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-Let’s keep it complex- 

The current learning landscape is evolving in terms of what is learned and the context in which learning 

takes place. This can largely be related to the continuously changing requirements of today’s labor 
market. More than ever, the importance is stressed of the use of rich authentic learning tasks that 

provide opportunities to acquire 21st -century skills such as complex learning. Complex learning is 

defined by van Merriënboer, Clark and De Croock (2002) as the integration and coordination of 

knowledge, skills, and attitudes that constitute real-life task performance, which enables the transfer of 

what was learned in school or training to daily life and work. Additionally, the availability of information 

technology has changed the traditional educational boundaries of time, space, and informational access. 

From an instructional design perspective, the combination of both phenomena poses a great challenge 

for researchers and instructional designers to implement instruction that meets the requirements of the 

current learning landscape (Ng, 2015). A research-based instructional design model that has proven to 

be effective in promoting complex learning is the four-component instructional design model (4C/ID-

model; van Merriënboer et al., 2002). Nonetheless, offering an online learning environment based on a 

research-based instructional design model is not necessarily a guarantee for its effectiveness. As the 

learner is an active agent in the online learning process, the effectiveness of learning environments 

largely depends on student cognitive and motivational-affective characteristics.  

In order to investigate characteristics that can influence the effectiveness of a 4C/ID-based online course 

and how effectiveness can be facilitated, the current research project was divided into respectively 

research track 1 and 2. On the basis of three studies, research track 1 examined the influence of 

students’ cognitive and motivational-affective characteristics on use and learning outcomes. More 

particularly, Study 1 and 2 investigated the influence of students’ technology acceptance and students’ 
perceptions towards instructional quality. Additionally, Study 3 investigated the influence of students’ 
prior knowledge and motivational characteristics. Findings of Study 1 and 2, reveal the importance of 

students’ technology acceptance and perceived instructional quality on respectively the quantity and 
quality of use and students’ learning outcomes. Moreover, mixed findings between Study 1 and 2 
indicate results can be context-dependent (i.e. ecological validity). Additionally, findings of Study 3 

indicate that students’ prior knowledge and task value can influence differences in use. Furthermore, 
students’ prior knowledge and differences in use positively influence students’ learning outcomes. As a 

result, research track 1 indicates that individual differences influence the effectiveness of a 4C/ID-based 

online course.  

Nonetheless, former research indicates that the influence of individual differences can be monitored by 

aligning the learning environment with students’ learning needs (Moos & Azevedo, 2009). In order to 
align the online course with students’ learning needs we should be able to detect learning process during 
online complex learning. Consequently, research track 2 explores in two studies whether physiological 

measures such as skin response measures (Study 4 and 5) and cardiovascular measures (Study 5) can be 

used to assess cognitive load during the online problem-solving process. Findings of Study 4 reveal that 

electrodermal activity (EDA) can be linked to self-reported cognitive load and that changes in cognitive 

load can be detected by EDA when differences in cognitive load are high. Findings of Study 5 appear to 

indicate that cognitive overload induces stress which was assessed via skin temperature (ST) and heart 

rate (HR). Both studies clarify that cognitive load is a complex concept to measure. In order to have 

insight into cognitive load, the studies of research track 2 emphasize the need for future studies to 

combine different measures in order to have more robust information on the mental effort exerted by 

a person during a cognitive task. 
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-Let’s keep it complex- 

L’éducation change en termes de ce qui est appris et de contexte dans lequel l'apprentissage a lieu. Cela 
peut être en grande partie lié aux exigences en constante évolution du marché du travail actuel. Plus 

que jamais, on souligne l'importance de l'utilisation de tâches d'apprentissage riches et authentiques 

qui offrent des possibilités d'acquérir des compétences du XXIe siècle telles que l'apprentissage 

complexe. L'apprentissage complexe est défini par van Merriënboer, Clark et De Croock (2002) comme 

l'intégration et la coordination des connaissances, des compétences et des attitudes qui constituent 

l'exécution de tâches réelles, ce qui permet le transfert de ce qui a été appris à l'école ou en formation 

dans la vie quotidienne et au travail. En outre, la disponibilité des technologies de l'information a modifié 

les limites traditionnelles de l'éducation en matière de temps, d'espace et d'accès à l'information. Du 

point de vue de la pédagogie, la combinaison de ces deux phénomènes représente un grand défi pour 

les chercheurs et les pédagogues qui doivent mettre en œuvre une pédagogie répondant aux exigences 

du contexte actuel de l'apprentissage (Ng, 2015). Le modèle de conception pédagogique à quatre 

composantes (modèle 4C/ID ; van Merriënboer et al., 2002) est un modèle de conception pédagogique 

basé sur la recherche qui s'est avérée efficace pour promouvoir l’ apprentissage complexe. Néanmoins, 
offrir un environnement d'apprentissage en ligne basé sur un modèle de conception pédagogique basé 

sur la recherche n'est pas nécessairement une garantie de son efficacité. Comme l'apprenant est un 

agent actif dans le processus d'apprentissage en ligne, l'efficacité des environnements d'apprentissage 

dépend largement des caractéristiques cognitives et motivationnelles-affectives de l'étudiant.  

Afin d'étudier les caractéristiques qui peuvent influencer l'efficacité d'un cours en ligne basé sur les 

4C/ID et la manière dont l'efficacité peut être facilitée, le projet de recherche actuel a été divisé en deux 

pistes de recherche. Sur la base de trois études, la première piste de recherche a examiné l'influence 

des caractéristiques cognitives et motivationnelles-affectives des étudiants sur l'efficacité des 

environnements d'apprentissage en ligne. Plus particulièrement, les études 1 et 2 ont examiné 

l'influence de l'acceptation de la technologie par les étudiants et la perception de la qualité de 

l'enseignement par les étudiants. En outre, l'étude 3 a examiné l'influence des connaissances 

antérieures et des caractéristiques motivationnelles des élèves sur les différentes utilisations des 

composantes et les résultats de l'apprentissage. Les résultats des études 1 et 2 révèlent l'importance de 

l'acceptation des technologies par les étudiants et de la perception de la qualité de l'enseignement sur 

respectivement la quantité et la qualité de l'utilisation et les résultats d'apprentissage des étudiants. En 

outre, les résultats de l'étude 3 indiquent que (1) les connaissances antérieures et la motivation 

intrinsèque des étudiants peuvent influencer les différences d'utilisation et que (2) les connaissances 

antérieures des étudiants et les différences d'utilisation des composantes influencent positivement les 

résultats d'apprentissage des étudiants. Par conséquent, la piste de recherche 1 indique que les 

différences individuelles peuvent influencer l'efficacité d'un environnement d'apprentissage en ligne.  

Néanmoins, des recherches antérieures indiquent que l'influence des différences individuelles peut être 

modérée en alignant l'environnement d'apprentissage sur les besoins d'apprentissage des étudiants 

(Moos & Azevedo, 2009). Afin d'aligner le cours en ligne sur les besoins d'apprentissage des étudiants, 

nous devrions être en mesure de détecter le processus d'apprentissage au cours de l'apprentissage 

complexe en ligne. Par conséquent, la deuxième piste de la recherche a examiné dans deux études si 

des données physiologiques liées à la peau (études 4 et 5) et les données physiologiques 

cardiovasculaires (étude 5) peuvent être utilisées pour évaluer la charge cognitive pendant le processus 

de résolution de problèmes en ligne. Les résultats de l'étude 4 révèlent que l'activité électrodermique 

(EDA) peut être liée à la charge cognitive auto-déclarée et que les changements de charge cognitive 
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peuvent être détectés par l'EDA lorsque les différences de charge cognitive sont élevées. Les résultats 

de l'étude 5 semblent indiquer que la surcharge cognitive induit un stress qui a été évalué via la 

température de la peau (ST) et la fréquence cardiaque (HR). Les deux études précisent que la charge 

cognitive est un concept complexe à mesurer car elle change rapidement au cours du processus 

d'apprentissage et en raison de son interaction avec les états mentaux connexes. 
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-Let’s keep it complex- 

Het huidige onderwijslandschap evolueert voortdurend op vlak van wat, waar en wanneer er geleerd 

wordt. Ten eerste is er de voortdurend veranderende arbeidsmarkt, die de nadruk meer dan ooit op 

complexe, authentieke leertaken legt om 21ste-eeuwse vaardigheden aan te leren. Daarnaast verandert 

de beschikbaarheid van informatietechnologie de traditionele grenzen van tijd, ruimte en toegang tot 

informatie in het onderwijs. De combinatie van beide fenomenen vormt een uitdaging voor 

onderzoekers en onderwijskundige ontwerpers om een vorm van onderwijs te implementeren die aan 

alle eisen van het huidige onderwijslandschap voldoet (Ng, 2015).  

Complex leren wordt door van Merriënboer, Clark en De Croock (2002) gedefinieerd als (1) de integratie 

en coördinatie van kennis, vaardigheden en attitudes en (2) de transfer van wat er geleerd werd naar 

het dagelijkse werk en leven. Dit complex leren wordt gestimuleerd door het 4C/ID-model, een 

onderwijskundig ontwerpmodel dat uit vier componenten bestaat (4C/ID-model; van Merriënboer et 

al., 2002). Toch is een op dit ontwerpmodel gebaseerde online leeromgeving niet noodzakelijk een 

garantie voor succes: omdat de lerende grotendeels verantwoordelijk is voor het online leerproces, is 

de effectiviteit van leeromgevingen afhankelijk van zijn cognitieve en motivationeel-affectieve 

karakteristieken. Daarom werd dit onderzoeksproject opgesplitst in twee onderzoekslijnen die nagaan 

welke kenmerken belangrijk zijn voor de effectiviteit van de online leeromgeving en hoe we die 

kenmerken kunnen bijsturen.  

In onderzoekstraject 1 onderzochten we in drie studies hoe de cognitieve en motivationeel-affectieve 

karakteristieken van studenten het gebruik van een online leeromgeving voor complex leren en de 

leeruitkomsten van de studenten beïnvloeden. Studies 1 en 2 behandelden de invloed van enerzijds de 

attitude van studenten tegenover technologie en anderzijds de perceptie die ze hebben op de kwaliteit 

van het onderwijskundig ontwerp. Uit deze studies blijkt dat positieve attitudes en percepties een 

positieve invloed hebben op zowel kwantiteit als kwaliteit van het gebruik van de online leeromgeving 

en (daaruit volgend) de leerresultaten. Studie 3 onderzocht de invloed van voorkennis en 

motivatiekenmerken van studenten op het verschillende gebruik van een online leeromgeving en op de 

leeruitkomsten. We zagen dat voorkennis en intrinsieke motivatie invloed kunnen hebben op verschillen 

in gebruik en dat de voorkennis en het verschillend gebruik van de componenten (in functie van de 

leernoden) de leerresultaten positief beïnvloeden. De resultaten van de eerste onderzoekslijn tonen dus 

aan dat individuelle verschillen een invloed hebben op de effectiviteit van een 4C/ID-gebaseerde online 

leeromgeving.  

Voorgaand onderzoek bevestigde al dat individuele verschillen kunnen worden bijgestuurd door de 

leeromgeving op de leerbehoeften van studenten af te stemmen (Moos & Azevedo, 2009), maar 

hiervoor moeten we wel in staat zijn de leerprocessen te meten. In onze tweede onderzoekslijn 

onderzochten we in twee studies of fysiologische data, zoals huidgeleiding- en temperatuur (Studies 4 

en 5) en cardiovasculaire reacties (Studie 5), gebruikt kunnen worden om de mentale belasting tijdens 

het online probleemoplossingsproces te meten. Resultaten uit Studie 4 tonen aan dat huidgeleiding 

(EDA) inderdaad aan zelf-gerapporteerde mentale belasting kan gekoppeld worden en dat EDA grote 

veranderingen in mentale belasting detecteert. Studie 5 wijst erop dat mentale overbelasting kan 

gemeten worden aan de hand van huidtemperatuur (ST) en hartslagfrequentie (HR). Beide studies tonen 

de bijzondere complexiteit aan van het meten van de mentale belasting tijdens het leerproces.
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1. Theoretical background of the research project 

Nowadays, learners have to be prepared to deal with continuously evolving environments and rapidly 

changing demands which shape the fast-developing world of the 21st-century (Ng, 2015). Consequently, 

more attention is given to the provision of courses that have real-world relevance and utility and provide 

opportunities for acquiring 21st-century skills such as complex learning (Jonassen, 2000; Lane & D’Mello, 

2019). Moreover, due to the ubiquitous presence of IT, an increasing amount of courses in higher 

education take place online (Ng, 2015). From an instructional design perspective, the combination of 

both phenomena poses a great challenge for researchers and instructional designers on how to design 

online courses that promote complex learning. Consequently, this research project aimed at defining 

factors that can improve the effectiveness of online courses for complex learning. In this introduction, 

we will elaborate on the theoretical framework of the research project. Additionally, an overview of the 

studies and their research aims is provided.  

1.1. Complex learning 

This section firstly defines complex learning. Secondly, it elaborates on students’ characteristics that can 

influence the effectiveness of complex learning. Thirdly, it provides information on how learning 

environments can be designed to promote complex learning. 

1.1.1. Defining complex learning 

The current learning landscape is changing. Nowadays, learning activities should provide opportunities 

for acquiring 21st-century skills such as complex learning (Jonassen, 2000; Lane & D’Mello, 2019).  

Complex learning is defined by van Merriënboer et al. (2002) as (1) the integration and coordination of 

qualitatively different knowledge, skills, and attitudes that constitute real-life task performance and (2) 

transferring what is learned in daily life and work. The definition of complex learning formulated by van 

Merriënboer et al. (2002) can be related to the definition of complex problem solving defined by Sweller 

(1994). Sweller (1994) claims that the complexity of learning tasks or problems can be defined by 

element interactivity. That is, the number of elements and their interrelationships that simultaneously 

need to be processed. Sweller (1994) indicates that an element is anything that needs to be learned or 

processed such as a definition, a formula, a sub-goal of the problem, etc. The more novel elements a 

problem or learning task contain, the higher the load on working memory will be (Jonassen, 1997; 
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Sweller, 2010). Both definitions indicate that the complexity of what has to be learned is highly 

determined by the number of (novel) elements that need to be processed simultaneously (van 

Merriënboer & Sweller, 2005).  

1.1.2. Challenges for complex learning related to students’ characteristics 

The effectiveness of complex learning is strongly related to students’ cognitive and motivational-

affective characteristics. This section will discuss how these characteristics can influence the 

effectiveness of complex learning.  

Cognitive characteristics 
 

Solving complex problems can be quite challenging for the learners’ working memory as it requires the 

learner to coordinate and integrate multiple elements simultaneously (Jonassen, 2000; Sweller, 2010; 

van Merriënboer, 2013). Moreover, the absence of prior domain knowledge, puts an even heavier 

burden on the learner’s working memory during complex problem solving (Schwaighofer, Bühner & 

Fischer, 2017). This interplay between students’ prior knowledge and working memory can be explained 

by the architecture of human memory (Sweller, 2010). The architecture of human memory makes a 

distinction between long-term and short-term memory or working memory (van Merriënboer & Sweller, 

2005). The working memory has two prominent characteristics that are critical for instructional design. 

A first characteristic of the working memory is the limited capacity when dealing with new information. 

More particularly, the working memory can only process approximately seven pieces of novel 

information at a time. When working memory capacity is exceeded (i.e. cognitive overload), additional 

information will be lost. A second characteristic of the working memory is the limited duration of 

information being processed. More particularly, information in working memory can only be stored for 

no more than a few seconds. Moreover, all information is lost after about 20 seconds, unless it is 

refreshed by rehearsal (Kirschner, Kester & Corbalan, 2011; Sweller, van Merriënboer & Paas, 2019). As 

a result, working memory capacity plays an important role in the ability to deal with high element 

interactivity. Nonetheless, working memory has fewer limitations when dealing with domain-specific 

prior knowledge retrieved from long-term memory. Domain-specific prior knowledge is defined by 

knowledge structures present in long-term memory, also known as cognitive schemas. These schemas 

are connected elements, which are processed as single elements in the working memory. As such, the 

presence of cognitive schemas reduces the number of elements that have to be held and processed in 
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the working memory. Subsequently, the presence of domain-specific cognitive schemas deduces 

cognitive load during complex learning (Sweller et al., 2019). Given this interplay between domain-

specific prior knowledge and the learners’ working memory capacity, optimizing cognitive load is 

considered to be important when designing learning environments for complex learning (Kalyuga & 

Singh, 2015).  

Motivational- affective characteristics 
 

The importance of motivational-affective variables for the effectiveness of the learning process can be 

among others explained by the Expectancy-Value Theory. The Expectancy-Value Theory emphasizes the 

importance of academic self-efficacy and task value. Academic self-efficacy is defined as the individual’s 

perception of his or her current capacity to execute behaviors necessary for accomplishing a task 

(Zimmerman, 2000). When dealing with complex tasks, efficacious learners tend to persist, cope, and 

adapt well, even when their prior domain knowledge is low. In contrast, learners with low confidence in 

their ability can become frustrated, overwhelmed, and demotivated (Taipjutorus, Hansen, & Brown, 

2012). Task value is more related to the learners’ intrinsic motivation. More particularly, task value 

captures reasons for engagement by identifying how much the learner values the desired outcome 

(Duncan & McKeachie, 2005). It is believed that learners will learn more from complex tasks when the 

information is relevant for them (Liem, Lau & Nie, 2008).  

Furthermore, former studies have indicated that the perceived instructional quality of a learning 

environment influences learners’ academic engagement and subsequently course performance. More 

particularly, Frick, Chadha, Watson, and Zlatkovska (2010) conducted a study in which they investigated 

the association between students’ perceived instructional quality based on the five First Principles of 

Instruction of Merrill (2002) and students’ course achievement. Merrill’s (2002) five First Principles for 

Instruction define that learning is promoted when: (a) learners are engaged in solving real-world 

problems, (b) existing knowledge is activated as a foundation for new knowledge, (c) new knowledge is 

demonstrated to the learner, (d) new knowledge is applied by the learner and, (e) new knowledge is 

integrated into the learner’s world. Several empirical studies have indicated that students who agreed 

that the First Principles of Instruction were incorporated in the learning environment, were more likely 

to achieve high levels of mastery of course objectives (Frick et al., 2010; Martens, Bastiaens & Kirschner, 

2007).  
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1.1.3. Designing learning environments for complex learning 

Many current instructional design models indicate that complex learning can be promoted when 

learning activities are problem-centered and lead students through four distinct phases of learning (a) 

activation of prior knowledge, (b) demonstration of knowledge, (c) application of knowledge, and (d) 

integration of knowledge into the learners’ world (Frick et al., 2010; Jonassen, 1997; Merrill, 2002). On 

that basis, Merrill (2002) developed the five First Principles of Instruction, that were mentioned in section 

1.1.2. An instructional design model that incorporates these first principles of instruction and has proven 

to be effective for designing learning environments for complex learning is the 4C/ID model developed 

by van Merriënboer et al. (2002). The basic claim of the 4C/ID model is that all environments for complex 

learning can be described in terms of four interrelated components (1) learning tasks, (2) part-task 

practice, (3) supportive information, and (4) procedural information. Learning tasks are meaningful 

complex tasks, based on real-life situations and require the integration of both recurrent (i.e. routine) 

and non-recurrent (i.e. novel, effortful) subskills. Non-recurrent skills are more complex and involve 

schema-based problem solving, reasoning, and decision making, whereas recurrent skills are domain-

specific rules, step-by-step procedures, etc. Supportive information helps learners to perform the 

problem-solving and reasoning aspects of the learning tasks (i.e. non-recurrent subskills). Procedural 

information is step-by-step instruction and helps students to perform routine aspects of learning tasks 

(i.e. recurrent subskills; van Merriënboer & Sluijsmans, 2009). Part-task practice provides additional 

practice for selected recurrent subskills in order to reach a required level of automaticity (e.g. exercises 

on applying a grammar rule).  

Former studies investigated the effectiveness of the 4C/ID-model, by comparing a 4C/ID-based learning 

environment with more conventional learning methods. Lim, Reiser, and Olina (2009) compared the 

effects of whole-task training and part-task training on the acquisition and transfer of a complex 

cognitive skill for novices and advanced learners. They found that both novices and advanced learners 

achieved better at whole-task performance when they received whole-task training. Additionally, the 

study of Sarfo and Elen (2005) compared three groups who had to learn how to design a single building 

plan based on local conditions. The control group was taught according to a traditional approach that 

was applied in technical schools, whereas the experimental groups were taught according to the 4C/ID- 

approach. Results revealed that the experimental groups outperformed the control group on the post-

test. Similarly, the study of Melo and Miranda (2014) aimed at exploring the effectiveness of a 4C/ID-
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based learning environment in terms of reproduction and transfer of learning. The results of the 

experiment supported the hypothesis that a 4C/ID-based learning environment contributed more 

positively to learning of concepts (related to theme “Electric Circuits”) compared with a learning 

environment based on a conventional (objectives-based) instructional method.  

The effectiveness  of the 4C/ID-model for complex learning is the result of whole-task training (van 

Merriënboer & Kirschner, 2018). In contrast, conventional learning methods are known for an 

objectives-based approach that breaks down the (authentic) learning tasks into their constituent parts. 

Subsequently, instructors choose an instructional method for each of those separate parts and their 

corresponding objectives. As a result of this teaching method, students do not learn to coordinate these 

separate parts into a coherent whole which leads to fragmentation of the learning material. 

Consequently, students only have limited opportunities to train and execute the whole-task in an 

integrated manner (e.g. when doing an internship; Frerejean et al., 2019a). 

However, a disadvantage of a 4C/ID-based learning environment is that rich authentic whole-tasks are 

high in element interactivity (Jonassen, 2000, Sweller, 2010). As a result, a risk of the whole-task 

approach is that a high amount of cognitive load can be induced, which might hamper learning (van 

Merriënboer & Sluijsmans, 2009). This phenomenon can be explained within the framework of The 

Cognitive Load Theory (CLT). CLT provides insight into cognitive load, by distinguishing intrinsic, 

extraneous, and germane load (Sweller, 2010). Intrinsic load is determined by the element interactivity 

of a particular task. Extraneous load is cognitive load that has nothing to do with achieving the learning 

objectives. More particularly, extraneous load can be induced by suboptimal or complex instructional 

procedures. Moreover, it can be reduced by instructional guidance as this can ensure that the learner 

does not focus on irrelevant information (Sweller et al., 2010). Germane load is a productive cognitive 

load that contributes to learning and is closely related to intrinsic load (Chen & Kalyuga, 2020; Sweller 

et al., 2019; van Merriënboer & Kirschner, 2018). Given that intrinsic and germane load are largely 

related, more researchers plea for a dual-model of cognitive load that includes only intrinsic and 

extraneous load (Sweller et al., 2019). It is important to keep intrinsic and extraneous load within the 

capacity of the working memory. When the total amount of intrinsic and extraneous load exceeds the 

working memory, cognitive overload occurs (Chen & Kaluyga, 2020). In addition, underload means that 

not all available working memory is used. Conditions of both underload and overload should be 

prevented as these can obstruct learning (Sweller, 2010). 
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The 4C/ID-model aims at preventing cognitive underload and overload by the provision of four 

components as illustrated in Figure 1 (van Merriënboer & Kirschner, 2018). The intrinsic load is 

controlled by starting each task class with a worked example, and additionally, by organizing the learning 

tasks in simple-to-complex task classes (Sweller et al., 2019). Learning tasks within a simpler task class 

contain fewer elements and fewer element interactivity and are therefore less complex. Gradually, as 

learners gain expertise, task classes increase in complexity (Sweller, 2010; van Merriënboer & Kirschner, 

2018). By organizing the task classes in this manner the model prevents the possibility of working 

memory resource depletion (Chen & Kalyuga, 2020). Both extraneous and intrinsic load is managed by 

the provision of procedural, supportive information and part-task practice. These components can 

support learners in devoting fewer memory processes to irrelevant elements. Moreover, when cognitive 

schemes are constructed and automated, this frees up processing resources that the learner can devote 

to learning (Lee, Donkers, Jarodzka & van Merriënboer, 2019; van Merriënboer & Kirschner, 2018).  
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Figure 1.1.: Graphical overview of the four components (van Merriënboer et al., 2002, p. 44) in relation with CLT 
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1.2. Online learning environments for complex learning 

1.2.1. Digitalization in educational settings 

Digital technology is ubiquitous in modern society, and has changed the landscape of education (Lin, 

Parsons & Cockerham, 2019). Digital technologies, also referred to as educational technologies when 

applied for education purposes, include computers, laptops, tablets, smartphones, cameras, 

communication and collaborative resources, simulations, etc. (Jameson, 2013). Moreover, the 

availability of a huge range of Internet-dependent technologies such as open-source Learning 

Management Systems (LMSs), social networking sites and apps, cloud storage, educational games and 

resources sites, etc. have changed the traditional educational boundaries of time, space, and access to 

information.  

Educational technology provides many benefits in educational contexts. These technologies (1) allow for 

interactivity as the technology can systematically respond to the actions of the learners (e.g. serious 

games), (2) can present learning material adapted to students’ characteristics retrieved from trace data 

(e.g. Intelligent Tutoring Systems, ITS), (3) can provide feedback based on the quality of the learner’s 

performance, (4) provide opportunities for learners to self-regulate their learning, (5) allow for non-

linear access, that is, learners can select and receive learning activities that deviate from a set order, (6) 

can provide quick connections between representations of subject matter and, (7) allow for 

communication with a wide audience (e.g. peers, subject-matter experts, pedagogical agents, etc.; 

National Academy of Sciences, 2018).  

Consequently, the omnipresence of educational technologies also creates the need to develop novel 

conceptual frameworks for effective pedagogy and strategies to enhance active, engaged, and 

meaningful learning that will lead to better learning outcomes for nearly every imaginable subject 

matter typical of 21st-century tasks (Ng, 2015).  

1.2.2. Shaping online education 

Online learning is one of the fastest-growing trends in the use of educational technology (Ng, 2015). 

Other terms used for online learning are e-learning, computer-based instruction, distance learning, 

technology-enhanced learning, etc. These terms are still expanding because of the evolving nature of 
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applications of online learning (Bell & Federman, 2013). Regardless of the small differences between 

these terms, they can all be defined as learning within an educational learning environment in which the 

Internet is used as the infrastructure of Information Technology (IT; Lane & D’Mello, 2019; Ng, 2015). 

As such, online learning shares many characteristics with the Internet such as openness, accessibility, 

and interactivity (Bell & Federman, 2013). 

Due to the increasing amount of technology tools, online learning can highly resemble face-to-face 

teaching. In online courses, students can watch videos, presentations, listen to audio files, and read or 

complete assignments at times of their convenience. Additionally, online learning allows for 

synchronous and asynchronous interactions and collaboration between students and the instructor via 

chat rooms, forums, and collaboration tools (e.g., Wikispaces, Skype, Google Drive, etc.; Ng, 2015). The 

majority of online learning in higher education takes place via LMS and/or virtual learning environments 

(VLEs)) of which Moodle and Blackboard, are the most well-known providers (Long & Siemens, 2011). 

An increasing amount of institutions in higher education are also offering Massive Open Online Courses 

(MOOCs). The most well-known providers of MOOCs are Coursera and edX. MOOCs are basically online 

courses consisting of short video lectures, online tests, and discussion forums. Massive refers to the 

capacity to enroll a large number of students and Open refers to free education as the learning materials 

are accessible for all users (Ng, 2015). As a consequence, learners have the opportunity to participate in 

lectures from famous professors of top universities. Nonetheless, despite these promising advantages, 

MOOCs are often criticized for offering a low-quality instructional design which frequently results in low 

completion rates (Phan, McNeil & Robin, 2016). 

1.2.3. A 4C/ID-based online learning environment  

As aforementioned in section 1.3. the 4C/ID model is a research-based instructional design model that 

has proven to be effective in promoting complex learning (Lim et al., 2009; Melo & Mirando, 2014; Sarfo 

& Elen, 2005). Former studies have also indicated that this model can easily be applied in online contexts  

(Frerejean et al., 2019a; Melo & Miranda, 2014). Nonetheless, to be effective, online learning requires 

learners to take responsibility for grasping learning opportunities (Elen, 2020).  

This responsibility can partly be monitored by adjusting the amount of provided learner control in an 

online learning environment. Learner control is the extent to which learners have opportunities to make 

their own decisions regarding pace, strategies, or sequence according to their interests and preferences. 
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Consequently, learner control can be promoted in online courses when the learners are offered a set of 

learning tools and services which they can select and use in a way they deem fit (Väljataga & Laanpere, 

2010).  

Embedding learner control in online courses is strongly advised as it is believed to enhance learning. 

More particularly, former research indicated that giving learners a sense of control positively influences 

students’ motivation, level of confidence, self-directed learning, and persistence to deal with the 

learning content (e.g. Dollinger, 2000; Lee, Choi & Kim, 2012; Taipjutorus, 2012). This phenomenon can 

also be related to Mayer’s (2003) pacing principle indicating that learners learn better when they are 

allowed to have control over the pace of their learning.  

Applied to the 4C/ID-model, learner control is largely promoted when the components of the 

instructional model are offered in a non-embedded manner and subsequently can be consulted 

voluntarily and non-linearly (van Merriënboer & Sluijsmans, 2009). For instance, students can consult 

procedural information or select part-task practices to remediate weaknesses in their achievements. 

Nonetheless, making thoughtful decisions concerning learning needs can be quite challenging and often 

depends on students’ motivation and perceptions on the perceived functionality (see also: 1.2.2.; Elen, 

2020; Lust, Juarez Collazo, Elen & Clarebout, 2012).  

1.2.4. Technology acceptance of an online learning environment  

Taking learning opportunities can be influenced by the learner's acceptance of the online learning 

environment as a useful learning tool (Schepers & Wetzels, 2007; Šumak, Hericko and Pušnik, 2011; 

Terras & Ramsay, 2015). A model that is frequently used to explain why an individual accepts or rejects 

IT, is the Technology Acceptance Model (TAM) proposed by Davis (1989). TAM postulates that the 

combination of perceived usefulness (PU) and perceived ease of use (PEOU) indicates students’ 

technology acceptance. PU is defined as the degree to which the learner believes that using the IT will 

improve his or her learning performance, whereas PEOU is the degree to which the learner believes that 

using the IT will be user-friendly (Venkatesh & Davis, 2000). Former studies that used TAM as a baseline 

(i.e. by adopting PU and PEOU) have confirmed that technology acceptance influences the actual use in 

the context of online learning (Islam, 2013; Juarez Collazo, Wu, Elen & Clarebout, 2013; Šumak et al., 

2011). Additionally, a former study that has extended TAM with students’ learning outcomes, indicated 

that the actual use of the online course can also influence students’ learning outcomes (Juarez Collazo 
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et al., 2013). This seems to illustrate the importance of the perceived technological acceptance for the 

effectiveness of online learning environments.   

1.2.5. The use of Learning Analytics to investigate (online) learning processes 

The growing use of online learning environments in educational institutions has provided a wide range 

of trace data. More particularly, learning can be assessed at a fine level of granularity based on learners’ 

actions, choices, and performance (e.g. clickstream data, time spent, time-on-task, time delays between 

responses, sequential movement etc.). The collection and analysis of trace data provide opportunities 

to obtain insight into the online learning processes and/or align the online learning environment with 

the learners’ needs (Davies et al. 2017; Wong et al. 2019).  

Two research fields, namely educational data mining (EDM) and Learning Analytics (LA) have a joint 

interest in how trace data can be exploited to benefit education and the science of learning (Baker & 

Inventado, 2014). EDM is mainly concerned with the analysis of large-scale educational data (i.e. also 

referred to as Big Data), e.g., retrieved from online learning environments. EDM uses complex 

computational methods (e.g. Machine and Deep Learning, Social Network Analysis) to model learning 

processes. These models can be used to predict student engagement, performance, drop-out rates, etc. 

Moreover, the models can be used to create sophisticated interactive learning systems (e.g. ITS, 

recommender systems) that deliver customized instruction and allow for adaption of the learning 

system according to the learner profile (i.e. student model; Lane & D’Mello, 2019; Wise & Schaffer, 

2015). Consequently, EDM mainly focuses on the technical specifications of predictive approaches (i.e. 

algorithms and student models).  

Nonetheless, when modeling learning processes, researchers should be careful when treating trace data 

as direct measures of learning (Davies et al., 2017). Although it may seem promising to predict learning 

behavior by using huge datasets, the sole focus on automated discovery without consideration of human 

judgment can be harmful (Davies et al., 2017; Gašević, Dawson & Siemens, 2015; Wise & Shaffer, 2015; 

Wong et al., 2019). From this demand, LA has emerged as a research field (Larusson & White, 2014; 

Selwyn, 2019). The official definition of LA is “the measurement, collection, analysis, and reporting of 

data about learners and their contexts, for purposes of understanding and optimizing learning and the 

environment in which it occurs” (Long & Siemens, 2011, p. 34). Accordingly, research in the field of LA 
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aims at understanding and optimizing the learning process by providing guidelines on how to adapt 

educational opportunities in accordance with the learners’ needs and abilities (Gašević et al., 2015). 

Researchers from the Learning Analytics and Knowledge community (LAK) emphasize that a research-

based learning theory should be taken into account during all stages of the study, to have insight into 

how trace data is related to learning processes, that is, when formulating hypotheses, when selecting 

important variables from trace data and, when interpreting the findings etc. (Davies et al., 2017; 

Milligan, 2018; Gašević et al., 2015; Wise & Schaffer, 2005; Wong et al., 2019). Additionally, Gašević et 

al. (2015) indicate that learners are active agents in their learning process. Consequently, learners that 

receive the same instructional conditions can choose different learning trajectories (Elen, 2020; Lust, 

Elen & Clarebout, 2013). To better understand the choices that learners make within online courses, LA-

researchers should take into account students’ internal conditions (e.g. prior knowledge) and external 

conditions (e.g. task complexity, online context) when investigating trace data (Gašević et al., 2015). 

Nonetheless, information on internal and external conditions is often hard to capture solely via log-data 

(Moissa, Bonnin & Boyer, 2019; Sharma & Giannakos, 2020). Consequently, different sources of data 

can provide information on learning processes that are the result from internal and external conditions 

and their interrelationships (e.g. cognitive load). These different sources of data can include self-

reported data or data retrieved from students’ communication patterns (e.g. speech, writing, gaze), 

behavioral measures (e.g. blink frequency, head movements), physiological data (e.g. skin-response 

measures, cardiovascular measures) and neural patterns (e.g. electrical activity of the brain) etc. (Chen 

et al., 2016; Moissa et al., 2019). Insights extracted from multimodal data enables researchers to 

investigate learners’ behavior in ways that would not be possible when using individual data sources. 

Moreover, former studies indicated that the combination of multimodal data leads to significantly better 

prediction models of learning outcomes (e.g. Smets et al., 2018b; Worsley, 2018). When researchers use 

multimodal resources to understand, predict, and optimize learning, these studies can be situated within 

the research field of Multimodal Learning Analytics (MMLA; Cukurova, Kent & Luckin, 2019).  

1.3. Research aims and overview of the conducted studies 

The hypothesized conceptual framework of the current PhD project indicates that the effectiveness of 

4C/ID-based online courses largely depends on students’ cognitive, motivational-affective 

characteristics and the use of a 4C/ID-based online course (Liem et al., 2008; Song, Singleton, Hill & Koh, 
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2004; Taub, Azevedo, Bouchet & Khosravifar, 2014). Moreover, it emphasizes the importance of the 

integration of a learning theory, and the connection of internal and external conditions with trace data 

to understand complex learning processes (e.g. Gašević et al., 2015; Wong et al., 2019).  

1.3.1.   Research track 1 

Against this theoretical framework, a first research track investigated the influence of individual 

differences and use on the effectiveness of a 4C/ID-based online course. As aforementioned in section 

1.3., a 4C/ID-based learning environment promotes complex learning (e.g. Sarfo & Elen, 2005). 

Nonetheless, the provision of a qualitative research-based learning environment by no means ensures 

that students will grasp learning opportunities (Elen, 2020). Given that learners are active agents of their 

learning processes, grasping learning opportunities strongly depends on their cognitive, and 

motivational-affective characteristics (Elen, 2020; Gašević et al., 2015). In the introduction, we provided 

an overview of characteristics that can influence the use of the online learning environment and 

subsequently, students’ learning outcomes (i.e. prior knowledge, motivation, perceived instructional 

quality, technology acceptance). However, we do recognize that other characteristics (e.g. test anxiety), 

which were not covered within the research project, might influence the effectiveness of online learning 

environments for complex learning.  

1.3.2.   Studies of research track 1 

The general aim of research track 1 was to investigate the influence of individual differences and the use 

on the effectiveness of an online learning environment for complex learning. Therefore, three studies 

were conducted in which two online courses were developed in Moodle, and systematically designed 

according to the research-based 4C/ID-model. In those studies we investigated relationships between 

students’ cognitive and motivational-affective characteristics on the one hand and students’ use of the 

learning environment and their learning outcomes on the other hand, as illustrated in Figure 2. The 

content of the online learning environments were ‘teaching French as a foreign language’(i.e. Study 1) 

and ‘learning French as a foreign language’ (i.e. Study 2/3).  

 

In the first and second study, we focused on students’ technology acceptance and the perceived 

instructional quality. Study 1 examined how technology acceptance influences the quantity of use of the 
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4C/ID-based online learning environment and how this influences learning gain in a highly ecologically 

valid context. Study 2 investigated how the perceived instructional quality of a 4C/ID-based online 

learning environment influenced technology acceptance, as well as the quantity and the quality of use 

(i.e. course performance) of the online learning environment.  

The third study was conducted in the same context of study 2 but had a different research focus. More 

particularly, this study focused on investigating the influence of students’ cognitive and motivational 

characteristics on differences in use. Moreover, study 3 investigated the influence of the differences in 

use, controlled for students’ cognitive and motivational characteristics, on students’ learning outcomes.  

 

 

Figure 3.1: Overview of the studies of Research Track 1 

 

   Study  
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By conducting these three studies in a comparable and systematized way, research track 1 strived to 

provide insight into the influence of individual differences on the effectiveness of a 4C/ID-based online 

course. Former studies have indicated that it is possible to monitor the influence of individual differences 

on the effectiveness of online learning environments by adjusting the learning environment to students’ 

individual differences (e.g. Moos & Azevedo, 2009). As the current research project focuses on complex 

learning, it is advisable to provide customized support in line with students’ cognitive functioning. 

Consequently, cognitive processes that are undesirable (e.g. cognitive underload or overload) can be 

prevented. In order to provide customized support, we should first and foremost be able to measure 

cognitive processes during online complex learning.  

1.3.3.   Research track 2 

In order to be able to assess cognitive load during online complex problem solving, a second research 

track focused on investigating whether cognitive load can be measured via physiological data. The 

physiological approach is based on the assumption that changes in cognitive load can influence body 

properties (Moissa et al., 2019). The physiological measures that were explored were skin responses 

such as electrodermal activity (EDA) and skin temperature (ST) and cardiovascular responses such as 

heart rate (HR) and heart rate variability (HRV). This selection of physiological data was based on prior 

research on cognitive load assessment, the wearability and non-obtrusiveness of the technologies (i.e. 

wristband and chest patch). 

1.3.4.   Studies of research track 2 

In research track 2, two online courses were developed in Moodle containing different learning tasks on 

geometry and statistics. In order to induce differences in cognitive load, task complexity of the learning 

tasks was manipulated based on element interactivity (i.e. intrinsic load) and the provision or absence 

of instructional guidance (i.e. extraneous load; Sweller, 2010). The design of the studies is illustrated in 

Figure 3.  

 

In a fourth study differences in cognitive load were investigated during the problem-solving process of 

a high and low complex task on teaching geometry. In view of verifying the manipulation and 

investigating how changes in cognitive load can be measured, self-reported cognitive load (incl. intrinsic, 
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extraneous, and germane) was combined with EDA and ST during the problem-solving process. 

Additionally, differences between self-reported and physiological data during the problem-solving 

process of the high and low complex tasks were examined. Moreover, in order to investigate how self-

reported data is related to physiological data, this study correlated the self-reported cognitive load with 

physiological data. Finally, through visual analysis, peaks of EDA and ST during the online complex 

problem-solving process were associated with specific learning activities.  

 

In a fifth study four sets of learning tasks on probability calculations in statistics were developed in an 

online learning environment. The four sets of learning tasks were manipulated based on two dimensions, 

to induce intrinsic load and extraneous load. In order to measure cognitive load during online problem 

solving, the self-reported cognitive load was combined with physiological data such as EDA, ST, HR and 

HRV. Firstly, the study examined differences across the four interventions in view of physiological data. 

Additionally, in order to investigate how self-reported data is related to physiological data, this study 

investigated how much variance of the self-reported cognitive load was explained by physiological data. 

Finally, in view of creating a more adaptive online learning environment based on students’ cognitive 

load, a machine learning model was created in order to detect high cognitive load during online problem-

solving.  
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Figure 2.2: Overview of the studies of Research Track 2 

 

By conducting these two studies in a comparable and systematized way, research track 2 strived to 

provide insight into whether (non-obtrusive) physiological data can be used for assessing cognitive load. 

The findings can be useful for follow-up research that focuses on predicting cognitive load and/or 

creating interactive online learning environments based on students’ cognitive needs during online 

complex learning. 

1.3.5.   Overview of the doctoral thesis 

The doctoral thesis is not written as a monograph but is a compilation of five studies that have been 

published. Therefore, some overlap in theoretical background and methodology exists among the 

various studies. Table 1 gives an overview of the structure of the doctoral thesis.  
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Table 1.1. 

 

Visualization of the structure of the doctoral thesis 

 

 

A general conclusion and discussion of the five studies complete the doctoral thesis. In this section, we 

will discuss the findings per research track. Additionally, this will be completed by methodological and 

practical implications, combined with the limitations and perspectives for future research. 
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2. Technology acceptance of a 4C/ID- based online course 

2.1. Introduction 

Even though the number of online courses being delivered in higher education is increasing, their 

effectiveness is often limited (Bell & Federman, 2013; Johnson & Aragon, 2003; Terras & Ramsay, 2015). 

A common problem seems to be that online courses tend to build on a very traditional view of learning 

(Johnson & Aragon, 2003; Revere & Kovach, 2011). This traditional view of learning sees the student as 

a passive receiver of knowledge and along with this view many online courses provide academic, 

decontextualized information and exercises that can be used primarily to drill and practice (Herrington, 

Oliver & Reeves, 2003). Meanwhile, the effectiveness of online courses can be greatly enhanced when 

it is designed properly by taking the educational objectives and the learners’ needs into account (Elen, 

2004; Huang, Rauch & Liaw, 2010). The instructional design should enable learners to transfer more 

complex cognitive skills or competencies (van Merriënboer et al., 2002). Moreover, instructional 

designers should be able to gain and maintain students’ attention by providing a virtual learning 

environment (VLE) that stimulates engagement and participation. In order to achieve that goal, it is clear 

that the importance of understanding students’ psychological constructs of motivation, metacognition 

and cognitive abilities that influence students’ interactions with online courses should be recognized 

(Terras & Ramsay, 2015). As we recognize that students’ characteristics and pedagogical considerations 

are interrelated, instructional designers need to employ approaches that increase student engagement 

in the learning environment and that allows us to achieve our educational objectives (Czerkawski & 

Leyman, 2016).  

Merrill (2002) claims that student engagement can be promoted by incorporating the First Principles of 

Instruction, more particularly by (1) using real-world problems, (2) activating existing knowledge, (3) 

demonstrating new knowledge, (4) allowing students to apply the new knowledge and, (5) allowing the 

learner to integrate the new knowledge into the learners’ world. An instructional design model that uses 

the First Principle of Instruction as the driving force for designing learning environments and that has 

proven to be especially useful for complex learning is the four-component instructional design model 

(4C/ID model) elaborated by van Merriënboer et al. (2002). The 4C/ID-model focuses on the whole task 

learning by providing four interrelated components, namely, learning task, part-task practice, supportive 

information, and just-in-time information. The design of the VLE studied is based on the 4C/ID-model. 
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The VLE aims at developing pre-service teachers’ professional knowledge for teaching oral interaction 

French. Teaching oral interaction French is highly complex as it requires an instructor to combine 

domain-specific declarative and procedural knowledge with teaching skills and teacher attitudes. To deal 

with the complexity the learning tasks consist of authentic class situations, the part-task practice consists 

of drill-and-practice exercises (e.g. grammar and vocabulary), the supportive information is the bridge 

between what students already know and new knowledge (i.e. theory) and finally, just-in-time 

information is information that is prerequisite to the learning of the recurrent aspects of the learning 

tasks. Teacher professional knowledge for teaching oral interaction French can be defined as complex 

since it comprises the integration of knowledge, skills, and attitudes (Merrill, 2002; Kirschner & van 

Merriënboer, 2018).  

Nevertheless, having access to technology, based on a well-considered instructional design aimed at 

improving student engagement, by no means ensures it will be used or used effectively (Thompson, 

Higgins & Howell, 1991). Students do not always embrace these learning opportunities, and therefore 

enhanced learning outcomes cannot be ensured (Clarebout, Horz, Schnotz & Elen, 2010). The successful 

implementation of the VLE highly depends on the students’ perception of its usefulness and ease of use 

(i.e. useful in achieving their educational and personal goals and facilitating the learning process). These 

factors have been proven to affect students’ initial acceptance and future usage of a VLE (Lau & Woods, 

2009; Šumak et al. 2011; Tarhini, Hone & Xiaohui, 2013). In this study, the constructs perceived ease of 

use (PEOU) and perceived usefulness (PU) from the Technology Acceptance Model (TAM) were retrieved 

to examine the effect of students’ acceptance on and the actual use, on the one hand, and the 

relationship between actual use of the VLE and their performance on the other hand. The following 

section clarifies how the 4C/ID-model is appropriate for complex learning and how TAM can contribute 

to understanding the impact of the students’ acceptance of the VLE on the actual use, and the actual 

use in turn on performance. 

2.2. Theoretical background 

Instructional design for complex learning 
 

The primary factor in any instructional initiative, regardless of format or venue, is the quality of the 

instructional design that is ultimately implemented (Johnson & Aragon, 2003). Many approaches, 

models, and frameworks exist for designing quality learning environments. The main concern is how to 
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design a learning environment that conduces a high level of student engagement (Czerkwasky & 

Leyman, 2016). Based on a review of instructional design theories, Merrill (2002) identified five First 

Principles of Instruction to promote student engagement. He claims that student engagement will be 

promoted when (1) instruction is problem-centered (i.e. use of real-world problems), (2) relevant 

previous experience is activated, (3) students are exposed to demonstrations of what they are to learn, 

(4) students have opportunities to try out what they have learned with instructor feedback and, (5) 

learners are encouraged to integrate what they have learned into their personal lives. If one or more of 

these principles are violated during instruction, Merrill argues that learning can be negatively influenced 

(Frick et al., 2010).  

One unified model that aligns with the above principles is the four-component instructional design 

model (4C/ID-model) elaborated by van Merriënboer et al. (2002). The 4C/ID-model involves four 

interrelated blueprint components: learning tasks, part-task practice, supportive and just-in-time 

information (van Merriënboer, 1997). The learning tasks are the backbone of the design process, and 

are authentic, whole-task experiences that confront the student with all constituent skills that make up 

a complex skill. They allow the simultaneous practice of domain-specific knowledge and cognitive 

strategies. They are clustered into task classes according to the level of their complexity or difficulty. The 

first task in each task class has high learner guidance and support in comparison to the others. The part-

task practice consists of items that are provided to learners to improve recurrent aspects of the whole 

complex skill (i.e. learning tasks). The instructional methods of the part-task practice aim at reaching a 

very high level of automaticity. For each learning task supportive information is given. Supportive 

information provides all the information needed to complete non-routine aspects of learning tasks, 

which frequently involves problem solving and reasoning. It helps learners to relate what they already 

know with what may be helpful to know in order to solve the learning tasks. Just-in-time information is 

a prerequisite to the learning and performance of recurrent aspects of the learning tasks. It allows 

students to complete and learn routine aspects of learning tasks by specifying exactly how to solve the 

routine aspects of the tasks. It is presented just in time when learners need it (Kirschner & van 

Merriënboer, 2018). As aforementioned, the content of the VLE in the present study relates to teaching 

pre-service teachers how to prepare and conduct a lesson on oral interaction in French. Teaching oral 

interaction in French in the context of a foreign language is highly complex. While teaching, a teacher 

needs to use his or her pedagogical content knowledge (i.e. PCK), content knowledge (i.e. CK), and 

pedagogical knowledge (i.e. PK) simultaneously in various situations (Jonassen, 1997; van Gog, 
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Sluijsmans, Joosten-ten Brinke & Prins, 2008). The 4C/ID-model intends to facilitate complex learning 

(van Merriënboer, Kirschner & Kester, 2003), therefore the instructional design of the VLE was based on 

the 4C/ID-model. However, even though a VLE is based on a qualitative instructional design, 

performance gain can be obstructed by students’ unwillingness to accept and use VLE to improve their 

learning (Selim, 2003; Šumak et al., 2011). Therefore, in the next section, factors that influence students’ 

acceptance of a VLE are discussed.  

Technology Acceptance 
 

Research on technology acceptance is very compendious, building on the basis of social psychology and 

sociology theories (Davis, 1989; Legris, Ingham & Collerette, 2003; King & He, 2006; Šumak et al., 2011; 

van Raaj & Schepers, 2008). Fishbein and Ajzen (1975) developed the Theory of Reasoned Action (TRA) 

that has proven to be successful in predicting and explaining the psychological determinants of behavior. 

According to TRA, the immediate determinant of a person’s behavior is the intention to perform the 

behavior (BI) which is influenced by the attitude towards the behavior and subjective norm, which is a 

person’s perception that he/she should perform that particular behavior (Venkatesh & Davis, 2000). 

Davis (1989) introduced an adaption of TRA, the Technology Acceptance Model (TAM). As TRA was 

designed to explain any human behavior, TAM was designed to explain computer usage behavior. The 

goal of TAM is to explain technology acceptance across a broad range of information technologies, while 

at the same time being both parsimonious and theoretically justified (Davis, Bagozzi & Warshaw, 1989). 

TAM has been empirically tested in many context and fields and has proven to be a useful theoretical 

model in helping to understand and explain the acceptance, adoption and use of information 

technologies (Legris et al., 2003). Moreover, Šumak, et al. (2011) systematically examined existing 

knowledge in the field of online learning acceptance and concluded that TAM is the most common 

ground theory in online learning acceptance literature. Davis (1989) claims that two cognitive constructs 

PU and PEOU are of primary relevance for technology acceptance (Davis et al., 1989).  

It is hypothesized that PU and PEOU are major influences of an individual’s attitude towards using 

technology (ATT), thus, ultimately relating to actual use (King & He, 2006; Schepers & Wetzels, 2009). 

PU is defined as the extent to which a person believes that using the system will enhance his or her 

performance in terms of the effectiveness of learning, productivity (i.e. time-saving). PEOU is defined as 

the extent to which a person believes that using the system would be free of effort, in terms of physical 

and mental effort (i.e. ease of learning; Teo & Zhou, 2016). ATT is hypothesized to be a major 



Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

25 
 

determinant of BI (Davis, 1989). However, prior research found that the mediating role of attitude 

toward using between PU and PEOU on BI has not always been confirmed (Burton-Jones & Hubona, 

2006; van Raaj & Schepers, 2008; Venkatesh & Davis, 2000). For instance, Teo (2009) compared two 

versions of TAM: with attitude and without attitude and found that attitude towards use does not 

contribute to the total variance in usage. This study supported previous studies that found the attitude 

construct in TAM to be unnecessary. Furthermore, TAM is usually validated by using a measure of BI 

rather than actual use (Turner, Kitchenham, Brereton, Charters & Budgen, 2010). Therefore, Turner et 

al. (2010) investigated whether TAM explains actual use. A meta-analysis of 79 relevant empirical studies 

showed that BI is likely to be correlated with actual use, but PU is less likely correlated with actual use. 

Additionally, the associations were lower for objectively measured technology use (e.g. computer-

recorded form) than for self-reported usage. Self-reported usage was in each study determined by 

asking two to four questions related to the frequency of use and/or the amount of time spent using the 

system. Former researchers have pointed out that self-reported usage is a simplistic view of system use 

that has important shortcomings. Self-reported usage is known to be subject to the common method 

bias, which distorts and exaggerates the causal relationship between independent and dependent 

variables (Benbasat & Barki, 2007; Legris et al., 2003; Turner et al., 2010).  

Few prior researchers examined the direct effect of students’ acceptance (i.e. PU and PEOU) on actual 

use in the context of VLEs, and those who did, used self-reported usage as the dependent variable (Islam, 

2013; van Raaj & Schepers, 2008, Selim, 2003). Selim (2003) concluded that PU and PEOU (i.e. indirect 

effect) are key determinants for self-reported usage. The relationship between PU, PEOU and actual use 

was well supported, accounting for 83% of the total variance. Van Raaj and Schepers (2008), in 

accordance with Selim, found a direct effect of PU and an indirect effect of PEOU on self-reported usage 

(33% of the total variance). Islam (2013) studied the direct relationship of both constructs (i.e. PU and 

PEOU) on use, and found that both PU and PEOU had a direct effect on self-reported usage (45% of the 

total variance). Furthermore, using BI or self-reported use as the main dependent variable in prior 

research blinded researchers to other important effects, such as, students’ performance (Benbasat & 

Barki, 2007). Juarez Collazo et al. (2014) were pioneers in studying the relationship between students’ 

acceptance and the quantity of tool use in a computer-based learning environment, on performance. 

Tool use was defined as non-embedded support devices whose use depends on the students’ initiative 

(i.e. using the tools depends on students’ actions; Clarebout & Elen, 2006). In contrast with prior studies, 

Juarez Collazo et al. (2014) measured the quantity of tool use objectively (i.e. log files). This study 
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indicates that PU has a positive influence on actual use (R² = .17) and actual use positively influences 

students’ performance (R² = .11). This study indicates that when actual use is measured objectively, less 

variance is explained by the constructs PU and PEOU. Additionally, it points out the importance of 

students’ PU and actual use on performance. However, an important limitation of the study of Juarez 

Collazo et al. (2014) was that the design of the study was merely experimental. The intervention was 

very short since the VLE consisted of only 10 different screens. Furthermore, the students possibly felt 

forced to use the tools during the intervention since they had to use them in a computer room under 

supervision. Additionally, the content of the computer-based learning environment was not integrated 

in their official educational program. In other words, the ecological validity of the study is rather low. To 

conclude, the majority of TAM research on VLE used self-reported actual use and had a technology 

focus. More specifically, it has been limited to experimental studies of adoption which differs from the 

real world in critical ways. Little research has placed the technology in its actual learning context 

(Benbasat & Barki, 2007; McGill & Klobas, 2009). Therefore, in the present study, the research design 

aims at maintaining the integrity of the real-life situation (i.e. ecological validity) in the experimental 

context and objectively measures actual use. 

Research model and research questions 
 

The present study aimed at investigating the relationship between students’ performance and their 

acceptance and actual use of the VLE in the context of foreign language teacher education. Firstly, the 

relationship between students’ acceptance to use the VLE and actual use was investigated. Taking TAM 

as a baseline, we used PU and PEOU as indicators of students’ acceptance, and we assumed a direct 

effect of PEOU on PU. Based on previous research, we assumed that PU and PEOU affect actual use 

(Islam, 2013; Juarez Collazo et al., 2014; Selim, 2003; van Raaj & Schepers, 2008). Secondly, the effect 

of the students’ acceptance and actual use of the VLE on students’ performance was studied. Based on 

the proposed research model, i.e. Figure 1, we formulated the following research questions: 

• RQ 1: How does students’ acceptance (i.e. PU and PEOU) influence actual use of the VLE 

• RQ 2: How does the actual use of the VLE influence students’ performance? 
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Figure 2.1.: The research model 

2.3. Method 

Participants 
 

The study took place in the Flemish part of Belgium. In Flemish primary teacher training institutions, 

students are prepared to teach all courses that are part of primary education. French is one of the 

courses that is taught in primary education because it is one of the country’s official languages. More 

specifically, French is compulsory starting from the fifth grade. Hence, French is part of the curricula in 

Flemish primary teacher training institutions. The content of the course was related to learning to teach 

oral interaction, in which aspects of PCK, CK and, PK were integrated. The participants were pre-service 

primary school teachers, recruited from two teacher training institutions i.e. second-year students. All 

of them had already experience in teaching French. The participants (N = 193) had an average age of 20 

years. The majority of the participants were female (85%), which is representative of the Flemish 

context. In this study, 15 students were bilingual (i.e. Dutch and French). 

The virtual learning environment 

 

The VLE is designed in accordance with the 4C/ID-model. The backbone of the VLE is learning tasks 

related to the teaching of oral interaction in French. Teacher professional knowledge is necessary to 

solve these learning tasks. The learning tasks are presented in an easy-to-difficult order with diminishing 

learner support (i.e. instructions or feedback) throughout each task class of the learning environment. 

Secondly, supportive information is provided. This information is task class-specific. At the beginning of 

each task class students are directed towards the supportive information (e.g. theoretical frameworks 

on how to teach oral interaction in French, related vocabulary and grammar, theoretical frameworks on 
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how to prepare a lesson). This information remains available while completing the task class. Thirdly, 

just-in-time information is presented throughout the learning tasks (e.g. feedback on the exercises). 

Finally, the learning environment includes part-task practice: mainly grammar and vocabulary and basic 

pedagogical skills. Links to these exercises are provided throughout the learning tasks. The part-task 

practices are always related to the learning task the student is working on. 

Study design 
 

As aforementioned, for the research design, we aimed to maximize the ecological validity of the study 

in order to be able to generalize the findings of our study to real-life settings. Accordingly, the 

administration sessions took place in the students’ teacher trainers. The content was delivered by the 

students’ teacher trainers. The content of the virtual learning environment was part of the students’ 

training program and basically replaced a face-to-face session. The first test administrations took place 

at the beginning of the second semester. During this first administration session students received a 

pretest (i.e. PCK-, CK- and, PK-test), and the purpose of the online learning environment was explained. 

After the first administration session students could use the VLE at home for three months. Data of 

actual use consisting of log files were automatically tracked by the Moodle LMS. During this period the 

students were encouraged to study the learning content by using the VLE at home. For each module, 

the participating instructors gave their students a deadline, but still a lot of freedom was given to the 

students as they could choose how and when to use the VLE within the given time. The students spent 

an average of 2 hours and 49 minutes on using the VLE. After three months, a second administration 

session took place. During this session, the students received a posttest and a self-reported 

questionnaire measuring PU and PEOU. Both were measured simultaneously with the posttest to make 

sure that the students had sufficient experience with the VLE to have a valid opinion (Turner et al., 2010). 

During administration session 1 and 2, the participants had 90 minutes to complete the test. 

Measurements 
 

Students’ performance. To measure teacher professional knowledge of teaching oral interaction French, 

a quantitative paper-and-pencil instrument was used. The instrument consists of a total number of 212 

items and measures pedagogical content knowledge, content knowledge and pedagogical knowledge. 

The instrument focusses on formal, declarative knowledge. The level of difficulty of the test was aligned 

with the level that pupils in the Flemish part of Belgium are expected to reach at the end of secondary 

school, that is level B1 of the Common European Framework of Reference (Evens, Elen & Depaepe, 
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2017). The students’ performance was measured by a pretest-posttest-design, both containing the same 

content. The pretest was used to measure their prior knowledge. The posttest was used to measure the 

effectiveness of the intervention on the students’ learning outcomes (i.e. students’ performance: 

posttest-pretest). The Cronbach’s alpha scores were high (resp., Cronbach’s α = .89 for the pretest, and 

Cronbach’s α = .90 for the posttest). 

Technology acceptance. The two constructs PU and PEOU were measured on a six-point Likert-type scale 

ranging from ‘strongly disagree’ to ‘strongly agree’. The PU was measured by six items and PEOU was 

measured by five items based on the revised item scale of Davis (1989) for PU and PEOU. The statements 

were adapted to the VLE and translated into Dutch. Scale validity was assessed via confirmatory factor 

analysis (CFA). The factor reliability was tested by calculating the Cronbach’s alpha coefficients (Table 

1). All coefficient exceeded .70. After CFA three items (i.e. PU3, PU4, PEOU1) were removed due to very 

poor factor loadings (< .50 ; Kline, 2013). 

Table 2.1. 

Confirmatory Factor Analysis 

Latent variable item Mean 

(SD) 

Β α 

PU1 Using the VLE allows me to learn this subject with less 

effort. 

3.96 

(.98) 

.93 .87 

PU2 The VLE will make my learning of this subject more 

effective. 

4.27 

(1.10) 

.73  

PU5 Using the VLE makes it easier for me to learn this 

subject. 

4.21 

(1.00) 

.80  

PU6 In general, the VLE helps me to study this subject. 3.97 

(.94) 

.72  

PEOU2 I find it easy to become skillful in working with the 

VLE. 

4.10 

(.77) 

.72 .77 

PEOU3 The VLE is easy to use. 4.19 

(.93) 

.85  

PEOU4 The VLE is easy to understand. 4.16 

(.77) 

.55  

PEOU5 In general, I find the VLE user-friendly 4.11 

(.84) 

.50  

 

Actual use. In order to investigate the impact of PU and PEOU on actual use, actual use was objectively 

measured using log files that automatically recorded participants’ identities and the time they spent on 
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the different components of the 4C/ID-model in the database of the Moodle LMS. Consequently, we 

were able to capture for each participant the time that he/she spent on using the VLE. 

Data Analysis 
 

Firstly, descriptive statistics were used to describe the basic features of the data. Secondly, the 

correlations between all variables were explored by using a simple correlation matrix and the 

coefficients of determination were calculated. Thirdly, our research model was fitted in R using the 

Lavaan package 3.4.0 (Rosseel, 2012). Fourthly, to specify causal relationships between the different 

variables, parameter estimations were calculated using structural equation modeling (SEM). SEM is a 

statistical approach for testing hypotheses about the relationships among observed (i.e. actual use and 

students’ learning gain) and latent variables (i.e. PU and PEOU). 

2.4. Results 

Descriptive statistics, illustrated in Table 2, indicate that there are major differences between students 

concerning the amount of usage of the VLE (i.e. SD = 1 hour, 16 minutes). Looking at the performance 

variable, we observe an average learning gain of 4.82 (SD = 5.22). 

Table 2.2. 

Descriptive statistics of the manifest variables 

 Minimum Maximum Mean SD 

Actual use (time) 17 442.00 144.20 84.46 

Performance - 14.82 17.99 4.82 5.22 

 

In the first phase, correlations were investigated. According to the correlation matrix, there is a 

significant moderate positive relation between PEOU and PU (r = .37, p < .01). Students with higher 

PEOU are more likely to have a higher PU and vice versa. Furthermore, PU has a significant moderate 

positive relation with actual use (r = .31, p < .01). Actual use has a moderate significant positive relation 

(r = .31, p < .01) with performance.  
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In a second phase SEM-analysis was conducted in order to fit the model and that investigates the 

relationships between the different variables. SEM was conducted in Lavaan (Rosseel, 2012). For the 

missing values, a two-stage approach was applied. This approach obtains a saturated maximum 

likelihood (ML) estimate of the population covariance matrix and then uses this estimate in the complete 

data ML fitting function to obtain parameter estimates (Savalei & Bentler, 2009).  Lavaan converged 

normally after 24 iterations. The χ²-test indicates the difference between observed and expected 

covariance matrixes and should be non-significant. In addition to χ² statistics, the root mean squared 

residual (SRMR), the root mean squared error of approximation (RMSEA), comparative fit index (CFI) 

and the Tucker-Lewis Index (TLI) were examined. SRMR is the difference between the observed variance 

and the predicted variance. RMSEA adjusts for the complexity of the model and the size of the sample 

(Rosseel, 2012). Table 3 summarizes the overall goodness- of fit measures of the model. All values fit 

well, despite the SRMR, but given the limited sample size (< 200 cases), a value of standardized SRMR < 

.10 is generally considered adequate. Assessing all measures and considering the above statements, the 

original structural model was accepted and believed adequate for further analysis (Kline, 2013). 

Table 2.3. 

Model fit measures 

Fit measures Values Recommended value 

Chi square (χ2) 40.82; df = 33 (p = .164) p > .05 

RMSEA .04 < .05 
SRMR .08 < .06 
CFI .96 > .95 
TLI .97 > .95 

 

Figure 2 shows the research model. Research question 1 relates to the influence of PU and PEOU on the 

actual use of the VLE. First, the influence of PEOU and PU was investigated on actual use. PEOU has a 

significant influence on PU (β = .47, p < .01). PEOU explains 18% of the variance on PU. Secondly the 

influence of PU and PEOU on actual use was investigated: PU has a significant influence on actual use (β 

= .38, p < .01) but PEOU does not (β = .16, p = .15). PU and PEOU account for 18% of the explained 

variance in actual use. Research question 2 relates to the influence of the actual use of the VLE on 

students’ performance. Actual use has a positive significant effect on students’ performance (β = .33, p 
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< .01) and explains 7% of the variance on performance. These findings suggest that students’ PU of the 

VLE can be used as an indicator of their future use of the VLE and their performance. 

 

Figure 2.2: Structural equation model with standardized path coefficients 

2.5. Discussion 

The current study examined whether students’ acceptance of a VLE for complex learning is beneficial 

for students’ actual use of the VLE, and students’ performance in an ecologically valid context. 

Accordingly, the current study firstly investigated the direct effect of PU and PEOU on actual use 

measured objectively by using log files retrieved from the Moodle LMS (i.e. capturing the total time that 

was spent on using the VLE; RQ1). Results reveal that PU has an influence on actual use. The positive 

relationship between PU and actual use is in line with former studies. Previous acceptance studies in the 

context of VLEs also emphasized the importance of PU for the actual use of the VLE (Islam, 2013, Juarez 

Collazo et al., 2014; van Raaj & Schepers, 2008; Selim, 2003). The results correspond with the literature 

on the cognitive mediational paradigm which suggests that students should perceive the functionality 

of the VLE, in order to use it. More specifically, students should recognize that the VLE will be beneficial 

for their learning process (Clarebout & Elen, 2006). It should be noted that PU explains little variance in 

usage in the current study. Former studies that studied the relationship between PU and actual use 

reported stronger relationships (Islam, 2013; van Raaj & Schepers, 2008, Selim, 2003). The major 
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difference in these studies was that actual use was measured by self-reported usage instead of 

automatically recorded log files (i.e. objective information). As aforementioned in the theoretical 

framework, self-reported usage exaggerates the causal relationship between independent and 

dependent variables, which has an influence on the variance explained of the actual use (Benbasat & 

Barki, 2007). Juarez Collazo et al. (2014) studied the effect of students’ acceptance on actual use (i.e. 

based on log files). Likewise, the current study results indicated that PU had a positive influence on actual 

use. Nevertheless, in the current study there is no significant relationship between PEOU and actual use, 

whereas in the study of Juarez Collazo et al. (2014), there is a significant relationship between PEOU and 

actual use. There is a major difference in the design of the study of Juarez Collazo et al. (2014) that could 

explain the aforementioned different findings. Students’ PU and PEOU was measured before the 

intervention. In the current study the students’ acceptance questionnaire (i.e. PU and PEOU) was filled 

in after actual use of the VLE together with the posttest. The reason for applying this study design was 

to make sure that students had sufficient experience with the VLE in order to have a valid opinion about 

PU and PEOU (Turner et al., 2010). Since PU and PEOU were questioned after the intervention this might 

have influenced the weak relationship between PEOU and both PU and actual use in this study. This 

aligns with the study of Venkatesh, Morris, and Davis (2003) as they did not find any direct post-

implementation effects of PEOU on BI, only pre-implementation effects. Their findings indicate that as 

students gain experience with the VLE, PEOU is overshadowed by other factors (Schepers & Wetzels, 

2007). This could be an explanation for the differences in the relationships between PEOU and PU and 

actual use in the study of Juarez Collazo et al. (2014) and the present study.  

Secondly (i.e. RQ2) the current study investigated the effect of actual use on students’ performance (i.e. 

posttest-pretest). Results reveal that actual use has a significant effect on students’ performance. 

Findings are in line with the study of Juarez Collazo et al. (2014), who also found that actual use had a 

positive effect on students’ performance (posttest-pretest). The strength of the relationships is similar 

in both studies, which supports the view that student engagement (i.e. time-on-task) in learning 

exercises has an important influence on academic achievement (Revere & Kovach, 2011; Slavin, 2003). 

Nevertheless, in the study of Juarez Collazo et al. (2014), the total variance explained of performance 

was higher than in the current study. A possible explanation is that students’ performance could also be 

influenced by other courses. Since the study was ecologically valid, other courses containing CK, PCK, 

and PK were taught during the study and accordingly, this could have had an influence on students’ 

learning gain instead of using the VLE. 
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Limitations and future directions 
 

The current study has some important limitations. Firstly, the observation that a lot of variance of actual 

use in the current study remains unexplained suggests the need for additional research in incorporating 

potential unmeasured variables in the current study. Firstly, since the study took place in its actual 

context (i.e. teacher training institute), the students were encouraged by their instructor to use the VLE. 

In this study, the influence of the instructor on the students’ actual use was not measured (i.e. subjective 

norm). It should be measured as an external variable both influencing PU and actual use. Venkatesh and 

Davis (2002) hypothesized that subjective norm influenced both PU and BI, assuming that learners often 

choose to perform an action when one or more important referents say they should. Additionally, Legris 

et al. (2003) emphasized the need to include human and social change process variables (e.g. subjective 

norm). Moreover, the strong relationship between subjective norm on PU was once more confirmed by 

a meta-analysis performed by Schepers and Wetzels (2007). Furthermore, they showed that using a 

student sample seriously affected these relationships, since students have a stronger tendency to 

comply with authority. These findings raise the need for further research to examine the influence of 

the instructor on PU and actual use. A second important remark is that the VLE is based on the First 

Principles of Instruction of Merrill (2002). Since the VLE is based on the First Principles of Instruction, 

this should have a positive influence on students’ performance (Sarfo & Elen, 2011). Frick et al. (2010) 

studied the effect of using the First Principles of Instruction and found that the likelihood of a high level 

of student mastery of course objectives (i.e. student performance) is about five times greater than the 

likelihood when neither First Principles of Instructions occurred.  

Additionally, a well-considered instructional design could also influence students’ perceptions towards 

the online courses (Song et al., 2003; Rienties & Toetenel, 2016). Accordingly, it would be interesting for 

further research to complement the TAM framework with external indicators to investigate the effect 

of the perceived quality of the instructional design on students’ perceptions (i.e. PU and PEOU), use and 

students’ performance. Thirdly, even though Merrill (2002) claims that incorporating the First Principles 

of Instruction in a learning environment promotes student engagement, the importance of the degree 

of interaction in a VLE cannot be overlooked. Former studies indicated that students’ perceptions 

towards VLEs are tied to the degree of interaction with the instructor or peers (Jaggers & Xu, 2016). 

Additionally, not only the pedagogical design seems to influence students’ perceptions, but also the 

technology used to deliver the instructional material. In the current study we did not take into account 
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the effect of the technology used, meanwhile former research indicated that effective use of IT in 

delivering e-learning based components of a course is of critical importance to the success and students 

acceptance of online learning (Selim, 2007; Younis Alsabawy, Cater-Steel & Soar, 2016). Fourthly, prior 

research revealed that differences in tool use between students affected performance significantly (Lust 

et al., 2012). The current study examined the amount of time spent on the VLE and related this to 

students’ final performance. This log-indicator is too broad, since it gives little insight into why using a 

VLE existing of four different components containing different information (or different formats of 

information: summary, theory, part-task-practice), relates to learning. Specifying log-indicator or 

combining multiple log-indicators can give a more detailed picture of how the different components of 

a 4C/ID-based VLE support learning. 

2.6. Conclusion 

In conclusion, the objective of this study was to examine the strength of the path coefficients in a highly 

ecological valid study design. More specifically, we wanted to investigate whether students’ acceptance 

of a VLE influences objectively measured use and performance. With an instructional design based on 

the 4C/ID-model, the educational objective, context, and students’ needs were highly considered (Elen, 

2004). Findings suggest that students’ PU of the VLE can be used as an indicator of their future use of 

the VLE in an ecological context. Furthermore, results show that the actual use of the VLE has a positive 

influence on the students’ performance



 
 

36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 
 

37 
 



Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

38 
The text of this chapter was published as: Larmuseau, C., Desmet, P., & Depaepe, F. (2018). Perceptions of instructional quality: impact on 
acceptance and use of an online learning environment. Interactive Learning Environments, 7, 953-964. 
https://doi.org/10.1080/10494820.2018.1509  

 

 

 

 

 

 

 

 

Chapter Three 

The perceived instructional quality 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

https://doi.org/10.1080/10494820.2018.1509


Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

39 
 

3. The perceived instructional quality of a 4C/ID-based online course 

3.1. Introduction 

Online learning is increasingly important in higher education since it has many benefits, such as reduced 

education costs and flexible accessibility of education. Given the growing use of online learning 

environments, it is crucial to define the factors that influence the effectiveness of the online learning 

environments. Many researchers claim that instructional quality can contribute to the effectiveness of 

online courses (Czerkawski & Lyman, 2016; Terras & Ramsay, 2015). Accordingly, it is important to define 

quality indicators for designing online learning environments that promote students’ engagement. 

Merrill (2002) claims that the instructional design can promote students’ engagement and learning 

outcomes when (1) learners are engaged in real-world problems, (2) existing knowledge is activated, (3) 

new knowledge is demonstrated, (4) new knowledge is applied and (5) new knowledge is integrated into 

the learner’s world. These fundamental principles known as Merrill’s First Principles of Instruction, 

underpin all contemporary instructional design models and theories and can be implemented in any 

delivery system using any instructional architecture (Margaryan, Bianco & Littlejohn, 2015; Merrill, 

2002).  

Nevertheless, evidence from research indicates that applying the above-mentioned design principles is 

by no means a guarantee of success. As the instructional design and students’ characteristics are largely 

interrelated, students’ perceptions of the instructional quality are crucial to ensure its effectiveness 

(Martens et al., 2007; Terras & Ramsay, 2015). By way of illustration, the question is not only if a task is 

authentic, but whether it is perceived as such by the students (Martens, et al., 2007). Former research 

already indicated the influence of students’ perceptions on course effectiveness. Technology 

acceptance studies indicated the important influence of the perceived instructional quality on students’ 

acceptance of an online learning environment (Lee, Yoon & Lee, 2009; Liaw & Huang, 2013; Yang, Shao, 

Liu & Liu, 2017). Moreover, results revealed that students’ acceptance can influence the quantity of use 

in online courses (Juarez Collazo et al., 2014). Additionally, the study of Frick et al. (2010) revealed that 

integrating the First Principles of Instruction of Merrill (2002) in the course design is related to high levels 

of mastery of course objectives. Although, the aforementioned studies explored students’ perceptions 

of the quality of the instructional design and students’ technology acceptance, research on these 
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perceptions related to the quality of the use remains scarce. Meanwhile, former research indicates that 

the quantity of use does not necessarily mean that students used the online learning environment 

adequately (i.e. in line with the instructional intentions; Juarez Collazo, Elen & Clarebout, 2015). 

Moreover, little information is given about the instructional design of the studied online learning 

environments (Lee et al., 2009; Liaw & Huang, 2013; Yang, Shao, Liu, & Liu, 2017). As a result, we can 

only formulate limited recommendations for instructional designers on what quality indicators influence 

acceptance and use of an online learning environment. To deal with current limitations, this study 

investigates students’ perceptions and use of an online learning environment based on the guidelines 

of the 4C/ID-model from van Merriënboer (1997). The 4C/ID-based online course incorporates the First 

Principles of Instruction of Merrill (2002).  

The aim of this study is twofold. The first aim is to investigate the influence of the perceived instructional 

quality on students’ acceptance. A second aim is to investigate the impact of technology acceptance and 

the perceived instructional quality on the quantity and quality of use. In the current study, perceived 

instructional quality is based on the First Principles of Instructional of Merrill (2002), and technology 

acceptance is based on perceived usefulness and PEOU retrieved from the TAM (Davis, 1989). Quantity 

of use is based on the students’ course activity which is automatically retrieved from the Moodle LMS 

and the quality of use is based on students’ course performance (e.g. the quality of students’ answers 

to different tasks). Overall, finding instructional quality factors of an online learning environment that 

influences students’ acceptance and students’ quantity of use and quality of use can be instrumental 

information to support developers of online learning environments when designing their online courses. 

3.2. Theoretical background 

 

The quality of the instructional design 
 

Many current instructional design models indicate that effective learning can be promoted when online 

learning environments are problem-centered and involve the students in four distinct phases of learning 

(a) activation of prior knowledge, (b) demonstration of knowledge, (c) application of knowledge, and (d) 

integration of knowledge into the learners’ world (Jonassen, 1999; Merrill, 2002). Accordingly, Merrill 

(2002) elaborated five prescriptive design principles for problem-centered instruction for each of the 

four instructional phases, namely, the First Principles of instruction: (1) authentic problems: learning is 



Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

41 
 

promoted when learners are engaged in solving real-world problems, (2) activation: learning is 

promoted when existing knowledge is activated, (3) demonstration: learning is promoted when new 

knowledge is demonstrated to the learner, (4) application: learning is promoted when new knowledge 

is applied by the learners, (5) integration: learning is promoted when new knowledge is integrated into 

the learners’ world.  

 

An instructional design model that incorporates these design principles, is the 4C/ID-model developed 

by van Merriënboer (1997). The 4C/ID-model involves four interrelated components: learning tasks, 

part-task practice, supportive and just-in-time information (van Merriënboer, 1997; van Merriënboer & 

Kirschner, 2018). The backbone of the instructional design is concrete, authentic, problem-based, 

whole-task experiences learning tasks i.e. authentic problems that are grouped in a task class. Activation 

of prior knowledge is promoted by consulting support. More specifically, just-in-time information 

encourages learners to recall recurrent aspects of a task that can be used to organize the new 

knowledge, and supportive information is provided containing nonrecurring aspects of the learning task 

to promote elaboration. The learning tasks start with a worked example i.e. demonstration, that not 

only confront the students with the desired goals but also show the learner how to deal with a problem 

(van Merriënboer & Kirschner, 2018). The instructional design also stresses the application of knowledge 

and skills to solve problems. These problems are embedded in the learning tasks and part-task-practices, 

consistent with the learning objectives. Integration is at the center of the 4C/ID-model, since the whole-

task practice design leads the student towards a real-world task (Merrill, 2002). The learning tasks are 

sequenced based on their complexity. Merrill (2002) argues that if one of these First Principles of 

Instruction is lacking, this can negatively impact students’ performance. Frick et al. (2010) conducted a 

study in which they investigated the association between students’ perceived quality of the course 

design based on the First Principles of Instruction and students’ course achievement. Results indicated 

that students who agreed that these First Principles of Instruction were presented were more likely to 

achieve high levels of mastery of course objectives. Moreover, former research also indicated that 

quality indicators of the instructional design of an online learning environment can influence students’ 

acceptance of the online learning environment (Lee et al., 2009; Liaw & Huang, 2013; Yang et al., 2017). 

An overview of this research is provided in the next section. 
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Technology acceptance 
 

A model that is frequently used to explain why an individual accepts or rejects IT from a social 

psychological perspective is the technology acceptance model (TAM) proposed by Davis (1989). 

According to the study of Šumak et al. (2011) who systematically reviewed existing knowledge in the 

field of online learning acceptance, TAM is the most common ground theory in online learning 

acceptance literature. TAM postulates that both PU and PEOU indicate students’ technology 

acceptance. PU is defined as the degree to which the user believes that using the IT will improve his or 

her learning performance, whereas PEOU is the degree to which the user believes that using the IT will 

be user-friendly. According to TAM, PEOU has an important influence on perceived usefulness (Davis, 

1989).  

 

Former studies have already used TAM as a baseline, to investigate quality factors of the instructional 

design that influence students’ acceptance of online learning environments (Lee et al., 2009; Liaw & 

Huang, 2013; Yang et al., 2017). For instance, Liaw, and Huang (2013) conducted SEM to investigate the 

influence of the quality indicators of the instructional design (i.e. self-reported questionnaire about the 

interactivity) on PU of online learning environments. Results of 191 university students reveal that PU is 

influenced by the level of interactivity of online learning environments. Similarly, Lee et al. (2009) 

conducted a study where they investigated the influence of four perceived quality indicators, such as, 

instructor characteristics (e.g. clear instructions), teaching materials (e.g. fit with the learning 

objectives), design of learning content (e.g. a variety of learning content) and playfulness (e.g. improves 

creativity), on students' acceptance of online learning based on regression analysis. Results of 250 

undergraduate students indicate that instructor characteristics and teaching materials are positively 

related to PU. Furthermore, they observed that the design of learning content is positively related to 

PEOU. Moreover, Yang et al. (2017) developed a model for investigating quality indicators of the course 

design that influences students’ acceptance of Massive Open Online Courses (MOOCs). The quality 

indicators where system quality (i.e. integration of system functions and reliability of system operations), 

course quality (i.e. source and content of the information) and service quality (i.e. support delivered by 

the MOOC’s service provider). These quality indicators were integrated into the model as predictors of 

students’ acceptance. Based on an SEM-analysis of 294 respondents, results indicated that system 

quality has a significant impact on PEOU and, course quality and service quality are significant 

antecedents of PU. Results of the previous studies indicate that the perceived quality of the instructional 
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design can have an influence on students’ acceptance of online learning environments. Moreover, 

quality indicators of the course design seem to influence both PU and PEOU, whereas meaningful 

content of the online learning environment seems to have the tendency to exert more influence on PU.  

 

Given that students’ acceptance alone does not guarantee the effectiveness of the online learning 

environment, former studies have extended TAM, by adding the quantity of use as the dependent 

variable of perceived usefulness and PEOU (King & He, 2006; Schepers & Wetzels, 2007). The study of 

Juarez Collazo (2014) investigated the effect of students’ acceptance on the quantity of use (i.e. time 

spent in the online learning environment) and quality of use (i.e. analysis of the answers) and found a 

positive effect of PU and PEOU on the quantity of use, but none on the quality of use. Larmuseau et al. 

(2018) investigated the effect of students’ acceptance of actual use (i.e. time spent) in an ecologically 

valid context and found a positive impact of PU on the quantity of use. Both studies indicate that 

students’ acceptance can influence the quantity of use of an online learning environment. Summarized, 

the perceived instructional quality of the online learning environment can have a positive influence on 

students’ acceptance. Moreover, the perceived instructional quality and students’ acceptance can have 

an influence on the quantity of use (Juarez Collazo et al., 2014; Lee et al., 2009). Furthermore, results 

also indicate that the perceived quality of the instructional design can promote student engagement 

and course performance (Frick et al., 2010; Martens et al., 2007).  

 

Therefore in the current study, the first aim is to investigate the influence of perceived instructional 

quality operationalized in terms of the First Principles of Instruction on students’ acceptance. As we are 

interested in the impact of students’ perceptions on both quantity and quality of use, a second aim is to 

investigate the impact of students’ PU, PEOU and the perceived instructional quality on the quantity (i.e. 

course activity) and quality (i.e. course performance) on use. It should be noted that former studies gave 

little information about the instructional design of the investigated online learning environments. 

Therefore, major attention was given to the instructional design of the online learning environment as 

it was systematically designed according to the 4C/ID-guidelines. Furthermore, the online course 

incorporates the First Principles of Instruction in order to have insight on how these instructional design 

principles influence students’ PU, PEOU, quantity, and quality of use. A theoretical research model is 

proposed as shown in Figure 1 containing all variables in order to elucidate the relationships among 

these variables. 
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Figure 3.1.: The research model  

3.3. Method 

Participants 
 

The study took place in the Flemish part of Belgium. The participants were 161 first year Psychology and 

Educational Science university students. The majority of the students were female (91%). The average 

participant was 20 years old (SD = 2.92) which is representative for the student population in Educational 

Sciences (Conger & Dickson, 2017). Participation to research is part of the students’ training program. 

Before answering the questions, informed consent was obtained from all individual participants included 

in the study. 
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Study design 
 

The first administration session started with an introduction to the learning environment. After the 

exploration phase, the students were asked to use the learning environment at home for two weeks. 

The second administration session took place after those two weeks and consisted of a self-reported 

questionnaire about the quality of the instructional design (i.e. authenticity, activation, demonstration, 

application, and integration) and a self-reported questionnaire with the TAM constructs (i.e. PU, PEOU). 

The perceived quality of the instructional design and the TAM constructs were questioned after students 

used the online learning environment in order to make sure students had sufficient experiences with 

the learning environment to have a valid opinion. 

 

The online learning environment 

 

The online learning environment in the present study teaches French as a foreign language. The level of 

difficulty was aligned with the level that pupils in the Flemish part of Belgium are expected to reach at 

the end of the secondary school (i.e. level B1 of the Common European Framework of Reference; Evens, 

Elen & Depaepe, 2017). The online learning environment is developed along the lines of the 4C/ID-model 

(Van Merriënboer, 1997) and, accordingly, aligns with the First Principles of Instruction (Merrill, 2002). 

The problems formulated by the learning tasks are based on authentic situations (e.g. ordering food in 

a restaurant) in easy-to-difficult order with diminishing learner support. Each learning task starts with a 

worked example (e.g. video of someone explaining the way) combined with clearly defined course 

objectives (i.e. demonstration). During the learning tasks, students have a lot of opportunities to practice 

what they’ve learned i.e. application. Supportive information (e.g. explanation of grammar) is provided 

which is the bridge between what students already know and what they still have to learn in order to 

solve the learning tasks (i.e. activation). Support is also provided via procedural information. At the 

beginning of each task, students can click – through pop-ups – on additional procedural information, 

which contains just-in-time support to complete a particular learning task. The pop-ups contain, for 

instance, an overview of grammar or vocabulary needed for the specific exercise within the learning 

task. The part-task practices (e.g. drill-and practice exercises about verbs) are always related to the 

learning task the student is working on. The learning tasks are related to real-world contexts i.e. 

integration. The learning tasks and part-task practices were automatically corrected and adaptive 

feedback was generated. Interaction with the instructor was possible via the discussion forum or with 

fellow students via the chatbox. 



Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

46 
 

Measurements 

 

Quantity and quality of use. Information on students’ use of the online learning environment was 

collected through logging students’ activity (e.g. registration of views, quiz attempts, tasks submitted) 

during two weeks (i.e. after measurement moment 1 and until measurement moment 2). Students’ 

quality of use basically refers to optimal use of the online course and was measured on the basis of 

students’ course performance (e.g. quality of the provided answers). Students’ course performance is 

the average score of the students in the online course (i.e. scores on learning tasks and part-task 

practices). Results of the learning tasks and part-task practices were automatically rated by Moodle LMS. 

The learning tasks with open-ended questions were corrected by the instructor. 

 

Perceived instructional quality. Students were asked to fill in the Teaching and Learning Questionnaire 

(TALQ). This is a self-reported questionnaire about the First Principles of Instruction originally developed 

by Frick, Chadha, Watson, Wang, and Green (2009) to evaluate the instructional design of courses. The 

five constructs (i.e. authenticity, activation, demonstration, application, and integration) were 

questioned on a 7-point Likert scale. As we are interested in the combined effect of the First Principles 

of Instruction, second-order confirmatory factor analysis (CFA) was conducted (Figure 2). This is a 

statistical method used to confirm that the underlying sub-constructs load into the construct perceived 

quality of the instructional design (Black, Yang, Beitra & McCaffrey, 2015). Construct validity of the 

construct perceived instructional quality and the sub-constructs was investigated by examining 

convergent validity and reliability (Table 1). Composite reliability (CR) was determined in order to 

investigate how well the items for one construct correlate with each other. The average variance 

explained (AVE) was determined in order to investigate the level of variance captured by a construct 

versus the level due to measurement error. Reliability was determined through Cronbach’s α in order to 

investigate the overall consistency of the constructs (Schreiber, Nora, Stage, Barlow & King, 2006). Items 

with poor factor loadings (< .50) were removed. Application and integration were merged into one 

construct since the constructs were highly correlated. After revision all constructs were significant and 

all factor loadings exceeded .50. The average variance explained (AVE) ranged from .35 to .76, and 

accordingly, not all constructs reached the threshold of .50. Nevertheless, the AVE of the construct 

perceived instructional quality is .54. CR ranged from .62 to .91 with .82 for the construct perceived 

instructional quality. The Cronbach’s α for all sub-constructs ranged from .60 to .91, and was .84 for 
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perceived instructional quality. Subsequently, for both Cronbach’s α and CR the construct perceived 

instructional quality exceeded the threshold of .70 (Cuieford, 1965; Rosseel, 2012). 

 

 

Figure 3.2. Factor loadings of perceived instructional quality 

 

Technology acceptance. The constructs PU and PEOU (i.e. 4 items) were retrieved from TAM. The 

Cronbach’s α was measured and CFA was conducted for each construct. All factor loadings were 

significant (Figure 3). AVE for PU was .56 and .65 for PEOU (i.e. should exceed .50). Cronbach’s α for PU 

was .74 and for PEOU .87, suggesting that the constructs are highly reliable (Cuieford, 1965; Rosseel, 

2012). An overview of the survey items can be found in Table 1. 
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Figure 3.3. Factor loadings of PU and PEOU 

 

Table 3.1. 

Survey items, reliability and convergent validity of the constructs 

Construct Measurement items AVE Α CR 

Authentic 

problems 

APS1: I performed a series of increasingly complex authentic 

tasks in this course. 

APS2: I solved authentic problems of completed authentic tasks 

in this course. 

APS3: I solved a variety of authentic problems that were 

organized from simple to complex. 

.76 .91 .91 

Activation ACT1: I engaged in experiences that subsequently helped me 

learn ideas or skills that were new and unfamiliar to me. 

ACT3: The course design provided a learning structure that 

helped me mentally organize new knowledge and skills.  

ACT4: In this course I was able to connect my past experience 

with new knowledge and skills. 

.46 .71 .71 

Demon-

stration 

DS1: The course demonstrated what I was expected to learn. 

DS2: The course provided examples and counter-examples of 

concepts that I was expected to learn.  

DS3: The course provided alternative ways of understanding the 

same ideas or skills. 

.62 .83 .83 
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Application 

/integration 

APPLI1: I had opportunities to practice or try out what I learned 

in this course.  

APPLI2: I had opportunities to explore how I could personally 

use what I have learned.  

INT3: I was able to demonstrate what I learned in this course. 

.35 .60 .62 

PU PU1: This course gives me more control to learn the content.  

PU2: This course enhances my effectiveness of learning the 

content. 

PU3: This course makes it easier for me to learn the content.   

PU4: In general, this course will help me to learn the content. 

.56 .83 .83 

PEOU PEU1: It’s easy for me to become skillful in working with the 

course. 

PEU2: The course is clear and understandable.  

PEU3: The course is easy to use. 

PEU4: In general, I find the course user-friendly. 

.65 .87 .88 

 

Analysis 
 

Firstly, descriptive analyses such as means, standard deviations, and correlation analyses were 

conducted for the variables, that is, perceived quality of the instructional design, PU, PEOU, quantity 

(i.e. course activity), and quality of use (i.e. course performance). Secondly, in order to gain insight into 

(1) the influence of the perceived quality of the instructional design on students’ acceptance, (2) the 

influence of students’ acceptance and, students’ perceived instructional quality on the quantity and 

quality of use, SEM was conducted in R using the Lavaan package 3.4.0. We employed the maximum 

likelihood parameter estimates (MLM -chi square) with standard errors and a mean-adjusted chi-square 

test statistic that is robust to non-normality (i.e. Satorra-Bentler chi-square). This technique was applied 

because of the minimal demands on data assumptions, such as multivariate normality assumptions 

(Rosseel, 2012). Missing data was found for some of the self-reported measures, such as the perceived 

instructional quality, PU, and PEOU (1.9%). 
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3.4. Results 

Preliminary analysis 

 

An overview of descriptive statistics can be found in Table 2. Nearly all students consulted the learning 

tasks (N = 158). The average time spent on using the online learning was 66 minutes (SD = 27.34). 

 

Table 3.2.  

Descriptive statistics 

Variables N min max Mean SD 

Instructional quality 158 1.42 6.25 4.72 .78 

PU  158 1.75 6.75 4.31 .89 

PEOU  158 1.50 7.00 5.55 .84 

Quantity of use  158 23 326 109.81 47.22 

Quality of use   158 18.99 100 73.59 16.14 

 

Table 3 gives an overview of the correlations. Correlations reveal that PU and PEOU are positively 

correlated. Perceived instructional quality is significantly positively related to PU and PEOU. Perceived 

instructional quality and PEOU are positively significantly related to the quality of use, but not to the 

quantity of use. PU is not correlated with the quantity and quality of use. 

 

Table 3.3. 

Correlations 

 1 2 4 5 6 

1. Instructional quality  1     

2. PU  .34** 1    

4. PEOU .35** .21** 1   

5. Quantity of use .13 .03 .09 1  

6. Quality of use .28** .09 .18* .43** 1 

** correlation is significant at the .01 level/* correlation is significant at the .05 level 
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Structural equation modeling 

 

SEM analysis was conducted to (1) investigate the influence of the perceived instructional quality on 

students’ acceptance of the online learning environment, (2) to investigate the influence of students’ 

perceived instructional quality and students’ acceptance on the quantity and quality of use. The 

hypothesized model, provided an adequate fit to the given data [χ²/df = 274.43/189.7= 1.4; SRMR = .07, 

RMSEA = .05, CFI = .94, TLI = .92]. The χ²-test indicates the difference between observed and expected 

covariance matrixes. The normed χ²-test should have a value smaller than 2.0. SRMR is the difference 

between the observed variance and the predicted variance. A value of less than .08 is considered a 

moderate fit. RMSEA adjusts for the complexity of the model and the size of the sample. The value of 

RMSEA for acceptance is .6. A value of CFI and TLI between 0.90 and 0.95 is acceptable. Assessing all 

measures and considering the above statements, the original structural model was accepted and 

believed adequate for further analysis (Schreiber et al., 2006). Figure 4 gives an overview of the 

standardized path coefficients. The solid lines show significant relationships. Results reveal that the 

perceived instructional quality has a significantly positive influence on both PU (β=.55, p <.01, R² =.22), 

and PEOU (β =.56, p <.01, R² =.23). PEOU has no significant influence on PU. Regarding the influence of 

students’ acceptance on students’ quantity of quality of use, results reveal that PU and PEOU have no 

influence on the quantity and quality of use. Furthermore, the perceived instructional quality has a 

significantly positive influence on the quality of use (β =.37, p <.05, R² =.12), but not on the quantity of 

use. In conclusion, results indicate that the pedagogical aspects of the online learning environment have 

a positive significant influence on students’ acceptance, and on the quality of use of the online learning 

environment. 
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Figure 3.4. Structural model with standardized path coefficient 

The research model 

 

This paper attempted to firstly analyze the influence of perceived instructional quality on students’ 

acceptance of a systematically designed online learning environment incorporating the First Principles 

of Instruction (Merrill, 2002). Secondly, it analyzed the influence of students’ acceptance and perceived 

instructional quality on the quantity and the quality of use. Results reveal that the perceived instructional 

quality influences both PU and PEOU. Results therefore indicate that content-related aspects influence 

perceptions of usefulness and user-friendliness. These findings are in line with the study of Lee et al. 

(2009) as this study found a direct effect of instructor characteristics (e.g. clear instructions) and 

teaching materials (e.g. fit with the learning objectives) on PU and a direct effect of the design of the 

learning content (e.g. variety of the learning content) on PEOU. Moreover, the study of Yang et al. (2017) 

found that perceived course quality and service quality had a direct influence on PU and that perceived 

system quality had a direct effect on PEOU in a MOOC. In contrast to the original TAM model, the current 

study reveals that PEOU has no influence on PU (King & He, 2006; Šumak, et al., 2011). Accordingly, this 

finding indicates that the perceived quality of the instructional design has more impact on PU, than 
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PEOU. More specifically, this could indicate that pedagogical aspects of the course design seems to exert 

more influence on the PU, than the user-friendliness.  

 

Additionally, the influence of students’ acceptance on the quantity and quality of use was investigated. 

In this study, no influence was found of students’ PU and PEOU on the quantity and quality of use. This 

is in contrast with the studies of Juarez Collazo et al. (2014) and Larmuseau et al. (2018). Both studies 

indicated a positive influence of PU on the quantity of use (i.e. time spent). The major difference in the 

study of Larmuseau et al. (2018) was that this study was highly ecologically valid as the online course 

was part of the students’ training program. In contrast, the current study had an experimental design 

which implies that the quantity and quality of use were probably very dependent on students’ intrinsic 

motivation to learn French. Conversely, the study of Juarez Collazo et al. (2014) had a strong 

experimental design as students had to use an online learning environment while being supervised in a 

computer room. Accordingly, results might be influenced (e.g. social desirability response; compulsory 

use).  

 

Finally, the current study investigated the direct link between students’ perceived instructional quality 

and their quantity and quality of use of the learning environment. Results revealed that students’ 

perceived instructional quality influences the quality of use, but not the quantity of use. These findings 

could be related to the findings of Frick et al. (2010) who indicated that students’ performance is related 

to the integration of the First Principles of Instruction in the course design. Accordingly, findings indicate 

that instructors can improve the effectiveness of their online courses by implementing the First 

Principles of Instruction. Summarized the perceived instructional quality based on the First Principles of 

Instruction seems to influence both PU and PEOU. Additionally, perceived instructional quality has a 

positive significant influence on the quality of use. 

 

Limitations 

 

Despite the merits of the study in terms of emphasizing the important role of students’ perceived quality 

of the instructional design, some important limitations should be mentioned. Although the perceived 

quality was based on the First Principles of Instruction, an important quality indicator, especially for 

online learning, namely the degree of interaction was overlooked (Liaw & Huang, 2013). As the online 

learning environment in the current study disposed of a chatbox (i.e. contacting fellow students) and a 



Research track 1: Individual differences determining the effectiveness of a 4C/ID-based online course 

 

 

54 
 

discussion forum (e.g. contact with the instructor), this could also have been an important indicator for 

students’ quantity and/or quality of use.  

A second limitation concerning methodological aspects, is that the self-reported questionnaire 

measuring the perceived instructional quality (i.e. TALQ) was largely revised due to low factor loadings. 

Possibly, this major revision was due to the fact that the questionnaire was originally developed to 

evaluate traditional face-to-face courses (Frick et al., 2009). Accordingly, some items were less adapted 

to the specific online learning context. Thirdly, it should be mentioned that the sample size of this study 

was rather low, given the complexity of the model (i.e. amount of latent constructs), which could 

undermine statistical power. Nevertheless, given the appropriate factor loadings, the small amount of 

missing values and taking the rules of thumb (i.e. minimum sample size of 100) into account, we assumed 

that SEM was suitable for this study (Wolf, Harrington, Clark & Miller, 2013). Fourthly, the sample 

consisted mainly out of women. As the sample consisted mainly of women, we should be careful when 

generalizing these results. Future research in this area should also include male students to see whether 

the results are similar. Also the topic of the online course could have an influence on the results, since 

former studies indicated that female students are generally more motivated to learn French as a foreign 

language (McIntyre, Baker, Clément & Donovan, 2003). A fifth important limitation of the study design 

is the perceived instructional quality and the TAM constructs were measured after students used the 

online learning environment. The major reason for this event was to make sure that students had 

sufficient experience with the online learning environment. Nevertheless, this implies that we should be 

careful when making claims of causality. Studies that use similar research models must verify the current 

relationships in order to be able to generalize them. Additionally, it would be interesting to conduct 

future studies in a more ecologically valid setting as this could influence the relationship between 

technology acceptance and the quantity of use (Larmuseau et al., 2018). 

3.5. Conclusion 

To summarize, findings reveal an impact of perceived instructional quality based on the First Principles 

of Instruction (Merrill, 2002) on students’ technology acceptance. Moreover, the perceived instructional 

quality seems to exert more influence on PU than the user-friendliness of the online learning 

environment, and therefore plays a more important role in students’ acceptance of the online learning 

environment. Nevertheless, results indicate that students’ acceptance does not influence the quantity 

and quality of use. By contrast, current study emphasizes the important positive influence of the 
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perceived instructional quality on the quality of use in terms of course performance. Accordingly, this 

study emphasizes the importance of a well-considered instructional design on students’ acceptance and 

quality of use. Future studies should conduct similar studies in ecologically valid settings, with larger 

sample sizes in order to verify the direction and strength of these relationships. 
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4. The influence of cognitive and motivational characteristics on differences in 
use 

4.1. Introduction 

Educational research shows that the effectiveness of an online learning environment depends a great 

deal on its instructional design (Van Laer & Elen, 2017). Moreover, the instructional design can influence 

the behavior and performance of students in online learning environments (Rienties & Toetenel, 2016). 

An instructional design model that is acknowledged as one of the most effective instructional design 

models for designing effective learning environments is the 4C/ID-model (Cook & McDonald, 2008). A 

4C/ID-based online learning environment contains four different components, namely, learning tasks, 

part-task practice, supportive and procedural information, and confronts the learner with the need to 

assess his or her own performance. Accordingly, on the learner’s initiative, additional tasks and support 

can be selected which implies that learners can choose their own learning trajectory to a smaller or 

larger degree. Consequently, we expect that one student may quickly proceed from learning task to 

learning task, while another learner might select part-task practice or consult supportive information 

(van Merriënboer & Sluijsmans, 2009). Former research findings indicate that students’ use of different 

components in an online learning environment can differ based on cognitive and motivational 

characteristics (Greene & Azevedo, 2007; Jiang, Elen & Clarebout, 2009; Rienties, Tempelaar, Van den 

Bossche, Gijselaers & Segers, 2009).  

Therefore, the first aim of this study is to investigate the influence of students’ cognitive (i.e. prior 

knowledge) and motivational (i.e. task value and self-efficacy) characteristics on students’ use of the 

four components of a 4C/ID-based online learning environment. Furthermore, the provision of different 

components can stimulate students’ performance since students can consult various support during 

their learning (Lust et al., 2013). By looking at the four components separately, more insight can be 

gained in how students’ use of a specific component contributes to students’ learning gain. Therefore, 

the second aim of this study is to measure how students’ use of the four components of the 4C/ID-

model, influences students’ learning gain, taking into account their cognitive and motivational 

characteristics. In order to achieve both aims, a theoretical structural model is suggested that integrates 

students’ cognitive (i.e. prior knowledge) and motivational (i.e. task value and self-efficacy) 
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characteristics, the four components of the 4C/ID-model and course performance in order to elucidate 

the relationships among these variables. 

4.2. Theoretical background 

Instructional design 
 

A learning environment should promote constructive, active, cumulative and self-directed learning 

(Elen, 2015; Greene & Azevedo, 2007). More specifically, well-designed tasks should stimulate students 

to integrate required skills, knowledge and attitudes and transfer complex cognitive skills to real-world 

contexts.  

An instructional design model that stresses integration and transfer of learning is the 4C/ID-model 

elaborated by van Merriënboer, Clark & de Croock (2002). The 4C/ID-model is acknowledged as one of 

the most effective instructional design models for designing effective learning environments that 

facilitate the acquisition of integrated sets of knowledge, attitudes and skills (Cook & McDonald, 2008). 

When designing an online learning environment the first question to ask is how to develop learning tasks 

in order to reach the educational objectives and how to organize and sequence these learning tasks 

(Elen, 2015). The basic concept of the 4C/ID-model is that learning environments can be described in 

terms of four interrelated blueprint components: (1) learning tasks, (2) part-task practice, (3) supportive 

and (4) just-in-time information (van Merriënboer et al., 2002, 2003). In a 4C/ID-based learning 

environment, the learning tasks are the backbone of the design process and are concrete, authentic, 

problem-based, whole-task experiences. The design of the learning tasks, allows for simultaneous 

practice of domain-specific knowledge and cognitive strategies. Learning tasks are grouped in task 

classes and sequenced based on their degree of difficulty in order to prevent cognitive overload for the 

learners, as this could hamper learning and performance (Greene & Azevedo, 2007; Merrill, 2002). 

Learners can encounter difficulties while solving learning tasks, consequently adapted learner support 

should be provided (Elen, 2015). Support is provided in two distinct manners, that is, supportive and 

procedural information (van Merriënboer et al., 2002, 2003). Supportive information is basically, the 

theory and therefore supports the learning and performance of the non-recurrent, problem-solving and 

reasoning aspects of learning tasks. It helps learners to link the presented information to existing 

schemata, that is, to what they already know in order to solve the learning tasks. Accordingly, supportive 

information provides mental models and cognitive schemata, that allow for multiple uses of the same 
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general knowledge for performing different tasks. Procedural information is a prerequisite to the 

learning and performance of recurrent aspects of the learning tasks in each task class. It allows students 

to complete and learn routine aspects of learning tasks by specifying exactly how to solve the routine 

aspects of the tasks. It is presented just in time when learners need it. The procedural information may 

include hints (e.g. a summary of theory) or feedback relevant for the specific problem while working on 

the learning task. A lot of support is given for learning tasks early in a task class, but the support 

diminishes as learners acquire more expertise. Furthermore, part-task practice (e.g. drill- and practice 

exercises) supports the more complex whole task learning by providing additional exercises for selected 

recurrent constituent skills (van Merriënboer et al., 2003). Learners should be guided during the learning 

process by giving them summative and formative feedback (Elen, 2015). Accordingly, they should be 

able to perform, assess, and select tasks that fulfill their personal needs (van Merriënboer & Sluijsmans, 

2009).  

Nevertheless, providing an online learning environment with a well-considered instructional design does 

not ensure its effectiveness (Jiang et al., 2009). The effectiveness of the online learning environment is 

strongly related to students’ capacity to properly use the different components (Lust et al., 2013). An 

important indicator of students’ appropriate use is prior knowledge (van Merriënboer & Sluijsmans, 

2009). In addition, the effects of students’ motivational aspects on their willingness to use the 

components should not be ignored (Rienties et al., 2009). In the next section the influence of prior 

knowledge and motivation on use will be discussed based on prior research findings. 

Students’ Cognitive and Motivational Characteristics 
 

A 4C/ID-based online learning environment is claimed to stimulate self-directed and deep learning by 

providing different components at the student’s disposal, containing learner support on the one hand 

and by offering a lot of learner control on the other (Moos & Azevedo, 2009; van Merriënboer & 

Sluijsmans, 2009). Moreover, by giving students control of the use of the different components, adaptive 

learning based on their learning needs, should be possible. Despite this claim, we barely know if students 

actually benefit from these learning opportunities. Providing learning opportunities within an online 

learning environment is not sufficient to achieve better learning outcomes. A possible learner 

characteristic that could influence differences in use of the different components is students’ prior 

knowledge (van Merriënboer & Sluisjmans, 2009). Based on CLT, students with low prior knowledge 

cannot immediately be confronted with highly difficult learning tasks. Accordingly, students’ cognitive 
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load can be reduced by consulting support and guidance (Jiang et al., 2009; van Merriënboer & Sweller, 

2005). This would imply that students who perceive the task as more difficult use the components more 

or differently. Nevertheless, selecting various support or making additional exercises can be very 

challenging for students with low prior knowledge as they are more likely to perceive high cognitive load 

(Clarebout et al., 2010; van Merriënboer & Sluijsmans, 2009; van Merriënboer & Sweller, 2005). As a 

low level of prior knowledge increases cognitive load when faced with difficult learning tasks, those 

students might encounter problems to self-direct their learning. Accordingly, based on CLT, students 

with higher prior knowledge are more capable to self-direct their learning compared to students with 

lower prior knowledge (Moos & Azevedo, 2009; van Merriënboer & Sluijsmans, 2009). This would imply 

that students’ prior knowledge can influence differences in the use of the four components. However, 

there is no solid empirical basis for this theoretical claim.  

Several studies investigated the influence of students’ prior knowledge on differences in use. Van Seters, 

Ossevoort, Tramper, and Goedhaert (2011) used online learning materials to demonstrate how 

university students work differently based on their prior knowledge. They investigated the learning path 

students followed when working with adaptive online learning material. The learning path was 

determined by the average step size chosen, the average number of tries, the total number of exercises, 

and the time needed to finish. They found that prior knowledge did not have an effect on students’ 

learning path. Furthermore, Taub et al. (2014) studied the specific use of an online learning 

environment. Participants were 112 undergraduate students. Results revealed that all students visited 

a similar number of relevant pages regardless of their level of prior knowledge. Additionally, Jiang et al. 

(2009) conducted a study in which they measured variety in non-embedded tool use in an online 

learning environment (e.g., checklist tool, information list, calculator etc.). Tool use was measured by 

the frequency of tool use and proportional time spent on tools. They found no influence of prior 

knowledge on the quantitative aspects of tool use. Notwithstanding, research has shown that prior 

knowledge plays a primary role in learning achievement. Song, Kalett, and Plass (2016) studied the direct 

and indirect effects of university students’ prior knowledge on learning performance in online learning 

environments. SEM revealed that university students’ prior knowledge directly positively affected their 

learning outcomes. These aforementioned studies seem to confirm that students do not grasp learning 

opportunities based on their level of prior knowledge, but they do indicate the important role of 

students’ prior domain knowledge on students’ learning gain.  
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Additionally, motivational characteristics can have an important influence on students’ learning 

behavior in online learning settings (Chen & Jang, 2010; Rienties et al., 2009). According to Expectancy-

Value theory, self-efficacy and task value are two key components for understanding students’ specific 

use and academic outcomes (Liem et al., 2008). Self-efficacy is defined as a learners’ ability to execute 

the required behavior necessary for success (Greene & Azevedo, 2007). There is evidence that self-

efficacious students participate more readily, work harder and persist longer when they encounter 

difficulties than those who are uncertain about their capacities (Zimmerman, 2000). Task value 

essentially refers to the reason for doing a task. More specifically, students with high task value pursue 

the enjoyment of learning and understanding new things (Joo, Lim & Kim, 2013).  

Martens, Gulikers, and Bastiaens (2004) investigated the impact of task value on the use of online 

learning environments. The participants were 33 higher education students. Results showed that 

students with high task value did not do more, but did other things than students with low task value. 

Analysis of log files showed that students with high levels of task value showed proportionally more 

explorative study behavior. Explorative pages were defined as pages that students were not explicitly 

directed to by the external source. Studies also indicate relationships between self-efficacy, task value 

and performance. Bong (2001) conducted a path analysis to investigate the relationships between task-

value, self-efficacy and performance (i.e. students’ mid-term scores) in an online learning context. 

Participants were 168 undergraduate university students. Results showed strong links of self-efficacy 

with performance, whereas task value was linked to course enrollment intentions (Bong, 2001). 

Similarly, Joo et al. (2013) investigated 897 learners in an online university course to unravel 

relationships between self-efficacy, task value and performance. Using SEM they found significant 

positive relationships between both task value, and self-efficacy on course performance (i.e. the final 

grade on the course: midterm exam, attendance, and final exam). However, Song et al. (2016) conducted 

a SEM-analysis to examine the direct effects of task value and self-efficacy on students’ learning 

outcomes, measured by a knowledge post-test. Participants were 368 university students. Results 

revealed no direct influence of self-efficacy and task value on students’ learning outcomes. Major 

difference with the study of Joo et al. (2013) is that important additional predictors of students’ learning 

outcomes were included in the research model such as prior knowledge and self-regulation. In sum, 

based on these aforementioned theoretical and empirical claims, we hypothesize that prior knowledge, 

self-efficacy, and task value influence differences in use of the four components and that students’ 
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cognitive and motivational characteristics can influence students’ learning gain. Therefore, we formulate 

the following first research question (RQ):  

• RQ1: How do students’ cognitive (i.e. prior knowledge) and motivational (i.e. self-efficacy and 

task value) characteristics influence the use of the four components of a 4C/ID-based online 

learning environment? 

Differences in the use of online learning components can influence students’ performance. Lust et al. 

(2012) conducted a literature study which provided empirical evidence for the beneficial influence of 

differences in tool use (e.g. information, processing, and scaffold tools), on students’ performance. 

Therefore, in this study activity data of the four different components is studied separately in order to 

gain more insight into how students’ differences in the use of the four components contribute to 

performance, controlling for students’ cognitive and motivational characteristics. Subsequently, the 

following second research question is formulated:  

• RQ2: Do differences in the use of the four components of a 4C/ID-based online learning 

environment influence students’ learning gain, taking into account students’ cognitive and 

motivational characteristics? 
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Based on these research questions a theoretical research model is proposed as shown in Figure 1. 

containing all variables in order to elucidate the relationships among these variables. 

 

Figure 4.1: Research model 

 

4.3. Method 

The online learning environment 
 

The online learning environment in the present study focuses on French as a foreign language. In Flemish 

education students generally start learning French at the age of 10 in Grade 5. French is always the first 

second language that is introduced into the curriculum and remains a compulsory component 

throughout primary and secondary education. Accordingly, the level of difficulty was aligned with the 
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level that students in the Flemish part of Belgium are expected to reach at the end of secondary school. 

The main topic is ‘traveling in France’. The learning environment covers four task classes. Each task class 

focuses on a theme (e.g. ordering your food in a restaurant). The online learning environment takes 

about  1 hour and 15 minutes to complete. The learning environment contained multiple media: videos, 

recorded audio and articles from different websites and is designed within the Moodle open-source 

learning platform. The instructional design of the online learning environment was developed in line 

with the guidelines of the 4C/ID-model. The learning tasks were based on authentic situations and 

sequenced in a simple-to-complex order. Each learning task started with an introduction where a 

worked example was given combined with clearly defined course objectives. Students received 

automatically generated feedback based on their scores (i.e. information about their achievements and 

guidelines). When students had an insufficient score they were advised to consult additional support 

and/or consult additional tasks in order to pass the learning task. When students finished their learning 

tasks, they had to hand in an assignment (e.g. writing down a conversation). The assignments were 

corrected by the instructor. Additional support and tasks were provided by the other three components 

of the 4C/ID-model, namely, supportive information (e.g. grammar explained by theory), procedural 

information (e.g. grammar explained by using keywords), and part-task practice (e.g. drill-and practice 

exercise of specific grammar). The supportive information, procedural information and part-task 

practice were non-embedded. More specifically, they were at the disposal of the students but the 

students had to decide whether or not to use them, and when they wanted to use them. Students had 

the opportunity to click on links to watch procedural or supportive information or to consult additional 

part-task practice (automatically rated by Moodle). In conclusion, consulting supportive and procedural 

information, making additional part-task practice, or retrying a learning task was the students’ 

responsibility. Learning tasks were partly non-embedded since students were free to make as many 

learning tasks (e.g. several attempts) as they wanted. Nevertheless, as aforementioned, they were also 

partly embedded (i.e. less optional) since students were strongly advised to complete the learning tasks 

during the first administration session and since they were clustered and sequenced in a predefined 

order within a task class. 

Participants 
 

The study took place in the Flemish part of Belgium, at a Flemish university. The participants were 161 

first-year Psychology and Educational Science students. The majority of the students were female (91%). 
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The average participant was 20 years old (SD = 2.92). Two students were perfectly bilingual (i.e. French 

and Dutch speakers). One student was German and had never learned French. Participation in research 

is part of the students’ training program, but French was not a part of their training program. Before 

answering the questions, informed consent was obtained from all individual participants included in the 

study. 

Study design 
 

The design of the study consisted of two administration sessions. The first administration session started 

with an introduction of the online learning environment and self-reported questionnaire on task value 

and self-efficacy. Task value and self-efficacy were measured after the introduction of the online 

learning environment to make sure students’ had sufficient insight into the learning content. The 

students were asked to use the learning environment at home for two weeks. As the learning content 

was not a part of their training program, they received the instructions that consulting the four 

components was optional and that there was no strict trajectory on how to work in the online learning 

environment. Nevertheless, consulting the learning tasks was strongly recommended. This implies that 

a lot of learner control was given to the students. 

Measurements 

 

Prior knowledge and students’ learning gain. To measure students’ prior knowledge and students’ 

learning gain of French a quantitative paper-and-pencil instrument constructed by Evens et al. (2017) 

was used as a pretest and posttest. The instrument consists of 60 items and focuses on knowledge (i.e. 

grammar and vocabulary) and skills (i.e. listening, writing a conversation). The level of difficulty of the 

test was B1 of the Common European Framework of Reference. In this study, students’ learning gains 

are the results of the posttest, controlled for the pretest. The instruments’ reliability was explored by 

calculating internal consistency, that is, Cronbach’s α = .90 for the pretest and Cronbach’s α = .89 for 

the posttest. Both results reveal a good internal consistency.  

Self-efficacy and task value. Within this study the constructs self-efficacy and task value were retrieved 

from the motivated strategies for learning questionnaire (MSLQ) constructed by Pintrich and De Groot 

(1990). MSLQ consists of a motivation section and a learning section. For this study we used the 

constructs self-efficacy (e.g. “I expect to do well in this course”), and task value (e.g. “It is important for 

me to learn the course content”), of the motivation section. The questionnaire was a 5-item scale with 
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a 7-point Likert-type response format having values ranging from strongly agree (7) to strongly disagree 

(1). The questions were translated into Dutch. Construct validity was checked by conducting a 

confirmatory factor analysis (CFA). The CFA model relates observed responses or ‘indicators’ to latent 

variables (i.e. measurement model). CFA indicated that the measurement model exhibited good validity. 

The standardized factor loadings from the latent variable constructs were all significant with 

standardized values ranging from .73 to .93. and an average variance explained (AVE) of .76 for self-

efficacy and .62 for task value. Therefore, we can suggest that the two measurement models for each 

construct were measured well in the current data. Internal consistency was investigated by measuring 

Cronbach’s Alpha. The Cronbach’s Alpha for self-efficacy was α = . 94 and for task value α = .84, which 

indicates high reliability (Rosseel, 2012).  

The use of the four components. Information of students’ use of the four components was collected by 

tracking students’ activity. Students’ activity includes any kind of interaction (e.g. views, attempts, 

submitting quizzes etc.) with the online learning environment during two weeks, tracked for each 

component of the 4C/ID-model separately. All data were anonymized through means of the use of 

random codes to safeguard the identities of the students. User activity was chosen instead of time spent 

because it gave more accurate information about the use of supportive and procedural information.  

Analysis 
 

Firstly, descriptive analyses such as mean, standard deviation and correlation analysis were conducted 

for the different variables (i.e. students characteristics and the four components of the 4C/ID model). 

Secondly, in order to find answers on the first research aim the effect of students’ motivational and 

cognitive characteristics (i.e. latent variables), on the use of the four components (i.e. manifest) 

variables, was investigated by conducting SEM in R using the Lavaan package 3.4.0 (Rosseel, 2012). 

Figure 1 was specified as the statistical model using the latent variables as shown in Fig. 2 . SEM is a 

statistical approach to test hypotheses about the relationships among observed/manifest (i.e. 

rectangles) and latent variables (i.e. ovals). As shown in Figure 2, self-efficacy and task value are the 

latent constructs. In the current study, in order to answer the first research question, students’ cognitive 

(i.e. prior knowledge) and motivational (i.e. task value and self-efficacy) characteristics are the 

independent variables and the four components (i.e. learning task, part-task practice, supportive and 

procedural information) are the dependent variables. Additionally, to give answer to the second 
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research question, the use of the four components, and students’ cognitive and motivational 

characteristics are the independent variables, and students’ learning gain the main dependent variable.  

 

Figure 4.2: Statistical model 

4.4. Results 

Preliminary analysis 
 

Results of the descriptive statistics of students’ pretest and posttest can be found in Table 1. The average 

results on students’ pretest was 52.32%. The average score on the posttest was 64.53%. This indicates 

that using the online learning environment improved their performance. Nearly all students consulted 

the learning tasks (N = 158). Not all students consulted supportive information (N = 125), procedural 

information (N = 140) and/or consulted part-task practice (N = 72). The average time spent on using the 

online learning environment was 66 minutes (SD = 27.34, min. = 10.44 minutes, max. = 151.43 minutes).  
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Table 4.1. 

Descriptive statistics of the manifest variables 

Variable N Min Max Mean SD 

Pretest   151* 7.8 92.19 52.32 17 

Posttest  152* 20.97 98.44 64.53 14.81 

Learning task 158 15 180 80.60 25.90 

Part-task Practice 161 0 85 10.50 19.85 

Supportive info 161 0 64 9.04 10.94 

Procedural info 161 0 36 9.30 8.52 

*not all students were present during the pretest/posttest. Results of the two bilingual students and 

the German student were removed as outliers.  

 

Table 2 gives an overview of the correlations among the variables. RQ1 investigates the influence of 

students’ cognitive (i.e. prior knowledge) and motivational (i.e. task value and self-efficacy) 

characteristics on the use of the different components (i.e. use of the learning tasks, part-task practice, 

supportive and procedural information). There is a negative significant correlation between prior 

knowledge and part-task practice. Additionally, there is a negative significant correlation between prior 

knowledge and supportive information. There is a positive significant relationship between task value 

and learning tasks. Additionally there is a positive significant relationship between task value and 

supportive information. There are no significant relations between self-efficacy and use of the four 

components. RQ2 investigates the influence of the use of the different components on students’ 

learning gain, taken into account students’ cognitive and motivational characteristics. There is a positive 

significant correlation between learning task and posttest. Additionally, there is a positive significant 

correlation between procedural information and posttest. There is a negative significant relationship 

between posttest and part-task-practice. Results also reveal that there is a positive significant 

correlation between pretest and posttest. 
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Table 4.2. 

Correlations among the variables 

 1 2 3 4 5 6 7 8 

1. Pretest 1        

2. Self-efficacy .46** 1       

3. Task value .06 .28** 1      

4. Learning task -.12 .06 .22** 1     

5. Part-task     

practice 

-.22** -.00 .04 .31** 1    

6. Supportive 

Information 

-.21* -.12 .18* .38** .58** 1   

7. Procedural 

Information 

-.08 -.07 .08 .22* .09 .25** 1  

8. Posttest  .86** .38** .11 .02 -.19* -.15 .01 1 

**correlation is significant at the .01 level; *correlation is significant at the .05 level
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Structural Equation Model 
 

SEM was conducted in order to investigate the relationships between students ‘ cognitive and 

motivational characteristics, the four components of the 4C/ID-model and students’ learning gain (i.e. 

RQ1 and RQ2). For the missing values a two-stage approach was applied. This approach obtains a 

saturated maximum likelihood (ML) estimate of the population covariance matrix and then uses this 

estimate in the complete data ML fitting function to obtain parameter estimates (Savelei & Bentler, 

2009). Lavaan converged normally after 59 iterations. The hypothesized model, provided an adequate 

fit to the given data. The χ²-test indicates the difference between observed and expected covariance 

matrixes and should be non-significant. However, χ²-test is highly dependent on sample size and 

therefore normed χ²-test is often considered, this is, χ²-test divided by the degrees of freedom (df). 

Values smaller than 2.0 are considered to indicate acceptable fit (Rosseel, 2012). In addition to χ² 

statistics, the root mean squared residual (SRMR), the root mean squared error of approximation 

(RMSEA), comparative fit index (CFI) and the Tucker-Lewis Index (TLI) were examined. Table 3 

summarizes the overall goodness-of fit measures of the model. SRMR is the difference between the 

observed variance and the predicted variance. A value less than .06 is considered a good fit. RMSEA is 

related to residuals in the model, by adjusting for the complexity of the model and the size of the sample. 

A marginal value for acceptance is < .08. CFI is the discrepancy function adjusted for the sample size. A 

value of CFI and TLI between > .95 indicates good fit. Assessing all measures and considering the above 

statements, the original structural model was accepted and considered adequate for further analysis 

(Hu & Bentler, 1999; Kline, 2013; Rosseel, 2012). 

Table 4.3. 

Model fit 

Fit measures Values Recommended value 

Chi-square (χ²) 155.56 

(df = .99, p = .00) 

non-significant 

Normed Chi-square 

SRMR 

1.6 

.05 

Χ²/df <.02 

< .06 

RMSA .06 < .08 

CFI .97 > .95 

TLI .95 > .95 
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Using SEM analysis we firstly investigated the influence of students’ characteristics on the four 

components of the 4C/ID-model (i.e. RQ1). Fig. 3 gives an overview of the standardized path coefficients. 

The solid lines show the significant relationships. Significant relationships between students’ cognitive 

and motivational characteristics and use of the four components were found. More specifically, a 

significant negative influence was found of students’ prior knowledge on the use of part-task practice (β 

= -.21, p <.05). No significant relationships were found between students’ self-efficacy and the use of 

the four components of the 4C/ID-model. Task value positively influences the use of learning task (β = 

.21, p <.05) and supportive information (β = .22, p <.05). The variance explained for the learning task is 

respectively (R2 =.07), for part-task practice (R2 =.03), for supportive information (R2 =.08) and for 

procedural information (R2 =.02).  

RQ2 investigated the influence of the use of the four components on students’ learning gain, taking into 

account students’ characteristics. Significant relationships were found between the use of different 

components and students’ learning gain. Respectively, a significant influence of the use of learning tasks 

(β = .12, p <.01) and procedural information (β = .08, p <.05) on students’ learning gain was found. A 

positive significant relationships between students’ prior knowledge on students’ learning gain was 

found (β = .91, p <.001). No further relationships between students’ motivational characteristics and 

their learning gain were found. The variance explained for students’ learning gain was (R2 = .79). In 

conclusion, students’ use of the components of the 4C/ID model is negatively influenced by students’ 

prior knowledge and positively by students’ task value. Secondly, results indicate that when using a 

4C/ID-based online learning environment, mainly using the learning tasks and procedural information 

contributes to students’ learning gain. Additionally, students’ learning gain is mainly influenced by their 

prior knowledge. 
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Figure 4.3.: Structural model with standardized path coefficients 

 

4.5. Discussion 

 

The current study strived to investigate (1) the influence of students’ cognitive (i.e. prior knowledge), 

and motivational (i.e. task value and self-efficacy), characteristics on students’ differences in use of the 

four components (i.e. RQ1) and (2) the influence of students’ differences in use on students’ learning 

gain, taking into account students’ cognitive and motivational characteristics (i.e. RQ2). All variables 

were incorporated in a structural research model. Our results are based on data from a pretest (i.e. prior 

knowledge), self-reported questionnaires (i.e. task value and self-efficacy), platform log data from 161 

students (i.e. activity of the four components of the 4C/ID-model) and a posttest, controlled for the 

pretest (i.e. students’ learning gain). RQ1 investigates the influence of students’ cognitive and 

motivational characteristics on differences in use of the four components. Results indicate that students’ 

prior knowledge has a negative significant influence on the use of part-task practice. More specifically, 

results reveal that the lower students’ prior knowledge was, the more students consulted additional 

part-task practice. Part-task practices contain additional exercises with more recurrent content in a drill 

and practice- format in order to prepare students to solve the learning tasks which contain both 
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recurrent and non-recurrent content. Therefore, the current findings indicate that in general students 

seem to be aware that they are lacking routine knowledge to solve the learning tasks, and subsequently 

they self-direct their learning in order to achieve better results. Taking into account cognitive load 

theory, these results could imply that students did not experience high intrinsic cognitive load, as they 

were still able to self-direct their learning (van Merriënboer & Sweller, 2005). The current findings are 

in contrast to the study of Taub et al. (2014) which indicated that regardless of the sub-goals students 

were working on, there were no significant differences in students’ use of the online learning 

environment (i.e. defined by the number of relevant pages visited) between lower and higher prior 

knowledge groups. Current findings are also different from the study of Jiang et al. (2009) who measured 

differences of use based on prior knowledge by looking at the frequency of tool use and proportional 

time spent on tools, but found no differences (Jiang et al., 2009; Song et al., 2016).  

A possible explanation for the different findings could be found in the respective procedure of the 

studies. Concretely, in both studies students worked with the online learning environment under 

supervision or in a controlled setting. By controlling the setting students might feel the pressure to 

complete different tasks in a given time which could result in following a more traditional linear path. 

Moreover, important self-regulation skills that are typical for online learning are not taken into account 

when the setting is controlled, such as time management (i.e. the ability to effectively manage learning) 

and environment structuring (i.e. being able to structure your own learning environment; Barnard-Brak, 

Paton & Lan, 2010; Whipp & Chiarelli, 2004). These self-regulation skills could have an influence on 

differences in use between different prior knowledge groups. Furthermore, looking at the study of Taub 

et al. (2014) defining differences in use based on relevant pages visited might have been too narrow. In 

the study of Taub et al. (2014), multichannel data was collected including log-files, but also think-aloud 

protocols, electrodermal activity (EDA), facial expressions, and eye-tracking to measure metacognitive 

and cognitive self-regulation. Based on multichannel data results did reveal that metacognitive self-

regulation processes differed between lower and higher prior knowledge groups which indicates that 

prior knowledge groups do differ in how they use the online learning environment and/or self-direct 

their learning, but that the differences were not visible based on the relevant pages visited. Not only 

prior knowledge but also motivational characteristics seem to influence differences in students’ use of 

the different components. Results indicate differences in activity based on students’ task value. Prior 

research on expectancy-value theory has indeed shown that after controlling for prior knowledge, task 

value can predict differences in academic decisions (Greene & Azevedo, 2007). Students’ task value 
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seems to have a positive influence on the activity of the learning tasks and supportive information. As 

supportive information provided broader background information this could imply that students with 

higher task value put more effort in solving the learning tasks qualitatively and/or are more eager to 

learn. The findings correspond with the study of Martens et al. (2004) which also analyzed log files and 

found that students with high intrinsic motivation showed more explorative study behavior. Explorative 

study behavior in their study was calculated by dividing the number of explorative pages a student had 

visited by the total number of visited pages (Joo et al., 2013). Studying the influence of self-efficacy on 

the activity of the four components, no link between self-efficacy, and the use of the four components 

was found. As correlations indicated that self-efficacy and prior knowledge were highly correlated. This 

indicates that in general students from this study could properly assess themselves. Moreover, this 

indicates that they did not feel the need to self-direct their learning in order to reach a certain quality 

standard (Greene & Azevedo, 2007). 

RQ2 investigated the impact of differences in use of the four components on students’ learning gain, 

taken into account students’ characteristics. Results revealed a significant influence of students’ use of 

the online learning environment on students’ learning gain. Results indicate that activity of the learning 

tasks, and procedural information contributed to students’ learning gain. These results indicate that the 

more learning tasks and procedural information were consulted, the higher students’ learning gain. 

Procedural support and guidance can prevent learners from paying attention to irrelevant task aspects, 

and is therefore argued to reduce extraneous cognitive load, which on its turn can improve students’ 

task performance (van Merriënboer & Sluijsmans, 2009; van Merriënboer et al., 2003). This could be the 

reason why procedural information contributes to performance within this study. Activity of the 

supportive information and part-task practice did not contribute to course performance. This could be 

due to the fact that the learning tasks were not complex enough. Consulting procedural information 

must have been sufficient for students to solve the learning tasks. Accordingly, students did not feel the 

need to consults these components. When investigating the influence of differences in use on students’ 

learning gain, it is important to take students’ characteristics into account. Results revealed a major 

significant influence of students’ prior knowledge on students’ learning gain. Correlations already 

indicated that pretest and posttest were highly correlated. This indicates that students’ learning 

outcomes were mainly influenced by students’ prior knowledge. This is in line with previous research. 

The study of Song et al. (2016) already revealed a direct effect of prior knowledge on performance (Taub 

et al., 2014). There was no effect of students’ motivational characteristics on students’ learning gain. 
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More specifically, no significant effect of students’ self-efficacy on students’ learning gain was found. 

These findings are in contrast with the study of Joo et al. (2013) but are in line with those of the study 

of Song et al. (2016). Song et al. (2016) did not find a significant relationship between self-efficacy and 

students’ learning outcome. A possible explanation for these different findings is that the online learning 

environment used in their study was highly complex (Song et al., 2016; Zimmerman, 2000). Former 

studies have indicated that efficacious students can be less confident when they are challenged with 

challenging learning environments (Greene, Moos, Azevedo & Winters, 2008). Different outcomes can 

also be influenced by the design of the research model. In contrast to the current study and the study 

of Song et al. (2016), Joo et al. (2013) did not incorporate prior knowledge into the research model as a 

predictor of students’ learning outcome. Furthermore, students’ task value has no influence on 

students’ learning gain. However, this finding is in contrast with the study of Joo et al. (2013). They have 

conducted SEM analysis with self-efficacy and task value as predictors of performance and found a direct 

influence of task value on students’ learning outcome (Zimmerman, 2000). It should be noted that the 

students in the study of Joo et al. (2013) were enrolled in an online university, which possible had an 

influence on the level of students’ motivation. Therefore, possible clarification for the different findings 

is that students’ task value in the current study was generally too low to have an effect on performance 

since the online course was not a part of the students’ study program.  

Limitations and future research 

 

A first important limitation of this study is  that students’ cognitive (i.e., prior knowledge) and 

motivational characteristics (i.e. task value and self-efficacy) explain little variance of the use of the 

different components. This implies that more predictors should be incorporated into the model to 

predict differences in use. In the current study a possible predictor of differences in use and students’ 

learning gain is students’ self-regulation skills. The influence of students’ self-regulation skills is very 

important since online learning offers a lot of learner control and therefore gives the students a great 

degree of autonomy (Song et al., 2016; Tsai, 2013). Incorporating self-regulation skills in the research 

model could give more insight in why students use specific components during their learning process. A 

second important limitation is that little is known about the way in which the different components are 

used. By analyzing log-data more in detail, such as, looking at the sequences of use of the four 

components, more insight could be given on effective use. A possible example of effective use could be 

that when a student has an insufficient score, the student decides to consult supportive information. 
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Subsequently, this detailed information could give more insight into their self-directed learning. A third 

limitation is that one component can contain a lot of different learning activities (e.g. quiz, reading 

and/or, listening activity). More detailed studies are needed to measure the influence of the various 

learning activities. This could provide more insight in how to design tailor-made online learning 

environments (Rienties & Toetenel, 2016). Fourthly, the current study was conducted in an experimental 

setting. Accordingly, students mainly used the online learning environment to accomplish the learning 

tasks, but not to study the specific content. More research needs to be done in contexts in which courses 

are actually part of the training program in order to have more knowledge about how students actually 

study in a 4C/ID-based online learning environment. A fifth limitation is the cross-sectional design of this 

study. It would be interesting to conduct longitudinal research instead. This would provide insight into 

how students study within an online learning environment and how this influences students’ learning 

and educational outcomes in the long term. Finally, future work should replicate and extend the current 

findings with other 4C/ID-based online learning environments and other target groups, to test 

generalizability. Former research has shown that students’ use of online resources and their 

performance varied between courses and that this strongly depends on the instructional design (Jeong 

& Hmelo-Silver, 2010). 

4.6. Conclusion 

 

This study firstly provides more information about the influence of students’ motivational and cognitive 

characteristics on the use of the four components in a 4C/ID-based learning environment. In general, 

results indicate that students’ characteristics do influence differences in use of the four components 

when students receive a lot of learner control. Moreover, the 4C/ID-model seems to be an instructional 

design model that is adequate for students with different characteristics. It allows students to self-direct 

their learning by providing four components that can be consulted freely in a non-linear trajectory. 

Furthermore, the use of learning tasks and procedural information controlled for students’ prior 

knowledge, seems to influence students’ learning gain directly. This indicates the importance of 

combined use of learning tasks and procedural information. More insight into how students differ in 

use, based on their characteristics is an important step from an instructional design perspective. This 

could provide important suggestions for designing online learning environments that improve students’ 

learning gain by allowing them to self-directed their learning to fulfill their personal needs.
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5. Combining physiological data and subjective measurements  

5.1. Introduction 

As society and work environments become more complex it is increasingly relevant that learning 

environments mirror this complexity of the real world (Jonassen, 2000; Kirschner, Ayres & Chandler, 

2011; Merrill, 2009; van Merriënboer et al., 2003). Nevertheless, a risk of complex learning 

environments is that the cognitive load imposed by the complex learning tasks is often excessive (van 

Merriënboer & Sluijsmans, 2009). This phenomenon can be explained by Cognitive Load Theory (CLT) 

introduced by Sweller (1994). CLT uses current knowledge about human cognitive architecture as a 

baseline to develop the instructional design for complex learning environments (Martin, 2014). CLT 

distinguishes three types of cognitive load, intrinsic, extraneous, and germane load (Brunken, Plass & 

Leutner, 2003; Paas, Tuovinen, Tabbers & Van Gerven, 2010; Sweller, 2010). The level of intrinsic load 

is assumed to be determined by the complexity of the task or learning material and cannot be directly 

altered by the instructional designer. Extraneous load is mainly imposed by instructional procedures that 

are suboptimal, whereas germane load refers to the learners’ working memory resources available to 

deal with the complexity of the task or learning material (Sweller, 2010). Both extraneous and germane 

load can be facilitated by the instructional designer. An instructional designer should find a balance 

between keeping the matter sufficiently challenging but still within the cognitive capacities of the 

learner. Exceeding learners’ cognitive capacities can induce cognitive overload which could hamper 

learning. Specifically, this means that when the content is very complex due to high element interactivity 

(i.e., the number  of interrelations between knowledge, procedures, formulas etc.) which affects intrinsic 

load, instructional designers should keep the extraneous load to a minimum (e.g., by providing clear 

instructions, provide embedded support) and subsequently foster germane load (Kirschner et al., 2011; 

Sweller, 2010).           

 

In order to align the instructional design with students’ cognitive abilities, we should be able to measure 

cognitive load during complex learning. Former studies investigated cognitive load by using subjective 

measurements such as self-reported questionnaires (Boekaerts, 2017; Zheng & Cook, 2012). Those self-

reported questionnaires have some important disadvantages (e.g. subjective measures, assumption of 

constant workload capacity, DeLeeuw & Mayer, 2008; Raaijmakers, Baars, Schaap, Paas & van Gog, 
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2017). As a result, more researchers show interest in using objective, real-time measures. Physiological 

measures provide objective data and can be unobtrusively collected while dealing with a task or learning 

material. Moreover, physiological data might indicate changes in cognitive functioning throughout the 

process of solving a task (Boekaerts, 2017). Former studies already indicated that electrodermal activity 

(EDA) and skin temperature (ST) can be linked to different levels of task complexity (Haapalainen, Kim, 

Forlizzi & Dey, 2010; Nourbakhs, Wang, Chen & Calvo, 2012; Shi, Ruiz, Taib, Choi & Chen, 2007).  

 

Nevertheless, it is unclear whether these physiological measures are related to self-reported intrinsic 

load, extraneous load, germane load and the overall mental effort during complex problem solving 

(Leppink, Paas, Van der Vleuten, Van Gog & Van Merriënboer, 2013). Therefore, in the current study, a 

high and low complex task was developed relating to the learning and teaching of geometry. The 

complexity of the task was manipulated by increasing the element interactivity for the high complex task 

(Sweller, 2010). In both tasks the same amount of support was provided. Data was retrieved using self-

reported questionnaires to measure students’ experienced intrinsic load, extraneous load, germane load 

and mental effort. This distinction between the different types and mental effort was made because the 

different types of cognitive load concerns mental load induced by task complexity and instructional 

design, whereas mental effort invested covers the overall amount of cognitive processing for a particular 

task (Paas et al., 2003). The subjective measures were combined with physiological data through wrist-

worn wearables containing both EDA and ST.    

 

The purpose of this study was threefold. First, we investigated differences in the experienced cognitive 

load and the physiological data while solving a high and low complex task. Secondly, we examined 

whether individual differences of subjective measurements are related to individual differences of 

physiological data for the high and low complex task. Finally, we described whether peaks (i.e. EDA) 

and/or drops (i.e. ST) of physiological data are related to specific events (e.g. consultation of support) 

that took place during the problem solving process. 
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5.2. Theoretical background 

Cognitive Load Theory 

 

CLT is concerned with the instructional implication of the interaction between the complexity and 

instructional design of the learning material and human cognitive architecture (Sweller, 2010). Basically, 

the human cognitive architecture consists of an effectively unlimited long-term memory, which interacts 

with a working memory that has limited processing capacity (Kirschner et al., 2011; Sweller, 1994). Long-

term memory contains cognitive schemata that are used to store and organize knowledge. Learning 

occurs when information is successfully processed in working memory and when new schemas are 

created or incorporated into consisting schemas in the long-term memory. As the processing capacity 

of the working memory is so limited, overcoming individual working memory limitations by instructional 

manipulations has been the main focus of CLT (Sweller, van Merriënboer & Paas, 1998). Cognitive load 

can be defined as a multidimensional construct representing the load that performing a particular task, 

imposes on the learners’ cognitive system (Paas et al., 2010). CLT claims that the cognitive load that 

learners experience can be intrinsic, extraneous or germane (Sweller, 2010). The level of intrinsic load 

for a particular task is assumed to be determined by the inherent difficulty of a certain topic and the 

level of element interactivity of the learning material in relation with student’s prior knowledge. The 

more elements that interact, the more intrinsic processing is required for coordinating and integrating 

the material and the higher the working memory load (De Leeuw & Mayer, 2008; Sweller, 2010).  

 

Working memory load is not only imposed by the intrinsic complexity of the material that needs to be 

learned, it can also be imposed by the instructional design. For instance, unclear instructional 

procedures can impose extraneous load. Extraneous processing means that the learner engages in 

cognitive processing that does not support the learning objective (De Leeuw & Mayer, 2008; Glogger-

Frey, Gaus & Renkl, 2017; van Merriënboer & Sluijsmans, 2009; Sweller, 2010). Instructional design 

techniques that reduce extraneous load (e.g. fading support) should ensure that students devote less 

attention to irrelevant aspects of the task. Subsequently, more cognitive capacity can be allocated to 

the actual learning objective (Ciernak, Scheiter & Gerjets, 2009; Mayer & Moreno, 2010; Sweller et al. 

2011). Meanwhile, intrinsic and extraneous load depend on the characteristics of the learning tasks or 

the instructional design, germane load is more concerned with the cognitive characteristics of the 

learner. More specifically, it refers to the available working memory resources to engage in knowledge 
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elaboration processes and argumentation (Sweller, 2010). Accordingly, in order to optimize learning, 

learning tasks should be aligned with the learner’s cognitive capabilities (Schmeck, Opfermann, van Gog, 

Paas & Leutner, 2015; Sweller, 2010). Measuring cognitive load during complex learning should provide 

more insight into how to align instructional design with students’ cognitive capabilities.  

 

Subjective measurements of cognitive load 

 

Self-reports for measuring cognitive load are subjective measurements consisting of unidimensional and 

multidimensional scales. Unidimensional subjective rating scales have been used intensively in research 

and have been identified as reliable and valid estimators of cognitive load (Boekaerts, 2017; Chang & 

Yang, 2010; Leppink et al., 2013; Paas, 2003). The Paas’s nine-point mental effort rating scale has been 

most frequently used in cognitive load research (Chen et al., 2016; Paas, 1992). Paas’s nine-point mental 

effort rating scale requires learners to rate their mental effort immediately after completing a task (Paas, 

1992). Mental effort is the aspect of cognitive load that refers to the cognitive capacity that is allocated 

to accommodate the demands imposed by a task (Paas et al., 2005). According to Paas, learners can 

introspect the amount of mental effort invested during a learning task. Subsequently, Paas claims that 

the learner’s assessment can be used as an index of overall cognitive load (Chen et al., 2016). 

Nevertheless, this unidimensional scale gives little insight into the influence of the complexity of the task 

and the influence of the instructional design on cognitive load (Boekaerts, 2017; De Bruin & van 

Merriënboer, 2017; Klepsch, Schmitz & Seufert, 2017; Leppink et al., 2013). Accordingly, Leppink et al. 

(2013) and Klepsch et al. (2017), developed a subjective cognitive load scale in which they used multiple 

items for each type of cognitive load in order to get more specific information about intrinsic load, 

extraneous load and germane load. Despite the frequent use of self-reported scales to assess cognitive 

load, some critiques have been raised. Firstly, subjective measurements are based on the assumption 

that students are able to introspect on their cognitive processes and accordingly are able to self-report 

on their experienced cognitive load (Boekaerts, 2017; Schmeck et al., 2015). Secondly, as subjective 

scales are often administered after the learning task, subjective scales do not capture variations in load 

over time. Taking into account these limitations, it might be more interesting to combine subjective 

measurements with real-time objective cognitive load information (Boekaerts, 2017; Chen et al., 2016; 

Zheng & Cook, 2012). 

 



Research track 2: Exploring methods for measuring cognitive load during online complex learning 

 

85 
 

Physiological measures of cognitive load 

 

The physiological approach for cognitive load measurement is based on the assumption that any change 

in human cognitive functioning is reflected in the human physiology. Subsequently, in contrast to 

subjective measurements, physiological measures are continuous and measured at a high frequency 

(e.g., every second) and with high precision (Chen et al., 2016). Given the close relationship between 

cognitive load and neural systems, human neurophysiological signals are seen as promising avenues to 

measure cognitive load (Boekaerts, 2017; Chen et al., 2016). Former research has investigated the 

relationship between learners’ cognitive load and their physiological behavior. The physiological 

measures that have been used to investigate cognitive load are among others heart rate by 

electrocardiography (ECG), brain activity by electroencephalography (EEG), eye activity (e.g. blink rate, 

pupillary dilation), EDA, heat flux and ST (Antonenko, Paas, Grabner & van Gog, 2010; Haapalainen et al. 

2010; Scharinger, Soutschek, Schubert & Gerjets, 2015; Smets et al., 2018; Zagermann, Pfeil & Reiterer, 

2016). Although a lot of physiological data, such as the brain and eye activity, has been proven to be 

highly effective for measuring cognitive load, these types of physiological data often require expensive 

sophisticated equipment that is highly obtrusive in measuring cognitive activities, especially in 

ecologically valid contexts (Chen et al., 2016; Scharinger et al., 2015).     

 

Possible solutions to collect physiological data in an unobtrusive way is by means of wrist-worn 

wearables. These wearables can easily capture different physiological data such as EDA and ST and are 

less expensive compared to more sophisticated measures of physiological data (Chen et al., 2016). EDA 

involves measuring the electrical conductance of the skin through sensors attached to the wrist. Skin 

conductivity varies with changes in skin moisture level (i.e. sweating) and can reveal changes in the 

sympathetic nervous system (SNS). The slowly changing part of the EDA signal is called the skin 

conductance level (SCL) and is a measure of psychophysiological activation. SCL can vary substantially 

between and within individuals. A fast change in the EDA signal (i.e. a peak) occurs in reaction to a single 

stimulus (also referred to as galvanic skin response, GSR; Braithwaite, Watson, Jones & Rowe, 2013). 

Research has linked GSR variation to stress and SNS arousal. As a person becomes more or less stressed, 

the GSR increases or decreases respectively (Hoogerheide, Renkl, Logan, Paas & van Gog, 2019; Liapis, 

Katsanos, Sotiropoulos, Xenos & Karousos, 2015, Smets et al., 2018). Additionally, research has also 

linked GSR readings to cognitive activity, claiming GSR responses increase when more cognitive load is 
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experienced (Ikehara & Crosby, 2005; Nourbakhs et al, 2012; Setz et al., 2010; Shi et al., 2007, Yousoof 

& Sapiyan, 2013). The study of Nourbakhs, Wang, Chen, and Calvo (2015) captured GSR data from 

different reading and arithmetic tasks. The arithmetic tasks contained four difficulty levels and 13 

participants whereas the reading task contained three difficulty levels and contained 16 participants. 

Results of ANOVA indicated that both mean GSR and accumulated GSR yielded significantly different 

results throughout different task difficulty levels. Shi et al. (2007) investigated 11 subjects when dealing 

with four tasks divided in four distinct levels of cognitive load. Results revealed insignificant differences 

across the interactive models for mean GSR, but significant differences when using accumulated GSR. 

Yousoof and Sapiyan (2013) investigated whether cognitive load could be detected by mean EDA. In this 

experiment, 7 subjects had to solve three different programming tasks that were different in terms of 

complexity. Yousoof and Sapiyan found no conclusive results for mean GSR, indicating that the variation 

among the subjects was very different during one task.       

  

In addition to EDA, ST can also reflect changes in SNS. Research claims that acute stress triggers 

peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature. Moreover, stress can 

also cause a more delayed skin warming, providing two opportunities to quantify stress (Herborn et al., 

2015; Karthikeyan, Murugappan & Yaacob, 2012; Smets et al., 2018; Vinkers, et al., 2013). Little research 

has used ST to assess cognitive load. Nevertheless, the study of Haapalainen et al. (2010) investigated 

the cognitive load of 20 subjects through GSR and heat flux data (i.e. rate of heat transfer). The subjects 

had to solve six elementary cognitive tasks that differed in difficulty. Afterwards, Haapalainen et al. 

(2010) evaluated the performance of each of the features in assessing cognitive load using personalized 

machine learning techniques (i.e. Naïve Bayes Classifier). Results indicated that they did not obtain 

satisfactory results for GSR. By contrast, they did find that across all participants heat flux was shown to 

be an indicator of differences in cognitive load. The findings of former studies indicate that EDA and ST 

can indicate differences in cognitive load, but none of these studies related physiological data with self-

reported cognitive load. 

 

Research aims 
 

To conclude, physiological measures have some important advantages when compared to subjective 

measurements. These measures are more objective (i.e. not dependent on students’ perceptions), 

multidimensional (i.e. different physiological measures are sensitive to different cognitive processes), 
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unobtrusive (i.e. no additional requirements), implicit (i.e. collect data while students are working on 

their tasks) and continuous (i.e. provide information of cognitive processes during learning). 

Nevertheless, it can be difficult to interpret physiological data. Therefore, it would be interesting to 

investigate whether there is a relationship between subjective measurements of cognitive load and 

physiological data. The following research questions are formulated: 

• RQ1: Does the manipulation of the level of complexity of a task, based on element interactivity, 

result in differences in perceived cognitive load and mental effort when controlled for prior 

knowledge? 

• RQ2: Does the manipulation of the level of complexity of a task, based on element interactivity, 

result in differences in physiological data, when controlled for prior knowledge? 

• RQ3: Is there a relationship between individual differences in self-reported data and individual 

differences of physiological data for a high and low complex task?  

• RQ4: Is there a relationship between the physiological data of one learner and his/her 

interactive behavior during the problem-solving process? 

5.3. Method 

Participants and study design 

 

Participants were 15 future primary school teachers of which ten were female and five males (age 

between 18-24). All participants were first-year bachelor students (i.e. second semester). The study was 

highly ecologically valid as the study was orchestrated by the students’ lecturer of the teaching 

mathematics course unit. Moreover, the intervention was integrated into the students’ study program 

(i.e. primary school teacher training). The intervention consisted of a within-subject design and was 

conducted online in the Moodle learning management system (LMS). The intervention took place in the 

auditorium of their faculty where students could solve the tasks individually on their computer among 

their fellow students. This session was supervised by their lecturer and a researcher. Students first 

received an online questionnaire of which the timeframe (+/- five min.) to complete the first 

questionnaire was used as an adaption period in order to stabilize the wearable signals (i.e. baseline 

measurements). Next, all students had to solve a highly complex and a low complex task on preparing a 

lesson in geometry as shown in Figure 1. In order to control for order effects, (a) half of the subjects 

were exposed to the highly complex task during the first session and the low complex task during the 
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second session, whereas for (b) the other half, the sequence was vice versa. More specifically, eight 

students started with the highly complex task and seven students started with the low complex task. 

 

High and low complex task 

 

The high and low complex tasks were developed in Moodle LMS. The scope of both tasks was designing 

a lesson preparation on the circumference of a circle for primary school children. This subject matter 

was not yet covered in previous lessons. Both tasks contained six elements where both aspects of PCK 

(i.e. inductive teaching strategy, choose teaching materials to support your lesson, aligning the topic of 

the lesson with the Flemish curriculum and integration of differentiation in your lesson in the classroom) 

and CK (i.e. formula of the circumference of the circle) was addressed. The complexity of the highly 

complex task was manipulated based on element interactivity (Sweller, 2010). In the highly complex 

task, students had to coordinate and integrate six elements consisting of CK and PCK in order to write a 

course preparation about the circumference of the circle, whereas the low complex task consisted of six 

questions where each element was addressed separately (see Figure 1). During both problems, the same 

support consisting of procedural and supportive information was provided. An example of procedural 

information can also be found in Figure 1 in the second box. Procedural information is provided just-in-

time and concise. Supportive information is much more extensive and is comparable to the background 

theory. Both procedural and supportive information can be consulted by clicking on the words in italics.    
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Figure 5.1. Highly complex task, question of the low complex task and an example of the procedural 

information 

 

Students’ prior knowledge 

 

Information about students’ prior knowledge was gathered in the first semester during their 

examination. Students were tested on their knowledge of PCK (mean = 63.5%, SD = 19.7) and CK (mean 

= 72.2%, SD = 27.8). The content was (teaching) mathematics in general and geometry in particular. 

Examples of test-items can be found in Figure 2. All tests were corrected by the instructor of the course 

unit. We have no insight into the prior knowledge of one student who participated in the study, which 

means that we can include an indicator of prior knowledge for 14 students in the analysis. 
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Figure 5.2.: Example questions of the prior knowledge test 

 

Subjective measurements 

 

For the measurement of cognitive load a validated instrument developed by Leppink et al. (2013) was 

used for the measurement of intrinsic, extraneous, and germane load. The questionnaire was translated 

into the specific context of the present study as shown in Table 1. The questionnaire consisted of a 7-

point Likert scale (i.e. ranging from “totally disagree” to “totally agree”). Reliability was determined 

through Cronbach’s α in order to investigate the overall consistency of the constructs (Schreiber, Nora, 

Stage, Barlow & King, 2006). Confirmatory factor analysis (CFA) was not conducted due to the small 

sample size, but former research has validated the questionnaire and has proven that the questionnaire 

is reliable (Leppink et al., 2013). Additionally, the Paas’s nine-point mental effort rating scale was added 

to the questionnaire (Paas, 1992). 
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Table 5.1. 

Survey items and reliability of the constructs 

 High complex Low  

complex 

 α α 

ICL_1: The topics covered in this task were very complex .69 .83 

ICL_2: The task covered formulas that I perceived as very complex   

ICL_3: The task covered concepts and definitions that I perceived as very complex   

ECL_1:The instructions during the task were very unclear .69 .71 

ECL_2: The instructions were full of unclear language   

ECL_3:The instructions were, in terms of learning, very ineffective   

GCL_1:The task really enhanced my understanding of the topics covered .85 .75 

GCL_2:The task really enhanced my knowledge and understanding of the topic   

*ICL = intrinsic cognitive load; ECL = extraneous cognitive load: GCL = germane cognitive load 
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Physiological data 

 

To measure physiological data including EDA and ST, 15 students were monitored with wrist-worn 

wearables as shown in Figure 2. These wearables were able to sense GSR with a high dynamic range 

(.05-20µS) at the lower side of the wrist and the output was accurate within a frame of approximately 1 

second. ST was acquired at the upper side of the wrist at a frequency of 32Hz and the output was 

accurate within a frame of approximately 1 second at 0.1 °C. Before analyzing the physiological data, a 

number of procedures were carried out. Firstly, a Confidence Indicator (CI), with values ranging from 0 

to 1, monitors whether the sensor is correctly attached to the body. Values of CI lower than .80 were 

ignored as this indicates the low quality of the data due to incorrect sensor attachment (+/- .01% per 

individual). Secondly, a visual analysis of the signal was conducted for both EDA and ST. Artefacts were 

removed 20s before and after the artefact and an interpolation over the gap was performed. Thirdly, 

large differences in skin conductance among individuals can occur (Yousoof & Sapiyan, 2013). Therefore, 

to counteract the variation between subjects, the EDA and ST data of each individual participant were 

standardized, bringing the mean of each signal to 0 and its variance to 1. Fourthly, time-domain features 

were analyzed, and mean EDA and ST were calculated as shown in Figure 3. 

 𝑴𝒆𝒂𝒏 𝑬𝑫𝑨(𝒔, 𝒕) = ∑ 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅_𝑬𝑫𝑨(𝒔, 𝒕)𝒕 𝒓                                   𝑴𝒆𝒂𝒏 𝑺𝑻(𝒔, 𝒕) = ∑ 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅_𝑺𝑻(𝒔, 𝒕)𝒕 𝒓  

*s = subject/ t = task/ r = time-on-task 

Figure 5.3. Standardized mean EDA and ST 

 

Log-data 

 

Log-data was retrieved from the Moodle Learning Management System (LMS). The LMS-system 

automatically keeps tracks of user activity (i.e. every min) and session. Log-data was divided into several 

events, namely: (1) start the task; reading instructions, (2) writing an answer, (3) consultation of support 

and, (4) submission; reviewing the answer. 

Analysis 

 

This study first investigated the differences between a high and low complex task for both the subjective 

measurements and physiological data (i.e. RQ1, RQ2). Therefore, both subjective measurements and 

physiological data were tested on the normality assumption. Results of the Shapiro-Wilk tests reveal 
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that both subjective measurements and physiological measurements were normally distributed. As we 

were interested in the mean differences between the high and low complex task of both the self-

reported and physiological data, controlled for prior knowledge (i.e., both PCK and CK), order effect (see 

section 3.1), we conducted a Linear Mixed Model (LMM) incorporating PCK, CK, and order as fixed 

factors and measurement time as a repeated measure (two-level for RQ1 and three-level for RQ3). 

When conducting LMM, the Restricted Maximum Likelihood Method (REML) was applied (Baayen, 

Davidson & Bates, 2008). Based on findings of RQ1 and RQ2, this study investigated the individual 

differences in the self-reported data of cognitive load for a high and low complex task, and how this 

relates to individual differences in physiological data (RQ3). Cohen’s d was calculated when differences 

were significant in order to have insight into the effect sizes (LeCroy & Krysik, 2007). A bivariate 

correlation analysis was conducted in order to find relationships between physiological data and 

subjective measurements of cognitive load. Fourthly, as the advantage of physiological data is that it is 

measured continuously, this study investigated whether there are relationships between specific events 

(i.e. consultation of support) based on log-data and peaks (i.e. spontaneous fluctuations per s) of EDA 

and drops of ST (i.e. RQ4). Given the small sample size, the analysis more descriptive. 

5.4. Results 

Preliminary analysis 
 

Descriptive statistics of the subjective measurements as shown in Table 2 reveal that students reported 

on average higher intrinsic load, extraneous load, and mental effort during the highly complex task in 

comparison with the low complex task. Results furthermore indicate that students reported higher 

germane load during the low complex task which was expected. 

 

Table 5.2. 

Descriptive statistics 

 High complex task Low complex task 

Cognitive load Mean (SD) Mean (SD) 

*Intrinsic load 5.62 (.97) 4.78 (.94) 
*Extraneous load 5.13 (.84) 5.31(1.13) 
*Germane load 3.33 (2.26) 3.60 (1.88) 
**Mental effort 6.47 (.92) 4.93 (1.10) 
*7-point Likert scale/**9-point Likert scale 
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In order to investigate differences in the perceived cognitive load and mental effort (i.e. RQ1), LMM was 

conducted incorporating PCK, CK, order effect as fixed factors and time as a two-level repeated 

measurement. Pairwise comparison of the different measurements of intrinsic load, extraneous load, 

germane load and mental effort are indicated in Table 3. Results reveal that intrinsic load differed 

significantly across phases. F(1,13) = 6.43, p = .03. Pairwise comparison reveals that intrinsic load was 

significantly higher (M = .86, p = .03) during the high complex task with Cohen’s d = .88. When 

investigating the fixed factors, there was no significant effect of both PCK, F(1,10) = .05, p = .82 and CK, 

F(1,10) = .43, p = .53. Moreover, no significant order effect was found F(1,10) = 12, p = 74. As expected, 

results reveal no significant difference for extraneous load across phases F(1,13) = 17, p = .69. Pairwise 

comparison reveals no significant mean difference (M = -.05, p = .90) between the high and low complex 

task for extraneous load. Results of the fixed effects reveal no significant effect of PCK F(1,10) = .04, p = 

.84, CK F(1,10) = .17, p = .69, and order F(1,10) = 1.58, p = .24. Results for germane load indicate no 

significant differences across phases F(1,13) = 1.21, p = .29. Pairwise comparison reveals no significant 

mean difference for germane load (M = -.18, p = .29) between the high and low complex task. Results of 

the fixed effects indicate no significant effects for PCK, F(1,10) = .00, p = .96 and CK, F(1,11) = .01, p = 

.93. Moreover, no order effect was found, F(1,10) = 1.39, p = .2. Finally, results revealed that mental 

effort was different across phases. Mean difference of mental effort between the high and low complex 

task was significant (M = 1.43, p = 00) in the predicted direction with Cohen’s d = 1.52. No significant 

effects of PCK, F(1,11) = 2.39, p = .15 and CK, F(1,11) = 2.84, p = .12. Additionally, no order effect, F(1,10) 

= .27, p = 62 was found. 

 

Table 5.3. 

Pairwise comparison of subjective measurements controlled for prior knowledge (i.e. PCK, CK) and order 

effect 

 

high-low complex Mean difference BCa p 

Intrinsic load .86 [.13, 1.59]   .03* 

Extraneous load -.05 [-.79, .89] .90 

Germane load -.18 [-.53, .17] .29 

Mental effort 1.43 [.65, 2.20]  .00* 

*significant at the .05 level **significant at the .01 level; BCa = 95% Confidence interval for Difference 
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Descriptive statistics of the physiological data can be found in Table 4. Mean EDA is lower during the 

high complex task compared to the low complex task. Mean ST is lower during the high complex task. 

 

Table 5.4. 

Descriptive statistics of the standardized physiological data 

Physiological data Baseline measurement 

Mean (SD) 

High complex task 

Mean (SD) 

Low complex task 

Mean (SD) 

Mean EDA -.58 (.60) .09 (.45) .45 (.86) 

Mean ST 1.25 (.86) .35 (.38) .49 (.87) 

 

In order to investigate the differences of physiological data between the baseline measurement, high 

and low complex task (i.e. RQ2), LMM was conducted incorporating PCK, CK, order effect as fixed factors 

and time as a three-level repeated measurement. Results indicate that differences were found for mean 

EDA across the different phases F(2,26) = 6.56, p = .01. Pairwise comparison of the different 

measurements of mean EDA is indicated in Table 5. Results of pairwise comparison reveal that the mean 

difference between the baseline measurement and high complex task phase is significant in the 

predicted direction (M = -.60, p = .05) with Cohen’s d = .19. Moreover, the mean difference is significant 

between the baseline measurement and the low complex task (M = -1.05, p = .00) with Cohen’s d = .14. 

Results reveal that no significant mean difference was found between the high and low complex task (M 

= -.45, p = .14). Moreover, the mean difference was in the unexpected direction. When investigating the 

fixed factors, there was a non-significant main effect of both PCK F(1,10) = .18, p = .68 and CK F(1,10) = 

.81, p = .36. Additionally, there was a significant effect of order F(1,10) = 7.62, p = .02, which indicates 

an order effect.  

 

No significant differences were found for mean ST across the different measurements, F(2,26) =.16, p = 

.85. Pairwise comparison reveals no significant mean differences between baseline measurement and 

the high complex task (M = 1.02, p = .61), baseline measurement and the low complex task (M = .87, p 

= .66), and between the high and low complex task (M = -.15, p = .94). Nonetheless, all mean differences 

were in the expected direction. When investigating the fixed effects, there was a non-significant main 

effect of both PCK F(1,10) = .00, p = .97 and CK F(1,10) = .12, p = .74. Additionally, there was no significant 

order effect, F(1,10) = .45, p = 52.  
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Table 5.5. 

Pairwise comparison of physiological data controlled for prior knowledge and order 

Physiological data: phase Mean difference BCa p 

Mean electrodermal activity    

Pair 1: Baseline – high complex   -.60  [-1.20, .00] .05* 

Pair 2: Baseline- low complex -1.05  [-1.65, -.45] .00** 

Pair 3: High complex- low complex   -.45 [-1.05, .15] .14 

Mean skin temperature    

Pair 1: Baseline – high complex 1.02  [-2.98, 5.01] .61 

Pair 2: Baseline – low complex   .87  [-3.13, 4.87] .66 

Pair 3: High complex- low complex -.15   [-4.14, 3.85] .94 

*significant at the .05 level **significant at the .01 level; BCa = 95% Confidence interval for Difference 

 

Results of RQ1 reveal significant differences in perceived intrinsic load and mental effort. RQ3 

investigates the relationship between the individual differences of intrinsic load, mental effort, and 

physiological data. Results are displayed in Table 6 and reveal that mental effort is significantly positively 

correlated with mean EDA (r = .58, p = .03) for the highly complex task. Nevertheless, no significant 

positive correlation was found between mean EDA and mental effort for the low complex task. No 

significant results were found for ST.  

 

Table 5.6. 

Correlations between standardized physiological data and subjective measurements for the highly 

complex and low complex task. 

 High complex task Low complex task 

 Mean EDA Mean ST Mean EDA Mean ST 

 r p r p r p r p 

Intrinsic load .12 .34 -.04 .44 .16 .29 -.03 .46 

Mental effort .58 .03* .33 .12 .12 .34 -.01 .48 

** correlation is significant at the .01 level; * correlation is significant at the .05 level 
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In the final RQ4, this study investigates the relationship between physiological data and specific events 

retrieved from log-data and EDA peaks. An example of such relationships is shown in Figure 4. Table 7 

gives an overview of the number of relationships between specific events and EDA peaks. In contrast to 

EDA, no conclusive relationships were found between ST (i.e. drops) and specific events. ST for most 

participants increased throughout the intervention as illustrated in Figure 5. 

 

 

Figure 5.4. Electrodermal activity related to log-data of participant 15 

 

 

Figure 5.5: Skin temperature related to log-data of participant 15 
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Table 5.7. 

The relationship between specific events and EDA peaks 

Events High complex Low complex 

Start the task (reading instructions) 7 2 

Writing an answer 8 2 

Consultation support 8 3 

Submission (reviewing the answer) 6 14 

 

5.5. Discussion 

This study attempted to firstly investigate the difference of subjective measurements of cognitive load 

between a high and low complex task (i.e. RQ1). Results reveal that the students indicate higher 

perceived intrinsic load for the high complex task when compared with the low complex task. This 

indicates that the manipulation of complexity based on element interactivity was successful. 

Additionally, students indicated that the perceived mental effort was higher during the high complex 

task. Effect sizes of both intrinsic load and mental effort were high (>.80) indicating that the 

manipulation of complexity had an impact (LeCroy & Krysik, 2007). This reveals that students invested 

more mental effort into solving the high complex task in order to maintain performance at a constant 

level (Paas et al., 2005). This is also in line with CLT, since the high complex task was high in element 

interactivity and possibly required a lot of cognitive resources (Van Merriënboer & Sweller, 2005). No 

significant differences were found for extraneous load between both tasks. This finding was expected as 

the instructions for both tasks were of the same level of difficulty. Additionally, no significant differences 

were found for germane load, indicating that both tasks enhanced students’ understanding of the 

content at a similar level. This was in line with our expectations as the content and available support of 

both tasks was the same.  

 

Secondly, this study aimed at investigating whether we can use physiological data to distinguish between 

the two complexity levels of the task. When investigating mean EDA, results reveal that significant 

differences were found between both tasks and the baseline measurement. These findings indicate that 

both tasks result in a higher mean EDA. Nevertheless, effect sizes were very small (< .20), indicating that 

task complexity only had a minimal impact on mean EDA (LeCroy & Krysik, 2007). Moreover, no 
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significant differences were found for mean EDA between the high and low complex. These results are 

in line with the findings of the study of Haapalainen et al. (2010), which also revealed no significant 

differences for EDA between six tasks of different levels of difficulty. Moreover, against expectations, 

descriptive statistics reveal that mean EDA was higher during the low complex task, when compared 

with the high complex task. These unexpected findings may be induced by the order effect. This order 

effect may reduce a clear difference between the EDA during the high and low complex task. Moreover, 

visual analysis reveals that for the majority of all participants, skin conductance rises throughout the 

intervention (i.e., drift). Since, more participants had the low complex at the end, this might indicate 

that results are biased by drift. This indicates the need for the current study to also examine EDA peaks 

as these peaks are not affected by drift (RQ4).  

 

When investigating mean ST no significant mean differences were found for mean ST across all different 

phases. Nevertheless, descriptive statistics reveal that ST was higher during the baseline measurement 

period. Moreover, ST was higher during the low complex task compared with the high complex task. This 

could indicate that ST is related to task complexity as research indicated that ST declines relative to a 

trigger event (Ikehara & Crosby, 2005). Current findings indicate that mean EDA and mean ST might be 

indicators of changes of cognitive load, but cannot be used to detect differences in task complexity. 

Nevertheless, there is no clear link between ST and cognitive load. Accordingly, correlations between 

individual differences in the perceived intrinsic load, mental effort and, physiological data for a high and 

low complex task are investigated (RQ3).  

 

A third aim of this study was to investigate whether we can relate subjective measures of the perceived 

intrinsic load and mental effort (i.e. based on findings of RQ1) with physiological data (i.e. mean EDA and 

ST) during a high and low complex task. Findings reveal that mental effort positively correlates with 

mean EDA for the high complex intervention. Nevertheless, we did not find a significant correlation 

between mean EDA and the low complex intervention Results might also be influenced by the fact that 

skin conductance was rising throughout the intervention, accompanied with the fact that more students 

completed the low complex task at the end. No significant correlations between mean ST and self-

reported data were found. This finding could be due to the fact that ST shows a very slow rise and decline 

in temperature change relative to the trigger event. Therefore, it might be difficult to relate ST to self-

reports (Ikehara & Crosby, 2005). Since there seems to be a relationship between EDA and mental effort 
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and since ST drops can be related to specific events, we investigated the relationship between 

physiological data and learning behavior retrieved from log-data.  

 

In order to investigate the relationship between physiological data and learning behavior. Log-data was 

investigated and divided into four main events, namely, reading instructions, writing an answer, 

consulting support and reviewing the answer. Results reveal that there seems to be a relationship 

between specific learning behaviour and EDA peaks. Moreover, results reveal that more peaks were 

registered during the high complex task, when compared with the low complex task, which indicates a 

different result compared to RQ2. When investigating the intensity of the peaks, findings reveal that the 

peaks that are related to the events ‘submission’ are more intense. This might explain, besides the 

occurrence of drift, why mean EDA was higher during the low complex task. Possibly, results may have 

been influenced by the fact that the low complex task was presented as a test-format, which might have 

induced more intensive peaks when students submitted their task. When investigating relations 

between peaks and events it seems that during the high complex task, peaks are more related to 

cognitive processes (e.g., reading instructions, consulting support and writing) when compared with the 

low complex task (e.g., submission). For instance, when investigating the event ‘consultation of support 

more in detail, peaks were related to students (N = 4) watching a video that explains the circumference 

of a circle.  

This is line with previous research indicating that GSR responses are associated with effortful cognitive 

processing during multimedia learning (Antonietti, Colombo & Di Nuzzo, 2015). Additionally, hardly any 

peaks were found for the low complex task during writing, which is in line with the study of Mudrick, 

Taub, Azevedo, Price & Lester (2017). Mudrick et al. (2017) investigated multimedia learning and 

indicated that the lowest amount of GSR responses were retrieved when answering multiple-choice 

questions, suggesting that this might require less cognitive processing. This finding is also in line with 

the study of Hoogerheide et al. (2018) indicating that mean EDA was significantly lower during the 

solving process of a practice problem, when compared with teaching a practice problem in an authentic 

learning situation. These exploratory findings indicate that the intensity of EDA signals might be more 

related to the type of learning activities. In line with previous findings of RQ2 and RQ3, no conclusive 

results were found for ST. Nevertheless, on the basis of data visualization of all students we could see 

that for the largest number of participants (i.e., 8 students), ST is lower during the high complex task, 

which is in line with findings of RQ2.  



Research track 2: Exploring methods for measuring cognitive load during online complex learning 

 

101 
 

Limitations and further research 

 

Despite the merits of the study in terms of indicating that individual differences in the experienced 

mental effort can indicate individual differences in EDA, there are some important limitations that 

should be mentioned. Firstly, results must be approached carefully as multiple analyses on the same 

dependent variable were conducted which can increase the chance of committing a Type 1 error (Roth, 

1999). Secondly, as we were investigating physiological data, we were obliged to implement a within-

subject design. This is a requirement when investigating skin conductance, as skin conductance can vary 

markedly between individuals (Braithwaite et al., 2013). Nevertheless, the within-subject design had 

some important disadvantages. Since the same learning materials were taught within both the high and 

low complex task, students might have learned from the previous task and therefore perceived the high 

complex task as less difficult. This is turn might have influenced skin conductance and skin temperature, 

and might be the reason why there was no clear difference between the high and low complex task. This 

problem can be addressed in future studies by addressing different topics. Moreover, future studies 

should offer more different tasks of different levels of complexity, and also create more conditions in 

order to increase the number of measurements. This could provide a better understanding of possible 

correlations between mental effort and mean EDA.  

 

A third important limitation, when investigating skin conductance is drift, a continuous increase of the 

intensity of the signal. It is important to distinguish drift from important shifts in real tonic processes 

(Braithwaite et al., 2013). Nevertheless, this distinction between drift and real tonic processes is not 

always entirely clear. This emphasizes the need of an accurate baseline measurement. The baseline 

measurement in the current study could be optimized by letting students rest. Given the small sample 

size we decided not to remove data of participants. Instead, in this study we have additionally 

investigated the peaks of skin conductance (as these are no subject of drift) and related them to specific 

events in the learning environment. Nevertheless, it can be advisable to remove the data of participants 

on the basis of drift in larger datasets. Moreover, a larger sample size would also allow us to investigate 

patterns between EDA peaks and specific events in the learning environment (e.g. reading instructions) 

while using quantitative methods. Finally, as the study did not take place in a lab setting but in the 

classroom of the students, a lot of confounding factors unrelated to cognitive load may cause clouds in 

the data such as a lecturer entering the classroom and students leaving the classroom when finished. 
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These events are likely to degrade the accuracy of cognitive load measurement by GSR (i.e. EDA). 

Nevertheless, the ecological valid setting also has advantages such as authenticity of the results 

(Schmuckler, 2001). Moreover, as the subject matter was part of students’ training program, students 

were encouraged to thoroughly solve the tasks, which is reflected in the task performance  

5.6. Conclusion 

This study attempted to firstly investigate the difference of subjective measures of cognitive load and 

physiological data (i.e. mean EDA and ST) between a high and low complex task in an ecologically valid 

setting. Students indicated that they perceived higher intrinsic load during the high complex task and 

that the high complex task required more mental effort. This indicates that task complexity can be 

manipulated based on element interactivity. Nevertheless, complexity was not reflected by differences 

in physiological data (i.e. mean EDA and ST). Accordingly, in the next phase this study investigated 

correlations between perceived intrinsic load, mental effort and physiological data. Results revealed a 

positive correlation between mean EDA and mental effort during the high complex task. Nevertheless, 

no significant correlations were found for the low complex task. Preliminary results of more descriptive 

analysis showed that peaks of EDA during the high complex task were more frequently related to 

cognitive processes when compared with the low complex task (i.e. submitting the task). The latter 

finding might explain the significant relationship between mental effort and mean EDA. Future research 

should replicate similar studies while using larger sample sizes to verify these findings. Additionally, the 

relationship between EDA and the type of learning behavior (i.e. retrieved from log-data) should not be 

overlooked.
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6. Physiological data: a promising avenue to detect cognitive (over)load? 

6.1. Introduction 

In the search for a better understanding and the support of learning, new manners of data collection 

such as sensing technology are explored to capture multimodal data unobtrusively in ecologically valid 

learning environments (Spikol & Cukurova, 2019). In the current study we used physiological data to 

measure cognitive load during the online problem-solving process. Cognitive load was defined based on 

the Cognitive Load Theory (CLT) introduced by Sweller (1994). CLT indicates that cognitive load can be 

induced by both intrinsic and extraneous load (Sweller, 1994). The level of intrinsic load is determined 

by the amount of element interactivity and their interrelationships that need to be mastered by the 

learner. Extraneous load is mainly imposed by instructional procedures that induce unnecessary working 

memory load (Sweller, 2010). By monitoring task complexity and instructional support, personalized 

online courses can be developed to optimize cognitive load. In view of optimizing cognitive load, it is 

important to accurately measure cognitive load during the online problem-solving process. Former 

studies used physiological measurements such as GSR, ST, HR and HRV to investigate cognitive load 

(Cranford, Tiettmeyer, Chuprinko, Jordan & Grove, 2014; Haapalainen et al., 2010; Larmuseau et al., 

2019; Nourbakhs et al., 2012). Despite the merits of these studies our current understanding of the 

association between physiological data and cognitive load is characterized by at least three limitations. 

Firstly, most studies did not systematically manipulate cognitive load based on insights from CLT (Morton 

et al., 2019). Secondly, the majority of studies did not combine physiological data with self-reports and 

task performance (Dindar, Malmberg, Järvelä, Haataja, & Kirschner, 2019). Thirdly, there is no 

unambiguous answer to which physiological features are best in assessing cognitive load (Larmuseau et 

al., 2019). 

 

To meet these limitations, the current study firstly experimentally manipulated the intrinsic load and the 

extraneous load by respectively varying the difficulty level of statistical exercises and the instructional 

support. More particularly, four sets of exercises were developed that differed on these two dimensions. 

In addition, students also received a computer-based operation span test (OSPAN) and participated in 

baseline measurements. OSPAN was used as verification of high cognitive load, whereas the baseline 

measurement was a verification of low cognitive load (Yuan et al., 2006). We examined differences 
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between the four sets, OSPAN and baseline measurement, in view of the physiological data. Secondly, 

we combined physiological data with self-reported cognitive load and task performance to investigate 

how much variance in these variables was explained by physiological data. Thirdly, we investigated which 

physiological features were important for distinguishing high and low cognitive load.  

6.2. Theoretical background 

Cognitive Load Theory 

 

CLT was introduced by Sweller (1994) to consider the instructional implications of characteristics of 

human cognitive architecture with a special focus on the limited capacity of the working memory. 

Cognitive load is defined as working memory load, which is determined by the working memory 

resources required by a learner, for performing a cognitive task (Kalyuga & Singh, 2016). A major goal of 

CLT is to optimally manage cognitive load, since both overload and underload can lead to substandard 

performance (Chen et al., 2016). CLT distinguishes between intrinsic and extraneous load (Paas et al., 

2010). Intrinsic load is determined by the level of element interactivity. In the case of higher element 

interactivity, the learning material is more complex requiring more intrinsic processing from learners’ 

working memory for coordinating and integrating the learning material. Extraneous load refers to 

extraneous processing that does not contribute or even obstructs learning due to unnecessary mental 

demands (Sweller et al., 2019). Instructional design techniques can reduce extraneous load by 

preventing learners to pay attention to irrelevant elements. For instance, instructional support can 

contribute to reducing this extraneous load by offering hints to tackle the learning tasks (Cierniak et al., 

2009; Sweller, 2010). In view of optimal learning and performance, an optimal level of cognitive load is 

desirable (Sweller et al., 2019). Therefore, it is important to accurately assess cognitive load during the 

online problem-solving process to detect high complex learning material or suboptimal instructional 

procedures. Accordingly, personalized online learning environments can be developed that are adjusted 

to the learners’ working capacity levels.  

 

Measurement of cognitive load 

 

A typical approach for measuring cognitive load is through unidimensional rating scales (Chen et al., 

2016). In this respect, a frequently used rating scale is the Paas’ (1992) nine-point mental effort rating 
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scale (Chen et al., 2016). This scale requires learners to rate their mental effort immediately after 

completing a task (Paas, 1992). This scale can be used as an index of overall cognitive load (Chen et al., 

2016). Despite the merits of this rating scale, such as a quick administration of the perceived cognitive 

load, some limitations should be mentioned. Firstly, this scale requires learners to introspect their 

cognitive processes which can induce biased results (Boekaerts, 2017). Secondly, these scales are 

obtrusive as they interrupt task flow. Thirdly, those rating scales do not easily capture variations in load 

over time (Chen et al., 2016). In contrast to self-reported data, physiological data can be measured at a 

high frequency and with a high precision during online problem solving (Di Mitri; Schneider, Specht & 

Drachsler, 2018). Given the close relationship between cognitive load and neural systems, the 

physiological approach is seen as a promising avenue to assess cognitive load (Chen et al., 2016). In the 

next section, we will explain how physiological data such as GSR, HR(V) and ST, can be unobtrusively 

measured by means of wrist-worn wearables and patches. 

 

Galvanic skin response (GSR) or Electrodermal Activity (EDA) 

                                  

GSR, also known as skin conductance or electrodermal activity (EDA) refers to the variation of the 

electrical properties of the skin in response to sweat secretion (Benedek & Kaernbach, 2010). The time 

series of skin conductance can be characterized by a slowly varying tonic activity (i.e. skin conductance 

level) and a fast varying phasic activity (i.e. skin conductance responses; Braithwaite et al., 2015). The 

bulk of skin conductance literature mainly reports associations with stress (Braithwaite et al., 2015; 

Smets et al., 2018a). Nonetheless, more and more researchers also investigated the relationship 

between GSR and cognitive load (Chen et al., 2016). Nourbakhs et al. (2012) captured GSR data from 

learners conducting arithmetic and reading tasks. The tasks differed in difficulty level, which relates to 

intrinsic load. Resp. four and three difficulty levels were distinguished for the arithmetic and reading 

tasks. Results of ANOVA of 13 and 16 participants (arithmetic and reading tasks) indicated that GSR 

significantly differed between task difficulty levels. By contrast, Shi et al. (2007) investigated 11 subjects 

when dealing with four tasks that differ in level of difficulty, but the results revealed insignificant 

differences across task difficulty levels for GSR. Similarly Larmuseau et al. (2019) investigated GSR for 

tasks that differed in terms of element interactivity. Results of 15 participants indicated no noticeable 

difference in GSR data between a high and low element interactivity task. Nonetheless, significant 

differences were found between GSR during the baseline measurement (i.e. low cognitive processing) 
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and during high complex problem-solving. Overall, studies indicate that GSR increases when cognitive 

load increases.  

 

Heart Rate (HR) and Heart Rate Variability (HRV) 

 

HR and HRV can be measured by a noninvasive electrocardiographic (ECG) method. HR averages the 

number of beats per minute, whereas HRV indicates small changes in the intervals between successive 

heartbeats. The majority of the studies have revealed that HR and HRV can be used to measure stress 

(Kim, Cheon, Bai, Lee & Koo, 2018; Smets et al., 2018a). Other studies have also associated HR and HRV 

with cognitive demands, in which they have shown that an increase in HR and a decrease in HRV 

indicates higher cognitive load. For instance, Taelman, Vandeput, Vleminckx, and Spaepen (2011) 

collected ECG data of 43 undergraduates in a laboratory experiment during a high cognitive load task 

(doing complex arithmetic exercises) and a low CL task (watching a relaxing movie). Results of pairwise 

comparison, reveal that HRV was significantly higher during the rest phase when compared with the 

high cognitive load task. Additionally, Cranford et al. (2014) measured CL through HR in the context of 

chemistry. Findings of 12 participants suggested that problems that were intentionally designed to 

induce higher cognitive load resulted in a larger increase of HR, compared to problems designed to 

induce lower cognitive load. Finally, in the study of Brouwer, Hogervorst, Holewijn, and van Erp (2014), 

35 participants solved different difficulty levels of the n-back task (i.e. working memory capacity test) 

while recording HR and HRV. No significant effects were observed for HR and HRV, but trends in the data 

revealed that HR varied as a consequence of task difficulty. In summary, we can assume that HR and 

HRV are promising in detecting changes in cognitive load. 

 

Skin Temperature 

 

Previous studies also measured ST to indicate stress. Stress can induce peripheral vasoconstriction which 

causes a rapid, short-term drop in ST. Moreover, stress can also cause a more delayed skin warming, 

providing two opportunities to quantify stress (Herborn et al., 2015; Karthikeyan et al., 2012; Smets et 

al., 2018). Little research has used ST to assess cognitive load. As an exception, Haapalainen et al. (2010) 

collected data from multiple sensors, one tracking ST, in view of detecting cognitive load. A total number 

of 20 subjects had to solve six tasks that differed in complexity. Using personalized machine learning 

techniques (i.e., Naïve Bayes Classifier) to assess cognitive load, they concluded that ST can be used to 
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distinguish between low and high complex tasks. By contrast, the study of Larmuseau et al. (2019) 

observed no significant differences in ST between low and high complex tasks. In general, studies that 

used ST to investigate cognitive load remain scarce. Consequently, it is unclear whether ST can be used 

to detect cognitive load. 

 

Shortcomings and research questions 

 

Overall, there are some limitations in the current research field. Firstly, not all studies systematically 

manipulated cognitive load according to CLT (Morton et al., 2019). Secondly, the majority of studies did 

not combine physiological data with self-reported cognitive load (Dindar et al., 2019; Larmuseau et al., 

2019). In addition to linking physiological data with self-reported cognitive load it should be interesting 

to link physiological data with task performance across the different sets of exercises, as previous studies 

indicated that physiological adjustments ensure that task performance remains the same across 

different levels of complexity (Brouwer et al., 2014; Iani, Gopher & Lavie, 2002). Thirdly, it remains 

unclear which features are most indicative for assessing cognitive load. Against this background, the 

following research questions are formulated: 

• RQ1: Do the different conditions (i.e. sets of exercises, OSPAN and baseline measurement) 

result in differences in physiological data? 

• RQ2a: Can self-reported cognitive load be explained in terms of physiological data across the 

different sets of exercises? 

• RQ2b: Can task performance be explained in terms of physiological data across the different 

sets of exercises? 

• RQ3: Which physiological features are important in assessing cognitive load? 

6.3. Method 

Participants and Study design 

 

Participants were 67 adolescents (67.2% female and 32.8% male). The average age was 19.37. Of these 

67 participants, 21 were in there last year secondary education and 46 were in the first two years of 

higher education. Participation was voluntary and all participants signed an informed consent before 

participation. A requirement for participation was that participants had been recently introduced to the 
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theory on probabilistic reasoning in statistics. A within-subject design was used in which participants 

solved four different sets of exercises in a randomized order. The intervention is illustrated in Figure 1. 

Participants started with OSPAN. Afterwards, baseline measurements were conducted where students 

watched a relaxing movie with headphones. Additionally, participants randomly received (to counteract 

a sequence effect) four sets of exercises (section 3.4.) within the Moodle LMS. All answers were 

completed online and students were allowed to use a calculator on their computer to conduct 

calculations if they felt that this was useful. No information about the correctness of the answers was 

provided. After each set of exercises, participants had to indicate their perceived cognitive load (Paas, 

1992) (Q*).  

 

Figure 6.1.: The study design 

 

Physiological recordings 

 

During the sets of exercises physiological data were measured by two wearables developed by Imec as 

indicated in Figure 2. The first wearable was a chest patch recording ECG at a sampling rate of 256 Hz 

and providing information about HR(V). The second wearable was a wrist-worn device (worn on the non-

writing hand) measuring GSR with a high dynamic range (.05-20 µS) at the lower side of the wrist. The 

output was accurate within a frame of approximately 1 second. ST was acquired at the upper side of the 

wrist at a frequency of 1 Hz. The output was accurate within a frame of approximately 1 second at 0.1°C. 

Both wearables measured the magnitude of acceleration. Using high-quality physiological signals, 19 

features were calculated (8 GSR features, 4 ST features and 7 ECG features) in a window of 1 min. There 

was drop-out due to the malfunctioning of some wearables (e.g. wearables that went into standby, or 
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patches that could not measure due to chest hair, etc.), resulting in data from 51 wrist-worn wearables 

(GSR and ST) and 48 ECG patches (HR and HRV). 

 

  

Figure 6.2.: The Imec chest patch and Chillband 

 

The computer-based operation span test (OSPAN)  

 

A computer-based operation span test (OSPAN; Stone & Towse, 2015) was used in which each 

participant was shown a number for 1s on a screen that he/she had to remember in the correct order. 

After each number, participants were shown a mathematical operation and had to decide on the 

correctness of the given answer. Accordingly, for every storage element (number to remember) there 

was a processing phase (a mathematical operation) immediately succeeding it. In total there were three 

experimental trails of each span size (number of digits to be remembered: 2-6). Since this dual-task 

requires both storage and the processing of the information, it is effortful and demanding of the working 

memory (Yuan et al., 2006). Consequently, this test can be used as a control intervention for high 

cognitive load.  

 
Exercises and task performance 

 

The content of the exercises was probabilistic reasoning in statistics. The four sets of exercises that were 

developed differed from each other on two dimensions. The first dimension was related to intrinsic load. 
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The complexity of the exercises was manipulated on the basis of element interactivity (Sweller, 2010). 

As illustrated in Figure 3, solving the low complex set of exercises consisted of applying one procedure 

or rule while the high complex exercise series consisted of several solution steps consisting of different 

elements (elements are in bold). The second dimension was related to extraneous load and was 

manipulated by providing step-by-step instructions (i.e. hints) that were offered just-in-time and could 

be consulted voluntarily (in italics in Figure 3). Consequently, we had four sets of exercises: (1) high 

complex with hints, (2) high complex without hints, (3) low complex with hints and, (4) low complex 

without hints. By systematically manipulating cognitive load we aimed at detecting differences in 

cognitive load through physiological data. Task performance was retrieved from the total number of 

exercises that was correctly solved per session. All exercises had a precisely correct answer and were 

scored as correct (1) or incorrect (0). 

 

Figure 6.3.: example of an exercise of low and high element interactivity with hints 

 

Analysis 

 

Since features of physiological data might be strongly related, principal component analysis (PCA) was 

used to reconstruct the original dataset of 19 features. By conducting PCA, 7 features were extracted 

based on their standardized loadings after varimax rotation, namely: GSR_SCmag, ECG_sdnn, ST_mean, 

ECG_LF, LF_VLF_Ratio, ST_slope and ECG_meanHR. Detailed information about these features (meaning 

and calculation) can be found in Table 1, in which the selected features are in bold. The purpose of the 
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standardization was to facilitate individual-difference comparisons and thus to factor out issues (e.g. the 

thickness of the skin; Braithwaite et al., 2015).  

 

Table 6.1. 

Overview of the features of the physiological data (selected features in bold) 

Features Description 

GALVANIC SKIN RESPONSE 

GSR_SCL 

GSR_SCPh 

GSR_SCRR 

Skin conductance level- average GSR  

Phasic skin conductance- signal power of the phasic GSR signal  

Skin conductance response rate – number of GSR responses in window divided by the total 

length of the window (i.e. responses per second) 

GSR_SCdiff2 Skin conductance second difference - signal power in second difference from a GSR signal 

GSR_SCR Skin conductance response - number of GSR responses from a GSR signal  

GSR_SCmag Skin conductance magnitude - the sum of the magnitudes of GSR responses  

GSR_SCdur Skin conductance duration - the sum of the duration of GSR responses in seconds  

GSR_SCarea Skin conductance area - the sum of the area of GSR responses in seconds. The area is defined 

using the triangular method (1/2*s_mag*s_dur) 

SKIN TEMPERATURE 

ST_mean Mean of the skin temperature 

ST_median Median of the skin temperature 

ST_std Standard deviation of the skin temperature 

ST_slope Slope of the skin temperature – slope of a straight line fitted through the data 

HEART RATE AND HEART RATE VARIABILITY 

ECG_meanHR Mean heart rate in window 

ECG_sdnn Standard deviation of the interbeat (RR) intervals 

ECG_rmssd Root mean square of the successive interbeat (RR) differences 

ECG_LF Low frequency signal (power in the 0.04-0.015 Hz band) 

ECG_HF High frequency signal (power in the 0.15-0.4 Hz band) 

ECG_HC Heart coherence (a pattern with nice even waves) 

ZLF_VLF_Ratio The low frequency signal (LF)/ (very low frequency signal (VLF) and high frequency signal 

(HF)) 
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In view of RQ1 we investigated the mean differences in physiological data between the four sets of 

exercises, OSPAN and baseline measurement. Since the first baseline measurement was strongly 

influenced by the measurement of physiological data during the OSPAN (indicated by visual analysis), 

we opted to only use the second baseline measurement for analysis. We controlled for the magnitude 

of acceleration (ACC), as movement can influence physiological signals (Boucsein, 2012). A within-

subjects effects of the different interventions by 6*1 repeated measure ANOVA was conducted. As 

multiple comparisons were conducted, Bonferroni correction was applied (Bretz, Hothorn & Westfall, 

2016).  

 

Regarding RQ2 we investigated whether self-reported cognitive load and task performance can be 

explained in terms of physiological data across the different sets of exercises. Multilevel Modeling (MLM) 

was applied to investigate how much variance of the self-reported data and task performance was 

explained by the physiological data. A first null model included the intrinsic manipulation and the 

extraneous manipulation. The subsequent analyses had perceived cognitive load and task performance 

as dependent variables and the selected physiological features (i.e. based on PCA) as predictors. The 

average variance explained by the predictors (R2) is presented for each model. We also checked if the 

model was statistically better after inclusion of physiological data. To maintain statistical power while 

comparing the models we decided to complete missing data via multiple imputation which resulted in 

data of 64 students. Creating multiple imputations, as opposed to single imputations accounts for the 

statistical uncertainty in the imputations and yields accurate standard errors (Azur, Stuart, Frangakis & 

Leaf, 2012). Accordingly, this method can be used for a large amount of missing values such as +/-30% 

missing observations in the current study (Fichman & Cummings, 2003). 

 

With respect to RQ3 we investigated whether cognitive load can be detected through physiological data. 

Informed by the results of RQ1, we only maintained the two interventions that significantly differed and 

conducted a binary classification, i.e. baseline measurement (low cognitive load) and OSPAN (high 

cognitive load). The selected features (based on PCA to avoid overfitting) were incorporated in the 

machine learning model. Using 128 observations (from 64 students) we trained a logistic regression 

model in a 10-fold cross-validation approach (Ramasubramanian & Singh, 2016).  
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6.4. Results 

RQ1 investigated the differences between the four sets of exercises, OSPAN, and the baseline 

measurement in terms of physiological data as indicated in Table 2. First, regarding GSR (N = 51), no 

significant differences between the six interventions were observed. Secondly, mean HR was 

significantly lower during the baseline measurement compared to the high complex set, high complex 

set with hints, low complex set with hints and OSPAN. Furthermore, mean HR (N = 48) was significantly 

lower during the four sets of exercises when compared with OSPAN. In terms of HRV (N = 48), results of 

SDNN (i.e. standard deviation of the interbeat intervals) reveal that HRV was significantly higher during 

OSPAN when compared with the baseline measurement. Thirdly, results of ST (N = 51) reveal that mean 

ST during OSPAN was significantly lower compared to all other interventions. Similarly, the slope of ST 

was higher during OSPAN when compared with the remaining interventions.  
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Table 6.2. Overview of the within-subjects effects of the different interventions 

 GSR HR HRV ST 

 GSR_ 

SCmag 

ECG_ 

meanHR 

ECG_ 

SDNN 

ECG_LF LF_VLF_ 

Ratio 

Mean ST ST slope 

I-J MD SE MD SE MD SE MD SE MD SE MD SE MD SE 

Base - HC  -.03 .17 -.25** .07 .04 .15 .02 .06 -.30 .17 -.02 .06 -.37 .16 

Base - HC + hints -.14 .17 -.36** .07 .22 .15 -.02 .06 -.16 .17 .04 .06 -.43 .16 

Base - LC  -.06 .17 -.18 .07 .23 .15 .06 .06 -.00 17 -.03 .06 -.10 .16 

Base - LC + hints .12 .12 -.36** .07 .23 .15 -.02 .06 -.36 .17 .04 .06 -.21 .16 

Base - OSPAN -.19 .17 -.88** .07 .46* .15 .04 .06 -.14 .16 .45** .06 -1.2** .16 

HC - HC + hints -.14 .17 -13 .07 .18 .15 -.04 .06 .14 .17 .06 .06 -.06 .17 

HC - LC -.08 .17 .06 .07 .03 .15 .04 .06 .29 .17 -.02 .06 .27 .16 

HC - LC + hints .09 .17 -.11 .07 .19 .15 -.04 .06 -.06 .17 .05 .06 .16 .16 

HC - OSPAN -.21 .17 -.64** .07 .42 .15 .02 .06 .16 .17 .47** .06 -1.4** .17 

HC + hints - LC .06 .17 .06 .07 -.15 .15 .08 .06 .15 .17 -.07 .06 .33 .16 

HC + hints - LC + 

hints 

.23 .17 .02 .07 .01 .15 .00 .06 -.20 .17 -.00 .06 .22 .16 

HC + hints - 

OSPAN 

-.08 .17 -.51** .07 .24 .14 .06 .06 .02 .17 .41** .06 -1.4** .16 

LC - LC + hints .17 .17 .17 .07 .16 .15 -.08 .06 -.36 .17 .07 .06 -.11 .16 

LC - OSPAN -14 .17 -.70** .07 .39 .14 -.02 .06 -.14 .16 .48** .06 -1.7 .16 

LC + hints - 

OSPAN 

-.12 .17 -.53** .07 .23 .14 .06 .06 .22 .16 .42** .06 -1.6** .16 

MD (mean difference = I-J)- Base: baseline measurement; HC: high load/LC: low load/significant: < 0.01**, < 0.05*
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The results for RQ2 are presented by Table 2. RQ2a investigated whether self-reported cognitive load 

across the different sets of exercises can be explained through physiological data. First, in the baseline 

model, it was observed that the sets with high element interactivity resulted in higher self- reported 

cognitive load, whereas the provision of hints reduced self- reported cognitive load. Furthermore, in 

terms of physiological data, results indicated that CL is explained by a significant negative effect of the 

slope of ST, and a positive effect of mean HR. The total variance explained is r2=.18 and the model 

including physiological data was significantly better: χ2 (7, N=64)=32.19, p<.001 when compared with 

the baseline model. RQ2b investigated whether task performance across the four sets of exercises can 

be explained through physiological data. The baseline model revealed that high task complexity 

decreased task performance, whereas no effect of the provision of hints was found. In terms of 

physiological data, results reveal that a negative slope of ST is associated with higher task performance. 

The total variance explained is r2=.47 and the model including the physiological data was significantly 

better: χ2(7, N=64)=15.31, p<.05. 
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Table 6.3. 

Multilevel analyses with self-reported cognitive load and task performance as dependent variables (N=64) 

 Self-reported cognitive load  Task performance  

 Est. (SE) Est. (SE) Est. (SE) Est. (SE) 

Intercept -.19(.11) -.24(.11) .62(.09) .60(.08) 

Manipulations     

Complexity (High) .57(.09)*** .58(.09)*** -1.34(.08)*** -1.32(.08)*** 

Hints -.21(.09)* -.20(.09)* .07(.08) .07(.08) 

GSR     

GSR_SCmag  .01(.09)  .04(.07) 

HR and HRV     

ECG_meanHR  .26(.07)***  -.03(.06) 

ECG_SDNN  .00(.06)  .10(.05) . 

ECG_LF  .03(.09)  -.05(.07) 

LF_VLF_Ratio  -.11(.08) .  .07(.05) 

ST     

ST_mean  .13(07) .  .03(.06) 

ST_slope  -.14(.06)*  -.15(.05)** 

Random effects Variance (SD) Variance (SD) Variance (SD) Variance (SD) 

Participant .46(.68) .34(.59) .18(.43) .17(.42) 

Residual .50(.71) .50(.70) .37(.61) .37(.61) 

r2 .09 .18 .44 .47 

Significant: <0.001***, < 0.01**, < 0.05
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RQ3 aimed at identifying features that assess high (i.e. OSPAN) and low cognitive load (i.e. baseline 

measurement) by constructing a logistic regression model. Table 4 reveals the importance of the slope 

of ST and mean HR for distinguishing between low and high cognitive load. Higher values of mean HR 

and the slope of ST indicate higher (objective) cognitive load. The overall accuracy, sensitivity and 

specificity were respectively .76, .74 and .79 indicating a good performance of the logistic regression 

model.   

 

Table 6.4. 

The coefficients table of the logistic regression model (high cognitive load; N = 124) 

 Estimate SE P 

(intercept) .05 .40 .87 

GSR    

GSR_SCmag .01 .19 .53 

HR and HRV    

ECG_meanHR .47 .13 .00*** 

ECG_SDNN -.14 .12 .24 

ECG_LF .12 .19 .53 

LF_VLF_Ratio -.15 .11 .20 

ST    

ST_mean .02 .12 .88 

ST_slope .61 .12 .00*** 

Significant: <0.001***, < 0.01**, < 0.05*  

6.5. Discussion 

Main findings and implications  

 

This study aimed at measuring cognitive load through physiological data. Therefore, this study 

systematically manipulated intrinsic and extraneous load to investigate how physiological features, 

namely, GSR, ST and HR(V) vary as a result of changes in cognitive load. More particularly, four sets of 

exercises on probability calculations in statistics were developed (1) high complex set with hints, (2) low 

complex with hints, (3) high complex without hints and (4) low complex without hints. Additionally, a 
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working memory capacity test (i.e. OSPAN), and baseline measurement (i.e. watching a relaxing movie) 

was used as verification of resp. high and low cognitive load. 

 

RQ1 investigated whether the different conditions (i.e. sets of exercises, OSPAN and baseline 

measurement) result in differences in physiological data. Trends in our data revealed that GSR increased 

with increased task difficulty, but no significant differences were observed. Our findings are in line with 

Larmuseau et al.’s study (2019). Nonetheless, our findings are in contrast with the study of Nourbakhs 

et al. (2012) indicating that GSR reveal differences in task complexity. These contradictory findings can 

be explained by the difference in task design between the study of Nourbakhs et al. (2012) and our 

study. More particularly in Nourbakhs et al.’s (2012) study students were given a working memory task 

such as OSPAN in our study, in which the difficulty level increased (e.g. the addition of more complex 

numbers). From the experience of our study, we can assume that cognitive activity does indeed increase 

as more information needs to be remembered and processed. The advantage of this type of tasks is that 

the students' prior knowledge is less important, which means that the cognitive load for the students 

increases more evenly compared to the statistical exercises in our study.  

 

With respect to HR, our findings revealed that mean HR was significantly lower during the baseline 

measurement compared with the other interventions, with the exception of the low complex set of 

exercises without hints. These results might indicate that providing hints during the low complex set of 

exercises has provoked additional cognitive load since instructional support might not have been 

necessary and might even have distracted students (Sweller, 2010). Similarly, results indicated that HR 

was significantly higher during OSPAN compared to the sets of exercises and the baseline measurement. 

This might suggest that OSPAN induced more cognitive load than the other interventions. Similarly, 

Cranford et al. (2014) revealed that HR is higher in case of higher complexity levels. In our study, HRV 

(i.e. SDNN) distinguished the OSPAN and baseline measurement. The fact that a decrease of HRV is 

associated with high cognitive load was also observed by Taelman et al. (2011) who also used HRV to 

distinguish between a high complex task (also a working memory task) and a rest phase (also a relaxing 

movie). However, it seems that HR is a more reliable indicator of task difficulty when compared to HRV, 

which was also observed in the study of Brouwer et al. (2014).  
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Regarding ST, our findings indicated that mean ST was lower and the slope of ST was higher during 

OSPAN when compared with the other interventions. However, ST did not vary as a results of the 

manipulated exercises. This latter finding is in line with the study by Larmuseau et al. (2019) where no 

differences were detected between a high and low complex task manipulated based on element 

interactivity. Summarized, against our expectations, the manipulation of the level of complexity of a 

task, based on two dimensions i.e., intrinsic (i.e. element interactivity) and extraneous load (i.e., 

provision of hints) did not result in differences in physiological data. As aforementioned, possible 

explanation for this is that we did not take important student characteristics into account (e.g. prior 

knowledge). On the other hand, it is also possible that this is due to both the task and study design. For 

instance, students were allowed to choose whether or not to consult the hints. In addition, the study 

was also non-committal, which meant that students who found the exercises too difficult did not try to 

solve them. Accordingly, those students did not experience CL, which biased the results.  

 

Although our findings were not as expected in terms of the developed set of exercises, we observed that 

the OSPAN induced high CL. In this study, OSPAN was used as a control intervention for continuous (high) 

CL as this dual-task requires both storage and processing of information (Yuan et al., 2006). Moreover, 

as all physiological features are also related to stress (see section 2.2), OSPAN might also have induced 

stress as a reaction on continuous high levels of CL (Herborn et al., 2015; Iani et al., 2004). OSPAN 

consisted of different trails of remembering and processing information. The more numbers students 

had to remember and the more mathematical problems they had to solve, the harder it was for students 

to complete the test correctly which might have induced both high CL and stress. This would be in 

accordance with the literature since task failure and feelings of lack of control have been shown to 

induce stress (Conway, Dick, Wang & Chen, 2013).  

 

RQ2 examined to what extent variance in self-reported cognitive load and task performance can be 

explained through physiological data. In terms of self-reported cognitive load (RQ2a), results revealed a 

positive influence of the level of complexity and a negative influence of the provision of hints which is in 

line with CLT and indicates that we have succeeded in our manipulations (Sweller, 2010). Results 

furthermore indicated that a less negative slope of ST is related to the invested cognitive load. Based on 

the results of RQ1 (i.e. positive slope during OSPAN) this might indicate that high levels of cognitive load 

might have induced stress. Therefore, we can assume that students who experienced less stress were 
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able to invest more cognitive load. This hypothesis is in line with CLT stating that exceeding the working 

memory capacity (i.e. cognitive overload) can interfere with learning (Sweller, 2010; van Merriënboer & 

Sluijsmans, 2009).  

 

Results also revealed that self-reported cognitive load is positively related to higher HR, which is in line 

with the findings of Cranford et al. (2014). However, our findings also revealed that not much variance 

in cognitive load was explained by physiological data. This might suggest that self-reported and 

physiological data provide different information about the learning process. In fact, physiological data 

relate to reactions that happen largely unconsciously whereas self-reported data are more conscious 

(Dindar et al, 2019). Nonetheless, the combination of both types of data provides more insight into the 

meaning of physiological data. In terms of task performance (RQ2b), our findings indicated that high 

levels of complexity negatively influenced task performance. No influence of the provision of support 

was observed. Again, not much variance in task performance was explained by physiological data. 

Results showed a negative influence of the slope of ST on task performance. When comparing results of 

task performance with the results of self-reported CL, we can infer that perhaps less stress led to better 

task performance. What is striking here is that HR and HRV had no influence on task performance. 

Presumably, students who were more relaxed during the problem-solving process (i.e. less cognitive 

load and stress) might also had better knowledge of the content and therefore attained higher task 

performance. 

 

RQ3 aimed at identifying the most important features for assessing high and low cognitive load. Based 

on the findings of RQ1 we decided to compare OSPAN (high cognitive load) with the baseline 

measurement (low cognitive load). Results indicated that higher values in the slope of ST and mean HR 

are indicative for high cognitive load. These results are in line with findings of RQ1 and RQ2, and further 

provide evidence that OSPAN required high levels of cognitive load. When we take into account that 

OSPAN also induced stress, results are in line with the study of Karthikeyan et al. (2012). This study used 

a working memory test (i.e. Stroop color word test) to investigate whether ST can detect stress. Results 

revealed that ST was a reliable measure for identifying stress level changes. These findings demonstrate 

the potential of physiological signals to detect high cognitive load or cognitive overload (i.e. exceeding 

working memory capacity). Consequently, we have to take into account that in the current study stress 

might have obscured the relationship between cognitive load and physiological data.  
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Limitations and suggestions for future research 

 

Regardless of the fact that this study provides insight into the use of physiological data for measuring 

CL, the study is also characterized by some limitations. A first limitation relates to the fact that there was 

a lot of missing data which possible affected our results. A second limitation relates to the fact that we 

did not assess self-reported cognitive load during OSPAN and the baseline measurement. This could 

have provided a clear insight into learners’ perception of cognitive load during these phases and further 

unravel the association between self-reported and physiological data. A third limitation was the 

noncommittal nature of the study, and consequently, this might has resulted in students being 

unmotivated to solve the exercises. Therefore, it might be useful for future research to integrate the 

study into the regular curriculum. Fourthly, important internal conditions should not be overlooked in 

order to obtain meaningful information from MMD (Gašević et al., 2015). Students’ prior knowledge 

might have impacted our findings, as domain knowledge (e.g. formula) has a major influence on 

cognitive load (Sweller et al., 2019). Also affective characteristics, such as negative feelings towards the 

learning material can induce CL by disrupting working memory processes, particularly for high complex 

tasks (Basanovic et al., 2018). Therefore, this might have influenced the physiological recordings. A final 

limitation is related to the machine learning model. The sample size was rather low for using machine 

learning techniques. Consequently, based on our data we cannot make major statements about the 

results. Therefore it should be emphasized that it is mainly an indication of feature importance. 

6.9. Conclusion 

Against our expectations, results revealed that physiological data could not be used to detect differences 

in cognitive load based on intrinsic and extraneous manipulations. By contrast, most of the significant 

results are related to OSPAN and the baseline measurement. Based on our findings of OSPAN, we might 

conclude that HR, HRV and ST is more sensitive to high cognitive load, namely, exceeding the learner’s 

cognitive capacity and the related mental states (i.e. stress). In this respect, as high cognitive load can 

also provoke stress, it is not always clear what exactly is measured via physiological data. Therefore, it 

remains important to combine self-reports of associated mental states with physiological data in future 

studies as this might facilitate interpretation.   
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7. Discussion and concluding remarks 

Nowadays, increasingly more courses take place online and incorporate rich authentic whole-tasks that 

provide opportunities for complex learning (van Merriënboer & Sluijsmans, 2009). A research-based 

instructional design model that has proven to be effective in promoting complex learning (Lim et al. 

2009; Melo & Mirando; Sarfo & Elen, 2005), and can be integrated into online learning environments 

(Frerejean et al., 2019a; Melo & Miranda, 2014), is the 4C/ID-model (van Merriënboer et al., 2002). 

Nonetheless, offering an online learning environment based on the 4C/ID-model is no guarantee for its 

effectiveness (Elen, 2020). As the learner is perceived as an active agent in accomplishing learning 

processes, the effectiveness of online learning environments largely depends on students’ cognitive and 

motivational-affective characteristics (e.g. Elen, 2020; Jiang et al., 2010; Martens et al., 2004). In order 

to investigate factors that can improve the effectiveness of online courses, the current PhD project was 

divided into respectively research track 1 and 2.  

Research track 1 investigated the influence of students’ cognitive and motivational-affective 

characteristics on the effectiveness of a 4C/ID-based online course. Former research indicated that the 

effect of individual differences can be monitored by aligning the learning environment with students’ 

learning needs (Clarebout & Elen, 2007; Moos & Azevedo, 2009). In view of aligning the online course 

with students’ cognitive needs, and given the focus on complex learning, research track 2 explored 

methods for investigating and measuring cognitive load during the problem-solving process by using 

multimodal data (including physiological data).  

As the research project is divided into two research tracks that have largely different research aims, 

these research tracks will first be discussed separately. In the first part, the main findings of the three 

studies from research track 1 are explained, combined with the limitations and directions for future 

research and, theoretical and practical implications. In the second part, research track 2 is approached 

similarly. Finally, general conclusions are formulated across the two research tracks. 
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Research Track 1: individual differences determining the effectiveness of 4C/ID-
based online courses  

The research aim of research track 1 was to investigate the influence of students’ cognitive and 

motivational-affective characteristics on students’ use of 4C/ID-based online courses and subsequently 

their learning outcomes. As such, this section will first elaborate on the impact of students’ cognitive 

characteristics on the use of the learning environment, next on the influence of students’ motivational-

affective characteristics on that use, and finally the influence of use on students’ learning outcomes.   

7.1. Main findings of Research Track 1 

7.1.1. Influence of cognitive characteristics on use 
 

In the studies of research track 1, two online courses were systematically designed according to the 

4C/ID-model in view of promoting complex learning (van Merriënboer et al., 2002; van Merriënboer & 

Kirschner, 2018). However, as the learners are active agents in their learning process, the effectiveness 

of online courses largely depends on the learners’ characteristics (Liem et al, 2008; Martens et al., 2007). 

Students’ characteristics are even more important in an online context where a lot of autonomy is 

required from the learners (Tsai, 2013). Autonomy in online courses can largely be manipulated by the 

amount of learner control that is provided (Väljataga & Laanpere, 2010). In the two online courses that 

were developed for the studies in research track 1, the components of the 4C/ID-model were offered in 

a non-embedded manner. Consequently, a large amount of learner control was provided which enabled 

learners to self-direct their learning. More particularly, students were able to choose their own learning 

trajectory and select components in line with their personal preferences and cognitive needs 

(Opfermann, Scheiter, Gerjets, & Schmeck, 2013; van Merriënboer & Sluijsmans, 2009).  

 

In order to investigate whether students selected the components in line with their cognitive needs, 

Study 3 investigated the influence of students’ prior knowledge on the differences in use of the four 

components of a 4C/ID-based online course. Results revealed that there was a negative relationship 

between students’ prior knowledge and part-task practice. More particularly, the lower students’ prior 

knowledge was, the more students consulted part-task practice. Part-task practice provided 

opportunities for additional practice of routine subskills of the learning tasks. As a result, these findings 

seem to suggest that learners with lower prior knowledge realized they did not have the required level 

of routine subskills (van Merriënboer et al., 2002). By contrast, students with lower prior knowledge did 
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not significantly make more use of supportive information, although this was advisable according to the 

4C/ID-guidelines. More particularly, supportive information allows for constructing cognitive schemas in 

long-term memory which may be absent from students with lower domain-specific prior knowledge (van 

Merriënboer & Kirschner, 2018). Therefore, findings indicate that differences in students’ cognitive 

characteristics impact a different use of the components of the 4C/ID-model. Whereas, the larger use 

of part-task practice is in line with our expectations (i.e. based on the guidelines of the 4C/ID-model), 

this is not the case for the use of supportive information. When students do not engage as expected 

and/or do not adequately use the provided support, this phenomenon can be perceived by the 

instructional designer as ‘instructional disobedience’ (Elen, 2020). Although we do not claim that 

students in study 3 were ‘instructional disobedient’, our findings suggest that students chose to consult 

part-task-practice to remediate their knowledge gaps instead of supportive information. Possibly, 

students felt they mainly lacked the routine subskills of the learning tasks (i.e. covered in part-task 

practice) instead of the non-routine subskills (i.e. covered in supportive information) (van Merriënboer 

& Kirschner, 2018).  

7.1.2. Influence of motivational-affective characteristics on use 
 

Research track 1 also investigated the influence students’ motivational-affective characteristics on the 

quantity and quality of use (i.e. Study 1,2) and differences in use (i.e. Study 3). Based on the Expectancy-

Value Theory, self-efficacy and task value are assumed to influence academic engagement (Wigfield & 

Eccles, 2002). As such, in Study 3, the influence of task value and self-efficacy on differences in use of 

the four components of the 4C/ID-model was investigated. In terms of task value, results revealed a 

positive relationship between students’ task value and the consultation of learning tasks and supportive 

information. In Study 3, task value identified students’ interest in the subject matter and how much the 

student valued the desired outcome (Duncan & McKeachie, 2005). More particularly, this implies that 

students that were intrinsically motivated put more effort into solving the learning tasks (Chen & Jang, 

2010). Moreover, students’ task value influenced the consultation of supportive information. As 

supportive information is known for connecting present knowledge with novel knowledge, this seems 

to imply that students with higher task value were more eager to learn new things. This finding is also in 

line with previous studies showing that students with greater interest, consciously explore additional 

learning materials (Bong, 2001; Martens et al., 2004). In terms of self-efficacy, despite our expectations, 

we did not observe an influence of self-efficacy on differences in the use of the four components. Self-
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efficacious students believe they are capable of executing the learning tasks (Zimmerman, 2000). 

Consequently, although self-efficacy is believed to be an important characteristic for influencing 

students’ engagement we did not find empirical evidence for this assumption (Taipjutorus et al., 2012). 

Nevertheless, it is possible that the effect of self-efficacy in Study 3, might have been outweighed in the 

research model by students’ prior knowledge as these constructs were moderate related (Kline, 2013).  

Findings of Study 3 emphasize the importance of students’ prior knowledge and motivation for grasping 

learning opportunities. In addition, former research also emphasized the importance of technology 

acceptance (Šumak et al., 2011). In order to retrieve information on the technology acceptance of the 

4C/ID-based online course, PU and PEOU were adopted from TAM (Davis, 1989) in Study 1 and 2. 

According to TAM, PU is defined as the extent to which learners believe that the online course is a useful 

learning tool for enhancing their performance. Whereas, PEOU is defined as the extent to which learners 

believe that using the online course does not entail extra mental effort. Study 1 examined how 

technology acceptance influenced students’ quantity of use (i.e. total time spent) of the 4C/ID-based 

online learning environment for teaching French as a foreign language. The study was carried out within 

the teacher training program for primary school education in which learning how to teach French was 

part of the students’ training program. Findings suggested that students’ PU of the online learning 

environment is related to the quantity of use (i.e. time spent). The results correspond with a former 

study of Juarez Collazo et al. (2012) that also indicated that PU positively influences the use of the online 

learning environment. Regarding PEOU, findings of Study 1 indicated that PEOU did not influence the 

actual use of the online course. This might indicate that user-friendliness is subordinate to perceiving 

the online learning environment as a useful learning tool for learning the subject matter.   

The second study investigated the relationship between technology acceptance and the quantity of use 

(i.e. total amount of course activity) and quality of use (i.e. course performance) of an online learning 

environment for learning French as a foreign language. The results of Study 2 revealed that there was 

no significant relationship between both PU and PEOU on the quantity and quality of use. The mixed 

findings of Study 1 and 2 might be related to the fact that the subject matter in Study 2 was not 

integrated into the students’ training program. These findings emphasize the importance of authentic 

learning designs (i.e. social and physical context in which it will be used). Former research and 

educational theory already indicated that authentic learning designs have the potential to improve 

students’ engagement (Brown, Collins & Duguid, 1989; Herrington et al., 2003; Martens et al., 2004; van 
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Merriënboer & Kirschner, 2018). So despite the use of authentic tasks, learning French may have been 

less relevant to the students' everyday lives in Study 2 when compared with Study 1.  

In the second study, TAM was expanded with an external variable, namely, perceived instructional 

quality. In order to retrieve information on students’ perceived instructional quality, students were 

asked to fill in the Teaching and Learning Questionnaire (TALQ) developed by Frick et al. (2009). This 

questionnaire incorporates the five First Principles of Instruction of Merrill (2002). Merrill’s (2002) First 

Principles of Instruction define that learning is promoted when learners are engaged in solving real-

world problems, existing knowledge is activated, new knowledge is demonstrated, applied, and 

integrated into the learners’ world. Findings of Study 2 indicated that the perceived instructional quality 

had a significant positive influence on students’ PU and PEOU (i.e. technology acceptance). These 

findings seem to indicate that technology acceptance and the perceived instructional quality of the 

online course are largely interrelated. This relates to former studies that plea for the extension of the 

TAM model with pedagogical quality (e.g. Lee et al., 2009; Liaw & Huang, 2013; Yang et al., 2017).  

Additionally, Study 2 investigated the relationship of technology acceptance and perceived instructional 

quality on the quality of use (i.e. course performance). Findings indicated no association between 

technology acceptance and course performance, whereas students’ perceived instructional quality was 

related to course performance. This latter finding indicates that learners who recognized the 

pedagogical quality invested more mental effort into solving the exercises qualitatively. Findings can be 

related to the study of Frick et al. (2010) who indicated that integrating the First Principles of Instruction 

of Merrill (2002) in the course design is related to higher course performance. However, it is not 

excluded that students who had a greater knowledge of French, also had a better understanding of the 

relevance of the learning activities, and therefore were more motivated to attain pre-established goals 

(Elen, 2020).  

7.1.3. Influence of use on learning outcomes 
 

In Study 1 and 3 the influence of respectively the quantity of use and differences in use of the 4C/ID-

based learning environment on students’ learning outcomes was investigated. Findings of Study 1 

indicated that the quantity of use of the online course, influenced students’ learning outcomes when 

controlling for students’ prior knowledge. Additionally, Study 3 indicated that differences in use also 

improved students’ learning outcomes, when controlling for students’ cognitive and motivational 

characteristics. More specifically, the combination of the activity on learning tasks and the consultation 
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of procedural information seemed to improve students’ learning outcomes. The procedural information 

provided instructional guidance which helped learners to perform the routine subskills of learning tasks. 

Procedural information was offered just-in-time while solving the learning task and as such improved 

learning (van Merriënboer & Kirschner, 2018). Based on the Cognitive Load Theory (CLT) this might 

indicate that the provision of instructional guidance prevented learners from focusing on irrelevant 

aspects. As such, the students were able to devote more working memory resources to learning (Sweller, 

2010; van Merriënboer & Kirschner, 2018). Nevertheless, we must also point out that given the high 

relationship between prior knowledge and students’ learning outcomes, there must have been little 

learning gain. This might indicate that students mainly solved learning tasks they already mastered. This 

may also partly explain why there is no relationship between supportive information (i.e. includes new 

subject matter), part-task practice (i.e. practicing routine subskills) and learning outcomes. Students 

probably invested little effort in learning and practicing new subject matter. This might have been the 

result of the fact that the subject matter of Study 3 was not part of the students’ training program 

(Brown et al., 1989). 

An overview of the findings are illustrated in Figure 1. The arrows indicate all the relationships that were 

examined across research track 1. The solid line arrows indicate significant relationships, whereas the 

dotted line indicate the non-significant. 
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Figure 7.1.: Overview of the Findings of Research Track 1 

7.2. Limitations and future directions 

A major first limitation across the three different studies in research track 1, is that information on 

students’ learning outcomes was retrieved from paper and pencil pre-and posttests (Evens et al., 2017). 

These tests mainly concerned knowledge vocabulary and grammar. Consequently, these tests do not 

match the definition of complex learning defined by van Merriënboer et al. (2002). More particularly, 

important skills (e.g. listening skills) and attitudes (e.g. forms of politeness in French) that were covered 

in the online course were not surveyed in an integrated manner. Additionally, the studies did not 

investigate whether students were able to transfer what they have learned into daily life or work 

situations. As such, the findings of research track 1, only provide limited information about whether or 
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not complex learning has been achieved. Future research should retrieve information on complex 

learning by evaluating students’ knowledge, skills, and attitudes during real-life practice.  

A second limitation relates to the collection of data via the Moodle LMS. Specifically, the first two studies 

applied two different manners to determine the quantity of use. In Study 1, the quantity of use was the 

total time spent. Nonetheless, time spent can be biased as the retrieved time spent by the LMS is often 

different than the actual time spent (Frerejean, Velthorst, van Strien, Kirschner, & Brand-Gruwel, 

2019b). For instance, time spent was biased by students who did not close their browsers when they 

were no longer using the online learning environment. To reduce this bias, time spent was checked by 

manually parsing trough the data and checking the length of time between the logged activities. When 

the time spent between two activities was unrealistic (i.e. when compared with other students), data 

was deleted. Consequently, collecting time spent in Study 1 required subjective judgment. In addition, 

it is also a disadvantage that the LMS registers activities per minute. This might imply that the reading 

time of procedural information was not accurately recorded as reading procedural information might 

take less than a minute. Due to the limitations of using time spent as an indication of the quantity of 

use, Study 2 and Study 3 recorded the total number of statements (i.e. course activity) to define the 

quantity of use. These statements include quiz attempts, submissions, consultation of pages, etc.  

A final limitation is that no different versions of 4C/ID-based online courses were compared. This 

prevents us from making recommendations regarding the instructional design. Follow-up studies should 

compare different versions of 4C/ID-based online courses. For instance, it might be interesting to 

compare the effectiveness of online courses with a different amount of embedded and/or non-

embedded support. From this research, it would be more clear if embedding the four components in an 

online learning environment would lead to higher performance.  

7.3. Implications of research track 1 

In general, findings of Research Track 1 reveal that individual differences influence the effectiveness of 

a 4C/ID-based online learning environment for complex learning. In the context of information-

processing technology (IPT), Perkins already indicated in 1985 that learning opportunities are taken 

when three conditions are met. These conditions are (1) the provision of the learning opportunity, (2) 

the recognition of the learning opportunity and, (3) motivation to take the learning opportunity. The 

first condition mainly relates to the physical presence of the learning opportunity, while the other two 
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conditions are more related to students’ motivational-affective characteristics (Elen, 2020). In the 

current research project, the provision of the 4C/ID-based online course can be perceived as the learning 

opportunity. In line with Perkins (1985), findings of research track 1 also seem to emphasize the 

importance of technology acceptance and the perceived instructional quality of the online learning 

environment for complex learning. Students’ perceptions towards technology acceptance can be 

perceived as technological functionality whereas, perceived instructional quality can be perceived as 

pedagogical functionality. More particularly, higher levels of students’ perceived technological and 

pedagogical functionally seem to influence the use of the online course in a positive manner. 

Additionally, findings also illustrated that students use the online course differently, based on their 

cognitive and motivational needs. It seems that mainly students’ motivation is important when it comes 

to learning new things. This is in line with the third condition for grasping learning opportunities 

according to Perkins (1985). Overall, findings of research track 1 are very much in line with the suggested 

conditions of Perkins (1985) for grasping learning opportunities. Knowing the importance of these 

learner attributes can assist instructional designers and/or lecturers in designing effective online 

learning environments that meet students’ needs. 

Research track 1 also emphasizes the need for multimodal data when investigating students’ online 

learning processes. Research track 1 reveals that LMS log-data (i.e. records of users’ activity) can easily 

be captured unobtrusively. Moreover, collecting LMS log-data provides insight into the use of the online 

course. Nonetheless, it should be noted that former research indicated that log-data is not a significant 

proxy measure of the invested mental effort (Henrie, Bodily, Larsen & Graham, 2018). For instance, a 

given activity might require more mental effort (and subsequently more time) from a student with lower 

prior knowledge (Moissa et al., 2019). As such, merely relying on log-data and not taking the internal 

and external conditions into account to investigate the exerted mental effort, might provide biased 

information (Gašević et al., 2015). Findings of research track 1 illustrated that the relationships between 

students’ characteristics and log-data provide more reliable insight into the use of the online learning 

environment. Additionally, when investigating the influence of students’ characteristics on the different 

components, this provided information on students’ self-directed learning in accordance with their 

learning needs. However, findings also reveal that additional information (that is collected during the 

online learning process) is necessary to have insight into the extent to which students are conscious 

regarding their self-directed learning. For instance, it is not clear from the findings whether students 
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consulted support when they perceived high cognitive load. As a result, collecting real-time multimodal 

data would help us to unravel the black box of the learning processes.  

Research track 2: MMLA for measuring cognitive load during online complex 
problem-solving 

The research aim of research track 2 was to investigate and measure cognitive load by using multimodal 

data. In this section we will first elaborate on the link between research track 1 and 2. Secondly, this 

section discusses the main findings. More particularly, we will discuss the relationship between self-

reported data and physiological data for assessing cognitive load. Subsequently, the usability of 

physiological data for assessing cognitive load will be discussed.  

7.4. Transition of research track 1 to research track 2 

Findings of research track 1 indicated that the effectiveness of online courses for complex learning is 

largely influenced by students’ individual differences. It could therefore be an added value to make the 

learning environment more responsive to the learning needs of the students and subsequently, improve 

students’ learning outcomes.  Student modeling is a proven technique to support individual differences 

(Yelizarov & Gamayunov, 2014). Based on the student model, intelligent tutoring systems (ITS) can be 

built that monitor students’ learning processes as illustrated in Figure 2. The student model is the core 

model that should collect information on students acquired from trace data. The domain model is the 

source of expert knowledge that can be used to evaluate students’ cognitive states, task performance 

etc. The tutoring model receives information from the domain and student model, and should make 

decisions on whether or not to intervene and how (Nkambou, Bourdeau, & Mizoguchi, 2010). Given the 

demands that complex learning puts on students’ working memory, it might be advisable to develop an 

interactive online learning environment based on students’ cognitive needs. For instance, students with 

lower prior knowledge that experience high cognitive load might benefit from customized support such 

as worked examples or tasks with lower element interactivity etc. (Chen & Kalyuga, 2020; Sweller, 2010). 

In contrast, students with higher prior knowledge might benefit from the omission of support and a 

faster transition to more difficult tasks (van Merriënboer & Sluijsmans, 2009). In order to be able to 

design a complex interactive online learning environment we should be able to find reliable indicators 

of the perceived cognitive load that can be measured in real-time and in a non-obtrusive manner 

(Frerejean et al., 2019b; Moissa et al., 2019).  
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Figure 7.2: The four-component architecture of an ITS (Nkambou et al., 2010, p.5) 

 

Former researchers already showed  interest in using high-frequency sensing technologies to assess real-

time cognitive load in a less invasive manner (Chen et al., 2016; Worsley, 2018). More particularly, 

several studies have indicated that physiological measures can detect cognitive load. Physiological 

approaches for assessing cognitive load are based on the assumption that changes in cognitive load can 

be reflected by body properties. Several studies indicated that an increase in cognitive load leads to 

increases in electrodermal activity (EDA), decreases in skin temperature (ST), increases in heart rate (HR) 

and decreases in heart rate variability (HRV; e.g. Haapalainen et al., 2010; Or & Duffy, 2007;  Shi et al., 

2007; Taelman et al., 2011). Moreover, the use of wearable devices allows us to assess these skin-

response measures and cardiovascular measures in a non-obtrusive manner and in real-life situations 

(Moissa et al., 2019). As a result, research track 2 focused on investigating whether cognitive load can 

be measured by using physiological data.     

7.5. Main findings of Research Track 2 

Research track 2 explored methods on how to investigate and measure cognitive load during online 

complex learning. To induce cognitive load, two studies experimentally manipulated intrinsic and/or 

extraneous load. In Study 4, the intrinsic load was manipulated by changing task complexity based on 
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the extent of element interactivity which resulted in a high and low complex task. In Study 5, both the 

intrinsic and extraneous load was induced by respectively manipulating the level of complexity and the 

presence or absence of procedural information. The manipulations were respectively: low cognitive load 

with procedural support (i.e. step-by-step instruction), high cognitive load with procedural support, low 

cognitive load without procedural support and, high cognitive load without procedural support. During 

the interventions, students were allowed to consult an online version of their manual. Both studies had 

a within-subject design in which each participant participated in the conditions in a randomized order. 

In view of measuring and investigating cognitive load during online complex problem solving, both 

studies combined physiological data with self-reported cognitive load. 

7.5.1. Self-reported cognitive load versus physiological data 
 

A traditional and simple way to measure cognitive load is via subjective self-reported data. Subjective 

data provides information about the learner’s perceived cognitive load during the learning activity (Paas, 

1992). Nonetheless, these perceptions do not always match the actual cognitive load (Boekaerts, 2017; 

Dindar et al., 2019; Vanneste et al., 2020). To investigate to what extent self-reported data matches 

physiological data for assessing cognitive load, the two studies in research track 2 combined self-

reported data with physiological data retrieved form wrist-worn wearables measuring EDA and ST (Study 

4) and chest-patches measuring HR and HRV (Study 5).  

 

More specifically, in Study 4, the self-reported cognitive load was measured by using a multidimensional 

subjective cognitive load rating scale developed by Leppink et al. (2013) for the distinct types of cognitive 

load, namely intrinsic, extraneous, and germane load. Additionally, to have insight into the total amount 

of exerted mental effort (i.e. the overall perceived cognitive load), the unidimensional mental effort 

rating scale developed by Paas (1992) was used. Since the exercises in Study 4 were manipulated on the 

basis of element interactivity, we first verified this manipulation. Findings revealed that we succeeded in 

manipulating the intrinsic load. Additionally, a bivariate correlation analysis was conducted between the 

perceived intrinsic load and physiological data (i.e. EDA and ST) during a high and low complex task 

(Sweller, 2010). Findings of Study 4 revealed no significant correlations between the perceived intrinsic 

load and physiological data. This might be due to the fact that the psychometric scale developed by 

Leppink et al. (2013) mainly provides insight into cognitive load retrieved from the instructional design 

(i.e. task complexity, clear instructions etc.). This implies that the allocated working memory resources, 
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influenced by factors beyond instructional design decisions, such as students’ prior knowledge, 

motivation etc., are overlooked. For example, it is possible that a student may have described an exercise 

as complex, but due to lack of motivation has invested little mental effort in solving that exercise. 

Therefore, physiological data (i.e. ST and EDA) were also correlated with self-reported mental effort and 

the overall cognitive load. Findings revealed that there was a high significant correlation between EDA 

and the overall cognitive load. Nonetheless, this was only the case during the highly complex task and 

not during the low complex task, which might be an indication that EDA is only sensitive to experiencing 

a high cognitive load. 

 

Study 5 also investigated the relationship between self-reported cognitive load and physiological data 

(i.e. EDA, ST, HR, HRV). In Study 5, a multilevel analysis was conducted in order to investigate how much 

variance of the self-reported cognitive load was explained by physiological data. Results revealed that a 

significant amount of variance of the self-reported cognitive load was explained by mean HR and the 

slope of ST. Nonetheless, the total variance explained was very low indicating the limited usability of HR 

and ST as measurements for the perceived cognitive load. With regard to HRV and EDA, no significant 

results were found. The contradictory findings between Study 4 and 5 may be largely related to 

differences in the task and study design. The main difference is that the different levels of complexity 

between the high and low complex tasks were more pronounced in Study 4 when compared with Study 

5 (i.e. larger differences in element interactivity). In addition, in study 5 the students were asked to solve 

as many exercises as possible in 10 minutes which may have caused stress.  

 

Based on these findings, it is recommended not to make any conclusive statements about the usefulness 

of EDA for measuring cognitive load. In line with the findings of Study 4, there are different studies that 

confirmed the interrelationship of EDA and self-reported data. More particularly, a recent study by 

Vanneste et al. (2020) induced three different levels of cognitive load based on element interactivity 

(i.e. low, high, and overload condition). By conducting multilevel analyses, the authors investigated how 

much variance is explained by physiological data (i.e. including ST and EDA). Findings revealed that a 

significant amount of variance of the self-reported cognitive load was explained by EDA. In addition, a 

recent study by Johannessen et al. (2020) investigated correlations between self-reported cognitive load 

and different physiological signals (i.e. including EDA and HRV) of five physicians during real-life 

resuscitation. Findings revealed that overall, EDA seemed to have the strongest correlation with self-
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reported cognitive load measured by the Paas’ mental effort rating scale (1992). As a result, it seems 

possible that the differences in cognitive load were too small and that the assessment of cognitive load 

via EDA in Study 5 was influenced by other emotions (e.g. stress) that occurred during the study (see 

also section 10.1.2.). 

7.5.2. Physiological data for assessing cognitive load  
 

In Study 4, we investigated whether the manipulation of the level of complexity of a task (i.e. high and 

low complex task) resulted in differences in physiological data (i.e. EDA and ST) when controlled for 

students’ prior knowledge. Findings highlight the potential of EDA for measuring differences between 

no (or very low) cognitive load (i.e. retrieved from the baseline measurement) and the manipulations of 

cognitive load. Therefore, this could be a confirmation that EDA primarily detects large differences 

between cognitive load. Additionally, EDA peaks seem to be related to specific events such as processing 

instructions, consulting supportive information, etc. In addition to EDA and ST, Study 5 also investigated 

differences of HR and HRV across the different interventions. Results revealed no clear differences in all 

physiological data across the four interventions. As far as EDA was concerned, descriptive statistics 

appeared to be in line with the proposed manipulations (i.e. EDA was higher during high cognitive load) 

but the results were not significant. In line with previous findings, results seem to indicate that small 

differences in complexity are not measurable on the basis of EDA. Moreover, it seems that these small 

differences can also not be assessed by HR, HRV, and ST. Another possibility is that the students might 

have experienced stress during the study (e.g. because of the time restriction). A prior study conducted 

by Chen et al. (2016) investigated the effect of stress on cognitive load measurements using EDA as a 

physiological index of cognitive load. The study experimentally incorporated feelings of lack of control, 

task failure and, social-evaluation to induce stress. Results revealed that elevated cognitive load resulted 

in an increase in EDA. Nonetheless, Chen et al. (2016) indicated that the relationship was confounded 

when the subjects experienced fluctuating levels of stress. As a result, the study of Chen et al. (2016) 

also seems to suggest that feelings of stress can disrupt the measurement of cognitive load via 

physiological data. In addition to current findings, it illustrates the sensitivity of physiological data to 

other emotions. 

 

In Study 5, physiological data were also collected during a computer-based operation span test (OSPAN) 

in addition to the four conditions. OSPAN was added in this study as a verification of very high cognitive 
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load and/or cognitive overload. More particularly, OSPAN involves retaining an increasing amount of 

elements (i.e. numbers), while processing mathematical operations. Consequently, OSPAN was assumed 

to be effortful and demanding of the working memory (Yuan et al., 2006). Findings of Study 5 revealed 

that there were significant differences in physiological data visible between the manipulated conditions 

and OSPAN. Respectively, ST was significantly lower and HR was significantly higher during OSPAN when 

compared with the four conditions. The bulk of former studies related these ST and HR to stress (e.g. 

Herborn et al., 2015; Smets et al., 2018). Consequently, it is possible that due to its high cognitive 

demanding characteristics, OSPAN induced feelings of stress (Zhou, Yu, Wang & Arshad, 2018). Some 

essential differences between the task design of the four interventions and OSPAN might explain these 

findings. For instance, during the four conditions, students had a lot of opportunities to manage their 

cognitive load. More particularly, they could select which exercise they wanted to complete from a series 

of exercises, and they had the freedom to consult an online manual. Moreover, some students just quit 

when they perceived the exercises as too difficult. In contrast, OSPAN continued automatically and 

increased in difficulty. Consequently, all students were forced to continuously perform tasks that 

required a lot of working memory resources. As a result, students did not have opportunities to manage 

their cognitive load during OSPAN, which might have resulted in working memory resources depletion 

(Chen & Kalyuga, 2020).  

 

In view of investigating the feasibility of detecting cognitive load during the complex online problem-

solving process, all physiological features (i.e. skin response and cardiovascular measures) were 

combined. Former studies indicated that the combination of different features greatly improves the 

performance of the machine learning models for cognitive load detection (e.g. Herbig et al., 2020). 

Therefore, in Study 5, a machine learning model was applied to conduct a binary classification consisting 

of all physiological features collected during the baseline measurement (i.e. no or low cognitive load) 

and OSPAN (i.e. very high cognitive load and/or overload). Results revealed a machine learning model 

of good performance that indicated that ST and HR were the most important features (i.e. high absolute 

value of the feature weight) for detecting very high cognitive load and/or overload. Note, that this again 

might indicate that cognitive overload induces feelings such as stress. 



Discussion and concluding remarks 

 

 

142 
 

7.6. Limitations and future directions 

The first and main weakness of both studies in research track 2, is the low sample size. This ensures that 

we have to be very cautious when making statements about the results. Moreover, the small sample 

sizes also prevented the use of advanced computational techniques for detecting cognitive load. Larger 

datasets would provide more opportunities to build various and more complex machine learning models 

of which we can compare the performance (e.g. Smets et al., 2018b). In addition, a larger sample size 

would also allow us to use a higher number of classifications such as low cognitive load, high cognitive 

load, and cognitive overload, whereas we restricted our analyses in terms of low and very high cognitive 

load.  

 

A second weakness is that log-data (i.e. task performance and course activity) was not included in the 

studies in research track 2. It might be interesting for follow-up studies to include log-data into predictive 

models. More particularly, task performance and course activity can also provide information about the 

perceived cognitive load. For instance, a study by Ahmad, Robb, Keller, and Lohan (2020) indicated that 

a decrease in the participants’ task performance was related to an increase in cognitive load. 

Additionally, in Study 5, it was observed that a decrease in students’ course activity might relate to an 

increase in cognitive load and/or overload. For instance, some students who perceived the learning 

material as too difficult just quit. As such, log-data might be an important feature to optimize the 

performance of predictive models.  

7.7. Implications of research track 2 

In summary, the results seem to imply that EDA is related to self-reported cognitive load. Nonetheless, 

results indicate that small differences in cognitive load are not measurable via EDA. Additionally, 

cognitive overload seems to induce stress which is detectable by ST and HR.  

 

This conclusion can have some important implications for the assessment of cognitive load. Firstly, 

results emphasize that cognitive load remains difficult to assess due to its highly-dynamic and 

multidimensional nature (Chen et al., 2016). An attempt was made in Study 4 to capture the 

multidimensionality of cognitive load by using psychometric scales that measure the three distinct load 

types (Leppink et al., 2013). Nonetheless, findings revealed that the multidimensional scale of Leppink 
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In sum: let’s keep it complex 

 

Previous studies have indicated that the 4C/ID-model is an effective model for designing learning 

environments for complex learning (Lim et al., 2009; Melo & Miranda, 2015; Sarfo & Elen, 2005). 

Nonetheless, the provision of qualitative research-based design by no means ensures its effectiveness 

(Elen, 2020). As learners are active agents in their learning processes, the effectiveness is largely related 

to students’ characteristics (Noroozi et al., 2020). Findings of research track 1 demonstrate, among 

others, the importance of perceived pedagogical and technological functionality in view of 

understanding students’ quantity and quality of use of complex learning environments. Additionally, 

findings indicated that the quantity and quality of use influence students’ learning outcomes. This 

demonstrates the importance of a research-based quality instructional design based on authentic 

learning tasks. In addition, it also shows that it is important that students find the online learning 

environment a meaningful learning tool to teach the complex subject matter. Additionally, findings of 

research track 1 indicate that students’ prior knowledge and motivation can influence differences in use 

and emphasize the importance of students’ motivation for complex learning. In sum, findings of research 

track 1 indicate that the effectiveness of online courses for complex learning is largely influenced by 

individual differences. This might indicate that students would benefit from a more complex online 

interactive learning environment that monitors students’ learning processes.  

In order to align the online learning environment with students’ learning processes, research track 2 

explored methods to measure cognitive load during the online problem-solving process. Results 

revealed that EDA might be sensitive to large differences in cognitive load. Additionally, results indicated 

that cognitive overload can result in feelings of stress which is detectable by ST and HR. Therefore, 

physiological data seems to be a promising avenue to detect real-time cognitive load. Nonetheless, 

findings of research track 2 also indicate that detecting cognitive load via physiological data is highly 

complex due to the multidimensionality of cognitive load and the sensitivity of physiological to other 

emotions and/or mental states. As such, measuring cognitive load seems to remain the holy grail of CLT. 

Follow-up research needs to clarify which physiological data can be used to detect cognitive load. In 

addition, it might also be useful for future research to combine cognitive, motivational (e.g. 

engagement) and emotional learning processes (e.g. stress, feelings of anxiety etc.) as the quality of 

learning depends on the complex relationships between these learning processes and the external 
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conditions (e.g. online learning; Gašević, et al., 2015; Noroozi et al., 2020). As such, in a distant future, 

complex interactive learning systems can be designed that meet the students’ various learning needs.
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Appendix: Abbreviations 

 

  

AI Artificial Intelligence 

CLT Cognitive Load Theory 

CK Content Knowledge 

ECG ElectroCardioGraphy 

EDA Electrodermal Activity 

EEG ElectroEncephaloGraphy 

EDM Educational Data Mining 

GSR Galvanic Skin Response 

HR Heart Rate 

HRV Heart Rate Variability 

IT Information Technology 

ITS Intelligent Tutoring Systems 

LA Learning Analytics 

LAK Learning Analytics and Knowledge community  

LMS Learning Management System 

MMLA Multimodal Learning Analytics 

MOOC Massive Open Online Courses 

OSPAN Computer Based Operation Span Test 

PCK Pedagogical Content Knowledge 

PEOU Perceived Ease of Use 

PU Perceived Usefulness 

SCL Skin Conductance Level 

SNS Sympathetic Nervous System 

ST Skin Temperature 

VLE Virtual Learning Environment 

4C/ID Four Component Instructional Design Model 
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