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Résumé

Avec la croissance exponentielle de la quantité de données, l’échantillonnage est une méth-
ode pertinente pour étudier les populations. Parfois, nous avons besoin d’échantillonner un
grand nombre d’objets d’une part pour exclure la possibilité d’un manque d’informations
clés et d’autre part pour générer des résultats plus précis. Le problème réside dans le fait
que l’échantillonnage d’un trop grand nombre d’individus peut constituer une perte de temps.

Dans cette thèse, notre objectif est de chercher à établir des ponts entre la statistique
et le k-processus ponctuel déterminantal(k-DPP) qui est défini via un noyau. Nous pro-
posons trois projets complémentaires pour l’échantillonnage de grands ensembles de données
en nous basant sur les k-DPPs. Le but est de sélectionner des ensembles variés qui couvrent
un ensemble d’objets beaucoup plus grand en temps polynomial. Cela peut être réalisé en
construisant différentes chaînes de Markov où les k-DPPs sont les lois stationnaires.

Le premier projet consiste à appliquer les processus déterminantaux à la sélection d’espèces
diverses dans un ensemble d’espèces décrites par un arbre phylogénétique. En définissant le
noyau du k-DPP comme un noyau d’intersection, les résultats fournissent une borne poly-
nomiale sur le temps de mélange qui dépend de la hauteur de l’arbre phylogénétique.

Le second projet vise à utiliser le k-DPP dans un problème d’échantillonnage de som-
mets sur un graphe connecté de grande taille. La pseudo-inverse de la matrice Laplacienne
normalisée est choisie d’étudier la vitesse de convergence de la chaîne de Markov créée pour
l’échantillonnage de la loi stationnaire k-DPP. Le temps de mélange résultant est borné sous
certaines conditions sur les valeurs propres de la matrice Laplacienne.

Le troisième sujet porte sur l’utilisation des k-DPPs dans la planification d’expérience
avec comme objets d’étude plus spécifiques les hypercubes latins d’ordre n et de dimension
d. La clé est de trouver un noyau positif qui préserve le contrainte de ce plan c’est-à-dire
qui préserve le fait que chaque point se trouve exactement une fois dans chaque hyperplan.
Ensuite, en créant une nouvelle chaîne de Markov dont le n-DPP est sa loi stationnaire,
nous déterminons le nombre d’étapes nécessaires pour construire un hypercube latin d’ordre
n selon le n-DPP.
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Abstract

With the exponentially growing amount of data, sampling remains the most relevant method
to learn about populations. Sometimes, larger sample size is needed to generate more precise
results and to exclude the possibility of missing key information. The problem lies in the
fact that sampling large number may be a principal reason of wasting time.

In this thesis, our aim is to build bridges between applications of statistics and k-
Determinantal Point Process(k-DPP) which is defined through a matrix kernel. We have
proposed different applications for sampling large data sets basing on k-DPP, which is a con-
ditional DPP that models only sets of cardinality k. The goal is to select diverse sets that
cover a much greater set of objects in polynomial time. This can be achieved by constructing
different Markov chains which have the k-DPPs as their stationary distribution.

The first application consists in sampling a subset of species in a phylogenetic tree by
avoiding redundancy. By defining the k-DPP via an intersection kernel, the results provide
a fast mixing sampler for k-DPP, for which a polynomial bound on the mixing time is pre-
sented and depends on the height of the phylogenetic tree.

The second application aims to clarify how k-DPPs offer a powerful approach to find
a diverse subset of nodes in large connected graph which authorizes getting an outline of
different types of information related to the ground set. A polynomial bound on the mixing
time of the proposed Markov chain is given where the kernel used here is the Moore-Penrose
pseudo-inverse of the normalized Laplacian matrix. The resulting mixing time is attained
under certain conditions on the eigenvalues of the Laplacian matrix.

The third one purposes to use the fixed cardinality DPP in experimental designs as a
tool to study a Latin Hypercube Sampling(LHS) of order n. The key is to propose a DPP
kernel that establishes the negative correlations between the selected points and preserve the
constraint of the design which is strictly confirmed by the occurrence of each point exactly
once in each hyperplane. Then by creating a new Markov chain which has n-DPP as its
stationary distribution, we determine the number of steps required to build a LHS with
accordance to n-DPP.
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1

Introduction

Several types of probability sampling techniques have been introduced. These methods are
known as simple random sampling, systematic sampling, stratified sampling, cluster sam-
pling and multi-stage sampling. Actually, these types are unreasonable for sampling from a
large population mainly when the focus is on capturing diverse samples since it leads to lose
some crucial information. Furthermore, it is very time consuming and expensive to sample
a large data set based on these probability sampling techniques.

Determinantal point processes (DPPs) are introduced in 1960’s as probabilistic models
that capture negative correlation and give the likelihood of selecting a subset of items as
the determinant of a kernel matrix. Recently, a strong relation between DPPs and machine
learning appeared and a DPP sampling algorithm has been devised. The main idea behind
this algorithm is to select a diverse subset of given items. In fact, limiting the amount of
sample elements plays an increasingly important role in real-world applications. For this rea-
son, the extension to k-DPP is proposed, which is a conditional DPP that models only sets
of cardinality k. By assuming that the eigen-decomposition of the DPP kernel is available,
the sampling time for the k-DPP algorithm is O(Nk3) where N is the number of elements
present in the population. Actually, it is inefficient and sometimes not possible to compute
in practice the eigen-decomposition of a huge matrix.

Since our focus is oriented to diversity and saving time, the best solution is to find a
faster method based on k-DPP. Many studies show that Markov chain techniques are very
appealing in the context of generating random samples of a k-DPP due to their simplicity
and efficiency. Hence, the technique which we will follow is to construct rapidly mixing
Markov chains which have the k-DPPs as their stationary distribution. Three different ap-
plications for sampling from k-DPP are represented in this thesis.

The first application interests the biologists where a fast k-DPP sampling for species
phylogeny is offered. Since a tree sampling method is needed in many studies in modern
bioinformatics, we use k-DPP to sample a diverse subset of species from a large phylogenetic
tree. The k-DPP is defined through a symmetric positive define matrix which plays the
main role in expressing the degree of similarity between any two species by comparing the
ancestors of a species with the ancestors of another one. The most important step in this
sampling method is constructing a Markov chain whose stationary distribution is the k-DPP.
The aim behind this approach is to suggest a new configuration by choosing two elements:
one to be removed from the set of size k and another to be added. The technique used to



2 Introduction

study the mixing time of the Markov chain is based on the the bound of the Poincaré con-
stant and on the fact that any k-DPP is a homogeneous SR distribution. We show that the
convergence speed of this chain to its stationary distribution is reached in a polynomial time
that depends on the height of the phylogenetic tree. The experiments confirm the usefulness
and efficiency of this approach by showing that certain subsets are more likely to be sampled
than others.

As the number of graph-structured data increases quickly, the second application is pro-
posed for solving the problem of sampling a diverse subset of nodes from a connected graph.
Following the same reasoning as of the first application, choosing the Moore-Penrose pseudo-
inverse of the normalized Laplacian matrix as the kernel will be the right tool utilized to
generate an approximate sample from k-DPP. A polynomial bound on the mixing time for
Markov chain sampling from a k-DPP is stated under certain conditions on the eigenvalues
of the normalized Laplacian matrix.

The third application is about making connections between fixed-size Determinantal
Point Processes and experimental designs. The main idea is to build a Latin Hypercube
sampling design of order n and dimension d with accordance to n-DPPs. Since DPPs give
higher probability to points that are negatively correlated then a Latin Hypercube design
with more spread out points is likely to be selected. This is reached by proposing a special
DPP kernel that preserves the Latin hypercubes properties and by constructing an appropri-
ate Markov chain which has n-DPP as its stationary distribution. The bound of the Poincaré
constant here is achieved by using canonical paths where the lengths of these paths are taken
into consideration. This leads to prove an upper bound on the total variation mixing time
of the Markov chain.
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This thesis is composed of four chapters:

In chapter 1, a background about the methods and the results appearing in this thesis
is provided. First, a simple introduction about Determinantal Point Process is stated
by presenting an extension of this process with fixed cardinality k, denoted k-DPP and
by illustrating an algorithm for sampling from k-DPP. Then, an overall background
about Markov chain and mixing time is given. Finally, a Markov chain with a k-DPP
as its stationary distribution is defined and a technique to efficiently generate random
samples of a k-DPP is described.

In chapter 2, the focus is on the problem of selecting a diverse set of species in an
enormous phylogenetic tree. A specific matrix called the intersection kernel is proposed
to define the DPP kernel. The effort here is to find a way to offer a polynomial bound
on the mixing time of the lazy Markov chain specified in the previous chapter for the
k-DPP. The results were that the usage of k-DPP had an influence on stating that the
leaves joined by a higher subtree are more likely to appear. This outcome is achieved
by showing that in a tree of maximum height h, for 0 < h2 < h1 < h/2, choosing k
species joined by a subtree of height h1 is much more probable than choosing k species
joined by a subtree of height h2. At last, this approach is applied to a real case on a
large dataset of species.

In chapter 3, a clarification of how k-DPPs offer a powerful approach to modeling
diversity is stated by finding interesting nodes in a connected graph. The convergence
speed of the constructed Markov chain into k-DPP is studied where the Moore-Penrose
pseudo-inverse of the normalized Laplacian matrix is chosen as the DPP kernel. Then
a polynomial bound on the mixing time is presented under certain conditions on the
eigenvalues of the Laplacian matrix.

In chapter 4, the attention fall on displaying the performance of DPP with fixed car-
dinality in experimental designs. This approach leads to generating a Latin hypercube
sampling of order n and dimension d from DPPs with fixed cardinality n, denoted
n-DPP. The first step taken is choosing a positive kernel that preserve the Latin Hy-
percube sampling properties and then the second one is by constructing a new Markov
chain which has n-DPP as its stationary distribution. The usage of n-DPP strategy
allows the selection of LHS with more spread out points.
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Chapter 1

Preliminaries

In this chapter some notions, background, methods and results are presented. The Determi-
nantal point process is introduced and an extension of this process is presented with fixed
cardinality k, denoted k-DPP. To sample from k-DPP an algorithm is needed. Then, an
overall background about Markov chain and mixing time is illustrated. Finally, a Markov
chain with a k-DPP as its stationary distribution is defined and the technique to efficiently
generate random samples of a k-DPP is described.

1.1 Determinantal Point Processes

Determinantal point processes (DPPs) are coherent probabilistic models in the presence
of negative correlation which arise in random matrix theory ([Mehta and Gaudin(1960)],
[Ginibre(1965)]). DPPs were identified by [Machhi(1975)] who called them fermion processes
that they have the ability to model the position of fermions, where nearby particles repel
each other. Recently, [Kulesza and Taskar(2012)] provide a gentle introduction to DPPs
by presenting new algorithms for inference problems like conditioning, marginalization and
sampling. They showed that DPPs play a progressively important role in machine learning,
for example they can be used to compute the marginals of a Markov random field, select
diverse sets of sentences to form document summaries and model non-overlapping human
poses in images or video. [Kulesza and Taskar(2011)] propose an extension of DPPs that
permits to model the content of a fixed number of items. Indeed, for large data set it would
be thriftless to model the size. For an integer 0 ≤ k ≤ n, a k-DPP is obtained simply by
conditioning a standard DPP on sampling sets of fixed cardinality k.
Moreover, [Affandi et al.(2012)] introduce a Markov-DPP (M-DPP) to model diverse se-
quences of subsets and they show the performance of M-DPP for sequentially displaying ar-
ticles that are relevant and diverse on any given day. In addition, [Gillenwater et al.(2012)]
propose a new algorithm to solve the DPP MAP problem which is finding the most likely
configuration. This approach is based on continuous techniques for sub-modular maximiza-
tion.
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Theorem 1.1. ([Kulesza and Taskar(2012)]) An L-ensemble is a DPP, and its marginal
kernel is

K = L(L+ I)−1.

Conversely, L can be computed from a DPP with marginal kernel K as follows,

L = K(I −K)−1.

In this thesis, we will work with the most relevant construction of k-DPPs which is based
on L-ensemble.

A great effort has been made by DPP to model two distinct characteristics: the size of the
set and its content. Actually, for huge data set it would be wasteful to model the size. For
that reason, [Kulesza and Taskar(2011)] propose an extension of DPP called k-DPP, which
is a conditional DPP that models only sets of cardinality k. [Kulesza and Taskar(2011)]
present an example of k-DPPs on a real world image search problem where the goal is
to show users diverse sets of images that correspond to their query. They showed that
k-DPPs has better performance than Maximal Marginal Relevance (MMR) in generating
diverse results set, where MMR is a technique that compute maximal diversity ranking in
multi-document summarization and document retrieval ([Carbonell and Goldstein(1998)]).
For more information about k-DPP and their applications we refer to recent studies by
[Deshpande and Rademacher(2010)] and [Kulesza and Taskar(2012)].

The L-ensemble construction of a k-DPP, denoted Pk
L, only gives positive probability to sets

of cardinality k. Pk
L is given as follows:

Pk
L(Y ) =

det(LY )
∑

|Y ′|=k det(LY ′)
, (1.1)

where | · | denote the cardinality of the set, |Y | = k and L is a k × k positive semidefinite
matrix.
A k-DPP can capture distributions whereas a standard DPP cannot. This refers to the nor-
malization constant formula , where the sum in the k-DPP is on the same set of cardinality,
while in the DPP, the sum is overall subsets of X of any cardinality.

1.1.1 Sampling from k-DPP

The extension to k-DPPs requires new algorithms to normalize, sample and marginalize
based on recursions for the elementary symmetric polynomials.
The purpose of this section is to shed light on a sampling algorithm for k-DPPs, especially the
one proposed by [Kulesza and Taskar(2012)]. Note that the eigen-decomposition of the kernel
requires O(n3) time and computing elementary symmetric polynomials can be obtained in
O(nk) time. Further, by taking into consideration that k-DPP is a conditional DPP that
models only sets of cardinality k, then sampling from k-DPP can be attained by sampling
several times from the corresponding DPP until we get a sample of size k. This process
can be reached in O(nk3) times as shown in [Kulesza and Taskar(2012)]. Consequently,
Algorithm 1 which arose from [Kulesza and Taskar(2012)] runs in O(nk3) time and that is
by supposing that the eigen-decomposition of the DPP kernel already exists.
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Algorithm 1 Sampling from a k-DPP [[Kulesza and Taskar(2012)]]

Input: eigen-decomposition {(vN , λN)}nN=1 of L, size k
I ← ∅
eN0 ← 1 ∀N ∈ {0, 1, · · · , n}
em0 ← 0 ∀m ∈ {1, · · · , k}
for m = 1, · · · , k do

for N = 1, · · · , n do

eNm ← eN−1
m + λNe

N−1
m−1

end for

end for

m← k
for N = n, . . . , 1 do

if u ∼ U [0, 1] < λN
eN−1

m−1

eNm
then

I ← I ∪ {N}
m← m− 1
if m = 0 then

Break

end if

end if

end for

V ← {vN}N∈I
Y ← ∅
while |V | > 0 do

Select yi from Y with Pr(yi) =
1
|V |
∑

v∈V (v
T ei)

2

Y ← Y ∪ {yi}
V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

end while

Output: Y

1.2 Markov chain

This section is concerned to present some definitions, properties and consequences of Markov
chains.

Let S = {1, · · · , n} be a finite set of states. Let X0, X1, · · · be a sequence of random
variables with values in S.

Definition 1.1. We say that
(

Xn

)

n≥0
is a Markov chain on the finite state space S with

transition probability P = (pij)i,j∈S if it satisfies the Markov property:

P(Xn = sn|Xn−1 = sn−1) = P(Xn = sn|X0 = s0, · · · , Xn−1 = sn−1)

= psn−1sn(n− 1)

for any s0, · · · sn ∈ S and n ∈ N. Then, psn−1sn(n − 1) is called transition probability from
state sn−1 to state sn in time n− 1.
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Further, if P(Xn = sn|Xn−1 = sn−1) = psn−1sn is independent of n then the Markov
chain is called time homogeneous. All Markov chains considered in this chapter are time
homogeneous.

For all n,m ≥ 0 and si, sj ∈ S, the n-step transition probabilities of the chain are expressed
as follows:

p(n)sisj
= P(Xm+n = sj|Xm = si).

Definitions 1.1. • A state sj is reachable from si if for some n ≥ 0, the n-step transition

probability is strictly positive i.e. p
(n)
sisj > 0.

• si and sj communicate if sj is reachable from si and si is reachable from j.

• A Markov chain is said to be irreducible if all states communicate with each other.

• A state si is recurrent if and only if
∑

n≥1 p
(n)
sisi =∞.

• A recurrent state si is positive recurrent if E(Tsi |X0 = si) < ∞ where Tsi is the first
return time to state si.

• A state si is periodic with period d if d is the smallest integer such that p
(n)
sisi = 0

whenever n is not a multiple of d. If d = 1, then si is said to be aperiodic.

Proposition 1.1. Suppose we have two recurrent states si and sj. If sj is positive recurrent
and if sj communicate with si, then si is also a positive recurrent state. In particular, if the
Markov chain is irreducible then all the states must be positive recurrent.

If all states in an irreducible Markov chain are positive recurrent, then we say that the
Markov chain is positive recurrent.

Proposition 1.2. If si is periodic with period d and if si communicate with sj, then sj also
is periodic with period d. In particular, if the Markov chain is irreducible then all the states
must be periodic with period d.

If all states in an irreducible Markov chain are periodic (respectively aperiodic), then we say
that the Markov chain is periodic (respectively aperiodic).

Definition 1.2. A stationary distribution of a Markov chain is a probability distribution
π = (π0, · · · , πn) such that

π = Pπ.

Definition 1.3. A Markov chain is said to be ergodic if it is irreducible, positive recurrent
and aperiodic. Then, the Markov chain converges to the stationary distribution.

Theorem 1.2. A finite, irreducible, aperiodic Markov chain is an ergodic Markov chain.

Theorem 1.3. An ergodic Markov chain has a unique stationary distribution, which is a
limiting distribution, i.e. for all si, sj ∈ S we have

lim
n→∞

p(n)sisj
= πsj .

In the following sections, the Markov chains will be considered as finite Markov chains.
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1.2.1 Metropolis chain

Suppose π is a probability distribution on S and the goal is to use an arbitrary transition
probability q to construct a Markov chain with stationary distribution π ([Chib and Greenberg(1995)]).
The Metropolized chain is achieved when at state x, a new state y is generated from the
transition probability q(x, ·). The proposal state y is accepted as a new state in the chain
with probability

α = min

{

π(y)q(y, x)

π(x)q(x, y)
, 1

}

or rejected with probability 1− α, hence the chain remains at x.

Moreover, by using the fact that the transition probability q can be symmetric (q(x, y) =

q(y, x)), thus the acceptance function α will be expressed as the ratio π(y)
π(x)

.
Then, for a stationary distribution π and a symmetric transition probability q, the transition
matrix P for the Metropolis chain is defined as:

P (x, y) =











q(x, y) ·min
{

π(y)
π(x)

, 1
}

if y 6= x

1− ∑
z 6=x

q(x, z) ·min
{

π(z)
π(x)

, 1
}

otherwise.

Hence, the Metropolis chain with its stationary distribution π is reversible.

1.2.2 Mixing time

To determine the mixing time of a finite Markov chain the definition of the total variation
distance is needed.

Definition 1.4. Given two probability measure on space S denoted µ and ν. The total
variation distance between µ and ν is defined as follows:

||µ− ν||TV = sup
A⊂S
|µ(A)− ν(A)|

=
1

2

∑

s∈S
|µ(s)− ν(s)|.

Theorem 1.4. (Convergence Theorem) Supposing that M is an irreducible and aperiodic
Markov chain and P its transition matrix such as πP = π. Then, there exist constants
α ∈ (0, 1) and C > 0 such that

d(t) := max
x∈S
||P t(x, ·)− π||TV ≤ Cαt,

where P t(x, ·) is the distribution of the chain started at x at time t.

We say that M converges asymptotically to π. Thus, the total variation distance between
them approaches to zero.

Definition 1.5. For ǫ > 0, the total variation mixing time ofM and π is defined as follows:

τǫ := inf{t : d(t) ≤ ǫ}.

We say that the distribution ofM after τǫ approaches the chain’s stationary distribution π.
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1.3 Efficient sampling for k-DPP

[Kannan and Vempala(2009)], [Deshpande and Rademacher(2010)] and [Kulesza and Taskar(2012)]
have presented algorithms for sampling from k-DPP. Although, for a large dataset these al-
gorithms are inefficient to use since eigen-decomposition of a possibly huge matrix is needed.
Nevertheless, the Markov chain techniques are very attractive because of their plainness and
effectiveness in generating k-DPP random samples. For instance, the Metropolis-Hastings al-
gorithm was used by [Kang(2013)] who has considered a Monte Carlo Markov chain (MCMC)
to sample from k-DPP. In his work the coupling argument is ill-defined, hence the proof of
the rapid mixing time of the Markov chain is wrong; however, the sampling scheme is right.
We note that [Borcea et al.(2009)] show that any DPP is a strong Rayleigh (SR) distribu-
tion, defined by strong negative dependence properties. As SR distributions lead themselves
to an effective Markov chain sampling: [Anari et al.(2016)] used a lazy MCMC which was
also described by [Kang(2013)]. [Anari et al.(2016)] showed that the natural MCMC algo-
rithm can be mixed quickly in the support of a homogeneous SR distribution which is a
distribution over sets of a fixed size k. We know that DPPs are considered to be special
cases of SR distributions which are closed under truncation, so any k-DPP is a homogeneous
SR distribution. The results of [Anari et al.(2016)] infer that the same Markov chain can be
used to efficiently generate random samples of a k-DPP. This result does not comprise the
general DPP; concerning DPP, [Li et al.(2016b)] give a polynomial mixing time for sampling
Markov chains from a general DPP.

We mention below some definitions needed to introduce a SR Measure and the proposi-
tion that shows that any DPP is strongly Rayleigh.

Definitions 1.2. • A polynomial p : Cn → C is said to be stable if p(z1, · · · , zn) 6= 0
whenever ℑ(z1), · · · ,ℑ(zn) are strictly positive.

• A polynomial p : Cn → C is said to be real stable if it is stable and all of its coefficients
are real.

Supposing that µ : 2[n] → R+ is a probability measure on the set 2[n] of all subsets of
[n] = {1, · · · , n} that satisfies

∑

T⊆[n] µ(T ) = 1.

Definitions 1.3. • The generating polynomial of µ is defined as

pµ : Cn → C

z → pµ(z) =

∫

zTdµ(T ) =
∑

T⊆[n]

µ(T )
∏

i∈T
zi,

where zT :=
∏

i∈T
zi.

• If for any T ⊆ [n], the number of elements in T is equal to k, then pµ is a homogeneous
polynomial of degree k and µ is said to be k-homogeneous.

Definitions 1.4. • µ is said to be a strongly Rayleigh distribution if its generating poly-
nomial pµ is real stable.
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• µ is said to be k-homogeneous strongly Rayleigh distribution if its generating polynomial
pµ is a homogeneous polynomial of degree k and real stable.

Proposition 1.3.1. [Borcea et al.(2009)] Let µ be a determinantal measure on the set 2[n]

i.e. µ is defined such that there is a square matrix M of size n in order that for any subset
Y ⊆ [n] where MY = (Mij)i,j∈Y , we have

µ({S ∈ 2[n] : Y ⊆ S}) = det(MY ).

If µ is a determinantal measure induced by a positive matrix with eigenvalues in [0, 1], then
µ is strongly Rayleigh.

1.3.1 Construct a Markov chain for sampling from Pk

L

The main idea of [Kang(2013)] and [Anari et al.(2016)] is to construct a Markov chain M
which has Pk

L as the stationary distribution. This method is generated by the Metropolis-
Hastings algorithm. Suppose that q is a proposal transition matrix. The purpose behind
this approach is to suggest a new configuration by choosing two elements u and v: u to be
removed from the current set X of size |X| = k, and v to be added. Hence, for X = Y ∪{u}
and v ∈ {1, · · · , n}\X the acceptance probability of removing u from X and replace it with
v is computed as follows:

p = min

{

1,
detLY ∪{v} · q

(

Y ∪ {v}, Y ∪ {u}
)

detLY ∪{u} · q
(

Y ∪ {u}, Y ∪ {v}
)

}

.

It is easy to see that q is a symmetric transition matrix, thus the acceptance probability is
expressed as

p = min

{

1,
detLY ∪{v}
detLY ∪{u}

}

. (1.2)

The advantage of having a rapidly-mixing Markov chain as a mean of sampling from a
DPP is that when a new element is introduced or removed from X, we may simply continue
the current chain until it is mixed again to obtain a sample from the new distribution. For
large X, a single iteration will become very costly. For this reason, [Kang(2013)] presents a
linear-algebraic manipulation of the determinant ratio where the explicit computation of the
determinant is unnecessary. Since the determinant is permutation-invariant with respect to
the index set and due to its symmetry, LY ∪{u} is represented as the following block matrix
form:

LY ∪{u} =

(

LY bu
bTu cu

)

,

where bu = L(i, u)i∈Y ∈ R
|Y | and cu = L(u, u). With this, the determinant of LY ∪{u} is

expressed as

det(LY ∪{u}) = det(LY )(cu − bTuL
−1
Y bu).

Since q is a symmetric transition matrix, this allows us to formulate the acceptance proba-
bility as
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p = min

{

1,
det(LY ∪{v})

det(LY ∪{u})

}

= min

{

1,
cv − bTv L

−1
Y bv

cu − bTuL
−1
Y bu

}

.

Furthermore, the transition probability matrix P ofM is given as:

P (Y ∪ {u}, Y ∪ {v}) =











q
(

Y ∪ {u}, Y ∪ {v}
)

· 1
2
min

{

1,
detLY ∪{v}

detLY ∪{u}

}

if v 6= u

1− ∑
w 6=u

q
(

Y ∪ {u}, Y ∪ {w}
)

· 1
2
min

{

1,
detLY ∪{w}

detLY ∪{u}

}

otherwise.

(1.3)

As P (X,X) ≥ 1
2

for all X ⊆ [n], then Markov chain described above is said to be a lazy
chain. This will guarantee that all eigenvalues of P are positive.

The lazy MCMC M produced by Metropolis-Hastings algorithm is introduced to acquire a
sample from k-DPP as follows:

Algorithm 2 Markov chain for sampling from Pk
L [[Anari et al.(2016)]]

Require: Itemset S = {1, · · · , n}, similarity matrix L ≻ 0
Randomly initialize state X ⊆ S, s.t. |X| = k
Sample r ∼ Unif(0, 1)
if r < 1

2
then

X ← X
else

while Not mixed do

Sample u ∈ X, and v ∈ S \ X u.a.r.
Letting Y = X \ {u}, set

p← min

{

1,
cv − bTv L

−1
Y bv

cu − bTuL
−1
Y bu

}

.

X ← Y ∪ {v} with prob. p
X ← X with prob. 1− p

end while

end if

return X

The essential idea of this algorithm is to obtain a rapidly-mixing Markov chain whose sta-
tionary distribution is the k-DPP Pk

L.

1.3.2 The mixing time of M
In this section, we will refer to a theorem illustrated by [Anari et al.(2016)] which study the
convergence speed of the distribution ofM to its stationary distribution Pk

L.
Note that Pµ in the following theorem is the transition probability matrix of M defined in
Equation 1.3.
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Theorem 1.5 ([Anari et al.(2016)]). For any k-DPP µ : 2[n] → R+ and supp{µ} is the
state space of the lazy MCMC M defined in Algorithm 2. Let X = Y ∪ {u} ∈ supp{µ} and
X ′ = Y ∪ {v} where u ∈ X and v /∈ X. For ǫ > 0,

τX(ǫ) ≤
1

Cµ

· log
( 1

ǫ · µ(X)

)

,

where the Poincaré constant is defined as follows:

Cµ = min
X,X′∈supp{µ}

max(Pµ(X,X ′), Pµ(X
′, X))

and it is at least 1
2kn

by construction.

The proof of the above theorem is established on the bounds of the second largest eigen-
value of the transition probability matrix Pµ and by using the fact that any k-DPP is a
homogeneous SR distribution.

1.4 Canonical Paths Method

Let (Ω, P, π) be a lazy irreducible Markov chain and reversible with respect to the stationary
distribution. Note that Ω is the state space with |Ω| = n, P is the transition probability
distribution and π is the stationary distribution.
The basic idea here is to view (Ω, P, π) as a weighted undirected connected Graph G on a
vertex set Ω, where the states represent the nodes and the transitions represent the edges
([Sinclair(1992)]).
Let us begin by some background information:

Notation 1.1. The inner product for L2(π) denoted 〈·, ·〉π is given by

〈f, g〉π := E[f · g] =
∑

x∈Ω
π(x)f(x)g(x), ∀f, g : Ω→ R.

Definitions 1.5. Let f, g : Ω→ R.

• The Dirichlet form associated with P is defined as follows:

επ(f, g) :=
1

2

∑

x,y∈Ω
[f(x)− f(y)][g(x)− g(y)]P (x, y)π(x).

In particular,

επ(f, f) =
1

2

∑

x,y∈Ω
[f(x)− f(y)]2P (x, y)π(x).

• The Variance of the function f is defined by

Varπ(f) :=
∑

x∈Ω
(f(x)− Eπf)

2π(x).

Furthermore, P (because of reversibility) satisfies the detailed balance condition: for all
x, y ∈ Ω,

Q(x, y) ≡ π(x)P (x, y) = π(y)P (y, x). (1.4)

It is well known that in case of irreducibility, P has real eigenvalues that satisfy:

1 = β0 > β1 ≥ · · · ≥ βn−1 ≥ −1.
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Since the Markov chain is introduced as a lazy chain, then all the eigenvalues are positive
and the chain is aperiodic. Thus P is ergodic and the rate of convergence to π is based on
the bound of the Poincaré constant of the chain which is 1− β1 and noted λ1.
The following theorem gives the Poincaré constant in terms of the Dirichlet form
([Horn and Johnson(1985)]):

Theorem 1.6. Assuming that P is reversible with respect to the probability distribution π
on Ω, then the Poincaré constant is given by:

λ1 := inf
Eπf=0

επ(f, f)

Varπ(f)
, (1.5)

where f : Ω→ R is non-constant function.

For x, y ∈ Ω, an edge of weight Q linking x and y, denoted e = (x, y), is defined if and
only if Q(x, y) > 0 where Q is given in Equation (1.4). As G is a connected graph, then, for
every ordered pair of states (x, y) there exist a path between them which is noted δxy. This
path can be built according to a series of states x0, · · · , xn−1 knowing that x is supposed
as the starting state and y is the arriving state where the transition probability between
(xi, xi+1) is strictly positive for all i ∈ {0, · · · , n− 1}.
The basic goal of constructing canonical paths between each pair of states in G is to present
a new bound for the Poincaré constant by taking into consideration the lengths of these paths.

Considering a family of canonical paths Γ = {δxy}, the maximum loading of an edge by
paths in terms of the lengths of the paths is evaluated by:

C = max
e







1

Q(e)

∑

x,y:e∈δxy

π(x)π(y)|δxy|







,

where |δxy| denotes the length of the path δxy.

Proposition 1.3 ([Sinclair(1992)]). For any choice of canonical paths, the Poincaré constant
defined in Equation (1.5) of a reversible Markov chain satisfies

λ1 ≥
1

C
·

The above proposition offer a bound for the second largest eigenvalue of P which is related
to the mixing time. Hence, the results provided by [Diaconis and Stroock(1991)] is needed
since they gives a bound on the mixing time in terms of λ1 and the stationary distribution
π. The following theorem is proceeded from [[Diaconis and Stroock(1991)], Proposition 3].

Theorem 1.7. Supposing that (Ω, P, π) is a lazy irreducible and reversible Markov chain
with Poincaré constant λ1. Then, the mixing time is upper bounded by

τx(ǫ) ≤
1

λ1

log
( 1

ǫ · π(x)
)

∀x ∈ Ω, ǫ > 0.
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Chapter 2

k-DPP Sampling For Species Phylogeny

In this chapter we are interested in sampling diverse subsets of species from a large phy-
logenetic tree by avoiding redundancy. The technique used is based on k-DPP since they
are utilized for diverse subset selection problems. This chapter investigate a simple MCMC
algorithm to generate samples of a k-DPP. The results provide a fast mixing sampler for
k-DPP, for which polynomial bound on the mixing time is presented. This approach can be
applied to a real-world datasets of species, and it shows that the leaves joined by a higher
subtree are more likely to appear.

2.1 Introduction

A rooted phylogenetic tree is a diagram that depicts the lines of evolutionary relationships
among species from a common ancestor. We will assume that the tips of the tree represent
species, a node represents the most recent common ancestor of all species descending from
that point in the tree and the root is a single point from which it has been supposed that all
species descend. The branch lengths may represent the accumulation of evolutionary change.
In our case the tips may not line up because the rate of evolutionary change is not constant
across all branches.
The goal is to present a method to sample the tree of life of complete genomes, which con-
sists in the taxonomic tree of living organisms (the leaves of the tree) having their genome
completely sequenced. Many studies in modern bioinformatics (comparative genomics, phy-
logeny inference studies, multiple sequence alignment building, ...) are based on a subset of
the available complete sequenced genomes. Indeed, next-generation sequencing technologies
led to an exponential number of available genomes that cannot be manually handled, hence,
a tree sampling method is needed. Redundancy can thus be avoided while sampling when
the work is linked to subsets of species.

Since determinantal point processes are probabilistic models that capture negative correla-
tion and give the likelihood of selecting a subset of items as the determinant of a kernel
matrix, thus, the main idea of this chapter is to sample, according to k-DPP a diverse set
of species in an enormous phylogenetic tree which contains millions of nodes. The goal is to
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show the performance of k-DPP in selecting a subset of species to cover a much greater set
of species in a polynomial time.

To define a k-DPP, a positive semi-definite Kernel is needed. This kernel plays the main role
in expressing the degree of similarity between any two nodes x, x′ ∈ X with fine distinctions
in the degree to which x and x′ are distant from each other in the tree. As it is known,
the species are connected to each other through ancestors. That is why our choice in this
chapter fell on a specific kernel that is the intersection kernel that compares the ancestors
of a species with the ancestors of another one.

Different algorithms were proposed for sampling from k-DPP, but these algorithms com-
monly need the eigendecomposition of a matrix which is typically of size more than one mil-
lion ([Pundir et al.(2017)]). As noted in Chapter 1, [Anari et al.(2016)] used a lazy Markov
chain Monte Carlo (MCMC) described also by [Kang(2013)] and showed that the natural
MCMC algorithm mixes rapidly in the support of a k-DPP. For this reason, in this chapter
the technique which we use for the convergence speed is based on Theorem 1.5.

Initially, Section 2.2 in this chapter gathers some basic facts about kernels functions and
our k-DPP kernel. Our main result is presented in Section 2.3 stating that if the tree is of
maximum height h, for 0 < h2 < h1 < h/2, choosing k species simultaneously joined by a
subtree of height h1 is much more probable than choosing k species simultaneously joined by
a subtree of height h2. Then in Section 2.4 we focus on the mixing time of the Markov chain
specified in Algorithm 2 for the k-DPP. The resultant mixing time depends on the height of
the phylogenetic tree. In Section 2.5, we apply our approach to a real case on a large dataset
of species. Finally, Section 2.6 presents our conclusions.

2.2 DPP Kernel

To provide the similarity between nodes in data X a kernel function K : X × X → R is
needed. By considering the discrete case, the way to characterize positive semidefiniteness
is that for all sets of real coefficients {fx}, we have

∑

x∈X

∑

x′∈X
fxfx′K(x, x′) ≥ 0.

Then, for finite X , the kernel can be uniquely represented by |X | × |X | matrix with rows
and columns indexed by the elements of X and related to the kernel by Kxx′ = K(x, x′) and
it is called Gram matrix.

Different kernels have successfully been applied to capture the long-range relationships be-
tween pairs of points induced by the local structure of the graph. The Laplacian matrix has
been enormously effective for graph isomorphism problems, biochemistry and design of sta-
tistical experiments and take an important place in analysis of random walks and electrical
networks on graphs ([Doyle and Snell (1984)], [Cvetkovic et al.(1980)], and [Merris(1994)]).
Sometimes it is also known by the Kirchhoff matrix or the information matrix. The Lapla-
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is given as follows:
1 2 3 4 5 A B C D E F G

A
C
D
G









1 1 1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1









and the kernel is equal to

LX =









5 3 2 1
3 4 2 1
2 2 3 1
1 1 1 3









.

Maybe it could be important to work with the normalized kernel, which can be defined by
the following function:

K̃(A,B) =
|EA ∩ EB|
√

|EA||EB|
.

However with this normalization, we will face the same problem already suffered with the
first two kernels. That is why our choice has been directed towards the intersection kernel
(equation (2.1)).

2.3 The k-DPP selects diverse subsets

The k-DPP is ideal for selecting a diverse subset of given items; when selecting one item,
the probability of simultaneously choosing a similar item is indeed low. In this section, we
denote by h the height of the phylogenetic tree from the deepest leaf to the root and n the
number of leaves (see figure below). To make things simple, we will consider a phylogenetic
tree that is a perfect r-ary tree of height h, the number of nodes at depth d is then equal to
rd. For 0 < h2 < h1 < h/2, Proposition 2.3.1 shows that choosing k species simultaneously
joined by a subtree of height h1 (that is, there are no leaves connected by a subtree of height
h1 − 1) is much more probable than choosing k species simultaneously joined by a subtree
of height h2 (that is, there are no leaves connected by a subtree of height h2 − 1). This
illustrates that k-DPP enables to achieve diversity in the most probable samples.

Proposition 2.3.1. For a positive integer r = k where k ≤ n, let us consider a r-ary tree
T of height h and let 0 < h2 < h1 < h/2. Then choosing k leaves simultaneously joined by

a subtree of height h1 is
(

h1

h2

)k

· 1+k
1+kh

· kh−h1

kh−h2
·
(

kh1−1

kh2−1

)k

times more probable than choosing k

leaves simultaneously joined by a subtree of height h2.

Proof. Let h be the maximal height and let 0 < h2 < h1 < h/2. Let A be a set containing k
leaves joined all for the first time by a subtree of height h1 and B a set containing k leaves
joined by a subtree of height h2.
Between any two leaves in the set A there are h−h1 common ancestors. Thus, the intersection
kernel LA can be written as follows:
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LA =











h h− h1 . . . h− h1

h− h1
. . . . . .

...
...

. . . . . . h− h1

h− h1 . . . h− h1 h











.

Then, we can present the determinant of LA as follows

detLA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

h h− h1 . . . h− h1

h− h1
. . . . . .

...
...

. . . . . . h− h1

h− h1 . . . h− h1 h

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |(h− h1)11
′ + h1Ik|

=hk
1

∣

∣

∣Ik +
h− h1

h1

11
′
∣

∣

∣

=hk
1

(

1 +
h− h1

h1

1
′
1

)

by the matrix determinant lemma

=hk
1

(

1 +
( h

h1

− 1
)

k
)

.

Following this same reasoning for the set B that contains k leaves joined by a subtree of
height h2, between any two leaves there are h− h2 common ancestors. Then, we have

detLB = hk
2

(

1 +
( h

h2

− 1
)

k
)

.

Besides the number of subtrees of height h1 (resp. h2 ) with leaves being a subset of the
leaves of T and the root a node at height h1 (resp. h2) in T is given by kh−h1 (resp. kh−h2)
and the number of leaves that can be chosen from a subtree of height h1 (resp. h2) is given
by kh1−1 (resp. kh2−1). Consequently, the ratio of choosing k leaves joined by a subtree of
height h1 to choosing k leaves joined by a subtree of height h2 is expressed as:

detLA

detLB

· k
h−h1

kh−h2

·
(kh1−1

kh2−1

)k

=

(

h1

h2

)k

·
1 + k

(

h
h1

− 1
)

1 + k
(

h
h2

− 1
) · k

h−h1

kh−h2

·
(kh1−1

kh2−1

)k

≥
(

h1

h2

)k

· 1 + k

1 + k(h− 1)
· k

h−h1

kh−h2

·
(kh1−1

kh2−1

)k

as h2 < h1 < h/2

≥
(

h1

h2

)k

· 1 + k

1 + kh
· k

h−h1

kh−h2

·
(kh1−1

kh2−1

)k

·

Thus concluding the proof of the Proposition.
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which we use for the convergence speed is based on the study of [Anari et al.(2016)].
According to Theorem 1.5, for ǫ > 0 the mixing time is bounded by

τS(ǫ) ≤
1

Cµ

· log
( 1

ǫ · µ(S)
)

,

where Cµ = min
S,T∈supp{µ}

max(Pµ(S, T ), Pµ(T, S)), µ : 2[n] → R+, S ∈ supp{µ} and T =

S\{u} ∪ {v} with u ∈ S and v /∈ S.
The following theorem gives the resulting mixing time of the Markov chain specified in
Algorithm 2 for our k-DPP.

Theorem 2.1. Let Pk
L be a k-DPP where L is the matrix defined by Equation (2.1). For

any ǫ > 0, the lazy Markov chain defined in Algorithm 2 generates ǫ-approximate sample of
Pk

L in time

τǫ ≤ 2k2n · log





n(h− 1)
(

ǫ ·
(

1 + k(h− 1)
)) 1

k

(

1 +
k

h− 1

) 1

k



 .

Proof. The proof is based on the main theorem of [Anari et al.(2016)] by considering µ as a
k-DPP noted Pk

L.
As a first step and according to Theorem 1.5, we need to lower bound

CPk
L
= min

X,X′⊆[n], |X|=|X′|=k
max(PPk

L
(X,X ′), PPk

L
(X ′, X)).

To do so, let us consider a set X ⊆ [n] such that |X| = k and choose an element u ∈ X
and v /∈ X uniformly and independently at random and let Y = X \ {u}. Following
[Kang(2013)], the acceptance probability is lower bounded by the ratio of the determinants
of two matrices as follows:

det(LY ∪ {v})

det(LY ∪ {u})
=

cv − bTv L
−1
Y bv

cu − bTuL
−1
Y bu

, (2.2)

where u and v are the elements being removed and added, respectively. Thus, the transition
probability is given as follows:

PPk
L

(

Y ∪ {u}, Y ∪ {v}
)

= q
(

Y ∪ {u}, Y ∪ {v}
)

· 1
2
min

{

cv − bTv L
−1
Y bv

cu − bTuL
−1
Y bu

, 1

}

where q is the proposal transition matrix.
Therefore, the lower bound of CPk

L
is obtained by using the fact that q is a a symmetric

transition matrix:

CPk
L
= min

Y,v,u
max q

(

Y ∪ {u}, Y ∪ {v}
)

(

1

2
min

{

cv − bTv L
−1
Y bv

cu − bTuL
−1
Y bu

, 1

}

,
1

2
min

{

cu − bTuL
−1
Y bu

cv − bTv L
−1
Y bv

, 1

}

)

≥ 1

2kn
which is the result of [Anari et al.(2016)].

Then, it remains the calculation of the lower bound of Pk
L to complete the proof. By using

an intuitive geometric interpretation of determinants for a set X of cardinality k, we have

det(LX) = Vol(X)2,
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where LX for the smallest volume is given by

LX =











h h− 1 . . . h− 1

h− 1
. . . . . .

...
...

. . . . . . h− 1
h− 1 . . . h− 1 h











.

Thereby,

detLX =

∣

∣

∣

∣

∣

∣

∣

∣

∣

h h− 1 . . . h− 1

h− 1
. . . . . .

...
...

. . . . . . h− 1
h− 1 . . . h− 1 h

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |Ik + (h− 1)11′|
=
(

1 + (h− 1)1′
1
)

by the matrix determinant lemma

=1 + k(h− 1).

In addition, according to the definition of k-DPP, we should also calculate the normalization
constant. Then, for any set X of cardinality k we want to choose X ′ ⊆ [n] of size k
maximizing detLX . Thus, by considering the intersection kernel we define LX′ as follows:

LX′ =











h 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1
1 . . . 1 h











.

Then, we can present the determinant of LX′ as follows

detLX′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

h 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1
1 . . . 1 h

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |(h− 1)Ik + 11
′|

=(h− 1)k
∣

∣

∣
Ik +

1

h− 1
11

′
∣

∣

∣

=(h− 1)k
(

1 +
1

h− 1
1
′
1

)

by the matrix determinant lemma.

Thus,

detLX′ =(h− 1)k
(

1 +
k

h− 1

)

.

Consequently,

Pk
L(X) =

det(LX)
∑

|X′|=k det(LX′)
≥ 1 + k(h− 1)
(

n
k

)

(h− 1)k
(

1 + k
h−1

)

≥ n−k
(

1 + k(h− 1)
)

(h− 1)k
(

1 + k
h−1

) .

Now, by using Theorem 1.5 we can directly upper bound the mixing time in total variation
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distance as follows:

τX(ǫ) ≤
1

CPk
L

· log
( 1

ǫ · Pk
L

)

≤2kn · log
(

nk(h− 1)k
(

1 + k
h−1

)

ǫ
(

1 + k(h− 1)
)

)

≤2k2n · log





n(h− 1)
(

ǫ ·
(

1 + k(h− 1)
)) 1

k

(

1 +
k

h− 1

) 1

k



 .

This proves the result.

2.5 Experiments

As an evaluation result, we compare our method with a simple proportional method. Recur-
sively, the number of samples to be shared at a given node is divided between its children
proportionally to the number of descendants (leaves) attached to them. The two algorithms
were applied to extract 200 sample from the "Eukaryota" (taxa ID 2759) sub-tree of the
Tree of Life of complete genomes. The complete genomes and their taxonomy were taken
from the UniProt (Universal Protein Resource) database [Pundir et al.(2017)] as of January
25 2018 and contains 3871 nodes including 1356 leaves. Since the resulting tree is huge,
two subtrees were chosen and represented in Figures 2.4 and 2.5 where the yellow squares
correspond to our method and the blue squares correspond to the proportional method.
A close inspection of the two sample sets leads to two conclusions. First, as Algorithm 2 is
sensitive to the branching complexity, it favors divergent nodes as shown in the "Cranata"
subtree. (The proportional method is indirectly sensitive to a sub-node complexity as a
large number of descendants may be linked to a complex sub-node). Secondly, Algorithm
2 is more stable upon sampling repetition as it is guided by the tree structure where the
proportional method use pure random choices without repulsion.

In practice, the algorithm is applied to a huge phylogenetic tree which contains 1827829
nodes from which 1464190 are species ([Pundir et al.(2017)]) making necessary the use of a
MCMC algorithm.
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Figure 2.4: A subtree of a tree contains 3871 nodes including 1356 leaves where the two
yellow squares correspond to the method presented in this chapter and the seven blue ones
correspond to the proportional method
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Figure 2.5: A subtree of a tree contains 3871 nodes including 1356 leaves where the four
yellow squares correspond to the method presented in this chapter and the ten blue ones
correspond to the proportional method



31

2.6 Conclusion

In this chapter, the main focus was on a particular case treated by the article of [Anari et al.(2016)].
They used a greedy algorithm of [Çivril and Magdon-Ismail(2009)] to generate a set X ⊆ [n]
such that Pk

L : 2[n] → R+ is bounded away from zero. They found a set X such that
det(LX) ≥ n−k. However, in Theorem 2.1 and according to the kernel chosen (equation (2.1))
we managed directly to bound det(LX) without using the algorithm of [Çivril and Magdon-Ismail(2009)]
allowing to gain substantive time at the initialization step and enhancing also the conver-
gence speed bound.

The experiments attest the effectiveness and efficiency of this approach by showing that
diverse subsets of species of size k selected from more than one million species are more likely
to be sampled than less diverse ones and that is achieved in a polynomial time with respect
to k and the number of species n.
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Chapter 3

Efficient Approximate k-DPP Sampling

For Large Graphs

Recently, the amount of graph-structured data available has been increasing rapidly. While
the graph might contain similar nodes, our goal is to find a diverse subset of nodes which
authorizes getting an outline of different types of information related to the ground set. The
aim of this chapter is to sample a set of nodes from a large graph with accordance to k-DPPs.
A polynomial bound on the mixing time for Markov chain sampling from a k-DPP is given
under certain conditions on the eigenvalues of the Laplacian matrix.

3.1 Introduction

A graph is a set of objects (also called nodes) that are linked to each other by edges. For
example, cities are nodes and highways are edges, humans are nodes and relationships be-
tween them are edges, likewise a video game can be considered as a graph where the states
represent the nodes and the actions represent the edges that lead from one state to the next.
Actually, we use graph applications daily. The navigation, PageRank in the Internet, genome
assembly, computer chips, and game strategies can be the most useful applications of graphs.

Many applications of localizing the source of diffusion in a network, like locating the person
who started a rumor in a social network, finding the computer that initiated the spreading
of a computer virus in a network are based on a subset of nodes ([Zejnilović et al.(2013)]).
Moreover, the focus of studies in modern bioinformatics (comparative genomics, multiple
sequence alignment building...) need to select intersecting nodes and sets of nodes in graphs
or networks.

Four flexible and generic methods called by the graph mining methods were presented by
[Langohr(2014)] to find interesting nodes in graph. The first one incrementally selects one
interesting node after another to produce a ranked list of relevant and non-redundant nodes.
The second one is an iterative method that iteratively improve the overall interestingness
of a set of nodes. The aim of the third method is to assign nodes to clusters and choose
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a medoid node as a representative for each cluster. These three methods are based on the
graph topology and a similarity or distance function for nodes. Lastly, the fourth method
finds subsets of nodes characteristic for a class, such as a given node attribute value.
However, [Mavroforakis et al.(2015)] have addressed the problem of finding central nodes in
a graph with respect to a set of query nodes. They studied a new notion of graph central-
ity based on absorbing random walks and developed efficient algorithms based on spectral
clustering and on personalized PageRank. All these methods can, in principle, be applied to
undirected weighted graph.

Here, we clarify how k-DPPs offer a powerful approach to modeling diversity by finding
interesting nodes in connected graphs where the goal is to select a diverse set of relevant
nodes according to user’s query.
As the study of eigenvalues of graphs is needed to bound the determinant of the kernel and
the presence of a Laplacian matrix is of hight importance according to the spectral graph
theory. For this reason, the most interesting kernel is the Laplacian matrix. However, the
advantage of normalizing the Laplacian is that its eigenvalues became of normalized form as
well. Moreover, in our case the more the node is connected, the less is its probability to be
chosen. That is why our choice in this chapter fell on the Moore-Penrose pseudo-inverse of
the normalized Laplacian matrix.

Based on Theorem 1.5 in Chapter 1, choosing the Moore-Penrose pseudo-inverse of the
normalized Laplacian matrix as the kernel will be the right tool utilized to generate an ap-
proximate sample from k-DPP. However, its outcome is established by a subset of nodes that
abstract the large given set of nodes.

First, Section 3.2 gathers some basic facts about Laplacian matrix properties and Section 3.3,
we define our k-DPP kernel and the Markov Chain to efficiently generate random samples of
a k-DPP. Our main result is presented in Section 3.3.2 where we realize the characterization
of Laplacian eigenvalues and we focus on the mixing time of the Markov chain for the k-DPP.
Finally, Section 3.4 presents the conclusions.

3.2 Background

3.2.1 On graph Laplacian

We are given an undirected unweighted graph G = (V,E) consists of a collection of nodes
called vertices numbered from 1 to n = |V |, and connected by links called Edges E where
|E| is the number of edges in the graph. The degree of a vertex is the number of graph edges
that are attached to it. In a finite graph, the degree sum formula says that the sum of the
degrees of all vertices is twice the number of edges. A graph is called connected if for every
pair of vertices there exists a path between them.
Several kernels have effectively been used to capture the long-range similarity between pairs
of nodes induced by the local structure of the graph. The Laplacian matrix has been
highly effective for graph isomorphism problems, design of statistical experiments and mod-
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eling networks of resistors and occupies an important place in the study of electrical net-
works and analysis of random walks ([Cvetkovic et al.(1980)], [Doyle and Snell (1984)], and
[Merris(1994)]). The combinatorial Laplacian matrix of the graph is defined as

LG = D − A,

where the elements of the adjacency matrix A of the graph are:

Aij =

{

1 if i ∼ j

0 otherwise

and D = Diag(d1, · · · , dn), with di =
∑

j Aij.
On occasion, it is also known as the Kirchhoff matrix or the information matrix. Besides,
often the normalized Laplacian is used as it offers a simple probabilistic interpretation. The
normalized Laplacian of the graph is given by:

LG := D−1/2LGD
−1/2 = I −D−1/2AD−1/2.

For a graph G we can see that,

Lij =















1 if i = j and dj 6= 0

− 1√
didj

if i ∼ j

0 otherwise

LG is a symmetric, positive semidefinite matrix, and its eigenvalues λ1, · · · , λn satisfy

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

The normalized Laplacian eigenvalues can be used to afford effective information about a
graph. The number of connected components can be obtained from the multiplicity of the
eigenvalue 0. If the graph G is connected then 0 is a simple eigenvalue of LG.

3.2.1.1 On the second smallest normalized Laplacian eigenvalues

Different types of studies were presented by [Li et al.(2008)], [Li et al.(2011)] and [Li et al.(2014)]
on the second smallest normalized Laplacian eigenvalue which is, in turn, equal to the inverse
of the largest eigenvalue of the pseudoinverse of the normalized Laplacian matrix. Since LG

is symmetric, its eigenvalues are all real and nonnegative. We recall some properties of
the eigenvalues and eigenfunctions of LG by using the variational characterization of those
eigenvalues in terms of the Rayleigh quotient of LG.
Let G be a graph, G = (V,E). Let g 6= 0 be a vector which can be viewed as a function that
assigns a real value g(v) to each vertex v of G. Then,

gTLGg

gT g
=

fTD1/2LGD
1/2f

(D1/2f)TD1/2f
=

fTLf

fTf
=

∑

uv∈E(G)(f(u)− f(v))2
∑

v∈V (G) d(v)(f(v))
2

, (3.1)

where g = D1/2f.
It is easy to deduce that 0 is an eigenvalue of LG and D1/2e is an eigenfunction corresponding
to 0 where e denote the constant function which takes the value 1 on each vertex. Thus,
by using equation (3.1) we can obtain the following formula corresponding to the second
smallest normalized Laplacian eigenvalue of a graph G:
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λ2 = inf
f⊥D1/2e

fTLf

fTf
= inf

f⊥D1/2e

∑

uv∈E(G)(f(u)− f(v))2
∑

v∈V (G) d(v)(f(v))
2
·

Moreover, λ2 is closely related to the discrete Cheeger constant. For a subset S of V whose
complement is S = V − S, we define

hG(S) =

∑

i∈S,j∈S
Aij

min
(
∑

i∈S
di,
∑

j∈S
dj
) ,

where Aij are the elements of the adjacency matrix.
The Cheeger constant hG of a graph G is defined to be

hG = min
S

hG(S).

In the following theorem, the Cheeger inequality is introduced, which provides both upper
and lower bounds of the second-smallest eigenvalue of the normalized Laplacian matrix.

Theorem 3.1. (Cheeger Inequality)[Cheeger (1970)] If G is connected, then
h2
G

2
≤ λ2 ≤ 2hG,

where hG is the Cheeger constant of G.

3.2.1.2 The Moore-Penrose pseudo-inverse of the normalized Laplacian matrix

The concept of pseudo-inverse generalizes the matrix inverse to matrices that are not full
rank or not square. In fact, when the number of paths that link two nodes raises, the
entries of the pseudo-inverse of the Laplacian matrix raise as well. This matrix represents
the similarity between any pair of nodes. Then, it is motivating to use the pseudo-inverse of
the normalized Laplacian matrix of the graph as a Gram matrix. This is a convenient way
of defining a kernel on a graph ([Lovász(1993)]). The Moore-Penrose pseudo-inverse of the
normalized Laplacian matrix LG will be denoted L†

G.
Some of the important properties of L†

G are :

• L†
G is symmetric, positive and semidefinite.

• If (ui, λi 6= 0) are (eigenvectors, eigenvalues) of LG, then (ui, λ−1
i 6= 0) are the

corresponding (eigenvectors, eigenvalues) of L†
G.

• If (ui, λi = 0) are (eigenvectors, eigenvalues) of LG, then they are also (eigenvectors,
eigenvalues) of L†

G.

Interestingly, the pseudo-inverse of the Laplacian matrix can be used to figure the average
commute time (see [Gobel and Jagers (1974)]), which is defined as the average number of
steps taken by a random walker for reaching node j and coming back to node i when starting
from node i. Let VG denote the volume of the graph, the average commute time can be
computed as follows:

n(i, j) = VG

(

(

L†
G

)

ii
+
(

L†
G

)

jj
− 2
(

L†
G

)

ij

)
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with VG =
∑n

l=1 dll.

One more amount of interest, is the square root of the average commute time which is a
distance measure between any two nodes, called the Euclidean Commute Time Distance
(ECTD).

The following interlacing eigenvalues lemma is well-known in matrix analysis. It will be
applied in this chapter on L†

G. First, let us denote by λk(A) the k-th smallest eigenvalue of
A.

Lemma 3.1 ([Horn and Johnson(1985)]). Let M be a real symmetric matrix and Mr denote
any r-by-r principal submatrix of M . For any integer k such that 1 ≤ k ≤ r we have

λk(M) ≤ λk(Mr) ≤ λk+n−r(M).

3.3 Sampling nodes via k-DPP

3.3.1 DPP Kernel

k-DPP is typical for selecting a diverse subset of given items; when selecting one item, the
probability of simultaneously pick a similar item must be low. In such case, the more the
node is connected, the less is its probability to be chosen. Hence, the Moore-Penrose pseudo-
inverse of the normalized Laplacian matrix is an excellent kernel to choose. Now, we can
define a k-DPP via this kernel:

Let G = (V,E) be a finite connected graph and n = |V (G)|. The kernel we are using is given
∀i, j ∈ {1, · · · , k} by:

L(i, j) =
(

L†
G

)

ij
. (3.2)

The purpose here is to study the convergence speed of the Markov chain M described in
Algorithm 2 which have Pk

L as stationary distribution where L is given in Equation 3.2. The
method which we use for the convergence speed is based on the results of [Anari et al.(2016)].

3.3.2 Convergence Theorem

As the acceptance probability (equation (1.2)) is lower bounded by the ratio of the determi-
nants of two matrices, this require us to bound the spectrum of L which is a submatrix of
L†

G. Since in a connected graph 0 is a single eigenvalue of LG, then it is a single eigenvalue
of L†

G. This gives a hint that under some conditions the eigenvalues of LX can be lower
bounded by a strictly positive constant. This is achieved by using the fact that X ⊂ V
as usually k < n. The following proposition will guarantee that all eigenvalues of LX are
strictly positive.

Proposition 3.3.1. Let G be a connected graph. The submatrix obtained from the Moore-
Penrose pseudo-inverse of the normalized Laplacian matrix L†

G by deleting its i-th row and



40 3. Efficient Approximate k-DPP Sampling For Large Graphs

i-th column will be denoted by L†
G. Then, all eigenvalues of L†

G are strictly positive,

0 < λ1(L†
G) ≤ · · · ≤ λn−1(L†

G).

Proof. Let LG be the submatrix obtained from the normalized Laplacian matrix LG by
deleting its i-th row and i-th column where LG =WDW ′.
As G is a connected graph, for all non-zero a ∈ R

n−1 we have

a′LGa = a′WDW ′a > 0.

Set V ′ = a′W , therefore

a′LGa =V ′DV =
n
∑

i=1

V 2
i Dii =

n
∑

i=2

V 2
i Dii (as λ1 = 0)

⇒
n
∑

i=2

V 2
i λi > 0

Thereby, with regard to the pseudo-inverse of the matrix and as G is a connected graph we
have,

n
∑

i=2

V 2
i

1

λi

> 0⇒ a′WD†W ′a > 0⇒ a′L†
Ga > 0.

Thus, all eigenvalues of L†
G are strictly positive.

As the eigenvalues of L†
G are the inverse of those of LG, thus, to bound the largest

eigenvalue of L†
G, the lower bound of the smallest eigenvalue of LG is needed. The main idea

in the following lemma is to find a lower bound of λ1(LG).

Lemma 3.2. Let IG = dmin

m
where dmin = min

i
di with di is the degree of node i and m is the

number of edges. Let Bn = 2

√

dn
2m

(

1 + 1
dmin

)

and Cn = −2λ2(LG) +
2√
dmin

+ 2dn
m

.

For all n ∈ N
∗ and dmax = max

i
di, if Bn

Cn
−→ 0 and λ2(LG)− 1√

dmin

> dmax

m
, then IG is a lower

bound of λ1(LG).

Proof. Let us figure out the first eigenvalue of LG as

λ1(LG) =λ1

(

LG 0
0 1

)

=λ1











LG +











0 . . . 0 l1
...

...
...

0 . . . 0 ln−1

l1 . . . ln−1 0





















,

where for all i ∈ {1, · · · , n− 1}, li = δin√
didn

with d1, . . . , dn are the degrees of the vertices

and δin =

{

1 if i ∼ n

0 otherwise
.
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The matrix











0 . . . 0 l1
...

...
...

0 . . . 0 ln−1

l1 . . . ln−1 0











has only 0 and µ ∈ {µ1, µ2} as eigenvalues.

In order to find µ, the following system of linear equations is used:


















µx1 = l1xn
...

...
µxn−1 = ln−1xn

µxn =
∑n−1

i=1 lixi

thereby µxn =
∑n−1

i=1 l2i
xn

µ
hence µ = ±

√

∑n−1
i=1 l2i . Next, eigenvectors associated with

µ1 =

√

√

√

√

n−1
∑

i=1

l2i and µ2 = −

√

√

√

√

n−1
∑

i=1

l2i

are respectively

u′
1 =

(

l1, . . . , ln−1,

√

√

√
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)

and u′
2 =

(

l1, . . . , ln−1,−

√

√

√

√

n−1
∑

i=1

l2i

)

.

Now we can proceed with bounding of λ1(LG). We note a =
∑n

i=1 aiVi with Vi is the
eigenvector of LG associated with λi(LG) and forming an orthonormal basis. For that, for
all i ∈ {1, · · · , n} we have |ai| ≤ 1 and

∑n
i=1 a

2
i = 1, without loss of generality, we suppose

that a1 ≥ 0 and minimize a′LGa to bound λ1

(

LG

)

.
This yields,

a′
(

LG 0
0 1

)

a =

(

n
∑

i=1

aiVi

)′(
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u1u

′
1

||u1||2
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∑
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aiVi
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(
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u1u
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′
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aiVi
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2
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′
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∣

∣
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∣

∣

∣

∣

∣
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∣

∣
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1
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.

Recalling that the matrix u1u
′
1 − u2u

′
2 is as follows:

u1u
′
1 − u2u

′
2 = 2µ1











0 . . . 0 l1
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...
...

0 . . . 0 ln−1

l1 . . . ln−1 0











.
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Then, by introducing

w′ := V ′
1(u1u

′
1 − u2u

′
2) = 2µ1

(

V1nl1, · · · , V1nln−1,
n−1
∑

i=1

liV1i

)

and by using the fact that LG has an orthonormal basis of eigenvectors, we get

a′LGa ≥
(

λ2(LG)− µ1

)

n
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a2i +
a21
2µ1
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n
∑
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n
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)(

n
∑
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n
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)]

+
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2µ1
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.

Or, D
1

2 e is an eigenvector of LG corresponding to the eigenvalue 0 as mentioned in Section
3.2.1.1.

Then, V1 =
1√
2m







√
d1
...√
dn






, with

∑n
i=1 di = 2m where m is the number of edges.

Consequently,
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)(
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)
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√
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≥
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)(
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)

+
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||w||
√
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Although, we have
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∣

∣
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∣
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∣
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∣

∣

2µ1
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Then,

||w||2 ≤ 4µ2
1

[

1

2mdmin

n−1
∑

i=1

δin +

(

1√
2m
√
dn

n−1
∑

i=1

δin

)2]

≤ 4µ2
1

[

dn
2mdmin

+
dn
2m

]

,

and

µ1 =

√

√

√

√

n−1
∑

i=1

l2i =

√

√

√

√

n−1
∑

i=1

δ2in
didn

≤ 1√
dmin

·

This implies that

a′LGa ≥
(

λ2(LG)−
1√
dmin

)

(

1− a21
)

+
dn
m

a21 − 2a1

√

dn
2m

(

1 +
1

dmin

)

√

1− a21. (3.3)

Let us introduce the following notations:

A = λ2(LG)−
1√
dmin

,

Bn = 2

√

dn
2m

(

1 +
1

dmin

)

,

f(a1) = A
(

1− a21
)

+
dn
m

a21 − Bna1

√

1− a21. (3.4)

Then, the derivative of the function f is given by

f ′(a1) =
(

− 2A+ 2
dn
m

)

a1 − Bn

(

√

1− a21 −
a21

√

1− a21

)

= Cna1 − Bn

(

1− 2a21
√

1− a21

)

.

Therefore, f ′(a1) = 0 if

C2
na

2
1 = B2

n

(1− 2a21)
2

1− a21
=⇒C2

na
2
1 − C2

na
4
1 = B2

n + 4B2
na

4
1 − 4B2

na
2
1 (3.5)

Considering that x = a21, equation (3.5) yields:

(4B2
n + C2

n)x
2 − (4B2

n + C2
n)x+B2

n = 0.

To find the roots of this equation we need the value of the discriminant

∆ = (4B2
n + C2

n)
2 − 4B2

n(4B
2
n + C2

n)

= (4B2
n + C2

n)
2

(

1− 4B2
n

4B2
n + C2

n

)

,
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then,

x =
(4B2

n + C2
n)± (4B2

n + C2
n)
√

1− 4B2
n

4B2
n+C2

n

2(4B2
n + C2

n)

=
1

2
± 1

2

√

1− 4B2
n

4B2
n + C2

n

∈ [0; 1].

Moreover, according to the hypothesis we have f(1) < f(0) where

f(0) = λ2(LG)−
1√
dmin

,

f(1) =
dn
m
·

As f ′(x) −→
x→1

+∞ and f(1) < f(0), then the minimum of the above function is attained at

x = 1
2
+ 1

2

√

1− 4B2
n

4B2
n+C2

n
.

Since x = a21 and a1 ≥ 0, then the function f(a1) has a relative minimum at a1 =
√

1
2
+ 1

2

√

1− 4B2
n

4B2
n+C2

n
.

Therefore, according to equation (3.3), we get

a′LGa ≥ f







√

√

√

√

1

2
+

1

2

√

1− 4B2
n

4B2
n + C2

n






.

By using the fact that Bn

cn
−→ 0 for all n > 0, thus we have

√

1
2
+ 1

2

√

1− 4B2
n

4B2
n+C2

n
−→ 1.

Consequently, the first eigenvalue of LG is lower bounded by dmin

m
.

To prove the main convergence theorem stated below, we need to recall the bound of
resulting mixing time of Theorem 1.5 proposed by [Anari et al.(2016)].
For ǫ > 0,

τX(ǫ) ≤
1

Cµ

· log
( 1

ǫ · µ(X)

)

,

with Cµ is the Poincaré constant which is at least 1
2kn

by construction, µ : 2[n] → R+ and
X ∈ supp{µ} where supp{µ} is the state space of the lazy MCMCM defined in Algorithm
2.
The results of the following theorem provide a fast mixing sampler for our k-DPP, for which
polynomial bounds on the mixing time are presented.

Theorem 3.2. Let Pk
L : 2[n] → R

+ where L is the matrix defined by equation (3.2). For any
ǫ > 0, if λ2(LG)− 1√

dmin

> dmax

m
then the lazy Markov chain defined in Algorithm 2 generates

ǫ-approximate sample of Pk
L in time

τǫ ≤ 2k2n · log
[

2n

IGǫ
1

k

]

,

where IG is the lower bound of λ1(LG).
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Proof. The proof is based on the main theorem of [Anari et al.(2016)] by considering µ as a
k-DPP noted Pk

L and the lazy MCMCM described in Algorithm 2
As a first step and according to Theorem 1.5, we need to lower bound

CPk
L
= min

X,X′⊆{1,··· ,n}, |X|=|X′|=k
max(PPk

L
(X,X ′), PPk

L
(X ′, X)).

The main idea behind the work of [Anari et al.(2016)] is to propose a new configuration by
selecting two elements x ∈ X where X ⊆ {1, · · · , n}, |X| = k and y ∈ {1, · · · , n}\X in such
a way that: x to be removed from the current set, and y to be added. The acceptance of
this move is according to the probability defined by the ratio of the proposed determinant
to the current determinant. Hence, for X = Y ∪ {x} the transition probability of removing
x and replacing it with y is expressed as

PPk
L

(

Y ∪ {x}, Y ∪ {y}
)

= q
(

Y ∪ {x}, Y ∪ {y}
)

· 1
2
min

{

det
(

LY ∪{y}
)

det
(

LY ∪{x}
) , 1

}

with q is the proposal transition matrix.
Since q is a symmetric transition matrix, thus we have

CPk
L
= min

Y,y,x
max q

(

Y ∪ {x}, Y ∪ {y}
)

(

1

2
min

{

det
(

LY ∪{y}
)

det
(

LY ∪{x}
) , 1

}

,
1

2
min

{

det
(

LY ∪{x}
)

det
(

LY ∪{y}
) , 1

})

≥ 1

2kn
·

Then, it remains the calculation of the lower bound of Pk
L to apply the theorem of

[Anari et al.(2016)].
To do so, let us consider λ2(LG) − 1√

dmin

> dmax

m
so λ1(LG) is lower bounded by IG > 0.

Therefore, by applying Lemma 3.1, the eigenvalues of L are as follows:

0 < λi(L†
G) ≤ λi(L) ≤ λn−1−k+i(L†

G). (3.6)

By using equation (3.6), the bounds of the determinant of LX are represented as:

det
(

LY ∪{x}
)

= det
(

L†
Y ∪{x}

)

≥ λ1(L†
G)× · · · × λk(L†

G) ≥
(

λ1(L†
G)
)k

det
(

LY ∪{x}
)

= det
(

L†
Y ∪{x}

)

≤ λn−1−k+1(L†
G)× · · · × λn−1−k+k(L†

G) ≤
(

λn−1(L†
G)
)k

· (3.7)

Where, the eigenvalues of LG are:

0 ≤ λ1(LG) ≤ · · · ≤ λn(LG) ≤ 2,

then by deleting its i-th row and i-th column and by applying Lemma 3.1, the eigenvalues
of LG stand as follows:

0 < λ1(LG) ≤ λ2(LG) · · · ≤ λn−1(LG) ≤ λn(LG) ≤ 2. (3.8)

Thus, equation (3.8) allows us to formulate the eigenvalues of L†
G as follows

1

2
≤ 1

λn(LG)
≤ 1

λn−1(LG)
= λ1(L†

G) ≤ · · · ≤
1

λ1(LG)
= λn−1(L†

G).

Hence, for any set X of cardinality k, we have

det(LX) ≥
(

λ1(L†
G)
)k ≥

(1

2

)k

.

Moreover, according to the definition of the k-DPP (equation (1.1)), we should also calculate
the normalization constant. Then, for any set X of cardinality k we want to choose X ′ ⊆ V
of size k maximizing detLX . Thus, according to Lemma 3.2 we can present the determinant
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of LX′ as follows:

detLX′ ≤
(

λn−1(L†
G)
)k

≤
( 1

λ1(LG)

)k

≤
( 1

IG

)k

Consequently,

Pk
L(X) =

det(LX)
∑

|X′|=k det(LX′)
≥

(

1
2

)k

(

n
k

)

(

1
IG

)k
≥ IkG

nk2k
≥
(IG
2n

)k

.

Now, by using Theorem 1.5 we can directly upper bound the mixing time in total variation
distance as follows:

τX(ǫ) ≤
1

CPk
L

· log
(

1

ǫ · Pk
L

)

≤2kn · log
[

(2n

IG

)k 1

ǫ

]

≤2k2n · log
[

2n

IGǫ
1

k

]

.

This proves the result.

3.4 Conclusion

This chapter presents a method for solving the problem of sampling a diverse subset of nodes
in a connected graph. This is reached by designing a MCMC algorithm whose stationary
distribution is the k-DPP. The proof used for bounding the convergence speed is based on
the main theorem of [Anari et al.(2016)] applied to the special case of k-DPP on graphs
where the kernel is the Moore-Penrose pseudo-inverse of the normalized Laplacian matrix.

The results provide a fast mixing sampler for k-DPP, for which polynomial bounds on the
mixing time are presented if for all n ≥ 0,

Bn

Cn

−→ 0 and λ2(LG)−
1√
dmin

>
dmax

m
,

with

Bn = 2

√

dn
2m

(

1 +
1

dmin

)

and Cn = −2λ2(LG) +
2√
dmin

+ 2
dn
m

,

where dmin = min
i

di, dmax = max
i

di and m is the number of edges of the graph G.

Intuitively, these conditions are satisfied if the second smallest eigenvalue of the normalized
Laplacian λ2(LG) is large compared to dmax

m
. Finally, the resulting mixing time depends on

whether the graph bottleneck is large or narrow. The larger the better for the convergence.
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Chapter 4

Connections Between LHS And

Fixed-Size Determinantal Point

Processes

This chapter aims at using the fixed cardinality determinantal point processes in experi-
mental designs as a tool to study Latin Hypercube Sampling(LHS). A LHS of order n and
dimension d is a technique used to generate a sample points of size n from input variables
(x1, x2 · · · , xd) for a simulation study. The basic idea behind this approach is to construct a
typical Latin Hypercube design where the points are unlikely to co-occur and the correlation
between them is mostly non-positive. The first goal here is to determine the negative corre-
lations between the selected points via a DPP kernel and that is achieved only by respecting
the constraints of each design.
The second goal is to study the convergence speed of Markov chains constructed from a 2-
dimensional Latin Hypercube sampling and d-dimensional Latin Hypercube sampling which
have the n-DPP as their stationary distribution. Therefore, by considering two cases d = 2
and d > 2, we managed to present the necessary time needed to build a d-dimensional Latin
Hypercube sampling with accordance to n-DPP.

4.1 Introduction

Various types of space filling criterion were introduced for designing computer experiments.
For example, the Maximin and Minimax ([Johnson et al.(1990)]) were considered as dis-
tance criterion because they tend to spread the design points in terms of distance between
points, the Minimum Spanning Tree ([Dussert et al.(1986)]), Maximum Entropy Designs
([Schwery and Wynn(1987)]). Another design of space filling is the Latin Hypercube design
which is characterized by the fact that all the values of each input are different and this will
lead to obtain important information about the output. While different approaches regard-
ing the challenging design problems were proposed, our main interest in this work lies on
d-dimensional Latin hypercubes designs.
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Processes

Latin squares of order n are n× n matrices whose cells are filled with n objects with the
restriction that each object appears only once in each row or column. They were studied
by [Euler(1782)] and the term Latin refers to the usage of Latin characteristic as objects.
A Latin Hypercube sampling of order n and dimension d is an n× d matrix where the first
column lists the elements {1, · · · , n} in the natural order 1, · · · , n and the remaining columns
are constructed by permuting the elements of {1, · · · , n} such that each integer appears only
once in each column. This means that there cannot be two sample points in the same hy-
perplane. This method is a type of stratified Monte-Carlo Sampling and may be viewed as
a d-dimensional extension of Latin square sampling ([Raj(1968)]).

[McKay et al.(1979)] first considered Latin hypercube sampling as a design for deter-
ministic simulation models. They showed the efficient performance of LHS in estimating
the distribution of a monotonic function. Then an extension of this work was expanded
by [Iman and Conover(1980)] by comparing the variability of estimates obtained from LHS
and random sampling method. There has been a growing interest to develop the LHS strat-
egy for constructing optimal designs. For example, [Ye (1998)] introduced the orthogonal
column Latin Hypercubes. Moreover, [Ye et al.(2000)] presented a new design which is an
optimal symmetric Latin Hypercubes and they managed to construct a new algorithm ac-
cording to this design. They showed the effectiveness of this algorithm by comparing it
with existing algorithm proposed by [Park(1994)] and [Morris and Mitchelle(1995)]. Fur-
ther, [Petelet et al.(2010)] suggested a novel technique called constrained Latin hypercube
sampling (cLHS), which gives the possibility to construct a LHS such that the samples
are constrained by some inequality relations. It is based on the fact that permuting two
values of an input variable in a LHS does not break the LHS structure of the sample.
[Sheikholeslami and Razavi(2017)] offered a novel sampling strategy which is a sequential
version of LHS, called Progressive Latin Hypercube Sampling (PLHS). They proved that
PLHS offered better performance comparing to LHS in preserving the distributional proper-
ties like space-filling and one-dimensional projection properties. Although that these meth-
ods involved new properties which improved the sampling strategy, they are still impractical
when it comes to high dimensional input spaces and to large number of sample points.

The aim of this chapter is to display the capability of k-DPP with k = n to generate a
Latin Hypercube sampling of order n and dimension d with sample points located as far as
possible from each other. The idea is inspired from several works where k-DPP is proposed
as a solution to ensure the diversity in the location of sample points. For instance, the k-DPP
was stated by [Casquilho et al.(2018)] to obtain spatially balanced designs for environmental
monitoring networks where these last have become increasingly important to supervise the
environmental processes which affect human health and nature. They used k-DPP to enforce
diversity in the sampling locations, thus a good spatial coverage of the region of interest could
be obtained. Moreover, [Wang et al.(2018)] presented a sampling method based on k-DPP to
solve the combinatorial optimization problem of sub-determinant maximization. They pro-
vided a k-DPP approach for finding optimal designs of spatial monitoring network. Finally,
[Pratola et al.(2018)] offered a novel approach by sampling from fixed cardinality Determi-
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nantal Projection Point Process, called k-DPPP, to construct entropy optimal designs for
Gaussian Processes. The benefit that arises from their work is the ability of performing an
optimal design in the presence of these two cases, the first one when the dimensionality of
the input space is high and the second one is when the number of the points to cover the
input space is large. This method requires to compute the k largest eigenvalues and their
corresponding eigenvectors which cost at least O(kn2+k2n). Therefore, this technique would
still be too time-consuming when applied to large matrices.

Additionally, this chapter displays the performance of fixed-size Determinantal Point
Processes in LHS in terms of space filling in higher dimensions. This is achieved through the
utilization of MCMC methods, more precisely by constructing Markov chains which have n-
DPPs as their stationary distributions. The novelty lies in introducing a positive kernel that
preserve the constraint of LHS which is strictly confirmed by the occurrence of each point
only once in each hyperplane. Our choice fell on a new kernel which is defined in terms of d
distances. The advantage of this special kernel is that it can be easily manipulated to study
the convergence speed of the Markov chains constructed from d-dimensional LHS to their
stationary distribution n-DPPs. Moreover, the kernel chosen has an influence on selecting
the design points that are far from each other. This can be described by considering any
two points in the 2-dimensional space: if the first coordinate, without loss of generality, is
close to the first coordinate of the other point then this assures that both points must be
somehow far according to the second coordinates.
It is shown that generating LHS from n-DPP requires an exponential bound on the mixing
time of the Markov chain. The proof is based on canonical paths where their lengths play
a major role in improving the lower bound on the Poincaré constant. Hence, the outcome
is established by a subset of points that ensure a good coverage of the Latin hypercube design.

Initially, in Section 4.2 an overview of LHS is given. Section 4.3 includes only the case where
the cardinality of the input space is equal to two. The work started by choosing a positive
kernel that preserves the Latin Hypercube sampling properties and then we illustrate our
choice by comparing it with the Gaussian kernel. Moreover, we support our choice by taking
two different configurations of 2-dimensional LHS and show that choosing points, which
ensure a good coverage are more probable than choosing clusters of points. In Section 4.4
we present the generalization of the kernel chosen to d dimensions and then we enforce our
approach to a d-dimensional LHS. Finally, Section 4.5 presents our conclusions.

4.2 Latin Hypercube Sampling (LHS)

To describe the standard approach to LHS of order n and dimension d, we begin by writing
the vector of input variables as (x1, x2, · · · , xd) and assuming for the time being that the
variables are mutually independent. Then divide each input range into M = n intervals
of equal length, numbered from 1 to n and draw a random value on each interval for each
variable. Thus, a Latin Hypercube of order n and dimension d can be represented as a
d-dimensional array of nd cells. However, there are (n!)d−1 possible combinations of LHS.
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Now, we use Gershgorin’s theorem to bound the spectrum of Mn−1. So, every eigenvalue of
Mn−1 satisfies

|λ(Mn−1)− 1| ≤
∑

x 6=y

(Mn−1)xy.

Therefore,

λmax(Mn−1) ≤ 1 + e−1 + e−22 + · · ·+ e−(n−2)2

≤
∞
∑

n=0

e−n2

≤ 1

2

(

ϑ3(0, e
−1) + 1

)

,

where ϑ3(z, q) =
+∞
∑

n=−∞
qn

2

e2niz is a Jacobi theta function.

The same reasoning can also be applied to ||vn||2,
||vn||2 = (e−1)2 + · · ·+

(

e−(n−1)2
)2

≤ e−1 + · · ·+ e−(n−1)2

≤
∞
∑

n=0

e−n2 − 1

≤ 1

2

(

ϑ3(0, e
−1) + 1

)

− 1.

Thus, according to equation (4.5) we have

detMn ≤ detMn−1 ×
[

1−
1
2

(

ϑ3(0, e
−1) + 1

)

− 1
1
2

(

ϑ3(0, e−1) + 1
)

]

≤ detMn−1 ×
[

2

ϑ3(0, e−1) + 1

]

.

Since detM2 = 1− e−2, we have that

detMn ≤ (1− e−2)

[

2

ϑ3(0, e−1) + 1

]n−2

. (4.6)

Regarding LH2(n), the points are divided into two groups: the first n/2 points are localized
on the left diagonal line while the other n/2 hatched points are on the right diagonal line.
Therefore, for n = 8 the matrix corresponding to LH2(8) is as follows:

M ′
8 =



























1 e−22 e−42 e−62 e−7 e−15 e−15 e−7

e−22 1 e−22 e−42 e−5 e−3 e−3 e−5

e−42 e−22 1 e−22 e−9 e−1 e−1 e−9

e−62 e−42 e−22 1 e−5 e−3 e−3 e−5

e−7 e−5 e−9 e−5 1 e−22 e−42 e−62

e−15 e−3 e−1 e−3 e−22 1 e−22 e−42

e−15 e−3 e−1 e−3 e−42 e−22 1 e−22

e−7 e−5 e−9 e−5 e−62 e−42 e−22 1



























=

(

A4 B4

C4 D4

)

=

(

A4 B4

BT
4 A4

)

,

Since the points are symmetric in LH2(8) we can remark that some columns of B4 are iden-
tical so its determinant is equal to zero.
Then with respect to the same space-filling designs in LH2(8) we can present a Latin Hy-
percube for n divisions. The kernel matrix is represented as the following block matrix
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form:

LY ′ := M ′
n =





An
2

Bn
2

BT
n
2

An
2



 =

(

An
2

0

0 An
2

)

+

(

0 Bn
2

BT
n
2

0

)

.

With this, the determinant of M ′
n is expressed as follows

det(M ′
n) =

∣

∣

∣

∣

(

An
2

0

0 An
2

)

+

(

0 Bn
2

BT
n
2

0

)∣

∣

∣

∣

.

Then, by the Minkowski determinant theorem we have the following inequality:

det(M ′
n) ≥

∣

∣

∣

∣

An
2

0

0 An
2

∣

∣

∣

∣

+

∣

∣

∣

∣

0 Bn
2

BT
n
2

0

∣

∣

∣

∣

≥
(

det(An
2
)
)2 −

(

det(Bn
2
)
)2

as

(

An
2

0

0 An
2

)

and

(

0 Bn
2

BT
n
2

0

)

are non-negative matrices.

Thus, this allows us to bound the determinant of M ′
n as

det(M ′
n) ≥

(

det(An
2
)
)2
. (4.7)

Let us start with the determinant of the Toeplitz matrix An
2
. The matrix An

2
can be presented

as follows:

An
2
=













1 e−22 . . . e−(n
2
−1)2

e−22 . . . . . .
...

...
. . . . . . e−22

e−(n
2
−1)2 . . . e−22 1













=





An
2
−1 un

2

uT
n
2

1



 ,

where uT
n
2

= [e−(n
2
−2)2 , · · · , e−22 ].

By using the matrix determinant lemma we can present the determinant of An
2

as follows

detAn
2
=

∣

∣

∣

∣

∣

∣

An
2
−1 un

2

uT
n
2

1

∣

∣

∣

∣

∣

∣

= detAn
2
−1 ×

(

1− uT
n
2

A−1
n
2
−1un

2

)

≥ detAn
2
−1 ×

(

1−
||un

2
||2

λmin(An
2
−1)

)

· (4.8)

Thus by applying Gershgorin’s theorem every eigenvalue of An
2
−1 satisfies

|λ(An
2
−1)− 1| ≤

∑

x 6=y

(An
2
−1)xy.

Therefore,

λmin(An
2
−1) ≥ 1−

(

e−22 + e−42 + · · ·+ e−(n
2
−2)2
)

≥ 1−
(

e−2 + e−4 + · · ·+ e−(n
2
−2)
)

≥ 1−
n/4−1
∑

i=1

e−2i
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Thus,

λmin(An
2
−1) ≥ 1−

n/4−1
∑

i=1

(

e−2
)i

≥ 1−
(

∞
∑

i=0

(

e−2
)i − 1

)

≥ 1−
( 1

1− e−2
− 1
)

because
∞
∑

i=0

(

e−2
)i

is a geometric series

≥ e2 − 2

e2 − 1
.

Moreover,

||un
2
||2 =

(

e−22
)2

+ · · ·+
(

e(−
n
2
−2)2
)2 ≥

(

e−4
)2 ≥ e−8.

Then, according to equation (4.8) we have

detAn
2
≥ detAn

2
−1 ×

[

1− e−8(e2 − 1)

e2 − 2

]

.

Since detA2 = 1− e−4, we have that

detAn
2
≥ (1− e−4)

[

1− e−8(e2 − 1)

e2 − 2

]n
2
−2

.

Thus equation (4.7) yields:

det(M ′
n) ≥ (1− e−4)2

[

1− e−8(e2 − 1)

e2 − 2

]n−4

.

Consequently, the ratio of the determinants of two matrices is upper bounded by
Pn

L

(

LH1(n)
)

Pn
L

(

LH2(n)
) ≤ det(Mn)

det(M ′
n)

≤
(1− e−2)

[

2
ϑ3(0,e−1)+1

]n−2

(1− e−4)2

[

1− e−8(e2−1)
e2−2

]n−4

≤ (1− e−2)(ϑ3(0, e
−1) + 1)2(e2 − 2− e−6 + e−8)4

4(1− e−4)2(e2 − 2)4

[

2(e2 − 2)

(ϑ3(0, e−1) + 1)(e2 − 2− e−6 + e−8)

]n

·

4.3.3 Construct a Markov chain from a 2-dimensional LHS

For a natural number n and d = 2, let Sn denote the set of permutations of the set [n] =
{1, · · · , n}. Each permutation x ∈ Sn leads to a different LHS, denoted (x1, · · · , xn). We
define a Markov chainM2 with state space Sn such that at each step we stay at state x with
probability 1/2 and we propose to move to a new state according to the proposal distribution
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q with probability 1/2. If the current state is x, a new proposal state is drawn as follows: we
choose an element i ∈ {1, · · · , n} uniformly at random and moved xi to the top or inversely
we take the top element and insert it at one of the n positions in the set. Both movements
are selected with an equal probability.
We construct the Metropolis chain with stationary distribution π = Pn

L as follows:

• at a state x we choose a new LHS y with probability P (x, y) and we propose to move
to y.

• we accept this proposal with probability min
{

1,
Pn
L(y)q(y,x)

Pn
L(x)q(x,y)

}

and we reject and stay at

x with the remaining probability.

By taking into consideration that q is a symmetric proposal distribution, the transition
probability matrix P of this Markov chain is given as:

P (x, y) =











q(x, y) · 1
2
min

{

1,
Pn
L(y)

Pn
L(x)

}

if random-to-top or top-to-random

1− ∑
z 6=x

q(x, z) · 1
2
min

{

1,
Pn
L(z)

Pn
L(x)

}

otherwise.

This implies that all states communicate with each other. As P (x, x) ≥ 1
2

for all x ⊆ [n],
then Markov chain described above is said to be a lazy chain.

The Metropolis chainM2 clearly describes an irreducible aperiodic Markov chain, so it con-
verges to its stationary distribution Pn

L.

4.3.4 Rapid mixing of M2 via canonical path

The following lemma studies the convergence speed of the distribution of the Markov chain
M2 to the stationary distribution Pn

L, for which a bound on the mixing time is presented.

Lemma 4.1. The Markov chainM2 with the state space Sn and stationary distribution Pn
L

has a mixing time

τǫ ≤ 4n3(log n+ 1)
[177

22

]4n

· log
[

177

22

(n!

ǫ

) 1

n

]

.

Proof. According to [Sinclair(1992)], the proof is based on Poincaré inequality and canonical
path method. Thus, we need to lower bound

C = max
e







1

Q(e)

∑

x,y:e∈δxy

Pn
L(x)Pn

L(y)|δxy|







.

First of all, we will lower bound Pn
L(x) according to case 1 in Figure 4.4. By considering this

case for n divisions and by using equation (4.3), the lower bound of λmin(L) is given as

λmin(L) ≥ 0.22

and the upper bound of λmax(L) can be represented as
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λmax(L1) ≤ 1 +
∑

xi 6=x1

L1(xi, x1)

≤ 1 +
∑

xi 6=x1

e−d1(xi,x1)·d2(xi,x1)

≤ 1 + 2e−1 + 2
∞
∑

i=2

e−2i

≤ 1 + 2e−1 + 2
e−4

1− e−2

≤ 1.77.

Thus, all the eigenvalues of the kernel L are upper bounded by 1.77. Consequently,

Pn
L(x) =

detLx
∑

|x′|=n detLx′

≤ 1

n!

[

λmax(L)

λmin(L)

]n

. (4.9)

Now, we need to establish paths δxy between two permutations x and y using edges e = (x, y).
A canonical path between permutations x, y ∈ Sn where x = (x1, · · · , xn) and y = (y1, · · · , yn)
can be described as follows: when an element in x is elevated and moved to the top, it will
be represented as yn in y vector. Then, the second element chosen from x and moved to the
top will be yn−1 and so on. However, the last element chosen from x will be represented as
y1 in y. Let us create a schema to illustrate this idea. For i ∈ {1, · · · , n}, the path between
x and y can be expressed as











x1

x2
...
xn











→















yn
x∗
1,1

x∗
1,2
...

x∗
1,n−1















→















yn−1

yn
x∗
2,1
...

x∗
2,n−2















→ · · · →



















yn−i+1
...
yn
x∗
i,1
...

x∗
i,n−i



















→ · · · →















y2
y3
...
yn

x∗
n−1,1















→











y1
y2
...
yn











where x∗
l,1, · · · , x∗

l,j with l, j ∈ {1, · · · , n− 1} are the remaining elements in x which has not
been chosen and elevated to the top yet.

For successive values p = 0, · · · , n − 1, we choose an element of x uniformly at random
and move it to the top, then δxy is the reunion of δ0, · · · , δn−1:

• Path δ0: we choose an element of x and move it to the top. Then by fixing this
possibility it remains (n− 1)! permutations for the next path.

...

• Path δp: p elements are chosen and moved to the top. Then by fixing these p! possi-
bilities it remains (n− (p+ 1))! permutations for the next path.

Thus, there are
∑n−1

p=0

(

n
p

)

(n− p− 1)! path δxy uses the edge e. Therefore, the number of



61

paths that use e is

#{x, y : e ∈ δxy} =
n−1
∑

p=0

(

n
p

)

(n− p− 1)!

= n!
n−1
∑

p=0

(n− p− 1)!

p!(n− p)!

= n!
n−1
∑

p=0

1

p!(n− p)

≤ n!
n−1
∑

p=0

1

(n− p)

≤ n!
n
∑

h=1

1

h

≤ n!(log n+ 1).

Moreover, the maximal length of a path δxy is clearly no more than n.
Thereafter, it remains the calculation of the lower bound of Q(e) = Pn

L(x) · P (x, y). By
using the upper and lower bounds of det(L), the lower bound of Q(e) can be represented as
follows:

Pn
L(x)× P (x, y) ≥ 1

n!

[

λmin(L)

λmax(L)

]n

× 1

2
min

{Pn
L(y)

Pn
L(x)

, 1

}

· q(x, y)

≥ 1

2n!

[

λmin(L)

λmax(L)

]n

×min

{Pn
L(y)

Pn
L(x)

, 1

}

· 1

2n

≥ 1

4nn!

[

λmin(L)

λmax(L)

]n

×min

{(

λmin(L)

λmax(L)

)n

, 1

}

≥ 1

4nn!

[

λmin(L)

λmax(L)

]n

×
[λmin(L)

λmax(L)

]n

≥ 1

4nn!

[

λmin(L)

λmax(L)

]2n

. (4.10)

Hence, the lower bound of C is obtained by using equations (4.9) and (4.10):

C = max
e







1

Q(e)

∑

x,y:e∈δxy

Pn
L(x)Pn

L(y)|δxy|







≤ 4nn!

[

λmax(L)

λmin(L)

]2n

· 1
n!

1

n!

[

λmax(L)

λmin(L)

]2n

· n · n!(log n+ 1)

≤ 4n2(log n+ 1)

[

λmax(L)

λmin(L)

]4n

≤ 4n2(log n+ 1)
[177

22

]4n

.

Consequently, according to Theorem 1.7 in Chapter 1 the mixing time of the Markov chain
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d1 d2 d3
x1 1 3 8
x2 2 6 7
x3 3 5 2
x4 4 1 3
x5 5 2 9
x6 6 4 1
x7 7 8 6
x8 8 7 10
x9 9 10 4
x10 10 9 5

Table 4.2: A 3-dimensional LHS with n = 10.

4.4.1 Generalisation of the DPP Kernel

For all i ∈ {1, · · · , n}, xi is described as a set of coordinates xi1, xi2, · · · , xid ∈ {1, · · · , n},
we define a kernel in terms of d distances as follows:

K(xi, xj) =

∑

l<m e−dl(xi,xj)dm(xi,xj)

d(d− 1)/2
∀i, j ∈ {1, · · · , n}, ∀l,m ∈ {1, · · · , d} (4.11)

where dl(xi, xj) = |xil − xjl| and dm(xi, xj) = |xim − xjm|.

As it is demonstrated in Proposition 4.1, L is a positive kernel for d = 2, the aim of the
following proposition is to prove that the kernel K defined in equation (4.11) is also a positive
kernel for d > 2.

Proposition 4.3. The n× n matrix K is a positive semi-definite matrix only if K is filled
with n points such that each point occurs only once in each hyperplane.

Proof. Projecting the set of n points from a d-dimensional space into a 2-dimensional space
while considering the fact that each point occurs only once in each hyperplane will be the
right tool to be used to prove that K is a positive semi-definite matrix. This projection
allows the occurrence of each point once in each row and each column since the constraint
is not to have two sample points on the same hyperplane. Thus, the proof of positivity of
K is based on the results of Proposition 4.1 where two cases were taken into consideration
to guarantee the positivity of the kernel L for any configuration of 2-dimensional LHS.

By following the same reasoning of Proposition 4.1, proving that K is positive semi-definite
matrix will required non-negative eigenvalues. According to Gershgorin’s theorem, every
eigenvalue of K satisfies

|λ(K)− 1| ≤
∑

xi 6=xj

K(xi, xj)

for all i, j ∈ {1, · · · , n}.
Therefore, by projecting the set of n points in d-dimensional space into a 2-dimensional space
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while preserving the constraints leads to:

λmin(K) ≥ 1−
∑

xi 6=x1

K(xi, x1)

≥ 1−
∑

xi 6=x1

∑

l<m

e−dl(xi,x1)·dm(xi,x1)

d(d− 1)/2

≥ 1− 2

d(d− 1)

∑

l<m

∑

xi 6=x1

e−dl(xi,x1)·dm(xi,x1).

According to equations (4.2) and (4.4), we have

λmin(K) ≥ 1− 2

d(d− 1)

∑

l<m

max
{

2e−1 + 2
e−4

1− e−2
, 4e−2 + 2

e−3

1− e−1

}

≥ 1− 2

d(d− 1)

d(d− 1)

2
max

{

2e−1 + 2
e−4

1− e−2
, 4e−2 + 2

e−3

1− e−1

}

≥ 0.22. (4.12)

Therefore, for d > 2 all the eigenvalues of the matrix K are lower bounded by 0.22. Hence,
K is a positive semi-definite kernel when there is only one point in each hyperplane.

According to the results of Proposition 4.3, K is positive semi-definite for any d-dimensional
LHS since each point in LHS occurs only once in each axis-aligned hyperplane containing it.

4.4.2 Construct a Markov chain from a d-dimensional LHS

The main idea behind this section is to introduce a special Markov chain constructed from
d-dimensional LHS which has n-DPP as its stationary distribution. The challenge here is
to study the convergence of this chain to the n-DPP with kernel K. As k-DPPs designate
higher probability to points that are negatively correlated then a LHD with more spread out
points is likely to be selected.

For a natural number n and d > 2, let Sn denote the set of permutations of the set
[n] = {1, · · · , n}. Each d − 1 permutations leads to a different LHS. We define a Markov
chain Md with state space Sn such that at each step we stay at state x with probability
1/2 and we propose to move to a new state according to the proposal distribution q with
probability 1/2. Following the same reasoning as for d = 2, to propose a new state two
movements with an equal probability are selected. If the current state is x, a new proposal
state is drawn as follows: firstly we choose an element j ∈ {2, · · · , d} uniformly at random,
secondly we choose an element i ∈ {2, · · · , n} uniformly at random and we move xij to the
top of the jth column or inversely we take the top element of xj and insert it at one of the
n− 1 positions in the set {2, · · · , n}.
For example, by taking a 3-dimensional LHS with n = 5 and by choosing j = 2 and i = 4,
the transition of moving x42 to the top is given as
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1 5 4
2 4 1
3 1 5
4 2 3
5 3 2













→













1 2 4
2 5 1
3 4 5
4 1 3
5 3 2













We construct the Metropolis chain with stationary distribution π = Pn
K as follows:

• at a state x = LHS(x1, · · · , xd) we choose a new state y = LHS(y1, · · · , yd) with
probability P (x, y) and we propose to move to y.

• we accept this proposal with probability min
{

1,
Pn
K(y)q(y,x)

Pn
K(x)q(x,y)

}

where q is the proposal

distribution and we reject and stay at x with the remaining probability.

By using the fact that the proposal distribution is symmetric, then the transition probability
matrix P ofMd is given as:

P (x, y) =











q(x, y) · 1
2
min

{

1,
Pn
K(y)

Pn
K(x)

}

if random-to-top or top-to-random

1− ∑
z 6=x

q(x, z) · 1
2
min

{

1,
Pn
K(z)

Pn
K(x)

}

otherwise.

As P (x, x) ≥ 1
2

for all LHS x, then Markov chain described above is said to be a lazy chain.

4.4.3 Rapid mixing of Md via canonical path

The following theorem study the convergence speed of the distribution of the Markov chain
Md to the stationary distribution Pn

K , for which a bound on the mixing time is offered.

Theorem 4.1. The Markov chain Md with the state space Sn and stationary distribution
Pn

K has a mixing time

τǫ ≤ 4(d− 1)3n3(log n+ 1)
[177

22

]4n

· log
[

[177

22

] 1

d−1

( n!

ǫ
1

d−1

) 1

n

]

.

Proof. Based on the reasoning of the proof of Lemma 4.1, we need to lower bound

C = max
e







1

Q(e)

∑

x,y:e∈δxy

Pn
K(x)Pn

K(y)|δxy|







.

Firstly, let us calculate the lower bound of Pn
K(x) where x = LHS(x1, · · · , xd). According to

equation (4.12) we have,

λmin(K) ≥ 0.22

and according to Gershgorin’s theorem we have

λmax(K) ≤ 1 +
∑

xi 6=x1

K(xi, x1).

The same reasoning that allowed us to get the bound of λmin(K) in Proposition 4.3 will be
applied to get the bound of λmax(K), thus
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λmax(K) ≤ 1 +
∑

xi 6=x1

K(xi, x1)

≤ 1 +
∑

xi 6=x1

∑

l<m

e−dl(xi,x1)·dm(xi,x1)

d(d− 1)/2

≤ 1 +
2

d(d− 1)

∑

l<m

∑

xi 6=x1

e−dl(xi,x1)·dm(xi,x1).

According to equations (4.2) and (4.4), we have

λmax(K) ≤ 1 +
2

d(d− 1)

∑

l<m

max
{

2e−1 + 2
e−4

1− e−2
, 4e−2 + 2

e−3

1− e−1

}

≤ 1 +
2

d(d− 1)

d(d− 1)

2
max

{

2e−1 + 2
e−4

1− e−2
, 4e−2 + 2

e−3

1− e−1

}

≤ 1.77.

Then, all the eigenvalues of the kernel K are upper bounded by 1.77 and lower bounded by
0.22. Thus,

Pn
K(x) =

detKx
∑

|x′|=n detKx′

≤ 1

(n!)d−1

[

λmax(K)

λmin(K)

]n

. (4.13)

Secondly, we need to found paths δxy between x = LHS(x1, · · · , xd) and y = LHS(y1, · · · , yd).
Since the natural order 1, · · · , n is usually assumed for the first column, a canonical path
between x and y can be described as follows: firstly, we select a column by choosing an
element j ∈ {2, · · · , d}. Secondly, an element in the column xj is elevated and moved to the
top, it will be represented as ynj in LHS y. Then, the second element chosen from xj and
moved to the top will be yn−1j and so on. However, the last element chosen from xj will be
represented as y1j in LHS y. These steps will be repeated until the d−1 columns are chosen.
Let us create a diagram to illustrate this idea. By choosing an element j ∈ {2, · · · , d}, the
first steps in the pathway between x and y can be expressed as











x11 x1j x1d

x21 x2j x2d
... · · · ... · · · ...

xn1 xnj xnd











→











x11 ynj x1d

x21 x∗
1j x2d

... · · · ... · · · ...
xn1 x∗

n−1j xnd











→















x11 yn−1j x1d

x21 ynj x2d

x31 x∗
1j x3d

... · · · ... · · · ...
xn1 x∗

n−2j xnd















→ · · · →



















x11 yn−i+1j x1d
... · · · ... · · · ...
xi1 ynj xid

xi+11 x∗
1j xi+1d

... · · · ... · · · ...
xn1 x∗

n−ij xnd



















→
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x11 y2j x1d

x21 y3j x2d
... · · · ... · · · ...

xn−11 ynj xn−1d

xn1 x∗
1j xnd















→















x11 y1j x1d

x21 y2j x2d
... · · · ... · · · ...

xn−11 yn−1j xn−1d

xn1 ynj xnd















where x∗
1j, · · · , x∗

ij with i ∈ {1, · · · , n − 1} are the remaining elements in xj which has not
been chosen and elevated to the top yet.
Thus, a canonical path between x and y is created by completing all the steps described
above for all xj, j ∈ {2, · · · , d}.

For a given edge e ∈ δxy, only one column, let us say j, is modified and among it already p

elements of yj have already been selected. Thus, there are
∑n−1

p=0

(

n
p

)

(n− p− 1)! · (n!)d−2

path δxy uses the edge e.
Hence, the number of paths that use e is given as

#{x, y : e ∈ δxy} =
n−1
∑

p=0

(

n
p

)

(n− p− 1)! · (n!)d−2

= n!(n!)d−2

n−1
∑

p=0

(n− p− 1)!

p!(n− p)!

= (n!)d−1

n−1
∑

p=0

1

p!(n− p)

≤ (n!)d−1

n−1
∑

p=0

1

(n− p)

≤ (n!)d−1(log n+ 1).

Therefore, the maximal length of a path δxy is clearly no more than (d− 1)n.

Lastly, it remains the calculation of the lower bound of Q(e) = Pn
K(x) · P (x, y). By us-

ing the fact that det(K) is upper bounded by (λmax(K))n and lower bounded by (λmin(K))n,
the lower bound of Q(e) can be expressed as follows:

Pn
K(x)× P (x, y) ≥ 1

(n!)d−1

[

λmin(K)

λmax(K)

]n

× 1

2
min

{Pn
K(y)

Pn
K(x)

, 1

}

· q(x, y)

≥ 1

2(n!)d−1

[

λmin(K)

λmax(K)

]n

×min

{Pn
K(y)

Pn
K(x)

, 1

}

· 1

2(d− 1)n

≥ 1

4(d− 1)n(n!)d−1

[

λmin(K)

λmax(K)

]n

×min

{(

λmin(K)

λmax(K)

)n

, 1

}

≥ 1

4(d− 1)n(n!)d−1

[

λmin(K)

λmax(K)

]n

×
[

λmin(K)

λmax(K)

]n
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Then,

Pn
K(x)× P (x, y) ≥ 1

4(d− 1)n(n!)d−1

[λmin(K)

λmax(K)

]2n

. (4.14)

Hence, by using equations (4.13) and (4.14) we are able to present the lower bound of C as
follows

C = max
e







1

Q(e)

∑

x,y:e∈δxy

Pn
K(x)Pn

K(y)|δxy|







≤ 4(d− 1)n(n!)d−1

[

λmax(K)

λmin(K)

]2n

· 1

(n!)d−1

1

(n!)d−1

[

λmax(K)

λmin(K)

]2n

· (d− 1)n · (n!)d−1(log n+ 1)

≤ 4(d− 1)2n2(log n+ 1)

[

λmax(K)

λmin(K)

]4n

≤ 4(d− 1)2n2(log n+ 1)
[177

22

]4n

.

Consequently, according to Theorem 1.7 in Chapter 1 the amount of time needed for the
Markov chainMd to reach the stationary distribution Pn

K is

τǫ ≤ C · log
( 1

ǫ · Pn
K(x)

)

≤ 4(d− 1)2n2(log n+ 1)
[177

22

]4n

· log
[

(n!)d−1

ǫ

(

λmax(K)

λmin(K)

)n]

≤ 4(d− 1)3n3(log n+ 1)
[177

22

]4n

· log
[

[177

22

] 1

d−1

( n!

ǫ
1

d−1

) 1

n

]

.

4.5 Conclusion

In this chapter, the connection between fixed cardinality determinantal point process and
Latin Hypercube sampling is illustrated. The usage of n-DPP strategy allows LHS to spread
design points as far as possible.
Two cases were taken into account, the first one by considering 2-dimensional LHS and the
second one by considering d-dimensional LHS where d > 2.
In the first case, a DPP kernel was proposed to sample a set of points from n-DPP that fill
the input space when LHS properties are satisfied. This is achieved by designing a Markov
chain where n-DPP was defined as stationary distribution. An exponential bound on the
mixing time for the Markov chain sampling from a n-DPP is obtained. The proof used for
bounding the convergence speed was based on the inequality of Poincaré and canonical path
method. Moreover, a calculation of the ratio of two different configurations’ probabilities
confirms that samples, which abide by the Latin Hypercube properties and satisfy adequate
coverage of the output space, are more likely to be chosen.
The second case which corresponds to d-dimensional LHS, a generalization of the DPP kernel
and a construction of a new Markov chain with stationary distribution is n-DPP took place.
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Furthermore, the mixing time of this Markov chain is attained by multiplying the exponential
bound previously obtained for d = 2 by (d− 1)3.
As generating LHS from n-DPP requires exponential bounds on the mixing time, thus, the
constructed Markov chains are not rapidly mixing. Hence, the ideas described in this chapter
can be developed by improving the bound on the mixing time and therefore the design points
may be sampled according to n-DPP with a polynomial time.
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Conclusion

This thesis aims to cover various applications of sampling from large-scale k-DPPs. Specifi-
cally, the first application of k-DPP sampling covers species on phylogenetic trees, the second
one covers nodes from large graphs and the third one covers building experimental designs.

For saving time, the technique used to generate diverse samples of k-DPPs was based
on Markov chains. Actually, the basic idea was to construct Markov chains which have the
k-DPPs as their stationary distributions. Then, the bounds on the rate of convergence of
the chains are illustrated with accordance to the bounds on the Poincaré constant.

The same Markov chain was proposed in chapters 2 and 3 to sample species from a
phylogenetic tree and nodes from a large connected graph. In chapter 2, the DPP kernel
used was the intersection kernel which can be written as a dot product of binary vectors.
We have proven that in a polynomial time it returns an approximate sample of the k-DPP.
Thus, a diverse subset of species in a phylogenetic tree can be obtained rapidly for biological
studies. As a test to a real-world datasets of species, this approach was applied to extract
200 sample from the "Eukaryota" (taxa ID 2759) sub-tree of the Tree of Life of complete
genomes. By comparing this method to the simple proportional method, the results show
that our approach:

• is sensitive to the branching complexity,

• it favors divergent nodes,

• it is more stable upon sampling repetition where the proportional method uses pure
random choices.

In practice, the algorithm is applied to a huge phylogenetic tree which contains 1827829
nodes from which 1464190 are species making necessary the use of the MCMC methodology.
Another result was presented in this chapter to reach the goal we are looking for which is
diversity. It states that if the tree is of maximum height h, for 0 < h2 < h1 < h/2, choosing
k species simultaneously joined by a subtree of height h1 is more probable than choosing k
species simultaneously joined by a subtree of height h2.

Furthermore, in chapter 3 we have introduced a suitable kernel to sample a subset of
nodes in a connected graph by avoiding redundancy. This kernel was the Moore-Penrose
pseudoinverse of the normalized Laplacian matrix. The same reasoning of application one
was applied to this special case of k-DPP on graphs. A polynomial bond on the mixing time
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was supplied under certain condition on the second smallest eigenvalue of the normalized
Laplacian. It is shown that it depends on whether the graph bottleneck is large or narrow.
The larger the better for the convergence.

Chapter 4 is devoted to display the performance of fixed-size Determinantal Point Pro-
cesses in experimental designs. First, our focus intended to introduce a positive kernel that
respects the constraint needed to build a LHS design of order n and dimension d which
is strictly confirmed by the occurrence of each point exactly once in each hyperplane. By
taking into account the chosen kernel, an important part was presented to show that select-
ing points that provide a good coverage of the input space is more probable than selecting
clusters of points or points that lie on a diagonal line. This heuristic is due to the fact
that the design points should be far from each other, which is precisely what DPP prefers.
Second, a specific Markov chain was proposed for LHS designs where n-DPP was defined as
its stationary distribution. A bound on the mixing time for the Markov chain sampling from
n-DPP was obtained basing on canonical paths where the lengths of these paths are taken
into consideration.
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Perspectives

The results provided in this thesis are motivating for future research:

• Perspective on chapter 2

Since a large phylogenetic tree might contain similar species, we aimed in chapter
2 to sample diverse subsets of species which allowed obtaining an overview of different
kinds of information related to the ground set. The DPP kernel chosen was the inter-
section kernel that, by comparing the sets of the species’ ancestors, it gives the number
of common ancestors. It is shown that the most probable set to be selected was the
one which contains species that does not have a large number of common ancestors.
Since this study covered the diversity of species in terms of ancestors, it will be inter-
esting to extend it and focus also on the distance that separate them. This research
allows to quantitatively compare diversities using functional diversity. Furthermore,
our method can be developed to be a solution of a problem that draws the attention of
the biologists regarding sampling the nodes (not necessary species) through a tree with
respect to the diversity concept for example sample diverse nodes from the respiration
tree.

• Perspective on chapter 3

Many applications in biology and computer science require to sample diverse sets
of nodes in graph. This goal is achieved in chapter 3 by sampling diverse subsets of
nodes from a large connected graph with accordance to k-DPP which originally gives
weights to distinct objects.
On the other side, a topic of interest would be to sample nodes with another char-
acteristics. Many applications especially in physics and video games need to sample
sets of similar nodes. But on graphs, it is not a trivial issue to sample clusters of
nodes according to a distribution. One way to overcome this difficulty is to use the
Permanental point processes (PPP). The power of PPP lies in that the probability of
choosing a particular set of items is proportional to the permanent of a matrix that
defines the similarity of those items.

Therefore, the perspective that would be considered is to design a rapidly mixing
Markov chain which has q as a stationary distribution proportional to the Permanent.
Although the idea seems very acceptable, the problem that might be encountered in
this future work is how to compute the permanents as it is known that computing it
is time-consuming.
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• Perspective on chapter 4

In chapter 4, we have displayed the capability of k-DPP with k = n to generate a
Latin Hypercube sampling of order n and dimension d. A DPP kernel was proposed
to sample a set of points from n-DPP that fill the input space only when each sample
point occurs only once in each hyperplane. This was achieved by designing a Markov
chain where n-DPP was defined as the stationary distribution. An exponential bound
on the mixing time for the Markov chain sampling from a n-DPP is obtained so further
research is needed to ameliorate the bound of the convergence speed. While the proof
used for bounding the mixing time was based on the inequality of Poincaré and canoni-
cal path method, the improvement can be made by spreading flow on the path between
pair of states among some collection of canonical paths. In addition, further studies
will be needed in order to prove that, in general, n-DPP produces better d-dimensional
LHS than randomly generated LHS. This can be achieved by doing some simulations
showing that n-DPP will outperform the random sample in terms of various criteria.
Further, it is interesting to redo the work in Section 4 by considering the Gaussian
kernel as the DPP kernel and then compare the results generated by our DPP kernel
with those from the Gaussian kernel.
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