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Abstract

This work has two parts. In the first we define the Lp-cohomology of certain
Gromov-hyperbolic spaces relative to a point on its boundary at infinity. This is done
in two different contexts. First we consider a simplicial version, defined for simplicial
complexes with bounded geometry. In a similar way as in the classical case we prove
the quasi-isometry invariance under a contractibility condition. Then we define a rela-
tive version of the de Rham Lp-cohomology in the case of Riemannian manifolds. We
study the relationship between these two definitions, which allows to conclude that this
second version is also invariant under certain hypothesis. As an application we study
the Lp-cohomology relative to a special point on the boundary of Heintze groups of the
form R

n−1
⋊α R, where the derivation α has positive eigenvalues λ1 ≤ · · · ≤ λn−1. As

a consequence the numbers λ1
tr(α)

, . . . , λn−1

tr(α)
are invariant by quasi-isometries.

In the second part we work with Orlicz cohomology, which is a generalization of
Lp-cohomology. We also define a relative version and adapt the proof of the quasi-
isometry invariance in the simplicial case. As the main result of this part we prove
the equivalence between the simplicial (relative) Orlicz cohomology and the (relative)
Orlicz-de Rham cohomology for Lie groups. An important consequence of this is the
quasi-isometry invariance of Orlicz-de Rham cohomology in the case of contractible Lie
groups.





Resumen

Este trabajo consta de dos partes. En la primera se define la cohomoloǵıa Lp

de ciertos espacios métricos Gromov-hiperbólicos relativa a un punto de su borde al
infinito. Esto se hace en dos diferentes contextos. Primero se desarrolla una versión
simplicial, definida para complejos simpliciales de geometŕıa acotada. Se prueba aqúı,
al igual que como se hace en el caso clásico, que esta es invariante por cuasi-isometŕıas
bajo cierta condición de contractibilidad. Luego se define una versión relativa de la
cohomoloǵıa Lp de De Rham en el caso de variedades Riemannianas. Se estudia la
relación entre estas dos definiciones, lo que permite concluir que también esta segunda
versión es invariante por cuasi-isometŕıas bajo ciertas hipótesis. Como aplicación de lo
anterior se estudia la cohomoloǵıa Lp relativa a un punto distinguido en el borde de los
grupos de Heintze de la forma R

n−1
⋊α R, donde la derivación α tiene valores propios

reales positivos λ1 ≤ · · · ≤ λn−1. Como consecuencia se obtiene que los números
λ1

tr(α)
, . . . , λn−1

tr(α)
son invariantes por cuasi-isometŕıas.

En la segunda parte se trabaja con la cohomoloǵıa de Orlicz, que es una gen-
eralización de la cohomoloǵıa Lp. Aqúı también se define una versión relativa y se
adapta la prueba de la invarinza por cuasi-isometŕıas de la cohomoloǵıa de Orlicz sim-
plicial. Como resultado central de esta segunda parte se prueba la equivalencia entre
la cohomoloǵıa de Orlicz simplicial (relativa) y la cohomoloǵıa de Orlicz-de Rham (rel-
ativa) para grupos de Lie. Una importante consecuencia de esto es la invarianza por
cuasi-isometŕıas de la cohomoloǵıa de Orlicz-de Rham en el caso de los grupos de Lie
contractibles.





Résumé

Ce texte est divisé en deux parties. Dans la première on définit la cohomologie Lp

de certains espaces métriques hyperboliques d’après Gromov relativement à un point
dans son bord à l’infini. Deux aspects différents sont traités. En premier on étudie une
version simpliciale de la cohomologie Lp adaptée aux complexes simpliciaux à géométrie
bornée. On montre, de manière similaire au cas classique, qu’elle est invariante par
quasi-isométries sous certaines hypothèses. Ensuite on définit une version relative de
la cohomologie Lp de De Rham dans le cas des variétés riemanniennes. On étudie
la relation entre ces deux notions, on en déduit que la deuxième version est aussi
invariante par quasi-isometries sous certaines hypothèses. Comme application on étudie
la cohomologie Lp relative à un point distingué dans le bord des groupes d’Heintze
R
n−1

⋊α R, où la dérivation α a toutes ses valeurs propres réelles positives λ1 ≤ · · · ≤
λn−1. Comme conséquence on obtient que les nombres λ1

tr(α)
, . . . , λn−1

tr(α)
sont invariants

par quasi-isometries.

Dans la deuxième partie on travaille avec la cohomologie d’Orlicz, une généralisation
de la cohomologie Lp. On définit aussi une version relative et on adapte la preuve
de l’invariance par quasi-isometries de la cohomologie d’Orlicz simpliciale. Comme
résultat central de cette deuxième partie on démontre l’équivalence entre la cohomologie
d’Orlicz simpliciale (relative) et la cohomologie d’Orlicz-de Rham (relative) pour les
groupes de Lie. Une conséquence importante est l’invariance par quasi-isometries de
la cohomologie d’Orlicz-de Rham dans le cas des groupes de Lie contractiles.
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Chapter 1

Introduction

1.1 Motivation

Consider the following fundamental problem of large scale geometry:

Problem 1.1.1. Given a family of metric spaces, how to determine its quasi-isometry
classes?

In this context the Lp-cohomology in its different versions appears as an important
quasi-isometry invariant, and as a consequence, as a tool to give partial answers to
Problem 1.1.1.

To give a quick idea remember the classical de Rham cohomology of a smooth
manifold M . It is defined from the cochain complex of differential forms

Ω0(M)
d

−−→ Ω1(M)
d

−−→ Ω2(M)
d

−−→ Ω3(M)
d

−−→ · · ·

and provides a topological invariant. That is, if M and N are diffeomorphic, there is
an isomorphism between the cohomology groups Hk

dR(M) and Hk
dR(N) for every k ∈ N.

Demanding an integrability condition to the forms on some Riemannian manifold
we put the metric in the game. One can consider, for example, the spaces of differential
forms that are Lp-integrable and have Lp-integrable derivative. This cochain complex
defines the de Rham Lp-cohomology, introduced in the eighties ([GKS87, Pan88]).
It is possible also to consider the space of Lp-integrable differential forms with Lq-
integrable derivative for another positive number q ≥ 1, which defines the de Rham
Lp,q-cohomology (we refer to [GT06] for more details about this second notion, that
will not be studied in this work).

Under certain hypotheses one can prove that the Lp-cochain complex described
above is homotopically equivalent to another cochain complex: the one that consists of
simplicial cochains on a proper triangulation of the manifold that have finite ℓp-norm
(see [GKS88, Pan95, Gen14]). The cohomology of this cochain complex is called the
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simplicial ℓp-cohomology of the triangulation. We refer also to [Ele97, BP03] for this
version.

Other versions of Lp-cohomology have been studied. For instance, we can men-
tion the Alexander-Spanier and asymptotic Lp-cohomology, defined for metric measure
spaces ([Pan95, Gen14]); or the continuous group Lp-cohomology ([CT11, BR19]).

As we said, Lp-cohomology provides a quasi-isometry invariant: IfM and N are two
quasi-isometric Riemannian manifolds with certain properties (uniformly contractible,
bounded geometry), then for every k ∈ N the Lp-cohomology spaces LpHk(M) and
LpHk(N) are isomorphic as topological vector spaces; or in its simplicial version, if
X and Y are two simplicial complexes equipped with certain metrics, then the ℓp-
cohomology spaces ℓpHk(X) and ℓpHk(Y ) are isomorphic (see Section 1.2.1 for the
explicit formulations). This result appears first for degree one in [Pan88]. Later it is
generalized to higher degrees ([Gro93, Pan95, BP03]).

Since different versions of Lp-cohomology are quasi-isometry invariant restricted to
the respective family of metric spaces, their properties are also invariant. In particular
some numerical invariants can be obtained by studying the Lp-cohomology spaces. For
example, if we consider the de Rham Lp-cohomology of a Riemannian manifoldM , the
sets

Annk(M) = {p ∈ [1,+∞) : LpHk(M) = 0} and

Hausk(M) = {p ∈ [1,+∞) : LpHk(M) is a Hausdorff space}

are also quasi-isometry invariant. In some cases the sets Annk(M) and Hausk(M) are
finite collections of intervals whose ends are numerical invariants.

In case of Gromov-hyperbolic spaces there exists an identification between the Lp-
cohomology spaces in degree one and some Besov spaces defined on the boundary at
infinity, that allows to study the sets Haus1 and Ann1 (see [Pan88, BP03]). In degree
k ≥ 2 the techniques are quite different. In [Pan08] and [Bou16] there are proofs of
the vanishing of the Lp-cohomology via the explicit construction of primitives, which
gives a partial computation of Annk. The non-vanishing usually involves the explicit
construction of non-zero classes. To this end one can use a duality property of Lp-
cohomology (see [GT98, GT10, Pan08]): A closed differential k-form ω represents a
non-zero class in LpHk(M) (for p > 1) if, and only if, there exists a sequence of Lq-
integrable differential (n − k)-forms {βj}j∈N, with n = dim(M) and 1

p
+ 1

q
= 1, such

that
∫

M

ω ∧ βj ≥ 1 and ‖dβj‖Lq → 0.

In some cases (the real hyperbolic space for example) this construction is easy
(see Section 2.4), but there are some problems to extend the techniques for more
complicated spaces. For example, we can try to repeat the construction in more general
Heintze groups of the form R

n
⋊αR, but it requires to find a sequence of Lq-integrable

(n − k)-forms {βj}j∈N with a determined value in the support of the k-form ω. Here
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the first Sobolev inequality puts a restriction on the existence of such sequence. At
this point the idea of relative Lp-cohomology appears, because it is the behaviour of
the forms on a neighborhood of a special point on the boundary at infinity which
hinders the construction of non-zero classes. This idea is to consider only the forms
that vanish on a neighborhood of a fixed boundary point, which allows to avoid the
problem described above.

It is important to say that the construction of non-zero classes using duality for
Heintze groups as above can be done, but in a more sophisticated way than described.
In [Pan08] there is a construction of a special class of non-zero cohomology classes
called torsion classes.

A different idea of relative Lp-cohomology is defined in [BK12]. It is done in the
simplicial case with respect to subcomplexes instead of boundary points.

Instead of the Lp-norm one can consider other Luxembourg norms defined by differ-
ent Young functions. This gives the Orlicz cohomology, which is studied in recent works
(see [Car16, GK19, Kop17, KP15]). This allows one to obtain finer quasi-isometry in-
variants. In particular, in [Car16] there are interesting results about the large scale
geometry of Heinze groups obtained by using Orlicz cohomology in degree one. We
expect that the study of higher degrees can give us new results too. To this end it is nec-
essary to prove some fundamental properties of Orlicz cohomology such as equivalence
theorems. We address these problems on Chapter 4.

1.2 Main definitions and results

1.2.1 Lp-cohomology

Let us consider X a simplicial complex with finite dimension and a length distance
| · − · |. Assume that there exist a constant C ≥ 0 and a function N : [0,+∞) → N

such that

(a) all simplices in X have diameter smaller than C; and

(b) every ball with radius r intersects at most N(r) simplices.

In this case we say that X has bounded geometry.

Fix a real number p ∈ [1,+∞) and consider for each k ∈ N the Banach space

ℓpCk(X) =

{

θ : Xk → R :
∑

σ∈Xk

|θ(σ)|p < +∞

}

with the usual ℓp-norm

‖θ‖ℓp =

(

∑

σ∈Xk

|θ|p

) 1
p

,
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where Xk denotes the set of k-simplices in X. The coboundary operator

δ = δk : ℓ
pCk(X) → ℓpCk+1(X)

is defined by δk(θ)(σ) = θ(∂σ), where ∂ is the usual boundary operator. It is easy to
see, using bounded geometry, that δk is continuous (see Section 3.1). The k-space of
ℓp-cohomology of X is the topological vector space

ℓpHk(X) =
Ker δk
Im δk−1

.

It is sometimes convenient to consider also the k-spaces of reduced ℓp-cohomology of X
as the Banach space

ℓpH
k
(X) =

Ker δk

Im δk−1

.

Let us assume now that X is Gromov-hyperbolic. For a point ξ ∈ ∂X we denote
by ℓpCk(X, ξ) the subspace of ℓpCk(X) consisting of all k-cochains that are zero on a
neighborhood of ξ in X. We say that a k-cochain θ is zero or vanishes on U ⊂ X if
for every k-simplex σ ⊂ U we have θ(σ) = 0. Note that ℓpCk(X, ξ) is not a closed
subspace, so it is not a Banach space.

The coboundary operator δk maps ℓpCk(X, ξ) on ℓpCk+1(X, ξ); hence for every
k ∈ N and p ∈ [1,+∞) we define the k-space of ℓp-cohomology of X relative to ξ as
the quotient

ℓpHk(X, ξ) =
Ker δ|ℓpCk(X,ξ)

Im δ|ℓpCk−1(X,ξ)

.

In Section 2.2 we prove the following result:

Theorem 1.2.1. Let X and Y be two Gromov-hyperbolic and uniformly contractible
simplicial complexes with finite dimension and bounded geometry, and ξ a fixed point
in ∂X. If F : X → Y is a quasi-isometry, then for every p ∈ [1,+∞) and k ∈ N there
is an isomorphism of topological vector spaces between ℓpHk(X, ξ) and ℓpHk(Y, F (ξ)).

A metric spaceX is uniformly contractible if it is contractible and there is a function
ψ : [0,+∞) → [0,+∞) such that every ball B(x, r) = {x′ ∈ X : |x′ − x| < r} is
contractible into the ball B(x, ψ(r)).

Theorem 1.2.1 is also true for ℓp-cohomology in the classical sense, see [Gro93,
BP03]. In fact, the proof we give in Section 2.2 is an adaptation of the proof of Theo-
rem 1.1 in [BP03].

In order to define the de Rham version of Lp-cohomology consider a Riemannian
manifold M of dimension n, an integer k = 0, . . . , n and p ∈ [1,+∞). Let us set some
definitions and notations:
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(i) Denote Λk(M) =
⋃

x∈M Λk(TxM), where Λk(TxM) is the space of alternating
k-linear maps on the tangent space TxM . A k-form on M is a function ω :M →
Λk(M), x 7→ ωx, satisfying ωx ∈ Λk(TxM) for all x ∈M .

(ii) If ψ : U ⊂ R
n → M is a parametrization, then we can write the pull-back of a

k-form ω on M , defined by ψ∗ωx(v1, . . . , vk) = ωψ(x)(dxψ(v1), . . . , dxψ(v1)), as

ψ∗ω =
∑

1≤i1<...<ik≤n

ai1...ik dxi1 ∧ . . . ∧ dxik ,

where the real functions ai1...ik : U → R are called coefficients of ω with respect to
the parametrization ψ. We say that ω is measurable if the coefficients of ω with
respect to every parametrization are Borel measurable. It is said to be smooth
or a differential k-form if the coefficients are smooth. The space of differential
k-forms on M is denoted by Ωk(M).

(iii) The operator norm of a k-form ω in M at the point x is

|ω|x = sup{|ωx(v1, . . . , vk)| : vi ∈ TxM for i = 1, . . . , k, with ‖vi‖x = 1},

where ‖ ‖x is the Riemannian norm in TxM . We say that a k-form is Lp-integrable
(resp. Lp-locally integrable) if it is measurable and the function x 7→ |ω|x is in
Lp(M) (resp. Lp,loc(M)). In the case p = 1 we just say that ω is integrable (resp.
locally integrable). We denote by Lp(M,Λk) the space of Lp-integrable k-forms
on M up to almost everywhere zero forms, which is a Banach space equipped
with the Lp-norm

‖ω‖Lp =

(∫

M

|ω|pxdV (x)

) 1
p

,

where dV is the Riemannian volume on M .

Consider the space

LpΩk(M) = {ω ∈ Ωk(M) : ‖ω‖Lp , ‖dω‖Lp < +∞}.

It is not complete with the norm |ω|Lp = ‖ω‖Lp+‖dω‖Lp , so we consider its completion
LpCk(M). Observe that the usual derivative is continuous in (LpΩk(M), | |Lp), thus
it can be extended to a continuous function d = dk : L

pCk(M) → LpCk+1(M).

The k-space of Lp-cohomology of M is

LpHk(M) =
Ker dk
Im dk−1

.

As before, we have also the k-space of reduced Lp-cohomology as the Banach space

LpH
k
(M) =

Ker dk

Im dk−1

.
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Remark 1.2.2. If ω is a locally integrable k-form in M we say that another locally
integrable (k + 1)-form ̟ is its weak derivative and we write ̟ = dω if for every
β ∈ Ωn−k−1(M) with compact support

∫

M

̟ ∧ β = (−1)k+1

∫

M

ω ∧ dβ.

We say that ω is closed if it have the (k+1)-form constant zero as its weak derivative,
and that it is exact if there exists a locally integrable (k− 1)-form ϑ such that dϑ = ω.
Then an equivalent definition of de Rham Lp-cohomology can be done considering the
quotient Zk,p(M)/Bp,k(M), where Zk,p(M) is the space of closed k-forms and Bk,p(M)
is the space of exact k-forms in Lp(M,Λk).

Since Lp(M,Λk) is complete and contains LpΩk(M), every form in LpCk(M) can
be seen as an element of Lp(M,Λk).

Using Hölder’s inequality (see Lemma 2.3.3) we can see that every k-form in
LpCk(M) has weak derivative in LpCk+1(M), thus the equivalence between both defi-
nitions of de Rham Lp-cohomology follows from [GT10, Proposition 2], whose proof is
based on regularisation methods (see for example [GKS84, GT06]).

If M is complete and Gromov-hyperbolic and ξ is a point in ∂M , we can consider
again LpCk(M, ξ) the subspace of LpCk(M) consisting of all k-forms that vanish (al-
most everywhere) on a neighborhood of ξ in M . The k-space of Lp-cohomology of M
relative to ξ is

LpHk(M, ξ) =
Ker d|LpCk(M,ξ)

Im d|LpCk−1(M,ξ)

.

Given such a pair (M, ξ), where M has bounded geometry, there exists a pair
(XM , ξ) called a simplicial pair associated to (M, ξ), where XM is a simplicial complex
with finite dimension and bounded geometry that is quasi-isometric toM , and ξ ∈ ∂XM

corresponds to ξ by the quasi-isometry between M and XM . The simplicial complex
XM will be constructed as a nerve of a covering (see the precise definition in Section
3.2). Then we have the following result:

Theorem 1.2.3. Let M be a complete and Gromov-hyperbolic Riemannian manifold
with bounded geometry and ξ ∈ ∂M . Take (XM , ξ) a simplicial pair associated to
(M, ξ). Then for all p ∈ [1,+∞) and k ∈ N there is a canonical isomorphism between
LpHk(M, ξ) and ℓpHk(XM , ξ).

The proof of this result is done in Section 3.2. It is again an adaptation of the proof
in the classical case (see [Pan95, Gen14]).

From the proof of Theorem 1.2.3 it follows:

Theorem 1.2.4. If M is a complete and Gromov-hyperbolic Riemannian manifold
with bounded geometry, then for every point ξ ∈ ∂M and p ∈ [1,+∞) the cochain
complexes (LpC∗(M, ξ), d) and (LpΩ∗(M, ξ), d) are homotopically equivalent.
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If M is uniformly contractible, then so is XM ; therefore Theorem 1.2.3 implies:

Corollary 1.2.5. Let F : M → N be a quasi-isometry between two complete, uni-
formly contractible and Gromov-hyperbolic Riemannian manifolds with bounded geom-
etry. Then for every point ξ in ∂M the spaces LpHk(M, ξ) and LpHk(N,F (ξ)) are
isomorphic for all p ∈ [1,+∞) and k ∈ N.

1.2.2 Heintze groups

A result by Heintze ([Htz74]) says that every homogeneous and connected Riemannian
manifold with negative sectional curvature is isometric to a Lie group of the formN⋊τR

with a left-invariant Riemannian metric. Here N is a connected and simply connected
nilpotent Lie group and the homomorphism τ : R → Aut(N) satisfies deτ(t) = etα,
where α is a derivation on the Lie algebra Lie(N) with all its eigenvalues with positive
real part. Moreover, if N ⋊τ R is such a group, then there exists a left-invariant
Riemannian metric in N ⋊τ R with negative sectional curvature. A group with this
structure is called a Heintze group and will be denoted by N ⋊α R if τ is determined
by α.

We are interested in the restriction of Problem 1.1.1 to the family of Heintze groups.
About this we first observe that two left-invariant metrics on a Lie group are always
bi-Lipschitz equivalent, thus the quasi-isometry class of a Lie group does not depend
on the choice of the left-invariant metric. In particular a Heintze group with any
left-invariant metric is always hyperbolic in the sense of Gromov. This also shows
that two isomorphic Heintze groups are quasi-isometric. The converse is not true in
general: every Heintze group is quasi-isometric to a purely real Heintze group, which
is determined by a derivation with real eigenvalues (see [Cor18]). If we restrict the
problem to purely real Heintze groups we have the following conjecture:

Conjecture 1.2.6 ([Cor18]). Two purely real Heintze groups are quasi-isometric if,
and only if, they are isomorphic.

This conjecture remains open in its full generality, however, there are some partial
results. For instance, this is proved in the case of Heintze groups of Carnot type
([Pan89]) and for groups with the form R

n
⋊α R ([Xie14]). See also [Pan08, SX12,

Xie15a, Xie15b, CS17] for related results and particular cases.

We are interested in finding quasi-isometry invariants related to Lp-cohomology.
Using the relative Lp-cohomology we obtain a proof of the following result (Section
3.4):

Theorem 1.2.7. Let G1 = R
n−1

⋊α1R and G2 = R
n−1

⋊α2R be two purely real Heintze
groups. If G1 and G2 are quasi-isometric, then there exists λ > 0 such that α1 and λα2

have the same eigenvalues counted with multiplicity.
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Observe that every Young function φ satisfies

lim
t→+∞

φ(t) = +∞.

We say that φ is doubling if there exists a constant D ≥ 2 such that φ(2t) ≤ Dφ(t)
for all t > 0.

Let (Z, µ) be a measure space and φ a Young function. The Luxembourg norm
associated to φ of a measurable function f : Z → R = [−∞,+∞] is defined by

‖f‖Lφ = inf

{

γ > 0 :

∫

Z

φ

(

f

γ

)

dµ ≤ 1

}

∈ [0,+∞].

The Orlicz space of (Z, µ) associated to φ is the Banach space

Lφ(Z, µ) =
{f : Z → R measurable : ‖f‖Lφ < +∞}

{f : Z → R measurable : ‖f‖Lφ = 0}
.

It is not difficult to see that ‖f‖Lφ = 0 if, and only if, f = 0 almost everywhere.

If µ is the counting measure on Z we denote Lφ(Z, µ) = ℓφ(Z) and ‖ ‖Lφ = ‖ ‖ℓφ .
Observe that if φ is the function t 7→ |t|p, then Lφ(Z, µ) is the classic space Lp(Z, µ).
We refer to [RR91] for a background about Orlicz spaces.

We can define the simplicial ℓφ-cohomology in the same way we defined the ℓp-
cohomology, i.e, for a finite dimensional simplicial complex X with bounded geometry
we set ℓφCk(X) = ℓφ(Xk). The coboundary operator δk : ℓφCk(X) → ℓφCk+1(X) is
continuous (see Section 4.1), then we define respectively the k-space of ℓφ-cohomology
and reduced ℓφ-cohomology of X as

ℓφHk(X) =
Ker δk
Im δk−1

and ℓφH
k
(X) =

Ker δk

Im δk−1

.

As before, if X is Gromov-hyperbolic and ξ ∈ ∂X we can consider the k-space of
ℓφ-cohomology relative to ξ as

ℓφHk(X, ξ) =
Ker δ|ℓφCk(X,ξ)

Im δ|ℓφCk−1(X,ξ)

,

where ℓφCk(X, ξ) is the subspace of ℓφCk(X) consisting of all k-cochains which are
zero on a neighborhood of ξ in X.

A ℓφ-version of Theorem 1.2.1 holds:

Theorem 1.2.8. Let X and Y be two uniformly contractible Gromov-hyperbolic sim-
plicial complexes with finite dimension and bounded geometry, and φ a Young function.
If F : X → Y and ξ ∈ ∂X, then for every k ∈ N there is an isomorphism between
ℓφHk(X, ξ) and ℓφHk(Y, F (ξ)).

11



We prove Theorem 1.2.8 in Section 4.1. The proof of the non-relative version of the
theorem can be read in [Car16].

If M is a Riemannian manifold, consider

LφΩk(M) = {ω ∈ Ωk(M) : ‖ω‖Lφ , ‖dω‖Lφ < +∞},

equipped with the norm |ω|Lφ = ‖ω‖Lφ + ‖dω‖Lφ , and LφCk(M) its completion. The
derivative dk : LφCk(M) → LφCk+1(M) is continuous, then we define the k-space of
Lφ-cohomology of M as

LφHk(M) =
Ker dk
Im dk−1

,

and its k-space of reduced Lφ-cohomology as

LφH
k
(M) =

Ker dk

Im dk−1

.

We also call this family of spaces the Orlicz-de Rham cohomology of M associated to
the Young function φ.

As in the Lp-case, we can also consider Lφ(M,Λk) the space of Lφ-integrable k-
forms up to almost everywhere zero forms. We can see the elements of LφCk(M) as
k-forms in Lφ(M,Λk).

If M is Gromov-hyperbolic and ξ ∈ ∂M , then we can define the k-space of relative
Orlicz-de Rham cohomology of the pair (M, ξ) for the Young function φ (or k-space of
Lφ-cohomology of M relative to ξ) as

LφHk(M, ξ) =
Ker d|LφCk(M,ξ)

Im d|LφCk−1(M,ξ)

,

where LφCk(M, ξ) denotes the subspace of k-forms in LφCk(M) which vanish on some
neighborhood of ξ.

As we see in Section 4.2 the generalization of Theorem 1.2.3 presents some difficul-
ties. A proof in the case of degree one can be found in [Car16, Section 3]. We give a
proof in the case of Lie groups.

Theorem 1.2.9. Let G be a Lie group equipped with a left-invariant Riemannian met-
ric and XG the corresponding simplicial complex as in Section 1.2.1. Consider φ a
doubling Young function. Then the cochain complexes (ℓφCk(XG), δ), (LφCk(G), d)
and (LφΩk(G), d) are homotopically equivalent. Moreover, if G is Gromov-hyperbolic
and ξ is a point in ∂G, then the cochain complexes (ℓφCk(XG, ξ̄), δ), (L

φCk(G, ξ), d)
and (LφΩk(G, ξ), d) are homotopically equivalent, where (XG, ξ) is a simplicial pair
associated to (M, ξ). As a consequence the corresponding cohomology spaces are iso-
morphic.
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A consequence of the previous theorem is the quasi-isometry invariance of Orlicz-de
Rham cohomology in the case of Lie groups.

Corollary 1.2.10. If F : G1 → G2 is a quasi-isometry between two contractible Lie
groups equipped with left-invariant metrics and φ is a doubling Young function, then
for every k ∈ N the topological vector spaces LφHk(G1) and L

φHk(G2) are isomorphic.
Furthermore, if G1 and G2 are Gromov-hyperbolic and ξ is a point in ∂G1, then the
spaces LφHk(G1, ξ) and L

φHk(G2, F (ξ)) are isomorphic for every k.

As we said in Section 1.1, a motivation to study Orlicz cohomology is to find finer
quasi-isometry invariants related to Heintze groups. Considering a larger family of
Young functions could improve Theorem 1.2.7. It is interesting for example consider
the following question:

Question 1.2.11. Let N1⋊α1R and N2⋊α2R be two quasi-isometric purely real Heintze
groups. Is there a positive number λ > 0 such that α1 and λα2 have the same Jordan
form?

As an example of application of Orlicz cohomology to the Problem 1.1.1 and in
particular to Question 1.2.11 for Heintze groups we can consider the family of doubling
Young functions given by

φp,κ(t) =
|t|p

log(e+ |t|−1)κ
,

with p ∈ [1,+∞) and κ ∈ [0,+∞). We put the lexicographic order in the family of
indices (p, κ) and denote Lp,κHk(G) = Lφp,κHk(G).

For degree one consider the critical exponent

p 6=0(G) = inf{(p, κ) ∈ [1,+∞)× [0,∞) : Lp,κH1(G) 6= 0}.

Then we have the following result:

Theorem 1.2.12 ([Car16]). Let G = N ⋊α R be a purely real Heintze group where α
has eigenvalues λ1 < . . . < λd. Then

p 6=0(G) =

(

tr(α)

λ1
, 1 +

tr(α)

λ1
(m1 − 1)

)

,

where m1 is the size of the biggest Jordan subblock associated to λ1.

As a conclusion of Theorem 1.2.12 one obtain that m1 is invariant under quasi-
isometries between Heintze groups, which improves Theorem 1.2.7 and gives us a partial
answer to the Question 1.2.11. This motivates the study of Orlicz cohomology in higher
degrees.

Other results related to Question 1.2.11 and the large scale geometry of Heintze
groups in general are obtained using a local version of Orlicz geometry in [Car16].
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Chapter 2

Preliminaries

The aim of this chapter is to set notation and state some lemmas that we will use in
the following chapters.

2.1 Quasi-isometries and Gromov-hyperbolic spaces

Let X and Y be two metric spaces, we denote the distance by | · − · | in both cases. A
map F : X → Y is a quasi-isometry embedding if there exist two constants λ ≥ 1 and
ǫ ≥ 0 such that for all x, x′ ∈ X,

λ−1|x− x′| − ǫ ≤ |F (x)− F (x′)| ≤ λ|x− x′|+ ǫ.

We say that F is a quasi-isometry if we also have that F (X) is C-dense in Y for some
C ≥ 0, which means that for every y ∈ Y there exists x ∈ X such that |F (x)− y| ≤ C.
In this case we say that X and Y are quasi-isomtric spaces.

Remark 2.1.1. Consider F : X → Y and G : Y → Z two quasi-isometries. It is easy
to see that:

(i) G ◦ F : X → Z is a quasi-isometry.

(ii) There exists a quasi-isometry F : Y → X such that F ◦ F and F ◦ F are at
bounded uniform distance from the identity. We say that F is a quasi-inverse of
F .

These two conditions give us an equivalence relation between metric spaces. In this
context Problem 1.1.1 appears naturally.

There is a natural relation between quasi-isometries: If F,G : X → Y are two
quasi-isometries, we write F ∼ G if the uniform distance between F and G is bounded.
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Under this equivalence the quasi-inverse of a quasi-isometry is unique, then we can
consider the group of quasi-isometries of some metric space X as

QI(X) = {F : X → X : F is a quasi-isometry}/ ∼ .

Observe that the composition of quasi-isometries passes to the quotient; hence it defines
a product on QI(X). We also use the notation

QI(X, Y ) = {F : X → Y : F is a quasi-isometry}/ ∼ .

Here we find another general problem linked to quasi-isometries:

Problem 2.1.2. Given a metric space X, how does QI(X) act on it?

A geodesic metric space X is Gromov-hyperbolic if there exists δ > 0 such that
every geodesic triangle ∆ = [x, y] ∪ [x, z] ∪ [y, z] is contained in a δ-neighborhood of
any two of its edges. In this case we say also that X is δ-hyperbolic in the sense of
Gromov.

The proof of the following theorem can be found in [GdlH90, Chapter 5].

Theorem 2.1.3. Let X and Y be two geodesic metric spaces and F : X → Y a
quasi-isometry. If Y is Gromov-hyperbolic, then so is X.

There is a general definition of Gromov-hyperbolic spaces for non-geodesic spaces.
We will not give it, but the reader can find it in [GdlH90, Chapter 2].

The boundary at infinity (or simply boundary) of a geodesic and proper Gromov-
hyperbolic metric space X is defined as the set of equivalence classes of geodesic rays
in X up to bounded Hausdorff distance. We denote it by ∂X.

The set X = X ∪ ∂X has a natural topology for which it is a compactification of
X. Indeed, it can be seen as the topology induced by a metric d on X such that for
all x, x′ ∈ X,

d(x, x′) ≍ aDmin{1, |x− x′|}, D = dist(x0, [x, x
′]), (2.1)

where a > 0 and x0 ∈ X are fixed, and [x, x′] denotes a geodesic (or a geodesic ray or
a geodesic segment) between x and x′. If one of these points belongs to the boundary
we put |x− x′| = +∞. See for example [BHK01, Chapter 4] for more details. If f and
g are two real functions with the same domain we write f ≍ g if there exists a uniform
constant C ≥ 1 such that C−1f ≤ g ≤ Cf .

The following figure shows such a neighborhood of a point ξ ∈ ∂X in X, which
approximates a ball with centre ξ for the distance (2.1).

16





of continuous linear maps h = hk : V
k → W k−1 such that hk+1 ◦dk+δk−1 ◦hk = fk−gk

for every k ∈ Z. In this case we say that h is an homotopy between f and g. If f and
g are homotopic, then they induce the same map in (reduced) cohomology.

· · · d // V −2 d //

f
��

g




V −1 d //

f
��

g




h

{{

V 0 d //

f
��

g




h

{{

V 1 d //

f
��

g




h

||

V 2 d //

f
��

g




h

||

· · ·

· · · δ //W−2 δ //W−1 δ //W 0 δ //W 1 δ //W 2 δ // · · ·

We say that two cochain complexes are homotopically equivalent if there exist
cochain maps f : (V ∗, d) → (W ∗, δ) and g : (W ∗, δ) → (V ∗, d) such that f ◦ g and
g ◦ f are homotopic to the identity. In this case f and g induce isomorphisms of topo-
logical vector spaces between the corresponding (reduced) cohomology spaces. This
defines an equivalence relation between cochain complexes.

A cochain complex (V ∗, d) retracts to a subcomplex (U∗, d) (Uk ⊂ V k for all k ∈ Z)
if there exists a cochain map r : (V ∗, d) → (U∗, d) such that i ◦ r is homotopic to the
identity, where i is the inclusion, and the homotopy h satisfies h(Uk) ⊂ Uk−1 for every
k ∈ N. This implies that (V ∗, d) and (U∗, d) are homotopically equivalent.

By a bicomplex we mean a family of topological vector spaces {Ck,ℓ}(k,ℓ)∈N2 and
continuous maps d′ : Ck,ℓ → Ck+1,ℓ and d′′ : Ck,ℓ → Ck,ℓ+1 such that all rows and
columns (C∗,ℓ, d′) and (Ck,∗, d′′) are cochain complexes. We denote it by (C∗,∗, d′, d′′).

The following lemma will be important in Sections 3.2 and 4.2.

Lemma 2.2.1 (Lemma 5,[Pan95]). Let (C∗,∗, d′, d′′) be a bicomplex with d′◦d′′+d′′◦d′ =
0. Suppose that for every ℓ ∈ N, the complex (C∗,ℓ, d′) retracts to the subcomplex
(Eℓ := Ker d′|C0,ℓ → 0 → 0 → · · · ). Then the complex (D∗, δ), defined by

Dm =
⊕

k+ℓ=m

Ck,ℓ and δ = d′ + d′′,

is homotopically equivalent to (E∗, d′′).

D0 δ // D1 δ // D2

E0 � � //

d′′
��

C0,0 d′ //

d′′
��

C1,0 d′ //

d′′
��

C2,0 d′ //

d′′
��

· · ·

E1 � � //

d′′
��

C0,1 d′ //

d′′
��

C1,1 d′ //

d′′
��

C2,1 d′ //

d′′
��

· · ·

E2 � � //

d′′��

C0,2 d′ //

d′′��

C1,2 d′ //

d′′��

C2,2 d′ //

d′′��

· · ·

...
...

...
...
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Proof. For every K ∈ N let (C∗,∗
[K], d

′, d′′) be the subcomplex of (C∗,∗, d′, d′′) defined by

Ck,ℓ
[K] =







Ck,ℓ if k < K
Ker d′|Ck,ℓ if k = K

0 if k > K
.

Observe that it is a bicomplex because of the identity d′ ◦ d′′ + d′′ ◦ d′ = 0.

For every m ∈ N let

Dm
[K] =

⊕

k+ℓ=m

Ck,ℓ
[K].

One has D∗
[K] ⊂ D∗

[K+1] for every K and ∪K≥0D
∗
[K] = D∗. Moreover, by definition of

E∗, one has D∗
[0] = E∗. Therefore, to prove the lemma, it will suffice to show that D∗

[K]

retracts to D∗
[K−1] for every K ≥ 1.

To construct the expected homotopies we first define some special maps denoted
by h′ and b. In order to simplify the notation we set

C0 =
⊕

ℓ≥0

C0,ℓ, C1 =
⊕

k≥1,ℓ≥0

Ck,ℓ, and E =
⊕

ℓ≥0

Eℓ.

We also write C = C0 ∪ C1. By assumption, for every ℓ ∈ N, the complex (C∗,ℓ, d′)
retracts to the subcomplex (Eℓ → 0 → 0 → · · · ). Thus there exist continuous operators

h′ : C1 → C, and ϕ : C0 → E ,

such that

(i) d′ ◦ h′ + h′ ◦ d′ = Id on C1, and

(ii) h′ ◦ d′ = Id− i ◦ ϕ on C0,

where i : E → C0 is the inclusion. We extend h′ to the whole space C by letting h′ ≡ 0
on C0.

Define b : C → C by

• b = −(d′′ ◦ h′ + h′ ◦ d′′) on C1, and

• b = i ◦ ϕ on C0.

On the subspace C1 relation (i) implies that

δ ◦ h′ + h′ ◦ δ = Id− b.

On C0 relation (ii) implies that

δ ◦ h′ + h′ ◦ δ = h′ ◦ d′ = Id− i ◦ ϕ = Id− b.
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Therefore the relation δ ◦h′+h′ ◦ δ = Id− b is valid on the whole space C. This implies
in particular that b commutes with δ.

We are now ready to show that D∗
[K] retracts to D∗

[K−1] for every K ≥ 1. Since

h′(Ck,ℓ) ⊂ Ck−1,ℓ for k ≥ 1 and h′(C0,ℓ) = 0, we can consider h′[K] : D
m
[K] → Dm−1

[K] the
induced operator.

The map b satisfies b(Ck,ℓ) ⊂ Ck−1,ℓ+1 for k ≥ 1 and b(C0,ℓ) ⊂ C0,ℓ. Moreover for
K ≥ 1, one has

b(Ker d′|CK,ℓ) ⊂ Ker d′|CK−1,ℓ+1 .

Indeed, if d′ω = 0, then one has also d′d′′ω = 0. The definition of b and the relation
(i) yield :

d′bω = −(d′d′′h′ω + d′h′d′′ω) = d′′d′h′ω − d′h′d′′ω = d′′ω − d′′ω = 0.

Therefore b sends every Dm
[K] to D

m
[K−1] for K ≥ 1. Let b[K] : D

∗
[K] → D∗

[K−1] be the
induced operator. As we saw above, it commutes with δ. Since δ ◦ h′ + h′ ◦ δ = Id− b
on the whole space C, we get

δ ◦ h′[K] + h′[K] ◦ δ = Id− i[K−1] ◦ b[K]

and also
δ ◦ h′[K−1] + h′[K−1] ◦ δ = Id− b[K] ◦ i[K−1],

where i[K−1] : D
∗
[K−1] → D∗

[K] is the inclusion.

D0
[K] δ

//

b

��

D1
[K]

h′
vv

δ
//

b

��

D2
[K]

h′
vv

δ
//

b

��

D3
[K]

h′
vv

δ
//

b

��

· · ·

D0
[K−1]

δ //

i

SS

D1
[K−1]

h′
jj

δ //

i

SS

D2
[K−1]

h′
jj

δ //

i

SS

D3
[K−1]

h′
jj

δ //

i

SS

· · ·

All maps in the diagram are continuous, then the lemma follows.

2.3 Some properties about integration of forms

Suppose that M is a smooth manifold of dimension n and (Z, µ) is a measure space.
We say that a function Φ :M × Z → Λk(M) is a measurable family of k-forms on M
if for all z ∈ Z the function x 7→ Φ(x,z) is a k-form on M and the coefficients of Φ with
respect to every parametrization (depending on x ∈M and z ∈ Z) are measurable.

We say that Φ is integrable on Z if for every x ∈M , the function

z 7→ |Φ|(x,z) = sup{|Φ(x,z)(v1, . . . , vk)| : vi ∈ TxM for i = 1, . . . , k, with ‖vi‖x = 1}

20



belongs to L1(Z, µ). In this case we can consider the k-form

ωx(v1, . . . , vk) =

(∫

Z

Φ(x,z)dµ(z)

)

(v1, . . . , vk) =

∫

Z

Φ(x,z)(v1, . . . , vk)dµ(z). (2.2)

Observe that for all x ∈M ,

|ω|x ≤

∫

Z

|Φ|(x,z)dµ(z) = ‖Φ(x,·)‖L1 .

Lemma 2.3.1. Let Φ :M ×Z → Λk(M) be a measurable family of k-forms such that:

• It is integrable on Z, then we can define ω as in (2.2).

• For every fixed z ∈ Z the k-form x 7→ Φ(x,z) is locally integrable and has weak
derivative dΦ(x,z).

• The function z 7→ |dΦ|(x,z) belongs to L1(Z, µ) for every x ∈M .

Then ω is locally integrable and has weak derivative

dωx =

∫

Z

dΦ(x,z)dµ(z). (2.3)

The previous lemma follows directly from definition of weak derivative.

To prove that a k-form ω : M → Λk(M) is smooth it is enough to verify that for
every set of k vector fields {X1, . . . , Xk} the function

f(x) = ωx(X1(x), . . . , Xk(x))

is smooth on M . A sufficient condition for f to be smooth is that for every set of
vector fields {Y1, . . . , Ym} there exists

LYm · · ·LY1f(x)

for all x ∈M . The Lie derivative with respect to the field Y is defined by

LY f(x) =
∂

∂t

∣

∣

∣

∣

t=0

f(ϕt(x)),

where ϕt is the flow associated to Y .

From the above observation and the classical Leibniz Integral Rule one can conclude
the following lemma:

Lemma 2.3.2. Let M and N be two Riemannian manifolds and Φ :M ×N → Λk(M)
a smooth family of k-forms onM , i.e. a measurable family of k-forms which coefficients
are smooth functions on both variables. Suppose that one of the following conditions
holds:
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(i) For every x ∈M , the form y 7→ Φ(x,y) has compact support.

(ii) There is an isometric embedding ι : N → Ñ , such that ι(N) is an open subset
of the Riemannian manifolds Ñ with compact closure, and Φ is a restriction of
a smooth family of k-forms Φ̃ :M × Ñ → Λk(M).

Then the k-form ω defined as in (2.2) is smooth and

dωx =

∫

N

dΦ(x,y)dVN(y),

where dΦ(x,y) denotes the derivative of the differential k-form x 7→ Φ(x,y) for a fixed
y ∈ N .

If ω is an integrable n-form in L1(M,Λn) and M is orientable, one can define its
integral on M in the classical way, which satisfy

∣

∣

∣

∣

∫

M

ω

∣

∣

∣

∣

≤ ‖ω‖L1 .

As we have mentioned before we have the Hölder’s inequality in the case of mea-
surable forms:

Lemma 2.3.3. Let M be a Riemannian manifold, and p and q two real numbers in
(1,+∞) such that 1

p
+ 1

q
= 1. Then if we take ω ∈ Lp(M,Λk) and β ∈ Lp(M,Λn−k),

with k = 0, . . . , n, the form ω ∧ β is integrable and

‖ω ∧ β‖L1 ≤ ‖ω‖Lp‖β‖Lq .

To prove the previous lemma is enough to observe that |ω ∧ β|x ≤ |ω|x|β|x for all
x ∈M and use the classic Hölder’s inequality.

The contraction of a k-form ω on M with respect to a vector field Y is the (k− 1)-
form defined by

ιV ωx(v1, . . . , vk−1) = ωx(Y (x), v1, . . . , vk−1)

for all x ∈M and v1, . . . , vk−1 ∈ TxM .

We have the following version of Fubini’s theorem:

Lemma 2.3.4. Let M be an orientable smooth manifold of dimension n and I ⊂ R

an interval. Denote by ∂
∂t

the field on I ×M defined by

∂

∂t
(s, x) = (1, 0) ∈ R× TxM = T(s,x)(I ×M).

If ω is an integrable (n+ 1)-form on I ×M , then
∫

I×M

ω =

∫

I

(∫

M

η∗s

(

ι ∂
∂t
ω
)

)

ds,

where ηs :M → I ×M , ηs(x) = (s, x).
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2.4 Construction of non-zero classes using duality

Let us consider the following result mentioned in Section 1.1:

Lemma 2.4.1 ([Pan08]). Consider M a complete orientable Riemannian manifold of
dimension n and two real numbers p, q > 1 such that 1

p
+ 1

q
= 1. Let ω be a Lp-integrable

closed differential k-form on M . Then

(i) ω represents a non-zero class in LpH
k
(M) if, and only if, there exists a closed

(n− k)-form β ∈ LqΩn−k(M) such that
∫

M
ω ∧ β 6= 0.

(ii) ω represents a non-zero class in LpHk(M) if, and only if, there exists a sequence
of differential (n− k)-forms {βj}j∈N such that

∫

M

ω ∧ βj ≥ 1 and ‖dβj‖Lq → 0.

We use the previous lemma to construct non-zero cohomology classes for some
examples.

Example 2.4.2. Consider the real hyperbolic space H
n = R

n−1 × (0,+∞) with the
metric given by

〈v, w〉(x,t) =
v1w1 + · · ·+ vnwn

t2
,

for (x, t) ∈ H
n and v = (v1, . . . , vn) and w = (w1, . . . , wn) two vectors in T(x,t)H

n = R
n.

Take the closed differential forms

ω(x,t) = d(f(x)g(t)dx1 ∧ · · · ∧ dxk−1) and β(x,t) = d(ψ(x)ϕ(t)πk(x)dxk+1 ∧ · · · ∧ dxn−1),

where πk : R
n−1 → R is the projection onto the kth coordinate, and f, ψ : Rn−1 → [0, 1]

and g, ϕ : (0,+∞) → [0, 1] are smooth functions such that

• f has compact support and
∫

Rn−1 f(x)dx = 1.

• g(t) = 0 if t is bigger than some t1 > 0 and g(t) = 1 if t is smaller than some
t0 > 0.

• ϕ(t) = 0 if t is bigger than t2 > 0 and ϕ(t) = 1 if t is smaller than t1.

• ψ is constant 1 on the support of f and has compact support.

Observe that

‖ω‖Lp ≤ ‖fg′ dt ∧ dx1 ∧ · · · ∧ dxk−1‖Lp +
n−1
∑

i=k

∥

∥

∥

∥

∂f

∂xi
g dxi ∧ dx1 ∧ · · · ∧ dxk−1

∥

∥

∥

∥

Lp

.
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The first term is finite because fg′ has compact support. Using that |dxi1∧· · ·∧dxik | =
tk we can estimate the others:

∥

∥

∥

∥

∂f

∂xi
g dxi ∧ dx1 ∧ · · · ∧ dxk−1

∥

∥

∥

∥

p

Lp

=

∫

Hn

∣

∣

∣

∣

∂f

∂xi
(x)

∣

∣

∣

∣

p

g(t)ptpk dV (x, t)

=

∫ +∞

0

∫

Rn−1

∣

∣

∣

∣

∂f

∂xi
(x)

∣

∣

∣

∣

p

g(t)ptpk−ndxdt

≤

∥

∥

∥

∥

∂f

∂xi

∥

∥

∥

∥

p

Lp

∫ t1

0

tpk−ndt.

This is finite if p > n−1
k
. Moreover

|β|(x,t) ≤
k
∑

i=1

∣

∣

∣

∣

∂ψ

∂xi
(x)ϕ(t)πk(x)

∣

∣

∣

∣

|dxi ∧ dxk+1 ∧ · · · ∧ dxn−1|(x,t)

+ |ψ(x)ϕ(t)| |dxk ∧ · · · ∧ dxn−1|(x,t)

+ |ψ(x)πk(x)ϕ
′(t)| |dt ∧ dxk+1 ∧ · · · ∧ dxn−1|(x,t)

= tn−k

(

k
∑

i=1

∣

∣

∣

∣

∂ψ

∂xi
(x)ϕ(t)πk(x)

∣

∣

∣

∣

+ |ψ(x)ϕ(t)|+ |ψ(x)πk(x)ϕ
′(t)|

)

.

From this one can see that ‖β‖Lq is finite for every q > n−1
n−k

, which is equivalent to

p < n−1
k−1

.

If p ∈
(

n−1
k
, n−1
k−1

)

the n-form ω ∧ β is integrable by Holder’s inequality; hence by
Stokes theorem we have

∫

Hn

ω ∧ β = lim
s→0

∫

Rn−1×(s,t1)

ω ∧ β

≤ lim
s→0

∫

Rn−1×{s}

f dx1 ∧ · · · ∧ dxn−1 = 1.

By Lemma 2.4.1 we have that the reduced Lp-cohomology in degree k ≥ 2 is not
zero for all p ∈

(

n−1
k
, n−1
k−1

)

. This interval is a maximal open interval in Annck(H
n) =

[1,+∞) \ Annk(H
n). In fact, if p /∈

[

n−1
k
, n−1
k−1

]

, then LpHk(Hn) = 0 (see for example
[Bou16, Corollary B]).

In the case k = 1 we can look at [BP03, Theorem 0.3]. Since there exists an Ahlfors-
regular visual metric of dimension n− 1 on ∂Hn such that it is a Loewner space, then
LpH1(Hn) = 0 if, and only if, p ≤ n− 1.

Observe that the real hyperbolic space H
n is isometric to the group R

n−1
⋊Id R

with the left-invariant metric induced by the Euclidean inner product on the tangent
space at the identity.
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Example 2.4.3. Consider now the Heintze group G = R
3
⋊α R with

α =





1
1

3



 .

We equip G with the left-invariant metric induced by the Euclidean inner product on
the tangent space at the unity, which is given by

〈v, w〉(x,t) = e−tv1w1 + e−tv2w2 + e−3tv3w3 + v4w4.

The volume form on G is dV (x, t) = e−5tdxdt, and the operator norms of the funda-
mental horizontal forms on G are:

• |dx1|(x,t) = |dx2|(x,t) ≍ et, |dx3|(x,t) ≍ e3t,

• |dx1 ∧ dx2|(x,t) ≍ e2t, |dx1 ∧ dx3|(x,t) = |dx2 ∧ dx3|(x,t) ≍ e4t, and

• |dx1 ∧ dx2 ∧ dx3| ≍ e5t

See Lemma 3.4.4 for more details about these estimates.

We can consider the forms

ω(x,t) = d(f(x)g(t)dx1 ∧ dx2) and β(x,t) = d(ψ(x)ϕ(t)π3(x)),

as in the Example 2.4.2 (the functions g, ϕ are extended to R by putting g(t) = ϕ(t) = 1

for all t < 0). Using the same argument as above we can prove that LpH
3
(G) 6= 0 for

all p ∈
(

1, 5
4

)

. But this interval is not maximal in Annc3(G). Indeed, because of [Pan08,
Proposition 27] the interval

[

5
4
, 5
2

)

is contained in Annc3(G) and
(

5
2
,+∞

)

⊂ Ann3(G).

In order to improve the result we can try exchanging β by a sequence {βj}j∈N
satisfying the second condition of Lemma 2.4.1.

Consider βj = Ψj dx3, where Ψj(x, t) = 1 if (x, t) ∈ supp(fg). We suppose that
βj ∈ LqΩ1(G) for every j ∈ N and ‖dβj‖Lq → 0.

Observe that

‖dβj‖Lq ≥

∥

∥

∥

∥

∂Ψj

∂xi
dxi ∧ dx3

∥

∥

∥

∥

Lq

(i = 1, 2). (2.4)

Moreover
∥

∥

∥

∥

∂Ψj

∂xi
dxi ∧ dx3

∥

∥

∥

∥

q

Lq

=

∫

G

∣

∣

∣

∣

∂Ψj

∂xi
(x, t)

∣

∣

∣

∣

q

|dxi ∧ dx3|
q
(x,t)dV (x, t)

=

∫

R

∫

R

∥

∥

∥

∥

∂Ψj

∂xi
(·, ·, x3, t)

∥

∥

∥

∥

q

Lq(R2)

et(4q−5)dx3dt.
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Since βj ∈ LqΩ1(G), the function hj(x3,t) = Ψj(·, ·, x3, t) belongs to the Sobolev space

W 1,q(R2) for almost every x3 and t. Then if q < 2 the first Sobolev inequality says
that there exists a constant C > 0 depending on q such that

‖hj(x3,t)‖Lq∗ (R2) ≤ C‖∇hj(x3,t)‖Lq(R2)

for almost every x3 and t, where q∗ = 2q/2− q (see for example [Hei01]). Thus
∫

R

∫

R

‖hj(x3,t)‖Lq∗ (R2)e
t(4q−5)dx3dt ≤ C

∫

R

∫

R

‖∇hj(x3,t)‖Lq(R2)e
t(4q−5)dx3dt→ 0,

which contradicts the assumption that Ψj ≡ 1 on the support of fg. For this reason
we find this method useless to construct non-zero classes for p ∈

(

2, 5
2

)

.

2.5 Orlicz spaces and doubling Young functions

In this section we see some properties of Orlicz spaces that will be useful in Chapter
4. Consider φ a Young function and (Z, µ) a measure space.

Remark 2.5.1. If K ≥ 1 is any constant, the identity map Id : LKφ(Z, µ) → Lφ(Z, µ)
is clearly continuous and bijective, thus it is an isomorphism by the open mapping
theorem. This implies that the norms ‖ ‖LKφ and ‖ ‖Lφ are equivalent for all K > 0.

Lemma 2.5.2. If µ is finite, then Lφ(Z, µ) ⊂ L1(Z, µ) and the inclusion is continuous,
with norm bounded depending only on µ(Z) and φ.

Proof. Let f ∈ Lφ(Z, µ), then

‖f‖Lφ = inf

{

γ > 0 :

∫

Z

φ

(

f

γ

)

dµ ≤ 1

}

≥ inf

{

γ > 0 : µ(Z)φ

(

1

µ(Z)

∫

Z

f

γ
dµ

)

≤ 1

}

From this we obtain ‖f‖L1 ≤ µ(Z)φ−1(1/µ(Z))‖f‖Lφ .

Remember the definition of doubling Young function that we give in Section 1.2.3.
It is not difficult to prove the following equivalence.

Lemma 2.5.3. A Young function φ is doubling if, and only if, there exists an increasing
function D1 : [2,+∞) → (1,+∞) such that for all t ∈ R and s ∈ [2,+∞),

φ(st) ≤ D1(s)φ(t).

There are some special properties that have Orlicz spaces associated to doubling
Young functions, as we can see in the following lemma:
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Lemma 2.5.4. Let φ a doubling Young function, then

(i) f ∈ Lφ(Z, µ) if, and only if,
∫

Z
φ(f)dµ < +∞.

(ii) fn → f in Lφ(Z, µ) if, and only if,
∫

Z
φ(fn − f)dµ→ 0.

Proof. (i) (⇒) Since f ∈ Lφ(Z, µ) there exists γ ≥ 2 such that
∫

Z
φ
(

f
γ

)

dµ ≤ +∞.

Then
∫

Z

φ(f)dµ ≤ D1(1/γ)

∫

Z

φ

(

f

γ

)

dµ ≤ +∞,

where D1 is the function given in Lemma 2.5.3.

(⇐) We have that φ
(

f
γ

)

≤ φ(f) ∈ L1(Z, µ) for all γ ∈ [1,+∞), and that

φ
(

f
γ

)

→ 0 almost everywhere when γ → +∞. Because of the Dominated

Convergence Theorem we have

∫

Z

φ

(

f

γ

)

dµ→ 0, when γ → +∞.

Thus f ∈ Lφ(Z, µ).

(ii) (⇒) Suppose that ‖fn − f‖Lφ < 1. Using the convexity of φ we obtain

∫

Z

φ(fn − f)dµ ≤ ‖fn − f‖Lφ

∫

Z

φ

(

fn − f

‖fn − f‖Lφ

)

dµ ≤ ‖fn − f‖Lφ → 0.

(⇐) Given ǫ ∈
(

0, 1
2

)

we have

∫

Z

φ

(

fn − f

ǫ

)

dµ ≤ D1 (1/ǫ)

∫

Z

φ(fn − f)dµ→ 0.

This implies that there exists n0 ∈ N such that for all n ≥ n0,

∫

Z

φ

(

fn − f

ǫ

)

dµ ≤ 1,

which means that ‖fn − f‖Lφ < ǫ for all n ≥ n0.
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Chapter 3

Relative Lp-Cohomology and

Application

We begin this chapter working with the simplicial relative ℓp-cohomology. In the first
section we prove Theorem 1.2.1. Then, in the second section, we explain how to
construct a simplicial pair associated to a Gromov-hyperbolic Riemannian manifold
with bounded geometry and a point on its boundary. We prove Theorem 1.2.3 after
some previous lemmas.

If p, q > 1 satisfy 1
p
+ 1

p
= 1, there exists a duality relationship between Lp and

Lq-cohomology in the classical sense. There are some difficulties to adapt this result
to our relative version, however we can give some ideas related to this subject. This is
the contents of Section 3.3.

Finally we study the Lp-cohomology of a purely real Heintze group of the form
G = R

n−1
⋊αR relative to the point ∞ ∈ ∂G, which allows us to prove Theorem 1.2.7.

3.1 Quasi-isometry invariance of simplicial relative

ℓp-cohomology

Consider X a finite-dimensional simplicial complex with bounded geometry. Observe
that every element θ ∈ ℓpCk(X) has a natural linear extension θ : Ck(X) → R, where

Ck(X) =

{

m
∑

i=1

tiσi : t1, . . . , tm ∈ R, σ1, . . . , σm ∈ Xk

}

.

The support of a chain c =
∑m

i=1 tiσi in Ck(X), with ti 6= 0 for all i = 1, . . . ,m, is
|c| = {σ1, . . . , σm}. We also define the uniform norm and the length of c by

‖c‖∞ = max{|t1|, . . . , |tm|}, and ℓ(c) = m.
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Proposition 3.1.1. The coboundary operator δ : ℓpCk(X) → ℓpCk+1(X) is well-
defined and continuous.

Proof. Let θ be a k-cochain in ℓpCk(X), then

‖δk(θ)‖
p
ℓp =

∑

σ∈Xk+1

|δk(θ)(σ)|
p =

∑

σ∈Xk+1

|θ(∂σ)|p =
∑

σ∈Xk+1

∣

∣

∣

∣

∣

∣

θ





∑

τ∈|∂σ|

τ





∣

∣

∣

∣

∣

∣

p

= (k + 2)p
∑

σ∈Xk+1

∣

∣

∣

∣

∣

∣





∑

τ∈|∂σ|

θ(τ)

k + 2





∣

∣

∣

∣

∣

∣

p

≤ (k + 2)p−1
∑

σ∈Xk+1

∑

τ∈|∂σ|

|θ(τ)|p

≤ N(1)(k + 2)p−1
∑

τ∈Xk

|θ(τ)|p = ‖θ‖pℓp ,

where the first inequality follows form Jensen’s inequality and the second is a con-
sequence of bounded geometry. The function N is as in the definition of bounded
geometry, which implies that N(1) is a bound for the number of simplices σ ∈ Xk+1

such that |∂σ| contains a fixed simplex τ ∈ Xk.

As we said, we will prove Theorem 1.2.1 in a similar way as in [BP03]. For this
purpose we first prove some lemmas.

Lemma 3.1.2 ([BP03]). Let X and Y be two uniformly contractible simplicial com-
plexes with bounded geometry. Then, any quasi-isometry F : X → Y induces a family
of maps cF : Ck(X) → Ck(Y ) verifying:

(i) ∂cF (σ) = cF (∂σ) for every σ ∈ Xk.

(ii) For every k ∈ N there exist two constants Nk and Lk (depending on k and the
geometric data of X, Y and F ) such that

‖cF (σ)‖∞ ≤ Nk, and ℓ(cF (σ)) ≤ Lk,

for all σ ∈ Xk.

Proof. We consider for both complexes X and Y the same constant C ≥ 0 and function
N : [0,+∞) → N corresponding to their bounded geometry. We assume also that both
spaces are uniformly contractible for the same function ψ.

For v ∈ X0 we define cF (v) as a vertex of a simplex containing F (v). Because of
the bounded geometry we have |F (v)− cF (v)| ≤ C. We extend linearly cF to C0(X).

Since F is a quasi-isometry and X has bounded geometry, then

sup{|cF (a+)− cF (a−)| : a ∈ X1} < +∞,
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If v is a vertex in X0 we choose a chain h(v) such that ∂h(v) = cF (v)− cG(v) with
length bounded depending on |cF (v)−cG(v)| and ‖h(v)‖∞ = 1. Note that it is possible
using an argument as in the previous lemma.

Suppose that h is defined in degree m for every m ≤ k − 1 and consider σ ∈ Xk.
Since cF and cG commute with the boundary, we have

∂(cG(σ)− cF (σ)− h(∂σ)) = cG(∂σ)− cF (∂σ)− ∂h(∂σ) = 0.

This means that cG(σ)−cF (σ)−h(∂σ) is a cycle contained in a ball with radius bounded
independently of σ ∈ Xk. As in the previous lemma we can find h(σ) ∈ Ck+1(Y ) with
boundary cG(σ)− cF (σ)− h(∂σ), and ℓ(h(σ)) and ‖h(σ)‖∞ uniformly bounded.

Now assume that X is Gromov-hyperbolic. We are ready to prove the invariance
of relative ℓp-cohomology.

Proof of Theorem 1.2.1. We define the pull-back of a cochain θ ∈ ℓpF (ξ)C
k(Y ) as

F ∗θ = θ ◦ cF .

Observe that F ∗ depends on the choice of cF .

Let us first show that F ∗θ ∈ ℓpCk(X):

‖F ∗θ‖pLp =
∑

σ∈Xk

|F ∗θ(σ)|p =
∑

σ∈Xk

|θ(cF (σ))|
p

≤
∑

σ∈Xk

Np
k

∣

∣

∣

∣

∣

∣

∑

τ∈|cF (σ)|

θ(τ)

∣

∣

∣

∣

∣

∣

p

≤ Np
k

∑

σ∈Xk

∑

τ∈|cF (σ)|

ℓ(cF (σ))
p−1|θ(τ)|p

≤ Np
kL

p−1
k

∑

σ∈Xk

∑

τ∈|cF (σ)|

|θ(τ)|p.

Since F is a quasi-isometry and the distance between cF (v) and F (v) is uniformly
bounded for all v ∈ X0, we can find a constant Ck such that if dist(σ1, σ2) > Ck, then
cF (σ1) ∩ cF (σ2) = ∅. Using the bounded geometry of X we have that every τ ∈ Y k

satisfies τ ∈ |cF (σ)| for at most N(C + Ck) simplices σ ∈ Xk. This implies that

‖F ∗θ‖pLp ≤ Np
kL

p−1
k N(C + Ck)

∑

τ∈Y k

|θ(τ)|p

= Np
kL

p−1
k N(C + Ck)‖θ‖

p
Lp ,

This also proves the continuity of F ∗.
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Now we prove that for every θ in ℓpF (ξ)C
k(Y ), the cochain F ∗θ is zero on some

neighborhood of ξ. Assume that θ is zero on V ⊂ Y , a neighborhood of F (ξ). If
σ ∈ Xk and v ∈ X0 is a vertex of σ,

dH(cF (σ), F (v)) ≤ dH(cF (σ), cF (v)) + dH(cF (v), F (v)), (3.1)

where dH denotes the Hausdorff distance. By construction of cF , distance (3.1) is
uniformly bounded by a constant C̃k. We define Ṽ = {y ∈ Y : dist(y, V c ∩ Y ) >
C̃k}. Since F is a quasi-isometry, there exists U ⊂ X a neighborhood of ξ such that
F (U ∩X) ⊂ Ṽ . For every k-simplex σ ⊂ U , we have cF (σ) ⊂ V and then F ∗θ(σ) = 0.
We conclude that F ∗θ vanishes on U .

By definition we have δF ∗ = F ∗δ, which implies that F ∗ defines a map in coho-
mology denoted by F# : ℓpF (ξ)H

k(Y ) → ℓpξH
k(X). We have to prove that F# is an

isomorphism.

Claim: If F,G : X → Y are two quasi-isometries at bounded uniform distance,
then F# = G#.

We have to construct a family of continuous linear maps Hk : ℓpF (ξ)C
k(Y ) →

ℓpξC
k−1(X), k ≥ 1, such that

(i) F ∗θ −G∗θ = H1δθ for all θ ∈ ℓpF (ξ)C
0(Y ).

(ii) F ∗θ −G∗θ = Hk+1δθ + δHkθ for all θ ∈ ℓpF (ξ)C
k(Y ), k ≥ 1.

We define
Hkθ : X

k → R, Hkθ(σ) = θ(h(σ)),

where h is the map defined in Lemma 3.1.3. Using the same argument as for F ∗, we
can prove that Hkθ is in ℓ

pCk−1(X) for every θ ∈ ℓpF (ξ)C
k(Y ) and Hk is continuous. To

see that Hkθ vanishes on some neighborhood of ξ, observe that h(σ) have uniformly
bounded length, which implies that dH(cF (σ), h(σ)) is uniformly bounded.

Moreover, if k = 0 we have

(F ∗θ −G∗θ)(v) = θ(cF (v)− cG(v)) = θ(∂h(v)) = δθ(h(v)) = H1δθ(v).

And if k ≥ 1,

(F ∗θ −G∗θ)(σ) = θ(cF (σ)− cG(σ))

= θ(∂h(σ) + h(∂σ))

= δθ(h(σ)) + θ(h(∂σ))

= Hk+1δθ(σ) +Hkθ(∂σ)

= Hk+1δθ(σ) + δHkθ(σ).
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This proves the claim.

As a consequence of the claim we have that F# does not depend on the choice
of cF . Moreover, if T : Y → Z is another quasi-isometry, a possible choice of the
function cT◦F is the composition cT ◦ cF . In this case (T ◦ F )∗ = F ∗ ◦ T ∗ and then
(T ◦ F )# = F# ◦ T#.

Finally, if F : Y → X is a quasi-inverse of F , then by the claim (F ◦ F )# and

(F ◦ F )# are the identity in relative cohomology. Since (F ◦ F )# = F
#
◦ F# and

(F ◦ F )# = F# ◦ F
#
, the statement follows.

Let us see a simple example of ℓp-cohomology of a Gromov-hyperbolic simplicial
complex relative to two diferent boundary points.

Example 3.1.4. We consider for n ≥ 3 the space

X =
H
n ∪ [0,+∞)

x0 ∼ 0
,

where x0 is a point in H
n. We equip X with the length distance making the inclusions

H
n −֒→ X and [0,+∞) −֒→ X isometric embeddings. A triangulation ofHn with bounded

geometry (for which x0 is a vertex) and the usual graph structure on [0,+∞) (where
N is the set of vertices) induce a simplicial structure on X with bounded geometry and
uniformly contractible. Observe thatX is a Gromov-hyperbolic space and its boundary
can be write ∂X = S

n−1 ∪ {ξ0}, where the sphere S
n−1 is identified with the boundary

of Hn and ξ0 is the point corresponding to the geodesic ray [0,+∞).

As we saw at the end of Example 2.4.2, ℓpH1(Hn) = 0 if p ∈ (1, n − 1). From
this it is easy to see that ℓpH1(Hn, ξ) = 0 for every ξ ∈ ∂Hn and p ∈ (1, n − 1). We
will use these facts to prove that ℓpH1(X, ξ) is not isomorphic to ℓpH1(X, ξ0) for every
p ∈ (1, n− 1) an ξ ∈ ∂Hn.

Consider in ℓp(N) the subspaces

• V = {{an}n∈N : ∃ n0 ∈ N, an = 0 ∀n ≥ n0}, and

• W =
{

{an}n∈N ∈ ℓ1(N) :
∑

n∈N an = 0
}

.

We define the linear map f : V → ℓpC1(X, ξ0) by

f({an}n∈N)(e) =

{

0 if e ⊂ H
n

an if e = [n, n+ 1] ⊂ [0,+∞)
.

Claim 1: f induces a linear isomorphism between V/(V ∩W ) and ℓpH1(X, ξ0).

First we prove that f passes to the quotient. It is clear that f({an}n∈N) is always
a cocycle. Take {an}n∈N in V ∩W and denote θ = f({an}n∈N). We define a 0-cochain
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ϑ on X by

ϑ(x) =

{

0 if x ∈ H
n

∑n−1
i=0 ai if x = n ∈ [0,+∞)

.

By definition δϑ = θ. Since {an}n∈N belongs to V ∩W , we have that ϑ(n) = 0 if
n is big enough, then ϑ is in ℓpC0(X, ξ0). Therefore θ is zero in cohomology and f
induces a linear function

f̃ : V/(V ∩W ) → ℓpH1(X, ξ0).

It is easy to see that f̃ is inyective: Suppose that there exists ϑ ∈ ℓpC0(X, ξ0) such
that δϑ = f({an}n∈N). This cochain must satisfy ϑ(0) = 0 and ϑ(n) = 0 if n is big
enough, which implies that {an}n∈N ∈ W .

Now we prove that f̃ is surjective. Take a 1-cocycle θ ∈ ℓpC1(X, ξ0). Since
ℓpH1(Hn) = 0 there exists β ∈ ℓpC0(Hn) such that δβ = θ|Hn . Consider the following
1-cocycle in ℓpC1(X, ξ0):

θ̃(e) =







θ(e) if e ⊂ H
n

−β(0) if e = [0, 1]
0 if e = [n, n+ 1] with n ≥ 0

.

The cocycle θ̃ is zero in ℓpH1(X, ξ0) and θ− θ̃ belongs to Im f , thus π(θ) ∈ Im f̃ (where
π : ℓpC1(X, ξ0) → ℓpH1(X, ξ0) is the canonical projection). This finishes the proof of
the Claim 1.

A consequence of Claim 1 is that dim(ℓpH1(X, ξ0)) = 1 because V ∩W is the kernel
of the linear map ϕ : V → R defined by

ϕ({an}n∈N) =
∑

n∈N

an.

Now we want to study ℓpH1(X, ξ) for ξ 6= ξ0.

Claim 2: If θ ∈ ℓpC1(X, ξ) there exists a 1-cochain θ such that π(θ) = π(θ) and
θ|Hn ≡ 0.

In the same way as we proved that f̃ is surjective we can find a cochain θ̃ ∈
ℓpC1(X, ξ) such that π(θ̃) = 0 and θ̃|Hn = θ|Hn (here we use that ℓpH1(Hn, ξ) = 0).
Then we can take θ = θ − θ̃.

Let us consider the map g : ℓpH1(X, ξ) → ℓp(N)/W , where g(θ) is the class of
{θ([n, n+ 1])}n∈N, denoted by [θ([n, n+ 1])]n∈N. Here θ is as in Claim 2.
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Claim 3: g is well-defined, linear and surjective.

To prove that g is well-defined it is enough to show that if θ1, θ2 ∈ ℓpC1(X, ξ) are in
the same cohomology class and θ1|Hn = θ2|Hn ≡ 0, then {θ1 − θ2([n, n + 1])}n∈N ∈ W .
We know that there exists β ∈ ℓpC0(X, ξ) such that δβ = θ1 − θ2. Observe that
β(0) = 0 and for every n ≥ 1

β(n) =
∑

n≥1

(θ1 − θ2)([n− 1, n]).

Since β belongs to ℓp we have that limn→+∞ β(n) = 0 and then

{(θ1 − θ2)([n, n+ 1])}n∈N ∈ W.

The linearity and surjectivity of g is clear.

Observe that W ⊂ ℓ1(N) ⊂ ℓp(N) and the inclusion is strict in both cases. This
and Claim 3 imply that

dim(ℓpH1(X, ξ)) ≥ dim(ℓp(N)/W ) > 1 = dim(ℓpH1(X, ξ0)).

3.2 Equivalence between simplicial and de Rham

relative Lp-cohomology

We say that a Riemannian manifold has bounded geometry if:

• its sectional curvature is bounded from below and above, and

• it has positive injectivity radius.

We refer to [Do92, GHL90] for more information about these two conditions.

Let M be a complete and Gromov-hyperbolic Riemannian manifold with bounded
geometry, and ξ a point in ∂M . Consider onM a uniformly locally finite open covering
U such that all non-empty intersections U1 ∩ . . . ∩ Uk, with U1, . . . , Uk ∈ U , are bi-
Lipschitz diffeomorphic to the unit ball in R

n (n = dim(M)) with uniform Lipschitz
constant. We say that the covering U is uniformly locally finite if there exists a constant
C ≥ 1 such that every point x ∈M belongs to at most C elements of U . Such a covering
can be constructed using a triangulation of M such that every simplex is uniformly
bi-Lipschitz homeomorphic to the standard Euclidean simplex of the same dimension.
For every vertex we consider U(v) the interior of the union of all simplices containing
v. Then we can define U as the collection of sets U(v). In [Att94] it is shown how to
construct a triangulation with this property in the case of bounded geometry. Another
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We look for an explicit expression for χ(ω):

∫

σ

χ(ω) =

∫

Cσ

ω =

∫

ϕ([0,1]×σ)

ω =

∫

[0,1]×σ

ϕ∗ω =

∫

σ

∫ 1

0

η∗s(ι ∂
∂t
ϕ∗ω)ds.

In the last equality we use Lemma 2.3.4. We conclude that

χ(ω) =

∫ 1

0

η∗t (ι ∂
∂t
ϕ∗ω)ds.

The family of k-form (x, t) 7→ η∗t (ι ∂
∂t
ϕ∗ω) satisfies the condition (i) of Lemma 2.3.2

because it is smooth in both variables and the interval [0, 1] is compact; thus χ is
smooth. By definition and the claim it satisfies equality (3.2). Observe that if ω is
closed, then χ(ω) is a primitive of ω, so it is enough to prove the classic Poincaré’s
lemma. However, in our case we need an Lp-integrable primitive, so we take a conve-
nient average. Define

h(ω) =
1

Vol
(

1
2
B
)

∫

1
2
B

χx(ω)dx,

where 1
2
B = B

(

0, 1
2

)

.

Since (x, y) 7→ χx(ω)y is smooth in both variables we can use again Lemma 2.3.2
to show that h belongs to Ωk(B). Notice that this works because we take the integral
on a ball with closure included in B. Moreover, the derivative of h is

dh(ω) =
1

Vol
(

1
2
B
)

∫

1
2
B

dχx(ω)dx.

Using (3.2) we have
dh(ω) + h(dω) = ω (3.3)

for all ω ∈ LpΩk(B) with k ≥ 1.

We want to prove that h is well-defined from LpΩk(B) to LpΩk−1(B) and that it
is continuous. To this end we first bound |χx(ω)|y for y ∈ B and ω ∈ Ωk(B). Since
ι ∂
∂t
ϕ∗ω is a form on [0, 1]×B that is zero in the direction of ∂

∂t
, we have for all t ∈ (0, 1)

and y ∈ B,
|η∗t (ι ∂

∂t
ϕ∗ω)|y = |ι ∂

∂t
ϕ∗ω|(t,y).

Then we can compute

|ι ∂
∂t
ϕ∗ω|(t,y) = sup{|ι ∂

∂t
ϕ∗ω(t,y)(v1, . . . , vk−1)| : ‖v1‖ = · · · = ‖vk−1‖ = 1}

= sup
{∣

∣ϕ∗ω(t,y)

(

∂
∂t
, v1, . . . , vk−1

)∣

∣ : ‖v1‖ = · · · = ‖vk−1‖ = 1
}

= sup{|ωϕ(t,y)(y − x, tv1, . . . , tvk−1)| : ‖v1‖ = · · · = ‖vk−1‖ = 1}

≤ tk−1|y − x||ω|ϕ(t,y).

39



From this and the assumption that t ∈ (0, 1) we get

|χ(ω)|y ≤

∫ 1

0

|y − x||ω|ϕ(t,y)ds. (3.4)

Consider the function u : Rn → R defined by u(z) = |ω|z if z ∈ B and u(z) = 0 in
the other case. Using (3.4) we have

Vol
(

1
2
B
)

|h(ω)|y ≤

∫

1
2
B

∫ 1

0

|y − x|u(ty + (1− t)x)dtdx.

We write z = ty + (1− t)x, then

Vol(1
2
B)|h(ω)|y ≤

∫

B(ty,1−t)

∫ 1

0

|z − y|u(z)(1− t)−n−1dtdz

≤

∫

B(y,2)

∫ 1

0

1B(ty,1−t)(z)|z − y|u(z)(1− t)−n−1dtdz

=

∫

B(y,2)

|z − y|u(z)

(∫ 1

0

1B(ty,1−t)(z)(1− t)−n−1dt

)

dz.

Observe that 1B(ty,1−t)(z) = 1 implies that |z − y| ≤ 2(1− t). Then we have

∫ 1

0

1B(ty,1−t)(z)(1− t)−n−1dt ≤

∫ 1− 1
2
|z−y|

0

(1− t)−n−1dt =

∫ 1

1
2
|z−y|

r−n−1dr �
1

|z − y|n
.

The notation f � g means that there exists a constant C > 0 such that f ≤ Cg. This
implies

Vol(1
2
B)|h(ω)|y �

∫

B(y,2)

|z − y|1−nu(z)dz.

Using that
∫

B(y,2)
|z − y|1−ndz is finite and Jensen’s inequality we obtain

|h(ω)|py �

∫

B(y,2)

|z − y|1−nu(z)pdz.

Therefore

‖h(ω)‖pLp =

∫

B

|h(ω)|pydy �

∫

B

∫

B(y,2)

|z − y|1−nu(z)pdzdy

�

∫

B(0,3)

u(z)p
(∫

B

dy

|z − y|n−1

)

dz � ‖ω‖pLp .

Using the identity dh(ω) = ω − h(dω) we have

‖dh(ω)‖Lp ≤ ‖ω‖Lp + ‖h(dω)‖Lp � |ω|Lp
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We conclude that h is well-defined and bounded for k ≥ 1.

If ω = df for certain function f we observe that

η∗t (ι ∂
∂t
ϕ∗
xdf

)(y) = dfϕx(t,y)(y − x) = (f ◦ γ)′(t),

where γ is the curve γ(t) = ϕx(t, y). Then χx(df)(y) = f(y)− f(x), from which we get

h(df) = f −
1

Vol( 1
2
B)

∫

1
2
B

f.

We define h : LpΩ0(B) → LpΩ−1(B) = R by

h(f) =
1

Vol( 1
2
B)

∫

1
2
B

f,

which is crearly continuous because 1
2
B has finite Lebesgue measure. Therefore the

identity (3.3) is true for every k ≥ 1 and ω ∈ LpΩk(B), and h is continuous in all
degrees.

Note that, since h is bounded, then it can be extended continuously to LpCk(B)
for every k ≥ 0. The equality (3.3) is also true for every ω ∈ LpCk(B), then it is the
retraction we wanted.

Lemma 3.2.2. Let f :M → N be a bi-Lipschitz diffeomorphism, where M and N are
Riemannian manifolds. Then the pull-back f ∗ : LpCk(N) → LpCk(M) is well-defined
and continuous. Furthermore, the operator norm of f ∗ is bounded depending on the
Lipschitz constant of f , n = dim(M), p and k.

Proof. Suppose that L is the Lipschitz constant of f . Let ω ∈ LpCk(N), by Remark
1.2.2 we can see ω and its derivative as elements of Lp(N,Λk), then

|f ∗ω|x = inf

{∣

∣

∣

∣

f ∗ωx

(

v1
‖v1‖x

, . . . ,
vk

‖vk‖x

)∣

∣

∣

∣

: v1, . . . , vk ∈ TxM

}

= inf

{∣

∣

∣

∣

ωf(x)

(

dxf(v1)

‖v1‖x
, . . . ,

dxf(vk)

‖vk‖x

)∣

∣

∣

∣

: v1, . . . , vk ∈ TxM

}

≤ Lk inf

{∣

∣

∣

∣

ωf(x)

(

w1

‖w1‖f(x)
, . . . ,

wk
‖wk‖f(x)

)∣

∣

∣

∣

: w1, . . . , wk ∈ Tf(x)N

}

= Lk|ω|f(x).

Then

‖f ∗ω‖pLp =

∫

M

|f ∗ω|pxdVM(x) ≤

∫

M

Lpk|ω|pf(x)L
n|Jacx(f)|dVM(x)

= Ln+pk
∫

N

|ω|pydVN(y) = Ln+pk‖ω‖pLp .
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Using that the pull-back commutes with the derivative, the same argument shows that
‖df ∗ω‖pLp = ‖f ∗dω‖pLp ≤ Ln+p(k+1)‖dw‖pLp .

Proof of Theorem 1.2.3. We define the bicomplex (C∗,∗
ξ , d′, d′′) as follows:

First consider

Ck,ℓ =

{

ω ∈
∏

U∈Uℓ

LpCk(U) :
∑

U∈Uℓ

‖ωU‖
p
Lp + ‖dωU‖

p
Lp < +∞

}

,

with the norm

‖ω‖ =

(

∑

U∈Uℓ

‖ωU‖
p
Lp

) 1
p

+

(

∑

U∈Uℓ

‖dωU‖
p
Lp

) 1
p

.

Then Ck,ℓ
ξ is the subspace of all elements ω ∈ Ck,ℓ for which there exists V a neig-

borhood of ξ in M such that ωU = 0 for all U ⊂ V . We define the derivatives
d′ : Ck,ℓ

ξ → Ck+1,ℓ
ξ and d′′ : Ck,ℓ

ξ → Ck,ℓ+1
ξ :

• If ω ∈ Ck,ℓ
ξ , then (d′ω)U = (−1)ℓdωU .

• If ω ∈ Ck,ℓ
ξ and W ∈ Uℓ+1, W = U0 ∩ . . . ∩ Uℓ+1, then

(d′′ω)W =
ℓ+1
∑

i=0

(−1)i(ωU0∩...∩Ui−1∩Ui+1∩...∩Uℓ+1
)|W .

It is easy to show that d′ and d′′ are continuous and satisfy d′ ◦ d′′ + d′′ ◦ d′ = 0.

Observe that the elements of Ker d′|C0,ℓ
ξ

are the functions g ∈
∏

U∈Uℓ
LpC0(U) sat-

isfying the following conditions:

• There exists V ⊂M a neighborhood of ξ such that gU = 0 if U ⊂ V .

• dgU = 0 for all U ∈ Uℓ, then gU is essentially constant.

•
∑

U∈Uℓ

∫

U
|gU |

pdV < +∞.

Using the construction of XM and the fact that U is bi-Lipschitz diffeomorphic (with
uniform Lipschitz constant) to the unit ball in R

n we have that Ker d′|C0,ℓ
ξ

is isomorphic

to ℓpCℓ(X, ξ̄). Indeed, the map

ℓpCℓ(X, ξ̄) → Ker d′|C0,ℓ
ξ
, θ 7→ gθ,

where gθU is constant θ(U), satisfy

inf{Vol(U) : U ∈ U}
1
p‖θ‖ℓp ≤ ‖gθ‖ ≤ sup{Vol(U) : U ∈ U}

1
p‖θ‖ℓp .
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Observe that d′′ coincides with the derivative δ on ℓpCℓ(X, ξ̄) via this identification,
i.e. gδθ = d′′gθ.

On the other hand the elements of Ker d′′|Ck,0
ξ

are of the form ω = {ωU}U∈U with

ωU |U∩U ′ = ωU ′ |U∩U ′ a.e. if U ∩ U ′ 6= ∅.

We can take a k-form ω̃ in LpCk(M) such that ω̃|U = ωU a.e. for all U ∈ U . This
k-form is zero in some neighborhood of ξ, then the identity is an isomorphism between
Ker d′′|Ck,0

ξ
and LpCk(M, ξ). It is clear that d′ = d in this case.

LpC0(M, ξ) d //

∼

��

LpC1(M, ξ) d //

∼

��

· · ·

Ker d′′|C0,0
ξ

d′ //
� _

��

Ker d′′|C1,0
ξ

d′ //
� _

��

· · ·

ℓpC0(XM , ξ̄)
∼ //

δ

��

Ker d′|C0,0
ξ

� � //

d′′

��

C0,0
ξ

d′ //

d′′

��

C1,0
ξ

d′ //

d′′

��

· · ·

ℓpC1(XM , ξ̄)
∼ //

δ
��

Ker d′|C0,1
ξ

� � //

d′′��

C0,1
ξ

d′ //

d′′��

C1,1
ξ

d′ //

d′′��

· · ·

...
...

...
...

Claim 1: For a fixed ℓ, (C∗,ℓ
ξ , d′) retracts to (Ker d′|C0,ℓ

ξ
→ 0 → 0 → · · · ).

Lemma 3.2.1 implies that there exists a family of bounded maps h : LpCk(B) →
LpCk−1(B) such that h◦d+d◦h = Id. We denote LpC−1(B) = R and d : LpC−1(B) →
LpC0(B) the inclusion. Consider for every U ∈ Uℓ a smooth bi-Lipschitz function
fU : U → B with constant K (which does not depend on U). Then we define H :
Ck,ℓ
ξ → Ck−1,ℓ

ξ by

(Hω)U = f ∗
Uh((f

−1
U )∗ωU).

We write C−1,ℓ
ξ := Ker d′|C0,ℓ

ξ
. Using Lemma 3.2.2 and the definition of h we can see

that H defines the retraction we wanted. In particular it is bounded.

Claim 2: For a fixed k, (Ck,∗
ξ , d′′) retracts to (Ker d′′|Ck,0

ξ
→ 0 → 0 → · · · ).

We have to construct a family of bounded linear maps P : Ck,ℓ
ξ → Ck,ℓ−1

ξ (ℓ ≥ 0)

such that P ◦ d′′ + d′′ ◦ P = Id, where Ck,−1
ξ = Ker d′′|Ck,0

ξ
and d′′ : Ck,−1

ξ → Ck,0
ξ is the

inclusion.
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Consider {ηU}U∈U a partition of unity with respect to U . If ℓ ≥ 1 and ω ∈ Ck,ℓ
ξ ,

then we define
(Pω)V =

∑

U∈U

ηUωU∩V

for all V ∈ Uℓ−1. For ω ∈ Ck,0
ξ and V ∈ U we put

(Pω)V =
∑

U∈U

ηUωU |V .

A direct calculation shows that P is as we wanted.

Finally, aplying Lemma 2.2.1 we obtain that (D∗, δ) is homotopically equivalent to
(Ker d′|C0,∗

ξ
, d′′) and (Ker d′′|C∗,0

ξ
, d′). The proof ends using the above identifications.

Observe that in the previous proof we can consider the bicomplex given by the
elements of

C̃k,ℓ =

{

ω ∈
∏

U∈Uℓ

LpΩp(U) :
∑

U∈Uℓ

‖ωU‖
p
p + ‖dωU‖

p
p < +∞

}

which vanish on a neighborhood of ξ. Following the same arguments (which involves
the observation that Lemma 3.2.1 is true also for the complex (LpΩ∗(B),d)) we can
prove the homotopy equivalence between the cochain complexes (ℓpC∗(XM , ξ̄), δ) and
(LpΩ∗(M, ξ), d), and as a consequence Theorem 1.2.4.

3.3 Some duality ideas

In [GKS86] and [GT10] the following fact is proved: If M is a complete and orientable
n-dimensional Riemannian manifold, then for every p ∈ (1,+∞) and k = 0, . . . , n, the

dual space of LpH
k
(M) is isometric to LqH

n−k
(M), where 1

p
+ 1

q
= 1. The isometry is

induced by the pairing 〈 , 〉 : Lp(M,Λk)× Lq(M,Λn−k) → R defined by

〈ω, β〉 =

∫

M

ω ∧ β, (3.5)

wich is well-defined by Hölder’s inequality. The proof uses that Lp(M,Λk) and Lq(M,Λn−k)
are Banach spaces. The relative case is a very diferent context, however it makes sense
to ask the following question: What would be the natural pairing for LpΩk(M, ξ) (or
LpCk(M, ξ)) instead of Lp(M,Λk)?

The answer seems to be related to the idea of local cohomology, which can be found
in [Car16]. Let us see the following definition: Consider M a complete and orientable
Gromov-hyperbolic Riemannian manifold and ξ a point in ∂M . A differentialm-form β
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Corollary 3.4.3. Let G1 = R
n−1

⋊α1 R and G2 = R
n−1

⋊α2 R be two purely real
Heintze groups. If G1 and G2 are quasi-isometric, then for all k = 1, . . . , n − 1, we
have tr(α1)

wk(α1)
= tr(α2)

wk(α2)
.

Note that Theorem 1.2.7 follows as a direct consequence of Corollary 3.4.3, more
precisely we have that α1 and tr(α1)

tr(α2)
α2 have the same eigenvalues.

As we saw in Theorem 1.2.4, we can restrict to differential forms. In this section we
use the notation LpHk(G,∞) to mean the cohomology spaces of the cochain complex
(LpΩ∗(G,∞), d).

We start with the diagonalizable case because it is easier from the technical point
of view and it is enough to show the main ideas of the proof of Theorem 3.4.1.

3.4.1 Diagonalizable case

Let us suppose that α is diagonalizable. The Lie bracket in Lie(G) is defined by

[(X, T ), (Y, S)] = Tα(Y )− Sα(X),

where X ∈ R
n−1 and T ∈ R. Note that if β = P−1αP with P ∈ GL(R, n), then

Lie(Rn−1
⋊β R) → Lie(Rn−1

⋊α R), (X, T ) 7→ (PX, T )

defines an isomorphism of Lie algebras. This implies that both Heintze groups are
isomorphic and then quasi-isometric. So we can suppose that α is diagonal with the
eigenvalues in increasing order on the diagonal.

Denote by dx and dt the Lebesgue measure on R
n−1 and R respectively. Consider

{e1, . . . , en} the canonical basis of Rn and {e∗1, . . . , e
∗
n} its dual basis. The differential

1-form dxi on G (i = 1, . . . , n) is defined by (dxi)(x,t) = e∗i . We will be a bit ambiguous
and also use the notation dt = dxn. The left-invariant metric we consider in G is the
one generated by the Euclidean inner product on T0G = R

n.

Left translations acts on 1-forms in the following way:

L∗
(x,t)

(

n−1
∑

i=1

ai dxi + an dt

)

=
n−1
∑

i=1

etλi(ai ◦ L(x,t)) dxi + (an ◦ L(x,t)) dt.

In particular L∗
(x,t)dxi = etλidxi for all i = 1, . . . , n− 1.

Observe that if ω is a k-form on G, then

|ω|(x,t) = |L∗
(x,t)ω|0

for all (x, t) ∈ G. Thus the operator norm is left-invariant.
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Lemma 3.4.4. (i) |dxi1∧ . . .∧dxik |(x,t) ≍ et(λi1+...+λik ) for 1 ≤ i1 < . . . < ik ≤ n−1.

(ii) The volume form on G is dV (x, t) = ettr(α)dx1 ∧ . . . ∧ dxn.

Proof. (i) On Λk(T0G) we consider the inner product 〈〈 , 〉〉0 that makes the basis
{e∗i1 ∧ . . . ∧ e

∗
ik

: 1 ≤ i1 < . . . < ik ≤ n} orthonormal. On Λk(T(x,t)G) we define
〈〈 , 〉〉(x,t) such that for all β, γ ∈ Λk(T(x,t)G) we have

〈〈β, γ〉〉(x,t) = 〈〈L∗
(x,t)β, L

∗
(x,t)γ〉〉0.

This means that the inner product is left-invariant.

The left-invariant norm induced by this inner product is denoted by [ ](x,t). Since
the operator norm | |(x,t) is also left-invariant, there exists a constant C ≥ 1
independent of the point (x, t) ∈ G such that,

C−1| |(x,t) ≤ [ ](x,t) ≤ C| |(x,t).

As a consequence it is enough to prove (i) for [ ](x,t):

[dxi1 ∧ . . . ∧ dxik ](x,t) = [L∗
(x,t)(dxi1 ∧ · · · ∧ dxik)]0

= [(L∗
(x,t)dxi1) ∧ · · · ∧ (L∗

(x,t)dxik)]0

= [(etλi1dxi1) ∧ · · · ∧ (etλikdxik)]0

= et(λi1+···+λik )[dxi1 ∧ · · · ∧ dxik ]0

= et(λi1+···+λik )

(ii) Here it is enough to prove that ettr(α)dx1 ∧ . . . ∧ dxn(v1, . . . , vn) = 1 for some
positive orthonormal basis {v1, . . . , vn} in T(x,t)G, for example

{etλ1e1, . . . , e
tλn−1en−1, en}.

Let V be the vertical vector field defined by V (x, t) = en, and ϕt(x, s) = (x, s + t)
its associated flow. We say that a k-form ω is horizontal if ιV ω = 0. Observe that if

ω =
∑

1≤i1<...<ik≤n

ai1,...,ikdxi1 ∧ . . . ∧ dxik , (3.7)

then ω is horizontal if, and only if, all coefficients ai1,...,ik−1,n are zero.

Lemma 3.4.5. If ω is a horizontal k-form, then for all x ∈ R
n−1, s ∈ R and t ≥ 1 we

have
|ϕ∗
tω|(x,s) � e−twk |ω|(x,s+t).
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Proof. Suppose that ω is as in (3.7). Using the norm [ ](x,t) as in Lemma 3.4.4, we
have

[ϕ∗
tω]

2
(x,s)

[ω]2(x,s+t)
=

∑

|ai1,...,ik(x, s+ t)|2[dxi1 ∧ . . . ∧ dxik ]
2
(x,s)

∑

|ai1,...,ik(x, s+ t)|2[dxi1 ∧ . . . ∧ dxik ]
2
(x,s+t)

=
∑ |ai1,...,ik(x, s+ t)|2e2s(λi1+...+λik )

|ai1,...,ik(x, s+ t)|2e2(s+t)(λi1+...+λik )

=
∑

e−t(λi1+...+λik ) � e−twk .

We prove now the first part of Theorem 3.4.1 following the idea of [Pan08, Propo-
sition 10].

Proposition 3.4.6. Let k = 2, . . . , n, then LpHk(G,∞) = 0 for all p > tr(α)
wk−1

.

Proof. Take ω a closed form in LpΩk(G,∞). We want to construct an Lp-integrable
differential (k − 1)-form ϑ such that dϑ = ω.

Set

ϑ = −

∫ +∞

0

ϕ∗
t ιV ω dt. (3.8)

Observe that, since ω vanishes on a neighborhood of ∞, we have the pointwise conver-
gence of the above integral, so ϑ is well-defined as a k-form.

Since ιV ω is a horizontal form, by Lemma 3.4.5 we have that for all (x, s) ∈ G and
t ≥ 0,

|ϕ∗
t ιV ω|(x,s) ≤ Ce−twk |ιV ω|(x,s+t),

for some constant C. Then

‖ϕ∗
t ιV ω‖

p
Lp =

∫

G

|ϕ∗
t ιV ω|

p
(x,s)dV (x, s)

≤ C

∫

G

e−tpwk |ιV ω|
p
(x,s+t)e

−str(α)dxds

= C

∫

G

e−t(pwk−tr(α))|ιV ω|
p
(x,s+t)e

−(s+t)tr(α)dxds

= C

∫

G

e−t(pwk−tr(α))|ιV ω|
p
(x,s+t)dV (x, s+ t)

= Ce−tǫ‖ιV ω‖
p
Lp ,

where ǫ = pwk − tr(α) > 0. It is easy to see that |ιV ω|(x,s) ≤ |ω|(x,s) for all (x, s) ∈
G, so ‖ϕ∗

t ιV ω‖Lp ≤ Ce−tǫ‖ω‖Lp . This implies that the integral (3.8) converges in
Lp(M,Λk−1). It is also clear that ϑ vanishes on a neighbourhood of ∞. We have to
prove that it is smooth and dϑ = ω.
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We know that there exists T ∈ R such that ιV ω(x,s) = 0 for all s ≥ T , then ϑ(x,s)

is an integral on a compact interval for every (x, s) ∈ M . Since (x, s, t) 7→ ϕ∗
t ιV ω is

smooth we can use Lemma 2.3.2 to see that ϑ is in Ωk−1(M) and

dϑ = −

∫ +∞

0

d(ϕ∗
t ιV ω)dt

The Lie derivative of ω with respect to the vertical field V is

LV ω =
d

dt

∣

∣

∣

∣

t=0

ϕ∗
tω.

Observe that d
dt
ϕ∗
tω = ϕ∗

tLV ω. Then using the Cartan formula LV ω = dιV ω + ιV dω
(see for example [GHL90, Chapter I,Section A]) and that ω is closed, we obtain

ϕ∗
tω − ω =

∫ t

0

d

ds
ϕ∗
sω ds =

∫ t

0

ϕ∗
s(dιV ω + ιV dω)ds =

∫ t

0

d(ϕ∗
sιV ω)ds.

For every (x, r) ∈ G we have

ω(x,r) = lim
t→+∞

(

ϕ∗
tω(x,r) −

∫ t

0

d(ϕ∗
sιV ω)(x,r)ds

)

.

The limit exists because the expression in brackets is constant for t big enough. Then
we conclude

ω(x,r) = −

∫ +∞

0

d(ϕ∗
sιV ω)(x,r)ds = dϑ(x,r)

for all (x, t) ∈ G, which finishes the proof.

Proposition 3.4.7. For k = 2, . . . , n−1 and p ∈
(

tr(α)
wk

, tr(α)
wk−1

)

we have LpHk(G,∞) 6=

0.

Proof. We want to construct a closed differential k-form ω on G which represents a
non-zero class in Lp-cohomology relative to ∞. Remember that we are working with
the complex (LpΩ∗(G,∞), d). The strategy is inspired by the duality ideas mentioned
in Section 3.3, that is: we give a (n− k)-form β ∈ Ωq,n−k

loc (G,∞), with 1
p
+ 1

q
= 1, such

that

(a) νβ(ω) =
∫

G
ω ∧ β 6= 0, and

(b) dLpΩk−1(G,∞) ⊂ Ker νβ;

which shows that ω represents a non-zero element in LpHk(G,∞).

Consider two smooth functions g : (−∞,+∞) → [0, 1] and f : Rn−1 → [0, 1] such
that:
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• supp(f) is compact, and

• g(t) = 0 for all t ≥ 1 and g(t) = 1 for all t ≤ 0.

We define ω(x,t) = d (f(x)g(t) dx1 ∧ . . . ∧ dxk−1). Using triangular inequality we
have

‖ω‖p ≤ ‖fg′ dt ∧ dx1 ∧ · · · ∧ dxk−1‖Lp +
n−1
∑

j=k

∥

∥

∥

∥

∂f

∂xj
g dxj ∧ dx1 ∧ · · · ∧ dxk−1

∥

∥

∥

∥

Lp

.

Observe that the first term is finite because fg′ is smooth and has compact support.
Then it is enough to show that for all j = k, ..., n− 1 the form ωj =

∂f
∂xj
g dxj ∧ dx1 ∧

· · · ∧ dxk−1 is in Lp:

‖ωj‖
p
Lp =

∫

G

∣

∣

∣

∣

∂f

∂xj
(x)g(t) dxj ∧ dx1 ∧ · · · ∧ dxk−1

∣

∣

∣

∣

p

(x,t)

dV (x, t)

=

∫

Rn−1

∫ 1

−∞

∣

∣

∣

∣

∂f

∂xj
(x)

∣

∣

∣

∣

p

|g(t)|p |dxj ∧ dx1 ∧ · · · ∧ dxk−1|
p
(x,t) e

−ttr(α)dtdx

�

∥

∥

∥

∥

∂f

∂xj

∥

∥

∥

∥

p

Lp

∫ 1

−∞

et(p(wk−1+λj)−tr(α))dt.

So ‖ωj‖Lp < +∞ if p > tr(α)
wk−1+λj

for every j = k, . . . , n− 1, which implies that ‖ω‖Lp <

+∞ if p > tr(α)
wk

.

Define β = dxk ∧ . . . ∧ dxn−1. To prove that β is in Ωq,n−k
loc (G,∞) it is enough to

show that for every ball BR = BR(0, R) ⊂ R
n−1 and T ∈ R the (n − k)-form β is

q-integrable on Z = BR × (−∞, T ). Using Lemma 3.4.4 we have

‖β‖qLq ,Z =

∫

Z

|dxk ∧ · · · ∧ dxn−1|
q
(x,t)dV (x, t)

�

∫ T

−∞

∫

BR

eqt(λk+···+λn−1)e−ttr(α)dxdt

= Vol(BR)

∫ T

−∞

et(q(λk+···+λn−1)−tr(α))dt.

This last integral converges if, and only if, q > tr(α)
λk+···+λn−1

, that is equivalent to p < tr(α)
wk−1

.

We now prove (a): Let BR1 ∈ R
n−1 be a ball such that supp(f) ⊂ BR1 . For t < 1

consider Zt = BR1 × [t, 1]. Since |ω ∧ β| is in L1(G) because of Hölder’s inequality, we
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have
∫

G

ω ∧ β = lim
t→−∞

∫

Zt

d(fg dx1 ∧ · · · ∧ dxn−1)

= lim
t→−∞

∫

BR1
×{t}

fg dx1 ∧ · · · ∧ dxn−1

=

∫

BR1

f dx1 ∧ · · · ∧ dxn−1 6= 0.

In the second equality we use Stokes theorem.

In order to prove (b) we take ϑ ∈ LpΩk−1(G,∞). There exist two constant R2, T2 >
0 such that the support of ϑ is contained in BR2 × (−∞, T2]. By Stokes theorem

νβ(dϑ) =

∫

G

dϑ ∧ β = lim
t→−∞

∫

BR2
×[t,T2]

dϑ ∧ β = lim
t→−∞

∫

BR2
×{t}

ϑ ∧ β.

In the second equality we use again that |dϑ∧β| is in L1(G). Suppose that νβ(dϑ) 6= 0,
then there exist ǫ > 0 and t0 such that for all t ≤ t0,

∣

∣

∣

∣

∣

∫

BR2
×{t}

ϑ ∧ β

∣

∣

∣

∣

∣

> ǫ. (3.9)

Assume that
ϑ =

∑

1≤i1<...<ik−1≤n

ai1,...,ik−1
dxi1 ∧ . . . ∧ dxik−1

.

Therefore
∫

BR2
×{t}

ϑ ∧ β =

∫

BR2
×{t}

a1,...,k−1dx1 ∧ . . . ∧ dxn−1. (3.10)

To simplify the notation we write a = a1,...,k−1. Observe that |ϑ|(x,t) ≥ |a dx1∧ . . .∧
dxk−1|(x,t), then

‖ϑ‖pLp ≥

∫

G

|a dx1 ∧ . . . ∧ dxk−1|
p
(x,t)dV (x, t)

=

∫ T2

−∞

∫

BR2

|a dx1 ∧ . . . ∧ dxk−1|
p
(x,t)e

−ttr(α)dxdt

�

∫ t0

−∞

(

∫

BR2

|a(x, t)|pdx

)

et(pwk−1−tr(α))dt

� ǫ

∫ t0

−∞

et(pwk−1−tr(α))dt = +∞.

In the last line we use (3.9), (3.10) and Jensen’s inequality. Since ϑ is in LpΩk−1(G,∞)
we conclude that (3.9) must be false and as a consequence νβ(dϑ) = 0.
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Finally, we prove the last part of Theorem 3.4.1 in the diagonal case:

Proposition 3.4.8. If p = tr(α)
wk−1

, then LpHk(G,∞) 6= 0.

Proof. We consider ω and β as in the proof of Proposition 3.4.7. The main difficulty
to apply the previous argument in this case is that β does not belong to Ωq,n−k

loc (G,∞),
then νβ is not well-defined. An alternative is to consider the function

ν̃β : LpΩk(G,∞) → [0,+∞], ν̃β(̟) = lim inf
t→−∞

∣

∣

∣

∣

∫

Rn−1×[t,+∞)

̟ ∧ β

∣

∣

∣

∣

,

which is well-defined because supp(̟) ∩ (Rn−1 × [t,+∞)) is compact for every t ∈ R.

It is clear that

ν̃β(ω) =

∫

Rn−1

f(x) dx 6= 0.

Furthermore we can show using the above argument that ν̃β(dϑ) = 0 for all ϑ ∈
LpΩk−1(G,∞). This implies that ω represents a non-zero class in Lp-cohomology rela-
tive to ∞.

3.4.2 Non-diagonalizable case

We rename the eigenvalues of α by µ1 < · · · < µd, with d ∈ {1, . . . , n − 1}. Fix a
Jordan basis of Rn−1,

B = {eℓij : i = 1, . . . , d; j = 1, . . . , ri; ℓ = 1, . . . ,mij},

where ri is the dimension of the µi-eigenspace spanned by {e1i1, . . . , e
1
iri
}, mij is the size

of the j-Jordan subblock associated to µi, and α(e
ℓ
ij) = µie

ℓ
ij+e

ℓ−1
ij for all ℓ = 2, . . . ,mij.

We can write

R
n−1 =

⊕

i,j

Vij, where Vij = Span({eℓij : ℓ = 1, . . . ,mij}). (3.11)

Let us denote by ∂
∂t

the unit positive vector which span the factor R of G and
by dt the 1-form associated to ∂

∂t
. The 1-forms associated to the dual basis of B are

denoted by dxℓij. We put on G the left-invariant Riemannian metric that makes the

basis B ∪ { ∂
∂t
} orthonormal in TeG.

Observe that

etαeℓij = etµi
(

eℓij + teℓ−1
ij + . . .+

tℓ−1

(ℓ− 1)!
e1ij

)

.

This implies

L∗
(x,t)dx

ℓ
ij = etµi

(

dxℓij + . . .+
tmij−ℓ

(mij − ℓ)!
dx

mij

ij

)

.
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For every k = 1, . . . , n− 1 we denote by ∆k the set of multi-indices

I = (i1, . . . , ik, j1, . . . , jk, ℓ1, . . . , ℓk) (3.12)

with ih = 1, . . . , d, jh = 1, . . . , rih and ℓh = 1, . . . ,mihjh for every h = 1, . . . , k. We
assume also that the function h 7→ (ih, jh, ℓh) is injective and preserves the lexicographic
order. For a multi-index as (3.12) we write

dxI = dxℓ1i1j1 ∧ . . . ∧ dx
ℓk
ikjk

, and wI = µi1 + · · ·+ µik .

Consider in ∆1 the lexicographic order and ζ : ∆1 → {1, . . . , n−1} the order-preserving
bijection. We denote dxh = dxℓij if h = ζ(i, j, ℓ).

We have the following general version of Lemma 3.4.4:

Lemma 3.4.9. (i) For every I ∈ ∆k there exists a positive polynomial PI such that

|dxI |(x,t) ≍ etwI

√

PI(t).

(ii) The volume form on G is dV (x, t) = e−ttr(α)dx1 ∧ · · · ∧ dxn−1 ∧ dt.

We say that a polynomial P is positive if P (t) > 0 for all t ∈ R. Observe that the
class of positive polynomials is closed under the sum and the product.

Proof. (i) As in the diagonalizable case we consider the left-invariant inner product
〈〈 , 〉〉(x,t) on Λk(T(x,t)G) such that the basis {dxI : I ∈ ∆k} is orthonormal in
Λ(T0G). The induced norm is again denoted by [ ](x,t). Then

[dxℓ1i1j1 ∧ . . . ∧ dx
ℓk
ikjk

]2(x,t) = [(L∗
(x,t)dx

ℓ1
i1j1

) ∧ . . . ∧ (L∗
(x,t)dx

ℓk
ikjk

)]20

= e2t(µi1+...+µik )
[(

dxℓ1i1j1 + . . .+
tmi1j1

−ℓ1

(mi1j1 − ℓ1)!
dx

mi1j1
i1j1

)

∧

. . . ∧

(

dxℓkikjk + . . .+
tmikjk

−ℓk

(mikjk − ℓk)!
dx

mikjk

ikjk

)]2

0

From this expression it is easy to extract the polynomial PI . Then the equivalence
between [ ](x,t) and | |(x,t) implies (i).

(ii) As in Lemma 3.4.4 it is enough to prove that dV (x, t)(v1, . . . , vn) = 1 for some
positive orthonormal basis {v1, . . . , vn} ⊂ T(x,t)G. Since B ∪ { ∂

∂t
} is orthonormal

in T0G, the basis

Bt ∪
{

∂
∂t

}

= {d0L(x,t)(e
ℓ
ij) : i = 1, . . . , d; j = 1, . . . , ri; l = 1, . . . ,mij} ∪

{

∂
∂t

}

=

{

etλi
(

eℓij + . . .+
tℓ−1

(ℓ− 1)!
e1ij

)

: i = 1, . . . , d; j = 1, . . . , ri; ℓ = 1, . . . ,mij

}

∪
{

∂
∂t

}

is orthonormal in T(x,t)G. Then we can check the equality evaluating dV (x, t) in
the elements of Bt ∪

{

∂
∂t

}

.
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We need to estimate the contraction of the vertical flow ϕt in this case. To this end
we define another left-invariant norm on G: For every v ∈ R

n we write

v =
∑

i,j

vij + a ∂
∂t
, (3.13)

where the first sum corresponds to decomposition (3.11). Given a point (x, t) ∈ G we
define

〈v〉(x,t) =
∑

i,j

‖vij‖(x,t) + |a|.

Using that subspaces Vij are invariant by etα we can easily see that the norm 〈 〉(x,t) is
left-invariant and as a consequence equivalent to the Riemannian norm ‖ ‖(x,t). This
gives us the following lemma:

Lemma 3.4.10. Let ω be a k-form on G, then

|ω|(x,t) ≍ sup{|ω(x,t)(v1, . . . , vk)| : 〈vi〉(x,t) = 1 for all i = 1, . . . , k},

with constant independent of ω and the point (x, t) ∈ G.

A set of vectors in R
n−1 is said to be α-linearly independent (denoted also α-LI) if

it can be extended to a basis of the form
⋃

i,j Bij, where Bij is a basis of Vij.

Lemma 3.4.11. If ω is a horizontal k-form, then the supremum in Lemma 3.4.10 is
reached on an α-LI set.

Observe that in the previous lemma, since ω is horizontal, we can think of ω(x,t) as
an alternating k-linear map on R

n−1.

Proof. Since the closed ball for the norm 〈 〉(x,t) is compact, the supremum is reached
on a set of vectors v1, . . . , vk ∈ R

n−1, with 〈vℓ〉(x,t) = 1 for all ℓ = 1, . . . , k. We write
these vectors as in (3.13):

vℓ =
∑

(vℓ)ij.

Then

|ω(x,t)(v1, . . . , vk)| =

∣

∣

∣

∣

∣

∑

i,j

ω(x,t)((v1)ij, v2, . . . , vk)

∣

∣

∣

∣

∣

≤
∑

i,j

‖(v1)ij‖(x,t)

∣

∣

∣

∣

ω(x,t)

(

(v1)ij
‖(v1)ij‖(x,t)

, v2, . . . , vk

)∣

∣

∣

∣

.

Since 〈v1〉(x,t) =
∑

i,j ‖(v1)ij‖(x,t) = 1, there exists a pair (i1, j1) such that

|ω(x,t)(v1, . . . , vk)| ≤

∣

∣

∣

∣

ω(x,t)

(

(v1)i1j1
‖(v1)i1j1‖(x,t)

, v2, . . . , vk

)∣

∣

∣

∣

. (3.14)
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Observe that the vector u1 =
(v1)i1j1

‖(v1)i1j1‖(x,t)
is unitary with respect to the norm 〈 〉(x,t) and

it is in Vi1j1 . This implies that the inequality (3.14) is in fact an equality. Continuing in
this way we can construct an α-LI set {u1, . . . , uk} that satisfies what we wanted.

Lemma 3.4.12. If v ∈ Vij, there exists a positive polynomial Pij such that for all
(x, s) ∈ G and t ≥ 0 we have

‖v‖(x,s+t) ≤ e−tµi
√

Pij(t)‖v‖(x,s).

Proof. Observe that for every s ∈ R we have

‖v‖(x,s) = ‖e−sαv‖0 = e−sµi‖e−sJv‖0,

where J is the (mij ×mij)-matrix

J = J(mij) =











0 1
. . . . . .

. . . 1
0











.

Then

‖v‖(x,s+t) = e−(s+t)µi‖e−tJ(e−sJv)‖0 ≤ e−(s+t)µi |e−tJ |‖e−sJv‖0 = e−tµi |e−tJ |‖v‖(x,s).

Here |e−tJ | denotes the operator norm of the matrix e−tJ . Since all norms on R
m2

ij are
Lipschitz equivalent, there exists a constant Cij > 0, depending only on mij, such that

|e−tJ | ≤ Cij

√

∑

1≤ℓ,r≤mij

aℓ,r(t)2,

where aℓ,r are the entries of e−tJ . Notice that they are polynomials in t, in particular
aℓ,ℓ = 1 for every ℓ = 1, . . . ,mij, then the Lemma follows taking

Pij(t) = C2
ij

∑

1≤ℓ,r≤mij

aℓ,r(t)
2.

Now we are ready to prove the general version of Lemma 3.4.5.

Lemma 3.4.13. If ω is a horizontal k-form on G, then there exists a positive polyno-
mial Q such that

|ϕ∗
tω|(x,s) � e−twk

√

Q(t)|ω|(x,s+t) ∀t ≥ 0.
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Proof. Using Lemmas 3.4.10 and 3.4.11 we have

|ϕ∗
tω|(x,t) ≍ max

{∣

∣

∣

∣

ϕ∗
tω(x,s)

(

v1
‖v1‖(x,s)

, . . . ,
vk

‖vk‖(x,s)

)∣

∣

∣

∣

: {v1, . . . , vk} is α− LI

}

= max

{

k
∏

ℓ=1

‖vℓ‖(x,s+t)
‖vℓ‖(x,s)

∣

∣

∣

∣

ω(x,s+t)

(

v1
‖v1‖(x,s+t)

, . . . ,
vk

‖vk‖(x,s+t)

)∣

∣

∣

∣

: {v1, . . . , vk} is α− LI

}

Suppose that vℓ ∈ Viℓjℓ for every ℓ = 1, . . . , k, then by Lemma 3.4.12 and the fact that
we are considering α-LI sets we obtain

|ϕ∗
tω|(x,t) � e−twk

√

Q(t)|ω|(x,s+t),

where Q =
∏

ij Pij.

Using Lemmas 3.4.9 and 3.4.13 we can easily adapt Proposition 3.4.6 to the general
case. The generalization of Proposition 3.4.7 is a bit more complicated.

Proof of Proposition 3.4.7 in the general case. We consider again the closed forms

ω(x,t) = d(f(x)g(t) dx1 ∧ · · · ∧ dxk−1) and β = dxk ∧ · · · ∧ dxn−1.

By Lemma 3.4.9 there exists a positive polynomial P such that

‖ω‖pLp � ‖fg dt ∧ dx1 ∧ · · · ∧ dxk−1‖
p
Lp +

∫ 2

−∞

et(pwk−tr(α))P (t)
p
2dt.

Then ω ∈ LpΩk(G,∞) for all p > tr(α)
wk

. In a similar way as in the diagonal case we can

show that β is in Ωq,n−k
loc (G,∞) if q > tr(α)

λk+···+λn−1
, which is equivalent to p < tr(α)

wk−1
. It is

also clear that νβ(ω) 6= 0.

Let us take ϑ ∈ Lp∞Ωk−1(G) and prove that νβ(dϑ) = 0. Here we find a problem
to reproduce the previous argument: It is not clear that |ϑ|(x,t) ≥ |aIdxI |(x,t), where
ϑ =

∑

aIdxI , because the Jordan basis is not orthogonal in all tangent spaces. A way
to solve it is to consider the forms

(υ̃I)(x,t) = (L−1
(x,t))

∗dxI .

If I = (i1, . . . , ik−1, j1, . . . , jk−1, ℓ1, . . . , ℓk−1) we have

(υ̃I)(x,t) = (L−1
(x,t))

∗(dxℓ1i1j1 ∧ · · · ∧ dx
ℓk−1

ik−1jk−1
) = (L−1

(x,t))
∗dxℓ1i1j1 ∧ · · · ∧ (L−1

(x,t))
∗dx

ℓk−1

ik−1jk−1

= e−twI

(

M1
∑

h=0

(−t)h

h!
dxℓi+hi1j1

)

∧ · · · ∧

(

Mk−1
∑

h=0

(−t)h

h!
dx

ℓk−1+h
ik−1jk−1

)

,

where Ms = misjs − ℓs. We define (υI)(x,t) = etwI (υ̃I)(x,t) and write

ϑ =
∑

I∈∆k−1

aIυI .
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Observe that |υI |(x,t) ≍ etwI for every (x, t) ∈ G.

Since {υI : I ∈ ∆k−1} is orthogonal at every point with respect to 〈〈 , 〉〉(x,t), then
[ϑ](x,t) ≥ [aIυI ](x,t) for all I ∈ ∆k−1 and therefore |ϑ|(x,t) � |aIυI |(x,t).

We can easily observe that

ϑ ∧ β = aI0dx1 ∧ · · · ∧ dxn−1,

where I0 is such that dxI0 = dx1 ∧ . . . ∧ dxk−1. Suppose that νβ(dϑ) 6= 0, then if
supp(ϑ) ⊂ BR × (−∞, T ] with BR = B(0, R) ⊂ R

n−1, there exist ǫ > 0 and t0 such
that for all t ≤ t0,

∣

∣

∣

∣

∫

BR×{t}

aI0(x, t)dx

∣

∣

∣

∣

> ǫ.

Now we have

‖ϑ‖pLp �

∫

G

|aI0υI0 |
p
(x,t)dV (x, t)

�

∫ t0

−∞

(∫

BR

|aI0(x, t)|
pdx

)

et(pwk−1−tr(α))dt

� ǫp
∫ t0

−∞

et(pwk−1−tr(α))dt = +∞

This contradiction proves that νβ(dγ) = 0.

Using ν̃β as in Proposition 3.4.8 and the above argument it is easy to prove that

LpHk(G, ξ) 6= 0 for p = tr(α)
wk−1

, which finishes the proof of Theorem 3.4.1 in the general
case.
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Chapter 4

Relative Orlicz cohomology

The aim of this chapter is to prove Theorem 1.2.8. Before that we prove the quasi-
isometry invariance of the simplicial version of relative Orlicz cohomology.

4.1 Simplicial relative Orlicz cohomology and quasi-

isometry invariance

Let X be a finite-dimensional simplicial complex with bounded geometry and φ a
Young function. As in the Lp-case we have the following proposition:

Proposition 4.1.1. The usual coboundary operator δ = δk : ℓφCk(X) → ℓφCk+1(X)
is continuous.

Proof. Let θ be a cochain in ℓφCk(X), then

‖δθ‖Lφ = inf







γ > 0 :
∑

σ∈Xk+1

φ

(

δθ(σ)

γ

)

≤ 1







= inf







γ > 0 :
∑

σ∈Xk+1

φ

(

θ(∂σ)

γ

)

≤ 1







.

The bounded geometry implies that there is a constant N(1) such that every k-simplex
τ in X is on the boundary of at most N(1) k-simplices. Then

∑

σ∈Xk+1

φ

(

θ(∂σ)

γ

)

≤
∑

τ∈Xk

N(1)φ

(

θ(τ)

γ

)

,

which implies

‖δθ‖Lφ ≤ inf

{

γ > 0 :
∑

τ∈Xk

N(1)φ

(

θ(τ)

γ

)

≤ 1

}

= ‖θ‖LN(1)φ .
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The proof ends using the equivalence between ‖ ‖LN(1)φ and ‖ ‖Lφ (Remark 2.5.1).

The quasi-isometry invariance of the simplicial relative Orlicz cohomology is proved
in a similar way as the Lp-case. The only difference is the continuity of the pull-back
and the homotopy defined in the proof of Theorem 1.2.1.

Proof of Theorem 1.2.8. Consider the family of maps cF : Ck(X) → Ck(Y ) given in
Lemma 3.1.2. We consider the pull-back of a k-cochain θ ∈ ℓφCk(Y, F (ξ)) as

F ∗θ = θ ◦ cF .

It is clear that δ ◦ F = F ◦ δ and that F ∗θ vanishes on a neighborhood of ξ. Let us
prove that F ∗ is well-defined and continuous from ℓφCk(Y, F (ξ)) to ℓφCk(X, ξ):

‖F ∗θ‖Lφ = inf

{

γ > 0 :
∑

σ∈Xk

φ

(

F ∗θ(σ)

γ

)

≤ 1

}

≤ inf







γ > 0 :
∑

σ∈Xk

φ





Nk

γ

∑

τ∈|cF (θ)|

|θ(τ)|



 ≤ 1







≤ inf







γ > 0 :
∑

σ∈Xk

∑

τ∈|cF (θ)|

1

ℓ(cF (σ))
φ

(

NkLk
γ

|θ(τ)|

)

≤ 1







,

where Nk and Lk are constants such that for all σ ∈ Xk,

‖cF (σ)‖∞ ≤ Nk and ℓ(cF (σ)) ≤ Lk.

As in the proof of Theorem 1.2.1 there exists a constant C such that for every τ ∈ Y k,
then τ ∈ |cF (σ)| for at most C simplices σ ∈ Xk. Then

‖F ∗θ‖Lφ ≤ inf

{

γ > 0 :
∑

σ∈Y k

Cφ

(

NkLk
γ

|θ(τ)|

)

≤ 1

}

= NkLk‖θ‖LCφ � ‖θ‖Lφ .

Therefore F ∗θ ∈ ℓφξC
k(X) and F ∗ is continuous.

If G : X → Y is another quasi-isometry at bounded uniform distance of F , Lemma
3.1.3 gives us an homotopy h between cF and cG, then we consider

H : ℓφCk(Y, F (ξ)) → ℓφCk−1(X, ξ), Hθ(σ) = θ(h(σ)).

The continuity of H can be proved in a similar way as we have proved that F ∗ is
continuous. It is clear that if θ ∈ ℓφCk(Y, F (ξ)), then Hθ vanishes on a neighborhood
of ξ because the Hausdorff distance between cF (σ) and h(σ) is uniformly bounded.

Observe that H is an homotopy between F and G, then they induce the same
map in relative ℓφ-cohomology. As in the proof of Theorem 1.2.1 this implies that if
F : Y → X is a quasi-inverse of F , then F ∗ ◦F

∗
and F

∗
◦F ∗ are the identity in relative

ℓφ-cohomology, which finishes the proof.
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4.2 Equivalence between the two versions in the

case of Lie groups

Consider now a Lie group G equipped with a left-invariant Riemannian metric. Given
x ∈ G we denote by Lx and Rx the left and right translation by x respectively, and by
dx the Riemannian volume on G. The unity of G will be always denoted by e. Observe
that such a manifold has always bounded geometry.

The aim of this section is to prove Theorem 1.2.9. We assume here that the Young
function φ is doubling.

4.2.1 Convolution of locally integrable forms

Let κ : G→ [0, 1] be a kernel on G, which means:

• κ ∈ C∞(G),

• supp(κ) is a compact neighborhood of e ∈ G, and

•
∫

G
κ(x)dx = 1.

If ω is a locally integrable k-form on G we consider its convolution with κ as the
k-form

(ω ∗ κ)x =

∫

G

(R∗
zω)xκ(z)dz.

Lemma 4.2.1. There exists a constant C > 0 such that for every locally integrable
k-form ω on G and x ∈ G we have

|ω ∗ κ|x ≤ C|ω| ∗ κ(x),

where |ω| ∗ κ is the convolution of the function x→ |ω|x with the kernel κ.

Proof. Let v1, . . . , vk be vectors in TxG, then

|(ω ∗ κ)x(v1, . . . , vk)| =

∣

∣

∣

∣

∫

G

(R∗
zω)x(v1, . . . , vk)κ(z)dz

∣

∣

∣

∣

≤

∫

G

|(R∗
zω)x(v1, . . . , vk)|κ(z)dz

=

∫

G

|ωxz(dxRz(v1), . . . , dxRz(vk))|κ(z)dz.

Since Rz ◦ Lx = Lx ◦ Rz, we have |de(Rz ◦ Lx)| = |de(Lx ◦ Rz)| (here | | is the usual
operator norm) and therefore |dxRz ◦ deLx| = |dzLx ◦ deRz|. Using that Lx is an
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isometry we obtain |dxRz| = |deRz|. The function z 7→ |deRz| is continuous, then it
has a maximum M in supp(κ). If ‖v1‖ = . . . = ‖vk‖ = 1,

|ωxz(dxRz(v1), . . . , dxRz(vk))| ≤Mk|ω|xz,

which implies |ω ∗ κ|x ≤ C|ω| ∗ κ(x) with C =Mk.

A consequence of Lemma 4.2.1 is that the convolution of a locally integrable form
is also locally integrable.

Proposition 4.2.2. Let ω be a locally integrable k-form on G, then:

(i) If ω has weak derivative dω, then the convolution ω ∗ κ has weak derivative and

d(ω ∗ κ) = dω ∗ κ.

(ii) The convolution ω ∗ κ is a differential form.

Proof. (i) For every z we have d(R∗
zω) = R∗

zdω in a weak sense. To see this take
β ∈ Ωn−k−1(G) with compact support, then

∫

G

(R∗
zdω) ∧ β =

∫

G

R∗
z(dω ∧R∗

z−1β)

=

∫

G

dω ∧R∗
z−1β

= (−1)k+1

∫

G

ω ∧ dR∗
z−1β

= (−1)k+1

∫

G

(R∗
zω) ∧ dβ.

Therefore the weak derivative with respect to x ∈ G of the k-form Φ(x, z) =
(R∗

zdω)xκ(z) is
dΦ(x, z) = (R∗

zdω)xκ(z).

Since z 7→ dΦ(x, z) has compact support for all x ∈ G, by Lemma 2.3.1 we
conclude that

(dω ∗ κ) =

∫

G

(R∗
zdω)κ(z)dz

is the weak derivative of the convolution ω ∗ κ.

(ii) Suppose first that ω = f is a 0-form, which is equivalent to say that it is a locally
integrable function on G. Consider Y a vector field on G with flow ϕt. First
observe that

f ∗ κ(x) =

∫

G

f(xz)κ(z)dz =

∫

G

f(y)κ(x−1y)dy.
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Then

LY (f ∗ κ)(x) =
∂

∂t

∣

∣

∣

∣

t=0

(f ∗ κ(ϕt(x)))

=
∂

∂t

∣

∣

∣

∣

t=0

∫

G

f(y)κ(ϕt(x)
−1y)dy.

Since ϕ is smooth and κ is smooth with compact support, the classical Leibniz
integral Rule implies that this derivative exists and

LX(f ∗ κ)(x) =

∫

G

f(y)
∂

∂t

∣

∣

∣

∣

t=0

κ(ϕt(x)
−1y)dy.

Using this arguments we can prove by induction that LYm . . . LYm(f ∗κ)(x) exists
for all x ∈ G for every family of vector fields Y1, . . . , Ym. This implies that f ∗ κ
is smooth.

Now consider {e1, . . . , en} a basis of TeG and X1, . . . , Xn the right-invariant fields
verifying Xi(e) = ei. Let ϕit be the flow associated to Xi for every i = 1, . . . , n.
If ω is a k-form with k ≥ 1 we set

fi1,...,ik(x) = (ω ∗ κ)x(Xi1(x), . . . , Xik(x)).

To prove that ω ∗ κ is smooth it is enough to prove that all these functions are
smooth. Observe that if

gi1,...,ik(x) = ω(x)(Xi1(x), . . . , Xik(x)),

then fi1,...,ik = gi1,...,ik ∗ κ. This reduce the general case to the case k = 0 and
finish the proof.

4.2.2 Proof of Theorem 1.2.9

Let U be an open covering in G. We consider the following cochain complexes:

• LφΩk(G,U) is the space of all differential forms ω ∈ Ωk(G) such that ω|U and dω|U
are in LφΩk(U) for all U ∈ U , and the functions U 7→ ‖ω|U‖Lφ and U 7→ ‖dω|U‖Lφ

are in ℓφ(U). The norm of ω ∈ LφΩk(G,U) is defined by

|ω|Lφ = ‖θ‖ℓφ + ‖θ′‖ℓφ ,

where θ(U) = ‖ω|U‖Lφ and θ′(U) = ‖dω|U‖Lφ . Naturally, the map defining the
cochain complex is the usual derivative.

• IφΩk(G,U) = LφΩk(G) ∩ LφΩk(G,U) with the norm | |Iφ = | |Lφ + | |Lφ .
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On the one hand
∫

R

φ(f(t))dt =
∑

n∈Z

∫ n+1

n

φ(✶An
(t))dt =

∑

n∈Z

apnφ(1) = +∞.

But on the other hand
∫

Un

φ

(

f(t)

γ

)

dt = apnφ

(

1

γ

)

=
apn

γp log(e+ γ)κ
≤

(

an
γ

)p

,

which implies ‖f |Un
‖Lφ ≤ an and then

∑

n∈Z

φ(‖f |Un
‖Lφ) ≤

∑

n∈Z

φ(an) < +∞.

We can find a smooth function g close enough from f such that g − f ∈ Lφ(R)
and ‖(g − f)|Un

‖Lφ ∈ ℓφ(Z) and consider the 1-form ω = g dt. Since |ω|t = |g(t)| and
dω = 0 we can see that ω ∈ LφΩ1(R,U) and ω /∈ LφΩ1(R).

In this case the other inclusion is true. One can prove that LφΩk(R) ⊂ LφΩk(R,U)
for k = 0, 1 using the inequality φ(s)φ(t) ≤ 2κφ(st). In fact this inclusion can be
proved for every Riemannian manifold with bounded geometry and every doubling
Young function satisfying an inequality φ(t)φ(s) ≤ Cφ(st) for all s, t ∈ R and some
constant C.

Using Lemma 2.5.4 we can easily deduce the following lemma:

Lemma 4.2.4. Consider a sequence {ωn}n∈N ⊂ LφΩk(G,U) and denote for every
U ∈ U ,

θn(U) = ‖ωn|U‖Lφ and θ′n(U) = ‖dωn|U‖Lφ .

Then ωn → 0 in LφΩk(G,U) if, and only if,

∑

U∈U

φ(θn(U)) → 0 and
∑

U∈U

φ(θ′n(U)) → 0. (4.1)

Lemma 4.2.5. The space Ωk
c (G) of differential k-forms with compact support is dense

in LφΩk(G,U).

Proof. Take ω ∈ LφΩk(G,U) and denote θ(U) = ‖ω|U‖Lφ and θ′(U) = ‖dω|U‖Lφ . Since
φ is doubling we have

∑

U∈U

φ(θ(U)),
∑

U∈U

φ(θ′(U)) < +∞.

Given n ∈ N we take a compact subset Kn ⊂ G such that

∑

U 6⊂Kn

φ(θ(U)),
∑

U 6⊂Kn

φ(θ′(U)) <
1

n
.
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Let An be an open set in G such that Kn ⊂ An and An is compact, and hn : G→ [0, 1]
a smooth function with support in An such that hn|Kn

≡ 1 and |dhn|x ≤ 1 for all
x ∈ G.

Now we define ωn = hnω and

θn(U) = ‖(ω − ωn)|U‖Lφ and θ′n(U) = ‖d(ω − ωn)|U‖Lφ .

We will use Lemma 4.2.4 to prove that ωn → ω in LφΩk(G,U).

On the one hand we have θn(U) = 0 if U ⊂ Kn and |θn(U)| ≤ |θ(U)| otherwise.
Then

∑

U∈U

φ(θn(U)) ≤
∑

U 6⊂Kn

φ(θ(U)) → 0, when n→ +∞.

On the other hand, θ′n(U) = 0 if U ⊂ Kn and θ
′
n(U) ≤ ‖dhn∧ω‖Lφ+‖(1−hn)dω‖Lφ

otherwise. It is easy to see that |dhn ∧ ω|x ≤ |dhn|x|ω|x ≤ |ω|x, then
∑

U∈U

φ(θ′n(U)) ≤
∑

U 6⊂Kn

φ(‖ω|U‖Lφ + ‖dω|U‖Lφ)

≤
∑

U 6⊂Kn

φ(2‖ω|U‖Lφ) + φ(2‖dω|U‖Lφ)

2

≤
D

2

(

∑

U 6⊂Kn

φ(θ(U)) +
∑

U 6⊂Kn

φ(θ′(U))

)

→ 0,

when n→ +∞. Here D is the doubling constant of φ.

The following proposition will be proved in a similar way as Theorem 1.2.3. Some
lemmas will be necessary for this purpose.

Proposition 4.2.6. The cochain complexes (ℓφC∗(XG), δ) and (LφΩ∗(G,U), d) are ho-
motopically equivalent. So are the cochain complexes (ℓφC∗(XG, ξ̄), δ) and (LφΩ∗(G,U , ξ), d).

We need an Lφ-version of Lemma 3.2.1:

Lemma 4.2.7. The cochain complex (LφΩ∗(B), d), where B is the unit ball in R
n,

retracts to the complex (R → 0 → 0 → . . .).

Proof. As in the Lp-version, for x ∈ B and ω ∈ LφΩk(B) we consider the map

χx(ω) =

∫ 1

0

η∗t

(

ι ∂
∂t
ϕ∗
xω
)

dt,

where ηt : B → [0, 1] × B, is defined by ηt(y) = (t, y), and ϕx : [0, 1] × B, ϕx(t, y) =
ty + (1− t)x. If ω is a k-form in LφΩk(B) with k ≥ 1, we put

h(ω) =
1

Vol(1
2
B)

∫

1
2
B

χx(ω)dx,
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and

h(f) =
1

Vol(1
2
B)

∫

1
2
B

f(x)dx,

if f is a function in LφΩ0(B). As in Lemma 3.2.1, we have h ◦ d+ d ◦ h = Id. We have
to prove that h is Lφ-continuous in all degrees. To this end remember that if ω is a
k-form with k ≥ 1, then

|h(ω)|y ≤ C

∫

B(y,2)

|z − y|1−nu(z)dz,

where u(z) = |ω|z if z ∈ B and u(z) = 0 if z /∈ B, and C is a constant. Using this
estimate we have

‖h(ω)‖Lφ = inf

{

γ > 0 :

∫

B

φ

(

|h(ω)|y
γ

)

dy ≤ 1

}

≤ inf

{

γ > 0 :

∫

B

φ

(∫

B(y,2)

|z − y|1−n
u(z)

γ
dz

)

dy ≤ 1

}

.

Since
∫

B(y,2)
|z − y|1−ndz < +∞, we can use Jensen’s inequality and write

‖h(ω)‖Lφ ≤ inf

{

γ > 0 : Vol(B(0, 3))

∫

B

∫

B(0,3)

φ

(

u(z)

Vol(B(0, 3))γ

)

dz

|z − y|n−1
dy ≤ 1

}

= inf

{

γ > 0 : Vol(B(0, 2))

∫

B(0,3)

φ

(

u(z)

Vol(B(0, 3))γ

)(∫

B

dy

|z − y|n−1

)

dz ≤ 1

}

.

We have that there exists a constantK > 0 such that
∫

B
dy

|z−y|n−1 ≤ K for all z ∈ B(0, 3),
then

‖h(ω)‖Lφ ≤ Vol(B(0, 2))‖ω‖LK̃φ � ‖ω‖Lφ ,

where K̃ = K Vol(B(0, 3)).

As in Lemma 3.2.1, the identity dh(ω) = ω − h(dω) and the above estimates give
us the continuity of h for the norm | |Lφ in all degrees.

In a similar way as in Lemma 3.2.2, we have:

Lemma 4.2.8. Let M and N be two Riemannian manifolds and f : M → N a
bi-Lipschitz diffeomorphism with constant L. Then for all k ∈ N the pull-back f ∗ :
LφΩk(N) → LφΩk(M) is continuous and its operator norm is bounded depending on
L, k, φ and n = dim(M).

Proof of Proposition 4.2.6. Let us define the bicomplex

Ck,ℓ =

{

ω ∈
∏

U∈Uℓ

LφΩ(U) : {‖ωU‖Lφ}U∈Uℓ
, {‖dωU‖Lφ}U∈Uℓ

∈ ℓφ(Uℓ)

}

,
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equipped with the norm
‖ω‖ = ‖θ‖ℓφ + ‖θ′‖ℓφ ,

where θ(U) = ‖ωU‖Lφ and θ′(U) = ‖dωU‖Lφ . The derivatives are defined as in the
proof of Theorem 1.2.3, by

• (d′ω)U = (−1)ℓdωU for all ω ∈ Ck,ℓ,

• If ω ∈ Ck,ℓ and W ∈ Uℓ+1, W = U0 ∩ . . . ∩ Uℓ+1, then

(d′′ω)W =
ℓ+1
∑

i=0

(−1)i(ωU0∩...Ui−1∩Ui+1∩...∩Uℓ+1
)|W .

It is easy to see that d′ and d′′ are well-defined and continuous, and that d′◦d′′+d′′◦d′ =
0.

Observe that, as in the Lp-case, Ker d′|C0,ℓ is isomorphic to ℓφCℓ(X) and d′′ corre-
sponds with the coboundary operator δ. On the other hand, it is clear that Ker d′′|Ck,0 =
LφΩ(G,U).

Claim 1: The cochain complex (C∗,ℓ, d′) retracts to (Ker d′|C0,ℓ → 0 → . . .) for all
ℓ ∈ N.

For every U ∈ Uℓ consider fU : U → B an L-bi-Lipschitz diffeomorphism (L does
not depend on U and B is the unit ball in the corresponding Euclidean space). We
define H : Ck,ℓ → Ck−1,ℓ by

(Hω)U = (−1)ℓf ∗
Uh(f

−1
U )∗ωU ,

where h : LφΩk(B) → LφΩk−1(B) is the map given by Lemma 4.2.7. Here we are using
the identification C−1,ℓ = Ker d′|C0,ℓ . One can easily verify that Hd′+d′H = Id. Using
Lemma 4.2.8 we have that H is continuous.

Claim 2: The cochain complex (Ck,∗, d′′) retracts to (Ker d′′|Ck,0 → 0 → . . .) for all
k ∈ N.

We define P : Ck,ℓ → Ck,ℓ−1 in the same way as in the Lp-case. It is easy to prove
that P is continuous and Pd′′ + d′′P = Id. Here Ck,−1 = Ker d′′|Ck,0 .

Using Lemma 2.2.1 we obtain the equivalence between LφΩk(M) and ℓφCk(X).

To prove the relative case we have to consider the bicomplex (C∗,∗
ξ , d′, d′′), where

Ck,ℓ
ξ is the subspace consisting of the elements ω of Ck,ℓ for which there exists V ⊂ G

a neighborhood of ξ such that ωU ≡ 0 if U ⊂ V . The above argument works in this
case because all maps preserve the subspaces Ck,ℓ

ξ .

Proposition 4.2.9. The cochain complexes (LφΩ∗(G,U), d) and (IφΩ∗(G,U), d) are
homotopically equivalent. So are the cochain complexes (LφΩ∗(G,U , ξ), d) and (IφΩ∗(G,U , ξ), d).
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Combining Propositions 4.2.6 and 4.2.9 we have the following diagram:

ℓφC0(XG)
δ //

∼
��

ℓφC1(XG)
δ //

∼
��

ℓφC2(XG)
δ //

∼
��

· · ·

LφΩ0(G,U) d //

TT

∼
��

LφΩ1(G,U) d //

TT

∼
��

LφΩ2(G,U) d //

TT

∼
��

· · ·

IφΩ0(G,U) d //

TT

IφΩ1(G,U) d //

TT

IφΩ2(G,U) d //

TT

· · ·

Proof. Consider the family of maps ∗κ : LφΩk(G,U) → IφΩk(G,U) given by the
convolution with a smooth kernel κ.

Claim 1: For a fixed k = 0, . . . , dim(G) the map ∗κ : LφΩk(G,U) → LφΩk(G,U) is
well-defined and continuous.

Let γ > 0 and U ∈ U , using Lemma 4.2.1 we have

∫

U

φ

(

|ω ∗ κ|x
γ

)

dx ≤

∫

U

φ

(∫

G

C|ω|xz
γ

κ(z)dz

)

dx

≤

∫

U

φ

(∫

x·supp(κ)

C|ω|y
γ

dy

)

dx

≤

∫

U

φ

(

∑

U ′∈NU

∥

∥

∥

∥

Cω|U ′

γ

∥

∥

∥

∥

L1

)

dx,

where NU = {U ′ ∈ U : U ′∩ (x · supp(κ)) 6= ∅ for some x ∈ U}. The bounded geometry
implies that there exists N a uniform bound of #NU . Using this bound and Jensen’s
inequality we have

∫

U

φ

(

|ω ∗ κ|x
γ

)

dx ≤
Vol(U)

#NU

∑

U ′∈NU

φ

(∥

∥

∥

∥

NCω|U ′

γ

∥

∥

∥

∥

L1

)

.

Let V a uniform bound for Vol(U). Because of Lemma 2.5.2, there exists a constant
D such that if β is in LφΩk(U) with U ∈ U , then ‖β‖L1 ≤ D‖β‖Lφ . Therefore

∫

U

φ

(

|ω ∗ κ|x
γ

)

dx ≤
V

#NU

∑

U ′∈NU

φ

(∥

∥

∥

∥

DNCω|U ′

γ

∥

∥

∥

∥

Lφ

)

.

If γ ≥ DNC‖ω|U ′‖Lφ for all U ′ ∈ NU then

∫

U

φ

(

|ω ∗ κ|x
γ

)

dx ≤ V.
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By Remark 2.5.1 there exists a constant C(V ) such that

‖ω ∗ κ|U‖Lφ ≤ C(V )‖ω ∗ κU‖
L

φ
V
≤ C(V )DNC

∑

U ′∈NU

‖ω|U ′‖Lφ .

Denote L = C(V )DNC and take γ > 0,

∑

U∈U

φ

(

‖ω ∗ κ|U‖Lφ

γ

)

≤
∑

U∈U

φ

(

L

γ

∑

U ′∈NU

‖ω|U ′‖Lφ

)

≤
∑

U∈U

1

#NU

∑

U ′∈NU

φ

(

NL

γ
‖ω|U ′‖Lφ

)

.

Let R > 0 be such that for all U ′ ∈ U , U ′ ∈ NU for at most R open sets U ∈ U . Then

∑

U∈U

φ

(

‖ω ∗ κ|U‖Lφ

γ

)

≤
∑

U∈U

Rφ

(

NL

γ
‖ω|U ′‖Lφ

)

.

This means that, if θ(U) = ‖ω|U‖Lφ and ϑ(U) = ‖ω ∗ κ|U‖Lφ , then

‖ϑ‖ℓφ ≤ NL‖θ‖ℓRφ � ‖θ‖ℓφ .

Using the same argument with d(ω∗κ) = dω∗κ we can conclude that |ω∗κ|Lφ � |ω|Lφ ,
which finishes the proof of Claim 1.

Claim 2: Let k = 0, . . . , dim(G). The map ∗κ : LφΩk(G,U) → LφΩk(G) is well-
defined and continuous.

As above, if γ > 0 we have

∫

G

φ

(

|ω ∗ κ|x
γ

)

dx ≤

∫

G

φ

(

∑

U ′∈NU

∥

∥

∥

∥

Cω|U ′

γ

∥

∥

∥

∥

L1

)

dx

≤
∑

U∈U

Vol(U)

#NU

∑

U ′∈NU

φ

(∥

∥

∥

∥

DNCω|U ′

γ

∥

∥

∥

∥

Lphi

)

≤
∑

U∈U

V Rφ

(∥

∥

∥

∥

Lω|U
γ

∥

∥

∥

∥

Lφ

)

.

Using again the notation θ(U) = ‖ω|U‖Lφ , we have ‖ω‖Lφ ≤ L‖θ‖ℓV Rφ � ‖θ‖ℓφ . Doing
the same with the derivative we conclude the Claim 2.

Claims 1 and 2 imply that ∗κ : LφΩk(G,U) → IφΩk(G) is well-defined and continu-
ous. Furthermore, by Proposition 4.2.2 we know that ∗κ commutes with the derivative.

We will define a family of continuous maps h : LφΩk(G,U) → LφΩk−1(G,U) such
that

{

h(df) = f − i(f ∗ κ) if f ∈ LφΩ0(G,U)
h(dω) + dh(ω) = ω − i(ω ∗ κ) if ω ∈ LφΩk(G,U), k ≥ 1.

(4.2)
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Claim 3: h and ∗κ verify 4.2.

Take ω a k-form in LφΩk(G,U), then

h(dω) + dh(ω) = −

∫

G

(∫ 1

0

(ϕZt )
∗ιZdω dt

)

κ(z)dz − d

∫

G

(∫ 1

0

(ϕZt )
∗ιZω dt

)

κ(z)dz

= −

∫

G

(∫ 1

0

(ϕZt )
∗(ιZd+ dιZ)ω dt

)

κ(z)dz.

Recall the Cartan formula LZω = ιZdω + dιZω and the identity ∂
∂t
(ϕZt )

∗ω =
(ϕZt )

∗LZω. Then

h(dω) + dh(ω) = −

∫

G

(∫ 1

0

(ϕZt )
∗LZω dt

)

κ(z)dz

= −

∫

G

(∫ 1

0

∂

∂t
(ϕZt )

∗ω dt

)

κ(z)dz

= −

∫

G

((ϕZt )
∗ω − ω)κ(z)dz = ω − ω ∗ κ.

Now consider f ∈ LφΩ0(G,U), then

h(df)x = −

∫

G

(∫ 1

0

dfx·exp(tZ)(Z(x))dt

)

κ(z)dz.

Let α : [0, 1] → G the curve α(t) = x · exp(tZ). We have α′(t) = Z(α(t)), then

(f ◦ α)′(t) = dα(t)f(α
′(t)) = dfx·exp(tZ)(Z(α(t))).

Therefore

h(df)x = −

∫

G

(∫ 1

0

(f ◦ α)′(t)dt

)

κ(z)dz

=

∫

G

(f(α(1))− f(α(0)))κ(z)dz

=

∫

G

(f(xz)− f(x))κ(z)dz

= f(x)− f ∗ κ(x).

Claim 4: h : LφΩk(G,U) → LφΩk−1(G,U) is well-defined and continuous for every
k = 1, . . . , dim(G).

First we estimate the operator norm of hω at a point x ∈ G. Consider v1, . . . , vk−1 ∈
TxG, then

|h(ω)x(v1, . . . , vk−1)| =

∣

∣

∣

∣

∫

G

(∫ 1

0

ωϕZ
t (x)(Z(ϕ

Z
t (x)), dxϕ

Z
t (v1), . . . , dxϕ

Z
t (vk−1))dt

)

κ(z)dz

∣

∣

∣

∣

≤

∫

G

(∫ 1

0

|ωϕZ
t (x)(Z(ϕ

Z
t (x)), dxRexp(tZ)(v1), . . . , dxRexp(tZ)(vk−1))|dt

)

κ(z)dz
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As in the proof of Lemma 4.2.1 we have a uniform bound |dxRexp(tZ)| ≤ M for all
z ∈ supp(κ). Moreover, since left-invariant fields have constant norm we can write
‖Z(y)‖y = C for every y ∈ G. Then if ‖v1‖x = . . . = ‖vk−1‖x = 1,

|h(ω)x(v1, . . . , vk−1)| ≤

∫

G

(∫ 1

0

CMk−1|ω|ϕZ
t (x)dt

)

κ(z)dz,

which implies

|h(ω)|x ≤

∫

G

(∫ 1

0

CMk−1|ω|ϕZ
t (x)dt

)

κ(z)dz. (4.3)

Using (4.3) and Jensen’s inequality we obtain

φ

(

|h(ω)|x
γ

)

≤

∫

G

(∫ 1

0

φ

(

CMk−1

γ
|ω|ϕZ

t (x)

)

dt

)

κ(z)dz. (4.4)

For U ∈ U denote θ(U) = ‖ω|U‖Lφ and ϑ(U) = ‖hω|U‖Lφ . If γ > 0 we have

∫

U

φ

(

|h(ω)|x
γ

)

dx ≤

∫

U

∫

G

(∫ 1

0

φ

(

CMk−1

γ
|ω|ϕZ

t (x)dt

))

κ(z)dzdx

=

∫

G

(∫ 1

0

∫

U

φ

(

CMk−1

γ
|ω|ϕZ

t (x)

)

dxdt

)

κ(z)dz.

The identity dxϕ
Z
t = dxRexp(tZ) allows us to find m > 0 such that m < |Jacx(ϕ

Z
t )| for

all z ∈ supp(κ). Then

∫

U

φ

(

|h(ω)|x
γ

)

dx ≤

∫

G

(∫ 1

0

∫

E(U)

1

m
φ

(

CMk−1

γ
|ω|y

)

dydt

)

κ(z)dz

=
1

m

∫

E(U)

φ

(

CMk−1

γ
|ω|y

)

dy,

where E(U) is a neighborhood of U with uniform radius (independent of U) such that
ϕZt (x) ∈ E(U) for all z ∈ supp(κ) and x ∈ U . Consider

VU = {V ∈ U : V ∩ E(U) 6= ∅},

then if γ ≥ CMk−1 max{‖ω|V ‖L S
mφ : V ∈ VU}, where S ≥ #VU for all U ∈ U ,

∫

U

φ

(

|h(ω)|x
γ

)

dx ≤ 1,

which implies

‖h(ω)|U‖Lφ ≤ CMk−1 max{‖ω|V ‖L S
mφ : V ∈ VU} ≤ M

∑

V ∈VU

‖ω|V ‖Lφ
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for some constant M that does not depend on U . Therefore

∑

U∈U

φ

(

‖h(ω)|U‖Lφ

γ

)

≤
∑

U∈U

φ

(

M
∑

V ∈VU

‖ω|V ‖Lφ

γ

)

≤
∑

U∈U

∑

V ∈VU

1

#VU
φ

(

SM‖ω|V ‖Lφ

γ

)

≤
∑

U∈U

Nφ

(

SM‖ω|V ‖Lφ

γ

)

,

where N ≥ #{U ∈ U : V ∈ VU} for all V ∈ U . From here we obtain

‖ϑ‖ℓφ ≤ SM‖θ‖ℓNφ � ‖θ‖ℓφ .

Using the identity dh(ω) = ω − i(ω ∗ κ) and the above estimate we obtain

|h(ω)|Lφ � |ω|Lφ .

Claim 5: The map h : LφΩk(G) → LφΩk−1(G) is well-defined and continuous for
every k = 1, . . . , dim(G).

Using 4.4 we have

∫

G

φ

(

|h(ω)|x
γ

)

dx ≤

∫

G

∫

G

(

∫ 1

0

φ

(

CMk−1|ω|ϕZ
t (x)

α

)

dt

)

κ(z)dzdx

≤

∫

G

(∫ 1

0

∫

G

1

m
φ

(

CMk−1|ω|y
γ

)

dydt

)

κ(z)dz

=

∫

G

1

m
φ

(

CMk−1|ω|y
γ

)

dy.

From this we obtain ‖h(ω)‖Lφ � ‖ω‖Lφ ; and using again the equality (4.2) we have
|h(ω)|Lφ � |ω|Lφ .

By Claims 4 and 5 we conclude that h is well-defined and continuous from IφΩk(G,U)
to IφΩk−1(G,U).

The same argument works in the relative case, the only thing we have to verify is
that the maps ∗κ and h preserve the relative subcomplexes. This is easy using the
compactness of supp(κ).

The proof of Theorem 1.2.9 finishes with the following proposition.

Proposition 4.2.10. The cochain complexes (IφΩ∗(G,U), d), (LφΩ∗(G), d), and (LφC∗(G), d)
are homotopically equivalent. The same result is true for the corresponding relative
cochain complexes.
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Proof. In this case we consider ∗κ and h defined as in Proposition 4.2.9. We have to
prove that they are well-defined and continuous. Identities as (4.2) are clearly satisfied.

LφC0(G) d //

∗κ
��

LφC1(G) d //

∗κ
��

hss
LφC2(G) d //

∗κ
��

hss
· · ·

IφΩ0(G,U) d //

i

TT

i
��

IφΩ1(G,U) d //

i

TT

i
��

hss
IφΩ2(G,U) d //

i

TT

i
��

hss
· · ·

LφΩ0(G) d //

∗κ

TT

LφΩ1(G) d //

∗κ

TT

hss
LφΩ2(G) d //

∗κ

TT

hss
· · ·

The map h : LφCk(G) → LφCk−1(G) is the continuous extension of h : LφCk(G) →
LφCk−1(G), then we have that all maps h in the diagram are continuous.

Claim: The map ∗κ : LφCk(G) → IφΩk(G,U) is well-defined and continuous for
every k = 0, . . . , dim(G). Then so is ∗κ : LφΩk(G) → IφΩk(G,U)

First of all observe that if ω ∈ LφCk(G) then ω ∗ κ ∈ Ωk(G) by Lemma 4.2.1.
Remember the estimate given by Lemma 4.2.1:

|ω ∗ κ|x ≤ C|ω| ∗ κ(x).

For γ > 0 we have
∫

G

φ

(

|ω ∗ κ|x
γ

)

dx ≤

∫

G

φ

(

C|ω| ∗ κ(x)

γ

)

dx

=

∫

G

φ

(∫

G

C|ω|xz
γ

κ(z)dz

)

dx

≤

∫

G

∫

G

φ

(

C|ω|xz
γ

)

κ(z)dzdx.

In the last line we use Jensen’s inequality. As before we take m > 0 with m <
|Jacx(Rz)| for all x ∈ G and z ∈ supp(κ), then

∫

G

φ

(

|ω ∗ κ|x
γ

)

dx =

∫

G

(∫

G

φ

(

C|ω|xz
γ

)

|Jacx(Rz)|

|Jacx(Rz)|
dx

)

κ(z)dz

≤

∫

G

(∫

G

1

m
φ

(

C|ω|y
γ

)

dy

)

κ(z)dz

=

∫

G

1

m
φ

(

C|ω|y
γ

)

dy.

If γ ≥ C‖ω‖
L

φ
m

we have
∫

G

φ

(

|ω ∗ κ|x
γ

)

dx ≤ 1,
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which implies ‖ω ∗κ‖Lφ ≤ C‖ω‖
L

φ
m

� ‖ω‖Lφ . In the same way we have ‖d(ω ∗κ)‖Lφ =

‖dω ∗ κ‖Lφ � ‖dω‖Lφ and as a conclusion |ω ∗ κ|Lφ � |ω|Lφ .

On the other hand we denote ϑ(U) = ‖ω ∗ κ|U‖Lφ and estimate

∫

U

φ

(

|ω ∗ κ|x
γ

)

dx ≤

∫

U

φ

(∫

G

C|ω|xz
γ

κ(z)dz

)

dx

≤ Dφ

(∫

E(U)

C|ω|y
γ

dy

)

,

where E(U) is a neighborhood of U with radius independent of U , and D is a constant
(also independent of U). We can deduce from here that

‖ω ∗ κ|U‖Lφ ≤
C

φ−1(1/D)

∫

E(U)

|ω|ydy.

In order to simplify the notation we write C = C
φ−1(1/D)

. Then

∑

U∈U

φ

(

‖ω ∗ κ|U‖Lφ

γ

)

≤
∑

U∈U

φ

(

C

γ

∫

E(U)

|ω|ydy

)

≤
∑

U∈U

1

Vol(E(U))

∫

E(U)

φ

(

C Vol(E(U))|ω|y
γ

)

dy.

Using that {E(U) : U ∈ U} is a uniformly locally finite covering such that Vol(E(U))
is bounded from above and below far from zero, we can find a uniform constant L such
that

∑

U∈U

1

Vol(E(U))

∫

E(U)

φ

(

C Vol(E(U))|ω|y
γ

)

dy ≤

∫

G

Lφ

(

L|ω|y
γ

)

dy.

This proves that ‖ϑ‖ℓφ � ‖ω‖Lφ . Doing the same for the derivative we obtain |ω∗κ|Lφ �
|ω|Lφ , that finish de proof of the Claim.

As in Proposition 4.2.9 the relative case follows from the previous argument.

Observe that the previous proposition has a consequence that is not trivial: to
study the (relative) Lφ-cohomology in the case of Lie groups it is enough to consider
differential forms. This result is proved in a more general case in [KP15] for the non-
relative version.
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Chapter 5

Some questions

5.1 Dependence on the boundary point

Example 3.1.4 shows a uniformly contractible and Gromov-hyperbolic simplicial com-
plex X with bounded geometry for which ℓpH1(X, ξ0) is not isomorphic to ℓpH1(X, ξ),
where ξ0 and ξ are two different points in ∂X.

This kind of result allows to conclude that there is no quasi-isometry from the space
to itself whose boundary map sends ξ0 on ξ. In the case studied the topology of the
boundary gives a more direct proof of this fact, but it is not always so easy.

In the case of a Heintze group G = N ⋊αR, whose boundary is ∂G = N ∪{∞}, we
have that LpHk(G, ξ) is isomorphic to LpHk(G, η) for every k ∈ N if ξ, η ∈ N ⊂ ∂G
because QI(G) acts transitively on N by boundary maps. It makes sense to ask the
following question:

Question 5.1.1. Is LpHk(G, ξ) isomorphic to LpHk(G,∞) if ξ 6= ∞?

A negative answer to this question for some k and p would imply that ∞ is fixed by
the group QI(G). Observe that the question can be formulated also for relative Orlicz
cohomology.

It is known that the boundary point ∞ is fixed by QI(G) if G is not of Carnot
type (see [Car16]) and it is easy to see that QI(G) acts transitively on ∂G if G is a
symmetric space. The non-symmetric Carnot type case reminds open.

5.2 Relative Orlicz cohomology of Heintze groups

Consider the family of doubling Young functions

φp,κ(t) =
|t|p

log(e+ |t|−1)κ
,
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with p ≥ 1 and κ ∈ R. We can call p the main exponent and κ the logarithmic exponent
of the Young function.

Example 5.2.1. Consider G = R
n−1

⋊α R a purely real Heintze group with α diag-
onalizable and denote by λ1 ≤ · · · ≤ λn−1 the eigenvalues of α. The numbers wk are
defined as in Section 3.4.

Using similar methods as we use in Section 3.4 we can prove that:

(i) Lφp,κHk(G,∞) = 0 for p > tr(α)
wk−1

and all κ; and

(ii) Lφp,κHk(G,∞) 6= 0 for p ∈
(

tr(α)
wk

, tr(α)
wk−1

]

and all κ.

As one can observe in the previous example, the logarithmic exponent of the func-
tion φp,κ seems to be negligible. Looking at the computations it seems to be related to
the fact that α has not Jordan blocks (with size bigger than one).

We would like to get numerical quasi-isometry invariants related to the sizes of the
Jordan blocks of the derivation α defining a purely real Heintze group G = R

n−1
⋊α R

(or more in general G = N ⋊α R). We think that critical logarithmic exponents could
give us such invariants. Here the notion of critical logarithmic exponent is a bit vague,
we can think of it as an exponent κc such that there exist fixed p > 1 and k ∈ N, and
a property satisfied by Lφp,κHk(G,∞) for κ in an interval of the form (κ0, κc), but not
satisfied by the cohomology space for κ in an interval (κc, κ1). In the case of Example

5.2.1 we can say that tr(α)
wk−1

is a critical main exponent for the property of being zero as

vector space, but there is not critical logarithmic exponent for the same property.

Being more ambitious, we could try to answer Question 1.2.11 using these methods.
To justify that this question makes sense and that it is related to Conjecture 1.2.6 we
can look at the following proposition:

Proposition 5.2.2. Consider two purely real Heintze groups G1 = N1 ⋊α1 R and
G2 = N2⋊α2 R. If G1 and G2 are isomorphic, then there exists λ > 0 such that α1 and
λβ2 have the same Jordan form.

The Lie algebra of a Heintze group N ⋊α R is the direct sum of n and R (where n

is the Lie algebra of N) with the Lie bracket defined by

[X + T, Y + S] = [X, Y ] + Tα(Y )− Sα(X). (5.1)

In the right side of the equality (5.1) [X, Y ] indicates the Lie bracket on n. We denote
this Lie algebra by n⋊α R.

Lemma 5.2.3. In the same hypotheses of Proposition 5.2.2 denote by ni the Lie algebra
of Ni for i = 1, 2. Then G1 and G2 are isomorphic if, and only if, there exist an
isomorphism γ : n1 → n2, X ∈ n2 and λ > 0 such that

γ ◦ α1 ◦ γ
−1 − λα2 = adX (5.2)
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Proof. (⇒) Since G1 and G2 are isomorphic, there exist an isomorphism

Φ : n1 ⋊α1 R → n2 ⋊α2 R.

We denote γ = Φ|n1 and Φ(1) = X + λ, with X ∈ n2 and λ > 0. For all Y ∈ n1 we
have

Φ([1, Y ]) = Φ(α1(Y )) = γ ◦ α1(Y )

and
Φ([1, Y ]) = [Φ(1),Φ(Y )] = [X + λ, γ(Y )] = adX ◦ γ(Y ) + λα2 ◦ γ(Y ).

From here follows (5.2).

(⇐) To prove this part observe that the linear map Φ : n1 ⋊α1 R → n2 ⋊α2 R

verifying γ = Φ|n1 and Φ(1) = X + λ, is an isomorphism of Lie algebras.

Proof of Proposition 5.2.2. By (5.2) the derivation γα1γ
−1−λα2 is nilpotent and thus

α1 and λα2 have the same positive eigenvalues λ1 < · · · < λd with the same multiplicity.
Without loss of generality we can assume that n1 = n2, γ = Id and λ = 1.

We prove the proposition by induction on d, the number of eigenvalues. Observe
that if d = 1, then n1 must be abelian; hence adX = 0.

Now consider d ≥ 2. We assume that the proposition is true for d− 1. Denote by
D1 and D2 the diagonal part of α1 and α2 respectively, they are also derivations (see
[CS17, Section 2]).

Consider Vd,Wd ⊂ n1 the generalized eigenspaces associated to λd for α1 and α2

respectively.

Claim: Vd = Wd ⊂ Z(n1), where Z(n1) is the center of the Lie algebra n1.

Let Xd ∈ Vd and Xi another eigenvector of D1 associated to λi. Then

D1([Xd, Xi]) = (λi + λd)[Xd, Xi].

Since λd is the biggest eigenvalue of D1 we have that [Xd, Xi] = 0. This implies that
Xd ∈ Z(n1).

The same can be done for Wd using D2. By (5.2) we have α1|Vd = α2|Vd and
α1|Wd

= α2|Wd
and as a consequence Vd = Wd.

Since Vd is invariant by α1 and α2 and it is contained in Z(n1), we can consider on
the Lie algebra n1/Vd the derivations induced by α1, α2 and adX , denoted by α1, α2

and adX . Observe that adX = adX , where X = X + Vd. We also have the identity

α1 − α2 = adX .

Since α1 and α2 have positive eigenvalues λ1 < · · · < λd−1 with the same multiplicity,
both derivations have the same Jordan form by the induction hypotheses. Combining
this with the fact that α1|Vd = α2|Vd , we conclude that α1 and α2 have the same Jordan
form.
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It is important to have on mind that the converse of Proposition 5.2.2 is not true
(see [CS17]).

5.3 Equivalence of Orlicz cohomology on a more

general case

Our main motivation to study the Orlicz cohomology is to use it to obtain information
about the large scale geometry of Heintze groups. For this purpose the generality in
which we state Theorem 1.2.3 is enough. However, it could be interesting to have a
more general result. Thinking about the Lp-case we can ask:

Question 5.3.1. Is Theorem 1.2.3 true for a complete Riemannian manifold with
bounded geometry?
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ity for L p-Cohomology. Rendiconti del Seminario Matematico della Università di
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