
Université des Sciences et des Technologies de Lille
Ecole Doctorale Sciences Pour L’ingénieur

Thèse de Doctorat

Spécialité Informatique

présentée par
Edouard Leurent

Safe and Efficient Reinforcement Learning
for Behavioural Planning in Autonomous Driving

Apprentissage par renforcement sûr et efficace
pour la prise de décision comportementale en conduite autonome

sous la direction d’Odalric-AmbrymMaillard
et deWilfrid Perruquetti,

ainsi que l’encadrement deDenis Efimov
et de Yann Blanco.

Soutenue publiquement à Villeneuve d’Ascq, le 30 octobre 2020 devant le jury composé de

M. Lucian Buşoniu Universitatea Tehnică din Cluj-Napoca Rapporteur
M. Jorge Villagra Universidad Politécnica de Madrid Rapporteur
Mme Luce Brotcorne Inria Présidente
M. Marc Deisenroth University College London Examinateur
M. Denis Efimov Inria Encadrant
M. Odalric-Ambrym Maillard Inria Directeur de thèse

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe SequeL, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

À mes grands-pères, Marc et Germain,
qui ont nourri mon goût pour les sciences.

Remerciements

Un concept central en apprentissage par renforcement est celui du “credit assignment” (« attri-
bution du mérite »). Selon ce principe, lors de l’obtention d’une haute récompense, il convient
de remonter l’historique des évènements survenus par le passé afin d’identifier ceux qui furent
responsables de ce succès. Prêtons-nous à l’exercice.

Tout d’abord, je dois beaucoup à mes parents, ainsi qu’à mon frère et mes sœurs. Leur
affection et encouragements constants au fil des années m’ont permis de m’engager avec
confiance dans cette aventure.

Mais je n’aurais pas entrepris cette thèse sans l’exemple éclatant des doctorants de Parrot,
Gauthier Rousseau et Clément Pinard, ni le concours de Jill-Jênn Vie, Edouard Oyallon, Alberto
Bietti et Michal Valko qui ont tous conspiré à me mener au laboratoire SequeL. Je remercie
également l’examen du permis de conduire, auquel mes échecs répétés m’ont permis de
développer un intérêt égoïste mais pragmatique pour ce sujet de thèse en particulier.

J’adresse maintenant mes plus hautes traces d’éligibilité ainsi que mes plus chaleureux
remerciements à mes encadrants. Odalric et Denis, j’admire profondément votre intégrité et
votre rigueur scientifique, ainsi que l’étendue de vos connaissances, que vous savez mobiliser
pour répondre à la moindre de mes interrogations avec une facilité déconcertante. Merci
également pour votre ouverture d’esprit, dont témoigne particulièrement la rencontre de vos
disciplines respectives et la confrontation fructueuse des points de vue et des méthodes qui en
découle. Mais avant tout, je vous suis reconnaissant pour votre bienveillance, votre disponibilité
et votre soutien appuyé lorsque j’en avais besoin. Yann, je te remercie pour avoir monté ce
projet ambitieux, et pour m’avoir accordé une pleine liberté dans mes recherches, bien qu’elles
se soient parfois écartées des préoccupations très concrètes de l’ingénierie Renault. Enfin,
Wilfrid je te remercie pour tes précieux conseils toujours pertinents.

I am also very grateful to Lucian Busoniu and Jorge Villagra for their thoughtful reporting
on this manuscript, as well as to all members of the jury, Luce Brotcorne, Marc Deisenroth and
Rosane Ushirobira, for their valuable feedback, and for giving their time and energy to make
it possible for my defence to take place amid the turmoil of a global pandemic despite being
under lockdown.

J’en viens à mes coreligionnaires de la pause-café, avec qui j’ai pu décompresser, partager
mes intérêts, mes joies et mes peines. A SequeL tout d’abord, je remercie particulièrement
Mathieu et Xuedong, camarades de la première heure avec qui j’ai entamé d’inoubliables
marches aléatoires dans les montagnes de Stellenbosch ; Nicolas et Omar, avec qui j’ai eu le
privilège et le plaisir de collaborer ; Guillaume et Lilian dont l’éloignement rendait la visite
occasionnelle d’autant plus festive ; Nathan et Dorian, dont l’appétence pour le débat n’a
d’égale que leur propension à le trancher à coups d’étude ad-hoc ; Pierre Ménard dont la
cinéphilie et l’hospitalité ont permis la renaissance en grande pompe du Cinéquel ; Pierre
Schegg, compagnon d’armes avec qui nous défendons fièrement le bastion des roboticiens à
SequeL, ainsi que Florian, Ronan, Merwan, Mahsa, Julien, Yannis, Reda, Romain, Jean, Sarah et
Antoine. Sans oublier les chercheurs : merci Emilie, Jill-Jênn et Philippe pour vos contributions
à la vie du laboratoire et à sa convivialité, ainsi que pour les collaborations et conversations
scientifiques. À Renault maintenant, Jean, j’ai su dès notre rencontre à Munich que ton goût
communicatif et intarissable pour la philosophie nous conduirait à de précieuses et mémorables
conversations. Merci également à Lu, Clara, Edwin, Federico, Louis et Thomas pour nos fameux
repas-mini-docTM. Je salue aussi les doctorants du CAOR, Philip, Marin et Florent, avec qui il
est toujours agréable de discuter, aux Mines ou en conférence, de nos approches différentes à
un sujet commun.

Mais il y a une vie en dehors du travail, et je dois ses meilleurs moments à mes amis, merci
Luc, Pierre, Bertrand, Adrien, Benjamin, Mano, Quentin, Thomas D., Thomas L., Simon, Oriane,
Ivain, Magali et Daniel.

Enfin, merci Ariane pour ton soutien indéfectible, pour toutes tes qualités que j’admire tant,
et pour me donner envie d’être et de donner le meilleur de moi-même.

vi

Résumé
Dans cette thèse de doctorat, nous étudions comment des véhicules autonomes peuvent ap-
prendre à garantir la sûreté et à éviter les accidents, bien qu’ils partagent la route avec des
conducteurs humains dont les comportements sont incertains. Pour prendre en compte cette
incertitude, nous nous appuyons sur les observations en ligne de l’environnement pour con-
struire une région de confiance autour de la dynamique du système, qui est ensuite propagée
au cours du temps pour borner l’ensemble des trajectoires possibles des véhicules à proxim-
ité. Pour assurer la sûreté en présence de cette incertitude, nous avons recours à la prise de
décision robuste, qui préconise de toujours considérer le pire cas. Cette approche garantit
que la performance obtenue pendant la planification sera également atteinte sur le système
réel, et nous montrons dans une analyse de bout en bout que la sous-optimalité qui en résulte
est bornée. Nous en fournissons une implémentation efficace, basée sur des algorithmes de
recherche arborescente.

Une seconde contribution est motivée par le constat que cette approche pessimiste tend à
produire des comportements excessivement prudents : imaginez vouloir dépasser un véhicule,
quelle certitude avez-vous que ce dernier ne changera pas de voie au tout dernier moment,
provoquant un accident ? Ce type de raisonnement empêche les robots de conduire aisément
parmi d’autres conducteurs, de s’insérer sur une autoroute ou de traverser une intersection,
un phénomène connu sous le nom de « robot figé ». Ainsi, la présence d’incertitude induit un
compromis entre deux objectifs contradictoires : sûreté et efficacité. Comment arbitrer ce conflit ?
La question peut être temporairement contournée en réduisant au maximum l’incertitude. Par
exemple, nous proposons une architecture de réseau de neurones basée sur de l’attention, qui
tient compte des interactions entre véhicules pour améliorer ses prédictions. Mais pour aborder
pleinement ce compromis, nous nous appuyons sur la prise de décision sous contrainte afin de
considérer indépendamment les deux objectifs de sûreté et d’efficacité. Au lieu d’une unique
politique de conduite, nous entrainons toute une gamme de comportements, variant du plus
prudent au plus agressif. Ainsi, le concepteur du système dispose d’un curseur lui permettant
d’ajuster en temps réel le niveau de risque assumé par le véhicule.

Abstract
In this Ph.D. thesis, we study how autonomous vehicles can learn to act safely and avoid
accidents, despite sharing the road with human drivers whose behaviours are uncertain. To
explicitly account for this uncertainty, informed by online observations of the environment, we
construct a high-confidence region over the system dynamics, which we propagate through
time to bound the possible trajectories of nearby traffic. To ensure safety under such uncertainty,
we resort to robust decision-making and act by always considering the worst-case outcomes.
This approach guarantees that the performance reached during planning is at least achieved
for the true system, and we show by end-to-end analysis that the overall sub-optimality is
bounded. Tractability is preserved at all stages, by leveraging sample-efficient tree-based
planning algorithms.

Another contribution is motivated by the observation that this pessimistic approach tends to
produce overly conservative behaviours: imagine you wish to overtake a vehicle, what certainty
do you have that they will not change lane at the very last moment, causing an accident? Such
reasoning makes it difficult for robots to drive amidst other drivers, merge into a highway, or
cross an intersection –an issue colloquially known as the “freezing robot problem”. Thus, the
presence of uncertainty induces a trade-off between two contradictory objectives: safety and
efficiency. How does one arbitrate this conflict? The question can be temporarily circumvented
by reducing uncertainty as much as possible. For instance, we propose an attention-based
neural network architecture that better accounts for interactions between traffic participants to
improve predictions. But to actively embrace this trade-off, we draw on constrained decision-
making to consider both the task completion and safety objectives independently. Rather than
a unique driving policy, we train a whole continuum of behaviours, ranging from conservative
to aggressive. This provides the system designer with a slider allowing them to adjust the level
of risk assumed by the vehicle in real-time.

viii

Contents

List of Acronyms xiii

List of Symbols xvii

1 Introduction 1
1.1 Context and scope . 1
1.2 Outline and Contributions . 8

I Case Study: Learning to Drive 15

2 Literature Review 17
2.1 Sequential decision-making . 18
2.2 States and partial observability . 22
2.3 Actions and temporal abstraction . 24
2.4 Rewards and inverse reinforcement learning . 25
2.5 Dynamics, offline learning and transfer . 27
2.6 Optimality criterion and safety . 29

3 Problem Statement 35
3.1 Perceived states . 36
3.2 Behavioural decisions . 37
3.3 Traffic dynamics . 38
3.4 Rewards . 40

Contents

3.5 Implementation . 41

II Model-free 43

4 Considering Social Interactions 45
4.1 Motivation . 46
4.2 A social attention architecture . 49
4.3 Experiments . 50

5 Acting under Adjustable Constraints 59
5.1 Motivation . 60
5.2 Budgeted dynamic programming . 62
5.3 Budgeted reinforcement learning . 67
5.4 Experiments . 71

Part Conclusion 79

III Model-based 81

6 Planning Fast by Hoping for the Best 83
6.1 Motivation . 84
6.2 Open-loop optimistic planning . 86
6.3 Graph-based optimistic planning . 102

7 Preparing for the Worst 121
7.1 Motivation . 122
7.2 Confident model estimation . 129
7.3 State interval prediction . 130
7.4 Robust stabilisation and constraint satisfaction 148
7.5 Minimax control with generic costs . 157
7.6 Multi-model selection . 161

x

Contents

7.7 Experiments . 164

Part Conclusion 169

8 General Conclusion and Perspectives 171
8.1 Conclusion on our contributions . 171
8.2 Outstanding issues and perspectives . 173

A The highway-env software 177
A.1 General presentation . 177
A.2 Outreach . 180

B Complements on Chapter 5 185
B.1 Proofs . 185

C Complements on Chapter 6 197
C.1 Proofs . 197
C.2 Time and memory complexities . 207

D Complements on Chapter 7 219
D.1 Proofs . 219
D.2 A tighter enclosing polytope . 230

List of Figures 231

List of Algorithms 236

List of Tables 237

List of References 239

xi

List of Acronyms

A

ACC Adaptive Cruise Control , 4
AD Autonomous Driving , 4, 7, 10, 17, 19, 26–29, 31, 33, 35, 60, 78, 174, 175
ADAS Advanced Driver-Assistance Systems , 4, 178
ADP Approximate Dynamic Programming , 84
AEB Autonomous Emergency Braking , 4
AES Autonomous Emergency Steering , 4

B

BFTQ Budgeted Fitted Q-Learning , 61, 67, 68, 70–73, 75–77, 233, 236
BMDP Budgeted Markov Decision Process , 10, 59, 61–67, 71, 77, 78, 188, 232
BRUE Best Recommendation with Uniform Estimation , 85, 117

C

CEM Cross Entropy Method , 84
CMA-ES Covariance Matrix Adaptation Evolution Strategy , 84
CMDP Constrained Markov Decision Process , 32, 60–62, 64, 77, 172, 193, 232
CNN Convolutional Neural Network , 52
CVaR Conditional Value-at-Risk , 31, 32, 175

D

xiii

List of Acronyms

DP Dynamic Programming , 31, 66, 78, 84, 85
DQN Deep Q-Network , 47, 49, 52, 69, 164–167

F

FCN Fully-Connected Network , 51
FTQ Fitted Q-Learning , 67, 68, 71, 73, 76, 77, 233

H

HJI Hamilton-Jacobi-Isaacs , 32

I

i.i.d. independent and identically distributed , 20
IDM Intelligent Driver Model , 39, 51, 179
IRL Inverse Reinforcement Learning , 26, 27

K

KL-OLOP Kullback-Leibler OLOP , 10, 87, 89–92, 97, 98, 101, 117–119, 197, 207, 208, 212,
234, 237

L

LKA Lane-Keeping Assist , 4
LMI linear matrix inequality , 132, 140, 148, 156, 167
LPV Linear Parameter-Varying , 130, 132, 134, 135, 145, 148
LQ Linear Quadratic , 31, 128
LTI Linear Time-Invariant , 132, 133, 148

M

MAB Multi-Armed Bandits , 31, 86, 87
MCTS Monte-Carlo Tree Search , 7, 10, 19, 83–86, 102
MDP Markov Decision Process , 5, 7, 9, 22, 23, 27–29, 31, 32, 35, 40, 41, 45, 60, 64, 65,

71, 83–86, 102–104, 177, 206, 235

xiv

List of Acronyms

MDPGapE MDP Gap-based Estimation , 101, 117
ML Machine Learning
MLE Maximum Likelihood Estimation , 7
MOBIL Minimizing Overall Braking Induced by Lane change , 39, 179
MOMDP Multi-Objective Markov Decision Process , 60–62, 185, 232
MORL Multi-Objective Reinforcement Learning , 60
MPC Model Predictive Control , 11, 126–128, 143, 152–156, 167, 169, 175

N

NN Neural Network , 46, 49, 62, 67, 69, 79

O

OFU Optimism in the Face of Uncertainty , 86, 104, 128, 174
OLOP Open-Loop Optimistic Planning , 10, 83, 86, 87, 89–92, 98, 101, 118, 173, 197,

207, 237
OPC Optimistic Planning algorithm with Continuous actions
OPD Optimistic Planning of Deterministic Systems , 86, 98, 101, 102, 105–110, 112,

116–119, 158, 159, 162, 164, 202, 215, 216, 234, 236

P

PAC Probably Approximately Correct , 84
POMDP Partially Observable Markov Decision Process , 23, 24
PRM Probabilistic Roadmap , 19

R

RL Reinforcement Learning , 5–10, 17, 18, 26–28, 30, 31, 45, 46, 60–62, 65, 78, 83,
122, 123, 172, 174, 176, 177, 180, 182

RRT Rapidly-exploring Random Trees , 19

S

SOOP Simultaneous Optimistic Optimisation for Planning

xv

List of Acronyms

StOP Stochastic Optimistic Planning , 86

U

UCT Upper Confidence bounds applied to Trees , 86, 117

V

VaR Value-at-Risk , 31, 175

xvi

List of Symbols

Mathematical notations

N set of integers
[n] range of integers {1, . . . , n}
R+ set of positive reals {τ ∈ R : τ ≥ 0}

R set of real numbers
N+ set of positive integers N ∩ R+

L∞ the set of all inputs uwith the property ||u|| <∞
|x| Euclidean norm for a vector x ∈ Rn

∥u∥ L∞ norm ||u||[t0,t1] with t1 = +∞

∥u∥[t0,t1] L∞ norm on [t0, t1) of a measurable and locally essentially bounded input
u : R+ → R

|z| absolute value |z| = z+ + z−

z− negative part z− = z+ − z

z+ positive part max(z, 0)

ei normal basis vectors [0 . . . 0 1 . . . 0]⊤ in Rn for i = 1, n, where 1 appears in the
ith position

In the identity matrix with dimension n× n
En×m, Ep the matrices with all elements equal 1 with dimensions n × m and p × 1,

respectively
M⊤ transpose of a matrixM
∥A∥2 the induced L2 matrix norm maxi∈[n] λi(A⊤A)

xvii

List of Symbols

∥A∥max the elementwise maximum norm ∥A∥max = maxi∈[n],j∈[n] |Ai,j |, it is not sub-
multiplicative

λ(A) the vector of eigenvalues of a matrix A ∈ Rn×n

P ≺ 0 (P ≻ 0) a symmetric matrix P ∈ Rn×n is negative (positive) definite
x1 ≤ x2 for two matrices A1, A2 ∈ Rn×n, (including vectors), the relation A1 ≤ A2 is

understood elementwise
o(·),O(·),Ω(·) Landau notations for positive functions: f(x) = o(g(x) means that g(x) ̸=

0 and f(x)/g(x) → 0 for x → ∞, f(x) = O(g(x)) means that there exists
x0,K > 0 such that f(x) ≤ Kg(x) from x ≥ x0, and f(x) = Ω(g(x)) means
g(x) = O(f(x))

E expectation under a probabilistic model
V variance under a probabilistic model
M(X) set of probability measures on a measurable space X , 5
B Binomial distribution
δ Dirac distribution , 46
N Normal distribution
U(X) uniform distribution on a measurable space X , 68

Markov Decision Processes

S set of states s ∈ S , 5
A set of actions a ∈ A
R(s, a) reward function R : s, a→ R(s, a) ∈ [0, 1] , 5
P (s′ | s, a) transition distribution s′ ∼ P (s′ | s, a) , 5
γ discount factor in [0, 1) , 5
π policy , 5
π⋆ optimal policy , 6
G discounted return for the reward signal , 5
V state value function (⋆ for optimal value, π for policy value) , 6
Q state-action value function (⋆ for optimal value, π for policy value) , 6
T Bellman operator (⋆ for optimality, π for evaluation) , 47
rn simple regret of an algorithm after n samples , 6

xviii

List of Symbols

D dataset , 7

Budgeted Reinforcement Learning

S set of augmented states , 62
A set of augmented actions , 62
B set of admissible budgets , 62
Π set of budgeted policies , 62
C cost function , 60
β budget , 60
βa budget allocated to an action , 62
P augmented transition function , 62
R augmented reward function , 62
π budgeted policy , 62
π⋆ optimal budgeted policy , 68
Gc discounted return for the cost signal
G augmented return , 63
Vc cost value function , 63
Vr reward value function , 63
V augmented value function , 63
Qc cost Q-function , 63
Qr reward Q-function , 63
Q augmented Q-function , 63
T augmented Bellman operator (⋆ for optimality, π for evaluation) , 63

Tree-based Planning

A∗ set of a finite words a, representing sequences of actions (a1, . . . , ah) ∈ Ah, for
h ∈ N

A∞ the set of infinite sequences of actions (a1, . . .)

ab ∈ A∗ the concatenation of two finite sequences a ∈ A∗ and b ∈ A∗

∅ the empty sequence of actions

xix

List of Symbols

a1:t the prefix (a1, . . . , at) ∈ At of length t ≤ h of a word a ∈ Ah

aA∗, aA∞ the set of finite and infinite suffixes of a, respectively: aA∗ = {c ∈ A⋆ : ∃b ∈ A∗

such that c = ab} and aA∞ defined likewise
T the look-ahead tree
ν(a), µ(a) the distribution andmean of the reward obtained at the last step after executing

a sequence of actions a ∈ A∗

Ua, La upper and lower bounds on the value V (a) of a sequence of actions a ∈ A∗

κ effective branching factor of a planning tree T , in [1,K]

Linear Systems

X constraint set for safe states x(t) ∈ X ⊂ Rp , 126
U constraint set for safe controls u(t) ∈ U ⊂ Rq , 126
dt time step at which MPC controls are applied , 122
ϕ features for a parametrized , 126
θ parameters θ ∈ Rd for a model
A(θ) structured state matrix A(θ) ∈ Rp×p, depending on unknown parameters θ ,

126
δ confidence level for statistical estimates, in (0, 1] , 124
C[N],δ high-confidence set for the estimation of θ, such that P(θ ∈ C[N],δ) ≥ 1− δ. , 124
x(t) upper-bound of the state interval x(t) ≥ x(t), ∀t , 125
x(t) lower-bound of the state interval x(t) ≤ x(t), ∀t , 125
GN,λ Gramianmatrix for the regularised least-square estimation of θ, withN samples

and penalty λ. , 129
θN,λ regularised least-square estimate of θ, with N samples and penalty λ. , 129
R pessimistic reward function, evaluated on the worst-case reachable states , 157
N number of transition samples
K number of planning iterations

xx

Chapter 1

Introduction

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, Little Gidding.

1.1 Context and scope

1.1.1 How should a driving robot make decisions?

In the first few weeks of my Ph.D., I observed that layman interlocutors, when confronted
with this question on the occasion of a social dinner, have a general tendency to conjure up
disaster scenarios involving imminent accidents with unavoidable casualties. This reflex is
likely to stem from the popularisation of the Trolley Problem (Foot, 1967), a famous thought
experiment in moral philosophy, depicted in Figure 1.1, in which a runaway trolley is headed
straight toward five people tied up on the main track and unable to move. When pulled, a lever
switches the trolley to a side track occupied by one person: what should you do? Answering
this general question of what we ought to do in any situation, what is a right orwrong decision, is
the focus of the field of normative ethics. This dilemma illustrates a clash between two schools
of thought: utilitarianism and deontological ethics. According to utilitarians, the rightfulness
of an action should be evaluated based on its consequences, and actions maximising a utility
–the happiness and well-being for the affected individuals– should be preferred. Conversely,
deontologists evaluate the morality of actions per se, according to a series of rules, rather than
based on their consequences. Although this problem was initially introduced as a thought
experiment, its transposition to the context of autonomous driving and arguably more realistic

1

https://eleurent.github.io/sisyphe/texts/little-gidding.html

Introduction

Figure 1.1 – The Trolley Problem (Foot, 1967). Illustration by Jesse J. Prinz.

scenarios made it heavily cited in discussions regarding safety (e.g. Lin, 2015; Bonnefon, Shariff,
and Rahwan, 2016; Gogoll and Müller, 2017). In early 2017, MIT’s Media Lab launched the
Moral Machine platform (Awad et al., 2018), in which they invited members of the public to
select the morally acceptable decision out of several options available to an autonomous vehicle.
The authors argued that the recovered global preference would provide “essential topics to be
considered by policymakers”, and Noothigattu et al. (2018) proposed an implementation of a
system aggregating these preferences, trained on the collected data. However, the relevance of
this analogy to inform engineering and policy has been called into question. Thus, De Freitas
et al. (2019) point out that such dilemmas are unlikely to occur on real roads, hard to detect by
perception systems and to act upon by control systems, and that they are distracting researchers
from the more appropriate goal of how to avoid accidents altogether. Indeed, when we drive,
we seldom find ourselves in such extreme situations but rather constantly ponder over less
tragic considerations: Where does this vehicle intend to go? Do I have the time to proceed or
should I yield? What is the appropriate speed to drive at right now? The object of this thesis is
to artificially reproduce this cognitive process of how to avoid accidents while driving, which
is more a technical matter than an ethical one. Still, the Trolley Problem, though unrealistic,
reveals and raises a number of legitimate questions. Should we base driving decisions on a set
of rules? Can these rules be learned, e.g. by imitating human drivers? Should we instead make
decisions by comparing the utility of possible outcomes, like utilitarians advocate? And if so,
how do we choose a good utility? This last interrogation becomes particularly sensitive if we
add uncertainty to the Trolley Problem. Facing a potential collision, driving slowly decreases
the risk of accident at the expense of efficiency, which can ultimately have an economical
impact. What is the right level of caution to take? This question directly translates as that of
the value of life, which has been taken up by economists for decades (Abraham and Thédié,
1960; Drèze, 1962; Schelling, Bailey, and Fromm, 1968; Banzhaf, 2014; Tirole and Rendall, 2017;
Charpentier and Cherrier, 2019) and has countless practical implications for public policies,

2

http://subcortex.com/

1.1 Context and scope

including recent debates on lowering the speed limits on highways and trunk roads, but also
on the appropriate lockdown durations during a pandemic. It would be illusory to pretend
that the practical implications of the Trolley Problem can simply be swept aside and entirely
replaced by technicality. Throughout this manuscript, we will see that ethical concerns still
underpin most assumptions and design choices of safety-critical software.

1.1.2 Nuts and bolts of self-driving software

Perception

Decision

Control

• Localisation
• Environment recognition

1. Route
planning

2. Behavioural
planning

3. Motion
planning

• Local
feedback

Perceived objects and signage

Reference trajectory

Throttle/steering commands

Raw sensor data

Figure 1.2 – The architecture of a typical self-driving software

Historically, autonomous vehicles have been developed following a traditional robotics
pipeline, illustrated in Figure 1.2. This architecture decomposes the task of driving as a series
of three functions: Perception, Decision, and Control (also called the Sense-Plan-Act paradigm,
or Navigation, Guidance and Control in aerospace engineering). The Perception module takes
raw sensor data as input and produces a high-level reconstruction of the scene. The Decision
module then determines the desired trajectory of the vehicle, based on the current situation.

3

Introduction

Finally, the Control module manipulates forces, by way of steering and throttle controls, to track
the desired trajectory. In the context of Autonomous Driving, the Decision module is often
implemented with a hierarchical structure whose layers work at different timescales. First, a
Route Planning layer searches for the shortest route in a road network from the current location
to the desired destination. Second, the Behavioural Planning layer specifies a coarse driving
behaviour through short-term goals or semantic decisions, such as changing lane, slowing
down at an intersection, or yielding to a vehicle. This layer is thus responsible for following
the planned route while adapting to the current state of the traffic in real-time. Third, the
Motion Planning layer generates a continuous, feasible trajectory that implements the desired
behaviour while ensuring comfort and safety.

Great strides have been made in the two end-of-pipe tasks: Perception has benefited from
the substantial progress in the field of computer vision due to the recent advent of deep learning
(surveyed in Janai et al., 2020), and many Control schemes (surveyed in Polack, 2018) have
been developed for ground vehicles. In the Decision module, Route Planning is virtually solved
and already provided by services such as Open Street Maps, and there exist a vast body of
Motion Planning algorithms, discussed in Chapter 2. All these building blocks are widely used
for industrial applications, including Advanced Driver-Assistance Systems (ADAS) functions
such as Lane-Keeping Assist (LKA), Adaptive Cruise Control (ACC), Autonomous Emergency
Braking (AEB) orAutonomous Emergency Steering (AES); and in academic research challenges.
Ultimately, we claim that Behavioural Planning remains the only neglected link in the chain.
Indeed, most of these applications focused so far on simple settings with little complexity:
ADAS systems are mostly tailored for highway driving and struggle whenever required to
interact with other drivers, e.g. for merging into traffic1. Similarly, most academic challenges
focused on highway driving, with the exception of the DARPAUrban Challenge, which required
more advanced interactions with other vehicles. Nevertheless, even this event still constituted
a controlled environment, simple enough that all participants could rely on rule-based systems
for behavioural planning (Buehler, Iagnemma, and Sanjiv Singh, 2009), such as finite state
machines whose transitions are triggered by handcrafted criteria (e.g. Baker and Dolan, 2008).
Unfortunately, there is little hope that this approach can scale to complex scenes since responses
tailored for specific use-cases cannot be easily merged.

1.1.3 Scope and Challenges of this Thesis

In the light of the above, this thesis is dedicated to addressing a weak link in the Autonomous
Driving (AD) chain: Behavioural Planning. We ask the following question: assuming that we
had access to a ground truth perception and a perfectly accurate control system, what steps
would remain to achieve fully autonomous driving?

1This difficulty, which motivated this thesis, was reported by engineers from the ADAS team at Renault.

4

https://wiki.openstreetmap.org/wiki/Routing

1.1 Context and scope

Humans in the loop Unless restrained to dedicated infrastructure, Autonomous Vehicles
will have to share the road with human drivers. This introduces a great deal of uncertainty in
the decision problem. Indeed, while the location and velocity of a vehicle can be perceived, the
mind of its driver remains impenetrable. Even though the present state is known, the future
becomes uncertain: where are they headed? Are they paying attention to their surroundings?
In that regard, it seems impossible to manually model all the factors involved in the human
decision-making process. However, human drivers do not drive erratically either, and their
behaviour is highly structured: humans drivers tend to follow the lanes, avoid collisions with
other vehicles, and generally respect road signage. In other words, human drivers are predictable.
This motivates the idea of learning from data, and hope for a better comprehensiveness than
handcrafted decision systems.

Learning to act The skill of driving a car involves taking a series of decisions, where early
stages influence the resulting outcomes and subsequent reasoning at late stages. This aspect
is known as sequential (or multistage) decision-making. Let us start by introducing some
useful notations. At each time step t, the system is described by its state st that belongs to a
measurable2 state space S. Then, the agent can take an action at within a measurable action
space A, before transitioning to a next state st+1 ∈ S, drawn from a conditional distribution
P (st+1 | st, at) that we call the system dynamics P ∈M(S)S×A, whereM(X) denotes the set of
probability measures of a measurable set X . The agent actions can themselves be drawn from
a distribution π(at | st), called the policy π ∈M(A)S .

Reinforcement Learning (RL) is a general framework for learning-based sequential decision-
making. It is formulated as an optimal control problem: the policy π is chosen to maximise an
objective function. It is generally formalised as a Markov Decision Process (MDP), i.e. a tuple
(S,A, P ,R, γ) in which at each step t, the agent receives a bounded reward R(st, at), where
R ∈ [0, 1]S×A is a deterministic reward function and γ ∈ [0, 1) is a discount factor. Adequate
long-term behaviour of policies π is fostered by considering their return.

Definition 1.1 (Policy return). The return Gπ of a policy π is a random variable defined as the
discounted sum of rewards

Gπ =
∞∑
t=0

γtR(st, at)

accumulated along a trajectory τ = (s0, a0, s1, a1, . . .) induced by the policy at ∼ π(at|st) and
system dynamics st+1 ∼ P (st+1 | st, at).

The performance of a policy π is then evaluated through its value function.
2A measurable space is a set with a σ-algebra, that allows to define random variables. For example, this set can

finite ([N]), countable (N), or continuous (R).

5

Introduction

Definition 1.2 (Value functions). The state value V π(s) of a policy π is the expected return of
the policy when starting in a state s

V π(s) =∆ E [Gπ | s0 = s] .

Similarly, the state-action value Qπ(s, a) of a policy π is the expected return of the policy when
starting in the state s and taking the action a

Qπ(s, a) =∆ E [Gπ | s0 = s, a0 = a] .

This allows to define the goal of Reinforcement Learning: finding an optimal policy π⋆.

Definition 1.3 (Optimality). A policy π⋆ is said to be optimal if it maximises the value functions
V π and Qπ in every state and action. We also define the optimal value functions V ⋆ and Q⋆ as

∀s ∈ S, V ⋆(s) =∆ Qπ
⋆(s) = max

π
V π(s);

∀(s, a) ∈ S ×A, Q⋆(s, a) =∆ Qπ
⋆(s, a) = max

π
Qπ(s, a).

Sample efficiency Several performance measures have been introduced to evaluate RL algo-
rithms. In this thesis, we consider the goal of finding a near-optimal policy as fast as possible.
The fixed-confidence setting evaluates the smallest sample complexity, i.e. number of interac-
tions, required to find a near-optimal policy π⋆ with high probability. Alternatively, in the
fixed-budget setting, the simple regret rn of an algorithm measures the expected sub-optimality of
the recommended policy π̂n after a fixed number n of interactions

rn(s) =∆ Ê
πn

[
V ⋆(s)− V π̂n(s)

]
.

The goal of this thesis is to provide sample-efficient algorithms for learning a driving policy.
In the particular context of Behavioural Planning for Autonomous Driving, this goal will be
articulated around a few main questions and challenges.

Model-free vs. model-based Reinforcement Learning algorithms can be grouped into two
main families. To find an optimal policy π⋆, model-based Reinforcement Learning algorithms

6

1.1 Context and scope

first attempt to estimate the MDP parameters P̂ and R̂ based on a history of transitions D =
{(st, at, rt, st+1)}, using for instance Maximum Likelihood Estimation (MLE) in a hypothesis
class of dynamics and reward functions:

max
P̂

∏
t

P̂ (st+1 | st, at) and min
R̂

∑
t

∥R(st, at)− R̂(st, at)∥22.

This allows to plan in the estimated MDP (S,A, P̂ , R̂, γ), i.e. compute the associated optimal
policy π̂⋆. This can be achieved using planning algorithms such as Dynamic Programming or
Linear Programming. Conversely, model-free RL algorithms do not estimate the underlying
MDP and aim instead to optimise a policy π directly. Policy-based methods evaluate the value
Qπ of the current policy π, so that it can be locally improved e.g. by gradient ascent. Value-based
method bypass this alternation of evaluation and improvement steps by directly learning the
optimal value function Q⋆.

The question of which approach is appropriate depends on the underlying problem. Indeed,
model-based techniques are relevant when the dynamics are simple but the optimal policy
is complex. For instance, the case of Computer Go was tackled in AlphaGo (Silver, Huang,
et al., 2016; Silver, Schrittwieser, et al., 2017; Silver, Hubert, et al., 2018) with a Monte-Carlo
Tree Search (MCTS) planning module, which leveraged the knowledge of the Go dynamics
(placing pawns on the board) to sample sequences of plies in a game tree. On the contrary,
the model-free approach is useful when the system dynamics are complex, but the optimal
policy is simple. Thus, a swimming robot would require massive fluid dynamics simulation
to accurately predict the effect of moving its fins, while a simple periodic gait could suffice
to propel it forward in the water. Which brings us to the question: which scenario does AD
fall into? Unfortunately, the answer is not so clear-cut. On the one hand, the motion planning
literature has historically been heavily relying on kinematics and dynamics models to plan
trajectories, as detailed in Chapter 2. Reliable priors are available to describe the physics of a
vehicle, but not so much for the actual driving policy. On the other hand, automotive companies
such as Mobileye reportedly3 advocated that the task of predicting a driving scene is actually
more difficult than that of driving. In fact, the case of Autonomous Driving is peculiar in that
the two problems of prediction and control are somewhat equivalent, due to the presence of
other drivers: a good trajectory predictor can be used to predict the action that a human would
take in place of the ego-vehicle, and a good driving policy can be applied to each agent in
the scene to produce reasonable predictions of their trajectory. Hence, both approaches seem
equally relevant and will be considered in this thesis.

Social interactions and coupled dynamics To ensure safety while driving, traditional motion
planning techniques rely on conservative independence assumptions on the behaviour of other

3These comments are reported from discussions between Renault and Mobileye.

7

Introduction

vehicles. This makes them suffer from an effect colloquially known as the “freezing robot problem”
(Trautman and Krause, 2010): due to massive uncertainty, these systems tend to struggle in
situations that require interacting –or negotiating– with other vehicles, such as unprotected
left-turns, intersections, or highway merges (see e.g. these two videos where a Waymo car fails
to merge). Thus, for an autonomous vehicle to efficiently integrate with the traffic flow, it must
anticipate the effect of its own actions on the behaviour of other agents. This skill is known
as socially-aware decision-making. Unfortunately, interactions between vehicles translate into
complex and coupled traffic dynamics where local deviations must be propagated from one
vehicle to the next, which can result in a quick and chaotic build-up of uncertainty. We will
need to contain this escalation to prevent instability in our predictions.

Ensuring safety The complexity of the task of driving leads us to consider learning algorithms.
However, these methods typically raise a legitimate concern among car manufacturers: how
can we guarantee the safety of such systems, in the presence of uncertainty? In this thesis, we
will strive to formalise this concern by formulating different notions of risk, as functions of
the distribution of outcomes induced by a policy. We will study Safe Reinforcement Learning
algorithms, that seek to explicitly estimate and control the level of risk taken by a policy.

Balancing safety and efficiency However, protecting against risk often comes at the price of
efficiency in achieving a goal. Consider for a moment a situation where a vehicle is driving
slowly in front of you on the road, and so you decide to overtake them. How do you know,
at that very moment, that the driver has seen you and is not going to change lane at the last
moment, causing an accident? In fact, you don’t, at least not with certainty. In this situation, the
only way to guarantee safety is to refrain from overtaking. By pushing this simple argument
through to its conclusion, it becomes apparent that the only way to fully ensure safety is to
stay in the garage. You are thus facing an irreducible dilemma: the two objectives of driving
fast and safely are contradictory. This opposition induces a trade-off that we typically observe
with human drivers, especially in situations of negotiations: some people adopt aggressive
behaviours and try to force their way through traffic, while others act more defensively, favouring
safety. This ambiguity is difficult to capture manually in an objective function and soon leads
to the pitfall of reward engineering. To provide a principled control over this trade-off, the
learning algorithms that we consider will be required to respect an adjustable level of risk.

1.2 Outline and Contributions

The ultimate goal of this thesis could be summarised in the following question: “how can an
algorithm learn to drive and avoid accidents?”. The first step in such an endeavour must necessarily

8

https://www.youtube.com/watch?v=HjtiiGCe1pE
https://twitter.com/nitguptaa/status/990683818825736192

1.2 Outline and Contributions

Figure 1.3 – This thesis is structured around two disjunctions: model-free vs. model-based on the one
hand, and sample-efficiency vs. safety on the other hand.

be to formalise more precisely the meaning of this ill-posed formula, which we try to do in
Part I. It is only natural that we begin this effort by turning to the standard model for sequential
decision making: the Markov Decision Process. At first glance, this framework shines with
its simplicity and elegance, but also its apparent generality and representation power. Yet, as
we embark on the ambitious task of casting the blurry problem of autonomous driving into
this rigid mould, we highlight in Chapter 2 how reductive each step of the formalisation is,
how approximations and assumptions always hide behind each symbol and each equation.
This observation is supported by the numerous variations of the framework developed by
the research community, in as many attempts to address these concerns. Such limitations are
as varied as partial observability, temporal abstraction, the reward hypothesis, transfer from
simulation to real-world and safety; and we relate these research directions to specific works in
the autonomous driving literature.

In order to progress, we put aside some of these questions in Chapter 3 and commit to an
(observable) state space, a (hierarchical) action space, a (quasi-linear) system dynamics and a
(dense) reward function that we deem suitable for a large class of behavioural planning tasks.
This allows us to refocus on two fundamental issues: sample-efficient and safe Reinforcement

9

Introduction

Learning. In the sequel we tackle them through the perspective of the two main approaches to
Reinforcement Learning aforementioned: first model-free, and then model-based algorithms.
This organisation is depicted in Figure 1.3.

Part II is dedicated to the study of how model-free methods can be applied for efficient and
safe Autonomous Driving. In Chapter 4, we question the choice of state representation and
model architecture in relation to their associated sample-efficiency. In particular, we identify
desirable properties and inductive biases that the policy should enjoy, such as permutation
invariance with respect to vehicles in the scene. We propose an attention-based architecture
that fulfils our criteria, and compare it to standard representations and model architectures
that have been used for behavioural planning tasks.

In Chapter 5, we consider a continuous notion of risk, defined as an expected discounted
sum of a cost signal. This formulation allows highlighting a trade-off between two separate
objectives: the traditional return associated with task completion, and the risk related to safety.
In this multi-objective perspective, the Pareto frontier of non-dominated policies defines a
spectrum of behaviours, from risk-averse on one side to risk-seeking on the other. In order to
explicitly control the level of risk taken in real-time, we place ourselves within the Budgeted
Markov Decision Process (BMDP) framework, in which the risk is constrained to lie below an
–adjustable– threshold. So far, BMDPs could only be solved in the case of finite state spaces with
known dynamics. This chapter extends the state-of-the-art to environments with continuous
state space and unknown dynamics. We show that the solution to a BMDP is a fixed point of
a novel Budgeted Bellman Optimality operator, which enables to estimate both the expected
return and risk of an action, in a model-free fashion. This observation allows us to introduce
natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs.

Part III is devoted to the study of model-based methods, that solve the Reinforcement
Learning problem by planning with a learned generative model. In Chapter 6, we assume
that a reliable generative model has already been learnt and focus on the sample-efficiency of
the planning procedure specifically. More precisely, we look into the theoretical and practical
aspects of planning algorithms under budget constraints. First, we consider the Open-Loop
Optimistic Planning (OLOP) algorithm that enjoys good theoretical guarantees but is overly
conservative in practice, as we show in numerical experiments. We propose a modified version
of the algorithm with tighter upper-confidence bounds, Kullback-Leibler OLOP (KL-OLOP),
that leads to better practical performances while retaining the sample complexity bound.
Second, we study a limitation of MCTS algorithms: they do not identify together two similar
states reached via different trajectories and represented in separate branches of the tree. We
propose a graph-based planning algorithm, which takes into account this state similarity, provide
a regret bound that depends on an improved problem-dependent measure of difficulty, and
illustrate its empirical benefits numerically.

10

1.2 Outline and Contributions

In Chapter 7, we look back into the issue of model bias, which refers to the gap that exists
between a learned model and the true system dynamics, and can dramatically degrade the
performance of the planned trajectory. More specifically, we study the problem of robust and
adaptive Model Predictive Control (MPC) of a linear system, with unknown parameters that
are learned along the way (adaptive), in a critical setting where failures must be prevented
(robust). To that end, instead of merely considering a point estimate of the dynamics, we
leverage non-asymptotic linear regression to build an entire confidence region that contains the
true dynamics with high probability. To effectively propagate this parametric uncertainty, we
design a predictor that produces a tight interval hull bounding the system trajectories. Having
observed the instability of traditional interval predictor techniques, we propose a new one
whose stability is guaranteed by a Lyapunov function analysis and verification of linear matrix
inequalities. These tools enable us to guarantee the system stabilisation and robust constraint
satisfaction, through an MPC algorithm based on a stabilising control that uses the predicted
interval. Finally, in order to go beyond stabilisation problems only, we tackle the minimax
control of more general (non-convex) costs that naturally arise in many practical problems.
To that end, we combine our results with the tree-based planning techniques of Chapter 6.
By adapting the theoretical guarantees at each layer, we provide the first end-to-end regret
analysis for this setting. Interestingly, our analysis naturally adapts to handle multiple models
and combines with a data-driven robust model selection strategy, which enables to relax the
modelling assumptions. We strive to preserve tractability at any stage of the method, that we
illustrate numerically.

List of publications

Publications in international conferences with proceedings

• Edouard Leurent, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2020a). Robust-
Adaptive Control of Linear Systems: beyond Quadratic Costs. In Advances in Neural
Information Processing Systems 33. Virtual (used in Chapter 7)

• Edouard Leurent and Odalric-Ambrym Maillard (Nov. 2020a). Monte-Carlo Graph
Search: the Value of Merging Similar States. In Asian Conference on Machine Learning
(ACML 2020). Ed. by Sinno Jialin Pan and Masashi Sugiyama. Bangkok, Thailand,
pp. 577–592 (used in Chapter 6)

• Edouard Leurent, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2020b). Robust-
Adaptive Interval Predictive Control for Linear Uncertain Systems. In 2020 IEEE 59th
Conference onDecision and Control (CDC). Jeju Island, Republic of Korea (used in Chapter 7)

• Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym
Maillard, and Olivier Pietquin (Dec. 2019). Budgeted Reinforcement Learning in Con-

11

Introduction

tinuous State Space. In Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., pp. 9299–9309 (used in Chapter 5)

• Edouard Leurent, Denis Efimov, Tarek Raissi, and Wilfrid Perruquetti (Dec. 2019). In-
terval Prediction for Continuous-Time Systems with Parametric Uncertainties. In 2019
IEEE 58th Conference on Decision and Control (CDC). Nice, France, pp. 7049–7054 (used in
Chapter 7)

• Edouard Leurent and Odalric-Ambrym Maillard (Sept. 2020b). Practical Open-Loop
Optimistic Planning. In European Conference on Machine Learning and Knowledge Discovery
in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes
Maathuis, and Céline Robardet. Würzburg, Germany: Springer International Publishing,
pp. 69–85 (used in Chapter 6)

Workshop presentations in international conferences

• Edouard Leurent and JeanMercat (Dec. 2019). Social Attention for Autonomous Decision-
Making in Dense Traffic. In Machine Learning for Autonomous Driving Workshop at the
Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019). Montreal,
Canada (used in Chapter 4)

• Edouard Leurent, Yann Blanco, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2018).
Approximate Robust Control of Uncertain Dynamical Systems. In Machine Learning
for Intelligent Transportation Systems Workshop at the Thirty-second Conference on Neural
Information Processing Systems (NeurIPS 2018). Montreal, Canada (used in Chapter 7)

Software

• Edouard Leurent (2018). An Environment for Autonomous Driving Decision-Making. https:
//github.com/eleurent/highway-env. GitHub repository (used in Chapters 3 to 7)

Collaborations not presented in this thesis

• Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, and Michal Valko (July 2020). Fast active learning for pure exploration in reinforce-
ment learning. Research Report. DeepMind

• Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, and Michal Valko (2020). Adaptive Reward-Free Exploration. Submitted to ALT
2021, under review.

12

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

1.2 Outline and Contributions

• Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard
Leurent, and Michal Valko (Dec. 2020). Planning in Markov Decision Processes with
Gap-Dependent Sample Complexity. In Advances in Neural Information Processing Systems
33. Virtual

13

Part I

Case Study:
Learning to Drive

Chapter 2

Literature Review

Νὰ εὔχεσαι νά ῾ναι μακρὺς ὁ δρόμος.

. .
Σὲ πόλεις Αἰγυπτιακὲς πολλὲς νὰ πᾷς,

νὰ μάθεις καὶ νὰ μάθεις ἀπ᾿ τοὺς σπουδασμένους.

Κωνσταντίνος Καβάφης, ᾿Ιθάκη.

This chapter provides an overviewof the sequential decision-making literature in the specific
context of Autonomous Driving. It is meant to summarise the main directions that researchers
have taken to tackle this wide problem, and discuss the questions that one practitioner may
ask themselves when trying to apply Reinforcement Learning to Autonomous Driving. Thus, I
will prioritise breadth rather than depth, and remind the reader that each of these sections is
not comprehensive and has been surveyed independently.

Contents
2.1 Sequential decision-making . 18
2.2 States and partial observability . 22
2.3 Actions and temporal abstraction . 24
2.4 Rewards and inverse reinforcement learning 25
2.5 Dynamics, offline learning and transfer . 27
2.6 Optimality criterion and safety . 29

17

https://eleurent.github.io/sisyphe/texts/ithaki.html

Literature Review

Figure 2.1 – A lattice structure connects a discrete set of states by feasible trajectories

2.1 Sequential decision-making

Section 1.1.3 presented the Reinforcement Learning framework, that formulates the learning
procedure as an optimal control problem. In this section, I start by recalling other design
principles that have been considered for coming up with a good driving policy π.

2.1.1 Motion Planning

The development of motion planning techniques for intelligent vehicles dates back to the late
80s, supported by international research projects such as Eureka (1987) of the Prometheus
program, followed by the DARPAGrand and Urban Challenges (2004, 2007), and more recently
the VIAC (2010), GCDC (2011) and Delphi (2015) challenges. In two surveys (González et al.,
2016; Paden et al., 2016) studying the literature of this period, the authors identified three main
approaches.

Search-based algorithms This method is based on a regular discrete partition of the state
space S called a lattice, which must be connected by feasible trajectories (e.g. Pivtoraiko and
Kelly, 2005). This framing reduces motion planning to the problem of finding a shortest path
in a known graph. Then, traditional graph-search algorithms such as Dijkstra’s algorithm
(Dijkstra, 1959), A⋆ (Hart, Nilsson, and Raphael, 1968) or D⋆ (Stentz, 1994) can be used to
compute the optimal trajectory. This technique has been applied by at least five different teams
during the DARPA Urban Challenge for driving on structured roads and unstructured parking:
Dijkstra for team Ben Franklin (Bohren et al., 2008) and VictorTango (Bacha et al., 2008), and
A⋆ for Stanford University (Montemerlo et al., 2008) and KIT (Kammel et al., 2008), and D⋆

by the winning team from CMU (Urmson et al., 2008). Kinematics constraints can also be
included in the configuration graph, as in (e.g. Latombe, 1991; T. Fraichard, 1993; Laumond
et al., 1994).

18

2.1 Sequential decision-making

Sampling-based algorithms The limitation of search-based algorithms lies in the difficulty of
formulating a regular lattice structure covering the states space S with feasible transitions, and
in the real-time constraint that may not be met by graph-search algorithms. To address them,
sampling-based motion planners iteratively grow a set of reachable configurations by randomly
sampling valid transitions. The most popular ones are Probabilistic Roadmap (PRM) (Kavraki
et al., 1996), Rapidly-exploring Random Trees (RRT) (Lavalle, 1998; Karaman and Frazzoli,
2011) and MCTS algorithms (Coulom, 2007b; Kocsis and Szepesvári, 2006). These methods
have been used in the context of Autonomous Driving in (e.g. Lamiraux and Lammond, 2001;
Sánchez L., Zapata, and Arenas B., 2002; D. Lenz, Kessler, and Knoll, 2016; Paxton et al., 2017;
Faust et al., 2018).

Optimisation-based algorithms The third approach consists in optimising a parametrised
trajectory with respect to a real-valued objective function. The most popular instance is in-
terpolation between the current and goal states, which has been applied to various classes of
functions in the context of Autonomous Driving, such as lines and circles (Reeds and Shepp,
1990), clothoids (Funke et al., 2012), polynomials (W. Xu, Wei, et al., 2012), and Bézier curves
(González et al., 2016; Artuñedo, Villagra, and Godoy, 2019).

These three approaches to motion planning thus rely on deterministic models of the vehicle
dynamics. These models are often required to take a simple form so that the search or optimi-
sation procedure can be solved efficiently, and other objects in the scene are often considered
as static. In order to study more complex multi-agent interactions specifically, a collaborative
approach to motion planning has been developed.

Cooperative planning The difficulty of predicting intricate interaction patterns between mul-
tiple agents can be bypassed in one particular setting: cooperative motion planning for multiple
vehicles. Indeed, instead of predicting how vehicles react to one another, the behaviours of
these vehicles are jointly optimised. As an effect, prediction outputs are replaced by input
variables that can be chosen freely to maximise an objective function. Two main variations
have been studied: coordination along fixed paths (Altché, Qian, and La Fortelle, 2016; Altché
and La Fortelle, 2016; Altché, Qian, and de La Fortelle, 2017), and general unconstrained
motion planning (LaValle and Hutchinson, 1998). However, this framework does not allow
to represent human behaviours, or more generally any behaviour that is not explained by the
objective function. In particular, that lack of communication between agents and the resulting
uncertainty lead to suboptimal, uncertain and multimodal trajectories that are not handled by
cooperative planning approaches.

19

Literature Review

2.1.2 Imitation Learning

An orthogonal strategy to motion planning techniques is to learn a reactive policy π(a|s) under
supervision of an expert πE that produces a dataset D of demonstration trajectories. To that
end, we optimise a parametrised policy πθ to minimise a regression loss L, such as the KL
divergence to the distribution of expert action:

min
θ

E
s∼D

[L (πθ(a|s), πE(a|s))]

This approach is also referred to as behavioural cloning, and is particularly suited when only
low-level high-dimensional inputs are available, such as camera images, which prevents access
to the dynamics model required by motion planning approaches. The first application of
imitation learning to autonomous driving is the ALVINN (Autonomous Land Vehicle In a
Neural Network) project (Pomerleau, 1989), where a 3-layer neural network was trained for
the task of road following, as shown in Figure 2.2.

Figure 2.2 – The 3-layer architecture used in ALVINN (Pomerleau, 1989).

Compounding errors Unfortunately, the behavioural cloning paradigm is known to suffer
from compounding errors: since the future states depend on previous predictions (actions),
the assumption made in statistical learning that input variables are independent and identically
distributed (i.i.d.) does not hold. Therefore, small mistakes will place the system into states that
are outside the training data distribution, as illustrated in Figure 2.3, and resulting policies
struggle to maintain high performances on long time horizons. This effect was identified and
tackled in (S. Ross, G. J. Gordon, and J. A. Bagnell, 2011), who proposed to iteratively request

20

2.1 Sequential decision-making

expert labels (actions) from the states encountered by the current trained policy, rather than
from the initial expert distribution. However, this can only be accomplished at the cost of a
significant labelling effort. In the context of a Lane Keeping application, Bojarski et al. (2016)

Figure 2.3 – As the agent deviates from the expert trajectories, the errors compound and push the agent
further and further from the training distribution.

proposed instead to mitigate this issue during the data collection step by simulating deviations
from the expert trajectories by means of two side cameras facing at the edge of the road. The
corresponding synthetic expert controls were obtained by adding a constant adjustment term
to steer the vehicle back on track. Researchers at Waymo reported using the same technique of
synthesising perturbations for their ChauffeurNet imitation model (Bansal, Krizhevsky, and
Ogale, 2018). The effect of compounding errors can also be delayed by further increasing the
prediction performance, e.g. by considering temporal dependencies as in (Eraqi, Moustafa, and
Honer, 2017; Huazhe Xu et al., 2017). Other techniques than maximum likelihood estimation
can be used to train the models, such as Generative Adversarial Imitation Learning (J. Ho and
Ermon, 2016), used for highway driving from range measurements in (Kuefler et al., 2017;
Bhattacharyya et al., 2018).

Policy conditioning A limitation of imitation learning for autonomous driving is the fact that
merely imitating human drivers by sampling likely trajectories is not sufficient: the sampling
must also be conditioned on the current short-term destination specified by the Route planner.
Codevilla et al. (2018) propose to achieve this by considering several policy heads for three
possible behaviours when reaching an intersection: go straight, turn left or turn right. At
test time, the appropriate policy is used at each intersection depending on the planned route.
Rhinehart, McAllister, Kitani, et al. (2019) and Rhinehart, McAllister, and Levine (2020)
present a model-based approach that consists in learning a probabilistic model q(s) of expert
trajectories used as a prior, and inferring the maximum a posteriori trajectory given a test-time
goal likelihood p(goal | s).

21

Literature Review

2.1.3 Reinforcement Learning

While the MDP framework undoubtedly constitutes a convenient theoretical framework for
analysis, it may be too narrow a frame to accommodate the real world. In the sequel, by trying
to cast the problem of Autonomous Driving as an MDP, we will identify multiple underlying
assumptions that do not hold in practice, and relate them to existing research areas for which
researchers proposed variants and solutions.

2.2 States and partial observability

(a) “Area of potential danger”. A partial observability stemming from sensor
occlusion in a turn.

(b) “Area of uncertainty”. A partial observabil-
ity stemming from unknown intentions of hu-
man agents.

Figure 2.4 – Sources of Partial Observability in Autonomous Driving. Illustrations from (Editions
Nationales du Permis de Conduire, 2017).

22

2.2 States and partial observability

Figure 2.5 – Information-seeking behaviours: the tailgating vehicle (top) should slow down, although
it might decrease its immediate rewards, to gain valuable information in return (bottom). Image from
(Editions Nationales du Permis de Conduire, 2017).

In order to specify an MDP, the first step consists in defining the state space S, with the
underlying assumption that the agent will have access to its current state s ∈ S . Yet in practice,
information about the scene can only be obtained through sensors, which produce typically
noisy measurements (Ulbrich and Maurer, 2013; Du et al., 2010; Artuñedo, Villagra, Godoy,
and Castillo, 2020). Worse, parts of the state may be missing altogether, as is the case when a
scene entity is occluded by an obstacle (e.g. Brechtel, Gindele, and Rüdiger Dillmann, 2013;
M. Bouton, A. Nakhaei, et al., 2018; Sun et al., 2019), as shown in Figure 2.4a. To account for
these difficulties, the concept of a Partially Observable Markov Decision Process (POMDP) was
introduced in (Åström, 1965), extending the MDP framework with two additional quantities:
an observation space Ω, and an measurement model O such that the observation o ∈ Ω is
measured at state s′ with the conditional probability O(o | s′, a). At each time step t, a belief
bt ∈ M(S) over the state st ∈ S is updated by performing Bayesian Filtering to compute the
posterior state distribution:

bt+1(st+1) =
O(ot|st+1, at)

∑
st∈S P (st+1 | st, at)bt(st)∑

s∈S O(ot|s, at)
∑
st∈S P (s | st, at)bt(st)

.

By conditioning the policy π(at|bt) on the belief bt, the POMDP framework allows to optimally
balance between information gathering and task completion, as shown in Figure 2.5. However,
there is a price to pay: the belief space M(S) is much larger than the state space S (e.g.
continuous of dimension n when S is finite of size n), which drastically increases the planning
complexity. Exact solutions exist when S is finite (Pineau, G. Gordon, and Thrun, 2003), and
approximate ones when it is compact (Porta et al., 2006; Silver and Veness, 2010). Even the belief
update is intractable in general, when S is compact. In the case of linear dynamics and Gaussian
measurement noise, the belief update is known as Kalman Filtering (Kalman et al., 1960). It
has been applied in (Bry and N. Roy, 2011; M. Bouton, Cosgun, and M. J. Kochenderfer, 2017;

23

Literature Review

Berg, Patil, and Alterovitz, 2017, e.g.), and in the context of quadratic costs –i.e. the standard
LQG problem– which enables efficient computation of the optimal policy (see e.g. W. Xu, Pan,
et al., 2014; Berg, Abbee, and Goldberg, 2011). The more complex observation model of sensor
occlusions in continuous-space is handled in (Brechtel, Gindele, and Rüdiger Dillmann, 2013;
Brechtel, Gindele, and Rudiger Dillmann, 2014; M. Bouton, A. Nakhaei, et al., 2018) where
cautious driving policies are learned for crossing intersections; and in (Sun et al., 2019) where
the observed behaviour of nearby vehicles is used to infer the presence of potentially occluded
pedestrians. Furthermore, the POMDP framework has been used to account for uncertainty in
the intentions of other agents, as illustrated in Figure 2.4b. In (Bandyopadhyay et al., 2013),
the authors propose a Mixed-Observability framework (MOMDP) in which the other drivers’
locations are observed but not their destinations. In (Barbier et al., 2018), the uncertainty lies
in whether the other agents intend to give or take the right of way. The value of inferring these
drivers intentions has been assessed in (Sunberg, C. J. Ho, and Mykel J. Kochenderfer, 2017),
in comparison to MDP baselines where a static or maximum-likelihood behavioural model is
assumed instead.

2.3 Actions and temporal abstraction

Figure 2.6 – Temporally extended sequences of actions can be used as skills, or options, and futher used
by a meta-policy to plan over long time horizons (Sutton, Precup, and Satinder Singh, 1999).

The second step of when specifying an MDP is to choose an action space A. Suppose
you are taking your first driving lesson, your instructor will be providing you with very
detailed instructions about actuation such as “turn the steering wheel by a full turn”, “change
gear”, “brake smoothly”, etc. After a few lessons, however, the instructor will switch to more
general instructions such as “change lane to overtake this vehicle”, “yield to vehicles on the roundabout
before merging” or “drive slower in this area”. And when, having finally got your driver’s license,

24

2.4 Rewards and inverse reinforcement learning

you start driving in an unfamiliar city, your friend in the passenger seat will merely give
you directions: “follow the signs for the train station, and turn into the third street on the left”.
In short, driving involves reasoning at several time scales, and the corresponding decisions
have different granularities. This can hardly be expressed in the MDP framework, where a
single action space A is considered. In particular, relying on shorter actions yields a smaller
signal-to-noise ratio, which leads to slow learning when planning over a long time horizon
(Shalev-Shwartz, Shammah, and Shashua, 2017). To address this issue, the concept of temporal
abstractionwas introduced: nuclear actions a ∈ A can be used to define temporally-extended
skills πo : S → M(A), also called options, which in turn can be used as meta-actions by a
high-level option policy π(o|s). This idea is also referred to as Hierarchical Reinforcement Learning,
and was first analysed with the semi-Markov Decision Process (SMDP) extension (Sutton,
Precup, and Satinder Singh, 1999), illustrated in Figure 2.6. In autonomous driving, this
hierarchy is typically imposed by the pipeline presented in Chapter 1: Behavioural planning
corresponds to the policy over options π(o|s), while the low-level options πo are achieved
in the Motion planning layer. However, this requires manually specifying the interfaces at
each layer. For instance, in (Barbier et al., 2018) a behavioural policy can only be trained
after having defined a finite set of low-level skills, namely Stop, Yield, and Pass. Consequently,
using a fixed set of options constrains the comprehensiveness of the set of option-policies,
and may prevent recovering optimality if the architecture is not versatile enough. To bypass
these limitations, Shalev-Shwartz, Shammah, and Shashua (2016) proposed to ensure sufficient
comprehensiveness of the class of available options by generating new options on-the-fly as
paths in an option-graph, shown in Figure 2.7. Other works attempt to learn low-level skills
jointly with the meta-policy (Bacon, Harb, and Precup, 2017; Vezhnevets et al., 2017; Heess
et al., 2016). In (Paxton et al., 2017), low-level skills such as follow and overtake are trained using
Neural Networks and ad-hoc reward functions, while serving as meta-actions for a high-level
tree-based planner.

2.4 Rewards and inverse reinforcement learning

Having defined the state and action spaces S and A, we come to specify which state-action
pairs are deemed desirable, through the definition of the reward function R. Paradoxically
enough, humans know how to drive but not necessarily how to explicit the reasons for their
actions, especially in the form of a fixed evaluable objective. A common approach to reward
specification is colloquially known as reward engineering, in which the reward function is
typically parametrised as a linear combination of featuresR(s, a) =

∑
i ωiϕi(s, a) . For example,

such features may include the ego-vehicle speed, its longitudinal distance to a short-term goal,
lateral distance to the lane centerline, or the presence of collisions. By handling more and more
use-cases, the number of features to consider will rise quickly, some of which contradicting

25

Literature Review

Figure 2.7 – A graph used to generate options (Shalev-Shwartz, Shammah, and Shashua, 2016).

each other. Then, the issue of how to properly choose the weights ωi remains, and it can be
increasingly hard to strike the right trade-off. Besides, this difficulty is further exacerbated by
an ambiguity lying in the blurry boundary between the reward function R(s, a) and the value
function V (s). For instance, are safety distances desirable per se, or only because respecting
them means we are less likely to end up in an accident, which is the actual feature of interest
here? Likewise, do road traffic regulation rules describe rewarding states or high-value states?

One practical solution to these concerns is to iteratively refine the reward function R until
the corresponding optimal policy π⋆ matches the expected behaviour πE of human drivers.
The careful or well-versed reader will have noticed that this approach is directly opposed to
the Reinforcement Learning problem, where the optimal behaviour π⋆ stems from the reward
function R. Accordingly, the aptly named Inverse Reinforcement Learning (IRL) framework
aims at finding a reward function that makes the expert behaviour appear uniquely (near)-
optimal. At first glance, this problem seems related to Imitation Learning formulation of
Section 2.1.2 in its attempt to reproduce expert behaviour. This intuition is supported by the
fact that RL ◦ IRL is the dual problem of state-action occupancy matching with respect to expert
trajectories (J. Ho and Ermon, 2016). Example applications of IRL to Autonomous Driving
include the work of Kuderer, Gulati, and Burgard (2015) who learn the trade-off between
comfort and efficacy in human lane-change trajectories.

In addition to finding a good candidate reward for the ego-vehicle behaviour, Inverse
Reinforcement Learning can also be applied for the purpose of predicting how other agents

26

2.5 Dynamics, offline learning and transfer

Figure 2.8 – Trajectory prediction for a pedestrian modelled as an optimal planner with a learned cost
(Ziebart, Ratliff, et al., 2009).

in the scenes are likely to behave, by modelling them as rational agents trying to maximise
an unknown reward function to be learned. In that sense, RL ◦ IRL is a form of model-
based Reinforcement Learning. For instance, this approach has been used to model routing
preferences of taxi-drivers (Ziebart, Maas, et al., 2008), to predict the future trajectory of
pedestrians (Ziebart, Ratliff, et al., 2009) as shown in Figure 2.8, and the behaviour of human
drivers at an intersection (Sun et al., 2019) or on a highway (Sadigh et al., 2016).

2.5 Dynamics, offline learning and transfer

Wenow come to the last element of theMarkovDecision Process tuple: the dynamicsP (s′ | s, a).
Contrary to the state and actions which are the input and output interfaces of the agent, and to
the reward function which is generally chosen by the system designer, there is usually no need
to specify the system dynamics. Indeed, one of the most significant assets of Reinforcement
Learning is its ability to handle unknown dynamics that are only accessed through interaction.
Unfortunately, this assumption that the agent is allowed direct interaction with the true envi-
ronment is both unacceptable and unrealistic in the context of Autonomous Driving. Indeed,
the traditional learning-by-acting pipeline requires exploration, which would imply having
autonomous vehicles violate the rules of the road and generate accidents, which is obviously
out of the question. Besides, most Reinforcement Learning algorithms require a tremendous
amount of interaction data to learn an optimal policy, including for MDPs such as Atari games
which are arguably less diverse and complex than real-world driving scenes. Not to mention
that, perhaps evidently but contrary to simulated games, the real world can only run in real time.

This issue can be addressed in two ways. A first solution is to consider the offline Reinforce-
ment Learning problem (Levine, Kumar, et al., 2020), in which the agent can no longer interact

27

Literature Review

with the environment and is instead provided with a static dataset D = {(st, at, rt, st+1)} of
interaction data, and must learn the best policy it can with this dataset. These interaction data
are collected by an exploration policy πE , in our case, human driving. However, for the same
reasons mentioned in Section 2.1.2, this limited data available induces a loss of optimality:
any attempt to improve the policy may steer the agent in regions of the state space S that
are not present in the dataset D, typically accident states, off-road driving, etc. in the case of
Autonomous Driving. Still, safe policy improvement guarantees can be derived under some
conditions, e.g. for finite MDPs (Laroche, Trichelair, and Combes, 2019; Nadjahi, Laroche, and
Tachet des Combes, 2020). This derivation often requires to constrain how much the learned
policy π can differ from the exploration policy πE , so as to bound the state distribution shift
(Kakade and Langford, 2002; Schulman et al., 2015).

Figure 2.9 – Sim-to-real unsupervised transfer (M.-Y. Liu, Breuel, and Kautz, 2017) from synthetic
images of the cynthia dataset (Ros et al., 2016) to realistic images of the Cityscapes dataset (Cordts
et al., 2016).

A second decision is to leverage simulation. The vast majority of Reinforcement Learning
systems currently running are interacting simulated environments. Indeed, simulation provides
many advantages: it is generally much cheaper than real experiments, it can run much faster,
be easily parallelised, be reset to an initial state when it fails, and failures are not costly and
can be experienced at will. Unfortunately, these benefits come at a price: there is always a gap
between simulation and reality, an issue known as model bias. The problem of adapting a policy
learned in one environment to another related one is known as transfer, and has been tackled
by researchers in different ways. A general strategy is to use simulation as a pre-training and
fine-tune to the policy in the target environment (Liang et al., 2019). This method allows to
obtain satisfactory initial behaviour and cut down on training time. To reduce the gap between
simulation and reality, three approaches can be taken:
(i) make the simulation as realistic as possible. For instance, Xinlei Pan and C. Lu (2017)

translate the virtual images rendered by a simulator to realistic synthetic images, using

28

2.6 Optimality criterion and safety

an Image-to-Image Translation Networks similar to that shown in Figure 2.9, so that the
observations seen by the agent while training are closer to those it will observe when
deployed in the real environment.

(ii) make the simulation more diverse, by partially randomising the observations and dy-
namics, so that the real world appears like yet another realisation of that diversity. This
approach is known as Domain Randomisation and has been widely applied to robotic ma-
nipulation tasks (Tobin et al., 2017; OpenAI et al., 2019), and in the context of Autonomous
Driving (Prakash et al., 2019; Pouyanfar et al., 2019).

(iii) make both the simulation and the real-world abstract, by mapping them to intermediate
observation and action spaces so that the encapsulated policy is not directly exposed
to raw perceptual inputs and low-level controls. For instance, semantically segmented
images and waypoints are used as observations and actions in (Mueller et al., 2018).

2.6 Optimality criterion and safety

Figure 2.10 – A risky situation: should the vehicle merge into the roundabout?

Once the Markov Decision Process is fully specified, a policy π is said to be optimal if it
maximises the expected return

max
π

E
π,P

[∑
t

γtRt

]
.

But is this an appropriate performance measure? Consider a driving decision –say merging
into a roundabout as illustrated in Figure 2.10– that, given the uncertainty on the behaviour of
other agents, can lead to a collision with a certain probability δ. When maximising the return
in expectation, the agent is allowed to balance the rare accident penalty with the more likely

29

Literature Review

Decision Merge Wait
Outcome Success Failure Boredom
Probability 1− δ δ 1
Reward 1 −1−δ

δ 0
E[R] 0 0
V(R) 1−δ

δ ≃
1
δ 0

minR −1−δ
δ ≃ −

1
δ 0

Table 2.1 – A simple bandit problem associated with Figure 2.10. When trying to merge, an accident
happens with probability δ and the agent suffers a high penalty 1−δ

δ . If the agent decides to wait instead,
it suffers a small penalty of 0 for the inconvenience. We show the associated expected reward, worst-case
reward, and reward variance.

perspective of a successful merge. As observed by Shalev-Shwartz, Shammah, and Shashua
(2017), assuming that rewards are normalised in [0, 1] for standard behaviours, for the agent
to care about avoiding accidents with probability 1− δ requires the penalty associated with a
collision to be in the order of 1/δ, as we illustrate in Table 2.1. This leads to a high variance in
the observed rewards, which is likely to impede learning. Furthermore, the optimal agent is
willing to gamble a collision now and then, if it allows for an increased efficiency the rest of the
time. This question of whether and how to weigh human lives with economic benefits brings
us straight back to the ethical considerations of Section 1.1.1.

This questioning has lead researchers and practitioners to consider alternative definitions
of optimality, tailored for an increased awareness of events of small probability and high
consequences. These approaches are grouped under the name of Safe Reinforcement Learning,
and typically involve giving up some expected performance in favour of the lower tail of the
return distribution. They were surveyed by García, Fern, and Fernández (2015), who identified
four main paradigms: the first three involve a change of the optimisation criterion, while the
fourth one defines a constraint on the exploration process.

2.6.1 Risk-sensitive Criterion

Risk-sensitive methods augment the traditional expected performance criterion with a measure
of variability. For instance, in the above example of Table 2.1 the two decisions are equivalent
in terms of expected return, but Merge has a significantly higher variance than Wait. A first
instance of risk-sensitive objective is the variance-penalized criterion (Markowitz, 1959) which
takes the form

max
π

E
π,P

[∑
t

γtRt

]
− α V

π,P

[∑
t

γtRt

]
,

where the weight α > 0 is often tuned manually and allows to trade-off expected performance
for consistency (higher αmeans lower variance in the outcomes).

30

2.6 Optimality criterion and safety

Many other risk measures have been investigated, such as the Value-at-Risk (VaR), the
Conditional Value-at-Risk (CVaR) and percentile performance, in both the Multi-Armed Ban-
dits setting (Torossian, Aurélien Garivier, and Picheny, 2019) and the Reinforcement Learning
setting (Moody and Saffell, 2001; Tamar, Di Castro, and Mannor, 2012; L.A. and Ghavamzadeh,
2013; Delage and Mannor, 2010). In their seminal paper, Artzner et al. (1999) identified a set of
properties deemed necessary for a risk measure to be coherent, and policy gradient methods
have been designed to optimise this class of measures (Tamar, Chow, et al., 2015). In the context
of Autonomous Driving, the variance-penalised objective has been applied in e.g. (Naghshvar,
Sadek, and Wiggers, 2018) to highway ramp scenarios with occlusions and limited sensor
range.

2.6.2 Worst-case criterion

In model-based Reinforcement Learning, the model parameters are typically estimated from
noisy interaction data, which can lead to modelling errors that may have fatal consequences
in real, physical systems. To address this issue, robust control community has formulated to
optimise the outcome of a policy π with respect to an ambiguity set P of likely dynamics:

max
π

min
P∈P

E
π,P

[∑
t

γtRt

]

This problem was first studied by the control community, which focused on the minimax
control of theH∞-norm (Basar and Bernhard, 1996) andH2-norm (Berkenkamp and Schoellig,
2015) of linear systems. Minimax-control of quadratic costs –the so-called robust Linear
Quadratic (LQ) problem– was later considered in (Abbasi-Yadkori and Szepesvári, 2011;
Ibrahimi, Javanmard, and B. V. Roy, 2012; Faradonbeh, Tewari, and Michailidis, 2020; Ouyang,
Gagrani, and Jain, 2017; Abeille and Lazaric, 2018; Dean et al., 2019; Dean et al., 2018). The
case of finite MDPs with uncertain parameters was studied by Iyengar (2005), Nilim and
El Ghaoui (2005), and Wiesemann, Kuhn, and Rustem (2013), who showed that the main
results of Dynamic Programming (DP) could be recovered under a rectangularity assumption
for the structure of uncertainty. Their work was extended to the RL setting in (Tamar, Mannor,
and Huan Xu, 2014).

2.6.3 Constrained Criterion

Another approach is to formulate safety as constrained optimisation: the task is to max-
imise a target function f(x) while satisfying an inequality constraint g(x) ≤ β. For instance,
Berkenkamp, Schoellig, and Krause (2016) apply this principle to safe blackbox optimisation
using Gaussian Process regression. This idea is extended to a sequential decision-making in the

31

Literature Review

Constrained Markov Decision Process (CMDP) framework (Altman, 1999; Achiam et al., 2017),
a variant of MDPs augmented with a cost function C, and such that the return maximisation
objective is subjected to a constraint on the maximum expected cumulative discounted cost:

max
π

E
π,P

[∑
t

γtRt

]
subject to E

π,P

[∑
t

γtCt

]
≤ β.

Extensions have also been proposed to this framework: in (Tessler, Mankowitz, andMannor,
2019), more general constraints than discounted sums are considered, while in (Geibel and
Wysotzki, 2005; Chow, Ghavamzadeh, et al., 2017) the constraint does concern the expectation
of the discounted total cost, but rather its percentile or CVaR. CMDPs have been applied in
(Maxime Bouton, Karlsson, et al., 2019; Maxime Bouton, Alireza Nakhaei, et al., 2019) to control
the probability for the ego-vehicle to reach its goal safely, and in (Le, Voloshin, and Yue, 2019)
to enforce two behavioural constraints in car racing simulation: smooth driving (expected
number of braking actions) and lane tracking (expected distance to the lane centre).

2.6.4 Safe Exploration

The three paradigms mentioned so far aim to revisit the definition of optimality. However,
these adjustments only alter the optimal policy once it is learnt, but they leave the exploration
process subject to failures. Consequently, other approaches have been developed to enforce
safety constraints at all time. The most common formalisation, robust constraint satisfaction,
consists in preventing the agent from visiting any error state during exploration –or equivalently
to remain within a safe set X– by relying on prior knowledge such as expert demonstrations or
an initial feasible policy. According to Thierry Fraichard (2014), this objective is challenging as
it requires the ability to “reason about the future” as illustrated in Figure 2.11a, and to “consider
obstacles globally and not individually” as shown in Figure 2.11b.

When the system is fully known, a general solution to this problem is provided by the
Hamilton-Jacobi-Isaacs (HJI) reachability equation, in the form of a differential game. This
approach is followed in (Leung et al., 2020; Fisac et al., 2019) by decomposing the system into
a known deterministic part subject to an adversarial bounded perturbation. In the context of
finite MDPs with unknown dynamics, assuming the safe states are defined as the level-set
of a safety function C(s, a) ≤ β whose smoothness is known, Turchetta, Berkenkamp, and
Krause (2016) propose an algorithm that explores a maximum reachable ergodic safe set without
visiting unsafe states. Since solving the HJI equation is intractable in general, researchers have
considered more structured special cases, namely linear systems and convex (often polytopic)
constraints (Fukushima, Kim, and Sugie, 2007; Adetola and Guay, 2008; Aswani et al., 2013;
Lorenzen, Allgöwer, and Cannon, 2017; Köhler et al., 2019; X. Lu and Cannon, 2019).

32

2.6 Optimality criterion and safety

(a) A minimum horizon T > tc − tics is required (b) Obstacles must be considered globally.

Figure 2.11 – Inevitable Collision States (ICS), images from (Thierry Fraichard, 2014).

Figure 2.12 – An ordinary highway-driving situation, but prone to accidents under adversarial be-
haviours.

Yet, it is questionable whether the property of robust constraint satisfaction under adversar-
ial disturbances is relevant for an Autonomous Driving application. Indeed, this requirement
might be too restrictive since many nominal states are prone to errors under adversarial be-
haviours, as shown in the example of Figure 2.12. A strategy of avoiding this region of the
state-space altogether would be overly cautious and unacceptable. To cope with that issue,
weaker models of safety have been proposed. Thus, rather than avoiding all collisions, Passive
motion safety (Maĉek et al., 2008; Sara Bouraine, Thierry Fraichard, and Salhi, 2012; S. Bouraine
et al., 2014) only requires the robot to be motionless whenever a collision could possibly occur.
To account for limited dynamic capabilities of other agents, the stronger Passive-friendly motion
safety model was introduced (Mitsch et al., 2017), ensuring not only that the ego-vehicle
safely stops itself, but also allows sufficient space for other vehicles to stop before a collision
occurs. Note that this is equivalent to the original motion safety model with a restricted set of
adversarial behaviours for other agents, requiring them to brake and avoid collisions when
possible. Finally, Shalev-Shwartz, Shammah, and Shashua (2017) defines a notion of Respon-
sibility Sensitive Safety specific to Autonomous Driving, which formalizes “an interpretation of
Duty of Care from Tort law”. This interpretation is summarised by five main rules tailored for a

33

Literature Review

specific set of use-cases (including several road geometries, right of way rules, pedestrians and
occlusions) and implemented as a set of dynamic geometrical constraints.

34

Chapter 3

Problem Statement

Notre héritage n’est précédé d’aucun testament.
On ne se bat bien que pour les causes qu’on modèle soi-même
et avec lesquelles on se brûle en s’identifiant.

René Char, Feuillets d’Hypnos (62–63).

Having discussed at length the range of Autonomous Driving modelling perspectives in
Chapter 2, we now formalise the specific problem that we are going to consider in this thesis.
This chapter attempts to cast Behavioural Planning as a Markov Decision Process, by specifying
each element of a (S,A, P ,R, γ) tuple suitable for a set of tactical decision-making tasks.

Contents
3.1 Perceived states . 36
3.2 Behavioural decisions . 37
3.3 Traffic dynamics . 38
3.4 Rewards . 40
3.5 Implementation . 41

35

https://eleurent.github.io/sisyphe/texts/feuillets-d-hypnos.html

Problem Statement

3.1 Perceived states

As discussed in Sections 1.1.2 and 2.2, information about the world is typically obtained
from noisy sensory measurements. The Perception module is responsible for recognising and
tracking the signal from the noise, so as to provide a high-level probabilistic description of the
scene. In particular,
(i) aMapping layer reconstructs the geometry of the road network and its associated signage,

including stop signs and traffic lights;

(ii) a Localisation layer recovers the position, velocity and heading of the ego-vehicle;

(iii) a Scene understanding layer returns the position, velocity and geometry of any vehicle or
obstacle nearby.

Since we focus on the Decision module, we will take a simplifying assumption and ignore
all aspects related to Perception. Namely, we take the liberty of assuming noise-free access to
every feature of the driving scene that we will deem relevant.

Vehicles Asmentioned in Chapter 1, the main challenge of Behavioural Planning is to interact
with other vehicles. Therefore, the state should include a description of every vehicle nearby.
In addition to the ego-vehicle, indexed by 0, the scene contains a number Nv of other vehicles
indexed by the range [1, Nv]. Any vehicle of index i ∈ [0, Nv] is represented by
(i) its position (pxi , p

y
i) ∈ R2,

(ii) its forward speed vi ∈ R,

(iii) its heading ψi ∈ R.
The resulting joint state is the traffic description:

s =


px0 py0 v0 ψ0
...

pxNv
pyNv

vNv ψNv

 ∈ S =∆ R(Nv+1)×4. (3.1)

We can make a few observations: first, the state space is continuous, which means we will have
to resort to function approximation to represent either the policy π, the value function Q or the
dynamics P . Second, it has a variable size, since it depends on the number of vehicles nearby,
which the function approximation schemewill have to accommodate. Its dimensionality should
be in the order of fifty at most, for a dozen observed vehicles.

Roads We also assume knowledge of the road network, comprising:

36

3.2 Behavioural decisions

(i) a graph description of the network topology, where the nodes represent intersections and
the edges represent road segments;

(ii) the geometry of every laneL in the network (every edge), described by its centre-line para-
metric curve s→ (pxL(s), pyL(s)) ∈ R2, and heading ψL : s→ tan−1

(
dpy

L
ds (s)/dpx

L
ds (s)

)
∈ R

(tangent to the curve) where s ∈ [0, lL] is the curvilinear abscissa and lL is the length of
the lane L.

However, we do not include this information as part of the state but rather of the system
dynamics, described later. Consequently, model-free algorithms will learn policies tailored for
the particular scene seen during training, andwill not be able to adapt to different scenes, unless
the state space is augmented to include road features. Conversely, model-based algorithms can
leverage road information in their dynamics models and thus generalise to unseen scenes.

3.2 Behavioural decisions

We follow the hierarchical architecture of the Decision module discussed in Sections 1.1.2
and 2.3. Since we focus on Behavioural Planning specifically, we assume the availability1 of
(i) a Route Planning layer, that automatically selects the next road segment to follow at each

intersection, e.g. the proper exit on a highway, or the right direction at an intersection;

(ii) a Motion Planning and Control layer, that controls the vehicle by way of low-level throttle
and steering actuators to reach any desired position and speed in the selected road
segment.

Thus, the purpose of the Behavioural Planning layer is to specify short-term instructions for
the Motion Planning layer, in the form of a lane to follow and a speed to adapt. The produced
trajectory will always conform to the planned route, but the Behavioural Planner is in charge
of e.g. deciding when to merge on a highway, negotiating right of way at an intersection,
overtaking vehicles, etc.. To that end, we specify the following space of meta-actions:

A =∆
{

change to the left lane, change to the right lane,
drive faster, drive slower, maintain speed and lane

}
(3.2)

Meta-actions are rather slow to affect the state of the vehicle and are thus executed at a
low frequency of 1 Hz. We will consider a behavioural planning horizon of a dozen seconds
(enough to e.g. take/give way to a vehicle and merge in traffic), which corresponds to a dozen
of decision points. We describe next how these meta-actions influence the evolution of the state
s ∈ S.

1These two modules are described as part of the dynamics.

37

Problem Statement

3.3 Traffic dynamics

This section describes how the behavioural decisions influence the evolution of the perceived
states, under their above definitions, through the dynamics distribution P (s′ | s, a). As ex-
plained in Chapter 1, it is crucial that the simulated vehicles in the scene are able to react to the
actions of the ego-vehicle, so that interaction patterns can be learnt.

3.3.1 Kinematics

We represent the non-holonomic motion capabilities of every vehicle i ∈ [0, Nv] in the scene by
the Kinematic Bicycle Model (see e.g. Polack, Altché, and D’Andréa-Novel, 2017):

ṗxi = vi cos(ψi + βi),

ṗyi = vi sin(ψi + βi),

ψ̇i = vi
l

sin(βi),

(3.3)

where l is the vehicle half-length, v̇i is the throttle command and βi is the slip angle at the
centre of gravity, used as a steering command.

3.3.2 Motion planning and control

We equip the ego-vehicle –and also other vehicles i ∈ [0, Nv] in the scene– with a capability to
execute the meta actions A. This requires the ability to follow a lane Li, described by the road
information mentioned above through its lateral position pyLi

and heading ψLi . To that end,
vehicles follow a cascade controller of lateral position and heading in the form

ψ̇i = Kψ
i

(
ψLi + sin−1

(
ṽi,y
vi

)
− ψi

)
,

ṽi,y = Ky
i (pyLi

− pyi),
(3.4)

whereKy
i ∈ R andKψ

i ∈ R are control gains. Note that the corresponding steering command
βi can be obtained from (3.4) as:

βi = sin−1
(
l

vi
ψ̇i

)
.

Furthermore, the ego-vehicle needs to be able to control its speed as per the meta actions A.
To that end, we use a linear longitudinal controller

v̇0 = Kv
0 (vr − v0),

38

3.3 Traffic dynamics

where vr ∈ R is the reference speed, incremented by ±5 m/s by the drive faster and drive slower
meta-actions, andKv

0 ∈ R is a control gain.

3.3.3 Behavioural models

Other simulated vehicles follow simple behaviouralmodels from the traffic simulation literature,
that dictate how they accelerate and steer on the road.

Longitudinal behaviour The acceleration command ai of a vehicle i ∈ [1, Nv] is controlled
directly by the Intelligent Driver Model (IDM) from (Treiber, Hennecke, and Helbing, 2000):

v̇i = ai

1−
(
v

v0
i

)δ
−
(
d⋆i
di

)2
 ,

where d⋆i = d0
i + Tivi + vi∆vi

2
√
a+
i bi

,

(3.5)

vi is the vehicle velocity, di is the distance to its front vehicle. The dynamics of vehicle i ∈ [1, Nv]
are thus parametrised by the desired velocity v0

i , the time gap Ti, the jam distance d0
i , the

maximum acceleration ai and deceleration bi, and the velocity exponent δ.

Lateral behaviour The discrete lane change decisions are given by the Minimizing Overall
Braking Induced by Lane change (MOBIL) model from (Kesting, Treiber, and Helbing, 2007).
According to this model, a vehicle i ∈ [1, Nv] decides to change lane when

(i) it is safe to cut-in:
ãn ≥ −bsafe;

(ii) there is an incentive, for the ego-vehicle and possibly its followers:

ãc − ac︸ ︷︷ ︸
the vehicle

+p

 ãn − an︸ ︷︷ ︸
new follower

+ ão − ao︸ ︷︷ ︸
old follower

 ≥ ∆ath;

where c is the centre vehicle, o is its old follower before the lane change, and n is its new follower
after the lane change; a and ã are the predicted accelerations of the vehicles before and after the
lane change respectively; p is a politeness coefficient, ∆ath is the acceleration gain required to
trigger a lane change; and bsafe is the maximum braking imposed to a vehicle during a cut-in.

A lane change decision modifies the target lane Li followed by vehicle i on its current road
segment. The actual trajectory planning and steering control to track this lane is then performed
by the lateral controller of (3.4).

39

Problem Statement

3.3.4 Route planning

So far, we explained how both the ego-vehicle (i = 0) and the other simulated vehicles (i ∈
[1, Nv]) behave on a multi-lanes road segment, through their Behavioural and Control layers.
The Route Planning layer is finally responsible for selecting the sequence of road segments
leading to a destination, sampled randomly at initialisation. To that end, the Route Planning
performs a Breadth-First Search in the graph description of the road network mentioned above,
and returns a shortest path of road segments from the initial position to the destination.

In the end, we frame the state spaceS as fully observable but subjected to uncertain transition
dynamics P (s′ | s, a), which are parametrised by several unobserved variables including the
destinations of agents in the scenes and the parameters of their Behavioural and Control layers.

3.4 Rewards

As discussed in Section 2.4, choosing an appropriate reward function that yields realistic
optimal driving behaviour is a challenging problem, that we do not address in this thesis. In
particular, we do not wish to specify every single aspect of the expected driving behaviour
inside the reward function, such as keeping a safe distance to the front vehicle. Instead, we
would rather only specify a reward function as simple and straightforward as possible, and
focus solely on the difficulties related to safe decision-making under uncertainty, in the hope
to see adequate behaviour emerge from learning. In this perspective, keeping a safe distance
would be optimal not for being directly rewarded but for robustness against the uncertain
behaviour of the leading vehicle, which could brake at any time.

Thus, we focus on only two features: a vehicle should (i) progress quickly on the road;
(ii) avoid collisions.

Since the MDP formalism requires rewards to be bounded, by convention we normalise
them in the [0, 1] range. Note that we forbid negative rewards, since they may incentivise
the agent to prefer terminating an episode early (by causing a collision) rather than risking
suffering a negative return if no satisfying trajectory can be found.

Thus, unless otherwise stated, the reward function R is chosen as follows:

R(s, a) =


1 if the ego-vehicle is at full speed;
0 if the ego-vehicle has collided with another vehicle;
0.5 else.

(3.6)

A more realistic reward function may include comfort terms, such as penalising high
acceleration or jerk, and lane changes manoeuvres, but we do not consider them for simplicity.

40

3.5 Implementation

This reward function is dense2, since the maximum reward can easily be obtained from any
state by accelerating, which should guide exploration to efficient driving styles. However, it is
also non-convex, since e.g. the collision penalty is incurred at the locations of any two obstacles
but not in-between. It is even non-smooth, given that it is discontinuous at collision states.

3.5 Implementation

buildbuild passingpassing docsdocs passingpassing code qualitycode quality
A

codecovcodecov 80%80% environmentsenvironments 88

Figure 3.1 – highway-env repository status (on 27/11/2020).

I created the highway-env environment, a minimalist driving simulator tailored for be-
havioural planning tasks following the MDP formalisation presented in this chapter. It is
written in Python and published online under an open-source license (Leurent, 2018). An
extensive documentation is also available. We discuss at length the features and architecture of
this software in Chapter A. We mention that in addition to our own works, several students
and researchers already make use of this environment, as shown in Figure 3.1 and discussed in
Section A.2. The source code for the agents, allowing to reproduce every numerical experiment
presented throughout this manuscript, is also available in the rl-agents repository.

2Rewards are said to be dense when they are a rich signal obtained at (nearly) every step of decisions, which
helps quickly shaping the behaviour and guiding exploration. In contrast, sparse rewards are obtained for only a
few goal states which are seldom reached (e.g. only at the exit of a maze, or the end of a board game), which makes
exploration much harder and requires assigning credit to the action(s) responsible for a win/loss

41

https://github.com/eleurent/highway-env
https://highway-env.readthedocs.io/en/latest/
https://github.com/eleurent/rl-agents

Part II

Model-free

Agir en primitif. . .
René Char, Feuillets d’Hypnos (72).

https://eleurent.github.io/sisyphe/texts/feuillets-d-hypnos.html

Chapter 4

Considering Social Interactions

O what a strange parcel of creatures are we,
Scarce ever to quarrel, or even agree;
. .
Like social companions we never fall out,
Nor ever care what one another’s about;

Elizabeth Hands, On An Unsociable Family.

Having detailed the MDP model in Part I, we now study in Part II how model-free
Reinforcement Learning algorithms can learn an optimal behavioural planning policy. In this
chapter, we focus on the design of sample-efficient learning architectures, tailored for dense
traffic situations. Such architectures should deal with a varying number of nearby vehicles, be
invariant to the ordering chosen to describe them, while staying accurate and compact. We
observe that the two most popular representations in the literature do not fit these criteria, and
perform badly on a complex negotiation task. We propose an attention-based architecture that
satisfies all these properties and explicitly accounts for interactions between the traffic
participants. We empirically show that this architecture enjoys significant performance gains,
and is able to capture interactions patterns that can be visualised and qualitatively
interpreted.1

Contents
4.1 Motivation . 46
4.2 A social attention architecture . 49
4.3 Experiments . 50

1This chapter is based on a preprint (Leurent andMercat, 2019) presented at theMachine Learning for Autonomous
Driving workshop at the NeurIPS 2019 conference. It is a collaboration with my friend and colleague Jean Mercat,
who pursued this idea in further work on trajectory forecasting, which was published at the 2020 International
Conference on Robotics and Automation (Mercat et al., 2020) and won two international competitions.

45

https://eleurent.github.io/sisyphe/texts/unsociable_family.html

Considering Social Interactions

4.1 Motivation

Value-based Reinforcement Learning algorithms such as Q-Learning (Watkins and Dayan,
1992) and its variants rely on estimating the optimal state-action value function Q⋆. Since the
state space S chosen in Chapter 3 is continuous, we must resort to function approximation.
Thus, independently of how S was defined, we now have to specify how a state s ∈ S will be
represented as an input to parametrised model Qθ. The choice of both the model class and state
representation will strongly influence the system performances. In particular, we claim that the
two most widely used representations both suffer from different drawbacks: on the one hand,
the list of features representation is compact and accurate but has a varying-size and depends
on the choice of ordering. On the other hand, the spatial grid representation addresses these
concerns but in return suffers from an accuracy-size trade-off.

Our contributions are the following: first, we propose an attention-based architecture for
decision-making involving social interactions. This architecture allows to satisfy the variable-
size and permutation invariance requirements evenwhen using a list of features representation. It
also naturally accounts for interactions between the ego-vehicle and any other traffic participant.
Second, we evaluate our model on a challenging intersection-crossing task involving up to 15
vehicles perceived simultaneously. We show that our proposed method provides significant
quantitative improvements and that it enables us to capture interaction patterns in a visually
interpretable way.

4.1.1 Background

We start by giving some background on standard model-free learning algorithms –with a focus
on value-based methods–, on usual state representations used for behavioural planning, and
on attention mechanisms for Neural Networks (NNs).

Value-based deep Reinforcement Learning

Recall from Definition 1.3 that Q⋆ can be computed from an optimal policy π⋆ since Q⋆ = Qπ
⋆ .

However, the converse that π⋆ can be obtained from knowing Q⋆ is also true since

Proposition 4.1 (Optimality of the greedy policy, Bellman, 2010). A greedy policy defined as

∀s ∈ S, π⋆(· | s) = δa⋆ , where a⋆ ∈ arg max
a

Q⋆(s, a),

and δx = δ(x− ·) denotes the Dirac distribution in x, is optimal.

46

4.1 Motivation

Finding an optimal policy thus reduces to computing the optimal value function Q⋆. Fortu-
nately,

Theorem 4.2 (Bellman Optimality Equation, Bellman, 2010). The optimal action-value func-
tion Q⋆ satisfies the Bellman Optimality Equation:

Q⋆(s, a) = (T Q⋆)(s, a) =∆ E
s′∼P (s′|s,a)

max
a′∈A

[
R(s, a) + γQ⋆(s′, a′)

]
.

Moreover, T is a γ-contraction for the ∥ · ∥∞ norm:

∀Q1, Q2 ∈ RS×A, ∥T Q1 − T Q2∥∞ ≤ γ∥Q1 −Q2∥∞.

Thus, since Q⋆ is a fixed-point of a contracting operator, it can be computed by iteratively
applying T in a fixed-point iteration fashion. The Q-learning algorithm (Watkins and Dayan,
1992) follows this procedure by applying a sampling version T to a batch of collected experience.
When dealing with a continuous state space S, we need to employ function approximation in
order to generalise to nearby states. The Deep Q-Network (DQN) algorithm (Mnih et al., 2015)
implements this idea by using a neural network model to represent the action-value function
Q.

Common traffic state representations

In order to apply a reinforcement learning algorithm such as DQN to an autonomous driving
problem, a state space S must first be chosen, that is, a representation of the scene. The state
should at least contain a description of every nearby vehicle, when social interactions are
relevant to the decision. We recall our definition (3.1) of S from Chapter 3, in which a vehicle
driving on a road is described by it’s continuous position, heading and velocity, and the joint
state of a road traffic with one ego-vehicle denoted s0 and Nv other vehicles can be described
by a list of individual vehicle states:

s =


px0 py0 v0 ψ0
...

pxNv
pyNv

vNv ψNv

 ∈ S =∆ R(Nv+1)×4.

This description was appropriate to simply describe the system dynamics. However, it has
several drawbacks when used for function approximation: because of its 2π-periodicity, the
heading ψi is either clipped to (−π, π] which causes a discontinuity at ±π, or unclipped which
causes several inputs to correspond to the same state. Likewise, the forward velocity vi needs

47

Considering Social Interactions

-7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0
-11.0

-9.0

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

7.0

9.0
x1, y1

x2, y2

x3, y3

-7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0
-11.0

-9.0

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

7.0

9.0

Figure 4.1 – The list of features (left) and spatial grid (right) representations

to be combined with the heading ψi and projected to inform the future positions pxi , pyi of the
vehicle i. Consequently, we slightly modify the features describing the vehicle states as

s = (si)i∈[0,Nv] where si =
[
pxi pyi ṗxi ṗyi cosψi sinψi

]
(4.1)

This representation, that we call list of features, is illustrated in Figure 4.1 (left) and was used
for instance in (Bai et al., 2015; Gindele, Brechtel, and Rudiger Dillmann, 2015; Song, Xiong,
and H. Chen, 2016; Sunberg, C. J. Ho, and Mykel J. Kochenderfer, 2017; Paxton et al., 2017;
Galceran et al., 2017; Y. F. Chen et al., 2017).

This encoding is efficient in the sense that it uses the smallest quantity of information
necessary to represent the scene. However, it lacks two important properties. First, its size varies
with the number of vehicles which can be problematic for the sake of function approximation
which often expects constant-sized inputs. Second, we expect a driving policyπ to be permutation
invariant, i.e. not to be dependent on the order in which other traffic participants are listed.
Ideally, this property should be enforced and not approximated by relying on the coverage of
the Nv! possible permutations τ of any given traffic state in the dataset. Formally, we require
that

π(·|(s0, s1, . . . , sNv)) = π(·|(s0, sτ(1), . . . , sτ(Nv))), ∀τ ∈ SNv , (4.2)

where SNv is the symmetric group of permutations of the integer range [1, Nv]. A popular
way to address these limitations is to use a spatial grid representation. Instead of explicitly
representing spatial information as variables x, y along with other features f directly inside a
state {si = (pxi , p

y
i , fi)}i∈[0,N] indexed on the vehicles, they are instead represented implicitly

through the layout of several feature variables fij organised in a tensor structure, where the (i, j)
indexes refer to a quantisation of the 2D-space. This representation is illustrated in Figure 4.1
(right). Note that the size of this tensor is related to the area covered divided by the quantisation
step, which reflects a trade-off between accuracy and dimensionality. In an occupancy grid,

48

4.2 A social attention architecture

the f features contains presence information (0-1) and additional channels such as velocity
and heading, as in (e.g. Isele et al., 2018; Lex Fridman, Terwilliger, and Jenik, 2018; Bansal,
Krizhevsky, and Ogale, 2018; Rehder, Wirth, et al., 2018). Another example is the use of
top-view RGB images (e.g. J. Bagnell et al., 2010; Rehder, Quehl, and Stiller, 2017; Rehder,
Wirth, et al., 2018; J. Liu et al., 2018).

This permutation invariance property (4.2) can also be implemented within the architecture
of the policy π. A general technique to achieve this is to treat each entity similarly in the early
stages – e.g. through weight sharing – before reducing them with a projection operator that is
itself invariant to permutations, for instance, a max-pooling as in (Y. F. Chen et al., 2017; Hoel,
Wolff, and Laine, 2018) or an average as in (Qi et al., 2017). A particular instance of this idea is
attention mechanisms.

Attention mechanisms

The attention architecture was introduced to enable NNs to discover interdependencies within
a variable number of inputs. It has been used for pedestrian trajectory forecasting in (Vemula,
Muelling, and Oh, 2018) with spatiotemporal graphs and in (Sadeghian, Kosaraju, et al., 2019)
with spatial and social attention using a generative Neural Network. Sadeghian, Legros, et al.
(2018) use attention over top-view road scene images for car trajectory forecasting. Multi-head
attention mechanism has been developed by Vaswani et al. (2017) for sentence translation.
In (Messaoud et al., 2019) a mechanism called non-local multi-head attention is developed.
However, this is a spatial attention that does not allow vehicle-to-vehicle attention. In the
present chapter, we use a multi-head social attention mechanism to capture vehicle-to-ego
dependencies and build varying input size and permutation invariance into the policy model.

4.2 A social attention architecture

Out of a complex scene description, the model should be able to filter information and consider
only what is relevant for the decision. In other words, the agent should pay attention to vehicles
that are close or conflict with the planned route.

The proposed architecture is presented in Figure 4.2. We use it to represent the Q-function
that will be optimised by the DQN algorithm. It is composed of a first linear encoding layer
whose weights are shared between all vehicles. At that point, the embeddings only contain
individual features of size dx. They are then fed to an ego-attention layer, composed of several
heads stacked together. The ego prefix highlights that it similar to a multi-head self-attention
layer (Vaswani et al., 2017) but with only a single output corresponding to the ego-vehicle.
Such an ego-attention head is illustrated in Figure 4.3 and works in the following way: in order

49

Considering Social Interactions

ego
vehicle1

...
vehicleNv

Encoder
Encoder

...
Encoder Eg

o-
at
ten

tio
n

Eg
o-
at
ten

tio
n

Eg
o-
at
ten

tio
n Decoder action values

Figure 4.2 – Block diagram of our model architecture. It is composed of several identical linear encoders,
a stack of ego-attention heads, and a linear decoder.

to select a subset of vehicles depending on the context, the ego-vehicle first emits a single query
Q = [q0] ∈ R1×dk , computed with a linear projection Lq ∈ Rdx×dk of its embedding. This query
is then compared to a set of keysK = [k0, . . . , kNv] ∈ R(Nv+1)×dk containing descriptive features
ki for each vehicle, again computed with a shared linear projection Lk ∈ Rdx×dk . The similarity
between the query q0 and any key ki is assessed by their dot product q0k

T
i . These similarities

are then scaled by the inverse-square-root-dimension 1/
√
dk

2 and normalised with a softmax
function σ across vehicles. We obtain a stochastic matrix called the attention matrix, which is
finally used to gather a set of output value V = [v0, . . . , vNv], where each value vi is a feature
computed with a shared linear projection Lv ∈ Rdx×dv . Overall, the attention computation for
each head can be written as

output = σ

(
QKT

√
dk

)
︸ ︷︷ ︸
attention matrix

V. (4.3)

The outputs from all heads are finally combined with a linear layer, and the resulting tensor is
then added to the ego encoding as in residual networks. We can easily see that this process is
permutation invariant: indeed, a permutation τ will change the order of the rows in keysK
and values V in (4.3) but will keep their correspondence. The final result is a dot product of
values and key-similarities, which is independent of the ordering.

4.3 Experiments

Videos and source code of the experiments below are available3.

Environment In this experiment, we use the highway-env environment (Leurent, 2018) pre-
sented in Chapter A. We consider a task where vehicle-to-vehicle interaction plays a significant
part: crossing a four-way intersection. The scene – composed of two roads crossing perpendicu-
larly – is populated with several traffic participants initialised with random positions, velocities,

2This scaling is due to the fact that the dot-product of two independent random vectors with mean 0, variance 1,
and dimension dk, is a random variable with mean 0 and variance dk

3https://eleurent.github.io/social-attention/

50

https://eleurent.github.io/social-attention/

4.3 Experiments

k

v

k

v

Figure 4.3 – Architecture of an ego-attention head. After received the encoded vehicle states, the ego-
query q, all keys k and all values v are produced by three linear projections. Then, the attention matrix
is computed by matching the keysK to the ego query q0, and the corresponding values V are retrieved.
The resulting embedding is finally forwarded to a decoder to obtain the predictedQ-values as an output.

and destinations. As described in Chapter 3, these vehicles are simulated with the Kinematic
Bicycle Model, their lateral control is achieved by a low-level steering controller tracking a
target route, and their longitudinal behaviour follows the IDM model (Treiber, Hennecke, and
Helbing, 2000). However, this model only considers same-lane interactions and special care
was required to prevent lateral collisions at the intersection. To that end, I implemented the
following simplistic behaviour: each vehicle predicts the future positions of its neighbours over
a three-seconds horizon by using a constant velocity model. When a collision with a neighbour
is predicted, the yielding vehicle is determined based on road priorities and brakes until the
collision prediction ceases.

In this context, the agent must drive a vehicle by controlling its speed chosen from a finite
set of actions A =∆ {drive faster, drive slower, maintain speed}. Note that we removed the
lane change actions from the general definition (3.2) of Chapter 3 since the roads are all single-
lane in this example. The lateral control is performed automatically by a low-level controller,
such that the problem complexity is focused on the high-level interactions with other vehicles,
namely the decision to either give or take way. The reward function R is defined as in (3.6).

Agents We evaluate three different agents, whose characteristics are summarised in Table 4.1.
• FCN/List: a list of features state representation is used, as described in Section 4.1.1. The

model is a simple Fully-Connected Network (FCN). Because this architecture requires a
fixed-size input, we use zero-padding to fill the input tensor up to a maximum number

51

Considering Social Interactions

Table 4.1 – Characteristics of the agents
Architecture FCN/List CNN/Grid Ego-Attention

Input sizes [15, 7] [32, 32, 7] [· , 7]
Layers sizes [128, 128] Convolutional layers: 3

Kernel Size: 2
Stride: 2

Head: [20]

Encoder: [64, 64]
Attention: 2 heads

dk = 32
Decoder: [64, 64]

Number of parameters 3.0× 104 3.2× 104 3.4× 104
Variable input size No No Yes
Permutation invariant No Yes Yes

N = 14 of observed vehicles, and add an additional presence feature to the coordinates
described in (4.1) so as to identify active rows.

• CNN/Grid: a spatial grid representation is used, as described in Section 4.1.1, with a 32×32
grid where each cell represents a 2m× 2m square. The model is a Convolutional Neural
Network (CNN).

• Ego-Attention: a list of features state representation is used along with the Ego-Attention
architecture described in Section 4.2. As this model supports varying-size inputs, zero-
padding is not required.

These agents are all trained with the DQN algorithm using the same hyperparameters, and
their architectures are scaled to admit about the same number of trainable parameters for fair
comparison.

Performances We plot in Figure 4.4 the evolution of the total reward, episode length and
average speed during training, over 4000 episodes and repeated across 120 random seeds. The
FCN/List agent learns to accelerate to earn short-term rewards, as shown by its high average
speed, but fails to exploit the information of other vehicles and crashes often, leading to short
episodes. We obtain a risky and blind policy that is the worst-performing. Conversely, the
CNN/Grid architecture benefits from its invariance to permutations and manages to learn to
brake upon arrival at the intersection to avoid collisions, as we can see from its higher episode
length. However, it only proceeds when the intersection has been fully cleared, as reflected by
its low average speed. This results in an overly cautious policy – a common trait colloquially
known as the “freezing robot problem” (Trautman and Krause, 2010) – with a slight increase in
performance. In stark contrast, the Ego-Attention policy quickly learns both when it must
slow down at the intersection (see the high episode length), but also when it can exploit the
gaps in the traffic and take way to vehicles that are far or slow enough (see the higher average

52

4.3 Experiments

speed than CNN/Grid). This translates as a significant performance improvement, and the
resulting overall behaviour is qualitatively more nuanced and human-like.

0 500 1000 1500 2000 2500 3000 3500 4000
episode

2

3

4

5

6

7
to

ta
l r

ew
ar

d
agent
FCN/List
CNN/Grid
Ego-Attention

(a) Average return G =
∑

t
γtR(st, at) (higher is better)

0 500 1000 1500 2000 2500 3000 3500 4000
episode

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

le
ng

th

agent
FCN/List
CNN/Grid
Ego-Attention

(b) Average episode length. Higher is better, since
episodes are terminated at collisions (or after 13 steps).

0 500 1000 1500 2000 2500 3000 3500 4000
episode

5.5

6.0

6.5

7.0

7.5

ve
lo

cit
y

agent
FCN/List
CNN/Grid
Ego-Attention

(c)Average speed v0 of the ego-vehicle (higher is better)

Figure 4.4 – Performances of the tree agents according to various measures. We display the mean values
– along with their 95% confidence interval – averaged over 120 random seeds.

Attention interpretation In any given state, the attention matrix can be visualised in the
following way: we connect the ego-vehicle to every vehicle by a line of width proportional to
the corresponding attention weight. Since the architecture can contain several ego-attention
heads, we use different colours to distinguish them. In our experiments, two attention heads
were used and are represented in green and blue. We observe in Figure 4.5 that they specialised
to focus on different areas: the green head is only watching the vehicles coming from the left,

53

Considering Social Interactions

Figure 4.5 – The attention heads specialised
in different areas: left and front/right.

Figure 4.6 – The attention paid to a vehicle tends to in-
crease as it gets closer.

while the blue head restricts itself to vehicles in the front and right directions. However, we
notice that both heads exhibit a common behaviour: they direct their attention to incoming
vehicles that are likely to collide with the ego-vehicle, depending on their current position,
heading, velocity, and ignore those that are too far or in a conflict-less situation. In particular,
the attention tends to increase when vehicles get closer, as shown in Figure 4.6. It can also be
very sensitive to small variations in the traffic state, as reflected in Figure 4.7. A full episode
showcasing interactions with several vehicles is shown in Figure 4.8.

Exploiting interaction patterns The agent decisions regarding the right of way are not en-
forced through rewards but experienced interactions: based on the defined road priorities,
some vehicles will take way to the ego-vehicle while others will not. By changing which is a
priority road, we can influence the rules of interactions which affects the learnt behaviour. In
Figure 4.9, we compare two policies placed in the exact same initial state and observe how their
decisions are affected by their internal model of how incoming vehicles interact with them.
This difference showcases the ability of our proposed architecture to discover and exploit such
interaction patterns.

Goal conditioning In the previous examples, we trained a policy tailored for left-turns only
because it is the hardest direction with the most conflict points and the lowest priority level.
Two individual policies tailored for right turns and driving straight can be trained as well,
with similar results. Training a generic intersection policy would be less efficient without any
prior information on where the ego-vehicle is headed. To remedy this problem, the destination
could be added as additional features in (4.1), for instance encoded as a desired direction

54

4.3 Experiments

(a) The agent has stopped at the intersection,
its attention is focused on an incoming vehicle
whose destination is still uncertain.

(b)As soon as the vehicle orientation changes,
revealing its intention of turning right, the at-
tention drops and the agent starts accelerating
right away.

Figure 4.7 – Sensitivity to uncertainty.

Figure 4.8 – A complete episode. From left to right, top to bottom: 1. The green and blue heads direct their
attentions to the left and front vehicles, respectively; 2. The left-vehicle is passing and is no longer a
threat; 3. Immediately, the green attention head switches to the next vehicle coming from the left; 4. The
front vehicle has now passed, and the blue attention head is now focused on the ego-vehicle; 5. The
ego-vehicle waits for one last vehicle coming from the left 6. The ego-vehicle can finally proceed, and its
attention is focused on itself.

55

Considering Social Interactions

(a) When trained on a non-priority road, the agent
learns to yield to incoming vehicles.

(b) When trained on a priority road, the agent expects
other vehicles to give way and is consequently more
aggressive.

Figure 4.9 – Effect of the right of way.

(dx, dy). This destination feature could also be used for other traffic participants to encode
blinker information when available. This should result in a more efficient and generic policy.

Chapter conclusion

In this chapter, we showed that the list of features representation, commonly used to describe
vehicles in autonomous driving literature, is not tailored for use in a function approximation
setting, in particular with neural networks. These concerns can be addressed by the spatial
grid representation, but at the price of an increased input size and loss of accuracy. In contrast,
we proposed an attention-based neural network architecture to tackle the aforementioned
issues of the list of features representation without compromising either size or accuracy. This
architecture enjoys a better performance on a simulated negotiation and intersection crossing
task, and is also more interpretable thanks to the visualisation of the attention matrix. The
resulting policy successfully learns to recognise and exploit the interaction patterns that govern
the nearby traffic.

Let us back up a moment and reflect again on the behaviours exhibited by Figure 4.4.
Though Ego-Attention performs better than CNN/Grid, it also has shorter episodes, which
means it collides more often with other vehicles. Though this aggressive behaviour is deemed
better by our choice of reward function, it may not be desirable in practice. A straightforward
way to make the optimal policy more conservative is to manually tune the reward function

56

4.3 Experiments

and increase the weight of collisions. However, setting too high a penalty may also result in
overly cautious behaviours. Finding the sweet spot between these two extremes can be difficult
and demanding since changing the reward requires retraining the policy entirely. In the next
chapter, we study a way to learn not a single policy but rather a whole range of policies that
exhibit different levels of risk.

57

Chapter 5

Acting under Adjustable Constraints

If you can meet with Triumph and Disaster
And treat those two impostors just the same;
. .
If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss

Rudyard Kipling, If–.

When we drive, we must comply with two contradictory objectives: efficiency and safety. In
this chapter, we strive to reconcile them by formalising a first notion of risk. We consider
BMDPs, in which risk is implemented as a cost signal constrained to lie below an adjustable
threshold. The latter provides the system manufacturer with a slider allowing them to adjust
in real-time the level of risk taken by the vehicle. So far, BMDPs could only be solved in the
case of known dynamics and finite state spaces, which is not suitable for our application which
features continuous kinematic states and unknown human behaviours. This chapter extends
the state-of-the-art to continuous spaces and unknown dynamics. Our approach is motivated
by the prospect of training a risk-sensitive driving policy for a two-way road, where overtaking
a vehicle requires driving on the wrong lane.1

Contents
5.1 Motivation . 60
5.2 Budgeted dynamic programming . 62
5.3 Budgeted reinforcement learning . 67
5.4 Experiments . 71

1This chapter is based on an article published in the proceedings of the 32nd conference on advances in Neural
Information Processing Systems (NeurIPS) (Carrara, Leurent, et al., 2019). It is joint work with Nicolas Carrara, who
came up with the algorithm and carried-out the dialogue experiment. I did most of the theoretical analysis, the
driving experiment; and we worked together on the exploration procedure and scaling-up the implementation.

59

https://eleurent.github.io/sisyphe/texts/if-.html

Acting under Adjustable Constraints

5.1 Motivation

As stated in Chapter 1, Reinforcement Learning is a general framework for decision-making
under uncertainty. Formally, we seek a policy π ∈M(A)S that maximises in expectation the
γ-discounted return of rewards Gπ =

∑∞
t=0 γ

tR(st, at).
However, this modelling assumption comes at a price: no control is given over the spread

of the performance distribution (Dann et al., 2019). In many critical real-world applications,
including Autonomous Driving, failures may turn out very costly. This is an issue as most
decision-makers would rather give away some amount of expected optimality to increase the
performances in the lower-tail of the distribution. As discussed in Chapter 2, this has led to
the development of several risk-averse variants where the optimisation criteria include other
statistics of the performance, such as the worst-case realisation (Iyengar, 2005; Nilim and
El Ghaoui, 2005; Wiesemann, Kuhn, and Rustem, 2013), the variance-penalised expectation
(Tamar, Di Castro, and Mannor, 2012; García, Fern, and Fernández, 2015), the Value at Risk
(Mausser and Rosen, 1999; Luenberger, 2013), or the Conditional Value at Risk (Chow, Tamar,
et al., 2015; Chow, Ghavamzadeh, et al., 2017).

Reinforcement Learning also assumes that the performance can be described by a single
reward function R. Conversely, real problems typically involve many aspects, some of which
can be contradictory (C. Liu, X. Xu, and Hu, 2014). In our case, a self-driving car needs to
balance between progressing quickly on the road and avoiding collisions. In Multi-Objective
Reinforcement Learning (MORL), each of these aspects is independentlymodelled by a separate
reward signal. Then, the set of policies is partitioned into (i) the class of dominated policies
π, for which there exists an improvement, i.e. another policy π′ with at least some objectives
increased, and none decreased; (ii) the Pareto front Π⋆, of undominated policies, illustrated in
Figure 5.1.

A standard way to cast a MOMDP into an MDP is to aggregate several objectives in a single
reward function (Roijers et al., 2013). However, this does not allow to explicitly control the
trade-off between the different objectives, since higher rewards can compensate for higher
penalties. For instance, if a weighted sum is used to balance velocity v and crashes c, then for any
given choice of weights ω the optimality equation ωv E[

∑
γtvt] +ωa E[

∑
γtct] = G⋆ = maxπ Gπ

is the equation of a line in (E[
∑
γtvt],E[

∑
γtct]), and the automotive company cannot control

where its optimal policy π⋆ lies on that line.
Both of these concerns are addressed in the Constrained Markov Decision Process (CMDP)

setting (Beutler and K. W. Ross, 1985; Altman, 1999), illustrated in Figure 5.2a. In this multi-
objective formulation, task completion and safety are considered separately. We equip the
MDP with a cost signal C ∈ RS×A and a cost budget β ∈ R. Similarly to Gπ, we define the

60

5.1 Motivation

T
as

k
 C

o
m

p
le

ti
o

n
G
π
=
∑
γ
t R

(s
t,
a
t)

Pareto front Π⋆

Risk Gc
π=∑γtC(st, at)

π⋆

Figure 5.1 – A Multi-Objective Markov Decision Process (MOMDP) with two objectives: the rewards R
must be maximised, while the costs C must be minimised. The policies are partitioned into dominated
policies, shown in light shades of green, and the Pareto front Π⋆, shown in dark green. Cautious policies
with low efficiency and risk are located on the bottom-left, while aggressive policies with high efficiency
and risk are on the top-right.

return of costs Gπ
c =

∑∞
t=0 γ

tC(st, at) and the new cost-constrained objective:

max
π∈M(A)S

E[Gπ|s0 = s] s.t. E[Gπ
c |s0 = s] ≤ β (5.1)

This constrained framework allows for better control of the performance-safety trade-off. How-
ever, it suffers from a major limitation: the budget has to be chosen before training, and cannot
be changed afterwards.

To tackle this issue, the Budgeted Markov Decision Process (BMDP) was introduced in
(Boutilier and T. Lu, 2016) as an extension of CMDPs to enable the online control over the
budget β within a closed interval B ⊂ R of admissible budgets. Instead of fixing the budget
prior to training, the objective is now to find a generic optimal policy π⋆ that takes β as input
so as to solve the corresponding CMDP (5.1) for all budgets β ∈ B. This gives the system
designer the ability to move in real-time the optimal policy π⋆ along the Pareto front of the
different reward-cost trade-offs, as shown in Figure 5.2b.

In the seminal work of Boutilier and T. Lu (2016), BMDPs were originally studied in the
context of finite states S , finite horizon, and known BMDP parameters. Our first contribution is
to re-frame the BMDP formulation in the context of continuous states and infinite discounted
horizon. We then propose a novel Budgeted BellmanOptimalityOperator and prove the optimal
value function to be a fixed point of this operator. Second, we use this operator in Budgeted
Fitted Q-Learning (BFTQ), a batch RL algorithm, for solving BMDPs online, without prior
knowledge of the (P ,R,C) parameters, by interacting with an environment. Third, we scale

61

Acting under Adjustable Constraints
T

as
k

 C
o
m

p
le

ti
o
n
G
π
=
∑
γ
t R

(s
t,
a
t)

Risk Gc
π=∑γtC(st, at)

π⋆

β

Pareto front Π⋆

(a) In a CMDP, we learn a single policy π⋆ (blue dot •)
with a fixed expected risk β ∈ B

T
as

k
 C

o
m

p
le

ti
o
n
G
π
=
∑
γ
t R

(s
t,
a
t)

Risk Gc
π=∑γtC(st, at)

π⋆

β

Pareto front Π⋆

(b) In a BMDP, we learn a set Π⋆ of policies called the
Pareto front (blue frontier –), for the whole range B of
allowed risks

Figure 5.2 – Comparison between the CMDP and BMDP frameworks.

this algorithm to large problems by (i) providing an efficient implementation of the Budgeted
Bellman Optimality operator based on convex programming, (ii) a tailored risk-sensitive
exploration procedure, and (iii) leveraging tools from Deep Reinforcement Learning such as
Neural Networks for function approximation and synchronous parallel computing. Finally, we
validate our approach in two environments that display a clear trade-off between rewards and
costs: a dialogue system example, and a behavioural planning problem for overtaking on a
two-way road.

5.2 Budgeted dynamic programming

We work in the space of budgeted policies, where π both depends on β and also outputs the
next budget βa. Hence, the budget β is neither fixed nor constant as in the CMDP setting but
instead evolves as part of the dynamics.

We cast the BMDP problem as a MOMDP problem (Roijers et al., 2013) by considering
augmented state and action spaces S = S × B and A = A × B, and equip them with the
augmented dynamics P ∈M(S)S×A defined as:

P
(
s′ ∣∣ s, a) = P

(
(s′, β′)

∣∣ (s, β), (a, βa)
)

=∆ P (s′|s, a)δ(β′ − βa), (5.2)

where δ is the Dirac indicator distribution.
In other words, in these augmented dynamics, the output budget βa returned at time t by a

budgeted policy π ∈ Π =M(A)S will be used to condition the policy at the next timestep t+ 1.
We stack the rewards and cost functions in a single vectorial signal R ∈ (R2)S×A:

62

5.2 Budgeted dynamic programming

Definition 5.1. Given an augmented transition (s, a) = ((s, β), (a, βa)), we define

R(s, a) =∆
[
R(s, a)
C(s, a)

]
∈ R2. (5.3)

Likewise, we augment the return:

Definition 5.2. The return Gπ = (Gπ, Gπc) of a budgeted policy π ∈ Π refers to

G
π =∆

∞∑
t=0

γtR(st, at). (5.4)

as well as the value functions:

Definition 5.3. The value functions V π, Qπ of a budgeted policy π ∈ Π are defined as

V
π(s) = (V π

r , V
π
c) =∆ E

[
G
π
∣∣∣ s0 = s

]
Q
π(s, a) = (Qπr , Qπc) =∆ E

[
G
π
∣∣∣ s0 = s, a0 = a

]
.

(5.5)

We restrict S to feasible budgets only: Sf =∆ {(s, β) ∈ S : ∃π ∈ Π, V π
c (s) ≤ β} that we

assume to be non-empty for the BMDP to admit a solution. We still write S in place of Sf for
brevity of notations.

Proposition 5.4 (Budgeted Bellman Expectation). The value functions V π and Qπ verify:

V
π(s) =

∑
a∈A

π(a|s)Qπ(s, a) Q
π(s, a) = R(s, a) + γ

∑
s′∈S

P
(
s′ ∣∣ s, a)V π(s′). (5.6)

Moreover, consider the Budgeted Bellman Evaluation operator T π: ∀Q ∈ (R2)SA, s ∈ S, a ∈ A,

T πQ(s, a) =∆ R(s, a) + γ
∑
s′∈S

∑
a′∈A

P (s′|s, a)π(a′|s′)Q(s′, a′). (5.7)

Then T π is a γ-contraction and Qπ is its unique fixed point.

63

Acting under Adjustable Constraints

Proof. We provide the proof in Section B.1.1.

We now come to the definition of budgeted optimality. We want an optimal budgeted
policy to: (i) respect the cost budget β; (ii) maximise the γ-discounted return of rewards G;
(iii) in case of tie, minimise the γ-discounted return of costs Gc.

Definition 5.5 (Budgeted Optimality). To that end, we define for all s ∈ S,
(i) admissible policies Πa as

Πa(s) =∆ {π ∈ Π : V π
c (s) ≤ β} where s = (s, β); (5.8)

(ii) the optimal value function for rewards V ⋆
r and candidate policies Πr as

V ⋆
r (s) =∆ maxπ∈Πa(s)V

π
r (s) Πr(s) =∆ arg maxπ∈Πa(s)V

π
r (s); (5.9)

(iii) the optimal value function for costs V ⋆
c and optimal policies Π⋆ as

V ⋆
c (s) =∆ minπ∈Πr(s)V

π
c (s), Π⋆(s) =∆ arg minπ∈Πr(s)V

π
c (s). (5.10)

We define the budgeted action-value function Q⋆ similarly as

Q⋆r(s, a) =∆ max
π∈Πa(s)

Qπr (s, a) Q⋆c(s, a) =∆ min
π∈Πr(s)

Qπc (s, a), (5.11)

and denote V ⋆ = (V ⋆
r , V

⋆
c), Q⋆ = (Q⋆r , Q⋆c).

Figure 5.3 – On the left hand side, a simple risky-vs-safe BMDP. The probability of picking the risky
action is π1. On the right hand side an attempt to relax the problem with negative rewards.

Contrary to MDPs which always admit a deterministic optimal policy, this is generally
not the case in a CMDP, and a fortiori in a BMDP. To illustrate this fact, let us consider the
trivial BMDP on the left of Figure 5.3. In this example we have Gπ = 10π1 and Gπc = π1. The

64

5.2 Budgeted dynamic programming

deterministic policy consisting in always picking the safe action is feasible for any β ≥ 0. But if
β = 1/2, the most rewarding feasible policy is to randomly pick the safe and risky actions with
equal probabilities. If we attempt to cast this BMDP into an MDP by replacing the costs by
negative rewards, the corresponding greedy policy will be deterministic, hence sub-optimal.

However, the optimal value functionQ⋆ in a BMDP can still be characterised by a fixed-point
equation, similarly to Theorem 4.2 for MDPs.

Theorem 5.6 (Budgeted Bellman Optimality). The optimal budgeted action-value function Q⋆

verifies

Q
⋆(s, a) = T ⋆Q⋆(s, a) =∆ R(s, a) + γ

∑
s′∈S

P (s′|s, a)
∑
a′∈A

πgreedy(a′|s′;Q⋆)Q⋆(s′, a′), (5.12)

where the greedy policy πgreedy is defined by: ∀s = (s, β) ∈ S, a ∈ A, ∀Q ∈ (R2)A×S ,

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQ

r

E
a∼ρ

Qc(s, a), (5.13a)

where ΠQ
r =∆ arg max

ρ∈M(A)
E
a∼ρ

Qr(s, a) (5.13b)

s.t. E
a∼ρ

Qc(s, a) ≤ β. (5.13c)

Proof. We provide the proof in Section B.1.2.

Remark 5.7 (Appearance of the greedy policy). In classical Reinforcement Learning,
the greedy policy takes a simple form πgreedy(s;Q⋆) = arg maxa∈AQ

⋆(s, a), and the term
πgreedy(a′|s′;Q⋆)Q⋆(s′, a′) in (5.12) conveniently simplifies to maxa′∈AQ

⋆(s′, a′). Unfortunately,
in a budgeted setting the greedy policy requires solving the nested constrained optimisation program
(5.13) at each state and budget in order to apply this Budgeted Bellman Optimality operator.

Proposition 5.8 (Optimality of the greedy policy). The greedy policy πgreedy(· ;Q⋆) is uniformly
optimal:

for all s ∈ S, πgreedy(· ;Q⋆) ∈ Π⋆(s).

In particular,
V
πgreedy(·;Q

⋆) = V
⋆ and Qπgreedy(·;Q

⋆) = Q
⋆
.

65

Acting under Adjustable Constraints

Proof. We provide the proof in Section B.1.3.

Algorithm 5.1: Budgeted Value Iteration
1 Data: P,Rr, Rc
2 Result: Q⋆
3 Q0 ← 0
4 repeat
5 Qk+1 ← T Qk
6 until convergence (∥Qk+1 −Qk∥∞ ≤ ε)

Budgeted Value Iteration The Budgeted Bellman Optimality equation is a fixed-point equa-
tion, which motivates the introduction of a fixed-point iteration procedure. We introduce
Algorithm 5.1, a Dynamic Programming algorithm for solving known BMDPs. If it were to
converge to a unique fixed point, this algorithm would provide a way to compute Q⋆ and
recover the associated optimal budgeted policy πgreedy(· ;Q⋆).

Theorem 5.9 (Non-contractivity of T ⋆). For any BMDP (S,A, P,R,C, γ) with |A| ≥ 2, T ⋆

is not a contraction. Precisely,

∀ε > 0,∃Q1
, Q

2 ∈ (R2)SA : ∥T Q1 − T Q2∥∞ ≥
1
ε
∥Q1 −Q2∥∞.

Proof. We provide the proof in Section B.1.4.

Unfortunately, as T ⋆ is not a contraction, we can guarantee neither the convergence of
Algorithm 5.1 nor the unicity of its fixed points. Despite those theoretical limitations, we
empirically observed the convergence to a fixed point in our experiments (Section 5.4). We
provide a possible explanation:

Theorem 5.10 (Contractivity of T on smooth Q-functions). The operator T ⋆ is a contraction
when restricted to the subset Lγ of Q-functions such that “Qr is Lipschitz with respect to Qc”:

Lγ =
{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr(s, a1)−Qr(s, a2)| ≤ L|Qc(s, a1)−Qc(s, a2)|

}
, (5.14)

∀Q1
, Q

2 ∈ Lγ , ∥T Q
1 − T Q2∥∞ < ∥Q1 −Q2∥∞.

66

5.3 Budgeted reinforcement learning

Proof. We provide the proof in Section B.1.5.

Thus, we expect that Algorithm 5.1 is likely to converge when Q⋆ is smooth, but could
diverge if the slope of Q⋆ is too high. L2-regularisation can be used to encourage smoothness
and mitigate the risk of divergence.

5.3 Budgeted reinforcement learning

In this section, we consider BMDPswith unknownparameters thatmust be solved by interaction
with an environment.

5.3.1 Budgeted Fitted-Q

When the BMDP is unknown, we need to adapt Algorithm 5.1 to work with a batch of samples
D = {(st, at, rt, s′

t)}t∈[1,N] collected by interaction with the environment. Applying T ⋆ in (5.12)
would require computing an expectation Es′∼P over next states s′ and hence an access to the
model P . We instead use T̂ ⋆, a sampling operator, in which this expectation is replaced by

T̂ ⋆Q(s, a, r, s′) =∆ r + γ
∑
a′∈A

πgreedy(a′|s′;Q)Q(s′, a′).

We introduce in Algorithm 5.2 the BFTQ algorithm, an extension of the Fitted Q-Learning
(FTQ) algorithm adapted to solve unknown BMDPs. Because we work with continuous state
space S and budget space B, we need to employ function-approximation in order to generalise
to nearby states and budgets. Precisely, given a parametrized model Qθ, we seek to minimise a
regression loss L(Qθ, Qtarget;D) =

∑
D ∥Qθ(s, a)−Qtarget(s, a, r, s′)∥22. Any model can be used,

such as linear models, regression trees, or Neural Networks.

Algorithm 5.2: Budgeted Fitted-Q
1 Data: D
2 Result: Q⋆
3 Qθ0 ← 0
4 repeat
5 θk+1 ← arg minθ L(Qθ, T̂ Qθk

;D)
6 until convergence (∥Qθk+1 −Qθk

∥∞ ≤ ε)

67

Acting under Adjustable Constraints

5.3.2 Risk-sensitive exploration

In order to run Algorithm 5.2, we must first gather a batch of samplesD. The following strategy
is motivated by the intuition that a wide variety of risk levels needs to be experienced during
training, which can be achieved by enforcing the risk constraints during data collection. Ideally,
we would need samples from the asymptotic state-budget distribution limt→∞ P (st) induced
by an optimal policy π⋆ given an initial distribution P (s0), but as we are actually building this
policy, it is not possible. Following the same idea of ε-greedy exploration for FTQ, we introduce
an algorithm for risk-sensitive exploration. We follow an exploration policy: a mixture between
a random budgeted policy πrand and the current greedy policy πgreedy. The batch D is split into
several minibatches generated sequentially, and πgreedy is updated by running Algorithm 5.2 on
D uponmini-batch completion. πrand is designed to obtain trajectories that only explore feasible
budgets: we impose that the joint distribution P (a, βa|s, β) verifies E[βa] ≤ β. This condition
defines a probability simplex ∆A from which we sample uniformly. Finally, when interacting
with an environment, the initial state s0 is usually sampled from a starting distribution P (s0).
In the budgeted setting, we also need to sample the initial budget β0. Importantly, we pick a
uniform distribution P (β0) = U(B) so that the entire range of risk-level is explored, and not
only reward-seeking behaviours as would be the case with a traditional risk-neutral ε-greedy
strategy. The pseudo-code of our exploration procedure is shown in Algorithm 5.3.

Algorithm 5.3: Risk-sensitive exploration
1 Data: An environment, a BFTQ solver,W CPU workers
2 Result: A batch of transitions D
3 D ← ∅
4 for each intermediate batch do
5 split episodes betweenW workers
6 for each episode in batch do // run this loop on each worker in parallel
7 sample initial budget β ∼ U(B)
8 while episode not done do
9 update ε from schedule
10 sample z ∼ U([0, 1])
11 if z < ε then sample (a, βa) ∼ U(∆AB) // Explore
12 else sample (a, βa) ∼ πgreedy(a, βa|s, β;Q⋆) // Exploit
13 append transition (s, β, a, βa, R, C, s′) to batch D
14 step episode budget β ← βa

15 πgreedy(·; Q⋆)← BFTQ(D)
16 return the batch of transitions D

In the following, we introduce an implementation of the BFTQ algorithm designed to operate
efficiently and handle large batches of experiences D.

68

5.3 Budgeted reinforcement learning

5.3.3 How to compute the greedy policy?

As stated in Remark 5.7, computing the greedy policy πgreedy in (5.12) is not trivial since it
requires solving the nested constrained optimisation program (5.13). However, it can be solved
efficiently by exploiting the structure of the set of solutions with respect to β, that is, concave
and increasing.

Proposition 5.11 (Equality of πgreedy and πhull). The greedy policy πgreedy is equal to a convex-
hull policy πhull defined in Algorithm 5.4:

πgreedy(a|s;Q) = πhull(a|s;Q).

Thus, Algorithm 5.1 and Algorithm 5.2 can be run by replacing πgreedy in the equation (5.12) of T
with πhull.

Proof. We provide the proof in Section B.1.6.

Algorithm 5.4: Convex hull policy πhull(a|s;Q)
1 Data: s = (s, β), Q
2 Q+ ← {Qc > min{Qc(s, a) s.t. a ∈ arg maxaQr(s, a)}} // dominated points
3 F ← top frontier of convex_hull(Q(s,A) \Q+) // candidate mixtures
4 FQ ← F ∩Q(s,A)
5 for points q = Q(s, a) ∈ FQ in clockwise order do
6 if find two successive points ((q1

c , q
1
r), (q2

c , q
2
r)) of FQ such that q1

c ≤ β < q2
c then

7 p← (β − q1
c)/(q2

c − q1
c)

8 return the mixture (1− p)δ(a− a1) + pδ(a− a2)
9 else return δ(a− arg maxaQr(s, a)) // budget β always respected

The computation of πhull in Algorithm 5.4 is illustrated in Figure 5.4: first we get rid of
dominated points. Then we compute the top frontier of the convex hull of the Q-function.
Next, we find the two closest augmented actions a1 and a2 with cost-value Qc surrounding β:
Qc(s, a1) ≤ β < Qc(s, a2). Finally, we mix the two actions such that the expected spent budget
is equal to β. Because of the concavity of the convex hull top frontier, any other combination of
augmented actions would lead to a lower expected reward Qr.

5.3.4 Function approximation

Neural Networks are well suited to modelQ-functions, as is done in the DQN algorithm (Mnih
et al., 2015). We approximate Q = (Qr, Qc) using one single Neural Network, as illustrated in

69

Acting under Adjustable Constraints

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯

�
⎯ ⎯⎯

2

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯

�
⎯ ⎯⎯

1

�

��

��

�
+

 �

(,)�
⎯ ⎯⎯⎯⎯

�
⎯⎯⎯


⎯ ⎯⎯⎯⎯

Figure 5.4 – Representation of πhull. When the budget lies between Q(s, a1) and Q(s, a2), two points of
the top frontier of the convex hull, then the policy is a mixture of these two points.

Figure 5.5. Thus, the two components are optimised jointly, which accelerates convergence and
fosters the learning of useful shared representations. Moreover, as in (Mnih et al., 2015), we are
dealing with a finite (categorical) action space A. Instead of including the action in the input,
we add an output to the Q-function for each action. Again, it provides a faster convergence
toward useful shared representations and it only requires one forward pass to evaluate all
action values. Finally, beside the state s there is one more input to a budgeted Q-function: the
budget βa. This budget is a scalar value whereas the state s is a vector of potentially large size.
To avoid a weak influence of the budget βa compared to the state s in the prediction, we include
an additional encoder for the budget, whose width and depth may depend on the application.
A straightforward choice is a single layer with the same width as the state.

5.3.5 Parallel computing

In a simulated environment, a first process that can be distributed is the collection of transitions
in the exploration procedure of Algorithm 5.3, as πgreedy stays constant within each minibatch
which avoids the need of synchronisation betweenworkers. Second, themain bottleneck of BFTQ
is the computation of the target T Q. Indeed, when computing πhull we must perform at each
epoch a Graham-scan of complexity O(|A||B̃| log |A||B̃|) per transition in D to compute the
convex hulls ofQ (where B̃ is a finite discretisation of B). The resulting total time-complexity2
is O(|

D ||A||B̃| logγ(ε(1− γ)) log |A||B̃|). This operation can easily be distributed over several
CPUs provided that we first evaluate the model Q(s′,A× B̃) for each state s extracted from
the dataset D, which can be done in a single forward pass. By using multiprocessing in

2logγ(ε(1 − γ)) is the sample complexity of Value Iteration with accuracy ε, and each of these iterations requires
a Graham-scan for each state in the dataset D, action a ∈ A and budget β ∈ B̃.

70

5.4 Experiments

s0

s1

βa

Qr(a0)

Qr(a1)

Qc(a0)

Qc(a1)

(s, βa)

Encoder

Hidden
Layer 1

Hidden
Layer 2 Q

Figure 5.5 – Neural Network for Q-functions approximation when S = R2 and |A| = 2.

the computations of πhull, we enjoy a linear speedup. The full description of our scalable
implementation of BFTQ is recalled in Algorithm 5.5.

5.4 Experiments

There are two hypotheses we want to validate.

Exploration strategies We claimed in Section 5.3.2 that a risk-sensitive exploration was re-
quired in the setting of BMDPs. We test this hypothesis by confronting our strategy to a classical
risk-neutral strategy. The latter is chosen to be a ε-greedy policy slowly transitioning from
a random to a greedy policy3 that aims to maximise Eπ Gπ regardless of Eπ Gπc . The quality
of the resulting batch D is assessed by training a BFTQ policy and comparing the resulting
performance.

Budgeted algorithms We compare our BFTQ algorithm to an FTQ(λ) baseline. This baseline
consists in approximating the BMDP by a finite set of CMDPs problems. We solve each of
these CMDP using the standard technique of Lagrangian Relaxation: the cost constraint is
converted into a soft penalty weighted by a Lagrangian multiplier λ in a surrogate reward
function: maxπ Eπ[Gπ − λGπc]. As shown in Figure 5.6, the optimal deterministic policy can be
obtained by a line-search on the Lagrange multiplier values λ. Then, according to Beutler and
K.W. Ross (1985, Theorem 4.4), the optimal policy is a randomisedmixture of two deterministic
policies: the safest deterministic policy that violates the constraint πλ− and the most risky
feasible policy πλ+. The resulting MDPs can be solved by any RL algorithm, and we chose

3We train this greedy policy using FTQ.

71

Acting under Adjustable Constraints

Algorithm 5.5: A scalable implementation of BFTQ

1 Data: D, B̃ a finite subset of B, γ, a model Q ∈ (R2)SA, a regression algorithm fit, a set
of CPU workersW

2 Result: Q⋆
3 Q← 0
4 X ← {si, ai, βai}i∈[0,|D|]
5 S′ ← {s′

i}i∈[0,|D|]
6 repeat
7 Evaluate Q(S′,A, B̃) in a single forward pass
8 Split D among workers: D = ∪w∈WDw
9 for w ∈W do // Run in parallel
10 for (·, ·, βai , Rri, Rci, s

′
i) ∈ D do

11 P ← {(Qc(s′
i,A, B̃), Qr(s′

i,A, B̃))}
12 P.prune() // Remove all dominated points
13 H ← convex_hull(P).vertices() // in cw order
14 k ← min{k : βi ≥ qc with (qc, qr) = H[k]}
15 q2

c , q
2
r , q

1
c , q

1
r ← H[k],H[k − 1]

16 p← (βai − q1
a)/(q2

c − q1
c)

17 Y w,i
c ← Rci + γ((1− p)q1

c + pq2
c)

18 Y w,i
r ← Rri + γ((1− p)q1

r + pq2
r)

19 Join the results: Y ← ∪w∈W (Y w
c , Y

w
r)

20 Q← fit(X,Y)
21 until convergence

72

5.4 Experiments

0

0.2

0.4

0.6

0.8

1

1 10 1000 10000

stddev

cost-calibration

Figure 5.6 – Calibration of a penalty multiplier according to the budget β. The optimal multiplier λ⋆
avg is

the smallest one to satisfy the budget constraint on average. Safer policies can also be selected according
to the largest deviation from this mean cost.

FTQ for being closest to BFTQ. In our experiments, a single training of BFTQ corresponds to 10
training runs for FTQ(λ) policies. Each run was repeated Nseeds times. Given the high variance,
it requires a lot of simulations to get a proper estimate of the calibration curve. Our purpose is
to avoid this calibration phase.

5.4.1 Environments

We evaluate our method on three different environments involving reward-cost trade-offs.

Corridors This simple environment is only meant to highlight clearly the specificity of ex-
ploration in a budgeted setting. It is a continuous gridworld with Gaussian perturbations,
consisting in a maze composed of two corridors: a risky one with high rewards and costs, and a
safe one with low rewards and no cost. In both corridors, the outermost cell is the one yielding
the most reward, which motivates an in-depth exploration.

Parameter Description Value
- Size of the environment 7 x 6
- Standard deviation of the Gaussian

noise applied to actions (0.25,0.25)
H Trajectory duration 9

Table 5.1 – Parameters of Corridors

73

Acting under Adjustable Constraints

Spoken dialogue system Our second application is a dialogue-based slot-filling simulation
that has already benefited from batch RL optimisation in the past (L. Li, Williams, and S.
Balakrishnan, 2009; Chandramohan, Geist, and Pietquin, 2010; Pietquin et al., 2011). The
system fills in a form of slot-values by interacting a user through speech, before sending them
a response. For example, in a restaurant reservation domain, it may ask for three slots: the area
of the restaurant, the price range and the food type. The user could respectively provide those
three slot-values : Cambridge, Cheap and Indian-food. In this application, we do not focus on
how to extract such information from the user utterances; but rather on the decision-making
for filling in the form. To that end, the system can choose among a set of generic actions. As in
(Carrara, Laroche, et al., 2018), there are two ways of asking for a slot value: a slot value can be
either be provided with an utterance, which may cause speech recognition errors with some
probability, or by requiring the user to fill in the slots by using a numeric pad. In this case,
there are no recognition errors but a counterpart risk of hang-up: we assume that manually
filling a key-value form is time-consuming and annoying. The environment yields a reward if
all slots are filled without errors, and a constraint if the user hang-ups. Thus, there is a clear
trade-off between using utterances and potentially committing a mistake, or using the numeric
pad and risking a premature hang-up.

Parameter Description Value
ξ Sentence Error Rate 0.6
µ⊥ Gaussian mean for misunderstanding -0.25
µ⊤ Gaussian mean for understanding 0.25
σ Gaussian standard deviation 0.6
p Probability of hang up 0.25
H Trajectory duration 10
- Number of slots 3

Table 5.2 – Parameters of Slot-Filling

Two-way road In our third application, we use the highway-env environment presented in
Chapters A and 3. We define a task that displays a clear trade-off between safety and efficiency,
illustrated in Figure 5.7. As we mentioned, the agent controls a vehicle with a finite set A
of manoeuvres (3.2) implemented by low-level controllers. It is driving on a two-way road
populatedwith other traffic participants: the vehicles in front of the agent drive slowly, and there
are incoming vehicles on the opposite lane. The parameters controlling their behaviours are
randomised, which introduces some uncertainty concerning their possible future trajectories.
The task consists in driving as fast as possible, which is modelled by a reward proportional
to the velocity: R(st, at) ∝ vt. This motivates the agent to try and overtake its preceding
vehicles by driving fast on the opposite lane. This optimal but overly aggressive behaviour can
be tempered through a cost function that embodies a safety objective: C(st, at) is set to 1/H

74

5.4 Experiments

Figure 5.7 – The two-way road environment requires the vehicle to drive in the wrong lane and risk
front collisions in order to overtake slow vehicles.

whenever the ego-vehicle is driving on the opposite lane, where H is the trajectory horizon.
Thus, the constrained signal Gc is the maximum proportion of time that the agent is allowed to
drive on the wrong side of the road.

Parameter Description Value
Nv Number of other vehicles 2 - 6
σp Standard deviation of vehicles initial positions 100m
σv Standard deviation of vehicles initial velocities 3m s−1

H Trajectory duration 15 s

Table 5.3 – Parameters of highway-env

5.4.2 Results

In the following figures, each patch represents the mean and 95% confidence interval over
Nseeds seeds of the means of (Gπ, Gπc) ((Gπ, Gπc) for BFTQ) over Ntrajs trajectories. That way, we
display the variation related to learning (and batches) rather than the variation in the execution
of the policies.

We first bring to light the role of risk-sensitive exploration in the corridors environment.
Figure 5.8a shows how the two strategies behave in the corridor environment: the risk-neutral
procedure focuses on high-reward corridor only, while the risk-sensitive procedure also explores
low-risk trajectories. Videos showing the data collection process are available4. In Figure 5.8b,
we observe that this better distributed exploration translates as a uniformly better performance
across the range B of risk budgets. When the budget is low, the corresponding optimal
budgeted policy π⋆ takes the safest path on the left. When the budget increases, it gradually
switches to the other lane, earning higher rewards but also costs. This gradual process could

4https://budgeted-rl.github.io/#risk-sensitive-exploration

75

https://budgeted-rl.github.io/#risk-sensitive-exploration

Acting under Adjustable Constraints

not be achieved with a deterministic policy as it would choose either one path or the other.
Videos illustrating these optimal policies for different level of risks are available 5.

BFTQ(risk-sensitive) BFTQ(risk-neutral)

(a) State occupations for the two strategies. Left: in
the risk-sensitive batch, trajectories are well-distributed
among both corridors. Right: conversely, in the risk-
neutral batch, trajectories focus on the risky corridor (to
the right) only and ignore the safe corridor (to the left).

Gπ

r

Gπ

c

(b) Performances of the optimal budgeted policy π⋆

trained on batches of transitions obtained by following
a risk-neutral and a risk-sensitive exploration. The risk-
sensitive procedure attains a better performance across
the whole spectrum of risk budgets.

Figure 5.8 – Comparison of two exploration strategies in the corridors environment.

Gπ

r

Gπ

c

Gπ

r

Gπ

c

Figure 5.9 – Performance comparison of FTQ(λ) and BFTQ on slot-filling (left) and highway-env(right)

In a second experiment displayed in Figure 5.9, we compare the performance of FTQ(λ) to
that of BFTQ in the dialogue and autonomous driving tasks. For each algorithm, we plot the
reward-cost trade-off curve. In both cases, BFTQ performs almost as well as FTQ(λ) despite only
requiring a single model. All budgets are well-respected on slot-filling, but on highway-env
we can observe an underestimation of Qc, since e.g. E[Gc|β = 0] ≃ 0.1. This underestimation
can be a consequence of two approximations: the use of the sampling operator T̂ instead of

5https://budgeted-rl.github.io/#optimal-budgeted-policies-learnt-with-a-risk-sensitive-exploration

76

https://budgeted-rl.github.io/#optimal-budgeted-policies-learnt-with-a-risk-sensitive-exploration

5.4 Experiments

the true population operator T , and the use of the neural network function approximation Qθ
instead ofQ. Still, BFTQ provides better control over the expected cost of the policy, than FTQ(λ).
Besides, BFTQ behaves more consistently than FTQ(λ) overall, as shown by its lower extra-seed
variance. Qualitatively, the budgeted agents display a variety of behaviours, shown in several
videos6. When β = 1, the ego-vehicle drives in a very aggressive style: it immediately switches
to the opposite lane and drives as fast as possible to pass slower vehicles, swiftly changing
lanes to avoid incoming traffic. On the contrary, when β = 0, the ego-vehicle is conservative: it
stays on its lane and drives at a low velocity. With intermediate budgets such as β = 0.2, the
agent sometimes decides to overtake its front vehicle but promptly steers back to its original
lane afterwards.

Discussion

Algorithm 5.2 is an algorithm for solving large unknown BMDPs with continuous states. To
the best of our knowledge, no algorithm in the current literature combines all those features.

Algorithms have been proposed for CMDPs, which are less flexible sub-problems of the
more general BMDP. When the environment parameters (P , R, C) are known but not tractable,
solutions relying on function approximation (Undurti, Geramifard, and How, 2011) or ap-
proximate linear programming (Poupart et al., 2015) have been proposed. For unknown
environments, Online algorithms (Geibel and Wysotzki, 2005; Abe et al., 2010; Achiam et al.,
2017; Chow, Ghavamzadeh, et al., 2017) and a batch algorithm (Thomas, Theocharous, and
Ghavamzadeh, 2015; Ghavamzadeh, Petrik, and Chow, 2016; Laroche, Trichelair, and Combes,
2019; Le, Voloshin, and Yue, 2019) can solve large unknown CMDPs. Nevertheless, these
approaches are limited in that the constraints thresholds are fixed before training and cannot
be updated in real-time at policy execution to select the desired level of risk.

Budgeted Markov Decision Processes algorithms To our knowledge, there were only two
ways of solving a BMDP. The first one is to approximate it with a finite set of CMDPs (e.g.
see our FTQ(λ) baseline). As explained on Figure 5.6, the optimal deterministic policy can be
obtained by a line-search on the Lagrange multiplier values λ. Then, according to Beutler and
K.W. Ross (1985, Theorem 4.4), the optimal policy is a randomisedmixture of two deterministic
policies: the safest deterministic policy that violates the constraint πλ− and the riskier of the
feasible ones πλ+. So FTQ can be easily adapted for continuous states CMDP and BMDP through
this methodology, but given the high variance, it requires many simulations to get a proper
estimate of the calibration curve. Our solution not only requires one single model but also
avoids any supplementary interaction.

6https://budgeted-rl.github.io/#driving-styles

77

https://budgeted-rl.github.io/#driving-styles

Acting under Adjustable Constraints

The only other existing BMDP algorithm, and closest work to ours, is the DP algorithm
proposed by Boutilier and T. Lu (2016). However, their work was established for finite state
spaces only, and their solution relies heavily on this property. For instance, they enumerate
and sort the next states s′ ∈ S by their expected value-by-cost, which could not be performed
in a continuous state space S. Moreover, they rely on the knowledge of the model (P , R, C),
and do not address the question of learning from interaction data.

Chapter Conclusion

Budgeted Markov Decision Processes are a principled framework for safe decision making
under uncertainty, which could be beneficial to the diffusion of Reinforcement Learning in
industrial applications. They formulate risk as an expected cumulative cost, which can be
estimated and controlled in a model-free fashion. However, BMDPs could so far only be solved
in finite state spaces which limits their interest for Autonomous Driving applications that
require dealing with continuous variables such as vehicle positions. We extend their scope to
continuous states by introducing a novel Dynamic Programming operator, that we build upon
to propose a Reinforcement Learning algorithm. In order to scale to large problems, we provide
an efficient implementation that exploits the structure of the value function and leverages tools
from Deep Distributed Reinforcement Learning. We show that on two simulated tasks our
solution performs similarly to a baseline Lagrangian relaxation method while only requiring
a single model to train, and relying on an interpretable risk budget β instead of the tedious
tuning of the penalty λ.

78

Part Conclusion
Review of our Requirements

Let us come back to the specifications of desirable properties for a behavioural planning
algorithm, that we advocated in Chapter 1. In Table 5.4, we examine whether these criteria are
met by the methods developed in Part II.

Criterion Description
Social Awareness ✓ In Chapter 4, we introduced an attention-based Neural

Network architecture that explicitly attends to other drivers
in the scene, sorting out irrelevant vehicles from those that
represent a source of danger.

Sample Efficiency ✓ We showed in Figure 4.4a that this architecture also comes
with an inductive bias – permutation invariance – that al-
lows to fasten the training process.

Safety ✓ A first notion of risk was introduced in Chapter 5, in the
shape of a cost signal C(s, a) constrained to remain below
a threshold β, in expectation. This formulation makes it
possible to state safety specifications orthogonal to the tra-
ditional reward maximisation objective.

Balance between safety
and efficiency

✓ The cost budget β can be adjusted in real time as an input
of the budgeted policy π to trade-off safety with efficiency

Table 5.4 – Do the methods of Part II comply with the specifications of Chapter 1?

79

Part III

Model-based

. . . et prévoir en stratège.
René Char, Feuillets d’Hypnos (72).

https://eleurent.github.io/sisyphe/texts/feuillets-d-hypnos.html

Chapter 6

Planning Fast
by Hoping for the Best

Nous voulons, tant ce feu nous brûle le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu’importe ?
Au fond de l’Inconnu pour trouver du nouveau !

Charles Baudelaire, Le Voyage.

This third part studies model-based RL algorithms, that estimate the MDP dynamics P
so as to plan for the corresponding optimal policy. In this chapter, we focus on this planning
step under real-time requirements, which calls for provably and empirically sample-efficient
algorithms. Since our continuous state space S precludes the use of Dynamic Programming,
we consider tree-based planning algorithms. First, to handle uncertain human behaviours
modelled as stochastic dynamics, we consider the OLOP algorithm, highlight its faulty behaviour
and propose a modified version that alleviates this issue. Second, we tackle a paradox: despite
the MDP transitions having a graph structure, MCTS algorithms use a tree structure that
prevents them from merging similar states. We show that doing so with a graph-based planner
better exploits the structure of motion planning problems where trajectories tend to overlap.1

Contents
6.1 Motivation . 84
6.2 Open-loop optimistic planning . 86
6.3 Graph-based optimistic planning . 102

1This chapter is based on two articles published in the 2019 European and 2020 Asian Conferences on Machine
Learning (Leurent and Maillard, 2020b; Leurent and Maillard, 2020a).

83

https://eleurent.github.io/sisyphe/texts/le-voyage.html

Planning Fast by Hoping for the Best

6.1 Motivation

In this chapter, we assume that an estimation oracle provides us with a good estimate of the MDP
(S,A, P,R, γ), and we ponder over the planning problem: how to compute the corresponding
optimal policy π⋆? When state-action spaceS×A is discrete, Dynamic Programming algorithms
such as Value Iteration (Bellman, 2010) and Policy Iteration (Howard, 1960) enable to compute
an ε-optimal policy with a computational complexity of O

(
|S||A| logγ(ε(1− γ))

)
. However,

when S is continuous or large, exact DP is not feasible. Then, a popular solution to this issue is
to perform Approximate Dynamic Programming (ADP), where the value function or policy is
approximated within a given hypothesis class, at the cost of the loss of optimality.

Another option is to resort to sampling-based optimisation. This family of methods does not
require the full knowledge of the MDP parameters, but rather only assume access to a generative
model (e.g. a simulator) which yields samples of the next state s′ ∼ P (s′|s, a) and rewardR(s, a)
when queried. Thus, black-box optimisation algorithms such as Cross Entropy Method (CEM)
or Covariance Matrix Adaptation Evolution Strategy (CMA-ES) can be directly applied
in the space of sequences of actions. When the action space A is discrete2, the sequential
nature of the optimisation problem is better exploited by MCTS algorithms, which leverage
the discrete action branching to build a look-ahead tree rooted at the current state. This online
planning strategy is illustrated in Figure 6.1. At each decision step, a look-ahead tree rooted
at the current state is progressively expanded by sampling trajectories through n calls to the
generative model, before returning a recommendation for the estimated best action ân. The
quality of recommended actions is evaluated by their simple regret

rn(ân) = V ⋆(s)−Q⋆(s, ân).

There are two main frames of analysis for planning algorithms.
• In the fixed-confidence setting, the generative model is called for a random number of

samples n until we can confidently identify a near optimal-action:

P (rn(ân) ≤ ε) ≥ 1− δ.

So-called Probably Approximately Correct (PAC) algorithms verifying this property are
then evaluated by their expected sample complexity E[n].

• In the fixed-budget setting, the generative model can only be called a fixed number of times
n. Fixed-budget algorithms aim at minimising the expected simple regret E[rn].

2This requirement has been circumvented by the work of Coulom (2007a), Chaslot et al. (2008), Wang, Audibert,
and Rémi Munos (2009), Buşoniu, Daniels, et al. (2013), and Buşoniu, Páll, and Rémi Munos (2018)

84

6.1 Motivation

Agent Environment

Planner

state, reward

state

action

recommendation

Figure 6.1 – Online planning with a generative model. The true interaction cycle between the agent and
the environment is depicted in blue. At each step of real interaction, a full planning cycle of simulated
trajectories is run, depicted in green.

In a real-time scenario, decisions need to be taken at a given frequency, even if this means
settling for a suboptimal action. Therefore, we will focus on the fixed-budget setting, whose
bounded computational complexity makes it more appropriate for our application.

MCTS algorithms were a breakthrough for online decision-making in MDPs, that lead to
key successes in the domain, including Computer Go (Coulom, 2007b; Silver, Hubert, et al.,
2018). They enjoy two main benefits: first, they do not require the knowledge of the MDP
parameters contrary to e.g. DP algorithms, but only the access to a generative model that allows
sampling trajectories from the current state. Second, the theoretical performance bounds of
MCTS algorithms are typically independent of the size of the state space S. Instead, they
depend on the maximum depth at which an optimal node in the search tree can be reached
within the allowed budget n of trajectory samples. This translates as an effective branching factor
in the regret bounds, related to the notion of near-optimality dimension in multi-armed bandits.

Related work Algorithms for planning with a generative model date back at least to the
seminal work of Kearns, Mansour, and Ng (2002) who proposed the Sparse Sampling algo-
rithm using a tree structure to represent the value estimate and uniform sampling of trajec-
tories. This strategy was further analysed more recently in (Feldman and Domshlak, 2014),
where the Best Recommendation with Uniform Estimation (BRUE) algorithm provides an

85

Planning Fast by Hoping for the Best

enhanced value estimation. Another family of algorithms rely on the principle of Optimism
in the Face of Uncertainty (OFU) (surveyed by Rémi Munos, 2014), inspired by the Multi-
Armed Bandits (MAB) problem. This principle was first used in the context of planning in
the CrazyStone software (Coulom, 2007b) for computer Go. It was later formalised with
the Upper Confidence bounds applied to Trees (UCT) algorithm (Kocsis and Szepesvári,
2006), but was shown by Coquelin and Rémi Munos (2007) to have a doubly-exponential
complexity in the worst case. The Optimistic Planning of Deterministic Systems (OPD)
algorithm introduced by Hren and Rémi Munos (2008) was the first to provide a polynomial
regret bound, but was limited to systems with deterministic rewards and dynamics. It was
then extended to stochastic rewards and dynamics with the Open-Loop Optimistic Planning
(OLOP) algorithm (Sébastien Bubeck and Rémi Munos, 2010), but only in the open-loop set-
ting of state-independent policies (i.e. sequences of actions), a restriction of the policy class
that causes a loss of optimality. Known stochastic transitions were handled by Buşoniu and
Remi Munos (2012). For MDPs with stochastic and unknown transitions, polynomial sample
complexities have been obtained for Stochastic Optimistic Planning (StOP) (Szörényi,
Kedenburg, and Remi Munos, 2014), TrailBlazer (Grill, Valko, and Remi Munos, 2016) and
SmoothCruiser (Grill, Darwiche Domingues, et al., 2019), but despite their theoretical merits
these algorithms are intractable in practice: StOP requires the expensive storage of policies,
while TrailBlazer and SmoothCruiser only terminate after a prohibitive amount of samples,
even for very small MDPs.

Contributions This chapter focuses on two questions. First, in Section 6.2, we exhibit a faulty
behaviour of the OLOP algorithm when applied to numerical problems, and propose a modified
version that addresses it, leading to improved performance with a retained guarantee. Second,
in Section 6.3 we look into how MCTS can benefit from merging overlapping trajectories, in
order to better exploit the underlying graphical structure of the dynamics.

6.2 Open-loop optimistic planning

The goal of this section is to study the empirical performance of the OLOP algorithm. We focus on
that algorithm for its ability to tractably handle stochastic dynamics (though in open-loop only).
Indeed, our MDP formulation of Chapter 3 involves unknown parameters in the dynamics,
such as the driving styles and destinations of other drivers. Thus, in a probabilistic modelling of
this uncertainty, a prior distribution over these unknown parameters induces a distribution over
the next state of each observed vehicle, i.e. stochastic dynamics. However, OLOP was introduced
with a theoretical sample complexity analysis, but no experiment was carried out. We show in
our experiments that this algorithm is overly pessimistic, especially in the low-budget regime,
and we provide an intuitive explanation by casting light on an unintended effect that alters its

86

6.2 Open-loop optimistic planning

behaviour. We circumvent this issue by leveraging modern tools from the MAB literature to
design and analyse a modified version with tighter upper-confidence bounds called KL-OLOP.
We show that we retain the asymptotic regret bounds of OLOP while improving its performances
by an order of magnitude in numerical experiments.

This section is structured as follows: in Section 6.2.1, we present OLOP, give some intuition
on its limitations, and introduce KL-OLOP, whose sample complexity is further analysed in
Sections 6.2.2 and 6.2.3, andwhose empirical performance is evaluated in Section 6.2.4 in several
numerical experiments.

Notations We follow the notations from (Sébastien Bubeck and Rémi Munos, 2010) and use
the standard notations over alphabets, as described in the List of Symbols.

During the planning process, the agent iteratively selects sequences of actions until it
reaches the allowed budget of n actions. More precisely, at time t during themth sequence, the
agent played am1:t = am1 · · · amt ∈ At and receives a reward R(smt). We denote the probability
distribution of this reward as ν(am1:t) = P (R(smt , amt)|smt , amt)

∏t−1
k=1 P

(
smk+1|smk , amk

)
, and its

mean as µ(am1:t), where sm1 = s1 is the current state.

Definition 6.1 (Sequence values). We define the value V (a) of a sequence of actions a ∈ Ah as
the maximum expected discounted cumulative reward one may obtain after executing a:

V (a) = sup
b∈aA∞

∞∑
t=1

γtµ(b1:t). (6.1)

6.2.1 Kullback-Leibler Open-Loop Optimistic Planning

We present KL-OLOP, a combination of the OLOP algorithm of (Sébastien Bubeck and Rémi
Munos, 2010) with the tighter Kullback-Leibler upper confidence bounds from (Olivier Cappé
et al., 2013). We first frame both algorithms in a common structure before specifying their
implementations.

General structure First, following OLOP, the total sample budget n is split inM trajectories of
length L in the following way:

M is the largest integer such thatM⌈logM/(2 log 1/γ)⌉ ≤ n;

L = ⌈logM/(2 log 1/γ)⌉.

87

Planning Fast by Hoping for the Best

The look-ahead tree of depth L is denoted T =
∑L
h=0Ah.

Then, we introduce some useful definitions. Consider episode 1 ≤ m ≤ M . For any
1 ≤ h ≤ L and a ∈ Ah, let

Na(m) =∆
m∑
i=1

1{ai1:h = a}

be the number of times we played an action sequence starting with a, and Sa(m) the sum of
rewards collected at the last transition of the sequence a

Sa(m) =∆
m∑
i=1

R(sih, ai1:h)1{ai1:h = a}.

The empirical mean reward of a is µ̂a(m) =∆ Sa(m)
Na(m) ifNa(m) > 0, and +∞ otherwise. Here,

we provide a more general form for upper and lower confidence bounds on these empirical
means:

Uµa (m) =∆ max {q ∈ I : Na(m)d(µ̂a(m), q) ≤ f(m)} (6.2)
Lµa(m) =∆ min {q ∈ I : Na(m)d(µ̂a(m), q) ≤ f(m)} (6.3)

where I is an interval, d is a divergence on I×I → R+ and f is a non-decreasing function. They
are left unspecified for now and their particular implementations and associated properties
will be discussed in the following sections.

These upper-bounds Uµa for intermediate rewards finally enable us to define an upper
bound Ua for the value V (a) of the entire sequence of actions a:

Ua(m) =∆
h∑
t=1

γtUµa1:t(m) + γh+1

1− γ . (6.4)

where γh+1

1−γ comes from upper-bounding by one every reward-to-go in the sum (6.1), for
t ≥ h+ 1. In (Sébastien Bubeck and Rémi Munos, 2010), there is an extra step to “sharpen the
bounds” of sequences a ∈ AL by taking

Ba(m) =∆ inf
1≤t≤L

Ua1:t(m) (6.5)

The general algorithm structure is shown in Algorithm 6.1. We now discuss two specific
implementations that differ in their choice of divergence d and non-decreasing function f . They
are compared in Table 6.1.

88

6.2 Open-loop optimistic planning

Algorithm 6.1: General structure for Open-Loop Optimistic Planning
1 for each episodem = 1, · · · ,M do
2 Compute Ua(m− 1) from (6.4) for all a ∈ T
3 Compute Ba(m− 1) from (6.5) for all a ∈ AL
4 Sample a sequence with highest B-value: am ∈ arg maxa∈AL Ba(m− 1)
5 return the most played sequence a(n) ∈ arg maxa∈AL Na(m)

Table 6.1 – Different implementations of Algorithm 6.1 in OLOP and KL-OLOP

Algorithm OLOP KL-OLOP

Interval I R [0, 1]
Divergence d dQUAD dBER

f(m) 4 logM 2 logM + 2 log logM

OLOP

To recover the original OLOP algorithm of Sébastien Bubeck and Rémi Munos (2010) from
Algorithm 6.1, we can use a quadratic divergence dQUAD on I = R and a constant function f4

defined as follows:
dQUAD(p, q) =∆ 2(p− q)2, f4(m) =∆ 4 logM

Indeed, in this case Uµa (m) can then be explicitly computed as

Uµa (m) = max
{
q ∈ R : 2(µ̂a(m)− q)2 ≤ 4 logM

Na(m)

}
= µ̂a(m) +

√
2 logM
Na(m) ,

which is the Chernoff-Hoeffding bound used originally in section 3.1 of (Sébastien Bubeck and
Rémi Munos, 2010).

An unintended behaviour

From the definition of Ua(m) as an upper-bound of the value of the sequence a, we expect
increasing sequences (a1:t)t to have non-increasing upper-bounds. Indeed, every new action at
encountered along the sequence is a potential loss of optimality. However, this property is only
true if the upper-bound defined in (6.2) belongs to the reward interval [0, 1].

Lemma 6.2 (Monotony of Ua(m) along a sequence).

• If it holds that Uµb (m) ∈ [0, 1] for all b ∈ A∗, then for any a ∈ AL the sequence
(Ua1:h(m))1≤h≤L is non-increasing, and we simply have Ba(m) = Ua(m).

89

Planning Fast by Hoping for the Best

• Conversely, if Uµb (m) > 1 for all b ∈ A∗, then for any a ∈ AL the sequence (Ua1:h(m))1≤h≤L

is non-decreasing, and we have Ba(m) = Ua1:1(m).

Proof. We prove the first proposition, and the same reasoning applies to the second. For a ∈ AL
and 1 ≤ h ≤ L− 1, we have by (6.4):

Ua1:h+1(m)− Ua1:h(m) = γh+1Uµa1:h+1(m) + γh+2

1− γ −
γh+1

1− γ
= γh+1(Uµa1:h+1(m)︸ ︷︷ ︸

∈[0,1]

−1) ≤ 0

We can conclude that (Ua1:h(m))1≤h≤L is non-increasing and thatBa(m) = inf1≤h≤L Ua1:h(m) =
Ua1:L(m) = Ua(m).

Yet, the Chernoff-Hoeffding bounds used in OLOP start in the Uµa (m) > 1 regime – initially
Uµa (m) = ∞ – and can remain in this regime for a long time especially in the near-optimal
branches where µ̂a(m) is close to one.

Under these circumstances, the Lemma 6.2 has a drastic effect on the search behaviour.
Indeed, as long as a subtree under the root verifies Uµa (m) > 1 for every sequence a, then
all these sequences share the same B-value Ba(m) = Ua1:1(m). This means that OLOP cannot
differentiate them and exploit information from their shared history as intended, and behaves
as uniform sampling instead. Once the early depths have been explored sufficiently, OLOP
resumes its intended behaviour, but the problem is only shifted to deeper unexplored subtrees.

This consideration motivates us to leverage the recent developments in the Multi-Armed
Bandits literature, and modify the upper-confidence bounds for the expected rewards Uµa (m)
so that they respect the reward bounds.

KL-OLOP

We propose a novel implementation of Algorithm 6.1 where we leverage the analysis of the
kl-UCB algorithm from (Olivier Cappé et al., 2013) for multi-armed bandits with general
bounded rewards. Likewise, we use the Bernoulli Kullback-Leibler divergence defined on the
interval I = [0, 1] by

dBER(p, q) =∆ p log p
q

+ (1− p) log 1− p
1− q

90

6.2 Open-loop optimistic planning

0 Lµ
a µ̂a Uµ

a 1

1
Ta

f(m)

dber(µ̂a, q)

Figure 6.2 – The Bernoulli Kullback-Leibler divergence dBER, and the corresponding upper and lower
confidence boundsUµ

a andLµ
a for the empirical average µ̂a. Lower values of f(m) give tighter confidence

bounds that hold with lower probabilities.

with, by convention, 0 log 0 = 0 log 0/0 = 0 and x log x/0 = +∞ for x > 0. This divergence and
the corresponding bounds are illustrated in Figure 6.2.

Uµa (m) and Lµa(m) can be efficiently computed using Newton iterations, as for any p ∈ [0, 1]
the function q → dBER(p, q) is strictly convex and increasing (resp. decreasing) on the interval
[p, 1] (resp. [0, p]).

Moreover, we use the constant function f2 : m → 2 logM + 2 log logM . This choice is
justified in the end of Section 6.2.3. Because f2 is lower than f4, the Figure 6.2 shows that the
bounds are tighter and hence less conservative than that of OLOP, which should increase the
performance, provided that their associated probability of violation does not invalidate the
regret bound of OLOP.

Remark 6.3 (Upper bounds sharpening). The introduction of the B-values Ba(m) was made
necessary in OLOP by the use of Chernoff-Hoeffding confidence bounds which are not guaranteed to
belong to [0, 1]. On the contrary, we have in KL-OLOP that Uµa (m) ∈ I = [0, 1] by construction.
By Lemma 6.2, the upper bounds sharpening step in line 3 of Algorithm 6.1 is now superfluous as
we trivially have Ba(m) = Ua(m) for all a ∈ AL.

6.2.2 Sample complexity

We say that un = Õ(vn) if there exist α, β > 0 such that un ≤ α log(vn)βvn. Let us denote the
proportion of near-optimal nodes κ2 as

91

Planning Fast by Hoping for the Best

κ2 =∆ lim sup
h→∞

∣∣∣∣∣
{
a ∈ aH : V (a) ≥ V − 2 γ

h+1

1− γ

}∣∣∣∣∣
1/h

Theorem 6.4 (Sample complexity). We show that KL-OLOP enjoys the same asymptotic regret
bounds as OLOP. More precisely, for any κ′ > κ2, KL-OLOP satisfies:

E[rn] =


Õ
(
n

− log 1/γ

log κ′

)
if γ
√
κ′ > 1;

Õ
(
n− 1

2
)

if γ
√
κ′ ≤ 1.

Proof. We provide the proof in Section 6.2.3.

We provide a time and memory efficient implementation of OLOP and KL-OLOP in Sec-
tion C.2.1, bringing an exponential speed-up that allows scaling these algorithms to high
sample budgets.

6.2.3 Proof of Theorem 6.4

We follow step-by-step the pyramidal proof of (Sébastien Bubeck and Rémi Munos, 2010), and
adapt it to the Kullback-Leibler upper confidence bound. The adjustments resulting from the
change of confidence bounds are highlighted. The proofs of lemmas which are not significantly
altered are listed in Section C.1.

We start by recalling their notations. Let 1 ≤ H ≤ L and a⋆ ∈ AL such that V (a⋆) = V .
Considering sequences of actions of length 1 ≤ h ≤ H , we define the subset Ih of near-optimal
sequences and the subset J of sub-optimal sequences that were near-optimal at depth h− 1

Ih =
{
a ∈ Ah : V − V (a) ≤ 2 γ

h+1

1− γ

}
,Jh =

{
a ∈ Ah : a1:h−1 ∈ Ih−1 and a ̸∈ Ih

}

By convention, I0 = {∅}. From the definition of κ2, we have that for any κ′ > κ2, there exists
a constant C such that for any h ≥ 1, |Ih| ≤ Cκ′h Hence, we also have |Jh| ≤ K|Ih−1| = O(κ′h).

Now, for 1 ≤ m ≤M , a ∈ At with t ≤ h, h′ < h, we define the set Pah,h′(m) of suffixes of a
in Jh that have been played at least a certain number of times

Pah,h′(m) =
{
b ∈ aAh−t ∩ Jh : Nb(m) ≥ 2f(m)(h+ 1)2γ2(h′−h+1) + 1

}
and the random variable

92

6.2 Open-loop optimistic planning

τah,h′(m) = 1{Na(m− 1) < 2f(m)(h+ 1)2γ2(h′−h+1) + 1 ≤ Na(m)}

Lemma 6.5 (Regret and sub-optimal pulls). The following holds true:

E[rn] ≤ 2KγH+1

1− γ + 3K
M

H∑
h=1

∑
a∈Jh

γh

1− γNa(m)

Proof. We provide the proof in Section C.1.1.

The rest of the proof is devoted to the analysis of the term E
∑
a∈Jh

Na(m). The next lemma
describes under which circumstances a suboptimal sequence of actions in Jh can be selected.

Lemma 6.6 (Conditions for sub-optimal pull). Assume that at step m + 1 we select a sub-
optimal sequence am+1: there exist 0 ≤ h ≤ L, a ∈ Jh such that am+1 ∈ aA∗. Then, it implies
that one of the following propositions is true:

Ua⋆(m) < V, (UCB violation)

or
h∑
t=1

γtLµa1:t(m) ≥ V (a), (LCB violation)

or
h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
>
γh+1

1− γ (Large CI)

Proof. As am+1
1:h = a and because the U-values are monotonically increasing along sequences

of actions (see Remark 6.3 and Lemma 6.2), we have Ua(m) ≥ Uam+1(m). Moreover, by
Algorithm 6.1, we have am+1 = arg maxa∈AL Ua(m) and a⋆ ∈ AL, so Uam+1(m) ≥ Ua⋆(m) and
finally Ua(m) ≥ Ua⋆(m).

Assume that (UCB violation) is false, then

h∑
t=1

γtUµa1:t(m) + γh+1

1− γ = Ua(m) ≥ Ua⋆(m) ≥ V (6.6)

93

Planning Fast by Hoping for the Best

Assume that (LCB violation) is false, then

h∑
t=1

γtLµa1:t(m) < V (a), (6.7)

By taking the difference (6.6) - (6.7),

h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
+ γh+1

1− γ > V − V (a)

But a ∈ Jh, so V − V (a) ≥ 2γh+1

1−γ , which yields (Large CI) and concludes the proof.

In the following lemma, for each episodemwe bound the probability of (UCB violation)
or (LCB violation) by a desired confidence level δm, whose choice we postpone until the
end of this proof. For now, we simply assume that we picked a function f that satisfies
f(m) log(m)e−f(m) = O(δm). We also denote ∆M =

∑M
m=1 δm.

Lemma 6.7 (Boundary crossing probability). The following holds true, for any 1 ≤ h ≤ L and
m ≤M ,

P ((UCB violation) or (LCB violation) is true) = O((L+ h)δm)

Proof. Since V ≤∑h
t=1 γ

tµ(a⋆1:t) + γh+1

1−γ , we have,

P ((UCB violation)) = P (Ua⋆(m) ≤ V)

= P
(

L∑
t=1

γtUµa⋆
1:t

(m) ≤
L∑
t=1

γtµ(a⋆1:t)
)

≤ P
(
∃1 ≤ t ≤ L : Uµa⋆

1:t
(m) ≤ µ(a⋆1:t)

)
≤

L∑
t=1

P
(
Uµa⋆

1:t
(m) ≤ µ(a⋆1:t)

)

In order to bound this quantity, we reduce the question to the application of a deviation
inequality. For all 1 ≤ t ≤ L, we have on the event {Uµa⋆

1:t
(m) ≤ µ(a⋆1:t)} that µ̂a⋆

1:t
(m) ≤

Uµa⋆
1:t

(m) ≤ µ(a⋆1:t) < 1. Therefore, for all 0 < δ < 1− µ(a⋆1:t), by definition of Uµa⋆
1:t

(m):

d(µ̂a⋆
1:t

(m), Uµa⋆
1:t

(m) + δ) > f(m)
Na⋆

1:t
(m)

As d is continuous on (0, 1)× [0, 1], we have by letting δ → 0 that:

94

6.2 Open-loop optimistic planning

d(µ̂a⋆
1:t

(m), Uµa⋆
1:t

(m)) ≥ f(m)
Na⋆

1:t
(m)

Since d is non-decreasing on [µ̂a⋆
1:t

(m), µ(a⋆1:t)],

d(µ̂a⋆
1:t

(m), µ(a⋆1:t)) ≥ d(µ̂a⋆
1:t

(m), Uµa⋆
1:t

(m)) ≥ f(m)
Na⋆

1:t
(m)

We have thus shown the following inclusion:

{Uµa⋆
1:t

(m) ≤ µ(a⋆1:t)} ⊆
{
µ(a⋆1:t) > µ̂a⋆

1:t
(m) and d(µ̂a⋆

1:t
(m), µ(a⋆1:t)) ≥

f(m)
Na⋆

1:t
(m)

}

Decomposing according to the values of Na⋆
1:t

(m) yields:

{Uµa⋆
1:t

(m) ≤ µ(a⋆1:t)} ⊆
m⋃
n=1

{
µ(a⋆1:t) > µ̂a⋆

1:t,n
and d(µ̂a⋆

1:t,n
, µ(a⋆1:t)) ≥

f(m)
n

}

We now apply the deviation inequality provided in Lemma 2 of Appendix A in (Olivier
Cappé et al., 2013): ∀ε > 1, provided that 0 < µ(a⋆1:t) < 1,

P
(

m⋃
n=1

{
µ(a⋆1:t) > µ̂a⋆

1:t,n
and ndBER(µ̂a⋆

1:t,n
, µ(a⋆1:t)) ≥ ε

})
≤ e⌈ε logm⌉e−ε .

By choosing ε = f(m), it comes

P ((UCB violation)) ≤
L∑
t=1

e⌈f(m) logm⌉e−f(m) = O(Lδm)

The same reasoning gives: P ((LCB violation)) = O(hδm).

Lemma 6.8 (Confidence interval length and number of plays). Let 1 ≤ h ≤ L, a ∈ Jh and
0 ≤ h′ < h. Then (Large CI) is not satisfied if the following propositions are true:

∀0 ≤ t ≤ h′, Na1:t(m) ≥ 2f(m)(h+ 1)2γ2(t−h−1) (6.8)

and
Na(m) ≥ 2f(m)(h+ 1)2γ2(h′−h−1) (6.9)

95

Planning Fast by Hoping for the Best

Proof. We start by providing an explicit upper-bound for the length of the confidence interval
Uµa1:t − L

µ
a1:t . By Pinsker’s inequality:

dBER(p, q) > dQUAD(p, q)

Hence for all C > 0,

dBER(p, q) ≤ C =⇒ 2(q − p)2 < C =⇒ p−
√
C/2 < q < p+

√
C/2

And thus, for all b ∈ A∗, by definition of Uµ and Lµ:

Uµb (m)− Lµb (m) ≤ Sb(m)
Nb(m) +

√
f(m)

2Nb(m) −
(
Sb(m)
Nb(m) −

√
f(m)

2Nb(m)

)
=
√

2f(m)
Nb(m)

Now, assume that (6.8) and (6.9) are true. Then, we clearly have

h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
≤

h′∑
t=1

γt

√
2f(m)
Na1:t(m) +

h∑
t=h′+1

γt

√
2f(m)
Na1:t(m)

≤ 1
(h+ 1)γ−h−1

h′∑
t=1

1 + 1
(h+ 1)γ−h−1

h∑
t=h′+1

γt−h
′

≤ γh+1

h+ 1

(
h′ + γ

1− γ

)
≤ γh+1

1− γ .

Lemma 6.9. Let 1 ≤ h ≤ L, a ∈ Jh and 0 ≤ h′ < h. Then τah,h′ = 1 implies that either equation
(UCB violation) or (LCB violation) is satisfied or the following proposition is true:

∃1 ≤ t ≤ h′ : |Pa1:t
h,h′(m)| < γ2(t−h′) (6.10)

Proof. We provide the proof in Section C.1.2.

Lemma 6.10. Let 1 ≤ h ≤ L and 0 ≤ h′ < h. Then the following holds true,

E |P∅
h,h′(M)| = Õ

γ−2h′
1h′>0

h′∑
t=0

(γ2κ′)t + (κ′)h∆M

 .

96

6.2 Open-loop optimistic planning

Proof. We provide the proof in Section C.1.3.

Lemma 6.11. Let 1 ≤ h ≤ L. The following holds true,

E
∑
a∈Jh

Na(m) = Õ
(
γ−2h + (κ′)h(1 +M∆M + ∆M) + (κ′γ−2)h∆M

)

Proof. We provide the proof in Section C.1.4.

Thus by combining Lemmas 6.5 and 6.11 we obtain

E[rn] = Õ
(
γH + γ−HM−1 + (κ′γ)HM−1(1 +M∆M + ∆M) + (κ′)Hγ−HM−1∆M

)
Finally,

• if κ′γ2 ≤ 1, we take H = ⌊logM/(2 log 1/γ)⌋ to obtain

E[rn] = Õ

(
M− 1

2 +M− 1
2 +M− 1

2M
log κ′

2 log 1/γ ∆M

)

For the last term to be of the same order of the others, we need to have∆M = O(M− log κ′
2 log 1/γ).

Since κ′γ2 ≤ 1, we achieve this by taking ∆M = O(M−1).

• if κ′γ2 > 1, we take H = ⌊logM/ log κ′⌋ to obtain

E[rn] = Õ

(
M

log γ
log κ′ +M

log γ
log κ′ (1 +M∆M + ∆M) +M

log 1/γ

log κ′ ∆M

)

Since κ′γ2 > 1, the dominant term in this sum is M
log γ
log κ′M∆M . Again, taking ∆M =

O(M−1) yields the claimed bounds.
Thus, the claimed bounds are obtained in both cases as long as we can impose ∆M = O(M−1),
that is, find a sequence (δm)1≤m≤M and a function f verifying:

M∑
m=1

δm = O(M−1) and f(m) log(m)e−f(m) = O(δm) (6.11)

By choosing δm = M−2 and f(m) = 2 logM + 2 log logM , the corresponding KL-OLOP
algorithm does achieve the regret bound claimed in Theorem 6.4.

97

Planning Fast by Hoping for the Best

6.2.4 Experiments

We have performed some numerical experiments to evaluate and compare the following
planning algorithms1:

• Random: returns a random action, we use it as a minimal performance baseline.

• OPD: the Optimistic Planning for Deterministic systems from (Hren and Rémi Munos, 2008),
used as a baseline of optimal performance. This planner is only suited for deterministic
environments, and exploits this property to obtain faster rates. However, it is expected to
fail in stochastic environments.

• OLOP: as described in Section 6.2.1.2

• KL-OLOP: as described in Section 6.2.1.2

• KL-OLOP (1): an aggressive version of KL-OLOP where we used f1(m) = logM instead of
f2(m). This threshold function makes the upper bounds even tighter, at the cost of an
increased probability of violation. Hence, we expect this solution to be more efficient in
close-to-deterministic environments. However, since we have no theoretical guarantee
concerning its regret as we do with KL-OLOP, it might not be conservative enough and
converge too early to a suboptimal sequence, especially in highly stochastic environments.

They are evaluated on the following tasks, using a discount factor of γ = 0.8:
• A highway driving environment (Leurent, 2018): a vehicle is driving on a road ran-

domly populated with other slower drivers, and must make their way as fast as possible
while avoiding collisions by choosing on the the following actions: change-lane-left,
change-lane-right, no-op, faster, slower.

• A gridworld environment (Chevalier-Boisvert, Willems, and Pal, 2018): the agent navi-
gates in a randomly-generated gridworld composed of either empty cells, terminal lava
cells, and goal cells where a reward of 1 is collected at the first visit.

• A stochastic version of the gridworld environment with noisy rewards, where the noise
is modelled as a Bernoulli distribution with a 15% probability of error, i.e. receiving a
reward of 1 in an empty cell or 0 in a goal cell.

The results of our experiments are shown in Figure 6.3. The OPD algorithm converges
very quickly to the optimal return in the two first environments, shown in Figure 6.3a and
Figure 6.3b, because it exploits their deterministic nature: it needs neither to estimate the
rewards through upper-confidence bounds nor to sample whole sequences all the way from

1The source code is available at https://eleurent.github.io/kl-olop/.
2Note that we use the lazy version of OLOP and KL-OLOP presented in Section C.2.1, otherwise the exponential

running-time would have been prohibitive.

98

https://github.com/eleurent/highway-env/
https://github.com/maximecb/gym-minigrid
https://eleurent.github.io/kl-olop/

6.2 Open-loop optimistic planning

101 102 103 104

budget

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

re
tu

rn

Highway

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

(a) Highway

101 102 103 104

budget

0.5

1.0

1.5

2.0

2.5

re
tu

rn

Gridworld

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

(b) Gridworld

101 102 103 104

budget

0.8

1.0

1.2

1.4

1.6

1.8

re
tu

rn

Stochastic Gridworld

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

(c) Stochastic Gridworld

Figure 6.3 – Numerical experiments: for each environment-agent configuration, we compute the average
return over 100 runs — along with its 95% confidence interval — with respect to the available budget n.

99

Planning Fast by Hoping for the Best

Figure 6.4 – The look-ahead trees (down to depth 6) expanded by the planning algorithms from the
same initial state in the highway environment with the same budget n = 103. The width of edges
represents the nodes visit count Na(m).

100

6.2 Open-loop optimistic planning

the root when expanding a leaf, which provides a significant speed-up. It can be seen as
an oracle allowing to measure the conservativeness of stochastic planning algorithms. And
indeed, even before introducing stochasticity, we can see that OLOP performs quite badly on the
two environments, only managing to solve them with a budget in the order of 103.5. In stark
contrast, KL-OLOP makes much better use of its samples and reaches the same performance an
order of magnitude faster. This is illustrated by the expanded trees shown in Figure 6.4: OPD
exploits the deterministic setting and produces a sparse tree densely concentrated around the
optimal trajectory. Conversely, the tree developed by OLOP is evenly balanced, which suggests
that OLOP behaves as uniform planning as hypothesised in Line 5. KL-OLOP is more efficient
and expands a highly unbalanced tree, exploring the same regions as OPD. Furthermore, in the
stochastic gridworld environment shown in Figure 6.3c, we observe that the deterministic OPD
planner’s performance saturates as it settles to suboptimal trajectories, as expected. Conversely,
the stochastic planners all find better-performing open-loop policies, which justifies the need
for this framework. Again, KL-OLOP converges an order of magnitude faster than OLOP. Finally,
KL-OLOP (1) enjoys good performance overall and displays themost satisfying trade-off between
aggressiveness in deterministic environments and conservativeness in stochastic environments;
hence we recommend this tuning for practical use.

6.2.5 On a closed-loop algorithm

We briefly mention an extension of KL-OLOP to closed-loop policies, in the setting where
the transitions have a finite support of size B < ∞. The algorithm, named MDP Gap-based
Estimation (MDPGapE), was developed as part of a collaboration (Jonsson et al., 2020) and
analysed in the fixed-confidence setting.

It relies on estimating confidence sets Ct on the probability vector p(·|s, a)

Ct(s, a) =∆
{
p ∈ ΣS : KL

(
p̂t(·|s, a), p

)
≤ βp(nt(s, a), n)

nt(s, a)

}
,

and forming recursive upper and lower confidence bounds in the form

Uh(s) = max
a∈A

[
ut(s, a) + γ max

q∈Ct(s,a)

∑
s′

q(s′|s, a)Uh+1(s′)
]
,

Lh(s) = max
a∈A

[
ℓt(s, a) + γ min

q∈Ct(s,a)

∑
s′

q(s′|s, a)Lh+1(s′)
]
.

101

Planning Fast by Hoping for the Best

6.3 Graph-based optimistic planning

The goal of this section is to address a limitation of MCTS algorithms: they rely on a tree
structure that –despite its simplicity– does not allow to merge information across states. That is, if a
state s can be reached via two trajectories, it will be represented twice in the look-ahead tree.
For instance, in Figure 6.5 (left), two paths lead to the same state represented in orange. MCTS
algorithms do not merge the information of the two trajectories to update a shared estimate of
the state value.

Related work The idea of merging information between branches of a search tree appears in
(Silver, Hubert, et al., 2018), where the state values are approximated with a shared Neural
Network. However, this network is merely updated between two planning instances and not
during the planning procedure itself. Another work of interest is that of Hostetler, A. Fern, and
Dietterich (2014), who propose to partition the state space S into a smaller set Y of equivalence
classes. By aggregating similar states within a class, they reduce the branching factor of the
search tree from |S||A| to |Y||A|, which substantially improves sample complexity as they
illustrate empirically. However, this procedure requires providing a relevant state partition,
only aggregates trajectories that traverse the same sequence of classes (i.e. local deformations),
and comes with a (bounded) loss of optimality. The closest work to ours is that of Ballesteros
et al. (2013), in the context of partially observable MDPs, who identify similar belief states and
plan with a graph structure. They focus on empirically comparing various similarity measures
on robotic tasks and do not provide any theoretical analysis of the effect of aggregation. This is
precisely our goal and contribution here.

In this section, we introduce a planning algorithm named GBOP-D, a graph-based version
of the tree-based OPD algorithm for deterministic systems. We analyse the benefits of this
graph-based formulation in Section 6.3.2, and provide in Theorem 6.27 a regret guarantee. The
corresponding regret bound features a novel problem-dependent difficulty measure that we
introduce to capture the benefit of using a graph structure. We show that this measure can only
improve over the performance of OPD, and provide an example where it does. We discuss in
Section 6.3.3 an extension of our method to stochastic MDPs, called GBOP. Finally, Section 6.3.4
illustrates the benefits of GBOP in two numerical simulations.

6.3.1 Graph-Based Planning for Deterministic Systems

In this section, we introduce a simple yet highly effective variant of tree-based planning al-
gorithms. We first consider the simple setting of MDPs with deterministic dynamics, and
will denote P (s, a) the unique next state s′ sampled from P (s′|s, a). We start by giving some
background on the interplay of data structures and optimistic planning algorithms.

102

6.3 Graph-based optimistic planning

𝜕𝑇𝑛

𝑇𝑛
∘

𝒢n

𝜕𝒢𝑛

∘

Figure 6.5 – Black arrows depict how the Bellman backup operators Bn (left) and Bn (right) propagate
value estimates from successor nodes to their parents. Information travels freely in a graph, but only
upwards in a tree.

Data structures

In this section, we compare two data structures for planning in an MDP: tree and (directed)
graph, represented in Figure 6.5. In order to distinguish them, we refer to trees with Roman
symbols, e.g. T,U, L,B; and to graphs with calligraphic symbols, e.g. G,U ,L,B. In both
structures, we say that a node is internal if it has outgoing edges, and external else.

In a tree, a node of depth h represents a sequence of actions a ∈ Ah. The root of the tree
corresponds to the empty action sequence, and hence to the initial state s1 ∈ S. At iteration
n, we denote the current tree as Tn. Borrowing notations from topology, we denote its set of
internal nodes as T̊n and its set of external nodes (the leaves) as ∂T n. Note that since the MDP
is deterministic, a sequence of action a is associated with its final state denoted s(a), but this
association is not one-to-one: several sequences of action can lead to the same state, which will
be represented several times in the tree.

In a graph, the nodes represent states s ∈ S, and the edges represent transitions between
states. The source of the graph corresponds to the initial state s0. At iteration n, we denote the
current graph as Gn, its set of internal nodes as G̊n and its set of sinks as ∂Gn.

Both structures are built iteratively from a single starting node, by selecting an external
node (leaf or sink) to expand. The expansion of a node a or s refers to calling the generative
model to sample the reward r and next state s′ for each action a ∈ A, and adding child nodes
to the data structure. In a tree, the expansion of a node a ∈ Ah always lead to the creation of
new leaves that represent the suffix sequence of action ab ∈ Ah+1, b ∈ A. The maximum depth
of an expanded node in Tn is denoted dn. In contrast, in a graph the next state s′ reached from

103

Planning Fast by Hoping for the Best

s, amight already be present in Gn, in which case we add the edge between s and s′ without
creating a new node. These data structures can be used to store information about the MDP,
such as the transitions and rewards r(s, a), or other information useful for planning.

Optimistic planning

A planning algorithm is typically composed of two main rules:
(i) A sampling rule, that selects promising transitions to simulate at each iteration n;

(ii) A recommendation rule, that recommends a good first action ân to take (in s1).
These rules can be chosen with the goal of minimising the simple regret rn. A popular

approach is to follow the principle of Optimism in the Face of Uncertainty (OFU) (see Rémi
Munos, 2014), which consists in exploring the option that maximises an upper-bound of the
true objective. In the context of planning, it has been applied by forming bounds on the state
value function V ⋆, that we simply denote V for brevity.

Definition 6.12 (Value bounds).
On trees. We denote by L : Tn → R and U : Tn → R a lower-bound and upper-bound for the

state value V defined on the tree Tn, such that

∀a ∈ Tn, L(a) ≤ V (s(a)) ≤ U(a).

On graphs. Likewise, we denote by L : Gn → R and U : Gn → R a lower-bound and
upper-bound for the state value V defined on the graph Gn, such that

∀s ∈ Gn, L(s) ≤ V (s) ≤ U(s).

Following the OFU principle, at iteration nwemust leverage available information to design
an upper-bound Un (or Un) on V as tight as possible. Then, in order to select a promising
external node to expand, the sampling rule starts from the root (or source) and follows the
optimistic strategy of always selecting the action which maximises Un (or Un), until reaching
an optimistic leaf (or sink) to expand. This strategy was used in (e.g. Kocsis and Szepesvári,
2006; Hren and Rémi Munos, 2008; Sébastien Bubeck and Rémi Munos, 2010; Buşoniu and
Remi Munos, 2012).

For instance, since we assume that the rewards are bounded in [0, 1], trivial bounds on
V (s) are 0 ≤ V (s) ≤ Vmax =∆

∑
t γ

t1 = 1/(1− γ). However, these trivial bounds are the same
for every node, which makes them non-informative, and do not make use of the observed

104

6.3 Graph-based optimistic planning

𝐵𝑛 ℬ𝑛

Figure 6.6 – Illustration of the Bellman backup operators B (left) and B (right). Notice that Bn only
propagates information upward in the tree.

information. Still, they can be used as a valid starting point. Every observed transition stored
can then be used to tighten these bounds, by resorting to the Bellman optimality operator.

Definition 6.13 (Bellman optimality operator).
On trees. We define the Bellman optimality operator Bn on the tree Tn as

Bn(f)(a) =∆
maxb∈AR(s(a), b) + γf(ab) if a ∈ T̊n;
f(a) if a ∈ ∂T n.

(6.12)

On graphs. Likewise, we define the Bellman optimality operator Bn on the graph Gn as

Bn(f)(s) =∆
maxb∈AR(s, b) + γf(P (s, b)) if s ∈ G̊n;
f(s) if s ∈ ∂Gn.

(6.13)

The updates of both Bellman operators are depicted in Figure 6.6.

Hren and Rémi Munos (2008) used this Bellman operator Bn in their OPD algorithm to
define a pair of bounds (Ln, Un) at each iteration n. They use trivial bounds at the leaves, and
backup these estimates up to the root by iteratively applying Bn. We can show that, under
a monotonicity condition (satisfied by the trivial bounds 0 and Vmax), applying Bn can only
tighten a bound and converges in a finite time.

105

Planning Fast by Hoping for the Best

Definition 6.14 (Monotonicity). A pair of bounds (L, U) or (L,U) is monotonic if they are
respectively non-decreasing and non-increasing along transitions:

∀a ∈ Tn, L(a) ≤ Bn(L)(a), U(a) ≥ Bn(U)(a)

∀s ∈ G̊n, L(s) ≤ Bn(L)(s), U(s) ≥ Bn(U)(s)

Lemma 6.15 (Properties of Bn).

(i) Bn preserves monotonicity and tightens monotonic bounds:

if L ≤ V ≤ U , then L ≤ Bn(L) ≤ V ≤ Bn(U) ≤ U ;

(ii) The sequence Bk
n = Bn ◦ · · · ◦Bn︸ ︷︷ ︸

k times
converges in a finite time k = dn, where dn is the depth of

Tn.

Proof. We provide a proof in Section C.1.5.

This enables Hren and Rémi Munos (2008) to define3 non-trivial valid bounds on V :

Ln =∆ Bdn
n (0), Un =∆ Bdn

n (Vmax), (6.14)

where 0 is the null function. The corresponding OPD algorithm is described in Algorithm 6.2.
Likewise, we show that the graph version Bn verifies similar properties.

Lemma 6.16 (Properties of Bn).

(i) Bn preserves monotonicity and tightens monotonic bounds:

if L ≤ V ≤ U , then L ≤ Bn(L) ≤ V ≤ Bn(U) ≤ U ;

(ii) B is a γ-contraction, and we denote B∞
n =∆ limk→∞ Bkn.

Proof. We provide a proof in Section C.1.6.
3We use an iteration of operators while a recursive definition was used originally.

106

6.3 Graph-based optimistic planning

Algorithm 6.2: The Optimistic Planning of Deterministic Systems (OPD) algorithm from
(Hren and Rémi Munos, 2008).
1 for each iteration n do
2 Compute the bounds Ln = Bdn

n (0) and Un = Bdn
n (Vmax).

3 bn ← ∅
4 while the node bn ∈ T̊n is internal do
5 bn ← arg max

a′∈bnA
r(a′) + γUn(a′) ▷ Optimistic sampling rule

6 for action a ∈ A do ▷ Node expansion
7 Simulate r ← r(s(bn), a) and s′ ← P (s(bn), a).
8 Add a new leaf bna to Tn+1, with associated reward r.
9 return arg max

a∈A
r(s, a) + γLn(a). ▷ Conservative recommendation rule

10

This motivates us to propose Algorithm 6.3, following the approach of Algorithm 6.2
adapted to a graph structure.

Algorithm 6.3: Our proposed Graph-Based Optimistic Planning for Deterministic systems
(GBOP-D) algorithm.
1 for each iteration n do
33 Compute the bounds Ln = B∞

n (0) and Un = B∞
n (Vmax).

4 sn ← s1
5 while the node sn ∈ G̊n is internal do
77 sn ← arg max

s′
r(sn, a) + γUn(s′) ▷ Optimistic sampling rule

8 for action a ∈ A do ▷ Node expansion
9 Simulate r ← r(sn, a) and s′ ← P (sn, a).
10 Get or create the node s′ in Gn+1, and add the transition (sn, a)→ s′, r.
11 return arg max

a∈A
R(s, a) + γLn(s(a)). ▷ Conservative recommendation rule

Remark 6.17 (Termination and complexity). There are two procedures in GBOP-D that may not
terminate in finite time when Gn contains a loop: the computation of B∞

n (line 1) and the sampling
rule loop (line 2). We handle these steps carefully in Section C.2.2, where we discuss an approximate
implementation in which these two procedures are stopped whenever they reach a desired accuracy ε,
along with an analysis of the corresponding time complexity and impact on the performance.

Though both algorithms share a similar design, we claim that using graphs provides
substantial theoretical and practical performance improvements, and back up this statement in
Sections 6.3.2 and 6.3.4.

107

Planning Fast by Hoping for the Best

6.3.2 Analysis

Comparing OPD and GBOP-D directly is difficult since they do not involve the same structure,
which causes implicit differences in their behaviours. Studying them under a common frame-
work makes these differences explicit. To leverage the analysis of OPD by Hren and Rémi Munos
(2008), we will frame GBOP-D as a tree-based planning algorithm: the graph operator B will be
represented as tree backup B applied on an unrolled tree T (Gn), defined below.

Background on the sample complexity of OPD

First, we recall the analysis of Hren and Rémi Munos (2008) and introduce some notations.

Lemma 6.18 (Sequence values). The value of a finite sequence of actions a ∈ Ah, defined in
Definition 6.1, verifies

V (a) = G(s1, a) + γhV (s(a)),

where G(s, a) =
∑h−1
t=0 γ

trt is the return obtained by executing the sequence of actions a starting
from the state s.

Proof. We provide a proof in Section C.1.7.

This enables to define a measure of the difficulty of a planning problem.

Definition 6.19 (Difficulty measure). We define the near-optimal branching factor κ of an MDP
as

κ = lim sup
h→∞

|T ∞
h |1/h ∈ [1,K] (6.15)

where T ∞
h =

{
a ∈ Ah : V ⋆ − V (a) ≤ γh

1− γ

}
is the set of near-optimal nodes at depth h.

This problem-dependent measure κ is the branching factor of the subtree T∞ =
⋃
h T

∞
h of

near-optimal nodes that can be sampled by OPD, and acts as an effective branching factor as
opposed to the true branching factor K. When κ is small, fewer nodes must be explored at
a given depth allowing the algorithm to plan deeper for a given budget n. Thus, it directly
impacts the simple regret that can be achieved by OPD when run on a given MDP.

108

6.3 Graph-based optimistic planning

Theorem 6.20 (Regret bound of Hren and Rémi Munos, 2008). The Algorithm 6.2 enjoys the
following regret bound:

rn = Õ
(
n

− log 1
γ
/log κ

)
,

where fn = Õ(n−α) means that for any α′ < α, fn = O(n−α′), for all α ∈ R+ ∪ {+∞}.

Proof. We provide a proof in Section C.1.8.

The near-optimal branching factor κ is related (Sébastien Bubeck and Rémi Munos, 2010) to
the near-optimality dimension studied in the online optimisation literature (see e.g. Sébastien
Bubeck et al., 2009; Rémi Munos, 2011). It is typically small in problems where there is one
single optimal trajectory, of which any deviation can be quickly dismissed as suboptimal.
Conversely, κ is large when many sub-optimal trajectories cannot be distinguished easily based
on their values, which requires the exploration of a large part of the tree T of branching factor
K.

Motivation for an improved regret bound

We start by reformulating the sampling rule used for the OPD algorithm. To that end, notice that
when some bounds (L, U) on the state values V (s(a)) are available, they also induce bounds
(L, U) on values V (a) of sequences of actions a of length h defined as

R(s1, a) + γhL(a)︸ ︷︷ ︸
L(a)

≤ V (a) ≤ R(s1, a) + γhU(a)︸ ︷︷ ︸
U(a)

.

One can easily see that, since the (Ln, Un) used in the optimistic sampling rule described in
Algorithm 6.2 are invariant by Bn by definition, this rule can be equivalently expressed as

bn ∈ arg max
a∈∂T n

Un(a). (6.16)

Likewise, the conservative recommendation rule returns the first action of

an ∈ arg max
a∈∂T n

Ln(a) (6.17)

As shown in Figure 6.6, in a tree the Bellman operator Bn only propagates the information
upward, and the leaves cannot be updated. Thus, Un = Bdn

n (Vmax) and Vmax coincide on ∂T n
which means that the sampling rule of OPD can be summarized as using (6.16) with the trivial

109

Planning Fast by Hoping for the Best

upper-bound Un = Vmax. Likewise, the recommendation rule simply uses (6.17) with the
trivial lower-bound Ln = 0. Thus, OPD amounts to simply using the trivial bound (0, Vmax)
on leaf nodes, and does not make use of all the available information in Tn to improve these
bounds.

Let us now assume for the moment that we had access to tighter bounds (L, U) provided
by an oracle:

0 ≤ L ≤ V ≤ U ≤ Vmax.

Definition 6.21 (A finer difficulty measure). We define the near-optimal branching factor
according to the bounds (L, U) as

κ(L, U) =∆ lim sup
h→∞

∣∣T ∞
h (L, U)

∣∣1/h ∈ (1,K], (6.18)

where T ∞
h (L,U) =

{
a ∈ Ah : V ⋆ − V (a) ≤ γh(U(a)− L(a))

}
.

Lemma 6.22. This branching factor shrinks as the bounds (L, U) get tighter:

L2 ≤ L1 ≤ V ≤ U1 ≤ U2 =⇒ κ(L1, U1) ≤ κ(L2, U2).

In particular, κ(L, U) ≤ κ.

Proof. We provide a proof in Section C.1.9.

Theorem 6.23. Let L ≤ V ≤ U monotonic bounds, then planning with L and U in (6.16) and
(6.17) yields the following simple regret bound:

rn = Õ
(
n

− log 1
γ
/log κ(L,U)

)
.

Proof. We provide a proof in Section C.1.10.

This theorem states that we can potentially improve the performance of the planning
algorithm if we manage to find bounds (L, U) that are tighter than the trivial ones at the leaves
∂Tn, which may be possible if we have already seen the states corresponding to this leaves, but
it does not explain how to obtain such bounds. In the next subsection, we describe a method
to build a sequence of increasingly tight bounds (Ln, Un), at each planning iteration n. The
corresponding regret bound, our main result, is stated in Theorem 6.27.

110

6.3 Graph-based optimistic planning

Unrolling the tree to tighten the bounds

In order to reproduce the behaviour of Algorithm 6.3 on a tree structure, we rely on the following
observation: expanding a node s in Gn simultaneously expands all the paths leading to this
node. To account for this observation in the analysis, we will consider an unrolling operator T
that builds a potentially infinite tree T (Gn) containing every sequence of actions that can be
traversed in a graph Gn.

T (Gn) = {a ∈ Ah : st+1 ∈ Gn with st+1 = P (st, at) for 0 ≤ t < h} (6.19)

𝑇(𝒢𝑛)

Figure 6.7 – The tree T (Gn) obtained by unrolling Gn. Contrary to Tn shown in Figure 6.5, the red leaf
a is expanded at the same time as the internal red node, which enables to tighten its value bounds
(Ln(a), Un(a)) by applying Bn.

We analyse GBOP-D though the prism of T (Gn), which is only used as a theoretical tool.
We can define the counterpart of the bounds (Ln,Un) in the same way as (6.14) applied to

T (Gn) rather than Tn, except that the depth dn of T (Gn) can now be infinite:

Ln = B∞
n (0), Un = B∞

n (Vmax). (6.20)

This definition is equivalent to that of GBOP-D in the sense that

Lemma 6.24 (Bound equivalence). For any sequence of action a ∈ T (Gn), we have Ln(a) =
Ln(s(a)) and Un(a) = Un(s(a)).

111

Planning Fast by Hoping for the Best

Proof. We provide a proof in Section C.1.11.

In T (Gn), the unrolling mechanics behave as if any leaf a sharing the same state s(a) as an
internal node a′ was automatically expanded, and thus had its bound Ln(a), Un(a) tightened
by the Bellman backup Bn to a sub-interval of the trivial bounds (0, Vmax) that are used in OPD.

The sampling and recommendation rules of GBOP-D also amount to running those of OPD
on the tree T (Gn), except that the sampled sequence bn and recommended sequence an can
now have infinite depth since T (Gn) itself can be infinite (we say that an and bn are represented
by nodes of infinite depth). In the sequel, we analyse how these rules behave on T (Gn).

Lemma 6.25 (Expansion). Any node a of depth h traversed by the optimistic sampling rule of
GBOP-D at iteration n belongs to T∞

h (Ln, Un):

V ⋆ − V (a) ≤ γh(Un(a)− Ln(a)). (6.21)

In particular, if the sampling rule samples an infinite sequence a ∈ A∞, it is an optimal sequence,
and we write that (6.3) also holds for a with h =∞.

Proof. We provide a proof in Section C.1.12.

Lemma 6.26 (Recommendation). The action an recommended by GBOP-D has a simple regret
rn ≤ γdn

1−γ , where dn ∈ R ∪ {∞} is the maximal depth of expanded nodes in T (Gn).

Proof. We provide a proof in Section C.1.13.

Note that even though T (Gn) can be infinite, there is only one node bt that is selected for
expansion at each iteration t ≤ n.

Regret guarantee

In Theorem 6.23, we assumed that some bounds (L, U) were revealed by an oracle and available
from the onset for planning. In (6.20), we instead built a sequence of bounds (Ln, Un)n≥0 (6.20)
that is non-increasing in the sense of inclusion, i.e.

0 ≤ · · · ≤ Ln−1 ≤ Ln ≤ V ≤ Un ≤ Un−1 ≤ · · · ≤ Vmax.

112

6.3 Graph-based optimistic planning

We can consider the sequence κn = κ(Ln, Un). It is non-increasing and lower-bounded by
1, thus converges. Let κ∞ = limn→∞ κ(Ln, Un) ∈ [1,K].

Theorem 6.27. GBOP-D enjoys the following regret bound, with κ∞ ≤ κ:

rn = Õ
(
n

− log 1
γ
/log κ∞

)
.

Proof. We provide a proof in Section C.1.14.

Intuitively, κ∞ should be much lower than κ in problems where trajectories overlap a lot.
For instance, it will be the case for problems where two actions cancel each other out (e.g.
moving left or right), or are commutative (e.g. placing pawns on a board game). However,
this is merely an intuition. We now show that there exist problem instances in which κ∞ < κ,
which is a legitimate concern since their non-existence would make Theorem 6.27 trivial.

Illustrative example

In Proposition 6.28, we consider a toy MDP M shown in Figure 6.8. The transitions are
described visually while the rewards are defined as follows: let 0 ≤ r⋆ ≤ γ, and r− = r⋆− γ

1−γS,
r+ = r⋆ + S with S = r⋆

(
1
γ − 1

)
. Note that this choice ensures that r⋆, r−, r+ and S are all in

[0, 1].

𝑟∗ 𝑟−

𝑟+

0

𝑟∗

Figure 6.8 – A toy MDP with three states andK ≥ 2 actions. We start in the top state. The first action a1
is represented by green arrows, and all other actions a2, . . . , aK are represented by orange arrows. The
rewards are shown next to the transitions.

Proposition 6.28 (Branching factors). The MDPM verifies κ = K − 1 and κ∞ = 1.

Proof. We provide a proof in Section C.1.15.

113

Planning Fast by Hoping for the Best

This result confirms that Theorem 6.27 is non-trivial since we exhibit a problem for which
κ∞ < κ (when K ≥ 3), and legitimates our attempt to improve planning performances by
merging the tree into a graph.

6.3.3 Extension to Stochastic Systems

The approach developed in Sections 6.3.1 and 6.3.2 consists in using state similarity to tighten a
pair of lower and upper bounds (L, U) for the value function V . Thus, any planning algorithm
that is based on such bounds can benefit from this insight, and any theoretical result based on
the validity and rate of convergence of these bounds will be preserved.

Confidence intervals for rewards. When the reward kernel P (r | s, a) is stochastic4, devia-
tion inequalities can be used to design a confidence interval [ℓt(s, a), ut(s, a)] over its expected
value E [r|s, a]. For instance, the Chernoff-Hoeffding deviation inequality was used to design
confidence intervals in (Kocsis and Szepesvári, 2006; Sébastien Bubeck and Rémi Munos, 2010;
Kaufmann and Koolen, 2017). In our recent works (Leurent and Maillard, 2020b; Jonsson et al.,
2020), the tighter Kullback-Leibler confidence interval is preferred:

ut(s, a) =∆ max
{
v : kl

(
r̂t(s, a), v

)
≤ βr(nt(s, a), n)

nt(s, a)

}
,

ℓt(s, a) =∆ min
{
v : kl

(
r̂t(s, a), v

)
≤ βr(nt(s, a), n)

nt(s, a)

}
,

where r̂t(s, a) is the sample mean, βr is an exploration function and kl(u, v) is the binary
Kullback-Leibler divergence between Bernoulli distributions: kl(u, v) = u log u

v +(1−u) log 1−u
1−v .

Confidence region for transitions. Likewise, when the transition kernelP (s′ | s, a) is stochas-
tic, a confidence set on the probability vector p(·|s, a) can be defined as

Ct(s, a) =∆
{
p ∈ ΣS : KL

(
p̂t(·|s, a), p

)
≤ βp(nt(s, a), n)

nt(s, a)

}
,

where p̂t(·|s, a) =∆ nt(s, a, ·)/nt(s, a) is the empirical distribution, ΣS is the probability simplex
over S, βp is an exploration function and KL(p, q) =

∑
s∈S p(s) log p(s)

q(s) is the Kullback-Leibler
divergence between categorical distributions.

Bellman operator with stochasticity. In this section, we do not discuss the tuning of βr, βp,
but simply assume that they are chosen such that the rewards and transitions belong to their

4We assumed known deterministic rewards until now, since it is typically chosen by the autonomous vehicle
designer.

114

6.3 Graph-based optimistic planning

confidence regions with sufficiently high probability to obtain performance guarantees for the
planning algorithm. For more details on such a choice, refer to Section 6.2.1 or (e.g. Jonsson
et al., 2020). We modify the Definition 6.13 of the Bellman operator on graphs Bt as

B+
t (U)(s) = max

a∈A

[
ut(s, a) + γ max

q∈Ct(s,a)

∑
s′

q(s′|s, a)U(s′)
]
,

B−
t (L)(s) = max

a∈A

[
ℓt(s, a) + γ min

q∈Ct(s,a)

∑
s′

q(s′|s, a)L(s′)
]
,

for all s ∈ G̊n, where the maximum and minimum over these Kullback-Leibler confidence
regions Ct(s, a) can be computed as explained in (Appendix A of Filippi, O. Cappé, and A.
Garivier, 2010). Under the event that every confidence regions [ℓt(s, a), ut(s, a)] and Ct(s, a)
are valid at time t, the Lemma 6.16 still holds for B−

t ,B+
t .

Structure of the planning algorithm In the deterministic setting, once a transition has been
observed, it is known with certainty and does not need to be sampled ever again, which is
why only external nodes ∂Gn are sampled in GBOP-D. Conversely, in the stochastic setting,
the expected reward and transition probabilities must be estimated from samples, which
implies that internal nodes G̊n must be sampled as well. Then, it is common to adopt an
episodic standpoint where we sample trajectories of a fixed horizon H , tuned depending on
the budget n. This is the case in (e.g. Kearns, Mansour, and Ng, 2002; Kocsis and Szepesvári,
2006; Sébastien Bubeck and Rémi Munos, 2010; Feldman and Domshlak, 2014; Leurent and
Maillard, 2020b; Jonsson et al., 2020). We also follow this scheme in our proposed Algorithm 6.4
algorithm.

Algorithm 6.4: Graph-Based Optimistic Planning (GBOP) algorithm.
1 for trajectorym in [1,M] do
2 for time t in [1, H] do
3 n← (m− 1)H + h.
4 Compute the bounds Ln = (B−

n)∞(0) and Un = (B+
n)∞(Vmax).

5 bt ← arg max
a∈A

r(st, a) + γUn(s′) ▷ Optimistic sampling rule

6 Simulate rt, st+1 ∼ P (r, st+1 | st, bt).
7 Get or create the node st+1 in Gn+1, and add an occurence of the transition

(st, bt, rt, st+1).
8 return arg max

a∈A
r(s, a) + γLn(s(a)). ▷ Conservative recommendation rule

115

Planning Fast by Hoping for the Best

6.3.4 Numerical Experiments

To evaluate the practical benefits of our approach, we compare graph-based and tree-based
planning algorithms in various problems.

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
OPD

0

100

101

102

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D

0

100

101

102

103

Figure 6.9 – State occupancies of tree-based vs. graph-based algorithms in a deterministic gridworld.

Parameters. In every experiment, we used γ = 0.95. In GBOP-D and GBOP, the fixed accuracy
ε = 1× 10−2 was used for computing B∞

n , and the sampling rule was stopped after reaching
the depth d+

n = n (see Section C.2.2). Regarding the tuning of confidence intervals in GBOP,
since the rewards are deterministic and the transitions are stochastic in both domains we
used βr(nt(s, a), n) = 0 and βp(nt(s, a), n) = logn, following the observations of Section 6.2.1.
The maximal size B of the support of the transitions P (s′|s, a) was also used (B = 4 in the
gridworld domain and B = 3 in the sailing domain) to accelerate the computations of the
confidence region Ct for transitions, as explained in (Jonsson et al., 2020).

Gridworld domain. We consider a grid in which the agent can move in K = 4 directions.
The reward function is 0 everywhere, except in the vicinity of a goal located at (10, 10), around
which the reward decreases quadratically from 1 to 0 in a ball of radius 5. The Figure 6.9 shows
number of times a state is sampled by OPD and GBOP-D, both run with a budget n = 5460 and
discount γ = 0.95. In the absence of rewards, OPD samples sequences of actions uniformly
(in a breadth-first search manner), which –because of the dynamics structure– results in a
non-uniform occupancy of the state space S, where the trajectories concentrate near the starting
state. In contrast, GBOP-D explores uniformly in S, sampling each state up to four times (from its
four neighbours), until it finds the goal vicinity and finally samples the goal location indefinitely.
We reproduce the experiment in the stochastic setting by adding noise on the transitions with
probability p = 10%, and comparing GBOP to UCT as we show in Figure 6.10. To quantify

116

6.3 Graph-based optimistic planning

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
UCT

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
KL-OLOP

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
BRUE

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
MDP-GapE

0

100

101

102

103

Figure 6.10 – State occupancies of tree-based vs. graph-based algorithms in a stochastic gridworld.

these qualitative differences, we define in Figure 6.11a an exploration score: the mean distance
d(st, s1) of sampled states to the initial state (exploration) minus the distance d(st, sg) to the
goal state (exploitation).

Sailing domain (Vanderbei, 1996). In a second experiment, a boat is sailing in K = 8 di-
rections to reach a goal, and suffers a cost (move duration) that depends on the direction of
the wind which follows stochastic dynamics. Figure 6.11b shows the evolution of the simple
regret rn of stochastic planning algorithms with respect to the number n of oracle calls. We
show the mean regret and its 95% confidence interval computed over 500 simulations. The
asymptotic log-log slope σ provides an empirical measurement of the effective branching factor
κe = exp(− log(1/γ)/σ) for each algorithm. We measure that for n > 103.5, σ ≈ −0.04 and
κe ≈ 3.6 for BRUE, KL-OLOP, MDPGapE, UCT. In contrast, we measure σ ≈ −0.3 and κe ≈ 1.2 for
GBOP, which suggests that our result of Theorem 6.27 might generalize to the stochastic setting.

In Figure 6.12, we compare the trees Tn expanded by OPD and KL-OLOP to the unrolled graph
T (Gn) of GBOP-D in the deterministic gridworld domain. For clarity of the figure, we only display
the nodes selected for expansion and not the entire T (Gn) as in Figure 6.7, since it is infinite
and fractal. We observe that OPD explores uniformly in the space of sequences, which results

117

Planning Fast by Hoping for the Best

OPD GBOP-D MDP-GapE BRUE UCT KL-OLOP GBOP

0

5

10

15

20

sc
or

e

dynamics

deterministic

stochastic

(a) Exploration score in the gridworld domain for several
algorithms.

102 103 104

budget n

10−1si
m

pl
e

re
gr

et
r n

agent

BRUE

GBOP

KL-OLOP

MDP-GapE

UCT

(b) Mean simple regret rn in the sailing domain, with
its 95% confidence interval.

Figure 6.11 – Benchmark of planning performances.

in a concentrated exploration in the state space, as seen in Figure 6.9. This phenomenon is
similar to the concentration properties of martingales. KL-OLOP behaves similarly, but allocates
its budget n in fewer trajectories of higher length than OPD, which results in a sparser tree and
slightly better exploration (compare Figure 6.9 to Figure 6.10). In contrast, GBOP-D expands a
very sparse and unbalanced tree T (Gn) which corresponds to uniform exploration in the state
space, and allows to explore deeper for the same budget n (The tree is only shown up to depth
12, but continues much deeper since the optimal transition is sampled indefinitely once it is
discovered). In particular, the paths towards the goal are sampled many times, while other
algorithms are still balanced at the root in terms of number of visits.

Chapter conclusion

In this chapter, we studied the theoretical and practical performances of planning algorithms,
that can be used to compute a near-optimal trajectory for a known stochastic non-linear system.
We first introduced an enhanced version of the OLOP algorithm for open-loop online planning,
whose design was motivated by an investigation of the over-conservative search behaviours
of OLOP. We analysed its sample complexity and showed that the original regret bounds are
preserved, while its empirical performances are increased by an order of magnitude in several
numerical experiments. Second, we studied the value of merging information between similar
states during planning. We showed that using a graph structure provides a benefit compared to
tree structures in the deterministic setting, in the formof an improved regret bound that depends
on a smaller problem difficulty. This improvement translates into enhanced performance in
practice, and can be adapted to stochastic problems as we demonstrate experimentally.

118

6.3 Graph-based optimistic planning

OPD

KL-OLOP

GBOP-D

Figure 6.12 – Trees expanded by OPD, by KL-OLOP, and sequences of actions sampled by GBOP-D. The
width of edges is proportional to the number of visits.

119

Chapter 7

Preparing for the Worst

Two roads diverged in a wood, and I–
I took the one less traveled by,
And that has made all the difference.
Robert Frost, The Road Not Taken.

Model-based algorithms often assume a certainty equivalence to decouple estimation and
control: they use a point estimate P̂ of the dynamics as if it was the true value. Unfortunately,
thismodel bias can significantly degrade the performances. In this chapter, we address this issue
by resorting to robust decision-making: instead of a mere point estimate, we build a confidence
region that contains the true dynamics P with high probability, and consider the worst-case
outcome with respect to this uncertainty. We propose an integrated framework leveraging
non-asymptotic linear regression, interval prediction and tree-based planning to achieve robust
stabilisation and minimax control with generic costs; along with an end-to-end analysis.1

Contents
7.1 Motivation . 122
7.2 Confident model estimation . 129
7.3 State interval prediction . 130
7.4 Robust stabilisation and constraint satisfaction 148
7.5 Minimax control with generic costs . 157
7.6 Multi-model selection . 161
7.7 Experiments . 164

1This chapter is based on three articles published in the 2019 and 2020 Conferences on Decision and Control and
the 2020 Conference on Neural Information Processing Systems (Leurent, Denis Efimov, Raissi, et al., 2019; Leurent,
Denis Efimov, and Maillard, 2020b; Leurent, Denis Efimov, and Maillard, 2020a).

121

https://eleurent.github.io/sisyphe/texts/the-road-not-taken.html

Preparing for the Worst

7.1 Motivation

Remark 7.1 (Change of notations). So far, we borrowed notations from the Reinforcement
Learning community to describe states s ∈ S , actions a ∈ A and transitions st+1 = P (st+1 | st, at).
In this chapter, we change conventions and switch to notations from the Control community, which
are better suited to describe continuous-time dynamics: states are denoted as x(t), controls as u(t),
and dynamics as ẋ(t) = f(x(t), u(t)). The system dynamics are described in continuous time, but
sensing and control are performed in discrete time with time-step dt > 0. For any variable z, we
use subscript to refer to these discrete times: zn = z(tn) with tn = ndt and n ∈ N. We use bold
symbols to denote temporal sequences z = (zn)n∈N.

Model bias Despite the recent successes of Reinforcement Learning (e.g. Mnih et al., 2015;
Silver, Hubert, et al., 2018), it has hardly been applied in real industrial issues. This could be
attributed to two undesirable properties which limit its practical applications. First, it depends
on a tremendous amount of interaction data that cannot always be simulated. This issue can be
alleviated by model-based methods – which we consider in this part – that often benefit from
better sample efficiencies than their model-free counterparts. Second, it relies on trial-and-error
and random exploration, which is unacceptable in a critical setting where mistakes are costly
and must be avoided at all times.

Since experiencing failures is out of the question, the only way to prevent them from the
outset is to rely on some sort of prior knowledge. In this chapter, we assume that the system
dynamics are partially known, in the form of differential equation with unknown parameters
and inputs. More precisely,

Assumption 7.2 (Structure I). We consider a dynamical system with state x ∈ Rp, acted on by
controls u ∈ Rq and perturbations ω ∈ Rr, with dynamics in the form

ẋ(t) = fθ (x(t), u(t), ω(t)) ,

where the dynamics structure f : θ → fθ is known, and the parameter vector θ belongs to a known
compact set Θ ⊂ Rd.

Weargue that this structure assumption is realistic given thatmost industrial applications to date
have been relying on physicalmodels to describe their processes andwell-engineered controllers
to operate them, rather than machine learning. Our framework relaxes this modelling effort by
allowing some structured uncertainty around the nominal model.

122

7.1 Motivation

We adopt a data-driven scheme to estimate the parameters θ more accurately as we inter-
act with the true system. Most model-based reinforcement learning algorithms rely on the
estimated dynamics θ̂ to derive the corresponding optimal controls (e.g. I. Lenz, Knepper,
and Saxena, 2015; Levine, Finn, et al., 2016), but suffer from model bias: they ignore the error
between the learned and true dynamics, which can dramatically degrade control performances
(Doyle, 1978; Schneider, 1997).

(a) Optimal control (RL) operates near constraint
saturation which produces risky behaviours.

(b) As a result, model bias easily causes accidents
when predictions are slightly wrong (here by less
than half a meter).

Figure 7.1 – Illustration of the issue of model bias when merging into a roundabout.2

In particular, this is likely to happenwhenmaximising an objective under constraints, which
naturally pushes the system to operate in the vicinity of constraint saturation and makes it
prone to failure. For instance, consider the task of merging into a roundabout with flowing
traffic, where the agent is rewarded for driving fast while avoiding collision, as defined in (3.6).
This formulation is almost equivalent to the problem of maximising speed under a collision-free
constraint. When planning with the oracle (true) dynamics, an optimal policy will generally
operate as close as possible to the system constraints, i.e. it will brush other vehicles, resulting
in dangerous behaviours as shown in Figure 7.1a. Consequently, when the model predictions
are slightly wrong, collisions will happen, as shown in Figure 7.1b. In short, there is no such
thing as continuity of the optimal policy with respect to the underlying dynamics, especially
when the reward function is sharp. A reward-engineering solution to this issue would be to
modify the reward function R(s, a) to include a notion of safety distance, that the agent would
be penalised for not respecting. However, this would require a tedious tuning of the penalty
for the possible location and speed of every vehicle nearby, and would not generalise to other
situations. In contrast, in this thesis we would rather specify a reward function as simple and
straightforward as possible –avoid collisions–, and wish to see the notion of safety distance

2An illustrative video is also available at https://www.youtube.com/embed/8khqd3BJo0A?start=3&end=39.

123

https://www.youtube.com/embed/8khqd3BJo0A?start=3&end=39

Preparing for the Worst

emerge as a by-product of safe decision-making with respect to our uncertainty of other vehicles’
behaviours.

θ

C[N],δ

Figure 7.2 – The model estimation procedure. The confidence region C[N],δ shrinks with the number of
samples N .

Embracing model ambiguity To address the issue of model bias, we turn to the framework
of robust decision-making: At time step N ∈ N, instead of merely considering a point estimate
of the dynamics, the control scheme needs to rely on an entire confidence region C[N],δ, illustrated
in Figure 7.2, that contains the true dynamics parameters with high probability:

P
(
θ ∈ C[N],δ

)
≥ 1− δ, (7.1)

where δ ∈ (0, 1] is the confidence level. In order to derive an explicit form for this confidence
region C[N],δ, additional assumptions need to be taken regarding the relation between the state
transition ẋ and its parameter θ. Out of the various hypothesis classes that could represent
fθ, we require one that provides confidence regions for regression. Thus, we make a first
assumption that fθ is linearly dependent on θ, so as to leverage the statistical tools developed
for non-asymptotic linear regression.

Assumption 7.3 (Structure II). We assume that fθ takes the form

ẋ(t) = ϕ (x(t), u(t), ω(t)) θ + ψ (x(t), u(t), ω(t)) ,

124

7.1 Motivation

where ϕ and ψ are known functions that depend on x(t), u(t), ω(t) but not θ.

In Section 7.2, having observed a history D[N] = {(xn, yn, un)}n∈[N] of transitions, our first
contribution extends the work of Abbasi-Yadkori, Pál, and Szepesvári (2011), who provide a
confidence ellipsoid for the least-square estimator, to our setting of feature matrices rather than
feature vectors.

𝑥 0

𝑥 𝑡 , 𝑥 𝑡

𝑥 𝑡, 𝜃 𝑡 , 𝜔(𝑡)

Figure 7.3 – The state prediction procedure. At each time step, we bound the set of reachable states x(t)
(in green) under model uncertainty C[N],δ inside the interval [x(t), x(t)] (in red).

Propagation of uncertainty In order to inform the controls, the uncertainty C[N],δ about the
dynamics needs to be propagated to the induced trajectories. To that end, we wish to derive an
interval predictor [x(t), x(t)]which takes the information on the current state xN , the confidence
region C[N],δ, a planned control sequence u and admissible perturbation bounds [ω(t), ω(t)];
and verifies the inclusion property illustrated in Figure 7.3:

x(t) ≤ x(t) ≤ x(t), ∀t ≥ tN . (7.2)

Yet, in order to obtain a closed-form for [x(t), x(t)], we need to know how the uncertainty over
x(t) can affect that of the next state x(t+ dt), which requires further specifying the shape of
the features ϕ and ψ. Again, we make an assumption that ϕ and ψ are linearly dependent on
the states x(t), controls u(t) and perturbations ω(t), so as to draw on the theory of interval
observers for linear systems. Thus, in this chapter we will consider a dynamical system in the
following form.

125

Preparing for the Worst

Assumption 7.4 (Structure III). There exists a known feature tensor ϕ ∈ Rd×p×p such that for
all θ ∈ Θ,

ẋ(t) = A(θ)x(t) +Bu(t) +Dω(t), t ≥ 0, (7.3)

with
A(θ) = A+

d∑
i=1

θiϕi, (7.4)

where A, ϕ1, . . . , ϕd ∈ Rp×p are known.

For all n, we denote Φn = [ϕ1xn . . . ϕdxn] ∈ Rp×d. The control matrix B ∈ Rp×q and
disturbance matrix D ∈ Rp×r are known. We also assume access to the observation of x(t) and
to a noisy measurement of ẋ(t) in the form

y(t) = ẋ(t) + Cν(t), (7.5)

where ν(t) ∈ Rs is a measurement noise and C ∈ Rp×s is known. Assumptions over the
disturbance ω and noise ν will be detailed further, and we denote η(t) = Cν(t) +Dω(t).

In Section 7.3, as a second contribution, we derive an interval predictor [x(t), x(t)] for the
system (7.3), and analyse its stability.

Robust stabilisation and constraint satisfaction As a third contribution and first application,
we consider the problem of robustly stabilising the system (7.3) at a vicinity of the origin under
parametric uncertainty and bounded perturbations, while also ensuring that

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, (7.6)

where [x0, x0] ⊂ X ⊂ Rp and U ⊂ Rq are given bounded constraint sets for the state and the
control, respectively. In Section 7.4, we introduce a Dual-MPC scheme that achieves this result
by relying on a stabilising control for the predicted intervals [x(t), x(t)].

Minimax control beyond quadratic costs Yet, many tasks cannot be framed as stabilisation
problems (e.g. obstacle avoidance). To achieve more flexible goals, these tasks can be bet-
ter formulated with the minimax control objective (Ben-Tal, El Ghaoui, and Nemirovski, 2009;
Bertsimas, Brown, and Caramanis, 2011; Gorissen, Yanıkoğlu, and den Hertog, 2015), that we
consider as a second application. This objective aims to maximise the worst-case return V r

126

7.1 Motivation

with respect to the confidence region C[N],δ and admissible perturbations

sup
u∈(Rq)N

inf
θ∈C[N],δ
ω∈[ω,ω]N

 ∞∑
n=N+1

γnR(xn(u, ω))


︸ ︷︷ ︸

V r(u)

, (7.7)

where xn(u, ω) is the state reached at step n under controls u and perturbations ω within the
given admissible bounds [ω(t), ω(t)], and R is an arbitrary bounded reward function. This
choice of rich reward space is crucial to have sufficient flexibility to model non-convex and
non-smooth functions that naturally arise in many practical problems involving combinatorial
optimisation, branching decisions, etc., while quadratic costs are mostly suited for tracking a
fixed reference trajectory (e.g. Vinodh Kumar and Jerome, 2013).

Unfortunately, minimax problems such as (7.7) are already notoriously hard when the
reward R has a simple form. Without a restriction on the shape of functions R, solving the
optimal – not to mention the robust – control objective is intractable and we cannot hope to
derive an explicit solution. Thus, in Section 7.5we propose a robust MPC algorithm for solving
(7.7) numerically. Facing a sequential decision problem with continuous states, we turn to the
literature of tree-based planning algorithms studied in Chapter 6. However, these techniques
are designed for a single known generative model rather than a confidence region for the
system dynamics. We adapt them to the robust objective (7.7) by approximating it with a
tractable surrogate V̂ r that exploits the interval predictions [x(t), x(t)] to define a pessimistic
reward R. In our main result, we show that the best surrogate performance achieved during
planning is guaranteed to be attained on the true system, and provide an upper bound for the
approximation gap and simple regret of our framework in Theorem 7.30. This is our fourth
contribution and the first result of this kind for minimax control with generic costs to the best
of our knowledge.

Multi-model extension In Section 7.6, our fifth contribution extends the proposed frame-
work to consider multiple modelling assumptions, while narrowing uncertainty through data-
driven model rejection, and still ensuring safety via robust model-selection during planning.

Numerical experiments Finally, in Section 7.7 we demonstrate the applicability of our ap-
proach in two numerical experiments: a simple illustrative example and a more challenging
simulation for safe autonomous driving on highway-env.

127

Preparing for the Worst

7.1.1 Related Work

The control of uncertain systems is a long-standing problem, to which a vast body of literature
is dedicated. Existing work is mostly concerned with the problem of stabilisation around a fixed
reference state or trajectory, including approaches such asH∞ control (Basar and Bernhard,
1996), sliding-mode control (X.-Y. Lu and Spurgeon, 1997) or system-level synthesis (Dean
et al., 2019; Dean et al., 2018). This chapter fits in the popular MPC framework, for which
adaptive data-driven schemes have been developed to deal with model uncertainty (Sastry,
Bodson, and Bartram, 1990; Tanaskovic et al., 2014; Amos et al., 2018), but lack guarantees.
The family of tube-MPC algorithms seeks to derive theoretical guarantees of robust constraint
satisfaction: as in Section 7.4, the state x and control u are constrained in a safe region X× U
around the origin, often chosen convex (Fukushima, Kim, and Sugie, 2007; Adetola and Guay,
2008; Aswani et al., 2013; Turchetta, Berkenkamp, and Krause, 2016; Lorenzen, Allgöwer, and
Cannon, 2017; Köhler et al., 2019; X. Lu and Cannon, 2019). Our work in Section 7.4 mainly
differs in that it relies on intervals rather than zonotopes, for simplicity of implementation and
computational efficiency.

Moreover, as we argue previously, many tasks cannot be framed as stabilisation problems
(e.g. obstacle avoidance) and are better addressed with the minimax control objective, which
can allow more flexible goal formulations. Minimax control has mostly been studied in two
particular instances.

Finite states Minimax control of finite Markov Decision Processes with uncertain parameters
was studied in (Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann, Kuhn, and Rustem,
2013), who showed that the main results of Dynamic Programming can be extended to their
robust counterparts only when the dynamics ambiguity set verifies a certain rectangularity
property. Since we consider continuous states, these methods do not apply.

Linear dynamics and quadratic costs Several approaches have been proposed for cumulative
regret minimisation in the LQ problem. In the OFU paradigm, the best possible dynamics
within a high-confidence region is selected under a controllability constraint, to compute the
corresponding optimal control in closed-form by solving a Riccati equation. The results of
(Abbasi-Yadkori and Szepesvári, 2011; Ibrahimi, Javanmard, and B. V. Roy, 2012; Faradonbeh,
Tewari, and Michailidis, 2020) show that this procedure achieves a Õ

(
N1/2

)
regret. Posterior

sampling algorithms (Ouyang, Gagrani, and Jain, 2017; Abeille and Lazaric, 2018) select
candidate dynamics randomly instead, and obtain the same result. Other works use noise
injection for exploration, such as (Dean et al., 2019; Dean et al., 2018). However, neither
optimism nor random exploration fits a critical setting, where ensuring safety requires instead
to consider pessimistic outcomes. The work of Dean et al. (2019) is close to our setting: after an

128

7.2 Confident model estimation

offline estimation phase, they estimate a simple regret between a minimax controller and the
optimal performance. Our work differs in that it addresses a generic shape cost. Another work
of interest is that of Rosolia and Borrelli (2019) where worst-case generic costs are considered.
However, they assume knowledge of the dynamics, and their rollout-based solution only
produces inner-approximations and does not yield any guarantee. In this chapter, interval
prediction is used to produce oversets, while a near-optimal control is found using a tree-based
planning procedure.

7.2 Confident model estimation

The goal of this section is to derive a confidence region (7.1) for the parameters θ of the
dynamics (7.3).

We abuse notations and define a virtual measurement signal, still denoted y(t), that includes
additional known terms

y(t) = ẋ(t) + Cν(t)−Ax(t)−Bu(t),

to obtain a linear regression system yn = Φnθ + ηn.

Regularised least square To derive an estimate on θ, we consider theweightedL2-regularised
regression problem with weights Σp ∈ Rp×p and parameter λ ∈ R+

∗ :

min
θ∈Rd

N∑
n=1
∥yn − Φnθ∥2Σ−1

p
+ λ∥θ∥2. (7.8)

The solution can be obtained as:

Proposition 7.5 (Regularised solution). The solution to (7.8) is

θN,λ =∆ G−1
N,λ

N∑
n=1

ΦT
nΣ−1

p yn, (7.9)

where GN,λ =∆
N∑
n=1

ΦT
nΣ−1

p Φn + λId ∈ Rd×d. (7.10)

Proof. We provide a proof in Section D.1.1.

129

Preparing for the Worst

Substituting yn into (7.9) yields the regression error

θN,λ − θ = G−1
N,λ

N∑
n=1

ΦT
nΣ−1

p ηn − λG−1
N,λθ. (7.11)

To bound this error, we need the noise ηn to concentrate. We assume that

Assumption 7.6 (Bounded disturbance). At each time t ≥ 0, the disturbance ω(t) is enclosed by
known signals ω(t) ≤ ω(t) ≤ ω(t), whose amplitude verifies∑∞

n=0 γ
nCω(tn) <∞, where

Cω(t) =∆ sup
τ∈[0,t]

∥ω(τ)− ω(τ)∥2.

Assumption 7.7 (Sub-Gaussian observations). At each time t ≥ 0, the combined noise η(t) is an
independent sub-Gaussian noise with covariance proxy Σp ∈ Rp×p:

∀u ∈ Rp, E [exp (uTη(t))] ≤ exp
(1

2u
TΣpu

)
.

Under these assumptions, we can derive a confidence ellipsoid for θ.

Theorem 7.8 (Confidence ellipsoid, a matricial version of Abbasi-Yadkori, Pál, and
Szepesvári, 2011). Under Assumption 7.7, it holds with probability at least 1− δ that

∥θN,λ − θ∥GN,λ
≤ βN (δ), (7.12)

with

βN (δ) =∆
√√√√2 log

(
det(GN,λ)1/2

δ det(λId)1/2

)
+ (λd)1/2∥θ∥∞. (7.13)

Proof. We provide a proof in Section D.1.2.

7.3 State interval prediction

In this section, we view our dynamics (7.3) of Assumption 7.4 as an instance of themore general
context of the Linear Parameter-Varying (LPV) representation of the dynamics (J.S. Shamma,
2012; Marcos and Balas, 2004; J. Shamma and Cloutier, 1993; Tan, 1997)

ẋ(t) = A(θ(t))x(t) +Bu(t) +Dω(t), t ≥ 0, (7.14)

130

7.3 State interval prediction

where the (known) matrix function A : Θ→ Rn×n is only locally bounded (continuous) and
does not have to be linear in θ, and where unknown parameters θ(t) are free to evolve within
the known set of admissible values Θ, θ ∈ Ld∞.

Moreover, we assume that Assumption 7.6 is verified, such that the input ω(t) belongs to a
known bounded interval [ω(t), ω(t)] for all t ∈ R+, which is the standard hypothesis for interval
estimation (D. Efimov and Raïssi, 2016; Raïssi and D. Efimov, 2018). We also suppose in the
following Assumption 7.9 that the system (7.14) generates stable trajectories with a bounded
state x for the applied class of inputs u(t), ω(t), and the initial conditions x(0) are constrained
to belong to a given interval [x0, x0].

Assumption 7.9 (Bounded state). In the system (7.14), x ∈ Ln∞.
In addition, x(0) ∈ [x0, x0] for some known x0, x0 ∈ Rn.

Note that since the functionA and the set Θ are known, and θ ∈ Θ, then there exist matrices
A,A ∈ Rp×p, which can be easily computed, such that

A ≤ A(θ) ≤ A, ∀θ ∈ Θ.

The objective of this section is to design an interval predictor for the system (7.14), which
takes the information on the initial conditions [x0, x0], the admissible bounds on the values of
the exogenous input [ω(t), ω(t)], the information about A(·) and Θ (e.g. the matrices A,A, but
not the instant value of θ(t)) and generates bounded interval estimates x(t), x(t) ∈ Rp such that

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0. (7.2)

In the presence of uncertainty (unknown parameters θ or/and external disturbances ω(t))
the design of a conventional estimator or predictor, approaching the ideal value of the state,
can be realised under restrictive assumptions only. However, an interval estimation/prediction
remains frequently feasible: using input-output information an algorithm evaluates the set of
admissible values (interval) for the state at each instant of time (D. Efimov and Raïssi, 2016;
Raïssi and D. Efimov, 2018). The interval length must be minimised via a parametric tuning of
the system, and it is typically proportional to the size of the model uncertainty (Chebotarev
et al., 2015). It is worth stressing that the interval estimation or prediction is not a relaxation of
the original problem, in fact it is an improvement since the interval mean value can be used
as the state pointwise estimate, while the interval bounds provide a simultaneous accuracy
evaluation for given uncertainty.

There are many approaches to design interval/set-membership estimators and predictors
(Jaulin, 2002; Kieffer and Walter, 2004; Olivier Bernard and J.-L. Gouzé, 2004; Moisan, O.

131

Preparing for the Worst

Bernard, and J. Gouzé, 2009), and this section focuses on the design based on the monotone
systems theory (Olivier Bernard and J.-L. Gouzé, 2004; Moisan, O. Bernard, and J. Gouzé,
2009; Raïssi, Videau, and Zolghadri, 2010; Raïssi, D. Efimov, and Zolghadri, 2012; D. Efimov,
L.M. Fridman, et al., 2012). In such a way the main difficulty for synthesis consists in ensuring
cooperativity of the interval error dynamics by a proper design of the algorithm. As it has been
shown in (Mazenc and O. Bernard, 2011; Raïssi, D. Efimov, and Zolghadri, 2012; Combastel,
2013), such a complexity of the design can be handled by applying an additional transformation
of coordinates, which maps a stable system into a stable and monotone one. An approach
for selection of a constant similarity transformation matrix representing a given interval of
matrices to an interval of Metzler matrices (providing monotonicity) has been developed in
(D. Efimov, Raïssi, Chebotarev, et al., 2013a; Chebotarev et al., 2015).

When designing a predictor, the main difficulty to overcome is the predictor stability, which
contrarily to an observer cannot be imposed by a proper design of the gains. An interval
inclusion of the uncertain components can be restrictive and transform an initially stable system
to an unstable one. In other words, an important problem is to keep the interval predictor
stability in the presence of uncertainties and saving the interval inclusion property of the
estimates, then an unstable system can definitely enclose the trajectories of a stable one, but
at the price of precision. To solve this problem, first, a generic predictor is proposed for an
LPV system, whose estimates can be combined with the interval frequency-based estimator
presented earlier. To analyse the stability of the predictor, which is modelled by a nonlinear
Lipschitz dynamics, a novel non-conservative Lyapunov function is developed, whose features
can be verified through solution of linear matrix inequalities (LMIs). Second, we revisit the case
of Linear Time-Invariant (LTI) models and demonstrate an asymptotic accuracy improvement
that can be achieved if a piece of additional information about external signals is given: the
admissible interval of frequency spectrum. Finally, the utility of the developed theory is
demonstrated with a safe motion planning application on highway-env.

The section is organised as follows: in Section 7.3.1, we start by giving an introduction to
the theory of interval estimation for LTI systems, before considering a motivating example. An
improved interval predictor is presented in Section 7.3.2. The asymptotic accuracy is enhanced
using frequency-based estimation in Section 7.3.3. Application of the developed theory to the
problem of path planning for an autonomous vehicle is shown in Section 7.3.4.

7.3.1 Preliminaries

We first give some background on interval arithmetic and nonnegative systems, before consid-
ering a motivating example.

132

7.3 State interval prediction

Interval arithmetic

Lemma 7.10 (D. Efimov, L.M. Fridman, et al., 2012). Let x ∈ Rn be a vector variable, x ≤ x ≤ x
for some x, x ∈ Rn.

(1) If A ∈ Rm×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (7.15)

(2) If A ∈ Rm×n is a matrix variable and A ≤ A ≤ A for some A,A ∈ Rm×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax ≤ A+

x+ −A+x− −A−
x+ +A−x−. (7.16)

Furthermore, if −A = A ≤ 0 ≤ A, then the inequality (7.16) can be simplified:

−A(x+ + x−) ≤ Ax ≤ A(x+ + x−).

Nonnegative systems

Definition 7.11 (Hurwitz). A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues have
negative real parts.

Definition 7.12 (Metzler). A matrix A ∈ Rn×n is called Metzler if all its elements outside the
main diagonal are nonnegative.

Any solution of the LTI system

ẋ(t) = Ax(t) +Bu(t) +Dω(t), t ≥ 0, (7.17)
y(t) = Cx(t) + Eω(t),

with x(t) ∈ Rn, y(t) ∈ Rp and a Metzler matrix A ∈ Rp×p, is elementwise nonnegative for all
t ≥ 0 provided that x(0) ≥ 0, u : R+ → Rq+, ω : R+ → Rr+ and B ∈ Rp×q

+ , D ∈ Rp×r
+ (Farina

and Rinaldi, 2000; Smith, 1995). The output solution y(t) is nonnegative if C ∈ Rs×p+ and
E ∈ Rs×r+ . Such dynamical systems are called cooperative (monotone) or nonnegative if only
initial conditions in Rn+ are considered (Farina and Rinaldi, 2000; Smith, 1995).

133

Preparing for the Worst

Lemma 7.13 (Raïssi, D. Efimov, and Zolghadri, 2012). Given the matrices A ∈ Rp×p, Y ∈
Rp×p and C ∈ Rs×p. If there is a matrix L ∈ Rp×s such that the matrices A− LC and Y have the
same eigenvalues, then there is a matrix S ∈ Rp×p such that Y = S(A− LC)S−1 provided that
the pairs (A− LC,χ1) and (Y, χ2) are observable for some χ1 ∈ R1×p, χ2 ∈ R1×p.

This result allows to represent the system (7.17) in its nonnegative form via a similarity
transformation of coordinates.

Lemma 7.14 (D. Efimov, Raïssi, Chebotarev, et al., 2013a). Let D ∈ Ξ ⊂ Rp×p be a matrix
variable satisfying the interval constraints Ξ = {D ∈ Rp×p : Da −∆ ≤ D ≤ Da + ∆} for some
DT
a = Da ∈ Rp×p and ∆ ∈ Rp×p

+ . If for some constant µ ∈ R+ and a diagonal matrix Υ ∈ Rp×p

the Metzler matrix Y = µEp×p −Υ has the same eigenvalues as the matrix Da, then there is an
orthogonal matrix S ∈ Rp×p such that the matrices STDS are Metzler for all D ∈ Ξ provided that
µ > p||∆||max.

In the last lemma, the existence of similarity transformation is proven for an interval of
matrices, e.g. in the case of LPV dynamics.

Amotivating example

Following the result of Lemma 7.10, there is a straightforward solution to the problem:

Proposition 7.15. Let Assumptions 7.6 and 7.9 be satisfied for the system (7.14), then the interval
predictor

ẋ(t) = A+x+(t)−A+
x−(t)−A−x+(t) +A

−
x−(t) +Bu(t) +D+ω(t)−D−ω(t),

ẋ(t) = A
+
x+(t)−A+x−(t)−A−

x+(t) +A−x−(t) +Bu(t) +D+ω(t)−D−ω(t),

with x(0) = x0, x(0) = x0,

(7.18)

ensures the inclusion property (7.2).

Proof. The relations (7.2) can easily be obtained by recursively applying Lemma 7.10 at each
time step.

Unfortunately, the stability analysis of the system (7.18) is more tricky. Indeed, (7.18) is a
purely nonlinear system (since x+, x−, x+ and x− are globally Lipschitz functions of the state

134

7.3 State interval prediction

0 1 2 3 4 5
t

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x(t)

x(t), x(t)

Figure 7.4 – The results of prediction by (7.18): even in such a simplistic setting, the predictor is unstable
and diverges quickly.

x and x), whose robust stability with respect to the bounded external inputs ω and ω can be
assessed if a suitable Lyapunov function is found. And it is easy to find an example, where the
matrices A and A are stable, but the system (7.18) is not:

Example (motivating). Consider a scalar system

ẋ(t) = −θ(t)x(t) + ω(t), t ≥ 0,

where x(t) ∈ R with x(0) ∈ [x0, x0] = [1.0, 1.1], θ(t) ∈ Θ = [θ, θ] = [0.5, 1.5] and ω(t) ∈
[ω, ω] = [−0.1, 0.1] for all t ≥ 0. Obviously, Assumptions 7.6 and 7.9 are satisfied, and this
uncertain dynamics produces bounded trajectories (to prove this consider a Lyapunov function
V (x) = x2). Then the interval predictor (7.18) takes the form

ẋ(t) = −θx+(t) + θx−(t) + ω,

ẋ(t) = −θx+(t) + θx−(t) + ω.

The results of simulation are shown in Figure 7.4. As we can conclude, additional consideration
and design are needed to properly solve the posed problem.

7.3.2 Interval predictor design

Note that, in related papers (Ait Rami, Cheng, and Prada, 2008; Raïssi, Videau, and Zolghadri,
2010; Bolajraf, Rami, and Helmke, 2011; D. Efimov, Raïssi, Chebotarev, et al., 2013a; D. Efimov,
Raïssi, and Zolghadri, 2013; Chebotarev et al., 2015), various interval observers for LPV systems
have been proposed, but in those works the cooperativity and stability of the estimation error
dynamics are ensured by a proper selection of observer gains and/or by design of control

135

Preparing for the Worst

algorithms, which can be dependent on x, x and guarantee the observer robust stability. For an
interval predictor there is no such a freedom, and a careful selection of hypotheses has to be
made in order to provide a desired solution. We will additionally assume the following:

Assumption 7.16. There exist a matrix A0 ∈ Rp×p and matrices ∆Ai ∈ Rp×p, i ∈ [M] for some
M ∈ N+ such that the following relations are satisfied for all θ ∈ Θ:

A(θ) = A0 +
M∑
i=1

λi(θ)∆Ai,

M∑
i=1

λi(θ) = 1; λi(θ) ∈ [0, 1], i ∈ [M].

Therefore, it is assumed that the matrix A(θ) for any θ ∈ Θ can be embedded in a polytope
defined byM known vertices ∆Ai with the given centre A0.

To connect this assumption to the results obtained from model estimation in previous
section, we can enclose the confidence ellipsoid C[N],δ on θ obtained from (7.12) at time t = tN

into a polytope P on A(θ). For simplicity, we present here a simple but coarse strategy: bound
the ellipsoid by its enclosing sphere, and then the sphere by its enclosing hypercube. We obtain

P =
{
AN +

M∑
i=1

λi∆AN,i : λ ≥ 0,
M∑
i=1

λi = 1
}
, (7.19)

where

AN = A+ θT
N,λϕ, M = 2d

∆AN,i =
√

βN (δ)
λmax(GN,λ)hi

⊤ϕ, hi ∈ {−1, 1}d.

Another strategy presented in Section D.2 produces a much tighter polytope, at the price of an
increased computational cost required by the diagonalisation of GN,λ.

In the rest of this section, we will temporarily consider that N is fixed and consider the
interval prediction problem for t ≥ tN . For simplicity of notations, we will keep denoting AN
and ∆AN,i as A0 and δAi, and tN = 0.

For the given centre A0 to admit useful properties of nonnegative systems, we will further
require that it is Metzler. More precisely, according to the results of Lemmas 7.13 and 7.14,
this can be imposed by applying a properly designed similarity transformation, which maps a
matrix (interval of matrices) to aMetzler one. Design of such a transformation is not considered
in this chapter, and we will just suppose the following:

136

7.3 State interval prediction

Assumption 7.17. There exists a nonsingular matrix Z ∈ Rp×p such that Z−1A0Z is Metzler.

In practice, this assumption is often verified. It is for instance the case whenever A0 is
diagonalizable, or a method from (D. Efimov, Raïssi, Chebotarev, et al., 2013b) computes a
similarity transformation Z when the system is observable with respect to a scalar output. To
simplify the notation, we further assume that Z = Ip so that the system (7.14) has already been
put in the right form:

ẋ(t) = [A0 +
M∑
i=1

λi(θ(t))∆Ai]x(t) +Bu(t) +Dω(t).

Denote
∆A+ =

M∑
i=1

∆A+
i , ∆A− =

M∑
i=1

∆A−
i ,

then the following interval predictor can be designed:

Theorem 7.18. Let Assumptions 7.6, 7.9, 7.16 and 7.17 be satisfied for the system (7.14), then an
interval predictor

ẋ(t) = A0x(t)−∆A+x
−(t)−∆A−x

+(t) +Bu(t) +D+ω(t)−D−ω(t),

ẋ(t) = A0x(t) + ∆A+x
+(t) + ∆A−x

−(t) +Bu(t) +D+ω(t)−D−ω(t),

with x(0) = x0, x(0) = x0

(7.20)

ensures the inclusion property (7.2). If there exist diagonal matrices P , Q, Q+, Q−, Z+, Z−, Ψ+,
Ψ−, Ψ, Γ ∈ R2p×2p such that the following LMIs are satisfied:

P + min{Z+, Z−} > 0, Υ ⪯ 0, Γ > 0,

Q+ min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0,

where

Υ =


Υ11 Υ12 Υ13 P

Υ⊤
12 Υ22 Υ23 Z+

Υ⊤
13 Υ⊤

23 Υ33 Z−

P Z+ Z− −Γ

 ,
Υ11 = A⊤P + PA+Q, Υ12 = A⊤Z+ + PR+ + Ψ+,

137

Preparing for the Worst

Υ13 = A⊤Z− + PR− + Ψ−, Υ22 = Z+R+ +R⊤
+Z+ +Q+,

Υ23 = Z+R− +R⊤
+Z− + Ψ, Υ33 = Z−R− +R⊤

−Z− +Q−,

A =
[
A0 0
0 A0

]
, R+ =

[
0 −∆A−

0 ∆A+

]
, R− =

[
∆A+ 0
−∆A− 0

]
,

then the predictor (7.20) is input-to-state stable with respect to the inputs ω, ω.

Note the requirement that the matrix P has to be diagonal is not restrictive, since for a
Metzler matrixA, its stability is equivalent to existence of a diagonal solution P of the Lyapunov
equation A⊤P + PA ≺ 0 (Farina and Rinaldi, 2000).

Proof. First, let us demonstrate (7.2), to this end note that

−∆A−
i ≤ λi∆Ai = λi∆A+

i − λi∆A
−
i ≤ ∆A+

i

for any λi ∈ [0, 1], then using Lemma 7.10 we obtain

−∆A+
i x

− −∆A−
i x

+ ≤ λi∆Aix ≤ ∆A+
i x

+ + ∆A−
i x

−

provided that x ≤ x ≤ x. Hence,

−∆A+x
− −∆A−x

+ ≤
N∑
i=1

λi∆Aix ≤ ∆A+x
+ + ∆A−x

−

and introducing usual interval estimation errors e = x− x and e = x− x and calculating their
dynamics we get:

ė(t) = A0e(t) + r1(t) + r2(t),

ė(t) = A0e(t) + r1(t) + r2(t),

where

r1 =
M∑
i=1

λi∆Aix+ ∆A+x
− + ∆A−x

+,

r2 = Dω −D+ω +D−ω,

r1 = −
M∑
i=1

λi∆Aix+ ∆A+x
+ + ∆A−x

−,

r2 = D+ω −D−ω −Dω.

138

7.3 State interval prediction

Non-negativity or r2 and r2 follows from Assumption 7.6 and Lemma 7.10. The signals r1 and
r1 are also nonnegative provided that (7.2) holds and due to the calculations above. Note that
the relations (7.2) are satisfied for t = 0 by construction and Assumption 7.9, then since the
matrix A0 is Metzler by Assumption 7.16, we have that ėi(0) ∈ Rp+ or ėi(0) ∈ Rp+ provided that
ei(0) = 0 or ei(0) = 0, respectively, for any i ∈ [p] (the error cannot become negative). Next,
repeating these arguments it is possible to show that e(t) ≥ 0 and e(t) ≥ 0 for all t ≥ 0 (Smith,
1995), which confirms the relations (7.2).

Second, let us consider the stability of (7.20), and for this purpose define the extended state
vector as X = [x⊤ x⊤]⊤, whose dynamics admit the differential equation

Ẋ(t) = AX(t) +R+X
+(t)−R−X

−(t) + δ(t),

where

δ(t) =
[
−D− D+

D+ −D−

] [
ω(t)
ω(t)

]
.

is a bounded input vector, whose norm is proportional to ω, ω. Consider a candidate Lyapunov
function

V (X) = X⊤PX +X⊤Z+X
+ −X⊤Z−X

−

=
2n∑
k=1

Pk,kX
2
k + (Z+)k,kXkX

+
k − (Z−)k,kXkX

−
k

=
2n∑
k=1

Pk,kX
2
k + (Z+)k,k|Xk|X+

k + (Z−)k,k|Xk|X−
k ,

which is positive definite provided that

P + min{Z+, Z−} > 0,

and whose derivative for the system dynamics takes the form

V̇ = 2Ẋ⊤PX + 2Ẋ⊤Z+X
+ − 2Ẋ⊤Z−X

−

=


X

X+

−X−

δ


⊤

Υ


X

X+

−X−

δ

−X⊤QX − (X+)⊤Q+X
+

− (X−)⊤Q−X
− − 2(X+)⊤ΨX− − 2(X+)⊤Ψ+X

− 2(−X−)⊤Ψ−X + δ⊤Γδ.

139

Preparing for the Worst

Note that

(X+)⊤ΨX− = 0,

(X+)⊤Ψ+X ≥ 0,

(−X−)⊤Ψ−X ≥ 0

for any diagonal matrix Ψ and
Ψ+ ≥ 0, Ψ− ≥ 0.

Hence, if Υ ⪯ 0, as it is assumed in the theorem, we obtain that

V̇ ≤ −X⊤QX − (X+)⊤Q+X
+ − (X−)⊤Q−X

−

− 2(X+)⊤Ψ+X − 2(−X−)⊤Ψ−X + δ⊤Γδ

≤ −X⊤ΩX + δ⊤Γδ,

where
Ω = Q+ min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0

is a diagonal matrix. The substantiated properties of V and its derivative imply that (7.20) is
input-to-state stable (Khalil, 2002) with respect to the input δ (or, by its definition, with respect
to (ω, ω)).

Remark 7.19 (Global constraints). The LMIs of the above theorem are not conservative, since
the restriction on positive definiteness of involved matrix variables is not imposed on all of them
separately, but on their combinations:

P + min{Z+, Z−} > 0, Γ > 0,

Q+ min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0,

then some of them can be sign-indefinite or negative-definite ensuring the fulfilment of the last
inequality Υ ⪯ 0.

Remark 7.20 (Asymptotic linearity). Assume that −ω = ω = const ̸= 0 and the conditions
of Theorem 7.18 are satisfied, then asymptotically x and x are negative and positive, respectively.
Therefore, the dynamics of (7.20) takes the form for sufficiently high values of t ≥ 0:

ẋ(t) = (A0 −∆A+)x(t)−∆A−x(t) +Bu(t) +D+ω −D−ω,

ẋ(t) = (A0 + ∆A+)x(t) + ∆A−x(t) +Bu(t) +D+ω −D−ω,

140

7.3 State interval prediction

0 1 2 3 4 5
t

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x(t)

x(t), x(t)

Figure 7.5 – The results of prediction by (7.20): the new predictor is stable and produces tight bounds.

which is a linear system

Ẋ(t) =
[
A0 −∆A+ −∆A−

∆A− A0 + ∆A+

]
X(t) +

[
B

B

]
u(t) +

[
−D− D+

D+ −D−

] [
ω

ω

]
, (7.21)

where as before X = [x⊤ x⊤]⊤.

Example (motivating, continue). Let us apply the predictor (7.20) to the motivating example:

ẋ(t) = − θx(t)− (θ − θ)x−(t) + ω,

ẋ(t) = − θx(t) + (θ − θ)x+(t) + ω,

where A0 = −θ is chosen, then ∆A+ = θ − θ, ∆A− = 0 and all conditions of Theorem 7.18 are
verified. The results of simulation are shown in Figure 7.5. As we can see the new predictor
generates very reasonable and bounded estimates.

7.3.3 Frequency-based interval estimation

The domain of convergence of the linear system (7.21), and hence of (7.20), can be tightened
under an additional hypothesis that ω(t) has a known and bounded frequency spectrum.
Assume that there exist two signals ω, ω : R+ → Rr and two vectors x0, x0 ∈ Rp such that

ω(t) ≤ ω(t) ≤ ω(t), ∀t ≥ 0,

x0 ≤ x(0) ≤ x0,

141

Preparing for the Worst

and there is a matrix L ∈ Rp×s such that A − LC is Hurwitz and Metzler, then an interval
observer for the system (7.17) can be written as follows (Raïssi, D. Efimov, and Zolghadri,
2012):

ẋ(t) = (A− LC)x(t) +Bu(t) + Ly(t) + (D − LE)+ω(t)− (D − LE)−ω(t),

ẋ(t) = (A− LC)x(t) +Bu(t) + Ly(t) + (D − LE)+ω(t)− (D − LE)−ω(t),

with x(0) = x0, x(0) = x0,

(7.22)

guaranteeing the desired interval relations

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0.

This solution uses only information about amplitude of the external input ω, and its precision
can be largely improved if we assume that there is also information about admissible frequency
spectrum in ω:

Lemma 7.21. Let there exist f1, f2 ∈ N+ and T,W > 0 such that

ω(t) = a0 +
f2∑

f=f1

af sin
(2πf
T

t+ ϕs

)
,

for some a0, af , ϕf ∈ R with f ∈ [f1, f2] and ||d|| ≤ W . Then for any x(0) ∈ Rn in (7.17) and
any ε > 0 there exists τ > 0 such that

|xi(t)| ≤ sup
w∈[2π

T
f1,

2π
T
f2]
|ei(jwIn −A)−1DEr|W + ε ∀t ≥ τ,

where j corresponds to the imaginary unit, provided that the matrix A is Hurwitz.

Proof. The solution of the system (7.17) can be written as follows:

x(t) = eAtx(0) +
∫ t

0
eA(t−σ)(Bu(σ) +Dω(σ))dσ,

where the first term (eAtx(0)) is converging asymptotically to zero since thematrixA is Hurwitz
by hypothesis. And in order to estimate the second term, the Bode magnitude plot can be used,
which provides the asymptotic amplitude of the state for the given frequency input. Under
the introduced hypotheses, the frequency of the input lies in the interval [2π

T f1,
2π
T f2] and the

amplitude is upper-bounded byW , then there exist constants τ > 0 and ε > 0, related with
x(0), such that the claim of the lemma is true.

142

7.3 State interval prediction

The interval observer (7.22), if we assume that ω(t) = −ω(t) = WEr and L = 0, asymp-
totically will converge to the interval [−|eiA−1BEr|W, |eiA−1BEr|W] (that corresponds to the
result of Lemma 7.21 with f1 = f2 = 0), which is the estimate from Bode plot given for the
frequency 0, and it is a well-known fact that for many stable systems the Bode magnitude
plot is a decreasing function of the frequency. Therefore, if the information about frequency
spectrum is known and it is separated from zero, then the asymptotic interval accuracy can
be significantly improved. Of course, Lemma 7.21 can be applied iteratively for a decreasing
sequence of ε > 0 and an increasing one in τ > 0.

Example. Let us illustrate these conclusions on a simple example:

A =
[
−1 1
0.1 −1

]
, B =

[
−2
1

]
, L = 0,

ω(t) = −ω(t) = 1,

x0 = [2 1]⊤, x0 = [−1 − 2]⊤.

And assume that ω(t) = d0 sin(ft+ ϕ0), f = 7, then the system trajectories and intervals are
shown in Figure 7.6.

7.3.4 Prediction for a self-driving vehicle

We consider the problem of safe decision-making for autonomous highway driving (Leurent,
2018)3.

As described in Chapter 3, an autonomous vehicle is driving on a highway populated with
N other agents, and uses Model Predictive Control to plan a sequence of decisions. To that
end, it relies on parametrized dynamical model for each agent to predict the future trajectory
of each traffic participant:

ẋi = fi(x, θi), i ∈ [Nv],

where fi are described in Chapter 3, xi ∈ R4 is the state of a vehicle, x = [x⊤
1 , . . . , xNv

⊤]⊤ ∈ R4Nv

and θi ∈ R5 is the corresponding vector of unknownparameters. Crucially, this systemdescribes
the couplings and interactions between vehicles, so that the autonomous agent can properly
anticipate their reactions. However, we assume that we do not have access to the true values of
the behavioural parameters θ = [θ1, . . . , θNv]⊤; instead, we merely know that these parameters
lie in a set of admissible values Θ ⊂ R5Nv . In order to act safely in the face of uncertainty, the
agent must consider all possible vehicle trajectories in order to take its decisions. In this section,
we focus on how to compute these trajectory enclosures through interval prediction.

3Videos and source code of all experiments are available at https://eleurent.github.io/interval-prediction/.

143

https://eleurent.github.io/interval-prediction/

Preparing for the Worst

−4

−2

0

2

4

x
1
(t

)

0 0.5τ τ
t

−2

−1

0

1

2

x
2
(t

)

x(t)

x(t), x(t)

Figure 7.6 – The results of prediction for different values of the frequency. Taking τ = 4
min

i=1,n
|λi(A)| =

5.85 and ε = 0.05, the trajectories of the interval observer (7.22) are presented for t ≤ 0.5τ , and as
we can conclude, these estimates are rather conservative. Next, for t ∈ [0.5τ, τ] the estimates given in
Lemma 7.21 for the case s1 = s2 = 0 are shown, which are already more accurate. Finally, for t ≥ τ the
estimates of Lemma 7.21 are presented for s1 = s2 = s, which demonstrate a definite improvement.

144

7.3 State interval prediction

LPV formulation

The system presented in Chapter 3 is non-linear and must be cast into the LPV form. We
approximate the non-linearities induced by the trigonometric operators through equilibrium
linearisation around yi = yLi and ψi = ψLi .

This yields the following longitudinal dynamics:

ṗxi = vi,

v̇i = θi,1(v0 − vi) + θi,2(vfi
− vi) + θi,3(pxfi

− pxi − d0 − viT),

where θi,2 and θi,3 are set to 0 whenever the corresponding features are not active.
It can be rewritten in the form

ẋ = A(θ)(x− xc) + d.

For example, in the case of two vehicles only,

x =


pxi
pxfi

vi

vfi

 , xc =


−d0 − v0T

0
v0

v0

 , d =


v0

v0

0
0



A(θ) =

i fi i fi


i 0 0 1 0
fi 0 0 0 1
i −θi,3 θi,3 −θi,1 − θi,2 − θi,3 θi,2

fi 0 0 0 −θfi,1

The lateral dynamics are in a similar form:
[
ṗyi
ψ̇i

]
=
[

0 vi

− θi,4θi,5
vi

−θi,5

] [
pyi − p

y
Li

ψi − ψLi

]
+
[
viψLi

0

]

Here, the dependency in vi is seen as an uncertain parametric dependency, i.e. θi,6 = vi, with
constant bounds assumed for vi using an overset of the longitudinal interval predictor.

145

Preparing for the Worst

Change of coordinates

In both cases, the obtained polytope centre A0 is non-Metzler. We use Lemmas 7.13 and 7.14
to compute a similarity transformation of coordinates. Precisely, we ensure that the polytope
is chosen so that its centre A0 is diagonalisable having real eigenvalues, and perform an
eigendecomposition to compute its change of basis matrix S. The transformed system x′ =
S−1(x−xc) verifies Assumption 7.16 as required to apply the interval predictor of Theorem 7.18.
Finally, the obtained predictor is transformed back to the original coordinates x by using the
interval arithmetic of Lemma 7.10.

Results

We show the resulting intervals in Figure 7.7. The target vehicle with uncertain behaviour is in
blue, while the ego-vehicle is in green. Its trajectory interval is computed over a duration of
two seconds and represented by an area filled with a colour gradient representing time. The
ground-truth trajectory is shown in blue. In Figure 7.7a, we observe that the direct predictor
(7.18) is unstable and quickly diverges to cover the whole road, thus hindering any sensible
decision-making. In prior work (Leurent, Blanco, et al., 2018), we had to circumvent this
issue by subdividing Θ and [x, x] to reduce the initial overestimations and merely delay the
divergence (Adrot and Flaus, 2003), at the price of a heavy computational load. In stark contrast,
we see in Figure 7.7b that the novel predictor (7.20) is very stable even over long horizons,
which allows the ego-vehicle to plan an overtaking manoeuvre. Until then, there was little
uncertainty in the predicted trajectory for the target vehicle was isolated, but as the ego-vehicle
cuts into its lane in Figure 7.7c, we start seeing the effects of uncertain interactions between the
two vehicles, in both longitudinal and lateral directions. Note that this formulation naturally
exhibits socially aware predictions, and accounts for these interactions. Our framework is
also quite flexible in representing different assumptions on the admissible behaviours. For
instance, we show in Figure 7.7d a simulation in which we model right-hand traffic where
drivers are expected to keep to the rightmost lane. In such a situation, it is reasonable to assume
that in the absence of any obstacle in front, a vehicle driving on the middle lane will either
stay there or return to the right lane, but has no incentive to change to the left lane. This
simple assumption on Li can easily be incorporated in the interval predictor, and enables the
emergence of a realistic behaviour when running the robust decision-making procedure: the
ego-vehicle cannot pass another vehicle by its right side, and can only overtake it by its left side.
These behaviours displaying safe reasoning under uncertainty are showcased in the attached
videos.

146

7.3 State interval prediction

(a) The naive predictor (7.18) quickly diverges

(b) The proposed predictor (7.20) remains stable

(c) Prediction during a lane change manoeuvre

(d) Prediction with uncertainty in the followed lane Li

Figure 7.7 – State intervals obtained by the two methods in different conditions.

147

Preparing for the Worst

Section conclusion

The prediction problem for uncertain LPV systems is solved by designing an interval predictor,
which is described by nonlinear differential equations, and whose stability is evaluated using a
new Lyapunov function. The corresponding robust stability conditions are expressed in terms
of LMIs. An approach is presented to improve the asymptotic accuracy of interval estimation
or prediction in LTI systems provided that the exogenous inputs have a known spectrum of
frequencies. The proficiency of the methods is demonstrated in application to a problem of
safe motion planning for a self-driving car.

7.4 Robust stabilisation and constraint satisfaction

In this section, as a first application of the estimation and prediction tools introduced above,
we set out to design a robust control u(t) that stabilises (7.3), (7.5) at a vicinity of the origin
under Assumptions 7.4, 7.6 and 7.9 such that

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, (7.6)

where [x0, x0] ⊂ X ⊂ Rp and U ⊂ Rq are given bounded constraint sets for the state and the
control, respectively.

7.4.1 Stabilising control for (7.18) and (7.20)

Note that both interval predictors, (7.18) and (7.20), admit a representation in the form

ξ̇(t) = A0ξ(t) +A1ξ
+(t) +A2ξ

−(t) + Bu(t) + δ(t), (7.23)

where ξ(t) = [x⊤(t) x⊤(t)]⊤ ∈ R2p is the extended state vector of the predictors,

δ(t) =
[

D+ −D−

−D− D+

] [
ω(t)
ω(t)

]
∈ R2p

is the external known input, B = [B⊤ B⊤]⊤,

A0 =
[

0 0
0 0

]
, A1 =

[
A+ −A−

−A−
A

+

]
, A2 =

[
−A+

A
−

A− −A+

]
for (7.18),

and
A0 =

[
A0 0
0 A0

]
, A1 =

[
0 −∆A−

0 ∆A+

]
, A2 =

[
−∆A+ 0
∆A− 0

]
for (7.20).

148

7.4 Robust stabilisation and constraint satisfaction

Note that (7.23) is a nonlinear system due to the presence of globally Lipschitz nonlinearities
ξ+(t) and ξ−(t).

Due to the inclusion property (7.2), the boundedness of ξ(t) implies the same property
of x(t). Therefore, in order to regulate (7.3) it is required to design a state feedback u(t)
minimizing the asymptotic amplitude of the state ξ(t) for given input δ(t) (D. Efimov, Raïssi,
and Zolghadri, 2013). In other words, it is necessary to design a control u(t) that input-to-state
stabilises (7.23). It is proposed to look for such a control in the form

u(t) = K0ξ(t) +K1ξ
+(t) +K2ξ

−(t) + Sδ(t), (7.24)

where K0,K1,K2 ∈ Rq×2p and S ∈ Rq×2p are the gains to be designed ((7.24) contains a
nonlinear feedback). The selection of S is simple, it has to minimise the norm of BS + I2p,
and it can be made independently ofK0,K1,K2. Therefore, denoting δ̃(t) = (BS + I2p)δ(t) the
closed-loop system (7.23), (7.24) takes the form:

ξ̇(t) = D0ξ(t) +D1ξ
+(t) +D2ξ

−(t) + δ̃(t), (7.25)

where Di = Ai + BKi for i ∈ [3], and the restrictions, which the gains K0,K1,K2 have to
respect, are given below:

Theorem 7.22. If there exist diagonal matrices P , Q, Q+, Q−, Z+, Z−, Ψ+, Ψ−, Ψ, Γ ∈ R2p×2p

such that the following linear matrix inequalities are satisfied:

P + min{Z+, Z−} > 0, Υ ⪯ 0, Γ > 0,

Q+ min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0,

where

Υ =


Υ11 Υ12 Υ13 P

Υ⊤
12 Υ22 Υ23 Z+

Υ⊤
13 Υ⊤

23 Υ33 −Z−

P Z+ −Z− −Γ

 ,
Υ11 = D⊤

0 P + PD0 +Q, Υ12 = D⊤
0 Z+ + PD1 + Ψ+,

Υ13 = PD2 −D⊤
0 Z− −Ψ−, Υ22 = Z+D1 +D⊤

1 Z+ +Q+,

Υ23 = Z+D2 −D⊤
1 Z− + Ψ, Υ33 = −Z−D2 −D⊤

2 Z− +Q−,

then (7.25) is input-to-state stable with respect to ω, ω.

149

Preparing for the Worst

Note that the requirement that the matrix P has to be diagonal is not restrictive, since for a
Metzler matrix D0 (the case of (7.18) and (7.20)), its stability is equivalent to existence of a
diagonal solution P of the Lyapunov equation D⊤

0 P + PD0 ≺ 0 (Farina and Rinaldi, 2000).

Proof. Consider a candidate Lyapunov function

V (ξ) = ξ⊤Pξ + ξ⊤Z+ξ
+ − ξ⊤Z−ξ

−

=
2p∑
k=1

Pk,kξ
2
k + (Z+)k,kξkξ+

k − (Z−)k,kξkξ−
k

=
2p∑
k=1

Pk,kξ
2
k + (Z+)k,k|ξk|ξ+

k + (Z−)k,k|ξk|ξ−
k ,

which is positive definite provided that

P + min{Z+, Z−} > 0

since all terms in V are quadratic-like, and whose derivative for the system (7.25) dynamics
takes the form

V̇ = 2ξ̇⊤Pξ + 2ξ̇⊤Z+ξ
+ − 2ξ̇⊤Z−ξ

−

=


ξ

ξ+

ξ−

δ̃


⊤

Υ


ξ

ξ+

ξ−

δ̃

− ξ⊤Qξ − (ξ+)⊤Q+ξ
+

− (ξ−)⊤Q−ξ
− − 2(ξ+)⊤Ψξ− − 2(ξ+)⊤Ψ+ξ

− 2(−ξ−)⊤Ψ−ξ + δ̃⊤Γδ̃.

Note that

(ξ+)⊤Ψξ− = 0,

(ξ+)⊤Ψ+ξ ≥ 0,

(−ξ−)⊤Ψ−ξ ≥ 0

for any diagonal matrix Ψ and Ψ+ ≥ 0, Ψ− ≥ 0. Hence, if Υ ⪯ 0, as it is assumed in the
theorem, we obtain that

V̇ ≤ − ξ⊤Qξ − (ξ+)⊤Q+ξ
+ − (ξ−)⊤Q−ξ

−

− 2(ξ+)⊤Ψ+ξ − 2(−ξ−)⊤Ψ−ξ + δ̃⊤Γδ̃

≤ − ξ⊤Ωξ + δ̃⊤Γδ̃,

150

7.4 Robust stabilisation and constraint satisfaction

where
Ω = Q+ min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0,

is a diagonal matrix. The substantiated properties of V and its derivative imply that (7.25) is
input-to-state stable (E. D. Sontag, 2001; Dashkovskiy, D.V. Efimov, and E. Sontag, 2011) with
respect to the input δ̃ (or, by its definition, with respect to (ω, ω)).

Following the proof of Theorem 7.22, for all ξ ∈ R2p,

ξ⊤(P + min{Z+, Z−})ξ ≤ V (ξ) ≤ ξ⊤(P + Z+
+ + Z+

−)ξ,

then
V̇ ≤ −αV + δ̃⊤Γδ̃

for all ξ, δ̃ ∈ R2p, where
α = min

i∈[2p]
λi
(
Ω(P + Z+

+ + Z+
−)−1

)
,

and we can define the set (recall that the signal δ̃(t) is known for all t ≥ 0)

Xf = {ξ ∈ R2p : V (ξ) ≤ α−1 sup
t≥0
|δ̃⊤(t)Γδ̃(t)|}, (7.26)

as the set that asymptotically attracts all trajectories in (7.25).
The conditions of Theorem 7.22 assume that the control gainsK0,K1,K2 are given, let us

find these gains as solutions of linear matrix inequalities:

Corollary 7.23. If there exist diagonal matrices P , Q̃, Q̃+, Q̃−, Z+, Z−, Ψ̃+, Ψ̃−, Ψ̃, Γ ∈ R2p×2p

and matrices U0, U1, U2 ∈ Rq×2p such that the following linear matrix inequalities are satisfied:

P > 0, Z+ > 0, Z− > 0, Π ⪯ 0, Γ > 0,

Q̃+ min{Q̃+, Q̃−}+ 2 min{Ψ̃+, Ψ̃−} > 0,

where

Π =


Π11 Π12 Π13 I

Π⊤
12 Π22 Π23 I

Π⊤
13 Π⊤

23 Π33 −I
I I −I −Γ

 ,
Π11 = P−1A⊤

0 +A0P
−1 + U⊤

0 B⊤ + BU0 + Q̃,

Π12 = A1Z
−1
+ + BU1 + P−1A⊤

0 + U⊤
0 B⊤ + Ψ̃+,

Π13 = A2Z
−1
− + BU2 − P−1A⊤

0 − U⊤
0 B⊤ − Ψ̃−,

151

Preparing for the Worst

Π22 = Z−1
+ A⊤

1 +A1Z
−1
+ + U⊤

1 B⊤ + BU1 + Q̃+,

Π23 = A2Z
−1
− + BU2 − Z−1

+ A⊤
1 − U⊤

1 B⊤ + Ψ̃,

Π33 = Q̃− − Z−1
− A⊤

2 −A2Z
−1
− − U⊤

2 B⊤ − BU2,

then (7.25) for K0 = U0P , K1 = U1Z+ and K2 = U2Z− is input-to-state stable with respect to
the inputs ω, ω.

Proof. Note that the conditions P > 0, Z+ > 0, Z− > 0 imply P + min{Z+, Z−} > 0, and

Υ =


P 0 0 0
0 Z+ 0 0
0 0 Z− 0
0 0 0 I2p

Π


P 0 0 0
0 Z+ 0 0
0 0 Z− 0
0 0 0 I2p


under substitutionU0 = K0P

−1,U1 = K1Z
−1
+ ,U2 = K2Z

−1
− , Q̃ = P−1QP−1, Q̃+ = Z−1

+ Q+Z
−1
+ ,

Q̃− = Z−1
− Q−Z

−1
− , Ψ̃ = Z−1

− ΨZ−1
+ , Ψ̃+ = P−1Ψ+Z

−1
+ and Ψ̃− = P−1Ψ−Z

−1
− . Hence, Υ ⪯ 0

provided that Π ⪯ 0. The inequalities Q̃ + min{Q̃+, Q̃−} + 2 min{Ψ̃+, Ψ̃−} > 0 and Q +
min{Q+, Q−}+ 2 min{Ψ+,Ψ−} > 0 are equivalent due to the diagonal structure of all matrices.
Therefore, under introduced restrictions all conditions of Theorem 7.22 are verified forK0 =
U0P ,K1 = U1Z+ andK2 = U2Z−.

The requirements imposed on P,Z+, Z− in this corollary are more restrictive than the
conditions of Theorem 7.22, but it allows the gainsK0,K1,K2 to be efficiently calculated.

Under conditions of Theorem 7.22, the control (7.24) ensures stabilisation of the predictor
(7.23) (i.e. (7.18) or (7.20)) in a vicinityXf of the origin. The size of the vicinity is proportional
to the system (7.3) uncertainty (it can be optimized by the choice ofK0,K1,K2), and due to
(7.2), it implies that the system (7.3) also will reach a neighbourhood of the origin under the
control (7.24). Hence, the posed control problem would be solved provided that (7.6) holds.
In order to ensure the robust constraint satisfaction we consider an MPC design in the next
section.

7.4.2 Robust constraint satisfaction

For brevity, the results of this section are given for the predictor (7.20) only (and the case
of (7.18) can be considered by skipping Assumption 7.17 in the formulation). We need the
following hypothesis in this section:

152

7.4 Robust stabilisation and constraint satisfaction

Assumption 7.24. There existK0,K1,K2 ∈ Rq×2p satisfying the conditions of Theorem 7.22 for
the matrices A0 and ∆Ai with i ∈ [M] calculated in (7.19) for C[N],δ = Θ, and

Xf ⊂ X2,

where the corresponding set Xf is given in (7.26), and

K0ξ +K1ξ
+ +K2ξ

− + Sδ(t) ∈ U

for any ξ ∈ Xf and t ≥ 0.

These properties guarantee that there exists a control (7.24) that can be always applied
to stabilise the predictor (7.20) (the worst-case estimate set Θ is used to calculate the system
matrices) and into the set Xf the restrictions (7.6) also hold for such a control. Recall that we
denote dt > 0 the time step and tn = ndt for n ∈ N+, and define T > dt as the MPC prediction
horizon, i.e. at each tn ≥ 0, to design the input u(t), an optimal control problem is solved on
the interval [tn, tn + T], and this optimal control problem is resolved again after dt units of
time (on the interval [tn, tn+1 = tn + dt) the obtained optimal control is applied). Then the
developed MPC algorithm can be formalized as follows for any tn ≥ 0:

1. Take the confidence region C[N],δ from (7.12) and calculate the matrices A0 and ∆Ai with
i ∈ [2d] for (7.19).

2. Find

U = arg min
u:[tn,tn+T]→Rq

ξ(tn+T)⊤W1ξ(tn+T)+
∫ tn+T

tn
ξ⊤(s)W2ξ(s)+u(s)⊤W3u(s)ds, (7.27)

whereWi ∈ R2p×2p are given positive definite symmetric matrices, such that the following
constraints are satisfied:
(a) ξ : [tn, tn + T]→ R2p is a solution of (7.20) with t = tn.
(b) ξ(s) ∈ X2 and u(s) ∈ U for s ∈ [tn, tn + T];
(c) ξ(tn + T) ∈ Xf .

3. For t ∈ [tn, tn+1) select

u(t) =

U(t) ξ(tn) /∈ Xf
(7.24) ξ(tn) ∈ Xf

, (7.28)

whereK0,K1,K2 are taken from Assumption 7.24.

153

Preparing for the Worst

As we can conclude, the idea of the proposed dual MPC scheme (see also Michalska and
D. Q. Mayne, 1993; D. Mayne, Rawlings, et al., 2000; D. Mayne, Raković, et al., 2009) is to use
an open-loop optimal control to reach a neighbourhood of the origin Xf ensuring a robust
constraint satisfaction (7.6), where a closed-loop control (7.24) can be applied, which provides
asymptotic performances (stability and robustness, also with constraint satisfaction due to
Assumption 7.24 and the definition of the terminal set (7.26)).

The main result of the section is as follows:

Theorem 7.25. Let x0, x0 ∈ X, and Assumptions 7.4, 7.6, 7.9, 7.17 and 7.24 hold with ω, ω − ω
being non-increasing functions of t ≥ 0. Then the closed-loop system given by (7.3), (7.5), (7.20)
and (7.28) has the following properties:

1. Input-to-state stability for x, x and practical input-to-state stability for x with respect to ω, ω
in the terminal set Xf ;

2. Recursive feasibility with reaching Xf in a finite time;

3. Constraint satisfaction (7.6).

Proof. Recall that θ ∈ C[N],δ for all tN ≥ 0 due to the result of Theorem 7.8, and we can enforce
that the size of the set C[N],δ does not grow with time by iteratively taking the intersection:
C[N],δ =∆ “C[N],δ from (7.12)” ∩ C[N−1],δ.

Note that if for some tn ≥ 0 the initial conditions (x⊤(tn), x⊤(tn))⊤ ∈ Xf ⊂ X2, then the
control (7.28) equals to (7.24). According to the definition (7.26) of Xf and Assumption 7.24,
ξ(t) ∈ Xf and u(t) ∈ U for all t ≥ tn, and the system is input-to-state stable with respect to
ξ(t) = [x⊤(t) x⊤(t)]⊤ due to the result of Theorem 7.22. Since |x(t)| ≤ |ξ(t)| under (7.2) for
t ≥ tn and |ξ(tn)| ≤ |x(tn)|+ ζ with ζ > 0 (that is well defined for all initial conditions in Xf),
the practical input-to-state stability for the variable x(t) follows. The point 1. is proven.

Now, let (x⊤(0), x⊤(0))⊤ ∈ X2\Xf and assume that there is a solution of the optimal control
problem (7.27). Applying such a control through (7.28) for t ∈ [0, dt), we have that ξ(t) ∈ X
and u(t) ∈ U on this time interval. At t = t1 = dt, if again (x⊤(t1), x⊤(t1))⊤ ∈ X2 \ Xf , then
it recursively exists a solution to (7.27) since the set C[N],δ is shrinking by its design and the
signals ω(t), ω(t) − ω(t) are non-increasing by hypotheses of the theorem (i.e., the solution
obtained at tn is a sub-optimal branch of the solution calculated at tn−1 for all n ≥ 1). Thus,
recursive feasibility follows. Note that Xf is a neighbourhood of the origin, and the given
in (7.27) cost with positive definite matricesW1,W2 andW3 is minimized inside Xf . Using
this and sub-optimality arguments, since ξ(tn + T) ∈ Xf in (7.27) (provided that the optimal
control U is applied) and [x(tn), x(tn)] ⊂ [x(tn−1 + dt), x(tn−1 + dt)] for all n ≥ 1, there is a

154

7.4 Robust stabilisation and constraint satisfaction

finite time instant tk ≥ T such that (x⊤(tk), x⊤(tk))⊤ ∈ Xf , and the system further stays there.
The point 2. is substantiated.

The point 3. is a consequence of the previous analysis: under the control (7.28) the con-
strains (7.6) are always satisfied.

Remark 7.26. At each tN , N ∈ N+, the gains K0,K1,K2 can be recalculated for the currently
estimated set C[N],δ. If next, the obtained in (7.26) set Xf satisfies Xf ⊂ X2, andK0ξ +K1ξ

+ +
K2ξ

− + Sδ(t) ∈ U for any ξ ∈ Xf and t ≥ 0, as in Assumption 7.24, then the new set Xf and
these updated gainsK0,K1,K2 can be used in (7.28).

We illustrate the efficiency of the proposed MPC approach by numerical experiments.

7.4.3 Numerical experiment

We tackle the problem of the robust adaptive lateral control of an autonomous vehicle for a
lane-keeping application, implemented in highway-env. In contrast with Chapter 3 where
we adopted a kinematic standpoint and simply assumed that the vehicle acceleration could
be controlled directly, we dive deeper into a dynamical description subjected to unknown tire
friction forces. We still represent the state of a rigid vehicle by its position (px, py), its yaw angle
ψ, its velocity (vx, vy) in the body frame and yaw rate r, and additionally denote its mass as
m, its moment of inertia as Iz , and its front and rear axle positions as a, b. We consider the
Dynamical Bicycle Model described in (Awan, 2014, Chapter 3.2): the vehicle is moving at
constant longitudinal speed u, and the lateral force Fy of a tire with slip angle α is assumed to
be linear with an unknown friction coefficient Cα: Fy = Cαα. The slip angle of the front and
rear tires are respectively denoted as αf , αr, along with the corresponding friction coefficients.
Under a small angle approximation for ψ, αf , αr, Newton’s second law of motion yields the
linear dynamics (7.3) with

x =


py

ψ

vy

r

 , θ =
[
Cαf

Cαr

]
, A =


0 vx 1 0
0 0 0 1
0 0 0 −vx
0 0 0 0

 , B =


0
0
2
m
a
Iz

 ,

ϕ1 = −2
mvxIz


0 0 0 0
0 0 0 0
0 0 Iz aIz

0 0 am a2m

 , ϕ2 = −2
mvxIz


0 0 0 0
0 0 0 0
0 0 Iz −bIz
0 0 −bm b2m

 .

155

Preparing for the Worst

Figure 7.8 – Top: the model estimation showing the confidence region C[N],δ from (7.23) at different
times tN . Bottom: a lane keeping application, where a car must follow a lane-center curve under
unknown friction and perturbations. Xf is shown in green, and ξ(t) as an area with a color gradient.

Instead of simply stabilising the vehicle state x, we track the lateral position yr(t) of the lane cen-
tre. However, we do not have access to a full state reference xr(t) = [yr(t), ψr(t), vy,r(t), rr(t)]T

consistent with the dynamics (7.3). Thus, we define the state x̃ = x − [yr(t), 0, 0, 0]T and
consider the remaining unknown terms [0, ψr(t), vy,r(t), rr(t)] and ur(t) as perturbations ω(t),
bounded since xr, ur are assumed to belong to X = ±[3, 2, 6, 6]T and U = ±[10].

The Figure 7.8 depicts our approach. The confidence region C[N],δ from (7.12) is shown in the
top graph, and shrinks with time. To simplify verification of Assumption 7.17 for this example,
an auxiliary preliminary feedback has been applied shifting the eigenvalues of the closed-loop
system. The robust stability of this feedback is assessed with the LMI of Theorem 7.22, and
we compute the corresponding basin of attraction Xf from (7.26), represented in green in
the bottom subfigure. Then, we use a sampling-based MPC scheme (Homem-de-Mello and
Bayraksan, 2014) to solve (7.27) and bring ξ(t) into Xf in T = 3 s. The associated interval
prediction ξ(t) from (7.23) is represented with a colour gradient from t = tn (red) to t = tn+T

156

7.5 Minimax control with generic costs

(green). Once the vehicles enters Xf , we finally switch to the closed-loop feedback (7.24)
following (7.28) for the rest of the simulation4.

7.5 Minimax control with generic costs

As we discussed in Section 7.1, the ability to stabilise a system in the neighbourhood of the
origin is not sufficient to tackle many tasks for which there exist no clear notion of equilibrium,
and where the system must continually and dynamically adapt to its surroundings. This
especially includes tasks akin to obstacle avoidance, which constitutes a substantial part of
motion planning.

Therefore, in this section and as a second application of the tools introduced in Sections 7.2
and 7.3, we tackle the arguably more expressive objective of minimax control (7.7) of an
arbitrary bounded reward function R : Rp → [0, 1], recalled here:

sup
bu∈(Rq)N

inf
θ∈C[N],δ
ω∈[ω,ω]R

 ∞∑
n=N+1

γnR(xn(u, ω))

 . (7.7)

Evaluation In order to evaluate this robust objective V r, we approximate it thanks to the
interval prediction [x(t), x(t)] of Section 7.3.

Definition 7.27 (Surrogate objective). Let

V̂ r(u) =∆
∞∑

n=N+1
γnRn(u), (7.29)

where Rn(u) =∆ min
x∈[xn(u),xn(u)]

R(x), (7.30)

and xn(u), xn(u) follow the dynamics defined in (7.20).

This amounts to changing the reward function, except that the worst case is assessed over
the whole past trajectory, which makes this pessimistic reward Rn not Markovian.

Theorem 7.28 (Lower bound). The surrogate objective (7.29) is a lower bound of the true
objective (7.7):

V̂ r(u) ≤ V r(u)

4A video is available at https://youtu.be/axurBzHRLGY

157

https://youtu.be/axurBzHRLGY

Preparing for the Worst

Algorithm 7.1: Integrated framework for confident estimation, interval prediction and
minimax control
1 Data: confidence level δ, structure (A, ϕ), reward R, D[0] ← ∅, a1 ← ∅
2 for N = 0, 1, 2, . . . do
3 C[N],δ ←Model Estimation(D[N]). (7.12)
4 for each planning step k ∈ {N, . . . , N +K} = N + [K] do
5 [xk+1, xk+1]← Interval Prediction(C[N],δ,akb) for each action b ∈ A. (7.20)
6 ak+1←Pessimistic Planning(Rk+1([xk+1, xk+1])). (7.31)
7 Execute the recommended control uN+1, and add the transition (xN+1, yN+1, uN+1)

to D[N+1].

Proof. We provide a proof in Section D.1.3.

A direct consequence of Theorem 7.28 is that since all our approximations are conservative,
if we manage to find a control sequence such that no “bad event” (e.g. a collision) happens
according to the surrogate objective V̂ r, then we are guaranteed that they will not happen
either when the controls are executed on the true system.

Planning To optimise V̂ r (7.29), we cannot use Dynamic Programming algorithms since
the state space is continuous and the pessimistic rewards are non-Markovian. Instead, as we
did in Chapter 6, we turn to tree-based planning algorithms, which optimise a sequence of
actions based on the corresponding sequence of rewards, without requiring Markovity nor
state enumeration.

Though there exist works addressing continuous action spaces (Buşoniu, Páll, and Rémi
Munos, 2018; Weinstein and Littman, 2012), we resort to a first approximation and discretise
the continuous decision space Rq by adopting a hierarchical control architecture: at each time,
the agent can select a high-level action a from a finite spaceA. Each action a ∈ A corresponds to
the selection of a low-level controller πa, that we take affine: u(t) = πa(x(t)) =∆ −Kax(t) + ua.

For instance, a tracking a subgoal xg can be achieved with πg = K(xg − x). This discretisation
induces a suboptimality, but it can be mitigated by diversifying the controller basis. The robust
objective (7.7) becomes

sup
a∈AN

V r(a),

where xn(a, ω) stems from (7.3) with un = πan(xn).
This enables us to consider the OPD algorithm (Hren and Rémi Munos, 2008) tailored for

the case when the relationship between actions and rewards is deterministic. Indeed, the
stochasticity of perturbations and measurements is encased in V̂ r: given the observations up to
timeN , both the predictor dynamics (7.20) and the pessimistic rewards (7.30) are deterministic.

158

7.5 Minimax control with generic costs

At each planning iteration k ∈ [K], OPD progressively builds a tree Tk+1 by forming upper-
bounds Ua(k) over the value of sequences of actions a, and expanding5 the leaf ak with highest
upper-bound:

ak = arg max
a∈Lk

Ua(k), Ua(k) =
h(a)−1∑
n=0

Rn(a) + γh(a)

1− γ (7.31)

whereLk is the set of leaves of Tk, h(a) is the length of the sequence a, andRn(a) the pessimistic
reward (7.30) obtained at time n by following the controls un = πan(xn).

Algorithm 7.1 shows the full integration of the three procedures of estimation, prediction
and control.

Lemma 7.29 (Planning performance of Hren and Rémi Munos, 2008). The simple regret of
the OPD algorithm (7.31) applied to the surrogate objective (7.29) afterK planning iterations is

if κ > 1, V̂ r(a⋆)− V̂ r(aK) = O
(
K

− log 1/γ
log κ

)
;

if κ = 1, V̂ r(a⋆)− V̂ r(aK) = O
(
γ(1−γ)logγ (κ/|A|)K/c

)
where κ is a problem-dependent measure of the proportion of near-optimal paths:

κ = lim sup
h→∞

∣∣∣∣∣
{
a ∈ Ah : V̂ r(a) ≥ V̂ r(a⋆)− γh+1

1− γ

}∣∣∣∣∣
1/h

.

Proof. We provide a proof in Section C.1.8.

Hence, by using enough computational budgetK for planning we can get as close as we
want to the optimal surrogate value V̂ r(a⋆), at a polynomial rate. Unfortunately, there exists
a gap between V̂ r and the true robust objective V r, which stems from three approximations:
(i) the true reachable set was approximated by an enclosing interval in (7.2); (ii) the time-
invariance of the dynamics uncertainty A(θ) ∈ C[N],δ was handled by the interval predictor
(7.20) as if it were a time-varying uncertainty A(θ(t)) ∈ C[N],δ,∀t ; and (iii) the lower-bound∑

min ≤ min
∑ used to define the surrogate objective (7.29) is not tight. However, this gap

can be bounded with additional assumptions.

Theorem 7.30 (Regret bound). Under two conditions:
1. a Lipschitz regularity assumption for the reward function R;

5The expansion of a leaf node a refers to the simulation of its children transitions aA = {ab, b ∈ A}

159

Preparing for the Worst

2. a stability condition: there exist P > 0, Q0 ∈ Rp×p, ρ > 0, and N0 ∈ N such that

∀N > N0,

[
AT
NP + PAN +Q0 P |D|

|D|TP −ρIr

]
< 0;

we can bound the suboptimality of Algorithm 7.1 with planning budgetK as:

V (a⋆)− V̂ r(aK) ≤ ∆ω︸︷︷︸
robustness to
perturbations

+O
(

βN (δ)2

λmin(GN,λ)

)
︸ ︷︷ ︸

estimation error

+O
(
K

− log 1/γ
log κ

)
︸ ︷︷ ︸

planning error

with probability at least 1 − δ, where V (a) is the optimal expected return when executing an
action a ∈ A, a⋆ is an optimal action, and ∆ω is a constant which corresponds to an irreducible
suboptimality suffered from being robust to instantaneous disturbances ω(t).

Proof. We provide a proof in Section D.1.4.

It is difficult to check the validity of the stability condition 2. since it applies to matrices
AN produced by the algorithm rather than to the system parameters. A stronger but easier to
check condition is that the polytope (7.19) at some iteration becomes included in a set where
this property is uniformly satisfied. For instance, if the features are sufficiently excited, the
estimation converges to a neighbourhood of the true dynamics A(θ). This also allows to further
bound the input-dependent estimation error term.

Corollary 7.31 (Asymptotic near-optimality). Under an additional persistent excitation (PE)
assumption

∃ϕ, ϕ > 0 : ∀n ≥ n0, ϕ2 ≤ λmin(ΦT
nΣ−1

p Φn) ≤ ϕ2
, (7.32)

the stability condition 2. of Theorem 7.30 can be relaxed to apply to the true system: there exist
P,Q0, ρ such that [

A(θ)TP + PA(θ) +Q0 P |D|
|D|TP −ρIr

]
< 0;

and the regret bound in Theorem 7.30 takes the more explicit form:

V (a⋆)− V̂ r(aK) ≤ ∆ω︸︷︷︸
robustness to
perturbations

+O

 log
(
Nd/2/δ

)
N


︸ ︷︷ ︸

estimation error

+O
(
K

− log 1/γ
log κ

)
︸ ︷︷ ︸

planning error

160

7.6 Multi-model selection

which ensures asymptotic near-optimality when N →∞ andK →∞.

Proof. We provide a proof in Section D.1.5.

7.6 Multi-model selection

The procedure we developed in Sections 7.2, 7.3 and 7.5 relies on strong modelling assumptions,
such as the dynamics structure in Assumption 7.4. But what if they are wrong?

Model adequacy One of the major benefits of using the family of linear models, compared to
richer model classes, is that they provide strict conditions allowing to quantify the adequacy of
the modelling assumptions to the observations.

Given N − 1 observations, Section 7.2 provides a polytopic confidence region (7.19) that
contains A(θ) with probability at least 1− δ. Since the dynamics are linear, we can propagate
this confidence region to the next observation: yN must belong to the Minkowski sum of a
polytope representingmodel uncertaintyP(A0xN+BuN ,∆A1xN , . . . ,∆A2dxN) and a polytope
P(0p, η, η) bounding the perturbation and measurement noises. Delos and Teissandier (2015)
provide away to test thismembership in polynomial time using linear programming. Whenever
it is not verified, we can confidently reject the (A, ϕ)-modelling Assumption 7.4. This enables
us to consider a rich set of potential features

(
(A1, ϕ1), . . . , (AM , ϕM)

)
rather than relying on a

single assumption, and only retain those that are consistent with the observations so far. Then,
every remaining hypothesis must be considered during planning.

Robust selection We temporarily ignore the parametric uncertainty on θ to simply consider
several candidate dynamics models, which all correspond to different modelling assumptions.
We also restrict to deterministic dynamics, which is the case of (7.20).

Assumption 7.32 (Multi-model ambiguity). The true dynamics f lies within a finite set of
candidate models f1, . . . , fM .

∃m ∈ [M] : ẋ(t) = fm(x(t), u(t)), ∀t ≥ 0

161

Preparing for the Worst

We want to adapt our planning algorithm in order to balance these concurrent hypotheses
in a robust fashion, i.e. maximise a robust objective with discrete ambiguity

sup
a∈AN

min
m∈[M]

∞∑
n=N+1

γnRmn︸ ︷︷ ︸
V r(a)

(7.33)

where Rmn is the reward obtained by following the action sequence a up to step n under the
dynamics fm. This objective could be optimised in the same way as in Section 7.5, but this
would result in a coarse and lossy approximation. Instead, we exploit the finite uncertainty
structure of Assumption 7.32 to asymptotically recover the true V r by modifying the OPD
algorithm in the following way:

Definition 7.33 (Robust UCB). We replace the upper-bound (7.31) on sequence values in OPD by

U ra(k) =∆ min
m∈[M]

h−1∑
n=0

γnRmn + γh

1− γ (7.34)

An illustration of the computation of the robust upper-bounds is presented in Figure 7.10.
Note that it is not equivalent to solving each control problem independently and following the
action with highest worst-case value:

Remark 7.34. In the definition of U ra(k) (D.2) and Lra(k) (D.4) it is essential that the minimum
over the models is only taken at the end of trajectories, in the same way as for the robust objective
(7.33) in which the worst-case dynamics is only determined after the action sequence has been fully
specified. Assume that Lra(k) is instead naively defined as

Lra(k) = min
m∈[1,M]

Lma (k),

This would not recover the robust policy, as we show in Figure 7.9 with a simple counter-example.

We analyse the sample complexity of the corresponding robust planning algorithm.

Proposition 7.35 (Robust planning performance). The robust version of OPD (7.34) enjoys the
same regret bound as OPD in Lemma 7.29, with respect to the multi-model objective (7.33).

162

7.6 Multi-model selection

0 1 1/2 1/2

1/21

1

1 1/2 1/2

1/21

1

0 1/2 1/2

1/21

1

00
1/2 1/2

1/20

1/2

00

Figure 7.9 – From left to right: two simple models and corresponding u-values with optimal sequences
in blue; the naive version of the robust values returns sub-optimal paths in red; our robust U-value
properly recovers the robust policy in green.

Optimistic evaluation of

paths at the leaves for all

dynamics

Worst-case

aggregation

over the M

dynamics

min
m

Optimal planning of action

sequences

max
a

Figure 7.10 – The computation of robust U-values in (7.34). The simulation of trajectories for every
dynamics model fm is represented as stacked versions of the expanded tree Tk.

163

Preparing for the Worst

Proof. We provide a proof in Section D.1.6.

The regret depends on the numberK of node expansions, but each expansion now requires
M times more simulations than in the single-model setting. The solution of the robust objective
(7.33) with discrete ambiguity f ∈ {fm}m∈[M] can be recovered exactly, asymptotically when
the planning budget K goes to infinity. This contrasts the results obtained in Section 7.5 for
the robust objective (7.7) with continuous ambiguity θ ∈ C[N],δ, for which OPD only recovers
the surrogate approximation V̂ r, as discussed in Theorem 7.30. Finally, the two approaches of
Sections 7.5 and 7.6 can be merged by using the pessimistic reward (7.30) in (7.34).

7.7 Experiments

Obstacle avoidance with unknown friction We first consider a simple illustrative example,
shown in Figure 7.3: the control of a 2D system with position (px, py) and velocity (vx, vy)
moving by means of a force (ux, uy) in an environment with unknown anisotropic friction.


ṗx

ṗy

v̇x

v̇y

 =


0 0 1 0
0 0 0 1
0 0 −θx 0
0 0 0 −θy




px

py

vx

vy

+


0
0
ux

uy


Note that the Assumption 7.17 for AN is always verified. The reward is non-smooth and

encodes the task of navigating to reach a goal state xg while avoiding collisions with obstacles:
R(x) = δ(x)/(1 + ∥x− xg∥2) where δ(x) is 0 whenever x collides with an obstacle, 1 otherwise.
The actions A are constant controls in the up, down, left and right directions. The environment
is illustrated in Figure 7.11.

For the reasons mentioned above, no robust baseline applies to our setting. We compare
Algorithm 7.1 to the non-robust adaptive control approach that plans with the estimated dy-
namics θN,λ, and thus enjoys the same prior knowledge of dynamics structure and reward. This
highlights the benefits of the robust formulation solely rather than stemming from algorithm
design. We show in Table 7.1 the results of 100 simulations of a single episode: the robust agent
performs worse than the nominal agent on average, but manages to ensure safety while the
nominal agent collides with obstacles in 4% of simulations6. We also compare to a standard
model-free approach, DQN, which does not benefit from the prior knowledge of the system
dynamics, and is instead trained over multiple episodes. The reported performance is that
of the final policy obtained after training for 3000 episodes, during which 897± 64 collisions
occurred (29.9±2.1%). We study the evolution of the suboptimality V (xN)−

∑
n>N γ

n−NR(xn)
6A video is available at https://youtu.be/jr2yi6Lf0bM

164

https://youtu.be/jr2yi6Lf0bM

7.7 Experiments

Figure 7.11 – Algorithm 7.1 running on the obstacle avoidance environment: we show the predicted
state interval at each prediction time step (from red to green).

Table 7.1 – Performances on the obstacle task. We give the frequency of collision, minimum and average
return achieved on a single episode, repeated with 100 random seeds. The robust agent performs
worse than the nominal agent on average, but manages to ensure safety and attains a better worst-case
performance.

Performance failures min avg ± std
Oracle 0% 11.6 14.2± 1.3

Nominal 4% 2.8 13.8± 2.0
Algorithm 7.1 0% 10.4 13.0± 1.5

DQN (trained) 6% 1.7 12.3± 2.5

with respect to the number of samples N , by comparing the empirical returns from a state xN
to the value V (xN) that the agent would get by acting optimally from xN with knowledge of
the dynamics. Although the assumptions of Theorem 7.30 are not satisfied (e.g. non-smooth
reward), the mean suboptimality of the robust agent, shown in Figure 7.12, still decreases
polynomially withN : Algorithm 7.1 getsmore efficient as it ismore confidentwhile ensuring safety
at all times. In comparison, the nominal agent enjoys a smaller suboptimality on average, but
higher in the worst-case.

Behavioural planning for an autonomous vehicle We consider the highway-env environ-
ment for simulated driving decision problems. An autonomous vehicle with state x0 ∈ R4

is approaching an intersection among Nv other vehicles with states xi ∈ R4, resulting in a
joint traffic state x = [x0, . . . , xNv]⊤ ∈ R4Nv+4. These vehicles follow parametrized behaviours
χ̇i = fi(x, θi) with unknown parameters θi ∈ R5. We appreciate a first advantage of the

165

Preparing for the Worst

0 20 40 60 80

samples N

10−4

10−3

10−2

10−1

100

101
su

b
op

ti
m

al
it

y

agent

Nominal

Robust

Figure 7.12 – The mean (solid), 95% confidence interval for the mean (shaded) and maximum (dashed)
simple regret with respect to N .

structure imposed in Assumption 7.4: the uncertainty space of θ is R5Nv . In comparison, the tra-
ditional LQ setting where the whole state matrix A is estimated would have resulted in a much
larger parameter space θ ∈ R16Nv

2 . The system dynamics f , which describes the interactions
between vehicles, can only be expressed in the form of Assumption 7.4 given the knowledge of
the desired route for each vehicle, with features ϕ expressing deviations to the centerline of
the followed lane. Since these intentions are unknown to the agent, we adopt the multi-model
perspective of Section 7.6 and consider one model per possible route for every observed vehicle
before an intersection. In Table 7.2, we compare Algorithm 7.1 to a nominal agent planning
with two different modelling assumptions: Nominal 1 has access to the true followed route for
each vehicle, while Nominal 2 does not and picks the model with minimal prediction error.
We show the multi-model rejection and robust selection procedure through the display of
several trajectory hulls for all possible destinations of the observed vehicles7. Again we also
compare to a DQN baseline trained over 3000 episodes, causing 1058 ± 113 collisions while
training (35±4%). As before, the robust agent has a higher worst-case performance and avoids
collisions at all times, at the price of a decreased average performance.

7A video is available at https://youtu.be/DhoJAmJDau4

166

https://youtu.be/DhoJAmJDau4

7.7 Experiments

Figure 7.13 – The intersection crossing task. We show the trajectory intervals corresponding to be-
havioural uncertainty for each observed vehicle, and the multi-model assumption over the followed
route.

Table 7.2 – Performances on the driving task. We make the same observations as in Table 7.1.
Performance failures min avg ± std
Oracle 0% 6.9 7.4± 0.5

Nominal 1 4% 5.2 7.3± 1.5
Nominal 2 33% 3.5 6.4± 0.3
Algorithm 7.1 0% 6.8 7.1± 0.3

DQN (trained) 3% 5.4 6.3± 0.6

Chapter conclusion

We propose a framework for the robust estimation, prediction and control of a partially known
linear system. After deriving a confidence region for the state matrix through non-asymptotic
linear regression, we design an interval predictor guaranteed to contain the induced trajectory,
and whose stability is guaranteed upon satisfaction of an LMI. We leverage these tools in two
applications. First, the robust stabilisation of the system at the origin under state and control
constraints, that we achieve with a dual MPC and feedback that both exploit the predicted
intervals. Second, the minimax control of a generic (non-quadratic) cost function, for which
we provide a tree-based planning algorithm whose predicted performance is guaranteed and
whose regret is bounded. The applicability of the method is further improved by a multi-model
extension and demonstrated on several simulated driving applications, namely: socially-aware

167

Preparing for the Worst

trajectory prediction for an observed vehicle, steering control under unknown tire friction, and
safe intersection crossing among drivers with uncertain destination and driving styles.

168

Part Conclusion
Review of our Requirements

Again, in Table 7.3 we discuss whether the methods developed in Part III address the challenges
identified in Chapter 1.

Criterion Description
Social
Awareness ✓ In Chapters 6 and 7, the planning algorithm relies on a predictive model

ẋi = fi(x, u) in which the motion of a vehicle i ∈ [Nv] is coupled to that
of other vehicles x = [x0, x1, . . . xNv] in the scene, to account for driving
interactions.

Sample
Efficiency ✓ For model estimation, we rely in Chapter 7 on a structured parametrised

model ẋ = A(θ)x+Buwhich incorporates priors over car-like kinemat-
ics (non-holonomic) and human driving behaviours (lane following,
cruise control). The planning step can benefit from the contributions of
Chapter 6 on optimistic tree-based planning, such as merging the states
of overlapping sampled trajectories.

Safety ✓ Two other notions of risk were introduced in Chapter 7: first as a hard
constraint x ∈ X, u ∈ U under bounded disturbances and parametric
model uncertainty; and second, as a minimax objective that produces
risk-averse behaviours by evaluating the worst possible outcome under
said disturbances and model uncertainty.

Balance
between
safety and
efficiency

✓ The conservativeness of the robust MPC algorithms of Chapter 7 can
be tuned by adjusting the confidence level δ to trade-off the error prob-
ability with the size of the confidence region C[N],δ; or by considering
additional modelling assumptions (A, ϕ) in the multi-model perspec-
tive, which will increase robustness at the expense of efficiency.

Table 7.3 – Do the methods of Part III comply with the specifications of Chapter 1?

169

Chapter 8

General Conclusion and Perspectives

Nos équipiers
Sur les voies

Ralentissez
Vinci Autoroutes1

8.1 Conclusion on our contributions

In this thesis, we proposed a learning-based approach to the problem of behavioural planning
for autonomous vehicles, with a focus on scenes with several drivers interacting. Following
an in-breadth (Chapter 2), as well as in-depth (Chapter 3), initial investigation, we identified
a set of key issues which make this problem challenging. We now recall these subjects, and
precise how we strived to address them both in the model-free approach of Part II and the
model-based approach of Part III.

Coupled social dynamics In dense traffic, the dynamics of distinct vehicles are locally cou-
pled, due to how drivers react and adapt to their surroundings. Consequently, predicting the
course or acting in a driving scene requires a social awareness skill: the ability to accurately
understand and exploit these couplings. In Chapter 4, this function was performed by a social
attention mechanism in the policy architecture, which enables the agent to filter out irrelevant
objects from a complex driving scene and retain only those that represent a risk of collision. In
Chapter 5, this coupling was made explicit by describing the motion of a vehicle i through a
dynamical model ẋi = fi(x) taking the whole traffic state x as input.

1Writings collected by @pooredward.

171

https://twitter.com/pooredward/status/1273249408231124994

General Conclusion and Perspectives

Uncertainty due to human drivers Another critical difficulty lies in the uncertainty of human
behaviours. In RL, the traditional approach to account for uncertainty is to incorporate stochas-
ticity in the system dynamics, as we did in Chapter 5 where the objectives are formulated
in terms of expected rewards and costs. Incidentally, we also observed in Chapter 4 that our
attention-based architecture is highly sensitive to ambiguous and disambiguated information,
such as vehicles’ destinations. In Chapter 7 however, we adopted another view and assumed
that the dynamics were (close to) deterministic, but dependent on some unknown parameters
–both continuous and discrete– that could be estimated along the way.

Safety To deal with this uncertainty, we studied threemodels of safety. In Chapter 5, following
the CMDP framework, we formalised risk as the expected discounted sum of an additional
cost signal C(s, a) –separate from the rewards R(s, a)– constrained to remain below a threshold
β. In Chapter 7, we introduced a novel interval predictor allowing us to bound the set of
reachable trajectories given the current parametric uncertainty over the dynamics, which
required circumventing the instability of previous methods. This enabled us to cast safety as a
robust stabilisation and constraint satisfaction problem, ensuring that the system stays at all time
within a safe space X× U. Finally, to go beyond stabilisation problems, we considered a third
formalisation of safety as a worst-case outcome, and proposed an algorithm for the minimax
control of a generic reward function R(s, a). In addition to being tractable, each component
of this algorithm is theoretically grounded, allowing us to obtain an end-to-end guarantee
that the best performance predicted during planning is achievable on the underlying system,
as well as the first regret bound in this setting, extending the state-of-the-art so far limited to
quadratic costs.

Trade-off between safety and efficiency Aswe just saw, safety is always definedwith respect
to some admissible uncertainty. The larger the set of scenarios one is willing to consider and
protect against, the more conservative they need to be to ensure safety. In particular, situations
that require interacting with other agents are always susceptible to lead to accidents, when
considering (unlikely) adversarial scenarios. In that sense, absolute safety is not achievable, or
only at the cost of usability. To strike the right level of safety, we need to consider the right level
of uncertainty, the right set of possible outcomes. In Chapter 7, the size of this ambiguity set is
controlled by adjusting the confidence level δ for continuous parameters (e.g. driving style),
and by adding or removing (A, ϕ)-modelling assumptions from the multi-model extension,
for discrete parameters (e.g. potential destinations or lanes for a vehicle). In Chapter 5, we
embrace this trade-off even more explicitly. Rather than trying to adjust the scope and size of
the uncertainty, we instead directly control its influence on both the efficiency of the policy
(rewards) and its safety (costs), by training a budgeted policy π that takes as input the desired

172

8.2 Outstanding issues and perspectives

level of risk δ. While this setting was previously studied for finite states and known dynamics
only, we extended it to continuous states and unknown dynamics.

Sample efficiency As for most reinforcement learning problems, we were also concerned
about minimising the number of samples required to reach optimality. To that end, we ex-
ploited the specificities and structures of the behavioural planning problem in several ways.
In Chapter 4, we embedded an inductive bias into the policy architecture by enforcing its
invariance to permutations of the scene description, and observed that this fastens learning. In
Chapter 7, some structure was similarly imposed –on the dynamics model this time– in the
form of a parametrised linear model, which allowed to reduce the dimension of the hypothesis
space significantly. We were also able to provide a bound on the simple regret relating the agent
performance to the number of observed transition samples. In Chapter 6, we looked into the
sample efficiency of the planning procedure, and specifically tree-based planning algorithms.
First, in the case of stochastic dynamics representing human behaviours, we proposed a modi-
fication of the OLOP algorithm that improves its empirical sample complexity by an order on
magnitude, while retaining its theoretical guarantees. Second, we showed that merging similar
nodes in the lookahead tree enables to decrease the near-optimal branching factor featured in
the regret bound of the algorithm. This translated into substantial empirical improvements in
simple path planning tasks, where distinct sequences of actions lead to overlapping trajectories.

8.2 Outstanding issues and perspectives

In this section, I will adopt a more personal and subjective standpoint, and discuss which are
the main barriers between research and industrialisation. Indeed, though we never intended
for this thesis to lead directly to practical applications, they remain the long term goal that
motivates our work, and I must now examine our contributions again in this light.

A first and general concern of mine is that, beside the warm comfort of the well-behaved
theoretical frameworks in which we place ourselves, the sheer complexity of the real world
can be overwhelming. While any single aspect –partial observability, temporal abstraction, non-
stationarity, risk aversion, you name it– can be isolated and studied independently, the question
of how to merge all these approaches into one single integrated product seems arduous, if not
hopeless. Yet, any candidate algorithm not addressing any of these issues would be unfit for
deployment. In the sequel, I will not be so ambitious but reflect instead on a more reasonable
question: are the methods that we developed suitable for a real-world application?

Reinforcement Learning in continuous states Let us start with our work in Part II. Follow-
ing a model-free perspective with continuous states, we resorted to function approximation

173

General Conclusion and Perspectives

using neural networks. Unfortunately, Deep Learning interacts with Reinforcement Learning
algorithms in ways that are yet to be understood, but already infamous for their brittleness. In
Chapter 4, even our best policies still suffer a prohibitive rate of collisions of 6%, considerably
higher than the required performances. As we discussed, this may be attributed to the reward
function that would not penalise collisions enough, but reward engineering is tedious and
might in turn lead to over-conservative policies. The budgeted approaches of Chapter 5 were
meant to address this issue, but at the price of increased complexity, and our negative result
of Theorem 5.9 raises concerns about convergence in the general case. Another weakness lies
in our use of a very naive exploration policy: the ε-greedy, which takes random actions at a
fixed frequency, a strategy widely considered inefficient and damaging, yet one that we had
no choice but to resort to in the absence of a better solution. Guided exploration strategies
tailored for regret minimisation, and especially following the OFU principle, have been studied
in the context of finite state-action spaces (Auer, Jaksch, and Ortner, 2009; Azar, Osband, and
Rémi Munos, 2017). These methods typically require the ability to count the number of state
visits, which is not suitable for continuous states. The question of how they can be extended
thus constitutes a promising research perspective. First steps have recently been made in that
direction, by either relying on approximated pseudo-counts (Tang et al., 2017), or by deriving
similar regret bounds under linear function approximation (Jin et al., 2020).

Trial without error? Assume for a moment that the research community was able to solve the
aforementioned problem and came up with exciting new algorithms for continuous state space
with promising regret bounds. There remains an inevitable and fatal limitation: the foundations
of Reinforcement Learning are intrinsically based on trial and error. Unfortunately, this is not an
acceptable paradigm for the development of safety-critical problems such as Autonomous
Driving. For reference, when we applied the model-free methods of Part II to very simple
tasks, they converged in about 50k interaction samples, which represents about 15 h of driving,
throughout which the agents experienced about two thousand collisions. More generally,
having vehicles exploring on the roads among human drivers is morally inconceivable. Is there
any chance at all to come up with a learning algorithm that does not require causing accidents
while training?

Safety guarantees As a first candidate, the line of work on safe control is committed to
developing algorithms that are guaranteed never to reach an unsafe state, or with a provably
bounded probability of failure. Likewise, in Chapter 7, we managed to obtain some theoretical
guarantees: a robust constraint satisfaction result, and a lower-bound on theworst-case outcome,
that increases towards near-optimal performance with the number of samples. However, it is
evident that these results are only worth as much as their underlying assumptions, which may
turn out to be: very little. Indeed, it seems dubious that the complexity of human behaviours

174

8.2 Outstanding issues and perspectives

can be accurately described by linear dynamics Assumption 7.4, and our own proposed system
largely overlooks vast areas of the driving task. With Assumption 7.24, the safe region X cannot
be chosen freely, but must contain the basin of attraction Xf whose size grows with uncertainty.
Finally, the assumptions of Theorem 7.30 do not hold even in our simple simulations: the
behaviours of observed vehicles are not persistently excited (i.e. continually changing lanes,
or braking behind some vehicle), and the reward function is discontinuous. More generally,
safety analyses can never protect against unmodeled events, such as a tree or a package falling
down the road. Yet, having to model the world in its full complexity is daunting, especially
since theoretical analysis imposes an additional constraint on the modelling effort, often at the
expense of empirical performance. Fortunately, all is not bleak and it has been observed in
numerous occasions that even when the guarantees do not hold, the founding principles of
an algorithm can lead to designs that still exhibit the desired properties. Beside this issue of
the practical validity of theoretical assumptions, it seems to me that none of the most popular
safety frameworks is really suitable for AD. First, the ubiquitous concept of stabilisation does
not really apply to a task of motion planning amidst other vehicles, for which there is no
obvious equilibrium state. Second, the robust constraint satisfaction paradigm may be more
relevant if the constraint space X could be defined as the collision-free space, but that space is
non-convex which is not handled by most algorithms, e.g. in the Tube MPC family. Third, the
minimax setting where worst-case outcomes are considered can become worthless in situations
of large uncertainty where any decision can possibly result in a collision. In that case, the loss
of sensitivity to probabilities caused to the min formulation means that decisions that are less
likely to lead to a collision will not even be preferred to those that are more likely to do so. This
ability requires to replace the worst-case evaluation by a more sophisticated measure of the
outcomes distribution, such as the VaR or CVaR. This perspective seems a promising research
direction to me, since to my knowledge no algorithm achieves guaranteed performance for
these risk measures with continuous states, but it is also presumably a very demanding one.

Simulation and beyond? Another enticing way to avoid trial-and-error in the real world
is to rely on simulation. Of course, the effort of modelling a complex world remains, but
dropping the analysability requirement relaxes the modelling constraints. We can safely expect
that simulations will continue to play an increasingly significant part in AD technologies, for
both offline pre-training and online planning. This can be the occasion to divert our research
efforts from the traditional regret minimisation objective, which is groundless in a simulated
environment where failures are free but samples are costly. In contrast, a promising research
direction is the study of the more appropriate pure exploration setting, which aims at relating
the policy suboptimality to the number of samples used. I already took part in collaborations
exploring this direction (Jonsson et al., 2020; Kaufmann, Ménard, et al., 2020; Ménard et al.,
2020) and hope to pursue this path further. Finally, relying on simulation introduces the

175

General Conclusion and Perspectives

additional question of how to adapt knowledge from simulation to the real world. A fine-
tuning training process in real conditionswould involve experiencing real failures again, though
hopefully in reduced numbers, which could be realistic under human interventions (Saunders
et al., 2018; Kendall et al., 2019). Another path of interest to me could be to leverage offline RL
methods (Thomas, Theocharous, and Ghavamzadeh, 2015; Laroche, Trichelair, and Combes,
2019), that could enable to safely improve pre-trained policies using real driving data, especially
around nominal states that can be confidently estimated.

176

Appendix A

The highway-env software

Contents
A.1 General presentation . 177
A.2 Outreach . 180

A.1 General presentation

highway-env is a collection of environments for behavioural planning tasks in autonomous
driving.

Each environment specifies a full MDP to describe a particular decision-making problem
that an autonomous vehicle may face.

Origins When I started my Ph.D., there existed more ambitious open-source simulators that
relied on heavy physics engines and 3D graphics, such as TORCS (Wymann et al., 2015), Airsim
(Shah et al., 2017) and CARLA (Dosovitskiy et al., 2017). However, those were better suited
for low-level sensing and control, e.g. training of visuomotor policies in a single-agent setting.
On the other hand of the spectrum, SUMO (Lopez et al., 2018) was rather meant for high-scale
traffic optimisation and lacked details and flexibility on local dynamics. In contrast, I needed a
simulator focused on high-level decisions and vehicle-to-vehicle interactions. Consequently, I
launched highway-env with the intent of having a minimalist simulator, implemented fully in
Python for fast prototyping and easy interfacing with RL libraries.

Usage We show below a basic use of highway-env, with a code snipped showing the inter-
action between the environment, which generates observations and rewards, and the agent
which provides actions according to its policy.

177

The highway-env software

import gym
import highway_env

env = gym.make(’highway−v0 ’)

done = False
while not done :

ac t ion = . . . # Your agent code here
obs , reward , done , in fo = env . s tep (ac t ion)
env . render ()

Listing A.1 – Create, step and render the highway-v0 environment.

The environments To this day, highway-env comes with six different scenes, configured with
suitable observation space S , action space A and reward function R, illustrated in Table A.1.

• Highway. The vehicle is driving on a highway populated with other drivers. The goal
is to drive as fast as possible while avoiding collisions with other vehicles, through a
discrete meta-action space of manoeuvres.

• Merge. The task is similar to highway-v0, but a vehicle is incoming from an access ramp
andmust be able to merge successfully in traffic. To that end, the ego-vehicle must change
lane or adapt its velocity so that the merging vehicle has sufficient space. This task is
inspired by a practical use case for ADAS systems at Renault.

• Roundabout. The vehicle must cross a roundabout as fast as possible while avoiding
collisions. It requires reasoning about the uncertain destinations of other vehicles.

• Intersection. This environment is similar to roundabout, but with an increased density
of vehicles and types of conflicts. Only the throttle is controlled, and the steering is
performed automatically to track the ego-vehicle destination.

• Parking. A goal-conditioned continuous control environment: the desired parking spot
location is part of the observation, and the ego-vehiclemust plan cusp-shapedmanoeuvres
to reach it with the proper heading.

• Two-way. This environment is similar to highway, except that the ego-vehicle can change
to a lane facing the opposite direction, with incoming vehicles. This enables to highlight
an efficiency-safety trade-off for risk-sensitive decision-making.

Features Several parts of the environment can be configured.

178

A.1 General presentation

(a) Highway (b)Merge

(c) Roundabout (d) Intersection

(e) Parking

(f) Two-way

Table A.1 – The different environments available in highway-env.

• Observations. Several types of observations are available, such as the list of features and
occupancy grid described in Chapter 4. Other types include RGB images, time-to-collision
maps, and goal locations.

• Actions. In addition to the discrete meta-action space A described in Chapter 3, a contin-
uous space A = R2 for throttle and steering can also be selected.

• Dynamics. Other vehicles can follow the IDM and MOBIL behavioural models as de-
scribed in Chapter 3 or its linearised version of Section 7.3. The ego-vehicle can be
controlled with either the Kinematic Bicycle Model as in Chapter 3 or the Dynamic
Bicycle Model as in Section 7.4.

179

The highway-env software

• Rewards. The rewards and penalties associated with speed or collisions are configurable.

• Graphics. Graphics are rendered using the pygame library, window size and resolution
can be configured.

Development process The project closely follows the insights of Chapter 3 in its definition of
the traffic state, actions, dynamics, and rewards. See the user guide in the documentation for
more details.

It also complies by the OpenAI gym standard interface for RL environments. Continuous
integration (CI) is performedwith pytest unit tests automatically triggeredwith GitHub actions.
The documentation is built from the source code comments using Sphinx, and hosted on Read
the Docs. Finally, multiple examples can be run directly from the browser through Google
Colab notebooks.

A.2 Outreach

In this section, we document the dissemination of the library among several communities.

A.2.1 Academia

We highlight that several researchers have reported using or referred to highway-env in their
publications and submissions:

• Minne Li, Lisheng Wu, Jun WANG, and Haitham Bou Ammar (Dec. 2019). Multi-View
Reinforcement Learning. In Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vancouver,
BC, Canada: Curran Associates, Inc., pp. 1420–1431

• Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, and Haitham Bou-Ammar (May
2020). αα-Rank: Practically Scaling α-Rank through Stochastic Optimisation. In Pro-
ceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. Ed. by Amal El Fallah Seghrouchni,
Gita Sukthankar, Bo An, and Neil Yorke-Smith. Auckland, New-Zealand: International
Foundation for Autonomous Agents and Multiagent Systems, pp. 1575–1583

• Sriram N N, Buyu Liu, Francesco Pittaluga, and Manmohan Chandraker (Aug. 2020).
SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction. In 16th European
Conference on Computer Vision (ECCV 2020). Glasgow, United Kingdom

180

https://www.pygame.org/news
https://highway-env.readthedocs.io/en/latest/user_guide.html
https://github.com/openai/gym
https://docs.pytest.org/en/stable/
https://github.com/features/actions
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://readthedocs.org/
https://colab.research.google.com/
https://colab.research.google.com/

A.2 Outreach

• Mengdi Xu, Wenhao Ding, Jiacheng Zhu, Zuxin Liu, Baiming Chen, and Ding Zhao
(2020). Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian
Processes. preprint

• Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao (June 2020).
DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning. In
Reinforcement Learning for Real Life Workshop at ICML 2019. Long Beach, CA, USA

• Jincheng Mei, Yangchen Pan, Martha White, Amir-massoud Farahmand, and Hengshuai
Yao (2020). Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated
Priorities. preprint

• Haifeng Zhang et al. (Feb. 2020). Bi-level Actor-Critic for Multi-agent Coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 05. New York, pp. 7325–
7332

• Angelos Mavrogiannis, Rohan Chandra, and Dinesh Manocha (2020). B-GAP: Behavior-
Guided Action Prediction for Autonomous Navigation. preprint.

• Ming Zhou et al. (Nov. 2020). SMARTS: Scalable Multi-Agent Reinforcement Learning
Training School for Autonomous Driving. In Conference on Robot Learning (CoRL)

• Justin K. Terry et al. (2020). PettingZoo: Gym for Multi-Agent Reinforcement Learning.
preprint.

• Parv Kapoor, Anand Balakrishnan, and Jyotirmoy V. Deshmukh (2020). Model-based
Reinforcement Learning from Signal Temporal Logic Specifications. preprint.

• S. Zhang, Y. Wu, and H. Ogai (Sept. 2020). Spatial Attention for Autonomous Decision-
making in Highway Scene. In 59th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE). Chiang Mai, Thailand, pp. 1435–1440

• Jincheng Mei, Yangchen Pan, Martha White, Amir-massoud Farahmand, and Hengshuai
Yao (2020). Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated
Priorities. preprint

Additionally, we use it in most of our own publications:
• Edouard Leurent, Yann Blanco, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2018).

Approximate Robust Control of Uncertain Dynamical Systems. In Machine Learning
for Intelligent Transportation Systems Workshop at the Thirty-second Conference on Neural
Information Processing Systems (NeurIPS 2018). Montreal, Canada

181

The highway-env software

• Edouard Leurent, Denis Efimov, Tarek Raissi, and Wilfrid Perruquetti (Dec. 2019). Inter-
val Prediction for Continuous-Time Systems with Parametric Uncertainties. In 2019 IEEE
58th Conference on Decision and Control (CDC). Nice, France, pp. 7049–7054

• Edouard Leurent and JeanMercat (Dec. 2019). Social Attention for Autonomous Decision-
Making in Dense Traffic. In Machine Learning for Autonomous Driving Workshop at the
Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019). Montreal,
Canada

• Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym
Maillard, and Olivier Pietquin (Dec. 2019). Budgeted Reinforcement Learning in Con-
tinuous State Space. In Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., pp. 9299–9309

• Edouard Leurent and Odalric-Ambrym Maillard (Sept. 2020b). Practical Open-Loop
Optimistic Planning. In European Conference on Machine Learning and Knowledge Discovery
in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes
Maathuis, and Céline Robardet. Würzburg, Germany: Springer International Publishing,
pp. 69–85

• Edouard Leurent, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2020b). Robust-
Adaptive Interval Predictive Control for Linear Uncertain Systems. In 2020 IEEE 59th
Conference on Decision and Control (CDC). Jeju Island, Republic of Korea

• Edouard Leurent, Denis Efimov, and Odalric-AmbrymMaillard (Dec. 2020a). Robust-
Adaptive Control of Linear Systems: beyond Quadratic Costs. In Advances in Neural
Information Processing Systems 33. Virtual

Finally, the highway-env library is featured in the documentation and examples of two of the
most famous libraries in the RL ecosystem:

• OpenAI Gym, a standard interface for comparing RL algorithms. highway-env is men-
tioned in the list of environments.

• Stable Baselines, a set of improved implementations of RL algorithms based on OpenAI
Baselines. highway-env is used as an example in the documentation.

A.2.2 Education

Since the publication of highway-env, manymasters students have contactedme throughout the
years, and reported using the simulator for their final project of in various courses, occasionally

182

https://github.com/openai/gym
https://github.com/openai/gym/blob/master/docs/environments.md#highway-env-tactical-decision-making-for-autonomous-driving
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/guide/examples.html#hindsight-experience-replay-her

A.2 Outreach

upon suggestion by their professor. I did not keep track of all these exchanges, but as a trace of
this activity, see:

• the list of issues opened in highway-env.

• the list of issues opened in rl-agents.

A.2.3 Industry

Several engineers, mainly from theAutomotive industry, have demonstrated interest in highway-
env, either by reaching out to me directly or by developing their own project on top of the
library. To name a few,

• Simon Chauvin, Machine Learning Engineer at Autonomous Driving at ESR Labs GmbH,
who contacted me to reproduce my results.

• Clément Huber, Product Owner in the Path Planning team at NAVYA Group, and Lucas
Boyer, intern in that team, contacted me on several occasions to discuss the internship of
Lucas based on highway-env and openai/baselines.

• Munir Jojo-Verge, Motion Planning and Decision Making Manager at Amazon Robotics,
who wrote to me regarding his extension of highway-env to continuous actions, see his
fork which lead to the addition of the parking-v0 environment.

• Craig Quiter, Founder of Deepdrive at Voyage, who mentioned that his recent work was
inspired by highway-env and with whom I had the pleasure to discuss.

• Pinaki Gupta, Behaviour Planning architect at Lucid Motors, see his fork that features
variants of the two-way-v0 and parking-v0 environments augmented with additional
vehicles and multiple goals.

• Guillaume Alleon, Head of AI research at Airbus, see his fork.

• Boris Yangel, Principal Software Engineer at Yandex, see his project.

183

https://github.com/eleurent/highway-env/issues?q=is%3Aissue
https://github.com/eleurent/rl-agents/issues?q=is%3Aissue
https://www.linkedin.com/in/simon-chauvin/
https://www.esrlabs.com/
https://www.linkedin.com/in/huberclement
https://navya.tech/fr/
https://www.linkedin.com/in/lucas-boyer
https://www.linkedin.com/in/lucas-boyer
https://github.com/lucasBOYER/highway-env
https://www.linkedin.com/in/munirjojoverge
https://canvas.technology/
https://github.com/munirjojoverge/rl_AD_urban_baselines
https://github.com/munirjojoverge/rl_AD_urban_baselines
https://www.linkedin.com/in/deepdrive
https://deepdrive.voyage.auto/
https://voyage.auto/
https://medium.com/@crizcraig/smooth-operator-92c6c14862fb
https://www.linkedin.com/in/pinaki-gupta/
https://lucidmotors.com/
https://github.com/pinakigupta/BehaviorRL
https://www.linkedin.com/in/guillaumealleon
https://www.airbus.com/
https://github.com/galleon/highway-env
https://ru.linkedin.com/in/boris-yangel-83194729
https://yandex.com/
https://github.com/hr0nix/trackdays/blob/master/setup.py

Appendix B

Complements on Chapter 5

B.1 Proofs

B.1.1 Proof of Proposition 5.4

Proof. Thanks to the introduction of the augmented spaces S,A and dynamics P , this proof is
the same as that in classical MOMDPs.

V π(s) =∆ E
[
Gπ

∣∣∣ s0 = s
]

=
∑
a∈A

P (a0 = a | s0 = s)E
[
G
π
∣∣∣ s0 = s, a0 = a

]
=
∑
a∈A

π(a|s)Qπ(s, a).

Q
π(s, a) =∆ E

[∞∑
t=0

γtR(st, at)
∣∣∣∣∣ s0 = s, a0 = a

]

= R(s, a) +
∑
s′∈S

P
(
s1 = s′ ∣∣ s0 = s, a0 = a

)
· E
[∞∑
t=1

γtR(st, at)
∣∣∣∣∣ s1 = s′

]

= R(s, a) + γ
∑
s′∈S

P
(
s′ ∣∣ s, a)E [∞∑

t=0
γtR(st, at)

∣∣∣∣∣ s0 = s′
]

= R(s, a) + γ
∑
s′∈S

P
(
s′ ∣∣ s, a)V π(s′).

185

Complements on Chapter 5

Contraction of T π. Let π ∈ Π, Q1, Q2 ∈ (R2)SA.

∀s ∈ S, a ∈ A,
∣∣∣T πQ1(s, a)− T πQ2(s, a)

∣∣∣ =

∣∣∣∣∣∣∣∣γ E
s′∼P (s′|s,a)
a′∼π(a′|s′)

Q1(s′, a′)−Q2(s′, a′)

∣∣∣∣∣∣∣∣
≤ γ

∥∥∥Q1 −Q2

∥∥∥
∞
.

Hence,
∥∥∥T πQ1 − T

π
Q2

∥∥∥
∞
≤ γ

∥∥∥Q1 −Q2

∥∥∥
∞

According to the Banach fixed point theorem (Banach, 1922), T π admits a unique fixed
point. It can be easily verified that Qπ is indeed this fixed point by combining the two Bellman
Expectation equations (5.6).

B.1.2 Proof of Theorem 5.6

Proof. Let s, a ∈ A×S . For this proof, we consider potentially non-stationary policies π = (ρ, π′),
with ρ ∈M(A), π′ ∈M(A)N. The results will apply to the particular case of stationary optimal
policies, when they exist.

Q⋆r(s, a) = max
ρ,π′

Qρ,π
′

r (s′, a′) (B.1)

= max
ρ,π′

R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ρ,π′
r (s′) (B.2)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ,π′

∑
a′∈A

ρ(a′|s′)Qπ′
r (s′, a′) (B.3)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

∑
a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qπ
′
r (s′, a′) (B.4)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

E
a′∼ρ

Q⋆r(s′, a′) (B.5)

where π = (ρ, π′) ∈ Πa(s) and π′ ∈ Πa(s′).
This follows from:

(B.1). Definition of Q⋆.

(B.2). Bellman Expectation expansion from Proposition 5.4.

(B.3). Marginalisation on a′.

(B.4). • Trivially maxπ′∈Πa(s′)
∑
a′∈A · ≤

∑
a′∈A maxπ′∈Πa(s) ·.

186

B.1 Proofs

• Let π ∈ arg maxπ′∈Πa(s′)Q
π′
r (s′, a′), then:

∑
a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qπ
′
r (s′, a′) =

∑
a′∈A

ρ(a′|s′)Qπ′
r (s′, a′)

≤ max
π′∈Πa(s′)

∑
a′∈A

ρ(a′|s′)Qπ′
r (s′, a′).

(B.5). Definition of Q⋆.
Moreover, the condition π = (ρ, π′) ∈ Πa(s) gives

E
a′∼ρ

Q⋆c(s, a) = E
a′∼ρ

Qπ
′
c (s, a) = V π

c (s) ≤ β.

Consequently, πgreedy(·;Q⋆) belongs to the arg max of (B.5), and in particular:

Q⋆r(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a) E
a′∼πgreedy(s′,Q

⋆)
Q⋆r(s′, a′).

The same reasoning can be made for Q⋆c by replacing max operators by min, and Πa by
Πr.

B.1.3 Proof of Proposition 5.8

Proof. Notice from the definitions of T ⋆ and T π in (5.12) and (5.7) that T ⋆ and T πgreedy(·;Q⋆)

coincide on Q
⋆. Moreover, since Q⋆ = T ⋆Q⋆ by Theorem 5.6, we have: T πgreedy(·;Q⋆)

Q
⋆ =

T ⋆Q⋆ = Q
⋆. Hence, Q⋆ is a fixed point of T πgreedy(·;Q⋆), and by Proposition 5.4 it must be equal

to Qπgreedy(·;Q⋆)

To show the same result for V ⋆, notice that

V
πgreedy(Q⋆)(s) = E

a∼πgreedy(Q⋆)
Q
πgreedy(Q⋆)(s, a) = E

a∼πgreedy(Q⋆)
Q
⋆(s, a).

By applying the definitions of Q⋆ and πgreedy, we recover the definition of V ⋆.

B.1.4 Proof of Theorem 5.9

Proof. In the trivial case |A| = 1, there exits only one policy π and T = T π, which is a contraction
by Proposition 5.4.

In the general case |A| ≥ 2, we can build the following counter-example.

187

Complements on Chapter 5

0 ε 2ε
Qc

0

1
γ

Q
r β

Figure B.1 – Representation of Q1
ε (blue) and Q2

ε (yellow)

Let (S,A, P,Rr, Rc) be a BMDP. For any ε > 0, we define Q1
ε and Q

2
ε as

Q
1
ε(s, a) =

 (0, 0), if a = a0(
1
γ , ε

)
, if a ̸= a0

Q
2
ε(s, a) =

 (0, ε), if a = a0(
1
γ , 2ε

)
, if a ̸= a0

Then, ∥Q1 −Q2∥∞ = ε. Q1
ε and Q

2
ε are represented in Figure B.1.

But for a = (a, βa) with βa = ε, we have

∥T Q1
ε(s, a)− T Q2

ε(s, a)∥∞ = γ

∥∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1

ε)
Q

1
ε(s′, a′)− E

a′∼πgreedy(Q2
ε)
Q

2
ε(s′, a′)

∥∥∥∥∥∥
∞

= γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

(1
γ
, ε

)
− (0, ε)

∥∥∥∥∥
∞

= γ
1
γ

= 1

Hence,

∥T Q1
ε − T Q

2
ε∥∞ ≥ 1 = 1

ε
∥Q1 −Q2∥∞

In particular, there does not exist L > 0 such that

∀Q1, Q2 ∈ (R2)SA, ∥T Q1 − T Q2∥∞ ≤ L∥Q
1 −Q2∥∞

188

B.1 Proofs

In other words, T is not a contraction for ∥ · ∥∞.

B.1.5 Proof of Theorem 5.10

Remark B.1. This proof makes use of insights detailed in the proof of Proposition 5.11 (Sec-
tion B.1.6), which we recommend the reader to consult first.

Proof. We now study the contractivity of T ⋆ when restricted to the functions of Lγ defined as
follows:

Lγ =
{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr(s, a1)−Qr(s, a2)| ≤ L|Qc(s, a1)−Qc(s, a2)|

}
. (B.6)

That is, for all state s, the setQ(s,A) plot in the (Qc, Qr) planemust be the graph of aL-Lipschitz
function, with L < 1/γ − 1.

We impose such structure for the following reason: the counter-example presented above
prevented contraction because it was a pathological case in which the slope ofQ can be arbitrary
large. As a consequence, when solving Q⋆r such that Q⋆c = β, a vertical slice of a ∥ · ∥∞ ball
around Q1 (which must contain Q2) can be arbitrary large as well.

We denote Ball(Q,R) the ball of centre Q and radius R for the ∥ · ∥∞-norm:

Ball(Q,R) = {Q′ ∈ (R2)SA : ∥Q−Q′∥∞ ≤ R}.

We give the three main steps required to show that T ⋆ restricted to Lγ is a contraction.
Given Q1

, Q
2 ∈ Lγ , show that:

1. Q2 ∈ Ball(Q1
, R) =⇒ F2 ∈ Ball(F1, R),∀s ∈ S , whereF is the top frontier of the convex

hull of undominated points, as defined in Section B.1.6.

2. Q ∈ Lγ =⇒ F is the graph of a L-Lipschitz function, ∀s ∈ S.

3. taking the slice Qc = β of a ball Ball(F , R) with F L-Lipschitz results in an interval on
Qr of range at most (L+ 1)R

These three steps will allow us to control Q2⋆
r −Q1⋆

r as a function of R = ∥Q2 −Q1∥∞.

Step 1 We want to show that if Q1 and Q2 are close, then F1 are F2 are close as well in the
following sense:

F2 ∈ Ball(F1, R) ⇐⇒ d(F1,F2) ≤ R ⇐⇒ max
q2∈F2

min
q1∈F1

∥q2 − q1∥∞ ≤ R. (B.7)

189

Complements on Chapter 5

AssumeQ2 ∈ Ball(Q1
, R), we show by contradiction thatF2 ∈ Ball(F1, R). Indeed, assume

there exists q1 ∈ F1 such that F2 ∩ Ball(q1, R) = ∅. Denote q2 the unique point of F2 such that
q2
c = q1

c . By construction of q1, we know that ∥q1 − q2∥∞ > R. There are two possible cases:
• q2

r > q1
r : this also directly implies that q2

r > q1
r + R. But q2 ∈ F2, so there exist q2

1, q
2
2 ∈

Q2, λ ∈ R such that q2 = (1 − λ)q2
1 + λq2

2 . But since Q
2 ∈ Ball(Q1

, R), there also exist
q1

1, q
1
2 ∈ Q

1 such that ∥q1
1− q2

1∥∞ ≤ R and ∥q1
2− q2

2∥∞ ≤ R, and in particular q1
1r ≥ q2

1r−R
and q1

2r ≥ q2
2r−R. But then, the point q1′ = (1−µ)q1

1 +µq1
2 with µ = (q2

c − q1
1c)/(q2

2c− q1
1c)

verifies q1′
c = q1

c and q1′
r ≥ q2

r − R > q1
r which contradicts the definition of q1 ∈ F1 as

defined in (B.12).

• q2
r < q1

r : then the same reasoning can be applied by simply swapping the indexes 1 and 2.
We have shown that F2 ∈ Ball(F1, R). This is illustrated in Figure B.2: given a function Q1,

we show the locus Ball(Q1, R) of Q2. We then draw F1 the top frontier of the convex hull of Q1

and alongside the locus of all possible F2, which belong to a ball Ball(F1, R).

𝑄𝑟

𝑄𝑐𝛽

𝑄1

𝑄2

𝐹1

𝐹2

𝑄𝑟
2∗

Figure B.2 – We represent the range of possible solutions Q2⋆
r for any Q2 ∈ Ball(Q1), given Q1 ∈ Lλ

Step 2 We want to show that if Q ∈ Lγ , F is the graph of an L-Lipschitz function:

∀q1, q2 ∈ F , |q2
r − q1

r | ≤ |q2
c − q1

c |. (B.8)

Let Q ∈ Lγ and s ∈ S, F the corresponding top frontier of convex hull. For all q1, q2 ∈
F ,∃λ, µ ∈ [0, 1], q11, q12, q21, q22 ∈ Q(s,A) such that q1 = (1−λ)q11 +λq12 and q2 = (1−µ)q21 +
µq22. Without loss of generality, we can assume q11

c ≤ q12
c and q21

c ≤ q22
c . We also consider the

worst case in terms of maximum qr deviation: q12
c ≤ q21

c . Then the maximum increment q2
r − q1

r

190

B.1 Proofs

is:

∥q2
r − q1

r∥ ≤ ∥q12
r − q1

r∥+ ∥q21
r − q12

r ∥+ ∥q2
r − q21

r ∥

= (1− λ)∥q12
r − q11

r ∥+ ∥q21
r − q12

r ∥+ µ∥q22
r − q21

r ∥

≤ (1− λ)L∥q12
c − q11

c ∥+ L∥q21
c − q12

c ∥+ µL∥q22
c − q21

c ∥

= L∥q12
c − q1

c∥+ L∥q21
c − q12

c ∥+ L∥q2
c − q21

c ∥

= L∥q2
c − q1

c∥.

This can also be seen in Figure B.2: themaximum slope of theF1 is lower than themaximum
slope between two points of Q1.

Step 3 Let F1 be a L-Lipschitz set as defined in (B.8), and consider a ball Ball(F1, R) around
it as defined in (B.7).

We want to bound the optimal reward value Q2⋆
r under constraint Q2⋆

c = β (regular case
in Section B.1.6 where the constraint is saturated), for any F2 ∈ Ball(F1, R). This quantity is
represented as a red double-ended arrow in Figure B.2.

Because we are only interested in what happens locally at Qc = β, we can zoom in on
Figure B.2 and only consider a thin ε-section around β. In the limit ε→ 0, this section becomes
the tangent to F1 atQ1

c = β. It is represented in Figure B.3, from which we derive a geometrical
proof:

𝑏

𝑐

𝑎

𝛽 − 𝜖 𝛽 + 𝜖𝛽

𝐹1

𝐹2

𝑄𝑟
2∗

𝑄𝑟
1∗

2𝑅

Figure B.3 – We represent a section [β − ε, β + ε] of F1 and Ball(F1, R). We want to bound the range of
Q2⋆

r .

∆Q2⋆
r = b+ c

≤ La+ c (F1 L-Lipschitz)

191

Complements on Chapter 5

= 2LR+ 2R = 2R(L+ 1).

Hence,
|Q2⋆

r −Q1⋆
r | ≤

∆Q2⋆
r

2 = R(L+ 1)

and Q1⋆
c = Q2⋆

c = β. Consequently, ∥Q2⋆ −Q1⋆∥∞ ≤ (L+ 1)R.
Finally, consider the edge case in Section B.1.6: the constraint is not active, and the optimal

value is simply arg maxq∈F q
r. In particular, since we showed that F2 ∈ Ball(F1, R), and since

Q
2⋆ ∈ F2, there exist q1 ∈ F1 : ∥Q2⋆ − q1∥∞ ≤ R and in particular Q1⋆

r ≥ q1
r ≥ Q

2⋆
r − R.

Reciprocally, by the same reasoning, Q2⋆
r ≥ Q1⋆

r −R. Hence, we have that |Q2⋆
r −Q1⋆

r | ≤ R ≤
R(L+ 1).

Wrapping it up We have shown that for any Q1
, Q

2 ∈ Lγ , and all s ∈ S , F2 ∈ Ball(F1, ∥Q2−
Q

1∥∞) and F1 is the graph of a L-Lipschitz function with L < 1/γ− 1. Moreover, the solutions
of πgreedy(Q1) and πgreedy(Q2) at s are such that ∥Q2⋆ −Q1⋆∥∞ ≤ (L+ 1)∥Q2 −Q1∥∞.

Hence, for all a,

∥T ⋆Q1(s, a)−T ⋆Q2(s, a)∥∞

= γ

∥∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1)

Q
1(s′, a′)− E

a′∼πgreedy(Q2)
Q

2(s′, a′)

∥∥∥∥∥∥
∞

= γ
∥∥∥Q2⋆ −Q1⋆∥∥∥

∞

≤ γ(L+ 1)∥Q2 −Q1∥∞.

Taking the sup on SA,

∥T ⋆Q1 − T ⋆Q2∥∞ ≤ γ(L+ 1)∥Q1 −Q2∥∞

with γ(L+ 1) < 1. As a conclusion, T ⋆ is a γ(L+ 1)-contraction on Lγ .

B.1.6 Proof of Proposition 5.11

Definition B.2. Let A be a set, and f a function defined on A. We define

• the convex hull of A: C(A) = {
∑p
i=1 λiai : ai ∈ A, λi ∈ R+,

∑p
i=1 λi = 1, p ∈ N};

• the convex edges of A: C2(A) = {λa1 + (1− λ)a2 : a1, a2 ∈ A, λ ∈ [0, 1]};

• Dirac distributions of A: δ(A) = {δ(a− a0) : a0 ∈ A};

192

B.1 Proofs

• the image of A by f : f(A) = {f(a) : a ∈ A}.

Proof. Let s = (s, β) ∈ S and Q ∈ (R2)SA. We recall the definition of πgreedy:

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQ

r

E
a∼ρ

Qc(s, a) (5.13a)

where ΠQ
r = arg max

ρ∈M(A)
E
a∼ρ

Qr(s, a) (5.13b)

s.t. E
a∼ρ

Qc(s, a) ≤ β (5.13c)

Note that any policy in the arg min in (5.13a) is suitable to compute T ⋆. We first reduce the
set of candidate optimal policies. Consider the problem described in (5.13b),(5.13c): it can be
seen as a single-step CMDP problem with reward R = Qr and cost C = Qc. By (Theorem 4.4
Beutler and K. W. Ross, 1985), we know that the solutions are mixtures of two deterministic
policies. Hence, we can replaceM(A) by C2(δ(A)) in (5.13b).

Moreover, remark that:

{ E
a∼ρ

Q(s, a) :ρ ∈ C2(δ(A))}

= { E
a∼ρ

Q(s, a) : ρ = (1− λ)δ(a− a1) + λδ(a− a2), a1, a2 ∈ A, λ ∈ [0, 1]}

= {(1− λ)Q(s, a1) + λQ(s, a2), a1, a2 ∈ A, λ ∈ [0, 1]}

= C2(Q(s,A))}.

Hence, the problem (5.13b), (5.13c) has become:

Π̃
Qr

= arg max
(qr,qc)∈C2(Q(s,A))

qr s.t. qc ≤ β

and the solution of πgreedy is q⋆ = arg min
q∈Π̃

Qr qc.

The original problem in the space of actions A is now expressed in the space of values
Q(s,A) (which is why we use = instead of ∈ before arg min here).

We further restrict the search space of q⋆ following two observations:
1. q⋆ belongs to the undominated points C2(Q−):

Q
+ = {(qc, qr) : qc > q±

c = min
q+

q+
c s.t. q+ ∈ arg max

q∈Q(s,A)
qr} (B.10)

Q
− = Q(s,A) \Q+

. (B.11)

193

Complements on Chapter 5

Denote q⋆ = (1− λ)q1 + λq2, with q1, q2 ∈ Q(s,A). There are three possible cases:

(a) q1, q2 ̸∈ Q−. Then q⋆c = (1 − λ)q1
c + λq2

c > q±
c . But then q±

c < q⋆c ≤ β so q± ∈ Π̃
Qr

with a strictly lower qc than q⋆, which contradicts the arg min.
(b) q1 ∈ Q

−
, q2 ̸∈ Q

−. But then consider the mixture q⊤ = (1 − λ)q1 + λq±. Since
q±
r ≥ q2

r and q±
r < q2

r , we also have q⊤
r ≥ q⋆r and q⊤

c < q⋆c , which also contradicts the
arg min.

(c) q1, q2 ∈ Q− is the only remaining possibility.

2. q⋆ belongs to the top frontier F :

FQ = {q ∈ C2(Q−) :̸ ∃q′ ∈ C2(Q−) : qc = q′
c and qr < q′

r}. (B.12)

Trivially, otherwise q’ would be a better candidate than q⋆.
Let us characterise this frontier F . It is both:
1. the graph of a non-decreasing function: ∀q1, q2 ∈ F such that q1

c ≤ q2
c then q1

r ≤ q2
r .

By contradiction, if we had q1
r > q2

r , we could define q⊤ = (1− λ)q1 + λq± where q± is
the dominant point as defined in (B.10). By choosing λ = (q2

c − q1
c)/(q±

c − q1
c) such that

q⊤
c = q2

c , then since q±
r ≥ q1

r > qr2 we also have q⊤
r > q2

r which contradicts q2 ∈ F .

2. the graph of a concave function: ∀q1, q2, q3 ∈ F such that q1
c ≤ q2

c ≤ q3
c with λ such that

q2
c = (1− λ)q1

c + λq3
c , then q2

r ≥ (1− λ)q1
r + λq3

r .
Trivially, otherwise the point q⊤ = (1 − λ)q1 + λq3 would verify q⊤

c = q2
c and q⊤

r > q2
r ,

which would contradict q2 ∈ F .
We denote FQ = F ∩Q. Clearly, q⋆ ∈ C2(FQ): let q1, q2 ∈ Q− such that q⋆ = (1−λ)q1 +λq2.

First, q1, q2 ∈ Q− ⊂ C2(Q−). Then, by contradiction, if there existed q1′ or q2′ with equal qc and
strictly higher qr, again we could build an admissible mixture q⊤ = (1− λ)q1′ + λq2′ strictly
better than q⋆.

q⋆ can be written as q⋆ = (1− λ)q1 + λq2 with q1, q2 ∈ FQ and, without loss of generality,
q1
c ≤ q2

c .

Regular case There exists q0 ∈ FQ such that q0
c ≥ β. Then q1 and q2 must flank the budget:

q1
c ≤ β ≤ q2

c . Indeed, by contradiction, if q2
c ≥ q1

c > β then q⋆c > β which contradicts ΠQ
r .

Conversely, if q1
c ≤ q2

c < β then q⋆ < β ≤ q0
c , which would make q⋆ a worse candidate than

q⊤ = (1− λ)q⋆ + λq0 when λ is chosen such that q⊤
c = β, and contradict ΠQ

r again.
Because F is the graph of a non-decreasing function, λ should be as high as possible,

as long as the budget q⋆ ≤ β is respected. We reach the highest q⋆r when q⋆c = β, that is:
λ = (β − q1

c)/(q2
c − q1

c).

194

B.1 Proofs

It remains to show that q1 and q2 are two successive points in FQ: ̸ ∃q ∈ FQ \ {q1, q2} : q1
c ≤

qc ≤ q2
c . Otherwise, asF is the graph of a concave function, we would have qr ≥ (1−µ)q1

r +µq2
r .

qr cannot be strictly greater than (1− µ)q1
r + µq2

r which would contradict q⋆, but it can still be
equal, which means the tree points q, q1, q2 are aligned. In fact, every points aligned with q1

and q2 can also be used to construct mixtures resulting in q⋆, but among these solutions we can
still choose q1 and q2 as the two points in FQ closest to q⋆.

Edge case ∀q ∈ FQ, qc < β. Then q⋆ = arg maxq∈F qr = q± = arg max
q∈Q− qr.

195

Appendix C

Complements on Chapter 6

Outline We provide proofs for every claimed result in Section C.1. We look into the time
and memory complexity and propose efficient implementations of OLOP and KL-OLOP in Sec-
tion C.2.1, and of GBOP-D and GBOP in Section C.2.2.

C.1 Proofs

C.1.1 Proof of Lemma 6.5

Proof. The proof is identical to that of Lemma 4 in (Sébastien Bubeck and Rémi Munos, 2010).
Since arg maxa∈A Ta(M), and∑a∈A Ta(M) = M, we have Ta(n)(M) ≥M/K, and thus:

M

K
(V − V (a(n))) ≤ (V − V (a(n)))Ta(n)(M) ≤

M∑
m=1

V − V (am)

Hence, we have, rn ≤ K
M

∑M
m=1 V − V (am). Now remark that, for any sequence of actions

a ∈ AL, we have either:
• a1:H ∈ IH ; which implies V − V (a) ≤ 2γH+1

1−γ

• or there exists 1 ≤ h ≤ H such that a1:h ∈ Jh; which implies V −V (a) ≤ V −V (a1:h−1) +
γh

1−γ ≤
3γh

1−γ .
Thus we can write:

M∑
m=1

(V − V (am)) =
M∑
m=1

(V − V (am)) (1 {am ∈ IH}+ 1 {∃1 ≤ h ≤ H : am1:h ∈ Jh})

≤ 2γH+1

1− γ M + 3
H∑
h=1

∑
a∈Jh

γh

1− γTa(M)

197

Complements on Chapter 6

C.1.2 Proof of Lemma 6.9

Proof. The event τah,h′ = 1 implies am+1 ∈ aA∗ and (6.9). This implies by Lemma 6.6 that either
(UCB violation), (LCB violation) or (Large CI) is satisfied. Now by Lemma 6.8 this implies
that either (UCB violation) is true or (LCB violation) is true or (6.8) is false. We now prove
that if (6.10) is not satisfied then (6.9) is true, which clearly ends the proof. This follows from:
For any 0 ≤ t ≤ h′:

Ta1:t(m) =
∑

b∈a1:tAh−t

Tb(m) ≥
∑

b∈Pa1:t
h,h′

Tb(m)

≥
(
γ2(t−h′)

) (
2f(m)(h+ 1)2γ2(h′−h−1)

)
= 2f(m)(h+ 1)2γ2(t−h−1) .

C.1.3 Proof of Lemma 6.10

Proof. The proof is identical to that of Lemma 9 in (Sébastien Bubeck and Rémi Munos, 2010).
Let h′ ≥ 1 and 0 ≤ s ≤ h′. We introduce the following random variables:

ma
s = min

(
M,min

{
m ≥ 0 :

∣∣∣Pah,h′(m)
∣∣∣ ≥ γ2(s−h′)

})
.

We will prove recursively that,

∣∣∣P∅
h,h′(m)

∣∣∣ ≤ s∑
t=0

γ2(t−h′) |It|+
∑
a∈Is

∣∣∣Pah,h′ \ ∪st=0P
a1:t
h,h′ (ma1:t

t)
∣∣∣ (C.1)

The result is true for s = 0 since I0 = {∅} and by definition ofm∅
0,∣∣∣P∅

h,h′(m)
∣∣∣ ≤ γ−2h′ +

∣∣∣P∅
h,h′(m) \ P∅

h,h′

(
m∅

0

)∣∣∣
Now let us assume that the result is true for s < h′. We have:

∑
a∈Is

∣∣∣Pah,h′(m) \ ∪a1:t
h,h′ (ma1:t

t)
∣∣∣ =

∑
a∈Is+1

∣∣∣Pah,h′(m) \ ∪st=0P
a1:t
h,h′ (ma1:t

t)
∣∣∣

≤
∑

a∈Is+1

γ2(s+1−h′) +
∣∣∣Pah,h′(m) \ ∪s+1

t=0P
a1:t
h,h′ (ma1:t

t)
∣∣∣

198

C.1 Proofs

= γ2(s+1−h′) |Is+1|+
∑

a∈Is+1

∣∣∣Pah,h′(m) \ ∪s+1
t=0P

a1;t
h,h′ (ma1:t

t)
∣∣∣

which ends the proof of (C.1). Thus we proved (by taking s = h′ andm = M):

∣∣∣P∅
h,h′(M)

∣∣∣ ≤ h′∑
t=0

γ2(t−h′) |It|+
∑
a∈Ih′

∣∣∣Pah,h′(M) \ ∪s+1
t=0P

a1:t
h,h′ (ma1:t

t)

=
h′∑
t=0

γ2(t−h′) |It|+
∑
a∈Jh

∣∣∣Pah,h′(M) \ ∪a1:t
h,h′ (ma1:t

t)
∣∣∣

Now, for any a ∈ Jh, let m̃ = max0≤t≤h′ ma1:t
t . Note that form ≥ m̃, equation (6.10) is not

satisfied. Thus we have
∣∣∣Pah,h′ \ ∪s+1

h,h′Pa1:t
h,h′ (ma1:t

t)
∣∣∣ =

M−1∑
m=m̃

τah,h′(m+ 1) =
M−1∑
m=0

τah,h′(m+ 1)1{(6.10) is not satisfied }

≤
M−1∑
m=0

τah,h′(m+ 1)1{(UCB violation) or (LCB violation)}

where the last inequality results from Lemma 6.9. Hence, we proved:

∣∣∣P∅
h,h′

∣∣∣ ≤ h′∑
t=0

γ2(t−h′) |It|+
M−1∑
m=0

∑
a∈Jh

1{(UCB violation) or (LCB violation)}

Taking the expectation and applying Lemma 6.7 yield the claimed bound for h′ ≥ 1.
Now for h′ = 0weneed amodified version of Lemma 6.9. Indeed in this case one can directly

prove that τah,0(m+ 1) = 1 implies that either equation (UCB violation) or (LCB violation) is
satisfied (this follows from the fact that τah,0(m + 1) = 1 always imply that (6.8) is true for
h′ = 0). Thus we obtain:

∣∣∣P∅
h,h′

∣∣∣ =
M−1∑
m=0

∑
a∈Jh

τah,0(m+ 1) ≤
M−1∑
m=0

∑
a∈Jh

1{(UCB violation) or (LCB violation)}

Taking the expectation and applying Lemma 6.7 yield the claimed bound for h′ = 0 and ends
the proof.

199

Complements on Chapter 6

C.1.4 Proof of Lemma 6.11

Proof. The proof is identical to that of Lemma 10 in (Sébastien Bubeck and Rémi Munos, 2010):

∑
a∈Jh

Ta(M) =
∑

a∈Jh\P∅
h,h−1

Ta(M) +
h−1∑
h′=1

∑
a∈P∅

h,h′ \P∅
h,h′−1

Ta(M) +
∑

a∈P∅
h,0

Ta(M)

≤ 2f(m)(h+ 1)2γ2(h−2−h) |Jh|

+
h−1∑
h′=1

2f(m)(h+ 1)2γ2(h′−2−h) logM
∣∣∣P∅
h,h′

∣∣∣+M
∣∣∣P∅
h,0

∣∣∣
= Õ

((
κ′)h + γ−2h

h−1∑
h′=1

γ2h′
∣∣∣P∅
h,h′

∣∣∣+M
∣∣∣P∅
h,0

∣∣∣)

Taking the expectation and applying the bound of Lemma 6.10 give the claimed bound.

C.1.5 Proof of Lemma 6.15

Proof. The tightening property is directly obtained by definition of monotonicity. Let us show
the preservation of monotonicity. Let U a monotonic upper-bound, a ∈ Ah. Then, for any
b ∈ A:

U(ab) ≥ B(U)(ab) =⇒ r(ab) + γU(ab) ≥ r(ab) + γB(U)(ab).

Thus, my taking the max on b, B(U)(a) ≥ B2(U)(a). The same can be obtained for a lower-
bound L.

The finite time convergence can be obtained by recursion from the leaves to the root, by
noticing that if the value of a set of siblings aA is invariant by B, then the value of their parent
a is invariant by B2.

C.1.6 Proof of Lemma 6.16

Proof. The proof of tightening andmonotonicity preservation is the same as that of Lemma 6.15.
The contraction property is standard for the Bellman Operator, see e.g. Puterman M., Markov
Decision Processes: Discrete Stochastic Dynamic Programming (2005).

200

C.1 Proofs

C.1.7 Proof of Lemma 6.18

Proof. By definition, for a ∈ Ah,

V (a) = sup
b∈aA∞

∞∑
t=1

γtµ(b1:t)

=
h∑
t=1

γtµ(a1:t) sup
b∈aA∞

∞∑
t=h+1

γtµ(b1:t)

= G(s1, a)γh sup
b∈A∞

∞∑
t=1

γtµ(b1:t starting from s(a))

= G(s1, a)γhV (s(a))

C.1.8 Proof of Theorem 6.20

We recall the main steps of the proof of Hren and Rémi Munos (2008).

1. The recommendation an has a maximal depth dn in the tree, and its gap rn = V ⋆−V (an,1)
is bounded by rn ≤ γdn

1−γ . We need to relate dn to n.

2. Each expanded node belongs to T ∞ =
⋃
h≥0 T ∞

h , where

T ∞
h =

{
a ∈ Ah : V ⋆ − V (a) ≤ γh

1− γ

}
.

Introduce the difficulty measure κ such that |T ∞
h | = O(κh) (the smallest).

3. In the worst case, expanded nodes fully fill the depths of T ∞ up to dn: n =
∑dn
d=1 nd ≤

C
∑dn
d=1 κ

d =

O(dn) if κ = 1

O(κdn) else.

Hence rn =

O(γn) if κ = 1

O(γ
log n
log κ) = O(n− log 1/γ

log κ) else.

C.1.9 Proof of Lemma 6.22

Proof. Let L2 ≤ L1 ≤ V ≤ U1 ≤ U2, then T ∞
h (L1, U1) ⊂ T ∞

h (L2, U2),which implies

|T ∞
h (L1, U1)|1/h ≤ |T ∞

h (L2, U2)|1/h

201

Complements on Chapter 6

and the claimed result in the limit h→∞.

C.1.10 Proof of Theorem 6.23

In this proof, we temporarily assume that U = B(U) and L = B(L). We follow the same steps
as in the proof of the regret of OPD.

Remark C.1. It no longer holds that an must be of maximal depth dn. This is due to the fact the
exploration bonus γhU(a) is not depth-wise constant: consider two nodes a, b at the same depth with
R(a) > R(b). In OPD, both get the same bonus γh/(1− γ), and the node a is expanded first. But
with the local bonus, b could be expanded in priority rather than a, if its own bonus is sufficiently
higher than that of a, precisely if R(a) + γhU(a) < R(b) + γhU(b). For instance, U(a) = 0
when a is known to be a terminal state while b can lead to future rewards. If after expanding and
exploring the subtree of b we find out that V (b) = 0, we still return the recommendation a, which is
of non-maximal depth.

The regret bound still holds, however. First, notice that:

Lemma C.2 (Expansion). Whenever a node a of depth h is expanded by the optimistic algorithm,
its first action a1 enjoys a simple regret V (a⋆)− V (a1) ≤ γh(U(a)− L(a)).

Proof. Let t be the time of expansion of a, it holds that U t(b) ≤ U t(a) for all b ∈ ∂T t, in
particular those in a branch starting by an optimal action a⋆. Since U = B(U) and L = B(L),
we also have U t(a⋆) = maxb∈a⋆A∗ U t(b) ≤ U t(a), and Lt(a1) = max b ∈ a1A

∗Lt(b) ≥ Lt(a).
Thus, V (a⋆)− V (a1) ≤ U t(a⋆)− Lt(a1) ≤ U t(a)− Lt(a) = γh(U(a)− L(a)).

Lemma C.3 (Recommendation). The recommended action an has a simple regret rn ≤ γdn

1−γ ,
where dn is the maximal depth of Tn.

Proof. Let i a node of maximal depth dn, and consider the recommended node an at time
n, of depth d. In particular, Ln(an) ≥ Ln(i), and since (Lt)t is non-decreasing we also have
Ln(i) ≥ Lt(i). At the time t when i is expanded, we have U t(an) ≤ U t(i), and since (U t)t is
non-increasing we also have Un(an) ≤ U t(an). We can conclude with Lemma C.2 applied to an:
rn ≤ γd(U(an)−L(an) = Un(an)−Ln(an) ≤ U t(an)−Ln(i) ≤ U t(i)−Lt(i) = γdn(U(i)−L(i),
which yields the claimed bound since U(i)− L(i) ≤ Vmax − 0.

202

C.1 Proofs

Lemma C.4 (Near-optimal nodes). Every node expanded by (6.16) is in

T ∞(L,U) =
⋃
h≥0
T ∞
h (L,U).

Proof. Let a be a node of depth h expanded at round n, then Un(a) ≥ Un(b) for all b ∈ ∂T n.
Thus, sinceU = B(U), we haveU(a) = B(U)(∅) = B(U)(s1) ≥ V (s1) = V ⋆. Thus, V ⋆−V (a) ≤
U(a)− L(a) = γh(U(a)− L(a)).

Finally, we can move on to the proof of Theorem 6.23. Let nd be the number of expanded
nodes of depth d, by Lemma C.4 we have nd ≤ |T ∞

d (L,U)| ≤ Cκ(L,U)d. Thus,

n =
dn∑
d=1

nd ≤ C
dn∑
d=0

κ(L,U)d = C
κ(L,U)dn+1 − 1
κ(L,U)− 1

Hence, dn ≥ C ′ logn
log κ(L,U) ,which along with Lemma C.2 gives the claimed bound.

Note that if L, U are monotonic bounds that do not verify L = B(L) and U = B(U),
then planning with B(L), B(U) instead will yield the proved bound with a branching factor
κ(B(L), B(U)), and since L ≤ B(L) ≤ V ≤ B(U) ≤ U we have κ(B(L), B(U)) ≤ κ(L,U),
which still gives

rn = O
(
n

− log 1/γ
log κ(L,U)

)
;

C.1.11 Proof of Lemma 6.24

Proof. We first show that if U is equivalent to U , meaning that for any sequence a ∈ T (Gn) we
have U(a) = U(s(a)), then Bn(U) is equivalent to Bn(U).

By definition of T (Gn), any sequence of action a ∈ T (Gn) corresponds to a path s1, a1, . . . ,

sh, ah, sh+1 in Gn. If a ∈ ∂T (Gn), then necessarily s(a) ∈ ∂Gn, and both are unchanged by Bn
and Bn respectively. Conversely, if a ∈ T̊ (Gn), then s(a) ∈ G̊n by construction. Thus,

Bn(U)(a) = max
b∈A

r(s(a), b) + γU(ab)

= max
b∈A

r(s(a), b) + γU(s(ab)) (by assumption)

= max
b∈A

r(s(a), b) + γU(P (s(a), b))

203

Complements on Chapter 6

= Bn(Un)(s(a)).

By induction, for any k > 0 Bk
n(U) is equivalent to Bkn(U), and at the limit k →∞ it comes

that Un is equivalent to Un. The same result can be shown similarly for Ln and Ln.

C.1.12 Proof of Lemma 6.25

We start by showing a preliminary lemma.

Lemma C.5 (Bounds of sequence values). The bounds (Ln, Un) on the value of sequences of
actions verify are respectively non-decreasing and non-increasing with respect to n, and verify: for
all a ∈ A∗, Un(a) = maxa′∈aA∞ U(a′).

Proof. The second property can be easily shown by induction using the fact that Un and Ln
are fixed-points of Bn by definition. Applying this equation at each depth h gives the result.
From this observation, we can deduce that Ln is increasing with n. Indeed, since when T (Gn) is
expanded with additional nodes compared to T (Gn−1), the leaves a of T (Gn−1) with previous
value Ln−1(a) = 0 are updated to Ln(a) = maxb r(s(a), b) ≥ 0 = Ln−1(a), and this increase
at the leaves is then propagated through maxa′∈aA∞ to any internal node a. Thus, Ln is non-
decreasing and likewise, Un is non-increasing with respect to n. The same is obtained directly
of the bounds on sequence values (Ln, Un).

Which enables us to proceed to the proof of Lemma 6.25.

Proof. Let t be the time of expansion of a, it holds that U t(b) ≤ U t(a) for all b ∈ T (Gn). In
particular for b in a branch starting by an optimal action a⋆ U t(a) ≥ maxb∈a⋆A∗ U t(b) = U t(a⋆).
Thus, V (a⋆)− V (a) ≤ U t(a⋆)− Lt(a) ≤ U t(a)− Lt(a) = γh(Ut(a)− Lt(a)).

C.1.13 Proof of Lemma 6.26

Proof. Let i an expanded node of maximal depth dn ∈ R∪{∞}, and consider the recommended
node an at time n, of depth d ∈ R ∪ {∞}. In particular, Ln(an) ≥ Ln(i), and since (Lt)t is
non-decreasing we also have Ln(i) ≥ Lt(i). At the time t when i is expanded, we have
U t(an) ≤ U t(i), and since (U t)t is non-increasing we also have Un(an) ≤ U t(an). We can
conclude with Lemma 6.25 applied to an: rn ≤ V ⋆ − V (an) ≤ γd(U(an)− L(an) = Un(an)−
Ln(an) ≤ U t(an)− Ln(i) ≤ U t(i)− Lt(i) = γdn(Ut(i)− Lt(i), which yields the claimed bound
since U(i)− L(i) ≤ Vmax − 0.

204

C.1 Proofs

C.1.14 Proof of Theorem 6.27

Proof. Let κ′ > κ∞. Since κ(Ln, Un) → κ∞, there exists n0 ∈ N such that for all n ≥ n0,
κ(Ln, Un) ≤ κ′. By Lemma 6.25, at each iteration n the expanded node must belong to
T ∞(Ln, Un). Let n ≥ n0, and define d0 = min{d ∈ N : ∃t ∈ [n0, n], bt ∈ Ad}. By defini-
tion, for all d ≥ d0, any expanded node of depth d was expanded at a time t ≥ n0, and thus
bt ∈ T ∞

t ⊂ T ∞
n0 . We denote nd the number of expanded nodes of depth d. If dn = ∞, then

rn = 0 and the bound holds. Else, we obtain

n =
d0−1∑
d=0

nd +
dn∑
d=d0

nd ≤ C0 + C1

dn∑
d=d0

(κ′)d ≤ C0 + C ′
1(κ′)dn

And since rn ≤ γdn

1−γ by Lemma 6.26, we obtain the claimed bound.
Moreover, given a history of observed transitions up to iteration n, the bounds Un, Ln

obtained from (6.20) on the unrolled tree T (Gn) are tighter than those of (6.14) since Tn ⊂
T (Gn), which implies by Lemma 6.22 that κ(Ln, Un) ≤ κ. We obtain κ∞ ≤ κ at the limit.

C.1.15 Proof of Proposition 6.28

The Figure C.1 shows the planning tree corresponding to the MDPM. Whenever the action a1

is taken (in green) the resulting subtree is represented by a leaf node s⋆ of value V ⋆ = r⋆

1−γ .
When, in contrast, we take a sequence of actions among a2 . . . aK (in orange), we stay in the
state s+ and denote Vh the corresponding value at depth h.

Lemma C.6. Any sequence of actions in A \ a1 is in T ∞.

Proof. Any such sequence of actions yields the sequence of rewards r−, r+, . . . , r+. and end
up in the state s+ with value at least V ⋆ (obtained by further taking a1 indefinitely). Thus its
value Vh verifies,

Vh ≥
h−1∑
t=0

γtrt + γhV ⋆

= r− − r+ +
h−1∑
t=0

γtr+ + γhV ⋆

= (− γ

1− γ − 1)S + 1− γh

1− γ (r⋆ + S) + γhV ⋆

= V ⋆ − S γh

1− γ ≥ V
⋆ − γh

1− γ

205

Complements on Chapter 6

𝑟∗ 𝑟−

𝑟+

𝑟+

𝑉1

𝑉2

𝑉3

𝑉∗

𝑉∗

𝑉∗

𝑉∗

Figure C.1 – Planning tree of the MDPM of Figure 6.8
.

We can directly conclude that κ ≥ lim sup |{a2, . . . , aK}h|1/h = K − 1.
Now, consider the nodes expanded by GBOP-D. The first expansion is that of the root, which

discovers s⋆ and s+. In the absence of information on these two state, the bound Vmax is used
and the first action a1 gets a higher U that any other action a2, . . . , aK since r⋆ ≥ r−. Hence, at
the second iteration, the node a1 gets expanded. At this point, the self-loop of the state s⋆ is
discovered, which means that form now on the bounds verify Ln(a1) = V ⋆ = Un(a1) for n ≥ 2,
which means that Ln(a1A∗)− Un(a1A∗) = 0. The nodes a2, . . . , aK can be expanded at most
once before the entire MDP is discovered and Ln = V = Un over the entire tree, which means
that T ∞

n is the set of optimal nodes, i.e. the nodes in the only optimal sequence a⋆1. Hence,
κ∞ = 1.

206

C.2 Time and memory complexities

C.2 Time and memory complexities

C.2.1 KL-OLOP

After having considered the sample efficiency of OLOP and KL-OLOP in Theorem 6.4, we now
study their time and memory complexities. We will only mention the case of KL-OLOP for ease
of presentation, but all results easily extend to OLOP.

The Algorithm 6.1 requires, at each episode, to compute and store in memory of the reward
upper-bounds and U-values of all nodes in the tree T =

∑L
h=0Ah. Hence, its time and memory

complexities C(KL-OLOP) are

C(KL-OLOP) = O(M |T |) = O(MKL).

The curse of dimensionality brought by the branching factor K and horizon L makes it
intractable in practice to actually run KL-OLOP in its original form even for small problems.
However, most of this computation and memory usage is wasted, as with reasonable sample
budgets n the vast majority of the tree T will not be actually explored and hence does not hold
any valuable information.

We propose in Algorithm C.1 a lazy version of KL-OLOP which only stores and processes the
explored subtree, as shown in Figure C.2, while preserving the inner workings of the original
algorithm.

Figure C.2 – A representation of the tree T +
m , withK = 2 actions and after episodem = 2, when two

sequences have been sampled. They are represented with solid lines and dots •, and they constitute the
explored subtree Tm. When extending Tm with the missing children of each node, represented with
dashed lines and diamonds ⋄, we obtain the full extended subtree T +

m . The set of its leaves is denoted
L+

m and shown as a dotted set.

207

Complements on Chapter 6

Algorithm C.1: Lazy Open Loop Optimistic Planning
1 LetM be the largest integer such thatM logM/(2 log 1/γ) ≤ n
2 Let L = logM/(2 log 1/γ)
3 Let T +

0 = L+
0 = {∅}

4 for each episodem = 1, · · · ,M do
5 Compute Ua(m− 1) from (6.4) for all a ∈ T +

m−1
6 Compute Ba(m− 1) from (6.5) for all a ∈ L+

m−1
7 Sample a sequence with highest B-value: a ∈ arg maxa∈L+

m−1
Ba(m− 1)

8 Choose an arbitrary continuation am ∈ AAL−|a| // e.g. uniformly
9 Let T +

m = T +
m−1 and L+

m = L+
m−1

10 for t = 1, · · · , L do
11 if am1:t ̸∈ T +

m then
12 Add am1:t−1A to T +

m and L+
m

13 Remove am1:t−1 from L+
m

14 return the most played sequence a(n) ∈ arg maxa∈L+
m
Na(m)

Proposition C.7 (Time and memory complexity). Algorithm C.1 has time and memory com-
plexities of

C(Lazy KL-OLOP) = O(KLM2)

The corresponding complexity gain compared to the original Algorithm 6.1 is:

C(Lazy KL-OLOP)
C(KL-OLOP) = n

KL−1

which highlights that only a subtree corresponding to the sample budget n is processed instead of the
search whole tree T .

Proof. At episodem = 1, · · · ,M , we compute and store in memory the reward upper-bounds
and U-values of all nodes in the subtree T +

m . Moreover, the tree T +
m is constructed iteratively

by adding K nodes at most L times at each episode from 0 tom. Hence, |T +
m | = O(mKL). This

yields directly C(Lazy KL-OLOP) =
∑M
m=1O(mKL) = O(M2KL).

Proposition C.8 (Consistency). The set of sequences returned by Algorithm C.1 is the same as
the one returned by Algorithm 6.1. In particular, Algorithm C.1 enjoys the same regret bounds as in
Theorem 6.4.

208

C.2 Time and memory complexities

Proof. To prove consistency of Algorithm C.1, we need to show that the sequences of actions
am sampled at every episode are chosen arbitrarily from the same sets as in Algorithm C.1.
Namely,

b ∈ AAL−|a| : a ∈ arg max
a∈L+

m−1

Ba(m− 1)

 = arg max
a∈AL

Ba(m− 1)

To that end, we first introduce some useful notations:

Let Tm be the set of visited nodes after episodem:

Tm =∆ {a ∈ A∗ : Na(m) > 0}

We also define its extension T +
m of visited nodes and their children:

T +
m =∆ Tm + TmA

Now for a ∈ A∗, πm(a) (resp. π+
m(a)) refers to its longest prefix within Tm (resp. T +

m):

πm(a) =∆ arg max
b∈Tm

{|b| : a ∈ bA∗}

π+
m(a) =∆ arg max

b∈T +
m

{|b| : a ∈ bA∗}

Finally, Lm and L+
m are the image of AL by πm and π+

m, respectively.

Lm =∆ πm(AL)

L+
m =∆ π+

m(AL)}

Remark C.9 (About children extensions). We could frame Algorithm C.1 in terms of Tm and
Lm, for which mathematical proofs are more straight-forward. However, the iterative construction
of Lm is tricky and it would require inverting πm on Lm which is non-trivial. On the contrary,
introducing their extensions T +

m and L+
m slightly complicates the proof, but greatly simplifies the

construction of L+
m and the computation of π+

m
−1 on L+

m, which is why we use these sets in practice.

209

Complements on Chapter 6

Lemma C.10 (Sets construction). T +
m and L+

m are indeed the sets computed in Algorithm C.1.

Proof. Note that for each episode 1 ≤ m ≤M − 1, we have:

Tm+1 = Tm +
L∑
t=0

am+1
1:t (C.2)

Indeed, the nodes visited at least once at timem+ 1 where either already visited once at time
m (e.g. in Tm) or have been visited for the first time during episodem+ 1, which means they
are a prefix of am+1. The reverse is clearly true as well.

This enables to write:

T +
m+1 = Tm+1 + Tm+1A by definition

= Tm +
L∑
t=0

am+1
1:t + (Tm +

L∑
t=0

am+1
1:t)A by (C.2)

= (Tm + TmA) +
L∑
t=0

am+1
1:t +

L∑
t=0

am+1
1:t A

= T +
m + am+1

1:0 +
L∑
t=0

am+1
1:t A as

L∑
t=1

am+1
1:t ⊂

L∑
t=0

am+1
1:t A

= T +
m +

L∑
t=0

am+1
1:t A as am+1

1:0 = ∅ ∈ T0 ⊂ Tm ⊂ T +
m

This recursion is the one implemented in Algorithm C.1: at each episodem, we add to T +
m the

children of the nodes along the sampled action sequence am.
Finally, we highlight that L+

m = π+(AL) is the set of leaves of T +
m . Indeed, nodes of L+

m

belong to T +
m , but they cannot have a child in T +

m as it would contradict the definition of
L+
m. Conversely, any leaf a of T +

m can be continued arbitrarily to a sequence b of AL, which
a = π+

m(b) ∈ π+(AL) = L+
m.

Thus, when updating T +
m−1, the set of its leaves is updated accordingly: when the children

of a leaf am1:t−1 are added to T +
m , they become new leaves in place of their parent. Hence, they

are added to L+
m while am1:t−1 is removed from it.

210

C.2 Time and memory complexities

Lemma C.11 (U-values conservation). For all a ∈ A∗,

Ua(m) = Uπm(a)(m) = Uπ+
m(a)(m)

Proof. Let a ∈ A∗, denote h = |a| and h′ = |πm(a)|.
By definition of πm(a), 0 ≤ h′ ≤ h, and
• for 1 ≤ t ≤ h′, we have a1:t = πm(a)1:t ;

• for h′ + 1 ≤ t ≤ h, we have a1:t ̸∈ Tm, hence Ta1:t(m) = 0 and Uµa1:t(m) = 1.
Then,

Ua(m) =
h∑
t=1

γtUµa1:t(m) + γh+1

1− γ

=
h′∑
t=1

γtUµa1:t(m) +
h∑

t=h′+1
γt Uµa1:t(m)︸ ︷︷ ︸

1

+ γh+1

1− γ

=
h′∑
t=1

γtUµπm(a)1:t
(m) + γh

′+1

1− γ

= Uπm(a)(m)

Now, consider π+
m(a) ∈ T +

m . By definition, it belongs either to Tm or TmA.
• If π+

m(a) ∈ Tm, then π+
m(a) = πm(a) and Uπ+

m(a)(m) = Uπm(a)(m).

• Else, π+
m(a) ∈ TmA and p(π+

m(a)) = πm(a).
As π+

m(a) ̸∈ Tm, we have Tπ+
m(a)(m) = 0 and Uµ

π+
m(a)(m) = 1. This yields:

Uπ+
m(a)(m) =

h′∑
t=1

γtUµ
π+

m(a)1:t
(m) + γh

′+1 Uµ
π+

m(a)(m)︸ ︷︷ ︸
1

+γh
′+2

1− γ = Uπm(a)(m)

We showed that Uπ+
m(a)(m) = Uπm(a)(m), which concludes the proof.

211

Complements on Chapter 6

Lemma C.12 (Inverse projection). For all a ∈ L+
m of length h ≤ L,

π+
m

−1(a) = aAL−h

This allows to easily pick a sequence inside π+
m

−1(a): just continue the sequence a with a default
action of A (e.g. the first) until it reaches length L.

Proof. Let a ∈ L+
m.

By definition of π+
m, any sequence in π+

m
−1(a) is a suffix of a of length L, so we clearly have

the direct inclusion π+
m

−1(a) ⊂ aAL−h.
Now for the other side: let b ∈ AAL−h, i.e. a = b1:h. We need to show that π+

m(b) = a. As
a ∈ L+

m, there exists c ∈ AL such that π+
m(c) = a.

• If h = L, then b = a, so b ∈ L+
m ⊂ T +

m , and hence π+
m(b) = b = a.

• If h < L, we can show by contradiction that a ̸∈ Tm. Indeed, if a ∈ Tm, then c1:h+1 is the
child of a node of Tm and hence belongs to T +

m . But then, c1:h+1 is a prefix of c in T +
m with

greater length than a, which contradicts the definition of a = π+
m(c).

Now, because a ̸∈ Tm, it is also true for all suffixes of a, and in particular for b1:t with
h ≤ t ≤ L. Indeed, we have as1:t = b1:t =⇒ as1:h = b1:h = a, so:

Tb1:t(m) =
m∑
s=1

1{as1:t = b1:t} ≤
m∑
s=1

1{as1:h = a} = Na(m) = 0

Hence, b1:t ̸∈ Tm for all h ≤ t ≤ L, so in particular b1:t ̸∈ T +
m for all h+ 1 ≤ t ≤ L. Since

b1:h = a ∈ T +
m , a is indeed the longest prefix of b in T +

m , that is: π+
m(b) = a.

We have shown the other side of the inclusion: aAL−h ⊂ π+
m

−1(a), which entails that the two
sets are in fact equal.

We can now conclude our proof of Proposition C.8: at episode m, KL-OLOP samples a
sequence of action am within the set arg maxa∈AL Ua(m). However, we have:

arg max
c∈AL

Uc(m) = arg max
c∈AL

Uπ+
m(c)(m) by Lemma C.11

212

C.2 Time and memory complexities

= π+
m

−1

 arg max
a∈π+

m(AL)
Ua(m)


=
{
b ∈ π+

m
−1(a) : a ∈ arg max

a∈L+
m

Ua(m)
}

=
{
b ∈ AAL−|a| : a ∈ arg max

a∈L+
m

Ua(m)
}

by Lemma C.12

Thus, at each episode the sequence of actions am sampled by Algorithm C.1 could have
been sampled by Algorithm 6.1 as well.

In particular, if the arbitrary rule used to pick a sequence from a set is the same for the two
algorithms, then the sampled sequences am will be identical, will have the same visit count
Tam(m), and in the end the returned action a(n) will be the same.

C.2.2 GBOP

In this section, we provide more details about the implementation of GBOP-D and GBOP. First,
we discuss how two procedures can be approximated so that they terminate in finite time, and
study the impact of this approximation on the regret guarantees. Second, we propose a lazy
implementation of the bounds computation through B∞

n that only considers a subset of nodes
to update.

Termination

Bounds computation The bounds computation step B∞
n (line 1 of GBOP-D) can converge in

infinite time whenever Gn contains a loop, as shown in Figure C.3. We consider the effect of
stopping early after a fixed number of iterations k(ε, γ).

Proposition C.13 (Time complexity of bounds computation). An ε-approximation of (Ln,Un)
can be computed by applying Bn for a finite number k(ε, γ) of iterations, with

k(ε, γ) = logγ
1

ε(1− γ) .

213

Complements on Chapter 6

𝑠

𝑎

𝑏

𝑟 = ൗ1 2

𝑟 = ൗ1 2

k 0 1 · · · k

U = Bk(Vmax)(s) Vmax
1
2 + γVmax

1
2(1− γk)Vmax + γkVmax

L = Bk(0)(s) 0 1
2

1
2(1− γk)Vmax

Figure C.3 – Top: a simple looping MDP with |S| = |A| = 1 after having observed a single transition
(n = 1). Bottom: the sequence of bounds Bk

1 (0) and Bk
1 (Vmax). They converge geometrically to their

limit U1 = L1 = V = 1
2Vmax, thus in infinite time.

Proof. Bn is a γ-contraction by Lemma 6.16, and Un (resp Ln) is at a distance (in ∥∥̇∞) at most
Vmax of the initial value bound Vmax (resp 0). Thus, the kth application of Bn decreases this
error by a factor γk, which gives the result.

The impact of using an ε-approximation of (Ln,Un) during planning is the following:

Proposition C.14 (Effect of early stopping). Denote the approximate bounds (L̂n, Ûn) obtained
by applying Bk(ε,γ)

n instead of B∞
n , and likewise (L̂n, Ûn) in their tree version obtained by applying

B
k(ε,γ)
n instead of B∞

n . Then, running GBOP-D with L̂n, Ûn gives the following regret:

rn = Õ
(
n

− log 1
γ
/log κ̂∞

)
,

with
κ∞ ≤ κ̂∞ =∆ lim

n→∞
κ(L̂n, Ûn) ≤ κ.

Moreover, the approximation gap κ∞ − κ̂∞ is non-increasing with respect to ε.

It is difficult to control more explicitly the gap between κ∞ and κ̂∞, which might be
discontinuous with ε.

Proof. Note that L̂n and Ûn are valid monotonic bounds on V , verifying

0 ≤ L̂n ≤ Ln ≤ V ≤ Un ≤ Ûn ≤ Vmax.

Thus, Lemma C.5 holds with the difference that we only have an inequality

Un(a) ≥ max
a′∈aA∞

U(a′)

214

C.2 Time and memory complexities

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e− 02

0

100

101

102

103

104

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 00

0

100

101

102

103

104

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 01

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 02

0.0

0.2

0.4

0.6

0.8

1.0

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e− 02

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 00

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 01

0

100

101

102

103

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20
GBOP-D with ε = 1e + 02

0

100

101

102

Figure C.4 – Top row: Map showing the number of updates triggered by B at each expanded state for
various values of ε. Bottom row: Map showing the corresponding state occupations. The rightmost
column corresponds to ε ≥ Vmax = 20, i.e. every approximation stops after a single iteration.

rather than an equality, bymonotonicity but non-invariance byBn. However, this was the actual
inequality used in Lemma 6.25, which still holds by replacing Ln, Un by their approximation
L̂n, Ûn. Likewise, Lemma 6.26 holds. The proof of Theorem 6.27, can be written with the
modification that expanded nodes belong to T∞

h (L̂n, Ûn)), which gives the claimed bound.
As ε decreases, k(ε, γ) increases, which means by Lemma 6.15 that (L̂n, Ûn) get tighter and

κ̂∞ shrinks by Lemma 6.22. It reaches its minimum κ∞ when ε = 0.

Thus, we observe that there is a tradeoff between the time complexity k(ε) and the sample
complexity κ̂∞: decreasing one increases the other. We illustrate this trade-off empirically in
Figure C.4.

Note that OPD uses dn iterations of Bn, which corresponds to a tuning of ε with n: εn =
γdn

1−γ = O(n− log 1/γ
log κ).

Sampling rule The sampling rule of GBOP-D (line 2 of GBOP-D) can yield an infinite sequence
bn. We propose to stop the sampling after a fixed depth d+

n .

Proposition C.15 (Time complexity of sampling). Consider the variant of GBOP-D where we
stop the sampling rule when reaching a fixed depth d+

n chosen polynomial with n:

d+
n = ⌈αnβ⌉, with α, β > 0

215

Complements on Chapter 6

Then, the regret bound of Theorem 6.27 (or that of Proposition C.14 when using early stopping in
the bounds computation) still holds.

Note that this is not too constraining compared to OPD, for which the sampling rule com-
plexity dn is upper-bounded by n. Hence, by choosing α = β = 1, GBOP-D preserve the same
complexity as OPD in the worst case.

Proof. Let κ′ > κ∞ (or κ′ > κ̂∞ under approximate bounds). In the proof of Theorem 6.27, it
is shown that the maximum depth dn of an expanded node is at least d−

n =∆ logκ′
n−C0
C′

1
, which

allows to conclude with Lemma 6.26 that rn = O(γdn) = O(γd
−
n). By choosing d+

n polynomial,
we have that d+

n is greater than d−
n for n sufficiently high. Thus, by stopping the sampling after

reaching a depth d+
n , we have that rn ≤ γmin{dn,d

+
n }/(1− γ) = O(γd

−
n) = O(n

− log 1/γ

log κ′)

Efficient implementation of B∞
n

The bounds Ln and Un are computed by fixed-point iteration of Bn from the trivial bounds
(0, Vmax). The naive implementation of Bn requires to iterate over the whole set of state-action
pairs in Gn. Two ideas can be used to increase the efficiency of both steps:
(i) Instead of starting the iteration with the trivial bounds, the previous estimate Ln−1,Un−1

can be used instead at iteration n. Since these bounds are closer to their limit (0 ≤ Ln−1 ≤
Ln and Un ≤ Un−1 ≤ Vmax), the fixed-point iteration will converge quicker.

(ii) In particular, since Ln−1 and Un−1 are invariant by Bn, the the only nodes modified by a
supplementary application of Bn are the parents of only updated node: the expanded
state sn. Once its value is updated by Bn, the same reasoning can be applied for the next
iteration of Bn: only its predecessors can be updated. Thus, we can keep track of a set q
of states that can be updated, for every application of Bn.

These idea are formalised in Algorithm C.2. Note that the criterion ∥Bk+1
n − Bkn∥ ≤

1−γ
γ ε is

used to detect that the limit B∞
n is approximated with accuracy ε, and stems from Bn being a

γ-contraction:

Proof. ∥Bkn−B∞
n ∥ ≤ γ∥Bk+1

n −B∞
n ∥ ≤ γ∥Bk+1

n −Bkn∥+ γ∥Bkn−B∞
n ∥, with ∥Bk+1

n −Bkn∥ ≤
1−γ
γ ε,

thus ∥Bkn − B∞
n ∥ ≤ ε.

216

C.2 Time and memory complexities

Algorithm C.2: A queue-based implementation of B∞
n .

1 Input: Initial bound Un−1, expanded node sn, accuracy ε
2 Output: An ε-approximation of Un
3 Un ← Un−1
4 q ← [sn]
5 while q is not empty do
6 s′ ← Pop the first node from the queue q
7 U ′ ← Bn(Un)(s′) ▷ Node backup
8 if U ′ − Un > 1−γ

γ ε then ▷ Stopping rule
9 Push the predecessors s of s′ to the queue q ▷ Propagation rule

10 Un(s′)← U ′

11 return Un

217

Appendix D

Complements on Chapter 7

D.1 Proofs

D.1.1 Proof of Proposition 7.5

Proof. We differentiate J(θ) =
∑N
n=1 ∥yn − Φnθ∥2Σ−1

p
+ λ∥θ∥2 as in (7.8) with respect to θ:

∇θJ(θ) =
N∑
n=1
∇θ(yn − Φnθ)TΣ−1

p (yn − Φnθ) +∇θλ∥θ∥2

= −2
N∑
n=1

yT
nΣ−1

p Φn + 2
N∑
n=1

θT(ΦT
nΣ−1Φn) + 2λθT

Hence,

∇θJ(θ) = 0 ⇐⇒
(

N∑
n=1

ΦT
nΣ−1

p Φn + Id

)
θ =

N∑
n=1

yT
nΣ−1

p Φn

D.1.2 Proof of Theorem 7.8

We start by showing a preliminary proposition:

219

Complements on Chapter 7

Proposition D.1 (Matrix version of Theorem 1 of Abbasi-Yadkori, Pál, and Szepesvári,
2011). Let {Fn}n=0 be a filtration. Let {ηn}∞n=1 be a Rp-valued stochastic process such that ηn is
Fn-measurable and E [ηn | Fn−1] is Σp-sub-Gaussian.

Let {Φn}∞n=1 be an Rp×d-valued stochastic process such that Φn is Fn-measurable. Assume that
G is a d× d positive definite matrix. For any n ≥ 0, define

Gn = G+
n∑
s=1

ΦT
sΣ−1

p Φs ∈ Rd×d Sn =
n∑
s=1

ΦT
sΣ−1

p ηs ∈ Rd.

Then, for any δ > 0, with probability at least 1− δ, for all n ≥ 0,

∥Sn∥G−1
n
≤

√√√√√√2 log

det
(
Gn
)1/2

δ det(G)1/2

.

Proof. Let

Gt =
t∑

s=1
ΦT
sΣ−1

p Φs ∈ Rd×d

And for any z ∈ Rd,
M z
t = exp

(
⟨z, St⟩ −

1
2∥z∥Gt

)

Dz
t = exp

(
⟨Φtz, ηt⟩Σ−1

p
− 1

2∥Φtz∥Σ−1
p

)
Then,

M z
t = exp

(
t∑

s=1
zTΦT

sΣ−1
p ηs −

1
2(Φsz)TΣ−1

p (Φsz)
)

=
t∏

s=1
Dz
s

and using the sub-Gaussianity of ηt

E [Dz
t | Ft−1] = exp

(
−1

2∥Φtz∥Σ−1
p

)
E
[
exp

(
⟨Φtz, ηt⟩Σ−1

p

) ∣∣∣ Ft−1
]

≤ exp
(
−1

2∥Φtz∥Σ−1
p

)

220

D.1 Proofs

exp
(
(zTΦT

tΣ−1
p)Σp(Σ−1

p Φtz)
)

= 1

E [M z
t | Ft−1] =

(
t−1∏
s=1

Dz
s

)
E [Dz

t | Ft−1] ≤M z
t−1

Showing that (M z
t)∞
t=1 is indeed a supermartingale and in fact E[M z

t] ≤ 1. It then follows
by Doob’s upcrossing lemma for supermartingale that M z

∞ = limt→∞M z
t is almost surely

well-defined, and so isM z
τ for any random stopping time τ .

Next, we consider the stopped martingaleM z
min(τ,t). Since (M z

t)∞
t=1 is a non-negative super-

martingale and τ is a random stopping time, we deduce by Doob’s decomposition that

E[M z
min(τ,t)] = E[M z

0] + E[
t−1∑
s=0

(M z
s+1 −M z

s)I{τ > s}]

≤ 1 + E[
t−1∑
s=0

E[M z
s+1 −M z

s |Fs]I{τ > s}]

≤ 1

Finally, an application of Fatou’s lemma show that

E[M z
τ] = E[lim inf

t→∞
M z

min(τ,t)] ≤ lim inf
t→∞

E[M z
min(τ,t)] ≤ 1.

This results allows to apply a result from (Peña, Lai, and Shao, 2008).

Lemma D.2 (Theorem 14.7 of Peña, Lai, and Shao, 2008). If Z is a random vector and B is a
symmetric positive definite matrix such that

∀γ ∈ Rd, logE exp
(
γTZ − 1

2γ
TBγ

)
≤ 0,

then for any positive definite non-random matrix C, it holds

E
[√

det(C)
det(B + C) exp

(1
2∥Z∥

2
(B+C)−1

)]
≤ 1.

In particular, by Markov inequality, for all δ ∈ (0, 1),

P

∥Z∥(B+C)−1 ≥

√√√√2 log
(

det
(
(B + C)1/2)

δ det(C)1/2

) ≤ δ.

221

Complements on Chapter 7

Here, by using Z =
∑t
s=1 ΦsΣ−1

p ηs, B = Gt, C = G,

P

∥St∥(Gt+G)−1 ≥

√√√√2 log
(

det(Gt +G)1/2

δ det(G)1/2

) ≤ δ

Having shown this preliminary result, we move on to the proof of Theorem 7.8.

Proof. For all x ∈ Rd, (7.9) gives

xTθN,λ − xTθ = xTG−1
N,λ

N∑
n=1

ΦT
nΣ−1

p ηn − λxTG−1
N,λθ

= ⟨x,
N∑
n=1

ΦT
nΣ−1

p ηn⟩G−1
N,λ
− λ⟨x, θ⟩G−1

N,λ

Using the Cauchy-Schwartz inequality, we get

|xTθN,λ − xTθ| ≤ ∥x∥G−1
N,λ

∥∥∥∥∥
N∑
n=1

ΦT
nΣ−1

p ηn

∥∥∥∥∥
G−1

N,λ

+ λ∥θ∥G−1
N,λ


In particular, for x = GN,λ(θN,λ − θ), we get after simplifying with ∥θN,λ − θ∥GN,λ

,

∥θN,λ − θ∥GN,λ
≤
∥∥∥∥∥
N∑
n=1

ΦT
nΣ−1

p ηn

∥∥∥∥∥
G−1

N,λ

+ λ∥θ∥G−1
N,λ

By applying Proposition D.1 with G = λId, we obtain that with probability at least 1− δ,

∥θN,λ − θ∥GN,λ
≤

√√√√2 log
(

det(GN,λ)1/2

δ det(λId)1/2

)
+ λ∥θ∥G−1

N,λ

And since ∥θ∥2
G−1

N,λ

≤ 1/λmin(GN,λ)∥θ∥22 ≤ 1/λ∥θ∥22 and ∥θ∥22 ≤ d∥θ∥2∞ ≤ dS2,

∥θN,λ − θ∥GN,λ
≤

√√√√2 log
(

det(GN,λ)1/2

δ det(λId)1/2

)
+ (λd)1/2S

222

D.1 Proofs

D.1.3 Proof of Theorem 7.28

Proof. The predictor designed in Section 7.3 verifies the inclusion property (7.2). Thus, for
sequence of controls u, any dynamics A(θ) ∈ C[N],δ, and perturbations ω ≤ ω ≤ ω, the
corresponding state at time tn is bounded by xn ≤ xn ≤ xn, which implies that R(xn) ≥
minx∈[xn(u),xn(u)]R(x) = Rn(u).

Thus, by taking the min over C[N],δ and [ω, ω], we also have for any sequence of controls u,

V r(u) = min
A(θ)∈C[N],δ
ω≤ω≤ω

∞∑
n=N+1

γnR(xn)

≥
∞∑

n=N+1
γnRn(u)

= V̂ r(u)

D.1.4 Proof of Theorem 7.30

We first bound the model estimation error.

Lemma D.3.
∥A(θ)−A(θN,λ)∥F = O

(√
βN (δ)2

λmin(GN,λ)

)

Proof. We have

∥θ − θN,λ∥2GN,λ
≥ λmin(GN,λ)∥θ − θN,λ∥22

And (7.12) gives
∥θ − θN,λ∥2GN,λ

= O(βN (δ)2)

Moreover, A(θ) belongs to a linear image of this L2-ball. By writing a the jth column of a
matrixM asMj , and its coefficient i, j asMi,j ,

((A(θ)−A(θN,λ))T(A(θ)−A(θN,λ)))i,j = (θ − θN,λ)TϕT
i ϕj(θ − θN,λ)

≤ λmax(ϕT
i ϕj)∥θ − θN,λ∥22

223

Complements on Chapter 7

Thus, ∥A(θ)−A(θN,λ)∥2F = Tr [(A(θ)−A(θN,λ))T(A(θ)−A(θN,λ))] = O
(

βN (δ)2

λmin(GN,λ)

)
Then, we propagate this estimation error through the state prediction.

Lemma D.4. If there exist P > 0, Q0 ∈ Rp×p, ρ > 0 such that
[
AT
NP + PAN +Q0 P |D|

|D|TP −ρIr

]
< 0,

then for all t > tN ,

∥x(t)− x(t)∥ ≤

C0 +O

 βN (δ)√
λmin(GN,λ)

Cω(t),

where
C0 =

√
2ρλmax(P)

λmin(P)λmin(Q0) ,

and
Cω(t) = sup

τ∈[0,t]
∥ω(τ)− ω(τ)∥2.

Proof. Let e = x− x. (7.20) gives the dynamics

ė = ANe+ |∆A|(x+ + x−) + |D|(ω − ω)

where recall that |M | = M+ +M− for any matrixM ∈ Rp×p.
We define the Lyapunov function V = eTPe, which is non-negative definite provided that

P > 0, and compute its derivative

V̇ = XT


AT
NP + PAN +Q P |D| P |∆A|
|D|TP −ρIr 0
|∆A|TP 0 −αIp

X
− eTQe+ α|x+ + x−|2 + ρ|ω − ω|2

with X =
[
e ω − ω x+ + x−

]T, for any Q ∈ Rp×p, ρ, α ∈ R .

224

D.1 Proofs

Moreover, it holds that −x+ − x− ≤ e ≤ x+ + x−, which implies |x+ + x−| ≤ 2|e|. Hence,

V̇ ≤ XT


AT
NP + PAN +Q+ 4αIp P |D| P |∆A|

|D|TP −ρIr 0
|∆A|TP 0 −αIp


︸ ︷︷ ︸

Υ

X

− eTQe+ ρ∥ω − ω∥22

Thus, if we had Υ ≤ 0, Q > 0, ρ > 0, then we would have

V̇ ≤ −µV + ρ∥ω − ω∥22

with µ = λmin(Q)
λmax(P) . Since V (tN) = 0, this further implies that for all t > tN ,

V (t) ≤ ρ

µ
C2
ω(t) (D.1)

We now examine the condition Υ ≤ 0. We resort to its Schur complement: given α > 0,
Υ ≤ 0 if and only if R ≥ S, where S = α−1

[
|∆A|TP 0

]T [
|∆A|TP 0

]
and R is the top-left

block of −Υ:
R =

[
−AT

NP − PAN −Q− 4αIp −P |D|
−|D|TP ρIr

]

Choose Q = 1
2Q0 − 4αIp. Assume that P is fixed and satisfies the conditions of the lemma.

We have

λmax(S) ≤ α−1λmax(P)2λmax(|∆A|⊤|∆A|)

≤ α−1λmax(P)2∥∆A∥2F

Thus, by taking α = 2λmax(P)2∥∆A∥2
F

λmin(Q0) = O(βN (δ)2

λmin(GN,λ)), we can obtain that S ≤
[1

2Q0 0
0 0

]
.

Thus,
R− S ≥

[
−AT

NP − PAN −Q0 −P |D|
−|D|TP ρIr

]
> 0

as it is assumed in the conditions of the lemma. Hence, under such a choice of α and Q, we
recover Υ ≤ 0. (D.1) follows with µ = λmin(Q)

λmax(P) =
1
2λmin(Q0)−4α

λmax(P) . Finally, we obtain

∥e(t)∥22 ≤ λmin(P)−1V (t)

≤ 2ρλmax(P)/λmin(P)
λmin(Q0)− 8α C2

ω(t)

225

Complements on Chapter 7

Developing at the first order in α gives

∥e(t)∥2 ≤ C0

(
1 + 4α

λmin(Q0) +O(α2)
)
Cω(t)

≤
(
C0 +O

(
βN (δ)2

λmin(GN,λ)

))
Cω(t)

Finally, we propagate the state prediction error bound to the pessimistic rewards and
surrogate objective to get our final result.

Proof. For any sequence of controls u, dynamical parameters θ ∈ CN,δ and disturbances ω ≤
ω ≤ ω, we clearly have

V (u)r ≤ V (u) = E
ω

∑
n

γnR(xn)

Moreover, by the inclusion property (7.2), we have that xn ≤ xn ≤ xn, which implies that
R(xn) ≤ maxx∈[xn(u),xn(u)]R(x). Assuming R is L-lipschitz,

V (u)− V̂ r(u) ≤
∞∑

n=N+1
γn (max−min)

x∈[xn(u),xn(u)]
R(x)

≤
∞∑

n=N+1
γnL ∥xn(u)− xn(u)∥2

≤ L
(
C0 +O

(
βN (δ)2

λmin(GN,λ)

)) ∑
n>N

γnCω(tn)

= ∆ω +O
(

βN (δ)2

λmin(GN,λ)

)

with ∆ω = LC0
∑
n>N γ

nCω(tn), which is finite by Assumption 7.6.
Finally, we use the result of Lemma 7.29 to account for planning with a finite budget, and

relate V̂ r(a⋆) to V̂ r(aK).

D.1.5 Proof of Corollary 7.31

Proof. By (7.9) and (7.32), we have

λmin(GN,λ) ≥ (N − n0)ϕ2 +
∑
n<n0

ΦT
nΣ−1

p Φn

226

D.1 Proofs

and by (7.12),

βN (δ) =

√√√√2 log
(

det(GN,λ)1/2

δ det(λId)1/2

)
+ (λd)1/2S

≤
√

log
(
Nd/2ϕ

d
/(δλd/2)

)
+O(1)

Thus,
βN (δ)2

λmin(GN,λ) = O
(

log(Nd/2/δ)
N

)

Stability condition 2. By Lemma D.3 and the above, the sequence (AN)N converges to A(θ)
in Frobenius norm. Thus,

Mn =∆
[
AT
NP + PAN +Q0 P |D|

|D|TP −ρIr

]
also converges toM =∆

[
A(θ)TP + PA(θ) +Q0 P |D|

|D|TP −ρIr

]
,

which is assumed to be negative definite.
Moreover, the two functions that map a matrix to its characteristic polynomial and a poly-

nomial to its roots, are both continuous. Thus, by continuity, the largest eigenvalue of Mn

converges to that ofM , which is strictly negative. Hence, there exists some N0 ∈ N such that
for all N > N0,MN is negative definite, as required in the condition 2. of Theorem 7.30.

D.1.6 Proof of Proposition 7.35

We start by showing the following lemma:

Lemma D.5 (Robust values ordering). In addition to the robust U-value defined in (7.34), that
we extend to inner nodes

U ra(k) =∆
minm∈[M]

∑h−1
n=0 γ

nRmn + γh

1−γ if a is a leaf;
maxb∈A U

r
ab(k) else.

, (D.2)

we also define the robust value of a sequence of actions a

V r
a =∆ max

u∈aA∞
min
m∈[M]

∞∑
n=h(a)+1

γnRmn (D.3)

227

Complements on Chapter 7

and the robust U-values of a sequence of action a

Lra(K) =∆
minm∈[M]

∑h−1
n=0 γ

nRmn if a is a leaf;
maxb∈A L

r
ab(n) else.

(D.4)

Then, the robust values, L-values and U-values exhibit similar properties as the optimal values,
L-values and U-values, that is: for all 0 < k < K and a ∈ T ,

Lra(k) ≤ Lra(K) ≤ V r
a ≤ U ra(K) ≤ U ra(k) (D.5)

Proof. By definition, when starting with sequence a, the value Lma (k) represents the minimum
admissible reward, while Uma (k) corresponds to the best admissible reward achievable with
respect to the the possible continuations of a. Thus, for all a ∈ A⋆, Lma (k) and Lra(k) are non-
decreasing functions of k and Uma (k) and U ra(k) are a non-increasing functions of k, while V m

a

and V r
a do not depend on k.

Moreover, since the reward function R is assumed be bounded in [0, 1], the sum of dis-
counted rewards from a node of depth d is at most γd + γd+1 + · · · = γd

1−γ . As a consequence,
for all k ≥ 0 , a ∈ Lk of depth d, and any sequence of rewards (Rn)n∈N obtained from following
a path in aA∞ with any dynamicsm ∈ [M]:

Uma (k) =
d−1∑
n=0

γnRmn ≤
∞∑
n=0

γnRmn ≤
d−1∑
n=0

γnRmn + γd

1− γ = Bm
a (k)

Hence,
min
m∈[M]

Uma (k) ≤ min
m∈[M]

∞∑
n=0

γnRn ≤ min
m∈[M]

Bm
a (k) (D.6)

And as the left-hand and right-hand sides of (D.6) are independent of the particular path that
was followed in aA∞, it also holds for the robust path

min
m∈[M]

Umi (k) ≤ max
a′∈aA∞

min
m∈[M]

∞∑
t=0

γnRmn ≤ min
m∈[M]

Bm
i (k)

that is,
Lra(k) ≤ V r

a ≤ U ra(k) (D.7)

Finally, (D.7) is extended to the rest of Tk by recursive application of (D.3), (D.4) and
(D.2).

228

D.1 Proofs

We now turn to the proof of the theorem.

Proof. Hren and Rémi Munos (2008) first show in Theorem 2 that the simple regret rK of their
optimistic planner is bounded by γdK

1−γ where dK is the depth of TK . This properties relies on
the fact that the returned action belongs to the deepest explored branch, which we can show
likewise by contradiction using Lemma D.5. This yields directly that the returned action a = i0

where i is some node of maximal depth dK expanded at round k ≤ K, which by selection rule
verifies U ra(k) = U ri (k) = maxx∈A U

r
x(k) and

V r − V r
a = V r

a⋆ − V r
a

≤ U ra⋆(k)− V r
a

≤ U ra(k)− Lra(k)

= U ri (k)− Lri (k)

= γdK

1− γ .

Secondly, they bound the depth dK of TK with respect toK. To that end, they show that
the expanded nodes always belong to the sub-tree T∞ of all the nodes of depth d that are γd

1−γ -
optimal. Indeed, if a node i of depth d is expanded at round k, thenU ri (k) ≥ U rj (k) for all j ∈ Lk
by selection rule, thus the max-backups of (7.34) up to the root yield U ri (k) = U r∅ (k). Moreover,
by Lemma D.5 we have that U r∅ (k) ≥ V r

∅ = V r and so V r
i ≥ Lri (k) = U ri (k)− γd

1−γ ≥ V
r − γd

1−γ ,
thus i ∈ T∞.

Then from the definition of κ applied to nodes in T∞, there exists d0 and c such that the
number nd of nodes of depth d ≥ d0 in T∞ is bounded by cκd. As a consequence,

K =
∑dK
d=0 nd = n0 +

∑dK
d=d0+1 nd ≤ n0 + c

∑dK
d=d0+1 κ

d.

• If κ > 1, thenK ≤ n0 + cκd0+1 κdK −d0 −1
κ−1 and thus dK ≥ d0 + logκ

(K−n0)(κ−1)
cκd0+1 .

We conclude that rK ≤ γdK

1−γ = 1
1−γ

(
(K−n0)(κ−1)

cκd0+1

) log γ
log κ = O

(
K

− log 1/γ
log κ

)
.

• If κ = 1, thenK ≤ n0 + c(dK − d0), hence we have rK = O
(
γKc

)
.

229

Complements on Chapter 7

D.2 A tighter enclosing polytope

Lemma D.6 (Confidence polytope). We can enclose the confidence ellipsoid obtained in (7.12)
within a polytope

P =

A0 +
2d∑
i=1

λi∆Ai : λ ∈ [0, 1]2d
,

2d∑
i=1

λi = 1

 . (D.8)

with

hk is the kth element of {−1, 1}d for k ∈ [2d],

GN,λ = PDP−1, ∆θk = βN (δ)1/2P−1D−1/2hk,

A0 = A+ θT
N,λϕ, ∆Ak = ∆θT

kϕ.

Proof. The ellipsoid in (7.12) is described by

θ ∈ C[N],δ =⇒ (θ − θN,λ)TGN,λ(θ − θN,λ) ≤ βN (δ)

=⇒ (θ′ − θ′
N,λ)TD(θ′ − θ′

N,λ) ≤ βN (δ)

=⇒
d∑
i=1

Di,i(θ′
i − θ′

N,λ,i)2 ≤ βN (δ)

=⇒ ∀i, |θ′
i − θ′

N,λ,i| ≤ βN (δ)1/2D
−1/2
i,i

This describes a Rd box containing θ′ = Pθ, whose kth vertex is represented by

θ′
N,λ + βN (δ)1/2D−1/2hk.

We obtain the corresponding box on θ by transforming each vertex of the box with P−1.

230

List of Figures

1.1 The Trolley Problem (Foot, 1967). Illustration by Jesse J. Prinz. 2
1.2 The architecture of a typical self-driving software 3
1.3 This thesis is structured around two disjunctions: model-free vs. model-based

on the one hand, and sample-efficiency vs. safety on the other hand. 9

2.1 A lattice structure connects a discrete set of states by feasible trajectories 18
2.2 The 3-layer architecture used in ALVINN (Pomerleau, 1989). 20
2.3 As the agent deviates from the expert trajectories, the errors compound and

push the agent further and further from the training distribution. 21
2.4 Sources of Partial Observability in Autonomous Driving. Illustrations from

(Editions Nationales du Permis de Conduire, 2017). 22
2.5 Information-seeking behaviours: the tailgating vehicle (top) should slow down,

although it might decrease its immediate rewards, to gain valuable information
in return (bottom). Image from (Editions Nationales du Permis de Conduire,
2017). 23

2.6 Temporally extended sequences of actions can be used as skills, or options, and
futher used by a meta-policy to plan over long time horizons (Sutton, Precup,
and Satinder Singh, 1999). 24

2.7 A graph used to generate options (Shalev-Shwartz, Shammah, and Shashua, 2016). 26
2.8 Trajectory prediction for a pedestrian modelled as an optimal planner with a

learned cost (Ziebart, Ratliff, et al., 2009). 27
2.9 Sim-to-real unsupervised transfer (M.-Y. Liu, Breuel, and Kautz, 2017) from

synthetic images of the cynthia dataset (Ros et al., 2016) to realistic images of
the Cityscapes dataset (Cordts et al., 2016). 28

2.10 A risky situation: should the vehicle merge into the roundabout? 29

231

http://subcortex.com/

List of Figures

2.11 Inevitable Collision States (ICS), images from (Thierry Fraichard, 2014). 33
2.12 An ordinary highway-driving situation, but prone to accidents under adversarial

behaviours. 33

3.1 highway-env repository status (on 27/11/2020). 41

4.1 The list of features (left) and spatial grid (right) representations 48
4.2 Block diagram of our model architecture. It is composed of several identical

linear encoders, a stack of ego-attention heads, and a linear decoder. 50
4.3 Architecture of an ego-attention head. After received the encoded vehicle states,

the ego-query q, all keys k and all values v are produced by three linear pro-
jections. Then, the attention matrix is computed by matching the keys K to
the ego query q0, and the corresponding values V are retrieved. The resulting
embedding is finally forwarded to a decoder to obtain the predicted Q-values as
an output. 51

4.4 Performances of the tree agents according to various measures. We display the
mean values – along with their 95% confidence interval – averaged over 120
random seeds. 53

4.5 The attention heads specialised in different areas: left and front/right. 54
4.6 The attention paid to a vehicle tends to increase as it gets closer. 54
4.7 Sensitivity to uncertainty. 55
4.8 A complete episode. 55
4.9 Effect of the right of way. 56

5.1 A MOMDP with two objectives: the rewards Rmust be maximised, while the
costs C must be minimised. The policies are partitioned into dominated policies,
shown in light shades of green, and the Pareto front Π⋆, shown in dark green.
Cautious policies with low efficiency and risk are located on the bottom-left,
while aggressive policies with high efficiency and risk are on the top-right. . . . 61

5.2 Comparison between the CMDP and BMDP frameworks. 62
5.3 Example of relaxed Budgeted Markov Decision Process 64
5.4 Representation of πhull. When the budget lies betweenQ(s, a1) andQ(s, a2), two

points of the top frontier of the convex hull, then the policy is a mixture of these
two points. 70

232

List of Figures

5.5 Neural Network for Q-functions approximation when S = R2 and |A| = 2. . . . 71
5.6 Calibration of a penalty multiplier according to the budget β. The optimal

multiplier λ⋆avg is the smallest one to satisfy the budget constraint on average.
Safer policies can also be selected according to the largest deviation from this
mean cost. 73

5.7 The two-way road environment requires the vehicle to drive in the wrong lane
and risk front collisions in order to overtake slow vehicles. 75

5.8 Comparison of two exploration strategies in the corridors environment. 76
5.9 Performance comparison of FTQ(λ) and BFTQ on slot-filling (left) andhighway-env(right)

76

6.1 Online planning with a generative model. The true interaction cycle between the
agent and the environment is depicted in blue. At each step of real interaction, a
full planning cycle of simulated trajectories is run, depicted in green. 85

6.2 The Bernoulli Kullback-Leibler divergence dBER, and the corresponding upper
and lower confidence bounds Uµa and Lµa for the empirical average µ̂a. Lower
values of f(m) give tighter confidence bounds that hold with lower probabilities. 91

6.3 Numerical experiments: for each environment-agent configuration, we compute
the average return over 100 runs — along with its 95% confidence interval —
with respect to the available budget n. 99

6.4 The look-ahead trees (down to depth 6) expanded by the planning algorithms
from the same initial state in the highway environment with the same budget
n = 103. The width of edges represents the nodes visit count Na(m). 100

6.5 Black arrows depict how the Bellman backup operators Bn (left) and Bn (right)
propagate value estimates from successor nodes to their parents. Information
travels freely in a graph, but only upwards in a tree. 103

6.6 Illustration of the Bellman backup operators B (left) and B (right). Notice that
Bn only propagates information upward in the tree. 105

6.7 The tree T (Gn) obtained by unrolling Gn. Contrary to Tn shown in Figure 6.5, the
red leaf a is expanded at the same time as the internal red node, which enables
to tighten its value bounds (Ln(a), Un(a)) by applying Bn. 111

6.8 A toy MDP with three states andK ≥ 2 actions. We start in the top state. The
first action a1 is represented by green arrows, and all other actions a2, . . . , aK

are represented by orange arrows. The rewards are shown next to the transitions.113

233

List of Figures

6.9 State occupancies of tree-based vs. graph-based algorithms in a deterministic
gridworld. 116

6.10 State occupancies of tree-based vs. graph-based algorithms in a stochastic grid-
world. 117

6.11 Benchmark of planning performances. 118
6.12 Trees expanded by OPD, by KL-OLOP, and sequences of actions sampled by GBOP-D.

The width of edges is proportional to the number of visits. 119

7.1 Illustration of the issue of model bias when merging into a roundabout. 123
7.2 The model estimation procedure. The confidence region C[N],δ shrinks with the

number of samples N . 124
7.3 The state prediction procedure. At each time step, we bound the set of reachable

statesx(t) (in green) undermodel uncertainty C[N],δ inside the interval [x(t), x(t)]
(in red). 125

7.4 The results of prediction by (7.18): even in such a simplistic setting, the predictor
is unstable and diverges quickly. 135

7.5 The results of prediction by (7.20): the new predictor is stable and produces
tight bounds. 141

7.6 The results of prediction for different values of the frequency. Taking τ =
4

min
i=1,n

|λi(A)| = 5.85 and ε = 0.05, the trajectories of the interval observer (7.22)
are presented for t ≤ 0.5τ , and as we can conclude, these estimates are rather
conservative. Next, for t ∈ [0.5τ, τ] the estimates given in Lemma 7.21 for the
case s1 = s2 = 0 are shown, which are already more accurate. Finally, for t ≥ τ
the estimates of Lemma 7.21 are presented for s1 = s2 = s, which demonstrate a
definite improvement. 144

7.7 State intervals obtained by the two methods in different conditions. 147
7.8 Top: the model estimation showing the confidence region C[N],δ from (7.23) at

different times tN . Bottom: a lane keeping application, where a car must follow
a lane-center curve under unknown friction and perturbations. Xf is shown in
green, and ξ(t) as an area with a color gradient. 156

7.9 From left to right: two simple models and corresponding u-values with optimal
sequences in blue; the naive version of the robust values returns sub-optimal
paths in red; our robust U-value properly recovers the robust policy in green. . 163

234

List of Figures

7.10 The computation of robust U-values in (7.34). The simulation of trajectories for
every dynamics model fm is represented as stacked versions of the expanded
tree Tk. 163

7.11 Algorithm 7.1 running on the obstacle avoidance environment: we show the
predicted state interval at each prediction time step (from red to green). 165

7.12 Themean (solid), 95% confidence interval for the mean (shaded) andmaximum
(dashed) simple regret with respect to N . 166

7.13 The intersection crossing task. We show the trajectory intervals correspond-
ing to behavioural uncertainty for each observed vehicle, and the multi-model
assumption over the followed route. 167

B.1 Representation of Q1
ε (blue) and Q

2
ε (yellow) . 188

B.2 We represent the range of possible solutions Q2⋆
r for any Q2 ∈ Ball(Q1), given

Q1 ∈ Lλ . 190
B.3 We represent a section [β − ε, β + ε] of F1 and Ball(F1, R). We want to bound

the range of Q2⋆
r . 191

C.1 Planning tree of the MDPM of Figure 6.8 . 206
C.2 A representation of the tree T +

m , with K = 2 actions and after episode m = 2,
when two sequences have been sampled. They are represented with solid lines
and dots •, and they constitute the explored subtree Tm. When extending Tm
with the missing children of each node, represented with dashed lines and
diamonds ⋄, we obtain the full extended subtree T +

m . The set of its leaves is
denoted L+

m and shown as a dotted set. 207
C.3 Top: a simple looping MDP with |S| = |A| = 1 after having observed a single

transition (n = 1). Bottom: the sequence of bounds Bk1(0) and Bk1(Vmax). They
converge geometrically to their limit U1 = L1 = V = 1

2Vmax, thus in infinite time. 214
C.4 Top row: Map showing the number of updates triggered by B at each expanded

state for various values of ε. Bottom row: Map showing the corresponding state
occupations. The rightmost column corresponds to ε ≥ Vmax = 20, i.e. every
approximation stops after a single iteration. 215

235

List of Algorithms

5.1 Budgeted Value Iteration . 66
5.2 Budgeted Fitted-Q . 67
5.3 Risk-sensitive exploration . 68
5.4 Convex hull policy πhull(a|s;Q) . 69
5.5 A scalable implementation of BFTQ . 72

6.1 General structure for Open-Loop Optimistic Planning 89
6.2 The Optimistic Planning of Deterministic Systems (OPD) algorithm from (Hren and

Rémi Munos, 2008). 107
6.3 Our proposed Graph-Based Optimistic Planning for Deterministic systems (GBOP-D)

algorithm. 107
6.4 Graph-Based Optimistic Planning (GBOP) algorithm. 115

7.1 Integrated framework for confident estimation, interval prediction and minimax
control . 158

C.1 Lazy Open Loop Optimistic Planning . 208
C.2 A queue-based implementation of B∞

n . 217

236

List of Tables

2.1 A simple bandit problem associated with Figure 2.10. When trying to merge,
an accident happens with probability δ and the agent suffers a high penalty
1−δ
δ . If the agent decides to wait instead, it suffers a small penalty of 0 for the

inconvenience. We show the associated expected reward, worst-case reward,
and reward variance. 30

4.1 Characteristics of the agents . 52

5.1 Parameters of Corridors . 73
5.2 Parameters of Slot-Filling . 74
5.3 Parameters of highway-env . 75
5.4 Do the methods of Part II comply with the specifications of Chapter 1? 79

6.1 Different implementations of Algorithm 6.1 in OLOP and KL-OLOP 89

7.1 Performances on the obstacle task. We give the frequency of collision, minimum
and average return achieved on a single episode, repeated with 100 random
seeds. The robust agent performs worse than the nominal agent on average, but
manages to ensure safety and attains a better worst-case performance. 165

7.2 Performances on the driving task. We make the same observations as in Table 7.1.167
7.3 Do the methods of Part III comply with the specifications of Chapter 1? 169

A.1 The different environments available in highway-env. 179

237

List of References

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). Improved Algorithms for
Linear Stochastic Bandits. In Advances in Neural Information Processing Systems 24. Ed. by J.
Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates,
Inc., pp. 2312–2320.

Abbasi-Yadkori, Yasin and Csaba Szepesvári (June 2011). Regret Bounds for the Adaptive
Control of Linear Quadratic Systems. In Proceedings of the 24th Annual Conference on Learning
Theory. Ed. by Sham M. Kakade and Ulrike von Luxburg. Vol. 19. Proceedings of Machine
Learning Research. Budapest, Hungary: PMLR, pp. 1–26.

Abe, Naoki, PremMelville, Cezar Pendus, ChandanK. Reddy, David L. Jensen, Vince P. Thomas,
et al. (2010). Optimizing Debt Collections Using Constrained Reinforcement Learning. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’10. Washington, DC, USA: Association for Computing Machinery, pp. 75–84.

Abeille, Marc and Alessandro Lazaric (July 2018). Improved Regret Bounds for Thompson
Sampling in Linear Quadratic Control Problems. In Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, pp. 1–9.

Abraham, C. and J. Thédié (1960). Le prix d’une vie humaine dans les décisions économiques.
Revue Française de Recherche Opérationnelle 16, pp. 157–168.

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (Aug. 2017). Constrained Policy
Optimization. In Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia: PMLR, pp. 22–31.

Adetola, Veronica andMartin Guay (2008). Adaptive Model Predictive Control for Constrained
Nonlinear Systems. IFAC Proceedings Volumes 41.2. 17th IFAC World Congress, pp. 1946–
1951.

Adrot, O. and J.-M. Flaus (Dec. 2003). Trajectory computation of dynamic uncertain systems.
In 42nd IEEE International Conference on Decision and Control. Maui, HI, USA, pp. 1291–1296.

Ait Rami, M., C.H. Cheng, and C. de Prada (Dec. 2008). Tight Robust interval observers: an LP
approach. In Proc. of 47th IEEE Conference on Decision and Control. Cancun, Mexico, pp. 2967–
2972.

Altché, Florent and Arnaud de La Fortelle (2016). Analysis of optimal solutions to robot
coordination problems to improve autonomous intersection management policies. In 2016
IEEE Intelligent Vehicles Symposium, IV 2016, June 19-22. Gotenburg, Sweden: IEEE, pp. 86–91.

239

List of References

Altché, Florent, Xiangjun Qian, and Arnaud de La Fortelle (2017). An Algorithm for Super-
vised Driving of Cooperative Semi-Autonomous Vehicles. IEEE Transactions on Intelligent
Transportation Systems 18.12, pp. 3527–3539.

Altché, Florent, Xiangjun Qian, andArnaud de La Fortelle (2016). Time-optimal coordination of
mobile robots along specified paths. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2016, October 9-14, 2016. Daejeon, South Korea: IEEE, pp. 5020–
5026.

Altman, Eitan (1999). Constrained Markov Decision Processes. Chapman and Hall/CRC.
Amos, Brandon, Ivan Jimenez, Jacob Sacks, Byron Boots, and J. Zico Kolter (2018). Differentiable

MPC for End-to-end Planning and Control. In Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., pp. 8289–8300.

Artuñedo, A., J. Villagra, and J. Godoy (2019). Real-Time Motion Planning Approach for
Automated Driving in Urban Environments. IEEE Access 7, pp. 180039–180053.

Artuñedo, A., J. Villagra, J. Godoy, andM.D. d. Castillo (2020).Motion PlanningApproach Con-
sidering Localization Uncertainty. IEEE Transactions on Vehicular Technology 69.6, pp. 5983–
5994.

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath (1999). Coherent Mea-
sures of Risk. Mathematical Finance 9.3, pp. 203–228.

Åström, Karl Johan (1965). Optimal Control of Markov Processes with Incomplete State Infor-
mation I. eng. Journal of Mathematical Analysis and Applications 10.1, pp. 174–205.

Aswani, Anil, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin (2013). Provably safe
and robust learning-based model predictive control. Automatica 49.5, pp. 1216–1226.

Auer, Peter, Thomas Jaksch, and Ronald Ortner (Dec. 2009). Near-optimal Regret Bounds
for Reinforcement Learning. In Advances in Neural Information Processing Systems 21. Ed.
by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Vancouver, B.C., Canada: Curran
Associates, Inc., pp. 89–96.

Awad, Edmond, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim Shariff,
et al. (Nov. 2018). The Moral Machine experiment. Nature 563.7729, pp. 59–64.

Awan, M.A. (2014). Compensation of Low Performance Steering System Using Torque Vectoring.
Cranfield University.

Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos (Aug. 2017). Minimax Regret
Bounds for Reinforcement Learning. In Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. International Convention Centre, Sydney, Australia: PMLR, pp. 263–272.

Bacha, Andrew, Cheryl Bauman, Ruel Faruque, Michael Fleming, Chris Terwelp, Charles
Reinholtz, et al. (2008). Odin: Team VictorTango’s entry in the DARPA Urban Challenge.
Journal of Field Robotics 25.8, pp. 467–492.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (Feb. 2017). The Option-Critic Architecture. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI’17. San Francisco,
California, USA: AAAI Press, pp. 1726–1734.

240

List of References

Bagnell, James, David Bradley, David Silver, Boris Sofman, andAnthony Stentz (2010). Learning
for autonomous navigation. IEEE Robotics and Automation Magazine 17.2, pp. 74–84.

Bai, Haoyu, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee (2015). Intention-aware online
POMDP planning for autonomous driving in a crowd. In IEEE International Conference on
Robotics and Automation, ICRA 2015, 26-30 May, 2015. Seattle, WA, USA: IEEE, pp. 454–460.

Baker, Christopher R. and John M. Dolan (2008). Traffic interaction in the urban challenge:
Putting boss on its best behavior. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, September 22-26, 2008. Acropolis Convention Center, Nice, France: IEEE,
pp. 1752–1758.

Ballesteros, Joaquin, Luis Merino, Miguel Angel Trujillo, Antidio Viguria, and Anibal Ollero
(May 2013). Improving the efficiency of online POMDPs by using belief similarity mea-
sures. In 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany,
pp. 1792–1798.

Banach, Stefan (1922). Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fundamenta Mathematicae 3.1, pp. 133–181.

Bandyopadhyay, Tirthankar, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee, and
Daniela Rus (2013). Intention-Aware Motion Planning. In Algorithmic Foundations of Robotics
X. Ed. by Emilio Frazzoli, Tomas Lozano-Perez, Nicholas Roy, and Daniela Rus. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 475–491.

Bansal, Mayank, Alex Krizhevsky, and Abhijit Ogale (2018). ChauffeurNet: Learning to Drive by
Imitating the Best and Synthesizing the Worst. preprint.

Banzhaf, H. Spencer (Nov. 2014). Retrospectives: TheCold-WarOrigins of the Value of Statistical
Life. Journal of Economic Perspectives 28.4, pp. 213–26.

Barbier, Mathieu, Christian Laugier, Olivier Simonin, and Javier Ibañez-Guzmán (Nov. 2018).
Probabilistic Decision-Making at Road Intersections: Formulation and Quantitative Evalu-
ation. In ICARCV 2018 - 15 th International Conference on Control, Automation, Robotics and
Vision. Singapour, Singapore, pp. 1–8.

Basar, T. and P. Bernhard (1996). H-infinity Optimal Control and RelatedMinimax Design Prob-
lems: A Dynamic Game Approach. IEEE Transactions on Automatic Control 41.9, pp. 1397–.

Bellman, Richard (2010). Dynamic Programming. USA: Princeton University Press.
Ben-Tal, Aharon, Laurent El Ghaoui, and Arkadi Nemirovski (2009). Robust optimization. Vol. 28.

Princeton University Press.
Berg, Jur van den, Pieter Abbee, and Ken Goldberg (2011). LQG-MP: Optimized path planning

for robots with motion uncertainty and imperfect state information. The International Journal
of Robotics Research 30.7, pp. 895–913.

Berg, Jur van den, Sachin Patil, and Ron Alterovitz (2017). Motion Planning Under Uncertainty
Using Differential Dynamic Programming in Belief Space. In Robotics Research : The 15th
International Symposium ISRR. Cham: Springer International Publishing, pp. 473–490.

Berkenkamp, Felix and Angela P. Schoellig (July 2015). Safe and robust learning control with
Gaussian processes. In 2015 European Control Conference, ECC 2015, 15-17 July 2015. Linz,
Austria, pp. 2496–2501.

241

List of References

Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause (May 2016). Safe controller
optimization for quadrotors with Gaussian processes. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), 16-21 May 2016. Stockholm, Sweden, pp. 491–496.

Bernard, Olivier and Jean-Luc Gouzé (2004). Closed loop observers bundle for uncertain
biotechnological models. Journal of Process Control 14.7. Dynamics, Monitoring, Control and
Optimization of Biological Systems, pp. 765–774.

Bertsimas, Dimitris, David B Brown, and Constantine Caramanis (2011). Theory and applica-
tions of robust optimization. SIAM review 53.3, pp. 464–501.

Beutler, Frederick J. and Keith W. Ross (1985). Optimal policies for controlled Markov chains
with a constraint. Journal of Mathematical Analysis and Applications 112.1, pp. 236–252.

Bhattacharyya, Raunak P., Derek J. Phillips, Blake Wulfe, Jeremy Morton, Alex Kuefler, and
Mykel J. Kochenderfer (2018). Multi-Agent Imitation Learning for Driving Simulation. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018, October
1-5, 2018. Madrid, Spain: IEEE, pp. 1534–1539.

Bohren, Jonathan, Tully Foote, JimKeller, Alex Kushleyev, Daniel Lee, Alex Stewart, et al. (2008).
Little Ben: The Ben Franklin Racing Team’s entry in the 2007 DARPA Urban Challenge.
Journal of Field Robotics 25.9, pp. 598–614.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, et al. (2016). End to End Learning for Self-Driving Cars. preprint.

Bolajraf, M., M. Ait Rami, and U. Helmke (2011). Robust Positive Interval Observers For
Uncertain Positive Systems. IFAC Proceedings Volumes 44.1. 18th IFAC World Congress,
pp. 14330–14334.

Bonnefon, J.-F., A. Shariff, and I. Rahwan (June 2016). The social dilemma of autonomous
vehicles. Science 352.6293, pp. 1573–1576.

Bouraine, S., Th Fraichard, O. Azouaoui, and Hassen Salhi (June 2014). Passively safe partial
motion planning for mobile robots with limited field-of-views in unknown dynamic envi-
ronments. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May–7
June. Hong Kong, China, pp. 3576–3582.

Bouraine, Sara, Thierry Fraichard, and Hassen Salhi (Apr. 2012). Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments. Autonomous Robots
32.3, pp. 267–283.

Boutilier, Craig andTyler Lu (June 2016). BudgetAllocation usingWeaklyCoupled, Constrained
Markov Decision Processes. In Proceedings of the 32nd Conference on Uncertainty in Artificial
Intelligence (UAI-16), June 25th to 29th. New York, pp. 52–61.

Bouton, M., A. Cosgun, and M. J. Kochenderfer (June 2017). Belief state planning for au-
tonomously navigating urban intersections. In 2017 IEEE Intelligent Vehicles Symposium (IV),
11-14 June 2017. Los Angeles, CA, USA, pp. 825–830.

Bouton, M., A. Nakhaei, K. Fujimura, and M. J. Kochenderfer (May 2018). Scalable Decision
Making with Sensor Occlusions for Autonomous Driving. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), 21-25 May 2018. Brisbane, QLD, Australia, pp. 2076–
2081.

242

List of References

Bouton, Maxime, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J Kochenderfer,
and Jana Tumova (July 2019). Reinforcement learning with probabilistic guarantees for
autonomous driving. InWorkshop on Safety Risk and Uncertainty in Reinforcement Learning,
Conference on Uncertainty in Artificial Intelligence (UAI). Tel Aviv, Israel.

Bouton, Maxime, Alireza Nakhaei, Kikuo Fujimura, and Mykel J. Kochenderfer (June 2019).
Safe Reinforcement Learning with Scene Decomposition for Navigating Complex Urban
Environments. In 2019 IEEE Intelligent Vehicles Symposium (IV), 9-12 June. Paris, France,
pp. 1469–1476.

Brechtel, Sebastian, Tobias Gindele, and Rüdiger Dillmann (June 2013). Solving Continuous
POMDPs: Value Iteration with Incremental Learning of an Efficient Space Representation.
In Proceedings of the 30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta
and DavidMcAllester. Vol. 28. Proceedings of Machine Learning Research. Atlanta, Georgia,
USA: PMLR, pp. 370–378.

Brechtel, Sebastian, Tobias Gindele, and Rudiger Dillmann (Oct. 2014). Probabilistic decision-
making under uncertainty for autonomous driving using continuous POMDPs. In 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), 8-11 Oct. Qingdao,
China, pp. 392–399.

Bry, Adam and Nicholas Roy (May 2011). Rapidly-exploring random belief trees for motion
planning under uncertainty. In 2011 IEEE International Conference on Robotics and Automation,
9-13 May. Shanghai, China, pp. 723–730.

Bubeck, Sébastien and Rémi Munos (June 2010). Open Loop Optimistic Planning. In The 23rd
Conference on Learning Theory (COLT 2010), June 27–29. Haifa, Israel, pp. 477–489.

Bubeck, Sébastien, Gilles Stoltz, Csaba Szepesvári, and Rémi Munos (2009). Online Optimiza-
tion in X-Armed Bandits. In Advances in Neural Information Processing Systems 21. Ed. by
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Curran Associates, Inc., pp. 201–208.

Buehler, Martin, Karl Iagnemma, and Sanjiv Singh (2009). The DARPA Urban Challenge: Au-
tonomous Vehicles in City Traffic. 1st. Springer Publishing Company, Incorporated.

Buşoniu, Lucian, Alexander Daniels, Remi Munos, and Robert Babuska (Apr. 2013). Optimistic
planning for continuous-action deterministic systems. 2013 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL), 16-19 April, pp. 69–76.

Buşoniu, Lucian and Remi Munos (Apr. 2012). Optimistic planning for Markov decision pro-
cesses. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Neil D. Lawrence and Mark Girolami. Vol. 22. Proceedings of Machine
Learning Research. La Palma, Canary Islands: PMLR, pp. 182–189.

Buşoniu, Lucian, Előd Páll, and RémiMunos (2018). Continuous-action planning for discounted
infinite-horizon nonlinear optimal control with Lipschitz values. Automatica 92, pp. 100–108.

Cappé, Olivier, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz
(2013). Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation. The
Annals of Statistics 41.3, pp. 1516–1541.

Carrara, Nicolas, Romain Laroche, Jean-Léon Bouraoui, Tanguy Urvoy, and Olivier Pietquin
(2018). Safe transfer learning for dialogue applications. In International Conference on Statisti-
cal Language and Speech Processing (SLSP).

243

List of References

Carrara, Nicolas, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-AmbrymMail-
lard, and Olivier Pietquin (Dec. 2019). Budgeted Reinforcement Learning in Continuous
State Space. In Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc.,
pp. 9299–9309.

Chandramohan, Senthilkumar, Matthieu Geist, and Olivier Pietquin (Sept. 2010). Optimizing
spoken dialogue management with fitted value iteration. In INTERSPEECH 2010, 11th
Annual Conference of the International Speech Communication Association, September 26-30, 2010.
Ed. by Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura. Makuhari, Chiba, Japan:
ISCA, pp. 86–89.

Charpentier, Arthur and Béatrice Cherrier (June 2019). La valeur de la vie humaine. Risques
118, pp. 107–111.

Chaslot, Guillaume, Mark Winands, H. Herik, Jos Uiterwijk, and Bruno Bouzy (Nov. 2008).
Progressive Strategies forMonte-Carlo Tree Search.NewMathematics andNatural Computation
04.3, pp. 343–357.

Chebotarev, S., D. Efimov, T. Raïssi, andA. Zolghadri (2015). Interval Observers for Continuous-
Time LPV Systems with L1/L2 Performance. Automatica 58.8, pp. 82–89.

Chen, Y. F., M. Everett, M. Liu, and J. P. How (Sept. 2017). Socially aware motion planning with
deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 24-28 Sept. Vancouver, BC, Canada, pp. 1343–1350.

Chevalier-Boisvert, Maxime, Lucas Willems, and Suman Pal (2018). Minimalistic Gridworld
Environment for OpenAI Gym. https://github.com/maximecb/gym-minigrid.

Chow, Yinlam, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone (Jan. 2017). Risk-
Constrained Reinforcement Learning with Percentile Risk Criteria. J. Mach. Learn. Res. 18.1,
pp. 6070–6120.

Chow, Yinlam, Aviv Tamar, Shie Mannor, and Marco Pavone (Dec. 2015). Risk-Sensitive and
Robust Decision-Making: a CVaR Optimization Approach. In Advances in Neural Information
Processing Systems 28, Dec 6–10. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett. Montreal, Canada: Curran Associates, Inc., pp. 1522–1530.

Codevilla, Felipe, Matthias Miiller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy
(May 2018). End-to-End Driving Via Conditional Imitation Learning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 21-25 May. Brisbane, QLD, Australia,
pp. 4693–4700.

Combastel, C. (2013). Stable Interval Observers in BBC for Linear Systems With Time-Varying
Input Bounds. IEEE Transactions on Automatic Control 58.2, pp. 481–487.

Coquelin, Pierre-Arnaud and Rémi Munos (July 2007). Bandit Algorithms for Tree Search. In
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, July. UAI’07.
Vancouver, BC, Canada: AUAI Press, pp. 67–74.

Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, et al. (June 2016). The Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June.
Las Vegas, NV, USA, pp. 3213–3223.

244

https://github.com/maximecb/gym-minigrid

List of References

Coulom, Rémi (June 2007a). Computing Elo Ratings of Move Patterns in the Game of Go. In
Computer Games Workshop. Ed. by H. Jaap van den Herik, Mark Winands, Jos Uiterwijk, and
Maarten Schadd. Amsterdam, Netherlands.

— (2007b). Efficient Selectivity and BackupOperators inMonte-Carlo Tree Search. InComputers
and Games. Ed. byH. Jaap van denHerik, Paolo Ciancarini, andH. H. L.M. (Jeroen) Donkers.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 72–83.

Dann, Christoph, Lihong Li, Wei Wei, and Emma Brunskill (June 2019). Policy Certificates:
Towards Accountable Reinforcement Learning. In Proceedings of the 36th International Confer-
ence on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 1507–
1516.

Dashkovskiy, S.N., D.V. Efimov, and E.D. Sontag (2011). Input to state stability and allied
system properties. Automation and Remote Control 72.8, pp. 1579–1614.

De Freitas, Julian, Sam E Anthony, George Alvarez, and Andrea Censi (Jan. 2019). Doubting
Driverless Dilemmas. preprint.

Dean, Sarah, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu (2018). Regret
Bounds for Robust Adaptive Control of the Linear Quadratic Regulator. In Advances in
Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., pp. 4188–4197.

— (Aug. 2019). On the Sample Complexity of the Linear Quadratic Regulator. Foundations of
Computational Mathematics.

Delage, Erick and Shie Mannor (Jan. 2010). Percentile Optimization for Markov Decision
Processes with Parameter Uncertainty. Oper. Res. 58.1, pp. 203–213.

Delos, Vincent and Denis Teissandier (Jan. 2015). Minkowski Sum of Polytopes Defined by
Their Vertices. Journal of Applied Mathematics and Physics (JAMP) 3.1, pp. 62–67.

Dijkstra, E. W. (Dec. 1959). A note on two problems in connexion with graphs. Numerische
Mathematik 1.1, pp. 269–271.

Dosovitskiy, Alexey, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun (Nov.
2017). CARLA: AnOpen Urban Driving Simulator. In Proceedings of the 1st Annual Conference
on Robot Learning. Ed. by Sergey Levine, Vincent Vanhoucke, and Ken Goldberg. Vol. 78.
Proceedings of Machine Learning Research. Mountain View, California: PMLR, pp. 1–16.

Doyle, J. (1978). Guaranteedmargins for LQG regulators. IEEE Transactions on Automatic Control
23.4, pp. 756–757.

Drèze, Jacques (1962). L’utilité sociale d’une vie humaine. Revue Française de Recherche Opéra-
tionnelle 23, pp. 93–118.

Du, Yanzhu, David Hsu, Hanna Kurniawati, Wee Lee, Sylvie Ong, and Shao Png (May 2010).
A POMDP Approach to Robot Motion Planning Under Uncertainty. In Workshop on Solving
Real-World POMDP Problems at the Conference on Automated Planning and Scheduling. Toronto,
Canada.

Editions Nationales du Permis de Conduire (2017). Objectif Code !
Efimov, D., L.M. Fridman, T. Raïssi, A. Zolghadri, and R. Seydou (2012). Interval Estimation for

LPV Systems Applying High Order Sliding Mode Techniques. Automatica 48, pp. 2365–2371.

245

List of References

Efimov, D. and T. Raïssi (2016). Design of interval observers for uncertain dynamical systems.
Automation and Remote Control 77.2, pp. 191–225.

Efimov, D., T. Raïssi, S. Chebotarev, and A. Zolghadri (2013a). Interval State Observer for
Nonlinear Time Varying Systems. Automatica 49.1, pp. 200–205.

— (2013b). Interval State Observer for Nonlinear Time Varying Systems. Automatica 49.1,
pp. 200–205.

Efimov, D., T. Raïssi, and A. Zolghadri (2013). Control of nonlinear and LPV systems: interval
observer-based framework. IEEE Trans. Automatic Control 58.3, pp. 773–782.

Eraqi, Hesham M., Mohamed N. Moustafa, and Jens Honer (Dec. 2017). End-to-End Deep
Learning for Steering Autonomous Vehicles Considering Temporal Dependencies. InMa-
chine Learning for Intelligent Transportation Systems Workshop in the 31st Conference on Neural
Information Processing Systems (NIPS), December. Montreal, Canada.

Faradonbeh,MohamadKazemShirani, Ambuj Tewari, andGeorgeMichailidis (2020).Optimism-
based adaptive regulation of linear-quadratic systems Systems. IEEE Transactions on Auto-
matic Control early access.

Farina, L. and S. Rinaldi (2000). Positive Linear Systems: Theory and Applications. New York:
Wiley.

Faust, Aleksandra, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia, Marek Fiser,
et al. (May 2018). PRM-RL: Long-range robotic navigation tasks by combining reinforcement
learning and sampling-based planning. In Proceedings - IEEE International Conference on
Robotics and Automation. Brisbane, QLD, Australia, pp. 5113–5120.

Feldman, Zohar and Carmel Domshlak (2014). Simple Regret Optimization in Online Planning
for Markov Decision Processes. Journal of Artifial Intelligence Research 51, pp. 165–205.

Filippi, S., O. Cappé, and A. Garivier (Sept. 2010). Optimism in Reinforcement Learning and
Kullback-Leibler Divergence. In 2010 48th Annual Allerton Conference on Communication,
Control, and Computing, 29 Sept.–1 Oct. Allerton, IL, USA, pp. 115–122.

Fisac, Jaime F., Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama, Jeremy Gillula,
and Claire J. Tomlin (2019). A General Safety Framework for Learning-Based Control in
Uncertain Robotic Systems. IEEE Transactions on Automatic Control 64.7, pp. 2737–2752.

Foot, Philippa (1967). The Problem of Abortion and the Doctrine of Double Effect. Oxford
Review 5, pp. 5–15.

Fraichard, T. (July 1993). Dynamic trajectory planning with dynamic constraints: A ’state-time
space’ approach. In Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’93). Vol. 2. Yokohama, Japan, 1393–1400 vol.2.

Fraichard, Thierry (Mar. 2014).Will the Driver Seat Ever Be Empty? Research Report RR-8493.
INRIA.

Fridman, Lex, Jack Terwilliger, and Benedikt Jenik (Dec. 2018). DeepTraffic: Crowdsourced
Hyperparameter Tuning of Deep Reinforcement Learning Systems for Multi-Agent Dense
Traffic Navigation. In Deep Reinforcement Learning Workshop at NeurIPS 2018. Montreal,
Canada.

246

List of References

Fukushima, Hiroaki, Tae-Hyoung Kim, and Toshiharu Sugie (2007). Adaptive model predictive
control for a class of constrained linear systems based on the comparison model. Automatica
43.2, pp. 301–308.

Funke, Joseph, Paul Theodosis, Rami Hindiyeh, Ganymed Stanek, Krisada Kritatakirana, Chris
Gerdes, et al. (June 2012). Up to the limits: Autonomous Audi TTS. In 2012 IEEE Intelligent
Vehicles Symposium. Alcala de Henares, Spain, pp. 541–547.

Galceran, Enric, Alexander G. Cunningham, Ryan M. Eustice, and Edwin Olson (Aug. 2017).
Multipolicy decision-making for autonomous driving via changepoint-based behavior
prediction: Theory and experiment. Autonomous Robots 41.6, pp. 1367–1382.

García, Javier, Fern, and o Fernández (2015). A Comprehensive Survey on Safe Reinforcement
Learning. Journal of Machine Learning Research 16.42, pp. 1437–1480.

Geibel, Peter and Fritz Wysotzki (July 2005). Risk-Sensitive Reinforcement Learning Applied
to Control under Constraints. Journal of Artificial Intelligence Research 24.1, pp. 81–108.

Ghavamzadeh, Mohammad, Marek Petrik, and Yinlam Chow (2016). Safe Policy Improvement
byMinimizingRobust Baseline Regret. InAdvances inNeural Information Processing Systems 29.
Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc., pp. 2298–2306.

Gindele, Tobias, Sebastian Brechtel, and Rudiger Dillmann (2015). Learning driver behav-
ior models from traffic observations for decision making and planning. IEEE Intelligent
Transportation Systems Magazine 7.1, pp. 69–79.

Gogoll, Jan and Julian F. Müller (June 2017). Autonomous Cars: In Favor of a Mandatory Ethics
Setting. Science and Engineering Ethics 23.3, pp. 681–700.

González, D., J. Pérez, V. Milanés, and F. Nashashibi (2016). A Review of Motion Planning
Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems
17.4, pp. 1135–1145.

Gorissen, Bram L., İhsan Yanıkoğlu, and Dick den Hertog (2015). A practical guide to robust
optimization. Omega 53, pp. 124–137.

Grill, Jean-Bastien, Omar Darwiche Domingues, PierreMenard, RemiMunos, andMichal Valko
(2019). Planning in entropy-regularized Markov decision processes and games. In Advances
in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 12404–12413.

Grill, Jean-Bastien, Michal Valko, and Remi Munos (2016). Blazing the trails before beating the
path: Sample-efficient Monte-Carlo planning. In Advances in Neural Information Processing
Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran
Associates, Inc., pp. 4680–4688.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics
4.2, pp. 100–107.

Heess, Nicolas, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David
Silver (2016). Learning and Transfer of Modulated Locomotor Controllers. preprint.

247

List of References

Ho, Jonathan and Stefano Ermon (2016). GenerativeAdversarial Imitation Learning. InAdvances
in Neural Information Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett. Curran Associates, Inc., pp. 4565–4573.

Hoel, Carl Johan, Krister Wolff, and Leo Laine (Nov. 2018). Automated Speed and Lane Change
Decision Making using Deep Reinforcement Learning. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). Maui, HI, USA, pp. 2148–2155.

Homem-de-Mello, Tito and Güzin Bayraksan (2014). Monte Carlo sampling-based methods for
stochastic optimization. Surveys in Operations Research and Management Science 19.1, pp. 56–
85.

Hostetler, Jesse, Alan Fern, and Tom Dietterich (July 2014). State Aggregation in Monte Carlo
Tree Search. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.
AAAI’14. Québec City, Québec, Canada: AAAI Press, pp. 2446–2452.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT.
Hren, Jean-François and Rémi Munos (2008). Optimistic Planning of Deterministic Systems. In

Recent Advances in Reinforcement Learning. Ed. by Sertan Girgin, Manuel Loth, Rémi Munos,
Philippe Preux, and Daniil Ryabko. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 151–
164.

Ibrahimi, Morteza, Adel Javanmard, and Benjamin V. Roy (2012). Efficient Reinforcement
Learning for High Dimensional Linear Quadratic Systems. In Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger.
Curran Associates, Inc., pp. 2636–2644.

Isele, David, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fujimura (May
2018). Navigating Occluded Intersections with Autonomous Vehicles Using Deep Rein-
forcement Learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
Brisbane, QLD, Australia, pp. 2034–2039.

Iyengar, Garud N. (2005). Robust Dynamic Programming.Mathematics of Operations Research
30.2, pp. 257–280.

Janai, Joel, Fatma Güney, Aseem Behl, and Andreas Geiger (2020). Computer Vision for Au-
tonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends® in
Computer Graphics and Vision 12.1–3, pp. 1–308.

Jaulin, L. (2002). Nonlinear bounded-error state estimation of continuous time systems. Auto-
matica 38.2, pp. 1079–1082.

Jin, Chi, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan (July 2020). Provably efficient
reinforcement learning with linear function approximation. In Proceedings of Thirty Third
Conference on Learning Theory. Ed. by Jacob Abernethy and Shivani Agarwal. Vol. 125. Pro-
ceedings of Machine Learning Research. Online: PMLR, pp. 2137–2143.

Jonsson, Anders, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard
Leurent, and Michal Valko (Dec. 2020). Planning in Markov Decision Processes with Gap-
Dependent Sample Complexity. In Advances in Neural Information Processing Systems 33.
Virtual.

Kakade, Sham and John Langford (July 2002). Approximately Optimal Approximate Reinforce-
ment Learning. In Proceedings of the Nineteenth International Conference on Machine Learning.
ICML ’02. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 267–274.

248

List of References

Kalman, Rudolph Emil et al. (1960). A new approach to linear filtering and prediction problems.
Journal of basic Engineering 82.1, pp. 35–45.

Kammel, Sören, Julius Ziegler, Benjamin Pitzer, Moritz Werling, Tobias Gindele, Daniel Jagzent,
et al. (2008). Team AnnieWAY’s autonomous system for the 2007 DARPA Urban Challenge.
Journal of Field Robotics 25.9, pp. 615–639.

Kapoor, Parv, Anand Balakrishnan, and Jyotirmoy V. Deshmukh (2020). Model-based Reinforce-
ment Learning from Signal Temporal Logic Specifications. preprint.

Karaman, Sertac and Emilio Frazzoli (2011). Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research 30.7, pp. 846–894.

Kaufmann, Emilie and Wouter M Koolen (2017). Monte-Carlo Tree Search by Best Arm Iden-
tification. In Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. Curran Associates, Inc.,
pp. 4897–4906.

Kaufmann, Emilie, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, and Michal Valko (2020). Adaptive Reward-Free Exploration. Submitted to ALT 2021,
under review.

Kavraki, Lydia E., Petr Švestka, Jean Claude Latombe, andMarkH. Overmars (1996). Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12.4, pp. 566–580.

Kearns, Michael J., Yishay Mansour, and Andrew Y. Ng (2002). A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes.Machine Learning 49.2-3,
pp. 193–208.

Kendall, Alex, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
et al. (May 2019). Learning to Drive in a Day. 2019 International Conference on Robotics and
Automation (ICRA), pp. 8248–8254.

Kesting, Arne, Martin Treiber, and Dirk Helbing (2007). General Lane-ChangingModel MOBIL
for Car-Following Models. Transportation Research Record 1999.1, pp. 86–94.

Khalil, Hassan K. (2002). Nonlinear Systems. 3rd. Prentice Hall PTR.
Kieffer, Michel and Eric Walter (Dec. 2004). Guaranteed Nonlinear State Estimator for Cooper-

ative Systems. Numerical Algorithms 37.1, pp. 187–198.
Kocsis, Levente and Csaba Szepesvári (2006). Bandit Based Monte-Carlo Planning. In European

Conference on Machine Learning (ECML). Ed. by Johannes Fürnkranz, Tobias Scheffer, and
Myra Spiliopoulou. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 282–293.

Köhler, J., E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer (Dec. 2019). Linear robust
adaptive model predictive control: Computational complexity and conservatism. In 2019
IEEE 58th Conference on Decision and Control (CDC). Nice, France, pp. 1383–1388.

Kuderer, Markus, Shilpa Gulati, and Wolfram Burgard (May 2015). Learning driving styles for
autonomous vehicles from demonstration. In 2015 IEEE International Conference on Robotics
and Automation (ICRA). Seattle, WA, USA, pp. 2641–2646.

Kuefler, A., J. Morton, T. Wheeler, and M. Kochenderfer (June 2017). Imitating driver behavior
with generative adversarial networks. In 2017 IEEE Intelligent Vehicles Symposium (IV). Los
Angeles, CA, USA, pp. 204–211.

249

List of References

L.A., Prashanth and Mohammad Ghavamzadeh (2013). Actor-Critic Algorithms for Risk-
Sensitive MDPs. In Advances in Neural Information Processing Systems 26. Ed. by C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Lake Tahoe, NV/CA,
USA: Curran Associates, Inc., pp. 252–260.

Lamiraux, F. and J. -. Lammond (2001). Smooth motion planning for car-like vehicles. IEEE
Transactions on Robotics and Automation 17.4, pp. 498–501.

Laroche, Romain, Paul Trichelair, and Remi Tachet Des Combes (June 2019). Safe Policy Im-
provement with Baseline Bootstrapping. In Proceedings of the 36th International Conference
on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Pro-
ceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 3652–
3661.

Latombe, Jean-Claude (July 1991). A Fast Path Planner for a Car-like Indoor Mobile Robot.
In Proceedings of the Ninth National Conference on Artificial Intelligence - Volume 2. AAAI’91.
Anaheim, California: AAAI Press, pp. 659–665.

Laumond, J. -., P. E. Jacobs, M. Taix, and R. M. Murray (1994). A motion planner for nonholo-
nomic mobile robots. IEEE Transactions on Robotics and Automation 10.5, pp. 577–593.

LaValle, S. M. and S. A. Hutchinson (1998). Optimal motion planning for multiple robots
having independent goals. IEEE Transactions on Robotics and Automation 14.6, pp. 912–925.

Lavalle, StevenM. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech. rep.
Computer Science Department, Iowa State University.

Le, Hoang, Cameron Voloshin, and Yisong Yue (June 2019). Batch Policy Learning under
Constraints. In Proceedings of the 36th International Conference on Machine Learning. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. Long Beach, California, USA: PMLR, pp. 3703–3712.

Lenz, David, Tobias Kessler, and Alois Knoll (June 2016). Tactical cooperative planning for
autonomous highway driving using Monte-Carlo Tree Search. In 2016 IEEE Intelligent
Vehicles Symposium (IV). Gothenburg, Sweden, pp. 447–453.

Lenz, Ian, Ross A. Knepper, and Ashutosh Saxena (July 2015). DeepMPC: Learning Deep
Latent Features for Model Predictive Control. In Robotics: Science and Systems XI, 2015. Ed. by
Lydia E. Kavraki, David Hsu, and Jonas Buchli. Sapienza University of Rome, Rome, Italy.

Leung, Karen, Edward Schmerling, Mo Chen, John Talbot, J. Christian Gerdes, and Marco
Pavone (Nov. 2020). On Infusing Reachability-Based Safety Assurance Within Probabilistic
Planning Frameworks for Human-Robot Vehicle Interactions. In Proceedings of the 2018
International Symposium on Experimental Robotics (ISER 2018). Ed. by Jing Xiao, Torsten
Kröger, and Oussama Khatib. Buenos Aires, Argentina: Springer International Publishing,
pp. 561–574.

Leurent, Edouard (2018). An Environment for Autonomous Driving Decision-Making. https://
github.com/eleurent/highway-env. GitHub repository.

Leurent, Edouard, Yann Blanco, Denis Efimov, and Odalric-Ambrym Maillard (Dec. 2018).
Approximate Robust Control of Uncertain Dynamical Systems. In Machine Learning for
Intelligent Transportation Systems Workshop at the Thirty-second Conference on Neural Information
Processing Systems (NeurIPS 2018). Montreal, Canada.

250

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

List of References

Leurent, Edouard, Denis Efimov, andOdalric-AmbrymMaillard (Dec. 2020a). Robust-Adaptive
Control of Linear Systems: beyond Quadratic Costs. In Advances in Neural Information
Processing Systems 33. Virtual.

— (Dec. 2020b). Robust-Adaptive Interval Predictive Control for Linear Uncertain Systems. In
2020 IEEE 59th Conference on Decision and Control (CDC). Jeju Island, Republic of Korea.

Leurent, Edouard, Denis Efimov, Tarek Raissi, and Wilfrid Perruquetti (Dec. 2019). Interval
Prediction for Continuous-Time Systems with Parametric Uncertainties. In 2019 IEEE 58th
Conference on Decision and Control (CDC). Nice, France, pp. 7049–7054.

Leurent, Edouard and Odalric-AmbrymMaillard (Nov. 2020a). Monte-Carlo Graph Search:
the Value of Merging Similar States. In Asian Conference on Machine Learning (ACML 2020).
Ed. by Sinno Jialin Pan and Masashi Sugiyama. Bangkok, Thailand, pp. 577–592.

— (Sept. 2020b). Practical Open-Loop Optimistic Planning. In European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Ed. by Ulf Brefeld, Elisa Fromont, An-
dreas Hotho, Arno Knobbe, Marloes Maathuis, and Céline Robardet. Würzburg, Germany:
Springer International Publishing, pp. 69–85.

Leurent, Edouard and Jean Mercat (Dec. 2019). Social Attention for Autonomous Decision-
Making in Dense Traffic. In Machine Learning for Autonomous Driving Workshop at the Thirty-
third Conference on Neural Information Processing Systems (NeurIPS 2019). Montreal, Canada.

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2016). End-to-End Training of
Deep Visuomotor Policies. Journal of Machine Learning Research 17.39, pp. 1–40.

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu (2020). Offline Reinforcement Learn-
ing: Tutorial, Review, and Perspectives on Open Problems. preprint.

Li, Lihong, Jason D. Williams, and Suhrid Balakrishnan (Sept. 2009). Reinforcement learning
for dialog management using least-squares Policy iteration and fast feature selection. In
Conference of the International Speech Communication Association (InterSpeech 2009). Brighton,
United Kingdom, pp. 2447–2451.

Li, Minne, Lisheng Wu, Jun WANG, and Haitham Bou Ammar (Dec. 2019). Multi-View Re-
inforcement Learning. In Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vancouver,
BC, Canada: Curran Associates, Inc., pp. 1420–1431.

Liang, Xinle, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang (2019). Federated Transfer
Reinforcement Learning for Autonomous Driving. preprint.

Lin, Patrick (2015). Why Ethics Matters for Autonomous Cars. In Autonomes Fahren: Technische,
rechtliche und gesellschaftliche Aspekte. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 69–
85.

Liu, Chunming, Xin Xu, and Dewen Hu (2014). Multiobjective Reinforcement Learning: A
Comprehensive Overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45.3,
pp. 385–398.

Liu, Jingchu, Pengfei Hou, Lisen Mu, Yinan Yu, and Chang Huang (2018). Elements of Effective
Deep Reinforcement Learning towards Tactical Driving Decision Making. preprint.

Liu, Ming-Yu, Thomas Breuel, and Jan Kautz (2017). Unsupervised Image-to-Image Translation
Networks. In Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.

251

List of References

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. Curran Associates, Inc.,
pp. 700–708.

Lopez, Pablo Alvarez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flöt-
teröd, Robert Hilbrich, et al. (2018). Microscopic Traffic Simulation using SUMO. In The
21st IEEE International Conference on Intelligent Transportation Systems. IEEE.

Lorenzen, Matthias, Frank Allgöwer, andMark Cannon (July 2017). Adaptive Model Predictive
Control with Robust Constraint Satisfaction. IFAC-PapersOnLine 50.1, pp. 3313–3318.

Lu, Xiao-Yun and Sarah K. Spurgeon (Nov. 1997). Robust sliding mode control of uncertain
nonlinear systems. Systems & Control Letters 32.2, pp. 75–90.

Lu, Xiaonan and Mark Cannon (July 2019). Robust adaptive tube model predictive control. In
2019 American Control Conference (ACC). Philadelphia, PA, USA, pp. 3695–3701.

Luenberger, David G. (2013). Investment science. Oxford University Press, Incorporated.
Ma, Xiaoteng, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao (June 2020). DSAC:

Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning. In Reinforcement
Learning for Real Life Workshop at ICML 2019. Long Beach, CA, USA.

Maĉek, Kristijan, Dizan Vasquez, Thierry Fraichard, and Roland Siegwart (Oct. 2008). Safe
Vehicle Navigation in Dynamic Urban Scenarios. In 2008 11th International IEEE Conference
on Intelligent Transportation Systems (ITSC). Beijing, China, pp. 482–489.

Marcos, A. and J. Balas (2004). Development of linear-parameter-varying models for aircraft. J.
Guidance, Control, Dynamics 27.2, pp. 218–228.

Markowitz, Harry M. (1959). Portfolio Selection: Efficient Diversification of Investments. Yale
University Press.

Mausser, H. and D. Rosen (Apr. 1999). Beyond VaR: from measuring risk to managing risk.
In Proceedings of the IEEE/IAFE 1999 Conference on Computational Intelligence for Financial
Engineering (CIFEr). New York, NY, USA, pp. 163–178.

Mavrogiannis, Angelos, Rohan Chandra, and Dinesh Manocha (2020). B-GAP: Behavior-Guided
Action Prediction for Autonomous Navigation. preprint.

Mayne, D.Q., S.V. Raković, R. Findeisen, and F. Allgöwer (2009). Robust output feedback
model predictive control of constrained linear systems: Time varying case. Automatica 45.9,
pp. 2082–2087.

Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert (2000). Constrainedmodel predictive
control: Stability and optimality. Automatica 36.6, pp. 789–814.

Mazenc, F. and O. Bernard (2011). Interval observers for linear time-invariant systems with
disturbances. Automatica 47.1, pp. 140–147.

Mei, Jincheng, Yangchen Pan, Martha White, Amir-massoud Farahmand, and Hengshuai Yao
(2020). Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated Priorities.
preprint.

Ménard, Pierre, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, and Michal Valko (July 2020). Fast active learning for pure exploration in reinforcement
learning. Research Report. DeepMind.

252

List of References

Mercat, Jean, Thomas Gilles, Nicole El Zoghby, Guillaume Sandou, Dominique Beauvois, and
Guillermo Pita Gil (May 2020). Multi-Head Attention for Joint Multi-Modal Vehicle Motion
Forecasting. In IEEE International Conference on Robotics and Automation. Virtual conference.
Paris, France.

Messaoud, Kaouther, Itheri Yahiaoui, Anne Verroust-Blondet, and Fawzi Nashashibi (June
2019). Non-local Social Pooling for Vehicle Trajectory Prediction. In 2019 IEEE Intelligent
Vehicles Symposium (IV). Paris, France, pp. 975–980.

Michalska,H. andD.Q.Mayne (1993). Robust receding horizon control of constrained nonlinear
systems. IEEE Transactions on Automatic Control 38.11, pp. 1623–1633.

Mitsch, Stefan, Khalil Ghorbal, David Vogelbacher, and André Platzer (2017). Formal verifi-
cation of obstacle avoidance and navigation of ground robots. The International Journal of
Robotics Research 36.12, pp. 1312–1340.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, et al. (Feb. 2015). Human-level control through deep reinforcement learning.
Nature 518.7540, pp. 529–533.

Moisan, M., O. Bernard, and J.L. Gouzé (2009). Near optimal interval observers bundle for
uncertain bio-reactors. Automatica 45.1, pp. 291–295.

Montemerlo, Michael, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov, Scott
Ettinger, et al. (2008). Junior: The Stanford entry in the Urban Challenge. Journal of Field
Robotics 25.9, pp. 569–597.

Moody, J. and M. Saffell (2001). Learning to trade via direct reinforcement. IEEE Transactions
on Neural Networks 12.4, pp. 875–889.

Mueller, Matthias, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun (Oct. 2018).
Driving Policy Transfer via Modularity and Abstraction. In Proceedings of The 2nd Conference
on Robot Learning. Ed. by Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto. Vol. 87.
Proceedings of Machine Learning Research. Zürich, Switzerland: PMLR, pp. 1–15.

Munos, Rémi (2011). Optimistic Optimization of a Deterministic Function without the Knowl-
edge of its Smoothness. In Advances in Neural Information Processing Systems 24. Ed. by J.
Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates,
Inc., pp. 783–791.

— (2014). From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization
and Planning. Vol. 7. Foundations and Trends® in Machine Learning, pp. 1–129.

N, Sriram N, Buyu Liu, Francesco Pittaluga, and Manmohan Chandraker (Aug. 2020). SMART:
Simultaneous Multi-Agent Recurrent Trajectory Prediction. In 16th European Conference on
Computer Vision (ECCV 2020). Glasgow, United Kingdom.

Nadjahi, Kimia, Romain Laroche, and Rémi Tachet des Combes (Sept. 2020). Safe Policy
Improvement with Soft Baseline Bootstrapping. In European Conference on Machine Learning
and Knowledge Discovery in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho,
Arno Knobbe, Marloes Maathuis, and Céline Robardet. Würzburg, Germany: Springer
International Publishing, pp. 53–68.

Naghshvar, Mohammad, Ahmed K Sadek, and Auke J Wiggers (2018). Risk-averse Behavior
Planning for Autonomous Driving under Uncertainty. preprint.

253

List of References

Nilim, Arnab and Laurent El Ghaoui (2005). Robust Control of Markov Decision Processes
with Uncertain Transition Matrices. Operations Research 53.5, pp. 780–798.

Noothigattu, Ritesh, Snehalkumar (Neil) S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad
Rahwan, Pradeep Ravikumar, et al. (Feb. 2018). A Voting-Based System for Ethical Decision
Making. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18). Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. New Orleans, Louisiana, USA:
AAAI Press, pp. 1587–1594.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
et al. (2019). Solving Rubik’s Cube with a Robot Hand. preprint.

Ouyang, Yi, Mukul Gagrani, and Rahul Jain (Oct. 2017). Control of unknown linear systems
with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). Monticello, IL, USA, pp. 1198–1205.

Paden, Brian, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli (2016). A
Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE
Transactions on Intelligent Vehicles 1.1, pp. 33–55.

Paxton, Chris, Vasumathi Raman, Gregory D. Hager, and Marin Kobilarov (Sept. 2017). Com-
bining neural networks and tree search for task and motion planning in challenging envi-
ronments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Vancouver, BC, Canada, pp. 6059–6066.

Peña, Victor H, Tze Leung Lai, and Qi-Man Shao (2008). Self-normalized processes: Limit theory
and Statistical Applications. Springer Science & Business Media.

Pietquin, Olivier, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet (2011).
Sample-efficient batch reinforcement learning for dialogue management optimization. ACM
Transactions on Speech and Language Processing (TSLP) 7.3, p. 7.

Pineau, Joelle, Geoff Gordon, and Sebastian Thrun (Aug. 2003). Point-Based Value Iteration:
An Anytime Algorithm for POMDPs. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers Inc.,
pp. 1025–1030.

Pivtoraiko, M. and A. Kelly (Sept. 2005). Efficient Constrained Path Planning via Search in State
Lattices. In The 8th International Symposium on Artificial Intelligence, Robotics and Automation
in Space (i-SAIRAS 2005). Vol. 603. ESA Special Publication. Munich, Germany, p. 33.

Polack, Philip (Oct. 2018). Consistency and stability of hierarchical planning and control
systems for autonomous driving. Theses. PSL Research University.

Polack, Philip, Florent Altché, and Brigitte D’Andréa-Novel (June 2017). The Kinematic Bicycle
Model : a Consistent Model for Planning Feasible Trajectories for Autonomous Vehicles? In
2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA, pp. 812–818.

Pomerleau, Dean A. (Dec. 1989). ALVINN: An Autonomous Land Vehicle in a Neural Network.
In Advances in Neural Information Processing Systems 1. Ed. by D. S. Touretzky. Denver,
Colorado, USA: Morgan-Kaufmann, pp. 305–313.

Porta, Josep M., Nikos Vlassis, Matthijs T.J. Spaan, and Pascal Poupart (Dec. 2006). Point-Based
Value Iteration for Continuous POMDPs. Journal of Machine Learning Research 7, pp. 2329–
2367.

254

List of References

Poupart, Pascal, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh, and Michael Bowling
(Jan. 2015). Approximate Linear Programming for Constrained Partially ObservableMarkov
Decision Processes. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
AAAI’15. Austin, Texas: AAAI Press, pp. 3342–3348.

Pouyanfar, Samira, Muneeb Saleem, Nikhil George, and Shu Ching Chen (June 2019). ROADS:
Randomization for obstacle avoidance and driving in simulation. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, CA, USA,
pp. 1267–1276.

Prakash, Aayush, Shaad Boochoon, Mark Brophy, David Acuna, Eric Cameracci, Gavriel State,
et al. (May 2019). Structured domain randomization: Bridging the reality gap by context-
aware synthetic data. In 2019 International Conference on Robotics and Automation (ICRA).
Montreal, QC, Canada, pp. 7249–7255.

Qi, Charles R., Hao Su, Kaichun Mo, and Leonidas J. Guibas (July 2017). PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, pp. 77–85.

Raïssi, T. and D. Efimov (2018). Some recent results on the design and implementation of
interval observers for uncertain systems. Automatisierungstechnik 66.3, pp. 213–224.

Raïssi, T., D. Efimov, and A. Zolghadri (2012). Interval state estimation for a class of nonlinear
systems. IEEE Trans. Automatic Control 57.1, pp. 260–265.

Raïssi, T., G. Videau, and A. Zolghadri (2010). Interval observers design for consistency checks
of nonlinear continuous-time systems. Automatica 46.3, pp. 518–527.

Reeds, J. A. and L. A. Shepp (1990). Optimal paths for a car that goes both forwards and
backwards. Pacific J. Math. 145.2, pp. 367–393.

Rehder, Eike, Jannik Quehl, and Christoph Stiller (May 2017). Driving Like a Human: Imitation
Learning for Path Planning using Convolutional Neural Networks. In Workshop at IEEE
International Conference on Robotics and Automation (ICRA). Singapore.

Rehder, Eike, Florian Wirth, Martin Lauer, and Christoph Stiller (May 2018). Pedestrian Pre-
diction by Planning Using Deep Neural Networks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). Brisbane, QLD, Australia, pp. 5903–5908.

Rhinehart, Nicholas, Rowan McAllister, Kris Kitani, and Sergey Levine (Oct. 2019). PRECOG:
Prediction conditioned on goals in visual multi-agent settings. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). Seoul, Korea (South), pp. 2821–2830.

Rhinehart, Nicholas, Rowan McAllister, and Sergey Levine (May 2020). Deep Imitative Mod-
els for Flexible Inference, Planning, and Control. In International Conference on Learning
Representations (ICLR). Virtual Conference, formerly Addis Ababa, Ethiopa.

Roijers, Diederik M., Peter Vamplew, Shimon Whiteson, and Richard Dazeley (2013). A Survey
of Multi-Objective Sequential Decision-Making. Journal of Artificial Intelligence Research
(JAIR) 48.

Ros, G., L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez (June 2016). The SYNTHIA
Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV,
USA, pp. 3234–3243.

255

List of References

Rosolia, Ugo and Francesco Borrelli (Dec. 2019). Sample-Based Learning Model Predictive
Control for Linear Uncertain Systems. In 2019 IEEE 58th Conference on Decision and Control
(CDC). Nice, France, pp. 2702–2707.

Ross, Stéphane, Geoffrey J. Gordon, and J. Andrew Bagnell (2011). A reduction of imitation
learning and structured prediction to no-regret online learning. In Journal ofMachine Learning
Research.

Sadeghian, Amir, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and
Silvio Savarese (June 2019). SoPhie: An Attentive GAN for Predicting Paths Compliant
to Social and Physical Constraints. In 2019 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Long Beach, CA, USA, pp. 1349–1358.

Sadeghian, Amir, Ferdinand Legros, Maxime Voisin, Ricky Vesel, Alexandre Alahi, and Silvio
Savarese (Sept. 2018). CAR-Net: Clairvoyant Attentive Recurrent Network. In Computer
Vision - ECCV 2018 - 15th European Conference. Ed. by Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss. Vol. 11215. Lecture Notes in Computer Science. Munich,
Germany: Springer, pp. 162–180.

Sadigh, Dorsa, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan (June 2016). Planning for
autonomous cars that leverage effects on human actions. In Proceedings of Robotics: Science
and Systems. AnnArbor, Michigan.

Sánchez L., Abraham, René Zapata, and J. Abraham Arenas B. (2002). Motion Planning for
Car-Like Robots Using Lazy Probabilistic Roadmap Method. InMICAI 2002: Advances in
Artificial Intelligence. Ed. by Carlos A. Coello Coello, Alvaro de Albornoz, Luis Enrique Sucar,
and Osvaldo Cairó Battistutti. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–10.

Sastry, Shankar, Marc Bodson, and James F. Bartram (1990). Adaptive Control: Stability, Con-
vergence, and Robustness. The Journal of the Acoustical Society of America 88.1, pp. 588–589.

Saunders, William, Girish Sastry, Andreas Stuhlmüller, and Owain Evans (July 2018). Trial
without Error: Towards Safe Reinforcement Learning viaHuman Intervention. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems. AAMAS
’18. Stockholm, Sweden: International Foundation for Autonomous Agents and Multiagent
Systems, pp. 2067–2069.

Schelling, Thomas C., Martin J. Bailey, and Gary Fromm (Sept. 1968). The life you save may be
your own. Problems in Public Expenditure. Studies of Government Finance. Pp. 127–162.

Schneider, Jeff G. (1997). Exploiting Model Uncertainty Estimates for Safe Dynamic Control
Learning. In Advances in Neural Information Processing Systems 9. Ed. by M. C. Mozer, M. I.
Jordan, and T. Petsche. MIT Press, pp. 1047–1053.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz (July 2015).
Trust Region Policy Optimization. In Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, pp. 1889–1897.

Shah, Shital, Debadeepta Dey, Chris Lovett, and Ashish Kapoor (2017). AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (2016). Safe, Multi-Agent, Rein-
forcement Learning for Autonomous Driving. preprint.

— (2017). On a Formal Model of Safe and Scalable Self-driving Cars. preprint.

256

List of References

Shamma, J. and J. Cloutier (1993). Gain-scheduled missile autopilot design using linear
parameter-varying transformations. J. Guidance, Control, Dynamics 16.2, pp. 256–261.

Shamma, J.S. (2012). Control of Linear Parameter Varying Systems with Applications. In
Springer. Chap. An overview of LPV systems, pp. 1–22.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, et al. (Jan. 2016). Mastering the game of Go with deep neural networks and tree
search. Nature 529.7587, pp. 484–489.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, et al. (2018). A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362.6419, pp. 1140–1144.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, et al. (Oct. 2017). Mastering the game of Go without human knowledge. Nature
550.7676, pp. 354–359.

Silver, David and Joel Veness (Dec. 2010). Monte-Carlo Planning in Large POMDPs. InAdvances
in Neural Information Processing Systems 23. Ed. by J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, andA. Culotta. Vancouver, BC, Canada: CurranAssociates, Inc., pp. 2164–
2172.

Smith, H.L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and
Cooperative Systems. Vol. 41. Surveys and Monographs. Providence: AMS.

Song,Weilong,GuangmingXiong, andHuiyanChen (Apr. 2016). Intention-AwareAutonomous
Driving Decision-Making in an Uncontrolled Intersection.Mathematical Problems in Engi-
neering 2016, p. 1025349.

Sontag, Eduardo D. (2001). The ISS philosophy as a unifying framework for stability-like
behavior. In Nonlinear control in the year 2000, Vol. 2 (Paris). Vol. 259. Lecture Notes in
Control and Inform. Sci. London: Springer, pp. 443–467.

Stentz, Anthony (May 1994). Optimal and efficient path planning for partially-known envi-
ronments. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation
(ICRA). San Diego, CA, USA, 3310–3317 vol.4.

Sun, Liting, Wei Zhan, Ching Yao Chan, and Masayoshi Tomizuka (June 2019). Behavior
Planning of Autonomous Cars with Social Perception. In 2019 IEEE Intelligent Vehicles
Symposium (IV). Paris, France, pp. 207–213.

Sunberg, Zachary N., Christopher J. Ho, and Mykel J. Kochenderfer (May 2017). The value of
inferring the internal state of traffic participants for autonomous freeway driving. In 2017
American Control Conference (ACC). Seattle, WA, USA, pp. 3004–3010.

Sutton, Richard S., Doina Precup, and Satinder Singh (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112.1,
pp. 181–211.

Szörényi, Balázs, Gunnar Kedenburg, and Remi Munos (2014). Optimistic Planning in Markov
Decision Processes Using a Generative Model. In Advances in Neural Information Process-
ing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger. Curran Associates, Inc., pp. 1035–1043.

257

List of References

Tamar, Aviv, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor (2015). Policy
Gradient for Coherent Risk Measures. In Advances in Neural Information Processing Systems
28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett. Curran
Associates, Inc., pp. 1468–1476.

Tamar, Aviv, Dotan Di Castro, and Shie Mannor (June 2012). Policy Gradients with Variance Re-
lated Risk Criteria. In Proceedings of the 29th International Coference on International Conference
onMachine Learning (ICML 2012). ICML’12. Edinburgh, Scotland: Omnipress, pp. 1651–1658.

Tamar, Aviv, Shie Mannor, and Huan Xu (2014). Scaling up robust MDPs using function
approximation. In 31st International Conference on Machine Learning, ICML 2014.

Tan, W. (1997). Applications of Linear Parameter-Varying Control Theory. PhD thesis. Dept. of
Mechanical Engineering, University of California at Berkeley.

Tanaskovic, Marko, Lorenzo Fagiano, Roy Smith, and Manfred Morari (2014). Adaptive reced-
ing horizon control for constrained MIMO systems. Automatica 50.12, pp. 3019–3029.

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, et al.
(Dec. 2017). #Exploration: A Study of Count-Based Exploration for Deep Reinforcement
Learning. In Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. Long Beach, CA, USA:
Curran Associates, Inc., pp. 2753–2762.

Terry, Justin K., Benjamin Black, Mario Jayakumar, Ananth Hari, Luis Santos, Clemens Dief-
fendahl, et al. (2020). PettingZoo: Gym for Multi-Agent Reinforcement Learning. preprint.

Tessler, Chen, Daniel J. Mankowitz, and Shie Mannor (May 2019). Reward constrained policy
optimization. In 7th International Conference on Learning Representations, ICLR 2019. New
Orleans, LA, USA.

Thomas, Philip, Georgios Theocharous, and Mohammad Ghavamzadeh (July 2015). High
Confidence Policy Improvement. In Proceedings of the 32nd International Conference onMachine
Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning
Research. Lille, France: PMLR, pp. 2380–2388.

Tirole, Jean and Steven Rendall (2017). Economics for the Common Good. Princeton University
Press.

Tobin, Josh, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel
(Sept. 2017). Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Vancouver, BC, Canada, pp. 23–30.

Torossian, Léonard, Aurélien Garivier, and Victor Picheny (Nov. 2019). X -Armed Bandits:
Optimizing Quantiles, CVaR and Other Risks. In Proceedings of The Eleventh Asian Conference
on Machine Learning. Ed. by Wee Sun Lee and Taiji Suzuki. Vol. 101. Proceedings of Machine
Learning Research. Nagoya, Japan: PMLR, pp. 252–267.

Trautman, Peter and Andreas Krause (Oct. 2010). Unfreezing the robot: Navigation in dense,
interacting crowds. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Taipei, Taiwan, pp. 797–803.

Treiber,Martin, AnsgarHennecke, andDirkHelbing (2000). Congested traffic states in empirical
observations and microscopic simulations. Physical Review E - Statistical Physics, Plasmas,
Fluids, and Related Interdisciplinary Topics 62.2, pp. 1805–1824.

258

List of References

Turchetta, Matteo, Felix Berkenkamp, and Andreas Krause (Dec. 2016). Safe Exploration in
Finite Markov Decision Processes with Gaussian Processes. InAdvances in Neural Information
Processing Systems 29. Ed. by D. D. Lee,M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett.
Barcelona, Spain: Curran Associates, Inc., pp. 4312–4320.

Ulbrich, Simon and Markus Maurer (Oct. 2013). Probabilistic online POMDP decision making
for lane changes in fully automated driving. In 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013). The Hague, Netherlands, pp. 2063–2067.

Undurti, Aditya, Alborz Geramifard, and Jonathan P. How (2011). Function Approximation for
Continuous Constrained MDPs. Tech. rep. MIT Computer Science and Artificial Intelligence
Lab.

Urmson, Chris, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, M. N. Clark,
et al. (2008). Autonomous driving in urban environments: Boss and the Urban Challenge.
Journal of Field Robotics 25.8, pp. 425–466.

Vanderbei, Robert (1996). Optimal sailing strategies. Statistics and operations research program.
https://vanderbei.princeton.edu/sail/sail.html. (accessed July 22, 2020).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
et al. (2017). Attention is All you Need. In Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al.
Curran Associates, Inc., pp. 5998–6008.

Vemula, Anirudh, Katharina Muelling, and Jean Oh (May 2018). Social Attention: Modeling
Attention in Human Crowds. In 2018 IEEE International Conference on Robotics and Automation
(ICRA). Brisbane, QLD, Australia, pp. 4601–4607.

Vezhnevets, Alexander Sasha, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, et al. (Aug. 2017). FeUdal Networks for Hierarchical Reinforcement Learning.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML’17.
Sydney, NSW, Australia: JMLR, pp. 3540–3549.

Vinodh Kumar, E. and Jovitha Jerome (2013). Robust LQR Controller Design for Stabilizing and
Trajectory Tracking of Inverted Pendulum. Procedia Engineering 64. International Conference
on Design and Manufacturing (IConDM2013), pp. 169–178.

Wang, Yizao, Jean-yves Audibert, and RémiMunos (Dec. 2009). Algorithms for Infinitely Many-
Armed Bandits. In Advances in Neural Information Processing Systems 21. Ed. by D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou. Vancouver, B.C., Canada: Curran Associates, Inc.,
pp. 1729–1736.

Watkins, Christopher J. C. H. and Peter Dayan (May 1992). Q-learning.Machine Learning 8.3,
pp. 279–292.

Weinstein, Ari and Michael L. Littman (June 2012). Bandit-Based Planning and Learning in
Continuous-Action Markov Decision Processes. In Proceedings of the Twenty-Second Interna-
tional Conference on International Conference on Automated Planning and Scheduling (ICAPS
2012). ICAPS’12. Atibaia, São Paulo, Brazil: AAAI Press, pp. 306–314.

Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem (2013). Robust Markov Decision Pro-
cesses. InMathematics of Operations Research.

Wymann, Bernhard, Christos Dimitrakakisy, Andrew Sumnery, and Christophe Guionneauz
(2015). TORCS: The open racing car simulator.

259

https://vanderbei.princeton.edu/sail/sail.html

List of References

Xinlei Pan Yurong You, Ziyan Wang and Cewu Lu (Sept. 2017). Virtual to Real Reinforcement
Learning for Autonomous Driving. In Proceedings of the British Machine Vision Conference
(BMVC). Ed. byGabriel BrostowTae-KyunKimStefanos Zafeiriou andKrystianMikolajczyk.
London, United Kingdom: BMVA Press, pp. 11.1–11.13.

Xu, Huazhe, Yang Gao, Fisher Yu, and Trevor Darrell (July 2017). End-to-end learning of
driving models from large-scale video datasets. In 30th IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Honolulu, HI, USA, pp. 3530–3538.

Xu, Mengdi, Wenhao Ding, Jiacheng Zhu, Zuxin Liu, Baiming Chen, and Ding Zhao (2020).
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes.
preprint.

Xu, Wenda, Jia Pan, Junqing Wei, and John M. Dolan (June 2014). Motion planning under
uncertainty for on-road autonomous driving. In 2014 IEEE International Conference on Robotics
and Automation (ICRA). Hong Kong, China, pp. 2507–2512.

Xu, Wenda, Junqing Wei, John M. Dolan, Huijing Zhao, and Hongbin Zha (May 2012). A real-
time motion planner with trajectory optimization for autonomous vehicles. In 2012 IEEE
International Conference on Robotics and Automation (ICRA). Saint Paul, MN, USA, pp. 2061–
2067.

Yang, Yaodong, Rasul Tutunov, Phu Sakulwongtana, andHaitham Bou-Ammar (May 2020). αα-
Rank: Practically Scaling α-Rank through Stochastic Optimisation. In Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland,
New Zealand, May 9-13, 2020. Ed. by Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An,
and Neil Yorke-Smith. Auckland, New-Zealand: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 1575–1583.

Zhang, Haifeng, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, et al.
(Feb. 2020). Bi-level Actor-Critic for Multi-agent Coordination. In Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 05. New York, pp. 7325–7332.

Zhang, S., Y. Wu, and H. Ogai (Sept. 2020). Spatial Attention for Autonomous Decision-making
in Highway Scene. In 59th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE). Chiang Mai, Thailand, pp. 1435–1440.

Zhou, Ming, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, et al. (Nov. 2020).
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous
Driving. In Conference on Robot Learning (CoRL).

Ziebart, Brian D., Andrew L. Maas, Anind K. Dey, and J. Andrew Bagnell (Sept. 2008). Nav-
igate like a Cabbie: Probabilistic Reasoning from Observed Context-Aware Behavior. In
Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp). New York,
NY, USA: Association for Computing Machinery, pp. 322–331.

Ziebart, Brian D., Nathan Ratliff, Garratt Gallagher, ChristophMertz, Kevin Peterson, J. Andrew
Bagnell, et al. (Oct. 2009). Planning-based prediction for pedestrians. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). St. Louis,MO,USA, pp. 3931–
3936.

260

Colophon
Translation of the epigraph of Chapter 2, by Edmund Keeley

Hope your road is a long one.
. .
and may you visit many Egyptian cities
to learn and go on learning from their scholars.

Constantine Cavafy, Ithaka.

Translation of the epigraph of Parts II and III, by Mary Ann Caws and Nancy Kline

Act as a primitive, foresee as a strategist.
René Char, Leaves of Hypnos (72).

Translation of the epigraph of Chapter 3, by Mary Ann Caws and Nancy Kline

Our inheritance is preceded by no testament.
You only fight well for causes you yourself have shaped,
with which you identify–and burn

René Char, Leaves of Hypnos (62-63).

Translation of the epigraph of Chapter 6, by William Aggeler

This fire burns our brains so fiercely, we wish to plunge
To the abyss’ depths, Heaven or Hell, does it matter?
To the depths of the Unknown to find something new!

Charles Baudelaire, The Voyage.

Translation of the epigraph of Chapter 8

Our workers
On the lanes

Slow down
Vinci Autoroutes.

Copyright 2017-2020, © Edouard Leurent.

https://www.poetryfoundation.org/poems/51296/ithaka-56d22eef917ec
https://brooklynrail.org/2007/12/poetry/leaves-of-hypnos
https://brooklynrail.org/2007/12/poetry/leaves-of-hypnos
https://fleursdumal.org/poem/231

263

	Title
	Résumé
	Abstract
	Contents
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Context and scope
	1.2 Outline and Contributions

	Part I : Case Study: Learning to Drive
	2 Literature Review
	2.1 Sequential decision-making
	2.2 States and partial observability
	2.3 Actions and temporal abstraction
	2.4 Rewards and inverse reinforcement learning
	2.5 Dynamics, offline learning and transfer
	2.6 Optimality criterion and safety

	3 Problem Statement
	3.1 Perceived states
	3.2 Behavioural decisions
	3.3 Traffic dynamics
	3.4 Rewards
	3.5 Implementation

	Part II : Model-free
	4 Considering Social Interactions
	4.1 Motivation
	4.2 A social attention architecture
	4.3 Experiments

	5 Acting under Adjustable Constraints
	5.1 Motivation
	5.2 Budgeted dynamic programming
	5.3 Budgeted reinforcement learning
	5.4 Experiments

	Part Conclusion

	Part III : Model-based
	6 Planning Fast by Hoping for the Best
	6.1 Motivation
	6.2 Open-loop optimistic planning
	6.3 Graph-based optimistic planning

	7 Preparing for the Worst
	7.1 Motivation
	7.2 Confident model estimation
	7.3 State interval prediction
	7.4 Robust stabilisation and constraint satisfaction
	7.5 Minimax control with generic costs
	7.6 Multi-model selection
	7.7 Experiments

	Part Conclusion

	8 General Conclusion and Perspectives
	8.1 Conclusion on our contributions
	8.2 Outstanding issues and perspectives

	A The highway-env software
	A.1 General presentation
	A.2 Outreach

	B Complements on chapter:5
	B.1 Proofs

	C Complements on chapter:6
	C.1 Proofs
	C.2 Time and memory complexities

	D Complements on chapter:7
	D.1 Proofs
	D.2 A tighter enclosing polytope

	List of Figures
	List of Algorithms
	List of Tables
	List of References
	Colophon

	source: Thèse de Edouard Leurent, Université de Lille, 2020
	d: © 2020 Tous droits réservés.
	lien: lilliad.univ-lille.fr

