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CHAPTER 1

Introduction

1. Background and objectives

The research of infectious diseases based on mathematical models, especially dynamic
models, has a long and diverse history [40]. It may be traced back to D. Bernoulli’s math-
ematical study of smallpox vaccination in 1760 [15]. In 1873-1894, P. D. En’ko established
modern mathematical models of infectious diseases [36]. In 1906, in order to understand
the repeated epidemics of measles, W. H. Hamer constructed a discrete mathematical model
and analyzed the dynamics of the model [49]. Five years later, the Nobel laureate, R. Ross,
used a differential dynamical system to study the dynamics of malaria transmission between
mosquitoes and people in detail [94]. To study the epidemic regularity of black death in
1665-1666 and plague in 1906, W. O. Kermack and A. G. McKendrick proposed the most
influential model—SIR model in 1927 [5, 59]:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

(1.1)

where the total population (N) in the affected area is divided into three classes: susceptible
(S), infected (I) and recovered (R). Birth and death are ignored, that is, N(t) = S(t) +

I(t) +R(t) is constant. The parameters β and γ denote the transmission and recovery rates,
respectively. Subsequently, W. O. Kermack and A. G. McKendrick put forward the SIS
compartmental model in 1932 [60]:

dS

dt
= −βSI + γI,

dI

dt
= βSI − γI.

(1.2)

On this basis, they proposed a “threshold theory” that distinguishes whether the disease
becomes popular. When the basic reproduction number R0 :=

βS0

γ < 1, the disease dies out;
when R0 > 1, the disease remains and becomes endemic, where S0 denotes the number or
density of the initial susceptible population.

These two basic dynamic models (SIR and SIS) and the corresponding theories established
by W. O. Kermack and A. G. McKendrick lay a foundation for the study of the dynamics of
infectious diseases. Since then, mathematical modeling and dynamical analysis of infectious
diseases began to flourish, and the representative work is the first book on the mathematical
theory of infectious diseases and its applications published by N. T. Bailey in 1957 [9]. Es-
pecially in the past 30 years, there has been a rapid progress for the mathematical analysis
of the dynamical systems originating from infectious diseases in the world. A large number
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2 1 Introduction

of papers and books [5, 50, 58] have been devoted to analyze the dynamical properties of the
established models with regard to various infectious diseases.

In this thesis, we shall consider three types of dynamical systems extracted from infectious
disease research, i.e., (a) reaction-diffusion system, (b) ordinary differential system, and (c)
network-based system. The first two categories are deterministic models, and the last one
belongs to stochastic models. Systems (a) and (c) have the diffusion effect, while system (b)
only has the reaction effect. In what follows, we introduce their research progress in recent
years, respectively.

(I) A diffusive influenza system with multiple strains
Influenza, having been a major cause of excessive morbidity and mortality [102], is a

serious cytopathogenic, drastic respiratory infectious disease caused by an RNA virus in the
Orthomyxoviridae family [35]. Besides, influenza poses a considerable economic burden of
society and becomes a problem of public health [113]. Thus, it is imperative to prevent
and contain the outbreak of influenza via increasing our understanding of the dynamics of
influenza transmission.

Among pharmaceutical interventions, antiviral treatment remains one of the most effec-
tive measures to lower disease transmission and reduce the health burden of infections [38].
On the other hand, abundant use of antiviral drugs (such as oseltamivir and zanamivir)
is a significant factor in producing resistant strains. Recently, some mathematical models
have been used to explore the potential effects of drug resistance on the transmission of in-
fluenza [93] and identify effective treatment strategies for resistance management [69, 91].
These studies have provided useful insights into the emergence, spread and control of drug-
resistant influenza. However, these models are all ordinary differential models. If the random
movement of individuals in space plays a very important role in the dynamics of influenza
transmission, it is necessary to consider the influence of spatial diffusion, which is usually
characterized by reaction-diffusion equations.

The traveling wave solution (or referred to as traveling wave), which appears to be trav-
eling with constant shape and velocity, is one of the elementary notions in the study of
reaction-diffusion equations. The study of traveling wave solutions for nonlinear reaction-
diffusion equations began with Fisher’s equation. In 1937, R. A. Fisher proposed the following
equation [39]:

ut = d∆u+ ru(1− u), t > 0, x ∈ Rn, (1.3)
where ∆ =

∑n
i=1

∂2

∂x2i
, the parameters r and d are both positive, to describe the spatial spread

of an advantageous allele and explored its traveling wave solutions. At the same time, A. N.
Kolmogorov et al. gave a more general reaction-diffusion equation [61]:

ut = duxx + f(u), t > 0, x ∈ R, (1.4)

and analyzed its traveling wave solutions. Thereafter, traveling wave solutions of nonlinear
reaction-diffusion equations have been extensively and deeply studied, wherein its existence
is the most fundamental problem in determining the long-term behavior of other solutions
of the systems [54, 96, 122]. In epidemiology, the existence and nonexistence of nontrivial
traveling waves indicate whether an infectious disease can persist as a wave front of infection
that travels geographically across vast distances. The minimal wave speed for a traveling
wave is a key parameter to characterize the speed at which the disease spreads in a spatial
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domain [33, 96]. Therefore, the study of traveling waves and minimal wave speeds is of great
significance to the prevention and control of diseases.

In 2014, T. Zhang and W. Wang established a reaction-diffusion influenza model with
treatment [123]: 

∂S

∂t
= ds

∂2S

∂x2
− β(Iu + δIh)S,

∂Iu
∂t

= du
∂2Iu
∂x2

+ (1− µ)β(Iu + δIh)S − kuIu,

∂Ih
∂t

= dh
∂2Ih
∂x2

+ µβ(Iu + δIh)S − khIh,

∂R

∂t
= dr

∂2R

∂x2
+ kuIu + khIh,

(1.5)

and focused on the existence and nonexistence of traveling wave solutions. As a result of
the high mobility of population and the emergence of drug resistance due to treatment, we
will further show the effects of demographic factors (recruitment and natural deaths) and
drug resistance on the spatial spread of influenza. With the increase of the practical factors,
some interesting and novel dynamics will appear, which are different from those in previous
studies [122, 123, 124].

(II) Predator-prey type eco-epidemiological systems
Ecology [76] and epidemiology [5], as two different subjects in the field of mathematical

biology [79], have received considerable attention in their own right. However, since R. M.
Anderson and R. M. May (1978, 1986) showed that invasion of a resident predator-prey (or
host-parasite) system by a new strain of parasites could cause destabilization and give rise
to limit cycles [4, 77], quite a number of research papers (e.g., see [6, 25, 47, 72, 109] and
the references in [72]) have already appeared in this intercrossed direction, linking ecological
and epidemiological issues together. This leads to a new field of research popularly known as
eco-epidemiology, which is coined by J. Chattopadhyay and O. Arino [25].

In studying eco-epidemiological systems, the interaction between species are primarily
assumed to be predator-prey type [4, 6, 25, 47, 72, 77], although competitive type [4, 72] and
symbiotic type [72, 109] are also common. In terms of predator-prey type eco-epidemiological
systems, disease spread can happen within prey/host population [4, 6, 25, 72, 77], or within
predator/host population [4, 72], or between prey and predator populations [47].

From the perspective of modeling, the dynamical behavior of predator-prey system with
infection in the prey population is an important research topic. Generally speaking, such
eco-epidemiological system with SI or SIS type disease (see [4, 6, 25, 72, 77]) can be defined
by the following Kolmogorov-type differential equations

dS

dt
= Sf1(S, I, P ),

dI

dt
= If2(S, I, P ),

dP

dt
= Pf3(S, I, P ),

(1.6)

in the state space
R3
+ = {(S, I, P ) ∈ R3 : S ≥ 0, I ≥ 0, P ≥ 0},
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where S(t), I(t) and P (t) represent the population densities/numbers of susceptible prey,
infected prey, and predator at time t, respectively. The functions fk ∈ C1(R3

+,R), k = 1, 2, 3.
Since eco-epidemiological system (1.6) is a combination of a predator-prey model and an

epidemiological model, there are two factors that need attention from a large perspective: (i)
the choice of predator-prey model, generalized Gause or Leslie-Gower type [72]; (ii) the types
of infectious diseases, SI or SIS [5, 79].

On the other hand, Allee effect is an important dynamic phenomenon in conservation
biology, which is named after W. C. Allee(1885-1955) [32]. In recent decades, researchers have
conducted extensive theoretical studies on Allee effect within different biological contexts,
such as biological invasion [110], infectious diseases [51], etc. However, to the best of our
knowledge, there is little research involving the impact of Allee effect on eco-epidemiology [17,
56, 97], wherein [17, 56] considered the case that susceptible prey is subject to Allee effect.

Given the above considerations, system (1.6) can be simplified to a less abstract but
biologically more intuitive system as follows:

dS

dt
= Sg(S, I)a(S, θ)− ψ(S, I)− ϕ1(S, I, P )P,

dI

dt
= ψ(S, I)− ϕ2(S, I, P )P − µI,

dP

dt
= γ1ϕ1(S, I, P )P + γ2ϕ2(S, I, P )P − dP,

(1.7)

where the parameters d and µ represent the death rate (includes an additional disease-induced
death) of the predator and infected prey, γ1 and γ2 are the conversion rates of the susceptible
and infected prey biomass into the predator biomass, respectively; g(S, I) denotes the per
capita growth rate of susceptible prey in the absence of Allee effect and predation; a(S, θ)
models an Allee effect that affects susceptible prey; ψ(S, I) is the transmission/incidence
function; ϕ1(S, I, P ) and ϕ2(S, I, P ) are the functional/trophic responses or feeding rates for
the predator with respect to susceptible and infected preys, respectively.

In particular, we assume that infected prey has less but positive contribution to the growth
of the predator in comparison to susceptible prey, that is, 0 < γ2 < γ1. Moreover, µ, d, γ1
and γ2 lie in the interval (0, 1). The form of carrying capacity plays a central rule in the
function g(S, I), which usually has two types, namely, explicit and implicit/emergent carrying
capacities [99]. In most of the model-based eco-epidemiological studies [6, 17, 25, 47, 56, 97],
especially when resources are limited, the growth function with explicit carrying capacity
(wherein the competitive abilities for both susceptible and infected preys are the same) is a
better choice as it is easy to interpret and comparatively straightforward to estimate from real
life observations. However, the experimental study in [13] suggests that disease can change
the competitive abilities within prey. For this reason, we first assume that infected prey does
not contribute to the reproduction of newborns but competes for resources. By considering
different competition coefficients for two possible interactions, based on the growth function
g(S, I) = rS(1−S+I

K ) with explicit carrying capacity, we modify it as g(S, I) = rS(1− c1S+c2I
K ),

where c1 and c2 (0 < c1, c2 ≤ 1) represent the weights of intra-class competition in susceptible
prey and inter-class competition between susceptible and infected preys, respectively.

Although the mathematical expressions modeling Allee effect are varied [31, 108], most
of them can be proven to be topologically equivalent. Here, we adopt the most common form
for Allee effect [62], i.e., a(S, θ) = S−θ, where −K

c1
≤ θ ≪ K

c1
. When θ > 0, this phenomenon



1. BACKGROUND AND OBJECTIVES 5

is called a strong Allee effect [108, 110], and θ is known as Allee threshold. When θ ≤ 0, it
is said that susceptible prey is affected by a weak Allee effect [110].

The transmission/incidence function is usually either density-dependent (also referred to
the law of mass action or the bilinear incidence, i.e., ψ(S, I) = kSI) or frequency-dependent
(also called the standard incidence, i.e., ψ(S, I) = kSI

S+I ) [20]. By taking into account more
biological details, several different nonlinear transmission functions (e.g., the saturated trans-
mission rate βSI

1+αI [23] and nonlinear incidence βSpIq [70]) were proposed. We think the
saturated transmission form is more reasonable since it represents a “crowding effect” or
“protection measure” and prevents the unboundedness of the contact rate, so in our work,
we use ψ(S, I) = βIS

1+αI , where α > 0, βI measures the infection force of the disease and 1
1+αI

measures the inhibition effect from the behavioral change of susceptible prey when their
number increases or from the crowding effect of infective prey.

Different functional responses have been considered in the context of ecology and eco-
epidemiology, see [10, 21, 80]. Mathematically, they can be classified into two main cat-
egories: monotonic and non-monotonic. To keep systems more general, the functional re-
sponse is not specified in our work. Moreover, we assume that the predator is not smart
enough to distinguish between susceptible and infected preys. Hence, the algebraic expres-
sions of ϕk(S, I, P ), k = 1, 2 used in this work take ϕ1(S, I, P ) = bSm

(S+I)n+an and ϕ2(S, I, P ) =
bIm

(S+I)n+an , where n,m ∈ N+, n ≥ m ≥ 1, b is the searching efficiency constant or the
predation rate on the prey and a is the half-saturation constant of the predator.

Our model (1.7) is different from the models used in the previous works [17, 56, 97] due
to several aspects:
(D1) We use different competition coefficients within prey that arises due to disease-modified
inter-specific competition. This is an extension of the initial idea of M. Sieber et al. [99].
(D2) The incidence function exhibits the feature of transmission saturation.
(D3) The predator not only captures infected prey but also catches susceptible prey based
on the work of S. Biswas et al. [17]. Moreover, the consumption of infected prey has less
contribution to the predator’s growth.
(D4) We use the generalized functional responses of the predator, whose advantage is that
our results are not restricted to a particular model but applicable to certain classes of models.

(III) Network-based systems coupling epidemic spread and information diffusion
Complex networks have recently attracted attention in many disciplines, including epi-

demiology, physics, and social sciences [57]. Whereas the conventional compartmental models
of epidemic transmission are based on the assumption of a homogenous and well-mixed popu-
lation, the application of complex networks explicitly models connectivity between individu-
als. In particular, the discovery of scale-free networks has shifted the focus of network-based
research on disease transmission from small world networks to scale-free networks [11]. One
of the most influential results is the pioneering work done by R. Pastor-Satorras and A.
Vespignani [86, 87, 88]. After that, more and more scholars concentrate on the study of
epidemic models on complex networks [19, 81, 85].

In real-world situations, when an epidemic begins to spread, people generally become
increasingly aware of its presence. Their perception of the nature of the epidemic is shaped
by the information obtained through a variety of distinct channels: in their social or spatial
neighborhood, from the mass media (e.g., TV, radio, newspapers, etc.), through various
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online social media, and under the influence of various environmental factors. This spreading
information then causes some people to change their behaviors — either to protect themselves
or to reduce the risk of transmission [37]. As a result, the extent of the spread of the infection
can be significantly reduced [43].

This implies that the outbreak of an epidemic can trigger behavioral responses from
individuals, conversely, human behavioral changes induced by epidemics could have great
influence on the epidemic dynamics and even epidemic network structure. So, it is of great
interest to incorporate the change of human behaviors into mathematical models for infectious
disease transmission, making an exploration and simulation of epidemic spread and its control.

Recently, several works have addressed the problem from different perspectives [8, 42, 64,
74, 116], for example, risk perception, behavioral changes, competing viral agents, or collective
behaviors. For simplicity, we collectively denote all individual and community preventive
behaviors against epidemics as adaptive behaviors. To examine the interplay between adaptive
behaviors and epidemic spread, in Fig. 1, we depict a specific logical loop in the process of
epidemic spread. Therefore, in order to accurately model the spread of epidemics in complex

Behavior information

transmission
Adaptive behaviors Epidemic

Epidemic informationAwareness

Figure 1. A specific logical loop in the process of epidemic spread.

networks, we should take account of multiple dynamic processes simultaneously, including
epidemic spread, behavioral dynamics, information transmission, and the interplay. A general
interplay model between human adaptive behaviors and epidemic spread in complex networks
can be described by 

Ẋ(t) = F (X(t), C(t)),

Ẏ (t) = G(Y (t), E(t)),

Ċ(t) = H(Y (t), E(t)),

(1.8)

where the variableX(t) = (xT1 (t), x
T
2 (t), · · · , xTN (t))T with xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈

Rn denotes the behavior state variable of all individuals in a behavior information network
with size N , which can display collective behaviors under suitable conditions. The variable
C(t) = (c1(t), c2(t), · · · , cN (t))T with ci(t) ∈ R denotes the coupling weight of each individual
in the behavior information network. In the second equality of (1.8), the variable Y (t) =

(y1(t), y2(t), · · · , yN (t))T with yi(t) ∈ R denotes the infection probability of each individual in
an epidemic spreading network with size N . The variable E(t) = (E1(t), E2(t), · · · , EN (t))T
with Ei(t) ∈ R denotes the state error of each individual, which can be defined in differ-
ent forms. F,G, and H represent three different mappings, respectively. The mapping
F : (RnN ,RN ) → RnN controls the dynamical change process of the state variable X(t). The
mapping G : (RN ,RN ) → RN characterizes the dynamical change process of the infection
probability Y (t). The mapping H : (RN ,RN ) → RN defines an adaptive update law of the
coupling weight C(t).
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In system (1.8), human adaptive behaviors X(t) play a role in the epidemic spreading
process Y (t) by embedding the behavior state error E(t), and epidemic spreading process
Y (t) influences human adaptive behaviors X(t) by changing their coupling weight C(t).

Knowing that the spread of behavioral information is quite different from that of the
underlying epidemic, we intend to study the complex interplay between adaptive behaviors
and epidemic spread in multiplex networks [103], in which the nodes represent the same
entities in all layers but the connection patterns at each layer are different. In view of
the authenticity of the network and the accuracy of feedback of nodes (i.e., point-to-point
feedback), the topological structure of a multiplex network is set to be quenched. On the
other hand, for emerging epidemics, people cannot promptly manufacture effective vaccines or
produce targeted drugs. In these circumstances, governments, mass media, or public health
authorities typically choose to guide individual behaviors to an optimal state of self-protection
to reduce one’s susceptibility to infection, so we will design optimized control schemes from
the new perspective of behavioral regulation.

From a mathematical point of view, we shall focus on the qualitative structure (or topo-
logical structure) of the limit sets (or invariant sets) in these three classes of dynamical
systems. The limit sets usually contain at least one of the following three parts: (1) singu-
larities/equilibria, (2) periodic solutions (closed orbits), and (3) singularities and the orbits
which tend to these singularities when t→ −∞ or t→ +∞ (e.g., homoclinic and heteroclinic
orbits). Supposing that the limit sets of systems are discussed clearly, their qualitative struc-
ture can be basically determined. Furthermore, the stability of the limit sets and bifurcation
phenomena are also the main content of our concern.

2. Main work of the thesis

This thesis is divided into five chapters, and mainly studies the dynamical behavior of
three types of epidemiological mathematical systems, i.e., a diffusive influenza system with
multiple strains, predator-prey type eco-epidemiological systems, and two network-based sys-
tems coupling epidemic spread and information diffusion. For these epidemiological systems,
we focus on their qualitative analysis. The specific work of this thesis is stated as follows.

In Chapter 2, we consider the following diffusive influenza system with multiple strains

∂S

∂t
= dS

∂2S

∂x2
+ Λ− µS − [βS(ISU + δIST ) + βRIR]S,

∂ISU
∂t

= dSU
∂2ISU
∂x2

+ (1− f)βS(ISU + δIST )S − (kU + µ)ISU ,

∂IST
∂t

= dST
∂2IST
∂x2

+ f(1− r)βS(ISU + δIST )S − (kT + µ)IST ,

∂IR
∂t

= dR
∂2IR
∂x2

+ [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR,

∂R

∂t
= d

R̃

∂2R

∂x2
+ kUISU + kT IST + kRIR − µR.

(1.9)

Our main purpose is to establish the conditions for the existence of the three kinds of
traveling waves for system (1.9) starting from the disease-free equilibrium E0(S0, 0, 0, 0, 0)

(at the initial stage of influenza transmission): semi-traveling waves, strong traveling waves
and weak (persistent) traveling waves.



8 1 Introduction

So far, the existence of traveling waves for monotone systems (e.g., competitive or coop-
erative models) has been well understood. However, system (1.9) is a non-monotone system,
implying that some standard methods, such as the monotone iteration and comparison argu-
ment [68, 126], are no longer suitable. Though there have been some recent progress in the
study of non-monotonic systems [2, 54, 120, 122, 123, 124], the methods in these references
(such as singular perturbation argument, geometric method, squeeze method, etc.) seem to
be powerless for system (1.9). Several specific reasons are: (i) The non-monotonic systems in
the above literatures mostly consist of two equations, while system (1.9) contains five equa-
tions; (ii) Unlike the handling techniques in [123], we have no restrictions on the diffusion
coefficients of different variables; (iii) To be more realistic, recruitment and natural mortality
factors of population are considered, which increase the dynamical complexity of the system.

Due to the complexity of system (1.9), some dynamical problems on this system become
very challenging, implying that we need to improve the previous approaches. To do so, we
shall further extend the method of upper-lower solutions developed in [2, 122, 123, 124]. Since
it is difficult to construct a pair of appropriate upper-lower solutions connecting the disease-
free equilibrium E0 for system (1.9), we first introduce an auxiliary system, the existence of
semi-traveling waves of which is easy to prove. The existence of semi-traveling waves of the
auxiliary system, together with limit arguments imply the existence of semi-traveling waves
of system (1.9). Then we construct an appropriate Lyapunov function and apply persistent
theory of dynamical systems in [105] to prove the existence of strong and weak traveling waves
of system (1.9), respectively. Finally, the nonexistence of semi-traveling waves for system (1.9)
in four cases is obtained by the comparison principle, the negative one-sided and two-sided
Laplace transforms, which are introduced by [24, 124]. Furthermore, the interval estimation
of the minimal wave speed is given.

In Chapter 3, we study a class of predator-prey type eco-epidemiological systems in R3
+,

given by the following set of nonlinear differential equations:

dS

dt
= rS(1− c1S + c2I

K
)(S − θ)− βI

1 + αI
S − bSm

(S + I)n + an
P,

dI

dt
=

βI

1 + αI
S − bIm

(S + I)n + an
P − µI,

dP

dt
= γ1

bSm

(S + I)n + an
P + γ2

bIm

(S + I)n + an
P − dP,

(1.10)

with initial conditions
S(0) ≥ 0, I(0) ≥ 0, P (0) ≥ 0. (1.11)

Our main objective is to explore the abundant dynamic behavior exhibited by the pro-
posed system and to identify the crucial parameters that ensure specific population behaviors.
Firstly, to gain insight into the boundary dynamics of system (1.10), we divide it into three in-
dependent subsystems in R2

+, that is, the epidemiological (S-I subsystem), predator-prey (S-P
subsystem) and predator-infected-prey(I-P subsystem) subsystems. Then, by: (i) obtaining a
global topological sketches of the dynamics of (1.10) and its three subsystems, with different
Allee effects or competitive coefficients; and (ii) comparing the dynamics of (1.10) and its
S-P subsystem with monotonic functional response to those with non-monotonic functional
response, we conclude that (a) strong Allee effect can create a separatrix curve (or surface),
leading to multi-stability; (b) different competitive abilities between prey can greatly change
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the dynamics of S-I subsystem, and (c) S-P subsystem with non-monotonic functional re-
sponse has richer dynamical behavior than that with monotonic functional response. Finally,
we provide the sufficient conditions for the local and global stability of boundary equilibria
of (1.10), derive the criteria for which (1.10) will persist, and identify an interior periodic
orbit by applying Poincaré map and bifurcation theory.

In Chapter 4, we present two network-based systems coupling epidemic spread and infor-
mation diffusion, namely, a concrete interplay system in quenched multiplex networks

ẋi(t) = f(xi(t)) + ci(t)
N∑
j=1

bijΓ[xj(t)− xi(t)],

ρ̇i(t) = −ρi(t) + λϕi(t)[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N,

ċi(t) = βψ(kai )[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t),

(1.12)

and an epidemic control system

ẋi(t) = f(xi(t))− ci(t)
N∑
j=1

lijΓxj(t) + ui(t),

ui(t) = −ci(t)diei(t), i = 1, 2, · · · , l,
ui(t) = 0, i = l + 1, l + 2, · · · , N,

ρ̇i(t) = −ρi(t) + λϕi(t)[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N,

ċi(t) = βψ(kai )[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t).

(1.13)

Our main aim is to investigate the uniform persistence and stability of systems (1.12)
and (1.13). Through the next-generation matrix approach, we calculate the basic repro-
duction number of the epidemic spreading system in (1.12) and (1.13), which is a critical
quantity that determines whether epidemics are persistent. With the aid of the theories of
nonnegative matrices, we explore the impact of adaptive behaviors on epidemic spread by
comparing the epidemic thresholds. Then we utilize the comparison principle, construct ap-
propriate Lyapunov functions and applying the LaSalle’s invariance principle to prove the
globally asymptotically stability of two network-based systems, including the disease-free and
endemic equilibria of the network-based epidemic spreading system and the synchronization
manifold of the network-based behavioral information diffusion system. For theoretically
unprovable parts, we perform some numerical simulations to supplement the mathematical
analysis of systems (1.12) and (1.13).





CHAPTER 2

Traveling waves and estimation of minimal wave speed for a
diffusive influenza system with multiple strains

In this chapter, we consider the following diffusive influenza system with multiple strains



∂S

∂t
= dS

∂2S

∂x2
+ Λ− µS − [βS(ISU + δIST ) + βRIR]S,

∂ISU
∂t

= dSU
∂2ISU
∂x2

+ (1− f)βS(ISU + δIST )S − (kU + µ)ISU ,

∂IST
∂t

= dST
∂2IST
∂x2

+ f(1− r)βS(ISU + δIST )S − (kT + µ)IST ,

∂IR
∂t

= dR
∂2IR
∂x2

+ [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR,

∂R

∂t
= d

R̃

∂2R

∂x2
+ kUISU + kT IST + kRIR − µR,

(2.1)

where S(x, t), ISU (x, t), IST (x, t), IR(x, t) and R(x, t) represent the quantities of susceptible,
infected with the sensitive strain and untreated, infected with the sensitive strain and treated,
infected with the resistant strain, and recovered population at position x and time t, respec-
tively. The parameters dS , dSU , dST , dR and d

R̃
are the diffusion coefficients of the above

five subclasses. The constant Λ is the recruitment rate of the population and µ is per-capita
natural death rate. Here we assume that each infected individual with the sensitive strain
will receive treatment with proportion f , and each individual who received treatment will
develop drug resistance with probability r. The parameters βS and βR are the transmis-
sion coefficients of the untreated and drug-resistant infected individuals. Due to antiviral
treatment, the transmission rate by an individual who received treatment will be reduced
by the factor δ. Each individual in Ij subclasses can recover with the corresponding rate
kj , j = SU, ST,R. All parameters are assumed to be positive.

The corresponding reaction system of (2.1) is described by the following system of ODEs:



dS

dt
= Λ− µS − [βS(ISU + δIST ) + βRIR]S,

dISU
dt

= (1− f)βS(ISU + δIST )S − (kU + µ)ISU ,

dIST
dt

= f(1− r)βS(ISU + δIST )S − (kT + µ)IST ,

dIR
dt

= [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR,

dR

dt
= kUISU + kT IST + kRIR − µR.

(2.2)

11
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In Section 1, we shall give conditions for the existence of equilibria of system (2.2). Under
some conditions, (2.2) has a unique disease-free equilibrium E0, and under some other condi-
tions, apart from the disease-free equilibrium, there exist a boundary equilibrium Ê and/or
an interior equilibrium E∗.

Since the first four equations of (2.1) are independent of the last one, it suffices to consider
the following reduced reaction-diffusion system:

∂S

∂t
= dS

∂2S

∂x2
+ Λ− µS − [βS(ISU + δIST ) + βRIR]S,

∂ISU
∂t

= dSU
∂2ISU
∂x2

+ (1− f)βS(ISU + δIST )S − (kU + µ)ISU ,

∂IST
∂t

= dST
∂2IST
∂x2

+ f(1− r)βS(ISU + δIST )S − (kT + µ)IST ,

∂IR
∂t

= dR
∂2IR
∂x2

+ [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR.

(2.3)

More specifically, we consider a solution of (2.3), (S(x, t), ISU (x, t), IST (x, t), IR(x, t)),
with the following form

S(x, t) = S(ξ), Ii(x, t) = Ii(ξ), ξ = x+ ct, (2.4)

where i = SU, ST,R, and c > 0 is the wave speed.
The solution (S(x, t), ISU (x, t), IST (x, t), IR(x, t)) having the form (2.4) is called a trav-

eling wave solution (or referred to as traveling wave) if S(ξ) and Ii(ξ), i = SU, ST,R, are
defined for all ξ ∈ R and are nonnegative functions.

For the convenience of discussions below, we first list several definitions of different kinds
of traveling waves as follows [2, 54, 124].

Definition 0.1. (see [2, 54]). A traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is called a
semi-traveling wave connected to the disease-free equilibrium E0 (for convenience, here we
still use the same notation E0 to represent the equilibrium of system (2.3)) if it satisfies the
boundary condition

lim
ξ→−∞

(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) = E0(S0, 0, 0, 0). (2.5)

Definition 0.2. (see [124]). A traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is strong if it
satisfies

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0,

(S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê/E∗, (2.6)

where U(±∞) = limξ→±∞ U(ξ).

Definition 0.3. (see [124]). A traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is weak or
persistent if there exist two positive constants M1 and M2 such that

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0,

M1 < lim inf
ξ→+∞

S(ξ), lim sup
ξ→+∞

S(ξ) < M2,

M1 < lim inf
ξ→+∞

Ii(ξ), lim sup
ξ→+∞

Ii(ξ) < M2, i = SU, ST,R. (2.7)
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The remaining parts of this chapter are organized as follows. A preliminary lemma on
the existence of equilibria for the reaction system is given in Section 1. Section 2 is devoted
to establish the existence of semi-traveling waves of an auxiliary system. By using the results
derived in Section 2, conditions for the existence of three different kinds of traveling waves
of the original system are obtained in Section 3. By means of the comparison principle and
the negative one-sided and two-sided Laplace transforms, some sufficient conditions for the
nonexistence of semi-traveling waves of the original system and an estimation of the minimal
wave speed are given in Section 4. Finally, Section 5 concludes this work.

1. Preliminary lemma on the existence of equilibria for the reaction system

In this section, we give a brief discussion about the existence of equilibria of corresponding
reaction equations (2.2) of (2.1).

Denote by N(t) the total quantity of the population at time t, namely,

N(t) = S(t) + ISU (t) + IST (t) + IR(t) +R(t).

Note that the total population quantity N(t) satisfies the equation
dN

dt
= Λ− µN. (2.8)

It is clear that N(t) = Λ
µ is a solution of equation (2.8), and for any initial value N(t0) ≥ 0,

the general solution of (2.8) is

N(t) =
1

µ
[Λ− (Λ− µN(t0)) exp

−µ(t−t0)]. (2.9)

By the expression (2.9) of the general solution of (2.8), we have limt→+∞N(t) = Λ
µ .

Through the above analysis, we know that the biologically feasible set of reaction sys-
tem (2.2) is given by

Γ = {(S, ISU , IST , IR, R)|0 ≤ S, ISU , IST , IR, R, S + ISU + IST + IR +R ≤ Λ

µ
}. (2.10)

Obviously, the set Γ is positively invariant for system (2.2).
There is a key parameter in epidemiological models, the basic reproduction number, com-

monly denoted by R0, defined as the expected number of secondary infections generated by
a single infectious individual during the infection period in an entirely susceptible popula-
tion [5, 50, 119]. When certain control measures (such as immunization, isolation, treatment,
etc) are introduced, we use the control reproduction number, denoted by RC , to determine
whether the epidemic can be contained [5]. Similarly, we can use the same approach de-
veloped in [106] to calculate the control reproduction number of reaction system (2.2) with
treatment terms.

Note that system (2.2) always has a disease-free equilibrium E0 = (S0, 0, 0, 0, 0), where
S0 := Λ

µ . System (2.2) has three infected variables, namely, ISU , IST and IR, linearizing the
equations of these three variables at disease-free equilibrium E0(S0, 0, 0, 0, 0), the matrices F
and V (corresponding to the new infection and remaining transfer terms, respectively) are
given by

F =

 (1− f)βSS
0 (1− f)βSδS

0 0

f(1− r)βSS
0 f(1− r)βSδS

0 0

frβSS
0 frβSδS

0 βRS
0

 , (2.11)
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and

V =

 kU + µ 0 0

0 kT + µ 0

0 0 kR + µ

 . (2.12)

Thus,

FV −1 =

(
F11 0

F21 F22

)
,

where

F11 =

(
(1−f)βSS0

kU+µ
(1−f)βSδS0

kT+µ
f(1−r)βSS0

kU+µ
f(1−r)βSδS0

kT+µ

)
, F21 =

(
frβSS

0

kU+µ
frβSδS

0

kT+µ

)
, F22 =

βRS
0

kR + µ
.

Let
RSU =

βS
kU + µ

, RST =
βSδ

kT + µ
, RR =

βR
kR + µ

, (2.13)

then we have

RSC = ρ(F11) =
(1− f)βSS

0

kU + µ
+
f(1− r)βSδS

0

kT + µ
= S0[(1− f)RSU + f(1− r)RST ], (2.14)

and

RRC = ρ(F22) =
βRS

0

kR + µ
= S0RR, (2.15)

where ρ(A) is the spectral radius of the nonnegative matrix A.
Thus, the control reproduction number of system (2.2) is given by

RC = ρ(FV −1) = max{RSC , RRC}. (2.16)

To study equilibria of system (2.2) and their corresponding conditions of parameters, we
present the following lemma.

Lemma 1.1. (1) The disease-free equilibrium E0 always exists;
(2) If RC < 1, there exists a unique disease-free equilibrium E0;
(3) If RC > 1, then in addition to the disease-free equilibrium E0, system (2.2) has a boundary
equilibrium Ê when RRC > 1, and an interior (positive) equilibrium E∗ when RSC > 1 and
RRC < RSC .

Proof : The equilibria of system (2.2) are the solutions of the following equations:

Λ− µS − [βS(ISU + δIST ) + βRIR]S = 0,

(1− f)βS(ISU + δIST )S − (kU + µ)ISU = 0,

f(1− r)βS(ISU + δIST )S − (kT + µ)IST = 0,

[frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR = 0,

kUISU + kT IST + kRIR − µR = 0.

(2.17)

In order to solve algebraic equations (2.17), we divide it into the following three cases.
Case I: IR = 0. For this case, based on the setting of parameters and the fact that S > 0,

from the fourth equation of (2.17), we have ISU = IST = 0. Substituting IR = ISU = IST = 0

into the first equation of (2.17), we can obtain S = Λ
µ = S0.
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Case II: IR > 0 and IST = 0. For this case, it follows from the third and fourth equations
of (2.17) that ISU = 0 and S = kR+µ

βR
= S0

RRC
:= Ŝ. Substituting ISU = IST = 0 and S = Ŝ

into (2.17), we get the following reduced equations{
Λ− µŜ − βRIRŜ = 0,

kRIR − µR = 0.
(2.18)

By solving (2.18), we obtain IR =
µS0(1− 1

RRC
)

kR+µ := ÎR and R =
kRS

0(1− 1
RRC

)

kR+µ := R̂.
Case III: IR > 0 and IST > 0. For this case, we first deal with the second and third

equations of (2.17), which can be regarded as equations with unknown quantities ISU and
IST . In view of the fact that IST > 0, by Cramer’s Rule, we have∣∣∣∣ (1− f)βSS − (kU + µ) (1− f)βSδS

f(1− r)βSS f(1− r)βSδS − (kT + µ)

∣∣∣∣ = 0.

Calculate the above determinant, we can get the value of S as follows

S =
(kU + µ)(kT + µ)

(kT + µ)(1− f)βS + (kU + µ)f(1− r)βSδ
=

S0

RSC
:= S∗.

Substituting S = S∗ into (2.17), after some algebraic computations, we can solve the remain-
ing four unknown quantities of equations (2.17) with S = S∗ as follows

ISU =
µ(RSC − 1)

βS(1 + δa) + βRb
:= I∗SU , IST = aI∗SU := I∗ST ,

IR = bI∗SU := I∗R, R =
kUI

∗
SU + kT I

∗
ST + kRI

∗
R

µ
:= R∗,

where a = f(1−r)(kU+µ)
(1−f)(kT+µ) and b = fr(kU+µ)

(1−f)(kR+µ)(1−RRC
RSC

)
.

From the above discussions, it follows that (2.17) has three possible nonnegative solutions.
Accordingly, system (2.2) has three possible equilibria E0 = (S0, 0, 0, 0, 0), Ê = (Ŝ, 0, 0, ÎR, R̂)

and E∗ = (S∗, I∗SU , I
∗
ST , I

∗
R, R

∗). Based on the expression of ÎR in Case II, we know that
ÎR > 0 if and only if RRC > 1. Under the condition I∗SU > 0, from the expression of I∗R in
Case III, we can easily see that I∗R > 0 if and only if RRC < RSC , which implies b > 0. Return
to the expression of I∗SU , we can similarly determine that I∗SU > 0 if and only if RSC > 1.
When RC < 1, i.e., RSC < 1 and RRC < 1, it follows that ÎR < 0 and I∗SU < 0. Thus,
when RC < 1, system (2.2) has a unique disease-free equilibrium E0. When RRC > 1, it
follows that the boundary equilibrium Ê exists. When RRC < RSC and RSC > 1, the interior
(positive) equilibrium E∗ exists. No matter how RSC and RRC are valued, the disease-free
equilibrium E0 always exists. □

In Table 1, we present a diagram to clearly show the relationship between the existence
of equilibria and the values of the parameters RSC , RRC and RC .

2. Semi-traveling waves for an auxiliary system

In this section, to prove the existence of semi-traveling waves for the original system (2.3)
(here, in view of the equivalence between systems (2.1) and (2.3), we also refer to system (2.3)
as the original system in the latter study), we first introduce an auxiliary system, the tech-
nique of which has been widely used (see [71, 122, 123, 124]). Then, by linearizing the wave
equations of the original system (2.3) at disease-free equilibrium E0, we construct a pair of
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Table 1. Existence of equilibria on the values of RSC , RRC and RC

Parameters
Equilibria

E0 Ê E∗

RC < 1 Y N N
RSC > 1 > RRC Y N Y
RSC > RRC > 1 Y Y Y
RRC > 1 > RSC Y Y N
RRC > RSC > 1 Y Y N

Remark: Y: Exists; N: Does not exist

upper-lower solutions for the auxiliary system. Finally, we use Schauder’s fixed-point theorem
to establish the existence of semi-traveling waves for the auxiliary system.

2.1. An auxiliary system. An auxiliary system related to the original system (2.3)
can be described by

∂S
∂t = dS

∂2S
∂x2

+ Λ− µS − [βS(ISU + δIST ) + βRIR]S,
∂ISU
∂t = dSU

∂2ISU
∂x2

+ (1− f)βS(ISU + δIST )S − (kU + µ)ISU −ΥI2SU ,
∂IST
∂t = dST

∂2IST
∂x2

+ f(1− r)βS(ISU + δIST )S − (kT + µ)IST −ΥI2ST ,
∂IR
∂t = dR

∂2IR
∂x2

+ [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR −ΥI2R,

(2.19)

where Υ is a small positive constant.
Substituting the wave profile S(x, t) = S(ξ), Ii(x, t) = Ii(ξ), i = SU, ST,R, ξ = x + ct

into (2.19), and denoting x+ ct by ξ, we obtain the corresponding wave equations
cS′ = dSS

′′ + Λ− µS − [βS(ISU + δIST ) + βRIR]S,

cI ′SU = dSUI
′′
SU + (1− f)βS(ISU + δIST )S − (kU + µ)ISU −ΥI2SU ,

cI ′ST = dST I
′′
ST + f(1− r)βS(ISU + δIST )S − (kT + µ)IST −ΥI2ST ,

cI ′R = dRI
′′
R + [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR −ΥI2R.

(2.20)

The limiting equations of (2.20) when Υ → 0 become the wave equations of the original
system (2.3). For the convenience of use, we give their specific form as follows:

cS′ = dSS
′′ + Λ− µS − [βS(ISU + δIST ) + βRIR]S,

cI ′SU = dSUI
′′
SU + (1− f)βS(ISU + δIST )S − (kU + µ)ISU ,

cI ′ST = dST I
′′
ST + f(1− r)βS(ISU + δIST )S − (kT + µ)IST ,

cI ′R = dRI
′′
R + [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR.

(2.21)

2.2. Linearization of the wave system at E0. Linearizing system (2.21) at the
disease-free equilibrium E0(S0, 0, 0, 0) and only considering the last three equations of the
linearized system, we have

cφ′
2 = dSUφ

′′
2 + (1− f)βS(φ2 + δφ3)S

0 − (kU + µ)φ2,

cφ′
3 = dSTφ

′′
3 + f(1− r)βS(φ2 + δφ3)S

0 − (kT + µ)φ3,

cφ′
4 = dRφ

′′
4 + [frβS(φ2 + δφ3) + βRφ4]S

0 − (kR + µ)φ4,

(2.22)

where the functions φi(ξ), i = 2, 3, 4 correspond to Ij(ξ), j = SU, ST,R, respectively.
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We look for the solutions with the form (φ2(ξ), φ3(ξ), φ4(ξ)) = eλξ(κ2, κ3, κ4), where
κi > 0, i = 2, 3, 4 and λ > 0. Substituting them into equations (2.22), we obtain the
following eigenvalue equations

cλκ2 = dSUλ
2κ2 + (1− f)βS(κ2 + δκ3)S

0 − (kU + µ)κ2,

cλκ3 = dSTλ
2κ3 + f(1− r)βS(κ2 + δκ3)S

0 − (kT + µ)κ3,

cλκ4 = dRλ
2κ4 + [frβS(κ2 + δκ3) + βRκ4]S

0 − (kR + µ)κ4.

(2.23)

Let Ã = diag(dSU , dST , dR), B̃ = diag(c, c, c) and M̃(λ, c) := Ãλ2 − B̃λ + F − V , where
the matrices F and V are given by (2.11) and (2.12). Then the eigenvalue equations (2.23)
can be rewritten as

M̃(λ, c)K = 0, (2.24)
where K = (κ2, κ3, κ4)

T .
Make the new transformation A = V −1Ã and B = V −1B̃, we obtain the equivalent form

of equation (2.24) as follows
M(λ, c)K = K, (2.25)

where M(λ, c) = (−Aλ2 +Bλ+ I)−1(V −1F ).
A direct calculation gives

M(λ, c) =


(1−f)βSS0

Θ2(λ,c)
(1−f)βSδS0

Θ2(λ,c)
0

f(1−r)βSS0

Θ3(λ,c)
f(1−r)βSδS0

Θ3(λ,c)
0

frβSS
0

Θ4(λ,c)
frβSδS

0

Θ4(λ,c)
βRS

0

Θ4(λ,c)

 , (2.26)

where
Θ2(λ, c) = −dSUλ2 + cλ+ kU + µ,

Θ3(λ, c) = −dSTλ2 + cλ+ kT + µ,Θ4(λ, c) = −dRλ2 + cλ+ kR + µ.
Take d = max{dSU , dST , dR}, since Θi(

c
2d , c) is strictly increasing and nonnegative in

c ∈ [0,+∞), we can deduce that the matrix M( c2d , c) is decreasing for c ∈ [0,+∞).
Denote by ρ(M(λ, c)) the principal eigenvalue of the nonnegative matrix M(λ, c) for

λ ∈ [0, c2d ]. Since ρ(M(λ, c)) is continuous and monotonically increasing with respect to the
nonnegative matrix M(λ, c), ρ(M( c2d , c)) is strictly decreasing in c ∈ [0,+∞). In particular,
we have ρ(M(0, 0)) = ρ(V −1F ) when c = 0 and ρ(M( c2d , c)) → 0 when c→ +∞.

For the continuation of the analysis, here, we give a brief proof of ρ(V −1F ) = RC . By
the definition of the control reproduction number RC in (2.16), we know RC = ρ(FV −1),
implying that RC is the Perron-Frobenius eigenvalue of the matrix FV −1. So there exists
a positive eigenvector P = (p1, p2, p3) with pi > 0, i = 1, 2, 3 such that (FV −1)P = RCP .
Then we have V −1P > 0 and (V −1F )(V −1P ) = V −1(FV −1)P = RCV

−1P . This implies
that RC is a nonnegative eigenvalue of the matrix V −1F with positive eigenvector V −1P . It
is easy to see that V −1F is irreducible, that is, (V −1F + I)2 > 0. Using Perron-Frobennius
theorem, we get ρ(V −1F ) = RC .

Combining with ρ(M(0, 0)) = ρ(V −1F ) yields ρ(M(0, 0)) = RC . Consequently, when
RC > 1, there exists a unique c∗ > 0 such that

ρ(M(
c

2d
, c))


> 1, c ∈ [0, c∗);
= 1, c = c∗;
< 1, c ∈ (c∗,+∞).
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Now we fix c > c∗, note that Θi(λ, c)(i = 2, 3, 4) is strictly increasing in λ ∈ [0, c2d ], then
we obtain that ρ(M(λ, c)) is strictly decreasing and nonnegative in λ ∈ [0, c2d ]. In view of the
facts ρ(M(0, c)) = ρ(M(0, 0)) = RC > 1 and ρ(M( c2d , c)) < 1, then there exists a λc ∈ (0, c2d)

such that

ρ(M(λ, c))


> 1, λ ∈ [0, λc);
= 1, λ = λc;
< 1, λ ∈ (λc,

c
2d ].

Based on the above discussion, we have the following lemma.

Lemma 2.1. Assume that RC = ρ(FV −1) > 1. Then there exists c∗ > 0 such that for
any c > c∗, we can always find λc ∈ (0, c2d) and Kc = (κ2, κ3, κ4)

T with κi > 0, i = 2, 3, 4

satisfying det M̃(λc, c) = 0 and M̃(λc, c)Kc = 0.

Proof : It follows from the above arguments that ρ(M(λc, c)) = 1. By the Perron-
Frobenius theorem, we conclude that there is a vector Kc ∈ R3 with positive components
such that M(λc, c)Kc = Kc. Multiplying the matrix −Aλ2c + Bλc + I on both sides of the
above equality, we have (Aλ2c −Bλc+ V −1F − I)Kc = 0. Multiplying the diagonal matrix V
to both sides of the above equality, we obtain (Ãλ2c − B̃λc + F − V )Kc = M̃(λc, c)Kc = 0. □

Let Kc = (κ2, κ3, κ4)
T as obtained in Lemma 2.1, the following lemma is straightforward.

Lemma 2.2. The vector valued function φ(ξ) = (φ2(ξ), φ3(ξ), φ4(ξ)) with φi(ξ) = κie
λcξ,

i = 2, 3, 4 satisfies equations (2.22).

2.3. Construction and properties of upper-lower solutions. In the next subsec-
tion, by using the Schauder’s fixed-point theorem, we establish the existence of semi-traveling
waves of the auxiliary system (2.20). For this, we need to define a pair of upper-lower solutions
of system (2.20) as follows.

S̄(ξ) := S0, S(ξ) := max{S0 − σeαξ, 0},
ĪSU (ξ) := min{κ2eλcξ, κ2K∗}, ISU (ξ) := max{κ2eλcξ(1−Qeεξ), 0},
ĪST (ξ) := min{κ3eλcξ, κ3K∗}, IST (ξ) := max{κ3eλcξ(1−Qeεξ), 0},
ĪR(ξ) := min{κ4eλcξ, κ4K∗}, IR(ξ) := max{κ4eλcξ(1−Qeεξ), 0},

(2.27)

where the constants κ2, κ3, κ4 and λc have been determined in Lemma 2.1. The positive
constants K∗, σ, α,Q, ε will be determined later.

We next show that such constructed upper and lower solutions satisfy some properties in
Lemmas 2.3, 2.4 and 2.5.

Lemma 2.3. For K∗ > 1 large enough, the functions ĪSU (ξ), ĪST (ξ) and ĪR(ξ) satisfy the
following inequalities

cĪ ′SU ≥ dSU Ī
′′
SU + (1− f)βS(ĪSU + δĪST )S

0 − (kU + µ)ĪSU −ΥĪ2SU ,

cĪ ′ST ≥ dST Ī
′′
ST + f(1− r)βS(ĪSU + δĪST )S

0 − (kT + µ)ĪST −ΥĪ2ST ,

cĪ ′R ≥ dRĪ
′′
R + [frβS(ĪSU + δĪST ) + βRĪR]S

0 − (kR + µ)ĪR −ΥĪ2R,

(2.28)

for any ξ ̸= ξ1 :=
lnK∗

λc
.

Proof : Define the operator

L[ISU (·), IST (·), IR(·)](ξ) :=

 dSUI
′′
SU − cI ′SU + (1− f)βS(ISU + δIST )S

0 − (kU + µ)ISU

dST I
′′
ST − cI ′ST + f(1− r)βS(ISU + δIST )S

0 − (kT + µ)IST

dRI
′′
R − cI ′R + [frβS(ISU + δIST ) + βRIR]S

0 − (kR + µ)IR

 ,
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then, the differential inequalities (2.28) can be transformed into the following equivalent
operator inequalities

L[ISU (·), IST (·), IR(·)](ξ) ≤ Υ(Ī2SU , Ī
2
ST , Ī

2
R). (2.29)

So, as long as we prove operator inequality (2.29), we complete the proof of the lemma.
Below, we can prove operator inequalities (2.29) in two cases:

When ξ < ξ1, by (2.27), we have

(ĪSU (ξ), ĪST (ξ), ĪR(ξ)) = (κ2, κ3, κ4)e
λcξ.

Substituting it into the equations of operator L, yields

L[ISU (·), IST (·), IR(·)](ξ) = eλcM̃(λc, c)Kc = 0.

Obviously, operator inequalities (2.29) hold.
When ξ > ξ1, by (2.27), we have (ĪSU (ξ), ĪST (ξ), ĪR(ξ)) = (κ2, κ3, κ4)K

∗. Taking the first
inequality of operator inequalities (2.29) as an example, we substitute the upper solutions
into it, yielding

dSU Ī
′′
SU − cĪ ′SU + (1− f)βS(ĪSU + δĪST )S

0 − (kU + µ)ĪSU −ΥĪ2SU

= {[(1− f)βSS
0 − (kU + µ)]κ2 + (1− f)βSδS

0κ3 −Υκ22K
∗}K∗.

To ensure that the value of the above equality is smaller or equal to 0, we require

K∗ >
[(1− f)βSS

0 − (kU + µ)]κ2 + (1− f)βSδS
0κ3

Υκ22
.

To make the remaining two inequalities of operator inequalities (2.29) also hold, similarly, we
can choose

K∗ >
f(1− r)βSS

0κ2 + [f(1− r)βSδS
0 − (kT + µ)]κ3

Υκ23
,

and

K∗ >
frβSS

0(κ2 + δκ3) + [βRS
0 − (kR + µ)]κ4

Υκ24
.

By selecting K∗ > 1 satisfying the above three inequalities, we complete the proof of operator
inequalities (2.29) when ξ > ξ1. □

Lemma 2.4. For 0 < α < min{ c
dS
, λc}, σ > max{S0, [βS(κ2+δκ3)+βRκ4]S

0

(c−dSα)α+µ }, the function
S(ξ) satisfies the following inequality

cS′ ≤ dSS
′′ + Λ− µS − [βS(ĪSU + δĪST ) + βRĪR]S (2.30)

for any ξ ̸= ξ2 :=
1
α ln S0

σ .

Proof : If ξ > ξ2, then S(ξ) = 0. Obviously, the inequality (2.30) holds.
If ξ < ξ2, then S(ξ) = S0 − σeαξ. From the choice of K∗ and σ, we knows that ξ2 =

1
α ln S0

σ < 0 < ξ1, implying (ĪSU (ξ), ĪST (ξ), ĪR(ξ)) = (κ2, κ3, κ4)e
λcξ when ξ < ξ2. Through
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direct calculations, we have
dSS

′′ − cS′ + Λ− µS − [βS(ĪSU + δĪST ) + βRĪR]S

=− dSσα
2eαξ + cσαeαξ + Λ− µ(S0 − σeαξ)− [βS(κ2e

λcξ + δκ3e
λcξ) + βRκ4e

λcξ](S0 − σeαξ)

={cσα+ µσ − dSσα
2 − [βS(κ2 + δκ3) + βRκ4](S

0 − σeαξ)e(λc−α)ξ}eαξ

≥{(cα+ µ− dSα
2)σ − [βS(κ2 + δκ3) + βRκ4]S

0}eαξ

≥0

where we use the fact that e(λc−α)ξ < 1 due to α < λc and ξ < 0, and the conditions that
0 < α < c

dS
and σ > [βS(κ2+δκ3)+βRκ4]S

0

(c−dSα)α+µ . □
Lemma 2.5. Let ε > 0 be small enough with ε < α, ε < λc and λc + ε < c

2d , then
for sufficiently large Q > 1, the functions ISU (ξ), IST (ξ) and IR(ξ) satisfy the following
inequalities

cI ′SU ≤ dSUI
′′
SU + (1− f)βS(ISU + δIST )S − (kU + µ)ISU −ΥI2SU ,

cI ′ST ≤ dST I
′′
ST + f(1− r)βS(ISU + δIST )S − (kT + µ)IST −ΥI2ST ,

cI ′R ≤ dRI
′′
R + [frβS(ISU + δIST ) + βRIR]S − (kR + µ)IR −ΥI2R,

(2.31)

for any ξ ̸= ξ3 := − lnQ
ε .

Proof : Choose Q > 1 sufficiently large and ε small enough such that ξ3 < ξ2 < 0, this
implies that Q > max{( σ

S0 )
ε
α , 1}.

When ξ > ξ3, based on the definition of the lower solutions in (2.27), we have ISU (ξ) =
IST (ξ) = IR(ξ) = 0. It is clear that inequalities (2.31) hold.

When ξ < ξ3, by (2.27), we have (ISU (ξ), IST (ξ), IR(ξ)) = (κ2, κ3, κ4)e
λcξ(1−Qeεξ) and

S(ξ) = S0 − σeαξ. For the first inequality of (2.31), we can show
cI ′SU − dSUI

′′
SU − (1− f)βS(ISU + δIST )S + (kU + µ)ISU +ΥI2SU

=cκ2e
λcξ[λc(1−Qeεξ)−Qεeεξ]− dSUκ2e

λcξ[λ2c(1−Qeεξ)− λcQεe
εξ − (λc + ε)Qεeεξ]

− (1− f)βS(κ2 + δκ3)e
λcξ(1−Qeεξ)(S0 − σeαξ) + (kU + µ)κ2e

λcξ(1−Qeεξ)

+ Υ[κ2e
λcξ(1−Qeεξ)]2

=eλcξ(1−Qeεξ){[−dSUλ2c + cλc − (1− f)βSS
0 + kU + µ]κ2 − (1− f)βSδS

0κ3}

+ e(λc+ε)ξ{[(2λc + ε)dSU − c]Qεκ2 + (1− f)βS(κ2 + δκ3)σe
(α−ε)ξ(1−Qeεξ)

+ Υκ22e
(λc−ε)ξ(1−Qeεξ)2}

=e(λc+ε)ξ{[(2λc + ε)dSU − c]Qεκ2 + (1− f)βS(κ2 + δκ3)σe
(α−ε)ξ(1−Qeεξ)

+ Υκ22e
(λc−ε)ξ(1−Qeεξ)2}

≤e(λc+ε)ξ{[(2λc + ε)dSU − c]Qεκ2 + (1− f)βS(κ2 + δκ3)σe
−(α−ε) lnQ

ε +Υκ22e
−(λc−ε) lnQ

ε },

where we use the conditions ε < α and ε < λc.
In view of the condition that ε > 0 and λc + ε < c

2d , we have
(2λc + ε)dSU − c < 2(λc + ε)dSU − c < 2(λc + ε)d− c < 0.

Thus, we can choose sufficiently large Q > 1 such that

[(2λc + ε)dSU − c]Qεκ2 + (1− f)βS(κ2 + δκ3)σe
−(α−ε) lnQ

ε +Υκ22e
−(λc−ε) lnQ

ε ≤ 0,
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indicating that the first inequality of (2.31) holds. Similarly, we can verify the second and
third inequalities of (2.31) also hold. □

2.4. The existence of semi-traveling waves. We look for semi-traveling waves of the
auxiliary system (2.20) in the following profile set

L = {(S(·), ISU (·), IST (·), IR(·)) ∈ Cν(R,R4) :

S(ξ) ≤ S(ξ) ≤ S̄(ξ), Ij(ξ) ≤ Ij(ξ) ≤ Īj(ξ), j = SU, ST,R, for all ξ ∈ R}. (2.32)

Note that Cν(R,R4) is a Banach space with the norm ∥ · ∥ formulated by

∥Φ∥ := |Φ(·)|ν = max{sup
ξ∈R

|φi(ξ)|e−ν|ξ|, i = S, SU, ST,R}, (2.33)

where Φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) ∈ Cν(R,R4), ν is a positive constant which will be
determined later. Obviously, L is a bounded nonempty closed convex subset of Cν(R,R4).

Cν(R,R) is a Banach space with the sup norm |φ(·)|ν := supξ∈R |φ(ξ)|e−ν|ξ|, where φ(ξ) ∈
Cν(R,R). Let Ti : L → Cν(R,R), i = S, SU, ST,R be operators defined by

TS(S, ISU , IST , IR)(ξ) := ϑSS(ξ) + Λ− µS(ξ)− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ),

TSU (S, ISU , IST , IR)(ξ) := ϑSUISU (ξ) + (1− f)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kU + µ)ISU (ξ)−ΥI2SU (ξ),

TST (S, ISU , IST , IR)(ξ) := ϑST IST (ξ) + f(1− r)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kT + µ)IST (ξ)−ΥI2ST (ξ),

TR(S, ISU , IST , IR)(ξ) := ϑRIR(ξ) + [frβS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ)− (kR + µ)IR(ξ)−ΥI2R(ξ),

where
ϑS > µ+ [βS(κ2 + δκ3) + βRκ4]K

∗,

ϑSU > 2Υκ2K
∗ + (kU + µ),

ϑST > 2Υκ3K
∗ + (kT + µ), ϑR > 2Υκ4K

∗ + (kR + µ).
Then the auxiliary system (2.20) can be now rewritten as

−dSS′′(ξ) + cS′(ξ) + ϑSS(ξ) = TS(S, ISU , IST , IR)(ξ),

−dSUI ′′SU (ξ) + cI ′SU (ξ) + ϑSUISU (ξ) = TSU (S, ISU , IST , IR)(ξ),

−dST I ′′ST (ξ) + cI ′ST (ξ) + ϑST IST (ξ) = TST (S, ISU , IST , IR)(ξ),

−dRI ′′R(ξ) + cI ′R(ξ) + ϑRIR(ξ) = TR(S, ISU , IST , IR)(ξ).

(2.34)

Let ζi1 < 0 < ζi2 be the roots of the quadratic equation

diζ
2
i − cζi − ϑi = 0,

then, define the operators Gi : L → Cν(R,R) by

Gi(S, ISU , IST , IR)(ξ) :=
1

diζi[∫ ξ

−∞
eζi1(ξ−s)Ti(S, ISU , IST , IR)(s)ds+

∫ +∞

ξ

eζi2(ξ−s)Ti(S, ISU , IST , IR)(s)ds

]
,

where ζi = ζi2 − ζi1, i = S, SU, ST,R.
Then G = (GS , GSU , GST , GR) : L → Cν(R,R4) is a well-defined map, and satisfies

−dSG′′
S(ξ) + cG′

S(ξ) + ϑSGS(ξ) = TS(GS , GSU , GST , GR)(ξ),

−dSUG′′
SU (ξ) + cG′

SU (ξ) + ϑSUGSU (ξ) = TSU (GS , GSU , GST , GR)(ξ),

−dSTG′′
ST (ξ) + cG′

ST (ξ) + ϑSTGST (ξ) = TST (GS , GSU , GST , GR)(ξ),

−dRG′′
R(ξ) + cG′

R(ξ) + ϑRGR(ξ) = TR(GS , GSU , GST , GR)(ξ),

(2.35)
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for any (S(·), ISU (·), IST (·), IR(·)) ∈ Cν(R,R4). Thus, any fixed point of the operator G is
a solution of (2.34), which is a traveling wave of the auxiliary system (2.20). On the other
hand, a solution of (2.34) is also a fixed point of the operator G.

To apply Schauder’s fixed-point theorem, we need to prove that the operatorsGS , GSU , GST
and GR admit the following properties:

Lemma 2.6. The operator G maps L into L, i.e., G(L) ⊂ L.

Proof : If (S(·), ISU (·), IST (·), IR(·)) ∈ L, that is,

S(ξ) ≤ S(ξ) ≤ S̄(ξ) = S0, Ii(ξ) ≤ Ii(ξ) ≤ Īi(ξ), i = SU, ST,R

for any ξ ∈ R. Then it suffices to show

S(ξ) ≤ GS(S, ISU , IST , IR)(ξ) ≤ S̄(ξ) = S0,

Ii(ξ) ≤ Gi(S, ISU , IST , IR)(ξ) ≤ Īi(ξ), i = SU, ST,R.

We now prove the first inequality about the operator GS . First consider the left-hand
side of the first inequality.
If ξ ≥ ξ2, then S(ξ) = 0 by (2.27). It follows from the choice of ϑS that TS(S, ISU , IST , IR)(ξ)
≥ 0 for all ξ ∈ R, which implies that GS(S, ISU , IST , IR)(ξ) ≥ 0 = S(ξ) when ξ ≥ ξ2.
If ξ < ξ2, then by Lemma 2.4, we obtain

−dSS′′(ξ) + cS′(ξ) + ϑSS(ξ) ≤ ϑSS(ξ) + Λ− µS(ξ)− [βS(ĪSU (ξ) + δĪST (ξ)) + βRĪR(ξ)]S(ξ)

= {ϑS − µ− [βS(ĪSU (ξ) + δĪST (ξ)) + βRĪR(ξ)]}S(ξ) + Λ

≤ {ϑS − µ− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]}S(ξ) + Λ

= TS(S, ISU , IST , IR)(ξ),

which follows

GS(S, ISU , IST , IR)(ξ) =
1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)

]
TS(S, ISU , IST , IR)(s)ds

≥ 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)

]
[−dSS′′(s) + cS′(s) + ϑSS(s)]ds

=
1

dSζS

∫ ξ

−∞
eζS1(ξ−s)[−dSS′′(s) + cS′(s) + ϑSS(s)]ds

+
1

dSζS

∫ ξ2

ξ

eζS2(ξ−s)[−dSS′′(s) + cS′(s) + ϑSS(s)]ds

+
1

dSζS

∫ +∞

ξ2

eζS2(ξ−s)[−dSS′′(s) + cS′(s) + ϑSS(s)]ds

=S(ξ) +
1

ζS
eζS2(ξ−ξ2)[S′(ξ2 + 0)− S′(ξ2 − 0)]

≥S(ξ),

where the final inequality uses the fact that S′(ξ2 + 0) = 0 and S′(ξ2 − 0) < 0.
To summarize, GS(S, ISU , IST , IR)(ξ) ≥ S(ξ) holds for all ξ ∈ R.
Next, we prove the right-hand side of the first inequality, i.e., GS(S, ISU , IST , IR)(ξ) ≤

S̄(ξ) = S0 for all ξ ∈ R.
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It is easy to verify the validity of the following inequality for all ξ ∈ R

cS̄′(ξ) ≥ dSS̄
′′(ξ) + Λ− µS̄(ξ)− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S̄(ξ),

it follows that

−dSS̄′′(ξ) + cS̄′(ξ) + ϑSS̄(ξ) ≥ ϑSS̄(ξ) + Λ− µS̄(ξ)− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S̄(ξ)

= {ϑS − µ− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]}S̄(ξ) + Λ

≥ {ϑS − µ− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]}S(ξ) + Λ

= TS(S, ISU , IST , IR)(ξ).

Through the above inequality, we can prove

GS(S, ISU , IST , IR)(ξ) =
1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)

]
TS(S, ISU , IST , IR)(s)ds

≤ 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)

]
[−dSS̄′′(s) + cS̄′(s) + ϑSS̄(s)]ds

=
1

dSζS

∫ ξ

−∞
eζS1(ξ−s)[−dSS̄′′(s) + cS̄′(s) + ϑSS̄(s)]ds

+
1

dSζS

∫ ξ

+∞
eζS2(ξ−s)[−dSS̄′′(s) + cS̄′(s) + ϑSS̄(s)]ds

=S̄(ξ),

for all ξ ∈ R.
In a similar way, we can also show that the remaining three inequalities about operators

Gi, i = SU, ST,R hold for any ξ ∈ R. □
In what follows, we shall apply Schauder’s fixed-point theorem to the operator G, which

requires the continuity and compactness of G. To achieve the two properties, we need to
introduce a topology in Cν(R,R4). Let ν ∈ (0,min{−ζi1, ζi2, i = S, SU, ST,R}). Denote

Bν(R,R4) = {Φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) ∈ Cν(R,R4) : |Φ(·)|ν < +∞}

with the same norm as that in (2.33), then it is easy to verify that (Bν(R,R4), | · |ν) is a
Banach space.

Lemma 2.7. The operator G = (GS , GSU , GST , GR) : L → L is continuous with respect
to the norm | · |ν in Bν(R,R4).

Proof : For Φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)),Ψ(ξ) = (ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)) ∈ L,
by the definition of the operator TS , we easily get

|TS(Φ)(ξ)− TS(Ψ)(ξ)|e−ν|ξ| =|{ϑS − µ− [βS(φ2(ξ) + δφ3(ξ)) + βRφ4(ξ)]}(φ1(ξ)− ψ1(ξ))

+ ψ1(ξ){βS [(ψ2(ξ)− φ2(ξ)) + δ(ψ3(ξ)− φ3(ξ))]

+ βR(ψ4(ξ)− φ4(ξ))}|e−ν|ξ|

≤NS |Φ(·)−Ψ(·)|ν ,

where NS = ϑS − µ− [βS(κ2 + δκ3) + βRκ4]K
∗ + [βS(1 + δ) + βR]S

0 > 0.
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Then, by the definition of the operator GS , we obtain

|GS(Φ)(ξ)−GS(Ψ)(ξ)|e−ν|ξ| ≤e−ν|ξ|

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)

]
|TS(Φ)(s)− TS(Ψ)(s)|ds

≤NSe
−ν|ξ|

dSζS

[∫ ξ

−∞
eζS1(ξ−s)+ν|s|ds+

∫ +∞

ξ

eζS2(ξ−s)+ν|s|ds

]
|Φ(·)−Ψ(·)|ν

=
NS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)−ν|ξ|+ν|s|ds+

∫ +∞

ξ

eζS2(ξ−s)−ν|ξ|+ν|s|ds

]
|Φ(·)−Ψ(·)|ν

≤ NS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)+ν|ξ−s|ds+

∫ +∞

ξ

eζS2(ξ−s)+ν|ξ−s|ds

]
|Φ(·)−Ψ(·)|ν

=
NS

dSζS

ζS1 − ζS2 + 2ν

(ζS1 + ν)(ζS2 − ν)
|Φ(·)−Ψ(·)|ν .

Hence, GS : L → Cν(R,R) is continuous with respect to the norm |·|ν in Bν(R,R). Similarly,
we can show the remaining operators Gi : L → Cν(R,R), i = SU, ST,R are also continuous
with respect to the norm | · |ν in Bν(R,R). This implies that G : L → L is continuous with
respect to the norm | · |ν in Bν(R,R4). □

Lemma 2.8. The operator G = (GS , GSU , GST , GR) : L → L is compact with respect to
the norm | · |ν in Bν(R,R4).

Proof : Let Φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) ∈ L, obviously, for all ξ ∈ R, we have

|TS(Φ)(ξ)| = |ϑSφ1(ξ) + Λ− µφ1(ξ)− [βS(φ2(ξ) + δφ3(ξ)) + βRφ4(ξ)]φ1(ξ)| ≤ ÑS ,

where ÑS = Λ+ {ϑS + µ+ [βS(κ2 + δκ3) + βRκ4]K
∗}S0.

Consequently,

∣∣∣∣ ddξGS(Φ)(ξ)
∣∣∣∣ = 1

dSζS

∣∣∣∣[ζS1 ∫ ξ

−∞
eζS1(ξ−s) + ζS2

∫ +∞

ξ
eζS2(ξ−s)

]
TS(Φ)(s)ds

∣∣∣∣
≤ ÑS

dSζS

[
|ζS1|

∫ ξ

−∞
eζS1(ξ−s)ds+ ζS2

∫ +∞

ξ
eζS2(ξ−s)ds

]
=
2ÑS

dSζS
,

which implies
∣∣∣ ddξGS(Φ)(·)∣∣∣ν < 2ÑS

dSζS
.

So, we see that | ddξGS(Φ)(ξ)|ν is bounded. Using the similar arguments as above, we can
show that | ddξGi(Φ)(ξ)|ν , i = SU, ST,R are also bounded. This means that G(L) is uniformly
bounded and equicontinuous with respect to the norm | · |ν .

For fixed positive integer n, we define an operator Gn = (GnS , G
n
SU , G

n
ST , G

n
R) by

Gn(Φ)(ξ) =


G(Φ)(−n), ξ ∈ (−∞,−n],
G(Φ)(ξ), ξ ∈ [−n, n],
G(Φ)(n), ξ ∈ [n,+∞).
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By Arzelà-Ascoli theorem, Gn : L → L is compact with respect to the norm | · |ν in Bν(R,R4).
Since

|GS(Φ)(ξ)| =
1

dSζS

∣∣∣∣[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ
eζS2(ξ−s)

]
TS(Φ)(s)ds

∣∣∣∣
≤ ÑS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)ds+

∫ +∞

ξ
eζS2(ξ−s)ds

]
=

ÑS

dS |ζS1|ζS2
,

we have

|GnS(Φ)(·)−GS(Φ)(·)|ν = sup
ξ∈R

|GnS(Φ)(ξ)−GS(Φ)(ξ)|e−ν|ξ|

= sup
ξ∈(−∞,−n]∪[n,+∞)

|GnS(Φ(·))(ξ)−GS(Φ(·))(ξ)|e−ν|ξ|

≤ 2ÑS

dS |ζS1|ζS2
e−νn.

When n → +∞, we have |GnS(Φ)(·) − GS(Φ)(·)|ν → 0. By similar arguments, we can also
show that |Gni (Φ)(·)−Gi(Φ)(·)|ν → 0 when n→ +∞ for i = SU, ST,R.

Overall, |Gn(Φ)(·) − G(Φ)(·)|ν → 0 when n → +∞. By Proposition 2.12 in [121], we
know that Gn converges to G in L with respect to the norm | · |ν . Therefore, the operator
G = (GS , GSU , GST , GR) : L → L is compact with respect to the norm | · |ν in Bν(R,R4). □

Now we state our main results of this section as follows.

Lemma 2.9. If RC > 1, then there exists c∗ > 0 , defined by Lemma 2.1, such that for
any c > c∗, the auxiliary system (2.20) admits a nonnegative bounded semi-traveling wave
(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying the asymptotic boundary condition (2.5).

Proof : Based on the above discussion, we conclude that there exists a fixed point of the
operator G, denoted by (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) ∈ L, by Schauder’s fixed-point theorem
and Lemmas 2.6, 2.7 and 2.8, which is equivalent to say that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is
a nonnegative bounded traveling wave of the auxiliary system (2.20).

We can further show that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfies the asymptotic boundary
condition (2.5). It is easy to see that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) → E0(S0, 0, 0, 0) when
ξ → −∞ due to the definition of upper-lower solutions in (2.27) and Lemmas 2.3, 2.4 and 2.5.
So, the nonnegative bounded traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a semi-traveling
wave satisfying the asymptotic boundary condition (2.5). □

3. Semi-, strong and weak traveling waves for the original system

In this section, we discuss the conditions for the existence of three kinds of traveling waves
starting from the disease-free equilibrium E0: semi-traveling waves, strong traveling waves
and weak (persistent) traveling waves.

3.1. Semi-traveling waves.
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Theorem 3.1. If RC > 1, then there exists c∗ > 0 (defined by Lemma 2.1) such that for
any c > c∗, system (2.3) admits a positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ))

satisfying the asymptotic boundary condition (2.5) and S(ξ) < S0 for any ξ ∈ R. Furthermore,

lim
ξ→−∞

Ii(ξ)e
−λcξ = κi, lim

ξ→−∞
I ′i(ξ)e

−λcξ = λcκi, i = SU, ST,R, (2.36)

where κSU = κ2, κST = κ3, κR = κ4.

Proof : Set Υ = Υn := 1
n . Obviously, the sequence {Υn} satisfies 0 < Υi+1 < Υi < 1

and Υn → 0 as n→ +∞. By Lemma 2.9, there is a nonnegative semi-traveling wave

Φn(ξ) = (φ1n(ξ), φ2n(ξ), φ3n(ξ), φ4n(ξ)) ∈ L

of the auxiliary system (2.20) with Υ = Υn satisfying the asymptotic boundary condition

(φ1n(−∞), φ2n(−∞), φ3n(−∞), φ4n(−∞)) = E0(S0, 0, 0, 0).

From the proof of Lemma 2.8, we know that {|φ′
in(ξ)|} are uniformly bounded for i = 1, 2, 3, 4

since Φn(ξ) ∈ L is a fixed point of the operator G. In addition, {|φ′′
in(ξ)|} and {|φ′′′

in(ξ)|}
are also uniformly bounded since Φn(ξ) is the solution of the auxiliary system (2.20) with
Υ = Υn. Therefore, {Φn(ξ)}, {Φ′

n(ξ)}, {Φ′′
n(ξ)} are equicontinuous and uniformly bounded in

R. Then Arzelà-Ascoli theorem implies that there exists a subsequence {Υnk
} such that

Φnk
(ξ) → Ψ(ξ),Φ′

nk
(ξ) → Ψ′(ξ),Φ′′

nk
(ξ) → Ψ′′(ξ)

uniformly in any bounded closed interval when k → +∞, and pointwise on R, where Ψ(ξ) =

(ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)).
Since Φnk

(ξ) is the solution of the auxiliary system (2.20), and let Υnk
→ 0, we obtain

cψ′
1 = dSψ

′′
1 + Λ− µψ1 − [βS(ψ2 + δψ3) + βRψ4]ψ1,

cψ′
2 = dSUψ

′′
2 + (1− f)βS(ψ2 + δψ3)ψ1 − (kU + µ)ψ2,

cψ′
3 = dSTψ

′′
3 + f(1− r)βS(ψ2 + δψ3)ψ1 − (kT + µ)ψ3,

cψ′
4 = dRψ

′′
4 + [frβS(ψ2 + δψ3) + βRψ4]ψ1 − (kR + µ)ψ4.

(2.37)

Therefore, Ψ(ξ) is a nonnegative semi-traveling wave of the original system (2.3) satisfying
the asymptotic boundary condition (2.5).

Next, we show that Ψ(ξ) is a positive semi-traveling wave of the original system (2.3),
i.e., ψi(ξ) > 0, i = S, SU, ST,R for any ξ ∈ R.

Suppose that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) ∈ L is a nonnegative semi-traveling wave of
the original system (2.3). For fixed c > c∗ and Υ ∈ (0, 1], then ξ1, ξ2 and ξ3 defined in
Lemmas 2.3, 2.4 and 2.5, can be chosen such that they do not depend on the choice of Υ. So,
by the definition of the profile set L in (2.32), we know that there exists a constant ξ0 ≤ ξ2
such that S(ξ) > 0 for any ξ < ξ0. Now we show that S(ξ) > 0 for any ξ ∈ R. On the
contrary, we suppose that there exists ξ∗ such that S(ξ∗) = 0. Since S(ξ) ≥ 0 for any ξ ∈ R,
S(ξ∗) is a minimum, implying that S′(ξ∗) = 0 and S′′(ξ∗) ≥ 0. Employing the first equation
of system (2.21) yields

dSS
′′(ξ∗) + Λ = 0,

a contradiction. Thus we have S(ξ) > 0 for any ξ ∈ R.
We then claim that ISU (ξ) > 0 for any ξ ∈ R. In fact, there exists ξ̃0 ≤ ξ3 such that

ISU (ξ) > 0 when ξ < ξ̃0. If there exists ξ̃∗ such that ISU (ξ̃∗) = 0, then there exist constants
a1, a2 such that a1 < ξ3 < a2 and ξ̃∗ ∈ (a1, a2). It implies that ISU (ξ) achieves its minimum
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in (a1, a2) for any ξ ∈ [a1, a2]. From the second equation of system (2.21), we know that
ISU (ξ) satisfies

−dSUI ′′SU (ξ)+ cI ′SU (ξ)+ (kU +µ)ISU (ξ) = (1− f)βS(ISU (ξ)+ δIST (ξ))S(ξ) ≥ 0, ξ ∈ [a1, a2].

By the elliptic strong maximum principle (see Theorem 3.3.6 in [45]), it follows that ISU (ξ) ≡
0 for ξ ∈ [a1, a2]. On the other hand, by Lemma 2.3, we have ISU (ξ) > 0 for ξ ∈ [a1, ξ3), a
contradiction. Similarly, by the elliptic strong maximum principle, it can be shown Ii(ξ) >

0, i = ST,R for any ξ ∈ R.
Based on the above arguments, we easily obtain S(ξ) < S0 for any ξ ∈ R. Otherwise,

there exists ξ̂∗ such that

dSS
′′(ξ̂∗) = [βS(ISU (ξ̂

∗) + δIST (ξ̂
∗)) + βRIR(ξ̂

∗)]S(ξ̂∗) > 0,

a contradiction due to S′′(ξ̂∗) ≤ 0.
Finally, we show that the positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the

original system (2.3) satisfies (2.36).
Let (Sn(ξ), ISUn(ξ), ISTn(ξ), IRn(ξ)) ∈ L be a nonnegative semi-traveling wave of the

auxiliary system (2.20) with Υ = Υn in Lemma 2.9. Let κSU = κ2, κST = κ3, κR = κ4. Since
the selection of κi, i = 2, 3, 4 is independent on Υ, by the definition of upper-lower solutions
of the auxiliary system (2.20), we have

κje
λcξ(1−Qeεξ) ≤ Ijn(ξ) ≤ Ijn(ξ) ≤ Ījn(ξ) ≤ κje

λcξ

which follows that
lim

ξ→−∞
Ijn(ξ)e

−λcξ = κj , j = SU, ST,R.

In addition, note that (Sn(ξ), ISUn(ξ), ISTn(ξ), IRn(ξ)) ∈ L is a fixed point of the operator
Gn. Applying L’Höspital rule to the maps Gin, i = S, SU, ST,R, it is easy to see that
S′
n(−∞) = 0 and I ′jn(−∞) = 0, j = SU, ST,R. Integrating both sides of the second

equation of the auxiliary system (2.20) from −∞ to ξ gives

dSUI
′
SUn(ξ) =cISUn(ξ)− (1− f)βS

∫ ξ

−∞
(ISUn(s) + δISTn(s))Sn(s)ds

+ (kU + µ)

∫ ξ

−∞
ISUn(s)ds+Υn

∫ ξ

−∞
I2SUn(s)ds.

Recall the proven results that Sn(−∞) = S0, S′
n(−∞) = 0, Ijn(−∞) = 0, I ′jn(−∞) = 0 and

limξ→−∞ Ijn(ξ)e
−λcξ = κj , j = SU, ST,R, then we have

lim
ξ→−∞

I ′SUn(ξ)e
−λcξ = lim

ξ→−∞

1

dSU

[
ce−λcξISUn(ξ)− (1− f)βSe

−λcξ

∫ ξ

−∞
(ISUn(s) + δISTn(s))Sn(s)ds

]
+ lim

ξ→−∞

1

dSU

[
(kU + µ)e−λcξ

∫ ξ

−∞
ISUn(s)ds+Υne

−λcξ

∫ ξ

−∞
I2SUn(s)ds

]
=
cλcκSU − (1− f)βS(κSU + δκST )S

0 + (kU + µ)κSU

dSUλc
.

By the first equation of the eigenvalue equations (2.23), we know
cλcκSU − (1− f)βS(κSU + δκST )S

0 + (kU + µ)κSU
dSUλc

= λcκSU .

So, limξ→−∞ I ′SUn(ξ)e
−λcξ = λcκSU .
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Based on the previous discussion in this lemma, we suppose that there exists a subse-
quence {nk} such that

Snk
(ξ) → S(ξ), Ijnk

(ξ) → Ij(ξ), j = SU, ST,R,

where (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a positive semi-traveling wave of the original system (2.3)
satisfying the asymptotic boundary condition (2.5). Applying the limiting arguments, yields

lim
ξ→−∞

I ′SU (ξ)e
−λcξ = lim

k→+∞
lim

ξ→−∞
I ′SUnk

(ξ)e−λcξ = λcκSU .

Similarly, we can also demonstrate limξ→−∞ I ′j(ξ)e
−λcξ = λcκj , j = ST,R. □

Remark 2.1. In Theorem 3.1, we establish the existence of positive semi-traveling waves
connecting the disease-free equilibrium E0 for the original system (2.3), where the disease-free
equilibrium E0 is the population state before the transmission of influenza. Meanwhile, its
presence means that the influenza will spread among the crowd.

3.2. Strong traveling waves.

Theorem 3.2. Under the condition of RC > 1, if RSU ≤ RR and RST ≤ RR (defined
in (2.13)), then for any c > c∗ (c∗ > 0 is defined by Lemma 2.1), system (2.3) has a strong
traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) connecting E0(S0, 0, 0, 0) and Ê(Ŝ, 0, 0, ÎR).

Proof : From Theorem 3.1, we see that when RC > 1, there exists c∗ > 0 such that for
any c > c∗, system (2.3) admits a positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ))

satisfying

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0(S0, 0, 0, 0)

with S(ξ) < S0 for any ξ ∈ R.
To complete the proof, it is sufficient to show

(S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê(Ŝ, 0, 0, ÎR).

We first claim that S′(ξ)
S(ξ) and I′j(ξ)

Ij(ξ)
, j = SU, ST,R are bounded for any ξ ∈ R. To get the

result, we rewrite wave equations (2.21) of the original system (2.3) as follows
dS 0 0 0

0 dSU 0 0

0 0 dST 0

0 0 0 dR



S′′

I ′′SU

I ′′ST

I ′′R

− c


S′

I ′SU

I ′ST

I ′R

+


b11(ξ) 0 0 0

b21(ξ) b22(ξ) 0 0

b31(ξ) 0 b33(ξ) 0

b41(ξ) 0 0 b44(ξ)




S

ISU

IST

IR

 = 0,

(2.38)
where

b11(ξ) =
Λ

S(ξ)
− µ− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)],

b21(ξ) = (1− f)βS(ISU (ξ) + δIST (ξ)), b22(ξ) = −(kU + µ),

b31(ξ) = f(1− r)βS(ISU (ξ) + δIST (ξ)), b33(ξ) = −(kT + µ),

b41(ξ) = frβS(ISU (ξ) + δIST (ξ)) + βRIR(ξ), b44(ξ) = −(kR + µ).

By Lemmas 2.3, 2.4 and 2.5, it is not difficult to see that the functions bk1(ξ), bkk(ξ), k =

1, 2, 3, 4 are bounded. Moreover, bk1(ξ) > 0, k = 2, 3, 4 due to the fact S(ξ) > 0 and
Ij(ξ) > 0, j = SU, ST,R for any ξ ∈ R. We can apply Harnack inequality (see Theorem
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1.1 in [27]) for system (2.38), it follows that there exists a constant D > 0 such that for any
ξ ∈ R, we have

max
[s−1,s+1]

S(ξ) ≤ D min
[s−1,s+1]

S(ξ),

max
[s−1,s+1]

Ij(ξ) ≤ D min
[s−1,s+1]

Ij(ξ), j = SU, ST,R,

whereD depends only on the coefficients of system (2.38) and the length of interval [s−1, s+1].
As a consequence, we can deduce that there exists some constant D1 > 0 such that∣∣∣∣S′(ξ)

S(ξ)

∣∣∣∣+ ∑
j=SU,ST,R

∣∣∣∣I ′j(ξ)Ij(ξ)

∣∣∣∣ ≤ D1, ξ ∈ R.

Set VS(ξ) = S′(ξ), Vj(ξ) = I ′j(ξ), j = SU, ST,R, wave equations (2.21) of the original
system (2.3) can be transformed into the following equivalent system

S′ = VS ,

dSV
′
S = cVS − Λ + µS + [βS(ISU + δIST ) + βRIR]S,

I ′SU = VSU ,

dSUV
′
SU = cVSU − (1− f)βS(ISU + δIST )S + (kU + µ)ISU ,

I ′ST = VST ,

dSTV
′
ST = cVST − f(1− r)βS(ISU + δIST )S + (kT + µ)IST ,

I ′R = VR,

dRV
′
R = cVR − [frβS(ISU + δIST ) + βRIR]S + (kR + µ)IR.

(2.39)

Finally, we complete the proof of the theorem by introducing a Lyapunov function, de-
termining that positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the original sys-
tem (2.3) converge to the boundary equilibrium Ê(Ŝ, 0, 0, ÎR) as ξ → +∞. Equivalently, it
corresponds to the convergence of semi-traveling wave

(S(ξ), VS(ξ), ISU (ξ), VSU (ξ), IST (ξ), VST (ξ), IR(ξ), VR(ξ))

of system (2.39) to Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0) (for the convenience, we still use the same nota-
tion Ê to denote the equilibrium of system (2.39)). To this end, we consider the following
Lyapunov function L(ξ) := LS(ξ) + LSU (ξ) + LST (ξ) + LR(ξ), where

LS(ξ) = cS − dSVS +
ŜdSVS
S

− c

∫ S

Ŝ

Ŝ

η
dη,

LSU (ξ) = cISU − dSUVSU ,

LST (ξ) = cIST − dSTVST ,

LR(ξ) = cIR − dRVR +
ÎRdRVR
IR

− c

∫ IR

ÎR

ÎR
η
dη.
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Then, through a simple calculation, the derivative of LS(ξ) along the traveling wave of
system (2.39) satisfies

dLS(ξ)

dξ
=cVS(ξ)− dSV

′
S(ξ) +

dSŜ(V
′
S(ξ)S(ξ)− VS(ξ)S

′(ξ))

S2(ξ)
− cŜ

Ŝ

S(ξ)

=[cVS(ξ)− dSV
′
S(ξ)]

S(ξ)− Ŝ

S(ξ)
−
dSŜV

2
S (ξ)

S2(ξ)

≤[cVS(ξ)− dSV
′
S(ξ)]

S(ξ)− Ŝ

S(ξ)
.

Similarly, we can calculate

dLSU (ξ)

dξ
= cVSU (ξ)− dSUV

′
SU (ξ),

dLST (ξ)

dξ
= cVST (ξ)− dSTV

′
ST (ξ),

and

dLR(ξ)

dξ
≤ [cVR(ξ)− dRV

′
R(ξ)]

IR(ξ)− ÎR
IR(ξ)

.

Therefore, we have

dL(ξ)

dξ
=
LS(ξ)

dξ
+
LSU (ξ)

dξ
+
LST (ξ)

dξ
+
LR(ξ)

dξ

≤[cVS(ξ)− dSV
′
S(ξ)]

S(ξ)− Ŝ

S(ξ)
+ [cVSU (ξ)− dSUV

′
SU (ξ)]

+ [cVST (ξ)− dSTV
′
ST (ξ)] + [cVR(ξ)− dRV

′
R(ξ)]

IR(ξ)− ÎR
IR(ξ)

.

By system (2.39), we can further get

dL(ξ)

dξ
≤{Λ− µS(ξ)− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ)}

S(ξ)− Ŝ

S(ξ)

+ [(1− f)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kU + µ)ISU (ξ)]

+ [f(1− r)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kT + µ)IST (ξ)]

+ {[frβS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ)− (kR + µ)IR(ξ)}
IR(ξ)− ÎR
IR(ξ)

.
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Together with the following equilibrium conditions Λ = µŜ + βRŜÎR and kR + µ = βRŜ, we
have

dL(ξ)

dξ
≤
{
µŜ + βRŜÎR − µS(ξ)− [βS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ)

} S(ξ)− Ŝ

S(ξ)

+ [(1− f)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kU + µ)ISU (ξ)]

+ [f(1− r)βS(ISU (ξ) + δIST (ξ))S(ξ)− (kT + µ)IST (ξ)]

+
{
[frβS(ISU (ξ) + δIST (ξ)) + βRIR(ξ)]S(ξ)− βRŜIR(ξ)

} IR(ξ)− ÎR
IR(ξ)

=− µ
(S(ξ)− Ŝ)2

S(ξ)
+ βRŜÎR

(
2− Ŝ

S(ξ)
− S(ξ)

Ŝ

)
+ βS(ISU (ξ) + δIST (ξ))Ŝ − (kU + µ)ISU (ξ)− (kT + µ)IST (ξ)

− frβS(ISU (ξ) + δIST (ξ))S(ξ)ÎR
IR(ξ)

≤βRŜÎR

(
2− Ŝ

S(ξ)
− S(ξ)

Ŝ

)

+ (kU + µ)ISU (ξ)

(
βSŜ

kU + µ
− 1

)
+ (kT + µ)IST (ξ)

(
βSδŜ

kT + µ
− 1

)
.

Let Θ(x) := 1 − x + lnx, for x ∈ (0,+∞). Using the fact Ŝ = S0

RRC
= 1

RR
and the property

that Θ(x) ≤ 0 with Θ(x) = 0 if and only if x = 1, gives

dL(ξ)

dξ
≤βRŜÎR

[
Θ

(
Ŝ

S(ξ)

)
+Θ

(
S(ξ)

Ŝ

)]

+ (kU + µ)ISU (ξ)

(
RSU
RR

− 1

)
+ (kT + µ)IST (ξ)

(
RST
RR

− 1

)
≤(kU + µ)ISU (ξ)

(
RSU
RR

− 1

)
+ (kT + µ)IST (ξ)

(
RST
RR

− 1

)
.

It is obvious that dL(ξ)
dξ ≤ 0 holds for all ξ ∈ R when RSU ≤ RR and RST ≤ RR, implying

that L(ξ) is decreasing. Furthermore, dL(ξ)
dξ = 0 if and only if

(S, VS , ISU , VSU , IST , VST , IR, VR) = Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0).

LaSalle’s invariance principle [63] implies

(S(ξ), VS(ξ), ISU (ξ), VSU (ξ), IST (ξ), VST (ξ), IR(ξ), VR(ξ)) → Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0)

as ξ → +∞. That is, (S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê(Ŝ, 0, 0, ÎR). □

Remark 2.2. From RSU ≤ RR and RST ≤ RR, we can easily derive that RSC < RRC .
So we address the connection problem between two equilibria E0 and Ê in the later two
cases of Table 1 in Section 1. The existence of this strong traveling wave shows that the
spread of influenza is successful, which describes the influenza propagation into the susceptible
individuals from an initial disease-free equilibrium to the final boundary equilibrium with only
resistant-strain.
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3.3. Weak traveling waves. We can easily show that the positive semi-traveling wave
(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of (2.3) in Theorem 3.1 satisfies that (S(ξ), ISU (ξ), IST (ξ), IR(ξ))
∈ L, which implies

lim sup
ξ→+∞

S(ξ) ≤ S0, lim sup
ξ→+∞

Ii(ξ) ≤ κiK
∗, i = SU, ST,R,

where κSU = κ2, κST = κ3, κR = κ4.
To prove that the positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is persistent,

we only need to prove

lim inf
ξ→+∞

S(ξ) > 0, lim inf
ξ→+∞

Ii(ξ) > 0, i = SU, ST,R.

For this, we will apply the uniform persistence Theorem 4.5 in [105] and restate it as a
lemma as follows.

Lemma 3.3. Let X be locally compact, and let X2 be compact in X and X1 be forward
invariant under the continuous semiflow Φ on X. Assume that Ω2, defined by

Ω2 =
∪
y∈Y2

ω(y), Y2 = {x ∈ X2 : Φt(x) ∈ X2,∀t > 0},

has an acyclic isolated covering M =
∪m
k=1Mk. If each part Mk of M is a weak repeller for

X1, then X2 is a uniform strong repeller for X1.

To use Lemma 3.3, we define

X1 ={(S, VS , ISU , VSU , IST , VST , IR, VR) : (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a positive semi-traveling
wave of system (2.3) in Theorem 3.1 and VS(ξ) = S′(ξ), Vj(ξ) = I ′j(ξ), i = SU, ST,R},

X2 ={(S, VS , 0, 0, 0, 0, IR, VR) : 0 ≤ S ≤ S0, |VS | ≤ D1|S|, 0 ≤ IR ≤ κ4K
∗, |VR| ≤ D1|IR|},

where κ4 and K∗ have been determined in Lemmas 2.1 and 2.3, and D1 is a positive constant
that is just determined in Theorem 3.2.

Lemma 3.4. If RSC > 1 > RRC (defined in (2.14) and (2.15)), and c > max{c∗, c̃∗}
(c∗ > 0 is defined by Lemma 2.1, c̃∗ > max{2

√
dSUPSU (0), 2

√
dSTPST (0)}) hold. Let

W s(E0) denote the stable manifold of system (2.39) at the equilibrium E0, then we have

W s(E0) ∩X1 = ∅,

where E0 = (S0, 0, 0, 0, 0, 0, 0, 0) and ∅ denotes the empty set.

Proof : First, we calculate the Jacobian matrix of system (2.39) at E0 as follows:

J =



0 1 0 0 0 0 0 0
µ
dS

c
dS

βSS
0

dS
0 βSδS

0

dS
0 βRS

0

dS
0

0 0 0 1 0 0 0 0

0 0 kU+µ−(1−f)βSS0

dSU

c
dSU

−(1−f)βSδS0

dSU
0 0 0

0 0 0 0 0 1 0 0

0 0 −f(1−r)βSS0

dST
0 kT+µ−f(1−r)βSδS0

dST

c
dST

0 0

0 0 0 0 0 0 0 1

0 0 −frβSS0

dR
0 −frβSδS0

dR
0 kR+µ−βRS0

dR
c
dR


.
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Let

J11 =

(
0 1
µ
dS

c
dS

)
, J33 =

(
0 1

kR+µ−βRS0

dR
c
dR

)
,

J22 =


0 1 0 0

kU+µ−(1−f)βSS0

dSU

c
dSU

−(1−f)βSδS0

dSU
0

0 0 0 1
−f(1−r)βSS0

dST
0 kT+µ−f(1−r)βSδS0

dST

c
dST

 .

Obviously, the characteristic polynomial of J will be determined by the characteristic poly-
nomial of J11, J22 and J33. That is to say, the eigenvalues of J consist of the eigenvalues of
J11, J22 and J33, so we consider the characteristic equations of J11, J22 and J33 and calculate
their eigenvalues, respectively.

Upon a direct computation, one is able to verify that J11 and J33 have eigenvalues

λ±11 =
c±

√
c2 + 4dSµ

2dS
, λ±33 =

c±
√
c2 + 4dR(kR + µ)(1−RRC)

2dR
.

J11 has one positive eigenvalue λ+11 and a negative eigenvalue λ−11, the eigenvector of matrix
J corresponding to the negative eigenvalue λ−11 is (1, λ−11, 0, 0, 0, 0, 0, 0)T . When RRC < 1, J33
has one positive eigenvalue λ+33 and a negative eigenvalue λ−33, the corresponding eigenvector
to λ−33 is (0, 0, 0, 0, 0, 0, 1, λ−33)

T .
In addition, the characteristic equation of J22 is

H(λ) := PSU (λ)PST (λ)− γ = 0, (2.40)

where
PSU (λ) = dSUλ

2 − cλ+ (1− f)βSS
0 − (kU + µ),

PST (λ) = dSTλ
2 − cλ+ f(1− r)βSδS

0 − (kT + µ) and
γ = (1− f)β2Sδf(1− r)(S0)2.

It is easy to verify that RSC > 1 if and only if A(S0) < 0, where A(S0) = H(0).
From Lemma 2.1 (e) in [122], it follows that J22 has only one negative eigenvalue, de-
note by λ−22 when c ≥ c̃∗ (c̃∗ > max{2

√
dSUPSU (0), 2

√
dSTPST (0)}). Suppose that α =

(α1, α2, α3, α4, α5, α6, α7, α8) is the eigenvector of matrix J corresponding to λ−22, wherein
(α3, α4, α5, α6) is the eigenvector of matrix J22 corresponding to λ−22, then the relationship
among the components αi, i = 3, 4, 5, 6 can be described by

λ−22α3 = α4,

PSU (λ
−
22)α3 = −G0

23α5,

PST (λ
−
22)α5 = −G0

32α3,

λ−22α5 = α6,

(2.41)

where G0
23 = (1 − f)βSδS

0, G0
32 = f(1 − r)βSS

0. It follows from (2.41) that the vector
(α3, α4, α5, α6) has the form (G0

23, λ
−
22G

0
23,−PSU (λ

−
22),−λ

−
22PSU (λ

−
22)) or another equivalent

form (G0
32, λ

−
22G

0
32,−PST (λ

−
22),−λ

−
22PST (λ

−
22)). From Lemma 2.1 (e) in [122], we know that

PSU (λ
−
22) > 0 when RSC > 1 and c ≥ c̃∗. So, α3 and α5 have the opposite sign.

If λ−11, λ−22 and λ−33 are not equal to each other, the stable subspace of the linearized system
of system (2.39) at E0 is spanned by (1, λ−11, 0, 0, 0, 0, 0, 0), α and (0, 0, 0, 0, 0, 0, 1, λ−33). In
view of α3α5 < 0, λ−11 < 0 and λ−33 < 0, together with the tangency of stable manifold to the
stable subspace in stable manifold theorem [89], then we have W s(E0) ∩X1 = ∅.
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If only two of λ−11, λ−22 and λ−33 are equal or all three are equal, without loss of generality,
we suppose that λ−22 = λ−11 or λ−22 = λ−11 = λ−33. Since λ−22 is a simple eigenvalue of J22 and a
multiple eigenvalue of J with multiplicity 1 or 2, then the stable subspace of the linearized
system of system (2.39) at E0 is spanned by (1, λ−11, 0, 0, 0, 0, 0, 0), α̃ and (0, 0, 0, 0, 0, 0, 1, λ−33),
where the elements α̃3 and α̃5 of the eigenvector α̃ satisfy α̃3α̃5 < 0 by (2.41). Similar to the
above discussion, we can get the conclusion that W s(E0) ∩X1 = ∅. □

Theorem 3.5. If RSC > 1 > RRC (defined in (2.14) and (2.15)), and c > max{c∗, c̃∗}
(c∗ > 0 is defined by Lemma 2.1, c̃∗ is defined by Lemma 3.4) hold. System (2.3) admits a
weak (or say persistent) traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying the asymptotic
boundary condition (2.5).

Proof : Assume that

(S(ξi), VS(ξi), ISU (ξi), VSU (ξi), IST (ξi), VST (ξi), IR(ξi), VR(ξi)) → (S∗, V ∗
S , I

∗
SU , V

∗
SU , I

∗
ST , V

∗
ST , I

∗
R, V

∗
R)

when ξi → +∞ as i→ +∞.
We first prove several results as follows:
(a) I∗SU = 0 ⇒ V ∗

SU = I∗ST = V ∗
ST = 0;

In view of the fact that I∗SU = 0 and VSU = I
′
SU , if V ∗

SU ̸= 0, by the Taylor formula,
we know there exists ξ∗ such that ISU (ξ∗) < 0, a contradiction. In addition, we assume
that limξ→+∞ I

′′
SU (ξ) exists, then we can show that limξ→+∞ I

′′
SU (ξ) ≥ 0. By selecting a

subsequence of ξi, denoted by ξij , we directly give the Taylor expansion of ISU (ξij ) at ξ0ij :

ISU (ξij ) = ISU (ξ
0
ij ) + I

′
SU (ξ

0
ij )(ξij − ξ0ij ) + I

′′
SU (ξ

0
ij )(ξij − ξ0ij )

2 + o((ξij − ξ0ij )
2). (2.42)

Let ξ0ij → +∞, implying that ISU (ξ0ij ) → 0 and I ′
SU (ξ

0
ij
) → 0. Combining with ISU (ξij ) ≥

0, we can get limξ→+∞ I
′′
SU (ξ) ≥ 0 from (2.42).

Now go back to the equation of ISU in wave equations (2.21) of the original system (2.3)

cI ′SU (ξ) = dSUI
′′
SU (ξ) + (1− f)βS(ISU (ξ) + δIST (ξ))S − (kU + µ)ISU (ξ). (2.43)

Take the limit on both sides of equality (2.43), in order to make the limiting equation
still hold, we have I ′′

SU (+∞) = 0 and IST (+∞) = I∗ST = 0. Similar to the proof of V ∗
SU = 0,

we can show V ∗
ST = 0.

Through a similar discussion with (a), we can also prove the following results (b) and (c).
(b) I∗ST = 0 ⇒ V ∗

ST = I∗SU = V ∗
SU = 0;

(c) I∗R = 0 ⇒ V ∗
R = I∗SU = V ∗

SU = I∗ST = V ∗
ST = 0.

By (a), (b) and (c), we can find that I∗SU = 0 ⇔ I∗ST = 0, I∗R = 0 ⇒ I∗SU = I∗ST = 0, while
I∗SU = I∗ST = 0 does not imply I∗R = 0. So we only need to show that X2 excludes X1, if we
want to prove that S(ξ), ISU (ξ), IST (ξ) and IR(ξ) are persistent. Now we study the dynamics
of system (2.39) in X2. Equivalently, we consider the subsystem of system (2.39)

S′ = VS ,

dSV
′
S = cVS − Λ + µS + βRIRS,

I ′R = VR,

dRV
′
R = cVR − βRIRS + (kR + µ)IR.

(2.44)
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If RRC < 1, system (2.44) has a unique equilibrium Ē0(S0, 0, 0, 0). Now we consider the
Jacobian matrix of (2.44) at Ē0, which has the form

J̄ =


0 1 0 0
µ
dS

c
dS

βRS
0

dS
0

0 0 0 1

0 0 kR+µ−βRS0

dIR
c
dIR

 .

The characteristic equation of J̄ is

(dSλ
2 − cλ− µ)

[
dRλ

2 − cλ+ βRS
0 − (kR + µ)

]
= 0. (2.45)

It is easy to calculate the eigenvalues of J̄ as follows:

λ±S =
c±

√
c2 + 4dSµ

2dS
, λ±R =

c±
√
c2 + 4dR(kR + µ)(1−RRC)

2dR
.

When RRC < 1 and c > 0, the real part of all eigenvalues of J̄ is nonzero, by the Hopf
bifurcation theorem [75], we know there is no periodic solution around Ē0. Obviously, there
is no heteroclinic orbit connecting Ē0 for any c > 0 as RRC < 1.

Finally, we need to rule out the possibility of a homoclinic connection at Ē0. For the
non-degenerate critical point Ē0, if there is a homoclinic orbit l connecting Ē0, then we
have l ⊆ WU (Ē0) ∩ WS(Ē0). The eigenvectors of matrix J̄ corresponding to eigenvalues
λ±i , i = S,R are

h+S = (1, λ+S , 0, 0), h+R = (βRS
0, λ+RβRS

0, PS(λ
+
R), λ

+
RPS(λ

+
R)),

h−S = (1, λ−S , 0, 0), h−R = (βRS
0, λ−RβRS

0, PS(λ
−
R), λ

−
RPS(λ

−
R)),

(2.46)

where PS(λ) = dSλ
2 − cλ− µ.

The unstable subspace of the linearized system of (2.44) at Ē0 is spanned by h+S and
h+R, and the stable subspace is spanned by h−S and h−R. If there is a homoclinic connection
at Ē0, then l − Ē0 ̸= ∅, we suppose that there is some point P 0 ∈ l − Ē0 such that P 0 ∈
WU (Ē0) ∩WS(Ē0). Through simple calculations, together with h+S h

−
S < 0 and h+Rh

−
R < 0,

we can show P 0 = Ē0, a contradiction. So there do not exist homoclinic orbits in X2 for
system (2.44).

The above discussions imply that the sets Ω2 and M in Lemma 3.3 are given by Ω2 =

E0 = M . Obviously, M is an acyclic isolated covering of Ω2. Applying Lemmas 3.3 and 3.4
completes the proof of the theorem. □

Remark 2.3. In Theorem 3.5, we only give the existence of weak traveling waves connect-
ing the disease-free equilibrium since it is difficult to construct a Lyapunov function or a pair
of closed upper-lower solutions which converge to the positive equilibrium E∗ as ξ → +∞. Al-
though we can determine the components of the final state of weak traveling waves are positive,
it does not mean the final state of the weak traveling waves is E∗. At the end of influenza
spread, susceptible individuals and infected individuals with sensitive and resistant strains
may coexist at constant levels (E∗) or periodically fluctuating state. However, Theorem 3.5
can still tell us the propagation speed of infection into susceptible individuals. Biologically,
it is indeed of public health importance, indicating that if few infectives are introduced into
a completely susceptible population, then the infected individuals with sensitive and resistant
strains would not vanish at the end of the wavefront.
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4. Nonexistence of semi-traveling waves and estimation of minimal wave speed
for the original system

In this section, we show the nonexistence of semi-traveling waves for the original sys-
tem (2.3) in the following four cases: (I) RC < 1 and c > 0; (II) RRC > 1, RSC ̸= 1 and
0 < c < c∗1; (III) RSC > 1, RRC ̸= 1 and 0 < c < c∗2; and (IV) RC > 1, Ri ̸= 1, i = SC,RC

and 0 < c < min{c∗1, c∗2}. In addition, we also give the estimation of the minimal wave speed.

4.1. Nonexistence of semi-traveling waves.
4.1.1. Case I: RC < 1 and c > 0.

Theorem 4.1. Suppose that RC < 1, then for any c > 0, the original system (2.3) has
no nonnegative bounded semi-traveling waves (nontrivial) satisfying the asymptotic bound-
ary condition (2.5). That is, in addition to the trivial semi-traveling wave, the original
system (2.3) does not admit any traveling wave connecting the disease-free steady state E0

itself.

Proof : Suppose that the original system (2.3) admits a nonnegative bounded semi-
traveling wave (nontrivial) satisfying the asymptotic boundary condition (2.5). Without loss
of generality, we assume that 0 ≤ S(ξ) ≤ S0 and I(ξ) ≥ 0 for ξ ∈ R.

Note that the three equations for (ISU , IST , IR) in wave equations (2.21) of the original
system (2.3) can be transformed into



ISU (ξ) =
∫ ξ
−∞

kU+µ
ρSU

eλ
−
SU (ξ−s) 1

kU+µHSU (s)ds+
∫ +∞
ξ

kU+µ
ρSU

eλ
+
SU (ξ−s) 1

kU+µHSU (s)ds,

IST (ξ) =
∫ ξ
−∞

kT+µ
ρST

eλ
−
ST (ξ−s) 1

kT+µHST (s)ds+
∫ +∞
ξ

kT+µ
ρST

eλ
+
ST (ξ−s) 1

kT+µHST (s)ds,

IR(ξ) =
∫ ξ
−∞

kR+µ
ρR

eλ
−
R(ξ−s) 1

kR+µHR(s)ds+
∫ +∞
ξ

kR+µ
ρR

eλ
+
R(ξ−s) 1

kR+µHR(s)ds,

(2.47)
where

λ±SU =
c±

√
c2 + 4dSU (kU + µ)

2dSU
, λ±ST =

c±
√
c2 + 4dST (kT + µ)

2dST
, λ±R =

c±
√
c2 + 4dR(kR + µ)

2dR
,

ρSU = λ+SU − λ−SU , ρST = λ+ST − λ−ST , ρR = λ+R − λ−R, HSU (s) = (1− f)βS(ISU (s) + δIST (s))S(s),

HST (s) = f(1− r)βS(ISU (s) + δIST (s))S(s), HR(s) = [frβS(ISU (s) + δIST (s)) + βRIR(s)]S(s).

According to (2.47) and assumptions, we have

ISU (ξ) ≤
∫ ξ
−∞

kU+µ
ρSU

eλ
−
SU (ξ−s) 1

kU+µ(1− f)βS(ISU (s) + δIST (s))S
0ds

+
∫ +∞
ξ

kU+µ
ρSU

eλ
+
SU (ξ−s) 1

kU+µ(1− f)βS(ISU (s) + δIST (s))S
0ds,

IST (ξ) ≤
∫ ξ
−∞

kT+µ
ρST

eλ
−
ST (ξ−s) 1

kT+µf(1− r)βS(ISU (s) + δIST (s))S
0ds

+
∫ +∞
ξ

kT+µ
ρST

eλ
+
ST (ξ−s) 1

kT+µf(1− r)βS(ISU (s) + δIST (s))S
0ds,

IR(ξ) ≤
∫ ξ
−∞

kR+µ
ρR

eλ
−
R(ξ−s) 1

kR+µ [frβS(ISU (s) + δIST (s)) + βRIR(s)]S
0ds

+
∫ +∞
ξ

kR+µ
ρR

eλ
+
R(ξ−s) 1

kR+µ [frβS(ISU (s) + δIST (s)) + βRIR(s)]S
0ds.

(2.48)

Making further simplification of inequalities (2.48), yields
ISU (ξ) ≤ (V −1F )1

[∫ ξ
−∞

kU+µ
ρSU

eλ
−
SU (ξ−s)I(s)ds+

∫ +∞
ξ

kU+µ
ρSU

eλ
+
SU (ξ−s)I(s)ds

]
,

IST (ξ) ≤ (V −1F )2

[∫ ξ
−∞

kT+µ
ρST

eλ
−
ST (ξ−s)I(s)ds+

∫ +∞
ξ

kT+µ
ρST

eλ
+
ST (ξ−s)I(s)ds

]
,

IR(ξ) ≤ (V −1F )3

[∫ ξ
−∞

kR+µ
ρR

eλ
−
R(ξ−s)I(s)ds+

∫ +∞
ξ

kR+µ
ρR

eλ
+
R(ξ−s)I(s)ds

]
,

(2.49)
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where (V −1F )i, i = 1, 2, 3 denotes the i-th row of the matrix V −1F and

V −1F =


(1−f)βSS0

kU+µ
(1−f)βSδS0

kU+µ 0
f(1−r)βSS0

kT+µ
f(1−r)βSδS0

kT+µ 0
frβSS

0

kR+µ
frβSδS

0

kR+µ
βRS

0

kR+µ

 , I(t) =

 ISU (t)

IST (t)

IR(t)

 .

Let I0j := supξ∈R Ij(ξ), j = SU, ST,R. Then I0 := (I0SU , I
0
ST , I

0
R)

T ≥ 0 and I0 ̸= 0,
where T represents the transpose of vectors. Furthermore, by (2.49), we have

I0 ≤ (V −1F )I0. (2.50)
In subsection 2.2, we have proven that ρ(V −1F ) = ρ(FV −1) = RC . Through the Perron-

Frobenius theorem, we see that there exists a vector P = (p1, p2, p3)
T ∈ R3 with pi > 0, i =

1, 2, 3 such that (V −1F )P = RCP . As I0 is bounded, we can suppose that there exists a
constant χ > 0 such that I0 ≤ χP . Iterating inequalities (2.50), we have

I0 ≤ (V −1F )nI0 ≤ χ(V −1F )nP = χ(RC)
nP. (2.51)

When RC < 1, by selecting a sufficiently large n, we get I0 = 0, which is in contradiction
with the assumption. □

Remark 2.4. Theorem 4.1 determines whether nonnegative bounded semi-traveling waves
connecting the disease-free equilibrium E0 itself exist in the first case of Table 1 in Section 1.
The results show that the control reproduction number RC is a critical threshold determining
whether nonnegative bounded semi-traveling waves exist.

4.1.2. Case II: RRC > 1, RSC ̸= 1 and 0 < c < c∗1.

Lemma 4.2. Suppose that RC > 1, Ri ̸= 1, i = SC,RC are satisfied. For any c > 0, if
(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a nonnegative semi-traveling wave of the original system (2.3)
satisfying the asymptotic boundary condition (2.5), then there exists a positive constant η
such that

sup
ξ∈R

{|S0 − S(ξ)|e−ηξ} < +∞, sup
ξ∈R

{|Ij(ξ)|e−ηξ} < +∞, j = SU, ST,R. (2.52)

Proof : Since the nonnegative traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the original
system (2.3) satisfies the boundary condition (2.5), we have

(S(ξ), VS(ξ), ISU (ξ), VSU (ξ), IST (ξ), VST (ξ), IR(ξ), VR(ξ)) → Ē0(S0, 0, 0, 0, 0, 0, 0, 0),

as ξ → −∞.
It is easy to calculate the characteristic polynomial of the linearized system of equivalent

system (2.39) of wave equations (2.21) at Ē0 as follows
PS(λ)H(λ)PR(λ) = 0, (2.53)

where PR(λ) = dRλ
2 − cλ+ βRS

0 − (kR + µ).
When RRC ̸= 1, we know that the roots of the polynomials PS(λ) and PR(λ) have no

zero real part. Next, we determine whether the polynomial H(λ) = PSU (λ)PST (λ)− γ has a
root with zero real part. Since H(0) = PSU (0)PST (0)− γ = (kU + µ)(kT + µ)(1−RSC) ̸= 0

when RSC ̸= 1, λ = 0 is not the root of H(λ) = 0. By H(λ) = 0, we get the following quartic
polynomial of λ

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0, (2.54)
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where
a3 = − c(dSU+dST )

dSUdST
, a2 =

c2

dSUdST
+ (1−f)βSS0−(kU+µ)

dSU
+ f(1−r)βSδS0−(kT+µ)

dST
,

a1 = − c[f(1−r)βSδS0−(kT+µ)+(1−f)βSS0−(kU+µ)]
dSUdST

,

a0 =
[(1−f)βSS0−(kU+µ)][f(1−r)βSδS0−(kT+µ)]

dSUdST
− (1−f)βSδS0f(1−r)βSS0

dSUdST
.

Suppose that (2.54) has a pure imaginary root, denoted by λ = βi, β ̸= 0, then we
substitute λ = βi into (2.54), yielding

β4 − a2β
2 + a0 = 0, a1 = a3β

2. (2.55)

On account of β2 > 0 and a3 < 0, we have a1 < 0, implying

f(1− r)βSδS
0 − (kT + µ) + (1− f)βSS

0 − (kU + µ) > 0.

Combining the two equalities in (2.55), we obtain

a21 + a0a
2
3 − a1a2a3 = 0. (2.56)

Through calculation, we can get the following inequality

a21 + a0a
2
3 − a1a2a3

=− c2

d3SUd
3
ST

⌊(dSU + dST )[f(1− r)βSδS
0 − (kT + µ) + (1− f)βSS

0 − (kU + µ)]c2

+ {dSU [f(1− r)βSδS
0 − (kT + µ)]− dST [(1− f)βSS

0 − (kU + µ)]}2

+ (1− f)βSS
0f(1− r)βSδS

0(dSU + dST )
2⌋

<0, for c > 0,

which is in contradiction with (2.56). Thus, when RC > 1 and Ri ̸= 1, i = SC,RC, the
characteristic polynomial (2.53) has no roots with zero real parts for any c > 0, implying
that the equilibrium Ē0 is hyperbolic. By using stable manifold theorem in [89], we know
that there exists a positive constant η such that (2.52) holds. □

Theorem 4.3. If RRC > 1 and RSC ̸= 1 are satisfied, then for any c ∈ (0, c∗1), the origi-
nal system (2.3) has no nonnegative bounded semi-traveling waves satisfying the asymptotic
boundary condition (2.5), where c∗1 = 2

√
dR(kR + µ)(RRC − 1).

Proof : We first define the two-sided Laplace transform by

L[U(·)](λ) :=
∫ +∞

−∞
e−λtU(t)dt, (2.57)

for λ ≥ 0.
We can rewrite (2.57) as follows

L[U(·)](λ) = L−[U(·)](λ) + L+[U(·)](λ), (2.58)

where L−[U(·)](λ) :=
∫ 0
−∞ e−λtU(t)dt is referred to as the negative one-sided Laplace trans-

form (see [124]), L+[U(·)](λ) :=
∫ +∞
0 e−λtU(t)dt.

It follows from (2.58) that the convergence of L[U(·)](λ) is equivalent to that of L−[U(·)](λ)
if U(t) is bounded in [0,+∞). From the definition of L−[U(·)](λ), we can find that L−[U(·)](λ)
is increasing in [0, λ∗), where λ∗ = +∞ or λ∗ < +∞ with limλ→λ∗ L[U(·)](λ) = +∞.
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It is easy to verify that the two-sided and negative one-sided Laplace transforms have the
following properties:

L[U ′(·)](λ) = λL[U(·)](λ), L[U ′′(·)](λ) = λ2L[U(·)](λ), (2.59)

and
L−[U ′(·)](λ) = λL−[U(·)](λ) + U(0),

L−[U ′′(·)](λ) = λ2L−[U(·)](λ) + λU(0) + U ′(0).
(2.60)

Set
Ji(λ) := L[Ii(·)](λ), i = SU, ST, (2.61)

and
J−
R (λ) := L−[IR(·)](λ), (2.62)

for λ ∈ [0, λ∗i ), i = SU, ST,R. By Lemma 4.2, it follows that λ∗i ≥ η, i = SU, ST,R.
The latter three equations of wave equations (2.21) of the original system (2.3) can be

rewritten as
dSUI

′′
SU − cI ′SU + [(1− f)βSS

0 − (kU + µ)]ISU = (1− f)βS(S
0 − S)(ISU + δIST )− (1− f)βSδS

0IST ,

dST I
′′
ST − cI ′ST + [f(1− r)βSS

0 − (kT + µ)]IST = f(1− r)βS(S
0 − S)(ISU + δIST )− f(1− r)βSS

0ISU ,

dRI
′′
R − cI ′R + [βRS

0 − (kR + µ)]IR = (S0 − S)[frβS(ISU + δIST ) + βRIR]− frβSS
0(ISU + δIST ).

(2.63)

Define υ = min{PR(λ) : λ ≥ 0}, where PR(λ) = dRλ
2 − cλ+ βRS

0 − (kR + µ). It follows
from the condition 0 < c < c∗1 = 2

√
dR(kR + µ)(RRC − 1) that υ > 0. Now we suppose

that there is a nonnegative semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the original
system (2.3) satisfying the asymptotic boundary condition (2.5). According to the boundary
condition (2.5), without loss of generality, we can assume that S0 − S(ξ) < υ

2 for all ξ < 0.
By the third equation of (2.63), we get

dRI
′′
R − cI ′R + [βRS

0 − (kR + µ)]IR = βR(S
0 − S)IR − frβSS(ISU + δIST )

≤ βR(S
0 − S)IR ≤ υβR

2
IR

≤ υ

2
IR. (2.64)

Taking the negative one-sided Laplace transform of the above inequality (2.64) and making
use of the properties of L−[·] in (2.60), we obtain

PR(λ)J
−
R (λ) +Q(λ) ≤ υ

2
J−
R (λ), (2.65)

where Q(λ) = (dRλ− c)IR(0) + dRI
′
R(0). Therefore, by (2.65), we have

Ξ(λ) := [PR(λ)−
υ

2
]J−
R (λ) +Q(λ) ≤ 0. (2.66)

If λ∗R < +∞, we have limλ→λ∗−R
J−
R (λ) = +∞, which implies limλ→λ∗−R

Ξ(λ) = +∞,
which is in contradiction with (2.66). If λ∗R = +∞, since J−

R (λ) is monotonically increasing,
together with the definitions of PR(λ) and Q(λ), we have limλ→λ∗−R

Ξ(λ) = +∞, which is still
in contradiction with (2.66). □
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4.1.3. Case III: RSC > 1, RRC ̸= 1 and 0 < c < c∗2.

Lemma 4.4. For any c ∈ (0, c∗2), there is no positive real root λ∗ for

H(λ) = PSU (λ)PST (λ)− γ = 0

such that PSU (λ∗) < 0 and PST (λ∗) < 0 hold, where

c∗2 := infλ>0
P̃SU (λ)+P̃ST (λ)+

√
(P̃SU (λ)−P̃ST (λ))2+4γ
2λ ,

P̃SU (λ) = dSUλ
2 + (1− f)βSS

0 − (kU + µ),

P̃ST (λ) = dSTλ
2 + f(1− r)βSδS

0 − (kT + µ).

(2.67)

Proof : Suppose that H(λ) = 0 has a positive real root λ∗, satisfying

H(λ∗) = PSU (λ
∗)PST (λ

∗)− γ = 0, (2.68)

and
PSU (λ

∗) < 0, PST (λ
∗) < 0. (2.69)

Since 0 < c < c∗2, by the definition of c∗2 in (2.67), we have

cλ∗ <
P̃SU (λ

∗) + P̃ST (λ
∗) +

√
(P̃SU (λ∗)− P̃ST (λ∗))2 + 4γ

2
. (2.70)

Then, we obtain

0 > PSU (λ
∗) = P̃SU (λ

∗)− cλ∗ >
P̃SU (λ

∗)− P̃ST (λ
∗)−

√
(P̃SU (λ∗)− P̃ST (λ∗))2 + 4γ

2
, (2.71)

and

0 > PST (λ
∗) = P̃ST (λ

∗)− cλ∗ >
P̃ST (λ

∗)− P̃SU (λ
∗)−

√
(P̃SU (λ∗)− P̃ST (λ∗))2 + 4γ

2
. (2.72)

It follows
0 < PSU (λ

∗)PST (λ
∗) < γ, (2.73)

which is in contradiction with (2.68). □

Theorem 4.5. If RSC > 1 and RRC ̸= 1 are satisfied, then for any c ∈ (0, c∗2), the origi-
nal system (2.3) has no nonnegative bounded semi-traveling waves satisfying the asymptotic
boundary condition (2.5).

Proof : We prove the theorem by contradiction. For fixed c ∈ (0, c∗2), we suppose that
there exists a nonnegative bounded semi-traveling wave of the original system (2.3) satisfying
the asymptotic boundary condition (2.5).

Based on the definition of the two-sided Laplace transform (see (2.57)) in subsubsec-
tion 4.1.2, we take the two-sided Laplace transform of first and second equations of (2.63),
yielding {

PSU (λ)JSU (λ) = (1− f)βSG(λ)− (1− f)βSδS
0JST (λ),

PST (λ)JST (λ) = f(1− r)βSG(λ)− f(1− r)βSS
0JSU (λ),

(2.74)

where G(λ) = L[g(·)](λ), g(t) = (S0 − S)(ISU + δIST ).
Now, we illustrate λ∗i < +∞, i = SU, ST . By the first equation of (2.74), we obtain

HSU (λ) := [dSUλ
2−cλ−(kU+µ)]JSU (λ)+(1−f)βSL[S(·)(ISU (·)+δIST (·))](λ) = 0. (2.75)
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By aid of the two-sided Laplace transform in (2.57), we have

JSU (λ) > 0, (2.76)

and
L[S(·)(ISU (·) + δIST (·))](λ) > 0, (2.77)

for λ ∈ [0, λ∗SU ).
If λ∗SU = +∞, using (2.76) and (2.77), we get HSU (+∞) = +∞, which is in contradiction

with (2.75). So we can conclude that λ∗SU < +∞. Similarly, we can also prove that λ∗ST <

+∞.
Then, we show λ∗SU = λ∗ST . Assume that λ∗SU < λ∗ST , which means limλ→λ∗SU

JSU (λ) =

+∞ and limλ→λ∗SU
JST (λ) = JST (λ

∗
SU ) < +∞. From Lemma 4.2 and the definition of

the two-sided Laplace transform in (2.57), together with the boundedness of semi-traveling
waves, we know that G(λ∗SU ) < +∞, which follows that the second equation of (2.74) does
not hold. So, λ∗SU ≥ λ∗ST . On the other hand, we suppose that λ∗SU > λ∗ST , by a similar
discussion, we have λ∗SU ≤ λ∗ST . Based on the above analysis, we can get the conclusion that
λ∗ := λ∗SU = λ∗ST .

Next, let us further consider PSU (λ∗) and PST (λ
∗). If PSU (λ∗) ≥ 0, we have

PSU (λ
∗)JSU (λ

∗) + (1− f)βSδS
0JST (λ

∗) = +∞ > (1− f)βSG(λ
∗), (2.78)

which is in contradiction with the first equation of (2.74). So, we have PSU (λ∗) < 0. Similarly,
we can also prove PST (λ∗) < 0.

Finally, we multiply the first equation by the second one of (2.74), yielding

H(λ)JSU (λ)JST (λ) = f(1− f)(1− r)β2SG(λ)[G(λ)− S0(JSU (λ) + δJST (λ))]. (2.79)

Consequently, we have

H(λ∗) = lim
λ→λ∗−

=
f(1− f)(1− r)β2SG(λ)[G(λ)− S0(JSU (λ) + δJST (λ))]

JSU (λ)JST (λ)
= 0, (2.80)

which is in contradiction with Lemma 4.4. □
4.1.4. Case IV: RC > 1, Ri ̸= 1, i = SC,RC and 0 < c < min{c∗1, c∗2}. Combined with

Lemma 4.2, Theorems 4.3 and 4.5, we can give the following theorem directly.

Theorem 4.6. If RC > 1 and Ri ̸= 1, i = SC,RC hold, then for any c ∈ (0,min{c∗1, c∗2}),
the original system (2.3) has no nonnegative bounded semi-traveling waves satisfying the
asymptotic boundary condition (2.5).

4.2. Estimation of the minimal wave speed. Biologically speaking, epidemics can
spread for c ≥ cmin while they can not spread for any c < cmin, where cmin is the minimal
wave speed, an important threshold value to determine whether epidemics can spread or
not. Theorem 4.6 provides the basis for our estimation of the range of minimal wave speed.
Combining with Theorem 3.1, we can conjecture that the minimal wave speed cmin of the
original system (2.3) satisfies cmin ∈ [min{c∗1, c∗2}, c∗]. We find that the lower bound of
minimal wave speed cmin depends on the minimum value of the minimal wave speeds of its
two subsystems where IR = 0 or ISU = IST = 0, which seems to be a new phenomenon.
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5. Concluding remarks

In this chapter, we investigate a diffusive influenza system (2.1) with multiple strains.
By solving algebraic equations, we find all equilibria of the reaction system (2.2) and the
corresponding conditions that guarantee their existence (see Table 1). There are three possible
equilibria for the reaction system, i.e., two boundary equilibria (the disease-free equilibrium
E0 and the boundary equilibrium Ê) and an interior (positive) equilibrium E∗. We introduce
three parameters, RSC , RRC and RC , to determine the region where each equilibrium exists.

As we all know, traveling waves starting from the disease-free equilibrium are of biologi-
cal significance since we can get a lot of information from them, such as whether epidemics
will spread, asymptotic speed of propagation, the final state of the wavefront, etc. By intro-
ducing an auxiliary system and using the Schauder’s fixed-point theorem, we first establish
the existence of positive semi-traveling waves connecting the disease-free equilibrium E0 in
terms of RC and the critical wave speed c∗ for the original system (2.3). On the basis of the
existence of semi-traveling waves, we construct an appropriate Lyapunov function and use
LaSalle’s invariance principle to obtain the existence condition of strong traveling waves con-
necting the disease-free equilibrium E0 and boundary equilibrium Ê. In addition, persistence
theory of dynamical systems is creatively applied to prove the existence of weak (persistent)
traveling waves starting from the disease-free equilibrium E0. In view of these three types
of traveling waves, we give some biological interpretations about their analytical results in
Remarks 2.1, 2.2 and 2.3, respectively. Biologically, the existence of semi-traveling waves
connecting the disease-free equilibrium E0 indicates that the spread of influenza will occur.
The existence of strong traveling waves which connect the disease-free equilibrium E0 and
boundary equilibrium Ê indicates that there is a transition zone moving from the steady
state with no infective individuals to the steady state with only drug-resistant infected indi-
viduals. In particular, the presence of persistent traveling waves indicates that the infection
with sensitive and resistant strains does not disappear at the end of the wavefront.

By using the comparison principle and the negative one-side and two-side Laplace trans-
forms, we also prove the nonexistence of nonnegative bounded semi-traveling waves which
connects the disease-free steady state E0 itself in four cases. Our results are based on the
fact that the diffusion coefficients of five subpopulations are extremely different, implying
the research on the original system (2.3) is more biologically meaningful. In the text, we do
not give the discussion of the existence of semi-traveling waves connecting the disease-free
equilibrium E0 under the condition c = c∗. We can show that semi-traveling wave solutions
in case of c > c∗ converge to semi-traveling waves corresponding to c = c∗ by picking a
sequence {cn} satisfying cn > c∗ and cn → c∗ as n→ +∞.



CHAPTER 3

Dynamical behavior for a class of predator-prey type
eco-epidemiological systems in R3

+

In this chapter, we study a class of predator-prey type eco-epidemiological systems in R3
+

as follows: 
dS
dt = rS(1− c1S+c2I

K )(S − θ)− βI
1+αIS − bSm

(S+I)n+anP,
dI
dt =

βI
1+αIS − bIm

(S+I)n+anP − µI,
dP
dt = γ1

bSm

(S+I)n+anP + γ2
bIm

(S+I)n+anP − dP,

(3.1)

with initial conditions
S(0) ≥ 0, I(0) ≥ 0, P (0) ≥ 0, (3.2)

where r, b, d, β, µ, γ1, γ2 ∈ (0, 1); 0 < c1, c2 ≤ 1; 0 < K,α; −K
c1

≤ θ ≪ K
c1

; n,m ∈ N+,
1 ≤ m ≤ n; 0 < a < K

c1
; and γ2 < γ1.

The rest of the chapter is organized as follows. In Section 1, we provide a brief survey
of some of the relevant portions of the Conley index theory. In Section 2, we give some
preliminary results associated with the solutions of system (3.1) (also called the full system).
In Section 3, to understand the boundary dynamics of the full system, we separately analyze
the dynamical behavior of its three subsystems in R2

+. In Section 4, we carry out a detailed
analysis on the complete dynamics of the full system. Our results include the conditions for
the local and global asymptotic stability of boundary equilibria, the uniform persistence of
the full system, and certain criterion for which there is an interior periodic solution (limit
cycle) via the Poincaré map and bifurcation method. Finally, we conclude our findings and
provide potential applications in Section 5.

1. Conley index and restricted Conley index

In order to analyze and discuss the qualitative and bifurcation behaviors of system (3.1),
in this section, we give a brief introduction to the Conley index theory.

1.1. Conley index. Basic references for this material are [30, 78, 100]. The objects of
primary interest in Conley’s approach to dynamical systems are isolating neighborhoods and
their associated invariant sets.

Definition 1.1. Let φ : R×X → X be a flow on a locally compact topological space. A
compact set N ⊂ X is an isolating neighbourhood if its maximal invariant set is contained
strictly in its interior, i.e.,

Inv(N,φ) := {x ∈ N : φ(R, x) ⊂ N} ⊂ Int(N).

If S = Inv(N,φ) for some isolating neighbourhood N , then S is called an isolated invariant
set.

43
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The Conley index studies isolated invariant set S, the essential tool for this study is an
index pair for S, i.e., a compact pair (N,L), whose definition is as follows:

Definition 1.2. Let S be an isolated invariant set. A pair of compact sets (N,L) where
L ⊂ N is called an index pair for S if:
(i) S = Inv(cl(N \ L)) and N \ L is a neighborhood of S;
(ii) L is positively invariant in N ; that is, given x ∈ L and φ([0, t], x) ⊂ N , then φ([0, t], x) ⊂
L;
(iii) L is an exit set for N ; that is, given x ∈ N and tl > 0 such that φ(tl, x) /∈ N , then there
exists t0 ∈ [0, tl] for which φ([0, t0], x) ⊂ N and φ(t0, x) ∈ L.

It is shown in [30] that given an isolated invariant set S, there exists an index pair. For
an isolated invariant set S with index pair (N,L), we give the definition for the (homotopy)
Conley index of S, denoted by h(S) [30, 78, 100].

Definition 1.3. The homotopy Conley index of S is
h(S) = h(S, φ) ∼ (N/L, [L]).

The index has been defined in terms of an isolated invariant set, but it can be extended
to an index of isolating neighborhoods as follows. Let N be an isolating neighborhood. The
Conley index of N is defined to be

h(N) = h(N,φ) ∼ h(Inv(N,φ)).

Observe that the Conley index of S has been defined in terms of any index pair. Further-
more, typically an isolated invariant set possesses a multitude of isolating neighborhoods.
Therefore one needs the following theorem.

Theorem 1.4. (The Conley index is well defined). Let (N,L) and (N ′, L′) be index pairs
for an isolated invariant set S. Then

(N/L, [L]) ∼ (N ′/L′, [L′]).

Now, we state the continuation theorem for the Conley index.
Let φλ : R×X → X,λ ∈ Λ, be a continuously parameterized family of flows, where the

parameter space Λ is a compact locally contractible, connected metric space. The parame-
terized flow corresponding to the family φλ is the continuous flow,

Φ : R×X × Λ → X × Λ

(t, x, λ) 7→ Φ(t, x, λ) := (φλ(t, x), λ).

Let N ⊂ X × Λ and Nλ := N ∩ (X × {λ}).

Definition 1.5. Let λi ∈ Λ, i = 0, 1, and let Si be isolated invariant set for φλi. S0 and
S1 are related by continuation if there exists an isolating neighborhood N ⊂ X × Λ of the
parameterized flow Φ such that Inv(Nλ0 , φλ0) = S0 and Inv(Nλ1 , φλ1) = S1.

Theorem 1.6. (Continuation property). Let S0 and S1 be isolated invariant sets that
are related by continuation. Then,

h(S0) ∼ h(S1).

The most useful result about Conley index is as follows:
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Theorem 1.7. (Ważewski property). Let N be an isolating neighborhood and assume that
h(Inv(N)) ̸= 0̄. Then, Inv(N) ̸= ∅.

This result provides the simplest example of an existence result which can be obtained
via the Conley index. It also demonstrates an important point concerning the way one wishes
to view the Conley index.

The following theorem is fundamental to many significant applications of the index theory
to date. In particular, its converse is of greatest use.

Theorem 1.8. (Summation property). Assume that S = S0 ∪ S1 is an isolated invariant
set where S0 and S1 are disjoint invariant sets. Then

h(S) = h(S0) ∨ h(S1).

After the empty set, the simplest isolated invariant sets are hyperbolic fixed points. In
this case, the following standard result will be used to determine the appropriate Conley
index.

Proposition 1.9. If x0 is a hyperbolic critical point with unstable manifold W u(x0) of
dimension n, then {x0} is an isolated invariant set and h(x0) = Σn, the pointed n-sphere.

The following result gives an isolated neighbourhood:

Proposition 1.10. (see [30]). Suppose dx
dt = f(x) is a differential equation on Rn and

let V (x) be a smooth function on Rn. Suppose there is a compact set K ⊂ Rn and a constant
ε > 0 such that, for x ∈ Rn \K,

d

dt
V (x(t)) ≤ −ε∥f(x(t))∥.

Then the set of bounded solutions of the equation is compact (in particular it is isolated, so
has an index).

1.2. The restricted Conley index. The restricted Conley index is a simple general-
ization of the Conley index, which was proposed by A. F. A. Ismail [55]. Most of the content
below, please refer to [55].

Let X(Rn) be the set of C2 vector fields on Rn. Consider the flow φf (t, x) generated by
the solutions of

dx

dt
= f(x) (3.3)

where f ∈ X(Rn) is a smooth vector field on Rn.
Suppose that I is an affine subspace in Rn such that I is invariant for the flow φf generated

by (3.3). Note that this is the case if and only if x ∈ I implies that f(x) ∈ TxI (the tangent
space of I at x). We write f ∈ XI to be the subset of vector fields in X that leave I invariant.

Lemma 1.11. Suppose N ⊂ Rn is an isolating neighbourhood for f ∈ XI and N ∩ I ̸= ∅.
Then N ∩ I is an isolating neighbourhood for fI .

Definition 1.12. An isolating neighbourhood N is called an isolating block if there are
no internal tangencies of the flow to the boundary of N .

Deviating slightly from the notation we have used in Conley index, we use hf (N) to
denote the (homotopy) Conley index for the flow generated by f for the isolating block N .
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Definition 1.13. For the flow φf , we define the Conley index for N restricted to I by

hfI (N) = hfI (N ∩ I),

if N is an isolating block; and similarly

hfI (S) = hfI (S ∩ I),

if S is an isolated invariant set for the flow.

Lemma 1.14. If N is an isolating block for the flow generated by f ∈ XI and N ∩ I ̸= ∅,
then the restricted Conley index hI(N) is well defined.

Theorem 1.15. Suppose that, for some f ∈ XI , φf (t, x) has hyperbolic equilibria x1 and
x2 and that S is the set of connections between these equilibria. If S∩I is a nonempty isolated
invariant set of connections, then fI∩N is a locally gradient-like vector field. Moreover, if

hI(S) ̸= hI(x1) ∨ hI(x2)

then the connection is robust to perturbations in XI .

2. Preliminary lemmas

In this section, we show some basic results associated with system (3.1) which are neces-
sary for the understanding of subsequent results. Therefore, we have the following lemmas,
which ensure the existence, uniqueness, positivity and uniform ultimate boundedness of the
solutions of (3.1).

Lemma 2.1. Every solution of system (3.1) with initial conditions (3.2) exists and is
bounded in the interval [0,+∞) and S(t) ≥ 0, I(t) ≥ 0, P (t) ≥ 0 for all t ≥ 0.

Proof : Obviously, system (3.1) can be written as the following Kolmogorov-type differ-
ential equations 

dS
dt = Sf1(S, I, P ),
dI
dt = If2(S, I, P ),
dP
dt = Pf3(S, I, P ).

(3.4)

Since the functions f1, f2 and f3 are C1 and locally Lipschitzian in R3
+, the local existence

and uniqueness of the solution (S(t), I(t), P (t)) of system (3.1) with initial conditions (3.2)
hold, namely, it exists and is unique in the interval [0, ξ), where 0 < ξ ≤ +∞ [48]. According
to system (3.4) and nonnegative initial conditions (3.2), we have

S(t) = S(0)e
∫ t
0 f1(S(τ),I(τ),P (τ))dτ ≥ 0,

I(t) = I(0)e
∫ t
0 f2(S(τ),I(τ),P (τ))dτ ≥ 0,

P (t) = P (0)e
∫ t
0 f3(S(τ),I(τ),P (τ))dτ ≥ 0.

(3.5)

For any solution (S(t), I(t), P (t)) of (3.1) which starts in R3
+, we first prove the component

S(t) is bounded. Choose any point (S, I, P ) ∈ R3
+ such that S > K

c1
, since (S, I, P ) is positively

invariant in R3
+, we have

dS

dt
|S>K

c1

≤ rS(1− c1S + c2I

K
)(S − θ)|S>K

c1

< 0, (3.6)

which implies that S(t) is bounded, without loss of generality, we assume S(t) < Ms.
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For the component I(t), we have

dI

dt
=

βI

1 + αI
S − bIm

(S + I)n + an
P − µI ≤ β

α
Ms − µI. (3.7)

By applying the theory of differential inequality [16], we obtain

I(t) ≤ e−µtI(0) +
β

αµ
Ms(1− e−µt) ≤ max{I(0), β

αµ
Ms} :=Mi, (3.8)

which implies that I(t) is also bounded.
Now we define a time-dependent function by Z(t) = S(t) + I(t) + P (t), then the time-

derivatives of Z(t) along the solutions of (3.1) satisfy

dZ

dt
=rS(1− c1S + c2I

K
)(S − θ) + (γ1 − 1)ϕ1(S, I, P )P + (γ2 − 1)ϕ2(S, I, P )P − µI − dP

≤rS(1− c1S + c2I

K
)(S − θ)− µI − dP

=rS(1− c1S + c2I

K
)(S − θ) + dS + (d− µ)I − dZ

≤Mz − dZ, (3.9)

where Mz = max0≤S≤Ms,0≤I≤Mi{rS(1 − c1S+c2I
K )(S − θ) + dS + (d − µ)I}, and we use the

condition that 0 < γk < 1, k = 1, 2. Applying the theory of differential inequality [16] yields
Z(t) ≤ Mz

d , indicating that P (t) is also bounded.
In summary, every solution (S(t), I(t), P (t)) of (3.1) with initial conditions (3.2) is

bounded, so its existence interval is [0,+∞). □

Lemma 2.2. Assume that 0 < c2 ≤ c1 ≤ 1 and 0 ≤ c2rθ
2 ≤ 4µK, then for any ϵ > 0,

all solutions of system (3.1) initiating in R3
+ are uniformly ultimately bounded within the

region Wϵ = {(S, I, P ) ∈ R3
+ : G ≤ K + ϵ, S + I + P ≤ U

η + ϵ}, where G = c1S + c2I,
0 < η ≤ min{µ, d} and U = max0≤S≤K

c1
,0≤G≤K{S[η + r(1− G

K )(S − θ)]}.

Proof : Choose any point (S, I, P ) ∈ R3
+ such that S = K

c1
, we have dS

dt |S=K
c1
,I=0,P=0 = 0

and dS
dt |S=K

c1
,I+P>0 < 0. Together with (3.6) and the fact that system (3.1) has no equilibrium

when S > K
c1

, we obtain

lim sup
t→+∞

S(t) ≤ K

c1
. (3.10)

Now we define a time-dependent function by G(t) = c1S(t) + c2I(t), then we show that
lim supt→+∞G(t) = c1S(t) + c2I(t) ≤ K. The time-derivatives of G(t) along the solutions
of (3.1) satisfy

dG

dt
=c1

[
rS(1− G

K
)(S − θ)− ψ(S, I)− ϕ1(S, I, P )P

]
+ c2 (ψ(S, I)− ϕ2(S, I, P )P − µI)

=c1rS(1−
G

K
)(S − θ)− c2µI − (c1 − c2)ψ(S, I)− (c1ϕ1(S, I, P ) + c2ϕ2(S, I, P ))P

≤c1rS(1−
G

K
)(S − θ)− c2µI, (3.11)
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where we use the condition that 0 < c2 ≤ c1 ≤ 1. From (3.1), it follows that{
dS
dt = rS(1− c1S+c2I

K )(S − θ)− βI
1+αIS − bSm

(S+I)n+anP ≤ rS(1− c1S+c2I
K )(S − θ)− βI

1+αIS,
dI
dt =

βI
1+αIS − bIm

(S+I)n+anP − µI ≤ βI
1+αIS − µI = ( βS

1+αI − µ)I,

(3.12)
which means that the S and I’s dynamics of (3.1) can be governed by that of S-I subsystem.

When θ ≤ 0, we have dG
dt |G>K ≤ c1rS(1 − G

K )(S − θ) − c2µI|G>K < 0, which implies
lim supt→+∞G(t) ≤ K.

When θ > 0, we first assume that S(0) < θ. If βS
1+αI ≤ µ for 0 ≤ S ≤ K

c1
and I ≥

0, then (3.12) has no interior equilibrium. Moreover, there is no equilibrium on I-axis.
By Poincaré-Bendixson theorem [114], we see that any trajectory converges to a boundary
equilibrium located on S-axis. Thus, we have lim supt→+∞ I(t) = 0. Then we have S(t) ≤ θ

for all t > 0 due to the fact dS
dt |S=θ < 0. Then, the limiting system of (3.12) is dS

dt = rS(1−
c1S
K )(S−θ) with S(t) ≤ θ, which indicates limt→+∞ S(t) = 0. So, we have limt→+∞G(t) = 0.

If βS
1+αI > µ for 0 < S ≤ K

c1
and I ≥ 0, then we have

dS

dt
≤ rS(1− c1S + c2I

K
)(S − θ)− µI = rS

[
(1− c1S

K
)(S − θ)− rc2S

2 − θrc2S + µK

rKS
I

]
≤ rS(1− c1S

K
)(S − θ),

where we use the condition that 0 ≤ c2rθ
2 ≤ 4µK. Thus, we have limt→+∞G(t) = 0.

Assume S(0) = θ, then we have S(t) < θ if I(0) + P (0) > 0 or S(t) = θ if I(0) + P (0) = 0.
Similar to the above argument, we can show lim supt→+∞G(t) ≤ K.
Assume S(t) > θ for all t > 0, then we have dG

dt |G>K ≤ c1rS(1− G
K )(S − θ)− c2µI|G>K < 0,

implying that lim supt→+∞G(t) ≤ K.
With aid of (3.9), we have

dZ

dt
≤ rS(1− G

K
)(S − θ)− µI − dP.

Similarly, defining 0 < η ≤ min{µ, d}, for any ϵ > 0, there is a T large enough such that for
any t > T , we have

dZ

dt
+ ηZ ≤ S

[
η + r(1− G

K
)(S − θ)

]
+ (η − µ)I + (η − d)P ≤ Uϵ, (3.13)

where Uϵ = max0≤S≤K
c1

+ϵ,0≤G≤K+ϵ

{
S
[
η + r(1− G

K )(S − θ)
]}

. Applying the theory of dif-
ferential inequality [16] and letting ϵ→ 0, yields

lim sup
t→+∞

Z(t) = lim sup
t→+∞

{S(t) + I(t) + P (t)} ≤ U

η
, (3.14)

where U = max0≤S≤K
c1
,0≤G≤K

{
S
[
η + r(1− G

K )(S − θ)
]}

. Thus, all solutions of system (3.1)
are uniformly ultimately bounded for any initial value in R3

+. □

Remark 3.1. Due to limited resources, no interacting species grows suddenly or expo-
nentially over a long time interval. The assumption that c1 ≥ c2 implies that intra-class
competition in susceptible prey is greater than or equal to inter-class competition between
susceptible and infected preys. Compared with susceptible prey, infected one is weaker and
less competitive.
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3. Dynamics of three subsystems

To understand the boundary dynamics of the full system well, in this section, we divide
system (3.1) into three independent subsystems in R2

+: the first subsystem (S-I subsystem) is
obtained by assuming the absence of the predator, the second subsystem (S-P subsystem) is
obtained in the absence of infected prey, and the third subsystem(I-P subsystem) is obtained
by assuming the absence of susceptible prey. We first give some lemmas and definitions that
will be used in later analysis.

Lemma 3.1. (Bifurcation point). Consider a dynamical system in Rn,
dv

dt
= Φ(v, λ), (3.15)

if v0 is a hyperbolic equilibrium of system (3.15) for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ) whose
Conley index changes at λ = λ0, then (v0, λ0) is a bifurcation point of nontrivial bounded
invariant sets of system (3.15).

Proof : Based on Conley’s index theory [30], the change of Conley index of the equilibrium
v0 has the following consequences for system (3.15): {v0} ∈ Rn is an isolated invariant set
of (3.15) for all λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ) and let Nϵ ⊂ Bϵ(v0) ⊂ Rn be an isolating
neighborhood of {v0} for (3.15) with λ = λ0 ± ϵ, 0 < ϵ < δ. Then there is some λ̃ ∈ (λ0 −
ϵ, λ0 + ϵ) such that (3.15) has a global solution whose trajectory is in Nϵ for all t ∈ (−∞,∞)

and touches the boundary of Nϵ at some t. If there were no such λ̃ ∈ (λ0− ϵ, λ0+ ϵ), then Nϵ

would define a continuation from λ0− ϵ to λ0+ ϵ, and the Conley indices would be the same,
contradicting with hypothesis. The union of all such bounded trajectories forms a nontrivial
bounded invariant set in Nϵ ⊂ Bϵ(v0) for (3.15) with λ̃ ∈ (λ0 − ϵ, λ0 + ϵ). Since 0 < ϵ < δ is
arbitrary, we can say that (v0, λ0) is a bifurcation point of nontrivial bounded invariant sets
of system (3.15). □

Remark 3.2. In other words, any change of the local Conley index of DvΦ(v0, λ) at
λ = λ0 implies bifurcation of system (3.15) at λ = λ0.

Remark 3.3. Generally speaking, the Conley index remains the same under a change of
the parameter λ, that is, h(v0, λ1) = h(v0, λ2). If the Conley index of the equilibrium v0 has
changed, then for some intermediate value of the parameter λ ∈ (λ, λ), the neighbourhood
N has ceased to be isolating. Recall that the violation of the condition of being isolating
is equivalent to the existence of a boundary point v̄ ∈ ∂N such that the trajectory passing
through it is entirely contained in N . But the converse statement is not true. If the condition
of being isolating is violated for some value of λ, Conley’s theory ceases to work and cannot
give a definite answer as to whether or not the index will change.

One of the most illustrative extensions of Lemma 3.1 is the bifurcation of the birth of
a cycle on a plane when for each value of the parameter λ ∈ [λ, λ] there is exactly one
equilibrium with complex multipliers β1(λ)± iβ2(λ). Next we give a proposition of the Hopf
bifurcation in the plane by using Conley index.

Proposition 3.2. (Hopf bifurcation). Consider a planar system in R2{ dx
dt = g1(x, y, λ),
dy
dt = g2(x, y, λ),

(3.16)
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where g1 and g2 are smooth. Suppose that (x0, y0) is a hyperbolic equilibrium of system (3.16)
for λ ∈ (λ, λ0)∪ (λ0, λ) whose Conley index changes transversely from Σ0 at λ ∈ (λ, λ0) to Σ2

at λ ∈ (λ0, λ) (wherein the transverse change refers to dβ1(λ)
dλ |λ=λ0 ̸= 0), then system (3.16)

undergoes a Hopf bifurcation at (x0, y0, λ0). Moreover, if the Conley index of (x0, y0) at
λ = λ0 is Σ0, the Hopf bifurcation is supercritical; if the Conley index of (x0, y0) at λ = λ0
is Σ2, the Hopf bifurcation is subcritical; if the Conley index of (x0, y0) at λ = λ0 is 0̄, the
Hopf bifurcation is degenerate.

Proof : Obviously, (x0, y0, λ0) is a bifurcation point of system (3.16), see Lemma 3.1.
Since the equilibrium (x0, y0) is hyperbolic for λ ∈ (λ, λ0) ∪ (λ0, λ) and its Conley index
changes from Σ0 in λ < λ0 to Σ2 in λ > λ0, it follows that the real part of the multipliers,
i.e., β1(λ), changes sign from minus to plus, resulting in the attracting point turning into
a repelling one. Since β1(λ) is C1 function of the parameter λ, the non-hyperbolicity and
transversality conditions are satisfied. If the standard ϵ-neighbourhood of the equilibrium is
fixed in such a way that it is isolating for both λ = λ and λ = λ, then for λ = λ0 it will cease
to be isolating, and this will mean that a closed trajectory entirely lying in this neighborhood
passes through some boundary point of the neighborhood. It is clear that this is a limit
cycle, since there can be nothing else due to dimensional settings. Thus, the Hopf bifurcation
occurs at (x0, y0, λ0). By the Hopf bifurcation theorem in [28], we see that the type of this
bifurcation (super- or subcritical) is determined by the stability of the equilibrium (x0, y0) at
λ = λ0. If the Conley index of (x0, y0) at λ = λ0 is Σ0, this implies that (x0, y0) at λ = λ0
is a weak attractor. So, we conclude that there is a supercritical Hopf bifurcation at this
Hopf point. Similarly, we can show the Hopf bifurcation is subcritical if the Conley index of
(x0, y0) at λ = λ0 is Σ2. If the Conley index of (x0, y0) at λ = λ0 is 0̄, this suggests (x0, y0) is
neither attractive nor repulsive, thus a degenerate Hopf bifurcation takes place at λ = λ0. □

Different types of solutions can be found for these subsystems, so we introduce the fol-
lowing definitions:

Definition 3.3. (Heteroclinic orbit). A solution curve v(t) of system (3.15) is called
a heteroclinic orbit between equilibria if it connects two equilibria v1 ̸= v2. In this case,
α(v(0)) = v1 and ω(v(0)) = v2, where α(·) and ω(·) are called α- and ω- limit sets, respectively.

Definition 3.4. (Bifurcation point of heteroclinic orbits). Consider the parametrized
family of differential equations (3.15) and choose a point (v0, λ0) ∈ Rn × R such that
Φ(v0, λ0) = 0. This point (v0, λ0) is said to be a bifurcation point of heteroclinic orbits
of (3.15) if for any open neighborhood V of (v0, λ0) ∈ Rn ×R there exists a heteroclinic orbit
of (3.15) included in V.

Definition 3.5. (Heteroclinic cycle). A finite collection Ξ of heteroclinic orbits which
connect a finite number of equilibria {v1, v2, · · · , vn} in a cycle for system (3.15) is called a
heteroclinic cycle. That is

v1 → v2 → · · · → vn → v1

where vi → vj means there exists (at least one) heteroclinic orbit from vi to vj for all i, j ∈ N+.

In the following, we perform a detailed analysis for the complete dynamics of each sub-
system.
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3.1. S-I subsystem. The S-I subsystem in the absence of predation in (3.1) is repre-
sented as

X1
ζ :

{
dS
dt = rS(1− c1S+c2I

K )(S − θ)− βI
1+αIS,

dI
dt =

βI
1+αIS − µI,

(3.17)

where ζ ∈ ℵ =
{
(r,K, α, c1, c2, β, µ, θ) ∈ R3

+ × (0, 1]4 × (−K
c1
, Kc1 ) : c1 ≥ c2

}
.

System (3.17) or vector field X1
ζ is defined in the set:

Ω1 =
{
(S, I) ∈ R2

+ : 0 ≤ c1S + c2I ≤ K
}
.

In order to reduce the number of parameters and make an adequate description of dynamical
behavior of system (3.17), we follow the methodology used in [1], making a change of variables
and time rescaling given by the function: φ1 : Ω̃1 × R → Ω1 × R such that

φ1(s, i, τ) =

(
K

c1
s,
K

c2
i,
c1
rK

αKi+ c2
αK

τ

)
= (S, I, t),

where Ω̃1 = {(s, i) ∈ R2
+ : 0 ≤ s + i ≤ 1}. We have detDφ1(s, i, τ) > 0, that is, φ1 is a

diffeomorphism preserving the orientation of the time. In the new coordinates, the vector field
Y 1
ζ
= φ1 ◦X1

ζ is topologically equivalent to the vector field X1
ζ , and its associated differential

equations are given by

Y 1
ζ
:

{
ds
dτ = [(1− s− i)(s−Θ)(i+A)−B1i] s,
di
dτ = B2 [s− C(i+A)] i,

(3.18)

where A = c2
αK , B1 =

βc1
αrK , B2 =

βc2
αrK , C = µαc1

βc2
and Θ = θc1

K , with

ζ = (Θ, A,B1, B2, C) ∈ (−1, 1)× R4
+.

Since φ1 is a diffeomorphism, system (3.18) has the same qualitative behavior as sys-
tem (3.17). The equilibria of (3.18) in Ω̃1 are E1

0(0, 0), E
1
1(1, 0) which always exist, E1

Θ(Θ, 0)

whose existence depends on the value of Θ, and the positive equilibria satisfying the equations
of the isoclines {

(1− s− i)(s−Θ)(i+A)−B1i = 0,

s− C(i+A) = 0,
(3.19)

By the second equation of (3.19), if AC ≥ 1, we have i = s−AC
C ≤ 0 in Ω̃1, indicating that

system (3.18) has no positive equilibrium. So, in the following we only discuss the case where
AC < 1.

By solving (3.19), we see that the abscissa of the positive equilibria satisfies the following
cubic equation:
Q(s) = (C + 1)s3 − [Θ(C + 1) + C(A+ 1)] s2 + C [Θ(A+ 1) +B1] s−AB1C

2 = 0. (3.20)

Lemma 3.6. For system (3.18) or vector field Y 1
ζ

, if AC < 1, we have:
(i) when Θ < AC, system (3.18) has a unique positive equilibrium (s∗, i∗) where s∗ ∈

(AC, C(A+1)
C+1 );

(ii) when Θ = AC, if ∆̃1 < 0 or ∆̃1 = 0 and s̃∗ ≤ AC or ∆̃1 > 0 and s̃+ ≤ AC,
system (3.18) has no positive equilibrium;
if ∆̃1 = 0 and s̃∗ > AC, system (3.18) has a unique positive equilibrium (s̃∗, ĩ∗);
if ∆̃1 > 0 and s̃− ≤ AC < s̃+, system (3.18) has a unique positive equilibrium
(s̃+, ĩ+);
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if ∆̃1 > 0 and AC < s̃−, system (3.18) has two different positive equilibria (s̃−, ĩ−)

and (s̃+, ĩ+); where
s̃∗ = C(A+1)

2(C+1) , ∆̃1 = C2(A+ 1)2 − 4B1C(C + 1), s̃± = C(A+1)±
√

∆̃1

2(C+1) ;

(iii) when AC < Θ < C(A+1)
C+1 or Θ > C(A+1)

C+1 ,
if ∆1 < 0, system (3.18) has no positive equilibrium;
if ∆1 = 0, system (3.18) has a unique positive equilibrium (s∗, i

∗
);

if ∆1 > 0, system (3.18) has two different positive equilibria (s−, i−) and (s+, i+);
where

s∗ = Θ(C+1)+C(A+1)−s̄0(C+1)
2(C+1) ∈ (Θ, C(A+1)

C+1 ) or (C(A+1)
C+1 ,Θ),

∆1 = [Θ(C + 1) + C(A+ 1)− s̄0(C + 1)]2 + 4(C + 1)AC(s̄0−Θ)[(C+1)s̄0−(A+1)C]
s̄0−AC ,

s± = [Θ(C+1)+C(A+1)−s̄0(C+1)]±
√

∆1

2(C+1) ∈ (Θ, C(A+1)
C+1 ) or (C(A+1)

C+1 ,Θ),

s̄0 is a real positive root of (3.20), which always exists in the interval (0, AC);
(iv) when Θ = C(A+1)

C+1 , system (3.18) has no positive equilibrium.

Proof : To obtain the number of positive equilibria of system (3.18), we can rewrite (3.20)
as f(s) − h(s) = 0, where f(s) = s(s − Θ) [C(A+ 1)− (C + 1)s] and h(s) = B1C(s − AC).
Obviously, f(s) has three roots 0,Θ and C(A+1)

C+1 , and h(s) intersects the positive s-axis at
s = AC. Through graph analysis, we easily obtain the results of (i) and (iv).

s

y(s)

Θ AC C(A+1)
C+1

1s∗

f(s)

h(s)

Next, we give the proof of (ii). When Θ = AC, the curves f(s) and h(s) intersect at
s = AC. So, Q(s) can be rewritten as Q(s) = (s−AC)[(C + 1)s2 −C(A+ 1)s+B1C]. This
implies that in addition to the root s = AC, the remaining roots of Q(s) = 0 are determined
by the quadratic equation

(C + 1)s2 − C(A+ 1)s+B1C = 0. (3.21)

Let ∆̃1 = C2(A+ 1)2 − 4B1C(C + 1).
If ∆̃1 < 0, (3.21) has no real root, implying that system (3.18) has no positive equilibrium.
If ∆̃1 = 0, (3.21) has a positive real root s̃∗ with multiplicity 2. In this case, if s̃∗ > AC

(i.e., A(2C + 1) < 1), system (3.18) has a unique positive equilibrium (s̃∗, ĩ∗); otherwise,
system (3.18) has no positive equilibrium.

If ∆̃1 > 0, (3.21) has two different positive real roots s̃±. In this case, if AC < s̃−,
system (3.18) has two different positive equilibria (s̃−, ĩ−) and (s̃+, ĩ+); if s̃− ≤ AC < s̃+,
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system (3.18) has a unique positive equilibrium (s̃+, ĩ+); if s̃+ ≤ AC, system (3.18) has no
positive equilibrium.

Finally, we prove the results of (iii). When AC < Θ < C(A+1)
C+1 or Θ > C(A+1)

C+1 , we see
that (3.20) always has a positive real root lying in interval (0, AC), denoted by s̄0. Dividing
the polynomial Q(s) by s− s̄0, yields Q(s) = (s− s̄0)Q1(s), where

Q1(s) =(C + 1)s2 − [Θ(C + 1) + C(A+ 1)− s̄0(C + 1)] s+ΘC(A+ 1)

+B1C − s̄0 [Θ(C + 1) + C(A+ 1)− s̄0(C + 1)] (3.22)

is a factor of Q(s). By the expression (3.20) of Q(s), we have

R(s) = s̄0 {ΘC(A+ 1) +B1C − s̄0 [Θ(C + 1) + C(A+ 1)− s̄0(C + 1)]} −AB1C
2 = 0.

Then, we can solve B1 = s̄0{s̄0[Θ(C+1)+C(A+1)−s̄0(C+1)]−ΘC(A+1)}
C(s̄0−AC) . Substituting it into (3.22),

we have

Q1(s) = (C + 1)s2 − [Θ(C + 1) + C(A+ 1)− s̄0(C + 1)] s− AC(s̄0−Θ)[(C+1)s̄0−(A+1)C]
s̄0−AC .

(3.23)
In addition to the positive real root s̄0, the number of the remaining roots of (3.20) will be
determined by that of the roots of (3.23). To this end, we define

∆1 = [Θ(C + 1) + C(A+ 1)− s̄(C + 1)]
2
+ 4(C + 1)

AC(s̄−Θ) [(C + 1)s̄− (A+ 1)C]

s̄−AC
.

Considering the sign of ∆1, we conclude that
(a) if ∆1 < 0, (3.23) has no real root, implying that system (3.18) has no positive

equilibrium;
(b) if ∆1 = 0, (3.23) has one positive real root s∗ with multiplicity two, indicating that

system (3.18) has a unique positive equilibrium (s∗, i
∗
);

(c) if ∆1 > 0, (3.23) has two different positive real roots s±, meaning that system (3.18)
has two different positive equilibria (s−, i−) and (s+, i+). □

To determine the local nature of equilibria, we first give the Jacobian matrix of sys-
tem (3.18) at any point (s, i) as follows:

J1(s, i) =

(
J1(s, i)11 J1(s, i)12
J1(s, i)21 J1(s, i)22

)
, (3.24)

where
J1(s, i)11 = (1− s− i)(s−Θ)(i+A)−B1i+ s(i+A)(Θ + 1− 2s− i),

J1(s, i)12 = s(s−Θ)(1−A−s−2i)−B1s, J1(s, i)21 = B2i, J1(s, i)22 = B2[s−C(2i+A)].
It is clear that the equilibrium (s, i) is an elementary equilibrium, a hyperbolic saddle or a

degenerated equilibrium if det(J1(s, i)) ̸= 0, det(J1(s, i)) < 0 or det(J1(s, i)) = 0, respectively.
After substituting E1

1(1, 0) into (3.24), we obtain its stability by computing the corre-
sponding eigenvalues: E1

1 is locally asymptotically stable (node) if AC > 1, it is a hyperbolic
saddle if AC < 1, and it is a stable saddle-node if AC = 1. Both the eigenvalues associated
with (3.24) at E1

1 are ρ1 = A(Θ−1)(< 0) and ρ2 = B2(1−AC). As the existence or stability
of the equilibria E1

0(0, 0) and E1
Θ(Θ, 0) depends on the value of Θ, we discuss them in the

following two cases.
Case: Θ > 0

(I) E1
0 is always locally asymptotically stable (node), because both the eigenvalues asso-

ciated with (3.24) at E1
0 are ρ1 = −ΘA(< 0) and ρ2 = −AB2C(< 0);
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(II) E1
Θ is an unstable node if Θ > AC, it is a hyperbolic saddle if Θ < AC, and it is

an unstable saddle-node if Θ = AC. Both the eigenvalues associated with (3.24) at E1
Θ are

ρ1 = AΘ(1−Θ)(> 0) and ρ2 = B2(Θ−AC);
Case: Θ ≤ 0

(I) E1
0 is a hyperbolic saddle if −1 < Θ < 0, and it is a stable saddle-node if Θ = 0. Both

the eigenvalues associated with (3.24) at E1
0 are given by

ρ1 = −ΘA

{
> 0, if − 1 < Θ < 0,

= 0, if Θ = 0.
and ρ2 = −AB2C(< 0).

Let us consider the local stability of positive equilibria. First, we consider the case
where there is a unique positive equilibrium, denoted by E1

−(s̄, ī) (̄i = s̄−AC
C , s̄ > AC), for

system (3.18). The Jacobian matrix at E1
−(s̄, ī) is

J1(E
1
−(s̄, ī)) =

(
J1(E

1
−(s̄, ī))11 J1(E

1
−(s̄, ī))12

J1(E
1
−(s̄, ī))21 J1(E

1
−(s̄, ī))22

)
, (3.25)

where
J1(E

1
−(s̄, ī))11 =

s̄2

C2 [(Θ +A+ 1)C − (2C + 1)s̄] ,

J1(E
1
−(s̄, ī))12 =

s̄
C {(s̄−Θ)[(A+ 1)C − (C + 2)s̄]−B1C},

J1(E
1
−(s̄, ī))21 =

B2(s̄−AC)
C , J1(E

1
−(s̄, ī))22 = B2(AC − s̄).

Then, we have
det(J1(E

1
−(s̄, ī)))

=− B2s̄

C2
(s̄−AC)

{
−3(C + 1)s̄2 + 2 [Θ(C + 1) + (A+ 1)C] s̄−ΘC(A+ 1)−B1C

}
=
B2s̄

C2
(s̄−AC)[h′(s̄)− f ′(s̄)] ≥ 0, (3.26)

and the trace is given by

tr(J1(E
1
−(s̄, ī))) =

s̄2

C2
[(Θ +A+ 1)C − (2C + 1)s̄] +B2(AC − s̄)

=
1

C2
{s̄2[(Θ +A+ 1)C − (2C + 1)s̄]−B2C

2(s̄−AC)}. (3.27)

If tr(J1(E1
−(s̄, ī))) = 0, then B2 = B∗

2 := s̄2[(Θ+A+1)C−(2C+1)s̄]
C2(s̄−AC)

. Since s̄ > AC and B2 > 0,
we have AC < Θ+1

2 . Let ∆1 = (tr(J1(E
1
−(s̄, ī))))

2 − 4 det(J1(E
1
−(s̄, ī))). For system (3.18),

the unique positive equilibrium E1
−(s̄, ī) has the following properties:

Lemma 3.7. Let E1
−(s̄, ī) be the unique positive equilibrium of (3.18), if 0 < AC < Θ+1

2 ,
then we have
(I) If det(J1(E1

−(s̄, ī))) > 0, and
(i) If tr(J1(E1

−(s̄, ī))) < 0, i.e., B2 > B∗
2 , then it is an attractor. Furthermore,

(i.1) It is an attractor node if ∆1 > 0,
(i.2) It is an attractor focus if ∆1 < 0;

(ii) If tr(J1(E1
−(s̄, ī))) > 0, i.e., B2 < B∗

2 , then it is a repeller. Furthermore,
(ii.1) It is a repeller node if ∆1 > 0,
(ii.2) It is a repeller focus if ∆1 < 0;

(iii) If tr(J1(E1
−(s̄, ī))) = 0, i.e., B2 = B∗

2 , then it is a weak focus (center).
(II) If det(J1(E1

−(s̄, ī))) = 0, and
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(i) If tr(J1(E1
−(s̄, ī))) < 0, i.e., B2 > B∗

2 , then it is a stable saddle-node;
(ii) If tr(J1(E1

−(s̄, ī))) > 0, i.e., B2 < B∗
2 , then it is an unstable saddle-node;

(iii) If tr(J1(E1
−(s̄, ī))) = 0, i.e., B2 = B∗

2 , then it is a cusp (i.e., Bogdanov-Takens
bifurcation point).

Let E1
−1(s̄1, ī1) and E1

−2(s̄2, ī2) be two different positive equilibria of (3.18), where AC <

s̄1 < s̄2, ī1,2 = s̄1,2−AC
C . Then, we have

det(J1(E
1
−1(s̄1, ī1))) =

B2s̄1(s̄1 −AC)

C2
(h′(s̄1)− f ′(s̄1)) < 0,

and
det(J1(E

1
−2(s̄2, ī2))) =

B2s̄2(s̄2 −AC)

C2
(h′(s̄2)− f ′(s̄2)) > 0,

and the trace of J1(E1
−2(s̄2, ī2) is given by

tr(J1(E
1
−2(s̄2, ī2)) =

1

C2

{
s̄22 [(Θ +A+ 1)C − (2C + 1)s̄2]−B2C

2(s̄2 −AC)
}
.

Let ∆12 = (tr(J1(E
1
−2(s̄2, ī2)))

2 − 4 det(J1(E
1
−2(s̄2, ī2)) and B∗

22 =
s̄22[(Θ+A+1)C−(2C+1)s̄2]

C2(s̄2−AC)
. For

system (3.18), the positive equilibria E1
−1(s̄1, ī1) and E1

−2(s̄2, ī2) have the following properties:

Lemma 3.8. Let E1
−1(s̄1, ī1) and E1

−2(s̄2, ī2) be the two different positive equilibria of
system (3.18), then we have
(I) The positive equilibrium E1

−1(s̄1, ī1) is always a saddle;
(II) For the positive equilibrium E1

−2(s̄2, ī2), if 0 < AC < Θ+1
2 , and

(i) If tr(J1(E1
−2(s̄2, ī2))) < 0, i.e., B2 > B∗

22, then it is an attractor. Furthermore,
(i.1) It is an attractor node if ∆12 > 0,
(i.2) It is an attractor focus if ∆12 < 0;

(ii) If tr(J1(E1
−2(s̄2, ī2))) > 0, i.e., B2 < B∗

22, then it is a repeller. Furthermore,
(ii.1) It is a repeller node, if ∆12 > 0,
(ii.2) It is a repeller focus if ∆12 < 0;

(iii) If tr(J1(E1
−2(s̄2, ī2))) = 0, i.e., B2 = B∗

22, then it is a weak focus (center).

Remark 3.4. According to Lemma 3.1, we see that the points
(E1

0 ,Θ) = (E1
0 , 0), (E1

Θ,Θ) = (E1
Θ, AC),

(E1
1 , A) = (E1

1 ,
1

C
), (E1

−, B2) = (E1
−, B

∗
2), (E1

−2, B2) = (E1
−2, B

∗
22)

are all bifurcation points of system (3.18). When the parameter Θ cross the critical value 0
from the left, a new boundary equilibrium E1

Θ occurs.

Proposition 3.9. Let E1
−(s̄, ī) be the unique positive equilibrium of system (3.18). As-

sume that det(J1(E
1
−(s̄, ī))) > 0, 0 < AC < Θ+1

2 and B2 > B∗
2 . If Θ ≤ 0 and B2C ≥

B1 −Θ(A+ 1), then E1
−(s̄, ī) is globally asymptotically stable.

Proof : According to Lemma 3.7, if 0 < AC < Θ+1
2 , det(J1(E1

−(s̄, ī))) > 0 and B2 > B∗
2 ,

we see that the equilibrium E1
−(s̄, ī) is locally asymptotically stable. To examine the global

behavior of E1
−(s̄, ī), we use Dulac theorem to exclude the limit cycle. Let V = 1

s2i
(a Dulac

function), if Θ ≤ 0 and B2C ≥ B1 −Θ(A+ 1), then we have
∂V F1

∂s
+
∂V F2

∂i
=

1

s2i

[
(i+A)(Θ− s2)−Θi2 − (ΘA+B2C −B1)i

]
≤ 0.
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where
F1 = [(1− s− i)(s−Θ)(i+A)−B1i]s, F2 = B2[s− C(i+A)]i.

So, system (3.18) has no limit cycle in R2
+, which implies E1

−(s̄, ī) is globally asymptotically
stable. □

Corollary 3.10. Let E1
−(s̄, ī) be the unique positive equilibrium of system (3.18), sup-

pose that det(J1(E
1
−(s̄, ī))) > 0 and 0 < AC < Θ+1

2 , then system (3.18) undergoes a Hopf
bifurcation at E1

−(s̄, ī) at B2 = B∗
2 . When h(E1

−(s̄, ī), B
∗
2) = Σ0, the direction of the Hopf

bifurcation is supercritical and the bifurcating periodic solutions are orbitally asymptotically
stable; when h(E1

−(s̄, ī), B
∗
2) = Σ2, the direction of the Hopf bifurcation is subcritical and the

bifurcating periodic solutions are unstable.

Proof : Obviously, the equilibrium E1
−(s̄, ī) is hyperbolic when B2 ̸= B∗

2 , and its Conley
index changes transversely from Σ0 at B2 > B∗

2 to Σ2 at B2 < B∗
2 . From Proposition 3.2, we

conclude that a Hopf bifurcation occurs at E1
−(s̄, ī) for the bifurcation value B2 = B∗

2 , whose
type depends the Conley index of E1

−(s̄, ī) at B2 = B∗
2 . □

Remark 3.5. Similarly, if system (3.18) has two different positive equilibria E1
−1(s̄1, ī1)

and E1
−2(s̄2, ī2), then a Hopf bifurcation occurs at E1

−2(s̄2, ī2) for B2 = B∗
22. In addition,

suppose det(J1(E
1
−(s̄, ī))) = 0 and 0 < AC < Θ+1

2 , system (3.18) may undergo a Bogdanov-
Takens bifurcation of codimension 2 around E1

−(s̄, ī) when B2 = B∗
2 , refer to [95, 125] for its

detailed analysis.

Finally, we give some results concerning the existence of heteroclinic orbits, a bifurcation
point of heteroclinic orbits, and a heteroclinic cycle for system (3.18).

Proposition 3.11. For system (3.18): (i) If Θ ∈ (0, 1), there exist two heteroclinic
orbits γ(1)(t) and γ(2)(t) satisfying α(γ(1)(t)) = α(γ(2)(t)) = E1

Θ, ω(γ(1)(t)) = E1
0 and

ω(γ(2)(t)) = E1
1 ;

(ii) If Θ ∈ (−1, 0], there is a heteroclinic orbit γ(3)(t) satisfying α(γ(3)(t)) = E1
0 and

ω(γ(3)(t)) = E1
1 ;

(iii) The point (E1
0 ,Θ) = (E1

0 , 0) is a bifurcation point of heteroclinic orbits of (3.18).

Proof : Since three heteroclinic orbits in (i) and (ii) locate on the s-axis (denoted by Is),
we use the restricted Conley index (see subsection 1.2) to complete their proof.

(i) Fix Θ ∈ (0, 1), the restricted Conley indices of three equilibria are given by

hIs(E
1
0) = Σ0, hIs(E

1
Θ) = Σ1, hIs(E

1
1) = Σ0.

Now, let us consider two intervals G′ = [Θ−1
2 , Θ+1

2 ] ∈ R and G′′ = [Θ2 ,
Θ+2
2 ] ∈ R. G′ can

be viewed as the intersection of the invariant subspace Is and some isolating neighborhood
K ′ including {E1

0 , E
1
Θ} in R2, so G′′ is, i.e., G′′ = Is ∩ K ′′ where {E1

Θ, E
1
1} ⊂ K ′′ ⊂ R2.

Computing the restricted Conley indices of K ′ and K ′′, we obtain hIs(K
′) = hIs(K

′′) = 0̄.
From the summation property of the restricted Conley index, we obtain hIs(E

1
0 ∪ E1

Θ) =

hIs(E
1
0) ∨ hIs(E1

Θ) = Σ0 ∨ Σ1 and similarly hIs(E1
Θ ∪ E1

1) = Σ0 ∨ Σ1.
Since hIs(K ′) = 0̄ ̸= Σ0∨Σ1 = hIs(E

1
0 ∪E1

Θ), we determine the existence of a heteroclinic
connection of system (3.18), denoted by γ(1)(t) and lying in the interior of G′. Moreover,
the equilibria E1

0 and E1
Θ are its ω− and α− limit sets, respectively. Analogously for G′′, we

conclude that there exists a heteroclinic orbit, say γ(2)(t), included in the interior of G′′.
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(ii) The proof is similar to that of (i).
(iii) Let (Dk) be a descending sequence of discs in R2 centered at E1

0 such that ∩Dk =

{E1
0}. Now, for each k ∈ N+ there exists an isolating block Bk ⊆ Dk of E1

0 . By Definition 3.4,
it is sufficient to show that for every open neighborhood U of (E1

0 , 0) ∈ R3 there exists
a heteroclinic orbit of (3.18). Fix an open neighborhood U of (E1

0 , 0) ∈ R3. Since Bk is
compact, we obtain Bk × (−ϵ, ϵ) ⊂ U if k ∈ N+ is sufficiently large and ϵ > 0 is small
enough. Let Θ ∈ (0, ϵ), then Bk × {Θ} is an isolating block for some invariant set containing
E1

0 and E1
Θ. Since hIs(Bk × {Θ}) = 0̄, hIs(E1

0 × {Θ}) = h((E1
0 ∩ Is) × {Θ}) = Σ0 and

hIs(E
1
Θ × {Θ}) = h((E1

Θ ∩ Is)× {Θ}) = Σ1, we obtain the existence of a heteroclinic orbit in
Bk × {Θ} ⊂ U . □

Remark 3.6. Let E1
−(s̄, ī) be the unique positive equilibrium of (3.18), a heteroclinic cycle

(loop) γh = (Θ, 0) ∪ γΘ1 ∪ (1, 0) ∪ γ1Θ exists for certain parameter values, wherein γ1Θ lies
above the s-axis.

3.2. S-P subsystem. The S-P subsystem in the absence of the disease in (3.1) is pre-
sented as

X2
π :

{
dS
dt = rS(1− c1S

K )(S − θ)− bSm

Sn+anP,
dP
dt = γ1

bSm

Sn+anP − dP,
(3.28)

where π ∈ Γ =
{
(r,K, a, b, c1, γ1, d,m, n, θ) ∈ R2

+ × (0, Kc1 )× (0, 1]4 × N2
+ × (−K

c1
, Kc1 ) : n ≥ m ≥ 1

}
.

Let h̃(x) = bxm

xn+an . If n = m, h̃(x) is monotonically increasing in [0,∞). Particularly, the
functions corresponding to n = 1, 2 are respectively called Holling types II and III [53], and
h̃(x) with n > 2 is also biologically significant [92].

If n > m, h̃(x) is non-monotonic. When n = 2,m = 1, h̃(x) = bx
x2+a2

is known as Holling
type IV functional response (or called a simplified Monod-Haldane function) [101]. Through
calculation, we have h̃′(x) = bx

m−1[man−(n−m)xn]
(xn+an)2

, and
h̃′′(x) = bx

m−2[(n−m)(n−m+1)x2n+(2m2−n2−2mn−2m+n)anxn+m(m−1)a2n]
(xn+an)3

.

Thus, the function h̃(x) has a maximum value for x = a n

√
m

n−m and one inflexion point
for m = 1, or two for m > 1. For fixed n, the properties of h̃(x) depending on m may have
an impact on the dynamics of S-P subsystem and full system.
System (3.28) or vector field X2

π is defined in

Ω2 =

{
(S, P ) ∈ R2 : 0 ≤ S ≤ K

c1
, P ≥ 0

}
.

We construct the diffeomorphism transformation φ2 : Ω̃2 × R → Ω2 × R such that

φ2(s, p, τ) =

(
K

c1
s,
r

b
(
K

c1
)n−m+2p,

c1
rK

(Ks)n + (ac1)
n

Kn
τ

)
= (S, P, t)

with Ω̃2 =
{
(s, p) ∈ R2 : 0 ≤ s ≤ 1, p ≥ 0

}
.

The transformed differential equations are given by

Y
2
π :

{ ds
dτ =

[
(1− s)(s−Θ)(sn +D)− sm−1p

]
s := f (1)(s, p),

dp
dτ = E [sm − F (sn +D)] p := f (2)(s, p),

(3.29)

where D = (ac1K )n, E = γ1b
r ( c1K )n−m+1, F = d

γ1b
(Kc1 )

n−m and Θ = θc1
K , with

π ∈ Γ =
{
(D,E, F,m, n,Θ) ∈ (0, 1)× R2

+ × N2
+ × (−1, 1) : n ≥ m ≥ 1

}
.
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The equilibria of system (3.29) in Ω̃2 are always on the curve p = 1
F s(1− s)(s−Θ) and

they are E2
0(0, 0), E

2
1(1, 0) which always exist, E2

Θ(Θ, 0) depending on the value of Θ, and
those whose s-component satisfies sm − F (sn +D) = 0. The Jacobian matrix or variational
matrix of system (3.29) at any point (s, p) is given by

J2(s, p) =

(
J2(s, p)11 J2(s, p)12
J2(s, p)21 J2(s, p)22

)
, (3.30)

where

J2(s, p)11 =− (n+ 3)sn+2 + (Θ + 1)(n+ 2)sn+1 −Θ(n+ 1)sn −msm−1p

− 3Ds2 + 2D(Θ + 1)s−ΘD,

J2(s, p)12 =− sm, J2(s, p)21 = E(msm−1 − nFsn−1)p, J2(s, p)22 = E[sm − F (sn +D)].

3.2.1. Local stability of boundary equilibria. Substituting E2
1(1, 0) into (3.30), yields that

both the eigenvalues associated with (3.30) at E2
1 are ρ1 = (Θ − 1)(D + 1)(< 0) and ρ2 =

E[1 − F (D + 1)]. So E2
1 is locally asymptotically stable (node) if 1 − F (D + 1) < 0, it is a

hyperbolic saddle if 1 − F (D + 1) > 0, and it is a stable saddle-node if 1 − F (D + 1) = 0.
As the existence or stability of E2

0(0, 0) and E2
Θ(Θ, 0) depends on the value of Θ, we discuss

them in two situations:
Case: Θ > 0

(I) E2
0 is always locally asymptotically stable (node) for any parameter values, because

both the eigenvalues associated with (3.30) at E2
0 are ρ1 = −ΘD(< 0) and ρ2 = −DEF (< 0);

(II) E2
Θ is an unstable node if Θm − F (Θn + D) > 0, it is a hyperbolic saddle if Θm −

F (Θn+D) < 0, and it is an unstable saddle-node if Θm−F (Θn+D) = 0. Both the eigenvalues
associated with (3.30) at E2

Θ are ρ1 = −Θ(Θ−1)(Θn+D)(> 0) and ρ2 = E[Θm−F (Θn+D)].
Case: Θ ≤ 0

(I) E2
0 is a hyperbolic saddle if −1 < Θ < 0, and it is a stable saddle-node if Θ = 0. Both

the eigenvalues associated with (3.30) at E2
0 are given by

ρ1 = −ΘD

{
> 0, if − 1 < Θ < 0,

= 0, if Θ = 0,
and ρ2 = −DEF (< 0).

Remark 3.7. Similar to the analysis in subsection 3.1, if we assume that system (3.29)
has a unique positive equilibrium, when Θ > 0, Θm − F (Θn +D) < 0 and 1− F (D+ 1) > 0,
a heteroclinic cycle (loop) γ̃h = (Θ, 0) ∪ γ̃Θ1 ∪ (1, 0) ∪ γ̃1Θ exists, wherein γ̃1Θ lies above the
s-axis.

In the following, we study the existence and properties of positive equilibria of sys-
tem (3.29) with monotonic functional response (n = m) and non-monotonic functional re-
sponse (n > m), respectively.

3.2.2. Main results with monotonic functional response. The conditions for the existence
of positive equilibria of system (3.29) with monotonic functional response (n = m) are estab-
lished as follows:

Lemma 3.12. (i) If max{|Θ|nsign(Θ), 0} < DF
1−F < 1, then system (3.29) has a unique

positive equilibrium E2
∗(š, p̌) ∈ int(Ω̃2), where š = ( DF1−F )

1
n and p̌ = 1

F š(1− š)(š−Θ);
(ii) If DF

1−F > 1, then system (3.29) has no positive equilibria in the interior of Ω̃2.
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Proof : The positive equilibria of system (3.29) with monotonic functional response sat-
isfy {

(1− s)(s−Θ)(sn +D)− sn−1p = 0,

(1− F )sn −DF = 0.
(3.31)

(i) From the second equation of (3.31), we have that if 0 < F < 1, the equation (1 −
F )sn−DF = 0 has a unique positive solution š. Correspondingly, system (3.29) has a unique
positive equilibrium (š, p̌). Furthermore, since p̌ > 0, we have š ∈ (Θ, 1) (Θ > 0) or š ∈ (0, 1)

(Θ ≤ 0), yielding max{|Θ|nsign(Θ), 0} < DF
1−F < 1.

(ii) Obviously, if DF
1−F > 1, system (3.29) has no positive equilibria in the interior of Ω̃2.

□
By Lemma 3.12, we see that there exists a unique positive equilibrium E2

∗(š, p̌) ∈ int(Ω̃2)

for system (3.29) if max{|Θ|nsign(Θ), 0} < DF
1−F < 1. Then, we discuss its nature in the

following lemmas.
Let ∆2 = (Θ− 1)2[n(1− F )− 2]2 + 4Θ, š± = (Θ+1)[n(1−F )−2]±

√
∆2

2[n(1−F )−3] and š0 =
2Θ
Θ+1 .

Lemma 3.13. Assume Θ > 0 and let E2
∗(š, p̌) be the unique positive equilibrium for

system (3.29).
(i) If n(1−F )− 3 > 0, when š > š−, E2

∗ is an attractor (stable node or focus); when š < š−,
E2

∗ is a repeller (unstable node or focus); when š = š−, E2
∗ is a center (weak focus).

(ii) If n(1−F )−3 < 0, when š > š+, E2
∗ is an attractor (stable node or focus); when š < š+,

E2
∗ is a repeller (unstable node or focus); when š = š+, E2

∗ is a center (weak focus).
(iii) If n(1−F )− 3 = 0, when š > š0, E2

∗ is an attractor (stable node or focus); when š < š0,
E2

∗ is a repeller (unstable node or focus); when š = š0, E2
∗ is a center (weak focus).

Proof : By (3.30), we have

J2(E
2
∗(š, p̌)) =

(
J2(E

2
∗(š, p̌)) −šn

nE(1− F )šn−1p̌ 0

)
,

where

J2(E
2
∗(š, p̌))11 =− (n+ 3)šn+2 + (Θ + 1)(n+ 2)šn+1 −Θ(n+ 1)šn − nšn−1p̌

− 3Dš2 + 2D(Θ + 1)š−ΘD.

Thus we have
det(J2(E

2
∗(š, p̌))) = nE(1− F )š2n−1p̌ > 0,

and

tr(J2(E
2
∗(š, p̌)) =

D

1− F

{
[n(1− F )− 3] š2 + (Θ + 1) [2− n(1− F )] š+Θ [n(1− F )− 1]

}
.

Let ȟ(š) = [n(1− F )− 3] š2+(Θ+1) [2− n(1− F )] š+Θ [n(1− F )− 1], we have ȟ(Θ) =

Θ(1−Θ) > 0 and ȟ(1) = Θ− 1 < 0. Thus, there exists š∗ ∈ (Θ, 1) such that ȟ(š∗) = 0.
If n(1 − F ) − 3 > 0, then we have š∗ = š−. When š > š−, tr(J2(E2

∗(š, p̌)) < 0, E2
∗ is an

attractor (stable node or focus); when š < š−, tr(J2(E2
∗(š, p̌)) > 0, E2

∗ is a repeller (unstable
node or focus); when š = š−, tr(J2(E2

∗(š, p̌)) = 0, E2
∗ is a center (weak focus).

If n(1 − F ) − 3 < 0, then we have š∗ = š+. When š > š+, tr(J2(E2
∗(š, p̌)) < 0, E2

∗ is an
attractor (stable node or focus); when š < š+, tr(J2(E2

∗(š, p̌)) > 0, E2
∗ is a repeller (unstable

node or focus); when š = š+, tr(J2(E2
∗(š, p̌)) = 0, E2

∗ is a center (weak focus).
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If n(1 − F ) − 3 = 0, then we have š∗ = š0. When š > š0, tr(J2(E2
∗(š, p̌)) < 0, E2

∗ is an
attractor (stable node or focus); when š < š0, tr(J2(E2

∗(š, p̌)) > 0, E2
∗ is a repeller (unstable

node or focus); when š = š0, tr(J2(E2
∗(š, p̌)) = 0, E2

∗ is a center (weak focus). □

Lemma 3.14. Assume Θ ≤ 0 and let E2
∗(š, p̌) be the unique positive equilibrium for

system (3.29).
(i) If n(1− F ) ≥ 2, then E2

∗ is always an attractor (stable node or focus).
(ii) If 1 < n(1− F ) < 2,

(ii.1) when ∆2 < 0, E2
∗ is always an attractor (stable node or focus);

(ii.2) when ∆2 = 0, if š ̸= š⋄, then E2
∗ is an attractor (stable node or focus); if š = š⋄,

then E2
∗ is a center (weak focus), where š⋄ = (Θ+1)[n(1−F )−2]

2[n(1−F )−3] .;
(ii.3) when ∆2 > 0, if š∗ = š− or š∗ = š+, then E2

∗ is a center (weak focus); if 0 < š < š−
or š+ < š < 1, then E2

∗ is an attractor (stable node or focus); if š− < š < š+, then E2
∗ is a

repeller (unstable node or focus).
(iii) If n(1 − F ) ≤ 1, when š > š+, E2

∗ is an attractor (stable node or focus); when š < š+,
E2

∗ is a repeller (unstable node or focus); when š = š+, E2
∗ is a center (weak focus).

Proof : Similar to the proof of Lemma 3.13, we have ȟ(0) = Θ[n(1− F )− 1] and ȟ(1) =
Θ− 1 < 0.

If n(1 − F ) ≥ 2, then we have ȟ(0) ≤ 0 and tr(J2(E
2
∗(š, p̌)) < 0 holds for any š ∈ (0, 1).

Thus, E2
∗ is always an attractor (stable node or focus).

If 1 < n(1− F ) < 2, then we have ȟ(0) ≤ 0. And, we need to determine the sign of ∆2.
If ∆2 < 0, then tr(J2(E

2
∗(š, p̌)) < 0 holds for any š ∈ (0, 1), implying that E2

∗ is always
an attractor (stable node or focus).

If ∆2 = 0, then we have š∗ = š⋄. When š ̸= š⋄, tr(J2(E2
∗(š, p̌)) < 0, E2

∗ is an attractor
(stable node or focus); when š = š⋄, tr(J2(E2

∗(š, p̌)) = 0, E2
∗ is a center (weak focus).

If ∆2 > 0, then we have š∗ = š− or š∗ = š+. When š∗ = š− or š∗ = š+, tr(J2(E2
∗(š, p̌)) =

0, E2
∗ is a center (weak focus); when 0 < š < š− or š+ < š < 1, tr(J2(E2

∗(š, p̌)) < 0, E2
∗ is

an attractor (stable node or focus); when š− < š < š+, tr(J2(E2
∗(š, p̌)) > 0, E2

∗ is a repeller
(unstable node or focus).

If n(1−F ) ≤ 1, then we have ȟ(0) ≥ 0. Thus, there exists š∗ ∈ (0, 1) such that h(š∗) = 0.
According to the graph of h(š), we have š∗ = š+. When š > š+, tr(J2(E2

∗(š, p̌)) < 0, E2
∗ is an

attractor (stable node or focus); when š < š+, tr(J2(E2
∗(š, p̌)) > 0, E2

∗ is a repeller (unstable
node or focus); when š = š+, tr(J2(E2

∗(š, p̌)) = 0, E2
∗ is a center (weak focus). □

Remark 3.8. From Lemma 3.13 or (ii.3) and (iii) in Lemma 3.14, we can easily find
that system (3.29) will undergo a Hopf bifurcation at some parameter values (e.g., Θ, n,D

and F ).

Proposition 3.15. Let E2
∗(š, p̌) be the unique positive equilibrium for system (3.29), if (š−

s)( s(1−s)(s−Θ)(sn+D)
sn − š(1−š)(š−Θ)

F ) ≥ (or ≤)0 for all s ∈ (0, š) ∪ (š, 1), and s(1−s)(s−Θ)(sn+D)
sn

̸≡ š(1−š)(š−Θ)
F for 0 < |s− š| ≪ 1 hold, then E2

∗ is globally asymptotically stable in Ω̃2.

Proof : System (3.29) can be rewritten as{
ds
dτ = ψ̃(s)− ξ̃(p)h1(s),
dp
dτ = η̃(p)h2(s),

(3.32)
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where

ψ̃(s) = s(1− s)(s−Θ)(sn +D), ξ̃(p) = p,

h1(s) = sn, h2(s) = E[(1− F )sn −DF ], η̃(p) = p.

By Theorem 3.3 in [117], we see if (š−s)( ψ̃(s)h1(s)
−ξ̃(p̌)) ≥ (or ≤)0 for all s ∈ (0, š)∪(š, 1), and

ψ̃(s)
h1(s)

̸≡ ξ̃(p̌) for 0 < |s− š| ≪ 1 hold, that is, (š−s)( s(1−s)(s−Θ)(sn+D)
sn − š(1−š)(š−Θ)

F ) ≥ (or ≤)0

for all s ∈ (0, š) ∪ (š, 1), and s(1−s)(s−Θ)(sn+D)
sn ̸≡ š(1−š)(š−Θ)

F for 0 < |s − š| ≪ 1 hold, then
E2

∗ is globally asymptotically stable in the interior of the first quadrant. □
3.2.3. Main results with non-monotonic functional response. The results concerning the

existence of positive equilibria of system (3.29) with non-monotonic functional response (n >
m) are given by the following lemma:

Lemma 3.16. (i) If max {|Θ|n−msign(Θ), 0} < m
nF < 1 and D = n−m

nF ( mnF )
m

n−m , then
system (3.29) has a unique positive equilibrium E2

◦(ŝ, p̂) ∈ int(Ω̃2), where ŝ = ( mnF )
1

n−m and
p̂ = 1

F ŝ(1− ŝ)(ŝ−Θ);
(ii) If max

{
0, |Θm−FΘn

F |sign(Θ), 1−FF
}
< D < n−m

nF ( mnF )
m

n−m , then system (3.29) has two
different positive equilibria E2

◦1(ŝ1, p̂1) and E2
◦2(ŝ2, p̂2) in the interior of Ω̃2 whose components

satisfy max{Θ, 0} < ŝ1 < ŝ < ŝ2 < 1 and p̂k = 1
F ŝk(1− ŝk)(ŝk −Θ), k = 1, 2;

(iii) If D > n−m
nF ( mnF )

m
n−m , then system (3.29) has no positive equilibria in int(Ω̃2).

Proof : The components of positive equilibria of system (3.29) satisfy:{
(1− s)(s−Θ)(sn +D)− sm−1p = 0,

sm − F (sn +D) = 0.
(3.33)

From (3.33), it follows that s-component is the root in the interval (max{Θ, 0}, 1) of sm −
F (sn + D) = 0. Let f̃(s) = sm and g̃(s) = F (sn + D), we have df̃(s)

ds = msm−1 and
dg̃(s)
ds = nFsn−1. If the curves of f̃(s) and g̃(s) intersect in int(Ω̃2), there must be a point ŝ

such that df̃(s)
ds |s=ŝ = dg̃(s)

ds |s=ŝ, yielding that ŝ = ( mnF )
1

n−m . We discuss the number of positive
equilibria of system (3.29) in three cases:

(i) If f̃(ŝ)−g̃(ŝ) = 0, then system (3.29) has a unique positive equilibrium (ŝ, p̂) ∈ int(Ω̃2),
where p̂ = 1

F ŝ(1 − ŝ)(ŝ − Θ). Substituting ŝ = ( mnF )
1

n−m into f̃(ŝ) − g̃(ŝ) = 0, we obtain
D = n−m

nF ( mnF )
m

n−m . Furthermore, since p̂ > 0, ŝ should be located in the interval (Θ, 1)

(Θ > 0) or (0, 1) (Θ ≤ 0), thus we have max {|Θ|n−msign(Θ), 0} < m
nF < 1.

(ii) If f̃(ŝ)− g̃(ŝ) > 0, that is, if D < n−m
nF ( mnF )

m
n−m , then system (3.29) has two different

positive equilibria E2
◦1(ŝ1, p̂1) and E2

◦2(ŝ2, p̂2). To ensure that p̂k > 0, we have max{Θ, 0} <
ŝ1 < ŝ < ŝ2 < 1, meaning f̃(Θ) − g̃(Θ) < 0 (Θ > 0) or f̃(0) − g̃(0) < 0 (Θ ≤ 0), and
f̃(1)− g̃(1) < 0. Thus, we obtain D > max

{
0, |Θm−FΘn

F |sign(Θ), 1−FF
}

.
(iii) If f̃(ŝ) − g̃(ŝ) < 0, that is, if D > n−m

nF ( mnF )
m

n−m , then system (3.29) has no positive
equilibria in int(Ω̃2). □

Remark 3.9. According to Lemma 3.6 and the definition of basic reproduction number
in [34], we can calculate the epidemiological basic reproduction number of system (3.18),
denoted by RI0 = 1

AC . Similarly, by Lemma 3.12, the ecological basic reproduction number
of system (3.29) with monotonic functional response can be defined by RP1

0 = 1−F
DF . For
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non-monotonic case, we can use RP2
0 = 1

F (D+1) to represent its ecological basic reproduction
number, at which a backward bifurcation may occur. In addition to the epidemiological as
well as ecological basic reproduction numbers, we find the existence of interior equilibrium in
S-I (or S-P) subsystem is closely related to the value of Allee effect.

Let us consider the local stability of positive equilibria of system (3.29). We first study
the case that max

{
0, |Θm−FΘn

F |sign(Θ), 1−FF
}
< D < n−m

nF ( mnF )
m

n−m .

Lemma 3.17. Assume that system (3.29) has two positive equilibria E2
◦1(ŝ1, p̂1) and

E2
◦2(ŝ2, p̂2) in int(Ω̃2) whose components satisfy max{Θ, 0} < ŝ1 < ŝ < ŝ2 < 1 and p̂k =

1
F ŝk(1− ŝk)(ŝk −Θ), k = 1, 2.
(i) For the positive equilibria E2

◦1(ŝ1, p̂1):
(i1) If J2(E2

◦1(ŝ1, p̂1))11 < 0, then E2
◦1 is an attractor (stable node or focus);

(i2) If J2(E2
◦1(ŝ1, p̂1))11 > 0, then E2

◦1 is a repeller (unstable node or focus);
(i3) If J2(E2

◦1(ŝ1, p̂1))11 = 0, then E2
◦1 is a center (weak focus).

(ii) The positive equilibrium E2
◦2(ŝ2, p̂2) is always a saddle. Moreover, if J2(E2

◦2(ŝ2, p̂2))11 ̸= 0,
it is a hyperbolic saddle; otherwise, it is a non-hyperbolic saddle.

Proof : (i) By (3.30), we have

J2(E
2
◦1(ŝ1, p̂1)) =

(
J2(E

2
◦1(ŝ1, p̂1))11 −ŝm1

E(mŝm−1
1 − nF ŝn−1

1 )p̂1 0

)
,

where
J2(E

2
◦1(ŝ1, p̂1))11 =− (n+ 3)ŝn+2

1 + (Θ + 1)(n+ 2)ŝn+1
1 −Θ(n+ 1)ŝn1 −mŝm−1

1 p̂1

− 3Dŝ21 + 2D(Θ + 1)ŝ1 −ΘD.

Suppose that ŝ1 = δ1ŝ, where 0 < δ1 < 1, then we have
det(J2(E

2
◦1(ŝ1, p̂1))) = mEŝ2m−1

1 (1− δn−m1 )p̂1 > 0.

Thus, the nature of E2
◦1(ŝ1, p̂1) is dependent of the sign of J2(E2

◦1(ŝ1, p̂1))11.
(ii) The Jacobian matrix of system (3.29) at E2

◦2(ŝ2, p̂2) is:

J2(E
2
◦2(ŝ2, p̂2)) =

(
J2(E

2
◦2(ŝ2, p̂2))11 −ŝm2

E(mŝm−1
2 − nF ŝn−1

2 )p̂2 0

)
,

where
J2(E

2
◦2(ŝ2, p̂2))11 =− (n+ 3)ŝn+2

2 + (Θ + 1)(n+ 2)ŝn+1
2 −Θ(n+ 1)ŝn2 −mŝm−1

2 p̂2

− 3Dŝ22 + 2D(Θ + 1)ŝ2 −ΘD.

Suppose that ŝ2 = δ2ŝ, where δ2 > 1, then we have
det(J2(E

2
◦2(ŝ2, p̂2))) = mEŝ2m−1

2 (1− δn−m2 )p̂2 < 0.

Thus, E2
◦2(ŝ2, p̂2) is always a saddle. If tr(J2(E2

◦2(ŝ2, p̂2))) = J2(E
2
◦2(ŝ2, p̂2))11 ̸= 0, it is a

hyperbolic saddle; otherwise, it is a non-hyperbolic saddle. □

Remark 3.10. Based on (i) of Lemma 3.17, if we further assume ŝ1 ̸=
2(Θ+1)+

√
(2Θ−1)2+3

6

and D∗ =
−(n+3)ŝn+2

1 +(Θ+1)(n+2)ŝn+1
1 −Θ(n+1)ŝn1−mŝ

m−1
1 p̂1

3ŝ21−2(Θ+1)ŝ1+Θ
> 0, then system (3.29) undergoes

a Hopf bifurcation at D∗, which can be obtained from the change of the Conley index of
E2

◦1(ŝ1, p̂1) near D∗ by Proposition 3.2.
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Next, we consider the case that there is a unique positive equilibrium for system (3.29).

Lemma 3.18. Assume that max{|Θ|n−msign(Θ), 0} < m
nF < 1 and D = n−m

nF ( mnF )
m

n−m ,
then the positive equilibria E2

◦1(ŝ1, p̂1) and E2
◦2(ŝ2, p̂2) collapse, there exists a unique positive

equilibrium E2
◦(ŝ, p̂) ∈ int(Ω̃2).

(i) If F = F ∗, then E2
◦ is a cusp (i.e., Bogdanov-Takens bifurcation point);

(ii) If F > F ∗, then E2
◦ is a saddle-node repeller;

(iii) If F < F ∗, then E2
◦ is a saddle-node attractor;

where F ∗ = m
n

(
6

2(Θ+1)+
√

(2Θ−1)2+3

)n−m

.

Proof : The Jacobian matrix of system (3.29) at E2
◦(ŝ, p̂) is:

J2(E
2
◦(ŝ, p̂)) =

(
J2(E

2
◦(ŝ, p̂))11 −ŝm
0 0

)
, (3.34)

where

J2(E
2
◦(ŝ, p̂))11 =− (n+ 3)ŝn+2 + (Θ + 1)(n+ 2)ŝn+1 −Θ(n+ 1)ŝn −mŝm−1p̂

− 3Dŝ2 + 2D(Θ + 1)ŝ−ΘD

Then we have det(J2(E
2
◦(ŝ, p̂))) = 0, and

tr(J2(E
2
◦(ŝ, p̂))) =ŝm

[
−(n+ 3)ŝn−m+2 + (Θ + 1)(n+ 2)ŝn−m+1 −Θ(n+ 1)ŝn−m − m

F
(1− ŝ)(ŝ−Θ)

]
− 3Dŝ2 + 2D(Θ + 1)ŝ−ΘD.

Since ŝ = ( mnF )
1

n−m , we obtain tr(J2(E2
◦(ŝ, p̂))) = ( mnF ŝ

m+D)[−3ŝ2 +2(Θ+ 1)ŝ−Θ]. Obvi-
ously, tr(J2(E2

◦(ŝ, p̂))) = 0 if and only if −3ŝ2+2(Θ+1)ŝ−Θ = 0. Since ŝ ∈ (max{Θ, 0}, 1),
we have ŝ =

2(Θ+1)+
√

(2Θ−1)2+3

6 , equivalently, F = F ∗. In this case, E2
◦ is a cusp (i.e.,

Bogdanov-Takens bifurcation point). In addition, if F > F ∗ (tr(J2(E2
◦(ŝ, p̂))) > 0), E2

◦ is a
saddle-node repeller; if F < F ∗ (tr(J2(E2

◦(ŝ, p̂))) < 0), E2
◦ is a saddle-node attractor. □

Proposition 3.19. Let D∗ = n−m
nF ( mnF )

m
n−m , consider D as a bifurcation parameter, then

system (3.29) undergoes a saddle-node bifurcation at D = D∗ if max {|Θ|n−msign(Θ), 0} <
m
nF < 1 and F < F ∗. In addition, system (3.29) does not attain any transcritical and pitchfork
bifurcation around E2

◦(ŝ, p̂).

Proof : To show that system (3.29) undergoes a saddle-node bifurcation, we use So-
tomayor’s theorem [89] by considering D as the bifurcation parameter. The Jacobian matrix,
J2(E

2
◦(ŝ, p̂)), of (3.29) at E2

◦(ŝ, p̂) is given by (3.34), one eigenvalue of which is zero. If
F < F ∗, then the other eigenvalue is negative.

Now, let V = (v1, v2)
T and W = (w1, w2)

T be the eigenvectors of J2(E2
◦) and JT2 (E2

◦) cor-
responding to zero eigenvalue, respectively. A simple calculation yields V = (ŝm, J2(E

2
◦)11)

T

and W = (0, 1)T . Therefore, we have
WT fD((ŝ, p̂), D) = −EFp̂ < 0 and WT [D2f((ŝ, p̂), D)(V, V )] = Eŝm[m(m− 1)ŝm−2 − n(n− 1)F ŝn−2]p̂ < 0,

where

fD((ŝ, p̂), D) :=
∂f((ŝ, p̂), D)

∂D
=

(
ŝ(1− ŝ)(ŝ−Θ)

−EFp̂

)
,
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and

D2f((ŝ, p̂), D)(V, V ) =

(
ŝm−1

[
ŝ∂J2(E

2
∗(ŝ,p̂))11
∂ŝ + (1−m)J2(E

2
∗(ŝ, p̂))11 −mŝm

]
Eŝm

[
m(m− 1)ŝm−2 − n(n− 1)F ŝn−2

]
p̂

)
,

which implies that the transversality condition for saddle-node bifurcation is satisfied.
From Sotomayor’s theorem, it follows that system (3.29) undergoes a saddle-node bifurca-

tion around E2
◦(ŝ, p̂) at D = D∗. Hence, we can conclude that when the parameter D passes

from right side of D = D∗ to the left side, the number of interior equilibria of system (3.29)
changes from zero to two. Since W T [D2f((ŝ, p̂), D)(V, V )] ̸= 0, system (3.29) does not attain
any transcritical and pitchfork bifurcation around E2

◦(ŝ, p̂) [89]. □

3.3. I-P subsystem. The I-P subsystem when S ≡ 0 in (3.1) is written as

X3
ς :

{
dI
dt = − bIm

In+anP − µI,
dP
dt = γ2

bIm

In+anP − dP,
(3.35)

where ς ∈ Π =
{
(a, b, µ, γ2, d,m, n) ∈ (0, Kc1 )× (0, 1)4 × N2

+ : n ≥ m ≥ 1
}

.
System (3.35) or vector field X3

ς is defined in the set:

Ω3 =

{
(I, P ) ∈ R2 : 0 ≤ I ≤ K

c2
, P ≥ 0

}
.

We make a change of variables and time rescaling given by the function: φ3 : Ω̃3×R → Ω3×R
such that

φ3(i, p, τ) = (i, p, (in + an)τ) = (I, P, t)

with Ω̃3 = {(i, p) ∈ R2 : 0 ≤ i ≤ 1, p ≥ 0}. Since detDφ(i, p, τ) = in+an > 0, the new vector
field, denoted by Y 3

ς , is topologically equivalent to the vector field X3
ς , and its associated

differential equations are given by

Y 3
ς :

{ di
dτ = −b[im−1p+ L(in + an)]i,
dp
dτ =M [im −N(in + an)]p,

(3.36)

where L = µ
b ,M = γ2b and N = d

γ2b
, with

ς ∈ Π =

{
(a, b, L,M,N,m, n) ∈ (0,

K

c1
)× (0, 1)× R3

+ × N2
+ : n ≥ m ≥ 1

}
.

Obviously, system (3.36) has a unique equilibrium E3
0(0, 0) in Ω̃3 which always exist. The

Jacobian matrix of system (3.36) at E3
0(0, 0) is given by:

J3(E
3
0(0, 0)) =

(
−bLan 0

0 −MNan

)
. (3.37)

The eigenvalues of J3(E3
0(0, 0)) are −bLan and −MNan, which are both negative. So E3

0(0, 0)

is always locally asymptotically stable for any parameter values. Moreover, there is only an
equilibrium in Ω̃3 for system (3.36), thus it is globally asymptotically stable in Ω̃3.
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4. Dynamical analysis of the full system

After obtaining a complete dynamics of three subsystems of system (3.1), in this section,
we continue to study the dynamical behavior of the full system, including: 1) the boundary
equilibria and their stability; 2) the uniform persistence; 3) a heteroclinic network; and finally
4) an interior periodic orbit.

Xυ :


dS
dt = rS(1− c1S+c2I

K )(S − θ)− βI
1+αIS − bSm

(S+I)n+anP,
dI
dt =

βI
1+αIS − bIm

(S+I)n+anP − µI,
dP
dt = γ1

bSm

(S+I)n+anP + γ2
bIm

(S+I)n+anP − dP,

(3.38)

where υ ∈ Υ = {(r,K, α, a, c1, c2, b, d, β, µ, γ1, γ2,m, n, θ) ∈ R3
+ × (0, Kc1 ) × (0, 1]8 × N2

+ ×
(−K

c1
, Kc1 ) : n ≥ m ≥ 1}. System (3.38) or vector field Xυ is defined in

Ω = {(S, I, P ) ∈ R3
+ : 0 ≤ c1S + c2I ≤ K,P ≥ 0}.

To simplify the calculation, we make a change of variables and a time rescaling by the function
φ : Ω̃× R → Ω× R such that

φ(s, i, p, τ) =

(
K

c1
s,
K

c2
i,
r

b
(
K

c1
)n−m+2p,

c1
rK

αKi+ c2
αK

(Ks+ c1
c2
Ki)n + (ac1)

n

Kn
τ

)
= (S, I, P, t)

with Ω̃ = {(s, i, p) ∈ R3
+ : 0 ≤ s + i ≤ 1, p ≥ 0}. Thus, we have that detDφ(s, i, p, τ) > 0,

implying that φ is a diffeomorphism preserving the orientation of the time. The vector field,
denoted by Yυ, in the new coordinates is topologically equivalent to the vector field Xυ, and
its associated differential equations are described by the following Kolmogorov polynomial
system:

Yυ :


ds
dτ =

{
[(1− s− i)(s−Θ)(i+A)−B1i] [(s+ εi)n +D]− (i+A)sm−1p

}
s,

di
dτ = B2

{
[s− C(i+A)] [(s+ εi)n +D]−M1(i+A)im−1p

}
i,

dp
dτ = E(i+A) {sm +M2i

m − F [(s+ εi)n +D]} p,
(3.39)

where A = c2
αK , B1 = βc1

αrK , B2 = βc2
αrK , C = µαc1

βc2
, D = (ac1K )n, E = γ1b

r ( c1K )n−m+1, F =

d
γ1b

(Kc1 )
n−m,M1 =

αrKcm−1
1

βcm2
,M2 =

γ2cm1
γ1cm2

, ε = c1
c2

and Θ = θc1
K with

υ ∈ Υ ={
(D,A,B1, B2, C,E, F,M1,M2,m, n, ε,Θ) ∈ (0, 1)× R8

+ × N2
+ × [1,+∞)× (−1, 1) : n ≥ m ≥ 1

}
.

Since φ is a diffeomorphism, system (3.39) has the same qualitative behavior as sys-
tem (3.38). In the following, we start with the existence of boundary equilibria and their
stability.

4.1. Boundary equilibria and their stability. Through the analysis of three sub-
systems in Section 3, it is easy to check that system (3.39) has seven possible boundary
equilibria. The trivial equilibrium E0(0, 0, 0) and axial equilibrium E1(1, 0, 0) always ex-
ist. The axial equilibrium EΘ(Θ, 0, 0) exists if Θ > 0. In si-plane, system (3.39) may have
a planar equilibrium Esi(s̄, ī, 0), or two planar equilibria E1

si(s̄1, ī1, 0) and E2
si(s̄2, ī2, 0), see

Lemma 3.6. In sp-plane, system (3.39) may have a planar equilibrium Ěsp(š, 0, p̌) (monotonic
case, see Lemma 3.12) or Êsp(ŝ, 0, p̂) (non-monotonic case, see Lemma 3.16), or two planar
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equilibria E1
sp(ŝ1, 0, p̂1) and E2

sp(ŝ2, 0, p̂2), see Lemma 3.16. Below we study the local and
global stability of these boundary equilibria, respectively.

The Jacobian matrix of system (3.39) at any point (s, i, p) is given by:

J(s, i, p) =

 J(s, i, p)11 J(s, i, p)12 J(s, i, p)13
J(s, i, p)21 J(s, i, p)22 J(s, i, p)23
J(s, i, p)31 J(s, i, p)32 J(s, i, p)33

 , (3.40)

where
J(s, i, p)11 ={(i+A)(1 + Θ− 2s− i)[(s+ εi)n +D] + n(s+ εi)n−1[(1− s− i)(s−Θ)(i+A)

−B1i]}s+ [(1− s− i)(s−Θ)(i+A)−B1i][(s+ εi)n +D]− (i+A)sm−1p,

J(s, i, p)12 ={[(s−Θ)(1−A− s− 2i)−B1][(s+ εi)n +D] + εn(s+ εi)n−1

[(1− s− i)(s−Θ)(i+A)−B1i]− sm−1p}s,
J(s, i, p)13 =− (i+A)sm,

J(s, i, p)21 =B2{n(s+ εi)n−1[s− C(i+A)] + [(s+ εi)n +D]}i,

J(s, i, p)22 =B2{εn(s+ εi)n−1[s− C(i+A)]− C[(s+ εi)n +D]−M1p[mi+A(m− 1)]im−2}i

+B2{[s− C(i+A)][(s+ εi)n +D]−M1(i+A)im−1p},
J(s, i, p)23 =−B2M1(i+A)im,

J(s, i, p)31 =E(i+A)[msm−1 − nF (s+ εi)n−1]p,

J(s, i, p)32 =E{sm +M2i
m − F [(s+ εi)n +D] + (i+A)[mM2i

m−1 − εnF (s+ εi)n−1]}p,
J(s, i, p)33 =E(i+A){sm +M2i

m − F [(s+ εi)n +D]}.

By (3.40), the variational matrix of system (3.39) at E0(0, 0, 0) is

J(0, 0, 0) =

 −ΘAD 0 0

0 −AB2CD 0

0 0 −ADEF

 ,

then its eigenvalues are −ΘAD, −AB2CD and −ADEF . Thus, E0 is locally asymptotically
stable (node) if Θ > 0, an attracting saddle if Θ < 0, and a non-hyperbolic attractor if Θ = 0.

Remark 3.11. Although the equilibrium E0 is locally asymptotically stable if Θ > 0, we
cannot construct a Lyapunov function or use other methods to show that it is also globally
asymptotically stable in Ω̃. We guess that when Θ > 0, EΘ(Θ, 0, 0) arises and it is always
unstable (see the analysis below). There is a great possibility that a separatrix surface forms
in the first octant which intersects with s-axis at EΘ, and multi-stability appears.

By (3.40), the variational matrix of system (3.39) at EΘ(Θ, 0, 0) (Θ > 0) can be written
as

J(Θ, 0, 0) =

 AΘ(1−Θ)(Θn +D) −B1Θ(Θn +D) −AΘm

0 B2(Θ−AC)(Θn +D) 0

0 0 AE[Θm − F (Θn +D)]

 ,

then its eigenvalues are AΘ(1−Θ)(Θn+D) > 0, B2(Θ−AC)(Θn+D) and AE[Θm−F (Θn+

D)]. Thus, EΘ is always unstable. If (Θ−AC)[Θm − F (Θn +D)] < 0, then it is a repelling
saddle; if Θ > AC and Θm − F (Θn + D) > 0, then it is an unstable node; if Θ < AC and
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Θm − F (Θn + D) < 0, then it is an attracting saddle, if (Θ − AC)[Θm − F (Θn + D)] = 0,
then it is non-hyperbolic.

By (3.40), the variational matrix of system (3.39) at E1(1, 0, 0) can be computed as

J(1, 0, 0) =

 −A(1−Θ)(D + 1) −[A(1−Θ) +B1](D + 1) −A
0 B2(1−AC)(D + 1) 0

0 0 AE[1− F (D + 1)]

 ,

then its eigenvalues are −A(1−Θ)(D + 1) < 0, B2(1−AC)(D + 1) and AE[1− F (D + 1)].
If AC > 1 and 1− F (D + 1) < 0, then E1 is locally asymptotically stable (node); if AC < 1

or 1− F (D + 1) > 0, then it is a saddle.

Theorem 4.1. When AC > 1, DF > 1 and Θ ≤ 0, the equilibrium E1(1, 0, 0) of
system (3.39) is globally asymptotically stable in Ω̃.

Proof : Consider a Lyapunov function V1(i, p) =
EM2
B2M1

i+ p, and its derivative along the
trajectories of (3.39) is

dV1
dτ

=
EM2

M1
i [s− C(i+A)] [(s+ εi)n +D] + E(i+A) {sm − F [(s+ εi)n +D]} p

≤EM2

M1
(1−AC) [(s+ εi)n +D] i+ E(i+A)(1−DF )p.

Thus, when AC > 1 and DF > 1, we have dV1
dτ ≤ 0. Furthermore, it can be verified that

{(s, i, p) ∈ Ω̃ : dV1
dτ = 0} = {i = 0, p = 0}. By LaSalle’s invariance principle, we have

limτ→+∞ i(τ) = 0 and limτ→+∞ p(τ) = 0 for all solutions of system (3.39). So, the limiting
system of (3.39) is ds

dτ = As(1 − s)(s − Θ)(sn + D). Obviously, the equilibrium s = 1 of
this equation is globally asymptotically stable if Θ ≤ 0. By the limiting argument [104], we
obtain that E1(1, 0, 0) is globally asymptotically stable in Ω̃ if AC > 1, DF > 1 and Θ ≤ 0.
□

By (3.40), the variational matrix of system (3.39) at Esi(s̄, ī, 0) can be written as

J(s̄, ī, 0) =

 J1(s̄, ī)11[(s̄+ ε̄i)n +D] J1(s̄, ī)12[(s̄+ ε̄i)n +D] −(̄i+A)s̄m

J1(s̄, ī)21[(s̄+ ε̄i)n +D] J1(s̄, ī)22[(s̄+ ε̄i)n +D] −B2M1(̄i+A)̄im

0 0 J(s̄, ī, 0)33

 ,

where J(s̄, ī, 0)33 = E(̄i+A){s̄m +M2ī
m − F [(s̄+ ε̄i)n +D]}.

Clearly, its first two eigenvalues, denoted by ρ̄1,2, satisfy ρ̄k = [(s̄+ ε̄i)n +D]ρk, k = 1, 2,
where ρ1,2 are two eigenvalues of J1(s̄, ī). So, Esi(s̄, ī, 0) has the same stability properties
as E1

∗(s̄, ī) in si-plane. The third eigenvalue of J(s̄, ī, 0) is ρ̄3 = J(s̄, ī, 0)33. According to
(I.i) of Lemma 3.7, if both eigenvalues ρ1 and ρ2 have negative real parts and ρ̄3 < 0, then
Esi(s̄, ī, 0) is locally asymptotically stable. When ρ̄3 > 0, Esi(s̄, ī, 0) is always a saddle.
Assume that ρ̄3 < 0 holds, then system (3.39) undergoes a Hopf bifurcation near Esi(s̄, ī, 0)
as the parameter B2 passes through the critical value B∗

2 .
Similarly, combined with Lemma 3.8, we can discuss the local stability of E1

si(s̄1, ī1, 0)

and E2
si(s̄2, ī2, 0) when system (3.39) has two different planar equilibria in si-plane. Next, we

investigate its global stability when there is only one planar equilibrium Esi(s̄, ī, 0) in si-plane
for system (3.39).
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Theorem 4.2. Assume that Esi(s̄, ī, 0) is a unique planar equilibrium in si-plane for
system (3.39), and 0 < AC < Θ+1

2 , det(J1(E
1
−(s̄, ī))) > 0 and B2 > B∗

2 . If Θ ≤ 0,
B2C ≥ B1 −Θ(A+ 1) and DF −M2 > 1, then Esi is globally asymptotically stable in Ω̃.

Proof : We consider a Lyapunov function V2(p) = p, and its derivative along the trajec-
tories of system (3.39) is given by

dV2
dτ

=E(i+A) {sm +M2i
m − F [(s+ εi)n +D]} p

≤E(i+A)(1 +M2 −DF )p.

Thus, when DF −M2 > 1, we have dV2
dτ ≤ 0. Furthermore, it can be verified that {(s, i, p) ∈

Ω̃|dV2dτ = 0} = {p = 0}. By LaSalle’s invariance principle, we have limτ→+∞ p(τ) = 0 for all
solutions of (3.39). So, the limiting system of (3.39) is{

ds
dτ = [(1− s− i)(s−Θ)(i+A)−B1i] [(s+ εi)n +D] s,
di
dτ = B2 [s− C(i+A)] [(s+ εi)n +D] i.

(3.41)

Making a time rescaling τ ′ = [(s + εi)n + D]τ , yields the equations (3.18) of S-I sub-
system. By Proposition 3.9, we see that E1

−(s̄, ī) is globally asymptotically stable when
det(J1(E

1
−(s̄, ī))) > 0, 0 < AC < Θ+1

2 , B2 > B∗
2 , Θ ≤ 0 and B2C ≥ B1 − Θ(A + 1). By the

limiting argument, we have that Esi(s̄, ī, 0) is globally asymptotically stable in Ω̃. □
By (3.40), the variational matrix of system (3.39) at Ěsp(š, 0, p̌) can be written as

J(š, 0, p̌) =

 J2(š, p̌)11A J(š, 0, p̌)12 J2(š, p̌)12A

0 J(š, 0, p̌)22 0

J2(š, p̌)21A J(š, 0, p̌)32 J2(š, p̌)22A

 ,

where J(š, 0, p̌)12 = {[(š−Θ)(1−A− š)−B1](š
n +D) + εnAšn−1(1− š)(š−Θ)− šm−1p̌}š;

if n = 1, J(š, 0, p̌)22 = B2[(š − AC)(š + D) − AM1p̌] and J(š, 0, p̌)32 = AE(M2 − εF )p̌,
otherwise, J(š, 0, p̌)22 = B2(š−AC)(šn +D) and J(š, 0, p̌)32 = −εnAEF šn−1p̌.
So, the two eigenvalues of J(š, 0, p̌) in s and p-directions satisfy ρ̌k = Aρk, k = s, p, where
ρs,p are two eigenvalues of J2(š, p̌). According to Lemmas 3.13 and 3.14, we can determine
the sign of ρ̌s and ρ̌p. Under the conditions that both ρ̌s and ρ̌p have negative real parts,
then Ěsp(š, 0, p̌) is locally asymptotically stable if the eigenvalue in i-direction satisfies ρ̌i =
J(š, 0, p̌)22 < 0. If ρ̌i < 0, system (3.39) undergoes a Hopf bifurcation around Ěsp in the
condition of occurrence of a Hopf bifurcation near E2

∗(š, p̌).
Similarly, by combining Lemmas 3.17 and 3.18, we can further deal with the local stability

of one planar equilibrium Êsp(ŝ, 0, p̂) or two planar equilibria E1
sp(ŝ1, 0, p̂1) and E2

sp(ŝ2, 0, p̂2)

of system (3.39) with non-monotonic functional response. Finally, we give the sufficient
conditions for the global asymptotic stability of Ěsp(š, 0, p̌).

Theorem 4.3. Assume that Ěsp(š, 0, p̌) is a unique planar equilibrium in sp-plane for
system (3.39) with n = m, if (š − s)( s(1−s)(s−Θ)(sn+D)

sn − š(1−š)(š−Θ)
F ) ≥ (or ≤)0 for all

s ∈ (0, š) ∪ (š, 1), and s(1−s)(s−Θ)(sn+D)
sn ̸≡ š(1−š)(š−Θ)

F for 0 < |s − š| ≪ 1 hold, then Ěsp is
globally asymptotically stable in Ω̃.
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Proof : We consider a Lyapunov function V3(i) = i, and its derivative along the trajec-
tories of system (3.39) is given by

dV3
dτ

=B2{[s− C(i+A)][(s+ εi)n +D]−M1(i+A)in−1p}i

≤B2(1−AC)[(s+ εi)n +D]i.

Thus, when AC > 1, we have dV3
dτ ≤ 0. Furthermore, it can be verified that {(s, i, p) ∈

Ω̃|dV3dτ = 0} = {i = 0}. By LaSalle’s invariance principle, we have limτ→+∞ i(τ) = 0 for all
solutions of (3.39) if AC > 1. So, the limiting system of (3.39) is{ ds

dτ = A[(1− s)(s−Θ)(sn +D)− sn−1p]s,
dp
dτ = AE[(1− F )sn −DF ]p,

(3.42)

We make a time rescaling τ ′ = Aτ , yielding (3.32). By Proposition 3.15, we have that E2
∗(š, p̌)

is globally asymptotically stable when (š− s)( s(1−s)(s−Θ)(sn+D)
sn − š(1−š)(š−Θ)

F ) ≥ (or ≤)0 for
all s ∈ (0, š) ∪ (š, 1), and s(1−s)(s−Θ)(sn+D)

sn ̸≡ š(1−š)(š−Θ)
F for 0 < |s − š| ≪ 1 hold. By the

limiting argument, we have that Ěsp(š, 0, p̌) is globally asymptotically stable in Ω̃. □

4.2. Uniform persistence. There exists a positive equilibrium for system (3.39) if and
only if there is a positive solution for the following equations

[(1− s− i)(s−Θ)(i+A)−B1i] [(s+ εi)n +D]− (i+A)sm−1p = 0,

[(s− C(i+A)] [(s+ εi)n +D]−M1(i+A)im−1p = 0,

sm +M2i
m − F [(s+ εi)n +D] = 0.

(3.43)

Due to the complexity of the algebraic expression of (3.43), it is not an easy task to find
the explicit criteria for the existence and quantity of the interior equilibria in terms of the
parameters. We would like to study the uniform persistence of system (3.39), by using the
method of average Lyapunov function [44, 52].

Theorem 4.4. If Θ < 0, AC < 1, F (D + 1) < 1, then system (3.39) is uniformly
persistent if one of the following conditions is satisfied:
(i) n = m, s̄m +M2ī

m > F [(s̄ + ε̄i)m + D], 0 < DF
1−F < 1 and (š − AC)(š + D) > AM1p̌

(m = 1) or š > AC (m > 1);
(ii) n > m, s̄m+M2ī

m > F [(s̄+ε̄i)n+D], m
nF < 1, D = n−m

nF ( mnF )
m

n−m and (ŝ−AC)(ŝn+D) >

AM1p̂ (m = 1) or ŝ > AC (m > 1).

Proof : We consider the average Lyapunov function with the form
V (s, i, p) = sα1iα2pα3 ,

where αk (k = 1, 2, 3) are positive constants to be determined later. In the interior of R3
+,

we define

Ψ(s, i, p) :=
V̇

V
=α1

{
[(1− s− i)(s−Θ)(i+A)−B1i] [(s+ εi)n +D]− (i+A)sm−1p

}
+ α2B2

{
[s− C(i+A)] [(s+ εi)n +D]−M1(i+A)im−1p

}
+ α3E(i+A) {sm +M2i

m − F [(s+ εi)n +D]} .

We have already proved that all solutions of system (3.39) are uniformly ultimately bounded
in R3

+ (see Lemma 2.2). To establish the uniform persistence of the solutions, we have to
show that all boundary equilibria are repellers under certain conditions, i.e., the function
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Ψ(s, i, p) > 0 at each of the boundary equilibria for a suitable choice of αk > 0 (k = 1, 2, 3).
We first consider two boundary equilibria that always exist, i.e., E0(0, 0, 0) and E1(1, 0, 0).
Here, we choose α1 > −α2B2C+α3EF

Θ > 0 (Θ < 0), then we have

Ψ(0, 0, 0) = −α1ΘAD − α2AB2CD − α3ADEF = −AD(α1Θ+ α2B2C + α3EF ) > 0.

For E1(1, 0, 0), we have

Ψ(1, 0, 0) = α2B2(1 +D)(1−AC) + α3AE[1− F (D + 1)] > 0,

which follows from the assumption that AC < 1 and F (D + 1) < 1.
Since AC < 1 and Θ < 0, there is a unique planar equilibrium Esi(s̄, ī, 0) in si-plane for

system (3.39) (see Lemma 3.6). For Esi(s̄, ī, 0), we have

Ψ(s̄, ī, 0) = α3E(̄i+A) {s̄m +M2ī
m − F [(s̄+ ε̄i)n +D]} > 0,

which follows from the assumption that s̄m +M2ī
m > F [(s̄+ ε̄i)n +D] (n ≥ m ≥ 1).

When system (3.39) has two different planar equilibria in sp-plane, one of which will
always be a saddle, so we only need to consider the situation that there is a unique planar
equilibrium in sp-plane, i.e., Ěsp(š, 0, p̌) (the monotonic case, see Lemma 3.12) or Êsp(ŝ, 0, p̂)
(the non-monotonic case, see Lemma 3.16). If the condition (i) holds, then Ěsp(š, 0, p̌) exists
and we have

Ψ(š, 0, p̌) =

{
α2B2[(š−AC)(š+D)−AM1p̌] > 0, if m = 1,

α2B2(š−AC)(šm +D) > 0, if m > 1.

Similarly, if the condition (ii) holds, we can show Êsp(ŝ, 0, p̂) is a repeller. Hence V (s, i, p) is
an average Lyapunov function and system (3.39) is uniformly persistent. □

Remark 3.12. Biologically, uniform persistence (permanence) is often a better measure
of ecological stability, which is the research focus of most ecologists. Uniform persistence
means that the minimal densities of all populations are bounded away from zero, thus they
can survive for all future time.

4.3. Robustness of heteroclinic orbits and a heteroclinic network. In subsec-
tions 3.1 and 3.2, we have discussed the existence of heteroclinic cycles in si-plane and
sp-plane, respectively (see Remarks 3.6 and 3.7). For the heteroclinic connection (orbit) γΘ1

whenever it exists, we always have

hIs(γΘ1) ̸= hIs(EΘ) ∨ hIs(E1),

where hIs is the Conley index restricted to the invariant set Is (s-axis) of system (3.39).
By Theorem 1.15 in subsection 1.2, it can be shown that the heteroclinic connection γΘ1

is robust to perturbations of the vector field in Is. However, with respect to the heteroclinic
cycles γh in si-plane and γ̃h in sp-plane, we have

hIsi(γh) = hIsi(EΘ) ∨ hIsi(E1) and hIsp(γ̃h) = hIsp(EΘ) ∨ hIsp(E1),

which cannot ensure the robustness of the heteroclinic cycles, implying that arbitrarily small
perturbation of parameters may destroy the heteroclinic connection γ1Θ or γ̃1Θ.

Definition 4.5. (see [7]). A heteroclinic network is a connected union of heteroclinic
cycles.
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Combining Remarks 3.6 and 3.7, a heteroclinic network consisting of two cycles γh and γ̃h
exists for certain parameter values. The existence of a heteroclinic network is very interesting
due to a common heteroclinic connection between the two cycles. On the other hand, it is
impossible for either of the cycles to attract all nearby trajectories. Biologically, in the
presence of Allee effect, the emergence of either of the cycles is as a result of the outbreak of
the disease or predator’s successful invasion.

4.4. An interior periodic orbit. We have shown that when system (3.39) has a
unique planar equilibrium Esi(s̄, ī, 0) in si-plane, if det(J1(s̄, ī)) > 0, 0 < AC < Θ+1

2

and h(E1
−(s̄, ī), B

∗
2) = Σ0, then the bifurcating periodic solutions in si-plane are orbitally

asymptotically stable (see Corollary 3.10). Moreover, when system (3.39) has two differ-
ent planar equilibria E1

si(s̄1, ī1, 0) and E2
si(s̄2, ī2, 0) in si-plane, if 0 < AC < Θ+1

2 and
h(E1

−2(s̄2, ī2), B
∗
22) = Σ0, then the bifurcating periodic solutions in si-plane are also orbitally

asymptotically stable (see Remark 3.5). Now, we take the first case as an example to show
that this limit cycle can be bifurcated into the interior of the positive octant of sip-space.

First, we denote

O1 =
1

T

∫ T

0
(i(τ) +A)sm(τ)dτ, O2 =

1

T

∫ T

0
(i(τ) +A)im(τ)dτ,

and
O3 =

1

T

∫ T

0
(i(τ) +A)[(s(τ) + εi(τ))n +D]dτ,

for some positive T .
Let (s(τ), i(τ)) be the unique periodic solution of system (3.18) for a fixed set of pa-

rameters A,B1, B2, C and Θ, and T be the period of this solution. Then (s(τ), i(τ), 0)

is a periodic solution of system (3.39) for any choice of D,E, F,M1,M2,m and n. Fix
D,E,M1,M2,m and n, and the remaining parameter F will be treated as a bifurcation
parameter and F ∗ = O1+M2O2

O3
will turn out to be the critical value.

Before presenting the main theorem, we give the following three technical lemmas, whose
proofs can be found in [22, 75].

Lemma 4.6. (see [22]). Let W be an open neighborhood of 0 ∈ Rn and let I be an open
interval about 0 ∈ R. Let Φν : W → Rn be such that the map (ν, x) → Φν(x) is a Ck map
(k ≥ 1) from I × W to Rn, and such that Φν(0) = 0 for all ν ∈ I. Define Lν to be the
differential map dΦν(0) and suppose that all eigenvalues of Lν lie inside the unit circle of the
complex plane for ν < 0. Assume that there is a real, simple eigenvalue l(ν) of Lν such that
l(0) = 1 and (dl/dν)(0) > 0. Let v0 be the eigenvector corresponding to l(0). Then there is a
Ck−1 curve C of fixed points of Φ : (ν, x) → (ν,Φν(x)) near (0, 0) in I × Rn which, together
with the points (ν, 0), are the only fixed points of Φ near (0, 0). The curve C is tangent to v0
at (0, 0) in I × Rn.

Lemma 4.7. (see [75]). The spectrum of the linearization of the Poincaré map union {1}
is equal to the spectrum of the linearization of the solution map.

Lemma 4.8. (see [22]). Let H(t) be a periodic matrix of period T and suppose that the
linear system (

y1
y2

)′

= H(t)

(
y1
y2

)
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has Floquet exponents 0 and −σ < 0. Let h13(t), h23(t) and h33(t) be functions of period T

such that the mean value of h33(t) is equal to ν. Then the linear system y1
y2
y3

′

= H(t)

 y1
y2
y3


where

H(t) =

 h13(t)H(t)
h23(t)

0 0 h33(t)


has Floquet exponents 0, −σ < 0 and ν.

Theorem 4.9. Let A,B1, B2, C and Θ be given such that (s(τ), i(τ)) is a locally unique
periodic orbit with period T in the interior of the first quadrant of si-plane. If there exists
an F ∗ denoted by F ∗ = O1+M2O2

O3
such that as |F − F ∗| ≪ 1, there is a periodic orbit in the

interior of the first octant arbitrarily close to the si-plane.

Proof : Denote by P the orbit corresponding to (s(τ), i(τ), 0) where (s(τ), i(τ)) is the
locally unique periodic orbit of system (3.39) in si-plane. Let T be a two dimensional,
local, transverse section of P. For each value of F , the Poincaré map P : W0 → W1 exists,
where W0 and W1 are open subsets of T . Given a periodic orbit, there is a relationship
between the linearization about the orbit and the linearization of the Poincaré map about
the corresponding fixed point, made precise in the statement of Lemma 4.7. That is, there
is an eigenvalue 1, an eigenvalue determined by the stability of the periodic orbit and an
eigenvalue determined by the linearization of system (3.39) at the periodic orbit, followed
from Lemma 4.8. As assumed, the periodic orbit in si-plane is a stable limit cycle, yielding
one Floquet multiplier inside the unit circle.

In order to apply the bifurcation theorem it is necessary to show that the remaining
eigenvalue crosses the unit circle transversally. This will be accomplished by showing that
one of the Floquet exponents passes through zero (transversally) and applying Lemma 4.7.

Let (s(τ), i(τ)) be the unique, periodic solution of system (3.18). As noted, the Floquet
exponents are 0 and −σ < 0. The coefficient matrix of the linearization about the periodic
orbit of a solution of (3.39) can be denoted by J1(s, i), see (3.24), while for a solution of (3.39),
with p = 0, it takes the form −(i+A)smJ1(s, i)

−B2M1(i+A)im

0 0 E(i+A){sm +M2i
m − F [(s+ εi)n +D]}

 .

By Lemma 4.8, the Floquet exponents for the linearization of (3.39) about (s(τ), i(τ), 0)

are 0, −σ < 0 and ν = EO3(F
∗ − F ). As F decreases to F ∗, dν

dF |F=F ∗ = −EO3 < 0, so
the crossing is transversal. Hence the Poincaré map has one eigenvalue e−σ inside the unit
circle and one eigenvalue eν crossing the unit circle transversally as ν increases through 0.
Let P be the orbit corresponding to (s(τ), i(τ), 0). Select p0 ∈ P and identify the transverse
section T of P through p0 with R2, identifying p0 with 0 ∈ R2. Let Φν denote the Poincaré
map associated with P, p0 and the section T , for (3.39) with F = F ∗ − ν

EO3
. From the

analytic dependence of the vector field defined by (3.39) on its parameters, it follows that
solutions are analytic in parameters and initial conditions [29]. So is the Poincaré map. It
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follows that there is a neighborhood W of p0 in P such that for all ν sufficiently close to
0, say ν ∈ I, the map Φν , is defined on W. Making our identification with R2, we see that
(ν, x) → Φν(x) is analytic from I ×W to R2, Φν(0) = 0 for all ν ∈ I and Lν = dΦν(0) has
eigenvalues e−σ, eν . Applying Lemma 4.6, we obtain an analytic curve C of fixed points of
Φ : (ν, x) → (ν,Φν(x)) bifurcating from (ν, 0) at (0, 0).

For such (ν, x) , we have x = Φν(x), so x is a fixed point of the Poincaré map Φν . C

therefore corresponds to a l-parameter family of periodic solutions of (3.39). In addition, C

is tangent to the eigenvector v0 associated with the eigenvalue 1 of dΦ0. The direction of
v0 is transverse to the si-plane for system (3.39) (the other eigenvector of dΦ0 lies in this
plane). It follows that there is a branch of periodic solutions of (3.39) in the positive octant
for |F − F ∗| = |ν| small. □

Remark 3.13. The main idea of the proof is to apply Lemma 4.6 to the Poincaré map on
a section of the unique periodic orbit in the plane. All of the parameters will be fixed except
one, F , which will be adjusted so as to produce a bifurcation of a fixed point of the Poincaré
map. There are also a branch of periodic solutions not in the positive octant, but these are
without biological interest. Similarly, if S-P subsystem (3.29) has a stable limit cycle, then
this limit cycle can also be bifurcated into the interior of the positive octant of the sip-space
by selecting an appropriate bifurcation parameter.

5. Concluding remarks

Under some basic assumptions, we study a class of predator-prey type eco-epidemiological
systems. We first show the existence, uniqueness, positivity and uniform ultimate bound-
edness of the solutions for the proposed systems, which imply that (3.1) is biologically well
behaved. By assuming in turn one of the three populations is absent, we reduce the 3-
dimensional system (3.1) to three 2-dimensional subsystems (3.18), (3.29) and (3.36), and
study their respective dynamics. Then we observe that S-I subsystem (3.18) and S-P sub-
system (3.29) possess very complicated features due to the nonlinearity growth of susceptible
prey including Allee effect and competition. By Lemmas 3.6, 3.12 and 3.16, we find the exis-
tence of interior equilibrium in S-I (or S-P) subsystem is closely related to two quantities, i.e.,
the epidemiological (or ecological) basic reproduction number and the value of Allee effect.
For certain parameter values, there are periodic orbits, heteroclinic cycles and multi-stability
in both si- and sp-planes. We use Conley index and restricted Conley index (defined by
restricting Conley index to specific invariant subspaces) to detect the bifurcation point (Hopf
bifurcation and bifurcation of heteroclinic orbits) and heteroclinic orbits (cycles) and to show
the robustness of heteroclinic orbits in S-I subsystem (3.18). We also observe that different
intra-class and inter-class competitions between prey influence the existence and stability of
the interior equilibrium and the stability of the boundary equilibrium belong to the strong
Allee effect for S-I subsystem (3.18). The non-monotonic functional response makes the dy-
namics of S-P subsystem (3.29) more abundant. For example, under suitable conditions, it
has two interior equilibria and undergoes backward bifurcation and saddle-node bifurcation.
By comparing strong and week Allee effects in S-I subsystem (3.18) (or S-P subsystem (3.29)),
we conclude that the Allee effects can generate or destroy the interior equilibrium of S-I (or
S-P) subsystem and have the ability to destabilize the subsystems and even make them prone
to extinction. However, the dynamics of I-P subsystem (3.36) is relatively simple, a unique
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trivial equilibrium is unconditionally globally asymptotically stable. These results provide us
an access to investigate the dynamics of the full system.

Under suitable parametric conditions, the full system (3.39) admits seven possible bound-
ary equilibria, i.e., one trivial equilibrium, two axial equilibria and four planar equilibria. By
analyzing the corresponding characteristic equations, the local stability of each of bound-
ary equilibria of (3.39) is established, respectively. By constructing appropriate Lyapunov
functions or using Bendixson-Dulac criteria, we work out analytically the conditions for the
global stability of one axial equilibrium and two planar equilibria. Furthermore, the strong
Allee effect can induce a separatrix surface leading to multi-stability and the Hopf bifurca-
tion is observed around two planner equilibria. As it is not an easy task to solve an interior
equilibrium where both the prey and the predator species coexist, we turn to study the uni-
form persistence of (3.39) by applying the average Lyapunov function, which ensures that all
populations coexist for longer period and none of them becomes extinct. If prey is subject
to the strong Allee effect, it is impossible for (3.39) to persist for any initial value, indicat-
ing that the strong Allee effect in prey makes initial conditions being extremely important
for the persistence of prey as well as predator. Moreover, it is shown that disease-induced
competition can affect the coexistence of all populations and tremendously alter the stability
of (3.39). These analyses reveal the impact of Allee effects, the possibility of coexistence and
the outcomes of different competitions. Interestingly, we find that a heteroclinic network
formed by two heteroclinic cycles in si- and sp-planes emerges under certain conditions of
parameter values. Finally, we perform a detailed analysis to show that a stable limit cycle
created through the Hopf bifurcation in si-plane may be bifurcated into the interior of the
first octant under some restrictions.

These findings may have wide applications in management policy of species conservation.
For example, the introduction of disease or predation may act as a biological control to
regulate population sizes and save the population from extinction. Due to the usage of
generalized models, they can be generalized in obvious ways to food chain systems, and may
be applied to the situation where disease is transmitted by migratory bird population, like
the West Nile virus, salmonella, and so on.



CHAPTER 4

Mathematical analysis of network-based systems coupling
epidemic spread and information diffusion

In this chapter, we investigate two network-based systems coupling epidemic spread and
information diffusion, i.e., a concrete interplay system and an epidemic control system. The
organization of the chapter is as follows. In Section 1, we list some basic knowledge and mod-
eling approaches of complex networks. In Section 2, we construct a concrete interplay system
in quenched multiplex networks using a well-known SIS (susceptible-infected-susceptible)
model. Then, we make some preparations, analyze the epidemic threshold, and obtain the
conditions of global stability of the concrete interplay system. In Section 3, we formulate an
SIS epidemic control system and analyze its stability. In Section 4, some numerical simu-
lations are carried out to complement our theoretical analysis in Sections 2 and 3. Finally,
Section 5 concludes this chapter and presents some discussion.

1. Complex networks and network-based approaches for epidemic spread

In mathematical terms, a network can be defined as a graph G = (V,E), where V is the
set of nodes (vertices) and E is the set of links (edges) [19]. Two nodes are called neighbors if
they are connected with a link. The degree (connectivity) of a node is the total number of its
neighbors. The degree distribution of a network, P (k), can be defined as the fraction of nodes
having degree k or the probability that a randomly chosen node has degree k. Instead of using
a list of nodes and edges, we can represent the network as an adjacency matrix A = (aij)N×N .
The matrix element a(i, j) is unit if node i and node j are connected; otherwise, it is zero.

Complex networks are the underlying structures of many complex systems in nature and
society [3, 19, 81]. In the context of network theory, a complex network is a graph (network)
with nontrivial topological features—features that do not occur in simple networks such as
lattices or random graphs but often occur in graphs modeling of real systems. Two well-
known and much studied classes of complex networks are small-world networks [112] and
scale-free networks [12], whose discovery and definition are canonical case studies in the field.

A network is called a small-world network by analogy with the small-world phenomenon
(popularly known as six degrees of separation). In 1998, the first small-world network model
(the WS model) [112] was published by D. J. Watts and S. H. Strogatz, which through a single
parameter smoothly interpolates between completely regular and purely random networks,
see Fig. 1. Subsequently, M. E. Newman and D. J. Watts built the NW small-world network
model using an asymptotically exact real-space renormalization group method [82].

A network is named scale-free [11, 12] if its degree distribution follows a power law, at
least asymptotically. That is, the fraction P (k) of nodes in the network having k connections
to other nodes goes for large values of k as

P (k) ∼ k−γ

75
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Figure 1. Regular, random, and WS small-world networks. Image courtesy of [112].

where the exponent γ is a parameter whose value is typically in the range 2 < γ < 3 (wherein
the second moment of k−γ is infinite but the first moment is finite), although occasionally
it may lie outside these bounds [84]. There are various algorithms to generate a scale-free
network. Particularly, in Section 4, we use the Barábasi-Albert algorithm to generate multiple
scale-free networks.

In classical compartmental models, it is assumed that the population is homogeneously
mixed. However, in reality, individuals have different connectivity patterns. To develop
better models, complex networks [3, 19, 57, 81, 85] have been used in mathematical modeling
of epidemic spread by relaxing the homogenous mixing assumption. Generally speaking, the
most widely used theoretical approaches for epidemic spreading on complex networks in terms
of increasing complexity, include the mean-field, the heterogeneous mean-field, the quenched
mean-field, dynamical message-passing, link percolation, and pairwise approximation [111].

As far as the mean-field approaches are concerned, the quenched mean-field approach
is effective to model the spread of an infectious disease in a heterogenous population [107].
We consider the standard SIS model in a quenched network of size N . Let ρi(t) denote
the infection probability of node i at time t. Neglecting correlations between infected and
susceptible nodes, the evolution equation of node i can be described by

ρ̇i(t) = −ρi(t) + λ[1− ρi(t)]

N∑
j=1

aijρj(t), i = 1, 2, · · · , N, (4.1)

where the infection rate λ ∈ (0, 1] denotes the probability that each susceptible node is
infected if it is connected to one infected node. aij is an element of the adjacency matrix, it
is assigned with 1 if there is an edge between nodes i and j (i ̸= j) or 0 otherwise; if i = j,
then aii = 0.

2. A concrete interplay system and its stability analysis

2.1. A concrete interplay system. Our interplay system is implemented in multiplex
networks (in fact, a duplex network). One layer of this network is the behavior information
network and the other is epidemic contact network. Here, let (aij), (bij) be the adjacency
matrices of the epidemic spreading (contact) network and the behavior information network,
respectively. We shall denote by kai =

∑N
j=1 aij , k

b
i =

∑N
j=1 bij the physical connectivity and

virtual connectivity of the i-th individual in multiplex networks, respectively. We make the
following basic assumptions:
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(i) There is weak coupling between individuals in the behavior information network
when an epidemic begins to spread.

(ii) Each individual promptly obtain relatively accurate epidemic information through
multiple channels and is affected by both the local and global epidemic information.
In particular, if an individual has more connected neighbors, he/she will pay more
attention to the local epidemic information.

(iii) The individual with more connected neighbors is likely more concerned about epi-
demic information (including both the local and global epidemic information), so
his/her coupling weight in the behavior information network will increase more sig-
nificantly, implying that the extent of individual response to epidemic information
is related to one’s physical degrees in the epidemic spreading network. Here, we use
the function ψ(kai ) to express the response extent of the i-th individual with physical
degree kai to epidemic information.

(iv) When the global infection density (measured by ρg(t) =
∑N

i=1 ρi(t)/N) or local
infection density (measured by ρli(t) =

∑N
j=1 aijρj(t)/k

a
i ) becomes higher in the

epidemic spreading network, individuals will communicate the information of risk-
averse behaviors with their neighbors more frequently to protect themselves in the
behavior information network, indicating that the rate of change of the coupling
weight of the i-th individual, ċi(t), is directly proportional to the global infection
density ρg(t) and local infection density ρli(t).

(v) When the collective protective behaviors increase sufficiently, the communication
of protective information among individuals will become saturated because they
have come to an agreement on optimal protective measures. Thus, the proportional
relationship between the rate of change of the coupling weight of the i-th individual,
ċi(t), and its synchronization error eTi (t)ei(t) always remains valid, where ei(t) =

xi(t)− s(t) for i = 1, 2, · · · , N .
(vi) Meanwhile, individual adaptive behaviors will in turn suppress the spread of the

epidemic, which can reduce one’s susceptibility to infection (i.e., the admission
rate [83]).

Based on the above assumptions (i)-(vi) and the general interplay model (1.8), we con-
struct a concrete interplay system in quenched multiplex networks:

ẋi(t) = f(xi(t)) + ci(t)
N∑
j=1

bijΓ[xj(t)− xi(t)],

ρ̇i(t) = −ρi(t) + λϕi(t)[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N,

ċi(t) = βψ(kai )[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t),

(4.2)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the behavior state variable of the i-th
individual at time t, t ∈ [0,+∞), f : Rn → Rn is a continuously nonlinear function and
describes the local dynamics of individuals, ci(t) > 0 denotes the coupling weight or strength
of the i-th individual. The matrix Γ = diag(γ1, γ2, · · · , γn) ∈ Rn×n represents the inner-
coupling matrix, which is a positive definite diagonal matrix. The matrices A = (aij)N×N
and B = (bij)N×N represent the adjacency matrices of the epidemic spreading and behavior
information networks, respectively. If there are respective connections between node i and
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node j (i ̸= j) in the epidemic spreading and behavior information networks, then aij = aji =

1, bij = bji = 1; otherwise, aij = aji = 0, bij = bji = 0.
In a quenched epidemic network of size N , the variable ρi(t) denotes the infection proba-

bility of node (individual) i at time t. The transmission rate λ ∈ (0, 1] denotes the probability
that an infected node would actually transmit an infection through an edge connected to one
susceptible node. The term ϕi(t) is the admission rate that susceptible node i would actually
admit an infection through an edge connected to an infected node. In the absence of adap-
tive behaviors, it is usually assumed that ϕi(t) = 1 for i = 1, 2, · · · , N . The admission rate
ϕi(t) of node i is dependent on the strength of its adaptive behaviors and contact number
(denoted by its physical degree). Intuitively, with fixed adaptive strength, larger contact
number means higher risk of infection. Accordingly, in the condition of the same contact
number, larger adaptive strength implies lower risk of infection.

Based on the above analysis, we give a specific expression of the admission rate ϕi(t) for
node i as follows:

ϕi(t) = [1− α(kai )]Ei(t) + α(kai ), i = 1, 2, · · · , N, (4.3)

where α(x) is an increasing function of x, 0 < α(x) < 1, and the variable Ei(t) is set as
follows:

Ei(t) =
eTi (t)ei(t)

1 + eTi (t)ei(t)
∈ [0, 1), i = 1, 2, · · · , N, (4.4)

where ei(t) = xi(t)− s(t) is the synchronization error of node i, and s(t) is the synchronous
state of individual adaptive behaviors in the behavior information network, which can be an
equilibrium point, a periodic orbit, or even a chaotic attractor, satisfying ṡ(t) = f(s(t)).

Individuals uniformly change their behaviors in response to epidemic information. When
the adaptive behaviors of all individuals achieve synchronization, i.e., Ei(t) → 0 as t→ +∞
for i = 1, 2, · · · , N , then xi(t) is the optimal behavioral status, namely, the admission rate
ϕi(t) of the i-th individual achieves the minimum α(kai ). The impact of adaptive behaviors on
the epidemic can be quantified by the variable ϕi(t), accordingly, the infection rate λ becomes
λϕi(t), indicating that the risk of infection from others has fallen to a certain extent.

The parameter β > 0, ρli(t) =
∑N

j=1 aijρj(t)/k
a
i is the local infection density in the

neighborhood of node i (i.e., the local epidemic information) and ρg(t) =
∑N

i=1 ρi(t)/N is the
global infection density in a whole community (i.e., the global epidemic information). The
term θ(kai ) represents the extent that the i-th individual is affected by the local epidemic
information, accordingly, 1 − θ(kai ) is the proportion of the effect of the global information
on individual i. By assumption (ii), we know that θ(x) is an increasing function of x, 0 <
θ(x) < 1. The term ψ(kai ) characterizes the response strength of individual i to epidemic
information. Obviously, individuals with more neighbors should have a stronger sense of
epidemic information — ψ(x) is an increasing function of x.

The initial condition of system (4.2) can be set as follows: the initial infection probability
ρi(0) = ϵ, the initial state xi(0) = (xi1(0), xi2(0), · · · , xin(0))T ∈ Rn, and the initial coupling
weight ci(0) = τ for i = 1, 2, · · · , N , where 0 < ϵ≪ 1 and 0 < τ ≪ 1.

System (4.2) gives a concrete interplay model describing the interaction between adaptive
behaviors and epidemic spread in quenched multiplex networks. Compared to the general
interplay model (1.8), we have the behavior state variable X(t) = (xT1 (t), x

T
2 (t), · · · , xTN (t))T

and the variable Y (t) = (ρ1(t), ρ2(t), · · · , ρN (t))T . In the behavior information network, as
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the epidemic spreads, the coupling weight from node i to node j, wbij(t) = ci(t)bij , becomes
larger. However, in the epidemic spreading network, waij(t) = ϕi(t)aij can be regarded as the
contact weight from node i to node j, and it will decrease as the strength of the adaptive
behaviors of node i becomes large. Taking into account the heterogeneity of nodes, we have
waij(t) ̸= waji(t), w

b
ij(t) ̸= wbji(t) if there are respective connections between node i and node

j (i ̸= j) in the epidemic spreading and behavior information networks, which implies that
with the epidemic spread, the epidemic and behavior information networks become directed.

In the light of the adjacency matrix B of the behavior information network, its Laplacian
matrix L = (lij)N×N can be defined as follows:

lij =


−bij , i ̸= j,
N∑
k=1
k ̸=i

bik, i = j. (4.5)

It is clear that the diagonal elements of the Laplacian matrix L satisfy the following condition:

lii = −
N∑
j=1
j ̸=i

lij = −
N∑
j=1
j ̸=i

lji = kbi , i = 1, 2, · · · , N, (4.6)

where kbi denotes the virtual degree of node i in the behavior information network.
It is assumed that B is an irreducible matrix, which implies that the network is connected

in the sense of having no isolated clusters. It follows from [115] that zero is the smallest
eigenvalue of matrix L with multiplicity 1 and all the other eigenvalues are strictly positive.

The concrete interplay system (4.2) in quenched multiplex networks can now be reformu-
lated in terms of the Laplacian matrix L as

ẋi(t) = f(xi(t))− ci(t)
N∑
j=1

lijΓxj(t),

ρ̇i(t) = −ρi(t) + λϕi(t)[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N,

ċi(t) = βψ(kai )[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t).

(4.7)

2.2. Stability analysis.
2.2.1. Preliminaries. Let A = (aij), B = (bij) ∈ Rn×n be nonnegative matrices, namely,

all of their entries are nonnegative. We say A ≥ B if aij ≥ bij for all i and j, and A > B if
A ≥ B and A ̸= B.

Definition 2.1. For n > 1, a matrix A ∈ Rn×n is reducible if there exists a permutation
matrix Q, such that

QAQT =

(
A1 0

A2 A3

)
,

where A1 and A3 are square matrices. Otherwise, A is irreducible.

In [14], the following properties of nonnegative matrices are given:
R1. If A is nonnegative, then the spectral radius ϱ(A) of A is one of its eigenvalues, and

A has a nonnegative eigenvector corresponding to ϱ(A).
R2. If A is nonnegative and irreducible, then ϱ(A) is a simple eigenvalue, and A has a

positive eigenvector ω corresponding to ϱ(A).
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R3. If 0 ≤ A ≤ B, then ϱ(A) ≤ ϱ(B). Moreover, if 0 ≤ A < B and A+B is irreducible,
then ϱ(A) < ϱ(B).

where ϱ(A) denotes the spectral radius of a matrix A.
2.2.2. Epidemic threshold. For the epidemic spreading network in system (4.7), we set

βij = λaij , and nonnegative matrices

F (ρ) = (ϕi(t)βij(1− ρi(t)))N×N , F0 = (ϕi(t)βij)N×N . (4.8)

By setting ρ = (ρ1, ρ2, · · · , ρN )T , the epidemic spreading system in system (4.7) can be
rewritten in a more compact form as

ρ̇(t) = F (ρ)ρ− ρ. (4.9)

Define
R(t) = ϱ(F (ρ)), R0(t) = ϱ(F0), (4.10)

where R(t) is known as the effective reproduction number [5, 18], while R0(t) is known as the
basic reproduction number [34, 106]. We have R(t) = R0(t) only when the entire population
is susceptible.

When the adaptive behaviors of individuals achieve synchronization, i.e., Ei(t) → 0 as
t → ∞ for i = 1, 2, · · · , N by the expression (4.3) of the admission rate ϕi(t), then the
epidemic spreading system in system (4.7) can be rewritten as

ρ̇i(t) = −ρi(t) + λα(kai )[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N. (4.11)

If we set βij = λaij , and nonnegative matrices

F̄ (ρ) = (α(kai )βij(1− ρi(t)))N×N , F̄0 = (α(kai )βij)N×N . (4.12)

By a simple computation, we can then obtain the basic reproduction number of the epidemic
spreading system (4.11):

R̄0 = ϱ(F̄0). (4.13)
The classical network-based epidemic spreading system in the absence of human adaptive

behaviors can be described by the following differential equation:

ρ̇i(t) = −ρi(t) + λ[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N. (4.14)

If we set βij = λaij , and nonnegative matrices

F̃ (ρ) = (βij(1− ρi(t)))N×N , F̃0 = (βij)N×N , (4.15)

then we can get the basic reproduction number of the epidemic spreading system (4.14):

R̃0 = ϱ(F̃0). (4.16)

Next, we compare the basic reproduction numbers of systems (4.7), (4.11), and (4.14).
For arbitrary elements fij , f̄ij , and f̃ij , i, j = 1, 2, · · · , N in F0, F̄0, and F̃0, we have 0 ≤ f̄ij ≤
fij ≤ f̃ij , which implies that 0 ≤ F̄0 ≤ F0 ≤ F̃0. Then, we can obtain ϱ(F̄0) ≤ ϱ(F0) ≤ ϱ(F̃0)

by R3 of subsection 2.2.1. Moreover, F0 ̸= F̃0 and F0 + F̃0 is irreducible, so ϱ(F̄0) ≤ ϱ(F0) <

ϱ(F̃0), namely, R̄0 ≤ R0(t) < R̃0, which implies that individual adaptive behaviors can
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effectively lower the basic reproduction number of epidemic transmission. Only when the
adaptive behaviors of all individuals achieve synchronization, do we have R0(t) = R̄0.

By the relationship λc = λ/R0 between the epidemic threshold λc and the basic repro-
duction number R0, we can obtain the respective epidemic thresholds λc(t) = λ/R0(t) =

λ/ϱ(F0) = 1/ϱ((ϕi(t)aij)N×N ), λ̄c = λ/R̄0 = λ/ϱ(F̄0) = 1/ϱ((α(kai )aij)N×N ), and λ̃c =

λ/R̃0 = λ/ϱ(F̃0) = 1/ϱ((aij)N×N ) of systems (4.7), (4.11), and (4.14). Owing to ϱ(F̄0) ≤
ϱ(F0) < ϱ(F̃0), we have λ̃c < λc(t) ≤ λ̄c.

The ω-limit sets of the epidemic spreading system in system (4.7) are contained in the
following bounded region:

Γ = {(S1, ρ1, · · · , SN , ρN ) ∈ R2N
+ |0 ≤ Si ≤ 1, Si + ρi = 1, i = 1, 2, · · · , N}. (4.17)

It can be verified that Γ is positively invariant with respect to the epidemic spreading system
in system (4.7). Let Γ◦ denote the interior of Γ, and the disease-free equilibrium E0 of the
epidemic spreading system in system (4.7) is on the boundary of Γ.

Proposition 2.2. Assume that the matrix A = (aij) is irreducible. Then the following
results hold:
(i) If R̃0 ≤ 1 (i.e., λ ≤ λ̃c < λ̄c), then E0 is the unique equilibrium of the epidemic spreading
system in system (4.7) and it is globally asymptotically stable in Γ.
(ii) If R̄0 > 1 (i.e., λ̃c < λ̄c < λ), then E0 is unstable and the epidemic spreading system in
system (4.7) is uniformly persistent.

Proof : Let ρ = (ρ1, ρ2, · · · , ρN )T ∈ RN and ρ0 = (0, 0, · · · , 0)T . The epidemic spreading
system in system (4.7) can be rewritten as a vector equation as

ρ̇(t) = F (ρ)ρ− ρ, (4.18)

where fij = ϕi(t)βij(1− ρi(t)), βij = λaij .
For 1 ≤ i ≤ N, 0 ≤ ρi ≤ 1, we have 0 ≤ F (ρ) ≤ F (ρ0) = F0 < F̃0, and if ρ ̸= ρ0, then

F (ρ) < F (ρ0). Since A is irreducible, we know F (ρ), F0, and F̃0 are irreducible. Furthermore,
F0 + F̃0 is irreducible, thus we obtain ϱ(F (ρ)) ≤ ϱ(F0) < ϱ(F̃0) by R3 of subsection 2.2.1.

If R̃0 = ϱ(F̃0) ≤ 1, then ϱ(F (ρ)) < 1, and F (ρ)ρ − ρ = 0 has only the trivial solution
ρ = ρ0. Thus E0 is the only equilibrium of the epidemic spreading system of system (4.7) in
Γ if R̃0 ≤ 1.

Let u = (u1, u2, · · · , uN ) be a left eigenvector of F̃0 corresponding to ϱ(F̃0), i.e., uϱ(F̃0) =

uF̃0. Since F̃0 is irreducible, we know ui > 0 for i = 1, 2, · · · , N by R2 of subsection 2.2.1.
Calculating the derivative of the Lyapunov function L1(t) =

∑N
i=1 uiρi along the solution of

system (4.18), we then have

dL1(t)

dt
=

N∑
i=1

uiρ̇i = u[F (ρ)ρ− ρ] ≤ u[F0ρ− ρ] ≤ u[F̃0ρ− ρ] = uF̃0ρ− uρ

= uϱ(F̃0)ρ− uρ = [ϱ(F̃0)− 1]uρ = (R̃0 − 1)uρ ≤ 0 if R̃0 ≤ 1. (4.19)

If R̃0 < 1, then dL1(t)
dt = 0 ⇔ ρ = ρ0. If R̃0 = 1, then dL1(t)

dt = 0 implies u[F (ρ)ρ− ρ] = 0.
If ρ ̸= ρ0, then u[F (ρ)ρ−ρ] < u[F0ρ−ρ] < u[F̃0ρ−ρ] = 0 by inequality (4.19), a contradiction
to the equality that u[F (ρ)ρ − ρ] = 0. Thus u[F (ρ)ρ − ρ] = 0 has only the trivial solution
ρ = ρ0. Therefore, dL1(t)

dt = 0 ⇔ ρ = ρ0 if R̃0 ≤ 1. It can be verified that the only compact
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invariant subset of the set where dL1(t)
dt = 0 is the singleton {E0}. By LaSalle’s invariance

principle, E0 is globally asymptotically stable in Γ if R̃0 ≤ 1.
Let v = (v1, v2, · · · , vN ) be a left eigenvector of F̄0 corresponding to ϱ(F̄0), i.e., vϱ(F̄0) =

vF̄0. Since F̄0 is irreducible, we know vi > 0 for i = 1, 2, · · · , N by R2 of subsection 2.2.1. Cal-
culating the derivative of the function L2(t) =

∑N
i=1 viρi along the solution of system (4.18),

we then have

dL2(t)

dt
=

N∑
i=1

viρ̇i = v[F (ρ)ρ− ρ] ≥ v[F̄ (ρ)ρ− ρ] (4.20)

and

v[F̄ (ρ)ρ− ρ] ≤ v[F̄0ρ− ρ] = vF̄0ρ− vρ = vϱ(F̄0)ρ− vρ

= [ϱ(F̄0)− 1]vρ = (R̄0 − 1)vρ. (4.21)

If R̄0 > 1 and ρ ̸= ρ0, we know that vF̄0 − v = (R̄0 − 1)v > 0, and thus v[F̄ (ρ)ρ− ρ] > 0

in a neighborhood of E0 in Γ◦ by continuity. By inequality (4.20), we know thatdL2(t)
dt =

v[F (ρ)ρ− ρ] > 0 in a neighborhood of E0 in Γ◦, which implies that E0 is unstable. Using a
uniform persistence result from [41] and a similar argument as in the proof of Proposition 3.3
in [65], we can show that, when R̄0 > 1, the instability of E0 implies the uniform persistence
of the epidemic spreading system in system (4.7). □

2.2.3. Global stability.

Definition 2.3. The synchronization manifold of the network-based behavioral informa-
tion diffusion system can be defined as S = {(xT1 , xT2 , · · · , xTN )T ∈ RnN : xi = xj , i, j =

1, 2, · · · , N}, where xi = (xi1, xi2, · · · , xin)T ∈ Rn and xTi represents the transpose of xi.

Define the synchronization error variable by ei(t) = xi(t) − s(t), i = 1, 2, · · · , N , where
the synchronous state s(t) can be an equilibrium point, a periodic orbit, or even a chaotic
attractor, satisfying ṡ(t) = f(s(t)), then the error system with respect to the behavioral
information diffusion system in system (4.7) can be written as follows:

ėi(t) = f(xi(t))− f(s(t))− ci(t)

N∑
j=1

lijΓej(t), i = 1, 2, · · · , N. (4.22)

Denote e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T , F (t) = (fT (x1(t))− fT (s(t)), fT (x2(t))− fT (s(t)),

· · · , fT (xN (t)) − fT (s(t)))T , C(t) = diag(c1(t), c2(t), · · · , cN (t)), then we can rewrite (4.22)
in a simple compact form

ė(t) = F (t)− (C(t)L⊗ Γ)e(t), i = 1, 2, · · · , N, (4.23)

where ⊗ represents the Kronecker product.

Assumption 2.4. (see [26, 67]). There exists a positive definite diagonal matrix P where
P = diag(p1, p2, · · · , pn) and a constant ξ, such that the nonlinear vector-valued continuous
function f(x(t)) satisfies

(x(t)− y(t))TP [f(x(t))− f(y(t))] ≤ ξ(x(t)− y(t))T (x(t)− y(t)) (4.24)

for all x(t), y(t) ∈ Rn, t ≥ 0.
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Theorem 2.5. Suppose that the matrices A = (aij) and B = (bij) are irreducible. If
R̄0 > 1 (i.e., λ̃c < λ̄c < λ), then the epidemic spreading system in system (4.7) has a
unique endemic equilibrium E∗, and E∗ is globally asymptotically stable in Γ◦. Moreover,
the synchronization manifold of the behavioral information diffusion system in system (4.7)
is also globally asymptotically stable.

Proof : Since Si(t)+ ρi(t) = 1 for i = 1, 2, · · · , N , we can rewrite the epidemic spreading
system in system (4.7) as follows:

Ṡi(t) = 1− Si(t)−
N∑
j=1

λϕi(t)aijSi(t)ρj(t),

ρ̇i(t) = −ρi(t) +
N∑
j=1

λϕi(t)aijSi(t)ρj(t), i = 1, 2, · · · , N.
(4.25)

Let E∗ = {S∗
1 , ρ

∗
1; · · · , S∗

N , ρ
∗
N} ∈ Γ◦, where S∗

i , ρ
∗
i > 0 for 1 ≤ i ≤ N , denote the

unique endemic equilibrium of the epidemic spreading system in system (4.7). Set āij =

λα(kai )aijS
∗
i ρ

∗
j , 1 ≤ i, j ≤ N , and utilize the following matrix:

Ā =


Σj ̸=1ā1j −ā12 · · · −ā1N
−ā21 Σj ̸=2ā2j · · · −ā2N

...
... . . . ...

−āN1 −āN2 · · · Σj ̸=N āNj

 . (4.26)

We consider the Lyapunov function candidate V (t) = V A(t) + V B(t) with

V A(t) =

N∑
i=1

ziV
A
i (t), (4.27)

where zi > 0 denotes the cofactor of the i-th diagonal entry of Ā, 1 ≤ i ≤ N , and

V A
i (t) = Si(t)− S∗

i lnSi(t) + ρi(t)− ρ∗i ln ρi(t), (4.28)

and

V B(t) =
1

2
eT (t)(IN ⊗ P )e(t) +

N∑
i=1

σδi
2βψ(kai )

[c∗i − ci(t)]
2, (4.29)

where σ = λmin(PΓ) > 0, λmin(PΓ) denotes the minimal eigenvalue of matrix PΓ, and
positive constants c∗i , δi will be decided later.

Next, we show that V A
i (t) satisfies the assumptions of Theorem 3.1 in [66].

The derivative of V A
i (t) along the solution of the epidemic spreading system in sys-

tem (4.7) as follows:

dV A
i (t)

dt
=[1− S∗

i

Si(t)
]
dSi(t)

dt
+ [1− ρ∗i

ρi(t)
]
dρi(t)

dt

=[1− S∗
i

Si(t)
][1− Si(t)−

N∑
j=1

λϕi(t)aijSi(t)ρj(t)]

+ [1− ρ∗i
ρi(t)

][−ρi(t) +
N∑
j=1

λϕi(t)aijSi(t)ρj(t)]. (4.30)
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Using the equilibrium equations

1 = S∗
i +

N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j and ρ∗i =

N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j , (4.31)

we can obtain

dV A
i (t)

dt
=[1− S∗

i

Si(t)
][S∗

i +
N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j − Si(t)−

N∑
j=1

λϕi(t)aijSi(t)ρj(t)]

+ [1− ρ∗i
ρi(t)

][

N∑
j=1

λϕi(t)aijSi(t)ρj(t)−
N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j

ρi(t)

ρ∗i
]

=− 1

Si(t)
[Si(t)− S∗

i ]
2 +

N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j [2−

S∗
i

Si(t)
− ρi(t)

ρ∗i
]

+
N∑
j=1

λϕi(t)aij [S
∗
i ρj(t)−

Si(t)ρj(t)ρ
∗
i

ρi(t)
]. (4.32)

Substituting the expression (4.3) of ϕi(t) into (4.32), since [Si(t)− S∗
i ]

2 ≥ 0, we have

dV A
i (t)

dt
≤

N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j [2−

S∗
i

Si(t)
− ρi(t)

ρ∗i
]

+
N∑
j=1

λ[(1− α(kai ))Ei(t) + α(kai )]aij [S
∗
i ρj(t)−

Si(t)ρj(t)ρ
∗
i

ρi(t)
]

=

N∑
j=1

λα(kai )aijS
∗
i ρ

∗
j [2−

S∗
i

Si(t)
− ρi(t)

ρ∗i
− Si(t)ρj(t)ρ

∗
i

S∗
i ρ

∗
jρi(t)

+
ρj(t)

ρ∗j
]

+
N∑
j=1

λ(1− α(kai ))Ei(t)aij [S
∗
i ρj(t)−

Si(t)ρj(t)ρ
∗
i

ρi(t)
]. (4.33)

Let āij = λα(kai )aijS
∗
i ρ

∗
j , Gi(ρi) = − ρi

ρ∗i
+ ln ρi

ρ∗i
, and Fij(Si, ρi, ρj(·)) = 2 − S∗

i
Si(t)

− ρi(t)
ρ∗i

−
Si(t)ρj(t)ρ

∗
i

S∗
i ρ

∗
jρi(t)

+
ρj(t)
ρ∗j

. Since 0 < 1− α(kai ) ≤ 1, by expression (4.4) of Ei(t) and (4.33), we have

dV A
i (t)

dt
≤

N∑
j=1

āijFij(Si, ρi, ρj(·)) +
N∑
j=1

λEi(t)aijS
∗
i ρj(t)

=

N∑
j=1

āijFij(Si, ρi, ρj(·)) + λS∗
i Ei(t)

N∑
j=1

aijρj(t)

≤
N∑
j=1

āijFij(Si, ρi, ρj(·)) + λkai S
∗
i Ei(t)

≤
N∑
j=1

āijFij(Si, ρi, ρj(·)) + λkai S
∗
i e
T
i (t)ei(t). (4.34)
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Let Φ(a) = 1 − a + ln a. Then Φ(a) ≤ 0 for a > 0 and equality holds only at a = 1.
Furthermore,

Fij(Si, ρi, ρj(·)) = Gi(ρi)−Gj(ρj) + Φ

(
S∗
i

Si

)
+Φ

(
Siρj(t)ρ

∗
i

S∗
i ρ

∗
jρi

)
≤ Gi(ρi)−Gj(ρj). (4.35)

We can show that V A
i , Fij , Gi, āij satisfy the assumptions of Theorem 3.1 and Corollary

3.3 in [66]. Therefore, the function V A =
∑N

i=1 ziV
A
i as defined in Theorem 3.1 in [66] is a

Lyapunov function for the epidemic spreading system in system (4.7), namely,

dV A(t)

dt
≤

N∑
i,j=1

ziλk
a
i S

∗
i e
T
i (t)ei(t) =

N∑
i=1

λzik
a
i S

∗
i e
T
i (t)ei(t) (4.36)

for all (S1, ρ1, · · · , SN , ρN ) ∈ Γ◦.
Let ∆ = diag(δ1, δ2, · · · , δN ), then the derivative of V B(t) along the trajectory of the

behavioral information diffusion system in system (4.7) is given by

dV B(t)

dt
=eT (t)(IN ⊗ P )F (t)− eT (t)(C(t)L⊗ PΓ)e(t)−

N∑
i=1

σδi
βψ(ki)

ċi(t)[c
∗
i − ci(t)]

=

N∑
i=1

eTi (t)P [f(xi(t))− f(s(t))]− eT (t)(C(t)L⊗ PΓ)e(t)

− σ
N∑
i=1

δi[c
∗
i − ci(t)][θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t). (4.37)

Using the inequality in Assumption 2.4 and equality (4.37), we can get

dV B(t)

dt
≤ξ

N∑
i=1

eTi (t)ei(t)− eT (t)(C(t)L⊗ PΓ)e(t)

+ σ
N∑
i=1

δici(t)[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t)

− σ
N∑
i=1

δic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t). (4.38)

By the definition of θ(·), ρli(·) and ρgi (·), we see that 0 < θ(·) < 1 and 0 ≤ ρli(·), ρ
g
i (·) ≤ 1. So,

we obtain 0 ≤ θ(kai )ρ
l
i(t) + (1− θ(kai ))ρ

g(t) ≤ 1, together with (4.38), yields

dV B(t)

dt
≤ξ

N∑
i=1

eTi (t)ei(t)− eT (t)(C(t)L⊗ PΓ)e(t) + σ
N∑
i=1

δici(t)e
T
i (t)ei(t)

− σ
N∑
i=1

δic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t). (4.39)
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Rewrite (4.39) in a compact form as

dV B(t)

dt
≤ξ

N∑
i=1

eTi (t)ei(t)− eT (t)(C(t)L⊗ PΓ)e(t) + eT (t)(C(t)∆⊗ PΓ)e(t)

− σ

N∑
i=1

δic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t)

=
N∑
i=1

{ξ − σδic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]}eTi (t)ei(t)

+ eT (t)[C(t)(∆− L)⊗ PΓ]e(t). (4.40)

It is clear that ci(t) > 0 when t > 0 for all i = 1, 2, · · · , N , namely, the matrices C(t), P ,
and Γ are positive definite. Therefore, by picking appropriate constants δi such that {∆ −
L}s ≤ 0, we then have

dV B(t)

dt
≤

N∑
i=1

{ξ − σδic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]}eTi (t)ei(t)

≤
N∑
i=1

[ξ − σδi(1− θ(kai ))c
∗
i ρ
g(t)]eTi (t)ei(t). (4.41)

From Proposition 2.2, we know that if R̄0 > 1 (i.e., λ̃c < λ̄c < λ), then the epidemic
spreading system in system (4.7) is uniformly persistent in Γ◦. Combining the continuity
and this uniformly persistent property of function ρg(t), we can conclude that if R̄0 > 1,
then there exists ρ∗ ∈ (0, 1] such that limt→+∞ ρg(t) = ρ∗, which implies that there exists
ε ∈ (0, ρ∗] and t0 > 0 such that ρg(t) > ρ∗ − ε ≥ 0 for all t > t0. So when t > t0, we can
further obtain

dV B(t)

dt
≤

N∑
i=1

[ξ − σδi(1− θ(kai ))c
∗
i (ρ

∗ − ε)]eTi (t)ei(t). (4.42)

Integrating the above discussions, we have

dV (t)

dt
≤

N∑
i=1

[ξ + λzik
a
i S

∗
i − σδi(1− θ(kai ))c

∗
i (ρ

∗ − ε)]eTi (t)ei(t). (4.43)

Thus, we can select adequately large constants c∗i such that dV (t)
dt ≤ 0, which implies V (t)

is non-increasing. It is obvious that the singleton

H∗ = (S∗
1 , S

∗
2 , · · · , S∗

N , ρ
∗
1, ρ

∗
2, · · · , ρ∗N , 0, 0, · · · , 0, c∗1, c∗2, · · · , c∗N )

is the largest invariant set of

H = {(S1, S2, · · · , SN , ρ1, ρ2, · · · , ρN , e1, e2, · · · , eN , c1, c2, · · · , cN )|
dV

dt
= 0}.

By LaSalle’s invariance principle, H∗ is globally asymptotically stable, that is, for sys-
tem (4.7), the unique endemic equilibrium E∗ of the epidemic spreading system is globally
asymptotically stable in Γ◦, and the synchronization manifold of the behavioral information
diffusion system is also globally asymptotically stable. □
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3. Epidemic control system and its stability analysis

3.1. Epidemic control system. At the early stage of an emerging epidemic, it is almost
impossible for governments or public health and surveillance systems to respond sufficiently
rapidly to develop a vaccine to curb an emerging epidemic by containing it at source. Massive
news coverage and fast information flow can generate profound psychological impact on the
public, and hence governments or public health authorities could propagate, announce, or
release appropriate behavioral information of self-protection (such as staying at home, wash-
ing hands frequently, and wearing surgical face masks) to guide individuals at higher risk of
infection (e.g., officers, teachers, and doctors, etc.) through various means, aiming at altering
their behaviors to achieve an optimal state of self-protection.

Without loss of generality, suppose that the first l nodes are controlled, thus we construct
an SIS epidemic control system as follows:

ẋi(t) = f(xi(t))− ci(t)
N∑
j=1

lijΓxj(t) + ui(t),

ui(t) = −ci(t)diei(t), i = 1, 2, · · · , l,
ui(t) = 0, i = l + 1, l + 2, · · · , N,

ρ̇i(t) = −ρi(t) + λϕi(t)[1− ρi(t)]
N∑
j=1

aijρj(t), i = 1, 2, · · · , N,

ċi(t) = βψ(kai )[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t),

(4.44)

where di = diag(di1, di2, · · · , din), i = 1, 2, · · · , l, are positive definite feedback gain matrices,
1 ≤ l ≪ N , the parameter β > 0, the local epidemic information ρli(t) =

∑N
j=1 aijρj(t)/k

a
i ,

and the global epidemic information ρg(t) =
∑N

i=1 ρi(t)/N . The initial condition of sys-
tem (4.44) can be set as follows: the initial infection probability ρi(0) = ϵ, the initial state
xi(0) = (xi1(0), xi2(0), · · · , xin(0))T ∈ Rn, and the initial coupling weight ci(0) = τ for
i = 1, 2, · · · , N , where 0 < ϵ≪ 1 and 0 < τ ≪ 1.

3.2. Stability analysis.

Lemma 3.1. (see [26]). If G = (gij)N×N is an irreducible matrix with Rank(G) = N − 1

and satisfying gij = gji ≥ 0 if i ̸= j, and
∑N

j=1 gij = 0 for i = 1, 2, · · · , N . Then, the matrix
g11 − ε g12 · · · g1N
g21 g22 · · · g2N
...

... . . . ...
gN1 gN2 · · · gNN


is negative definite for any constant ε.

Theorem 3.2. Assume that the matrices A = (aij) and B = (bij) are irreducible. If
R̄0 > 1 (i.e., λ̃c < λ̄c < λ), then the epidemic spreading system in system (4.44) has a
unique endemic equilibrium E∗, and E∗ is globally asymptotically stable in Γ◦. Moreover, the
synchronization manifold of the behavioral information diffusion system in system (4.44) is
also globally asymptotically stable.
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Proof : The error system with respect to the behavioral information diffusion system in
system (4.44) can be written as:

ėi(t) = f(xi(t))− f(s(t))− ci(t)

N∑
j=1

lijΓej(t) + ui(t), i = 1, 2, · · · , N. (4.45)

We construct the Lyapunov function V (t) = V A(t) + V B(t) with the same V A(t) as that of
Theorem 2.5 and a different V B(t) as

V B(t) =
1

2

N∑
i=1

eTi (t)Pei(t) +

N∑
i=1

δi
2βψ(kai )

[c∗i − ci(t)]
2, (4.46)

where positive constants c∗i and δi will be decided later.
Similarly to the analysis in subsection 2.2.3, we can show that the derivative of V A(t)

satisfies
dV A(t)

dt
≤

N∑
i,j=1

ziλk
a
i S

∗
i e
T
i (t)ei(t) =

N∑
i=1

λzik
a
i S

∗
i e
T
i (t)ei(t) (4.47)

for all (S1, ρ1, · · · , SN , ρN ) ∈ Γ◦.
Denote ẽk(t) = (e1k(t), e2k(t), · · · , eNk(t)), Dk = diag(d1k, d2k, · · · , dlk, 0, · · · , 0), Lk =

(lkij) ∈ RN×N , and ∆k = diag(δ1k, δ2k, · · · , δNk) for k = 1, 2, · · · , n, where lkij = γklij and
δik = δi/pk. The matrices −Lk are assumed to be irreducible and symmetric, and all of
their off-diagonal entries are nonnegative. Then, for the positive semidefinite matrix Dk with
nonzero entry dik > 0, i ≤ l, one can easily derive that −Lk−Dk < 0 according to Lemma 3.1.

Then, the derivative of V B(t) along the trajectory of the behavioral information diffusion
system in system (4.44) satisfies

dV B(t)

dt
=

N∑
i=1

eTi (t)P [f(xi(t))− f(s(t))− ci(t)
N∑
j=1

lijΓej(t) + ui(t)]

−
N∑
i=1

δi
βψ(kai )

ċi(t)[c
∗
i − ci(t)]

≤ξ
N∑
i=1

eTi (t)ei(t)−
N∑
i=1

eTi (t)Pci(t)

N∑
j=1

lijΓej(t) +

l∑
i=1

eTi (t)Pui(t)

+
N∑
i=1

δici(t)[θ(k
a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t)

−
N∑
i=1

δic
∗
i [θ(k

a
i )ρ

l
i(t) + (1− θ(kai ))ρ

g(t)]eTi (t)ei(t)

≤ξ
N∑
i=1

eTi (t)ei(t)−
N∑
i=1

N∑
j=1

ci(t)lije
T
i (t)PΓej(t)−

l∑
i=1

ci(t)e
T
i (t)Pdiei(t)

+
N∑
i=1

δici(t)e
T
i (t)ei(t)−

N∑
i=1

δic
∗
i (1− θ(kai ))ρ

g(t)eTi (t)ei(t). (4.48)
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By rewriting some of the summation formulas in (4.48), we further have

dV B(t)

dt
≤ξ

N∑
i=1

eTi (t)ei(t)−
n∑
k=1

pkẽ
T
k (t)C(t)Lkẽk(t)−

n∑
k=1

pkẽ
T
k (t)C(t)Dkẽk(t)

+
n∑
k=1

pkẽ
T
k (t)C(t)∆kẽk(t)−

N∑
i=1

δi(1− θ(kai ))c
∗
i ρ
g(t)eTi (t)ei(t)

=

N∑
i=1

[ξ − δi(1− θ(kai ))c
∗
i ρ
g(t)]eTi (t)ei(t)

+
n∑
k=1

pkẽ
T
k (t)C(t)(∆k − Lk −Dk)ẽk(t). (4.49)

It is clear that ci(t) > 0 when t > 0 for all i = 1, 2, · · · , N , namely, the matrix C(t) is
positive definite. Since −Lk − Dk < 0, one can choose appropriate constants δi such that
{∆k − Lk −Dk}s < 0, then we have

dV B(t)

dt
≤

N∑
i=1

[ξ − δi(1− θ(kai ))c
∗
i ρ
g(t)]eTi (t)ei(t). (4.50)

From Proposition 2.2, we can conclude that if R̄0 > 1, then there exists ρ∗ ∈ (0, 1] such
that limt→+∞ ρg(t) = ρ∗, which implies that there exists ε ∈ (0, ρ∗] and t0 > 0 such that
ρg(t) > ρ∗ − ε ≥ 0 for all t > t0. So when t > t0, we can further obtain

dV B(t)

dt
≤

N∑
i=1

[ξ − δi(1− θ(kai ))c
∗
i (ρ

∗ − ε)]eTi (t)ei(t). (4.51)

Integrating the above discussions, we have

dV (t)

dt
≤

N∑
i=1

[ξ + λzik
a
i S

∗
i − δi(1− θ(kai ))c

∗
i (ρ

∗ − ε)]eTi (t)ei(t). (4.52)

Thus, we can select adequately large constants c∗i such that dV (t)
dt ≤ 0, which implies V (t)

is non-increasing. It is obvious that the singleton H∗ is the largest invariant set of H. By
LaSalle’s invariance principle, H∗ is globally asymptotically stable, that is, for system (4.44),
the unique endemic equilibrium E∗ of the epidemic spreading system is globally asymptoti-
cally stable in Γ◦, and the synchronization manifold of the behavioral information diffusion
system is also globally asymptotically stable. □

4. Numerical simulations

We consider multiplex networks with N nodes, composed of two subnetworks with which
we encode epidemic and behavior information propagation. We generate the epidemic spread-
ing and behavior information networks by the Barabási-Albert (BA) preferential attachment
algorithm [11]: Starting with m0 fully connected nodes, at each time step, a new node is added
and connected to m existing nodes in the network with the probability

∏
i = ki/

∑
j kj , which

is a linear preferential attachment strategy. Here, we set N = 100, m0 = 4,m = 3 in the
epidemic spreading network, m0 = 3,m = 3 in the behavior information network.
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From the point of view of the physical propagation process, it is difficult for us to identify
the behavior dynamics of individuals within a community. Without loss of generality, we
assume that the local dynamics of the dynamical behavior network are identical and defined
as the chaotic Lorenz oscillation. We use a chaotic dynamical system to model the behav-
ioral state of each node as we are primarily looking for synchronisation (consensus of opinion)
among nodes in the opinion network. Of course, the choice is arbitrary and other models
could be used instead. However, eventual synchronization behaviors are determined by the
network architecture and the form of coupling, not the specificities of the underlying dynam-
ical system [90]. Rather than attempting to construct an accurate model of consciousness
and opinion of individual agents in the community, we provide a chaotic caricature.

A single Lorenz oscillator, as the desired orbit, can be described byẋi1ẋi2
ẋi3

 =

−10 10 0

28 −1 0

0 0 −8/3

xi1xi2
xi3

+

 0

−xi1xi3
xi1xi2

 , (4.53)

which has a chaotic attractor for any initial values.
In the following simulations, the inner-coupling matrix is set as Γ = I3, the parameter

β = 0.001. The synchronization error is set as E(t) = 1
N−1

∑N
i=2 ∥xi(t) − x1(t)∥. Based

on the explanation of the functions α(x), θ(x) and ψ(x) in Section 2.1, they can be set
as α(x) = x

2(1+x) , θ(x) = 3x
4(1+x) and ψ(x) = x, respectively. For the epidemic control

system (4.44), the number of controlling nodes is selected as l = 20, the feedback gain
matrix is chosen as di = diag(20000, 30000, 40000) for i = 1, 2, · · · , 20. The initial infection
probability ρ1(0) = ρ2(0) = 0.01, ρi(0) = 0, i ̸= 1, 2, the initial values of the state variables
are chosen randomly in [0, 1] with uniform distribution, and the initial coupling weights
ci(0) = 0.001, i = 1, 2, · · · , 100.
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Figure 2. The changes of the infection prevalence ρ(t), synchronization error
E(t) = 1

N−1

∑N
i=2 ∥xi(t) − x1(t)∥, and coupling weights ci(t) when λ̃c < λ ≤

λ̄c for system (4.7) with λ̃c = 0.1040, λ̄c = 0.2305. (a) λ = 0.1356, R̄0 =

0.5884, R̃0 = 1.3040; (b) λ = 0.1672, R̄0 = 0.7256, R̃0 = 1.6080; (c) λ =

0.1989, R̄0 = 0.8628, R̃0 = 1.9121; (d) λ = 0.2305, R̄0 = 1, R̃0 = 2.2161.

From Fig. 2, we can see that the infection prevalence ρ(t) of system (4.7) increases, then
oscillates [46, 98], finally converges to zero and the synchronization error E(t) converges to
zero when the transmission rate λ satisfies λ̃c < λ ≤ λ̄c. This implies that although the
infection does not persist, the epidemic dynamics successfully induce the synchronization of
individual behaviors when λ̃c < λ ≤ λ̄c. When λ̃c < λ < λ̄c, we can find that the convergence
speed of ρ(t) and E(t) to zero for system (4.7) increases, which suggests that the epidemic
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dynamics not only induce the synchronization of individual behaviors, but also enhance the
speed of synchronization. However, when λ = λ̄c, the speed of synchronization has not been
accelerated. Compared with system (4.14) without adaptive reactions (i.e., ϕi(t) = 1), we find
that the infection prevalence ρ(t) of system (4.7) with adaptive reactions is always lower than
that of system (4.14) without adaptive reactions, indicating that human adaptive behaviors
not only slow down the spread of the infection and lower the size of its outbreak, but also
prevent it from growing into an epidemic [42]. Furthermore, the larger is the transmission
rate λ, the greater is the value of the highest peak of ρ(t) of system (4.7), but cannot exceed
the value of the highest peak of ρ(t) of system (4.14).
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work topologies for system (4.7).
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(b) Both the epidemic spreading
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have the same BA scale-free net-
work topology: m0 = 4,m = 3 for
system (4.7) .
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Figure 3. The changes of the infection prevalence ρ(t), synchronization error
E(t) = 1

N−1

∑N
i=2 ∥xi(t)−x1(t)∥, and coupling weights ci(t) when λ > λ̄c > λ̃c

for systems (4.7) and (4.44) with λ̃c = 0.1040, λ̄c = 0.2305. λ = 0.2505,
R̄0 = 1.0868, R̃0 = 2.4084.

From Fig. 3(a), we can see that the infection prevalence ρ(t) of system (4.7) reaches a
peak, then oscillates, finally converges to the positive state and the synchronization error E(t)

converges to zero when the transmission rate λ satisfies λ > λ̄c > λ̃c, which implies that the
infection becomes endemic and the epidemic dynamics successfully induce the synchronization
of individual behaviors with a large transmission rate. In Figs. 3(a) and 3(b), the epidemic
level of system (4.7) is significantly lower than that of system (4.14), which means that human
adaptive behaviors collectively lower the final incidence of the infection. Under the condition
that the other parameters remain the same, through the comparison of Figs. 3(a) and 3(b),
we find no essential difference by only changing the behavior information network topology.
Interestingly, it seems that the structural difference between the epidemic spreading and
behavior information networks accelerates the generation of collective synchronization and
the fall of the epidemic. Through the comparison of Figs. 3(a) and 3(c), we find that the
behavioral regulation not only enhances the convergence speed of ρ(t) towards the endemic
equilibrium and the speed of collective synchronization, but also significantly reduces the
value of the highest peak of ρ(t) and the steady-state values of the coupling weights ci(t),
which suggests that our epidemic control strategy from the perspective of behavioral control
is very valid.
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5. Concluding remarks

In this chapter, we first present a concrete interplay system (4.2) in quenched multiplex
networks using a well-known SIS model. We focus on the epidemic threshold, the uniform
persistence and global stability of system (4.2). Through the theoretical analysis, we discover
that the epidemic threshold λc(t) of the epidemic system in (4.2) is time varying, with an
upper bound λ̄c and a lower bound λ̃c. If the transmission rate λ satisfies λ ≤ λ̃c, then the
disease-free equilibrium E0 is the unique equilibrium of the epidemic spreading system in
system (4.2) and it is globally asymptotically stable in the feasible region Γ. If λ > λ̄c, then
the disease-free equilibrium E0 is unstable, and the epidemic spreading system in system (4.2)
is uniformly persistent and has a unique endemic equilibrium E∗, which is globally asymp-
totically stable in Γ◦. Moreover, the synchronization manifold of the behavioral information
diffusion system in system (4.2) is also globally asymptotically stable when λ > λ̄c [64, 118].
The numerical results show that although the infection does not persist, the epidemic dynam-
ics successfully induce the synchronization of individual behaviors when λ̃c ≤ λ ≤ λ̄c. The
individual adaptive behaviors triggered by the emergence of an epidemic can slow down the
spread of the infection, lower the final epidemic size, in some cases (e.g., when λ̃c < λ ≤ λ̄c),
can prevent the infection from becoming widespread. That is, the synchronous behaviors of
individuals have a stronger impact on the epidemic threshold and prevalence than asynchro-
nous adaptive behaviors. These results provide us with an alternative idea for understanding
why some infections do not cause major outbreaks or reach the epidemic threshold in the
absence of immunization policy or territory-wide quarantine/isolation measures [42, 73]. Al-
though the transmission rate λ can determine whether the adaptive behaviors of individuals
achieve synchronization, it is not the only factor that determines the speed of synchroniza-
tion. Interestingly, it seems that the difference between the epidemic spreading and behavior
information networks accelerates the generation of collective synchronization and the fall of
the epidemic, but cannot change the final size of the infection burden.

To further contain the spread of epidemics, we construct an SIS epidemic control sys-
tem (4.44) from the perspective of behavioral control. By constructing an appropriate Lya-
punov function and applying matrix theory and LaSalle’s invariance principle, we obtain the
similar results to those of system (4.2). Through numerical comparison, we find that behav-
ioral control not only enhances the speed with which the epidemic tends to become stable and
the speed of collective synchronization, but also significantly reduces the value of the highest
peak of the infection prevalence and the steady-state values of the coupling weights, which
indicates that our epidemic control system does provide a reference basis on which to design
the practical quasi-optimal control strategies or policies, and to assess their effectiveness.

Furthermore, our results also provide several useful suggestions for responding to the
emergence of new epidemics in future. For individuals themselves, if people in affected areas
can quickly take effective measures to protect themselves, then the outbreak of epidemics
may be effectively controlled; for governments, mass media, and other society organizations,
the effective epidemic and behavioral protection information that they provide can have a
significant and substantial impact on emerging epidemics, such as decreasing incidence, or
even eventually eradicating them.
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Analyse qualitative de plusieurs types de systèmes de maladies
infectieuses avec effets de réaction ou de diffusion

Résumé. Cette thèse étudie quelques problèmes qualitatifs pour les systèmes d’équations
différentielles modélisant des maladies infectieuses avec des effets de réaction ou de diffusion.
Il se compose en trois parties.

Premièrement, nous étudions un système de réaction-diffusion complex décrivant la prop-
agation spatio-temporelle de la grippe avec de multiples souches. Nous établissons des con-
ditions d’existence d’ondes semi-progressives, progressives fortes et faibles (persistantes) à
partir de l’équilibre sans maladie. Nous discutons en outre plusieurs situations dans lesquelles
les ondes semi-progressives n’existent pas, et donnent une estimation de la vitesse minimale
d’onde. Deuxièmement, nous analysons une classe de systèmes éco-épidémiologiques dans
lesquels les proies sont sujettes à l’effet Allee et à l’infection. Pour certains sous-systèmes,
nous déterminons l’existence du point de bifurcation (bifurcation Hopf et bifurcation d’orbites
hétéroclines). Nous montrons que l’effet Allee fort peut créer une courbe séparatrice (ou
une surface), conduisant à une stabilité multiple. Nous trouvons que les cycles hétéroclines
forment un réseau hétérocline et identifient une orbite périodique intérieure. Enfin, nous
donnons une analyse qualitative de deux systèmes différentiels basés sur le réseau couplant la
propagation de l’épidémie et la diffusion de l’information: le système d’interaction et le sys-
tème de contrôle des épidémies. Plus spécifiquement, nous obtenons l’existence de l’équilibre
sans maladie, l’équilibre endémique et la variété de synchronisation, ainsi que leur stabilité
asymptotique globale.
Mots clés: Systémes de maladies infectieuses, ondes progressives, vitesse minimale d’onde,
réseau hétérocline, orbite périodique intérieure, variété de synchronisation, stabilité globale

Qualitative analysis of some classes of infectious disease systems with
reaction or diffusion effects

Abstract. This thesis studies some qualitative problems for systems of differential equations
modeling infectious diseases with reaction or diffusion effects. It consists of three parts.

Firstly, we study a complex reaction-diffusion system describing the spatiotemporal spread
of influenza with multiple strains. We establish conditions for the existence of semi-, strong
and weak (persistent) traveling waves starting from the disease-free equilibrium. We further
discuss several situations in which semi-traveling waves do not exist, and give an estimation of
minimal wave speed. Secondly, we analyze a class of eco-epidemiological systems where prey
is subject to Allee effect and infection. For certain subsystems, we determine the existence of
the bifurcation point (Hopf bifurcation and bifurcation of heteroclinic orbits). We show that
the strong Allee effect can create a separatrix curve (or surface), leading to multi-stability.
We find that the heteroclinic cycles form a heteroclinic network and identify an interior pe-
riodic orbit. Finally, we give a qualitative analysis of two network-based differential systems
coupling epidemic spread and information diffusion: the interplay system and the epidemic
control system. More specifically, we obtain the existence of the disease-free equilibrium,
endemic equilibrium and synchronization manifold, and their global asymptotic stability.
Keywords: Infectious disease systems, traveling wave, minimal wave speed, heteroclinic
network, interior periodic orbit, synchronization manifold, global stability
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