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MODELING AND OPTIMIZATION OF TEXTILE MANUFACTURING PROCESSES USING 

INTELLIGENT TECHNIQUES  

Abstract 

Textile manufacturing plays an important role in the world economy. While the globally 

increasing competition is stressing the textile companies to promote the manufacturing flexibility, 

as a trend of intelligent manufacturing in Industry 4.0, the future development of the textile 

manufacturing process will increasingly rely on shorter cycle and higher quality. However, the 

complicated intricate relationship between the large-scale parameter variables from a variety of 

textile processes makes it seem incredibly difficult. In order to overcome these issues, intelligent 

techniques are employed in this thesis to promote textile manufacturing from the process 

modeling and optimization. 

In this Ph.D. research, a thorough investigation and literature review regarding the previous 

studies on modeling and optimization of the textile manufacturing process using intelligent 

techniques. A series of the summarizations were determined in pros and cons, which provided a 

theoretical foundation and research direction for the subsequent studies. Three sub-studies thus 

were developed: A specific case study on textile ozonation process modeling using extreme 

learning machine (ELM), support vector regression (SVR) and random forest (RF) was developed, 

where the SVR models and RF models were found that both can well address the uncertain 

interrelationships of variables in the textile process modeling with less training data, but their 

requirement on training time is different. On the basis of the established RF models, a novel 

multi-criteria decision support system was then developed for textile optimization with the 

collaboration of the analytic hierarchy process (AHP) and the Deep Q-networks (DQN) algorithm, 

where the textile process is formulated as the Markov decision process (MDP) paradigm, and the 

application result showed that it can master the challenging decision-making tasks in the textile 

manufacturing process. To better address the growing complexity in this issue, the application of 

this developed system is further integrated into a multi-agent system for multi-objective 

optimization in the textile manufacturing process. The developed systems can optimize the textile 

process and help companies maintain competence in the trend of intelligent manufacturing in the 

textile industry. 
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MODÉLISATION ET OPTIMISATION DES PROCÉDÉS DE FABRICATION 

TEXTILE À L'AIDE DES TECHNIQUES INTELLIGENTES 

Résumé 

La fabrication textile joue un rôle important dans l'économie mondiale. Face à une concurrence 

mondiale croissante, les entreprises textiles tentent de promouvoir la flexibilité de fabrication en 

s’appuyant sur le concept de fabrication intelligente issu de l'industrie 4.0. Ainsi, le futur 

développement des processus de production textile reposera de plus en plus sur un cycle de 

fabrication plus court et une qualité supérieure. Cependant, les relations complexes entre les 

paramètres provenant des nombreux procédés textiles et la grande variété de produits rend le 

contrôle et l’optimisation de la fabrication très difficile. Afin de surmonter ces problèmes, des 

techniques intelligentes de modélisation des processus et d’apprentissage à partir de données 

expérimentales sont utilisées dans cette thèse pour optimiser la fabrication textile.  

Dans cette thèse une étude approfondie de la littérature est menée sur les travaux précédents 

concernant la modélisation et l'optimisation du processus de fabrication textile à l'aide de 

techniques intelligentes. La synthèse de ces travaux, des avantages et inconvénients des 

différentes techniques, ont fourni une base théorique et une direction de recherche sur la 

méthodologie à suivre. Trois sous-études ont ainsi été développées. La première étude de cas 

spécifique porte sur la modélisation des processus d'ozonation des textiles à l'aide de réseaux 

neuronaux de type  “extreme learning machine” (ELM), de régression par machines à vecteurs 

“support vector regression” (SVR) et de forêt d’arbres décisionnels “random forest” (RF).  Les 

modèles SVR et RF ont montré les meilleures aptitudes à modéliser les interrelations incertaines 

des variables dans le processus textile avec un nombre réduit de données d'apprentissage, mais 

nécessite des temps d’exécution plus importants. Sur la base des modèles RF établis, un nouveau 

système d'aide à la décision multicritères a ensuite été développé, dans une deuxième étude, pour 

l'optimisation textile en combinaison avec une méthode de hiérarchie multicritère, “analytic 

hierarchy process”  (AHP), et de l'algorithme Deep Q-networks (DQN). Le processus textile est 

alors formalisé comme un processus de décision markovien, “Markov decision process” (MDP).  

Le résultat obtenu par ce modèle montre qu'il est possible de contrôler les relations décisionnelles 

complexes qui régissent le processus de fabrication textile. Dans la troisième étude, afin de mieux 



 

 

répondre à la complexité croissante de ce problème en milieu industriel, le système développé est 

intégrée dans un système multi-agents pour l'optimisation multi-objectifs du processus de 

fabrication textile. Les différents systèmes proposés permettent d'optimiser le processus de 

fabrication textile et aider les industries textiles à converger vers une fabrication intelligente pour 

maintenir leur compétitivité.  

Mots clés: Modélisation de processus; Optimisation de la production; Apprentissage par 

renforcement; Apprentissage automatique; Processus textile; Intelligence artificielle   



 

 

Acknowledgement  

This thesis was carried out at the GEMTEX (Laboratoire de Génie et Matériaux Textiles), 

ENSAIT (École Nationale Supérieure des Arts et Industries Textiles) in Lille, France. This thesis 

was supported by the China Scholarship Council (CSC, 201708420166). Both of the GEMTEX-

ENSAIT and the CSC are gratefully acknowledged for supporting the preparation and completion 

of the thesis. 

I would like to express my deepest gratitude to my supervisors, Prof. Xianyi Zeng, Prof. 

Sébastien Thomassey, and Prof. Kim Phuc Tran, thanks for their advices and ideas 

conceptualized the problems and the frameworks of the researches in this thesis, thanks for taking 

their valuable time to discuss with me and guide me when I feel confused and frustrated. I can 

barely work out this Ph.D. thesis without their warm help and support, it is my great honor to 

work with them and have all of them as my Ph.D. supervisors.  

Part of the acquisition of data in the researches of this thesis was managed by Prof. Changhai 

Yi and Dr. Jie Xu from Wuhan Textile University, Wuhan, China. Their work was very 

significant to the studies in my thesis. Some helps came from the other Ph.D. students of 

GEMTEX-ENSAIT (Yanni Xu, Kaichen Wang, Kehui Song, Melissa Wagner, Chandadevi Giri, 

Mohammad Neaz Morshed, Ashik Md Faisol, Balkiss Hamad, Shenglei Xiao, Xiang Yan, Cheng 

Chi, Hao Shen, Xin Zhao, Shengchang Zhang) have benefited me a lot to improve my works 

from different directions. I thank to their help from the bottom of my heart.    

Last but not the least I would like to thank my families and my fiancée (Mengru Li) for their 

selfless encouragement and support to me. 



 

 

Table of contents 

General introduction ..................................................................................................................... 1 

1. Introduction ........................................................................................................................... 5 

1.1. An overview of the textile manufacturing processes ..................................................... 5 

1.2. The necessity of modeling and optimization ................................................................. 7 

1.3. Problem discussion and purpose of the thesis .............................................................. 10 

2. Literature review ................................................................................................................. 12 

2.1. Intelligent techniques used for textile process modeling ............................................. 12 

2.2. Modeling yarn manufacturing process ......................................................................... 15 

2.2.1 Processes or methods ............................................................................................ 17 

2.2.2 Factors and performances ..................................................................................... 22 

2.2.3 The relative importance of inputs and feature selection ....................................... 24 

2.2.4 Modeling techniques applied in yarn manufacturing ........................................... 26 

2.2.5 Data and performance estimation ......................................................................... 28 

2.3. Modeling fabric manufacturing process ...................................................................... 32 

2.3.1 Modeling weaving process ................................................................................... 33 

2.3.2 Modeling knitting process .................................................................................... 35 

2.3.3 Modeling dyeing process ...................................................................................... 37 

2.3.4 Modeling finishing process................................................................................... 39 

2.3.5 Modeling nonwoven manufacturing process ........................................................ 44 

2.4. Modeling garment manufacturing process ................................................................... 46 

2.4.1 Modeling cutting process of garment manufacturing ........................................... 48 

2.4.2 Modeling garment sewing process ....................................................................... 48 

2.4.3 Other issues in garment manufacturing process ................................................... 51 

2.5. Intelligent techniques used for textile process optimization ........................................ 52 

2.6. Optimization of the textile manufacturing process ...................................................... 55 

2.7. Formulation of the research questions ......................................................................... 58 

3. Modeling a textile process using intelligent techniques: a case study for color fading 

ozonation ........................................................................................................................................ 61 

3.1. Experimental ................................................................................................................ 62 

3.1.1 Material ................................................................................................................. 62 

3.1.2 Apparatus .............................................................................................................. 62 

3.1.3 Methods ................................................................................................................ 63 

3.2. Algorithm and structure of process modeling .............................................................. 64 

3.2.1 Extreme Learning Machine .................................................................................. 65 

3.2.2 Support Vector Regression ................................................................................... 66 

3.2.3 Random Forest ...................................................................................................... 69 

3.2.4 Modeling structure ................................................................................................ 70 

3.3. Results and discussion ................................................................................................. 73 



 

 

3.3.1 Modeling training ................................................................................................. 73 

(1) ELM models ............................................................................................................. 73 

(2) SVR models .............................................................................................................. 74 

(3) RF models ................................................................................................................. 75 

3.3.2 Prediction performance ......................................................................................... 77 

3.4. Conclusions .................................................................................................................. 80 

4. Optimizing textile manufacturing process using  deep reinforcement learning based 

intelligent system ............................................................................................................................ 81 

4.1. Problem formulation .................................................................................................... 82 

4.2. Methodology ................................................................................................................ 83 

4.2.1 Analytic Hierarchy Process .................................................................................. 83 

4.2.2 Reinforcement learning for Multi-criteria optimization ....................................... 84 

4.2.3 Deep-Q-network algorithm ................................................................................... 86 

(1) Q-learning ................................................................................................................. 86 

(2) DQN: innovative combination of deep neural networks and Q-learning ................. 87 

4.3. System framework ....................................................................................................... 89 

4.4. Application ................................................................................................................... 92 

4.4.1 Modeling color fading ozonation process using the random forest ...................... 93 

4.4.2 Determining the criteria weights using the analytic hierarchy process ................ 93 

4.4.3 Deep Q-Networks for optimal decision-making ................................................... 94 

4.4.4 Results and discussion .......................................................................................... 95 

4.5. Conclusions .................................................................................................................. 98 

5. Multi-objective optimization of the textile manufacturing process using deep 

reinforcement learning based multi-agent system ........................................................................ 100 

5.1. System model ............................................................................................................. 101 

5.2. Methodology .............................................................................................................. 102 

5.2.1 Multi-objective optimization of the textile process as Markov game ................ 102 

5.2.2 Deep Q-networks reinforcement learning algorithm .......................................... 106 

5.2.3 DQN based MARL for multi-objective optimization of the textile process ...... 106 

5.3. Application ................................................................................................................. 107 

5.3.1 Experimental setup ............................................................................................. 107 

5.3.2 Results and discussion ........................................................................................ 108 

5.4. Conclusions ................................................................................................................ 110 

6. Discussion, conclusions and future perspectives .............................................................. 112 

6.1. Summary of the thesis ................................................................................................ 112 

6.2. Discussion .................................................................................................................. 113 

6.3. Contributions of the thesis ......................................................................................... 116 

6.4. Limitation and perspectives in future research .......................................................... 118 

Reference .................................................................................................................................. 120 

 



 

 

List of abbreviations  

Abbreviation Explanation 

ABC Artificial bee colony  

ACO Ant colony optimization  

AFIS Advanced fiber information system   

AHP Analytic hierarchy process 

AI Artificial intelligent  

ANFIS Adaptive-Network-based Fuzzy Inference System  

ANN Artificial neural network  

ANOVA Analysis of variance technique  

DE Differential evolution  

DNNs Deep neural networks 

DQN Deep Q-networks  

DRL Deep reinforcement learning 

DRL Deep reinforcement learning 

EA Evolutionary algorithm  

ELM Extreme learning machine 

ENRBF Extended normalized radial basis function 

ERBF Exponential Radial basis function  

FECS Fuzzy efficiency-based classifier system  

FIS Fuzzy inference system  

FMT Fineness and maturity tester  

GA Genetic algorithm  

GEP Gene expression programming  

GP Genetic programing  

HVI High-volume instrument system 

IoT Internet of Things  

KNN K-nearest neighbors 

LM Levenberg-Marquardt  

LOO Leave-one-out process 

MAE Mean absolute error  

MARL Multi-agent reinforcement learning system 

MCDM Multi-criteria decision-making  

MCI Mean of capability index  

MDP Markov decision process 

ME Mean error  

MLR Multiple logarithm regression  

MOSPO Multi-objective swarm particle optimization  

MSE Mean square error  

NPF Needle penetration force  

NSGA-Ⅱ Non-dominated sorting genetic algorithm- Ⅱ 

PCA Principal component analysis  

PSO Particle swarm optimization 

R Correlation coefficient 

R2 R-square 



 

 

RBF Radial basis function networks 

RE Relative error  

RF Random forest 

RL Reinforcement learning  

RMSE Root mean square error  

RT Regression trees 

SA Simulated annealing  

SICS Synergetic immune clonal selection  

STE Strength transfer efficiency  

STE Strength transfer efficiency  

SVM Support vector machine  

SVR Support vector regression 

 

 

 

 

  



 

 

List of tables 

 Fiber properties affecting textile spinning process that have been considered for 

modeling in previous works ........................................................................................................... 16 

 Process parameters in the spinning process that have been considered for modeling 

in previous works ........................................................................................................................... 17 

 Process performance targeted in process modeling of yarn manufacturing in 

previous works ............................................................................................................................... 18 

 Information about modeling the yarn manufacturing process using intelligent 

methods in previous works ............................................................................................................. 18 

 Information about modeling fabric manufacturing process using intelligent methods 

in previous works ........................................................................................................................... 30 

 The topology studies of  [121], [122], [125] applied to optimize the artificial neural 

network structure. ........................................................................................................................... 41 

 Information about modeling garment manufacturing process using intelligent 

methods in previous works ............................................................................................................. 47 

 Research questions list. ............................................................................................ 59 

 K/S, L*, a*, b* values of samples shown in Figure 7. ................................................ 71 

 The maximum, minimum, average and standard deviation of parameters. .......... 71 

 The correlation coefficients of data for modeling. ............................................... 71 

 Prediction performance of optimized models. ...................................................... 77 

 Correlation coefficients of data in Figure 12. ....................................................... 79 

 Parameter grid used in the hyperparameter tuning process .................................. 91 

 The results of hyper-parameter tuning and performances of the RF models ....... 93 

 Pairwise comparison matrix of k/s, L*, a* and b*  with respect to the overall 

color performance ........................................................................................................................... 94 

 DQN algorithm setting in textile ozonation process application study ................ 95 

 The experimental targets sampled by experts  we used in the case study 

application of proposed decision support system ........................................................................... 96 

 simulated results of solutions with minimum errors obtained from DQN based 

and Q-learning based framework respectively ............................................................................... 98 

 DQN algorithm setting in textile ozonation process case study ......................... 108 

 Summary of sub-study 1 ..................................................................................... 113 

 Summary of sub-study 2 ..................................................................................... 114 

 Summary of sub-study 3 ..................................................................................... 115 

 

  



 

 

List of figures 

 Structure of the thesis ................................................................................................. 3 

 Principal processes of textile manufacturing from fiber to garment. ......................... 5 

 The basic structure of modeling and optimization for the textile process. ................. 9 

 An example of artificial neural network architecture. .............................................. 13 

 (a) Ring dye effect from fading process; (b) Inner cotton exposed denim. .............. 39 

 The reactor setup of ozonation. ................................................................................ 63 

 The illustration of the real ozone-treated cotton samples from (a) the front side, and 

(b) the back side ............................................................................................................................. 70 

 Validation MSE of ELM models activated by different functions .......................... 74 

 Activation functions of ELM. .................................................................................. 74 

 Validation MSE of SVM models with varied kernel functions ............................ 75 

 MSE of RF models with varied number of features, leaves and trees .................. 76 

 Predicted data outputted by ELM (trained by Sigmoid and Sine respectively), 

SVR and RF versus experimental data ........................................................................................... 79 

 The MDP structure of textile manufacturing process multi-criteria optimization in 

the proposed framework ................................................................................................................. 89 

 Flowchart of the algorithm implementing the deep reinforcement learning based 

multi-criteria decision support system for textile manufacturing process optimization ................ 92 

 Predictive performance of the RF models trained in the case study for supporting 

decision making in the textile color ozonation process .................................................................. 95 

 The loss function of Q- networks for each scenario with different targets .......... 97 

 The number of states that the DQN agent has explored in each episode for 

different scenarios .......................................................................................................................... 97 

 The minimum error of solutions that DQN agent achieved versus time steps ..... 97 

 The Markov game for textile manufacturing process multi-objective optimization 

in the proposed framework ........................................................................................................... 104 

 Flowchart of the algorithm implementing the DQN based multi-criteria decision 

support system for textile manufacturing process optimization ................................................... 107 

 Increasing 𝜀-greedy policy for choosing action .................................................. 109 

 The loss function of DQN for four agents in the Markov game ......................... 109 

 The minimum error of DQN agents and the sum of its versus time steps .......... 110 

 Comparison of baseline algorithms and the proposed multi-agent reinforcement 

learning framework with simulated results .................................................................................. 110 



1 

 

General introduction 

With the globally increasing competition in the textile industry, the manufacturers are forced to 

promote the product quality, process efficiency, and process environmental issues as a whole. 

This is highly complex due to the intricate relationship involved in a large number of parameter 

variables from a variety of processes. Traditional techniques can hardly make remarkable 

promotions in these regards. Thus, some innovative methods are demanded to solve these issues 

and optimize the textile processes. 

In the background of Industry 4.0, manufacturing processes are expected to be more intelligent 

with quick reactivity to the market and adaptation to the big data environment. In this situation, 

intelligent techniques are regarded as the key techniques simulating human reasoning and 

perception, permitting to model and analyze with various data, and then leading to smart and fast 

utilization of IoT (Internet of Things) and cloud computations, as well as data-driven product and 

market prediction and online traceability. Especially, intelligent techniques in the big data 

environment will enable to get through the information channel of the whole supply chain from 

very initial production stages to finished products. Concretely, intelligent manufacturing 

techniques have been developed to meet various personalized requirements of customers, deal 

with quickly and continuously arriving data generated from multiple connected devices, 

connected materials and connected operators. In general, intelligent manufacturing could be a 

promising direction to solve the aforementioned problems encountered in the textile 

manufacturing by intelligent process modeling and optimization with evolutionary data.  

Artificial intelligence techniques are playing a vital role in industry development. They have 

attracted significant attention from both industry and academia, many successful applications of 

intelligent techniques for modeling, simulation and optimization of industry processes as well as 

supporting decision-making have been developed. These techniques are known as efficient data 

mining tools and can overcome the aforementioned complex problems encountered in various 

industrial processes.  

Intelligent process modeling and optimization constitute the main axis of my thesis. Three 

inter-organizational investigations on modeling and optimization strategies were developed 

respectively to solve current issues in the textile manufacturing process. Specifically, from a case 
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study on modeling a textile ozonation process, a modeling technique was proposed upon the 

comparison of multiple intelligent approaches. And two decision support frameworks based on 

deep reinforcement learning techniques were designed on the basis of the developed intelligent 

process model with the collaboration of the multi-criteria decision-making tool of the analytic 

hierarchy process, and the multi-agent system respectively. The feasibility and effectiveness of 

the developed model and corresponding proposed decision support frameworks were verified 

through the application in a textile ozonation process. According to the outcomes of this research, 

the decision-maker from the textile manufacturing industry can take advantages of the models 

and frameworks developed in this thesis to exploit their manufacturing dynamic data for 

modeling, simulation and optimization of the process, to address the complexities in the process 

promotion by assisting decision-making under uncertainties and efficiently finding the optimum 

process solution from the challenging high dimensional decision space, so that to enhance their 

competitiveness in the future of Industry 4.0 era. 

The structure and organization of this thesis are introduced as shown in Figure 1. 

As illustrated in Figure 1, Chapter 1 introduces the background of my Ph.D. research in general. 

We give a brief introduction to textile manufacturing and discuss the necessity of modeling and 

optimization using intelligent techniques. The formulated problems and the purposes of this Ph.D. 

thesis are also presented. 

Chapter 2 makes a systematic literature review concerning the previous researches and 

applications of the modeling and optimization of the textile manufacturing process using 

intelligent techniques, paves the way for the research direction for the following sub-studies in 

this thesis. It summarizes the prior investigations on the intelligent techniques for modeling and 

optimization of the textile manufacturing process with a general outline in three clusters, i.e. 

applications in yarn manufacturing, fabric manufacturing and garment manufacturing, 

respectively. It compared many traditional algorithms and the analysis concluded that current 

methods are not eligible enough to handle the increasing complexities of large-scale data and 

high dimensional space of the modeling and optimization problems in the textile manufacturing 

process in the era of Industry 4.0. 

   Chapter 3 studies three intelligent modeling techniques, i.e. extreme learning machine (ELM), 

support vector regression (SVR) and random forest (RF), for modeling the textile ozonation 
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process. The prediction performances among these algorithms in regard to the color properties of 

treated textiles in the ozonation with respect to the process parameters are comparatively 

investigated. The potential applicability of these models in the use of textile process modeling is 

estimated.  
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According to the models comparatively studied in Chapter 3, a multi-criteria decision support 

system for the textile manufacturing process is established in Chapter 4. The developed decision 

support system combines the intelligent data-based models of random forest (RF) and a human 

knowledge-based multi-criteria structure of the analytic hierarchy process (AHP) in accordance 

with the objective and the subjective factors of the textile manufacturing process respectively. 

More importantly, the solution optimization of the textile manufacturing process is described as 

the Markov decision process (MDP) paradigm, and a deep reinforcement learning scheme, 

namely the Deep Q-networks (DQN) algorithm, is employed to cope with it. The textile 

ozonation process is taken as an application case study to estimate the effectiveness of this system 

for multi-objective optimization.  

Multi-objective optimization of the textile manufacturing process is increasingly challenging 

because of the growing complexity involved in the development of the textile manufacturing 

process. Though significant improvement from certain successful applications has been reported, 

the use of traditional techniques failed to work with high-dimension decision space and required 

prior experts’ knowledge as well as human intervention, Chapter 5 presents another paradigm of 

the Markov decision process with game theory into a multi-agent system that formulates the 

Multi-objective optimization problem as a Markov game. This proposed multi-agent 

reinforcement learning framework transforms the multi-objective optimization process into a 

Markov game, and introduced the deep Q-networks algorithm to train the multiple agents. A 

utilitarian selection mechanism is employed in the Markov game, which maximizes the sum of all 

agents’ rewards (obeying the increasing ε-greedy policy) in each state to avoid the interruption of 

multiple equilibria and achieve the correlated equilibrium optimal solutions of the optimizing 

process. The constructed textile ozonation process model is applied as a case study and extended 

to the multi-agent reinforcement learning system to achieve the optimal solutions. The 

optimization performances of this system are evaluated in the comparison with multi-objective 

swarm particle optimization (MOSPO) and non-dominated sorting genetic algorithm-Ⅱ (NSGA-

Ⅱ). 

Based on the results gained from the chapters above, a list of conclusions of the thesis is 

derived in Chapter 6. The contribution of this thesis is summarized with a discussion on the 

perspectives of future researches.   
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1. Introduction  

1.1. An overview of the textile manufacturing processes 

Textile manufacturing plays an important role in the world economy and it is one of the most 

relocated industrial sectors. The objective of textile manufacturing is to convert fibers into 

intermediated products like yarns, fabrics, and finished products like garments and technical 

textiles. A general illustration of the whole textile manufacturing processes is displayed in Figure 

2 with a focus on woven fabrics excluding the knitting and non-woven processes.  

 

Figure 2. Principal processes of textile manufacturing from fiber to garment. 

Among these, yarn is a semi-finished textile product for fabric-making, and yarn manufacturing 

was rooted in natural fibers obtained from natural plant or animal sources but dramatically 

expanded to synthetic fibers nowadays. Yarn manufacturing comprises a series of processes from 

fiber assorting, followed by the series of continuous mechanical operations of bale opening, 

blending, carding, drawing, roving, and spinning[1]. To achieve the most important properties of 

yarns including strength, elongation and evenness, the first half of these processes generally 

perform the functions of blending and removing impurities of the fibers to obtain the fiber slivers, 

while the second half of these operations mainly play the roles of mixing, straightening, orienting 

the fibers and drafting, twisting the slivers to strengthen and forming the yarns. The designed 

specification of yarns depends upon the end-use requirement of fabric to be produced for woven 

or knitted end products (e.g., apparel or industrial fabrics). An introductory work published by 

Lawrence[2] has introduced the fundamental technology of spun yarn in detail with the coverage 
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of the rudiments of staple-yarn technology, the manufacturing, the raw materials, and the 

production processes for short-staple, worsted, semi-worsted, woolen spinning, doubling, and 

specialty yarn, respectively. In where, some of the interesting advanced topics were also 

discussed ranging from new development in fiber preparation technology, carding technology to 

roller drafting, ring spinning, open-end rotor spinning, and air-jet spinning. 

The textile fabric is at least a two-dimensional structure produced by fiber/yarn interlacing in 

terms of the fibrous structure of woven, nonwoven, and knitting in general. Weaving was the 

traditional principal source for fabric production, it joins the yarns from warp and weft directions 

to form the fabric with a different structure such as basic plain, twill, and satin or the fancy 

structures like pile, jacquard, dobby, and gauze. Because of the excellent performance in comfort, 

function and aesthetics, knitting also takes a considerable share in the textile market following the 

woven. It is implemented by inter-looping one (weft knitting) or one set of yarns (warp knitting) 

in fabric and garment manufacturing. For the convenience of fabric manufacturing of weaving 

and knitting, there are many preprocesses on yarns and finishing processes on fabrics involved, 

e.g. winding, warping, sizing, and singeing, desizing, dyeing etc. These processes facilitate the 

operations of weaving and knitting by strengthening and organizing yarns, promote the quality of 

fabrics in terms of stability, aesthetics, comfort, and functionalize the products (by coating or 

other finishing techniques), respectively. Nonwoven fabrics are increasingly consumed in recent 

years as found effective and economic in industrial and home applications. Nonwoven 

manufacturing does not rely on constructing yarn structures but felting and bonding by entangling 

fiber or filaments to form the web and consolidate the web. The most often used processes of 

nonwoven manufacturing are constituted of web formation by means of textile carding or wet-

laid of staple fiber and spun-laid of filaments, coupled with web consolidation by needle-

punching, stitch bonding, thermal bonding, chemical bonding, and hydro entanglement.  

As one of the most vital finished textile products, garment combines the art and the technology 

in its manufacturing process to conform fabric to the shape of a three-dimensional body. Its 

principal operations include cutting and joining of at least two pieces of fabric. Similar to the 

fabrics, to improve the performance, there is a range of finishing processes for the garment as 

well. For example, as one of the most popular garment products, denim needs further treatments 

like desizing, color fading (laser, enzyme washing etc.), softening after the garment-making. 
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1.2. The necessity of modeling and optimization  

Textile manufacturing is one of the typical traditional manufacturing sectors in which 

production is realized in small and medium enterprises with limited capacity on investment of 

advanced technologies. Under the arousing global competition, textile companies have to face the 

challenges of cost reduction and performance improvement. And the growing public concerns on 

the environment, on the other hand, impose further bounds to the textile manufacturers on the 

exploitation of power, water and resources. Meanwhile, its future development heavily relies on 

product customization and shortened manufacturing cycles as the distributors and consumers are 

increasingly looking for variety and personalization. To approach the high degree of variability in 

materials, processes and parameters as well as the lack of precise control in practice, the 

manufacturers can barely conduct trial and error, and lean on the expertise and experience[3]. 

There is a strong need to develop novel methods to improve the textile manufacturing process.  

Process modeling can make a difference in this regard for understanding the intricate 

relationships between various textile process parameters and performance properties, therefore to 

assist the decision-makers to find the optimal solutions of the process. The research in process 

engineering enables to incorporate more and more specificities of the industrial processes and 

then becomes increasingly practical and capable of improving the flexibility of the production 

operations and productivity. Although process engineering already deals with various generalized 

practical problems, it is still necessary to consider special issues on the running and cooperation 

of the textile manufacturing processes. 

Since the textile manufacturing is consist of a very long value chain of processes from raw 

materials to finished products, combinations of processes and parameters at different stages will 

be stochastic and immense when factors of the targeted performance vary in any respect. Taking 

the textile manufacturing processes summarized in Figure 2 as an instance, the combing or the 

roving process of yarn spinning may be omitted in the manufacturing scenarios of certain 

products but it is also possible to be repeated several times with different parameters for specific 

yarn products to satisfy the design requirements. Another example is garment finishing in which 

some similar process effects with minor difference can be achieved by a set of different 

treatments such as laser, enzyme, ozone and hydrogen peroxide, etc., which means that to a 

certain degree, one of these processes could be replaced by other ones in the application with 
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different production solutions. Therefore, it is clearly impossible to promote the textile 

manufacturing processes by only following generalized principles of other industries, but need to 

take the textile specificities into consideration. 

On one hand, due to the complexity involved in the textile manufacturing processes with regard 

to multi-stage, multi-machine, and environment-dependent specification, the process decision-

maker manages numerous inputs and outputs variables and always feed with a complex 

interdependence between variables. And the relationship between textile manufacturing process 

factors is extremely nonlinear and hardly-understood, the effects of these factors on 

corresponding product properties are unclear [4], the decision maker is unaware of the 

probabilities of future states of nature that are associated with alternative actions and therefore 

make decision under uncertainty. It is highly unlikely that an exact mathematical model will ever 

be developed. On the other hand, as the increasingly shortened manufacturing cycle and the 

growing product variety enhances the data-scale and the decision space in current issues, the 

statistical models are also rarely used in any branch of the textile industry because of their 

sensitivity to the rogue data[5]. As such kinds of classical methods essentially based on a 

formalization of physical laws and analysis of measured data, the mechanistic models proposed 

by prior researches overtly simplify the case to achieve manageable equations on the basis of 

scarification on accuracy. These traditional models show their limitations in certain scenarios that 

can hardly even represent the vast volume of process parameter-related data, not mention to work 

in the practical textile manufacturing processes.  

Currently, along with the progress of innovative digital technologies, such as Big Data, virtual 

reality, cloud computing and Internet of Things (IoT), the textile industry is progressively 

developing its intelligent manufacturing systems. In order to meet various personalized 

requirements of customers and deal with quickly and continuously arriving data generated from 

multiple connected devices, connected materials and connected operators in the era of Industry 

4.0, textile manufacturing needs to be updated to an intelligent level to achieve flexible, smart 

and reconfigurable manufacturing processes to overcome aforementioned diverse challenges[6]. 

Certain underpinning technologies with learning capacity from past experiences are needed in 

this regard. And the artificial intelligence (AI) techniques which enables manufacturing systems 

to efficiently learn from experiences through data, is advantageous to deal with the complexity in 
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the textile manufacturing process modeling with regard to uncertainty and imprecision related to 

human knowledge on products and processes, thereby allowing problems to be solved and 

adaptively cooperate with the production optimization in a timely fashion [7]. 

 

Figure 3. The basic structure of modeling and optimization for the textile process. 

The AI techniques have attracted significant attention from both industry and academia, and 

have been investigated in many industrial applications. The use of intelligent techniques is 

strongly related to the nature of the present problems of interest. However, as illustrated in Figure 

3, the modeling of a specific textile manufacturing process can only address one part of current 

issues that the performance results of process solutions can be properly simulated that reduce the 

time- and resource-intensive experimental effort and physics-based process simulation to tune the 

optimum operations on process parameter. For the second part of it, using traditional methods by 

virtual tuning on the basis of the constructed model for the textile process optimization will be 

inefficient due to the high-dimensional decision-space in this issue. More broadly, the 

optimization problems in the textile manufacturing process usually involve conflicting objectives 

as the overall performance of textile processes is normally governed by a few criteria [8], we 

have to take multi-objective optimization into account.  

The simulation-based multi-objective optimization offers the decision-makers with trade-off 

solutions between several conflicting objectives, but the development of it is criticized that takes 
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time[9]. It will no longer be a problem with the development of the internet, big-data environment 

and especially intelligent techniques [7] as the required time of intelligent optimization based on 

process models can be considerably reduced, which brings new opportunities to optimize the 

manufacturing process. Related AI techniques, especially the machine learning algorithms, have 

been applied in many sectors and shown their effectiveness in complicated multi-objective 

optimization problems with multi-input and multi-output variables, and high-dimension searching 

space [10], [11]. The applications of multi-objective optimization in the textile industry in recent 

years have drawn increasing attention [12]–[15], but at present, there is a limited complete study 

to solve a complex process optimization problem in the textile manufacturing domain. 

Hence, a systematic study of modeling and optimization of the textile manufacturing process is 

desperately needed. But different from previous works using classical models relied on physical 

laws or simplified assumptions, and substantial numerical expertise, or considerable computation 

times, intelligent techniques would perform a vital function in this time.  

1.3. Problem discussion and purpose of the thesis 

As discussed above, the textile manufacturing industry is a traditional sector relied on small 

and medium enterprises in general. In order to survive in the competitive global market, textile 

manufacturing enterprises have to promote their process. But it is highly complex not only due to 

the intricate relationship involved in a large number of parameter variables from a variety of 

processes [16] but also resulted from the stochastic high dimension decision space involved in the 

textile process optimization problem with respect to multiple objectives. Based on intelligent 

techniques, the construction of process models and the development of a decision support system 

upon virtual process models to optimize the textile process solutions remains an open challenge 

[13]. 

This thesis aims to inform theory and practice on the modeling and optimization of the textile 

manufacturing process through intelligent techniques to enable the manufacturing enterprises to 

optimize the textile process with trade-off solutions between several conflicting objectives, to be 

competent to provide collaborative, customizable, flexible and reconfigurable services to end-

users. The literature review shows that the modeling and optimization of the textile 

manufacturing process have been well investigated in many subfields, while the prior 
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investigations either simplify the case by omitting certain non-essential details to achieve 

manageable equations on the basis of scarification on the accuracy or require prior experts’ 

knowledge and human intervention. More importantly, the traditional approaches can hardly 

manage the high dimensional computation when the optimization of the textile manufacturing 

process increasingly considering multiple objectives.  
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2. Literature review 

The next generation of industry, as known as Industry 4.0, holds the promise of increased 

flexibility in manufacturing, along with mass customization, better quality, and improved 

productivity. Therefore, it enables the manufacturers to cope with the challenges of producing 

increasingly individualized products with a shorter manufacturing cycle and higher quality[7]. An 

intelligent process is one of the basic elements in such a smart manufacturing environment. In 

order to globally improve the process for the development of an intelligent manufacturing system, 

it is necessary to properly address the uncertainties and imprecision among process variables in 

terms of the complex and non-linear relationship between the input process parameters and output 

performance parameters. 

2.1. Intelligent techniques used for textile process modeling  

The model is a simplistic representation of the real phenomenon. It is often used to simulate the 

performance of a process or a product with various manufacturing solutions, thus the trial and 

error involved in process design and solution optimization can be obviated to a certain extent. 

The analytical models or mathematical models are usually based on certain idealized assumptions, 

so their applicability is largely governed by the viability of these assumptions[17][18]. Due to the 

increasing complexity in the development of intelligent textile manufacturing, none of the 

physical or chemical laws will be available that can figure out the picture of a process taking all 

the factors into consideration. The application of the textile manufacturing process nowadays 

incorporates a wide range of variables from the performance assessment and the corresponding 

effects from the process parameters are unclear, where the practical features cannot be fully 

reflected by the classical models, and the introduction of data-based intelligent models becomes a 

necessity. 

The process modeling using intelligent techniques has been conducted in many areas, and the 

applied techniques comprise artificial neural network (ANN), Fuzzy logic, support vector 

machine (SVM), gene expression programming (GEP), etc. 
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Figure 4. An example of artificial neural network architecture. 

ANN is a widely investigated artificial intelligence approach in the textile sector[19]. The 

research of ANN for textile process modeling is very popular, which could be attributed to its 

excellent capacity to map the extremely nonlinear relationship between the factors and 

performances of the process. It is developed based on the inspiration of the human brain that 

interconnects numerous neurons in different hidden layers to process the complex information of 

a specific input-output relation[20]. ANN consists of at least one hidden layers apart from the 

input layer and output layer (the structure of ANN with a single-hidden layer, as an example, as 

illustrated in Figure 4.), where the nodes in the former endow weights to connect the nodes in the 

latter, and the adjustment of these weights performs the key function in the ANN training process 

for accurately modeling the relationship between inputs and outputs as well as sliding down the 

error surface. The determination of the number of hidden nodes generally bounds to the 

complexity of the modeled problem and the predictive performance with regard to approximation 

ability and generalization ability at the same time. Besides the weights endowed in these hidden 

nodes, the sum-up of inputs multiplying the weights is passed through to an activation function 

(such as ReLu and Sigmoid) in the hidden neuron, which converts the output to a fixed range of 

values. Such transmission is continued and repeated between the layers to adjust the weights and 

bias by learning from training data so that the trained ANN model can predict the value of output 

finally. Initially, the weights in hidden nodes are randomly given, and the error is consequently 

very high, a cost function depending on the error would be introduced to train the nets in terms of 

optimizing the weights using certain algorithms( e.g. back-propagation [21]).  

As there are a variety of textile properties rely on subjective evaluation, and human knowledge 

may help the interpretation of textile variables and their relationships in certain cases, especially 

when the data is limited, Fuzzy logic is also very popularly applied in this topic. Fuzzy logic was 
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developed by Prof. Lotfi A. Zadeh in 1965 as an extension of crisp logic[22]. It is built on the 

structures of qualitative description in approximation rather than exactness. The variables are 1 

and 0 or true and false in binary logic, as an example of crisp logic, while the boundaries are not 

that clear in Fuzzy logic as there are interference Fuzzy sets contain intermediate states with 

partial membership ranging from 0 to1 to define uncertainty. For instance, when the temperature 

higher than 40℃ indicates “hot”, as an input and output variable, there would be intermediate 

states named in linguistic terms like “quite hot”, “warm”, and “cool” and so on in a Fuzzy 

inference system by dividing the universe of discourse into a number of sub-regions, rather than 

only “not hot” is considered for any temperature ≤40℃ in classic logic. In general, the Fuzzy 

inference process formulating the mapping from a given input to an output using Fuzzy logic in 

terms of four steps, namely fuzzification, interference, rule base, and defuzzification. The 

interpretation of these operations is approachable in [23]. Fuzzy techniques are usually applied in 

order to solve control problem by formulating linguistic rules, but the use of it for modeling, 

optimization and decision-making support in the textile manufacturing industry is also very 

popular as the data and relations among variables might not crisp in this domain due to the 

involvement of human subjectivity and a large number of qualitative descriptions [14]. 

Aside from the ANN and Fuzzy logic, applications of the hybrid models combining their 

fuzzification technique and the learning capability are also widely accessible in textile researches. 

This is because of the compatibility of these hybrid methods on data and human knowledge can 

well reveal both of the subjective and objective factors in the textile manufacturing process.  

Fuzzification maps an input value to Fuzzy sets in a certain universe of discourse, thus increasing 

the separability of classes in the feature space and facilitating the training data fitting in the 

Neuro-Fuzzy model to be more accurate. Neural network techniques help the Fuzzy modeling 

procedure learn the information from the data and compute the membership function parameters 

that best allow the associated Fuzzy inference system (FIS) to track the given input-output data. 

Taking the adaptive-network-based Fuzzy inference system (ANFIS) as an example, it is a hybrid 

algorithm that transforms the Fuzzy inference system into a functional equivalent adaptive 

network. ANFIS applies the back-propagation-type gradient descent to obtain the appropriate 

Fuzzy rules and associated parameters, meanwhile uses the least square method to specify the 

output of each rule. It is able to work under uncertain noisy and simulate complex nonlinear 

mappings which right fits the advantages of both ANN and Fuzzy logic.  
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Unlike most of the aforementioned models which implement the empirical risk minimization 

principle, the Support vector machine (SVM) implements the structural risk minimization 

principle which seeks to minimize an upper bound of the generalization error rather than the 

training error. It is assumed that has better potential to generalize and the ability to handle noisy 

data, so that has been considered in the process modeling of many textile scenarios. SVM is a 

popular machine learning tool for classification and regression based on statistic learning theory, 

it is first identified by Vladimir Vapnik and his colleagues in 1992 [24]. Support Vector 

Regression (SVR) is the most common application form of SVM. A typical feature of it is that 

instead of minimizing the observed training error, SVR minimizes the generalized error bound so 

as to achieve generalized performance. And it only relies on a subset of the training data due to 

the cost function for building the model neglects any training data that is close (within a threshold 

ε) to the model prediction [25], [26]. Compared with neural networks, SVR assures more 

generalization on the foundation of structural risk minimization, and generally performs better 

with less training samples. 

Gene expression programming (GEP) is a development of genetic algorithm (GA) and genetic 

programming (GP) proposed by Ferreira[27]. Authors reported that it is not a black-box and 

explores the inter-relationship between input and output variable [28][18], and is better than ANN 

in terms of precision so that the uses of it can be found in certain related studies as well. Most of 

the genetic operators used in GA can also be implemented in GEP with minor changes in terms of 

five components: the function set, terminal set, fitness function, control parameters and stop 

condition. Unlike the parse- tree in canonical GP, the individuals in GEP are encoded as linear 

strings of fixed length, and they are expressed as nonlinear entities (expression tree) of different 

sizes and shapes when evaluating their fitness. More detail regarding the mechanism of GEP can 

be found in [29].  

2.2. Modeling yarn manufacturing process 

The textile manufacturing process generally is composed of three pillars: yarn manufacturing, 

fabric manufacturing, and garment manufacturing. 

The key properties of yarn generally are achieved from spinning methods which form a 

continuous fibrous structure with required stable linear density and strength, so that there are over 
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half of the process modeling of yarn manufacturing reported previously concentrated on the 

spinning processes ranging from the ring-, rotor-spinning and the air-jet spinning to the melt 

spinning, blended spinning and core spinning. While in addition to the spinning process, yarn 

manufacturing needs to be merged fibers to sliver and roving via a series of processes like 

carding, combing and roving beforehand, and after the spinning of yarn, on the other hand, 

certain treatments may be needed to produce specific or customized effects (such as splicing), 

where the applications of intelligent modeling in these areas are also blooming.  

Table 1. Fiber properties affecting textile spinning process that have been considered for 

modeling in previous works 

Fiber properties 

F1 Mean diameter F17 Top weight unevenness F33 Top mean weight 

F2 Strength F18 Mean length(Hauteur) F34 Spinning consistency index 

F3 Elongation F19 Recombed F35 Upper half mean length 

F4 Micronaire F20 Fineness F36 Foreign material 

F5 Yellowness F21 Maturity F37 Length uniformity 

F6 Brightness F22 Grayness F38 Upper quartile length 

F7 Reflectance F23 Color grade F39 2.5% span length 

F8 Bundle elongation F24 Curvature F40 Quadratic fiber fineness 

F9 Sugar content F25 Bundle tenacity F41 CV of length 

F10 Shirley nonlint content F26 Wax content F42 CV of the diameter 

F11 Number of large neps F27 Number of seed particles F43 CV of the nep diameter 

F12 1/8" gauge strength F28 Number of trash particles F44 CV of the number of neps 

F13 Mean diameter of the neps F29 Total trash F45 Percentage of dust 

F14 Neps F30 Trash cent F46 Percentage of short fibers 

F15 Top oil content F31 Trash area F47 Percentage of mature fibers 

F16 Top moisture regain F32 Trash grade F48 
Standard fiber fineness for a 

maturity of 1 

      

To understand the mechanism of the yarn manufacturing process, the essential factors of it in 

terms of the fiber properties and the process parameters that have been considered in previous 

works for modeling spinning and other yarn manufacturing processes are listed with the targeted 

process performance features in Table 1, Table 2 and Table 3 respectively. Regarding the number 

marks of properties in these three tables, which will be used in Table 4 to imply the input and 

output respectively of the sorted different yarn manufacturing process models introduced in 

reviewed works, coupled with details of a reference, modeling techniques, data sets used and 

testing accuracy. Note that certain information of these works is merged into cells when it is 

found identical and published by the same researchers from different works of literature. The 

number list given in Table 4 refers to the process or methods of 1) Ring spinning, 2) Rotor 
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spinning, 3) Air-jet spinning, 4) Blending spinning, 5) Core spinning, 6) Worsted spinning, 7) 

Vortex spinning, 8) Melt spinning, 9) Splicing, 10) Texturing, and 11) Drawing, respectively. 

Table 2. Process parameters in the spinning process that have been considered for modeling 

in previous works 

Process parameters 

P1 Yarn design count P25 Twist P49 Torque-stop 

P2 Blend ratio P26 Tension P50 Rotor type 

P3 Humidity P27 Navel type P51 Rotor speed 

P4 Ring size P28 Ring traveler P52 Extruder screw speed 

P5 
Traveler weight (traveler 

mass) 
P29 

Location of balloon control 

ring 
P53 Spindle speed 

P6 Traveler number P30 Breaker speed P54 Delivery speed 

P7 Number of filament P31 Gear pump gear speed P55 Opening roller speed 

P8 Spin tube(number of carves) P32 Winding speed P56 Roller covering hardness 

P9 Draw P33 Spinning speed P57 Splicing air pressure 

P10 Doublings P34 Intermingling speed P58 Opening air pressure 

P11 Fore-spinning total doublings P35 Intermingling pressure P59 First nozzle pressure 

P12 Ends retraction P36 Back draft zone time P60 Second nozzle pressure 

P13 Ends preparation air volume P37 Splicing air pressure time P61 Nozzle  material 

P14 Roving (or sliver)  count P38 Material P62 spindle cone angle 

P15 Roving (or sliver) unevenness P39 Jet orifice angle P63 
Distance between front roller 

nip and first nozzle inlet 

P16 Roving (or sliver)  twist P40 
Distance between back and 

middle rolls 
P64 Count of core part 

P17 
Distance between the guiding 

needle and the spindle 
P41 Drafting system angle P65 Count of sheath part 

P18 Nip gauge P42 Break draft gauge P66 Pretension 

P19 Main draft P43 Main draft gauge P67 Draft ratio 

P20 Spinning drafting P44 Total draft P68 Temperature 

P21 Break draft P45 Fore-spinning total draft P69 
Position of the jet orifices in 

the first nozzle 

P22 Back zone setting P46 Time of cycle P70 D/Y 

P23 Nozzle type P47 Rotor diameter P71 Setting overfeed 

P24 Drawing ratio P48 Doffing-tube nozzle   

 

2.2.1 Processes or methods 

The modeling of the yarn manufacturing process was mainly drawn in spinning processes such 

as ring spinning, rotor spinning and air-jet spinning, where the earliest employments of intelligent 

modeling techniques in the textile manufacturing sector were reported [30]–[32]. Ring spinning is 

the most common and traditional spinning technique. The use of it for spinning cotton yarn has 

lasted for hundreds of years without significant changes. The ring frame ensures the very fine 
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quality of yarns with a high speed of production and facilitates the stable performance of the 

following process to achieve high-quality textile products. Rotor spinning provides a lower cost 

option with higher productivity to yarn manufacturers. Full automation is realized in the rotor 

spinning process from speed frame to winding, with the increasing importance of productivity in 

the textile industry, it is becoming more prominent than the conventional ring spinning in many 

textile manufacturing sectors [33]. Air-jet spinning is essentially a pneumatic-spinning method, 

which consists of passing a drafted strand of fibers through one or two fluid nozzles located 

between the front roller of a drafting system and a take-up device. The use of swirling airflow in 

the stage of inserting a twist into the yarns achieves air-jet spinning the fastest industrial 

production of staple fiber yarns.  

Table 3. Process performance targeted in process modeling of yarn manufacturing in 

previous works 

Process performance 

Y1 Linear density Y8 Thin places Y15 Count-strength product 

Y2 Tenacity Y9 Thick places Y16 Total imperfections 

Y3 Elongation Y10 Neps Y17 
Bending & abrasion & 

appearance 

Y4 Unevenness/ irregularity Y11 Number of hairs Y18 Color 

Y5 Hairiness Y12 Ends-down Y19 RKM 

Y6 
Number of fibers in cross 

section 
Y13 CV of count Y20 Retained spliced diameter 

Y7 Other irregularities Y14 CV of strength Y21 Leveling action point 

 

Table 4. Information about modeling the yarn manufacturing process using intelligent 

methods in previous works 

 Ref. Model inputs Model targets 
Modeling 

techniques 

Data 

train: test 

Testing 

accuracy 

1) 

[31] F2,F4,F5,F18,F20,F21,F22,F37,F46 Y15 ANN 84:85 R=0.850 

[34] 
F1,F2,F3,F4,F5,F7,F10,F12,F14,F18,F

20, F21,F23,F29,F37,F38,F39,F41,F46 
Y5 ANN 67:33 R2=0.842 

[35] F2,F4,F39,F46 / P1,P25 Y4,Y19 ANN 40:25 
t=0.0191; 

0.6128 

[36] F20,F25,F29,F37,F39 / P1 
Y2,Y4,Y13,Y

14,Y15,Y16 
ANN 14:6 

RE= 

2.4%~19.1% 

[17] F3,F4,F5,F7,F25,F35,F37 Y3 ANN 

72:15 

R=0.938 

[37] F3,F4,F4,F7,F25,F35,F37 / P1 Y2 
ANN; 

ANFIS 

R=0.738;0.802 

[38] F14,F18,F20,F21,F27,F46 / P1 Y4 
R=0.959; 

0.970 
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[39] F2,F4,F18,F46 Y2 Fuzzy logic - R2=0.75 

[40] F18,F46,F21 / P1 Y5 ANFIS 36:18 R2=0.946 

[41] F3,F4,F5,F7,F18,F21, 

F30,F31,F32,F34, F37,F46 / P1,P4, 

P5,P20,P25,P53 

Y3 

ANN 

- MSE<0.03 

[42] 

Y2,Y3,Y4 

- 
R=0.975; 

0.907; 0.915 

[43] 
F2,F3,F4,F5,F18,F21, 

F32,F34,F37,F46 / P1,P4,P25,P53 
120:24 

R=0.959;0.94; 

0.939 

[44] F2,F3,F20,F35,F37 / P1,P14,P15,P25, Y2,Y3 

ANN 135:45 

R2=0.981; 

0.889 

[45] F2,F3,F5,F35,F37,F40 / P1,P15,P25, Y4,Y5 
R2=0.993; 

0.951 

[28] F2,F3,F4,F14,F18,F29, F37,F46, Y2 ANN;GEP 130:32 R2=0.94;0.988 

[46] F2,F18,F20 / P1,P25 Y2 ANN 98:50 RE=3.5% 

[47] 
F4,F8,F18,F25,F46 / P1; 

F4,F18,F46 / P1 

Y2,Y3;Y4,Y5 

ANN;SVM 
87 for 

10-folds 

RE= 

3.5%~7.2%; 

1.5%~5.6% 

[48] F4,F8,F18,F25,F46 / P1 
ANN;SVM

; ANFIS 

90 for 

10-folds 

RE= 

3.5%~7.2%; 

1.5%~5.6%; 

3%~12.6% 

[49] 
P1,P5,P16,P21,P22,P25,P29,P41, 

P44,P53,P56 Y5 
ANN 46:11 R=0.967 

[50] P1,P5,P53 Fuzzy logic - R2=0.931 

[51] 
F3,F4,F18,F21,F25,F35,F37,F46 / 

P1,P14, P15, 
Y2,Y3,Y4,Y5 Fuzzy logic - 

MCI=0.66; 

0.62; 0.66 

[52] P16,P18,P36,P53,P55 Y4 ANN 14:4 R=0.982 

[53] F2,F3,F20,F35,F37,F46 Y2,Y4 ANN 30:6 R=0.886; 0.92 

[54] 
F2,F3,F5,F7,F20,F21,F29,F31,F35,F37

,F46 / P1,P25 
Y2,Y3,Y4,Y5 

Neuro-

Fuzzy 
- R2=0.81 

1) 

& 

2) 

[30] 

F2,F3,F4,F5,F6,F9,F11,F13,F14,F18,F

20,F26,F27,F29,F37,F41,F42,F43,F44,

F45, F46,F47 / P1,P25,P27,P51,P55 

Y12 

ANN 

1400:850 RE<5% 

[55] 
F2,F3,F4,F5,F6,F18,F20,F21,F28,F29, 

F37,F47,F48 / P1,P8,P25,P30,P51 

Y2, Y3, Y4, 

Y7, Y8, Y9, 

Y10, Y11 

1200:182 RE<5% 

[56] F1,F14,F18,F29,F38,F46 / P1 Y4 ANN 150:27 R2=0.881 

2) 

[57] 
F2,F3,F4,F5,F6,F18,F20,F21,F28,F29,

F37,F47,F48 / P1,P8,P25,P30,P51 
Y2,Y3 ANN 1200:182 

RE<5.7%; 

3.5% 

[58] 
F2,F3,F4,F18,F37 / 

P1,P25,P27,P30,P51 
Y2,Y12 Fuzzy logic 

840:420 

1944:216 

RE= 8.0%; 

5.9% 

[34] 
F1,F2,F3,F4,F5,F7,F10,F12,F14,F18,F

20, F21,F23,F29,F37,F38,F39,F41,F46 
Y5 ANN 67:33 R2=0.772 

[36] F20,F25,F29,F37,F39 / P1 

Y2, Y4, Y13, 

Y14, 

Y15, Y16 

ANN 78:33 
RE= 

2.7%~38.0% 

[37] F3,F4,F5,F7,F25,F35,F37 / P1 Y2 
ANN; 

ANFIS 
88:20 

R=0.964; 

0.959 
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[59] Y3 
R=0.879; 

0.882 

[60] F2,F3,F4,F5,F22,F35,F37,F46 / P1 

Y15 

ANFIS 
21:13 MAE=79.8 

[61] F2,F3,F4,F5,F35,F37,F46 / P1 - RMSE= 5.2e-4 

[62] F2,F3,F4,F5,F7,F22,F35,F37,F46 / P1 SVM - MAE=82.87 

[63] F2,F3,F4,F5,F22,F35,F37,F46 / P1 
ANN;SVM

;GEP 
- 

MAE=89.7; 

82.9; 93.7 

[47] 
F4,F8,F18,F25,F46 / P1; 

F4,F18,F46 / P1 

Y2, Y3; Y4, 

Y5 
ANN;SVM 

108 for 

10-folds 

RE=2.5%~4%; 

1.7%~3.7% 

[18] 
P40,P42,P54 Y2 

GEP 
38:10 

R2=0.9672 

[64] ANN;GEP R2=0.93; 0.97 

[65] F2,F46 / P1,P14,P15,P25 Y2, Y3, Y4 
Neuro-

Fuzzy 
- RMSE=0.07 

3) 

[32] 
P1,P2,P59,P60 

Y2,Y3 
ANN 

48 for 

5-folds 

ME=-1.91%; 

-0.29% 

[66] Y2 35:4 ME=-2.04% 

[67] P33,P59,P60,P63,P69 Y2 ANN 35:5 R2=0.98 

[68] P1,P23,P61 Y2,Y3,Y4,Y5 ANN 2700:300 
ME= 

-3.5%~6% 

[69] F2,F3 / P7,P34,P35 Y2,Y3 ANN 209:52 
R= 

0.861;0.884 

4) 

[70] F7 Y18 ANN - E=0.53% 

[71] 
P1,P2,P51 

Y3 
ANN 

84:28 R=0.976 

[72] Y4 87:25 R=0.98 

[73] 
HVI(F2,F3,F20,F35,F37,F46) / P1; 

AFIS(F14,F18,F20,F41,F46) / P1,P2 
Y2,Y5 ANN 30:10 

R2=0.85,0.85; 

0.97,0.98 

[74] P2,P25,P56,P67 Y2,Y3,Y4 ANN 40:8 
R2=0.99; 0.99; 

0.96 

[75] P47,P48,P49,P50 Y5 ANN 202:50 R=0.97 

5) 

[76] P25,P64,P65,P66 Y2,Y3 ANN 
54 for 

5- folds 
R=0.88;0.967 

[77] P1,P24,P25 Y2,Y3 ANN 32:8 R2=0.99; 0.99 

[78] 

F2,F3,F4,F5,F7,F13,F14,F18,F21,27,F

28, 

F29,F30,F34,F36,F37,F38,F41,F45,F46

, F47,(F18/F37) / P1,P26,P33,P64 

Y2,Y3,Y4,Y8

, Y9,Y10, 

Y11,Y19 

ANN;SVM 193:34 R=0.95;0.95 

6) 

[79] 
F1,F18,F24,F25,F41,F42,F46 / 

P1,P4,P19,P25,P33 

Y2,Y3,Y4,Y5

, 

Y6,Y8,Y9,Y1

0,Y12,Y13,Y

15 

ANN 
250 for     

5-folds 

R2=0.554~0.99

5 

[80] 
F1,F2,F18,F19,F24,F41,F42,F46 / 

P1,P4,P5,P25,P53,P67 

Y2,Y3,Y4,Y6

, Y8, 

Y9,Y10,Y12 

ANN 
98 for 

5-folds 
R2=0.60~0.96 

[81] 

F1,F14,F15,F16,F17,F18,F33,F41,F42,

F46 / P1,P11,P14,P16,P20, 

P28,P33,P44,P45 

Y2,Y3,Y4,Y1

2 
ANN 69:8 

R= 0.982; 

0.969; 0.881; 

0.843 
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The blending of fibers is one of the most important functions in the yarn spinning process. It 

involves not only the concern of mixing different batches of cotton in case of unevenness and 

uniformity problems, but also the consideration of taking advantages of each contributed 

desirable properties to the final product from different materials. Color is one of the benefits and 

one of the most significant characteristics of textiles can be achieved from this procedure. 

Thevenet et al. [70] proposed an interesting model to predict the color obtained from fibers 

blended spinning process using feedforward neural networks. As a special type of blended yarn, 

core-spun yarn is also widely used in textile products. It is a yarn with a certain structure 

comprised of two-component fibers that one of it performs the function of core whereas the other 

plays the role of a sheath or covering. The most common applied core-spun yarn is 

cotton/spandex stretch yarn. It enables textile comfort with fashion leisure style as well as 

ultimate fit. Almetwally et al. [77] and Doran and Sahin [78] compared ANN with the multilinear 

regression model and the SVM model for modeling the elastane core yarn spinning process 

respectively. 

Worsted spinning parallels fibers that have been combed to remove shorter bits to a yarn with a 

short draw to keep the fibers in their parallel alignment.  Worsted yarns have more twists inserted, 

[82] 
F1,F18,F24,F41,F42,F46 / 

P1,P4,P6,P20,P25,P53 
Y5 ANN 53:22 R2=0.949 

[83] 
F1,F18,F41,F42,F46 / 

P1,P6,P25,P33,P67 
Y2,Y3 ANN;SVM 20:6 

R=0.96, 0.58; 

0.99, 0.87 

[84] 
F2,F3,F14,F18,F20,F42 / 

P1,P2,P3,P9,P10,P14,P15,P25 

Y4,Y8,Y9,Y1

0 
ANN 1411:249 R=0.93 

7) [85] P17,P39,P59,P62 Y2 ANN 35:5 R=0.95 

8) 

[86] 

P31,P32,P52 Y1,Y2 

ANN 18:10 
E= 

-0.22%;0.13% 

[87] Fuzzy logic - 
ME=-0.32%;-

0.03% 

9) 

[88] P1,P12,P13,P25,P46 (Y2+Y17) ANN - R2=0.97 

[89] F1,F39 / P1,P25,P57,P58 Y2,Y3 ANN 76:22 R=0.88,0.86; 

[90] 
F1,F18,F36,F38,F39,F46 / 

P1,P25,P37,P57,P58 
Y20 ANN 54:18 R2=0.706 

10) [91] P25,P54,P68 P70,P71 
Y2,crimp 

satility 
ANN 39:9 

R= 91.5%; 

99.29% 

11) 

[92] P21,P26,P38,P42,P43,P54 Y21 

ANN 

161:8 R2=0.9622 

[93] P10,P14,P21,P38,P42,P43,P44,P54 
Y2,Y4(sliver 

and yarn) 

135 for   

10-folds 

MAE=6.6%; 

6.76%;4.03% 
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which makes them firmer and stronger. Mozafary and Payvandy [84] constructed an ANN model 

to approximate this complicated manufacturing process from a draw and doubling of 

wool/polyester fibers to twisting of yarns with an investigation of 70 parameters. Vortex spinning 

can be viewed as a refinement of jet spinning, or a natural development in fascinated yarn 

technology. Pei and Yu [85] released a model adopted to predict the vortex yarn tenacity from 

some vortex spinning process and nozzle parameters such as nozzle pressure, jet orifice angle, 

twisting surface angle, and the distance between the nozzle inlet and the hollow spindle. Melt 

spinning is the most economically useful method for producing artificial fibers in the industry, 

Kuo et al.[86], [87] applied Fuzzy logic and ANN respectively to predict the properties of melt- 

spun polypropylene filament. Splicing techniques assembles yarns on spinning bobbins into 

larger yarn packages, the modeling of this process was attempted by  Ünal and Cheng et al. [88]–

[90]. Texturing techniques endow man-made fiber with flat geometry and smooth surface 

aesthetics and functional values without increasing its volume, resilience and changing original 

properties. Azimi et al. [91] modeled the false twist texturing process in order to predict the crimp 

stability of stretch yarns and tenacity of set yarns that showed the applicability of ANN for 

modeling this process. Drawing of sliver is a very important operation for preprocessing of yarn 

spinning, the draw frame setting and sliver properties of this process were investigated by Farroq 

and Cherif [92], [93] using the ANN technique.  

In addition, modeling of fiber production for the preparation of the materials of yarn 

manufacturing was reported in the fields of kenaf degumming and acrylic fiber dry spinning. 

Degumming is necessary to pre-process of kenaf fibers for promoting its spinnability and dyeing 

abilities. Zheng et al. [94] optimized the parameters of a kenaf bio-degumming treatment on the 

basis of an ANN model, the errors of the developed model for predicting the residual gum content 

and weight-loss ratio are 2.15% and 4.3% respectively. Dry spinning is a very widespread method 

for acrylic fiber manufacturing nowadays, while the complexities of factors’ relationship in this 

process have hindered the management of fibers’ quality stability. Vadood [95] employed ANFIS 

to predict the color index of acrylic fiber in the process and further applied the Kohonen neural 

network for data clustering and genetic algorithm for ANFIS model parameter optimization. The 

mean square error of the final optimized model with testing data was only 0.06. 

2.2.2 Factors and performances 
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It is easy to find out in Table 1 that the regular fiber properties are taken into account such as 

fiber length, strength, elongation and micronaire, etc. are generally measured by three different 

systems, namely high-volume instrument (HVI) system, advanced fiber information system 

(AFIS) and fineness and maturity tester (FMT). But there are several specific properties of fiber 

materials, including the top oil content, top moisture regain, etc., are investigated as well out of 

the regular testing of fiber from sliver or roving. Turhan and Toprakci [73] have tried to compare 

the difference between the accuracy of ANN for predicting yarn tenacity as well as the hairiness 

of carded cotton ring-spun yarns from HVI fiber measurement results and those from an AFIS, 

but after they optimized the architecture of their radial basis function ANN model using an 

experimental topology of a dataset, training parameters and neuron number, no significant 

difference was observed in the comparison between data derived from HVI and AFIS 

measurements. Another spinning process model established by Pynckel et al. using ANN in 1995 

[30], as one of the earliest intelligent models in this area, has taken a wide range of fiber 

properties and process parameters to predict the spinnability (the breakage less than 5 times 

during the first 3 minutes of the ring- or rotor-spinning process). Their finding revealed that the 

poor performance of traditional techniques for modeling the textile manufacturing process is 

owing to the inaccurate suppose of factors with independence. Like aforementioned that their 

relationships are not always linear as is being put forward, their analysis of the interdependence 

of the factors illustrated that the single correlation coefficients between the independent 

parameters are not negligible so that traditional methods such as multiple regression will not give 

reliable results, the power of them is very limited in this domain. 

By contrast to the fiber properties that are mainly derived from HVI, AFIS and FMT systems, 

the process parameters varied dramatically according to the applied process of yarn 

manufacturing, as there are 68 process factors from 11 different processes or methods have been 

taken into account in the previous researches modeling yarn manufacturing process using 

intelligent techniques. In Table 4, the frequency of factors considered or processes modeled is 

rough in line with the importance of them in the textile industry (for example, the use of ring 

spinning is more general than the rotor, air-jet and vortex in the spinning process, and the 

pretreatments or finishing processes like blending, drawing and splicing are less significant than 

yarn spinning on the yarn specification). However, a variety of researches only paid attention to 

the fiber properties in their models (e.g. [17], [28], [31], [34], [39], [41], [53] ), or barely 
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investigated the yarn count, a single process parameter input, coupled with fiber properties in 

their studies (e.g. [36]–[38], [40], [47], [48], [56], [59]–[63]). These models may work in specific 

simplified cases for finding the optimal material, but their effectiveness would be declined vitally 

in the industry application as only one-side of the textile manufacturing is implemented, their 

simulation accuracy is hardly acceptable when any machine setting or process condition changed. 

While fortunately, a couple of tendencies illustrated in Table 4, the diversity of the yarn 

manufacturing process for modeling grew distinctly, and consequently the complexities of 

constructed process models increased as well. More and more textile process models are issued 

with inputs from both of fiber properties and process parameters, the variety of input and output 

in these models is enhanced at the same time. This trend reveals the shortage of manufacturing 

data (and the hard for collecting data) in the early years in this area, and furthermore reflects the 

practice of the intelligent process model is closer than ever to make a difference in the textile 

industry.   

2.2.3 The relative importance of inputs and feature selection 

The increasing variety of process factors and features studied for yarn manufacturing process 

modeling does not imply that infinitely expanding the inputs and outputs in a model can linearly 

improve the model performance, but conversely, this may result in more errors due to the waste 

of the computational resources such as training dataset and computation power in the arousing 

complexity of process model. Chattopadhyay and Guha [36] indicated that it is different the 

information contained in factors or the contribution of input variables in the models as well as the 

correlation between factors with model targets, diminishing the complexity of models by 

reducing the number of inputs should consider the relative importance of these factors in case of 

losing a significant amount of information when unsuitable reduction implements. They proposed 

principal component analysis (PCA) in this study to deal with the input selection for improving 

the performance of an ANN model, such method was quite popular that also has been adopted by 

several other authors in their studies for selecting most the relevant inputs of yarn manufacturing 

process modeling [28], [54], [78]. In particular,  Doran and Sahin [78] have further compared 

PCA with analysis of variance technique (ANOVA, which also has been used in [18], [49], [50], 

[60], [63], [68], [69], [71]–[73], [75], [78], [91], [95]) in feature selection for decreasing inputs 
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dimensionality of ANN and SVM models, and their results illustrated that the models trained 

with input sets reduced by PCA were found to be the most successful among 117 models. 

 The saliency test is another technique frequently applied in the prior researches for analyzing 

the relative importance of inputs [17], [41], [42], [74]. The implementation of it is to eliminate 

only one designated input from the model at a time, and observe the increment of error in model 

prediction, the higher error enhanced indicates the more important of the designated input 

variable in this model. In an ANN model of the vortex spinning process developed by Pei and 

Yu[85], they opted to a similar but simpler way that performed single effect prediction of one 

specific parameter by fixing all other factors to evaluate the input importance in predicting model 

targets. Besides of the methods mention above, decision tree (or random forests) [62], partial 

derivative [75], multivariate test [51], K-means algorithm [84], grey incidence analysis and 

subjective and empirical approach [81] have demonstrated their effectiveness in this issue as well. 

It is worth mentioning that the improvement of model performance with selected data reported in 

these studies ranged over 0.45%~47%, which would make a drastic difference in the industry 

application. The most common taken inputs and targets for modeling the yarn manufacturing 

process , according to Table 4, are fiber (sliver or roving) properties of diameter, strength, 

elongation, micronaire, neps, length, upper half mean length, length uniformity, fineness, 

maturity, trash, short fiber content, process parameters of yarn design count, twist, blend ratio and 

the speed of certain machine parts (like roller, spindle, rotor etc.),  the pressure of specific 

instruments (e.g. nozzle) and the distance between certain devices, yarn properties of strength, 

elongation, unevenness and hairiness, respectively. 

Other than data mining for feature selection, the optimization of model architecture or 

parameters which have a significant influence on the model performance is widely discussed in 

the related literature as well. For example, learning rate, training functions, transfer functions, 

number of hidden layer and neurons, training stop conditions, assessment standards, etc. of ANN, 

membership functions, rule sets, Fuzzy inference and Fuzzy number, etc. of Fuzzy logic, kernel 

function of SVM and generations of GEP, great care should be taken in the determination of these 

parameters corresponding to every single specific case. The normal way authors employed was 

trial and error or topology following certain rules (e.g. the geometric pyramid rule for 

determining neuro number of ANN model), as the common options for most of the qualitative 
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parameters are finite and have been deeply researched in many areas. But for certain process 

models possessing numerous quantitative parameters, the situation would be more complicated, 

where the advanced operations are needed. The genetic algorithm is a very powerful and popular 

optimization tool that had been used to optimize the model structure and parameter in the 

previous studies [58], [83], [95]. Moreover, Cheng and Adams[31] applied a simulated annealing 

technique, Nurwaha and Wang [62] used grid search and pattern search methods, Doran and 

Sahin[78] attempted iterative single data algorithm, quadratic programming and sequential 

minimal optimization methods. As the optimization of the textile manufacturing process would 

be discussed further in the following chapters, the details about the optimization techniques 

would not be given here. 

2.2.4 Modeling techniques applied in yarn manufacturing 

Table 4 shows that the ANN is the first choice for most of the modeling studies of the yarn 

manufacturing process, and the simulation performance of these constructed ANN models indeed, 

showed that is generally acceptable in the testing period. ANN is an excellent machine learning 

tool for textile manufacturing process modeling by approximating the relationship of inputs and 

outputs, but a drawback of it that has been criticized often because of the so-called “black box” 

problem, limits its use in modeling certain textile manufacturing process. It hardly provides 

substantial physical information about the process itself but simply connects the inputs and output 

parameters. This flaw of ANN can be found in several comparative investigations as well. Abhijit 

Majumdar and his colleagues have built linear regression models with ANN models and ANFIS 

models for predicting yarn breaking elongation [59] and yarn unevenness [38] respectively,  their 

results demonstrated that the ANFIS models performed slightly better than ANN models in both 

of these two studies as the former can discover linguistic rules relating input to output variables 

and extract some physical information about the mechanism of the process benefiting from the 

Fuzzy principle by means of membership functions and linguistic rule sets. ANFIS takes the 

advantage of both ANN and Fuzzy logic in modeling, which is more appealing than the ANN for 

certain textile process modeling.  Another type of hybrid model combining ANN and Fuzzy logic 

for predicting yarn tenacity, elongation, unevenness and hairiness can be found in the 

publications of Ghanmi et al. [54], [65], they developed ANN models separately to predict the 



27 

 

yarn properties and further injected the obtained predicted results into Fuzzy system to introduce 

a new quality index.  

The application of Fuzzy logic for modeling the yarn manufacturing process is diverse. In 

addition to the combinational use with ANN, it has been used directly as a single model as well 

for predicting the tensile strength and the yarn count of chemical fibers in the melt spinning 

process [87] and the hairiness of polyester-viscose blended yarns in ring spinning process [50] 

respectively. Furthermore, Sette et al. [58] built rule sets automatically from the data using a 

Fuzzy efficiency-based classifier system (FECS) to predict the spinnability and yarn strength. 

This method defined several rule efficiencies and introduced them into the learning strategy of 

the system, which demonstrated high prediction accuracy and delivered additional qualitative 

information about the process behavior in the study. In quality studies of processes for 

manufacturing fine and expensive textile, the data are few and/or reported as imprecise quantities 

and/or the relationship between variables is defined vaguely, upon which Fattahi et al. [51] 

proposed Fuzzy lease squares regression for modeling the relationship of quality indexes of ring 

spun yarn and the fiber properties, roving properties as well as yarn design count. This proposed 

approach is announced that can be extended to other cases in textile engineering where the data 

availability and preciseness are short. 

Studies comparing intelligent techniques for yarn manufacturing process modeling were also 

conducted among ANN, ANFIS SVM and GEP. Unlike the ANN models which implements the 

empirical risk minimization principle, SVM implements the structural risk minimization principle 

which seeks to minimize an upper bound of the generalization error rather than minimize the 

training error. Ghosh [48] found that the performances of the SVM model have better accuracies 

and reliabilities than the ones of ANN and ANFIS for predicting the strength, elongation, 

evenness and hairiness of ring-spun yarn from fiber properties. The preferences of SVM than 

ANN to be suitable in this area are also illustrated in the comparative researches of  [47], [63], 

[78]. The accurate and dependable predictions of SVM models in these studies reflect their better 

potential to generalize and ability to handle noisy data. Yang et al. [83] further found one more 

interesting phenomenon that in small data set and real-life production, the predictive power of 

ANN models appears to decrease, but SVM models remain stable of predictive accuracy to some 

extent, which is more suitable for noisy and dynamic industrial process. Nurwaha and Wang[63] 
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compared not only ANN and SVM but the GEP models as well in their study for predicting yarn 

count-strength-product from fiber properties and yarn count. Their results show that the lowest 

error was provided by the SVM model, followed by the GEP model, and the ANN models did not 

generalize the training data effectively in the testing analysis. This result is generally in line with 

the studies of [28], [64], and the advance of GEP on ANN in this regard may be attributed by the 

better optimization of its parameters based on a genetic algorithm without complexity increasing 

though the latter can apply GA as well. It is worth to mention that another important advantage of 

GEP is its ability to generate equations that can be easily programmed even into a pocket 

calculator to use in future predictions. 

Note that the overview of intelligent techniques for modeling the yarn manufacturing process 

concluded above is not meant to recommend any single technique, but collect and analyze the 

experiences from prior works to arouse inspiration for future researchers. The choosing of models 

in practice for the textile manufacturing process still needs to count the specifications of the 

applied case in detail. For example, the model developed by Ghosh[47], [48] using different 

methods fed with different data sets and variables which were determined the basis of their 

knowledge of the process and optimization trials. 

2.2.5 Data and performance estimation 

Depending on the discussions above, it is easy to find out that the availability and quality of 

data set play a key role in the modeling of the textile manufacturing process. However, the total 

number of data sets was found limited in most of the studies listed in Table 4 (for certain 

references divided data sets to training, validation and testing, the validation sets was counted as 

part of the train here), such phenomenon would restrict the development of their models (e.g. 

ANN) and consequently impede the industrial application of these models. While the short of 

data with quality is quite common in the textile industry as it is consists of small and medium 

enterprises in general that relying heavily on product customization with variety, so it has to be 

tackled with technical approaches. Except for model selection and variable dimensionality 

reduction, pretreatment and distribution of the data can also make a difference to this end. The 

pretreatments of data include feature selection for variables reduction (using clustering tools such 

as k-means and PCA), data normalization for cleaning and de-noising, and even introducing 

dummy data to complete the raw data.  



29 

 

The pretreatments of data could improve the models to express the targeted problems more 

appropriately. While the proper distribution of datasets for training and testing, on the other hand, 

is beneficial to realize the generalization ability of models. The overviewed yarn manufacturing 

process models illustrated in Table 4 generally were trained by 60%~90% of their data sets, and 

some of them have employed k-fold cross-validation to ensure the exploration of data. Where k-

fold cross-validation is a technique randomly separating data into k disjoint sets, and using one of 

the k subsets to test the model trained by other k-1 subsets in turns for k times, the average error 

corresponding to k trials can better assess the expected generalization accuracies of models, 

which makes this method very practical for modeling with a small dataset.  

The performance estimation of models was expressed in many ways as illustrated in Table 4, 

such as correlation coefficient (R), R-square (R2), mean absolute error (MAE), mean square error 

(MSE), root mean square error (RMSE), mean error (ME) and relative error (RE). The 

calculations of them are based on: 
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where ei is the real targets, whereas pi is the predicted output of the model. Particularly, Desai 

et al. [35] used a test statistic variable t,  Fattahi et al. [51] applied mean of capability index 

(MCI), Thevenet et al. [70] employed an error estimator of E in their studies respectively. 

Evaluating a model with only the prediction accuracy is not enough, the detailed information of 

predicted results should be observed from multiple different directions. While any single 

estimation index above can barely give overall observations of the results, therefore, applying 

multiple estimations is more recommended in related modeling investigations. 

Table 5. Information about modeling fabric manufacturing process using intelligent 

methods in previous works 

Process 
Intelligent 

methods 
Model inputs Model outputs performance Ref. 

Sizing 

Fuzzy steam pressure, nip pressure, sizing speed 
Exit moisture, 

size add-on 
- [96] 

Neuro - 

Fuzzy 
Speed, exit moisture, size add-on 

Number of end 

breaks 
- [97] 

Neuro - 

Fuzzy 

Temperature, low nip pressure, high nip 

pressure, sizing speed 
Size add-on RMSE=0.0222 [98] 

ANN 

Size add-on and the properties of sized yarn 

(abrasion resistance, abrasion resistance 

irregularity, hairiness beyond 3 mm, 

breaking strength, breaking strength 

irregularity, breaking elongation, breaking 

elongation irregularity) 

Warp breakage 

rate in weaving 

process 

R= 99.5%. [99] 

Weaving 

Fuzzy Weft yarn count, yarn twist. 
Weft yarn 

insertion velocity 
- [100] 

ANFIS 
Weft yarn count, fabric width, loom speed, 

reed count 

Compressed air 

consumption 
R=0.998 [101] 

ANFIS 
Strength of constituent yarns, fabric count, 

float length 

Strength transfer 

efficiency of 

warps and wefts 

R=0.951; 

0.924 
[102] 

ANN 

Weave float, warp type, filament fineness of 

warp and weft, filling type, fabric density, 

shed closing angle, loom speed 

Air permeability 
MAE=1.05% ; 

0.42% 
[103] 

Knitting 

Fuzzy and 

ANN 

Yarn parameter of yarn type and machine 

parameters of course count, gauge and 

binding 

Residual bagging 

bend height 

Fuzzy: 

R=0.676 ~ 

0.821 

ANN: 

R=0.991 

[104] 

ANN 

Twist liveliness, yarn type, yarn linear 

density, tightness factor, the number of 

feeders on the knitting machine 

Spirality R=0.976 [105] 

Fuzzy knitting stitch and yarn count Spirality R=0.991 [106] 
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Fuzzy 
Knitting stitch length, yarn count and yarn 

tenacity 
Bursting strength R2=0.961 [107] 

ANFIS 
Yarn tenacity, knitting stitch length and 

fabric density 
Bursting strength R=0.996 [108] 

Dyeing 

ANN 

K/S values of undyed fabrics, dye fixed 

ratio, percentage shades, NaCl 

concentrations, Na2CO3 concentration, and 

K/S value of dyed samples after rinsing 

Depth of shade in 

dyeing process 
Error=1% [109] 

ANN 
Machine operating temperature, dyeing time, 

dye liquor concentration and the bath ratio 
Color strength RMSE=1.66e-4 [110] 

ANN Dye concentration, salt concentration, and 

alkali concentration 

Color strength and 

fastness 

R = 0.992 [111] 

Fuzzy R = 0.977 [112] 

Fuzzy 
Dye concentration with dyeing time and 

process temperature 
Color strength R=0.998 [113] 

Fuzzy 
Dyeing time, alkali concentration and 

washing temperature 
Color fastness R = 0.992 [114] 

ANN 
Type of treatment, the replication of 

washing, and the dyes type targets 
CIELab values R=0.96 [115] 

Fuzzy 

Dyes concentration, temperature and time Colour yield 

MSE=0.0018~

0.0478 
[116] 

Fuzzy and 

ANN 
- [117] 

Fuzzy MSE=2.333 [118] 

Finishing 

ANN 

Reactive dyes, reducing agents, o.w.f%, 

original L*, concentration of the reducing 

agents and caustic, process temperature, the 

presence of the leveling agent 
CIELab values 

R=97.66% [119] 

fabric parameters, dyeing agents and 

finishing processes 
R>0.89 [120] 

ANN 

The fabric specifications of  composition, 

density, mass, thickness, linear density, yarn  

twist and crimp and two applied laser 

parameters ( DPI and pixel time) 

K/S values and 

CIELab values 

MSE =39.538; 

0.256; 0.036; 

0.032 

[121] 

MSE=0.218; 

0.057; 0.019; 

0.064 

[122] 

MSE =6.348; 

0.165; 0.03; 

0.087 

[123] 

Pixel time, DPI and grayscale 

MSE=16.492; 

0.146; 0.003; 

0.033 

[124] 

Treating time, temperature, pH, mechanical 

agitation and fabric yarn twist 

MSE=1.5e-3; 

9.9e-6; 2.8e-9; 

6.2e-7; 4.3e-8; 

1.9e-5; 

[125] 

ANN 
Fabric type, method, chemicals and 

concentration 

Water-oil 

repellent and 
- [126] 
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wrinkle resistant 

ANN 

The weight of scratching material in 

percentage to the weight of stone wash, 

acidic enzyme treated and neutral enzyme 

treated fabrics respectively, the duration of 

process, and the softener 

Fabric hand R=0.991 [127]  

ANN and 

Fuzzy 

Parameters of multiple finishing processes 

and the instrumental tactile characteristics 

compression 

and surfaces 

properties 

RMSE=0.02~2

.39; 0.01~2.71 
[128] 

ANN 

Substrate strength, flame gas-air mixture, 

flame temperature, rameuse temperature, 

polyurethane granulometry, coagulation 

duration, and reticulation duration 

thermal insulance, 

dimensional 

stability, ultimate 

tensile stress, 

pilling resistance 

grade 

Error<5.5% [129] 

Neuro - 

Fuzzy 

Fiber nature, fabric weight, thickness, 

construction, weft density, warp density, 

weft count, fiber count, air Permeability, 

porosity, and surface roughness,  electrical 

power, treatment speed 

contact angle;  

capillarity height 

R=0.9917; 

0.9998 
[130] 

Neuro - 

Fuzzy 

(variables above) + composition, warp count 

and summit density 

R=0.9957; 

0.9964 
[131] 

Non-

woven 

ANN 

Fabric weight, needling density and blend 

ratio 

 

Tensile properties - 

[132]

, 

[133] 

Compression 

properties 
- [134] 

ANN 
Web area density, punch density, and depth 

of needle penetration 

Bulk density and 

tensile properties 

R=0.907; 

0.986; 0.982 
[135] 

ANN 

Polymer flow rate, initial polymer 

temperature and initial air velocity 
Fiber diameter 

R2 = 0.9424 [136] 

Polymer flow rate, initial air velocity and 

die-to-collector distance 
Error=0.013% [137] 

ANN 

Fiber length, fiber count, total pore volume, 

basis weight uniformity, thickness, basis 

weight, and fiber volume density 

Fabric air 

permeability, 

strength, 

elongation 

Error=-0.78%, 

-0.88, and -

0.84 

[138] 

ANN 

Polymer melt index, the polymer flow rate, 

initial polymer temperature, the initial air 

temperature, and the initial air velocity 

Fiber diameter Error=-0.135% [139] 

  

2.3. Modeling fabric manufacturing process 

Different from modeling the yarn manufacturing that mostly was conducted on spinning 

processes, the attention of intelligent modeling studies in fabric manufacturing was more 
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addressed on the related treatments such as fabrics dyeing and finishing. This may reflect that in 

general the understanding of the fabric manufacturing processes including weaving and knitting, 

compared with the related fabric processes, have been well constructed with mechanisms and 

theories. In terms of weaving, the accessible models in this area were released for predicting 

sizing performances, warp breakage rate, weft insertion velocity and compressed air consumption 

in air-jet weaving, the air permeability of rapier woven fabric, as well as strength transfer 

efficiency of warp and weft yarns in projectile woven fabrics. In terms of knitting, the modeling 

investigations were established to tackle the predictions of knitted fabrics’ spirality, bursting 

strength and bagging bend height. The developed models of dyeing and finishing processes 

varied significantly in regards to applied materials and methods, but the predictive targets were 

generally focused on the color and functional performances, as the aims of these processes simply 

obtain the fabrics’ aesthetics and functional values. Furthermore, many papers in the literature 

have applied the intelligent modeling techniques to map material and process parameters to 

nonwoven fabrics’ properties such as the compression, air permeability, tensile and bulk density 

of needle-punched nonwoven as well as the fiber diameter in melt-blow and spun-bonding 

nonwoven processes. 

The general information of fabric manufacturing process modeling using intelligent methods 

summarized from reviewed literature are listed in Table 5. It is clear that ANN and fuzzy logic 

dominate the application of intelligent techniques in this area. Meanwhile, it is noted that 

modeling chemical processes such as textile dyeing and finishing has attracted more attention in 

the previous studies.  

2.3.1 Modeling weaving process 

The sizing (or slashing) process is a very necessary procedure in the textile manufacturing 

industry that directly affects the productivity in weaving. It enforces the warp yarns to resist the 

loading of weaving by adding a homogeneous liquid mix of chemicals, binders and lubricants in 

the most efficient manner. To achieve the desired settings of size add-on, exit moisture and 

stretch is a challenging issue in sizing operation. In order to control the moisture content of sizing 

to combat the warp weaken problem because of over-drying, Dorrity et al. [96] released the first 

attempt of sizing process modeling in 1994 using Fuzzy theory based on trials conducted with 

37’s cc 50/50 polyester-fiber/cotton warp yarns with 9000 ends. Steam pressure, nip pressure and 
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speed are inputted to the model for predicting exit moisture and add-on of sizing warps. This 

investigation was later extended by Kim and Vachtsevanos [97] in a Neuro-Fuzzy model. This 

proposed Neuro-Fuzzy model combines the fuzzy inference engine through polynomial neural 

network architecture which has some similarities in common with an ANFIS model. Both of 

these two models applied a genetic algorithm to optimize the model parameters.  

Due to the influences of outliers and noise data in the sizing process on the modeling 

performance, Zhang et al. [98] also proposed the combined structure of fuzzy and neural 

networks on the basis of non-Euclidean distance clustering to predict the slashing process quality 

index, i.e. the size add-on,  from the temperature, low nip pressure, high nip pressure and sizing 

speed. Their algorithm partitioned the input space into many local regions first and then 

determines the fuzzy rule number by validity function depending on the separation and the 

compactness among clusterings. After training by a hybrid learning algorithm of the gradient 

descent and the least-squares method, this model was tested with an accurate predictive 

performance of RMSE=0.0222. A comparison of this model with grip partition, backpropagation 

and radial basis function (RBF) neural networks show that the proposed method has lower 

computation complexity and faster convergence time. As mentioned that the sizing operation 

enforce the warps to smooth the weaving process, this is owing to the decrement of warp 

breakage rate in weaving ensures the weaving productivity. Yao et al. [99] took size add-on and 

the properties of sized yarn (such as abrasion resistance, abrasion resistance irregularity, hairiness 

beyond 3 mm, breaking strength, breaking strength irregularity, breaking elongation, and 

breaking elongation irregularity) to predict the warp breakage rate in weaving process by a back-

propagation ANN model. The correlation coefficient of predicted data and actual data from the 

testing data set is R= 99.5%.  

Other than warps, weft yarn affects the weaving productivity dramatically at the same time and 

the weft insertion system plays a key role in this issue. Air-jet weft insertion system is commonly 

applied to almost all kinds of yarns at a very high speed. Dayik and Colak [100] introduced a 

fuzzy model for predicting the weft yarn insertion velocity from weft yarn count and twist. 

However, Hussain et al. [101] pointed out that the high productivity of the air-jet weaving 

machine relies heavily on the energy-consumption of compressed air production for weft 

insertion. Upon which they developed models relating air-jet weaving parameters of weft yarn 
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count, fabric width, loom speed and reed count to the compressed air consumption using response 

surface regression and ANFIS comparatively. Some 108 fabric samples are used for training (100) 

and testing (8) the models respectively. It was found that the ANFIS model was slightly better 

than the response surface regression model with a higher Pearson correlation (between actual and 

model predicted air consumption) of R=0.998 and R=0.986 respectively.  

The crossing of yarns from warp and weft directions forms woven fabrics in a stable structure, 

the strength of fabrics from the warp or weft direction in this structure is clearly not only the 

accumulation of yarns because of the existence of crossing abrasion of yarns. Malik and Malik 

[102] termed the percentage of cumulative strength of longitudinal yarns in warp or weft 

direction which is transferred to the fabric after weaving as strength transfer efficiency (STE) of 

yarns in that direction. They developed a predictive model for predicting STE from the strength 

of constituent yarns, the fabric count and the float length using the ANFIS technique based on the 

input-output data sets of 264 woven fabric samples (234 samples and 30 samples were used to 

develop and validate the prediction models respectively). Their models were found that are 

capable of predicting the warp and weft yarns strength transfer efficiencies accurately (R=0.951 

for warps and 0.924 for wefts). 

Air permeability is a very significant quality index concerning the textile comfort and 

functional performance of certain technical fabrics like protective garments, filters, airbags and 

parachutes. The air permeability of the polyester woven barrier fabrics has been predicted from 

the weave float, warp type, filament fineness of warp and weft, filling type, fabric density, shed 

closing angle and loom speed by using an ANN model trained by backpropagation algorithm with 

82 data patterns [103]. The model performance derived from 28 testing data patterns was 

MAE=3.7%. They have further analyzed the importance of certain factors from the input space in 

this cited paper and extended the constructed ANN model work with different deducted input sets. 

The results illustrated that the model with inputs excluding warp yarn type and filling type, as 

well as the one excluding weave float have gained better performance with respect to MAE=1.05% 

and 0.42% respectively. The relative importance of model inputs, according to their analysis, 

ranges from weft filament fineness, fabric density, weave float, warp filament fineness, shed 

closing angle, warp type, loom speed to filling type.  

2.3.2 Modeling knitting process 
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The popularity of knitted fabrics can easily find out from the daily use of apparel like shirts, 

sweaters, undergarments and sportswear, etc. This is owing to the knitting process that introduces 

properties of the elasticity, drape, wrinkle resistance, comfort, softness and easy-care to this sort 

of textile product at a low cost. However, specific structural problems like bagging and spirality 

phenomenon remain a handicap of the fabric during and after use. Residual bagging bend height 

is one of the primary assessments of fabrics’ bagging phenomenon. To understand the role of the 

knitting process in this phenomenon, Jaouachi et al. [104] have tried to map the yarn parameter of 

yarn type and machine parameters of course count, gauge and binding to the residual bagging 

bend height of knitted fabric using Fuzzy logic and ANN technique respectively. Samples out of 

24 were used to validate the models predicted values and the R value of tested samples was found 

that ranging from 0.676 to 0.821 for fuzzy models with different membership functions and 0.991 

for the ANN model.  

The spirality phenomenon arising from many process factors can hardly be explored without 

modeling tools. Murrells [105] employed an ANN model and a standard multiple linear 

regression model to predict the spirality of 100% cotton single jersey fabrics with given inputs of 

twist liveliness, yarn type, yarn linear density, tightness factor, the number of feeders on the 

knitting machine, the machine gauge, the rotational direction of the machine and whether the 

fabrics had been piece dyed or not. 66 fabric samples produced from regular ring-spun yarns, low 

torque ring-spun yarns and plied yarns were used. Among which, data measured from 13 samples 

were applied to test the models. The results show that the correlation coefficients between the 

actual and predicted degree of spirality were slighter higher for ANN model of 0.976 compared 

with 0.970 for the regression model. By contrast, Shahid and Hossain [106] proposed a fuzzy 

expert system, rather than ANN models, to deal with the knitting process modeling for spirality 

prediction. But, in this study, only two variables from 16 samples were considered, namely 

knitting stitch and yarn count. Four triangular linguistic fuzzy sets of very low, low, medium and 

high were chosen for input parameters in the input space, while 5 more linguistic rules (very very 

low, very very high, low medium, high medium and very high) were additionally introduced to 

the output triangular membership function. The validation results derived from 9 testing datasets 

illustrated a very high predictive accuracy (R=0.991). 
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Hossain et al. [107] further used this fuzzy expert system to predict the bursting strength of 

knitted fabric based on of knitting stitch length, yarn count and yarn tenacity. The differences 

from modeling spirality in the knitting process consist of data used and data range distributed on 

membership functions in this model (in particular the fuzzy linguistic sets for yarn tenacity 

excluded very low, and 10 fuzzy sets from 1.1 to 1.10 were instead of the linguistic rules for 

output ). The model was found to be very powerful in knitted fabric bursting strength prediction 

(R2=0.961). Jamshaid et al. [108] have compared the models of regression and ANFIS for 

investigating the effects of the knitting process on fabrics’ bursting strength, where the input 

variable comprising yarn tenacity, knitting stitch length and fabric density. Out of total knitted 

samples, the validation results from 8 samples revealed that the ANFIS model performed slightly 

better than the regression model in this issue because of a higher correlation coefficient of 

predicted values versus actual values in terms of 0.996＞0.991.  

2.3.3 Modeling dyeing process 

The dyeing process introduces color to the textile including fabrics, while the use of intelligent 

techniques used in most of the previous studies was dedicated to alternate Kubelka-Munk theory 

for color recipe matching [115]. Sentilkumar and Selvakumar [109], as well as  Kuo and Fang 

[110] made a difference in this issue. Sentilkumar and Selvakumar proposed an ANN dyeing 

process model for predicting and the depth of shade in the dyeing process using a 

backpropagation ANN. The constructed model has six input parameters (K/S values of undyed 

fabrics, dye fixed ratio, percentage shades, NaCl concentrations, Na2CO3 concentration, and K/S 

value of dyed samples after rinsing) and two outputs in terms of the time for primary exhaustion 

and time for dye fixation. Binary sigmoid activation function was used in a three hidden layers 

net which possessed 9 neurons in each hidden layer and was chosen from an optimization of net 

structure based on a series of attempts and experiments. It was trained and tested by 45 and 6 sets 

of data respectively and the performance was presented as only 1% average error.  

Color strength is the basic and most vital property of dyed fabrics, and the control of it in the 

dyeing process to be stable without variance is a big issue. In order to optimize the performance 

of color strength in the one-bath-two-section dyeing process for nylon/lycra blended knitted 

fabrics with acid dyestuff, Kuo and Fang have constructed an intelligent model of it by means of 

ANN technique. The processing parameters of machine operating temperature, dyeing time, dye 
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liquor concentration and the bath ratio were used as input variables. They used the ANOVA to 

arrange the optimal condition, significant factors and the percentage contributions and employed 

the Taguchi quality method as well as GA to design the parameters and optimize the back-

propagation ANN architecture respectively. The obtained ANN model predictive error in terms of 

RMSE can be as low as 0.000165531.  

Apart from modeling the bursting strength of knitted fabrics, Hossain et al. additionally 

proposed the use of fuzzy logic in the textile dyeing area. They developed several different fuzzy 

models for predicting the color strength and fastness of knitted fabrics from dyeing process 

parameters respectively. The constructed Fuzzy model of exhaust dyeing of viscose/lycra blended 

fabric using reactive dyes was feed by dye concentration, salt concentration, and alkali 

concentration as input variables to predict the fabrics’ color strength. This model performed very 

well in the evaluation that R = 0.992 from the actual and predicted color strengths[111].  

However, this model was later compared with ANN models trained by the same parameters and 

data in another publication of them, which showed that the ANN model predicts more accurately 

than the Fuzzy model in this case [112]. The attempt of the fuzzy model was extended to the 

dyeing process of different cotton knitted fabrics [113]. They changed inputs to the dye 

concentration with dyeing time and process temperature and designed different linguistic rules for 

input and output variables. The prediction performance was tested up to R=0.998. 

Color fastness reflects the ability of dyed fabrics to resist color characteristics change or 

transfer its colorant to adjacent materials. The higher color fastness of dyed fabrics, the more 

possibility its color will not run or fade with washing and wearing. The fuzzy model Hossain et al. 

[114] established for predicting color fastness takes dyeing time, alkali concentration and 

washing temperature as inputs, and the mean relative error, as well as the correlation coefficient 

of predicted values from this fuzzy model, are found to be 2.43%, and 0.992 respectively in the 

evaluation analysis.  The color fastness predictive model proposed by Balci et al., 2008 [115] also 

involves CIELab values(i.e. L*, a*, b*, C, h° values, etc.) which is based on the nylon 6.6 fabric in 

dyeing process with 1:2 metal-complex acid dye followed by one of the treatments in the group 

of syntan, syntan/cation,  full backtan using a Levenberg-Marquardt (LM) trained ANN (one 

hidden layer with 30 nodes). The net input variables consist of the type of treatment, the 

replication of washing, and the dyes type targets. The experimental data were divided into three 
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groups as 65% for training, 35% for testing and 5% for cross validation. According to a 

comparison between the trained ANN model and a set of regression models, it was found that 

ANN predicts more accurately than regression models for predicting fastness, however dissimilar 

to the literature mentioned above, performed poorer for predicting the color parameters of 

CIELab. 

The color yield of dyed fabrics known as the K/S values derived from the aforementioned 

Kubelka-Munk theory was studied by Tavanai et al. [116] by modeling a polyethylene 

terephthalate high temperature disperse dyeing process using fuzzy regression. The inputs of this 

model are comprised of disperse dyes concentration, temperature and time. This model was 

trained with an ANN model and a statistical regression model by using 95 sets of the same 

experimental parameter data. Additionally, The testing results obtained from the rest data of 25 

samples indicated that the predictive power of the ANN model leads the model performance 

followed by fuzzy regression, while the statistical regression approach did not meet the required 

conditions to be accepted [117]. They also have attempted to promote the Fuzzy model in this 

case using the covariance matrix adaptation evolution strategy for model parameter optimization 

in the work of [118]. 

                  

                                           （a）                                                                        (b) 

Figure 5. (a) Ring dye effect from fading process; (b) Inner cotton exposed denim. 

2.3.4 Modeling finishing process 

Finishing processes perform an increasingly significant function in textile manufacturing in 

recent years as a range of novel designed finishing methods promoted the aesthetics and functions 

of the textile products which have attracted a growing number of young customers’ attention and 

obtained a considerable share of the fashion market. Taking denim finishing as an example, the 

indigo color which is regarded as the nature of denim usually contaminates the warp yarn only, 

but the property of “ring” dyeing effect of it resulted from the partial penetration was found a 

vintage style with a worn look when longtime abrasion or repeated washing removes the dyes and 

Fading process
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exposes the inner layer undyed cotton [4], [140]. Figure 5 (a) illustrates the ring dye effect from 

the fading process, and (b) gives a real denim sample that inner undyed cotton exposed.            

    Upon the presentation of the finishing process above, it is clear that the color properties of 

treated textiles must be targeted in many related process modeling studies. Balci et al. [119] 

reported the application of LM trained ANN to the alkali reductive stripping process for 

predicting L* and ∆E of striped cotton fabrics. Optimization was conducted to find the numbers of 

inputs, nodes and the estimation criteria for stopping training). Eight inputs in terms of the 

reactive dyes and reducing agents, o.w.f. %, original L*, the concentration of the reducing agents 

and caustic as well as process temperature and the presence of the leveling agent were defined to 

feed the model (85 nodes in single hidden layer) with MSE=0.01 for stopping training predicting 

L*, whereas 2 more parameters of a* and b* were inputted additionally to predict ∆E using 70 

nodes in the single hidden layer with MSE=0.001. The achieved R between the actual and 

predicted was 97.66% and 97%for these two models respectively.  

They have also comparatively studied the ANN and Linear regression models for finding the 

effect of fabric parameters, dyeing agents and finishing processes on fabric’s CIELab values in 

the chemical finishing process [120]. The chemical finishing applications such as softening, water 

repellent, durable press, cationic, micro silicone and macro silicone processes were studied in the 

laboratory condition in order to achieve the data for modeling. It was a feed-forward and 

backpropagation mixed ANN model that structure optimized through a topology, contained two 

hidden layers with 6 and 4 nodes in the first and second layers respectively. After training with 75% 

randomized data, cross validating with 10% data and testing with 15% data, it presented a high 

competition with more powerful prediction than linear regression models which was constructed 

by a new set of data. Correspondingly, the correlation coefficient was R ＞0.89 for the ANN 

model whereas R＜0.83 for the linear regression models. 

Process modeling applied to textile color finishing process was limited, which situation was 

changed until last years that a series of researches were delivered by Hong Kong Polytechnic 

University. They have investigated the effects of laser treatment on K/S values and CIELab 

values of weaving fabrics [122]–[124] and knitting fabrics [121] respectively as well as the 

effects of cellulase treatment on the K/S values and CIELab values of cotton denim fabric [125].  
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As shown in Table 6, a topology was used in all of these five studies in common that aims at 

finding the effect of changes in the number of hidden layer and nodes on the performance of nets 

applied to each case above. In the meantime, they have investigated the relative importance of 

input variables by specifically rule out one of the variables in the net and comparing the 

decreased performance of affected nets.   

Table 6.  The topology studies of  [121], [122], [125] applied to optimize the artificial 

neural network structure.    

Number N1 N2 N3 N4 N5 N6 N7 N8 N9 

Hidden layer 1 1 1 1 1 2 2 2 2 

Nodes 10 15 20 25 30 10-5 10-10 15-10 20-10 

 

Laser treatment is a dry process for denim and other colored textiles, which fits manufacturers’ 

and designers’ demands on controllability and sustainability, and more vitally the efficiency and 

high repeatability of the denim color stripping process. C. Kan and Song [121] modeled the effect 

of laser on knitted fabric by inputting the fabric specifications of composition, density, mass, 

thickness, linear density, yarn twist and crimp and two applied laser parameters (pixel time and 

dot per inch, i.e. DPI) in various nets (illustrated in Table 6.) to output K/S values and CIELab 

values. The performance of trained nets was introduced as MAE, MSE and RMSE. It is found 

that DPI and pixel time was more important than other inputs to affect the knitted fabrics’ color 

performance in laser treatment, and the prediction performance of the smallest MSE  least to 

39.538, 0.256, 0.036, 0.032 for K/S values and CIELab  L, a, b values respectively in this study.  

In terms of laser treatment on woven fabrics (similar networks but omitting the input of linear 

density from the model mentioned above), they pointed out that DPI is more significant than 

pixel time to affect the color properties in laser treatment, and the prediction accuracy of ANN 

was clearly proved in a comparison with the linear regression model in this study as the MSE 

result of latter was 5 to 55 times (0.218, 0.057, 0.019, 0.064 versus 23.668, 3.461, 0.100, 2862 for 

K/S and CIELab values respectively) to the former for predicting varied color properties[122]. 

Similar work was conducted on six colored cotton-spandex fabrics with the same model 

architectures as well. They [123] claimed that the optimized tested MSE of the established ANN 

model was 6.348, 0.165, 0.03, 0.087 in this issue. And the analysis revealed that thought the 

process performance of the laser process was determined importantly by process parameters, 
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fabric thickness dominated the color fading effect if fabric parameters were taken into 

consideration. They have further tried to simplify the input variables of the ANN model in the 

related study by treating denim fabrics using the laser [124]. The input only involved laser 

process parameters of pixel time, DPI and grayscale. The grayscale was found to be the most 

important factor in this model among the three input variables, and the MSE of tested prediction 

of an optimized model on K/S and CIELab values were 16.492, 0.146, 0.003 and 0.033 

respectively.  

Cellulase is an enzyme for degrading the surfaced dyed cotton (or other cellulose materials) on 

fabrics that have been used in denim washing sectors for years. Meanwhile, it is one of the most 

commonly used methods to achieve color fading effect as well as fabric softness for cotton denim. 

Modeling the process and predicting the color properties of K/S value and CIELab values 

depending on the inputs of cellulase treating time, temperature, pH, mechanical agitation and 

fabric yarn twist level using ANN, the work projected by Kan et al. [125] illustrated the potential 

of ANN in the modeling of the denim cellulase process. On the basis of the saliency test of 

parameters and the identical topology used in the previous studies, this optimized model 

constructed by researchers from Hong Kong Polytech University successfully verified the 

predicted accuracy of the ANN models in the case as well. 

Not only color properties but also physical functional performances play important roles in the 

certain finishing process.  For instance, the crease resistance finishing is one of the many types of 

fabric finishing that improve wrinkle resistance and smooth appearance of fabrics made from 

cellulose or related fibers which tend to wrinkle badly after washing and tumble drying and also 

during wearing. The water and oil repellency treatments form the thin hydrophobic film on the 

fiber surface so that proof the water or oil. Sema et al. [126] trained an ANN model to predict the 

properties of water-oil repellent and wrinkle resistant of blended woven fabrics obtained from 

finishing processes according to the fabric type, method, chemicals and concentration applied. As 

the input they used involves quantitative variables, the outputs variables were transformed from 

numerous values to linguistic ones to be bad, mean, good and best in this study as well. The 

results were concluded as that the ANN performed well with the linguistic transformation of 

variables but specifically not satisfactorily for the wrinkle recovery angle owing to the lack of 

homogeneity of sample size in each output class. 
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Feki et al. [127] described an ANN model structure optimized by a multilayer perception 

pruning algorithm for predicting denim fabric hand from stonewash parameters. It is a method 

based on variance sensitivity analysis and followed by pruning hidden neurons (pruning 

separately for four sensory descriptors as smooth, fluffy, full and soft). K-fold cross validation 

was used in the net training and validating process. There was only one hidden layer and five 

inputs (the weight of scratching material in percentage to the weight of stone wash, acidic 

enzyme treated and neutral enzyme treated fabrics respectively, the duration of the process, and 

the softener) in this network which variables were transferred by sigmoid. The optimum of 15 

nodes in the hidden layer for “smooth” evaluated at the end present a high correlation coefficient 

of determination of 0.991. 

Schacher et al. [128] have modeled the relationship between finishing treatments’ parameters 

and the instrumental tactile characteristics of treated textiles using ANN and Fuzzy techniques. 

The considered finishing processes include bleaching or dyeing, enzymatic bio-polishing, 

softening, emerizing and calendaring. The instrumental tactile characteristics comprising linearity 

of the pressure-thickness curve, compressional energy, compressional resilience, thickness at 50 

pa, thickness at 5000 pa, coefficient of friction, mean deviation of coefficient of friction, 

frictional roughness and geometrical roughness.  It was concluded that the performances of the 

proposed models were acceptable with the mean relative percent error ＜ 10% in general, and the 

fuzzy models performed slightly better than neural models. 

The polyurethane-based coating process promotes the “hand effect” of fabrics and makes their 

uniform substance, shade, stretch, softness and appearance similar to natural leather. Furferi et al. 

[129] developed an ANN predictive model of a particular coating process to map the coating 

process parameters (substrate strength, flame gas-air mixture, flame temperature, rameuse 

temperature, polyurethane granulometry, coagulation duration, and reticulation duration) to the 

most relevant quality index of the coated product (thermal insulance, dimensional stability, 

ultimate tensile stress, and pilling resistance grade). 90 sets of data were used to train, and the 

performance of the trained model with 18 more testing data showed that the maximum error in 

foresting was about ±10 with an average error of less than 5.5%. 

Plasma treatment of fabric, owing to the energetic species in gas plasma such as ions, electrons, 

radicals, metastables and UV photons, can enable a variety of generic surface process including 
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surface activation by bond breaking to create reactive sites, dissociation of surface contaminants 

(cleaning), material volatilization and removal (etching), and deposition of conformal coatings 

(polymerization). Jelil et al. [130] launched an investigation on the modeling of plasma fabric 

surface treatment using ANN and Fuzzy techniques. The ANN model approximated the inputs of 

fabric features (fiber nature, fabric weight, thickness, construction, weft density, warp density, 

weft count, fiber count, air permeability, porosity, and surface roughness) and plasma parameters 

(electrical power, treatment speed) to the targets of water contact angle and capillarity. The fuzzy 

sensitivity criterion was used to select the most relevant input parameters (electrical power, 

treatment speed, fiber nature, fiber count, air permeability and surface roughness) to reduce the 

complexity of ANN model and improve its performance. They compared the training algorithms 

and the ways of single output and multiple outputs. The tested results showed that the training 

algorithm of Bayesian Regularization is more suitable in this case and it is better to predict each 

target singly by separate ANN models rather than multiple outputs using a single model. 

(R=0.9917: 0.9876 for contact angle and 0.9998: 0.9994 for capillarity respectively). The model 

reported in another publication of Jelil [131] additionally researched the woven fabric features of 

composition, warp count and summit density in the input data set. Finally, the optimized model 

possesses 7 input variables in terms of electrical power, treatment speed, composition, air 

permeability, fiber count, construction and summit density. 

2.3.5 Modeling nonwoven manufacturing process 

The nonwoven manufacturing processes consist of web forming and web consolidation, where 

the web forming methods include dry-laid (carding or air laying), wet-laid (for materials like 

cellulose acetate) and polymer-based (spun-bonding and melt-blown, etc.), while the web 

consolidation generally is implemented by chemical (such as spun-bonding) as well as 

mechanical (e.g. needle-punching) means. Intelligent models have been presented to simulate the 

nonwoven processes of needle-punched, spun-ponding and melt-blown in literature. 

Needle-punching is a well-known nonwoven process of converting fibrous webs into self-

locking or coherent structures using barbed needles. The barbed needles pull the fibers from the 

surface of the web and re-orientate them in the thickness direction leading to a complex three-

dimensional structure. The structural coherence of a needle-punched fabric depends upon the 

frictional characteristics and interaction of constituent fibers. Debnath et al. [132] have tried to 
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predict the tensile properties (tenacity and initial modulus) of needle-punched, jute and 

polypropylene fibers blended nonwoven fabrics from fabric weight, needling density and blend 

ratio. Authors compared the methods of multiple regressions and ANN in their case trained with 

15 sets of training data collected from experimental samples, and their testing results derived 

from 3 further verification experiments indicated that ANN models gave less absolute percentage 

error than the regression model for both predicting fabric tenacity and initial modulus, even when 

the selected input variables are beyond the range over which the model was trained. They 

reported a similar comparative investigation for predicting the air permeability of these needle-

punched nonwoven fabrics later and about the same result of ANN dominating empirical model 

was obtained [133], but an attempt of studying the effect of hidden layers in this work 

additionally revealed that the constructed ANN model with three hidden layers shows less 

prediction error followed by the one with two hidden layers, empirical model and ANN with one 

hidden layer respectively. In another study, Debnath and Madhusoothanan [134] turned their 

researches on modeling the needle-punching process to predict the compression properties of 

polyester/jute/polypropylene blended nonwoven fabrics. The targeted compression properties of 

nonwoven are Initial thickness, percentage compression, percentage thickness loss, and 

compression resilience. 25 and 4 sets of samples were applied to train and test an ANN model, 

the correlation of R2 in the ANN training process could be up to 0.999 while the tested result was 

a little unstable with certain data because of the lack of learning during the training phase. Rawel 

et al. [135] predicted the bulk density and tensile properties of a needle-punched nonwoven 

through ANN mapping the process parameters of web area density, punch density, and depth of 

needle penetration to targets. The model was trained based upon 21 sets of experimental data, and 

the verification of the developed model working on 6 sets of unseen data inferred that the ANN 

models have achieved a good level of generalization that is further ascertained by the acceptable 

level of mean absolute error obtained between predicted and experimental values of fabric bulk 

density and tensile strength in the machine direction and cross-machine direction.  

Melt-blowing is an important one-step technology for converting polymer resin into the 

nonwoven fabric of microfibers directly. The fiber diameter plays a significant role in the 

engineering performances of melt-blown nonwoven fabric. Chen et al. [136] established an ANN 

model feed by process parameters of polymer flow rate, initial polymer temperature, and initial 

air velocity to predict the fiber diameter. 90 nonwoven samples were divided into a training set 
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and a testing set with 60 and 30 samples, respectively. The optimized ANN model has 3 hidden 

layers (5-2-3) and illustrates good predictive performance in terms of R2 = 0.9424 between 

measure and predicted fiber diameters of tested samples. The advancement of an intelligent 

model about ANN has been shown additionally in a further report of Chen [137], where a 

physical, statistical model was developed and compared with ANN for predicting fiber diameter 

of melt-blown nonwoven fabric from the polymer flow rate, initial air velocity and die-to-

collector distance. It was found that only 0.013% of the average error was made by the ANN 

model, whereas 9.744% and 0.074 were taken by physical model and statistical model 

respectively. Chen et al. [138] have also attempted to study the structure-property relations of 

nonwoven fabrics (web forming by dry laid for and web bonding by thermal bonding respectively)  

by ANN technique using a limited number of samples. They proposed a variable selection 

approach on the basis of human knowledge and Euclidean distance and consequently selected the 

nonwoven fabrics’ structural parameters of fiber length, fiber count, total pore volume, basis 

weight uniformity, thickness, basis weight, and fiber volume density to predict fabric air 

permeability, strength and elongation separately. The average error of constructed ANN models 

with 18 tests was -0.78%, -0.88, and -0.84 respectively. 

Aside from melt-blowing, spun-bonding is also known as a one-step technology for nonwoven 

production. Chen et al. [139] simulated the drawing of the spun-bonding nonwoven process using 

an ANN model to predict the fiber diameter. Considered input variables are the polymer melt 

index, the polymer flow rate, initial polymer temperature, the initial air temperature, and the 

initial air velocity. Leave-one-out cross-validation was used in their study based on 26 sets of 

samples. The estimated average error was -0.135%, which is far lower than the baseline method 

of nonlinear regression with 2.683%. 

2.4. Modeling garment manufacturing process 

Garment manufacturing contains four principal processes following cutting, sewing, finishing, 

and packing. The complex system deals with the configuration of numerous operations and 

resources in facing various uncertainties [141]. Intelligent techniques have been applied to 

garment manufacturing process modeling for years. Guo et al. [142] have overall reviewed the 

applications of artificial intelligence in the apparel industry from the perspectives of design, 

manufacturing g, retailing and supply chain management. In terms of apparel manufacturing, they 
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have generally summarized the related works before 2011 that applied intelligent modeling 

techniques to schedule the production, make marker, and deal with sewing issues etc. While 

regarding the applications of intelligent techniques for modeling garment processes as the 

procedures in the textile manufacturing process as a whole, the present section would particularly 

focus on the modeling of cutting, and sewing (the works about garment finishing processes have 

been drawn into the fabric section above) operations only. Table 7 demonstrated the basic 

information of the previous applications of modeling garment manufacturing process reviewed in 

this section. 

Table 7. Information about modeling garment manufacturing process using intelligent 

methods in previous works 

Process 
Intelligent 

methods 
Model inputs Model outputs performance Ref. 

Cutting ANN 

Number of fabric layers, cutting blade 

speed, number of sizes, marking lengths, 

and cutting times 

Cutting time 
Error=0.786

% 
[143] 

Sewing 

Neuro-

Fuzzy 
machine speed and the fabric sewability 

foot pressure and 

thread tension 
- 

[144], 

[145] 

ANN 
Fabric bending stiffness, thickness and 

weight 
pucker grade R=0.884 [146] 

ANN 

Fabric composition, structure, thread 

density, thickness yarn count, weight, 

formability, extensibility, rigidity 

Seam pucker, needle 

damage, fabric 

distortion, 

overfeeding 

- 

[147] 

[148] 

ANN 

Linearity of extension curve, tensile 

energy, fabric extension; tensile 

resilience, ratio of weft extension to warp 

extension, shear rigidity, shear hysteresis, 

bending rigidity, bending hysteresis, 

thickness 

seam pucker, seam 

flotation, seam 

efficiency 

R=0.790, 

0.849, 0.881 
[149] 

*RT and 

KNN 

Fabric formability, fabric elasticity, 

bending rigidity, shear rigidity, shear 

hysteresis, tensile resilience 

seam pucker, seam 

flotation, 

RMSE=0.69

3, 0.897; 

0.561, 0.569 

[150] 

ANN 
Fabric width, folding length of joint, 

seam design, seam type 
Seam strength - [151] 

ANN 
No. of fabric layers, needle size, weave 

pattern,  fabric weight 
Needle penetration 

force 

R=0.989 [152] 

Fuzzy 

logic and 

ANN 

No. of fabric layers, needle size, fabric 

weight 

R2=0.968; 

0.944 
[153] 

ANN 

fabric layer, stitch density, needle size, 

fabric area density, thread linear density, 

and thread type, 

strength loss in 

threads 

R=0.83~0.9

4 
[154] 
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Others ANN 

Linearity of extension curve, tensile 

energy, fabric extension; tensile 

resilience, ratio of weft extension to warp 

extension, shear rigidity, shear hysteresis, 

bending rigidity, bending hysteresis, 

thickness, frition coefficient, mean 

deviation of frition coefficient, geometric 

roughness, linearity of compression 

curve, compression energy, compression 

resilience, fabric weight 

laying, cutting, 

overall handling, 

interplay shifting, 

structural jamming, 

seam slippage, needle 

damage, seam 

pucker, ease of 

pressing, dimensional 

performance, 

appearance retention 

- [155] 

*RT: regression trees; KNN: K-nearest neighbors (KNN) methods. 

2.4.1  Modeling cutting process of garment manufacturing 

Cutting process cut fabrics into pieces depends on maker making. It importantly influences the 

following processes in terms of efficiency and quality. There is a range of technical factors and 

indirect factors of cutting time ranging from size distribution and fabric’s type to the 

workmanship and wastage etc. Ozel and Kayar [143] established a model to estimate the cutting 

time of apparel manufacturing using the ANN system. They took the data of different marking 

lengths and the fabric lays quantities, cutting blade speed, size distribution to training the model. 

The structure of the ANN model was 7-14-1 where the number of hidden nodes was determined 

from studying the factors of the training process such as convergence rate and error criteria etc. 

The constructed model was very acceptable with only 0.786% percentage error in the testing 

phase. 

2.4.2 Modeling garment sewing process 

 Sewing operation performs the key function during garment production affecting the clothing 

quality. The sewing machinery dominates the performance of the sewing operation. Stylios and 

Sotomi [144], [145] proposed a neuro-fuzzy system to control the sewing machines. In particular, 

this system is constituted by a back propagation ANN model for predicting the sewability of 

applied fabric from its relevant physic-mechanical properties, and then the main neuro-fuzzy 

program was inputted by the machine speed and the estimated fabric sewability to control the foot 

pressure and thread tension of sewing machine on the basis of the fuzzy logic linguistic rules 

suggested by human operators determined from experimental data. Where the neural network in 

the main program was used to optimized the input and output membership functions. The 
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implementation of this process model on an industrial sewing machine has successfully shown its 

effectiveness for improving the sewing quality. 

The seam is the basic requirement in the construction of garments. Seam pucker is a common 

problem in garment manufacturing because of improper sewing operations. Stylios and Parson-

Moore [146] predict the seam pucker approximately of pucker grade umder the AATCC 

standards by neural networks from the fabric properties of bending stiffness, thickness and weight. 

The distribution of data for model training and testing was 25:11, and the correlation coefficient 

of 0.884 was obtained from the comparison of actual with predicted pucker grade from the testing 

dataset. This accuracy probably is relatively unacceptable in certain applications nowadays, but 

this work is still very meaningful in the garment manufacturing field as it addressed an early 

attempt of applying intelligent techniques to model the sewing process and deal with seam pucker 

problems. 

Sewing performance is not only assessed by seam pucker, but also the needle damage, fabric 

distortion, as well as the overfeeding of fabric during the sewing operation, announced by Hui 

and Ng [147]. Upon which they employed an extended normalized radial basis function (ENRBF, 

an algorithm developed by Xu [156]) neural networks to predict these four sewing performance 

properties of specific fabrics. Regarding the data, they input the model by measured fabric 

properties for the composition, structure, thread density, yarn count, weight, thickness, 

formability, extensibility, and rigidity, while for the outputs of the model are related to the 

aforementioned sewing performance properties assessed by the experts. There were 94 sets of 

data were used to train the ENRBF model as well as a baselined back propagation neural 

networks model [148]. It is shown that in the testing experiment with 15 sets of samples, both of 

the trained neural networks models performed well, but the ENRBF one was slightly better, 

especially for predicting the seam performances of pucker and needle damage individually.  Hui 

and Ng [149] have also compared the multiple logarithm regression (MLR) with the ANN for 

predicting seam pucker, seam flotation and seam efficiency from the properties of the woven 

fabrics (Linearity of extension curve, tensile energy, fabric extension; tensile resilience, the ratio 

of weft extension to warp extension, shear rigidity, shear hysteresis, bending rigidity, bending 

hysteresis, thickness), it is concluded that the ANN model was more accurate than MLR, but both 

models were effective. Seam flotation was targeted in a sewing process model developed by  
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Pavlinic et al. [150] as well with the seam pucker. But different from the ANN models above, 

they employed regression trees and KNN methods.  From the given parameters of fabric 

mechanical properties, the obtained root of MSE of constructed models is 0.693, 0.897 and 0.561, 

0.569 for regression tree and KNN models predicting seam puckering and seam flotation 

respectively. The KNN model was regarded as more appropriated, and the R2 =0.943, 0.815 for 

the target seam performances were further provided to show its prominence.  

Seam strength is one of the most important characteristics evaluating seam quality. It is worth 

mentioning that Onal et al. [151] have launched a study predicting the seam strength of notched 

webbings for parachute assemblies. They broadened the application of sewing process modeling 

in the textile industry although it was not applied to garment manufacturing. Seam factors 

concerning the fabric width, folding length of joint, seam design and seam type were considered 

as input variables in the model construction, and seam strength of webbing was the only output. 

The ANN was compared with Taguchi’s design of experiment method for the prediction accuracy 

on the basis of 60 training data and 10 testing data. It was shown that ANN was better than the 

Taguchi’s approach.   

Other than seam performances, the assessment of fabrics’ sewability is also one of the center 

factors affecting the garment quality. Predicting needle penetration force (NPF) in the sewing 

process can invade the needle breakage and consequently promote the process efficiency and 

product quality. Related works have been reported by Haghighat et al. comparatively using ANN 

and MLR [152], as well as fuzzy logic and ANN [153]. The considered input variables are 

composed of the No. of fabric layers, needle size, weave pattern, and fabric weight in the 

comparison of ANN and MLR, and the parameters of networks were discussed about different 

structures, learning functions, loss functions and transfer functions. The optimized ANN model 

(structure in 4-8-1, learn by gradient descent function, assessed by mean squared error, 

transferred by Tansig function) has a higher average R-value (0.989 > 0.901) and lower average 

MSE (1.720 < 10.594) than the MLR model in the comparison of testing results. In the work 

comparing fuzzy logic and ANN for NPF prediction, weave pattern was omitted from the input 

variables, and 5-folds cross validation of experimental data derived from 100 samples was 

conducted to train and test the models. It is indicated that both of the fuzzy logic model and ANN 
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model predicted with high accuracy though the latter was slightly better than the former (in terms 

of average R2=0.968 > 0.944).  

In addition to the NPF, thread tension is also mentioned above that the affects the sewability in 

the sewing process. Midha et al. [154] have tried to predict the strength loss in threads during 

high-speed sewing by an ANN model. They collected 68 samples of sewing thread tenacity loss 

with records of fabric layer, stitch density, needle size, fabric area density, thread linear density, 

and thread type, to train and test the model using 4-folds cross validation. The average prediction 

performance of the networks for cross validation data illustrates that MSE ranges from 17.63 to 

20.56 and the maximum and minimum errors are 58.23 and 0.07 %, respectively. R2 in the four 

partitions is 0.94, 0.83, 0.83, and 0.85, respectively.  

2.4.3  Other issues in garment manufacturing process 

The performance of the garment manufacturing process can be observed not only by cutting 

and seam properties. Gong and Chen [155] listed a series of fabric performance in the garment 

manufacturing process from varied areas (laying, cutting, overall handling, interplay shifting, 

structural jamming, seam slippage, needle damage, seam pucker, ease of pressing, dimensional 

performance, appearance retention) to be the prediction targets in the development of ANN 

models. 32 different samples diverting from 18 parameters in terms of composition, fabric 

weights and mechanical performances were used to train the model. Meanwhile, another ANN 

model was established with 15 selected inputs additionally for comparison. It is demonstrated that 

ANN is possible to predict fabric performance in clothing manufacturing and garment appearance 

according to fabric mechanical properties, and highly related parameters can be eliminated from 

the input without deteriorating the convergence and generalization ability of the ANN.  

The intelligent techniques have been applied to textile process modeling since 1993, leading to 

a great number of successful results published. However, the current investigations failed to 

integrate the interdisciplinary strengths in their applications so that the developed models either 

lacks the practicality or too basic. One reason could be that the researchers working on AI and 

textile manufacturing lack expertise from the field of each other, but more importantly, it is 

owing to the high complexity in the textile manufacturing industry about the variety of process 

and its parameters which impedes the cooperation of different disciplines in every detail.    
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Besides, the data used in these prior works were limited and noisy. This situation did not seem 

to be clearly noticed though it is a common issue in various subfields of the industry. For 

example, most of the researches took ANN as their first choice simply depended on its popularity, 

but ignored the features of the textile products and textile processes and their connection to the 

nature of modeling techniques, which have resulted in the developed models were poor of 

generalization ability. Another basic characteristic of the textile product is that the textile 

properties rely on both subjective and objective evaluations on the whole. The qualitative analysis 

performs a function as same as the quantitative analysis for modeling a textile process in certain 

scenarios, but the researchers paid little attention to this in their works. 

Furthermore, instead of real experimental exploration, the development of a process model 

basically enables to assist the process optimization by providing a digital simulation of the 

process. However, only a small group of previous studies formulated the constructed model into a 

systematic problem of optimization or decision-making. It is suggested to devote more efforts to 

the complete investigation involving both process modeling and optimization in the overall 

practical problems.  

Therefore, the significance of process modeling in textile manufacturing should be better 

roused by adapting commonly used approaches and tools to specific applications of the textile 

process optimization problems. 

2.5. Intelligent techniques used for textile process optimization  

Process managers work to improve the design of process and devote to enhance the operation 

of the process so as to realize the largest production, the greatest profit, the minimum cost, the 

least energy and resource consumption, and so on. These practical engineering applications can 

be formulated as optimization problems. The goal of process optimization basically is to achieve 

the desired performances from the operation of the process parameter. The realization of it, in 

general, is setting up of objective of the problem to be maximized or minimized to find the values 

of the variables in the process that yield the best value of the performance criterion, in addition, 

there may exist conditions to constrain the objective function and involve multiple objectives in 

the optimization problem [157]. Depending on the process model, textile manufacturers can 

conveniently estimate the performance of a proposed process solution to virtually tune the 
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optimum operations on process parameters. However, it is extremely challenging to properly find 

the optimal solution of the production scheme with optimal parameter setting by trial and error 

from the numerous possibilities. The employment of intelligent optimization techniques is 

identified as playing a key role in this issue. 

The intelligent optimization algorithms applied in prior studies mainly focused on an 

evolutionary algorithm (EA), particle swarm optimization (PSO), ant colony optimization (ACO), 

simulated annealing (SA), synergetic immune clonal selection (SICS), and artificial bee colony 

(ABC), etc. 

Evolutionary algorithms including genetic algorithms (GA) and differential evolution (DE) are 

the most popular optimization methods in the textile manufacturing area. The formulation of 

them is in accordance with the mechanism of natural learning evolution and the natural selection 

process. The individuals update in a population by learning from each other in a generation 

according to different heuristics. The general implementation of the first is to generate the initial 

population of individuals randomly, and then iteratively repeats the steps of selection, crossover 

and mutation (at each iteration, select individuals from the current population termed as parents 

according to their fitness and produce children from them by crossover and mutation of their 

“chromosome” for the next generation.) to retain the optimal individual and eliminates the poor 

ones, and finally “evolves” the population and directs the search process approximate to the 

optimal individuals. GA and DE are very similar in the operations that both allow each successive 

generation of solutions to “evolve” from the strengths of the previous generations. While 

different, the method of DE can be applied much more easily than the GA to the real-valued 

problems over a continuous space. The idea behind the method of DE is that the difference 

between two vectors yields a difference vector which can be used with a scaling factor to traverse 

the search space [158]. 

The development of the particle swarm optimization (PSO) algorithm was inspired by the 

social behavior of animals and birds. It mimics the choreography of a bird swarm that flies 

through the search space. In this algorithm, according to the population size, a group of particles 

representing the birds swarm is specified with random generation of initial position and velocity 

flying in the search space. Each particle represents a candidate solution (the fitness value of each 

particle is calculated from objective function), stores its individual best performance, and keeps 
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track of the best performance of the swarm at the same time. The velocity update and position 

update are the primary mechanisms that assure the new generations of particles accelerate 

towards the best position in the search space from iterations until minimum error is achieved 

[159]. 

Ant colony optimization (ACO) was introduced by Dorigo on the principle of foraging 

behavior of ants to find the shortest route from their nest to the food source [160]. The chemical 

trial of pheromone, the medium of ants in communication, is left on the ground with various 

probabilities to guide the group towards the target position. The pheromone decomposed over 

action time and the quantity of this chemical substance is determined by the amount of food 

found as well as the number of ants using it so that high level of pheromone would be left over 

short route because of less the action time taken in comparison and more ants would come to 

strengthen the pheromone level. In the ACO algorithm, artificial ants are introduced to represent 

the solutions, and the solutions are chosen according to a probabilistic rule depends mainly on the 

state of the pheromone. In the pheromone updating process, either the pheromone evaporates to 

decrease the bad solution, or each ant deposits a certain amount of pheromone to obtain a good 

solution. This process is iterated until the algorithm satisfies stopping criteria. 

Simulated annealing (SA) is a point by point search method. It arbitrarily generates a number of 

points representing various solutions in the search space with a high initial temperature, and 

compared it with the points generated in the next iteration in the neighbor of it in terms of the 

function values, then selects the better one and rejects the other one. The iteration goes 

continuously by generating new points randomly in the neighborhood of the current points and 

accept or reject the points. This process terminates when it is no longer improves the solution or 

the maximum number of trails reached [161].  

Artificial bee colony (ABC) is based on the intelligent foraging behavior of honey bees [162]. 

It comprises four phases, that is, initialization phase, employed bee phase, onlooker bee phase 

and scout bee phase. In the first phase, settings of different control parameters and vectors of the 

population of foods are initialized. The initial solutions are then subjected to repeated cycles 

which indicate the search process of the employed, onlooker and scout bees. In the next phase, 

searching for the neighboring food sources with more nectar content is performed by the 

employed bees. These neighbor food sources remain present in their memory which is further 
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employed for evaluation of the fitness values. The fitness value is calculated for each new food 

source and subsequently, a greedy selection process is applied. During the onlooker bee phase, 

information about the food sources is being shared with the onlooker bees waiting in the hive and 

further food sources are chosen probabilistically by them. Scout bee phase deals with searching 

the new solutions in place of the abandoned solutions while making the scouts free. The 

employed bees, whose solutions cannot be improved, are set as scout bees and are abandoned. 

These scout bees further search for new solutions randomly which results in more exploitation of 

the poor food source and gets abandoned. Thus, the negative feedback of such behavior leads to 

balanced positive feedback. 

2.6. Optimization of the textile manufacturing process 

Textile manufacturing originates from the fibers (e.g. cotton) to final products (such as curtain, 

garment, and composite) through a very long procedure with a wide range of different processes 

filled with a large number of variables. Like the fact that a few criteria govern the quality of 

textile process performance and their significance with an overall objective is different, the 

optimization problems in this industry always take multiple objectives into account. The 

simultaneous optimization of multiple targets in a textile production scheme from the high 

dimensional space is challenging. 

There are a variety of works on the textile process multi-objective optimization from the last 

decades. For example, Sette and Langenhove [163] simulated and optimized the fiber-to-yarn 

process to balance the conflicting targets of cost and yarn quality. Majumdar et al. [164] 

optimized the functional clothing in terms of ultraviolet protection factors and air permeability. 

Mukhopadhyay et al[165] attempted to optimize the parametric combination of injected slub yarn 

to achieve the least abrasive damage on fabrics produced from it. Almetwally [166] optimized the 

weaving process performances of tensile strength, breaking extension and air permeability of the 

cotton woven fabrics by searching optimal parameters of weft yarn count, weave structure, weft 

yarn density and twist factor.  

These works generally used the prior techniques that combine the multiple objectives into a 

single weighted cost function, the classical approaches such as weighted sum, goal programming, 

min-max, etc. are not efficient as they cannot find the multiple solutions in a single run but times 
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as many as the number of desired Pareto-optimal solutions. Pareto optimal solutions or non-

dominated solutions are equally important in the search space that superior to all the other 

solutions when multiple objectives are considered simultaneously, and the curve formed by 

joining Pareto optimal solutions is the well-known Pareto optimal front [167].  

The investigations and applications of the related algorithms and computational complexity 

theory are very popular in the textile manufacturing industry with regard to the multi-objective 

optimization that is feasible to approach the Pareto optimal solutions. Among these, evolutionary 

algorithms such as genetic algorithms (GA) and gene expression programming (GEP) are the 

ones that are most often taken into consideration in previous studies in the textile sector. 

Kordoghli et al. [168] schedule the flow-shop of a fabric chemical finishing process aiming at 

minimal make-span and arresting time of machine simultaneously using multi-objective GA. 

Nurwaha [169] optimized the electrospinning process performance in terms of fiber diameter and 

its distribution by searching for optimal solutions about the processing parameters including 

solution concentration, applied voltage, spinning distance and volume flow rate. The 

electrospinning process parameters were mapped to the performances by the GEP model, and a 

multi-objective optimization method was proposed based on GA to find the optimal average fiber 

diameter and its distribution. Wu and Chang [170] proposed a nonlinear integer programming 

framework on the basis of GA to globally optimized the textile dyeing manufacturing process. 

The results of their case study presented the applicability and suitability of this methodology in a 

textile dyeing firm and exactly reflected the complexity and uncertainty of application challenges 

in the optimal production planning program in the textile industry. 

In terms of multi-objective optimization, the general GA systems developed in the works above 

may not efficient in certain cases as the elitist individuals could be over-reproduced in many 

generations and lead to early convergence. To this end, Deb [171] proposed a Non-dominated 

sorting genetic algorithm Ⅱ (NSGA-Ⅱ) that introduced a specialized fitness function and fast 

non-domination sorting as well as crowding distance sorting in the common GA system to 

promote solution diversity in the generations. Such a modified strategy has been widely applied 

in related textile studies. For instance, Ghosh et al. [53] optimized the yarn strength and the raw 

material cost of the cotton spinning process simultaneously with NSGA-Ⅱ on the basis of two 

objective function models in terms of artificial neural networks and regression equation. Similarly, 
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Muralidharan et al. [172] described the combined use of NSGA-Ⅱ with response surface 

methodology for the design and control of color fast finish process to optimize five quality 

characteristics, i.e. shade variation to the standard, color fastness to washing, center to selvedge 

variation, color fastness to light and fabric residual shrinkage. Majumdar et al. [173] derived 

the Pareto optimal solutions using NSGA-II so as to obtain the effective knitting and yarn 

parameters to engineer knitted fabrics having optimal comfort properties and desired level 

of ultraviolet protection. Barzoki et al. [174]  and Vadood et al. [175] employed this algorithm 

with artificial neural networks and Fuzzy logic respectively to optimize the properties of core-

spun yarns in the rotor compact spinning process, where the investigated process parameters 

consist of the filament pre-tension, yarn count and type of sheath fibers, and the objectives were 

yarn tenacity, hairiness and abrasion resistance for the former but elongation and hairiness for the 

latter respectively.  

Apart from the GA frameworks, applications reported of other heuristic or meta-heuristic 

algorithms for multi-objective optimization in the textile domain also have been presented with 

synergetic immune clonal selection (SICS), artificial bee colony (ABC) algorithm, ant colony 

optimization (ACO), and particle swarm optimization (PSO) [176], [177]. Meanwhile, 

simultaneous optimization using desirability function[178], in addition to the heuristic or meta-

heuristic algorithms, was very popular in the textile manufacturing process multi-objective 

optimization applications as well[179], [180].  

The previous researches of the textile process optimization were mostly realized by using the 

heuristic methods. Although the general optimization techniques such as genetic algorithm and 

grey relational analysis [181] have shown their effectiveness in certain scenarios, there still exist 

some drawbacks for coping with the high dimensional decision space in the textile processes 

optimization problem about the increasingly complicated multi-inputs and multi-outputs variables 

as well as multiple objectives. Commonly used heuristic methods like genetic algorithms are 

time-consuming so that they can hardly be applied in the context of industrial practice when the 

number of involved variables becomes very large, along with large change intervals [182].  

More importantly, as mentioned that the textile manufacturing industry develops rapidly in 

these years to quickly reactive to the market and adapt to the big data environment, the developed 

textile process optimization system will be invalid when the process or applied scenarios vary in 
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the future. These previous works failed to illustrate the capacities of their system for learning 

from the continuously arriving data to keep updated with the textile process development in this 

regard, thus are still far from being implemented in the practical applications. It is necessary to 

investigate on more innovative intelligent methods in the optimization problem of the textile 

manufacturing process. 

2.7. Formulation of the research questions  

From the literature review above, three patterns are identified on the research of intelligent 

modeling and optimization of the textile manufacturing process. These are given and elaborated 

in the following. On the basis of the identified patterns, the research directions for subsequent 

sub-studies are derived and research questions are also formulated. 

• How to develop an intelligent algorithm appropriate for modeling a textile manufacturing 

process? 

From the review of the literature above regarding the use of intelligent techniques for modeling 

the textile process, several drawbacks were summarized that researchers barely connect the 

features of an applied algorithm to that of the specific textile process, and the determination of 

modeling method was made groundlessly. As the modeling of a process is always problem-

specific, taking the features of the targeted textile process into account, it is necessary to do a 

comparative study on different intelligent techniques to determine the appropriate one specifically. 

Thus, Chapter 3 provides a case study of modeling the textile ozonation process from the 

comparison of three different intelligent techniques, i.e. extreme learning machine (ELM), 

support vector regression (SVR) and random forest (RF), to show the procedures of determining 

an intelligent algorithm appropriate for modeling a textile manufacturing process. 

 How to deal with the complex multi-objective optimization problem with reinforcement 

learning in the progressively developing textile process? 

Based on the constructed model, process decision-makers can reduce the time- and resource-

intensive experimental effort and physics-based simulation to tune the optimum operations on 

process parameters. While complexity in such an optimization problem could be enhanced 

dramatically when more processes and more variables as well as multiple objectives are 



59 

 

considered. The classical intelligent techniques like heuristic methods could be inefficiency in 

some scenarios in this situation, and more importantly, they cannot adapt to the developing 

environment to learn from the continuously new arriving data form the dynamic textile 

manufacturing industry. Reinforcement learning is a novel machine learning technique that has 

been reported can make a difference in this issue. Consequently, it is taken into account in 

Chapter 4 to tackle these issues for the multi-objective optimization of the textile process. 

 Is there further improvement we can do to address the increasing searching dimension of 

optimizing a textile process in the upcoming big data era with multi-agent reinforcement 

learning? 

The literature review shows that researches have been failed to work with high-dimension 

decision space, especially in a dynamic environment with growing new data. It could be very 

challenging for the textile manufacturing companies in the upcoming big data era when new data 

are continuously generated from the interconnected elements. To address the increasing searching 

dimension, in Chapter 5, the third sub-study further formulate the textile process multi-objective 

optimization problem to a stochastic Markov game using multi-agent reinforcement learning 

algorithm. 

Table 8. Research questions list. 

 Research questions 

Chapter 3 How to determine an intelligent algorithm appropriate for modeling a textile manufacturing process? 

Chapter 4 
How to deal with the complex multi-objective optimization problem with reinforcement learning in the 

progressively developing textile process? 

Chapter 5 
Is there further improvement we can do to address the increasing searching dimension of optimizing a 

textile process in the upcoming big data era with multi-agent reinforcement learning? 

 

In summary, modeling and optimization of the textile manufacturing process using intelligent 

techniques is a salient direction for future research, but it is challenging because of the growing 

complexity in the textile process. The realistic optimization problems in the textile manufacturing 

industry normally are always related to multiple-objective or multi-criteria, which makes this 

situation to be more knotty. Based upon the above points, three research questions are posed as 

listed in Table 8, and the research questions are addressed in Chapters 3, 4 and 5 respectively. 
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Three sub-studies are implemented to solve the research questions in Chapter 3, 4, and 5, 

respectively. The sub-study in Chapter 3 explores the application of three intelligent modeling 

techniques, i.e. ELM, SVR and RF, to model the textile ozonation process. The prediction 

performances among these algorithms in regard to the color properties of treated textiles in the 

ozonation with respect to the process parameters are comparatively investigated. In Chapter 4, the 

complex multi-objective optimization problem in the textile manufacturing process is formulated 

as the Markov decision process (MDP) paradigm, and a deep reinforcement learning algorithm is 

employed collaboratively with RF and the analytic hierarchy process (AHP) in a multi-criteria 

decision support system to cope with it. To better address the increasing complexity in the Multi-

objective optimization of the textile manufacturing process, Chapter 5 presents another paradigm 

of the Markov decision process with game theory into a multi-agent system that formulates the 

Multi-objective optimization problem as a Markov game. The constructed RF models of the 

textile ozonation process are applied as a case study to evaluate the developed systems in Chapter 

4 and 5.  
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3. Modeling a textile process using intelligent techniques: a case study 

for color fading ozonation  

Intelligent tools are playing a significant role in many applications of textile manufacturing 

process modeling. However, since modeling textile manufacturing processes is always problem-

oriented, the development of a model needs to connect the features of an applied algorithm to that 

of the specific textile process, the comparative study on different proposed methods is necessary 

in this regard. This chapter presents a case study for modeling a textile ozonation process, where 

different intelligent techniques are comparatively investigated. The model development of other 

processes from the textile manufacturing industry can follow the same scenario. 

Textile products with faded effect, worn look, or vintage style are Increasingly attracting a 

growing number of young customers’ attention and have gained a considerable share of the 

fashion market[183]. However, such a faded effect generally was achieved by chemical 

treatments (hydrogen peroxide/chlorine bleaching, for example) which are not only highly water 

and power consuming, but also release a wide range of toxic substances to the environment [184]. 

Ozone is an excellent gaseous oxidant with an environmentally friendly nature that can be rapidly 

decomposed into O2 after its application without emitting additional pollution. It is able to react 

with a large number of organic and inorganic substances in water due to a series of intermediates 

or by-products such as hydroxyl radicals (which reacts with no selectivity) may be generated in 

the reaction between ozone and water [185]. More significantly, ozone could be applied directly 

in the form of gas without a water bath to color fade the objective products (with water content), 

which can dramatically decrease the water consumption in the sector. Therefore, ozone is 

regarded as a perfect alternative to traditional oxidizing agents and bleaching agents [186]. In 

recent years, studies regarding color fading dyed textiles using ozone instead of the conventional 

processes have been increasingly reported by taking advantage of the application of ozone, 

namely ozonation [183], [187]–[190].  

  Although color fading ozonation of textiles has a promising prospect in the industry, it is 

facing certain plights. The color fading performance of dyed cotton was found that affected by 

many different factors from the properties of textile material to the color fading process. Such as 

the application form of ozonation, as well as the process parameters of temperature and time, 

etc.[191]–[193]. How these factors affect the color fading process separately has been reported, 
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while to understand their overall impacts simultaneously, the complex and nonlinear relationship 

between the factors of material properties as well as technical parameters of ozonation and color 

fading effects must be taken into consideration. Therefore, this chapter takes the textile ozonation 

process as an example to comparatively investigate the intelligent techniques for process 

modeling.      

As ANN is assumed that difficult to be applied in the textile cases when training data is limited 

though it was widely proposed for textile process modeling because of its popularity, this case 

study proposed ELM and SVR instead of ANN for modeling the textile ozonation process as they 

are more manageable than the ANN and have higher generalization performance with less 

training data, which is very significant for the color fading effect prediction in this case study. 

Since RF can accurately predict with small dimensions feature vectors by taking advantage of the 

interaction of variables and the evaluation of the significance of each variable, it is potential to 

figure out the complicated interrelationships of the process parameters and colorimetric variables, 

in this case, thus is introduced in the comparative study with ELM and SVR for modeling the 

textile ozonation process. 

3.1. Experimental 

3.1.1 Material 

  Desized grey cotton fabrics (3/1 twill; 325.7g/m2; supplied by Shunfu, Hubei, China) was dyed 

by three bifunctional fluorotriazine azo reactive dyes  named Reactive Blue FL-RN (RB-RN), 

Reactive Red FL-2BL (RR-2BL) and Reactive Yellow FL-2RN (RY-2RN) (provided by Color 

Root, Hubei, China; commercial quality, purity of dyes: 92%, ) respectively. Chemical material 

of Sodium hydroxide and hydrogen chloride (analytical grade, supplied by Sinopharm Limited, 

China) were used in the ozonation. 

3.1.2 Apparatus  

  Ozone employed in this work was generated by a corona discharge ozone generator, CF-G50 

(Guolin, China), that fed by pure and compressed dry oxygen (≥99.9%, 1Mpa, 12L/min) from an 

oxygen cylinder. Ozone was flowed to the reactor (made of glass, the structure is exhibited in 

Figure 6), and in each single color fading ozonation experiment, samples would be distributed 

evenly on the sample desk (made of air-permeable steel net). Ozone was imported with a gas flow 
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of 2 L/min and dosage of 137±3 mg/L ·min (tested by UV meter NS-xmd614, Naishi, China) 

throughout the treatment. The exhaust from the reactor would be collected and decomposed by a 

heater (≥230℃) before evacuating to the atmosphere.  

 

Figure 6. The reactor setup of ozonation. 

3.1.3 Methods 

(1) Ozonation processes 

  Three dyed cottons in different colors were treated respectively by the color fading ozonation 

following the steps: wetting the fabrics by deionized water (pH=7, or using sodium hydroxide 

and hydrogen chloride respectively when specific pH is required) to obtain certain pick-up water 

content. After ozone treating, samples were rinsed by deionized water before naturally drying up.  

  Ozonation at different pH (1, 4, 7, 10, 13), temperature (0, 20, 40, 60, 80℃) with variable 

pick-ups (water content of sample, 0, 75%, 150%) for different treating time (0, 5, 10, 15, 20, 25, 

30, 35, 40, 45, 50, 55, 60 min) were investigated on the three dyed cotton fabrics (blue, red, 

yellow) respectively. Besides of pH which was set up depending on the method mentioned above 

(using sodium hydroxide and hydrogen chloride respectively in the water pick-up step), the 

temperature of ozonation was controlled by a water bath around the reactor (including the inlet 

tubes), and the pick-up of the sample was calculated by the Equation (3.1).  

 Pick-up (%) =
𝑊𝑠−𝑊0

𝑊0
 × 100%                                (3.1) 

  where ws was the weight of the wet pickup sample, w0 was the weight of the sample before 

wetting. 
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(2)  Analytical 

  Based on Kubelka-Munk theory[194], it is known that K/S value can indicate the color depth 

of samples. While L* a* b* values (or CIELab), an international standard widely used for color 

measurements, is capable of illustrating the color variation of textile samples. Normally, the color 

of the final textile product agreeing with specific K/S and L* a* b* values is in the acceptance 

tolerance of the consumer [120]. Consequently, these values tested by Datacolor 110 

spectrophotometer (Datacolor, USA) were used to characterize the color variation of dyed textiles 

in the color fading ozonation. 

3.2. Algorithm and structure of process modeling 

ANN is a widely used artificial intelligence approach in the textile sector [19]. It is inspired by 

the bionic simulation of the human brain that interconnected numerous neurons in different 

hidden layers to process the complex information of specific input-output relation [13]. In 

particular, ELM is a novel algorithm for single-hidden layer feedforward neural networks (SLFNs, 

the structure of it is illustrated in Figure 4) which randomly chooses the input weight matrix (W) 

and analytically determines the output weights (β) of SLFNs.  ELM not only learns much faster 

with a higher generalization performance than the traditional gradient-based learning algorithms 

but it also avoids many difficulties faced by gradient-based learning methods such as stopping 

criteria, learning rate, learning epochs, local minima, and the over-tuned problems [195]. It has 

been successfully applied to forecast sales behavior in the fashion retailing [196]. The 

implementation of it is comparatively more manageable, and its high generalization performance 

can help us simulate more different solutions in the textile ozonation process model, so that is 

worth being taken into account in this case study. 

SVM is a popular machine learning tool for classification and regression based on statistic 

learning theory, first identified by Vladimir Vapnik and his colleagues in 1992 [24]. SVR is the 

most common application form of SVM. A typical feature of it is that instead of minimizing the 

observed training error, SVR minimizes the generalized error bound so as to achieve generalized 

performance. And it only relies on a subset of the training data due to the cost function for 

building the model neglects any training data that is close (within a threshold ε) to the model 

prediction [25], [26]. The excellent use of SVR has been issued for predicting yarn properties 
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[47], [62], PU-coated cotton fabrics qualities [197] and wool knitwear pilling propensity [198]. 

Gosh claimed that SVM is more suitable than the ANN in the textile applications because of the 

better generalization capability and higher predictive power [63].  And it can be a good tool to 

overcome some difficulties such as the nonlinear relationships of variables in the textile 

ozonation process.  

RF is a predictive model composed of a weighted combination of multiple regression trees. It 

constructs each tree using a different bootstrap sample of the data, and different from decision 

tree splitting each node using the best split among all variables, RF using the best among a subset 

of predictors randomly chosen at that node [199]. In general, combining multiple regression trees 

increases predictive performance. It can lead to accurate prediction results by taking advantage of 

the interaction of variables and the evaluation of the significance of each variable [200]. Its 

application in the textile field has been reported for fabric surface defect detection [201] and the 

prediction of photovoltaic properties of phenothiazine dyes [202]. It shows outstanding 

performance even for feature vectors with small dimensions, which can be a relevant solution to 

address the limitation of data in the present case study for modeling the textile ozonation process. 

3.2.1 Extreme Learning Machine 

  ELM is an algorithm of SLFNs randomly chooses the input weight matrix (W) and 

analytically determines the output weights (β). According to  Figure 4, we can take K hidden 

nodes SLFNs as an example, using activation function f(x)=(f1(x),f2(x),…,fk(x)) to learn N 

samples (Xi, Yi), where Xi=[xi1, xi2,…,xin]
T ∊ Rn and Yi=[yi1, yi2,…,yin]

T ∊ Rm. The ideal 

approximation of the SLFNs to these samples is zero error, which turns out 

 

∑‖𝑌̂𝑗 − 𝑌𝑗‖

𝑁

𝑗=1

= 0 (3.2) 

  where 𝑌̂ is the actual output value of SLFNs. Taking the weights W, β  and bias b into 

consideration, we have 

 ∑ 𝜷 ∙ 𝑓𝑖(𝑾𝒊 ∙ 𝑋𝑗 + 𝑏𝑖)
𝐾
𝑖=1 = 𝑌𝑗 , 𝑗 = 1,… ,𝑁  (3.3) 
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  where Wi =[wi1, wi2,…, wim]T  and βi=[βi1,βi2,…,βim]T, i=1,…K are the weight vector for 

inputs and activated nodes respectively. bi is the threshold of ith hidden node. The compact 

expression of equation (3.3) in terms of vectorization could be 

 𝑯𝛽 = 𝒀  (3.4) 

  where 𝑯(𝑊1, … ,𝑊𝑗 , 𝑏𝑗 , … , 𝑏𝑗 , 𝑋1, … , 𝑋𝑖) = 𝑓(𝑾𝒋 ∙ 𝑋𝑖 + 𝑏𝑗)  (i=1,…,N and j=1,…K) is the 

hidden layer output matrix of the neural network, the j th column of it is the j th hidden node 

output in regard to the inputs of 𝑋1, … , 𝑋𝑖.  Whileβ=[β1,β2,…,βK]T and Y=[Y1,Y2,…,YN]T are 

the matrix of output weights and targets respectively. 

As the input weights (W) are randomly chosen, as well as the biases (b) in ELM algorithm, the 

output weights (β) which connect the hidden layer and output layer could be simply determined 

by finding the least-square solution to the given linear system. According to Huang [203], the 

smallest norm least-squares solution of the linear system (3.4) among all the solutions is 

 𝛽̂ = 𝑯†𝒀  (3.5) 

where H† is the Moore-Penrose generalized inverse of the matrix H [204]. In this chapter,  A 

multi-output ELM regression function developed by Huang’s group was used in this study with 

an optimal trial of the varied activation functions (i.e. Sigmoid, Sine, and Hardlim, given in 

equations (3.6)-(3.8)) and the number of hidden nodes (from 1 to 200) in the use of ELM. 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (3.6) 

 𝑆𝑖𝑛𝑒(𝑥) = 𝑠𝑖𝑛 (𝑥) (3.7) 

 𝐻𝑎𝑟𝑑𝑙𝑖𝑚(𝑥) = 1   𝑖𝑓 𝑥 ≥ 0;  = 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.8) 

3.2.2 Support Vector Regression  

  Compared with neural networks, SVR assures more generalization on the foundation of 

structural risk minimization, and generally performs better with less training samples. When we 

have training data {(xl, yl),…, (xl, yl)}  ℝn × ℝ for a SVR model, the targeted function g(x) 

should be as plat as possible and has ɛ deviation in maximum from the actual targets yi for all the 

training data in the form of : 
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 g(x)=〈𝑤, 𝑥〉 + b  with  w ∊ ℝn, b ∊ ℝ (3.9) 

  where x is the n-dimensional input vectors, w is the weight vector and b is the bias term. 

Flatness in (10) means small w, and the way achieving it is recommended to minimize the 

Euclidean norm, i.e. 
1

2
‖𝑤‖2 [205], which turns out to a convex optimization problem: 

                 minimize       
1

2
‖𝑤‖2 

subject to      {
 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ ɛ 
〈𝑤, 𝑥𝑖〉  + 𝑏 − 𝑦𝑖 ≤ ɛ

 

 

(3.10) 

 

 This is a feasible optimization problem when the function g(x) actually exists and 

approximates all pairs (xi, yi) with ɛ precision, and slack variables 𝜉𝑖, 𝜉𝑖
∗ (referring to upper and 

lower constraints on the outputs of the system.)were introduced to deal with the otherwise 

infeasible constraints of it [24], 

        minimize     
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1  

         subject to    {

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ ɛ + 𝜉𝑖
〈𝑤, 𝑥𝑖〉  + 𝑏 − 𝑦𝑖 ≤ ɛ + 𝜉𝑖

∗

  𝜉𝑖, 𝜉𝑖
∗                     ≥ 0          

 

 

(3.11) 

 

  where C is a constant greater than 0, determines the trade-offs of 
1

2
‖𝑤‖2 and the sum of 

permitted errors. It is found that dual formulation makes it easy to solve this optimization 

problem [206], a standard dualization method utilizing Lagrange multipliers has been proposed: 

 L=
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1 − ∑ 𝛼𝑖(ɛ + 𝜉𝑖 − 〈𝑤, 𝑥𝑖〉  +

𝑙
𝑖=1

𝑏) − ∑ 𝛼𝑖
∗(ɛ + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏) − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)𝑙
𝑖=1

𝑙
𝑖=1  

(3.12) 

  where L is the Lagrangian and 𝜂𝑖 , 𝜂𝑖
∗ , 𝛼𝑖

∗ , 𝛼𝑖
∗  are the Lagrange multipliers which have to 

satisfy positivity constraints of ≥ 0. The partial derivatives of L with respect to the variables (w, 

b,𝜉𝑖, 𝜉𝑖
∗) have to vanish for optimality. 

  𝜕𝑏𝐿 = ∑ (𝛼𝑖
∗ − 𝛼𝑖) = 0  𝑙

𝑖=1  (3.13) 

 𝜕𝑤𝐿 = 𝑤 − ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 𝑥𝑖 = 0  (3.14) 

 𝜕
𝜉𝑖
(∗)𝐿 = 𝐶 − 𝛼𝑖

(∗) − 𝜂𝑖
(∗)

= 0  (3.15) 
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  here 𝜉𝑖
(∗)

 refers to 𝜉𝑖 and 𝜉𝑖
∗ . Substituting (3.13), (3.14) and (3.15) into (3.12), the dual 

optimization problem is given by 

 

   maximize     {
−

1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖, 𝑥𝑗〉

𝑙
𝑖,𝑗=1

−ɛ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑙

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1

 

       subject to       ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0  𝑎𝑛𝑑   𝑙

𝑖=1 𝛼𝑖 , 𝛼𝑖
∗∊ [0, 𝐶] 

 

(3.16) 

 

  As the dual variables𝜂𝑖 , 𝜂𝑖
∗ can be reformulated on the basis of (16) as𝜂𝑖

(∗)
= 𝐶 − 𝛼𝑖

(∗)
, 

Equation (15) turns to  

 w=∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 𝑥𝑖 , 𝑡ℎ𝑢𝑠 𝑔(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 〈𝑥𝑖 , 𝑥〉 + 𝑏 (3.17) 

 This is so-called Support Vector expansion.  In SVM training algorithm, the next necessary 

step is to make it nonlinearly, which was suggested to be achieved by a mapping ∅ (x) from ℝn to 

a higher dimensional feature space using kernel function𝐾(𝑥, 𝑥𝑖) = 〈∅(𝑥𝑖), ∅(x)〉, therefore (18) 

becomes  

 w=∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 ∅(𝑥𝑖),  

𝑔(𝑥)=∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙

𝑖=1 𝑘(𝑥𝑖, 𝑥) + 𝑏  
(3.18) 

  It is different from the linear case as w means the flatness is no longer explicitly given. In this 

nonlinear case, the optimization problem refers to finding the flattest function in feature space, 

rather than in input space. The standard SVR is  

 𝑔(𝑥)=∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 𝑘(𝑥𝑖, 𝑥) + 𝑏 (3.19) 

  where N (＜ the total number of input-output pairs) is the number of input data having 

nonzero values of 𝛼𝑖
(∗)

. The kernel function k (xi, x) corresponds to a linear dot product of the 

nonlinear mapping. As we are disposing of a case of the process modeling containing multiple 

outputs, we applied a multi-output least-squares support vector regression (MLS-SVR) toolbox 

developed by Xu et al. [207]. Particularly in this study with an optimal trail on kernel functions of:  

                    𝐿𝑖𝑛𝑒𝑎𝑟:      𝐾(𝑥, 𝑥𝑖) = 𝑥𝑇𝑥𝑖 + 𝐶             (3.20) 

                              Sigmoid:     𝐾(𝑥, 𝑥𝑖) = 𝑡𝑎𝑛ℎ (𝛼𝑥𝑇𝑥𝑖 + 𝐶) (3.21) 
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           Polynomial:      𝐾(𝑥, 𝑥𝑖) = 〈𝑥, 𝑥𝑖〉
𝑝  (3.22) 

 

        Radial basis function (RBF):     𝐾(𝑥, 𝑥𝑖) = 𝑒
(−

‖𝑥−𝑥𝑖‖
2

2𝜎2
)
 

(3.23) 

   Exponential Radial basis function (ERBF):     𝐾(𝑥, 𝑥𝑖) = 𝑒
(−

‖𝑥−𝑥𝑖‖

2𝜎2
)
 (3.24) 

  There is also an optimization process (using leave-one-out, LOO) of the parameters of γ, λ and 

p in the toolbox from where γ ∈ {2-5, 2-3,…, 215} and λ ∈ {2-10, 2-8,…, 210} (are two positive 

regularized parameters controlling the bias-variance trade-off),  p ∈ {2-15,2-13,…, 23}(=
1

2𝜎2
, is a 

parameter of RBF that sets the spread of the kernel) [207].  

3.2.3 Random Forest   

  RF is an ensemble-learning algorithm depending on the bagging method that combines 

multiple independently-constructed decision tree predictors to classify or predict certain 

variables[200]. In RF, successive trees do not rely on earlier trees; they are independently using a 

bootstrap sample of the dataset, and therefore a simple unweighted average over the collection of 

grown trees {h(x, Θk)} would be taken for prediction in the end.   

   ℎ̅(𝑋) =
1

𝐾
∑ ℎ(𝒙, 𝛩𝑘)  
𝐾
𝑘=1   (3.25) 

  where k=1, …,K is the number of trees, x represents the observed input vector, Θ is an 

independent identically distributed random vector that the tree predictor takes on numerical 

values. RF algorithm starts from randomly drawing ntree bootstrap samples from the original data 

with replacement. And then grow a certain number of regression trees in accordance with the 

bootstrap samples. In each node of the regression tree, a number of the best split (mtry) randomly 

selected from all variables are considered for binary partitioning. The selection of the feature for 

node splitting from a random set of features decreases the correlation between different trees and 

thus the average prediction of multiple regression trees is expected to have lower variance than 

individual regression trees [208]. Regression tree hierarchically gives specific restriction or 

condition and it grows from the root node to the leaf node by splitting the data into partitions or 

branches according to the lowest Gini index:  

    𝐼𝐺(𝑡𝑋(𝑋𝑖)
) = 1 − ∑ 𝑓(𝑡𝑋(𝑋𝑖)

，𝑗)
2𝑀

𝐽=1    (3.26) 
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  where 𝒇(𝒕𝑿(𝑿𝒊)，𝒋) is the proportion of samples with the value xi belonging to leave j as node 

t [209]. In the present study, Multivariate RF developed by Raziur Rahman et al. [210]was 

employed with an optimal topology of three parameters in terms of ntree (the number of trees in 

the forest), minleaf (minimum number of samples in the leaf node) and mtry (the randomly 

selected features considered for a split in each regression tree node).   

3.2.4 Modeling structure  

In the present study, the ozonation process model is expected to be capable of predicting (or 

outputting) the color qualities of ozone-treated samples in terms of K/S and L*, a*, b* values by 

giving 5 variables including not only the specific color of treated fabric but also the process 

parameters of pH, temperature, pick-up and treating time. In other words, the anticipated model 

of color fading ozonation of reactive-dyed cotton realizes the complex and unclear relation of 

color fading ozonation parameters and its effectiveness on reactive-dyed cotton fabric in certain 

respects.  

(a)  

(b)  
 

Figure 7. The illustration of the real ozone-treated cotton samples from (a) the front side, 

and (b) the back side 
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For instance, the real samples used in the ozonation, particularly, at pH7, 20℃ with 150% pick-

up over different time from 0 to 60min can be observed in Figure 7. Corresponding K/S, L*, a*, b* 

values of these exhibited samples are listed in Table 9. It is clear that each treated sample has an 

obvious difference from others in regard to color properties as treated by different ozonation 

processes, which on the other hand revealed how complex the process parameters influence the 

color of dyed cotton fabric in ozonation. Table 10 illustrates the variation including the minimum, 

maximum, average and standard deviation of the dataset we used in the process modeling.  

Table 9. K/S, L*, a*, b* values of samples shown in Figure 7. 

 
Time(min) 

0 5 10 15 20 25 30 40 50 60 

RB-RN 

K/S 8.12 3.70 2.17 1.63 1.24 1.17 0.89 0.85 0.66 8.12 

L* 6.13 14.89 21.90 26.12 29.50 29.93 33.44 33.80 36.66 6.13 

a* -2.86 -4.47 -5.18 -5.68 -5.57 -5.27 -5.25 -5.19 -4.76 -2.86 

b* 4.48 11.38 15.46 16.85 18.83 19.59 21.40 22.16 23.62 4.48 

RR-

2BL 

K/S 1.10 0.95 0.70 0.66 0.52 0.57 0.51 0.39 0.39 1.16 

L* 22.66 25.93 29.74 30.26 33.05 31.96 33.79 36.04 36.43 21.68 

a* -32.59 -37.32 -39.25 -40.16 -41.17 -41.82 -43.19 -42.44 -43.49 -32.39 

b* 12.84 13.69 12.84 12.49 12.05 11.82 12.38 11.23 11.69 13.41 

RY-

2RN 

K/S 6.60 3.70 2.90 2.20 1.81 1.58 1.16 1.11 0.87 6.60 

L* 8.02 8.49 9.80 10.82 11.60 13.19 13.96 14.14 15.43 8.02 

a* 20.41 15.35 12.99 11.47 9.59 8.62 7.31 6.52 5.56 20.41 

b* -17.99 -28.27 -32.09 -37.32 -40.95 -41.58 -47.94 -48.92 -52.39 -17.99 

 

Table 10. The maximum, minimum, average and standard deviation of parameters. 

Parameters Minimum Maximum Average Std. dev. 

Color 0(Blue) 1(Yellow) 0.5(Red) - 

pH 1 13 7 3.463 

Temperature 0 80℃ 40℃ 24.91 

Pick-up 0 150% 75% 58.78 

Time 0 60min 30min 20.77 

K/S 0.10 22.82 7.18 7.94 

L* 0.99 65.27 33.52 17.61 

a* -58.99 53.68 -1.81 32.75 

b* -90.53 88.04 3.88 42.34 

 

Table 11. The correlation coefficients of data for modeling. 

 pH Temperature Pick-up Time 

K/S 0.0383 0.0648 -0.4862 -0.7913 

L* -0.0579 0.1146 -0.1557 -0.3137 

a* 0.0248 0.1490 -0.4500 -0.7430 
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b* -0.0302 -0.0155 -0.0184 -0.0461 

612 sets of experimental data were used to construct the process modeling. Among this, 459 

experimental datasets (75%) were distributed to train and validate the models, while 153 datasets 

(25%) were used to test. The correlation of these data was estimated by Spearman coefficients 

(for pH, Temperature, Pick-up and Time only as the original color of the fabric is not a 

continuous variable). The results illustrated in Table 11 reveal that treating time is slightly more 

relevant than pick-up, but both of these are the most relevant variables in the ozonation process 

comparing with temperature and pH. 

K-fold cross-validation (k=10) was used in process modeling. It is a popular statistical 

approach for estimating predictive models. Taking k=10 as an example as it was the one we used 

in the modeling study, in which case 459 training sets of data would be divided randomly and 

equally into 10 disjoint folds, 9 folds of it would be split into training subset while the rest 1-fold 

would be used as validating subset. This procedure would be repeated 10 times with varied 

training and the testing dataset at each time to validate the trained models. In order to evaluate the 

performance of models in validation, Mean Square Error (MSE) would be used based on:    

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑒𝑖 − 𝑝𝑖)

2𝑛
𝑖=1   (3.27) 

  where ei is the real experimental results, whereas pi is the predicted output of the specific 

model. Additionally, four statistical performance criteria, including mean absolute error (MAE), 

root mean square error (RMSE), correlation coefficient (R) and mean relative absolute error 

(MRAE) are used in this study for indicating the predictive performance of the obtained models. 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑖 − 𝑝𝑖|
𝑛
𝑖=1   (3.28) 

 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑒𝑖 − 𝑝𝑖)2
𝑛
𝑖=1   (3.29) 

 
𝑅(𝑒, 𝑝) =

∑ (𝑒𝑖 − 𝑒̅)(𝑝𝑖 − 𝑝̅)𝑛
𝑖=1

√∑ (𝑒𝑖 − 𝑒̅)2 ∙ ∑ (𝑝𝑖 − 𝑝̅)2𝑛
𝑖=1

𝑛
𝑖=1

 (3.30) 

 𝑀𝑅𝐴𝐸 =
1

𝑛
∑

|𝑒𝑖−𝑝𝑖|

𝑒𝑖

𝑛
𝑖=1   (3.31) 
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  The models’ development and construction were carried out using MATLAB R2015b for 

multi-output ELM and MLS-SVR, but R studio for MRF respectively on a laptop (Core i7-4710, 

2.5GHz, 16GB RAM). All of the original data was regularized to the range of [0, 1] before using. 

3.3. Results and discussion 

3.3.1 Modeling training  

(1) ELM models 

  ELM models with hidden nodes from 1 to 200 activated by Sigmoid, Sine, and Hardlim 

functions are investigated respectively (the corresponding validation MSE is illustrated in Figure 

8 with a detailed demonstration of the trained ELM models possessing nodes from 1 to 140 in 

detail). The overfitting situation of ELM activated by Sigmoid and Sine is easy to be observed 

that starts from the ones with nodes around 100. More specifically, it is noted that Sigmoid 

trained ELM models performed similarly to the ones trained by Sine since MSE of these models 

both dropped as well as minimized at the ones with around 50 nodes (MSE≈0.052) following by 

a dramatic enhancement. By contrast, validation MSE of Hardlim activated models performed 

generally stable with the growing number of nodes in the ELM model, but strictly a minimum of 

MSE≈0.069 (larger than Sigmoid and Sine) at the one with 97nodes still can be discovered in 

Figure 8. Similar comparative results of the use of these activation functions in ELM can be 

found as well in the work of Rampal Singh, and S. Balasundaram [211]. 

  The use of activation functions in an artificial neural network is to convert an input signal of 

the node to an output signal by mapping non-linear properties. It is very important for an ELM 

model to learn and achieve the complicated mapping of input and output data by activating the 

nodes with a certain activation function. The graph of the activation functions we used is given in 

Figure 9. It is noted that Sigmoid and Sine has something in common with their S-shaped curve 

and both are infinitely differentiable function which makes them easy to be understood and 

applied. However, on the other hand, it may also result in their similar proximity and 

disadvantage in the ELM models as we can see their similar performance variation and the 

overfitting situation with the increasing nodes in Figure 8. Hardlim performed least compared 

with Sigmoid and Sin in terms of their activated ELM models in this issue probably is owing to 

its oversaturation.        
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Figure 8. Validation MSE of ELM models activated by different functions 

  

Figure 9. Activation functions of ELM. 

(2) SVR models 

  Multi-output SVR models with kernel functions of Linear, Sigmoid, Polynomial, RBF and 

ERBF were trained and developed using MLS-SVR toolbox. The corresponding results of 

minimum validation MSE are 0.05678, 0.00932, 0.08613, 0.00493 and 0.0092 respectively (as 

demonstrated in Figure 10). It is worth noting that models trained with linear kernel and 

polynomial kernel are found that performed far poorly than the others. Performance of the ones 

with Sigmoid kernel and ERBF kernel are very close in a quite low level though the validation 

MSE of them is nearly two times than the SVR model with RBF kernel (which performed utmost 



75 

 

in the comparison in this issue when its parameters are optimized to γ = 32768, λ = 9.7656e-4 and 

p = 0.125. For more information regarding the LOO optimization process used in the toolbox for 

these kernel parameters see [207]).  The kernel function is to transform the data as input into the 

required form to facilitate a non-linear decision surface to be a linear equation in higher 

dimensions where the computational power of the learning machine is heightened. The type of 

kernel function used would influence many of the characteristics of the SVR model. A wide 

range of kernels exist and it is hard to explain their individual characteristics, but it is well known 

that RBF kernel is recommended to be tried first in an SVR model since it not only possesses 

certain similar parameters and behaviors of Linear and Sigmoid but also has fewer hyper 

parameters than Polynomial to complex the model. RBF is assumed as having computational 

advantages over other kernels depending on its easier and faster to compute the kernel 

values[212]. The lowest MSE it achieved, in this case, validates its preferential suitability to be 

employed in this study, and it should be attributed to that we have not too many features in the 

model but with comparatively large numbers of observations.  

  

Figure 10. Validation MSE of SVM models with varied kernel functions 

(3) RF models 

  RF models with different mtry (from 1 to 5), minleaf (from 1 to 10) and ntree (from 1 to 100) 

are trained and developed respectively, and the validation MSE of these models are given in 

Figure 11 with a detailed demonstration of the ones mtry =1 and ntree ranging from 1 to 100 

excluding those which validation MSE higher than 0.026. In Figure 11, the number of mtry in 
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each regression tree node is found that plays a very significant role in affecting the models’ 

prediction accuracy of the color properties of ozone-treated cotton fabrics. The falling curves of 

MSE with the growing number of mtry may reveal that the five inputs we used to construct these 

RF modes, i.e. (1) color of dyed cotton and (2) pH, (3) temperature, (4) pick-up, (5) treating time 

of ozonation process, have a very clear independent relation with each other. As a result, RF 

models with five randomly selected features generally lead the low validation MSE in this 

comparison. It is also found that ntree played another significant role in RF models as MSE of 

these models decreased dramatically when the number of trees increased in the forest from 1 to 

30. In general, these models perform steadily when there are more than 30 regression trees in the 

forest construction no matter what are the mtry or minleaf employed, but to save time and cost 

less in the model training process, 10 trees forest is sufficient and may be more recommended to 

be used in the color fading ozonation of dyed textile prediction model for further experiments. 

However, different from the mtry and ntree, minimum number of samples in the leaf node, i.e. 

minleaf seems to be preferable to be less though it is relatively uninfluential. Depending on the 

observation of the detailed-depicted MSE plots of 1-mtry RF models in Figure 11, we can see that 

the average MSE of achieved RF models generally enhanced when the number of leaves 

increased from 1 to 10.  

  

Figure 11.  MSE of RF models with varied number of features, leaves and trees 
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3.3.2 Prediction performance 

    The quality of a model is not only determined by its ability to learn from the data but also its 

ability to predict unseen data, which two are so-called learning capacity and generalization ability 

of a model. Models are seldom good in both of these two capacities. According to the analysis 

above, we obtain ELM models trained with activation function of Sine and Sigmoid with 50 

nodes, and SVR models worked with RBF kernel function as well as the RF with 5 randomly 

selected features, 10 trees and 2 minimum number of samples in the leaf node as the optimized 

models in the application of modeling color fading ozonation of dyed textile that worth to be used 

in further experiments. 

Table 12. Prediction performance of optimized models. 

Parameters ELM (Sigmoid) ELM (Sine) SVR RF 

Training time(s) 0.0312 0.0936 0.9360 21 

Average error (%) 0.1527 0.1549 0.1530 0.149 

Maximum error (%) 0.3752 0.3700 0.3503 0.302 

Minimum error (%) 0.0300 0.0029 0.0304 0.038 

MSE 0.0172 0.0173 0.0043 0.0036 

MAE 0.0894 0.0921 0.0429 0.0295 

RMSE 0.1311 0.1315 0.0656 0.0601 

R 0.9052 0.9063 0.9777 0.9847 

MRAE 0.0197 0.0168 0.0109 0.0062 

 

  To estimate and compare these optimized models, the prediction test using the testing dataset 

(which has not been used in the training and validation processes) is carried out. Table 12 

presents a comparison of the prediction performance of ELM, SVR and RF models. It is found 

that, in general, ELM models using activation functions of Sigmoid (MSE=0.0172) and Sine 

(MSE=0.0173) do not make any big difference in regard to their prediction performance, but both 

of it are slightly poorer comparing with SVR and RF models. However, ELM models are the 

fastest-trained ones in the comparison, which means ELM model is still worth to being applied in 

certain resource-limited cases especially while limited training time is concerned. The most 

accurately-predicted model we can see according to the finding in Table 11 is RF as it leads the 

least testing error with higher R (0.9847) and less MSE (0.0036), MAE (0.0295), RMSE (0.0601) 

and MRAE (0.0062). However, it is also noted that the training RF model requires a much longer 

time than the others (21s). As a result, it is worth taking the SVR models into account as it 
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achieved the second lowest error (R=0.9777, MSE =0.0043, MAE=0.0429, RMSE =0.656, 

MRAE=0.0109) with a more acceptable shorter training time (0.9360s). 

  Table 12 demonstrates the overall performance of the constructed models in terms of certain 

estimation evaluation indexes, but the detail of these predictions is neglected. As known that the 

constructed models possess four outputs, i.e. K/S, L*, a*, b* values of reactive-dyed cotton 

fabrics treated in the color fading ozonation. How these predictive models work in detail with 

them is unclear. To reflect the real prediction performance (using testing data) of each trained 

model on predicting every single output separately, the predicted results range from output1 (k/s 

value) to output4 (b*) versing real experimental data (target 1 to 4) is illustrated in Figure 12 (a) 

(b) (c) (d) respectively.   

  In Figure 12, the predicted values of models generally agree with the actual values, though the 

predictive errors varied in different levels for different models. As we can see that the gap of 

models’ prediction performance is not that significant in Table 12 (taking MSE as an example, 

Sigmoid activated ELM=0.0172, Sine activated ELM=0.0173, SVR=0.0043, RF=0.0036), while 

the distribution of errors in terms of each single output prediction is observed that has a larger gap 

in the real application. In Figure 12 (a) and (c), certain predicted data of ELM models can be 

clearly seen that is far different from the real target data in a certain range, which situation would 

result in a big mistake in certain prediction application where the good overall performance of the 

average of multiple outputs may hinder the discovery of a wrong prediction on a specific single 

output. According to the linear fitting correlation coefficients of predicted data versing real 

experimental data (demonstrated in Figure 7) listed in Table 8, the testing result obtained reveals 

that SVR (R2=0.9505) model and RF model (R2=0.9555) are actually more stable and suitable 

than ELM models (R2=0.8025 and 0.8007 for Sigmoid and Sine activated respectively) in 

modeling color fading ozonation of dyed textile, in terms of overall prediction performance, and 

more importantly predicting multiple outputs without deviation on a certain single output. This 

may attribute to the features of data we used concerning color fading ozonation of dyed textiles. 

While on the other hand, it could also attribute to a disadvantage of ELM that it completely relies 

on increasing the number of nodes to promote the prediction performance, which makes it risky 

to be applied in a complicated issue such as the present investigation. The result also reveals that 



79 

 

both of SVR and RF can well deal with the interaction of variables and are comparatively more 

stable in multi-variable nonlinear modeling.  

 

Figure 12. Predicted data outputted by ELM (trained by Sigmoid and Sine respectively), SVR 

and RF versus experimental data 

Table 13. Correlation coefficients of data in Figure 12. 

R2 ELM (Sigmoid) ELM (Sine) SVR RF 

Target 1 - K/S 0.8474 0.8596 0.9683 0.9954 

Target 2 - L* 0.7944 0.7517 0.9442 0.8816 

Target 3 - a* 0.7903 0.8048 0.9380 0.9719 

Target 4 - b*  0.7778 0.7868 0.9513 0.9731 

Average 0.8025 0.8007 0.9505 0.9555 
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3.4. Conclusions 

   In this chapter, we used three modeling techniques i.e. ELM, SVR and RF, to model the 

ozonation process for predicting the color properties of treated textiles. The potential applicability 

of these models in the use of process modeling in the related textile process was estimated. Based 

on the results, it is concluded as follow: 

(1) Ozonation is a novel technology developed in recent years to be employed to achieve the 

color fading effect of textile with high performance not only in the respect of efficiency and 

quality but also relating to environmental sustainability. The applicability of intelligent 

techniques for modeling the textile ozonation process was verified. 

(2) The complexity and nonlinearity of the factors and impacts of color fading ozonation on 

reactive-dyed cotton were analyzed on the basis of models. The effects of ozonation in terms 

of pH, temperature, water pick-up, treating time of the process and dyed colors of fabrics on 

the color fading performance in terms of K/S, L*, a*, b* values of reactive-dyed cotton were 

modeled using ELM, SVR and RF respectively.  

(3) SVR and RF are both potential applicable candidates for modeling the textile ozonation 

process of dyed textiles, as the predicted results of them on the ozonation process showed a 

good agreement with the actual data collectively, as well as individually.  

(4) Taking the training time and cost as a consideration, the SVR model would be more 

recommended than RF to be applied in the real use, while the RF model would be more 

recommended in the cases with more tolerance on training time cost and higher requirement 

on prediction accuracy. 

(5) Comparatively, ELM models performed poorer in the prediction and were very unstable in 

terms of predicting certain individual output in multi-variable process modeling.  
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4. Optimizing textile manufacturing process using  deep reinforcement 

learning based intelligent system  

According to the study in Chapter 3, it is known that taking advantage of models learning from 

data based on artificial intelligence [213], an intelligent model integrated decision support system 

can make a difference to optimize the textile manufacturing process virtually. The applications of 

decision support systems for optimizing textile processes have been reported with various 

techniques: genetic algorithm [53] and fuzzy technology [214], [215] etc. But along with the 

development of the industry and the growing complexity in textile manufacturing, those classical 

approaches are no longer efficient in some scenarios. This is because, in recent years, a growing 

number of textile manufacturing problems were come up with multi-input and multi-output with 

high dimensional decision space [141], and instead of a single standard, multi-criteria is 

increasingly taken into consideration in these problems as evaluating the performance of a textile 

manufacturing [216]. in the meantime, massive quantities of new data will be generated from the 

development of textile manufacturing, but the adaptation to the progressive environment of a 

textile process optimization system is still absent. 

Reinforcement learning (RL) is a machine learning approach using a well understood and 

mathematically grounded framework of MDP that has been broadly applied to tackle the practical 

optimization and decision-making issues in the industry. For example, the pricing optimization 

[217]–[221], the chemical reactions condition optimization [222], and the production or workflow 

scheduling [223], [224], as well as the energy management associated problems [225], [226]. 

Furthermore, using the temporal difference based RL methods to reduce the dimension of data in 

feature selection has been reported by Mehdi et al. [227] , and Jasmin et al. [228] have applied the 

RL to approach the economic dispatch problem. Even if RL has been criticized in literature for 

their complexity of implementation, tuning and parallelization capabilities [229][230], the 

flexible nature of RL enables it to pre-compute offline, making online evaluation fast in large 

systems with high-dimension. It is worth investigating the application of it in the textile industry 

process as the characteristics of it is advantageous to the industry process that to well handle the 

large-scale stochastic multiple-input multiple-out and high-dimensional decision space [231], 

which could be a good solution for optimizing the textile manufacturing process. Related 

applications of RL for decision-making have been reported [232][233], however, at present, there 
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is no complete study to solve a complex production problem, especially in the textile 

manufacturing industry. This sub-study formulates the textile manufacturing process optimization 

problem into a Markov decision process (MDP) paradigm and applies deep reinforcement 

learning (more specifically, the Deep Q-networks, DQN) instead of current methods to 

collaboratively approach the optimization problems in the textile manufacturing process.  

As the factors of the textile manufacturing process consist of both objective and subjective 

effects, the intelligent data-based models of RF and human knowledge-based multi-criteria 

structure of AHP are proposed collaboratively with DQN in the developed optimization system. 

Here, the proposal of the ensemble learning approach of RF for modeling textile process lies in 

the excellent approximation ability RF shown in Chapter 3 to deal with the complex and 

uncertain impacts of textile process variables on its performance, whereas the application of AHP, 

a multi-criteria decision making (MCDM) tool, regards to the fact that there are a few criteria 

govern the quality of textile process performance and their significance with an overall objective 

is different.  

In summary, previous work addresses the optimization problems in the textile manufacturing 

process using methods different from the ones we are proposing in this chapter. Their approaches 

were found either performed not well relatively, or barely address high complexity to an open 

environment. In the proposed framework, the RL would be cooperatively applied with RF models 

and AHP to optimize the solutions of the textile manufacturing process against multi-criteria. 

4.1. Problem formulation  

Suggest a textile manufacturing process P involves a set of parameter variables {v1, v2… vn}, 

and the performance of this process is evaluated by multi-criteria of {c1, c2… cm}. Decision 

making needs to figure out how those parameter variables affect the process performances in 

terms of each criterion, and whether a solution of P {v1i, v2j… vnk}is good or not relating to {c1, 

c2… cm}.  

Suppose there is a model maps v1, v2… vn of the process to its performance in accordance with 

{c1, c2… cm}, then the performance of the specific solution could be presented by: 

 𝑓𝑖(𝑣1, 𝑣2… 𝑣𝑛) │ 𝑐𝑖, 𝑓𝑜𝑟    𝑖 = 1,…𝑚 (4.1) 
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When the domain of vj ∈ Vj is known, and the multi-criteria {c1, c2… cm} problem could be 

somehow represented by C, and the Equation (4.1) could be simplified to (4.2), and so that the 

objective of decision-makers is to find (4.3): 

  𝑓 (𝑣1, 𝑣2… 𝑣𝑛) │ 𝐶,            𝑣𝑗  ∈  𝑉𝑗 (4.2) 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗[ 𝑓 (𝑣1, 𝑣2… 𝑣𝑛) │ 𝐶] (4.3) 

Equation (4.3) aims at searching for the optimal solution of variable settings, while the 

traditional operation in this area usually relied heavily on trial and error. 

4.2. Methodology  

4.2.1 Analytic Hierarchy Process 

As the most frequently used and widely discussed MCDM from the recently developed 

discipline of operation research, AHP has been proven to be an extremely useful decision-making 

method in the textile industry from the issued applications of AHP estimating the quality of fibers 

[234] and fabrics [235], the functional clothing design [164], rotor spinning machine setting [216], 

and the maintenance strategy evaluation [236], though certain reports have come up with their 

concerns on the theoretical basis of AHP [237]–[239]. The popular application and discussion of 

AHP in the textile industry are owing to its involvement of both objective and subjective factors 

that agree with the characteristic of the decision-making problem in the textile manufacturing 

process.  

The multi-criteria decision making (MCDM) problem presented in Equation (4.3) could be 

summarized as a single objective optimization problem by structuring a hierarchy of criteria in 

terms of weights or priorities:  

 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗  [ 𝑓 (𝑣1, 𝑣2… 𝑣𝑛) │ 𝐶]

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗 ∑  𝑤𝑖𝑓𝑖(𝑣1, 𝑣2… 𝑣𝑛) 
𝑚

𝑖=1
 

(4.6) 

where w1 to wm are weights of criterion c1 to cm respectively.  

The AHP is a MCDM method introduced by Saaty [240] that uses a typical pair-wise 

comparison method into extract relative weights of criteria and alternative scores and turns a 
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multi-criteria problem to the paradigm of Equation (4.6). Above all, it constructs a pairwise 

comparison matrix of attributes using a nine-point scale of relative importance, in which number 

1 denotes an attribute compared to itself or with any other attribute as important as itself, the 

numbers of 2, 4, 6 and 8 indicate intermediate values between two adjacent judgments, whereas 

the numbers 3, 5, 7 and 9 correspond to comparative judgments of ‘moderate importance’, ‘strong 

importance’, ‘very strong importance’ and ‘absolute importance’ respectively. A typical 

comparison matrix (𝐶𝑚) of m × m could be established for m criteria as demonstrated below: 

 
𝐶𝑚 = [

1 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 1
] (4.7) 

where 𝑎𝑖𝑗  represents the relative importance of criterion ci regarding criterion cj. Thus 𝑎𝑖𝑗 =
1

𝑎𝑗𝑖
 

and 𝑎𝑖𝑗 = 1 when i = j. Note that a consistency index (CI) is introduced in AHP with consistency 

ratio (CR) on the basis of the principal eigenvector (λmax) to validate the consistency in the 

pairwise comparison matrix: 

 
 𝐶𝐼 =

𝜆𝑚𝑎𝑥 −𝑚

𝑚 − 1
 𝑎𝑛𝑑  𝐶𝑅 =

𝐶𝐼

𝑅𝐶𝐼
  (4.8) 

where RCI is a random consistency index and the values of it are available in[237]. Afterward, 

the relative weight of the ith criteria (wi) would be calculated by the geometric mean of the 

principal eigenvector, ith row (GMi), of the above matrix, and then normalizing the geometric 

means of rows: 

 𝐺𝑀𝑖 = {∏𝑎𝑖𝑗

𝑚

𝑗=1

}

1
𝑚

 𝑎𝑛𝑑  𝑤𝑖 =
𝐺𝑀𝑖

∑ 𝐺𝑀𝑖
𝑚
𝐼=1

 (4.9) 

4.2.2 Reinforcement learning for Multi-criteria optimization 

The traditional optimization techniques such as genetic algorithm and grey relational analysis 

[181] have been reported that made sense in certain previous studies of textile optimization 

application, but the effectiveness and efficiency of these traditional tools would be unacceptable 

in the industry 4.0 era with the massive quantities of data as well as the high complexity grown of 

the textile manufacturing process. As we know that heuristic method like the genetic algorithm is 
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time-consuming that can hardly be applied in the context of industrial practice, when the number 

of variables is very large, along with large change intervals [182]. By contrast, reinforcement 

learning (RL) is a machine learning approach using a relatively well understood and 

mathematically grounded framework of MDP that has been broadly applied to tackle the 

practical decision-making issues in the industry.  

Reinforcement learning (RL) is a machine learning algorithm that sorts out the Markov 

decision process (MDP) in the formula of a tuple:{S, A, T, R}, where S is a set of environment 

states, A is a set of actions, T is a transition function, R is a set of reward or losses. An agent in an 

MDP environment would learn how to take action from A by observing the environment with 

states from S, according to corresponding transition probability T and reward R achieved from the 

interaction. The Markov property indicates that the state transitions are only dependent on the 

current state and current action is taken, but independent to all prior states and actions[241]. As 

known that a textile manufacturing process has a number of parameter variables as P {v1, v2… vn}, 

if the probable value of vj is p(vj), the parameter of the process defining the environment space 𝜑 

from ∏ 𝑝(𝑣𝑗),
𝑛
𝑗=1 𝑣𝑗  ∈  𝑉𝑗  impacting the performance of the textile process with regards to 

criteria {c1, c2… cm}. These parameter variables are independent to each other and obey a Markov 

process that models the stochastic transitions from a state St  at time step t to the next state St+1, 

where the environment state at time step t is:  

 St = [ 𝑠𝑡
𝑣1 , 𝑠𝑡

𝑣2… 𝑠𝑡
𝑣𝑛] ∈ 𝜑 (4.10) 

RL trains an agent to act optimally in a given environment based on the observation of states 

and the feedback from their interaction, acquiring rewards and maximizing the accumulative 

future rewards over time from the interaction [241]. Here, the agent learns in the interaction with 

the environment by taking actions that can be conducted on the parameter variables ∈ P {v1, v2… 

vn} at time step t. More specifically, in a time step t, the action of each single variable 𝑣𝑗  could be 

kept (0) or changed up (+) / down (-) in the given range with specific unit uj. So there are 3n 

actions totally in the action space and, for simplicity, the action vector 𝐴𝑡 at time step t could be:   

 𝐴𝑡 = [𝑎𝑡
𝑣1 , 𝑎𝑡

𝑣2 …𝑎𝑡
𝑣𝑛],     where 𝑎𝑡

𝑣𝑗 ∈ {−𝑢𝑗 , 0, +𝑢𝑗}, 𝑣𝑗  ∈  𝑉𝑗. (4.11) 

The state transition probabilities, as mentions that, are only dependent on the current state St 

and action𝐴𝑡. It specifies how the reinforcement agent takes action 𝐴𝑡 at time step t to transit 
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from St to next state St+1 in terms of T (St+1│St,  𝐴𝑡 ). For all  𝑎𝑡
𝑣𝑗 ∈ {−𝑢𝑗 , 0, +𝑢𝑗}, 𝑣𝑗  ∈  𝑉𝑗 , 

𝑇 (𝑆𝑡+1│𝑆𝑡,  𝐴𝑡) > 0 and ∑ 𝑇 (𝑆𝑡+1│𝑆𝑡,  𝐴𝑡) = 1𝑆𝑡+1∈𝜑 . The reward achieved by an agent in an 

environment is specifically related to its transition between states, which evaluates how good the 

transition agent conducts and facilitates the agent to converging faster to an optimal solution.  

4.2.3 Deep-Q-network algorithm 

The RL performs a vital function in the MDP problem. However, the basic RL algorithms in 

most of the studies, such as the Q-learning and the SARSA (0/λ), are based on a memory-

intensive tabular representation (i.e. Q-table) of the value, or instant reward, of taking an action a 

in a specific state s (the Q value of state-action pair, a.k.a Q(s, a)). The tabular algorithms would 

restrict the application of the RL in realistic large-scale cases when the amounts of states or 

actions are tremendous. Because in these situations, not only the tables come short of recording 

all of the Q(s, a), but presenting computational power would be overwhelming as well.  

The deep neural networks (DNNs) is another widely applied machine learning technique that is 

quite good at coping with the large-scale issues and has recently been combined with the RL to 

evolve toward deep reinforcement learning (DRL). Deep-Q-network is a DRL developed by 

Mnih et al. [242] in 2015 as the first artificial agent that is capable of learning policies directly 

from high-dimensional sensory inputs and agent-environment interactions. It is an RL algorithm 

proposed based on Q-learning which is one of the most widely used model-free off-policy and 

value-based RL algorithms.  

(1) Q-learning 

The Q-learning learns through estimating the sum of rewards r for each state St when a 

particular policy π is being performed. It uses a tabular representation of the Qπ(𝑆𝑡, 𝐴𝑡) value to 

assign the discounted future reward r of state-action pair at time step t in Q-table. The target of 

the agent is to maximize accumulated future rewards to reinforce good behavior and optimize the 

results. In Q-learning algorithm, the maximum achievable Qπ(𝑆𝑡, 𝐴𝑡) obeys Bellman equation on 

the basis of an intuition: if the optimal value Qπ(𝑆𝑡+1, 𝐴𝑡+1) of all feasible actions 𝐴𝑡+1on state 

𝑆𝑡+1  at the next time step is known, then the optimal strategy is to select the action  𝐴𝑡+1 

maximizing the expected value of 𝑟 +  𝛾 ∙ 𝑚𝑎𝑥𝐴𝑡+1𝑄
π(𝑆𝑡+1, 𝐴𝑡+1).  
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 𝑄𝜋(𝑆𝑡, 𝐴𝑡) = 𝑟 +  𝛾 ∙ 𝑚𝑎𝑥𝐴𝑡+1𝑄
𝜋(𝑆𝑡+1, 𝐴𝑡+1) (4.12) 

According to the Bellman equation, the Q-value of the corresponding cell in Q-table is updated 

iteratively by: 

𝑄π(𝑆𝑡, 𝐴𝑡) ←  𝑄π(𝑆𝑡, 𝐴𝑡) +  𝛼[𝑟 +  𝛾 ∙ 𝑚𝑎𝑥𝐴𝑡+1𝑄
π(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄π(𝑆𝑡, 𝐴𝑡)] (4.13) 

where 𝑆𝑡 and 𝐴𝑡 are the current state and action respectively, while 𝑆𝑡+1 is the state achieved 

when executing 𝐴𝑡+1 in the set of S and A in any given MDP tuples of {S, A, T, R}. 𝛼 ∊ [0, 1] is 

the learning rate, which indicates how much the agent learned from new decision-making 

experience (𝑄π(𝑆𝑡+1, 𝐴𝑡+1)) would override the old memory (𝑄π(𝑆𝑡, 𝐴𝑡)). r is the immediate 

reward, 𝛾 ∊ [0, 1] is the discount factor determining the agent’s horizon.  

The agent takes action on a state in the environment and the environment interactively 

transmits the agent to a new state with a reward signal feedback. The basic principle of Q-

learning RL essentially relies on a trial and error process, but different from humans and other 

animals who tackle the real-world complexity with a harmonious combination of RF and 

hierarchical sensory processing systems, the tabular representation of Q-learning is not efficient 

at presenting an environment from high-dimensional inputs to generalize past experience to new 

situations [242]. 

(2) DQN: innovative combination of deep neural networks and Q-learning 

Q-table saves the Q value of every state coupled with all its feasible actions in an environment, 

while the growing complexity in the problem nowadays indicates that the states and actions in an 

RL environment could be innumerable (such as Go game). In this regard, DQN applies DNNs 

instead of Q-table to approximate the optimal action-value function. The DNNs feed by the state 

for approximating the Q-value vector of all potential actions, for example, are trained and 

updated by the difference between Q-value derived from previous experience and the discounted 

reward obtained from the current state. While more importantly, to deal with the instability of RL 

representing the Q value using nonlinear function approximator [243], DQN innovatively 

proposed two ideas termed experience replay [244] and fixed Q-target. As known that Q-learning 

is an off-policy RL, it can learn from the current as well as prior states. Experience replay of 

DQN is a biologically inspired mechanism that learns from randomly taken historical data for 

updating in each time step, which therefore would remove correlation in the observation sequence 
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and smooth over changes in the data distribution. Fixed Q-target performs a similar function, but 

differently, it reduces the correlations between the Q-value and the target by using an iterative 

update that adjusts the Q-value towards target values periodically. 

Specifically, the DNNs approximate Q-value function in terms of Q-(s, a; θi) with parameters θi 

which denotes weights of Q-networks at iteration i. The implementation of experience replay is to 

store the agent’s experiences et= (St, At, rt, S t+1,) at each time step t in a dataset Dt = {e1,…et,}. 

Q-learning updates were used during learning to samples of experience, (S, A, r, S’) ~ U(D), 

drawn uniformly at random from the pool of stored samples. The loss function of Q-networks 

update at iteration i is: 

 
𝐿𝑖(𝜃𝑖) =  𝔼(𝑆,𝐴,𝑟,𝑆’) ~ 𝑈(𝐷) [((𝑟 +  𝛾 ∙ 𝑚𝑎𝑥

𝐴′
𝑄(𝑆′, 𝐴′;  𝜃𝑖

−) −  𝑄(𝑆, 𝐴; 𝜃𝑖))

2

] (4.14) 

where 𝜃𝑖
−are the network weights from some previous iteration. The targets here are dependent 

on the network weights; they are fixed before learning begins. More precisely, the parameters 

𝜃𝑖
− from the previous iteration is fixed as optimizing the ith loss function 𝐿𝑖(𝜃𝑖) at each stage and 

are only updated with 𝜃𝑖 every R steps. To implement this mechanism, DQN uses two structurally 

identical but parametrically differential networks, one of it predicts Q(𝑆, 𝐴; 𝜃𝑖) using the new 

parameters 𝜃𝑖 , the rest one predicts  𝑟 +  𝛾 ∙ max
𝐴′

𝑄(𝑆′, 𝐴′;  𝜃𝑖
−) using previous parameters 𝜃𝑖

− . 

Every R steps, the Q network would be cloned to obtain a target network 𝑄̂, and then 𝑄̂ would be 

used to generate Q-learning target 𝑟 +  𝛾 ∙ max
𝐴′

𝑄(𝑆′, 𝐴′;  𝜃𝑖
−)  for the following R updates to 

network Q.  

The DQN is a typical and classic DRL algorithm that played a key role in the applications of 

production scheduling, playing video games, and the Computer Go [223], [242], [245], etc. Given 

the advantages that the DQN can offer when confronted with decision making in the textile 

process optimization, this algorithm would be adopted in the construction of the proposed 

decision support system.  
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Figure 13. The MDP structure of textile manufacturing process multi-criteria optimization in 

the proposed framework 

4.3. System framework 

Figure 13 illustrates the textile manufacturing process optimization problem in the paradigm of 

RL, where the decision-maker plays the role of agent to traverse and explore the state space, the 

environment includes all the targeted process parameter variables, the adjustment of parameter 

variables indicates the action, the solution combined of all the parameter variables represents the 

state, and the objective function denotes the reward. The objective of the developed decision 

support system is to optimize the textile process with regards to its parameter variables on the 

basis of the multi-criteria objective function which has fundamentally been formulated in 

Equation (4.3). Therefore, here the feedback from the environment depending on a reward 

function is in accordance with the objective function.  

Machine learning library of Scikit-learn is employed to develop the RF models [246], where 

the sub-sample size of it is always the same as the original input sample size but the samples are 

drawn with a replacement if bootstrap is used (or else the whole dataset would be used to build 

each tree).  RF algorithm starts from randomly drawing a number of samples from the original 

data and grows corresponding regression trees (n_estimators) in accordance with the drawn 

samples. In each leaf node of the regression tree, respectively given the minimum number of 

samples required to be at a leaf node (min_samples_leaf) and to split an internal node 
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(min_samples_split) as well as the maximum depth of the tree (max_depth), a number of the best 

splits (max_features) randomly selected from all variables are considered for binary partitioning. 

The selection of the feature for node splitting from a random set of features decreases the 

correlation between different trees and thus the average prediction of multiple regression trees is 

expected to have lower variance than individual regression trees [208]. A hyperparameter tuning 

process using a grid search with 3-fold cross-validation is conducted in this study for optimizing 

the RF models, and the applied parameter grid with 3960 combinations is demonstrated in Table 

14.  

The pseudo-code of the proposed multi-criteria decision support system based on DQN 

reinforcement learning, RF models, and AHP are illustrated in Algorithm 1, and an episodic 

running within the algorithm is graphically displayed in Figure 14. Apart from the 

aforementioned parameters, it is also necessary to provide an experience dataset (De) regarding 

the textile process modeling and the expected process performance or optimization targets (P) to 

the system construction. To balance the exploration and exploitation of states at the learning 

period and optimizing period respectively, we initialize the first state of every episode randomly 

from each sub-state 𝑠𝑡
𝑣𝑖  where parameter variables  𝑣𝑗  ∈  𝑉𝑗 , and more importantly, apply 

increasing 𝜀-greedy policy at the meantime.  

In fact, the algorithm given above can work without episodes, as the target of an RL trained 

agent is to find the optimized solution, in terms of state in the environment with minimum error 

tested by RF models and AHP evaluations, however, the lack of exploration of the agent in an 

environment may cause local optimum in a single running. So we initialize the first state 

randomly and introduce an episodic learning process to the agent for enlarging the exploration 

and preventing local optimum. On the other hand, we apply the increasing 𝜀-greedy policy as 

well. The 𝜀-greedy policy helps the agent find the best action (maximum Q value) in the present 

state to go to the next state with a possibility of 𝜀 that may also randomly choose an action with a 

possibility of  1 − 𝜀 to get a random next state. While, as illustrated in Algorithm 2, increasing 𝜀-

greedy is employed with an increment given in each time step from 0 until it equals to 𝜀𝑚𝑎𝑥. This 

benefits the agent to explore the unexplored states without staying in the exploitation of already 

experienced states of Q-networks, and plentifully exploit them when the states are traversed 

enough. 
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Table 14. Parameter grid used in the hyperparameter tuning process 

Parameter of RF Options and implication 

bootstrap True or False : sampling data points with or without replacement  

n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 

min_samples_leaf 1, 2, 4 

min_samples_split 2, 5, 10 

max_depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None 

max_features 
‘auto’: max_features = x (the number of observed input vector) 

‘sqrt’: max_features = √𝑥 

 

Algorithm 1:  Multi-criteria decision support system main body: 

Initialize: De (process experience data), 𝐶𝑚 (comparison matrix of considered criteria),  

                 P (p1, p2 … pm, expected performance of process), E (number of episodes), N (number of time steps), 

                 𝛼 (learning rate), 𝛾 (discount factor), R (the step updating DQN), D (replay memory size);  

 

Phase 1: RF model construction 

Split input and output of De to train and test RF models respectively; 

For each output (process performance in regard to criterion 𝑐𝑖) do 

    RF model  𝑓𝑖(𝑣1, 𝑣2… 𝑣𝑛) │ 𝑐𝑖  ←  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑢𝑛𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑠𝑒𝑒 𝑇𝐴𝐵𝐿𝐸 13) 

End for 

 

Phase 2: Multi-criteria summary 

Initialize and check multi-criteria pairwise comparison matrix  𝐶𝑚 = [
1 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 1
] ; 

Geometric mean 𝐺𝑀𝑖 = {∏ 𝑎𝑖𝑗
𝑚
𝑗=1 }

1

𝑚 and relative weight of criterion 𝑤𝑖 =
𝐺𝑀𝑖

∑ 𝐺𝑀𝑖
𝑚
𝐼=1

; 

Transformation: 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗  [ 𝑓 (𝑣1, 𝑣2… 𝑣𝑛) │ 𝐶] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗 ∑  𝑤𝑖𝑓𝑖(𝑣1, 𝑣2… 𝑣𝑛) 
𝑚
𝑖=1 ; 

 

Phase 3: Optimization using DQN  

Initial function 𝑄 with random weights 𝜃: 

Initial function 𝑄̂ with weights 𝜃− = 𝜃; 

Initialize state s0= (𝑣1, 𝑣2… 𝑣𝑛)  

For episode =1, E do 

    For time step=1,  N do 

        Choose an action at using ε-greedy policy 

        Execute action at , observe next state st+1  

        Estimate 𝑓(𝑠𝑡) and 𝑓(𝑠𝑡+1) to observe 𝑟𝑡  (𝑟𝑡 = ∑ √𝑤𝑖
2(𝑓𝑖(𝑠𝑡) − 𝑝𝑖)

2𝑚
𝑖=1 − ∑ √𝑤𝑖

2(𝑓𝑖(𝑠𝑡+1) − 𝑝𝑖)
2𝑚

𝑖=1  ) 

        Store transition (st, at, rt, st+1) in D 

        Sample random minibatch of  transitions (st, at, rt, st+1) from D 

        Set 𝑦𝑖 = {
𝑟𝑗                                                       if  terminates at step 𝑗 + 1                    

𝑟𝑗 +  𝛾𝑚𝑎𝑥𝑎′𝑄̂(𝑠𝑗+1, 𝑎
′;  𝜃−)                    otherwise                                   

 

        Perform a gradient descent step on (𝑦𝑖 − 𝑄(𝑠𝑗 , 𝑎𝑗;  𝜃))
2

 with regard to 𝜃  

        Every R steps reset 𝑄̂ = 𝑄           
 

        st  ← st+1 
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    End For 

End For 

 

 

Figure 14. Flowchart of the algorithm implementing the deep reinforcement learning based 

multi-criteria decision support system for textile manufacturing process optimization 

Algorithm 2:  Choose an action using 𝜀-greedy policy 

Input: 𝜀𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 , 𝜀𝑚𝑎𝑥 

𝜀 ← 𝜀 + 𝜀𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡   (0 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥); 

If random(0,1) > 𝜀 

    Randomly choose action at from action space 

Else 

    Select at=argmaxa𝑄(𝑠𝑡 , 𝑎; 𝜃) 

End if   

 

4.4. Application 

The application of the established decision support system to the ozonation process was 

performed to evaluate the performance of the proposed framework, the setup of the proposed 

framework would be attempted to solve a 4-targets optimization problem of color fading 

ozonation process. Specifically, the application study here only takes the yellow samples for RF 

model training and construction, which is different from the one developed in Chapter 3. 
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In terms of the experience dataset used to train and test RF models, it is different from the 

model developed in Chapter 3 that only the yellow samples are taken here for RF model 

construction. It includes 4 process parameters (water-content, temperature, pH and time) of the 

process and 4 process performance index known as k/s, L*, a*, and b* of the treated fabrics. 

Where the k/s value indicates color depth, while L*, a*, and b* illustrate the color variation in 

three dimensions (lightness, chromatic component from green to red and from blue to yellow 

respectively). Normally, the color of the final textile product in line with specific k/s, L*, a*, and 

b* is within the acceptable tolerance of the consumer.    

4.4.1 Modeling color fading ozonation process using the random forest  

In terms of the RF model construction, 75% of the data was divided into the training group and 

the rest 25% was used to test models. In order to decrease the bias and promote the generalization 

of applied RF models in the system, we have trained 4 separate models for predicting 4 outputs 

(k/s, L*, a*, and b*) respectively. The results of hyper-parameter tuning in regards to the context 

given in Table 14 are displayed in Table 15, and the final optimized models are tested (25% with 

unseen data) that can well predict the process performance with accuracies (R-square) of 0.996, 

0.954, 0.937 and 0.965 respectively. 

Table 15. The results of hyper-parameter tuning and performances of the RF models                                                           

 Bootstrap 

n_ 

estimator

s 

Min_ 

samples_ 

leaf 

Min_ 

samples_ 

split 

Max_ 

depth 

Max_ 

features 
R2 MAE 

k/s True 2000 1 2 30 ‘auto’ 0.996 0.28 

L* False 2000 1 2 None ‘sqrt’ 0.954 0.77 

a* False 2000 2 2 None ‘auto’ 0.937 2.29 

b* True 2000 1 5 100 ‘auto’ 0.965 2.87 

 

4.4.2 Determining the criteria weights using the analytic hierarchy process 

By means of combining experts’ judgment with our experience, a pairwise comparison matrix 

of the 4 decision criteria with respect to the overall color performance of the ozonation process 

treated textile product is provided in Table 16.  λmax of this comparison matrix is 4.1042 and 

known that the RCI for 4 criteria problem is 0.90, as a result, the CR calculated is 0.0386≤0.08  

which implies that the evaluation within the matrix is acceptable.  
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Table 16. Pairwise comparison matrix of k/s, L*, a* and b*  with respect to the overall color 

performance 

 k/s L* a* b* GM w 

k/s 1 3 5 5 2.9428 0.556 

L* 1/3 1 3 3 1.3161 0.249 

a* 1/5 1/3 1 2 0.6043 0.114 

b* 1/5 1/3 1/2 1 0.4273 0.081 

 

4.4.3 Deep Q-Networks for optimal decision-making 

We optimize the color performance in terms of k/s, L*, a*, and b* of the textile in the ozonation 

process by finding a solution including proper parameter variables of water-content, temperature, 

pH and treating time that minimizes the difference between such specific process treated textile 

product and the targeted sample. Therefore, the state space 𝜑, in this case, is composed by the 

solutions with four parameters (water-content, temperature, pH and treating time) in terms of St = 

[ 𝑠𝑡
𝑣1 , 𝑠𝑡

𝑣2 , 𝑠𝑡
𝑣3 , 𝑠𝑡

𝑣4]. In a time step t, the adjustable units of these parameter variables are 50, 10, 1 

and 1 respectively in the range of [0, 150], [0,100], [1, 14] and [1, 60] respectively. As the action 

of a single variable 𝑣𝑗  could be kept (0) or changed up (+) / down (-) in the given range with 

specific unit u, so there are 34 =81 actions totally in the action space and the action vector at time 

step t is  𝐴𝑡 = [𝑎𝑡
𝑣1 , 𝑎𝑡

𝑣2 , 𝑎𝑡
𝑣3 , 𝑎𝑡

𝑣4] , where  𝑎𝑡
𝑣1 ∈ {−50, 0, +50}, 𝑣1 ∈ [0, 150] ; 𝑎𝑡

𝑣2 ∈

{−10, 0, +10}, 𝑣2 ∈ [0, 100]; 𝑎𝑡
𝑣3 ∈ {−1, 0, +1}, 𝑣3 ∈ [1, 14]; 𝑎𝑡

𝑣4 ∈ {−1, 0, +1}, 𝑣4 ∈ [1, 60]. 

The transition probability is 1for the states in the given range of state space above, but 0 for the 

states out of it.  The reward r at time step t is expected to be in line with how close the agent gets 

to our target, and as the relative importance of these four performance criteria (0.556, 0.249, 

0.114 and 0.081 respectively) is analyzed in AHP, we could set up the reward function as 

illustrated below to induce the agent to approach our optimization results: 

 
𝑟𝑡 = ∑ √𝑤𝑖

2(𝑓𝑖(𝑠𝑡) − 𝑝𝑖)2
𝑚

𝑖=1
−∑ √𝑤𝑖

2(𝑓𝑖(𝑠𝑡+1) − 𝑝𝑖)2
𝑚

𝑖=1
 (4.15) 

As shown in the pseudo-code of DQN main body in Algorithm 1, optimization targets of textile 

ozonation process are needed to function the system ( 𝑝1,  𝑝2,  𝑝3,  𝑝4, the color performance of the 

ozonation process in terms of k/s, L*, a*, and b*), these targets in the present case study would be 

sampled by experts. In addition to the targets, the parameters of DQN such as step R for updating 
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Q-networks and replay memory size D, as well as the learning rate 𝛼 and the discount rate 𝛾 for 

updating loss function, etc., are listed in Table 17. In particular, the R step for updating DQN here 

denotes that after 100 steps, the Q-networks would be updated at every 5 steps. 

Table 17. DQN algorithm setting in textile ozonation process application study 

R D 𝛼 𝛾 𝜀𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡  𝜀𝑚𝑎𝑥 E N 

5(>100) 2000 0.01 0.9 0.001 0.9 5 5000 

 

 

Figure 15. Predictive performance of the RF models trained in the case study for supporting 

decision making in the textile color ozonation process 

4.4.4 Results and discussion 

As mentioned that there are four RF models trained for predicting  𝑝1,  𝑝2,  𝑝3,  𝑝4 of the color 

performance of the ozonation process in terms of k/s, L*, a* and b*, respectively. The predictive 

performance of these models displayed in Figure 15 indicates that the models work steadily in the 
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algorithm of the present case study as it is found that the models predicted values are generally in 

accordance with the actual measured values through the predictive errors of different models 

varied slightly at different levels. This finding furthermore reflects that the RF approach is 

capable of modeling the textile manufacturing process and plays a significant role in our 

proposed decision support system.  

 

In particular, the neural networks implemented by TensorFlow [247] are used in our case study 

to realize Q-networks which have been described in detail in the developed framework of 

Algorithm 1. The networks consist of two layers with 50 and 34 hidden nodes respectively, where 

the last layer corresponds to the actions. As demonstrated in Table 18, there are 5 experimental 

targets sampled by experts that were used in the present case study.  

 

Table 18. The experimental targets sampled by experts  we used in the case study application 

of proposed decision support system 

 1 2 3 4 5 

k/s 0.81 1.00 2.45 1.84 0.41 

L* 15.76 11.63 8.2 9.72 21.6 

a* -20.84 -24.08 -18.73 -21.09 -36.48 

b* -70.79 -54.1 -38.17 -42.78 -59.95 

 

Figure 16 demonstrates the loss function of target Q-networks for each scenario. It is found that 

converged quickly to be steady after training by the action values feedback obtained from the 

environment in early time steps, which denotes that the representation of Q-value in this Q 

networks is stable and accurate. Relating to the dramatic falls at the beginning steps in each 

scenario, it is owing to the increasing 𝜀-greedy policy employed in the algorithm which leads the 

agent to choose action randomly with a high probability in a range of beginning time steps, but 

increasingly choose the action with high value after that. On the other hand, in terms of the 5 

episodes we employed in each scenario, it is found that the maximum unrepeated states that a 

DQN agent has been explored that are all occurred in the first episode in all the scenarios (Figure 

17). This also reflects that the increasing 𝜀  has balanced the process of exploration and 

exploitation of states in the environment, and the rest episodes would benefit from the experience 

achieved before.    
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Figure 17. The number of states that the DQN 

agent has explored in each episode for different 

scenarios 
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Figure 18. The minimum error of solutions that DQN agent achieved versus time steps  

This case study implemented 5 episodic trails for each scenario with different targets in the 

proposed framework. We collect the minimum error of solutions (states) evaluated by RF-AHP 

during the DQN agent interacted with the environment time steps. While the initial state is 

randomly given in our proposed system for avoiding local optimum, only the ones with the best 

results are specifically illustrated in Figure 18 regarding the time steps. It is found that the reward 

function can effectively guide the agent to find the optimum in the environment, and the times 
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steps taken in 3000 seem enough for the optimization. However, it is worth noting that the 

efficiency of the reward function in our proposed decision support system is still not fully 

illustrated by this case study. One main reason for this comes to the limited data of textile 

manufacturing processes and the costly computational power which hopefully would be solved in 

the Industry 4.0 era.  

Table 19. simulated results of solutions with minimum errors obtained from DQN based and 

Q-learning based framework respectively 

 1 2 3 4 5 

DQN 

     

Targets 

     

Q-

learning 
     

 

In order to show the advantage and effectiveness of DQN in our proposed decision support 

system, a comparison with Q-learning based on the same developed framework is conducted, and 

the simulated color performance of the results in terms of the solutions with minimum error 

obtained from two methods are comparatively demonstrated in Table 19 with the targets. Here the 

error is calculated by Equation (4.16), which are 1.06, 0.50, 0.88, 0.29, 0.22 and 1.13, 0.54, 0.91, 

1.28, 1.76 in the DQN and Q-learning based decision support system for scenarios from 1 to 5 

respectively.  

𝑒𝑟𝑟𝑜𝑟 = √0.5562(𝑘/𝑠𝑠 − 𝑘/𝑠𝑡)
2 + 0.2492(𝐿𝑠

∗ − 𝐿𝑡
∗)2+0.1142(𝑎𝑠

∗ − 𝑎𝑡
∗)2 + 0.0812(𝑏𝑠

∗ − 𝑏𝑡
∗)2  

(4.16) 

where 𝒌/𝒔𝒔 , 𝑳𝒔
∗ , 𝒂𝒔

∗ , 𝒃𝒔
∗  are the properties of simulated color performance of the solution 

obtained from the decision support system, and 𝒌/𝒔𝒕 , 𝑳𝒕
∗ , 𝒂𝒕

∗ , 𝒃𝒕
∗  are the targeted color 

performance. 

4.5. Conclusions 

Textile manufacturing is a traditional industry involving high complexities in interconnected 

processes with limited capacity on the application of modern technologies.  Decision-making in 
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this domain generally takes multiple criteria into consideration, which usually arouses more 

complexity. Traditional classical approaches are no longer efficient owing to the growing 

complexity with large-scale data and high dimensional decision space in some scenarios. In this 

chapter, a decision support system combining the random forest model, analytic hierarchy 

process and deep Q-Networks is proposed for optimizing the textile manufacturing process. This 

developed system tackles large scale optimization problems in high dimensional decision space 

with multi-criteria in the textile manufacturing process. Empirical data and human knowledge of 

the textile process are needed to build random forest models and evaluate criteria respectively. 

The dependence of the operations on data and knowledge of this system are in accordance with 

the characteristics of the complicated textile manufacturing process with respect to both objective 

and subjective factors in the decision making of an application. On the basis of the results 

obtained from this chapter, it is concluded: 

(1) Decision making for optimizing the textile manufacturing process could be formulated into 

the Markov decision process paradigm of {S, A, T, R} in the proposed algorithm. 

(2) Taking advantage of the deep reinforcement learning by means of a deep Q-Networks 

algorithm, the proposed framework can effectively exploit the data on the basis of random 

forest models. 

(3) AHP multi-criteria structure benefits the proposed framework to find the optimal textile 

manufacturing process solution with respect to multiple objectives. 

(4) The application in optimizing the textile ozonation process showed that the developed 

system is capable of learning to master the challenging decision-making tasks and performed 

better than traditional methods.  
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5. Multi-objective optimization of the textile manufacturing process 

using deep reinforcement learning based multi-agent system 

On the basis of the deep reinforcement learning algorithm, the proposed framework in Chapter 

4 was applied to deal with the multi-objective optimization problems in the textile manufacturing 

process. For the further improvement of the established system to deal with the increasing 

searching dimension from the development of textile manufacturing industry in the upcoming big 

data era, this chapter would furthermore extent the investigation of the reinforcement learning 

algorithm to combine with the game theory in terms of a multi-agent system to cope with the 

formulated textile manufacturing process multi-objective optimization problems. 

It is known that multi-objective optimization problem has been transformed into game-theoretic 

models to be well solved [248], [249], and recent developments of multi-agent system for 

optimizing multiple objectives based on game theory have shown its extreme capability of 

dealing with functions having high dimensional space [250], [251]. On the other hand, the multi-

agent reinforcement learning (MARL) has been proposed in many contributions for robotics 

distributed control, telecommunications, traffic light control, and dispatch optimization etc. 

[252]–[254], but traditional MARL algorithms generally can hardly handle the large-scale 

problem, the applicability of it was therefore very limited [255]. While in recent years, the 

development of deep reinforcement learning (DRL) has achieved many outstanding results, 

which prompts a growing number of research efforts paying to the investigations of algorithms 

and applications of DRL in MARL environment [256]–[258]. Although studies reported the use 

of MARL and DRL for optimizing workflow scheduling, electronic auctions and traffic control 

problems with multiple objectives [259], very limited work solved a complex production problem, 

especially in the textile manufacturing industry.  

Upon which, this chapter formulates the multi-objective optimization problems of the textile 

manufacturing process into a Markov game paradigm and collaboratively applying multi-agent 

deep-Q-networks (DQN) reinforcement learning instead of current methods to optimize the 

textile process in terms of multiple objectives. 
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5.1. System model 

Consider the solution of a textile manufacturing process P is composed and determined by a set 

of parameter variables {v1, v2… vn}, the impacts of these variables on the process performance 

could be varied a lot from n different respects with uncertainty, as the number of the processes 

and the related variables in the textile manufacturing industry is enormous and the influences of 

these variables on the targeted optimization performance are unclear. For example, the longer 

time was taken of a textile process generally would lead to the increment of production cost, and 

a tiny enhance of temperature used in the textile production process could significantly arouse the 

power consumption, but sometimes the enhanced temperature may promote the process 

efficiency so that decrease the production cost eventually. Therefore, it is necessary to study the 

interrelated effects of process variables on the process performance. From the engineering 

perspective, it is important to achieve a solution in the textile manufacturing process that can 

achieve good quality and avoid idle time, waste and pollutions at the same time. Models that 

incorporate the information of the process simulating the variation of multiple objective 

performances from the change of variable in the solutions are rather essential. 

Suppose models exist that can map variables v1, v2… vn of the process solution P to its 

performance in accordance with m objectives, the performance of a specific solution could be 

simulated by: 

 𝑓𝑖  (𝑃) = 𝑓𝑖(𝑣1, 𝑣2… 𝑣𝑛)   𝑓𝑜𝑟    𝑖 = 1,…𝑚 (5.1) 

When a decision-maker who wants to find a solution that satisfies m objectives of the process 

performances that the objectives are non-commensurable and no preference of the objectives 

related to each other is coming up with the decision-maker. The multi-objective problem could be 

defined as giving the n-dimensional variable vector P = {v1, v2… vn} in the solution space, 

finding a vector of p* that optimizes a given set of m objective functions: 

  𝑓 (𝑝∗)  =  { 𝑓1 (𝑝
∗), 𝑓2 (𝑝

∗),… , 𝑓𝑚 (𝑝
∗) } (5.2) 

The solution space is generally restricted by a series of constraints, when the domain of vj ∈ Vj 

for j = 1, …, n is known, and representing the m objectives by M, the objective of the problem is 

to find (5.3): 
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 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗 ∈ 𝑉𝑗[ 𝑓 (𝑣1, 𝑣2… 𝑣𝑛) │ 𝑀]        𝑓𝑜𝑟 𝑗 =  1, … , 𝑛  (5.3) 

Equation (5.3) aims at searching for the optimal solution of variable settings, while there are 

always conflicting objectives that satisfying one single target but lead to unacceptable results to 

the others. A perfect multi-objective solution that simultaneously optimizes each objective 

function is almost impossible. To this end, this chapter proposes a self-adaptive DQN-based 

MARL framework where the m optimization objectives are formulated as m DQN agents that are 

trained through the self-adaptive process constructed upon a Markov game.  

5.2. Methodology 

5.2.1 Multi-objective optimization of the textile process as Markov game 

We begin by formulating the single objective textile process optimization problem as a Markov 

decision process (MDP) in terms of a tuple :{ S, A, T, R}, where S is a set of environment states, 

A is a set of actions, T is the state transition probability function, R is a set of reward or losses. An 

agent in an MDP environment would learn how to take action from A by observing the 

environment with states from S, according to corresponding transition probability T and reward R 

achieved from the interaction. The Markov property indicates that the state transitions are only 

dependent on the current state and current action is taken, but independent of all prior states and 

actions [241]. While in the case of a multi-agent system, the joint actions are the result of 

multiple agents, the MDP is generalized to the Markov game of {S, 𝐴1,…,𝐴𝑚, T, 𝑅1,…,𝑅𝑚 }, 

where S and T are similar to the MDP that are the finite set of environment states and the state 

transition probability function respectively in a Markov game, whereas differently, m is the 

number of agents, 𝐴𝑖 for i =1,…, m are the finite sets of actions available to the agent i, 𝑅𝑖 for i 

=1,…, m are the reward functions of the agent i. 

As known that the solution of a textile manufacturing process is affected by a number of 

variables as P {v1, v2… vn}, if the possible value of vj is h(vj), the feasible values of the parameter 

in the process can define the environment space  𝑆  from ∏ ℎ(𝑣𝑗),
𝑛
𝑗=1 𝑣𝑗  ∈  𝑉𝑗  impacting the 

performance of the textile process with regard to the k objectives. These parameter variables are 

independent to each other and obey a Markov process that models the stochastic transitions from 

a state St  at time step t to the next state St+1, where the environment state at time step t is:  
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 St = [ 𝑠𝑡
𝑣1 , 𝑠𝑡

𝑣2… 𝑠𝑡
𝑣𝑛] ∈ 𝑆      (5.4) 

RL algorithm trains an agent to act optimally in a given multi-agent environment based on the 

observation of states and other agents as well as the feedback derived from the interactions, 

acquiring rewards and maximizing the accumulative future rewards over time from the 

interaction [241]. In our case, the agents learn in the interaction with the environment and other 

agents by taking action that can be conducted on the parameter variables ∈ P {v1, v2… vn} at time 

step t. Specifically, the action of an agent in a time step t of optimizing a textile manufacturing 

process in the Markov game could be adjusting variable 𝑣𝑗  to keep (0) or change to up (+) and 

down (-) with a specific unit uj subjected to the constraint. As a result, there are 3n actions in total 

in the joint action space A and, for simplicity, the action vector 𝐴𝑡 at time step t could be:   

 𝐴𝑡 = [𝑎𝑡
𝑣1 , 𝑎𝑡

𝑣2 …𝑎𝑡
𝑣𝑛],     where 𝑎𝑡

𝑣𝑗 ∈ {−𝑢𝑗 , 0, +𝑢𝑗}, 𝑣𝑗  ∈  𝑉𝑗   𝑓𝑜𝑟 𝑗 =  1, … , 𝑛 (5.5) 

We define 𝐴 = ∏ 𝐴𝑖∈𝑚,𝑠∈𝑆
𝑖 (𝑠) for the joint action from overall the agent i’s set of pure actions 

at state s. The m objectives of textile manufacturing process optimization are assigned to m agents 

in the Markov game. As known that apart from the benefits derived from the distributed nature of 

the multi-agent system such as parallel computation, the experience sharing from different agents 

also significantly improve the multi-agent algorithms. Therefore, it is assumed that agents can 

observe each other’s action and rewards to select the joint distribution in our case, and the joint 

action is determined by the actions selected of each agent (𝐴1, … , 𝐴𝑖 , … , 𝐴𝑚).  

The state transition probabilities, as mentions that, are only dependent on the current state St 

and action𝐴𝑡. It specifies how the reinforcement agents take action 𝐴𝑡 at time step t to transit 

from St to next state St+1 in terms of T (St+1│St,  𝐴𝑡 ). For all  𝑎𝑡
𝑣𝑗 ∈ {−𝑢𝑗 , 0, +𝑢𝑗}, 𝑣𝑗  ∈  𝑉𝑗 , 

𝑇 (𝑆𝑡+1│𝑆𝑡,  𝐴𝑡) > 0 and ∑ 𝑇 (𝑆𝑡+1│𝑆𝑡,  𝐴𝑡) = 1𝑆𝑡+1∈𝑆 . The reward achieved by an agent in an 

environment is specifically related to its transition between states, which evaluates how good the 

transition agent conducts and facilitates the agent to converging faster to an optimal solution.  

When the reinforcement agents perform joint action 𝐴𝑡 at time step t to divert the system from 

St to next state St+1 with transition probability T, each agent would earn reward 𝑅𝑖(𝑆𝑡, 𝐴𝑡) from 

(5.3) of the objective functions. This procedure would be repeated at time t+1 again, and finally 

converge agents’ behaviors to a stationary policy.  According to the study in the previous chapter, 
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a random forests (RF) predictive model is applied to simulate the textile process in this proposed 

framework, and implement the objective functions (5.3) to earn the agents rewards. As illustrated 

in Figure 19 the textile manufacturing process multi-objective optimization problem in the 

paradigm of MARL, the optimization objectives are abstracted as RL agents, given feedbacks 

from the RF models integrated in the Markov game environment with state space formulated in 

Equation (5.4) that consist of all the parameter variables of the simulated textile process, the 

agents, are able to evaluate the values of its actions for adjusting the parameter variables with 

regard to the state (solution) and consequently improve its policy in the environment to optimize 

objectively gradually.  

 

Figure 19. The Markov game for textile manufacturing process multi-objective optimization 

in the proposed framework 

Stochastic games are neither fully cooperative nor fully competitive [252]. The performance of 

multi-objective optimization of our case in Markov game is determined by the agents’ capability 

of gathering information about the other agents’ behavior and the reward functions from the 

interaction to make a more informed decision thereafter. The rewards mechanisms along with the 

interaction among agents perform a significant function in this respect, so that the proposed 

system, similar to the study of [259], employs an utilitarian selection mechanism ℎ =

𝑎𝑟𝑔𝑚𝑎𝑥𝐴∈∆(𝐴(𝑆)) ∑ 𝑄𝑖(𝑠, 𝑎)𝑖∈𝑀  that maximize the sum of all agents’ rewards in each state to 

avoid the interruption of multiple equilibria. Convergence to equilibria is a basic stability 

requirement of MARL, and the Nash equilibrium is a well-known solution concept for the 

stochastic game that a joint strategy leading to a status of no agent is incentive to change its 
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strategy. But a correlated equilibrium with increased generality instead of Nash equilibrium is 

taken into consideration in this issue as it allows agents’ strategies to be interdependent. It is a 

joint distribution of actions from which none of the agents has any motivation to deviate 

unilaterally. Consequently, the solutions of the textile manufacturing process multi-objective 

optimization problem are correlated equilibria. 

Formally, given a Markov game, a joint stationary policy π leads to a correlated equilibrium 

when: 

 ∀𝑖 ∈ 𝑀, 𝑠 ∈ 𝑆│ ∑ 𝜋𝑠 𝑄𝑖
𝜋(𝑠, 𝑎) ≥  ∑ 𝜋𝑠 𝑄𝑖

𝜋(𝑠, 𝑎′)

𝑎∈𝐴−𝑖(𝑠)𝑎∈𝐴−𝑖(𝑠)

 (5.6) 

where 𝐴−𝑖(𝑠) is the set of action vector in state s excluding ones of agent i. The above 

inequality denotes that in state s, when it is recommended that agent i play a, it prefers to play a, 

because the expected utility of a is greater than or equal to the expected utility of 𝑎′, for all 𝑎′. 

 

Algorithm 3:  DQN based MARL main body: 

Input: game ℾ, RF models for simulating m objective performance 𝑓(𝑓1…𝑓𝑚), selection mechanism h, expected     

            performance of process P (p1, p2 … pm,), number of episodes     E , number of time steps N, learning rate 𝛼,  

            discount factor 𝛾 , the step updating DQN F, replay memory size D;  

Initialize function 𝑄 with random weights 𝜃; 

Initialize function 𝑄̂ with weights 𝜃− = 𝜃; 

Initialize state s0= (𝑣1, 𝑣2… 𝑣𝑛)  

For episode =1, E do 

    For time step=1,  N do 

        Choose an action randomly or at ∈ h using increasing ε-greedy policy 

        Execute action at , observe next state st+1  

        Estimate𝑓1(𝑠𝑡) … 𝑓𝑚(𝑠𝑡) and𝑓1(𝑠𝑡+1) … 𝑓𝑚(𝑠𝑡+1) to observe 𝑟𝑡  (𝑟𝑡 = √(𝑓𝑖(𝑠𝑡) − 𝑝𝑖)
2 − √(𝑓𝑖(𝑠𝑡+1)−𝑝𝑖)

2 ) 

        Store transition (st, at, rt, st+1) in D 

        Sample random minibatch of  transitions (st, at, rt, st+1) from D 

        Set 𝑦𝑖 = {
𝑟𝑗                                                       if  terminates at step 𝑗 + 1                    

𝑟𝑗 +  𝛾𝑚𝑎𝑥𝑎′𝑄̂(𝑠𝑗+1, 𝑎
′;  𝜃−)                    otherwise                                   

 

        Perform a gradient descent step on (𝑦𝑖 − 𝑄(𝑠𝑗 , 𝑎𝑗;  𝜃))
2

 with regard to 𝜃  

        Every R steps reset 𝑄̂ = 𝑄           
 

        st  ← st+1 

    End For 

End For 
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5.2.2 Deep Q-networks reinforcement learning algorithm  

As described in Chapter 4 about the classical RL algorithms using the tabular expression, it is 

not only short at recording the Q(s, a), but also poor of generalization in the environment with 

uncertainty.  The deep neural networks (DNNs) based Deep-Q-network (DQN) algorithm 

developed by Mnih et al. [242] is more suitable to tackle high dimensional problems in our case. 

Therefore, the multiple agents performing the Markov game would be trained by DQN 

algorithms as same as the one introduced in Chapter 4. 

5.2.3 DQN based MARL for multi-objective optimization of the textile process 

The pseudo-code of the DQN based MARL framework for multi-objective optimization of the 

textile manufacturing process is illustrated in Algorithm 3. Correspondingly, Figure 20 

graphically depicts a single episodic running of Algorithm 1. To learn a correlated equilibrium 

strategy, the DQN agents interact with the textile solution environment and other agents 

iteratively on the basis of local updates of Q-values and policy at each state. As mentioned, the 

random forest models (RF) are constructed to simulate the objective performances of the textile 

process in the proposed framework. Along with suitable reward mechanisms designed according 

to objective functions (in our framework, the reward of an agent is given by the improvement of 

the objective performance from the current state compared with the last state), the convergence of 

the DQN-based algorithm in multi-agent settings can be guaranteed.  

As the same as the reinforcement learning based framework established in Chapter 4, the 

algorithm developed here can work without episodes as the target of agents is to find the 

optimized solution, in terms of state in the environment with saticification of multiple objective 

performances in the textile process simulated by RF models, and the random initialization of the 

first state from each sub-state 𝑠𝑡
𝑣𝑖 , where parameter variables 𝑣𝑗  ∈  𝑉𝑗, are introduced with an 

episodic learning process to the agent for enlarging the exploration and preventing local optimum. 

Meanwhile, the employment of the increasing 𝜀 -greedy policy (Algorithm 2 introduced in 

Chapter 4 with a minor difference on the action selection mechanism among multiple agents) is 

also applied in this system to balance the exploration and exploitation of states at the learning 

period and optimizing period respectively. 
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Figure 20. Flowchart of the algorithm implementing the DQN based multi-criteria decision 

support system for textile manufacturing process optimization 

5.3. Application  

5.3.1 Experimental setup 

The application of textile ozonation process optimization is used in this chapter as well for 

estimating the multi-agent reinforcement learning (MARL) system in regard to multi-objective 

optimization. That is, optimizing the color performances in terms of k/s, L*, a*, and b* of the 

textile in the ozonation process by finding a solution including proper parameter variables of 

water-content, temperature, pH and treating time, minimizes the difference between such specific 

process treated textile product and the targeted sample. Therefore, there are four agents in the 

Markov game, and the state space 𝜑 of it is composed of the solutions containing four parameters 

(water-content, temperature, pH and treating time) in terms of St = [ 𝑠𝑡
𝑣1 , 𝑠𝑡

𝑣2 , 𝑠𝑡
𝑣3 , 𝑠𝑡

𝑣4]. In a time 

step t, given the adjustable units of these parameter variables u = 50, 10, 1, 1 with regard to the 

constraint ranges of [0, 150], [0,100], [1, 14] and [1, 60] respectively, as the action of a single 
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variable 𝑣𝑗  could be kept (0) or changed up (+) / down (-) in the given range with specific unit u, 

so there are 34 =81 actions totally in the action space and the action vector every single agent at 

time step t is  𝐴𝑡 = [𝑎𝑡
𝑣1 , 𝑎𝑡

𝑣2 , 𝑎𝑡
𝑣3 , 𝑎𝑡

𝑣4] , where  𝑎𝑡
𝑣1 ∈ {−50, 0, +50}, 𝑣1 ∈ [0, 150] ; 𝑎𝑡

𝑣2 ∈

{−10, 0, +10}, 𝑣2 ∈ [0, 100]; 𝑎𝑡
𝑣3 ∈ {−1, 0, +1}, 𝑣3 ∈ [1, 14]; 𝑎𝑡

𝑣4 ∈ {−1, 0, +1}, 𝑣4 ∈ [1, 60]. 

The transition probability is 1 for the states in the given range of state space above, but 0 for the 

states out of it.  The reward r of an agent at time step t is expected to be in line with how close the 

agent gets to its target representing the related objective function. We set up the reward function 

as illustrated below to induce the agents to approach corresponding optimization objective results: 

 𝑟𝑡 = √(𝑓𝑖(𝑠𝑡) − 𝑝𝑖)2 −√(𝑓𝑖(𝑠𝑡+1) − 𝑝𝑖)2   𝑓𝑜𝑟    𝑖 = 1,…𝑚 (5.9) 

As demonstrated the pseudo-code of DQN based MARL main body in Algorithm 1, the 

expected color performances of ozonation process treated samples ( 𝑝1,  𝑝2,  𝑝3,  𝑝4, in terms of k/s, 

L*, a*, and b*)  are sampled by experts as 0.81, 15.76, -20.84, and -70.79 respectively to function 

the system in the present case study. Therefore, there are four agents in this case with respect to 

their corresponding optimization targets. In addition to the targets, the parameters of DQN agents 

such as step F for updating Q-networks and replay memory size D, as well as the learning rate 𝛼 

and the discount rate 𝛾 for updating loss function, etc., are listed in Table 20. In particular, the F 

step for updating DQN here denotes that after 100 steps, the Q-networks would be updated at 

every 5 steps.  

Table 20. DQN algorithm setting in textile ozonation process case study 

F D 𝛼 𝛾 𝜀𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡  𝑎𝑚𝑎𝑥  E N 

5(>100) 2000 0.01 0.9 0.001 0.9 1 5000 

 

In order to reflect the effectiveness and efficiency of the proposed DQN-based MARL system 

for multi-objective optimization of the textile manufacturing process in this case study, multi-

objective particle swarm optimization (MOPSO), and Non-dominated Sorting Genetic Algorithm 

Ⅱ (NSGA-Ⅱ) are considered as the baseline algorithms. 

5.3.2 Results and discussion 

In the case application, we trained four agents based on the DQN algorithm in a Markov game 

to optimize an ozone textile process with multiple objectives. As shown in Figure 21 that the 
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increasing 𝜀-greedy policy was used for agents to balance the exploration and exploitation of 

states. Where the exploration decays in the first 900 steps so that agents initially lack the 

information and policy explore possible actions, but increasingly follows its policy exploiting the 

available information by taking action selection mechanism h, rather than acting randomly. The 

effects of it are clearly illustrated on the convergences of DQN agents given in Figure 22 (for the 

illustration conveniences, 200, 400, and 600 units of loss are additional given to agent 2, agent 3, 

and agent 4 respectively). It denotes that the deep Q-networks adapts successfully to the 

stochastic environment that the representation of Q-value in this deep Q-networks for agents is 

stable and accurate and the agents act deterministically after 900 steps when the 𝜀 -greedy 

increased to the maximum.   

 

Figure 21.  Increasing 𝜀-greedy policy for 

choosing action  

 

Figure 22. The loss function of DQN for 

four agents in the Markov game 

The agents targeted at optimizing the solution of a textile ozone process to approach the fabric 

color performance of 0.81, 15.76, -20.84, and -70.79  in regard to k/s, L*, a*, and b*. During the 

DQN agents interacted in the Markov game with 5000 steps, the minimum errors of each agent 

and their sum in total given by RF models are collected and displayed in Figure 23. The 

convergence diagrams of all the four agents and their sum in terms of minimum error, verify the 

effectiveness and efficiency of the designed reward function, and it seems that the solution with 

lower error can possibly be obtained along with growing time steps. 
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Figure 23. The minimum error of DQN agents and the sum of its versus time steps  

The comparison of the constructed framework with baseline approaches in regard to optimized 

results is depicted in Figure 24. The multi-agent reinforcement learning (MARL) system 

proposed performed dominated the baseline methods of MOPSO and NSGA-Ⅱ in our case study 

to optimize the ozonation process solution and achieve the objective color on treated fabrics. The 

difference from these comparative results could be explained as that the meta-heuristic algorithms 

of MOPSO and NSGA-2 have been reported that may fail to work with smaller datasets [15] and 

take an impracticably long time in iteration [260]. But more importantly, though they are 

effective to deal with low dimension multi-objective optimization problems, the increased stress 

of selection due to the growing dimension in the problem would decline the effects dramatically 

when the objectives are more than three.  

Target MARL MOPSO NSGA-ℾ 

Figure 24. Comparison of baseline algorithms and the proposed multi-agent reinforcement 

learning framework with simulated results 

5.4. Conclusions  

Multi-objective optimization of the textile manufacturing process is increasingly challenging 

because of the growing complexity involved in the development of the textile manufacturing 
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process. The use of intelligent techniques have been often discussed in this issue, although a 

significant improvement from certain successful applications is reported, the traditional methods 

fail to work with high-dimension decision space and require prior experts’ knowledge as well as 

human intervention. Upon which, this chapter proposed a multi-agent reinforcement learning 

framework to transform the optimization process into a Markov game, and introduced the deep 

Q-networks algorithm to train the multiple agents. The Markov game is neither fully cooperative 

nor fully competitive, so that an utilitarian selection mechanism is employed in the Markov game 

that maximizes the sum of all agents’ rewards (obeying the increasing ε-greedy policy) in each 

state to avoid the interruption of multiple equilibria and achieve the correlated equilibrium 

optimal solutions of the optimizing process. The results obtained from this chapter could be 

concluded as: 

(1) The multi-objective optimization problem of the textile manufacturing process could be 

drawn in a multi-agent system.  

(2) The formulation of optimizing the textile manufacturing process as a Markov decision 

process, and applying reinforcement learning can affectively solve the problem. 

(3) Introducing multiple RL agents to search the optimal process solutions is capable to deal with 

the textile manufacturing multi-objective optimization problems into the game-theoretic 

model. 

(4) Compared to the tabular RL algorithms applied in prior related works, the application of DQN 

in the multi-agent reinforcement learning system is more applicable and preferred to cope 

with the complicated large-scale realistic problems in the textile industry. 

(5) The application case study result reflects that the proposed MARL system is possible to 

achieve the optimal solutions for the textile ozonation process and it performs better than the 

traditional approaches.  
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6. Discussion, conclusions and future perspectives 

6.1. Summary of the thesis 

This thesis studies the modeling and optimization of the textile manufacturing process using 

intelligent techniques. The results of the systematic literature review provided directions and a 

theoretical base for the research, and formulated the research questions of the thesis. Three sub-

studies are conducted in this thesis to address the formulated research questions. 

The first formulated research question is related to the process modeling of textile 

manufacturing. As a case study of the textile process model development, the first sub-study 

comparatively investigated the applicability of intelligent techniques of the extreme learning 

machine (ELM), support vector regression (SVR), and random forest (RF) for modeling the 

textile ozonation process to simulate the interrelationships of process parameters and process 

performances. 

Depending on the results of the first sub-study, the well-constructed random forest (RF) model, 

illustrated excellent approximation ability and advancement than the other methods to simulate 

the complex and uncertain impacts of textile process variables on its performance, was therefore 

further implemented in an extension to the construction of decision support system. As a growing 

number of the textile manufacturing optimization problems were coming up with large-scale data 

and high dimensional decision space in recent years, and instead of a single standard, multi-

criteria is increasingly taken into consideration in these problems, the second sub-study proposed 

a decision support framework for optimizing the textile manufacturing process by combining the 

developed model of RF with the human knowledge-based multi-criteria structure of analytic 

hierarchy process (AHP) and the deep reinforcement learning (DRL) algorithm. The proposal of 

the AHP, a multi-criteria decision making (MCDM) tool, involves the considerations of that the 

quality of textile process performance is governed by a few criteria and their significance with an 

overall objective is different. While formulating the textile manufacturing process optimization 

problem into a Markov decision process (MDP) paradigm and applying deep reinforcement 

learning (more specifically, DQN, the Deep Q-networks) instead of current methods to 

collaboratively approach the optimization problems in the textile manufacturing process, 
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concerns the growing complexity in terms of large-scale data and high dimensional decision 

space in the textile manufacturing sector.  

In order to cope with the challenges from future development of the textile manufacturing 

industry, the third sub-study, at last, developed a multi-agent reinforcement learning platform. It 

furthermore implemented the deep reinforcement learning technique in a multi-agent system, and 

the transformation of the textile manufacturing process optimization problem as Markov decision 

process was additionally combined with game theory to form the targeted multi-objective 

optimization problem as a Markov game paradigm. Multiple agents were trained by the deep 

reinforcement learning algorithm of DQN to deal with the formulated multi-objective 

optimization problems in the textile manufacturing process.  

The textile process of ozonation is applied in the frameworks proposed in sub-study 2 and sub-

study 3 to evaluate the effectiveness of the developed systems. Besides, the traditional multi-

objective optimization algorithms of MOPSO and NSGA-Ⅱ were compared with the proposed 

platform in sub-study 3. 

6.2. Discussion 

 Research question 1: How to determine an intelligent algorithm appropriate for modeling a 

textile manufacturing process? 

Table 21. Summary of sub-study 1 

Sub-study Sub-research question Experiment outcome 

Modeling a textile process 

using intelligent 

techniques: a case study for 

color fading ozonation 

RQ1-1: What factors dominate 

the textile process modeling? 

 

RQ1-2: Which approach is 

preferred for modeling the 

textile process? 

1-1: Converging fast with less training data，and 

performing well with multiple-input multiple-output.  

 

1-2: Both the RF and SVR are potentially applicable. 

While the RF is more recommended when the 

training time is not significantly concerned. 

 

The first research question is in regard to the modeling of the textile manufacturing process. It 

answered how to develop and what are the proper intelligent techniques for the textile process 

modeling by comparatively investigating the applications of extreme learning machine, support 

vector regression and random forest for modeling the textile ozonation process. Similar to the 

other researches reviewed, this sub-study on modeling the textile process also lacks training data, 
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but involves multiple-inputs and multiple-output, which right reflect the current situation of the 

application of artificial intelligent techniques in the textile industry. These features dominate the 

preference of methods’ performance in the textile manufacturing process modeling.  

The model of a textile manufacturing process is always problem-specific and the novel 

methods are continuously developed in recent years. The comparison of the aforementioned novel 

methods for modeling a specific textile manufacturing process shows that both the SVR and RF 

are potential candidates as their predicted results on the modeled process had a good agreement 

with the actual output data entirely as well as individually. However, taking the training time and 

cost into consideration, the SVR model would be more recommended to be applied in real use, 

but RF would be more recommended in the cases where training time is not significantly 

concerned (e.g. academic research). In contrast, the ELM models performed poorer in the 

prediction and were very unstable in terms of predicting certain individual outputs in multi-

variable process modeling. 

 Research question 2: How to deal with the complex multi-objective optimization problem 

with reinforcement learning in the progressively developing textile process? 

Table 22. Summary of sub-study 2 

Sub-study Sub-research question Experiment outcome 

Optimizing textile 

manufacturing process 

using  deep 

reinforcement learning 

(DRL) based 

intelligent system 

RQ2-1: How to optimize with 

multiple objectives in this issue? 

 

 

RQ2-2: What advantages are 

brought to the textile 

manufacturing process 

optimization through DRL? 

2-1: Analytic hierarchy process, a based multi-criteria 

decision-making method which involves both objective 

and subjective factors, agrees with the characteristic of 

the decision-making problem in the textile chemical 

manufacturing process that can be us. 

 

2-2: The flexible nature of RL enables it to pre-

compute offline, making online evaluation fast in large 

systems with high-dimension. DRL is advantageous to 

the industry process that to well handle the large-scale 

stochastic multiple-input multiple-out and high-

dimensional decision space. 

 

The second research question addresses the multi-objective optimization problem in the textile 

manufacturing process on the basis of the model established (RF models developed in the first 

sub-study) with respect to the multi-input and multi-output.  The optimization problems in the 

textile manufacturing process usually involve conflicting objectives as the overall performance of 
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textile processes is normally governed by a few criteria, so that decision-making or optimization 

in this domain must take multi-criteria or multi-objective into account. It is found that the analytic 

hierarchy process (AHP), a based multi-criteria decision-making method, has been proven to be 

an extremely useful decision-making method in the textile industry from many issued 

applications. The objective and subjective factors of AHP agrees with the characteristic of the 

decision-making problem in the textile manufacturing process, so that the AHP can well 

formulate the multiple objectives into a single target and simplified the problem. 

The flexible nature of RL enables it to pre-compute offline, making online evaluation fast in 

large systems with high-dimension. Deep reinforcement learning (DRL) is a recently developed 

method that can effectively work in a complex system. It is advantageous to the industry process 

that to well handle the large-scale stochastic multiple-input multiple-out and high-dimensional 

decision space. Therefore, the second sub-study applied a reinforcement learning algorithm to 

optimize the textile process, and the collaborative application of it with the constructed 

simulation models of RF and the multi-criteria decision-making method of AHP is investigated. 

The applied case study illustrated that the developed system is capable of learning to master the 

challenging decision-making tasks in the textile manufacturing industry and performed better 

than traditional methods. 

 Research question 3: Is there further improvement we can do to address the increasing 

searching dimension of optimizing a textile process in the upcoming big data era with multi-

agent reinforcement learning?  

Table 23. Summary of sub-study 3 

Sub-study Sub-research question Experiment outcome 

Multi-objective 

optimization of textile 

manufacturing process 

using deep 

reinforcement learning 

based multi-agent 

system 

RQ3-1: How to 

optimize with multiple 

objectives in this issue? 

 

RQ3-2: What 

advantages are brought 

to the textile 

manufacturing process 

optimization through 

multi-agent system? 

3-1: The optimization objectives are formulated as DQN 

agents that trained through self-adaptive process constructed 

upon a Markov game employing a utilitarian selection 

mechanism which maximizes the sum of all agents’ rewards in 

each state to achieve the correlated equilibrium optimal 

solutions of the optimizing process and avoid the interruption 

of multiple equilibria. 

 

3-2: Apart from the benefits derived from the distributed 

nature of the multi-agent system such as parallel computation, 

the experience sharing from different agents also significantly 

improve the reinforcement learning of agents. 
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In order to better address the increasing complexity in the multi-objective optimization problem 

in the textile manufacturing process with respect to the large-scale data and high-dimensional 

decision space, the multiple optimization objectives in the problem are formulated as targets of 

the multiple DQN agents trained through self-adaptive process constructed upon a Markov game. 

A utilitarian selection mechanism is employed, which maximizes the sum of all agents’ rewards 

in each state to achieve the correlated equilibrium optimal solutions of the optimizing process and 

avoid the interruption of multiple equilibria. This multi-agent reinforcement learning system can 

not only dramatically reduce the computation because of the distributed nature of the multi-agent 

system but also significantly enrich the reinforcement learning agents to learn the knowledge of 

the textile process from the experience sharing from different agents. 

6.3. Contributions of the thesis 

The contributions of this Ph.D. research are related to the modeling and optimization 

framework established based on the literature review. Specifically, one modeling technique was 

proposed from the comparison with multiple approaches on modeling a textile ozonation process, 

and two decision support frameworks applying deep reinforcement learning techniques were 

constructed with the collaboration of the developed model and multi-criteria decision-making tool 

as well as multi-agent system respectively.  The contributions of this thesis are listed below: 

(1) The prior applications of modeling and optimization of the textile manufacturing process 

were reviewed from the perspectives of different intelligent techniques and different textile 

processes, and the limitations of current methods were summarized with the future 

perspectives. 

(2) The modeling of a textile ozonation process was investigated in terms of mapping the process 

parameters of pH, temperature, water pick-up, time (of the process) and original color (of 

textile) to the process performances of the color performance (K/S, L*, a*, b* values) of treated 

textile using Extreme Learning Machine (ELM), Support Vector Regression (SVR) and 

Random Forest (RF) respectively. RF and SVR were found that perform better than ELM as 

the ELM models were very unstable in the case of predicting the certain individual output. 

Both RF and SVR are potentially applicable. The SVR may be more recommended to be used 

in the real application due to its balancer prediction performance with less training time, and 
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the RF would be more recommended in the cases which require more accuracy and has higher 

tolerance on the training time cost. 

(3) Taking the RF process model to assist textile manufacturing optimizers to make a decision 

under uncertainties, a multi-criteria decision support system was presented. In terms of the 

widely existing multi-criteria diction-making problems in the field of textile manufacturing, 

the analytic hierarchy process (AHP) was proposed to cooperatively work with the 

reinforcement learning (RL) algorithm. The formulation of the textile manufacturing process 

optimization as a Markov decision process paradigm and the solution based on the RL 

algorithm was proposed for the first time to deal with decision-making issues in the textile 

industry.  

(4) The application of DQN was proposed to train the RL agent. Compared to the tabular RL 

algorithms applied in prior related works, DQN is more applicable and preferred to cope with 

the complicated realistic high-dimensional problem in the textile industry. The effectiveness 

of this proposed multi-criteria decision-support system has been validated in the developed 

RF model of the textile ozonation process, which showed that it can master the challenging 

decision-making tasks in the textile manufacturing processes. 

(5) Multi-objective optimization of the textile manufacturing process is increasingly challenging 

because of the growing complexity involved in the development of the textile manufacturing 

process. In the developed system above, the conflicts of objectives in a multi-objective 

optimization problem of the textile process were depicted by the expert estimation, which 

may hinder the application of it in cases without substantial numerical expertise. To this end, 

a multi-agent reinforcement learning framework was developed. It transforms the multi-

objective optimization process into a Markov game, and introduced the deep Q-networks 

algorithm to train the multiple agents. 

(6)  A utilitarian selection mechanism is employed in the Markov game that maximizes the sum 

of all agents’ rewards (obeying the increasing ε-greedy policy) in each state to avoid the 

interruption of multiple equilibria and achieve the correlated equilibrium optimal solutions of 

the optimizing process. The application result of this multi-agent reinforcement learning 

system on the RF model of the textile ozonation process reflected that the proposed system is 

possible to achieve the optimal solutions for the textile ozonation process and it performs 

better than the traditional approaches.  
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6.4. Limitation and perspectives in future research 

From a comparative study, the random forest models of the textile manufacturing process were 

developed in this thesis to construct a decision support system with the collaborations of the 

analytic hierarchy process as well as the deep reinforcement learning algorithm, and a multi-

objective optimization platform on the basis of a multi-agent reinforcement learning system, 

respectively.   

However, the proposed models and optimization systems have some limitations. First of all, in 

this thesis, the validation of the model and decision-support system was only conducted on the 

textile ozonation process with experimental data, to see the realistic and practical effects of all 

these models and systems on the real industry, the development and implementation of them in 

the real industry with various applications would be one of the most interesting directions for 

future research. 

In the comparative study, the intelligent modeling techniques considered were only limited in 

extreme learning machines, support vector regression, and random forest with a small range of 

the model parameters, which may impede the performance of the developed optimization systems 

when the modeling accuracy is not acceptable in certain other textile manufacturing cases. 

The proposed multi-criteria decision support system can be generic to other applications for 

optimizing process parameters. However, the analytic hierarchy process approach of it relies 

heavily on experts’ estimation, which may limit the generalization of it in certain areas, especially 

when there are a huge number of alternatives and alternative scores corresponding to each 

decision criterion are known objectively [66].  

Moreover, for both of the DRL based multi-criteria decision support system and the multi-agent 

system based multi-objective optimization framework, it is well known that the practice and 

effectiveness of RF and DQN rely strongly on big data and computation power which is quite 

limited in the application of the textile industry nowadays. But the application of artificial 

intelligence techniques is growing in the textile manufacturing industry, such concerns could be 

properly addressed in the industry 4.0 era when it is able to take full advantage of the Internet of 

Things (IoT) environment. Following the development, the system can be fed with new data and 

scenarios continuously to learn the process in the online environment or more detailed simulation 
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models that can better represent the complex interrelationships of the textile process variables are 

developed to retrain the RL agents, so that to keep updated the system with the development of 

the textile industry for the process optimization and even online adaptive parameter control. The 

proposed system trains the agent offline in a process simulator to obtain general knowledge of the 

process and assist decision-making, while the future use of it could be extended to online 

optimization and online optimal control of the textile manufacturing process for preventing long 

online computation times. Future research should devote more effort to test the proposed 

framework and broaden the application of it in more textile chemical manufacturing processes by 

collecting real empirical data and construct the corresponding MDP paradigm. Moreover, the 

future works could try to comparatively investigate more about other deep reinforcement learning 

algorithms in the textile manufacturing applications as the DQN is known needing an enormous 

amount of time-steps state fails at identifying which part is responsible for this speed-up, which 

may hinder its use in the future. 

The verification of the two developed optimization systems was demonstrated through 

simulated results, the more efforts should be addressed to the development of a real-work system 

in the future.  
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