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Résumé

Cette thèse porte sur les lois stables réelles au sens large et comprend deux parties in-
dépendantes.

La première partie concerne les lois stables généralisées introduites par Schneider [81]
dans un contexte physique et étudiées ensuite par Pakes [74]. Elles sont définies par
une équation différentielle fractionnaire dont on caractérise ici l’existence et l’unicité des
solutions densité à l’aide de deux paramètres positifs, l’un de stabilité et l’autre de biais.
On montre ensuite diverses identités en loi pour les variables aléatoires sous-jacentes. On
étudie le comportement asymptotique précis de la densité aux deux extrémités du support.
Dans certains cas, on donne des représentations exactes de ces densités comme fonctions
de Fox. Enfin, on résoud entièrement les questions ouvertes autour de l’infinie divisibilité
des lois stables généralisées qui avaient été posées dans [74].

La seconde partie, plus longue, porte sur l’analyse classique des lois α-stables libres
réelles. Introduites par Bercovici et Pata [13], ces lois ont ensuite étudiées par Biane [14],
Demni [29] et Hasebe-Kuznetsov [44] sous divers points de vue. Nous montrons qu’elles
sont classiquement infiniment divisibles pour α ≤ 1 et qu’elles appartiennent à la classe de
Thorin étendue pour α ≤ 3/4. La mesure de Lévy est calculée explicitement pour α = 1 et
ce calcul entraîne que les lois 1-stables libres n’appartiennent pas à la classe de Thorin,
sauf dans le cas de la loi de Cauchy avec dérive. Dans le cas symétrique, nous montrons
que les densités α−stables libres ne sont pas infiniment divisibles quand α > 1. Dans le
cas de signe constant nous montrons que les densités stables libres ont une courbe en
baleine, autrement dit que leurs dérivées successives ne s’annulent qu’une seule fois sur
leurs supports, ce qui constitue un raffinement de l’unimodalité et fait écho à la courbe en
cloche des densités stables classiques récemment montrée rigoureusement dans [83] et [58].
Nous établissons enfin plusieurs propriétés précises des densités stables libres spectrale-
ment de signe constant, parmi lesquelles une analyse détaillée de la variable aléatoire de
Kanter, des expansions asymptotiques complètes en zéro, ainsi que plusieurs propriétés
intrinsèques des courbes en baleine. Nous montrons enfin une nouvelle identité en loi
pour l’algèbre Beta-Gamma, diverses propriétés d’ordre stochastique et nous étudions le
problème classique de Van Dantzig pour la loi semi-circulaire généralisée.

Mots-clés

Algèbre bêta-gamma; Convolution gamma généralisée; Courbe en baleine; Courbe en
cloche; Divisibilité infinie; Equation différentielle fractionnaire; Expansion asymptotique;
Fonction double Gamma; Fonction de Fox; Fonction de Wright; Monotonie complète
hyperbolique; Loi de Kanter; Loi stable généralisée; Loi stable libre; Ordre stochastique;
Problème de Van Dantzig.
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Abstract

This thesis deals with real stable laws in the broad sense and consists of two independent
parts.

The first part concerns the generalized stable laws introduced by Schneider [81] in a
physical context and then studied by Pakes [74]. They are defined by a fractional differen-
tial equation, whose existence and uniqueness of the density solutions is here characterized
via two positive parameters, a stability parameter and, a bias parameter. We then show
various identities in law for the underlying random variables. The precise asymptotic
behavior of the density at both ends of the support is investigated. In some cases, exact
representations as Fox functions of these densities are given. Finally, we solve entirely the
open questions on the infinite divisibility of the generalized stable laws which had been
raised in [74].

The second and longer part deals with the classical analysis of the free α−stable laws.
Introduced by Bercovici and Pata [13], these laws were then studied by Biane [14], Demni
[29] and Hasebe-Kuznetsov [44], from various points of view. We show that they are
classically infinitely divisible for α ≤ 1 and that they belong to the extended Thorin class
extended for α ≤ 3/4. The Lévy measure is explicitly computed for α = 1, showing that
free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case.
In the symmetric case, we show that free α-stable densities are not infinitely divisible
when α > 1. In the one-sided case we prove, refining unimodality, that the densities are
whale-shaped, that is their successive derivatives vanish exactly once on their support.
This echoes the bell shape property of the classical stable densities recently rigorously
shown in [83] and [58]. We also derive several fine properties of spectrally one-sided free
stable densities, including a detailed analysis of the Kanter random variable, complete
asymptotic expansions at zero, and several intrinsic features of whale-shaped functions.
Finally, we display a new identity in law for the Beta-Gamma algebra, various stochas-
tic order properties, and we study the classical Van Danzig problem for the generalized
semi-circular law.

Keywords

Asymptotic expansion; Bell shape; Beta-gamma algebra; Double Gamma function; Fox
function; Fractional differential equation; Free stable law; Generalized Gamma convo-
lution; Generalized stable law; Infinite divisibility; Hyperbolic complete monotonicity;
Kanter law; Stochastic order; Van Dantzig problem; Whale shape; Wright function.
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Symbols and abbreviations

Various
N
N∗

r.v.
R
R+

C
Z
d=
iff

set of nonnegtive integers
set of strictly positive integers
random variable
set of real numbers
set of nonnegtive real numbers
set of complex numbers
set of integers
equality in distribution
if and only if

Random variables
U
L
Ba,b

Γt

Kα

Zα,ρ

Zα

Wα,ρ

Sβ
S
Xm,α

Ym,α
Xα,ρ

Xα

Ca,b

T
W

Yα

uniformly distributed r.v. on (0,1)
unit exponential r.v.
standard Beta(a, b) r.v.
standard Gamma(t,1) r.v. with rate parameter
Kanter random variable
classical strictly stable r.v.
Zα,1

Zα,ρ∣Zα,ρ > 0
classical non-strictly stable r.v.
exceptional classical 1-stable r.v. satisfying E[esS] = ss, s > 0.
generalized stable r.v.
X−1
m,α

free strictly stable r.v.
Xα,1

free non-strictly 1-stable r.v.
exceptional free 1-stable r.v. having Voiculescu transform − log z
sin(πU)
πU eπU cot(πU)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xα − bα if α ∈ (0,1)
1 −T if α = 1

b
−1/α
1/α −Xα,1/α if α ∈ (1,2]

3



Abbreviations
BF
BS
BSn
CM
EGGC
FID
GGC
Gst
HCM
ID
ME
rGst
SD
TBF
WS

Bernstein Function
Bell-Shaped
Bell-Shaped of order n
Completely Monotone
Extended Generalized Gamma Convolution
Freely Infinitely Divisible
Generalized Gamma Convolution
Generalized STable law with parameters m and α
Hyperbolically Completely Monotone
Infinitely Divisible or Infinitely Divisible distributions
Mixture of Exponential distributions
Reciprocal Generalized STable law with parameters m and α
Self-Decomposable
Thorin-Bernstein Function
Whale-Shaped
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Chapter 1

Infinitely divisible distributions

1.1 A brief historical view
The concept of infinite divisibility was introduced by Bruno de Finetti [35] in 1929 in the
context of processes with stationary independent increments. Infinitely divisible distribu-
tions were systematically studied in 1937 by Paul Lévy [61], and soon later in 1938 by
Alexander Yakovlevich Khintchine [53]. For this reason, the canonical form of the charac-
teristic function of infinitely divisible distributions is called the Lévy-Khintchine represen-
tation. Around the same time, questions about the central limit theorem led Lévy to the
introduction of the self-decomposable distributions which are also called nowaday distri-
butions of class L. Starting from Olof Thorin’s 1977 paper [85] on the infinite divisibility of
the Lognormal distribution, Lennart Bondesson developed a theory of generalized gamma
convolutions (GGC), a subclass of infinitely divisible distributions, which is displayed in
his 1992 monograph [18]. The GGC property is fulfilled by the stable distributions, an
older class of probability laws dating back to Gauss, Cauchy and, Pólya, which was also
systematically by Lévy, and which will be discussed in the next chapter. Our references
for a full treatment of infinitely divisible distributions are the standard treatises by Ken-iti
Sato [79] and by Fred W. Steutel and Klaas Van Harn [84].

1.2 Completely monotone functions and Bernstein func-
tions

Definition 1.1. A function f ∶ (0,∞)→ [0,∞) is a completely monotone (CM) function
if it is of class C∞ and if

(−1)nf (n)(λ) ≥ 0 for all n ∈ N and λ > 0.

The following can be found e.g. in Theorem 1.4 of [80].

Theorem 1.1 (Bernstein’s Theorem). A function f is CM if and only if it is the Laplace
transform of a unique positive measure µ on [0,∞), i.e. for all λ > 0 one has

f(λ) = L(µ;λ) = ∫
[0,∞)

e−λtµ(dt).

5



Definition 1.2. A function f ∶ (0,∞) → [0,∞) is a Bernstein function (BF) if it is of
class C∞ and if

(−1)n−1f (n)(λ) ≥ 0 for all n ∈ N∗ and λ > 0.

From the definition, it is clear that the derivative of a Bernstein function is CM. On
the other hand, the primitive of a completely monotone function is a Bernstein function
whenever it is positive. This leads to the following integral representation of Bernstein
functions:

f(λ) = a + bλ + ∫
(0,∞)

(1 − e−λt)ν(dt) (1.1)

where a, b ≥ 0 and ν is a positive measure on [0,∞) integrating 1 ∧ x. The class of
CM functions is closed under addition, multiplication and pointwise convergence, but not
closed under composition. The class of BF functions is closed under addition, composition
and pointwise convergence, but not closed under multiplication. The following can be
found e.g. in Theorem 3.7 of [80] and is an easy consequence of the Faà di Bruno’s
formula.

Theorem 1.2. Let f be a positive function on (0,∞). Then the following assertions are
equivalent:
(i) f ∈ BF.
(ii) g ○ f ∈ CM for every g ∈ CM.
(iii) e−tf ∈ CM for every t > 0.

Example 1.1. (a) The function x ↦ xα is BF if and only if α ∈ [0,1] is a BF and for
every α ∈ (0,1) we have

xα = α

Γ(1 − α) ∫(0,∞)
(1 − e−xt) dt

tα+1
⋅ (1.2)

(b) The function x↦ log(1 + x) is BF and

log(1 + x) = ∫
∞

0
(1 − e−xt)e

−t

t
dt. (1.3)

We will call (1.3) the Frullani identity.

For t > 0, denote by Γt the Gamma random variable of parameter t > 0, with density

fΓt(x) = xt−1e−x

Γ(t) , x > 0.

The density of Γt is CM if and only if t ∈ (0,1], and is never BF. The case t = 1 is
particularly interesting and leads to the following definition.

Definition 1.3. A positive random variable X is called a mixture of exponentials (ME)
if its law has the form

PX(dx) = cδ0(dx) + f(x)dx
with c ∈ [0,1] and f ∈ a CM function. When c = 0, we will use the notation X ∈ME∗.

The following can be found e.g. in Theorem 9.5 in [80] and Theorem 51.12 in [79].

6



Theorem 1.3 (Steutel’s Theorem). Let µ be a probability measure on [0,∞). The fol-
lowing conditions are equivalent:
(i) µ ∈ ME∗.

(ii) There exists a measurable function η ∶ (0,∞)→ [0,1] satisfying ∫
1

0 η(t)t−1dt <∞ such
that ∀λ > 0,

L(µ;λ) = exp [−∫
∞

0
(1

t
− 1

λ + t) η(t)dt] = exp [−∫
∞

0
(1 − e−λx) l(x)dx]

with l(x) = ∫
∞

0 e−xtη(t)dt.

1.3 Infinite divisibility on the real line

Definition 1.4. A real random variable X is said to be infinitely divisible (ID) if for
every n ∈ N∗ there exists a real random variable Xn such that

X
d= Xn,1 +⋯ +Xn,n,

where Xn,1, . . . ,Xn,n are mutually independent with the same law as Xn.

In other words, a distribution function F is infinitely divisible iff for every n ∈ N∗ it is
the n−th fold convolution of a distribution function Fn with itself:

F = F ∗n
n for all n ∈ N∗,

and a characteristic function φ is infinitely divisible iff for every n ∈ N∗ it is the n−th
power of a characteristic function φn:

φ(u) = {φn(u)}n for all n ∈ N∗.

Here Fn and φn are respectively called the n−th order factor of F and of φ. The following
representation result is the most important result in the theory of ID distributions. We
refer e.g. to Theorem 8.1 in [79] for a proof.

Theorem 1.4 (Lévy-Khintchine representation). A probability measure µ on R is
ID iff

∫
R
eitxµ(dx) = exp [iat − 1

2
σ2t2 + ∫

R∖{0}
(eitx − 1 − itx1[−1,1](x))ν(dx)] (1.4)

where a ∈ R, σ2 ≥ 0 and ν is a measure on R satisfying

∫
R∖{0}

(∣x∣2 ∧ 1)ν(dx) <∞.

We call (a, σ2, ν) in Theorem 1.4 the generating triplet of µ. The measure ν is called
the Lévy measure of µ. The function 1[−1,1](x) can be replaced by any bounded function
c(x) satisfying

c(x) = 1 +O(x) as ∣x∣→ 0, c(x) = O(1/∣x∣) as ∣x∣→∞.

Other examples of truncating function are c(x) = 1/(1 + x2) and c(x) = sin(x)/x. The
following standard results are useful to prove that a given distribution is not ID. They
are given e.g. in Proposition IV.2.4 resp. in Corollary IV.8.5 of [84]
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Proposition 1.1. The characteristic function of an ID distribution has no real zeros.

Proposition 1.2. A continuous ID distribution function F is supported either by a half-
line or by R.

We now give some results which are more specific to the one-sided case. Observe
first that for a positive random variable, the Laplace transform of its distribution is more
convenient than the characteristic function. The following theorem is the Lévy-Khintchine
representation theorem for Laplace transforms of ID distributions, and is de Finetti’s
original result. It says that the logarithm of this Laplace transform is the opposite of a
Bernstein function. The proof of this result can be found e.g. in Theorem 24.11 of [79].

Theorem 1.5. A probability measure µ on R+ is ID if and only if there exist b ≥ 0 and a
measure ν on (0,∞) satisfying ∫(0,∞)(1 ∧ x)ν(dx) <∞ such that

− logL(µ;λ) = bλ + ∫
(0,∞)

(1 − e−λx)ν(dx).

The measure ν is called the Lévy measure of µ and the non-negative coefficient b is
called its drift coefficient.

The following characterization of positive ID measures is due to Steutel and is given
e.g. in Theorem 51.1 of [79]. It is given in terms of the probability measure itself instead
of its Laplace transform, by means of a certain integro-differential equation.

Theorem 1.6 (Steutel’s integro-differential equation). A probability measure µ on R+ is
ID if and only if there exist b ≥ 0 and a measure ν on (0,∞) satisfying ∫(0,∞)(1∧x)ν(dx) <
∞ such that

∫
[0,x]

yµ(dy) = ∫
(0,x]

µ([0, x − y])yν(dy) + bµ([0, x]), for x > 0. (1.5)

Taking the Laplace transform on both sides, it is easy to recover the Lévy-Khintchine
formula from the Steutel integro-differential equation. When µ has a density function f ,
Steutel’s equation reads

xf(x) = ∫
x

0
f(x − y) yν(dy) + bf(x)

and is a true integro-differential equation. Let us check the validity of this equation for
the Gamma random variable Γt. Taking b = 0 and simplifying the e−x and the Γ(t), we
need to check that there exists a positive measure ν such that

xt = ∫
x

0
(x − y)t−1 yeyν(dy), x > 0.

It is clear by direct integration that the solution is the measure with density te−y/y, as
obtained from the log-Laplace exponent t log(1 + λ).

In spite of the two above theorems, it can be difficult to check that a random variable
having either an explicit Laplace transform or an explicit density is ID. For this reason,
various criteria have been given over the years and we now give two of them which are
important in this thesis. The first one can be found e.g. in Theorem 51.6 of [79], as a
consequence of a more general log-convexity criterion.
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Proposition 1.3 (Goldie-Steutel). One has ME ⊂ ID. In particular, if a given random
variable X has a CM density, then it is ID.

This theorem and the following standard independent factorization

Γa
d= Ba,b ×Γa+b, for a > 0, b > 0

where, here and throughout, Ba,b stands for a standard β(a, b) random variable with
density

Γ(a + b)
Γ(a)Γ(b) x

a−1(1 − x)b−1

on (0,1), show that any mixture X ×Γα is ID for 0 < α ≤ 1. The following theorem shows
that the property can be extended up to any 0 < α ≤ 2 and is much more difficult to prove.
See Theorem VI.4.5 in [84].

Theorem 1.7 (Kristiansen). The independent product X × Γ2 is ID for any positive
random variable X.

It should be noted that this result is optimal in the sense that there exist Γt mixtures
with t > 2 which are not ID. For example, the Laplace transform

1

2
(1 + (1 + λ)−t)

does not correspond to an ID distribution for every t > 2. See Example VI.12.1 in [84] for
details.

The following result implies that the tail distribution of a positive ID random variable
cannot be thinner than e−xr for any r > 1. It is often used to disprove that a given random
variable is ID. We refer e.g. to Theorem III.9.1 in [84] for a proof.

Theorem 1.8. Let F be a non-degenerate infinitely divisible distribution function on R+
with Lévy measure ν. Then the tail function F̄ (x) = 1 − F (x) satisfies

lim
x→+∞

− log F̄ (x)
x logx

= 1

rν
(1.6)

where rν is the right extremity of supp(ν) and the right-hand side is meant to be zero if
rν =∞.

We notice that contrary to the tail of the distribution functions, the behavior of in-
finitely divisible densities f at infinity can be much more chaotic. In fact, there exist ID
laws on R+ having an infinite and unbounded sequence of modes, as shown in the following
example.

Example 1.2. Consider the independent sum Z = X + Y where X has a geometric
distribution with parameter 1/2 and Y has a Γ1/2 distribution. The random variable Z is
ID, and its density function is easily computed as

f(x) = 1

2
√
π
e−x

[x]

∑
k=0

1√
x − k

(e
2
)
k

, x ∈ R/N.

One has limx↓n f(x) =∞ for any n ∈ N.

9



1.4 Self-decomposability
In this section, we briefly discuss a classic refinement of infinite divisibility which is due
to Lévy.

Definition 1.5. A real random variable X is said to be self-decomposable (SD) if for
every c ∈ (0,1), there exist a random variable Xc independent of X such that

X
d= cX +Xc. (1.7)

It is easy to see by the Lévy-Khintchine formula that SD random variables are ID.
More precisely, one has the following characterization of SD within the ID class. See
Corollary 15.11 in [79].

Theorem 1.9. A probability measure µ on R is self-decomposable if and only if it is ID
and its Lévy measure has density

k(x)
∣x∣ (1.8)

on R∗, where k(x) is non-decreasing on (−∞,0) and non-increasing on (0,∞).

In the one-sided case, the SD property of a given distribution can also be characterized
within Steutel’s integro-differential equation, as shows the following. See Theorem 2.16
in Steutel [84] for a proof.

Theorem 1.10. A distribution function on [0,∞) is SD if and only if it has a density
function and this density satisfies the integro-differential equation

xf(x) = ∫
x

0
f(x − y)k(y)dy, for x > 0. (1.9)

for some non-increasing function k on (0,∞).

It can be difficult to show that a given distribution is SD and several criteria are
available in the literature. Let us mention the following one which can be viewed as
randomization of the original definition of self-decomposability and is due to Vervaat -
see Remark 4.9 in [86].

Theorem 1.11. Suppose that a positive random variable X satisfies the random contrac-
tion equation

X
d= U(X +A)

where A is any positive random variable, U has uniform distribution on (0,1), and
the three random variables on the right-hand side are independent. Then X is self-
decomposable.

1.5 Generalized Gamma Convolution
We now consider a certain subclass of positive SD random variables, which is in one-to-one
correspondence with a certain subclass of Bernstein functions.

10



Definition 1.6. A Bernstein function f is called a Thorin-Bernstein function (TBF) if
its spectral measure ν in (1.1) has a density t−1k(t) where k(t) is a CM functions. In
other words,

f(λ) = a + bλ + ∫
(0,∞)

(1 − e−λt)k(t)
t
dt (1.10)

where a, b > 0, ∫
∞

0 (1 ∧ t−1)k(t)dt <∞ and k(t) is CM.

Definition 1.7. A probability µ on R+ is called a Generalized Gamma Convolution
(GGC) if

L(µ;λ) = e−f(λ)

for some f ∈ TBF and f(0) = 0.

By Bernstein’s theorem and the Frullani identity, we see that a positive random vari-
able X with law µ has a GGC distribution if and only if its Laplace exponent reads

− logE[e−λX] = bλ + ∫
∞

0
(1 − e−λx)k(x)dx

x
= bλ + ∫

∞

0
log(1 + λu−1)ρ(du) (1.11)

for some b ≥ 0 and where
k(x) = ∫

∞

0
e−xu ρ(du)

is a CM function with Bernstein measure ρ. Henceforth, this measure ρ will be called the
Thorin measure of X.

The following characterization of GGC random variables is an easy consequence of the
second equality in (1.11) and an integration by parts. See Proposition 9.10 [80] for details.

Theorem 1.12. A random variable X ∼ µ is a GGC iff

− logE[e−λX] = bλ + ∫
∞

0

λ

λ + u
ω(u)
u

dt

where b ≥ 0 and ω ∶ (0,∞) → [0,∞) is a non-decreasing function such that ∫
∞

0 (1 +
u)−1u−1ω(u)dt < ∞. Moreover, one has ω(u) = ρ(0, u] for every u > 0, where ρ is the
Thorin measure of X.

The denomination comes from the fact that GGC is the smallest class of probability
measures on [0,∞) which contains all gamma distributions and which is closed under
convolutions and vague limits. This class can also be identified as that of the Wiener-
Gamma perpetuities

∫
∞

0
a(t)dΓt

where {Γt, t ≥ 0} is the Gamma subordinator and a(t) a suitably integrable positive and
deterministic function. The point of view of Wiener-Gamma perpetuities is further de-
veloped in the survey paper [48], but it will be barely touched upon in this thesis.

The following result establishes a link between the GGC family and that of Gamma
mixtures. It is due to Bondesson - see Theorem 4.1.1 in [18].
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Theorem 1.13. Let X be a non-degenerate random variable having a GGC distribution
with a finite Thorin measure ρ. Let β = ∫

∞
0 ρ(du) ∈ (0,∞) be the total mass of ρ. Then,

there exists a factorization
X

d= Γβ ×Y

for some positive random variable Y independent of Γβ.

Bondesson also showed that if the density f of a GGC distribution is such that f(x) ∼
cxβ−1 as x → 0 for some β, c > 0, then the Thorin measure of the distribution must have
total mass β. This fact can be used to show that certain positive ID random variables do
not belong to the GGC class. For example, the half-Cauchy distribution with density

2

π(1 + x2)
is easily seen to be ID by Kristiansen’s theorem. If it were a GGC, then one would have
β = 1 and the above theorem would imply that the density would be CM, which is clearly
false. Hence, the half-Cauchy distribution is not a GGC.

More recently, Bondesson also proved that the GGC class is stable by independent
multiplication. See the main theorem in [19].

Theorem 1.14. Let X ∈ GGC and Y ∈ GGC be independent random variables. Then
X ×Y ∈ GGC.

This remarkable property raises the question of whether other ID subclasses are stable
by independent multiplication. It is known that this stability is not true for the ID class
itself. For example, the independent product of two Poisson distributions with parameter
1 does not satisfy Steutel’s integro-differential equation and hence cannot be ID - see
Example VI.12.15 in [84]. On the other hand, there is no such counterexample when one
factor has an absolutely continuous distribution. In particular, it is natural to raise the
following conjecture, for which we, unfortunately, found no answer.

Conjecture 1.1. Let X ∈ SD and Y ∈ SD be independent random variables. Then X×Y ∈
SD.

Another long-standing conjecture on GGC random variables made by Bondesson,
which can be viewed as a companion to Theorem 1.14, is the following.

Conjecture 1.2. Let X ∈ GGC. Then Xq has a GGC distribution for every q ≥ 1.

The notion of GGC can be extended to distributions on the real line.

Definition 1.8. An ID probability distribution µ on R such that its Lévy measure has
a density m(x) such that xm(x) and xm(−x) are CM as a function of x on (0,+∞) is
called an Extended Generalized Gamma Convolution (EGGC).

Observe that the strict GGC property corresponds to the case where m(x) vanishes on
(−∞,0). The following is the most basic example. It corresponds to a real stable random
variable.

Example 1.3. Let ν(dx) from (1.4) be

ν(dx) =
⎧⎪⎪⎨⎪⎪⎩

c1∣x∣−α−1dx, if x < 0;

c2x−α−1dx, if x > 0.
(1.12)

with c1 ≥ 0, c2 ≥ 0, c1 + c2 > 0, and 0 < α < 2.

12



1.6 Hyperbolic complete monotonicity
We last introduce an important subclass of densities and functions.

Definition 1.9. A smooth function f ∶ (0,∞) → [0,∞) such that f(uv)f(u/v) is CM as
a function of v + 1

v for every u > 0 is said to be Hyperbolically Completely Monotone
(HCM).

Definition 1.10. A positive random variable X is called HCM if it has a density which
is HCM.

There is a tight connection between HCM and generalized Gamma convolutions, as
shown in the next two remarkable theorems, both due to Bondesson. See Theorems 5.1.2
and 6.1.1 in [18], respectively.

Theorem 1.15. Any HCM random variable has a GGC distribution.

Theorem 1.16. A function ϕ ∶ [0,∞)→ (0,∞) is the Laplace transform of a GGC if and
only if ϕ(0) = 1 and ϕ is HCM.

We also have the following closure result, given as Theorem 5.1.3 in [18].

Theorem 1.17. The class HCM is closed with respect to weak non-degenerate limits.

We now list certain properties of HCM functions and densities, all to be found in
Bondesson’s booklet [18]. Assuming that the functions f1, f2, are HCM, we have

(i) The functions f1(cx), c > 0 is HCM.

(ii) The pointwise product f1 ⋅ f2 is HCM.

(iii) The functions xβf1(xα) are HCM for ∣α∣ ≤ 1 and β ∈ R.

(iv) f1(0+) > 0 if and only if f1 is CM.

(v) If f1 is decreasing, then the functions f(x+δ) and x↦ ∫
∞
x (y−x)γ−1f(y)dy are HCM

for all γ, δ > 0.

Observe that by (iii), Conjecture 1.2 is true for HCM random variables. Observe also,
still by (iii), that

X ∈ HCM ⇔ X−1 ∈ HCM. (1.13)

This implies that HCM is a true subclass of GGC since the inverse of an element of
GGC may not even be ID. For example, if U is uniformly distributed on (0,1), then
U−1 = (U−1 − 1) + 1 is a GGC as the sum of an HCM random variable and a positive
constant, but U is not ID since it has compact support. In view of (1.13), the following
conjecture is natural

Conjecture 1.3. For any positive random variable, one has X ∈ HCM if and only if X ∈
GGC and X−1 ∈ GGC.
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1.7 Stable distributions
The central limit theorem (CLT) states that the sum of a number of i.i.d. random variables
with a finite variance will tend to a normal distribution as the number of variables grows.
When the variance is infinite, the limit was called exceptional distributions by P. Lévy.
Nowadays, we say that

Definition 1.11. A random variable X is stable iff it can be obtained as

1

bn
(Y1 +Y2 +⋯ +Yn − an)

dÐ→X, n→∞, (1.14)

with Y1,Y2,⋯ i.i.d., an ∈ R and bn > 0.

If Var[Y1] = σ2 < ∞, let an = nE[Y1], bn =
√
nσ2, the CLT shows that normal distri-

butions are all stable. Two equivalent definitions are formulated as follows.

Definition 1.12. A random variable X is stable iff for any n ≥ 2, there exist a positive
number cn and a real number dn such that

X1 +X2 +⋯ +Xn
d= cnX + dn (1.15)

where X1
d= X2

d= ⋯ d= X and independent. If dn ≡ 0, we say that X is strictly stable.

Definition 1.13. A random variable X is stable iff for any positive numbers a and b,
there exist a positive number c and a real number d such that

aX1 + bX2
d= cX + d (1.16)

where X1
d= X2

d= X and independent.

Starting from the definition, we can get an expression of the characteristic functions,
then using the formula of Fourier transform, we can get an expression of the density by
the parameter of similarity α and the parameter of positivity ρ. Since a density is always
non-negative, we can obtain an admissible domain of the parameters:

(α, ρ) ∈ D ∶= {α ∈ (0,1], ρ ∈ [0,1]} ∪ {α ∈ (1,2], ρ ∈ [1 − 1/α,1/α]}
6

-
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1 2

ρ

α

1/α

1 − 1/α

For (α, ρ) ∈ D, we will denote by Zα,ρ an R-random variable having strictly α-stable
distribution µα,ρ, and set fα,ρ for its density, we will use the shorter notations Zα = Zα,1

and fα = fα,1. Zα,ρ is characterized by its charcteristic function

E [eitZα,ρ] = exp [−∣t∣αeiπsgn(t)(α
2
−αρ)] , ∀ (α, ρ) ∈ D, (1.17)
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from which, we have
Zα,ρ

d= −Zα,1−ρ, ∀ (α, ρ) ∈ D,
and we have necessarily

cn = n1/α in (1.15) and cα = aα + bα in (1.16)

for some α ∈ (0,2].
Another useful characterization is the Mellin transform, which is of the form

E[Z−s
α,ρ1{Zα,ρ>0}] =

Γ(1 − s)
απ

sin(πρs)Γ(s/α), s ∈ (−α,1). (1.18)

Letting s→ 0, we obtain that

P[Zα,ρ ≥ 0] = ρ, ∀ (α, ρ) ∈ D,

that is why we call ρ the parameter of positivity. Observe that when ρ = 1/2, we have
Zα,1/2

d= −Zα,1/2, which means Zα,1/2 is symmetric for every α ∈ (0,2].

The density fα,ρ has an explicit function in three specific situations only, which are:

• f2,1/2(x) = 1√
2π
e−

x2

2 for x ∈ R, (standard gaussian density),

• f1/2(x) = 1

2
√
πx3

e−
1
4x for x ≥ 0, (inverse Gamma density),

• f1,ρ(x) =
sin(πρ)

π(x2 + 2 cos(πρ)x + 1) for x ∈ R, (standard Cauchy density with drift).

For general case, we have a convergent series representation, ∀α ∈ (0,1], ρ ∈ [0,1],∀x > 0,

fα,ρ(x) =
1

π
∑
n≥1

(−1)n−1 Γ(1 + αn)
n!

sin(nπαρ)x−αn−1; (1.19)

and ∀α ∈ (1,2], ρ ∈ [1 − 1/α,1/α],∀x > 0,

fα,ρ(x) = x−1−αf 1
α
,αρ(x−α).

The relation in the last formula is the so-called duality law, it is equivalent to

Z+
α,ρ

d= (Z+
1
α
,αρ

)
− 1
α
, ∀α ∈ (1,2], ρ ∈ [1 − 1/α,1/α], (1.20)

where X+ is the cutoff of X, i.e. the positive random variable with distribution function

FX+(x) = P (X ≤ x∣X ≥ 0), x ≥ 0.

For β ∈ [−1,1], we will denote by Sβ ( β ≠ 0 ) the 1-stable random variable having
the density gβ defined in (A.23), and denote S0 the cauchy distribuiton with c0 = π

2 , and
c1 = 0 . The characteristic function of Sβ is of the form

E [eitSβ] = exp(−π
2
∣t∣ − iβt log ∣t∣) .
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Definition 1.14. We say that two random variables X,Y are equivalent if there exist
a > 0, b ∈ R such that: X

d= aY + b, and we denote by X ∼ Y.

Every α-stable random variable with α ≠ 1 is equivalent to some Zα,ρ. But this is not
the case for non-strictly 1-stable random variables, i.e. a non-strictly 1-stable random
variable is never equivalent to a strictly stable one.

The proofs of all results in this section are given in Appendix A.

1.7.A Lévy-Khintchine representations of stable distributions

We need the Lemma 14.11 in Sato [79] which is formulated as follows,

Lemma 1.1.

∫
∞

0
(eix − 1) α

Γ(1 − α)x1+αdx = −e
−iπα/2, for 0 < α < 1, (1.21)

∫
∞

0
(eix − 1 − ix) α

Γ(1 − α)x1+αdx = −e
−iπα/2, for 1 < α < 2, (1.22)

∫
∞

0
(eixz − 1 − ixz1(0,1](x))

dx

x2
= −πz

2
− iz log z + icz, for z > 0 with (1.23)

c = ∫
∞

1
x−2 sinxdx + ∫

1

0
x−2(sinx − x)dx.

Theorem 1.18. (i)For α ∈ (0,1), ρ ∈ [0,1],

E [eitZα,ρ] = exp(∫
∞

−∞
(eitx − 1)ν(dx))

where

ν(dx) =
⎧⎪⎪⎨⎪⎪⎩

c1
α

Γ(1−α)x1+αdx , if x > 0;

c2
α

Γ(1−α)∣x∣1+αdx, if x < 0.
(1.24)

with c1 = sin(παρ)/ sin(πα) and c2 = sin(πα(1 − ρ))/ sin(πα).
(ii) For α ∈ (1,2), ρ ∈ [1 − 1/α,1/α],

E [eitZα,ρ] = exp(∫
∞

−∞
(eitx − 1 − itx)ν(dx))

where

ν(dx) =
⎧⎪⎪⎨⎪⎪⎩

c1
α

Γ(1−α)x1+αdx , if x > 0;

c2
α

Γ(1−α)∣x∣1+αdx, if x < 0.
(1.25)

with c1 = sin(παρ)/ sin(π(2 − α)) and c2 = sin(πα(1 − ρ))/ sin(π(2 − α)).
(iii)For β ∈ [−1,1],

E [eitSβ] = exp(iat + ∫
∞

−∞
(eitx − 1 − ixt1[−1,1](x))ν(dx)) ,

where a ∈ R and

ν(dx) =
⎧⎪⎪⎨⎪⎪⎩

c1x−2dx , if x > 0,

c2∣x∣−2dx, if x < 0,
(1.26)
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with c1 = 1+β
2 , c2 = 1−β

2 .
(iv) For ρ ∈ [0,1],

E [eitZ1,ρ] = exp(iãt + ∫
∞

−∞
(eitx − 1 − ixt1[−1,1](x))ν(dx)) , (1.27)

where ã ∈ R and ν(dx) = sin(πρ)
πx2 1x≠0dx.

Proof. The proof of (i), (ii) and (iii) are similar, we first derive the representations from
the above lemma for the extreme cases, i.e. {α ∈ (0,1), ρ = ±1}, {α ∈ (1,2), ρ = 1

α or1 − 1
α}

and {α = 1, β = ±1}. Then we can obtain the other cases by a simple linear combination.
We do only (i) here.
From (1.21), we have

E [eitZα] = exp(−e−iπsgn(t)α/2∣t∣α) = exp(∫
∞

0
(eitx − 1) α

Γ(1 − α)x1+αdx),

E [eitZα,0] = exp(−eiπsgn(t)α/2∣t∣α) = exp(∫
0

−∞
(eitx − 1) α

Γ(1 − α)∣x∣1+αdx).

For θ ∈ (−α/2, α/2), there exist c1 > 0, c2 > 0, such that eiπθ = c1e−iπα/2 + c2eiπα/2, then
eiπ(θ+α/2) = c1+c2eiπα, c2 = sin(π(α/2+θ))/ sin(πα), similarly, c1 = sin(π(α/2−θ))/ sin(πα).
Substitute θ by α

2 − αρ, we obtain (i).
(iv) is a consequence of (iii), since Z1,ρ with ρ ∈ (0,1) is equivalent to S0. Note that
Z1,1 ≡ 1 and Z1,0 ≡ −1.

◻

Remark 1.1. (a) From the Lévy-Khintchine representation we see that ∀α ∈ (0,1), ρ ∈
[0,1],

Zα,ρ
d= c1/α

1 Zα − c1/α
2 Z̃α

and ∀α ∈ (1,2), ρ ∈ [1 − 1/α,1/α],

Zα,ρ
d= c1/α

1 Zα, 1
α
− c1/α

2 Z̃α, 1
α
,

where Z̃α,ρ is an independent copie of Zα,ρ, c1 and c2 are the same as those in the above
theorem.
(b) For β ∈ [−1,1],

Sβ
d= −S−β and Sβ

d= 1 + β
2

S1 −
1 − β

2
S̃1,

where S̃1 is an independent copie of S1.

1.7.B Asymptotic expansions for the positive stable densities

Recall that the density fα of Zα is gα,−α/2 which has been studied in section A.1.B,

fα(x) =
α

x1+αφ(−α,1 − α;−x−α) = α

x1+αMα(x−α). (1.28)

The function
Mα(z) ∶= φ(−α,1 − α;−z), 0 < α < 1,
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is the so-called M-Wright function which has been considered in details in [63, 64].
Mainardi and Tomirotti [63] have shown that for α = 1/q, where q ≥ 2 is a positive integer,
the M-Wright function can be expressed as a sum of simpler (q − 1) entire functions. In
the particular case q = 2 and q = 3, they obtained

M 1
2
(z) = 1√

π
exp(−z2/4),

and
M 1

3
(z) = 32/3Ai(z/31/3),

where Ai denotes the Airy function:

Ai(x) = 1

π ∫
∞

0
cos(t

3

3
+ xt) dt ≡ 1

π
lim
b→∞∫

b

0
cos(t

3

3
+ xt)dt.

Thus f 1
2
and f 1

3
can be expressed as

f 1
2
(x) = 1

2
√
πx3

exp(− 1

4x
), x > 0, and f 1

3
(x) = (3x4)− 1

3Ai((3x)− 1
3 ), x > 0.

They also gave their asymptotic representation for large ∣z∣ using the saddle point
method,

Mα(z) ∼ 1√
2π(1 − α)

(αz)
α−1/2
1−α exp(−1 − α

α
(αz) 1

1−α) , as ∣z∣→ +∞. (1.29)

Therefore we have the following propositions.

Proposition 1.4. ∀α ∈ (0,1), one has

fα(x) ∼ α

Γ(1 − α)x1+α as x→ +∞ and fα(x) ∼ cα x−
2−α
2−2α e−(1−α)(x/α)

− α
1−α as x→ 0+,

with

cα = α
1

2(1−α)
√

2π(1 − α)
⋅

Remark 1.2. This proposition is a special case of proposition 2.1. Their relation is that
f1−α(x) = cf1,α(cx) with c = (1 − α) 1

α−1 .

1.7.C Kanter’s factorization

The formula (4.5) in [64] stated that

∫
∞

0
xsMα(x)dx =

Γ(s + 1)
Γ(αs + 1) , s > −1, α ∈ (0,1),

which implies that

E[Zs
α] = Γ(1 − s/α)

Γ(1 − s) , for s < α.

Kanter [51, Corollary 4.1] found an independent factorization of the positive stable dis-
tributions

Zα
d= L1−1/α × Kα, (1.30)
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where L has unit exponential distribution and Kα is the so-called Kanter random variable
having fractional moments

E[Ks
α] = Γ(1 − s/α)

Γ(1 − (1/α − 1)s)Γ(1 − s) , for s < α, (1.31)

and in particular has a support [bα,+∞) which is bounded away from zero, with

b−1
α = α−1(1 − α)1− 1

α = lim
n→+∞

E[K−n
α ]1/n,

by Stirling’s formula (B.5).
Several analytical properties of the density of Kα have been obtained in [50, 82]. In

particular, Corollary 3.2 in [50] shows that

Proposition 1.5. For every s > 0, there exists cα,s > 0 such that Ks
α − cα,s is a mixture of

exponential distribution. Particularly, the density of Kα − bα is CM.

We will use this fact repeatedly in the chapter 3.

1.7.D HCM property of positive stable distributions

Pierre Bosch and Thomas Simon [23] proved that

The density fα is HCM if and only if α ≤ 1/2.
This result was conjectured in 1977 by Bondesson. The only if part is easy to establish
because the random variable Z−1

α is not infinitely divisible, and hence cannot have a HCM
density by (1.13), when α > 1/2. The if part is based on the following three lemmas.

Lemma 1.2. The density of the product

Γc ×Ba1,b1 ×⋯ ×Ban,bn

is HCM for every n ≥ 1, ai, bi > 0 and c <min{ai}.
Lemma 1.3. For every α ∈ (0,1), one has the a.s. convergent factorization

Z−1
α

d= eγ(1−α−1) ×
∞
∏
n=0

anBα+nα,1−α

where γ is the Euler’s constant, and an = eψ(1+nα)−ψ(α+nα), ψ is the digamma function.

Lemma 1.4. For every a, b > 0, one has the a.s. convergent factorization

Γa
d= eψ(a) ×

∞
∏
n=0

bnBa+nb,b

with bn = eψ(a+b+nb)−ψ(a+nb).
Combining lemmas 1.3 and 1.4 with the elementary factorization

Ba,b+c
d= Ba,b ×Ba+b,c

one has
Z−1
α

d= eγ(1−α−1)−ψ(α) ×Γα ×
∞
∏
n=0

eψ(1+nα)−ψ(2α+nα)B2α+nα,1−2α.

Applying lemma 1.2 and theorem 1.17 concludes the proof.
We will mimic this proof to prove a similar result for generalized stable distributions in
section 2.2.B. Pierre Bosch and Thomas Simon conjectured at the end of [23] that

19



Conjecture 1.4. The density of Zq
α is HCM if and only if α ≤ 1

2 and ∣q∣ ≥ α
1−α .

We have proved in Chapter 3 that Z− α
1−α is not HCM for α < 1/5, see Remark 3.9 (b).

Thus this conjecture is not true in general.

1.7.E Shape of densities of stable distributions

It is known that two-sided stable densities are real analytic on R, never vanishes, and that
all their derivatives tend to zero at infinity. Hence, their n-th derivative vanishes at least
n times on R by Rolle’s theorem.

Definition 1.15. A smooth non-negative function on some open interval I ⊂ R is said to
be bell-shaped (BS) if it vanishes at both ends of I, and if

#{x ∈ Supp f, f (n)(x) = 0} = n

for every n ≥ 1.

W. Gawronski proved in [40] that two-sided α-stable densities are bell-shaped when α =
2 or 1/n for some n = 1,2,3,⋯. T. Simon proved in [83] that positive stable distributions
have bell-shaped density functions. Recently, M. Kwasnicki proved in [58] that

Theorem 1.19 (Corollary 1.3 in [58]). All stable distributions on R have bell-shaped
density functions.

Bell-shaped (BS) functions

Moreover, Kwasnicki has discovered a large class of functions f that are bell-shaped,
including all smooth densities of EGGCs.

Theorem 1.20 (Theorem 1.1 in [58]). Suppose that f is a locally integrable function
which converges to zero at ±∞, and which is decreasing near ∞ and increasing near −∞.
Suppose furthermore that for ξ ∈ R/{0} the fourier transform of f satisfies

L(f ; iξ) ∶= ∫
∞

−∞
e−iξxf(x)dx

= exp [−aξ2 − ibξ + c + ∫
∞

−∞
( 1

iξ + s − (1

s
− iξ
s2

)1R/(−1,1)(s))ϕ(s)ds]

with a ≥ 0, b, c ∈ R, and ϕ ∶ R→ R is a function with the following properties:

1. for every k ∈ Z the function ϕ(s) − k changes its sign at most once, and for k = 0
this change takes place at s = 0 ∶ sϕ(s) ≥ 0;

2. we have
(∫

−1

−∞
+∫

∞

1
) ∣ϕ(s)∣

∣s3∣ ds <∞;

3. we have
∫

1

−1 RL(f ; iξ)dξ <∞, and limξ→0 IL(f ; iξ) = 0.

If in addition f is smooth, then f is bell-shaped.

We will use this theorem to prove Theorem 3.4 (d).
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Bell-shaped of order n (BSn) densities

For a given smooth density f on (0,∞) and n ≥ 0, let us introduce the following property:
one has f ∈ BSn if

{ ♯{x > 0, f (i)(x) = 0} = i for i ≤ n,
♯{x > 0, f (i)(x) = 0} = n for i > n.

For n ≥ 0, this property was introduced in [83] under the less natural denomination
WBSn−1 - see the definition therein. Clearly, one has BS0 = CM and BS1 corresponds to
whale-shaped (see Definition 3.1) functions supported on (0,+∞), which plays a role in
chapter 3. Since the density of Γt has m−th derivative

(−1)m (
m

∑
p=0

(m
p
) (1 − t)p x−p)

xt−1e−x

Γ(t)

on (0,∞), it is an easy exercise using Rolle’s theorem and Descartes’ rule of signs to show
that Γt ∈ BSn for t ∈ (n,n + 1]. In this respect, the class BSn can be thought of as an
extension of the densities of Γt for t ∈ (n,n + 1]. Moreover, we have just seen that the set
of densities of Γn+1−mixtures contains the class BSn for n = 0,1. We actually believe that
this is true for all n ≥ 0. The following proposition gives us more BSn densities.

Proposition 1.6 (Proposition in [83]). Let X ∈ ME∗ and λi > 0 for all i ∈ N∗ . For every
n ≥ 0, the independent sum X +Exp(λ1) +⋯ +Exp(λn) has a BSn density.

We will use this proposition to prove Theorem 3.4 (c).
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Chapter 2

Density solutions to a class of
integro-differential equations

2.1 Introduction and statement of the results
In this paper, we are concerned with the following integro-differential equation

xmf(x) = 1

Γ(α) ∫
x

0
(x − v)α−1 f(v)dv (2.1)

on (0,∞), with α > 0 and m ∈ R. This equation can be written in a more compact way as

Iα0+f = xmf,

where Iα0+ is the left-sided Riemann-Liouville fractional integral on the half-axis. We
refer to the comprehensive monograph [55] for more details on fractional operators and
the corresponding differential equations. We are interested in density solutions to (2.1),
that is we are searching for such f satisfying (2.1) which are also probability densities
on (0,∞). In this framework, the identities (2.1.31) and (2.1.38) in [55] imply that the
auxiliary function h = Iα0+f is a solution to the fractional differential equation

Dα
0+h = x−mh, (2.2)

where Dα
0+ is the left-sided Riemann-Liouville fractional derivative. This latter equation

can be solved in the case m = 1 in terms of the classical Wright function - see Theorem
5.10 in [55], and we will briefly come back to this example in Section 3.

Observe that density solutions to (2.1) may not exist. If α =m for example, then (2.1)
becomes

f(x) = 1

Γ(α) ∫
1

0
(1 − v)α−1 f(xv)dv,

and the integral of the right-hand side over (0,+∞) is infinite while the integral of the
left-hand side is 1 if f is a density function. In this respect, let us also notice that the
arbitrary constant Γ(α) in (2.1) was chosen without loss of generality: if fm,α is a density
solution to (2.1), then fc,m,α(x) = cfm,α(cx) is for every c > 0 a density solution to

xmf(x) = cα−m

Γ(α) ∫
x

0
(x − v)α−1f(v)dv.
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Let us start with a few examples. When α = n is a positive integer, then (2.1) becomes
an ODE of order n satisfied by the n−th cumulative distribution function

Fn(x) = ∫
0<x1<...<xn<x

f(x1)dx1 . . . dxn,

which is
Fn = xmF

(n)
n .

• For α = 1, we solve F1 = xmF ′
1 with F1 bounded and vanishing at zero. This implies

that F ′
1 is a density iff m > 1 with F1(x) = e−

x1−m
(m−1) , that is fm,1 = F ′

1 is the density of
the Fréchet random variable ((m−1)Γ1)

1
1−m where, here and throughout, Γt denotes

a Gamma random variable of parameter t > 0, with density

fΓt(x) = xt−1e−x

Γ(t) , x > 0.

• For α = 2, we solve F2 = xmF ′′
2 with F2 having linear growth at infinity and vanishing

at zero. Supposing m > 2 and making the substitution K(x) = xνF2((x/2ν)−2ν) with
ν = 1/(m − 2), we obtain Bessel’s modified differential equation

x2K ′′ + xK ′ − (x2 + ν2)K = 0,

whose solutions satisfying the required properties for F2 are constant multiples of
the Macdonald function Kν . A density solution to (2.1) is then

fm,2(x) = F ′′
2 (x) = x−mF2(x) = cν x

−3/2−1/νKν(2νx−1/2ν),

where cν is the normalizing constant. On the other hand, a computation using e.g.
the formula 7.12(23) p.82 in [34] shows that the independent product Γ1 ×Γν+1 has
density

2x
ν
2

Γ(ν + 1)Kν(2
√
x)1(0,∞)(x).

By a change of variable, this implies that fm,2 is the density of ((m−2)
√

Γ1 ×Γν+1)
2

2−m .

For α ≥ 3, the resulting ODE’s have higher order and do not seem to exhibit any
classical special function. In section 3, however, we will see that the density solutions to
(2.1) can be characterized in terms of the Gamma distribution for all integer values of α.

When α is not a positive integer (2.1) is a true integro-differential equation, which can
be handled via the Laplace transform

L(λ) = ∫
∞

0
e−λx f(x)dx.

In particular, when m = n is a positive integer, the latter satisfies an ODE of order n
analogous to the above, which is

L = (−1)nλαL(n).
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• For m = 1, we solve L = −λαL′ with L a completely monotone (CM) function
satisfying L(0) = 1. This implies that there is a density solution to (2.1) iff α ∈
(0,1) with L(λ) = e−

λ1−α
(1−α) , that is f1,α is the density of (1 − α) 1

α−1 Z1−α where, here
and throughout, Zβ is the standard positive β-stable random variable with Laplace
transform

E[e−λZβ] = e−λ
β

, λ ≥ 0. (2.3)

• For m = 2, we solve L = λαL′′ with the same restrictions on L. Supposing α < 2 and
setting ν = 1/(2 − α), the same reasoning as above leads to

L(λ) = 2νν

Γ(ν)
√
λKν(2νλ

1
2ν ) = E[e−ν2λ

1
ν Γ−1

ν ],

where the second equality follows again from the formula 7.12(23) p.82 in [34]. For
α = 1 = ν, we recover the above Fréchet density f2,1(x) = x−2e−

1
x . For α ∈ (1,2), it

follows from (2.3) that f2,α is the density of the independent product ν2ν Γ−ν
ν ×Z 1

ν
.

For α ∈ (0,1), it is not clear from classical integral formulæ on the Macdonald
function that the above L is indeed a CM function viz. f2,α is a density. In Section
3, we will see that f2,α is for all α ∈ (0,2) the density of a certain random variable
involving two independent copies of Z1−α

2
.

The study of density solutions to (2.1) for m a positive integer was initiated in [81] and
then pursued in [74], where the corresponding random variables are called "generalized
stable". Apart from the classical stable casem = 1, these random variables are of interest in
the case {m = 2, α ∈ (0,1)} which is especially investigated in Section 3 of [81] and Section
7 of [74], because of its connections to particle transport along the one-dimensional lattice
- see [15]. The paper [81] takes the point of view of Fox functions and shows that for
all m ∈ N∗, α ∈ (0,1) there exists a density solution to (2.1) having a convergent power
series representation at infinity and a Fréchet-like behavior at zero - see (2.12) and (2.15)
therein. The paper [74] takes the point of view of size-biasing and shows that for all
m ∈ N∗, α ∈ (0,m) there exists a unique density solution to (2.1), whose corresponding
random variable can be represented in the case α ∈ (m − 1,m) as a finite independent
product involving the random variables Zβ and Γt - see Theorems 4.3 and 4.2 therein.

In this paper, we characterize the existence and unicity of density solutions to (2.1)
for all m ∈ R and α > 0, and we obtain a representation of the corresponding random
variables as two infinite products involving the Beta random variable Ba,b, whose density
is recalled to be

fBa,b
(x) = Γ(a + b)

Γ(a)Γ(b) x
a−1(1 − x)b−1, x ∈ (0,1).

Here and throughout, all infinite products are assumed to be independent and a.s. con-
vergent. Our main result reads as follows.

Theorem 2.1. The equation (2.1) has a density solution if and only if m > α. This
solution is unique, and it is the density of

Xm,α
d= (am−a

a Γ(m
a
)
∞
∏
n=0

(m + an
a + an )Ba+an,m−a)

−1
d= (Γ(m)

Γ(a)
∞
∏
n=0

(m + n
a + n )B1+n

a
,m
a
−1)

− 1
a

,

with the notation a =m − α.
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The fact that the two above infinite products are actually a.s. convergent is an easy
consequence of the martingale convergence theorem - see the beginning of Section 2.1
in [59] and the references therein. The proof of the above theorem relies on the Mellin
transform of f, which is by (2.1) the solution to a functional equation of first order given
as (2.9) below. This kind of equation has often been encountered in the recent literature,
with various point of views - see e.g. [87, 73, 57, 75]. If f is assumed to be a density, then
(2.1) or (2.9) amount to a random contraction equation

Y
d= Bm−α,α × Ŷm−α (2.4)

connecting a random variable Y and its size-bias Ŷm−α, with the notations of the beginning
of Section 2 in [74]. Our two product representations are then essentially a consequence
of Theorem 3.5 in [73] and Lemma 3.2 in [74]. However, these simple representations do
not seem to have been observed as yet, see in this respect the bottom of p.208 in [74].

Throughout, motivated by precise asymptotics analogous to (2.15) in [81], we will
also connect the Mellin transform of the solution to (2.4) to the double Gamma function
G(z; τ), z, τ > 0. This function, also known as the Barnes function for τ = 1, was introduced
in [8] as a generalization of the Gamma function. It fulfils the functional equations

G(z + 1; τ) = Γ(zτ−1)G(z; τ) and G(z + τ ; τ) = (2π) τ−12 τ 1
2
−zΓ(z)G(z; τ) (2.5)

with normalization G(1; τ) = 1. The link between these two functional equations and that
of (2.9) was thoroughly investigated in [57] in the framework of Lévy perpetuities - see
Section 3 therein. The normalization also implies

G(τ ; τ) = (2π) τ−12√
τ

(2.6)

for every τ > 0, which will be used henceforth.

A consequence of our main result is the solution to open problems related to the infinite
divisibility of the density solutions to (2.1), recently formulated in [74]. Recall that the
law of a positive random variable X is called a generalized Gamma convolution (X ∈ GGC
for short) iff its log-Laplace exponent reads

− logE[e−λX] = aλ + ∫
∞

0
(1 − e−λx)k(x)dx

x
= aλ + ∫

∞

0
log(1 + λu−1)µ(du) (2.7)

with a ≥ 0 and
k(x) = ∫

∞

0
e−xu µ(du)

is a CM function, whose Bernstein measure µ is called the Thorin measure of X.
We now supposem > α and denote byXm,α the positive random variable whose density

fm,α is the unique density solution to (2.1). The law of Xm,α will be denoted by Gst(m,α)
and called generalized stable with parameters m and α, whereas the law of Ym,α = X−1

m,α

will be denoted by rGst(m,α), in accordance with the terminology of [74]. Observe from
(2.1) that the density gm,α(x) = x−2fm,α(x−1) of Ym,α is such that hm,α(x) = x1−αgm,α(x)
is a positive solution to

Iα−h = x2α−mh,

where Iα− is the right-sided Riemann-Liouville fractional integral on the half-axis. This
dual equation to (2.1) is the one appearing in a physical context for m = 2 - see (27) in
[15].
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Corollary 2.1. With the above notations, one has:
(a) Xm,α ∈ GGC for all m > α.
(b) Xm,α ∈ HCM ⇔ Ym,α ∈ ID ⇔ m ≤ 2α.

Part (a) of the corollary is a generalization of Theorem 5.3 in [74], solving the open
questions formulated thereafter. Besides, by e.g. Theorem III.4.10 in [84], it shows that
the density solution fm,α to (2.1) is also the unique density solution to

xf(x) = ∫
x

0
km,α(x − y) f(y)dy (2.8)

where km,α is the CM function associated to Xm,α through (2.7). This latter equation is
known as Steutel’s integro-differential equation for infinitely divisible densities. Except
in the obvious case m = 1, the link between the two convolution kernels (x − y)α−1 and
km,α(x − y) is mysterious, and the function km,α is not explicit in general. See however
Section 3 for an analytical treatment of km,α in the cases m = 2α and m = 2. Part (b)
gives a characterization of the infinite divisibility of the law rGst(m,α), and it is an ex-
tension of Theorem 5.1 in [74]. It can also be viewed as a generalization of the main
result of [23], which handles the case m = 1. As will be observed in Remark 2.1 (a) below,
its proof also allows us to solve entirely the open question stated after Theorem 3.2 in [74].

We now turn to the asymptotic behavior of the densities fm,α at zero and infinity.
This is a basic question for the classical special functions, which is investigated e.g. all
along [34]. When m is an integer, the densities fm,α are Fox functions and in [81], the
general results of [24] are used in order to derive convergent power series representations at
infinity, with an exact first order polynomial term, as well as a non-trivial exponentially
small behavior at zero - see (2.20) and (2.21) therein. In general, fm,α is not a Fox
function. Indeed, following from (2.10) (B.6) and (B.7), fm,α is a Fox function iff there
exist a1,⋯, aM , c1,⋯, cN ≥ 0 and b1,⋯, bM , d1,⋯, dN > 0 such that

1 − zα
(1 − z)(1 − zm−α) =

M

∑
i=1

zai

1 − zbi −
N

∑
i=1

zci

1 − zdi , ∀ z ∈ (0,1).

The answer is positive if α ∈ N, if m ∈ N, or if m
m−α ∈ N, which will be studied in section

2.3.A. But it is not always right, for example, α = 1/2,m = 3/2. However, we can show
the following estimates, which generalize (2.20) and (2.21) in [81].

Proposition 2.1. With the above notation, one has

fm,α(x) ∼ xα−m−1

Γ(α) as x→∞ and fm,α(x) ∼ cm,α x−
m(1+α)

2α e−(
α

m−α )x
α−m
α as x→ 0,

with

cm,α = (2π)m−2
2 (m − α)

α(1−m)
2(m−α)

√
αG(m,m − α) ⋅

The estimate at infinity is an elementary consequence of (2.1). The derivation of the
estimate at zero, much more delicate, is centered around the exact case m = 2α which
corresponds to the Fréchet random variable Γ−1

α . When m > 2α, the underlying random
variable is the exponential functional of a Lévy process without negative jumps, and we
can apply the recent Tauberian results of [75]. To handle the case m < 2α which has
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fat exponential tails, we perform an induction based on a multiplicative identity in law
involving the above Γ−1

α .

The next section is devoted to the proof of the three above results. In the last section,
we display several remarkable factorizations generalizing those of [74], and we investigate
the corresponding Fox function representations and convergent power series expansions.
We also discuss some explicit Thorin measures coming from (2.7) and the behavior of the
laws Gst(m,α) when α → 0 and α →m.

2.2 Proofs

2.2.A Proof of the theorem

We begin with the only if part. Introduce the Mellin transform

M(s) = ∫
∞

0
x−sf(x)dx

which is well-defined for all s ∈ R with possibly infinite values, since f is non-negative. By
Fubini’s theorem - see also Lemma 2.15 in [55], we readily deduce from (2.1) the functional
equation

M(s + a)
M(s) = Γ(m + s)

Γ(a + s) , s > −a. (2.9)

By strict log-convexity of the Gamma function and since m > m − α = a, we observe
that the right-hand side of (2.9) is increasing in s. Since s ↦M(s) is also log-convex by
Hölder’s inequality, the left-hand side of (2.9) is non-increasing in s when a ≤ 0. All of
this shows that there is a density solution to (2.1) only if a > 0⇔m > α.

We now proceed to the if part. On the one hand, the functional identity (2.5) shows
that for all a ∈ (0,m), the function

M(s) = a
(m−a)s

a × G(m + s, a)G(a, a)
G(a + s, a)G(m,a) , s > −a, (2.10)

is a solution to (2.9). On the other hand, Proposition 2 in [59] implies that this function
equals

E [(am−a
a Γ(m

a
)
∞
∏
n=0

(m + an
a + an )Ba+an,m−a)

s

] , s > −a.

This shows that there is a density solution to (2.1) form > α, which is that of Xm,α defined
by the first product representation. To obtain uniqueness, we use the same argument as
in [74]. If f is a density solution to (2.1) and if Y is the random variable with density
g(x) = x−2f(x−1), we deduce from (2.1) the identity

g(x) = Γ(m)
Γ(a)Γ(m − a) ∫

1

0
ta−1(1 − t)m−a−1 ((xt−1)a

Mg(a)
g(xt−1)) dt

t

with the notation
Mg(s) = ∫

∞

0
x−sf(x)dx = E[Y s].
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This translates into the random contraction equation

Y
d= Ba,m−a × Ŷa

where Ŷa is the size-bias of order a of Y, having density xag(x)
Mg(a) . By Theorem 3.5 in [73],

the solutions to this random equation are unique up to scale transformation. Since (2.9)
implies the normalization E[Y a] = Γ(m)

Γ(a) , we finally obtain the uniqueness of g, and that
of f as well.

To conclude the proof, it remains to show the identity in law between the two product
representations of Xm,α. This is actually given as Lemma 3.2 in [74], but we provide here
a simple and separate argument. SettingMa(s) =M(as) transforms (2.9) into

Ma(s + 1)
Ma(s)

= Γ(m + as)
Γ(a + as) ,

whose solution is unique thanks to the main result of [87] and the log-convexity of the
Gamma function. The functional identity (2.5) shows that this solution is given by

Ma(s) =
G(ma + s, 1

a)G(1, 1
a)

G(1 + s, 1
a)G(ma ,1)

= E [(Γ(m)
Γ(a)

∞
∏
n=0

(m + n
a + n )B1+n

a
,m
a
−1)

s

] , s > −1,

where the second equality follows again from Proposition 2 in [59]. this completes the
proof.

◻

2.2.B Proof of the Corollary

It is well-known and easy to see from the expression of its density that B−1
b,c − 1 ∈ HCM ⊂

GGC for every b, c > 0, so that B−1
b,c ∈ GGC as well. The first infinite product representation

in the Theorem and the main result of [19] imply that Xm,α ∈ GGC, which concludes the
proof of Part (a).

The first inclusion Xm,α ∈ HCM⇒ Ym,α ∈ ID of Part (b) is an obvious consequence of
(1.13). As in Theorem 5.1 (b) of [74], the second inclusion Ym,α ∈ ID ⇒ m ≤ 2α follows
from well-known bounds on the upper tails of positive ID distributions - see e.g. Theorem
III.9.1 in [84], and the small-ball estimate

x
α−m
α logP[Xm,α < x−1] = x

α−m
α logP[Ym,α > x] → −( α

m − α) , x→∞. (2.11)

When m is a positive integer, the latter estimate is a consequence of (2.15) in [81], taking
into account the normalization (2.1) therein. To prove (2.11) in the general case, we
consider the random variable Zm,α = (Ym,α)

m−α
α and we study the behavior of its positive

entire moments through the quantities

an = (E[(Zm,α)n])
1
n

n
= a

n
(G(m + bn, a)G(a, a)
G(a + bn, a)G(m,a))

1
n

,

where the second equality follows from (2.10), recalling the notation a =m−α and having
set b = a

m−a ⋅ By Stirling’s formula and the estimate (4.5) in [17], we obtain

lim
n→∞

an = b

e
(2.12)
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Lemma 3.2 in [28] states that for an almost surely non-negative random variable, if

lim
n→∞

(E[(X)n]) 1
n

n
= a

for some constant a ∈ (0,∞), then

logP(X > x) ∼ − x
ae
, x→∞,

which implies (2.11).
In order to show the last inclusion m ≤ 2α ⇒ Xm,α ∈ HCM, we will use the argument of
the main result in [23]. If m = 2α, then the first product representation and Lemma 3 in
[23] imply

Y2α,α
d= α

∞
∏
n=0

(n + 2

n + 1
)Bα(n+1),α

d= cαΓα

for some normalizing constant cα which is here one, since the infinite product has unit
expectation. Hence

X2α,α
d= Γ−1

α ∈ HCM. (2.13)

If m < 2α viz. m > 2a, the same argument shows that

Ym,α
d= a

m−a
a Γ(m

a
)
∞
∏
n=0

(m + an
a + an )Ba+an,m−a

d= a
m−a
a Γ(m

a
)(

∞
∏
n=0

(n + 2

n + 1
)Ba(n+1),a) × (

∞
∏
n=0

(m + an
2a + an)B2a+an,m−2a)

d= a
m−2a
a Γ(m

a
) Γa × (

∞
∏
n=0

(m + an
2a + an)B2a+an,m−2a) ,

which belongs to HCM by Lemma 1 in [23].
◻

Remark 2.1. (a) The above proof makes it also possible to characterize the infinite
divisibility of the class L(a, b, r) defined in Section 3 of [74] as the solutions in law to the
random contraction equation

X
d= Ba,b × X̂r,

with the notation of Section 2 in [74]. By (3.7) in [74], these solutions are constant
multiples of the infinite product

∞
∏
n=0

(a + b + rn
a + rn )Ba+rn,b,

and our argument shows similarly that this product is in HCM as soon as b ≥ r. By the
second statement of Theorem 3.2 in [74], this entails the characterization

L(a, b, r) ∈ ID ⇔ L(a, b, r) ∈ HCM ⇔ b ≥ r

for every a > 0, providing an answer to the open question stated after Theorem 3.2 in [74].
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(b) The second identity in our main result and Example VI.12.21 in [84] readily imply
that logGst(m,α) ∈ SD for everym > α. Theorem 3.1 in [74] also shows that logL(a, b, r) ∈
ID for every a, b, r > 0, and that logL(a, b, r) ∈ SD if and only if the function

x ↦ xa(1 − xb)
(1 − x)(1 − xr)

is non-decreasing on (0,1), a property which neither holds for all a, b, r > 0 nor seems to
be characterized cosily in terms of a, b, r.

2.2.C Proof of the Proposition

The asymptotics at infinity is read off immediately in the integro-differential equation
(2.1) itself, since

fm,α(x) = (∫
∞

0
(1 − vx−1)1{v≤x}fm,α(v)dv)

xα−m−1

Γ(α)

∼ xα−m−1

Γ(α) as x→∞,

where the estimate follows from dominated convergence and the fact that fm,α is a density
on (0,∞).

◻
The derivation of the asymptotics at zero is more involved, and we have to consider

three cases separately. Observe that at the logarithmic level, the asymptotic was already
obtained in (2.11).

The case m = 2α

Here, the identity (2.13) implies

f2α,α(x) = x−α−1

Γ(α) e
− 1
x ,

which shows the desired asymptotic behavior in an exact formula, since

c2α,α = (2π)α−1α−α

G(2α,α) = (2π)α−12√
αΓ(α)G(α,α) = 1

Γ(α) ⋅

◻

The case m > 2α

We first show the estimate

fm,α(x) ∼ cx−
m(1+α)

2α e−(
α

m−α )x
α−m
α (2.14)

for some positive constant c which will be identified afterwards. Recall the notation
a =m−α and introduce the parameter β = m−a

a ∈ (0,1). From (2.10) and the first equation
in (2.5), we get

φm,α(s) = M(s + 1)
M(s) = aβ

Γ(1 + β + s
a)

Γ(1 + s
a)

= aβ
Γ(1 + β(1 + u))

Γ(1 + βu)
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with the notation s = aβu. Using e.g. Lemma 1 in [21], this implies

sM(s + 1)
M(s) = ψm,α(s)

where

ψm,α(s) = aβ (Γ(β + 1)s + ∫
0

−∞
(esx − 1 − sx)( amβemx

Γ(1 − β)(1 − eax)β+2
)dx)

is the Laplace exponent of a Lévy process without positive jumps {L(m,α)
t , t ≥ 0}, that is

ψm,α(s) = logE[esL(m,α)1 ]. By the Bertoin-Yor criterion - see Proposition 2 in [16] and its
proof, we deduce

Xm,α
d= ∫

∞

0
e−L

(m,α)
t dt.

The required estimate will now follow from a recent general result of Patie and Savov on
exponential functionals of Lévy processes without positive jumps. We first write

φm,α(s) = aβ Φβ(sa−1)
where

Φβ(u) = (u + β
u

) Γ(β + u)
Γ(u) = uβ (1 + β(β + 1)

2u
+ β(β2 − 1)(3β + 2)

24u2
+ O(u−3)) ,

the expansion being e.g. a consequence of Formulæ (4) and (5’) in [33]. This expansion
also shows, after some algebra, that

Φ−1
β (u) = u

1
β − (β + 1)

2
+ O(u−

1
β )

and, from the concavity of Φβ and the monotone density theorem, that Φ′
β(u) ∼ βuβ−1.

This implies
φ−1
m,α(s) = aΦ−1

β (sa−β) = s
1
β − m

2
+ O(s−

1
β )

and

(φ−1
m,α)′(s) = 1

φ′m,α(φ−1
m,α(s))

∼ s
1−β
β

β
⋅

Putting everything together with Formula (5.47) in [75], we finally obtain (2.14), and it
remains to identify the constant c. To do so, we introduce the random variable Um,α =
βX

− 1
β

m,α = βZm,α, with density

hm,α(x) = (βx−1)β+1fm,α((βx−1)β) ∼ c (βx−1)
m(1−α)
2(m−α) e−x as x→∞.

A standard approximation using Laplace’s method and Stirling’s formula implies
E[Un

m,α]
n!

∼ c (βn−1)
m(1−α)
2(m−α) as n→∞.

On the other hand, we have
E[Un

m,α]
n!

= αn

n!
(G(m + bn, a)G(a, a)
G(a + bn, a)G(m,a)) ∼ cm,α (βn−1)

m(1−α)
2(m−α) as n→∞,

where the estimate follows from (4.5) in [17], Stirling’s formula, and some algebra. This
completes the proof.

◻
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The case m < 2α

In this case, the small ball estimate (2.11) shows that Ym,α does not have exponential
moments, so that Xm,α is not distributed as the exponential functional of a Lévy process
without positive jumps, by Proposition 2 in [16]. Hence, we cannot use the estimate (5.47)
in [75]. We will first prove (2.14) via an induction on n, where

(n + 1)a < m ≤ (n + 2)a. (2.15)

The case n = 0 follows from the previous cases m ≥ 2α⇔m ≤ 2a. To prove the induction
step, we first observe the identity in law

Ym,m−a
d= Ym−a,m−2a × Γα, (2.16)

which is a consequence of (2.10), the second equation in (2.5), and fractional moment
identification. The multiplicative convolution formula leads then to

fm,α(x) = 1

Γ(α) ∫
∞

0
fα,2α−m(xy) yα e−y dy.

Setting again b = a
m−a < 1, we choose δ ∈ (b,1) and we decompose

fm,α(x) = 1

Γ(α) ∫
x−δ

0
fα,2α−m(xy) yα e−y dy + o(e−x−η), x→ 0, (2.17)

for every η ∈ (b, δ), where the Landau estimate follows readily from the bounded character
of fα,2α−m. To estimate the integral, we use the induction hypothesis on fα,2α−m, and the
fact that δ < 1, in order to obtain

∫
x−δ

0
fα,2α−m(xy) yα e−y dy ∼ cx−

α(1+2α−m)
2(2α−m) ∫

x−δ

0
y
α(2α−m−1)
2(2α−m) e−y−(

2α−m
m−α )(xy)

α−m
2α−m dy

∼ cx−(b+
m+1
2

)∫
xb−δ

0
z
α(2α−m−1)
2(2α−m) e−x

−b(z+( 2α−m
m−α )z

α−m
2α−m ) dz.

Using Laplace’s approximation, we deduce that there exists a positive constant c̃ such
that

∫
x−δ

0
fα,2α−m(xy) yα e−y dy ∼ c̃ x−

b+m+1
2 e−b

−1x−b = c̃ x−
m(1+α)

2α e−(
α

m−α )x
α−m
α .

By (2.17), this completes the proof of (2.14) by induction. The identification of the
constant c̃ is done exactly in the same way as in the case m > 2α.

◻
Remark 2.2. (a) The derivation of the asymptotics at infinity follows also, in a more
complicated way similar to the argument of Theorem 4.4 in [74], from the behavior of
M(s) at its first pole s = −a. More precisely, by (2.9), we have

M(s) ∼ (a
a−mG(m − a, a)G(a, a)

G(m,a) ) × 1

G(a + s, a) = 1

aΓ(m − a)G(a + s, a) as s ↓ −a,

where the equality comes from (2.6) and the second equation in (2.5). The latter also
imply

1

G(a + s, a) = (2π)a−12 a 1
2
−a−sΓ(s + a)

G(2a + s, a) ∼ a

a + s as s ↓ −a,
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showing that this first pole is simple and isolated. Putting everything together and using
e.g. Theorem 4 in [36], we obtain the required asymptotic

fm,α(x) ∼ x−a−1

Γ(m − a) = xα−m−1

Γ(α) as x→∞.

In principle, the exact expression ofM(s) and Theorem 4 in [36] should make it possible
to derive a more complete expansion of fm,α at infinity. As mentioned in the introduc-
tion, an absolutely convergent power series expansion exists when m is an integer, as a
consequence of a Fox representation of order m for gm,α(x) = x−2fm,α(x−1) - see (2.11) and
(2.12) in [81]. We will consider some examples in Section 3.1, revisiting in particular the
case when m is an integer. See also Theorem 3 in [57] for some results in this vein, which
apply to some cases when m > 2α is not an integer.

(b) In the strict stable case m = 1, our asymptotic at zero reads simply

f1,α(x) ∼ x−
1+α
2α

√
2πα

e−(
α

1−α )x
α−1
α = x−

2−a
2(1−a)

√
2π(1 − a)

e−(
1−a
a

)x
−a
1−a ,

in accordance with X1,α
d= a− 1

aZa and the first order term of (2.4.30) in [46]. The latter for-
mula displays actually a complete expansion of the density f1,α at zero, with non-explicit
coefficients. The detailed argument for this expansion, which relies on (2.3), Fourier in-
version, and the method of steepest descent, is in the proof of Theorem 2.4.6 in [46]. In
the absence of explicit Laplace transform, a complete expansion at zero for fm,α seems
difficult to derive in general when m ≠ 1.

(c) The multiplicative identity (2.16) has a more general formulation, which is

Ym,α
d= Yq,q−a × Y

(q−a)
m+a−q,m−q (2.18)

for every q ∈ (m − a,m), with the alternative notation X(t) = X̂t. Notice that (2.18) boils
down to (2.16) for q =m − a and that, contrary to the self-similar identity

X1,1−a
d= b

a−b
ab X1,1−b × X

1
b

1,1−a
b

which is valid for every b ∈ (a,1), it is not a subordination formula. As in Corollary 4
(a) of [59], it can also be shown that Xm,β is a multiplicative factor of Xm,α for every
0 < β < α <m.

2.3 Further remarks

2.3.A Some particular factorizations

In this paragraph we consider three situations where the law Gst(m,α) has simpler ex-
pressions as a finite product involving the Gamma or the positive stable distribution. This
expression is derived from rewriting (2.10) as a moment of Gamma type, thanks to the
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concatenation formulæ of (2.5). We refer to [49] for a survey on moments of Gamma
type. In our three cases, the density fm,α is also a Fox H−function and we display the
convergent power series representations, when it is possible. Throughout, we use again
the notations a = m − α and X(t) = X̂t in order to have simpler formulæ. Our reference
for Fox functions is Section 1.12 in [55], especially (1.12.1) and (1.12.19) therein.

The case α = n ∈ N

We have

M(s) = a
ns
a

n

∏
i=1

(
Γ(1 + i−1

a + s
a)

Γ(1 + i−1
a )

) , s > −a.

This shows that Xm,n is a finite independent product of generalized Fréchet random vari-
ables, as was already observed in the introduction for α = 1,2 ∶ one has

Xm,n
d= (anΓ1 × ⋯ × Γ1+n−1

a
)
− 1
a
.

The Fox function representation of fm,n is then

fm,n(x) = ( a
n
a

∏n
i=1 Γ(1 + i−1

a )
)H0,n

n,0

⎡⎢⎢⎢⎢⎢⎣
a
n
ax

RRRRRRRRRRRRRR

(−ia , 1
a)i=1,...,n

⎤⎥⎥⎥⎥⎥⎦
.

When a /∈ Q or a ∈ Q with a = p
q irreducible and p ≥ n, the following convergent power

series representation holds:

fm,n(x) = ( a
n
a
+1

∏n
i=1 Γ(1 + i−1

a )
)

n

∑
r=1

∞
∑
k=0

(−1)ka−( rna +n(k+1))

k!
(∏̂

n

j=1
Γ( j−ra − k))x−(r+a(k+1)),

where the hat product indicates omission of j = r. For n = 1, this simplifies into

fm,1(x) = x−a−1 ∑
k≥0

(−1)k
k!

1

(axa)k = x−a−1e−
1
axa

as expected, since Xm,1
d= (aΓ1)−

1
a . For n = 2 and ν = 1

a /∈ N, this simplifies into

fm,2(x) = x−a−1

Γ(ν) ∑k≥0

(−1)k
k!

(Γ(ν − k) + Γ(−ν − k)(axa/2)−2ν) (axa/2)−2k

= 2x−a−3/2

aνΓ(ν) Kν(
2

axa/2
)

as expected, since Xm,2
d= (a

√
Γ1 ×Γ1+ν)−

2
a - see the second example in the introduction.

Notice that the representation of fm,2 in terms of the Macdonald functionKν also holds for
ν ∈ N, but then the convergent series representation has a logarithmic term - see Formula
7.2.5(37) in [34].
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The case m = an,n ∈ {2,3, . . .}

We have

M(s) =
n−1

∏
i=1

(Γ(ia + s)
Γ(ia) ) , s > −a.

This shows that Xan,a(n−1) is a finite independent product of inverse Gamma random
variables, as was already observed in (2.13) for n = 2 ∶ one has

Xm,n
d= (Γa × ⋯ × Γa(n−1))

−1
.

The Fox function representation of fan,a(n−1) is

fan,a(n−1)(x) = ( 1

∏n−1
i=1 Γ(ia)

)H0,n−1
n−1,0

⎡⎢⎢⎢⎢⎢⎣
x

RRRRRRRRRRRRRR

(−ia,1)i=1,...,n
⎤⎥⎥⎥⎥⎥⎦
.

When n = 2 or a, . . . , (n − 2)a /∈ N, the following convergent power series representation
holds:

fan,a(n−1)(x) = ( 1

∏n−1
i=1 Γ(ia)

)
n−1

∑
r=1

∞
∑
k=0

(−1)k
k!

(∏̂
n−1

j=1
Γ((j − r)a − k))x−ra−k−1.

For n = 2, this simplifies into

f2a,a(x) = x−a−1

Γ(a) ∑k≥0

(−1)kx−k
k!

= x−a−1e−
1
x

Γ(a) ,

as expected from (2.13). For n = 3 and a /∈ N, similarly as above we get

f3a,2a(x) = x−a−1

Γ(a)Γ(2a) ∑k≥0

(−1)k
k!

(Γ(a − k) + Γ(−a − k)x−a)x−k = x−3a/2−1

Γ(a)Γ(2a)Ka(2x−1/2),

the representation on the right-hand side in terms of the Macdonald function holding for
a ∈ N as well.

The case m = n

We have

M(s) = a
ns
a

Γ(1 + s
a)

Γ(1 + s) ×
n−1

∏
i=1

(
Γ( i+sa )
Γ( ia)

) = (a
n
a

n
)
s

×
n−1

∏
i=0

(
Γ(1 + i+s

a )Γ(1 + i
n)

Γ(1 + i+s
n )Γ(1 + i

a)
) , s > −a,

where the second equality comes from the Legendre-Gauss multiplication formula for the
Gamma function. Observe also that the first equality is Theorem 4.1 in [74], with a
different normalization. This shows that Xn,α is a finite independent product of power
transforms of size-biased stable random variables, as was already mentioned in the intro-
duction for m = 1,2 ∶ one has

Xn,α
d= na−

n
a (Z a

n
× Z

(−1
n

)
a
n

× ⋯ × Z
( 1−n
n

)
a
n

)
1
n

.
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This factorization may look more satisfactory than that of Theorem 4.2 in [74], and it is
also valid in the full range a ∈ (0,m). The Fox function representation of fm,n is derived
similarly as (2.11) in [81] - beware again our different normalization: one has

fn,α(x) = ( a
n
a
−1

∏n−1
i=1 Γ( ia)

)H0,n
n,1

⎡⎢⎢⎢⎢⎢⎣
a
n
ax

RRRRRRRRRRRRRR

(1 − i
a ,

1
a)i=1,...,n

(0,1)

⎤⎥⎥⎥⎥⎥⎦
.

When a /∈ Q or a ∈ Q with a = p
q irreducible and p ≥ n, the following convergent power

series representation holds:

fn,α(x) = ( a
n
a

∏n−1
i=1 Γ( ia)

)
n

∑
r=1

∞
∑
k=0

(−1)ka−( rna +nk)
k!Γ(1 − r − ak) (∏̂

n

j=1
Γ( j−ra − k))x−r−ak.

For n = 1, this simplifies into

f1,α(x) = ∑
k≥1

(−a)−k
k!Γ(−ak) x

−1−ak

as expected from e.g. Theorem 2.4.1 in [46], since X1,α
d= a− 1

aZa. By (2.2.35) in [55], the
auxiliary function h1,α = Iα0+f1,α has Laplace transform

(Lh1,α)(λ) = λ−α exp(− λ
1−α

1 − α) ,

in accordance with (5.2.143) in [55], which leads to (5.2.139) therein, and our above
equation (2.2) which is for m = 1 the fractional differential equation (5.2.137) in [55] with
λ = 1 therein.

In the physically relevant case n = 2 and for ν = 1
a /∈ N, the series representation

simplifies into

f2,α(x) = 1

xΓ(ν) ∑k≥0

(−1)k
k!Γ(−ak) (Γ(ν − k) − (1 + ak)Γ(−ν − k)(axa/2)−2ν) (axa/2)−2k.

Observe the striking formal resemblance with fm,2, although no expression in terms of
a classical special function seems here available. Notice also that for ν ∈ N, there is no
convergent power series representation for f2,α in general, save for ν = a = α = 1 where the
reduction formula (1.12.43) in [55] yields

f2,1(x) = H0,2
2,1

⎡⎢⎢⎢⎢⎢⎣
x

RRRRRRRRRRRRRR

(1 − i,1)i=1,2

(0,1)

⎤⎥⎥⎥⎥⎥⎦
= H0,1

1,0

⎡⎢⎢⎢⎢⎢⎣
x

RRRRRRRRRRRRRR

(−1,1) ⎤⎥⎥⎥⎥⎥⎦
= x−2e−

1
x ,

as again expected from (2.13).

2.3.B Some explicit Thorin measures

As mentioned in the introduction, it follows from Part (a) of the Corollary that the density
solutions to (2.1) are also solution to the Steutel’s integro-differential equation (2.8), whose
convolution kernel km,α(x − y) is such that

km,α(x) = ∫
∞

0
e−xuµm,α(du)
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is a CM function. In the literature, the measure µm,α is called the Thorin measure
associated to the random variable Xm,α ∈ GGC, and we refer to [48] - see also Chapter 3
in [18] - for more on this topic. From (2.7), the measure µm,α is related to the Laplace
transform Lm,α of Xm,α via its Stieltjes transform:

∫
∞

0

µm,α(du)
u + λ = −(logLm,α)′(λ).

Recall that when m = 1, we have

k1,α(x) = xα−1

Γ(α) = ∫
∞

0
e−xu (sin(πα)

πuα
)du,

so that µ1,α has a simple explicit density. Let us mention two other cases where µ1,α has
a more or less explicit density.

The case m = 2α

This case was already discussed at the end of Section 3.2 in [21], but we do it again here
for completeness. From (2.13) we have X2α,α

d= Γ−1
α , whose Laplace transform is computed

similarly as in the introduction:

L2α,α(λ) = 2λ
α
2

Γ(α)Kα(2
√
λ).

Using Formulæ 7.11.(25-26) in [34], we deduce

− (logL2α,α)′(λ) = Kα−1(2
√
λ)√

λKα(2
√
λ)

= ∫
∞

0
( 1

4π2u ((Jα(2
√
u))2 + (Yα(2

√
u))2))

du

u + λ
(2.19)

where the second, non-trivial, equality follows from the main result of [41] - see also [47]
for a simpler argument using the Perron-Stieltjes inversion formula and the Wronskian of
Hankel functions. This shows that µ2α,α has an explicit density ϕ2α,α which is expressed
in terms of the classical Bessel functions Jα and Yα ∶

ϕ2α,α(u) = 1

4π2u ((Jα(2
√
u))2 + (Yα(2

√
u))2) ⋅

Remark 2.3. For every α > 0, t ≠ 0, the Laplace transform of Γ
− 1
t

α is computed formally
as

E[e−λΓ
− 1
t

α ] = 1

tΓ(α) ∫
∞

0
xαt−1 exp(−xt − λ

x
)dx = Zαt

t (λ)
tΓ(α) ,

where Zν
ρ is the so-called Krätzel function - see (1.7.42) in [55]. On the other hand, we

know by Theorem 4 in [22] and the discussion therebefore that

Γ
− 1
t

α ∈ GGC ⇔ Γ
− 1
t

α ∈ ID ⇔ t ≥ −1.

This shows that −(logZν
ρ )′ is the Stieltjes transform of a positive measure µρ,ν for all

ρ ≥ −1 and νρ ≥ 0, and that it is not CM for ρ < −1. The measure µρ,ν is not explicit in
general, except for ρ = 1 by the preceding discussion and Formula (1.7.43) in [55]. The

case ρ = ν > 0 corresponds to the Fréchet random variable Γ
− 1
ρ

1 and to our above special
case α = 1. It is also discussed in Section 3.4 of [21] for ρ = ν ∈ (0,1), from the point of
view of Bochner’s subordination.
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The case m = 2

As seen in the introduction, we have

L2,α(λ) = 2νν

Γ(ν)
√
λKν(2νλ

1
2ν )

with the notation ν = 1
2−α ∈ (1/2,∞). The same computation as above and the Perron-

Stieltjes inversion formula lead to

−(logL2,α)′(λ) = λ
1
2ν
−1Kν−1(2νλ

1
2ν )

Kν(2νλ
1
2ν )

= ∫
∞

0
( 1

2πνu
I(zKν−1(z)

Kν(z)
)) du

u + λ

with z = 2ν(eiπu) 1
2ν , which shows a semi-explicit expression for the density ϕ2,α of µ2,α.

When ν > 1⇔ α ∈ (1,2), we have arg(z2) ∈ (0, π) and we can apply the second equality
in (2.19) which holds on the complex plane cut along the negative real axis. This yields,
after some algebra, an explicit integral representation connecting ϕ2,α to ϕ2α,α ∶

ϕ2,α(u) = 1

ν2 ∫
∞

0
fXν(

u

x
) (x 1

ν
−1ϕ2α,α(x

1
ν )) dx

x

where fXν is the density of Xν
d= ν−2ν(C 1

ν
)ν and Cµ is for every µ ∈ (0,1) the half-Cauchy

random variable with density

sin(πµ)
πµ(x2 + 2 cos(πµ)x + 1) ⋅

Observe that since Xν
dÐ→ 1 as ν → 1, the above representation boils down to the tauto-

logical identity ϕ2,1 = ϕ2,1 when ν = α = 1, a special case of Paragraph 3.2.1 above.
When ν ∈ (1/2,1)⇔ α ∈ (0,1), we can write z = iZ with Z = 2νeiπ( 1

2ν
− 1

2
)u

1
2ν such that

arg(Z2) ∈ (0, π). By Formula 7.2.2(16) in [34], we obtain

ϕ2,α(u) = −1

2πνu
I
⎛
⎝
ZH

(2)
ν−1(Z)

H
(2)
ν (Z)

⎞
⎠
,

a complex expression which does not seem to lead to any particular real simplification.

2.3.C Some limit behaviors

In this last paragraph we study the limit behavior of Gst(m,α) when the parameters
(m,α) reach their admissibility boundary.

• When α → 0⇔ a→m, our main result shows immediately that

Xm,α
dÐ→ 1,

an extension of the case m = 1 where it is obvious from (2.3) that Za
dÐ→ 1 as a→ 1.
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• When α →m⇔ a → 0, the situation is a bit more involved. The second identity of
our main result shows that

aXa
m,α

d= Γ(a + 1)
Γ(m) × (m

a
×B1,m

a
−1)

−1

× (
∞
∏
n=0

(m + n + 1

a + n + 1
)B1+ 1+n

a
,m
a
−1)

−1

dÐ→ 1

Γ(m)Γ1

,

where the convergence follows from (2.5) in [59]. This is again an extension of the
case m = 1 where Z−a

a

dÐ→ Γ1 as a → 0. See also [27] for the behavior of real stable
laws with small self-similarity parameter.

Remark 2.4. When m →∞ and a = m − α is fixed, putting together (2.10) and (4.5) in
[17] shows after some comparison with Theorem 1.4 and Remark 1.5 in [68] that Gst(m,α)
exhibits a mod-Gaussian convergence. We have not investigated the full details, leaving
them to further research.
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Chapter 3

Some properties of the free stable
distributions

3.1 Introduction
In this paper, we investigate certain properties of real free stable random variables. We
say that a real random variable X is free stable, if for any a, b > 0 there exists c > 0, d ∈ R
such that

aX1 + bX2
d= cX + d, (3.1)

where X1,X2 are free copies of X. As in the classical framework, when X is not constant it
turns out that there exist solutions to (3.1) only if c = (aα+ bα)1/α for some fixed α ∈ (0,2]
which is called the stability parameter.

We will be mostly concerned with free strictly stable densities, which correspond to
the case d = 0. Every free strictly stable distribution turns out to be equivalent to a
distribution whose Voiculescu transform is of the form

φα,ρ(z) = −eiπαρz−α+1, I(z) > 0, (3.2)

where (α, ρ) belongs to the following set D of admissible parameters:

D = {α ∈ (0,1], ρ ∈ [0,1]} ∪ {α ∈ (1,2], ρ ∈ [1 − 1/α,1/α]}.

Above, we have used the standard terminology that two measures µ, ν on the line are
equivalent if there exist real numbers a > 0, b ∈ R such that µ(S) = ν(aS + b) for every
Borel set S. We refer e.g. to [71] for some background on the free additive convolution,
to [12] for the original solution to the equation (3.1), and to the introduction of [44] for
the above parametrization (α, ρ), which mimics that of the strict classical framework.
Let us also recall that free stable laws appear as limit distributions of spectra of large
random matrices with possibly unbounded variance - see [11, 25], and that their domains
of attraction have been fully characterized in [13, 14]. In the following, we will denote by
Xα,ρ the random variable whose Voiculescu transform is given by (3.2), and set fα,ρ for
its density. The analogy with the classical case extends to the fact, observed in Corollary
1.3 of [44], that with our parametrization one has

P[Xα,ρ ≥ 0] = ρ.
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For this reason, we will call ρ the positivity parameter of the free strictly random variable
Xα,ρ. Clearly one has P[Xα,ρ ≤ 0] = 1 − ρ and the Voiculescu transform also shows that
Xα,ρ

d= −Xα,1−ρ. In this paper, some focus will be put on the one-sided case and we will
use the shorter notations Xα,1 = Xα and fα,1 = fα. Throughout, the random variable Xα,ρ

will be mostly handled as a classical random variable via its usual Fourier, Laplace and
Mellin transforms, except for a few situations where the free independence is discussed.

Several analytical properties of free stable densities have been derived in the Appendix
to [14], where it was shown in particular that they can be expressed in closed form via the
inverse of certain trigonometric functions. It is also indicated in [14] that every free stable
distribution of stability index α ≠ 1 is equivalent to a free strictly stable distribution of
the same index. The density fα,ρ turns out to be a truly explicit function in three specific
situations only, which is again reminiscent of the classical case:

• f2,1/2(x) =
√

4 − x2

2π
for x ∈ [−2,2], (semi-circular density),

• f1/2(x) =
√

4x − 1

2πx2
for x ≥ 1/4, (inverse Beta density),

• f1,ρ(x) =
sin(πρ)

π(x2 + 2 cos(πρ)x + 1) for x ∈ R, (standard Cauchy density with drift).

The study of fα,ρ was carried on further in [42, 44] where, among other results, several
factorizations and series representations were obtained. Our purpose in this paper is to
deduce from these results several new and non-trivial properties. Our first findings deal
with the infinite divisibility of Xα,ρ. Since this random variable is freely infinitely divisible
(FID), it is a natural question whether it is also classically infinitely divisible (ID).

Theorem 3.1. One has
(a) For every α ∈ (0,1] and ρ ∈ [0,1], the random variable Xα,ρ is ID.
(b) For every α ∈ (1,2], the random variable Xα,1/2 is not ID.

Above, the non ID character of X2,1/2 is plain from the compactness of its support.
Observe also that by continuity of the law of Xα,ρ in (α, ρ) and closedness in law of the
ID property - see e.g. Lemma 7.8 in [79], for every α ∈ (1,2) there exists some ε(α) > 0
such that Xα,ρ is not ID for all ρ ∈ [1/2 − ε(α),1/2 + ε(α)]. We believe that one can take
ε(α) = 1/α − 1/2, that is our above result is optimal with respect to the ID property.
Unfortunately, we found no evidence for this fact as yet - see Remark 3.3 for possible
approaches.

As it will turn out in the proof, for α ≤ 1 the ID random variables Xα,ρ have no Gaussian
component. A natural question is then the structure of their Lévy measure. We will say
that the law of a positive ID random variable is a generalized Gamma convolution (GGC)
if its Lévy measure has a density ϕ such that xϕ(x) is a completely monotonic (CM)
function on (0,+∞). There exists an extensive literature on such positive distributions,
starting from the seventies with the works of O. Thorin. The denomination comes from
the fact that up to translation, these laws are those of the random integrals

∫
∞

0
a(t)dΓt
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where a(t) is a suitable deterministic function and {Γt, t ≥ 0} is the standard Gamma
subordinator. We refer to [18] for a comprehensive monograph with an accent on the
Pick functions representation and to the more recent survey [48] for the above Wiener-
Gamma integral representation, among other topics. See also Chapters 8 and 9 in [80] for
their relationship with Stieltjes functions. In Chapter 7 of [18], this notion is extended
to distributions on the real line. Following (7.1.5) therein, we will say that the law of a
real ID random variable is an extended GGC if its Lévy measure has a density ϕ such
that xϕ(x) and xϕ(−x) are CM as a function of x on (0,+∞). In order to simplify our
presentation, we will also use the notation GGC for extended GGC.

Theorem 3.2. For every α ∈ (0,3/4] and ρ ∈ [0,1], the law of Xα,ρ is a GGC.

Contrary to the above, we think that this result is not optimal and that the random
variable Xα,ρ has a GGC law at least for every α ∈ (0,4/5] and ρ ∈ [0,1] - see Conjecture
3.1. During our proof, we will see that for every α, ρ < 1 the GGC character of Xα,ρ is a
consequence of that of Xα. Unfortunately this simpler question, which is connected to the
hyperbolically completely monotonic (HCM) character of negative powers of the classical
positive stable distribution, is rather involved. Moreover, we will see in Corollary 3.1 that
the law of Xα is not a GGC for α close enough to 1.

Our next result deals with the case α = 1. According to the Appendix of [14], every
free 1-stable distribution is equivalent to a unique distribution whose Voiculescu transform
writes

φρ(z) = −2ρi − 2(1 − 2ρ)
π

log z, I(z) > 0,

for some ρ ∈ [0,1]. By (3.2), this means that a free 1-stable distribution is equivalent to
the law of the free sum

Ca,b
d= aX1,1/2 + bT,

for a ≥ 0, b ∈ R, where T has Voiculescu transform − log z and will be called henceforth
the exceptional free 1-stable random variable. More precisely, for any a > 0 and b ≠ 0, the
random variable Ca,b is equivalent to the 1-free non strictly stable random variable whose
Voiculescu transform is φρ, where ρ ≠ 1/2 is determined by

a

πb
=
⎧⎪⎪⎨⎪⎪⎩

ρ
1−2ρ , b > 0,
1−ρ
1−2ρ , b < 0.

The case b = 0 corresponds to ρ = 1/2 and to the 1-free symmetric strictly stable random
variable, which is the standard Cauchy random variable: one sees from (3.2) that φ1/2
is the Voiculescu transform of X1,1/2. Observe also that φ0 is the Voiculescu transform
of 2

π(T + log(π/2)) whereas φ1 is that of − 2
π(T + log(π/2)). Notice finally that in the

above parametrization of free 1-stable distributions, the parameter ρ is not a positivity
parameter. Actually, as in the classical framework there does not seem to exist a closed
formula for P[Ca,b ≥ 0] when b ≠ 0.

The density of Ca,b can be retrieved from Proposition A.1.3 of [14], in an implicit way.
In this paper, taking advantage of a factorization due to Zolotarev for the exceptional
classical 1-stable random variable, we obtain the following explicit result.
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Theorem 3.3. The random variable Ca,b is ID without Gaussian component and with
Lévy measure

1

x2
(a
π

1{x≠0} + ∣b∣ (1 − ∣b−1x∣ e−2∣b−1x∣

1 − e−∣b−1x∣ )1{bx<0})dx,

where the second term is assumed to be zero if b = 0.

This computation implies that the random variable Ca,b is self-decomposable (SD) and
that the associated Lévy process has CM jumps, but that its law is not a GGC except
for b = 0 - see Remark 3.7. A key-tool for the proof is an identity connecting T and the
free Gumbel random variable - see Proposition 3.2, providing an analogue of Zolotarev’s
factorization in the free setting, and which is interesting in its own right.

Our last main result concerns the shape of the densities fα,ρ. It was shown in the
Appendix to [14] that the latter are analytic on the interior of their support, and strictly
unimodal i.e. they have a unique local maximum. These basic properties mimic those
of the classical stable densities displayed in the monograph [93]. A refinement of strict
unimodality was recently investigated in [58], where it is shown that all classical stable
densities are bell-shaped (BS), that is their n−th derivative vanishes exactly n times on
the interior of their support, as is the case for the standard Gaussian density. The freely
strictly 1-stable density f1,ρ is BS, but it is visually clear that this property is not fulfilled
neither by f2,1/2 nor by f1/2. Let us introduce the following alternative refinement of strict
unimodality.

Definition 3.1. A non-negative function f on R is said to be whale-shaped if its support
is a closed half-line, if it is smooth in the interior of its support and vanishes at both ends
of its support, and if

♯{x ∈ Supp f, f (n)(x) = 0} = 1

for every n ≥ 1.

The denomination comes from the visual aspect of such functions - see Figure 3.1 and
compare with the visual aspect of a bell-shaped density given in Figure 3.2. We will de-
note by WS the whale-shaped property and set WS+ (resp. WS−) for those whale-shaped
functions whose support is a positive half-line [x0,+∞) for some x0 ∈ R, resp. a negative
half-line (−∞, x0]. Observe that if f ∈ WS+, then x ↦ f(−x) belongs to WS−. It is easy
to see that if f ∈ WS+ has support [x0,+∞), then f is positive on (x0,+∞), f (n)(+∞) = 0
and (−1)n−1f (n)(x0+) > 0 for every n ≥ 1. In particular, the class WBS0 introduced in
the main definition of [83] corresponds to those WS+ functions whose support is (0,+∞).
Observe finally that the sequence of vanishing places of the successive derivatives of a
function in WS+ increases, by Rolle’s theorem. Other less immediate properties of WS
functions will be established in Section 3.3.H.

Theorem 3.4. One has
(a) For every α ∈ (0,1), the density fα is WS+.
(b) For every α ∈ (0,3/4] and ρ ∈ (0,1), the density fα,ρ is BS.
(c) The density of T is WS−.
(d) For a ≠ 0 and for b = 0 or ab−1 ∈ πZ, the density of Ca,b is BS.
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Figure 3.1: The free positive 1/2-stable
density (WS).

Figure 3.2: The free symmetric 1-stable
density (BS).

This result leaves open the question of the exact shape of the density for all α > 1.
Observe that the limiting case α = 2 is rather peculiar since it can be elementally shown
that its even derivatives never vanish, whereas its odd derivatives vanish only once and
at zero. But since the BS property is not closed under pointwise limits, it might be true
that fα,ρ is BS whenever its support is R. On the other hand, in spite of Theorem 3.4 (c)
we think that for α ∈ (1,2) the visually whale-shaped density fα,1/α, whose support is a
negative half-line, is not WS−. Indeed, we will see in Proposition 3.15 that otherwise it
would be ID, and we know that this is not true at least for α close enough to 2.

Our four theorems are proved in Section 3.2. In the last section, we derive further
results related to the analysis of the one-sided free stable densities. First, we analyze in
more detail the Kanter random variable Kα, which plays an important role in the proof of
all four theorems. The range α < 1/5 is particularly investigated, and two conjectures made
in [50] and [23] are answered in the negative. A curious Airy-type function is displayed
in the case α = 1/5. We also derive the full asymptotic expansion of the densities of Xα,
Xα,1−1/α and 1−T at the left end of their support, completing the series representation at
infinity (1.16) in [44]. We then provide some explicit finite factorizations of Xα and Kα

with α rational in terms of the Beta random variable, and an identity in law for random
discriminants on the unit circle is briefly discussed. These factorizations motivate a new
identity for the Beta-Gamma algebra, which is derived thanks to a formula of Thomae on
the generalized hypergeometric function. Stochastic and convex orderings are obtained
for certain negative powers of Xα, where the free Gumbel law and the exceptional free
1-stable law appear naturally at the limit. We show that some generalizations of the
semi-circular random variable X2,1/2 provide a family of examples solving the so-called
van Dantzig’s problem. Finally, we display some striking properties of whale-shaped
functions and densities.

Notation. Throughout, unless otherwise explicitly stated, in any factorization of the type
X

d= Y +Z or X d= Y ×Z, the random variables Y,Z on the right-hand side will be assumed
to be classically independent.
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3.2 Proofs of the main results

3.2.A Preliminaries

The proofs of all four theorems rely on the following result by Haagerup and Möller [42]
who, using a general property of the S−transform, have computed the fractional moments
of Xα. They obtained

E[Xs
α] = Γ(1 − s/α)

Γ(2 − (1/α − 1)s)Γ(1 − s)

= ( 1

1 + (1 − 1/α)s)) × ( Γ(1 − s/α)
Γ(1 − s)Γ(1 − (1/α − 1)s))

for s < α. Identifying the two factors, we get the following multiplicative identity in law

Xα
d= U1−1/α × Kα, (3.3)

where U is uniform on (0,1) and Kα is the so-called Kanter random variable. The latter
appears in the following factorization due to Kanter - see Corollary 4.1 in [51]:

Zα
d= L1−1/α × Kα, (3.4)

where L has unit exponential distribution and Zα is a classical positive α−stable random
variable with Laplace transform E[e−λZα] = e−λα and fractional moments

E[Zs
α] = Γ(1 − s/α)

Γ(1 − s)
for s < α. Observe that the random variable Kα has fractional moments

E[Ks
α] = Γ(1 − s/α)

Γ(1 − (1/α − 1)s)Γ(1 − s) (3.5)

for s < α, and in particular a support [bα,+∞) which is bounded away from zero, with

b−1
α = α−1(1 − α)1− 1

α = lim
n→+∞

E[K−n
α ]1/n,

by Stirling’s formula. The density of Kα is explicit for α = 1/2, with

K 1
2

d= 1

4 cos2(πU/2)
d= 1

4B 1
2
, 1
2

and where, here and throughout, Ba,b stands for a standard β(a, b) random variable with
density

Γ(a + b)
Γ(a)Γ(b) x

a−1(1 − x)b−1

on (0,1). Plugging this in (3.3) yields easily

X 1
2

d= 1

4B 1
2
, 3
2

and we retrieve the aforementioned closed expression of f1/2. Several analytical properties
of the density of Kα − bα have been obtained in [50, 82]. In particular, Corollary 3.2 in
[50] shows that it is CM, a fact which we will use repeatedly in the sequel.
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Remark 3.1. (a) Specifying Haagerup and Möller’s result to the negative integers yields

E[X−n
α ] = 1

nα−1 + 1
(nα

−1 + 1

n
), n ≥ 0.

The latter is a so-called Fuss-Catalan sequence, and it falls within the scope of more
general positive-definite sequences studied in [65, 66]. With the notations of these papers,
one has Xα

d=W −1
1/α,1. This implies that fα can be written explicitly, albeit in complicated

form, for α = 1/3 and α = 2/3 - see (40) and (41) in [66]. It is also interesting to mention
that X−1

1
2

has Marchenko-Pastur (or free Poisson) distribution, with density

1

2π

√
4 − x
x

on (0,4]. More generally, Proposition A.4.3 in [14] - see also (8) in [66] - shows that X−1
1
n

is distributed for each n ≥ 2 as the (n − 1)-th free multiplicative convolution power of the
Marchenko-Pastur distribution.

(b) The negative integer moments of Kα are given by the simple binomial formula

E[K−n
α ] = (nα

−1

n
), n ≥ 0.

This shows that the law of K−1
α is of the type studied in [67], more precisely it is ν(1/α,0)

with the notations therein. By Gauss’s multiplication formula - see e.g. Theorem 1.5.2 in
[1] - and Mellin inversion, this also implies the identity

K−1
1
3

d= K−2
2
3

d= 27B 1
3
, 2
3
(1 −B 1

3
, 2
3
)

in terms of a single random variable B 1
3
, 2
3
. In particular, the density of Kα can be written

in closed form for α = 1/3 and α = 2/3 as a two-to-one transform of the density of B 1
3
, 2
3
-

see also Theorems 5.1 and 5.2 in [67]. As seen above, K−1
1
2

d= 4B 1
2
, 1
2
is arc-sine distributed,

with density
1

π
√
x(4 − x)

on (0,4]. It is well-known that this is the distribution of the rescaled free sum of two
Bernoulli random variables with parameter 1/2. It turns out that in general, K−1

1
n

is
distributed for each n ≥ 2 as the (n − 1)-th free multiplicative convolution power of a free
Bernoulli process at time n/(n − 1) - see (6.9) in [67].

(c) The random variable Kα can be expressed as the following explicit deterministic
transformation of a single uniform variable U on (0,1) ∶

Kα
d= sin(παU) sin

1−α
α (π(1 − α)U)

sin
1
α (πU)

⋅ (3.6)

This is Kanter’s original observation - see Section 4 in [51], and it will play an important
role in the proof of Theorem 3. Notice that the deterministic transformation involved in
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(3.6) appears in the implicit expression of the densities fα, which is given in the second
part of Proposition A.I.4 in [14] - see also (11) in [66] for the case when α is the reciprocal
of an integer. There does not seem to exist any computational explanation of this fact.
We refer to equation (1) in [29], and also to Propositions 1 and 2 therein for further results
on this transformation.

3.2.B Proof of Theorem 1

The case α ≤ 1

We begin with the one-sided situation ρ = 1. We deduce from (3.3) and the multiplicative
convolution formula that, for any x > 0,

fα(x + bα) = α

1 − α ∫
1+ x

bα

1
y−

2−α
1−αfKα(y−1(x + bα))dy

= αb
1

1−α
α

1 − α ∫
1

0

x

(bα + tx)
2−α
1−α

fKα(bα +
bα(1 − t)x
bα + tx

)dt.

On the one hand, for every t ∈ (0,1), the function

x ↦ (1 − t)x
bα + tx

is a Bernstein function - see [80]. On the other hand, by the aforementioned Corollary
3.2 in [50], the function z ↦ fKα(bα + z) is CM. Hence, by e.g. Theorem 3.7 in [80], the
function

x ↦ fKα(bα +
bα(1 − t)x
bα + tx

)

is CM, and so is

x ↦ (bα + tx)−
2−α
1−αfKα(bα +

bα(1 − t)x
bα + tx

)

as the product of two CM functions. Integrating in t shows that x↦ x−1fα(x+ bα) is CM
on (0,∞) and it is easy to see from Bernstein’s theorem that this implies the independent
factorization

Xα
d= bα + Γ2 × Yα

for some positive random variable Yα where, here and throughout, Γt stands for a standard
Γ(t) random variable with density

xt−1e−x

Γ(t)
on (0,+∞). By Kristiansen’s theorem [56], this shows that Xα is ID.

To handle the two-sided situation ρ ∈ (0,1), we appeal to the following identity in law
which was observed in [44] - see (2.8) therein:

Xα,ρ
d= X1,ρ × Xα. (3.7)

Since X1,ρ has a drifted Cauchy law and since the underlying Cauchy process {X(1,ρ)
t , t ≥ 0}

is self-similar with index one, the latter identity transforms into

Xα,ρ
d= X

(1,ρ)
Xα

(3.8)
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which is a Bochner’s subordination identity. By e.g. Theorem 30.1 in [79], this finally
shows that Xα,ρ is ID for every α ∈ (0,1] and ρ ∈ [0,1].

◻
Remark 3.2. (a) The above proof shows that

s ↦ E[(Xα − bα)s]
Γ(2 + s)

is the Mellin transform of some positive random variable. On the other hand, it seems
difficult to find a closed formula for the Mellin transform E[(Xα−bα)s], except in the case
α = 1/2 where

E[(X 1
2
− b 1

2
)s] = 21−2s

π
Γ(3/2 + s)Γ(1/2 − s), s ∈ (−3/2,1/2).

When α is the reciprocal of an integer, there is an expression in terms of the terminating
value of a generalized hypergeometric function - see Remark 3.15 (c), but we are not sure
whether this always transforms into a ratio of products of Gamma functions, as is the
case for Xα.

(b) We believe that Xα − bα is a Γ3/2−mixture for every α ∈ (0,1), that is

s ↦ E[(Xα − bα)s]
Γ(3/2 + s)

is the Mellin transform of some positive random variable. This more stringent property
is actually true for α ≤ 3/4, as a consequence of the above proof and Theorem 3.2 - see
Remark 3.10 (b).

The case α > 1 and ρ = 1/2

We first derive a closed expression for the Fourier transform of Xα,ρ, which has independent
interest. It was already obtained as Theorem 1.8 in [44] in a slightly different manner. Our
proof is much simpler and so we include it here. Introduce the so-called Wright function

φ(a, b, z) = ∑
n≥0

zn

Γ(b + an)n!

with a > −1, b ∈ R and z ∈ C. This function was thoroughly studied in the original articles
[89, 90, 91] for various purposes, and is referenced in Formula 18.1(27) in the encyclopedia
[34]. It will play a role in other parts of the present paper.

Lemma 3.1. ∀ (α, ρ) ∈ D, one has

E[eitXα,ρ] = φ(α − 1,2,−(it)αe−iπαρ sgn(t)), t ∈ R.

Proof. The case α = 1 is an easy and classic computation, since X1,ρ has a drifted Cauchy
distribution and φ(0,2, z) = ez. When α ≠ 1, we first observe that since Xα,ρ

d= −Xα,1−ρ, it
is enough to consider the case t > 0. Combining e.g. Theorem 14.19 in [79] and Corollary
1.5 in [44] yields

e−(ix)
αe−iπαρ = ∫

∞

0
t e−tE[eixt1−1/αXα,ρ]dt = x

2α
1−α ∫

∞

0
t e−tx

α
1−α E[eit1−1/αXα,ρ]dt
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for all x > 0. On the other hand, a straightforward computation implies

x
2α
1−α ∫

∞

0
t e−tx

α
1−α φ(α − 1,2,−(it1−1/α)αe−iπαρ)dt = e−(ix)

αe−iπαρ , x > 0.

The result follows then by uniqueness of the Laplace transform.
◻

We can now finish the proof of the case α > 1, ρ = 1/2, where the above lemma reads

E[eitXα,1/2] = φ(α − 1,2,−∣t∣α), t ∈ R.

Applying Theorem 1 in [89] and some trigonometry, we obtain the asymptotic behavior

φ(α − 1,2,−tα) ∼ κα t
−3/2 ecos(π/α)α(α−1)1/α−1 t cos(3π/2α + sin(π/α)α(α − 1)1/α−1 t)

as t→ +∞, for some κα > 0. This implies that t↦ E[eitXα,1/2] vanishes (an infinite number
of times) on R, and hence cannot be the characteristic function of an ID distribution - see
e.g. Lemma 7.5 in [79].

◻
Remark 3.3. (a) It was recently shown in Theorem 1 of [7] that for any a, β > 0, the
function φ(a, β,−z) has only positive zeroes on C. Combined with Lemma 3.1, this entails
that the function t ↦ E[eitXα,ρ] never vanishes on R for α > 1 and ρ ≠ 1/2, so that the
above simple argument cannot be applied. Nevertheless, we conjecture that Xα,ρ is not
ID for all α > 1 and ρ ∈ [1 − 1/α,1/α].

(b) When ρ = 1/α, Lemma 3.1 also gives the moment generating function

E[eλXα,1/α] = φ(α − 1,2, λα) = ∏
n≥1

(1 + λα

λα,n
) , λ ≥ 0,

where 0 < λα,1 < λα,2 . . . are the positive zeroes of φ(α − 1,2,−z). Above, the product
representation is a consequence of the Hadamard factorization for the entire function
φ(α− 1,2, z) which is of order < 1 - see again Theorem 1 in [89], whereas the simplicity of
the zeroes follows from the Laguerre theorem on the separation of zeroes for φ(α−1,2, z),
which has genus 0.

Consider now the random variable

Yα = b
−1/α
1/α − Xα,1/α = α(α − 1)1/α−1 − Xα,1/α,

whose support is (0,∞) by Proposition A.1.2 in [14], and whose infinite divisibility
amounts to that of Xα,1/α. Its log-Laplace transform reads

− logE[e−λYα] = α(α − 1)1/α−1λ − ∑
n≥1

log(1 + λα

λα,n
) (3.9)

= ∫
∞

0
(1 − e−λαx)((α − 1)1/α−1x−1/α

Γ(1 − 1/α) − ∑
n≥1

e−λα,nx) dx
x

where in the second equality we have used Frullani’s identity repeatedly and the well-
known formula (1) p.viii in [80]. Putting everything together shows that Xα,1/α is ID if
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and only if the function on the right-hand side is Bernstein. Unfortunately, this property
seems difficult to check at first sight. Observe by Corollary 3.7 (iii) in [80] that this
function is not Bernstein if the function

x ↦ (α − 1)1/α−1x−1/α

Γ(1 − 1/α) − ∑
n≥1

e−λα,nx

takes negative values on (0,∞), but this property seems also difficult to study. A lengthy
asymptotic analysis which will not be included here, shows that it converges at zero to
some positive constant.

(c) Rewriting equation (3.9) as

λ1/α = b1/α (∑
n≥1

log(1 + λ

λα,n
) − logE[e−λ1/αYα]) ,

we obtain the factorization

Z1/α
d= b1/α (∑

n≥1

Exp(λα,n) + Z
(1/α)
Yα

)

where {Z(1/α)
t , t ≥ 0} is the (1/α)−stable subordinator and all quantities on the right-hand

side are independent. This identity is similar to that of the Lemma in [83], except that
the parameters λα,n of the exponential random variables are not explicit.

3.2.C Proof of Theorem 2

The case ρ = 1

Here, we need to show that the law of Xα is a true GGC. To do so, we first observe that
by (3.3) and some rearrangements, one has

E[e−λXα] = αλ
α

1−α

1 − α ∫
∞

λ
E[e−xKα]x 1

α−1 dx, λ ≥ 0. (3.10)

A combination of Theorem 6.1.1 and Properties (iv) and (xi) p.68 in [18] imply then that
it is enough to show that the law of Kα itself is a GGC. Alternatively, one can use the
main result of [19], since it is easily seen that U1−1/α has a GGC distribution. To analyze
the law of Kα, we use the identity in law

Kα
d= K

1
α
−1

1−α , (3.11)

a consequence of (3.5) which shows that both random variables have the same fractional
moments. Plugging (3.11) again into (3.4) implies that the Laplace transform of K1−α is
the survival function of the power transformation Z

−α
1−α
α . In other words, one has

E[e−xK1−α] = P[L ≥ xK1−α] = P[Z− α
1−α

α ≥ x], x ≥ 0. (3.12)

Setting Fα(x) for the function defined in (3.12), we next observe that since Kα has a CM
density and support [bα,+∞), this function Fα has by Theorem 9.5 in [80] an analytic
extension on C ∖ (−∞,0] which is given by

Fα(z) = exp− [b1−αz + ∫
∞

0

z

t + z
θα(t)
t

dt] (3.13)
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for some measurable function θα ∶ (0,∞) → [0,1] such that ∫
1

0 θα(t)t−1 dt < ∞. See also
Theorem 51.12 in [79]. Applying now Theorem 8.2 (v) in [80], we see that the GGC
property of K1−α is equivalent to the non-decreasing character of θα on (0,∞), and the
following proposition allows us to conclude the proof of the case ρ = 1.

Proposition 3.1. The function θα has a continuous version on (0,∞), which is non-
decreasing for every α ∈ [1/4,1).

Proof. The analysis of θα depends, classically, on the behavior of Fα near the cut (−∞,0].
Assume for a moment that θα is continuous. For every r > 0 and δ ∈ (0,1), we have, after
some simple rearrangements,

Fα(reiπ(1−δ))
Fα(reiπ(δ−1)) = exp−2i [sin(πδ)b1−αr + ∫

∞

0

sin(π(1 − δ)) θα(rt)
1 + 2 cos(π(1 − δ))t + t2 dt]

= exp− [2i sin(πδ)b1−αr + 2iπE [θα(r(X1,1−δ)+)]]
→ exp−2iπθα(r)

as δ → 0 since X1,1−δ → 1 in law as δ → 0 and θα is bounded continuous. On the other
hand, it follows from the third expression of Fα in (3.12) and the first formula of Corollary
1 p.71 in [93], after a change of variable, that

Fα(x) = 1 + 1

2iπ ∫
∞

0
e−t (e−eiπαtαx1−α − e−e−iπαtαx1−α) dt

t
, x > 0.

The analytic continuations of Fα near the cut are then expressed, changing the variable
backwards, as

Fα(reiπ) = 1 + 1

2iπ ∫
∞

0
e−ru (eruα − eruαe−2iπα) du

u
and

Fα(re−iπ) = 1 + 1

2iπ ∫
∞

0
e−ru (eruαe2iπα − eruα) du

u
= Fα(reiπ).

Therefore, we obtain
Fα(reiπ)
Fα(re−iπ) = e−2iπηα(r)

for every r > 0, with the notation

ηα(r) = 1

π
arg[Fα(re−iπ)].

Since
I(Fα(re−iπ)) = 1

2π ∫
∞

0
e−ruR (eruα − eruαe2iπα) du

u
> 0

for every r > 0, the function ηα takes its values in [0,1] and is clearly continuous. By
construction, the functions t−1ηα(t) and t−1θα(t) have the same Stieltjes transform, and
it follows by uniqueness that θα has a continuous version, which is ηα.

It remains to study the monotonous character of ηα on (0,∞). A first observation is
that, expanding the exponentials inside the brackets and using the complement formula
for the Gamma function, the following absolutely convergent series representation holds:

Fα(re−iπ) = ∑
n≥0

zneiπnα

n!Γ(1 − nα) = φ(−α,1, zeiπα) (3.14)
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with z = r1−α. In particular, the function

r ↦ rα−1 I (Fα(re−iπ)) = 1

π
∑
n≥1

Γ(nα)
n!

r(n−1)(1−α)

is absolutely monotonous on (0,∞), and the non-decreasing character of θα will hence
be established as soon as r ↦ rα−1R(Fα(re−iπ)) is non-increasing on (0,∞). We use the
representation

R(Fα(re−iπ)) = 1 + 1

2π ∫
∞

0
e−r

1−1/αu I(euαe2iπα) du
u

and divide this last part of the proof into three parts.

• The case α ∈ [1/2,1). If α = 1/2, we simply have R(F1/2(re−iπ)) ≡ 1. If α > 1/2 we
rewrite, using again the first part of Corollary 1 p.71 in [93],

R(Fα(re−iπ)) = 1

2
+ 1

2
(1 − 1

π ∫
∞

0
e−r

1−1/αu I(e−uαe−iπρα) du
u

)

= 1

2
(1 + P[Zα,ρ ≤ r1−1/α])

where ρ = 2 − 1/α ∈ (0,1) and Zα,ρ is as in Lemma 3.1 a real α−stable random vari-
able with positivity parameter ρ. Thus, R(Fα(re−iπ)) decreases (from 1 to 1/2α) on
(0,∞) and rα−1R(Fα(re−iπ)) also decreases on (0,∞), as required.

• The case α ∈ [1/3,1/2). Setting ρ = 1/α − 2 ∈ (0,1] and using the same notation as
in the previous case, we rewrite

R(Fα(re−iπ)) = 1 + 1

2π ∫
∞

0
e−r

1−1/αu I(e−uαe−iπρα) du
u

= 1 + 1

2
P[Zα,ρ ≥ r1−1/α]

= 1 + ρ

2
P[W−α

α,ρ ≤ r1−α]

where Wα,ρ
d= Zα,ρ ∣Zα,ρ > 0 is the cut-off random variable defined in Chapter 3 of

[93]. Observe that here, the function r ↦ R(Fα(re−iπ)) increases. Setting hα,ρ for
the density function of W−α

α,ρ on (0,∞), we get after a change of variable

rα−1 R(Fα(re−iπ)) = rα−1 + ρ

2 ∫
1

0
hα,ρ(r1−αx)dx,

and it is hence sufficient to prove that the function hα,ρ is non-increasing on (0,∞).
Using the expression for the Mellin transform of Wα,ρ given at the bottom of p.186
in [93] together with the complement and multiplication formulæ for the Gamma
function, we obtain

E[W−αs
α,ρ ] = Γ(1 + s)

Γ(1 + αρs) × Γ(1 − αs)
Γ(1 − αρs)

= 2s

1 + s × Γ(3/2 + s/2)
Γ(3/2) × Γ(1 + s/2)

Γ(1 + αρs) × Γ(1 − αs)
Γ(1 − αρs)
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for every s ∈ (−1,1/α). Identifying the factors and using αρ < 1/2, this implies the
identity in law

W−α
α,ρ

d= 2U ×
√

Γ3/2 × ( Zρ

Z2αρ

)
αρ

where all factors on the right hand side are assumed independent. Hence, W−α
α,ρ

admits U as a multiplicative factor and by Khintchine’s theorem, its density is non-
increasing on (0,∞).

• The case α ∈ [1/4,1/3). Contrary to the above, the argument is here entirely analytic.
We consider

Gα(r) = R(Fα(r
α
α−1 e−iπ)) = 1 + 1

2π ∫
∞

0
e−ru I(euαe2iπα) du

u

= 1 + 1

2π ∫
∞

0
ecos(2πα)uα−ru sin(sin(2πα)uα) du

u

= 1 + 1

2πα ∫
∞

0
gα,r(t) sin(t)dt

where
t ↦ gα,r(t) = t−1ecot(2πα)t−r(sin(2πα))−1/αt1/α

decreases on (0,+∞). For every k ≥ 0 we have

∫
2(k+1)π

2kπ
gα,r(t) sin(t)dt = ∫

π

0
(g(t + 2kπ) − g(t + (2k + 1)π)) sin(t)dt > 0,

so that Gα(r) > 1 for every r > 0. We next compute

(rαGα(r))′ = αrα−1(Gα(r) +
r

α
G′
α(r))

> αrα−1 (1 − r

2πα ∫
∞

0
ecos(2πα)uα−ru sin(sin(2πα)uα)du)

= rα

2π ∫
∞

0
e−ru (2πα − ecos(2πα)uα sin(sin(2πα)uα))du > 0,

since 2πα > 1 ≥ ecos(2πα)uα sin(sin(2πα)uα) for every u > 0. Changing the variable
backwards, this finally shows that r ↦ rα−1R(Fα(re−iπ)) decreases on (0,∞).

◻

Remark 3.4. (a) The above argument shows that the survival function x↦ P[Z− α
1−α

α ≥ x]
is HCM for every α ≥ 1/4, with the terminology of [18]. A consequence of Corollary 3.2 is
that this is not true anymore for α < 1/5, and we believe - see Conjecture 3.1 - that the
right domain of validity of this property is α ∈ [1/5,1). The more stringent property that
Z
− α

1−α
α is a HCM random variable for α ≤ 1/2 was conjectured in [20] and some partial

results were obtained in [20, 23]. In [37], it is claimed that this latter property holds true
if and only if α ∈ [1/3,1/2].

(b) The analytical proof for the case α ∈ [1/4,1/3) conveys to the case α ∈ [1/3,1/2).
Nevertheless, it is informative to mention the probabilistic interpretation of R(Fα(re−iπ))
for α ∈ [1/3,1/2). Simulations show that this function oscillates for α < 1/3. See also
Section 4.2 for a striking similarity between the cases α = 1/3 and α = 1/5.
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(c) We do not know if the representation (3.13) holds for the Laplace transform of Xα.
Since the latter is a Γ2−mixture we obtain, similarly as above,

E[e−xXα] = e−b1−αx∫
∞

0

να(dt)
(x + t)2

for some positive measure να on [0,+∞). This representation would suffice if we could
show that the generalized Stieltjes functions on the right-hand side is the product of two
standard Stieltjes functions, applying Theorem 6.17 in [80] as in the proof of Theorem 9.5
therein. However, this is not true in general, for example when να is the sum of two Dirac
masses. Observe that in the other direction, the product of two Stieltjes functions is a
generalized Stieltjes function of order 2 - see Theorem 7 in [52]. With the notation of [52],
we believe that the exact Stieltjes order of E[e−xXα] is actually 3/2, which however does
not seem of any particular help for (3.13). Alternatively, because of (3.10) one would like
to prove that if f has representation (3.13), then so has x ↦ ∫

∞
x f(y)dy. This is true in

the GGC case by Property xi) p.68 in [18], but we were not able to prove this in general.

The case ρ < 1

The case ρ = 0 follows from Xα,0
d= −Xα. For ρ ∈ (0,1) we appeal to (3.8), the previous

case, and the Huff-Zolotarev subordination formula which is given e.g. in Theorem 30.1
of [79]. Since the law of Xα is a GGC for α ≤ 3/4, its Laplace transform reads

E[e−λXα] = exp− [bαλ + ∫
∞

0
(1 − e−λx)kα(x)

dx

x
]

for some CM function kα. Formula (30.8) in [79] and the closed expression of the density
of X1,ρ imply that the Lévy measure να,ρ of Xα,ρ has density

ψα,ρ(x) = bαψ1,ρ(x) + sin(πρ)
π ∫

∞

0

kα(u)
x2 + 2 cos(πρ)xu + u2

du

= sin(πρ)
π∣x∣ ( bα∣x∣ + ∫

∞

0

kα(∣x∣u)
1 + 2 cos(πρ) sgn(x)u + u2

du)

over R∗, where the closed expression for ψ1,ρ can be deduced e.g. from Theorem 14.10 and
Lemma 14.11 in [79]. Both functions xψα,ρ(x) and xψα,ρ(−x) are hence CM on (0,∞).

◻
Remark 3.5. Since bα > 0 and the ID random variable X1,ρ has no Gaussian compo-
nent, the Huff-Zolotarev subordination formula shows that Xα,ρ does not have a Gaussian
component either, and that for ρ ∈ (0,1) its Lévy measure is such that

∫
∣x∣≤1

∣x∣να,ρ(dx) = +∞.

With the terminology of [79] - see Definition 11.9 therein, this means that the Lévy process
associated with Xα,ρ is of type C. This contrasts with the classical α−stable Lévy process
which is of type B for α < 1. When ρ = 1 and α ≤ 3/4, the GGC property shows that
the Lévy process corresponding to Xα is of type B. We believe that this is true for all
α ∈ (0,1), but this cannot be deduced from the sole Γ2−mixture property established in
Theorem 1.
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3.2.D Proof of Theorem 3

It is well-known and easy to see from the Voiculescu transform

φ1,1/2(z) = −i

that the free sum of X1,1/2 with any random variable is also a classically independent sum.
Hence, the ID character of Ca,b follows from that of T, which is a consequence of Theorem
3.1 and the convergence in law

(1 − α)1−α −Xα

1 − α
dÐ→ T as α ↑ 1, (3.15)

the latter being easily obtained in comparing the two Voiculescu transforms. This con-
cludes the first part of the theorem. Moreover, it is clear that neither X1,1/2 nor T, whose
support is a half-line by Proposition A.1.3 in [14], have a Gaussian component, and this
property conveys hence to Ca,b. Finally, since the Lévy measure of X1,1/2 is

1

πx2
1{x≠0}

as seen in the above proof, we are reduced to show by independence and scaling that the
Lévy measure of T has density

1

x2
(1 − ∣x∣ e−2∣x∣

1 − e−∣x∣)1{x<0}.

This last computation will be done in two steps. Consider the random variable

W = sin(πU)
πU

eπU cot(πU)

and the exceptional 1-stable random variable S characterized by

E[esS] = ss, s > 0.

Proposition 3.2. One has the identities

S
d= log L + log W and T

d= log U + log W.

Proof. We begin with the first identity. Using (3.4), we decompose

(1 − α)1−α −Zα

1 − α
d= Kα × (1 −L1− 1

α

1 − α ) + ((1 − α)
1−α −Kα

1 − α ) . (3.16)

On the one hand, a comparison of the two moment generating functions yields

(1 − α)1−α −Zα

1 − α
dÐ→ S as α ↑ 1.

On the other hand, the right-hand side of (3.16) is a deterministic transformation, de-
pending on α, of (L,U) independent. It is easy to see from (3.6) that

Kα × (1 −L1− 1
α

1 − α ) a.s.Ð→ log L as α ↑ 1.
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To study the second term, we use the elementary expansions

sin(παU) = sin(πU) + (α − 1)πU cos(πU) + O((1 − α)3)
sin

1−α
α (π(1 − α)U) = 1 + (1 − α) log sin(πU(1 − α)) + O((1 − α)2 log2(1 − α))

sin
1
α (πU) = sin(πU)(1 + (1 − α) log sin(πU)) + O((1 − α)2)

(1 − α)1−α = 1 + (1 − α) log(1 − α) + O((1 − α)2 log2(1 − α))

which, combined with (3.6), yield the almost sure asymptotics

(1 − α)1−α −Kα

1 − α = log (sin(πU)
πU

eπU cot(πU)) + O((1 − α) log2(1 − α)).

Putting everything together completes the proof of the first identity. The second one is
derived exactly in the same way, using (3.3) and (3.15).

◻

Remark 3.6. (a) The first identity in Proposition 3.2 is actually the consequence of an
integral transformation due to Zolotarev - see (2.2.19) with β = 1 in [93]. We have offered
a separate proof which is perhaps clearer, and which enhances the similarities between the
free and the classical case echoing those between (3.3) and (3.4). Observe in particular
the identity

S
d= T + log Γ2 (3.17)

reminiscent of Corollary 1.5 in [44], and which is a consequence of Proposition 3.2 and
the standard identities

Lβ d= Uβ × Γβ
2 (3.18)

valid for every β ∈ R∗ and their limit as β → 0, which is

log L
d= log U + log Γ2. (3.19)

(b) It is interesting to look at these standard identities (3.18) and (3.19) in the con-
text of extreme value distributions. Indeed, the three classical extreme distributions are
Fréchet Lβ for β < 0, Weibull −Lβ for β > 0 and Gumbel − log L for β → 0, whereas the
free counterparts are Uβ for β < 0, −Uβ for β > 0 and − log U for β → 0 according to the
classification of [10].

(c) Recently Vargas and Voiculescu have introduced Boolean extreme value distribu-
tions [39]. The result is the Dagum distribution, which is indexed by β > 0 and has density
function

x1/β−1

β(1 + x1/β)2

on (0,∞). Hence, the Dagum distribution is the law of

(U−1 − 1)β d= (L

L
)
β

which is the independent quotient of two Fréchet distributions, and an example of the
generalized Beta distribution of the second kind (GB2). On the other hand, by Proposition
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4.12 (b) in [2], the Boolean α−stable distribution has for α ≤ 1 the law of the independent
quotient

Zα,ρ

Zα

and it is interesting to notice that by Zolotarev’s duality - see (3.3.16) in [93] - and scaling,
the positive part of this random variable is distributed as

(Zαρ

Zαρ

)
ρ

dÐ→ (L

L
)

1
α

as ρ→ 0.

Finding an interpretation about why such quotients appear in those two Boolean cases is
left to future work.

(d) The second identity in Proposition 3.2 can be rewritten as

eT d= U × W.

In [3], it is pointed out that the law of eT is the Dykema-Haagerup distribution, which
appears as the eigenvalue distribution of A∗

NAN as N →∞, where AN is an N ×N upper-
triangular random matrix with independent complex Gaussian entries - see [32].

(e) It follows from Euler’s product and summation formulæ for the sine and the
cotangent that log W is a decreasing concave deterministic transformation of U. This
implies easily that log W has an increasing density on its support which is (−∞,1]. In
particular, log W is unimodal. Besides, since the densities of log U and log L are clearly
log-concave on the interior of their support, applying Theorem 52.3 in [79] we retrieve the
known facts that S and T are unimodal random variables.

Our second step is to compute the Mellin transform of W.

Proposition 3.3. One has

E[Ws] = ss

Γ(1 + s) = exp [s − ∫
∞

0
(1 − e−sx) (1 − x

ex − 1
) dx
x2

]

for all s > 0.

Proof. The first equality follows from

ss = E[esS] = E[Ls]E[Ws] = Γ(1 + s)E[Ws], s > 0,

a consequence of the first identity in Proposition 3.2. To get the second one, we proceed
as in the proof of Lemma 14.11 of [79] and start from Frullani’s identity

log s = ∫
∞

0

e−x − e−sx
x

dx

which transforms, dividing the integral at 1 and making an integration by parts, into

s log s = ∫
∞

0
(e−sx − 1 + sx1{x≤1})

dx

x2
− s(∫

∞

0
(e−x − 1 + x1{x≤1})

dx

x2
) .

On the other hand, it is well-known - see e.g. Proposition 4 (a) in [92] - that

log Γ(1 + s) = −γs + ∫
∞

0
(e−sx − 1 + sx) dx

x(ex − 1)
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where γ = −Γ′(1) is Euler’s constant. Combining the two formulæ yields

logE[Ws] = cs + ∫
∞

0
(e−sx − 1 + sx1{x≤1}) (1 − x

ex − 1
) dx
x2

= c̃s − ∫
∞

0
(1 − e−sx) (1 − x

ex − 1
) dx
x2

where c, c̃ are two constants to be determined. But it is clear that c̃ is the right end of
the support of log W which we know, by Remark 3.6 (c), to be one. Alternatively, one
can use Binet’s formula

γ = ∫
∞

0
( e−x

1 − e−x − e−x

x
)dx,

which is 1.7.2(22) in [34] for z = 1, and rearrange the different integrals, to retrieve c̃ = 1.
This completes the proof.

◻

We can now finish the proof of Theorem 3.3. Putting together Propositions 3.2 and
3.3, we get

logE[esT] = logE[Us] + logE[Ws] = − log(1 + s) + logE[Ws]

= s − ∫
∞

0
(1 − e−sx) (1 − xe−2x

1 − e−x)
dx

x2

where the third equality follows from rearranging Frullani’s identity and the second equal-
ity in Proposition 3.3. All of this shows that the ID random variable T has support (−∞,1]
- in accordance with Proposition A.1.3 in [14], and that its Lévy measure has density

1

x2
(1 − ∣x∣ e−2∣x∣

1 − e−∣x∣)1{x<0}

as required.
◻

Remark 3.7. (a) The first equality in Proposition 3.3 shows that W has the distribution
ν0 studied in Theorem 6.1 of [65]. This distribution also appears in Sakuma and Yoshida’s
limit theorem - see [78]. Finally, combining this equality and the second identity in
Proposition 3.2 implies

E[esT] = ss

Γ(2 + s)
for all s > 0, which was previously obtained in [3] by other methods, and will be used
henceforth.

(b) It is easy to see that the function

x ↦ 1

x
− 1

ex − 1

decreases from 1/2 to zero on (0,∞). By Corollary 15.11 in [79], this shows that log W is
SD. A further computation yields

1

x2
(1 − x

ex − 1
) = ∫

∞

0
e−ux(u − [u])du, x > 0. (3.20)
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This implies that the lévy process associated to log W has CM jumps. By Theorem 3, so
does T whose Lévy measure has density

e−∣x∣

∣x∣ + 1

x2
(1 − ∣x∣

e∣x∣ − 1
) = ∫

∞

0
e−u∣x∣(u − [u − 1]+)du, x < 0.

By Theorem 51.12 in [79], the latter computation also implies that the law of the positive
random variable 1 − log W is a mixture of exponentials (ME) viz. it has a CM density,
which improves on Remark 3.6 (e) and will be used henceforth. Reasoning as in Corollary
3.2 in [50] finally implies that the law of

1

W
− 1

e

is an ME as well.

(c) Making an integration by parts in (3.20) yields

1

x
(1 − x

ex − 1
) = ∫

∞

0
e−ux (du −∑

n≥1

δn(du))

where δ stands for the Dirac mass. By (7.1.5) in [18], this implies that the law of log W
is not a GGC, and the same is true for T because

1

x
(1 − xe−2x

1 − e−x) = ∫
∞

0
e−ux (du −∑

n≥2

δn(du)) .

By (3.15) and Theorem 7.1.1 in [18], this yields the following negative counterpart to
Theorem 3.2.

Corollary 3.1. There exists α0 < 1 such that for every α ∈ (α0,1), the law of Xα is not
a GGC.

This also implies that there is a function δ∶ (α0,1) → [0,1) such that Xα,ρ is not a
GGC for α ∈ (α0,1) and ρ ∈ [δ(α),1]. Observe on the other hand that it does not seem
possible to apply our methods to Xα,ρ with a fixed ρ ∈ (0,1). Indeed, as in the classical
case, the possible limit laws of affine transformations of Xα,ρ with ρ ∈ (0,1) fixed and
α → 1 are given only in terms of X1,ρ, whose law is a GGC.

3.2.E Proof of Theorem 4

The one-sided case

By (3.3) and Corollary 3.2 in [50], we have the independent factorisation

Xα
d= bαU−1/β(1 + X)

where 1/β = 1/α−1 and X has a CM density on (0,∞).We will now show the WS property
for all positive random variables of the type

Y = U−1/β(1 + X) − 1
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with β > 0 and X having a CM density on (0,∞). Setting f, g for the respective densities
of Y,X, the multiplicative convolution formula shows that

f(x) = β

(x + 1)β+1 ∫
x

0
(y + 1)β g(y)dy = β

(1 + 1/x)β+1 ∫
1

0
(y + 1/x)β g(xy)dy

for every x > 0. In particular, one has f(0+) = f(+∞) = 0. Moreover, the first equality and
an induction on n imply that f is smooth with

(x + 1)f (n+1)(x) = βg(n)(x) − (β + n + 1)f (n)(x) (3.21)

for every n ≥ 0. Hence, we also have f (n)(+∞) = 0 for all n ≥ 0 and a successive application
of Rolle’s theorem yields

#{x ∈ (0,∞) ∣ f (n)(x) = 0} ≥ 1

for every n ≥ 1. Fix now n ≥ 1 and suppose that there exist 0 < x(1)
n < x(2)

n <∞ such that

f (n)(x(1)
n ) = f (n)(x(2)

n ) = 0.

By (3.21) and the complete monotonicity of g, we have

(−1)nf (n+1)(x(i)
n ) > 0

for i = 1,2. An immediate analysis based on the intermediate value theorem shows then
that there must exist x(3)

n ∈ (x(1)
n , x

(2)
n ) with

f (n)(x(3)
n ) = 0 and (−1)nf (n+1)(x(3)

n ) ≤ 0,

which is impossible again by (3.21) and the complete monotonicity of g. All in all, we
have proved that

#{x ∈ (0,∞) ∣ f (n)(x) = 0} = 1

for all n ≥ 1, which is the WS property.
◻

The two-sided case

We know by Proposition A.1.4 in [14] that fα,ρ is an analytic integrable function on R, and
by Theorem 1.7 in [44] that it converges to zero at ±∞, decreases near +∞ and increases
near −∞. Moreover, we have shown in Theorem 2 that if α ≤ 3/4, it is the density of an
ID distribution on R with Lévy measure ϕα,ρ(x)dx such that xϕα,ρ(x) and xϕα,ρ(−x) are
CM on (0,∞). We are hence in position to apply Corollary 1.2 in [58], which shows that
fα,ρ is BS.

◻

The exceptional 1-stable case

We use the second identity in Proposition 3.2, which rewrites

1 − T
d= (1 − log W) + L.

We have seen in Remark 3.7 (b) that the random variable 1 − log W has a CM density
on (0,+∞), in other words that it belongs to the class ME∗ with the notations of [83].
Applying the Proposition in [83] with n = 1 shows that 1 −T has a WBS0 density, with
the notation of the main definition in [83]. As mentioned in the introduction, this means
that the density of T is WS−.

◻
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The two-sided 1-stable case with b = 0 or ab−1 ∈ πZ

We may suppose a > 0 by symmetry. If b = 0 the statement is clear since it is elementally
shown that the Cauchy density

1

π(1 + x2)
is BS - see also Corollary 1.3 in [58]. If b ≠ 0, we may suppose b < 0 by symmetry. By
independence, we have

logE[e−iξCa,b] = −a∣ξ∣ + logE[ei∣b∣ξT], ξ ∈ R.

A further computation using Lemma 14.11 in [79] and Remark 3.7 (b) yields

logE[e−iξCa,b] = c1 + c2iξ + ∫
R
( 1

iξ + s − (1

s
− iξ

s2
)1R/(−1,1)(s))ϕa,b(s)ds

for some c1, c2 ∈ R and

ϕa,b(s) = a

π
s + (∣b∣s − [∣b∣s − 1]+)1{s≥0}.

This function satisfies (1.1) and (1.2) in [58] and is such that sϕa,b(s) ≥ 0. Moreover, for
ab−1 ∈ πZ the function ϕa,b(s) − k changes its sign only once for every k ∈ Z. Finally,
we know from Propositions A.1.3 and A.2.1 in [14] that the density of Ca,b is smooth,
converges to zero at ±∞, decreases near +∞ and increases near −∞. We can hence apply
Theorem 1.1 in [58] and conclude the proof.

◻
Remark 3.8. (a) If the random variable 1− log W had a PF∞ density as L does, then the
BS character of f1,1/2 and the additive total positivity arguments used in [58, 83] would
show that Ca,b has a BS density on R for a ≠ 0. But 1− log W cannot have a PF∞ density,
since its law is not a GGC - see e.g. Example 3.2.2 in [18].

(b) If ab−1 /∈ πZ, the function ϕa,b(s)− k changes its sign at least three times for every
negative integer k, so that we cannot use Theorem 1.1 in [58]. It is not clear to the authors
whether the density of Ca,b is always BS for a ≠ 0, and the case ab−1 ∈ πZ might be more
the exception than the rule.

3.3 Further results

3.3.A Some properties of the function θα

In this paragraph we consider further aspects of the function

θα(r) = 1

π
arg[Fα(re−iπ)], (3.22)

whose non-decreasing character amounts to the GGC property for the law of K1−α. We
first prove the following asymptotic result.
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Proposition 3.4. For every α ∈ [1/5,1), one has

lim
r→+∞

R(Fα(re−iπ)) = 1

2α
⋅

For every α ∈ (0,1/5), one has

lim inf
r→+∞

R(Fα(re−iπ)) = −∞ and lim sup
r→+∞

R(Fα(re−iπ)) = +∞.

The second part of this proposition has an immediate corollary, which answers in the
negative an open problem stated in [50] - see Conjecture 3.1 therein.

Corollary 3.2. The function θα is not monotonous on (0,∞) for α < 1/5. In particular,
the law of Kα is not a GGC for α > 4/5.

Proof of Proposition 3.4. We have seen during the proof of Proposition 3.1 thatR(F1/2(re−iπ)) ≡
1 and that

R(Fα(re−iπ)) → 1

2α

as r → +∞ for all α ∈ (1/2,1). We next consider the case α ∈ [1/5,1/2) introducing, as
above, the function

Gα(r) = R(Fα(r
α
α−1 e−iπ)) = 1 + 1

2π
I(∫

∞

0
e−ru+u

αe2iπα du

u
) .

Setting θ = 5
6(1 − 2α) ∈ (0,1/2], we have 2α + αθ ∈ [1/2,1) and by Cauchy’s theorem, we

can rewrite
Gα(r) = 1 + θ

2
+ 1

2π
I(∫

∞

0
e−rue

iπθ+uαeiπ(2α+αθ) du

u
) .

The latter converges to

1 + θ

2
+ 1

2π
I(∫

∞

0
eu

αeiπ(2α+αθ) du

u
) = 1 + θ

2
+ 1

2πα
I(∫

∞

0
e−ue

−iπ(1−2α−αθ) du

u
)

as r → 0. The evaluation of the oscillating integral on the right-hand side is given e.g. in
Formula 1.6(36) p.13 in [34], and we finally obtain

lim
r→0

Gα(r) = 1 + θ
2
+ 1

2α
(1 − 2α − αθ) = 1

2α
⋅

We finally consider the case α ∈ (0,1/5), which is much more technical and requires
several steps. Setting θ = 2α/(1−α) ∈ (0,1/2), we have 2α+αθ = θ and the same argument
as above implies

Gα(r) = 1 + θ

2
+ 1

2π
I(∫

∞

0
e(−rt+t

α)eiπθ dt

t
) .

Hence, we are reduced to show that

lim inf
r→0

Hα(r) = −∞ and lim sup
x→0

Hα(r) = +∞

with the notations fr(t) = sin(πθ)(−rt + tα) and

Hα(r) = I(∫
∞

0
e(−rt+t

α)eiπθ dt

t
) = ∫

∞

0
ecot(πθ)fr(t) sin(fr(t))

dt

t
⋅
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Let us begin with the liminf. Setting

rk = α((1 − α) sin(πθ)
2kπ

)
1/α−1

and mk = ( 2kπ

(1 − α) sin(πθ))
1/α

,

it is clear that the function frk(t) increases on (0,mk) and decreases on (mk,+∞), and
that its global maximum equals frk(mk) = 2kπ. This yields

∫
∞

mk
ecot(πθ)frk(t) sin(frk(t))

dt

t
< 0 for every k ≥ 1.

Considering now the unique ak ∈ (0,mk) such that frk(ak) = π, we have limk→∞ ak =
(π/ sin(πθ))1/α, so that

∫
ak

0
ecot(πθ)frk(t) sin(frk(t))

dt

t
→ ∫

(π/ sin(πθ))1/α

0
ecos(πθ)tα sin(tα sin(πθ)) dt

t
< ∞

as k → +∞. Hence it suffices to show that Ak → −∞ as k → +∞, with

Ak = ∫
mk

ak
ecot(πθ)frk(t) sin(frk(t))

dt

t
= 1

sin(πθ) ∫
2kπ

π

ecot(πθ)u

−rkϕk(u) + α(ϕk(u))α
sin(u)du,

where the second equality comes from a change of variable, having set ϕk(u) for the inverse
function of frk on [π,2kπ] and written

ϕ′k(u) = 1

f ′rk(ϕk(u))
= 1

sin(πθ)(−rk + α(ϕk(u))α−1) > 0.

We next define pk(u) ∶= e− cot(πθ)u(−rkϕk(u)+α(ϕk(u))α) and prove its strict unimodality
on [π,2kπ], computing

p′k(u) = e− cot(πθ)uϕ
′
k(u)

ϕk(u)
(−rkt + α2tα − cos(πθ)(−rkt + αtα)2)

with t = ϕk(u). The strict unimodality of pk(u) on (π,2kπ) amounts to the fact that

qk(t) = −rkt + α2tα − cos(πθ)(−rkt + αtα)2

has at most one zero point on [ak,mk]. It is clear by construction that there exists
ck ∈ (0,mk) such that gk(t) = −rkt+αtα increases on (0, ck) and decreases on (ck,mk), and
for all t ∈ (ck,mk) we have qk(t) = tg′k(t) − cos(πθ)(−rkt + αtα)2 < 0. On the other hand,
the function gk(t) is increasing and concave on [0, ck), so that its inverse function ψk(v)
is increasing and convex on [0, gk(ck)). Now since

qk(t) = 0 ⇔ cos(πθ)v2 − αv + (1 − α)rkψk(v) = 0,

we see that there are at most two solutions of qk(t) = 0 on [0, ck), one of them being zero,
and hence at most one solution on [ak,mk), as required. We now denote by zk the unique
mode of pk(u) on [ak,mk] and, setting lk = inf{l ≥ 1, zk ≤ 2lπ}, decompose

Ak = 1

sin(πθ) (∫
2lkπ

π
p−1
k (u) sin(u)du + ∫

2kπ

2lkπ
p−1
k (u) sin(u)du) .
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Since zk → tan(πθ) viz. lk → l∞ < +∞ as k →∞, it is easy to see that the first term in the
decomposition is bounded, and we are finally reduced to show that

Bk = ∫
2kπ

2lkπ
p−1
k (u) sin(u)du → −∞ as k → +∞.

Since p−1
k (u) increases on [2lkπ,2kπ], we have

Bk =
k−1

∑
j=lk

(∫
(2j+1)π

2jπ
(p−1

k (u) − p−1
k (u + π)) sin(u)du)

for every k ≥ 1 and since pk(u) → α
sin(πθ)ue

− cot(πθ)u pointwise as k → +∞, Fatou’s lemma
implies

lim sup
k→+∞

Bk ≤ sin(πθ)
α

∞
∑
j=l∞
∫

(2j+1)π

2jπ
(e

cot(πθ)u

u
− e

cot(πθ)(u+π)

u + π ) sin(u)du.

Using the inequality

1 + eπ cotπθ

2u
≤ e

π cotπθ

u + π

which holds for u ≥ π(eπ cotπθ+1)
eπ cotπθ−1

, we deduce that for j∞ large enough, one has

lim sup
k→+∞

Bk ≤ π sin(πθ)
α

∞
∑
j=j∞

1 − eπ cotπθ

2 ∫
(2j+1)π

2jπ

ecot(πθ)u

u
sin(u)du

≤ −(eπ cotπθ − 1)π sin(πθ)
4α

∞
∑
j=j∞
∫

2jπ+5π/6

2jπ+π/6

1

u
du = −∞.

All of this shows that
lim inf
r→0

Hα(r) = −∞.

The argument for the limsup follows exactly along the same lines, considering the subse-
quence

r̃k = α((1 − α) sin(πθ)
(2k + 1)π )

1/α−1

.

◻
Remark 3.9. (a) In the case α ∈ [1/3,1/2) we have seen in the proof of Proposition 3.1
that

R(Fα(re−iπ)) = 1 + ρ

2
P[Z−α

α,ρ ≤ r1−α]

with ρ = 1/α− 2, which does converge to 1/(2α) as r → +∞. In the case α ∈ [1/4,1/3), the
proof of Proposition 3.1 shows that

lim
r→0

Gα(r) = 1 + 1

2πα ∫
∞

0
ecos(2πα)u sin(sin(2πα)u) du

u
= 1

2α

again by Formula 1.6(36) in [34]. The above contour argument is hence only necessary
for α ∈ [1/5,1/4).

(b) As mentioned in Remark 3.4 (a), the above proof shows that x ↦ P[Z− α
1−α

α ≥ x] is
not HCM for every α < 1/5. By Theorem 6.3.5 in [18], this implies that Z

− α
1−α

α is not HCM
for α < 1/5 either. This shows that Conjecture 1.2 in [20] is not true in general.

65



Figure 3.3: x−1G1/5(x−5) Figure 3.4: G̃1/5(x)

We believe that θa is non-decreasing for α ∈ [1/5,1), which is equivalent to the following

Conjecture 3.1. The law of Kα is a GGC if and only if α ≤ 4/5.
The above Corollary 3.2 shows the only if part, and in the proof of Theorem 2 we

have shown the if part for α ≤ 3/4. However, it seems that our methods fail to handle
the remaining case α ∈ (3/4,4/5], because some simulations show that rα−1Gα(r

α−1
α ) =

rα−1R(Fα(re−iπ)) is not monotonous anymore, at least for α close enough to 1/5 - see
Figure 3.3. Observe from (3.14) that the problem can be reformulated in terms of the
monotonicity of the ratio of two power series, the non-decreasing character of θα being
equivalent to that of

G̃α ∶ x z→ I(Fα(xe−iπ))
R(Fα(xe−iπ)) =

∑
n≥0

sin(nπα)
n!Γ(1 − nα) x

n

∑
n≥0

cos(nπα)
n!Γ(1 − nα) x

n

on (0,∞). A necessary condition for G̃α to be non-decreasing is that its denominator does
not vanish on (0,∞), which is false for α < 1/5 by Proposition 3.4 and true for α ≥ 1/4 by
the proof of Theorem 2. But the case α ∈ [1/5,1/4) still eludes us. Let us mention that
monotonicity properties of ratios of power series are studied in the literature on special
functions - see e.g. Chapter 3.1 in [6]. For example, one could be tempted to apply
Theorem 4.3 in [45] since x↦ tan(xπα) is locally increasing. However, we could not find
any clue in this literature for our problem, and it is not easy to understand why the value
α = 1/5 should be critical for the monotonicity of the above ratio. See Figure 4 for a
convincing simulation. Let us finally mention [70] for an operator-theoretic approach to
the above power series.

We finally turn to the behavior of Fα(re−iπ) at infinity, which implies that of θα(r).
Proposition 3.5. One has

Fα(re−iπ) ∼ i cαeb1−αr√
r

as r → +∞,

with cα = α
1

2(α−1)
√

2π(1−α)
. In particular, one has θα(r)→ 1/2 as r → +∞.

66



Proof. From (3.14), we can write

Fα(re−iπ) = φ(−α,1, r1−αeiπα), r > 0.

We now use the asymptotic expansion for large z ∈ C and a ∈ (−1,0) of the Wright function
φ(a, b, z), which has been obtained in [91]. Applying therein Theorem 1 for α ≤ 1/3 resp.
Theorem 5 for α > 1/3 and taking the first term in (1.3) implies the required asymptotic
for Fα(re−iπ), since we have here

A0 = 1√
2πα

and Y = b1−αre
−iπ

in the notation of [91], the first equality being a consequence of Stirling’s formula. From
(3.22), we then readily deduce that θα(r)→ 1/2 as r → +∞.

◻

Remark 3.10. (a) Taking the first two terms in the series representation (3.14) yields at
once the asymptotic behavior of θα(r) at zero, which is

θα(r) ∼ r1−α

Γ(α)Γ(1 − α)2
⋅

On the other hand, the complete asymptotic expansion (1.3) in [91] has only purely
imaginary terms in our framework, so that we cannot deduce from it the asymptotics of
θα(r)−1/2 at infinity. It follows from Proposition 3.1 that θα(r) ∈ [0,1/2) for α ≥ 1/4, and
from Proposition 3.4 that θα(r)− 1/2 crosses zero an infinite number of times for α < 1/5,
as r ↦ +∞. For α ∈ [1/5,1/4), we are currently unable to prove that θα(r) ∈ [0,1/2) for
every r > 0, which would be a first step to show that it increases from 0 to 1/2. Recall
that the latter is equivalent to the fact that the denominator of the above G̃α does not
vanish on (0,∞).

(b) If α ≤ 3/4, it follows from (3.13), Theorem 8.2 and Remark 8.3 in [80], and the above
proposition, that the Thorin mass of the GGC random variable Kα equals 1/2. Hence,
Kα−bα is a Γ1/2−mixture by Theorem 4.1.1. in [18], which is a refinement of Corollary 3.2
in [50]. Since this property amounts to the CM character of x↦√

xfKα(bα+x), a perusal
of the proof of Theorem 3.1 shows that Xα − bα is a Γ3/2−mixture as soon as α ≤ 3/4. We
believe that this is true for every α ∈ (0,1).

3.3.B An Airy-type function

In this paragraph, we discuss a curious connection between the two cases α = 1/3 and
α = 1/5 in the analysis of the function

Gα(r) = 1 + 1

2π
I(∫

∞

0
e−ru+u

αe2iπα du

u
) .

The latter was important during the proofs of Theorem 2 and Proposition 3.4. For α = 1/3,
a contour integration as in Proposition 3.4 with θ = −1/2 implies, making the change of
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variable s = (3r)−1/3,

G 1
3
(r) = 3

4
+ 3

2π ∫
∞

0
sin(u3/3 + us) du

u

= 3

4
+ 3

2π
(∫

∞

0
sin(u3/3) du

u
+ ∫

∞

0
(∫

s

0
cos(u3/3 + uz)dz)du)

= 1 + 3

2π ∫
s

0
(∫

∞

0
cos(u3/3 + uz)du)dz

= 1 + 3

2 ∫
s

0
Ai(z)dz

where Ai stands for the classic Airy function - see e.g. Paragraph 7.3.7 in [34]. In
particular, we retrieve the fact that

r ↦ (3r) 1
3G 1

3
(r) = 1

s
+ 3

2 ∫
1

0
Ai(sz)dz

increases, by the well-known decreasing character of Ai on (0,∞). For α = 1/5, the contour
integration of Proposition 3.4 with θ = 1/2 yields, with the change of variable s = (5r)−1/5,

G 1
5
(r) = 1 + 5

2 ∫
s

0
(∫

∞

0
cos(u5/5 − uz)du)dz

= 1 + 5

2 ∫
s

0
Ai(5)(−z)dz

where we have defined, for every integer k ≥ 3, the semi-converging integral

Ai(k)(x) = 1

π ∫
∞

0
cos(uk/k + ux)du, x ∈ R.

We did not find any reference on the above Airy-type functions in the literature, which
are solution to some linear ODE of higher order. Observe that similarly as above, one has

(5r) 1
5G 1

5
(r) = 1

s
+ 5

2 ∫
1

0
Ai(5)(−sz)dz

but here we cannot deduce any conclusion on the monotonicity of r
1
5G 1

5
(r) because of

the negative sign in the Airy-type function. The simulation displayed in Figure 5 shows
indeed that Ai(5)(−x) exhibits on (0,∞) exactly the same damped oscillating behavior
as Ai(−x). It could be interesting for our purposes to perform a rigorous study of the
functions Ai(k), as in the case k = 3 with the Bessel functions. We leave this analysis for
future research.

3.3.C Asymptotic expansions for the free extreme stable densities

In this paragraph we derive the full asymptotic expansion at zero of the density fYα
of

the random variable

Yα = {
Xα − bα if α ∈ (0,1),
Xα,1−1/α + b−1/α

1/α
d= b−1/α

1/α −Xα,1/α if α ∈ (1,2],

and Y1 = 1−T.We will use the standard notation of Definition C.1.1 in [1] for asymptotic
expansions. Our expansions complete the estimates of Proposition A.1.2 in [14] and the
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Figure 3.5: Ai(5)(−x)

series representations of Theorem 1.7 in [44], from which one can only infer that the
random variable Yα is positive. They can also be viewed as free analogues of Linnik’s
expansions (14.35) in [79] - see also Theorem 2.5.3 in [93] - for the classical extreme
stable distributions. Observe that in the classical case, the expansion for α > 1 is deduced
from that of the case α ∈ [1/2,1) by the Zolotarev’s duality which is discussed in Section
2.3 of [93]. Even though the very same duality relationship holds in the free case - see
Proposition A.3.1 in [14] and Corollary 1.4 in [44], for Yα this duality only yields

fY1/α(x) = 1

α
(b−αα − x)−1/α−1fYα

((b−αα − x)1/α − bα)

for every α ∈ [1/2,1), and does not seem particularly helpful to connect explicitly the two
expansions at zero. When α ≠ 1, our method hinges on Wright’s original papers [89] for
the case α > 1 and [91] for the case α < 1. It is remarkable that the two expansions turn
out to have the same parametrization.

Proposition 3.6. For every α ∈ (0,1) ∪ (1,2], one has

fYα(x) ∼
∞
∑
n=0

an(α)xn+1/2 as x→ 0,

with

an(α) = ( 2

α
)
n+1/2 (−1)n

π ∣α − 1∣(n+3/2)/α (2n + 1)! ×
d2n

dv2n

⎛
⎝
(1 − v)−2

2F1[
α + 1 1

3
; v]

−n−1/2⎞
⎠
v=0

.

Proof. We begin with the case α > 1, writing down first fYα with the help of Bromwich’s
integral formula

fYα
(x) = 1

2πi ∫
1+i∞

1−i∞
ezxLα(z)dz,

where
Lα(z) = E[e−zYα] = e−α(α−1)

1
α−1z × E[ezXα,1/α]

is well-defined and analytic on the open right half-plane. Combining next Theorem 1.8 in
[44] and Theorem 2 in [89], we obtain

Lα(z) = e−α(α−1)
1
α−1 z × φ(α − 1,2, zα) = O(∣z∣−3/2)
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uniformly on the right half-plane. Making a change of variable and applying Cauchy’s
theorem, we deduce

fYα
(x) = 1

2πix ∫
x+i∞

x−i∞
ezLα(zx−1)dz = 1

2πix ∫
1+i∞

1−i∞
ezLα(zx−1)dz.

Using now the full asymptotic expansion of Theorem 2 in [89], we get

fYα(x) ∼
∞
∑
n=0

an(α)xn+1/2 as x→ 0,

where

an(α) = (−1)n an
(α − 1)(n+3/2)/α ( 1

2πi ∫
1+i∞

1−i∞
ezz−3/2−n dz) = (−1)n an

(α − 1)(n+3/2)/αΓ(n + 3/2)

and an is defined at the beginning of p.258 in [89] for ρ = α − 1 and β = 2. Above, the
interchanging of the contour integral and the expansion is easily justified - alternatively
one can use the generalized Watson’s lemma which is mentioned at the top of p.615 in
[1], whereas the second equality follows from Hankel’s formula - see e.g. Exercise 1.22 in
[1]. To conclude the proof of the case α > 1, it remains to evaluate the coefficients an(α),
which is done in observing that the function in (1.21) of [89] is here

¿
ÁÁÀ

2F1[
α + 1 1

3
; v],

and making some simplifications.
We now consider the case α < 1. The argument is analogous but it depends on the

expansions of [91] which, the author says, cannot be simply deduced from those of [89].
We again write

fYα
(x) = 1

2πi ∫
1+i∞

1−i∞
ezxLα(z)dz,

where

Lα(z) = eα(1−α)
1
α−1z × E[e−zXα] = eα(1−α)

1
α−1 z × φ(α − 1,2,−zα) = O(∣z∣−3/2)

uniformly in the open right half-plane, the second equality following from Theorem 1.8 in
[44] and the estimate from the Lemma p.39 in [91]. Reasoning as above, we get

fYα(x) = 1

2πix ∫
1+i∞

1−i∞
ezLα(zx−1)dz ∼

∞
∑
n=0

an(α)xn+1/2 as x→ 0,

where

an(α) = an

(α(1 − α) 1
α
−1)n+3/2 Γ(n + 3/2)

and an is defined at the bottom of p.38 in [91] for σ = 1 − α and β = 2. After some
simplifications, we also obtain the required expression for an(α).

◻
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Remark 3.11. (a) It does not seem that a simple closed formula can be obtained for the
coefficients an(α) in general. We can compute

a0(α) =
√

2

α
× 1

π∣α − 1∣3/(2α) and a1(α) = −
√

2

α
× ( 2α2 − 23α + 47

36π α ∣α − 1∣5/(2α)) .

Observe that a1(α) is always negative. We believe that in general, one has

an(α) =
√

2

α
× Q2n(α)
π αn ∣α − 1∣(2n+3)/(2α)

for some Q2n ∈ Q2n[X]. This would again mimic the classical situation, save for the fact
that here the polynomial Q2n does not seem to have symmetric coefficients - see Remark
2 p.101 in [93].

(b) For α = 2, the involved hypergeometric function becomes the standard geometric
series and we simply get

an(2) = (−1)n
π (2n + 1)! ×

d2n

dv2n
((1 − v)n−3/2)

v=0
= −1

π (2n − 1)16n
(2n

n
),

which is always negative except for n = 0. Of course, this can be retrieved via the binomial
theorem for the explicit density

fY2(x) =
√
x

π

√
1 − x

4
⋅

(c) For α = 1/2, the involved hypergeometric function simplifies with the help of Ex-
ercise 3.39 in [1], and we get

an(1/2) = (−1)n4n+2

2π (2n + 1)! ×
d2n

dv2n
((1 +

√
1 − v)2n+1(1 − v)−2)

v=0
= (−1)n(n + 1)4n+2

π
,

whose signs alternate. This again can be retrieved via the binomial theorem for the
explicit density

fY1/2(x) = 16
√
x

π(1 + 4x)2
⋅

(d) As already observed in Remark 3.1 (a), the densities of Y1/3 and Y2/3 can be
written in closed form with the help of formulæ (40) and (41) in [66]. In principle, a full
asymptotic expansion can also be derived from these expressions, but the task seems too
painful. Notice that here, the involved hypergeometric functions do not seem to simplify.

(e) The above proof shows that the following functions

λ↦ e−α(α−1)
1
α−1 λ φ(α − 1,2, λα) resp. λ↦ eα(1−α)

1
α−1 λ φ(α − 1,2,−λα)

on (0,∞), which are obtained in removing Wright’s exponential term at infinity, are CM
functions for α ∈ (1,2] resp. for α ∈ (0,1).
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(f) For α > 1, we can also compute the Mellin transform of Yα, starting from the
formula

E[Y−s
α ] = 1

Γ(s) ∫
∞

0
E[e−λYα]λs−1 dλ

which is valid for every s > 0 with possible infinite terms on both sides. This becomes
here

E[Y−s
α ] = b−sα

Γ(s) ∑n≥0

Γ(s + αn)
n! Γ(2 + (α − 1)n) b

−αn
α

with the notation bα = α(α − 1) 1
α
−1 and has, by Stirling’s formula, an analytic extension

for −α < s < 3/2. Formally, this rewrites

E[Ys
α] = b−sα

Γ(s) 1Ψ1 [
(−s,α)
(2, α − 1) ∣ b−αα ] , −3/2 < s < α,

where rΨs is the generalized hypergeometric function originally studied in [38, 90], which is
sometimes coined as a generalized Wright function, and which should not be confused with
the rψs hypergeometric series defined in (10.9.4) of [1]. For α = 2, Gauss’s multiplication
and summation formulæ for the Gamma and the hypergeometric function - see Theorems
1.5.1 and 2.2.2 in [1], respectively - transform this expression into

E[Y−s
2 ] = 2s 2F1[

−s/2 (1 − s)/2
2

; 1] = 4s+1

√
π
× Γ(3/2 + s)

Γ(3 + s) ,

in accordance with Y2
d= 4B3/2,3/2.

We now complete the picture and derive the asymptotic expansion of Y1 = 1 − T.
To state our result, we need to introduce the Stirling series {cn, n ≥ 0} appearing in the
expansion

( e

x
)
x√ x

2π
Γ(x) ∼ ∑

n≥0

cnx
−n as x→ +∞,

which is given e.g. in Exercise 23 p.267 of [26] - see also Lemma 1 in [38] . One has
c0 = 1, c1 = 1/12, c2 = 1/288 and c3 = −139/51840. In general, cn is a rational number
and the corresponding sequences of numerators and denominators are referenced under
A00163 and A00164 in the online version of [76].

Proposition 3.7. One has

fY1(x) ∼
∞
∑
n=0

an(1)xn+1/2 as x→ 0,

with
an(1) = (−1)n22n+1/2 n! (c0 +⋯ + cn)

π (2n + 1)! ⋅

Proof. Applying Remark 3.7 (a), we first compute the Laplace transform

E[e−zY1] = 1

z(1 + z) (z
e
)
z 1

Γ(z)
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for every z in the open right half-plane. Comparing next (2.15) and (2.21) in [69], we get
the expansion

E[e−zY1] ∼ 1√
2πz(1 + z)

∑
n≥0

(−1)ncn z−n

∼ 1√
2πz3

(∑
n≥0

(−1)nz−n)(∑
n≥0

(−1)ncn z−n)

∼ 1√
2πz3

∑
n≥0

(−1)n(c0 +⋯ + cn) z−n.

as ∣z∣ → ∞, uniformly in the open right half-plane. Reasoning as in Proposition 3.6, we
finally obtain

fY1(x) ∼
∞
∑
n=0

an(1)xn+1/2 as x→ 0,

with
an(1) = (−1)n(c0 +⋯ + cn)√

2πΓ(n + 3/2)
= (−1)n22n+1/2 n! (c0 +⋯ + cn)

π (2n + 1)! ⋅

◻

Remark 3.12. It is easy to see from (3.15) that

(1 − α)−1Yα
dÐ→ Y1 as α ↑ 1,

and it is natural to infer from this and Proposition 3.6 that

an(1) = (−1)n 2n+1/2

π (2n + 1)! × d2n

dv2n

⎛
⎝
(1 − v)−2

2F1[
2 1

3
; v]

−n−1/2⎞
⎠
v=0

= (−1)n
π (2n + 1)! ×

d2n

dv2n
( v2n+1

(1 − v)2(−v − log(1 − v))n+1/2)
v=0

,

except that we cannot interchange a priori the asymptotic expansion at zero and the
convergence in law. We have checked the correspondence for n = 0 and n = 1, with

a0(1) =
√

2

π
and a1(1) = −13

√
2

18π

to be compared with Remark 3.11 (a). We believe that this formula is true for every n ≥ 1.
Observe that this is equivalent to the following expression of the Stirling series:

cn = bn − bn−1, n ≥ 1,

with

bn = 1

22n+1/2 n!
× d2n

dv2n
( v2n+1

(1 − v)2(−v − log(1 − v))n+1/2)
v=0

,

which is different from the combinatorial expression given in Exercise 23 p.267 of [26],
and which we could not locate in the literature.
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3.3.D Product representations for Kα and Xα with α rational

In the classical framework, the following independent factorization of the positive stable
random variable was observed in [88]:

Z−1
1
n

d= nn × Γ 1
n
× Γ 2

n
× ⋯ × Γn−1

n
, n ≥ 2. (3.23)

A further finite factorization of Zα for α rational has been obtained in Formula (2.4) of
[82], and reads as follows.

Z−p
p
n

d= nn

pp(n − p)n−p Ln−p ×
p−1

∏
j=0

⎛
⎝

qj+1−1

∏
i=qj+1

B i
n
, i−j
n−p−

i
n

⎞
⎠
×

p−1

∏
j=1

B qj
n
, j
p
−
qj
n

(3.24)

for every n > p ≥ 1, where we have set q0 = 0, qp = n and qj = sup{i ≥ 1, ip < jn} for all
j = 1, . . . p − 1. We refer to the paragraph before Theorem 1 in [82] for more detail on this
notation.

For K p
n
and X p

n
we can obtain a finite factorization in terms of Beta random variables

only, as a simple consequence of (3.24). These factorizations are actually consequences of
the more general Theorem 2.3 in [66] and Theorem 3.1 in [67]. We omit the proof.

Proposition 3.8. With the above notation, for every n > p ≥ 1 one has

K−p
p
n

d= nn

pp(n − p)n−p
p−1

∏
j=0

⎛
⎝

qj+1−1

∏
i=qj+1

B i
n
, i−j
n−p−

i
n

⎞
⎠
×

p−1

∏
j=1

B qj
n
, j
p
−
qj
n

and

X−p
p
n

d= nn

pp(n − p)n−p
p−1

∏
j=0

⎛
⎝

qj+1−1

∏
i=qj+1

B i
n
, i−j+1
n−p − i

n

⎞
⎠
×

p−1

∏
j=1

B qj
n
, j
p
−
qj
n
.

Remark 3.13. (a) For p = 1, the above factorizations simplify into

K−1
1
n

d= nn

(n − 1)n−1
× B 1

n
, 1
n(n−1)

× B 2
n
, 2
n(n−1)

× ⋯ × Bn−1
n
, 1
n

and
X−1

1
n

d= nn

(n − 1)n−1
× B 1

n
, n+1
n(n−1)

× B 2
n
, n+2
n(n−1)

× ⋯ × Bn−1
n
, 2n−1
n(n−1)

.

By the main result of [19], they hence directly show that the law of K 1
n
resp. X 1

n
is a

GGC. These Beta factorizations should also be compared to the free factorizations for
K−1

1
n

and X−1
1
n

mentioned in Remark 3.1 (a) and (b).

(b) In Lemma 2 of [23], an infinite factorization of Z−1
α has also been derived in terms

of Beta random variables with the help of Malmsten’s formula for the Gamma function.
Using this result, Corollary 1.5 in [44] and the factorization

Γβ2
d= Γ(β + 2) × ∏

n≥0

(n + 2 + β
n + 2

)Bn+2
β
,1

for every β > 0, which is obtained similarly as Lemma 3 in [23], one could be tempted to
derive an infinite factorization of X−1

α in terms of Beta random variables for the values
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α ∈ (0,1) corresponding to the GGC property. If we try to do as in Proposition 3.8, this
amounts to find factorizations of the type

Bα+nα,1−α
d= Bα(n+2)

1−α ,1
× Ban,bn

for some an, bn > 0. However, it can be shown that such a factorization is never possible.
The existence of a suitable multiplicative factorization of Xα which would characterize its
GGC property is an open question.

In the following proposition we briefly mention a connection between K 1
n
,X 1

n
and two

random Vandermonde determinants, which is similar to the observations made in Section
2 of [92]. We use the notation

V(z1, . . . , zn) = ∏
1≤i<j≤n

(zj − zi)

for the Vandermonde determinant of n complex numbers z1, . . . , zn. Let us also consider
the random variable

Rn = (U1 ×U2
2 ×⋯ ×Un

n)
1

n(n+1) ,

where (U1, . . . ,Un) is a sample of size n of the uniform random variable on (0,1).
Proposition 3.9. For every n ≥ 2, let (Θ1, . . . ,Θn) resp. (Θ̃1, . . . , Θ̃n) be a sample of
size n of the uniform random variable on the unit circle resp. the uniform random variable
on the circle of independent random radius Rn−1. One has the identities

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣V(Θ1, . . . ,Θn)∣2 d= K−1
1
2

× K−1
1
3

× ⋯ × K−1
1
n

∣V(Θ̃1, . . . , Θ̃n)∣2 d= X−1
1
2

× X−1
1
3

× ⋯ × X−1
1
n

.

Proof. To obtain the first identity, we appeal to the trigonometric version of Selberg’s
integral formula - see e.g. Remark 8.7.1 in [1], which yields

E[∣V(Θ1, . . . ,Θn)∣2s] = Γ(1 + ns)
Γ(1 + s)n =

n

∏
k=2

( Γ(1 + ks)
Γ(1 + (k − 1)s)Γ(1 + s)) =

n

∏
k=2

E[K−s
1
k

]

for every s ≥ 0, where the third equality follows at once from (3.4) and (3.5). The result
follows then by Mellin inversion. The second identity is a consequence of the first one,
the fact that ∣V(rz1, . . . , rzn)∣2 = rn(n−1)∣V(z1, . . . , zn)∣2 for every r > 0 and z1, . . . , zn ∈ C,
and (3.3).

◻

Remark 3.14. (a) If (N1, . . . ,Nn) is a sample of size n of the standard Gaussian random
variable, the Dyson-Mehta’s integral formula - see e.g. Corollary 8.2.3 in [1] - implies at
once the identity

V(N1, . . . ,Nn)2 d= Z−1
1
2

× Z−1
1
3

× ⋯ × Z−1
1
n

,

which is given in Proposition 3 of [92]. Observe in passing that the case n = 2 amounts to
the standard χ2−identity N2

1
d= 2Γ 1

2
. By (3.23), V(N1, . . . ,Nn)2 is distributed as a finite

independent product of Gamma random variables and is hence ID - see Example 5.6.3 in
[18]. Moreover, Theorem 1.3 in [20] and Theorem 5.1.1 in [18] imply that ∣V(N1, . . . ,Nn)∣
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is also ID for every n = 4p or n = 4p + 1. Since ∣V(N1, . . . ,Nn)∣ is clearly not ID for n = 2
- see e.g. 4.5.IV in [18], one may wonder if this negative property does not hold true for
every n = 4p + 2 or n = 4p + 3. The infinite divisibility of V(N1, . . . ,Nn) on the line seems
also an open question. The logarithmic infinite divisibility of ∣V(N1, . . . ,Nn)∣, which is
easily established with explicit Lévy-Khintchine exponent, is discussed in Section 3 of [92].

(b) Setting Vn(a, b) for the Vandermonde determinant of n independent copies of Ba,b,
a combination of the true Selberg’s integral formula - see e.g. Theorems 8.1.1 in [1] - and
Gauss’s multiplication formula implies easily that Vn(a, b)2 d= Vn(b, a)2 has a law of the
type G(N,N) studied in Section 6 of [31], with N = 3n(n − 1)/2. More precisely, one has

E[Vn(a, b)2s] = (a1)s⋯(aN)s
(b1)s⋯(bN)s

(3.25)

for every s ≥ 0, with explicit parameters ai, bi depending on a and b. For n = 2 and b ≥ a
this yields the curious factorization

V2(a, b)2 d= Bb,a × B 1
2
,a+b

2
× Ba, b−a

2
.

However, it does not seem that such simple Beta factorizations always exist for n ≥ 3. See
(6) in [92] for a related identity, and also [72] for another point of view on (3.25), where
s is interpreted as a parameter of a so-called Barnes Beta distribution.

(c) Another consequence of Proposition 3.9 and Remark 3.13 (a) is the cyclic identity

∣V(Θ1, . . . ,Θn)∣2 d= nnB 1
n
,n−1
n

× B 2
n
,n−2
n

× ⋯ × Bn−1
n
, 1
n
.

Let us finally mention the convergence in law

∣V(Θ1, . . . ,Θn)∣
2
n

dÐ→ eγ L

where γ = −Γ′(1) is Euler’s constant, a simple consequence of Remark 8.7.1 in [1].

3.3.E An identity for the Beta-Gamma algebra

In this paragraph we prove a general identity in law which applies to the case n = 3 in
the factorizations of Proposition 3.8, and which can be viewed as a further instance of the
so-called Beta-Gamma algebra - see [31] and the references therein. We use the standard
notation for the size-bias X(t) of real order t of a positive random variable X, that is

E[f(X(t))] = E[X tf(X)]
E[X t]

for every f bounded measurable, as soon as E[X t] <∞.
Proposition 3.10. For every a, b, c, d > 0 with a < c + d, one has

1

Ba,bBc,d

− 1
d= Γb+d

Γc

× ( 1

1 −Bb,dBc+d−a,a+b
)
(b+d)

.

76



Proof. A direct computation using Euler’s integral formula for the generalized hypergeo-
metric functions - see e.g. (2.2.2) in [1] - yields

E [( 1

Ba,bBc,d

− 1)
s

] = E[B−s
a,b] E[B−s

c,d] 3F2[
−s a − s c − s
a + b − s c + d − s ; 1]

where we have supposed −b − d < s < min(a, c), so that the right-hand side is finite. We
next appeal to Thomae’s formula:

3F2[
a1 a2 a3

b1 b2

; 1] = Γ(b1)Γ(b2)Γ(c1)
Γ(a1)Γ(c1 + a2)Γ(c1 + a3) 3F2[

b1 − a1 b2 − a1 c1

c1 + a2 c1 + a3

; 1]

with c1 = b1 + b2 − a1 − a2 − a3, which is (1) in Chapter 3.2 of [5], and which holds true
whenever all involved parameters are positive. Setting a1 = a−s, we deduce that for every
s ∈ (−b − d,0) one has

E [( 1

Ba,bBc,d

− 1)
s

] = Γ(b + d + s)Γ(c − s)Γ(a + b)Γ(c + d)
Γ(b + d)Γ(c)Γ(a)Γ(b + c + d) 3F2[

b c + d − a b + d + s
b + d b + c + d ; 1],

and the formula extends by analyticity to s ∈ (−b− d, a). Using again Euler’s formula, the
right-hand side transforms into

E[Γs
b+d]E[Γ−s

c ] Γ(b + d)Γ(c + d)
Γ(a)Γ(b)Γ(d)Γ(c + d − a) ∫

1

0
∫

1

0
tc+d−a−1(1−t)a+b−1ub−1(1−u)d−1(1−ut)−b−d−sdtdu

and we finally recognize

E [( 1

Ba,bBc,d

− 1)
s

] = E[Γs
b+d]E[Γ−s

c ] Γ(a + b)Γ(c + d)
Γ(a)Γ(b + c + d) E [(1 −Bb,dBc+d−a,a+b)−b−d−s]

for every s ∈ (−b − d, a), which implies the required identity in law.
◻

Remark 3.15. (a) Under the symmetric assumption c < a + b, we obtain the identity

1

Ba,bBc,d

− 1
d= Γb+d

Γa

× ( 1

1 −Bd,bBa+b−c,c+d
)
(b+d)

.

If both assumptions a < c + d and c < a + b hold, we deduce, identifying the factors and
remembering Γ

(t)
s

d= Γt+s, the identity

Γb+c+d (1 −Bb,dBc+d−a,a+b) d= Γa+b+d (1 −Bd,bBa+b−c,c+d)

which we could not locate in the literature on the Beta-Gamma algebra, and which boils
down to the elementary Γc+d

d= Γa+d×Bc+d,a−c when b = 0.Observe on the other hand that by
Proposition 4.2 (b) in [31], this identity is equivalent to Bb,dΓa+b−c+Γc+d

d= Bd,bΓc+d−a+Γa+b,
which is easily obtained in comparing the two Laplace transforms with the help of Euler’s
formula (2.2.7) in [1].
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(b) Combining Propositions 3.8 and 3.10 yields the two identities

X 1
3
− b 1

3

d= 4

27
×

Γ 3
2

Γ 1
3

×
⎛
⎝

1

1 −B 5
6
, 2
3
B 1

3
, 3
2

⎞
⎠

( 3
2
)

and

K 1
3
− b 1

3

d= 4

27
×

Γ 1
2

Γ 2
3

×
⎛
⎝

1

1 −B 1
6
, 1
3
B 2

3
, 1
2

⎞
⎠

( 1
2
)

.

Observe that these represent X 1
3
− b 1

3
resp. K 1

3
− b 1

3
as an explicit Γ 3

2
−mixture resp.

Γ 1
2
−mixture, in accordance with Remark 3.10 (b).

(c) Iterating Euler’s integral formula (2.2.2) in [1] yields the general representation

E [( 1

Ba1,b1 . . . Ban,bn

− 1)
s

] = E[B−s
a1,b1

] ⋯ E[B−s
an,bn

] n+1Fn[
−s a1 − s . . . an − s

a1 + b1 − s . . . an + bn − s
; 1]

for −(b1 + . . . + bn) < s < min{a1, . . . , an}. It would be interesting to know if there exists
some hypergeometric transformation changing the right-hand side into

K Γ(b1 +⋯ + bn + s)Γ(max{a1, . . . , an} − s) n+1Fn[
c1 . . . cn b1 +⋯ + bn + s

c1 + d1 . . . cn + dn
; 1]

for some parameters ci, di > 0 and an integration constantK. This would imply the identity

1

Ba1,b1 . . . Ban,bn

− 1
d= Γb1+⋯+bn

Γmax{a1,...,an}
× ( 1

1 −Bc1,d1 . . . Bcn,dn

)
(b1+⋯+bn)

, (3.26)

which would generalize that of Proposition 3.10. Observe that in the framework of Propo-
sition 3.8 we always have b1 + ⋯ + bn = 3/2 resp. 1/2 for the left-hand side of (3.26) cor-
responding to Xp

p
n+1

− 1 resp. Kp
p
n+1

− 1. Unfortunately, for n ≥ 3 we are not aware of any
such hypergeometric transformation.

3.3.F Stochastic orderings

In this paragraph we come back to certain random variables appearing in the proof of
Theorem 3. We establish some comparison results for the rescaled random variables
Vα = aαXα with support in [1,+∞), in the spirit of those in [82]. For two positive
random variables X,Y we write X≤stY if P[X ≥ x] ≤ P[Y ≥ x] for every x ≥ 0, and

X ≺st Y

if X≤stY and there is no c > 1 such that cX≤stY. The relationship ≺st can be viewed as an
optimal stochastic order.

Proposition 3.11. For every 0 < β < α < 1 one has

1

e
× U ×W ≺st V

−α
1−α
α ≺st V

−β
1−β
β ≺st U.
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Proof. The argument is analogous to that of (1.3) in [82] and relies on (3.6) therein which,
in our notation, yields

(aαKα)
−α
1−α ≤st (aβKβ)

−β
1−β

whence, by (3.3) and direct integration,

V
−α
1−α
α ≤st V

−β
1−β
β

for every 0 < β < α < 1. Moreover, it is easy to see by Haagerup-Möller’s evaluation of
E[Xs

α] and Stirling’s formula that

E[V
−sβ
1−β
β ] → 1

1 + s as β → 0 and E[V
−sα
1−α
α ] → ss

esΓ(2 + s) as α → 1

for every s > 0. By Proposition 3.3, we obtain

1

e
× U ×W ≤st V

−α
1−α
α ≤st V

−β
1−β
β ≤st U.

To conclude the proof, by the definition of ≺st it is enough to observe that P[W ≤ e] = 1,
a consequence of Remark 3.6 (d).

◻

Remark 3.16. (a) Multiplying all factors by an independent Γ2 random variable and
using the second identity in Proposition 3.2 and (3.17), we immediately retrieve Theorem
A in [82].

(b) Proposition 3.2 implies the limits in law

( α

α − 1
) log Vα

dÐ→ log U as α → 0 and ( α

α − 1
) log Vα

dÐ→ T − 1 as α → 1,

to be compared with that of (3.15). This shows that the distribution of the free Gumbel
random variable − log U and that of the drifted exceptional 1-free stable random variable
T − 1 can be viewed as “log free stable” distributions.

(c) Specifying Proposition 3.11 to α = 1/2 yields

1

e
× U ×W ≺st B 1

2
, 3
2
≺st U,

whose second ordering can be observed via a single intersection property of the densities
- see e.g. Lemma 1.9 (a) in [30]. We believe the above stochastic orderings between
non-explicit densities are a consequence of such a single intersection property.

Our next result deals with the classical convex ordering. For two real random variables
X,Y , we say that Y dominates X for the convex order and write

X ≺cx Y

if E[ϕ(X)] ≤ E[ϕ(Y )] for every convex function such that the expectations exist.

Proposition 3.12. For every 0 < β < α < 1, one has

U ≺cx (1 − β)X
−β
1−β
β ≺cx (1 − α)X

−α
1−α
α ≺cx U × W.

79



We omit the proof, which is analogous to that of (1.4) in [82] and a consequence of
(3.7) therein. By Kellerer’s theorem, this result implies that for every t ∈ (0,1), the law of
(1 − t)X

−t
1−t
t is the marginal distribution at time t of a martingale {Mt, t ∈ [0,1]} starting

at U and ending at U×W. It would be interesting to have a constructive explanation of
this curious martingale connecting free extreme and free stable distributions.

3.3.G The power semicircle distribution and van Dantzig’s prob-
lem

In this paragraph we consider the power semicircle distribution with density

hα(x) = Γ(α + 1)√
πΓ(α + 1/2) (1 − x2)α−1/21(−1,1)(x),

where α > −1/2 is the index parameter. Up to affine transformation, this law can be viewed
as an extension of the arcsine, uniform and semicircle distributions which correspond to
α = 0, α = 1/2 and α = 1 respectively. It was recently studied in [4] as a non ID factor
of the standard Gaussian distribution, see also the references therein for other aspects of
this distribution.

The characteristic function is computed in Formula (4.7.5) of [1] in terms of the Bessel
function of the first kind Jα: one has

ĥα(t) = Γ(α + 1)
(t/2)α Jα(t), t > 0.

By the Hadamard factorization - see (4.14.4) in [1], we obtain

ĥα(z) = ∏
n≥1

(1 − z2

j2
α,n

) , z ∈ C,

where 0 < jα,1 < jα,2 < . . . are the positive zeroes of Jα and the product is absolutely
convergent on every compact set of C.

Let now {Xn, n ≥ 1} be an infinite sample of the Laplace distribution with density
e−∣x∣/2 on R and characteristic function

E[eitX1] = 1

1 + t2 ⋅

By (4.14.3) in [1] and Kolmogorov’s one-series theorem, the random series

Σα = ∑
n≥1

Xn

jα,n

is a.s. convergent. Its characteristic function is

E[eitΣα] = ∏
n≥1

(1 + t2

j2
α,n

)
−1

= 1

ĥα(it)
⋅

With the terminology of [62], this means that the pair

(ĥα(t),
1

ĥα(it)
)
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of characteristic functions is a van Dantzig pair. The case α = 1/2 corresponds to the
well-known pair

(sin t

t
,

t

sinh t
)

which is one of the starting examples of [62] and, from the point of view of the Hadamard
factorization, amounts to Euler’s product formula for the sine - recall from (4.6.3) in
[1] that j1/2,n = nπ. The case α = 0 is also explicitly mentioned in [62] as an example
pertaining to Theorem 5 therein - observe that this theorem covers actually the whole
range α ∈ (−1/2,1/2). In general, one has ĥα ∈ D1 for all α > −1/2 with the notation
of [62], and our pairs can hence be viewed as further explicit examples of van Dantzig
pairs corresponding to D1. The case α = 1 is particularly worth mentioning because it
shows that the semicircle characteristic function belongs to a van Dantzig pair, as does
the Gaussian characteristic function.

Remark 3.17. (a) The random variable Σα is ID as a convolution of Laplace distribu-
tions, and is not Gaussian. Hence, by the corollary p.117 in [62], we retrieve the fact that
X2,1/2 is not ID. Unfortunately, this method does not seem to give any insight on the non
ID character of Xα,ρ for α ∈ (1,2) and ρ ≠ 1/2.

(b) Following the notation of [62], the characteristic function

ĝα(t) = ĥα(t)
ĥα(it)

= Jα(t)
Iα(t)

,

where Iα is the modified Bessel function of the first kind, is self-reciprocal. In other words,
one has

ĝα(t)ĝα(it) = 1.

Observe that again, the distribution corresponding to ĝα(t) is not ID.

3.3.H Further properties of whale-shaped functions

In this paragraph we prove five analytical properties of WS functions and densities. Those
five easy pieces apply all to the densities fα, and have an independent interest. We restrict
the study to the class WS+, the corresponding properties for WS− being deduced at once.

Proposition 3.13. Let f be a WS+ density with unique mode M. Then f is perfectly
skew to the right, that is

f(M + x) > f(M − x) for every x > 0.

Proof. Let x0 be the left-extremity of Supp f andM = x1 < x2 < x3 be the vanishing places
of the three first derivatives of f. Suppose first M − x0 > x2 −M. Taylor’s formula with
integral remainder implies

f(M + x) − f(M − x) = ∫
x

0
(x − t) (f ′′(M + t) − f ′′(M − t)) dt.

On the one-hand, we have f ′′(M + t)− f ′′(M − t) > 0 for all t > x2 −M since f ′′(M − t) ≤ 0
for all t ≥ 0 and f ′′(M + t) > 0 for all t > x2 −M. On the other hand, writing

f ′′(M + t) − f ′′(M − t) = ∫
t

0
(f (3)(M + s) + f (3)(M − s))ds,
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which is valid for all t <M − x0, we also have f ′′(M + t) − f ′′(M − t) > 0 for all t ≤ x2 −M
since f (3)(u) > 0 for all x0 < u < x3, by the WS+ property. Putting everything together
shows f(M + x) > f(M − x) for all x > 0. Supposing next M − x0 ≤ x2 −M, the proof is
analogous and easier; we just need to delete the corresponding arguments for t > x2 −M .

◻

Remark 3.18. If we denote by Mα,ρ the unique mode of fα,ρ, the function

x ↦ fα,ρ(Mα,ρ + x) − fα,ρ(Mα,ρ − x)

has constant and possibly zero sign on (0,∞) for ρ = 0,1/2,1 and for α = 1, as seen from
the above proposition, the explicit drifted Cauchy case and the symmetric case. One
might wonder if this property of perfect skewness remains true in general. The perfect
skewness of classical stable densities is a challenging open problem, which had been stated
in the introduction to [43].

Proposition 3.14. Let f be a WS+ density and M,m,µ be its respective mode, median
and mean. Then f satisfies the strict mean-median-mode inequality

M < m < µ.

Proof. We use the same notation of the proof of the previous proposition. First, the latter
clearly implies M <m. To obtain the two strict inequalities together, let us now consider
the function

g(x) = f(m + x) − f(m − x)
on [0,m−x0]. Ifm < x2, then the WS+ property implies f (2)(m+x) > f (2)(m) > f (2)(m−x)
for every x ∈ (0,m−x0], so that g is strictly convex on (0,m−x0]. Since g(0) = 0, g′(0) < 0
and g(m − x0) > 0, this shows that g vanishes only once on (0,m − x0] and from below,
and hence also on the whole (0,∞). If m ≥ x2, then g is negative on (0,m −M] and
strictly convex on [m−M,m−x0] and we arrive at the same conclusion. We are hence in
position to apply Lemma 1.9 (a) and (a strict, easily proved version of) Theorem 1.14 in
[30], which implies the strict mean-median-mode inequality for f.

◻

Remark 3.19. (a) It is well-known and can be seen e.g. from Theorem 1.7 in [44] that
Xα has infinite mean. Hence, in this framework the above result only reads M <m <∞,
and it is readily obtained from the previous proposition. This mode-median inequality is
also conjectured to hold true for classical positive stable densities. See Proposition 5 and
Remark 11 (b) in [82] for partial results.

(b) In the relevant case α ∈ (1,2) it is natural to conjecture that the strict mean-
median-mode inequality holds, in one or the other direction, for both free and classical
stable densities. Observe that the three parameters clearly coincide for ρ = 1/2, whereas
for ρ = 1/α, easy computations show that the mean is zero and the mode and median
are positive, so that it is enough to prove m <M. In general, this problem is believed to
be challenging and beyond the scope of the present paper. We refer to [9] for a series of
results on this interesting question, which however do not apply to non-explicit densities.

Proposition 3.15. Let f be a WS density on (0,+∞) and X be the corresponding random
variable. Then X is a Γ2−mixture. In particular, it is ID.
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Proof. As in Theorem 1, we need to show that g(x) = x−1f(x) is a CM function, in other
words that (−1)ng(n)(x) > 0 on (0,∞). By Leibniz’s formula, we first compute

g(n)(x) = n!
n

∑
p=0

(−1)pf (n−p)(x)
(n − p)!xp+1

⋅

This implies, after some simple rearrangements,

h′n(x) = (−1)nxnf (n+1)(x), (3.27)

where hn(x) = (−1)nxn+1g(n)(x) has the same sign as (−1)ng(n)(x). By the WS property,
we see that

hn(x) = n!
n

∑
p=0

(−1)n−pf (n−p)(x)
(n − p)! xn−p

is positive on [xn,∞) since (−1)if (i)(x) > 0 when x ∈ (xi,∞) for all i ≥ 0. Moreover, it
follows from (3.27) and the whale-shape that h′n(x) > 0 for x ∈ (0, xn+1]. It is hence enough
to show that hn(0+) = 0 in order to conclude the proof, because (0,∞) = (0, xn+1]∪[xn,∞).
But the whale-shape shows again that

0 ≤ (−1)i−1xif (i)(x) ≤ 2 (−1)i−1xi−1(f (i−1)(x) − f (i−1)(x/2))

for all x ∈ (0, x1] and an induction on i, starting from f(0+) = 0, implies (xif (i))(0+) = 0
for all i ≥ 0, so that hn(0+) = 0 as well.

◻

Remark 3.20. (a) The WS property is not satisfied by all densities of Γ2−mixtures
vanishing at zero. A simulation shows for example that the derivative of the density

f(x) = x(ta2e−ax + (1 − t)e−x)

vanishes three times for a = 20 and t = 4/5. This contrasts with the densities of Γ1−mixtures,
which are characterized by their complete monotonicity - see e.g. Proposition 51.8 in [79].

(b) The above proposition entails that the infinite divisibility of Xα is a consequence
of Theorem 3.4. On the other hand, as we saw above, the proof of Theorem 3.1 also shows
that Xα is a Γ3/2−mixture for α ≤ 3/4, which is not a consequence of the whale-shape.

We next study the stability of the WS property under exponential tilting. Within ID
densities on R, this transformation amounts to the multiplication of the Lévy measure by
e−c∣x∣, allowing one for models with finite positive moments and analogous small jumps.
This is a particular instance of the general tempering transformation, where the exponen-
tial perturbation is replaced by a CM function, and we refer to [77] for a thorough study
on tempered stable densities. If we restrict to ID densities on a positive half-line, it is
seen from the Lévy-Khintchine formula that exponential tilting amounts to multiplying
the density by the same e−cx and renormalizing. In particular, the set of densities of
Γt−mixtures with t ∈ (0,2] is also stable under exponential tilting.

Proposition 3.16. If f ∈ WS+, then e−xf ∈ WS+.
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Proof. It is enough to consider the case Supp f = (0,∞). Set g(x) = e−xf(x). Considering
hn(x) = (−1)nexg(n)(x) for each n ≥ 0, we have hn+1 = hn − h′n and an easy induction
starting from h0 = f implies

(−1)p−1h
(p)
n+1(0+) > 0 and h

(p)
n+1(+∞) = 0

for all n, p ≥ 0. We will now show that h(p)
n+1 vanishes once on (0,∞) for all n, p ≥ 0, and

that the sequence {xp,n+1, p ≥ 0} defined by h(p)
n+1(xp,n+1) = 0 is increasing. This is sufficient

for our purpose, in taking p = 0.
Consider first the case n = 0, with h(p)

1 = f (p) − f (p+1). It is clear that (−1)ph(p)
1 (x) > 0

for x ∈ [xp+1,∞) and that (−1)ph(p+1)
1 (x) > 0 for x ∈ (0, xp+1]. Since (−1)ph(p)

1 (0+) < 0, this
implies that h(p)

1 vanishes once on (0,∞) for all p ≥ 0, and Rolle’s theorem entails that
the sequence {xp,1, p ≥ 0} defined by h(p)

1 (xp,1) = 0 is increasing.
The induction step is obtained analogously from h

(p)
n+2 = h

(p)
n+1−h

(p+1)
n+1 , since (−1)ph(p)

n+2(0+) <
0 and, by the induction hypothesis, (−1)ph(p)

n+2(x) > 0 for x ∈ [xp+1,n+1,∞) and (−1)ph(p+1)
n+2 (x) >

0 for x ∈ (0, xp+1,n+1]. ◻

Remark 3.21. (a) The above proposition implies that e−xfα, the “tilted free positive
stable density”, is WS+ and ID. It would be interesting to know if it is also FID.

(b) The class WS+ is not stable under the general tempering transformation introduced
in [77]. For example, the random variable obtained from Γ2 in multiplying its Lévy
measure by te−x is easily seen to be (1/2)Γ2t, whose density belongs to WS+ only for
t ∈ (1/2,1].
Proposition 3.17. Let f ∈ WS+ and {xn, n ≥ 0} be the vanishing places of {f (n), n ≥ 0}.
Then f is analytic on (x0,∞) and xn →∞.

Proof. Again we may suppose x0 = 0. If f is a density, then Proposition 3.15 implies that
f = xg where g is CM and hence analytic on (0,∞), so that f is analytic on (0,∞) as
well. If f is not a density, then Proposition 3.16 shows that g = e−cxf is a WS+ density on
(0,∞) for some normalizing c > 0, and f inherits the analyticity of g on (0,∞).

The second property is an easy consequence of the first one. Let x∞ be the increasing
limit of {xn, n ≥ 0} and suppose x∞ < ∞. By the whale-shape, we would then have
(−1)nf (n)(x) > 0 for x > x∞, so that f would be CM on (x∞,∞), and hence also on (0,∞)
by Bernstein’s theorem and analytic continuation, a contradiction since f(0+) = 0.

◻
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Appendix A

Admissible domain of classical stable
distributions

We look for the stable distributions except normal distributions and degenerate distribu-
tions starting from the definition.

A.1 Strictly stable distributions
From definition 1.12, we see that a random varible is strictly stable iff for any n ≥ 2, there
exists a positive number cn such that

X1 +X2 +⋯ +Xn
d= cnX (A.1)

where X1
d= X2

d= ⋯ d= X and independent.
Define by φ(t) the logarithm of the characteristic function of X. Then (A.1) implies

nφ(t) = φ(cnt), ∀n ≥ 2, ∀ t ∈ R, (A.2)

cn is positive for every n ≥ 2, c1 = 1 and cmn = cmcn, thus the function g defined on positive
rationals by g(p/q) = cp/cq is well-defined and positive. Moreover, sφ(t) = φ(g(s)t) for
all positive rational numbers s. If we extend g by left continuity (or right continuity)
to (0,+∞), the identity sφ(t) = φ(g(s)t) still holds. The identity determines g uniquely.
In fact, if there exist a > 0 and a ≠ 1, such that φ(t) = φ(at) for every t positive, then
φ(t) = φ(ant) = φ(a−nt) for all t > 0 and n ∈ N∗. Let n tend to +∞, we have φ(t) ≡ φ(0) = 0,
which is the excluded degenerate case. We can conclude that g extends to a continuous
function on (0,+∞) such that g(xy) = g(x)g(y). This is equivalent to the well-known
Cauchy functional equation, and the continuous solutions are of the form g(s) = sβ for
some β ∈ R. Hence φ(sβt) = sφ(t) for all s > 0. Letting α = 1/β, we have

φ(s) = sαφ(1) and φ(−s) = sαφ(−1), for s > 0.

Since ∣eφ(t)∣ ≤ 1, φ(0) = 0, and φ(t) = φ(−t), there exist c0 ≥ 0, c1 ∈ R, and α > 0 s.t.

φ(t) = −(c0 + c1j)∣t∣α, (A.3)

where j =
⎧⎪⎪⎨⎪⎪⎩

+i, if t > 0,

−i, if t < 0.
We assume without loss of generality that ∣c0 + c1i∣ = 1. There

exists θ ∈ [−1/2,1/2] s.t. c0 + c1i = eiπθ.
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We consider the stable distributions of infinite variance, thus by (A.3) the positive ex-
ponent α can only be smaller than 2 (the case α = 2 corresponds to normal distributions).
Combine (A.2) and (A.3), we have cn = n

1
α .

According to the formule of Fourier transform (cf. p.168 (27) in [60]), if we note g the
density function of stable distribuion, then

gα,θ(x) =
1

π
R∫

∞

0
e−e

iπθtα−ixtdt = 1

π
(I1,ε(x) + I2,ε(x)) (A.4)

where
I1,ε(x) =R∫

ε

0
e−e

iπθtα−ixtdt, I2,ε(x) =R∫
∞

ε
e−e

iπθtα−ixtdt.

Clearly, gα,θ(x) = gα,−θ(−x) and I1,ε → 0 as ε→ 0. It suffices to consider θ ∈ [−1/2,0].
We have three cases.

A.1.A α = 1.

The Cauchy distribution has the probability density function

f(x) = 1

π
[ c0

(x + c1)2 + c0
2
] , c0 > 0, c1 ∈ R, x ∈ R.

Its characteristic function is

∫
R
eitxf(x)dx = e−(c0+c1j)∣t∣.

When c0 = 0, (A.3) corresponds to δc1 .
Thus, the strictly 1-stable distributions are equivalent to the Cauchy distribution (θ ∈
(−1/2,1/2)) or Dirac measures (θ = ±1/2).

A.1.B 0 < α < 1.

Firstly, we suppose θ = −α/2. By Cauchy’s integral theorem, for all x < 0 we change the
integration path to the semi-axis {ueiπ/2, u > 0}, it is easy to verify that I2,ε(x) = 0. For
x > 0 we change the integration path to the semi-axis {ue−iπ/2, u > 0}

I2,ε(x) = I∫
∞

ε
e−e

−iπαuα−xudu (A.5)

Let ε→ 0, we obtain

gα,−α/2(x) = 1

π
I∫

∞

0
e−e

−iπαuα−xudu (A.6)

= 1

π
∑
n≥1

(−1)n−1 Γ(1 + αn)
n!

sin(nαπ)x−αn−1 (A.7)

= ∑
n≥1

(−1)n−1 α

(n − 1)!Γ(1 − αn)x
−αn−1 (A.8)

= α

x1+αφ(−α,1 − α;−x−α) (A.9)
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where
φ(ρ, β; z) =∑

n≥0

zn

n!Γ(ρn + β) (A.10)

with ρ > −1, β ∈ C, is an entire function. Wright [91] said that, if −1 < ρ < −1/3, the zeros
of φ(ρ, β; z) lie near the two lines arg(z) = ±π2 (3ρ + 1), while, if −1/3 ≤ ρ < 0, the zeros lie
near the positive half of the real axis. Therefore, φ(−α,1 − α;−x−α) does not change its
sign for x > 0. Besides, limx→+∞ φ(−α,1 − α;−x−α) = φ(−α,1 − α; 0) = 1

Γ(1−α) > 0. We have
that

gα,−α/2(x) > 0, ∀x > 0, (A.11)

and that
gα,−α/2(x) ∼

α

Γ(1 − α)x1+α , x→ +∞. (A.12)

Similarly, for any θ ∈ [−1/2,0], for x > 0,

gα,θ(x) =
1

π
I∫

∞

0
e−e

−iπ(α/2−θ)uα−xudu

= 1

π
∑
n≥1

(−1)n−1 Γ(1 + αn)
n!

sin(nπ(α
2
− θ))x−αn−1

= α/2 − θ
xα+1 1Ψ2 [

(1 + α,α)
(1 − α/2 + θ,−α/2 + θ) (1 + α/2 − θ,α/2 − θ);−x

−α]

(A.13)

while, for any θ ∈ [−1/2,0], for x < 0,

gα,θ(x) = 1

π
∑
n≥1

(−1)n−1 Γ(1 + αn)
n!

sin(nπ(α
2
+ θ))∣x∣−αn−1

= α/2 + θ
∣x∣α+1 1Ψ2 [

(1 + α,α)
(1 − α/2 − θ,−α/2 − θ) (1 + α/2 + θ,α/2 + θ);−∣x∣

−α]

where

pΨq [
(a1,A1) (a2,A2) . . . (ap,Ap)
(b1,B1) (b2,B2) . . . (bq,Bq)

; z] =
∞
∑
n=0

Γ(a1 +A1n)⋯Γ(ap +Apn)
Γ(b1 +B1n)⋯Γ(bq +Bqn)

zn

n!
,

defined for z, ai, bj ∈ C and Ai,Bj ∈ R ∖ {0}, is the Fox-Wright function or generalized
Wright function. pΨq(z) is an entire function of z if ∑qj=1Bj −∑pi=1Ai > −1 (firstly proved
by Wright, for the proof see e.g. [54, Theorem 1]). Thus for both x positive and negative,
these two Fox-Wright functions are well-defined.
Let ∣x∣→∞,

gα,θ(x) ∼
α/2 − θ
x1+α

Γ(1 + α)
Γ(1 − α/2 + θ)Γ(1 + α/2 − θ) , x→ +∞. (A.14)

gα,θ(x) ∼
α/2 + θ
∣x∣1+α

Γ(1 + α)
Γ(1 − α/2 − θ)Γ(1 + α/2 + θ) , x→ −∞. (A.15)

Being a density function, gα,θ(x) should be non-negative, from (A.15), θ should be in
[−α/2,0]. Symmetrically, for

:::::::::::
0 < α < 1,

::::::::::::::::
θ ∈ [−α/2, α/2].

Together with gα,θ(x) = gα,−θ(−x), we conclude that ∀θ ∈ [−α/2, α/2],∀x ∈ R,

gα,θ(x) =
1

π
∑
n≥1

(−1)n−1 Γ(1 + αn)
n!

sin(nπ(α
2
− sgn(x) θ))∣x∣−αn−1. (A.16)
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For s ∈ (−α,1), the Mellin transform of gα,θ(x)1x>0 is

M(s) ∶= ∫
∞

0
x−sgα,θ(x)dx

= 1

π
I∫

∞

0
e−e

−iπ(α/2−θ)uα ∫
∞

0
x−se−xudxdu

= Γ(1 − s)
απ

sin(π(1/2 − θ/α)s)Γ(s/α)

→ 1

2
− θ

α
, as s→ 0.

(A.17)

We denote ρ ∶= 1
2 − θ

α , and call it the parameter of positivity since ∫
∞

0 gα,θ(x)dx = ρ.
Remark A.1. On the other hand, for 0 < α < 1, θ ∈ [−α/2, α/2], x > 0 ,

gα,θ(x) = (1

2
− θ

α
) d

dx
1Ψ2 [

(1, α)
(1, θ − α/2) (1,−θ + α/2);−x

−α] , (A.18)

and, for 0 < α < 1, θ ∈ [−α/2, α/2], x < 0,

gα,θ(x) = −(1

2
+ θ

α
) d

dx
1Ψ2 [

(1, α)
(1,−θ − α/2) (1, θ + α/2);−∣x∣

−α] . (A.19)

∫
∞

0 gα,θ(x)dx = 1
2 − θ

α and ∫
0

−∞ gα,θ(x)dx = 1
2 + θ

α

imply that

lim
x→−∞ 1Ψ2 [

(1, α)
(1, θ − α/2) (1,−θ + α/2);x] = 0,

and that

lim
x→−∞ 1Ψ2 [

(1, α)
(1,−θ − α/2) (1, θ + α/2);x] = 0,

i.e.

lim
x→−∞ 1Ψ2 [

(1, α)
(1, γ) (1,−γ);x] = 0 for every γ ∈ (−α,α) and α ∈ (0,1).

A.1.C 1 < α < 2.

We use again the Cauchy’s integral theorem for I2,ε(x), x ∈ R. Let’s change the integration
path to the half-line {ue−iπθ/α, u > 0}, we then obtain

I2,ε(x) =R∫
∞

ε
e−u

α−xueiπ(1/2−θ/α)e−iπθ/αdu.

It follows that

gα,θ(x) = 1

π
R∫

∞

0
e−u

α−xueiπ(1/2−θ/α)e−iπθ/αdu

= 1

π
R∫

∞

0
∑
k≥0

(−xueiπ(1/2−θ/α))k
k!

e−iπθ/αe−u
α

du

= 1

π
∑
n≥1

(−1)n−1
Γ(1 + n

α)
n!

sin(nπ(1

2
− θ

α
))xn−1
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The infinite sum expression gives us the following relations:

gα,θ(x) = x−1−αgα′,θ′(x−α), ∀ x > 0, ∀α ∈ (1,2), (A.20)

with α′ = 1
α ,1 − 2

α′ θ
′ = α(1 − 2

αθ), and

gα,θ(−x) = gα,−θ(x) = x−1−αgα′′,θ′′(x−α), ∀ x > 0, ∀α ∈ (1,2), (A.21)

with α′′ = 1
α ,1 − 2

α′′ θ
′′ = α(1 + 2

αθ). A simple calculation shows

θ′ ∈ [− 1

2α
,

1

2α
] ⇒ θ = α + 2αθ′ − 1

2
∈ [α − 2

2
,
α

2
]

θ′′ ∈ [− 1

2α
,

1

2α
] ⇒ θ = 1 − 2αθ′′ − α

2
∈ [−α

2
,
2 − α

2
]

Therefore, we know that for
::::::::::
1 < α < 2,

::::::::::::::::::::::
θ ∈ [α/2 − 1,1 − α/2].

The formula (A.20) implies that for α ∈ (1,2), the parameter of positivity

ρ = ∫
∞

0
gα,θ(x)dx = ∫

∞

0
x−1−αgα′,θ′(x−α)dx =

1

α ∫
∞

0
gα′,θ′(x)dx =

1

α
(1

2
− θ

′

α′
) = 1

2
− θ
α
∈ [1− 1

α
,

1

α
].

A.1.D Conclusion

We observe that we can fix a strictly stable random variable with two parameters (α, ρ),
and

(α, ρ) ∈ {α ∈ (0,1], ρ ∈ [0,1]} ∪ {α ∈ (1,2], ρ ∈ [1 − 1/α,1/α]}.
The density function fα,ρ in Chapter 1 is gα,θ with θ = α

2 − αρ.

A.2 Non-strictly 1-stable distributions: cn = n and dn ≢
0.

(1.15) implies
nφ(t) = φ(nt) + idnt, n ≥ 2,∀ t ∈ R, (A.22)

⇒
φ′(t) = φ′(nt) + idn

n
, n ≥ 2,∀ t ∈ R,

⇒
φ′′(t) = nφ′′(nt), n ≥ 2,∀ t ∈ R,

using the argument after (A.2), we obtain soon that for t > 0, φ′′(t) = ict−1, φ′(t) =
ic log t+γ, and then φ(t) = ict log t+ (γ − ic)t (without constant term since φ(0) = 0), with
c = − dn

n logn ∈ R. We know also that f(t) = a∣t∣+ibt is the solution of nf(t) = f(nt), f(0) = 0.
In addition ∣eφ(t)∣ ≤ 1, φ(t) = φ(−t), hence φ(t) must be of the form

φ(t) = −c0∣t∣ − iβt log ∣t∣ + ic1t
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for some c0 > 0, c1 ∈ R and β = dn
n logn ∈ R. Note that c0 can not be 0. If c0 = 0, we suppose

that there exist a random variable X such that

E[eitX] = e−iβt log ∣t∣,

for its independent copie X̃,
E[e−itX̃] = eiβt log ∣t∣,

then
E[eit(X−X̃)] = 1,

which implies X− X̃ = δ0, so do X. We then have β = 0, but here we consider non-strictly
1-stable distributions dn ≠ 0, β ≠ 0. Thus c0 > 0. According to the equivalence among
random variables, we can set, without loss of generality, c0 = π

2 , c1 = 0. Then we want to
determine the domain of β. The density function is

gβ(x) ∶=
1

π
R∫

∞

0
e−

π
2
t−iβt log t−ixtdt, x ∈ R. (A.23)

Proposition A.1.

gβ(x) ∼ 1 + β
2x2

, as x→ +∞; (A.24)

gβ(x) ∼ 1 − β
2x2

, as x→ −∞. (A.25)

Therefore, β ∈ [−1,1].

Proof. gβ(x) = g−β(−x), we consider only β > 0.
For x > 0: We can change the integral path from (0,+∞) to {ue−π2 i, u > 0} and then
obtain

gβ(x) = 1

π
I∫

∞

0
e−βu logu+i(β+1)uπ/2−xudu

= 1

π ∫
∞

0
e−xue−βu logu sin((β + 1)uπ/2)du.

Then

lim
x→+∞

x2gβ(x) = lim
x→+∞

β + 1

2 ∫
∞

0
te−te−β

t
x

log t
x

sin(π(β + 1)t/(2x))
π(β + 1)t/(2x) dt, (A.26)

by Lebesgue’s dominated convergence theorem, we have

gβ(x) ∼ 1 + β
2x2

, as x→ +∞.

For x < 0: We change the intgral path from (0,+∞) to the contour L = L1 ∪L2 where

L1 = {z ∶R(z) = 0,I(z) from 0 to 1 } , L2 = {z ∶ I(z) = 1,R(z) from 0 to +∞} .

Then

gβ(x) = 1

π
R∫

L1

e−
π
2
t−iβt log t−ixtdt + 1

π
R∫

L2

e−
π
2
t−iβt log t−ixtdt

= −1

π
I∫

1

0
e−

π
2
iu+βu(logu+πi/2)−∣x∣udu + 1

π
R∫

∞

0
e−

π
2
t−iβ(i+t) log(i+t)−ix(i+t)dt

= I1(x) + I2(x).
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We observe that

x2I1(x) = − ∣x∣
π
I∫

∣x∣

0
e−t−

π
2
i t∣x∣+β

t
∣x∣ (log t

∣x∣+πi/2)dt

= 1 − β
2 ∫

∣x∣

0
te−t+β

t
∣x∣ log t

∣x∣ sin(π(1 − β)t/∣2x∣)
π(1 − β)t/∣2x∣ dt

→ 1 − β
2

, x→ −∞,

and that

e∣x∣I2(x) =
1

π
R∫

∞

0
e−

π
2
t−iβ(i+t) log(i+t)−ixtdt

is bounded for x < 0. Consequently,

gβ(x) ∼ 1 − β
2x2

, as x→ −∞.

◻
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Appendix B

Special functions

B.1 Gamma function and double gamma function
The Euler gamma function Γ(z) is defined by the Euler integral of the second kind:

Γ(z) = ∫
∞

0
tz−1e−tdt, R(z) > 0, (B.1)

where tz−1 = e(z−1) log t. This integral is convergent for all complex z ∈ C with R(z) > 0.
For this function the reduction formula

Γ(z + 1) = zΓ(z), R(z) > 0,

holds; it is obtained from (B.1) by integration by parts. Using this relation, the Euler
gamma function is extended to the half-plane R(z) ≤ 0 except {0,−1,−2,⋯}. It follows
that the gamma function is analytic everywhere in the complex plane C except at z =
0,−1,−2,⋯, where Γ(z) has simple poles.
We also indicate some other properties of the gamma function such as the functional
equation:

Γ(z)Γ(1 − z) = π

sin(πz) , 0 <R(z) < 1; Γ(1/2) =
√
π; (B.2)

the Legendre duplication formula:

Γ(2z) = 22z−1

√
π

Γ(z)Γ(z + 1

2
), z ∉ {−n

2
∶ n ∈ N}; (B.3)

and the more general Gauss multiplication formula:

Γ(mz) = mmz−1/2

(2π)(m−1)/2

m−1

∏
k=0

Γ(z + k

m
), z ∉ {− n

m
∶ n ∈ N}; m ∈ {2,3,4,⋯}; (B.4)

the Stirling asymptotic formula:

Γ(z) =
√

2πzz−1/2e−z [1 +O(1/z)] , ∣arg(z)∣ < π; ∣z∣→∞. (B.5)

In particular,

n! =
√

2πn(n
e
)
n

[1 +O(1/n)] , n ∈ N;n→∞.
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The Malmsten formula for the Gamma function is

Γ(z + a)
Γ(a) = exp(ψ(a)z + ∫

∞

0
(e−zx − 1 + zx) e−ax

x(1 − e−x)dx) , z > −a, a > 0. (B.6)

where ψ is the digamma function.

The definition for the gamma function due to Karl Weierstrass is also valid for all
complex numbers z except the non-positive integers:

1

Γ(z) = zeγz
∞
∏
n=1

(1 + z
n
) e−z/n

where γ ≈ 0.577216 is the Euler–Mascheroni constant.

The double Gamma function

G(z; τ) = z
τ
ea

z
τ
+b z

2

2τ2 ∏
(m,n)∈N2

(m,n)≠(0,0)

[(1 + z

mτ + n)e−
z

mτ+n+
z2

2(mτ+n)2 ] ,

where z ∈ C, τ ∈ C/(−∞,0] and a, b are functions of τ only. This function, also known
as the Barnes function for τ = 1, was introduced in [8] as a generalization of the Gamma
function. It is holomorphic on C and admits the following Malmsten type representation:

G(z; τ) = exp∫
∞

0
[ 1 − e−zx
(1 − e−x)(1 − e−τx) −

ze−τx

1 − e−τx + (z − 1)( z
2τ

− 1)e−τx − 1] dx
x
, R(z) > 0.

(B.7)
It fulfils the functional equations

G(z + 1; τ) = Γ(zτ−1)G(z; τ) and G(z + τ ; τ) = (2π) τ−12 τ 1
2
−zΓ(z)G(z; τ) (B.8)

with normalization G(1; τ) = 1. The normalization also implies

G(τ ; τ) = (2π) τ−12√
τ

(B.9)

for every τ > 0. Billingham and King [17] have developed uniform asymptotic approxima-
tions for double gamma function for various parameter values. We state here the formula
(4.5) in [17] for ∣z∣→∞,

lnG(z; τ) = 1

2τ
z2 ln z − 1

τ
(3

4
+ 1

2
ln τ)z2 − 1

2
(1

τ
+ 1)z ln z + 1

2
( ln τ

τ
+ 1

τ
+ ln τ + 1 + ln(2π))z

+ ( τ
12

+ 1

4
+ 1

12τ
) ln z +C(τ) +O(1

z
), (B.10)

where C(τ) is an O(1) function of τ alone. We don’t have a concrete expression of C(τ),
but we know that it is bounded.
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B.2 Wright function
The Wright function (named after the British mathematician E.M. Wright)

φ(ρ, β; z) =∑
n≥0

zn

n!Γ(ρn + β) (B.11)

with ρ > −1, β ∈ C, is an entire function. This function was thoroughly studied in the
original articles [89, 90, 91] for various purposes, and is referenced in Formula 18.1(27) in
the encyclopedia [34].

Theorem B.1 (Theorem 1 in [91]). For ρ ∈ (−1,0), choose arg z to satisfy

−π < arg z < π,

let y = −z, and write Y = (1 + ρ)((−ρ)−ρy)1/(1+ρ), if ∣arg y∣ ≤ min{3
2π(1 + ρ), π} − ε, then

φ(z) = Y 1/2−βe−Y {
M

∑
m=0

AmY
−m +O(Y −M−1)}, Y →∞. (B.12)

Define ãm as the coefficient of v2m in the expansion of

(−1)m2m−1/2Γ(m + 1/2)
π(−ρ)m−1/2+β(1 + ρ)1−β (1 − v)−β{g(v)}−2m−1

where g(0) = 1, g(v) = {1 + 2+ρ
3 v + (2+ρ)

3
(3+ρ)

4 v2 +⋯}1/2.
Wright [91] proved that Am = ãm.

Theorem B.2 (Theorem 1 in [89]). If ρ > 0, arg z = θ, ∣θ∣ ≤ π, and

Z1 = (ρ∣z∣)
1

1+ρ e
i(−θ+π)

1+ρ , Z2 = (ρ∣z∣)
1

1+ρ e
i(−θ−π)

1+ρ

then we have
φ(ρ, β; z) =H(Z1) +H(Z2)

where

H(Z) = Z1/2−βe
1+ρ
ρ
Z{

M

∑
m=0

(−1)mlmZ−m +O(∣Z ∣−M−1)}, Z →∞,

and we define lm as the coefficient of v2m in the expansion of

Γ(m + 1/2)
2π

( 2

1 + ρ)
1/2+m

(1 − v)−β{g(v)}−2m−1

where g(0) = 1, g(v) = {1 + 2+ρ
3 v + (2+ρ)

3
(3+ρ)

4 v2 +⋯}1/2. In particular l0 = 1√
2π(ρ+1)

.
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