Thése de Julien Delplanque, Université de Lille, 2020

Université de Lille

Département de formation doctorale en informatique Ecole doctorale SPI Lille
UFR IEEA

Managing structural and behavioral
evolution in relational database:
Application of Software engineering techniques

Gérer les évolutions structurelles et comportementales des bases
de données relationnelles:

Applications des techniques d’ingénierie logicielle

THESE

présentée et soutenue publiquement le 28 Septembre 2020

pour 'obtention du

Doctorat de I’Université de Lille
(spécialité informatique)
par

Julien Delplanque

Composition du jury

Président : Kathia Oliveira (Professeur - Université Polytechnique des Hauts-de-France)

Rapporteurs : Olivier Barais (Professeur - Université de Rennes 1)
Anthony Cleve (Professeur - Université de Namur)

Examinateur : Tom Mens (Professeur - Université de Mons)
Directeur de these : Anne Etien (Professeur - Université de Lille)

Co-Directeur de theése : Nicolas Anquetil (Maitre de Conférences - Université de Lille)

Centre de Recherche en Informatique, Signal et Automatique de Lille — UMR 9189
INRIA Lille - Nord Europe

y 4

L Université
&@W RIStAL de Lille

Signal et Automatique de Lille

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

i o

Remerciements

Je remercie Anne Etien et Nicolas Anquetil pour avoir ét€ mes superviseurs de
these. Je remercie les membres du jury Olivier Barais, Anthony Cleve, Tom Mens
et Kathia Oliveira pour leurs relectures et commentaires. Je remercie Stéphane
Ducasse pour m’avoir accueilli au sein de 1’équipe Rmod et pour nos différentes
collaborations en dehors de la these.

Je remercie Olivier Auverlot pour le précieux temps qu’il m’a accordé, pour sa
participation aux diverses expériences, pour son aide et pour les différentes pauses
café qui ont forgées notre amitié.

Je remercie I’ensemble des personnes que j’ai rencontré 2 Rmod durant la
theése. En particulier, merci a mes camarades Vincent Aranega, Clément Béra, Vin-
cent Blondeau, Christophe Demarey, Thomas Dupriez, Cyril Ferlicot, Christopher
Fuhrman, Pavel Krivanek, Guillaume Larchevéque, Pierre Misse, Damien Pollet,
Benoit Verhaeghe et Oleksandr Zaitsev pour les nombreuses discussions trés in-
téressantes en rapport de pres ou de loin avec ma these et pour les liens d’amitié
que nous avons créés durant ces trois années. Chacun d’entre eux, a sa facon, m’a
aidé a aller jusqu’au bout de cette épreuve.

Je remercie ma famille pour tout ce qu’ils ont fait pour moi jusque maintenant
et pour tout ce qu’ils feront encore, j’en suis sir, dans le futur. En particulier,
je remercie mes parents pour les valeurs qu’ils m’ont transmises. Finalement, je
remercie ma fiancée, Emeline, pour son soutien, sa patience et sa présence chaque
jour a mes cotés.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

iii

Abstract

Relational databases have been at the core of many information systems for decades
and continue to be used in new software development. Many of these databases
reflect human or societal activities, for example, processes related to human re-
sources, insurances, banks, etc. Reflecting such activities induce frequent evolu-
tions of both the software system and the relational database. Relational databases
do not only store and ensure data consistency, they can also define behavior taking
the form of views, stored procedures, triggers, etc.

Implementing behavior directly inside a database has the advantage to prevent
code duplication when multiple programs using it perform similar tasks. However,
the evolution of such database becomes complex and few approaches in the lit-
erature address this problem. Most of the literature addressing relational database
evolution focus either on the evolution of the database schema or on its co-evolution
with software interacting with it. Approaches to reverse-engineer and evolve both
structural and behavioral entities of relational databases are missing.

In this thesis, we address this gap in the literature with four main contributions:
(i) we report our observation of a relational database evolution made by an architect
and identify problems from our observations; (ii) we propose a meta-model repre-
senting both structural and behavioral parts of a database and simplifying depen-
dencies analysis; (iii) we propose a tool to find quality issues in a database schema;
and (iv) we propose a semi-automatic approach to evolve a relational database (its
structural and its behavioral parts) based on recommendations that can be compiled
into a SQL script.

The results of the research reported in this thesis provide building bricks for the
development of behavior-aware integrated development environment for relational
databases.

Keywords: relational databases, behavior-aware meta-model, reverse-engineering,
impact analysis, recommendations

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

Résumé

Depuis plusieurs décennies, les bases de données relationnelles sont au coeur de
nombreux systemes d’information et continuent a €tre utilisées lors du développe-
ment de nouveaux logiciels. Beaucoup de ces bases de données refletent des ac-
tivités humaines ou sociétales. Parmi ces activités, on peut citer les processus liés
aux ressources humaines, aux assurances, aux banques, etc. Etant en constante
évolution, elles induisent des évolutions fréquentes du logiciel et de la base de
données relationnelle qui lui est associée. D’autre part, les bases de données re-
lationnelles ne se contentent pas de stocker et d’assurer la cohérence des données.
Elles permettent également de définir du comportement pouvant prendre la forme
de vues, procédures stockées, triggers, etc. Ce comportement, quand il est défini
directement a I'intérieur d’une base de données, présente I’avantage de réduire la
duplication de code lorsque plusieurs programmes utilisant celle-ci effectuent des
taches similaires. Cependant, 1’évolution de cette base de données est rendue plus
complexe et peu d’approches traitent ce probleme dans la littérature scientifique.
La plupart des articles traitant de 1’évolution des bases de données relationnelles
portent soit sur 1’évolution de leurs schémas soit sur leurs coévolutions avec les
logiciels interagissant avec elles.

Dans cette these, nous répondons a ce manque via quatre contributions princi-
pales : (i) nous rapportons notre observation de I’évolution d’une base de données
relationnelle et identifions les problemes apparents durant celle-ci ; (ii) nous pro-
posons un méta-modele représentant a la fois les entités structurelles et comporte-
mentales d’une base de données et qui simplifie également 1’analyse de dépen-
dances ; (ii1) nous proposons un outil pour trouver les problemes de qualité dans un
schéma de base de données ; (iv) nous proposons une approche semi-automatique
pour faire évoluer une base de données relationnelle (en incluant ses entités struc-
turelles et comportementales) via des recommandations qui peuvent tre compilées
dans un script SQL.

Les résultats présentés dans cette thése sont utiles a la construction d’un en-
vironnement de développement intégré pour les bases de données relationnelles.
Tout ceci en prenant en compte les entités structurelles et comportementales.

Mots-clés: bases de données relationnelles, meta-modele, retro-ingénierie, anal-
yse d’impact, recommandations

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

Contents

1 Introduction 1
1.1 Software Engineering 1
1.2 Relational databases 2
1.3 Problems 5
1.4 Software Engineering for Relational Databases 7
1.5 Contributions e 7
1.6 Structure of the Thesis 8
1.7 Listof Publications 9
2 Motivation 11
2.1 Introducing AppSIdatabase 11
22 Context e e e 15
2.3 Conditionsof theCase Study 16
2.4 Qualitative Analysis L 16
2.5 Quantitative Analysis Lo 21
2.6 Problems 25
277 Conclusion 28
3 State of the Art 29
3.1 Database Design 29
3.2 Relational Database Reverse-Engineering 30
3.3 Relational Database Impact Analysis 38
34 Conclusion 42
4 A Behavior-Aware Meta-Model for Relational Databases 43
4.1 ODbJectives v v v e e e e e 43
42 TheMeta-Model, 45
4.3 Meta-model Instantiation 49
44 Casestudies 57
4.5 Conclusion 68
5 Identifying Quality Issues in Relational Databases 69
5.1 Scenarios e e 69
52 DBCriticS e e 71
53 CaseStudies 73
54 Conclusion e 76

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

viii Contents

6 Recommendations for Evolving Relational Databases
6.1 Settingthecontext
6.2 Description of the Approach
6.3 Experiment
6.4 Conclusion

7 Conclusion
7.1 Summary e
7.2 Contributions e e
73 Future Work

A Operators Catalog
Al Catalog e

Bibliography

79
79
82
88
91

93
93
95
95

101
101

107

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

1.1
1.2
1.3

2.1
22
2.3

3.1
32

4.1
4.2
43
4.4

4.5
4.6

4.7
4.8
4.9
4.10
4.11

4.12

5.1

5.2
5.3

6.1
6.2
6.3
6.4

Thése de Julien Delplanque, Université de Lille, 2020

List of Figures

Horseshoe process. L.
Responsibility of database and RDBMS.
Summary of our approach.,

Summary of the evolution to be achieved by the database architect.
Methodology to analyze the video.
Process formalized from the database architect actions.

Database design process.
Database reverse engineering process.

Structural entities of the meta-model.
Behavioral entities of the meta-model.
Instantiation of the model using meta-data tables only.
Query gathering unique identifier, name and identifier of the names-
pace of tables stored in a database.
Instantiation of the model by parsing a dump of the database. . . .
Instantiation of the model via an hybrid approach: query meta-data
tables and parse source code of behavioral entities.
Contextofthecasestudy.
Example of database model with references between entities. . . .
Example of self referencing view.

Visualisation of query extracting entities that web views depends on.

Two cases of dependency relationship between a behavioral entity
and one or many group(s) of tables.
Activity diagram of the six-steps approach we use to document
AppSldatabase.

High-level view of DBCritics that evaluates rules on a model of the
DB and provides areport.
Violation count per version for WikiMedia and AppSI.
Violating entities (dashed) against entities count (solid) per version
for WikiMedia and AppSL. oL

Coarse-grain illustration of the approach.
Example database.
Recommendations selection.
Convert reference oriented operators as entity-oriented operators. .

14
17
20

30
31

46
47
51

51
53

55
58
60
61
62

64

65

71
74

75

82
85
86
87

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

List of Figures

6.5

6.6

6.7

7.1
7.2

Convert entity-oriented operators as a list of DDL statements that

fulfill RDBMS schema consistency. 87
Graph on which topological sort is applied to find the order of DDL

statements ensuring schema consistency. 88
Screenshot of DBEvolution, the implementation of our approach

that we used to perform the experiment. 90
Current strategy to apply a sequence of operators. 98
Desired strategy to apply a sequence of operators. 99

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

2.1
22
2.3

3.1

3.2

4.1
4.2

4.3
4.4
4.5
4.6

5.1

5.2

Thése de Julien Delplanque, Université de Lille, 2020

List of Tables

Number of entities for each type of entity in the database schema.
List of actions during AppSl evolution
Relations between actions and steps in the observed process.

Comparison of relational database reverse-engineering approaches
found in litterature according to our criteria.
Comparison of relational database impact analysis approaches. . .

Containment relations between CRUD queries and clauses.
References to entities from clauses. The other references to entities
are shown in Figure 4.1 and4.2.
Comparison of approaches to build a model of a database.
Number of tables for each feature group.
Results of the classification heuristic and architect validation. . . .
Number of entities of a particular type in a particular category.

Min/Max number of entities per type and Min/Max lines of code
foreachdatabase.
Minimum, first quantile, median, third quantile and maximum of
the “time-to-fix” of resolved rule violations in days.

12
19
20

37
41

48

49
57
67
67
68

74

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 1

Introduction

Contents
1.1 Software Engineering 1
1.2 Relationaldatabases 2
1.3 Problemsttt 5
1.4 Software Engineering for Relational Databases 7
1.5 Contributions 7
1.6 StructureoftheThesis 8
1.7 Listof Publications0..... 9

In this thesis, we address relational database evolution from a software engi-
neering perspective. This chapter sets the context of the thesis, lists problems we
identified and introduces our approach and contributions.

1.1 Software Engineering

Software Engineering emerged from a need to rationalize the way software is built.
The term was used for the first time in 1968 as the title of a conference organized
by NATO [Naur 1969]. This research field aims to provide techniques and tools
to help developers during the development and maintenance of their software as
highlighted by the following definition.

Software Engineering: “The establishment and use of sound engineering prin-
ciples in order to obtain economically software that is reliable and works efficiently
on real machines.” [Naur 1969]

After its deployment, software is subject to changes. At the beginning of
Software Engineering research field, the scientific community thought that those
changes were only bug fixes or minor enhancements. This intuition led to the wa-
terfall process of software development proposed by Royce [Royce 1987]. The
waterfall process spread in industrial practices. However, the scientific community
later realized that it is possible that software require major changes to adapt to new

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2 Chapter 1. Introduction

requirements or to improve quality. This phenomenon is called software evolution
and was studied and theorized by Lehman [Lehman 1980] in the late seventies.

Two main views of software evolution have been identified [Lehman 2000] as
stated by Mens [Mens 2008]:

* the “what and why” focusing on understanding the nature of software evolu-
tion phenomenon; and

* the “how” focusing on more pragmatic aspects of software evolution phe-
nomenon, aiming to help in day to day development of software.

In this thesis, we mainly address the later dimension in the context of relational
databases: the “how”.

Software evolution is complicated to handle. Software can strongly depend
on real-world activities because it is part of these activities (think about software
related to human resources, insurances, banks, etc.). Such software, called E-type
software, need to be adapted often to follow the evolution of requirements.

E-type software: “Programs that mechanize a human or societal activity.”
[Lehman 1980]

Some properties of E-type software, listed in the famous “Laws of software
evolution” [Lehman 1980], are found to be hard to address. Namely, the complex-
ity keeps increasing if nothing is done to counter this phenomenon (law II), the
functional content keeps increasing to satisfy user needs (law VI) and the quality
keeps decreasing if nothing is done to counter this phenomenon (law VII). A lot of
energy is required from developers to counter those phenomenons.

To tackle these E-type software properties, re-engineering emerged. Re-engineering

is a process composed of three activities identified by the horseshoe process [Kaz-
man 1998] (see Figure 1.1).

First, reverse engineering helps developers to understand existing software sys-
tems and to abstract the way it works leading to good mental models. A good
mental model is critical for further development. Second, software is re-structured
to improve it and/or add a functionality. Third, a new version of the software is
built to replace the original one.

This thesis is related to software re-engineering. Thus, the horseshoe pro-
cess is used by our approach as it is the standard way to implement software re-
engineering.

1.2 Relational databases

Relational model: Relational databases are databases complying to the relational
model as introduced by Codd in the seventies [Codd 1970a]. The relational model
describes how to organize data using a few fundamental concepts:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

1.2. Relational databases

Thése de Julien Delplanque, Université de Lille, 2020

Analyze

High-level
architectural model

@

Improve,
Restructure,
Extend

A

Understand,
Extract,

Abstract

Legacy software
system

Figure 1.1: Horseshoe process, inspired from Figure 1.3 in [Mens 2008].

schema) and a set of rows containing data.

unique across all attributes of the table.

by a primary key.

* The database schema is the set of tables and integrity constraints present in a

Improved
restructured model

Generate,
Refine

A 4

O

New software system

Domains (or data types) set constraints on data to be stored.

Tables are composed of a set of attribute and domain pairs (named the table’s

Attributes are named columns of a table, the name of an attribute must be

Integrity constraints are assertions concerning data. They need to be true
at any time. Codd’s relational model introduces two kinds of integrity con-
straints: the primary key which ensures that the values of a set of attributes
are unique in the table and the foreign key allowing one to specify that the set
of values taken by a set of attributes is a subset of the set of values taken by
another set of attributes potentially located in another table and constrained

database. It describes how data are structured overall in the database.

Relational database: The storage of data is called the relational database. Basi-
cally, it contains data and the database schema. Users never interact directly with
the database in order to prevent data corruption. Instead, interactions between users
and the database are made through the relational database management system.

The latest ensures that data stored in a relational database stay consistent.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4 Chapter 1. Introduction

Relational database management system: The software managing a database
is called the Relational DataBase Management System (RDBMS). Its purpose is to
manage one or many relational databases. This management consists of multiple
tasks:

* Manage users and permissions (one can control users’ access to data).

Create, delete, or alter the schema of a database.

* Parse, analyze and execute queries, a query being able to either read or mod-
ify data.

Ensure that integrity constraints are always fulfilled when a query is exe-
cuted. If a constraint is violated, the RDBMS raises an error.

Query/Modify
_____ data___, ="~ Modify database
Relational Database .-~ - Manage user permissions
Results Management Sys - Query, modify data
............ - Ensure consistency

User

Relational
database

Relational
database

Relational
database
1 2 3

Data + Schema

Figure 1.2: Responsibility of database and RDBMS.

Figure 1.2 summarizes the relationship between a RDBMS and its databases.
A database contains data with their description (the database schema) and the
RDBMS has the responsibility to manage databases by letting user execute queries
on them and ensure that data stored all databases stay consistent according to their
schemas.

Modern RDBMS: Since the first RDBMS implementations, a lot of new features
were added. Modern RDBMS are not only about database management, permis-
sions management, data querying/modification and consistency checking.

For instance, it is possible to define entities performing computation directly in
a database. We qualify such entities as “behavioral” in opposition to “structural”
entities that do not define computation but describe how data are structured. We
identified the following behavioral entities:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

1.3. Problems 5

* View: A named SELECT query that can be reused in other SELECT queries.

* Stored procedure: A function defined directly in the database via a program-
ming language provided by the RDBMS.

* Trigger: An entity that watches events occuring on a table such as row in-
sertion, update and deletion and that can perform computation either before,
instead of or after this event.

* Check constraint: A developer-defined constraint on data implemented as a
SQL expression. If the expression evaluates to true, the constraint is satisfied
and the row can be inserted/updated. Else, an error is raised. The expression
checking for the constraint can involve a stored procedure.

Thesis focus: RDBMS are used in many information systems around the world.
This is true for open-source as for proprietary software. While NoSQL DBMS us-
age spreads nowadays, it is unlikely that relational databases get entirely replaced.
In this thesis, we focus on relational databases. Addressing evolution in the case
of relational databases is already complex and raises interesting research topics.

PostgreSQL as reference implementation: While the research conducted in
this thesis aims to apply to any RDBMS, we use PostgreSQL! implementation
as a reference. This choice is motivated by two main reasons.

First, we have access to a real-world database used in our laboratory as well as
to its main developer. The features of this database are detailed in Chapter 2.

Second, PostgreSQL is a mature open-source RDBMS providing advanced fea-
tures related to behavioral entities. Furthermore, according to Stackoverflow yearly
surveys related to software technologies usage?, its usage keep increasing over
the years. In 2017, Stackoverflow started to explicitly ask developers about their
RDBMS usage (before this question was not explicitly asked). Since 2017, Post-
greSQL usage report keeps increasing reaching the second place behind MySQL
in 2019.

1.3 Problems

We identified two main problems arising when it comes to evolve a relational
database: relational databases are hard to understand and hard to evolve. These two
problems are briefly introduced in this section and are more deeply examinated in
Chapter 2.

Uhttps://www.postgresg|.org
Zhttps://insights.stackoverflow.com

lilliad.univ-lille.fr

https://www.postgresql.org
https://insights.stackoverflow.com

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6 Chapter 1. Introduction

Relational databases are hard to understand As stated previously, modern
RDBMS provide various features to describe data organization and to process data.
We identified two reasons why understanding a relational database is complicated.

The first one concerns the complexity to query RDBMS meta-data. Indeed,
RDBMS are usually meta-described in a set of system tables that can be queries,
as any table, using SQL queries. However, retrieving the relationship between the
database entities from these tables can be cumbersome as querying graphs data
structures stored in tables is not straightforward in SQL.

The second difficulty is that some meta-data are missing. For example, we
identified that it is not possible to query system tables of a database to gather the
callers of a stored procedure.

Relational databases are hard to evolve The effects of a change on software
are hard to predict for a human. This is true for relational databases as well but
relational databases have two particularities that make their evolution even more
challenging.

The first particularity is that dependencies between a database and a program
using it are usually implicit. This is true for stored procedures depending on tables
as well. It is possible to make a stored procedure crash at run time if one change
the database schema. The invalidity of the stored procedure source code after the
change will not be noticed by the RDBMS.

The second particularity holds for all entities except stored procedures: the
database schema can not be in an inconsistent state at any moment. An example of
an inconsistent state can be a view that references a non-existing table in its source
code. This feature makes the relational database evolution different from other
software evolution. Indeed, a Java software system can be set in an inconsistent
state during its evolution as long as, when the software is recompiled, the source
code is in a consistent state. This is not true for RDBMS, the database schema must
be in a consistent state at any moment during the evolution.

'—{ Summary 1: Problems during relational database evolution } <

1. Relational databases are hard to understand.

1.1. Complexity to query meta-data.
1.2. Missing meta-data.

2. Relational databases are hard to make evolve.

2.1. Implicit dependencies.

2.2. No inconsistency is allowed at any moment during the execution.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

1.4. Software Engineering for Relational Databases 7

1.4 Software Engineering for Relational Databases

To tackle the above problems, we apply software engineering techniques to rela-
tional databases. By ‘“software engineering techniques” we mean that we adapt
techniques of re-engineering to work with relational databases. It includes model-
ing the software, analyzing the model and generating a new version of the database.
By writing “relational databases”, we mean both structural and behavioral entities.

We propose the approach illustrated in Figure 1.3 as an answer to the problems
we identified. This figure splits the process into three parts (each part in dashed
rectangles). Each rectangle references a corresponding chapter in the thesis.

The approach takes a relational database as input and first creates a model of
its schema. This model is an instance of the meta-model we describe in Chapter 4.
Then, there are two possibilities depending on the knowledge of the developer:

1. If the developer has little knowledge of the database and needs to analyze its
structure, then one queries the model and eventually search for bad patterns
in it. This part of the approach is described in Chapter 5.

2. Else, if the developer has a good knowledge of the database structure and
wants to perform a change on it, one makes a change request and gets rec-
ommendations on how to perform the change. The recommendation system
guides the DBA through the decisions process required to accommodate the
schema with the initial change. Once all decisions are taken, a SQL script
implementing the evolution and fulfilling the RDBMS consistency constraint
is generated. This part of the approach is described in Chapter 6.

Additionally, as suggested by the arrow between the query part and the recom-
mendation part, one might request a change on the model because one detected a
bad pattern in the database.

1.5 Contributions

This thesis introduces a toolkit to deal with relational database reverse-engineering
and evolution. This toolkit was built over knowledge gained via empirical experi-
ments on relational databases and observations of developers’ behavior.

The main contributions of the thesis are:

* The identification of concrete problems encountered during relational database
evolution via the observation of a developer (Chapter 2).

* A meta-model designed to help in dependencies analysis related to entities
defined inside a database (Chapter 4).

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

Model of the Change request

database

Database

8 Chapter 1. Introduction

Chapter 4 Chapter 6
Meta-model !
E E 5 - E
' ; ' N '
5 ! : N - 5
: ' 5 N '
Recommendations
! instance ofé E E '

> E] g }/ i

Chapter 5

Figure 1.3: Summary of our approach.

* A tool to find quality issues in a database schema and the study of quality
issues evolution on 2 case studies (Chapter 5).

* A semi-automatic approach based on recommendations that can be compiled
into a SQL script fulfilling RDBMS constraints (Chapter 6).

1.6 Structure of the Thesis

The thesis is organized as follow:

* Chapter 2 analyses problems faced by database architects when evolving a
relational database.

 Chapter 3 reports our exploration of the scientific literature around research
topics related to this thesis.

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

1.7. List of Publications 9

* Chapter 4 presents a behavior-aware meta-model for relational databases and
the approach we use to create models (i.e., instantiate the meta-model). This
meta-model is then validated on two case studies.

* Chapter 5 shows how an instance of the meta-model (a model) can be used
to find quality issues in an existing database schema.

* Chapter 6 presents an approach that, from the description of a change to
apply on a database schema, provide recommendations to accommodate the
database schema with this change.

* Chapter 7 summarizes and concludes the work presented in this thesis and
propose future work.

1.7 List of Publications

The list of papers written in the context of the thesis are listed below. The focus
of this thesis is to apply software engineering techniques to relational databases.
However, as I have the tendency to explore various path I find interesting, I took
some opportunities during the thesis to work on slightly different research topics.
Still, these topics that do not fall into the theme of this thesis, contributed to my
scientific training. Thus, I included these publications in the following list.

Except if stated otherwise, all publications listed below have been published.

Conferences and Journal:

* Vincent Aranega, Julien Delplanque, Matias Martinez, Andrew P. Black,
Stéphane Ducasse, Anne Etien, Christopher Fuhrman, Guillermo Polito. Rot-
ten Green Tests: A Replication Study. Empirical Software Engineering,
2020. (in submission)

 Julien Delplanque, Anne Etien, Nicolas Anquetil and Stéphane Ducasse.
Recommendations for Evolving Relational Databases. International Con-
ference on Advanced Information Systems Engineering, CAISE’20, 2020.

* Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P. Black
and Anne Etien. Rotten Green Tests. International Conference on Software
Engineering, ICSE’19, 2019.

* Julien Delplanque, Anne Etien, Nicolas Anquetil and Olivier Auverlot. Re-
lational Database Schema Evolution: An Industrial Case Study. International
Conference on Software Maintenance and Evolution, ICSME’18, 2018.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

10 Chapter 1. Introduction

e Julien Delplanque, Anne Etien, Olivier Auverlot, Tom Mens, Nicolas An-
quetil and Stéphane Ducasse. CodeCritics Applied to Database Schema :
Challenges and First Results. International Conference on Software Analy-
sis, Evolution, and Reengineering Early Research Achievement track, SANER’ 17,
2017.

Workshops:

* Julien Delplanque, Stéphane Ducasse and Oleksandr Zaitsev. Magic Liter-
als in Pharo. International workshop of Smalltalk Technologies, IWST’19,
2019.

* Julien Delplanque, Stéphane Ducasse, Andrew P. Black and Guillermo Polito.
Rotten Green Tests, A first Analysis. International workshop of Smalltalk
Technologies, IWST’ 18, 2018.

e Julien Delplanque. Software Engineering Techniques Applied to Relational
Databases, International Conference on Automated Software Engineering
Doctoral track, ASE’18, 2018.

e Julien Delplanque, Olivier Auverlot, Anne Etien and Nicolas Anquetil. Déf-
inition et identification des tables de nomenclatures. INFormatique des OR-
ganisations et Systemes d’Information et de Décision, Inforsid’ 18, 2018.

* Julien Delplanque. Software Engineering Issues in RDBMS, a Preliminary
Survey BElgian-NEtherlands software eVOLution symposium, BENEVOL’ 17,
2017.

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 2

Motivation

Contents
2.1 Introducing AppSIdatabase 11
22 Context v vt e e e e e e e e e e e e e e 15
2.3 Conditionsof the CaseStudy 16
2.4 Qualitative Analysis0 it e e e e 16
2.5 Quantitative Analysis 0 00 21
26 Problems e e e 25
27 Conclusion e e e e 28

In this chapter, we present our work to analyze and understand the problems
faced by database architects when evolving a relational database. To do so, we
analyze a real-world evolution of the AppSI database used in our university. This
chapter is an extension of our publication at the International Conference on Soft-
ware Maintenance and Evolution (ICSME) [Delplanque 2018].

2.1 Introducing AppSI database

AppSl is a PostgreSQL database used for managing members, teams, funding sup-
port, etc. in the laboratories of our university. It is a proprietary database mostly
developed by a single database architect.

2.1.1 Properties of the schema

This database is used by software systems written in different programming lan-
guages. Because of that, the database architect decided to implement, as much as
possible, the behavior of client applications directly inside the database as stored
procedures. This decision aims to avoid the duplication of behavior implementa-
tion across multiple programming languages but also to ensure consistency of all
client applications. As an illustration of AppSI database features, Table 2.1 shows
the number of entities for each type of entity in the database schema.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

12 Chapter 2. Motivation

Table 2.1: Number of entities for each type of entity in the database schema.

Entity type Count
Table 95
Column 515
Primary key constraint 93
Foreign key constraint 125
Unique constraint 6
Check constraint 10
Default value constraint 102
View 62
Trigger 20
Stored procedure 64
Trigger function 19
Aggregate function 3

Another particularity of AppSI is that the schema is used in multiple laborato-
ries at the university. Each laboratory has its database instance based on the initial
schema. However, developers of other laboratories modify their versions of the
schema to adapt it to the specific needs of their users. Laboratories that adopted
AppSI benefit from maintenance to accommodate new features and bug fixes. Each
change made to AppSI needs to be ported to “forked” databases while handling the
fact that all databases continue to evolve separately, thus drifting further apart. To
do that, modifications are stored as SQL scripts and applied to the other instances
of AppSL

2.1.2 An evolution of AppSI

The University of Lille uses the Lightweight Directory Access Protocol (LDAP),
a standard application protocol for accessing and maintaining distributed directory
information services. The administration decided to evolve the LDAP schema to
enable users to have multiple identifiers. The idea is that each person has a personal
account and zero or many accounts that represent a function. These “function
accounts” can be assigned to let a person use a specific software for example.

As AppSI stores the unique LDAP identifier of people working at the labora-
tory, the database is directly impacted by this change. AppSI database also has its
own way to identify a person in the database uniquely implemented as a column
constrained by a primary key constraint.

Before digging into technical details of AppSI evolution, let us set the concepts
one need to know to understand the evolution:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.1. Introducing AppSI database 13

* person: When we use the term “person”, we mean a human for who the data
has been encoded in the information system.

e person table: The table in the AppSI relational database that contains data of
people working at the laboratory.

* id column: A column of the person table in AppSI database that is con-
strained by a primary key constraint. The values held by this column are
used to uniquely identify data of a person stored in the person table.

* uid column: A column of the person table in AppSI database that stores the
LDAP identifier of each person working at the laboratory. The uid column
is used as the login of the users for web applications using AppSI database.
Thus, the pair of values (id, uid) are unique in AppSI database.

* uid attribute: An attribute of the LDAP schema allowing one to refer to a
person’s data uniquely before the evolution.

Additionally to the LDAP schema evolution to enable users to have multiple
identifiers, the uid attribute was renamed as 1ogin. This evolution necessitates
to similarly rename the uid column of the person table as 1ogin. This column
contains the primary identifier of a person. Such an induced evolution aims to ease
the understanding and the maintenance of the database and its client applications.

To support multiple LDAP identifiers in AppSI, a new table named account__
alias iscreated. It gathers all the secondary identifiers of a person in the 1ogin__
alias column. The id_person column is a foreign key to the id column, pri-
mary key of the person table.

Before this evolution, it was possible to find the id of a person from their LDAP
identifier. After the evolution, since a person may have several LDAP identifiers,
it is necessary to use a stored procedure to find the id of a person from one of
their LDAP identifier (the main or a secondary one). For this purpose, a view was
created to ease the correspondence between one of the LDAP identifiers of a person
and his/her primary key. Figure 2.1 provides a sketch of this evolution.

Of course, once this modification is integrated, entities of the database using
the uid column of the person table have to be adapted in order either to use the new
login column, or to use the new account_alias table withits login_alias
column and a join with the person table.

Although this evolution is rather simple to understand, it is not trivial to imple-
ment. To plan this evolution, the database architect established a roadmap of what
he needed to do. During the whole evolution, he uses this roadmap to keep track
of what was done and what remained to do. The roadmap was also updated when
the database architect discovered he had forgotten something or when some step
turned out to be more complex than originally planned.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

14

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 2. Motivation

person
id : serial (PK)
person login : varchar
id : serial (PK) email : varchar
uid : varchar Evolution
email : varchar account_alias
id : serial (PK)

id_person : integer REFERENCES person.id
login_alias : varchar

Figure 2.1: Summary of the evolution to be achieved by the database architect.

To give a bird’s eye view of the whole evolution, we provide the roadmap here:

1.
2.

10.

Copy database (to set up a realistic, up to date, development environment);

Create a dump of the schema (i.e. the structure of the database, tables, views,
stored procedures, etc. are serialized as a SQL script from which the database
can be rebuilt from scratch);

Rename uid column as 1ogin;

Search for occurrences of uid in stored procedures signatures and source
code, rename foreign key constraints and indexes. This step is not only
about replacing references to uid columns in the source code embedded in
the database, it also consists of modifying entities for which the name con-
tains uid. For example, the local variable uidperson of 1ogin stored
procedure is renamed loginperson;

. Add account_alias table;

Create a view managing main and secondary identifiers;

. Create a stored procedure returning the main login according to the account

given as parameter;

. Modify key_for_login (login) stored procedure to return the primary

key of a person whatever the identifier used;

. Add entry in configuration table (this is a table containing configura-

tion parameters for applications using the database: e.g.,, IP addresses, ports,
URLs, etc.);

Add mail (account) stored procedure to determine the email address
based on the main login;

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.2. Context 15

11.

12.

13.

14.

15.

Compute email address in 1ogins view;

Apply required changes on SQL patch (addition of queries written in previ-
ous steps into the patch);

Execute patch on a copy of the database;

Check generating reports on data in the database and, if necessary, replace
uid column references by references to 1ogin columns in queries;

For each client application, look for uid references and replace them by
login references.

The last two tasks concern the update of applications using AppSI database.
They do not fall within the scope of our analysis.

2.2 Context

We were asked by the database architect of our university if we could propose
solutions to help him evolve a PostgreSQL database named AppSI. The “2017-10-
10” version of AppSI has some characteristics that make it difficult to evolve:

* It has many views (62). Views make the evolution of the database compli-

cated because no inconsistency is allowed at any moment during the evolu-
tion (see Section 2.6.2). Because of that, views transitively using other views
have to be removed and recreated in cascade.

It has many stored procedures (64). Stored procedures make the evolution of
the database complicated because of missing meta-data (see Section 2.6.1).
The validity of the stored procedure must be verified by actually calling it
and see if it produces a runtime error due to a broken reference.

The same database schema is used in other laboratories and any update on
one instance must be made in the form of a SQL script (a “patch”) that can
be applied to the other instances (as we discussed previously).

The database architect complained that evolutions are difficult because of these
various cross-dependencies within the database. He found no tool that could help
him in this task. To understand the problems he faced, we analyzed his actions on
a real example of a schema evolution that he had to perform. We identify concrete
problems he encountered and suggest tools that should be created to help him better
handle these problems.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

16 Chapter 2. Motivation

2.3 Conditions of the Case Study

For practical reasons, we could not be present when the database architect per-
formed the evolution and it was not possible to postpone it. The architect agreed to
record his screen during the whole task. The result consists of three recordings of
about 1 hour each (total video time is 3.5 hours). Unfortunately, for confidentiality
reasons (personal data of university employees appearing at different moments of
the videos), the videos can not be made publicly available.

We analyze recordings of the architect screen to understand problems he faces
during an evolution. Analyzing video data is not easy because of their unstructured
nature. Furthermore, we can observe what the architect does but we need to infer
why he does it. This information is not encoded in the video.

In our case, we want to understand:

* Which tools the architect use to perform the evolution?
* How tools are used during the evolution?

¢ How the architect achieves the evolution?

The first step to be able to understand data in the video is to extract some struc-
ture from it. We choose to split the video into entries to have a more structured
version of data encoded in the recordings. As delimiter for these entries, we chose
to use timestamps for which we observe changes in the screen display. For exam-
ple when the database architect switched from one tool to another (e.g. text editor,
shell terminal, or a database development tool), or from one tab of a tool to another
tab (e.g. multiple files in a text editor). This delimiter is quite objective as we do
not need to inject knowledge external to the video to split it. Because of that, our
experiment is reproducible on another recording of another evolution for a different
database conducted by a different architect.

We segmented the video into a list of “entries” containing a timestamp and a de-
scription of what happens on the screen between the timestamp of the entry and the
next timestamp. The full transcript is available at https:/github.com/juliendelplanque/
icsme2018data. From that list of entries, we perform a qualitative and a quantitative
analysis to understand the evolution. Figure 2.2 provides a visual representation of
our methodology to analyze the video.

2.4 Qualitative Analysis

Starting from the list of entries we transcribed, we perform a qualitative analy-
sis of the evolution. This analysis is twofold. First, we decompose the evolution
into “actions” which are groups of entries that are related. Then, we group these

© 2020 Tous droits réservés. lilliad.univ-lille.fr

https://github.com/juliendelplanque/icsme2018data
https://github.com/juliendelplanque/icsme2018data

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.4. Qualitative Analysis 17

Q

Qualitative
analysis
(Sectlon 2.4)

—

Screen records Entries @

Quantitative
analysis
(Section 2.5)

ﬁﬁﬁﬁ

Figure 2.2: Methodology to analyze the video.

actions into activities which abstract the semantic of the architect’s actions at a
coarser grain. Activities allow us to identify the process followed by the architect
to implement the evolution and to analyze it.

2.4.1 Decomposing the Evolution

We abstracted all entries in a list of 18 actions listed in Table 2.2. The evolution is
first performed on a development version of the database and then made effective
on the production version. It is thus important to synchronize the two versions, that
is to say, make sure that the schema of the development database is even with the
production database (action 1).

Actions 2, 3, and 14 correspond to moments where the document manipulated
(e.g. the evolution roadmap, the database schema dump, the resulting SQL patch)
is observed. That is to say, the corresponding windows are put in the forefront on
the screen, but no interaction is visible in the video.

Searches can be performed in the database schema dump (via text-search util-
ity of the text editor) either to identify an impacted entity (action 4) or to copy a
fragment of SQL code like a CREATE TABLE query (action 5).

Action 13 occurs in case a less common query has to be created (for example
an ALTER TABLE to change a constraint) and no example of the required syntax
can be found in the database schema dump.

The schema is modified in the Navicat database management tool either using
a dedicated UI (action 8), or by editing source code through the query builder tool
(action 9). The query builder is a code editor with a button allowing one to let the
RDBMS executes the SQL code it holds. Using the query builder tool allows the

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

18 Chapter 2. Motivation

database architect to just copy/paste the query in the database schema dump when
it is considered valid.

To check the validity of queries modifying the schema, the architect checks that
the modifications have been performed (action 11), executes SELECT queries to
check the form of data stored in tables or returned by views and stored procedures
(action 6), executes INSERT / UPDATE / DELETE queries to check constraints
applied on the data (action 7), or runs unit tests written in an external language
(action 16).

Action 15 occurs when a change is considered invalid, whatever the reason, and
the architect modifies the related source code.

The patch is regularly modified (action 10) to integrate Data Description Lan-
guage (DDL) queries (i.e. CREATE, ALTER and DROP commands) and the evolu-
tion roadmap is updated (action 12).

Finally, action 17 corresponds to moments where the database architect is not
directly working on the evolution. These moments are different from actions 2, 3,
or 14. To distinguish this “inactivity” from actions 2, 3 or 14, we used the two
following criteria:

1. the screen shows absolutely no activity (e.g. no mouse movement, no scrolling,
etc...); and

2. the duration of this absence of activity is greater than or equal to 20 seconds
(we classified 1 entry that did not correspond to this criterion and last for 9
seconds but it looked clear to us that it was a short inactivity period because
there was no activity on the screen and no tool was shown on the screen).

2.4.2 An Informal Process

The decomposition of the evolution (performed in sub-section 2.4.1) leads us to the
list of entries with, for each entry, the number of the corresponding action. While
analyzing the evolution decomposition, we observed repetitions and regularities in
the actions taken. We formalized a small process from these regularities. This
process is illustrated in Figure 2.3.

The process is applied for each schema evolution. The activities of the process
are:

1. Read the next step to perform in the migration roadmap.

2. The queries required by the roadmap step are coded in the database devel-
opment tool and/or the SQL patch. If queries are written in the development
tool, the architect tends to work iteratively. That is to say, he starts with a
small, simple query and modifies it iteratively to reach the desired result.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.4. Qualitative Analysis 19

Table 2.2: List of actions during AppSI evolution

action # Description

W kW = O

Other.

Synchronise development database with production database.
Observe patch.

Observe database entities.

Analyzes the schema dump by performing textual search.
Search for a fragment of SQL code in schema dump and
eventually copy it.

Execute SELECT query from IDE.

Execute INSERT/UPDATE/DELETE query from IDE.
Execute DDL query from IDE’s Ul

Execute DDL query in IDE by writing SQL code.
Modify patch.

Verify a change is correctly applicated.

Update evolution roadmap.

Check PostgreSQL documentation.

Check evolution roadmap.

Modify source code in query builder.

Run unit tests written in an external language.

Inactivity.

3. These queries are executed (on the development database) mostly wrapped in
a transaction that will be rolled back (i.e. between BEGIN and ROLLBACK
commands). Using a transaction enables the architect to test or validate an
SQL syntax, check the result is correct and eventually undo the whole part
of the patch under test if one of the queries fails during execution.

4. In case of errors, the queries are modified. In this case, the architects returns
to activity (iii). This is the first interesting loop in the process (sub-loop A).
It is executed until no more error can be detected in the queries execution. At
this level, issues come from either syntax errors or, more often, nonexistent
referred entities. Entities may be nonexistent if they have been renamed,
removed, or not yet created.

5. Once there are no more errors in the queries, they are made effective through
execution in a transaction that is committed (i.e. between BEGIN and COMMIT
commands).

6. But even if the queries did not produce errors, their result might not be the
expected one. To check whether this is the case, some observations or tests

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

20 Chapter 2. Motivation

|

Read step in Implement changes | Execute queries in a

migration plan g into queries transaction and
° i i q i l rollback i

Execute queries in a .)
transaction and Modify not working

commit queries
vii vi v No error iv

A
No test
fail
A test fails)

sub-loop B

sub-loop A

A

Update migration
plan

Test changes L.
implemented

A

main loop

Figure 2.3: Process formalized from the database architect actions.

are manually performed on specific data familiar to the architect. These tests
can be performed as SELECT queries, modifications on the data stored in the
database and/or simply looking at the database structure from the develop-
ment tool UL

If the tests fail, the queries have to be corrected by returning to activity iv.
This is the second interesting loop in the process (sub-loop B). At this level,
issues come from deeper causes than syntax errors (semantic causes). In
“traditional” software development (e.g.,, Java, Python, etc), they would be
caught by tests.

7. Finally, if the tests succeed, the change is considered valid and the architect
goes to the next step in the evolution roadmap, possibly updating it.

Each step can involve one or several actions. Table 2.3 summarizes the mapping
between the process activities and the observed actions in the video.

Table 2.3: Relations between actions and steps in the observed process.

Activity Actions

@) 14

(i1) 2,3,4,5,100r 13
(iii) 9

@iv) 2,3,4,5,8,10,13 or 15
V) 9

(vi) 3,6,7,110r 16
(vil) 12

We note that in “traditional” software development, errors causing sub-loop A
are usually detected by the IDE while the code is being written. Modern IDEs

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.5. Quantitative Analysis 21

highlight syntax errors and simple errors, like referencing a nonexistent entity in
the code. This is not the case with the tools used by the database architect.

Similarly, in “traditional” software development, sub-loop B would be helped
by testing platforms. Here, the tests were manually performed by the architect.
They may not even be saved for later use because they may involve employees’
data. The tests thus rely on the architect’s knowledge of the database schema and
its data. In addition, we noticed that sometimes tests are reduced to schema or data
observations.

Although the architect confirmed that the process we observed and formalized
is the objective he wants to reach, it is important to notice that it is not always
possible for him to follow the process strictly. For example, when the architect is
interrupted during the process he might not be able to restart from the right activity.
Thus, we observe that some activities are missing in the video.

—[Findings 1: Qualitative Analysis } \

Qual.F. 1. The IDE is not sufficient to understand the schema as we observed
the architect performing text searches on the dump to understand
dependencies between entities of the schema.

Qual.F. 2. The schema is modified from the UI of the IDE and via custom
DDL queries.

Qual.F. 3. The architect uses multiple strategies to test the database and some
of them are not automated.

Qual.F. 4. The architect uses an implicit process to conduct the evolution.

Qual.E. 5. Queries are built incrementally, starting from a simple and working
query and then complexifying it to satisfy requirements.

Qual.F. 6. Changes are simulated on the database before their real commit-
ment (using a transaction that is rollbacked).

Qual.E. 7. Syntax errors and reference to non-existing entities are not caught
by the IDE before executing a query.

These findings are specific to the experiment but some of them are used to infer generic problems in Section 2.6.

2.5 Quantitative Analysis

To get a better understanding of architect activities, we perform a quantitative anal-
ysis on the entries we created in Section 2.3 and the result of the qualitative analysis
(Section 2.4). First of all, based on the actions identified in Table 2.2, we analyze
the time spent on each of them. Then, we analyze the process followed by the
database architect during the development and more specifically the time spent in

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

22 Chapter 2. Motivation

each sub-process loop (A and B in Figure 2.3). Finally, we look at the time spent
using each tool during the development session recorded.

2.5.1 Time Spent per Action

Actions 0 (others) and /7 (inactivity), with cumulated durations of 40 and 30 min-
utes respectively, are removed from the dataset for the analysis because their se-
mantic is not interesting for our purpose. The remaining ~137 minutes of relevant
actions are analyzed. The minimum duration measured for relevant actions is 9
seconds, the maximum is 6 minutes 14 seconds.

Action 10 (modify patch) takes the most of the time: 45 minutes of cumulated
duration (around 18.5% of the relevant time). In terms of occurrences, it is also
the most frequent action (63 occurrences). This action corresponds both to the
design and the writing of queries modifying the schema. It is difficult to evaluate
the reflection time.

The architect mostly writes the queries to modify the schema directly in the
patch before executing them in the query builder of the database management tool.
Three reasons explain this choice. First, the architect needs to keep track of the
changes in a patch to apply them on the database of another laboratory later. Sec-
ond, he had up to 16 queries to apply together since an entity referenced by another
one can not be dropped. It is easier to manage them all together or to take care of
their order in the text editor. Third, the architect considers the patch as the refer-
ence document in comparison to the query builder. Nevertheless, this action also
includes when the architect modifies the patch after correcting an erroneous query
in the query builder.

Action 9 (execute DDL query in IDE by writing SQL code) cumulated durations
of 11.5 minutes and occurs 45 times. This action completes action 10 since it
executes queries copied from the patch to the query builder. The corrected version
is then copied back to the patch. The fact that this action has a lot of occurrences
but lasts only 11.5 minutes is explained by the fact that executing SQL code is
nearly immediate. Modifications of the queries are caught by other actions (10 or
15).

Action 6 (execute SELECT query from IDE) cumulated duration lasts for ~13
minutes and occurs 28 times. The frequency of the action is due to the fact that it
corresponds to an execution of a SELECT query. Such queries are used to check
that the schema evolution has correctly been done, i.e. provides the expected result.

Action 3 (observe database entities) cumulated duration lasts for 10.5 minutes
and occurs 21 times. The frequency of this action comes from the fact that even
if the architect knows pretty well the database, he needs to observe some entities
while writing queries.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.5. Quantitative Analysis 23

If we take a look at the number of occurrences, action 2 (observe patch) and ac-
tion 4 (analyzes the schema dump by performing textual search) occurred 22 times
each while their cumulated durations last for 7.3 minutes and 8.3 minutes respec-
tively. Action 2 is comparable to action 3: it corresponds to an observation of the
dump before or while writing queries to understand the structure of the database.
Action 4 is noticeable as it corresponds to the research of entities in the dump
through a simple textual text search to identify dependencies between entities.

The other actions (1, 5,7, 8, 11, 12, 13, 14, 15 and 16) are less relevant in terms
of time and occurrences. For instance, they occur between 2 times (for actions 1, 7
and 16) and 13 times (for action 15). Because of little occurrences and cumulated
time, we can not say much about these actions as we have little data about them.

2.5.2 Time Spent in Sub-Loops of the database architect’s pro-
cess

As introduced in Subsection 2.4.2, we identified 3 loops in the process followed by
the architect:

* main loop concerns the complete implementation of a feature. It might in-
clude iterations on sub-loop A and/or sub-loop B.

* sub-loop A concerns the resolution of syntax errors and errors raised because
of references to non-existing entities. The latest is interesting because it can
be caused by a wrong order of the queries to execute (e.g. a table creation
executed after the creation of a view referencing the table in its query).

* sub-loop B concerns the resolution of semantic errors. That is to say, the
source code is correct and did not raise any error at execution but what it
implements does not answer the requirements of the database architect.

We tagged entries of our dataset according to the loop they belong to when it
was possible. Some entries that do not belong to one of these loops are not tagged
(e.g.,, at the beginning of the first video, the architect does some actions that do not
follow the process). The main loop occurred 9 times, sub-loop A occurred 9 times
and sub-loop B occurred 6 times.

We observe that:

* Some main loops do not have iterations on sub-loops;
* Sub-loop B happens less (6 times) than sub-loop A (9 times);

* Sub-loop A appears up to 5 times in the same main loop. This observation
can be explained by the fact that in this main loop, up to 16 queries are run
at the same time. Thus, it seems normal to have a lot of syntax errors;

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

24

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 2. Motivation

Sometimes, sub-loop B can be short because what is done to “test” the
changes is simply observing entities of the database from the IDE;

One sub-loop B has an interesting property: a syntax error arise during an
activity of this loop. It happened because, in order to fix a semantic prob-
lem (loop B), a modification on the structure of the schema had to be done.
However, the queries written to implement this modification were incorrect
syntactically.

Another syntax error arise during one activity of a sub-loop of type B but
for a different reason. A stored procedure was previously created with a
syntax error in its source code. The RDBMS accepted to create this stored
procedure without any warning. Nonetheless, when this stored procedure
is tested by the database architect to ensure it works as expected, a syntax
error is raised. The particularity here is that this error comes from the pro-
cedural language used in stored procedure body. This observation shows an
interesting particularity of PostgreSQL stored functions: a stored procedure
may hold syntactically invalid source code in a database. Such invalid stored
procedures will only be discovered once they get executed.

2.5.3 Time Spent per Tool

For each entry in the data extracted from the video, we identified the tool used by
the database architect. Four tools and their usage are identified below:

Text editor: Used to browse the dump of the database, browse and modify
the patch.

Navicat: The database browser providing a set of tools to modify the database.

Similar to an Integrated Development Environment (IDE) but for databases.
Web browser: Mainly used to search PostgreSQL documentation.

Terminal: Allowing one to interact with the operating system, manipulate
files, interact with PostgreSQL, etc...

The text editor is the first tool used in terms of time (~ 79.3 minutes), the
second one is Navicat (~ 52.5 minutes). Although it is a bit surprising to find the
text editor used more often than the IDE, it is explained by the fact that the database
architect has to store the changes in a patch file and also, as previously said, because
up to 16 queries are run at the same time to perform a task of the evolution. The
text editor is thus a good tool to develop the patch for the architect. However, an
important drawback is that the content of the patch has to be copy/pasted into the

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.6. Problems 25

query builder to be tested. The process induced by the usage of the text editor to
develop the patch (1. write SQL queries in the patch in the text editor; 2. copy/paste
the queries; and 3. execute these queries in the query builder) is not always strictly
followed during the video. When the part of the patch pasted in the query builder
raises an error it happens that the architect modifies the problematic query directly
from the query builder. Normally, he should come back to the text editor, modify
the problematic query from there and then copy the fixed query in the query builder
to test it. Because this process is sometimes not followed, the patch opened in the
text editor has to be re-synchronized with the content of the query builder.

Another reason for patch development to happen in a text editor is because the
IDE does not generate a patch after a full schema evolution to apply the changes
on the production database or other instances.

The terminal is used during a significant amount of time (~ 28.76 minutes) to
send administration command to PostgreSQL (e.g. create a dump of the database),
to use grep' to perform a textual search in the dump or in the patch and to edit the
configuration files on the operating system.

f—{ Findings 2: Quantitative Analysis } .

Quan.F. 1. Queries are mostly written in the text editor and then copied in the
IDE to tests their execution.

Quan.F. 2. In the development process we identified, the sub-loop concerning
fixes of syntax errors and broken references appears up to 5 times
include a main loop.

Quan.F. 3. Because of poor testing, the sub-loop B concerning the test of
changes made to the database has a short duration.

Quan.F. 4. It is possible for a stored procedure to hold syntactically invalid
source code.

Quan.F. 5. The text editor is used more often than the IDE.

Quan.F. 6. The IDE does not support the generation of a patch to migrate a
database.

These findings are specific to the experiment but some of them are used to infer generic problems in Section 2.6.

2.6 Problems

From our observations, we identified two main problems arising when it comes
to evolve a relational database: relational databases are hard to understand and
relational databases are hard to evolve.

"hitps://www.gnu.org/software/grep/

lilliad.univ-lille.fr

https://www.gnu.org/software/grep/

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

26 Chapter 2. Motivation

2.6.1 Relational databases are hard to understand

Modern RDBMS provide various features to describe data organization (tables,
constraints, etc.) and to process data (stored procedures, views, etc.). We identified
two reasons why understanding a relational database is complicated.

Complexity to query meta-data: The RDBMS provides metadata related to its
structure, a meta-description of itself. It takes the form of a set of “system” tables
and views. There is even a standard that emerged called the “information schema”
providing information about entities in the database. However, all RDBMS imple-
mentation do not implement this standard.

Additionally to this standard, each RDBMS usually stores its meta-data in cus-
tom tables and views that are used internally. Eventually, a developer can query
these tables to retrieve information about the structure of a database. However,
one need a good understanding of the system tables and their relationships. This
knowledge is not easy to gain as it requires to understand meta-data tables schema
which boils down to the same problem.

Our observations suggest that the IDE used by the architect does not expose
capabilities to query meta-data to the architect as he performs text search in the
dump to understand dependencies between entities of the schema (Qual.F. 1.).

Missing meta-data: Furthermore, in the case of PostgreSQL, we realized that
some dependencies between entities are missing in the meta-data tables (Qual.F. 7.).
For instance, references to entities made in the source code of stored procedures
are simply not available in the meta-data tables. The source code of stored pro-
cedures is not stored as an abstract syntax tree but as plain text. Because of that,
the removal of an entity referenced in a stored procedure is possible without any
complaint from the RDBMS. The bad effect of this behavior is that if the stored
procedure gets executed, it will crash.

2.6.2 Relational databases are hard to evolve

The effects of a change on software are hard to predict for a human. This is true
for relational databases as well but relational databases have two particularities that
make their evolution even more challenging.

Implicit dependencies: Developers do not know dependencies of software using
the part of the database under modification. One can, for example, remove a col-
umn used by a client and make the client crash. This problem has been addressed
by Loup et al. [Meurice 2016a] in the context of software clients written in Java.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

2.6. Problems 27

In the case of PostgreSQL, a similar problem arises with stored procedures.
One can break stored procedures source code via a schema change. PostgreSQL
will not notice this dependency break and when the stored procedure is invoked, it
will crash (Qual.E. 7., Quan.F. 4.).

Client software usually build SQL queries as strings that are sent to the RDBMS
to be executed. Because of that, SQL queries ar often built dynamically via string
concatenation. In contrast, PostgreSQL’s language allows SQL queries to be writ-
ten directly in stored procedures source code (so they are usually not embedded
in a string while it is possible to do it). Thus, stored procedures source code is
rarely building SQL queries dynamically which makes source code analysis less
complicated.

No inconsistency is allowed at any moment: The RDBMS does not allow one
to put the database in an inconsistent state at any time during the evolution. For
example, a state of the database where one of the entity references a non-existing
entity is inconsistent. This particularity is the reason of the process used by the
architect (Qual.F. 4.). Indeed, the change simulation before the real commitment
(Qual.F. 6.) is used to discover potential inconsistencies arising from a part of the
evolution script.

RDBMS does not allow inconsistencies because their execution is not stopped
during the evolution. Changes to the schema of a database are made via SQL
queries and these queries have the same constraints imposed by the RDBMS as
other queries.

This is different from the development of other software written in Java, Python
or C programming languages for example. With software written in those lan-
guages, while techniques for dynamic software update [Hicks 2005] exists, a de-
veloper usually:

1. Stops the execution of the software.
2. Apply a modification on the source code.
3. Compile the source code (optional, depends on the language).

4. Re-run the software.

In this process, as step 2 is done while the software is not running, the developer
can temporarily put the source code in a non-executable or non-compilable state.
Being able to temporarily reference non-existing entity is a valuable feature when
it comes to modify software. Yet, a RDBMS forbids developers to do that.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

28 Chapter 2. Motivation

2.7 Conclusion

In this chapter, we analyzed the screen record of an evolution performed on AppSI:
a database used at our university. We identified 2 main problems (each with 2 sub-
problems) occurring when it comes to maintain or evolve a relational database.

1. Relational databases are hard to understand.

1.1. Complexity to query meta-data.
1.2. Missing meta-data.

2. Relational databases are hard to evolve.

2.1. Implicit dependencies.

2.2. No inconsistency is allowed at any moment.

The validity of these problems are strengthened by the results of our survey re-
lated to issues arising during PostgreSQL database development [Delplanque 2017a].
Indeed, in the results of this survey, “maintenance complicated” issue was reported
for stored procedures. By discussing with multiple database architects, we realized
that it is not an isolated problem. It also arises with views and more generally,
handling dependencies between entities in a relational database is a complex task.

The identification of these problems is a starting point to build the state of
the art (Chapter 3) and to position our approach against previous works related
to: relational database reverse engineering to address the relational databases are
hard to understand problem and relational database impact analysis to address the
relational databases are hard to evolve problem.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 3

State of the Art

Contents
3.1 DatabaseDesignttt 29
3.2 Relational Database Reverse-Engineering 30
3.3 Relational Database Impact Analysis 38
34 Conclusionttt e 42

In Chapter 2, we identified problems occurring when a relational database
evolves: (1) relational databases are hard to understand and (2) relational databases
are hard to evolve.

In this chapter, we review the scientific literature to assess the state of the art re-
lated to these problems. We steer towards relational database reverse-engineering
to address the first problem and relational database impact analysis to address the
second problem.

Before investigating the literature related to relational database reverse engi-
neering and relational database impact analysis, let us give a short reminder about
database design.

3.1 Database Design

Database design is a process consisting in the conception and implementation of a
database that meets users requirements as described by Batini et al. [Batini 1992].
Figure 3.1 illustrates the 3 steps of this process.

1. Conceptual design (Users requirements — Conceptual schema): From the
user requirements, a high-level description of the structure of the database
is produced: the conceptual schema. This description is independent of any
particular data model. The conceptual schema can be expressed in various
formalism: Entity-Relationship (ER) diagram, Unified Modeling Language
(UML) diagram, etc.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

30 Chapter 3. State of the Art

@ Conceptual
design
@ Loglcal
design

Logical
schema

User
requirements

Conceptual
schema

3.
@ Physical
design

Physical
schema

Legend:

é& Step of the process

O Input/Output

Figure 3.1: Database design process inspired from Figure 1.2 in [Batini 1992].

2. Logical design (Conceptual schema — Logical schema): The conceptual
schema is specialized for a particular logical model (e.g., the relational model).
However, it is not tied to a specific database management system.

3. Physical design (Logical schema — Physical schema): The logical schema
is then converted to a representation that can be directly translated into a
sequence of DDL statements for a specific database management system: the
physical schema. The DDL statements corresponding to the physical schema
can be executed by a database management system to make the database
operational.

The process of database design is often designated by the term “forward en-
gineering” in opposition to “reverse-engineering”. Indeed, as we will discuss in
the next section, reverse-engineering a database is basically the opposite process:
starting from the physical schema to retrieve the logical and conceptual schemas.

3.2 Relational Database Reverse-Engineering

When a relational database needs to evolve, one needs to have a good understand-
ing of the relationships between entities of the database as well as their purpose
(as we discussed in Chapter 2). This information is normally provided by the log-
ical and the conceptual schemas. However, often, these schemas are not available
and only DDL code or an access to RDBMS meta-data is available. To retrieve
fragments of this information, a reverse-engineering process can be applied to re-
lational databases.

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

3.2. Relational Database Reverse-Engineering 31

3.2.1 Database Reverse-Engineering Process

Hainaut er al. [Hainaut 2009] describe a generic process for database reverse-
engineering (applicable on non-relational databases as well). Figure 3.2 illustrates
the reverse-engineering process.

Conceptual
schema

: ’& 4,
Conceptualization

Q Input/Output

Logical
schema

Complete
physical
schema

é& Scf?éma

cleaning

Raw

: » '& 2. Data /
I;’Qz::zzl @ Schema Source code /
refinement Queries / ...

DDL code /
Metadata

@ DDL1 (l:ode

analysis

Figure 3.2: Database reverse engineering process adapted from Figure 4-3
in [Hainaut 2009].

This process is made of the following steps':

1. DDL code analysis (DDL code/Metadata— Raw physical schema): This first
step consists in analyzing the DDL statements or the meta-data provided by
the RDBMS to provide a raw physical schema of the database. The DDL
code analysis allows one to abstract the implementation details of the DDL
code or the meta-data schema. For example, one can implement a primary
key constraint for a table directly from inside the CREATE TABLE state-
ment or one can execute a CREATE TABLE statement in which no primary
key is specified and then execute an ALTER TABLE statement that speci-
fies the primary key constraint. DDL code analysis step aims to provide an
abstraction over this kind of implementation details.

'In this thesis, we scope the generic database reverse-engineering process describe by Hainaut et
al. to relational databases. For example, the “Physical integration” step has been discarded from the
explanations as it occurs when multiple DDL sources are available for the analysis which usually
not the case for relational databases.

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

32 Chapter 3. State of the Art

2. Schema refinement (Raw physical schema — Complete physical schema):
The physical schema of the database is enriched with additional sources of
information to retrieve implicit or lost constructs. For example, in this step,
if foreign key constraints are not explicitly specified in the schema, they
could be retrieved by analyzing data present in the database. Various sources
of information can be used depending on their availability: data stored in
the database, source code of client application, SQL queries, etc. The re-
sult of this step is (in theory) the complete physical schema of the database.
Of course, the completeness of the physical schema depends on the various
sources of information available and on the accuracy of analyses applied on
them.

3. Schema cleaning (Complete physical schema + Artefacts — Logical schema):
The complete physical schema gets specific technical constructs discarded
(e.g., indexes) to produce the logical schema. As stated by Hainaut et al. [Hain-
aut 2009], “[...] this schema is the document the programmer must consult
to fully understand all the properties of the physical data structures (s)he in-
tends to work on.” This step might rely on additional artifacts such as data,
queries, source code of external programs, etc.

4. Conceptualization (Logical schema — Conceptual schema): The logical
schema is analyzed and entities that are artifacts of the specialization for
a particular data model or of technical optimization are removed.

Furthermore, Meurice [Meurice 2017] identified 5 techniques to perform this
relational database reverse-engineering process according to the information source(s)
exploited during the schema refinement step. As we find this taxonomy useful
to have a bird’s eye view on relational database reverse-engineering research, we
reuse it as-is:

a) Database schema analysis: “Analyzing the database schema structures may
help identify hidden constructs such as relationships and hierarchies between
data.”

b) Data analysis: “Mining the database contents can be used in two ways.
Firstly, to discover implicit properties, such as functional dependencies and
foreign keys. Secondly, to check hypothetic constructs that have been sug-
gested by other means.”

¢) Graphical User Interface (GUI) analysis: “Forms, reports and dialog boxes
are user-oriented views on the database that exhibit spatial structures, mean-
ingful names, explicit usage guidelines and, at runtime, data population and
error messages that can provide information on data structures and con-
straints.”

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

3.2. Relational Database Reverse-Engineering 33

d) Static program analysis: “Analysis, such as data-flow graph exploration, can
bring valuable information on field structure and meaningful names. More
sophisticated techniques such as program slicing can be used to identify com-
plex constraint checking.”

e) Dynamic program analysis: “In the case of highly dynamic program-database
interactions, the database queries may only exist at runtime. Hence recent
techniques allow to capture and analyze SQL execution traces in order to
retrieve structural information.”

In the context of this thesis, we rely on database schema analysis technique but
we model (and thus extract information about) behavioral entities of the database
as well (e.g., stored procedures). For that purpose, we also apply static program
analysis on behavioral entities to extract information related to the relationships
these entities maintain with other entities of the database. We could have used
dynamic program analysis technique for the same purpose but it was not necessary
as we observed that queries performed by behavioral entities of the database are
usually not built dynamically.

Because of that, we focus our state of the art on database reverse engineering to
the three following techniques: database schema analysis, static program analysis
and dynamic program analysis.

3.2.2 Criteria to Compare Relational Database Reverse-engineering

Approaches

We identified 3 relevant criteria to compare relational database reverse-engineering
approaches:

Crit. 1. For which kind of entities does the approach gather information to build a

model of the database?

Possible values: Structural/Behavioral

Crit. 2. What formalism is used to model the database and programs using it?

Possible values: The name of the formalism used (e.g., Extended Entity-
Relationship, Unified Modeling Language, custom meta-model, etc).

Crit. 3. Is there a human intervention during the model importation or is the approach

automatic?

Possible values: v//X

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

34 Chapter 3. State of the Art

3.2.3 Approaches to Reverse-Engineer Relational Databases

Database Schema Analysis Markowitz and Makowsky [Markowitz 1990] de-
veloped a procedure to translate relational schemas as extended entity-relationship
diagram. The procedure support foreign keys and can be extended to support null
constraints.

Castellanos [Castellanos 1993] created a methodology for importing relational
databases schemas into a model with a richer semantic level: the BLOOM model.
Their methodology involves extractions of implicit semantics (e.g., if a RDBMS
does not support the explicit declaration of foreign keys, a heuristic is used to
retrieve them). The methodology aims to minimize as much as possible human
intervention. The author used this methodology in the context of federated database
systems [Sheth 1990] to gather higher knowledge on individual databases.

Shoval and Shreiber [Shoval 1993] proposed a process to transform a relational
database schema to a Nested Binary Relationship (NBR) [Shoval 1985] model.
They implemented this process in a tool that requires the source schemas defini-
tions and semantical information from the user. The semantical information in-
clude data constraints (e.g., foreign keys), functional dependencies, many-to-many
constraints, etc and need to be manually specified by the user. This knowledge,
injected by the user, helps the algorithm to generate a richer NBR model.

Premerlani and Blaha [Premerlani 1993] discussed implementation strategies
of an object model in the relational model according to their experience. From
this experience, the authors use a commercial reverse-engineering tool to reverse-
engineer multiple case studies. An informal process for reverse-engineering a rela-
tional database and produce an object-oriented model is proposed.

Chiang et al. [Chiang 1994] present a methodology to extract Extended Entity-
Relationship (EER) schemas from relational-databases based on the meta-data of
the relational database and the data stored in the database. A heuristic is applied
to determine the relationships between tables and the data are used to evaluate the
results of the heuristic.

Polo et al. [Polo 2002, de Guzméan 2004, de Guzman 2005, Polo 2007] pro-
posed a tool to generate applications interacting with a database directly from the
relational databases schema. To do that, they perform reverse-engineering on the
schema of the database to transform it into an instance of a meta-model they de-
signed. This meta-model reifies the database, tables, columns (a column knows
if a primary key constraint applies to it via a boolean attribute), foreign keys, and
stored procedures. From an instance of their meta-model, the source code of the
application is automatically generated.

Yeh et al. [Yeh 2008] developed a reverse-engineering approach that extracts
EER diagrams from legacy databases. In these legacy databases, primary keys are
not declared and the descriptions for some columns are poor. The approach uses

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

3.2. Relational Database Reverse-Engineering 35

the database schema, data and display forms to generate an EER model.

Wang et al. [Wang 2009] propose a model driven approach for relational database
reengineering. The authors designed a meta-model to represent the database at a
logical level. Instances of this meta-model are transformed into conceptual mod-
els conform to an object-oriented system meta-model. The database meta-model
reifies the model, the schema, tables and columns. Primary key and foreign key
constraints are represented as boolean attributes on column. The authors propose a
framework called RDBREF based on EMF which uses these meta-models to per-
form database reverse-engineering.

Static Program Analysis Petit et al. [Petit 1994] propose a method to extract
extended entity-relationship schemas from a relational database using the meta-
data of the database schema and by analyzing SQL queries that an application
performs on the database. The authors provide a list of patterns in the source code
of SQL queries that allow them to deduce the relationships between tables of the
database (e.g., foreign key constraints).

Henrard et al. [Henrard 1998, Englebert 1995] present DB-MAIN, a general-
purpose database engineering environment. It provides the ability to perform reverse-
engineering of the database and programs using it. DB-MAIN can extract schema
structure declared into DDL statements and provides a tool to find foreign keys
of a schema. For program analysis, DB-MAIN provides utilities to perform static
analysis: pattern matching on programs source, variable dependency graph visual-
ization, program slicing and call graphs.

Cleve et al. [Cleve 2006] exploit database statements present in programs in-
teracting with a database to compute program slices. Their analysis allows one to
create a system dependency graph that includes tables and columns of the database
and the system dependency graph of the program using this database. One of the
case studies concern a COBOL program containing embedded SQL statements.
With their analysis, the authors were able to determinate the set of tables used by
the program, the set of columns of these tables used by the program and 32 implicit
data dependencies.

Papastefanatos et al. [Papastefanatos 2008, Papastefanatos 2010,Manousis 2015]
developed Hecataeus, a tool representing the database structural entities, queries
and views as a uniform directed graph. This graph is used to simulate a change on
the database and compute the impact of the change.

Meurice et al. [Meurice 2016a] presented a tool-supported approach able to
analyze how the client source code and database schema co-evolved in the past and
to simulate a database change to determine client source code locations that would
be affected by the change. To extract the relationships between the database and
programs using it, the authors used a static analysis approach [Meurice 2016b]. The
authors use an entity-relationship model to store multiple versions of the database

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

36 Chapter 3. State of the Art

and program.

Dynamic Program Analysis Cleve and Hainaut [Cleve 2008] analyze dynami-
cally formed SQL queries occurring in programs using a relational database. The
authors trace Java programs to determinate what are the SQL queries generated dy-
namically that get executed by the RDBMS. Analyzing these queries brings valu-
able information for database reverse engineering. For example, it can be used to
reveal the existence of implicit foreign keys (i.e., foreign key that are enforced by
the RDBMS but only by external programs manipulating data).

Alafali et al. [Alalfi 2009] present an approach to analyze interactions between
a web application and a database. They use a combination of static an dynamic
analysis to find links between SQL query executed and the statement that generated
the query.

Cleve et al. [Cleve 2011a,Cleve 2011b] introduces techniques to perform dy-
namic SQL queries capture at run time. The authors apply heuristics on these
queries to detect implicit foreign keys in the database schema. An experiment has
been conducted on a web application and its results suggest that the analysis of
SQL traces if effective to achieve database reverse engineering.

3.2.4 Discussion

Table 3.1 lists the approaches related to database reverse engineering reviewed. If
we take a look at Crit. 1., we observe that except for [Alalfi 2009], all the reviewed
approaches consider structural entities of the database. Nevertheless, most of the
approaches consider only tables, columns and foreign keys. This can be explained
by the fact that a significant part of these approaches are dedicated to recover im-
plicit foreign key constraints.

On the other hand, behavioral entities of the database are usually not con-
sidered. Except for Polo et al. [Polo 2002, de Guzméan 2004, de Guzman 2005,
Polo 2007] and Papastefanatos et al. [Papastefanatos 2008, Papastefanatos 2010,
Manousis 2015], all the other reviewed approaches do not handle behavioral enti-
ties in the reverse engineering process.

Our approach differs from Polo ef al. for two main reasons. First, Polo et
al. reverse engineer the schema of a database with the objective to generate an
application that uses the database. Our approach reverse engineer the schema of
the database to understand it and support forward engineering. Second, Polo ef al.
only consider stored procedures as behavioral entities in their model. They consider
stored procedures to let the application they generate call them. Our approach aims
to model all kinds of behavioral entities as we want to be able to evolve a database
and adapt all entities impacted by a change.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

3.2. Relational Database Reverse-Engineering 37

Papastefanatos ef al. model views but do not consider other behavioral entities
such as stored procedures. Our approach consider all kind of behavioral and struc-
tural entities present in the database. We compare further our approach to the one
of Papastefanatos et al. in Section 3.3.

Recent approaches tend to consider entities defined in programs using the database.

This information is used to determinate where, in the source code, programs inter-
act with the database. In this thesis, we focus on behavioral entities defined inside
the database and we do not consider entities defined in external programs. Our
meta-model represents the relationships between structural and behavioral entities
of the database. For example, one can retrieve what tables are used by a stored
procedure in a model of a database.

Multiple formalisms have been used to model the database and programs us-
ing it (Crit. 2.). Extended entity relationship (EER) model seems to be the most
common formalism but many approaches use custom meta-models specifically de-
signed to fit their needs. For our approach, we use a custom meta-model that we
present in Chapter 4.

Finally, most of the approaches are fully automatic (Crit. 3.). When a human is
involved in an approach, one validates results of heuristics to retrieve implicit meta-
data of the schema (e.g., implicit foreign keys). The approach to reverse-engineer
a relational database that we present in this thesis is fully automatic.

Table 3.1: Comparison of relational database reverse-engineering approaches

found in litterature according to our criteria.
Approach Crit. 1. Crit. 2. Crit. 3.
[Markowitz 1990] Struct. EER Auto.
[Castellanos 1993] Struct. BLOOM Human
[Shoval 1993] Struct. NBR Human
[Premerlani 1993] Struct. OMT Human
[Chiang 1994] Struct. EER Auto.
[Petit 1994] Struct. EER Auto.
[Henrard 1998] Struct. EER Human
[Polo 2002] Struct./Beha. Custom meta-model Auto.
[Cleve 2000] Struct./Ext. SDG Auto.
[Cleve 2008] Struct./Ext. Not specified Auto.
[Yeh 2008] Struct. EER Auto.
[Wang 2009] Struct. Custom meta-model Auto.
[Papastefanatos 2008] Struct./Beha. Directed graph Auto.
[Alalfi 2009] Ext. Custom meta-model Auto.
[Cleve 2011a] Struct./Ext. Not specified Auto.
[Meurice 2016a] Struct./Ext. ER Auto.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

38 Chapter 3. State of the Art

3.3 Relational Database Impact Analysis

In this section, we review the literature to assess the state of the art related to
relational database impact analysis. To do that, we first present software change
impact analysis in general and then we present related approaches.

3.3.1 Software Change Impact Analysis

Arnold and Bohnert [Arnold 1996] defined impact analysis as “/...] the activity of
identifying what to modify to accomplish a change, or of identifying the potential
consequences of a change”.

Below, one can find examples of impact analysis listed by Arnold and Bohn-
ert [Arnold 1996]:

* using cross-reference listings to see what other parts of a program contain
references to a given variable or procedure;

* using program slicing to determine the program subset that can affect the
value of a given variable;

* browsing a program by opening and closing related files (to find out the im-
pact of change “manually”);

* using traceability relationships to identify changing artifacts;

* using configuration management systems to track and find changes; and

consulting designs and specifications to determine the scope of a change.

Since Arnold and Bohnert paper defining impact analysis, the research field
has been widely investigated by the scientific community. Meta-analyses on this
topic exist, for example, Lehnert did a review of software change impact analysis in
2011 [Lehnert 2011]. In the context of this thesis, we focus on approaches adapting
impact analysis techniques to relational databases.

3.3.2 Criteria to Compare Relational Database Impact Analysis
Approaches

We identified 6 criteria to compare relational database impact analysis approaches:

Crit. 1. On which kind of entities can the approach specify an initial change?

© 2020 Tous droits réservés.

Possible values: Structural/Behavioral

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

3.3. Relational Database Impact Analysis 39

Crit. 2. On which kind of entities can the approach compute the impact of a change?

Possible values: Structural/Behavioral/ External

Crit. 3. Does the approach propose changes to accommodate impacted entities with

the initial change?

Possible values: v'/X

Crit. 4. Can the approach generate a script to evolve impacted entities?

Possible values: v'/X

Crit. 5. If a script is generated, does it handle database schema consistency?

Possible values: v'/X

3.3.3 Approaches for Relational Database Impact Analysis

Sjeberg [Sjgberg 1993] quantifies schema evolution. The author studied the evo-
lution of a relational database and its application forming a health management
system during 18 months. For this purpose, “the Thesaurus” tool analyses the
number of screens, actions and queries that may be affected by a potential schema
change. This tool shows code locations to be manually modified after a change on
the database schema.

Haraty et al. [Haraty 2002, Haraty 2004] applied impact analysis to relational
database and programs using them to perform regression testing. That is to say,
the authors try to find the minimal set of tests that should be re-run to ensure that
a change on the database did not break the program behavior. The authors imple-
mented a database applications maintenance tool for ORACLE database applica-
tion written in PL/SQL.

Gardikiotis and Malevris [Gardikiotis 2006] proposed an approach to estimate
the impact of a database schema change on the operability of a web application. To
achieve that, the authors proposed a tool named DaSIAn (Database Schema Impact
Analyzer) based on their approach. This tool finds CRUD queries affected by a
change on the database schema. The authors also presented an approach assessing
impact on client applications from schema changes [Gardikiotis 2009]. They used
this approach to assess both affected source code statements and affected test suites
in the application using the database after a change in the database.

Maul et al. [Maule 2008] created a static analysis technique to assess the im-
pact of changing a relational database on its object-oriented software clients. They
implemented Schema Update Impact Tool Environment (SUITE) which takes the
source code of the application using the database and a model of the database
schema as input. Then, they queried this model to find out the part of the source
code application impacted when modifying an entity of the database.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

40 Chapter 3. State of the Art

Curino et al. [Curino 2008,Curino 2009] proposed PRISM, a tool suite allowing
one to predict and evaluate schema modification. PRISM also proposes database
migration feature through rewriting queries and application to take into account the
schema modification. To do so, they provide a language to express schema modifi-
cation operators. From the change specification, their approach provide automatic
data migration support and documentation of changes applied on the database. The
authors evaluated their approach and tool on Wikimedia showing it is efficient.

Papastefanatos et al. [Papastefanatos 2008,Papastefanatos 2010,Manousis 2015]
developed Hecataeus, a tool representing the database structural entities, queries
and views as a uniform directed graph. Hecataeus allows users to create an arbi-
trary change and to simulate it to predict its impact. The simulation is performed
by letting the user choose if a node of the graph should propagate the impact or
not. It is possible to define rules to describe this impact propagation. A rule might
apply for all nodes of the graph or be specific to a limited set of nodes.

Liu et al. [Liu 2011, Liu 2013] proposed a graph called the “attribute depen-
dency graph” to identify dependencies between columns in a database and parts of
client software source code using it. They evaluated their approach on 3 databases
and their clients written in PHP. Their tool presents to the database architect an
overview of a change impact as a graph.

Meurice et al. [Meurice 2016a] presented a tool-supported approach that is
able to analyze how the client source code and database schema co-evolved in the
past and to simulate a database change to determine client source code locations
that would be affected by the change. Additionally, the authors provide strategies
(recommendations and warnings) for facing database schema change. Their rec-
ommendations describe, in natural language, how to modify client program source
code depending on the change performed on the database. The approach presented
has been evaluated by comparing the historical evolution of a database and its client
application with the recommendations provided by their approach. From the histor-
ical analysis the authors observed that the task of manually propagating database
schema change to client software is not trivial. Some schema changes required
multiple versions of the software application to be fully propagated. Others were
never fully propagated.

3.3.4 Discussion

Table 3.2 lists the approaches related to relational database impact analysis re-
viewed. We can observe that all analyzed approaches allow one to specify a change
on a structural entity of the database (Crit. 1.). This observation seems normal as
the code using the database usually interact with tables and columns which are
structural entities. Any approach for database impact analysis is thus expected to
handle structural entities. Most approaches allow one to specify a change on a view

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

3.3. Relational Database Impact Analysis 41

(behavioral entity) because the impact of such modification is most of the time sim-
ilar to the impact of a change on a table, especially on external programs. Others
behavioral entities are usually not considered.

One approach [Papastefanatos 2008] handles impact concerning structural and
behavioral (Crit. 2.) entities of the database. All the other approaches focus on
handling the impact on programs using the database under analysis.

Two approaches propose to accommodate impacted entities to the original change
(Crit. 3.). Papastefanatos et al. [Papastefanatos 2008] approach allows one to mod-
ify the graph representing the database schema to fulfill policies set by the database
architect. Meurice et al. [Meurice 2016a] provide a list of recommendations to ac-
commodate entities depending on the initial change and warning in case there is no
recommendation available. These recommendations are not supported by a tool.
The other approaches allows one to inspect entities or location in the code that are
impacted but the impact needs to be resolved manually.

Curino et al. [Curino 2008] approach is able to generate a script to evolve en-
tities detected as impacted by a change (Crit. 4.). Note that this approach does not
require to propose changes to accommodate other entities of the database as only
tables and columns are considered. All the other approaches propose a description
of the changes to apply or provide an impact report highlighting the code location
to update.

We found no article that describe the problem of maintaining the schema con-
sistency during the execution of the SQL script (Crit. 5.). Curino et al. [Curino 2008]
generate a script to migrate the database but do not discuss this problem. However,
as the authors handles tables and columns only, they might not need to handle this
problem.

Table 3.2: Comparison of relational database impact analysis approaches.

Crit. 1. Crit. 2. Crit. 3. Crit. 4. Crit. 5.

Initial Impacted Change Script Schema
Approach change entities proposition generation consistency
[Sjgberg 1993] Struc. Ext. X X X
[Haraty 2002] Struc./Beha. Ext. X X X
[Gardikiotis 2006] Struc./Beha. Ext. X X X
[Gardikiotis 2009] Struc./Beha. Ext. X X X
[Maule 2008] Struc./Beha. Ext. X X X
[Curino 2008] Struc. Ext. X v X
[Papastefanatos 2008] Struc./Beha. Struc./Beha. v X X
[Liu 2011] Struc. Ext. X X X
[Meurice 2016a] Struc. Ext. v X X

Via the literature review, we observe that approaches to perform impact anal-
ysis are usually focused on computing the impact on external programs using the

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

42 Chapter 3. State of the Art

database. In this thesis, we develop an approach that focus on impact analysis in-
side the database concerning both structural and behavioral entities. Furthermore,
we develop an approach that can generate a SQL script containing DDL statements
to update the database according to data gathered during the impact analysis.

3.4 Conclusion

In this chapter, we reviewed the scientific literature concerning relational database
reverse engineering and relational database impact analysis. As a conclusion of
this literature review, we can say that approaches for relational database reverse en-
gineering usually do not consider behavioral entities. Impact analysis approaches
mainly focus on computing the impact of a change made to a structural entity of a
database on external programs interacting with the database. Approaches that han-
dle the impact on behavioral entities do not allow to generate a patch to accommo-
date the database with the initial change. Furthermore, the problem of maintaining
schema consistency in the script generated by the approach is not handled by the
approaches we reviewed.

In the next chapters, we develop an approach that aim to fill the gap we found
in the literature. Chapter 4 presents a meta-model that represents both structural
and behavioral entities of the database together with the relations between these
entities. However, we do not handle relationships between a database and external
programs using them. Chapter 5 presents our results using our meta-model to as-
sess the quality of a relational database. Chapter 6 presents our approach involving
impact analysis to evolve a relational database semi-automatically. This approach
is able to generate a script to migrate the database and this script fulfill the schema
consistency constraint.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 4

A Behavior-Aware Meta-Model for
Relational Databases

Contents
4.1 Objectives . . v ¢ v i v i v i it i e e e e e 43
42 TheMeta-Model00, 45
4.3 Meta-model Instantiation 49
44 Casestudieso it ittt e e e 57
45 Conclusion i e e 68

In this chapter, we present a meta-model for relational databases and the ap-
proach we use to instantiate models. The meta-model takes into account both
structural and behavioral entities of a database. Relationships between entities of
the meta-model are reified to ease change impact computation. We present and
compare two approaches to instantiate the meta-model. Then, we propose an ap-
proach that is a trade-off between the two previous approaches.

Furthermore, via 2 case studies, we illustrate that instances of the meta-model
address the problem “Relational databases are hard to understand” presented in
Chapter 2. This chapter is an extension of our publication at the International Con-
ference on Advanced Information Systems Engineering (CAiSE) [Delplanque 2020].

4.1 Objectives

The design of our SQL meta-model is driven by one of the problem we identified
in Chapter 2: Relational databases are hard to understand. As a reminder, this
problem is caused by 2 main sub-problems:

1. Complexity to query metadata. One of the reasons of this complexity is that
there is no uniform way to query entities in relation with a given entity. A
good example of this problem is illustrated by one of Laurenz Albe’s blog
post [Albe 2019]. In this blogpost, the author illustrates how PostgreSQL
meta-data tables can be used to retrieve the views that depend on a table t 1:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

44

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

1

3

SELECT v.oid::regclass AS view
FROM pg_depend AS d —— objects that depend on tl
JOIN pg_rewrite AS r —— rules depending on tl
ON r.oid = d.objid
JOIN pg_class AS v —— views for the rules
ON v.oid = r.ev_class
WHERE v.relkind = v’ —— only interested in views
—— dependency must be a rule
—— depending on a relation
AND d.classid = 'pg_rewrite’ ::regclass
AND d.refclassid = 'pg_class’::regclass
AND d.deptype = 'n’ ——- normal dependency
AND d.refobjid = "tl’::regclass;

This query can be tweaked to retrieve the other kind of depending entities or
to retrieve recursively all depending views (via a recursive SELECT query’).

However, the query need to be adapted to the kind of entity for which one
wants to gather dependent entities. For example, to gather entities that de-
pend on a column, the query is different. Similarly, to gather depending
entities of a given entity, a specific query will need to be written for each
kind of entity. For example, to gather tables that a view depends on, the
query is different. A uniform way to query dependent and depending entities
is needed.

Missing metadata. Some entities in meta-data tables have incomplete meta-
data. In PostgreSQL, stored procedures source code is not meta-described
in meta-data tables. Thus, the RDBMS is blind concerning the entities that
are used by a stored procedure (e.g., the other stored procedures it calls, the
tables it references, etc.).

Missing meta-data need to be retrieved to be able to get consistent results
from queries on metadata.

In this chapter, we design a meta-model that aim to address this problem and
its sub-problems. Thus, the development of the meta-model is driven by two ob-
jectives:

1. Model the structure and behavior of the database. Fulfilling this objective

allows us to address problem 1 as an instance of the meta-model is a graph
data structure. Representing the database schema as a graph (rather than
using tables and views as done by the RDBMS) makes it easier to query

'hitps://www.postgresql.org/docs/current/queries-with.html

lilliad.univ-lille.fr

https://www.postgresql.org/docs/current/queries-with.html

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.2. The Meta-Model 45

for properties related to dependency analysis (e.g., computing a transitive
closure to determinate entities impacted by a change recursively).

2. Ease dependencies analysis. This objective addresses problem 2 as to ease
the dependencies analysis, having an explicit representation of the relation-
ships between entities is needed. Being able to query a model to gather
incoming (e.g., views that reference a table) and outgoing (e.g., tables that
are referenced by a stored procedure) relationships of an entity is critical to
perform impact analysis (which is needed in Chapter 6).

Objective 1 is fulfilled by modeling tables, columns and constraints as well as
CRUD? queries, views, stored procedures, and triggers.

Objective 2 is fulfilled by reifying relationships entities. Because all depen-
dency relationships are first-class citizens in the meta-model, no dependency is
implicit anymore.

If we compare to the database reverse-engineering proposed by Hainaut et
al. [Hainaut 2009] that we presented in Chapter 3, the meta-model corresponds
to the logical schema of the database. Indeed, the meta-model is specialized to
represent relational database schema but it is not tight to a particular RDBMS.

4.2 The Meta-Model

In this section, we present the meta-model and describe each kind of entity it rep-
resents. We distinguish three kinds of entities:

* Structural entities: entities defining the structure of data stored in the database
or defining constraints applied on data (for example, tables).

* Behavioral entities: entities defining behavior (i.e., source code that can be
executed) that may interact with structural or behavioral entities (for exam-
ple, stored procedures).

* References: entities representing links between entities (for example, the fact
that a primary key constraint references a column in a table).

The following subsections present separately each kind of entities to ease read-
ability. For the next UML diagrams, inheritance links have straight corners while
other links are rounded; classes modeling structural entities are colored in red;
classes modeling behavioral entities are colored in orange; and classes modeling
references are colored in white. These conventions are not part of UML standard
but are used to ease readability of diagrams.

’Create Read Update Delete queries in SQL: INSERT, SELECT, UPDATE, DELETE.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

46 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

4.2.1 Structural Entities

Figure 4.1 shows the structural part of the meta-model. As a reminder, a structural
entity is an entity defining the structure of data held by the database or defining con-
straints applied on these data (e.g., table, column, referential integrity constraint,
etc.). All entities falling under this definition inherit from StructuralEntity.

1]
@
o
c
o
o
£
[
¥

TableReference +references
’

TypeReference 0

+table 0..*

+referencedTable

+references|[0..*
+tableConstraint * I 1

- +referen lumn
+tableConstraint +referencedColumns, ColumnReference +referencedColu

Figure 4.1: Structural entities of the meta-model.

Table models a relation in the relational database and Column models an at-
tribute. The containment relation between Table and Column is modelled through
ColumnsContainer which is an abstract entity modelling the fact that an entity con-
tains Columns. This entity is also subclassed in the behavioral part of the meta-
model (see Section 4.2.2).

A Column has a type. This relation is modelled by referencing a TypeReference
entity linked to the corresponding Type.

A Column can also be subject to Constraints. Depending on whether a Constraint
concerns a single or multiple columns (one or many ColumnReference), it is either
a column or a table constraint and it inherits from, respectively, ColumnConstraint
or TableConstraint.

Six concrete constraints inherit from Constraint.

PrimaryKey and ForeignKey model respectively the primary key and foreign key
constraint as defined in the relational model [Codd 1970b].

Unique specifies that data contained in rows formed by the set of constrained
Columns must be unique within the table. For example, if two integer columns a
and b are constrainted by a unique constraint, the row (1, 2) can not appear twice.

Check is a developer-defined constraint defined by a boolean expression: if the
expression evaluates to false, the constraint is not respected.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.2. The Meta-Model 47

Default is a default value assigned when no value is explicitly provided for a
column when a row is inserted in a table. The “default value” can be a literal value
or an expression to compute.

NotNull implies that values of a column can not be NULL.

Note that Check and Default constraints also inherit from BehavioralEntity be-
cause they have behavior: the expression to execute.

4.2.2 Behavioral Entities

A behavioral entity is an entity holding behavior that may interact with StructuralEn-
tities or BehavioralEntity. All entities falling under this definition inherit from Be-
havioralEntity. Figure 4.2 shows the behavioral part of the meta-model.

BehavioralEntity

Jay

+parameters +tableReferenced

Parameter
0.* TableReference 1
+typeReference | 4 0. |+parameters
+typeRefgrence
0.

+localVariable

TypeReference |1

+typeReturnedRefe ren1ce 1 frigger

LocalVariable 2
> Qo
o = n
3 +logalVariables 5 Trigger
StoredProcedureCall c (2“ .
y | 2 | +storedProcedure 8 0.* |+triggers
* callees! oT| q ke
callers S ! *
115 ~ +localVariableReferences |+refergnces
X 1 X 1 StoredProcedure 0.7 LocalVariableReference
View - DerivedTable 1
+ddrivedTable = +source +storedProcedure
1 @3 @1 !
£ 2 ontainer +storedProcedure
3 3 ’
H g 0.* trqueries TriggerStoredProcedure
> =
+ @ T
> ! O +definitionQuen CRUDQue 1 clauses
S 2 Y K T Clause
G | DerivedTableReference 2 -
5 8 ZF query +reference \ 0..*
E [[I] 1\ +clause
ko)
3 SelectQuery InsertQuery UpdateQuery DeleteQuery Reference

Figure 4.2: Behavioral entities of the meta-model.

A View is a named entity holding a SELECT query.

StoredProcedure is an entity holding developer-defined behavior which includes
queries and reference to other entities. A StoredProcedure contains Parameter(s) and
LocalVariable(s). Furthermore, a StoredProcedure can contain References to other
entities in its statements as well as CRUDQueries. As explained later, CRUDQueries
themselves can contain references to other entities through their clauses. However,
for the analysis it is interesting to know if a reference is made from a CRUDQuery
or from another statement of the stored procedure.

Trigger models actions performed in response to an event happening on a table
(e.g., row inserted, updated or deleted). Thus, it has a TableReference that reference

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

48 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

the table the trigger watches for events. A trigger also have a reference to a Trigger-
StoredProcedure. This is a special kind of stored procedure that, when called, can
make reference to the old and new values of the row to be modified.

DerivedTable is an anonymous query usually used in another query but that can
also appear in a cursor declaration of a StoredProcedure.

CRUDQuery and its subclasses model CRUD queries. Each subclass of CRUD-
Query contains one or many clauses depending on the query. The possible clauses
are: With, Select, From, Where, Join, Union, Intersect, Except, GroupBy, OrderBy,
Having, Limit, Offset, Fetch, Insert, Into, Returning, Update, Set, Delete. These clause
entities are not shown in Figure 4.2 to not clutter the diagram. However, Table 4.1
describes which clauses are contained by which kind of CRUDQuery. Each clause
holds zero or many References to structural or behavioral entities. The references
made to structural or behavioral entities from clauses are detailed in Section 4.2.3.

Table 4.1: Containment relations between CRUD queries and clauses.

CRUD query Clauses

SelectQuery With, Select, From, Where, Join, Union, Intersect, Except,
GroupBy, OrderBy, Having, Limit, Offset, Fetch

InsertQuery With, Insert, Into, Returning

UpdateQuery With, Update, Set, From, Where, Returning

DeleteQuery With, Delete, From, Where, Returning

4.2.3 References

The last part of the meta-model represents links between entities. It allows one
to track relations between behavioral and structural entities. To simplify this task,
all references have been reified. For example, a column is referenced through a
ColumnReference, a local variable through a LocalVariableReference and a stored
procedure through a StoredProcedureCall. Table 4.2 gathers the different entities
that each clause of a query may refer to.

Let us explain some non-obvious references that can appear in some clauses.
The first line of the table specifies that a reference to a derived table can appear in
any clause. This comes from the fact that a SELECT query can occur in any SQL
expression. Line 2 specifies that it is possible for a StoredProcedure to generate a
table as a result, this is why it can appear in a From clause. Line 3 specifies that
a reference to Table or View can appear in clauses that normally deal with column
references. It comes from the fact that a developer can use a qualified reference
to a column (e.g., table_name.column_name). Finally, line 3 and 4 specify
that a stored procedure local variable or parameter can appear in their respective

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.3. Meta-model Instantiation 49

set of clauses. It occurs, for example, when the filter condition of a WHERE clause
is parameterized by a local variable or a parameter. For example, WHERE id
= 1id_to_keep where 1d would be a reference to one of the columns of a table
appearing in the FROM clause of the query and id_t o_keep would be a reference
to a local variable declared in the stored procedure holding the query.

Table 4.2: References to entities from clauses. The other references to entities are
shown in Figure 4.1 and 4.2.

Clauses Entities
1 Any clause DerivedTable
2 From, Join, Into StoredProcedure, Table, View.
3 GroupBy, OrderBy, Having, Set, | Table, View, Column, StoredProce-
Where, Returning, Select, Update dure, LocalVariable, Parameter
4 Limit, Fetch, Offset StoredProcedure, LocalVariable, Pa-
rameter

4.3 Meta-model Instantiation

To analyze a database, we need to instantiate the meta-model. The instantiation
of the meta-model corresponds to the process of reverse-engineering of a database
schema as described by Hainaut et al. [Hainaut 2009] that we explained in Chap-
ter 3. More precisely, in this section, we perform the steps of DDL code analysis,
Schema refinement and Schema cleaning described by Hainaut et al..

In this section, we explain how two different approaches achieve this task and
how they compare together. The first one uses meta-data tables and the second
analyses a dump of the database. To compare these approaches, we introduce
some evaluation criteria. Then, we present our approach to instantiate the meta-
model which is a hybrid between the two previous ones, taking the best of both
approaches.

4.3.1 Evaluation Criteria for Meta-Model Instantiation

Before presenting the different approaches, we introduce criteria that allow one to
compare them. We identified three relevant criteria to compare our approaches.

1. Completeness: Capability of the approach to import various types of entities
populating the database into the model.

Possible values for this criteria:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

50

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

* complete: The approach can import all types of entities in a model.

* incomplete: The approach can not import all types of entities in a
model.

2. Sensitivity to RDBMS evolution: Degree to which the approach implemen-

tation needs to be updated when evolution of the RDBMS occurs. This cri-
terion measures how many hypotheses on a specific version of the RDBMS
the approach makes.

Possible values for this criteria:
* Jow: An evolution of the RDBMS induces little and well identified up-
date(s) to the approach implementation.

* [imited: An evolution of the RDBMS induces a limited update on the
approach implementation. In particular, it does not require to update all
steps of the approach.

* high: An evolution of the RDBMS induces a large update to all steps
of the approach implementation.

. Complexity to migrate approach to another RDBMS: The degree to which

the implementation must be modified in order to build a model for another
RDBMS. This criterion is a measure of how many hypotheses on a specific
RDBMS are made by the implementation of the approach.

Possible values for this criteria:
» simple: Porting the approach implementation to build a model for an-
other RDBMS requires no or little modification(s).

* moderate: Porting the approach implementation to build a model for
another RDBMS requires a moderated amount of modifications. More
specifically, it does not require to updated all steps of the approach.

* complex: Porting the approach implementation to build a model for
another RDBMS requires substantial modifications to all steps.

4.3.2 Meta-Data Analysis

The first and probably simplest approach to build a model (i.e., instantiate the meta-
model) of the database is to exploit meta-data provided by the RDBMS. This ap-
proach is used by database IDEs to display information related to the database
schema to the user. These meta-data take the form of tables and views that one can
interrogate via SQL queries.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.3. Meta-model Instantiation 51
Query meta-data Read tables resulting
tables/views from queries
f' | [J
: || I :
l[: oid |[name |... l[: m
(1) &)
Database Resulting tables Model of the
database

Figure 4.3: Instantiation of the model using meta-data tables only.

As illustrated in Figure 4.3, this approach consists in two steps. The first step
(1) executes queries on the database to retrieve meta-data related to each kind of
entity reified in the meta-model. For example, Figure 4.4 shows a SQL query to
retrieve tables defined by a PostgreSQL database.

SELECT

—— Unique id of the entity.

oid,

—— Name of the table.

relname,

—— Id of the namespace.

relnamespace oid relname relnamespace
FROM pg_class
—— Specify we want tébles 442 ;Eemon’ 23
—— ('r" 1s for relation). 443 ‘phw 23
WHERE 444 “city’ 25

relkind = "r’;
(a) Query on meta-data table. (b) Possible result of the query.

Figure 4.4: Query gathering unique identifier, name and identifier of the names-
pace of tables stored in a database.

Similar queries can be used to retrieve other kinds of entities reified in the meta-
model. For example, using results in Figure 4.4, we can query metadata tables to
retrieve information of the namespace with oid 25 to know more about ‘city’ table
namespace. In practice, we use more complex queries on meta-data tables that, for
example, join columns with their tables with their namespace.

The second step (2) of the approach simply read tables resulting from queries
and build entities of the model according to the data they hold.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

52 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

Evaluation

1. Completeness: incomplete.

The model built does not contain references made from behavioral entities
source code to other entities. This incompleteness is directly linked to the
missing meta-data problem described in Chapter 2.

2. Sensitivity to RDBMS evolution: low.

System tables are subject to little breaking changes across RDBMS evolu-
tion. When a change occurs, it is usually to add new tables or new columns.
Thus, existing queries should continue to work most of the time.

3. Complexity to migrate to another RDBMS: simple.

We consider this approach simple to migrate compared to the other approaches
because it requires a few changes to make it work on another RDBMS.

Queries most probably need to be modified to work on meta-data tables of

another RDBMS. However, only queries need to be updated, the code that

reads results of queries to build the model can stay the same as long as tables

resulting from these queries have the same schema.

Summary Extracting meta-data from the database provides a simple approach
that can quickly be set up to create a model of the database. However, this approach
has a major drawback: the model produced is incomplete. Indeed, as reminded at
the beginning of this chapter, the RDBMS misses some meta-data concerning be-
havioral entities (e.g., references made from the source code of a stored procedure
to a table for example).

4.3.3 Dump Analysis

To build a model of a program, one can analyze its source code statically. Following
this idea, we can consider doing the same thing to analyze relational databases.

A RDBMS is able to generate a “dump” of the database. A database dump is
a text file containing SQL code allowing one to recreate the database in the exact
same state as when it was exported. It is a way to serialize the database. One can
request the RDBMS to produce a dump containing the database schema, the data
or both.

Figure 4.5 illustrates the process to instantiate a model of the database from a
dump file. This process consists in two steps. First, one needs a parser for the full
SQL grammar. This parser reads the SQL source code contained in the file and
produces an abstract syntax tree (i). Second, the abstract syntax tree (AST) needs
to be analyzed to produce the model of the database (ii). A complex static analysis

lilliad.univ-lille.fr

1

1

© 2020 Tous droits réservés.

164

165

166

167

168

142

143

Thése de Julien Delplanque, Université de Lille, 2020

4.3. Meta-model Instantiation 53
Parse SQL Static
code analysis

53 5
N1l

(dump of the database) AST of the dump Model of the
database

Figure 4.5: Instantiation of the model by parsing a dump of the database.

of the AST is required to create a model. Indeed, we tried this approach and we
realized that often PostgreSQL generates the code to create an entity and later in
the dump generates queries to modify this entity. For the sake of illustration, here
is an example of what we observe in the dump generated for WikiMedia (the open
source collaborative editing software project that runs Wikipedia) 1.27.1 database:

CREATE TABLE archive (
ar_id integer DEFAULT nextval ('archive_ar_id_seq’
::regclass) NOT NULL,
ar_namespace smallint NOT NULL,
ar_title text NOT NULL,

The table archive is created at line 164 in the dump file. Later in the dump
file, at line 1142, it is modified by an ALTER TABLE DDL query.

ALTER TABLE ONLY archive
ADD CONSTRAINT archive_pkey PRIMARY KEY (ar_id);

Similar behavior occurs for other kinds of entities. Because of that, we have to
set-up a complex static analysis mechanism. We have to mimic the SQL interpreter
of the RDBMS so the model produced is consistent with the database built by the
RDBMS once the dump has been executed.

Evaluation

1. Completeness: complete.

Because the entire source code of the dump of a database is analyzed, the
source code of all entities is considered. Thus, the approach creates a model
that represent all kind of entities used by the database.

2. Sensitivity to RDBMS evolution: high.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

54 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

While as discussed in the previous approach, system tables are rarely sub-
ject to a breaking change, the grammar of the SQL dialect used by RDBMS
evolves more frequently. For example, if we compare the grammar of the
CREATE TABLE command between PostgreSQL version 10 and version
114, we can observe changes in the command syntax. For instance, the
apparition of HASH keyword in PARTITION BY clause of the command.
Knowing that a little change in the grammar requires to modify the parser,
the AST and the static analyzer of the AST, we consider that this approach is
highly sensitive to RDBMS evolution.

3. Complexity to migrate to another RDBMS: complex.

This approach is specific to a particular RDBMS. Indeed, each has a slightly
different version of SQL language. For example, PostgreSQL support inher-
itance between tables. It is thus possible to specify the super-table of a table
from the SQL syntax of CREATE TABLE statement. MySQL does not sup-
port this feature, thus it is not supported by the syntax. Both the parser and
the static analysis of ASTs make a lot of assumptions on the SQL flavor used
by the RDBMS and how it is interpreted (to mimic the SQL interpreter of
the RDBMS and get a consistent model). Because of that, we consider this
approach complex to migrate.

Summary Analyzing a dump of the database to build a model has the advantage
that the source code of all kind of entities of the database is taken into account.
In particular, the source code of behavioral entities is analyzed and references to
other entities made from the source code are taken into account. Thus, the model
built by this approach is more complete than the one built from meta-data analy-
sis. However, two major drawbacks arise. First, a parser covering the entire SQL
grammar is required. Considering the expressiveness of SQL language, building
this parser is a complex and time-consuming task. Second, if a parser reading SQL
source code from a dump and producing an AST is available, one need to mimic
the execution of some of the available SQL commands to build the model as we
saw previously in our example. These two tasks are engineering challenges and
can not be easily ported from one RDBMS to another because they use a lot of
properties of the RDBMS for which they were designed.

4.3.4 Hybrid Approach

The approach we use to instantiate the meta-model takes the best parts of the two
previous approaches while minimizing their downsides. The idea is to extract as

3https://www.postgresql.org/docs/10/sql-createtable.html
“https://www.postgresql.org/docs/11/sql-createtable.html

lilliad.univ-lille.fr

https://www.postgresql.org/docs/10/sql-createtable.html
https://www.postgresql.org/docs/11/sql-createtable.html

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.3. Meta-model Instantiation 55

much information as possible from the RDBMS meta-data tables and views to get
a partial model of the database and then complete this model by analyzing the
source code of behavioral entities. Using this approach allows one to reduce the
complexity of the source code analyzer as only a subset of the grammar needs to be
covered (i.e., being able to parse views and stored procedures bodies). Reducing
this complexity is interesting as the implementation of the source code analyzer is
costly in engineering time.

Query meta-data Read tables resulting
tables/views from queries
@ T @ : E]
@ [(b)[
Database Resulting tables Partial model Model of the
of the database database
Query meta-data Parse
tables for source source code))
code of behavioral P Static analysis of ASTs
entities @ to complete the model
T :(> —) ‘
X (d)
© (e)
Source code of
behavioral entities ASTs of behavioral

entities

Figure 4.6: Instantiation of the model via an hybrid approach: query meta-data
tables and parse source code of behavioral entities.

Figure 4.6 illustrates how the hybrid approach works at coarse grain. Let us
provide more details on each step:

(a) The first step consists in extracting as much information as possible from the
RDBMS meta-data (similarly to what is done in Subsection 4.3.2).

(b) We read the tables resulting from step (a) and instantiate a partial model.

The implementation of steps (a) and (b) relies on PgMetadata® v1.0.0, a li-
brary that creates objects modelling the database schema. These objects are
not instances of our meta-model classes, thus, we convert them in this step.
The result is a partial model that misses references made from behavioral
entities.

(c) We interrogate metadata of the RDBMS to gather the source code of each
behavioral entity instantiated in step (b). We get a collection of strings con-
taining the source code of those behavioral entities.

Shttps://github.com/olivierauverlot/PgMetadata

lilliad.univ-lille.fr

https://github.com/olivierauverlot/PgMetadata

© 2020 Tous droits réservés.

56

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

(d)

(e)

We apply the parser on each string of source code produced by step (c). To
achieve this step, we developed a parser for a subset of PostgreSQL lan-
guage®. This parser accepts the PlpgSQL language and CRUD queries. Data
Definition Language is not supported by the parser but it is not required as it
can be retrieved from the meta-data (step (a)). Data Control Language is not
supported either by the parser but it is not required as we do not need this in-
formation. A parser accepting only PlpgSQL language and CRUD queries is
simpler than a parser that accepts the whole PostgreSQL language and reduce
both the development cost of the parser and the sensibility of the approach to
RDBMS evolution. The output of this step is a collection of abstract syntax
trees (ASTSs).

Finally, we perform a static analysis of the ASTs produced in step (d). This
analysis consists in two tasks: we instantiate queries and clauses entities so
they are represented in the model and we analyze identifiers appearing in the
ASTs to create reference entities in the model.

Evaluation

1.

Completeness: complete.

The approach combines meta-data analysis and static analysis of behavioral
entities source code. Thus, it can create models that represents all types of
entities in a database together with references they make to other entities.

Sensitivity to RDBMS evolution: limited.

RDBMS evolutions will not impact all steps of the approach. Indeed, only
steps related to the analysis of static analysis of source code of behavioral
entities (steps (d) and (e)) are subject to complex modifications. Steps (a), (b)
and (c) have a low sensitivity to RDBMS evolution for the reasons developed
in subsection 4.3.2.

. Complexity to migrate to another RDBMS: moderate.

We qualify this approach as moderately complex to migrate. As it uses both
meta-data queries and a parser for behavioral entities source code, the meta-
data part of the approach is simple to migrate and the parser part is complex.
However, as the parser handles a smaller grammar than the dump analysis
approach, it requires less work to migrate to another RDBMS.

®https://github.com/juliendelplanque/PostgreSQLParser

lilliad.univ-lille.fr

https://github.com/juliendelplanque/PostgreSQLParser

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 57

Summary The hybrid approach combines meta-data analysis and source code
analysis of behavioral entities of the database. It provides a tread-off between the
two previous approaches by relying as much as possible on meta-data analysis and,
where it is needed, by deploying a more complex static analysis of the source code.
The model built is complete and evolution of the RDBMS has a limited impact on
the approach. However, a part of the approach is specific to a particular RDBMS
as the parser and static analysis need to be designed with high assumptions on the
SQL code to be analyzed. Table 4.3 compares the three approaches according to the
criteria we defined previously. The hybrid approach takes the best from meta-data
and source code analysis approaches. The implementation of the hybrid approach
is open-source and available at https:/github.com/juliendelplanque/FAMIXNGSQL.

Table 4.3: Comparison of approaches to build a model of a database.

Complexity to
Sensitivity to migrate to
Approach Completeness RDBMS evolution another RDBMS
Meta-data Analysis | incomplete low simple
Dump Analysis complete high complex
Hybrid Approach complete limited moderate

4.4 Case studies

In this section, we present two case studies illustrating that our meta-model ad-
dresses the two problems discussed in Section 4.1: complexity to query metadata
and missing metadata. For both case study, we built a model of the “2019-12-12”
version of AppSI database schema (AppSI database was presented in Chapter 2).
For the two case studies, we participated to the experiment with AppSI database
architect. However, we have fewer knowledge of AppSI than its architect (who
have a deep knowledge of the database).

4.4.1 Queries to support (re)modularization

For this case study, we query a model to understand the schema of AppSI. This un-
derstanding helped the architect of the database taking decisions concerning AppSI
evolution. In particular, it helped in the extraction of a set of views of the database
into a new namespace.

This case study is an illustration of how the meta-model solves sub-problem 1
discussed in Section 4.1. Indeed, to extract the set of views, each view needs to be

lilliad.univ-lille.fr

https://github.com/juliendelplanque/FAMIXNGSQL

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

58 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

taken separately and the model is queried to retrieve all entities that depend on the
view or that the view depends on.

Context At the University of Lille, two instances of AppSI database schema are
running in two different laboratories. We will refer to those laboratories as “Labo-
ratory 17 and “Laboratory 2”.

An instance of AppSI database schema can be used by multiple applications.
In the context of Laboratory 1, one of them is a web application that uses a set of
views of the database. These views are used by no other application. The names of
these views start with “web_" prefix. In the rest of this section, we refer to these
views as “web views”.

Figure 4.7 illustrates the situation. Laboratory 1 has one web application that
uses web views. Laboratory 2 has no application that uses web views.

AppSI schema

instance of \instance of

AppSI
instance

AppSI
instance
2

Web app 3

\ Laboratory 1 infrastructure / \Laboratory 2 infrastructure /

Figure 4.7: Context of the case study.

Problem The database architect would like to extract web views in a separated
namespace. It will make it easier to create instances of AppSI without these views.
Thus, Laboratory 2 database (that does not require web views) can get them re-
moved by removing the related namespace.

To move web views in a separated namespace, one needs to know what are
the dependencies between these views and the rest of the database. The current

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

1

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 59

database architect of AppSI does not have this information as he is not the person
who implemented the web views.

4.4.2 Methods

To tackle this problem we:

1. Extract dependency relationships between web views and the rest of the
database.

2. Analyze dependencies to take a decision on how to move web views to a
separated namespace.

The first step is performed by querying a model of the database that we created
using the approach described in Chapter 4. A query is executed on the model to
gather web views. Then, two queries interrogate the model for entities depending
on web views and for entities the views depends on. The result of these queries is
visualized to understand the relationship between the web views and the rest of the
database.

The second step consists in deciding, according to data collected during first
step, how to create a new namespace and move web views in it.

Analysis Web views of the database are retrieved by executing the following
query on the model:

webViews := (model allWithType: FmxSQLView)
select: [:v | v name beginsWith: "web_’'].

The above query is a Smalltalk script gathering views available in a model
(line 1) and selecting those with a name prefixed by ’ web’ (line 2).

Entities depending on web views From this set of web views we can retrieve,
for each view, the set of entities of the database that depend on the view (i.e., those
using the view). The query to extract this information from the model is imple-
mented by the following Smalltalk script:

scopes := {
FmxSQLTable. FmxSQLView.
FmxSQLStoredProcedure. FmxSQLTrigger
}.
webViews collect: [:v |
v —> ((v queryAllIncoming allAtAnyScope: scopes) \{v})
] as: Array.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

60 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

In the code above, at line 6, queryAllIncoming method is interrogating
the model for all incoming references pointing to the current view v. This set of
incoming references is then scoped to only get tables, views, stored procedures and
triggers as depending entities (a1l 1AtAnyScopes :). This scoping is needed be-
cause queryAllIncoming returns all kinds of entities referencing the view. For
example, consider the database in Figure 4.8. If we call queryAllIncoming
method on view v1, we get the SELECT clause and FROM clause entities from v2
as result. To ease readability, we scope these entities to the main entities of the
meta-model: tables, views, stored procedures and triggers. By scoping the result
of the query, we get as result the view v2 in our example database of Figure 4.8.

\ilegend
i 1x <y :y references table x

i 1x <y :yreferences column x;
X <y :y references view x
¢ X :reference to x

SELECT vi.c, 2.6
FROM v1, 12;

Figure 4.8: Example of database model with references between entities.

It can happen that the SELECT query of a view defines a derived table (or
sub-query) in its FROM clause and refers to it in its SELECT clause. Figure 4.9
illustrates this case.

In the case of a view defined by a SELECT query with a sub-query, the expres-
sion (v queryAllIncoming allAtAnyScope: scopes) willresultin
a set of entities containing the view v itself because of the scoping. To address
this issue, the views for which we query the model for incoming references are
removed from the results (\ {v}).

The result of the query retrieving entities depending on web views of AppSI
revealed that no entity of the database depends on a web view. It means that the
database can work without this set of views as they are only used by external pro-
grams.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 61

self_referencing_view

SELECT *

FROM t, (SELECT a FROM u) AS w

WHERE w.a = t.x; /
N\

7

Figure 4.9: Example of self referencing view. With scoping applied to
queryAllIncoming method result, it cause the selfReferencingView to
reference itself.

Entities web views depend on We now investigate outgoing dependencies from
web views to the rest of the database. We write a query on the model that retrieve,
for each web view, the set of entities of the database the view depends on. The
query to extract this information from the model is implemented by the following
Smalltalk script:

webViews collect: [:v |
v —> ((v queryAllOutgoing allAtAnyScope: scopes)\{Vv})
] as: Array.

The above query is similar to the one querying entities depending on web views
in the previous section. The difference is that the method queryAl1lOutgoing
(line 2) is called instead of the method queryAllIncoming.

The result of this query revealed which entities of AppSI are required by web
views.

This result is shown in Figure 4.10. Exploring the different dependencies
between entities provides valuable information to the database architect when it
comes to understand how web views use the rest of the database.

Conclusion With the knowledge we gained by exploring the database schema
via these queries on the model (for instance, the fact that no entity in the database
depends on a web view), we were able to generate a simple SQL script that creates
a new namespace and moves the web views in it. We provided this script to the
database architect and he executed it on AppSI.

The script was run without error and AppSI evolved successfully. The database
architect reported that he updated SELECT queries of the web application using
web views to prefix reference to web views with the name of the namespace cre-
ated. After this change, the web application was able to run correctly.

Additionally, this case study illustrates that the meta-model provides a uniform

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

62 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

»,
2

7
7/
»

4

i

Figure 4.10: Visualisation of query extracting entities that web views depends on.
Squares represent tables, circles represent views. Green color represent web views
and red color represent other entities. An arrow between a web view (green entity)
and another entity (red entity) means that the web view depends on this entity.

and simple way to query dependent and depending entities. This observation sug-
gests that the meta-model address “complexity to query metadata” problem.

4.4.3 Retrieving Features Implemented by a Database

In this section, we report our experiment in reverse-engineering the whole AppSI
database for documentation purposes.

The goal of the experiment is to tag entities of the database with the name of
the feature they implement. With that additional meta-information available for
all entities of the database, future maintainers can more easily understand how the
database is organized. For that purpose, we developed a heuristic that, starting
from tables that are manually tagged, propagate the tag to depending entities. We
evaluated this heuristic with the help of AppSI architect.

This case study illustrates how the meta-model addresses sub-problems 1 and
2. Indeed, to retrieve the features implemented by AppSI, dependency analysis
was required involving stored procedures. Because of that, the sub-problem 2 is
addressed. Indeed, to include stored procedures in the dependency analysis, their
missing metadata need to be retrieved and represented in the model.

Context AppSI, as any information system, evolves to fulfill new requirements
of the laboratory. The needs of the laboratory are quite various: store data related

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 63

to human resources, manage mailing lists, manage PhD students, manage buildings
keys, etc.

Problem Because the needs of the laboratory are various, AppSI implement var-
ious features. The problem is that these features are not clearly defined because
they emerged from successive evolutions of the database. As AppSI gets bigger
and bigger, it becomes complicated to have an overview of what are the different
parts of AppSI and how they work together. It would be good to analyze AppSI
database schema to document its different parts. More specifically, it would be
useful to know for what feature an entity of AppSI was implemented.

Methods To tackle this problem, we created a model of the database and used
the following four-steps approach:

1. Identify features from tables in the database.
Input = The schema of the database
Output = A list of features and for each table, the candidate feature.

We create a model of the database and explore its tables to create groups
of semantically related tables. We call these groups of semantically related
tables “feature groups”. To infer the semantic of a table, we rely on its name
and the name of its columns. Once we have the list of features implemented
by AppSI, we tag tables with the feature they belong to (each table should be
tagged with exactly one feature).

2. Validate feature identification with the database architect.
Input = A list of features and for each table, its corresponding feature.
Output = A validation of the input and adjustment(s) to the input if needed.

We provide the names of the features we identified to the AppSI architect.
He can discuss the features we identified and eventually fine-tune them if
needed.

3. Infer the feature implemented by behavioral entities depending on the feature
of the entity(ies) they use.
Input = A validated list of features and for each table, its corresponding
feature.
Output = For each behavioral entities, a candidate feature to tag it.

We have the hypothesis that if a behavioral entity references entity(ies) from
the same group of features, it probably belongs to this group. From that
hypothesis, we designed a heuristic to categorize a behavioral entity in a fea-
ture group. Three cases can happen in the dependency relationships between
a behavioral entity and the entities it uses.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

64 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

(a) All the entities used by a behavioral entity belong to a single feature
group, then the behavioral entity automatically belongs to this group
(Behavioral entity 1 and Features group 1 on Figure 4.11).

(b) The entities used by a behavioral entity belongs to 2 feature groups and
one of them is the core feature of the database. In that case, the entity
belongs to the other group (the non-core feature group).

(c) The entities used by a behavioral entity belongs to multiple feature
groups (other than the core feature). Behavioral entity 2 in figure 4.11
illustrates this case. In that case, the entity belongs to one of these
groups but this needs to be decided by the architect.

Y

v

%A

Behavioral entity 1
Table 1 Table 2

Features group 1

<—k
Table 3 Table 4

Features group 2 Behavioral entity 2

Figure 4.11: Two cases of dependency relationship between a behavioral entity and
one or many group(s) of tables.

At the beginning of the process, the only entities that have a group are the
tables that we categorized previously in step 1. During the process, the cat-
egorizations will spread to the other entities. At the end of the process, all
entities will be in one of the following states:

(1) The entity has a feature group assigned.

(i) The entity has multiple candidates feature groups and a decision needs
to be taken.

(ii1) The entity has no category because it references entities that need a
decision to be taken.

(iv) The entity has no category because it references no entity defined by
AppSI. This case can occur for utilities features (e.g., a stored procedure
implementing a string transformation).

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 65

4. Validate the categorization of behavioral entities with the database architect
and let him categorize those that could not be automatically categorized.
Input = For each behavioral entity, the candidate feature.

Output = A validation of the input and adjustment(s) to the input if needed.

Finally, we provide the list of entities categorized automatically to AppSI
architect to evaluate the accuracy of our heuristic. If needed, the architect
updates the group of some behavioral entities to fit his knowledge of the
database. If such an update is performed, it means our approach made an
error. Additionally, we provide the list of uncategorized entities to let the
architect manually categorize these entities.

Figure 4.12 summarize the approach as an activity diagram. The result of our
approach will be better documentation of the current state of AppSI. The groups
of entities combined with the dependencies between entities provide a big picture
of the database and allow one to understand more easily how the database is orga-
nized.

Validate features
identified

’ Categorise behavioral
Validate i
o entities that could not
categorisation of -
be automatically

behavioral entities)
categorized

AppSI architect

41 4.2

A
Analyse categorisation
accuracy and generate
documentation for the
database
End

Figure 4.12: Activity diagram of the six-steps approach we use to document AppSI
database.

Infer features
implemented by
behavioral entities via
its dependencies

Identify features from
names of tables in
the database

Researchers

Start

1. 3.

Results Let us present our results for each step of our approach. We identified 11
feature groups (step 1 of the previous process) that were validated by the architect
of AppSI (step 2):

* Members management: Deals with the management of members of the labo-
ratory. Among its tables, it contains the central table of the database: person
table. It stores data of people working at the laboratory such as name, ad-
dress, email-address and so on. Because of that, this feature group can be
considered as the core of AppSI.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

66

Thése de Julien Delplanque, Université de Lille, 2020

Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

Buildings management: Deals with the management of buildings of the lab-
oratory. It stores information such as where are members offices located and
manages who has the keys of offices/buildings.

Mailing list: Deals with mailing lists management.

PhD and HDR management: Deals with PhD and HDR (a diploma one can
get after the PhD in France) management. This include tracking PhD and
HDR statuses of people concerned.

Public website: Stores various data to show on the website of the laboratory.

Structure of laboratory: Stores various data related to how the laboratory is
organized from a human resources point of view. For example, it stores the
different research team and people belonging to them, it stores the fact that
some people are part of the administration, etc.

Access management: Deals with access rights to buildings or zones for peo-
ple working at the laboratory. For example, people working in a building A
may not be authorized to access another building B. This group is separated
from “Buildings management” because some access rights do not concern
only buildings but also areas.

Profile: The laboratory has an intranet proposing a directory that allows one
to gather information on a person working at the laboratory. For example,
one can search for the office of a person or get their phone number.

Scientific production: Manages publications of researchers.

System tables: Tables that contain data and meta-data required for some ap-
plication. Example of such data are: URLs to useful endpoints, value for
configuring some algorithms, etc.

Utilities: A collection of stored procedures that perform generic tasks (e.g.,
string manipulation) useful in various other feature groups. This feature
group has the specificity that it was identified later in the experiment (step 4)
as it does not contain any table.

Table 4.4 shows the number of tables per feature group after validation by the

database architect (step 2). We can see that “Members management” and “Struc-
ture of laboratory” are the groups with the greatest number of tables in the database.
It seems reasonable as managing members of the laboratory and managing the re-
lationship between members is a central day to day task. The next feature group
is “System tables”, this observation is explained because of the policy of applica-
tions using AppSl to store their parameters directly inside the database and not in

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

4.4. Case studies 67

configuration files. PhD and HDR management is the next one in terms of number
of tables. Indeed, managing PhD and HDR is also one of the main tasks of the
laboratory. The other feature groups have less tables.

Table 4.4: Number of tables for each feature group.

Feature group # Tables
Members management 31
Structure of laboratory 24
System tables 16
PhD and HDR management 12
Buildings management 8
Public website 6
Mailing list 4
Scientific production 4
Profile 2
Access management 1
Utilities 0

Table 4.5 shows the results of the heuristic (step 3) and the evaluation of these
results by the architect (step 4). 119 entities were automatically classified in a fea-
ture group by our heuristic and 83 were not. Out of the 119 entities automatically
classified, only 3 were incorrectly classified.

Table 4.5: Results of the classification heuristic and architect validation.

View # Stored # Trigger # Trigger | Total
Proc. Stored Proc.

Automatically

classified 45 26 31 17| 119
Manually

classified 30 33 0 20 83
Correctly

classified 44 24 31 17 | 116
Incorrectly

classified 1 2 0 0 3

Table 4.6 shows the final categorisations of views, stored procedures, triggers
and trigger stored procedures of the database. We exported these data as a CSV
file containing for each entity, its name and the category it belongs to. This CSV
file together with feature groups descriptions form documentation for the database
that is useful for future database architects. Furthermore, this dataset can be used

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

68 Chapter 4. A Behavior-Aware Meta-Model for Relational Databases

together with the heuristic to semi-automatically classify new entities that will be
added in a future evolution of the database.

Table 4.6: Number of entities of a particular type in a particular category.

Feature group # Tables # View # Stored # Trigger # Trigger

Proc. Stored Proc.
Members management 31 24 30 13 18
Buildings management 8 0 1 0 0
Mailing list 4 1 0 0 0
PhD and HDR management 12 17 6 11 9
Public website 6 8 0 2 3
Structure of laboratory 24 24 10 4 7
Access management 1 0 0 1 0
System tables 16 0 1 0 0
Profile 2 0 0 0 0
Scientific production 4 1 0 0 0
Utilities 0 0 11 0 0

Conclusion Our approach to identify features implemented by AppSI and tag-
ging entities of the database allowed us to reverse-engineer the database. The
reverse-engineering of the database provides documentation that will be useful for
future maintainers of AppSI.

Furthermore, we were able to do a dependency analysis for all kind of entities
of the database. This shows that the meta-model addresses missing meta-data prob-
lems because stored procedure are handled by the approach while their body is not
meta-described by the RDBMS.

4.5 Conclusion

In this chapter, we presented a meta-model for relational database taking into ac-
count both structural and behavioral entities and reifying references between enti-
ties. Then, we analyzed two different approaches to instantiate this meta-model:
via meta-data extraction and by analyzing the dump of a database. We evaluated
them according to three criteria: the completeness, the sensitivity to RDBMS evo-
lution and the complexity to migrate to another RDBMS. This evaluation leads us
to an hybrid approach to instantiate the meta-model which aims to satisfy as much
criteria as possible. Finally, we presented two case studies illustrating that our
meta-model addresses the problem “Relational databases are hard to understand”
we identified in Chapter 2.

In the next chapter, we will show how instances of the meta-model can be used
to evaluate the quality of a relational database.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 5
Identifying Quality Issues in
Relational Databases

Contents
51 Scenarios v v it i i e s e e e e e e e e e e 69
52 DBCritics o v i i it e e e e e e e 71
53 CaseStudies ittt ittt 73
54 Conclusiont e 76

In this chapter, we show how querying an instance of the meta-model we pre-
sented in Chapter 4 can serve for detecting bad patterns in the schema of the
database. Such a query can be seen as a rule that the database must fulfill to be
considered of good quality. By checking the quality of relational databases, we
adopt an approach that is a well known Software Engineering practice: code qual-
ity checking.

This section is an extension of our article “CodeCritics Applied to Database
Schema: Challenges and First Results” published in the industrial track of the Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER)
[Delplanque 2017b].

5.1 Scenarios

In this chapter we present DBCritics, a tool to assess the quality of a relational
database based on queries run on a model of the database. We identified three
scenarios in which such a tool can be used on a DB schema.

5.1.1 Detecting Smells in Database

Database administrators need tools to find smells, anti-patterns and violations of
business rules. The spaghetti query antipattern [Karwin 2010] aims to detect queries
that are too complex to understand, maintain or debug. Some naming convention
could need to be checked like prefixing all key columns names with k_. This first

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

70 Chapter 5. Identifying Quality Issues in Relational Databases

example is a generic smell applicable to any database and even to any RDBMS. In
contrast, company-specific or database-specific smells depend on their domain and
their use. A DB code critics checking tool can provide a snapshot of the database
schema quality, and could be used before and/or after each commit to detect possi-
ble deterioration of the database quality.

5.1.2 Migrating from a RDBMS Version to Another One

RDBMS are constantly evolving and new versions are regularly released to in-
troduce new features or to fix bugs. In theory, the new version of a RDBMS
should be backward compatible with older versions. In practice, it may happen
that the behavior or name of an instruction has been changed from one version to
the next. Upgrade migration patches are rarely provided due to the risk of break-
ing a database and all the applications that rely on it. In the case of open-source
RDBMS like PostgreSQL, new releases only come with a textual change log. The
task of database schema migration is left to the database administrator. One must
identify what impact the changes will have on his schema, and correct them accord-
ingly. For example, PostgreSQL documents that for versions after 9.0, PL/PgSQL
variables will take preference over a table or view column with the same name'. If
the behavior of unchanged code is modified after migration, this may lead to errors.
In this case, detecting occurrences of variables with the same name that columns
used in requests in the same stored procedure may prevent future errors.

5.1.3 Maintaining Consistency between Different Forks of a Database

Schema

A database schema may be used as a basis for multiple software projects, each one
adapting the schema to its needs. For example, AppSI database schema is shared
with another laboratory, together with all the applications using the database. Each
laboratory has its own database based on the initial schema. However, some mod-
ifications have been performed on the initial schema to adapt the database to the
needs of new users. The laboratory that adopted the AppSI also benefits from
maintenance to accommodate new features and/or bug fixes. Each change in the
master database needs to be ported to the slave database with the risk that both
databases continue to evolve separately, thus drifting further apart. Ensuring the
naming convention between forks reduces maintenance efforts.

"hitps://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.0

lilliad.univ-lille.fr

https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.0

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

5.2. DBCeritics 71

5.2 DBCiritics

This section presents our approach to analyze database schema quality based on a
model of the database. It is implemented in a tool named DBCeritics.

5.2.1 Overview

Figure 5.1 provides an overview of how DBCeritics works. DBCeritics takes as input
a model of the database schema and a set of rules to check the model. It evaluates
the rules on the model and generates a report that contains the result of each rule
evaluation (violation or success).

V—
V—
 — N

Rules

% DBCritics
Heport

Model of the
database
Figure 5.1: High-level view of DBCeritics that evaluates rules on a model of the DB
and provides a report.

5.2.2 Rules

DBCeritics relies on the notion of rule. A rule describes a property the database
schema should satisfy. Some rules are mandatory because they identify plain er-
rors. Some rules are optional as they identify quality problems that may hamper
future maintenance or evolution. A severity criterion allows to classify the rules,
helping the user to concentrate his correction efforts. Three severity levels are pro-
vided by default: information, warning and error. Others may be added by the user
if needed.

Each rule holds the list of entities violating it. This list can be reviewed by
the user to mark false positives that are also stored to ignore future detections of
these violations. A method specifying the entity types that the rule checks is also
defined as well as a method specifying the violation constraints. The notion of rule
has been extended to be able to define rules using a threshold. These rules can be
parametrized by the users to fit their needs. For example, a Table is considered
too big if it has > n columns, where 7 is specified by the user.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

72 Chapter 5. Identifying Quality Issues in Relational Databases

5.2.3 Examples of Rules

Next to the severity criterion, other means exist to classify rules, such as the entity
type on which the rule is applied. Some rules are generic (i.e., applicable to any
database) or specific (i.e., only applicable to a particular database or RDBMS).
Some rules concern the code, while others focus on the entity structures and the
relationships between entities.

A first set of rules has been defined with a focus on diversity (e.g. focus on
code, entity, relationship, or severity, ...). They have been defined by extending
either Rule or RuleWithThreshold and overriding the methods presented in
the previous section. These rules have been created based on a combination of the
experience of database architects, related works and adaptation of existing rules for
code smells detection.

* Rule 1: Detect use of in SELECT request. Using * in the request selects
all the columns of the used tables. The structure of the request result thus
would change after column addition or removal in one of these tables. This
can cause problems to the programs using it.

* Rule 2: Foreign key referencing a non primary key. The uniqueness of the
reference is not guaranteed and leads to semantic errors.

* Rule 3: Too many columns in SELECT request. This rule identifies queries
that may be complex to maintain (spaghetti query anti-pattern).

* Rule 4: Table without primary key. A table should always have a primary
key.

* Rule 5: Column not key (PK/FK) using the name convention for key (e.g.“k_"
in name). If a naming convention exists, it is as important to use it for key
columns as not to use it for non-key columns.

* Rule 6: Stub entities are used but not defined in the database schema. This
rule detects for example the call of stored procedures not defined in the
schema either intentionally if they correspond to system entity like pg_class
table or count () function or involuntarily if the name of the function is
misspelled or a removed function is still called.

* Rule 7: Isolated table. A table that is referenced by no entity and does
not use any table cannot be accessed through natural join (based on foreign
keys). It is certainly not used, or with other criteria that foreign keys which
can lead to semantic errors.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

5.3. Case Studies 73

* Rule 8: Unused stored procedures could be removed (if it is not used by
an external program). This rule does not detect issues but may help in the
cleaning of the schema.

* Rule 9: Views using other views is a poor design for the future evolution of
the database. For example, if a view vA uses a view vB and vB needs to
be modified, vB has to be deleted as well as vA and both views need to be
recreated in an order satisfying usage dependencies between the views.

* Rule 10: Views using only one table might not be needed as a simple SELECT
request can do the job.

* Rule 11: Too many columns in a table may be an illustration that the table
has several concerns and should be decomposed.

Rule 5 is specific to our concrete example (the convention could be different
depending on the database). The other rules are generic. Rule 3 and 11 have a
threshold that must be defined by the user. Rule 4 represents an error because it
means that the DB schema is not in the first normal form. Rule 6 can correspond
to an error if the undefined entity is not a system one. All other presented rules
correspond to warnings or information. Rules 1 and 3 focus on the code whereas
all others focus on entities and their relationships.

5.2.4 False Positives

Sometimes, rules can be too strict: some issues can be acceptable in certain con-
texts. For example, referencing the pg_class while using inheritance between
tables is normal. Yet, it will appear as a violation of rule 6. It may also happen that
a database architect voluntarily leaves known smells in the schema because of lack
of time or too high level of risk to fix them. For DBCeritics, these bad smells can be
tagged as false positives.

5.3 Case Studies

This section evaluates the usefulness of DBCeritics on two case studies: the Post-
greSQL version of the WikiMedia database [med 2016b] and AppSI. Table 5.1
summarises the sizes of these databases with the minimum and maximum number
of entities of each kind over all analyzed versions.

WikiMedia is an open-source collaborative editing software project that runs
Wikipedia. It currently has three versions of its database schema for three DBMS:
MySQL/MariaDB, PostgreSQL and SQLite. We analyzed 25 different versions of

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

74 Chapter 5. Identifying Quality Issues in Relational Databases

the PostgreSQL database schema representing the different versions available on
Github [med 2016a] modified by 23 contributors.
We analyzed 12 consecutive versions of AppSI database schema.

Table 5.1: Min/Max number of entities per type and Min/Max lines of code for
each database.

Tables Columns Views Functions Triggers LOC
WikiMedia 30/51 196/353 0/1 3/5 2/3 1,435/2,453
AppSI 71/91 583/974 30/52 46/67 12/16 4,910/7,006

DBCeritics has been used to analyze the quality of the different versions of these
two DBs. Three aspects were analyzed: the number of rule violations per version;
the proportion of “violating entities” (i.e., entities that violate at least one rule); and
the “time-to-fix” of a rule violation (only for violations that actually got fixed). For
this experiment, we applied the rules described in the previous section. WikiMedia
had 67 violations on average over all considered versions, while AppSI had 76
violations on average.

5.3.1 Violation Count Per Version

Figure 5.2 shows the evolution of the number of violations (i.e., unique pairs (entity,
rule)) over time. We observe that the number of violations tends to increase (from
37 to 66 for WikiMedia and from 54 to 87 for AppSI). A possible explanation
would be that contributors are unaware of these violations because of the lack of
tools similar to DBCritics.

WikiMedia AppS|
80 -
80
60 -
9 60
2
S »
& s
2 £
> 40]
* > 20
£
20
20
ol TR . T, L
9 o 9. S oS © mon < 0
~oy = oM © 0o 9 N7 ~ — m N ~ o —
—_— — e N NN N o~ > > > > >
- — o= AN A — =
— 14 February 2015 to 25 January 2016

7 July 2006 to 28 June 2016

Figure 5.2: Violation count per version for WikiMedia and AppSI.

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

5.3. Case Studies 75

5.3.2 Violating Entities Proportion

Figure 5.3 shows the proportion of violating entities (grey cross) against the total
number of entities (black dots) in each DB schema. On average, WikiMedia has
more rule violations than AppSI (respectively 14% and 6%). The proportion of
violating entities is globally stable over time (whereas the total number of entities
is increasing).

Wikimedia AppSlI

1200

1200 T

1000
1000

800
800

600

Entities

600 |-

400 +
400 -

200 -

Entities

200 |

L sise ¢ = oo e = = R = R R T X o e = =
. e L VIS e m e m e m -
e o 9o Q ce <o mon < 0
~No = m< © oy — N7 ~ — m 0 ~ o~
e o — e NN N > = = > >
— - — e 1 AN = — =
— 14 February 2015 to 25 January 2016

7 July 2006 to 28 June 2016

Figure 5.3: Violating entities (dashed) against entities count (solid) per version for
WikiMedia and AppSI.

5.3.3 Time-to-fix of a Rule Violation

Only 3 of the 85 rule violations were corrected in AppSI on the 12 versions ana-
lyzed, and 21 of the 87 rule violations for WikiMedia. Table 5.2 summarises the
“time-to-fix” in number of days for those rule violations that get resolved. The
table reveals that corrections occur faster for AppSI than for WikiMedia. An inter-
pretation would be that when the unique database architect of AppSI is aware of
a violation, he corrects it very quickly because he knows his database very well.
When several contributors work on the same database, knowledge is shared and
more diffused. However, we can not make strong statements about this observation
because we have not enough data.

These three analyses show that (1) there are rule violations in real life databases;
(2) their number increases over time with the number of entities; and (3) only
a few violations are fixed. A tool like DBCeritics is thus needed to help in the
violation correction. A deeper comparison between open-source and closed DB
would be relevant. Moreover, it would be interesting to check whether the number
of contributors really impacts the speed at which a rule is corrected.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

76 Chapter 5. Identifying Quality Issues in Relational Databases

Table 5.2: Minimum, first quantile, median, third quantile and maximum of the
“time-to-fix” of resolved rule violations in days.

Min First quantile Median Third quantile Max
WikiMedia 95 1227 1833 2403 3644
AppSI 3 / 125 / 278

5.3.4 Discussion About False Positives

Three categories of violations can be distinguished:
(i) real design issues that require modifications of the schema,

(i1) issues that the database architect considers correct despite the rule violation
and;

(i11) issues due to limitations of DBCritics.

Concerning the second category, in AppSI, table person contains 26 columns
and violates rule 11 for which the threshold is 25. However, this table contains
4 columns corresponding to computed values that are saved in the DB for per-
formance reasons. Concerning the third category, at the time of the experiment,
DBCritics was not able to manage views appearing in the schema as a table with an
associated rule?; they are considered as tables by the tool although they are views.
Some false violations are caused by these restrictions.

We have discussed with the database architect of AppSI to examine in detail
the violations on one arbitrarily chosen version of its schema to get an idea of
the proportion of each of these three categories. In version v10, there were 81
rule violations, 51 fell in the first category, 8 in the second and 22 in the last one.
Therefore, the database architect judged that 63% of the detected violations did
point to quality problems. Even if this proportion cannot be extrapolated to all
versions of AppSI or any database, it gives a first idea. Deeper analysis should be
done to generalize this result.

5.4 Conclusion

In this chapter, we adopt a software engineering approach by checking the qual-
ity of relational database schemas. Through 2 case studies, we investigated how
querying a model of the database can be useful to find quality issues in a propri-
etary database (AppSI) and an open-source (WikiMedia) database.

Zhttps://www.postgresql.org/docs/9.5/static/rules-views.html

lilliad.univ-lille.fr

https://www.postgresql.org/docs/9.5/static/rules-views.html

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

5.4. Conclusion 77

As a summary of the analysis of AppSI and Wikimedia rules violation evolu-
tion, we observed that:

1. Rule violations can be found in open source as well as in proprietary database
schemas.

2. The number of violations evolves with the number of entities.
3. With time, on both databases, some violations are fixed but not all of them.

In Chapter 6, we go further and we propose an approach to semi-automatically
evolve a relational database based on the description of a change to apply on an
entity of the database. Such an approach can be used to fix problems detected by
DBCritics.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 6

Recommendations for Evolving
Relational Databases

Contents
6.1 Settingthecontextc00.... 79
6.2 Description of the Approach 82
63 Experiment.ttt 88
64 Conclusion0. ... 91

In Chapter 5, we show that querying the model of a database brings valuable
information for database reverse-engineering. In this chapter, we go one step fur-
ther in that direction by exploiting a model of a database to make it evolve via a
semi-automatic process.

As explained in Chapter 2, relational databases are hard to evolve. This prob-
lem is caused by two main reasons: some dependencies are implicit and no schema
inconsistency is allowed at any moment. Because of that, evaluating the impact of
an evolution of the database schema is cumbersome. To address these problems,
we present a semi-automatic approach based on recommendations that can be com-
piled into a SQL script handling implicit dependencies and fulfilling RDBMS con-
straints. Our approach is supported by the meta-model we presented in Chapter 4.

We performed an experiment to validate the approach by reproducing a real
evolution on a database. The results of our experiment show that our approach
can set the database in the same state as the one produced by the manual evo-
lution in 75% less time. This chapter is an extension of our publication at the
International Conference on Advanced Information Systems Engineering (CAiSE)
[Delplanque 2020].

6.1 Setting the context

Before getting into the approach, let us set some definitions.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

80 Chapter 6. Recommendations for Evolving Relational Databases

Impact of a change: Changing a database will probably affect its structure and/or
its behavior. The impact of such a change is defined as the set of database entities
that potentially need to be adapted for the change to be applied. For example,
RemoveColumn’s impact includes constraints applied to the column.

Recommendation: Once the impact of a change has been computed, decisions
might need to be taken to handle impacted entities. In the context of this thesis,
we call each of these potential decisions a recommendation. For example, if one
wants to remove a column, we recommend to remove the NOT NULL constraint
concerning this column.

Note that Bohnert and Arnold definition of impact [Arnold 1996] mixes the set
of impacted entities and the actions to be done to fix such entities: “Identifying
the potential consequences of a change, or estimating what needs to be modified to
accomplish a change”. To avoid confusion, we decided to use a specific term for
each part of the definition.

Database schema consistency: The changes to apply on a relational database
must comply with its constraints. We identified two kinds of constraints involved
in a relational database:

(1) data constraints are responsible for data consistency. Five types of such

constraints are available: “primary key”, “foreign key”, “unique”, “not-null”
and “check”.

(2) schema constraints are responsible for schema consistency. These constraints
ensure that the entities of the database fulfill the meta-model implemented by
the RDBMS. Example of such constraints: a table can have only one primary
key, a column can not have the same constraints applied twice on it, a foreign
key can not reference a column that has no primary key or unique constraint,
two entities of the same kind with the same name can not co-exist in the same
namespace, etc...

The RDBMS ensures the consistency of the database schema. This notion of
consistency is characterized by the fact that schema constraints are respected and
no dangling reference is allowed (except in stored procedure).

Our approach works on a model of the database schema. Using a model allows
one to temporarily relax schema constraints and dangling references constraints
during evolution. It allows the developer to focus on changes to be made and not
on how to fulfill schema consistency constraints and avoid dangling references at
any time.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6.1. Setting the context 81

Operator: An operator represents a change to the database schema. It may im-
pact several entities and require further changes to restore the schema in a consis-
tent state after its application. The recommendations made by our approach take
the form of operators.

More precisely, an operator is defined as follows:

* A signature: Defines the unique name and input parameters of an operator.
* A description: The description briefly explains the purpose of the operator.

* One or multiple categories of entities: A change may impact entities (in-
stances of the meta-model concepts) of different kinds (e.g., column, table,
stored procedure, column reference, table reference, ...) and each kind may
be handled differently. Moreover, within a given kind, entities with differ-
ent properties may also be handled differently. For example, columns may
carry different constraints (foreign key, default, or not null) requiring differ-
ent treatments. Each entity kind and property subgroup defines a category of
entities. Each category of entities has an identifier C,.

* One or multiple recommendations for each category: For each C,,, at least
one recommendation should be provided. The recommendation consists in
the application of one or multiple operator(s) on entities of C,, and a textual
description of its meaning in natural language. This description provides
some context to justify why an operator is needed. If multiple recommenda-
tions are provided, the database architect needs to choose the operator fitting
their needs.

In Appendix A, we provide the list of 11 operators we defined.

Reference-oriented operator: A reference-oriented operator responds to the pre-
vious definition. In addition, it applies on an element of the model representing a
reference. RDBMSs do not reify references. Thus, such concepts are implicit and
only exist in the source code of database entities. Because of that, they can not
be directly translated as SQL queries. On the other hand, our meta-model rei-
fies references. Consequently, our approach converts reference-oriented operators
into entity-oriented operators. The details of this conversion are explained later
in the chapter (Sub-section 6.2.3). An example of reference-oriented operator is
ChangeReferenceTarget (see Sub-section A.1.6).

Entity-oriented operator: An entity-oriented also responds to the previous def-
inition but applies on an element of the model that does not represent a reference.
This kind of operator has the particularity to be translatable directly into one or

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

82 Chapter 6. Recommendations for Evolving Relational Databases

many SQL queries. An example of entity-oriented operator is RenameColumn
(see Sub-section A.1.5).

6.2 Description of the Approach

To evolve a database, the database architect specifies operators on some of its enti-
ties. These operators impact other entities that, in turn, need to evolve to maintain
the database in a consistent state. To handle evolutions induced by the initial op-
erators, we developed a 3-step approach (see Figure 6.1). The implementation of
this approach is available on github!.

For each operator expressed by the architect:

A. Impact computation: The set of impacted entities is computed from the op-
erator. The next step treats impacted entities one by one.

B. Recommendations selection: Depending on the operator, and one impacted
entity, our approach computes a set of recommendations. These recommen-
dations are presented to the database architect that chooses one when several
are proposed. This introduces new operators that will have new impacts.
Steps A. and B. are recursively applied until all the impacts have been man-
aged.

C. Compiling operators as a valid SQL patch: All operators (original one plus
the recommendations chosen by the architect) are converted into a set of
SQL queries that can be run by the RDBMS. The set of SQL queries is used
to migrate the database to a state in which the initial architect’s operators
have been applied.

¢)

1 o0l EH B |-

Change initialisation ~ Impact computation Recommendations Compiling operators gQL_ patch
selection as a valid SQL patch

A B. C.

Figure 6.1: Coarse-grain illustration of the approach.

We now detail each step.

"hitps://github.com/juliendelplanque/DBEvolution

lilliad.univ-lille.fr

https://github.com/juliendelplanque/DBEvolution

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6.2. Description of the Approach 83

6.2.1 Impact computation

To compute the entities potentially affected by an operator, one needs to collect
all the entities referencing the entity targetted by the operator. For example, if a
Column is subject to modification, our approach identifies the impacted entities by
gathering all the ColumnReferences targeting this column. The impact of the oper-
ator corresponds to the sources of all ColumnReferences since they can potentially
be affected by the modification.

6.2.2 Recommendations selection

For each operator, the set of impacted entities is split into disjoint sub-sets called
categories. For each of these categories, one or several recommendations are avail-
able. We determinate those recommendations by studying how to make evolve the
impacted entities while respecting the database schema constraints.

The output of this step is a tree of reference-oriented operators where the root
is the operator initiated by the architect and, each other node corresponds to an
operator chosen among recommendations.

6.2.3 Compiling operators into a SQL patch

Once all the recommendations are chosen, our approach generates a SQL patch.
This patch contains queries in SQL data definition language (DDL). For this pur-
pose, the tree of operators resulting from the previous step has to be transformed
into a sequence of SQL queries. These queries enable migrating the database from
its original state to a state where the initial operator and all induced operators have
been applied.

We stress that, during the execution of any operator of the patch, the RDBMS
cannot be in an inconsistent state. This constraint is fundamentally different from
source code refactoring where the state of the program can be temporarily incon-
sistent. Therefore, each operator must lead the database to a state complying with
schema consistency constraints. Else the RDBMS will forbid the execution of the
SQL patch.

Converting reference-oriented operators into entity-oriented operators The
tree resulting from the step described in Section 6.2.2 is composed of operators
on references. However, DDL queries only deal with entities. Thus, reference-
oriented operators are transformed into entity-oriented operators. This is performed
in two steps:

1. All reference-oriented operators are grouped according to their source entity,
i.e., the entity to which belongs the source code in which the reference ap-

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

84 Chapter 6. Recommendations for Evolving Relational Databases

pears. This step enables the identification of the entity on which the entity-
oriented operator is applied. It has to be noticed that several referenced-
oriented operators may be convert in a single entity-oriented operator in order
to satisfy schema constraints.

2. For each entity identified in the previous step, we create an operator modi-
fying its source code. To do so, we iterate on the list of reference-oriented
operators. For each reference, we update the part of the source code corre-
sponding to the reference to reflect the change implemented by the operator.

Once the iteration is complete, a new version of the source code has been built
with no more dangling reference.

Converting entity-oriented operators into DDL statements As the RDBMS
does not allow schema inconsistencies at any moment, even during DDL statements
execution, DDL statements need to be ordered to fulfill this constraint. Solving this
issue implies two steps:

1. the sourced entity affected by an operator modifying its source code needs to
be deleted and created again.

2. entities depending on this sourced entity that are not part of the architect’s
decisions also have to be deleted before and (re-)created again exactly as they
were after the deletion/creation of the sourced entity.

Thus, these entities are deleted in an order that satisfies dependencies between
entities of the database.

Finding the right order of deletion is important because otherwise the RDBMS
will fail while interpreting the SQL script. To find this order, we create a graph
containing entities of the database concerned by the operator as vertices and de-
pendencies between these entities as edges. Then, we apply a topological sort
algorithm on this graph.

The re-creation of entities is made in the opposite order of deletions. The
newly created entities are potentially different from deleted ones because opera-
tors applied by the architect were taken into account. The operator initiated by the
architect occurs in the middle of these deletions and re-creations.

6.2.4 Example

To explain the proposed process, let us take a small example. Consider the simple
database model shown in Figure 6.2. In this database, there are two tables, t1 with
two columns t1.b, t1.c and t2 with column t2.e. Additionally, one stored procedure

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

6.2. Description of the Approach 85

s() and three views v1, v2 and v3 are present. On this figure, dependencies between
entities are represented by arrows. These dependencies arrows are a generalization
over the various kinds of reference entities of the meta-model. For example, the
arrow between s() and t1 is an instance of TableReference and the arrow between s()
and b is an instance of ColumnReference. Views and stored procedures have source
code displayed inside their box. In this source code, any reference to another entity
of the database is underlined.

2 v3 t m

SELECT v2.e
FROM v2;

SELECT ti.c
FROM t1
WHERE t1.c

27 <— Yy :y depends on x :
H X :reference to x

1

Figure 6.2: Example database.
The architect wants to rename the column c of table t1 into d.

Impact computation. First, we compute the impact of this operator. Column c
of table t1 is referenced three times. Thus, the three entities below that make a
reference to the column are part of the impact set of the operator:

* The WHERE clause of the SELECT query of the stored procedure s().
* The SELECT clause of the query defining view v1.

* The WHERE clause of the query defining view v1.

Recommendations selection. For each of the three impacted entities, recom-
mendations are produced. For the WHERE clause of the stored procedure s(), the
recommendation is to replace the reference to column t1.c with a new one t1.d.
The result of replacing this reference will be the following source code: RETURN
SELECT b FROM t1 WHERE t1.d > 5;. The process continues recursively on this
operator, the impact is computed but is empty.

The recommendation concerning the WHERE clause of v1 is the same: replacing
the reference to t1.c by a reference to t1.d. Again, there is no further impact for this
operator.

For the reference to t1.c in the SELECT clause of view v1, two recommendations
are proposed to the architect: replacing the reference with aliasing (i.e., replacing
SELECT t1.c by SELECT t1.d AS c) or without aliasing (i.e., replacing SELECT t1.c

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

86 Chapter 6. Recommendations for Evolving Relational Databases

by SELECT t1.d). In the latter case, the column c in view vi becomes d; it is no
longer possible to refer to vi.c. Consequently, the second recommendation leads
to renaming column v1.c. If the architect chooses this option, the recursive process
continues: new impacts need to be computed and new operators to be performed.
The SELECT clause of view v2 is impacted. Two recommendations are again pro-
vided: replacing the reference with or without aliasing. In this case, the architect
chooses to alias the column and replace the reference. Thus, the rest of the database
can continue to refer to column c of view v2. Figure 6.3 illustrates this step.

ColumnReferencef - - -3 ChangeReferenceTarget(s, "t1 @

A

@mn(ﬂ .c,t1.d ColumnReferencef - - - - ChangeReferenceTarget(v1, "t1.c", "t1.d"
v ColumnDeclaration(v1, "t1.c", "t1

ColumnReference|” AliasColumnDeclaration(v2, "v1@

ChangeReferenceTarget(v1, "t1.c", "t1.d" ColumnReference

v

N

geReferenceTarget(v2, "v1.c

> Initialchange) Change selected by developer
[] Impactedentity <

—>» Impact of change ----» Recommendation to solve impact

"™ Change rejected by developer

Figure 6.3: Recommendations selection.

Convert reference-oriented operators as entity-oriented operators Figure 6.4
illustrates the step of conversion of reference-oriented operators resulting from the
recommendations into entity-oriented operators. For this purpose, operators con-
cerning the same sourced entity are aggregated. Operators (3) and (4) concern the
same sourced entity, v1. They are thus aggregated into ModifyViewQuery(v1). At the
end, there is a single operator per entity to be modified.

Convert entity-oriented operators into DDL statements The resulting list of
entity-oriented operators needs to be converted to DDL statements that the RDBMS
can evaluate and ordered to fulfill schema consistency constraints. Figure 6.5 illus-
trates this step of the approach. For example, ModifyStoredProcedureBody(s) is con-
verted into DeleteStoredProcedure(s) that remove the current version of the stored

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6.2. Description of the Approach 87
angeReferenceTarge N VodifyStoredProcedureBody
(s, "t1.c", "t1.d") @ (s)
o
RenameColumn angeReferenceTarge ModifyViewQuery

(t1.c, t1.d) Vi, "t1.c", "t1.d")

<
-

(v1)

Translating
angeReferenceTargé AliasColumnDeclaration reference-oriented| ModifyViewQuery
(v1, "t1.c", "t1.d") (v2, "v1.c", "v1.d") operators ai) (v2)
as entity-oriented
operators RenameColumn

(t1.c, t1.d)

W)

’—> Relation between operators of each step ‘

Figure 6.4: Convert reference oriented operators as entity-oriented operators.

procedure from the database and CreateStoredProcedure(s) that re-create a version
of the stored procedure with its source code updated. As reminder, the new source
code of the stored procedure makes a reference to t1.d instead of t1.c because col-
umn c of table t1 is renamed to d.

—> Relation between operators and DDL statement

DeleteStoredProcedure(s) (

I3

odifyStoredProcedureBo Iy | DeleteView(v3)
(s) (

> >l DeleteView(v2)

Modify\(/\i?\)NQuery —>[DeleteView(v1)

A\ 4

[RenameColumn(t.c,t.d)

ModifyViewQuery
(v2) [

4
WV
WV

\ 4

RenameColumn CreateView(v2)

(t1.c, t1.d) ?

N
-4

\ 4

CreateView(v3)

(

(

(

(

CreateView(v1) (
(

(

) (

)
)
c)]
A
e)]
)
9
h)]
3

—>[CreateStoredProcedure(s

Figure 6.5: Convert entity-oriented operators as a list of DDL statements that fulfill
RDBMS schema consistency.

One can observe that the view v3 is deleted and recreated while no entity-
oriented operator applies to it. The occurences of DeleteView(v3) and CreateView(v3)
are induced by the schema consistency constraint. Indeed, v3 references v2 and no
dangling reference is authorized at any moment during the execution of the SQL
patch. Thus, v3 needs to be removed to be able to remove v2 and then recreated af-
ter v2 has been recreated with an updated version of its source code. Nevertheless,
v3 source is not altered during this process.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

88 Chapter 6. Recommendations for Evolving Relational Databases

Figure 6.6 illustrates the graph formed by t1.c and all the depending sourced
entities gathered recursively. Entities that are not subject to an entity-oriented op-
erator are gathered as well to build this graph which explains why v3 gets deleted
and recreated in the process. A topological sort algorithm is applied on this graph
to find the proper order of entities deletion. A possible order is s(), v3, v2, v1, c.
This order can be used for ordering the deletion DDL statements. To recreate enti-
ties with potentially a new version of their source code, one simply need to inverse
the order of deletion. In our case, it leads to the following order: c, v1, v2, v3, s().

Figure 6.6: Graph on which topological sort is applied to find the order of DDL
statements ensuring schema consistency.

6.3 Experiment

We performed an experiment on AppSI database introduced in Chapter 2. Be-
fore each migration of AppSI the database architect prepares a road map in natural
language containing the list of operators initially planned for the migration. We
observed that this road map is not complete or accurate [Delplanque 2018]. Fol-
lowing a long manual process, the architect writes a SQL patch to migrate from
one version of the database to the next one.

The architect gave us access to the SQL patch used to perform the evolution to
do a post-mortem analysis of the database evolutions. One of the patches imple-
ments the renaming of a column belonging to a table that is central to the database.
This is interesting because it is a non-trivial evolution.

We had the opportunity to record the architect’s screen during this migration
[Delplanque 2018]. We observed that the architect used multiple tools to perform
a trial-and-error process to find dependencies between entities of the database. He
implements part of the patch and runs it in a transaction that is always rolled back.
When the patch fails during its execution, the architect uses the gained knowledge
to correct the SQL patch. Using this methodology, the architect built incrementally
the SQL patch during approximately 1 hour. The patch is ~ 200 LOC and is
composed of 19 SQL statements. To validate our approach, we regenerate this

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6.3. Experiment 89

SQL patch with our tool but without the architect’s expertise. Then, we compare
our resulting database with the one obtained by the architect.

6.3.1 Experimental Protocol

The goals of the experiment are multiple:
(1) Illustrate, on a concrete case, the generation of a SQL patch.

(i1)) Compare the database resulting from our approach with the database result-
ing from the patch originally written by the architect.

(i11) Estimate the time required to generate a SQL patch as compared to the man-
ual generation.

Based on the road map and the comments in the patch we extracted the opera-
tors initiated by the architect during this migration. A discussion with the architect
allowed us to validate the list of initial operators:

1. RenameColumn(person.uid, login)

2. RemoveFunction(key_for_uid(varchar))

3. RemoveFunction(is_responsible_of(int4)),

4. RemoveFunction(is_responsible_of(int4,int4))

5. RenameFunction(uid(integer), login(integer))

6. RenamelocalVariable(login.uidperson, login.loginperson)

7. RemoveView(test_member_view)

Details on these operators can be found in Appendix A.

We implemented a graphical user interface for our approach. Figure 6.7 shows
a screen capture of DBEvolution graphical user interface. It guides the user through
the steps of choosing recommendations.

Panel 1 shows the list of operators selected by the user and the tree of impacts
resulting from the user’s choices. When an operator is inserted or clicked in panel 1,
panel 2 shows the entities potentially impacted by the operator. The UI allows one
to unfold the set of impacted entities to show one or many recommendations the
user needs to make on them. The “gear and spanner” icon means that the user
still needs to choose a recommendation. The green check icon means that the user
already chose a recommendation. When one of the entities in panel 2 is clicked,
two things happen: first, panel 3 shows the different recommendations the user can

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

90 Chapter 6. Recommendations for Evolving Relational Databases

choose and second, panel 4 shows the source code of the entity that is concerned
(if it holds source code) with the reference to the entity that created the impact
highlighted. In panel 3, the “Use this operator” button allows one to choose a
recommendation.

Once all the choices were made (all operators in panel 1 have the green check
icon), one can click the “Generate patch” button (top left of the tool) to generate
the SQL script.

x =0 DB Evolution =
Generate patch
Patch Impact Tree > » v FmxSQLStoredProcedure cle_pour_uid # Recommandations
¥ %5 RenameColumn(public.personne.uid TO public.personne.login) > ¥ FmxSQLStoredProcedure est_responsable de id =>login)
+ RenameReferencelnStoredProcedure(uid == login) » v FmxSQLTriggerStoredProcedure t_personne_modification DoNothing(}
~ RenameReferencelnStoredProcedure(uid => login) v ¥ IfmxSQLStoredeceduremd
+ RenameReferencelnStoredProcedure(uid => login) 7 ColumnReference noname
» 9% FmuSQLView vue_annuaire_membres 3
1 » 5 FmxSQLView vue_annuaire_membres_test 2
» %% FmxsQLView vue_entrees_par_annee
» % FmxSQLView web_annuaire_membres = Use this operator
Source code:
on
DECLARE
uidpersonne varchar = ;
BEGIN
SELECT uid INTO uidpersonne 4

FROM

personne
'WHERE

clepersonne =cle;

RETURN uidpersonne;
END;

Figure 6.7: Screenshot of DBEvolution, the implementation of our approach that
we used to perform the experiment.

The experiment consists in inserting the list of operators extracted from the
roadmap in our tool and following the recommendations proposed. Potentially sev-
eral recommendations might be proposed, particularly as whether to create aliases
in some referencing queries or to rename various columns in cascade. The architect
told us that, as a rule, he preferred to avoid using aliases and renamed the columns.
These were the only decision we had to do during the experiment.

We finished the experiment by executing the SQL patch generated by our tool
on an empty (no data) copy of the database. Note that having no data in the database
to test the patch might be a problem for operators modifying data (e.g., changing
the type of a column implies converting data to the new type). However, in the
case of our experiment no operator modifies data stored in the database. First, we
checked whether the generated patch ran without errors. Second, we compared the
state of the database after the architect’s migration and ours. For this, we generated
a dump of the SQL schema of both databases and compared these two dumps using
a textual diff tool. Third, we also considered the time we spent on our migration
and the one used by the architect when he did his.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

6.4. Conclusion 91

6.3.2 Results

We entered the seven operators listed previously in our tool and let it guide us
through the decision process to generate the SQL migration patch.

Fifteen decisions were taken to choose among the proposed recommendations.
They all concerned the renaming or aliasing of column references. From this pro-
cess, the tool generated a SQL patch of ~ 270 LOC and 27 SQL statements.

To answer the goals of the experiment listed previously:

(i) The generated SQL patch was successfully applied on the database.

(i) The diff of the two databases (one being the result of the hand-written patch
and the other being the result of the application of the generated patch)
showed a single difference: a comment in one stored procedure is modi-
fied in the hand-written version. Such changes are not taken into account by
our approach.

(iii)) Encoding the list of operators and taking decisions took approximately 15
minutes. This corresponds to about 25% of the time necessary to the architect
who has a very good knowledge of his database to obtain the same result.

6.4 Conclusion

In this chapter, we presented an approach to manage relational databases evolution.
This approach allows one to specify an operator to apply on an entity of a model
(instance of the meta-model presented in Chapter 4) and to guide the database
architect in the decisions one needs to take to apply the initial operator. The de-
cisions taken by the architect together with the initial operator are then converted
into a SQL script that can be executed on the database to make it evolve. We set up
an experiment to assess that our approach can reproduce a change that happened
on a database used by a real project. The experiment shows that our approach
can reproduce the change but allows a faster implementation with a gain of 75%
of the time. These results show that our approach address “database are hard to
evolve” problem and more specifically, it addresses the implicit dependencies and
the schema consistency issues.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

CHAPTER 7

Conclusion

Contents
T1 SUMMALY . v v v v v v vt e e ettt oot oot oot e e 93
7.2 Contributions i i i e e 95
73 FutureWorkt 95

7.1 Summary

Relational databases have been at the core of many information systems for decades.

Many of these databases reflect human or societal activities. For example, pro-
cesses related to human resources, insurances, banks, etc. Thus, these relational
databases evolve regularly and tools are needed to support this evolution.

The purpose of relational databases is not only to store data. Indeed, it is possi-
ble to have behavioral entities taking the form of views, stored procedures, triggers,
etc. These behavioral entities, while allowing one to implement complex compu-
tations on the database side, make the understanding and evolution of relational
databases challenging.

In this thesis, we addressed relational database evolution from a software engi-
neering perspective. More specifically, we addressed the two following problems
that we observed during an evolution performed by a database architect (see Chap-
ter 2):

1. Relational databases are hard to understand: This problem has two main
causes: RDBMS meta-data are complex to query and, for some types of
entities in the database, meta-data are missing.

2. Relational databases are hard to evolve: This problem comes from the fact
that: the dependencies between some kinds of entities are implicit and the
database schema can not be in an inconsistent state at any moment.

To address these problems, we developed a behavior-aware meta-model that
helps to understand the database. We exploited this meta-model to find quality

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

94 Chapter 7. Conclusion

issues and developed an approach to evolve the database while addressing implicit
dependencies and schema consistency problems.
Below, we summarize the work we achieved in each chapter.

Chapter 2 reports our observations of the evolution of AppSI, the relational
database used by the information system of our laboratory. We did a qualitative
and quantitative analysis of screen records of AppSI database architect performing
an evolution. Our observations led us to the identification of the two problems ad-
dressed in this thesis: relational databases are hard to understand and relational
databases are hard to evolve.

Chapter 3 reviews the scientific literature to assess the state of the art related to
problems we identified in Chapter 2. In particular, we review approaches related
to relational database reverse engineering and relational database impact analysis.
From the literature review, we concluded that approaches for relational database
reverse engineering usually do not consider behavioral entities. Furthermore, im-
pact analysis approaches focus on computing the impact of a change made to a
structural entity of a database on external programs interacting with the database.

Chapter 4 presents a meta-model representing structural entities, behavioral en-
tities and relations between them. Then, we compared two approaches to instantiate
the meta-model via a set of criteria and designed an hybrid approach to satisfy as
much criteria as possible. Finally, we presented two case studies illustrating that
the meta-model addresses the problem relational databases are hard to understand.

Chapter 5 presents a tool exploiting the meta-model to detect quality issues in
the schema of a relational database. This tool was used to analyze quality issues
in a proprietary database (AppSI) and an open-source database (WikiMedia). This
study reveals that rule violations can be found in open source as well as in pro-
prietary database schemas, the number of violations evolves with the number of
entities and with time some violations are fixed but not all of them.

Chapter 6 present a semi-automatic approach to evolve a relational database.
The approach is based on recommendations that can be compiled into a SQL script
handling implicit dependencies and fulfilling RDBMS constraints. We set up an
experiment to assess that our approach can reproduce a change that happened on a
database used by AppSI. The experiment shows that our approach can reproduce
the change but allows a faster implementation with a gain of 75% of the time. These
results suggest that our approach addresses the problem relational databases are

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

1

2

Thése de Julien Delplanque, Université de Lille, 2020

7.2. Contributions 95

hard to evolve and more specifically, it addresses the implicit dependencies and the
schema consistency issues.

7.2 Contributions

The main contributions of this thesis are:

* The identification of concrete problems encountered during relational database
evolution via the observation of a developer.

* A meta-model designed to help in dependencies analysis related to entities
defined inside a database.

* A tool to find quality issues in a database schema and the study of quality
issues evolution on 2 case studies.

* A semi-automatic approach based on recommendations that can be compiled
into a SQL script fulfilling RDBMS constraints.

7.3 Future Work

In this section, we present open issues that are not addressed in the thesis. These
open issues provide opportunities to continue our research concerning the behavior-
aware meta-model and the semi-automatic approach to evolve relational databases.

Abstract Syntax Tree Reification In this thesis, we developed a meta-model that
models structural entities, behavioral entities and references between these entities
(Chapter 2). In this meta-model, the concept of “reference” is used to represent the
fact that an entity references another entity.

In its current state, the meta-model reifies queries and their clauses. Each clause
contain a collection of references allowing one to know which clauses are refer-
encing an entity in a model. For example, the model can be queried to retrieve the
clauses that are referencing the column of a table.

However, the meta-model does not represent the full query abstract syntax tree.
For example, in the following SELECT query, in the WHERE clause the boolean
expression is not represented in the model. Instead, the WHERE clause in the model
stores two table references: pointing respectively to t1 and t2 and stores two
column references: c3 and c4.

CREATE VIEW v AS
SELECT tl.cl, t2.c2

lilliad.univ-lille.fr

2

3

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

96 Chapter 7. Conclusion

FROM tl, t2
WHERE tl1.c3 = t2.c4 ;

This representation of references in the meta-model allows one to perform var-
ious analyses as illustrated in Chapter 4, Chapter 5 and Chapter 6. However, to
provide more possibilities to evolve a database with the approach presented in
Chapter 6, a finer-grain representation of queries and source code is needed. For
example, with the current representation of queries, it is not possible to transform
a comparison operator <= into <. Such kind of changes could be needed for some
operators. One can address this problem by representing the abstract syntax tree of
stored procedures and CRUD queries in the meta-model.

With an AST representation of the previous query, its WHERE clause would not
be a simple collection of references but a tree with as root the equality operator (=)
and as leaves the references to the tables and columns.

This enhancement of the meta-model would allow one to perform more detailed
dependency analysis and provide recommendations for our approach presented in
Chapter 6.

Support Data Transformation Some operators might require to transform or
move data stored in the database. A simple example would be an operator that
moves a column from a table to another table. For example, if we have a database
storing blogposts for a blog with the following schema:

CREATE TABLE blog_post (
id INTEGER PRIMARY KEY,
title TEXT,
content TEXT

) i

One can implement an operator modifying the schema of the database in order
to historize the values of a column. In the example, above, let us historize the values
of content column in blog_post table. One way to historize these values is
to create a second table that stores the content of a blog post. This new table
named blog_post_history has a column blog_post_id that references
the blogpost for which the content is stored and has a t ime st amp column that
stores the time of modification of the content. With such schema, one can get the
content of a blogpost by selecting the related row in blog_post_content with
the greater timestamp. The schema of the database after the historization is shown
below.

CREATE TABLE blog_post (
id INTEGER PRIMARY KEY,
title TEXT

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

7.3. Future Work 97

);

CREATE TABLE blog_post_content (
id INTEGER PRIMARY KEY,
content TEXT,
timestamp TIME,
blog_post_id INTEGER REFERENCES blog_post (id)

) ;

To implement this historization operator, one need to move the column content
from blog_post to blog_post_content. Additionally, the current data in
the column content of blog_post table need to be moved.

This new constraint raises the following challenge for the approaches we pre-
sented in Chapter 6: How to to handle data?

We designed the approach in a way that, in the previous example, it would
first remove content column of blog_post table and then create content
columninblog_post_content table. To implement the historization operator,
the approach needs to let the two columns co-exist to be able to move the data
between these two columns. Thus, the algorithm that orders changes to apply on
the database needs to be adapted to fulfill this requirement.

More generally, other operators could require other kinds of transformation on
data. Further work on our approach to evolve database is required to support data
transformation.

Simulate Operators on the Model In its current state, the approach presented
in Chapter 6 allows one to specify a single operator at a time. For example, one
can ask the approach to provide recommendations for the renaming of a column
but one can not ask the approach to provide recommendations for two operators
that would rename a column and then rename the table that contains this column.
This limitation is due to the fact that once all recommendations have been selected
by the user, an analysis of the operators and the model is performed and a patch to
migrate the database is generated. In this process, the model of the database is not
updated.

Figure 7.1 illustrates how the current approach applies a sequence of 2 opera-
tors on the database. Basically, one needs to handle the operators of the sequence
one by one. On the figure, a model of the database in version 0 is created, then
DBEvolution is used to compute recommendations for operator 1 which leads to
the generation of patch 1. Then, the patch is applied on the database with version
0. The database evolves to version 1 and the process repeats for operator 1.

The current way to treat a sequence of operators works but the approach does
not have a global view on the effect of the sequence of operators on the database.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

98 Chapter 7. Conclusion
Operator 1 Operator 2
SQL SQL
|:> patch patch
2
Model of the Model of the '
database 0 ! database 1 !
Execute patch Execute patch
------------------------ > IR LR LT R RS
Database Database Database
0 1 2

Figure 7.1: Current strategy to apply a sequence of operators.

It considers the local effect of each operator. This behavior prevents us to optimize
the patch. For example, if an operator requires a view to be deleted and recreated
but this view gets deleted by the next operator in the sequence, we could avoid
recreating the view as it is not needed.

If one wants to generate a patch containing a sequence of operators and their
induced operators without having to modify the database operator per operator,
we need to simulate the execution of each operator on the model as illustrated by
Figure 7.2. On that figure, a model of the database in version O is created. Then,
operators are applied directly on the model and only once all the operators of the
sequence have been applied, the SQL patch is generated to evolve the database.

For that purpose, more work is required on the approach to let it simulate the
effect of an operator directly on the model. This future work is challenging be-
cause one needs to make sure that the simulated operators transform the model into
a state consistent with the state of the database when executing the patch. For ex-
ample, the model of the database 1 in Figure 7.2 must be exactly the same as the
model of the database 1 in Figure 7.1 that was built by executing the patch and
recreating the model. If the simulation of operators on the model creates corrupted
models, our semi-automatic approach to evolve database might generates wrong
recommendations.

Conflict Management This future work occurs once it is possible to simulate
operators on a model. If one provides a sequence of operators to apply on the
database, it is possible that some of them are conflicting. For example, if one
creates the following sequence of operators:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

7.3. Future Work 99
Operator 1 Operator 2
Generate saL
............................... patch
1+2
Model of the Model of the Model of the :
database 0 database 1 database 2 K

Database Database
0 2

Figure 7.2: Desired strategy to apply a sequence of operators.

1. DeleteColumn (t.c)

2. RenameColumn (t.c)

Obviously, these operators are conflicting because the first one will remove the
target entity of the second one.

The goal of this future work is to explore what are the combination of simple
operators (Add, Remove, Rename, Move) that are conflicting. This information
could be part of the description of these simple operators.

In a second step, the goal would be to determinate if it is possible to decide if
two complex operators (operators defined in terms of a sequence of simple or com-
plex operators) are conflicting or not. The challenge is to design an algorithm that
relies on the conflict description of operators that define the two complex operators
provided as input.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

© 2020 Tous droits réservés. lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

APPENDIX A

Operators Catalog

Contents
Al Catalog i ittt ittt e e 101

This section provides additional information related to operators used by DBEvo-
lution in Chapter 6 experiment.

A.1 Catalog

This section provides specifications only for operators used in the context of the
experiment described in the paper.

A.1.1 Rename Local Variable

RenameLocalVariable renames a local variable of a stored procedure.
Signature: RenamelLocal Variable(local Variable, newName)
Description: Renames a local variable of a stored procedure.

Impact: Let I be the set of entities impacted by the change;

* C1(I) = I Deals with references to the local variable from inside the stored
procedure holding it. This category is the only one available for this operator.
Thus, it is equal to the impact set /.

Recommendations:

* ('; — ChangeReferenceTarget: Since the local variable is renamed, the ref-
erences need to be adapted to target the reference to the local variable via its
new name.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

102 Appendix A. Operators Catalog

A.1.2 Rename Function

RenameFunction renames a stored procedure in the database. This stored proce-
dure might be called by behavioral entities in the database.

Signature: RenameFunction(function, newName)

Description: Renames a stored procedure in the database.

Impact: Let I be the set of entities impacted by the change;

» C1(I) = {e € I|has_type(source(e), SelectClause)} Deals with refer-
ences to the stored procedure from select clause in SELECT query.

» Cy(I) = {e € I|-has_type(source(e), SelectClause)} Deals with other
references to the stored procedure.

Recommendations:

* (1 — Choice(ChangeReferenceTargetInSelectClause, AliasColumnDecla-
ration): If a stored procedure is called from a select clause and not aliasing
is specified, the name of the associated column is the name of the stored
procedure. Thus, the architect needs to choose between changing call site
and aliasing the column with the old stored procedure name to stop the im-
pact propagation or only changing call site and thus propagating further the
1mpact.

* (5 — ChangeReferenceTarget: Calls to the stored procedure in other con-
texts need to be adapted to use the new name of the procedure. This recom-
mendation is similar to what is done when renaming a function in procedural
programming languages.

A.1.3 Remove Function

RemoveFunction removes a stored procedure from the database. This stored pro-
cedure might be used by behavioral entities of the database.

Signature: RemoveFunction(function)

Description: Removes a stored procedure from the database.

Impact: Let I be the set of entities impacted by the change;

» ()1(I) = I Deals with calls to the stored procedure.

Recommendations:

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

A.1. Catalog 103

* (i — Humanlntervention: The removal of the method induces complex
changes in the source code which need to be evaluated and performed locally
by the architect on each entity that was calling the stored procedure. To assist
the architect in this task, DBEvolution highlights these call sites.

A.1.4 Remove View

RemoveView removes a view from the database. This view might be used by be-
havioral entities of the database.

Signature: RemoveView(view)

Description: Removes a view from the database.

Impact: Let I be the set of entities impacted by the change;

* C1(I) = I Deals with all references to the view.

Recommendations:

e ('{ — HumanlIntervention: The removal of the view induces complex changes
in the source code which need to be evaluated and performed locally by the
architect on each entity that was referencing the view.

A.1.5 Rename Column

RenameColumn renames a column in a table of the database. This column might
be referenced by other entities in the system.

Signature: RenameColumn(view)

Description: Renames a column in a table of the database

Impact: Let I be the set of entities impacted by the change;

* C1(I) = {e € Ilis_wildcard_reference(e)} Deals with references to the
column through a wildcard ().

o Oy(I) = {e € I|has_type(source(e), SelectClause)} Deals with refer-
ences to the column from a select clause in a SELECT query.

» C5(1) = {e € I|-has_type(source(e), SelectClause)} Deals with other
references to the column in another clause.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

Appendix A. Operators Catalog

Recommendations:

* (1 — DoNothing: If the column to be renamed is referenced through SQL

wildcard (), nothing needs to be done. Indeed, as the wildcard does not
refer to the column via its name but indirectly, the reference is not impacted
by the renaming.

C5 — Choice(ChangeReferenceTargetInSelectClause, AliasColumnDecla-
ration): References to columns made in a SELECT clause define the names
and types of the resulting table. Thus, when updating the reference made
to a column in the SELECT clause, the architect needs to decide if the im-
pact should be propagated to the users of the table resulting from the query
execution (by only changing the reference target) or not (by changing the
reference target and aliasing the column declaration with the old referenced
entity name).

C5 — ChangeReferenceTarget: Other references need to be updated to refer
to the new name of the column.

A.1.6 ChangeReferenceTarget

ChangeReferencelarget changes the entity targetted by a reference by rewritting
the corresponding source code. This operator must not receive a reference that
occurs in a SELECT clause.

Signature: ChangeReferenceTarget(reference, newTarget)

Description: Changes the entity targetted by a reference by rewriting the corre-
sponding source code.

Impact: None

Recommendations: None

A.1.7 ChangeReferenceTargetInSelectClause

ChangeReferencelargetinSelectClause changes the target of a reference that occurs
in a SELECT clause. This operator propagates the impact to users of the derived
table resulting from the SELECT query execution.

Signature: ChangeReferenceTargetInSelectClause(reference, newTarget)
Description: Changes the target of a reference that occurs in a SELECT clause.
Impact: Let I be the set of entities impacted by the change;

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

A.1. Catalog 105

* C1(I) = I Deals with the column of the derived table defined by the refer-
ence.

Recommendations:

e (1 — RenameColumn: As the reference made in the SELECT clause is
updated without aliasing, the change is equivalent to renaming the column of
the table resulting from the SELECT query.

A.1.8 AliasColumnDeclaration

AliasColumnDeclaration changes the target of the reference in the SELECT clause
and creates an alias with the old reference name. Because of the aliasing, this
operator stops the propagation of impact.

Signature: AliasColumnDeclaration((view, reference, newTarget))

Description: Changes the target of the reference in the SELECT clause and create
an alias with the old reference name.

Impact: None

Recommendations: None

A.1.9 DoNothing

DoNothing Does nothing, it is the null-operator.
Signature: DoNothing()

Description: Does nothing.

Impact: None

Recommendations: None

A.1.10 HumanIntervention

Humanlntervention Asks the database architect to perform the intervention on the
source code of an entity. This operator generates no impact as we consider that the
architect modifies the source code of the entity provided as argument in a way that
there is no additional impact.

Signature: HumanlIntervention(entity)

Description: Let the architect perform a manual editition of the source code of an

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

106 Appendix A. Operators Catalog

entity.
Impact: None
Recommendations: None

© 2020 Tous droits réservés. lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

Bibliography

[Alalfi 2009] Manar H Alalfi, James R Cordy and Thomas R Dean. WAFA: Fine-
grained dynamic analysis of web applications. In 2009 11th IEEE Inter-
national Symposium on Web Systems Evolution, pages 141-150. IEEE,
2009. 36, 37

[Albe 2019] Laurenz Albe. Tracking View Dependencies in PostgreSQL.
https://www.cybertec-postgresql.com/en/tracking-view-dependencies-in-
postgresql/, 2019. Accessed 2020-06-23. 43

[Arnold 1996] Robert S Arnold and S.A Bohnert. Software change impact analy-
sis. IEEE Computer Society Press, 1996. 38, 80

[Batini 1992] Carlo Batini, Stefano Ceri and Navathe Sham. Conceptual database

design: an entity-relationship approach. Benjamin/Cummings, 1992. 29,
30

[Castellanos 1993] Malu Castellanos. A methodology for semantically enriching
interoperable databases. In British National Conference on Databases,
pages 58-75. Springer, 1993. 34, 37

[Chiang 1994] Roger HL Chiang, Terence M Barron and Veda C Storey. Reverse
engineering of relational databases: Extraction of an EER model from a

relational database. Data & knowledge engineering, vol. 12, no. 2, pages
107-142, 1994. 34, 37

[Cleve 2006] Anthony Cleve, Jean Henrard and Jean-Luc Hainaut. Data reverse
engineering using system dependency graphs. In 2006 13th Working Con-
ference on Reverse Engineering, pages 157-166. IEEE, 2006. 35, 37

[Cleve 2008] Anthony Cleve and Jean-Luc Hainaut. Dynamic analysis of SOQL
statements for data-intensive applications reverse engineering. In 2008
15th Working Conference on Reverse Engineering, pages 192—-196. IEEE,
2008. 36, 37

[Cleve 2011a] Anthony Cleve, Jean-Roch Meurisse and Jean-Luc Hainaut.
Database semantics recovery through analysis of dynamic SQL statements.
In Journal on data semantics XV, pages 130—157. Springer, 2011. 36, 37

[Cleve 2011b] Anthony Cleve, Nesrine Noughi and Jean-Luc Hainaut. Dynamic
program analysis for database reverse engineering. In International Sum-
mer School on Generative and Transformational Techniques in Software
Engineering, pages 297-321. Springer, 2011. 36

© 2020 Tous droits réservés.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

108 Bibliography

[Codd 1970a] Edgar F Codd. A relational model of data for large shared data
banks. Communications of the ACM, vol. 13, no. 6, pages 377-387, 1970.
2

[Codd 1970b] Edgar F Codd. A relational model of data for large shared data
banks. Communications of the ACM, vol. 13, no. 6, pages 377-387, 1970.
46

[Curino 2008] Carlo A Curino, Hyun J Moon and Carlo Zaniolo. Graceful
database schema evolution: the prism workbench. Proceedings of the
VLDB Endowment, vol. 1, no. 1, pages 761-772, 2008. 40, 41

[Curino 2009] Carlo Curino, Hyun J Moon and Carlo Zaniolo. Automating
database schema evolution in information system upgrades. In Proceedings
of the 2nd International Workshop on Hot Topics in Software Upgrades,
page 5. ACM, 2009. 40

[de Guzmén 2004] Ignacio Garcia-Rodriguez de Guzman, Macario Polo, Mario
Piattini and S K Koskimies de Agosto. Metamodels and architecture of an
automatic code generator. NWUML’ 2004, page 115, 2004. 34, 36

[de Guzman 2005] I Garcia-Rodriguez de Guzman, Macario Polo and Mario Piat-
tini. An integrated environment for reengineering. In 21st IEEE Interna-
tional Conference on Software Maintenance (ICSM’05), pages 165-174.
IEEE, 2005. 34, 36

[Delplanque 2017a] Julien Delplanque. Software Engineering Issues in RDBMS,
a Preliminary Survey. In 16th edition of the BElgian-NEtherlands software
eVOLution symposium (BENEVOL 2017), 2017. 28

[Delplanque 2017b] Julien Delplanque, Anne Etien, Olivier Auverlot, Tom Mens,
Nicolas Anquetil and Stéphane Ducasse. CodeCritics Applied to Database
Schema: Challenges and First Results. In 24th IEEE International Confer-
ence on Software Analysis, Evolution, and Reengineering, 2017. 69

[Delplanque 2018] Julien Delplanque, Anne Etien, Nicolas Anquetil and Olivier
Auverlot. Relational Database Schema Evolution: An Industrial Case
Study. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2018. 11, 88

[Delplanque 2020] Julien Delplanque, Anne Etien, Nicolas Anquetil and Stéphane
Ducasse. Recommendations for Evolving Relational Databases. In In-
ternational Conference on Advanced Information Systems Engineering
(CAIiSE), 2020. 43,79

© 2020 Tous droits réservés.

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

Bibliography 109

[Englebert 1995] V Englebert, J Henrard, JM Hick, D Roland and JL Hainaut.
DB-MAIN: un atelier d’ingénierie de bases de donnéesl, 2. 1995. 35

[Gardikiotis 2006] Spyridon K Gardikiotis and Nicos Malevris. DaSIAn: A Tool
for Estimating the Impact of Database Schema Modifications on WEB Ap-
plications. In Computer Systems and Applications, 2006. IEEE Interna-
tional Conference on., pages 188—195. IEEE, 2006. 39, 41

[Gardikiotis 2009] Spyridon K Gardikiotis and Nicos Malevris. A two-folded im-
pact analysis of schema changes on database applications. International
Journal of Automation and Computing, vol. 6, no. 2, pages 109-123, 2009.
39, 41

[Hainaut 2009] Jean-Luc Hainaut, Jean Henrard, Didier Roland, Jean-Marc Hick
and Vincent Englebert. Database reverse engineering. In Handbook of Re-
search on Innovations in Database Technologies and Applications: Current
and Future Trends, pages 181-189. IGI Global, 2009. 31, 32, 45, 49

[Haraty 2002] Ramzi A Haraty, Nashat Mansour and Bassel A Daou. Regression
testing of database applications. Journal of Database Management, vol. 13,
no. 2, pages 31-42, 2002. 39, 41

[Haraty 2004] Ramzi A Haraty, Nashat Mansour and Bassel A Daou. Regression
test selection for database applications. In Advanced Topics in Database
Research, Volume 3, pages 141-165. 1GI Global, 2004. 39

[Henrard 1998] Jean Henrard, Vincent Englebert, Jean-Marc Hick, Didier Roland
and Jean-Luc Hainaut. Program understanding in databases reverse en-
gineering. In International Conference on Database and Expert Systems
Applications, pages 70-79. Springer, 1998. 35, 37

[Hicks 2005] Michael Hicks and Scott Nettles. Dynamic software updating. ACM
Transactions on Programming Languages and Systems, vol. 27, no. 6,
pages 1049-1096, nov 2005. 27

[Karwin 2010] Bill Karwin. Sql antipatterns: Avoiding the pitfalls of database
programming. Pragmatic Bookshelf, 2010. 69

[Kazman 1998] R. Kazman, S.G. Woods and S.J. Carriére. Requirements for Inte-
grating Software Architecture and Reengineering Models: CORUM II. In
Proceedings of WCRE 98, pages 154-163. IEEE Computer Society, 1998.
ISBN: 0-8186-89-67-6. 2

© 2020 Tous droits réservés.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

110 Bibliography

[Lehman 1980] Manny Lehman. Programs, Life Cycles, and Laws of Software
Evolution. Proceedings of the IEEE, vol. 68, no. 9, pages 1060-1076,
September 1980. 2

[Lehman 2000] Meir M Lehman. Evolution as a noun and evolution as a verb.
Proc. Work. Software and Organisation Co-evolution: SOCE’00, 2000. 2

[Lehnert 2011] Steffen Lehnert. A review of software change impact analysis. 11-
menau University of Technology, page 39, 2011. 38

[Liu 2011] Kaiping Liu, Hee Beng Kuan Tan and Xu Chen. Extraction of attribute
dependency graph from database applications. In Software Engineering
Conference (APSEC), 2011 18th Asia Pacific, pages 138—145. IEEE, 2011.
40, 41

[Liu 2013] Kaiping Liu, Hee Beng Kuan Tan and Xu Chen. Aiding maintenance
of database applications through extracting attribute dependency graph.
Journal of Database Management, vol. 24, no. 1, pages 20-35, 2013. 40

[Manousis 2015] Petros Manousis, Panos Vassiliadis and George Papastefanatos.
Impact analysis and policy-conforming rewriting of evolving data-intensive
ecosystems. Journal on Data Semantics, vol. 4, no. 4, pages 231-267, 2015.
35, 36, 40

[Markowitz 1990] Victor M. Markowitz and Johann A. Makowsky. Identifying
extended entity-relationship object structures in relational schemas. IEEE

transactions on Software Engineering, vol. 16, no. 8, pages 777-790, 1990.
34,37

[Maule 2008] Andy Maule, Wolfgang Emmerich and David Rosenblum. Impact
analysis of database schema changes. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on, pages 451-460.
IEEE, 2008. 39, 41

[med 2016a] MediaWiki github repository. https://github.com/wikimedia/mediawiki,

2016. Accessed 2016-11-26. 74

[med 2016b] MediaWiki website. https://www.mediawiki.org, 2016. Accessed
2016-11-26. 73

[Mens 2008] Tom Mens. Introduction and roadmap: History and challenges of
software evolution. In Software evolution, pages 1-11. Springer, 2008. 2,
3

lilliad.univ-lille.fr

Thése de Julien Delplanque, Université de Lille, 2020

Bibliography 111

[Meurice 2016a] Loup Meurice, Csaba Nagy and Anthony Cleve. Detecting and
preventing program inconsistencies under database schema evolution. In
Software Quality, Reliability and Security (QRS), 2016 IEEE International
Conference on, pages 262-273. IEEE, 2016. 26, 35, 37, 40, 41

[Meurice 2016b] Loup Meurice, Csaba Nagy and Anthony Cleve. Static analysis
of dynamic database usage in java systems. In International Conference
on Advanced Information Systems Engineering, pages 491-506. Springer,
2016. 35

[Meurice 2017] Loup Meurice. Analyzing, understanding and supporting the evo-
lution of dynamic and heterogeneous data-intensive software systems. PhD
thesis, Ph. D. dissertation, University of Namur, Namur, 2017. 32

[Naur 1969] Peter Naur and Brian Randell. Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch, Ger-
many, 7th-11th October 1968, Brussels, Scientific Affairs Division, NATO.
1969. 1

[Papastefanatos 2008] George Papastefanatos, Fotini Anagnostou, Yannis Vassil-
iou and Panos Vassiliadis. Hecataeus: A what-if analysis tool for database
schema evolution. In Software Maintenance and Reengineering, 2008.
CSMR 2008. 12th European Conference on, pages 326-328. IEEE, 2008.
35, 36, 37, 40, 41

[Papastefanatos 2010] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis
and Yannis Vassiliou. Hecataeus: Regulating schema evolution. In Data
Engineering (ICDE), 2010 IEEE 26th International Conference on, pages
1181-1184. IEEE, 2010. 35, 36, 40

[Petit 1994] J-M Petit, Jacques Kouloumdjian, J-F Boulicaut and Farouk Toumani.
Using queries to improve database reverse engineering. In International
Conference on Conceptual Modeling, pages 369-386. Springer, 1994. 35,
37

[Polo 2002] Macario Polo, Juan Angel Goémez, Mario Piattini and Francisco Ruiz.
Generating three-tier applications from relational databases: a formal and
practical approach. Information and Software Technology, vol. 44, no. 15,
pages 923-941, 2002. 34, 36, 37

[Polo 2007] Macario Polo, Ignacio Garcia-Rodriguez and Mario Piattini. An
MDA-based approach for database re-engineering. Journal of Software
Maintenance and Evolution: Research and Practice, vol. 19, no. 6, pages
383417, 2007. 34, 36

© 2020 Tous droits réservés.

lilliad.univ-lille.fr

© 2020 Tous droits réservés.

Thése de Julien Delplanque, Université de Lille, 2020

112 Bibliography

[Premerlani 1993] William J Premerlani and Michael R Blaha. An approach for
reverse engineering of relational databases. In [1993] Proceedings Work-
ing Conference on Reverse Engineering, pages 151-160. IEEE, 1993. 34,
37

[Royce 1987] Winston W Royce. Managing the development of large software
systems: concepts and techniques. In Proceedings of the 9th international
conference on Software Engineering, pages 328-338, 1987. 1

[Sheth 1990] Amit P Sheth and James A Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases. ACM
Computing Surveys (CSUR), vol. 22, no. 3, pages 183-236, 1990. 34

[Shoval 1985] Peretz Shoval. Essential information structure diagrams and
database schema design. Information Systems, vol. 10, no. 4, pages 417—
423, 1985. 34

[Shoval 1993] Peretz Shoval and Nili Shreiber. Database reverse engineering:
from the relational to the binary relationship model. Data & knowledge
engineering, vol. 10, no. 3, pages 293-315, 1993. 34, 37

[Sjgberg 1993] Dag Sjsberg. Quantifying schema evolution. Information and Soft-
ware Technology, vol. 35, no. 1, pages 35-44, 1993. 39, 41

[Wang 2009] Hanzhe Wang, Beijun Shen and Cheng Chen. Model-driven reengi-
neering of database. In 2009 WRI World Congress on Software Engineer-
ing, volume 3, pages 113-117. IEEE, 2009. 35, 37

[Yeh 2008] Dowming Yeh, Yuwen Li and William Chu. Extracting entity-
relationship diagram from a table-based legacy database. Journal of Sys-
tems and Software, vol. 81, no. 5, pages 764-771, 2008. 34, 37

lilliad.univ-lille.fr

	Introduction
	Software Engineering
	Relational databases
	Problems
	Software Engineering for Relational Databases
	Contributions
	Structure of the Thesis
	List of Publications

	Motivation
	Introducing AppSI database
	Context
	Conditions of the Case Study
	Qualitative Analysis
	Quantitative Analysis
	Problems
	Conclusion

	State of the Art
	Database Design
	Relational Database Reverse-Engineering
	Relational Database Impact Analysis
	Conclusion

	A Behavior-Aware Meta-Model for Relational Databases
	Objectives
	The Meta-Model
	Meta-model Instantiation
	Case studies
	Conclusion

	Identifying Quality Issues in Relational Databases
	Scenarios
	DBCritics
	Case Studies
	Conclusion

	Recommendations for Evolving Relational Databases
	Setting the context
	Description of the Approach
	Experiment
	Conclusion

	Conclusion
	Summary
	Contributions
	Future Work

	Operators Catalog
	Catalog

	Bibliography

	source: Thèse de Julien Delplanque, Université de Lille, 2020
	lien: lilliad.univ-lille.fr
	d: © 2020 Tous droits réservés.

