategy is a closed-loop control scheme of the batteries SoC which is 

suitable to be implemented in real-time. The development procedure and the strategy 

implementation require only basic system parameters such as the batteries capacitance and the 

belt ratio. The proposed EMS is therefore realistic for real-world applications.  

The new strategy has been compared to the DP-based off-line optimal solution and the case 

of the conventional ICE-only truck. Simulation results have verified the performances of the 

LQR-based strategy. Moreover, reduced-scale power HIL simulation has been used to validate 

the proposed EMS in experiments. Although the low efficiency of the laboratory setup causes 

some gaps between simulation and experimental results, it has been figured out that the LQR-

based strategy works properly in real-time. 
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General conclusion 

Summary 

The objective of the thesis is to develop real-time optimization-based energy management 

strategies (EMSs) for electric and hybrid vehicles. Two types of hybridizations have been 

addressed in the thesis: combining battery and supercapacitor (SC) to form a hybrid energy 

storage subsystem (H-ESS); and combining internal combustion engine (ICE) and electrical 

machine (EM) to form a hybrid traction subsystem. Based on that, two systems have been 

studied: a battery/SC electric vehicle (EV) and a battery/SC parallel hybrid truck.  

To systematically develop the EMSs, the thesis has been conducted by following a unified 

approach using Energetic Macroscopic Representation (EMR) and optimal control theory. 

Firstly, the system is modeled and represented by EMR taking into account all the dynamical 

behaviors. Then, the inversion-based control scheme is deduced to control the system. Next, the 

system model is reduced to focus on the dynamics concerned by the EMS at the supervisory 

level. A mathematical model is then deduced from this reduced model representation. 

Thereafter, optimal control theory is applied to this reduced model to deduce an analytical 

control law for a real-time EMS. Due to the fact that real-time strategy is always sub-optimal, 

an off-line optimal benchmark is of interest for evaluating the strategy performances. Dynamic 

programming (DP) is employed for this purpose. The real-time EMS is then compared to the 

DP-based optimal solution by simulation. Finally, the real-time capability of the EMS is 

experimentally examined by using reduced-scale power hardware-in-the-loop (HIL) simulation. 

DP and HIL are organized by using EMR. This approach has been consistently followed to 

develop and validate the EMSs in the thesis. 

The aforementioned approach has been figured out in Chapter 1 after the thesis context and 

a literature review were addressed. The thesis has been conducted in a global context of fuel 

resource shortage and environmental care. The interests of electric and hybrid vehicles and 

energy management problems have been figured out within this context. Next, the position of 

the thesis has been clarified within the scientific network MEGEVH, in a collaboration between 

the laboratories L2EP and e-TESC, and in the CE2I and Mitacs Accelerate programs. Then the 

chapter has presented a review on state-of-the-art of EMS development methods for electric and 

hybrid vehicles. Finally, the objective and approach of the thesis have been pointed out.  

Chapter 2 has been dedicated to develop and validate a real-time optimization-based strategy 

for a battery/SC subsystem in an electric car. The traction subsystem and the H-ESS have been 

modeled, represented, and controlled with EMR. Since the study focuses on energy management 

of the H-ESS, the traction subsystem has been considered as an equivalent current source by 

assuming that its control works perfectly. Moreover, a part of the H-ESS has been reduced 

assuming its ideal control. That leads to the deduction of the mathematical model of the studied 

system. The Hamiltonian minimization condition of Pontryagin’s minimum principle (PMP) has 

been then applied to the reduced mathematical model. That has directly conducted an analytical 

control law containing the measurement of the SCs voltage as a feedback. The control law can 
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therefore serve as a real-time EMS without requirement of any additional adaptive scheme of 

the state variable as conventional 𝜆-control method. The proposed EMS has been then compared 

with the traditional real-time strategies, the DP-based off-line optimal benchmark, and the case 

of a pure battery EV. The comparative study, carried out by simulation, has confirmed the 

advantages of the proposed Hamiltonian minimization-based strategy. The new real-time EMS 

has been then experimentally validated by using reduced-scale power HIL simulation. SCs 

banks and power electronics bidirectional DC/DC converters have been utilized to emulate the 

batteries, the traction subsystem, and to examine the SCs subsystem under study. The good 

match between experimental and simulation results have verified the ability of power HIL 

simulation in emulating the studied system. The experiments have confirmed the real-time 

ability of the proposed strategy. 

The study in Chapter 3 has developed and validated a real-time optimization-based EMS for 

a battery/SC parallel hybrid truck. The semi-active configuration of the H-ESS has been 

inherited as it is in Chapter 2. This chapter has focused in energy management of the parallel 

hybrid traction subsystem of the truck. Firstly, modeling, EMR, and control scheme of the truck 

have been developed taking into account the full system dynamics. Then, model reduction steps 

have been applied by decomposing the strategies and by assuming properly developed control 

and strategies. As a consequence, the reduced model of the studied system has been obtained 

with the batteries SoC as the state variable. Based on that, the reduced mathematical model is 

conducted. Moreover, in order to avoid the disadvantage of using fuel consumption data map as 

previous works, the optimal control problem has been reformulated to minimize the ICE torque. 

On the other hand, the SoC variation has been charged as a penalty to ensure batteries charge 

sustaining. As a result, the problem is a linear system with a quadratic cost function of the control 

and state variables. Thus, linear quadratic regulation (LQR) has been applied to obtain an 

analytical solution which is a closed-loop control of batteries SoC. That is the proposed real-

time optimization-based torque distribution strategy. Then the EMS has been evaluated by 

comparing the DP-based off-line optimal solution and the case of conventional ICE truck. The 

simulation results have confirmed the effectiveness of the strategy in both fuel consumption 

reduction and batteries charge sustaining. Furthermore, reduced-scale power HIL experiments 

has validated the real-time ability of the proposed strategy. The configuration of batteries 

emulation and the SCs subsystem under study have been remained as they are in Chapter 2. An 

induction machine and a voltage-source inverter have been used as the electrical drive under 

study. The traction subsystem has been emulated by using a DC machine, a chopper for the 

machine, a bidirectional DC/DC converter, and a SCs bank. The experimental results have 

verified that the proposed EMS works properly in real-time. Some differences between the 

simulation and experimental results have been reported due to the low efficiency of the 

experimental setup. 

To summary, a unified approach has been used in the thesis to develop and validate real-

time optimization-based EMSs for an H-ESS-based EV and an H-ESS-based parallel hybrid 

truck. The two novel strategies of current distribution and torque distribution have been 

validated via simulations and experiments. These proposed EMSs are simple but effective that 

can be suitable for implementing in on-board platforms in real-world applications. 
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Perspectives 

The perspectives can be figured out in short-term and long-term outlooks. 

There are short-term future works can be carried out. Firstly, there exist notable gaps 

between experimental and simulation results in Chapter 3, meanwhile the results fit very well 

in Chapter 2 (see more in Appendix A.4 and A.5). It is because the experimental setup used in 

Chapter 2 is fast and high-efficiency enough to emulate and examine the full-scale EV. Whereas 

the efficiency of the experimental setup used in Chapter 3 is much lower and that of the full-

scale truck. It should be noted that the full-scale system is modeled with the assumption of high 

efficiency of the PMSM drive (96% in the traction and 90% in the regenerative mode). 

Meanwhile, to emulate a high-efficiency system, higher-efficiency devices should be used. 

Unfortunately, only a low-efficiency IM drive is available in the laboratory. That is why there 

are gaps between the experimental and simulation results. Thus, experiments with a higher-

efficiency setup would better examine the studied system. Moreover, full-scale HIL simulation, 

in which there is no need of power adaptation, is also of interest. 

Secondly, it is seen that even the DP optimal strategy does not save so much fuel of the truck 

in Chapter 3. The reason might be on the design issue, which is out of the scope of this thesis. 

However, testing the proposed strategy with a system that can save more fuel could give some 

more insights. Furthermore, scaling down the ICE in the hybrid traction subsystem to compare 

with the full-size ICE of the conventional truck could be a fairer comparison.  

In a long-term perspective, several research directions could be of interest. Firstly, the 

decomposition approach has been employed to deal with the multi-objective problem of the 

battery/SC hybrid truck. This approach has been useful to develop simple but effective 

strategies. The composition approach, in which a global strategy manages the whole system with 

multiple objectives, is complex and thus difficult to realized. However, which one is really 

better? Is there any way to develop such global EMS that is also simple but effective? They are 

still open questions to be tackled.  

Secondly, the work developed in this thesis also shows the limits of non-predictive methods. 

In Chapter 2, the co-state variable 𝜆 has been defined in three driving modes with the assumption 

that the driver knows the driving condition and can select the proper mode. In Chapter 3, it has 

been seen that the strategy could work better if it “knows” the driving cycle in advance. In real-

world applications, the driving conditions are never known in advance; however, they could be 

predicted with certain accuracies. Hence, embedding the developed strategies in a predictive 

framework could improve their performances. 

Finally, this thesis has addressed only one objective for each hybrid subsystem; whereas 

additional objectives can be considered (see Appendix A.2). In such a multi-objective approach, 

trade-offs between conflicted objectives are essential. For off-line EMSs, all the trade-offs can 

be taken into account which form the Pareto front of optimal solutions. Yet how to select “the 

best of the best” from these optimal solutions to serve as a single benchmark? Furthermore, for 

real-time EMSs, these trade-offs must be dealt with before implementing the strategies. So how 

to decide these priorities? Can the selections be beyond heuristic, i.e., no need of human 

expertise? They are also still open questions. 
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Appendix 

A.1. Energetic Macroscopic Representation 

Energetic Macroscopic Representation (EMR) is a graphical formalism for modeling and 

control of energetic systems initiated in 2000s [Bouscayrol 2000, 2013]. EMR is a tool to 

organize the system model and to develop the control scheme based on three principles.  

The system model is represented, i.e., organized, based on the two principles: 

• Principle of causality: the inputs and the outputs of an energetic system must follow the 

integral causality; in which the outputs are functional integrals of the inputs. The outputs 

are delayed with respect to the inputs. For example, a capacitor must have current as its 

input and voltage as it output since the capacitor voltage is an integral of the capacitor 

current. A model which imposes a voltage to a capacitor violates this principle of 

causality. 

• Principle of interaction: the subsystems of an energetic system interact with each other 

via pairs of action and reaction variables; in which the product of these variables is the 

instantaneous power exchanged between these subsystems. For example, when a battery 

is connected to a resistor, they interact with each other by a pair of variables current and 

voltage. The battery imposes a voltage to the resistor as an action, while the resistor 

enforces a current to the battery as a reaction. 

The control scheme is deduced from the model representation based on the principle of 

inversion. In which, the control is considered as a functional inversion of the model (see 

Subsection 2.1.3).  

Table A.1 gives EMR elements, their pictograms, and their descriptions. More information 

and the EMR library can be found in the official website [EMR 2019]. It should be noted that 

the library is just MATLAB/SimulinkTM subsystems with masks to organize the simulation 

following the EMR rules. The developer has to build his/her own model and control inside each 

block (Figure A.1). 
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Table A.1: EMR elements (adapted from [Lhomme 2007]). 

Element Pictogram Description 

Power 

variable 

 
s 

e  

Pair of action and reaction variables of system 

model; where 𝑠 denotes output variable; 𝑒 input 

variable. E.g., current and voltage, speed and 

torque, etc. 

Signal 

variable 

  

Mandatory signal variable in the control scheme; 

which is often control signal or output feedback in a 

closed-loop control.  

  

Optional signal variable; which is often disturbance 

measurement in the control scheme; or sometimes 

information in the system model. 

Measurement   
Measurement of variables for feedback control or 

disturbance compensation. 

Source 
 

Label 

s 

e  

Terminal of the system, which supplies or dissipates 

energy. Name of the source can be written in the 

label. E.g., battery, grid, environment, etc. 

Accumulation 
 s 

e2 s 

e1 

 

Accumulation of energy; introduce delay to the 

system; represent dynamics of the system. E.g., an 

inductor which cause current dynamical delay.  

Mono-

physical 

conversion 

 s2 

e2 s1 

e1 

e3  

Mono-domain conversion of energy; can be with or 

without tuning input. E.g., an inverter converts 

electrical DC energy to electrical AC energy (and 

vice versa) with modulation functions; a wheel 

converts mechanical energy to mechanical energy 

(and vice versa) without tuning input. 

Multi-

physical 

conversion 

 s2 

e2 s1 

e1 

e3  

Multi-domain conversion of energy; can be with or 

without tuning input. E.g., an electrical machine 

converts electrical energy to mechanical energy 

(and vice versa) with reference input. 

Coupling 

 s3 

e3 s1 

e1 

e2 

s2 

 

Mono-domain coupling or distribution of energy 

between more than two subsystems. E.g., parallel 

connection between two electrical energy storages 

to supply an inverter of an electrical drive.  
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 s3 

e3 s1 

e1 

e2 

s2 

 

Multi-domain coupling or distribution of energy 

between more than two subsystems. E.g., electrical 

power (current) couples with magnetic power (flux) 

to produce mechanical power (torque) in electrical 

machine; whereas machine speed couples with flux 

to produce EMF in the machine. 

Accumulation 

inversion 

 

e1 ref 

smeas 

e2 meas 

sref  

Indirect inversion of the accumulation elements to 

control its output; which is a closed-loop control 

with reference, output feedback (mandatory), and 

disturbance rejection (optional). E.g., closed-loop 

speed control. 

Conversion 

inversion 

 

e1 meas s1 ref 

e3 ref 

 

Direct inversion of energy conversion element; the 

output is the tuning input of that conversion 

element. E.g., PWM of an inverter. 

 

e1 ref 

s1 ref 

e3 meas 

 

Direct inversion of energy conversion element; the 

output is the reference for the next control block. 

E.g., calculation of current reference from torque 

reference in machine drive. 

Coupling 

inversion 

 

s3 ref 

e1 ref 

e2 ref 

kd  

Direct inversion of coupling element (both mono- 

and multi-domain). A distribution or weighting 

factor must be introduced to manage the power 

flow. E.g., to distribute torques in parallel HEVs. 

Estimation or 

model 

 s2 

e2 s1 

e1 

 

Model copy of the system implemented in the 

control program; playing the role of estimation of 

reference model. (Hexagon means any possible 

block.) E.g., to estimate EMF of electrical machine 

from its speed and flux.  

Strategy  kd 
strategy 

 

Strategy block to impose reference, distribution, 

and/or weighting factors to the control scheme. E.g., 

flux-weakening strategy to impose d-axis current 

reference in AC machine drive. 

Power 

adaptation 

 s2 

e2 s1 

e1 

 

To scale power between subsystems. E.g., a 

batteries pack can be considered as a scaled 

equivalence of a battery cell assuming that all the 

cells behave in the same way. The second example 

is to scale between a hundred-Nm-torque electrical 

drive of an EV and a ten-Nm-torque drive in 

laboratory to emulate the EV. 

 s2 

e2 s1 

e1 
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Figure A.1: MATLAB/SimulinkTM-based EMR library [EMR 2019]. 
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A.2. Additional study on a multi-objective approach for optimal 
energy management of hybrid energy storage subsystems for 
electric vehicles 

The aim of this work is to develop an off-line multi-objective global optimal EMS for the 

battery/SC H-ESS to generate a Pareto front benchmark. An approach for developing multi-

objective EMS is proposed using EMR which is a graphical formalism [Bouscayrol 2013]. The 

multi-objective optimization problems can be treated by using the hierarchical structure of 

strategy [Trovão 2013a]. Weighted sum method is used for scalarization of multiple cost 

functions [Deb 2014; Kim I. 2006]. Global optimal solutions for the benchmark are deduced by 

using DP. The EMR-based backward formalism proposed in [Horrein 2015a] is used for 

integration in DP problem solving. The DP-based Pareto front can serve as a benchmark for 

evaluating the performances of real-time EMS. In this study, the well-known filtering-based 

strategy is used as an example with a range of cut-off frequencies. 

a. Multi-objective cost functions 

Dealing with multiple cost functions is the field of multi-objective optimization [Antunes 2016; 

Deb 2014]. There are two main groups of multi-objective optimization methods: vectorization 

and scalarization [Deb 2014; Logist 2010]. It is pointed out that the vectorization is not always 

suitable for optimal control while the latter group has advantages [Logist 2010]. The 

vectorization method is more appropriate for optimal design/sizing of the energy storage 

systems, e.g., a well investigated design in [Song 2014]. 

The vector of the 𝑛 cost functions is expressed as: 

𝐽 = [ 𝐽1  ⋯ 𝐽𝑛 ]
𝑇 . (A.1) 

There are several techniques to scalarize the multiple cost functions, in which the most used 

is the weighted sum method [Deb 2014; Kim I. 2006]. Weighting factors α𝑖 are given to each 

cost function, then summed to create a single multi-objective cost function. Moreover, it is 

necessary to make the cost functions dimensionless due to the different units of the performance 

measurements. Normalization factors are therefore introduced. The choices of these factors 

depend upon the detailed applications. The weighted sum cost function 𝐽ws is therefore 

expressed as follows: 

𝐽ws = α1
𝐽1

𝐽1 nom
+ (1 − α1) {α2

𝐽2
𝐽2 nom

+⋯

+ [α𝑛−1
𝐽𝑛−1

𝐽𝑛−1 nom
+ (1 − α𝑛−1)

𝐽𝑛
𝐽𝑛 nom

]}   
(A.2) 

where 0 ≤ α𝑖 ≤ 1 and 𝐽𝑖 nom is the normalization factor with 𝑖 ∈ {1,… , 𝑛 − 1}.  

In this study, the costs of batteries degradation and SCs system losses are addressed. First, 

the cost functions of the batteries stresses and SCs system losses are defined. Then, the 
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scalarization of these multi-objective cost functions is carried out by scalarization. The weighted 

sum method is used with one weighting factor . 

Batteries stresses 

There are a number of stress factors affecting on the batteries life-time [Barré 2013]. For this H-

ESS where the battery is the main source, the batteries current is suitable to be examined. The 

rms, the peak, and the standard deviation of the battery current are sufficient to be considered, 

e.g., [Florescu 2014; Gomozov 2017; Song 2015]. 

The rms current causes the long-term stress on the batteries. This is the most used criterion 

as can be found in the aforementioned literature. It is depicted by: 

𝐼bat rms = √
1

𝑡f − 𝑡0
∫ 𝑖bat

2 𝑑𝑡
𝑡f

𝑡0

. (A.3) 

Furthermore, it is figured out that the high frequencies of batteries current cause harmful 

effects on their life-time [Savoye 2012; Uddin 2016]. A performance index should be defined 

to investigate this stress. The standard deviation is a statistical measure that indicates the 

variation of the studied data set. Hence, this index is used to reflect the fluctuation of 𝑖bat. It is 

computed by: 

𝜎bat = √
1

𝑁
∑[𝑖bat(𝑘) − 𝜇bat]2
𝑁

𝑘=1

; (A.4) 

in which 𝜇bat is the mean value of batteries current given by: 

𝜇bat =
1

𝑁
∑𝑖bat(𝑘)

𝑁

𝑘=1

. (A.5) 

Here, statistical performance indexes are utilized. Hence the discrete values are used to calculate 

instead of the continuous ones. 𝑁 is the number of the data points of the time series 𝑖bat(𝑘). 

The above two criteria measure the long-term impacts of batteries current on the 

degradation. Short-term extremal effects should be also considered to complete the batteries 

stresses examination. The peak of batteries current is therefore taken into account [Florescu 

2014; Gomozov 2017]. It is given by: 

𝐼bat peak = max(𝑖bat). (A.6) 

Hence, a performance index for evaluation of battery stresses can be given by: 
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𝐽bat = 𝑘rms
𝐼bat rms

𝐼bat rms
α=0 + 𝑘std dev

𝜎bat

𝜎bat rms
α=0 + 𝑘peak

𝐼bat peak

𝐼bat peak
α=0  (A.7) 

where the denominators are the normalization factors calculated with 𝛼 =  0; 𝑘rms, 𝑘std dev, and 

𝑘peak are the weighting factors given to the three performance indexes, respectively.  The sum 

of these weighting factors should equal unit. Here, the normalizations are meant to deduce the 

dimensionless per unit values of the stress factors for comparisons. For having the cost function 

𝐽bat ≤ 1, the worst case of these factors should be used. That is the reason why the normalization 

factors are calculated with 𝛼 =  0. Besides, the weighting factors indicate the roles of the stress 

factors. In fact, the comprehensive impact of stresses factors on the batteries life-time is very 

complicated [Sarasketa-Zabala 2016]. For energy management evaluation, they can be 

considered equally [Florescu 2014; Gomozov 2017]. Thus, a common value one-third is given 

to these weighting factor as follows: 

𝐽bat =
1

3
(
𝐼bat rms

𝐼bat rms
α=0 +

𝜎bat

𝜎bat rms
α=0 +

𝐼bat peak

𝐼bat peak
α=0 ). (A.8) 

In fact, it is seen that the minimization of 𝑖bat
2  will minimize the above performance index. 

Also, as mentioned in Subsection 2.1.4, the quadratic form is of interest for applying various 

optimization methods [Bryson 1975]. Hence, the batteries cost function used for calculating in 

DP program can be given by: 

𝐽bat cal = ∫ 𝑖bat
2 𝑑𝑡

𝑡f

𝑡0

. (A.9) 

Supercapacitors subsystem losses 

The losses of SCs subsystem are defined based on its current. Firstly, the SCs current causes the 

Joule losses on the series resistance of the SCs and the parasitic resistance of the inductor as 

follows: 

𝐸SC loss = ∫ 𝑖SC
2 (𝑟SC + 𝑟L)𝑑𝑡

𝑡f

𝑡0

. (A.10) 

Secondly, the high SCs current can cause the saturation of the inductor which reduces the 

performances and efficiency of the SCs system [Perdigão 2015; Song 2015]. Efficiency map 

carried out from rigorous equations in [Moreno 2006] shows that the efficiency of DC/DC 

converter dramatically falls due to the high SCs current. It is therefore reasonable to reduce the 

SCs peak current: 

𝐼SC peak = max(𝑖SC). (A.11) 

Like the batteries stresses, the performance index of the SCs subsystem losses can be defined 

by: 
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𝐽SC =
1

2
(
𝐸SC loss

𝐸SC loss
α=1 +

𝐼SC peak

𝐼SC peak
α=1 ). (A.12) 

The normalization factors of SCs system losses are calculated with 𝛼 = 1 which is their worst 

case due to the same reason of the batteries. The priority of 50% is given to each of the two 

losses factors to consider them equally. 

The SCs calculation cost function for the numerical computation procedure is: 

𝐽SC cal = ∫ 𝑖SC
2 𝑑𝑡

𝑡f

𝑡0

. (A.13) 

Scalarization of multi-objective cost functions 

The weighted sum cost function of the studied H-ESS for computation is expressed by: 

𝐽ws bat/SC = 𝛼
𝐽bat cal

𝐽bat cal nom
+ (1 − 𝛼)

𝐽SC cal
𝐽SC cal nom

; (A.14) 

in which the normalization factors can be defined as batteries and SCs rms currents in the cases 

𝛼 = 0 and 𝛼 = 1, respectively. Thus, the calculation cost function for the studied battery/SC H-

ESS is given as follows: 

𝐽ws bat/SC = 𝛼∫ (
𝑖bat

𝐼bat rms
α=0 )

2

𝑑𝑡
𝑡f

𝑡0

+ (1 − 𝛼)∫ (
𝑖SC

𝐼SC rms
α=1 )

2

𝑑𝑡
𝑡f

𝑡0

. (A.15) 

b. Dynamic programming implementation 

This work is conducted based on EMR formalism. EMR is a forward causal formalism while 

DP is a backward computation method. It is therefore necessary to deduce a backward model 

based on EMR [Horrein 2015a] (Figure A.2).  

Once the backward model is carried out, it is ready to be implemented in backward 

computation programs. Here, the multi-objective optimization using DP is used as the multi-

level strategy composed of the “strategic” and “tactical” layers (adopted from [Trovão 2013a]). 

The scalarization of the multi-objective problem serves as the strategic layer. It outputs the 

weighted sum cost function 𝐽ws bat/SC which indicates how much priority is given to the objective 

of battery life-time extension and vice versa.  

This cost function is minimized by DP in the tactical layer. Backward computation is 

implemented in this layer to calculate the optimal control law 𝑖bat ref with the feedback of the 

state variable 𝑢SC. The set of generated optimal solutions is the Pareto front benchmark. The 

procedure is illustrated in Figure A.3.  
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Figure A.2: EMR-based backward model for dynamic programming. 
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Figure A.3: Illustration of multi-objective optimal benchmark generation. 

 

c. Results and discussions 

The simulation is carried out using the parameters of Tazzari Zero as the reference vehicle. DP 

is realized by using the numerical tool introduced in [Sundström 2009]. The full dynamical 

model, local control, and filtering-based strategy are simulated in MATLAB/SimulinkTM 

environment using EMR library [EMR 2019]. The ARTEMIS Low Motor Urban Total driving 

cycle is used as the velocity reference (Figure A.4). This cycle is chosen due to its very 

fluctuated profile. 



Appendix 

 

124 

 

Figure A.4: ARTEMIS Low Motor Urban Total driving cycle. 

 

Two main results are given. First, it is the Pareto front generated with the weighting factor 

𝛼 varying from zero to one. Results of filtering-based strategy are given to illustrate the 

benchmark role of the generated Pareto front. The second main result is voltage and current 

evolutions of the studied H-ESS with a specific value of 𝛼. 

Pareto front as a global optimal multi-objective benchmark 

The Pareto front generated from multi-objective optimal EMS is given in Figure A.5. Since DP 

is the global optimization method, this front can be used as a benchmark to evaluate the 

performances of sub-optimal strategies. 

The well distributed convex form of the generated Pareto front verifies the validation of 

weighted sum scalarization. It is often argued that this method has drawbacks on the spread of 

the solutions and the ability to cover non-convex parts [Kim I. 2006; Logist 2010]. However, 

the results show that they are not the issue for this study. 

To give an example for the benchmark role of the generated Pareto front, results of the 

filtering-based strategy are used. Two well investigated values of the LPF cut-off frequency 

𝑓c1 = 21 mHz and 𝑓c2 = 4 mHz proposed by [Florescu 2015] and [Tani 2012] are studied, 

respectively. With the 𝑓c1, the EMS causes low SCs system losses but reduces only a small 

amount of battery stresses. By contrast, with the 𝑓c2, it is better for battery life-time but forces 

the SCs system working exhaustively. Both are fairly far from the optimal solutions set. For 

better evaluation of filtering-based strategy, a set of LPF cut-off frequencies from 6 mHz to 

20 mHz with a 2-mHz step is examined. Figure A.5 shows that the results of filtering-based 

strategy keep long distances from the Pareto front. Advanced EMS giving results closer to the 

Pareto front are therefore preferred. It is supposed that an EMS giving results between the Pareto 

front and the curve of filtering strategy could be considered as better than this one. 
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Figure A.5: Pareto front benchmark generated from DP-based multi-objective optimal EMS. 

 

Case study with a particular value of the weighting factor 

In this scenario, the weighting factor 𝛼 is chosen as 0.75 (see the point in Figure A.5). That 

means the purpose of battery life-time extension is considered with the higher priority (75%) 

than the SCs subsystem losses reduction (25%).  

Figure A.6 shows the SC voltage 𝑢SC and the H-ESS currents. They include the 𝑖bat (control 

variable), the chopper current 𝑖ch and the traction current 𝑖trac (disturbance). The state variable 

𝑢SC is constrained between the maximal and minimal limitations. The final state 𝑢SC(𝑡f) is 

controlled to be equal to the initial state 𝑢SC(𝑡0).  
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Figure A.6: SCs voltage and H-ESS currents with 𝛼 = 0.75 as a particular testing case. 

 

d. Conclusions 

Multi-objective EMS is reasonable for H-ESS-based EVs. A systematic approach to develop 

off-line multi-objective EMS is deduced. SCs subsystem losses are taken into account in 

addition to the main objective extending battery life-time. DP is used for problem solving thanks 

to its ability of giving the global optimal solution. A Pareto front is generated as a benchmark. 

It could be used in order to evaluate the other on-line strategies for energy management of H-

ESS for EVs. The performances of the developed off-line EMS are also validated. 
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A.3. Linearity and non-linearity of the studied systems models 

The linearity of a dynamical system can be examined by using its definition with the principle 

of superposition [Ogata 2009].  

a. The reduced model of the battery/SC H-ESS 

The reduced mathematical model of the H-ESS is (from (2.23)): 

𝑑

𝑑𝑡
𝑢SC =

𝑢bat
𝑢SC𝐶SC

(𝑖bat ref − 𝑖trac) (A.16) 

where 𝑖bat ref is the control input; 𝑢SC the state variable (output); 𝑢bat and 𝑖trac the disturbances. 

Considering the same disturbances, applying the principle of superposition, firstly we have: 

𝑑

𝑑𝑡
[𝛼𝑢SC(1) + 𝛽𝑢SC(2)]

=
𝑢bat

𝛼𝑢SC(1)𝐶SC
[𝑖bat ref(1) − 𝑖trac]

+
𝑢bat

𝛽𝑢SC(2)𝐶SC
[𝑖bat ref(2) − 𝑖trac]  

(A.17) 

where 𝛼 and 𝛽 are arbitrary constants. Whereas 

𝛼
𝑑

𝑑𝑡
𝑢SC(1) + 𝛽

𝑑

𝑑𝑡
𝑢SC(2)

=
𝛼𝑢bat

𝑢SC(1)𝐶SC
[𝑖bat ref(1) − 𝑖trac] +

𝛽𝑢bat
𝑢SC(2)𝐶SC

[𝑖bat ref(2) − 𝑖trac]. 
(A.18) 

From (A.17) and (A.18), it can be seen that: 

𝑑

𝑑𝑡
[𝛼𝑢SC(1) + 𝛽𝑢SC(2)] ≠ 𝛼

𝑑

𝑑𝑡
𝑢SC(1) + 𝛽

𝑑

𝑑𝑡
𝑢SC(2). (A.19) 

Thus, the reduced model of the studied battery/SC H-ESS is non-linear. 

b. The reduced model of the parallel hybrid truck  

The reduced mathematical model of the parallel hybrid truck is (from (3.21)) 

𝑑

𝑑𝑡
𝑆𝑜𝐶bat =

𝑘beltΩICE
𝐶bat eq𝑢bat

(𝑇ICE ref − 𝑇belt ref); (A.20) 

in which 𝑇ICE ref is the control input; 𝑆𝑜𝐶bat the state variable (output); 𝑇belt ref, 𝑢bat, and ΩICE the 

disturbances. Here, it is assumed that the batteries voltage 𝑢bat is independent on their SoC (in 

fact, does not vary so much). Considering the same disturbances, applying the principle of 

superposition, we have: 
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𝑑

𝑑𝑡
[𝛼𝑆𝑜𝐶bat(1)+ 𝛽𝑆𝑜𝐶bat(2)]

= 𝛼
𝑘beltΩICE
𝐶bat eq𝑢bat

[𝑇ICE ref(1)− 𝑇belt ref]

+ 𝛽
𝑘beltΩICE
𝐶bat eq𝑢bat

[𝑇ICE ref(2)− 𝑇belt ref]  

= 𝛼
𝑑

𝑑𝑡
𝑆𝑜𝐶bat(1) + 𝛽

𝑑

𝑑𝑡
𝑆𝑜𝐶bat(2) 

(A.21) 

where 𝛼 and 𝛽 are arbitrary constants. Thus, the reduced model of the studied parallel hybrid 

truck is linear.  
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A.4. Additional simulation and experimental results of the proposed 
Hamiltonian minimization-based current distribution strategy 
for battery/SC EV 

More results of the proposed EMS for battery/SC H-ESS-based EV are given here. Figure A.7–

Figure A.9 show the simulation and the experimental results of the strategy tested with NEDC, 

WLTC class 2, and ARTEMIS, respectively. The results reinforce the conclusions that the 

proposed strategy performs effectively in all the tested driving conditions and the reduced-scale 

power HIL can emulate well the studied system. 
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Figure A.7: Simulation and experimental results of the proposed Hamiltonian minimization-

based EMS for battery/SC EV with NEDC. 



Appendix 

 

131 

 

 

 

 

 

Figure A.8: Simulation and experimental results of the proposed Hamiltonian minimization-

based EMS for battery/SC EV with WLTC class 2. 
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Figure A.9: Simulation and experimental results of the proposed Hamiltonian minimization-

based EMS for battery/SC EV with ARTEMIS. 
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A.5. Additional simulation and experimental results of the proposed 
LQR-based torque distribution strategy for battery/SC parallel 
hybrid truck 

More results of the proposed EMS for battery/SC H-ESS-based parallel hybrid truck are given 

here. Figure A.10 and Figure A.11 show the simulation and the experimental results of the 

strategy tested with UDDS and WLTC class 2, respectively.  

The results reinforce the conclusions that the proposed strategy performs effectively in all 

the tested driving conditions and the reduced-scale power HIL can emulate well the studied 

system. The differences between simulation and experimental results are due to the low 

efficiency of the induction machine drive used for these experiments, as explained in 

Subsection 3.5.2.  
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Figure A.10: Simulation and experimental results of the proposed LQR-based EMS for 

battery/SC parallel hybrid truck with UDDS. 
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Figure A.11: Simulation and experimental results of the proposed LQR-based EMS for 

battery/SC parallel hybrid truck with WLTC. 
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