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Résumé

Cette thèse comprend deux parties indépendantes.

Dans la première partie, nous développons une approche fondée sur la théorie des formes de
Jacobi dont l’indice est un réseau pour classifier les formes modulaires réflexives sur des réseaux de
niveau arbitraire. Les formes modulaires réflexives ont des applications en géométrie algébrique,
en algèbre de Lie et en arithmétique. La classification des formes modulaires réflexives est un
problème ouvert et a été étudiée par Borcherds, Gritsenko, Nikulin, Scheithauer et Ma depuis
1998. Dans cette partie, nous établissons de nouvelles conditions nécessaires à l’existence d’une
forme modulaire réflexive. Nous prouvons la nonexistence de formes modulaires réflexives et
de formes modulaires 2-réflexives sur des réseaux de grand rang. Nous donnons également une
classification complète des formes modulaires 2-réflexives sur des réseaux contenant deux plans
hyperboliques.

La deuxième partie est consacrée à l’étude des formes de Jacobi deW (E8)-invariantes. Ce type de
formes de Jacobi a une signification dans les variétés de Frobenius, la théorie de Gromov-Witten
et la théorie des cordes. En 1992, Wirthmüller a prouvé que l’espace des formes de Jacobi pour
tout système de racines irréductible excepté E8 est une algèbre polynomiale. Très peu de choses
sont connues dans le cas de E8. Dans cette partie, nous montrons que l’anneau bigradué des
formes de Jacobi W (E8)-invariantes n’est pas une algèbre polynomiale et prouvons que chacune
de ces formes de Jacobi peut être exprimée uniquement sous la forme d’un polynôme en neuf
formes de Jacobi algébriquement indépendantes introduites par Sakai avec des coefficients méro-
morphes SL2(Z)-modulaires. Ce dernier résultat implique que, à indice fixé, l’espace des formes
de Jacobi W (E8)-invariantes est un module libre sur l’anneau des formes SL2(Z)-modulaires et
que le nombre de générateurs peut être calculé via une série génératrice. Nous déterminons et
construisons tous les générateurs pour des indices petits. Ces résultats étendent un théorème de
type de Chevalley au cas du réseau E8.

Mots clés

réseaux, formes modulaires de Jacobi, formes modulaires pour la représentation de Weil, formes
modulaires pour les groupes orthogonaux, produits de Borcherds, formes modulaires réflexives,
formes modulaires 2-réflexives, groupes de réflexion, groupe de Weyl, système de racine E8,
théorie invariante.
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Abstract

This thesis consists of two independent parts.

In the first part we develop an approach based on the theory of Jacobi forms of lattice index
to classify reflective modular forms on lattices of arbitrary level. Reflective modular forms have
applications in algebraic geometry, Lie algebra and arithmetic. The classification of reflective
modular forms is an open problem and has been investigated by Borcherds, Gritsenko, Nikulin,
Scheithauer and Ma since 1998. In this part, we establish new necessary conditions for the
existence of a reflective modular form. We prove the nonexistence of reflective modular forms
and 2-reflective modular forms on lattices of large rank. We also give a complete classification
of 2-reflective modular forms on lattices containing two hyperbolic planes.

The second part is devoted to the study of Weyl invariant E8 Jacobi forms. This type of Jacobi
forms has significance in Frobenius manifolds, Gromov–Witten theory and string theory. In 1992,
Wirthmüller proved that the space of Jacobi forms for any irreducible root system not of type E8

is a polynomial algebra. But very little has been known about the case of E8. In this paper we
show that the bigraded ring of Weyl invariant E8 Jacobi forms is not a polynomial algebra and
prove that every such Jacobi form can be expressed uniquely as a polynomial in nine algebraically
independent Jacobi forms introduced by Sakai with coefficients which are meromorphic SL2(Z)

modular forms. The latter result implies that the space of Weyl invariant E8 Jacobi forms of
fixed index is a free module over the ring of SL2(Z) modular forms and that the number of
generators can be calculated by a generating series. We determine and construct all generators
of small index. These results give a proper extension of the Chevalley type theorem to the case
of E8.

Keywords

lattices, Jacobi modular forms, modular forms for the Weil representation, modular forms on
orthogonal groups, Borcherds products, reflective modular forms, 2-reflective modular forms,
reflection groups, Weyl group, root system E8, invariant theory.
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Notations

C the set of complex numbers
R the set of real numbers
Q the set of rational numbers
Z the set of integers
N the set of natural numbers i.e. 0, 1, 2, ...
e(x) exp(2πix), x ∈ C
M∨ the dual lattice of the lattice M
D(M) the discriminant group of M
M(a) the rescaling of the lattice M by a
rank(L) the rank of the lattice L
div(x) the divisor of x ∈M ∶ (x,M) = div(x)Z
U the hyperbolic plane: the even unimodular lattice of signature (1,1)

sign(D) the signature (i.e. r − s) of the discriminant form D

O(M) the integral orthogonal group of the lattice M
O(D) the orthogonal group of the discriminant form D

Õ
+
(M) the stable orthogonal group of M acting trivially on D(M)

D(M) the Hermitian symmetric domain of type IV
Dv(M) the rational quadratic divisor associated to the vector v
RL the set of 2-roots of L
IIr,s(D) the genus of lattice
ρD the Weil representation
H(L) the integral Heisenberg group associated to L

Jw.h.k,L,t the space of weakly holomorphic Jacobi forms for L

Jwk,L,t the space of weak Jacobi forms of weight k and index t for L

Jk,L,t the space of holomorphic Jacobi forms for L
Jcuspk,L,t the space of Jacobi cusp forms of weight k and index t for L

η(τ) the Dedekind η-function
υη the multiplier system of the Dedekind η-function
ϑ(τ, z) the odd Jacobi theta function, see Example 1.4.5
Γ0(n) the Hecke congruence subgroup of level n
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∆(τ) the normalized cusp form of weight 12
M∗ the ring of SL2(Z) modular forms
E4(τ) the Eisenstein series of weight 4

E6(τ) the Eisenstein series of weight 6

Hk(⋅) the weight raising differential operator
T−(m) the index raising Hecke operator
Grit(φ) the additive lifting of φ
Borch(ψ) the Borcherds product of ψ
σr the reflection associated to the vector r
H(λ,m) the Heegner divisor of discriminant (λ,m), see Eq 2.1.2
H (−2)-Heegner divisor, see Eq 2.1.3
Φ12 the Borcherds modular form of weight 12

N(R) the Niemeier lattice with root system R

[i] the elements of discriminant groups, see section 2.3.1
II2,2+8n the even unimodular lattice of signature (2,2 + 8n)

H0,Hµ see section 2.4
Sing(φ) the singular Fourier coefficients of the Jacobi form φ

div(F ) the zero divisor of the modular form F

N8 the Nikulin’s lattice, see Remark 2.3.2
Norm2 the condition Norm2, see Equation (2.3.2)
An the root lattice (root system) of type An
Dn the root lattice (root system) of type Dn

En the root lattice (root system) of type En, n = 6,7,8

W (E8) the Weyl group of the root system E8

orb(m) the Weyl orbit associated to m ∈ E8, see Equation 3.2.3
ϑE8 the Jacobi theta function for the root lattice E8

∑
2i

the Weyl orbits of norm 2i, see section 3.4.1

J
w,W (E8)
k,E8,t

the space of Weyl invariant E8 weak Jacobi forms

J
W (E8)
k,E8,t

the space of Weyl invariant E8 holomorphic Jacobi forms

J
cusp,W (E8)
k,E8,t

the space of Weyl invariant E8 Jacobi cusp forms
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Introduction

Modular forms are everywhere in mathematics and have even turned up in the study of theoretical
physics recently. Jacobi modular forms are an elegant intermediate between different types of
modular forms. The arithmetic theory of Jacobi forms was first systematically studied in the
1980s in Eichler and Zagier’s monograph, [EZ85]. One example of Jacobi forms is the first
Fourier–Jacobi coefficient of a Siegel modular form of genus 2. In the 1990s, Gritsenko generalized
this fact and defined Jacobi forms of lattice index as modular forms with respect to a parabolic
subgroup of an orthogonal group of signature (2, n) (see [Gri91]). Gritsenko also constructed
the additive Jacobi lifting which lifts holomorphic Jacobi forms to holomorphic modular forms
on orthogonal groups, which is an advanced version of Maass lift (see [Gri95]). In his celebrated
work, Borcherds discovered a multiplicative lifting (Borcherds product) which maps modular
forms for the Weil representation of SL2(Z) to meromorphic orthogonal modular forms (see
[Bor95, Bor98]). There is an isomorphism between modular forms for the Weil representation
and Jacobi forms. One can also construct Borcherds products from Jacobi forms (see [GN98b]).
Thus Jacobi forms are a bridge between vector-valued modular forms and orthogonal modular
forms. In recent years, Jacobi forms become more and more popular due to their application in
algebra and geometry and their connection to string theory. They determine Lorentzian Kac–
Moody Lie algebras of Borcherds type (see [GN97, GN98a]) and some Jacobi forms of weight 0
can be viewed as the elliptic genus of Calabi–Yau manifolds (see [BL00, Gri99, Gri99b, Tot00]).
Some interesting partition functions in geometry and physics can be expressed in terms of certain
Jacobi forms (see [MNV+98, Moh02]).

This Ph.D. thesis investigates two types of modular forms, reflective modular forms and Weyl
invariant E8 Jacobi forms. The theory of Jacobi forms plays a crucial role in our work. We use
the Jacobi forms approach to classify reflective modular forms and study the ring of Jacobi forms
for the remarkable unimodular lattice E8.

Part I. Reflective modular forms

Let M be an even integral lattice of signature (2, n) with n ≥ 3 and M∨ be its dual lattice. We
choose one of the two connected components of the Hermitian symmetric domain of type IV

D(M) = {[Z] ∈ P(M ⊗C) ∶ (Z,Z) = 0, (Z, Z̄) > 0}+.

Let O+(M) denote the subgroup of the orthogonal group O(M) preserving D(M). Let Õ
+
(M) <

O+(M) denote the subgroup acting trivially on the discriminant form D(M).
A holomorphic function F on the affine cone D(M)● is called a modular form of weight k ∈ Z

and character χ with respect to a finite index subgroup Γ < O+(M) if

F (tZ) = t−kF (Z), ∀t ∈ C∗,

F (gZ) = χ(g)F (Z), ∀g ∈ Γ.

11



The theory of automorphic Borcherds products (see [Bor95, Bor98]) provides a great way to
construct modular forms with rational quadratic divisors of the form

Dv(M) = {[Z] ∈ D(M) ∶ (Z, v) = 0}.

A non-constant holomorphic modular form with special rational quadratic divisors associated
to reflective (resp. 2-reflective) vectors is called reflective (resp. 2-reflective). Here a reflective
vector is a primitive vector r ∈M with (r, r) < 0 such that the reflection

σr ∶ l ↦ l −
2(l, r)

(r, r)
r

is in O+(M). A primitive vector r ∈M is called 2-reflective if (r, r) = −2. The definition implies
that 2-reflective modular forms are a particular class of reflective modular forms. Note that
2-reflective modular forms have the geometric interpretation as automorphic discriminants of
moduli of K3 surfaces (see [Nik96]). A lattice is called (2-)reflective if it admits a (2-)reflective
modular form.

The notion and examples of reflective modular forms first appeared in the works of Borcherds
[Bor98] and Gritsenko-Nikulin [GN98a]. Reflective modular forms are usually Borcherds products
of some vector-valued modular forms (see [Bru02, Bru14]). The Igusa form ∆10, namely the first
cusp form for the Siegel modular group of genus 2, is the first such modular form (see [GN97]).
The Borcherds form Φ12 for II2,26 the even unimodular lattice of signature (2,26) is the last such
modular form (see [Bor95]).

Reflective modular forms are of great importance. Such modular forms play a crucial role
in classifying interesting Lorentzian Kac-Moody algebras, as their denominator identities are
usually reflective modular forms (see [GN98a, GN98b, GN02, GN18, Sch04, Sch06]). This type
of modular forms also has applications in algebraic geometry, as the existence of a particular
reflective modular form determines the Kodaira dimension of the corresponding modular variety
(see [GHS07, GH14, Ma18]). In addition, reflective modular forms are beneficial to the research
of hyperbolic reflection groups and hyperbolic reflective lattices (see [Bor98, Bor00]), as the
existence of a reflective modular form with a Weyl vector of positive norm indicates that the
hyperbolic lattice is reflective. It means that the subgroup generated by reflections has finite
index in the integral orthogonal group of the lattice. Recently, as joint work with Gritsenko, we
use the pull-backs of certain reflective modular forms of singular weight to build infinite families of
remarkable Siegel paramodular forms of weights 2 and 3 (see [GW17, GW18b, GW19a]). Besides,
the first Fourier-Jacobi coefficients of reflective modular forms give interesting holomorphic theta
blocks (see [GSZ18, Gri18]).

The classification of reflective modular forms is an old open problem since 1998 when Grit-
senko and Nikulin first conjectured that the number of lattices having reflective modular forms
is finite in [GN98a]. This problem has been widely studied by several mathematicians and many
classification results have been obtained. Borcherds [Bor00] constructed many interesting reflec-
tive modular forms related to extraodinary hyperbolic groups as Borcherds products of nearly
holomorphic modular forms on congruence subgroups. Gritsenko and Nikulin [GN02] classified
reflective modular forms of signature (2,3) by means of the classification of hyperbolic reflective
lattices. Scheithauer classified some special reflective modular forms with norm 0 Weyl vectors.
More precisely, based on the theory of vector-valued modular forms, he found a necessary con-
dition for the existence of a reflective form in [Sch06]. Using this condition, the classification
of strongly reflective modular forms of singular weight on lattices of squarefree level is almost
completed (see [Sch17, Dit18]). From an algebraic geometry approach, Ma derived finiteness of
lattices admitting 2-reflective modular forms and reflective modular forms of bounded vanishing
order, which proved partly the conjecture of Gritsenko and Nikulin (see [Ma17, Ma18]).
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Scheithauer’s condition is very hard to use when the lattice is not of squarefree level because
in this case the Fourier coefficients of vector-valued Eisenstein series are very complicated and
it is difficult to characterize the discriminant form of the lattice. Ma’s approach is useless to
give the list of reflective lattices because his estimate is rather rough. There is no efficient way
to classify reflective modular forms on general lattices. In this thesis we shall classify reflective
lattices of arbitrary level.

In order to do this, the theory of Jacobi forms of lattice index (see [EZ85, CG13]) might
be very useful. We know from [Bru14] that every reflective modular form on a lattice of type
U ⊕ U(m) ⊕ L is in fact a Borcherds product of a suitable vector-valued modular form. Thus
the existence of a reflective modular form is determined by the existence of a certain vector-
valued modular form. In view of the isomorphism between vector-valued modular forms and
Jacobi forms, we can use Jacobi forms to study reflective modular forms. In some sense, Jacobi
forms are more powerful than vector-valued modular forms. We can take the product and tensor
product of different Jacobi forms. We can also consider the pull-backs of Jacobi forms from a
certain lattice to its sublattices. There are the Hecke type operators to raise the index of Jacobi
forms and the differential operators to raise the weight of Jacobi forms. The structure of the
space of Jacobi forms for some familiar lattices was known (see [Wir92] for the case of root
systems). Besides, we usually focus on the genus of a lattice when we use vector-valued modular
forms. But we will see all the faces of a reflective modular form when we work with Jacobi forms,
because there are different Jacobi forms on the expansions of an orthogonal modular form at
different one-dimensional cusps. For example, the Borcherds modular form Φ12 is constructed
as the Borcherds product of the inverse of Ramanujan Delta function ∆−1(τ) = q−1 + 24 +O(q).
But in the context of Jacobi forms, there are 24 different constructions of this modular form
corresponding to 24 classes of positive-definite even unimodular lattices of rank 24 (see [Gri18]).

The following is our first main theorem of this part, which gives a complete classification of
2-reflective lattices of large rank.

Theorem 0.1 (see Theorem 2.6.8). Let M be a 2-reflective lattice of signature (2, n) with n ≥ 14.
Then it is isomorphic to II2,18, or 2U ⊕ 2E8(−1)⊕A1(−1), or II2,26.

We have mentioned that there is a relation between hyperbolic 2-reflective lattices and 2-
reflective modular forms. The full classification of hyperbolic 2-reflective lattices was known
due to the work of Nikulin and Vinberg [Nik81, Nik84, Vin07]. Vinberg [Vin72] proved that if
U ⊕ L(−1) is a hyperbolic 2-reflective lattice then the set of 2-roots of each lattice in the genus
of L generates the whole space L ⊗ R. In this paper, we prove an analogue of Vinberg’s result
(see Theorem 2.6.1) and use it to give a complete classification of 2-reflective lattices.

Theorem 0.2 (see Theorem 2.6.9). There are only three types of 2-reflective lattices containing
two hyperbolic planes:

(a) II2,26;

(b) 2U ⊕L(−1) ∶ every lattice in the genus of L has no 2-root. In this case, the corresponding
2-reflective modular form has a Weyl vector of norm zero and has weight 12β0, where β0 is
the multiplicity of the principal Heegner divisor H0;

(c) 2U ⊕L(−1) ∶ every lattice in the genus of L has 2-roots and the 2-roots generate a sublattice
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of the same rank. In this case, L is in the genus of one of the following 50 lattices

n L

3 A1

4 2A1, A2

5 3A1, A1 ⊕A2, A3

6 4A1, 2A1 ⊕A2, A1 ⊕A3, A4, D4, 2A2

7 5A1, 2A1 ⊕A3, A1 ⊕ 2A2, A1 ⊕A4, A1 ⊕D4, A5, D5

8 6A1, 2A1 ⊕D4, A1 ⊕A5, A1 ⊕D5, E6, 3A2, 2A3, A6, D6

9 7A1, 3A1 ⊕D4, A1 ⊕D6, A1 ⊕E6, E7, A7, D7

10 8A1, 4A1 ⊕D4, 2A1 ⊕D6, A1 ⊕E7, E8, 2D4, D8, N8

11 5A1 ⊕D4, A1 ⊕ 2D4, A1 ⊕D8, A1 ⊕E8

12 2A1 ⊕E8

18 2E8

19 2E8 ⊕A1

Note that 5A1⊕D4 and A1⊕N8, A1⊕2D4 and 3A1⊕D6, A1⊕D8 and 2A1⊕E7, 2A1⊕E8

and D10 are in the same genus, respectively. Here, N8 ≅ D∨
8 (2) is the Nikulin lattice.

Moreover, every lattice has a 2-reflective modular form with a positive norm Weyl vector.
Thus, every associated Lorentzian lattice U ⊕L(−1) is hyperbolic 2-reflective.

The above (c) characterizes the 2-reflective lattices giving arithmetic hyperbolic 2-reflective
groups. By this characterization, we further prove that there are exactly 18 hyperbolic 2-reflective
lattices of rank bigger than 5 not associated to 2-reflective modular forms (see Theorem 2.6.17),
which gives a negative answer of [Bor98, Problem 16.1]. It now remains to classify 2-reflective
lattices of type (b). We conjecture that this type of lattices might be viewed as sublattices of
Leech lattice. It seems very difficult to classify such lattices because they correspond to hyperbolic
parabolically 2-reflective lattices (see [Bor00, GN18]) whose full classification is unknown.

As a corollary of the above theorems, we figure out the classification of 2-reflective modular
forms of singular weight.

Theorem 0.3 (see Theorem 2.6.12). If M = 2U ⊕ L(−1) has a 2-reflective modular form of
singular weight, then L is in the genus of 3E8 or 4A1.

We now explain the main idea of the proof. Our proof is based on manipulation of Jacobi
forms and independent of the work of Nikulin and Vinberg on the classification of hyperbolic
2-reflective lattices. Suppose that M contains two hyperbolic planes i.e. M = 2U ⊕ L(−1), and
F is a 2-reflective modular form for Õ

+
(M). The divisor of F consists of the following two types

of reflective divisors

H0 = ⋃
l∈M,l2=−2
div(l)=1

Dl(M) and Hµ = ⋃
l∈M∨,l2=− 1

2
l∈µ+M

Dl(M),

where µ is an element of order 2 and norm −1/2 in the discriminant form of M . The integer
div(l) is the natural number generating the ideal (l,M). The existence of F implies that there
exists a weakly holomorphic Jacobi form φ0,L of weight 0 for the lattice L. The divisor of F
determines the singular Fourier coefficients of φ0,L. Here the singular Fourier coefficients are its
Fourier coefficients of type f(n, `) with negative hyperbolic norm 2n − (`, `) < 0. The singular
Fourier coefficients of φ0,L have hyperbolic norm −2 or −1/2.

There is a differential operator which maps a Jacobi form of weight k to a Jacobi form of
weight k+2 (see Lemma 1.4.11). Using this operator, we can construct Jacobi forms of weight 2,
4, 6 which have the same type of singular Fourier coefficients as φ0,L. Taking their combinations
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to cancel the singular Fourier coefficients, we can construct several holomorphic Jacobi forms of
low weights, whose existence yields the nonexistence of 2-reflective modular forms on lattices of
large rank due to the singular weight. This proves one part of the first theorem.

Through more refined analysis, we find that all Fourier coefficients in q−1 and q0 terms of
φ0,L are singular except the constant term f(0,0) giving the weight of F . The remarkable thing
is that the coefficients in qn-terms (n ≤ 0) of any Jacobi form of weight 0 satisfy certain relations
(see Lemma 1.4.12)

C ∶=
1

24
∑
`∈L∨

f(0, `) −∑
n<0

∑
`∈L∨

f(n, `)σ1(−n) =
1

2 rank(L)
∑
`∈L∨

f(0, `)(`, `)

∑
`∈L∨

f(0, `)(`, z)2 = 2C(z, z), ∀z ∈ L⊗C.

From the first identity we deduce a formula to express the weight of F in terms of the multiplicities
of the irreducible components of the divisor of F . From the second identity we derive that if L
has 2-roots then the set of all 2-roots spans the whole space L⊗R. Moreover, all irreducible root
components not of type A1 have the same Coxeter number (see Theorem 2.6.1). Furthermore,
the q0-term of F also defines a holomorphic Jacobi form as a theta block

η(τ)f(0,0)∏
`>0

(
ϑ(τ, (`, z))

η(τ)
)

f(0,`)

.

From its holomorphicity we also deduce a necessary condition. The 2-reflective modular forms for
lattices listed in statement (c) can be constructed as quasi pull-backs of the Borcherds modular
form Φ12 (see §2.3.1). For other lattices, the quasi pull-backs of Φ12 are not exactly 2-reflective
modular forms and usually have additional divisors. But this is not bad. By considering its
difference with the assumed 2-reflective modular form, we construct some Jacobi forms whose
nonexistence can be proved by the structure of the space of Jacobi forms. Combining these
arguments together, the theorems can be proved.

We also use the similar argument to classify reflective modular forms. We prove the following
nonexistence results.

Theorem 0.4 (see Theorem 2.5.9). There is no any reflective lattice of signature (2, n) with
23 ≤ n ≤ 25.

Theorem 0.5 (see Theorem 2.7.1). The lattice Tn = 2U ⊕ 2E8(−1) ⊕ ⟨−2n⟩ is reflective if and
only if n = 1, 2.

The lattice Tn is related to the moduli space of K3 surfaces. Looijenga [Loo03] proved that
the lattice Tn is 2-reflective if and only if n = 1 which answered a question of Nikulin [Nik96].
Our theorem gives an extension of Looijenga’s result.

Part II. Weyl invariant E8 Jacoi forms

For the lattice constructed from the classical root system R, one can define the Jacobi forms
which are invariant with respect to the Weyl group W (R). Such Jacobi forms are called W (R)-
invariant Jacobi forms. In this setting, the classical Jacobi forms due to Eichler and Zagier
[EZ85] are actually the W (A1)-invariant Jacobi forms. All W (R)-invariant weak Jacobi forms
make up a bigraded ring graded by the weight and the index. The problem on the algebraic
structure of such bigraded ring was inspired by the work of E. Looijenga [Loo76, Loo80] and K.
Saito [Sai90] on the invariants of generalized root systems. This problem is closely related to the
theory of Frobenius manifolds (see [Ber00a, Ber00b, Dub96, Dub98, Sat98]). The first solution
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to this problem was given in 1992 by Wirthmüller [Wir92], which stated that the bigraded ring of
W (R)-invariant weak Jacobi forms is a polynomial algebra over C except for the root system E8.
This result can be regarded as the Chevalley type theorem for affine root systems (see [BS06]).
But Wirthmüller’s solution was totally non-constructive because it did not give the construction
of generators like in the case of A1 considered in the book [EZ85] of Eichler–Zagier. On account of
this defect, later Bertola [Ber99] and Satake [Sat98] reconsidered this problem and found explicit
constructions of the generators for the root systems An, Bn, G2, D4 and E6.

The case R = E8 was not covered by Wirthmüller’s theorem and remains completely open
for 27 years. In recent years, W (E8)-invariant Jacobi forms appear in various contexts in math-
ematics and physics and have applications in Gromov–Witten theory and string theory. The
original Seiberg-Witten curve for the E-string theory is expressed in terms of W (E8)-invariant
Jacobi forms [Sak17a]. The Gromov-Witten partition function Zg;n(τ ∣µ) of genus g and winding
number n of the local B9 model is a W (E8)-invariant quasi-Jacobi form of index n and weight
2g − 6 + 2n up to a factor [Moh02, MNV+98]. The P1-relative Gromov-Witten potentials of the
rational elliptic surface are W (E8)-invariant quasi-Jacobi forms numerically and the Gromov-
Witten potentials of the Schoen Calabi-Yau threefold (relative to P1) are E8×E8 quasi-bi-Jacobi
forms [OP17]. But unfortunately, very little has been known about the ring of W (E8)-invariant
Jacobi forms. The purpose of this paper is to study the space of W (E8)-invariant Jacobi forms.

Let τ ∈ H and z ∈ E8 ⊗C. A holomorphic function ϕ(τ, z) is called a W (E8)-invariant weak
Jacobi form of weight k and index t if it satisfies the following transformations under the action
of the Jacobi group which is the semidirect product of SL2(Z) with the integral Heisenberg group
of E8

ϕ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k exp(tπi

c(z, z)

cτ + d
)ϕ(τ, z), (

a b
c d

) ∈ SL2(Z),

ϕ(τ, z + xτ + y) = exp (−tπi[(x,x)τ + 2(x, z)])ϕ(τ, z), x, y ∈ E8,

if it admits a Fourier expansion of the form

ϕ(τ, z) = ∑
n∈N

∑
`∈E8

f(n, `)e2πi(nτ+(`,z)),

and if it is invariant under the Weyl group i.e. ϕ(τ, σ(z)) = ϕ(τ, z) for all σ ∈W (E8).
Sakai [Sak17a] constructed nine independent W (E8)-invariant holomorphic Jacobi forms,

noted by A1, A2, A3, A4, A5, B2, B3, B4, B6. The Jacobi forms Am, Bm are of weight 4, 6 and
index m respectively. Sakai [Sak17b] also conjectured that the number of generators of W (E8)-
invariant Jacobi forms of index m coincides with the number of fundamental representations at
level m. In this thesis we give an explicit mathematical description of his conjecture and prove it
to be true. We first study the values of W (E8)-invariant Jacobi forms at q = 0, which are called
q0-terms of Jacobi forms. We prove that the q0-term of any W (E8)-invariant Jacobi form can
be written as a particular polynomial in terms of the Weyl orbits of eight fundamental weights
of E8 (see Lemma 3.3.2). We then deduce our first main theorem of this part, which gives an
extension of Wirthmüller’s theorem to the case of E8.

Theorem 0.6 (see Theorem 3.3.1). Let t be a positive integer. Then the space Jw,W (E8)
∗,E8,t

of
W (E8)-invariant weak Jacobi forms of index t is a free module of rank r(t) over the ring M∗ of
SL2(Z) modular forms, where r(t) is given by

1

(1 − x)(1 − x2)2(1 − x3)2(1 − x4)2(1 − x5)(1 − x6)
=∑
t≥0

r(t)xt.

Equivalently, we have that

J
w,W (E8)
∗,E8,∗ =⊕

t≥0

J
w,W (E8)
∗,E8,t

⊊ C (E4,E6) [A1,A2,A3,A4,A5,B2,B3,B4,B6] ,
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and that A1, A2, A3, A4, A5, B2, B3, B4, B6 are algebraically independent over M∗. Here
C (E4,E6) denotes the fractional field of C[E4,E6].

It is well-known that the space Jw,W (E8)
∗,E8,1

is generated over M∗ by the theta function of the

root lattice E8. In this thesis we further elucidate the structure of Jw,W (E8)
∗,E8,t

for t = 2, 3, 4. We
next explain the main ideas.

Our main theorem says that the space Jw,W (E8)
∗,E8,t

is a free module over M∗ and the number of
generators is r(t). It means that we only need to find all generators in order to characterize the
structure of Jw,W (E8)

∗,E8,t
. We do this by analyzing the spaces of weak Jacobi forms of fixed index

and non-positive weight.
We first construct many basic Jacobi forms of non-positive weight in terms of Jacobi theta

functions. The main tool is the weight raising differential operators (see Lemma 3.2.4).
We then determine the dimension of the space of Jacobi forms of fixed index and any given

negative weight. To do this, we study the orbits of E8 vectors of fixed norm under the action
of the Weyl group and represent q0-terms of Jacobi forms as linear combinations of these orbits.
By means of the following two crucial facts,

1. From a given Jacobi form of weight k, we can construct a Jacobi form of weight k + 2j for
every positive integer j by the differential operators.

2. If one takes z = 0, then q0-term of any Jacobi form of negative weight will be zero. In
addition, coefficients of q0-term of any Jacobi form of weight zero satisfy a linear relation
(see Lemma 3.2.5).

from a Jacobi form of negative weight with given q0-term, we can build a certain system of linear
equations defined by the coefficients of the orbits of E8 vectors in q0-terms of Jacobi forms. By
solving the linear system, we can know if the Jacobi form of negative weight with given q0-term
exists.

The following theorem describes the structure of Jw,W (E8)
∗,E8,t

for t = 2, 3, 4.

Theorem 0.7 (see Theorems 3.4.7, 3.4.10, 3.4.13).

J
w,W (E8)
∗,E8,2

=M∗⟨ϕ−4,2, ϕ−2,2, ϕ0,2⟩,

J
w,W (E8)
∗,E8,3

=M∗⟨ϕ−8,3, ϕ−6,3, ϕ−4,3, ϕ−2,3, ϕ0,3⟩,

J
w,W (E8)
∗,E8,4

=M∗⟨ϕ−2k,4, 0 ≤ k ≤ 8; ψ−8,4⟩,

where ϕk,t is a W (E8)-invariant weak Jacobi form of weight k and index t.

Combining the above two theorems together, we prove that the bigraded ring Jw,W (E8)
∗,E8,∗ is

in fact not a polynomial algebra over M∗ and its structure is rather complicated (see Theorem
3.4.8). It means that the Chevalley type theorem does not hold for E8.

Furthermore, we apply our results about weak Jacobi forms to determining the structures of
the modules of W (E8)-invariant holomorphic and cusp Jacobi forms of index 2, 3, 4.

Theorem 0.8 (see Theorems 3.4.7, 3.4.11, 3.4.14).

J
W (E8)
∗,E8,2

=M∗⟨A2,B2,A
2
1⟩,

J
W (E8)
∗,E8,3

=M∗⟨A3,B3,A1A2,A1B2,A
3
1⟩,

and JW (E8)
∗,E8,4

is generated over M∗ by two Jacobi forms of weight 4, two Jacobi forms of weight 6,
three Jacobi forms of weight 8, two Jacobi forms of weight 10 and one Jacobi form of weight 12.
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Table 1: Number of generators of Jcusp,W (E8)
∗,E8,t

weight 8 10 12 14 16

t = 2 0 0 1 1 1

t = 3 0 1 2 1 1

t = 4 1 2 3 2 2

Theorem 0.9 (see Theorems 3.4.7, 3.4.12, 3.4.14). Let t = 2, 3 or 4. The numbers of generators
of indicated weight of Jcusp,W (E8)

∗,E8,t
are shown in Table 1.

We also present two isomorphisms between spaces of weak Jacobi forms for lattices of different
types, which give new descriptions of Jw,W (E8)

∗,E8,2
and Jw,W (E8)

∗,E8,3
(see §3.4.5). Besides, we develop

an approach based on pull-backs of E8 Jacobi forms into classical Jacobi forms to discuss the
possible minimum weight of the generators of Jw,W (E8)

∗,E8,t
for t = 5 and 6 (see §3.4.6 and §3.4.7).

As an application, we estimate the dimension of the space of modular forms for the orthogonal
group O+(2U ⊕E8(−1)) and give it an upper bound using our theory of W (E8)-invariant Jacobi
forms. This upper bound almost coincides with the exact dimension obtained by [HU14].

The thesis is principally based on the following three works by the author.

(1) Reflective modular forms: A Jacobi forms approach. arXiv:1801.09590, accepted for publi-
cation in Int. Math. Res. Not. IMRN. (appear in Chapter 2)

(2) The classification of 2-reflective modular forms. Preprint 2019, 33 pages.
(appear in Chapter 2)

(3) Weyl invariant E8 Jacobi forms. arXiv: 1801.08462, submitted.
(appear in Chapter 3)
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Chapter 1

Preliminaries

1.1 Lattices and discriminant forms

In this section we recall some basic results on lattices and discriminant forms. The main references
for this material are [Bou60, Ebe02, Nik80, SC98].

1.1.1 Lattices

Let V be a finite-dimensional rational vector space with the nondegenerate symmetric bilinear
form (⋅, ⋅) and the associated quadratic form Q(x) ∶= (x,x)/2. A free Z-submodule M ⊆ V is a
lattice in V if V =M ⊗ZQ. For every latticeM ⊆ V and every a ∈ Z/{0}, the lattice obtained by
rescaling M with a is denoted by M(a). It is endowed with the quadratic form a ⋅Q instead of
Q. For x ∈M and x ≠ 0, if Q(x) = 0 then it is called isotropic, otherwise it is called anisotropic.
If x ∈M satisfying Qx ∩M = Zx, then it is called primitive. Let GL(V ) be the group of linear
automorphisms of vector space V . The orthogonal group of M is defined by

O(M) = {g ∈ GL(V ) ∶ Q(g(v)) = Q(v), g(v) ∈M,∀ v ∈M} .

By Sylvester’s law of intertia from linear algebra, the quadratic space (V,Q) is isomorphic to
a quadratic space Rr+s equipped with the quadratic form defined by

qr,s(x) = x
2
1 +⋯ + x2

r − x
2
r+1 −⋯ − x2

r+s.

The pair (r, s) is uniquely determined by (V,Q) and is called the signature of V (or M).
A lattice M is called integral if (x, y) ∈ Z for all x, y ∈M . It is even if (x,x) is even for all

x ∈M . Let {e1, ..., en} be a basis of M . The symmetric matrix G = ((ei, ej))1≤i,j≤n is called the
Gram matrix of M with respect to the basis {e1, ..., en}. Its determinant is independent of the
basis and called the discriminant of M , denoted by disc(M).

For an integral lattice M , the dual lattice of M is the subgroup

M∨ = {x ∈ V ∶ (x, y) ∈ Z,∀ y ∈M} .

It is clear thatM∨ is a lattice containingM . Then we can consider the quotient D(M) ∶=M∨/M ,
which is called the discriminant group of M . The elementary divisors theorem implies that
∣M∨/M ∣ = ∣disc(M)∣. If M∨ =M , then it is called unimodular.

From now on, we presume that M is an even lattice with quadratic form Q. The level of M
is the smallest positive integer N such that NQ(x) ∈ Z for all x ∈M∨. For any non-zero x ∈M
the divisor of x is the natural number div(x) defined by (x,M) = div(x)Z. If M is of level N
then NM∨ ⊆ M . An embedding M1 ↪ M2 of even lattices is called primitive if M2/M1 is a
free Z-module. A given embedding M ↪M1 of even lattices, for which M1/M is a finite abelian
group, is called an even overlattice of M .
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1.1.2 Discriminant forms

We next introduce the notion of a discriminant form. A discriminant form (D,q) is a finite
abelian group D together with a nondegenerate quadratic form q ∶ D → Q/Z, i.e. a function
satisfying the properties

(i) q(ax) = a2q(x) for all a ∈ Z, x ∈D,

(ii) (x, y) ∶= q(x + y) − q(x) − q(y) is a nondegenerate bilinear form.

Obviously the discriminant group D(M) ∶= M∨/M with the induced quadratic form Q is a
discriminant form. A subgroup G of D(M) is called isotropic if q(γ) = 0 for any γ ∈ G. There is
a one-to-one correspondence between even overlattices of M and isotropic subgroups of D(M).
On the one hand, if M1 is an even overlattice of M , then M1/M is an isotropic subgroup of
D(M). On the other hand, if G is an isotropic subgroup of D(M), then the lattice generated
by G over M is an even overlattice of M .

From [Nik80], we know that every discriminant form is isomorphic to the discriminant group
of an even lattice. Besides, two even lattices M , M0 have isometric (or isomorphic) discriminant
forms if and only if there are even unimodular lattices II, II0 such that M ⊕ II ≅M0 ⊕ II0. Any
even unimodular lattice of signature (r, s) satisfies that r− s ∈ 8Z. Therefore, every discriminant
form (D,Q) has a well-defined signature

sign(D) = sign(M) ∈ Z/8Z,

where M is an even lattice such that D ≅M∨/M .

1.1.3 Genus of lattices

A suitable notion to classify even lattices is that of genus. The genus of a lattice M is the set
of lattices M ′ of the same signature as M such that M ⊗ Zp ≅M ′ ⊗ Zp for every prime number
p. By [Nik80], two even lattices of the same signature are in the same genus if and only if their
discriminant forms are isomorphic. Thus we here use the following equivalent definition of genus.
Let M be an even lattice of signature (r, s) with discriminant form D. The genus of M , which
is denoted by IIr,s(D), is the set of all even lattices of signature (r, s) whose discriminant form is
isomorphic to D. For our purpose, we state the following theorems proved in [Nik80, Corollary
1.10.2] and [Nik80, Corollary 1.13.3], which tell us when a given genus is non-empty and when a
given genus contains only one lattice up to isomorphism.

Theorem 1.1.1. Let D be a discriminant form and r, s ∈ Z. If r ≥ 0, s ≥ 0, r−s = sign(D)mod 8
and r + s > l(D), then there is an even lattice of signature (r, s) having discriminant form D.
Here l(D) is the minimum number of generators of the group D.

Theorem 1.1.2. Let D be a discriminant form and r, s ∈ Z. If r ≥ 1, s ≥ 1 and r + s ≥ 2 + l(D),
then all even lattices of genus IIr,s(D) are isomorphic.

Let U be a hyperbolic plane i.e. U = Ze + Zf with (e, e) = (f, f) = 0 and (e, f) = 1. The
lattice U is an even unimodular lattice of signature (1,1). As a consequence of Theorems 1.1.1
and 1.1.2, we prove the following criterion.

Lemma 1.1.3. Let M be an even lattice of signature (n,2) with n ≥ 3. If the minimum number
of generators of D(M) satisfies n−2 > l(D(M)), then there exists a positive definite even lattice
L such that M = 2U ⊕L.

Proof. By Theorem 1.1.1, there exists a positive definite even lattice L of rank n − 2 whose
discriminant form is isomorphic to D(M). By Theorem 1.1.2, the lattice 2U ⊕ L is isomorphic
to M . The proof is completed.
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A discriminant form can decompose into a sum of indecomposable Jordan components. This
decomposition is usually not unique. But if two Jordan decompositions can be transformed into
each other using certain summation rules, then they describe the same discriminant form. In
this way, we can classify even lattices. We next give a brief overview of the possible nontrivial
Jordan components following [Sch09, §2] and the references given there.

1. Let q > 1 be a power of an odd prime p. The nontrivial p-adic Jordan components of
exponent q are q±n for n ≥ 1. The indecomposable components are q±1, generated by an
element γ with qγ = 0, γ2/2 = a/q mod 1 where a is an integer with (2a

p ) = ±1. These
components all have level q. The p-excess is given by

p-excess(q±n) = n(q − 1) + 4k mod 8

where k = 1 if q is not a square and the exponent is −n and k = 0 otherwise. We define

γp(q
±n) = e(−p-excess(q±n)/8).

2. Let q > 1 be a power of 2. The nontrivial even 2-adic Jordan components of exponent q
are q±2n

II for n ≥ 1. The indecomposable components are q±2
II , generated by two elements

γ and δ with qγ = qδ = 0, (γ, δ) = 1/q mod 1 and γ2/2 = δ2/2 = 0 mod 1 for q+2
II and

γ2/2 = δ2/2 = 1/q mod 1 for q−2
II . These components all have level q. The oddity is given

by
oddity(q±2n

II ) = 4k mod 8

where k = 1 if q is not a square and the exponent is −n and k = 0 otherwise. We define

γ2(q
±2n
II ) = e(oddity(q±2n

II )/8).

3. Let q > 1 be a power of 2. The nontrivial odd 2-adic Jordan components of exponent q are
q±nt with n ≥ 1 and t ∈ Z/8Z. The indecomposable components are q±1

t where the subscript
t satisfies ( t

2
) = ±1, generated by an element γ with qγ = 0 and γ2/2 = t/2q mod 1. These

components all have level 2q. The oddity is given by

oddity(q±nt ) = t + 4k mod 8

where k = 1 if q is not a square and the exponent is −n and k = 0 otherwise. We define

γ2(q
±n
t ) = e(oddity(q±nt )/8).

The sum of two Jordan components with the same prime power q is given by multiplying the
signs, adding the ranks and, if any components have a subscript t, adding the subscripts t.

The factors γp are multiplicative. LetD be a discriminant form, we have the following oddity
formula

∏γp(D) = e(sign(D)/8). (1.1.1)

Since the level of every odd 2-adic Jordan component is divisible by 4, the signature of a
discriminant form of level N with 4 ∤ N is even. Therefore, the rank of an even lattice of level
N with 4 ∤ N is even. From the oddity formula, we also see that the signature of a lattice of
level 2 is divisible by 4.
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Table 1.1: Coxeter numbers of irreducible root lattices

L An Dn E6 E7 E8

h n + 1 2(n − 1) 12 18 30

1.1.4 Root lattices

At the end of this section, we recall some basic facts on root lattices following [Ebe02]. Let L
be an even lattice in RN . An element r ∈ L is called a root if (r, r) = 2. The set of all roots is
denoted by RL. The lattice L is called a root lattice if L is generated by RL. Every root lattice
can be written as an orthogonal direct sum of the irreducible root lattices of types An(n ≥ 1),
Dn(n ≥ 4), E6, E7 and E8. For a root lattice L of rank n the number h = ∣RL∣/n is called the
Coxeter number of L. The Coxeter numbers of irreducible root lattices are listed in Table 1.1.

By [Ebe02, Proposition 1.6], we have the following.

Proposition 1.1.4. Let L ⊂ Rn be an irreducible root lattice. Then for any x ∈ Rn we have

∑
r∈RL

(r, x)2 = 2h(x,x).

Let R+
L be the set of positive roots of L. The Weyl vector of L is defined as ρ = 1

2 ∑r∈R+L r.
We know from [Ebe02, Lemma 1.16] that the norm of Weyl vector of an irreducible root lattice
is given by ρ2 = 1

12h(h + 1) rank(L).

1.2 Modular forms on orthogonal groups

In this section we briefly introduce the theory of modular forms on orthogonal groups, which is
one of the main tools in the study of the geometry of the modular varieties. The general reference
is [Bor95].

We start with the general settings. Let M be an even integral lattice with a quadratic form
of signature (2, n) with n ≥ 3, and let

D(M) = {[Z] ∈ P(M ⊗C) ∶ (Z,Z) = 0, (Z, Z̄) > 0}+ (1.2.1)

be the associated Hermitian symmetric domain of type IV (here + denotes one of its two connected
components). The affine cone over D(M) is

D(M)● = {Z ∈M ⊗C ∶ [Z] ∈ D(M)}. (1.2.2)

Let us denote the index 2 subgroup of the orthogonal group O(M) preserving D(M) by O+(M).
Let D(M) = M∨/M be the discriminant group of M . The subgroup of O+(M) acting trivially
on D(M) is called the stable orthogonal group and denoted by Õ

+
(M). For any v ∈M ⊗Q

satisfying (v, v) < 0, the rational quadratic divisor associated to v is defined as

Dv(M) = {[Z] ∈ D(M) ∶ (Z, v) = 0}. (1.2.3)

Definition 1.2.1. Let Γ be a finite index subgroup of O+(M) and k ∈ Z. A modular form of
weight k and character χ ∶ Γ → C∗ with respect to Γ is a holomorphic function F ∶ D(M)● → C
on the affine cone D(M)● satisfying

F (tZ) = t−kF (Z), ∀t ∈ C∗,

F (gZ) = χ(g)F (Z), ∀g ∈ Γ.
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A modular form is called a cusp form if it vanishes at every cusp (i.e. a boundary component of
the Baily-Borel compactification of the modular variety Γ/D(M)).

We denote the spaces of modular and cusp forms of weight k and character χ by Mk(Γ, χ)
and Sk(Γ, χ) respectively.

If n < 3, we can also define orthogonal modular forms but we have to add to Definition 1.2.1
the condition that F is holomorphic at boundary. According to Koecher’s principle (see [Bai66])
this condition is automatically fulfilled if n ≥ 3. In this thesis we only consider the case n ≥ 3. In
this case the order of any character χ in Definition 1.2.1 is finite. The quotient

FM(Γ) = Γ/D(M) (1.2.4)

is called a modular variety of orthogonal type or orthogonal modular variety. It is a quasi-
projective variety of dimension n. For a recent account of the theory of FM(Γ) we refer
to [GHS13]. We next introduce the Fourier expansion of an orthogonal modular form at 0-
dimensional cusps.

A 0-dimensional cusp of D(M) is defined by a primitive isotropic vector c ∈M (up to sign: c
and −c define the same cusp). We can show that for any Z ∈ D(M)● there exists a unique α ∈ C∗

such that (αZ, c) = 1. From this, it follows that

D(M)c = {Z ∈ D(M)● ∶ (Z, c) = 1} ≅ D(M).

The lattice
Mc = c

⊥/c = c⊥M/Zc (1.2.5)

is an integral lattice of signature (1, n − 1). We fix an element b ∈ M∨ such that (c, b) = 1. A
choice of b gives a realisation of the hyperbolic lattice Mc as a sublattice in M

Mc ≅Mc,b =M ∩ c⊥ ∩ b⊥. (1.2.6)

This yields a decomposition

M ⊗Q =Mc,b ⊗Q⊕ (Qb +Qc).

Using the hyperbolic lattice Mc ⊗R we can define a positive cone

C(Mc) = {X ∈Mc ⊗R ∶ (X,X) > 0}.

We choose C+(Mc), one of the two connected components of C(Mc) and define the corresponding
tube domain, which is the complexification of C+(Mc)

Hc(M) =Mc ⊗R + iC+(Mc). (1.2.7)

Then we have an isomorphism prc ∶Hc(M)→ D(M)c ≅ D(M) defined by

prc ∶ Z ↦ Z ⊕ [b −
(Z,Z) + (b, b)

2
c] . (1.2.8)

Using the coordinate Z ∈ Hc(M) defined by the choice of c and b we can identify an arbitrary
orthogonal modular form F of weight k with a modular form Fc,b (or simply Fc) on the tube
domain Hc(M):

Fc,b(Z) = F (prc(Z)). (1.2.9)

For every g ∈ O+(M) and Z ∈Hc(M), there exist Jc,b(g,Z) ∈ C∗ and g⟨Z⟩ ∈Hc(M) such that

g prc(Z) = Jc,b(g,Z)prc(g⟨Z⟩). (1.2.10)
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The above relation defines an action of O+(M) on Hc(M). A modular form in Definition 1.2.1
satisfies

Fc,b∣kg = χ(g)Fc,b

where
(Fc,b∣kg)(Z) ∶= Jc,b(g,Z)−kFc,b(g⟨Z⟩).

Let F ∈Mk(S̃O
+
(M)). Since the Eichler transvection (see [Eic52, §3])

t(c, a) ∶ v ↦ v − (a, v)c + (c, v)a −
1

2
(a, a)(c, v)c (1.2.11)

belongs to S̃O
+
(M) for all a ∈Mc,b and t(c, a)(prc(Z)) = prc(Z +a), we have Fc(Z +a) = Fc(Z),

which gives the Fourier expansion of F at the cusp c:

Fc(Z) = ∑
l∈M∨

c,b

f(l) exp(2πi(l, Z)). (1.2.12)

By Koecher’s principle, the function Fc is holomorphic at the cusp c, which means that

f(l) ≠ 0Ô⇒ l belongs to the closure of C+(Mc).

By [Bor95, corollary 3.3], any modular form on D(M) either has weight 0 in which case it
is constant, or has weight at least n/2 − 1. The minimum possible weight is called the singular
weight. If a modular form has singular weight then all the Fourier coefficients corresponding to
vectors of nonzero norm vanish.

1.3 Modular forms for the Weil representation

In this section we introduce the Weil representation of SL2(Z) and the vector-valued modular
forms. We refer to [Bor98, Bru02] for more details.

1.3.1 Weil representation and vector-valued modular forms

We first recall the metaplectic group Mp2(R), which is a double cover of SL2(R). Let us denote by
√
z the principal branch of the square root i.e. arg(

√
z)∈ (−π/2, π/2]. For A = (

a b
c d

) ∈ SL2(R),

let φ be a holomorphic function on H satisfying φ(τ)2 = cτ + d, τ ∈ H. The elements of Mp2(Z)

are pairs (A,φ(τ)). The product of two elements of Mp2(R) is given by

(A,φ1(τ))(B,φ2(τ)) = (AB,φ1(Bτ)φ2(τ)).

The map
Az→ Ã = (A,

√
cτ + d) (1.3.1)

defines a locally isomorphic embedding of SL2(R) into Mp2(R). Let Mp2(Z) be the inverse
image of SL2(Z) under the covering map Mp2(R) → SL2(R). It is well-known that Mp2(Z) is
generated by

T = ((
1 1
0 1

) ,1) , S = ((
0 −1
1 0

) ,
√
τ) .

We have the relations S2 = (ST )3 = Z, where

Z = ((
−1 0
0 −1

) , i)
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is the standard generator of the center of Mp2(Z).
Let D be a discriminant form with quadratic form q ∶D → Q/Z and associated bilinear form

(⋅, ⋅). Let {eγ ∶ γ ∈ D} be the basis of the group ring C[D]. The Weil representation of
Mp2(Z) on C[D] is a unitary representation defined by the action of the generators of Mp2(Z)

as follows:

ρD(T )eγ = e(−γ2/2)eγ , (1.3.2)

ρD(S)eγ =
e(sign(D)/8)

√
∣D∣

∑
β∈D

exp((γ, β))eβ. (1.3.3)

We note that
ρM(Z)eγ = e(sign(D)/4)e−γ . (1.3.4)

Definition 1.3.1. Let f(τ) = ∑γ∈D fγ(τ)eγ be a holomorphic function on H with values in C[D]

and k ∈ 1
2Z. Then f is a nearly holomorphic modular form for ρD of weight k if

f(Aτ) = φ(τ)2kρD(A)f(τ), ∀(A,φ) ∈ Mp2(Z)

and f is meromorphic at i∞. If f is also holomorphic at i∞, then it is called a holomorphic
modular form for ρD. If f vanishes at i∞, then it is called a cusp form for ρD.

The invariance of F under T implies that the functions e(q(γ)τ)fγ(τ) are periodic with
period 1. Thus f has a Fourier expansion

f(τ) = ∑
γ∈D

∑
n∈Z−q(γ)

cγ(n)e
2πinτeγ . (1.3.5)

Here, the sum
∑
γ∈D

∑
n∈Z−q(γ)
n<0

cγ(n)e
2πinτeγ . (1.3.6)

is called the principal part of f .
The orthogonal group O(D) acts on C[D] via

σ
⎛

⎝
∑
γ∈D

aγeγ
⎞

⎠
= ∑
γ∈D

aγeσ(γ)

and this action commutes with that of ρD on C[D] i.e. σ(ρD(A)x) = ρD(A)(σx), for σ ∈ O(D),
A ∈ SL2(Z), x ∈ C[D]. Thus the modular forms invariant under O(D) can be well defined: a
modular form F is called invariant under O(D) if σF = F for all σ ∈ O(D).

1.3.2 Borcherds products

We now introduce the Borcherds product (also called theta lift), which is a multiplicative lift due
to Borcherds (see [Bor95, Bor98]) from modular forms for the Weil representation of SL2(Z) to
modular forms on orthogonal groups.

Let M be an even lattice of signature (2, n) with n ≥ 3. Let c ∈ M be a primitive norm 0
vector i.e. a 0-dimensional cusp. Then there exists a b ∈ M∨ satisfying (c, b) = 1. Let div(c)
be the divisor of c i.e. the unique positive integer such that (c,M) = div(c)Z. Then we have
c/div(c) ∈M∨. Let ζ ∈M satisfying (c, ζ) = div(c). It can be uniquely represented as

ζ = ζMc,b
+ div(c)b +Bc (1.3.7)
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with ζMc,b
∈M∨

c,b and B ∈ Q. By [Bru02, Proposition 2.2], we have the direct sum

M =Mc,b ⊕Zζ ⊕Zc. (1.3.8)

We define the following sublattice of M∨

M ′
0 = {λ ∈M∨ ∶ (λ, c) ∈ div(c)Z}. (1.3.9)

From [Bru02, page 41], we have an isomorphism

p ∶M ′
0 Ð→M∨

c,b,

λz→ λMc,b
−

(λ, c)

div(c)
ζMc,b

,
(1.3.10)

where λ = λMc,b
+ xc + yb ∈ M ′

0 with x ∈ Q, y ∈ div(c)Z, λMc,b
∈ Mc,b. We can check that

p(M) = Mc,b. Thus p induces a surjective map M ′
0/M → M∨

c,b/Mc,b which will also be denoted
by p.

From [Bor98, Theorem 13.3] or [Bru02, Theorem 3.22], we have the following result.

Theorem 1.3.2 (Borcherds 98). Let M be an even lattice of signature (2, n) with n ≥ 3. Let f
be a nearly holomorphic modular form of weight k = 1−n/2 for the Weil representation ρD, where
D is the discriminant form of the lattice M(−1). Assume that the Fourier expansion of f is of
the form

f(τ) = ∑
γ∈D

∑
n∈Z−q(γ)

cγ(n)e
2πinτeγ

satisfying that cγ(n) are integral if n < 0. Then there is a meromorphic function Ψ ∶ D(M)● → C
with the following properties.

1. The function Ψ is a meromorphic modular form of weight c0(0)/2 for the group

O(M,f)+ = {σ ∈ O(M)+ ∶ σf = f}

with some multiplier system χ of finite order. If c0(0) is even, then χ is a character.

2. The only zeros or poles of Ψ lie on rational quadratic divisors Dγ(M) where γ is a primitive
vector of negative norm in M∨. The divisor Dγ(M) has order

∑
m>0

cmγ(m
2γ2/2).

3. For each primitive isotropic vector c ∈M , an associated vector b ∈M∨ with (c, b) = 1 and for
each Weyl chamber W of Mc,b and f , the restriction Ψc has an infinite product expansion
converging in a neighbourhood of the cusp corresponding to c that is up to a constant

e((Z,ρ)) ∏
λ∈M∨

c,b

(λ,W )>0

∏
δ∈M ′

0/M
p(δ)=λ+Mc,b

(1 − e((δ, b) + (λ,Z)))cδ(λ
2/2) ,

where the projection p is defined in (1.3.10) and ρ is the Weyl vector attached to W and f .

The function Ψ is called the Borcherds product of f .
Bruinier proved the following converse theorem [Bru14, Theorem 1.2].

Theorem 1.3.3. Let M be an even lattice of signature (2, n) with n ≥ 3 and Ψ a meromorphic
modular form for Õ

+
(M) whose divisor is a linear combination of rational quadratic divisors. If

M = U ⊕ U(m) ⊕ L(−1) for some positive integer m and a positive definite even lattice L, then
up to a constant factor the function Ψ is the Borcherds product of a modular form for the Weil
representation associated to M .

We remark that Bruinier also proved that the existence of a Borcherds product of non-zero
weight whose divisor is supported on certain special divisors and showed that every meromorphic
Borcherds product is the quotient of two holomorphic ones (see [Bru17]).
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1.3.3 Construction of vector-valued modular forms

In this subsection we introduce many useful properties of discriminant forms of squarefree level
and the lifting from scalar-valued modular forms on congruence subgroups to modular forms for
the Weil representation following [Sch06, Sch09, Sch15].

Let D be a discriminant form of even signature and N a positive integer such that the level
of D divides N . There is an explicit formula to calculate the action of the Weil representation

ρD on SL2(Z) (see [Sch09, Theorem 4.7]). In particular, when A = (
a b
c d

) ∈ Γ0(N), the matrix

A acts in ρD as (see [Sch09, Proposition 4.8])

ρD(A)eγ = (
a

∣D∣
) e((a − 1)oddity(D)/8)e(−bdγ2/2)edγ . (1.3.11)

From this, we see that the group Γ(N) acts trivially in ρD. We can check that

χD(A) = (
a

∣D∣
) e((a − 1)oddity(D)/8) (1.3.12)

defines a quadratic Dirichlet character χD ∶ Γ0(N)→ C∗ and for γ ∈D

χγ(A) = e(−bγ2/2) (1.3.13)

defines a character χγ ∶ Γ1(N)→ C∗.
Let F = ∑γ∈D Fγeγ be a modular form of weight k for ρD. Then we have

Fγ ∣A= (
d

∣D∣
) e((d − 1)oddity(D)/8)e(−abγ2/2)Faγ , A ∈ Γ0(N). (1.3.14)

From this, we deduce that F0 is a modular form on Γ0(N) of weight k with character χD and
Fγ is a modular form on Γ1(N) of weight k with character χγ .

We next assume that the number N is squarefree. In this case the character χD reduces to

χD(A) = (
a

∣D∣
) , A ∈ Γ0(N). (1.3.15)

In his series of works, Scheithauer constructed several liftings from scalar-valued modular
forms on congruence subgroups to modular forms for the Weil representation (see for example
[Sch15, Theorem 3.1]). For our purpose, we recall the following lifting which may be the simplest
one. We refer to [Sch06, Theorem 6.2, Theorem 6.5] for a proof.

Theorem 1.3.4. Let f be a nearly holomorphic modular form for Γ0(N) (holomorphic except
at cusps) of weight k ∈ Z and character χD. Then

FΓ0(N),f,0(τ) = ∑
A∈Γ0(N)/SL2(Z)

f ∣A(τ)ρD(A−1)e0

is a nearly holomorphic modular form for ρD of weight k which is invariant under O(D).

For each positive divisor c of N we choose a matrix Ac = (
a b
c d

) ∈ SL2(Z) with d = 1 mod c

and d = 0 mod c′ where c′ = N/c. Let fc(τ) = f ∣Ac(τ) be the expansion of f at the cusp 1/c. We
can write uniquely

fc(τ) = gc′,0(τ) + gc′,1(τ) + ... + gc′,c′−1(τ)
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where
gc′,j(τ + 1) = e(j/c′)gc′,j(τ), ∀0 ≤ j ≤ c′.

Then we can calculate FΓ0(N),f,0 explicitly as

F (τ) =∑
c∣N

∑
µ∈Dc′

ξc

√
∣Dc∣

√
∣D∣

c′gc′,jµ,c′ (τ)eµ,

where
Dn = {γ ∈D ∶ nγ = 0}, n∣N,

ξc = (
−c

∣Dc′ ∣
)∏
p∣c′
γp(D),

and jµ,c′/c′ = −µ2/2 mod 1 for µ ∈Dc′.

The following proposition can be found in [Sch15, Proposition 5.1].

Proposition 1.3.5. Let D be a discriminant form of squarefree level N . Two elements of D are
in the same orbit under O(D) if and only if they have the same norm and order.

The next result was proved in [Sch15, Proposition 5.3].

Proposition 1.3.6. Let D be a discriminant form of squarefree level N and F = ∑γ∈D Fγeγ a
modular form for ρD which is invariant under O(D). Then the complex vector space generated
by the components Fγ, γ ∈D is generated by the functions F0∣A, A ∈ SL2(Z). In particular F = 0
if F0 = 0.

The following result proved in [Sch15, Corollary 5.5] tells us that the lift f ↦ FΓ0(N),f,0 is in
fact surjective.

Proposition 1.3.7. Let D be a discriminant form of squarefree level N and F a modular form
for ρD which is invariant under O(D). Then F = FΓ0(N),f,0 for a suitable modular form f on
Γ0(N) with character χD.

1.4 Jacobi forms of lattice index

In this section we give a brief overview of the theory of Jacobi forms of lattice index. We refer
to [CG13, Gri95] for more details.

1.4.1 Definition of Jacobi forms and basic properties

Let L be an even positive definite lattice with bilinear form (⋅, ⋅) and L∨ be its dual lattice. The
real Heisenberg group associated to L is

H(L⊗R) = {[x, y ∶ r] ∶ x, y ∈ L⊗R, r ∈ R}

together with the operation

[x1, y1 ∶ r1] ⋅ [x2, y2 ∶ r2] = [x1 + x2, y1 + y2 ∶ r1 + r2 +
1

2
((x1, y2) − (x2, y1))] . (1.4.1)

The group SL2(R) acts on H(L⊗R) via

A ⋅ [x, y ∶ r] = [(x, y)A−1 ∶ r] = [dx − cy, ay − bx ∶ r], A = (
a b
c d

) . (1.4.2)
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The real Jacobi group ΓJ(L ⊗ R) is the semi-direct product SL2(R) ⋊ H(L ⊗ R) with the
multiplication

(A,h1) ⋅ (B,h2) = (AB, (B−1 ⋅ h1) ⋅ h2), (1.4.3)

where A,B ∈ SL2(R), h1, h2 ∈ H(L ⊗ R). For simplicity of notations, we write {A}, h, {A}h
instead of (A,0), (1, h), (A,0) ⋅ (1, h), respectively. Let k ∈ 1

2Z, t ∈ Q. The real Jacobi group
ΓJ(L⊗R) acts on the space of holomorphic functions on H × (L⊗C) via

(ϕ∣k,t{A}) (τ, z) = (cτ + d)−ke−πit
c(z,z)
cτ+d ϕ(

aτ + b

cτ + d
,

z

cτ + d
) , (1.4.4)

(ϕ∣k,th) (τ, z) = e
πit((x,x)τ+2(x,z)+(x,y)+2r)ϕ(τ, z + xτ + y), (1.4.5)

for all A = (
a b
c d

) ∈ SL2(R) and h = [x, y ∶ r] ∈ H(L⊗R). The integral Jacobi group which

is a subgroup of ΓJ(L⊗R) is defined as ΓJ(L) = SL2(Z) ⋊H(L), where

H(L) = {[x, y ∶ r] ∶ x, y ∈ L, r +
1

2
(x, y) ∈ Z}

is the integral Heisenberg group associated to L. Let χ ∶ ΓJ(L) → C∗ be a character (or a
multiplier system) of finite order. By [CG13], its restriction to SL2(Z) is a power υDη of the
multiplier system of the Dedekind η-function and we have

χ({A} ⋅ [x, y ∶ r]) = υDη (A) ⋅ χH(L)([x, y ∶ r]), (1.4.6)

and
χH(L)([x, y ∶ r]) = e

πit((x,x)+(y,y)−(x,y)+2r), (1.4.7)

where t ∈ Q such that t ⋅ s(L) ∈ Z and s(L) denotes the generator of the integral ideal generated
by (x, y) for all x and y in L. We set

νH(L)([x, y ∶ r]) = e
πi((x,x)/2+(y,y)/2−(x,y)/2+r). (1.4.8)

The Jacobi forms are defined as follows

Definition 1.4.1. A holomorphic function ϕ ∶ H × (L⊗C) → C is called a weakly holomorphic
Jacobi form of weight k ∈ 1

2Z and index t ∈ Q≥0 with a character (or a multiplier system) of finite
order χ ∶ ΓJ(L)→ C∗ if ϕ satisfies

ϕ∣k,tg = χ(g)ϕ, ∀g ∈ ΓJ(L)

and ϕ admits a Fourier expantion of the form

ϕ(τ, z) = ∑
n≥n1,n≡D24

modZ
`∈ 1

2
L∨

f(n, `)e2πi(nτ+(`,z)), (1.4.9)

where n1 is a certain integer and the number D is given by χ∣SL2(Z)= υ
D
η .

If ϕ satisfies the condition
f(n, `) ≠ 0Ô⇒ n ≥ 0

then it is called a weak Jacobi form. If ϕ further satisfies the condition

f(n, `) ≠ 0Ô⇒ 2nt − (`, `) ≥ 0
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then it is called a holomorphic Jacobi form. If ϕ further satisfies the stronger condition

f(n, `) ≠ 0Ô⇒ 2nt − (`, `) > 0

then it is called a Jacobi cusp form. We denote by Jw.h.k,L,t(χ) the vector space of weakly holo-
morphic Jacobi forms of weight k and index t and the corresponding spaces of weak Jacobi
forms, holomorphic Jacobi forms and Jacobi cusp forms are denoted by Jwk,L,t(χ), Jk,L,t(χ) and
Jcuspk,L,t(χ), respectively. If the character is trivial we also write Jk,L,t = Jk,L,t(1) for short.

Remark 1.4.2. By [CG13, page193], we know that if Jwk,L,t(χ) ≠ {0} then t ⋅ s(L) ∈ Z and
χ∣H(L)= ν2t

H(L). Let L(t) be the lattice L equipped with bilinear form t(⋅, ⋅). Assume that
Jk,L,t(χ) ≠ {0}. Then the lattice L(t) is integral.

1. If L(t) is an even lattice then

Jk,L,t(χ) = Jk,L(t),1(χ).

If this space is non-trivial then νH(L)([x, y ∶ 1
2(x, y)]) = 1, for all x, y ∈ L.

2. If L(t) is an odd lattice then

Jk,L,t(χ) = Jk,L(2t), 1
2
(χ).

In this case, νH(L)([x, y ∶ 1
2(x, y)])

2 = 1, for all x, y ∈ L and there exist x, y ∈ L such that
νH(L)([x, y ∶

1
2(x, y)]) = −1.

Therefore, we only need to distinguish the Jacobi forms of index 1 and index 1
2 .

Remark that in the literature Jacobi forms of weight k and index t for the lattice L are also
called Jacobi forms of weight k and index L(t).

We next explain the Jacobi group and give another definition of Jacobi forms from the
perspective of orthogonal modular forms. Let M be an even lattice of signature (2, n0 + 2)
containing two hyperbolic planes, i.e. M = U ⊕ U1 ⊕ L(−1), where L is a positive definite even
lattice of rank rank(L) = n0 and L(−1) denotes its rescaling by -1. We fix a basis of the hyperbolic
plane U = Ze ⊕ Zf : (e, f) = 1, (e, e) = (f, f) = 0. Similarly U1 = Ze1 ⊕ Zf1. We choose a basis
of M of the form (e, e1, ..., f1, f) where ... denotes a basis of L(−1). In this basis, the quadratic
form associated to the bilinear form on M has the following Gram matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
0 0 0 1 0
0 0 −S 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where S is the Gram matrix of L. Let F be the totally isotropic plane spanned by e and e1 and
let PF be the parabolic subgroup of SO+(M) that preserves F . The subgroup of PF of elements
acting trivially on the sublattice L is isomorphic to ΓJ(L) i.e. the integral Jacobi group of L. In

fact, it has a subgroup isomorphic to SL2(Z). For any A = (
a b
c d

) ∈ SL2(Z), we denote

{A} =
⎛
⎜
⎝

A∗ 0 0
0 In0 0
0 0 A

⎞
⎟
⎠
∈ ΓJ(L), A∗ = (

a −b
−c d

) .
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In addition, it has another subgroup generated by the elements

[x, y ∶ r] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ytrS 1
2(x, y) − r

1
2(y, y)

0 1 xtrS 1
2(x,x)

1
2(x, y) + r

0 0 In0 x y
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where x, y ∈ L and r ∈ 1
2Z such that r + 1

2(x, y) ∈ Z, which is isomorphic to the Heisenberg group
H(L). Let G be a modular form of weight k for Õ

+
(M). Following the notations in section 1.2,

we choose c = e and b = f . We fix a tube realization of the homogeneous domain D(M) related
to the 1-dimensional boundary component determined by the totally isotropic plane F = ⟨e, e1⟩

as
H(L) ∶=He(M) = {Z = (τ, z, ω) ∈ H × (L⊗C) ×H ∶ (ImZ, ImZ) > 0}

where (ImZ, ImZ) = 2 Im τ Imω − (Im z, Im z). In this setting, the modular form Ge has a
Fourier-Jacobi expansion of the form

Ge(Z) = ∑
m≥N

∑
n∈N

2nm≥(`,`)

f(n, `,m)e2πi(nτ−(`,z)+mω)

= ∑
m≥N

Gm(τ, z)e2πimω.

Since Ge is invariant under ΓJ(L), the Fourier-Jacobi coefficient Gm(τ, z) is a holomorphic Jacobi
form of weight k and indexm form ∈ N. Conversely, we can also define holomorphic Jacobi forms
in the following way

Definition 1.4.3. Let χ be a character (or a multiplier system) of finite order of ΓJ(L), k ∈ 1
2Z

and t ∈ Q≥0. A holomorphic function ϕ ∶ H × (L⊗C)→ C is called a holomorphic Jacobi form of
weight k and index t with a character (or a multiplier system) χ if the modified function

ϕ̃(Z) = ϕ(τ, z)e2πitω, Z = (τ, z, ω) ∈H(L) =He(M)

satisfies the functional equation

ϕ̃∣kg = χ(g)ϕ̃, ∀g ∈ ΓJ(L)

and is holomorphic at “infinity”.

From the invariance of Jacobi forms under the Heisenberg group H(L), we can deduce the
following lemma.

Lemma 1.4.4. Let ϕ ∈ Jw.h.k,L,1(υ
D
η ). Then its Fourier coeffcients f(n, `) depend only on the class

of ` in L∨/L and the number 2n − (`, `). If ϕ is a weak Jacobi form then

f(n, `) ≠ 0Ô⇒ 2n − (`, `) ≥ −min{(v, v) ∶ v ∈ ` +L}.

The number 2n − (`, `) is called the hyperbolic norm of Fourier coefficient f(n, `). The
Fourier coefficients f(n, `) with negative hyperbolic norm are called singular Fourier coeffi-
cients, which play a crucial role in the theory of Borcherds products. By definition, a weakly
holomorphic Jacobi form without singular Fourier coefficient is a holomorphic Jacobi form.

We next introduce the odd Jacobi theta-series which is the most important Jacobi form
because it can be used to construct many basic Jacobi forms and holomorphic Borcherds products.
For more details, we refer to [GN98b, Mum83].
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Example 1.4.5. The Jacobi theta-series of characteristic (1
2 ,

1
2) is defined by

ϑ(τ, z) = ∑
n∈Z

(
−4

n
) q

n2

8 ζ
n
2 = −q

1
8 ζ−

1
2 ∏
n≥1

(1 − qn−1ζ)(1 − qnζ−1)(1 − qn)

where q = e2πiτ , τ ∈ H and ζ = e2πiz, z ∈ C. The above Jacobi triple product formula reflects the
fact that ϑ(τ, z) is the Kac–Weyl denominator function of the simplest affine Lie algebra (see
[Kac90]). The theta-series ϑ satisfies two functional equations

ϑ(τ, z + xτ + y) = (−1)x+ye−iπ(x
2τ+2xz)ϑ(τ, z), ∀ x, y ∈ Z,

ϑ(
aτ + b

cτ + d
,

z

cτ + d
) = υ3

η(A)(cτ + d)
1
2 e

iπcz2

cτ+d ϑ(τ, z), ∀A = (
a b
c d

) ∈ SL2(Z).

Using our notations, A1 = ⟨2⟩ = ⟨Z,2x2⟩, we have

ϑ ∈ J 1
2
,A1,

1
2
(υ3
η × υH)

where, for short, υH(A1) = υH is defined by

υH([x, y ∶ r]) = (−1)x+y+xy+r, [x, y ∶ r] ∈H(A1).

The function ϑ is the simplest example of Jacobi form of half-integral index. We remind

ϑ(τ,−z) = −ϑ(τ, z) and div(ϑ) = {z = xτ + y ∶ x, y ∈ Z}.

We also mention the Dedekind η-function

η(τ) = q
1
24

∞
∏
n=1

(1 − qn) ∈ J 1
2
,A1,0

(υη).

Using ϑ and η one can define the theta block which gives a great way to construct holomorphic
Jacobi forms of small weight (see [GSZ18]).

1.4.2 Theta decomposition of Jacobi forms

It is well-known that Jacobi forms can be considered as vector-valued modular forms for the Weil
representation. In order to state the result, we first introduce the theta functions for the positive
definite even lattice L defined as

ΘL
µ(τ, z) = ∑

`∈µ+L
eπi((`,`)τ+2(`,z)), µ ∈ L∨/L. (1.4.10)

These series converge locally uniformly and are invariant with respect to the action of the integral
Heisenberg group. Moreover, the set {ΘL

µ ∶ µ ∈ L∨/L} is linearly independent for fixed τ , hence
{ΘL

µ ∶ µ ∈ L∨/L} is free over the ring of holomorphic functions on the upper half plan H. Let
ΘL = (ΘL

µ)µ∈L∨/L. The following transformation formula for ΘL can be found in [Oda77].

Proposition 1.4.6. For any matrix A = (
a b
c d

) ∈ SL2(Z), the theta vector ΘL has the following

transformation property

ΘL (
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)

rank(L)
2 U(A)eπit

c(z,z)
cτ+d ΘL(τ, z),

where U(A) is a unitary matrix. In particular,

U(T ) = diag (eπi(µ,µ))
µ∈L∨/L

,

U(S) = ([L∨ ∶ L])−
1
2 (−i)

rank(L)
2 (e−2πi(µ,ν))

µ,ν∈L∨/L
.
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The above proposition means that the function ΘL(τ,0) is a modular form of weight 1
2 rank(L)

for the Weil representation associated to the discriminant form of the lattice L(−1). Denote the
level of L by N . Let ϕ ∈ Jw.h.k,L,1 be a weakly holomorphic Jacobi form of weight k and index one
for L. Then we have the following representation (see [Gri95, Lemma 2.3])

ϕ(τ, z) = ∑
µ∈L∨/L

φµ(τ)Θ
L
µ(τ, z)

where

ϕµ(τ) = ∑
r∈Z

2r
N
+(µ,µ)∈2Z

f (
2r +N(µ,µ)

2N
,µ) exp(

2πirτ

N
) .

Example 1.4.7. Let E be an even positive definite unimodular lattice. The above proposition
yields that the theta function

ΘE(τ, z) = ∑
`∈E

eπi(`,`)τ+2πi(`,z) ∈ J rank(E)
2

,E,1
(1.4.11)

is a holomorphic Jacobi form of weight rank(E)/2 and index 1 for E.

Let Φ(τ) = (ϕµ(τ))µ∈L∨/L. Then Φ(τ) is a nearly holomorphic modular form of weight
k −

rank(L)
2 for the Weil representation associated to the discriminant form L∨/L. Moreover,

when ϕ is a holomorphic Jacobi form, the function Φ(τ) will be a holomorphic modular form.
Hence the space Jk,L,1 is finite dimensional, and Jk,L,1 is trivial if k <

rank(L)
2 . The minimum

possible weight k = rank(L)
2 is called the singular weight. For any holomorphic Jacobi form of

singular weight the hyperbolic norms of nonzero Fourier coefficients are always equal to zero.
The above facts hold in the case of Jacobi forms of half-integral index or with character. In fact,
if ϕ is a Jacobi form of weight k and index t for L, then ϕ(τ,2z) is a Jacobi form of weight k
and index 4t for L. If ϕ is a Jacobi form of weight k and index one with a character of order n
for L, then the function ϕ⊗

n
= ϕ⊗⋯⊗ ϕ is a Jacobi form of weight nk and index one with the

trivial character for the lattice Ln = L⊕⋯⊕L.
We now give the isomorphism between modular forms for the Weil representation and Jacobi

forms.

Theorem 1.4.8. Let L be an even positive definite lattice with discriminant form D(L). The
map

F (τ) = ∑
γ∈D(L)

Fγ(τ)eγ z→ ∑
γ∈D(L)

Fγ(τ)Θ
L
γ (τ, z) (1.4.12)

defines an isomorphism between the vector spaces of nearly holomorphic modular forms for the
Weil representation ρD(L) and weakly holomorphic Jacobi forms of index one for L. It maps a
vector-valued modular form of weight k to a Jacobi form of weight k + rank(L)/2. The principal
part of F corresponds to the singular Fourier coefficients of the above Jacobi form. The map also
induces an isomorphism between the subspaces of holomorphic modular (resp. cusp) forms for
the Weil representation ρD(L) and holomorphic (resp. cusp) Jacobi forms of index one for L.

By means of the above isomorphism and Theorem 1.3.4, we obtain the following lifting.

Proposition 1.4.9. Under the assumptions of Theorem 1.3.4, if we write

FΓ0(N),f,0(τ) = ∑
γ∈D(L)

FΓ0(N),f,0;γ(τ)eγ ,

then the function
JΓ0(N),f,0(τ, z) = ∑

γ∈D(L)
FΓ0(p),f,0;γ(τ)Θ

L
γ (τ, z) (1.4.13)

33



is a weakly holomorphic Jacobi form of weight k+ 1
2 rank(L) and index 1 for L which is invariant

under the integral orthogonal group O(L). Moreover, this application maps holomorphic modular
(resp. cusp) forms to holomorphic (resp. cusp) Jacobi forms.

Example 1.4.10. As an application, we use this lifting to construct the generator of weight −4
of the ring of Weyl invariant D8 weak Jacobi forms. Fix D8 = {x ∈ Z8 ∶ ∑8

i=1 xi = 0 mod 2}. Its
level is 2. In this case, the input of the above lifting is the modular forms for the congruence
subgroup Γ0(2) with trivial character. We construct this generator as

ϕ−4,D8 =JΓ0(2),θ8
10(τ)−

1
2
E4(τ),0/∆

=128 − 16
8

∑
i=1

ζ±1
i +

1

2
∑ ζ

± 1
2

1 ζ
± 1

2
2 ⋯ζ

± 1
2

8 +O(q) ∈ J
w,O(D8)
−4,D8,1

,
(1.4.14)

where θ10(τ) = ∑n∈Z q
(2n+1)2

8 is a theta constant of order two and ζi = e2πizi .

1.4.3 Differential operators

In this subsection we recall the following weight raising differential operator which will be used
later. Such technique can also be found in [CK00] for the general case or in [EZ85] for classical
Jacobi forms.

Lemma 1.4.11. Let ψ(τ, z) = ∑a(n, l)qnζ l be a weakly holomorphic Jacobi form of weight k and
index one for L. Then Hk(ψ) is a weakly holomorphic Jacobi form of weight k+2 and index one
for L, where

Hk(ψ) =H(ψ) + (2k − rank(L))G2ψ, (1.4.15)

H(ψ)(τ, z) =
1

2
∑
n∈Z

∑
l∈L∨

[2n − (l, l)]a(n, l)qnζ l, (1.4.16)

and G2(τ) = −
1
24 +∑n≥1 σ(n)q

n is the Eisenstein series of weight 2 on SL2(Z).

Proof. Let {α1, ..., αn} be a basis of L and {α∗1 , ..., α
∗
n} be its dual basis. We write z = ∑ni=1 ziαi ∈

L⊗C, zi ∈ C. We define ∂
∂z = ∑

n
i=1 α

∗
i
∂
∂zi

. Then we have that

(
∂

∂z
,
∂

∂z
) e2πi(l,z) = −4π2(l, l)e2πi(l,z)

and the operator H(⋅) is equal to the heat operator

H =
1

2πi

∂

∂τ
+

1

8π2
(
∂

∂z
,
∂

∂z
) .

By formulas (3.5) and (3.7) in [CK00, Lemma 3.3], the transformations of the function H(ψ)
with respect to the actions of SL2(Z) and the Heisenberg group of L are known:

H(ψ∣k,1A) =H(ψ)∣k+2,1A +
1

4πi
(rank(L) − 2k)

c

cτ + d
ψ∣k,1A,

H(ψ∣k,1[x, y ∶ (x, y)/2]) =H(ψ)∣k+2,1[x, y ∶ (x, y)/2],

for A ∈ SL2(Z) and x, y ∈ L. From these transformations, we see that H(ψ) does not transform
like a Jacobi form, so we make an automorphic correction by considering the quasi-modular
Eisenstein series G2 of weight 2. By direct calculations, we can show that Hk(ψ) is invariant
under SL2(Z) and the Heisenberg group. Therefore, it is a weakly holomorphic Jacobi form of
weight k + 2 and index one for L.
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The next lemma gives a quite useful identity related to singular Fourier coefficients of any
Jacobi form of weight zero, which plays a key role in this thesis. It was proved in [Gri12,
Proposition 2.2]. Its variant in the context of vector-valued modular forms was first proved in
[Bor98, Theorem 10.5].

Lemma 1.4.12. Assume that φ is a weakly holomorphic Jacobi form of weight 0 and index 1
for L with the Fourier expansion

φ(τ, z) = ∑
n∈Z

∑
`∈L∨

f(n, `)qnζ`.

Then we have the following identity

C ∶=
1

24
∑
`∈L∨

f(0, `) −∑
n<0

∑
`∈L∨

f(n, `)σ(−n) =
1

2 rank(L)
∑
`∈L∨

f(0, `)(`, `). (1.4.17)

Moreover, we have
∑
`∈L∨

f(0, `)(`, z)2 = 2C(z, z), ∀z ∈ L⊗C. (1.4.18)

Proof. From Lemma 1.4.11, it follows that H0(φ) is a weakly holomorphic Jacobi form of weight
2. Therefore H0(φ)(τ,0) is a nearly holomorphic modular form of weight 2 for the full modular
group SL2(Z). By [Bor95, Lemma 9.2], the modular form H0(φ)(τ,0) has zero constant term,
which establishes the first desired identity.

In order to prove the second identity, we consider the automorphic correction of φ as in
[Gri99b, Proposition 1.5]. We define

Ψ(φ)(τ, z) ∶= e−4π2G2(τ)(z,z)φ(τ, z).

By direct calculations, we obtain

Ψ(φ) (
aτ + b

cτ + d
,

z

cτ + d
) = Ψ(φ)(τ, z), ∀(

a b
c d

) ∈ SL2(Z).

Let t ∈ R and define Φ(φ)(t) = Ψ(φ)(τ, tz). We consider the Taylor expansion of Φ(φ)(t) at the
point t = 0

Φ(φ)(t) = ∑
n≥0

fn(τ, z)t
n.

From the relation

dΦ(φ)

dt
=
∂Φ(φ)

∂tz

∂tz

∂t
=
∂Ψ(φ)

∂z
(τ, tz)

∂tz

∂t
,

we derive that the function fn(τ, z) is a nearly holomorphic modular form of weight n on SL2(Z)

for any z ∈ L ⊗ C. Therefore, the modular form f2 has weight 2 and then its constant term is
zero, which yields the second identity.

Using the above Lemma, we give a simple proof of the following result which was firstly
proved by Borcherds in [Bor98, Theorem 11.2].

Corollary 1.4.13. Let φ be a weakly holomorphic Jacobi form of weight 0 and index 1 for L
with the Fourier expansion

φ(τ, z) = ∑
n∈Z

∑
`∈L∨

f(n, `)qnζ`.

Assume that f(n, `) ∈ Z for all n ≤ 0 and ` ∈ L∨. Let (n(L)) denote the ideal of Z generated by
(x, y), x, y ∈ L. Then we have

n(L)

24
∑
`∈L∨

f(0, `) ∈ Z.
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Proof. By (1.4.18), we have

∑
`∈L∨

f(0, `)(`, x)(`, y) = 2C(x, y), ∀x, y ∈ L.

Since f(0, `) = f(0,−`) ∈ Z, we get C(x, y) ∈ Z for all x, y ∈ L, which yields n(L)C ∈ Z. We thus
complete the proof by (1.4.17).

Remark 1.4.14. Let Λ be an even positive definite unimodular lattice of rank 24. Assume that
the set RΛ of roots of Λ is not empty. Let R(Λ) denote the root lattice generated by RΛ. The
theta-function for the lattice Λ is a holomorphic Jacobi form of weight 12 and index 1 for Λ.
Thus, we have

ψ0,Λ(τ, z) =
ΘΛ(τ, z)

∆(τ)
= q−1 + ∑

r∈RΛ

ζr + 24 +O(q) ∈ Jw.h.0,Λ,1.

By Lemma 1.4.12, we prove the identity ∑r∈RΛ
(r, z)2 = 2h(z, z). From this, it follows that the

lattice R(Λ) has rank 24 and all its irreducible components have the same Coxeter numbers. In
this thesis, we shall use the similar idea to classify reflective modular forms.

1.4.4 Additive liftings and Borcherds products

In this subsection we introduce the additive lifting and Borcherds product, which are two main
ways to construct orthogonal modular forms from Jacobi forms.

We first recall the following index raising operator introduced in [Gri91, Corollary 1].

Proposition 1.4.15. Let ϕ ∈ Jwk,L,t. For any positive integer m, we have

ϕ∣k,tT−(m)(τ, z) =m−1
∑

ad=m,a>0
0≤b<d

akϕ(
aτ + b

d
, az) ∈ Jwk,L,mt.

If f(n, `) are the Fourier coefficients of ϕ, then the Fourier coefficients of ϕ∣k,tT−(m)(τ, z) are
given by

fm(n, `) = ∑
a∈N

a∣(n,`,m)

ak−1f (
nm

a2
,
`

a
) ,

here a ∣ (n, `,m) means that a ∣ (n,m) and a−1` ∈ L∨.

We now introduce the additive lifting. We refer to [Gri95, Theorem 3.1] for a proof.

Theorem 1.4.16. Let ϕ ∈ Jk,L,t. Then the function

Grit(ϕ)(Z) = f(0,0)Gk(τ) + ∑
m≥1

ϕ∣k,tT−(m)(τ, z)e2πimω

defines a modular form of weight k with respect to Õ
+
(2U ⊕ L(−t)), where Gk = 1 +O(q) is the

normalized Eisenstein series of weight k on SL2(Z). If ϕ is a Jacobi cusp form, then Grit(ϕ)
will be a cusp form.

Since f(0,0) = 0 if k < 4 or k is odd, the first term of Grit(ϕ) is well defined. We note
that the additive lifting is symmetric i.e. Grit(τ, z, ω) = Grit(ω, z, τ). The cusp condition follows
from [Ma18, Theorem 3.5]. In fact, one derives the cusp condition from the calculation of the
Fourier expansion of Grit(ϕ) at every 0-dimensional cusp due to Borcherds (see [Bor98, Theorem
14.3] where Borcherds used the language of modular forms for the Weil representation to give an
extended version of additive Jacobi lifting).
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The cusp condition above means that the additive lifting is a cusp form if it vanishes at the
standard cusp (0-dimensional cusp of level 1, namely c = e). This does not hold for general
modular forms. By [GHS07, Theorem 4.2], when every isotropic subgroup of the discriminant
group of 2U ⊕ L(−1) is cyclic, a modular form G is cuspidal if it vanishes at the standard cusp
because in this case the closure of every 1-dimensional cusp contains the standard 0-dimensional
cusp.

There are also index raising operators and additive liftings for Jacobi forms with character
(see [CG13, GN98b]).

Proposition 1.4.17 (see Proposition 3.1 in [CG13]). Let ϕ ∈ Jwk,L,t(υ
D
η × ν) be a weak Jacobi

forms of weight k and index t for a positive definite even lattice L and it is not identically zero.
We assume that k is integral, t is rational and D is an even divisor of 24. If Q = 24

D is odd, we
also assume that the character of the minimal integral Heisenberg group ν is trivial. Then for
any natural m coprime to Q, we have

ϕ∣k,tT
(Q)
− (m)(τ, z) =m−1

∑
ad=m,a>0

0≤b<d

akυDη (σa)ϕ(
aτ + bQ

d
, az) ∈ Jwk,L,mt(υ

D⋅x
η × ν),

where x, y ∈ Z such that mx +Qy = 1, and

σa = (
dx +Qdxy −Qy

Qy a
) ∈ SL2(Z).

Moreover, if we assume f(n, `) are the Fourier coefficients of ϕ, then the Fourier coefficients of
ϕ∣k,tT

(Q)
− (m)(τ, z) have the following form

fm(n, `) = ∑
a∣(n,`,m)

ak−1vDη (σa)f (
nm

a2
,
`

a
) .

Theorem 1.4.18 (see Theorem 3.2 in [CG13]). Let ϕ ∈ Jk,L,t(v
D
η ×ν), k be integral, t be rational

and D be an even divisor of 24. If the conductor Q = 24/D is odd, we assume that ν is trivial.
Then the function

Grit(ϕ)(Z) = f(0,0)Gk(τ) + ∑
m≡1 modQ

m>0

ϕ∣k,tT
(Q)
− (m)(τ, z)e

2πim
Q
ω

is a modular form of weight k with respect to the stable orthogonal group Õ+(2U ⊕ L(−Qt))
of the even lattice L(Qt) with a character χ of order Q induced by vDη × ν and the relations
χ([0,0 ∶ r]) = e

2πi r
Q , χ(V ) = 1, where V ∶ (τ, z, ω)→ (ω, z, τ).

The input of original Borcherds lifting is the modular forms for the Weil representation. The
constructed modular forms have nice infinite product expansions at the rational 0-dimensional
cusps. By means of the isomorphism between modular forms for the Weil representation and
Jacobi forms (see 1.4.8), Gritsenko and Nikulin [GN98b] proposed a variant of Borcherds prod-
ucts, which lifts weakly holomorphic Jacobi forms of weight 0 to modular forms on orthogonal
groups. In this case, any constructed modular form has a nice product expansion at each ra-
tional 1-dimensional cusp and can be expressed as a product of a general theta block with the
exponential of additive lifting.

Theorem 1.4.19 (see Theorem 3.1 in [Gri12])). Let

ϕ(τ, z) = ∑
n∈Z

∑
`∈L∨

f(n, `)qnζ` ∈ Jw.h.0,L,1.
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Assume that f(n, `) ∈ Z for all 2n − (`, `) ≤ 0. We set

A =
1

24
∑
`∈L∨

f(0, `), B⃗ =
1

2
∑
`>0

f(0, `)`, C =
1

2 rank(L)
∑
`∈L∨

f(0, `)(`, `).

Then the product

Borch(ϕ)(Z) = qAζB⃗ξC ∏
n,m∈Z,`∈L∨
(n,`,m)>0

(1 − qnζ`ξm)f(nm,`),

where Z = (τ, z, ω) ∈H(L), q = exp(2πiτ), ζ` = exp(2πi(`, z)), ξ = exp(2πiω), defines a meromor-
phic modular form of weight f(0,0)/2 with respect to the stable orthogonal group Õ

+
(2U⊕L(−1))

with a character χ induced by

χ∣SL2(Z)= v
24A
η , χ∣H(L)([λ,µ; r]) = eπiC((λ,λ)+(µ,µ)−(λ,µ)+2r), χ(V ) = (−1)D,

where V ∶ (τ, z, ω) → (ω, z, τ) and D = ∑n<0 σ0(−n)f(n,0). The poles and zeros of Borch(ϕ) lie
on the rational quadratic divisors Dv(2U ⊕L(−1)), where v ∈ 2U ⊕L∨(−1) is a primitive vector
with (v, v) < 0. The multiplicity of this divisor is given by

multDv(2U ⊕L(−1)) = ∑
d∈Z,d>0

f(d2n, d`),

where n ∈ Z, ` ∈ L∨ such that (v, v) = 2n − (`, `) and v ≡ ` mod 2U ⊕L(−1). Moreover, we have

Borch(ϕ) = ψL,C(τ, z)ξ
C exp (−Grit(ϕ)) ,

where

ψL,C(τ, z) = η(τ)
f(0,0)

∏
`>0

(
ϑ(τ, (`, z))

η(τ)
)

f(0,`)

. (1.4.19)

Remark 1.4.20. A finite multiset of vectors {`;m(`)} from L∨ (one takes every vector m(`)
times) satisfying (1.4.18) is called vector system defined in [Bor95, §6]. Thus the finite multiset
set X = {`; f(0, `)} from Theorem 1.4.19 is a vector system and we can define its Weyl chamber
as a connected component of

L⊗R/
⎛

⎝
⋃

x∈X/{0}
{v ∈ L⊗R ∶ (x, v) = 0}

⎞

⎠
.

Let W be a fixed Weyl chamber. For ` ∈ L∨ we define an ordering on L∨ by

` > 0 ⇐⇒ ∃ w ∈W s.t. (`,w) > 0.

The notation (n, `,m) > 0 in Theorem 1.4.19 means that either m > 0, or m = 0 and n > 0, or
m = n = 0 and ` < 0.

The vector (A, B⃗,C) is called the Weyl vector of the Borcherds product.

The following result is called the Eichler criterion introduced by Eichler [Eic52].

Proposition 1.4.21. LetM = U⊕U1⊕L(−1) be an even lattice containing two hyperbolic planes,
where U = Ze + Zf with (e, e) = (f, f) = 0, (e, f) = 1. If u, v ∈ M are primitive, (u,u) = (v, v)
and u

div(u) ≡
v

div(v) mod M , then there exists σ ∈ EU(L1) such that σ(u) = v, where

EU(L1) = ⟨{t(e, a), t(f, a) ∶ a ∈ U1 ⊕L(−1)}⟩

and t(e, a), t(f, a) are the Eichler transvections (see (1.2.11)).
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The Eichler criterion tells that the Õ
+
(2U ⊕ L(−1))-orbit of any primitive vector v ∈ 2U ⊕

L∨(−1) is uniquely determined by its norm (v, v) and by the image of v in the discriminant group
of 2U ⊕L(−1). Therefore, there exists (0, n, `,1,0) ∈ 2U ⊕L∨(−1) such that (v, v) = 2n−(`, `) < 0
and v ≡ `mod 2U ⊕L(−1), which implies

Õ
+
(2U ⊕L(−1)) ⋅Dv(2U ⊕L(−1)) = Õ

+
(2U ⊕L(−1))⟨{Z ∈H(L) ∶ nτ − (`, z) + ω = 0}⟩.

At the end of this section, we discribe the generators of orthogonal groups following [GHS09].
Let M = U ⊕ U1 ⊕ L(−1) and L1 = U1 ⊕ L(−1). Note that EU(L1) ⊂ S̃O

+
(M) and Õ

+
(M) =

⟨S̃O
+
(M), V ⟩. By [GHS09, Proposition 3.3], we have

EU(L1) < ⟨ΓJ(L), V ⟩,

O+(M) = ⟨EU(L1),O(L1)⟩,

Õ
+
(M) = ⟨EU(L1), Õ

+
(L1)⟩.

For any prime p the p-rank of M , denoted by rankp(M), is the maximal rank of the sublattices
M ′ in M such that disc(M ′) is coprime to p. By [GHS09, Corollary 1.8, Proposition 3.4], if
rank2(M) ≥ 6 and rank3(M) ≥ 5, then

S̃O
+
(M) = EU(L1), Õ

+
(M) = ⟨ΓJ(L), V ⟩,

and the group Õ
+
(M) has only one non-trivial character, namely det, and S̃O

+
(M) has no

non-trivial character. Besides, O+(M) = ⟨Õ
+
(M),O(L)⟩ if the natural homomorphism O(L) →

O(D(L)) is surjective.
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Chapter 2

Reflective modular forms

2.1 Reflective modular forms and 2-reflective modular forms

Let M be an even lattice of signature (2, n) with n ≥ 3. The reflection with respect to the hy-
perplane defined by an anisotropic vector r is given by

σr(x) = x −
2(r, x)

(r, r)
r, x ∈M. (2.1.1)

A primitive vector l ∈M of negative norm is called reflective (or a root) if the reflection σr is
in O+(M). If v ∈M∨ and (v, v) < 0, the rational quadratic divisor Dv(M) = v⊥ ∩D(M) is called
a reflective divisor if σv ∈ O+(M). For λ ∈D(M) =M∨/M and m ∈ Q we define

H(λ,m) = ⋃
v∈M+λ
(v,v)=2m

Dv(M) (2.1.2)

as the Heegner divisor of discriminant (λ,m).
Remark that a primitive vector l ∈M with (l, l) = −2d is reflective if and only if div(l) = 2d

or d. We set λ = [l/div(l)] ∈ D(M). Then Dλ(M) is contained in H(λ,−1/(4d)) in the first
case, and is contained in

H(λ,−1/d) − ∑
2ν=λ
H(ν,−1/(4d))

in the second case. In particular, when the lattice M is of prime level p, a primitive vector l ∈M
is reflective if and only if (l, l) = −2 and div(l) = 1, or (l, l) = −2p and div(l) = p.

Following [GN97, GN98b], we define reflective modular forms and 2-reflective modular forms
in the following way.

Definition 2.1.1. Let F be a non-constant holomorphic modular form on D(M) with respect
to a finite index subgroup Γ < O+(M) and a character (of finite order) χ ∶ Γ → C. The function
F is called reflective if its support of zero divisor is set-theoretically contained in the union of
reflective divisors associated to M . A reflective modular form F is called strongly reflective if
the multiplicity of every irreducible component of div(F ) is equal to one. A lattice M is called
reflective if it admits a reflective modular form.

We define
H =H(0,−1) = ⋃

v∈M
(v,v)=−2

Dv(M) (2.1.3)

as the Heegner divisor of D(M) generated by the (−2)-vectors in M .
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Definition 2.1.2. A non-constant holomorphic modular form on D(M) is called 2-reflective
if its support of divisor is contained in H. A 2-reflective modular form F is called a modular
form with complete 2-divisor if div(F ) = H. A lattice M is called 2-reflective if it admits a
2-reflective modular form.

Note that all (−2)-vectors are reflective. Therefore, 2-reflective modular forms are particular
case of reflective modular forms.

In order to narrow the class of reflective modular forms that we actually deal with, we
introduce many basic reductions following Ma [Ma17, §2]. Firstly, we can kill the characters.
In fact, if F is a reflective (resp. 2-reflective) modular form with respect to Γ < O+(M) and a
character χ ∶ Γ → C, then F d is a reflective (resp. 2-reflective) modular form with respect to Γ
and the trivial character where d is the order of χ. Secondly, we are free to change the arithmetic
group Γ inside O+(M).

Lemma 2.1.3. Assume that M admits a reflective (resp. 2-reflective) modular form with respect
to some Γ < O+(M). Then M also has a reflective (resp. 2-reflective) modular form with respect
to any other finite index subgroup Γ′ < O+(M).

Proof. Let F be a given reflective (resp. 2-reflective) modular form with respect to Γ. We set
Γ′′ = Γ ∩ Γ′. We choose representatives γ1, ..., γs ∈ Γ′ of the coset Γ′′/Γ′ and take the product

F ′ =
s

∏
i=1

(F ∣γi).

This is a modular form with respect to Γ′. For any γ ∈ O+(M), we have that γ(H) =H because
γ preserves M . In addition, for a reflective vector v of M ,

σγ(v)(x) = x −
2(x, γ(v))

(γ(v), γ(v))
γ(v)

= γ (γ−1(x) −
2(γ−1(x), v)

(v, v)
v) ∈M

for any x ∈ M , which implies that γ(v) is also reflective. Therefore, F ′ is a reflective (resp.
2-reflective) modular form with respect to Γ′.

By Lemma 2.1.3, a lattice M is reflective (resp. 2-reflective) if and only if it admits a
reflective (resp. 2-reflective) modular form with respect to Õ

+
(M). In view of the Eichler

criterion (see Proposition 1.4.21), throughout this chapter, we only consider reflective (resp.
2-reflective) modular forms with respect to Õ

+
(M).

Lemma 2.1.4. Assume that M admits a 2-reflective modular form. Then any even overlattice
M ′ of M has a 2-reflective modular form too.

Proof. Let F be the given 2-reflective modular form for M . Since M ⊗ Q = M ′ ⊗ Q, we can
identify D(M) with D(M ′) canonically. Since (−2)-vectors in M are also (−2)-vectors in M ′,
the (−2)-Heegner divisor on D(M) is contained in the (−2)-Heegner divisor on D(M ′) under this
identification. Hence we may view as F as a 2-reflective modular form on D(M ′) with respect to
Õ
+
(M). Since M <M ′ <M ′∨ <M∨, the group Õ

+
(M) can be viewed as a finite index subgroup

of Õ
+
(M ′). Thus, the claim follows from Lemma 2.1.3 applied to M ′.

Remark that Lemma 2.1.4 does not hold for reflective modular forms because O+(M) is not
contained in O+(M ′) in general and a reflective divisor Dv in D(M) is usually not a reflective
divisor in D(M ′).
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Remark 2.1.5. Let Γ be a finite index subgroup of O+(M). It was proved in [GHS07, Corollary
2.13] that the branch divisor of the modular projection

πΓ ∶ D(M)Ð→ Γ/D(M)

is the union of the reflective divisors with respect to Γ:

Bdiv(πΓ) = ⋃
r∈M∨

σr∈Γ∪−Γ

Dr(M). (2.1.4)

In view of this fact, Gritsenko and Nikulin called a holomorphic modular form F for Γ reflective
if its support of zero divisor is contained in Bdiv(πΓ). Our definition (Definition 2.1.1) is more
convenient for classification. However, the definition of Gritsenko and Nikulin is more convenient
for geometric application. The existence of cusp forms of small weight (< n) with big divisor
(div(F ) ≥ Bdiv(πΓ)) may imply that the modular variety FM(Γ) is of general type (see [GHS07,
Theorem 1.1]). The existence of modular forms of big weight (≥ n) with small divisor (div(F ) ≤

Bdiv(πΓ)) may yield that the modular variety FM(Γ) is uniruled or has Kodaira dimension 0
(see [Gri10, Theorem 1.5] and [GH14, Theorem 2.1]).

2.2 Known classification of reflective modular forms

It is a very interesting and difficult problem to find all reflective lattices and all their reflective
automorphic forms. In this section we introduce many known results in this direction.

Gritsenko–Nikulin’s results

In 1998, in view of the Koecher principle for orthogonal modular forms, Gritsenko and Nikulin
[GN98a, Conjecture 2.2.1] first made the following conjecture.

Conjecture 2.2.1. Up to scaling there are only finitely many reflective lattices of signature (2, n)
with n ≥ 3.

The above conjecture was first formulated in [Nik96] for 2-reflective modular forms. We re-
mark that Gritsenko and Nikulin [GN98a, GN00] also formulated a conjecture called “Arithmetic
Mirror Symmetry Conjecture” which relates the hyperbolic reflective lattices to reflective lattices.
When n = 3, Gritsenko and Nikulin gave some classification in [GN98b, §5.2] and [GN02, §2].
Looijenga [Loo03] proved one part of the arithmetic mirror symmetry conjecture, which might
give a new approach to classify reflective modular forms.

Scheithauer’s results

In his series of works, Scheithauer gave a complete classification of strongly reflective modular
forms of singular weight on lattices of prime level [Sch04, Sch06, Sch15, Sch17]. We next introduce
the main classification results of Scheithauer. We first describe his way to construct reflective
modular forms following [Sch06].

Let Co0 be the Conway’s group i.e. the automorphism group of the Leech lattice Λ. Let
g ∈ Co0 be an element of order n. The characteristic polynomial of g on Λ ⊗Q can be written
as ∏(xk − 1)bk where k ranges over the positive divisors of n. The symbol ∏k∣n k

bk is called the
cycle shape of g. We define the eta product associated to g as

ηg(τ) =∏
k∣n
η(kτ)bk ,
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which is a modular function of trivial character for a group of level N . The smallest N with
this property is called the level of g. We further assume that the level N of g is squarefree and
the fixpoint lattice Λg of g is nontrivial. In this case, g has order N , the lattice Λg is of level
N and ηg is a modular form for Γ0(N) of weight rank(Λg)/2 and character χD, where D is the
discriminant form of the lattice

M = U ⊕U(N)⊕Λg.

The function fg = 1/ηg can be lifted to a modular form Fg = FΓ0(N),fg ,0 of weight − rank(Λg)/2
for the Weil representation ρD. Then, the function Fg can be lifted to a Borcherds product,
which turns out to be strongly reflective and to have singular weight. Further possible reflective
modular forms can be obtained by applying Aktin-Lehner involutions to fg and M .

We now state Scheithauer’s classification result. We first recall the following definition.
If a modular form can be constructed as a Borcherds product of a vector-valued modular

form invariant under O(D(M)), it is called symmetric, otherwise it is called non-symmetric.

Theorem 2.2.2 (Theorem 6.28 in [Sch17]). Let M be a lattice of prime level p and signature
(2, n) with n ≥ 3 and let Ψ be a strongly reflective Borcherds product of singular weight on M .
Then, as a function on the corresponding Hermitian symmetric domain D(M), the modular form
Ψ can be identical to the Borcherds product of one of the following vector-valued modular forms
in Table 2.1.

With three exceptions, all these functions come from symmetric modular forms. Moreover,
at a suitable cusp Ψ is the twisted denominator identity of the fake monster algebra by the cor-
responding element in the Conway’s group.

The functions F1, F2 and F3 are not invariant under O(D(M)) and are constructed using
other type of liftings (see [Sch17]). The Gram matrices of Λ12112

and Λ11231
are respectively

Λ12112

=

⎛
⎜
⎜
⎜
⎝

4 1 0 −2
1 4 2 0
0 2 4 1
−2 0 1 4

⎞
⎟
⎟
⎟
⎠

, Λ11231

= (
4 1
1 6

) .

The number t in the column associated with “zeros” indicates that the corresponding modular
form has zeros of order one coming from the reflective vectors of norm 2t. When the modular
form is symmetric, its zeros contain all reflective divisors associated to vectors of norm 2t. When
the modular form is non-symmetric, its zeros only contain partial reflective divisors associated
to vectors of norm 2t.

We remark that Barnes-Wall lattice, E8(2), Coxeter-Todd lattice, E∨
6 (3), Maass lattice,

A∨
4(5), Barnes-Craig lattice, Λ12112

and Λ11231
are the fixpoint lattices of the elements of cycle

shapes 1828, 1−8216, 1636, 1−339, 1454, 1−155, 1373, 12112 and 11231, respectively. For these
lattices, the corresponding symmetric modular forms are constructed as the Borcherds products
of the vector-valued modular forms lifted from the eta products associated to the cycle shapes.
The remaining three symmetric reflective modular forms in Table 2.1 are obtaining by taking
Atkin-Lehner involutions. We next construct them in a different way. It is easy to check that

(U ⊕U(2)⊕E8(2))
∨ (2) = (U ⊕U (

1

2
)⊕E8 (

1

2
)) (2)

= U(2)⊕U ⊕E8,

which gives
O+(U ⊕U(2)⊕E8(2)) = O+(U ⊕U(2)⊕E8).

Therefore, the reflective modular form for U ⊕U(2)⊕E8(2) can be viewed as reflective modular
form for U ⊕U(2)⊕E8. The other two cases are similar.
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Table 2.1: Strongly reflective Borcherds products of singular weight on lattices of prime level

p genus M F zeros symmetric

2 II18,2(2
+10
II ) U ⊕U(2)⊕Barnes-Wall lattice FΓ0(2),η1−82−8 ,0 1,2 Yes

II10,2(2
+2
II ) U ⊕U(2)⊕E8 FΓ0(2),16η1−1628 ,0 2 Yes

II10,2(2
+10
II ) U ⊕U(2)⊕E8(2) FΓ0(2),16η182−16 ,0 1 Yes

II6,2(2
−6
II ) U(2)⊕U(2)⊕D4 F1 2 Non

3 II14,2(3
−8) U ⊕U(3)⊕Coxeter-Todd lattice FΓ0(3),η1−63−6 ,0 1,3 Yes

II8,2(3
−3) U ⊕U(3)⊕E6 FΓ0(3),9η1−933 ,0 3 Yes

II8,2(3
−7) U ⊕U(3)⊕E∨

6 (3) FΓ0(3),η133−9 ,0 1 Yes

II6,2(3
+6) U(3)⊕U(3)⊕ 2A2 F2 3 Non

II4,2(3
−5) U(3)⊕U(3)⊕A2 F3 3 Non

5 II10,2(5
+6) U ⊕U(5)⊕Maass lattice FΓ0(5),η1−45−4 ,0 1,5 Yes

II6,2(5
+3) U ⊕U(5)⊕A4 FΓ0(5),5η1−551 ,0 5 Yes

II6,2(5
+5) U ⊕U(5)⊕A∨

4(5) FΓ0(5),η115−5 ,0 1 Yes

7 II8,2(7
−5) U ⊕U(7)⊕Barnes-Craig lattice FΓ0(7),η1−37−3 ,0 1,7 Yes

11 II6,2(11−4) U ⊕U(11)⊕Λ12112
FΓ0(11),η1−211−2 ,0 1,11 Yes

23 II4,2(23−3) U ⊕U(23)⊕Λ11231
FΓ0(23),η1−123−1 ,0 1,23 Yes

Remark 2.2.3. Scheithauer’s reflective modular forms of singular weight have some applications.
The reflective modular forms of singular weight for

2U ⊕D8 ≅ U ⊕U(2)⊕E8

2U ⊕ 3A2 ≅ U ⊕U(3)⊕E6

2U ⊕A∨
4(5) ≅ U ⊕U(5)⊕A4

can be also constructed as the additive liftings of some holomorphic Jacobi forms of singular
weight at the one-dimensional cusps related to 2U (see [Gri10, Gri18, GSZ18, GW17, GW18b]).
Their pull-backs will give infinite families of holomorphic Siegel paramodular forms which are
simultaneously Borcherds products and additive liftings, which support the “Theta-Block Con-
jecture for Paramodular Forms” formulated in [GPY15]. Besides, the pull-back of the reflective
modular forms of singular weight for

2U ⊕A∨
6(7) ≅ U ⊕U(7)⊕Barnes-Craig lattice

2U ⊕ 2A∨
4(5) ≅ U ⊕U(5)⊕Maass lattice

at the one-dimensional cusps related to 2U will give infinite families of antisymmetric holomorphic
Siegel paramodular forms of weights 3 and 4 (see [GW19a]).

Using the Riemann–Roch theorem, Scheithauer also gave bounds on the signature for non-
symmetric reflective modular forms and for reflective modular forms without (−2)-divisor.
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Theorem 2.2.4 (Theorem 6.5 in [Sch17]). LetM be an even lattice of prime level p and signature
(2, n) with n > 2 carrying a non-symmetric reflective Borcherds product. Then p ≤ 11 and
n ≤ 2 + 24/p.

Lemma 2.2.5 (Proposition 6.1 in [Sch17]). Let M be a lattice of signature (2, n) and prime level
p. If M admits a reflective Borcherds product which has only reflective divisors of norm 2p, then
n ≤ 2 + 24/(p + 1).

Ditmann’s results

Scheithauer also constructed many strongly reflective modular forms of singular weight for lattices
of squarefree level (see the table after Theorem 10.3 in [Sch06]). Recently, Dittmann [Dit18,
Theorem 1.2] proved that these modular forms are the only strongly reflective modular forms
of singular weight for lattices of squarefree level N which can be written as U ⊕U(N)⊕L(−1).
Dittmann [Dit18, Theorem 1.1] also proved that there are only finitely many reflective lattices of
signature (2, n) with n ≥ 4 and squarefree level N that split U ⊕U(N)⊕L(−1). For our purpose,
we introduce a particular case of Dittmann’s result.

Lemma 2.2.6 (Lemma 4.5 in [Dit18]). Let M be a reflective lattice of signature (2, n) and prime
level p. If M can be expressed as U ⊕U(p)⊕L(−1), then n ≤ 2 + 48/(p + 1).

Proof. We suppose that F is a symmetric reflective modular form for M . Since M = U ⊕U(p)⊕
L(−1), we derive from Theorem 1.3.3 that F is a Borcherds product. By Proposition 1.3.7,
the corresponding vector-valued modular form can be constructed as a lifting in Theorem 1.3.4.
Thus there exists a nearly holomorphic modular form f of weight 1 − n/2 for Γ0(p) with a
character. We note that f = c0q

−1 + a +O(q). We see from the expression of M that there are
nontrivial vectors of norm 0 in the discriminant group of M . By Theorem 1.3.4, we conclude
that f ∣S = cpq

−1/p + b + O(q1/p), otherwise there will be another type of principal part Foureir
coefficients which give non-reflective divisors. Here c0, a, cp, b are constants. The Riemann–Roch
theorem applied to f gives

−2 ≤ pν0(f) + ν∞(f) ≤
p + 1

12
(1 −

n

2
) ,

which proves the lemma.

Remark 2.2.7. From the form of f in the above proof, we see that if M = U ⊕ U(p) ⊕ L(−1)
has discriminant pa and is reflective then any lattice of the same signature and same level with
discriminant pb is also reflective, where a − b is even. Moreover, the corresponding reflective
modular form can be constructed by the lifting of f .

Ma’s results

We next introduce Ma’s classification results following [Ma17, Ma18].

Theorem 2.2.8 (Theorem 1.1 in [Ma17]). There are only finitely many 2-reflective lattices of
signature (2, n) with n ≥ 7. In particular, there is no 2-reflective lattice when n ≥ 26 except the
even unimodular lattice of signature (2,26).

Theorem 2.2.9 (Proposition 3.2 in [Ma17]). There is no reflective lattices of signature (2, n)
with n ≥ 26 containing 2U except the even unimodular lattice of signature (2,26).

If a modular form F has weight α and every component of div(F ) has multiplicity ≤ β, we
say that F has slope ≤ β/α.

46



Theorem 2.2.10 (Corollary 1.9 in [Ma18]). Let r > 0 be a fixed rational number. Then up to
scaling there are only finitely many lattices of signature (2, n) with n ≥ 4 which carries a reflective
modular form of slope ≤ r . In particular, for a fixed natural number β, there are up to scaling
only finitely many lattices with n ≥ 4 which carries a reflective modular form of vanishing order
≤ β.

As a corollary of the above theorem, Ma proved the following result.

Theorem 2.2.11 (Corollary 1.10 in [Ma18]). Up to scaling there are only finitely many lattices
of signature (2, n) with n ≥ 4 which carries a strongly reflective modular form.

2.3 Construction of reflective modular forms

In this section we construct many reflective modular forms.

2.3.1 Quasi pull-backs

Borcherds [Bor95] constructed a modular form Φ12 of singular weight 12 and character det with
respect to O+(II2,26)

Φ12 ∈M12(O
+(II2,26),det)

where II2,26 is the unique even unimodular lattice of signature (2,26). The function Φ12 is
constructed as the Borcherds product of the following nearly holomorphic modular form of weight
−12

1/∆(τ) = q−1 + 24 + 324q + 3200q2 +⋯

and it is a modular form with complete 2-divisor i.e.

div(Φ12) = ∑
v∈II2,26 /{±1}
(v,v)=−2

Dv(II2,26).

By Eichler criterion (Proposition 1.4.21), all (−2)-vectors in II2,26 form only one orbit with
respect to O+(II2,26). We next introduce the quasi pull-back of the Borcherds modular form Φ12.

First we give a general property of rational quadratic divisors. Let M be an even lattice of
signature (2, n) and let T be a primitive sublattice of signature (2,m) with m < n. Then T ⊥M is
negative definite and we have the usual inclusions

T ⊕ T ⊥M <M <M∨ < T ∨ ⊕ (T ⊥M)∨.

For v ∈M with v2 < 0 we write

v = α + β, α ∈ T∨, β ∈ (T ⊥M)∨.

Then we have

D(T ) ∩Dv(M) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Dα(T ), if α2 < 0,

∅, if α2 ≥ 0, α ≠ 0,

D(T ), if α = 0, i.e. v ∈ T ⊥M .

The statements of the next theorem were proved in [BKP+98, Theorem 1.2] and [GHS13,
Theorems 8.3 and 8.18].
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Theorem 2.3.1. Let T ↪ II2,26 be a primitive nondegenerate sublattice of signature (2, n) with
n ≥ 3, and let D(T ) ↪ D(II2,26) be the corresponding embedding of the Hermitian symmetric
domains. The set of (−2)-roots

R−2(T
⊥) = {r ∈ II2,26 ∶ r

2 = −2, (r, T ) = 0}

in the orthogonal complement is finite. We put N(T ⊥) = #R−2(T
⊥)/2. Then the function

Φ12∣T=
Φ12(Z)

∏r∈R−2(T ⊥)/±1(Z, r)

RRRRRRRRRRRD(T )●
∈M12+N(T ⊥)(Õ

+
(T ),det), (2.3.1)

where in the product over r we fix a finite system of representatives in R−2(T
⊥)/ ± 1. The

modular form Φ12∣T vanishes only on rational quadratic divisors of type Dv(T ) where v ∈ T∨ is
the orthogonal projection of a (−2)-root r ∈ II2,26 on T∨ satisfying −2 ≤ v2 < 0. If the set R−2(T

⊥)
is non-empty then the quasi pull-back Φ12∣T is a cusp form.

In general, the quasi pull-back Φ12∣T is not a reflective modular form. To determine its
divisor, we must do explicit calculations. We refer to [Gra09] for this type of calculations. We
next introduce several arguments which can be used to seek reflective modular forms without
complicated calculations.

In [Gri12] Gritsenko proposed 24 Jacobi type constructions of the Borcherds modular form
Φ12 based on the 24 one dimensional boundary components of the Baily-Borel compactification
of the modular variety O+(II2,26)/D(II2,26). These components correspond exactly to the classes
of positive definite even unimodular lattices of rank 24. They are the 23 Niemeier lattices N(R)

uniquely determined by their root sublattices R of rank 24

3E8 E8 ⊕D16 D24 2D12 3D8 4D6

6D4 A24 2A12 3A8 4A6 6A4

8A3 12A2 24A1 E7 ⊕A17 2E7 ⊕D10 4E6

E6 ⊕D7 ⊕A11 A15 ⊕D9 2A9 ⊕D6 2A7 ⊕ 2D5 4A5 ⊕D4

and the Leech lattice Λ24 without 2-roots (see [SC98, Chapter 18]). We next construct a lot
of reflective modular forms by quasi pull-backs of Φ12 in different one dimensional boundary
components, some already known, some new.

For convenience, we fix the discriminant groups of irreducible root lattices. Let e1, ..., en be
the standard basis of Rn

1. For A1 = Z with the bilinear form 2x2, we fix A∨
1/A1 = {0,1/2}.

2. For Dn = {x ∈ Zn ∶ ∑ni=1 xi ∈ 2Z} with n ≥ 4, we fix D∨
n/Dn = {[0], [1], [2], [3]}, where

[1] = 1
2 ∑

n
i=1 ei, [2] = e1, [3] = 1

2 ∑
n
i=1 ei − en. Then [1]2 = [3]2 = n

4 and [2]2 = 1.

3. For An = {x ∈ Zn+1 ∶ ∑n+1
i=1 xi = 0} with n ≥ 2, we fix A∨

n/An = {[i] ∶ 0 ≤ i ≤ n}, where
[i] = ( i

n+1 , ...,
i

n+1 ,
−j
n+1 , ...,

−j
n+1) with j components equal to i

n+1 and i+ j = n+ 1. The norm
of [i] is ij

n+1 .

4. The lattice E6 is of level 3. Its discriminant group is of order 3 and generated by one
element [1] of norm 4/3.

5. The lattice E7 is of level 4. Its discriminant group is of order 2 and generated by one
element [1] of norm 3/2.
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The first argument:

This argument was due to Gritsenko and Nikulin. In [GN18], they constructed modular forms
with complete 2-divisor by quasi pull-backs of Φ12. We recall their main ideas such that readers
can understand the other arguments better.

For an even positive definite lattice L, we define Norm2 condition as

Norm2 ∶ ∀ c̄ ∈ L∨/L, ∃hc ∈ c̄ s.t. 0 ≤ h2
c ≤ 2. (2.3.2)

The reason why we formulate Norm2 condition is the following. If the lattice L satisfies Norm2

condition and φ is a weakly holomorphic Jacobi form of index L, then its singular Fourier
coefficients are totally determined by the qn-terms with non-positive n.

Proof of the claim. It is known that f(n, `) depends only on 2n − (`, `) and ` mod L. Suppose
that f(n, `) is singular, i.e. 2n−(`, `) < 0. There exists a vector `1 ∈ L∨ such that (`1, `1) ≤ 2 and
`−`1 ∈ L because L satisfies Norm2 condition. It is clear that (`, `)−(`1, `1) is an even integer. If
−2 ≤ 2n − (`, `) < 0, it follows that 2n − (`, `) = −(`1, `1) and f(n, `) = f(0, `1). If 2n − (`, `) < −2,
then there exists a negative integer n1 satisfying 2n − (`, `) = 2n1 − (`1, `1). Thus there exists a
Fourier coefficient f(n1, `1) with negative n1 such that f(n1, `1) = f(n, `).

Remark 2.3.2. The following lattices satisfy Norm2 condition

A1 A2 A3 A4 A5 A6 A7

D4 D5 D6 D7 D8

E6 E7 E8 2E8 N8

2A1 3A1 4A1 2A2 3A2 2A3 2D4

A1(2) A1(3) A1(4) 2A1(2) A2(2)

A2(3) A3(2) D4(2) E8(2).

Note that A1(2) ≅ D1, 2A1 ≅ D2 and A3 ≅ D3. Remark that the fact that the lattice A∨
4(5)

satisfies Norm2 condition was proved in [GW17]. Here N8 is the Nikulin’s lattice defined as (see
[GN18, Example 4.3])

N8 = ⟨8A1, h = (a1 +⋯ + a8)/2⟩ ≅D
∨
8 (2),

where (ai, aj) = 2δij , (h,h) = 4. The root sublattice generated by roots of N8 is 8A1.

Let K be a primitive sublattice of N(R) containing a direct summand of the same rank of
the root lattice R or a primitive sublattice of the Leech lattice Λ24 = N(∅). We assume that K
satisfies the Norm2 condition. Let T = 2U ⊕K(−1).

The theta function ϑN(R) of the Niemeier lattice N(R) is a holomorphic Jacobi form of weight
12 and index 1 for N(R). Then we have

ϕ0,N(R)(τ, z) =
ϑN(R)(τ, z)

∆(τ)
= q−1 + 24 + ∑

r∈R,r2=2

e2πi(r,z) +O(q) ∈ Jw.h.0,N(R),1.

We write z = z1 + z2 with z1 ∈ K ⊗C and z2 ∈ K
⊥
N(R) ⊗C and define the pull-back of ϕ0,N(R) on

the lattice K ↪ N(R) as

ϕ0,K(τ, z1) = ϕ0,N(R)(τ, z)∣z2=0

= q−1 + 24 + nK + ∑
r∈K,r2=2

e2πi(r,z) +O(q) ∈ Jw.h.0,K,1,

where nK is the number of 2-roots in R orthogonal to K. Since K satisfies the Norm2 condition,
the singular Fourier coefficients of ϕ0,K are completely represented by its q−1 and q0-terms. Thus,
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Table 2.2: Reflective cusp forms with complete 2-divisor

lattice A1 2A1 3A1 4A1 N8 A2 2A2 3A2 A3 2A3 A4 A5

weight 35 34 33 32 28 45 42 39 54 48 62 69

lattice A6 A7 D4 2D4 D5 D6 D7 D8 E6 E7 E8 2E8

weight 75 80 72 60 88 102 114 124 120 165 252 132

the quasi pull-back Φ12∣T is equal to Borch(ϕ0,K) up to a constant and it is a modular form with
complete 2-divisor. In this way, Gritsenko and Nikulin [GN18, Theorems 4.3, 4.4] constructed
the following modular forms with complete 2-divisor.

When K is one of the following 10 sublattices of the Leech lattice Λ24

A1(2) A1(3) A1(4) 2A1(2) A2(2) A2(3) A3(2) D4(2) E8(2) A∨
4(5)

there exists a (non cusp) modular form of weight 12 with complete 2-divisor for the lattice
2U ⊕K(−1).

The second argument:

This argument was formulated in [Gri18]. Here we describe it in a more understandable way and
use it to construct much more reflective modular forms. This argument is based on the following
observation.

Observation: The vector of minimum norm in any non-trivial class of discriminant group of
the lattice A1 corresponds to 2-reflective divisor. The vector of minimum norm in any non-trivial
class of discriminant group of the lattice 2A1, A2, D4 or A1(2) is reflective.

Let K = K0 ⊕K1 ⊕K2 be a primitive sublattice of N(R). The lattice K0 contains a direct
summand of the same rank of R. The lattices K1, K2 take A1, 2A1, A2, D4 or A1(2), and they
are contained in different direct summands of R. The second lattice K2 is allowed to be empty.
We further assume that K satisfies Norm2 condition. Let T = 2U ⊕K(−1).

Again, we consider the pull-back of ϕ0,N(R) on the latticeK ↪ N(R). The above assumptions
guarantee that the singular Fourier coefficients of ϕ0,K are totally determined by its q−1, q0-terms
and correspond to reflective divisors. Therefore, the quasi pull-back Φ12∣T= Borch(ϕ0,K) is a
reflective modular form.

We first use this argument to construct 2-reflective modular forms. To do this, we can only
take K1,K2 = ∅,A1. Let R = 3E8, K0 = 2E8 and K1 = A1 contained in the third copy of E8.
Then the quasi pull-back Φ12∣T will give a 2-reflective modular form for 2U ⊕ 2E8(−1)⊕A1(−1).
Similarly, when K takes one of the following 16 lattices, the quasi pull-back Φ12∣T will give a
2-reflective modular form on T

2E8 ⊕A1 E8 ⊕A1 E8 ⊕ 2A1 D6 ⊕A1 D4 ⊕A1 D4 ⊕ 2A1 A4 ⊕A1 A3 ⊕A1

A3 ⊕ 2A1 A2 ⊕A1 A2 ⊕ 2A1 2A2 ⊕A1 D5 ⊕A1 A5 ⊕A1 E7 ⊕A1 E6 ⊕A1.

We then use this argument to construct reflective modular forms. For example, let R = 3E8,
K0 = E8 and K1 =K2 =D4 contained in the second and the third copy of E8 respectively. Then
the quasi pull-back Φ12∣T gives a reflective modular form for 2U ⊕E8(−1)⊕ 2D4(−1). When K
takes one of the following 33 lattices, the quasi pull-back Φ12∣T is a reflective modular form on
T .
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1. When R = 3E8, the lattice K can take

{E8,2E8}⊕ {2A1,A2,D4,A1(2)} E8 ⊕A1 ⊕ {2A1,A2,D4,A1(2)}

E8 ⊕ 2A1 ⊕ {2A1,A2,D4,A1(2)} E8 ⊕A2 ⊕ {A2,D4,A1(2)}

E8 ⊕D4 ⊕ {D4,A1(2)} E8 ⊕ 2A1(2).

2. When R = 6D4, the lattice K can take D4 ⊕ {A2,D4,A1(2)}.

3. When R = 6A4, the lattice K can take A4 ⊕A2.

4. When R = 8A3, the lattice K can take A3 ⊕ {A2,A1(2)}.

5. When R = 12A2, the lattice K can take A2 ⊕A1(2).

6. When R = 24A1, the lattice K can take {A1,2A1}⊕A1(2).

7. When R = 4E6, the lattice K can take E6 ⊕A2.

8. When R = 2A7 ⊕ 2D5, the lattice K can take D5 ⊕A2.

For (5) and (6), the constructions are a bit different. We take A1(2) in ()5 as a sublattice of
2A2 and take A1(2) in (6) as a sublattice of 2A1. They can also be constructed in another way.
For example, to construct a reflective modular form for 2U⊕A2⊕A1(2), we can use the pull-back
A2⊕A1(2) < N(6D4). Remark that for one lattice we may construct different reflective modular
forms. In the above, we focus on reflective lattices and only construct one reflective modular
form for a certain lattice.

The third argument:

We now consider the general case, i.e. the lattice K does not satisfy Norm2 condition. Assume
that the lattice K satisfies the condition in the second argument. We further assume that the
minimum norm of vector in non-trivial class of discriminant group of K is less than 4 and all the
vectors (noted by v) of minimum norm larger than 2 satisfy the condition: the vector (0,1, v,1,0)
is reflective i.e. the reflection associated to this vector belongs to O+(T ). In this case, the singular
Fourier coefficients of ϕ0,K are determined by its q−1, q0, q1-terms and correspond to reflective
divisors. Therefore, the quasi pull-back Φ12∣T= Borch(ϕ0,K) is a reflective modular form.

1. When the lattice K take one of the following 8 lattices, we get 2-reflective lattices

5A1 D10 N8 ⊕A1 D8 ⊕A1 D6 ⊕ 2A1

2D4 ⊕A1 E7 ⊕ 2A1 D4 ⊕ 3A1

For the last lattice, we use R = 6D4 and take 3A1 from three different copies of D4.

2. When the lattice K take one of the following 12 lattices, we get reflective lattices

4A2 3D4 2E6 2E7 A8 A9 D9 A5 ⊕D4 D12 2A4 2D5 2D6.

There are a lot of this type of reflective lattices. In the above, we only consider the simplest
case K = K0. By [Sch04, §9], we know that the lattice 2A2(2) is a primitive sublattice of
the Leech lattice and it satisfies our condition. Thus the quasi pull-back gives a reflective
modular form of weight 12 for 2U ⊕ 2A2(−2).
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The fourth argument:

We can also consider the quasi pull-backs of some other reflective modular forms. We have known
that the lattice 2U ⊕ 2E8 ⊕D4 is a reflective lattice. It is easy to check that

2U ⊕ 2E8 ⊕D4 ≅ 2U ⊕E8 ⊕D12

because they have the same discriminant form. For 4 ≤ n ≤ 10, we have Dn ⊕D12−n < D12. In
a similar way, we show that the quasi pull-back of 2U ⊕E8 ⊕D12 into 2U ⊕E8 ⊕Dn will give a
reflective modular form for the lattice 2U ⊕E8 ⊕Dn with 4 ≤ n ≤ 10.

The fifth argument:

This argument relies on the construction of the Niemeier lattice N(R) from the root lattice R.
We will explain the main idea by considering several interesting examples.

(1) Let R = 6D4. We consider its sublattice K = D4 ⊕ 5A1, where every A1 is contained in
a different copy of D4. The singular Fourier coefficients of the weakly holomorphic Jacobi form
ϕ0,K are determined by its q−1, q0, q1-terms. It is clear that the q−1, q0-terms correspond to
2-reflective divisors. We next consider the q1-term. The q1-term is the pull-back of the vectors
of norm 4 in N(6D4). Since the pull-backs of vectors of norm 4 in 6D4 gives either non-singular
Fourier coefficients or singular Fourier coefficients equivalent to that of q0-term, we only need to
consider the pull-backs of vectors of norm 4 in N(6D4) and not in 6D4. This type of vectors
is of the form [i1] ⊕ [i2] ⊕ [i3] ⊕ [i4] ⊕ [i5] ⊕ [i6], here four of the six indices are non-zero. Its
pull-back to D4⊕5A1 only gives the singular Fourier coefficients of type [i]⊕(1

2 ,
1
2 ,

1
2 ,0,0), which

correspond to 2-reflective divisors. Therefore, the function Borch(ϕ0,K) is a 2-reflective modular
form for 2U ⊕D4 ⊕ 5A1.

Similarly, the quasi pull-back on 6A2 < N(6D4) gives a reflective modular form for 2U ⊕6A2.

(2) Let R = 8A3. We consider its sublattice K = 8A1, where every A1 is contained in a
different copy of A3. The singular Fourier coefficients of the weakly holomorphic Jacobi form
ϕ0,K are determined by its q−1, q0, q1-terms. It is obvious that the q−1, q0-terms correspond to
2-reflective divisors. We next consider the q1-term. The q1-term is the pull-back of the vectors
of norm 4 in N(8A3). We only need to consider the pull-back of vectors of norm 4 in N(8A3)

and not in 8A3. This type of vectors of norm 4 is of the form [2] ⊕ [2] ⊕ [2] ⊕ [2] ⊕ 04 or
[2] ⊕ [1] ⊕ [1] ⊕ [1] ⊕ [1] ⊕ 03. Its pull-back to 8A1 only gives the singular Fourier coefficients
of type (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,0,0,0), which correspond to 2-reflective divisors. Therefore, the function

Borch(ϕ0,K) is a 2-reflective modular form for 2U ⊕ 8A1.

(3) Let R = 12A2. We consider its sublattice K = 12A1, where every A1 is contained in a
different copy of A2. The singular Fourier coefficients of the weakly holomorphic Jacobi form ϕ0,K

are determined by its q−1, q0, q1, q2-terms. Firstly, the q−1, q0-terms correspond to 2-reflective
divisors. We next consider the q1 and q2-terms. The q1-term is the pull-back of the vectors of
norm 4 in N(12A2). We only need to consider the pull-back of vectors of norm 4 in N(12A2)

and not in 12A2. This type of vectors of norm 4 is of the form [1]6 ⊕ 06. Its pull-back to 12A1

only gives the singular Fourier coefficients of type (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,0

7) or (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,0

6), which
all correspond to reflective divisors. The q2-term is the pull-back of the vectors of norm 6 in
N(12A2). This type of vectors of norm 6 is of the form [1]9 ⊕ 03. Its pull-back to 12A1 only
gives the singular Fourier coefficients of type (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,0

3), which all correspond
to 2-reflective divisors. Therefore, the function Borch(ϕ0,K) is a reflective modular form for
2U ⊕ 12A1.

Using the idea of pull-backs, it is easy to prove the following result.
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Lemma 2.3.3. Let M be an even lattice of signature of (2, n) and L be an even positive definite
lattice. If M ⊕L(−1) is reflective (resp. 2-reflective), then M is reflective (resp. 2-reflective) too.

As an application of the above lemma, we further construct some reflective modular forms.
We can check

U ⊕U(2)⊕D4 < U ⊕U(2)⊕D4 ⊕D4 ≅ 2U ⊕N8,

which yields that U ⊕U(2)⊕D4 is a 2-reflective lattice. Similarly, we claim that U ⊕U(3)⊕A2

is a reflective lattice because

U ⊕U(3)⊕A2 < U ⊕U(3)⊕A2 ⊕E6 ≅ 2U ⊕ 4A2.

2.3.2 Constructing reflective modular forms from Jacobi forms

There are 4 known reflective modular forms of singular weight for lattices of non-squarefree level

2U ⊕L(−1) ∶ L = A1(4), 2A1(2), A2(3), 4A1. (2.3.3)

They were all known to Gritsenko. We next present their constructions.

1. From [Gri99, GN98b], we know

φ0,4(τ, z) =
ϑ(τ,3z)

ϑ(τ, z)
= ζ±1 + 1 +O(q) ∈ Jw0,A1,4. (2.3.4)

Then the function Borch(φ0,4) is a strongly reflective modular form of weight 1/2 for
O+(2U ⊕ A1(−4)) with divisor coming from reflective vectors of norm -8 and divisor 8.
This modular form can also be constructed as an additive lifting of ϑ(τ, z) (see [GN98b]).

2. First, we have
ϑ(τ, z1)ϑ(τ, z2) ∈ J1,2A1,

1
2
(υ6
η × ν).

By Proposition 1.4.17, we have

φ0,2A1,2(τ, z) = −
[ϑ(τ, z1)ϑ(τ, z2)]∣T

(4)
− (5)

ϑ(τ, z1)ϑ(τ, z2)

= ζ±1
1 + ζ±1

2 + 2 +O(q) ∈ Jw0,2A1,2.

Then the function Borch(φ0,2A1,2) is a strongly reflective modular form of weight 1 for
O+(2U ⊕ 2A1(−2)) with divisor coming from reflective vectors of norm -4 and divisor 4.
Note that the function φ0,2A1,2 can also be constructed in another way

φ0,2A1,2(τ, z) =
ϑ(τ,2z1 + z2)ϑ(τ,2z2 − z1) + ϑ(τ,2z2 + z1)ϑ(τ,2z1 − z2)

ϑ(τ, z1)ϑ(τ, z2)

and we have
Borch(φ0,2A1,2) = Grit(ϑ(τ, z1)ϑ(τ, z2)).

3. Recall that
A∨

2/A2 = {µi ∶ 0 ≤ i ≤ 2}

where µ0 = 0, µ1 = (1
3 ,

1
3 ,−

2
3) and µ2 = (2

3 ,−
1
3 ,−

1
3). The norms of µ1 and µ2 are all 2

3 and
correspond to reflective divisors (In fact, 3µ1 and 3µ2 are reflective vectors in 2U⊕A2(−1)).
We can check

Θ(τ, z1, z2) =
ϑ(τ, z1)ϑ(τ, z1 − z2)ϑ(τ, z2)

η
∈ J1,A2,1(υ

8
η).
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Then we have

φ0,A2,3(τ, z) = −
Θ(τ, z1, z2)∣T

(3)
− (4)

Θ(τ, z1, z2)

= ζ±1
1 + ζ±1

2 + (ζ1ζ
−1
2 )±1 + 2 +O(q) ∈ Jw0,A2,3.

Then the function Borch(φ0,A2,3) is a strongly reflective modular form of weight 1 for
Õ
+
(2U ⊕ A2(−3)) with divisor coming from reflective vectors of norm -18 and divisor 9.

Note that
Borch(φ0,A2,3) = Grit(Θ).

4. We can check

φ0,4A1,1(τ, z) = −
[ϑ(τ, z1)ϑ(τ, z2)ϑ(τ, z3)ϑ(τ, z4)]∣T

(2)
− (3)

ϑ(τ, z1)ϑ(τ, z2)ϑ(τ, z3)ϑ(τ, z4)

= ζ±1
1 + ζ±1

2 + ζ±1
3 + ζ±1

4 + 4 +O(q) ∈ Jw0,4A1,1.

Then the function Borch(φ0,4A1,1) is a strongly reflective modular form of weight 2 for
O+(2U ⊕ 4A1(−1)) with divisor coming from reflective vectors of norm -2 and divisor 2.
Note that

Borch(φ0,4A1,1) = Grit(ϑ(τ, z1)ϑ(τ, z2)ϑ(τ, z3)ϑ(τ, z4)).

We also construct a reflective modular form for the lattice 2U ⊕ 2E8 ⊕A1(2). We recall the
theta function for root lattice E8

ϑE8(τ, z) = 1 + q ∑
r∈E8

r2=2

e2πi(r,z) +O(q2) ∈ J4,E8,1 (2.3.5)

and the Jacobi-Eisenstein series of weight 4 and index 2 introduced in [EZ85, §2]

E4,2(τ, z) = 1 + q(14ζ±2 + 64ζ±1 + 84) +O(q2) ∈ J4,A1,2.

Then the function ϑE8 ⊗ϑE8 ⊗E4,2 gives a holomorphic Jacobi form of weight 12 and index 1 for
2E8 ⊕A1(2) and we have

ϑE8 ⊗ ϑE8 ⊗E4,2

∆
= q−1 + 108 + 14ζ±2 + 64ζ±1 + ∑

v∈2E8

v2=2

e2πi(r,z) +O(q) ∈ Jw0,2E8⊕A1(2),1.

Since the lattice 2E8 ⊕A1(2) satisfies Norm2 condition, the singular Fourier coefficients of the
above Jacobi form are determined only by its q−1-term and q0-term. Therefore, its Borcherds
product gives a reflective modular form of weight 54 for O+(2U ⊕2E8(−1)⊕A1(−2)). Its divisors
coming from reflective vectors of norm −2 and divisor 1 have order one. Its divisors coming from
reflective vectors of norm −4 and divisor 4 have order 78. Its divisors coming from reflective
vectors of norm −4 and divisor 2 have order 14.

2.4 Nonexistence of 2-reflective modular forms

Let M be an even integral lattice of signature (2, n) with n ≥ 3. Following [Ma17], we consider
the decomposition (2.4.1) of the (−2)-Heegner divisor H defined in (2.1.3). Let D(M) =M∨/M
be the discriminant group of M . Let πM ⊂ D(M) denote the subset of elements of order 2 and
norm −1/2. For each µ ∈ πM we abbreviate H(µ,−1/4) by Hµ. We also set

H0 = ⋃
l∈M,(l,l)=−2

div(l)=1

l⊥ ∩D(M)
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to be the principal (-2)-Heegner divisor. Then we have the following decomposition

H =H0 + ∑
µ∈πM

Hµ. (2.4.1)

Next, we assume that the latticeM contains 2U i.e. M = 2U⊕L(−1). In this case, each H∗ is
an Õ

+
(M)-orbit of a single quadratic divisor l⊥ ∩D(M) and it is irreducible. We can write each

element of πM in the form µ = (0, nµ, µ0/2,1,0), where nµ ∈ Z, µ0 ∈ L and 2nµ −
1
4(µ0, µ0) = −

1
2 .

If M admits a 2-reflective modular form F of weight k, then its divisor can be written as

div(F ) = β0H0 + ∑
µ∈πM

βµHµ

= β0H + ∑
µ∈πM

(βµ − β0)Hµ,
(2.4.2)

where β∗ are non-negative integers. By Theorem 1.3.3, there exists a nearly holomorphic vector-
valued modular form f of weight − rank(L)/2 with respect to the Weil representation ρM of
Mp2(Z) on the group ring C[D(M)] with principal part

β0q
−1e0 + ∑

µ∈πM
(βµ − β0)q

−1/4eµ,

such that F is the Borcherds product of f . In view of the isomorphism between vector-valued
modular forms and Jacobi forms (see Theorem 1.4.8), there exists a weakly holomorphic Jacobi
form φL of weight 0 and index 1 for L with singular Fourier coefficients of the form

Sing(φL) = β0 ∑
r∈L

q(r,r)/2−1ζr + ∑
µ∈πM

(βµ − β0) ∑
s∈L+µ0/2

q(s,s)/2−1/4ζs (2.4.3)

where ζ l = e2πi(l,z). Thus, we have

φL(τ, z) = β0q
−1 + β0 ∑

r∈RL
ζr + 2k + ∑

u∈πM
(βµ − β0) ∑

s∈Rµ(L)
ζs +O(q) (2.4.4)

here and subsequently, RL denotes the set of 2-roots in L and

Rµ(L) = {s ∈ L∨ ∶ 2s ∈ RL, s − µ0/2 ∈ L}. (2.4.5)

With the help of equation (2.4.4) and Lemma 1.4.12, we get the following theorem.

Theorem 2.4.1. Let L be a positive-definite even lattice and M = 2U ⊕L(−1). Suppose that F
is a 2-reflective modular form of weight k with divisor of the form (2.4.2). Then the weight k of
F is given by the following formula

k =β0 [12 + ∣RL∣ (
12

rank(L)
−

1

2
)]

+ (
3

rank(L)
−

1

2
) ∑
µ∈πM

(βµ − β0)∣Rµ(L)∣.

(2.4.6)

Remark 2.4.2. From the above theorem, we have

1. If R(L) is empty, then the weight of 2-reflective modular form is 12β0.

2. When rank(L) ≥ 6, there is no 2-reflective modular form with β0 = 0. This fact can also be
proved by Riemann–Roch theorem as the proof of [Sch17, Proposition 6.1].
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3. When rank(L) = 6, the weight of 2-reflective modular form is β0(12 + 3
2 ∣R(L)∣) and the

modular form is not of singular weight.

We next study modular forms with complete 2-divisor (i.e. div(F ) = H), which are the
simplest 2-reflective modular forms.

Theorem 2.4.3. If there exists a modular form with complete 2-divisor for M = 2U ⊕ L(−1),
then either rank(L) ≤ 8, or L is a unimodular lattice of rank 16 or 24. Moreover, the weight of
the corresponding modular form is

k = 12 + ∣RL∣ (
12

rank(L)
−

1

2
) . (2.4.7)

Proof. Firstly, the above formula is a direct result of Theorem 2.4.1. Let F be a modular form
with complete 2-divisor. Then there exists a weakly holomorphic Jacobi form of weight 0 and
index L such that

φ(τ, z) = q−1 + ∑
r∈R(L)

ζr + 2k +O(q)

whose singular Fourier coefficients are (see formula (2.4.3))

Sing(φ) = ∑
n≥−1

∑
l∈L

(l,l)=2n+2

qnζ l,

with Borch(φ) = F . By Theorem 2.2.8, it is known that rank(L) < 24 or L is a unimodular
lattice of rank 24. Let us assume that rank(L) ≤ 23 and let us construct two special Jacobi forms
by using the differential operators introduced in Lemma 1.4.11. For simplicity, we set R = ∣RL∣
and n0 = rank(L).

f2(τ, z) =
24

n0 − 24
H0(φ)(τ, z)

= q−1 + ∑
r∈R(L)

ζr −R +O(q) ∈ Jw.h.2,L,1

f4(τ, z) =
24

n0 − 28
H2(f2)(τ, z)

= q−1 + ∑
r∈R(L)

ζr −
(R + 24)(n0 − 4)

n0 − 28
+O(q) ∈ Jw.h.4,L,1

Let E4 and E6 denote the Eisenstein series on SL2(Z) of weight 4 and 6, respectively. Then we
can check that

g(τ, z) =
n0 − 28

48
[E4(τ)φ(τ, z) − f4(τ, z)]

= R(1 −
14

n0
) + 6(n0 − 26) +O(q) ∈ J4,L,1

and

h(τ, z) = E6(τ)φ(τ, z) −E4(τ)f2(τ, z)

=
24R

n0
− 720 +O(q) ∈ J6,L,1

are holomorphic Jacobi forms of weight 4 and 6, respectively. In fact, the singular Fourier
coefficients are stable under the actions of the differential operators, so the singular Fourier
coefficients of f2 and f4 come from Sing(φ). In order to check g and h are holomorphic Jacobi
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forms, we only need to check that g and h have no singular Fourier coefficient i.e. the singular
part Sing(φ) has been cancelled by the above combinations of φ, f2 and f4.

Since the singular weight of holomorphic Jacobi form of index L is n0

2 , we deduce that g = 0
if n0 > 8 and h = 0 if n0 > 12. By direct calculations, we have

• when R = 0, g ≠ 0 if n0 < 24.

• when R > 0, g ≠ 0 if n0 ≤ 14.

• when n0 ≥ 15, g = 0 and h = 0 if and only if n0 = 16 and R = 480.

When n0 = 16, from h = 0, it follows that the Fourier coefficients of φ satisfy: c(n, l) = 0 if
2n− (l, l) = 0 and l /∈ L. Otherwise, there exists a Fourier coefficient c(n, l) ≠ 0 with 2n− (l, l) = 0
and l /∈ L. Assume that c(n, l) is such Fourier coefficient with the smallest n. Then the coefficient
of qnζ l in E6φ is c(n, l) and the coefficient of qnζ l in E4f2 is −2c(n, l). Thus, the coefficient of
qnζ l in h is not zero and then h ≠ 0, which leads to a contradiction. Therefore, the following
holomorphic Jacobi form of singular weight 8

E8φ −E6f2 = 1728 + ∑
n>0,l∈L∨
2n=(l,l)

a(n, l)qnζ l ∈ J8,L,1

satisfies the same condition: a(n, l) = 0 if 2n − (l, l) = 0 and l /∈ L. We then obtain

E8φ −E6f2 = 1728∑
l∈L
q
(l,l)

2 ζ l

and L has to be unimodular. The proof is completed.

Remark 2.4.4. It is worth pointing out that there exist lattices L which admit a modular form
with complete 2-divisor when 1 ≤ rank(L) ≤ 8 (see Table 2.2). For example, the Igusa cusp form
χ35 is a modular form with complete 2-divisor.

We are going to generalize our method to prove the nonexistence of 2-reflective modular forms
in higher dimensions.

Theorem 2.4.5. Suppose that M = 2U ⊕L(−1) is a 2-reflective lattice satisfying rank(L) ≥ 12.
Then either rank(L) = 17, or L is a unimodular lattice of rank 16 or 24. Furthermore, when
rank(L) = 17, the weight of the corresponding 2-reflective modular form is 75β0, where β0 is the
multiplicity of the divisor H0.

Proof. If M has a 2-reflective modular form F of weight k with divisor of the form (2.4.2),
then there exists a weakly holomorphic Jacobi form φ of weight 0 and index L with singular
Fourier coefficients of the form (2.4.3). Let us assume that rank(L) ≤ 23. We next construct a
holomorphic Jacobi form of weight 6 from φ. We write φ = S1 + d + S2 +⋯, where S1 and S2 are
the first and second terms in (2.4.3), respectively, and d = 2k. It is clear that φ − S1 − S2 does
not have the term with negative hyperbolic norm. We can construct (n0 = rank(L))

f2 =
24

n0 − 24
H0(φ) = S1 + d1 + c1S2 +⋯ ∈ Jw.h.2,L,1,

f4 =
24

n0 − 28
H2(f2) = S1 + d2 + c2S2 +⋯ ∈ Jw.h.4,L,1,

f6 =
24

n0 − 32
H4(f4) = S1 + d3 + c3S2 +⋯ ∈ Jw.h.6,L,1,
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where

d1 =
n0(d − 24β0)

n0 − 24
, c1 =

n0 − 6

n0 − 24
,

d2 =
(n0 − 4)(d1 − 24β0)

n0 − 28
, c2 = c1

n0 − 10

n0 − 28
,

d3 =
(n0 − 8)(d2 − 24β0)

n0 − 32
, c3 = c2

n0 − 14

n0 − 32
.

The function

ϕ6 = (c1 − c3)E6φ + (c3 − 1)E4f2 + (1 − c1)f6 = u +O(q) ∈ J6,L,1

where
u = (d − 504β0)(c1 − c3) + (d1 + 240β0)(c3 − 1) + d3(1 − c1)

is a holomorphic Jacobi form of weight 6 because the potential singular Fourier coefficients S1

and S2 have been cancelled.
In view of the singular weight, ϕ6 = 0 if rank(L) ≥ 13. From Remark 2.4.2, we know that if

F exists then d = 2k ≥ rank(L) and β0 > 0 when rankL ≥ 6. By direct calculations, when n0 = 13
or 14, u ≠ 0, which is impossible.

We next assume that 15 ≤ rank(L) ≤ 23. We construct

g = E4φ − f4 = (d + 240β0) − d2 + (1 − c2)S2 +⋯ ∈ Jw.h.4,L,1.

Since g only has singular Fourier coefficients of the form S2, the minimum possible hyperbolic
norm of its Fourier coefficients is −1

2 . Therefore, η6g is a holomorphic Jacobi form of weight
7 and index L with character, where η is the Dedekind eta function. In view of the singular
weight, we have that η6g = 0 and then g = 0. If S2 = 0, then F is a 2-reflective modular form with
complete 2-divisor, which gives that L is a unimodular lattice of rank 16 by Theorem 2.4.3. If
S2 ≠ 0, then 1− c2 = 0, which gives n0 = 17. By (d+240β0)−d2 = 0 and n0 = 17, we get d = 150β0.

We now consider the case rank(L) = 12. Without loss of generality, we can assume that L is
maximal, namely, L has no any proper even overlattice. By direct calculation, the constant term
of ϕ6 is not zero and we assume it to be 1. The function ϕ6 has singular weight 6. Thus, it is a
C-linear combination of theta-functions for L defined as (1.4.10). Since L is maximal, there is no
γ ∈ L∨ such that γ /∈ L and (γ, γ) = 2. Hence, the q1-term of Fourier expansion of ϕ6 comes only
from the theta-function ΘL

0 . But ϕ6(τ,0) = E6(τ) = 1 − 504q + ..., this leads to a contradiction.
The proof is completed.

Remark 2.4.6. Firstly, there exist 2-reflective lattices when 1 ≤ rank(L) ≤ 8. When rank(L) =
11, we do not know if there exists any 2-reflective lattice. When rank(L) = 9,10,17, there exist
2-reflective lattices, such as L = E8 ⊕A1, E8 ⊕ 2A1, 2E8 ⊕A1 (see §2.3.1).

We now consider the general case, this means thatM does not contain two hyperbolic planes.
For our purpose, we need the follwing lemma proved in [Ma18, Lemma 1.7].

Lemma 2.4.7. Let M be an even lattice of signature (2, n) with n ≥ 8. There exists an even
overlattice M ′ of M containing 2U such that δ(M) = δ(M ′), where δ(M) is the exponent of
M∨/M i.e. the maximal order of elements in M∨/M .

Theorem 2.4.8. Let M be a 2-reflective lattice of signature (2, n) with n ≥ 14. Then n = 19 or
M is isomorphic to the unique even unimodular lattices of signature (2,18) or (2,26).

Proof. The proof is similar to the proof of [Ma17, Proposition 3.1]. LetM be a 2-reflective lattice
of signature (2, n) with n ≥ 14. By the above lemma, there exists an even overlattice M ′ of M
containing 2U . By Lemma 2.1.4, the lattice M ′ is also 2-reflective. We thus complete the proof
by Theorem 2.4.5.
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2.5 Nonexistence of reflective modular forms

In this section we use similar arguments to show the nonexistence of reflective modular forms of
large rank. As an application of our arguments in the previous section, we attempt to classify
reflective modular forms on lattices of prime level and large rank.

Let M = 2U ⊕ L(−1) be an even lattice of prime level p and F be a reflective modular form
of weight k with respect to Õ

+
(M). The divisor of F can be represented as

div(F ) = β0H0 + ∑
γ∈πM,p

βγH(γ,−1/p), (2.5.1)

where πM,p ⊂ D(M) is the subset of elements of norm −2/p. By Theorem 1.3.3, there exists a
nearly holomorphic modular form with principal part

β0q
−1e0 + ∑

γ∈πM,p
βγq

−1/peγ .

Then there exists a weakly holomorphic Jacobi form of weight 0 with singular Fourier coefficients

Sing(ψL) = β0 ∑
r∈L

q(r,r)/2−1ζr + ∑
γ∈πM,p

βγ ∑
s∈L+γ

q(s,s)/2−1/pζs. (2.5.2)

Then the q0-term of ψL can be written as

ψL(τ, z) = β0q
−1 + β0 ∑

r∈RL
ζr + 2k + ∑

γ∈πM,p
βγ ∑

s∈Cγ(L)
ζs +O(q),

where
Cγ(L) = {s ∈ L∨ ∶ (s, s) = 2/p, s − γ ∈ L}. (2.5.3)

Thus, we get a formula related to the weight of the above reflective modular form

k =β0 [12 + ∣RL∣ (
12

rank(L)
−

1

2
)]

+ (
12

p ⋅ rank(L)
−

1

2
) ∑
γ∈πM,p

βγ ∣Cγ(L)∣.

(2.5.4)

It is possible to find a similar formula for the weight of reflective modular forms for general
lattices.

Remark 2.5.1. Let M = 2U ⊕ L(−1) be an even lattice of prime level p and F be a reflective
modular form of weight k for M . From (2.5.4), when rank(L) = 12 and p = 2, then k = β0(12 +
1
2 ∣R(L)∣) so the function F is not of singular weight. When rank(L) = 8 and p = 3, k = β0(12 +
∣R(L)∣) and F is not of singular weight.

By Theorem 2.2.9, when a reflective modular form F exists, we have that either rank(L) ≤ 23
or L is a unimodular lattice of rank 24. We next give a finer classification of reflective modular
forms on lattices of prime level.

Theorem 2.5.2. LetM = 2U⊕L(−1) be an even lattice of prime level p. IfM admits a reflective
modular form of weight k for Õ

+
(M), then we have

1. when p = 2, either rank(L) ≤ 16 or rank(L) = 20 and k = 24β0.

2. when p = 3, either rank(L) ≤ 12 or rank(L) = 18 and k = 48β0.

3. when p ≥ 5, rank(L) ≤ 8 + 24/(p + 1).
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Proof. Similar to the proof of Theorem 2.4.5, there exists a weakly holomorphic Jacobi form
φ of weight 0 and index L with singular Fourier coefficients of the form (2.5.2). Assume that
rank(L) ≤ 23. We write φ = S1 + d + S2 + ⋯, where S1 and S2 are the first and second terms in
(2.5.2), respectively, and d = 2k. We can construct (n0 = rank(L) and a = 24/p)

f2 =
24

n0 − 24
H0(φ) = S1 + d1 + c1S2 +⋯ ∈ Jw.h.2,L,1,

f4 =
24

n0 − 28
H2(f2) = S1 + d2 + c2S2 +⋯ ∈ Jw.h.4,L,1,

f6 =
24

n0 − 32
H4(f4) = S1 + d3 + c3S2 +⋯ ∈ Jw.h.6,L,1,

where

d1 =
n0(d − 24β0)

n0 − 24
, c1 =

n0 − a

n0 − 24
,

d2 =
(n0 − 4)(d1 − 24β0)

n0 − 28
, c2 = c1

n0 − a − 4

n0 − 28
,

d3 =
(n0 − 8)(d2 − 24β0)

n0 − 32
, c3 = c2

n0 − a − 8

n0 − 32
.

We can check that the function

ϕ6 = (c1 − c3)E6φ + (c3 − 1)E4f2 + (1 − c1)f6 = u +O(q) ∈ J6,L,1

has no term of the form S1 or S2 and then it has no singular Fourier coefficient, so it is a
holomorphic Jacobi form of weight 6, where

u = (d − 504β0)(c1 − c3) + (d1 + 240β0)(c3 − 1) + d3(1 − c1).

We also construct a weakly holomorphic Jacobi form of weight 4

g = E4φ − f4 = (d + 240β0) − d2 + (1 − c2)S2 +⋯ ∈ Jw.h.4,L,1.

By Theorem 2.4.3, we have S2 ≠ 0 when n0 > 8. By direct calculations, we get

c2 = 1 ⇐⇒ rank(L) = 14 +
12

p
. (2.5.5)

Therefore, when p = 2, c2 = 1 if and only if n0 = 20, when p = 3, c2 = 1 if and only if n0 = 18, when
p > 3, c2 − 1 ≠ 0. We thus obtain

• when p = 2, if g = 0 then n0 = 20 and d = 48β0;

• when p = 3, if g = 0 then n0 = 18 and d = 96β0;

• when p ≥ 5, g ≠ 0.

Suppose g ≠ 0 and n0 > 8. Then c2 ≠ 1, otherwise g will be a holomorphic Jacobi form of weight
4, which contradicts the singular weight. The weakly holomorphic Jacobi form g corresponds to
a nearly holomorphic vector-valued modular form

F = ∑
γ∈AM

Fγeγ

of weight 4−n0/2. Note that F0(τ) has no term qn with negative n and for any nonzero γ ∈D(M),
the possible term qn with negative n of Fγ is q−1/p. We know from Proposition 1.3.6 that F0 ≠ 0
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because the function ∑σ∈O(D(M)) σ ⋅F is invariant under the orthogonal group O(D(M)) of the
discriminant groupD(M) and it is not zero. In addition, F0 is a nearly holomorphic modular form
of weight 4−n0/2 with respect to Γ0(p) and its expansion at the cusp 0 is a linear combination of
Fγ . As in the proof of [Sch17, Proposition 6.1], the Riemann-Roch theorem applied to F0 gives

−1 ≤ pν0(F0) + ν∞(F0) ≤ (4 −
n0

2
)
p + 1

12
.

This implies

n0 ≤ 8 +
24

p + 1
.

It remains to prove that M is not reflective if n0 = 14 and p = 3. But in this case, u ≠ 0 and
then ϕ6 ≠ 0, which gives a contradiction. The proof is completed.

Note that when rank(L) = 16 and p = 2, we have u ≡ 0. Therefore, our argument cannot
determine the weight of the corresponding reflective modular form.

Remark 2.5.3. From the oddity formula, the rank of any lattice of prime level is even.

1. The rank of an even positive-definite lattice of level 2 is known to be divisible by 4. Thus,
by Theorem 2.5.2, if 2U ⊕ L(−1) is a reflective lattice of level 2, then rank(L) must be 4,
8, 12, 16 or 20. We note that there exist reflective lattices of such ranks. When L = D4,
2D4, E8 ⊕D4, E8 ⊕ 2D4 or 2E8 ⊕D4, 2U ⊕L(−1) admits a reflective modular form.

2. If L is an even positive-definite lattice of level 3 and of rank n with determinant det(L) =
∣L∨/L∣ = 3r, then either r ∈ {0, n} and 8∣n, or 0 < r < n and 2r ≡ n mod 4. Theorem 2.5.2
says that 2U ⊕L(−1) is a reflective lattice of level 3 only if rank(L) = 2,4,6,8,10,12 or 18.
Reflective lattices of such ranks exist. When L = A2, 2A2, 3A2, 4A2, E8 ⊕A2, E8 ⊕ 2A2 or
2E8 ⊕A2, the lattice 2U ⊕L(−1) admits a reflective modular form.

We next extend the above classification results to the general case. The following lemma
introduced in [Ma18, Corollary 3.2] is very useful for our purpose.

Lemma 2.5.4. Let M be a lattice of signature (2, n) with n ≥ 11. There exists a lattice M1 on
M ⊗Q such that O+(M) ⊂ O+(M1) and that M1 is a scaling of an even lattice containing 2U .

We remark that the above lattice M1 is usually not an overlattice of M and it is constructed
as a sublattice of an overlattice ofM . We next use the above lemma to extend Ma’s result [Ma17,
Proposition 3.2] to the general case.

Theorem 2.5.5.

1. There is no reflective lattice of signature (2, n) with n > 26.

2. Let M be an even lattice of signature (2,26). If it admits a reflective modular form which
can be constructed as a Borcherds product, then it is isomorphic to the unique even uni-
modular lattice of signature (2,26).

Proof. We first prove the statement (1). By contradiction, assume that there is a reflective lattice
M of signature (2, n) with n > 26 and we denote the corresponding reflective modular form by
F . By Lemma 2.5.4, there exists a lattice M1 on M ⊗Q such that O+(M) ⊂ O+(M1) and that
M1 is a scaling of an even lattice M2 containing 2U . Here, we have a natural isomorphism

D(M) ≅ D(M1) ≅ D(M2),

where the first comes from the equality M ⊗Q =M1 ⊗Q and the second from the identification
M1 = M2 as Z-modules. Moreover, the inclusion O+(M) ⊂ O+(M1) ≅ O+(M2) is compatible

61



with this isomorphism and the isomorphism preserves the reflective divisors. Thus, F is a re-
flective modular form for M1 and then also a reflective modular form for M2, which contradicts
Proposition 2.2.9.

We next prove the statement (2). The proof is similar to Proposition 2.2.9. Assume that
the corresponding reflective modular form F is a Borcherds product of a nearly holomorphic
modular form f . Then ∆f is a holomorphic modular form of weight 0 and hence must be an
Mp2(Z)-invariant vector in C[D(M)]. Then we get M = II2,26 because ∆f does not transform
correctly under the matrix S when ∣D(M)∣ ≠ 1. This completes the proof.

Remark 2.5.6. We do not know if there is any other reflective lattice of signature (2,26)
except the scalings of II2,26. By the second statement in Theorem 2.5.5 and Theorem 1.3.3, such
reflective lattice is not of the form U ⊕ U(m) ⊕ L(−1). This question is related to the general
question if all reflective modular forms come from Borcherds products.

We now extend Theorem 2.5.2 to the general case.

Theorem 2.5.7. Let M be a reflective lattice of signature (2, n) and of prime level p.

1. If p = 2 and n > 18 and n ≠ 22, then M is isomorphic to II2,26(2).

2. If p = 3 and n > 14 and n ≠ 20, then M is isomorphic to II2,18(3) or II2,26(3).

3. If p > 3 and n > 10 + 24/(p + 1), then M is isomorphic to II2,18(p) or II2,26(p).

Proof. Let F be a reflective modular form for M . In this case, we have n ≥ 11. Assume that
the determinant of M is pa, where 1 ≤ a ≤ n + 2 is an integer. Since M is of prime level p, the
discriminant group of M is isomorphic to (Z/pZ)a and the minimum number of generators of
this group is l(M) = a.

If n > a+ 2, by Lemma 1.1.3, the lattice M can be represented as 2U ⊕L. Thus, the function
F is also a reflective modular form for 2U ⊕L. We then prove this theorem by Theorem 2.5.2.

If n ≤ a + 2, then a ≥ 9 because n ≥ 11. Since M is of prime level p, the lattice M∨(p), which
is a scaling of the dual lattice of M , is even and of determinant p2+n−a. Moreover, if M∨(p) is
not unimodular, then it is of level p. In view of the natural isomorphism

O+(M) ≅ O+(M∨) ≅ O+(M∨(p)),

the function F is a reflective modular form for M∨(p). Since n > (2 + n − a) + 2, we can prove
the case as the previous case. If M∨(p) is unimodular, then M = (M∨(p))∨(p) is a scaling of an
even unimodular lattice. Thus, the proof is completed.

Remark 2.5.8. Theorem 2.2.4 gives bounds on the signature for non-symmetric reflective mod-
ular forms. But the bounds do not hold in the symmetric case. However, the above result gives
bounds in the symmetric case. It is also a supplement to Ditmann’s result (see Lemma 2.2.6).

Theorem 2.5.9. There is no any reflective lattice of signature (2, n) with 23 ≤ n ≤ 25.

Proof. Let M be an even lattice of signature (2, n) with 23 ≤ n ≤ 25. Firstly, we assume that
M contains 2U . By contradiction, assume that M is reflective. Then, there exists a weakly
holomorphic Jacobi form φ of weight 0 and we can construct a weakly holomorphic Jacobi form
f4 of weight 4 from φ as in the proof of Theorem 2.5.2. We define g = E4φ − f4. Then g has
no singular Fourier coefficient of hyperbolic norm −2. From (2.5.5), we get g ≠ 0. Moreover,
the minimum possible hyperbolic norm of the Fourier coefficients of g is −1. Then η12g is a
holomorphic Jacobi form of weight 10 with character, which leads to a contradiction due to the
singular weight. The general case can be proved as the proof of Theorem 2.5.5.
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Proposition 2.5.10. If M = 2U ⊕ L(−1) is a reflective lattice of signature (2,22) and F is a
reflective modular form for Õ

+
(M), then the weight of F is 24β0 and the divisor of F is given by

div(F ) = β0H +∑
v

βvH(v,−1/2), (2.5.6)

where the sum takes over all vectors of norm −1 and order 2 in the discriminant group of M , β0,
βv are natural numbers.

Proof. Under the notations of the proof of Theorem 2.5.9, if F has other type of divisors, then
the Jacobi form g of weight 4 will have singular Fourier coefficients of hyperbolic norm > −1.
Thus η12g is a holomorphic Jacobi form of singular weight 10, which contradicts the fact that the
hyperbolic norm of non-zero Fourier coefficients of any holomorphic Jacobi form of singular weight
is always zero. This also forces that the constant term of g is zero, which yields k = 24β0.

Corollary 2.5.11. Assume that 2U ⊕ L(−1) is a reflective lattice of signature (2,22). Let RL
denote the set of 2-roots in L. We set

R1(L) = {v ∈ L∨ ∶ (v, v) = 1, 2v ∈ L}.

Then ∣RL∣ ≥ 120 and the set RL ∪R1(L) generates the vector space L⊗R.

Proof. Suppose that F is a reflective modular form for the lattice. Then F has weight 24β0 and
its divisor is of the form (2.5.6). We denote the associated weakly holomorphic Jacobi form of
weight 0 and index L by φ. We define R = ∣RL∣ and R1 = ∑v∈R1(L) βv. By (1.4.17), we have

1

24
(β0(R + 48) +R1) − β0 =

1

40
(2β0R +R1),

which yields

R = 120 +
2

β0
R1.

Then we have R ≥ 120. The second assertion follows from (1.4.18).

Remark 2.5.12. When 1 ≤ rank(L) ≤ 20 and rank(L) ≠ 19, there exist reflective lattices
2U ⊕L(−1), such as An for 1 ≤ n ≤ 7, D8, E8⊕A1, E8⊕A2, E8⊕A2⊕A1, E8⊕D4, E8⊕D4⊕A1,
E8 ⊕D4 ⊕A2, E8 ⊕D7, E8 ⊕ 2D4, 2E8 ⊕A1, 2E8 ⊕A2, 2E8 ⊕D4. But we do not know if there
exists reflective lattice 2U ⊕L(−1) with rank(L) = 19.

2.6 Classification of 2-reflective modular forms

2.6.1 More refined results

In this subsection, we prove the following main result. We use the notations in §2.4.

Theorem 2.6.1. Let M = 2U ⊕ L(−1) and F be a 2-reflective modular form of weight k with
divisor of the form (2.4.2) for M . Let R(L) be the root sublattice generated by 2-roots of L. If
R(L) is empty, then k = 12β0. If R(L) is not empty, then R(L) and L have the same rank,
which is denoted by n. Furthermore, the lattice R(L) satisfies one of the following conditions

(a) R(L) = nA1. In this case, all βµ satisfying Rµ(L) ≠ ∅ are the same.

(b) The lattice A1 is not an irreducible component of R(L). In this case, all the irreducible
components of R(L) have the same Coxeter numbers, which is denoted by h. In addition,
the sets Rµ(L) are all empty and the weight k is given by

k = β0 (12 + 12h −
1

2
nh) .
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(c) R(L) =mA1⊕R, where 1 ≤m ≤ n− 2 and the lattice A1 is not an irreducible component of
R. In this case, all the irreducible components of R have the same Coxeter numbers, which
is denoted by h. All βµ satisfying Rµ(L) ≠ ∅ are the same, which is denoted by β1. We
have

β1 = (2h − 3)β0,

k = β0 [(12 −
n + 3m

2
)h + 12 + 3m] .

Moreover, the lattice L can be represented as mA1 ⊕L0, where L0 is an overlattice of R.

Proof. First, if R(L) = ∅ then we derive from (2.4.6) that k = 12β0.
We next assume that R(L) ≠ ∅. Let R(L) = ⊕Ri be the decomposition of irreducible com-

ponents i.e. Ri are irreducible root lattices. We write z = ∑i zi ∈ L ⊗ C, where zi ∈ Ri ⊗ C. For
irreducible root lattices, only the lattice A1 satisfies the property that there is a root v such that
v/2 is in the dual lattice. By (1.4.18) and (2.4.4), we conclude that R(L) and L have the same
rank. Otherwise, there exists a vector in L ⊗ C orthogonal to R(L) ⊗ C, which contradicts the
identity (1.4.18) because the number C is not equal to 0. In a similar way, we can prove the
statement (a).

We next prove the statement (b). Since there is no Ri equal to A1, the sets Rµ(L) are all
empty. By Lemma 1.4.12 and (2.4.4), we have

∑
i
∑
r∈Ri
r2=2

β0(r, zi)
2 =

2

n
∑
i

β0hi rank(Ri)∑
i

(zi, zi),

where hi are the Coxeter numbers of Ri. On the other hand, by Proposition 1.1.4, we have

∑
r∈Ri
r2=2

(r, zi)
2 = 2hi(zi, zi).

Thus, all the Coxeter numbers hi are the same. The weight formula is obtained by (2.4.6).
We now prove the statement (c). Firstly, all non-empty Rµ(L) are contained in the com-

ponents mA1. We write R = ⊕Rj , where Rj are irreducible root lattices. For 1 ≤ t ≤ m, if the
dual lattice of the t-th copy of A1 is contained in L∨, then the corresponding Rµ(L) have two
elements and we note the corresponding βµ by βt. If not, we set βt = β0. We also denote the
ellptic parameter associated to the t-th copy of A1 by zt. By Lemma 1.4.12 and (2.4.4), we have

∑
j
∑
r∈Rj
r2=2

β0(r, zj)
2 +∑

t

2((βt − β0) + 4β0)z
2
t = 2C

⎡
⎢
⎢
⎢
⎢
⎣
∑
j

(zj , zj) +∑
t

2z2t

⎤
⎥
⎥
⎥
⎥
⎦

.

In the above identity, we use the standard model of A1: A1 = Zα with α2 = 2. Let hj denote the
Coxeter number of Rj . Then we have

C = β0hj =
1

2
βt +

3

2
β0.

Therefore, all hj are the same and the dual lattice of every copy of A1 is contained in L∨. It
follows that β1 = (2h − 3)β0. Combining the formula β1 = (2h − 3)β0 and (2.4.6) together, we
deduce the weight formula. We set L0 = {v ∈ L ∶ (v, x) = 0,∀x ∈mA1}. Then we have

mA1 ⊕L0 < L < L∨ <mA∨
1 ⊕L

∨
0 .

For any l ∈ L, we can write l = l1 + l2 with l1 ∈ mA∨
1 and l2 ∈ L∨0 . Since mA∨

1 < L∨, we have
(l,mA∨

1) ∈ Z. Thus (l1,mA
∨
1) ∈ Z, which yields l1 ∈ mA1. Therefore, l2 = l − l1 ∈ L and then

l2 ∈ L0 due to (l2,mA1) = 0. We thus prove L =mA1 ⊕L0.
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As the classification of even unimodular lattices, we define the following classes of 2-reflective
lattices.

Definition 2.6.2. A 2-reflective lattice M = 2U ⊕ L(−1) is called Leech type if R(L) = ∅.
The lattice M is called Niemeier type if it satisfies the condition in statement (b) and called
quasi-Niemeier type if it satisfies the condition in statement (c).

In a similar way, we can prove the following necessary condition for a lattice to be reflective.
This condition would be useful to classify reflective lattices containing two hyperbolic planes.

Proposition 2.6.3. If the lattice 2U ⊕ L(−1) is reflective, then either RL is empty, or RL

generates the space L⊗R, where R is the root system of L

RL = {r ∈ L ∶ r is primitive, σr ∈ O(L)}.

In Theorem 2.4.5, we have shown that if M = 2U ⊕L(−1) is a 2-reflective lattice of signature
(2,19) then the weight of the corresponding 2-reflective modular form is 75β0. We next use the
above theorem to prove the following refined classification.

Theorem 2.6.4. If M is a 2-reflective lattice of signature (2,19), then it is isomorphic to the
lattice 2U ⊕ 2E8(−1)⊕A1(−1).

Proof. We first prove the assertion under the assumption that M contains 2U i.e. M = 2U ⊕

L(−1). It is clear that R(L) is non-empty because the weight is 75β0. In addition, we have
R(L) ≠ 17A1, otherwise the weight of the associated 2-reflective modular form is

k ≤ β0 (12 + 2 ⋅ 17(
12

17
−

1

2
)) − 2 ⋅ 17β0 (

3

17
−

1

2
) = 30β0.

If M is of quasi-Niemeier type, then we have

k = β0 [(12 −
17 + 3m

2
)h + 12 + 3m] = 75β0,

which follows that h(7 − 3m)/2 + 3m = 63. Since 1 ≤ m ≤ 15, the only solution is m = 1 and
h = 30. By Table 1.1, R(L) = 2E8 ⊕A1 or D16 ⊕A1. But the lattices D16 and E8 ⊕D8 are in
the same genus. Thus, 2U ⊕D16 ⊕ A1 ≅ 2U ⊕ E8 ⊕D8 ⊕ A1. If L = D16 ⊕ A1, then the lattice
2U⊕E8⊕D8⊕A1 is 2-reflective, which gives a contradiction by Theorem 2.6.1 (c). The only non-
trivial even overlattice of D16 is the unimodular lattice D+

16. Since 2U⊕D+
16⊕A1 ≅ 2U⊕2E8⊕A1,

we prove the theorem in this case.
If M is of Niemeier type, then we have

k = β0 (12 + 12h − 17h/2) = 75β0,

which implies h = 18. By Table 1.1, we have R(L) = A17 or R(L) = D10 ⊕E7. If L = D10 ⊕E7,
then the lattice 2U ⊕E8 ⊕E7 ⊕ 2A1 is 2-reflective, as the lattices D10 and E8 ⊕ 2A1 are in the
same genus. This leads to a contradiction by the previous case. If L = A17, the 2-reflective
vector v with div(v) = 2 is represented as (0,2, [9],1,0) which appears in the q2-term of the
corresponding Jacobi form φ0,A17 of weight 0. In addition, the q1-term of φ0,A17 has no singular
Fourier coefficient of hyperbolic norm −1/2. On the other hand, the Niemeier lattice N(A17⊕E7)

is generated by the isotropic subgroup

G = {[0]⊕ [0], [3]⊕ [1], [6]⊕ [0], [9]⊕ [1], [12]⊕ [0], [15]⊕ [1]}

over A17⊕E7. Thus, the pull-back of ϕ0,N(A17⊕E7) on A17 will give a weakly holomorphic Jacobi
form ψ0,A17 of weight 0 which has the same q−1 and q0-terms as φ0,A17 and its singular Fourier

65



coefficients in q1-term are represented by [3] and [6]. The reason why these two Jacobi forms
have the same q−1 and q0-terms is that they have the same type of 2-reflective divisors and the
corresponding coefficients are determined by the formulas in Lemma 1.4.12. We will often use
this argument later. Thus, φ ∶= (φ0,A17 − ψ0,A17)/∆ is a weak Jacobi form of weight −12 and
index 1 for A17. We can assume that it is invariant under the orthogonal group O(A17) by
considering its symmetriction. The q0-term of φ contains five O(A17)-orbits i.e. [0], [1], [2],
[3], [6]. By [Wir92], the space of weak Jacobi forms of index 1 for A17 invariant under O(A17)

is a free module generated by ten Jacobi forms of weights 0, −2, −4, ..., −18 over the ring of
SL2(Z) modular forms. The ten generators were constructed in [Ber99]. Note that there are ten
independent O(A17)-orbits appearing in q0-terms of these generators, i.e. [i] for 0 ≤ i ≤ 9. There
are only three independent weak Jacobi forms of weight −12. But the q0-term of φ has only five
orbits. By direct calculations, we can show that the q0-term of a weak Jacobi form of weight −12
contains at least eight orbits, which leads to a contradiction.

We complete the proof of the particular case by the fact that if L1 is a non-trivial even
overlattice of R(L) = A17 or D10 ⊕ E7 then 2U ⊕ L1 is of determinant 2 and isomorphic to
2U ⊕ 2E8 ⊕A1.

We now consider the remaining case that M does not contain 2U . By Lemma 2.4.7, there
exists an even overlattice M ′ of M containing 2U . By Lemma 2.1.4, M ′ is also 2-reflective and
then it is isomorphic to 2U ⊕ 2E8(−1)⊕A1(−1). We claim that the order of the group M ′/M is
not a prime, otherwise the discriminant group ofM will be 2p2 andM will contain 2U by Lemma
1.1.3. Thus, there exists an even lattice M1 such that M ⊂M1 ⊂M

′ and M ′/M1 is a nontrivial
cyclic group. Then M1 contains 2U by Lemma 1.1.3. It follows that M1 is 2-reflective but not
isomorphic to 2U ⊕ 2E8(−1)⊕A1(−1), which contradicts the previous case. This completes the
proof.

2.6.2 Classification of 2-reflective lattices of Niemeier type

In this subsection we classify 2-reflective lattices of Niemeier type. We first consider the case of
L = R(L) and then consider their overlattices. We discuss case by case. Let M = 2U ⊕ L(−1).
By Theorem 2.4.5 and Theorem 2.6.4, if M is 2-reflective, then either M is isomorphic to the
even unimodular lattices of signature (2,26) and (2,18) or 2U ⊕ 2E8(−1)⊕A1(−1), or we have
rank(L) ≤ 11. Therefore, we only need to consider the case of rank(L) ≤ 11.

(1) h=3: The unique irreducible root lattice of Coxeter number 3 is A2. By §2.3.1, the
lattice M is 2-reflective if L = A2, 2A2, 3A2. The lattice M is not 2-reflective for L =mA2 with
m ≥ 4. Otherwise, since 4A2 < E6 ⊕ A2, the lattice 2U ⊕ E6 ⊕ A2 is also 2-reflective, which is
impossible because E6 and A2 have different Coxeter numbers. Then we prove this claim by
Lemma 2.3.3.

(2) h=4: The unique irreducible root lattice of Coxeter number 4 is A3. By §2.3.1, the
lattice M is 2-reflective if L = A3, 2A3. The lattice M is not 2-reflective for L =mA3 with m ≥ 3
because we observe from their extended Coxeter-Dynkin diagrams that 3A3 <D6 ⊕A3.

(3) h=5: The unique irreducible root lattice of Coxeter number 5 is A4. By §2.3.1, the lattice
M is 2-reflective if L = A4. We claim that the lattice M is not 2-reflective for L = mA4 with
m ≥ 2. Otherwise, the lattice 2U(5) ⊕ 2A∨

4(5) ≅ U ⊕ U(5) ⊕E8(5) will has a reflective modular
form with 10-reflective divisors because (2U ⊕ 2A4)

∨(5) = 2U(5) ⊕ 2A∨
4(5) and the 2-reflective

modular form for 2U ⊕ 2A4 can be viewed as a 10-reflective modular form for 2U(5) ⊕ 2A∨
4(5).

By Theorem 1.3.3, the corresponding 10-reflective modular form should be a Borcherds product.
This contradicts Lemma 2.2.5 because 10 > 2 + 24/(5 + 1).

(4) h=6: The irreducible root lattices of Coxeter number 6 are A5 and D4. By §2.3.1, the
lattice M is 2-reflective if L = A5, D4, 2D4. We claim that the lattice M is not 2-reflective for
L = 2A5 and L = A5 ⊕D4.
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Firstly, there is no 2-reflective vector of norm 1/2 (this type of vectors should have order 2)
in the discriminant group of 2A5. If there is a 2-reflective modular form for 2U ⊕ 2A5 then it is
a modular form with complete 2-divisor. But we have proved in Theorem 2.4.3 that if M has a
modular form with complete 2-divisor then rank(L) ≤ 8. Hence we get a contradiction.

Finally, we have known in §2.3.1 that the quasi pull-back of A5 ⊕D4 < N(4A5 ⊕D4) gives
a reflective modular form. As in the last part of the proof of Theorem 2.6.4, we can check that
this modular form has additional reflective divisor H([2]⊕ [2],−1/6) given by the pull-backs of
the vectors of norm 4 of type [5] ⊕ [2] ⊕ [1] ⊕ [0] ⊕ [2]. We denote the corresponding Jacobi
form of weight 0 by φ1. Suppose that the lattice 2U ⊕A5 ⊕D4 is 2-reflective and we denote the
corresponding Jacobi form of weight 0 by φ2. Then φ1 and φ2 have the same q−1 and q0 terms.
Moreover, φ ∶= φ1 − φ2 is a weakly holomorphic Jacobi form of weight 0 whose singular Fourier
coefficients appear in its q1-term are represented by [3]⊕ [2] and [2]⊕ [2]. Thus, the minimum
hyperbolic norm of singular Fourier coefficients of φ is −1/2. Thus η6φ is a holomorphic Jacobi
form of weight 3 with a character. In view of the singular weight, this leads to a contradiction.

(5) h=7: The unique irreducible root lattice of Coxeter number 7 is A6. The lattice M is
2-reflective if L = A6.

(6) h=8: The irreducible root lattices of Coxeter number 8 are A7 and D5. By §2.3.1, the
latticeM is 2-reflective if L = A7, D5. We claim that the latticeM is not 2-reflective for L = 2D5.
This claim can be proved as in the case of 2A5.

(7) h=9: The unique irreducible root lattice of Coxeter number 9 is A8. The lattice M is
not 2-reflective if L = A8. We can prove this claim in a similar way as the case of A5 ⊕D4.

(8) h=10: The irreducible root lattices of Coxeter number 10 are A9 and D6. By §2.3.1, the
lattice M is 2-reflective if L =D6. We can prove that the lattice M is not 2-reflective for L = A9

in a similar way as the case of A8 and A5 ⊕D4.
(9) h=11: The unique irreducible root lattice of Coxeter number 11 is A10 (level 11). The

lattice M is not 2-reflective if L = A10. Since A10 is of prime level 11, if 2U ⊕ A10(−1) is 2-
reflective then the corresponding 2-reflective modular form is a modular form with complete
2-divisor. This leads to a contradiction.

(10) h=12: The irreducible root lattices of Coxeter number 12 are A11, E6 and D7. The
lattice M is 2-reflective if L = D7, E6. The lattice M is not 2-reflective for L = A11, which can
be proved as the case of 2A5.

(11) h is larger than 12: In view of rank(L) ≤ 11, the rest cases are L =Dm with 8 ≤m ≤ 11,
E7, E8. The lattice M is 2-reflective if L =D8, D10, E7, E8. The lattice M is not 2-reflective for
L =D9, D11, which can be proved as the case of 2A5.

(12) The case of overlattices: Let L1 be a non-trivial even overlattice of R(L) whose root
sublattice generated by 2-roots is R(L). In this case, the minimum norm of vectors in nontrivial
class of L1/R(L) is an even integer larger than 2. It is easy to show that there is no such R(L).

By the discussions above, we have thus proved the following theorem.

Theorem 2.6.5. Let M = 2U ⊕ L(−1) be a 2-reflective lattice of Niemeier type. Then L can
only take one of the following 21 lattices up to genus

3E8 2E8 E8 E7 E6 A2 2A2 3A2 A3 2A3 A4

A5 A6 A7 D4 2D4 D5 D6 D7 D8 D10.

2.6.3 Classification of 2-reflective lattices of quasi-Niemeier type

In this subsection we classify 2-reflective lattices of quasi-Niemeier type. We use the notations
in Theorem 2.6.1. Let R(L) = mA1 ⊕ R and L = mA1 ⊕ L0. We assume rank(L) ≤ 11. Let
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M = 2U ⊕L(−1). By Lemma 2.3.3, if M is 2-reflective then M = 2U ⊕L0(−1)⊕ (m − 1)A1(−1)
is also 2-reflective. Therefore, we only need to consider the root lattices formulated in Theorem
2.6.5 for L0. We prove the following theorem.

Theorem 2.6.6. Let M = 2U ⊕ L(−1) be a 2-reflective lattice of quasi-Niemeier type. Then L
is in one of the genus of the following 21 lattices

A1 ⊕ {E8,E7,E6,A2,2A2,A3,A4,A5,D4,2D4,D5,D6,D8}

2A1 ⊕ {E8,A2,A3,D4,D6}

D4 ⊕ {3A1,4A1,5A1}.

Note that 3A1⊕D6 and A1⊕2D4, 2A1⊕E7 and A1⊕D8 have the isomorphic discriminant forms
respectively.

Proof. By §2.3.1, when L takes one of the above lattices, the lattice M is 2-reflective. We next
prove that M is not 2-reflective for other lattices.

(1) Since 4A1 < D4 and 6A1 < D6, we have m ≤ 5. In addition, when m = 4 or 5, L0 = D4 or
A5. But when L0 = A5, 4A1 ⊕A5 < A5 ⊕D4, which is impossible because 2U ⊕A5 ⊕D4 is not
2-reflective. Thus when m ≥ 4, the lattice L0 can only take D4.

(2) The lattice L is not equal to 2D4 ⊕mA1 for m ≥ 2 because 2D4 ⊕ 2A1 <D4 ⊕D6.
(3) The lattice L is not equal to E8 ⊕ 3A1. If 2U ⊕E8 ⊕ 3A1 is 2-reflective, then we have by

Theorem 2.6.1 that β1 = 57 and k = 81β0. By Theorem 1.4.19, the q0-term of the corresponding
Jacobi form of weight 0 will define a holomorphic Jacobi form for E8 ⊕ 3A1 as a theta block (see
(1.4.19)). Thus the function corresponding to any copy of A1

η(162−8)/3 (
ϑ(τ,2z)

η(τ)
)(

ϑ(τ, z)

η(τ)
)

56

is a holomorphic Jacobi form of index 30 for A1. We calculate its hyperbolic norm of the first
Fourier coefficient

4 ×
1

24
(

154

3
− 57 + 57 × 3) × 30 − 292 = −14.333... < 0,

which contradicts the definition of holomorphic Jacobi forms.
SinceD10 and E8⊕2A1 are in the same genus, the latticeM is not 2-reflective if L =D10⊕mA1

with m ≥ 1.
(4) L ≠D8⊕mA1 for m ≥ 2. It is because that D8⊕2A1 and D4⊕D6 are in the same genus.

Furthermore, L ≠ E7 ⊕ 3A1 because U ⊕E7 ⊕ 3A1 ≅ U ⊕D8 ⊕ 2A1.
(5) L ≠ A1⊕3A2. Otherwise, there exists a 2-reflective modular form for 2U⊕A1⊕3A2 and we

note the corresponding Jacobi form of weight 0 by φ. On the other hand, the pull-back of ϕ0,N(R)
on A1 ⊕ 3A2 < N(12A2) will also give a Jacobi form of weight 0 which is noted by φ1. Using
the idea in this section, we conclude that φ and φ1 have the same q0-term and the difference
ψ ∶= φ − φ1 will give a Jacobi form of weight 0 without q−1 and q0-terms for A1 ⊕ 3A2. This
function is not zero and its singular Fourier coefficients are represented by [1]3 ⊕ (1

2) which has
hyperbolic norm −1/2 and does not correspond to 2-reflective divisor. Thus η6ψ is a holomorphic
Jacobi form of weight 3 with a character for A1 ⊕ 3A2, which contradicts the singular weight.

L ≠ 3A1 ⊕ A3. Suppose that the lattice 2U ⊕ 3A1 ⊕ A3 is 2-reflective and we denote the
corresponding Jacobi form of weight 0 by φ. The pull-back of ϕ0,N(R) on 3A1 ⊕ A3 < N(8A3)

gives a Jacobi form of weight 0 (noted by φ1). The functions φ and φ1 have the same q0-term and
their difference f ∶= φ−φ1 = O(q) is a Jacobi form of weight 0 for 3A1 ⊕A3. This function is not
zero and its singular Fourier coefficients are represented by v1 ∶= (1

2 ,
1
2 ,

1
2)⊕ [1] (with hyperbolic
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norm −1/4) and v2 ∶= (1
2 ,

1
2 ,

1
2) ⊕ [2] (with hyperbolic norm −1/2). Hence η6f is a holomorphic

Jacobi form of singular weight 3 with a character for 3A1 ⊕ A3. This contradicts the singular
weight because there is a Fourier coefficient with non-zero hyperbolic norm i.e. q1/4ζ(v1,z) with
hyperbolic norm 1/4.

All other cases can be proved in a similar way. Since the pull-back of ϕ0,N(R) has additional
singular Fourier coefficients in its q1-term which does not correspond to 2-reflective divisor, we
can construct a holomorphic Jacobi form of low weight with a character, which will contradicts
the singular weight. The proof is completed.

2.6.4 Classification of 2-reflective lattices of other type

In this subsection, we discuss the final case i.e. R(L) = nA1. Firstly, if β0 = 0, the only possible
case is L = nA1. In this case the weight k is equal to (6−n)β1. In view of the singular weight, we
have k ≥ nβ1/2 since η2k/n(ϑ(τ, z)/η)β1 is a holomorphic Jacobi form. Therefore we get 1 ≤ n ≤ 4.
The corresponding 2-reflective modular forms can be constructed as the quasi pull-backs of the
2-reflective modular form of singular weight 2 for 2U ⊕ 4A1 (see the case 4 in §2.3.2). In view of
Theorem 2.6.1, we thus prove the following.

Theorem 2.6.7. If M = 2U ⊕ L(−1) has a 2-reflective modular form with β0 = 0 in its zero
divisor, then L = nA1 with 1 ≤ n ≤ 4.

By §2.3.1, when L = nA1 with 1 ≤ n ≤ 8, the lattice M is 2-reflective. For the overlattices, the
lattices 2U ⊕N8 and 2U ⊕N8 ⊕A1 are 2-reflective. The lattice 2U ⊕N8 ⊕ 2A1 is not 2-reflective
because

2A1 ⊕N8 < 2A1 ⊕ 2D4 <D4 ⊕D6.

To complete the classification, we show that the lattice 2U⊕9A1 is not 2-reflective. Conversely,
suppose that there exists a 2-reflective modular form for 2U ⊕ 9A1. From §2.3.1, the lattice
2U ⊕ 8A1 is 2-reflective and the 2-reflective modular form is constructed as a quasi pull-back on
8A1 < N(8A3). For this 2-reflective modular form, we have β1 = 5. We claim that this function is
the unique 2-reflective modular form for 2U ⊕8A1 up to constant. Otherwise, by considering the
difference of the two 2-reflective modular forms, we will get a weak Jacobi form of weight 0 for
8A1 whose minimal hyperbolic norm of singular Fourier coefficients is −1/2. Thus, its product
with η6 will give a holomorphic Jacobi form of weight 3 for 8A1, which is impossible due to the
singular weight.

The quasi pull-back of the 2-reflective modular form for 2U ⊕ 9A1 will be the 2-reflective
modular form for 2U ⊕ 8A1. Therefore, in the case of 9A1 we have β1 = 5β0. Thus the weight is
given by

k = β0 (12 + 18(
12

9
−

1

2
)) + (

3

9
−

1

2
) × 18 × 4β0 = 15β0.

The q0-term of the corresponding Jacobi form of weight 0 defines a holomorphic Jacobi form for
9A1. Then the part related to each copy of A1

η30/9(τ)(
ϑ(τ,2z)

η(τ)
)(

ϑ(τ, z)

η(τ)
)

4

is a holomorphic Jacobi form of index 4 for A1. But its hyperbolic norm of the first Fourier
coefficient is

4 ×
1

24
(

30

9
+ 2 × 5) × 4 − 32 = −

1

9
< 0,

which gives a contradiction.
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2.6.5 Final classification

Combining Theorem 2.4.8, Theorem 2.6.1, Theorem 2.6.4, Theorem 2.6.5, Theorem 2.6.6 and
§2.6.4 together, we prove the following two classification results.

Theorem 2.6.8. Let M be a 2-reflective lattice of signature (2, n) with n ≥ 14. Then it is
isomorphic to II2,18, or 2U ⊕ 2E8(−1)⊕A1(−1), or II2,26.

Theorem 2.6.9. There are only three types of 2-reflective lattices containing two hyperbolic
planes:

(a) II2,26;

(b) 2U ⊕L(−1) ∶ every lattice in the genus of L has no 2-root. In this case, the corresponding
2-reflective modular form has a Weyl vector of norm zero and has weight 12β0, where β0 is
the multiplicity of the principal Heegner divisor H0;

(c) 2U ⊕L(−1) ∶ every lattice in the genus of L has 2-roots and the 2-roots generate a sublattice
of the same rank. In this case, L is in the genus of one of the following 50 lattices

n L

3 A1

4 2A1, A2

5 3A1, A1 ⊕A2, A3

6 4A1, 2A1 ⊕A2, A1 ⊕A3, A4, D4, 2A2

7 5A1, 2A1 ⊕A3, A1 ⊕ 2A2, A1 ⊕A4, A1 ⊕D4, A5, D5

8 6A1, 2A1 ⊕D4, A1 ⊕A5, A1 ⊕D5, E6, 3A2, 2A3, A6, D6

9 7A1, 3A1 ⊕D4, A1 ⊕D6, A1 ⊕E6, E7, A7, D7

10 8A1, 4A1 ⊕D4, 2A1 ⊕D6, A1 ⊕E7, E8, 2D4, D8, N8

11 5A1 ⊕D4, A1 ⊕ 2D4, A1 ⊕D8, A1 ⊕E8

12 2A1 ⊕E8

18 2E8

19 2E8 ⊕A1

Note that 5A1⊕D4 and A1⊕N8, A1⊕2D4 and 3A1⊕D6, A1⊕D8 and 2A1⊕E7, 2A1⊕E8

and D10 are in the same genus, respectively. Here, N8 ≅ D∨
8 (2) is the Nikulin lattice.

Moreover, every lattice has a 2-reflective modular form with a positive norm Weyl vector.
Thus, every associated Lorentzian lattice U ⊕L(−1) is hyperbolic 2-reflective.

The following theorem gives a classification of modular forms with complete 2-divisor.

Theorem 2.6.10. Assume that M = 2U ⊕ L(−1) has a modular form with complete 2-divisor
and the set of 2-roots of L is non-empty. Then L is in the genus of 3E8 or one of the lattices
formulated in Table 2.2.

Proof. Firstly, from the formula β1 = (2h−3)β0 in Theorem 2.6.1, we see that there is no modular
form with complete 2-divisor for 2-reflective lattice of quasi-Niemeier type. For the lattice of
type mA1, there exists a 2-reflective modular form for 2U ⊕5A1 whose 2-reflective divisor of type
(0,1, (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2),1,0) has multiplicity 9. This means that the lattices 2U ⊕mA1 with m ≥ 5

do not have a modular form with complete 2-divisor. We next construct the 2-reflective modular
form for 2U ⊕ 5A1. Let 8A1 = ⊕

8
i=1Zαi with α2

i = 2. The Nikulin’s lattice is N8 = ⟨8A1, h⟩, where
h = 1

2 ∑
8
i=1 αi. It is known that there is a modular form with complete 2-divisor for 2U ⊕ N8

(see §2.3.1). Thus there is a weakly holomorphic Jacobi form φ0,N8 of weight 0 for N8 with the
singular Fourier coefficients

Sing(φ0,N8) = q
−1 + 56 + ∑

n∈N
∑
r∈N8

r2=2n+2

qne2πi(z,r)
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We consider the pull-back of 5A1 < N8

φ0,5A1(τ, z5) = q
−1 + 62 +

5

∑
i=1

ζ±2
i +O(q),

where z5 = ∑5
i=1 ziαi and ζi = e

2πizi . We need to determine the singular Fourier coefficients in
q1-term. This type of Fourier coefficients is of the form 1

2 ∑
5
i=1 αi and it comes from the pull-back

of vectors of norm 4 in N8 of type 1
2 ∑

5
i=1 αi±

1
2α6±

1
2α7±

1
2α8. Thus the coefficient of qζ1ζ2ζ3ζ4ζ5

is 8. The Borcherds product of φ0,5A1 gives the claimed 2-reflective modular form.

Note that there are in fact two different 2-reflective modular forms for 2U ⊕5A1. The second
one can be constructed as the quasi pull-back of Φ12 on 5A1 < N(8A3) (see §2.3.1)

Remark that there are lattices not of type 2U ⊕L which have a modular form with complete
2-divisor, such as the lattices U(2)⊕ ⟨−2⟩⊕ (k + 1)⟨2⟩ with 1 ≤ k ≤ 7 (see [GN18, Theorem 6.1]).

Proposition 2.6.11. If M is a maximal lattice of signature (2,10) having a modular form with
complete 2-divisor, then it is isomorphic to II2,10.

Proof. It is a refinement of the proof of Theorem 2.4.3. By [Ma17, Proposition 3.1], the lattice
M can be written as M = 2U ⊕ L(−1). Thus, there exists a weakly holomorphic Jacobi form of
weight 0 and index L. As the proof of Theorem 2.4.3, we can construct a holomorphic Jacobi
form of weight 4 and index L, denoted by g. It is easy to check that the constant term of g is
not zero and we assume it to be 1. The function g has singular weight 4. Thus, it is a C-linear
combination of theta-functions for L defined as (1.4.10). Since L is maximal, there is no γ ∈ L∨

such that γ /∈ L and (γ, γ) = 2. Hence, the q1-term of Fourier expansion of g comes only from the
theta-function ΘL

0 . In view of g(τ,0) = E4(τ) = 1 + 240q + ..., the number of 2-roots in L is 240.
By Theorem 2.6.1, the Coxeter number of L is 30, which forces that L is isomorphic to E8. The
proof is completed.

The following theorem gives a classification of 2-reflective modular forms of singular weight.

Theorem 2.6.12. Assume that M = 2U ⊕ L(−1) has a 2-reflective modular form of singular
weight. Then L is in the genus of 3E8 or 4A1.

Proof. This result is a direct consequence of Theorem 2.6.9 and our weight formula.

We close this section with two remarks.

Remark 2.6.13. Theorem 2.6.8 holds for meromorphic 2-reflective modular forms. Firstly,
from its proof, we see that Theorem 2.6.1 is still true for meromorphic 2-reflective modular
forms. Secondly, in the proof of Theorem 2.4.5, we only need to make minor correction for the
case of rank(L) = 12,13,14. In these cases, we need to show that the constant u of holomorphic
Jacobi form φ6 is not zero. This can be done using Theorem 2.6.1.

Remark 2.6.14. For any 2-reflective lattice of type 2U⊕L(−1) with rank(L) > 6, the correspond-
ing 2-reflective modular form is unique up to a constant. Indeed, if there are two independent
2-reflective modular forms, then there will exist a weakly holomorphic Jacobi form ψ of weight
0 and index L without q−1-term. Then η6ψ will be a holomorphic Jacobi form of weight 3 with
a character, which contradicts the singular weight.

Similarly, for any reflective lattice of type 2U ⊕L(−1) with rank(L) > 12, the corresponding
reflective modular form is unique up to a constant.
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Remark 2.6.15. Similar to Theorem 2.6.9, replacing 2-roots with root system RL (see Propo-
sition 2.6.3), we find that there are also exactly three types of reflective lattices containing 2U .
But II2,26 is not the unique reflective lattice of type (a). In fact, the lattice

U ⊕Coxeter-Todd lattice ≅ U ⊕ 6A2 ≅ U ⊕E6 ⊕E
∨
6 (3)

is also a reflective lattice of type (a). Besides, the reflective lattice of type (c) may have no a
reflective modular form with positive norm Weyl vector, for example, the lattice 2U ⊕A∨

6(7) has
a unique reflective modular form and this modular form has singular weight 3 (see [GW19a]).
Thus, the case of reflective is different from the case of 2-reflective. We remark that every lattice
having a reflective modular form of singular weight is of type (c).

2.6.6 Automorphic correction of 2-reflective hyperbolic lattices

An even lattice S of signature (1, n) is called hyperbolic 2-reflective if the subgroup generated
by 2-reflections is of finite index in the orthogonal group of S, i.e. W (2) = ⟨σr ∶ r ∈ S, r

2 = −2⟩ <
O(S) is of finite index. The lattice S is called hyperbolic reflective if the subgroup generated
by all reflections is of finite index in O(S). Hyperbolic reflective lattices are closely related to
reflective modular forms. In [Bor98, Theorem 12.1], Borcherds proved that if the lattice U ⊕ S
has a reflective (resp. 2-reflective) modular form with a Weyl vector of positive norm then S is
hyperbolic reflective (resp. 2-reflective).

Hyperbolic 2-reflective lattices are of a special interest because of its close connection with
the theory of K3-surfaces. The classification of such lattices is now available thanks to the work
of Nikulin and Vinberg (see [Nik81] for n ≥ 4, [Nik84] for n = 2, [Vin07] for n = 3, and a survey
[Bel16]). Table 2.3 gives the number of hyperbolic 2-reflective lattices. The models of all these
lattices can be found in [GN18, §3.2]. For rank(S) = 10, we need to add the lattice U ⊕D4⊕4A1

to the table in [GN18, §3.2].

Table 2.3: Hyperbolic 2-reflective lattices

n + 1 3 4 5 6 7 8 9 10 11 12 13 14 15, ...,19 ≥ 20

Number of lattices 26 14 9 10 9 12 10 9 4 4 3 3 1 0

In [Bor00], Borcherds suggested that interesting hyperbolic reflective lattices should be asso-
ciated to reflective modular forms. In view of this suggestion, Gritsenko and Nikulin considered
the following automorphic correction of hyperbolic 2-reflective lattices in [GN18].

Definition 2.6.16. Let S be a hyperbolic 2-reflective lattice. If there exists a positive integer
m such that U(m)⊕ S has a 2-reflective modular form, then we say that S has an automorphic
correction.

By means of our classification results in this section, we prove the following.

Theorem 2.6.17. Let S be a hyperbolic 2-reflective lattice of signature (1, n) with n ≥ 5. If S is
one of the following 18 lattices

U ⊕E8 ⊕E7 U ⊕E8 ⊕D6 U ⊕E8 ⊕D4 ⊕A1 U ⊕E8 ⊕D4 U ⊕D8 ⊕D4

U ⊕E8 ⊕ 4A1 U ⊕E8 ⊕ 3A1 U ⊕D8 ⊕ 3A1 U ⊕E8 ⊕A3 U ⊕D8 ⊕ 2A1

U ⊕ 2D4 ⊕ 2A1 U ⊕E8 ⊕A2 U ⊕E6 ⊕A2 U ⊕D4 ⊕A3 U ⊕D5 ⊕A2

U ⊕D4 ⊕A2 U ⊕A4 ⊕A2 U ⊕A3 ⊕A2
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then it has no automorphic correction. If S is one of the other 51 lattices, it has at least one
automorphic correction.

Proof. If U(m) ⊕ S is 2-reflective, then U ⊕ S is also 2-reflective. We then prove the result
by Theorem 2.6.1 (b) and (c). The automorphic corrections of S can be found in §2.3.1 and
[GN18].

For 2 ≤ n ≤ 4, there are a lot of hyperbolic 2-reflective lattices not of type U ⊕ L(−1). Our
argument does not work well in this case.

Remark 2.6.18. It is possible to use the classification of hyperbolic 2-reflective lattices to prove
Theorem 2.6.9. The Weyl vector of a Borcherds product is given by (A, B⃗,C) in Theorem 1.4.19.
For a 2-reflective modular form for the lattice of type 2U ⊕mA1⊕L0 with m ≥ 0 and L0 ≠ ∅ (see
notations in Theorem 2.6.1), we have

(A, B⃗,C) = (h + 1,∑ρi +
h − 1

2
∑αj , h) ,

where ρi is the Weyl vector of the irreducible components of the root sublattice of L0 and αj are
the positive roots of mA1. We thus calculate the norm of the Weyl vector as

2AC − (B⃗, B⃗) =
h(h + 1)

12
(24 − n − 5m +

6m(3h − 1)

h(h + 1)
) .

If the Weyl vector has positive norm, then the lattice U ⊕mA1 ⊕ L0 is hyperbolic 2-reflective.
Remark that all lattices in Theorem 2.6.9 except II2,26 have a 2-reflective modular form with
a Weyl vector of positive norm. Thus all the corresponding Lorentzian lattices are hyperbolic
2-reflective.

Furthermore, we can show that for almost all lattices determined by Theorem 2.6.1 the norm
of Weyl vectors are positive. For example, when m = 0 and n < 24, we have 2AC − (B⃗, B⃗) =
h(h+1)

12 (24 − n) > 0. Thus they are all hyperbolic 2-reflective and we may use the classification of
hyperbolic 2-reflective lattices to classify 2-reflective lattices.

Remark 2.6.19. Let L be a primitive sublattice of a Niemeier lattice N(R). If the orthogonal
complement of L on N(R) has 2-roots, then every reflective modular form for 2U ⊕ L(−1)
constructed as the quasi pull-back of Φ12 is a cusp form (see Theorem 2.3.1) and then has a Weyl
vector of positive norm, which yields that the corresponding Lorentzian lattice is hyperbolic
reflective.

Note that the sublattices 6A2 < N(6D4) and 12A1 < N(12A2) do not satisfy the above
assumption. By direct calculations, the Weyl vectors of the corresponding reflective modular
forms have zero norm.

It is now easy to see that the lattice U ⊕L(−1) are hyperbolic reflective for some L in §2.3.1,
such as L = 2E8⊕D4, 2E8⊕2A1, 2E8⊕A1(2), E8⊕D9, E8⊕2D4, E8⊕D7, 2E7, E8⊕D4⊕A1(2),
11A1, 5A2, A5 ⊕D4, D5 ⊕A2, and so on.
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2.7 Application: moduli space of K3 surfaces

As a first application, we consider the family of lattices

Tn = U ⊕U ⊕E8(−1)⊕E8(−1)⊕ ⟨−2n⟩ (2.7.1)

where n ∈ N. The modular variety Õ
+
(Tn)/D(Tn) is the moduli space of polarized K3 surfaces

of degree 2n. The subset
Discr = ⋃

l∈Tn
(l,l)=−2

l⊥ ∩D(Tn) (2.7.2)

is the discriminant of this moduli space. Nikulin [Nik96] asked the question whether the dis-
criminant is equal to the set of zeros of certain automorphic form. This question is equivalent
to whether Tn is 2-reflective. Nikulin showed that for any N there exists n > N such that Tn
is not 2-reflective. Gritsenko and Nikulin [GN02] proved that the lattice Tn is not 2-reflective
if n > (32

3 +
√

128 + 8N)
2
, where N is the integer such that any even integer larger than N can

be represented as the sum of the squares of eight different positive integers. Finally, Looijenga
[Loo03] proved that Tn is not 2-reflective if n ≥ 2. Now this result is immediately by Theorem
2.6.1 because the set of 2-roots in 2E8 ⊕ ⟨2n⟩ does not span the whole space R17 when n ≥ 2.
Moreover, Theorem 2.6.4 gives a generalization of this result.

We next use the arguments developed in this chapter to prove the following theorem.

Theorem 2.7.1. The lattice Tn is reflective if and only if n = 1, 2.

Proof. We have known from §2.3.1 that T1 and T2 are reflective. We next suppose that n ≥ 3
and Tn is reflective. Then there exists a weakly holomorphic Jacobi form of weight 0 and index
1 for 2E8 ⊕ ⟨2n⟩ with first Fourier coefficients of the form

φ(τ, z) = c0q
−1 + c0 ∑

r∈2E8

r2=2

e2πi(z,r) + c1ζ
± 1
n + c2ζ

± 1
2n + 2k +O(q),

where c0, c1 ∈ N, c2 ∈ Z satisfying c1 + c2 ≥ 0, ζ±
1
n = exp(2πi(z, 1

nα)), ζ
± 1

2n = exp(2πi(z, 1
2nα)),

α is the basis of the lattice ⟨2n⟩ with α2 = 2n. The reason we have c1 + c2 ≥ 0 is that it is the
multiplicity of the Heegner divisor H( 1

2nα,−
1

4n). By Lemma 1.4.12, we get

60nc0 = 4c1 + c2,

k + c1 + c2 = 132c0.

We can assume c0 = 1. The q0-term of φ defines a holomorphic Jacobi form for 2E8 ⊕ ⟨2n⟩ as a
theta block. In particular, the part related to ⟨2n⟩

η2k−16(τ)(
ϑ(τ,2z)

η(τ)
)

c1

(
ϑ(τ, z)

η(τ)
)

c2

is a holomorphic Jacobi form of index 30n for A1. Thus, the hyperbolic norm of its first Fourier
coefficient should be non-negative. We calculate it as

4 ×
2k − 16 + 2c1 + 2c2

24
× 30n − (

2c1 + c2

2
)

2

=1240n − (
4c1 + c2

6
+
c1 + c2

3
)

2

≤1240n − 100n2,
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which implies that 1240n ≥ 100n2 i.e. n ≤ 12. The last inequality follows from c1 + c2 ≥ 0.
If φ has no singular Fourier coefficient of hyperbolic norm −1, then as in §2.4 and §2.5, by

using the differential operators to kill the term q−1 (consider a linear combination of E4φ and
H2(H0(φ))), we can construct a non-zero weak Jacobi form φ4 of weight 4 whose hyperbolic
norms of singular Fourier coefficients are > −1, more precisely ≥ −2/3 (see the description of
reflective vectors in §2.1). Then η8φ4 is a holomorphic Jacobi form of weight 8 with a character
for 2E8 ⊕ ⟨2n⟩, which contradicts the singular weight.

Thus φ must have singular Fourier coefficients of hyperbolic norm −1. When n ≤ 12, the
singular Fourier coefficients of φ are determined by q−1, q0, q1 and q2-terms. Since the singular
Fourier coefficients of φ correspond to reflective divisors, the singular Fourier coefficients of
hyperbolic norm −1 are represented by 1

2α with α2

4 = 1(mod 2) because the order must be 2. The
only possible case is n = 6 or 10.

In the case n = 6, the possible singular Fourier coefficients of φ are: q−1, ζ±1/6, ζ±1/12 and
qζ±1/2 with hyperbolic norms −2, −1/3, −1/12 and −1, respectively. Similarly, by using the
differential operators to kill the terms q−1 and qζ±1/2 (consider a linear combination of E6φ,
E4H0(φ) and H4(H2(H0(φ)))), we can construct a non-zero weak Jacobi form φ6 of weight 6
with only singular Fourier coefficients of types ζ±1/6 and ζ±1/12. Then η4φ6 gives a holomorphic
Jacobi form of weight 8 for 2E8 ⊕ ⟨12⟩, which contradicts the singular weight. Therefore T6 is
not reflective.

We can prove the case n = 10 in a similar way. The proof is completed.

2.8 Application: classification of dd-modular forms

Our arguments in the previous sections are also applicable to some other questions. In this section
we use similar arguments to classify the modular forms with the simplest reflective divisors, i.e.
the dd-modular forms defined in [CG11].

Let nA1 denote the lattice of n copies of A1 = ⟨2⟩, n ∈ N. Let {e1, ..., en} denote the standard
basis of Rn with standard scalar product (⋅, ⋅). We choose the following model for the lattice
nA1(m):

(⟨e1, ..., en⟩Z, 2m(⋅, ⋅)) (2.8.1)

and set zn = ∑ni=1 ziei ∈ nA1 ⊗C, ζi = e2πizi , for 1 ≤ i ≤ n. We define

Γn,m = O+(2U ⊕ nA1(−m)) (2.8.2)

and the definition of dd-modular forms is as follows.

Definition 2.8.1. A holomorphic modular form with respect to Γn,m is called a dd-modular
form if it vanishes exactly along the Γn,m-orbit of the diagonal {zn = 0}. The Γn,m-orbit of the
diagonal {zn = 0}, denoted by Γn,m{zn = 0}, is called the diagonal divisor.

It is well-known that the Igusa form ∆5 which is the product of the ten even theta constants
vanishes precisely along the diagonal divisor {z = 0}. Therefore, the dd-modular form is a natural
generalization of ∆5. Gritsenko and Hulek [GH99] proved that the dd-modular form exists for
the lattice A1(m) if and only if 1 ≤m ≤ 4. Cléry and Gritsenko [CG11] developed the arguments
in [GH99] and gave the full classification of the dd-modular forms with respect to the Hecke
subgroups of the Siegel paramodular groups. But their approach is hard to generalize to higher
dimensions. Since dd-modular forms are crucial in determining the structure of the fixed space of
modular forms and have applications in physics, as an important application of our arguments,
we prove the following classification results for all dd-modular forms for lattices of the shape
nA1.
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Theorem 2.8.2. The dd-modular form exists if and only if the pair (n,m) takes one of the eight
values

(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (3,1), (4,1).

Proof. Suppose that Fc is a modular form of weight k with respect to Γn,m with the divi-
sor c ⋅ Γn,m{zn = 0}, where c is the multiplicity of the diagonal divisor and it is a positive
integer. The diagonal divisor Γn,m{zn = 0} is the union of the primitive Heegner divisors
P(±ei/(2m),−1/(4m)), 1 ≤ i ≤ n, where the primitive Heegner divisor of discriminant (µ, d)
is defined as

P(µ, d) = ⋃
M+µ∋l primitive
(l,l)=2d

l⊥ ∩D(M).

It is clear that we have
P (µ, y) =H (µ, y) −∑

d>y
xdH(λd, d),

where xd are integers and λd ∈ M∨ (we refer to [BM17, Lemma 4.2] for an explicit formula).
For arbitrary Heegner divisor H(λ, d) with λ = (0, n1, λ0, n2,0) ∈ AM , the principal part of the
corresponding nearly holomorphic modular form of weight − rank(L)/2 with respect to the Weil
representation ρM of Mp2(Z) is qdeλ. Hence the singular Fourier coefficients of the corresponding
weakly holomorphic Jacobi form of weight 0 are represented as

∑
r∈L+λ0

q(r,r)/2+de2πi(r,z).

Since {±ei/(2m) ∶ 1 ≤ i ≤ n} is the set of vectors in nA1(m)∨ with the minimum norm 1/(2m) in
nA1(m)∨/nA1(m), through the previous explanations, there exists a weak Jacobi form fnA1,m

of weight 0 and index nA1(m) satisfying

fnA1,m = c ⋅ ∑
1≤i≤n

ζ±1
i + 2k +O(q)

such that Fc is the Borcherds product of fnA1,m. We next apply Lemma 1.4.12 to our case.
In this case, c(n, `) = 0 for n < 0, rank(L) = n. For each term cζi or cζ−1

i , the corresponding
` = ± 1

2mei, c(0, `)(`, `) = c ⋅ 2m ⋅ 1
4m2 = c

2m . Therefore, we get

m(2nc + 2k) = 12c,

then nm ≤ 5. It is not hard to show that a weak Jacobi form for nA1(m) has integral Fourier
coefficients if its q0-term is integral when nm ≤ 5.

When m ≤ 4, 2k is integral if c = 1. Hence the existence of Fc is equivalent to the existence
of F1. In view of k ≥ n/2, then the triplet (m,n, k) can only take one of the eight values

(1,1,5), (1,2,4), (1,3,3), (1,4,2), (2,1,2), (2,2,1), (3,1,1), (4,1,
1

2
).

When m = 5, we only need to consider the case of c = 5, and we obtain the unique solution
(5,1,1). But the unique weak Jacobi form of weight 0 and index 5 for A1 is ψ

(1)
0,5 = 5ζ±1+2+q(−ζ5+

⋯) (see [Gri99, formula (1.12)]). The corresponding Borcherds product is not holomorphic, that
is, Fc does not exist in the case. We have thus proved the theorem.

Remark 2.8.3. Similarly, we can define dd-modular forms with respect to the lattices An(m)

or Dn(m). Using the same methodology, we can easily classify these dd-modular forms. In fact,
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dd-modular forms with respect to the lattices L(m), where L = An, n ≥ 2 or L = Dn, n ≥ 4, exist
if and only if the pair (L,m) takes one of the following fifteen values

(A2,1) (A3,1) (A4,1) (A5,1) (A6,1) (A7,1) (A2,2) (A2,3)

(A3,2) (D4,1) (D5,1) (D6,1) (D7,1) (D8,1) (D4,2).

Note that all dd-modular forms in Theorem 2.8.2 and in the above list do exist and can be found
in [CG11, Gri10, GN98b, GN18].

2.9 Open questions

In this section, we would like to formulate some interesting questions related to our work.

1. Are there 2-reflective lattices of signature (2,13)? (see Remark 2.4.6)

By Theorem 2.6.9, there is no 2-reflective lattice of signature (2,13) which can be repre-
sented as 2U ⊕L(−1) such that L has 2-roots. If M = 2U ⊕L(−1) is a 2-reflective lattices
of signature (2,13), then every lattice in the genus of L has no 2-root. It is very possible
that such L does not exist. This suggests us that there might be no 2-reflective lattice of
signature (2,13).

2. Are there reflective lattices of signature (2,21)? (see Remark 2.5.12)

By [Ess96], there is no hyperbolic reflective lattice of signature (1,20). In view of the
relation between reflective modular forms and hyperbolic reflective lattices, we conjecture
that the above question has a negative answer.

3. LetM = 2U⊕L(−1) be a reflective lattice of signature (2,22). Is L in the genus of 2E8⊕D4?

By [Ess96], U ⊕ 2E8 ⊕D4 is the unique maximal hyperbolic reflective lattice of signature
(1,21). Proposition 2.5.10 and [Ess96] indicates that the answer may be positive.

4. Classify all 2-reflective lattices of type 2U ⊕L(−1) satisfying that every lattice in the genus
of L has no 2-root.

This type of lattices is hard to classify using the Jacobi forms approach. The classification
is related to the question: “Classify even positive-definite lattices satisfying that every lattice
in the genus has no 2-root”. It is possible that such lattices of large rank (≥ 9) do not exist.

Corresponding to Theorem 2.6.10, we conjecture that if the lattice 2U⊕L(−1) has a modular
form with complete 2-divisor and L has no 2-root then L is a primitive sublattice of the
Leech lattice satisfying the Norm2 condition.

5. Classify all reflective modular forms on lattices of prime level.

This question is a continuation of Scheithauer’s work [Sch06, Sch17], Dittmann’s result
(see Lemma 2.2.6) and our Theorem 2.5.7. By Lemma 2.2.6 and Theorem 2.5.7, it is easy
to prove that 2U ⊕ 2E8 ⊕D4 and 2U(2) ⊕ 2E8(2) ⊕D4 are the only reflective lattices of
level 2 and signature (22,2) because other lattices can be written as U ⊕ U(2) ⊕ L. In
addition, 2U ⊕ 2E8 ⊕ A2, 2U(3) ⊕ 2E8(3) ⊕ A2, II18,2(3), II26,2(3) are the only reflective
lattices of level 3 and signature (n,2) with n ≥ 15. Using Remark 2.2.7 and known reflective
modular forms, we can prove that all lattices of level 2 and signature (2, n) with n ≤ 18 are
reflective, and all lattices of level 3 and signature (2, n) with n ≤ 14 are reflective. By means
of the similar Jacobi forms approach, it is possible to prove the conjecture that there is no
reflective lattice of prime level p when p > 23 except the scalings of unimodular lattices.
We have proved this when p ≡ 3 mod 4. We hope to complete the final classification in the
near future.
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6. Are there any other reflective modular forms of signature (2,26) except the scalings of
II2,26?

This question is related to the general question if all modular forms whose divisors are linear
combinations of rational quadratic divisors can be constructed as Borcherds products of
modular forms for the Weil representation. In general, not all such modular forms are
Borcherds products in the rigorous sense. For example, the lattice II2,26(2) is reflective
but the corresponding reflective modular form (i.e. Φ12) is not a Borcherds product of any
modular form for the Weil representation associated to the discriminant form of II2,26(2).
Therefore, it seems that we should ask if any such modular forms come from Borcherds
products. More precisely, if F is a modular form for a lattice M of signature (2, n) with
n > 2 whose divisor is a linear combination of rational quadratic divisors, then is there a
lattice M ′ such that M ′ ⊗ Q = M ⊗ Q, F can be viewed as a modular form for M ′ and
F is a Borcherds product of a modular form for the Weil representation associated to the
discriminant form of M ′ ?

7. Are Borcherds products of singular weight reflective?

This question was mentioned in [Sch17]. At present, all known Borcherds products of
singular weight are reflective except some pull-backs. For example, the modular form Φ12

for II2,26 = 2U ⊕ 3E8 is a Borcherds product of

ϑ3E8(τ, z)

∆(τ)
= q−1 + 24 + ∑

v∈3E8

v2=2

e2πi(v,z) +O(q) ∈ Jw.h.0,3E8,1.

It is of singular weight and reflective. We consider the pull-back of ϑ3E8

∆ on the lattice
3D8 < 3E8, which gives a Borcherds product of singular weight. By Theorem 2.5.5, it is
not reflective. Therefore, we suggest formulating the following conjecture

Conjecture 2.9.1. Let F be a Borcherds product of singular weight for a lattice M of
signature (2, n) with n > 2. Then there exists an even lattice M ′ such that M ′⊗Q =M ⊗Q
and F can be viewed as a reflective modular form for M ′.

The first step towards this conjecture is due to Scheithauer. It is known that Φ12 is
the unique reflective modular form of singular weight for unimodular lattice. In [Sch17,
Theorem 4.5], Scheithauer proved that Φ12 is the unique Borcherds product of singular
weight for unimodular lattice. It means that the above conjecture is true for unimodular
lattices. Besides, in [DHS15, OS18] the authors gave a classification of Borcherds products
of singular weight on simple lattices. All Borcherds products of singular weight in their
papers are reflective, which aslo supports the conjecture.
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Chapter 3

Weyl invariant E8 Jacoi forms

3.1 Background: Weyl invariant Jacobi forms

In this section we define the Weyl invariant Jacobi forms and recall Wirthmüller’s structure
theorem. Assume that R is an irreducible root system of rank r. Then R is one of the following
types (see [Bou60])

An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 2), Dn(n ≥ 3), E6, E7, E8, G2, F4.

Let L(R) be the root lattice generated by R. When L(R) is an odd lattice, we equip L(R) with
the new bilinear form 2(⋅, ⋅) rescaled by 2. We denote the normalized bilinear form of L(R) by
⟨⋅, ⋅⟩. In what follows, let L(R)∨ denote the dual lattice of L(R) and W (R) denote the Weyl
group of R. As L(R) are now even positive-definite lattices, we can defineW (R)-invariant Jacobi
forms with respect to L(R) in the following way.

Definition 3.1.1. Let ϕ ∶ H × (L(R)⊗C)→ C be a holomorphic function and k ∈ Z, t ∈ N. If ϕ
satisfies the following properties

• Weyl invariance:
ϕ(τ, σ(z)) = ϕ(τ, z), σ ∈W (R), (3.1.1)

• Quasi-periodicity:

ϕ(τ, z + xτ + y) = exp (−tπi[⟨x,x⟩τ + 2⟨x, z⟩])ϕ(τ, z), x, y ∈ L(R), (3.1.2)

• Modularity:

ϕ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k exp(tπi

c⟨z, z⟩

cτ + d
)ϕ(τ, z), (

a b
c d

) ∈ SL2(Z), (3.1.3)

• ϕ(τ, z) admits a Fourier expansion of the form

ϕ(τ, z) = ∑
n∈N

∑
`∈L(R)∨

f(n, `)e2πi(nτ+⟨`,z⟩), (3.1.4)

then ϕ is called aW (R)-invariant weak Jacobi form of weight k and index t. If ϕ further satisfies
the condition

f(n, `) ≠ 0Ô⇒ 2nt − ⟨`, `⟩ ≥ 0

then ϕ is called a W (R)-invariant holomorphic Jacobi form. If ϕ further satisfies the stronger
condition

f(n, `) ≠ 0Ô⇒ 2nt − ⟨`, `⟩ > 0

79



then ϕ is called a W (R)-invariant Jacobi cusp form. We denote by

J
w,W (R)
k,L(R),t ⊋ J

W (R)
k,L(R),t ⊋ J

cusp,W (R)
k,L(R),t

the vector spaces of W (R)-invariant weak Jacobi forms, holomorphic Jacobi forms and Jacobi
cusp forms of weight k and index t.

We next introduce many notations about root systems following [Bou60]. The dual root
system of R is defined as

R∨ = {r∨ ∶ r ∈ R}, (3.1.5)

where r∨ = 2
(r,r)r is the coroot of r. The weight lattice of R is defined as

Λ(R) = {v ∈ R⊗Q ∶ (r∨, v) ∈ Z, ∀ r ∈ R} . (3.1.6)

Let α̃ denote the highest root ofR∨. In 1992, Wirthmüller proved the following structure theorem.

Theorem 3.1.2 (see Theorem 3.6 in [Wir92]). If R is not of type E8, then the bigraded ring
of W (R)-invariant weak Jacobi forms over the ring of SL2(Z) modular forms is the polynomial
algebra in r + 1 basic W (R)-invariant weak Jacobi forms of weight −k(j) and index m(j)

ϕ−k(j),m(j)(τ, z), j = 0,1, ..., r.

Apart from k(0) = 0 and m(0) = 1, the indices m(j) are the coefficients of α̃∨ written as a linear
combination of the simple roots of R. The integers k(j) are the degrees of the generators of the
ring of W (R)-invariant polynomials and also the exponents of the Weyl group W (R) increased
by 1.

We formulate the weights and indices of these generators in Table 3.1. For a lattice L, we
write O(L) for the integral orthogonal group of L. We have A3 ≅ D3. Since C2 is isomorphic
to B2 via scaling by

√
2 and a 45 degree rotation, the spaces of Jacobi forms for them are

isomorphic. Hence we only consider Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4 in Table 3.1. Note
that W (Cn)/W (Dn) = Z/2Z and W (Cn) = O(Dn) if n ≠ 4. The generators for root systems of
types An, Bn and D4 were constructed in [Ber99]. The generators for root systems E6 and E7

can be found in [Sak17b, Sat98].

Table 3.1: Weights and indices of the generators of Weyl invariant weak Jacobi forms

R L(R) W (R) (k(j),m(j))

An An W (An) (0,1), (j,1) ∶ 2 ≤ j ≤ n + 1

Bn nA1 O(nA1) (2j,1) ∶ 0 ≤ j ≤ n

Cn Dn W (Cn) (0,1), (2,1), (4,1), (2j,2) ∶ 3 ≤ j ≤ n

Dn Dn W (Dn) (0,1), (2,1), (4,1), (n,1), (2j,2) ∶ 3 ≤ j ≤ n − 1

E6 E6 W (E6) (0,1), (2,1), (5,1), (6,2), (8,2), (9,2), (12,3)

E7 E7 W (E7) (0,1), (2,1), (6,2), (8,2), (10,2), (12,3), (14,3), (18,4)

G2 A2 O(A2) (0,1), (2,1), (6,2)

F4 D4 O(D4) (0,1), (2,1), (6,2), (8,2), (12,3)
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Example 3.1.3. The W (A1)-invariant Jacobi forms are the classical Jacobi forms in the sense
of Eichler and Zagier [EZ85]. Let R = A1 = Zα with α2 = 2. In this case, the root lattice L(A1)

is even and the dual root system of A1 is itself. The Weyl group W (A1) is generated by the
sign change z ↦ −z. Thus, the Weyl invariant A1 Jacobi forms are in fact the classical Jacobi
forms of even weight in the sense of Eichler-Zagier [EZ85]. The highest root is α = 1 ⋅ α. This
means that the two generators are all of index 1. The W (A1)-invariant polynomials is generated
by the basic polynomial X2 which is of degree 2. Thus the generators have weights 0 and −2
respectively. This coincides with the structure theorem in [EZ85].

Wirthmüller’s theorem does not cover the case R = E8. In the next sections, we will focus on
W (E8)-invariant Jacobi forms and present a proper extension of Wirthmüller’s theorem to this
case.

3.2 W (E8)-invariant Jacobi forms

In this section we give a brief overview of root lattice E8 and introduce many useful facts about
W (E8)-invariant Jacobi forms.

3.2.1 Definitions and basic properties

We first introduce the Jacobi theta functions. Let q = e2πiτ and ζ = e2πiz, where τ ∈ H and z ∈ C.
The Jacobi theta functions of level two (see [Mum83, Chapter 1]) are defined as

ϑ00(τ, z) = ∑
n∈Z

q
n2

2 ζn, ϑ01(τ, z) = ∑
n∈Z

(−1)nq
n2

2 ζn,

ϑ10(τ, z) = q
1
8 ζ

1
2 ∑
n∈Z

q
n(n+1)

2 ζn, ϑ11(τ, z) = iq
1
8 ζ

1
2 ∑
n∈Z

(−1)nq
n(n+1)

2 ζn.

Note that ϑ(τ, z) = −iϑ11(τ, z).
We next recall some standard facts about root lattice E8. For a more careful treatment of this

important lattice we refer to [Bou60, SC98]. The lattice E8 is the unique even positive-definite
unimodular lattice of rank 8 and one of its construction is as follows

{(x1, . . . , x8) ∈
1

2
Z8 ∶ x1 ≡ ⋯ ≡ x8 mod 1, x1 +⋯ + x8 ≡ 0 mod 2} .

The following eight vectors

α1 =
1

2
(1,−1,−1,−1,−1,−1,−1,1) α2 = (1,1,0,0,0,0,0,0)

α3 = (−1,1,0,0,0,0,0,0) α4 = (0,−1,1,0,0,0,0,0)

α5 = (0,0,−1,1,0,0,0,0) α6 = (0,0,0,−1,1,0,0,0)

α7 = (0,0,0,0,−1,1,0,0) α8 = (0,0,0,0,0,−1,1,0)

are the simple roots of E8 and

w1 = (0,0,0,0,0,0,0,2) w2 =
1

2
(1,1,1,1,1,1,1,5)

w3 =
1

2
(−1,1,1,1,1,1,1,7) w4 = (0,0,1,1,1,1,1,5)

w5 = (0,0,0,1,1,1,1,4) w6 = (0,0,0,0,1,1,1,3)

w7 = (0,0,0,0,0,1,1,2) w8 = (0,0,0,0,0,0,1,1)
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α1 α3 α4 α5 α6 α7 α8 αE8

α2

Figure 3.1: Extended Coxeter-Dynkin diagram of E8

are the fundamental weights of E8. The fundamental weights wj form the dual basis, so (αi,wj) =
δij . We remark that the highest root αE8 of E8 is w8, which can be written as a linear combination
of the simple roots

αE8 = w8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8. (3.2.1)

The exponents of the Weyl group W (E8) are 1, 7, 11, 13, 17, 19, 23, 29. In Figure 3.1 we give
the extended Coxeter-Dynkin diagram of E8.

By [SC98], Weyl group W (E8) is of order 21435527 = 696729600 and it is generated by all
permutations of 8 letters, all even sign changes, and the matrix diag{H4,H4}, where H4 is the
Hadamard matrix

H4 =
1

2

⎛
⎜
⎜
⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟
⎟
⎟
⎠

.

In the sequel, we introduce many basic properties of W (E8)-invariant Jacobi forms. We first
remark that W (E8)-invariant weak Jacobi forms are all of even weight because the operator
z↦ −z belongs to W (E8). In view of the singular weight, we have

J
W (E8)
k,E8,t

= {0} if k < 4 (3.2.2)

and this fact is also true for holomorphic Jacobi forms with character.
The following fact is very standard. For a proof, we refer to [Gri94, Lemma 2.1].

Lemma 3.2.1. Let ϕ ∈ J
w,W (E8)
k,E8,t

. Then the coefficients f(n, `) in (3.1.4) depend only on the
class of ` in E8/tE8 and on the value of 2nt − (`, `). Besides,

f(n, `) ≠ 0Ô⇒ 2nt − (`, `) ≥ −min{(v, v) ∶ v ∈ ` + tE8}.

Using the same technique as in the proof of [EZ85, Theorem 8.4], we can prove the following
result.

Lemma 3.2.2. Let t ∈ N. The graded algebra Jw,W (E8)
∗,E8,t

(resp. JW (E8)
∗,E8,t

, Jcusp,W (E8)
∗,E8,t

) of W (E8)-
invariant weak Jacobi forms (resp. holomorphic Jacobi forms, Jacobi cusp forms) of index t is a
free module over M∗. Moreover, these three modules have the same rank over M∗.

We next study carefully the Fourier expansion of W (E8)-invariant Jacobi forms. For any
n ∈ N, we define the qn-term of ϕ as

[ϕ]qn = ∑
`∈E8

f(n, `)e2πi(`,z)

and for any m ∈ E8, we denote the Weyl orbit of m by

orb(m) = ∑
σ∈W (E8)/W (E8)m

e2πi(σ(m),z), (3.2.3)

where W (E8)m is the stabilizer subgroup of W (E8) with respect to m.
It is clear by Lemma 3.2.1 that [ϕ]qn is an exponential W (E8)-invariant polynomial. By

[Bou60, Théorème VI.3.1] or [Lor05, Theorem 3.6.1], we obtain the next lemma.
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Lemma 3.2.3. Let ϕ ∈ J
w,W (E8)
k,E8,t

and n ∈ N. We have

[ϕ]qn ∈ C[orb(wi) ∶ 1 ≤ i ≤ 8].

Moreover, orb(wi), 1 ≤ i ≤ 8, are algebraically independent over C.

3.2.2 Constructions of Jacobi forms

In this subsection we introduce several techniques to construct Jacobi forms. We recall the
following weight raising differential operator (see Lemma 1.4.11).

Lemma 3.2.4. Let ϕ(τ, z) = ∑ f(n, `)e2πi(nτ+(`,z)) be a W (E8)-invariant weak Jacobi form of
weight k and index t. Then Hk(ϕ) is a W (E8)-invariant weak Jacobi form of weight k + 2 and
index t, where

Hk(ϕ)(τ, z) =H(ϕ)(τ, z) +
4 − k

12
E2(τ)ϕ(τ, z),

H(ϕ)(τ, z) = ∑
n∈N

∑
`∈E8

[n −
1

2t
(`, `)] f(n, `)e2πi(nτ+(`,z)),

and E2(τ) = 1 − 24∑n≥1 σ(n)q
n is the Eisenstein series of weight 2 on SL2(Z).

The next lemma gives a quite useful identity related to q0-term of any Jacobi form of weight
zero. It is a particular case of Lemma 1.4.12.

Lemma 3.2.5. Let ϕ(τ, z) = ∑ f(n, `)e2πi(nτ+(`,z)) be a W (E8)-invariant weak Jacobi form of
weight 0 and index t. Then we have the following identity

2t ∑
`∈E8

f(0, `) = 3 ∑
`∈E8

f(0, `)(`, `).

Lemma 3.2.6. Let s be a positive integer and ϕ ∈ J
w,W (E8)
k,E8,t

. Then we have

ϕ∣kT−(s) = s
−1

∑
ad=s
bmodd

akϕ(
aτ + b

d
, az) ∈ J

w,W (E8)
k,E8,st

.

Moreover, the function ϕ∣kT−(s) has a Fourier expansion of the form

(ϕ∣kT−(s)) (τ, z) = ∑
n∈N
`∈E8

∑
d∈N

d∣(n,`,s)

dk−1f (
ns

d2
,
`

d
) e2πi(nτ+(`,z)),

where f(n, `) are the Fourier coefficients of ϕ and the notation d∣(n, `, s) means that d∣(n, s) and
d−1` ∈ E8.

Since weight 4 is the singular weight, it is impossible to construct W (E8)-invariant holomor-
phic Jacobi form of weight 6 from Jacobi forms of weight 4 by the differential operators introduced
in Lemma 3.2.4. Next, we give a resultful method to construct W (E8)-invariant holomorphic
Jacobi forms of weight 6. It is well-known that the theta function of the root lattice E8 defined
as

ϑE8(τ, z) = ∑
`∈E8

exp (πi(`, `)τ + 2πi(`, z))

=
1

2

⎡
⎢
⎢
⎢
⎢
⎣

8

∏
j=1

ϑ(τ, zj) +
8

∏
j=1

ϑ00(τ, zj) +
8

∏
j=1

ϑ01(τ, zj) +
8

∏
j=1

ϑ10(τ, zj)

⎤
⎥
⎥
⎥
⎥
⎦

(3.2.4)
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is a W (E8)-invariant holomorphic Jacobi form of weight 4 and index 1. One can check that
ϑE8(tτ, tz) is aW (E8)-invariant holomorphic Jacobi form of weight 4 and index t for the congru-
ence subgroup Γ0(t). We take a modular form of weight 2 on Γ0(t) and note it by g(τ). Then
g(τ)ϑE8(tτ, tz) is a W (E8)-invariant holomorphic Jacobi form of weight 6 and index t for Γ0(t).
Therefore, the trace operator of g(τ)ϑE8(tτ, tz) defined by

TrSL2(Z)(g(τ)ϑE8(tτ, tz)) = ∑
γ∈Γ0(t)/SL2(Z)

(g(τ)ϑE8(tτ, tz))∣6,tγ (3.2.5)

is a W (E8)-invariant holomorphic Jacobi form of weight 6 and index t, where ∣k,tγ is the slash
action of γ ∈ SL2(Z) defined by

(φ∣k,tγ)(τ, z) = (cτ + d)−k exp(−tπi
c(z, z)

cτ + d
)φ(

aτ + b

cτ + d
,

z

cτ + d
) .

By the index raising operators introduced in Lemma 3.2.6, one can construct a W (E8)-invariant
holomorphic Jacobi form of weight 4 and index t ≥ 1:

Xt(τ, z) = ∗(ϑE8 ∣4T−(t))(τ, z) = 1 +O(q) ∈ J
W (E8)
4,E8,t

, (3.2.6)

where ∗ is a constant such that Xt(τ,0) = E4(τ). Sakai [Sak17a] constructed five W (E8)-
invariant holomorphic Jacobi forms of weight 4

Ai(τ, z) =Xi(τ, z), i = 1,2,3,5, (3.2.7)
A4(τ, z) = A1(τ,2z). (3.2.8)

Since E2(τ) − pE2(pτ) ∈ M2(Γ0(p)) if p is a prime number, one can construct W (E8)-
invariant holomorphic Jacobi forms of weight 6 and prime index. Furthermore, one can construct
W (E8)-invariant holomorphic Jacobi forms of weight 6 and index t ≥ 2 using the index raising
operators. These Jacobi forms may reduce to Eisenstein series E6(τ) by taking z = 0. Sakai
[Sak17a, Appendix A.1] also constructed W (E8)-invariant holomorphic Jacobi forms of weight 6
and index 2, 3, 4, 6 by choosing particular modular forms on congruence subgroups of weight 2.
They are constructed in the following way

B2(τ, z) = ∗TrSL2(Z) [(2E2(2τ) −E2(τ))ϑE8(2τ,2z)] , (3.2.9)

B3(τ, z) = ∗TrSL2(Z) [(3E2(3τ) −E2(τ))ϑE8(3τ,3z)] , (3.2.10)

B4(τ, z) = ∗TrSL2(Z) [ϑ
4
01(2τ)ϑE8(4τ,4z)] , (3.2.11)

B6(τ, z) = ∗TrSL2(Z) [(3E2(3τ) −E2(τ))ϑE8(6τ,6z)] , (3.2.12)

here, these constants ∗ are chosen such that Bj(τ,0) = E6(τ).

3.2.3 Lifting elliptic modular forms to Jacobi forms

In this subsection we give another way to construct W (E8)-invariant Jacobi forms. For our
purpose, we focus on the lattices E8(p), which is the group E8 equipped with the following
rescaled bilinear form

⟨⋅, ⋅⟩p = p(⋅, ⋅),

where p is a prime number. Let D(p) = E8(p)
∨/E8(p) be the discriminant group of E8(p). Then

D(p) is of level p. By Theorem 1.3.4, we have
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Proposition 3.2.7. Let f ∈Mk(Γ0(p)) be a scalar valued holomorphic modular form for Γ0(p)
of weight k. Then

FΓ0(p),f,0(τ) ∶= ∑
M∈Γ0(p)/SL2(Z)

f ∣M(τ)ρD(p)(M
−1)e0 ∈M

inv
k (ρD(p)). (3.2.13)

If we write

f ∣S(τ) =
p−1

∑
t=0

gt(τ), S = (
0 −1
1 0

) ,

where
gt(τ + 1) = exp(

2tπi

p
) gt(τ), 0 ≤ t ≤ p − 1,

then we have
FΓ0(p),f,0(τ) = f(τ)e0 +

1

p3 ∑
γ∈D(p)

gjγ(τ)eγ , (3.2.14)

here jγ/p = −⟨γ, γ⟩p/2 mod 1 for γ ∈D(p).
Moreover, the map

f ∈Mk(Γ0(p))↦ FΓ0(p),f,0 ∈M
inv
k (ρD(p)) (3.2.15)

is an isomorphism.

Recall that the theta function for the lattice E8(p) are defined by

ΘE8(p)
γ (τ, z) = ∑

`∈γ+E8

exp (πi⟨γ, γ⟩pτ + 2πi⟨γ, z⟩p) , γ ∈D(p). (3.2.16)

Proposition 3.2.8. Under the assumptions of Proposition 3.2.7, if we write

FΓ0(p),f,0(τ) = ∑
γ∈D(p)

FΓ0(p),f,0;γ(τ)eγ ,

then the function
ΦΓ0(p),f,0(τ, z) = ∑

γ∈D(p)
FΓ0(p),f,0;γ(τ)Θ

E8(p)
γ (τ, z) (3.2.17)

is a W (E8)-invariant holomorphic Jacobi form of weight k + 4 and index p. Moreover, the
application maps cusp forms to Jacobi cusp forms.

As applications of the above map, we can construct W (E8)-invariant Jacobi forms of small
weights

ΦΓ0(p),1,0(τ, z) ∈ J
W (E8)
4,E8,p

, (3.2.18)

ΦΓ0(p),pE2(pτ)−E2(τ),0(τ, z) ∈ J
W (E8)
6,E8,p

. (3.2.19)

We remark that the above map is injective. But it is not surjective in general unless the
homomorphism O(E8(p)) = W (E8) → O(D(p)) is surjective. The map O(E8(p)) = W (E8) →

O(D(p)) is surjective if and only if p = 2. Therefore, as an analogue of the natural isomorphism

Mk(SL2(Z))Ð→ J
W (E8)
k+4,E8,1

f(τ)z→ f(τ)ϑE8(τ, z),

we can build the following isomorphism.

Corollary 3.2.9. We have the following isomorphism

Mk(Γ0(2))Ð→ J
W (E8)
k+4,E8,2

f(τ)z→ ΦΓ0(2),f,0(τ, z)

and it induces an isomorphism between the subspaces of cusp forms.
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3.3 The ring of W (E8)-invariant Jacobi forms

In this section we study the ring of W (E8)-invariant weak Jacobi forms. Lemma 3.2.2 says that
the space of W (E8)-invariant weak Jacobi forms of fixed index is a free module over M∗. In
what follows we give an explicit formula to compute the number of generators. The following is
our main theorem, which is an explicit version of the Sakai conjecture in [Sak17b, Page4].

Theorem 3.3.1. Let t be a positive integer. The space Jw,W (E8)
∗,E8,t

ofW (E8)-invariant weak Jacobi
forms of index t is a free module of rank r(t) over M∗, where r(t) is given by the generating
series

1

(1 − x)(1 − x2)2(1 − x3)2(1 − x4)2(1 − x5)(1 − x6)
=∑
t≥0

r(t)xt. (3.3.1)

Equivalently, the bigraded algebra Jw,W (E8)
∗,E8,∗ of W (E8)-invariant weak Jacobi forms is contained

in the polynomial algebra of nine variables over the fractional field of C[E4,E6]. More precisely,

J
w,W (E8)
∗,E8,∗ ⊊ C (E4,E6) [A1,A2,A3,A4,A5,B2,B3,B4,B6] . (3.3.2)

and the functions A1, A2, A3, A4, A5, B2, B3, B4, B6 are algebraically independent over M∗.

Proof. We denote the rank of Jw,W (E8)
∗,E8,t

over M∗ by R(t). It is sufficient to show R(t) = r(t) in
order to prove the theorem. On the one hand, the nine Jacobi forms Ai and Bj are algebraically
independent over M∗. In fact, using the nine Jacobi forms αk,t in [Sak17a, Appendix A.2] and
[Sak17b, pages 11, 19], we can construct nineW (E8)-invariant weak Jacobi forms as polynomials
in Ai and Bj over M∗: one Jacobi form of index 1 with q0-term 1, two Jacobi forms of index
2 with q0-terms orb(w1) and orb(w8) respectively, two Jacobi forms of index 3 with q0-terms
orb(w2) and orb(w7) respectively, two Jacobi forms of index 4 with q0-terms orb(w3) and orb(w6)

respectively, one Jacobi form of index 5 with q0-term orb(w5), one Jacobi form of index 6 with
q0-term orb(w4). Since orb(wi), 1 ≤ i ≤ 8, are algebraically independent over C, we conclude
that these nine weak Jacobi forms are algebraically independent over M∗. Therefore the nine
Jacobi forms Ai and Bj are also algebraically independent over M∗. This fact yields R(t) ≥ r(t).
On the other hand, Lemma 3.3.3 below gives R(t) ≤ r(t). Then the proof is completed.

The next lemma is crucial to the proof of the above theorem. It also has its own interest
because the values of W (E8)-invariant Jacobi forms at q = 0 are very interesting in quantum
field theory.

Lemma 3.3.2. Assume that

φt(τ, z) = ∑
n≥0

∑
`∈E8

f(n, `)e2πi(nτ+(`,z))

is a W (E8)-invariant weak Jacobi form of index t. Then we have

∑
`∈E8

f(0, `)e2πi(`,z) = ∑
X∈N8

T (X)≤t

c(X)
8

∏
i=1

orb(wi)
xi , (3.3.3)

where c(X) ∈ C are constants, X = (x1, x2, . . . , x8) ∈ N8 and

T (X) = 2x1 + 3x2 + 4x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8.

Moreover, orb(wi), 1 ≤ i ≤ 8, are algebraically independent over C.
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Proof. By Lemma 3.2.3, we know that

[φt]q0 = ∑
`∈E8

f(0, `)e2πi(`,z) ∈ C[orb(wi),1 ≤ i ≤ 8]

and orb(wi), 1 ≤ i ≤ 8, are algebraically independent over C. We put

Λ+ = {m ∈ E8 ∶ (αi,m) ≥ 0,1 ≤ i ≤ 8} =
8

⊕
i=1

Nwi,

which is the closure of a Weyl chamber. We recall the following standard facts:

(a) Every W (E8)-orbit in E8 meets the set Λ+ in exactly one point ([Bou60, Théorème
VI.1.2(ii)]).

(b) Define a partial order on E8 by m ≥ m′ if m −m′ ∈ ⊕8
i=1 R+αi. Then m ≥ σ(m) holds for

all m ∈ Λ+ and σ ∈W (E8) (see [Bou60, Prop.VI.1.18]).

(c) For each m ∈ Λ+, there are only finitely many m′ ∈ Λ+ satisfying m ≥ m′ (see [Bou60,
p.187]).

By the fact (a), we have
[φt]q0 = ∑

m∈Λ+

c(m)orb(m). (3.3.4)

For m ∈ Λ+ with m = ∑8
i=1 xiwi, xi ∈ N, we define

T (m) =(m,w8)

=2x1 + 3x2 + 4x3 + 6x4 + 5x5 + 4x6 + 3x7 + 2x8.

When T (m) > t, we have

(m − tw8,m − tw8) = (m,m) − 2t(m,w8) + 2t2 < (m,m).

In this case, by Lemma 3.2.1, there will be a Fourier coefficient of type qn0e2πi(m−tw8,z) with
n0 < 0, which contradicts the definition of weak Jacobi forms. Thus, we obtain

[φt]q0 = ∑
m∈Λ+

T (m)≤t

c(m)orb(m). (3.3.5)

Define

fm =
8

∏
i=1

orb(wi)
xi ,m =

8

∑
i=1

xiwi.

By the facts (b) and (c), the product fm can be written as a finite sum

fm = orb(m) + ∑
m1∈Λ+
m1<m

cm,m1 orb(m1). (3.3.6)

We note that m1 < m implies T (m1) ≤ T (m) because m −m1 > 0 and w8 is the highest root of
E8, which yield

T (m) − T (m1) = (m,w8) − (m1,w8) = (m −m1,w8) ≥ 0.

We therefore establish the desired formula by equations (3.3.5), (3.3.6) and (c).
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Lemma 3.3.3. The space Jw,W (E8)
∗,E8,t

of W (E8)-invariant weak Jacobi forms of index t is a free
module of rank ≤ r(t) over M∗, where r(t) is defined by (3.3.1).

Proof. Conversely, suppose that the rank R(t) of Jw,W (E8)
∗,E8,t

over M∗ is larger than r(t). We

assume that {ψi ∶ 1 ≤ i ≤ R(t)} is a basis of Jw,W (E8)
∗,E8,t

over M∗ and the weight of ψi is ai. We
put a = max{ai ∶ 1 ≤ i ≤ R(t)}. According to Lemma 3.3.2, q0-terms of W (E8)-invariant weak
Jacobi forms of index t can be written as C-linear combinations of r(t) fundamental elements
fm =∏8

i=1 orb(wi)
xi ,m = ∑8

i=1 xiwi with T (m) ≤ t. Since R(t) > r(t), there exists a homogenous
polynomial P ≠ 0 of degree one over M∗ such that

P (ψi,1 ≤ i ≤ R(t)) =
R(t)
∑
i=1

ciEa+4−aiψi = O(q) ∈ J
w,W (E8)
a+4,E8,t

,

where ci are constants and Ea+4−ai are Eisenstein series of weight a + 4 − ai on SL2(Z). Hence
P (ψi,1 ≤ i ≤ R(t))/∆ ≠ 0 ∈ J

w,W (E8)
a−8,E8,t

and thus it is a linear combination of ψi over M∗, which is
impossible.

Some values of rank r(t) are shown in Table 3.2.

Table 3.2: Rank of Jw,W (E8)
∗,E8,t

over M∗

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r(t) 1 3 5 10 15 27 39 63 90 135 187 270 364 505

Remark 3.3.4. If Wirthmüller’s theorem holds for R = E8, then the weights and indices of the
nine generators are as follows (see Theorem 3.1.2)

(0,1) (−2,2) (−8,2) (−12,3) (−14,3)

(−18,4) (−20,4) (−24,5) (−30,6).

Therefore, Theorem 3.3.1 implies that the statement about the indices of generators in Wirth-
müller’s theorem holds for R = E8.

We note that Lemma 3.3.2 can be extended to any irreducible root system by means of the
following facts:

• The weight lattice Λ(R∨) of R∨ is isomorphic to the dual lattice of L(R).

• The multiplicative invariant algebra Z[Λ(R∨)]W (R) is a polynomial algebra over Z: the
Weyl orbits of the fundamental weights of R∨ are algebraically independent generators (see
[Bou60, Théorème VI.3.1 and Exemple 1]).

• T (l) can be defined as (l, α̃∨) (see §3.1). If T (l) is greater than the index t, then the norm
of l − tα̃∨ is smaller than the norm of l.

• l1 < l2 Ô⇒ T (l1) ≤ T (l2), for any l1, l2 in the dual lattice of L(R).

Thus, by virtue of the analogues of Lemmas 3.3.2, 3.3.3, we can give a new proof of the fact
about the indices of generators in Wirthmüller’s theorem.

The fact about the weights of generators is related to the Taylor expansion of basic weak
Jacobi forms at the point z = 0. We next explain it more precisely. Given an irreducible root
system R of rank r, if we could find r + 1 basic weak Jacobi forms φj of expected indices with
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q0-terms containing the corresponding Weyl orbits of the fundamental weights, then we may
show by the above arguments that these Jacobi forms are algebraically independent overM∗ and
for each Jacobi form ϕ, there exist a modular form f with non-zero constant term and a non-zero
polynomial P ∈ M∗[Xj ,0 ≤ j ≤ r] such that fϕ = P (φj ,0 ≤ j ≤ r). If f is not constant, then f
vanishes at a point τ0 ∈ H. We observe that the leading terms of the Taylor expansion of φj are a
homogeneous W (R)-invariant polynomial of degree equal to the absolute value of weight of φj .
Therefore, if these φj further have the expected weights and the generators of W (R)-invariant
polynomials appear in their leading terms of the Taylor expansions, then it is possible to prove
that φj(τ0, z) are algebraically independent over C using the fact that the eight generators of
W (R)-invariant polynomials are algebraically independent over C, which gives a contradiction.
Then f is a constant and we deduce that the ring of Jacobi forms is the polynomial algebra
generated by φj over M∗. The above discussions give an explanation of why the ring of Weyl
invariant weak Jacobi forms is possible to be a polynomial algebra.

Remark 3.3.5. Our main theorem shows that every W (E8)-invariant weak Jacobi form can
be expressed uniquely as a polynomial in Ai and Bj with coefficients which are meromorphic
SL2(Z) modular forms (quotients of holomorphic modular forms). By the structure results in
the next section, these meromorphic modular forms are in fact holomorphic except at infinity
when the index is less than or equal to 3. In other words, we have

J
w,W (E8)
∗,E8,t

⊊M∗ [
1

∆
] [A1,A2,A3,A4,A5,B2,B3,B4,B6] , t = 1,2,3.

But when index t ≥ 4, it is very likely that the above meromorphic modular forms have a
pole at one point τ0 ∈ H, which is different from the case in [EZ85]. In [ZGH+18], the authors
checked numerically that the W (E8)-invariant holomorphic Jacobi form of weight 16 and index
5 defined as

P = 864A3
1A2 + 21E2

6A5 − 770E6A3B2 + 3825A1B
2
2 − 840E6A2B3 + 60E6A1B4

vanishes at the zero points τ = ±1
2 +

√
3

2 i of E4 for general E8 elliptic parameters. If the zeros of
P and E4 do indeed coincide, then P /E4 will be a W (E8)-invariant holomorphic Jacobi form of
weight 12 and index 5.

Remark 3.3.6. In some sense, the choice of generators Ai and Bj in our main theorem is
optimal. By the structure theorems in the next section, it is very natural to choose A1, A2, A3,
A5, B2, B3 as generators because the corresponding spaces are all one-dimensional. There are
2 independent W (E8)-invariant holomorphic Jacobi forms of weight 4 and index 4. One is A4

and the other is X4 (see (3.2.6)). But ∆X4 can be expressed as a polynomial in our generators
A1, A2, A3, A4, B2, B3 and Eisenstein series E4, E6. Therefore, we cannot choose X4 instead of
B4. Besides, B6 cannot be replaced by X6 because ∆mX6 with sufficiently large integer m can
be expressed as a polynomial in our generators A1, A2, A3, A4, A5, B2, B3, B4 and E4, E6.1

3.4 W (E8)-invariant Jacobi forms of small index

It is well-known that the space Jw,W (E8)
∗,E8,1

= J
W (E8)
∗,E8,1

of W (E8)-invariant weak (or holomorphic)
Jacobi forms of index 1 is a free module overM∗ generated by the theta function ϑE8 . In this big
section, we give explicit descriptions of the structure of Jw,W (E8)

∗,E8,t
and construct the generators

when t = 2, 3, 4. The cases of index 5 and 6 are also discussed. We show two approachs to do
this. The first one is based on the differential operators and the second relies on the pull-backs
from W (E8)-invariant Jacobi forms to the classical Jacobi forms for A1.

1The author is grateful to Kazuhiro Sakai for explaining this point.
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3.4.1 Notations and basic lemmas

In this subsection we present a new way to characterize q0-terms of W (E8)-invariant Jacobi
forms. This new way is convenient to calculate q0-terms of Jacobi forms under the action of the
differential operators.

Let us denote by R2n the set of all vectors ` ∈ E8 with (`, `) = 2n. The Weyl group W (E8)

acts on R2n in the usual way. The next lemma shows the orbits of R2n under W (E8).

Lemma 3.4.1. The orbits of R2n under the action of W (E8) are given by

W (E8)/R2 = {w8} W (E8)/R4 = {w1}

W (E8)/R6 = {w7} W (E8)/R8 = {2w8,w2}

W (E8)/R10 = {w1 +w8} W (E8)/R12 = {w6}

W (E8)/R14 = {w3,w7 +w8} W (E8)/R16 = {2w1,w2 +w8}

W (E8)/R18 = {w1 +w7,3w8} W (E8)/R20 = {w5,w1 + 2w8}

W (E8)/R22 = {w6 +w8,w1 +w2} W (E8)/R24 = {2w7,w3 +w8}.

Proof. Applying the fact (a) in the proof of Lemma 3.3.2, we can prove the lemma by direct
calculations.

Corresponding to the above orbits, we define the following Weyl orbits.

∑
2

= orb(w8) ∑
4

= ∗orb(w1) ∑
6

= ∗orb(w7)

∑
8′

= ∗orb(w2) ∑
8′′

= ∗orb(2w8) ∑
10

= ∗orb(w1 +w8)

∑
12

= ∗orb(w6) ∑
14′

= ∗orb(w3) ∑
14′′

= ∗orb(w7 +w8)

∑
16′

= ∗orb(2w1) ∑
16′′

= ∗orb(w2 +w8) ∑
18′

= ∗orb(w1 +w7)

∑
18′′

= ∗orb(3w8) ∑
20′

= ∗orb(w5) ∑
20′′

= ∗orb(w1 + 2w8)

∑
22′

= ∗orb(w1 +w2) ∑
22′′

= ∗orb(w6 +w8) ∑
24′

= ∗orb(2w7)

∑
24′′

= ∗orb(w3 +w8) ∑
26′

= ∗orb(2w1 +w8) ∑
26′′

= ∗orb(w2 +w7)

∑
28′

= ∗orb(w1 +w6) ∑
30′

= ∗orb(w4) ∑
32′

= ∗orb(w1 +w3)

∑
32′′

= ∗orb(2w2) ∑
36′

= ∗orb(3w1)

The normalizations of these Weyl orbits are chosen such that they reduce to 240 if one takes
z = 0. By Lemma 3.2.1 and equation (3.3.5), it is easy to prove the next three lemmas.

Lemma 3.4.2.

max{min{(v, v) ∶ v ∈ l + 2E8} ∶ l ∈ E8} = 4,

max{min{(v, v) ∶ v ∈ l + 3E8} ∶ l ∈ E8} = 8,

max{min{(v, v) ∶ v ∈ l + 4E8} ∶ l ∈ E8} = 16,

max{min{(v, v) ∶ v ∈ l + 5E8} ∶ l ∈ E8} = 22,

max{min{(v, v) ∶ v ∈ l + 6E8} ∶ l ∈ E8} = 36.
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Lemma 3.4.3. Let ϕt be a W (E8)-invariant weak Jacobi form of index t. Then its q0-term can
be written as

[ϕ2]q0 =240c0 + c1∑
2

+c2∑
4

,

[ϕ3]q0 =240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8′
,

[ϕ4]q0 =240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
+c5∑

10

+c6∑
12

+c7∑
14′
+c8∑

16′
,

[ϕ5]q0 =240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
+c5∑

10

+c6∑
12

+c′7∑
14′
+c7

′′
∑
14′′

+ c′8∑
16′
+c8

′′
∑
16′′

+c9∑
18′
+c10∑

20′
+c11∑

22′
,

[ϕ6]q0 =240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
+c5∑

10

+c6∑
12

+c′7∑
14′
+c7

′′
∑
14′′

+ c′8∑
16′
+c8

′′
∑
16′′

+c′9∑
18′
+c9

′′
∑
18′′

+c′10∑
20′
+c10

′′
∑
20′′

+c′11∑
22′
+c11

′′
∑
22′′

+c′12∑
24′

+ c12
′′
∑
24′′

+c′13∑
26′
+c13

′′
∑
26′′

+c14∑
28′
+c15∑

30′
+c′16∑

32′
+c16

′′
∑
32′′

+c18∑
36′
,

where ci ∈ C are constants.

Lemma 3.4.4. Assume that ϕ is a W (E8)-invariant weak Jacobi form of index t.

1. Let t = 2. Then ϕ is a holomorphic Jacobi form if and only if its q0-term is a constant.
Moreover, ϕ is a Jacobi cusp form if and only if its q0-term is 0 and its q1-term is of the
form c0 + c1∑2.

2. Let t = 3. Then ϕ is a holomorphic Jacobi form if and only if its q0-term is a constant and
its q1-term is of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

.

Moreover, a holomorphic Jacobi form ϕ is a Jacobi cusp form if and only if c3 = 0 and its
q0-term is 0.

3. Let t = 4. Then ϕ is a holomorphic Jacobi form if and only if its q0-term is a constant and
its q1-term is of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
.

Moreover, a holomorphic Jacobi form ϕ is a Jacobi cusp form if and only if c′4 = c4
′′ = 0

and its q0-term is 0 and its q2-term does not contain the term ∑16′.

4. Let t = 5. Then ϕ is a holomorphic Jacobi form if and only if its q0-term is a constant and
its q1-term is of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
+c5∑

10

and its q2-term does not contain the term ∑22′. Moreover, a holomorphic Jacobi form ϕ
is a Jacobi cusp form if and only if c5 = 0 and its q0-term is 0 and its q2-term does not
contain the term ∑20′ .
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5. Let t = 6. Then ϕ is a holomorphic Jacobi form if and only if its q0-term is a constant and
its q1-term is of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c′4∑
8′
+c4

′′
∑
8′′
+c5∑

10

+c6∑
12

and its q2-term does not contain the terms ∑26′, ∑26′′, ∑28′, ∑30′, ∑32′, ∑32′′, ∑36′. More-
over, a holomorphic Jacobi form ϕ is a Jacobi cusp form if and only if c6 = 0 and its
q0-term is 0 and its q2-term does not contain the terms ∑24′ , ∑24′′ and its q3-term does
not contain the term ∑36′ .

We next explain how to determine holomorphic Jacobi forms of singular weight. Let ϕt be
a W (E8)-invariant holomorphic Jacobi form of weight 4 and index t. In view of the singular
weight, we have

ϕt(τ, z) = ∑
n∈N

∑
`∈E8

(`,`)=2nt

f(n, `)e2πi(nτ+(`,z)).

Therefore the coefficients f(n, `) depend only on the class of ` in E8/tE8. Let n ≥ 1 and assume
that

φt(τ, z) = q
n

∑
`∈E8

(`,`)=2nt

f(n, `)e2πi(`,z) +O(qn+1) ∈ J
W (E8)
4,E8,t

.

Since φt(τ,0) = 0, if there exists ` ∈ E8 such that f(n, `) ≠ 0, then there exist `1, `2 ∈ E8 satisfying
(`1, `1) = (`2, `2) = 2nt, orb(`1) ≠ orb(`2) and (`i, `i) = min{(v, v) ∶ v ∈ `i+ tE8}, for i = 1,2. From
this, we deduce

J
W (E8)
4,E8,t

= CAt, t = 1,2,3,5,

J
W (E8)
4,E8,4

= CA4 ⊕CX4,

1 ≤ dimJ
W (E8)
4,E8,6

≤ 2.

If dimJ
W (E8)
4,E8,6

= 2, then there exists a W (E8)-invariant holomorphic Jacobi form of weight 4 and
index 6 with Fourier expansion of the form

F4,6(τ, z) = q
2(∑

24′
−∑

24′′
) +O(q3).

Let v2 be a vector of norm 2 in E8 and z ∈ C. By direct calculations, we see that

F4,6(τ, zv2)

∆2(τ)
= ζ±8 + ∑

1≤i≤7

c(i)ζ±i + c(0) +O(q)

is a non-zero weak Jacobi form of weight −20 and index 6 in the sense of Eichler and Zagier
[EZ85], where ζ = e2πiz and c(i) ∈ C are constants. It is obvious that Jw

−20,6 = {0} by [EZ85],
which leads to a contradiction. Thus, we have proved the following.

Lemma 3.4.5.

J
W (E8)
4,E8,t

= CAt, t = 1,2,3,5,

J
W (E8)
4,E8,4

= CA4 ⊕CX4,

J
W (E8)
4,E8,6

= CX6.
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3.4.2 The case of index 2

In this subsection we discuss the structure of the space ofW (E8)-invariant Jacobi forms of index
2. Firstly, Theorem 3.3.1 shows that JW (E8)

∗,E8,2
is a freeM∗-module of rank 3. It is obvious that A2

and B2 must be generators of weight 4 and weight 6 respectively. As A2
1 and E4A2 are linearly

independent, A2
1 is a generator of weight 8. Hence JW (E8)

∗,E8,2
is a free M∗-module generated by

A2,B2 and A2
1. This fact can also be proved by Corollary 3.2.9.

If φ ∈ J
w,W (E8)
k,E8,2

, then ∆φ ∈ J
W (E8)
k+12,E8,2

by Lemma 3.4.4. From J
W (E8)
4,E8,2

= CA2 and J
W (E8)
6,E8,2

=

CB2, we obtain k + 12 ≥ 8. Thus, dimJ
w,W (E8)
k,E8,2

= 0 for k ≤ −6. We next construct many basic
Jacobi forms of index 2.

ϕ−4,2 =
ϑ2
E8
− 1

9E4 (ϑE8 ∣T−(2))

∆
= 2∑

2

−∑
4

−240 +O(q) ∈ J
w,W (E8)
−4,E8,2

(3.4.1)

ϕ−2,2 = 3H−4(ϕ−4,2) =∑
2

+∑
4

−480 +O(q) ∈ J
w,W (E8)
−2,E8,2

(3.4.2)

ϕ0,2 =
1

2
E4ϕ−4,2 −H−2(ϕ−2,2) =∑

2

+120 +O(q) ∈ J
w,W (E8)
0,E8,2

(3.4.3)

Remark 3.4.6. There is another construction of ϕ0,2

ϕ0,2 = ∗ ∑
σ∈W (E8)

f(τ, σ(z)),

where ∗ is a constant and

f(τ, z) = −
[ϑ(τ, z1 + z2)ϑ(τ, z1 − z2)⋯ϑ(τ, z7 + z8)ϑ(τ, z7 − z8)]∣T−(2)

ϑ(τ, z1 + z2)ϑ(τ, z1 − z2)⋯ϑ(τ, z7 + z8)ϑ(τ, z7 − z8)
.

It is easy to check the following constructions.

A2 =
1

9
ϑE8 ∣T−(2) =

8

9
ΦΓ0(2),1,0 =

1

1080
(3E4ϕ0,2 −E

2
4ϕ−4,2 −E6ϕ−2,2)

=1 + q ⋅∑
4

+O(q2).
(3.4.4)

B2 =
16

15
ΦΓ0(2),2E2(2τ)−E2(τ),0 =

1

1080
(3E6ϕ0,2 −E4E6ϕ−4,2 −E

2
4ϕ−2,2)

=1 + q [−
8

5
∑
2

−
3

5
∑
4

+24]

+ q2 [∑
8′′
−

24

5
∑
8′
−

224

5
∑
6

−
72

5
∑
4

−
32

5
∑
2

+24] +O(q3)

(3.4.5)

U12,2 = ∆ϕ0,2 = q (∑
2

+120) +O(q2) ∈ J
cusp,W (E8)
12,E8,2

(3.4.6)

V14,2 =
1

3
∆ (E6ϕ−4,2 +E4ϕ−2,2) = q [∑

2

−240] +O(q2) ∈ J
cusp,W (E8)
14,E8,2

(3.4.7)

W16,2 =
1

3
∆ (E2

4ϕ−4,2 +E6ϕ−2,2) = q [∑
2

−240] +O(q2) ∈ J
cusp,W (E8)
16,E8,2

(3.4.8)

It is easily seen that ϕ−4,2 and ϕ−2,2 must be generators of Jw,W (E8)
∗,E8,2

over M∗. Since
[ϕ]q0(τ,0) = 0 if ϕ is a weak Jacobi form of negative weight, we claim that ϕ0,2 is also a
generator of Jw,W (E8)

∗,E8,2
over M∗ due to [ϕ0,2]q0(τ,0) = 360. We have thus proved the following

structure theorem.
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Theorem 3.4.7. The spaces Jw,W (E8)
∗,E8,2

, JW (E8)
∗,E8,2

and Jcusp,W (E8)
∗,E8,2

are all freeM∗-module generated
by three Jacobi forms. More exactly, we have

J
w,W (E8)
∗,E8,2

=M∗⟨ϕ−4,2, ϕ−2,2, ϕ0,2⟩,

J
W (E8)
∗,E8,2

=M∗⟨A2,B2, ϑ
2
E8

⟩,

J
cusp,W (E8)
∗,E8,2

=M∗⟨U12,2, V14,2,W16,2⟩.

Proof. It remains to prove the third claim. The third claim can be covered by Corollary 3.2.9.
But, we here use another way to prove it. For arbitrary f ∈ J

W (E8)
2k,E8,2

with k ≥ 4, there exist two
complex numbers c1, c2 such that

f − c1E2k−4A2 − c2E2k−8∆ϕ−4,2 ∈ J
cusp,W (E8)
2k,E8,2

,

we replace E2k−8∆ϕ−4,2 with ∆ϕ−2,2 when k = 5. From this, we have

dimJ
cusp,W (E8)
2k,E8,2

= dimJ
W (E8)
2k,E8,2

− 2, k ≥ 4.

We then assert that dimJ
cusp,W (E8)
2k,E8,2

= 0 for k ≤ 5, and dimJ
cusp,W (E8)
2k,E8,2

= 1 for 2k = 12,14, and

dimJ
cusp,W (E8)
16,E8,2

= 2. Since W16,2 is independent of E4U12,2, we complete the proof.

As an application of our results, we prove that Wirthmüller’s theorem does not hold for E8.

Theorem 3.4.8. The bigraded ring Jw,W (E8)
∗,E8,∗ over M∗ is not a polynomial algebra.

Proof. Suppose, contrary to our claim, that Jw,W (E8)
∗,E8,∗ is a polynomial algebra over M∗. Then

there exists a finite set S such that Jw,W (E8)
∗,E8,∗ = M∗[S] and the elements of S are algebraically

independent over M∗. This contradicts the fact that ϑE8 , ϕ−4,2, ϕ−2,2, ϕ0,2 ∈ S and the following
algebraic relation

ϑ2
E8

=
1

1080
E4 (3E4ϕ0,2 −E

2
4ϕ−4,2 −E6ϕ−2,2) +∆ϕ−4,2.

3.4.3 The case of index 3

In this subsection we continue to discuss the structure of the module of W (E8)-invariant Jacobi
forms of index 3. We first claim that the possible minimum weight of W (E8)-invariant weak
Jacobi forms of index 3 is −8. If there exists a W (E8)-invariant weak Jacobi form φ of weight
2k < −8 and index 3 whose q0-term is not zero, then we can construct a weak Jacobi form of
weight −10 and index 3 whose q0-term is not zero. In fact, this function can be constructed as
E−10−2kφ if 2k ≤ −14, orH−12(φ) if 2k = −12. We now assume that there exists aW (E8)-invariant
weak Jacobi form φ of weight −10 and index 3 whose q0-term is represented as

[φ]q0 = 240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8′
.

Then c4 ≠ 0, otherwise ∆φ will be a W (E8)-invariant holomorphic Jacobi form of weight 2,
which is impossible. By means of the differential operators, we construct φ−8 = H−10(φ), φ−6 =

H−8(φ−8), φ−4 =H−6(φ−6) and H−4(φ−4). They are respectively weak Jacobi forms of weight −8,
−6, −4, −2 with q0-term of the form (order: 240c0, c1∑2, c2∑4, c3∑6, c4∑8′)

weight − 10 ∶ (a1,j)
9
j=1 = (1,1,1,1,1)

weight − 10 + 2(i − 1) ∶ ai,j = (
18 − 2i

12
−
j − 1

3
)ai−1,j
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where 2 ≤ i ≤ 5, 1 ≤ j ≤ 5. For these Jacobi forms, if we take z = 0 then their q0-terms will be
zero. We thus get a system of 5 linear equations with 5 unknowns

Ax = 0, A = (ai,j)5×5, x = (c0, c1, c2, c3, c4)
t.

By direct calculations, this system has only trivial solution, which contradicts our assumption.
Hence the possible minimum weight is −8. Indeed, there exists the uniqueW (E8)-invariant weak
Jacobi form of weight −8 and index 3 up to a constant. Suppose that φ is a non-zero weak Jacobi
form of weight −8 with q0-term of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8′
.

Similarly, we can construct weak Jacobi forms of weight −6, −4, −2 with q0-term of the form

weight − 8 ∶ (b1,j)
9
j=1 = (1,1,1,1,1)

weight − 8 + 2(i − 1) ∶ bi,j = (
16 − 2i

12
−
j − 1

3
) bi−1,j

where 2 ≤ i ≤ 4, 1 ≤ j ≤ 5. Then we can build a system of 4 linear equations with 5 unknowns

Bx = 0, B = (bi,j)4×5, x = (c0, c1, c2, c3, c4)
t. (3.4.9)

We found that (c0, c1, c2, c3, c4) = (1,−4,6,−4,1) is the unique nontrivial solution of the above
system. Therefore, the weak Jacobi form of weight −8 and index 3 is unique if it exists. Next,
we construct many weak Jacobi forms of index 3.

B−2,3 = − 5
ϑE8B2 −

1
28E6(ϑE8 ∣T−(3))

∆
= 3∑

2

+3∑
4

+5∑
6

−11 × 240 +O(q) ∈ J
w,W (E8)
−2,E8,3

ϕ−4,3 =
ϑE8A2 −

1
28E4[ϑE8 ∣T−(3)]

∆
=∑

2

+∑
4

−∑
6

−240 +O(q) ∈ J
w,W (E8)
−4,E8,3

A0,3 =ϑE8ϕ−4,2 = 2∑
2

−∑
4

−240 +O(q) ∈ J
w,W (E8)
0,E8,3

ϕ−2,3 =3H−4(ϕ−4,3) =∑
2

+∑
6

−480 +O(q) ∈ J
w,W (E8)
−2,E8,3

ϕ0,3 =
3

8
(A0,3 +E4ϕ−4,3 − 2H−2(ϕ−2,3)) =∑

2

+O(q) ∈ J
w,W (E8)
0,E8,3

Remark 3.4.9. There is another construction of ϕ0,3

ϕ0,3 = ∗ ∑
σ∈W (E8)

g(τ, σ(z))

where ∗ is a constant and the function g is defined as

g(τ, z) =
8

∏
i=1

ϑ(τ,2zi)

ϑ(τ, zi)
+

8

∏
i=1

ϑ(τ,2zi)

ϑ00(τ, zi)
+

8

∏
i=1

ϑ(τ,2zi)

ϑ01(τ, zi)
+

8

∏
i=1

ϑ(τ,2zi)

ϑ10(τ, zi)
.

We next construct the W (E8)-invariant weak Jacobi form of weight −8 and index 3. Firstly,
we can check

E2
4ϕ−4,3 + 6E6ϕ−2,3 − 2E4A0,3 −E6B−2,3 = O(q) ∈ J

w,W (E8)
4,E8,3

.
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If E2
4ϕ−4,3 + 6E6ϕ−2,3 − 2E4A0,3 −E6B−2,3 = 0, then we have

f−6,3 =
E4ϕ−4,3 − 2A0,3

E6
= −3∑

2

+3∑
4

−∑
6

+240 +O(q) ∈ J
w,W (E8)
−6,E8,3

,

H−6(f−6,3) = −
3

2
∑
2

+
1

2
∑
4

+
1

6
∑
6

+200 +O(q) ∈ J
w,W (E8)
−4,E8,3

.

It is easy to see that f−6,3, H−6(f−6,3), ϕ−4,3 are free over M∗ because E4φ−8,3, H−6(f−6,3) and
ϕ−4,3 are independent. However

E6f−6,3 − 3E4H−6(f−6,3) −
3

2
E4ϕ−4,3 = O(q).

Hence we can get a non-zero weak Jacobi form of index 3 and weight −12, which is impossible.
It follows that E2

4ϕ−4,3 + 6E6ϕ−2,3 − 2E4A0,3 −E6B−2,3 ≠ 0, and we can construct

ϕ−8,3 = ∗
E2

4ϕ−4,3 + 6E6ϕ−2,3 − 2E4A0,3 −E6B−2,3

∆

=∑
8′
−4∑

6

+6∑
4

−4∑
2

+240 +O(q) ∈ J
w,W (E8)
−8,E8,3

.
(3.4.10)

ϕ−6,3 = −3H−8(ϕ−8,3) =∑
8′
−6∑

4

+8∑
2

−720 +O(q) ∈ J
w,W (E8)
−6,E8,3

. (3.4.11)

In fact, we get the coefficients of the q0-term of ϕ−8,3 from the solution of the system of linear
equations (3.4.9). We now arrive at our main theorem in this subsection.

Theorem 3.4.10. The space Jw,W (E8)
∗,E8,3

is a free M∗-module generated by five weak Jacobi forms.
More precisely, we have

J
w,W (E8)
∗,E8,3

=M∗⟨ϕ−8,3, ϕ−6,3, ϕ−4,3, ϕ−2,3, ϕ0,3⟩.

Proof. We first claim that there is no weak Jacobi form of weight −6 and index 3 independent
of ϕ−6,3. Conversely, suppose that there exists a weak Jacobi form of weight −6 which is linearly
independent of ϕ−6,3, noted by f . Without loss of generality we can assume

[f]q0 = 240c0 + c1∑
2

+c2∑
4

+c3∑
6

≠ 0.

Once again, we can construct weak Jacobi forms of weight −4, −2 and 0 by the differential
operators, respectively. They have q0-terms of the form (order: 240c0, c1∑2, c2∑4, c3∑6)

weight − 6 ∶ (c1,j)
4
j=1 = (1,1,1,1)

weight − 6 + 2(i − 1) ∶ ci,j =
9 − i − 2j

6
ci−1,j

where 2 ≤ i ≤ 4, 1 ≤ j ≤ 4. For each Jacobi form of negative weight, if we take z = 0 then its
q0-term will be zero. Hence we have

4

∑
j=1

ci,jcj−1 = 0, 1 ≤ i ≤ 3.

By Lemma 3.2.5, we have
4

∑
j=1

(12 − 6j)c4,jcj−1 = 0.
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We thus get a system of linear equations of 4 × 4. By direct calculations, we obtain cj = 0 for
0 ≤ j ≤ 3, which contradicts our assumption.

Theorem 3.3.1 shows that Jw,W (E8)
∗,E8,3

is a freeM∗-module generated by five weak Jacobi forms.
It is obvious that ϕ−8,3, ϕ−6,3 and ϕ−4,3 are generators. Since ϕ−2,3 is independent of E6ϕ−8,3 and
E4ϕ−6,3, the function ϕ−2,3 must be a generator. Moreover, ϕ0,3 is also a generator on account
of [ϕ0,3]q0(τ,0) ≠ 0. We then conclude the eager result.

In the rest of this subsection, we investigate the spaces of holomorphic Jacobi forms and
Jacobi cusp forms of index 3, respectively. Let k ≥ 2. It is easy to see that the five dimensional
space A generated by E2k+8ϕ−8,3, E2k+6ϕ−6,3, E2k+4ϕ−4,3, E2k+2ϕ−2,3, E2k−4∆ϕ−8,3 (if k = 3, we
replace E2k−4∆ϕ−8,3 with ∆ϕ−6,3) does not contain non-zero holomorphic Jacobi form of weight
2k. Moreover, for any φ ∈ J

w,W (E8)
2k,E8,3

, there exists a Jacobi form f ∈ A such that φ − f is a
holomorphic Jacobi form. We then assert

dimJ
W (E8)
2k,E8,3

= dimJ
w,W (E8)
2k,E8,3

− 5, k ≥ 2.

It is clear that dimJ
W (E8)
2k,E8,3

= 1, for k = 2,3. Thus, we deduce

A3 =
1

28
E4(ϑE8 ∣T−(3)) =

27

28
ΦΓ0(3),1,0 = 1 + q∑

6

+O(q2),

B3 =
81

160
ΦΓ0(3),3E2(3τ)−E2(τ),0 = 1 + q [−

7

20
∑
6

−
27

20
∑
4

−
9

20
∑
2

+12] +O(q2).

We further construct

A2ϑE8 = 1 + q [∑
2

+∑
4

] +O(q2) ∈ J
W (E8)
8,E8,3

(3.4.12)

B2ϑE8 = 1 + q [−
3

5
∑
2

−
3

5
∑
4

+24] +O(q2) ∈ J
W (E8)
10,E8,3

, (3.4.13)

ϑ3
E8

= 1 + 3q∑
2

+O(q2) ∈ J
W (E8)
12,E8,3

. (3.4.14)

It is easy to check that the following vector spaces have the corresponding basis.

J
W (E8)
8,E8,3

= C{E4A3, A2ϑE8}

J
W (E8)
10,E8,3

= C{E6A3, E4B3, B2ϑE8}

J
W (E8)
12,E8,3

= C{E2
4A3, E6B3, E4A2ϑE8 , ϑ

3
E8

}

From the above discussions, we claim that A3,B3,A2ϑE8 ,B2ϑE8 , ϑ
3
E8

are free over M∗. This
proves the following theorem.

Theorem 3.4.11. The space JW (E8)
∗,E8,3

is a free M∗-module generated by five holomorphic Jacobi
forms. More precisely, we have

J
W (E8)
∗,E8,3

=M∗⟨A3, B3, A2ϑE8 , B2ϑE8 , ϑ
3
E8

⟩.

In the end, we determine the structure of Jacobi cusp forms of index 3. We first construct
many basic Jacobi cusp forms.

U10,3 = −
35

54
E6A3 −

50

27
E4B3 +

5

2
B2ϑE8 = q [∑

4

−
2

3
∑
2

−80] +O(q2) ∈ J
cusp,W (E8)
10,E8,3
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U12,3 =E4A2ϑE8 − ϑ
3
E8

= q [∑
4

−2∑
2

+240] +O(q2) ∈ J
cusp,W (E8)
12,E8,3

U14,3 =∆(E4ϕ−2,3 +E6ϕ−4,3) = q [∑
4

+2∑
2

−720] +O(q2) ∈ J
cusp,W (E8)
14,E8,3

V12,3 =∆ϕ0,3 = q ⋅∑
2

+O(q2) ∈ J
cusp,W (E8)
12,E8,3

U16,3 =∆2ϕ−8,3 = O(q2) ∈ J
cusp,W (E8)
16,E8,3

For arbitrary k ≥ 4, we can show that the two dimensional space B generated by E2k−4A3

and E2k−8∆ϕ−4,3 (if k = 5, we replace E2k−8∆ϕ−4,3 with E4B3) does not contain non-zero Jacobi
cusp form of weight 2k. Moreover, for any φ ∈ J

W (E8)
2k,E8,3

, there exists a Jacobi form g ∈ B such
that φ − g is a Jacobi cusp form. We thus deduce

dimJ
cusp,W (E8)
2k,E8,3

= dimJ
W (E8)
2k,E8,3

− 2, k ≥ 4. (3.4.15)

In a similar argument, we prove the next theorem.

Theorem 3.4.12. The space J
cusp,W (E8)
∗,E8,3

is a free M∗-module generated by five Jacobi cusp
forms. More exactly, we have

J
cusp,W (E8)
∗,E8,3

=M∗⟨U10,3, U12,3, V12,3, U14,3, U16,3 ⟩.

3.4.4 The case of index 4

In this subsection we study the structure of the space of W (E8)-invariant Jacobi forms of index
4. We first assert that the possible minimum weight of W (E8)-invariant weak Jacobi forms of
index 4 is −16. If there exists a non-zero weak Jacobi form φ of index 4 and weight k < −16, then
its q0-term is not zero and is not of the form

c′4∑
8′
+c4

′′
∑
8′′
+240c0,

otherwise we can construct a non-zero holomorphic Jacobi form of wight less than 4 (i.e. ∆φ).
As in the case of index 3, by the Eisenstein series and the differential operators, we can construct
a weak Jacobi form of weight −18 with non-zero q0-term and note it by f . For convenience, we
write

c′4∑
8′
+c4

′′
∑
8′′

= (c′4 + c4
′′)∑

8

= c4∑
8

.

We can assume that f has q0-term of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8

+c5∑
10

+c6∑
12

+c7∑
14′
+c8∑

16′
,

where ci are not all zero. We then construct weak Jacobi forms of weight −16, −14, −12, −10, −8,
−6, −4, −2, respectively. They have q0-terms of the following form (order: 240c0, c1∑2,⋯, c8∑16′)

weight − 18 ∶ (a1,j)
9
j=1 = (1,1,1,1,1,1,1,1,1)

weight − 18 + 2(i − 1) ∶ ai,j =
29 − 2i − 3j

12
ai−1,j

where 2 ≤ i ≤ 9, 1 ≤ j ≤ 9. For these Jacobi forms, if we put z = 0, then their q0-terms will become
zero. Hence we can get a system of linear equations:

Ax = 0, A = (ai,j)9×9, x = (c0, c1,⋯, c8)
t.
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By direct calculations, we know that the determinant of the matrix A is not zero, it follows that
the q0-term of f is zero, which leads to a contradiction. Hence the possible minimum weight is
−16. One weak Jacobi form of index 4 and weight −16 can be constructed as

ϕ−16,4 =c ∑
σ∈W (E8)

h(τ, σ(z))

=∑
16′
−8∑

14′
+28∑

12

−56∑
10

+14∑
8′′
+56∑

8′
−56∑

6

+28∑
4

−8∑
2

+240 +O(q),
(3.4.16)

where c is a constant and the function h is defined as

h(τ, z) =
1

∆2

4

∏
i=1

ϑ(τ, z2i−1 + z2i)
2ϑ(τ, z2i−1 − z2i)

2.

Next, we show that ϕ−16,4 is the unique weak Jacobi form of index 4 and weight −16 up to
a constant. Similarly, suppose that there exists a weak Jacobi form φ−16,4 of weight −16 with
q0-term of the form

240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8

+c5∑
10

+c6∑
12

+c7∑
14′
+c8∑

16′
.

Then we can construct weak Jacobi forms of weight −14, −12, −10, −8, −6, −4, −2, respectively.
They have q0-terms of the form (order: 240c0, c1∑2,⋯, c8∑16′)

weight − 16 ∶ (b1,j)
9
j=1 = (1,1,1,1,1,1,1,1,1)

weight − 16 + 2(i − 1) ∶ bi,j =
27 − 2i − 3j

12
bi−1,j

where 2 ≤ i ≤ 8, 1 ≤ j ≤ 9. For these Jacobi forms, if we take z = 0, their q0-terms will be zero.
We then get a system of linear equations:

Bx = 0, B = (bi,j)8×9, x = (c0, c1,⋯, c8)
t.

By direct calculations, it has the unique nontrivial solution

x = (1,−8,28,−56,70,−56,28,−8,1).

We see at once that [ϕ−16,4 − φ−16,4]q0 = ∗(∑8′ −∑8′′). Thus ∆(ϕ−16,4 − φ−16,4) is a holomorphic
Jacobi form of weight −4, which yields ϕ−16,4 = φ−16,4.

Applying differential operators to ϕ−16,4, we construct the following basic weak Jacobi forms.

ϕ−14,4 = − 3H−16(ϕ−16,4)

=∑
16′
−2∑

14′
−14∑

12

+70∑
10

−28∑
8′′
−112∑

8′
+154∑

6

−98∑
4

+34∑
2

−1200 +O(q)

ϕ−12,4 = −
2

7
H−14(ϕ−14,4) −

1

7
E4ϕ−16,4

=∑
14′
−4∑

12

+3∑
10

+2∑
8′′
+8∑

8′
−25∑

6

+24∑
4

−11∑
2

+480 +O(q) ∈ J
w,W (E8)
−12,E8,4

ϕ−10,4 = −
4

9
H−12 (ϕ−12,4) −

5

162
(E4ϕ−14,4 −E6ϕ−16,4)

=∑
12

−4∑
10

+∑
8′′
+4∑

8′
−5∑

4

+4∑
2

−240 +O(q) ∈ J
w,W (E8)
−10,E8,4

ϕ−8,4 = −
3

5
H−10(ϕ−10,4) −

1

15
E4ϕ−12,4 +

1

90
E6ϕ−14,4 −

1

90
E2

4ϕ−16,4

=∑
10

−
7

10
∑
8′′
−

28

10
∑
8′
+4∑

6

−∑
4

−∑
2

+120 +O(q) ∈ J
w,W (E8)
−8,E8,4
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ϕ−6,4 = −
1

2
E4ϕ−10,4 +

1

6
E6ϕ−12,4 −

1

36
(E2

4ϕ−14,4 −E4E6ϕ−16,4) − 4H−8(ϕ−8,4)

=∑
8′′
+4∑

8′
−14∑

6

+12∑
4

−2∑
2

−240 +O(q) ∈ J
w,W (E8)
−6,E8,4

ϕ−4,4 = −
10

81
E4ϕ−8,4 +

5

81
E6ϕ−10,4 +

5

1458
(E4E6ϕ−14,4 −E

3
4ϕ−16,4)

−
5

243
E2

4ϕ−12,4 −
2

9
H−6(ϕ−6,4)

=∑
6

−2∑
4

+∑
2

+O(q) ∈ J
w,W (E8)
−4,E8,4

ϕ−2,4 = −
5

9
E6ϕ−8,4 +

5

18
E2

4ϕ−10,4 +
5

324
(E3

4ϕ−14,4 −E
2
4E6ϕ−16,4)

−
5

54
E4E6ϕ−12,4 +

1

6
E4ϕ−6,4 + 12H−4(ϕ−4,4)

= − 7∑
4

+8∑
2

−240 +O(q) ∈ J
w,W (E8)
−2,E8,4

ϕ0,4 =H−2(ϕ−2,4) = 2∑
2

−120 +O(q) ∈ J
w,W (E8)
0,E8,4

ψ−8,4 =
ϑE8 ∣T−(4) − 73ϑE8(τ,2z)

72∆
= ∗ ∑

σ∈W (E8)
[−

1

∆

8

∏
i=1

ϑ(τ,2zi)] (τ, σ(z))

=∑
8′
−∑

8′′
+O(q) ∈ J

w,W (E8)
−8,E8,4

.

(3.4.17)

We now arrive at our main theorem in this subsection.

Theorem 3.4.13. The space Jw,W (E8)
∗,E8,4

is a free M∗-module generated by ten weak Jacobi forms.
More precisely, we have

J
w,W (E8)
∗,E8,4

=M∗⟨ϕ−2k,4, 0 ≤ k ≤ 8; ψ−8,4⟩.

Proof. It is sufficient to show that there is no any other weak Jacobi forms of weight less than
−4 which are independent of ϕ−2k,4, 0 ≤ k ≤ 8, and ψ−8,4. We only prove that there is no weak
Jacobi forms of weight −14 independent of ϕ−14,4 because other cases are similar. Suppose that
there exists a weak Jacobi form of weight −14 which is linearly independent of ϕ−14,4, noted by
f . We can assume

[f]q0 = 240c0 + c1∑
2

+c2∑
4

+c3∑
6

+c4∑
8

+c5∑
10

+c6∑
12

+c7∑
14′

≠ 0.

Once again, we can construct weak Jacobi forms of weight −12, −10, −8, −6, −4, −2 and 0,
respectively. They have q0-terms of the following form (order: 240c0, c1∑2,⋯, c7∑14′)

weight − 14 ∶ (c1,j)
8
j=1 = (1,1,1,1,1,1,1,1,1)

weight − 14 + 2(i − 1) ∶ ci,j =
25 − 2i − 3j

12
ci−1,j

where 2 ≤ i ≤ 8, 1 ≤ j ≤ 8. For each Jacobi form of negative weight, if we put z = 0 then its
q0-term will become zero. For the Jacobi form of weight zero, we can modify c8,j to (14− 6j)c8,j

by Lemma 3.2.5. We then get a system of linear equations:

Cx = 0, C = (ci,j)8×8, x = (c0, c1,⋯, c7)
t.
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By direct calculations, it has only trivial solution. Therefore q0-term of f is of the form

[f]q0 = ∗(∑
8′
−∑

8′′
) .

Therefore, ∆f is a holomorphic Jacobi form of weight −2 and then we have ∗ = 0, which contra-
dicts our assumption.

In the end of the proof, we explain why there is no weak Jacobi form ψ−6,4 of weight −6
with [ψ−6,4]q0 = ∑8′ −∑8′′ . If ψ−6,4 exists, then ψ−8,4, ψ−6,4 and ϕ−14,4 are free over M∗. This
contradicts the fact that (E6ψ−8,4 −E4ψ−6,4)/∆ ∈ J

w,W (E8)
−14,E8,4

.

In the rest of this subsection, we study the spaces of holomorphic Jacobi forms and Jacobi
cusp forms of index 4. We first construct many basic Jacobi forms.

A4 =ϑE8(τ,2z) = 1 + q∑
8′′
+O(q2) ∈ J

W (E8)
4,E8,4

(3.4.18)

B4 =
1

33
B2∣T−(2) +

2

55
∆ϕ−6,4 = 1 + q [

1

15
∑
8′′
−

28

15
∑
6

−
4

15
∑
2

−8] +O(q2) (3.4.19)

C8,4 =
1

54
∆(E3

4ϕ−16,4 −E4E6ϕ−14,4 + 6E2
4ϕ−12,4 − 18E6ϕ−10,4 + 36E4ϕ−8,4)

=q [
1

5
∑
8′′
+

4

5
∑
8′
−4∑

6

+6∑
4

−4∑
2

+240] +O(q2) ∈ J
W (E8)
8,E8,4

(3.4.20)

U10,4 = −
5

324
∆(E2

4E6ϕ−16,4 −E
3
4ϕ−14,4 + 6E4E6ϕ−12,4 − 18E2

4ϕ−10,4

+ 36E6ϕ−8,4 −
54

5
E4ϕ−6,4) − ∗∆2ϕ−14,4

=q [∑
6

−3∑
4

+3∑
2

−240] +O(q2) ∈ J
cusp,W (E8)
10,E8,4

(3.4.21)

U12,4 = −
5

324
∆(E4E

2
6ϕ−16,4 −E

2
4E6ϕ−14,4 + 6E2

6ϕ−12,4 − 18E4E6ϕ−10,4

+ 36E2
4ϕ−8,4 −

54

5
E6ϕ−6,4) − ∗∆2E4ϕ−16,4

=q [∑
6

−3∑
4

+3∑
2

−240] +O(q2) ∈ J
cusp,W (E8)
12,E8,4

(3.4.22)

Similar to the case of index 3, we can show the following identities

dimJ
W (E8)
2k,E8,4

= dimJ
w,W (E8)
2k,E8,4

− 13, k ≥ 2 (3.4.23)

dimJ
cusp,W (E8)
2k,E8,4

= dimJ
W (E8)
2k,E8,4

− 4, k ≥ 4, (3.4.24)

and use them to prove the next theorem.

Theorem 3.4.14.
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1. The space JW (E8)
∗,E8,4

is a free M∗-module generated by the following ten holomorphic Jacobi
forms

weight 4 ∶ A4 ∆ψ−8,4

weight 6 ∶ B4 ∆ϕ−6,4

weight 8 ∶ C8,4 ∆ϕ−4,4 ∆2ϕ−16,4

weight 10 ∶ ∆ϕ−2,4 ∆2ϕ−14,4

weight 12 ∶ ∆2ϕ−12,4

2. The space Jcusp,W (E8)
∗,E8,4

is a free M∗-module generated by the following ten Jacobi cusp forms

weight 8 ∶ ∆ϕ−4,4 − ∗∆2ϕ−16,4

weight 10 ∶ ∆ϕ−2,4 − ∗∆2ϕ−14,4 U10,4

weight 12 ∶ ∆ϕ0,4 − ∗∆2E4ϕ−16,4 U12,4 ∆2ϕ−12,4

weight 14 ∶ ∆2(E4ϕ−14,4 −E6ϕ−16,4) ∆2ϕ−10,4

weight 16 ∶ ∆2ϕ−8,4 ∆2ψ−8,4

Remark that these constants ∗ are chosen to cancel the term q2∑16′ in the above constructions
of Jacobi cusp forms.

3.4.5 Isomorphisms between spaces of Jacobi forms

In this subsection we use the embeddings of lattices to build two isomorphisms between the
spaces of certain Jacobi forms. We denote by Jw,O(L)

k,L,t the space of weak Jacobi forms of weight
k and index t for the lattice L which are invariant under the action of the integral orthogonal
group O(L).

We first consider the case of index 2. Recall that the Nikulin’s lattice is defined as (see [GN18,
Example 4.3])

N8 = ⟨8A1, h = (a1 +⋯ + a8)/2⟩ ≅D
∨
8 (2),

where (ai, aj) = 2δij , (h,h) = 4. It is easy to check that N8 is a sublattice of E8. We then have

N8 < E8 ⇒ E8 < N
∨
8 ⇒ E8(2) < N

∨
8 (2) ≅D8.

Thus, we arrive at the following isomorphism.

Proposition 3.4.15. The natural map

J
w,O(D8)
k,D8,1

Ð→ J
w,W (E8)
k,E8,2

φ(τ,Z)z→
1

∣W (E8)∣
∑

σ∈W (E8)
φ̂(τ, σ(z))

is a M∗-modules isomorphism. Here, Z = ∑8
i=1 ziei, the set {ei ∶ 1 ≤ i ≤ 8} is the standard basis of

R8, and φ̂(τ, z) is defined as

φ̂(τ, z) = φ(τ, z1 + z2, z1 − z2, z3 + z4, z3 − z4, z5 + z6, z5 − z6, z7 + z8, z7 − z8).

Proof. Under the discriminant groups, the O(D8)-orbit of (1
2 , ...,

1
2) corresponds to ∑4. The

O(D8)-orbit of (1,0, ...,0) corresponds to ∑2. From this, we assert that the above map is
injective by comparing q0-terms of Jacobi forms. The space Jw,O(D8)

∗,D8,∗ is in fact the space the
Weyl invariant weak Jacobi forms for the root system C8. By Table 3.1, there exist weak Jacobi
forms φ−4,D8,1, φ−2,D8,1, φ0,D8,1. Thus, by Theorem 3.4.7, we prove the surjectivity of the above
map.
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α1 α3 α4 α5 α6

α2

αE6

Figure 3.2: Extended Coxeter-Dynkin diagram of E6

Remark that
N8 < 2D4 < E8 ⇒ E8(2) < 2D∨

4 (2) = 2D4 <D8

and the induced map
J

w,O(2D4)
k,2D4,1

Ð→ J
w,W (E8)
k,E8,2

is also a M∗-modules isomorphism.
We next consider the case of index 3. We see from the extended Coxeter-Dynkin diagram of

E8 (see Figure 3.1) that A2 ⊕E6 is a sublattice of E8. Observing the extended Coxeter-Dynkin
diagram of E6 (see Figure 3.2), we find that 3A2 is a sublattice of E6. Then we have

4A2 < E8 ⇒ E8 < 4A∨
2 ⇒ E8(3) < 4A∨

2(3) ≅ 4A2.

In a similar way, we can prove the following result.

Proposition 3.4.16. The natural map

J
w,O(4A2)
k,4A2,1

Ð→ J
w,W (E8)
k,E8,3

ϕ(τ,Z)z→
1

∣W (E8)∣
∑

σ∈W (E8)
ϕ̃(τ, σ(z))

is a M∗-modules isomorphism. Here, we fix the standard model of A2

A2 = Zβ1 +Zβ2, (βi, βi) = 2, i = 1,2, (β1, β2) = 1,

and ϕ̃(τ, z) is defined as

ϕ̃(τ, z) =φ(τ, z6 − z7, z7 + z8, (z1 − z2 − z3 − z4 − z5 − z6 − z7 + z8)/2,−z1 + z2,

− z1 − z2, (z1 + z2 + z3 + z4 + z5 − z6 − z7 + z8)/2,−z3 + z4,−z4 + z5).

It is known that Jw,O(A2)
∗,A2,1

is generated by a0,1 and a−2,1 over M∗, here a0,1 ∈ J
w,O(A2)
0,A2,1

and

a−2,1 ∈ J
w,O(A2)
−2,A2,1

(see Table 3.1). By the two functions, we can construct

ϕ0,4A2,1 = a0,1 ⊗ a0,1 ⊗ a0,1 ⊗ a0,1 ∈ J
w,O(4A2)
0,4A2,1

,

ϕ−2,4A2,1 =∑a−2,1 ⊗ a0,1 ⊗ a0,1 ⊗ a0,1 ∈ J
w,O(4A2)
−2,4A2,1

,

ϕ−4,4A2,1 =∑a−2,1 ⊗ a−2,1 ⊗ a0,1 ⊗ a0,1 ∈ J
w,O(4A2)
−4,4A2,1

,

ϕ−6,4A2,1 =∑a−2,1 ⊗ a−2,1 ⊗ a−2,1 ⊗ a0,1 ∈ J
w,O(4A2)
−6,4A2,1

,

ϕ−8,4A2,1 = a−2,1 ⊗ a−2,1 ⊗ a−2,1 ⊗ a−2,1 ∈ J
w,O(4A2)
−8,4A2,1

,

here the sums take over all permutations of 4 copies of A2. Then we conclude from the above
isomorphism that Jw,O(4A2)

∗,4A2,1
is generated by ϕ2j,4A2,1, 0 ≤ j ≤ 4, over M∗. Moreover, the image

of ϕ−8,4A2,1 gives a new construction of our generator of index 3 i.e. ϕ−8,3.

103



We can also consider the case of index 5. It is easy to see 2A4 < E8, which yields E8(5) <
2A∨

4(5). Unfortunately, the induced map

J
w,O(2A4)
k,2A∨4(5),1

Ð→ J
w,W (E8)
k,E8,5

(3.4.25)

is not an isomorphism. In fact, for φ ∈ J
w,O(2A4)
k,2A∨4(5),1

, the function ∆2φ is always a holomorphic

Jacobi form. But, for ψ ∈ J
w,W (E8)
k,E8,5

, the function ∆2ψ is not a holomorphic Jacobi form in
general. It is becauce that the lattice A∨

4(5) satisfies the Norm2 condition in (2.3.2) (see [GW17,
Lemma 2]).

3.4.6 Pull-backs of Jacobi forms

We have seen from §3.4.3 and §3.4.4 that our approach based on differential operators works well
when the absolute value of minimal weight equals the maximal norm of Weyl orbits appearing
in q0-terms of Jacobi forms. But when the index is larger than 4, the absolute value of minimal
weight will be less than the maximal norm of Weyl orbits, which causes our previous approach
to not work well because there are not enough linear equations in this case. In order to study
W (E8)-invariant Jacobi forms of index larger than 4, we introduce a new approach relying on
pull-backs of Jacobi forms.

For convenience, we first recall some results on classical Jacobi forms introduced by Eichler
and Zagier in [EZ85]. Let Jw

2k,t be the space of weak Jacobi forms of weight 2k and index t. It
is well-known that the bigraded ring of weak Jacobi forms of even weight and integral index is a
polynomial algebra over M∗ generated by two basic weak Jacobi forms (ζ = e2πiz)

φ−2,1(τ, z) = ζ + ζ
−1 − 2 +O(q) ∈ Jw

−2,1,

φ0,1(τ, z) = ζ + ζ
−1 + 10 +O(q) ∈ Jw

0,1.

Let φ ∈ J
w,W (E8)
k,E8,t

and v4 be a vector of norm 4 in E8. Then the function φ(τ, zv4) is a weak
Jacobi form of weight k and index 2t. In order to compute the Fourier coefficients of φ(τ, zv4),
we consider the pull-backs of Weyl orbits. Let ∑v be a Weyl orbit associated to v defined in
§3.4.1. Recall that

∑
v

=
240

∣W (E8)∣
∑

σ∈W (E8)
exp(2πi(σ(v), z)).

Since the Weyl group W (E8) acts transitively on the set R4 of vectors of norm 4 in E8 (see
Lemma 3.4.1), we have

∑
v

(zv4) =
240

∣W (E8)∣
∑

σ∈W (E8)
exp(2πi(σ(v), v4)z)

=
240

∣W (E8)∣
∑

σ∈W (E8)
exp(2πi(v, σ(v4))z)

=
240

∣R4∣
∑
l∈R4

exp(2πi(v, l)z).

In view of this fact, we define

max(∑
v

, v4) ∶= max(v,R4) = max{(v, l) ∶ l ∈ R4}. (3.4.26)

It is easy to check that

max(w1,R4) = 4 max(w2,R4) = 5 max(w3,R4) = 7 max(w4,R4) = 10

max(w5,R4) = 8 max(w6,R4) = 6 max(w7,R4) = 4 max(w8,R4) = 2

104



and the maximal value can be obtained at l = (0,0,0,0,0,0,0,2). Thus, we get

max(∑
2

, v4) = 2 max(∑
4

, v4) = 4 max(∑
6

, v4) = 4 max(∑
8′
, v4) = 5

max(∑
8′′
, v4) = 4 max(∑

10

, v4) = 6 max(∑
12

, v4) = 6 max(∑
14′
, v4) = 7

max(∑
14′′
, v4) = 6 max(∑

16′
, v4) = 8 max(∑

16′′
, v4) = 7 max(∑

18′
, v4) = 8

max(∑
18′′
, v4) = 6 max(∑

20′
, v4) = 8 max(∑

20′′
, v4) = 8 max(∑

22′
, v4) = 9

max(∑
22′′
, v4) = 8 max(∑

24′
, v4) = 8 max(∑

24′′
, v4) = 9 max(∑

26′
, v4) = 10

max(∑
26′′
, v4) = 9 max(∑

28′
, v4) = 10 max(∑

30′
, v4) = 10 max(∑

32′
, v4) = 11

max(∑
32′′
, v4) = 10 max(∑

36′
, v4) = 12.

This new approach can be used to recover some cases of index 3 and 4.

Index 3: Assume that φ = ∑8′ +⋯+O(q) ∈ J
w,W (E8)
−2k,E8,3

, where ⋯ stands for the Weyl orbits of
norm less than 8. Then we have

φ(τ, zv4) = ζ
±5 +⋯ +O(q) ∈ Jw

−2k,6,

here ⋯ stands for the terms of type ζ±i with 0 ≤ i ≤ 4. Note that in the above equation the
term ζ±5 may have positive coefficient different from 1. But this does not affect our discussion.
Thus, we always omit this type of coefficient hereafter. We claim that −2k ≥ −8. If −2k < −8
i.e. k > 4, then Jw

−2k,6 = φ
k
−2,1 ⋅ J

w
0,6−k. Since Jw

−2k,6 ≠ {0}, we have k ≤ 6. But Jw
−10,6 is generated

by φ5
−2,1φ0,1 = ζ±6 + ⋯ and Jw

−12,6 is generated by φ6
−2,1 = ζ±6 + ⋯. This contradicts the Fourier

expansion of φ(τ, zv4).
Assume that φ ∈ Jw,W (E8)

−2k,E8,3
has no Fourier coefficient ∑8′ in its q0-term. By Lemma 3.4.4, we

have ∆φ ∈ J
W (E8)
12−2k,E8,3

. Thus we get 12 − 2k > 4 i.e. −2k > −8.

Conclusion: The possible minimum weight in this case is ≥ −8 and the dimension of Jw,W (E8)
−8,E8,3

is at most one.

Index 4: Assume that φ = ∑16′ +⋯ +O(q) ∈ J
w,W (E8)
−2k,E8,4

with k > 0. Then we have

φ(τ, zv4) = ζ
±8 +⋯ +O(q) ∈ Jw

−2k,8.

Since Jw
−2k,8 = φ

k
−2,1 ⋅ J

w
0,8−k, we have 8 − k ≥ 0 i.e. −2k ≥ −16.

Assume that φ ∈ Jw,W (E8)
−2k,E8,4

has no Fourier coefficient ∑16′ in its q0-term. By Lemma 3.2.1 and
Lemma 3.4.2, the function η42φ is a W (E8)-invariant holomorphic Jacobi form of weight 21− 2k
and index 4 with a character. In view of the singular weight, we get 21 − 2k ≥ 4 i.e. −2k ≥ −16.

Conclusion: The possible minimum weight in this case is ≥ −16.
Assume that φ = ∑14′ +⋯ +O(q) ∈ J

w,W (E8)
−2k,E8,4

with k > 0. Then we have

φ(τ, zv4) = ζ
±7 +⋯ +O(q) ∈ Jw

−2k,8.

Since Jw
−2k,8 = φk−2,1 ⋅ J

w
0,8−k, the spaces Jw

−16,8 and Jw
−14,8 are all generated by one function with

leading Fourier coefficient ζ±8. Thus k ≤ 6 i.e. −2k ≥ −12.
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Assume that φ ∈ J
w,W (E8)
−2k,E8,4

has no Fourier coefficients ∑16′ and ∑14′ in its q0-term. By
Lemma 3.2.1 and Lemma 3.4.2, the function η36φ is a W (E8)-invariant holomorphic Jacobi form
of weight 18− 2k and index 4 with a character. In view of the singular weight, we get 18− 2k ≥ 4
i.e. −2k ≥ −14.

Conclusion: The dimension of Jw,W (E8)
−16,E8,4

is at most one.

3.4.7 The case of index 5

In this subsection we use the approach in §3.4.6 to dertermine the possible minimum weight of
the generators of Jw,W (E8)

∗,E8,5
.

(I) Assume that φ = ∑22′ +⋯ +O(q) ∈ J
w,W (E8)
−2k,E8,5

with k > 0. Then we have

φ(τ, zv4) = ζ
±9 +⋯ +O(q) ∈ Jw

−2k,10.

Since Jw
−2k,10 = φk−2,1 ⋅ J

w
0,10−k, we have 10 − k ≥ 0. But when k = 9 or 10, the spaces Jw

−20,10 and
Jw
−18,10 are all generated by one function with leading Fourier coefficient ζ±10, which contradicts

the Fourier expansion of φ(τ, zv4). Therefore, we get k ≤ 8 i.e. −2k ≥ −16.
(II) Assume that φ ∈ J

w,W (E8)
−2k,E8,5

has no Fourier coefficient ∑22′ in its q0-term. By Lemma

3.4.4, the function ∆2φ ∈ J
W (E8)
24−2k,E8,5

. By Lemma 3.4.5, we have 24 − 2k ≥ 6 i.e. −2k ≥ −18.

(III) Assume that φ ∈ J
w,W (E8)
−2k,E8,5

has no Fourier coefficients ∑22′ and ∑20′ in its q0-term.
By Lemma 3.2.1 and Lemma 3.4.2, the function η44φ is a W (E8)-invariant Jacobi cusp form of
weight 22−2k and index 5 with a character. From the singular weight, it follows that 22−2k > 4
i.e. −2k ≥ −16.

(IV) Assume that φ ∈ Jw,W (E8)
−2k,E8,5

has no Fourier coefficients ∑22′ , ∑20′ and ∑18′ in its q0-term.
By Lemma 3.2.1 and Lemma 3.4.2, the function η40φ is a W (E8)-invariant Jacobi cusp form of
weight 20 − 2k and index 5 with a character. It follows that 20 − 2k > 4 i.e. −2k ≥ −14.

By the discussions above, we get the following result.

Proposition 3.4.17.

dimJ
w,W (E8)
−2k,E8,5

= 0, if − 2k ≤ −20,

dimJ
w,W (E8)
−18,E8,5

≤ 1,

dimJ
w,W (E8)
−16,E8,5

≤ 3.

Moreover, if the W (E8)-invariant weak Jacobi form of weight −18 and index 5 exists, then its
q0-term has no Fourier coefficient ∑22′ but must contain Fourier coefficient ∑20′ .

We do not know if the W (E8)-invariant weak Jacobi form of weight −18 and index 5 exists.
But the W (E8)-invariant weak Jacobi forms of weight −16 and index 5 do indeed exist. We next
show how to construct one such Jacobi form.

We first construct a weak Jacobi form of weight −8 and index 1 for A∨
4(5) invariant under

the integral orthogonal group. It is known that

M2 (Γ0(5),(
⋅

5
)) = Cη5(τ)/η(5τ) +Cη5(5τ)/η(τ).

Using Proposition 1.4.9, we can construct two independent holomorphic Jacobi forms f1 and f2

of weight 4 from the space M2(Γ0(5), (
⋅
5)). Then the function (∗f1 − ∗f2)/∆ will be a weak

Jacobi form of weight −8 for the lattice A∨
4(5).
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The tensor product of the above weak Jacobi form of weight −8 defines a weak Jacobi form
of weight −16 and index 1 for 2A∨

4(5), whose image under map (3.4.25) gives a W (E8)-invariant
weak Jacobi form of weight −16 and index 5 with the following q0-term

ϕ−16,5 =240 − 6∑
2

+13∑
4

−8∑
6

−14∑
8

+28∑
10

−14∑
12

− 8∑
14

+13∑
16

−6∑
18′
+∑

20′
,

(3.4.27)

here and subquently, we use the following notations

cj
′
∑
2j′
+cj

′′
∑
2j′′

= (cj
′ + cj

′′)∑
2j

= cj∑
2j

, j = 4,7,8,9,10,11,12,13.

In general, we only know the coefficients cj and it is hard to calculate the exact values of c′j and
cj
′′. Thus, the above notations are convenient for us.

3.4.8 The case of index 6

In this subsection we discuss the possible minimum weight of the generators of Jw,W (E8)
∗,E8,6

.

(I) Assume that φ = ∑36′ +⋯ +O(q) ∈ J
w,W (E8)
−2k,E8,6

with k > 0. Then we have

φ(τ, zv4) = ζ
±12 +⋯ +O(q) ∈ Jw

−2k,12.

From Jw
−2k,12 = φ

k
−2,1 ⋅ J

w
0,12−k, we obtain 12 − k ≥ 0 i.e. −2k ≥ −24.

(II) Assume that φ = ∑32′ + ∗∑32′′ +⋯ +O(q) ∈ J
w,W (E8)
−2k,E8,6

with k > 0. Similarly, we have

φ(τ, zv4) = ζ
±11 +⋯ +O(q) ∈ Jw

−2k,12,

and then k ≤ 12. But when k = 11 or 12, the space Jw
−2k,12 is generated by one function with

leading q0-term ζ±12, which gives a contradiction. Thus, k ≤ 10 i.e. −2k ≥ −20.
(III) Assume that φ ∈ J

w,W (E8)
−2k,E8,6

has no Fourier coefficient ∑36′ in its q0-term. Similarly, the
function η64φ is a W (E8)-invariant holomorphic Jacobi form of weight 32− 2k and index 6 with
a character. Hence, 32 − 2k ≥ 4. But when 2k = 28, the Jacobi form η64φ has singular weight,
which yields that η64φ has a Fourier expansion of the form

q8/3 (∑
32′
−∑

32′′
) +O(q11/3).

This contradicts the above argument (II). Thus, we have −2k ≥ −26.
(IV) Assume that φ ∈ Jw,W (E8)

−2k,E8,6
has no Fourier coefficients ∑36′ , ∑32′ and ∑32′′ in its q0-term.

Then the function η60φ is aW (E8)-invariant holomorphic Jacobi form of weight 30−2k and index
6 with a character. Hence, 30 − 2k ≥ 4 i.e. −2k ≥ −26. Similarly, when 2k = 26, the Jacobi form
η60φ has singular weight, which implies that η60φ has a Fourier expansion of the form

q5/2
∑
30′
+O(q7/2).

This is impossible because φ(τ,0) = 0. Thus, we have −2k ≥ −24.
(V) Assume that φ ∈ J

w,W (E8)
−2k,E8,6

has no Fourier coefficients ∑36′ , ∑32′ , ∑32′′ and ∑30′ in its
q0-term. Then the function η56φ is aW (E8)-invariant holomorphic Jacobi form of weight 28−2k
and index 6 with a character. Hence, −2k ≥ −24. Similarly, when 2k = 24, the Jacobi form η56φ
has singular weight, which forces that η56φ has a Fourier expansion of the form

q7/3
∑
28′
+O(q10/3).
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This is impossible because φ(τ,0) = 0. Thus, we have −2k ≥ −22.
Combining the above arguments together, we have

Proposition 3.4.18.

dimJ
w,W (E8)
−2k,E8,6

= 0, if − 2k ≤ −28,

dimJ
w,W (E8)
−26,E8,6

≤ 1,

dimJ
w,W (E8)
−24,E8,6

≤ 3.

Moreover, if the W (E8)-invariant weak Jacobi form of weight −26 and index 6 exists, then its
q0-term has no Fourier coefficients ∑36′ and ∑32′ but must contain Fourier coefficient ∑32′′.

It is easy to continue the above discussions and prove that

dimJ
w,W (E8)
−22,E8,6

≤ 4, dimJ
w,W (E8)
−20,E8,6

≤ 6.

We next construct two independent W (E8)-invariant weak Jacobi forms of weight −24 and
index 6.

From the embeddings of lattices 4A2 < E8 and 2D4 < E8, we see

E8(6) < 4A2(2), E8(6) < 2D4(3).

By Table 3.1, there exist an O(A2)-invariant weak Jacobi form φ−6,A2,2 of weight −6 and index
2 for the lattice A2 and an O(D4)-invariant weak Jacobi form φ−12,D4,3 of weight −12 and index
3 for the lattice D4. The function φ−6,A2,2 can be constructed as

ϑ2(τ, z1)ϑ
2(τ, z1 − z2)ϑ

2(τ, z1)

η18(τ)

and its q0-term is rather simple. As a tensor product of φ−6,A2,2, we can construct a W (E8)-
invariant weak Jacobi form of weight −24 and index 6:

ϕ−24,6 =240 − 8∑
2

+24∑
4

−24∑
6

−36∑
8

+120∑
10

−88∑
12

−88∑
14

+198∑
16

− 88∑
18

−88∑
20

+120∑
22

−36∑
24

−24∑
26

+24∑
28′
−8∑

30′
+∑

32′′
.

(3.4.28)

The function φ−12,D4,3 is a linear combination of φ3
−4,D4,1

and φ−4,D4,1ψ
2
−4,D4,1

, where φ−4,D4,1

is the generator of Jw,W (D4)
−4,D4,1

invariant under the odd sign change (i.e. z1 ↦ −z1) and ψ−4,D4,1

is the generator of Jw,W (D4)
−4,D4,1

anti-invariant under the odd sign change. We refer to [Ber99] for
their constructions. The q0-term of φ−12,D4,3 is quite complicated but it is easy to see that it
contains only one O(D4)-orbit of vectors of norm 18. Thus, the tensor product of φ−12,D4,3 gives
a W (E8)-invariant weak Jacobi form of weight −24 and index 6 with leading Fourier coefficient
∑36′ in its q0-term. We note this function by ψ−24,6.

If the unqiue W (E8)-invariant weak Jacobi form ϕ−26,6 of weight −26 and index 6 exists,
then it is possible to prove that the above inequalities of dimensions will be equalities and the
generators can be constructed by applying the differential operators to ϕ−26,6, ϕ−24,6 and ψ−24,6.
In addition, the function ϕ−4,2ϕ−16,4 should be also a generator of weight −20.
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3.4.9 Further remarks

We close this section with the remarks below.

Remark 3.4.19. A holomorphic function is called a E8 Jacobi form if it only satisfies the last
three conditions in Definition 3.1.1. The space of W (E8)-invariant Jacobi forms is much smaller
than the space of E8 Jacobi forms. By [FM07], the dimension of the space of E8 holomorphic
Jacobi forms of weight 4 and index 2 is 51. It follows that the dimension of the space of E8 weak
Jacobi forms of weight -8 and index 2 is 50. One such function is

1

∆(τ)

4

∏
i=1

ϑ(τ, z2i−1 + z2i)ϑ(τ, z2i−1 − z2i).

But we have proved that there is no non-zero W (E8)-invariant weak Jacobi form of weight -8
and index 2. We refer to [EK94] for the dimensional formulas of the spaces of E8 Jacobi forms
of large weights.

Remark 3.4.20. The methods described in this paper would be useful to study the ring of
Jacobi forms for other lattices. For example, using similar methods, we can show that the space
J

w,O(A4)
∗,A∨4(5),1

is a free module over M∗ generated by six weak Jacobi forms of weights −8, −6, −4,

−4, −2 and 0, here Jw,O(A4)
∗,A∨4(5),1

is the space of weak Jacobi forms of index 1 for the lattice A∨
4(5)

which are invariant under the integral orthogonal group of A∨
4(5).

Remark 3.4.21. One question still unanswered in this paper is whether the bigraded ring of
W (E8)-invariant weak Jacobi forms is finitely generated over M∗. This question is at present
far from being solved. If this ring is finitely generated, then it will contain a lot of generators
(more than 20) and there are plenty of algebraic relations among generators. Moreover, there
might be generators of index larger than 6 because the generator of degree 30 of the ring of
W (E8)-invariant polynomials does not appear in the leading term of Taylor expansion of any
W (E8)-invariant weak Jacobi form of index ≤ 6

3.5 Modular forms in ten variables

In this section we investigate modular forms with respect to the orthogonal group O+(2U ⊕

E8(−1)). In [HU14], Hashimoto and Ueda proved that the graded ring of modular forms with
respect to O+(2U⊕E8(−1)) is a polynomial ring in modular forms of weights 4, 10, 12, 16, 18, 22,
24, 28, 30, 36, 42. The dimension of the space of modular forms of fixed weight can be computed
by their results. In [DKW18], the authors showed that one can choose the additive liftings of
Jacobi-Eisenstein series as generators. We next give an upper bound of dimMk(O

+(2U ⊕E8))

based on our theory of W (E8)-invariant Jacobi forms.
Let F be a modular form of weight k with respect to O+(2U ⊕E8(−1)) with trivial character

and z = (z1,⋯, z8) ∈ E8 ⊗C. We write

F (τ, z, ω) = ∑
n,m∈N,`∈E8

2nm−(`,`)≥0

a(n, `,m) exp(2πi(nτ + (`, z) +mω))

=
∞
∑
m=0

fm(τ, z)pm,

where p = exp(2πiω). Then fm(τ, z) is a W (E8)-invariant holomorphic Jacobi form of weight k
and index m and we have

a(n, `,m) = a(m,`,n), ∀(n, `,m) ∈ N⊕E8 ⊕N.
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For r ∈ N, we set

Mk(O
+(2,10))(pr) = {F ∈Mk(O

+(2U ⊕E8(−1))) ∶ fm = 0, m < r}

and
J
W (E8)
k,E8,m

(qr) = {f ∈ J
W (E8)
k,E8,m

∶ f(τ, z) = O(qr)}.

We then have the following exact sequence

0Ð→Mk(O
+(2,10))(pr+1)Ð→Mk(O

+(2,10))(pr)
Pr
Ð→ J

W (E8)
k,E8,r

(qr),

where r ≥ 0 and Pr maps F to fr. From this, we obtain the following estimation

dimMk(O
+(2,10))(pr) − dimMk(O

+(2,10))(pr+1) ≤ dimJ
W (E8)
k,E8,r

(qr).

It is clear that JW (E8)
k,E8,r

(qr) = {0} for sufficiently large r, and then
Mk(O

+(2,10))(pr) =Mk(O
+(2,10))(pr+1) = ⋯ = {0}. We thus deduce

dimMk(O
+(2U ⊕E8)) ≤

∞
∑
r=0

dimJ
W (E8)
k,E8,r

(qr) ≤
∞
∑
r=0

dimJ
w,W (E8)
k−12r,E8,r

. (3.5.1)

We use the pull-back from W (E8)-invariant Jacobi forms to W (E7)-invariant Jacobi forms
to improve the inequality (3.5.1).

Proposition 3.5.1. Let E7 = {v ∈ E8 ∶ (v,w8) = 0}. We have the following homomorphism

Φ ∶ J
w,W (E8)
2k,E8,m

Ð→ J
w,W (E7)
2k,E7,m

,

f(τ, z)z→ f(τ, z1,⋯, z6, z7,−z7).

If Φ(f) = 0, then we have f/G2 ∈ J
w,W (E8)
2k+240,E8,m−60, where

G(τ, z) = ∏
u∈R+2(E8)

ϑ(τ, (u, z))

η3(τ)

is a weak E8 Jacobi form of weight −120 and index 30 which is anti-invariant under W (E8).
The symbol R+

2(E8) denotes the set of all positive roots of E8.
By the following structure theorem in [Wir92] (see Table 3.1)

J
w,W (E7)
2∗,E7,∗ =M∗[φ0,1, φ−2,1, φ−6,2, φ−8,2, φ−10,2, φ−12,3, φ−14,3, φ−18,4],

we get
J

w,W (E8)
2k,E8,m

= {0} if 2k < −5m. (3.5.2)

As a consequence of the above proposition and (3.5.1), we deduce

dimMk(O
+(2U ⊕E8(−1))) ≤ ∑

0≤r≤ k
7

dimJ
w,W (E8)
k−12r,E8,r

. (3.5.3)

We note that dimM6(O
+(2U ⊕E8(−1))) = 0 due to JW (E8)

6,E8,1
= {0}.

By inequality (3.5.3), we get upper bounds of dimM2k(O
+(2U ⊕E8(−1))) for small k. By

[HU14, Corollary 1.3], we can calculate the exact values of dimension. We list them in Table 3.3.

x = 23 + dimJ
w,W (E8)
−18,E8,5

.
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Table 3.3: Dimension of modular forms for O+(II2,10)

weight 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

bound 1 0 1 1 2 1 3 2 4 4 6 5 9 8 12 13 17 17 24 x

dim. 1 0 1 1 2 1 3 2 4 4 6 5 9 8 12 12 17 16 24 23

We see at once that the upper bound is equal to the exact dimension when weight is less than
42 and not equal to 34 or 38.

By means of the same technique, we can assert

dimM4(O
+(2U ⊕E8(−2))) = 1, dimM6(O

+(2U ⊕E8(−2))) = 1.

These two modular forms can be constructed as additive liftings of holomorphic Jacobi forms A2

and B2, respectively.
In the end of this section, we construct two reflective modular forms. It is easy to check that

φ0,2 =
E2

4A2

∆
+E4ϕ−4,2 − 2ϕ0,2 = q

−1 + 24 +O(q)

is a W (E8)-invariant weakly holomorphic Jacobi form of weight 0 and index 2. Its Borcherds
product Borch(φ0,2) ∈M12(O

+(2U ⊕E8(−2)),det) is a reflective modular form of weight 12 with
complete 2-reflective divisor for O+(2U ⊕ E8(−2)). Another construction of this modular form
can be found in [GN18].

The Borcherds product of ϕ0,2 is a strongly reflective modular form of weight 60 with respect
to O+(2U ⊕ E8(−2)). Its divisor is determined by reflective vectors of norm −4 and divisor 2.
It is anti-invariant under the Weyl group W (E8) and it is not an additive lifting. Moreover, its
first Fourier–Jacobi coefficient is given by the theta block ∏r∈R+2(E8) ϑ(τ, (r, z)).
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