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ABSTRACT

The increasing variety of tasks which require human-computer interfaces
result in the production of new and improved sensing devices and therefore causes
the obsolescence of older technologies. In a world of limited resources, the
production rate of new interaction devices is unsustainable. Sustainable design
calls for re-appropriation of existing materials, so we need to design interfaces
that are modular, re-usable, yet that allow new interaction techniques. We believe
that combining the strength of different input devices through data fusion can
enable powerful interactions while extending the lifespan of electronic materials.
As the complexity of sensors increases, their combination presents new challenges
and opportunities, notably in terms of computational power and user behavior,
which we explore in this document.

We first explain how previous work conducted in different sub-domains of
human-computer interaction fit into the data fusion perspective. From this per-
spective, we take all aspects of input devices into consideration to define the
framework to which this thesis belongs. The first step consists of handling input
devices to provide meaningful information to be fused, so we demonstrate how to
go from a complex data source such as a camera stream, to a small, descriptive
bit of information that enables lightweight fusion. Then, we separate the benefits
of multi-sensor data fusion for interaction spaces into two categories; enriching
the interaction space and extending the interaction space. Our contribution to
the enriched spaces mainly focuses on musical interfaces where we propose a
movement sonification application on a mobile device and a visual feedback
mechanism, all by using a combination sensors. Further, we contribute a virtually
extended surface for large display interactions using a hand-held touchscreen and
examine the user’s appropriation to the new interaction space.
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RESUMÉ

La variété croissante des tâches qui nécessitent des interfaces homme-machine
aboutit à la production des nouveaux capteurs améliorés et provoque donc
l’obsolescence des technologies plus anciennes. Dans un monde aux ressources
limitées, le taux de production de nouveaux appareils homme-machine ne semble
pas viable. La conception durable nécessite une réappropriation des matériaux
existants, nous devons donc concevoir des interfaces modulaires, réutilisables,
mais qui permettent de nouvelles techniques d’interaction. Nous pensons que
la combinaison des puissances de différents périphériques grâce à la fusion de
données peut permettre des interactions puissantes tout en prolongeant la durée
de vie des matériaux électroniques. À mesure que la complexité des capteurs aug-
mente, leur combinaison présente de nouveaux défis et opportunités, notamment
en termes de puissance de calcul et de comportement des utilisateurs, que nous
explorons dans ce document.

Nous expliquons d’abord comment les travaux antérieurs menés dans dif-
férents sous-domaines d’interaction homme-machine s’intègrent dans la perspec-
tive de la fusion de données. Dans cette perspective, nous prenons en compte tous
les aspects des dispositifs d’entrée pour définir le cadre auquel appartient cette
thèse. La première étape consiste à manipuler les périphériques d’entrée pour
fournir des informations significatives à fusionner.Nous montrons donc comment
passer d’une source de données complexe, telle qu’un flux de caméra, à une simple
information descriptive qui permet une fusion légère. Ensuite, nous séparons les
avantages de la fusion de données multi-capteurs pour les espaces d’interaction en
deux catégories; enrichir l’espace d’interaction et étendre l’espace d’interaction.
Notre contribution aux espaces enrichis se concentre principalement sur les inter-
faces musicales où nous proposons une application de sonification de mouvement
sur un appareil mobile et un mécanisme de retour d’information visuelle, le tout
en utilisant une combinaison de capteurs. De plus, nous contribuons à une surface
virtuellement étendue pour les interactions sur grand écran à l’aide d’un écran
tactile portable et examinons l’appropriation de l’utilisateur dans ce nouvel espace
d’interaction.



Contents

Contents 3

List of Figures 5

1 Introduction 7
1.1 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Thesis organization and contributions overview . . . . . . . . . 10

2 Literature Overview 13
2.1 Brief history of multi-sensor data fusion . . . . . . . . . . . . . 13
2.2 Multi-sensor interactive systems . . . . . . . . . . . . . . . . . 16

2.2.1 Multimodality . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Ubiquitous computing . . . . . . . . . . . . . . . . . . 19
2.2.3 Composite input devices . . . . . . . . . . . . . . . . . 21
2.2.4 Tangibles . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.6 Missing link . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Taxonomy of input devices . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Material considerations . . . . . . . . . . . . . . . . . . 26
2.3.2 Gestural considerations . . . . . . . . . . . . . . . . . . 32
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Heterogeneity in interactive systems . . . . . . . . . . . . . . . 36
2.4.1 Homogeneous data fusion . . . . . . . . . . . . . . . . 36
2.4.2 Heterogeneous data fusion . . . . . . . . . . . . . . . . 37

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 From signal to meaningful interaction data 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



4 CONTENTS

3.2 Low-cost motion information from RGB cameras . . . . . . . . 45
3.2.1 Representing continuous gestures . . . . . . . . . . . . 48
3.2.2 Representing discrete gestures . . . . . . . . . . . . . . 50
3.2.3 Affordances . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Seamless calibration for depth cameras . . . . . . . . . . . . . . 58
3.3.1 Affordances . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Enriching the interaction space with data fusion 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Filtering image streams with a touchscreen . . . . . . . . . . . . 66

4.2.1 The phone with the flow . . . . . . . . . . . . . . . . . 67
4.2.2 Design Space . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Adding visual feedback to sensors . . . . . . . . . . . . . . . . 75
4.3.1 Revealing gestures . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Feedback and extended control . . . . . . . . . . . . . 77
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 A multiscale depth camera . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Temporal and spatial resolution . . . . . . . . . . . . . . 81
4.4.2 Design space . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3 Continuity of interaction spaces . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Extending the interaction space with data fusion 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Extending a mobile touchscreen . . . . . . . . . . . . . . . . . 88

5.2.1 Extended continuous relative pointing gesture . . . . . . 91
5.2.2 E-Pad design . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.5 Discussion and design guidelines . . . . . . . . . . . . . 104

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 107
6.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 111



List of Figures

2.1 JDL fusion model. Extracted from [40] . . . . . . . . . . . . . . . . 14
2.2 The IMU Smart Glove rev 2, extracted from [134] . . . . . . . . . 21
2.3 ReacTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Buxton’s taxonomy. Extracted from [35] . . . . . . . . . . . . . . 27
2.5 Card’s taxonomy. Extracted from [37] . . . . . . . . . . . . . . . . 28
2.6 Card’s radio. Extracted from [37] . . . . . . . . . . . . . . . . . . 28
2.7 Human factors in Truillet’s taxonomy. Extracted from [171] . . . . 29
2.8 Karam’s taxonomy. Extracted from [89] . . . . . . . . . . . . . . . 33
2.9 (left)Homogeneous Kinect fusion for a dance performance. Extracted

From [62] (right) Heterogeneous fusion of a touch surface and the
volume above. Extracted from [117] . . . . . . . . . . . . . . . . . 37

3.1 Color representation of the optical flow. (Top) Color space: hue
indicates direction, saturation indicates amplitude. (Middle) Swipe
right gesture, calculated flow, filtered flow. (Bottom) Grasp gesture,
estimated flow, filtered flow . . . . . . . . . . . . . . . . . . . . . . 48

3.2 (left) 8 directions (right) Histogram of the grasp gesture . . . . . . . 50
3.3 Left: Wide-angle lens. Right: Interacting with the lens. . . . . . . . 53
3.4 6 gestures in the dataset. (Top row) Example frames from the start of

each gesture. (Bottom row) Color representation of the optical flow. 54
3.5 Pipeline of our method . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Confusion matrix for our dataset . . . . . . . . . . . . . . . . . . . 58
3.7 Zhang’s checkerboard images [196] . . . . . . . . . . . . . . . . . 59
3.8 The vectors on the hand. . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 SRS can be moved to change target . . . . . . . . . . . . . . . . . . 62

4.1 From scene to the the touchscreen. . . . . . . . . . . . . . . . . . . 67
4.2 Movement sources. (Left) Self-motion, (Right) World-motion. . . . 69
4.3 Simultaneous finger use . . . . . . . . . . . . . . . . . . . . . . . . 73

5



6 LIST OF FIGURES

4.4 The screen use during user experiences. (Left) Self-motion, (Right)
World-motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Computation time of the features vs region size . . . . . . . . . . . 74
4.6 (a) Revgest in a setup with two projectors and one depth camera for

public performance. The top projector is placed behind the musician
and allows for feedback visible only to them. A virtual sphere is
attached to the musician’s right hand and provides feedback on finger
movements sensed by a glove, another sphere in green controls a
delay effect. (b) The resulting augmented gestural instrument. (c)
Another glove based gestural instrument. (d) Augmentation of a
handheld instrument. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 T-Stick. (left) Visual feedback for musician (right) for the spectators 80
4.8 Sensor placement. 1. Kinect, 2. Leap Motion . . . . . . . . . . . . 82
4.9 Projection of Leap Motion’s fingertips to Kinect’s coordinates. . . . 83
4.10 An extended gesture through hand pose transfer. . . . . . . . . . . 85

5.1 E-Pad functions: (a) Coordinates of E-pad; (b) pointing on the pad;
(c) continuing in the air; and (d) releasing the cursor. . . . . . . . . 90

5.2 3d printed markers on the smartphone and the user’s dominant hand
and the index finger. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Estimated paths of the finger. . . . . . . . . . . . . . . . . . . . . . 94
5.4 An example of displacement vector estimation on the x axis. Black:

Displacement of the finger. Blue: Projected displacement. Red:
Displacement obtained by our method. . . . . . . . . . . . . . . . . 96

5.5 Clutching in the air . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Target positions and movement directions. . . . . . . . . . . . . . . 100
5.7 Effect of tolerance on movement time . . . . . . . . . . . . . . . . 100
5.8 Effect of tolerance on number of clutches . . . . . . . . . . . . . . 101
5.9 Effect of technique on error rate . . . . . . . . . . . . . . . . . . . 102



One

Introduction

The number of HCI devices that surround us is increasing. Mobile devices
such as smartphones, tablets and smart-watches are the "handiest", they are used
by a vast number of consumers. These devices contain various types of sensors,
cameras, touch-screens, microphones, accelerometers, proximity sensors etc.
Every sensor comes with their own interaction space, that can be a surface (touch-
screens, buttons) or a volume (cameras, microphones). Stationary devices such as
computer vision systems (depth, rgb, infrared cameras), head mounted displays,
wearable technologies are often used in public settings for both scientific and
artistic applications. With the advances in the appropriation of these technologies
in our daily life, we need newer and more powerful devices.

The constant need of newer material is not sustainable. Blevis [27] argues
that HCI’s focus on sustainability is often anthropocentric, that its requirements
are derived from users, rather than the global good. He states that software drives
the demand for new hardware, causes premature obsolescence of old materials. I
agree that sustainable interaction design (SID), should take into account the finite
primary materials when we design the software.

Producing new electronic devices requires precious metals such as gold,
silver, copper, platinum and so on [16], but also rare earth elements (REE) such
as neodymium, dysprosium and so on [96]. These elements have important
properties such as heat resistance and conductivity and difficult to replace. For
example, Royal Australian Chemical Institute [159] reports that in the next 20
years, the demand for Neodymium and Dysprosium will grow 700% and 2600%
respectively and the only way to meet this demand will be through recycling. To
some extend these important elements can be harvested from urban mines (e-
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1. INTRODUCTION

waste) [16], but given the fact that the recycling rate of REE is less than 1% [34],
it would be wiser to keep the value in products to eliminate waste.

Even though the e-waste can be used creatively [94], most of the use is limited
to decorative purposes. Re-appropriation of old devices by means of hacking
rarely takes the energy consumption into consideration. This is why designing
interaction which promotes renewal and reuse [27] is essential. The ecological
limits might require more drastic measures [98] which involves legislation and
public policy, thus sustainable human computer interaction (SHCI) will adopt
more determined research aims to join forces in the battle against climate change.
Yet, in this thesis we try to explore an approach that may be beneficial in achieving
longevity of material.

Can we combine existing materials for a new interaction technique instead
of waiting on new hardware to obsolete the older techniques? Can we conceive
these systems in a way that the hardware can be detached and reused for other
tasks? If so, how do the users adapt to such systems?

We believe these questions should be considered on technological and con-
ceptual levels. On the technological level, we must figure out how to fuse the
data from multiple sources. Sources may refer to sensors or more generally input
devices, because composite devices blurred the distinction by employing multiple
sensors in the same entity. Therefore, I use the terms interchangeably. Data fusion
can be defined as the combination of multiple sources about specific phenomenon
to obtain an improved quality of information. Humans combine their senses to
increase their perception of the surroundings. Along with the traditional senses
(sight, hearing, taste, smell, touch), humans posses other sensory modalities such
as thermoception, proprioception, chemoreception to interpret and to react to
stimuli. What considered a single sense is in fact a combination of multiple
receptors. Our brain combines both eyes to see or both ears to hear, but the taste
involves the nose and the tongue. Machine perception is also broadened by multi-
sensor systems. Homogeneous sensor groups (analogous to two eyes) increase
the reliability of the systems, while heterogeneous sensor groups (analogous to
nose and the tongue) are usually employed to enhance awareness of the machines.
If sensors observe the same physical phenomena, the fusion can be achieved in
low level using raw data. If the sensors focus on different properties of the same
observation, the fusion happens on semantic level once each sensor has made
a preliminary decision. As the number and the variety of sensors increase in a
system, managing the relations between sensors on different levels becomes a
challenging task.

8



Data fusion is often used in human computer interaction. When the informa-
tion sources provide simple outputs, the fusion goes unnoticed. The keyboard &
mouse duo is the simplest yet most commonly used devices that combine user
input. Holding down or releasing the control key while clicking sequentially on
multiple items, changes the output of the action. Thus, the outcome depends on
the fusion of the states of the devices. However, the data fusion becomes more
interesting as the complexity of the sources increases. Devices such as cameras
or touchscreens, provide rich information that should be processed before being
included in decision making. Not only this requires careful analysis of processing
resources and tools, it also raises interesting questions which influence user’s
behavior.

At this point we should discuss the conceptual level. Heterogeneous multi-
sensor systems permits the creation of compound interaction techniques [176]
that increase the size of the command vocabulary and offer users more nuanced
control. As we gather data from different sources, we should also distribute
interaction to different components. Spatiality is the key to the distribution of
interaction. In proxemics , spatial relationships play an important role in how we
physically interact, communicate, and engage with other people and with objects
in our environment. Interfaces and users can react to the position and distance
of its entities as either continuous movements, or as movements in and out of
discrete proxemic zones. Seamless transition between these spaces is essential to
create a consistent interaction experience.

The opportunities offered by the developing technologies can be explored with
existing interaction techniques. Yet, new interaction techniques emerge through
appropriation of the technology by communities of users [65]. The emergence of
techniques is faster when it comes to multi-sensor systems, as the novelty does not
stem only from individual technologies, but also from the intersecting interaction
spaces. However, in order to appropriate the emerging technologies, we have to
make them usable to an extent. How can we enable multi-sensor spaces for users
to facilitate the exploration of the new techniques?

A similar research question was asked in a workshop about Blended Inter-
action Spaces [49]: how can Blended Interaction Spaces facilitate seamless
integration of individual creative sessions (e.g. using iPads and mobile phones)
with collaborative ones (e.g. using wall sized displays in combination with iPads),
hereby allowing for ideas to travel across platforms and contextual boundaries?”.
Here, “seamless integration” is the keyword that describes our intent. We are
interested not only in the integration of individual and collaborative elements, but
also in all modalities that open artistic and expressive opportunities.

9



1. INTRODUCTION

1.1 THESIS STATEMENT

In this thesis, I explore the new approaches data fusion brings to HCI by
combining strengths of different input devices. My dissertation focuses on how to
merge information obtained by multiple HCI devices not only by concentrating on
the data but also by taking into account the interaction spaces. To this end, I start
by explaining how to prepare input devices to extract meaning for lightweight
fusion. Then I propose multi-sensor interfaces in two contexts. First, I consider
enriching the interaction space by using the intersection of inputs and provide
design spaces. Then I investigate extending the interaction space by concatenating
inputs and examine how users adapt to compound interaction spaces.

1.2 THESIS ORGANIZATION AND CONTRIBUTIONS OVERVIEW

This thesis is organized in three contribution chapters which cover work issued
across four publications parts of which are distributed in different subsections
for consistency. Let us note that in order to allow the reader to understand
the position of the contributions with respect to the state-of-the-art, I provide a
literature overview in chapter 2.

In chapter 3, I present the first step to a reliable data fusion that is the prepara-
tion of sensors. This involves extracting meaning from an input stream of data
which is a challenging step when the abstraction level of the sensors increases.
First, I illustrate the concept with the extraction of motion information from RGB
cameras. Section 3.2.1 presents extracting meaning for continuous gestures and
is part of our work in [9]. Section 3.2.2 explains using the motion information
for very simple descriptions of discrete gestures and is part of our work in [10].
Then, in order to put individual source descriptors in the same context, I explore
a seamless calibration technique for depth cameras which observe a common
volume.

In chapter 4, I argue that features can be combined at the intersection of devices
to obtain richer interaction techniques. First, I illustrate the fusion of simple
motion information with touch input in a mobile context. The use of touchscreen
allows easy filtering of the motion information and decreases the computational
time while opening new expressive opportunities for artistic expression. The
mobile application was presented in [9]. Then in section 4.3, I show how depth

10



1.2. Thesis organization and contributions overview

sensors can complement other sensors to provide visual feedback and guide the
users during interaction. This work was a subsection of our work in [24]. Finally
I present a design space for local precision refinement with depth cameras which
operate at different proximities.

In chapter 5, instead of limiting the interaction to the intersection of devices,
I explore the interaction space which stems from the concatenation of a mobile
touchscreen with its surrounding 3D volume. Then I present a user study to test its
capacity for commanding a large display using extended continuous gestures that
start on the touch surface and end in mid-air. This chapter corresponds entirely to
our work in [11]. Finally, I provide guidelines for future work in the conclusion.

11





Two

Literature Overview

Human-computer interaction communities have been using data fusion to
achieve various tasks. It is not a concept which originated from our domain, yet
its impacts on our work are visible throughout the literature. To define the context
of this document, in this chapter I briefly present the beginnings of data fusion,
then I argue about how different sub-domains of HCI regularly use data fusion,
consciously or unconsciously. Moreover, I present a taxonomy of input devices to
underline the specific elements to consider for the framework of our contributions
that is heterogeneous systems. Finally, I provide examples of existing interactive
systems that fit into the framework we created.

2.1 BRIEF HISTORY OF MULTI-SENSOR DATA FUSION

The most referred [40] [73] [189] conceptualization of fusion systems is the
JDL model. This definition of data fusion was provided by the Joint Directors
of Laboratories (JDL) workshop [181]: A multi-level process dealing with the
association, correlation, combination of data and information from single and
multiple sources to achieve refined position, identify estimates and complete and
timely assessments of situations, threats and their significance.

JDL model (Figure 2.1) is conceived for military applications and consists
of five levels. Source preprocessing selects the sensors that are most crucial to
current situation and allocates the processing sources. In the object refinement
level, sensor data is transformed into a consistent set of units and coordinates
and the captured object’s attributes are refined. Situation refinement focuses
on relational information to determine the meaning of a collection of entities.

13



2. LITERATURE OVERVIEW

Figure 2.1: JDL fusion model. Extracted from [40]

In other words, it addresses the interpretation of data. Threat refinement level
predicts the enemy threats by reflecting the ongoing situation into the future.
Process refinement level encompasses the fusion domain because it supervises
other processes. It identifies what information is needed to improve the multilevel
fusion product.

The right side of the Figure 2.1 shows the human computer interaction function
for fusion systems. HCI allows human input such as commands and information
requests. In general, HCI incorporates not only multimedia methods for human
interaction (graphics, sound, tactile interface, etc.),but also methods to assist
humans in direction of attention, and overcoming human cognitive limitations.

However JDL model is considered too specific for military applications. There-
fore, others [56] [73] [50] [108] tried to extend the model to respond to general
issues of data fusion. Castanedo [40] provided a classification of data fusion
techniques to highlight its main steps for broader application areas.

Durrant-Whyte [56] proposed classification of data fusion techniques by the
relations between data sources. Complementary data fusion occurs when the
information provided by the input sources represents different parts of the scene
and so that it be used to obtain more complete global information. Redundant
fusion takes place when two or more input sources provide information about the
same target and they can be fused to increase the confidence level of the decisions.
Cooperative fusion occurs when the provided information is combined into new
information that is typically more complex than the original information.

14



2.1. Brief history of multi-sensor data fusion

Dasarathy [50] proposed a classification depending on the input-output rela-
tions. Data in-data out: This type of data fusion processes raw input and outputs
raw data to achieve more reliable or accurate data stream. Data in-feature out:
the data fusion process gathers raw data from the sources to extract features or
characteristics that describe an object of interest in the environment. feature
in-feature out: both the input and output of the data fusion process are features.
Thus, the data fusion aims to improve the quality of features, or to obtain new
features. feature in-decision out: this level requires features as input and outputs
a set of decisions . According to Dasarathy, most of the systems that perform a
decision based fusion on a sensor fits into this category, however it often requires
that the raw data is transformed into a set of features first. Decision In-Decision
Out: This type of classification is also known as decision fusion. It fuses input
decisions to obtain better or new decisions as output.

Luo et al. [110] provided classification based on the abstraction levels. signal
level: directly addresses the signals that are acquired from the sensors. Pixel level:
operates at the image level and could be used to improve image processing tasks .
Characteristic level: uses features that are extracted from the images or signals.
symbol level: at this level, symbols represent information bits; this level is also
known as the decision level. This classification is very similar to Dasarathy’s as it
is mainly interested in the separation of raw data - features - decisions.

Castenado [40] contributes another type of classification which is based on the
node architecture of fusion mechanism. Centralized architecture: All the input
sources send raw data to the central processor where all the fusion processes are
handled. Decentralized architecture: in this type of architecture every node has
its own processing capability and there is no central processing unit. Information
received from adjacent nodes is fused autonomously in the local node and may
be transfered to the others. Distributed architecture: First, each node processes
independently the raw data it receives from the corresponding input and sends
the information to the fusion node. The fusion node processes the information it
receives from the independent node. Hierarchical architecture: it is a combination
of decentralized and distributed fusion. Fusion is performed at different levels
of a hierarchical tree; some nodes only process and pass the information while
others fuse the information received from other nodes.

The aforementioned data fusion classifications apply to multi sensor systems
in human-computer interaction. For example, multi-modal interfaces usually
achieve data fusion at the feature level, decision level, characteristic level, symbol
level. Yet, they do not respond to various aspects of HCI applications such as user
behavior around the sensors.

15



2. LITERATURE OVERVIEW

Wald [177] says: A search for a more suitable definition was launched with
the following principles. The definition for data fusion should not be restricted
to data output from sensors (signal). It should neither be based on the semantic
levels of the information. It should not be restricted to methods and techniques or
architectures of systems, since we aim at setting up a conceptual framework for
data fusion.

In the classical sense, the term fusion has not been used to cover the possi-
bilities offered by merging or combining input sources. However as we move
towards a ubiquitous future, we need to broaden this definition to surpass just a
mathematical function to operate on two sets of arrays. We need to be able to
describe a more general approach that is open to novelty and different interpre-
tations in order to accommodate the combination of more complex interaction
devices that did not exist when the JDL model was proposed.

Wald identifies two main issues the classical models do not adress. The first
one is topological issues. These issues include the spatial distribution and place-
ment of sensors, the processing hardware which is capable of decision-making
and the communication protocols between the input devices. The second one is
the processing issues that arise from the problems such as to select fusion methods
suitable the project specifications and the dynamic features and measurements
required to complete the objectives.

These concerns are also valid when we use multi-sensor interfaces. As we
move from military applications to civilian ones, the objectives might change, but
topological and processing issues still construct the core of the reflexion process
when it comes to interaction design.

2.2 MULTI-SENSOR INTERACTIVE SYSTEMS

Multi-sensor human computer interfaces are not new. This implies that the
fusion of the information provided by these sensors has already been done in
various forms. Even without a formal definition, the design process involves the
identification of the input sources, feature extraction, merging the information
and decision making.

Various research communities in HCI use the buildings blocks of the JDL
model and the aforementioned fusion techniques without explicitly branding it
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data fusion. Multimodality and ubicomp are probably the first keywords that
come to mind while discussing multi-sensor interfaces. It is also possible to
find elements of data fusion in AR/VR, collaborative environments, tangibles,
prototyping processes and so on. But these topics are not exactly orthogonal;
for example, a lot of ubiquitous environments are multimodal or some virtual
spaces are collaborative. Nevertheless, in order to put things in perspective, it is
beneficial to discuss these different dimensions from a data fusion point of view.

2.2.1 MULTIMODALITY

Multimodality is a term which is widely and generously used in a variety of
fields such as psychology, media, linguistics and semiotics. More importantly it
has a diverse use in computer science and has different definitions even within the
HCI community. In its simplest form, multimodal is communicating in a variety
of ways [85]. Humans communicate through multiple channels and interpret
information by cognitively fusing the channels. Machines also fuse communi-
cation channels to interpret data. As we browse through different fields, the
definitions become more specific to respond to the research objectives. Detail-
ing the definition, one step forward, a modality corresponds to each acquisition
method in multiple experiments or subjects, under different conditions, using
any instrument [103]. It is fundamentally a mathematical problem that requires
analysis of several datasets which can interact with each other.

Early on, HCI community addressed the multimodal challenges [132] [131]
[6]. Nigay and Coutaz [131] define a mode as a state that determines the way in-
formation is interpreted to extract or convey meaning. In that sense, the difference
between multimedia and multimodal is that rather then conveying information
on different channels of communication, a multimodal system can interpret ab-
stracted information and it strives for meaning. In a broader sense, interfaces
possess different interaction modes. As we move from unimodal to concurrent
and multi modal interaction [162], we switched from using only a keyboard to
richer modes such as voice, gaze, facial expressions, brain activity and so on.

Sharma and Pavlovic [162] distinguish human action modalities and computer
sensing modalities. They cite typing, handwriting, pushing and clicking, gloved
hand gestures, speaking, body and head movement, free hand gestures, facial
expression, eye movement, hand pressure and brain-activity as human-action
modalities. On the other hand they separate computer-sensing modalities into
position and motion sensing, audio sensing, visual sensing, tactile and force
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sensing, and neural sensing. This list is non-exhaustive today, but they provide a
mapping between the two types of modalities via devices. For example a computer
mouse converts pushing and clicking human action modality to position sensing
or a camera converts eye movements to video sensing.

Bernsen characterizes the ’Modality Theory’ as identifying the input-output
modalities which constitute an optimal solution to the representation and exchange
of the information that needs to be exchanged between user and system in a
specific context. [21]. Here modalities correspond to representational modalities,
[22] [79] that are ways of representing information to humans or to machines by
different media such as graphics or acoustics. To quote Bernsen, "Multimodal
modalities are combinations of unimodal modalities", thus using our claim that the
definition of data fusion should be extended, multimodality implies data fusion.

Even though the term multimodality is used in various ways in HCI, I believe
above definition still holds today. In the rest of this document, I use the term
accordingly and precise it when it is used in differently in other works.

Many believe that the origin of multimodality in HCI is traced back to Bolt’s
put-that-there [28] that combined hand gestures, speech and gaze to interact
with virtual objects. On a large screen, the user points at an object and voices
commands such as "create a blue square there". Voice activated keyword there
signifies the positional modality which uses hand gestures to determine the loca-
tion on the screen. Since put-that-there there has been other works that combined
hand pointing, speech and gaze [173] [145] which also address conflict of these
modalities using a decision matrix-based multimodal fusion [191].

Speech and gesture have been popular for humanization of communication
with devices. Battleview [23] combined hand gestures and speech to control a
virtual battlefield. As in the case of Battleview, hand gestures have been detected
with the help of cameras. An earlier example is the MUSIIC Architecture [91],
which was a system design to help people with disabilities, where speech signals
were complemented with pointing gestures.

The reason why hand gesture-speech-gaze are so popular in HCI is because
they are relatively easy to track but more importantly they are the three modalities
we use as humans in our daily conversations. We should also add facial gesture
recognition which is becoming more and more robust [4]. This is why conversa-
tional user interfaces (CUI) should be multimodal [156]. Non-verbal signals are
intuitive, they are essential to communicate interactively and can be effectively
fused with speech signals to increase the reliability of decision making.
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Other than the gesture-speech-gaze multimodality, the widened definition of
multimodality illustrates the combination of interaction modes which has inter-
esting applications. Multimodal authentication relies on more than one input
method to protect the privacy of users. GazeTouchPass [93] uses a combination
of eye tracking and tactile input to protect the users from shoulder surfing attacks.
Friedman et al. proposed a fusion architecture on biometric sensors to combine
keystroke, mouse movement and web browsing for a multimodal active authen-
tication method. Vielhauer et al. [48] also proposed a fusion strategy, but for
speech and handwriting modalities.

Haptic modality has also been complemented with speech in multimodal
interfaces [193] and found a place in the literature, for various tasks such as
referring to objects [104], navigation through image databases [90], education
[133] and so on.

Generally, the fusion strategy for multimodal interfaces is to process informa-
tion separately for each modality and to combine the decisions [160]. As a result,
the fusion is usually complementary or redundant according to Durrant-Whyte’s
classification. As previously mentioned, this indicates that individual features and
decisions should be fused in a context-dependent manner.

2.2.2 UBIQUITOUS COMPUTING

Ubiquitous computing is an area in which multimodal information flowing
from the environment are fused together to obtain meaningful data. In an ubiqui-
tous environment, the users can interact with devices of varying size and forms,
using different modes, and often simultaneously. In environments that are densely
populated with input devices, decisions obtained through different interfaces need
to be fused to make sense of the ubiquitousness.

Mark Weiser’s vision for the 21th century computer [179] was ubiquitous.
He anticipated the replacement of writing surfaces with computationally capable,
interconnected visual displays. Even though today ubiquitous environments
a variety of devices, especially with smartphones, the initial vision stands. If
we imagine an environment which only consists of a hundred small displays
that support only the handwriting modality, it is ubiquitous but not multimodal.
Thus data fusion can be present in multimodality and ubiquitous computing
independently.
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When Salber proposed an HCI agenda in ubiquitous computing [155] , they
defined ubicomp as an attempt to break away from the current paradigm of desktop
computing to provide computational services to a user when and where required.
According to Salber, an ubiquitous system includes a series of computing devices
and a a series of tasks enabled by the ensemble of the interconnected devices.
One of the many strengths of an ubicomp system is its ability to distribute a
complex acquisition task which would otherwise be very challenging. Therefore,
if the acquisition task is distributed, acquired information should be reintegrated
through fusion.

One of the most evident interests of ubicomp is the smart rooms/cities which
consist of distributed interfaces. The intelligent room project (1997) claimed that
they aim to pull the computer out into the real world of people [32]. To do so,
they decorated a room with video cameras and microphones so that the user can
interact with other humans or with the room itself without being invasive to the
user. As in the previous subsection, gesture and speech modalities are combined
together to give the user the opportunity carry out natural tasks.

Another goal in ubicomp is seamlessness i.e. making the computers and
capturing devices invisible to users [182]. Of course, this does not mean that the
physical devices are invisible; it rather indicates that the transition between captur-
ing devices and modalities do not require the user’s consciousness. Consequently,
data fusion plays an important role to assure the seamlessness. the illusion of
an ubiquitous environment is broken if the user needs to mind the presence of a
sensing device even if it is invisible to the naked eye.

LightSpace [182] builds on this idea by providing interactivity across many
surfaces in the environment and in the space between surfaces. It allows the user
to transfer tasks between screens in an intuitive manner. It also enables interesting
interaction methods such as touching two displays at the same time to connect
them. Light Widgets [58] combines multiple cameras and processors to transform
every-day objects into interactive widgets that allows users to control them with
hand gestures. It uses a low-level fusion architecture to triangulate the cameras to
detect user’s interaction with a widget.

In ubicomp environments, detecting user’s intention to control a specific
interface is problematic. It is essentially a proxemics problem in a non-verbal
environment because the user’s distance and orientation with respect to one device
defines their intention to use it. Proxemic interaction [17] aims to resolve this
problem by regulating implicit and explicit interaction techniques by transitioning
between proxemic regions.
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Finally, the advances in the hand-held and wearable technologies reshaped
the mobility of interaction. As a result, ubiquitous environments are not limited
to fixed locations. Smartphones in tomorrow’s world -if not today- will be used
as universal controllers to interact with omnipresent interfaces [26]. This will
require data fusion to be achieved in a decentralized manner, in the server side
and client side. Internet of things will facilitate crowdsourcing of information for
environmental and humanitarian purposes [168]. However, within the scope of
this thesis, I approach the smartphone based fusion from a more interactive point
of view in section 2.4.2.

2.2.3 COMPOSITE INPUT DEVICES

Composite input devices consist of multiple sensors but appear as a singular
apparatus. They can either transmit each sensor data individually, or perform on-
board data fusion to transmit one relevant message. Smartphones, smartwatches,
smart gloves, weemote are examples of such devices.

An important technology which enables composite devices is the Inertial mea-
surement unit (IMU). IMUs are composed of an accelerometer, a gyroscope and
a magnetometer, and are mainly used in devices to measure velocity, orientation,
and gravitational force. They are very versatile in measuring an object’s state in
3D coordinates.

The three units can be combined to obtain absolute orientation, where gyro-
scope angle is corrected by accelerometer and magnetic compass, but they are
vulnerable to accumulated error [154]. IMUs are used in various applications
from navigation to augmented reality systems [3]. Once fused, the totality of
measurements allow 9 degrees of freedom (9-D0F) and can be integrated easily in
hand-held devices. Therefore data fusion exists on IMU level in countless input
devices.

Figure 2.2: The IMU Smart Glove rev 2, extracted from [134]
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Considering IMUs are small and do not require external tracking, they are
widely used in wearables. Smart gloves take advantage of multiple IMUs (Fig.2.2)
to track finger orientation and hand poses [134] [113]. Even 3D arm postures were
successfully tracked with the IMUs inside a smartwatch [163]. These examples
show that IMUs are already powerful as a stand-alone technology to rely one.

The strength of IMUs is amplified when they are combined with other devices.
Especially depth cameras have proven to form a powerful couple with IMUs. A
detailed survey [46] shows that fusing information from depth and inertial sensors
leads to more robust recognition. Commercially available depth cameras and
wearable inertial sensors are both low-cost, widely available and more importantly
they both provide 3D data. As a result it becomes possible to obtain tracking
performances comparable to that of an expensive MoCap system. For example,
Rodrigues et al. [150] integrate multiple Microsoft Kinects with four Shimmer
IMUs and combine quaternions from all acquisitions to create a markerless motion
analysis device which can compete with a VICON system.

Other than motion capture, IMUs can complement input devices for other
applications, such as a person identification system. [43]. The necessity for
accurate position and orientation tracking makes it so that inertial sensors are
often used in augmented/virtual reality applications. Shall et al.’s work on multi-
sensor fusion for outdoor augmented reality [157] is a perfect example of the
combination of visual tracking, IMUs and Global Positioning System (GPS).
On a handheld AR device They use the GPS for global outdoor registration, the
IMU for the orientation estimates and a camera to compensate the drift of the
IMU. In fact, using a camera-IMU couple is now a common practice to correct
physical quantities such as the speed, raw and pitch angles and other inertial
measurements [118] [122].

2.2.4 TANGIBLES

Tangible user interfaces are designed to give the user the opportunity to
physically grasp and manipulate. Some tangibles are used individually, yet there
exists interface where more than multiple tangible objects are manipulated in
the interaction. Data fusion in tangibles may be separated in two types: Logical
and Technical (Sec.. 1). In the case of passive tangible interfaces, the fusion is
achieved on logical level. The information related to tangibles tracked by markers
are combined for decision making. A good example to such a tangible interface
is the ReacTable 2.3.
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Figure 2.3: ReacTable

ReacTable [86] is a tabletop tangible userface used as a modular synthesizer
which supports multiple users. It tracks the identifiers of tangible objects, their
position and orientation on the table surface to and uses their topological structure
to create complex sound waves. Even though there is one active input device (a
camera placed underneath a translucent table), the information related to each
tangible is fused according to a simple set of rules. XPaint table [55] also uses
RFID-tagged tangible objects to draw on a standard WIMP interface. Output of
the recognizers for the tangible objects on the table are fused in a centralized
architecture. Tangible Bots [138] are motorized tangibles capable of giving haptic
feedback to users. Even though they are described as active tangible objects in
the original paper, as the tangibles are tracked by a camera using fiducial markers,
from our point of view, they are handled by logical fusion.

In the case of active tangibles subjected to technical fusion, a sensor network
provides individual information on the components involved in the interaction.
Siftables [120] are compact displays that are capable of sensing other Siftables
and basic actions and they can transmit the sensed information to other Siftables
or to a computer. Thus, spatial configurations of the tangibles are used to complete
different tasks. Remote Furnitures [63] consist of two rocking chairs mounted
with tilt sensors and a motor. The chairs interact with each other in both direction.

To conclude, whether tangibles are subject to logical or technical fusion, they
are strong tools to give haptic feedback and visualization possibilities and enable
collaborative interaction.
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2.2.5 PROTOTYPING

Every concept or product in development is at some point a prototype. It can
be used to illustrate a simple idea that emerged during a brainstorming session, or
can be the early materialized version of something more complicated. Before the
final product emerges, often an uglier, bulkier version is produced with available
materials.

Toolkits offer valuable support for rapid prototyping in order to save time
and effort. Developers can explore APIs to facilitate access to input sensors and
call specific functions to obtaining meaningful information from a stream of raw
data. For example, XPaint table [55] I mentioned in the previous subsection
uses Hephais toolkit for easy integration of recognizers for creating multimodal
interfaces. The toolkit uses a finite state machine paradigm to manage fusion of
modalities.

Toolkits are especially important for cross-device interaction. However cross-
device interaction requires synchronizing devices and designing the communica-
tion protocol is time consuming. Huang and Kong [80] developed a toolkit for
combining a horizontal screen and multiple smartphones. Their toolkit respond to
issues such as data transfer, authentication in multi-user interaction and interface
composition. Conductor [74] is a toolkit which focuses on cross-device interac-
tion between tablets. It distributes tasks across multiple devices and manages
sessions through Websockets. MilkyWay toolbox [100] enables collaborative use
of mobile phones via Bluetooth and WiFi and facilitates prototyping mobile-based
interactions.

Multi-sensor data fusion is also a valuable asset to demonstrate interaction
techniques that are ahead of their time in terms of technology. Technology and
interaction techniques influence each other as sometimes a new technology allows
a new technique and sometimes a new techniques require a new technology
to be developed. Often a new technique might require multiple sensors which
are not bundled in a single device at the time of its emergence. For example,
WatchConnect [78] is a toolkit which has an hardware extension and which
uses sensor mappings to demonstrate concepts such as on and above smartwatch
interaction and interacting with other surfaces via smartwatches. Proximity
Toolkit [116] solves the problem of interpreting proxemic relationships in a
ubicomp environment. It enables proxemic interaction between mobile devices,
interactive surfaces, ordinary objects and users to facilitate the design of new
interaction techniques.
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To sum up, data fusion is an invaluable tool to explore new interaction tech-
niques in areas that are not fully investigated because of technological constraints.
Providing toolkits and frameworks is an essential contribution to help researchers
develop new concepts which will influence new technologies.

2.2.6 MISSING LINK

The precedent examples show that data fusion is present in different fields
inside the HCI community; we combine, we merge, we integrate constantly. For
some, it is a mathematical tool, for others it is the connecting node for different
modalities. The approaches to use multi-sensor systems intersect, overlap and are
sometimes insufficient to provide a framework to respond to cross-disciplinary
requirements. Yet, defining a framework which encompasses all the examples is
very challenging without arriving to a point where one might claim that everything
is a result of fusion.

The common element is the desire to produce interfaces that are more reliable,
more accessible and richer in terms of interaction. While we try to unify data in
one place to make better decisions, we started distributing acquisition tasks across
devices, which in turn resulted in spreading gestures around the physical space.

It is possible to retreat and provide a classification from a wider angle which
takes into account different input technologies, modalities, spaces and user behav-
ior. In the next two sections, I try to demonstrate another approach to multi sensor
environment by discussing the capabilities of input devices and their implications
on interaction techniques.

2.3 TAXONOMY OF INPUT DEVICES

Our perspective of data fusion in HCI requires both technological and spatial
characteristics of input devices to be considered in the design process of multi-
sensor systems. Technological aspects include the the properties sensed by the
devices, the complexity of the data acquired, while spatial characteristic include
the mobility of the devices and the distance at which users interact with them. The
interaction spaces and the gestures enabled by the attributes of sensors included
in devices have an effect on the best way to combine said devices. As a result,
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user behavior reshapes around the novel opportunities provided by the combined
interaction spaces.

For that reason, before we start discussing the interaction spaces, we should
discuss the characteristic sensors which constitute the core of input devices, that
are commonly used in HCI applications.

2.3.1 MATERIAL CONSIDERATIONS

As the machines continue to complete more complicated and diverse tasks,
they also demand more detailed and varied user input. As a result, the variety
of input devices used in human computer interaction is still growing. From
the earlier days, researchers tried to classify the input devices to make sense of
this variety. The first mention of the physical component in describing the user
interface aspects of interactive computer systems appears in Moran’s Command
Language Grammar [124], however they do not discuss it further. Buxton [35]
proposed a taxonomy of continuous hand controlled input devices according to
the physical properties and the number of dimensions they sense.

In figure 2.4 primary partitions of the matrix are delimited by solid lines.
The rows for position and motion sensing devices are subdivided in order to
differentiate between transducers which sense potential via mechanical vs touch-
sensitive means. The sub-columns exist to isolate devices whose control motion
is roughly similar. However, given the time of its publication, Buxton’s taxonomy
does not include many advanced input devices such as cameras or GPS.

Card et al. [36] presented a taxonomy that goes beyond Buxton’s by including
non continuous input devices (Fig 2.5). In this taxonomy, a device is represented
in the figure as a shapes connected together. The shapes differ according to their
inclusion in other taxonomies, but has no importance at this moment. Each shape
represents a transducer in the device and each line indicates a the regrouping of
the transducer in one device. The black lines indicate the cross product of two
transducers, and called merge composition. For example, the position of the finger
on the tablet is the cross product of the positions on the x and y axes. Dotted lines
indicate that the transducers are placed at different locations on the device and
is called the layout composition. On a radio, selection and volume knobs both
rotate on the same axis, but placed separately on the device. Arrowed line indicate
that the output of one device enters the input of another and is called connect
composition. To illustrate, they give the example of a simple set of radio controls
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Figure 2.4: Buxton’s taxonomy. Extracted from [35]

consisting of volume, selection and station knobs and a slider 2.6. Transducers
are placed on the right or left side of a case to indicate their continuousness. For
example, the volume knob is placed in the right side of the rZ case because it
can turn around the Z axis and can take continuous values. The selection knob
is placed on the left side of the same case because it only takes discrete values.
The station knob has no determined range and turns infinitely. It controls a slider
that moves on the the x-axis, hence called a relative continuous input. As a result,
Card’s taxonomy regroups input devices according to their composition in terms
of transducers they include. However, we are also interested in regrouping devices
by not only the intrinsic properties but also their impact on the outside world.

Above taxonomies provide an understanding of elementary input devices, yet
do not include more complex devices such as cameras, microphones, inertial
measurement units or EMG units. Truillet [171] defines the technologies which
compose these devices as physical contextual sensors. A contextual sensor has a
capture unit and a calculator unit, which altogether translate physical events into
logical variables. A device and a contextual sensor are two different things. A
classical device outputs an action performed by a user and the output data can be
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Figure 2.5: Card’s taxonomy. Extracted from [37]

Figure 2.6: Card’s radio. Extracted from [37]
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directly used. However, the output of a contextual sensor must be processed before
being interpreted in consonance with the application context. Truillet’s taxonomy
is divided into two parts; physical context and the human factors (Fig. 2.7). In
the human factors branch, sensors can be redundant in the leaves of the tree.
This arises from the fact that contextual sensors are heavily context-dependent.
A camera stream can be interpreted to obtain physiological clues from facial
gestures, or simply processed with geometrical cues to obtain a person’s posture.
In these two distinct contexts, merging camera stream with other modalities would
be quite different.

In order to clarify the concepts used in the rest of this thesis, we provide a tax-
onomy of components of input devices from the data fusion point of view. Some
of the dimensions of our taxonomy (Table 2.1) feature in existing classifications.
We combine these dimensions and complete them with additional examples to
demonstrate the variety of device characteristics which can be combined.

PROPERTIES SENSED

One of the commonly used attributes when choosing and input device is the
property sensed [35] [36]. The nature of the property that is measured has an
impact on the system’s ability to support interaction modes. A device can measure

Figure 2.7: Human factors in Truillet’s taxonomy. Extracted from [171]
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Dimension Values Components

Property Sensed Position Buttons, switches, touchscreen

Velocity Mouse, trackball

Acceleration Accelerometer

Intensity light, temperature, pressure

Dimensions sensed 1D Buttons, sliders, potentiometers

2D Mouse, touchscreen, joysticks, stylus

3D 3D trackball, RGB+D cameras, IMUs

Abstraction capacity Low Single optical sensors:

photo-diode, UV-Sensor

Medium Motion: Accelerometer, angular sensor

Location: GPS, active badge systems

Bio Sensors: Pulse, skin resistance

High Touch-screens

Audio: microphones

Optical sensor arrays: Cameras

Number of Dimensions Stationary touch walls, MoCap

(components of ...) Mobile phones, tablets

Wearable smartwatches, VR headsets

Self-Moving imagery drones, robots

Proximity Contact Button, touchscreen

Near Leap motion, frontal mobile cameras

Far Kinect, VICON ...

Table 2.1: Our taxonomy
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one or more properties, and properties may be derived from each other. In that
case, one can argue that a device can sense more than one property, but there
exists a fundamental property a device measures. There are four main properties
measured by sensors.

NUMBER OF DIMENSIONS SENSED

Another useful property when selecting an input device is the number of
dimensions sensed. It is strongly related to the interaction medium and the tasks
to perform. Number of dimensions sensed are different than degrees of freedom
in the sense that they are related to user gestures in the physical world. 1D sensors
are intuitive to change only one control such as volume or brightness. 2D sensors
such as a mouse are ideal for interacting with traditional desktop interfaces, while
3D sensors enable manipulation of physical objects or interacting in virtual reality
interfaces.

ABSTRACTION CAPACITY

Complexity of a sensor is defined by the amount of information provided by
the sensor and the computational resources needed to process it. Abstraction
capacity is the ability of a device to provide a meaning at any level of abstraction.
A button has a low abstraction capacity because it informs only about the on/off
state. A camera on the other hand, requires a large bandwidth, can provide
information at different levels and usually go through heavy processing steps to
be fused with other sensors.

In computer applications, context is acquired either explicitly by requiring
the user to specify it, or implicitly by monitoring user and computer-based ac-
tivity. The contextual sensors incorporate either complex information about the
surroundings, or information about user’s physical or psychological state into the
interaction. Schmidt et al. [158] classify the contextual sensors according to the
technologies they use (Table 2.1).

At a high level of abstraction, context information depends on more on the
situations rather than physical conditions. High level abstractions comprise
of features and decisions that are used to determine the context. Commonly
desired contextual information includes location, proximity, time, individuals,
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social interactions, semantics of dialogues, description of the surroundings and so
on [186].

DEGREE OF MOBILITY

The way we interact with the devices change with respect to their capacity
to follow the user, thus the degree of mobility describes the usage scenarios in a
separate dimension of our taxonomy. Rieger et al. [148] argued about mobility
of the sensors in their taxonomy for app-enabled devices. They separated the
sensors into four classes (Table 2.1): Stationary devices are installed in fixed
locations, mobile devices can be transported freely, wearable devices differ from
mobile devices in the sense that they are implicitly moved, self moving devices
are capable of calculate their directions. The same device can be used in different
mobility settings, for instance, a microphone can be mounted on a stand or on the
user.

PROXIMITY

Proximity dimension of our taxonomy relates to the physical distance of the
user to the device which captures their actions. Even though the distance is a
continuum, we discretize it into three classes. Contact: user is directly in contact
with the device, they either touch or handle the sensor. Near: the device is in the
arm’s reach from the user. These devices capture a part of user’s body. Far: the
device is further away from the user and provides a general description of the
person or the environment.

2.3.2 GESTURAL CONSIDERATIONS

In the previous subsection, we studied the taxonomy of input devices to choose
the necessary material resources. Additionally, we should consider the gestural
necessities to identify the elements for fusion. There is a close relationship
between what the user is trying to do? and what technologies does the user need
to do it?. According to Karam’s categorization of gesture styles [89], users intend
communicate with computers by means of 5 gesture classes:
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Figure 2.8: Karam’s taxonomy. Extracted from [89]

• Deictic gestures: Deictic gestures involve pointing to single out an object
or to indicate its spatial location. They can be used to obtain something,
redirect attention to an object to make a request. Deictic gestures can be
performed directly on touch surfaces or from a distance using wearables,
cameras.

• Manipulating gestures: The aim of manipulating gestures is to replicate
the movement of hand/arm gestures on the physical or virtual object being
manipulated. There is a tight relation between the number of dimensions of
an input device with the type of manipulating gestures it enables.

• Semaphoric Gestures: Gestures which can trigger actions defined in a
predetermined dictionary constitute semaphoric gestures. For example,
mouse or stylus gestures which result in strokes or marks can be mapped to
commands on a smart device.
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• Gesticulation: Gesticulations do not rely on are not based on pre-recorded
gesture mappings as in the case of semaphoric gestures. They usually
accompany speech and complements the meaning the person trying to
transmit. Howevern they can be used as free-form gestures that are open to
interpretation. Wexelblat [180] refers to gesticulations as idiosyncratic, not
taught, empty handed gestures. Highly abstractive sensors are very good at
contextualizing gesticulations.

• Language gestures: They require a series of signs that form grammatical
structures. Conversational interfaces work with language gestures. For
them to be useful, first semantics should be extracted from the conversation.
Consequently they are often fused at the decision level.

In addition to the gesture classification, Karam classifies the enabling tech-
nologies for gestural interaction:

• Non-perceptual input: Involves the use of devices or objects that are used
to input the gesture, and that requires physical contact to transmit location,
spatial or temporal information. These technologies include mouse and
pen input, touch and pressure input, gloves, sensor-embedded objects and
tangible interfaces but also audio input and tracking devices that employ
transmitters placed on users.

• Perceptual input: They do not require physical contact with an input device.
They are not intrusive, allow distant gestures. These technologies include
computer vision and remote sensors.

However, we believe the proposed enabling technology classification is too
limited to understand the relationship between gestures and devices. The evolution
of input devices is parallel to the different gesture classes. Deictic gestures are
usually performed by pointing devices, such as the mouse, touchscreen or stylus in
contact, or by optical trackers for distant pointing. Manipulating gestures require
careful consideration of the mapping of dimensions between the input device and
the target to manipulate. Translation and rotation of a graphical 2D object is easy
with a mouse, but manipulation of 3D objects resulted in a conquest for specialized
input devices and tangible interfaces. Semaphoric gestures, gesticulations and
language gestures need different levels of abstraction depending on the support
on which user wants to perform them. When an application responds to different
types of gestures, it may need different types of input devices that are more
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convenient to each task. In section 4 we discuss the fusion of deictic gestures
with gesticulation by using a touchscreen and camera. In section 3 we talk about
the combination of deictic gestures and semaphoric gestures.

2.3.3 DISCUSSION

In this section, I reviewed many things from the classification of simplest
sensors to the relationship between contextual sensors and gestures. In the rest
of the document, I mainly cover the data fusion of sensors which have a higher
level of abstraction. Fusion of sensors which have a lower level of abstraction is
less interesting for two reasons. First, because it is either too simple; combining a
button with a slider does not require too much reflexion, or it is a mathematical
problem that has been studied in the models we discussed in section 2.1. Second,
because there is generally no change to the user’s behaviour by the combination
of said sensors. Whereas the context dependency of more highly abstract sensors
forces the users to discover new ways to interact with the multitude of complex
devices.

Users discover the potential hidden in the environment without additional
steps involving memory or inferences [65]. This is called the affordance of a
system and it implies that both the actor and the objects are parts of the attributes
of the interaction. Affordances are also independent of perception, they can reveal
themselves to a user while being hidden from another.

Affordances are perceived and discovered by all senses; the sight is obviously
the principal sense, but tactile and auditory senses are important sources of
information. Thus, multi sensor systems, if they feature different sensors, they
offer a variety of affordances. I believe that new affordances emerge from the
combination of input devices. Either these affordances are discovered in the
transition between the devices, or are merely the result of the modified input
space.
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2.4 HETEROGENEITY IN INTERACTIVE SYSTEMS

Multimodal systems contain various data types. Ubiquitous systems contain
various devices. Heterogeneous systems contain various devices and data types,
but we define a heterogeneous system as a system that distributes interaction
spatially on different devices, in order to combine their physical capacities such as
working with different proximities, and the gestural opportunities they offer such
as performing deictic gestures and gesticulations at the same time. This definition
is not by any means a new description for multi-sensor systems that concurs with
multimodality or ubiquitousness, but it provides a clearer characterization of our
contributions to multi-sensor interaction.

Heterogeneous systems necessarily accommodate multiple gestural modes ac-
quired from different input sources. Gestural modes include, but not limited to, on
the surface, above the surface,around the surface,mid-air,distant,proximal,facial,
vocal... The acquisition of multiple gestural modes are facilitated by separate
input devices which gives a better representation of the gestures, requires less
resources and observes the gestures from different angles. I demonstrate ho-
mogeneous and heterogeneous systems by classifying some existing work on
multi-sensor interfaces.

2.4.1 HOMOGENEOUS DATA FUSION

Homogeneous multi-sensor systems are not our main interest in the scope of
this thesis, but they are useful for elimination of occlusions and the improvement
of decision quality. For a given gestural mode, they combine the same type of
data from multiple sources in an overlapping interaction volume.

The most evident example of homogeneous data fusion is camera calibration.
3D vision enabling methods such as Zhang’s flexible camera calibration [196],
or various triangulation techniques that use intersecting rays [75] combine the
images from two cameras to obtain depth information.

Today, depth information is obtained through novel technologies such as struc-
tured light or time-of-flight. Depth cameras capable of skeletal tracking such as
Microsoft Kinect, Leap Motion, Intel RealSense and others are especially popular.
Still multiple depth camera streams are fused to avoid occlusion-related problems.
The simultaneous use of multiple depth cameras can widen the observed volume
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Figure 2.9: (left)Homogeneous Kinect fusion for a dance performance. Extracted
From [62] (right) Heterogeneous fusion of a touch surface and the volume above.
Extracted from [117]

and provide a better description of the scene. For example, dance analysis and
sonification require accurate recognition of body movements. Performers are
highly mobile on the scene, therefore multiple depth cameras [62] [97] are used to
film the stage from different angles (Fig. 2.9) The common strategy to follow is
to calibrate the cameras at a fixed position and fuse the skeletal data continuously
to avoid frames with missing joint information.

Different sensors can also be used in a complementary way to increase the
accuracy of the systems. Penelle and Debeir [140] use a Kinect with a Leap
Motion to improve hand tracking performances. Although their implementation
is stable, it needs a processing step to segment the hand and to locate the fingers
in Kinect images. However, from our perspective, this work does not constitute
heterogeneous fusion. Even though the input devices provide different types of
data at different abstraction levels, they are only used for detecting hand poses
and do not diversify the gestures the user can perform. In other words, from a
material point of view they may seem heterogeneous, but from a gestural point of
view, they do not qualify for heterogeneous fusion.

2.4.2 HETEROGENEOUS DATA FUSION

The distinctive characteristic of heterogeneous data fusion is the distribution
of gestures across devices. Data fusion between devices are not necessarily
continuous, the essential is that multiple devices collaborate to complete one task.
While doing so, active devices can activate sequentially or in a parallel manner.
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In a central architecture, a decision making mechanism determines which sensors
are actively participating by observing activation and termination patterns.

The WILD room [19] (wall-sized interaction with large datasets) is such a
heterogeneous environment. It includes wall sized display composed of mutiple
screens, mobile devices, a multi-touch table and miscellaneous input devices.
In this setting, multiple users can interact simultaneously with various surfaces
combining different input devices in different configurations. Depending on the
context, portable devices in the WILD room transform into different instruments.
For example, a smart-phone can be used as laser pointer and interact with objects
located on other surfaces. Users can select objects on a surface with an instrument,
move them with a second instrument, change their color with a third one. In order
to fuse the data from the instruments, WILD Room uses a central layer called
WILD Input Server which allows users to create different input configurations to
aggregate inputs from different sources. For example, a multitouch device tracked
by external cameras is seen as a single device that allows both touch gestures and
manipulation gestures at the same time, combining two devices and two gestures
mode. Hence the overall system qualifies for our heterogeneity definition.

CodeSpace [30] is another heterogeneous ubiquitous system that allows use
of multiple personal mobile devices in developer meetings. It combines in-air
pointing with touch gestures for fine gestures. In CodeSpace, Kinect sensors
enable distant pointing techniques by calculating the ray casted by the user’s arm
holding the smartphone and the touchscreen of the phone enables finer movements
or triggers predetermined actions. In other words, the depth sensor is responsible
for ample control, while smartphone is responsible for finer control. It also solves
segmentation ambiguity of in-air gestures. Additionally, smartphone’s IMU
allows the calculation of its orientation, which is then combined with pointing
gestures to display or hide personal content on the the shared display.

Similar to CodeSpace’s combination of ample control with finer control,
MultiFi [67] combines multiple displays with different fidelities for input and
output. It uses a head mounted display (HMD) with a smartwatch and smartphone
to interact at different scales. The HMD is used to determine the position of the
smartwatch while the smartwatch is used for selection. At the same time, both
displays provide a visual feedback at different precision levels aligning on and
around the user’s body. It distinguishes three alignment modes. In device-aligned
mode, the interaction and display both happens on the touchscreen of either the
smartphone or the smartwatch. In body-aligned mode, the coordinate space is
that of the user’s body, and the touchscreen activates finer precision zones while
being able to move around the user. In side-by-side mode, there is no spatial
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relationship between devices and the user can interact on both independently.
Another example to the same approach is found in [161].

These touch-sensitive surfaces restrict the user interaction to a 2D plane. Yet
there is a rich interaction space above touch surfaces that is neglected. Tangi-
bles may use the space above the surfaces, but generally they only exploit the
contact surface. In order to enrich the interaction with touch surfaces, adding a
third dimension to the system is an approach that have been gathering attention.
DepthTouch [20] is an interactive system that enables the user interact with a 3D
scene projected on a transparent vertical surface. DepthTouch shows that even if
there is only one device to capture both 2D and 3D interaction, there is a fusion of
interaction spaces and it should be taken into consideration for scenarios of use.
A more concrete example with multiple devices is the Mockup Builder [51]. In
Mockup Builder, 3D position of the fingers in the volume above the touch surface
observed by two Gametracks. Then, the positions of the fingers are interpreted
with the 2D points on the surface to model and manipulate 3D objects on the
multitouch table with stereoscopic projector. Their work is based on Marquardt
et al. [117]’s Continuous Interaction Space whose aim is to build a system that
treats the space on and above the surface as a continuum. Instead of considering
on and above the surface as two discrete interaction modes, they investigate the
rich interaction space between them. Here, Marquardt et al. fuse the data from a
Vicon capture system with the touch surface to interact in a 3D area.

The importance of the Continuous Interaction Space stems from its ability
to fuse two interaction spaces. The resulting interaction space enables novel
interaction techniques. While it conserves distinct gestures on the touch-surface
and in the air, it also enables extended continuous gestures and proximal continu-
ous gestures. Extended continuous gestures can begin on the touch-screen and
continue above the surface in a continuous flow. Proximal continuous gestures
complement the touch input with hand pose and orientation in the near space
above the screen, allowing users to trigger multiple actions. Talaria [146] uses
extended continuous gestures to drag-and-drop on a touch wall display that would
otherwise require the user to displace too much.

Over the screen interaction is also beneficial for smartphones. Chen et al.
demonstrated how in-air gestures can add expressivity to classic mobile touch-
screen interaction [47]. The thumb movement before and after touch carries
useful information that can be used to detect paths to perform gesture in-between
touches. Touch input also helps segmentation of in-air gestures, an approach
we demonstrate in the section 4.2. Extending the interaction space around a
smartphone does not necessarily require an additional device. [167] uses the
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built in camera if unmodified mobile devices to recognize static in-air gestures
in real-time. They define in-air gestures that can complement touch gestures
to switch modes or to modify multiple parameters at the same time using both
gestures simultaneously.

Aside from using the finger above small devices, it is possible to use pen
devices [12]. Pen input is already supported by modern devices, it prevents screen
occlusion and it can compensate ergonomic constraints when combined with
the regular multi-touch gestures. Portico [13] uses tangibles around a tablet. It
combines the touch input with two cameras placed above the screen. The cameras
provide a visual recognizer for the surroundings and tangible objects. This allows
tangibles to used both directly on the surface, and at around the frame of the
tablet.

Using the space above input devices is not limited to screens. Wacharaman-
otham et al. made use of the finger above desktop devices such as the keyboard
and mouse [175] with the help of VICON system. They determined an appro-
priate thickness for near-surface interaction layers and proposed a method to
dynamically place the layer above the device.

This list of heterogeneous systems is not exhaustive. There exists other
multi-sensor systems that use heterogeneous input devices to enrich and extend
interaction spaces. However, from the examples we have seen, it is apparent that
cameras are very powerful devices to add an additional dimension to conventional
interaction devices. As a result, our contributions overwhelmingly feature the
external use of both RGB and depth cameras.

2.5 CHAPTER SUMMARY

In this chapter, I presented previous work related to data fusion from an HCI
point of view. To put things in perspective, I started with a brief history of data
fusion that originated from military applications, and arrived at a very specific
case of data fusion that I defined as heterogeneous. In this regard, a discussion
about the presence of data fusion in various research domains under the HCI
roof, such as multimodality and ubiquitous environments, was necessary. As an
intermediate step, a taxonomy of input devices which takes into account both
material and gestural considerations was provided. This taxonomy helped us to
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better understand that heterogeneous systems distribute acquisition of gestures
around different input devices.

Heterogeneous fusion examples demonstrate that contextual sensors are very
good at enriching and extending interaction spaces. Yet, the taxonomy indicates
that contextual sensors such as cameras have a high abstraction level. It would
mean that in order to extract context from cameras, some processing steps are
necessary to obtain suitable descriptors. However, the larger bandwidth caused
by the use of multiple devices require a lighter processing step, especially in
computationally constraint scenarios. Consequently in the next chapter, I present
our contribution to extracting meaningful interaction data from such sensors.
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Three

From signal to meaningful interaction
data

3.1 INTRODUCTION

Signal, in the broad sense, is an abstract term [42]. Oppenheim and Willsky’s
widely taught Signals and Systems [137] book states that the signals are functions
of one or more independent variables, contain information about the behavior or
nature of some phenomenon. A signal should present an observable change over
time or space. Signals are captured by sensors specialized for the attributes that
are observed (Sec. 2.3.1). They can be analog or digital, continuous or discrete;
analog signals measure continuous properties through physical mediums such as
electrical or mechanical, digital signals represent a sequence of discrete values
and are often obtained by the quantification of analog signals.

The meaning relayed by a signal is not always apparent. It is revealed through
a chain of treatments to retrieve information required for a specific task. The
meaning can be simple; if a button sends a signal, and it has only one meaning.
Moreover, a signal can contain multiple meanings; such as a video sequence of
a complex environment which can mean that there are people and/or the lights
are on and other things. Therefore, meaning of a signal depends on the context
characterized by the interaction between users, applications, and the surrounding
environment [53].
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Processing techniques are used to manipulate the pure signal, but not all
of them are intended to extract the meaning. For example, even without post-
processing, equalization is a processing step; a microphone receives the sound
waves, and the amplitude is modified with respect to frequencies to provide
a better sound. However, we cannot say that equalization only for cosmatic
purposes constitutes a passage from signal to meaning; it is only filtering to
achieve a more attractive sound. However, it develops into a part of the search for
meaning once it becomes a preliminary step in order to increase the reliability of
feature extraction.

In a multi-sensor system, the first step to data fusion is the preparation of
sensors. This step involves identification of input devices, calibration and obtain-
ing meaningful data from each source. In the context of heterogeneous sensors,
it is coherent to employ either characteristic level fusion (cf. Sec. 2.1) where
first features are extracted from individual inputs and then all features across
inputs are fed into the decision making mechanism, or symbol level fusion where
the decisions obtained from individual inputs are combined to make the final
decision. Thus, the quality of the heterogeneous features extracted from the inputs
influences the reliability of the decisions.

Reliability for a human-computer interface does not only depend on the ac-
curacy of the decisions, it also necessitates speed and fluidity. This results in a
trade-off between the potency of the processing and the responsiveness. Tradi-
tionally, extracting good features consumes more time than extracting mediocre
features, but a lagging interface is practically unusable. Considering that one
of the aims in designing sustainable interaction techniques requires the ability
to reuse older equipment, we find ourselves in a computationally constrained
scenario. The question that exactly how heavy should the processing step be to
provide a fluid interaction does not have a straightforward answer, and the solution
is found in empirical tests. Yet, it is important to explore this duality, especially
for devices which operate at a higher abstraction level, such as microphones or
cameras.

Processing the incoming video stream is a computer vision problem. However,
when applied to human-computer interaction, the practices of computer vision
community should be reappropriated. Image processing research relies on offline
methods; the main focus is to increase the accuracy with moderate amount of
consideration for its applications. This is by no means a criticism; in my opinion,
it is similar to developing an interaction technique before the emergence of
consumer grade technologies to support it. Nevertheless, the state of the art
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methods in computer vision are very powerful and can enable usable interactive
systems.

In the first section, I explore the gray area between what computer vision
is able to provide and what data fusion in HCI applications require. My main
contribution [9] [10] is to extract ready-to-use, computationally light features to
describe motion information obtained from cameras. Throughout this section,
the words motion and movement are used interchangeably, as there exists no
consensus on how to use these them to signify displacement [1].

Another issue in designing sustainable systems arises from the use of reusable,
detachable, modular equipment. If we want to be able to disassemble a multi-
sensor system to use its pieces in other configurations, we need to be able to
assemble the new configuration quickly. For the ease of use, the calibration step
should be light. In order to ensure the seamlessness we discussed priorly, it should
be robust to change of users.

In the second section, I demonstrate a seamless calibration technique for depth
cameras in a physically constrained scenario.

3.2 LOW-COST MOTION INFORMATION FROM RGB CAMERAS

Tracking moving objects in a video sequence has wide application areas
from surveillance to robotics. It is also an important topic in HCI applications,
especially to observe moving body parts such as the limbs, head, eyes and so
on. Computer vision has numerous methods to track either individual objects
or to represent overall movement in a video sequence. The differences between
consecutive images indicate a displacement of the included pixels, and regrouping
the displaced pixels can give a meaning to the movements of the viewed objects
or the capturing device.

Optical flow is the distribution of apparent velocities of moving brightness
patterns in an image [77]. The three factors which cause the moving patterns
are the changes in the position of the camera and/or the captured objects or the
variation of the lighting. As this thesis is predominantly interesting for the HCI
community, it is useful to give a simple explanation of the optical flow algorithm.
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Given two images It1 and It2 at two time instances, the aim is to find the
correspondence of the pixel It1(x,y) with the pixel It2(x+u,y+ v). If we assume
that the brightness of the pixel remains constant at the two instances:

It1(x,y) = It2(x+u,y+ v) (3.1)

The second assumption is that the displacements are relatively small between
two images (less than one pixel), so, omitting the higher order terms in the taylor
series expansion of It2:

It2(x+u,y+ v) = It2(x,y)+
∂ I
∂x

u+
∂ I
∂y

v (3.2)

Combining the two equations, we have

It2(x,y)− It1(x,y)+
∂ I
∂x

u+
∂ I
∂y

v = 0 (3.3)

as v and u tend to zero, it can concisely be expressed as

∂ I
∂ t

I +∇I · [u v] = 0 (3.4)

At this point, we have one equation but two unknowns. This is known as the
aperture problem; it means only the displacement component along the gradient
direction is known. In order to get more equations for a pixel, Lucas-Kanade [109]
assumes the pixel’s neighbors have the same displacement vector, thus using a
5x5 patch, we can obtain 25 equations which can be solved by a minimum least
squares solution. There are other solutions to this problem [77] [127] but Lucas-
Kanade’s method constructs the backbone of the method we later use in our
applications.

One of the main problems in this approach is the assumption that the move-
ments are very small. To resolve this problem, Lucas-Kanade algorithm iteratively
minimizes the sum of squared errors between It1 and It2 by first estimating the
velocity at each pixel by solving the above equations, then warping It2 towards It1
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using the estimations and repeating the estimation and warping until convergence
occurs. Warping step is computationally expensive but [15] proposes an inverse
method to speed up this process.

For even larger displacements, coarse-to-fine schemes are used to speed up the
convergence [7]. Image pyramids consisting of multiple downsampled images are
used to estimate the large displacements in the coarser levels and those estimations
help warping the image in finer levels.

Optical flow methods can be surveyed according to different research direc-
tions [44], for the scope of this thesis, it is beneficial to differentiate sparse and
dense optical flow.

In sparse optical flow techniques, some important feature points such as
corners and edges are extracted first and matched between different images. This
way descriptor couples between successive images have a displacement vector
to characterize the motion for a couple of points. The computational weight
of sparse methods stems from the calculation of the descriptors; they require
preprocessing of the image to eliminate uninteresting parts of the scene. However,
if the content of the image is unknown, pre-filtering becomes another challenge
to attack.

Dense optical flow techniques calculate a displacement vector for each pixel
in the image. Dense displacement vector fields are more accurate than the sparse
ones, but calculating a vector per pixel is generally a computationally time
consuming task, even when this problem is alleviated by multi-scale solutions
and estimations [59]. Nevertheless they are very useful to solve abstract problems
such as action recognition and expression detection [14]. A fast dense optical
flow method would be an excellent candidate for HCI applications.

In 2016, Kroeger et al. [101] introduced DIS-Flow, an optical flow estimation
method that uses the inverse correspondence method and coarse-to-fine image
pyramids we explained in this section. DIS-Flow is one order of magnitude
faster than others and produces roughly similar flow quality. Their objective is to
trade-off a less accurate flow estimation for large decreases in run-time for time
critical tasks. This method provides a dense flow output, in which every pixel is
associated to a displacement vector. DIS-Flow was used in the works we present
in this section and it also enables the techniques in section 4.2.1.

Visualizing the dense optical flow field of a given gesture would be helpful
to understand its usefulness for gesture recognition. The motion at a point can
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be represented with ∆x and ∆y, the horizontal and the vertical displacement
respectively. Therefore displacement vector can be expressed as v(∆x,∆y), but
also in polar coordinates v(r,Θ) to represent the amplitude and the direction of
the movement for a pixel. Fig. 3.1 shows a color coded representation of the
optical flow.

Figure 3.1: Color representation of the optical flow. (Top) Color space: hue indicates
direction, saturation indicates amplitude. (Middle) Swipe right gesture, calculated flow,
filtered flow. (Bottom) Grasp gesture, estimated flow, filtered flow

In fig. 3.1, the top image shows the color space used to represent the displace-
ment vector for each pixel. Saturation on the wheel indicates the amplitude of
the displacement; a pixel which does not move is white colored. As the ampli-
tude increases, the color becomes saturated. The directional component of the
displacement is represented by the hue on the wheel. For example, a pixel which
moves to the right is red and a pixel that moves to the bottom is yellow.

3.2.1 REPRESENTING CONTINUOUS GESTURES

In section 2.3.2, Karam’s taxonomy on gesture styles defined gesticulations
as empty handed gestures which do not follow a preexisting definition. Gesticula-
tions usually accompany speech, but are also valuable for creating free flowing
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movements for artistic expression. A dancer’s movements consist of gestures;
while a single gesture may not be meaningful in itself, a sequence of continuous
gestures tell a story on stage.

Optical flow is a handy tool to represent continuous gestures. Especially when
the aim is to obtain simple movement information to be combined with other
modalities, it proves to be an effective way of conveying a description of a camera
stream. Nevertheless, in order to achieve a good description of the scene, we
propose a processing chain.

Optical flow computation is noisy and presents important motion discontinu-
ities as it measures the displacement in the 2D image plane of the real 3D world.
Filtering out noise and focusing on the coherent motion information is the key to
a successful representation.

Our approach to extracting features from raw flow data is as follows. First
of all, for every region of interest, the pixels that have a smaller displacement
value than a threshold are discarded to eliminate the noise. In Fig. 3.1, the
middle column shows the unprocessed output of the DIS-Flow. Filtering by the
magnitude (discarding the unsaturated pixels), we obtain the rightmost column,
where the shape of the blob corresponds better to the moving object, in this case
the user’s hand.

We identified key information to gather from the optical flow output. We
collect three global values: the amount of moving pixels, the average direction
and the average magnitude of the displacement vectors. The amount of moving
pixels corresponds to the ratio of the number of remaining pixels to the image
area. The average direction and magnitude are the direction and amplitude of
average displacement of the moving pixels.

Other than the global values, it is advantageous to represent the distribution of
the movement. To do so, we construct a normalized 8-bin histogram of directions
3.2. By quantizing displacement angles into 8 levels, this histogram shows the
amount of pixels moving along 8 different axes. For example, the grasp gesture
shown in 3.1 has four main direction components; the hand moves to top-right
(purple - direction 2), the thumb moves to top left (blue - direction 4), index
and middle fingers move to bottom left (green - direction 6) and ring and pinkie
fingers move to bottom (amber - direction 7). Both from the color representation
and from the histogram, we can notice that most of the pixels move along the
second direction. It is, then easy to distinguish between a swipe right gesture
where only the first bin of the histogram would be full, and the grasp gesture.
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Figure 3.2: (left) 8 directions (right) Histogram of the grasp gesture

Moreover, different functionalities can be assigned to each direction, an approach
that I demonstrate in the chapter 4.

Adding the three global values to the histogram information, a feature vector
of eleven elements is obtained. This vector is then ready to be combined with the
features obtained from other input devices or sensors. For a decision level fusion,
we should explore discrete gestures.

3.2.2 REPRESENTING DISCRETE GESTURES

According to Karam’s taxonomy (section 2.3.2), semaphoric gestures em-
ploy dynamic limb gestures which have a definition in a vocabulary commands.
Thus, differing from the previous section, we need to isolate individual gestures
performed in a time interval and distinguish one from another.

Video analysis is an important aspect of multimedia data description. A basic
task in video analysis is the extraction of optical flow, which helps understanding
individual region motion in the video stream. Optical flow analysis enable several
applications in gesture based interaction [183]. Discrete human gestures can be
inferred from video analysis using optical flow created by the dynamic parts of
the body. Gestures can be interpreted at several levels. e.g. full body gestures,
facial gestures, or hand gestures. Discrete gestures can trigger actions, such as a
left click on the mouse to select an item, and can be combined with other inputs to
alternate the action, such as the combination of the control key with the left click
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to select multiple items. Thus, the aim of this section is to generate action-ready
video descriptors for data fusion.

In order to demonstrate the representation of discrete gestures from a video
sequence, we address a specific scenario of one-finger gesture in the context of
mobile interaction. In this scenario, a user interacts with a mobile phone using
the index finger on phone’s back camera equipped with a wide angle lens 3.3.

Using the back of devices has been proved to be efficient [184] to resolve
the issues [18] such as the fat finger problem, target ambiguity and occlusion
that emerges when the user interacts with the touchscreen. Phone cameras have
been investigated for back of device interactions. Xiao et al. [188] proposed
performing index finger gestures directly on the camera lens. They distinguished
partial and full occlusion of the lens and the dynamic swiping with the index
finger. A 3D-printed ring [190] was mounted on the camera to turn it to a joystick.
Wong et al. [185] widened the interaction space on the back surface with a mirror
attached to the camera.

Similarly to above examples, adding a wide angle lens to increase the motor
space for the index finger and offer more accurate interaction capabilities. The
ability to accurately capture index finger gestures opens interaction opportunities
for daily tasks in mobile contexts, such as controlling widgets, sending messages,
playing video games and so on. However, this innovative use of the back camera
rises a number of issues, such as the non-linear field of view due to the fish-eye
lens, and the constant background motion.

Working for such a specific task required the creation of a new dataset. We
created a new index finger dataset including 6 gestures together with a baseline
classification algorithm dedicated to this dataset. The 6 dynamic gesture classes
are swipe left, swipe right, swipe up, swipe down, tap on the lens and a counter-
clockwise circle (fig. 3.4). We chose tap and swipe gestures because they are the
most commonly used gestures for mobile interaction [170]. A circular gesture
is added as the shape of the lens provides a guidance during its execution. Such
a dataset is useful to help researchers compare their approaches on the dynamic
aspect of the proposed gestures but it can also serve as a base for static fingertip
detection. To the best of our knowledge, this is the first index-finger dataset
released for the multimedia and interaction communities.

The rest of this section is organized as follows: we first discuss the related
work in hand gesture recognition and the available datasets to demonstrate the
need for a index finger gesture dataset. Then we introduce our dataset containing 6
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dynamic gesture classes and the gesture recognition baseline. Finally, we discuss
the results of our experiments.

EXISTING DATASETS

Hands are the main body parts used in vision based gestural interaction [187]
[147] [143]. We use our hands for non-verbal communication and we are able to
perform various gestures ranging from simple hand poses to complex movements.
The richness of the shape and motion content in video streams featuring hand
gestures has been utilized for image and video recognition methods. However,
using only one-finger gestures in front of a camera has not yet been explored for
computer vision applications. An overview of hand gesture datasets and gesture
recognition methods can be found in [143]. From the overview, one can deduct
that the general approach to hand gesture recognition is to extract texture and/or
motion features from either an RGB or RGB-D sensor and to classify them in
order to obtain class labels for the gestures.

Several hand gesture databases were proposed for testing of hand gesture
recognition algorithms. RGB-D datasets [72] [52] are not usable in a mobile
context as the phone cameras do not provide depth information. In RGB datasets,
a hand gesture can refer several different situations.

1. A static pose [144] [68]: Static images of the hand can be used as an inter-
action input as the state of multiple fingers allows differentiating various
postures, such as the sign language. But the index finger behind the mobile
device doesn’t allow performing more than a few finger poses.

2. A dynamic gesture corresponding to the whole hand’s position relative to
the user or to the environment [106] [88]: In these datasets, the performed
gestures are very large while the index gestures we propose are of smaller
nature.

3. The change of the hand posture by moving the hand and the fingers locally
[114] [95]: In these datasets, the hand is the only moving object in the image,
but movement of multiple fingers at the same time create more complex
gestures than it is possible for the index finger. Moreover, both the use of a
fish-eye lens and the back-of-device camera bring some deformation and
background motion to the input stream that are specific to this context.
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3.2. Low-cost motion information from RGB cameras

A variety of approaches were employed to represent the hand movements
in the above datasets. Hidden Markov Model based methods [105] are often
used on dynamic hand gestures to spot the start and the end of the gestures.
Mercel et al. [115] applied an input-output HMM on hand silhouettes. Moreover,
Shen et al. [164] used a local descriptor to capture local motion patterns. In
the original paper that created the Cambridge Hand Gesture Dataset [95], tensor
canonical correlation analysis features are combined with nearest neighbor (NN)
classification.

None of the datasets above contain images that focus on individual finger
movements that can be useful for back-of-device interaction. We need a set of
images that involves index finger, hand tremor (unintentional shaking) and the
spherical transformation induced by wide angle cameras to test simple descriptors
that can be used in the mobile interaction context. Even thought the processing
power of mobile devices increase continuously, methods with a low computational
complexity are needed for a fluid interaction.

DATASET

We created an index finger gesture dataset consisting of 746 video sequences
of 6 index finger gestures: left, right, up, down, tap, circle (as shown in Fig.
3.4). The gestures are performed several times by 14 users (2 left handed), and
captured with a low-cost wide angle (235◦) lens (see Fig. 3.3). Each video shows
a user performing gestures freely without visual feedback, in order to ensure the
naturalness and authenticity of the finger movements. Sequences were taken over
different backgrounds with an uncontrolled auto frame rate that varies between
20 and 28 fps depending on the lighting conditions.

Figure 3.3: Left: Wide-angle lens. Right: Interacting with the lens.
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Figure 3.4: 6 gestures in the dataset. (Top row) Example frames from the start of each
gesture. (Bottom row) Color representation of the optical flow.

The dataset is representative of main issues that should be taken into account
when the user interacts with the device. First of all, the semi-spherical lens does
not map seamlessly to the rectangular sensor. This means there is an active
circular region where the information is concentrated in the 320x240 image. The
wide angle lens introduces shape deformation that is challenging for appearance
based methods. Moreover, some cases of lateral illumination result in small lens
glare in the videos.

Another challenge is the user’s way of holding and interacting with the phone.
Some large-handed users are able to hold the phone from the lower part to perform
clear index gestures. Users with smaller hands hold the phone closer to the lens,
and in that case other fingers may be visible in the image and introduce unwanted
movements. Hand size also affects the shape and the size of the fingertip in the
image.

Due to the fact that the index finger is attached to the hand holding the phone,
moving the finger causes small changes in the orientation of the device (hand
tremor). The changes in the orientation of the camera adds a global motion to the
image sequence at the time of the gesture. The introduced motion is not uniform
because of the shape of the wide-angle lens.

Finally, even though the swipe gestures are labeled as left, right, up and down,
the gestures are almost diagonal because of the orientation of the index finger
behind the device. As a result, left and down gestures are close to each other, so
are up and right gestures. Such an effect is also observed in [188].
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3.2. Low-cost motion information from RGB cameras

Hence, with regard to the existing state of the art datasets, the newly proposed
dataset brings new interactions opportunities as well as new challenges to deal
with such as the ability to deal with index finger gesture in mobile context using
back camera, the variations in terms of index finger dynamic, unconstrained usage
of the mobile dynamic and challenging backgrounds.

BASELINE METHOD
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Figure 3.5: Pipeline of our method

In this section, we present our method to serve as a baseline for future works
using the proposed datase. The overall scheme of our method is described in Fig.
3.5.

For a given gesture video sequence, a dense optical flow is calculated in
every frame. As mentioned previously, DIS-Flow by Kroeger [102], is a less
accurate method but, it has a very low complexity to match the computationally
constrained scenario of using a smartphone. For the same reason, we keep the
rest of our pipeline simplistic.

Unlike in fixed camera setups, use of a mobile camera introduces small move-
ments due to hand tremor. Because of the form of the wide-angle lens, a given
movement does not appear with the same magnitude and direction throughout
the image. However, the magnitude of the optical flow due to the tremor is
smaller than the flow induced by the finger gesture. Thus, in order to filter out the
tremor, we discard the flow vectors with a magnitude less than a threshold tmag.
Filtering should be applied considering the position of the vector in the image as
unintentional flow has higher magnitudes at the center than on the borders. If the
ratio of remaining vectors to image size is smaller than a threshold tvectors, the
frame ( ft) is discarded as it is not sufficiently descriptive.
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3. FROM SIGNAL TO MEANINGFUL INTERACTION DATA

ValidFramesG refers to the number of valid frames in the sequence G corre-
sponding to a gesture:

ValidFramesG = |{ ft , t ∈ [0,N f −1],
NV Pft

H×W
> tvectors}| (3.5)

In Eq.(3.5), NV Pft is the number of valid pixels, as obtained with:

NV Pft = |{m ∈ OFt |m > tmag}| (3.6)

where OFt is the matrix of optical flow for frame t and m is the magnitude of
displacement for a pixel.

As for the continuous gestures, an 8-bin histogram of directions is constructed
to represent distribution of the optical flow in each frame. The tip of the index
finger moves rigidly, creating most of the optical flow along the same direction.
This behavior is expected to generate dominant directions in the flow as the
induced motion share common characteristics along the finger. So, if a direction
in the histogram is represented by less than a percentage (tdirection) of the non-zero
pixels, that bin is cleared. This step was previously omitted for the continuous
gestures because small changes create a richer free flowing output, but discrete
gestures need a stricter frame for gesture recognition.

hT [i] =

{
h[i] if h[i]

∑
8
i=1 h[i]

> tdirection

0 otherwise
(3.7)

Hence, at each time instant, we have a filtered histogram of the optical flow.
To represent the dynamic gesture, we construct a feature vector corresponding
to the image sequence. As the gestures can start and end anywhere on the lens
(especially the circle gesture), and the number of frames is highly variable, we
proposed using the average histogram of the sequence as the feature vector.

EXPERIMENTS

For the feature extraction parameters we obtained the best results by choosing
tmagnitude = 5, tvectors = 0.01 and tdirections = 0.05. The average 8-bin histogram
vectors is then fed to an SVM with RBF kernel. The average accuracy was
obtained by using leave-one-user-out approach. A grid search was used to find
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3.2. Low-cost motion information from RGB cameras

the optimal RBF kernel parameters C and γ that give the best average accuracy.
In order to demonstrate the need for magnitude filtering, we compared the perfor-
mance of our proposed method with unfiltered averaged descriptors of histogram
of optical flow [172] and of histogram of oriented optical flow [45]. From the
results shown in Table 3.1, it is clear that the noise introduced by the motion of
the mobile device decreases the performance, and that filtering based on index
finger motion coherency improves highly the results.

Table 3.1: Average accuracies on our dataset

Accuracy
HOOF [45] %63.8889
HOF [172] %61
Ours %73.1

Figure 3.6 shows the confusion matrix of the gestures for our method. The
tap gesture appears to be the most challenging gesture to recognize because of
the amount of rightward and downward motion in the video stream. This may be
explained by the fact that the tap gesture motion involves at some point, vertical
or horizontal motions similar to swipe gestures. Circular gesture is also difficult
to recognize because the distribution of directions in the video varies according
to the completion of the circle.

Table 3.2: Accuracy in the Cambridge Hand Gesture Dataset

Original (9 classes) Regrouped (4 classes)
Ours %70.48 %98.48
TCCA [95] %82 -

We also tested our method on the Cambridge Hand Gesture Dataset [95] that
consists of 9 dynamic hand gestures generated by 3 different poses and motions
(Flat/Leftward, Flat/Rightward, Flat/Contract, Spread/Leftward, Spread/Leftward,
Spread/Contract, V-Shape/Leftward, V-Shape/Rightward, V-Shape/Contract). The
shape of the hand (Flat, Spread, V-Shape) has an effect on the classification which
is not the case for index finger gestures. To approximate the gestures to ours,
we can regroup the gestures in 4 classes based on their common dynamics:
Left (Flat/Leftward, Spread/Leftward, V-Shape/Leftward), Right (Flat/Rightward,
Spread/Rightward, V-Shape/Rightward), Down (Flat/Contract) and Contract
(Spread/Contract, V-Shape/Contract). Table 3.2 shows the average accuracy
of our method in the original and regrouped Cambridge Hand Gesture Dataset.
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left right up down tap circular
left 0.75 0.01 0 0.02 0.05 0.17

right 0.01 0.83 0 0 0.16 0.01
up 0 0.03 0.80 0.02 0.09 0.06

down 0 0 0.12 0.73 0.14 0.11
tap 0.03 0.19 0.12 0.06 0.56 0.05

circular 0.07 0 0.10 0.04 0.12 0.67

Figure 3.6: Confusion matrix for our dataset

3.2.3 AFFORDANCES

Being able to represent motion information quickly yet reliably, opens up
considerably interesting opportunities. Most importantly, it allows the use of
existing -or even older- devices to provide a general description of the moving
parts of a video sequence.

For continuous gestures, especially gesticulations, the simple description
provided for every frame by our approach enables creative artistic performances.
Wearable cameras with a relatively weak processing units (e.g. a raspberry pi)
can be placed on a performer, and be combined with other body sensors. Modern
smartphones are also ideal candidates for developing multi-sensor applications
that incorporate their camera along with other on-board sensors such as global
positioning, IMUs, the touchscreen and so on. The affordances of an example
system is explained further in the section 4.2.

For discrete gestures, again smartphones are a promising platform to develop
interesting multi-sensor applications. Our video dataset which consists of 6
commonly used index finger gestures for mobile interaction can be extended to
include a variety of gestures.

3.3 SEAMLESS CALIBRATION FOR DEPTH CAMERAS

Depth-sensors are increasingly used in 3D interaction and VR. They are
enabling technologies for contactless, non-instrumented interaction. They are also
used for public interaction systems. They may be used to retrieve user movements,
so that either virtual representation of human may be reconstructed, or movements
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may be interpreted to generate commands. Most of these depth sensors are usually
based on camera technologies, which are known to have intrinsic technological
limits (for instance, vision-based systems are poorly resistant to visual occlusions).
Each available sensor has a captation range, visual resolution and acquisition
frequency that make it specific. For practical interactive systems, often a trade-off
between sensor range, time and space resolution has to be made. We think that a
good way to set up a system including a high quality tracking system at reasonable
cost, is to follow a data fusion approach, i.e. combine several cameras together so
that the whole interaction setup has a stronger captation than what each camera
can provide. Such setups classically need a specific calibration phase that has to
be achieved each time sensor positions are changed.

Due to their relatively low price and smal structure, Depth cameras capable of
skeletal tracking can be used in various environments unlike high-quality Mocap
systems. Very common and popular depth sensors systems include Wide Range
Sensors (WRS in the remainder of this document) such as Microsoft Kinect, and
Short Range Sensors (SRS in the remainder of this article) such as Leap Motion.
Both classes of sensors are used in numerous applications. However different
sensors have different limits of usage. With a working distance of 1,5 to 5 meters,
Kinect is more suitable for distant interaction while Leap Motion is a better choice
for proximal interaction with a working distance of around 25 centimeters.

Figure 3.7: Zhang’s checkerboard images [196]

Some methods exist in computer vision for calibrating acquisition of multiple
view scenes. Data fusion has been used for a long time in computer vision to
construct 3D images (e.g. to help a robot combine multiple sensors to achieve a
certain goal). In the case of stereo vision, a famous approach of camera calibration
is Zhang’s flexible technique [196], where a checkerboard is observed at the same
time by two cameras (fig. 3.7). Similarly, data fusion approach can be applied
in the domain of HCI to take advantage of the sensors whose interaction spaces
differ in terms of temporal and spatial resolution and interaction distance.
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Obtaining 3D positions from two sensors means that we have two clouds of
points in two different coordinate systems. It is possible to treat those points in
their own coordinates, but a calibration step is needed to analyze the relations
between two points that are not in the same cloud. The conventional approach
would be placing the sensors in fixed positions and orientations and obtaining the
absolute positions of the observed points in the scene. However these kinds of
systems are harder to transport and small changes in sensors’ positions decrease
the accuracy of tracking. Plus, being able to change the position of the sensors
gives the user more freedom.

Our method is based on observing the same line segment in two sensor spaces.
If the fields of view of two sensors are overlapped, the intersecting volume is rich
in terms of extrinsic parameters. Assuming that it is possible to detect the 3D
positions of two fixed points on an observed object situated in the intersecting
region by both sensors, we can transfer all other points between sensor spaces
given that one common dimension of the sensors stays fixed. To put the idea in
simpler terms, using the relative positions of points to a common line segment,
they can be transferred between spaces. This stems from the reduction of the
dimensions. If both sensors were free on three axes, we would have needed three
common points to triangulate.

Figure 3.8: The vectors on the hand.

In the interest of materializing the proposition, we employ the method with a
SRS and a WRS, both capable of tracking user’s hand and wrist joints. In addition
to those joints, SRS is capable of tracking the fingers. The objective of using
these sensors in this case, is to transfer the finger tips to the coordinates of the
WRS. The hand and the wrist form a vector which has 6 DoF. By observing it in
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the two coordinate systems, we can add the fingers to the hand obtained by the
WRS.

Figure 3.8 shows the two vectors on the hand. The vector marked by the
number 1 is−→v hand , which is retrievable by both devices. We refer its two instances
as −→v WRS and −→v SRS. When the respective orientations of devices are fixed, their
normalized vectors are tied such that

v̂WRS = R.v̂SRS (3.8)

The rotation matrix R is obtained by a version of Rodrigues’ equation [149]:

R = I +[vp]×+[vp]
2
×

1− v̂SRS.v̂WRS

(||−→v SRS×−→v WRS||)2 (3.9)

where [vp]× is the antisymmetric matrix of

−→v p =
−→v SRS×−→v WRS =

v1
v2
v3

 (3.10)

With the rotation and scale calculated, it is trivial to move the finger vectors of
SRS on the WRS hand center. We define a finger as a vector (vectivSRS f inger) from
the hand center to the fingertip with a magnitude of L. In figure 3.8 it is marked
with the number 2. The corresponding vector in WRS’s coordinates becomes

−→v WRS f inger = L.R.v̂SRS f inger (3.11)

Finally, the position of the fingertip is PWRS f inger = PWRSwrist +
−→v WRS f inger.

This procedure can be repeated for all or some of the fingers depending on the
application.

The method is not limited to the hands and the fingers. Using a tree as analogy,
if its trunk is detected by a WRS and a SRS, its branches can be transferred from
the SRS coordinates to WRS.
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CONTINUOUS CALIBRATION

If the number of points to transfer is reasonably low, this method is transparent
from an interaction point of view. The time difference between two consecutive
frames is large enough to perform the entire calibration step continuously. This
gives the user to change the sensor placement during the interaction. Wide range
sensors have a large field of view is usually sufficient even when the user moves,
but she can benefit from moving the short range sensors due to their limited FOV.
The only restriction is that the interaction space of SRS to intersect with that of
the WRS.

Figure 3.9: SRS can be moved to change target

Figure 3.9 shows a possible scenario for this use. The user can choose
the desired object by moving the SRS in front it and start interacting with it
immediately.

3.3.1 AFFORDANCES

In standard interaction systems, calibration is achieved as a specific sub-task,
usually performed before interaction, or each time sensor relative position is
modified. As previously mentioned, the proposed calibration method does not
require any specific user sub-task, and can be applied on the fly. This opens the
way to interaction technique in which user may move sensors during interaction
session, and this can be part of the interaction technique or concepts themselves.
The proposed calibration method serves as an enabling technology for rapid
prototyping of gestural interaction systems based on sensor fusion.
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In section 4.4, I demonstrate the affordances of the combination of an SRS
and an WRS using a design space. We see how it provides a platform for not only
for distant and proximal interaction, but also supports interspace interaction and
extended gestures.

3.4 CONCLUSION

In this chapter, we studied the sensor preparation step for data fusion. This
step consists of sculpting the raw data; input streams are regrouped, unnecessary
parts are discarded, important features are obtained, all to give the data a meaning.

Even though we concentrated on cameras in this chapter, passing from the
signal to meaning is necessary for all sensors. In the most simplistic form, if the
input provides a sinusoidal wave, extracting its amplitude and frequency describes
the nature of the sensed property. Yet, as the abstraction level increases such as in
the case of a camera, obtaining powerful descriptors becomes a more interesting
and challenging task.

In the first part of this section, we have provided a modest way to describe
continuous movements in the camera space. Then we applied a similar approach
to discrete gestures in the context of a smartphone camera equipped with a wide-
angle lens. The dataset we created carries distinctive properties such as a non
linear field of view and hand tremor that are ready to be exploited. We described
a lightweight recognition method using optical flow features to provide a baseline
that achieves 73% overall accuracy.

Now, we can explore the richer interaction spaces enabled by the combination
of the action-ready sensors. In the following chapter, I examine the interaction
techniques that can be exploited by the fusion of heterogenous sensors that share
a common interaction volume.

63





Four

Enriching the interaction space with
data fusion

4.1 INTRODUCTION

In the previous chapter I presented the first step to heterogeneous data fusion
that is extracting meaningful interaction data from individual sensors. I focused
on cameras because they are contextual sensors that are capable of providing
interesting descriptions of the environment. More specifically, I showed that
motion information can be extracted inexpensively using a fast optical flow. In
this chapter, I first demonstrate how these cheap motion descriptors can be used
in complement with a mobile touchscreen, resulting in simultaneous gestures
on both sides of the mobile device. The design space we proposed illustrates
how such combination of mobile camera and mobile touch-screen creates a richer
interaction space in the context of a novel mobile musical instrument.

Also in the previous chapter we have seen a lightweight calibration method for
combining two depth cameras which operate at different distances with different
precision levels. Later in this chapter, first, I show how a depth camera which has
a wide view of the environment can add visual feedback to existing interaction
devices through virtual objects. Then I discuss the combination of the large range
depth camera with a short range depth camera in the context of a richer and
continuous interaction space.
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4.2 FILTERING IMAGE STREAMS WITH A TOUCHSCREEN

Mobile cameras can provide rich contextual input as they can capture a wide
variety of user gestures or environment dynamics. However, this raw camera
input only provides continuous parameters and requires expensive computation.
We propose combining motion/gesture input with the touch input, in order to
filter movement information both temporally and spatially, thus increasing ex-
pressiveness while reducing computation time. Spatial filtering allows decreasing
the number of pixels to process by selecting a region of interest. Temporal fil-
tering serves to identify the start and end of actions. We present a design space
which demonstrates the diversity of interactions that our technique enables. We
also report the results of a user study in which we observe how musicians adapt
themselves to the interaction space given the mobile instrument.

Many sensing capabilities of mobile devices have been explored for musical
interaction [57]. Most of the mobile devices today includes various sensors
such as a microphone, motion sensors, a touch screen, and multiple cameras.
Hence, numerous musical interaction devices were designed around smartphones
and tablets [66] [8] [178], in particular using the discrete and continuous input
capabilities of the touchscreen. Among these sensors however, the use of built-in
camera of mobile devices has been little explored. The simplest approach is to
use the camera as a tone-hole. Ananya et al. [8] use the average gray-scale value
of the camera input image to detect if the lens is covered. Covering or uncovering
of the lens modifies the pitch of the sound similarly to a tone-hole. Keefe and
Essl [92] used low-level visual features of the input image such as the edginess
to create mobile music performances with visual contributions. Camera image
has also been used to track visual reference points to gather position and motion
information that are mapped to MIDI controls [152] [151].

Optical flow representation of movements has been used in various musical
interfaces in the past. ParticleTecture [81] uses Horn-Schunck’s optical flow
method to determine the apparent movement in the image. The flow output is
interpreted as a Game of Life, where living cells correspond to pixels in motion.
The cells are tied to sonic grains that emit sound when activated. However, the
only direction information they use is the horizontal component, which is used
to trigger grains into proliferation or stasis. Thus, while their work uses optical
flow for granular synthesis, they did not fully take advantage directional richness
of flow properties. In Sonified Motion Fields [139] Pelletier uses FAST corner
detector [153] to extract feature points and estimates the optical flow by using
a pyramidal Lucas-Kanade method [194] to track the sparsely identified points.
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He also discusses the potential mappings of the flow field to sound parameters.
However he concludes that the flow fields’ temporal resolution is poor and the
feature detection is not robust. CaMuS2 [151] estimates the optical flow from
a camera phone. A 176x144 pixels image is divided into 22x18 blocks and
cross-correlations between successive pairs of block images are calculated to
obtain the optical flow. Because only 4 points are sampled in each block, the
algorithm performs quickly. The simplicity of the method allows obtaining the
global translation and rotation at 15fps, but the system is unable to provide rich
motion information from the moving objects in the image.

However, to our knowledge, built-in cameras of mobile devices have not
been used for sonification of moving elements in the camera image. Controlling
sound through movement has always been of interest and can be traced back to
Kurenniemi’s DIMI-O [136] and Rokeby’s Very Nervous System [2]. More recent
examples such as [139] [81] [83] [64] use difference between images and optical
flow to represent the moving parts of the image, but the methods have been either
too simple to extract rich information or too heavy to be run on mobile devices.
To overcome the too heavy - not rich enough trade off, we propose combining
visual movement detection with the touchscreen of mobile devices.

4.2.1 THE PHONE WITH THE FLOW

(a) A person, a computer
screen, a fan, objects passing
by the window are
movement sources.

(b) The user chooses a
movement source

(c) The user selects a region
on the screen

Figure 4.1: From scene to the the touchscreen.

In this section, we first present the main approach behind our system. It
is currently implemented as an Android App (www.caganarslan.info/pwf.
html). Optical flow features, extracted as described in section , are then mapped
to sound synthesis parameters. The sound synthesis can be done either directly
on the mobile device, with restrictions on the complexity of the synthesis due
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to limited computing capabilities, or the features can be sent to external musical
software via OpenSoundControl messages.

FROM THE SCENE TO THE TOUCHSCREEN

Our system relies on real-time spatial and temporal filtering of rich motion
information provided by the built-in cameras of mobile devices. Fig. 4.1 depicts
an example scenario of use of The Phone with the Flow.

Movement-rich Environment: The physical scene captured by the built-in
camera offers a large range of movements, with various periodicity, directions and
sources. The sources can be artificial (displays, mechanisms), natural (weather,
animals, plants), or originate from people (user’s body, other musicians, spectators,
by-standers).

Choosing the Interaction Space: Mobile cameras have a limited field of
view but their portability enables exploration of the surroundings by a point-and-
shoot approach. Unlike fixed installations, the mobile camera’s field of view can
be changed without effort by simply changing its position and orientation. When
the camera aims at a part of the movement-rich environment, objects in the field
of view are captured, providing the user with a visual feedback of their movement
sources. The user is then free to interact in the combined interaction volume [117]
of the camera and the touchscreen.

Filtering the Movements: Once the movement sources are displayed on
the touchscreen, the user focuses on a region of interest by touching it. The
touch selects a region of the image to be analyzed further for detailed movement
information. The user can change the position of the region by dragging their
finger on the screen, alter its size, combine multiple regions and switch between
them. The touch input thus enables filtering of the movements.

4.2.2 DESIGN SPACE

We present a four dimensional design space to explore the musical expression
possibilities presented by Phone with the Flow. The dimensions can be combined
to provide a large set of interaction techniques.
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Movement Source

A smartphone camera enables the user to freely change the subject of the
motion. We distinguish two values for this dimension:

Figure 4.2: Movement sources. (Left) Self-motion, (Right) World-motion.

Self-motion: The holder of the camera is also the creator of the movements.
The user can use its body parts to perform dynamic gestures. In the case where
the user holds the camera with one hand, the other hand is free to create optical
flow. Therefore, self-motion encourages bi-manual interaction on and behind
the mobile device. The fingers permit creating movement in multiple directions
simultaneously. Feet, legs, head and even the torso may also be the source of the
movement. It is also possible to perform gestures by moving the device, as its
relative motion with respect to the environment also creates an optical flow.

World-motion: The camera aims at an external source of motion. These
sources can act intentionally to create controlled movements, such as a dancer, or
be unaware of how they contribute to the process, such as spectators and other
musicians on the stage. Objects that are continuously in motion may also be used
to create sound, for instance, a busy highway, a waterfall, an assembly line and so
on. Additionally, visual sources such as projections and displays may serve as
sources. In a rich environment where there are multiple sources, the mobility of
the device allows transition between them.

Camera Movement

This dimension is about how we adapt camera movement to complement the
movement search.

Fixed: The camera is held at a fixed position. All of the optical flow is created
by the moving objects in the static field of view. In practice, a hand-held device
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is rarely in a fixed position because of hand tremor. However, the optical flow
image is filtered to discard small displacements before obtaining the feature vector.
Therefore hand tremor does not have an effect in this scenario.

Independent: The camera moves independently from the content of the envi-
ronment. The optical flow is created by the motion of the camera with respect to
the environment. Horizontal and vertical movements of the camera produce an
output similar to that of an accelerometer, but the movement in the depth results
in an optical flow in every direction as it produces a zoom-in-zoom-out effect.
The device can also be rotated around three axis causing circular displacements
of pixels.

Adaptive: The camera can track a moving object to strip it from either its
translation or rotation. Or, if the object in motion is not rigid, its deformation
can be stripped by adapting the camera movement to its trajectory. However,
if the object does not fill the camera’s field of view, the independent motion
mentioned above distorts the optical flow. Hence, adaptive movement requires
careful control.

Touch

The touchscreen offers valuable possibilities for filtering the image to discard
the movements that are not desirable for the performer. The touch dimension has
three values.

None: The touchscreen is not used along with the camera. All the movements
in the camera image are processed continuously. This is ideal in controlled
environments where no intervention is required. This attribute is best combined
with a fixed camera to avoid continuous sound output of a moving device.

Activation: The touchscreen is used for temporal-only selection of move-
ment. All movements captured in the camera image are therefore processed,
but only while there is a finger touching the screen. This allows for discrete
activation/deactivation of otherwise mostly continuous changes in the captured
movements.

Isolation: Fingers are used to select a region of the camera image to focus
on a movement source and discard the rest of the movements in the view. When
there is no contact between the finger and the screen, nothing is processed. This
enables both spatial and temporal filtering, making the system more robust to
noise. Another advantage of isolation is decreasing the number of pixels to
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process in order to lower the latency. Multiple regions may be activated at the
same time.

Mapping

The mapping dimension describes the mappings between the finger position
on the screen and sound parameters.

Independent from spatial position: Sound parameters are influenced only by
the optical flow. Regions that encounter the same movement sound the same
independently from their position.

Linked to spatial position: X and Y axes of the touchscreen are mapped to the
sound parameters. The position of the finger determines the values along these
axes. Consequently, the same movement results in different sounds in different
regions of the camera image.

4.2.3 EVALUATION

We evaluate what techniques are used by musicians when exploring the
instrument. The goal of the evaluation is to determine how the users utilize the
interaction space created by the combination of the camera and the touch screen.

10 participants (2 left-handed) volunteered to take part in the experiment.
Their ages varied between 23-52 (mean 35, sd 9). All participants were involved
in musical activities and were regular users of smartphones. The experiment was
conducted on a 5.8" Galaxy Edge S8 smartphone running Android. The built-in
camera provided images of 320x240 pixels at 30 fps. The feature vectors were
sent via OSC messages to a standard PC running our Pure Data patches.

PROTOCOL

We presented a mobile instrument which demonstrated our design space to
the participants. In this instrument, the sound is produced by granular synthesis
with 3 voices (one per finger). The mapping is linked to spatial position such
that the horizontal and vertical touch position on the screen respectively changes
the initial position in a sample and the initial frequency of the grains. While the
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Questions Mean SD

I made a lot of physical effort 2.65 1.05

I needed to concentrate 5.25 0.60

I felt frustrated/annoyed 2.6 0.99

I enjoyed interacting with the instrument 5.75 0.84

I was able to create a
wide variety of sounds

4.35 1.18

I found my own techniques to play 4.9 1.14

Table 4.1: Likert Scale results

finger is touching, the grains that make up each voice then move around the sound
(in position and frequency, as if browsing a spectrogram) according to the optical
flow. The flow histogram gives the amplitude of displacement in 8 directions for
the grains. The average flow amplitude changes the duration of the grains and
the amount of moving pixels controls the volume. Participants were also able to
change the size of the region that is activated by a touch.

The experiment was conducted in two stages. In the first, the participants
were provided with a display that could generate animations and a small fan as
world movement sources. In the second they were instructed to use their bodies
to create movement. For each stage they were given 5-10 minutes to explore
and to prepare a 5 minute performance. During the performance, all parameter
variations were logged in the Pure Data patch. The sound samples were altered
between the steps. Both the order of steps and the samples were counterbalanced
across participants. After the open exploration and the performances, participants
responded to 7-point Likert-scale statements for which the results can be seen in
table 4.1.

RESULTS

Without any instruction, all of the participants used their dominant hand to
hold the smartphone and to use the touch input. They stated that orienting the
smartphone and using the touchscreen at the same time was a difficult task for the
non-dominant hand.
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Figure 4.3: Simultaneous finger use

We measured the frequency of simultaneous fingers used on the screen (Fig.
4.3). While performing hand gestures in the self-motion condition, the participants
mostly used only one finger (55% 1 finger, 32% 2 fingers, 13% 3 fingers) to isolate
the regions. However, when participants moved the camera with two hands, they
were able to use multiple fingers. In world-motion, they often used both thumbs
(42% 1 finger, 48% 2 fingers, 10% 3 fingers). Figure 4.4 also confirms the frequent
use of both thumbs in world-motion.
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Figure 4.4: The screen use during user experiences. (Left) Self-motion, (Right)
World-motion.

Figure 4.5 shows the average time it takes to calculate optical flow and
to produce the feature vector for regions of different size. As the direction
histogram and averaged optical flow values are calculated only from the moving
pixels, computation time shows variation according to the captured movement. In
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Figure 4.5: Computation time of the features vs region size

smaller regions, the amount of moving pixels do not vary significantly because
the movements generally fill the whole region. Thus, the standard deviation of
the computation time increases with the region size. We calculated the average
region size used by the participants to be 16800 (140x120) pixels. This shows
that using image regions instead of the entire image (76800 pixels) significantly
decreases the computational time from 23ms to 5ms.

70% of the participants preferred using world objects instead of gestures.
While the participants who preferred world objects argued that the instrument
required concentration when performing hand gestures and using the touch input
at the same time. The opponents all stated that gestural interaction allowed a finer
control on the created movement.

DISCUSSION

We presented a novel approach to sonify visual movements by combining
the touchscreen and the built-in cameras of mobile devices. In this context, the
touchscreen proves to be a valuable tool to filter the visual input temporally and
spatially. We also discussed the different interaction techniques enabled by our
design space.

An interesting future work would be to combine the use of optical flow, i.e.
motion features, with the other features in the images captured by the built-in
camera, bringing objects textures, colors and shapes to the sonification process.
Thereby, the camera would be working in two different contexts and our process
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would require a logical fusion step. In addition, to make the interaction more
heterogeneous, future work should incorporate the smartphone’s IMU into the
system. IMU could both be used to compensate the optical flow created by
the smartphone’s movement and add a new dimension to interaction by taking
smartphone’s orientation in 3D.

The usability of the Phone with the Flow arises out of the overlap of the display
and the touch surface. This gives the user the opportunity of directly selecting the
moving objects, therefore it does not need an additional feedback. However, other
novel gestural instruments often lack visual feedback to be perfectly usable. In the
next section, I propose adding a wide range depth camera to gestural instruments
for providing visual feedback.

4.3 ADDING VISUAL FEEDBACK TO SENSORS

Like RGB cameras, depth cameras are contextual sensors which have a high
abstraction level. Their ability to sense the physical space in 3D makes them more
popular then RGB cameras for spatial and embodied interaction. However, the
opportunities offered by spatial interaction also brings challenges, particularly
if 3D virtual objects are included. Interacting with virtual objects are easy with
the new generation of VR systems where user’s hands are also visible in virtual
environment. Yet, in an AR setting, it is more challenging. Virtual objects are
displayed using projectors, but they need a real object on which they are projected.
The projections are then used as a visual feedback that guides the user and guides
their movements.

In this section, I present our implementation of simplified versions of three
existing gestural instruments, and demonstrate how they can be augmented using
the depth camera space. It is important to point out the difference between a
simple feedback mechanism and what was achieved with our contribution that
was part of the Revgest project [24]. A simple feedback mechanism such as
in the case of a cursor which shows the motion of a computer mouse does not
constitute data fusion. The cursor on the screen moves only according to the
mouse’s physical movement. However in our contribution, the visual feedback
reflected on the environment require additional information about the position
and the state of the agents involved in the performance.
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4.3.1 REVEALING GESTURES

b

c

da

Musician projector

Spectators projector

Depth camera

Figure 4.6: (a) Revgest in a setup with two projectors and one depth camera for public
performance. The top projector is placed behind the musician and allows for feedback
visible only to them. A virtual sphere is attached to the musician’s right hand and
provides feedback on finger movements sensed by a glove, another sphere in green
controls a delay effect. (b) The resulting augmented gestural instrument. (c) Another
glove based gestural instrument. (d) Augmentation of a handheld instrument.

Gestural interfaces, which make use of physiological signals, hand / body
postures or movements, have become widespread for musical expression. While
they may increase the transparency and expressiveness of instruments, they may
also result in limited agency, for musicians as well as for spectators. This problem
becomes especially true when the implemented mappings between gesture and
music are subtle or complex. These instruments may also restrict the appropriation
possibilities of controls, by comparison to physical interfaces. Most existing
solutions to these issues are based on distant and/or limited visual feedback
(LEDs, small screens)
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From a hardware point of view, various signals from the body may be used,
through devices that allow to use instrumented (or not) hand movements [112],
finger movements and hand poses [33], or muscular activity [54]. Research on
gestural instruments now provide knowledge about how to increase the trans-
parency of Digital Musical Instruments through metaphors of physical world
actions [60] or gestural sonic affordances [5]. They also create new opportunities
for expression as they are more closely linked to the musician’s body and as
they remove some physical constraints of object-based instruments, e.g. on the
amplitude of gestures.

In the context of computer-based instruments the lack, or limited use, of
interaction with physical objects may also restrict feedback, both for the musician
and the audience, and also restrict the appropriation [71] possibilities offered
by the instrument. Visual feedback (with limited resolution) can be obtained by
adding LEDs on the interfaces, for example using handheld devices as described
by Hattwick et al. [76] or to glove interfaces such as the mi.mu gloves [121].
Mulder and Fels [125] used the deformations carried on virtual objects to perform
and visualize sounds synthesis. Richer visual feedback is usually displayed distant
from the interface, for example on a screen on stage in front of the musician, as
done for some of the T-stick performances [112]. However, as shown by Berthaut
and Jones on control surfaces [25], the visual feedback designed by musicians, if
relevant, often requires higher resolution as well as co-location with the gestures.
Outside the musical field, Sodhi et al. [166]] describe how 3D guides can help
learn gestures when projected on the hand to indicate directions.

In order to display the virtual objects, our pipeline first needs to sense the
physical space, by which the objects will be revealed and in which they will
appear. The first possibility is to scan the physical space using a depth camera,
with either structured infrared light or time-of-flight technology. From the image,
a 3D mesh is created and transformed to world coordinates. The second possibility
is to track revealing physical objects and assign their transformation to 3D models
with matching shapes. Each physical element, depth camera and objects, is also
assigned a unique identifier that can later be used to determine by which each
virtual object was revealed.

4.3.2 FEEDBACK AND EXTENDED CONTROL

Originally Revgest is capable of providing virtual feedback in many configu-
rations between the performer, spectators and objects, but not every configuration
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requires heterogeneous data fusion. There exists, however, some configurations in
which the performer has to take actions to stimulate both the gestural instrument
and the depth sensor, thus creating a projection as a result fusion of two gestural
modes. First, let us briefly resume the Revgest’s design space.

The attachment dimension pertains to how virtual objects can be placed in the
physical space and their physical relation with the musician’s body:
-attached to world (AW) : the object is placed in the physical space around the
musician, at absolute coordinates.
-attached to body (AB) : the object is attached to and follows the hand or other
body parts of the musician.
-attached to object (AO) : the object is attached to a handheld or static physical
object.
The attachments require the user to search for the virtual object. Surely, the user
memorizes the location of the virtual object, but they have to consciously enter in
the object’s volume to activate the effects it produces.

The feedback dimension describes the type of information that can be dis-
played.
-mappings feedback (FM) : the object is used to identify the mappings between
sensors and sound parameters, with text labels, textures or colours.
-parameters feedback (FP) : the object is used for feedback on musical parameters,
in order to provide their context (curves, controlled waveform/timeline)
-content feedback (FC) : the object is used to provide the status of musical pro-
cesses with for example VU meters, activation of sequences, and so on.
All types of feedback show information related to the state of the gestural instru-
ment. For example, by changing the brightness of the projection it can show how
bent the flex sensors are in a smartglove.

The control dimension pertains to how virtual objects are used for additional
control of the music, complementing the expression offered by the gestural
instrument.
-no control (CN) : the object is only used for feedback.
-discrete control (CD) : the object is used for discrete control, such as activating
sequences or effects, triggering notes and so on. This corresponds to entering
and leaving virtual objects, and going from revealing the surface to revealing the
inside of objects.
-continuous control (CC) : the object is used for continuous control of musical
parameters. The control may be a 3D position inside a virtual volume, a position
along a path, a revealed color/texture. Example use cases include exploration
of parameter spaces, playing through waveforms / sequences, exploration of
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audiovisual textures, and so on.
Therefore both CD and CC requires user to perform gestures to interact with the
depth sensor, while controlling parameters of the gestural instrument at the same
time. The resulting feedback is a fusion of the gestures performed for the virtual
objects, and the gestures on the instruments.

The discrete CD and continuous CC control of the instruments add an addi-
tional dimension to the sound creation process by activating filters and effects.
We call this the extended control of the instruments. Next, I show the benefits of
extended control by augmenting three existing instruments.

AUGMENTED INSTRUMENTS

Xth Sense

The first instrument takes inspiration from the xth-sense [54] instrument,
which relies on MMG and EMG signals to control the sound. We recreate the
system using the same glove described above. An additional pressure sensor on
the palm activated when the hand is squeezed, evaluates the strength of the grasp.
Movement speed is mapped to the volume and bending is mapped to a different
voltage-controlled filter for each finger. Grasp strength is used to control a filter
on the overall sound. Finally, the average finger extension is used to control the
wet/dry on a reverb placed before the main filter, allowing one to trigger long
reverberation by suddenly opening their hand. The extended control version,
shown on Figure 4.6.b, adds three objects around the hand and attached to it. By
intersecting these objects, the musician activates three separate delay effects. This
version creates opportunities for appropriation as the objects can be revealed by
any physical elements and move together with the hand. This version can be
classified as FP/FC, CD, AB.

Soundgrasp

The second instrument is an adaptation of the musical glove presented by
Mitchell and Heap [123]. We created a data glove to reproduce the SoundGrasp
system. Four flex sensors positioned on the proximal interphalangeal joints except
that of the thumb, measure the opening of the hand. The sensor outputs are
connected to analogue inputs of a x-OSC board which sends OSC packets to the
server. Our simplified version allows one to record their voice by opening the
hand,and to loop the recorded phrase by closing it. Two effects can be applied
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by extending one or two fingers. The extended control, shown on Figure 4.6.c,
adds the possibility of creating a 3D soundpath placed in mid-air when the loop is
played for the first time. This path is revealed by the musician and visible for both
him and the audience. The musician may then activate and deactivate the playing
loop by entering and leaving the path. The center and extent the section revealed
in the path then controls the length and starting point in the loop. This version is
classified the design space with the following values FM/FP, CD/CC, AB/AW.

T-Stick

The third instrument draws inspiration from the t-stick developped by Malloch
et al. [112]. It consists in a tube equipped with various sensors. Sound parameters
can then be controlled with the movements of the tube and by pressing, sliding,
tapping the tube. In our version, 10 pressure sensors are placed along the length
of the tube. They control the volume of 10 granular synthesizers which play ten
positions along the same sound. The speed of the tube controls a global volume.
In the extended control version, shown on Figure 4.6.d, three large zones are
defined in the physical space. Each zone is associated to an effect, activated when
the musician is inside the zone. In addition to the visual feedback given to both
musician and audience on which effects are active, these virtual objects open
expression opportunities, such as combining effects or playing with the borders
of zones for glitches in their activation. This version can be classified as FP, CD,
AO/AW.

Figure 4.7: T-Stick. (left) Visual feedback for musician (right) for the spectators

4.3.3 DISCUSSION

In this section, I argued that heterogeneous fusion can provide a rich visual
feedback mechanism by incorporating the spatiality of gestures through a wide
range depth camera. Essentially, the depth camera served to activate discrete
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zones in the scene, and these active zones allowed users to perform finer gestures
on instruments while obtaining a visual representation of the effects of their fine
interaction with their instruments.

In the next section, I argue that a similar ample and fine gestures combination
can be adopted by using two depth cameras which provide skeletal data at different
precision levels.

4.4 A MULTISCALE DEPTH CAMERA

Depth-sensors which are based on camera technologies are perfect tools for
non-instrumented interaction. They are versatile in sensor positioning, can be
installed undisturbingly in public settings and retrieve user movements without
additional guidance to users. Some depth-cameras provide skeletal information
which is ready to use through vendor APIs. Therefore, they are practical for
prototyping and developing user interaction. However, the dependence of camera
technologies bring intrinsic constraints such as acquisition range, frequency and
resolution. Combining multiple depth-cameras can provide a solution to the
trade-off of these constraints. In section 3.3 I presented a lightweight calibration
method for two depth-cameras with different precision levels. In this section, I
demonstrate the affordances of that combination.

Our interactive environment consists of Microsoft Kinect 2.0 and Leap Motion
sensors, which we consider are example of WRS and SRS, respectively. Accord-
ing to [84],the optimal distance between the object and the camera is between
1.0m and 2.5m. In [70], it is indicated that Leap Motion’s range extends from 25
to 600 millimeters above the device. Thus, we place the devices as in fig. 4.8 so
that the user’s hands stay in the optimal zone for both sensors.

4.4.1 TEMPORAL AND SPATIAL RESOLUTION

We demonstrate an example use of our calibration method with the Kinect -
Leap Motion acquisition couple. The main inadequacy of this system is Kinect’s
lack of finger tracking and Leap Motion’s limited FOV. Thus, we propose a
method to extend Leap Motion’s field of vision to export the fingers to Kinect’s
world.
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Figure 4.8: Sensor placement. 1. Kinect, 2. Leap Motion

According to [84], the measurement precision of the Kinect 2.0 sensor is
between 1mm and 3.5mm, operating at 30 fps. On the other hand, [70] indicates
that Leap Motion generates around 40 images per second with a precision of
0.5 - 0.01 millimeters. Consequently, Leap Motion has higher spatial and higher
temporal resolution than Kinect.

The temporal resolution of the overall system is chosen to match that of
Kinect. The image from Leap Motion is only acquired when the Kinect image
is ready. This ensures having unique frames from both sensors even though the
faster sensor produces multiple images. In the opposing scenario, a null frame is
occasionally produced by Kinect between Leap Motion frames, thus the constant
frame rate cannot be maintained.

On the other hand, there is no necessity in downgrading the spatial resolution
of Leap Motion. The system has a variable spatial resolution: the ROI around the
hands has Leap Motion’s resolution, while the rest of the scene is as resolute as
Kinect.

Skeletal tracking

In Kinect 2.0, there are 25 trackable joints located all around the body but
here are only 4 joints on the hand: wrist, hand center, hand tip and thumb. The
lack of hand joints makes Kinect difficult to use for proximal interaction as it
limits the number of hand poses. In Leap Motion, all the joints of the hand are
available but there are no body joints, which forces it to be a proximal interaction
sensor.
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Figure 4.9: Projection of Leap Motion’s fingertips to Kinect’s coordinates.

Using the common hand center and wrist joints as seen in figure 3.8, We have
transferred the fingertips to the Kinect’s coordinate system (fig. 4.9). This transfer
enables new interaction methods which is discussed in our design space.

4.4.2 DESIGN SPACE

In single device mode, the constraints of the devices force the user to interact
from a certain distance. By combining the interaction spaces of both devices,
we propose 3 interaction distances with targeted objects: Distant, Proximal and
Interspace. But first, the SRS is manipulated tangibly select a target object.

Tangible interaction

Changeability of sensor positions due to continuous calibration permits the
user to treat the sensing device as a tangible object. Instead of changing the target’s
position, user can grasp and move the SRS. However, because our calibration
method is constrained to a horizontal surface for the SRS, it can only move
horizontally. Figure 3.9 contains two targets; user can move the SRS in front of
the selected object to interact with it.

Embodied interaction

The position of the user in the scene is a key parameter for the interaction.
Positioning oneself away from the SRS indicates the indifference to the details,
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while putting the hands on the SRS means that the user reaches to a target,
showing their interest in interacting with it in a more precise manner.

Distant interaction: This mode is based on the natural usage of the WRS
sensor. The gestures to perform are spacious and rough. The user’s position and
his limb movements are the main elements for the interaction. Distant interaction
mode is selected naturally if the user’s hands are not on the SRS.

Proximal interaction: This mode is based on the natural usage of the SRS
sensor. The gestures to perform are precise and small. The user’s fingers and
the orientation of her hands are the main elements for the interaction. Proximal
interaction mode is selected by placing hands above the SRS sensor.

Interspace interaction: We define interspace interaction as the ensemble of
the user commands and gestures that are observed by both sensors. It uses both
sensors in a complementary way to exceed their individual limits. In [117],
extended hand gestures can be considered as an example of interspace interaction.
Otherwise in [51], interspace also exists between the gametrak and the touch
screen.

4.4.3 CONTINUITY OF INTERACTION SPACES

Tangibility of the SRS transports the local refinement of the interaction space
to different zones in the environment. Interspace interaction allows bending the
frame of the refined interaction volume. This can be achieved through registering
a hand pose and combining it with arm movements.

Registration pose

In their taxonomy of multi-touch and whole-hand surface gestures [61], Free-
man et al. described the registration pose as the state of the hand at the initial
touch. Similarly, our registration pose is the state of the hand that triggers in-
terspace interaction. A registration pose is defined by the state of the fingers
(open/closed) and the angle between them. Figure 4.10.a shows the L-shaped
registration pose where the only open fingers are the index and the thumb and the
angle between them is larger than 60 degrees. There is no physical meaning of
this pose, it is chosen purely for demonstration purposes.
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Combining hand postures with large arm movements

In order to unify the gestures performed in two sensor spaces, user benefits
from a sequential approach. Once the hand posture is validated on the SRS
to select a virtual tool, the effects of the tool are applied to the environment
by large arm movements. The whole arm can be used as a pointing device to
apply the effect of the hand posture on a specific target, as well as using the
continuous arm movements to apply the result of the hand gesture continuously
on the environment.

Figure 4.10: An extended gesture through hand pose transfer.

Hand pose transfer

With registration pose performed on the SRS, we can transport the finger
information to the global scene observed by the WRS assuming the user keeps
the pose.

In a gesture performed in a multi sensor space, deciding on its start and
end can be a problem. In our system, an interspace gesture is triggered by the
registration pose, on the SRS, but it can end in either sensor’s space.The gesture
starts with the acceleration of the hand observed by the WRS, and ends when the
hand returns to rest.

Between the start and the end points, the wrist and hand center joints are
available. However, finger tip positions are lost once the hand is not observable to
SRS. These lost points can be estimated by a similar approach to what we used
for the lightweight calibration. At the beginning of the gesture, the length of the
open fingers are saved along with their rotation with respect to the vector between
the wrist and the center of the hand. When needed, the fingertip estimated on the
WRS skeleton can be used outside. In figure 4.10.c, the trails of the fingers are
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marked. The change in colors signify that the hand is no longer observable by the
leap motion and that the points are estimated.

DISCUSSION

The combination of a WRS and a SRS allows us to dynamically adjust
the local precision of captured hand gestures. At the same time it conserves
classical interaction techniques offered by each sensor. Regardless of the lack of
quantitative analysis of the reliability of the system we proposed, the concepts we
have conceived exhibit the benefits of a heterogeneous system. It allows a richer
interaction locally, and also provides a continuum between two devices. I go into
more detail on the continuum to extend the interaction space, in the next chapter.

4.5 CONCLUSION

In this chapter, I proposed enriching the interaction space through heteroge-
neous data fusion. Thanks to the rich contextual information obtained by both
RGB and depth cameras, we were able to incorporate the description of larger
volumes into finer interaction. I presented three contributions. Combination
of a mobile touchscreen and camera enabled us to filter motion information to
obtain a faster and more expressive instrument. Then, combination of depth
sensor and gestural instruments provided visual feedback and augmented existing
instruments. Finally, to depth sensors with different ranges allowed refinement of
skeletal data.

While demonstrating the spatial variation the local precision refinement, hand
pose transfer from the short range sensor space to the wide range sensor space
overflowed from the premises of enriching the interaction space. It created a
continuum between two interaction spaces and allowed us to start a gesture with
one sensor and finish it with the second one. In the next chapter, I elaborate on
how we can use this type of continuum to extend the interaction space.

86



Five

Extending the interaction space with
data fusion

5.1 INTRODUCTION

In the previous chapter, we demonstrated enabling of richer interaction tech-
niques in the intersection of two interaction spaces. However, at the end, we
briefly talked about the possibility of transitioning from one interaction space
to another in a continuous manner. Next, I propose using this continuum to
extend the interaction space of small devices. My aim is to demonstrate that the
form factor of input devices can be changed by data fusion to accommodate new
gestures.

The physical form of devices evolves in time as a result of years of devel-
opment, testing and user feedback. Moreover, the tasks people accomplish on
devices changes with time. New technologies in batteries, processors, sensors,
displays also cause changes on devices; it is a constant development cycle. In
the beginning of our millennium, tech companies were trying to make smaller
phones. With the introduction of color displays and cameras, phones have gotten
bigger. Now, with touchscreens and internet on our phones, they are much bigger
because there is a lot more information to show on the screen. The increasing
consumption of multimedia on our mobile devices also indicates that they will
not be getting smaller any time soon.

As long as we use touch sensitive mobile devices for their design purposes,
they are easy to manipulate. However, when we use them for new purposes as
we often do with all devices in HCI, they have a limited interaction space. In
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this chapter, I propose [11] extending the touchscreen of a hand-held device with
an imaginary touch surface, fusing the interaction spaces of a smartphone and
external cameras.

5.2 EXTENDING A MOBILE TOUCHSCREEN

Relative pointing through a tablet (PAD) on a large display is a viable tech-
nique which permits accurate pointing, but the nature of small screen of the PAD
and the large screen of the display require a careful calculation of the cursor
transfer function. Additionally, such systems requires clutching to move the cur-
sor which degrades the performance. We present EXTENDED-PAD an indirect
relative pointing system composed of a small touch surface (tablet) and the space
around. A user can perform continuous relative pointing starting on the pad then
continuing in the free space around the pad and within the arm’s reach.

Large displays are increasingly popular and well adopted for public settings.
Ray casting methods [41,87,126,135,141] and tablet based gestures [119] are
mainly used to interact with those displays. However, although these techniques
perform well for targeting and tracing [87], they can lead to major issues. For
instance, using only ray casting methods can lead to hand jitter, fatigue and the
lack of supporting surface decreases user performance [126]. On the other side,
interacting with large displays differs from desktop and mobile use in pointer
movements. In this context, either using absolute mapping or relative one can
be problematic. For instance, absolute mapping suffers from the screen sizes
difference [128]. In opposite, while relative pointing is a viable technique enabling
accurate pointing, the nature of small screen requires a careful calculation of the
cursor transfer function. In addition, the small size of touchpad requires clutching
to move the cursor which degrades the performance [39].

To overcome such limitations, we propose combining touchscreen and the
space around it to perform extended continuous relative pointing gestures which
enable transitioning from the mobile touchscreen to mid-air. These gestures
permit the creation of the E-Pad(short for Extended-Pad), that has its unified
interaction space, and a modified control to display function to perform large
cursor movements while being less tiring and faster than the aforementioned
techniques.
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Our contributions are as follows: (1) we introduce extended continuous rela-
tive pointing gestures and conduct a preliminary study to determine how the hand
diverges upwards from the smartphone’s plane as the motion continues around
it,(2) we propose E-Pad, a novel technique for relative pointing on large displays,
(3) we conduct an experiment to compare the performance of E-Pad with Pad,
and (4) we derive three guidelines for pointing on large displays. We hope that
E-Pad and our results will prove useful to designers and practitioners interested
in indirect pointing on large display designs.

RELATED WORK ON INTERACTING WITH LARGE DISPLAYS

Ray casting methods are largely used to interact with the large displays. Laser
pointing [41,135] and image-plane pointing [141] are the principal applications
of ray casting methods. Although these techniques perform well for targeting
and tracing [87], hand jitter, fatigue and lack of supporting surface decrease their
performance [126]. Kopper et al. [99] also state that the performance of distal
interaction systems depends largely on angular movements and sizes. Thereby, if
the target and the user are at opposite ends of the display, the target is very difficult
to acquire. In order to attack the precision problems, Vogel and Balakrishnan
investigated gestural pointing techniques in air and concluded that ray casting
may be faster, but less accurate than relative pointing [174].

In parallel, other researchers advocated for using tablet devices as a touchpad
when interacting with large displays. This fact has led to a number of orthogonal
design. For example, hand-held touch screens based on absolute mapping of the
touch screen to the display have been employed to interact with large displays [111,
142]. However an absolute mapping is problematic due to the difference in screen
size. Other researchers proposed using relative pointing [128] or combining both
absolute and relative mapping by tapping to jump to the corresponding location
on the screen, and then invoking relative motion with any finger movement [119].
Siddhpuria et al. conducted an experiment on distal pointing with everyday
smart devices [165] and concluded that using smartphone with tho hands as
a relative trackpad in landscape orientation gives the best results. Of course,
relative pointing on a touchpad is a viable technique which permits accurate
pointing, but the nature of small screen requires a careful calculation of the cursor
transfer function. Pointer acceleration (PA) functions dynamically adjust the
control-display gain, but they are implemented for desktop use in major operating
systems [38]. Also, increasing the gain may deteriorate the performance due to
hand tremor and quantification errors [82]. Additionally, according to Casiez
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a
b

c d

Figure 5.1: E-Pad functions: (a) Coordinates of E-pad; (b) pointing on the pad; (c)
continuing in the air; and (d) releasing the cursor.

et al. [39] significant clutching to move the cursor degrades the performance.
We should also state that, Nancel et al. [129] found that clutch-less movements
were harder to perform and were not faster than clutch-enabled movements on
touchpads.

Mixing touch and mid-air gestures is another approach to control large dis-
plays. In [29,107,195], authors benefit from switching between touch and air
interaction for large tactile displays, but there is no continuity between the two
modes. Yet, there exists a rich interaction space trapped between touch and
air. Marquardt et al. [117] propose transition techniques that start on a touch
surface and end in the air, and vice-versa. They generalize this type of gestures as
Extended Continuous Gestures. From that point on, the community has started to
employ the extended continuous gestures. For example, DeAraujo et al., [51] pro-
posed an on-and-above-the-surface interaction techniques for creating and editing
3D models in a stereoscopic environment. Rateau et al., [146] proposed Talaria a
drag & drop technique on a big wall display. Takashima et al., [169] introduced
Boundless Scroll to decrease the number of clutches while performing scroll
gestures on a touchscreen. E-Pad, the technique that we propose, builds upon this
previous work to insure large display pointing in a continuous interaction space
around a mobile device.
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5.2.1 EXTENDED CONTINUOUS RELATIVE POINTING GESTURE

Marquardt et al. defined Extended Continuous Gestures [117] as “a gesture
that a person starts through direct touch on the interactive surface can continue in
the space above the surface to avoid occlusion of the digital content visible on
the tabletop display”. We propose an extended continuous gesture that continues
in the space around a small hand-held touchscreen device. Extended continuous
relative pointing gestures are complementary to regular pointing gestures, i.e.,
they intervene when the limited physical surface of a hand-held touchscreen
is insufficient to perform large cursor movements. These gestures start on the
touchscreen and end in mid-air while the cursor is attached to the relative motion
of the finger (Fig. 5.1.)

PRELIMINARY STUDY: FINGER MOTION

During the implementation stage of E-Pad, we realized that in mid air, the
dominant hand diverged upwards from the smartphone’s plane as the motion
continues. This observation is parallel to the the findings in Boundless Scroll [169].
Consequently, we decided to study the approximate imaginary surface on which
the user performed the gestures when being around the smartphone surface. Thus,
we conducted a preliminary study to observe the user’s ability to interact spatially
on and around a smartphone’s touchscreen when pointing on a large display. We
are mainly interested in determining the boundaries of the interaction volume and
the pointing path in mid air.

Participants

Six men, average age 28. All participants were right handed and regular users
of smartphone.

Apparatus

The preliminary experiment was conducted on two concatenated displays with
a total resolution of 3840 × 1080 pixels resulting in a screen size of 130 × 37
centimeters. Participants were standing 2 meters away from the projection surface.
We used a 5.8” Galaxy S8 smartphone (14,9×37.8cm) to send the touch inputs
via TUIO protocol. Additionally, four Optitrack cameras operating at 150Hz were
in charge of tracking reflective markers on the pad and the user’s hand as seen in
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Figure 5.2: 3d printed markers on the smartphone and the user’s dominant hand and the
index finger.

Figure 5.2. The experiment was implemented in C++ and ran on two PCs (one
for tracking and one for the display, each running on Windows 10.)

Procedure

We told participants that we were interested in determining users’ perfor-
mances when pointing on and around the smartphone surface for large display.
This was intentionally misleading, since we were really studying how they uncon-
sciously move their finger and the dominant hand around the smartphone surface
as well as how they hold the smartphone. We then equipped our participants with
reflective markers to create rigid bodies for the smartphone, the index finger and
the dominant hand. This allowed us to obtain the position and the orientation of
the smartphone, the finger’s position with respect to the smartphone to move the
cursor and the finger’s position with respect to the hand to implement a reliable
clicking technique independent from the smartphone’s plane.

In the experiment phase, the participants were asked to stay standing while
holding the smartphone comfortably using their non-dominant hand, and perform
the gestures quickly using their index finger from the dominant hand. They were
shown a start target they selected by tapping on the touchscreen. Once the start
target was selected, an end target was displayed on the opposite side of the screen.
The participants were required to select the end target with an air-click as a result
of a continuous gesture (Figure 5.1). To simulate the motion on the cursor on the
screen, we used the standard Windows 10 transfer function for both the finger
position on the touchscreen and in mid-air. 3D finger positions were projected
on the Pad’s plane to obtain 2D coordinates. In order to prevent the click gesture
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from moving the cursor, we blocked the cursor when the finger accelerates away
(>1cm/s) from the hand’s plane. However a click is performed only if the finger
reaches 15◦ from the hand. This threshold was empirically chosen.

The experiment was a 6 × 3 within-subjects design with two factors: pointing
direction (east to west, north-east to south-west, north-west to south-east, west
to east, south-west to north-east) and block (block1, block2, block3). We used a
fixed amplitude (117 cm, with the amplitude corresponds to the distance between
the start target and the end target) and a fixed tolerance (2.54 cm, with tolerance
corresponds to the target circle radius). The experimental trials were administered
as 3 blocks of 36 trials. Inside each block, 36 trials (6 directions × 6 repetitions)
were randomly presented to each participant – a total of 108 trials per participant.
The average duration of the experiment was 30 minutes.

Data collection

We recorded the position of the rigid bodies placed on the smartphone, the
index finger and the dominant hand at 120Hz. We isolated the 108 extended
relative pointing gestures per participant between the start target and the end
target. The finger position captured by the Optitrack cameras was translated to the
smartphone’s coordinates. We did not log the finger position on the touchscreen
as it can also be obtained from the Optitracks using the markers on the finger and
the smartphone.

Results

First, all the participants held the smartphone almost parallel to the ground,
grabbing it from the behind in order not to block the movements on different
directions.

We constructed a point cloud of index finger positions from 648 trials. All
the points were constrained in an imaginary box that exists between −63cm and
71cm on the x-axis, −12cm and 25cm on the y axis and −33cm and 22cm on the
z axis.

We, then, fitted two forth order polynomials to the point cloud on the x-axis
(see Fig. 5.3.a) and on the z-axis (see Fig. 5.3.b) to represent the average paths
used by participants. The equations of the curves are as following:
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Figure 5.3: Estimated paths of the finger.

On the x-axis:

y = 0.03+0.01x+0.23x2 +0.05x3 +0.12x4

On the z-axis:

y = 0.02−0.008z+6.38z2 +27.07z3 +33.45z4

These curves confirm the hypothesis that the index finger deviates from the
ideal smartphone plane as it moves away in mid-air. The deviation is similar on
the dominant and non dominant hand sides, but as expected, the user has a larger
reach on the dominant hand side. Because of the limited distance between the
user and the smartphone, there is limited reach when user move downwards on
the z-axis. On this direction, the finger deviates quickly.

DESIGN IMPLICATIONS.

Informed by our experimental findings, we outline two relevant guidelines
for designing pointing techniques on and around a smartphone’s touchscreen for
large display:

• Interaction volume. The imaginary box obtained by the experiment shows
that it’s important to define an interaction volume rather than an interaction
plane to perform the extended relative pointing. It is not important to limit
the size of the interaction volume on the x and z axes as these dimensions
depend on heavily on the arm’s length. However, limiting the depth of the
volume on the y-axis, we can present the users a mechanism to release the
cursor, or to perform clutches in the air. Based on the extremities of the
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point cloud we obtained, this depth can be chosen as 37cms, 12cms under
and 25cms over the Pad.

• Curved motions. The curved nature of the obtained surface has to be taken
into account in the control to display transfer function. On one hand, if the
transfer function only uses the projected positions on the xz plane, the user
wastes physical motion performed on the y axis while moving the cursor.
On the other hand, we cannot add directly the y component of the motion
into the equation. If the user deviates even more than the proposed curves,
y component of the motion weighs heavily, causing stability issues. Also,
using y component on both x and z axes result in interdependence between
horizontal and vertical cursor motion. Therefore, we propose projecting the
finger position on the xz plane, then using the length of the displacement
vector on the curves (Figure 5.4).

5.2.2 E-PAD DESIGN

E-Pad is designed to overcome the limitations of indirect relative pointing
system with a mobile device for large displays. We were inspired by extended
continuous interaction techniques [117] that start the interaction on touch and
continues in the air and we named our technique Extended-Pad (E-Pad). E-Pad is
an indirect relative pointing system composed of a touch surface (smartphone)
and the space around. A person can perform extended continuous relative pointing
gestures starting on the pad, then continuing in the free space within the arm’s
reach.

The preliminary study we conducted allowed us to define the following func-
tions for E-Pad:

Starting pointing on pad.

E-Pad contains the regular use of a trackpad (see Figure 5.1.b). Relative
movements of the finger on the touch screen are mapped into the motion of the
cursor on the screen with a conventional control to display transfer function. We
use Windows’ native pointer acceleration function to control the cursor [38].
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Exiting the Pad and creating the Imaginary Interaction Space (IIS).

When the size of the pad is not sufficient to move the cursor through a long
distance, E-Pad permits the user to exceed the Pad’s frame. To enable the relative
mid-air pointing, the finger should leave the touchscreen with a high velocity
an should continue parallel to the smartphone’s surface. The velocity threshold
and the maximum angle between the direction of the finger on exit and the
smartphone’s plane were empirically chosen as 8 cm/s and 15◦ respectively. Once
the transition to mid-air is completed, an Imaginary Interaction Space (IIS) is
created, its origin and orientation corresponds to that of the smartphone (see the
axes in the Figure 5.1.a). The position and the orientation of the IIS are then fixed.
This prevents variations of the coordinate system of the finger while it is in mid
air and provides a better stability for the cursor on screen. IIS is open ended on
smartphone’s plane, but it has a height of 37cms (see 5.2.1). IIS encompasses
an optimal surface for the finger motion while permitting deviations from the
optimal path.

Pointing in mid-air.

In order to maintain the continuity between the Pad and around the Pad, we
use Windows’ native pointer acceleration function with the same gain multiplier
for pointing in the mid-air. However, in the light of the preliminary study, instead
of taking the planar components of finger’s motion as the input displacement
vector, we used the displacement on the obtained curves. More precisely, we first
obtained the displacements on the x-axis and the z-axis, and then used the length
of the curve corresponding to those displacements. Taking the y-component of the
displacement would create a dependence between the x and z axis, meaning any
explicit gesture to create an horizontal cursor motion would result in a vertical
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Figure 5.4: An example of displacement vector estimation on the x axis. Black:
Displacement of the finger. Blue: Projected displacement. Red: Displacement obtained
by our method.
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Figure 5.5: Clutching in the air

cursor motion and vice-versa. Yet, using the direct projections of the displacement
on the x and z axes would mean that only a part of the user’s physical effort was
used the move the cursor. Thus, the polynomials we obtained in the preliminary
study permits us to compromise between the two options (Figure 5.4).

Clutching in mid-air.

The height of the IIS ensures that user’s hand stays in the interaction volume
without the guidance of a physical surface in mid-air. If the user wants to perform
a clutch, in air, they can quickly leave the IIS, clutch and re-enter IIS in 2 seconds.
The user can also land on the Pad once they re-enter the IIS. The cursor control
method we described above permits the user to lift their hand without disturbing
the cursor. By doing so, contrarily to a clutch on a physical device, in our case
the smartphone, the users can made a clutch by lifting their hand over the upper
limit but also by lowering it under the bottom limit of the E-Pad space, i.e., the
IIS limits.

Clicking in mid-air.

The air click technique we described in the procedure of the preliminary study
can be used anywhere in the IIS.

Releasing the cursor.

In order to detach the cursor from the hand, the user simply leaves the IIS. The
user can also lower the smartphone to invalidate the IIS and end the interaction.
Of course, if the user needs then to use the E-Pad again, they can create a new IIS
that corresponds to the position and orientation of the device when the user exits
the Pad condition.
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5.2.3 EXPERIMENT

We conducted an experiment to compare performance between Pad and E-
Pad techniques. Based on the theoretical ability (i.e., the limited surface) of Pad
technique to point on the large display, we hypothesize that E-Pad will (H1)
improve selection speed while (H2) decreasing the number of clutches. The third
hypothesis H3 is that Pad will be more accurate than E-Pad as the touch click
should have less systematic error than mid-air click.

PARTICIPANTS

12 participants (1 female) volunteered to take part in our experiment. Partici-
pants’ ages varied between 24 and 32 years (mean age 26.66, sd=2.67 years). All
participants were right-handed. All participants except one were regular users of
smart phones or tablet devices with multi-touch screens, and 4 participants were
regular users of Kinect games.

APPARATUS

The experiment uses the same apparatus as in the preliminary study.

TASK, PROCEDURE AND DESIGN

We used a reciprocal two dimensional pointing task (Figure 5.6) on 6 targets
(only one visible at a time) that were positioned on an imaginary circle). The
participants were instructed to stay standing while holding the smartphone with
their non-dominant hand. The participants were, then, instructed to click on
the targets in random order to complete a clicking sequence of 6 motions in
different directions. Each direction consisted of a start target and an end target.
Each trial began after the start target was successfully selected with a click on
the touchscreen. The trial ended with the selection of the end target with a
touchscreen click in the case of the Pad technique and an air click in the case of
the E-Pad technique. The touchscreen click is potentially possible with E-Pad
if the user does not leave the pad surface. After a start target was selected, it
disappeared and the corresponding end target was displayed. In case a participant
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missed the end target, it disappeared and the start target was displayed again,
logging an error for the trial. Participants had to successfully select the end target
before moving to the next start target, even if it required multiple attempts. Each
pointing sequence was repeated 3 times.

Dependent measures are analyzed using a 2 × 3 × 3 × 6 repeated measures
within-subjects analysis of variance for the factors Technique (Pad and E-Pad),
Block (1−3, with the first block serving as opportunity for learning the new
method), tolerance (L: 75px (5.08cm); M: 38px ( 2.54cm) and S: 13px (0.85cm),
with tolerance corresponds to the target circle radius), direction (east to west
(EW) , north-east to south-west (NE-SW), north-west to south-east (NW-SE), west
to east (WE), south-west to north-east (SW-NE) and south-east to north-west
SE-NW).

The amplitude (i.e., the distance between the start target and the end target)
was kept constant at 117 cm. We decided on this longer single distance because
we think that the issue of clutching when using a smartphone is more recurrent
when the target distance was longer even if we think that the benefits of E-Pad
still consistent with short distance as E-pad can be used as pad for short amplitude.
This decision was taken to reduce the duration of the experiment and to highlight
the effect of the proposed technique. The rationale was also that if no effect was
found with these settings, it would be likely that no such effect exists.

In the experiment phase, the two techniques were randomly presented to the
participants. Inside each technique, participants completed three blocks. Inside
each block, the three tolerances were randomly presented to the participants. For
each tolerance, the pointing sequence (i.e., the six directions) were repeated 3
times. The initial direction of each pointing sequence was randomized – a total
of 324 (=2 techniques × 3 blocks × 3 tolerances × 6 directions × 3 repetitions)
trials per participant. After each block of trials, participants were encouraged to
take a pause.

After each technique, participants respond to 5-point Likert-scale questions
(strongly disagree to strongly agree): i) I performed well, ii) I accomplish the
task rapidly, iii) I need a lot effort to finish the task, iv) I need to concentrate to
accomplish the task; v) I feel frustrated/stressed/irritated/annoyed; vi) I felt confi-
dent in my ability to hit the target; vii) I enjoyed interacting with the device(s)."
At the end of the experiment, participants were asked to rank the two techniques
according to their preferences. The average duration of the experiment was 1 hour
and 10 minutes.
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Figure 5.6: Target positions and movement directions.

5.2.4 RESULTS

The dependent measures are movement time, number of clutches and error
rate. We also analyze the subjective responses. All analyses are multi-way
ANOVA. Tukey tests are used post-hoc when significant effects are found.

MOVEMENT TIME

Movement time is the main dependent measure and is defined as the time
between the click on the start target and the click on the end target.
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Figure 5.7: Effect of tolerance on movement time
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Figure 5.8: Effect of tolerance on number of clutches

Repeated-measures ANOVA revealed a significant effect of block on move-
ment time (F2,22=4.76, p<.0001). Post-hoc tests showed a significant decrease in
the time between the first block and the two remaining (p<.05; block1: 3630 ms,
block2: 3439ms, block3: 3359ms) due to a learning during the first block. As we
are concerned with user performance after familiarization, the remaining analysis
discards the first block.

There were significant main effects of technique (F1,11 = 12.48, p = .0047),
tolerance (F2,22 = 142.92, p < .0001) and a significant technique × tolerance
interaction (F2,22 = 16.10, p < .0001) on movement time (Fig. 5.7). Post-hoc
tests revealed that E-Pad was significantly faster than E-Pad for the medium and
the large tolerance sizes (p < .05) by respectively 14.78% and 19.06%, supporting
partially H1. We also, found that with Pad, movement time is significantly higher
with small tolerance size than both medium and large tolerance sizes (p<.05).
While, with E-Pad, movement time increased significantly as the tolerance de-
creases (p<.05). There were no significant technique × direction × tolerance
(p=.33) interaction, suggesting that the benefits of E-Pad with the medium and
the large tolerance are consistent across directions.

CLUTCHING

We analyzed the number of clutches used on the pad surface, assuming
that frequent clutching indicates high physical workload. Repeated measures
ANOVA showed significant main effects of technique (F1,11=1067, p<.0001)
and a significant technique × tolerance interaction (F2,22=3.88, p=.0360) on

101



5. EXTENDING THE INTERACTION SPACE WITH DATA FUSION

Pad E-Pad
0

5

10

technique

er
ro

rr
at

e
(%

)

Figure 5.9: Effect of technique on error rate

number of clutches. As E-Pad (mean .09, s.d .01) allows continuous pointing to
be maintained without movement, it is unsurprising that they have significantly
less clutching than Pad (mean 4.97, s.d .06) with the three tolerance sizes (p <
.05), supporting H2. Additionally, for Pad technique, Post-hoc tests revealed that
the number of clutches increased significantly as the tolerance decreases (p<.05).
Interestingly, we found that there was no significant technique× direction (p=.31)
nor technique ×tolerance × direction (p=.45) interactions, suggesting that the
benefits of E-Pad over Pad are consistent across the different tolerances and
distances.

In the E-Pad technique, even though both the upper and lower limits could be
used for a clutch, participants were observed making the clutch only by lifting
their hand/finger using the upper limit of the IIS.

ERROR RATE

Targets that were not selected on the first attempt were marked as errors. There
were no significant main effects nor interaction (p>.05) on error rate with Pad
(mean 9.25%, s.d. 1.82), E-Pad (mean 10.26%, s.d. 1.95), suggesting that there
was no significant difference between Pad and E-Pad and so leading to rejection
of H3.

SUBJECTIVE RESULTS

We recall that participants were asked to rank the two techniques conditions
after completing the experiment. Overall, E-Pad was ranked 100% first.
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Pad E-Pad Wilcoxon

Mean s.d Mean s.d Z

Performance 3.83 .47 3.5 .61 .96
Rapidity 3.08 .37 3.66 .65 -1.41
Physical 2.58 .65 2.41 .70 .32
Concentration 2.66 .81 2.83 .79 -.41
Frustration 2.41 .78 2 .59 .89
Confidence 4.41 .50 4.16 .63 1.73
Enjoyment 3.25 .48 4.16 .53 -2.75

Note: Wilcoxon-Signed-Rank tests are reported at p=.05 (?) significance levels. The
significant tests are highlighted .

Table 5.1: Mean and s.d questionnaire responses, with 1=strongly disagree, and 5 =
strongly agree.

Participants were also asked to rate each technique. Overall, questionnaire
responses (Table 5.1) show that mean ratings for E-Pad were mostly more appre-
ciative, but only significantly for enjoyment.

We correlate these findings with comments from participants who felt that the
PAD technique was “boring” and “repetitive”. Multiple participants stated that
swiping continuously on the screen forced their wrists. One participant said: “this
really hurts my wrist”. Besides multiple participants felt that the friction on the
touchscreen hurts the finger in the long term. One person said: “I don’t feel my
fingertip anymore”.

In contrast, participants stated their satisfaction with E-Pad. Some quotes
are: “I’m happy... the precision is not an issue while my finger is in the air” and
“I definitely prefer this technique”. Most of the participants affirmed, also, that
clicking in mid-air was not difficult. One participant said: “This is much easier
than I imagined”. However, some participants stated a few concerns about the
E-PAD. Two participants said that distinguishing the y-axis and the z-axis was
difficult in the beginning. One of them said: “How do you go upwards again?”.
Three participants declared that pointing to their non-dominant side was more
difficult. However, as mentioned above, we did not find a significant effect of
direction on the movement time.
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5.2.5 DISCUSSION AND DESIGN GUIDELINES

Our key finding is that E-Pad improved selection speed, decreased the number
of clutches and increased enjoyment over conventional Pad, without compromis-
ing accuracy. The performance benefits were consistent across different tolerances
and directions.Our findings indicate that E-Pad is faster than Pad by up to 19.06%,
decreases the number of clutches, without compromising accuracy. Our analysis
also suggests an overwhelming preference for E-Pad instead of the Pad.

Informed by our experimental findings, we outline relevant guidelines for
designing pointing techniques on large displays:

• Touchscreen of the smartphone should be used prudently for selecting
distant targets on large display. Indeed, our participants often expressed
dissatisfaction when making distant target selections feeling that it requires
longer selection time and bigger number of clutches.

• Users should be provided with a physical reference when making mid-
air indirect pointing on large display as our participants insisted on the
confidence brought by having the smartphone as a reference when switching
to mid-air modality.

• Designers should conceive flexible input that allow users to continue point-
ing in the space around the smartphone when the surface of the pad is not
sufficient to continue the pointing task.

In our experiments, our participants were standing while taking the smart-
phone with their non-dominant hand which can increase the fatigue and change
the behaviour of the user when compared to having the smartphone on a desk
and the users set down. Thus, future work will investigate the effect of having
the smartphone on a desk on both Extended continuous relative pointing gesture
behaviour, the design of E-Pad and then on the performance of Pad and E-Pad.
Additionally, one potential usability issue of our techniques is that when switching
to the midair modality, there were no visual feedback for the pad extended surface,
the only visual reference is actually the tablet. To visually help the user, the
technique could add a visual feedback of the extended pad using revealed virtual
objects [24]. Finally, to omit the dependency on external cameras, future work
will explore the use of magnetic sensing [192] and microphone arrays [130] for
E-pad technique.
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5.3 CONCLUSION

In this chapter, I proposed extending the physical boundaries of input devices
by data fusion. To do so, I introduced an Extended Continuous Relative Pointing
Gesture, a complementary pointing gesture to perform large cursor movements by
allowing users to continue the pointing gesture in the air around the touchscreen
when the physical surface is limited. Our preliminary study indicated that when
switching to the air space, the hand motion deviates from the touchscreen plane
and follow a curved trajectory. The combined interaction space utilized the
new trajectory to compensate the physical effort lost in the traditional transfer
functions.

I expect similar modifications in gesture trajectories in other combinations of
interaction spaces which constitute a continuum and differ in physical support.
This is due to two factors. First, the gestures performed in a larger space requires
a bigger part of human body to move, therefore the kinematic chain is longer [69].
Second, the bias for existing interaction techniques for each device affect user
behavior.
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Six

Conclusion

In this dissertation I explored a data fusion approach for human computer
interaction which combines both information and the physical spaces in which
users perform gestures. I attempted to broaden the existing definition of data
fusion to include humanly aspects of interaction. While reviewing the literature, I
tried to be chronological to explain where data fusion originates and how advanced
contextual input devices enabled promising heterogeneous environments which
need particular attention.

Our contributions were divided into three chapters. First, we discussed the
extraction of relevant information from individual sources so that devices are ready
to be fused on characteristic level. The high abstraction level of cameras allowed
us to show that even when the input is complex, it can be processed efficiently
to obtain highly descriptive features in computationally constraint scenarios. We
also saw that for the features of multiple sources to be meaningful, they should
be put into the same coordinates. Second, by using the features obtained from
contextual sensors, we discussed the how to add value to the observations that
stay in the intersection of two interaction spaces. We exploited the intersection to
filter data, to add visual feedback and to work at multiple scales. Third, instead
of limiting the interaction to the intersection of interaction spaces, we expanded
it. Extended continuous gestures helped us to increase the performance of large
screen pointing and also proved that the gestures are reshaped at the extension of
the new interaction space.
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6. CONCLUSION

Throughout this document, I tried to provide as many design guidelines
as possible to underline the key points which should be considered when two
inputs are combined. These points sum up to lightweight processing of inputs,
distributing interaction modes around devices and taking gesture trajectories into
account. It is my hope that my work gives insight to future research around
multi-sensor interaction. Some of the open research topics I am interested in are
resumed in the following section.

6.1 FUTURE RESEARCH

To begin with, there are two intended improvements to the work presented
in this thesis. First, depth-camera calibration and the design space of multiscale
skeletal fusion requires an application to test the concepts proposed in the respec-
tive sections. It is an ideal candidate for contactless interaction in an environment
which contains a number of target objects. For instance, Damassama [31] features
this kind of setup, but it only allows interaction from a longer distance with ample
gestures. Second, E-Pad could benefit from a visual feedback mechanism that we
introduced in section 4.3. It would guide the user by projecting gradual colors
on the user’s hand to indicate the optimal path and the limits of the interaction
volume.

Furthermore, continuous interaction spaces demand further investigation. An
overwhelming proportion of research conducted on this subject focuses on the
combination of touch surfaces and mid-air. Even though we proposed similar
gestures for mid-air to mid-air transition (section 4.4), transition between other
types of devices and interaction spaces are open to investigation. For example,
the motion information obtained from independent camera movement in Phone
with the Flow (4.2.2) can be replaced with information obtained from the on-
board IMU, and provide a transition between fixed and adaptive use of cameras.
Additionally, the combination of hand gestures in virtual reality systems and real
world objects are open to examination for various transitions.

Finally, the question that was asked in the introduction still stands. Can we
combine existing materials for a new interaction technique instead of waiting for
new hardware to obsolete older technologies? . In this dissertation, we relied on
mostly consumer-grade contemporary technologies to demonstrate that novelty
stems from data fusion without producing new devices. Combinations which
were studied all permit dismantling and reuse of each component in accordance
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6.1. Future research

with sustainable design guidelines. However, to have a mainstream impact, a
more pragmatic question is: are these combined systems usable outside of uni-
versity libraries? Are they easily configurable, maintainable and replaceable
when they break down? Otherwise, our collective aim and effort becomes a
mere retrofuturistic concept of bulky, messy, chaotic interactive environments.
We say that human-computer interaction is an interdisciplinary field of research
which incorporates engineering, design, cognitive sciences and more, but per-
haps our research should include more elements from economics, sociology and
environmental studies to create the interfaces of tomorrow.
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