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GÉNIE CIVIL

Sujet de la thèse
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Abstract

Damage due to micro-cracking and plastic deformation are two main dissipation pro-

cesses in most rock-like materials. They are related to the evolution of micro-structure

and influenced by mineralogical compositions. In this study, we present some new con-

tributions on the micro-mechanical modeling of damage and plastic behavior of rock-like

materials based on linear and non-linear homogenization techniques.

The first part is devoted to the estimation of macroscopic plastic behavior of a class

of quasi-ductile materials, composed of a pressure-dependent plastic solid matrix in which

various inclusions and (or) pores are embedded. We propose a new incremental variational

model. Unlike most mean-field methods previously developed, the non-uniform local strain

field in the solid matrix is taken into account. Moreover, in order to take into account the

transition from volumetric compressibility to dilatancy of those materials, a non-associated

plastic flow rule is adopted. The incremental variational model is formulated by using a

bi-potential theory for the determination of the incremental potential of plastic matrix.

The accuracy of the proposed model is assessed by a series of comparisons with reference

solutions obtained from full-field finite element simulations. The proposed model is then

applied to several rock-like materials with rigid inclusions or pores.

In the second part, we focus on the modeling of induced damage in brittle materials

which are represented by an elastic solid matrix weakened by randomly distributed micro-

cracks. The emphasis is put on the case of closed cracks under a large range of compressive

stress. The damage evolution is due to the initiation and propagation of micro-cracks while

the plastic deformation is directly related to the frictional sliding along micro-cracks. The

two dissipation processes are physically coupled. A specific friction model is formulated.

The efficiency of the proposed model is verified against experimental data on typical

granites. Furthermore, the model is extended to study the transition from diffuse damage

to localized cracking. The localized cracking is considered as a consequence of coalescence

of diffuse micro-cracks. After the onset of a localized crack, the energy dissipation of

material is entirely driven by the frictional sliding and propagation of the localized crack.

And a specific frictional damage model is developed for the localized crack in consistence

with the diffuse damage model. The proposed model is also verified against laboratory

tests.





Résumé

L’endommagement induit par micro-fissuration et la déformation plastique sont deux

principaux mécanismes de dissipation des matériaux rocheux. Ils sont liés à la modification

de micro-structure et influencés par les compositions minéralogiques. Dans cette étude,

nous présentons quelques nouvelles contributions à la modélisation micro-mécanique de

l’endommagement et du comportement plastique.

La première partie est consacrée à la détermination du comportement élastique-plastique

d’une classe de matériaux quasi-ductiles, composés d’une matrice plastique dépendant de

la contrainte moyenne dans laquelle sont distribués des inclusions et des pores. Nous

proposons un nouveau modèle micro-mécanique basée sur une approche variationnelle

incrémentale. Comme différence majeure par rapport à la plupart des modèles en champs

moyens, le champ local de déformation plastique non-uniforme est pris en compte. Par

ailleurs, une loi d’écoulement plastique non-associée est utilisée pour la matrix solid afin de

mieux décrire la transition de la compressibilité à la dilatance volumique des ces matériaux.

Le modèle variationnel incrémental est formulé à l’aide de la théorie de bi-potentiel. La per-

formance du modèle est vérifiée à travers des comparaisons avec des solutions numériques

de références issues des calculs directs par les éléments finis. Le modèle proposé est ensuite

utilisé à des matériaux argileux et poreux pour illustrer son efficacité.

Dans la deuxième partie, nous abordons la modélisation micro-mécanique de l’endommagement

induit des matériaux fragiles caractérisés par une matrice solide élastique contenant une

distribution aléatoire de micro-fissures. L’accent est mis sur des micro-fissures avec frot-

tement fermées sous contraintes de compression. Le modèle est formulé à l’aide d’une

technique d’homogénéisation linéaire et en proposant une loi de glissement frottant à

l”échelle locale. Le modèle proposé est d’abord validé par rapport à des essais en labo-

ratoire en supposant une distribution diffuse de micro-fissures. Ensuite, nous proposons

une extension du modèle en considérant la transition de l’endommagement diffuse à la

fissuration localisée. Celle-ci est décrite comme une conséquence de la coaléscence de

micro-fussures. Après la localisation, la dissipation est entièrement pilotté par la fissure

localisée. Un modèle de glissement avec frottement est alors développé pour la fissure

localisée d’une manière consistante avec le modèle d’endommagement diffuse. Le modèle

complet décrivant la transition de l’endommagement diffuse à la fissuration localisé est

validé par rapport à des données expérimentales.
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General Introduction

Rock-like materials, such as soils, rocks and concretes are largely used in civil engi-

neering applications. It is essential and necessary to determine the mechanical behavior.

To date, it has been done by developing various phenomenological models, for instances,

plastic models (Shao and Henry, 1991; Xie and Shao, 2006; Zhang et al., 2013), damage

models (Dragon et al., 2000; Shojaei et al., 2014) and coupled models (Chiarelli et al.,

2003; Conil et al., 2004; Yuan et al., 2013; Zhou et al., 2013), just to mention a few. These

models are generally fitted from macroscopic laboratory tests and can reasonably repro-

duce main features of mechanical responses of rock-like materials. However, most rock-like

materials characterized by complex and multi-scale microstructures and textures. For ex-

ample, some ductile rocks, such as hard clay rocks and sandstone, which composed of

various mineral phases, pores in microscale ( Figure 1(a)), and some brittle rocks (granite

and diabase ) can be considered as heterogeneous media composed of solid matrix weak-

ened by randomly distributed microcracks, see Figure 1(b). The macroscopic properties

of these rock-like materials are inherently related to local properties of constituent phases

and affected by the mineralogical compositions and morphology at different scales. In

order to predict macroscopic mechanical responses of these materials in relation with the

spatial and temporal change of mineralogical compositions and microscopic structures,

constitutive models issued from various homogenization techniques have been developed

(Guéry et al., 2008; Jiang et al., 2009; Shen et al., 2012; Zhao et al., 2018; Zhu et al.,

2008a, 2016).

anisotropic behavior of material at the macroscopic scale.
However, in most experimental studies performed so far on
sandstone, it was generally accepted that the overall mechanical
of this class of porous rocks can be reasonably described by an
isotropic model.

Therefore, in the present paper, we will propose a microme-
chanical model for the description of elastic–plastic behavior of
porous rocks with a polycrystalline microstructure. Due to the par-
ticularity of microstructure, a self-consistent approach is needed in
order to properly consider interactions between mineral grains and
pores. Our model will be based on the classical polycrystalline
models for metal materials but with a suitable adaptation taking
into account specific features of porous rocks. Firstly, the crystallo-
graphic planes are extended to weakness planes (cracks, flaws,
etc.) in various orientations. The plastic sliding along the weakness
planes is controlled by the friction property and influenced by the
local normal stress. A Mohr–Coulomb type yield criterion is
therefore adopted. This corresponds to the macroscopic pressure-
dependent plastic behavior. Secondly, the roughness of weakness
planes is taken into account. The tangential sliding can produce
normal opening of weakness planes. At the macroscopic scale,
the deviatoric loading can generate volumetric dilatancy, which
is influenced by the mean stress. This kind of behavior is frequently
observed in rocks. Finally, the effect of porosity is taken into
account. Due to the strong interaction between mineral grains
and pore, it is needed to use a fully self-consistent approach with
a robust numerical framework for the implementation of the
micromechanical model. We will propose an efficient multi-level
loop procedure for solving problems with multiple interactive
plastic slip systems. However, as the first stage of our research
work, in the present paper, we will neglect the deformation and
damage on interface between grains. This important feature is still
considered in our ongoing work.

The following tensor notations and operations are employed
throughout this paper: first order tensor a; second order tensor
a; fourth order tensor A; double contraction a : b ¼ aijbij;

A : b ¼ Aijklbkl;A : B ¼ AijklBklmn; dyadic products a� b ¼ aibj, and

its symmetrical part a �s b ¼ ðaibj þ ajbiÞ=2. Three commonly used
fourth order isotropic tensors are expressed as: Iijkl ¼ 1

2 ðdikdjlþ
dildjkÞ, Kijkl ¼ 1

3 dijdkl, Jijkl ¼ Iijkl � Kijkl. dij is the Kronecker delta tensor.

2. Summary of some experimental results

For the sake of clarity, we consider here a typical sandstone as a
reference porous rock. It is the Vosges sandstone, which comes

from the Vosges mountains in France. It is a pink quartz sandstone
(quartz = 93%), with a few percent of feldspar and white mica. The
average porosity is about 20%. As the porosity of Vosges sandstone
is relative high, it was determined by simply comparing the weight
difference between the dry sample and the saturated one. On the
other hand, a typical micrograph of intact sandstone by scanning
electron microscopy (SEM) [5], is shown in Fig. 1. We can see that
the microstructure of sandstone is basically constituted of various
mineral grains, pores and interfaces.

A series of triaxial compression tests with different confining
pressures has been conducted to study its mechanical behavior
[1,5]. Typical stress–strain curves are shown in Fig. 2. From these
results, we can first see that the slope of the linear part is not con-
stant and increases with the confining pressure. By considering this
slope as the initial elastic modulus of material, we have calculated
the values of elastic modulus and Poisson’s ratio for different con-
fining pressures, as shown in Table 1. One can see that the elastic
modulus increases with the confining pressure while the Poisson’s
ratio varies rather in a irregular manner. Among other phenomena,
the increase of the elastic modulus can be due to the compaction of
pores and then the decrease of porosity by the application of con-
fining pressure. The peak stress also increases with the confining
pressure but in a non-linear manner, indicating that the macro-
scopic failure criterion corresponds to a curved surface, as shown
in Fig. 3. The volumetric strain (Ev ) is also presented in Fig. 2.
One can see that the volumetric strain rate is first compressive
and then progressively becomes dilatant when the deviatoric
stress increases. There is a transition from the volumetric com-
pressibility to dilatancy in terms of volumetric strain rate. This
phenomenon is a typical behavior of a large class of rock like
materials.

3. Formulation of the micromechanical model

As stated above, the unit cell of sandstone is an assembly of
quartz grains, pores and interfaces. At this stage, the deformation
of interfaces is neglected. When the unit cell is subjected to a uni-
form macroscopic strain at its remote boundary, non-uniform
stress and strain fields are generated in each grain. The relationship
between the macroscopic strain and the local fields depends on the
interaction between grains and pores. The description of this rela-
tionship is the key point of homogenization procedure. As there is
no dominant material phase in the unit cell, each grain is embed-
ded in a unknown matrix which is the homogenized equivalent

Fig. 1. Scanning electron micrograph of Vosges sandstone [5].

Fig. 2. Typical stress–strain curves of Vosges sandstone under different confining
pressures [1].
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(a) Microstructure of a sandstone
2. State-of-the-art of rock damage by microcracking

2.1. Relation of microcracking-macroscopic behaviors of rocks

The role ofmicrocracks in the nonlinearmechanical behaviors of
quasi-brittle cohesive-frictional rocks has been identified by many
works, for instance, Simmons and Richter (1976) and Paterson
(1978). Bieniawski (1967) first conducted experimental studies in
field to relate qualitatively the macroscopic behaviors of rocks to
compressive stresses-induced micromechanical processes. Thanks
to the microscopic optic observation technique, more precise im-
aging analyses have been realized since the 1970s (Peng and
Johnson, 1972; Hallbauer et al., 1973). On this topic, one mentions
in particular the contributions by Tapponnier and Brace (1976) and
then by Wong (1982) who introduced the microscopic electronic
scanning technique into rock mechanics. A comprehensive pre-
sentation of these early studies on the effect of microcracks on
macroscopic behaviors of rocks can be found in the book of
Paterson (1978) and also in the review paper of Kranz (1983),
among which two essential points should be highlighted:

(1) The mechanical behaviors of quasi-brittle rocks are strongly
nonlinear. Under uniaxial stress, the material suffers a quite
brittle response with a pronounced softening phase and a
final failure due to the localization of initially distributed
microcracks. In this case, only cracks with their surfaces
nearly perpendicular to the loading direction propagate
quickly and predominantly, and the magnitude of inelastic
deformation at material failure is very limited.

(2) In compression, the mechanical response of quasi-brittle
rocks generally includes the following successive phases: a
tightening phase (due to the progressive closure of preex-
isting cracks under local normal compressive stress) fol-
lowed by a linear behavior, then a nonlinear phase classically
physically interpreted as the consequence of stable growth of
preexisting cracks or even nucleation and propagation of
new microcracks; after reaching the peak stress, strain
softening generally occurs by crack localization, ending with
a residual stress.

In laboratory tests, various mechanical phenomena have been
identified and linked to microcracking-related mechanisms. We
only summarize some essentially important aspects as follows:

(1) The nonlinearity of mechanical responses is the consequence
of different phases of cracking: partial closure of preexisting

cracks, nucleation of new cracks, and propagation, coales-
cence and localization of distributed microcracks in the
matrix.

(2) The induced material anisotropy (Kachanov, 1982; Horii and
Nemat-Nasser, 1983; Pensée et al., 2002; Zhu et al., 2009) is
caused by non-uniform but preferred microcracking process
(Oda et al., 1986; Takemura et al., 2003). Under tensile
loading, the cracks with their surfaces nearly perpendicular
to the loading direction gain preferential growth. Once
started, they grow unstably across the sample to cause fail-
ure. Under compressive loading, a population of microcracks
propagate stably until they intersect in some cooperative
way. In this case, crack growth is governed by friction crite-
rion in terms of local stresses.

(3) The effect of confining pressure on both mechanical behav-
iors and the change of physical properties is due to the fact
that the level of two local normal compressive stress applied
to crack surfaces influences directly the onset and flow of
frictional sliding along closed microcracks. The higher the
confining pressure is, the more difficultly the frictional
shearing takes place.

(4) The asymmetry of rock strengths in tension and compression
is caused by their different failure modes. In uniaxial tension,
microcracks are nearly all open. In that case, rock failure is in
tensile mode or in tensile-shear mode. However, in
compression, rocks most often experience compressive-
shear failure with strong coupling between friction and
crack growth.

(5) The effect of pore pressure p is reflected by its modification to
the local stresses acting on the surfaces of microcracks. The
mechanical behavior is governed by an effective stress rather
than the macroscopic stress itself. For plane cracks, pore
pressure is in fact involved in the normal stress vector.

(6) Because of the existence of asperities over crack surfaces and
induced short wing-cracks, volumetric dilatancy in rocks
under increasing deviatoric stresses is closely related to the
cumulation of normal discontinuity across crack surfaces
during frictional sliding.

(7) The unilateral effects are related to cracks’ opening/closure
transition at which the material stiffness suffers a jump, but
the stressestrain curve as well as the free energy remains
continuous. For example, the elasticity tensor of rocks
initially in tension will be partially or completely recovered
when compressive stress is applied in the same direction
(Zhu et al., 2009).

(8) When cracks are open, the hardening/softening phenomena
can be related to the different stages of fracture described by
an R-curve of material resistance to crack growth. For closed
cracks, the hardening/softening can be interpreted as the
consequence of the competition between damage-related
material softening and friction-related material hardening.

In summary, the main nonlinear mechanical phenomena
observed in quasi-brittle rocks have their respective cracking-
related mechanism and can be physically attributed to two dissi-
pative processes: damage by cracking and inelastic deformation
due to frictional sliding. In constitutive modeling, proper consid-
eration of these aspects in a unified and mathematically consistent
way is quite difficult and constitutes one of the challenging issues
for rock mechanics community. The theoretical experiences basi-
cally confirmed that phenomenological macroscopic approaches
would not be a good candidate, while the advances achieved in
micromechanics of rock damage are up to now sufficiently
encouraging and have paved a new promising way to achieve
the goal.

Fig. 1. Crack maps of a granitic rock (extracted from Hoxha et al. (2005)).
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(b) Microstructure of a granite rock

Figure 1: Microstructure of two typical rock-like materials



2 General Introduction

Let considering a class of ductile rock-like materials which are regarded as heteroge-

neous composites composed of solid matrix and mineral inclusions as well as (or) pores.

In literature, Guo et al. (2008a); Maghous et al. (2009b); Shen et al. (2017, 2015), who

adopted a Drucker-Prager type criterion for the solid matrix and by using limit analysis

techniques and variational approaches, established different analytical forms of the macro-

scopic strength criterion of porous materials. Moreover, with a two-step homogenization

method, an analytical criterion has been proposed for clayey rocks containing a porous

clay matrix at the microscopic scale and mineral grains at the mesoscopic scale (Shen

et al., 2013). However, in these analytical models, only one family of pores or inclusions

is taken into account. In real materials, several families of mineral grains of different

mechanical properties and pores may exist at the same scale. In order to determine the

effective behavior of such materials, semi-analytical models have been developed. Based

on a simple extension of elastic materials, the Hill incremental method has first been de-

veloped for composite materials (Doghri and Tinel, 2005; Hill, 1965b). It has also been

applied to rock-like materials (Guéry et al., 2008; Shen et al., 2012). In these models based

on the Hill incremental method, it is assumed that the local strain field is uniform in each

constituent phase. This is a strong assumption which is not verified by most experimental

evidences showing strongly non-uniform strain fields in the plastic matrix (Robinet et al.,

2012; Wang et al., 2015, 2014). As a consequence, this class of models generally leads

to too stiffer macroscopic responses (Chaboche et al., 2005). Some numerical techniques,

such as the isotropization of tangent stiffness operator, have been proposed to improve

the performance of those models. However, those corrective techniques are not physically

founded.

Recently, important efforts have been made in nonlinear homogenization methods in

order to account for the effect of non-uniform strain fields in constituent phases. Starting

from variational principles for linear composite materials, an effective incremental vari-

ational (EIV) method has been proposed for nonlinear composite materials in (Lahellec

and Suquet, 2007b,c) in the framework of Generalized Standard Materials (Halphen and

Nguyen, 1975). Non-uniform local strain fields are characterized by introducing effective

incremental variables. By using an implicit time-discretization scheme, the local evolution

problem is reduced to the minimization of an incremental potential function. This effective

incremental variable model was first applied to linear and nonlinear viscoelastic compos-

ites (Lahellec and Suquet, 2007b,c). More recently, the incremental variational formulation

has been used for the prediction of the effective behavior of elastic-plastic composites with

local plastic threshold and isotropic and/or linear kinematic plastic hardening (Boudet
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et al., 2016). On the other hand, based on the variational principle established by Ortiz

and Stainier (1999), some authors have also proposed another incremental variational pro-

cedure for elasto-(visco)plastic composites with local isotropic hardening (Brassart et al.,

2011, 2012). However, most previous studies were devoted to composite materials with

pressure-independent plastic phases. Moreover, all these previous models have been devel-

oped in the scope of Generalized Standard Materials (GSM) (Halphen and Nguyen, 1975)

with an associated plastic flow rule.

In fact, rock-like materials are known to be non-associated, which can be attributed

to implicit standard materials (ISM) (Bodovillé, 2001b; Bodovillé and De Saxcé, 2001;

De Saxcé, 1995; Hjiaj et al., 2003; Saxcé and Bousshine, 1998). In this context, the me-

chanical behaviors of rock-like can be well described by the bi-potential theory which is

in the framework of Convex Analysis. The knowledge of a bi-potential function depends

on dual variables, for instances, stress and plastic strain rate. This unique function allows

simultaneously to define the yield locus and the flow rule, although they are not asso-

ciated. In the last few decades, the bi-potential theory has been used to investigate a

board of non-associated laws of ISMs, including, non-associated metal materials materi-

als (Bodovillé, 2001a; Bousshine et al., 2003), frictional contact (Bousshine et al., 2002;

De Saxcé and Bousshine, 1998; Joli and Feng, 2008), and non-associated geomaterials

(Cheng et al., 2015; Hjiaj et al., 2003; Zouain et al., 2007). A complete survey of the bi-

potential approach and numerical algorithm for non-associated Drucker-Prager plasticity

can refer to Hjiaj et al. (2003). In this thesis we will extend the variational principle to

pressure-dependent ductile rock-like materials and considering the non-associated issue by

using the bi-potential theory. However, to the knowledge of the author, it is difficult to

describe the overall behavior of the brittle rock-like materials with randomly distributed

frictional closed micro-craks by Hill increment method or variational principle.

For the brittle rock-like materials, it is acknowledged that the complex behaviors can be

reasonably related to two coupled physical process at a microscale: the micro-crack growth

and frictional sliding along closed crack tips (Walsh, 1980). The growth of micro-cracks

induces a material damage while the frictional sliding generates macroscopic irreversible

strains which are often described by plasticity theory. The inherent coupling between this

two dissipation processes is the main issue for modeling mechanical behaviors of such a

class of materials. Indeed, the accumulation of frictional sliding enhances the damage

evolution, which inversely effect the frictional sliding. Thus, they are two competing

processes governing the inelastic behavior of such material.

By now, the most popular way to formulate constitutive models for quasi-brittle mate-
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rials consists in describing the above two dissipative mechanisms separately. During more

than three decades, various efforts have been made to develop appropriate elastoplastic

damage coupling models essentially within the framework of irreversible thermodynam-

ics. When focusing on application to rock-like materials, we can make the following gross

classification:

• Theoretical contributions to the development of elastoplastic damage theories, Dragon

and Mroz (1979); Frantziskonis and Desai (1987); Hansen and Schreyer (1994a);

Lubarda and Krajcinovic (1995); Maugin (1992);

• Isotropic or anisotropic damage models coupled with plasticity for concrete. For

instance, Abu-Lebdeh and Voyiadjis (1993); Cicekli et al. (2007); Grassl and Jirásek

(2006b); Jason et al. (2006); Lubliner et al. (1989); Luccioni and Rougier (2005);

Voyiadjis et al. (2008); Yazdani and Schreyer (1990);

• Plasticity-damage models for various rocks. We can cite as representatives Chiarelli

et al. (2003); Conil et al. (2004); Khan et al. (1991);

• It is finally worth highlighting some discrete orientation-dependent plasticity-damage

models. For example, the plasticity-damage coupling in the microplane theory (Carol

and Bazant, 1997); the discrete anisotropic plasticity-damage formulations (Zhu

et al., 2010); the micromechanical damage-friction coupling models (Gambarotta

and Lagomarsino, 1993; Pensee et al., 2002; Zhu et al., 2008a; Zhu and Shao, 2015;

Zhu et al., 2016).

Focus here are taken on the micro-mechanics based approaches. Recently, the coupling

between crack propagation and frictional sliding has been properly investigated in micro-

mechanics based approaches (Zhu and Shao, 2015; Zhu et al., 2016). A micro-mechanics

based thermodynamics formulation has been proposed for isotropic damage with unilat-

eral and friction effects (Zhu et al., 2011). Some analytical and numerical analyses of

frictional damage have been performed for specific loading paths (Zhu et al., 2016). Some

micro-mechanics based models have been extended to initially anisotropic materials (Qi

et al., 2016), and to time-dependent behavior analysis related to sub-critical propagation

of micro-cracks (Bikong et al., 2015; Zhao et al., 2016).

In spite of the significant progress made so far, there are still some open issues to be

investigated. In most micro-mechanical models recently developed, the effect of confining

pressure on propagation kinetics of micro-cracks was neglected. The corresponding macro-

scopic strength envelop is described by a linear function. These models are not able to
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properly capture the transition from brittle to ductile behavior with the increase of con-

fining pressure neither the nonlinear strength surface. On the other hand, the progressive

degradation of surface asperity of micro-cracks has also not been considered. As a conse-

quence, post-peak behavior and residual strength of materials are not correctly described.

Besides, the crucial issue of the transition from the diffuse damage or plastic deforma-

tion to the localized cracking of brittle materials has not been systematically investigated.

All these mentioned issues will be investigated here by using an micro-mechanics based

friction-damage approach.

The main objective of this thesis is to develop homogenization methods for ductile and

brittle rock-like materials via incremental variational and micro-mechanics based friction-

damage approaches respectively. To this end, this thesis is organized as follows.

• In Chapter I , a bibliographic review will be given on basic principle of homogeniza-

tion and general aspects of nonlinear homogenization methods for heterogeneous

and linear homogenization approaches for crack materials. Some homogenization

approaches will be adopted in the following section.

• In Chapter II , we present an incremental variational principle based homogenization

method of ductile rock-like materials with an associated plastic matrix. This class

of materials are characterized by a solid matrix with embedded mineral inclusions

and(or) pores. The plastic behavior of solid matrix is described by a plastic model

based on the pressure-dependent Drucker-Prager criterion. Unlike most mean-field

methods previously developed, the non-uniform local strain field in the solid matrix

is taken into account.

• Chapter III is devoted to establish a bi-potential based incremental variational ho-

mogenization of rock-like materials with with a non-associated and strain-hardening

plastic matrix. Elastic inclusions or voids are embedded in the plastic matrix. This

class of materials does not belong to generalized standard materials investigated

in previous studies. The emphasis of this chapter is put on the treatment of non-

associated plastic flow and strain hardening. This is done by using a bi-potential

theory based method, allowing the determination of the incremental potential of

plastic matrix. The effective incremental potential and macroscopic stress tensor

are then estimated through an extension of the incremental variational principle

established by (Lahellec and Suquet, 2007c).

• In Chapter IV , a new micro-mechanics based plastic damage model is proposed

for quasi-brittle materials under a large range of compressive stress. The damage
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is due to initiation and propagation of micro-cracks while the plastic deformation is

directly related to frictional sliding along micro-cracks. The two dissipation processes

are then physically coupled. With the Mori-Tanaka homogenization procedure and

thermodynamics framework, the macroscopic state equations are deduced and the

local driving forces of damage and plasticity are defined. New specific criteria are

proposed for the description of damage evolution and plastic flow. These criteria take

into account the variation of material resistance to damage with confining pressure

and the degradation of surface asperity of micro-cracks during the frictional sliding.

• In Chapter V , based on the chapter IV , we devoted to the study of transition

from diffuse damage to localized cracking in quasi-brittle materials. The localized

cracking is considered as a consequence of coalescence of diffuse micro-cracks. The

onset of localized crack is then defined by introducing a critical value of diffuse

damage density parameter. The orientation of localized crack is determined from

the Mohr’s maximization postulate. After the onset of a localized crack, the energy

dissipation of material is entirely related to the frictional sliding and propagation of

the localized crack. In this context, a localized friction damage model is developed in

the framework of thermodynamics to describe the frictional sliding of the localized

crack which acts as the driving force for its propagation.

• Chapter VI concludes the research of these homogenization approaches and some

recommendations for future research.

Throughout this thesis, the following notions of tensorial products of any second order

tensors A and B will be used: (A⊗B)ijkl = AijBkl and A : B = AijBij . Fourth

order tensors are denoted by blackboard bold characters, and one can define (C : B)kl =

CijklBkl. The symbol ‖A‖ =
√
A : A is used to denote the norm of any second order tensor

A. With the second order identity tensor δ, usually used fourth order isotropic identity

tensor I and fourth order hydrostatic projects J are expressed in the components form

as Iijkl = 1
2 (δikδjl + δilδjk) and Jijkl = 1

3δijδkl, respectively. The fourth order deviatoric

projects K = I − J is then obtained. Moreover, the fourth-order tensors J and , K have

the properties: J : J = J, K : K = K, J : K = K : J =0.
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Chapter I

Literature Review

In this chapter, we shall to propose a short review of main homogenization approaches

developed for heterogeneous materials and cracked materials. Some of them will be used

in the following chapters. The cracked materials can be regarded as a kind of special

heterogeneous materials.

1 Basic principle of homogenization

1.1 Local problem

From the viewpoint of micro-mechanics, we consider the mechanical properties of

macroscopic point regarded as a regular homogeneous medium, are equivalent to the over-

all properties of a Representative Volume Element (RVE) in microscale. A heterogeneous

material in which the typical size of an heterogeneity (inclusion or pore) is much smaller

than the size of RVE. The geometric domain the RVE is denoted by Ω, with the bound-

ary being ∂Ω. Generally, the RVE composed of N constituents. Each phase occupies a

domain Ωr (r = 1, 2, ..., N) of the RVE with the volume fraction cr = Vr/V . Each point

in the RVE is denoted by its position vector z. The characteristic function H(r), with

H(r) (z) = 1 if z is in the phase r and H(r) (z) = 0 otherwise. The volume fraction of each

phase satisfies

cr =
〈
H(r) (z)

〉
, with

N∑
r=1

cr = 1 (I .1)

where 〈·〉 denotes the volume average of the RVE. Similarly, 〈·〉r is the volume average

over the phase r, so that
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〈·〉 =
1

Ω

∫
Ω

(·) dΩ =

N∑
r=1

cr 〈·〉r , 〈·〉r =
1

Ωr

∫
Ωr

(·) dΩr (I .2)

Note that σ(z) and ε(z) are microscopic stress and strain tensor at the point z. The

macroscopic stress and strain can be obtained by the volume averages of the microscopic

ones

Σ = 〈σ〉 , E = 〈ε〉 (I .3)

The effective behavior of the heterogeneous material is defined as the relation between

average stress and strain over the RVE. Two steps are usually distinguished: (1) a lo-

calization step, in which local fields within the RVE are computed from the knowledge

of the macroscopic strain or stress as an input; (2) a homogenization step, in which the

macroscopic response is determined by averaging local fields. The scale transition problem

is represented in Figure I .1 for the case of prescribed macroscopic stress.

Figure I .1: The effective behavior of the composite is computed on a RVE of the

microstructure

In fact, for estimating local stress and strain distribution inside the RVE, two kinds of

boundary conditions, uniform stress condition and uniform strain condition are generally

prescribed on ∂Ω, see Figure I .2. This two conditions are expressed as:

• The uniform stress boundary condition: represents the case of a REV sub-

jected to a constant stress tensor. Let Σ be a constant (static) uniform stress field

prescribed on ∂Ω, which generates a surface force T d = Σ · n(z),∀z ∈ ∂Ω. At the

microscopic scale, the local stress field σ satisfies the following condition:

σ(z) · n(z) = Σ · n(z) (∀z ∈ ∂Ω) (I .4)



Basic principle of homogenization 11

(a) Uniform stress boundary condi-

tion

(b) Uniform strain boundary con-

dition

Figure I .2: Two types of boundary conditions applied to RVE

It can be proven that Σ is equivalent to the volume average of the local stress σ in

the REV for any equilibrated, which obeys:

〈σ〉 = Σ (I .5)

where 〈·〉Ω denotes the volumetric averaging over the domain Ω.

In this case, the average stress is given by:

〈σ〉 :=
1

| V |

∫
V
σ(z)dz (I .6)

• The uniform strain boundary condition: represents the case of a REV sub-

jected to a regular displacement condition at its boundary. Let E be the macroscopic

uniform strain field on the boundary ∂Ω. Correspondingly, the displacement bound-

ary condition reads:

ξ(z) = E · z (∀z ∈ ∂Ω) (I .7)

whereas z and ξ are denoted the position vector in the REV and the microscopic

displacement.

It also implies the relationship between the average of local strain field ε in the REV

and the macroscopic strain E as:

〈ε〉 = E (I .8)

In this case, the average strain is given by:

〈ε〉 :=
1

| V |

∫
V
ε(z)dz (I .9)
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1.2 Hill-Mandel condition

The Hill-Mandel condition is a fundamental precondition for scale transition. It is first

proposed by Hill (1967) , which reads as follows. Considering σ an equilibrated stress field

(∇ · σ =0) and ε a compatible strain field ε = ε(u) which are not necessarily related by a

constitutive relation. In this context, if σ satisfies uniform stress boundary condition or

if ε is compatible with uniform strain boundary condition, the following equality holds

〈σ : ε〉 = 〈σ〉 : 〈ε〉 = Σ : E (I .10)

This equality is called Hill’s Lemma, which ensures the equality of macroscopic and micro-

scopic work. Note that equality (I .10) can be established without specifying the boundary

conditions, provided that the mechanical fields are macroscopically homogeneous (Hill,

1967).

2 Review of nonlinear homogenization approaches to het-

erogeneous materials

In many engineering applications, it is necessary to determine mechanical properties of

so-called rock-like materials, such as rocks, hard soils and concretes. For a kind of rock-like

materials composed of various mineral phases and pores, it is needed to adopt nonlinear

homogenization approaches for describing the effective behavior. In this section, we will

have a short review for these approaches.

2.1 Approaches based on a linearization of the local stress-strain relation

2.1.1 Hill’s tangent incremental approach

Hill (1965a) proposed a method to transform the nonlinear homogenization problem

to a multi linear one in an incremental form:

σ̇(z) = Ctan(z) : ε̇(z) (I .11)

where Ctan(z) is the tangent operator at each microscopic point. With the assumption

of the local tangent operator is uniform inside each phase, the increment form of local

stress-strain relation reads

σ̇r = Ctanr : ε̇r (I .12)

where the fourth order tensor Ctanr is the local tangent operator rth material phase. σ̇r

and ε̇r are the average value of local stress and strain fields in this phase, respectively.
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In this context, the macroscopic effective tangent operator to the reference homogeneous

medium can be formulated

Chom = 〈Ctan(z) : A(z)〉 =
∑
r

crCtan
r : Ar (I .13)

where cr is the volume fraction of the phase r, and Ar is the strain localization tensor, which

should be determined at each time increment with an appropriate linear homogenization

scheme, such as dilute scheme, Mori-Tanaka scheme and PC-W scheme, which will be

reviewed in Section 3. After that, the macroscopic stress-strain behavior can be expressed

as

Σ̇ = Chom : Ė. (I .14)

This incremental approach has been considered for a long time the standard for deriving

nonlinear estimates of heterogeneous materials (Mareau et al., 2009). This method have

been largely applied and two phase nonlinear composite materials, for instance, Chaboche

et al. (2005) for metals with von-Mises type plasticity theory, Doghri and Ouaar (2003)for

cyclic plasticity with non linear kinematical hardening. Guéry et al. (2008); Jiang and

Shao (2009); Shen et al. (2012) have extended the method to geomaterials considering the

pressure-dependent effects.

2.1.2 Secant approach

Following Hill’s works, some researchers proposed other ways to linearization the local

constitutive relation rather than the tangent form. One of them is secant method, which

approximate the local behavior in a total deformation formalism using the secant operator

Csec
r of the phase r, in this case, the local constitutive can be read

σr = Csec
r : εr (I .15)

After volumetric averaging, the macroscopic constitutive equation can be obtained and

also written in secant form

Σ = Csec : E (I .16)

where Csec is the macroscopic secant modulus tensor of the equivalent homogenized medium.

2.1.3 Affine approach

Recently, Masson et al. (2000); Masson and Zaoui (1999) proposed an ”affine” approx-

imation using the tangent stiffness tensor but in a non-incremental form to linearize the
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local constitutive equation:

σr = Cr : εr + σ0
r (I .17)

Then the overall constitutive equation is obtained

Σ = Ctan : E + Σ0 (I .18)

For more difference between the aforementioned three different mean field homoge-

nization approaches, one can refer in Chaboche et al. (2001).

2.2 Variational approaches

The other fruitful research approaches is in the variational framework (Brassart et al.,

2011, 2012; Castañeda, 1991, 1992, 2002b; Lahellec and Suquet, 2007b, 2013). We here will

first review the general framework, and then will introduce several variational approaches.

2.2.1 Variational framework

In the variational framework, the local behavior is described by a single convex poten-

tial, i.e.,

σ =
∂W

∂ε
(z, ε), with W (z, ε) =

N∑
r=1

Hr(z)W (r)(ε) (I .19)

where W (r) is the potential of phase r. Under the uniform strain boundary condition, the

minimum energy principle states that the strain field ε(z) is the solution of the following

variational problem

W̄ = inf
ε∈R(E)

〈W (ε)〉 (I .20)

where the set R (E) is the kinematically admissible strain field

R (E) =

{
E =

1

2

(
∇ξ +∇T ξ

)}
(I .21)

with ξ (z) has been defined in. Note that the minimum average strain energy W̄ is the

effective potential of the composite, from which the effective stress-strain relation is ob-

tained:

Σ =
∂W̄

∂E
(I .22)

This relation is derived by (Ponte-Castañeda and Suquet, 1998)

∂W̄

∂E
=

〈
∂W (ε)

∂ε
:
∂ε

∂E

〉
=

〈
σ :

∂ε

∂E

〉
= 〈σ〉 :

〈
∂ε

∂E

〉
(I .23)
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where ε is the strain field solution of the variational problem. The last equality is obtained

by applying the Hill’s lemma. Eq. (I .23) is then proven noting that:
〈
∂ε
∂E

〉
= 〈∂ε〉

∂E = δ.

By using Legendre transform, the function U which is convex dual of W is derived

U (σ) = sup
ε
{σ : ε−W (ε)} (I .24)

and the local strain behavior can be expressed as

ε =
∂U

∂σ
(z,σ) , with U (z,σ) =

N∑
r=1

H(r)(z)U (r) (σ) (I .25)

Then the overall stress potential in the composites is given by the principle of minimum

complementary energy

Ū(σ) = inf
σ∈F(Σ)

〈U(σ)〉 (I .26)

Finally a proof similar to (I .22) reads that

E =
∂Ū

∂Σ
(I .27)

It is noted that the macroscopic constitutive relations ((I .22) and (I .27)) are completely

equivalent in the case of that the effective potential W̄ and Ū are dual of each other, i.e.,

(Willis, 1989)

Ū(Σ) = sup
E

[
Σ : E − W̄ (E)

]
(I .28)

2.2.2 Variational approach of Castañeda (1991)

Castañeda (1991) considered the composites composed of J2 isotropic plastic phase,

and introduced the following quadratic potential

W (r) (ε) =
9

2
k(r)ε2

m + f (r)
(
ε2
eq

)
(I .29)

where

f
(
ε2
eq

)
= inf

µ
(r)
0

[
3

2
µ

(r)
0 ε2

eq − f∗
(
µ

(r)
0

)]
For a fictitious linear composite is introduced, the phase potential

W
(r)
0

(
µ

(r)
0 , ε

)
=

1

2
ε : C(r)

0 : ε, with C(r)
0 = 2µ

(r)
0 K + 3k(r)J (I .30)

Substituting (I .30) into (I .29) , the potential (I .29) can be rewritten as

W (r) (ε) = inf
µ

(r)
0

[
W

(r)
0

(
µ

(r)
0 , ε

)
+ V (r)

(
µ

(r)
0

)]
(I .31)
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where the V (r)
(
µ

(r)
0

)
is given by

V (r)
(
µ

(r)
0

)
= −f∗

(
µ

(r)
0

)
= sup

ε2eq

[
f
(
ε2
eq

)
− 3

2
µ

(r)
0 ε2

eq

]
(I .32)

= sup
ε

[
W (r) (ε)−W (r)

0

(
µ

(r)
0 , ε

)]
(I .33)

Then the optimality condition in corresponds to a secant condition

∂W (r)

∂ε
(ε) = C(r)

0 : ε (I .34)

Inserting Eq (I .31) into the variational formulation of the homogenization problem

(I .20),the following equivalent variational principle is obtained

W̄ (E) = inf
µ0

[
W̄0 (µ0, ε) +

〈
V (r)

(
µ

(r)
0

)〉]
(I .35)

where W̄0 is the effective potential of the LCC with phase potential, which reads

W̄0 = inf
ε∈R(E)

N∑
r=1

cr

〈
W

(r)
0

(
µ

(r)
0 , ε

)〉
r

=
1

2
E : C̄0 : E (I .36)

2.2.3 Second order procedure of Castañeda (2002a)

For incorporating the fluctuations for the nonlinear composites, Castañeda (2002a)

proposed an improved second order homogenization method. In the following, we will

have a brief review of this approach.

Based on the second-order Taylor approximation of the nonlinear potential, one obtains

W
(r)
0 (ε) = W (r)

(
ε(r)
)

+
∂W (r)

∂ε

(
ε(r)
)

:
(
ε− ε(r)

)
+

1

2

(
ε− ε(r)

)
: C(r)

0 :
(
ε− ε(r)

)
(I .37)

where ε(r) is a uniform reference strain and C(r)
0 is a symmetric, postive definite, constant

tensor. The following upper bound for the overall potential of the nonlinear composite

read

W̄ (E) ≤ inf
C(r)

0 ,ε(r)

[
W̄0

(
E,C(r)

0 , ε(r)
)

+

N∑
r=1

crV
(r)
(
C(r)

0 , ε(r)
)]

(I .38)

where W̄0 is the effective potential of the LCC, and the error function

V (r) = sup
ε̂(r)

[
W (r)

(
ε̂(r)
)
−W (r)

0

(
ε̂(r),C(r)

0

)]
(I .39)

have been introduced for convenience.



Review of nonlinear homogenization approaches to heterogeneous materials 17

It is noted that (I .38) holds for any choice of reference moduli C(r)
0 and strains ε(r).

For the sake of more accuracy, the infimum in and the supremum in have been replaced

by stationarity conditions

W̄ (E) ' statC(r)
0 ,ε(r)

[
W̄0

(
E,C(r)

0 , ε(r)
)

+
N∑
r=1

crV
(r)
(
C(r)

0 , ε(r)
)]

(I .40)

with

V (r) = statε̂(r)

[
W (r)

(
ε̂(r)
)
−W (r)

0

(
ε̂(r),C(r)

0

)]
(I .41)

The stationary condition w.r.t ε̂(r) in (IV .18) reads

∂W (r)

∂ε

(
ε̂(r)
)
− ∂W (r)

∂ε

(
ε(r)
)

= C(r)
0 :

(
ε̂(r) − ε(r)

)
(I .42)

which can be interpreted as a generalized secant condition. From the general formulation

(I .40), the following three estimates can be obtained.

a) Case of ε(r) = 0

By setting the tensor ε(r) = 0 in Eq.(I .37), the optimality condition on ε̂ in the

variational principle (Eq. (I .38)) is equal to the variational principle of Castañeda (1991).

In this case, the stationary condition (I .42) yields

∂W (r)

∂ε

(
ε̂(r)
)

= C(r)
0 : ε̂(r) (I .43)

where C(r)
0 is the secant modulus computed in ε̂ as demonstrated in Section 2.2.2.

b) Case of ε(r) = ε̂(r)

By taking ε(r) = ε̂(r) in Eq.(I .42), implying the function V (r) vanish. Then the

stationarity condition w.r.t. ε(r) in (I .40) yields(
C(r)
tan − C(r)

0

)
:
(
〈ε〉r − ε

(r)
)

= 0 (I .44)

This condition is satisfied for ε(r) = ε̂(r) = 〈ε〉r. However, in general the stationary

condition on C(r)0 cannot be enforced. For this issue, (Castañeda, 1996) proposed an

approach to set C(r)
0 = C(r)

tan, which yields the so-called second-order estimate

W̄ =

N∑
r=1

cr

(
W (r)(E) +

1

2

∂W (r)

∂ε
(〈εr〉) : (ε̄− 〈εr〉)

)
(I .45)

c) Case of ε(r) 6= ε̂(r)
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Most general estimates were obtained in the framework with the choice of ε(r) 6= ε̂(r).

In this case, the nonlinear response is approximated by a linear interpolation between

the two reference strains. The stationary condition on C(r)
0 is regarded to involve field

fluctuations about the reference strain ε(r) via the covariance tensor (Ponte Castaneda,

2002) (
ε̂(r) − ε(r)

)
⊗
(
ε̂(r) − ε(r)

)
=

2

cr

∂W̄0

∂C(r)
0

=
〈(
ε− ε(r)

)
⊗
(
ε− ε(r)

)〉
r

(I .46)

It is noted that the estimate (IV .18) must still be optimized w.r.t. the reference strains

ε(r). However, as all stationarity conditions cannot be simultaneously satisfied, and addi-

tional approximations must be introduced (Castañeda, 2002b).

2.2.4 Incremental variational approach of Lahellec and Suquet (2007b)

In the framework of Generalized Standard Materials, the local behavior of the com-

posites can be described by a free energy and a dissipation function

ψ(r) (z, ε,α) =
N∑
r=1

H(r) (z)ψ(r) (ε,α) , φ (z, α̇) =
N∑
r=1

H(r) (z)φ (α̇) (I .47)

with

ψ(r) (ε,α) =
1

2
(ε−α) : C(r) : (ε−α) (I .48)

φ (α̇) = f (r)
(
α̇2
eq

)
, with α̇eq =

√
2

3
α̇ : α̇ (I .49)

where the function f (r) is supposed to concave w.r.t. its argument.

By adopting an incremental variational framework, the local stress-strain relation is

derived from a single potential

σn+1 =
∂W∆

∂ε
(εn+1) (I .50)

where the condensed incremental potential is the solving of the following the minimization

problem

W∆ (z, εn+1) = inf
α
J∆ (z, εn+1,αn+1) (I .51)

with

J∆ (z, εn+1,αn+1) = ψ(r) (z, εn+1,αn+1)−ψ(r) (z, εn,αn)+∆tφ

(
z,
αn+1 −αn

∆t

)
(I .52)

The effective incremental potential of the composites

W̄∆ (E) = inf
ε∈R(E)

〈W∆ (z, ε)〉 = inf
ε∈R(E)

〈
inf
α
J∆ (z, ε,α)

〉
(I .53)
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Inspiring from the variational procedure of Castañeda (2002b) , Lahellec and Suquet

(2007b) introduced an energy J0 (that for the linear comparison composite) which is more

amenable to homogenization. For viscoelastic comparison composite, the phase potentials

J0 yields

J
(r)
0 (ε,α) = w(r) (ε,α)− w(r)

n +
η

(r)
0

∆t

(
α−α(r)

n

)
:
(
α−α(r)

n

)
(I .54)

where η
(r)
0 and α

(r)
n are uniform in phase r. In this context, the difference ∆J = J − J0

can still beestimated.

Then, the homogenizaiton problem , can be rewritten as

W̄∆ (E) = inf
ε∈R(E)

〈
inf
α

[J0 (z, ε,α) + ∆J (z, ε,α)]
〉

(I .55)

and satisfies

W̄∆ (E) ≤ inf
ε∈R(E)

[〈
inf
α
J0 (z, ε,α)

〉
+

〈
sup
α

∆J (z, ε,α)

〉]
(I .56)

Following recommendations of Castañeda (1991, 1992) , Lahellec and Suquet (2007b)

proposed the following estimate

W̄∆ (E) ' inf
ε∈R(E)

[〈
inf
α
J0 (z, ε,α)

〉
+ 〈statα∆J (z, ε,α)〉

]
(I .57)

3 Review of homogenization of cracked materials

Most rock-like materials are subjected to oriented nucleation and propagation of micro-

cracks. The induced damage of micro-cracks effects not only mechanical but also transport

properties of rock-like materials. In the present work, we propose to develop a micro-

mechanical approach for the description of induced damage in initially isotropic materials.

This approach will be based on the reference solution of Eshelby for inclusion problems

Eshelby (1957a). Induced micro-cracks will be seen as spheroidal inclusions embedded in a

solid matrix. The effective elastic properties of cracked materials will be determined using

linear homogenization procedures which is combined with a irreversible thermodynamics

framework for the description of damage evolution.

The determination of effective properties of a heterogeneous material through a homog-

enization procedure is generally carried out on a representative element volume (REV), as

shown in Figure I .3, which occupies the geometric domain Ω and is limited by its external

boundary surface ∂Ω. For the sake of simplicity but without loosing the generality, the

cracked material will be represented by a crack-matrix system. An elastic solid matrix

with elastic tensor Cs which is weakened by a family of parallel penny shaped micro-cracks
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with elastic tensor Cf,r. In such a representation, each family of micro-cracks is seen as a

phase of inclusions embedded in the matrix phase. The cracked material is a two-phase

composite with a crack-matrix system.

Figure I .3: Representative elementary volume (REV) of microcracked solids

3.1 Effective elastic property of cracked materials

In order to determine the effective elastic property of the above described REV, suit-

able boundary conditions should be prescribed on the external boundary ∂Ω. In conven-

tional homogenization process Ponte-Castaneda and Willis (1995), we can adopt either

the uniform stress boundary condition or the uniform strain boundary condition reviewed

in Section II .11.

By adopting the uniform strain boundary condition, the crucial step of homogeniza-

tion method consists in finding a fourth-order localization tensor A(z) which relates the

microscopic strain field ε to the macroscopic strain E.

ε = A(z) : E (∀z ∈ Ω) (I .58)

Note that the concentration tensor satisfies the condition 〈A(z)〉 = I, due to the fact that

the average of microscopic strain is equal to the macroscopic strain, see I .8. I denotes the

fourth order unit tensor: I = 1
2(δikδjl + δilδjk) with δij the Kronecher’s symbol.

By using the local elastic law and making the averaging of the local stress field, the

following macroscopic elastic stress-strain relation is obtained

Σ = Chom : E with Chom = 〈Cs : A〉 (I .59)

where Chom denotes the effective macroscopic elastic stiffness tensor of the homogenized

material. Due to the fact that the local strain field is not uniform inside each inclusion

phase, the volume averaging operation in the above relation is generally difficult to perform
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and cannot be performed analytically. Therefore, for the sake of simplicity, it is generally

assumed that the local strain field in each inclusion phase r can be represented by its

constant average value. Accordingly, only the constant average of strain localization tensor

Ar needs to be determined for each phase r. For a heterogeneous materials containing N
phases of inclusions, the effective elastic stiffness is given by:

Chom =
N∑
r=1

ϕrCr : Ar (I .60)

where ϕr is the volume fraction of the phase r.

With the condition 〈A(x)〉 = I and by denoting the elastic stiffness of the solid matrix

by Cs and that of the inclusion phase r by Cf,r, the effective elastic stiffness tensor can

also be written in the following form:

Chom = Cs +
N∑
r=1

ϕf,r(Cf,r − Cs) : Af,r (I .61)

The determination of concentration tensor Af,r for each phase r depends on the ho-

mogenization scheme used. Physically this is related to how the effects of crack interaction

and spatial distribution are taken into into account. The well-known solutions to Eshelby’s

inclusion problem provide fundamentals for determination of such concentration tensors,

Eshelby (1961, 1957a); Mori and Tanaka (1973b); Ponte Castañeda and Suquet (1997).

The basic solution of Af,r is written as

Af,r = [I + Prε : (Cf,r − Cs)]−1 = [I− Srε : (I− Ss : Cf,r)]−1 (I .62)

which Srε is the Eshelby tensor corresponding to the rth family of micro-cracks and Srε is

related to the Hill tensor Prε such as: Srε = Prε : Cs. Therefore, the Hill tensor depends on

the geometry of micro-cracks and the elastic properties of solid matrix. Here, it is worth

to mention that for the case of initially isotropic matrix, the Eshelby tensor or Hill tensor

has analytical solution for penny shaped micro-cracks Zhu (2006).

Here we will review three widely used schemes: Dilute scheme, Mori-Tanaka (MT)

scheme and Ponte-Castaneda and Willis (PCW) scheme.

3.2 Dilute scheme

In the case of inclusions with low concentration, we consider simply that there is no

interaction between different families of micro-cracks, which implies that all families of

micro-cracks are independent from each other. The effective elastic stiffness tensor is then
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reduced to:

Chom = Cs +

N∑
r=1

ϕf,r(Cf,r − Cs) : [I + Prε : (Cf,r − Cs)]−1 (I .63)

On the other hand, the effective elastic properties of cracked materials are also depen-

dent on opening or closure state of micro-cracks. Three situations can be distinguished.

For the case of open cracks, there is the cancellation of local stress on the crack faces.

The elastic tensor of cracks then vanishes, Cf,r = 0. For closed frictionless cracks, the

idea introduced by (Deude et al. (2002)) consist in modelling the planar cracks as a fic-

titious elastic material with an elastic tensor Cf,r = 3ksJ, ks being the bulk modulus of

the isotropic solid matrix. This choice is justified by the need to take into account for

the nullity of the tangential stress on the closed crack lips and the continuity of stress in

the normal direction to cracks lips. In the last case of closed frictional cracks, we assume

that the friction is large enough so that the crack lips are fully glued. Therefore, one gets

Cf,r = Cs.

a) Case of open cracks:

By putting Cf,r = 0 in (I .63), one obtains:

Chom = Cs : [I−
N∑
r=1

ϕf,r(I− Prε : Cs)−1] (I .64)

The main difficulty for the calculation of Chom lies in the fact that (I − Prε : Cs)−1 is

singular when the aspect ratio ε tends to 0. In this context, the volume fraction of cracks

ϕf,r is expressed as:

ϕf,r =
4

3
πa2cNr =

4

3
πεdr (I .65)

whereNr denotes the number of cracks per unit volume of a family of cracks and dr = Nra3

is the crack density parameter. It is well known that when the aspect ratio ε tends to

zero, the concentration tensor admits a limit value. The homogenized effective elasticity

tensor can be also written as:

Chom = Cs : [I− 4

3
π

N∑
r=1

drε(I− Prε : Cs)−1] (I .66)

where we denoted Tr = ε(I− Prε : Cs)−1. It follows that the homogenized elasticity tensor

can be written as:

Chom = Cs : [I− 4

3
π

N∑
r=1

drTr] , with Tr = lim
ε→0

ε(I− Prε : Cs)−1 (I .67)
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Note that the expression (I .67) of the effective elastic stiffness tensor is valid not only

for isotropic but also anisotropic solid matrix. The difference lies in the calculation of

Hill’s tensor.

b) Case of closed frictionless cracks:

As mentioned above, it is assumed that the tangential stiffness of cracks vanishes while

the normal stiffness takes the value of solid matrix, that is kf = ks and µf = 0. Thus, one

takes for the elastic tensor of cracks Cf,r = 3ksJ. As a consequence, the effective elastic

stiffness tensor with an initially isotropic matrix is given by:

Chom = Cs : [I− 4

3
π

N∑
r=1

drεK : (I− Prε : Cs : K)−1] (I .68)

where: Cf,r − Cs = −2µsK = −Cs : K.

For low cracks aspect ratio ε → 0, the tensor T′r = εK : (I − Prε : Cs : K)−1 tends to

its limit. It follows that:

Chom = Cs : [I− 4

3
π

N∑
r=1

drT′r] , with T′r = lim
ε→0

εK : (I− Prε : Cs : K)−1 (I .69)

3.3 Mori-Tanaka scheme estimations

To overcome the limitations of the dilute scheme, Mori and Tanaka Mori and Tanaka

(1973a) proposed a homogenization method to deal with interactions between inclusions in

composite materials. It has been applied to micro-cracked materials in Benveniste (1986).

The idea in Mori-Tanaka scheme to take into account interactions between cracks

consists in considering an intermediate prescribed macroscopic strain E0 on the external

boundary of the RVE, instead of the remote macroscopic strain E. For this new problem,

the relation (I .62) is written:

εr = [I + Prε : (Cf,r − Cs)]−1 : E0 (I .70)

The use of the relation 〈ε〉Ω = E leads to:

E0 = [ϕsI +
N∑
j=1

ϕf,j [I + Pjε : (Cr,j − Cs)]−1]−1 : E (I .71)

from where it deduces the strain concentration rule (I .58) for the Mori-Tanaka scheme

with:

Af,r = [I + Prε : (Cf,r − Cs)]−1 : [ϕsI +

N∑
j=1

ϕf,j [I + Pjε : (Cf,j − Cs)]−1]−1 (I .72)
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The substitution of equation (I .72) into (I .61) allows to deduce the expression of the

effective elasticity tensor corresponding to the MT scheme:

CMT = Cs +
N∑
r=1

ϕf,r(Cf,r − Cs)

: [I + Prε : (Cf,r − Cs)]−1 : [ϕsI +
N∑
j=1

ϕf,j [I + Pjε : (Cf,j − Cs)]−1]−1

(I .73)

This general result can be applied to open and closed micro-cracks.

a) Case of open cracks: (Cf,r = 0)

Chom = Cs −
N∑
r=1

ϕf,rCs : (I− Srε)−1 : [ϕsI +

N∑
j=1

ϕf,j(I− Sjε)]−1 (I .74)

We recall that Sε = Pε : Cs is the Eshelby’s tensor corresponding to one family of

crack. Also, (I .74) can be written as:

Chom = ϕsCs : [ϕsI +
N∑
j=1

ϕf,j(I− Sjε)−1]−1 = Cs : [I +
4

3
π

N∑
j=1

djTr]−1 (I .75)

with Tr = lim
ε→0

ε(I − Sjε)−1, the quantity ϕs is sensibly equal to 1 as the volume of the

cracks being almost zero. The inversion of (I .75) gives the effective elastic compliance

tensor Shom of cracked media:

Shom = [I +
4

3
π

N∑
j=1

djTr] : Ss (I .76)

b) Case of closed frictionless cracks: (Cf,r = 3ksJ)

Considering Cf,r = 3ksJ, one gets for the MT scheme:

Chom = Cs −
N∑
r=1

ϕf,rCs : K : (I− Sjε : K)−1 : [ϕsI +
N∑
j=1

ϕf,j(I− Sjε : K)−1]−1 (I .77)

After arrangement of the results, one obtains:

Chom = Cs : [I +
4

3
π

N∑
j=1

djε(I− Sjε : K)−1]−1 = Cs : [I +
4

3
π

N∑
j=1

djT′r]−1 (I .78)

With T′r = lim
ε→0

ε(I− Sjε : K)−1. For the inversion of the above equation, the macroscopic

compliance tensor is given by:

Shom = [I +
4

3
π

N∑
j=1

djT′r]−1 : Ss (I .79)
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3.4 PCW scheme estimations

For taking into account both interactions between cracks and effects of spatial distribu-

tion of micro-cracks, the idea in the Ponte-Castaneda and Willis scheme (Ponte-Castañeda

and Willis, 1995) is to consider two independent functions, one associated with the shape

of inclusions, the other one associated with the spatial distribution form of inclusions.

In the case of considering the same spatial distribution for all of inclusions, the strain

concentration tensor can be taken into the form:

Af,r = [I + Prε : (Cf,r − Cs)]−1 :

[I +
∑N

j=1 ϕf,j [I + (Pjε − Pd) : (Cf,j − Cs)] : [I + Pjε : (Cf,j − Cs)]−1]−1

(I .80)

where the tensor Prε is related to the shape of the rth family of cracks while Pd is the

function associated with the spatial distribution of cracks. According to PCW scheme,

the general expression of macroscopic elasticity tensor can be written as:

CPCW = Cs + (I−
N∑
r=1

ϕf,r[(Cf,r − Cs)−1 + Prε ]−1 : Pd)−1 :

N∑
r=1

ϕf,r[(Cf,r − Cs)−1 + Prε ]−1

(I .81)

This result can be applied to open and closed micro-cracks by considering different elastic

tensor of inclusion phase, as that already discussed for the Dilute and MT schemes.
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Chapter II

Homogenization of rock-like

materials with plastic matrix

based on an incremental

variational principle∗

A large class of rock-like materials are composed of a plastic solid matrix in which var-

ious inclusions and pores are embedded. This paper is devoted to determine macroscopic

inelastic responses of such materials by a nonlinear homogenization procedure. The plastic

behavior of solid matrix is described by a plastic model based on the pressure-dependent

Drucker-Prager criterion. The plastic strain field of solid matrix is divided into a volumet-

ric part and a shear part. Unlike most mean-field methods previously developed, the strain

field in the solid matrix is non-uniform and this non-uniform field is taken into account

by using an incremental variational model. The whole loading history is divided into a

limit number of increment. For the sake of simplicity, the behavior of solid matrix is first

assumed to be elastic-perfectly plastic at each loading increment. With the help of a time

derivative approximation, the local incremental potential of the solid matrix is deduced.

By considering the effect of inclusions and pores, the effective incremental potential of the

heterogeneous composite is determined and estimated with the help of a linear comparison

material. The macroscopic stress of the composite is finally estimated from the effective

incremental potential. The accuracy of the proposed model is assessed by a series of com-

parisons with reference results obtained from direct finite element simulations respectively

∗Submitted to International journal of plasticity
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for inclusion-reinforced and porous materials. Finally, by assuming that the general form

of incremental variational model remains valid when the solid matrix exhibits isotropic

plastic hardening, the proposed model is extended simply by updating the value of fric-

tional coefficient of solid matrix at each loading increment. The proposed model in this

case is also well validated by comparisons with finite element reference results. Moreover,

as examples of application, the model is used to simulate laboratory tests performed on a

cement mortar and a typical porous sandstone.

1 Introduction

In many engineering applications, it is necessary to determine mechanical properties

of so-called rock-like materials, such as rocks, hard soils and concretes. This is so far

essentially done by developing various phenomenological models including plastic models

(Shao and Henry, 1991; Xie and Shao, 2006; Zhang et al., 2013), damage models (Dragon

et al., 2000; Shojaei et al., 2014) and coupled models (Chiarelli et al., 2003; Conil et al.,

2004; Yuan et al., 2013; Zhou et al., 2013), just to mention a few. These models are

generally fitted from macroscopic laboratory tests and can reasonably reproduce main

features of mechanical responses of rock-like materials. However, most rock-like mate-

rials are heterogeneous materials composed of various mineral phases and pores. Their

macroscopic properties are inherently related to local properties of constituent phases

and affected by the mineralogical compositions and morphology at different scales. In

order to predict macroscopic mechanical responses of these materials in relation with the

spatial and temporal change of mineralogical compositions and microscopic structures,

constitutive models issued from various homogenization techniques have been developed.

Representative examples include (Shen et al., 2012; Zhu et al., 2016).

Let considering a class of materials which are characterized by a solid matrix with em-

bedded mineral inclusions and pores. By adopting a Drucker-Prager type criterion for the

solid matrix and by using limit analysis techniques and variational approaches, different

analytical criteria have been established for the macroscopic strength of porous materials,

for instance (Guo et al., 2008a; Maghous et al., 2009b; Shen et al., 2017, 2015). With

a two-step homogenization method, an analytical criterion has been proposed for clayey

rocks containing a porous clay matrix at the microscopic scale and mineral grains at the

mesoscopic scale (Shen et al., 2013). However, in these analytical models, only one family

of pores or inclusions is taken into account. In real materials, several families of mineral

grains of different mechanical properties and pores may exist at the same scale. In order
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to determine the effective behavior of such materials, semi-analytical models have been de-

veloped. Based on a simple extension of elastic materials, the Hill incremental method has

first been developed for composite materials (Doghri and Tinel, 2005; Hill, 1965b) and was

recently enriched with second-order moments to take into account intra-phase field fluctu-

ations (Doghri et al., 2011). It has also been applied to rock-like materials (Guéry et al.,

2008; Shen et al., 2012). In those models based on the Hill incremental method, it relies on

a direct linearization of the local stress-strain relation using instantaneous (anisotropic)

tangent operator. However, this class of models generally leads to too stiffer macroscopic

responses (Chaboche et al., 2005). Some numerical techniques, such as the isotropization

of tangent stiffness operator, have been proposed to improve the performance of those

models. Nevertheless, those corrective techniques are not physically founded.

Important efforts have been made in nonlinear homogenization methods in order to

account for the effect of non-uniform strain fields in constituent phases on effective proper-

ties of composite materials. In the models based the Transformation Field Analysis (TFA)

originally proposed by Dvorak and Benveniste (1992) for elastic-plastic composites, the

local plastic strain field is assumed to be piecewise uniform. The class of models have been

applied to various materials but their accuracy is strongly dependent on the number and

the arrangement of the piecewise uniform sub-domains. For highly heterogeneous non-

linear materials, a high number of sub-domains is needed to obtain relative satisfactory

results, implying a high computational cost. In order to overcome the shortcoming of

the TFA based models, the Non-uniform Transformation Field Analysis (NTFA) has been

proposed (Michel and Suquet, 2003, 2004). The local plastic strain field is decomposed

into a linear combination of a limited number of non-uniform plastic strain modes. This

method has been applied to rock-like materials (Jiang et al., 2013). However, it is not an

easy task to identify the necessary plastic modes by preliminary full-field simulations.

Starting from variational principles for linear composite materials, an incremental vari-

ational method has been proposed for nonlinear composite materials in (Lahellec and Su-

quet, 2007b,c) in the framework of Generalized Standard Materials (Halphen and Nguyen,

1975). Non-uniform local strain fields are characterized by introducing effective incremen-

tal variables (EIV). By using an implicit time-discretization scheme, the local evolution

problem is reduced to the minimization of an incremental potential function. This effective

incremental variable model was first applied to linear and nonlinear viscoelastic composites

(Lahellec and Suquet, 2007b,c) without plastic hardening. The same authors (Lahellec and

Suquet, 2013) proposed a rate variational model (RVP) considering the elastic-viscoplastic

composites with local threshold, isotropic and linear kinematic hardening.More recently,
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the incremental variational formulation has been used for the prediction of the effective

behavior of elastic-plastic composites with local plastic threshold and isotropic and/or

linear kinematic plastic hardening (Boudet et al., 2016). On the other hand, based on the

variational principle established by Ortiz and Stainier (1999), some authors have also pro-

posed another incremental variational procedure for elasto-(visco)plastic composites with

local isotropic hardening (Brassart et al., 2011, 2012). However, most previous studies

were devoted to composite materials with pressure-independent plastic phases.

In the present study, we shall propose a new incremental variational model for rock-like

materials constituted by a plastic matrix in which are embedded elastic inclusions and (or)

pores. As the main difference with previous studies for metal materials, the plastic matrix

is described by a pressure-dependent Drucker-Prager criterion. As a consequence, the local

plastic strain field is decomposed into a volumetric part and a shear part. Further, most

rock-like materials generally exhibit plastic hardening. In the case of an isotropic plastic

hardening is considered, the hardening of rock-like materials is generally represented by the

variation of internal frictional coefficient rather than the evolution of cohesion. However,

this kind of plastic hardening renders the analytical formulation of incremental variational

model very complex. We propose here a simplified approach. As the whole loading history

is divided into a limit number of increments, the behavior of solid matrix is first assumed

to be elastic-perfectly plastic for each loading increment. The general formulation of

incremental variational model is obtained for this particular case. The proposed model is

validated through comparisons with reference results obtained from direct finite element

simulations for materials without plastic hardening. Then, we assume that the obtained

formulation remains valid when the solid matrix exhibit an isotropic plastic hardening.

The model is extended simply by updating the value of frictional coefficient of solid matrix

at each loading increment with a specific law. The proposed extended model is verified

through comparisons with reference results obtained from direct finite element simulations

for materials with an isotropic plastic hardening law. Finally, the proposed extended

model is validated against experimental data in some laboratory tests for cement mortar

and porous sandstone.

2 Incremental variational principle for matrix-inclusion ma-

terials

We consider here a class of rock-like materials which are characterized at the meso-

scopic scale by a continuous solid matrix in which mineral grains and pores are randomly
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embedded. The Representative Volume Element (RVE) is shown in Figure II .1. The

RVE occupies the geometrical domain Ω ⊂ Rndim (ndim = 1, 2, 3) and has an external

boundary ∂Ω ⊂ Rndim−1. The solid matrix occupies the domain Ωm ⊂ Rndim and each of

N inclusions phases the domain Ωi,r ⊂ Rndim), r = 1, ..., N . Pores are here regarded as

a special elastic inclusion phase with vanishing stiffness. For the convenience, the total

volume of the RVE is denoted by VΩ, the volume of matrix is VΩm , the volume occupied

by the inclusion phase r is VΩi,r . Therefore, the volume fractions of the matrix and the

inclusion phase r are respectively defined as

fm =
VΩm

VΩ
; f i,r =

VΩi,r

VΩ
, r = 1, ..., N ; (II .1)

For the sake of clarity, 〈·〉 denotes a volume average over the whole RVE, 〈·〉m is a

volume average over the matrix, and 〈·〉i,r is a volume average over the inclusion phase r,:

〈·〉 =
1

VΩ

∫
VΩ

(·) dVΩ = fm 〈·〉m +
N∑
r=1

f i,r 〈·〉i,r (II .2)

with

〈·〉m =
1

VΩm

∫
VΩm

(·) dVΩm ; 〈·〉i,r =
1

VΩi,r

∫
V

Ωi,r

(·) dVΩi,r (II .3)

Figure II .1: Representative volume element of general rock-like materials

2.1 Local behavior of solid matrix

The solid matrix exhibits an elastic-plastic behavior. Its elastic stiffness tensor at

any point x ∈ Ωm is defined by the fourth order tensor Cm. Its elastic-plastic behavior

at x ∈ Ωm is described by two local potentials, the free energy wm and the dissipation

potential ϕm. Both potentials are convex of the strain tensor ε(x), the internal state

variables ξ(x) and their time-derivatives. The thermodynamics conjugate force variables

associated with the state variables ε and ξ are defined by:

σ =
∂wm

∂ε
(ε, ξ) (II .4a)

z = −∂w
m

∂ξ
(ε, ξ) =

∂ϕm

∂ξ

(
ξ̇
)

(II .4b)
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σ(x) is the local Cauchy stress tensor and z is the conjugate force for plastic hardening.

Based on the previous studies in (Lahellec and Suquet, 2007b; Ortiz and Stainier, 1999),

the time derivative ξ̇ is here approximated by a difference quotient after use of an implicit

Euler-Scheme. The time interval (loading history) of study [0, T ] is thus divided into

the time (loading) steps t0 = 0, t1, ..., tn, tn+1, ..., tN = T . The time (loading) increment

between tn and tn+1 is denoted by ∆t. By using this time-discretization procedure, the

transformation of Eq. (III .13) leads to the following discretized equations:

σn+1 =
∂wm

∂ε
(εn+1, ξn+1) ,

∂wm

∂ξ
(εn+1, ξn+1) +

∂ϕm

∂ξ̇

(
ξn+1 − ξn

∆t

)
= 0 (II .5)

It is assumed that all local fields at time tn are known and they have to be determined

at time tn+1. Inspired by Lahellec and Suquet (2007b), we introduce the following local

incremental potential Jm, function of local variables ε and ξ (for the sake of simplicity

the subscripts n+ 1 are omitted):

Jm (ε, ξ) = wm(ε, ξ) + ∆tϕm
(
ξ − ξn

∆t

)
(II .6)

It is found that the second relation in Eq. (II .5) is the Euler-Lagrange equation of the

variational problem for the minimization of the local incremental potential with respect

to ξ. This leads to the following condensed local incremental potential:

πm∆ (ε) = inf
ξ
Jm (ε, ξ) (II .7)

As demonstrated in Lahellec and Suquet (2007b), the local stress field σ in the solid matrix

can be derived from this sole potential:

σ =
∂πm∆
∂ε

(ε) (II .8)

2.2 Local behavior of mineral inclusions

It is here assumed that all mineral inclusions have a linear elastic behavior. The elastic

properties are constant for each inclusion phase r, and defined by the elastic stiffness tensor

Ci,r. Therefore, the local mechanical behavior of inclusion phase r is entirely defined by

the free energy function wi,r, which is the sole convex potential of the strain tensor ε.

Accordingly, the local incremental potential πi,r∆ of the inclusion phase r is identical to

its free energy function:

πi,r∆ = wi,r (ε) =
1

2
ε : Ci,r : ε (II .9)

The local stress field σ in the inclusion phase r is given by:

σ =
∂πi,r∆

∂ε
(ε) = Ci,r : ε (II .10)
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2.3 Effective behavior of matrix-inclusion composite

We assume that the RVE is subjected to a macroscopic strain tensor ε (t). The problem

to be solved here is the determination of local strain field ε or displacement field u and

stress field σ by using the local constitutive models of constituents. By means of the

time-discretization procedure, the governing equations of the local problem are given as

follows: 

div σn+1 = 0

σn+1 = ∂π∆
∂εn+1

(εn+1)

ε(x, t) =
(
∇u(x, t) +∇Tu(x, t)

)
/2


for (x, t) ∈ Ω× [0, T ] (II .11)

Further the local displacement field verifies the boundary conditions, i.e. u(x, t) = ε̄(t) ·x.

It can be shown that due to these boundary conditions, the average local strain verifies

the following requirement 〈ε(x, t)〉 = ε (t).

The incremental potential in the composite π∆ (x, ε) is defined as:

π∆ =


πm∆ if x ∈ Ωm

πi,r∆ if x ∈ Ωi,r

(II .12)

By introducing the effective incremental potential Π∆, the macroscopic stress σ̄ can be

derived as:

σ̄n+1 =
∂Π∆

∂ε̄
(ε̄n+1) (II .13)

The key issue here is the estimation of the effective incremental potential Π∆. This is

done by an optimization operation of the averaging process of local incremental potential

with respect to the macroscopic strain:

Π∆ (ε̄n+1) = inf
〈ε〉=εn+1

〈π∆ (x, ε)〉 = inf
〈ε〉=εn+1

[
fm
〈

inf
ξ
Jm (ε, ξ)

〉
m

+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(II .14)

The effective incremental potential Π∆ (ε̄) is a function of the macroscopic strain ε̄ only.

The macroscopic stress given in Eq.(II .13) is thus the conjugate thermodynamic force

associated with the macroscopic strain. Further, the macroscopic stress defined here also

coincides with the volumetric average of the local stress field over the RVE. However, the

determination of the macroscopic stress comes to solving the variational problem (II .14)

at each time step, which itself involves a local optimization problem (II .7) with respect
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to the internal variables ξ at every position x ∈ Ωm. Instead of using a computationally-

costly numerical full-field solution, an approximate mean-field approach based on Lahellec

and Suquet (2007b) will be developed in Section 4 .

3 Determination of local incremental potential for Drucker-

Prager matrix

3.1 Determination of dissipation potential ϕm

As mentioned above, the local mechanical behavior of solid matrix is described by

an elastic-perfectly plastic model at each loading increment. The plastic deformation is

described by an associated plastic model based on the linear Drucker-Prager type criterion.

The related constitutive relations are expressed as follows:

ε̇ = Sm : σ̇+ ε̇p, f (σ) = σeq + 3κ (σm − c) ≤ 0

ε̇p = γ̇pN , N = 3
2
s
σeq

+ κδ

εp = α+ β, α = εp : K, β = εp : J =βδ


(II .15)

where σ and ε denote the local stress and strain fields in the matrix, with σeq =
√

3
2s : s

being the equivalent shear stress (with s = σ : K), and σm = 1
3σ : δ the mean stress.

εp is the local plastic strain tensor. The fourth order tensor Sm = (Cm)−1 is the elastic

compliance tensor. The parameter c and κ represent the hydrostatic tensile strength and

friction coefficient of the matrix respectively.

The equivalent plastic shear strain γp and plastic volumetric strain β are both related

to the deviatoric plastic strain tensor by:

γ̇p =

√
2

3
α̇ : α̇ = α̇eq, β̇ = κα̇eq, with α̇ = K : ε̇p (II .16)

As it is mentioned in Section 2.1, the constitutive relations (II .15) can be formulated

with the free-energy density wm(ε, ξ) and the dissipation potential ϕm
(
ξ̇
)
. It is noticed

that for the perfectly plastic model presented in Eq.(II .15), one gets ξ = (α,β). The

free-energy density wm(ε, ξ) is expressed as the elastic strain energy density. Assuming

that the elastic behavior is independent of irreversible plastic deformation, then wm(ε, ξ)

is written by:

wm(ε, ξ) =
1

2
(ε−α− β) : Cm : (ε−α− β) (II .17)
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Within the framework of thermodynamics, the local stress tensor is given by:

σ =
∂wm

∂ε
(ε,α,β) = Cm : (ε− εp) (II .18)

Accordingly, the conjugate thermodynamic forces respectively associated with α and β

are also reduced:

− ∂wm

∂α
( ε,α,β) = −∂w

m

∂β
(ε,α,β) = σ (II .19)

On the other hand, the mechanical dissipation D in this case can be expressed in terms

of the conjugate thermodynamic forces as follows (Lemaitre et al., 1993):

D
(
α̇, β̇

)
= σ :

(
α̇+ β̇

)
(II .20)

Furthermore, D can conveniently be rewritten in a condensed form which accounts for

the constitutive relations: (II .15) and (II .16)

D
(
α̇, β̇

)
= D (α̇eq) = Y (N) α̇eq (II .21)

where the function Y is defined as

Y = σ : N = σeq + 3κσm (II .22)

One notices that the expression (II .21) of the mechanical dissipation indicates that the

new scalar quantity Y is the conjugate thermodynamic force associated with αeq. Then the

evolution law for αeq can be expressed as a kinetic relation between Y and α̇eq. Therefore,

it can be derived from a dissipation potential φ (α̇eq):

Y =
∂φ

∂α̇eq
(α̇eq) or equivalently α̇eq =

∂φ∗

∂Y
(Y ) (II .23)

where φ∗ is the convex dual of φ by Legendre transform

φ∗ (Y ) = sup
α̇eq

{D−φ (α̇eq)} (II .24)

By choosing φ (α̇eq) non-negative, convex and such that φ (0) = 0, the mechanical dissi-

pation (II .21) is necessarily positive.

For the constitutive equations given in (II .15), by introducing σy = 3cκ, the kinetic

relation (II .23) yields

Y = σy ⇔ α̇eq ≥ 0 (II .25)

Y < σy ⇔ α̇eq = 0
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In this context, one can write the dissipation potential of the pressure-dependent per-

fectly plastic matrix ϕm
(
ξ̇
)

as follows:

ϕm
(
ξ̇
)

= φ (α̇eq) + ωc

(
α̇eq, β̇

)
= σyα̇eq + ωc

(
α̇eq, β̇

)
(II .26)

where ωc

(
α̇eq, β̇

)
is the indicative function of a convex set C1

ωc

(
α̇eq, β̇

)
=


0 if

(
α̇eq, β̇

)
∈ C1 =

{(
α̇eq, β̇

)
|h
(
α̇eq, β̇

)
= κα̇eq − β̇ ≤ 0

}
+∞ otherwise

(II .27)

Since ϕm is not differentiable at α̇eq = 0, the partial derivative in (II .23) must be

understood in the sense of sub-differential.

Remark 1

The corresponding variation of the free energy is then

δwm =

(
∂wm

∂εe
:
∂εe

∂ εp
: δεp

)
= −Y (N) δαeq (II .28)

Thus, the quantity Y (N) δαeq measures the variation of free energy at constant total

deformation for a given variation of αeq.

3.2 Local incremental potential Jm

After introducing the free energy (II .17) and dissipation potential (II .26), the local

incremental potential Jm defined in (II .6) for the pressure-dependent plastic matrix can

be now written as follows:

Jm (ε,α,β) = wm(ε,α,β) + ∆tϕm
(
α−αn

∆t
,
β − βn

∆t

)
. (II .29)

Accordingly, the condensed local incremental potential defined in (II .7) is determined

from the optimization of Jm, with respect to α and β:

πm∆ (ε) = inf
α,β

Jm (ε,α,β) (II .30)

3.3 Linearization of local incremental potential

In order to extend the EIV model proposed by Lahellec and Suquet (2007b) to rock-like

materials with a pressure-dependent perfectly plastic solid matrix, we should linearize the
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local incremental potential Jm given in (II .29). On the other hand, compared with the

free energy given in Lahellec and Suquet (2007b) for composite materials, the free energy

for the materials considered here (II .17) relates to the volumetric plastic strain field β. In

order to take advantage of the main results of Lahellec and Suquet (2007b), the following

linearization method is adopted respectively for the free energy density and dissipation

potential:

• Linearization of the free energy density wm(ε,α,β) (see the detailed process in

Appendix A.)

wm(ε,α,β) ' wmlin(ε, α) (II .31)

=
1

2

(
ε−α− 〈βn〉m −α−αnκδ

)
: Cm :

(
ε−α− 〈βn〉m −α−αnκδ

)

• Linearization of the dissipation potential ϕm
(
α̇, β̇

)
. Here we adopt the same

quadratic form as that used in Lahellec and Suquet (2007b) and Boudet et al. (2016)

related to a linear comparison material, i.e. η0

∆t (α− α̃n) : (α− α̃n) . In this ex-

pression, the scale coefficient η0 and second-order tensor α̃n are both uniform in the

matrix.

We here take advantage of the key idea of the variational procedure proposed by

Castañeda (1992) and rewrite the local incremental potential as the sum of two terms:



Jm (ε,α,β) ' Jm0 (ε,α) + ∆Jm (α,β)

Jm0 (ε,α) = 1
2

(
ε−α− 〈βn〉m −α−αnκδ

)
: Cm :

(
ε−α− 〈βn〉m −α−αnκδ

)
+ η0

∆t (α− α̃n) : (α− α̃n)

∆Jm (α,β) = σy (α− αn)eq −
η0

∆t (α− α̃n) : (α− α̃n) + ∆tωc

(
(α−αn)eq

∆t , β−βn∆t

)
(II .32)
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4 Optimization of the effective incremental potential

4.1 Estimation of the effective incremental potential Π∆ (ε̄)

Based on the local incremental potential given in the previous section and making the

volumetric averaging, the effective incremental potential is expressed as:

Π∆ (ε̄n+1) = inf
〈ε〉=εn+1

[
fm
〈

inf
α,β,γp

(Jm0 (ε,α) + ∆Jm (α,β))

〉
m

+
N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(II .33)

One notices that the minimum over (α,β) of (II .33) is attained with the condition of

ωc = 0. Accordingly, the secant function ηsct (α̇eq) of the matrix is defined as

ηsct (α̇eq) =
φ′ (α̇eq)

3α̇eq
=

σy
3α̇eq

(II .34)

and Eq.(II .33) can be rewritten as

Π∆ (ε̄) = inf
〈ε〉=ε

[
fm
〈

inf
α

(Jm0 (ε,α) + ∆Jm (α))
〉
m

+
N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(II .35)

≤ inf
〈ε〉=ε̄

{
fm
[〈

inf
α
Jm0 (ε,α)

〉
m

+

〈
sup
α

∆Jm (α)

〉
m

]
+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

}
where

∆Jm (α) =
[
σy (α−αn)eq −

η0

∆t
(α− α̃n) : (α− α̃n)

]
(II .36)

The local optimization problem in Eq. (II .35) is now to be performed with respect to the

internal variable α only rather than to (α,β) in Eq.(II .30) at every position x ⊂ Ωm. This

largely deduces the complexity of the local optimization problem. The estimates (II .35)

of the effective potential Π∆ (ε̄) for the rock-like materials with the pressure-dependent

perfectly plastic matrix without hardening have the same form as that related to nonlinear

viscoleastic composites without hardening in Lahellec and Suquet (2007b) .

4.2 Stationarity of the effective incremental potential Π∆ (ε̄)

In order to further simplify the prediction of (II .35) (Lahellec and Suquet, 2007b;

Ponte Castaneda, 2002; Ponte Castaneda and Willis, 1999), the estimate of Π∆ (ε̄) can be

obtained by requiring only the stationarity of ∆Jm with respect to α, i.e.,

Π∆ (ε̄) ' inf
〈ε〉=ε̄

{
fm
[〈

inf
α
Jm0 (ε,α)

〉
m

+
〈

stat
α

∆Jm (α)
〉
m

]
+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

}
(II .37)
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It is worth noting that ∆J is here non-quadratic. In order to express the stationarity of

∆J with respect to α, we here consider that the concavity of F yields (Suquet, 1995)

〈∆Jm (α)〉m ≤
〈
∆J ′ (α)

〉
m

= ∆tF

(〈
(α−αn)2

eq

∆t

〉
m

)
−
〈 η0

∆t
(α− α̃n) : (α− α̃n)

〉
m

(II .38)

The order relations (II .38) are deduced from the concavity of F which ensures 〈F (a)〉m ≤
F 〈(a)〉m for any field a (x) . Further, the sationarity of 〈∆J ′ (α)〉m with respect to α leads

to

2ηp
(α−αn)

∆t
= 2η0

(α− α̃n)

∆t
(II .39)

where ηp is the secant viscosity associated with the perfectly plastic matrix, which is given

by:

ηp = ηsct

(
α̇
)

=
σy

3α̇
, with α̇ =

√
2

3
〈α̇ : α̇〉m (II .40)

The solution of (II .39) gives:

α=
αn − θα̃n

1− θ
with θ =

η0

ηp
(II .41)

With this relation, the expression of Π∆ (ε̄) becomes:

Π∆ (ε̄) ' Π0 (ε̄) + fm
〈

ηpθ

∆t (θ − 1)
(αn − α̃n) : (αn − α̃n)

〉
m

(II .42)

with

Π0 (ε̄) = inf
〈ε〉=ε̄

[
fm
〈

inf
α
Jm0 (ε,α)

〉
m

+
N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(II .43)

By using the stationarity condition over α̃n and θ of (II .42), one gets

θ = 1±

√
〈(αn − α̃n) : (αn − α̃n)〉m
〈(α− α̃n) : (α− α̃n)〉m

(II .44)

α̃n =
〈αn〉m + ( θ − 1) 〈α〉m

θ
(II .45)

By making use of minimization of Jm0 (ε,α) with respect to α, one obtains

∂Jm0
∂α

= −K : Cm : (εm −α− 〈β〉m)− Cm : (ε−α− 〈β〉m)
∂ 〈β〉m
∂α

+ 2
ηpθ

∆t
(α− α̃n) = 0

(II .46)

It is noted that Eq.(II .41) in its field form can be rewritten as

θ (α− α̃n) = (α−αn) ∀x ∈ Ωm (II .47)
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Considering the expressions (II .69) and (II .47), one obtains

∂ 〈β〉m
∂α

=
2κθ

3∆tα̇
δ ⊗ (α− α̃n) (II .48)

then

− Cm : (ε−α− 〈β〉m) :
∂ 〈β〉m
∂α

= 2
ηcpθ

∆t
(α− α̃n) (II .49)

with

ηcp =
−3κσm

3α̇
, σm =

1

3
Cm : (ε−α− 〈β〉m) : δ (II .50)

Substituting Eqs. (II .47) and (II .49) for (II .46) leads to

∂Jm0
∂α

= −K : Cm : (ε−α− 〈β〉m) + 2
ηθ

∆t
(α− α̃n) = 0 (II .51)

with

η = ηp + ηcp =
1

3α̇
[σy − 3κσm] = −κ (σm − c)

α̇
(II .52)

or equivalently, the volume average of the deviatoric stress of the matrix phase

sK : Cm : (ε−α− 〈β〉m) = 2
η

∆t
(α−αn) = 2

ηθ

∆t
(α− α̃n) (II .53)

Finally, from (II .51), one gets

α =

(
Cm +

2θη

∆t
K
)−1

:

[
K : Cm : ε+

2θη

∆t
α̃n

]
= dK : ε+ eα̃n

where d = µ
ηθa
t
+µ
, e =

ηθa
t

ηθa
t
+µ
.

One notices that η expressed in (II .52) is not uniformed in the matrix due to the

non-uniform mean stress field σm. For ease of calculation, the average value of η in the

matrix phase is here adopted

η = 〈η〉m = −
κ (〈σm〉m − c)

α̇
(II .54)

4.3 Choice of a thermoelastic linear comparison composite (LCC)

Substituting the results (II .54) for the expression of Jm0 (ε,α) in (II .32), the local

increment potential of the linear comparison composite πm0 (ε) is expressed as:

πm0 (ε) = inf
α
Jm0 (ε,α) =

1

2
ε : Cm0 : ε+ ρm0 : ε+ ζm0 (II .55)
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The tensors Cm0 , ρm0 and scale ζm0 are all uniform in the matrix phase respectively given

by:

Cm0 = Cm − Cm : K :
(
Cm + 2θη

Mt K
)−1

: K : Cm

ρm0 = −2θη
Mt C

m :
(
Cm + 2θη

Mt K
)−1

: α̃n − Cm :
(
〈βn〉m +α−αnκδ

)
ζm0 = θη

Mtα̃n : Cm :
(
Cm + 2θη

Mt K
)−1

: α̃n + 1
2

(
〈βn〉m +α−αnκδ

)
: Cm :

(
〈βn〉m +α−αnκδ

)
(II .56)

In these relations, θ, α̃nand η are defined in Eqs.(II .44), (II .45) and (II .54), respectively.

The effective free energy Π0 (ε̄) defined in Eq. (II .43) can be now written as

Π0 (ε̄) =
1

2
ε̄ : C̄ : ε̄+ ρ̄ : ε̄+ ζ̄ (II .57)

The effective tensors of C̄, ρ̄ and scale ζ̄ are expressed in Appendix B.

Substituting the expression of Π0 (ε̄) (Eq. (II .57)) for (II .42), one gets the macro-

scopic stress σ̄ of the rock composite from the effective incremental potential:

σ̄ =
∂Π∆

dε̄
(ε̄) =

dΠ0

∂ε̄
(ε̄) = fm 〈σ〉m +

N∑
r=1

f i,r 〈σ〉i,r = C̄ : ε̄+ ρ̄ (II .58)

where

〈σ〉m = Cm0 : 〈ε〉m + ρ0 (II .59a)

〈σ〉i,r = Ci,r : 〈ε〉i,r (II .59b)

One notices that the macroscopic stress obtained above coincides with the volumetric

average of local stress field.

5 Computational aspects

5.1 Computation of the first- and second-order moment of lα

To calculate the constants θ and α̃n defined in Eqs.(II .44) and (II .45), it is needed

to calculate the first- and second-order moment of α for the matrix. The first moment is

expressed as follows:

〈α〉m = 〈dK : ε+ eα̃n〉m (II .60)

Since d, e and α̃n are uniform in the matrix phase, one obtains

〈α〉m = dK : 〈ε〉m + e : α̃n (II .61)
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On the other hand, the second-order moment of α is expressed by:

〈α : α〉m = d2K :: 〈ε⊗ ε〉m + 2deα̃n : 〈ε〉m + e2α̃n : α̃n (II .62)

The first and second terms at the right hand side of Eq.(II .62) are related to the second-

and first moments of ε in the matrix. The calculation of these terms is respectively detailed

in Eqs.(II .78) and (II .75) in Appendix B.

5.2 Computation of the second-order moment of α̇

In order to calculate η by Eq.(II .54), the denominator α̇ related to the second-order

moment of α̇ should be first determined:

α̇ =

√
2

3
〈α̇ : α̇〉m =

1

∆t

√
2

3
〈(α−αn) : (α−αn)〉m (II .63)

However, it is difficult to evaluate the product 〈(α−αn) : (α−αn)〉m due to the fact

that the term 〈α : αn〉m cannot be calculated. With the help of Eq.(II .45), α̇ can be

calculated through the following relation when θ 6= 1

α̇ =

[
θ

∆t (1− θ)

]√
2

3
〈(αn − α̃n) : (αn − α̃n)〉m (II .64)

=

[
θ

∆t (1− θ)

]√
2

3
(〈αn : αn〉m − 2 〈αn〉m : α̃n + α̃n : α̃n)

where the first- and second-order moment of α are determined by (II .61)and (II .62),

respectively.

5.3 Local implementation algorithm

The local numerical algorithm for determining the macroscopic stress (σ̄n+1) of the

composite is now given. The algorithm is based on a classical elastic predictor/plastic

corrector return-mapping scheme. The difference here is that the average values of trial

elastic stress in the plastic matrix are used in the yield function. This algorithm is then

implemented as an UMAT subroutine in the framework of a the standard finite element

code (Abaqus). The RVE of the composite at each Gauss point at the macroscopic scale

is subjected to a macroscopic strain ε̄n+1 = ε̄n + ∆ε̄ at tn+1 with the prescribed strain

increment ∆ε̄ (∆ε̄ = ˙̄ε∆t). The purpose here is the determination of corresponding

macroscopic stress verifying the local constitutive relations. The computational procedure

is summarized in Algorithm 3.
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Algorithm 1: Flowchart of the local implantation algorithm

Input: ˙̄ε,∆t, σ̄n, ε̄n, 〈αn〉m , 〈βn〉m , 〈γ
p
n〉m , 〈αn : αn〉m, θn, ηn

Output: σ̄n+1, ε̄n+1, 〈αn+1〉m , 〈βn+1〉m ,
〈
γpn+1

〉
m
〈,αn+1 : αn+1〉m, θn+1, ηn+1

1 ε̄n+1 = ε̄n + ˙̄ε∆t,
2 Initialize ηn+1 = ηn, θn+1 = θn

3 Calculate Amn+1, Ai,rn+1, amn+1, ai,rn+1, Cm0,n+1, ρm0n+1,

4 Calculate first order moment of strain field 〈εn+1〉trialm = Amn+1 : ε̄n+1 + amn+1,

〈εn+1〉triali,r = Ai,rn+1 : ε̄n+1 + ai,rn+1,

5 Elastic prediction: 〈σn+1〉trialm = Cm : (〈εn+1〉trialm − 〈αn〉m − 〈βn〉m), substituting

〈σn+1〉trialm into the yield function f in Eq.(II .15).

6 if f
(
〈σn+1〉trialm

)
< 0 then

7 〈εn+1〉m = 〈εn+1〉trialm ; 〈εn+1〉i,r = 〈εn+1〉triali,r 〈αn+1〉m = 0; 〈βn+1〉m =

0;
〈
γpn+1

〉
m

= 0; 〈αn+1 : αn+1〉m = 0

8 else
9 (For clarity, the subscript n+1 will be omitted in the for loop)

10 for j = 1 . . .miter, do
11 Calculate Cm0,j , ρm0,j , ςm0,j and C̄j with Eqs. (II .56) and (II .74a)

12 Calculate Amj , Ai,rj , amj , ai,rj (with Eq.(II .79) for two-phases composite).

13 Calculate first moment of strain field 〈ε〉m,j = Amj : ε̄+ amj and

〈ε〉i,r,j = Ai,rj : ε̄+ ai,rj with Eqs.(II .75) and (II .76) ;

14 Calculate effective internal variable α̃n,j and 〈α〉m,j with Eqs.(II .45) and
(II .61);

15 Calculate second moment of strain field K :: 〈ε⊗ ε〉m,j and 〈α : α〉m,j
with Eqs.(II .78) and (II .62);

16 Calculate α̇j , 〈β〉m,j and 〈γp〉m,j with Eqs.(II .64), (II .69) and (II .70).

17 Calculate θj and ηj with Eqs.(II .44) and (II .54);

18 if
|δθj |
θj

< ε and
|δηj |
ηj

< ε, then

19 Return;

20 else
21 j = j + 1
22 end

23 end
24 Calculate 〈σn+1〉m and 〈σn+1〉i,r by using Eq.(II .59)

25 σ̄n+1 = 〈σn+1〉 = fm 〈σn+1〉m +
∑N

r=1 f
i,r 〈σn+1〉i,r;

26 end

6 Numerical assessment

The purpose of this section is to verify the accuracy of the proposed model by compar-

ing its predictions with reference solutions. Two kinds of materials are considered. The
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first one is composed of a pressure sensitive Drucker-Prager perfectly plastic matrix in

which elastic mineral grains are embedded (Figure II .2(b)). The second one is a porous

material with a Drucker-Prager matrix and pores (Figure II .2(c)). In this section and

section 7, the effective properties of the LCC as well as the field statistics are evaluated by

using the Hashinand Shtrikman bounds, i.e., the HS lower bound for inclusion-reinforced

material and upper bound for porous material, more details are given in Appendix C. The

reference solutions are obtained by direct simulations on unit cells using the finite element

method (FEM). The micro-structure of studied materials is represented by an periodic

assembly of 3D unit cells containing spherical inclusions or pores. Taking advantage of

axial symmetry, the actual hexagonal cell is approximated by a cylinder one and only half

an axial symmetry plain is considered in the FEM calculations, as illustrated in Figure II

.2. The macroscopic responses of unit cells are calculated by volumetric averaging (Sun

and Vaidya, 1996).

L

H

Matrix 

Inclusion

x1

x2

x3

r

z
z

r

L

H

Matrix 

Porous

z

r0 0

R R

Matrix 

(a) Approximation of 3D hexagonal periodic array

material

L

H

Matrix 

Inclusion

z

r0

R

(b) Inclusion-

reinforced material

L

H

Matrix 

Inclusion

x1

x2

x3

r

z
z

r

L

H

Matrix 

Pore

z

r0 0

R R

Matrix 

(c) porous material

Figure II .2: Approximation from 3D hexagonal periodic array with spherical inclu-

sion/pore to axi-symmetric cylinder unit cell

Uniaxial compression tests and conventional triaxial compression tests are here con-

sidered for the two types of materials selected here. In each case, the composite material

is first subjected to a hydrostatic stress or a confining stress and then to a differential

stress by increasing the axial strain in the z direction. During the differential stress stage,

the vertical displacement on the top side of the unit cell Ū3 is prescribed with a constant

rate. The lateral displacement Ū2 is also kept uniform along the boundary to satisfy the

uniform strain boundary condition.

For the inclusion-reinforced material, the material parameters for each phase under
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consideration are listed in Tables II .1 and II .2. The volume fraction of inclusion is

f i = 15%. The boundary conditions are illustrated on Figure II .2(b) and summarized as

follows: 

U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, 0 < r < L

U2 (0, z) = 0, 0 < z < H

(II .65)

Table II .1: Parameters of solid matrix for composite

Em (MPa) νm κ c(MPa)

3000 0.3 0.227 30

Table II .2: Parameters of elastic inclusion

Ei (MPa) νi

98000 0.15

For the porous material, the parameters for the solid matrix are the same as those

used for the inclusion-reinforced material and listed in Table II .1. The selected porosity

is f i = 15%. The prescribed boundary conditions on the unit cell are presented below and

illustrated in Figure II .2(c):

U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, R < r < L

U2 (0, z) = 0, R < z < H

(II .66)

In Figure II .3, we present the macroscopic stress-strain curves for both the inclusion-

reinforced material and porous material under uniaxial and triaxial compression tests with
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Figure II .3: Macroscopic predictions for two kinds of composite material with Drucker-

Prager perfectly plastic matrix and inclusion/pores (f i = 15%) under triiaxial compres-

sions with different confining stress

different confining stresses, respectively obtained by the proposed incremental variational

model and direct finite element simulations. One can observe that the model’s predictions

coincide very well with the FEM solutions both for the all cases considered.

7 Extension to plastic matrix with isotropic hardening

It is known that the isotropic plastic hardening of rock-like materials is usually de-

scribed by the evolution of internal frictional coefficient κ. In this study, we consider the

following specific hardening law:

κ(γp) = κm − (κm − κ0) e−b1γ
p

(II .67)

where κ0 and κm denote the initial threshold and the asymptotic value of the frictional

coefficient respectively, while b1 is a parameter controlling the plastic hardening rate.

In order to account for this kind of plastic hardening in the incremental variational

model and avoid complex mathematical treatment, we shall here propose a heuristic ex-

tension of the model formulated for materials without plastic hardening. According to

the theoretical formulation presented in Sections 3 and 4, when the values κ and c are

constant, the average secant viscosity function of solid matrix η is given in Eq.(II .54). We

here assume that this result remains applicable for the solid matrix where the value of κ

is updated at each loading increment. Therefore, the average secant viscosity function is

written as:

η = −
κ (〈γpn〉m) (〈σm〉m − c)

α̇
(II .68)
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In this expression, 〈γpn〉m is the average value of equivalent plastic shear strain field in

the solid matrix γp at step n, which is denoted in Eq.(II .70). It is noted that when

the isotropic hardening is considered, the value of frictional coefficient κ (〈γpn〉m) is also

updated in the yield function at each loading increment.

Remark 2

The framework proposed in Sections 3 and 4 can also be easily extended to an alter-

native form of Drucker-Prager criterion written as(σeq + 3κσm − c = 0) with a plastic

hardening law on hydrostatic tensile yield stress c. In this context, if we choose κ = 0,

the present model will coincide with that proposed by Boudet et al. (2016), who ex-

tended the work of Lahellec and Suquet (2007b) to composites with J2 plastic matrix

including an isotropic hardening.

7.1 Comparisons with FEM simulations

In this subsection, we shall verify the accuracy of the heuristic extended incremental

variational model for materials with an isotropic hardening also by comparing the model’s

predictions with numerical results provided by finite element simulations. As for the

validation presented in Section 6.2, we here also consider two kinds of rock-like materials:

inclusion-reinforced material and porous material. Conventional triaxial compression tests

are studied. The boundary conditions for the inclusion-reinforced material and porous

material are the same as those given in (2) and (II .66), respectively. For the isotropic

hardening law, we here choose κ0 = 0.00001, κm = 0.227 and b1 = 140 for all numerical

calculations.

7.1.1 Inclusion-reinforced material

Two volume fractions of mineral inclusions are considered, respectively equal to f i =

5% and f i = 15%. In Figure II .4, the macroscopic stress-strain curves for the uniaxial

compression test are presented. There is a good agreement between the model’s predictions

and FEM solutions.
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Figure II .4: Macroscopic predictions for a peridic inclusion-reinforced material with

Drucker-Prager matrix and elastic inclusions for two volume fractions of inclusions:f i = 5%

and f i = 15% under uniaxial compression

To further access the accuracy of the proposed model, a sensitivity analysis on the

parameters κm and b1 is performed and the obtained stress-strain curves are presented

in Figure II .5. One can see again a good agreement between the model’s predictions

and FEM solutions. In Figure II .5(b), a sharp elastic-plastic transition is clearly seen

with κ0 = 0.1. In order to assess the effect of confining stress on macroscopic mechanical

behavior of rock-like materials, two values of confining stress are here considered, namely

5MPa and 10MPa for f i = 15%. The obtained stress-strain curves are presented in Figure

II .6. It is clear that the model’s predictions coincide with the FEM solutions very well.
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Figure II .5: Macroscopic predictions for a peridic inclusion-reinforced material with

Drucker-Prager matrix and elastic inclusions (f i = 15%) under uniaxial compression for

(a) different κm and (b)different κ0 and (c) different b1

7.1.2 Porous material

Two values of porosity are here considered, namely f i = 15% and 5%. The obtained

macroscopic stress-strain curves are shown in Figure II .7 for the uniaxial compression

test. One can see that there is a good agreement between the model’s predictions and

FEM results. Furthermore, the influence of confining pressure on macroscopic responses

of porous material is also investigated. The obtained results are presented in Figure II .8

for two different values of confining pressure, 5MPa and 10MPa. Once again, the model’s

predictions are in good concordance with FEM solutions.
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Figure II .6: Macroscopic predictions for a periodic inclusion-reinforced material with

Drucker-Prager matrix and elastic inclusions (f i = 15%) in triaxial compressions with

different confining pressures
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Figure II .7: Macroscopic predictions for a peridic porous material with different porosity

in uniaxial compressions test

7.2 Application examples

In this section, we present two examples of application of the proposed incremental

variational model for rock-like materials. The first example is about a Portland cement

mortar and the second one is on a typical sandstone.
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Figure II .8: Macroscopic predictions for a peridic porous material with Drucker-Prager

matrix and porosity f i = 15% in triaxial compressions with different confining pressures

7.2.1 Application to mortar

The mechanical behavior of a normalized mortar (European norm EN 196-1) with

a water to cement ratio equal to 0.5 was investigated in Yurtdas et al. (2004). At the

mesoscopic scale, this material can be approximated by a continuous cement paste in

which sand grains are randomly embedded. The volume fractions of the cement paste

and sand are respectively equal to fm = 40% and f i = 60%. The cement paste is

regarded as a Drucker-Prager plastic matrix, and the sand grains as elastic inclusions

phase. For numerical simulations, 2 elastic coefficients should be determined respectively

for the cement paste and sand. Further, 3 plastic parameters are involved in the cement

paste.

The elastic coefficients of quartz sand have been chosen from literature, namely Ei = 95

GPa, and νi = 0.15. The elastic coefficients of the cement paste are not directly measured.

They are identified from an inverse homogenization procedure. The macroscopic elastic

coefficients of the mortar are first expressed as functions of the elastic properties of cement

paste and sand as well as of volume fraction of sand. Then their values are determined

from triaxial compression tests. Now knowing the elastic coefficients of sand and its

volume fraction, it is possible to extract the elastic coefficients of cement paste from the

macroscopic elastic properties. For the mortar studied here, one gets the following values

of Em = 12 GPa for the elastic modulus and of νm = 0.2 for the Poisson’s ratio. The

values of plastic parameters of cement paste by iterative numerical fitting of experimental

stress-strain curves in a triaxial compression test. The calibration procedure is similar to
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that used in (Guéry et al., 2008; Shen et al., 2012). The obtained parameter values are

given in Table II .3.

Table II .3: Typical values of model parameters for each phase of cement mortar

Phase 1:cement paste matrix Phase 2:sand

Elastic parameters Em = 12GPa Ei = 95GPa

νm = 0.2 νi = 0.15

Plastic parameters κ0 = 0.167

κm = 0.25

c = 32MPa

One uniaxial compression test and one triaxial compression test with a 15MPa con-

fining stress are considered here. It was found that the plastic hardening behavior of the

studied mortar was strongly sensitive to confining pressure Yurtdas et al. (2004). As shown

in Figure II .5(c), the plastic hardening rate is controlled by the parameter b1. There-

fore, two distinct values of the parameter b1 are used in numerical calculations, namely

b1 = 2000 for the uniaxial compression and b1 = 70 for triaxial compression test with a

confining stress of 15MPa. With additional experimental data, it will be needed to identify

a continuous evolution law of this parameter with confining stress.

Using the above parameters, numerical simulations are performed using the proposed

incremental variational model. The obtained macroscopic stress-strain curves are com-

pared with experimental data in Figures II .9. One can find a good agreement between

the model’s predictions and experimental data. Especially, the axial strain is well re-

produced for two values of confining stress. However, as shown in the comparisons, the

proposed model overestimates the lateral strain or volumetric dilatancy. That is due to

the fact that the present incremental variational model is based on the framework of

Generalized Standard Materials (GSM), implying an associated plastic flow rule for the

cement paste matrix. In order to improve the prediction of volumetric strain in future, an

extension of the present model is needed by considering a non-associated plastic flow rule

for the matrix phase.
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Figure II .9: Comparisons between experimental data and numerical model results for

triaxial compression tests on Mortar

7.2.2 Application to Vosges sandstone

The Vosges sandstone has been investigated in previous studies for various engineer-

ing applications (Bésuelle et al., 2000; Khazraei, 1996). As a first approximation, the

sandstone can be represented an isotropic porous material. The average porosity is about

20%. The solid matrix is composed of nearly 93% quartz grains and a small quantity of

feldspar and white mica. The mechanical behavior of the solid matrix is here described

by an pressure sensitive plastic model based on the Drucker-Prager criterion.

As input data to the incremental variational model, both elastic and plastic parameters

of the solid matrix should be identified. Unfortunately, direct measurements of those

parameters are not available. We have then used an indirect calibration method. As for

the mortar studied above, the elastic coefficients of the solid matrix are obtained from the

inverse Mori-Tanaka homogenization scheme. The plastic parameters are obtained from

an iterative numerical fitting of experimental stress-strain curves. The obtained values of

parameters are listed in Table II .4.

Table II .4: Parameters of solid matrix for porous Vosges sandstone

Em (GPa) νm κ0 κm c(MPa) b1

40 0.25 10−5 0.467 45 800
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Figure II .10: Comparisons between experimental data and model numerical results for

triaxial compression tests on Vosges sandstone

In Figure II .10, one shows the comparisons of macroscopic stress-strain curves between

the incremental variational model and experimental data, for four values of confining stress.

Generally, there is a good agreement. The main features of the mechanical behavior of

sandstone are well reproduced, for instances, the influence of confining stress, plastic strain

hardening and peak strength. However, as for the mortar, some scatters are obtained.

The lateral strain is still overestimated by the micro-mechanical model. The use of a

non-associated flow rule for the solid matrix would improve these results. Furthermore,

the peak strength of sandstone is also overestimated for the test with low confining stress,

i.e., 5MPa. This is due to the fact that the linear Drucker-Prager criterion used for the

solid matrix is maybe not well adapted in the zones of low mean stress and tensile stress.

The use of a curved yield surface, for example the Mises-Schleicher yield criterion, for the

solid matrix would improve numerical results.
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8 Concluding remarks

In this paper, we have proposed a new micro-mechanical model based on the incremen-

tal variational principle for describing the elastic-plastic behavior of rock-like materials.

The microstructure of materials is composed of a pressure sensitive Drucker-Prager solid

matrix in which elastic inclusions or pores are embedded. The effective incremental vari-

ational (EIV) principle proposed by Lahellec and Suquet (2007b) has been extended in

order to account for the volumetric plastic strain and pressure-dependency of plastic de-

formation in the solid matrix. The proposed model is able to account for the non-uniform

local plastic strain field in the solid matrix.

The proposed model has been formulated in two steps. At the first step, by assuming an

elastic-perfectly plastic behavior for the solid matrix, the incremental variational model has

been properly formulated. The local dissipation potential and incremental potential have

been constructed for the pressure sensitive plastic matrix. An appropriate linearization

procedure has been introduced for the local incremental potential and for reducing the

complexity of local variation procedure. The accuracy of the proposed micro-mechanical

model has well been demonstrated through the comparisons with direct field finite element

simulations for both inclusion-reinforced and porous materials without plastic hardening.

At the second step, a heuristic extension of the micro-mechanical model has been pro-

posed in view of estimating effective behaviors of rock-like materials with an isotropic

plastic hardening law. This has been done by assuming that the general incremental vari-

ational formulation obtained from perfectly plastic solid matrix remains applicable for

materials with isotropic hardening. The plastic hardening has been simply taken into

account by updating the value of international frictional coefficient at each loading incre-

ment. The accuracy of the heuristic extended model has been well verified by comparing

the model’s predictions with finite element results also for both inclusion-reinforced and

porous materials. Furthermore, the proposed model has been applied to describe the me-

chanical behaviors of cement mortar and sandstone under triaxial compression tests. The

numerical results obtained were generally in good agreement with experimental data. The

main features of their responses have been correctly reproduced. Due to the fact that an

associated plastic flow rule was adopted for the solid matrix, the volumetric strain was

not well reproduced. This aspect will be improved in our ongoing work by considering

a non-associated plastic flow rule for the plastic matrix. This will be done by using the

concept of bi-potential theory proposed by Saxcé and Bousshine (1998) to deal with the

non-associated plastic potential function.
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Appendix A: Linearization of local free energy function (II .17)

Inspired by Boudet et al. (2016), the volumetric plastic strain field β and the internal

variable field γp are taken as uniform in the solid matrix, by using their average values re-

spectively denoted as 〈β〉m and 〈γp〉m. By taking into account Eq.(II .16), their evolutions

are determined as follows:

〈β〉m = 〈βn〉m + α̇∆tκδ (II .69)

〈γp〉m = 〈γpn〉m + α̇∆t (II .70)

where 〈βn〉m and 〈γpn〉m are the volume average values of fields β and γ over matrix at

step n, and

α̇ =
1

∆t

√
2

3
〈(α−αn) : (α−αn)〉m =

1

∆t
α−αn (II .71)

Accordingly, the free energy denstiy is approximated by

wm(ε,α,β) ' wlin(ε,α) =
1

2

(
ε−α− 〈βn〉m −α−αnκδ

)
: Cm :

(
ε−α− 〈βn〉m −α−αnκδ

)
(II .72)

Appendix B: Effective behavior and field statistics for RVE

The effective energy Π0 (ε̄) is written as

Π0 (ε̄) =
1

2
ε̄ : C̄ : ε̄+ ρ̄ : ε̄+ ζ̄ (II .73)

where

C̄ = fmCm0 : Am +
N∑
r=1

f i,rCi,r : Ai,r (II .74a)

ρ̄ = fmρm0 : Am (II .74b)

ζ̄ = fm (ζm0 + ρm0 : am) (II .74c)

The average of the local strain filed in the matrix can be related to the macroscopic

strain by two strain concentration tensors Am,am, i.e., (Willis, 1981)

〈ε〉m = Am : ε̄+ am (II .75)

Similarly, the average of the local strain filed in the inclusion phase r can also be expressed

as

〈ε〉i,r = Ai,r : ε̄+ ai,r (II .76)
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One notices that the fourth-order tensors Am and Ai,r can be identified to those com-

puted for composites in the purely elastic case. However, the expressions of second-order

tensor am and ai,r are necessary to compute the phase averages of stress and strain.

The second-order moment of the strain filed ε in the matrix phase can be obtained

from the effective free energy Π0 (ε̄) by the relations given in (Lahellec and Suquet, 2007b;

Ponte Castaneda, 2002)

〈ε⊗ ε〉m =
2

fm
∂Π0

∂Cm0
(II .77)

Note that Cm0 can be expressed by two effective moduli as Cm0 = 3km J+2µm0 K. Then

the deviatoric part of the second-order moment leads to(Huang et al., 2015; Lahellec and

Suquet, 2007a)

K : 〈ε⊗ ε〉m =
1

fm
∂Π0

∂µm0
(II .78)

In order to take advantage of the explicit expressions of the tensors Am , Ai,r, am and

ai,r , a two-phase material, one phase of elastic inclusion (r = N = 1) and one phase of

elastic-plastic matrix, is considered for the validation and application. In this case, the

fourth order concentration tensors associated to the Hashin and Shtrikman (HS) estimates

are adopted (Hashin, 1962)

Am = I+
1

fm
(
Cm0 − Ci,r

)−T
:
(
C̄− 〈C〉

)T
(II .79a)

Ai,r = I+
1

f i,r
(
Ci,r − Cm0

)−T
:
(
C̄− 〈C〉

)T
(II .79b)

am =
(
Cm0 − Ci,r

)−1
: (I− Am)T : ρm0 (II .79c)

ai,r = −
(
Ci,r − Cm0

)−1
: (I− Ai,r)T : ρm0 (II .79d)

where 〈C〉 = fmCm0 + f i,r Ci,r.
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Chapter III

Homogenization of rock-like

materials with a non-associated

and strain-hardening plastic

matrix by a bi-potential based

incremental variational approach∗

In this paper, we shall develop a new bi-potential based incremental variational (BIV)

approach for estimation of elastic-plastic behavior of rock-like materials. The studied

materials are assumed composed of a non-associated plastic matrix. Elastic inclusions or

voids are embedded in the plastic matrix. This class of materials does not belong to gener-

alized standard materials investigated in previous studies. For simplicity, the behavior of

solid matrix is first assumed to be elastic-perfectly plastic at each loading increment. The

emphasis of the present study is firstly put on the treatment of non-associated plastic flow.

This is done by using a bi-potential theory based method, allowing the determination of

the incremental potential of plastic matrix. The effective incremental potential and macro-

scopic stress tensor are then estimated through an extension of the incremental variational

principle established by Lahellec and Suquet (2007b). The accuracy of the BIV model is

verified by comparing the model simulations with with reference results obtained from

direct finite element simulations. In order to consider the solid matrix exhibits isotropic

hardening, we assume that the general form of BIV model remains valid, and the model

∗Submitted to International Journal of Engineering Science
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is extended simply by updating the value of frictional coefficient and dilatancy coefficient

of solid matrix at each loading increment. The accuracy of BIV model in this case is

validated by a series of comparisons with reference solutions obtained from full-field finite

element simulations respectively for inclusion-reinforced materials and porous materials.

Both local and macroscopic responses are compared. As an example of application, the

heuristic extended BIV model is used to estimate mechanical responses of typical clay-

stone and sandstone under different loading paths, showing the BIV approach could well

reproduce the specific properties of rock-like materials such as the influence of mean stress,

strain hardening and volumetric compressibility-dilatancy transition.

1 Introduction

Soils, rocks and concretes are largely used in civil engineering. These materials con-

tain different kinds of heterogeneities at different scales. Pores and inclusions are two

main families of heterogeneities. Furthermore, these materials are composed of several

mineral phases of different properties. The mineral compositions may significantly vary

in space, for instance with geological depth. Laboratory studies have shown that macro-

scopic physical and mechanical properties of these materials are affected by heterogeneities

and mineral compositions. So far, different kinds of macroscopic models, mainly elastic-

plastic and damage models have been developed for modeling mechanical properties of

rock-like materials. Fitted from a large number of laboratory tests, these models are able

to correctly reproduce main features of mechanical behavior of studied materials. How-

ever, they are not able to properly consider the effect of heterogeneities and mineralogical

compositions on macroscopic mechanical responses.

Based on linear homogenization techniques, micro-mechanical models have first been

developed during the last decades for modeling of induced damage in brittle rock-like

materials (Zhao et al., 2018; Zhu et al., 2008a, 2016). Important advances have also been

obtained on micro-mechanical modeling of plastic deformation in rock-like materials using

nonlinear homogenization methods. For instance, clayey rocks have been characterized

as a matrix-inclusion composite material at the mesoscopic scale, constituted of a plastic

clay matrix in which calcite and quartz grains are embedded (Guéry et al., 2008; Jiang

et al., 2009). The microstructure of clayey rocks has further been enriched by considering

the clay matrix as a porous material with pores at the microscopic scale (Shen et al.,

2012). The nonlinear behavior of the plastic clay matrix has been handled by using the

Hill incremental method (Hill, 1965b). This method has also been largely used in various
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composite materials. It is found that the use of simple Hill’s incremental method generally

leads to a too stiff mechanical strength of heterogeneous materials (Chaboche et al., 2005;

Suquet, 1996). The main reason of such results is the fact that uniform strain fields are

assumed in constituents in the Hill’s model. In order to improve the numerical performance

of this model, artificial techniques, such as isotropization of tangent elastic-plastic stiffness

tensor, have been proposed. This correction technique has been applied to clayey rocks

(Guéry et al., 2008; Jiang and Shao, 2009; Shen et al., 2012). However, the isotropization

procedure is not based on any physical background.

Meanwhile, advanced nonlinear homogenization techniques have been developed for

composite materials considering non-uniform local fields in constituents(Boudet et al.,

2016; Brassart et al., 2011, 2012; Castañeda, 1991, 1992, 2002b; Danas and Castañeda,

2012; Lahellec and Suquet, 2007a,b, 2013), just to mention a few. Variational principles

based on the use of a ”linear comparison composite” (LCC) were proposed for the mean

field homogenization of nonlinear elastic composites (Castañeda, 1991, 1992, 2002b), and

used to generate improved bounds and more generate estimates for the nonlinear elasto-

plastic composites (Castañeda and Suquet, 1997; Danas and Castañeda, 2012). Motivated

by the previous work (Castañeda, 1991), Lahellec and Suquet (2007a,b) proposed their

new incremental variational method for nonlinear viscoelasticity composites without local

threshold or hardening. In this method, equivalent interval variables (EIV) are defined

to capture the non-uniform local plastic strain field. Recently, the same authors (Lahel-

lec and Suquet, 2013) proposed a rate variational model (RVP)considering a non-uniform

field of plastic strain rate. The RVP model is able to deal with elastic-viscoplastic com-

posites with local threshold, isotropic and linear kinematic hardening. More recently,

the work of Lahellec and Suquet (2007b) has been extended in Boudet et al. (2016) for

elastic-(visco)plastic composites with local threshold and isotropic and/or linear kinematic

hardening. On the other hand, based on the variational principle established by Ortiz and

Stainier (1999), alternative incremental variational models have been proposed in (Bras-

sart et al., 2011, 2012) for elastic-(visco)plastic composites with local isotropic hardening.

However, all these previous models have been developed in the scope of Generalized Stan-

dard Materials (GSM) (Halphen and Nguyen, 1975) with an associated plastic flow rule.

The contribution of the present work is to develop a new incremental variational model

for rock-like materials which do not verify the assumptions of generalized standard materi-

als. Indeed, for most rock-like materials, the transition from volumetric compressibility to

dilatancy is an essential issue. It is generally related to a non-associated plastic flow rule.

The plastic behavior is described by two distinct functions, the plastic yield criterion and
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the plastic potential. However, according to innovative studies on the bi-potential theory

(De Saxcé, 1995; De Saxcé and Feng, 1991; Saxcé and Bousshine, 1998), rock-like materials

can be attributed to a class of implicit standard materials (ISM). This concept has been

successfully used for various soil and rock-like materials (Bodovillé, 2001b; Bodovillé and

De Saxcé, 2001; Hjiaj et al., 2003). The use of a bi-potential function allows simultaneously

to define the yield locus and the flow rule, although they are not associated.

In this study, we shall consider a class of rock-like materials composed of a non-

associated Drucker-Prager type plastic matrix, elastic mineral inclusions and(or) pores.

A new bi-potential based incremental variational model (BIV) is proposed to consider

non-uniform stress and plastic strain fields in the matrix. It is worth pointing out that

most rock-like materials generally exhibit plastic hardening. In the case of an isotropic

plastic hardening is considered, the hardening of rock-like materials is generally represented

by the variation of internal frictional coefficient rather than the evolution of cohesion.

However, this kind of plastic hardening renders the analytical formulation of BIV model

very complex. To this end, we propose here a simplified approach. As the whole loading

history is divided into a limit number of increments, the behavior of solid matrix is first

assumed to be elastic-perfectly plastic for each loading increment. The general formulation

of BIV model is obtained for this particular case. The proposed model is validated through

comparisons with reference results obtained from direct finite element simulations for

materials without plastic hardening. Then, we assume that the obtained formulation

remains valid when the solid matrix exhibit an isotropic plastic hardening. The model

is extended simply by updating the value of frictional coefficient of solid matrix at each

loading increment with a specific law. The proposed extended model is validated against

FEM results both for local and macroscopic responses. Finally, the proposed extended

model is applied to to study mechanical behaviors of a typical clayey rock and porous

sandstone in various loading paths.

2 Bi-potential of non-associated Drucker-Prager plasticity

model

We consider here a class of rock-like materials with a perfectly plastic matrix described

by a non-associated plastic model. As those materials are not generalized standard ma-

terials (GSM), we shall here propose an extension of the incremental variational method

previously developed for GSM by using a bi-potential theory.
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2.1 The non-associated model for plastic matrix

We adopt here a non-associated plastic model without strain hardening for the matrix

phase with the assumption of small strain. The model is based on a Drucker-Prager

criterion and the local yield function is written as:

f(σ) = σeq + 3κ (σm − c) ≤ 0 (III .1)

where σeq =
√

3
2s : s is the equivalent stress (with s = σ : K), and σm = 1

3σ : δ the mean

stress. The parameter c and κ respectively represent the hydrostatic tensile strength and

friction coefficient of the matrix.

The non-associated plastic flow rule is defined by the following plastic potential:

g(σ, χ) = σeq + 3χσm (III .2)

Further, for any stress state situated on the regular part of the yield surface, it is

assumed that the plastic dilatancy coefficient χ is equal or less than the friction coefficient,

i.e., χ ≤ κ (Hjiaj et al., 2003). The corresponding rate form of plastic strain εp is expressed

as follows:

ε̇p = γ̇p
∂g

∂σ
= γ̇p

(
3

2

s

σeq
+ χδ

)
(III .3)

where γp is an internal variable. For convenience, the plastic strain tensor is decomposed

into a spherical part and a deviatoric part:

εp = α+ β, α = εp : K, β = εp : J =
1

3
trεpδ = βδ (III .4)

One thus obtains:

γ̇p =

√
2

3
α̇ : α̇ = α̇eq, α̇ = K : ε̇p, β̇ =

1

3
trε̇p = χα̇eq (III .5)

It is noted that the apex point on the Drucker-Prager yield surface is not taken into

account here. More discussions about this issue are given in the previous work by Hjiaj

et al. (2003).

2.2 Bi-potential function for the non-associated plastic model

According to Hjiaj et al. (2003), the bi-potential formulation of a non-associated

Drucker-Prager model without strain hardening takes the form

bp (σ, ε̇p) =


3cβ̇ + 3 (χ− κ) (σm − c) α̇eq if f(σ) ≤ 0

+∞ otherwise

(III .6)
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The proof that the function (III .6) is a bi-potential has been given is given in Hjiaj et al.

(2003).With the help of Eq.(III .5), the function (III .6) can be rewritten as

bp (σ, α̇) =


[3σm (χ− κ) + 3cκ]︸ ︷︷ ︸

σy

α̇eq = σyα̇eq if f(σ) ≤ 0

+∞ otherwise

(III .7)

Remark 3

The second part of the first line in the right hand side of Eq. (III .7) contains a mixed

term of stress and plastic strain rate. When χ = κ, the mixed term disappears and

the bi-potential reduces to the plastic dissipation potential for GSM.

bp (σ, α̇) = ϕ (α̇) =


3cκα̇eq if f(σ) ≤ 0

+∞ otherwise

(III .8)

3 Bi-potential based incremental variational principle for

rock-like materials with a non-associated plastic matrix

In this section, we shall propose a bi-potential theory based incremental variational

model (BIV). The incremental variational principle proposed by (Lahellec and Suquet,

2007b) for GSM is extended to rock-like materials with a non-associated plastic matrix.

3.1 Representative Volume Element (RVE) and constituents properties

At the microscopic scale, rock-like materials are characterized by an isotropic solid

matrix in which mineral grains and pores are randomly embedded. The Representative

Volume Element (RVE) is shown in Figure II .1, occupying the domain Ω ⊂ Rndim (ndim =

1, 2, 3) and having a boundary Ω ⊂ Rndim−1. The solid matrix occupies the sub-domain

Ωm ⊂ Rndim . It is characterized by an isotropic elastic tensor Cm and the non-associated

plastic model presented above. The rth phase of inclusion (solid grains or pores) occupies

the sub-domain Ωi,r ⊂ Rndim , r = 1, ..., N , and characterized by the elastic stiffness tensor

Ci,r. The phase of pores is here treated as a special inclusion phase with a vanished elastic

stiffness.

For the convenience of the subsequent formulation, the total volume of the RVE is

denoted as VΩ, the volume of matrix as VΩm , the volume occupied by the rth inclusion
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phase as VΩi,r . Accordingly, the volume fractions of the constituents are defined as

fm =
VΩm

VΩ
; f i,r =

VΩi,r

VΩ
, r = 1, ..., N ; (III .9)

Further, the operator 〈·〉 denotes a volume average over the whole RVE, 〈·〉m is a volume

average over the matrix, and 〈·〉i,r is a volume average over the rth inclusion phase. That

is

〈·〉 =
1

VΩ

∫
VΩ

(·) dVΩ = fm 〈·〉m +
N∑
r=1

f i,r 〈·〉i,r (III .10)

with

〈·〉m =
1

VΩm

∫
VΩm

(·) dVΩm ; 〈·〉i,r =
1

VΩi,r

∫
V

Ωi,r

(·) dVΩi,r (III .11)

3.1.1 Incremental potential of the elastic-plastic matrix

From the viewpoint of bi-potential theory, the non-associated perfectly plastic matrix

can be seen as an implicit standard material (ISM) (De Saxcé and Bousshine, 2002; Hjiaj

et al., 2003). In this context, at any point x ∈ Ωm, the local mechanical behavior can be

described by two thermodynamic potentials. The first one is the free energy wm, which is

convex of strain field ε and plastic strain fields εp. The second one is the aforementioned

bi-potential bp (σ, ε̇p) instead of the dissipation potential for GSM. In fact, a GSM can

be seen as a special case of ISM. In this context, the bi-potential is equivalent to the

dissipation potential as it is noted in Remark 3. Consequently, the classical EIV principle

for GSM is here treated as a special case of the BIV principle for ISM that is developed in

this study. By assuming that the elastic behavior is independent of irreversible process,

the free energy function wm(ε, εp) yields

wm(ε, εp) =
1

2
(ε−α− β) : Cm : (ε−α− β) (III .12)

where the isotropic elastic stiffness tensor is expressed as Cm = 3kmJ + 2µmK, with km

and µm being the bulk modulus and shear modulus of the matrix respectively.

By making the standard derivation of free energy function, the conjugated thermody-

namic forces associated with ε and εp are determined:

σ =
∂wm

∂ε
(ε, ξ) = Cm : (ε−α− β) (III .13a)

σ = −∂w
m

∂εp
(ε, εp) =

∂bp
∂ε̇p

(σ, ε̇p) (III .13b)

As in the incremental variational method developed for GSM Lahellec and Suquet

(2007b) and based on the work by Ortiz and Stainier (1999), the time derivative ε̇p is



66

Homogenization of rock-like materials with a non-associated and strain-hardening

plastic matrix by a bi-potential based incremental variational approach

approximated by a difference quotient after use of an implicit Eular-Scheme. The time

interval (loading history) of study [0, T ] is accordingly discretized into the time (loading)

steps t0 = 0, t1, ..., tn, tn+1, ..., tN = T . The time increment between tn and tn+1 (loading

step) is denoted by ∆t. For the sake of simplicity, its dependence on n is omitted. By using

this time-discretization scheme, the system of differential equations (III .13) is transformed

to the following discretized system:

σn+1 =
∂wm

∂ ε

(
εn+1, ε

p
n+1

)
,

∂wm

∂εp
(
εn+1, ε

p
n+1

)
+
∂bp

∂ε̇p

(
σn+1,

εpn+1 − ε
p
n

∆t

)
= 0

(III .14)

The values of local fields at time tn+1 (εn+1,σn+1, ε
p
n+1) are unknown, while their values

at time tn (εn,σn, ε
p
n) are assumed to be all known. We introduce here the following

incremental potential Jm, function of local variables ε, σ and εp:

Jm (ε,σ, εp) = wm(ε, εp) + ∆tbp
(
σ,
εp − εpn

∆t

)
(III .15)

For the sake of clarity, the subscripts n+1 are omitted. Notice that the second relation in

(III .14) is the Euler-Lagrange equation of the variational problem for the minimization of

the local incremental potential with respect to εp. This leads to the following condensed

local incremental potential:

πm∆ (ε,σ) = inf
εp
Jm (ε,σ, εp) (III .16)

After that, the local stress field σ in the solid matrix can be derived from this sole potential

σ =
∂πm∆
∂ ε

(ε,σ) (III .17)

3.1.2 Behavior of elastic inclusion

At any point inside the elastic inclusion phase, i.e., x ∈ Ωi,r, the free energy func-

tion wi,r is the sole convex potential of inclusion strain field ε. Accordingly, the local

incremental potential πi,r∆ of the elastic inclusion phase r reads

πi,r∆ = wi,r (ε) =
1

2
ε : Ci,r : ε (III .18)

The local stress field σ in the inclusion phase r is determined by:

σ =
∂πi,r∆

∂ ε
(ε) = Ci,r : ε (III .19)
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3.2 Effective behavior of heterogeneous rock-like materials

We consider that the RVE of heterogeneous rock-like materials is subjected to a macro-

scopic strain ε (t) , and for definiteness, periodic boundary conditions are prescribed on

its boundary ∂Ω at time tn+1. Due to the time-discretization scheme adopted, the local

problem to be solved is formulated as follows:

div σn+1 = 0

σn+1 = ∂π∆
∂εn+1

(εn+1,σn+1)

〈ε (t)〉 = ε (t) +BC on ∂Ω


for (x, t) ∈ Ω× [0, T ] (III .20)

The condensed incremental potential π∆ (x, ε,σ) is here defined as

π∆ =


πm∆ if x ∈ Ωm

πi,r∆ if x ∈ Ωi,r

(III .21)

Finally, the macroscopic stress σ̄ can be derived from the effective incremental potential

of the RVE:

σ̄n+1 =
∂Π∆

∂ε̄
(ε̄n+1, 〈σn+1〉m) (III .22)

The effective incremental potential Π∆ can be determined by using the variational principle

Π∆ (ε̄n+1, 〈σn+1〉m) = inf
〈ε〉=ε̄n+1

〈π∆〉 = inf
〈ε〉=εn+1

[
fm
〈

inf
εp
Jm (ε, εp, σ)

〉
m

+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(III .23)

The effective incremental potential of the RVE is not only related to the macroscopic

strain ε̄, but also to the average value of local stress filed σ in the matrix. With this single

effective potential in hand, according to Eq.(III .22), the macroscopic stress is the conju-

gated force associated with the macroscopic strain, which is consistent with the classical

thermodynamic framework. Moreover, the macroscopic stress defined here also coincides

with the average of the local stress field over the RVE. Accordingly, the problem of com-

puting the overall response of the rock-like composite comes to solving the variational

problem (III .23) at each time step, which itself involves a local optimization problem

(III .16) with respect to the internal variables (plastic strain) εp at every position x ∈ Ωm.

Instead of searching a computationally-costly full-field numerical solution, an approximate

variational procedure based on the previous study in Lahellec and Suquet (2007b) will be

developed in Section 4 .
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4 Optimization of the effective incremental potential

The main steps for the estimation of the effective incremental potential through a

variational procedure are presented in this section.

4.1 Linearization of local incremental potential of plastic matrix

The first step is to linearize the local incremental potential Jm given in (III .15).

Compared with the free energy used in Lahellec and Suquet (2007b), the free energy

function for the perfectly plastic matrix given in (III .12) includes the plastic volumetric

strain β. However, in order to take advantage of the main results obtained in Lahellec

and Suquet (2007b), both the free energy function (III .12) and bi-potential (III .7) are

linearized as follows.

• Linearization of local free energy wm(ε, εp) (see detailed process in Appendix A)

wm(ε, εp) ' wmlin(ε,α) =
1

2

(
ε−α− 〈βn〉m −α−αnχδ

)
: Cm :

(
ε−α− 〈βn〉m −α−αnχδ

)
(III .24)

• The bi-potential bp (σ, α̇) Here we use the same variational linearization procedure

and take the same quadratic form as those used by Lahellec and Suquet (2007b) and

Boudet et al. (2016), i.e. η0

∆t (α− α̃n) : (α− α̃n). In this expression, the scalar

variable η0 and second-order tensor α̃n are uniform in the elastic-plastic matrix.

With these two linearization procedures in hand, the local incremental potential Jm

in (III .15) can be approximated as

Jm (ε,σ, ξ) ' Jm0 (ε,α) + ∆Jm (σ,α)

Jm0 (ε,α) = 1
2

(
ε−α− 〈βn〉m − α−αnχδ

)
: Cm :

(
ε−α− 〈βn〉m − α−αnχδ

)
+ η0

∆t (α− α̃n) : (α− α̃n)

∆Jm (σ,α) = σy (α− αn)eq −
η0

∆t (α− α̃n) : (α− α̃n)

(III .25)

where Jm0 is the linearized local incremental potential in the matrix phase.

4.2 Estimation of the effective incremental potential Π∆ (ε̄, 〈 σ〉m)

Now as the local incremental potential is expressed as the sum of two terms (Eq.(III .25)),

the effective incremental potential of matrix is determined by calculating the volumetric
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average:

Π∆ (ε̄, 〈σ〉m) = inf
〈ε〉=ε̄

[
fm
〈

inf
α

(Jm0 (ε,α) + ∆Jm (σ,α))
〉
m

+
N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(III .26)

The secant function ηsct (α̇eq,σ) of the matrix phase is defined as (Lahellec and Suquet,

2007b)

ηsct (α̇eq,σ) =
1

3α̇eq

∂bp

∂α̇eq
(σ,α) =

σy
3α̇eq

(III .27)

and Eq.(III .26) satisfies

Πm
∆ (ε̄, 〈σ〉m) ≤ inf

〈 ε〉=ε̄

{
fm
[〈

inf
α
Jm0 (ε,α)

〉
m

+

〈
sup
α

∆Jm (σ,α)

〉
m

]
+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

}
(III .28)

Note that the local optimization problem in Eq. (III .28) is proceeded with respect to

the internal variable α only instead of the set of variables (α,β) as defined in Eq.(II .7)

at every position x ⊂ Ωm. This procedure largely deduces the complexity of the local

optimization problem. The estimate (III .28) of the effective potential Π∆ (ε̄) with the

non-associated perfectly plastic matrix had the similar form as that pertained to nonlinear

viscoleastic composites without hardening in Lahellec and Suquet (2007b).

According to previous studies (Lahellec and Suquet, 2007b; Ponte Castaneda, 2002;

Ponte Castaneda and Willis, 1999), sharper estimates of Π∆ (ε̄, 〈σ〉m) can be obtained

by requiring only the stationarity of ∆Jm instead of its supremum with respect to α.

Therefore, one gets:

Π∆ (ε̄, 〈σ〉m) ' inf
〈 ε〉=ε̄

{
fm
[〈

inf
α
Jm0 (ε,α)

〉
m

+
〈

stat
α

∆Jm (σ,α)
〉
m

]
+

N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

}
(III .29)

It is worth noting that the difference function of increment potential ∆Jm is generally non-

quadratic. In order to determine the stationarity of ∆Jm with respect to α, we rewrite

the bi-potential in the following form:

bp (σ, α̇) = Y (σ,
(α−αn)2

eq

∆t2
) (III .30)

The concavity of Y ensures that 〈Y (σ,a)〉m ≤ Y 〈(σ,a)〉m for any field a (x). One then

obtains the following order relation:

〈∆Jm (σ,α)〉m ≤
〈

∆J̃m (σ,α)
〉
m

= ∆tY

(〈
σ,

(α−αn)2
eq

∆t2

〉
m

)
−
〈 η0

∆t
(α− α̃n) : (α− α̃n)

〉
m

(III .31)
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The stationarity of
〈

∆J̃m (σ,α)
〉
m

with respect to α yields

2ηp
(α−αn)

∆t
= 2η0

(α− α̃n)

∆t
(III .32)

The coefficient ηp is the secant viscosity associated with the plastic material without

hardening and reads

ηp = ηsct

(
α̇, 〈σ〉m

)
=
〈σy〉m

3α̇
, with α̇ =

√
2

3
〈α̇ : α̇〉m (III .33)

Notice that (II .39) can be rewritten in the following form

α=
αn − θα̃n

1− θ
, with θ =

η0

ηp
(III .34)

With this relation, the last term in (III .29) can be evaluated and Π∆ (ε̄) can be further

estimated as follows

Π∆ (ε̄, 〈σ〉m) ' Π0 (ε̄) + fm∆Πm (〈σ〉m) (III .35)

with

Π0 (ε̄) = inf
〈ε〉=ε̄

[
fm
〈

inf
α
Jm0 (ε,α)

〉
m

+
N∑
r=1

f i,r
〈
wi,r (ε)

〉
i,r

]
(III .36a)

∆Πm (〈σ〉m) =

〈
ηpθ

∆t (θ − 1)
(αn − α̃n) : (αn − α̃n)

〉
m

(III .36b)

By using the stationarity condition of (III .35) over α̃n and θ, one obtains:

θ = 1±

√
〈(αn − α̃n) : (αn − α̃n)〉m
〈(α− α̃n) : (α− α̃n)〉m

(III .37)

α̃n =
〈αn〉m + ( θ − 1) 〈α〉m

θ
(III .38)

With the help of minimization of Jm0 (ε,α) with respect to α, one finally obtains (the

detailed calculation given in Appendix B):

α =

(
Cm +

2θη

∆t
K
)−1

:

[
K : Cm : ε+

2θη

∆t
α̃n

]
= dK : ε+ eα̃n (III .39a)

where d = µ
ηθa
t
+µ

, e =
ηθa
t

ηθa
t
+µ

. η denotes the uniform total secant viscosity taken at α̇ of

the non-associated plastic matrix with isotropic hardening

η
(
α̇, 〈σ〉m

)
= −

κ (〈σm〉m − c)
α̇

(III .40)
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4.3 Estimation of the effective potential of homogenized material

The estimation of the effective potential of heterogeneous rock-like materials is based

on the choice of a thermoelastic linear comparison composite (LCC). Substituting the

result found in (III .39a) into the expression of Jm0 (ε,α) in (III .25) and combining with

Eq.(III .34), one defines the local increment potential πm0 (ε) of the thermoelastic LCC as

follows:

πm0 (ε) = inf
α
Jm0 (ε,α) =

1

2
ε : Cm0 : ε+ ρm0 : ε+ ζm0 (III .41)

The tensors Cm0 and ρm0 as well as the scalar coefficient ζm0 are all uniform in the matrix

phase and given by:

Cm0 = 3kmJ + 2µm0 K, with µm0 = (1− d)2 µm +
θηp
∆t d

2

ρm0 = 2
[
θηp
∆t d (e− 1)− µm (1−d)

]
α̃n − 3km

(
〈βn〉m +α−αnχδ

)
ζm0 =

[
e2µm +

θηp
∆t (e− 1)2

]
α̃n : α̃n + 9

2k
m
(
〈βn〉m +α− αnχ

)2

(III .42)

The quantities θ, α̃n and η are defined in Eqs.(III .37), (III .38) and (III .40), respectively.

Further, the effective free energy Π0 (ε̄) defined in Eq. (III .36a) can be written as

Π0 (ε̄) =
1

2
ε̄ : C̄ : ε̄+ ρ̄ : ε̄+ ζ̄ (III .43)

The effective tensors of C̄, ρ̄ and scale ζ̄ are expressed in Appendix C.

By using the expression of Π0 (ε̄) (Eq. (III .43)) in (III .36a), the the macroscopic

stress σ̄ of the RVE as that defined in Eq. (III .22) can be approximated by the following

differentiation procedure:

σ̄ =
∂Π∆

∂ε̄
(ε̄, 〈σ〉m) =

dΠ0

dε̄
(ε̄) = fm 〈σ〉m +

N∑
r=1

f i,r 〈σ〉i,r (III .44)

with

〈σ〉m = Cm0 : 〈ε〉m + ρ0 (III .45a)

〈σ〉i,r = Ci,r : 〈ε〉i,r (III .45b)

5 Fluctuations of local fields and computational aspects

5.1 Fluctuations of local fields in matrix

In order to assess the accuracy of the BIV model, not only macroscopic responses of

the RVE but also representative fluctuations of local fields are generally investigated. In
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this study, we shall evaluate fluctuations of local stress and plastic strain fields in the

elastic-plastic matrix. The fluctuations of interest correspond to the first- and second-

order moments of the these fields. Following Idiart and Castañeda (2007) the quadratic

fluctuation of the local stress in the matrix is defined as

Fmσ ≡ 〈σ − 〈σ〉m〉m ⊗ 〈σ − 〈 σ〉m〉m = 〈σ ⊗ σ〉m − 〈 σ〉m ⊗ 〈σ〉m (III .46)

where 〈σ〉m and 〈σ ⊗ σ〉m represent the first and second-order moment of local stress field

over the matrix. 〈σ〉m can be obtained from the relation (III .45a). However it is generally

difficult to calculate 〈σ ⊗ σ〉m. In order to amend this issue, here we adopt the following

expression proposed in (Agoras et al., 2016)√
Fmσ :: K=

√
〈s : s〉m − 〈s〉m : 〈s〉m =

√
2

3

(
σ

2 −
(
σ̄meq
)2)

(III .47)

with σ̄
(m)
eq =

√
3
2 〈s〉m : 〈s〉m and σ =

√
3
2 〈s : s〉m for the evaluation of 〈s〉m and 〈s : s〉m.

Together with Eq.(III .73), one further obtains

σ = 3ηα̇ (III .48)

The calculation of the denominator α̇ is given in Section 5.3. One can notice that it is

easy to obtain the fluctuation of local stress field (III .47) with the help of Eqs. (III .45a)

and (III .48).

Similarly, the fluctuation of the local plastic strain field in the matrix is defined as

Fmεp ≡ 〈εp − 〈εp〉m〉m ⊗ 〈 ε
p − 〈εp〉m〉m = 〈εp ⊗ εp〉m − 〈 ε

p〉m ⊗ 〈 ε
p〉m (III .49)

where 〈εp〉m and 〈εp ⊗ εp〉m represent the first and second-order moment of local plastic

strain field over the matrix. For the ease of calculation, we provide the result for the

standard derivation of the plastic strain filed in the matrix phase, which reads√
Fmεp :: K=

√
〈α : α〉m − 〈α〉m : 〈α〉m =

√
3

2

(
α

2 −
(
ᾱmeq
)2)

(III .50)

with ᾱmeq =
√

2
3 〈α〉m : 〈α〉m and α =

√
2
3 〈α : α〉m, being the first- and second-order

moment of α.

5.2 Computation of the first and second-order moment of α

The calculation of θ, α̃n and
√
Fmεp :: K from Eqs.(III .37), (III .38) and (III .50) needs

the determination of the first- and second-order moment of α in the plastic matrix. The

first moment is given by:

〈α〉m = 〈dK : ε+ eα̃n〉m (III .51)
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Since the quantities d, e and α̃n are uniform in the matrix phase, one thus obtains

〈α〉m = dK : 〈ε〉m + e : α̃n (III .52)

Similarly, the second-order moment of α is calculated by:

〈α : α〉m = d2K :: 〈ε⊗ ε〉m + 2deα̃n : 〈ε〉m + e2α̃n : α̃n (III .53)

The first term and the second term at the right hand side of Eq.(III .53) are related to

the second- and first-order moment of ε in the matrix phase and can be obtained from

Eqs.(II .78) and (II .75), respectively.

5.3 Computation of the second-order moment of α̇

To calculate η from Eq.(III .40), the denominator α̇ related to the second-order mo-

ment of α̇ should be first determined by

α̇ =

√
2

3
〈α̇ : α̇〉m =

1

∆t

√
2

3
〈(α−αn) : (α−αn)〉m (III .54)

It is noted that it is generally difficult to calculate 〈(α−αn) : (α−αn)〉m due to inac-

cessibility of the term 〈α : αn〉m. However, thanks to Eq.(III .38), α̇ can be alternatively

calculated by the following relation when θ 6= 1

α̇ =

[
θ

∆t (1− θ)

]√
2

3
〈(αn− α̃n) : (αn− α̃n)〉m (III .55)

=

[
θ

∆t (1− θ)

]√
2

3
(〈αn : αn〉m − 2 〈αn〉m : α̃n + α̃n : α̃n)

where the first- and second-order moment of α are already determined from (III .52) and

(III .53) respectively.

6 Implementation and numerical validation of the model

6.1 Numerical implementation algorithm

The numerical implantation algorithm of the proposed BIV model is now presented.

This algorithm is developed as a user-defined subroutine for the determination of me-

chanical behavior of a macroscopic material point in a standard computation code. The

material point is subjected to a macroscopic strain increment ∆ε̄ (∆ε̄ = ˙̄ε∆t) such that

ε̄n+1 = ε̄n + ∆ε̄ at tn+1. The numerical algorithm is here used to calculate the macro-

scopic stress increment using the proposed BIV model. The flowchart of the computational

procedure is summarized in Algorithm 2:
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Algorithm 2: Flowchart of the local implementation algorithm of BIV

Input: ˙̄ε,∆t, σ̄n, ε̄n, 〈αn〉m , 〈βn〉m , 〈αn : αn〉m, θn, ηn
Output: σ̄n+1, ε̄n+1, 〈αn+1〉m , 〈βn+1〉m , 〈αn+1 : αn+1〉m, θn+1, ηn+1

1 ε̄n+1 = ε̄n + ˙̄ε∆t,
2 Initialize ηn+1 = ηn, θn+1 = θn

3 Calculate Amn+1, Ai,rn+1, amn+1, ai,rn+1, Cm0,n+1, ρm0n+1,

4 Calculate first order moment of strain field 〈εn+1〉trialm = Amn+1 : ε̄+ amn+1,

〈εn+1〉triali,r = Ai,rn+1 : ε̄+ ai,rn+1,

5 Elastic prediction: 〈σn+1〉trialm = Cm : (〈εn+1〉trialm − 〈αn〉m − 〈βn〉m)

6 if f(〈σn+1〉trialm ) < 0 then

7 〈εn+1〉m = 〈εn+1〉trialm ; 〈εn+1〉i,r = 〈εn+1〉triali,r 〈αn+1〉m = 0; 〈βn+1〉m =
0; 〈αn+1 : αn+1〉m = 0

8 else
9 (For clarity, the subscript n+1 will be omitted in the for loop)

10 for j = 1 . . .miter, do
11 Calculate Cm0,j , ρm0,j , ςm0,j and C̄j with Eqs. (III .42) and (II .74a)

12 Calculate Amj , Ai,rj , amj , ai,rj (with Eq.(II .79) for two-phases composite).

13 Calculate first moment of strain field 〈ε〉m,j = Amj : ε̄+ amj and

〈ε〉i,r,j = Ai,rj : ε̄+ ai,rj with Eqs.(II .75) and (II .76) ;

14 Calculate 〈σ〉m,j and 〈σ〉i,r,j by using Eq.(III .45);

15 Calculate effective internal variable α̃n,j and 〈α〉m,j with Eqs.(III .38) and
(III .52);

16 Calculate second moment of strain field K :: 〈ε⊗ ε〉m,j and 〈α : α〉m,j
with Eqs.(II .78) and (III .53);

17 Calculate α̇j and 〈β〉j with Eqs.(III .55) and (III .61)

18 Calculate θj and ηj with Eqs.(III .37) and (III .40);

19 if
|δθj |
θj

< ε and
|δηj |
ηj

< ε, then

20 Return;

21 else
22 j = j + 1
23 end

24 end

25 σ̄n+1 = 〈σn+1〉 = fm 〈σn+1〉m +
∑N

r=1 f
i,r 〈σn+1〉i,r;

26 end

6.2 Comparisons with direct FEM simulations

The purpose of this section is to verify the accuracy of the BIV model by comparing

its prediction with the reference solutions obtained by direct finite element simulations on

the unit cell for two kinds of materials. The first one is a composite material with a non-

associated Drucker-Prager plastic matrix and elastic inclusions (Figure II .2(b)), while the
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second one is a porous material with non-associated Drucker-Prager matrix and pores . In

this section and section 7, the effective properties of the LCC as well as the field statistics

are evaluated by using the Hashinand Shtrikman bounds, i.e., the HS lower bound for

inclusion-reinforced material and upper bound for porous material, more details are given

in Appendix C in Chapter II. The microstructure of studied materials is represented by a

periodic assembly of 3D unit cells with spherical inclusion or pore. Taking advantage of

axial symmetry, the actual hexagonal unit cell is approximated by a cylinder one and only

half an axial symmetry plain is considered in the finite element calculations, as illustrated

in Figure II .2. The first- and second-order moments of the local fields under study are

computed from direct volume averaging of the local fields in the unit cell (Yan et al.,

2007).

For the inclusion-reinforced material, the solid matrix obeys non-associated Drucker-

Prager perfect plasticity. The model’s parameters for each constituent phase are listed

in Tables III .1 and III .2. Uniaxial and triaxial compression tests are investigated. The

unit cell is first subjected to a confining stress or hydrostatic stress and then a differential

stress by increasing the axial strain in the z direction. During the differential stress stage,

the lateral displacement Ū2 is kept uniform along the boundary to satisfy the uniform

strain boundary condition. The boundary conditions are illustrated in Figure II .2(b) and

summarized as follows 

U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, 0 < r < L

U2 (0, z) = 0, 0 < z < H

(III .56)

Table III .1: Parameters of solid matrix for composite

Em (MPa) νm κ c(MPa) χm

3000 0.3 0.227 30 0.083

Similarly, the solid phase of porous material is described by a non-associated Drucker-

Prager type plastic matrix. The parameters for the matrix are listed in Table III .1. The

boundary conditions on the unit cell are given below and illustrated in Figure II .2(c).
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Table III .2: Parameters of elastic inclusion

Ei (MPa) νi

98000 0.15



U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, R < r < L

U2 (0, z) = 0, R < z < H

(III .57)
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(b) Porous material

Figure III .1: Macroscopic predictions for two kinds of composite material with non-

associated Drucker-Prager perfectly plastic matrix and inclusion/pores ( f i = 15%) under

triiaxial compressions with different confining stress

Figure III .1 shows the macroscopic stress-strain curves for both the inclusion-reinforced

material and porous material under uniaxial and triaxial compression tests with different

confining stresses, respectively obtained by the proposed BIV model and direct finite el-

ement simulations. One can observe that the model’s predictions coincide very well with

the FEM solutions both for the all cases considered.



Extension to non-associated plastic matrix with isotropic hardening 77

7 Extension to non-associated plastic matrix with isotropic

hardening

It is acknowledged that the isotropic plastic hardening of rock-like materials is usually

described by the evolution of internal frictional coefficient κ. In this study, we consider

the following specific hardening law:

κ(γp) = κm − (κm − κ0) e−b1γ
p

(III .58)

where κ0 and κm denote the initial threshold and the asymptotic value of the frictional

coefficient respectively, while b1 is a parameter controlling the plastic hardening rate.

Without loss of generality, we assume that χ is also a function of γp

χ(γp) = χm(1− e−b2γp) (III .59)

where χm is the asymptotic value of the plastic dilatancy coefficient.

In order to account for this kind of plastic hardening in the BIV model and avoid

complex mathematical treatment, we shall here propose a heuristic extension of the model

formulated for materials without plastic hardening. According to the theoretical formu-

lation presented in Sections 3 and 4, when the values κ and c are constant, the average

secant viscosity function of solid matrix η is given in Eq.(III .40). We here assume that

this result remains applicable for the solid matrix where the value of κ is updated at each

loading increment. Therefore, the average secant viscosity function is written as:

η = −
κ (〈γpn〉m) (〈σm〉m − c)

α̇
(III .60)

In this expression, 〈γpn〉m is the average value of equivalent plastic shear strain field in

the solid matrix γp at step n, which is shown in Eq.(III .62). It is noted that when the

isotropic hardening is considered, the values of frictional coefficient κ (〈γpn〉m) and plastic

dilatancy coefficient χ (〈γpn〉m) are updated and keep constant at each loading increment,

implying an explicit calculation for κ (〈γpn〉m) and χ (〈γpn〉m) are taken.

7.1 Comparisons with direct FEM simulations

Here the validations of the heuristic extended BIV model for rock-like materials with

an isotropic hardening are conducted by comparing the BIV predictions with direct FEM

simulations both for local and macroscopic scale responses. We here also consider two kinds

of rock-like materials: inclusion-reinforced material and porous material. Conventional

triaxial compression tests are studied. The boundary conditions for these two materials
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are same as those presented in Section 6.2. We here choose κ0 = 1 × 10−5, κm = 0.227,

b1 = 140, χm = 0.083 and b2 = 70 for the following numerical simulations.

7.1.1 Inclusion-reinforced material

Two volume fractions of elastic inclusion are considered: f i = 5% and f i = 15%.

In Figure III .2, we show the macroscopic stress-strain curves for the uniaxial compres-

sion test obtained by BIV and FEM. It can be seen that there is a good agreement

between these two results. In Figure III .3, we emphasize the volume strain evolution ε̄v

as a function of axial strain ε̄33 with different values of dilatancy coefficient χm and for

f i = 15%. It is noticed that the proposed BIV model is able to well reproduce the volume

compressibility-dilatancy transition which is controlled by the parameter χm. More pre-

cisely, the volumetric dilatancy is enhanced when the value of χm increases. The results

due to the BIV model well coincident with the FEM simulations.
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Figure III .2: Macroscopic stress-strain curves under uniaxial compression for an

inclusion-reinforced material with two volume fractions of inclusions (f i = 5% and

f i = 15%)

Moreover, the proposed BIV model is also able to account for the influence of confining

stress on the macroscopic response of composite material. This is illustrated in Figure III

.4. The stress-strain curves are presented for two triaxial compression tests respectively

with a different confining stress of 10MPa and 20MPa. Again, the BIV predictions coincide

with the FEM solutions very well.

In order to further assess the accuracy of the BIV model, the evolution of local stresses

during the loading history is also investigated for the case of uniaxial compression and

taking f i = 15%. For instance, the evolution of average stress respectively in the inclusion
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Figure III .3: Evolution of macroscopic volumetric strain for different values of plastic

dilatancy coefficient χ in uniaxial compression for an inclusion-reinforced material with a

volume fraction of inclusions of f i = 15%
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Figure III .4: Macroscopic stress-strain curves under triaxial compression with two

different confining stresses two for an inclusion-reinforced material with c(2) = 15%

and matrix is presented in Figure III .5(a). In Figure III .5(b), one finds the evolution

with respect to the macroscopic axial strain of the different denominators σ̄meq and σ,

respectively related to first-order and second-order moment of the stress over the matrix.

Lastly, in Figure III .5(c), the evolution of the stress fluctuations
√
Fmσ :: K in the matrix

is presented. It is observed that the BIV model provides an accurate prediction for the

evolution of average stress within the matrix, while a less accurate prediction regarding the

average inclusion response (Figure III .5(a)). The BIV results are also in good agreement

with the FEM solutions for the stress moments σ̄meq and σ (Figure III .5(b)). Lastly,

although the BIV model overestimates the stress fluctuation within the matrix, it is still

able to reproduce the good evolution trend of FEM solutions (Figure III .5(c)).
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(a) Evolution of phase average stress versus macro-

scopic strain
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(b) First and second moments of stress over matrix

(c) Fluctuations of stress over matrix

Figure III .5: Local stress responses under uniaxial compression in an inclusion-

reinforced material with f (i = 15%

On the other hand, the evolution of the local plastic strain is also studied. In Figure

III .6(a), one can find a quite good agreement between the BIV result and FEM solution

for the first-order moment of plastic strain over the matrix ᾱmeq. However, it seems that

the BIV model underestimates the second-order moment of plastic strain in the matrix

α. The fluctuation of plastic strain field is shown in Figure III .6(b). The BIV model is

able to capture the trend of the FEM solution although there exist some scatters between

them.

7.1.2 Porous material with non-associated plastic matrix

The macroscopic stress-strain curves uniaxial compression with two values of porosity

f i = 15% and 5% are presented in Figure III .7. There is a good agreement between the
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Figure III .6: Local plastic strain responses under uniaxial compression of an inclusion-

reinforced material with f (i = 15%

BIV predictions and FEM results. Furthermore, the stress-strain curves under triaxial

compression with three different confining stresses are presented in Figure III .8 for a

porosity of f i = 15%. Once again, the BIV model correctly captures the effect of confining

stress and well reproduces the FEM solutions.

-3 -2 -1 0 1 2 3 4 5

5

10

15

20

30

Figure III .7: Macroscopic stress-strain curves in uniaxial compression for a porous

material with two different porosity (f i = 5% and f i = 15%)

As for the inclusion-reinforced composite materials, the local stress and strain responses

of porous material are investigated for the case of uniaxial compression and with a porosity

of f i = 15%. In Figure III .9(a), the evolution of the first and second-order moment of

local stress over the matrix, σ̄meq and σ, is depicted. The evolution of the stress fluctuations

is given in Figure III .9(b). One can find a similar trend as that already obtained in Figure
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Figure III .8: Macroscopic stress-strain curves in triaxial compression with three different

confining stresses for a porous material with a porosity of f i = 15%

III .5 for the inclusion-reinforced material. The evolution of the moments and fluctuations

of local plastic strain field over the matrix is shown in Figure III .10. As shown in Figure

III .10(a), although the BIV model qualitatively reproduces the trend of the FEM solution,

it slightly underestimates the denominators ᾱmeq and α. Compared with Figures III .10(b)

and III .6(b), the fluctuations of the plastic strain field are now better captured by the

BIV model for the porous material than for the inclusion-reinforced material.
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(a) First- and second-order moments of stress over

matrix

(b) Fluctuations of stress over matrix

Figure III .9: Local stress responses under uniaxial compression of a porous material

with a porosity f i = 15%
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(a) First and second-order moments of plastic

strain over matrix

(b) Fluctuations of plastic strain over matrix

Figure III .10: Local plastic strain responses under uniaxial compression of a porous

material with a porosity of f i = 15%

7.2 Application examples

In this section, two application examples are presented to show the ability of the

proposed bi-potential based incremental variational model to reproduce experimental re-

sponses of two typical rock-like materials: Callovo-Oxfordian claystone and Vosges sand-

stone.

7.2.1 Application to Callovo-Oxfordian claystone

The Callovo-Oxfordian claystone is extensively investigated in France as a potential

geological barrier for the underground disposal of nuclear waste storage (Armand et al.,

2016). It is a sedimentary rock with complex multi-scale structures (Robinet, 2008). At

the mesoscopic scale (hundreds of micrometers), this clayey rock is composed of a quasi-

continuous clay matrix containing elastic inclusions, mainly quartz and calcite grains. As

a first approximation, the clay matrix can be characterized by an isotropic elastic-plastic

model. The plastic behavior is here described by a non-associated Drucker-Prager type

model (Guéry et al., 2008, 2010). On the other hand, for the range of stress considered in

the application, the mechanical behavior of the quartz and calcite grains can be reasonably

captured by a linear elastic model. Furthermore, as the elastic properties of calcite and

quartz are quite similar, for the sake of simplicity, they are seen a single phase of elastic

inclusions.

The BIV model contains 4 elastic coefficients and 6 plastic parameters for the clay

matrix. The elastic coefficients of the elastic inclusion phase are taken as the volumetric
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average values of the quartz and calcite grains (Jiang et al., 2009). The Young’s modulus

and Poisson’s ratio are equal to Ei = 98GPa and νi = 0.15. The elastic coefficients of the

clay matrix are not available from direct experimental measurement. They are calibrated

by an inverse homogenization procedure (Guéry et al., 2008), from the macroscopic elastic

coefficients obtained in triaxial compression tests on the samples with known mineralogical

compositions (Chiarelli, 2000). We obtain the typical values of Young’s modulus Em =

3GPa and Poisson’s ratio νm = 0.3. On the other hand, the values of plastic parameters of

clay matrix are fitted by a numerical optimization of macroscopic stress-strain curves for

a chosen mineralogical composition similar to that proposed in (Guéry et al., 2008; Shen

et al., 2012). The obtained values are then fixed and applied to samples with different

mineralogical compositions. The obtained values are given below:

• Matrix(clay): Em = 3GPa, νm = 0.3, κ0 = 10−5, κm = 0.283, b1 = 250, χm = 0.05,

b2 = 50, c = 20MPa

• Elastic inclusion(quartz + calcite): Ei = 98GPa, νi = 0.15.

The mechanical responde of the claystone is now studied using the proposed BIV model

under triaxial compression tests, proportional compression tests and lateral extension

tests. It is noteworthy that these tests were performed on samples coming from different

geological depths ranging from 415.4m to 482.4m, with different mineral compositions.

However, a sole set of parameters is used for the modeling of different tests on different

samples.

In Figure III .11, the stress-strain curves of claystone are presented for triaxial compres-

sion tests. One obtains a good agreement between model’s predictions and experimental

data. The BIV model is able to well reproduce main features of the claystone mechanical

behavior in this loading path, such as the volume dilatancy and confining stress sensitivity.

The impact of mineralogical compositions is also correctly taken into account. Further, in

Figure III .11(a), the numerical results respectively provided by the associated and non-

associated plastic model are compared. It is clear that the non-associated model gives a

better description than the associated one.

For providing a complementary validation of the BIV model, proportional compression

and lateral extension tests are also studied. In a proportional compression test, the axial

stress σ̄33 and confining pressure σ̄11 are simultaneously increased with a constant ratio

k = σ̄33
σ̄11

. In a lateral extension test, the sample is first subjected to a hydrostatic stress

state to a given value, and then the lateral stress σ̄11 is progressively decreased while

the axial stress σ̄33 is kept constant. The comparison of claystone mechanical response
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Figure III .11: Comparison of stress-strain curves between experimental data and nu-

merical results for triaxial compression tests on Callovo-Oxfordian claystone samples with

different mineralogical compositions

between numerical predictions and experimental data for these two kinds of tests are shown

in Figure III .12 and III .13, respectively. Again, one gets a good general agreement and

the BIV model correctly describes the main characteristics of mechanical response of the

claystone in these two loading paths.

7.2.2 Application to Vosges sandstone

The Vosges sandstone is here studied as a typical porous rock. Its microstructure and

macroscopic behaviors have been investigated in a number of previous studies, for instance

by (Bésuelle et al., 2000; Khazraei, 1996). The average porosity is about 20% and the solid
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Figure III .12: Comparisons of mechanical response between experimental data and

numerical results for proportional compression tests on Callovo-Oxfordian claystone with

different mineralogical compositions

matrix is composed of nearly 93% quartz grains with a few percent of feldspar and white

mica. As a first approximation, the sandstone can be considered as an isotropic material.

The mechanical strength of the sandstone strongly depends on confining pressure. In this

study, the solid matrix is described by a non-associated Drucker-Prager type plastic model.

The elastic and plastic parameters of solid matrix are not directly measured but indirectly

estimated. The elastic coefficients can be easily identified by an inverse homogenization

procedure from measured macroscopic data and porosity of sample. The plastic parameters

are again fitted from a numerical optimization of macroscopic stress-strain curves for a

given porosity. The obtained values of parameters are given in Table III .3.

In Figure III .14, we first present the stress-strain curves under conventional triaxial

compression tests with four different confining stresses from 5MPa to 40MPa. Like the



Extension to non-associated plastic matrix with isotropic hardening 87

-1 -0.5 0 0.5 1

10

20

30

40

50

60

70

(a) Depth 469.0m, fm = 44%, f i = 56%

-1 -0.5 0 0.5 1

10

20

30

40

50

60

70

(b) Depth 482.3m, fm = 45%, f i = 55%

-1 -0.5 0 0.5 1

10

20

30

40

50

60

70

(c) Depth 456.6m, fm = 46%, f i = 54%

Figure III .13: Comparisons of mechanical response between experimental data and

numerical results in lateral extension tests with initial confining pressure of 60MPa on

Callovo-Oxfordian claystone with different mineralogical compositions

Table III .3: Parameters of solid matrix for porous Vosges sandstone

Em (GPa) νm κ0 κm c(MPa) b1 χm b2

40 0.25 10−5 0.433 40 900 0.333 500

claystone, there is a good agreement between model’s predictions and experimental data.

The effect of confining stress on macroscopic response is well captured. However, the

mechanical strength of sandstone is slightly overestimated by the model for the test with

a low confining stress if 5MPa. This is due to the fact that a linear Drucker-Prager
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criterion used for the solid matrix is not well adopted in the zone of low mean stress

and tensile stress. The use of a curved yield surface for the solid matrix, for example

the Mises-Schleicher criterion, would improve numerical results. In Figure III .14(b), one

can see that the non-associated model provides a better description of lateral strain that

the associated model. However, unlike the result of claystone shown in Figure III .11(a),

the non-associated flow rule coefficient has no influence on the peak strength of porous

sandstone.
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Figure III .14: Comparisons of mechanical response between experimental data and

numerical results for triaxial compression tests on Vosges sandstone

The mechanical response of Vosges sandstone under proportional compression and lat-

eral extension are presented respectively in Figures III .15 and III .16. Once again, it is

found that the proposed BIV model well reproduce experimental data for these loading

paths. In particular, as shown in Figure III .15, the transition from volumetric compress-

ibility to dilatancy is well captured by the BIV model due to the non-associated plastic
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flow rule in the solid matrix.
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Figure III .15: Comparison of stress-strain curves between experimental data and nu-

merical results for proportional compression tests on Vosges sandstone
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Figure III .16: Comparison of mechanical response between experimental data and

numerical results for lateral extension test on Vosges sandstone with an initial confining

pressure of 60MPa and axial stress of 90MPa

8 Concluding remarks

In this paper, we have proposed a new bi-potential based incremental variational (BIV)

model for rock-like materials by making the extension of increment variational principle

proposed for generalized standard materials. The BIV model has been formulated for a
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class of rock-like materials with a non-associated plastic matrix described by a Drucker-

Prager type yield function and an isotropic hardening law in two steps.

At the first step, we assume an non-associated perfectly plastic behavior for the solid

matrix. With the help of the bi-potential theory, we have developed a new methodology

for the determination of the incremental potential of plastic matrix. By introducing ap-

propriate effective internal variables, the BIV model is able to account for non-uniform

local stress and plastic strain fields in the plastic matrix. We have also introduced an

appropriate optimization method for the estimation of the effective incremental potential

and macroscopic stress. The accuracy of BIV model has well been demonstrated through

the comparisons with direct field finite element simulations for both inclusion-reinforced

and porous materials without plastic hardening.

At the second step, a heuristic extension of the micro-mechanical model has been pro-

posed in view of estimating effective behaviors of rock-like materials with an isotropic

plastic hardening law. This has been done by assuming that the general incremental vari-

ational formulation obtained from perfectly plastic solid matrix remains applicable for

materials with isotropic hardening. The plastic hardening has been simply taken into

account by updating the value of international frictional coefficient at each loading incre-

ment. The efficiency of the heuristic extended BIV model has been well evaluated by the

comparison with a set of reference solutions provided by direct finite element simulation.

Two classes of materials, inclusion-reinforced composites and porous materials, have been

considered. It has been found that the BIV model was able to provide a good estimation of

both local and overall responses of these heterogeneous materials. However, the average

stress in the inclusion phase is underestimated for inclusion-reinforced composites, and

the stress fluctuation in the matrix is overestimated for both materials. Therefore, some

improvement remains needed, for example, by using a second-order comparison composite

for the estimation of incremental potential of the plastic matrix.

Finally, the BIV model has been used to study the mechanical behavior of two typ-

ical rock-like materials, the Callovo-Oxifordian claystone and Vosges sandstone, under

different loading paths. In a general way, the numerical results are in good agreement

with experimental data. The main features of mechanical behavior of two materials are

correctly reproduced by the BIV model, such as plastic hardening, influence of confining

stress as well as volume compressibility/dilatancy transition.

In this work, we have focused on the short-term mechanical behavior of dry rock-like

materials. In future, the BIV model is expected to be extended to the time-dependent

behavior and to saturated and unsaturated conditions.
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Appendix A: Linearization of the local free energy function

(III .12)

Inspired by Boudet et al. (2016), we assume that the volumetric plastic strain field β

and the internal variable field γp are constant values in the solid matrix, denoted by 〈β〉m
and 〈γp〉m , respectively, evolving as follows by taking into account Eq.(III .5)

〈β〉m = 〈βn〉m + α̇∆tχδ (III .61)

〈γp〉m = 〈γpn〉m + α̇∆t (III .62)

where 〈βn〉m and 〈γpn〉m are the volume average values of fields β and γ over matrix at

step n, and

α̇ =
1

∆t

√
2

3
〈(α−αn) : (α−αn)〉m =

1

∆t
α−αn (III .63)

Accordingly

wm(ε,α,β) ' wlin(ε,α) =
1

2

(
ε−α− 〈βn〉m −α−αnχδ

)
: Cm :

(
ε−α− 〈βn〉m −α−αnχδ

)
(III .64)

Appendix B: Minimization of Jm0 (ε, α)

By making use of the minimization of Jm0 (ε,α) w.r.t. α, and after taking into account

the form (II .32) of Jm0 , one gets,

∂Jm0
∂α

= −K : Cm : (ε−α− 〈β〉m)− Cm : (ε−α− 〈β〉m)
∂ 〈β〉m
∂α

+ 2
ηpθ

∆t
(α− α̃n) = 0

(III .65)

It is noted that Eq.(III .34) in its field form can be rewritten as

θ (α− α̃n) = (α−αn) ∀x ∈ Ωm (III .66)

Considering the expression (III .61) and (II .47), one obtains

∂ 〈β〉m
∂α

=
2χθ

3∆tα̇
δ ⊗ ( α− α̃n) (III .67)

then

− Cm : (ε−α− 〈β〉m) :
∂ 〈β〉m
∂ α

= 2
ηcpθ

∆t
(α− α̃n) (III .68)

with

ηcp =
−3χσm

3α̇
, σm =

1

3
Cm : (ε−α− 〈 β〉m) : δ (III .69)
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For ease of calculation, we assume that ηcp takes its average value in the matrix phase,

i.e.,

ηcp =
−3χ 〈σm〉m

3α̇
(III .70)

Substituting Eqs. (III .66) and (III .68) into (III .65) leads to

∂Jm0
∂α

= −K : Cm : (ε−α− 〈β〉m) + 2
ηθ

∆t
(α− α̃n) = 0 (III .71)

with

η = ηp + ηcp =
〈σy〉m − 3χ 〈σm〉m

3α̇
= −

κ (〈σm〉m − c)
α̇

(III .72)

or equivalently, the local deviatoric stress of matrix phase becomes

= K : Cm : ( ε−α− 〈β〉m) = 2
η

∆t
(α−αn) = 2

ηθ

∆t
(α− α̃n) (III .73)

Finally, from (III .71), one gets

α =

(
Cm +

2θη

M t
K
)−1

:

[
K : Cm : ε+

2θη

∆t
α̃n

]
(III .74)



Chapter IV

A micromechanics-based plastic

damage model for quasi-brittle

materials under a large range of

compressive stress ∗

In this chapter, a new micro-mechanics based plastic damage model is proposed for

quasi-brittle materials under a large range of compressive stress. The damage is due to

initiation and propagation of micro-cracks while the plastic deformation is directly related

to frictional sliding along micro-cracks. The two dissipation processes are then physically

coupled. With the Mori-Tanaka homogenization procedure and thermodynamics frame-

work, the macroscopic state equations are deduced and the local driving forces of damage

and plasticity are defined. New specific criteria are proposed for the description of dam-

age evolution and plastic flow. These criteria take into account the variation of material

resistance to damage with confining pressure and the degradation of surface asperity of

micro-cracks during the frictional sliding. An analytical analysis of macroscopic peak

strength and volumetric compressibility-dilatancy transition is provided. A specific cali-

bration procedure is further proposed for the determination of all model’s parameters from

conventional triaxial compression tests. The efficiency of the proposed model is verified

against experimental data on three different materials and for a very large range of stress.

All main features of mechanical behaviors of materials are well captured by the proposed

∗Zhao, Lun-Yang, Qi-Zhi Zhu, and Jian-Fu Shao. ”A micro-mechanics based plastic damage model for

quasi-brittle materials under a large range of compressive stress.” International Journal of Plasticity 100

(2018): 156-176.
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model.

1 Introduction

Quasi-brittle materials are widely used in various engineering applications. In civil

engineering and underground structures, rock-like or cement-based materials are generally

subjected to compressive stresses. Damage and plasticity are two main inelastic processes

in those materials. The basic physical process of damage is the initiation and propagation

of micro-cracks. Under tensile stresses, open micro-cracks mainly propagate in tensile

mode and the plastic deformation can be neglected. Under compressive stresses, closed

micro-cracks propagate in a complex mode, such as wing cracks. The plastic deformation

is directly due to frictional sliding along closed micro-cracks. For instance, during a

triaxial compression test with a loading-unloading cycle on a rock-like material, irreversible

strains can be obtained and they are enhanced by the increase of confining pressure.

Such irreversible strains are considered as a consequence of plastic frictional sliding along

closed micro-cracks. Therefore, the physical origin of plastic deformation in this class

of materials is clearly different with that in metal materials or soil-like materials and

should be described by a physically consistent approach Furthermore, as the propagation

of frictional sliding along micro-cracks is driven by the normal and shear stresses locally

applied onto micro-cracks, macroscopic mechanical behaviors of quasi-brittle materials are

strongly sensitive to compressive mean stress or confining pressure. With the increase of

confining pressure, there is a transition from brittle to ductile behavior. Further, the

normal aperture of micro-cracks due to frictional sliding induces macroscopic volumetric

dilatancy. The occurrence of dilatancy also depends on the level of confining pressure.

During the last decades, a large number of phenomenological models have been de-

veloped for modeling damage and plasticity in quasi-brittle materials. Without giving an

exhaustive list of all models, only some representative studies are mentioned here. Most

models have been developed in the framework of irreversible thermodynamics (Hansen

and Schreyer, 1994b) with internal variables for plastic strains and damage. The dam-

age has been either characterized by a scalar variable for isotropic distribution of micro-

cracks (Chen et al., 2015; Salari et al., 2004; Shao et al., 2006) or by a tensorial vari-

able for anisotropic distribution of micro-cracks (Chiarelli et al., 2003; Halm and Dragon,

1998).Some studies have been devoted to localization and bifurcation investigation us-

ing plastic damage models (He et al., 2015; Xotta et al., 2016). Mechanical behaviors

of porous materials have also been described by plastic damage models (Kweon et al.,
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2016). In other phenomenological damage models or plastic damage models (Barretta

and de Sciarra, 2015; Barretta et al., 2014; De Sciarra, 2008; de Sciarra, 2008), strain

softening and size effects have been investigated by using nonlocal or second gradient ap-

proaches. Convergence and stability properties in nonlocal models have been discussed.

Some studies have been devoted to thermo-mechanical response and large deformation

gradient theory for plastic materials (Aldakheel and Miehe, 2017; Anand et al., 2012). In

these models, the coupling between damage and plasticity is generally taken into account

through the definition of a macroscopic free energy function. Plastic strain tensor and

damage variable are not physically connected. The physical origin of plastic deformation,

the frictional sliding along micro-cracks, has not been clearly explained.

In order to complete phenomenological models and provide an alternative modeling,

a significant progress has been achieved on the development of micro-mechanical models

using different homogenization techniques. However, most studies have been devoted to

damage modeling considering micro-cracks in elastic solid (Chaboche et al., 2001; Chow

and Wang, 1987; Kachanov, 1982; Nemat-Nasser and Obata, 1988; Pensée et al., 2002; Zhu

et al., 2008a, 2011). Only few studies have been performed on micro-mechanical model-

ing of coupled plastic-damage in quasi-brittle materials (Jefferson and Bennett, 2007; Zhu

et al., 2008b; Zhu and Shao, 2015; Zhu et al., 2016). In particular, in some recent studies,

the coupling between crack propagation and frictional sliding has been properly investi-

gated in micro-mechanics based approaches (Zhu and Shao, 2015; Zhu et al., 2016). A

micro-mechanics based thermodynamics formulation has been proposed for isotropic dam-

age with unilateral and friction effects (Zhu et al., 2011). Some analytical and numerical

analyses of frictional damage have been performed for specific loading paths (Zhu et al.,

2016). Some micro-mechanics based models have been extended to initially anisotropic

materials (Qi et al., 2016), and to time-dependent behavior analysis related to sub-critical

propagation of micro-cracks (Bikong et al., 2015; Zhao et al., 2016).

In spite of the significant progress made so far, there are still some open issues to be

investigated. In most micro-mechanical models recently developed, the effect of confin-

ing pressure on propagation kinetics of micro-cracks was neglected. The corresponding

macroscopic strength envelop is described by a linear function. These models are not able

to properly capture the transition from brittle to ductile behavior with the increase of

confining pressure neither the nonlinear strength surface. On the other hand, the pro-

gressive degradation of surface asperity of micro-cracks has also not been considered. As

a consequence, post-peak behavior and residual strength of materials are not correctly

described.
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In this chapter, a new micro-mechanics based model is developed for modeling plastic

deformation and damage evolution of a wide class of quasi-brittle materials under a very

large range of compressive stress. The new model will take into account the effect of con-

fining pressure on material resistance to micro-cracks propagation and the degradation of

surface asperity of micro-cracks due to frictional sliding. The efficiency of the proposed

model will be verified on three different materials and for a large range of stresses. Com-

pared with existing models, the new model will significantly improve the description of

peak and residual strengths, volumetric compressibility - dilatancy transition, brittle to

ductility transition and complex post-peak response.

2 Formulation of a micro-mechanics based plastic damage

model

One considers a quasi-brittle material constituted of an isotropic elastic solid matrix

which is weakened by a randomly distributed set of penny shaped micro-cracks. For the

purpose of homogenization, one defines a representative volume element(RVE) occupying

a geometric domain Ω ⊂ R3 with its external boundary surface ∂Ω ⊂ R2.

For most quasi-brittle materials, the distribution of micro-cracks is generally anisotropic

due to the oriented propagation of micro-cracks in some preferential directions. However,

for the sake of computational simplicity but without losing generality, we will assume in

the present paper an isotropic distribution of micro-cracks. As mentioned above, several

aspects still need to be investigated for a proper modeling of friction-damage coupling

even in the isotropic case. Moreover, the general framework developed in the present

study can be easily extended to anisotropic cases by considering different kinds of spatial

distribution functions of micro-cracks. But the computational algorithm for anisotropic

cases becomes significantly more complicated than the isotropic case. Anisotropic cases

will be investigated as an extension of the present paper in our ongoing studies. With the

isotropic assumption, each penny-shaped micro-crack is characterized by its unit normal

vector n and the aspect ratio ε = c/a with a and c being the average radius and the half

opening, respectively. The volume fraction ϕ of a family of micro-cracks is then defined

as ϕ = 4
3πa

2cN = 4
3πεd where N denotes the micro-crack density (i.e., the number of

micro-cracks per unit volume). In the present study, the emphasis is put on the friction-

damage coupling in closed micro-cracks under compression-dominated stresses. In such

a case, it is reasonable to assume that the aspect ratio of micro-cracks is very small and

can mathematically considered as vanished. As a consequence, the volume fraction of
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micro-cracks also vanishes and cannot be used as a physical variable to characterize the

state of micro-cracks because the effect of closed micro-cracks on mechanical behavior is

not cancellated due to possible sliding along crack surfaces. Therefore, a physically perti-

nent internal variable should be defined. According to (Budiansky and O’connell, 1976),

the following damage density variable is here used: d = Na3. Furthermore, as shown

in previous studies (Eshelby, 1957b; Zhu et al., 2011), with a vanished aspect ratio, it is

possible to obtain an analytical solution of Eshelby’s tensor for a penny-shaped crack in

an isotropic elastic solid matrix.

In the present study, one focuses on modeling of plastic deformation and damage

evolution under compressive stresses. All micro-cracks are assumed to be closed and

elastically glued. There are no elastic displacement discontinuities along crack surfaces.

Further, each micro-crack is a rough surface characterized by a local frictional coefficient.

Frictional sliding occurs only when local stresses applied on the crack surfaces verify a

specific friction criterion. The frictional sliding at the local scale is entirely at the origin of

plastic strains at the macroscopic scale. On the other hand, the damage evolution is related

to the propagation of micro-cracks (increase of length). Further, the crack propagation

is inherently coupled with the frictional sliding. As a consequence, with the assumption

of isothermal conditions and small strains, the total strain tensor is decomposed into two

parts: an elastic part εe attributed to deformation of the solid matrix and a plastic part

εp due to the frictional sliding along closed micro-cracks:

ε = εe + εp. (IV .1)

2.1 Free energy and state equations

Due to the decomposition of strain tensor and making use of the results obtained in

previous studies (Pensée et al., 2002; Zhu and Shao, 2015), the free energy of cracked

material takes the form:

W close =
1

2
(ε− εp) : Cm : (ε− εp) +

1

2d
εp : Cd : εp. (IV .2)

The first part of the right-hand side represents the elastic free energy of the solid matrix

while the second part is the stored energy due to the frictional sliding along micro-cracks.

Cm = 2µmK + 3kmJ is the elastic stiffness tensor of solid matrix, with km and µm being

the bulk and shear moduli of the matrix, respectively. The coupling tensor Cd can be

determined from a homogenization procedure based on Eshelby solution (Eshelby, 1957b)

by considering the cracked material as a matrix-inclusion system. As mentioned above,
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in order to obtain an analytical expression of Cd, micro-cracks are seen as spheroidal

inclusions with a vanished aspect ratio (Zhu et al., 2016). One gets:

Cd =
(
Sd
)−1

, Sd = (αJ + βK) : Sm (IV .3)

Sm = (Cm)−1 is the elastic compliance tensor of the solid matrix. Two coefficients α and

β are obtained from the Mori-Tanaka homogenization procedure and they are functions of

Poisson’s ratio of the solid matrix νm only (Zhu et al., 2011, 2016). One gets α = 16
9

1−(νm)2

1−2νm

and β = 32
45

(1−νm)(5−νm)
2−νm .

One then derives the macroscopic stress-strain relations from the free energy function

as follows:

σ =
∂W close

∂ε
= Cm : (ε− εp) , (IV .4)

One can also deduce the thermodynamic forces respectively associated with the plastic

strain εp and the damage variable d:

σc = −∂W
close

∂εp
= σ − 1

d
Cd : εp (IV .5)

Yd = −∂W
close

∂d
=

1

2d2
εp : Cd : εp, (IV .6)

It is interesting to note that σc is the local stress tensor applied to micro-cracks and it

is the driving force of frictional sliding. Further, the local stress tensor is different to the

macroscopic one and explicitly depends on the damage variable d. Therefore, the plastic

deformation due to frictional sliding is inherently influenced by the damage evolution.

Due to this coupling, the local stress and then the macroscopic stress are affected by

the damage growth. This can lead to a material softening when the damage density

becomes high. On the hand, the damage conjugated thermodynamic force Yd explicitly

depends on the plastic strain tensor εp. As a consequence, the damage evolution is directly

driven by the plastic deformation due to frictional sliding. It is worth noticing that in

the present study, it is assumed that all micro-cracks are elastically glued due to the

roughness of asperities on crack surfaces. The plastic frictional sliding is the unique cause

of displacement discontinuity along micro-cracks and driving force of crack propagation.

2.2 Damage criterion

The damage evolution is related to the growth of micro-cracks. It is determined by a

specific local damage criterion which is a function of the thermodynamic damage force.

Inspired by previous studies (Zhu and Shao, 2015), the following general form of damage

criterion is here adopted:

fd(Yd, d) = Yd −R (d) ≤ 0, (IV .7)
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Figure IV .1: Curves of g (ς) for different values of n

In this criterion, the function R (d) represents the current resistance to damage evolution

(micro-crack propagation) of the material. It is physically equivalent to R-curve used in

linear fracture mechanics. It is generally observed that when the density of micro-cracks

is small, the material resistance R (d) is an increasing function of damage density variable

d, due to material hardening effect, similar to plastic hardening in ductile materials. The

propagation of micro-cracks is then stable. When the density of micro-cracks becomes high

enough, for instance reaches some critical value, the material resistance starts to decrease

due to interactions between micro-cracks. The function R (d) should then decrease with d.

This leads to an unstable propagation of micro-cracks occurs. At the macroscopic scale,

the evolution of the function R (d) should allow the description of the transition from

material hardening to softening around peak strength. Based on this physical analysis

and inspired by Zhu and Shao (2015), the following specific form is proposed:

R (d) = r̃fg (ς) , g (ς) =
nς

ςn + n− 1
, ς =

d

df
, (IV .8)

The parameter n > 1 controls the damage evolution rate. df represents the critical value

of damage density variable when the peak strength is obtained; r̃f is thus the maximal

value of R (d) when d = df . In Figure IV .1, one shows the evolution of g (ς) with the

relative damage density ς for different values of n. One can notice that g (ς)max = 1

when ς = 1 for all values of n. The g (ς) curve is significantly influenced by the value of

n in the post-peak regime. The impact of the parameter n on the macroscopic response

will be discussed in detail later in this paper.

After the damage criterion is defined, the damage evolution rate is determined using
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the following normality rule:

4d = λd
∂fd
∂Yd

= λd, (IV .9)

where λd is the damage multiplier which can be discussed by the consistency conditions

discussed later in the paper.

2.3 Friction criterion with an associated plastic flow rule

Like in the macroscopic plastic theory, the plastic deformation due to local frictional

sliding is also determined by a yield criterion and flow rule. Due to the fact that the

frictional sliding is driven by the local stress tensor σc, the classical Coulomb-type friction

criterion is here generalized to the local scale:

fp (σc) = ‖sc‖ − ηpc ≤ 0, (IV .10)

with sc = K : σc and pc = 1
3σ

c : δ being the local deviatoric stress and mean stress. The

parameter η is the local friction coefficient of crack surfaces. From a physical point of view,

the friction coefficient is related to the roughness of crack surfaces due to the existence of

asperities. With the progress of sliding, asperities of crack surfaces are progressively de-

stroyed. As a consequence, the friction coefficient η should decrease with the accumulated

plastic deformation. On the other hand, the damage evolution is also driven by the fric-

tional sliding process. Therefore, it is also possible to establish a relationship between the

damage state and degradation of crack surfaces asperities. For convenience, it is assumed

that the degradation of crack surface asperity is negligible when the damage density d is

less than the critical value df . Therefore, the local friction coefficient remains constant

when d ≤ df . After this critical state, the degradation of crack surface asperitiy becomes

significant and leads to a decrease of the friction coefficient. Based on this analysis, the

following relation is proposed to follow the evolution of the local friction coefficient η as a

function of damage:

η = ηf − (ηf − ηr) tanh
(
b 〈ς − 1〉2

)
, (IV .11)

where ηf and ηr are, respectively, the friction coefficient corresponding to the peak strength

state (ς = 1 or d = df )and the residual strength state (ς →∞); b is a parameter controlling

the friction coefficient degradation rate in the post-peak region.

By adopting an associated local plastic flow rule, the rate of plastic strain due to

frictional sliding is determined by the following normality rule:

4εp = λp
∂f

∂σc
= λpD, (IV .12)
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with λp being the the plastic multiplier to be determined from the consistency conditions

discussed later. The plastic flow direction D is defined by the following second order

tensor:

D =
sc

‖sc‖
− η

3
δ. (IV .13)

3 Strength and deformation analysis at macroscopic scale

Before discussing numerical results given by the proposed micro-mechanics based plas-

tic damage model, it is interesting to perform an analytical analysis of some specific

features of mechanical behaviors of quasi-brittle materials. Without losing the generality,

this is done on a radial loading path without rotation of principal stress frame. As an

example, a triaxial compression test is considered.

3.1 Macroscopic failure strength

The stress state in a conventional triaxial compression test is such that

σ =


σ1 0 0

0 σ3 0

0 0 σ3


(IV .14)

with the algebra sequence σ1 > σ2 = σ3 ≥ 0. The corresponding deviatoric part s is given

by:

s =
σ1 − σ3

3


2 0 0

0 −1 0

0 0 −1


(IV .15)

According to (IV .13) and after making some mathematical calculations, the direction of

plastic flow rate D in this radial loading path can be expressed as follows:

D =
1√
6


2 0 0

0 −1 0

0 0 −1


− η

3
δ (IV .16)



102

A micromechanics-based plastic damage model for quasi-brittle materials under a

large range of compressive stress

As the friction coefficient η is constant and equal to η = ηf before the peak strength

state, the direction of plastic flow D is also constant until the peak strength. Therefore,

the current values of plastic strain and damage in the pre-peak strength region can be

measured respectively by their accumulated multipliers such that:

εp = ΛpD, d =

∫
λd, with Λp =

∫
λp. (IV .17)

By taking η = ηf and setting the constant χ = 1
2D : Cd : D = µm

α +
kmη2

f

2β , the friction

criterion can be rewritten as

fp = ‖s‖ − ηfp−
Λp

d
χ = 0. (IV .18)

On the other hand, the damage criterion is cast into the form

fd(Yd, d) =

(
Λp

d

)2

χ−R (d) = 0, (IV .19)

from which one can derive the following relation

Λp

d
=

√
R (d)

χ
. (IV .20)

Its insertion into the friction criterion (IV .18) gives

fp = ‖s‖ − ηfp−
√
R (d)χ = 0. (IV .21)

Under the sign convention of stress adopted here, one has ‖s‖ =
√

2
3 (σ1 − σ3) and p =

1
3 (σ1 + 2σ3), the axial stress component σ1 is finally expressed in terms of σ3 and d

σ1 =

√
6 + 2ηf√
6− ηf

σ3 +
6
√
R (d)χ√
6− ηf

. (IV .22)

The peak compression strength is attained once the damage variable reaches its critical

value d = df . Combining Eqs. (IV .8) and (IV .22), one can obtain the following analytical

expression of failure criterion for a triaxial compression test.

σf1 =

√
6 + 2ηf√
6− ηf

σ3 +
6
√
r̃fχ√

6− ηf
, (IV .23)

where σf1 is the axial peak stress which is composed of two terms. The first term on

the right side of (IV .23) is related to the frictional effect and then depends on confining

pressure σ3, and the second term represents the uniaxial compression strength for σ3 = 0

and is related to the cohesive strength of micro-cracks.
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3.2 Volume compressibility/dilatancy (C/D) transition

In quasi-brittle rock-like materials, the transition from volumetric compressibility to

dilatancy is a common character and an important feature to be taken into account (Mar-

tin, 1994, 1997; Szczepanik et al., 2003). In the present study, we have considered a

simplified representative volume element of quasi-brittle materials, which is composed of

an elastic solid matrix containing closed micro-cracks with rough surfaces. In this case,

the macroscopic dilatancy is directly related to the local normal opening of micro-cracks

during the frictional sliding due to the roughness of micro-cracks. The dilatancy is then

dependent on the local friction coefficient or the roughness of crack surfaces. Further the

frictional sliding and normal opening are controlled by local normal stress level which is

related to macroscopic confining pressure. Therefore, at the macroscopic scale, the tran-

sition from compressibility to dilatancy is dependent on confining pressure. With the

present micro-mechanics based model, the prediction of such a transition stress is here

discussed for a conventional triaxial compression path. For this purpose, let denote σcd as

the volume compressibility - dilatancy (C/D) transition stress.

Inspired by the strength prediction, one assumes that there exists a critical damage

value dcd corresponds to σcd. For the sake of convenience, one denotes g (ςcd) = κ, with

ςcd = dcd/df . Then one gets the following relation according to Eq. (IV .8)

g (ςcd) =
nςcd

ςcdn + n− 1
= κ. (IV .24)

Following Eq. (IV .22), the C/D transition σcd can be expressed as

σcd =

√
6 + 2ηf√
6− ηf

σ3 +
6
√
r̃fκχ√

6− ηf
. (IV .25)

On the other hand, the volume strain εv is composed of the elastic volume strain εev

and the plastic volume strain εpv:

εv = εev + εpv. (IV .26)

By ignoring the inelastic strain caused by the initial crack closure and the volumetric

strain generated by confining pressure and by making use of Eqs. (IV .17) and (IV .26),

one can rewrite the volume strain generated in the axial loading phase into the following

form:

εv = δ : Sm : (σ − σ3δ)− Λpηf . (IV .27)

And more precisely, one gets:

εv =
1

3km

((
2ηf +

√
6√

6− ηf
− 1

)
σ3 +

6
√
R (d)χ√
6− ηf

)
− ςdf

√
R (d)

χ
ηf . (IV .28)



104

A micromechanics-based plastic damage model for quasi-brittle materials under a

large range of compressive stress

The increment of volume strain can be computed as:

dεv =
∂εv
∂ς

∂ς

∂d
dd, (IV .29)

where

∂εv
∂ς

=

(
1

km
(√

6− ηf
) − ζdfηf

2χ

) √
χr̃fg

′
(ς)√

g (ς)
− df

√
g (ς) r̃f
χ

ηf ,
∂ς

∂d
=

1

df
. (IV .30)

It is noted that the volume C/D transition point corresponds to dεv = 0 . By analyzing

Eqs. (IV .29) and (IV .30), it is easily to depict that ∂εv
∂ζ = 0 and ς = ςcd at this transition

point. After a series of mathematical translations, given in Appendix, one can obtain the

following characteristic equation:(
2df
n− 1

− df
)
ςcd

2 + (κdf + 2ϑ) ςcd − 2κϑ = 0. (IV .31)

The combination of Eqs. (IV .24) and (IV .31) allows the calibration of the parameter n

and characteristic damage value ςcd . After the parameter n is determined, the volume

C/D transition point can be exactly predicted for different values of confining pressure.

3.3 Strain softening and residual strength

In most macroscopic plastic models, the softening behavior of materials is usually

described by some negative hardening law. The physical significance of such a mathematic

description is not always clearly explained. In the present micro-mechanics based model,

the material softening is explicitly related to two physical processes. The first one is due

to the coalescence effect of micro-cracks when the damage density becomes high (d ≥
df ). This is described by Eq. (IV .8) as the diminution of material resistance to crack-

propagation. The second process is the progressive degradation of crack surface asperity,

leading to the decrease of friction coefficient of crack surfaces, as expressed in Eq. (IV .11).

However, due to the variation of friction coefficient, it is no more possible to obtain

the analytical solution of stress-strain curves as for the pre-peak regime. The numerical

analysis of material responses in the post-peak regime will be depicted in Section 6.1.

4 Parameters calibration and influence of confining pressure

The proposed micro-mechanics based model contains 8 parameters. Each parameter

has a clear physical meaning can be related to corresponding macroscopic mechanical re-

sponses. The calibration method of the parameters from macroscopic conventional triaxial

compression tests is here discussed.
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4.1 Elastic parameters of solid matrix

The elastic behavior of solid matrix is characterized by Young’s modulus Em and

Poisson’s ratio νm. With the assumption that all micro-cracks are closed and the sliding

is possible only when the friction criterion is reached, the elastic parameters of solid matrix

can be directly determined from the linear part of stress-strain curves in a conventional

compression test. For most rock-like materials, the elastic parameters vary with confining

pressure. However, it seems that this variation is not significant for the granite rocks

studied in this work. The average values obtained from triaxial compression tests with

different values of confining pressure are then adopted. In the case of Kuru granite (Tkalich

et al., 2016), one gets Em = 78000MPa and νm=0.27.

According to Tkalich et al., 2016, the uniaxial (unconfined) compression strength of

Kuru granite is about σc = 232MPa.

4.2 Parameters related to peak strength

In the proposed micro-mechanics base model, three parameters df , r̃f and ηf are

related to the stress and deformation at peak strength state. In Figure V .6, one gives the

interpretation of axial strain - deviatoric stress curves obtained on Kuru granite (Tkalich

et al., 2016) for different values of confining pressure, in terms of three micro-mechanical

parameters. The black vertical arrows in Figure V .6 represent the relationships between

each sub-figures. Firstly the peak axial stress σ1 and the corresponding total axial strain

ε1 for each value of confining pressure are extracted from Figure V .6a. The obtained

values are then reported respectively in the diagrams (σ3 versus σ1) and (σ3 versus εp1),

as shown in Figures V .6b,c. Note that the total plastic axial strain is given by:

εp1 = ε1 −
σ1 − σ3

Em
. (IV .32)

In Figure V .6b, it is found that the failure envelope exhibits a strong nonlinearity at

low values of confining pressure but it is defined by a quasi linear line at high values of

confining pressure. The following linear function is identified by the optimal fitting of

peak stress points in the high confining pressure zone:

σf1 = 6.11σ3 + 391.16 (IV .33)

By comparing Eqs. (IV .23) and (IV .33), one can easily calculate the values of parameters

ηf and r̃f for the range of high confining pressure by assuming a linear strength envelop.

However, as shown in Figure V .6b, the strength envelop cannot be described by

a linear function in the range of low confining pressure. By assuming that the value
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of ηf is constant, one can still calculate individually the value of r̃f for each confining

pressure. The obtained values are presented in Figure V .6d. It is found that the peak

damage resistance r̃f is an increasing function with confining pressure and evolves towards

a asymptotic value when the confining pressure becomes high enough. Based on this result,

the following function is proposed for the variation of r̃f with confining pressure:

r̃f = rc + (rf − rc) tanh

(
σ3

σref3

)
, (IV .34)

where rf and rc are the value of r̃f under high confining pressure and uniaxial compres-

sion, respectively, σref3 is a reference stress separating the low and high confining zones. It

is generally difficult to identify the σref3 due to the lack of relevant experimental data. For

the sake of simplicity and following previous studies Diederichs (2003); Hoek and Bieni-

awski (1965), it is proposed to take σref3 = σc/10, with σc being the uniaxial compressive

strength. Accordingly, Eq. (IV .34) can be rewritten as:

r̃f = rc + (rf − rc) tanh

(
10σ3

σc

)
, (IV .35)

The value of σc is easily obtained from an uniaxial compression test. Then the values of rf

and rc can be easily determined by the optimal fitting of r̃f versus σ3. In Figure IV .3, the

prediction given by the semi-empirical relation (IV .35) is compared with the calculated

values of r̃f from experimental data. One can see that a good agreement is obtained.

The parameter df is the critical damage value corresponding to the peak strength state.

With this in mind and by combining Eqs. (IV .17) and (IV .20), df can be expressed as

follows:

df = εp1,fD11

√
χ

r̃f
, (IV .36)

where εp1,f is the axial plastic strain at the peak strength state, and D11 = 2√
6
− ηf

3 . With

this equation in hand, it is possible to calculate df for different values of confining pressure

as shown in Figure V .6e. For the sake of clarity, the values of r̃f and df are also given

in Table IV .1. From which one can see that df varies from 1.02 to 2.95 and basically

increases with confining pressure. This is consistent with previous studies by Lockner

(1998). However, for the sake of simplicity and due to the fact that a significant variation

of df is observed only for very low values of confining pressure, it is taken as constant in

this work. In Figure IV .4, one can find a good agreement of peak strength between the

numerical prediction and experimental data for Kuru granite.
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Figure IV .2: Illustration of identification procedure of strength parameters from triaxial

compression tests with experimental data extracted from Tkalich et al. (2016): from sub-

Figure 2(a), one takes the values of peak stresses and corresponding axial strains for

different levels of confining pressure; these values are reported into sub-Figure 2(b) and

2(c); the values of r̃f given in sub-Figure 2(d) are obtained by using Eq.(IV .23) and the

data given in sub-Figure 2(b); finally the critical damage density df given in sub-Figure

2(e) is calculated by using Eq.(IV .36) together with the data given in sub-Figures 2(c)

and 2(d)
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Table IV .1: Variation of strength parameters with confining pressure

σ3 (MPa) 0 5 10 20 30 50 75

σf (MPa) 232 304 372 483 574 693 852

εp1,f (%) 0.0378 0.0932 0.1229 0.1234 0.1436 0.1604 0.1838

r̃f 0.03 0.041 0.054 0.073 0.086 0.086 0.086

df 1.02 2.15 2.49 2.15 2.31 2.58 2.95

Figure IV .3: Comparison between empirical relation (IV .35) and calculated values of

r̃f

4.3 Parameters related to dilatancy and residual strength

As mentioned above, the parameter n can be determined by solving Eqs. (IV .24)

and (IV .31) on the C/D transition points. In this process, the intermediate variable κ

must first be identified from experimental tests. For the case of Kuru granite, with the

help of linear approximation of C/D transition line in Figure IV .5 and by comparing Eqs

(IV .23) and (IV .25), one gets κ =
(

232
291.16

)2
= 0.36. From that, one obtains n = 1.472

by making the numerical fitting of data as shown in Figure IV .6. In Figure IV .4, a good

agreement is obtained for the C/D transition stress σcd between the numerical prediction

and experimental data for Kuru granite.

The residual friction coefficient ηr can be determined from the slope of residual strength

envelope. Using the residual strength data for Kuru granite from Tkalich et al. (2016),
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Figure IV .4: Peak strength σf and C/D transition stress σcd predictions of Kuru granite

(data extracted from Tkalich et al. (2016))

Figure IV .5: Linear fitting of the peak stress and C/D transition stress in high confining

zone on (σ3, σ1) plane (data extracted from (Tkalich et al., 2016))

one obtains ηr = 1.2. Finally, the parameter b controls the degradation rate of friction

coefficient,b = 0.2 is obtained for Kuru granite.
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Figure IV .6: Determination of parameter n by using mapping method

5 Computational aspects

In view of engineering applications, the micro-mechanics based plastic damage model

is implemented into the standard finite element software Abaqus using the provided user

subroutine development process UMAT . Due to material non-linearities, the loading path

is divided into a limit number of increments. For each loading increment, it is convenient

to use the rate form of macroscopic stress-strain relations defined by a tangent operator.

5.1 Consistent tangent operator

In the case of time-independent process, the relation between stress increment ∆σ and

strain increment ∆ε can be obtained by differentiating Eq.(IV .4) and can be written in

the form:

∆σ = Ctan : ∆ε. (IV .37)

The fourth order tensor Ctan is the tangent operator which is determined by making use

of the damage and friction consistency conditions.

The loading/unloading conditions of plasticity are expressed in the so-called Kuhn-

Tucker form, such that

λp ≥ 0, fp (σc) ≤ 0, λpfp (σc) = 0. (IV .38)

It follows the condition in rate form:

λp∆fp = 0. (IV .39)
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Hence, under plastic loading, one has λp 6= 0 and ∆fp = 0, leading to:

∆fp =
∂fp
∂ε

: ∆ε+
∂fp
∂εp

: ∆εp +
∂fp
∂d

∆d = 0. (IV .40)

On the other hand, the damage consistency condition is written as:

∆fd =
∂fd
∂εp

: ∆εp +
∂fd
∂d

∆d = 0. (IV .41)

By combining Eq.(IV .40) and Eq.(IV .41) and recalling that 4εp = λpD and ∆d = λd,

the non-negative multipliers
(
λp, λd

)
are given by:

λp = 1
H1

∂fp
∂ε : ∆ε

λd = −
∂fd
∂εp

:D
∂fd
∂d

H1

∂fp
∂ε : ∆ε

, (IV .42)

where H1 =
∂fp
∂d

∂fd
∂εc : D/∂fd∂d −

∂fp
∂εp : D is the hardening modulus.

By substituting Eq.(IV .42) for the differentiated form of Eq.(IV .4), one obtains the

following tangent operator Ctan

Ctan =


Cm, if fp (σc) < 0

Cm − 1
H1

(Cm : D)⊗ (D : Cm) , if fp (σc) = 0

. (IV .43)

Note that the symmetry of the tangent operator Ctan provides an useful convenience for

numerical implementation.

5.2 Local implementation algorithm

The implicit return mapping algorithm (Simo and Taylor, 1985) is widely used for

the numerical implementation of elastic-plastic models. However, due to plastic-damage

coupling, it was found that an explicit return mapping method was more efficient than the

implicit one (Zhu et al., 2016). Therefore, the explicit mapping algorithm proposed in Zhu

et al. (2016) is here adopted. For the reason of completeness, the main steps of algorithm

are here summarized. At each Gauss integration point, given a strain increment ∆εi+1,

the current strain tensor is updated as εi+1 = εi + ∆εi+1. The objective is to fund the

corresponding stress tensor after updating the plastic strains and damage variable using

the proposed constitutive model.
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The first step is to calculate an elastic prediction of stress. Considering di+1 = di and

εpi+1 = εpi , the elastic trial stress tensor is calculated by:

σtriali+1 = Cm : (εi+1 − εpi ) (IV .44)

Accordingly, the local trial stress tensor is given by:

σc,triali+1 = σtriali+1 −
1

di
Cd : εpi . (IV .45)

Next, one checks the plastic and damage criteria. However, in the present model, as

the thermodynamic damage force is entirely dependent on plastic strain (see (IV .6)), the

check of damage criterion is directly combined with that of plastic criterion fp

(
σc,triali+1

)
.

If fp

(
σc,triali+1

)
≤ 0, then 4εpi+1 = 0 and 4di+1 = 0. Otherwise an iterative plasticity-

damage correction is performed. In this work, the superscript j (j = 1, . . . ,miter with

miter = 100) is used to denote the inter iterations related to the plastic-damage correction.

And for the sake of clarity, the loading subscript i + 1 will be omitted during the next

steps.

One first determines the plastic multiplier with the frozen damage value di. For a

plastic loading, one gets f jp
(
εp,j
)
> 0 with the elastic prediction and one should have

f j+1
p

(
εp,j + δεp,j

)
= 0 after the plastic correction. The yield function can then be lin-

earized using the first-order Taylor expansion as follows:

f j+1
p = f jp +

∂f jp
∂εp,j

: δεp,j ≈ 0. (IV .46)

It follows by using the normality flow rule (IV .12)

f j+1
p = f jp + δλp,j

∂f jp
∂εp,j

: Dj ≈ 0, (IV .47)

Thus the change to the plastic multiplier is given by:

δλp,j = − f jp
∂fjp
∂εp,j

: Dj
. (IV .48)

The plastic strain is accordingly updated

εp,j+1 = εp,j + δλp,jDj . (IV .49)

The damage criterion can be now checked. If f jd
(
εp,j+1, dj

)
≤ 0, one has dj+1 = dj .

Otherwise, a damage increment should be calculated so that f jd
(
εp,j+1, dj + δdj

)
= 0.

Similar to the plastic correction, the damage criterion is linearized as follows:

f j+1
d = f jd + δdj

∂f jd
∂dj
≈ 0 (IV .50)
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The change to the damage multiplier is given by:

δλd,j = −
f jd
∂fjd
∂dj

. (IV .51)

The damage state is then updated

dj+1 = dj + δλd,j . (IV .52)

At the third step, the macroscopic stress tensor is updated:

σj+1 = Cm :
(
ε− εp,j+1

)
. (IV .53)

The inner iteration process is ended if
∣∣∣f j+1
p

∣∣∣ ≤ εlocal, εlocal being a chosen convergence

tolerance value.

For the sake of clarity, the flowchart for the local numerical integration with explicit

return mapping algorithm is arranged in Algorithm 3.

Algorithm 3: Flowchart of the local numerical integration

Input: ∆εi+1,σi, εi, di, ε
p
i

Output: σi+1, εi+1, di+1, ε
p
i+1,Ctan

1 Elastic prediction εi+1 = εi + ∆εi+1; σtriali+1 = Cm : (εi+1 − εpi )
2 if fi+1 (σc) ≤ 0 then
3 4εpi+1 = 0 and 4di+1 = 0;

4 di+1 = di; ε
p
i+1 = εpi ; Ctan

i+1 = Cm

5 else
6 for j = 1 . . .miter do

7 Calculate the plastic multiplier δλp,j = − fj

∂fj

∂εp,j
:Dj

;

8 Update εp,j+1 = εp,j + δλp,jDj ;
9 if gj

(
εp,j+1, dj

)
≥ 0 then

10 The increment of the damage multiplier δλd,j = −gj/∂g
j

∂dj

11 else
12 δλd,j = 0.
13 end

14 Update dj+1 = dj + δλd,j , ηj+1 and Dj+1;
15 if

∣∣f j+1
∣∣ ≤ εlocal then

16 Return;

17 else
18 j = j + 1
19 end

20 end
21 Ctan

i+1 = Cm − 1
H1

(Cm : D)⊗ (D : Cm);

22 σj+1 = Cm :
(
ε− εp,j+1

)
;

23 end
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6 Experimental validation on granites

In this section, the performance of the proposed model is checked against laboratory

tests obtained on three granites, respectively from Kuru in Finland, Beishan in China and

Lac du Bonnet in Canada.

6.1 Validation on Kuru granite

Using the experimental data found in Tkalich et al. (2016) and the calibration proce-

dure presented above, the model’s parameter for Kuru granite is given in Table IV .2.

Table IV .2: Parameter values for Kuru granite

Parameters Em(MPa) νm σc(MPa) df rf rc n ηf ηr b

Values 78000 0.27 232 2.5 0.086 0.03 1.472 1.54 1.2 0.2

In Figures IV .7 and IV .8, the stress-strain curves of Kuru granite in conventional

triaxial compression tests with low (0 to 20MPa) and high (30MPa to 75MPa) confining

pressures are shown. One can see a good agreement between model’s predictions and

experimental data. The basic features of Kuru granite behaviors are reproduced, such

as inelastic deformation, pressure sensitivity, volumetric dilatancy, material softening and

residual strength.

In Figure IV .9, one shows the numerical prediction of deviatoric stress evolutions

versus damage density for a confining pressure of 50MPa, respectively considering friction

coefficient degradation (ηr = 1.2) and without degradation (ηr = ηf ). One can clearly see

that the material softening is jointly attributed to damage evolution (crack propagation)

and degradation of friction coefficient of crack surfaces.

The post-peak behavior of material is further investigated using the proposed model.

As mentioned in Section 3.3, the post-peak behavior is mainly controlled by the parameters

n, ηr and b. Therefore, a sensitivity study is here performed respectively with respect to

these three parameters in a conventional triaxial compression test with a confining pressure

of 50MPa.

The value of n varies from 1.2 to 2.5. In Figure IV .10(a), one can see that the

parameter n has a significant influence on the post-peak stress-strain curve and on the

residual strength. With the increase of n, the residual strength is decreasing. And more

interestingly, the post-peak behavior can be transformed from a stable softening (Class
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Figure IV .7: Comparisons between numerical results and experimental data on Kuru

granite for triaxial compression test under low confining pressure (data extracted from

Tkalich et al. (2016))

I behavior) to a snap-back softening (Class II behavior). For the Class I behavior, the

stress decreases with increasing strain after the peak strength, implying that plastic strain

increases faster than elastic strain decreases. For the Class II behavior, on the contrary,

both the stress and strain decrease after the peak strength. However, the peak strength

remains constant for all values of n. It is worth noting that the parameter n also has a

significant influence on volume C/D transition point, ie., the C/D transition stress σcd.

More precisely, σcd increases with the decrease of n, as shown in Figure IV .10(b).

In Figure IV .11, the evolutions of the crack friction coefficient η are presented by

varying ηr from 0.8 to 1.54. The influences of ηr on macroscopic stress-strain curves are
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Figure IV .8: Comparisons between numerical results and experimental data on Kuru

granite for triaxial compression test under high confining pressure (data extracted from

Tkalich et al. (2016))

shown in Figure IV .11(a). One can see that ηr plays a controlling role of the residual

strength. Logically, the residual strength decreases as the value of ηr decreases. On the

other hand, the snap-back softening can also appear with the gradual decrease of ηr .

As for the parameter b, the sensitivity analysis is performed by varying b from 0.01 to

0.2, as illustrated in Figure IV .12. This parameters mainly influences the strain softening

rate (see Figure IV .12(a)) and more precisely the rate of friction coefficient degradation

as shown in Figure IV .12(b)). Bigger this parameter is, more rapidly the stress drops and

the friction coefficient decreases. The choice of parameter b can also lead to both class I

and class II behaviors. However, unlike the parameters n and ηr, the parameter b has no
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effect on the residual strength. It only affects the shape of post-peak stress-strain curve.

6.2 Validation on Beishan granite

For a further validation of the model, a series of conventional triaxial compression tests

on another brittle rock, Beishan granite are here investigated. By following the parameter

determination procedure presented in the section 4, the model’s parameters for Beishan

granite have been determined and given in Table IV .3. Experimental data used here are

extracted from Chen et al. (2014).

Figure IV .9: Stress-drop due to damage softening and friction coefficient degradation:

σ3 = 50 MPa

(a) Axial strain versus deviatoric stress (b) Volume strain versus deviatoric stress

Figure IV .10: Sensitivity analyses on the parameter n using triaxial compression tests

with σ3 = 50MPa
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Figure IV .11: Sensitivity analyses on the parameter ηr using triaxial compression tests

with σ3 = 50MPa
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Figure IV .12: Sensitivity analyses on the parameter b using triaxial compression tests

with σ3 = 50MPa

In Figures IV .13, one shown the comparisons of peak strength and volumetric C/D

transition threshold between model’s predictions and experimental values. A very good

agreement is found for all the range of confining pressure. The comparisons of stress-

strain curves in triaxial compression tests are presented in Figures IV .14 for five levels

of confining pressure, say 0, 5MPa, 10MPa, 20MPa and 30MPa. Again, all features of

mechanical responses of material under different confining pressures are well reproduced

by the proposed micro-mechanics based model.

In Figure IV .15, one shows the numerical prediction of damage density evolution of
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Table IV .3: Parameter values for Beishan granite

Parameters Em(MPa) νm σc(MPa) df rf rc n ηf ηr b

Values 70000 0.2 167 3.5 0.034 0.016 1.22 1.585 0.8 0.05

Figure IV .13: Description of peak strength σf and C/D transition stress σcd in Beishan

granite (data extracted from Chen et al. (2014))

Beishan granite during the triaxial compression test with a confining pressure of 10MPa,

together with the curve of accumulated acoustic emission counts. One can observe a clear

correlation between the damage density evolution and the cumulative acoustic emission

counts. During the first stage of deviatoric loading (before the point A), the damage

evolution is neglected. This stage can be considered as the initial elastic phase and the

corresponding stress σci acts as the damage initiation threshold. Then, a steady increasing

phase of damage (between A and B) is observed with the increase of deviatoric stress, cor-

responding to the initiation and propagation of micro-cracks. When the deviatoric stress

approaches σcd, the damage density rapidly increases. At the same time, one observes a

clear acceleration of acoustic emission counts (see the point C) as a consequence of surface

energy generation in micro-cracks. On the other hand, the accelerated frictional sliding

along micro-cracks leads to the transition from volumetric compressibility to dilatancy.

Thus, the stress at this point σcd) is defined as the volumetric C/D transition threshold.

In the post-peak region, the increasing rate of cumulative AE counts is reduced (after the
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Figure IV .14: Comparisons between numerical results and experimental data on Beishan

granite for triaxial compression tests with different confining pressures (continuous lines

are numerical simulations)
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Figure IV .15: Numerical prediction of the microscopic damage evolution during the

loading process in Beichan granite ( σ3 = 10 MPa, data extracted from Chen et al. (2015)

)

point D) while the damage density continues to rapidly increase after the point E. This

difference of evolution can be explained by the fact that the AE events are mainly related

to the creation of new surface areas and the new cracks. In another word, the accumula-

tive AE counts are mainly related to the total number of micro-cracks N . On the other

hand, the damage density variable d = Na3 is also dependent on the average crack length

a (radius of penny-shaped cracks). According to the results obtained on Beishan granite,

it seems that in the post-peak regime, the creation of new cracks is slowed down while the

frictional sliding along existing closed cracks is still an active process.

6.3 Validation on Lac du Bonnet granite

The Lac du Bonnet granite has been widely investigated in the framework of geological

disposal of radioactive waste in Canada (Aubertin and Li, 2004; Martin and Chandler,

1994; Martin, 1997). The experimental data from Martin (1997) are here used. Unfor-

tunately, no experimental data on lateral or volumetric strains are available. It is then

impossible to identify the volumetric C/D transition stress σcd and to determine the pa-

rameter n. Based on the sensitivity study on n in Section 6.1, one takes n = 1.4. On

the other hand, it seems that the Lac du Bonnet granite exhibits a snap-back behavior in

the post-peak regime for a wide range of confining pressure up to 60MPa. In connection
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Table IV .4: Model’s parameters for Lac du Bonnet granite

Parameters Em(MPa) νm σc(MPa) df rf rc n ηf ηr b

Values 72000 0.2 184 2.5 0.1 0.031 1.4 1.4 0.6 2

Figure IV .16: Peak strength σf and C/D transition stress σcd predictions of Lac du

Bonnet (data extracted from Martin (1997))

with this, b = 2 is chosen for this brittle material. The model’s parameters for the Lac

du Bonnet granite are listed in Table IV .4. In Figure IV .16, one shows the numerical

predictions of peak strength σf and volumetric C/D transition stress σcd of the Lac du

Bonnet granite. Again, the nonlinear strength envelope is well depicted with respect to

the experimental data. In Figure IV .17, stress-strain curves in conventional triaxial com-

pression tests under different confining pressures are shown. Once more, one can see that

the proposed model is able to correctly predict the basic features of mechanical behaviors,

such as the inelastic axial and lateral strains, the material hardening and softening with

snap-back, the peak and residual strength.

7 Concluding remarks

In this work, a micro-mechanics based plastic damage model has been developed for

quasi-brittle materials under compressive stresses. The damage evolution of related to the

initiation and growth of micro-cracks while the plastic deformation is due to the frictional
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Figure IV .17: Comparisons between numerical results and experimental data on Lac du

Bonnet granite for triaxial compression tests with different confining pressure(continuous

lines are numerical simulations, data extracted from Martin (1997))

sliding along cracks. In the framework of thermodynamics and a linear homogenization

scheme, the macroscopic stress-strain relations and the thermodynamics forces for micro-

scopic frictional sliding and damage evolution have been deduced. The frictional sliding

is driven by the local stress tensor applied to micro-cracks, which is affected by the dam-

age state. The damage evolution is controlled by the frictional sliding along micro-cracks.

Therefore, two inelastic processes are inherently coupled. In particular, the effect of confin-

ing pressure on the material resistance to crack propagation has been taken into account.

The proposed model has also considered the progressive degradation of surface asperity of

micro-cracks due to frictional sliding.

The proposed model contains a relatively small number of parameters which are phys-

ically related to specific features of macroscopic responses. An identification procedure of

parameters from macroscopic conventional triaxial compression tests has been proposed.

The performance of the model has been verified through a wide campaign of experi-

mental comparisons on three different materials in triaxial compression tests with a large

range of confining pressure. All main features of mechanical responses have been well re-

produced such as inelastic strains, volumetric compressibility - dilatancy, peak and residual
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strength. The proposed model is able to provide different kinds of post-peak behaviors

observed in brittle materials including snap-back softening. Furthermore, the microscopic

damage density evolution is consistent with the variation of cumulative acoustic emission

counts. It was found that the post-peak behavior was mainly driven by the frictional

sliding and propagation along existing micro-cracks.

It is known that the material softening in quasi-brittle and cohesive materials is gen-

erally related to the coalescence of micro-cracks and to the transition from diffuse micro-

cracks to localized macroscopic cracks. The macroscopic responses of sample after the

localization are progressively controlled by those of localized cracks or fractures. This

phenomenon is similar to the force chain buckling in granular materials. Different theo-

retical models and numerical methods have been developed for dealing with the transition

from diffuse damage and plasticity to localized cracking and failure. The proposed micro-

mechanics based model can be easily integrated in the analysis of localized cracking and

failure through the definition of some critical value of damage density. This interesting

aspect is investigated in Chapter V .

Appendix: Derivation of Eq (IV .31)

With the condition of ∂εv∂ς = 0 at the volumetric C/D transition point and by combining

Eq. (IV .30), one can get(
χ

km
(√

6− ηf
)
ηf
−
ςdf
2

)
r̃fg

′
(ς)− df r̃fg (ς) = 0 (IV .54)

For the sake of simplicity, note that ϑ = χ

km(
√

6−ηf)ηf
. Since r̃f 6= 0, Eq. (IV .54) is

equivalent to

(2ϑ− ςdf ) g
′
(ς)− 2dfg (ς) = 0 (IV .55)

Taking ς derivatives of g (ς) in Eq. (IV .8) one can write

g
′
(ζ) =

ςn

ς (ςn + n− 1)
− n2ς2ςn−2

(ςn + n− 1)2 =
g (ς)

ς
− g2 (ς) ςn−2 (IV .56)

Substituting Eq. (IV .56) for Eq. (IV .55) one arrives at

(2ϑ− ςdf )

(
g (ς)

ς
− g2 (ς) ςn−2

)
− 2dfg (ς) = 0 (IV .57)

It is noted that since g (ς) 6= 0, then both sides of Eq. (IV .57) are divided by g (ς)

one gets
(2ϑ− ςdf )

ς
− g (ς) ςn−2 (2ϑ− ςdf )− 2df = 0 (IV .58)
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Considering ς = ςcd and g (ςcd) = κ, and substituting them for Eq. (IV .58), and after

some straightforward computations, one gets the following equation

κςn−1
cd (2ϑ− ςcddf ) + 3df ςcd − 2ϑ = 0 (IV .59)

Obviously, Eq. (IV .24) can be rearranged as follows:

κςn−1
cd = n− (n− 1)

κ

ςcd
(IV .60)

By substituting Eq. (V .69) for Eq. (IV .59), one arrives at

(3df − dfn) ς2
cd + (κ (n− 1) df + 2ϑn− 2ϑ) ςcd − 2κ (n− 1)ϑ = 0 (IV .61)

and divided by n− 1, one can obtain(
2df
n− 1

− df
)
ςcd

2 + (κdf + 2ϑ) ςcd − 2κϑ = 0 (IV .62)
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Chapter V

Analysis of localized cracking in

quasi-brittle materials with a

micro-mechanics based

friction-damage approach∗

This chapter is devoted to the study of transition from diffuse damage to localized

cracking in quasi-brittle materials. A micro-mechanics based friction-damage model is

first formulated with a rigorous homogenization procedure. The plastic deformation is

related to the frictional sliding along diffuse micro-cracks while the damage is induced by

the growth of micro-cracks. The localized cracking is considered as a consequence of coa-

lescence of diffuse micro-cracks. The onset of localized crack is then defined by introducing

a critical value of diffuse damage density parameter. The orientation of localized crack is

determined from the Mohr’s maximization postulate. After the onset of a localized crack,

the energy dissipation of material is entirely related to the frictional sliding and propaga-

tion of the localized crack. In this context, a localized friction damage model is developed

in the framework of thermodynamics to describe the frictional sliding of the localized crack

which acts as the driving force for its propagation. As an example, analytical results of

localized crack angle are determined for some specific loading paths including plane stress,

plane strain and conventional triaxial compression. Moreover, analytical solutions of com-

plete stress-strain curves with the transition from diffuse damage to localized cracking are

∗Zhao, Lun-Yang, Jian-Fu Shao, and Qi-Zhi Zhu. ”Analysis of localized cracking in quasi-brittle

materials with a micro-mechanics based friction-damage approach.” Journal of the Mechanics and Physics

of Solids 119 (2018): 163-187.
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also obtained for conventional triaxial compression tests and compared with experimental

data.

1 Introduction

In quasi brittle materials such as concrete, rocks and ceramics, the nucleation, propaga-

tion and coalescence of micro-cracks are the main physical process of inelastic deformation

and failure. The macroscopic failure is generally induced by the onset of localized cracks

which are originated from the coalescence of diffuse micro-cracks. Unlike shear bands in

ductile materials like soils, the localized cracks or fractures in rock-like materials are gen-

erally surfaces of very small thickness but with strong displacement discontinuities. After

the localization, the macroscopic stress-strain relations of cracked material are essentially

governed by the behavior of localized cracks. The objective of the present study is to

develop a micro-mechanics based approach to describe the plastic damage of quasi-brittle

materials before localization, the onset condition of localized cracking, and the mechanical

behavior of cracked material after localization.

The concept of localized failure in quasi brittle materials was first introduced in the

landmark papers of Ngo and Scordelis (1967) and of Rashid (1968). After that, a great

diversity of approaches have been developed to deal with this issue, ranging from contin-

uum mechanics-based models (stress-based models) to fracture mechanics-based models

(traction-based models). In the computational context, these approaches have respectively

generated smeared crack models (Cervera and Chiumenti, 2006; Ingraffea and Saouma,

1985; Oliver et al., 2002, 2004) and discontinuous crack models (Armero and Garikipati,

1996; Oliver, 2000; Oliver et al., 1999; Wu and Cervera, 2015, 2016). An extended FE

strategy for transition from continuum damage to mode I cohesive crack propagation has

been proposed in Comi et al. (2007). The material was described by a non-local damage

model. An extended finite element approach was used after the localization to follow the

propagation path. Jirásek and Zimmermann have developed an embedded crack model

(Jirásek and Zimmermann (2001a)) and its combination with smeared cracks (Jirásek

and Zimmermann (2001b)). They have proposed a triangular element with an embedded

displacement discontinuity that represents a crack.

More specially, in the stress-based models, regularized constitutive relations are gen-

erally formulated to study mechanical responses in the post-localization regime. Various

regularization techniques have been developed including non-local damage mechanics and

higher order plasticity theory. A great number of damage models (Jirásek, 1998; Peerlings
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et al., 1998), plastic models (Chambon et al., 2001; Pamin, 1994) and coupled plastic-

damage models (Grassl and Jirásek, 2006a; Haddag et al., 2009; Lee and Fenves, 1998;

Lubliner et al., 1989) have been employed to investigate the localized failure in different

kinds of materials. However, in these models, localized cracks with strong discontinuities

are replaced by highly concentrated strain bands or damage zones.

On the other hand, in traction-based models (Bazant and Planas, 1997; Carol et al.,

1997; Oliver, 1996), the strain/displacement discontinuities are directly taken into account

by embedding discontinuity interfaces inside an elastic continuum along preferred orien-

tations. A crucial step in this kind of models is to determine the onset condition and

orientation of localized cracks. The bifurcation theory has been widely adopted for the

analysis of strain localization with weak (strain) discontinuities (Rice and Rudnicki, 1980;

Rudnicki and Rice, 1975) in soil-like materials. However, this theory is not suitable for the

study of localized cracks with strong (displacement) discontinuities (Oliver et al., 1999;

Wu and Cervera, 2015).

Therefore, during the last two decades, important efforts have been made on modeling

of localized cracks with strong discontinuities. In particular, various criteria for the onset of

localized cracking and traction-based models for studying mechanical behaviors of localised

cracks have been proposed (Cervera et al., 2012; Cervera and Wu, 2015; Oliver, 1996, 2000;

Oliver et al., 2012; Wu and Cervera, 2016). In these models, the authors tried to establish

the traction-based model for the localized crack in consistency with the constitutive model

used before localization. To the knowledge of the authors, only simple isotropic damage

models (Huespe et al., 2006; Oliver et al., 1999) and plastic models (Oliver, 2000) have

been so far considered. Moreover, in most previous studies, the emphasis has been put

on the study of localized failure after the onset of localization. The crucial issue of the

transition from the diffuse damage or plastic deformation to the localized cracking has not

been systematically investigated.

In the present chapter, we shall propose a new micro-mechanics based framework

for dealing with this crucial issue. The emphasis will be put on closed cracks under

compression-dominated stresses. The general methodology is illustrated in Figure 1. Be-

fore localization, the material is characterized by a solid matrix weakened by randomly

distributed micro-cracks. The diffuse damage evolution is related to the growth of micro-

cracks while the frictional sliding along micro-cracks is at the origin of macroscopic plastic

strains. The propagation of micro-cracks is driven by the frictional sliding. A micro-

mechanics based friction-damage model will be developed for the description of mechanical

behavior of micro-cracked material before localization. Based on this model, the onset of
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Figure V .1: Schematic representation of the transition from diffuse micro-cracking to

localized cracking

localized crack is defined through a critical value of damage (micro-cracks) density param-

eter, and the orientation of localized crack is determined using the Mohr’s maximization

postulate. After the localization, the mechanical behavior of cracked material is controlled

by the localized crack and a new traction-based friction-damage model will be established

for the localized crack. Analytical results in terms of localized crack orientation will be

determined for some particular loading paths without rotation of principal stresses includ-

ing plane stress, plane strain and conventional triaxial compression. Analytical solutions

of complete stress-strain curves will also be obtained for conventional triaxial compression

tests and compared with experimental data.

2 Micro-mechanics based isotropic friction-damage model

In this section, a micro-mechanics based isotropic friction-damage model is presented

to describe the mechanical behavior of material before the onset of localized cracks. This

model is used here as the starting point for studying the transition from diffuse damage

and localized cracking. The formulation of the model is based on our previous studies
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(Zhu and Shao, 2015; Zhu et al., 2016) and only the main features are presented here.

The micro-mechanical frictional damage model is formulated with a linear homogeniza-

tion procedure and within the irreversible thermodynamics framework. We shall consider

quasi-brittle materials as an elastic solid weakened by micro-cracks. To this end, a Rep-

resentative Volume Element (RV E), as shown in Figure V .2, is selected to represent a

macroscopic material point. The RV E occupies the domain Ω ⊂ Rndim (ndim =1,2,3,

being the geometrical dimension of the domain) and it is limited by its external boundary

surface ∂Ω ⊂ Rndim−1. Limiting our study to isotropic materials, the RV E is composed

of an elastic isotropic solid matrix Ωm ⊂ Rndim and randomly distributed micro-cracks Ωc

⊂ Rndim . Each micro-crack is considered as a spheroidal inclusion embedded in the solid

matrix. Before the onset of localization, the size of diffuse micro-cracks is much smaller

than that of the RV E. The elastic stiffness tensor of the solid matrix is denoted as Cm,

and that of inclusions (micro-cracks) as Cc.

Each micro-crack is characterized by its unit normal vector n and the aspect ratio ε =

c/a with a and c being the average radius and half opening of the micro-crack respectively

(see Figure V .2). The volume fraction of micro-cracks is defined by ϕ = 4
3πa

2cN = 4
3πεd,

with N denoting the number of micro-cracks per unit volume, and d = Na3. Due to the

fact that the aspect ratio of micro-cracks is generally very small and is equal to zero for

closed micro-cracks, the volume fraction ϕ is not a suitable state variable to characterize

the effect of micro-cracks on mechanical properties of materials. Therefore, due to the

definition initially given by (Budiansky and O’connell, 1976), the crack density parameter

d is here used as the internal variable to characterize the damage state of materials.

The macroscopic strain of cracked materials E is due to the deformation of solid matrix

Em and to the discontinuities of micro-cracks Ec. That is:

E = Em +Ec (V .1)

Figure V .2: Representative Volume Element of quasi-brittle materials with diffuse dam-

age
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The strain of solid matrix is determined by the elastic compliance tensor of solid matrix:

Em = Sm : Σ, with Sm = (Cm)−1 and Σ being the macroscopic stress tensor. The

crack-induced strain Ec is related to the displacement discontinuities of micro-cracks. For

open micro-cracks, the elastic stiffness Cc and the local stress field applied onto surfaces of

micro-cracks vanish. According to previous studies (Zhu et al., 2008a, 2011), the effective

elastic stiffness tensor of the equivalent homogenized medium can be explicitly determined

using a linear homogenization procedure based on the Eshelby’s solution (Eshelby, 1957b)

by considering micro-cracks as inclusions. One gets the following general relation:

Ec = (I− (Cm)−1 : Chom) : E (V .2)

The effective elastic stiffness tensor Chom is dependent on the homogenization scheme

used. As an example, for a matrix-inclusion system, the Mori-Tanaka homogenization

scheme (Benveniste, 1987; Mori and Tanaka, 1973c) is generally adopted. For isotropic

materials, the effective elastic tensor is given by:

Chom = 3khomJ + 2µhomK with khom =
km

1 + αd
, µhom =

µm

1 + βd
(V .3)

α and β are two constants which are only functions of the Poisson’s ratio νm of the solid

matrix, i.e. α = 16
9

1−(νm)2

1−2νm and β = 32
45

(1−νm)(5−νm)
2−νm . km and µm are respectively the bulk

and shear moduli of the solid matrix. Moreover, the effective elastic compliance tensor

Shom can be expressed as the sum of the elastic compliance of the solid matrix Sm and the

additional compliance induced by micro-cracks Sd:

Shom =
(
Chom

)−1
= Sm + Sd ; Sd =

αd

3km
J +

βd

2µm
K (V .4)

However, in the present study, the emphasis is put on the study of quasi-brittle ma-

terials with closed frictional micro-cracks under compressive stresses. In that case, the

crack-induced strain Ec cannot be determined from the linear homogenization procedure

only. It is related to the frictional sliding along closed micro-cracks. The frictional slid-

ing is at the physical origin at the microscopic scale of the macroscopic plastic strains of

quasi-brittle materials. Therefore it is needed to define a specific friction criterion and a

flow rule to determine the frictional sliding induced strain Ec. This is here achieved by

the combination of homogenization procedure and irreversible thermodynamics.

2.1 Free energy and state equations

With the decomposition of strain given in Eq.(V .1), the free energy function of cracked

materials can be expressed in the following general form (Zhao et al., 2016; Zhu et al.,
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2016):

ψ =
1

2
(E − Ec) : Cm : (E −Ec) +

1

2
Ec : Cd : Ec (V .5)

The first term corresponds to the elastic strain energy of the solid matrix and the second

one represents the stored energy related to the frictional sliding related strain. Cd is

a fourth order tensor accounting for the coupling between the frictional sliding and the

growth of micro-cracks (damage evolution). The expression of Cd can be obtained from

the continuity condition of free energy between open and closed micro-cracks and by

invoking the equivalence between the definition given in (V .5) and the alternative one

ψ = 1
2E : Chom : E and one obtains (Zhu, 2016; Zhu and Shao, 2015):

Cd =
(
Sd
)−1

=
3km

αd
J +

2µm

βd
K (V .6)

One can see that the coupling tensor is a function of damage density parameter d. There-

fore, Ec and d act as two internal variables to characterize the states of frictional sliding

and damage. The positiveness of the intrinsic dissipation leads to:

Σ =
∂ψ

∂E
= Cm : (E −Ec) , E = Sm : Σ +Ec (V .7a)

− ∂ψ

∂Ec
: Ėc ≥ 0 (V .7b)

−∂ψ
∂d
ḋ ≥ 0 (V .7c)

where ẋ represents the rate with respect to time. Eq.(V .7a) is the state law giving the

macroscopic stress-strain relations; Eqs.(V .7b) and (V .7c) denote the energy dissipation

due to frictional sliding and that due to damage evolution, respectively. The thermody-

namic conjugate force associated with the frictional-sliding induced strain Ec is deduced

as follows:

Σc = − ∂ψ

∂Ec
= Σ − Cd : Ec (V .8)

Σc physically represents the local stress field applied onto closed micro-cracks. This local

stress field is different to the macroscopic stress Σ and explicitly depends on the damage

variable d through the coupling tensor Cd. Similarly, the thermodynamic conjugate force

associated with damage variable d can also be defined as:

Yd = −∂ψ
∂d

= −1

2
Ec :

∂Cd

∂d
: Ec (V .9)

2.2 Friction sliding law

The frictional sliding along closed micro-cracks is here described by a generalized

Coulomb criterion in terms of the local stress field Σc applied onto micro-cracks. It is
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known that for frictional materials, the sliding is driven by the shear stress vector along

the crack surface. The material strength to sliding depends not only on the local friction

coefficient of crack surface but also on the normal compressive stress applied onto the

crack surface. Therefore, it is convenient to decompose the local stress field Σc into a

spherical part and a deviatoric part (Zhu et al., 2011):

Σc = J : Σc + K : Σc =
1

3
(Σc : δ) δ + K : Σc (V .10)

The friction criterion is then formulated in terms of the local spherical stress P c = 1
3Σc : δ

and deviatoric stress Sc = K : Σc as follows:

F (Σc) = ‖Sc‖+ cfP
c ≤ 0, (V .11)

cf denotes the local friction coefficient of crack surface. It is noted that the local spherical

stress P c and deviatoric stress Sc are respectively related to the normal stress and shear

stress applied onto the crack surface (Zhu et al., 2011). The evolution rate of the frictional

sliding related strain Ec can be given by using the normality rule:

Ėc = λc
∂F
∂Σ

= λc
∂F
∂Σc

= λcD, (V .12)

where λc is a non-negative multiplier. The flow direction is defined by:

D =
Sc

‖Sc‖
+

1

3
cfδ (V .13)

Accordingly, the friction criterion (V .11) can be rewritten into a compacted form:

F (Σ, d,Ec) = Σc : D = Σ : D−D : Cd : Ec (V .14)

For the sake of simplicity, an associated flow rule is here used to describe the frictional-

sliding related strain. However, a non-associated flow rule can be introduced for instance

to better evaluate the normal opening of micro-cracks and consequently the macroscopic

volumetric strain.

2.3 Damage evolution law

The propagation of micro-cracks occurs when the damage driving force Yd reaches

the material resistance. Therefore, the damage criterion can be written in the following

general form:

G
(
Yd, d

)
= Yd −R (d) ≤ 0, (V .15)

The function R (d) defines the current material resistance (toughness) to micro-crack

growth. It plays a similar role as the critical stress intensity factor in linear fracture
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mechanics for propagation of macroscopic fracture. The material toughness may evolve

with the crack density due to material hardening and interactions between micro-cracks.

In general, the material resistance first increases when the crack density is small and then

decreases when the crack density becomes high enough. It is then convenient to express

the material toughness as a function of the damage density parameter d. Based on experi-

mental data for different kinds of rock-like materials, the following form has been proposed

in Zhao et al. (2018):

R (d) = R (dc)
bξ

b− 1 + ξb
,

ξ = d/dc is a dimensionless variable defining the damage level. The parameter dc defines

a critical value of damage so that when d = dc, R (d) reaches its maximal value R (dc).

The material parameter b > 1 controls the material resistance evolution rate. It shall

take different values for different materials. In the present study, the proposed model is

applied to granite for which the specific value of b = 2 is retained. Therefore, one gets the

following simplified form:

R (d) = R (dc)
2ξ

1 + ξ2
, (V .16)

For the sake of simplicity, the evolution rate of damage is also given by the normality

rule:

ḋ = λd
∂G
∂Yd

= λd, (V .17)

where λd is a non-negative multiplier.

The rate form of the effective stress-stress relations of the homogenized medium can

be obtained as follows:

Σ̇ = Ctan : Ė , Ė = Stan : Σ̇ (V .18)

Ctan and Stan are the consistent tangent operators with Ctan : Stan = I. Σ̇ and Ė respec-

tively denote the macroscopic stress and strain increments. The expressions of tangent

operators can be determined by making use of the damage and friction consistency con-

ditions. By using the flow rules for frictional sliding and damage and after making some
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mathematical operations (Zhu et al., 2016), one obtains:

Ctan =


Cm, if F (Σc) < 0

Cm − 1
H1

Cm : (D ⊗D) : Cm, if F (Σc) = 0

(V .19a)

Stan =


Sm, if F (Σc) < 0

Sm + 1
H1
D ⊗D, if F (Σc) = 0

(V .19b)

where H1 = ∂F
∂d

∂G
∂Ec : D/∂G∂d −

∂F
∂Ec : D is the hardening modulus. Note that thanks to

the associated frictional and damage evolution laws considered here, the consistent tan-

gent operators Ctan and Stan are symmetric, providing a sound convenience for numerical

implementation.

2.4 Analytical stress-based yield criterion

With the micro-mechanics based friction-damage model proposed here, the frictional

sliding criterion is defined in terms of the local stress field applied onto micro-cracks. For

general loading paths, the macroscopic stresses at the frictional sliding state should be cal-

culated by the integration of the micro-mechanics model along the corresponding loading

history. However, for loading paths without the rotation of principal stress directions, it is

possible to obtain an analytical plastic yield criterion in terms of macroscopic stresses, and

moreover to get analytical stress-strain relations for these simple loading paths (Zhu et al.,

2016). Indeed, for those loading paths, the frictional flow direction given in Eq.(V .13) is

simplified to:

D =
S

‖S‖
+

1

3
cfδ. (V .20)

with S = K : Σ being the deviatoric part of macroscopic stress tensor.

Accordingly, the yield criterion (V .14) can be rewritten into a form similar to the

classical Drucker-Prager criterion as follows:

F (Σ,Ec, d) = Σ : D−D : Cd : Ec = ‖S‖+ cfP−D : Cd : Ec ≤ 0. (V .21)

where P =1
3δ : Σ is the spherical part of macroscopic stress tensor. Furthermore, due to

the fixed principal stress directions, the frictional flow direction does not change. There-

fore, the frictional sliding induced strains can be given by:

Ec =

∫
Ėc = ΛD, with Λ =

∫
λc (V .22)
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Substituting (V .22) for (V .21), one gets:

F (Σ,Λ, d) = ‖S‖+ cfP−ΛD : Cd : D ≤ 0. (V .23)

On the other hand, in the proposed micro-mechanics based model, the frictional sliding

is inherently coupled with the damage evolution. Accordingly, by substituting (V .22) for

(V .9), the damage criterion (V .15) becomes:

G
(
Yd, d

)
=

1

2

(
Λ

d

)2

χ−R (d) = 0, (V .24)

with χ/d = D : Cd : D. One can notice that from (V .24)

Λ = d

√
2R (d)

χ
(V .25)

Combining (V .23) and (V .24), we finally obtain the macroscopic yield criterion as a

function of macroscopic stresses and damage density parameter:

F (Σ,d) = ‖S‖+ cfP−
√

2R (d)χ ≤ 0. (V .26)

From Eqs.(V .22), (V .24) and (V .26), one can see that given any damage value, the

corresponding frictional sliding strain Ec and macroscopic stress Σ can be analytically

calculated for some stress paths (e.g, plane stress, conventional triaxial compression, pro-

portional compression, lateral extension, etc.), and then the macroscopic total strain E

can also be calculated using Eq.(V .7a). More details on the analytical calculation process

can be found in (Zhu et al., 2016).

3 Analysis for localized cracks

The mechanical behavior of material before localization is described by the micro-

mechanics based friction damage model presented above. With the growth of micro-

cracks and when the crack density reaches some critical value, there is the coalescence of

micro-cracks leading to the onset of localized cracks in some preferential orientations. As

a fundamental difference with shear bands in soil-like materials, the localized cracks or

fractures in rock-like materials are characterized by strong displacement discontinuities.

Further, the thickness of localized cracks is generally very small so that each crack can be

seen an a discontinuity interface. Based on some previous studies (Oliver et al., 2012; Wu

and Cervera, 2015, 2016), a traction-based strong discontinuity method is here adopted.
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To this end, we consider the representative volume element (RV E) of localized cracked

material shown in Figure V .3. The RV E (Ω ⊂ Rndim) exhibits a displacement disconti-

nuity jump g on the interface S → Rndim−1. The interface S denotes the localized crack

with the unit normal n pointing to Ω+.

3.1 Kinematic description of localized cracked material

Based on the representation given in Figure V .3 and introducing the Heaviside function

HS (x) so that HS (x) = 1 if x ∈ Ω+ and HS (x) = 0 otherwise, the displacement field

u (x) in the localized RV E can be expressed as follows:

u (x) = u− (x)︸ ︷︷ ︸
regular (continuous)

+ HS (x) JuK (x)︸ ︷︷ ︸
singular (discontinuous)

, JuK (x) = u+ (x)− u− (x) (V .27)

The symbol J·K = (·)+
S − (·)−S denotes the jump of the specific variable (·) across S. u− (x)

and u+ (x) are the displacement fields respectively in the sub-domains Ω− and Ω+, and

the former also represents the continuous displacement field in Ω. JuK (x) : Ω → Rndim ,

satisfying the property JuK (x ∈ S) = g, stands for the relative displacement field of the

part Ω+ with respect to the other one Ω−.

The strain field ε (x) can be obtained by calculating the symmetric part of the dis-

Figure V .3: Kinematics of strong discontinuity in RVE with localized cracks
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placement gradient, i.e.

ε (x) = ∇symu (x) = ∇sym
[
u− (x) +HS (x) JuK (x)

]
(V .28)

= ∇symu− (x) +∇symJuK (x)HS (x)︸ ︷︷ ︸
bounded part

+ δS (x)
(
g ⊗ n

)sym︸ ︷︷ ︸
unbounded part

The bounded part ∇symu− (x)+∇symJuK (x)HS (x) represents the strain field in the intact

part of RV E. As shown in Figure V .3, δS (x)
(
g ⊗ n

)sym
denotes the unbounded part of

strain discontinuity, which is associated with the localized deformation along the interface,

emerging from the gradient of the Heaviside function HS (x) appearing in Eq. (V .27),

δS (x) being the Dirac-Delta function.

In the approach pursued here the discontinuity is embedded in the constitutive law

by averaging the localized deformation over the considered RV E. Accordingly, by mak-

ing the volume average of Eq.(V .28) (Haghighat and Pietruszczak, 2015; Moallemi and

Pietruszczak, 2017), one can obtain the macroscopic strain:

E =
1

V

∫
V
ε (x) dΩ =

1

V

∫
V
∇symu− (x)+∇symJuK (x)HS (x) dΩ+

1

V

∫
AS

(
g ⊗ n

)sym
dS

(V .29)

where AS represents the surface area of the localized crack within the considered reference

volume V . Ignoring the variation of
(
g ⊗ n

)sym
within a small enough V , by defining

l = V/AS , and ζ = VΩ+/V , Eq. (V .29) approximately satisfies

E ' ∇sym
(
u− (x) + ζJuK (x)

)︸ ︷︷ ︸
Em+ Ec

+ (e⊗ n)sym︸ ︷︷ ︸
Ẽc

, with e = g/l (V .30)

where ζ denotes the volume fraction. l represents a characteristic length, which will play

an essential role in the numerical analysis of localized problems. It is known that the

boundary values problem becomes ill-posed due to localization and suffers the inherent

mesh sensitivity. The use of such a characteristic length will allow to regularize the local-

ized problem and avoid the mesh sensitivity (Haghighat and Pietruszczak, 2015; Moallemi

and Pietruszczak, 2017; Nguyen et al., 2017). For instance, in the context of finite element

method, the characteristic length l can be calculated as the ratio between the volume of

cracked element and the surface area of crack. With the homogenization method followed

here, the total macroscopic strain of RV E is calculated as the sum of two parts. The

first part is the strain Em+ Ec = ∇sym (u− (x) + ζJuK (x)), where Em is the intact solid

matrix strain and Ec stems from diffuse micro-cracks before localization, and the second

one is Ẽc = (e⊗ n)sym that results from the discontinuous motion along the localized

crack averaged over the RV E. Finally, Eq. (V .30) can be rewritten as

E ' Em + Ec + Ẽc (V .31)
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It is noted that, the last term Ẽc vanishes before the localized crack appears, and the

inelastic strain Ec can be calculated by the micro-mechanical model presented in Section

2.

3.2 Onset criterion of localized crack

After the onset of a localized crack, the frictional sliding may occur along the localized

crack and the damage process is related to the propagation of the localized crack. All

the energy dissipation is then attributed to the frictional sliding and the propagation of

localized crack. We discuss here the onset criterion for the localized crack in relation with

the micro-mechanics based friction-damage model proposed above.

In most previous studies (Wu and Cervera, 2015, 2016), the onset of localized cracking

was defined in terms of macroscopic stresses by neglecting the transition from diffuse

damage (micro-cracking) to localized cracking (failure). In this study, the diffuse damage

of material is described by a micro-mechanics based friction-damage model with a damage

density coefficient d physically representing the density of micro-cracks. We consider that

the onset of localized cracking is a consequence of coalescence of micro-cracks when the

micro-cracks density is high enough. As shown above, when the damage density parameter

reaches the critical value dc, the material toughness to micro-crack propagation reaches

its maximal value R (dc) leading to a material softening. Therefore, it seems physically

sound to assume that the onset of a localized crack occurs when the damage density

coefficient d reaches a critical value dc. At the macroscopic scale, for brittle rock-like

materials, experimental data in laboratory tests have shown that the onset of localized

cracking generally occurs around the peak stress point (Fredrich et al., 1989; Wong, 1982).

Therefore, the value of dc can be identified from the peak stress in a triaxial compression

test. The onset criterion of localized crack is thus simply defined as:

d = dc (V .32)

At the same time, the thermodynamics conjugate force associated with the damage

evolution Yd is directly dependent on the frictional sliding induced strain Ec as shown in

Eq. (V .9). Therefore, it is also convenient to define the localization onset criterion by

the fact that the frictional sliding induced strain reaches its critical value Ecl. One can

obtain in the following integral form:

Ecl =

∫ dc

0
λcD (V .33)

After the onset of the localized crack, the inelastic strain Ec keeps constant, i.e., Ec = Ecl

for d ≥ dc.
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Remark 4

For loading paths without the rotation of principal stresses, the critical strain for the

onset of localized cracks Ecl can be explicitly obtained by substituting d = dc for

Eq.(V .24) and together using Eqs. (V .22) and (V .16):

Ecl = ΛclD = dc

√
2R (dc)

χ
D (V .34)

It is useful to point out that the validity of the onset criterion of localized cracking

proposed in this paper should be verified by further experimental investigations. Further-

more, the ont onset of localization has been largely been investigated in various engineering

materials by different approaches such as the bifurcation theory and second order work cri-

terion. It will be also interesting to compare the proposed criterion with other approaches.

3.3 Identification of the localized crack orientation

Another crucial step is to determine the orientation of the localized crack. This is

studied in this section. Let us consider the spectral decomposition of the macroscopic

stress tensor

Σ =
3∑
i=1

Σivi ⊗ vi (V .35)

Σi denote the three principal stresses with the corresponding principal vectors vi satisfying

the orthogonal property vi · vj = δij for i, j = 1, 2, 3,, as shown in Figure V .4(a).

For a localized penny-shaped crack in a general 3D configuration (see Figure V .4(a)), a

(a) 3D cases (b) 2D cases

Figure V .4: Illustration of a localized penny-shaped crack (discontinuity) in 3D and 2D

cases
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local orthogonal frame (n,m, p) is introduced, with n being the normal vector of the local-

ized crack. The vectors m and p are perpendicular to n and tangent to the localized crack

surface. In the coordinate system of principal stresses, for the convenience of calculation

of localized crack orientation in three dimensional situation, the base vectors (n,m, p) are

here expressed in terms of a set of four characteristic angles θ = [θ1, θ2, ϑ1, ϑ2], as shown

in Figure V .4(a):

n(θ) = [cos θ1, sin θ1 cosϑ1, sin θ1 sinϑ1] (V .36a)

m(θ) = [cos θ2, sin θ2 cosϑ2, sin θ2 sinϑ2] (V .36b)

p(θ) = n(θ)×m(θ) (V .36c)

The traction t acting on the localized crack can be expressed in the local coordinate system:

t := Σ · n = tnn+ tmm+ tpp (V .37)

Three components tn, tm and tp respectively along the base vectors n,m, p can be related

to the macroscopic stress tensor:

tn = Σnn = n ·Σ · n (V .38a)

tm = Σnm = n ·Σ ·m (V .38b)

tp = Σnp = n ·Σ · p (V .38c)

3.3.1 Mohr’s maximization postulate

In the framework of bifurcation theory for weak discontinuities, the orientation of strain

localization band is determined from the characteristic equation of acoustic tensor (Mosler,

2005; Oliver et al., 1999; Ottosen and Runesson, 1991; Rice and Rudnicki, 1980; Rudnicki

and Rice, 1975; Runesson et al., 1991). Recently, for the approach of strong discontinuities,

Wu and Cervera (2015, 2016) have proposed a novel method for the determination of

localized cracks by using the Mohr’s maximization postulate in the case of a macroscopic

plastic damage model. In this study, the Mohr’s maximization postulate is also adopted.

Within the context of the Mohr’s maximization framework, at the onset of a localized

crack, the traction-based failure friction criterion F (t) 6 0 can be deduced by projecting

the corresponding macroscopic stress-based failure friction criterion F (Σ) 6 0 (Eq.(V .14)

with the condition of d = dc) onto the orientation of localized crack

F (t (θ)) = t · γ −D : Cdc : Ecl ≤ 0. (V .39)
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where the dissipative flow vector γ satisfying
(
γ ⊗ n

)sym
= D, Cdc is the value of Cc at

d = dc. Note that, without rotation of principal stresses, (V .39) can be further rewritten

as

F (t (θ)) = t · γ −
√

2R (dc)χ ≤ 0. (V .40)

Mohr’s maximization postulate assumes that cracks are localized on the orientation

n(θcr) upon which the traction maximizes the failure friction criterion F (t (θ)) (Eq.(V .39)).

The characteristic angle θcr is then given by:

θcr = arg maxF (t (θ) ) (V .41)

Mathematically, the following stationarity conditions holds

∂F
∂θ

∣∣∣∣
θcr

=

(
∂F
∂t
· ∂t
∂θ

)
θcr

=

(
γ · ∂t

∂θ

)
θcr

=

(
γn
∂tn
∂θ

+ γm
∂tm
∂θ

+ γp
∂tp
∂θ

)
θcr

= 0 (V .42)

with the following negative definite Hessian matrix:

θ̂ · ∂
2F
∂θ2

∣∣∣∣
θcr

· θ̂ < 0,∀θ̂ (V .43)

The dissipative flow vector γ satisfies (Oliver, 2000)

γ = 2n ·D− nDnn = γnn+ γmm+ γpp (V .44)

The components γn, γm and γp of the dissipative flow vector in the local orthogonal system(
n,m, p

)
are expressed as

γn := γ · n = Dnn, γm := γ ·m = 2Dnm, γp := γ · p = 2Dnp (V .45)

The stationary condition (V .42) results in a set of nonlinear equations in terms of the

traction components given in (V .38), from which the characteristic angles θcr can be

determined. Note that, if the solution exists, the crack localization can occur.

Remark 5

Under general 3D conditions, the numerical results of the characteristic angles θcr of

the localized crack can be obtained by using any known optimization technique, such

as the augmented Lagrangian method. Although, the analytical solutions of θcr for

general cases are hardly obtained, some analytical solutions for special cases can be

obtained and examples will be given in Section 5.
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4 Formulation of localized friction-damage model

In this section, a new traction-based friction-damage model is established to describe

the mechanical behavior of material after the onset of localized crack in the framework

of irreversible thermodynamics. As mentioned above, the localization corresponds to the

coalescence of micro-cracks and to the formation of localized macroscopic cracks in the

RVE. According to experimental investigations on rock-like materials (Labuz et al., 1996;

Lockner et al., 1992), the macroscopic failure is a progressive fracturing process. Sev-

eral localized cracks may be created in a fracture process zone. In order to formulate a

frictional-damage model for the post-localization behavior in the same esprit of the micro-

mechanical model before localization. We shall use the same damage density parameter

d ≥ dc to represent the overall density evolution of cracks in the RVE after localization.

4.1 Free energy and thermodynamic forces

Inspired by the previous study in Zhu and Shao (2015), after the onset of localized

crack, the free energy function of the RV E in Figure V .3 can be expressed in the following

form:

ψ =
1

2
Σ : Sm : Σ + Σ :

(
Ẽc +Ecl

)
− 1

2
Ẽc : Cn : Ẽc + ψb (V .46)

where Cn = 1
d−dc (cnN+ctT), d−dc represents the damage evolution caused by the growth

of the localized crack, the constants cn and ct are related to the elastic modulus Em and

Poisson’s ratio νm of the intact solid matrix, i.e., cn = 3Em

16(1−(νm)2)
and ct = cn (2− νm)

(Kachanov, 1992) . Fourth order tensors N and T are both functions of the unit normal

vector n determined in Section

N = N ⊗N , T = N⊗T + T⊗N (V .47)

with N = n⊗ n and T = δ −N . For an arbitrary second-order tensor A, the operations

N : A and T : A, respectively lead to the normal and tangential part of the tensor A.

Further, the following conditions are verified:

N : N = N , N : T = 0, T : T = T , T : N = 0

It is noted that the free energy Eq.(V .5) should be equivalent to Eq.(V .46) at the onset

of localized crack, thus one can obtain the explicit expression of ψb

ψb = −1

2
Ecl : Cdc : Ecl (V .48)



Formulation of localized friction-damage model 145

The thermodynamic force Σ̃c and Yd respectively associated with the inelastic strain

Ẽc and damage variable d are given by

Σ̃c =
∂ψ

∂Ẽc
= Σ − Cn : Ẽc (V .49a)

Ỹd =
∂ψ

∂d
= −1

2
Ẽc :

∂Cn

∂d
: Ẽc (V .49b)

4.2 Frictional-sliding criterion and damage criterion of localized crack

Given the local stress Σ̃c acting on the localized crack, a simple linear Coulomb-type

criterion is formulated to describe the frictional sliding along the localized crack

F̃
(
Σ̃c
)

= ‖τ c‖+ c̃fΣc
n ≤ 0 (V .50)

where c̃f is the friction coefficient of the localized crack. τ c and Σc
n are respectively the

shear and normal components of Σ̃c , which can be obtained by projecting the stress vector

Σ̃c · n into the normal direction and localized crack plane. With the help of (V .49a), one

obtains:

τ c = Σ̃c · n · T = τ − n · T · Cn : Ẽc (V .51)

Σc
n = n · Σ̃c · n = tn −N : Cn : Ẽc (V .52)

where the vector τ is the shear component of macroscopic stress Σ, i.e., τ = Σ · n · T.
Taking the advantage of results of Zhu (2017), the flow direction inside the localized

crack plane located in the plane (v1, v2), denoted by % , is defined as

% = sign (Σ1 − Σ2)
v1 − (v1 · n)n√

1− v1 · n
(V .53)

Then the norm ‖τ c‖ can be reformulated in terms of norm ‖τ‖

‖τ c‖ = τ c · % = τ · %− n · T · Cn : Ẽc · % = ‖τ‖ −
(
%⊗ n

)sym · T · Cn : Ẽc (V .54)

Combining Eqs. (V .52) and (V .54), the frictional sliding criterion of localized crack

(Eq.(V .50)) can be reformulated as

F̃
(
Σ, Ẽc, d

)
= ‖τ‖+ c̃f tn − V : Cn : Ẽc ≤ 0. (V .55)

where V is the second order flow direction tensor, defined as

V =
(
%⊗ n

)sym
+ c̃fN (V .56)
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this expression thanks to the properity
(
%⊗ n

)sym · T =
(
%⊗ n

)sym
.

Similarly, the strain energy release rate-based damage criterion for describing the lo-

calized damage evolution is adopted here

G̃
(
d, Ẽc

)
= Ỹd − R̃ (d) = −1

2
Ẽc :

∂Cn

∂d
: Ẽc − R̃ (d) = 0, d > dc (V .57)

It is noted that after localization, the frictional sliding along localized cracks becomes

a dominating dissipation process. This generally leads to a material softening at the

macroscopic scale. This mechanism is here described by the progressive decrease of the

material resistance R̃ with the increase of overall crack density d. For the sake of simplicity,

the same function as that given in Eq.(V .16) in the model for the diffused damage is here

adopted:

R̃ (d) = R̃ (dc)
2ξ

1 + ξ2
, d > dc, (V .58)

with R̃ (dc) being the maximum value of R̃ (d) .

For a given admissible state
(
Σ, Ẽc, d

)
, constrained by the friction and damage criteria

(V .50) and (V .57), the real friction and damage evolution rates
(

˙̃E
c
, ḋ
)

are given by the

following normality rules:

˙̃E
c

= λ̃c
∂F̃
∂Σ̃c

= λ̃cV (V .59a)

ḋ = λ̃d
∂G̃
∂Ỹd

= λ̃d, (V .59b)

where the λ̃c and λ̃d are respectively the plastic and damage multipliers of the localized

crack. Moreover, λ̃c satisfies the following Kuhn-Tucker loading/unloading conditions:

λ̃c ≥ 0, F̃
(
Σ, Ẽc, d

)
≤ 0, λ̃cF̃

(
Σ, Ẽc, d

)
= 0. (V .60)

When the frictional sliding of localized crack is inactive, i.e., F̃
(
Σ, Ẽc, d

)
≤ 0, one has

λ̃c = λ̃d = 0. On the other hand, when the frictional sliding occurs, i.e., λ̃c > 0 and λ̃d > 0,

it follows that F̃
(
Σ, Ẽc, d

)
= 0 and G̃

(
d, Ẽc

)
= 0, and the consistency conditions of

Eqs.(V .50) and (V .57) are written as

˙̃F
(
Σ, Ẽc, d

)
=
∂F̃
∂Σ

: Σ̇ +
∂F̃
∂d

ḋ+
∂F̃
∂Ẽc

: ˙̃E
c

= 0 (V .61a)

˙̃G (d, e) =
∂G̃
∂d
ḋ+

∂G̃
∂Ẽc

: ˙̃E
c

= 0 (V .61b)
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The non-negative multipliers
(
λ̃c, λ̃d

)
are determined by solving the set of equations

(V .61) and by using Eq.(V .59):
λ̃c = 1

He
Σ̇ : V

λ̃d = −λ̃c ∂G̃/∂Ẽ
c

∂G̃/∂d : V

(V .62)

where He = ∂F̃
∂d

∂G̃
∂Ẽc

: V/∂G̃∂d −
∂F̃
∂Ẽc

: V is the hardening modulus.

4.3 Analytical traction-based yield criterion for localized crack

In the case of loading paths without the rotation of principal stresses, the flow direction

tensor V is independent on the stress level, the inelastic strain of localized crack Ẽc can be

directly calculated as Ẽc = Λ̃cV with the cumulation Λ̃c =
∫
λ̃c operated after the onset

of localized crack. In this case, the localized friction criterion (V .55) can be rewritten as

F̃
(
Σ, Λ̃c, d

)
= ‖τ‖+ c̃f tn −

Λ̃c

d− dc
κ ≤ 0. (V .63)

G̃
(
d, Ẽc

)
=

1

2

(
Λ̃c

d− dc

)2

κ− R̃ (d) ≤ 0, d > dc (V .64)

with κ = V : (d− dc)Cn : V , one obtains from Eq.(V .64)

Λ̃c = (d− dc)

√
2R̃ (d)

κ
(V .65)

Substituting Eq.(V .65) for (V .63), we finally obtain the analytical macroscopic traction-

based friction criterion for the localized crack

F̃ (t, d) = ‖τ‖+ c̃f tn −
√

2R̃ (d)κ ≤ 0, d > dc (V .66)

Remark 6

According to Eq.(V .31), the rate form of localized inelastic strain becomes:

˙̃E
c

= (ė⊗ n)sym (V .67)

Combining Eqs.(V .56) and (V .59a), one obtains

ė = λ̃c
(
%+ c̃fn

)
(V .68)

In the case of without rotation of the principal stresses, one gets

e = Λ̃c
(
%+ c̃fn

)
(V .69)
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5 Analytical analysis of some specific cases

In this section, we first consider the crack localization in a 2D cracked solid Ω ⊂ R2 in

the plane stress and strain conditions, and then we extend it to the conventional triaxial

loading condition (Σ1 = Σ3 < 0 ). The in-plane principal stresses are denoted by Σ1 and

Σ2 (Σ1 > Σ2) respectively, with the principal vectors v1 and v2. Σ3 is orthogonal to the

plane defined by v1 and v2. In these cases the crack orientation can be characterized by

the inclination angle θ ∈
[
−π

2 ,
π
2

]
between the normal vector n of the localized crack and

the the principal vector v1 (see in Figure V .4(b)). Accordingly, the base vectors of local

coordinate system (n,m, p) are given by:

n = [cos θ, sin θ, 0], m = [sin θ,− cos θ, 0], p = [0, 0,−1] (V .70)

The traction components (tn, tm) in the plane are obtained from Eq. (V .38)

tn = Σnn =
Σ1 + Σ2

2
+

Σ1 − Σ2

2
cos (2θ) (V .71a)

tm = Σnm =
Σ1 − Σ2

2
sin (2θ) (V .71b)

As the dissipative flow tensor D is coaxial to the stress (Itskov, 2007), the dissipative flow

vector components (γn, γm) in the plane can be given by considering Eq.(V .45):

γn = Dnn =
D1 +D2

2
+
D1 −D2

2
cos (2θ) (V .72a)

γm = 2Dnm = (D1 −D2) sin (2θ) (V .72b)

where D1, D2 are the in-plane principal values of D. Applying the Mohr’s maximization

postulate to the 2D conditions, the localized crack angle θcr is identified (Cervera and Wu,

2015) as follows:

sin2 θcr = − D2

D1 −D2
, cos2 θcr =

D1

D1 −D2
D1 ≥ 0 , D2 ≤ 0 (V .73a)

θcr = 0 D1 > D2 > 0 (V .73b)

θcr =
π

2
D2 < D1 < 0 (V .73c)

For the loading paths without rotation of principal stresses, the dissipative flow tensor

D has been expressed in terms of macroscopic stresses in Eq.(V .20). Accordingly, for

the case of D1 ≥ 0 and D2 ≤ 0 given in Eq.(V .73a), the crack angle θcr is explicitly

computed as follows:

sin2 θcr = −
S2 + 1/3cf ‖S‖

S1 − S2
, cos2 θcr =

S1 + 1/3cf ‖S‖
S1 − S2

(V .74)
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where S1 and S2 denote the two principal values of macroscopic deviatoric stress tensor

S in the plane. Note that in this case, the analytical macroscopic stress-based yield cri-

terion (V .26) and the traction-based yield criterion (V .40) are both satisfied. Therefore,

the following analytical studies for plane stress, plane strain and conventional triaxial

compression conditions will be performed in terms of both macroscopic stresses and local

traction. Moreover, the analytical results of complete stress-strain curves with the transi-

tion from diffuse damage to localized cracking in conventional triaxial compression loading

are presented and compared with the experimental results.

5.1 Analytical analysis for plane stress

In the case of plane stress (Σ3 = 0), the results (V .74) become

sin2 θcr = −
(2Σ2 − Σ1) + cf

√
2
3

(
Σ2

1 + Σ2
2 − Σ1Σ2

)
3 (Σ1 − Σ2)

(V .75a)

cos2 θcr =
(2Σ1 − Σ2) + cf

√
2
3

(
Σ2

1 + Σ2
2 − Σ1Σ2

)
3 (Σ1 − Σ2)

(V .75b)

The conditions D1 ≥ 0 and D2 ≤ 0 result in Σ1 ≥ Σ2/η1 and Σ1 ≥ η2Σ2 where the

parameters η1 and η2 are given by

η1 =
1

2

[
1− cf

√
3/
(

6− c2
f

)]
, η2 =

1

2

[
1 + cf

√
3/
(

6− c2
f

)]
(V .75c)

Together with Eq.(V .73), the macroscopic principal stress-based failure criterion defined

in (V .26) when d = dc becomes:

f (Σ) = 1
3

√
6
(
Σ2

1 + Σ2
2 − Σ1Σ2

)
+ 1

3cf (Σ1 + Σ2)−
√

2R (dc)χ ≤ 0 D1 ≥ 0 , D2 ≤ 0

(V .76)

With the crack angle given in (V .73a), the traction-based failure criterion consistent with

(V .76) is given by (see Appendix A.1):

F (t) = t2m +
3− 2c2

f

2
(

6− c2
f

) t2n +
cf
√

2R (dc)χ

2
(

6− c2
f

) tn −
6R (dc)χ(

6− c2
f

) ≤ 0 (V .77)

It is noted that although it is not easy to identify the geometrical type of the macro-

scopic stress-based failure criterion given in (V .76), the traction-based criterion given in

(V .77) indicates a standard conic section. Therefore the following three cases can be

depicted regrading the value of friction coefficient cf ∈
[
0,
√

6
)
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• cf ≥ 0 and 3− 2c2
f > 0⇔ 0 ≤ cf <

√
3

2
: The traction based criterion (V .77) gives

an ellipse on the (tn, tm) plane, the macroscopic stress-based counterpart also gives

an ellipse on the (Σ1,Σ3) plane, as shown in Figure V .5, in which we take cf = 0.8

as an example.

(a) Marcostress-based (b) Traction-based

Figure V .5: Deduced failure criterion in plane stress condition:elliptic type (cf = 0.8)

• 3 − 2c2
f = 0 ⇔ cf =

√
3

2
: The traction based criterion (V .77) is a parabolic form

on the (tn, tm) plane (see Figure V .6(b)), while the macroscopic stress-based one is

also a parabolic form on the (Σ1,Σ3) plane (see Figure V .6(a)).

• cf <
√

6 and 3− 2c2
f < 0⇔

√
3

2
< cf <

√
6 : The traction based criterion (V .77) is

a hyperbolic form on the (tn, tm) plane, and the macroscopic stress-based criterion

is also a hyperbolic form on the (Σ1,Σ3) plane, as shown in Figure V .5 with cf = 2

as an example.

For completeness, the forms of both the macroscopic stress-based and traction based

criteria for the particular cases of D1 > D2 > 0 and D2 < D1 < 0 are also studied and

indicated by the red solid lines in Figures V .5-V .7. The detailed calculations are given

in Appendix B.

The angles of localized cracks θcr in the plane stress conditions are summarized in

Table V .1 and illustrated in Figure V .8 with the different values of friction coefficient cf

and macroscopic stress ratio.

Remark 7

As shown in Figures V .6 and V .7, for the fictional coefficient cf ∈
[√

3
2 ,
√

6
)

the
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(a) Marcostress-based (b) Traction-based

Figure V .6: Deduced failure criterion in plane stress condition:parabolic type ( cf =√
3

2
)

(a) Marcostress-based (b) Traction-based

Figure V .7: Deduced failure criterion in plane stress condition:hyperbolic type (cf = 2)

deduced criterion (V .26) has an open locus in the principal stress plane (Σ1,Σ2). As

a consequence, there must exist a limit value of θcr. In order to determine θcr, it is

first needed to know the slant asymptotic functions of the yield surface, or at least

the slope of asymptotic function in compression-compression region (i.e., Σ1 < 0 and
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Table V .1: Localized crack angle θcr in plane stress condition

cf Macroscopic stress ratio Σ1/Σ2

−1 : −1 −1 : −1.25 −1 : −3 −1 : −5 0 : −1 1 : −10 1 : −3 1 : −1 1 : −0.725 1 : 0 1 : 0.2

0.8 90◦ 90◦ 47.26◦ 45.66 42.07◦ 40.85◦ 38.47◦ 33.92◦ 32.21◦ 19.88◦ 0.00◦√
3/2 45◦ 43.42◦ 38.78◦ 37.35◦ 35.26◦ 34.27◦ 32.13◦ 27.37◦ 25.37◦ 0.00◦ 0.00◦

2 - - - - 20.47◦ 19.83◦ 17.72◦ 9.74◦ 0.00◦ 0.00◦ 0.00◦

(a) Compression-compression quadrant (b) Tension-compression quadrant

Figure V .8: Localized crack angle θcr in plane stress condition

Σ2 < 0). Here by solving

lim
Σ1→−∞

1

3

√√√√6

(
1 +

(
Σ2

Σ1

)2

− Σ2

Σ1

)
+

1

3
cf

(
1 +

Σ2

Σ1

)
−
√

2R (dc)χ

Σ1
= 0 (V .78)

one obtains the slope of the asymptotic function:

k =
Σ2

Σ1
=
c2
f + 3 + 3

√
2c2
f − 3

6− c2
f

(V .79)

Then the limit crack angle satisfies

lim
Σ2→kΣ1<0

sin θ2
cr = lim

Σ2→kΣ1<0
−

(2Σ2 − Σ1) + cf

√
2
3

(
Σ2

1 + Σ2
2 − Σ1Σ2

)
3 (Σ1 − Σ2)

(V .80)

• For the parabolic criterion (cf =

√
3

2
), one can obtain k = 1. Accordingly, the

limit crack angle is limΣ2→Σ1<0 θcr = 45◦.
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• For the hyperbolic criterion (cf ∈ (
√

3
2 ,
√

6)), as an example, for the friction

coefficient cf = 2, k = 7+3
√

5
2 ≈ 6.85, one obtains limΣ2→kΣ1<0 θcr = 20.91◦.

5.2 Analytical analysis for plane strain

In the case of plane strain, the classical discontinuous bifurcation analysis gives (Runes-

son et al., 1991):

sin2 θcr = −D2 + νmD3

D1 −D2
, cos2 θcr =

D1 + νmD3

D1 −D2
(V .81)

which coincidence with Maxwell’s compatibility condition (V .72a), requiring that

D3 = 0⇒ S3

‖S‖
+

1

3
cf = 0 (V .82)

As it is noted in Wu and Cervera (2016), this extra condition (Eq.(V .82)) is not taken

into account in the classical discontinuous bifurcation analysis. Accordingly, the results

in the case of plane strain derived from Maxwell’s compatibility condition are not only

consistent with, but more demanding than, the classical ones.

For completeness, the extra condition (Eq.(V .82)) is equivalent to

Σ3 =
3 + c2

f

6− c2
f

(Σ1 + Σ2)−
3cf
√

2R (dc)χ

6− c2
f

(V .83)

As trS = 0, one obtains

S1 + S2 = −S3 =
1

3
cf ‖S‖ ≥ 0 (V .84)

or equivalently

S2
1 +

18− 2c2
f

9− 2c2
f

S1S2 + S2
2 = 0 (V .85)

Accordingly, the crack angle defined in (V .74) is determined by

sin2 θcr = −
S2 + 1/3cf ‖S‖

S1 − S2
= −2S2 + S1

S1 − S2
= −2 + ς

ς − 1
(V .86a)

cos2 θcr =
S1 + 1/3cf ‖S‖

S1 − S2
=

2S1 + S2

S1 − S2
=

2ς + 1

ς − 1
(V .86b)

The ratio ς := S1/S2 is given from the relation (V .85)

ς =
c2
f − 9− cf

√
18− 3c2

f

9− 2c2
f

(V .87)
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Table V .2: Localized crack angle θcr in plane strain condition

Frictional coefficient cf 0 0.2 0.4 0.6 0.8 1.0
√

3
2

Crack angle θcr 45◦ 40.92◦ 36.67◦ 32.02◦ 26.62◦ 19.62◦ 0◦

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

35

40

45

Figure V .9: Localized crack angle θcr in plane strain condition

Since the following condition must be satisfied

2S2 + S1 ≤ 0, 2S1 + S2 ≥ 0, S1 + S2 ≥ 0 (V .88)

One obtains:

ς ∈ [−2,−1]⇔ cf ∈

[
0,

√
3

2

]
(V .89)

One can notice from Eqs.(V .86) and (V .87) that the crack angle θcr only depends on

the frictional coefficient cf ∈
[
0,
√

3
2

]
. For instance, the values of crack angle are presented

in Table V .2 and Figure V .9 for some values of frictional coefficient.

Using the crack angle given in (V .86), the traction-based failure criterion in the con-

dition of plane strain can be derived as follows (see Appendix A.2):

F (t) = t2m −
3

6− 4c2
f

(
cf tn −

√
2R (dc)χ

)2
≤ 0 (V .90)

The left branch of interest can be expressed as

|tm|+ tanϕ · tn − c ≤ 0 (V .91)

where the frictional angle ϕ and cohesion c are given by:

tanϕ =

√√√√ 3c2
f

6− 4c2
f

, c =

√
6R (dc)χ

6− 4c2
f

(V .92)
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Table V .3: Localized crack angle θcr in conventional triaxial compression condition

Frictional coefficient cf 0 0.3 0.6 0.9 1.2 1.5 1.8

Crack angle θcr 54.73◦ 48.83◦ 43.09◦ 37.27◦ 31.10◦ 24.10◦ 14.96◦

0 0.5 1 1.5 2
0

10

20

30

40

50

60

Figure V .10: Localized crack angle θcr in conventional triaxial compression condition

One can see that in the case of plane strain, the deduced criterion (V .40) turns into

a Mohr-Coulomb type. The macroscopic parameters involved can de directly calibrated

from microscopic parameters cf and R(dc).

5.3 Analytical analysis of conventional triaxial compression

5.3.1 Analytical results of localized crack angle

In the case of conventioal triaxial compression (0 > Σ1 = Σ3 > Σ2), ‖S‖ = Σ1 −Σ2,

P =1
3 (2Σ1 + Σ2), here Σ1 = Σ3 denotes the confining pressure, while Σ2 represents the

axial stress. With this loading condition, the results (V .74) become


sin2 θcr = 2

3 −
cf
3

cos2 θcr = 1
3 +

cf
3

cf ∈ [0, 2] (V .93)

One can also notice from Eqs.(V .93) that the crack angle θcr in this loading condition

only depends on the frictional coefficient cf ∈ [0, 2]. The values of localized crack angles

are presented in Table V .3 and Figure V .10 for some values of frictional coefficient.



156

Analysis of localized cracking in quasi-brittle materials with a micro-mechanics

based friction-damage approach

5.3.2 Analytical results of complete stress-strain curves

As indicated in the previous sections, the deformation process involves two stages, one

deals with a homogeneous deformation that is governed by the micro-mechanics based

diffuse friction-damage model before the onset of localized cracks in Section 2 and the

other one is associated with the localized deformation controlled by the localized friction-

damage model. It is worth noting that, both the diffuse and localized friction-damage

models can provide the analytical yield criteria (Eqs.(V .26) and (V .66)) without the

rotation of principal stresses. In this context, once the localized crack angle is determined,

it is easy to obtain the analytical complete stress-strain curves considering the damage

from diffused to localized state.

The macroscopic stress-based yield criterion defined in (V .26) in the conventional

triaxial compression becomes:

F (Σ, d) = Σ2 −
2cf +

√
6√

6− cf
Σ1+3

√
2R (d)χ ≤ 0 d ≤ dc (V .94)

One the other hand, the analytical traction-based yield criterion (V .66) for localized

crack can be rewritten in the principal stresses form in the conventional triaxial compres-

sion loading condition (Zhu, 2017)

F̃ (Σ, d) = Σ2−
sin θcr cos θcr + c̃f sin2 θcr
sin θcr cos θcr − c̃f cos2 θcr

Σ1+
1

sin θcr cos θcr − c̃f cos2 θcr

√
2R̃ (d)κ ≤ 0 d > dc

(V .95)

At the onset of localization, one has:
F (Σ, dc) = limd→d+

c
F̃ (Σ, d) = 0

Σ2

∣∣∣d→d+
c
≥ Σ2 (d = dc)

(V .96)

In a monotonic conventional triaxial compression test, Σ1 = Σ3 is constant and equals

to the prescribed confining pressure. In addition, the damage variable will monotonically

increase. Therefore, the analytical complete stress-strain relations can be obtained by the

following procedure:

1. Given a damage variable d, if d ≤ dc, calculate R(d) and Λ with Eqs. (V .16) and

(V .25), else calculate R̃(d) and Λ̃ with Eqs. (V .58) and (V .65).

2. Calculate Σ2 by using (V .94) and (V .95) with the prescribed confining pressure Σ1

and damage variable d.



Analytical analysis of some specific cases 157

Table V .4: Values of parameters used in the diffuse friction-damage model for Lac du

Bonnet granite

Parameters Em(MPa) νm dc cf R (dc)

Values 72000 0.2 2.8 1.45 0.1

3. Calculate the macroscopic strain by using

E = Sm : Σ + ΛD + Λ̃V , (V .97)

In order to show the efficiency of the proposed model, the analytical solutions are

now compared with the experimental data on the Lac du Bonnet granite in conventional

triaxial compression tests. It is important to point out that due to localization, the

tested specimen cannot be seen as a material point but as a small structure submitted

to boundary conditions. Therefore, a suitable boundary values problem should be solved

by using for instance the finite element method. The proposed frictional-damage model

should be implemented in a computer code and used inside each element which is seen

as a representative volume element. The characteristic length for the cracked element is

the ratio between the element volume and the localized crack surface. However, as a first

approximation and in order to use the analytical solution, a simplified approach is here

proposed. The tested sample is seen as a single element with the onset of an oriented

localized crack according to the criteria proposed above. Then the macroscopic strains

and stresses are determined by the analytical solutions and compared with experimental

data. The presented model contains 7 parameters that can be determined from a series of

conventional triaxial compression tests. Here as an example, the experimental data with

three confining pressures of Σ1 = -30, -40 and -60MPa extracted from Martin (1997) are

used for the determination of parameters and the comparisons with the analytical results.

The calibration procedure of the diffuse friction damage model parameters (5 parameters)

has been introduced in detail in Zhao et al. (2018); Zhu et al. (2016). By using that

procedure, we have obtained the parameters listed in Table V .4. The localized crack

angle θcr = 25.29◦ can be obtained by using Eq.(V .93). The two parameters involved in

the localized friction-damage model are easy to be determined with Eq.(V .96) (c̃f ≤ 0.37

and R̃(dc) ≤ 0.032). Here we take c̃f = 0.37 and R̃(dc) = 0.032 for study the mechanical

behavior of the Lac du Bonnet granite.

In Figure V .11, one shows the analytical relations between applied traction ‖τ‖ and
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Figure V .11: Analytical traction-sliding curves for Lac du Bonnet granite under two

conventional triaxial compression with different confining pressures

frictional sliding ‖eτ‖ under two different confining pressures. Here ‖eτ‖ = ‖e · T ‖ , with

e can be calculated by using Eq.(V .69).

Furthermore, the analytical stress-strain curves with and without considering the onset

of localization for the conventional triaxial compression tests with two confining pressures

of Σ1 = −30 and −40MPa are presented and compared with experimental data in Figure

V .12. The critical value of damage density parameter dc corresponds to the peak devia-

toric stress. It is seen that both the analytical results with and without considering the

localized crack can correctly capture the general features of mechanical behavior of Lac

du Bonnet granite, such as the non-linear strain, confining pressure effect and volumetric

dilatation, strain hardening and softening. However, in a quantitative way, there is a large

discrepancy between the solutions provided by the model without considering localized

crack and experimental data in the post-peak regime. This is due to the fact that the

mechanical response of the granite in the post-peak regime is essentially governed by the

localized crack and not by the diffuse micro-cracks. The diffuse friction-damage model is

not able to capture this physical mechanism. As a comparison, the friction-damage model

with considering the localized crack is in a very good agreement with experimental data.

Furthermore, the mechanical response in the post-localization regime is controlled by the

mechanical properties and orientation of the localized crack.

In Figure V .13, we present the analytical stress-strain curves with different values

of the parameters c̃f (Figure V .13(a)) and R̃(dc) (Figure V .13(b)) in the conventional

triaxial compression test with a confining pressure of Σ1 = −40MPa. It is found that when

c̃f < 0.37 or R̃(dc) < 0.032, there exists a sharp stress drop just after the onset of localized
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Figure V .12: Analytical stress-strain curves of triaxial compression test on Lac du

Bonnet granite with and without considering localized crack (experimental data extracted

from Martin (1997))

crack. The magnitude of stress drop increases with the decrease of c̃f and R̃(dc). From

the end of the stress drop, the cracked material will exhibit the strain softening behavior

controlled by the yield function of the localized crack (V .95).

In Figure V .14, the stress-strain curves with the different values of the localized crack

angle θcr in the range from π
6 to π

3 are presented and compared with the curve provided by

the diffuse model without considering the localized crack. One can see that the localized

crack angle θcr has a significant influence on the post-peak stress-strain curve and on the

residual strength. More interestingly, the post-peak behavior can be transformed from a

snap-back softening (Class II behavior) to a stable softening (Class I behavior). For the

Class II behavior, both the stress and strain decrease after the peak strength. For the Class

I behavior, on the contrary, the stress decreases with the increasing strain after the peak

strength, implying that plastic strain increases faster than the elastic strain decreases.

6 Concluding remarks

In this chapter, we have developed a micro-mechanics based approach for studying the

transition from diffuse damage to localized cracking in quasi-brittle materials. The empha-

sis was put on closed cracks under compressive stresses. For the description of mechanical

behavior of material with randomly distributed micro-cracks before localization, a coupled

friction-damage model has been formulated using a rigorous homogenization scheme. The

damage is related to the growth of micro-cracks while the frictional sliding induces the

macroscopic plastic strain. The damage evolution is driven by the frictional sliding while
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Figure V .13: Sensitivity analyses on the localized friction damage model parameters

(c̃f and R̃(dc)) using triaxial compression tests with Σ1 = -40MPa

Figure V .14: Sensitivity analyses on the localized angle θcr using triaxial compression

tests with Σ1 = -40MPa

the latter is enhanced by the damage growth. The onset of a localized crack occurs when

the damage density parameter (density of micro-cracks) reaches a critical value which cor-

responds to the maximal value of material resistance to the propagation of micro-cracks.

After the onset of a localized crack, the energy dissipation of material is entirely related to

the frictional sliding and propagation of the localized crack. A traction-based model has

been developed to describe the frictional sliding of the localized crack which acts as the

driving force for its propagation. The overall deformation of material is then attributed

to the frictional sliding induced displacement discontinuity in the localized crack and the

elastic deformation of matrix. The continuity conditions and kinematic constraints on

the localized crack have been discussed. The orientation of localized crack has been in-
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vestigated using the Mohr’s maximization postulate. Analytical results of the localized

crack angle have been obtained for plane stress, plane strain and conventional triaxial

compression conditions. It is found that the crack orientation is essentially controlled by

the local frictional coefficient along micro-cracks. For loading paths without rotation of

principal stresses, the proposed approach has allowed to obtain an analytical stress-based

and traction-based criterion for both the frictional sliding of diffuse micro-cracks and that

of the localized crack. Moreover, the analytical solutions of complete stress-strain curves

with and without considering localized crack have been obtained for conventional triaxial

compression tests, and compared with experimental results. It is found that the friction-

damage model with localized crack is able to well capture the mechanical response of

material in the post-peak regime. However, in the present study, only a single localized

crack has been considered in the cracked material volume. In future studies, the proposed

friction-damage model with localization will be implemented into a finite element code

and applied to investigate the whole failure process with progressive growth of localized

cracks in both sample and structure scales.

Appendix A: Traction-based failure criterion for some cases

A.1: Case of plane stress

In the case of plane stress, by the substitution (V .75) for (V .71), we arrive at

tn =
2

3

(
1−

c2
f

6

)
(Σ1 + Σ2) +

cf
3

√
2R (dc)χ (V .98a)

t2m = − (S1 + 1/3cf ‖S‖) (S2 + 1/3cf ‖S‖) (V .98b)

Similarly, substituting (V .75) for (V .72), one obtains

γn =
1

‖S‖

(
−2c2

f tn + 3tn + 3cf
√

2R (dc)χ

6− c2
f

)
(V .99a)

γm =
2tm
‖S‖

(V .99b)

The norm ‖S‖ can be evaluated from (V .26) and (V .98a)

‖S‖ = −1

3
cf (Σ1 + Σ2) +

√
2R (dc)χ = −

3cf tn − c2
f

√
2R (dc)χ

6− c2
f

+
√

2R (dc)χ ≥ 0

(V .100)
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The substitution of (V .98) and (V .99) for (V .40) leads to the following traction-based

failure criterion:

F (t) =
2

‖S‖

t2m +
3− 2c2

f

2
(

6− c2
f

) t2n +
cf
√

2R (dc)χ

2
(

6− c2
f

) tn −
6R (dc)χ(

6− c2
f

)
 ≤ 0 (V .101)

A.2: Case of plane strain

For the plane strain condition, using the crack angle given in (V .86) and recalling

(V .83), the normal traction can be given by

tn = Σ1 + Σ2 − Σ3 =
3− 2c2

f

6− c2
f

(Σ1 + Σ2) +
3cf
√

2R (dc)χ

6− c2
f

(V .102)

This yields the following relations

Σ1 + Σ2 =

(
6− c2

f

)
tn − 3cf

√
2R (dc)χ

3− 2c2
f

(V .103a)

Σ3 =

(
3 + c2

f

)
tn − 3cf

√
2R (dc)χ

3− 2c2
f

(V .103b)

The square of the tangential traction t2m is also obtained

t2m = Σ2
nm = − (2S1 + S2) (S1 + 2S2) (V .104)

By substituting (V .86) for (V .72) and recalling (V .84), one gets

γn = D1 +D2 =
S1 + S2

‖S‖
+

2

3
cf = cf (V .105a)

γm = 2 (D1 −D2) sin θcr cos θcr =
2tm
‖S‖

=
2cf tm

3 (S1 + S2)
(V .105b)

with the following relation

S1 + S2 =
Σ1 + Σ2 − 2Σ3

3
=

√
2R (dc)χcf − c2

f tn

3− 2c2
f

(V .106)

Further by the substitution of (V .106) for (V .105b), one obtains

γm =
2
(
−3 + 2c2

f

)
tm

3cf tn − 3
√

2R (dc)χ
(V .107)

Finally, by substituting (V .105a) and (V .107) for (V .40), the traction-based failure

criterion is written as follows:

F (t) = t2m −
3

6− 4c2
f

(
cf tn −

√
2R (dc)χ

)2
≤ 0 (V .108)
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Figure V .15: Values of D1 and D2 versus frictional coefficient cf

Appendix B: Particular 2D cases

It is noted that the crack angles given in (V .73b) and (V .73c) correspond to the

particular values of D2 = 0 and D1 = 0 in (V .73a). As a consequence, the macroscopic

stress-based criterion given in Eq.(V .26) can be rewritten as

F (Σ) =


D1Σ1 −

√
2R (dc)χ ≤ 0 D1 > D2 > 0

D2Σ2 −
√

2R (dc)χ ≤ 0 D2 < D1 < 0

(V .109)

Similarly, the corresponding traction-based failure criterion F (t) is expressed by

F (t) =


D1tn −

√
2R (dc)χ ≤ 0 D1 > D2 > 0

D2tn −
√

2R (dc)χ ≤ 0 D2 < D1 < 0

(V .110)

The aim here is the determination of D1 and D2 in (V .109) and (V .110). Note that the

two particular cases respectively correspond to the conditions Σ1 < Σ2/η1 and Σ1 < η2Σ2,

with η1 and η2 given in (V .75c). By respectively taking Σ2 → η1Σ1 and Σ1 → η2Σ2 in

(V .76), one obtains D1 and D2 as follows:

D1 =

√
6
(
1 + η2

1 − η1

)
+ cf (1 + η1)

3
> 0 (V .111a)

D2 =
−
√

6
(
1 + η2

2 − η2

)
+ cf (1 + η2)

3
< 0 (V .111b)
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As depicted in (V .111) and (V .75c), the values of D1 and D2 only depend on the friction

coefficient cf ∈ [0,
√

6). It is worth noticing that if the inequality condition in (V .111)

is not satisfied, the corresponding particular case does not exist. In Figure V .15, we

show the values of D1 and D2 in all range of friction coefficient cf . One can see that, for

cf ∈ [
√

3
2 ,
√

6), D2 ≥ 0. This implies that only one particular case exists in this region, as

also shown in Figures V .6 and V .7.



Chapter VI

Conclusions and perspectives

1 Conclusions

This thesis aims to propose a series of homogenization methods for modeling the effec-

tive (overall) behaviors of ductile and brittle rock-like materials via incremental variational

and micro-mechanics based friction-damage approaches. For this purpose, we consider

that the ductile and brittle rock-like materials have different micro-structures. The duc-

tile rock-like materials are composed of plastic solid matrix and in which mineral inclusions

and (or) pores are embedded, while the brittle ones are composed of elastic solid matrix

weakened by micro-cracks. In this context, different homogenization approaches have been

introduced. The main conclusions of this thesis are following

• An incremental variational homogenization model have been proposed for describing

the elastic-plastic behavior of ductile rock-like material with an associated Drucker-

Prager plastic matrix. The non-uniform local plastic strain field is taken into ac-

count in the model. The approach have been validated from comparison with direct

finite element simulations for inclusion-reinforced and porous materials, together

with comparison with experimental tests carried out on a cement mortar and a

typical porous sandstone.

• A new bi-potential based incremental variational (BIV) homogenization approach for

ductile rock-like materials with a non-associated Drucker-Prager plastic matrix have

been established. The bi-potential theory and the incremental variational principle

was well combined. The accuracy of the proposed model have been assessed by a

series of comparisons with reference solutions obtained from full-field finite element

simulations respectively for inclusion-reinforced materials and porous materials. The
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model have been also used to simulate the mechanical behavior of claystone and

sandstone under different loading paths.

• For describing the effective behavior of brittle rock-like materials under a larger

range of compressive stress, a micro-mechanics friction damage coupled model have

been proposed in the frame-work of thermodynamics combined with Mori-Tanaka

homogenization scheme. An analytical analysis of macroscopic peak strength and

volumetric compressibility-dilatancy transition have been provided. The efficiency

of the proposed model have been verified against experimental data on three typical

brittle granites and for a very large range of stress.

• The transition from diffuse damage to localized cracking in brittle materials have

been envisaged with a micro-mechanics based friction-damage. The localized crack-

ing is considered as a consequence of coalescence of diffuse micro-cracks approach.

The orientation of localized crack is determined from the Mohr’s maximization pos-

tulate and the frictional sliding of the localized crack was described by a localized

friction damage model. Analytical solutions have been derived for some specific

loading paths.

2 Perspectives

This thesis opened up new dictions for the development of homogenization approaches

for rock-like materials. However, there still a lot of work to do to capture the complex

mechanical behaviors of these materials with complex microstructure. In the future, we

may improve the presented models in the following directions:

• All these models focused on the short-term mechanical behavior of dry rock-like

materials, we will extended the models to describe the time-dependent behaviors

and to consider saturated and unsaturated conditions as well as thermo-mechanical

coupling.

• Considering the plastic matrix obeys to a nonlinear yield criterion in the incremen-

tal variational homogenization model, for instances, Mises–Schleicher yield criterion,

and other analytical nonlinear yield criterion derived for porous Drucker-Prager ma-

trix (Guo et al., 2008b; Maghous et al., 2009a). This could be useful for instance to

capture influence of intra-particle pores.

• Proposing a more sophisticated definition of the LCC, such as second-order procedure

(Castañeda, 2002a), to consider the fluctuations in the variational framework.
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• Proposing a unified homogenization approach to consider the inclusions, pores and

cracks in same scale and describing ductile-brittle transition phenomenon.

To conclude, developing homogenization approaches for complex behavior of rock-like

materials, such as elastoplasticity and plastic damage, requires a compromise between

accuracy, theoretical rigor, and numerical cost. The final goal, not achieved yet, is to

propose a model which has the virtue of the three.
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Jirásek, M. (1998). Nonlocal models for damage and fracture: comparison of approaches.

International Journal of Solids and Structures, 35(31-32):4133–4145.
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Ponte Castañeda, P. and Suquet, P. (1997). Nonlinear composites. Advances in Applied

Mechanics, 34:171–302.

Ponte Castaneda, P. and Willis, J. (1999). Variational second-order estimates for nonlinear

composites. In Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, volume 455, pages 1799–1811. The Royal Society.

Ponte-Castaneda, P. and Willis, J.-R. (1995). The effect of spatial distribution of effective

behavior of composite materials and cracked media. Journ. Mech. Phys. Solids, 43:1919–

1951.

Qi, M., Shao, J. F., Giraud, A., Zhu, Q. Z., and Colliat, J. B. (2016). Damage and

plastic friction in initially anisotropic quasi brittle materials. International Journal of

Plasticity, 82:260–282.

Rashid, Y. (1968). Ultimate strength analysis of prestressed concrete pressure vessels.

Nuclear engineering and design, 7(4):334–344.

Rice, J. R. and Rudnicki, J. W. (1980). A note on some features of the theory of localization

of deformation. International Journal of solids and structures, 16(7):597–605.

Robinet, J., Sardini, P., Coelho, D., Parneix, J., Pret, D., Sammartino, S., Boller, E.,

and Altmann, S. (2012). Effects of mineral distribution at mesoscopic scale on solute

diffusion in a clay-rich rock: Example of the callovo-oxfordian mudstone(bure, france).

Water Resources Research, 48:05554.
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Saxcé, G. D. and Bousshine, L. (1998). Limit analysis theorems for implicit standard

materials: Application to the unilateral contact with dry friction and the non-associated

flow rules in soils and rocks. International Journal of Mechanical Sciences, 40(4):387–

398.

Shao, J. and Henry, J. (1991). Development of an elastoplastic model for porous rock.

International Journal of plasticity, 7(1-2):1–13.

Shao, J. F., Jia, Y., Kondo, D., and Chiarelli, A. S. (2006). A coupled elastoplastic damage

model for semi-brittle materials and extension to unsaturated conditions. Mechanics of

Materials, 38(3):218–232.

Shen, W., Kondo, D., Dormieux, L., and Shao, J. (2013). A closed-form three scale model

for ductile rocks with a plastically compressible porous matrix. Mechanics of Materials,

59:73 – 86.

Shen, W., Shao, J.-F., Kondo, D., and Gatmiri, B. (2012). A micro–macro model for clayey

rocks with a plastic compressible porous matrix. International journal of plasticity,

36:64–85.

Shen, W., Zhang, J., Shao, J., and Kondo, D. (2017). Approximate macroscopic yield

criteria for drucker-prager type solids with spheroidal voids. International Journal of

Plasticity, 99:221–247.

Shen, W. Q., Oueslati, A., and De Saxce, G. (2015). Macroscopic criterion for ductile

porous materials based on a statically admissible microscopic stress field. International

Journal of Plasticity, 70:60–76.

Shojaei, A., Taleghani, A. D., and Li, G. (2014). A continuum damage failure model for

hydraulic fracturing of porous rocks. International Journal of Plasticity, 59:199–212.

Simo, J. C. and Taylor, R. L. (1985). Consistent tangent operators for rate-independent

elastoplasticity. Computer Methods in Applied Mechanics & Engineering, 48(1):101–118.

Sun, C. T. and Vaidya, R. S. (1996). Prediction of composite properties from a represen-

tative volume element. Composites Science & Technology, 56(2):171–179.



184 Bibliography

Suquet, P. (1995). Overall properties of nonlinear composites: a modified secant moduli
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