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Abstract

In the general framework of research projects related to geological disposal of radioac-

tive waste, shale gas production and acid gas sequestration, it is necessary to investi-

gate damage and cracking in clayey rocks under coupled thermo-hydro-mechanical loads

(THM).

In the first part of the thesis, a new phase-field method is developed for rock-like

materials. Two crack fields are introduced in order to describe both tensile and shear

cracks. A proper thermodynamics framework is proposed to describe the evolution of two

crack fields. The plastic deformation of rocks is also taken into account. An efficient

numerical algorithm is adopted for the coupling between the crack fields and displacement

field. This algorithm is then set up in the framework of the finite element method. The

efficiency of the new phase-field method is illustrated through examples showing tensile

and shear cracks.

In the second part, the phase-field method is extended to problems with thermo-

hydro-mechanical coupling. To this end, a specific procedure is developed for the coupling

between the crack fields, mechanical field and hydraulic and thermal fields. The effects of

THM coupling on cracking mechanisms are investigated.

The last part is devoted to two representative examples of application. The first one is

relevant to the study of excavation induced damage and cracking around an underground

gallery. The second one is related to the thermally induced cracking. Both examples are

based on in situ experiments performed in the underground research laboratory of Andra.



Résumé

Dans le contexte général de différents projets de recherche liés au stockage géologique

des déchets radioactifs, à l’exploration de gaz de schiste et à la séquestration de gaz

acides, il est nécessaire d’étudier l’endommagement et la fissuration des roches argileuses

sous sollicitations thermo-hydromécaniques.

La première partie de la thèse est consacrée au développement d’une nouvelle méthode

de champ de phase pour des géomatériaux sous sollicitations complexes. Deux champs de

phase sont définis afin de prendre en compte des fissures de traction et de cisaillement. Un

cadre thermodynamique est proposé permettant de décrite les évolutions des deux champs

de fissures. La déformation plastique des roches est également prise en considération. Un

algorithme spécifique est ensuite proposé pour prendre en compte le couplage entre les

champs de fissures et le champ de déplacement. Cet algorithme est mis en oeuvre dans le

cadre de la méthode des éléments finis. L’efficacité de la nouvelle méthode de champ de

phase est illustrée par des exemples de fissuration en traction et en cisaillement.

Dans la deuxième partie, la méthode de champ de phase est étendue aux problèmes

de couplage thermo-hydromécanique (THM). Une procédure numérique est développée

permettant de considérer le couplage entres les champs de fissures, le champ mécanique

et les champs de pression de fluide et de température. Les effects du couplage THM sur

les mécanismes de fissuration est mis en évidence.

Dans la dernière partie, deux exemples d’application sont présentés. Le premier con-

cerne l’étude de l’endommagement et de la fissuration induits par l’excavation autour

d’une galerie souterraine. Le deuxième est lié au problème de fissuration induite par la

variation de température. Les deux exemples sont basés sur des expérimentations in situ

menées par l’Andra.
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Chapter I

General Introduction

This research work was conducted with the support of Andra(French national radioac-

tive waste management agency). Intermediate-level high-level and long-lived waste (HA-

LLAM) is currently stored in reprocessing plants. Several countries around the world

are studying the possibilities of storage in deep geological formations with a period of

reversibility. The underground research laboratory at Bure(Centre de Meuse/Haute-

Marne), developed by Andra, aims to evaluate the feasibility of building a deep storage

site. Callovo-Oxfordian claystone(COx) is chosen as a potential host formation due to its

recovery capacity and its hydro-mechanical properties (low permeability and porosity).

More than 1500m of galleries were built and instrumented at -490m depth.

The storage of radioactive waste therefore requires rock excavation at great depth to

accommodate the various facilities. In a context of durability and security, Thermo-Hydro-

Mechanical (THM) behavior of the COx is of great importance in what concern the design

and safety calculation of the high-level and intermediate-level long-lived waste disposals.

It concerns the several major issues: the fractured area around walls after excavation; and

the time-dependent behaviors of COx claystone after the excavation. Moreover, the heat

emitted from the wastes shall provoke a pore-pressure increase within the surrounding

rock due to the differential thermal expansion of the pore water and the solid skeleton.

Numerical models are then used to describe, predict and help to understand these mech-

anisms in addition to experimental data that are sometimes inaccessible.

Unlike metal materials, the rock-like materials are usually subjected to compression-

dominating stresses in most engineering applications such as underground cavities. As a

consequence, cracking modes are complex including tensile and shear cracks. The tran-
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sition from diffuse micro-cracking to localized macroscopic fractures is the key issue for

modeling failure process in these materials and structures. With the onset of localized

fractures, strong displacement discontinuities appear. Further, multiple fractures can ini-

tiate, propagate and interact. This makes numerical modeling a real challenge. Different

numerical methods have been developed during the last decades to deal with this com-

plex subject. For example, enriched finite element methods have been first developed to

account for displacement discontinuities at the elementary level with the help of enriched

shape functions [Oliver, 1996]. On the other hand, the extended finite element method

(XFEM) have been developed to deal with displacement discontinuities by using nodal

enrichment techniques [Moes et al., 1999]. This kind of methods have successfully been

applied to different kinds of materials and structures, in particular hydraulic fracturing

[Zeng et al., 2018, 2019]. In these two types of methods, the transition from diffuse dam-

age to localized fracturing, on the other word, the onset of macroscopic cracks, is still a

pending issue. The description of multiple cracks in three-dimensional conditions is also

a delicate task. Some authors have tried to solve the problem of transition from diffuse

damage to localized cracking by developing homogenized damage models with a represen-

tative elementary volume containing an oriented crack [Zhao et al., 2018a,b, Zhu et al.,

2016]. The efficiency of such models at the structure scale still needs to be demonstrated.

More recently, based on the framework of variational principle for fracture mechan-

ics [Francfort and Marigo, 1998] and optimal approximations methods of functionals with

jumps [Ambrosio and Tortorelli, 1990, Bourdin et al., 2000, Mumford and Shah, 1989], the

so-called phase-field method has been developed [Miehe et al., 2010a]. Then, this method

has attracted more and more attention and gained a number of extensions [Ambati et al.,

2015, Borden et al., 2012]. In this method, the sharp topology of the crack is approxi-

mated by a regularized topology with the help of an auxiliary crack phase-field. This one

is determined by a proper boundary values problem based on a regularized variational

principle. The phase-field method has successfully been applied to various engineering

problems including multi-physics problems [Miehe et al., 2015], finite deformation [Bor-

den et al., 2016], coupling between damage and plasticity [Choo and Sun, 2018, Fang et al.,

2019].

In most previous studies, a single crack phase-field is generally considered. In most

cases, tensile cracks are induced by tensile strain related energy. However, as mentioned

above, in rock-like materials, both tensile and shear cracks have to be taken into account.
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These two families of cracks are controlled by different driving forces. Further plastic

deformation is also an important aspect to be considered and it is generally coupled with

evolutions of cracks.

The subject of this thesis focuses mainly on finite element solutions coupled with

phase-field numerical modeling of the THM and damage behavior of COx claystone and

in particular the induced cracking during the excavation and heating operations. The

main object of this work is the development of the phase-field method to introduce both

tensile and shear cracks under the effects of THM coupling for rock-like materials.

The first Chapter presents a double phase-field method which extends the classic single

phase-field method. Two independent crack fields are introduced to account for tensile

and shear cracks respectively. In this Chapter, the foundation of the phase-field model is

first presented. And then, the double phase-field method is introduced following the reg-

ularized thermodynamics framework and the weak forms of finite element method. Some

basic tests are made to compare the simulation results between the classic phase-field

model and our double phase-field model. At last, the proposed double field method is

applied to study the mechanical behavior of two brittle rocks, sandstone and marble.

The second Chapter continues to present the double phase method applied to quasi-

ductile rock-like materials. The plastic behavior is considered as that the regularized

variational framework and the thermodynamics framework are extended to take into ac-

count the plastic effect. The double crack phase-field method is successfully developed to

reproduce the elastic-plastic and damage behavior. At last, the triaxial compression tests

of COx claystone are analysed by this new model.

In Chapter 3, we present the coupling between THM fields and crack fields. The model

for thermo-poroelastic behavior and the related general equations that govern the thermo-

hydro-mechanical coupling are presented. The crack fields are affected by the THM fields

which are dependent on the evolution of crack fields. Some representative tests are shown

at the end of this Chapter to verify our model.

Chapter 4 is devoted to two examples of application related to the problem of radioac-

tive waste disposal from Andra. The first example is for studying damage and cracked

zones during excavation of underground galleries. And the second one deals with THM



4 General Introduction

and damage modeling during an in situ heating test. In these examples, the experimental

results and simulation results are compared for the fields of temperature, pore pressure,

displacement and most importantly the fields of tensile and shear cracks.
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A double phase-field method for

brittle rock-like material
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1 Introduction

Phase-field is a popular method to study the distribution and propagation of fracture

problem. It is based on Griffith theory[Griffith and Gilman, 1968] developed by Irwin
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[1958], Barenblatt [1962]. To remedy the defect of fracture mechanics, a variational method

based on energy minimization is proposed by Francfort and Marigo [1998]. With the help

of the regularization work of Ambrosio and Tortorelli [1990] Mumford and Shah [1989]

Bourdin et al. [2000] used the Phase-field method in the brittle material. A lot of studies

Bourdin et al. [2008] Miehe et al. [2010a] Borden et al. [2012] Ambati et al. [2015] of this

method have attracted considerable attention.

In most previous studies, a single crack phase-field is generally considered. In most cases,

tensile cracks are induced by tensile strain related energy. However, as mentioned above,

in rock-like materials, both tensile and shear cracks have to be taken into account. These

two families of cracks are controlled by different driving forces. Therefore, in the present

study, a double phase-field method is developed. Two independent crack-phase-fields are

introduced to account for the tensile and shear cracks respectively.

In this Chapter, the formulation of the phase-field model is presented at the beginning.

And then, we shall present the double phase-field method. In this section, the regularized

crack phase-fields and variational principles are first introduced. The thermodynamics

framework is defined and used to determine the evolutions of two crack fields. The weak

forms of the finite element method are formulated to the solution of crack fields and

displacement field. Several benchmarks are used to compare the simulation results between

the classic phase-field model and our double phase-field model. At last, the proposed

double field method is applied to study the mechanical behavior of sandstone and Jinping

marble by considering the transition from diffuse damage to localized cracking.

2 Phase-field model

2.1 Smeared approximation of the shape crack topology

In the framework of phase-field method, the sharp crack topology is approximated by the

regularized smeared crack topology [Miehe et al., 2010a] by introducing a scalar-valued

auxiliary variable called crack phase-field d(x), taking the unit value on the crack surface

and vanishing away from it. This crack phase-field can be determined by solving its own

boundary value problem. Further, the differential equations governing the boundary value

problem are the Euler equation of the variational problem consisting of minimizing the

total crack density (surface) functional in the cracked body. The crack phase-field d(x)

can also be seen as equivalent to the macroscopic damage variable used in the continuum

damage mechanics.

The schematic presentation of regularized crack topology is shown in Figure II .1.
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Figure II .1: (a)The real sharp crack Γ in the solid Ω; (b)The real sharp crack in the 1-D

coup A-A’; (c) The diffused crack by Phase-field in the 1-D coup A-A’; (d)The diffused

crack with its equivalent surface Γ(d).

This diffuse crack is easier to be understood in its 1-D view(Figure II .1(b) and (c)).

Each of crack fields is determined by the following boundary problem [Miehe et al.,

2010a]: 



d− l2d�d = 0 in Ω

d(x) = 1 on Γ

∇d(x).n = 0 on ∂Ω

(II .1)

ld is a length scale parameter controlling the width of smeared cracks. According to

Miehe et al. [2010a], the boundary value problem Eq. (II .1) is equivalent to the following

variational problem:

d(x) = Arg{ inf
d∈Sd

Γld(d)} (II .2)

with Sd = {d|d(x) = 1 at x ∈ Γ}. Γld(d) denotes the total tensile or shear crack density

(surface), defined by:

Γ(d) =

� +∞

−∞

1

2
(
1

ld
d2 + ldd

�2)dx =

� +∞

−∞
γ(d,∇d)dx (II .3)

Clearly, γ(d,∇d) presents a crack surface density function:

γ(d,∇d) =
1

2
(
1

ld
d2 + ldd

�2) (II .4)
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With this regularization work at hand, the quasi-static process of crack initiation and

propagation is described by a minimization problem of the energy function:

E(u, d) =

�

Ω
g(d)Ψ0(�(u))dV + gc

�

Ω
γ(d,∇d)dV (II .5)

with function h(d) presents the influence of crack to the displacement field.

2.2 Governing equations

With regard to the displacement field, the external potential must be considered as:

P (u) =

�

Ω
fb · udV +

�

∂Ωt

tN · udA (II .6)

with the fb is body force and the traction tN (x, t) is prescribed by Neumann-type boundary

conditions at δΩt.

The total energy function can be written as:

Π = E(u,Γ)− P (u) (II .7)

To derive the governing equations through variation of functional(Eq. II .7) respect with

the displacement field u and crack field d, the balance equation between external and

internal virtual powers for the quasi-static process can be obtained by:

δΠ = E(u̇, ḋ)− P (u̇) =

�

Ω
σδ�dV +

�

Ω
h�(d)Ψ0δddV + gc

�

Ω
(∂dγδd+ ∂∇dγδ∇d)dV

−
�

Ω
fbδudV −

�

∂Ωt

tNδudA

(II .8)

with σ = g(d)∂�Ψ0.

As δΠ = 0 must be hold for both fields considered, we obtain the two coupled balance

equations and theirs boundary conditions:

�
∇ · σ + fb = 0 in Ω

σ · n = tN on ∂Ωt

(II .9)

for displacement field;
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



h�(d)Ψ0 + gc(
1
ld
d− l2dΔd) ≥ 0 and ḋ ≥ 0 in Ω

d = 1 on Γ

∇d · n = 0 on ∂Ω

(II .10)

for crack field.

Here, we rewrite the balance equation of crack field(Eq. II .10) as:

−h�(d)H� �� �
crack driving force

− gc(
1

ld
d− l2dΔd)

� �� �
crack resistance

≤ 0 (II .11)

where H = max(Ψ0) is the maximum energy in all recent time step [Miehe et al., 2010a].

This history field H could reflect the crack irreversibility. Clearly we can see that the 2

parts in Eq. II .10 are positive. The new crack would be created if the crack driving force

is bigger than the crack resistance.

3 A double phase-field method

3.1 Regularized crack topology

In most previous studies, only the crack due to tensile stress or strain is considered. In

geomechanics, most materials are subjected to complex loading paths including tensile and

compressive stresses. In particular, closed cracks can initiate and propagate under shear

or deviatoric stress. In order to take into account such process, in the present study, two

independent cracks phase-fields are introduced. The tensile crack phase-field is denoted by

dt(x) and the shear crack phase-field by dsh(x). The schematic presentation of regularized

crack topology is shown in Figure II .2.
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Figure II .2: (a)The real sharp crack Γ in the solid Ω; (b)The real sharp crack in

the 1-D coup A-A’; (c)and(d) The diffused tensile&shear crack by phase-field method in

the 1-D coup A-A’; (e)and(f)The diffused tensile&shear crack with its equivalent surface

Γ(dt)&Γ(dsh).

Each of crack fields is determined by the following boundary problem [Miehe et al.,

2010a], with α = t, sh: 



dα − l2d�dα = 0 in Ω

dα(x) = 1 on Γα

∇dα(x).n = 0 on ∂Ω

(II .12)

ld is a length scale parameter controlling the width of smeared cracks. According to Miehe

et al. [2010a], the boundary value problem Eq. (II .12) is equivalent to the following

variational problem:

dα(x) = Arg{ inf
d∈Sdα

Γα
ld
(dα)} (II .13)

with Sdα = {dα|dα(x) = 1 at x ∈ Γα}. Γα
ld
(dα) denotes the total tensile or shear crack

density (surface), defined by:

Γα
ld
(dα) =

�

Ω
γα(dα,∇dα)dΩ; α = t, sh (II .14)

γα(d
α,∇dα) denotes the tensile or shear crack density (surface) per unit volume, defined

by:

γα(dα,∇dα) =
1

2
{ 1
ld
(dα)2 + ld∇dα.∇dα} (II .15)
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3.2 Regularized variational framework

In the framework of variational approach to fracture mechanics proposed by Francfort and

Marigo [1998], an energy functional was introduced and it is composed of the elastic strain

energy and the energy requested to create the crack. With the regularized smeared crack

topology presented above, the energy requested to create the sharp crack is approximated

by that for the creation of regularized crack surfaces. Thus, the extended form of the total

energy functional is given by:

E(u, dt, dsh) = Eu(u, d
t, dsh) + Es(d

t, dsh)

Eu(u, d
t, dsh) =

�
ΩWe(�

e(u), dt, dsh)dΩ

Es(d
t, dsh) = gtc

�
Ω γt(dt,∇dt)dΩ+ gshc

�
Ω γsh(dsh,∇dsh)dΩ

(II .16)

We is the elastic strain energy of cracked material. The parameters gtc and gshc are the

material toughness respectively for tensile and shear cracks. Note that the total functional

E can also be rewritten in the following form:

E(u, dt, dsh) =

�

Ω
W (u, dt, dsh)dΩ (II .17)

with

W (u, dt, dsh) = We(�
e(u), dt, dsh) + gtcγ

t(dt,∇dt) + gshc γsh(dsh,∇dsh) (II .18)

which can be identified as the free energy.

We focus now on the crack driving force in our new model, which is the core prob-

lem of the phase-field method. In order to prevent the issue of cracks interpenetration in

compression condition, a unilateral contact formulations is necessary to be used. In the

models of phase-field method, there are two common kinds of formulations: (1) the energy

decomposition based on the tensile and compressed strain; (2) the energy decomposition

based on the spheric and deviatoric strain. The first one has a good agreement with the

experimental observation in lots of classic benchmarks. But it is hard to apply the initial

anisotropic material. In this section, we will see the dt&dsh phase-field model developed

by these two decompositions.

3.2.1 Initial isotropic material

Following the Miehe phase-field method, we have:

W 0
e (�) = W+

0 (�) +W−
0 (�) (II .19)
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The energy is decomposed by tensile part and compressed part, depending on the tensile

and compressed strains:

W±
0 (�) =

λ

2
(tr���±)2 + µtr{(�±)2} (II .20)

and

�± =
i=1�

D

��i�±ni ⊗ ni (II .21)

In our model, the decomposition of elastic energy density W0 must be considered to

separate the effective crack driving force of tensile crack and shear crack. Two formulations

are proposed based on this tensile/compressed decomposition.

The case 1 is presented as:

We(�, d
t, dsh) =

λ

2
(tr���+)2h1(dt) + µtr{(�+)2}h3(dsh) +W−

0 (�) (II .22)

with the degradation functions h1−3(d
t, dsh) are defined as:





h1(d
t) = (1− β1d

t)2

h2(d
t) = (1− β2d

t)2

h3(d
sh) = (1− β3d

sh)2

(II .23)

The parameters β1, β2 and β3 are used to reflect the residual elastic stiffness of damaged

material.

In this case, we only consider the tensile energy as the crack driving quantity, and this

tensile energy is decomposed by the spheric part and the shear part defined by the Lamé

coefficients λ and µ. This so called tensile spheric energy plays the role of the driving

quantity of tensile crack dt, and the tensile spheric energy conduits to the shear crack dsh.

This model inherits the advantages of the Miehe model, which has a good agreement

with the experiment observation. On the other hand, the tensile and shear cracks can be

observed separately. And the effect weights of tensile and shear crack in the propagation

can be controlled depend on the chosen of the gtc and gshc .

For the case 2, the formulation of energy is presented as:

We(�, d
t, dsh) = W+

0 (�)h1(d
t) +

λ

2
(tr���−)2 + µtr{(�−)2}h3(dsh) (II .24)

In this case, the total tensile energy is considered as the driving quantity of the tensile

crack dt; and the compressed shear energy conduits to the shear crack dsh. The shear part

of the tensile energy is considered as a type of tensile energy which follows the direction

of principal strain. And the shear crack is only produced under the compressed condition,

it is defined as an compressed shear crack.
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3.2.2 Initial anisotropic material

In the Amor phase-field model, the energy is composed by spheric part and deviatoric

part:

W 0
e (�) = W 0

sph(�) +W 0
dev(�) =

1

2
Csph : � : �+

1

2
Cdev : � : � (II .25)

The spherical and deviatoric elastic stiffness tensors C0
sph and C0

dev are defined as:





Csph = Kreuss
0 1

�
1;

Cdev = C0 − Csph

(II .26)

C0 denotes the total initial elastic stiffness tensor of undamaged material and k0reuss is

the so-called Reuss bulk modulus. Compared with other decompositions of elastic tensors

[Miehe et al., 2010b], the present one is particularly suitable for anisotropic elastic mate-

rials.

In order to distinguish the different effects of open and closed cracks, the following crack

status coefficient r±e is introduced:





if tr(�e) >= 0 : r+e = 1, r−e = 0

if tr(�e) < 0 : r+e = 0, r−e = 1

(II .27)

In the case 1 based on the Amor phase-field model, the effect of crack to the energy is

presented as:

We(�, d
t, dsh) = (h1(d

t)r+ + r−)W 0
sph + h3(d

sh)W 0
dev (II .28)

In this case, we consider the tensile spheric energy as the driving quantity of the tensile

crack dt, and both parts(tensile and compressed parts) of the deviatoric energy conduits

to the shear crack dsh. This is a concise formulation to define the two types of crack, but

it can not reflect the effect of deviatoric energy to the tensile crack especially under tensile

condition.

In order to overcome this issue, the case 2 is proposed as:

We(�, d
t, dsh) = (h1(d

t)r+ + r−)W 0
sph + h2(d

t)h3(d
sh)W 0

dev (II .29)

By using this model, W 0
sph is as the tensile crack driving quantity only under the expansion

condition. And W 0
dev plays the role of crack driving quantity for both of two types of the

crack. The different degradation functions h1(d
t) and h2(d

t) are used to distinguish the

different weights of influence between spheric energy and deviatoric energy.
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And then, in order to separate the effect of dt and dsh in theW 0
dev under expansion/compression

condition, we propose the case 3:

We(�, d
t, dsh) = [h1(d

t)r+ + r−]W 0
sph + [h2(d

t)h3(d
sh)r+ + h3(d

sh)r−]W 0
dev(�) (II .30)

W 0
dev is separated by expansion and compression condition. It plays the same role as in

the case 2 under the expansion condition and it plays the role of the shear crack driving

quantity under the compression condition. Following this way, we deal the W 0
dev brings

tensile fracture and shear fracture when the element is expanded, and the shear fracture

here is only defined as the compressed shear fracture. Following this formulation, the

driving quantities for tensile crack and shear crack conform well the physical logic. And

it works well in the compression tests.

The case 3 is the final version to this driving energy decomposition. The physical inter-

pretation of elastic energy decomposition with respect to degradation by open and closed

cracks is illustrated in Figure II .1.
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spheric/deviatoric open/closed mode degradation

spheric energy

open crack h1(d
t)

closed crack -

deviatoric energy

open crack h2(d
t) ∗ h3(dsh)

closed crack h3(d
sh)

Table II .1: The energy divided into 4 parts by spheric/deviatoric and open/closed crack

conditions, and their degradation functions.

The table 2.1 can help us to understand the splits used in the model of case 3. At

first, in the spherical part of energy, Ψsph is as a part of the tensile crack driving quantity

only under the expansion condition. And this energy can’t bring the shear crack.

For the deviatoric part of energy, it can’t be ignored that there’s crack opening during

the shear behavior under the expansion condition. Ψdev plays the role of crack driving

quantity for both of two types of the crack under the expansion condition. But under the

compressed condition, Ψdev is only considered as the shear crack driving quantity.
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3.3 Evolution of crack phase fields

The reduced Clausius-Duhem inequality relative to the evolution of the damage parameter

d is defined as:

Aαḋα � 0 (II .31)

Aα = − ∂W
∂dα is the thermodynamic force associated with the crack phase field dα (α = t, sh).

Further, it is assumed that the threshold function Fα(Aα) governing the crack phase field

evolution is simply written as:

Fα(Aα) = Aα ≤ 0 (II .32)

Taking into account the irreversible condition of crack growth, one gets for ḋα > 0, Fα = 0.

It is:

Fα = −{∂We

∂dα
+ gαc δγ

α(dα)} = 0 (II .33)

where δγα(dα) is the variational derivative of the crack density function [Miehe et al.,

2010b]. By considering the definitions of different parts of energy in Eq. II .18, one gets:





−r+e h
�
1W

0
sph − h�2h3r

+
e W

0
dev − gtc(

1
ld
dt − l2dΔdt) ≤ 0

−h�3(r
+
e h2W

0
dev + r−e W

0
dev)− gshc ( 1

ld
dsh − l2dΔdsh) ≤ 0

(II .34)

In order to consider complex loading paths with unloading and reloading cycles and

considering that the crack growth is an irreversible process, a strain history functional

has been introduced in Miehe et al. [2010b]. Inspired by this, in this study, three energy

history functionals are defined as follows:





Hsph = max[r+e W
0
sph]

Ht
dev = max[h3r

+
e W

0
dev]

Hsh
dev = max[r+e h2W

0
dev + r−e W

0
dev]

(II .35)

With these energy history functionals at hand, the evolutions of crack phase fields are

determined by the following criteria:

�
−h�1Hsph − h�2Ht

dev − gtc(
1
ld
dt − l2dΔdt) = 0

−h�3Hsh
dev − gshc ( 1

ld
dsh − l2dΔdsh) = 0

(II .36)
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3.4 Numerical implementation in finite element method

We consider here two crack phase fields in the solid body Ω subjected to the body force

fb in Ω, the surface force tN on its boundary ∂Ωf and the prescribed displacement u on

its boundary ∂Ωu, as shown in Figure II .2. The total potential energy can be written as:

Π = E(u, dt, dsh)−
�

Ω
fb · udΩ−

�

∂Ωf

tN · udA (II .37)

The stationarity condition of the potential energy δΠ = 0 leads to three coupled

boundary values problems respectively for the displacement field, the tensile crack phase-

field and the shear crack phase field.

The local equations for the displacement field are written as:

�
∇ · σ + fb = 0 in Ω

σ · n = tN on ∂Ωt

(II .38)

With the help of shape functions and related derivatives in finite elements, one obtains

the discrete weak form for the displacement field for the current loading step:





Ku�U = �F

Ku =
�
ΩBT

uCBudΩ

�F =
�
ΩNT

u�fbdΩ+
�
∂Ωf

NT
u�tNdA

(II .39)

Nu and Bu are respectively the matrix of shape functions and related derivatives of dis-

placement components. Ku is the global stiffness matrix. �U and �F respectively denote

the column matrix of increment nodal displacements and forces. The current elastic stiff-

ness matrix of cracked material is given by:

C(dt, dsh) = [r+e h1 + r−e ]C0
sph + [r+e h2h3 + r−e h3]C0

dev (II .40)

For the tensile crack phase field, one has the following local equations:





h�1Hsph + h�2Ht
dev + gtc(

1
ld
dt − l2dΔdt) = 0 in Ω

ḋt ≥ 0 in Ω

dt = 1 on Γt

∇dt · n = 0 on ∂Ω

(II .41)
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and for the shear crack phase field:





h�3Hsh
dev + gshc ( 1

ld
dsh − l2dΔdsh) = 0 in Ω

ḋsh ≥ 0 in Ω

dsh = 1 on Γsh

∇dsh · n = 0 on ∂Ω

(II .42)

Similar to the displacement field, the two crack phase fields and their gradients inside each

element are also approximated by the nodal values by using appropriate shape functions

and related derivatives. With such approximations, the weak forms and discrete systems

of equations are obtained for each crack phase field. Namely, for the tensile cracks field,

one gets:





Kdtd
t = Fdt

Kdt =
�
Ω{(gtc ld + 2β2

1Hsph + 2β2
2Ht

dev)N
T
dNd + gtcldB

T
dBd}dΩ

Fdt =
�
Ω 2(β1Hsph + β2Ht

sph)N
T
d dΩ

(II .43)

and for the shear crack field:





Kdshd
sh = Fdsh

Kdsh =
�
Ω{(gtc ld + 2β2

3Hsh
dev)N

T
dNd + gtcldB

T
dBd}dΩ

Fdsh =
�
Ω 2β3Hsh

devN
T
d dΩ

(II .44)

Nd and Bd are the shape functions and related derivatives for two crack phase fields.

It is obvious that three fields are coupled. The calculation of displacement field is

influenced by the crack phase fields due to the fact that the elastic stiffness matrix C(x)
is a function of dt(x) and dsh(x). On the other hand, the evolutions of crack fields are

controlled by the energy history functionals which are functions of elastic.

4 Numerical experiments

In this section, three examples of test would be presented to show how our model works.

The first 2 examples are classic benchmark problem for phase-field method: single-edge

notched tension and shear test. The isotropic phase-field model [Miehe et al., 2010b],
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Miehe phase-field model [Miehe et al., 2010b] and Amor phase-field model [Amor et al.,

2009] will be compared with our dt&dsh phase-field model. The isotropic phase-field model

uses all of the elastic strain energy as the driving energy to create the crack. Miehe phase-

field model has a good agreement compared with the experimental result. The method

of decomposing energy in this model is very popular, lot of studies of phase-field method

are based on it. And Amor phase-field method uses the similar method of decomposing

energy like ours: decomposition based on spherical and deviatorical parts.

The last example is a tri-axial compression test, it’s rare to see the simulation of this test

by phase-field model. We try to reproduce the crack path by our elastic-damage model.

This laboratory-scale test is simulated under plan strain condition. In all of the following

numerical examples, the regular of 4-node elements is adapted.

4.1 Single-edge notched tension test

In this benchmark, we apply the model to a square plate (1×1 mm) with a straight

horizontal notch(0.5 mm) located at mid-height of the left edge. The dimensions and the

boundary conditions are shown in the Figure II .3(a). The load of displacement u(t) apply

on the top outer surface.

Figure II .3: The dimension and the boundary conditions of single-edge notched tension

test.

To match the example of Miehe et al. [2010a], we use the same parameters of mate-

rial: λ = 121.15kN/mm2, µ = 80.77kN/mm2 and ld = 5.0 × 10−3mm. The toughness

parameters gtc = gshc = 2.7 × 10−3kN/mm for case 1, gtc = gshc = 1.35 × 10−3kN/mm for

case 2, because in case 2, the crack driving force is separated by tensile and shear parts

independently, every part of energy is reduced. The toughness parameters follow these

reductions to march the same resistance abilities. The mesh with refine containing 11790

elements and 3998 nodes and the incremental load of displacement Δu = 1× 10−5mm are
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enough precise for this test.

In case 1, the crack path at different stages of the deformation are illustrated in Figure

II .4. The red and blue zone indicate the broken state(dt or dsh=1) and the unbroken

state(dt or dsh=0) of the material. The main crack which propagates is the tensile one.

Almost none shear crack can be observed, because the shear crack in this case is defined

as compressed shear crack, but there’s no volumetric strain reduced during the test, the

shear crack driving force is equal to 0.

tensile

fracture

shear

fracture

(a) (b) (c) (d)

Figure II .4: Single-edge notched tension test simulated by case 1. Crack path at the load

of displacement: (a)u = 5.3×10−3mm; (b)u = 5.5×10−3mm; (c)u = 6×10−3mm;(d)u =

6.2× 10−3mm.

In case 2, the results of simulation is presented as in Figure II .5. Both of two types

of crack propagate independently at the same time, and their effects are considered to the

stiffness matrix.



Numerical experiments 21

tensile

fracture

shear

fracture

(a) (b) (c) (d)

Figure II .5: Single-edge notched tension test simulated by case 2. Crack path at the load

of displacement: (a)u = 5.3×10−3mm; (b)u = 5.5×10−3mm; (c)u = 6×10−3mm;(d)u =

6.2× 10−3mm.

In case 3, the main crack that propagates is the tensile crack as indicated in II .6. A

small shear band can be observed along the path of the tensile crack. Compare with cases

1 and 2, in which case, the results of two distributions of damage may show more physical

significance. The distribution of tensile damage in three boxes is not significantly altered.

And in case 3, the shear damage appeared to be minor in this tensile test.

tensile

damage

shear

damage

(a) (b) (c) (d)

Figure II .6: Single-edge notched tension test. Crack path at the load of displacement:

(a)u = 5.3× 10−3mm; (b)u = 5.5× 10−3mm; (c)u = 6× 10−3mm;(d)u = 6.2× 10−3mm.

Figure II .7 reports a comparison of the reaction-displacement curves between the

phase-field model mentioned and our dt&dsh model of case 3. The behaviors are quite
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similar, it’s due to the crack is created by almost all of the strain energy in this test,

even the isotropic model has the same result. And for our models, they work well in the

fracture mode I. We can see clearly which type of fracture works.
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Figure II .7: Single-edge notched tension test. Reaction-displacement curve

4.2 Single-edge notched shear test

The second benchmark is a Single-edge notched shear test. We apply the same plate(same

geometry and same material parameter) except the we use 2gtc = gshc = 2.7×10−3kN/mm

in case 2. The gtc is reduced to the half of the gshc . The direction of load is horizontally

to the right as in the Figure II .3(b). 22500 elements refined and 22876 nodes are used in

this test and the incremental load of displacement is fixed as Δu = 1× 10−5mm.

The results of simulation by case 1 and 2 are presented as in Figure II .8 and Figure II .9.

In both of the results, unlikely the symmetric crack branches form [Miehe et al., 2010b]

simulated by isotropic phase-field model, there is only one crack propagates towards to

the lower-right angle of the plate. This means that our model accurately avoids cracks in

the compressed elements. The crack path reproduces the result of Bourdin[Bourdin et al.,

2000], the principal feature of the result is that the angle between the initial crack and

the propagated crack β = 61o.

In case 1(Figure II .8), the main crack propagated is the tensile one. Because in this shear

test, the shear crack always appears under the condition of expansion. We consider this

exposed shear crack is a part of the tensile crack in our model. So the compressed shear

crack isn’t produced during the test(bot images of Figure II .8).
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tensile

fracture

shear

fracture

(a) (b) (c) (d)

Figure II .8: Single-edge notched shear test simulated by case 1. Crack path at the load

of displacement: (a)u = 1× 10−2mm; (b)u = 1.5× 10−2mm; (c)u = 2× 10−2mm;(d)u =

2.5× 10−2mm.

In case 2(Figure II .9), both of the two types of crack propagate. We explain this

propagation as that: the shear crack propagates at first. And then, the stiffness matrix is

reduced by the effect of the shear crack. At last, it conduits to the tensile crack propagates

following the same path. As we can see, the global process of propagation is caused by

the interaction between both of two types of crack.

tensile

fracture

shear

fracture

(a) (b) (c) (d)

Figure II .9: Single-edge notched shear test simulated by case 2. Crack path at the load

of displacement: (a)u = 1× 10−2mm; (b)u = 1.5× 10−2mm; (c)u = 2× 10−2mm;(d)u =

2.5× 10−2mm.

The results simulated by case 3 is shown as in the Figure II .10. The main crack
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propagated is the tensile one. We consider this exposed shear crack is a part of the tensile

crack in our model. Unlikely the symmetric crack branches form [Miehe et al., 2010b]

simulated by isotropic phase-field model, there is only one crack propagates towards to

the lower-right angle of the plate. This means that our model accurately avoids cracks

in the compressed elements. The crack path reproduces the result of Bourdin [Bourdin

et al., 2000], the principal feature of the result is that the angle between the initial crack

and the propagated crack β = 61o.

tensile

damage

shear

damage

(a) (b) (c) (d)

Figure II .10: Single-edge notched shear test simulated by case 3. Crack path at the load

of displacement: (a)u = 1× 10−2mm; (b)u = 1.5× 10−2mm; (c)u = 2× 10−2mm;(d)u =

2.5× 10−2mm.

Compared with the results of Miehe model and Amor model as shown in Figure II .11.

Amor model and our model have the second crack propagated from the lower-right angle

of the sample near the end of the test. And this second crack connects the main crack

at the end. But it isn’t appeared in Miehe model. Because in Miehe model, the com-

pressed shear energy isn’t considered as the crack driving quantity, and this compressed

shear energy conduits to the appearance of the second crack. Compare the results of our

model with the Amor model, the locations at which the two cracks intersect are different.

The shear crack propagates the longer distance in our model. This behavior depends on

the value of gshc . Amor model can be seen as a special situation of our model under the

condition gshc = +∞. In this simulation by our model, the gshc is defined as a real value

which is enough small compared with +∞. It means that the material has lower ability

to resist the propagation of shear crack.
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Miehe

model

Amor

model

(a) (b) (c) (d)

Figure II .11: Single-edge notched shear test simulated by Miehe model and Amor model.

Crack path at the load of displacement: (a)u = 1 × 10−2mm; (b)u = 1.5 × 10−2mm;

(c)u = 2× 10−2mm;(d)u = 2.5× 10−2mm.

Figure II .12 shows the relation of reaction and displacement. Compared with other

models, the curve of case 1 is quite similar to the result of Miehe p-f model. But there’s

some reactions vibrated after the peak, which is because that there’s the change between

expansion and compression condition appears at the area of high tensile damaged zone.

The stiffness matrix recovers to the low damaged state when there’s the change from ex-

pansion condition to compression condition. In case 2, it overcomes this issue. The peak

of case 2 curve is a little higher than the others, which is because that the definition of

gtc and gshc is not the same. In other model, they have only gtc to present the resistance of

tensile crack, but in case 2, this resistance should be reduced and separated to the every

types of the damage resistance. Here, we only use the same parameters to compare the

curves. And the curve of case 2 has the same trend compare with Amor phase-field model.

Figure II .12(b) shows the relation of reaction and displacement. The appearance of sec-

ond crack brings different curves. Amor model and our model have the same shape, and

they differ from the curve of Miehe model.
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Figure II .12: Single-edge notched shear test. Reaction-displacement curve.

4.3 Triaxial compression test of sandstone

In the first triaxial compression test. The experimental tests of sandstone were performed

in Laboratory of Mechanics of Lille, France. In these conventional triaxial tests, the cylin-

drical samples of 37 mm in diameter and 74 mm in height are used under the confining

pressures of 5, 20, 40 and 60 MPa. It can be obtained from the results that the Young’s

modulus of sample increases from 15 to 18 GPa with the confining pressure changing from

5 to 60 MPa. And the Poisson’s ratio is 0.25.

In the simulation, the sandstone is considered as a isotropic material. The geometry and

boundary condition are presented as in the Figure II .13. The mesh containing 20000

elements and 20301 nodes and the incremental load of displacement Δu = 1 × 10−3mm.

The width of the diffusive crack ld = 0.37mm which equals to the dimension of the small-

est element. In our elasticity-damage model, elastic field couldn’t reflect the influence of

confinement. The popular way in phase-field method is increasing the value of gtc&gshc to

describe the higher crack resistance of the material under the higher confinement. But

there’s no convincing mathematical expression between them yet. In these simulations,

gtc&gshc used increase from 0.01kN/mm to 0.055kN/mm with the confining pressure chang-

ing from 5 to 60 MPa. To facilitate inhomogeneous deformation, we define a weak region

at the red zone in the Figure II .13, in this region, the gtc and gshc are reduced to 1%.
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Figure II .13: The dimension and the boundary conditions of triaxial compression test.

The Figure II .14 presents the result of stress-strain curves compared with experimen-

tal results. It is observed that the peak of differential stress significantly increases with

the increase of confining pressure. This effect of confining pressure is correctly reproduced

by the numerical model. Unfortunately, due to the technical limit of experimental device,

the mechanical responses in the post-peak regime are not available in the laboratory tests.
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Figure II .14: Axial (blue) and lateral (red) strain versus differential stress in conven-

tional compression tests with different confining pressures Pc=5, 20, 40, 60MPa: com-

parison between numerical results (continuous lines) and LML experiment data(dotted

line).

The Figure II .15 shows the result of crack path during the test under 5MPa confine-

ment. First, during the compression process, the shear damage values of all the nodes

of the sample increase, but there’s no tensile damage produced. According to the weak

region that can be considered as the zone with lower crack resistance, two damage bands

are formed in the shear fracture field. And then, the value dsh increases in two band.

Upon further loading, the fracture is developed from the weak region. Due to this shear

fracture, some tensile fracture are gradually formed around the shear one.
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tensile

damage

shear

damage

(a) (b) (c)

Figure II .15: Triaxial compression test on sandstone under Pc=5MPa. Crack path at

the load of displacement: (a)u = 0.51mm; (b)u = 0.516mm; (c)u = 0.52mm (the 3 points

displayed in figure 10, Pc=5MPa).

Figure II .16 shows the results of the simulation with the weak region above the middle

right side of the sample. The distribution of cracks is similar except for the reverse.
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tensile

damage

shear

damage

(a) (b) (c)

Figure II .16: Triaxial compression test on sandstone under Pc=5MPa. Crack path at

the load of displacement: (a)u = 0.51mm; (b)u = 0.516mm; (c)u = 0.52mm (the 3 points

displayed in figure 10, Pc=5MPa).

In the phase-field model, the size of the effective elements does not have much effect

on the results. The results simulated by a coarse mesh with 5000 elements is used to

compared with the results simulated by the fine mesh(20000 elements) as in the Figure II

.17.
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Figure II .17: Axial (blue) and lateral (red) stress-strain curves of 5MPa confinement

test: comparison between coarse mesh (dotted line) and fine mesh (continuous lines).

In this simulation, the incremental displacement Δu plays an important role. We

compare the results simulated by different Δu as in the Figure II .18. The small Δu

is necessary to reduce the residue of coupling between the mechanical field and damage

fields, especially in the period with quickly producing of damage. This period is expressed

as a portion after the peak in the stress-strain curves.
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Figure II .18: Axial (blue) and lateral (red) stress-strain curves of 5MPa confinement

test: comparison between different load steps: Δu = 1 × 10−2mm (dash-dotted line)

Δu = 2× 10−3mm (dotted line) and Δu = 1× 10−3mm (continuous lines).

According to our model, the compressed shear energy are considered as the driving

quantity to create the shear fracture. This is a new way to simulate the compression test

by phase-field method.
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4.4 Triaxial compression test of Jinping marble

In order to compare the post-peak of stress-strain curve in the triaxial compression test,

we simulate triaxaial mechanical behavior of Jinping marble under confining pressure

Pc =4, 10, 20, 30 MPa [Liu and Shao, 2017]. The sample used has the same dimension

of 74mm × 37mm with a weak region as in the Figure II .13. The Young modulus and

Poisson’s ratio of the sample are 30 GPa and 0.15. The same mesh is used as the previous

test of sandstone. The incremental load of displacement is Δu = 1 × 10−3mm and the

width of the diffusive crack ld = 0.37mm.

The stress-strain relations of these tests are presented in the Figure II .20. According to

the use of the parameter β2 of the degradation function of shear damage h3(d
sh) (Figure

II .19), the post-peak regions are well reproduced compared with the experiment results.

The post-peak behavior can be explained as 2 parts. At first, minimum convergence

differential stress increases slightly during confining pressure increase. We interpret this

convergence stress as the residual resistance of the damaged material. It can be mathe-

matically reflected as the the degradation function h3(d
sh = 1) > 0, so we can obtain the

residual stiffness matrix in the totally broken material in the simulation. Secondly, the

downward trend of the curve in the post-peak region becomes smooth during the increase

of the confining pressure, which means that the speed of damage creation is slowed down

in our simulation. It can be mathematically reflected as the damage driving energy is

reduced by h3(d
sh). In this way, our model is allowed to correctly predict the behavior of

the brittle-ductile transition.

And the results also present the limit of our elastic-damage model, the lack of the consid-

eration of plastic behaviors conduits to the differences at the pre-peak region especially

under the high confining pressure.
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Figure II .19: The functions of degradation h3(d
sh) used under confining pressures Pc =4,

10, 20, 30 MPa.
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Figure II .20: Axial (blue) and lateral (red) strain versus differential stress in conven-

tional compression tests with different confining pressures Pc=4, 10 ,20, 30MPa: com-

parison between numerical results (continuous lines) and experiment data [Liu and Shao,

2017] (dotted line)
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The Figure II .21 presents the distribution of the damage at the failure state under the

different confining pressures. The color of the not totally broken area in the distributions

of shear damage is changed, which means that the average of shear damage value at the

failure moment is different. Under the high confining pressure, it needs higher average

damage to create the main damage. And the tensile damage can hardly be observed

under the high confining pressure. This is another way to explain the behavior of the

brittle-ductile transition.

tensile

damage

shear

damage

(a) (b) (c) (d)

Figure II .21: Triaxial compression test on sandstone. Crack path at the load of

displacement under different confining pressures: (a)Pc = 4MPa; (b)Pc = 10MPa;

(c)Pc = 20MPa; (d)Pc = 30MPa.

5 Conclusion

In this Chapter, a double crack phase-field model is proposed for modeling damage and

cracking process of cohesive brittle materials. Both tensile and shear cracks are taken

into account. The two types of the crack path can be directly observed during the failure

process. The two types of fracture behavior can be controlled by the adjustment of the

degradation function and density resistance energy gtc and gshc . With the elastic stiffness

decomposition, the crack fields can be coupled with both isotropic and anisotropic elastic
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materials.

Our model based on a new decomposition of driving energy has a good agreement in the

benchmark problem compared with the other classic phase-field model.

Unlikely other phase-field model, our model works well in the triaxial compression test

with brittle rock-like material such as sandstone and Jinping marble. The crack path can

be reproduced under the elasticity-damage condition. It is found that under dominating

compression stresses, the shear cracking is the main mechanism and the failure is induced

mainly by the onset of localized shear bands. But as we all know that plastic deformation

plays an important role for more ductile material, the elasto-plastic damage model would

be considered with the double crack phase-field method in the next Chapter.
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Chapter III

A double phase-field method for

quasi-ductile rock-like materials
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1 Introduction

In this Chapter, the double crack phase-field method, which is introduced in the previous

chapter, is extended to describe the elastic-plastic damage behavior. Two independent

crack-phase fields are introduced to account for the tensile and shear cracks respectively.

Two boundary values problems are solved to determine the evolutions of these two crack

phases, which are both coupled with plastic deformation. The regularized variational

framework and the thermodynamics framework is defined to take into account the plastic

effect. The weak forms of the finite element method are formulated to the solution of crack

fields and displacement field with respect to the plastic function. A simplified numerical
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algorithm is proposed to solve the three coupled fields. The proposed double field method

is finally applied to study the mechanical behavior of clayey rocks by considering the

transition from diffuse damage to localized cracking.

2 The double phase-field method for plastic materials

2.1 Regularized variational framework

In the framework of the variational approach to fracture mechanics proposed by Franc-

fort and Marigo [1998], an energy functional was introduced and it is composed of the

elastic strain energy and the energy requested to create the crack. With the regularized

smeared crack topology presented above, the energy requested to create the sharp crack

is approximated by that for the creation of regularized crack surfaces. Further, in the

present study, plastic deformation of bulk material is also taken into account. The locked

energy for plastic hardening is then added in the energy functional. Thus, the extended

form of the total energy functional is given by:

E(u, dt, dsh) = Eu(u, d
t, dsh) + Es(d

t, dsh)

Eu(u, d
t, dsh) =

�
ΩWe(�

e(u), dt, dsh)dΩ+
�
ΩWp(�

p(u), dt, dsh)dΩ

Es(d
t, dsh) = gtc

�
Ω γt(dt,∇dt)dΩ+ gshc

�
Ω γsh(dsh,∇dsh)dΩ

(III .1)

We is the elastic strain energy of cracked material while Wp the locked energy for plastic

hardening. The parameters gtc and gshc are the material toughness respectively for tensile

and shear cracks. Note that the total functional E can also be rewritten in the following

form:

E(u, dt, dsh) =

�

Ω
W (u, dt, dsh)dΩ (III .2)

with

W (u, dt, dsh) = We(�
e(u), dt, dsh) +Wp(�

p(u), dt, dsh) + gtcγ
t(dt,∇dt) + gshc γsh(dsh,∇dsh)

(III .3)

which can be identified as the free energy.

In order to take into account an anisotropic elastic behavior and the distinctive effects

of tensile and shear cracks on the elastic properties of material, the elastic strain energy

of undamaged material is decomposed into a spherical part and a deviatoric part:

W 0
e (�

e) = W 0
sph(�

e) +W 0
dev(�

e) =
1

2
�e : C0

sph : �e +
1

2
�e : C0

dev : �e (III .4)
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The spherical and deviatoric elastic stiffness tensors C0
sph and C0

dev are defined as:





C0
sph = k0reuss1

�
1;

C0
dev = C0 − C0

sph

(III .5)

C0 denotes the total initial elastic stiffness tensor of undamaged material and k0reuss is

the so-called Reuss bulk modulus. Compared with other decompositions of elastic tensors

[Miehe et al., 2010b], the present one is particularly suitable for anisotropic elastic mate-

rials. In order to distinguish the different effects of open and closed cracks, the following

crack status coefficient r±e is introduced:





if tr(�e) >= 0 : r+e = 1, r−e = 0

if tr(�e) < 0 : r+e = 0, r−e = 1

(III .6)

The elastic properties of material are progressively deteriorated by induced cracks.

This is interpreted by the progressive degradation of the elastic stiffness tensor through

the following relations:

We(�
e, dt, dsh) = {r+e h1(dt) + r−e }W 0

sph + {r+e h2(dt)h3(dsh) + r−e h3(d
sh)}W 0

dev (III .7)

It is assumed that the degradation functions h1−3(d
t, dsh) take the following forms:





h1(d
t) = (1− β1d

t)2

h2(d
t) = (1− β2d

t)2

h3(d
sh) = (1− β3d

sh)2

(III .8)

The parameters β1, β2 and β3 are used to reflect the residual elastic stiffness of damaged

material. The physical interpretation of elastic energy decomposition with respect to

degradation by open and closed cracks is illustrated in Figure III .1.
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spheric/deviatoric open/closed mode degradation

spheric energy

open crack h1(d
t)

closed crack -

deviatoric energy

open crack h2(d
t)h3(d

sh)

closed crack h3(d
sh)

Figure III .1: Physical interpretation of elastic energy decomposition with respect to

degradation by open and closed cracks

The work related to plastic strain is generally composed of two parts: the plastic

dissipation and the locked energy for plastic hardening Wp. The locked energy is assumed

to contribute to the total energy functional. For the sake of simplicity, the locked plastic

energy is calculated as a part of the total plastic work. For the undamaged material, one

has:

Ẇ 0
p (�̇

p) = (1− η)σ : �̇p (III .9)

0 � η � 1 is the so-called Taylor-Quinny coefficient used to determine the ratio of locked

energy to the total plastic work. The effect of locked plastic energy on the phase-field evo-

lutions also depends on the crack status. Therefore, the following crack status coefficient
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is introduced: 



if tr(�p) >= 0 : r+p = 1, r−p = 0

if tr(�p) < 0 : r+p = 0, r−p = 1

(III .10)

Finally, the contribution of locked plastic energy to the total energy functional is given

by:

Ẇp = {r+p h2(dt)h3(dsh) + r−p h3(d
sh)}Ẇ 0

p (III .11)

The accumulated value of locked plastic energy Wp is obtained by the summation of each

incremental value during loading history.

2.2 Evolution of crack phase fields

It is assumed that the total strain rate verifies the following partition rule: � = �e + �p.

Further, with the assumption of isothermal conditions, the Clausius-Duhem inequality can

be written as:

D = σ : (�̇e + �̇p)− Ẇp − Ẇ � 0 (III .12)

It is assumed that the dissipations related to plastic strain and crack growth are respec-

tively positive. Hence, one gets:

σ =
∂W

∂�e
= [r+e h1(d

t) + r−e ]C0
sph : �e + [r+e h2(d

t)h3(d
sh) + r−e h3(d

sh)]C0
dev : �e (III .13)

σ : �̇p − Ẇp � 0 (III .14)

Aαḋα � 0 (III .15)

Aα = − ∂W
∂dα is the thermodynamic force associated with the crack phase field dα (α = t, sh).

Further, it is assumed that the threshold function Fα(Aα) governing the crack phase field

evolution is simply written as:

Fα(Aα) = Aα ≤ 0 (III .16)

Taking into account the irreversible condition of crack growth, one gets for ḋα > 0, Fα = 0.

It is:

Fα = −{∂(We +Wp)

∂dα
+ gαc δγ

α(dα)} = 0 (III .17)
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where δγα(dα) is the variational derivative of the crack density function [Miehe et al.,

2010b]. By considering the definitions of different parts of energy in Eq. III .3, one gets:





−r+e h
�
1W

0
sph − h�2h3(r

+
e W

0
dev + r+p W

0
p )− gtc(

1
ld
dt − l2dΔdt) ≤ 0

−h�3[r
+
e h2W

0
dev + r−e W

0
dev + r−p W

0
p ]− gshc ( 1

ld
dsh − l2dΔdsh) ≤ 0

(III .18)

In order to consider complex loading paths with unloading and reloading cycles and

considering that the crack growth is an irreversible process, a strain history functional

has been introduced in Miehe et al. [2010b]. Inspired by this, in this study, three energy

history functionals are defined as follows:





Hsph = max[r+e W
0
sph]

Ht
dev = max[h3(r

+
e W

0
dev + r+p W

0
p )]

Hsh
dev = max[r+e h2W

0
dev + r−e W

0
dev + r−p W

0
p ]

(III .19)

With these energy history functionals at hand, the evolutions of crack phase fields are

determined by the following criteria:

�
−h�1Hsph − h�2Ht

dev − gtc(
1
ld
dt − l2dΔdt) = 0

−h�3Hsh
dev − gshc ( 1

ld
dsh − l2dΔdsh) = 0

(III .20)

3 Numerical implementation in finite element method

We consider here two crack phase fields in the solid body Ω subjected to the body force

fb in Ω, the surface force tN on its boundary ∂Ωf and the prescribed displacement u on

its boundary ∂Ωu, as shown in Figure II .2. The total potential energy can be written as:

Π = E(u, dt, dsh)−
�

Ω
fb · udΩ−

�

∂Ωf

tN · udA (III .21)

The stationarity condition of the potential energy δΠ = 0 leads to three coupled

boundary values problems respectively for the displacement field, the tensile crack phase

field and the shear crack phase field.

The local equations for the displacement field are written as:

�
∇ · σ + fb = 0 in Ω

σ · n = tN on ∂Ωt

(III .22)
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With the help of shape functions and related derivatives in finite elements, one obtains

the discrete weak form for the displacement field for the current loading step:




Ku�U = �F

Ku =
�
ΩBT

uCBudΩ

�F =
�
ΩNT

u�fbdΩ+
�
∂Ωf

NT
u�tNdA

(III .23)

Nu and Bu are respectively the matrix of shape functions and related derivatives of dis-

placement components. Ku is the global stiffness matrix. �U and �F respectively denote

the column matrix of increment nodal displacements and forces. The current elastic stiff-

ness matrix of cracked material is given by:

C(dt, dsh) = [r+e h1 + r−e ]C0
sph + [r+e h2h3 + r−e h3]C0

dev (III .24)

For the tensile crack phase field, one has the following local equations:




h�1Hsph + h�2Ht
dev + gtc(

1
ld
dt − l2dΔdt) = 0 in Ω

ḋt ≥ 0 in Ω

dt = 1 on Γt

∇dt · n = 0 on ∂Ω

(III .25)

and for the shear crack phase field:




h�3Hsh
dev + gshc ( 1

ld
dsh − l2dΔdsh) = 0 in Ω

ḋsh ≥ 0 in Ω

dsh = 1 on Γsh

∇dsh · n = 0 on ∂Ω

(III .26)

Similar to the displacement field, the two crack phase fields and their gradients inside each

element are also approximated by the nodal values by using appropriate shape functions

and related derivatives. With such approximations, the weak forms and discrete systems

of equations are obtained for each crack phase field. Namely, for the tensile cracks field,

one gets:





Kdtd
t = Fdt

Kdt =
�
Ω{(gtc ld + 2β2

1Hsph + 2β2
2Ht

dev)N
T
dNd + gtcldB

T
dBd}dΩ

Fdt =
�
Ω 2(β1Hsph + β2Ht

sph)N
T
d dΩ

(III .27)
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and for the shear crack field:





Kdshd
sh = Fdsh

Kdsh =
�
Ω{(gtc ld + 2β2

3Hsh
dev)N

T
dNd + gtcldB

T
dBd}dΩ

Fdsh =
�
Ω 2β3Hsh

devN
T
d dΩ

(III .28)

Nd and Bd are the shape functions and related derivatives for two crack phase fields.

It is obvious that three fields are coupled. The calculation of displacement field is

influenced by the crack phase fields due to the fact that the elastic stiffness matrix C(x)
is a function of dt(x) and dsh(x). On the other hand, the evolutions of crack fields are

controlled by the energy history functionals which are functions of elastic and plastic

strains. Moreover, in this study, the plastic strain of material is considered. For most

geomaterials, a non-associated plastic flow rule is generally needed. The incremental

plastic strain is calculated by the following general constitutive relations.





fp(σ; γp) ≤ 0

�̇pfp = 0

�̇p = λ̇p ∂Gp(σ)
∂σ

fp and Gp are respectively the yield function and plastic potential. γp is an internal plastic

hardening variable. λp is the positive plastic multiplier.

The loading history is divided into a number of incremental steps. At each loading

step, three coupled nonlinear problems are to be solved. In this study and based on some

previous studies, a simplified decoupled algorithm is adopted. At each loading step, the

displacement field is first solved by using the values of crack fields obtained at the end

of the previous stop. However, due to the plastic deformation, even the crack fields are

frozen, an iterative procedure is still necessary to solve the nonlinear mechanical problem.

After the determination of displacement, stress and strain fields, the values of energy

history functionals are evaluated and the two crack fields are updated separately. A brief
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summary of the algorithm is presented below.

Algorithm 1: Simplified algorithm for loading step i+ 1

Input: �ie, �
i
p, σ

i, γip, d
t
i, d

sh
i

Output: �i+1
e , �i+1

p , σi+1, γi+1
p , dt

i+1, d
sh
i+1

for m = 1...niter do

update nodal force: Δfm = Δfi+1 +Δfm−1
r

calculate nodal displacement increment: ΔUm = K−1
u (dt

i,d
sh
i )ΔFm

update strains: Δ�m = BΔUm; Δ�me = Δ�m −Δ�m−1
p

calculate elastic trial stress: σm−tri
i+1 = σi + C(dt

i,d
sh
i ) : Δ�me

internal iteration for plastic strain calculation: Δ�mp

end for

update plastic strain and hardening variable: �i+1
p = �ip +Δ�i+1

p ; γi+1
p = γip +Δγi+1

p

update elastic strain: �i+1
e = �ie + (Δ�i+1 −Δ�i+1

p )

update stress: σi+1 = σi + C(dt
i,d

sh
i ) : Δ�i+1

e

calculate energy history functionals:

Hsph(�
i+1
e ), Ht

dev(�
i+1
e , �i+1

p ,σi+1), Hsh
dev(�

i+1
e , �i+1

p ,σi+1)

update crack phase fields: dt
i+1 and dsh

i+1

During the calculation of displacement field, the stiffness matrix C is influenced by

dt and dsh; on the other side, the damage degrees dt and dsh are solved by the damage

driving energy which is dependent on the elastic and plastic strain.

4 Numerical experiments

In this section, the prosed double crack phase fields model is applied to studying the

mechanical behavior of a typical cohesive brittle material, the Callovo-Oxfordian clay-

stone. This rock has been widely investigated in the framework of geological disposal of

nuclear waste in France [Armand et al., 2017, 2013]. In this study, the objective is to

reproduce the full mechanical response during triaxial compression tests by considering

the nucleation, propagation and coalescence of micro-cracks. Consequently, both pre- and

post-peak responses are investigated with the help of two crack phase fields.

The plastic behavior of claystone is described by a very simple model including the

Drucker-Prager linear yield function, an isotropic hardening law and a non-associated
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plastic potential. They are summarized as follows:




Yield function: fp = q + αp(p− C) ≤ 0

Hardening law: αp = α0 + (αm − α0)
γp

B+γp

Plastic potential: G = q + (C − p)ln(C−p
P̄

)

(III .29)

p = tr(σ)/3 is the mean stress. q =
�

2(s : s)/3 is the equivalent shear stress (called

deviatoric stress), with s being the deviatoric stress tensor. C is the yield threshold in

hydrostatic tension. αp denotes the current frictional coefficient varying from the initial

value α0 to the asymptotic one αm. The parameter B controls the plastic hardening rate.
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Figure III .2: The stress-strain curves of a uniaxial compression test. The elasto-plastic

model only considers hardening function.

4.1 Tri-axial compression test simulated under plan strain condition

At first, we concern to study the sensitivity of different confining pressure. A series of

triaxial compression tests were performed on cylindrical samples under different values of

confining pressure Pc = 0, 2, 5, 10 and 20MPa. The size of cylindrical samples is 74mm

in height and 37mm in diameter. For the sake of simplicity, numerical calculations are

here performed under plane strain conditions on the vertical cross section of samples. The

geometrical domain and boundary conditions are illustrated in Figure III .3(a). The mesh

contains 5000 4-nodes elements and 5151 nodes.
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The basic mechanical properties used in the calculations are as follows: Young’s mod-

ulus E =4GPa, Poisson’s ratio ν =0.2, C=10.8MPa, B=0.2×10−4, α0 = 0.25. It is found

that the value of αm seems to be dependent on confining pressure. With giving an explicit

relationship of this dependency, its value varies from 1.5 to 1 when the confining pressure

changes from Pc = 0MPa to Pc = 20MPa.

The elastic stiffness degradation parameters β1 and β2 are equal to 1. β3 is found

dependent on confining pressure. Its values varies from 1 to 0.7 for the confining pressure

is increased from Pc = 0MPa to Pc = 20MPa. The Taylor-Quinny coefficient for the

plastic locked energy is taken as η = 0.5.

Concerning the crack fields evolutions, the toughness for tensile crack is taken as

constant, gtc = 8 × 10−3kN/mm. However, the toughness for shear crack gshc is found

increasing with the confining pressure. Its values varies from 8 × 10−3kN/mm to 14 ×
10−3kN/mm when the confining pressure changes from 0MPa to 20MPa. The length scale

parameter is taken as ld = 0.37mm which is equal to the side length of the smallest

element.

(a)

u(t)

74mm

37mm

PcPc

(b)

u(t)

PcPc

weak region

(c)

u(t)

PcPc

weak region

Figure III .3: (a)The dimension and the boundary conditions of triaxial compression

test; (b)(c) 2 localizations of weak region

In order to facilitate the onset of macroscopic fracture, two cases of weak region is

placed at the center of sample, as shown Figure III .3(b)(c). The size of weak region is

equal to that of one element. In the weak region, the values of toughness parameters gtc

and gshc are reduced by 1%. In this first test, we use the case 1.

In Figure III .4, axial strains versus daviatoric stress curves are presented for four

triaxial compression tests. The calculations are performed by using the displacement

increment of Δu = 1 × 10−3mm in each loading step and with the weak element at the

center of domain. A very good agreement is obtained between the numerical results and

experimental data of axial strains found in Armand et al. [2013], Hoxha and Auvray [2004].

Unfortunately, no lateral strains were recorded in those tests. For all tests, both the pre-
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and post-peak responses are well reproduced. With the help of crack phase fields, the

material softening in the post-peak regime is correctly described. Note that only a plastic

hardening law is used in the plastic model. The material softening is entirely induced by

the nucleation and propagation of cracks represented here by the two phase fields. Further,

the transition from the brittle to ductile behavior with in increase of confining pressure is

also well reproduced. The post-peak material softening is more abrupt when the confining

pressure is lower. This means that the nucleation and propagation of cracks is attenuated

by the increase of confining pressure. Finally, with the help of the specific degradation

laws used for the elastic stiffness, the residual strength of material is also well described.
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Figure III .4: Axial and lateral strains versus deviatoric stress of the COx claystone in

triaxial compression tests with different confining pressures: comparisons between numer-

ical results and the experimental data given in Armand et al. [2013], Hoxha and Auvray

[2004].

4.2 Plastic deformation effect

In this section, the effect of plastic deformation on the mechanism of cracking and macro-

scopic response of material is investigated. For this purpose, the experimental data ob-

tained from a second series of triaxial compression tests on the Cox claystone are used. In

this second series, both axial and lateral strains were measured. However, the tests in this

series were performed on a group of samples taken at a different depth than those in the

first series [Armand et al., 2017]. As the mineralogical compositions vary with the depth,
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the mechanical responses are also dependent on the depth. However, the influences of min-

eralogy on the mechanical behavior of the claystone are not investigated in detail here.

These influences are taken into account only by considering another set of parameters,

given as follows. The elastic parameters remain unchanged with respect to the first series

of tests. The tensile toughness is taken constant as gtc = 7.2 × 10−3kN/mm. The shear

toughness is affected by confining pressure and taken as gshc = 7.2× 10−3, 9.4× 10−3 and

11 × 10−3kN/mm respectively for Pc =2MPa, 6MPa and 12MPa. Regarding the degra-

dation parameters, β1 = 1.0 and β2 = 1.0 are kept constant while β3 = 0.85, β3 = 0.8

and β3 = 0.7, respectively for Pc =2MPa, 6MPa and 12MPa. The plastic parameters are

given as: C = 7.8MPa, B = 1.2× 10−4, α0 = 0.25, αm = 1.2, 1.2 and 1.0 respectively for

Pc =2MPa, 6MPa and 12MPa. The Taylor-Quinny coefficient η = 0.5 is taken constant.

The length scale parameter is ld = 0.37mm.

The geometry and boundary conditions as well as the finite element mesh are the same

as those in the previous calculations. In Figure III .5, one presents the stress-strain curves

for three values of confining pressures, obtained by using the double phase-field model with

plastic deformation. As for the first series of tests, one obtains again a good agreement

between numerical results and experimental data for all the tests and for both the pre-

and post-peak regimes. The consequence of cracking process on the macroscopic behavior

is well captured.
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Figure III .5: Axial and lateral strains versus differential stress in triaxial compression

tests with different confining pressures (2, 6, 12MPa): comparisons between numerical

results (continuous line) with consideration of plastic deformation and the experimental

data (dotted lines with triangles) reported in Armand et al. [2017]

For the purpose of comparison, the same tests are also simulated by using the double

phase-field model without considering plastic deformation. The obtained results are pre-

sented in Figure III .6. It is clear that the inelastic deformation before the peak stress is

significantly under-estimated if the plastic deformation is neglected. Further, the response

in the post-peak regime is also a bit less well described.
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Figure III .6: Axial and lateral strains versus differential stress in triaxial compression

tests with different confining pressures (2, 6, 12MPa): comparisons between numerical

results (continuous line) without consideration of plastic deformation and the experimental

data (dotted lines with triangles) reported in Armand et al. [2017].

The effect of plastic deformation on the cracking growth is also investigated. By

using the weak element located at the center of sample as shown in Figure III .3(b), the

distributions of tensile and shear crack fields obtained by the elastic crack model and the

elastic-plastic crack model are respectively presented in Figure III .7 and Figure III .8, for

four different levels of axial strain in the post-peak regime.

From these results, it is found that the cracking pattern is clearly affected by the

plastic deformation. In the elastic-crack, no tensile cracks are observed. In the elastic-

plastic crack model, both tensile and shear cracks are obtained. The tensile cracks are

due to the dilatant plastic volumetric strain. The shear cracking remains the dominant

mechanism due to the action of deviatoric stress in triaxial compression tests. Moreover,

two shear bands are formed in the elastic crack calculations while one single shear band is

created in the elastic-plastic crack calculations. The inclination angle of shear bands is also

different between two models. It seems that the shear band obtained in the elastic-plastic

calculations is in good agreement with the failure modes observed in triaxial compression

tests [Armand et al., 2017].
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tensile
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(a) (b) (c) (d)

Figure III .7: Distributions of tensile/shear damage under Pc=12MPa. Results simu-

lated by elastic damage model. During the post-peak at the load of axial strain: (a) �a =

1.35%, (b) �a = 1.4%, (c) �a = 1.5%, (d) �a = 1.55%.
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Figure III .8: Distributions of tensile/shear damage and equivalent plastic strain under

Pc=12MPa. Results simulated by elasto-plastic damage model. During the post-peak at

the load of axial strain: (a)�a = 2.1%; (b)�a = 2.15%; (c)�a = 2.2%; (d)�a = 2.25%.

Figures III .9-III .11 present results simulated by the case 2 of weak region: the weak

region is located in the lower-right point of the sample as shown in Figure III .3(c). The

Figure III .9 presents the results simulated by the elastic damage model. And the Figures

III .10 and III .11 present the results simulated by the elasto-plastic damage model using

different Taylor-Quinny coefficient η (defined in Eq. III .9).
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In the results of elastic damage model(Figure III .9), there’s only shear damaged zone

which propagates from the weak region. And it reaches to the middle point of the left side

of the sample.

And then, if we add the influence of plasticity, like in Figure III .10, η = 0.5, the half

energy of plasticity is considered as the dissipated energy to transfer to the thermal energy,

and the rest energy is considered as the stored energy, which become a part of the damage

driving quantity. As the results presented, the shear damaged zone has the same form

like in the Figure III .9. But the angle of the propagation is changed, the damaged zone

reached to the point higher than the middle point of the left side of sample because of the

contributions of plastic stored energy.

And if we reduce the value of η to 0.1, there’s more plastic energy participates to create or

propagate the damage. We can obtain the results presented as in the Figure III .11. The

shear damaged zone appears almost from the lower-right point to the upper-left point of

the sample. But it doesn’t cross the weak region located.
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Figure III .9: Distributions of tensile/shear damage under Pc=12MPa. Results simu-

lated by elastic damage model. During the post-peak at the load of axial strain: (a)�a =

1.35%; (b)�a = 1.4%; (c)�a = 1.45%; (d)�a = 1.55%.
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Figure III .10: Distributions of tensile/shear damage and equivalent plastic strain under

Pc=12MPa. Results simulated by elasto-plastic damage model with η = 0.5. During the

post-peak at the load of axial strain: (a)�a = 2.15%; (b)�a = 2.2%; (c)�a = 2.25%; (d)�a

= 2.3%.
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Figure III .11: Distributions of tensile/shear damage and equivalent plastic strain under

Pc=12MPa. Results simulated by elasto-plastic damage model with η = 0.1. During the

post-peak at the load of axial strain: (a)�a = 2.05%; (b)�a = 2.1%; (c)�a = 2.15%; (d)�a

= 2.2%.

Both of the distributions of damaged zone simulated by elasto-plastic damage model

are meaningful, they reproduce the features of crack path in the compression tests. The

different location of weak region and different ratio of plastic energy dissipated are con-
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sidered in the simulation to march the different possibility in the real experiment.

5 Conclusion

In this Chapter, the double crack phase-field method is developed to adapt to the elasto-

plastic damage model. Both tensile and shear cracks as well as plastic deformation are

taken into account. The evolutions of two crack fields are determined within the framework

of irreversible thermodynamics and coupled with elastic and plastic strains. Plastic defor-

mation plays an important role in clayey rocks by controlling the pre-peak deformation and

affecting the shear band evolution in the post-peak regime. The double phase-field model

brings a significant improvement of classical single phase-field models for predicting crack-

ing process in rock-like materials. The adding plastic function improves the simulation

results of ductile rock-like material very well in the triaxial compression tests.
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1 Introduction

As part of the feasibility study for deep radioactive waste disposal, it is necessary to

conduct coupled thermo-hydro-mechanical modeling. To carry out this type of modeling,
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the thermo-poromechanical behavior of the rocks is one of the essential stages. In the

previous chapter, we found that the mechanical behavior of the COx claystone can be

described by an elasto-plastic model coupled to the damage by using proposed double

phase-field method.

In this Chapter, we first propose to formulate the model of thermo-poroelastic behavior

and to define the general equations that govern thermo-hydro-mechanical modeling. The

first studies about the solid-fluid coupling in porous media were conducted by Terzaghi

who introduced the effective stress concept in soil mechanics. Biot[Biot, 1941, 1956, 1973]

generalized the Terzaghi’s work for cohesive materials such as porous rock and defined

a poroelasticity theory. And thanks to the general formulation of the thermo-hydro-

mechanics of porous material proposed by Coussy. This model will be the basic model for

our study. And then, the damage fields are considered as independent fields to participate

the coupling of THM fields. After several verification examples which used to check our

code of modeling, we shall use 3 examples to show the functions of our THM damage

coupling at the last of this Chapter.

2 Theory of THM coupling

The porous medium is considered an open thermodynamic system that exchanges fluid

mass and heat with the outside. We limit our discussion to cases of infinitesimal transfor-

mations. The state variables used are therefore the deformation tensor ¯̄�, the fluid mass

input per unit of initial volume of the porous medium m and the temperature T. Under

the condition of the natural initial state(no initial stress), we have the quadratic form of

free energy as:

ψ = g0mm− s0θ +
1

2
¯̄� : C : ¯̄�− (

m

ρf0
)M ¯̄B : ¯̄�− θ ¯̄A : ¯̄�− (s0m − L∗)mθ +

1

2
M(

m

ρf0
)2 − 1

2

Cp

T0
θ2

(IV .1)

The parameter g0m is the free enthalpy of the fluid per unit of mass, s0 is the initial

entropy of the system. θ is the temperature variation with respect to the reference state,

defined by θ = T − T0. The 4th order symmetric tensor, C, denotes the elastic tensor

in undrained(m=0) and isotherm(θ = 0) condition. ρf0 is the initial density of the fluid.

The scalar M is the Biot modulus and the 2ed order tensor, ¯̄B, is the tensor of the Biot

coefficients. L∗ is the latent heat of fluid supply with constant deformation. Cp is the

volumetric heat for constant deformation under undrained conditions.

With this global free energy equation at hand, the state equation can be deduced from
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the potential as:

¯̄σ = C : ¯̄�−M ¯̄B(
m

ρf0
)− ¯̄Aθ (IV .2)

gm = g0m − (
1

ρf0
)M ¯̄B : ¯̄�− (s0m − L∗)θ +

1

ρf0
M(

m

ρf0
) (IV .3)

s = s0 + s0mm+ ¯̄A : ¯̄�− L∗m+ βθ (IV .4)

using the linear fluid state equation:

gm = g0m +
p− p0

ρf0
− s0m(T − T0) (IV .5)

the Eq. (IV .3) can be expressed in terms of the pore pressure:

p = p0 +M(− ¯̄B : ¯̄�+
m

ρf0
) + ρf0L

∗θ (IV .6)

and then, we rewrite Eq. (IV .2) and Eq. (IV .4) with the help of Eq. (IV .6) to obtain

the state equations in the drained condition:

¯̄σ = Cb : ¯̄�− ¯̄B(p− p0)− ¯̄Abθ (IV .7)

s = s0 + s0mm+ ¯̄Ab : ¯̄�+
Cb
p

T0
θ (IV .8)

with:

Cb = C−M( ¯̄B ⊗ ¯̄B) (IV .9)

¯̄Ab = ¯̄A− 3αmM ¯̄B (IV .10)

3αm = ρf0L
∗/M (IV .11)

Cb
p = Cp − 9T0α

2
mM (IV .12)

the use of ∗b presents the parameter in the drained condition, and αm is the coefficients

of differential thermal expansion between drained and undrained condition.

Now we can write the tensor of the effective stresses of Biot for the elastic deformations

¯̄σef :

¯̄σef = Cb : ¯̄�− ¯̄Abθ (IV .13)

and

¯̄σef = ¯̄σ + ¯̄B(p− p0) (IV .14)

here, if ¯̄B = ¯̄1, then ¯̄σef = ¯̄σ + ¯̄1(p − p0), which we can find the Terzaghi concept in soil

mechanics.
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In the case of isotropic porous material, we have:

C = (K − 2

3
µ)J+ 2µI, ¯̄B = b¯̄1, ¯̄A = a¯̄1 (IV .15)

With the isotropic parameters at hand, we can rewrite Eq. (IV .7), (IV .6) and (IV .8) as:

¯̄σ − ¯̄σ0 = 2µ¯̄�+ (K − 2

3
µ)tr(�)¯̄1−Mb(

m

ρf0
)¯̄1− aθ¯̄1 (IV .16)

p− p0 = M(−b : ¯̄�+
m

ρf0
) + 3αmθ (IV .17)

s− s0 = atr(¯̄�) + (s0m − L∗)m+
Cb
p

T0
θ (IV .18)

At last, we rewrite the Eq. (IV .16) and (IV .18) with the help of Eq. (IV .6), we

have:

¯̄σ − ¯̄σ0 = 2µb¯̄�+ (Kb − 2

3
µb)tr(�)¯̄1− b(p− p0)

¯̄1− abθ¯̄1 (IV .19)

s− s0 = abtr(¯̄�) + s0mm− 3αm(p− p0) +
Cb
p

T0
θ (IV .20)

with the relations form between drained and undrained parameters:





Kb = K − b2M ;

µb = µ;

ab = a− 3αmMb;

ab = 3Kbαb;

a = 3Kα;

Cb
p = Cp + 9T0α

2
mM.

(IV .21)

In these group of form of isotropic porous material, K and µ present the bulk modulus

and shear modulus. b presents the Biot coefficient.

Now we have seven independent parameters. Two elastic parameters of the porous medium

under drained and isothermal conditions: Kb and µb; Five THM coupling parameters: b,

M, αb, αm and Cb
p. The elastic parameters can be obtained by the classic method based on

the elastic theory. And the THM coupling parameters can be determined by the specific

tests(Shao and Giraud 2002).

In addition, micromechanical analyzes make it possible to determine the relationships

between the coupling parameters and the properties of the constituents of the porous

material(Auriault and Sanchez-Palencia, 1977 ; Cheng 1997 ; Lydzba and Shao 1999). For

the isotropic porous material, we have the relations between the THM coupling parameters
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as: 



b = 1− Kb
Ks

;
1
M = b−φ

Ks
+ φ

Kf
;

αm = (b− 1)αb + (1− φ)αs + φαf ;

Cb
p = (1− φ)Cs

p + ρ0fφCp.

(IV .22)

Ks is the bulk modulus of the solid matrix and Kf is for saturating fluid. φ presents the

connected porosity. αs and αf are the dilation coefficients relating to the solid matrix and

the fluid. Cp is the the specific heat of the fluid at constant pressure. Cb
p is the density heat

drained with constant stresses and is deduced from the volume heat drained at constant

strain.

3 Numerical implementation in finite element method

Here, we can obtain the equilibrium equations for the quasi static problem of a porous

medium:

div(¯̄σ) + Fv = 0 (IV .23)

For the fluid diffusivity equation, il should use the Darcy law and law of conservation of

mass: �
ω̄
ρf

= k(−∇p+ ρf ḡ)

ṁ = −divM̄
(IV .24)

in infinitesimal transformation, we have ω̄ � M̄ , then:

ṁ = div[ρf0k(−∇p+ ρf ḡ)] (IV .25)

in our study, we can ignore the mass of fluid, the we have:

ṁ

ρf0
= kdiv(∇(p− p0)) (IV .26)

with the help of IV .17, we can obtain fluid diffusivity equation as:

kdiv(∇p) =
1

M

∂p

∂t
+ b

∂�kk
∂t

− 3αm
∂θ

∂t
(IV .27)

For the heat diffusivity equation, it should use the Fourier law and Laws of thermody-

namics, we can obtain:

Tdiv(M̄sm) + ṡbT − k∇p �∇p = λdiv(∇θ) (IV .28)
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with the help of IV .18, we can obtain heat diffusivity equation as:

λdiv(∇θ) = Cb
p

∂θ

∂t
− 3αmT0

∂p

∂t
+ 3αbKbT0

∂�kk
∂t

− k∇p(Cp∇θ) (IV .29)

Following the Galerkin method, the weak form of displacement, pore pressure and

temperature can be written as:
�

Ω
δ¯̄� : Cb : ¯̄�dV −

�

Ω
δ¯̄� : (δp) ¯̄IdV −

�

Ω
δ¯̄� : (3αbKbT )

¯̄IdV =

�

St̄

t̄δūdS (IV .30)

�

Ω
k∇p∇(δp)dV =

�

Sω

kδp∇pn̄dS −
�

Ω

1

M

∂p

∂t
δpdV −

�

Ω
b
∂�kk
∂t

δpdV +

�

Ω
3αm

∂θ

∂t
δpdV

(IV .31)

�

Ω
λ∇T∇(δθ)dV =

�

Sq

λδT∇T n̄dS −
�

Ω
Cb
p

∂θ

∂t
δθdV −

�

Ω
(3αbKbT0)

∂�kk
∂t

δθdV

+

�

Ω
(3αmT0)

∂p

∂t
δθdV +

�

SΩ

k∇p(Cp∇θ)δθdV

(IV .32)

And then, with the help of the shape functions Nu and Np and the matrix of shape

functions derivatives Bu and Bp, the nodal values of the displacement Ū , the pore pressure

P̄ , temperature¯and their gradient values can be approximated in one element by:

ū = NuŪ , p = NpP̄ , θ = NpT̄ (IV .33)

¯̄� = BuŪ , ∇p = BpP̄ , ∇θ = BpT̄ (IV .34)

and we have the same approximation for the nodal incremental functions of them by:

Δū = NuΔŪ , Δp = NpΔP̄ , Δθ = NpΔT̄ (IV .35)

Δ¯̄� = BuΔŪ , ∇(Δp) = Bp(ΔP̄ ), ∇(Δθ) = Bp(ΔT̄ ) (IV .36)

and for the nodal trial functions by:

δū = NuδŪ , δp = NpδP̄ , δθ = NpδT̄ (IV .37)

δ¯̄� = BuδŪ , ∇(δp) = Bp(δP̄ ), ∇(δθ) = Bp(δT̄ ) (IV .38)

At last, with the help of the approximation functions, we obtain the discrete system

by [Shao et al., 1993]:




RuuŪ + CupP̄ + CuT T̄ = F̄e

RppP̄ +Mpp
∂P̄
∂t + Cpu

∂Ū
∂t + CpT

∂T̄
∂t = F̄ω

RTT T̄ +MTT
∂T̄
∂t + CTu

∂Ū
∂t + CTp

∂P̄
∂t = F̄q

(IV .39)
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with the definitions of the matrix by:





Ruu = −
� t
ΩBu(Cb)BudV

Cup =
� t
ΩBu(b)NpdV

CuT =
� t
ΩBu(3αbKb)NpdV

ΔF̄e = −
� t
st̄
Nut̄dS

(IV .40)





Rpp = −
� t
ΩBp(k)BpdV

Mpp =
� t
ΩNp(

1
M )NpdV

Cpu =t Cup

CpT =
� t
ΩNp(−3αm)NpdV

ΔF̄ω = −
� t
sω

NpdS

(IV .41)





RTT = −
� t
ΩBp(

λ
T0
)BpdV

CTu =t CuT

MTT =
� t
ΩNp(

Cp

T0
)NpdV

CTp =
t CpT

ΔF̄q = −
� t
sq
NpdS

(IV .42)

In this study, in order to easily handle the non-linearities of the problem, we use the

incremental method to solve the problem.

At first, the temporal discretization of the main unknowns x which presents Ū , P̄ and T̄

can be written as the Euler method form:

x(t+ §Δt) = (1− §)x(t) + §x(t+Δt), § ∈ [0, 1] (IV .43)

d

dt
x(t+ ∂Δt) =

x(t+Δt)− x(t)

Δt
=

Δx

Δt
(IV .44)

And then, we can rewrite the Eq. IV .23, IV .27 and IV .29 as:





div(Δ¯̄σ) +ΔFv = 0

kdiv(∇p§) = 1
M

Δp
Δt + bΔ�kk

Δt − 3αm
Δθ
Δt

λdiv(∇θ§) = Cb
p
Δθ
Δt − 3αmT0

Δp
Δt + 3αbKbT0

Δ�kk
Δt − k∇p§(Cp∇θ§)

(IV .45)

with the respect of: �
p§ = pn + §Δp, pn = p(tn)

θ§ = θn + §Δθ, θn = θ(tn)
(IV .46)

After discretization in space and time, the linear system of THM coupling can be

written as:
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



RuuΔŪn+1 + CupΔP̄n+1 + CuTΔT̄n+1 = ΔF̄n+1
e

(Δtn+1Rpp +Mpp)ΔP̄n+1 + CpuΔŪn+1 + CpTΔT̄n+1 = Δtn+1(−RppP̄n +ΔF̄n+1
ω )

(Δtn+1RTT +MTT )ΔT̄n+1 + CTuΔŪn+1 + CTpΔP̄n+1 = Δtn+1(−RTT T̄n +ΔF̄n+1
q )

(IV .47)

by using explicit method § = 1, the relation between time step n and n+1 used is:





Ūn+1 = Ūn +ΔŪn+1

P̄n+1 = P̄n +ΔP̄n+1

T̄n+1 = T̄n +ΔT̄n+1

(IV .48)

4 The coupling of THM-d

In order to consider the impact of damage for THM coupling, we introduce the double

phase-field method. As we can see in the previous chapter, the phase-field method has an

independent field to describe the variation of the damage. The damage is considered as

an independent field to be coupled with mechanical field. Based on this feature, the new

coupling is considered as the coupling between five fields: the temperature field, the pore

pressure field, the mechanical field , the tensile and shear damage fields. These 5 fields

can be solved by the partial differential equations themselves. And the couplings of these

5 fields are shown clearly in the Figure IV .1.

At first, we have seen the detail of the coupling between THM fields in the previous

section: the variation of temperature leads to the variation of the pore pressure with re-

spect to the differential expansion between rock and fluid: αm. The pore pressure field

and the mechanical field are coupled by the Biot coefficient: b. Finally, the relationship

between the temperature field and the mechanical field is defined by the bulk modulus Kb

and thermal expansion of the rock αm.

And then, the damage fields are coupled with the mechanical field: damage fields depend

on the defined strain energy from the mechanical field, and the mechanical field is influ-

enced by the stiffness matrix which depends on the damage values dα. We have seen the

detail of this coupling in the chapter I and II.
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Figure IV .1: The coupling between THM and damage fields

In this study, we focus on the rock-like material. Thanks to the large of experiment

and simulation results, We can see that the effect of pore pressure changes on temperature

is very small, and the effect of stress changes on temperature is also small. In order to

optimize the calculation, we have the simplified model of coupling as shown in Figure IV

.2.

Figure IV .2: The coupling between THM and damage fields

The fields of damage also influence the THM fields and their couplings. The main

parameters influenced are shown here:
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• In the pore pressure field:

– The permeability:

k = kinitial exp(γd
t) (IV .49)

• For the thermo-mechanical coupling:

– The bulk modulus:

K(dt) = Kinitial(1− dt) (IV .50)

• For the hydro-mechanical coupling:

– The coefficient pf Biot:

b(dt) = binitial + (1− binitial)d
t (IV .51)

– The porosity:

Φ(dt) = Φinitial + (1− Φinitial)d
t (IV .52)

– The Biot module:

1

M(dt)
=

(1− b(dt))(b(dt)− Φ(dt))

Ks
+

Φ(dt)

Kf
(IV .53)

• For the thermo-hydraulic coupling:

– Differential expansion:

αm(dt) = (b(dt)− Φ(dt))αs + Φiniαf (IV .54)

5 Iteratively coupled technique

As mentioned in previous section, for simplify the structure and the calculation of the

coupling for adapting the rock-like material, we can at first calculate the temperature field

for a new time step n + 1. The results of temperature ΔT̄n+1 can be considered as a

thermal load to participate the rest of coupling.

Now we focus on the HM coupling,Settari and Walters [1999] discuss the different coupling

methods and categorized them as decoupled, explicitly coupled, iteratively coupled and
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fully coupled. In our study, we choose the iteratively coupled method. Compare with

other methods, first, it has stability and accuracy. It can produce the same results as a

fully coupled technique if a sufficiently tight nonlinear convergence criteria is enforced.

Secondly, it has modularity feature. It allows the coupled equations to be processed by

separate program modules, taking full advantage of specialized features and disciplinary

expertise built into independently developed single field models. In an iteratively coupled

scheme, solutions for multiphase flow and poroelasticity equations are coupled through

the nonlinear iterations in one time step.

Newton’s method is used here to linearize the discrete system(IV .47) of HM fields. Resid-

uals at the kth nonlinear iteration are computed as:





Rn+1,k
u = ΔF̄n+1

e −RuuΔŪn+1,k − CupΔP̄n+1,k − CuTΔT̄n+1

Rn+1,k
p = Δtn+1(−RppP̄

n +ΔF̄n+1
ω )− (Δtn+1Rpp +Mpp)ΔP̄n+1,k

−CpuΔŪn+1,k − CpTΔT̄n+1

(IV .55)

Applying Newton’s linearization to the above residual equations yields the following

algebraic system:

�
− ∂Ru

∂ΔŪ
− ∂Ru

∂ΔP̄

− ∂Rp

∂ΔŪ
− ∂Rp

∂ΔP̄

��
δ(ΔŪ)

δ(ΔP̄ )

�n+1,k+1

=

�
Ru

Rp

�n+1,k

(IV .56)

then, with the help of IV .55, the linearized system can be developed as:

�
Ruu Cup

Cpu Δtn+1Rpp +Mpp

��
δ(ΔŪ)

δ(ΔP̄ )

�n+1,k+1

=

�
Ru

Rp

�n+1,k

(IV .57)

the two field equations in Eq. IV .57 are solved sequentially at each Newton iteration

by

(Δtn+1Rpp +Mpp)δ(ΔP̄ )n+1,k+1 = Rn+1,k
p + Cpuδ(ΔŪ)n+1,k (IV .58)

and

Ruuδ(ΔŪ)n+1,k+1 = Rn+1,k
u − Cupδ(ΔP̄ )n+1,k+1 (IV .59)

The iterations are performed as Eq. IV .57 shown, until a given tolerance for the

residuals is satisfied. At the end of the each iteration, the result values are updated by:

�
ΔŪn+1,k+1 = ΔŪn+1,k + δ(ΔŪ)n+1,k+1

ΔP̄n+1,k+1 = ΔP̄n+1,k + δ(ΔP̄ )n+1,k+1
(IV .60)
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The iterative coupling presented can be described as a simple algorithm:

Algorithm 2: Simplified algorithm for time step n+ 1

Input: T̄n, P̄n and Ūn.

Output: T̄n+1, P̄n+1 and Ūn+1.

Start a new time step n+1;

Initialize ΔT̄n+1 = 0, ΔP̄n+1 = 0 and ΔŪn+1 = 0;

Use Eq. IV .47 to calculate ΔTn+1, ΔPn+1 and ΔUn+1;

for s = 1...k(iteration step) do

Start a new nonlinear iteration k+1;

Initialize ΔP̄ k
n+1 = ΔP̄n+1, ΔŪk

n+1 = ΔŪn+1;

Use Eq. IV .55 to compute residuals Rn+1,k
u and Rn+1,k

p ;

Check for convergence by Rn+1,k
u ≤ Tolu and Rn+1,k

p ≤ Tolp. If both tolerances are

satisfied, terminate the current time step and go to the beginning of this algorithm

for a new time level. Otherwise, continue with the following steps;

Solve for ∂(ΔŪ)n+1,k+1 and ∂(ΔP̄ )n+1,k+1 by using Eq. IV .58 and Eq. IV .59;

Update ΔŪn+1,k+1 and ΔP̄n+1,k+1 by using Eq. IV .60;

end for

Update T̄n+1, P̄n+1 and Ūn+1 by using Eq. IV .48.

6 Verification examples for code

In this section, we propose some examples to check the function of coupling THM by our

Matlab code.

The result of the temperature field is first compared between the results simulated

by Abaqus and Matlab. Then, we propose three small examples to compare the THM

coupling results obtained by Matlab and the theory.

6.1 Verification for temperature field

The temperature is an independent field in our model of coupling. It is not influenced

by the pore pressure and mechanical field. So it is the most simple field to simulate and

verify.

We choose a structure as in Figure IV .3(a). We have an increased temperature (ΔT =

60oC) on the wall (Figure IV .3(b)). It presents a heating process in the underground

tunnel.
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Figure IV .3: (a) Mesh of a 1/4 plate with a hole (b) Temperature at the wall according

to the time.

The thermal parameters used in this test are cited here:

• Initial temperature : Tinitial = 20oC

• Heating temperature at the wall : Twall = 80oC

• Thermal conductivity : λ = 1, 65W.m−1.K−1

• Specific heat capacity : Cp = 1000J.kg−1.K−1

The results of simulation by Abaqus and Matlab are shown in the Figure IV .4 and IV

.5. As we can see that he results are exactly the same.

(a) (b)

Figure IV .4: Distribution of the temperature at t=100 days, results simulated by

(a)Abaqus; (b)Matlab.
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Figure IV .5: Variation of temperature according to the radius distance to the heating

wall simulated by Abaqus and Matlab.

6.2 Verification for the TM coupling

We propose a very simple mesh: 4 quadratic elements with 9 nodes as in Figure IV .6.

Figure IV .6: Mesh of 4 quadratic elements with 9 nodes.

To verify the function of TM coupling. We first fix the pore pressure(Δp = 0), and we

have the temperature increased on all 9 nodes: ΔT = 10oC.

The analytical result is obtained by:

σanalytical = −3 ∗Kdrainé ∗ αdrainé ∗ΔT = −26208000Pa (IV .61)

with Kdrained = 6.93e9Pa, and αdrained=1.26e-4.

Comparing with the result simulated by Matlab code, we can see that the stress values

σxx and σyy are equal to the analytical result.
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Figure IV .7: Temperature-dependent calculated stress result by Matlab code.

6.3 Verification for the THM coupling

We always use the same mesh of 4 quadratic elements with 9 nodes to check the THM

coupling. In this example, he studies the influence of ΔT on the pore pressure field. And

then, the variations of the TH fields leads to a change of mechanical field.

In this case, the pore pressure is not fixed. At first, we can calculate the increased

pore pressure ΔP because of heating:

ΔPanalytical = 3 ∗ αm ∗MBiot ∗ΔT = 53570880Pa (IV .62)

with αm = 2.576e− 4, and MBiot = 6.93e9.

Finally, we can calculate σanalytical dependent on ΔP and ΔT by:

σanalytical = −b ∗ΔPanalytical − 3 ∗ αdrained ∗Kdrained ∗ΔT = −5.7114e7Pa (IV .63)

with αdrained = 1.26e− 4.

Comparing with the result calculated by Matlab code(Figure IV .8), we can see that

results of the variation of pore pressure ΔP and the stress σ are equal to the analytical

result.
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Figure IV .8: The input: variation of temperatureΔT ; the output: variation of pore

pressure ΔP and the stress calculated by Matlab code.

6.4 Verification for the HM coupling

A single element is used here to verify the HM coupling. Here, we compress this element

as in Figure IV .9. This test shows us the influence of Δu to the pore pressure field.

Figure IV .9: Mesh of a single quadratic element.

Under the compression load, a variation of pore pressure is obtained. The analytical

value can be calculated by:

ΔPanalytical = −MBiot ∗ bBiot ∗ (�xx + �yy) = 8e6Pa (IV .64)

By comparing the result calculated by Matlab code (Figure IV .10) with this value

Δpanalytical. We can find that the code is working well on this HM coupling.
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Figure IV .10: The input: the variation of deformation Δu and the strain �; the output:

the variation of pore pressure ΔP calculated by Matlab code.

7 Examples simulated by THM-d coupling

In this section, we will see 3 examples simulated by our model of THM-d coupling.

7.1 Example 1

In example 1. We will see the phase field method does not depend on the mesh. This is an

important feature of the phase field method and should be noted in structural calculations,

as well as the feature of our THM-d modeling.

The material is used: E = 4500MPa, ν = 0.3, to make a single-edge tension test: (Figure

IV .11).

Figure IV .11: Single-edge tension test. Boundary conditions and geometry.

We define 2 different meshes: (Figure IV .12) and (Figure IV .13). The number of

elements of the second mesh is 4 times higher than the first one. But they have the same

width of smeared crack ld = 3× 10−3m, and gtc = gshc = 40N/m.
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Figure IV .12: Mesh of 30×10 quadrilaterals elements(element size=3 × 10−3m × 3 ×
10−3m)
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Figure IV .13: Mesh of 60×20 quadrilaterals elements(element size=1, 5×10−3m×1, 5×
10−3m)

In the Figure IV .15 we can see the results of distributions of tensile damage. The

crack can be seen to propagate from the initial crack through the displacement load. The

two crack paths are almost the same at the same step of the displacement load.
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Figure IV .14: Chemin de fissure obtenu avec le maillage de 30 ×10 éléments quadri-

latéraux pour: (a) u = 0.01mm; (b) u = 0.1mm; (c) u = 0.14mm; (d) u = 0.16mm
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Figure IV .15: Crack path obtained with the mesh of 60×20 quadrilateral elements for:

(a) u = 0.01mm; (b) u = 0.1mm; (c) u = 0.14mm; (d) u = 0.16mm

But if we change the width of the crack, the ld, we can see their force-displacement

curve. The results are different. The larger ld means that the yellow line, leading to the

crack, spreads most easily through the material because it requires the smallest displace-

ment load.
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Figure IV .16: Diffuse crack modeling and force-displacement curve for single-edge

tension testing with the 3 different ld

7.2 Example 2

Test 2 shows the thermo-mechanical coupling. Here we have a decrease in the temperature

of the material as a thermal load. The studied material has an initial crack.
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The parameters used are shown here:

• Young’s modulus & Poisson’s coefficient: E = 4500MPa; ν = 0,3

• Toughness parameter: gtc = gshc = 40N / m

• Width of the diffuse crack: ld = 1.5× 10−3 m

• The expansion coefficient of material: α = 5× 10−4

• Thermal conductivity: λcon = 1.65W/m.oC

Figure IV .17: Test of decrease of the global temperature. Boundary conditions and

geometry.

And then, we can see the propagation of the initial crack depends on the decrease of

temperature as shown in Figure IV .18.
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Figure IV .18: Crack path obtained with the mesh of 60 × 20 quadrilateral elements

for: ΔT = 0oC; ΔT = −10oC; ΔT = −14oC; ΔT = −20oC

7.3 Example 3

In Example 3, it shows the function of the complete THM coupling. We have a heating

point in the center of a plate as a thermal load. The boundary conditions and geometry

are presented as in Figure IV .19.
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The parameters used are mentioned here:

• Young’s modulus & Poisson’s coefficient: E = 4500MPa; ν = 0.3;

• Toughness parameter: gtc = gshc = 40N / m;

• Width of the diffuse crack: ld = element’s size = 0.04m;

• The expansion coefficient of material: α = 3× 10−5;

• Thermal conductivity: λcon = 1.65W/m.oC;

• Permeability: k = 4.5× 10−20m2;

• Biot coefficient: binitiale = 0.6;

• Porosity: φinitiale = 0.16.

Figure IV .19: Central heating point test. Boundary conditions and geometry.

In the first 24 hours, the temperature of this heating point increases from 20 degrees

to 80 degrees linearly.(Figure IV .20(a))
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Figure IV .20: (a)Temperature applied to the heating point as a function of time;

(b)Temperature variation section (from center point to edge)

We can see the increase of temperature from the center point to right edge in 48 hours

as shown in Figure IV .20(b).

Figure IV .21 shows the temperature distribution at t = 48 hours, it can be seen that

the high temperature zone propagates from the central point to the outer edge.
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Figure IV .21: The distribution of temperature (oC) at t = 48 hours

The heating leads to the increase of pore pressure, and the area of high pore pressure

appears at the center point of the plate, and then this area extends during heating as

shown in the Figure IV .22.
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Figure IV .22: The distribution of pore pressure (Pa) for t =: 12 hours; 24 hours; 36

hours; 48 hours

Finally, in the distributions of the tensile damage field shown in the Figure IV .23.

The tensile damage zone appears at the heating point and then extends, the value of dt

increases according to the variations of temperature and pore pressure.
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Figure IV .23: The distribution of tensile damage at t =: 12 hours; 24 hours; 36 hours;

48 hours

Here, if we change the isotropic permeability to anisotropic one:

• kh = 4.5× 10−20m2;

• kv = kh/5 = 0.9× 10−20m2.
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We can see the result of the temperature(Figure IV .24) does not change compared

with Figure IV .21.
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Figure IV .24: The distribution of temperature (oC) at t = 48 hours

But for the result of the distribution of the pore pressure(Figure IV .25(a)), the horizon-

tal pore pressure increases more rapidly. Finally, it leads to the same form of distribution

of the area of tensile damage as shown in the Figure IV .25(b).
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Figure IV .25: (a)The distribution of pore pressure (Pa); (b)The distribution of tensile

damage field at t = 48 hours

8 Conclusion

This Chapter has presented the theoretical background of THM coupling. Based on this

coupling, the THM fields and tensile, shear damage fields are successfully coupled. The

damage fields are considered as the independent field which has its own partial differential

equation to calculate the damage values. The code is verified by several simple tests. And

the damage zone can be obtained by the charge of the temperature loading in the proposed

examples.

In this context, in the following chapters, we will present the coupled THM modeling of

two in situ experiments.
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1 Introduction

In general, the analytical resolution of a problem of continuum mechanics applied to civil

engineering works is a task rarely possible. The equations of physics only make it possible

to obtain exact solutions in a few particular cases which often have only a distant relation

with the reality of the works. This is why analytical methods of approximate calculation
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have been developed. At the same time, the constant development of computer resources

is at the origin of the progress made in the implementation of numerical calculation meth-

ods.

By the way, a numerical calculation, and all that he understands remains an idealization of

reality. If the preceding chapters have been established according to a modeler approach,

the applications of this last chapter are oriented according to the point of view of the

engineer. And for us, we use the modeling to link computer techniques and those of the

techniques of the engineer builder.

In this chapter, we show two applications to the problem of radioactive waste disposal

from French national radioactive waste management agency(ANDRA): tunnel excavation

modeling GCS test and tunnel heating modeling ALC test. The contexts of the test and

benchmarks of the simulation are described in detail at the beginning of every modeling.

The experimental results and simulation results are compared in all aspects from the tem-

perature, the pore pressure, the displacement and the most important study for us: the

distributions of damage.

2 GCS test

2.1 General context

The construction of the Meuse/Haute-Marne URL has been launched in 2000 in Bure

located about 300 km North-East of Paris by Andra to demonstrate the feasibility of a

radioactive waste repository in a Callovo-Oxfordian claystone formation. An important

experimental program is planned to characterize different properties of the host rock and

to study its response to the different shaft and drift excavation. Numerous experiments

and direct measurements have been performed in the laboratory drifts excavated at -445

m and then at -490 m (the main level).

The Callovo-Oxfordian claystone (COx) is considered as a potential geological formation

to host an industrial radioactive waste repository in France, because of its favorable char-

acteristics for radioactive waste containment, as it has a very low hydraulic conductivity,

small molecular diffusion and significant retention capacity for radionuclides. A deep

understanding of the thermo-hydro-mechanical (THM) response of the COx in different

repository conditions is a key issue for the design of different structures and the safety

calculations of the project.
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Figure V .1: General view of the GCS experiment. [Seyedi et al., 2017]

The GCS drift(Figure V .1) has been excavated in the direction of the major horizontal

stress from the south drift (GLS) and 30 m away from the GAT drift in order to restrict

hydro-mechanical interference between the two drifts (at short time). The GCS has a

perfectly circular section with a 2.6 m radius. The digging was performed with a road

header (Figure V .2), which allowed getting an average over excavation lower than 0.1 m,

except at the floor where it could reach 0.4 m.
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Figure V .2: (a) GCS drift (without slab); (b) Road-header; (c) GCS section; (d)

yieldable concrete wedges. [Seyedi et al., 2017]

2.2 Action Transverse benchmark

A 2D plane strain configuration with the following characteristics is considered as a bench-

mark to simulate this tunnel excavation modeling:

• Circular section with a radius of 2.6 m;

• A homogeneous initial stress state is considered by neglecting gravity effects

• At the drift section: σx = σh = -12.4 MPa,σy = σv = -12.7 MPa;

• At the drift axes: σz = σH = -16.12 MPa;

• The initial pore pressure is assumed to be equal 4.7 MPa everywhere in the model.
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with these characteristics presented, the geometry and boundary condition of GCS

gallery can be show as in the Figure V .3.

Figure V .3: Geometry and boundary conditions of GCS gallery

The COx claystone is considered as an anisotropic material, this anisotropy is reflected

as:

• Elastic parameters: E� = 5GPa; E⊥ = 3GPa; ν� = 0.2; ν⊥ = 0.35.

• Initial permeability: k0� = 6e− 20m2; k0⊥ = 3e− 20m2.

with initial Biot coefficient binitial = 0.6 and the initial porosity φinitiale = 0.16.

The excavation operation is modeled by the mechanical and hydraulic deconfinement

curves presented in Figure V .4.

Figure V .4: Mechanical (left) and hydraulic (right) deconfinement curves.
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2.3 Viscoelasticity model

For the time-dependent response of the GCS test, a viscoelasticity model used should be

presented at first.

In order to simplify the problem, a 1-D model is used to presented here. We use 3 ele-

ments model (elastic element + Kelvin-Voigt model) to describe viscoelasticity as shown

in Figure V .5.

The total strain is composed by elastic part (�e) and viscoelastic coupled part (�v)

which are the right part and left part in Figure V .5:

� = �e + �v (V .1)

Figure V .5: The 3 elements viscoelasticity model

In the elastic part, we have:

σ = E�e (V .2)

And in Kelvin-Voigt model part, we have:

σ = E�v + λ
d�v

dt
(V .3)

In this part, the increment of strain at time step n is presented as:

��vn = �̇vn−1�t (V .4)

with the rate of strain:

�̇vn−1 =
d�vn−1

dt
=

1

λ
(σn−1 − E�vn−1) (V .5)

We define viscosity coefficient λ as a function:

λ(f(σ̄), g(�veq)) = λ0 · f(σ̄) · g(�veq) (V .6)
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with

f(σ̄) = ασ̄n (V .7)

and

g(�veq) = exp(
�veq
β

) (V .8)

At last, we add the effect of damage fields. The model is considered as an viscoelasticity-

damage problem.

In this model, the viscous strain contributes to create the damage. So we define the

effective strain which is composed by elastic strain and viscous strain:

�eff = �e + �v (V .9)

And then, this effective strain would be used to calculate the crack driving energy as

presented in the first Chapter:

Fα = −{∂Weff (�
eff )

∂dα
+ gαc δγ

α(dα)} = 0 (V .10)

On the other side, because the stiffness matrix is influenced by damage value C(dc, dt),
we should rewrite the stress equation as:

σ = C(dc, dt)�e (V .11)

So for the rate of strain, we have:

�̇vn−1 =
d�n−1

dt
=

1

λ
(σn−1 − C(dc, dt)�vn−1) (V .12)

As we can see in FEM discretization equation of viscoelastic model, we have:

K�u = �R+�Rv (V .13)

with:

K =

�

Ω
BTC(dc, dt)BdΩ (V .14)

�Rv =

�

Ω
BTC(dc, dt)��vndΩ (V .15)

The equivalent viscous load could be influenced by damage at every time step.

A simulated creep tests were also performed under triaxial loading conditions as pre-

sented in Chapter 2. In this case the loads of displacement were stopped once the desired

deviatoric stress was reached. From then on, the stress state was kept constant for a spec-

ified period of time. Three tests were performed at a onfinement pressure of 12MPa and
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with different ratios between applied and maximum deviatoric stresses(50%, 75%, 90%).

Figure V .6 shows the results obtained in terms of time-dependent deformation.
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Figure V .6: Creep tests on COx claystone compared between numerical results and

experimental results [Armand et al., 2017].

2.4 Modeling results

According to the excavation operation. The principal phenomenon is reflected at the vari-

ation of the pore pressure and displacement. The results from the numerical simulations

are compared with field observations. Figure V .7 shows the location of the measurement

points on the plane normal to the tunnel axis that have been used in the comparisons. They

belong two devoted to the measurement of liquid pressure (OHZ1521, OHZ1522), and the

other one to the measurement of rock displacements with an extensometer (OHZ1501).

All of them were installed prior the excavation of the GCS drift. Also, a number of conver-

gence sections installed along the drift during the excavation (OHZ170 24, OHZ170 36)

are also considered.
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Figure V .7: Location of measurement points used for comparison with simulation re-

sults. [Mánica et al., 2017]

The Figure V .8 and V .9 presents the results of pore pressure between experiment

and simulation at the sensors points. And Figure V .10 shows the distribution of the pore

pressure at t=28 days which is the end of the excavation operation. There are 3 special

areas should be explained.

The first area, it�s the area of the sensor 04. The anisotropy of the elastic behavior of rock

leads to this distribution of pore pressure. The initial pore pressure is equal to 4.7MPa,

there�s an overpressure zone appears at the horizontal direction of the gallery, and the

pore pressure at the vertical direction of the gallery is reduced. The results of sensor

04 presents this overpressure zone very clearly, which is the red zone in the distribution

figure(Figure V .10), and the orange line in Figure V .8. It increases during the excavation.

The numerical results, the dotted orange line is well reproduced this increasing tendency.

But our maximum pore pressure value does not reach to the maximum value of experiment

at this point measured. We attribute the reason to the limit of our 2D model. Because

before the excavation process arrives to our studied 2D plan, the pore pressure of this 2D

plan has already been increased by the excavation, especially in the area near the wall of

gallery. The evidence is that the initial value of pore pressure measured by sensor 04 is

6MPa, in other word, at the start of the excavation, t=0. The 3D model might bring the

better result to this issue.

The second area is the area of sensor 02, which is the area near the wall of excavation. In

this area, the rock is damaged because of the excavation and the overpressure zone. The
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permeability is increased, it accelerates the seepage process of water in this damaged area.

The third area is the area of sensor 05, which is the area far from the excavation surface.

The pore pressure of this area does not change a lot.
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Figure V .8: Pore pressure evolution in measurement points of OHZ1521(horizontal

direction) and computed values.
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Figure V .9: Pore pressure evolution in measurement points of OHZ1522(vertical direc-

tion) and computed values.
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Figure V .10: Distribution of pore pressure at the end of the excavation(t=28days).

Figure V .11 shows the simulated distribution of damage at t=28 days which is the

end of the excavation. And Figure V .12 is the conceptual model based on the results of

experiment. We can see that the simulated and experimental forms of the damaged zone

are very similar. The damaged zone appears at the horizontal direction of the gallery.

And the tensile damage zone appears at the area near the gallery, the shear damage zone

extends deeper. And only tensile damage zone leads to the increasing of the pore pressure.

(a) (b)

Figure V .11: The distribution of (a)tensile damage and (b)shear damage at t=28 days.



94 Examples of applications to the problem of radioactive waste disposal

Figure V .12: Conceptual model of the induced fracture networks around drifts of GCS.

Dark and light brown surfaces show shear fractures and green ones extension fractures.

[Seyedi et al., 2017]

Figure V .13 shows the results of the convergences. During excavation, the diameter

of the gallery will decrease because of the collapse. We call this decreasing of diameter

convergence. The horizontal diameter converges more than the vertical one, even though

the initial parallel Young’s module is bigger than the perpendicular one. Because the dam-

age area mainly appears at the horizontal direction. This is an interesting phenomenon,

and we successfully reproduce this phenomenon by our hydro-mechanical damage coupling

model.
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Figure V .13: Evolution of horizontal and vertical convergences. Observed and computed

values.

3 ALC test

3.1 General context

The ALC experiment is an ongoing in situ heating test performed in the Meuse/Haute-

Marne underground research laboratory. The experiment is a full scale representation of

a single high-level waste cell in Callovo-Oxfordian claystone. The main objectives of the

experiment are:

• verification of the construction feasibility of a high level waste cell representative of

the 2009 reference concept;

• study of the behavior of the cell under thermal loading by simulating the heat pro-

duced by waste packages;

• determination of data about the casing behavior under thermal loading;

• understanding the THM behavior of the COx and of the interface between the rock

mass and the casing.

The experimental concept has to be representative of what would be a High-level cell

for medium exothermal waste packages in the 2009 reference concept (see Figure V .14).

The ALC1604 micro tunnel was drilled from the GAN drift and is oriented parallel to σH .
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Figure V .14: General view of the ALC experiment.

It has a total length of 25m and the heated part is located in the body part between

10 and 25m deep and is made up of 5 heating elements. Each element is 3 meters long

and has a diameter of 508 mm.

The peripheral instrumentation(Figure V .15) in the rockmass includes:

• 2 monopacker boreholes for liquid pressure and temperature measurement (ALC4001

and ALC4002 (the latter appeared to be defective));

• multipacker boreholes for liquid pressure and temperature measurement (ALC4005

and ALC1616 with 5 chambers, ALC1617 and ALC1618 with 3 chambers).

• 2 temperature measurement boreholes at 5 points (ALC4003 and ALC1633)

Figure V .15: Distance (in m) between the pore pressure, T and Mag X extensometer

measuring chambers and the cell (red circle) – ALC4005 (red), ALC1616 (black), ALC1617

(green), ALC4001 and 4002 (orange), Mag X (blue) and temperature (purple).
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The main heating phase started on 18 April 2013, at a constant nominal power of 220

W/m for the 15 m occupied by the heater elements, at a depth of between 10 and 25 m

in the cell. This value has been designed to reach a temperature of 90 oC at the casing

wall after 2 years.

3.2 Introduction of modeling

We simulate this test in a 2D plan like the Figure V .16(a) presented. This 2D plan

can be seen as the 17.5m deep of the ALC1604 micro tunnel which is the middle plan of

the heating part. The mesh containing 1300 elements and 1386 nodes in this simulation,

shown in Figure V .16(b). 24 elements are used to mesh the 1/4 part of the ALC wall,

which are the smallest element used in the mesh with the dimension of 0.0271×0.0147m.

And we define our width of diffuse crack equals to 0.0147m in our phase field model.

(a) (b)

Figure V .16: (a)Modeling domain of the alveolus for 2D plan strain; (b)Mesh for plate

with a hole (1/4).

The COx claystone is considered as an anisotropic material with the different elastic

behavior, permeability and thermal conductivity in the parallel and perpendicular direc-

tions.In the Table V .1, it shows the material parameters in the initial state, which means

the claystone is not damaged at all. And they can be influenced by the damage value dt

and dsh during the test, the relation function are shown in the previous chapters.
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Elastic parameters

Young’s modulus
E�=5GPa

E⊥=3GPa

Poisson’s ratio
ν�=0.2

ν⊥=0.35

Hydraulic parameters

Permeability
κ�=2× 10−20m2

κ⊥=1× 10−20m2

Biot coefficient b=0.6

Porosity Φ=0.16

Thermal parameters Thermal conductivity
λ�=2Wm−1 : K−1

λ⊥=1.33Wm−1 : K−1

Table V .1: The THM material parameter of COx claytone used in this simulation.

The excavation of ALC takes place in the first day during 24 hours. We have mechanical

and hydraulic deconfinement like shown in the Figure V .17.

The heating begins at the 176th day after excavation. The equivalent heating power is

220/3 W/m for our 2D model.

The time step used in this example:

• 0-1 day (excavation): 1 hour

• 1-176 days: 1 day

• 176-186 days (heating starts at 176day): 1 hour

• 186-2500 days : 1 day

(a)
0 24 48

t (hour)

0

0.2

0.4

0.6

0.8

1

ra
te

rate of decon-nement

(b)
0 24 48

t (hour)

0

4.7

p
o
re

p
re

ss
u
re

(M
P
a
)

pore pressure at wall

Figure V .17: Variation of the (a) deconfinement coefficient and (b) pore pressure at the

excavation surface as a function of time.
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3.3 Results of simulation

At first, we choose the sensors set of ALC4003 to compare the results of temperature(Figure

V .18). Temperature increase due to heating, is almost well reproduced, the numerical

result is higher than the experience result after 1500 days.

(a) (b)

(c) (d)

Figure V .18: (a) The position of sensors ALC4003 01-03; Temperature evolution in mea-

surement points of borehole ALC4003, (a) sensor 01: d=1.06m; (b) sensor 02: d=1.98m;

(c) sensor 03: d=2.98m.

The Figure V .19, V .20 shows the results of pore pressure simulated compare with

the experimental data measured by sensor of ALC1616 02 and ALC1617 02. These two

sensors are placed at the horizontal direction and vertical direction of the ALC.

As we can see in the two figures, there are two main processes are presented. The excava-

tion process begins at the line A and the heating begins at the line B.
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Figure V .19: Pore pressure evolution in ALC1616 (horizontal)

Figure V .20: Pore pressure evolution in ALC1617 (vertical)

At first, during the excavation, the anisotropy of the elastic behavior of COx claystone

leads to the distribution of pore pressure shown in Figure V .21. There is an overpressure

zone appears at the horizontal direction of the alveole, and the pore pressure at the
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vertical direction of the alveole is reduced. The results of ALC1616 02 sensor presents this

overpressure zone very clearly. The value of pore pressure at this position of the sensor

is increased during the excavation. The numerical results, which presented as the orange

dotted line is well reproduced this increasing tendency. But our maximum pore pressure

value does not reach the maximum value of the experiment at this point measured. And

for the ALC1617 02 sensor, it has the same problem: the pore pressure value simulated

does not reach the minimum value of the experiment. We attribute the reason to the limit

of our 2D model. Because before the excavation process arrives at our studied 2D plan,

the pore pressure of this 2D plan has already been increased by the excavation, especially

in the area near the wall of alveole. The excavation process can compress this 2D plane

in the direction of axis z. The 3D model might bring better results to this issue.

Figure V .21: The distribution of pore pressure(Pa) at t=1 day(after excavation).

In our work, the distribution of damage can be obtain during the test, like shown in

the Figure V .22. The photo of distribution of crack around ALC3005 which is shown in

Figure V .23 is used here to compare, this alveole has the same direction to our alveole

simulated, so it is under the same initial stress, the drift is parallel to σH . We can see

that the simulated and experimental forms of the damaged zone are very similar. The

damaged zone appears at the horizontal direction of the gallery and alveole. The tensile

damage zone appears at the area near the excavation surface, the shear damage zone

extends deeper.



102 Examples of applications to the problem of radioactive waste disposal

(a) (b)

Figure V .22: The distribution of (a)tensile damage and (b)shear damage at t=1 day.

Figure V .23: Photo of structures around ALC3005.

For the heating process, it begins at the line B in the Figure V .19, V .20. It shows

the complete function of the THM coupling model. The temperature increases the pore

pressure, and the increased pore pressure can influence the mechanical behavior include

the damage process. This increasing tendency of pore pressure because of heating is

reproduced very well. If we have the same initial pore pressure at the beginning of the

heating, the results will become better for the pore pressure.
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Figure V .24: The distribution of pore pressure(Pa) at t=1190 days

The overpressure zone in this period become a ring shape as shown in the Figure V

.24. And it changed the old damaged zone to a new one as in the Figure V .25 shown.

The tensile damaged zone extends and the shear damaged zone does not change a lot.

(a) (b)

Figure V .25: The distribution of (a)tensile damage and (b)shear damage at t=1190

days

4 Conclusion

In this Chapter, the GCS test and ALC test of ANDRA are introduced and simulated.

According to the double phase-field model to calculate and describe the damage, we don’t

need to define the excavation damaged zone(EDZ) during the underground excavation

operation. The independent damage fields are coupled with THM fields, and then they

are able to participate in the calculation of coupling at every time step. The effects of the

damage zone are reflected in the model of couping, and both of the tensile damage zone

and shear damage zone are observable during the excavation operation. Furthermore, the
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newly created damage zone because of the heating of the radioactive waste package is

also be simulated by our model in the ALC test. With this model which is allowed to

describe the appearance of new damage, our results of simulation are more logic and more

convincing compare with the other normal FEM model of THM coupling.
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Conclusions and perspectives

1 Conclusions

In the general framework of research projects related to geological disposal of radioac-

tive waste, shale gas production and acid gas sequestration, it is necessary to investigate

damage and cracking in COx clayey rocks under coupled thermo-hydro-mechanical loads

(THM). Numerical modeling with the finite element method is the principal work that

presented in this thesis. For this purpose,

• A double crack phase-field model is proposed for modeling damage and cracking

process of cohesive brittle materials. Both tensile and shear cracks are taken into

account. Two types of the crack paths can be observed directly during the failure

process. The two types of fracture behavior can be controlled by the adjustment of

the degradation function and density resistance energy gtc and gshc . Thanks to the

elastic stiffness decomposition, the crack fields can be coupled with both isotropic

and anisotropic elastic materials. This model successfully reproduces the triaxial

compression test with brittle rock-like materials such as sandstone and Jinping mar-

ble. The crack path can be reproduced under the elasticity-damage condition.

• Plastic deformation plays an important role in clayey rocks by controlling the pre-

peak deformation and affecting the shear band evolution in the post-peak regime.

For this purpose, the double crack phase-field method is extended to adapt to the

elasto-plastic damage behavior. Both tensile and shear cracks as well as plastic

deformation are taken into account. The adding plastic deformation improves the

simulation results of quasi-ductile rock-like materials very well in triaxial compression

conditions.
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• The THM fields and tensile, shear crack fields are successfully coupled. The crack

fields are considered as the independent fields which are governed by their own

boundary values problems.

• With the support of ANDRA, the GCS excavation test and ALC heating test have

been investigated by using by our model. The tensile and shear crack fields are

coupled with the THM fields. The effects of the damage zone on THM fields are

taken into account through the evolutions of mechanical properties and permeability.

The numerical predictions are in good agreement with in situ observations in terms

of THM responses and damage evolutions.

2 Perspectives

In spite of previous studies and the results obtained in this study on modeling of damage

and cracking under THM conditions, a number of perspectives are still open and need to

be investigated. Some aspects are mentioned below:

• Some improvements of evolution laws for crack fields could be envisaged in order to

describe more complex cracking modes (such as mixed mode I and mode II).

• The double phase-field method can be extended to partially saturated conditions in

order to study damage and cracking process with the variation of saturation degree.

• The extension to three dimensional configuration is also an important issue in order

to capture some geometrical effects on damage and cracking processes.
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