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CHAPTER1
Introduction

1.1 Context
In modern days, complex multidisciplinary systems such as aircraft, automotive vehicles and

space launch vehicles are required to provide continuously increasing performances at a reduced
cost. In this framework, the early stages of the design process, in which the baseline architecture
and design are defined and preliminary sizing is performed, are crucial. Indeed, if a non-optimal
baseline architecture is selected, the design optimization iterations might refine the sizing and
parameterization of the various sub-systems, but the final design will most likely be sub-optimal.
An example of design problem that is considered for illustrative purposes throughout this thesis
is the design of launch vehicles. Launch vehicles are very complex systems which have the
purpose of injecting payloads (e.g., satellites, scientific equipment, probes) on specific target orbits
defined by the mission requirements. These systems are developed in order to work in extreme
conditions (e.g., high temperatures, hyper-sonic speed, large accelerations, null external pressure)
and they are characterized by the interaction between multiple subsystems (e.g., main engines,
boosters, hydraulic systems, turbo-pumps, fairing) as well as multiple disciplines (e.g., propulsion,
trajectory, control, structural dynamics). As for most multidisciplinary design problems, the
different disciplines characterizing a launch vehicle often present antagonistic effects on the system
performance. For instance, from an aerodynamic perspective the optimal solution is characterized
by small stage diameters in order to reduce the drag during the atmospheric flight phases. On
the other hand, from a structural dynamics standpoint, large diameters are preferable in order
to increase the system stability. This results in a complex design process characterized by the
necessity of determining optimal multidisciplinary compromises.

As mentioned before, the objective of a complex system design process is to determine the
system architecture and associated parameterization which yield the best performance while si-
multaneously complying with all the mission requirements and constraints. However, the criterion
which is used in order to asses the performance of a given system can vary (e.g., total cost, max-
imum speed, fuel consumption, reliability), and is usually defined ad hoc by the user depending
on the system application. Within the framework of launch vehicle design, the performance re-
quirements are first of all related to safety constraints, due to the fact that a single system failure
can have disastrous consequences, such as the loss of human lives, as well as large economical
set-backs. Furthermore, a higher performance for a launch vehicle can also be represented under
the form of a lower Gross Lift-Off Weight (GLOW). This is due to the fact that low GLOW values
can either yield a considerable reduction of the launch cost, or they can enable the injection of
heavier payloads in the target orbit. Alternatively, an increase in performance for a launch vehicle
can also enable the access to higher energy orbits, such as interplanetary transfer orbits, which
may not have been accessible previously.
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Due to the large cost and time requirements of prototype developing and physical testing, a
large part of complex system design processes rely on the use of numerical simulations, which allow
to predict the performance and feasibility of a given system without requiring to actually build
it and test it. However, this kind of design problems usually involve computationally intensive
simulations which require large amounts of time and considerable computational resources in
order to be performed. Typical examples of computationally intensive simulations which can be
encountered within the framework of complex system design are

• Finite Element Models (FEM) [78], which are often required for structural mechanics anal-
yses in order to ensure the integrity of the considered system during its mission.

• Computational Fluid Dynamics (CFD) analyses, which are necessary in order to deter-
mine the lift and drag forces acting on the considered system, as well as the induced heat
generation.

• Coupled multidisciplinary analyses [12], which are necessary to ensure that the design
parameters and state variables associated to different sub-systems and/or disciplines are
compatible (i.e., result in a feasible solution) within the scope of multidisciplinary design
optimization.

In the presence of computationally intensive functions of the sort, the simulation based optimiza-
tion of a complex system can be challenging, due to the fact that testing a large number of possible
configurations and parameterizations may be unfeasible in terms of computational time and/or
resources. This issue becomes even more problematic when discrete choices characterizing, for
instance, technological or architectural alternatives are taken into account, due to the fact that a
large combination of discrete design choices must be dealt with. Typical examples of such discrete
choices which can be encountered within the complex system design framework are the type of
material (e.g., steel, aluminum, composite), the type of propulsion (e.g., liquid, solid, hybrid), the
wing configuration (e.g., straight, delta, swept) and the inclusion of auxiliary sub-systems and/or
technologies (e.g., inclusion of a spoiler in the design of a car). The standard approaches when
dealing with discrete choices within a complex system design framework consist in either relying
on previous designs and expertise in order to downselect the system architecture, or in select-
ing a few promising alternatives and separately optimizing each one of them. Both alternatives
cannot ensure an optimal final design, and often result in the need of design iterations in order
to converge towards a final design which complies with all the requirements. Alternatively, the
discrete choices can be treated as design variables characterized by a discrete nature (i.e., finite
number of possible values, possibly unordered) and included within the system design optimiza-
tion process. By formulating the design problem in this fashion, various algorithms algorithms
allowing to optimize the resulting mixed-variable (mixed continuous/discrete) problems, such as
evolutionary heuristic algorithms [35], [73], [74], grid-search based algorithms [4], [9], [79] and
surrogate-model assisted algorithms [16], [73], can be considered. However, most of the existing
algorithms may be inadequate when dealing with computationally intensive problems, due to the
large number of function evaluations required in order to converge to the global feasible optimum.
Furthermore, when including discrete technological and architectural choices within the design
optimization process, an additional challenge may arise, represented by the fact that depending
on the value of some specific discrete variables, the number and type of design variables a given
candidate solution depends on as well as the number and type of constraints it is subject to may
vary. For instance, when considering the design of a launch vehicle, depending on whether solid
or liquid propulsion is selected, the design variables associated to the engine vary, and similarly
the constraints to be considered are different as well. Part of the design variables, such as the geo-
metric parameters of the solid propellant grain, are therefore only present if some specific discrete
choices are made. The resulting problems are sometimes referred to as variable-size design space
problems [93]. When dealing with this kind of problems, only a few heuristic [2], [3], [93] and
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grid-search based algorithms [4], [9], [79] exist in the literature. Also in this case, however, the
existing algorithms tend to be inadequate in the presence of computationally intensive problems
due to their low convergence speed, which is often not compatible with the limited simulation
budget.

1.2 Surrogate model-based optimization
Among the existing families of optimization methods, a promising candidate which can po-

tentially allow to perform the global optimization of mixed-variable and variable-size design space
problems while also requiring a limited amount of function evaluations are the Surrogate Model-
Based Design Optimization (SMBDO) algorithms [105]. These algorithms rely on using surrogate
models (i.e., analytical approximations) of the considered problem objective and constraint func-
tions, which are generally characterized by a negligible computational cost, in order to iteratively
determine and explore the most promising locations of the design space, thus simultaneously re-
fining the surrogate model and converging towards the problem optimum. A number of different
SMBDO algorithms allowing the optimize purely continuous optimization problems (i.e., with
objective and constraint functions depending solely on continuous design variables) exist in the
literature. Depending on the considered algorithm, different surrogate modeling techniques can
be considered. Popular examples are the Radial Basis Function (RBF) [56], the Support Vec-
tor Machine (SVM) [118] and the Moving Least Square ([68]). Furthermore, depending on the
considered algorithm the design space exploration criterion can also vary.

Although the SMBDO of continuous problems is a popular research domain, only a few adap-
tations of this kind of methods for the optimization of problems characterized by the presence
of discrete design variables exist [16], [37], [60]. Furthermore, most of the proposed methods do
not offer a solution for the mixed-variable problem in its most generic formulation. Finally, the
constraint handling of these SMBDO techniques is usually penalization-based and can therefore
be inefficient (in terms of necessary function evaluations) in case the weights are not properly
tuned. For these reasons, the main objective of this thesis consists in adapting and extending
surrogate model-based design optimization algorithms in order to allow the optimization of con-
strained mixed-variable and variable-size design space problems with a limited number of function
evaluations, thus providing a potentially useful tool for the integration of discrete technological
and architectural choices within the computationally intensive design of complex systems. More
specifically, the SMBDO methods which are considered and developed in this thesis are based
on the Bayesian optimization algorithm [63], characterized by the use of Gaussian process sur-
rogate modeling [107]. Throughout this work, optimization problems and test-cases related to
the design of launch vehicles are considered in order to better highlight the engineering related
applications (and associated challenges) of the discussed optimization methods. However, it is
important to note that the topics of this thesis are actually applicable to a much wider range of
design problems.

1.3 Thesis plan
Including the present introduction, the manuscript is divided into 6 main chapters:

In Chapter 2, the inclusion of discrete choices within the design process is generalized and prop-
erly formulated under the form of a mixed-variable variable-size design space problem. Subse-
quently, a review of the existing approaches and algorithms allowing to solve this kind of problem,
either in its global or simplified form are discussed, and their limitations are highlighted.

In Chapter 3, the Gaussian process based surrogate modeling of mixed continuous/discrete
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functions is discussed. More specifically, the definition of mixed-variable kernels as a combination
of purely discrete and purely continuous kernels is described. Subsequently, a unified formal-
ism allowing to define and validate the existing discrete kernels is proposed, thus facilitating
the comparison between the various parameterizations from a theoretical perspective. Finally,
the discrete kernel are extensively compared on a number of analytical and engineering related
test-cases with various parameterizations, thus allowing to better highlight their strengths and
limitations.

In Chapter 4, the possibility of extending the concept of Bayesian optimization in order to solve
constrained problems characterized by continuous and discrete variables (but a fixed-size design
space) by relying on the mixed-variable Gaussian process modeling presented in Chapter 3 is
discussed. More speficially, it is shown that purely continuous acquisition functions (for both
objective and constraints functions) can be applied to the mixed-variable case under the condi-
tion that the Gaussian process kernels are properly constructed, and the challenges associated to
their optimization within the mixed-variable design space are described. Finally, the proposed
mixed-variable Bayesian optimization algorithm is tested with different discrete kernel parame-
terizations on a number of analytical and engineering related test-cases.

In Chapter 5, two alternative extensions of the mixed-variable Bayesian optimization algorithm
proposed in Chapter 4 allowing to solve variable-size design space optimization problems are dis-
cussed and tested on analytical and engineering related test-cases. The first alternative is based
on the separate optimization of various mixed-variable fixed-size sub-problems coupled with a
computational budget allocation strategy relying on the information provided by the various
sub-problems surrogate models. The second alternative, instead, is based on the definition of
a Gaussian process kernel allowing to compute the covariance between data samples defined in
partially different search spaces by relying on a hierarchical grouping of design variables.

In Chapter 6, a global synthesis of the analyses, methods and algorithms presented in this
thesis is provided and subsequently the most relevant conclusions are drawn. Finally, possible
improvements, extensions and perspectives of the presented work are discussed.

The research work presented in this thesis is based on the published work and on the com-
munications which are listed in Appendix A.



CHAPTER2
Problem statement

2.1 Introduction
The design of complex systems, such as launch vehicles, aircraft, automotive vehicles or elec-

tronic components, can usually be represented under the form of an optimization problem. In
other words, for a given formulation of the problem in terms of objective and constraint functions,
as well as design variables these functions depend on, the aim of the design process is to determine
the values of the design variables which yield the best value of the objective function. Further-
more, this optimal solution must also comply with all the constraints the problem is subject to. In
the most simple case, the architecture of the considered system is determined beforehand through
an empirical process. As a consequence, the design variables characterizing the resulting problem
are usually defined within a continuous search space. For instance, within the framework of Re-
usable Launch Vehicle (RLV) design, typical continuous design variables are sizing parameters,
combustion pressures and propellant masses. However, in most real world engineering design
problems, the architecture of the considered system cannot be specified beforehand and must
typically be defined during the early stages of the design process. In this case, it is therefore
necessary to simultaneously optimize the architecture layout and the continuous design variables
which characterize it. The most straightforward approach in order to perform this simultaneous
optimization consists in iterating over every possible architecture definition and performing an
optimization of the continuous design variables for each architecture [102]. However, depending
on the complexity of the considered system, it may be necessary to consider several thousands of
different architectures [45], thus resulting extremely time consuming, if not unfeasible.

Without loss of generality, the choices related to the architecture definition can be represented
under the form of discrete design variables, sometimes referred to as categorical or qualitative
variables, which characterize design alternatives and/or technological choices. Typical examples
of technological choices which can be encountered within the context of RLV design are the type
of material to use for a given sub-system, the type of propulsion to include in a given stage, the
presence of a certain system component and the number of reinforcements to be included in a
given structure. From an analytical perspective, part of these technological choices plays the role
of standard discrete variables defined within a finite set of choices, whereas others play a more
complex role, as they can also influence the definition of the objective and constraint functions, as
well as the number and type of variables that characterize the problem. These particular choices
are often related to the selection of sub-problem specific technologies. For instance, depending
on whether a combustion, hybrid or electric engine is selected for the design of a car, the specific
engine related design variables can vary considerably (e.g., combustion chamber pressure, electric
engine torque). Additionally, the associated constraint can also differ (e.g., combustion temper-
ature associated constraints). Due to the inherent discrete and potentially non-numerical nature
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of these design variables, the concept of metrics is usually not definable within their domain,
thus resulting in an unordered set of possible choices. In the literature, this kind of problems are
referred to as mixed-variable optimization problems [79] or Variable-Size Design Space
Problem [93] (VSDSP). Most modern optimization algorithms are developed with the purpose of
solving design problems essentially characterized by continuous and integer variables and by con-
sequence, the introduction of these categorical (qualitative) variables raises a number of additional
challenges. Firstly, a large number of algorithms cannot be used due to the non-differentiability
of the objective function and the possible absence of metrics in the discrete variables domains
(e.g., gradient-based algorithms and Nelder-Mead simplex [92]). Further limitations arise from
the need to initialize newly created variables during the optimization process in a dynamically
varying design space (e.g., Genetic algorithms [48]) and the impossibility to relax the integrity
constraint on some of the discrete variables (e.g., Branch and Bound (B&B) [69]). Finally, for
problems characterized by large numbers of technological choices and options, the combinatorial
size of the discrete variables search space can be considerably large, thus rendering a complete
exploration of the problem search space computationally particularly difficult. Moreover, when
this issue is coupled with computationally intensive problem functions (in terms of computation
time) a complete exploration of the problem search space might become unfeasible. The objective
of this chapter is to present the analytical definition of the variable-size design space problem and
provide an analysis of the additional challenges that can arise when solving them. Furthermore,
a brief review of the existing optimization algorithms allowing to solve variable-size design space
problems is provided. In the first section of this chapter, the analytical definition of the variable-
size design space problem is provided, and is followed by the fixed-sized derivation. Subsequently,
the main challenges related to the optimization of such problems are discussed. In the second
part of the chapter, instead, the existing algorithms allowing to deal with variable-size design
space problems are described and categorized as a function of the approach they rely on in order
to handle discrete variables. Finally, the advantages, the weaknesses and the limitations of the
presented algorithms are discussed, which allows to highlight the need for the methods developed
in this thesis.

2.2 Problem definition

2.2.1 Variable-size design space optimization problem

Without loss of generality, a generic variable-size design space optimization problem can
be modeled as depending on three different types of design variables: continuous, discrete and
dimensional.

• Continuous variables: x
Continuous variables refer to real numbers defined within a given interval. Typical examples
of continuous variables which can be encountered within the framework of complex system
design are structure sizing parameters, combustion pressures, propellant masses and time
related design parameters.

• Discrete variables: z
Discrete variables are non-relaxable variables defined within a finite set of choices. Typical
examples of discrete variables which can be encountered within the framework of complex
system design are the choice of material, the choice of propulsion, architectural and tech-
nology alternatives, number of structural reinforcements and number of engines. Discrete
variables are typically divided into 2 categories: quantitative and qualitative. As the name
suggests, quantitative variables (sometimes also referred to as ordinal) are related to mea-
surable values and by consequence, a relation of order between the possible values of a given
variable can be defined (i.e., it is possible to determine whether a value is larger, smaller



2.2. Problem definition 7

or equal to another). Quantitative discrete variables are often associated to integer vari-
ables, although it is not a necessary requirement. When dealing with qualitative variables,
instead, no relation of order can be defined between the possible values of a given variable.
For instance, if the considered variable characterizes the type of material to be used for a
given system structure, it is not possible to determine whether a possible choice (e.g., steel,
aluminum, titanium, composite material) is larger, smaller or equal to another. Qualitative
variables are sometimes also referred to as categorical or nominal variables. For clarity and
synthesis purposes, no distinction between quantitative and qualitative variables is made
in this thesis, and both types of variables are simply referred to as discrete variables.
Finally, it is worth mentioning that some of the discrete variables considered in this work
may technically handled by relaxing the integrality constraint, as is for instance proposed
in [15] in combination with a B&B optimization algorithm. However, in the remainder of
this work it is assumed that none of the discrete variables are relaxable in order to provide
a generally applicable solution for the optimization of variable-size design space problems.

• Dimensional variables: w
Similarly to the discrete variables, dimensional variables are non-relaxable variables defined
within a finite set of choices. The main distinction is that, depending on their values, the
number and type of continuous and discrete variables the problem functions depend on
can vary. Furthermore, they can also influence the number and type of constraints a given
candidate solution is subject to. These particular variables often represent the choice be-
tween several possible sub-system architectures. Each architecture is usually characterized
by a partially different set of design variables, and therefore, depending on the considered
choice, different continuous and discrete design variables must be optimized. For illustrative
purposes, a few examples of dimensional variables as well as the associated continuous and
discrete design variables and constraints which may be encountered within the framework
of RLV design are discussed.

– Propulsion
Each stage of a launch vehicle can be characterized by different types of propulsion, i.e.,
solid, liquid and hybrid. Due to the considerably difference in nature between these
technologies, the design variables associated to the propulsion sub-system can be very
different. Notable examples are the type of reductant and oxydant (i.e., propellant)
the engine combustion relies on. Depending on the selected type of propulsion, the set
of possible propellant choice differs. Additionally, each type of propulsion is associated
to a set of technology specific variables. For instance, if solid propulsion is considered,
the shape of the propellant grain (i.e., circular, star-shaped) as well as the specific
shape sizing must be optimized.

– Material
The structure of the various sub-systems of a launch vehicle can be either made of
metallic or composite material. While the first option is mainly associated to a spe-
cific choice of material and geometrical sizing parameters, composite materials can be
associated to the matrix and fiber choices as well as integer and continuous parameters
such as the number and the orientation of composite plies. Furthermore, the number
and type of structural integrity constraints associated to each choice of material is
also considerably different. For instance, compression related structural stresses are
taken into account differently depending on whether metal or composite material is
considered.



8 Chapter 2. Problem statement

– Flight configuration
Among the alternative solutions which can allow to re-use launch vehicles, one of the
options consists in including lifting surfaces in the system design (e.g., wings), thus
enabling the launch vehicle to glide back to the landing area. If the option of including
lifting surfaces in the design is selected, a number of design variables associated to these
lifting surfaces, such as shape and sizing parameters, must be optimized. Furthermore,
additional constraints necessary to ensure the structural integrity of the lifting surfaces
must also be complied with.

– Trajectory
The trajectory followed by the launch vehicle in order to reach the target orbit is
usually optimized together with the launch vehicle itself. Depending on the choices
which are made when defining the trajectory, design variables such as the presence and
duration of a ballistic phase and the number and duration of burns for the return to
the launch site may need to be optimized.

Although both discrete and dimensional variables may lack a conceptual numerical representation
(i.e., they are not associated to measurable values), it is common practice to assign an integer
value to every considered alternative of the given variable in order to provide a clear problem
formulation as well as simplifying the implementation process [37]. For instance, if 3 hypothetical
choices for the type of material are considered (e.g., aluminum, steel, titanium), the associated
discrete design variable can be defined as having 3 possible values: 0,1 and 2. In this work, it is
assumed that none of the discrete and dimensional variables are directly related to a measurable
value and the integer values associated to the possible discrete choices are assigned arbitrarily.
However, it is important to highlight the fact that this choice has no influence on working principle
of the various algorithms presented in the following sections. Similarly to what is proposed by
Lucidi et al. [79], a generic variable-size design space problem can be formulated as follows:

min f (x, z, w) f : Rnx(w) ×
nz(w)

∏
d=1

Fzd × Fw → Ff ⊆ R (2.1)

w.r.t. x ∈ Fx(w) ⊆ Rnx(w)

z ∈
nz(w)

∏
d=1

Fzd

w ∈ Fw

s.t. g(x, z, w) ≤ 0

gi : Fxi(w)×
nzi (w)

∏
d=1

Fzdi
× Fw → Fgi ⊆ R for i = 1, ..., ng(w)

where f (·) and g(·) are respectively the objective function and constraint vector, x is a nx(w)-
dimensional vector containing the continuous design variables, z is a nz(w)-dimensional vector
containing the discrete design variables, w is a nw-dimensional vector containing the dimensional
design variables and ng(w) is the number of constraints the problem is subject to. For the sake
of clarity, the discrete variables domain is referred to as Fz(w) in the remainder of the thesis:

Fz(w) =
nz(w)

∏
d=1

Fzd (2.2)

Similarly, the variable domains relative to the constraint gi are referred to as Fzi(w) and Fxi(w).
Finally, it is important to highlight that throughout this thesis, only single-objective optimization
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is considered.

As can be noticed, the continuous and discrete search spaces of Eq. 2.1 are not fixed throughout
the optimization process, as they depend on the values of the dimensional variables. As a result,
two different candidate solutions of the optimization problem defined above can be characterized
by a partially different set of variables, depending on the values of their dimensional variables. In
the same way, the feasibility domain can also vary according to the values of w, which results in
different candidate solutions possibly being subject to different constraints (in terms of both type
and number of active constraints). Furthermore, it is important to notice that the constraint
functions can also present a search space which can vary as a function of the dimensional variable
values. By consequence, the optimization problem defined in Eq. 2.1 varies dynamically along
the optimum search, both in terms of number and type of design variables as well as feasibility
domain, depending on the values of the candidate solution dimensional variables. For the sake
of clarity, the possibility of having the dimensional variables search space vary as a function of
the dimensional variables themselves is not taken into consideration. Although this choice does
not limit the applicability of the methods presented in this thesis it could, however, require a
more complex problem formulation. It is essential to highlight the fact that although the design
space may vary depending on the dimensional variable values, the quantity represented by the
objective function (e.g., the lift-off weight of a launch vehicle in kg, total production cost of a car
in e) remains the same throughout the optimization process.

For the sake of conciseness, in the remainder of this thesis the following two terms are used:

• levels: the possible values of a discrete (z ∈ {z1, . . . , zl}) or a dimensional (w ∈ {w1, . . . , wl})
variable, where l indicates the total number of levels associated to a given variable

• categories: possible combinations of levels. In other words, a category characterizes a
candidate solution in the combinatorial discrete/dimensional search space.

As an illustrative example, 3 hypothetical discrete variables associated to the RLV design can be
considered:

z = {z1, z2, z3} :


z1 ∈ {aluminum, steel, titanium}
z2 ∈ {liquid propulsion, solid propulsion}
z3 ∈ {1 engine, 2 engines, 4 engines, 8 engines}

In this case, the choice aluminum is one of the levels of the variable z1, and the 3 discrete variables
are respectively characterized by 3, 2 and 4 levels. A possible category of the problem above can,
for instance, be characterized by {steel, liquid propulsion, 8 engines}. Let ld be the number of
levels associated to the discrete variable zd, the total number of categories m associated to a given
problem can be computed as:

m =
nz

∏
d=1

ld (2.3)

For instance, the number of categories associated to the illustrative example above is equal to
m = 3 ∗ 2 ∗ 4 = 24.

2.2.2 Optimality conditions

Following the problem formulation provided in Eq. 2.1, it is possible to define the optimal
solution, corresponding to the feasible global minimum of the objective function, determined by
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a set of points {x∗, z∗, w∗} such that:

f (x∗, z∗, w∗) ≤ f (x, z, w) ∀w ∈ Fw, ∀z ∈ Fz(w), ∀x ∈ Fx(w)

s.t. g(x∗, z∗, w∗) ≤ 0 (2.4)

In order to determine whether a candidate solution yields the global optimal value of a function,
a preliminary step usually requires determining whether the aforementioned point is a local
minimum of the objective function. For problems characterized solely by continuous variables,
the definition of a local minimum is clearly defined and relies on the definition of a ball Bε around
the point that is being considered:

∃ ε > 0 : ∀ x̃ ∈ Bε(x∗) ∩Rnx f (x̃) ≥ f (x∗) (2.5)
with Bε(x∗) = {x̃ ∈ Rnx : ||x̃− x∗|| ≤ ε}

s.t. g(x̃) ≤ 0

For optimization problems involving dimensional and discrete variables, this definition of local
minimum is not applicable due to the absence of metrics in the discrete and dimensional search
space. It is sometimes possible to define a local minimum with respect to the neighborhood of
the candidate solution by relying on problem specific knowledge, as is discussed in [4], [9] and
[79]. However, in general no universal definition of neighborhood exists for VSDSP and an ad-hoc
definition of the optimality conditions is necessary. This is related to the fact that no a-priori
relation of order exists between the objective function values obtained for different levels of the
discrete and dimensional variables and therefore no direct method exists to determine which
points must be evaluated in order to assess the local optimality of a candidate solution. It is,
however, very challenging to determine an ad-hoc definition of neighborhood and, unless problem
specific knowledge is included, the only way of ensuring that a given candidate solution represents
the global or local optimum of the considered problem is to optimize the continuous variables
associated to every category of dimensional/discrete design space. In practice, this is equivalent to
considering the non continuous part of the neighborhood of each point as being comprised of the
entire discrete/dimensional combinatorial design space. If this approach is used, the neighborhood
of a given point is considered to be the entire search space of the problem. However, this thesis
lies within the framework of computationally expensive problems, as is discussed in Section 2.2.4,
and by consequence, this type of approach becomes either unfeasible or highly inefficient.

2.2.3 Fixed-size mixed-variable design space problem

In the process of proposing and developing methods and approaches allowing to efficiently
optimize VSDSP, it might be necessary to first solve a simplified fixed-sized version of this type
of problems, characterized by the absence of dimensional variables in their design space. This
allows to better understand how to deal with the challenges associated to the presence of discrete
variables within the framework of computationally intensive optimization problems, while still
dealing with a fixed-sized design space and feasibility domain. Under this assumption, the opti-
mization problem defined in Eq. 2.1 can be re-written in order to obtain a so-called fixed-sized
mixed-variable problem:

min f (x, z) f : Fx × Fz → Ff ⊆ R (2.6)
w.r.t. x ∈ Fx ⊆ Rnx

z ∈ Fz

s.t. g(x, z) ≤ 0
gi : Fxi × Fzi → Fgi ⊆ R for i = 1, ..., ng
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Figure 2.1: Example of MultiDisciplinary Analysis for launch vehicles

where the definitions of the remaining elements are identical to the ones provided for Eq. 2.1.
It can be noticed that in the optimization problem defined in Eq. 2.6, both the design space
and the feasibility space are fixed as their definition does not depend on the value of dimensional
variables. By consequence, each candidate solution of the optimization problem defined above
depends on the same number and type of variables, and is subject to the same constraints.

In the remainder of the thesis, the general optimization problem defined in Eq. 2.1 is referred
to as Variable-Size Design Space Problem, whereas the fixed-sized simplification is simply
referred to as mixed-variable optimization problem (or alternatively mixed continuous/dis-
crete optimization problem).

2.2.4 Computational cost of the design problem functions

As is mentioned in Chapter 1, the main focus of this thesis is towards the design optimiza-
tion of complex engineering systems, such as launch vehicles, aircraft and automotive vehicles.
Within this framework, the objective and constraint functions which characterize the consid-
ered optimization problem often require a large computational effort to be evaluated. In most
cases, this translates into a long computational time, which considerably limits the possibility
of exploring the design space at will. Typical examples of computationally intensive functions
which can characterize design problems are structural stress calculations based on Finite Element
Method (FEM) models [78], Computational Fluid Dynamics (CFD) analyses, fixed point itera-
tions and iterative Multidisciplinary Design Analyses (MDA) [13]. For instance, the design of
RLV involves several disciplines and is customarily decomposed into interacting sub-models for
propulsion, aerodynamics, trajectory, mass and structure, as is schematically shown in Figure 2.1.
The launch vehicle performance estimation, which results from flight performance, reliability and
cost, requires coupled disciplinary analyses [14]. The different disciplines are a primary source
of trade-offs due to their opposing effects on the launcher performance, and finding a feasible
compromise between disciplines can therefore be computationally intensive. The approaches pro-
posed in this manuscript are developed under the assumption that the entirety of the objective
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and constraint functions characterizing the considered problems are computationally intensive to
evaluate. Under this assumption, the driving objective of the thesis is to develop optimization
methods for VSDSP and Mixed-variable problems which provide fast convergence towards global
optima (or at least optima neighborhoods) in terms of necessary number of evaluations of the
problem functions. For the same reasons, the comparisons between algorithms which are pre-
sented in this work are performed by allocating a fixed and identical computational budget (in
terms of function evaluations) to all the algorithms. In practice, the methods are compared with
respect to the feasible objective function value they yield with a fixed amount of function evalua-
tions rather than by assessing the number of iterations required to reach a given feasible objective
function threshold (e.g., optimum neighborhood). Finally, it is assumed that the computational
overhead required by some of the proposed methods (i.e., calculations required during the op-
timization process aside from the evaluation of the problem function values) is negligible when
compared to the computationally intensive objective and constraint functions. As is discussed in
the following sections of this thesis, this last assumption is particularly important when dealing
with the creation and training of surrogate models of the problem functions.

2.3 Review of existing methods dealing with mixed-variable and
variable-size design space problems

Several different algorithms allowing to solve VSDSP and/or mixed-variable problems are
proposed in the literature. In this section, the different existing approaches for the optimization
of such problems are described and discussed, and the relevant related algorithms are briefly
presented. Please note that for the sake of clarity and synthesis, the review presented in the
following paragraphs does include mixed-variable Surrogate-Model Based Design Optimization
methods, as they are discussed in the introduction of Chapter 4. The following review is an
extension of the work presented in [97].

2.3.1 Approach 1: Global exploration algorithms

The first and most straightforward existing approach to VSDSP consists in optimizing all
the design variables within the same optimization process with a single algorithm. In other
words, this approach regroups the algorithms which directly optimize VSDSP as defined in Eq.
2.1. The possibility of relying on this solution depends on the optimization algorithm that is
being used as well as on the characteristics of the considered problem. Generally speaking,
the algorithms relying on this approach have the advantage of exploring the search space in an
efficient and selective way while usually also involving a relatively straightforward implementation.
However, most of the algorithms existing for VSDSP have been adapted from either continuous or
integer optimization algorithms. By consequence, depending on the specific characteristics of the
problem, the adaptations of the optimization algorithms might not perform as well as required
for all different types of design variables and might therefore not yield the expected results. For
clarity purposes, the discussed algorithms are separated in two categories depending on whether
they handle problems with variable-sized search space or not.

2.3.1.1 Algorithms solving fixed-size mixed-variable problems

In case problems with fixed-size mixed continuous/discrete search spaces are considered, as
defined in Eq. 2.6, heuristic algorithms such as the Evolution Strategy (ES) [18] can be adapted
in a fairly straightforward manner by modifying the type of encoding that is implemented and
by taking into account the discrete nature of part of the design variables during mutation, cross-
over and selection processes. For instance, this can be achieved by including discrete probability
distributions in order to model the mutation processes of discrete variables. A first example of
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this approach is the adaptation of ES discussed by M. Emmerich et al. [35] in the context of
the optimization of chemical plants design. In this case, the recombination process is performed
according to a domination logic, where every non-relaxable design variable is selected with equal
probability from one of the corresponding parents parameters. The mutation of the discrete
variables, instead, occurs by randomly choosing the mutated value from the feasible search space.
With similar mutation and cross-over adaptations, a mixed-variable Genetic Algorithm [48] can be
found in [121]. The possibility of coupling the previously described mixed-variable ES algorithm
with a surrogate problem generated through Radial Basis Function Network (RBFN) is discussed
by R. Li et al. [73]. The main idea presented in this paper is to evaluate each generation of
the ES on a surrogate model of the problem functions, thus reducing the overall computational
cost of the optimization, and evaluate the actual problem functions only on the most promising
individuals of the population at the given generation. In order to deal with qualitative design
variables, the RBFN is constructed with respect to a binary encoding of these variables. Particle
Swarm Optimization (PSO) [65] and Ant Colony Optimization (ACO) [31] algorithms have also
been adapted in order to enable the solution of mixed-variable problems. Although a formulation
of these methods for integer variables can be easily defined, a dedicated adaptation for mixed-
variable problems is more challenging due to the fact that the considered algorithms heavily
rely on the concept of distance between candidate solutions. An adapted ACO formulation for
mixed-variable problems is proposed by T. Liao [76]. In this algorithm, the continuous and
integer variables are processed in a similar fashion as in the original ACO formulation, while the
categorical variables values are determined at each iteration through a random sampling. The
probability of a given value to be selected depends on both the number and the performance of
the solutions present in the archive that use the given value as well as on the number of values
for the same variable that have not yet been tested. In a similar way, an adaptation of PSO
is described by C. Liao et al. [74] in order to process categorical variables for the optimization
of scheduling problems. This is achieved by redefining the particle velocity in the non-relaxable
discrete search space as a probability for the particle to explore the feasible values in the position
neighborhood. An alternative approach is suggested by C. Sun et al. [124], consisting in allowing
each particle to travel a distance equal to the smallest possible discrete step between subsequent
iterations. In this case, the new value of the particle discrete coordinates is chosen among the
feasible neighborhood of the previous position. In [129], instead, PSO is performed by first testing
all the levels of the categorical variables through random selection. Subsequently, the discrete
variable levels are ranked as a function of both their performance and their compliance with the
constraints. Finally, during the final stage of the optimization process the values for the discrete
variables are chosen through a random process based on their ranking placement. It is important
to note that in this approach, the ranking is performed according to the performance of the single
discrete variables levels rather than according to the performance of the discrete category. By
consequence, it might perform poorly when confronted with problems characterized by a large
combinatorial search space. A variant of the Differential Evolution (DE) algorithm [122] allowing
to optimize problems depending on continuous, integer and discrete variables is proposed in [67].
In this case, the integer variables are handled through truncation, whereas the discrete ones are
handled by representing them through an index assigned to each level of the various discrete
variables. In practice, instead of directly optimizing the discrete variable value, an integer index
assigned to the aforementioned discrete variable is optimized. However, it must be pointed out
that this approach implies the existence of a relation of order between the discrete variable levels
and might therefore perform poorly if it is not the case. In some specific cases, the discrete
design variables can be associated to a finite set of continuous values which can be relaxed during
the optimization problem. For instance, in [15] a Branch and Bound (B&B) variant allowing
to optimize a mixed-variable structure problem is proposed. The underlying concept relies on
replacing the choice of shape and material by their associated continuous physical properties,
such as tensile strength and Young modulus, and subsequently performing the B&B optimization
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by relaxing these properties.

2.3.1.2 Algorithms solving variable-size design space problems

In case VSDSP are considered, a number of additional challenges such as the dynamically
varying design space, the initialization of newly created design variables and the presence of a
varying number of constraints must be taken into account. Among the various heuristic algorithms
which could be adapted in order to solve VSDSP, a promising candidate by its inherent nature is
the GA, as different types of variables can be included by simply considering different encodings for
every design variable type that characterizes the problem at hand. Furthermore, the standard GA
formulation does not make use of either the concept of distance or the derivative of the objective
and constraint functions and avoids therefore a number of problems related to the unordered
nature of the discrete and dimensional search spaces. In [3], O. Abdelkhalik introduces the hidden
gene adaptation of GA for the optimization of inter-planetary trajectories with variable number
of gravitational assists, resulting in the appearance and disappearance of variables describing
the orbital maneuvers. In the proposed algorithm, each candidate solution is represented by
a chromosome containing the entirety of genes that can characterize the considered problem.
However, not all the genes are taken into account when computing the value of the objective
and constraint functions. The choice regarding which genes are considered and which genes are
hidden (i.e., with no influence on the problem functions) depends on the values of a limited
number of so-called activation genes. This variant of GA has the advantage of being intuitive and
easily implementable. However, cross-overs and mutations over hidden parts of the vector result in
unproductive numerical operations, thus wasting computational effort. Furthermore, for problems
characterized by a large number of discrete categories, the vector containing the entirety of
possibly present variables might become considerably large and therefore inefficient memory-wise.
In the same way, O. Abdelkhalik also proposed the implementation of the hidden gene approach
within DE for a similar inter-planetary trajectory planning problem [2]. A more complex, but
theoretically more efficient adaptation of GA called the Structured-Chromosome Evolutionary
Algorithm is proposed by Nyew et al. in [93]. In this algorithm, the candidate solution is
conceptually represented by a hierarchical multi-level chromosome structure rather than a linear
one. Differently than in the standard formulation of GA, the genes of each chromosome are
linked by both vicinity and hierarchy relationships. For this reason, the encoding of the single
variables becomes more complex as it also includes pointers to both the immediate neighbors
at the same level and pointers to eventual children genes. Furthermore, in case the mutation
of a dimensional variable gene results in the appearance of additional design variables, it is
necessary to ensure that the newly created genes are of the correct type and comply with the
problem specifics. Compared to the hidden genes approach, this solution has the advantage of
not performing computationally wasteful mutations and cross-overs. However, the encoding of
the individual chromosomes is much more complex and often requires problem-specific knowledge
in order to be efficiently implemented. Finally, it is worth mentioning that all of the optimization
algorithms discussed in this paragraph are either defined for unconstrained problems or rely
on penalization-based constraint handling, which may be inefficient when dealing with a large
number of constraints or when the weights are not properly tuned.

2.3.2 Approach 2: Nested optimization algorithms

A second existing approach for the optimization of VSDSP is based on using nested optimiza-
tions in order to separately handle dimensional and non-dimensional design variable. In practice,
the nested formulation is comprised of an inner loop and an outer loop. For each iteration of the
outer loop, which specifies the values of the dimensional variables, a complete optimization of the
problem with respect to the relevant continuous and discrete variables is performed in the inner
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loop. The outer loop, instead, consists of iterations of the algorithm in charge of determining the
optimal dimensional variables values. The nested approach can be formulated as follows:

min f (x∗, z∗, w) (2.7)
w.r.t. w ∈ Fw

with {x∗, z∗} = argmin f (x, z, w)

w.r.t. x ∈ Fx(w), z ∈ Fz(w)

s.t. g(x∗, z∗, w) ≤ 0

This approach can be generalized by optimizing a part of the continuous and/or discrete vari-
ables within the inner loop and the remaining ones at the outer loop level. However, this might
require case specific algorithms in order to properly handle the various types of variables in both
optimization loops. A notable example of nested optimization of VSDSP is the the multidis-
ciplinary optimization of an aircraft wing with the use of PSO discussed by G. Venter and J.
Sobieszczanski-Sobieski in [127]. In the proposed method, the optimization of two disciplines
comprising the system, structure and aerodynamics, are performed on two different levels. This
allows to isolate the interactions between the two disciplines and to rely on simplified models
for the analysis of their performance. At a system level, the geometry of the wing is optimized
with the objective of minimizing the aerodynamic drag with respect to the number of spars, the
number of ribs (dimensional variables), the type of wing cover construction (discrete variable) and
the aspect and depth-to-chord ratios (continuous variables). At a sub-system level, instead, the
structure of the wing is optimized with the objective of minimizing its total mass. The variables
characterizing this sub-system are continuous and describe the sizing of the various structural
elements. With the given separation of the problem, after every iteration of the system level op-
timization, the number of structural elements is defined. This iteration can then be followed by
a complete optimization of the sub-system level problem in order to determine the optimal con-
tinuous sizing of the structural elements. An aircraft design problem similar to the one presented
above is discussed by S. Roy in et al. [110], in which the simultaneous optimization of an aircraft
design and its airline allocation is performed by combining and alternating a gradient-based op-
timization with respect to the continuous variables characterizing the problem, considering the
discrete variables fixed, and an optimization with respect to the discrete variables (with respect
to a surrogate model) with a B&B technique.

2.3.3 Approach 3: Sequential optimization algorithms

A third approach to the solution of VSDSP which can be identified in the literature is the
sequential optimization. It is based on a similar concept as the nested optimization, with the
main difference being that the optimization iterations with respect to the dimensional and non
dimensional variables are performed sequentially. In practice, the algorithm alternates iterations
in which the dimensional variables are considered fixed with iterations in which the continuous and
discrete variables are considered fixed. This sequential approach can be schematically formulated
as follows:

min f (x, z, w∗)
w.r.t. x ∈ Fx(w∗), z ∈ Fz(w∗)

s.t. g(x, z, w∗) ≤ 0

x∗, z∗−−−−→
w∗←−−−−

min f (x∗, z∗, w) (2.8)
w.r.t. w ∈ Fw

s.t. g(x∗, z∗, w) ≤ 0

Similarly to the nested approach, a more general formulation can be defined in case both itera-
tions of the sequential algorithm are tasked with optimizing part of the continuous and discrete
variables. Notable examples of the sequential approach to VSDSP are the mesh-based optimiza-
tion algorithms for mixed-variable problems presented in [4], [5], [9], [66] and [79]. Although each
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paper describes a different algorithm, they share the same approach to the optimization problem
which consists in an alternation between an optional user-defined search phase and a poll phase,
in which an exhaustive and schematic optimum search over a mesh is performed. When applying
this family of algorithms to VSDSP, it is necessary to take into account the appearance and
disappearance of design variables as a function of the dimensional variables characterizing the
incumbent solution around which the mesh is centered. In order to solve this issue, the mesh algo-
rithms mentioned above alternate between searches over a mesh defined in the dimensional design
space and searches over a mesh defined in the continuous and discrete search space dependent on
the dimensional variables values. The application of these algorithms requires the user to provide
the definition of the neighborhood of a candidate solution in the dimensional design space in order
to create the mesh. The alternative solution consists in defining the mesh as the entirety of the
dimensional search space, which quickly becomes unfeasible when dealing with computationally
intensive problems characterized by large combinatorial design spaces. Furthermore, the user
is also required to define the criteria according to which newly created continuous and discrete
design variables are initialized and discarded when exploring the dimensional variable mesh. For
instance, in [66] the mesh-based optimization of a thermal insulation system as a function of the
number and sizing of heat intercepts is discussed. In this case, newly initialized intercepts are
characterized by a technology, a cooling temperature and a thickness related to the values present
within its neighborhood.

2.3.4 Approach 4: Complete exploration of the non-relaxable search space

The last and most simplistic existing approach to VSDSP consists in performing a separate
and independent optimization over the relevant continuous design variables for every discrete
category of the problem (i.e., every possible combination of dimensional and discrete variable
values) and subsequently determining the global optimum among the obtained sub-problem op-
tima. This approach allows to fully explore the non-continuous search space and can therefore
theoretically provide a consistent convergence towards the global problem optimum, depending
on the continuous optimization algorithm that is considered (i.e., global convergence can only
be ensured under the condition that the continuous algorithm converges to the global optimum
of the continuous problem). Due to the necessity of solving a separate optimization problem
for every category of the considered variable-size design space problem, this approach may be
inefficient, if not unfeasible, for complex problems characterized by large number of categories
and/or for computationally expensive functions. The approach for the optimization of VSDSP
discussed above can be formulated as follows:

min


min f (x, zp, wq) ∀wq ∈ Fw, ∀zp ∈ Fz(wq)

w.r.t. x ∈ Fx(wq)

s.t. g(x, zp, wq) ≤ 0

(2.9)

A notable example of this approach to mixed-variable problems is developed by C.P. Frank in the
context of launcher design [44]. The first step of this approach consists in analyzing and listing all
of the incompatibilities between various technological choices in order to discard all non-feasible
configurations and by extension limit the number of cases to optimize. Subsequently, a finite
number of families of configurations, or architectures, characterized by the same design variables
is determined through problem specific considerations and expertise. These configurations are
then optimized in parallel with the help of a Non-dominated Sorting Genetic Algorithm NSGA-II
[27] with respect to three objective functions representing the cost, the lift-off weight and the risk
level related the selected technologies. Finally, the Pareto front of each architecture are merged
into a single surface, thus allowing to easily compare their respective performance. The number of
generations to be assigned to each architecture during a given iteration is determined as a function



2.4. Literature review synthesis 17

of its relative performance with respect to the other architectures, thus prioritizing the most
promising ones. This approach allows to fully explore the relevant search space of an otherwise
computationally expensive problem and to easily compare very different system configurations.
Furthermore, once the configurations to be analyzed are determined, the optimization relies on a
standard mixed integer-continuous NSGA-II, which makes the implementation of the optimizer
fairly straightforward. On the other hand, it is important to note that the design variables selected
by the author describe the launcher at a global system level. These choices, coupled with the
specific approach, allow to group together fairly different configurations which can nonetheless
be described by the same variables. However, this also results in an impossibility of modeling in
detail and optimize the specific different subsystems of the possible configurations. For instance,
characterizing the propulsion system with high-level variables such as thrust and combustion
chamber pressure, allows to regroup configurations using both solid and liquid propulsion but
makes it impossible to describe sub-system specific characteristics such as the solid propulsion
propellant grain geometry. A trade-off between the combinatorial size of the optimization and
the level of detail with which the problem is analyzed is therefore required in case this approach
is to be adapted to other applications.

2.4 Literature review synthesis
In the previous paragraphs, a number of different algorithms allowing to solve mixed-variable

and VSDSP problems is presented and discussed. First of all, it can be noticed that a large number
of approaches are proposed within the context of a specific optimization problem, such as launch
vehicle [44] or a aircraft wing design [127]. These approaches tend to rely on the specific nature of
the considered problem, like the relation between the number of spars and ribs of an aircraft wing
and the associated number of wing sizing parameters, and it might therefore be challenging to
generalize their working principle for any VSDSP. Furthermore, part of the discussed algorithms,
such as the mesh-based optimization algorithms [4], [5], [9], [79], require the user to initialize the
algorithm at a location in a search space which is not excessively far from the global optimum in
order to ensure a reasonable convergence speed. In most cases, this is not feasible without user
defined problem specific knowledge. Similarly, part of the discussed algorithms require the user
to be able to define the neighborhood of a candidate solution. In this case as well, this is not
possible when dealing with the presence of unordered discrete and dimensional variables, unless
problem specific knowledge is included in the optimization process. It can also be noticed that a
large portion of the presented algorithms handles constraints by penalization (or direct discarding
of non feasible solutions). In general, this constraint handling technique requires a precise weight
tuning in order to be efficient, which can be considerably time-consuming. It is also worth
mentioning that none of the VSDSP optimization algorithms discussed above directly addresses
the issue of having the feasibility domain vary from candidate solution to candidate solution as
a function of the dimensional variables values. Finally, the most important drawback, common
to all the methods presented in the previous paragraphs, is the total computational cost of the
optimization. Indeed, both heuristic and mesh-based algorithms tend to require a large number
of function evaluations in order to converge due to their necessity of exploring a large part of the
design space. For most presented algorithms, this issue tends to be further accentuated when
dealing with VSDSP which present a large discrete/dimensional combinatorial design space. As a
consequence, within the context of computationally intensive design problems which is considered
in this thesis, none of the algorithms presented in the previous paragraphs seems to provide a
sufficiently fast convergence (in terms of function evaluations) to the considered problem optimum
allowing to find the problem solution with an acceptable amount of computational resources. For
these reasons, optimization methods relying on computationally cheap surrogate models of the
considered problem objective and constraint functions are considered in the following chapters.
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2.5 Conclusions
In this chapter, the optimization problem resulting from the inclusion of technological and

architectural choices within the system design framework is discussed. It is shown that in the
most general case, technological choices, under the form of dimensional variables, can modify
the search space as a function of their values, in terms of number and type of design variables
the problem functions depend on. In the same way, they can also influence the constraints a
given candidate solution is subject to, and by consequence the feasibility domain. Subsequently,
the existing optimization algorithms allowing to optimize the resulting variable-size design space
problems are described and grouped as a function of the approach they rely on to deal with
the challenges which these problems present. Among other drawbacks, this literature review
shows that when considering the context of computationally intensive system design problems,
the existing methods do not seem to provide a sufficiently fast convergence (in terms of function
evaluations) towards the global optimum and are therefore not a viable solution.

For this reason, the approach that is followed in this work is to develop optimization methods
for VSDSP and Mixed-variable problems relying on the use of surrogate models of the objective
and constraint functions, also known as Surrogate Model-Based Design Optimization (SMBDO).
This type of approach can usually reduce the amount of function evaluations required in order to
find the problem optimum by efficiently determining the locations at which new evaluations must
be performed. In Chapter 3, the particular type of surrogate modeling method considered in
this thesis, known as Gaussian Process, is discussed and its extension to the mixed-variable case
is detailed. In Chapter 4, a SMBDO algorithm based on said surrogate modeling technique for
fixed-size mixed-variable problems is proposed. Finally, in Chapter 5 this algorithm is extended
to the context of VSDSP.



CHAPTER3
Mixed-variable Gaussian Processes

3.1 Introduction
Nowadays, a growing majority of engineering design processes heavily relies on the use of com-

puter models and simulations, as it usually represents a faster and cheaper alternative to physical
testing, while still providing results accurate enough for most applications. Furthermore, com-
puter simulations can also provide performance estimates in conditions which cannot reasonably
be tested (e.g., outer space behaviors). However, computer modeling also presents a number of
limitations and drawbacks. Most notably, the computation time associated to the performance
simulation of complex systems can be considerably large. Typical examples involve computational
fluid-dynamics analyses and finite element models. This issue can become particularly problem-
atic when the models are used within an optimization framework, as they usually must be called a
large amount of times in order to determine the solution of the considered problem (i.e., optimal
design), as is discussed in Chapter 2. In order to partially avoid this issue, a common solution
consists in creating a surrogate model of the numerical simulation codes [105], which relies on
a mathematical representation of the studied function. These surrogate models usually present
a negligible computational cost when compared to the modeled functions, which allows them, if
necessary, to be evaluated a large amount of times during the optimization process. However,
the addition of a modeling layer also implies a loss of accuracy (i.e., introduction of additional
modeling errors) if compared to the actual simulation, the magnitude of which depends on the
type of modeling technique that is used as well as on its parameterization.

Among the most popular surrogate modeling techniques used within the framework of com-
plex system design optimization, one may find polynomial regression models [32], Artificial Neural
Networks [95], Radial Basis Functions [34], [36], Support Vector Machine Regression [118] and
Multivariate adaptive regression spline [46]. More comprehensive discussions on the differences
and advantages of the various surrogate modeling techniques can be found in [105] and [128].
As mentioned in the conclusion of Chapter 2, the main focus of this thesis is towards optimiza-
tion methods which rely on the use of specific modeling techniques known as Gaussian Processes
[107] (GP), which are increasingly popular methods when modeling functions with low amount
of available data and/or when dealing with computationally intensive optimization problems.

Most of the surrogate modeling techniques mentioned in the previous paragraph have originally
been developed in order to model continuous problems (i.e., characterized by functions depending
solely on continuous variables). When dealing with mixed continuous/discrete functions, a num-
ber of additional challenges, such as the absence of metrics in the discrete search space, need to
be addressed in order to be able to create an accurate and reliable surrogate model. In the recent
years, a few adaptations of existing continuous surrogate modeling techniques as well as novel
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modeling methods have been developed in order to be able to model mixed continuous/discrete
functions. A few reviews of existing mixed continuous/discrete surrogate modeling techniques
can be found in [16], [87] and [125]. Please note that in this chapter, the dependence of the
modeled functions on dimensional variables (w), as described in Eq. 2.1, is not considered. In
practice, the surrogate modeling techniques discussed in this chapter allow to model functions
which present a fixed-sized search space and only depend on continuous variables (x) and discrete
variables (z).

The most notable surrogate modeling techniques which have been adapted and/or extended in
order to enable the modeling of mixed-variable functions are discussed in the following paragraphs.
All of the presented surrogate models are created by processing a training data set D of n samples
{xi, zi, yi} with i ∈ {1, ..., n}. D can be defined as follows:

D =
{

X = {x1, ..., xn} ∈ Fx, Z = {z1, ..., zn} ∈ Fz, y = {y1, ..., yn} ∈ Fy

}
where X and Z are the matrices containing the n continuous and discrete vectors characterizing
the training data set, while y is the vector containing the associated responses (i.e., modeled
function). Fx, Fz and Fy are the definition domains of the 3 previously mentioned matrices.

Radial Basis Function
The Radial Basis Function (RBF) surrogate modeling technique, originally proposed by Hardy
[56], consists in defining the surrogate model as a sum of distance-based basis functions φ(·)
centered around the n samples of the considered data set:

ŷ(x) =
n

∑
i=1

θiφ
(
||x− xi||

)
(3.1)

Thanks to the fact that the RBF only depends on the distance between samples, it can easily be
extended in order to model mixed continuous/integer functions (sometimes referred to as mixed-
integer) by computing the Euclidean distance between samples directly in the continuous/integer
design space. This approach is applied for the solution of mixed-integer constrained problems in a
few papers [60], [73], [91], [106], where the computationally intensive objective and/or constraint
functions are replaced by RBF based models. These models are then used in order to determine
the promising areas of the search space by either directly optimizing the surrogate model of
the considered problem with the help of standard algorithms such as Mixed-integer evolution
strategies [73] and Mixed-integer nonlinear programming [106], or by relying on alternative criteria
such as the probability of improvement [60] and constraint augmented criteria [91]. In [90],
[132] and [133], the possibility of modeling mixed-variable functions by relying on continuous
surrogate models, such as RBF and linear models by replacing the use of Euclidean distance with
a alternative definition is considered. The Hamming distance [81] as well as swap and interchange
distances based on the permutations between discrete variable values are considered. An RBF
assisted mixed-variable GA is discussed in [11], in which the GA performs the objective function
optimization with respect to the surrogate model rather than on the computationally intensive
functions. At each iteration, the actual function value at the surrogate model optimum location
is computed and added to the model data set. In this case, the discrete variables are handled by
grouping the training data in clusters with respect to the their value and subsequently defining
a separate surrogate model for each cluster. The distance between clusters is then computed
through the use of the Hamming distance. Similarly, a coding-based RBF-assisted mixed-variable
GA is also proposed in [17] for the optimization of a Hyper-sonic cryogenic tank design, however,
due to the proprietary nature of the used software no detailed information on the implementation
is known.
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Support Vector Machine
In its original formulation, Support Vector Machine (SVM) is a linear classification algorithm
allowing to characterize the hyperplane dividing the points of a purely continuous data set in 2
distinct groups with the highest margin [118]. This hyperplane is defined in such a way that:

w · x + b > 0 ∀yi = 1 (3.2)
w · x + b < 0 ∀yi = −1

where w and b are the hyperparameters of the model which need to be tuned in order for the
model to properly classify the data. SVM can be used in order to perform non-linear classification
by replacing the dot product with a kernel function k(x, x′) = 〈φ(x), φ(x′)〉 [119], such as a
squared-exponential kernel: k(x, x′) = exp(−θ||x− x′||2). SVM can be further extended in order
to perform regression (i.e., surrogate modeling) by considering the hyperplane as the modeled
function prediction:

ŷ(x) = w · φ(x) + b (3.3)

In this case, the hyperparameters are optimized in such a way to ensure that the modeling error
is bounded by a given threshold ε while also minimizing the model complexity. In order to extend
the application of SVM regression to mixed-variable functions, Herrera et al., [59] suggest mapping
the l levels of a discrete variable through dummy coding onto a l − 1 auxiliary binary variables.
As a result, all the levels of a given discrete variable are equidistant in this auxiliary space.
Furthermore, in order to better handle the inherent structural differences between continuous
and discrete variables, the SVM algorithm is coupled with the use of multiple kernel regression
[25]. In other words, the global kernel is defined as a weighted sum of various kernels, thus
allowing to better capture the trends related to the discrete variables.

Generalized Linear Models
Generalized Linear Models (GLM) [85] can be seen as a stochastic generalization of linear mod-
els. The prediction of GLM for purely continuous functions is defined as a distribution of the
exponential family (e.g., normal, gamma) with a given mean ŷ(x) and constant variance σ2. Fur-
thermore, the prediction mean is related to a linear predictor η through a so-called link function
g(·) in the following fashion:

η =
n

∑
i=1

xiβi = g(ŷ) (3.4)

where βi, . . . , βn are the hyperparameters of the model. In order to apply GLM to model mixed-
variable functions, the clustering based mixed-variable RBF proposed in [10] and [11] is combined
with a GLM fitting with respect to the discrete variables represented through coding and the
residual of the continuous RBF model. The global surrogate model is finally computed as the
sum between the RBF and the GLM predictions.

Spline regression
Spline regression is a non parametric surrogate model in which the prediction of the modeled
function is computed as a conditional mean ŷ(x) and the associated variance σ̂(x). In order to
deal with the dependence of the modeled function on both continuous and discrete variables,
Ma et al. [80] suggest defining the conditional mean by weighting the continuous tensor-product
polynomial splines with the help of categorical kernel functions:

ŷ(x, z) = B(x)β(z) (3.5)

where B are the continuous tensor-product polynomial splines and β is a vector containing the
weights associated to the discrete kernels presented in [72].
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Moving least squares
The Moving Least Squared (MLS) surrogate modeling technique [68] can be seen as a general-
ization of the least squares method. The prediction of purely continuous modeled functions is
computed as follows [22]:

ŷ(x) = p(x)Ta(x) (3.6)

p(x) represents a polynomial basis (e.g., [1, x1, x2, x2
1, x1x2, x2

2, . . . ]) while a(x) is computed by
minimizing the following expression:

a(x) = argmin

(
1
2

n

∑
i=1

wi(xi, x)
(

p(xi)Ta− y
)2
)

(3.7)

w.r.t. a

where wi are weights computed as a function of the distance between x and xi. Similarly to what
is proposed in [59] for the SVM, the mixed-variable adaptation for MLS which is proposed by
Coelho in [37] relies on mapping the l levels of a discrete variable through dummy coding onto
a l − 1 auxiliary binary variables, thus obtaining a simplex on the auxiliary space. Also in this
case, the inherently different nature of the original discrete variable must be taken into account
when defining the way the weights wi are computed.

Artificial neural networks
Artificial Neural Networks (ANN) are a class of regression and categorization methods [131],
[57], which have become increasingly popular in the past years thanks to the availability of a
larger processing power. The underlying principle of ANN is inspired from the functioning of the
brain and relies on computing the model prediction as a combination of subsequent non-linear
functions of the input. In practice, this input (or signal) is processed by several layers, each
one containing a given number of nodes (i.e., non-linear functions). The output of each node is
computed through a non-linear function of the sum of the signals it receives from other nodes,
usually of all of the previous layer nodes. In most ANN implementations, the node functions as
well as the connections between the nodes are characterized by different weights which must be
optimized in order for the network to provide accurate predictions.

Different variants of ANN with specific characteristics and/or training approaches exist, such
as feed-forward neural networks [113], convolutional neural networks and generative adversarial
networks [49]. However, similarly to the other surrogate modeling techniques previously dis-
cussed, most of the ANN variants are developed for purely continuous inputs, while only a few
have been adapted in order to handle the presence of discrete variables. For instance, in [38] the
impact of relying on a coding approach in order to perform the classification of mixed-variable
data with standard continuous/integer ANN is discussed. The results show that the more suit-
able type of encoding depends on the specific characteristics of the considered problem, and on
whether ordinal or nominal discrete variables are considered. A similar coding-based approach
is used in [120] to model system responses in an MDO framework, in which both one hot and
binary encodings are considered and compared. In this case as well, a difference in modeling
performance between the considered encodings depending on the modeled function character-
istics is shown. In [23], an alternative approach to encoding is proposed under the form of a
feed-forward Multi-Layer Perceptron (MLP). The underlying idea is to define a multi-outoput
MLP with respect to the continuous variables the considered function depends on, with a num-
ber of outputs equivalent to the number of categories characterizing the discrete variables. The
resulting prediction is then associated to the output corresponding to the unmapped sample cat-
egory. In [77], an Adaptive-Network-based Fuzzy Inference System (ANFIS) variant is proposed
for the modeling of mixed-variable functions. The adaptation relies on processing the continu-
ous variables with a standard ANFIS approach, whereas the discrete variables are independently
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transformed through the help of a one hot encoding and multiplied by a parameterized firing-
strength transform matrix characterizing the contributions of the various discrete variable levels
to the global output. The resulting signal is then directly forwarded to the main ANFIS frame-
work in order to determine the weight associated to the nodes of the last network layer. A last
notable example of ANN adaptation for mixed-variable problems is represented by the general-
ization of Self-Organizing Maps (SOM) for categorical data presented in [61]. The main idea of
the presented approach consists in relying on a concept of tree-like hierarchical distance defined
in the mixed continuous/discrete search space. In practice, the search space is decomposed into
hierarchically dependent higher and lower level concepts which are interconnected by weighted
links. The resulting continuous/discrete distance, computed as the total link weight between the
two considered leaf nodes, can then be used in order to perform SOM-based categorization with
respect to mixed-variable data. Please note that due to the large number of ANN variants and
applications, the list of mixed-variable adaptations presented above is not exhaustive. A more
comprehensive discussion on the topic can be found in [47]. However, it is also important to note
that ANN tend to require large data sets in order to properly tune the hyperparameters of the
model, which is not consistent with the computationally intensive design framework considered
in this thesis.

This chapter focuses on the adaptations of Gaussian Process based surrogate modeling in order
to perform the modeling of fixed-sized functions which depend simultaneously on continuous and
discrete variables. GP are increasingly popular methods when dealing with computationally
intensive functions due to their good modeling performance and flexibility. They present several
advantages when compared to other surrogate modeling techniques. For instance, the training of
the hyperparameters can be directly performed with respect to the training data, and does not
require auxiliary data sets, as is for instance the case when using cross-validation. Additionally,
GP can be parameterized in order to automatically handle noisy training data sets, which can for
example be encountered when considering experimental data. Furthermore, although they do not
explicitly require it, GP allow the user to easily include problem specific knowledge in the model
definition, if available (e.g., specification of the mean function and selection of the kernel). Finally,
and most importantly, GP can return an estimated error associated to prediction of the modeled
function as a (virtually) computationally free bi-product, under the form of a variance value. As
is discussed in Chapter 4, this particular characteristic can be useful when performing Surrogate
Model-Based Design Optimization, as it allows to define surrogate model refinement criteria
characterized by a trade-off between exploitation (i.e., refinement of the incumbent solution) and
exploration (i.e., reduction of the model error and uncertainty) of the design space.

The main objective of this chapter is to provide a comprehensive discussion on the necessary
steps required to model mixed-variable functions with the help of GP as well as present the alter-
native adaptations under the same formalism in order to better highlight their resulting strengths
and weaknesses. Following this introduction, in the second Section a theoretical overview of Gaus-
sian Processes is provided. In the third Section, the construction of valid discrete variable kernels
is discussed, and the existing kernels are re-defined within this formalism, thus allowing to better
highlight and discuss the differences between the presented kernels. In the fourth Section, the
discrete kernels are compared from a performance perspective by testing their modeling capabil-
ities on a number of analyitical and engineering related test-cases of varying complexity. In the
fifth Section the obtained results are described and discussed, and finally the relevant conclusions
are provided in the sixth and last Section. Finally, please note that this chapter is an extension
of the work presented in a book chapter by Pelamatti et al., [98].
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3.2 Gaussian Process surrogate models
The core concept of Gaussian Process based surrogate modeling (sometimes also referred to

as Kriging [94], [111]) is to predict the response value y∗ of a black-box function f (·) for a generic
unmapped input {x∗, z∗} through an inductive procedure. Generally speaking, the larger the
training data set is, the more accurate the model will be. However, it is important to note
that the choice of samples that are included in the training set also influences the modeling
accuracy, as is discussed later in the chapter. In its most generic definition, a Gaussian Process is
a collection of random variables, any finite number of which have a joint Gaussian distribution,
or alternatively is a generalization of the Gaussian probability distribution [107]. In other words,
instead of describing the probability distribution of random scalar or vectorial variables, GP
map the probability distribution of the possible regression functions. A generic Gaussian Process
Y(x, z) is characterized by its mean function µ:

µ(x, z) = E[Y(x, z)] (3.8)

and its covariance function:

Cov
(
Y(x, z), Y(x′, z′)

)
= E[(Y(x, z)− µ(x, z))(Y(x′, z′)− µ(x′, z′))] (3.9)

and if a generic function f (·) follows a GP, it can be expressed as:

f ∼ GP(µ(·), Cov(·)) (3.10)

The mean function parameterization can technically be defined by the user in order to better rep-
resent the modeled function. A popular choice of parameterization, thanks to its flexibility, is the
polynomial function. However, in most real-life engineering design cases, insufficient information
regarding the global trend of the modeled functions is known, and it is therefore complicated to
choose the appropriate trend and relative parameterization of µ(·). In these cases, it is common
practice to consider the regression function µ as a being constant with respect to the design space
[117]:

µ(x, z) = µ (3.11)

The prior mean and prior covariance are updated by relying on the information on the modeled
function provided by the data set D, which enables to provide a more insightful model of the
considered function. The predicted value f ∗ of this function at an unmapped location {x∗, z∗} is
then computed under the form of a Gaussian distribution conditioned on the data set [107]:

f ∗|x∗, z∗, X, Z, Y ∼ N
(
ŷ(x∗, z∗), ŝ2(x∗, z∗)

)
(3.12)

In other words, the GP provides the predicted value of the modeled function at an unmapped
location {x∗, z∗} under the form of a mean value ŷ(x∗, z∗):

ŷ(x∗, z∗) = E[ f ∗|x∗, z∗, X, Z, Y] (3.13)
= µ + Cov(Y(x∗, z∗), Y(X, Z))Cov(Y(X, Z), Y(X, Z))−1(Y− µ)

= µ + ψT(x∗, z∗)K−1(y− 1µ)

and associated variance ŝ2(x∗, z∗):

ŝ2(x∗, z∗) = Var( f ∗|x∗, z∗, X, Z, Y) (3.14)
= Cov(Y(x∗, z∗), Y(x∗, z∗))−

Cov(Y(x∗, z∗), Y(X, Z)) Cov(Y(X, Z), Y(X, Z))−1 Cov(Y(X, Z), Y(x∗, z∗))

= k({x∗, z∗}, {x∗, z∗})−ψT(x∗, z∗)K−1ψ(x∗, z∗)
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where K is the n× n Gram covariance matrix containing the covariance values between the n
sample of the data set:

Ki,j = Cov
(
Y(x, z), Y(x′, z′)

)
= k({x, z}, {x′, z′}) (3.15)

y is a n× 1 vector containing the responses corresponding to the n data samples:

yi = f (xi, zi) for i = 1, . . . , n (3.16)

1 is a n× 1 vector of ones and finally ψ is an n× 1 vector containing the covariance values between
each sample of the training data set and the point at which the function is predicted:

ψi(x∗, z∗) = Cov(Y(x∗, z∗), Y(xi, zi)) = k({x∗, z∗}, {xi, zi}) for i = 1, . . . , n (3.17)

Within the GP framework, the covariance function is defined as an input space dependent pa-
rameterized function, as is discussed later on in Section 3.4.

As an illustrative example, a simple purely continuous one-dimensional function f (·) is con-
sidered:

f (x) = cos(2πx) + 1.5x2 (3.18)

Supposing that no information on the modeled function is known, the prior mean is set to be a
constant:

µ = 0 (3.19)

while the covariance prior is defined as a squared exponential function, as is discussed in Section
3.4.:

k(x, x′) = exp(θ|x− x′|2) (3.20)

If no training data is provided to the model, predictions can be sampled from the prior, as is shown
in Figure 3.1. As can be expected, the predicted functions are completely unrelated to the modeled
function, due to the fact that no information is provided to the model. However, if training data
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Figure 3.1: Example of a Gaussian Process prior modeling

samples (i.e., evaluations of the modeled function) are provided to the GP model, the prior can
be updated by relying on this new information, thus obtaining the posterior prediction of the
modeled function. An example of posterior prediction by relying on 4 data samples is illustrated
in Figure 3.2. It can be noticed that in the posterior prediction, both the sampled functions and
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Figure 3.2: Example of a Gaussian Process posterior modeling

the posterior mean match very closely the modeled function. Moreover, the posterior standard
deviation is also considerably reduced when compared to the prior. As previously mentioned, a
GP prediction is usually provided in term of posterior mean ŷ and associated posterior variance
ŝ2, as sampling functions over the entire search space is more complex, and not necessary within
the optimization framework. Finally, Eqs. 3.14 and 3.15 show that the variance s2(·) associated
to a given prediction ŷ(·) can be computed at a very limited computational cost, thanks to
the fact that they both share the same computationally costly term of the prediction equation:
ψT(x∗, z∗)K−1. This property can be particularly useful within the optimization framework, as
is discussed in Chapter 4.

3.3 Mixed-variable Gaussian Process modeling
As mentioned in the introduction, there are relatively few techniques allowing to model func-

tions which depend simultaneously on continuous and discrete variables. Reviews and com-
parisons of the existing techniques can be found in [125] and [136]. The most commonly used
approach when dealing with this kind of functions consists in creating a separate and independent
GP model for every category of the considered problem by relying solely on the training data
relative to said category. In the remainder of this work, this approach is referred to as Category-
wise surrogate modeling. However, within the framework of computationally intensive design
it is often unfeasible to provide the amount of data for each category of the problem necessary to
model the considered function accurately enough for optimization purposes. This issue becomes
particularly relevant when dealing with problems characterized by a large number of categories
[125]. For this reason, in this thesis the concept of mixed-variable surrogate modeling is explored.
The underlying idea is to maximize the use of the information provided by the training data set
by creating a single mixed continuous/discrete GP with the entirety of the available data rather
than distributing the available information over several independent continuous surrogate models.
For illustrative purposes, the following simple mixed variable function f (·) is considered:

f (x, z) = cos(x) + 0.5z (3.21)
x ∈ [0, 7], z ∈ {0, 1}
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If few data samples are available in order to model the function, as is shown in Figure 3.3, the
prediction provided by the separate continuous GP defined with respect to the two categories
of the considered function might be highly inaccurate, as is shown in the top half of Figure 3.4.

If instead the exact same data samples are used in order to create a mixed-variable GP, the
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Figure 3.3: Mixed-variable modeling example function
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Figure 3.4: Comparison between independent category-wise modeling and mixed-variable modeling

prediction is considerably more accurate over the entirety of the search space, while the associated
variance is also reduced, as is shown in the lower part of Figure 3.4. By relying on mixed-variable
surrogate modeling rather than category-wise modeling, it is therefore possible to better exploit
the information provided by the data samples defined in the mixed-variable search space, thus
improving the modeling accuracy. Within the context of surrogate model-based optimization,
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a higher GP modeling accuracy tends to result in a faster convergence rate, thus reducing the
computational cost of the optimization process.

Please note that an alternative approach for the inclusion of discrete variables within the
framework of GP based modeling is represented by the so-called Treed Gaussian Processes (TGP).
The underlying idea of this surrogate modeling technique consists in defining a number of separate
and independent continuous GP models over complementary partitions of the search space [52].
These tree-like partitions are obtained by recursively performing binary splits on the value of
a single variable. The hyperparameters of the independent GP as well as the tree partition
are optimized simultaneously with the help of a Markov Chain Monte Carlo. A mixed-variable
adaptation of TGP is implemented in the R mlr package [19] and is based on a binary coding
of the discrete variables the considered problem depends on. In practice, the local GP models
are defined by considering the binary variables as integers, while the binary tree partitioning can
naturally be performed with respect to these auxiliary binary variables. However, due to the
considerably different nature of this method when compared to the single mixed-variable kernel
approach, as well as the difference in the approach with which the hyperparameters are trained,
TGP mixed-variable modeling is not considered in this thesis.

3.4 Gaussian Process kernels
The covariance function k(·) is the core component of a Gaussian Process based surrogate

model [107] and is one of the main focuses of this manuscript. Loosely speaking, the purpose of
this function is to characterize the similarity between distinct data samples in the design space
with respect to the modeled function. In order for a function k(·) to represent a valid covariance,
there are two main requirements [7]. More specifically, the function must be symmetric:

k({x, z}, {x′, z′}) = k({x′, z′}, {x, z}) (3.22)

and positive semi-definite over the input space, i.e.:

n

∑
i=1

n

∑
j=1

aiajk({x, z}, {x′, z′}) ≥ 0 (3.23)

∀n ≥ 1, ∀(a1, . . . , an) ∈ Rn and ∀{x, z}, {x′, z′} ∈ Fx × Fz

Alternatively, a positive semi-definite function can also be defined by ensuring that the n × n
matrix constructed by computing each element Ki,j as:

Ki,j = k({xi, zi}, {xj, zj}) for i, j = 1, . . . , n (3.24)

is positive semi-definite:
aTKa ≥ 0 ∀ a ∈ Rn (3.25)

Thanks to the characteristics mentioned above, a valid covariance function can, by construction,
be defined as a parameterizable Hilbert space kernel [107], as is discussed in the following para-
graphs.

For the sake of clarity, the brief introduction to Hilbert space kernels is discussed within the
purely continuous case, and is extended to the mixed-variable case in the subsequent paragraphs.
Let Fx ⊆ Rnx be a non-empty set, a kernel function on Fx, i.e., k : Fx × Fx → R, can be defined
if there exists an R-Hilbert space and a map φ : Fx → H such that ∀x, x′ ∈ Fx:

k(x, x′) := 〈φ(x), φ(x′)〉H (3.26)
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where 〈·, ·〉H is the inner product on the Hilbert space H. By definition, an inner product defined
in a Hilbert space must be [119], [115]:

• bi-linear: 〈α1φ(x) + α2φ(x′), φ(x′′)〉H = α1〈φ(x), φ(x′′)〉H + α2〈φ(x′), φ(x′′)〉H

• symmetric: 〈φ(x), φ(x′)〉H = 〈φ(x′), φ(x)〉H

• positive: 〈φ(x), φ(x)〉H ≥ 0, 〈φ(x), φ(x)〉H = 0 if and only if φ(x) = 0

for any x, x′, x′′ ∈ Fx. The Hilbert spaceH can be seen as a space onto which specific features of the
considered design variables are mapped. If necessary, multiple mappings and associated kernels
can be defined for the same design variable in case several distinct features of the considered
variable must be taken into account. Technically, each design variable can be mapped onto
an infinity of distinct Hilbert spaces in order to map infinitely different features. In order to
better capture and model the dependence of the GP covariance function with respect to the
various variables of the design space, both the mapping function φ(·) and the Hilbert space
inner product 〈·〉H can depend on a number parameters, known as hyperparameters [107]. The
kernel hyperparameters can be tuned as a function of the available data in order to maximize
the modeling accuracy of the surrogate model. The process of determining the optimal values of
the hyperparameters is often referred to as the GP training and it is discussed later on in this
chapter. Please note that in the remainder of the manuscript, the terms covariance function and
covariance kernel are used interchangeably.

For illustrative purposes, the constructions of two commonly used kernels, namely the squared
exponential kernel [112] (sometimes referred to as RBF kernel) and the constant kernel, are
described below. For the construction of the squared exponential kernel, the input space is
mapped onto an infinite power series:

φ(x) : Rnx → R∞ (3.27)

φ(x) = σx exp(−θ||x||22)
[

1,
√

2θx,
2θx2

2
, ...,

(
√

2θx)d

d!

]T

with d = 0, ..., ∞

where θ and σx are respectively the lengthscale hyperparameter and the standard deviation asso-
ciated to the kernel. The kernel is then defined as the scalar product between the power series:

k(x, x′) = 〈φ(x), φ(x′)〉 = φ(x)Tφ(x′) (3.28)

= σ2
x exp(−θ||x||22) exp(−θ||x′||22)

(
1 + 2θxx′ + ... +

(2θxx′)d

d!
+ ...

)
= σ2

x exp(−θ||x||22) exp(−θ||x′||22)
∞

∑
d=0

(2θxx′)d

d!

= σ2
x exp(−θ||x||22) exp(−θ||x′||22) exp(2θxx′)

= σ2
x exp(−θ||x||22)− θ||x′||22 + 2θxx′)

= σ2
x exp

(
−θ||x− x′||22

)
Thanks to the fact that the scalar product satisfies all the requirements to be a valid inner product
on R∞, the resulting kernel is valid by construction.

A similar derivation can be performed for the constant kernel, which returns the same covari-
ance between any pair of inputs. Let φ(·) be the mapping onto H ⊂ R:

φ(x) : Rnx → R+ (3.29)
φ(x) =

√
θ with θ ≥ 0
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where θ is the hyperparameter characterizing the constant value returned by the kernel. This
kernel can then be defined as the scalar product between the two mappings:

k(x, x′) = 〈φ(x), φ(x′)〉H = φ(x)Tφ(x′) = θ (3.30)

In the same way, a large number of alternative kernels defined in the continuous search space
exist, such as the linear kernel [107]:

k(x, x′) = σ2
xxx′ (3.31)

the polynomial kernel of degree p [115]:

k(x, x′) = σ2
x(xx′ + θc)

θp (3.32)

and the Matern kernels class [88]. e.g., the 5
2 Matern function:

k(x, x′) = σ2
x

(
1 +

√
5||x− x′||2

θ
+

5||x− x′||22
3θ2

)
exp

(
−
√

5||x− x′||2
θ

)
(3.33)

Depending on the characteristics of the modeled function, some specific kernel choices might
be more appropriate than others. In general, a preliminary analysis of the problem at hand
is necessary in order to select the kernel which can provide the most accurate and/or robust
modeling. Nevertheless, the concepts presented in this work are valid and applicable regardless
of the type of kernels which are chosen in order to model the influence of the continuous design
variables on the considered functions.

3.4.1 Kernel operators

In complex design problems, a single kernel may not be sufficient in order to capture the
different influences of the various design variables. The main reason for this limitation, is that
the same single set of hyperparameters is used to characterize the covariance between every
dimension of the compared samples. For this reason, it is common practice to combine kernels
defined over various sub-spaces of the design space, thus resulting in a valid kernel defined over
the entire search space which provides a more accurate modeling of the considered function. It
can be shown that kernels can be combined while still resulting in a valid covariance function,
as long as the chosen operator allows it [119]. In this thesis, the 3 following kernel operators are
considered:

• Sum
Let k1(·) be a kernel defined on the input space Fx1 and k2(·) be a kernel defined on Fx2 . It
can be shown that k(·) = k1(·) + k2(·) is a valid kernel on the input space Fx = Fx1 × Fx2 .

• Product
Let k1(·) be a kernel defined on the input space Fx1 and k2(·) be a kernel defined on Fx2 . It
can be shown that k(·) = k1(·)× k2(·) is a valid kernel on the input space Fx = Fx1 × Fx2 .
Furthermore, let k(·) be a kernel defined on the input space Fx and α ∈ R+, αk(·) is also a
valid kernel on Fx.

• Mapping
Let k(·) be a kernel on Fx, let F̃x be a set and let A : F̃x → Fx be a mapping function. Then
k̃(·) defined as k̃(x, x′) := k(A(x), A(x′)) is a kernel on F̃x
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The kernel operators can be used in order to combine kernels in various fashions. Two popular
examples are the ANOVA and the exponential kernel [112]:

• ANOVA: k({x1, x2}, {x′1, x′2}) = (1 + kx1(x1, x′1))× (1 + kx2(x2, x′2))

• Exponential: exp(k(x, x′)) = ∑n=∞
n=0

k(x,x′)n

n!

The combination of kernels has 2 main advantages: first, it enables defining distinct kernels
over different design variables, which allows to better capture and model the influence the various
design variables on the modeled function. This is particularly important when dealing with
problems in which different variables are related to considerably different trends of the modeled
function, as often happens within the framework of system design. Furthermore, different kernels
can also be combined in order to model more accurately different trends characterized by the
same design variable or group of variables.

A popular approach when dealing with multidimensional problems consists in defining a single
separate kernel kd(·) for each dimension d the considered problem depends on, and computing
the global kernel as the product between one-dimensional kernels [112]:

k(x, x′) =
nx

∏
d=1

kd(xd, x′d) (3.34)

where nx represents the total dimension of the input space Fx. By doing so, each variable of the
modeled function can be associated to a specific kernel parameterization as well as a set of specific
associated hyperparameters, thus providing more a flexible modeling of the considered function.

In this thesis, the same logic is relied on in order to deal with mixed-variable problems. Rather
than defining a kernel on the mixed continuous/discrete design space valid by construction, the
developed approach consists in defining two distinct and independent kernels: kx(·) with respect
to the continuous variables x and kz(·) with respect to the discrete variables z. Subsequently, the
mixed variable kernel k({x, z}, {x′, z′}) can be defined as:

k({x, z}, {x′, z′}) = kx(x, x′)× kz(z, z′) (3.35)

Moreover, the kernel defined above can be further decomposed as a product of one-dimensional
kernels, similarly to what is shown in Eq. 3.34. The resulting mixed-variable kernel can then be
defined as:

k({x, z}, {x′, z′}) =
nx

∏
d=1

kxd(xd, x′d)
nz

∏
d=1

kzd(zd, z′d) (3.36)

Eq. 3.26 describes the construction of a kernel characterizing the covariance between continu-
ous data samples. However, it can be noticed that no assumption on the nature of the considered
design variables is required for the kernel to be valid [115]. The kernel construction procedure
discussed above can therefore be extended to any type of design variable, as long as a proper
mapping and associated Hilbert space can be defined. Examples of kernels defined over non-
continuous search spaces can for instance be found within the framework of strings and DNA
analysis [75]. In the following section, the construction of kernels defined with respect to discrete
variables (regardless of whether qualitative or quantitative) is discussed. As already mentioned in
Chapter 2, discrete variables are characterized as non-relaxable variables defined within a finite
set of choices, or levels, and characterized by an absence of relation of order between the possible
choices.
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3.5 Discrete kernels
In order to define kernels allowing to characterize the covariance between the values of a

discrete variable z, the basic principle is the same as for continuous variables [119]. The kernel
is computed as the inner product between the mappings of the 2 considered discrete variable
samples onto a Hilbert space:

kz(zi, zj) := 〈φ(zi), φ(zj)〉H (3.37)

The main difference with what is described in the previous section lies within the fact that the
discrete variables that are considered within the framework of system design usually present a
finite number of possible values (i.e., levels) and by the fact that the numerical representation
assigned to the considered variables levels is usually arbitrary, and does therefore not yield useful
information for the kernel construction. By consequence, the mapping of a discrete variable onto
a Hilbert space may be different than for a continuous variable as it cannot directly depend on
the exact values assigned to the considered variable levels. The discrete kernels discussed in
the following paragraphs are defined for one-dimensional inputs (i.e., one dimensional discrete
variables). The global discrete kernel can then be computed as the product between the one-
dimensional kernels, as already shown in Eq. 3.36:

k(z, z′) =
nz

∏
d=1

kzd(zd, z′d) (3.38)

An alternative way of describing a discrete kernel can be obtained by exploiting the fact that
each discrete variable is characterized by a finite number of levels, as is discussed in [137]. By
consequence, the kernel function also returns a finite number of covariance values. It is therefore
possible to define a l × l matrix T containing the covariance values provided by the kernel:

Tm,d = kz(zi = zm, zj = zd) (3.39)

By relying on this approach, the validity of a given kernel kz(·) can be ensured a posteriori by
showing that the matrix T is always symmetric and positive semi-definite for bounded hyperpa-
rameter values.

In the following paragraphs, existing kernels for discrete variables are presented. Furthermore,
a valid construction under the kernel Hilbert space formalism described by Eq. 3.26 is proposed
for each kernel, thus allowing to better highlight and compare their inherent characteristics.

3.5.1 Compound Symmetry

The first and most simple discrete kernel to be considered in this chapter is the Compound
Symmetry (CS), characterized by a single covariance value for any non-identical pair of inputs
[108]:

k(z, z′) =

{
σ2

z if z = z′

θ · σ2
z if z 6= z′

(3.40)

where σ2
z and 0 < θ < 1 are respectively the variance and the hyperparameter associated to the

CS kernel. By definition, in case the input data samples are identical, the kernel returns the
associated variance value σ2

z , as can be seen in Eq. 3.40. Alternatively, the variance computed
between any pair of non-identical data samples is independent from the inputs, and is equal to a
value ranging from 0 to σ2

z . In order to show that the CS is a valid kernel, it is first necessary to
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perform the same task with a delta function δ(zi, zj) defined as:

k(z, z′) = δ(z, z′) =

{
1 if z = z′

0 if z 6= z′
(3.41)

Let z be a discrete variable characterized by l levels and let φ(·) be a mapping of the discrete
input space onto a l-dimensional Hilbert space: φ(z) : Fz → Rl. The mapping is defined in such
a way that the only non-zero coordinate of the image in the Hilbert space corresponds to the
dimension associated to the mapped level. This is sometimes referred to as the dummy coding
or one-hot coding of a discrete variable [123]. An example of the mapping described above for a
generic discrete variable characterized by 4 levels is provided below:

z ∈ {z1, z2, z3, z4} →


φ(z = z1) = [1, 0, 0, 0]
φ(z = z2) = [0, 1, 0, 0]
φ(z = z3) = [0, 0, 1, 0]
φ(z = z4) = [0, 0, 0, 1]

By defining the inner product on the Hilbert space presented above as a standard Euclidean
scalar product, the resulting kernel, valid by construction, is equal to the delta function:

〈φ(z), φ(z′)〉 = φ(z)Tφ(z′) = δz(z, z′) (3.42)

Finally, the CS kernel defined in Eq. 3.40 can be defined through the following combination of
delta function and constant kernels:

k(z, z′) = σ2
z
(
c2k1(z, z′) + c1

)
= σ2

z
(
(1− θ)δz(z, z′) + θ

)
(3.43)

The kernel above is always valid as long as the constants c1 and c2 are positive, which is ensured
by bounding θ ∈ [0, 1]. It should be pointed out that the CS kernel presented in the previous
paragraphs is nearly identical to the one proposed by Hutter and Halstrup in [54] and [62],
although the construction differs. The approach proposed in these works consists in defining a
distance in the mixed-variable search space by relying on the concept of Gower distance [51]:

dgow
(
{x, z}, {x′, z′}

)
=

∑nx
d=1

|xd−x′d|
∆xd

nx
+

∑nz
d=1 δ(zd, z′d)

nz
(3.44)

where ∆xd is the domain range of the continuous variable xd. This distance can then be rescaled
and used in order to compute the covariance as a function of the Gower distance between data
samples by relying on a continuous squared exponential kernel (or any other distance based
kernel):

k(z, z′) = σz exp
(
−θdgow

(
{x, z}, {x′, z′}

)2
)

(3.45)

It can be easily shown that by selecting the appropriate parameterization, the results provided
by the kernels defined in Eq. 3.40 and 3.45 are identical.

The CS kernel presented in the paragraph above provides a very simple method allowing to model
the effect of a given discrete design variable by relying on a single hyperparameter. However, the
underlying assumption which is made when considering the CS kernel is that the covariance
between any pair of non identical levels of a given discrete variable is the same, regardless of
the considered levels. This assumption may often be overly simplistic, especially when dealing
with discrete variables which present a large number of levels. In this case, the modeling error
introduced by CS kernel can become problematic, and alternative kernels should be considered. It
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is also important to point out that the CS kernel formulation, as presented in Eq. 3.40, can only
return positive covariance values (by construction). This characteristic further limits the number
of suitable applications for this particular covariance function. Finally, it is worth mentioning
that Roustant et al. have extended the CS kernel in order to model mixed-variable functions
characterized by discrete variables with a large number of levels [108]. The underlying idea is
to group levels with similar characteristics, thus allowing to compute the covariance between
these groups rather than between the levels. However, given that in the scope of this work the
considered problems present a limited number of levels, this approach is not further discussed.

3.5.2 Hypersphere decomposition kernel

A second discrete kernel considered in this work is the hypersphere decomposition kernel,
first proposed by Zhou et al. [137]. The working principle of the kernel is based on mapping
each of the l levels of the considered discrete variable onto a distinct point on the surface of a
l-dimensional hypersphere:

φ(z) : Fz → Rl (3.46)
φ(z = zm) = σz[bm,0, bm,1, . . . , bm,l ]

T for m = 1, . . . , l

where bm,d represents the d-th coordinate of the m-th discrete variable level mapping, and is
computed as follows:

bm,d = 1 for m and d = 1

bm,d = cos θm,d

d−1

∏
k=1

sin θm,k for d = 1, . . . , m− 1

bm,d =
d−1

∏
k=1

sin θm,k for d = m 6= 1

bm,d = 0 for d ≥ m 6= 1

with −π ≤ θm,d ≤ π. It can be noticed that in the equations above, some of the mapping
coordinates are arbitrarily set to 0. This allows to avoid rotation indeterminacies (i.e., an infinite
number of hyperparameter sets characterizing the same covariance matrix), while also reducing
the number of parameters required to define the mapping. The resulting kernel is then computed
as the Euclidean scalar product between the hypersphere mappings presented above:

k(z, z′) = φ(z)Tφ(z′) (3.47)

This kernel construction defined above is equivalent to the original formulation [137], in which
the discrete kernel is defined as an l × l symmetric positive definite matrix T containing the
covariance values between the discrete variable levels. In order to ensure the positive definiteness
of this matrix, it is defined through the following Cholesky decomposition:

T = LTL (3.48)

where each element of Li,j is computed as bi,j:

L = σz


1 0 . . . . . . 0

cos θ2,1 sin θ2,1 0 . . . . . .
...

...
...

...
...

cos θl,1 sin θl,1 cos θl,2 . . . cos θl,l−1 ∏l−2
d=1 sin θl,d ∏l−1

d=1 sin θl,d

 (3.49)
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Differently than the CS kernel, the hypersphere decomposition kernel can return a different co-
variance value for each pair of levels characterizing the considered discrete variable. Furthermore,
with the proper hyperparameters this kernel function can also return negative values, as each co-
variance value is computed as the product between a number of sine and cosine functions, which
range from −1 to 1. However, it should also be highlighted that a part of the hyperparameters
characterizing this kernel (i.e., θl,d) influence several covariance values simultaneously and that
furthermore, part of the covariance values can depend on several hyperparameters simultaneously.
As a result, determining the optimal value of each hyperparameter might be more complex when
compared to simpler kernel parameterizations such as CS.

3.5.3 Latent variable kernel

Similarly to the hypersphere decomposition kernel, the Latent Variable (LV) kernel, first
proposed by Zhang et al. [135], is constructed by mapping the discrete variable levels onto a
continuous Hilbert space. However, in the latent variable approach, the discrete variable levels
are mapped onto a 2-dimensional Euclidean space regardless of the number of discrete levels,
rather than on the surface of an l-dimensional hypersphere. This mapping can be defined as
follows:

φ(z) : Fz → R2 (3.50)
φ(z = zm) = [θm,1, θm,2]

T for m = 1, . . . , l

where θm,1 and θm,2 are the hyperparameters representing coordinates in the 2-dimensional latent
variable space onto which the discrete variable level m is mapped. By consequence, the set
of hyperparameters characterizing this kernel is represented by the l pairs of latent variable
coordinates associated to a given discrete variable. For clarity purposes, an example of the
mapping of a discrete variable characterizing the material choice property of a hypothetical system
is provided in Figure 3.5.

material = {aluminum, steel, titanium, composite} 

x1

x2

Figure 3.5: Example of latent variable mapping for a generic discrete variable characterizing the ’material
choice’ characteristic.

Let φ : Fz → R2 be the mapping defined in Eq. 3.50, by applying the mapping rule discussed
in Section 3.4.1, it can be shown that a kernel k̃(·) valid on R2 can be used in order to define a
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kernel k(·) valid on Fz in the following fashion [119]:

k(z, z′) = k̃(φ(z), φ(z′)) (3.51)

By consequence, any of the continuous kernels valid on R2 can be coupled with the latent variable
mapping in order to define a valid kernel on the discrete search space Fz. Although in the original
formulation of the method, the following squared exponential kernel is considered:

k(z, z′) = σ2
z exp(||φ(z)− φ(z′)||22) (3.52)

alternative continuous kernels could technically be used without loss of generality. It can be
noticed that no lengthscale parameter θ appears in the squared exponential kernel as defined in
Eq. 3.52. The reason behind this is that the distance between the latent variables already directly
depends on the hyperparameter values (i.e., the latent variables coordinates), and by consequence
a lengthscale parameter would be redundant. Similarly to the hypersphere decomposition kernel
previously discussed, the latent variable kernel requires removing the translation and rotation
indeterminacies on the latent variable value estimations. Zhang et al. suggest fixing one of
the latent variables coordinate pair to the origin of the 2-dimensional latent search space (e.g.,
{θ0,1, θ0,2} = {0, 0}), and a second pair on the θ1 axis (i.e., θ1,1 = 0).

The latent variable kernel construction discussed above relies on mapping the discrete variable
levels onto a 2-dimensional Hilbert space. This choice is arbitrary as the mapping can technically
be performed onto a higher dimensional space in order to provide a larger flexibility and improve
the modeling accuracy of the model. However, Zhang et al. [135] state that the theoretical
improvement of modeling performance does not compensate the increase in the number of hy-
perparameters to be tuned, and identify therefore the 2-dimensional latent space as the optimal
trade-off between the kernel modeling capabilities and the number of associated hyperparameters.
Similarly to the hypersphere decomposition kernel, the latent variable kernel allows to define a
distinct covariance value between every pair of levels. However, due to the fact the covariance
values are computed as a function of the distance between latent variables in a continuous space,
as shown in Eq. 3.52, the returned values can not be negative, which partially limits the modeling
capabilities of the LV discrete kernel.

By mapping the levels of the considered discrete variable onto a 2-dimensional latent space
and by characterizing the covariance between these levels as the Euclidean distance between the
latent variables, the latent variable kernel provides an intuitive visual representation of how the
levels are correlated to each other, as is shown in Figure 3.5. In this figure, the distance between
the latent variables (i.e., red dots) associated to the various materials is inversely proportional
to the covariance between the relative levels. For instance, with the considered hyperparameter
values, the computed covariance between the aluminum and steel choices would be larger than
the one between the aluminum and the composite choices.

3.5.4 Coregionalization

The last discrete kernel considered in this work is based on the definition of a coregionalization
matrix [6]. This approach is originally developed for the modeling of vector valued functions with
respect to a continuous search space, i.e., functions returning vector outputs rather than scalar
values, f : Fx → Rnoutputs , where noutputs is the size of the output vector. The underlying idea
of the original formulation is to exploit the existing correlation between the various outputs in
order to improve the modeling accuracy with respect to the separate and independent modeling
of each output. For purely continuous functions, the Linear Model of Coregionalization (LMC)
approach, as defined in [64], consists in computing each component prior fd of the prediction
vector as a sum of Q groups of independent latent GP models ui

q(x) , where each GP group q of
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size Rq shares the same covariance function:

fd(x) =
Q

∑
q=1

Rq

∑
i=1

ai
d,qui

q(x) (3.53)

with ai
d,q being scalar coefficients. When considering this kind of models, the resulting vector

valued kernel (i.e., one covariance function value per output) can be written as:

K(x, x′) =
Q

∑
q=1

Bqkq(x, x′) (3.54)

where kq(·) is the kernel associated to the group of GP uq, while Bq is the coregionalization matrix,
containing the elements bq

d,d′ which characterize the cross-covariance between the predictions d
and d′ associated to uq. The LMC can be simplified into the Intrinsic Coregionalization Model
(ICM) by considering a single kernel (i.e., Q = 1) [50], which results in the following expression
of the multiple output covariance matrix:

K(X, X) = B⊗ k(X, X) (3.55)

where ⊗ is the Kronecker product between matrices and k(X, X) is the Gram covariance matrix
computed on the continuous part of the training data set. The equation above is equivalent to:

K(x, x′) = B× k(x, x′) (3.56)

Without loss of generality, the concept of coreginalization can be applied to the modeling of mixed
variable problems by considering the modeled function as returning an independent output for
each level of the considered discrete variable. In this case, the coregionalization matrix becomes
the matrix containing the covariance values between the discrete variable levels.

Bm,d = kz(z = zm, z′ = zd) = Tm,d (3.57)

In order for the ICM to represent a valid kernel, it is necessary for the coregionalization matrix
B to be symmetric and positive semi-definite. Similarly to the hypersphere decomposition, the
kernel defined above can be obtained by mapping the levels of the considered discrete variable
onto an l-dimensional continuous space:

φ : Fz → Rl (3.58)
φ(z = zm) = [θm,0, θm,1, . . . , θm,l ]

T for m = 1, . . . , l

However, differently than for the hypersphere decomposition kernel, the Cartesian coordinates
of the locations onto which the discrete levels are mapped are directly considered as hyperpa-
rameters. By defining the inner product on the l-dimensional Hilbert space a Euclidean scalar
product, a valid discrete kernel can then be defined:

k(z, z′) = φ(z)Tφ(z′) (3.59)

It can be shown that Eq 3.55 and Eq. 3.59 yield the same covariance values by exploiting the fact
that any positive semi-definite matrix B can be obtained as the product between a real valued
matrix W and its transpose [101]:

B = WTW (3.60)
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If W is defined as the l × l matrix containing the hyperparameters onto which each level of the
considered discrete variable is mapped, the equivalence between Eq. 3.55 and Eq. 3.59 within
the scope of coregionalization applied to discrete variable kernels is shown.

It is important to point out that when adapting the ICM to the modeling of mixed-variable
functions, the underlying assumption is that only one discrete variable is considered, the levels
of which are associated to independent outputs of a vector valued function. However, the kernel
defined in the paragraphs above is, by construction, valid on a discrete dimension, regardless of
the presence of other discrete variables. It can therefore be applied in a multi-dimensional discrete
search space framework without loss of generality. Similarly to the hypersphere decomposition
case, the coregionalization approach allows to characterize both positive and negative covariance
values between the discrete variable levels. Finally, it can be noticed that differently than the
hypersphere decomposition and latent variable kernels, the coregionalization kernel provides by
construction an independent variance value for each level of the modeled variable. This resulting
property, known as heteroscedasticity, is further discussed in Section 3.6.2.

3.5.5 Discrete kernel comparison

The various discrete kernels described in the previous paragraphs present specific advantages
and weaknesses which must be taken into account when selecting the most suitable kernel param-
eterization for the modeling of a given problem. For clarity purposes, the main characteristics of
the presented discrete kernels are summarized in Table 3.1. It can be noticed that the scaling of

Kernels
Hyperparameter Different Negative Inherently
scaling w.r.t. l covariance per covariance values heteroscedastic

level pair
CS 1 No No No
HS l(l − 1)/2 Yes Yes No
LV 2l − 3 Yes No No
CN l2 Yes Yes Yes

Table 3.1: Advantages and weaknesses of discrete kernel parameterizations. The acronyms refer to the
following kernels: CS: Compound Symmetry, HS: Hypersphere Decomposition, LV: Latent Variable, CN:

Coregionalization.

the number of hyperparameters with respect to the number of levels of the considered discrete
variable varies considerably between the various kernels. This must be taken into account when
selecting the appropriate kernel, as a large set of hyperparameters might be difficult to tune when
relying on an insufficient amount of training data. On the contrary, simplistic kernel parameter-
izations, such as the CS, might be inadequate for variables with large number of levels in case
sufficient data is available. It can also be noticed that the coregionalization kernel is the only one
which allows to provide a heteroscedastic GP model. However, this limitation can be partially
solved by including an additional term in the considered kernel which results in a different and
independent variance associated to each discrete level. The description of this extension can be
found in Section 3.6.2.

3.6 Considerations on mixed-variable Gaussian Processes

3.6.1 Category-wise and level-wise mixed-variable kernels

In the previous paragraphs, only kernels for one-dimensional discrete vectors are discussed.
However, most of the considered problems depend on multiple discrete variables, in which case
two different approaches can be chosen: treating each dimension (i.e., each discrete variable)
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separately and independently or defining a kernel on the combinatorial discrete search space. In
this thesis, these approaches are referred to as Level-wise and Category-wise kernels.

The Level-wise approach is based on considering each discrete variable separately and defin-
ing an independent kernel for each one of them. In this case, the various kernels are tasked
with computing the covariance between the various levels of each variable. This allows to more
easily identify the specific influence of the considered discrete variables and thus select the most
suitable kernels, although this might require some previous knowledge on the modeled function.
Furthermore, the resulting model usually requires fewer hyperparameters in order to be defined.
However, dealing with each dimension separately implies considering that each dimension is in-
dependent from the others [104]. In practice, this means that the covariance between two levels
(i.e., possible values) of a given discrete variable is independent from the similarity of the 2 com-
pared samples with respect to the other discrete variables. In some cases, this assumption may
be false. For instance, if the propulsion sub-system of a launch vehicle is considered, discrete
variables such as the type of propulsion (i.e., solid, liquid) and the number of engines influence
the performance of the system in a joint fashion, rather than independently.

Alternatively, the Category-wise kernel definition allows to avoid this kind of issues. The main
idea is to define the kernel on the combinatorial discrete search space rather than separately on
each dimension of the input space. By doing so, the resulting kernel allows to compute the covari-
ance between discrete variable levels combinations (i.e., categories) rather than between discrete
variable levels. However, the drawback of this approach is that the number of hyperparameters
required to describe such a kernel tends to scale exponentially with the number of discrete vari-
ables. By consequence, larger amounts of data are usually required in order to properly learn the
modeled function trends. If this condition is not satisfied, this solution tends to provide worse
modeling performance than the level-wise approach. A second drawback of the category-wise ap-
proach is that data samples belonging to every category of the considered problem are necessary
in order to train the model. This can be problematic when dealing with computationally intensive
problems characterized by a large number of categories. Instead, the level-wise approach allows
to extrapolate the missing data from other samples when considering categories which are not
present within the data set. Finally, it can be noted that when considering a category-wise ap-
proach, the input of the global discrete kernel can be represented under the form of a scalar (i.e.,
a single discrete variable) characterizing the category the considered sample belongs to rather
than the level values of its discrete variables.

It is extremely important to keep in mind that category-wise modeling and category-wise
kernel are two distinct and different approaches for the modeling of mixed-variable functions.
Indeed, category-wise modeling refers to the creation of a separate and independent continuous
GP for every category of the considered function, whereas the category-wise kernel approach refers
to the creation of a discrete kernel allowing to compute the covariance between the categories of
the considered discrete variables.

3.6.2 Surrogate model scedasticity

Within the framework of continuous GP, it is common practice to consider the model as being
homoscedatic, which translates to a constant variance value with respect to the design space:

k(x∗, x∗) = σ2 (3.61)

When the GP kernel is defined as the product of one-dimensional continuous and discrete kernels,
as in Eq. 3.36, the homoscedastic variance can be interpreted as the product between the variances
associated to each one of the kernels:

σ2 =
nx

∏
d

σ2
x

nz

∏
d

σ2
z (3.62)
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Although the homoscedasticity assumption is often acceptable in the purely continuous case, it
may be overly simplistic in the mixed continuous/discrete case, as the discrete variables may be
associated to large variations of the modeled function global trend. In these cases, it may be
necessary to model the kernel variance so that its value depends on the input data sample, thus
obtaining what is referred to as a heteroscedastic GP. In the most general case, the heteroscedastic
mixed-variable GP variance should vary as a function of both continuous and discrete variables.
However, due to the fact that the thesis focus is mainly on the discrete aspects of mixed-variable
GP and in order to reduce the model training complexity, in this work the variance is only
considered to vary as a function of the discrete variables z:

k({x∗, z∗}, {x∗, z∗}) = σ2(z∗, z∗) (3.63)

In general, a prior knowledge of the global trend of the modeled function allows to determine
which choice, between a homoscedastic and a heteroscedastic model is more suitable for a given
problem. In this chapter, it is assumed that no prior information on the modeled function is
known, and both alternatives are tested for the considered kernel parameterizations. Finally, it is
important to note that considering a heteroscedastic discrete kernel has a different influence for
Level-Wise and Category-Wise kernels, due to the fact that in the first case a different variance
value is associated each level of each discrete variable, whereas in the latter a different variance
value is associated to each category of the considered problem.

The heteroscedasticity of a mixed-variable function can be easily shown by considering the simple
test-function shown in Figure 3.6 and defined as follows:

f (x, z) =

{
sin(7x) if z = 0
2 sin(7x) if z = 1

(3.64)

The variances associated to the 2 categories of the considered function (which in this case are
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Figure 3.6: Category-wise independent modeling of a heteroscedastic mixed variable function

equivalent to the levels of the variable z) can be compared by modeling it with 2 independent GP
models obtained by considering identical continuous data sets, as shown in Figure 3.6. In general,
the optimal variance value depends on the size and on the values of the specific data set with
respect to which the models are trained. However, by repeating the comparison over several data
sets it can be shown that on average the variance associated to the first category of the problem
(i.e., z = 0) is approximately 4 times smaller than the one associated to the second category of
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the problem (i.e., z = 1). This is highlighted in Figure 3.7, where the estimated optimal variance
associated to the 2 categories computed over 20 repetitions is provided for 3 different data set
sizes. The results show that in general, a heteroscedastic mixed-variable kernel should therefore
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Figure 3.7: Estimated optimal variance associated to the two categories of a heteroscedastic example for
various data set sizes over 20 repetitions per size

yield more accurate predictions when dealing with functions presenting similar characteristics.

The heteroscedastic variance function defined in Eq. 3.63 can be characterized as a discrete
kernel, similar to the ones presented in the previous paragraphs:

σ2(zi, zj) =
nz

∏
d=1

kzd(z
i
d, zj

d) (3.65)

where each kernel kzd can be constructed by mapping each level characterizing the discrete variable
zd onto a hyperparameter characterizing the variance associated to the level:

φ(z) : Fz → R (3.66)
φ(zm) = θm for m = 1, . . . , l

and by defining the inner product as a standard product between scalars:

k(z
i, zj) = 〈φ(zi), φ(zj)〉 = φ(zi)φ(zj) (3.67)

The resulting variance function provides a better flexibility and subsequent modeling perfor-
mance when dealing with functions characterized by heteroscedastic behaviors (with respect to
the discrete design variables). However, considering a heteroscedastic discrete kernel also results
in a larger number of hyperparameters to be trained. Therefore, relying on a heteroscedastic
kernel in order to model a homoscedastic function when insufficient data is provided might be
counterproductive and yield worse results than a homoscedastic model.
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3.6.3 Noisy data modeling

In some particular applications, the training data used to create the GP may be affected by
noises of various nature. In general, the commonly encountered noisy functions can be represented
as a sum between a deterministic term f (·) and a noise term η [107]:

y = f (x, z) + η (3.68)

The noise η can have different causes, such as truncation errors, measuring errors and simulation
codes with non-converging internal optimization process. Relying on such data in order to train
a GP may cause the model to over-fit said data, thus resulting in a possibly large modeling error.
In order to take into account the possible presence of noisy data, it is common practice to add a
noise handling term to the global kernel:

Cov
(
Y(x, z), Y(x′, z′)

)
=

nx

∏
d=1

kxd(xd, x′d)
nz

∏
d=1

kzd(zd, z′d) + σ2
nδn({x, z}, {x′, z′}) (3.69)

where σ2
n is a noise handling hyperparameter (usually proportional to the noise magnitude) and

δn is a kernel function similar to the Kronecker delta defined as:

δn({x, z}, {x′, z′}) =
{

1 if {x, z} = {x′, z′}
0 if {x, z} 6= {x′, z′}

(3.70)

Depending on the considered research domain, the noise handling term is often referred to as
nugget or likelihood variance [107]. By properly tuning the value of the hyperparameter σ2

n it is
possible to improve the robustness of the considered GP model with respect to noisy training data
and thus avoid over-fitting issues [107]. However, it is important to highlight the fact that inclusion
of a nugget in the kernel also results in a non-interpolating surrogate model. Alternatively, the
same results can also be obtained by adding an n× n identity matrix σ2

nI to the Gram covariance
matrix K. Finally, please note that the derivation of the validity of δn(·) can be found in Appendix
B.

3.6.4 Hyperparameter optimization

The majority of the continuous and discrete kernels presented in the previous paragraphs
depends on a number of hyperparameters, such as the lengthscales of Eq. 3.28 and the latent
variables coordinates of Eq. 3.52, which influence the value returned by the kernel function,
independently from the input data samples. Furthermore, the global kernel function also depends
on additional parameters: namely the kernel and likelihood variances (σ2, σ2

n) as well as the GP
mean µ. Although in some approaches the global kernel variance and the mean are expressed
as a function of the training data and the correlation matrix [63], in this work all of these 3
parameters are optimized independently in the same way as the continuous and discrete kernel
hyperparameters.

In order for the GP to provide the most accurate prediction of the modeled function and
a valid associated error model, the optimal value of every hyperparameter mentioned in the
paragraph above must be determined. This process is often referred to as the GP training.
Several methods and criteria exist for the training of a GP, such as the cross-validation [26],
the marginal likelihood optimization [107] and the restricted likelihood optimization [30]. In
this thesis, the marginal likelihood optimization is used. Let θ be the vector containing all the
hyperparameters characterizing the global kernel k(·), the contained values are determined by
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maximizing the log marginal likelihood:

θ∗ = argmax (log p(Y|X, Z, θ)) (3.71)
θ

= argmax
(
−1

2
yTK−1y− 1

2
log |K| − n

2
log 2π

)
θ

where K is computed by relying on kernels which are parameterized as a function of θ. Although
the hyperparameter vector θ characterizes both continuous and discrete kernels, all of its values
are defined within a continuous search space, thus allowing to rely on common continuous opti-
mization methods. For all the results presented in this work, the optimization problem defined
in Eq. 3.71 is solved with the help of a Bounded Limited memory Broyden - Fletcher - Goldfarb
– Shanno (L-BFGS-B) algorithm [24], which is a memory-efficient variant of the BFGS quasi-
Newton optimization method [39]. Similarly to other gradient-based optimization algorithm, the
L-BFGS-B can usually provide a fast convergence towards the log-likelihood optimization prob-
lem optimum. However, like most optimization methods of this family, the convergence towards
the global optimum of the problem is dependent on the initialization in the design space and
cannot always be ensured. This issue is particularly relevant when considering the discrete kernel
parameterizations discussed in the previous sections. Generally speaking, in order to maximize
the chances for the likelihood optimization to converge towards the global optimum it is necessary
to initialize the hyperparameters characterizing the covariances between discrete variable levels as
close to the optimal solution as possible. However, unless some specific knowledge regarding the
considered modeled function is known, this is usually not possible. For illustrative purposes, the
material choice mapping introduced in Figure 3.5 is considered anew. Let the hypothetical initial-
ization of the latent variable coordinate hyperparameters and the optimal solution be presented
in the left and right graphics of Figure 3.8, respectively. It is fair to assume that the likelihood
landscape might present several local optima, especially in the part of the search space where
the latent variables associated to the titanium and steel choices are close one another, which the
gradient-based algorithm might very likely cross with the given initialization (left side). Similar
issues also arise when all the hyperparameters are initialized at the same value, which in the
latent variable case corresponds to identical covariance values between all the levels. In general,

aluminum x1

x2

titanium

steel

aluminum 
x1

x2

titanium

steel

Figure 3.8: Hypothetical initialization (left) and optimal solution (right) for latent variables hyperpa-
rameters characterizing the covariance between material choices.

depending on the problem at hand as well as on the considered kernel parameterization, this issue
might need to be dealt with. From experience, a random uniform initialization of the discrete
kernel hyperparameters (within their bounds) is sufficient in order to ensure a reasonably robust
convergence of the likelihood optimization. However, in some particular cases a multiple random
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initialization of the algorithm with the selection of the result characterized by the largest like-
lihood value might be necessary. In order to avoid this issue altogether, heuristic optimization
methods, such as the Differential Evolution [122] or the Covariance Matrix Adaptation Evolution
Strategy [55], were also considered and tested. However this option was not viable due to the
prohibitive increase of the overhead computational cost related to the GP training when dealing
with large Gram covariance matrices (usually associated to large dimensional problems).

3.6.5 Mixed-variable design of experiments

The modeling accuracy which can be provided by a GP is closely related to the training data
set given as an input to the model, which is sometimes referred to as Design of Experiments
(DoE). In general, larger data sets result in a better modeling accuracy. However, given that
this thesis lies within the scope of complex and computationally intensive system design, the
amount of data available for the creation of the surrogate models is usually very limited. It
might therefore be necessary to distribute the available data over the design space in such a way
to maximize the information that the GP model can use. In the purely continuous case, the
data samples can either be sampled on given distributions, such as a uniform distribution, or
alternatively slightly more advanced sampling methods, such as the Latin Hypercube Sampling
(LHS) [86] method can be used. In order to extend the concept of design of experiments in the
mixed continuous/discrete search space, the assumption that is made in this thesis is that in
the absence of problem specific-knowledge, the same amount of data should be placed in each
category characterizing the modeled function. Under this assumption, 3 possible alternatives for
the creation were considered:

• Evenly and randomly distributing the data obtained through a single continuous sampling
between all of the problem categories.

• Replicating the same continuous sampling in each category of the considered problem.

• Performing an independent continuous sampling in each category of the considered problem.

In general, samples which are close one another in the continuous search space while presenting
different discrete variable values allow the GP model to better determine the covariances between
the various discrete levels and categories. On the other hand, spacing the samples within the
continuous design space allows to better capture the global trend of modeled function in the
continuous domain. The first mixed-variable DoE option allows to optimize the usable information
within the continuous part of the design space, while limiting the GP ability to determine the
covariance between the problem categories. Alternatively, the second option can provide a more
accurate computation of the covariance between categories, however it also tends to increase the
modeling error for unmapped locations which are distant from the training data set samples, due
to the poor coverage of the continuous search space. Finally, the third alternative represents
a compromise between the first two options. Further analysis of the challenges related to the
mixed-variable sampling issues can be found in [28].

Usually, an analysis of the considered problem and of the amount of available computational
resources is required in order to select the most appropriate approach for the creation of a mixed-
variable DoE. However, this type of analysis extends beyond the scope of the thesis. In this work,
the first approach combined with a continuous LHS method is considered for the DoE creation.

3.7 Modeling performance comparison
In the previous section, different kernels allowing to characterize the covariance function

between discrete variables levels are presented, discussed and compared. In order to assess the
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modeling performance of the various kernels as well as its dependence on the characteristics of the
considered function, a number of analytical and engineering related test-cases characterized by
different dimensions, complexities and characteristics are considered. The comparison between
the kernels is based on an analysis of the modeling error (i.e., difference between the actual
function value and the GP prediction) which is provided under the form of a Root Mean Squared
Error (RMSE) calculated on a validation data set distinct from the training one:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷ(xi, zi)− y(xi, zi))
2 (3.72)

where N is the size of the validation data set and the values of y(·) and ŷ(·) are normalized
between 0 and 1:

ŷnorm =
ŷ− ymin

ymax − ymin
(3.73)

ymin and ymax represent respectively the smallest and largest values present within the training
data set (i.e., in the vector y). In order to analyze the change in absolute and relative performance
of the various kernels, the modeling benchmark is performed for different training data set sizes,
when possible. Furthermore, in order to take into account the variability of the obtained results
caused by the random nature of the training DOE, the benchmark is repeated multiple times
for each training data set size (varying as a function of the computational cost and complexity
of the problem). The validation data set size is fixed to 1000, and its elements are generated
randomly by combining a continuous LHS and a sampling over a uniform discrete distribution in
the discrete search space.

In the presented benchmark, the compared discrete kernels are the following: Compound
Symmetry (CS), Hypersphere decomposition (HS), Latern Variables (LV) and Coregionalization
(CN). Furthermore, for each one of these kernels, 4 alternative variants are considered: The
homoscedastic level-wise approach, the heteroscedastic level-wise approach (referred to as _He),
the homoscedastic category-wise approach (referred to as _C) and finally the heteroscedastic
category-wise approach (referred to as _C_He). However, due to the inherently heteroscedastic
nature of the CN kernel, only the level-wise and category-wise variants are considered in the
presented results. In order to provide a modeling performance reference, the modeling benchmark
is also performed by relying on a Category-Wise (CW) GP, which is obtained by defining an
independent purely continuous GP for every category of the considered function. Each one of
these GP is trained by relying solely on the data samples of the training set which belong to
the corresponding category. The CW GP prediction of the modeled function at an unmapped
location is then computed by evaluating the continuous GP corresponding to the sample category
at the location characterized by the sample continuous variables. This results in a total number
of compared methods equal to 15. Given that the main focus and contribution of this thesis is
related to the discrete part of mixed-variable kernel, the continuous kernel considered in order to
obtain the results presented in this chapter and throughout this thesis is the squared exponential
kernel previously described in Eq. 3.27. Finally, it might be worth mentioning that in the
heteroscedastic CS parameterization case, the hyperparameters characterizing the heteroscedastic
kernel outnumber and outweigh the CS kernel-specific ones. By consequence, the results obtained
with the level-wise and category-wise heteroscedastic CS kernel might be mainly driven by the
heteroscedastic aspect rather than by the specific kernel parameterization.

3.7.1 Benchmark analysis

In the following paragraphs, the various discrete kernels presented in this chapter are tested
on a number of benchmarks. More specifically, 5 analytical functions and 2 engineering-related
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test-cases are considered. These benchmarks present different characteristics in terms of continu-
ous and discrete design space dimensions, combinatorial design space size, complexity, presence of
negative correlation and heteroscedastic trends and category-wise construction. The key proper-
ties (from a modeling perspective), simulation details and expected analyses for each benchmark
are provided below:

Branin function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 3 data set sizes: 20, 40, 80

• Presence of negative correlation trends between levels and category-wise construction of the
function.

Augmented Branin function

• 10 continuous dimensions, 2 discrete dimensions, 4 categories

• Modeling performed for 3 data set sizes: 80, 160, 320

• Increase of the continuous design space size with respect to the Branin function (but iden-
tical discrete design space characteristics). Presence of negative correlation trends between
levels and category-wise construction of the function.

Goldstein function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 3 data set sizes: 27, 72, 135

• Increase in the number of categories with respect to the Branin function (but identical
discrete design space size). Overall homoscedastic trend.

Analytical benchmark N.4

• 1 continuous dimensions, 2 discrete dimensions, 8 categories

• Modeling performed for 3 data set sizes: 40, 80, 120

• Overall homoscedastic with negative correlation trends between levels.

Analytical benchmark N.5

• 5 continuous dimensions, 5 discrete dimensions, 243 categories

• Modeling performed for 3 data set sizes: 60, 90, 120

• Large number of categories, impossibility of relying on category-wise approaches.

Propulsion performance simulation

• 3 continuous dimensions, 2 discrete dimensions, 7 categories (16 theoretical)

• Modeling performed for 3 data set sizes: 21, 56, 105

• Realistic simulation. Not all level combinations are physically feasible, which results in not
all categories being present in the DoE.
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Thrust frame structural analysis

• 12 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 1 data set sizes: 135

• Realistic simulation. Linear trends with respect to the continuous sizing variables.

Implementation
The results presented in the following paragraphs are obtained with the following implementation.
The model comparison overhead routine is written in Python 3.6. The compared discrete kernels
are implemented within the framework of a GPflow [83], a Python based toolbox for GP-based
modeling relying on the Tensorflow machine learning platform [1] (version 1.13). The GP training
is performed with the help of a Bounded Limited memory Broyden - Fletcher - Goldfarb – Shanno
(L-BFGS-B) algorithm [24].

3.7.2 Branin function

The first analytical benchmark function to be considered is a modified version of the Branin
function [42] characterized by two continuous variables and two discrete variables, each one with
2 levels, thus resulting in overall 4 discrete categories. The analytical definition of this mixed-
variable Branin function is the following:

f (x1, x2, z1, z2) =


h(x1, x2) if z1 = 0 and z2 = 0
0.4h(x1, x2) + 1.1 if z1 = 0 and z2 = 1
−0.75h(x1, x2) + 5.2 if z1 = 1 and z2 = 0
−0.5h(x1, x2)− 2.1 if z1 = 1 and z2 = 1

(3.74)

where:

h(x1, x2) =(((15x2 −
5

4π2 (15x1 − 5)2 +
5
π
(15x1 − 5)− 6)2+

10
(

1− 1
8π

)
cos(15x1 − 5) + 10)− 54.8104)/51.9496

(3.75)

with

x1 ∈ [0, 1], x2 ∈ [0, 1], z1 ∈ {0, 1}, z2 ∈ {0, 1}

For illustrative purposes, the responses associated to each category of the mixed-variable Branin
function are presented in Figure 3.9. By analyzing the function definition, two particular charac-
teristics which may influence the modeling performance of the various kernels can be highlighted.
The first noticeable characteristic is the presence of an negative correlation between the responses
characterized by the 2 levels of the variable z1: z1 = 0 and z1 = 1 (i.e., the global trends present
opposite variations with respect to the continuous variables). Secondly, although the function
depends on 2 independent discrete variables, it can be noticed that its categories are defined
as a function of the discrete level combinations, rather than as a function of the discrete levels
independently.

The modeling performance benchmark obtained for the mixed-variable Branin function are
provided in Figure 3.10. These results are obtained over 20 different training data sets of 20, 40
and 80 samples (i.e., 5, 10 and 20 samples per discrete category). Overall, it can be seen that for
this test-case most of the considered mixed-variable surrogate modeling methods provide a better
modeling accuracy than the independent CW GP. The only exceptions being the homoscedastic
and heteroscedastic category-wise CS kernels when insufficient data is provided (i.e., the 20
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Figure 3.9: The 4 discrete categories of the Branin function.

training data samples case). It can also be noticed that for all 3 training data set sizes, both
variants of the level-wise CS and LV kernels provide nearly identical results. This is due to the fact
that in case the modeled variable is only characterized by 2 levels, both kernel parameterizations
rely on a single hyperparameter to compute the covariance between the levels and therefore yield
very similar results. The slight difference between the results obtained with the 2 methods is
due to the different hyperparameter initialization in the GP model training. The same similarity
is not found for CS and LV category-wise variants, as in this case the discrete kernels model 4
levels instead of 2. A further noticeable trend in the presented results is that both level-wise
and category-wise CS and LV kernels tend to provide worse results when compared to the rest
of the considered methods. This can be explained by the fact that these kernels can not return
negative covariance values, which makes it so that they cannot properly model the negative
correlation trends characterizing the levels of z1. Furthermore, the results show that overall the
heteroscedastic variants of the considered kernels tend to produce better results with respect to
their homoscedastic counterparts. This is closely related to the heteroscedastic nature of the
mixed-variable Branin function which is easily noticeable from its analytical definition. Finally,
the results show that for large enough training data sets, the best performing kernels in terms
of modeling accuracy are the HS_C, HS_C_He and the CN_C. Additionally to the previous
considerations, these results can be explained by the fact that when sufficient data is provided,
the category-wise modeling of the discrete variables allows to better capture the fact that each
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Figure 3.10: Comparison of various discrete kernels modeling performance on the mixed-variable Branin
function for various training data set sizes over 20 repetitions.
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category of the considered mixed-variable Branin is defined as a function of the discrete level
combinations, rather than as a function of the discrete levels independently. This difference is
less noticeable for smaller data sets, in which case the information provided to the GP is not
sufficient to properly model each function category.

3.7.3 Augmented Branin function

The second analytical benchmark function to be considered is an augmented (i.e., larger
dimension) version of the previously described Branin function, characterized by 10 continuous
variables and 2 discrete variables, each one with 2 levels, thus resulting in 4 discrete categories.
The main purpose of this test-case is to assess the dependency of the various discrete kernel
parameterizations performance with respect to the size of the continuous design space of the
considered problem. In practice, the augmented Branin function is defined as follows:

f (x1, ..., x10, z1, z2) =


h̃(x1, ..., x10) if z1 = 0 and z2 = 0
0.4h̃(x1, ..., x10) + 1.1 if z1 = 0 and z2 = 1
−0.75h̃(x1, ..., x10) + 5.2 if z1 = 1 and z2 = 0
−0.5h̃(x1, ..., x10)− 2.1 if z1 = 1 and z2 = 1

(3.76)

where:
h̃(x1, ..., x10) =

h(x1, x2) + h(x3, x4) + h(x5, x6) + h(x7, x8) + h(x9, x10)

5
(3.77)

with:
h(xi, xj) =(((15xj −

5
4π2 (15xi − 5)2 +

5
π
(15xi − 5)− 6)2+

10
(

1− 1
8π

)
cos(15xi − 5) + 10)− 54.8104)/51.9496

(3.78)

and

x1, ..., x10 ∈ [0, 1], z1 ∈ {0, 1}, z2 ∈ {0, 1}

For this benchmark function, the testing is performed with training data sets of 80, 160 and 320
samples (i.e., 20, 40 and 80 samples per discrete category). The results are provided in Figure
3.11. An analysis of these results shows that for small training data sets (i.e., 80 samples), no
real difference between the various considered kernels can be highlighted due to the insufficient
information to train the GP model. For larger training data sets, instead, it is shown that mixed-
variable GP yield overall better results when compared to the independent CW GP, with the
exception of the category-wise modeling with a CS kernel. Furthermore, similarly to what is
shown for the previously discussed mixed-variable Branin function, heteroscedastic approaches
tend to provide a better modeling accuracy, due to the ability to better capture the heteroscedastic
trends of the considered function. Finally, it can be seen that if sufficient data is provided,
a category-wise approach of the mixed-variable surrogate modeling yields the best results, if
combined with heteroscedastic kernels (i.e., CN_C and HS_C_He). This is related to the fashion
in which the categories of this particular benchmark function are constructed, as is discussed in
the previous paragraphs. In general, it is shown that the relative performance of the considered
kernel parameterizations does not significantly vary when the size of the continuous search space
is increased. The main noticeable difference is that larger training data sets are required in order
to obtain the same range of modeling accuracy, which can be explained by the larger number of
hyperparameters required to characterize the continuous kernels.
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Figure 3.11: Comparison of various discrete kernels modeling performance on the augmented mixed-
variable Branin function for various training data set sizes over 20 repetitions.
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3.7.4 Goldstein function

The third analytical benchmark function to be considered in this work is a modified mixed-
variable variant of the Goldstein [100] function characterized by 2 continuous variables and 2
discrete variables, each one with 3 levels, thus resulting in 9 discrete categories. This mixed-
variable Goldstein function is defined as follows:

f (x1, x2, z1, z2) = h(x1, x2, x3, x4) (3.79)

with

x1 ∈ [0, 100], x2 ∈ [0, 100], z1 ∈ {0, 1, 2}, z2 ∈ {0, 1, 2}

The values of x3 and x4 are determined as a function of z1 and z2 according to the relations
defined in Table 3.2.

z1 = 0 z1 = 1 z1 = 2
z2 = 0 x3 = 20, x4 = 20 x3 = 50, x4 = 20 x3 = 80, x4 = 20
z2 = 1 x3 = 20, x4 = 50 x3 = 50, x4 = 50 x3 = 80, x4 = 50
z2 = 2 x3 = 20, x4 = 80 x3 = 50, x4 = 80 x3 = 80, x4 = 80

Table 3.2: Characterization of the Goldstein function discrete categories

h(x1, x2, x3, x4) = 53.3108 + 0.184901x1 − 5.02914x3
110−6 + 7.72522x4

110−8−
0.0870775x2 − 0.106959x3 + 7.98772x3

310−6+

0.00242482x4 + 1.32851x3
410−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x310−5−
1.88719x1x2x410−6 + 2.50923x1x3x410−5−
5.62199x2x3x410−5

(3.80)

This benchmark function presents similar continuous and discrete design space dimensions to the
previously discussed mixed-variable Branin function, however, a few key characteristics differ.
First of all, although both functions depend on the same number of discrete variables, the Gold-
stein functions presents a larger number of levels per discrete variable, thus resulting in more
than twice as many categories. On the other hand, the Goldstein function can be expected to be
less challenging to model due to the absence of negative correlations between discrete levels as
well as the presence of a more homoscedastic global trend when compared to the Branin function.
Finally, it can also be noticed that each discrete variable has an independent influence on the
definition of each problem category, which is not the case for the two Branin function variants
previously considered. For this benchmark function, the testing is repeated with data sets of 27,
72 and 135 samples (i.e., 3, 8 and 15 samples per discrete category). The results obtained for the
modeling of the Goldstein function with the considered discrete kernels are provided in Figure
3.12. As for the previous test-cases, the independent CW GP approach tends to provide consid-
erably worse modeling performance, most notably for larger data sets, due to lower amount of
exploited information. A second noticeable trend which can be identified in the results is that for
small sized training data sets (i.e., 27 data samples), the category-wise kernels tend to provide a
worse modeling accuracy when compared to the ones based on a level-wise approach. This can be
explained by the relatively large number of categories with respect to the available data, which can
be challenging to model independently. Additionally, it can also be seen that the heteroscedastic
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Figure 3.12: Comparison of various discrete kernels modeling performance on the mixed-variable Gold-
stein function for various training data set sizes over 20 repetitions.
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Figure 3.13: Categories of the 4th modeling analytical benchmark.

variants of the considered kernels do not seem to provide a sizable advantage in terms of modeling
performance with respect to their homoscedastic counterpart. As previously mentioned, this is
due to the fact that the Goldstein function is not properly heteroscedastic, and by consequence,
considering a heteroscedastic model results in a number of unnecessary hyperparameters to be
tuned. Finally, for large enough training data sets the LV, HS and CN kernel parameterizations
tend to provide the most promising modeling results, with a slightly better performance for the
latter two.

3.7.5 Analytical benchmark N.4

The fourth analytical benchmark function which is considered in this chapter is an adaptation
of a function proposed in [108], characterized by a single continuous variable and 2 discrete
variables, presenting respectively 4 and 2 levels, for a total of 8 categories. The considered
function is defined as follows:

f (x, z1, z2) =

{
cos(7π x

2 −
z1
20 ) if z2 = 0

cos(7π x
2 + (0.4 + z1

15 )π −
z1
20 ) if z2 = 1

(3.81)

with x ∈ [0, 1], z1 ∈ {6, 7, 8, 9} and z2 ∈ {0, 1}. For illustrative purposes, the 8 categories of the
function defined above are plotted in Figure 3.13. This benchmark is expected to be characterized
by homoscedastic trends combined with a negative covariance between the levels of the discrete
variable z2. For this function, the testing is repeated with data sets of 40, 80 and 120 samples
(i.e., 5, 10 and 15 samples per discrete category). The obtained modeling results are provided
in Figure 3.14. Overall, it can be seen that most of the considered discrete kernels provide a
considerably better modeling accuracy when compared to the independent category-wise GP, the
only exception being the homoscedastic and heteroscedastic category-wise CS and LV kernels,
which tend to poorly model the negative correlation trends. The results also show that due to
the relatively homoscedastic nature of this particular test-case, the heteroscedastic variants of the
considered discrete kernels do not yield sizable advantages in terms of modeling accuracy.
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Figure 3.14: Comparison of various discrete kernels modeling performance on the fourth analytical
benchmark function for various training data set sizes over 20 repetitions.
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Figure 3.15: Comparison of various discrete kernels modeling performance on the fifth analytical bench-
mark function for various training data set sizes over 20 repetitions.

3.7.6 Analytical benchmark N.5

The fifth and final analytical benchmark function which is considered in this chapter is an
adaptation of a function proposed in [29], characterized by 5 continuous variables and 5 discrete
variables. Each one of the discrete variables is associated to 3 levels, which results in a total of
243 categories. This test-function is defined as follows:

f (x, z) =
5

∑
i=1

xi(z6−i − 2)
80

5

∏
i=1

cos
(

xi√
i

)
sin
(

50(z6−i − 2)√
i

)
(3.82)

with x = {x1, . . . , x5} ∈ [0, 1]5, and zi ∈ {1, 2, 3} for i = {1, ..., 5} . The mixed-variable function
defined above is characterized by a large number of categories relatively to the total dimension
of its design space. As a consequence, both the independent category-wise GP and category-wise
discrete kernels cannot reasonably be considered for this benchmark, as the number of training
data samples would be smaller than the total number of categories, and by extension also lower
than the number of hyperparameters to be tuned. For this benchmark the testing is repeated
with data sets of 60, 90 and 120 samples. The results obtained with the considered level-wise
discrete kernels are provided in Figure 3.15. The results show that for small training data sets,
not enough information is provided in order to properly train heteroscedastic kernels, and by
consequence the homoscedastic ones yield slightly better results. For larger training data sets,
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Figure 3.16: Comparison of various discrete kernels modeling performance on the fifth analytical bench-
mark function for various training data set sizes over 20 repetitions.

instead, both variants of the CS kernel are too simplistic and thus unable to properly capture the
trends of the considered function. In order to be able to distinguish the differences in performance
between the remaining kernel parameterizations, the same results of Figure 3.15 are presented in
Figure 3.16 without the 2 CS kernel variants, It can then be seen that when sufficient information
is provided to the model, the heteroscedastic kernels provide the most accurate modeling of the
considered function, with the best results being associated to the CN kernel.

3.7.7 Propulsion performance simulation

In order to better assess the surrogate modeling performance of the discrete kernels discussed
in this chapter, 2 aerospace design related test-cases are considered as benchmarks. The first
representative test-case is a simulation of the combustion performance of a launcher engine. More
specifically, the modeled variable is the specific impulse ISP provided by the engine. The ISP is
modeled as a function of the reductant to oxidant ratio OF, the combustion chamber pressure Pc,
the nozzle area ratio ε (defined as the ratio between the nozzle throat diameter and the nozzle
exit diameter) and the type of reductant and oxidant. The first three variables characterizing
the ISP are continuous, while the type of reductant and oxidant are discrete choices which can
be represented with the use of discrete variables. A summary of the variables characterizing the
problem is provided in Table 3.3. As an illustrative example, a visual representation of a liquid
propulsion engine, namely the Prometheus engine, is provided in Figure 3.17.

Variable Nature Min Max Levels
OF continuous 2.5 5.5 [-]

Pc [bar] continuous 20 80 [-]
ε continuous 10 60 [-]

Oxidant discrete [-] [-] O2, N204, F2, H2O2
Reductant discrete [-] [-] CH4, N2H4, JP-4, H2

Table 3.3: Variables characterizing the combustion performance simulation test-case
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Figure 3.17: Prometheus engine, courtesy of ArianeGroup.

Although this problem is theoretically characterized by a total of 16 categories, it is impor-
tant to note that not all the combinations of reductant and oxidant can realistically be simulated
and therefore only 7 categories are modeled. The combustion simulations necessary to create
the training data sets are performed by using the thermo-chemical simulation software ’Chem-
ical Equilibrium with Applications’ (CEA) created by NASA [84]. This software simulates the
combustion of gases in a combustion chamber and their expansion in an engine nozzle. The
conditions for chemical motion equilibrium are stated in terms of Gibbs and Helmholtz energies
[71] or the maximization of the entropy. The system of equations which characterizes the equi-
librium and describes its composition is non-linear and therefore iterative methods (such as the
Newton-Rhapson method [20]) are used to solve it. In Figure 3.18, the ISP profiles for the 7
considered combinations of reductant and oxidant are shown as a function of the nozzle ratio ε
and the reductant to oxidant ratio OF.

The results obtained when modeling the launcher engine specific impulse are provided in
Figure 3.19. These results are obtained over 20 different training data sets of 21, 56 and 105
samples (i.e., 4, 8 and 15 samples per discrete category). As for the previous test-cases, it is
shown that mixed-variable modeling provides a more accurate prediction of the modeled function
values with respect to independent continuous CW GP. Furthermore, it can be seen that for
small training data sets (i.e., 21 samples), heteroscedastic kernels tend to yield worse results
when compared to the homoscedastic ones due to the larger number of hyperparameters to train
with insufficient data. However, it can be noticed that when sufficient data is provided (i.e., 105
data samples), the relative difference in performance between the compared surrogate models
diminishes. This can be explained by the fairly smooth and linear trends of the modeled function
with respect to the design variables (as is shown in Figure 3.18) that often characterizes physical
phenomena, which result in an easier modeling process.



3.7. Modeling performance comparison 59

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

280
300
320
340

360

O2 - CH4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

220
240
260
280
300

N2O4 - N2H4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

280
300
320
340

O2 - JP-4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

390
400
410
420
430
440

O2 - H2

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

200
220
240
260
280

O2 - N2H4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

410
420
430
440
450
460

F2 - H2

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

280
300

320

340

H2O2 - JP-4

200
250
300
350
400
450

Figure 3.18: Specific impulse of a launcher engine as a function of the nozzle ratio ε and the reductant
to oxidant ratio OF for various combinations of oxidant and reductant.
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Figure 3.19: Comparison of various discrete kernels modeling performance on the launcher engine specific
impulse test-case for various training data set sizes over 20 repetitions.



3.7. Modeling performance comparison 61

3.7.8 Thrust frame structural analysis

The second aerospace design test-case that is considered is the modeling of a launcher thrust
frame stiffening, commonly performed for preliminary sizing purposes. More specifically, the
Ariane 6 aft bay structural characteristics are analyzed. The thrust frame is located at the bottom
of the launcher first stage and has the purpose of withstanding the weight of the launcher as well
as the thrust of the two solid rocket boosters during the lift-off phase. A schematic representation
of the Ariane 6 aft bay and its location within the launch vehicle system is provided in Figure
3.20. This structure is composed of a cylindrical outer skin, stiffened by frames and stringers,
and an inner body comprising three major frames and an inner skin.

Figure 3.20: Ariane 6 PPH launcher aft bay.

The static loads that are considered for this simulation are the longitudinal and lateral thrust
of the two solid rocket boosters (see Figure 3.20). The boundary conditions are defined by
modeling the first stage composite bottom skirt clamped to the upper interface of the thrust frame.
In this test-case, two different parameters of the considered system are modeled: the maximum
Von Mises stress on the inner skin of the structure [40] and the upper interface longitudinal
over-flux. These are modeled as a function of the inner and outer skins thicknesses ti, to of the
6 regions in which the thrust frame is divided as well as of the number of stringers Ns and the
number of frames N f . The 12 thicknesses are continuous variables while the number of stringers
and frames are discrete variables, each one characterized by 3 levels, thus resulting in a total of
9 categories. For illustrative purposes, structural responses on the entire thrust frame structure
considering the maximum Von Mises stress and the over-flux are provided in Figure 3.21. For the
sake of simplicity, the same range is considered for all the thicknesses variables characterizing the
problem. More specifically, the minimum and maximum bounds are 1 and 30 mm, respectively.
A summary of the variables characterizing the studied problem is provided in Table 3.4.

In order to generate the training and testing data sets for this analysis, the MSC Nastran
Finite Element Method (FEM) software [82] is used. In practice, a separate finite element model
is created for every considered category of the problem (i.e., for every combination of the number
of stringers and frames) due to the need of a distinct meshing for every configuration. A number of
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Figure 3.21: Examples of structural responses on the entire thrust frame structure. On the left figure
the maximum Von Mises stress is illustrated, while on the right figure the upper interface longitudinal

over-flux is shown.

Variable Nature Min Max Levels
ti1,6 [mm] continuous 1 30 [-]
to1,6 [mm] continuous 1 30 [-]

Ns discrete [-] [-] 36, 72, 144
N f discrete [-] [-] 2, 4, 8

Table 3.4: Variables characterizing the thrust frame structural analysis test-case

static FEM analyses is then performed with varying inner and outer skins thicknesses, according
to the values present in the data sets, and using the finite element model corresponding to the
category the considered sample belongs to. The lift-off conditions are simulated by considering
two aligned vertical loads Fx and two opposing horizontal loads Fy, applied on the side of the
thrust frame, as illustrated in Figure 3.20.

Due to the larger computation cost of the static load simulation when compared to the analyt-
ical test-cases, the modeling performance benchmark is only performed over 10 repetitions, with
each training data set containing 135 samples. The results obtained when performing the surro-
gate modeling of the maximum inner skin Von Mises stress and the upper interface longitudinal
over-flux on the thrust frame are shown in the upper and lower plots of Figure 3.22, respectively.
The results show that overall, relying on mixed-variable kernels allows to considerably reduce the
modeling error if compared to independent CW GP. It can also be noticed that category-wise
mixed-variable kernels yield worse results with respect to a level-wise modeling, due to the nature
of the modeled functions as well as the relatively small data sets size. No significant difference
in performance between CS/LV kernels and HS/CN kernels can be noticed, which can be explain
by a lack of negative correlation trends between the discrete levels and/or categories of the con-
sidered problem. Finally, heteroscedastic and homoscedastic kernels yield similar results, which
again suggests the absence of considerably heteroscedastic trends in the modeled function.
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Figure 3.22: Comparison of various discrete kernels modeling performance on the thrust frame structural
analysis test-case. The modeled values are the maximum inner skin Von Mises stress (top) and the upper

interface longitudinal over-flux (bottom) over 10 repetitions.

3.8 Error model
Within the context of function modeling, the main property which is usually considered is

the modeling accuracy, i.e., the difference between the actual and the predicted function value,
which can be estimated through criteria such as the RMSE. However, within the context of GP
based surrogate-model based design optimization, the validity of the error model (i.e., variance
prediction ŝ2(·)) is also relevant, as it drives the exploration aspect of the optimization process.
In other words, for a GP based BO to be efficient, it is not sufficient for the prediction to be
accurate, the error model must also be coherent. As a measure of the error model coherence, the
Mean Negative test Log-Likelihood (MNLL) is considered. Similarly to the RMSE, this measure
is computed on a test data set of N samples as:

MNLL = − 1
N

N

∑
i=1

log

(
1√

2πŝ2(xi, zi)
exp

(
−
(
y(xi, zi)− ŷ(xi, zi)

)2

2ŝ2(xi, zi)

))
(3.83)
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and it represents the (negative) likelihood of predicting the exact value of the data set samples
with the considered GP model prediction (in terms of both mean prediction and associated
variance). As for the RMSE, lower values of the MNLL tend to characterize a better performing
surrogate model uncertainty estimation. For illustrative purposes, the error model produced by
the various discrete kernels considered in this chapter is compared on the most representative
analytical and design related test-cases.

First the mixed-variable Branin function is considered. As for the modeling accuracy bench-
mark, the test is repeated 20 times over data sets of 20, 40 and 80 samples and validated on a
data set of a 1000 samples. The obtained results are provided in Figure 3.23.

Overall, the results show a similar relative performance between the various kernels as for
the prediction benchmark. The main difference is represented by the independent CW approach
which tends to provide an error model accuracy comparable to most of the considered kernels for
small sized data sets (i.e., 20 and 40 data samples). A Slightly worse relative performance of the
heteroscedastic hypersphere decomposition kernel can also be noticed.

The second considered benchmark is the thrust frame structural analysis. In this case, the test
is repeated 10 times over data sets of 135 data samples. The obtained results for the modeling
of the maximum Von Mises stress on the inner skin of the structure and the upper interface
longitudinal over-flux are provided in the top and bottom parts of Figure 3.24, respectively.

Also for this benchmark, the results show that the MNLL provided by the independent CW
approach, relatively to the rest of the discrete kernels, is considerably better than its prediction
RMSE. Furthermore, it can also be noticed that differently from the modeling benchmark, most of
the category-wise approaches overall tend to provide a more accurate error model when compared
to the level-wise approaches. This might be explained by the fact that sufficient data is provided
in order to properly optimize the variance associated to each category of the problem.

3.9 Result synthesis
In the previous section, the different discrete kernel parameterizations described in Section

3.5 are tested on several analytical and engineering related benchmark functions. Overall, it is
shown that mixed-variable GP tend to provide a considerably more accurate modeling perfor-
mance when compared to the independent category-wise GP as they can rely on the entirety of
the training data rather than only the samples associated to a given category. This difference
becomes more noticeable when the number of categories associated to the considered problem
increases. This can, for instance, be seen when comparing the results obtained for the Branin
and Goldstein functions in Figures 3.10 and 3.12, characterized respectively by 4 and 9 categories,
but the same number of discrete variables. Among the considered kernel parameterizations, the
CS is outperformed by the other kernels for most of the test-cases when considering sufficiently
large data sets. This is due to the fact that the CS models the covariance between any pair of
non identical levels with the same hyperparameter value, which considerably limits its modeling
capabilities when confronted with complex problems and/or large number of levels. However, this
difference in performance becomes less noticeable when small data sets are used, as the model is
easier to train when compared to other kernels characterized by a larger number of hyperparam-
eters. This can, for instance, be seen for the augmented Branin functions in Figure 3.11. The
obtained results also show that, because of its specific distance-based construction, the LV kernel
is not suitable when dealing with functions which present negative correlation trends between
categories, as it can only return positive covariance values. This is for instance clearly shown in
the results obtained for the Branin and augmented Branin functions in Figures 3.10 and 3.11.
Finally, the hypersphere and coregionalization kernels show similar behaviors on the various con-
sidered test-cases, which can be explained by the similar construction and characteristics (i.e.,
mapping of l levels onto an l-dimensional Hilbert space). The main differences in performance
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Figure 3.23: Comparison of various discrete kernels error model on the mixed-variable Branin function
for various training data set sizes over 20 repetitions.
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between the two kernels can be identified when dealing with particularly small data sets, in which
case the coregionalization is limited by its larger number of hyperparameters, and when dealing
with heteroscedastic functions, which the coregionalization kernel can model inherently better.

The difference in performance between the level-wise and category-wise approach based kernels
varies depending on the considered function. For mixed-variable functions characterized by a low
number of categories (relatively to the number of discrete variables), a category-wise approach
may provide a better modeling as it can allow to separately characterize the covariance between
each category, thus better capturing the various trends of the considered function. This can for
instance be seen in the results obtained for the Branin function in Figure 3.10. However, when
considering functions characterized by larger number of categories, the level-wise approach based
kernels tend to perform better than the category-wise based ones in case small training data sets
are provided, as is for instance shown for the Goldstein function in Figure 3.12. This can be ex-
plained by the fact that the number of categories characterizing a given function tends to increase
exponentially with the number of discrete variables. The number of hyperparameters necessary to
characterize a category-wise kernel follows a similar trend and can therefore become considerably
large with respect to the available data, thus resulting in a difficult model training process. For
functions characterized by a particularly large number of categories, such as the fifth analytical
benchmark, a category-wise approach becomes unfeasible, as it presents more categories than the
amount of data samples which can be provided for the GP model training. An analysis of the
considered function in terms of number of levels and categories with respect to the size of the
available training data set might therefore be necessary in order to assess whether a level-wise or
category-wise is more suitable.

The obtained results also show that in the presence of heteroscedastic trends in the modeled
function, considering heteroscedastic kernels tends to results in better modeling performance, as
can for instance be seen for the fifth analytical benchmark in Figure 3.15. However, it can also
be noticed that when dealing with homoscedastic functions, considering heteroscedastic kernels
usually yields results comparable with the homoscedastic ones. Therefore, unless the considered
function presents a particularly large discrete design space or the training data is particularly
limited, considering heteroscedastic kernels is usually the safest choice, unless problem specific
knowledge is available.

Finally, the coherence of the considered discrete kernels error models is also tested on two rep-
resentative test-cases (one analytical benchmark and one engineering design related benchmark)
with different data set sizes by relying on the MNLL criterion. Overall, it is shown that the
relative performance between kernels for a given modeled function is similar to the one obtained
when considering the RMSE. The main noticeable difference with respect to the modeling accu-
racy benchmark is represented by the good performance of the independent CW GP modeling
(i.e., the reference method), especially for small sized training data sets, as is shown in Figures
3.23 and 3.24. In fact, in these cases the independent CW GP provides a more coherent error
model than several of the compared kernels. This can be explained by the fact that this approach
relies on considerably less data in order to build each one of the independent surrogate models,
and provides therefore a more conservative variance prediction due to the lack of information
with respect to a large portion of the search space.

3.10 Conclusions
In this chapter, the Gaussian Process based surrogate modeling of fixed-size mixed-variable

functions is discussed. It is shown that it is possible to define a mixed-variable kernel by combin-
ing purely continuous and purely discrete kernels. Subsequently, the construction of valid discrete
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kernels is addressed, and the existing alternatives are presented and compared. Furthermore, the
resulting mixed-variable Gaussian processes are tested on a number of benchmarks with different
characteristics. Overall, the obtained results show that relying on mixed-variable surrogate mod-
els rather than on separate and independent continuous GP for each category allows to better
exploit the available data and by consequence model more accurately the considered functions.
The results also show that depending on the specific characteristic of the modeled function, such
as homoscedasticity, number of categories and presence of negative correlations, the relative per-
formance of the compared kernel varies. As a result, the kernel choice must be adapted to the
specifics of the considered problems.

Overall, in this chapter the modeling capabilities of mixed-variable Gaussian Processes when
dealing with small training data sets are shown. This characteristic, coupled with the fact that
GP can provide an estimate of the modeling error under the form of a variance as a (virtually) free
bi-product of the modeled function prediction, makes mixed-variable GP a promising candidate
for the surrogate model-based optimization of mixed-variable problems. For these reasons, the
possibility of applying this technique within a Bayesian Optimization framework is explored in
the following chapter.



CHAPTER4
Mixed-variable Bayesian design optimization

4.1 Introduction
As is discussed in Chapter 2, the computational budget which can be used within the frame-

work of a complex system design is usually limited due to the large computational cost of the
objective and constraint functions characterizing the considered problem. In the context of this
thesis, this translates into the necessity of converging towards the optimum neighborhood of
mixed-variable problems while performing the lowest possible number of function evaluations.
More specifically, in this chapter the fixed-size mixed-variable formulation presented in Eq.2.6 is
considered. In this case, both the objective and constraint functions of the considered problem
depend simultaneously on continuous and discrete design variables. For clarity purposes, the
problem formulation is provided again below:

min f (x, z) f : Fx × Fz → Ff ⊆ R (4.1)
w.r.t. x ∈ Fx ⊆ Rnx

z ∈ Fz

s.t. g(x, z) ≤ 0
gi : Fxi × Fzi → Fgi ⊆ R for i = 1, ..., ng

Due to the computational cost of the considered problem functions, optimization algorithms
commonly used in the presence of discrete variables such as mixed variable Genetic Algorithm
[121] and Mesh Adaptive Discrete Search (MADS) [4], [5], are usually inadequate, as they require
a large number of function evaluations in order to converge. Furthermore, they usually rely on
a penalization-based handling of constraints, which tends to be inefficient if not properly tuned.
An increasingly popular solution for computationally expensive problems is the Surrogate Model
Based Design Optimization (SMBDO) [105], which involves surrogate models of the numerical
functions characterizing the problem, created by using a data set of limited size, as already
discussed in Chapter 3. These surrogate models are usually considerably cheaper to evaluate when
compared to the exact problem functions, however, they also tend to introduce a modeling error
which must be taken into account and dealt with. SMBDO consists in performing a simultaneous
search for the problem optimum and refinement of the surrogate models by first determining the
location in the design space at which the problem optimum is most likely to be found according to
a given acquisition function (also referred to as infill criterion) and by then calculating the actual
system performance and constraint values at this location. Subsequently, the newly computed
data sample is added to the pre-existing data set and the surrogate models are updated. This
routine is repeated until a given convergence criterion is reached. In the literature, several different
SMBDO algorithms are proposed, each one relying on different Designs of Experiment (DoE),
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different surrogate modeling techniques and different acquisition functions. Global overviews of
the most popular SMBDO techniques and their various aspects can be found in [105]. More
detailed reviews of surrogate modeling techniques for SMBDO purposes can be found in [41],
[53], [117] and [128]. Finally, a review of the most popular data sample infill criteria is provided
by Sasena [114].

Although an extensive literature exists on the use of different surrogate modeling techniques
within the SMBDO framework, only a few surrogate modeling techniques for functions depending
on both continuous and discrete variables exist in the literature [54], [62], [104], [108], [125], [134],
[136], as is discussed in Chapter 3. Moreover, only a part of the aforementioned methods are
actually developed and applied within an optimization framework, while the others are only de-
veloped for modeling purposes. A comprehensive review and taxonomy of the existing approaches
and techniques allowing to perform mixed-variable SMBDO is provided Bartz-Beielstein and Za-
efferer [16]. Among the mixed-variable surrogate modeling techniques applied for optimization
purposes, one can find a few variants of Radial Basis Functions (RBF) based SMDBO techniques
proposed in order to deal with mixed-integer (i.e., continuous/discrete) problems [60], [73], [91],
[106]. In these cases, no particular adaptation is required with respect to the continuous case,
as the Euclidean distance-based working principle of the RBF can easily be applied to integer
variables. In [90], [132] and [133] the possibility of performing mixed-variable SMBDO by relying
on continuous surrogate modeling techniques, such as RBF, GP and linear models by replacing
the use of Euclidean distance with a different definition is considered. More specifically, both the
Hamming distance (sometimes referred to as Gower distance [51]) as well as swap and interchange
distances based on the permutations between variable levels are considered. Similarly, in [54],
[58] and [62], mixed-variable adaptations of the Efficient Global Optimization algorithm based on
the use the Hamming distance are briefly described. A surrogate model assisted mixed-variable
GA is discussed in [10] where both Generalized Linear Models (GLM) and RBF are considered.
In this case, the discrete variables are handled by grouping the training data in clusters with
respect to the discrete variable levels and subsequently defining a separate surrogate model for
each cluster. The distance between clusters is then computed through the use of the Hamming
distance. In [37] and [59] the effects of mapping the discrete variables onto dummy numerical
variables (sometimes referred to as coding) in order to rely on continuous surrogate models is
discussed. More specifically, [37] presents a mixed-variable adaptation of the moving least square
regression scheme, while [59] discusses a mixed-variable multiple kernel regression-based Support
Vector Machine (SVM) surrogate model. Both papers suggest that relying on the dummy coding
of each discrete variable characterized by l levels onto a l− 1-dimensional dummy binary variable
tends to be the most convenient approach, thanks to the fact that it results in having all the
levels equidistant from the others in the latent space, thus avoiding to insert a relation of order
in the modeling of unordered variables. A nested Mixed-Integer Efficient Global Optimization
Algorithm is proposed in [110] for the simultaneous design of an aircraft and the associated fleet
allocation. This algorithm is then extended in [109] in order to solve a wing topology optimiza-
tion problem. The proposed method is initialized with a given data set defined in the mixed
continuous/integer design space. Each one of the samples is then used as a starting point for a
gradient-based optimization within the continuous design space by fixing the integer variables.
The obtained optimal values are subsequently used as a training data set for the creation of a GP
model with respect to the integer variables. In order to reduce the number of hyperparameters
to be trained, the GP model is combined with a Partial Least Square (PLS) dimension reduction
approach [21]. This surrogate model is then used in order to define and optimize an acquisition
function which is computed as a combination of the Expected Improvement (EI) and Expected
Violation (EV) criteria, allowing to determine the most promising location of the integer design
space at which to evaluate the actual problem functions. In order to perform the acquisition
function optimization with respect to the integer variables a gradient-based B&B is proposed.
Finally, an RBF assisted mixed-variable GA is discussed in [17]. Due to the proprietary nature
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of the used software, no details on the actual implementation are provided.
Overall, the existing literature on mixed-variable SMBDO is relatively limited and, in most

cases, focuses on either defining a concept of distance (i.e., similarity or dissimilarity) applica-
ble within the discrete or mixed-variable search space and/or on mapping the discrete variable
levels onto numerical and ordered latent spaces. None of the methods discussed above propose
a surrogate modeling technique which directly handles the mixed-variable nature of the design
space. Moreover, most of existing mixed-variable SMBDO techniques are developed in order to
deal with integer variables and cannot handle optimization problems depending on generic un-
ordered discrete design variables. Finally, the handling of the constraints in the majority of the
previously mentioned optimization methods relies on direct penalization of the objective function
values for solutions that are not feasible. Although popular, this approach can be inadequate
when confronted with expensive computations as it usually leads to a large number of function
evaluations required in order for the considered optimization algorithm to converge.

In this chapter, a mixed-variable variant of the Bayesian Optimization (BO) algorithm, a
SMBDO technique which relies on the use of GP surrogate models [107], is proposed. A very
popular example of continuous BO is the Efficient Global Optimization (EGO) algorithm first
proposed by Jones [63], which relies on the Expected Improvement (EI) acquisition function. As
is discussed in Chapter 3, a few adaptations of GP allowing to model mixed-variable functions
through the definition of discrete variable kernels have been proposed. However, none of the
existing mixed-variable GP has been properly extended and applied within a BO framework,
with the exception of recent works with the Latent Variable kernel [134]. The main contribution
that is proposed in this chapter is a BO algorithm allowing to perform the SMBDO of constrained
mixed variable problems by relying on the mixed continuous/discrete GP.

Following this introduction, a brief description of the working principles of BO is provided
in the second section. Subsequently, the necessary steps required to adapt this particular type
of optimization algorithm in order to solve mixed-variable optimization problems are discussed,
with a focus on the extension of the acquisition function to the mixed-variable design space as
well as its optimization. In the third section, the proposed mixed-variable BO algorithm is tested
on a number of analytical and aerospace engineering related test-cases with different discrete
kernel parameterizations. Finally, in Section 4 the obtained results are analyzed and the relevant
conclusions are drawn. Please note that this chapter is an extension of the works presented in
[96] and [99].

4.2 Mixed-variable Bayesian Optimization
Without loss of generality, BO can be decomposed into 2 main phases. The first phase,

which is extensively discussed in Chapter 3, consists in creating a separate and independent
GP based surrogate model of the objective function as well as each constraint by relying on
a finite training data set. This chapter focuses on the second phase of BO, during which the
most promising additional data samples, in terms of objective function value and feasibility, are
identified, evaluated and added to the data set with the purpose of simultaneously refining the
surrogate model (i.e., improving the modeling accuracy and reducing its variance) and exploring
the areas of the design space which are more likely to contain the optimization problem optimum.
This refinement process is sometimes referred to as infill. The location at which each newly added
data sample is computed is determined through an auxiliary optimization of a given acquisition
function (or infill criterion). For clarity purposes, the BO algorithm is schematically represented
in Figure 4.1.
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Figure 4.1: Schematic representation of the working principle of Bayesian Optimization. X and Z
contain the continuous and discrete variable data sets, while y and g1, . . . , gng contain the associated

objective function and constraint responses.

4.2.1 Mixed variable acquisition function

Depending on the characteristics of the considered problem, different acquisition functions
may be considered. The common approach consists in defining this function as being comprised
of 2 terms. The first one is tasked with determining the location of the design space at which the
best value of the objective function is most likely to be found. The second term, instead, has the
purposes of driving the infill search towards regions of the search space where the largest number
of constraints is most likely to be satisfied.

4.2.1.1 Objective function oriented infill criterion

In this work, the first term of the acquisition function is defined as a mixed-variable adaptation
of the Expected Improvement (EI) first defined in [89]. As the name suggests, the EI represents
the expected value of the improvement I = max (ymin −Y(x∗), 0) in terms of objective function
value with respect to the data set. The original purely continuous formulation is the following:

E[I(x∗)] = E [max (ymin −Y(x∗), 0)] (4.2)

= (ymin − ŷ(x∗))Φ
(

ymin − ŷ(x∗)
ŝ(x∗)

)
+ ŝ(x∗)φ

(
ymin − ŷ(x∗)

ŝ(x∗)

)
where ymin is the minimum feasible value present within the data set at the given BO iteration,
ŷ(x∗) and ŝ(x∗) are the mean and standard deviation of the objective function prediction Y(x∗),
Φ(.) is the cumulative distribution function of a normal distribution and finally φ(.) is the prob-
ability density function of a normal distribution. In practice, the EI provides a trade-off between
the exploitation of the search space (i.e., refinement of the incumbent solution), which is mostly
driven by the first term of Eq. 4.3, and the exploration of the search space (i.e., reduction of the
modeling uncertainty over the entire design space), mostly driven by the second term.

The EI criterion is originally derived by considering purely continuous GP [89]. However,
it can be easily shown that the derivation still holds in the mixed-variable case as long as the
prediction provided by the GPs can be represented under the form of a normally distributed
variable, i.e., N

(
ŷ(x∗, z∗), ŝ2(x∗, z∗)

)
. As is discussed in Chapter 3, this property can be ensured

by defining a valid mixed-variable kernel characterized by hyperparameters within their limit
bounds. In the mixed-variable case, the EI criterion is defined over the mixed-variable design
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space Fx × Fz and can then be defined as:

E[I(x∗, z∗)] = E [max (ymin −Y(x∗, z∗), 0)] (4.3)

= (ymin − ŷ(x∗, z∗))Φ
(

ymin − ŷ(x∗, z∗)
ŝ(x∗, z∗)

)
+ ŝ(x∗, z∗)φ

(
ymin − ŷ(x∗, z∗)

ŝ(x∗, z∗)

)
For illustrative purposes, the following unconstrained continuous one-dimensional optimization
problem is considered:

min f (x) := sin(x) + sin
(

10
3

x
)

(4.4)

w.r.t. x ∈ [2.7, 7.5]

The training data, the associated GP model and EI value over the entire design space over 5
iterations of the BO process are shown in Figure 4.2.
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Figure 4.2: Example of Bayesian optimization of an unconstrained problem performed with the EI
acquisition function over 6 iterations.

As is mentioned in the previous paragraph, the EI infill criterion is based on a trade-off
between exploration and exploitation of the search space. Exploration allows to reduce the



74 Chapter 4. Mixed-variable Bayesian design optimization

modeling uncertainty over the most scarcely mapped areas of the design space, as happens for
instance in iterations number 3 and 5 of the optimization presented in Figure 4.2. Exploitation,
instead, has the objective of determining the location and objective function value of the problem
optimum, and is for instance the purpose driving the infill location choice at the iteration number
4 of the considered example. It is also worth noticing that the maximum EI value tends to
decrease along the optimization process, due to the reduction of the modeling uncertainty, and
can be used in order to define the optimization stopping criterion, as is suggested in [63].

4.2.1.2 Feasibility oriented infill criteria

In order to take into account the presence of constraints and thus providing feasible final
designs, the objective function oriented infill criterion discussed in the previous paragraph must
be combined with an auxiliary criterion. Throughout this thesis, two alternative approaches are
considered, however other solutions exist, as is for instance discussed in [33], [103], [114]. The first
approach consists in computing the acquisition function as the product between the EI and the
Probability of Feasibility (PoF) [116], which is defined as the probability that all the constraints
the problem is subject to are satisfied at a given location of the search space {x∗, z∗}:

PoF(x∗, z∗) =
ng

∏
i=1

P(Gi(x∗, z∗) ≤ 0) (4.5)

where Gi(x∗, z∗) is the GP prediction of the constraint i at the considered unmapped location.
Under the assumption that the GP prediction follows a normal distribution (i.e., Gi(x∗, z∗) ∼
N
(

ĝi(x∗, z∗), ŝ2
gi
(x∗, z∗)

)
), Eq. 4.5 can be rewritten as:

PoF(x∗, z∗) =
ng

∏
i=1

Φ
(

0− ĝi(x∗, z∗)
ŝgi(x∗, z∗)

)
(4.6)

Similarly to the EI, also the PoF definition can therefore be extended to the mixed-variable case
in a fairly straightforward fashion, as long as the mixed-variable kernel is properly defined. The
PoF can then be used in order to define an Infill Criterion (IC) allowing to optimize constrained
problems as:

IC(x∗, z∗) = E[I(x∗, z∗)]PoF(x∗, z∗) (4.7)

The location {xn, zn} at which the actual objective and constraint functions of the considered
problem are evaluated at a given BO iteration can then be determined through the optimization
of the following auxiliary problem:

{xn, zn} = argmax (IC(x, z)) (4.8)
w.r.t. x ∈ Fx ⊆ Rnx

z ∈ Fz

Alternatively, the presence of constraints can be handled by relying on the Expected Violation
(EV) criterion [8]. In a similar way to the EI, the EV represents the expected value of the violation
of a given constraint, i.e., the difference between the predicted value and the maximum acceptable
value, which is usually set to 0:

Vi = max (Gi(x∗, z∗)− 0, 0) (4.9)
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The EV for a given constraint gi(·) is defined as follows:

E[Vi(x∗, z∗)] = E[max (Gi(x∗, z∗)− 0, 0)] (4.10)

= (ĝi(x∗, z∗)− 0)Φ
(

ĝi(x∗, z∗)− 0
ŝgi (x∗, z∗)

)
+ ŝgi (x

∗, z∗)φ
(

ĝi(x∗, z∗)
ŝgi (x∗, z∗)

)
In the same way as the previously discussed infill criteria, the EV derivation still holds in the
mixed-variable case as long as the GP prediction of each constraint follows a normal distribution
(i.e., Gi(x∗, z∗) ∼ N

(
ĝi(x∗, z∗), ŝ2

gi
(x∗, z∗)

)
). If the EV is considered, the acquisition function

is not defined as the product between infill criteria, but as a constrained problem, which has an
impact on the choice of algorithm for the optimization of the acquisition function, as is discussed
in the following paragraphs. In this case, the location {xn, zn} at which the actual objective and
constraint functions of the considered problem are evaluated at a given BO iteration is determined
through the optimization of the following constrained auxiliary problem:

{xn, zn} = argmax (EI(x, z)) (4.11)
s.t. EVi(x, z) ≤ ti for i = 1, . . . , ng

w.r.t. x ∈ Fx ⊆ Rnx

z ∈ Fz

where ti is the maximum accepted violation for the constraint gi. In other words, due to the
fact that then original problem constraints (i.e., gi(·)) are modeled under the form of random
variables (Gi(·)), data samples can be infilled at locations of the search space which are associated
to non compliant expected constraint values, but only under a given tolerance threshold ti. In
general, lower values of ti tend to drive the infill process towards local exploitation, whereas larger
values enable a more widespread exploration of the design space.

Although both constraint oriented infill criteria are widely relied on, the PoF is more com-
monly used when dealing with problems characterized by a relatively low number of constraints
thanks to its simplicity and to the fact that it results in an unconstrained acquisition function
optimization problem. However, when dealing with problems with a large number of constraints,
using the PoF often returns low acquisition function values over a large portion of the design
space (as it is defined as a large product of values lower than 1). In other words, in these cases
the PoF tends to outweigh the information provided by the EI, thus rendering the infill process
more difficult [33]. Relying on the EV criterion usually allows to avoid this problem, however, it
requires to perform a constrained acquisition function optimization. Furthermore, it also requires
the user to determine a suitable violation threshold value for each considered constraint in order
to provide efficient information to the BO process, which is a challenging task in case no infor-
mation regarding the considered problem is known. The test-cases considered in the following
paragraphs of this chapter present a fairly limited number of constraints. For this reason, the
acquisition function considered in the remainder of this chapter is defined as the product between
the EI and the PoF. In Chapter 5, instead, an EV-based acquisition function is considered in
order to provide a fair comparison between candidate solutions subject to a different number of
constraints.

As is schematically represented in Figure 4.1, once the values of {x∗, z∗} that yield the optimal
acquisition function value have been determined, the exact objective and constraint functions of
the optimization problem can be computed at this location and the obtained data sample can
be added to the GP training data set. Subsequently, the surrogate models must be trained anew
in order to take into account the additional information provided by the newly computed data
sample. This routine is repeated until a user-defined stopping criterion is reached. For instance,
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in the original formulation of EGO the optimization is considered to have converged when the
maximum EI value is smaller than 1% of the best current function value [63]. In order to better
represent the conditions of real-life computationally intensive design problems, in this thesis a
pre-defined number of data samples to be infilled is selected and the BO process is repeated until
this computational budget is exhausted. This also allows to provide a fair comparison between
the considered mixed-variable BO variants in terms of convergence speed.

Finally, it is important to mention that no assumption on the type of parameterization of
the GP kernel is required when extending the infill criteria discussed above to the mixed-variable
case. Therefore, the two possible acquisition functions proposed in this section are applicable
with any of the discrete kernels described in Chapter 3.

4.2.1.3 Infill criterion optimization

For both acquisition functions defined in the previous paragraphs, an auxiliary optimization
process is necessary in order to determine the location at which the newly infilled data sample is
to be computed at each iteration of the BO algorithm. However, given that the computation time
required to evaluate either acquisition functions is negligible when compared to the computation
of the objective and constraint functions involved in complex system design problems, common
optimization algorithms may be used. The acquisition function landscape is expected to present
a large number of local optima in-between the locations of the training data-set samples. In the
purely continuous case, two common approaches for the optimization of the acquisition function
rely on either a gradient-based algorithm coupled with a large number of initializations or on global
optimization algorithms, such as heuristic algorithms. However, the search space of the acquisition
function optimization process corresponds to the design space of the considered problem. As
a consequence, when dealing with mixed-variable problems the acquisition function must be
optimized within the mixed continuous/discrete search space and is therefore subject to part
of the limitations discussed in Chapter 2 related to the presence of discrete and unoredered
variables. In this case, the acquisition function optimization can either be directly performed
in the mixed continuous/discrete search space or separately in each category of the considered
problem by subsequently choosing the category yielding the largest acquisition function value.
The latter approach tends to become computationally inefficient, if not unfeasible, when dealing
with mixed-variable problems characterized by large number of categories. For this reason, the
results presented in this work are obtained with the first approach, by optimizing the infill criterion
with the help of a mixed continuous/discrete Genetic Algorithm (GA) similar to the one presented
by Stelmack [121] and coded with the help of the python based toolbox DEAP [43]. More
specifically, an unconstrained GA is considered when relying on a PoF based acquisition function.
If the constraints are instead handled through the use of the EV criterion, the acquisition function
is optimized with the help of a GA with constraint dominance selection criterion [126]. The specific
parameters of this mixed-variable GA, such as mutation and cross-over probabilities as well as
number of generations and population size, vary between test-cases and are adapted to the size
and characteristics of the considered problem.

4.3 Applications and Results
In order to assess the actual performance of the proposed mixed-variable BO algorithm, it is

applied to a number of test-cases. Part of these benchmarks are related to the ones presented in
Chapter 3, thus facilitating to draw connections between the results obtained within a modeling
framework and the ones obtained within an optimization framework. For each benchmark, the
algorithm is tested by relying on different discrete kernels described in Chapter 3. More specif-
ically, the following kernels are considered: Compound Symmetry (CS), Latent Variable (LV),
Hypersphere decomposition (HS) and Coregionalization (CN). Furthermore, homoscedastic and
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heteroscedastic (_He) variants are considered, as well as level-wise and category-wise (_C) kernel
definitions. The objective of this benchmark is to assess the impact of the problem characteristics
as well as the parameterization of the considered discrete kernel choices on the convergence speed
of the proposed BO method. In order to provide a measure of comparison, the results obtained
with the proposed variants of the mixed-variable optimization algorithm are compared with a pe-
nalized mixed variable GA similar to the one proposed in [121], as well as a BO algorithm based
on separate and independent GP for each category of the problem (referred to with the acronym
CW). In other words, this last method relies on the independent continuous category-wise GP
which are used as a reference in Chapter 3. A separate acquisition function is then defined and
separately optimized in each category and the data sample to be infilled at a given iteration is
computed as the location yielding the largest acquisition function value among every category.

The initial data set which is provided to the BO algorithm is sampled in the same way as in
Chapter 3, by evenly and randomly distributing the data obtained through a single continuous
LHS [86] between all of the problem categories. Furthermore, in order to quantify and compensate
the influence of the initial DoE random nature, each optimization problem is solved multiple
times with different initial training data sets. The actual number of repetitions depends on the
optimization problem which is being considered.

4.3.1 Benchmark analysis

In the following paragraphs, the proposed mixed-variable BO is tested on a number of test-
cases with different kernel parameterizations. More specifically, 3 analytical functions and 2
engineering-related test-cases are considered. These benchmarks present different characteristics
in terms of continuous and discrete design space dimensions, combinatorial design space size,
complexity, presence of negative correlation and heteroscedastic trends and category-wise con-
struction. The main properties of the considered test-cases as well as the simulation details are
provided below:

Constrained Branin function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• 1 constraint

• Initial data set size: 12 samples

• Number of infilled samples: 20

• Compared methods: CW, CS, CN, HS_He, CN_C, HS_C_He, GA

• Acquisition function: EI ∗ PoF

• Simple low-dimension mixed-variable test-case

Augmented Branin function

• 10 continuous dimensions, 2 discrete dimensions, 4 categories

• 1 constraint

• Initial data set size: 40 samples

• Number of infilled samples: 120

• Compared methods: CW, CS, CN, HS_He, CN_C, HS_C_He, GA

• Acquisition function: EI ∗ PoF
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• Increase of the continuous design space size with respect to the Branin function (but iden-
tical discrete design space characteristics).

Goldstein function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• 1 constraint

• Initial data set size: 27 samples

• Number of infilled samples: 30

• Compared methods: CW, CS, LV, CN, HS_He, CN_C, HS_C_He, GA

• Acquisition function: EI ∗ PoF

• Increase in the number of categories with respect to the Branin function (but identical
discrete design space size).

Launch vehicle propulsion performance optimization

• 4 continuous dimensions, 3 discrete dimensions, 24 categories

• 8 constraints

• Initial data set size: 72 samples

• Number of infilled samples: 150

• Compared methods: CS, LV, CN, HS_He

• Acquisition function: EI ∗ PoF

• Complex and realistic simulation. Larger number of categories as well as constraints com-
pared to the analytical test-cases.

Thrust frame structural optimization

• 12 continuous dimensions, 2 discrete dimensions, 9 categories

• 5 constraints

• Initial data set size: 45 samples

• Number of infilled samples: 150

• Compared methods: CW, CS, LV, CN, HS_He

• Acquisition function: EI ∗ PoF

• Realistic simulation. Linear trends with respect to the continuous sizing variables for the
objective function.

Implementation
Similarly to the modeling performance benchmark analysis of Chapter 3, the results presented
in the following paragraphs are obtained with the following implementation. The optimization
routine overhead is written in Python 3.6. The GP models are created with the help of GPflow
[83], a Python based toolbox for GP-based modeling relying on the Tensorflow framework [1]
(version 1.13). The surrogate model training is performed with the help of a Bounded Limited
memory Broyden - Fletcher - Goldfarb – Shanno (L-BFGS-B) algorithm [24], whereas the acqui-
sition functions are optimized the help of a mixed continuous/discrete Genetic Algorithm (GA)
[121] implemented by relying on the Python based toolbox DEAP [43].
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4.3.2 Branin function

The first analytical benchmark to be considered is a constrained version of the mixed-variable
Branin function presented in Chapter 3. It depends on 2 continuous variables and 2 discrete
variables, each one presenting 2 levels, thus resulting in a total of 4 discrete categories. This
optimization problem is defined as follows:

min f (x1, x2, z1, z2) (4.12)
w.r.t. x1, x2, z1, z2

s.t. g(x1, x2, z1, z2) ≥ 0 (4.13)

with:

x1 ∈ [0, 1], x2 ∈ [0, 1], z1 ∈ {0, 1}, z2 ∈ {0, 1}

where:

f (x1, x2, z1, z2) =


h(x1, x2) if z1 = 0 and z2 = 0
0.4h(x1, x2) if z1 = 0 and z2 = 1
−0.75h(x1, x2) + 3.0 if z1 = 1 and z2 = 0
−0.5h(x1, x2) + 1.4 if z1 = 1 and z2 = 1

(4.14)

h(x1, x2) =

[(
(15x2 −

5
4π2 (15x1 − 5)2 +

5
π
(15x1 − 5)− 6)2+

10
(

1− 1
8π

)
cos(15x1 − 5) + 10

)
− 54.8104

]
1

51.9496

(4.15)

g(x1, x2, z1, z2) =


x1x2 − 0.4 if z1 = 0 and z2 = 0
1.5x1x2 − 0.4 if z1 = 0 and z2 = 1
1.5x1x2 − 0.2 if z1 = 1 and z2 = 0
1.2x1x2 − 0.3 if z1 = 1 and z2 = 1

(4.16)

The compared BO techniques are initialized with a training data set containing 12 samples (i.e.,
3 samples for each continuous independent model in the CW case) and subsequently 20 additional
data points are infilled during the optimization process. Please note that as both discrete variables
are characterized by 2 levels, the LV kernel is not considered, due to the fact that it would be
equivalent to the CS one, as is shown in Chapter 3. The results obtained for the optimization of
this constrained Branin function over 20 repetitions are presented in Figure 4.3. As a reference,
the average number of function evaluations required by a penalized mixed-variable GA (the same
one used to optimize the infill criterion) in order to reach the same median optimum value as the
compared mixed-variable BO algorithms over 20 repetitions is larger than 800 (compared to the
32 provided to the BO methods), as is shown in Figure 4.4.

The obtained results show that for this first analytical benchmark, the proposed mixed-
variable BO algorithm converges faster than the standard independent category-wise approach
as well as the GA. Indeed, all the proposed mixed-variable BO algorithm variants consistently
converge to the problem optimum, whereas the independent category-wise approach is not pro-
vided with enough computational budget in order to be able to do the same. Similarly, the GA
algorithm requires a vastly larger number of function evaluations in order to converge. Among the
proposed mixed-variable methods, no considerable difference in convergence rate can be noticed,
with the exception of the LV kernel which requires a larger number of infilled data points in order
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Figure 4.3: Comparison of the convergence rate of various discrete kernels during the BO of the mixed-
variable Branin function over 20 repetitions.
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Figure 4.4: Comparison of the convergence rates of the proposed BO algorithms and a penalized mixed-
variable GA for the mixed-variable Branin function over 20 repetitions.

to reduce the variance of the convergence rate over the various repetitions. As is shown in Chap-
ter 3, this can be explained by the fact that the LV kernel is less performant when dealing with
modeled functions which present negative correlation trends between levels or categories, as it can
only return positive covariance values. It is also interesting to note that no significant difference
in performance can be noted between the level-wise and category-wise modeling approaches for
the considered kernel parameterizations (e.g., HS_He and HS_C _He).

For illustrative purposes, the locations of the data samples infilled along the optimization
process by the different considered methods during one of the repetitions are presented in Figure
4.5. Overall, it can be seen that the 3 considered mixed-variable BO are able to easily identify
the category and the neighborhood of the global optimum. As a consequence, a large number
of data samples are infilled within this neighborhood, with the exception of a few ’exploration’
points on the feasibility threshold and on the bounds of the design space. The CW independent
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Figure 4.5: Location of the infilled data samples during one repetition of the Branin test-case optimization
for various kernel parameterizations.

BO, instead, suffers from its lower modeling accuracy and needs to explore the mixed variable
search space before being able to identify the correct category as well as the area of interest. By
consequence, a larger amount of function evaluations are performed in the non-optimal categories
and areas of the problem. Most notably, it can be seen that the CW independent BO infills a
large number of data samples in both the first and second category, as it does not seem able to
identify the optimal one (i.e., the first one).

4.3.3 Augmented Branin function

The second analytical optimization problem which is considered in this thesis is the augmented
augmented Branin function, introduced in Chapter 3, with the inclusion of a constraint. It is
characterized by 10 continuous variables and 2 discrete variables, for a total of 4 categories and
is defined as follows:

min f (x1, ..., x10, z1, z2) (4.17)
w.r.t. x1, . . . , x10, z1, z2

s.t. g(x1, ..., x10, z1, z2) ≥ 0 (4.18)
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with:

x1, ..., x10 ∈ [0, 1], z1 ∈ {0, 1}, z2 ∈ {0, 1}

where:

f (x1, ..., x10, z1, z2) =


h̃(x1, ..., x10) if z1 = 0 and z2 = 0
0.4h̃(x1, ..., x10) + 1.1 if z1 = 0 and z2 = 1
−0.75h̃(x1, ..., x10) + 5.2 if z1 = 1 and z2 = 0
−0.5h̃(x1, ..., x10)− 2.1 if z1 = 1 and z2 = 1

(4.19)

and:
h̃(x1, ..., x10) =

h(x1, x2) + h(x3, x4) + h(x5, x6) + h(x7, x8) + h(x9, x10)

5
(4.20)

with:
h(xi, xj) =(((15xj −

5
4π2 (15xi − 5)2 +

5
π
(15xi − 5)− 6)2+

10
(

1− 1
8π

)
cos(15xi − 5) + 10)− 54.8104)/51.9496

(4.21)

g(x1, ..., x10, z1, z2) =


g̃(x1, ..., x10)− 0.3 if z1 = 0 and z2 = 0
0.4g̃(x1, ..., x10)− 0.4 if z1 = 0 and z2 = 1
−0.75g̃(x1, ..., x10)− 0.2 if z1 = 1 and z2 = 0
−0.5g̃(x1, ..., x10)− 0.3 if z1 = 1 and z2 = 1

(4.22)

g̃(x1, ..., x10) =
5

∑
i=1

x2i · x2i+1 (4.23)

For the compared BO techniques, an initial training data set of 40 samples is used (i.e., 10
samples for each independent GP in the CW case) and subsequently 120 additional data samples
are infilled during the BO process. Similarly to the previous test-case, the LV kernel is not
considered, as it would be equivalent to the CS one due to the presence of 2 levels for each
considered discrete variable. The results obtained for the optimization of the augmented Branin
function averaged over 10 repetitions are shown in Figures 4.6 and 4.7. As a reference, the average
number of function evaluations required by the penalized mixed-variable GA in order to reach the
same median optimum value as the considered mixed-variable BO algorithms over 20 repetitions is
equal to 2500 (compared to the 160 provided to the BO methods). Similarly to the previous test-
case, the proposed mixed-variable BO adaptations provide more robust results when few function
evaluations are allowed if compared to the reference CW BO method. Furthermore, the results
also show that a slightly better performance from both the category-wise and level-wise variants
of the coregionalization kernel. However, differently than with the previous Branin function, it
can also be noted that over the 20 repetitions none of the compared methods converges to the
problem global optimum. Nevertheless, an analysis of the results shows that all the compared
kernels are consistently able to identify the optimal category of the problem (i.e., the incumbent
optimum at the end of each mixed-variable BO is located in said category), and it can therefore
be stated that converging to the global optimum becomes a matter of refining the incumbent
solution in the continuous design space.
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Figure 4.6: Comparison of the convergence rate of various discrete kernels during the BO of the aug-
mented mixed-variable Branin function over 20 repetitions.

CW  CS  CN
HS_He

 CN_C

 HS_C_He

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60 Optimum

Figure 4.7: Comparison of the convergence values of various discrete kernels during the BO of the
augmented mixed-variable Branin function over 20 repetitions.
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4.3.4 Goldstein function

The third and last analytical benchmark function to be considered is a constrained variant
of the mixed-variable Goldstein function described in Chapter 3 characterized by 2 continuous
variables, 2 discrete variables and 9 discrete categories. This optimization problem is defined as
follows:

min f (x1, x2, z1, z2) (4.24)
w.r.t. x1, x2, z1, z2

s.t. g(x1, x2, z1, z2) ≥ 0 (4.25)

with:

x1 ∈ [0, 100], x2 ∈ [0, 100], z1 ∈ {0, 1, 2}, z2 ∈ {0, 1, 2}

where:
f (x1, x2, z1, z2) = h(x1, x2, x3, x4) (4.26)

h(x1, x2, x3, x4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522x4

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772x3

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−
5.62199x2x3x4 · 10−5

(4.27)

g(x1, x2, z1, z2) = c1 sin
( x1

10

)3
+ c2 cos

( x2

20

)2
(4.28)

The values of x3, x4, c1 and c2 are determined as a function of z1 and z2 according to the
relations provided in Table 4.1. For the SMBDO techniques, an initial training data set of 27

z1 = 0 z1 = 1 z1 = 2

z2 = 0
x3 = 20 x4 = 20 x3 = 50 x4 = 20 x3 = 80 x4 = 20
c1 = 2 c2 = 0.5 c1 = −2 c2 = 0.5 c1 = 1 c2 = 0.5

z2 = 1
x3 = 20 x4 = 50 x3 = 50 x4 = 50 x3 = 80 x4 = 50
c1 = 2 c2 = −1 c1 = −2 c2 = −1 c1 = 1 c2 = −1

z2 = 2
x3 = 20 x4 = 80 x3 = 50 x4 = 80 x3 = 80 x4 = 80
c1 = 2 c2 = −2 c1 = −2 c2 = −2 c1 = 1 c2 = −2

Table 4.1: Characterization of the Goldstein function discrete categories

samples is used (i.e., 3 samples for each independent EGO in the CW case) and subsequently 30
additional data points are infilled during the optimization process. The results obtained for the
optimization of the constrained Goldstein function over 20 repetitions are shown in Figures 4.8
and 4.10. As a reference, the average number of function evaluations required by a penalized
mixed-variable GA (the same one used to optimize the infill criterion) in order to reach the same
median optimum value as the compared mixed-variable BO algorithms over 20 repetitions is equal
to 1600 (compared to the 57 provided to the BO methods). Also in this case, the difference in
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Figure 4.8: Comparison of the convergence rate of various discrete kernels during the BO of the mixed-
variable Goldstein function over 20 repetitions.

performance between the independent CW modeling based BO and the proposed mixed-variable
adaptations is considerable. In fact, it can be seen that these adaptations provide a consistent
convergence towards the neighborhood of the problem optimum, which is instead never the case
for the CW BO, as it is not provided with sufficient function evaluations. Overall, no noticeable
difference in performance between the various considered discrete kernels can be seen, in terms of
convergence speed. However, the objective function value at convergence shows a slightly better
and more consistent performance from the category-wise heteroscedastic HS kernel, and a slightly
worse performance from the CS kernel, which is consistent with the modeling results obtained in
Chapter 3.

4.3.5 Launch vehicle propulsion performance optimization

In order to show the potential applications of the presented mixed variable BO techniques for
actual engineering problems, the design optimization of a solid propulsion engine for a sounding
rocket is considered. Sounding rockets carry scientific experiments into space along a parabolic
trajectory. Their overall time in space is brief and the cost factor makes them an interesting
alternative to heavier launch vehicles as they are sometimes more appropriate to successfully
carry out a scientific mission and are less complex to design. The objective of the considered
multidisciplinary design optimization problem is to maximize the speed increment (∆V) of a
solid propulsion sounding rocker under geometrical, propulsion and structural constraints. Three
disciplines are involved in the considered test case: the propulsion, the mass budget and geometry
design and the structural sizing, as is shown in Figure 4.11. This mixed variable optimization
is characterized by a total of 24 categories. Due to the large number of categories, the CW
independent GP based BO is not considered for this test-case. The various continuous and
discrete design variables characterizing its performance and constraint functions are detailed in
Table 4.2. The equations provided below can be found in [70]. The objective function, which is
defined as the speed increment ∆V, can be computed through the so-called Tsiolkovsky rocket
equation:

∆V = g0 Isp ln
(

Mi

M f

)
(4.29)
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Figure 4.9: Comparison of the convergence value of various discrete kernels during the BO of the mixed-
variable Goldstein function over 20 repetitions.
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Figure 4.10: Comparison of the convergence value of various discrete kernels during the BO of the
mixed-variable Goldstein function over 20 repetitions. Focus on the mixed-variable kernels.

where g0 is the gravitational acceleration at the Earth’s surface (set to 9.80665 m/s2), Isp is
the specific impulse of the engine, Mi and M f are respectively the initial and final mass of
the rocket. Different organizations of the solid propellant in the cylindrical motor case may be
defined depending on the grain geometry inside the case, which has consequences on the level of
thrust of the solid rocket engine along the trajectory. A star grain configuration is used in the
simulation as it presents the advantage of providing a constant propellant burning surface along
the trajectory and by consequence a constant thrust. Three different engine options, each one
with different efficiency and geometrical/physical properties, are considered. In the propulsion
discipline, the propellant burning rate is computed as a function of the type of propellant (four
options are considered: Butalite, Butalane, Nitramite and pAIM-120), the propellant mass Mprop,
combustion chamber pressure Pcomb and nozzle throat diameter Dt:

ṁ =
Mprop

∆t
=

PcombπD2
t

4c∗
(4.30)
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Figure 4.11: Multidisciplinary design analysis for a solid rocket engine.

Variable Nature Min Max Levels
Dt - Nozzle throat diameter [m] continuous 0.2 1 [-]
De - Nozzle exit diameter [m] continuous 0.5 1.2 [-]
Pcomb – Chamber pressure [bar] continuous 5 300 [-]
Mprop – Propellant mass [kg] continuous 2000 15000 [-]

Typeprop - Type of propellant discrete [-] [-] Butalite, Butalane,
Nitramite, pAIM-120

Typemat - Type of material discrete [-] [-] Aluminium, Steel
Typeeng - Type of engine discrete [-] [-] type 1, type 2, type 3

Table 4.2: Variables characterizing the solid rocket engine test-case

where T is the engine thrust, ∆t is the thrust duration and c∗ is the characteristic velocity
associated to the selected type of propellant. The burning rate can then be used in order to
compute the specific impulse, as follows:

Isp = e f f
T
ṁ

= ε
T∆t

Mprop
(4.31)

where ε is an efficiency factor related to the selected type of engine (another design variable). To
avoid jet breakaway (schematically represented in Figure 4.12), a constraint on the gas expansion
is considered. In the mass budget and geometry design discipline, the masses of the solid rocket

Figure 4.12: Under or over gas expansion at the nozzle exit
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engine case and the nozzle are estimated based on the type of material, the nozzle geometry and
the propellant masses. The total initial mass is computed as the sum between the propellant
mass Mprop, the casing mass Mc and the mass of the auxiliary equipment Maux:

Mi = Mprop + Mc + Maux (4.32)

The casing mass depends on the selected type of engine as well as on the combustion chamber
pressure, and it is computed as:

Mc = ρtcD2
c π(1 + Lc/Dc) + ρtcπD2

c (4.33)

where Lc, Dc and tc are respectively the length, diameter and thickness of the cylindrical-shaped
casing, while ρ represents its density, which depends on the selected type of engine. The thickness
of the case must be determined so that it can safely withstand the combustion pressure:

tc =
PcombDc

2σu
(4.34)

where σu is the ultimate tensile strength of the selected material. Finally, the auxiliary mass is
assumed to be proportional to the sum of the propellant and casing mass. More specifically it is
computed as:

Maux = (Mprop + Mc)
5

100
(4.35)

Six constraints relative to the available volume for the propellant, the case geometry and the
nozzle geometry are present in the problem. Finally, the structure discipline includes a constraint
representing the maximal material stress, as the motor case must be able to withstand the maxi-
mum combustion chamber pressure under any possible operating condition. The performance and
constraints module estimates the speed increment which combines the rocket engine thrust, the
specific impulse, the propellant mass and the booster dry mass. The sounding rocket optimization
test-case described above can be formally defined as:

min − ∆V(Dt, De, Pcomb, Mprop, Typeprop, Typemat, Typeeng) (4.36)
w.r.t. Dt, De, Pcomb, Mprop, Typeprop, Typemat, Typeeng

s.t.: gi(Dt, De, Pcomb, Mprop, Typeprop, Typemat, Typeeng) ≤ 0 for i = 1, ..., 8

with:

Dt ∈ [0.2, 1], De ∈ [0.5, 1.2], Pcomb ∈ [5, 300], Mprop ∈ [2000, 15000],
Typeprop ∈ {0, 1, 2, 3}, Typemat ∈ {0, 1}, Typeprop ∈ {0, 1, 2}

For the SMBDO of this thrust performance optimization problem, an initial training data set of
72 samples is used (i.e., 3 samples for each independent GP in the CW case) and subsequently
150 additional data points are infilled during the optimization process. The results obtained for
the optimization of the sounding rocket engine ∆V over 10 repetitions are shown in Figures 4.13
and 4.14.

These results show a fairly similar convergence rate for all of the compared kernel up to 90
infilled data samples, at which point the CS and LV kernels are able to better refine the solution
in the optimum neighborhood. Moreover, at convergence, the LV kernel provides a better and
more consistent optimum value when compared to the other 3 kernels.
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Figure 4.13: Comparison of the convergence rate of various discrete kernels during the BO of the launch
vehicle propulsion performance optimization over 10 repetitions.
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Figure 4.14: Comparison of the convergence value of various discrete kernels during the BO of the launch
vehicle propulsion performance optimization over 10 repetitions.

4.3.6 Launch vehicle thrust frame design optimization

The second aerospace design problem considered in this chapter is the optimization of the
launch vehicle thrust frame, briefly presented in Chapter 3. More specifically, a former version
of the Ariane 6 aft bay is considered. As previously mentioned, the thrust frame is located at
the bottom of the launcher first stage and has the purpose of withstanding the weight of the
launcher as well as the thrust of the two solid rocket boosters during the lift-off phase. This
structure is composed of a cylindrical outer skin, stiffened by frames and stringers, and an inner
body comprising three major frames and an inner skin. The static loads that are considered for
this design problem are the longitudinal and lateral thrust of the two solid rocket boosters. The
boundary conditions are defined by modeling the first stage composite bottom skirt clamped to
the upper interface of the bottom skirt.

The objective of the considered design problem is to minimize the overall mass of the thrust
frame, thus improving the overall launch vehicle performance, while complying with structural
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integrity constraints. The considered design variables are the skins thicknesses ti of 12 regions in
which the bottom skirt is decomposed as well as of the number of stringers Ns and the number
of frames N f . For illustrative purposes, two possible bottom skirt configurations are provided
in Figure 4.15. The 12 thicknesses are continuous variables while the number of stringers and

Figure 4.15: Two examples of possible bottom skirt configurations. On the left figure 144 stringers and
4 frames are included while on the right one only 36 stringers and 2 frames are present.

frames are discrete variables, each one characterized by 3 possible values, thus resulting in a
total of 9 combinations (i.e., categories). For the sake of simplicity, the same range is considered
for all the thicknesses variables characterizing the problem. More specifically, the minimum and
maximum bounds are 1 and 30 mm, respectively, due to manufacturing constraints. A summary
of the variables characterizing the design problem is provided in Table 4.3. The considered design

Variable Nature Min Max Possible values
t1,12 [mm] continuous 1 30 [-]

Ns discrete [-] [-] 36, 72, 144
N f discrete [-] [-] 2, 4, 8

Table 4.3: Variables characterizing the bottom skirt structural analysis test-case

problem is subject to several constraints necessary to ensure the structural integrity of the bottom
skirt during the lift-off phase. The Von Mises stresses [40] computed on the triangular (VMt)
and quadrilateral (VMq) mesh elements of both the inner and outer skins of the structure must
be inferior to a given limit value (VMmax, which is equal to the ultimate tensile strength of
the material plus a safety margin). In a similar way, the maximal upper interface longitudinal
overflux (F), given by the maximal force at the interface, must also be constrained to a given
limit value (Fmax). This results in a total of 5 constraints that must be satisfied for a candidate
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solution to be feasible. This design problem can be formulated as follows:

min Mass(t1, . . . , t12, Ns, N f ) (4.37)
w.r.t. t1, . . . , t12 ∈ [1, 30]

Ns ∈ {36, 72, 144}
N f ∈ {2, 4, 8}

s.t.: VMt
inner(t1, . . . , t12, Ns, N f )−VMmax

inner ≤ 0

VMq
inner(t1, . . . , t12, Ns, N f )−VMmax

inner ≤ 0

VMt
outer(t1, . . . , t12, Ns, N f )−VMmax

outer ≤ 0

VMq
outer(t1, . . . , t12, Ns, N f )−VMmax

outer ≤ 0

F(t1, . . . , t12, Ns, N f )− Fmax ≤ 0

In order to evaluate the objective and constraint functions values of the considered design problem,
the MSC Nastran FEM software [82] is used. In practice, a separate finite element model is
created for every considered combination of number of stringers and frames due to the need of
a distinct meshing for every configuration. A number of static FEM analyses is then performed
with varying skins thicknesses, according to the values present in the data sets, and using the
finite element model corresponding to the discrete case the considered sample belongs to. The
lift-off conditions are simulated by considering two aligned vertical loads Fx and two opposing
horizontal loads Fy, applied on the side of the bottom skirt, as illustrated in Figure 3.20. The
compared BO techniques are initialized with a data set of 45 samples (i.e., 5 samples for each
independent GP in the CW case) and subsequently 150 additional data points are infilled during
the optimization process. The results obtained for the optimization of the thrust frame design
over 10 repetitions are shown in Figures 4.16 and 4.17. Please note that the feasible mass values
are normalized due to the proprietary nature of the finite element model. Also in this case, the
compared kernels behave similarly in the first half of the optimization process. In the second
part of the optimization, instead, it can be seen that the two simpler and linear kernels, i.e.,
LV and CS, yield a faster and more consistent convergence when compared to more complex
kernels, such as the hetersocedastic HS and CN ones. This can first of all be explained by the
linear relations existing between the responses associated to the various levels of the 2 discrete
variables. Indeed, the different responses (in terms of both mass and structural stresses) which
are obtained by varying the number of structural reinforcements (i.e., stringers and frames) are
expected to be linearly dependent. As a consequence, kernel parameterizations which define
the covariance between levels in a linear fashion are expected to provide a better modeling of the
problem functions in case a small training data set is provided. Nevertheless, even in this context,
the LV kernel is expected to provide slightly better results than the CS one when dealing with
discrete variables characterized by more than 2 levels, which is not coherent with the obtained
results. This result is most likely due to the convergence of the GP training processes towards local
optima caused by a non-ideal initialization of the hyperparameters. As mentioned in Chapter 3,
this issue can technically be avoided by providing multiple random initializations to the gradient
based marginal likelihood optimization. However, this solution tends to considerably increase
the computational overhead of the BO process, thus rendering the time required to produce the
necessary results much longer.

Finally, for illustrative purposes the best optimum (i.e., minimum mass complying with struc-
tural integrity constraints) obtained among all the performed repetitions is presented in Figure
4.18 in terms of the thicknesses characterizing the solution. Additionally, the spatial distribution
and value of the structural integrity constraints is provided in Figure 4.19. The left part of
Figure 4.19 shows that the maximum Von Mises constraint values are obtained in the junction
area between the bottom skirt and the lateral boosters. These mechanical stress peaks are located
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Figure 4.16: Comparison of the convergence rate of various discrete kernels during the BO of a launch
vehicle thrust frame design over 10 repetitions.
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Figure 4.17: Comparison of the convergence value of various discrete kernels during the BO of launch
vehicle thrust frame design over 10 repetitions.
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Figure 4.18: Skin thicknesses characterizing the optimal solution obtained for the design optimization
of the launch vehicle thrust frame.

Figure 4.19: Von Mises stress (left) and overflux (right) characterizing the optimal solution obtained for
the design optimization of the launch vehicle thrust frame.

close to the rigid static load application surface and are caused by the bending induced by the
booster thrust on the aft bay. As a consequence, the optimal skin thicknesses are larger close
to the previously mentioned load application surface (i.e., between 20 and 30 mm) in order to
ensure structural integrity. The central section of the bottom skirt, instead, presents the lower
constraint values, together with the reinforcement frames and stringers. As a consequence, the
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optimal skin thicknesses associated to these areas of the structure are small (i.e., between 1 and
2.5 mm). Similarly to the Von Mises Stress, the largest obtained overflux constraint value is
located vertically above the junction area between the bottom skirt and the lateral boosters, as
can be seen from the right part of Figure 4.19. However, the overflux constraint is not satu-
rated as its maximum value does not reach the structural constraint threshold. Overall, it can
be stated that the driving parameter of this optimization is the Von Mises stress, as neither the
overflux constraint nor the thickness design variables converge to one their respective bounds.
Furthermore, the presented optimum is located in the problem category characterized by the
smallest number of reinforcements (i.e., 36 stringers and 2 frames), and it could therefore be
worth including a non-reinforced category to the problem for further analyses. Finally, in order
to improve the overall structure mass, it could also be interesting to refine the initial division of
the bottom skirt in constant thickness sections in order to determine a better parameterization
of the optimization problem.

4.3.7 Result synthesis

Overall, the results obtained on both analytical and engineering related benchmarks show
that the proposed mixed-variable BO algorithm allows provide a considerably faster convergence
speed with respect to both the standard engineering approach (i.e., a separate surrogate model
per category) and mixed-variable heuristic optimization methods, such as the GA. Indeed, for a
part of the considered test-cases (e.g., Branin and Goldstein), the proposed methods consistently
converge to the neighborhood of the considered problem optimum, regardless of the considered
kernel parameterization, whereas the reference methods would require a large number of addi-
tional function evaluations in order to provide a similar performance. It is also interesting to
note that the difference in performance between the considered discrete kernel parameterizations
in terms of convergence speed as a function of the considered problem characteristics tends to
be less important when compared to the differences in modeling performance which are shown in
Chapter 3. This is particularly noticeable for simpler and lower dimension test-cases, as can for
instance be seen for the Branin and Goldstein benchmarks. Furthermore, the obtained results
also show that the best performing kernels for a given function in terms of modeling accuracy
do not necessarily also yield the best performance in terms of convergence speed, as can for in-
stance be noticed for the augmented Branin function, where both the level-wise and category-wise
hypersphere decomposition kernels perform slightly worse than the respective coregionalization
kernels, which is the opposite of what is obtained from the modeling performance analysis.

The difference between modeling and optimization performance can first of all be explained
by the fact that the modeling performance with respect to the constraints the considered problem
is subject should also be taken into account in order to accurately assesses the dependence on
the kernel parameterization. However, the functions which constrain the analytical test-cases are
fairly simple and smooth, and should therefore be easily modeled by the considered mixed-variable
GP, regardless of the considered kernel parameterization.

A second explanation for the difference between modeling and optimization performance is
that along the BO process, depending on the location of the infilled data samples, the marginal
likelihood landscape might become multi-modal. By consequence, the GP training for the more
complex discrete kernels, such as the coregionalization one, might require a large number of ran-
dom initialization in order to ensure its converge. On the contrary, the training of simpler kernels,
such as the CS one is more robust with respect to the training initialization, which for instance
explains its good performance in the launch vehicle thrust frame design test-case. Furthermore,
during the exploitation phases the BO algorithms tend to infill a large number of samples within
a few neighborhoods which are considered to be most promising. As a consequence, the GP
training tends to be driven by the local trends in these neighborhoods rather than by the mod-
eled function global trend. The same phenomenon can therefore also occur in the mixed-variable
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case, where a large amount of data samples infilled within a few categories of the considered
problem might worsen the overall modeling performance of the GP along the BO process. Also
in this case, simpler models should be more robust with respect to this phenomenon thanks to
the impossibility of being driven by the need to model local trends. For instance, the training of
a heteroscedastic GP might be driven by a large number of data samples infilled within a het-
eroscedastic area of an overall homoscedastic level or category, whereas the same cannot happen
when considering a simpler homoscedastic model (i.e., LV kernel). Finally, it is worth noticing
that although the compared BO algorithms are provided with small sized data samples at the
beginning of the optimization process, their relative performance seems to be more dependent
on the particular characteristics of the considered kernel (e.g., negative covariance values and
heteroscedasticity) than on the number of hyperparameters necessary to represent the kernel, if
compared to the results obtained in Chapter 3.

4.4 Conclusions
In this chapter, an extension of Bayesian Optimization methods based on the use of discrete

kernels and allowing to solve mixed-variable problems is proposed. Commonly used infill criteria,
namely the Expected Improvement, Probability of Feasibility and Expected Violation are shown
to be valid in a mixed-variable context as long as the GP kernels are properly parameterized.
Finally, the optimization of the resulting acquisition functions in the mixed-variable design space
is discussed. The mixed-variable BO methods are then applied to a number of analytical and
aerospace design related test-cases. Overall, the obtained results show that the proposed algo-
rithms provide a considerably faster convergence to the considered problems optima with respect
to the reference methods. This allows to show that by modeling mixed-variable problem functions
with the help of a single mixed-variable kernel rather than multiple purely continuous ones, it is
possible to better exploit the information provided by the training data set and by consequence
reduce the number of functions evaluations necessary to converge towards the optimum of a given
problem. Moreover, the results also allow to notice a difference in relative performance among the
considered discrete kernel parameterizations depending on whether a modeling or optimization
framework is considered. This difference is mainly due to the specific behavior of the various
kernels when dealing with training data sets containing a large part of the samples located within
a few neighborhoods, corresponding to the most promising areas of the design space.

The proposed mixed-variable BO technique provides a solution for the optimization of constrained
problems characterized by functions depending simultaneously on continuous and discrete vari-
ables. However, this approach does not allow to deal with Variable-size Design Space Problems
in their most generic formulation, as defined in Chapter 2, in which the design space and the fea-
sibility domain vary dynamically along the optimization problem as a function of the dimensional
variable values. In Chapter 5, 2 extensions of the mixed-variable BO discussed in this chapter
allowing to solve VSDSP are proposed, discussed and tested on different test-cases.





CHAPTER5
Bayesian optimization of variable-size design
space problems

5.1 Introduction
In Chapter 3 and Chapter 4, the modeling and optimization of problems depending simulta-

neously on continuous and discrete variables by relying on Gaussian processes are presented and
discussed. However, as is detailed in Chapter 2, the design problems of actual complex systems
often present the necessity of choosing between different possible technological and/or architec-
tural alternatives, which can be described with the help of different specific design variables and
subject to different constraints. This characteristic translates into problems characterized by a
design space and a feasibility domain which vary dynamically along the optimization process as a
function of so-called dimensional variables, which represent such design choices. This kind of op-
timization problems are sometimes referred to as Variable-size Design Space Problems (VSDSP)
[93]. An example of such an optimization problem is the preliminary design of launch vehicles,
for which the performance criteria and constraints depend on continuous variables (e.g., sizing
parameters) as well as on discrete design parameters (e.g., type of propulsion, choice of materials).
Furthermore, depending on dimensional variables such as the type of propulsion and propellants,
different kinds of continuous and discrete variables may need to be optimized, thus resulting in a
dynamically varying design space and feasibility domain. For illustrative purposes, a few of the
examples of dimensional variables and associated continuous and discrete design variables and
constraints which may be encountered within the context of RLV design presented in Chapter 2
are provided anew below:

• Propulsion
Different types of propulsion can be considered for each stage of a launch vehicle: solid, liq-
uid and hybrid. Due to the considerably difference in nature between these technologies, the
design parameters associated to the propulsion sub-system can be very different. Notable
examples are the type of reductant and oxydant (i.e., propellant) the engine combustion
relies on. Depending on the selected type of propulsion, the set of possible propellant choice
differs. Additionally, each type of propulsion is associated to a set of technology specific
variables. For instance, if solid propulsion is considered, the shape of the propellant grain
(i.e., circular, star-shaped) as well as the specific shape sizing must be optimized.

• Material
The structure of the various sub-systems of a launch vehicle can be either made of metallic
or composite material. While the first choice is mainly associated to a specific material



98 Chapter 5. Bayesian optimization of variable-size design space problems

and the related geometrical sizing parameters, composite materials can be associated to
the matrix and fiber choices as well as continuous parameters such as the orientation of
each composite material ply. Furthermore, the number and type of structural integrity
constraints associated each choice of material are also considerably different.

• Flight configuration
Among the alternative solutions which can allow to re-use launch vehicles, one of the options
consists in including lifting surfaces in the system design, thus enabling the launch vehicle
to glide back to the landing site. If the option of including a lifting surface in the design
is selected, a number of design variables associated to these lifting surface, such as shape
and sizing parameters, must be optimized. Furthermore, additional constraints necessary
to ensure the structural integrity of the lifting surfaces must be complied with.

A generic VSDSP can be defined as follows:

min f (x, z, w) f : Rnx(w) ×
nz(w)

∏
d=1

Fzd × Fw → Ff ⊆ R (5.1)

w.r.t. x ∈ Fx(w) ⊆ Rnx(w)

z ∈
nz(w)

∏
d=1

Fzd

w ∈ Fw

s.t. g(x, z, w) ≤ 0

gi : Fxi(w)×
nzi (w)

∏
d=1

Fzdi
× Fw → Fgi ⊆ R for i = 1, ..., ng(w)

As discussed in Chapter 2, the continuous and discrete search spaces characterizing the problem
functions described in Eq. 2.1 are not fixed, as they depend on the values of the dimensional
variables. However, although the design space may vary, the physical quantity that is represented
by the problem objective function remains the same throughout the entire optimization process.
In the same way, the feasibility domain also varies according to the values of w, which results in
different candidate solutions being subject to different constraints (in terms of type and number
of active constraints). Furthermore, it is important to highlight that the constraint functions
as well present a search space which can vary as a function of the dimensional variables values.
By consequence, the optimization problem defined in the equations above varies dynamically
along the optimization problem, both in terms of number and type of design variables as well as
feasibility, depending on the values of the candidate solution dimensional variables.

For the sake of simplicity, the possibility of having the dimensional variable search space vary
as a function of the dimensional variables themselves is not taken into consideration. However, it
can be easily shown that these particular cases can always be reformulated under the formalism
of Eq. 2.1 by considering the resulting combinatorial design variable search space.

Although VSDSP represent the majority of actual complex system design problems, very few
optimization methods or algorithms allowing to solve such problems in their generic formulation
exist. In most cases, the chosen approach in order to solve VSDSP consists in decomposing
the global problem into several fixed-size sub-problems (i.e., one per combination of dimensional
variable values) and separately optimizing each one of them. Although straightforward and eas-
ily implementable, this approach tends to quickly become computationally overly demanding
when confronted with VSDSP characterized by a large number of sub-problems, especially in
the presence of computationally intensive objective and/or constraint functions. Alternatively,
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a few algorithms have been extended in order to deal with VSDSP. In [3] a so-called hidden
gene adaptation of GA is proposed for the optimization of inter-planetary trajectories with vari-
able number of gravitational assists, resulting in the appearance and disappearance of variables
describing these orbital maneuvers. In the proposed algorithm, each candidate solution is rep-
resented by a chromosome containing the entirety of genes that can characterize the problem at
hand. However, not all the genes are taken into account when computing the value of the objec-
tive and constraint functions. The choice regarding which genes are considered and which genes
are ’hidden’ depends on the values of a limited number of so-called activation genes. This variant
of GA has the advantage of being intuitive and easily implementable. However, cross-overs and
mutations over hidden (i.e., with no influence on the problem functions) parts of the vector result
in ineffective numerical operations, thus wasting computational effort. Furthermore, for problems
characterized by a large number of discrete categories, the vector containing the entirety of possi-
bly present variables might become considerably large and therefore inefficient memory-wise. In
the same way, the authors also implemented the hidden gene approach within DE for a similar
inter-planetary trajectory planning problem in [2]. A more complex, but theoretically more ef-
ficient adaptation of GA called Structured-Chromosome Evolutionary Algorithm is proposed by
H.M. Nyew et al. in [93]. In this algorithm, the candidate solution is conceptually represented by
a hierarchical multi-level chromosome structure rather than a linear one. Differently than in the
standard formulation of GA, the genes of each chromosome are linked by both vicinity and hierar-
chy relationships. For this reason, the encoding of the single variables becomes more complex as it
also includes pointers to both the immediate neighbor at the same level and pointers to eventual
children genes. Furthermore, in case the mutation of a dimensional variable gene results in the
appearance of additional design variables, it is necessary to ensure that the newly created genes
are of the correct type and comply with the problem specifics. Compared to the hidden genes
approach, this solution has the advantage of not performing computationally wasteful mutations
and cross-overs. However, the encoding of the individual chromosomes is much more complex
and often requires problem-specific knowledge in order to be efficiently implemented.

A second family of algorithms which have been extended in order to provide a solution to
VSDSP are mesh-based optimization algorithms, as is discussed in [4], [5], [9] and [79]. Although
each paper describes a different algorithm, they share the same approach to the optimization
problem which consists in an alternation between an optional user-defined search phase and a
poll phase, in which an exhaustive and schematic optimum search over a mesh is performed.
When applying this family of algorithms to VSDSP, it is necessary to take into account the
appearance and disappearance of design variables as a function of the dimensional variables
characterizing the incumbent solution around which the mesh is centered. In order to solve this
issue, the mesh algorithms mentioned above alternate between searches over a mesh defined in the
dimensional design space and searches over a mesh defined in the continuous and discrete search
space dependent on the dimensional variables values. The application of this algorithm requires
the user to provide the definition of the neighborhood of a candidate solution in the dimensional
design space in order to create the mesh. The alternative approach consists in defining the mesh
as the entirety of the dimensional search space, which quickly becomes unfeasible when dealing
with computationally intensive problems with large combinatorial design spaces.

Both population and mesh-based algorithms for the solution of VSDSP tend to require a
large number of function evaluations in order to converge to the considered problem optimum.
Furthermore, they also rely on a penalization-based handling of constraints, which can often
be inefficient if the penalization weights are not properly tuned, especially in the presence of a
large number of constraints. For these reasons, in this chapter two alternative BO approaches
allowing to solve VSDSP with a lower number of function evaluations with respect to the existing
alternatives are proposed. The first one is based on the separate and independent optimization
of every sub-problem characterized by a fixed-size design space coupled with a budget allocation
strategy relying on the information provided by the surrogate models of the various sub-problems
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functions. The second method, instead, is based on the definition of a Gaussian Process kernel
defined in the variable-size design space, allowing to compute the covariance between data samples
which belong to a partially different design space. Following this introduction, in the second
Section the budget allocation strategy is presented, and the criteria allowing to allocate the
computational budget between sub-problems and discard non-optimal sub-problems are discussed.
In Section 3, two alternative definitions of a GP kernel allowing to compute the covariance between
data samples belonging to partially different design spaces are proposed. Subsequently, in Section
4 the two aforementioned methods for the optimization of VSDSP are applied on both analytical
and engineering related test-cases and the obtained results are presented and discussed. Finally,
in Section 5 the relevant conclusions which can be drawn from the obtained results are provided
and possible perspectives and improvements related to the proposed algorithms are discussed.

5.2 Budget allocation strategy
As mentioned in the introduction, due to the limitations of the existing algorithms allowing

to solve VSDSP, the most commonly used approach consists in decomposing the global problem
into Np fixed-size mixed continuous/discrete sub-problems which can be independently optimized
by relying on more standard algorithms, such as the mixed-variable BO presented in Chapter 4.
In practice, each sub-problem q can be obtained by fixing the dimensional variables w to a given
set of possible values wq and is formulated as follows:

min f (x, z, wq) f : Rnx(wq) ×
nz(wq)

∏
d=1

Fzd × Fw → Ff ⊆ R (5.2)

w.r.t. x ∈ Fx(wq) ⊆ Rnx(wq)

z ∈
nz(wq)

∏
d=1

Fzd

s.t. g(x, z, wq) ≤ 0

gi : Fxi(wq)×
nzi (wq)

∏
d=1

Fzdi
× Fw → Fgi ⊆ R for i = 1, ..., ng(wq)

The optimization problem presented in Eq. 5.2, obtained by fixing the values of w to wq (i.e., one
of w categories), depends on a fixed number of continuous and discrete variables and is subject
to a fixed number of constraints, and can therefore be solved by relying on the mixed-variable
BO described in Chapter 4. Alternatively, the sub-problems can be enumerated by regrouping all
the dimensional variables as a single variable w defined in the combinatorial space of w. In this
case, each sub-problem is simply defined by one of the possible levels of the scalar variable w. It
is important to remember that although the various sub-problems defined as in Eq. 5.2 can be
characterized by a different set of design variables as well as different constraints, their objective
function always models the same quantity with the same unit of measure (e.g., gross lift-off weight
or total cost of a launch vehicle), as otherwise the comparison between sub-problems would lose
meaning.

In order to determine the global optimum of a VSDSP as defined in Eq. 2.1, a separate and
independent sub-problem optimization must be performed for every possible category of w. As a
consequence, this approach quickly becomes computationally inefficient, if not unfeasible, when
dealing with optimization problems which present a large dimensional variable combinatorial
search space, due to the fact that all the non-optimal sub-problems must be optimized until
convergence regardless of the provisional results obtained along the optimization process. This
issue becomes particularly problematic when dealing with computationally intensive problems,
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which are particularly common within the context of complex system design. In order to partially
avoid this issue when dealing with VSDSP, the first approach for the optimization of variable-size
design space problems which is proposed in this chapter is based on coupling the separate and
independent optimization of each sub-problem defined by Eq. 5.2 with a computational budget
allocation strategy. For the sake of conciseness, this approach is referred to as Strategy for the
Optimization of Mixed Variable-Size design space Problems (SOMVSP). The underlying idea is
to rely on the information provided by the surrogate models of each sub-problem objective and
constraint functions along the optimization process in order to determine which sub-problems
are more likely to contain the global optimum. At every SOMVSP iteration, this information
provided by the various sub-problems surrogate models is exploited in order to allocate a different
computational budget to each sub-problem (in terms of infilled data samples) proportionally to
how promising it is. Moreover, in order to further optimize the usage of the overall computational
budget, the sub-problems least likely to contain the global optimum can also discarded between
SOMSVP iterations. In synthesis, the proposed strategy relies on two main axes: the allocation of
a different optimization computational budget to each sub-problem as a function of the predicted
optimal solution (in terms of both objective function value and feasibility), and the possibility
of discarding a given sub-problem in case its predicted relative performance with respect to the
other sub-problems crosses a given threshold. These two mechanisms are detailed in the following
paragraphs.

5.2.1 Discarding of non-optimal sub-problems

The proposed computational effort allocation logic relies on both the dimension of the con-
sidered sub-problem and its predicted relative performance with respect to the objective function
value as well as the solution feasibility. At each SOMVSP iteration, the relative performance
of each sub-problem q with respect to the others must be determined. In order to do so, three
different predicted optima are computed for each sub-problem by considering different confidence
interval scenarios: the Best Case (BC), the Worst Case (WC) and the Nominal Case (NC). In
practice, these scenarios correspond to the predicted feasible optimum value of the sub-problem
q by considering an optimistic, pessimistic and null value of the predicted variance, respectively,
and they are defined as follows:

BCq = min ŷq(x, z, wq)− a · ŝq(x, z, wq) (5.3)
s.t. EV

(
gc(x, z, wq)

)
< tc f or c = 1, ..., ngi(wq)

WCq = min ŷi(x, z, wq) + a · ŝq(x, z, wq) (5.4)
s.t. EV

(
gc(x, z, wq)

)
< tc f or c = 1, ..., ngi(wq)

NCq = min ŷq(x, z, wq) (5.5)
s.t. EV

(
gc(x, z, wq)

)
< tc f or c = 1, ..., ngi(wq)

where a ∈ R+ is a tunable parameter representing how conservative are the definitions of the
BC and WC scenarios. In practice, a represents the confidence the user gives to the GP models
modeling accuracy of the various sub-problems functions. In general, larger values of a tend to
result in more conservative and robust results, however, they also tend to reduce the convergence
speed of the proposed SOMVSP. For the sake of simplicity, only values of a = 2 and a = 3 are
considered in this chapter, which approximately correspond to confidence intervals of 95% and
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99%. It can be noted that the constraints are handled by relying on the EV rather than on the
PoF. This choice is due to the fact that the the PoF would tend to penalize the sub-problems
characterized by larger number of constraints.

For illustrative purposes, the following unconstrained one-dimensional continuous function is
considered:

f (x) = cos(x)2 + sin(x) + 0.25 (5.6)

A GP model of this function is created by relying on 7 data samples, and the Best-case, Worst-
case and Nominal-case functions associated to the given model are provided in Figure 5.1. In
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Figure 5.1: Example of Best-case, Worst-case and Nominal-case functions.

practice, by considering the minimum value of the Best-case and the Worst-case scenario, it is
then possible to define an optimum range, in which the optimum of the modeled function is most
likely to be, with a given confidence (proportional to the value of a). This is illustrated in Figure
5.2. Please note that the considered example is unconstrained. In the presence of constraints,
the presented scenario would only be defined in the regions of the design space for which the EV
of each constraint is lower than the given limit.

At the beginning of each SOMVSP iteration, the BC and the WC values are used in order
to compare the predicted performance of each sub-problem and use this information in order to
discard the less promising ones. More specifically, if the WC predicted feasible optimum of a
given sub-problem yields a lower value than the BC predicted feasible optimum of a different
sub-problem, it is expected that the latter is not worth further exploring as it will most likely
not contain the global optimum. In this case, the non-optimal sub-problem is discarded and is
not further explored for the rest of the optimization process. This is equivalent to determining
whether the optimum range associated to two given sub-problems overlap or not. In practice, a
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Figure 5.2: Example of a function optimum range, defined as the interval between the BC and the WC

sub-problem q is discarded if:

BCq ≥WCp for p = 1, ..., Np and p 6= q (5.7)

This condition must be evaluated for ever remaining sub-problem at the given iteration. For
illustrative purposes, the comparison between 2 sub-problems is illustrated in Figure 5.3. As can
be noticed, on the left side of the figure the variance associated to the two models is considerable,
and the optimum ranges overlap. Therefore, in this case none of the two sub-problems would be
discarded. Instead, the right size of the figure shows the comparison between the GPs obtained
with a few more data samples per sub-problem. In this case the models are more accurate and
the associated variance is smaller. As a consequence, it can be seen that the predicted optimum
of sub-problem 1 yields a lower value than the one of sub-problem 2 with a given confidence level.
In this case, the sub-problem 2 will be discarded as it is most likely that it does not contain
the global optimum. Once the non-optimal sub-problems have been discarded (if present), the
computational budget for the given SOMVSP iteration is allocated among the remaining sub-
problems.

5.2.2 Computational budget allocation

At every SOMVSP iteration, the discarding of non-optimal sub-problems is followed by the
allocation of a different computational budget to each remaining sub-problem. More specifically,
at every iteration a budget of Bq data samples to be infilled is allocated to each remaining sub-
problem q. In order to fairly compare sub-problems characterized by a potentially considerably
different number of design variables, Bq is computed by taking into account both the predicted
performance of a given sub-problem as well as its dimension, and it is defined as follows:

Bq = dq

(
1 + ∆q

2

)
(5.8)

where dq is the total dimension of the sub-problem q (i.e., sum of the continuous and discrete
dimensions), while ∆q is a term representing the relative performance of the considered sub-
problem with respect to the remaining others. It is computed as:

∆q =
NCmax − NCq

NCmax − NCmin
(5.9)
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Figure 5.3: Example of comparison between optimum ranges between two Sub-Problems (SP) over
different iterations. In the left figure, the optimum ranges of the two SP overlap and it is therefore not
possible to accurately predict whether one of the two contains the global optimum. In the right figure,
instead, the two optimum ranges do not overlap and it is therefore possible to discard the SP2 as it does

most likely not contain the global optimum.

where NCmax and NCmin are respectively the largest and lowest NC values among the remaining
sub-problems. As a result, a budget equal to half its total dimension is assigned to the least
promising sub-problem, whereas a computational budget equal to its total dimension is assigned
to the most promising one.

5.2.3 Bayesian optimization of remaining sub-problems

Following the computational budget allocation, each remaining sub-problem is independently
optimized with the help of a mixed-variable BO similar to the one presented in Chapter 4,
and by infilling a number of data samples proportional to the allocated budget. Due to the
possibility of having different sub-problems characterized by a considerably different number of
constraints, defining the BO acquisition function through the use of the Probability of Feasibility,
as discussed in Chapter 4, might result in an uneven comparison between data samples as well
as in uneven optimization performance between sub-problems. For this reason, the acquisition
function considered when relying on the SOMVSP is the Expected Improvement under maximum
Expected Violation constraints. The newly infilled data sample for each sub-problem is therefore
defined as follows:

{xn, zn} = argmax (EI(x, z)) (5.10)
s.t. EVi(x, z) ≤ ti for i = 1, . . . , ng

w.r.t. x ∈ Fx, z ∈ Fz

Please note that in this case, x and z refer to continuous and discrete variables the considered
sub-problem depends on. By consequence, the acquisition function optimization is performed in
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a different search space for each considered sub-problem. Similarly, each infill process is only
subject to the EV related to the constraints the considered sub-problem is subject to.

In Eq. 5.10 the values of ti are constant. However, the possibility of reducing the values
of ti along the optimization process can also be considered. If properly tuned, this can allow
to favor the exploration of the design space during the early stages of the optimization and
subsequently favor the exploitation of the incumbent solution. Nevertheless, for clarity and
synthesis purposes, the results obtained in this work are obtained by considering ti to be constant
along the optimization.

5.2.4 Algorithm overview

In the previous paragraphs, the main steps comprising an iteration of the proposed SOMVSP
are detailed. By repeating this process, the number of remaining sub-problems is expected to
gradually decrease, thus allowing to focus the computational budget on the most promising ones.
In general, the proposed optimization strategy continues until a stopping criterion is reached.
In this work, a predefined total computational budget (i.e., number of function evaluations) is
allocated to the optimization process, which performs SOMVSP iterations until the computational
budget is depleted. This choice allows to analyze the performance of the proposed algorithm
in a context of computationally intensive design problems. For illustrative purposes, a visual
representation of the SOMVSP algorithm is provided in Figure 5.4.
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Figure 5.4: Budget allocation strategy for the optimization of variable-size design space problems.

The SOMVSP described in the previous paragraphs relies on the idea of using the information
provided by the various sub-problems GP models in order to determine which ones are more
likely to actually yield the global optimum, and allocating the computational budget accordingly.
However, it might be important to note that the criteria which are used in order to determine
how promising a given sub-problem is and how to allocate the computational budget among
sub-problems are defined empirically. Therefore, these criteria might require to be adapted or
redefined in order to better suit the characteristics of particular considered VSDSP, while still
relying on the same working principle. The optimization results which can be obtained with the
proposed SOMVSP on two different test-cases are shown in Section 5.4.
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5.3 Variable-size design space kernel
The Budget allocation strategy for the optimization of variable-size design space problems

presented in Section 5.2 provides a more efficient alternative than the separate and independent
optimization of every fixed-sized sub-problem when dealing with VSDSP, as is shown in Section
5.4. However, for particularly complex and computationally costly problems characterized by
a large dimensional variables combinatorial search space, the proposed method might still not
be viable. For this reason, an alternative approach for the optimization of VSDSP is proposed
in this Section. The underlying idea is to adapt the mixed-variable BO discussed in Chapter
4 for the solution of variable-size design space problems by defining a single Gaussian Process
for each variable-size design space function characterizing a given problem (i.e., objective and
constraints). In order to do this, it is necessary to define a kernel allowing to characterize the
covariance between data samples which belong to partially different design spaces, and therefore
contain partially different sets of variables. In this Section, two alternative definitions for a
variable-size design space kernel are discussed, and the adaptations required to optimize an infill
criterion in a variable-size design space are commented. The first proposed approach relies on
grouping the GP training data according to the sub-problem the samples belong to, in order to
allow computing the covariance between different sub-problems. The second proposed approach,
instead, relies on grouping the training data according to their dimensional variables values, thus
providing a more complex but more accurate modeling of variable-size design space functions.

5.3.1 Sub-problem-wise decomposition kernel

As discussed in Section 5.2, a generic VSDSP can be decomposed into Np sub-problems, each
one characterized by a fixed-sized mixed variable search space. Furthermore, each sub-problem
can be seen as a level of a single (scalar) dimensional variable w defined in the combinatorial space
of w, which characterizes the sub-problem the considered sample belongs to. A first possible way
of defining a kernel in a variable-size design space consists in separately computing the within
sub-problem covariance (i.e., covariance between samples belonging to the same sub-problem)
and the between sub-problems covariance (i.e., covariance between data samples belonging to
different sub-problems). By definition, the within sub-problem covariance can be represented
through a mixed-variable kernel, as discussed in Chapter 3. The between sub-problems covariance,
instead, can be represented as a discrete kernel defined on the search space of the (combinatorial)
dimensional variable w. The global variable-size design space kernel can then be computed as
the sum between the within sub-problem and between sub-problems covariances. This approach
is referred to as Sub-Problem-Wise (SPW) decomposition in the remainder of this chapter.

Let q be one of the Np levels of the dimensional variable w and let xq and zq be the continuous
and discrete variables on which the objective and constraint functions associated to the sub-
problem q depend. The first proposed variable-size search space kernel is defined as follows:

k
(
(x, z, w), (x′, z′, w′)

)
=

Np

∑
q=1

kxq(xq, x′q) · kzq(zq, z′q) · δq(w, w′) + kw(w, w′) (5.11)

where δq(w, w′) is a simil-Kronecker function which yields 1 in case both w and w′ are equal to
q, and 0 otherwise:

δq(w, w′) =

{
1 if w = w′ = q
0 else

(5.12)

This function can be seen as a kernel constructed in the following fashion:

δq(w, w′) = kw(w, w′) = 〈φδq(w), φδq(w
′)〉 = φδq(w) · φδq(w

′) (5.13)
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with φδq defined as a mapping function returning 1 for input values equal to q and 0 otherwise:

φδq(w) =

{
1 if w = q
0 else

(5.14)

The kernel defined in Eq. 5.11 is defined through sums and products of one-dimensional kernels.
By consequence, the validity of the global kernel can be ensured as long as each one-dimensional
kernel is properly defined, which is already discussed in Chapter 3. The dimensional variable
kernel kw characterizing the covariance between the sub-problems, instead, only depends on the
dimensional variable which is shared by all data samples. It can be constructed with the same
logic as for discrete variables and, for clarity purposes, the same parameterizations as for the
discrete variables are used for kw in this work. However, in order to allow for a more refined
modeling of the function trends, a heteroscedastic adaptation might be necessary. In practice,
Eq. 5.11 is defined so that in case the two considered individuals belong to the same sub-problem,
one of the Np terms of the sum contributes to the covariance value while the remaining Np − 1
yield 0. As a result, the total covariance value is computed as the sum between the within
sub-problems covariance and the between sub-problem variance. If instead the two individuals
do not belong to the same sub-problem, the covariance value is only computed as the between
sub-problem covariance, as all the Np terms of the sum are null.

Similarly to what is proposed by Roustant et al. [108] for the modeling of discrete variables with
large number of levels, the global variable-size design space kernel can also be represented under
the form of a symmetric block matrix,

A =


W1 + B1,1 B1,2 . . . B1,Np

B2,1 W2 + B2,2
. . . ...

... . . . . . . BNp−1,Np

BNp,1 . . . BNp,Np−1 WNp + BNp,Np

 (5.15)

where Wq is the within sub-problem covariance matrix associated to the sub-problem q and
computed as:

Wq = kxq(xq, x′q) · kzq(zq, z′q) (5.16)

while Bq,p represents the covariance between the sub-problems q and p computed as:

Bq,p = kw(w = q, w′ = p) (5.17)

The kernel described above allows to compute the covariance between data samples which belong
to partially different search spaces by grouping the samples according to the sub-problem they
belong to. However, this approach does not allow to exploit the information which may be pro-
vided by the fact that part of the design variables can be shared between data samples belonging
to different sub-problems. In order to better exploit this additional information, an alternative
variable-size design space kernel based on a decomposition by dimensional variable rather than
by sub-problem is proposed in the following paragraphs.

5.3.2 Dimensional variable-wise decomposition

Without loss of generality, the generic VSDSP defined in Eq. 2.1 can formulated in such a
way that each dimensional variable is associated to a specific number of continuous and discrete
variables which may be active (or not) depending on its value. In the same way, it is also possible
to formulate the problem in such a way that each continuous or discrete variable which does not
always influence the problem function only depends on a single dimensional variable. In practice,
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this translates into having a search space and a feasibility domain that directly depend on the
dimensional variables levels, rather than on the dimensional variables category (i.e., dimensional
variable level combinations). The global VSDSP can therefore be decomposed into groups of
design variables which depend on a given dimensional variable, plus the continuous and discrete
variables which are shared among all the sub-problems. Within the framework of complex system
design, this decomposition of the problem can be seen as the variable-size modeling of the different
components characterizing a given system. For instance, a dimensional variable can characterize
the type of engine to be installed on a launch vehicle stage. Depending on this choice, different
engine design parameters can influence the system performance functions. Symmetrically, the
engine design parameters only depend on the type of engine that is chosen, and is not influenced
by other dimensional variables, such as the possible presence of lifting surfaces.

If this formulation of VSDSP is considered, an alternative variable-size design space kernel
can be defined by considering a separate and independent kernel for each dimensional variable
(i.e., sub-system) and the continuous and discrete variables which depend on it. In fact, it can
be noticed that each dimensional variable related to a number of possibly active continuous and
discrete design variables depending on its value is equivalent to a VSDSP characterized by a sin-
gle dimensional variable, and can therefore be modeled through the SPW decomposition kernel
described in the previous paragraph. The second variable-size design space kernel proposed in
this chapter can then be computed as a product of nw SPW kernel (i.e., one for each dimensional
variable). This approach is referred to as Dimensional Variable-Wise (DVW) decomposition in
the remainder of this chapter. Let xdl and zdl be the ’active’ continuous and discrete variables
associated to level l of the dth dimensional variable (i.e., wd = l). Let xs and zs be the contin-
uous and discrete variables which are ’shared’ between all the samples and do not depend on a
dimensional variable. The DVW decomposition kernel can be computed as follows:

k
(
(x, z, w), (x′, z′, w′)

)
=

nw

∏
d=1

 lwd

∑
l=1

kxdl
(xdl

, x′dl
) · kzdl

(zdl
, z′dl

) · δl(wd, w′d) + kwd(wd, w′d)


kxs(xs, x′s) · kzs(zs, z′s) (5.18)

where lwd is the total number of levels characterizing the dth dimensional variable wd. In this
case, each term of the product of Eq. 5.18 can be schematically represented by an nwd × nwd

matrix Ad defined in the same way as the matrix presented in Eq. 5.15.

Ad =


Wd1 + Bd1,1 Bd1,2 . . . Bd1,nwd

Bd2,1 Wd2 + Bd2,2

. . . ...
... . . . . . . Bdnwd−1,nwd

Bdnwd ,1 . . . Bdnwd ,nwd−1 Wdnwd
+ Bdnwd ,nwd

 (5.19)

The DVW decomposition kernel offers a more accurate modeling of VSDSP with respect to the
SPW alternative as it allows to exploit the information which can be provided by design variables
shared between data samples belonging to different sub-problems (i.e., variables shared between
different levels of a given dimensional variables). However, this kernel definition is also more
complex and is usually characterized by a larger number of hyperparameters. As a consequence,
the training of the GP model might be more difficult in case an insufficient amount of training
data is provided.
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5.3.3 Variable-size design space Gaussian Process training

Although the two alternative kernels defined in the previous paragraph allow to compute the
covariance between samples defined in a variable-size design space, they are computed through
sums and products of the purely continuous and purely discrete kernels discussed in Chapter 3.
As a consequence, the training of the proposed variable-size design space GP only requires to
optimize the marginal likelihood in a fixed-size continuous search space. By consequence, also
for variable-size design space GP the training is performed with the help of a L-BFGS-B [24]
algorithm in the same fashion as is discussed in Chapter 3.

5.3.4 Infill criterion optimization

In order to perform the BO of VSDSP, it is necessary to define and optimize an acquisition
function within the variable-size design space allowing to determine the most promising locations
of this search space. In this chapter, the data sample {xn, zn, wn} to be infilled at each iteration
of the proposed VSDSP BO is computed by relying on the following infill criterion:

xn, zn, wn = argmax(EI(x, z, w)) (5.20)
s.t. EV

(
gc(x, z, wq)

)
≤ tc for c = 1, ..., ng(w)

w.r.t. x ∈ Fx(w) ⊆ Rnx(w)

z ∈
nz(w)

∏
d=1

Fzd

w ∈ Fw

Similarly to the SOMVSP proposed in Section 5.2, the PoF used in Chapter 4 is not applicable
in this case, as it would penalize the candidate solutions which are subject to a larger number of
constraints. For this reason, the EV criterion is used in order to take into account the presence
of constraints. It can be noticed that the optimization problem defined in Eq. 5.20 is also
defined in the variable-size design space, and it is therefore necessary to solve an auxiliary VSDSP
optimization. However, the objective and constraint functions of this optimization auxiliary
problem present a negligible computational cost when compared to the actual problem. By
consequence, the infill criterion optimization problem can be solved by relying on heuristic VSDSP
optimization algorithms, such as the GA variant proposed in [93]. However, due to the fact that
the implementation of these heuristic VSDSP algorithm requires problem specific inputs and
parameterization, the results presented in this chapter are obtained by optimizing a separate
acquisition function for each sub-problem, and by selecting the data sample which yields the best
acquisition function value among all the sub-problems:

{xn, zn, wn} =argmax



argmax
(
EI(x, z, wq)

)
s.t. EV

(
gc(x, z, wq)

)
< tc for c = 1, ..., ng(wq)

w.r.t. x ∈ Fx(wq) ⊆ Rnx(wq)

z ∈ ∏
nz(wq)

d=1 Fzd


(5.21)

for q = 1, . . . , Np

The Np optimization problems defined by Eq. 5.21 are standard mixed-variable optimization
problems. By consequence, similarly to the SOMVSP discussed in Section 5.2, the results pre-
sented in this article are obtained by optimizing the infill criterion with the help of a mixed
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continuous/discrete GA similar to the one used in Chapter 3, with the exception that a con-
straint dominance mechanism is included in the selection criterion in order to ensure the converge
towards feasible solutions (i.e., solutions for which all the EV values are lower than the given
threshold).

5.4 Applications and Results
In order to assess and compare the performance of the two proposed BO-based approaches

(i.e., SOMVSP and variable-size design space kernel based BO) for the optimization of VSDSP,
two test-cases with different characteristics are considered. More specifically, an analytical test-
case and an aerospace engineering design problem are optimized. The proposed methods are
applied to each benchmark with different discrete kernel parameterizations as well as different
parameters (i.e., SPW and DVW approaches for the variable-size design space kernel and differ-
ent values of a for the SOMVSP). Please note that for clarity purposes, the SOMVSP results are
referred to with the acronym BA (Budget Allocation). The objective is to assess the relative per-
formance between the two proposed approaches as well as the impact of the considered algorithm
parameters on the resulting convergence speed. The 2 discrete kernel parameterizations which
are considered for these benchmarks are the Compound Symmetry (CS) and the Latent Vari-
ables (LV), due to their robustness with respect to the characteristics of the modeled functions
as well as the scaling of the number of hyperparameters as a function of the problem discrete
search space size. Because of the implementation limitations and poor performance of the few
existing heuristic algorithms allowing to solve VSDSP, the reference method which is considered
for the presented benchmarks is defined as a separate and independent mixed-variable BO of
each sub-problem characterizing the considered VSDSP (referred to as IO). The mixed-variable
BO is very similar to the algorithm presented in Chapter 4, with the main difference being that
the acquisition function is defined as the EI under EV constraints rather than as the product
between the EI and the PoF. The total computational budget allocated for each given test-case is
distributed among the sub-problems proportionally to their total dimension. The initial data set
which is provided to compare optimization algorithms is sampled on the global design space, i.e.,
on every continuous and discrete design variable the considered problem depends on. The contin-
uous variables are sampled through a single continuous LHS [86], while the discrete variables are
drawn from a uniform discrete distribution. Finally, these data samples are randomly associated
to each sub-problem (or to a dimensional variable category). The number of samples allocated
to each sub-problem is proportional to its total dimension (i.e., sum of continuous and discrete
dimensions). In order to quantify and compensate the influence of the initial DoE random nature,
each optimization problem is solved multiple times with different initial training data sets. The
actual number of repetitions depends on the optimization problem which is being considered.

5.4.1 Benchmark analysis

In the following paragraphs, the 2 proposed alternative solutions for the optimization of
VSDSP are tested on a number of test-cases with different kernel parameterizations and different
parameters. More specifically, an analytical problem and an aerospace engineering design test-
case are considered. These benchmarks present different characteristics in terms of number of
sub-problems, combinatorial complexity of the dimensional variable design space, as well as in
terms of sub-problem design space dimensions and sub-problem specific constraints. The main
properties of the considered test-cases as well as the simulation details are provided below:

Variable-size design space Goldstein function

• 5 continuous variables, 4 discrete variables, 2 dimensional variables

• 8 sub-problems
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• 648 equivalent continuous problems

• 1 constraint

• Initial data set size: 104 samples ( i.e., 2 samples per dimension of each sub-problem)

• Number of infilled samples: 104

• Compared methods:
- Independent mixed-variable BO of each sub-problem (IO) with both CS and LV kernels
- SOMVSP (BA) with CS and LV kernels and values of a of 2 and 3

- Variable-size design space kernel BO with CS and LV kernels with both SPW and DVW
approaches

• Acquisition function: EI under EV constraints

Multi-stage launch vehicle design

• 18 continuous variables, 14 discrete variables, 3 dimensional variables

• 6 sub-problems

• 29136 equivalent continuous problems

• 19 constraint

• Initial data set size: 122 samples (i.e., 1.5 sample per dimension of each sub-problem)

• Number of infilled samples: 58

• Compared methods:
- Independent mixed-variable BO of each sub-problem (IO) with both CS and LV kernels
- SOMVSP (BA) with CS and LV kernels and values of a of 3

- Variable-size design space kernel BO with CS and LV kernels with both SPW and DVW
approaches

• Acquisition function: EI under EV constraints

• Large number of continuous and discrete design variables. Large number of constraints.

Implementation
Similarly to the modeling performance benchmark analysis of Chapter 3, the results presented
in the following paragraphs are obtained with the following implementation. The optimization
routine overhead is written in Python 3.6. The GP models are created with the help of GPflow
[83], a Python based toolbox for GP-based modeling relying on the Tensorflow framework [1]
(version 1.13). The surrogate model training is performed with the help of a Bounded Limited
memory Broyden - Fletcher - Goldfarb – Shanno (L-BFGS-B) algorithm [24], whereas the acquisi-
tion functions are optimized the help of a constraint domination based mixed continuous/discrete
Genetic Algorithm (GA) [121] implemented by relying on the Python based toolbox DEAP [43].
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5.4.2 Variable-size design space Goldstein function

The first analytical test-case that is considered in this Chapter is a modified variable-size
design space version of the Goldstein function considered for modeling purposes in Chapter 3
and constrained optimization purposes in Chapter 4. The global VSDSP is characterized by 5
continuous variables, 4 discrete variables and 2 dimensional variables. Depending on the dimen-
sional variable values, 8 different sub-problems can be identified, with total dimensions of 6 or
7, ranging from 2 continuous variables and 4 discrete variables to 5 continuous variables and 2
discrete variables. All of the sub-problems are subject to a variable-size design space constraint.
The resulting optimization problem can be defined as follows:

min f (x, z, w) (5.22)
w.r.t. x = {x1, . . . , x5} with xi ∈ [0, 100] for i = 1, 5

z = {z1, . . . , z4} with zi ∈ {0, 1, 2} for i = 1, 4
w = {w1, w2} with w1 ∈ {0, 1, 2, 3} and w2 ∈ {0, 1}

s.t.: g(x, z, w) ≤ 0

where:

f (x, z, w) =



f1(x1, x2, z1, z2, z3, z4) if w1 = 0 and w2 = 0
f2(x1, x2, x3, z2, z3, z4) if w1 = 1 and w2 = 0
f3(x1, x2, x4, z1, z3, z4) if w1 = 2 and w2 = 0
f4(x1, x2, x3, x4, z3, z4) if w1 = 3 and w2 = 0
f5(x1, x2, x5, z1, z2, z3, z4) if w1 = 0 and w2 = 1
f6(x1, x2, x3, x5, z2, z3, z4) if w1 = 1 and w2 = 1
f7(x1, x2, x4, x5, z1, z3, z4) if w1 = 2 and w2 = 1
f8(x1, x2, x3, x5, x4, z3, z4) if w1 = 3 and w2 = 1

(5.23)

and:

g(x, z, w) =


g1(x1, x2, z1, z2) if w1 = 0
g2(x1, x2, z2) if w1 = 1
g3(x1, x2, z1) if w1 = 2
g4(x1, x2, z3, z4) if w1 = 3

(5.24)

For clarity purposes, the analytical definitions of f1(·), . . . , f8(·) and g1(·), . . . , g4(·) are not pro-
vided in this chapter but can be found in Appendix C. A synthesis of the characteristics of the
various sub-problems comprising the considered variable-size design space function problem is
presented in Table 5.1. Furthermore, the value ranges of the feasible objective function for each
sub-problem is shown in Figure 5.5. It can be seen that the feasible values of the different sub-
problems overlap over a large part of their objective function range, thus making the identification
of the optimal sub-problem challenging.

The compared algorithms are initialized with a total data set of 104 data samples, which is
equivalent to providing 2 samples for every dimension of each of the 8 considered sub-problems.
Subsequently, the optimizations are performed by relying on 104 additional function evaluations.
The results obtained over 10 repetitions are provided in Figures 5.6, 5.7, 5.8 and 5.9
Overall, the results show that all the variants of the proposed algorithms, namely the SOMVSP
and the variable-size design space kernel based BO algorithm, provide a faster and more consis-
tent convergence towards the considered VSDSP optimum when compared to the independent
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Sub-problem SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7 SP 8
N◦ continuous variables 2 3 3 4 3 4 4 5
N◦ discrete variables 4 3 3 2 4 3 3 2
N◦ constraints 1 1 1 1 1 1 1 1

Global VSDSP
N◦ continuous variables 5
N◦ discrete variables 4
N◦ dimensional variables 2
N◦ discrete categories 648
N◦ constraint 1

Table 5.1: Defining characteristics of the sub-problems comprising the variable-size design space Gold-
stein function optimization problem.
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Figure 5.5: Value range of the feasible objective function for each sub-problem of the variable-size design
space Goldstein function.

optimization of each sub-problem. For the SOMVSP, this difference can be explained by the fact
that the proposed strategy allows to better focus the computational budget towards the most
promising sub-problems through budget allocation and sub-problem discarding. By consequence,
very few function evaluations are wasted onto the least promising sub-problems. For the variable-
size design space kernel based BO algorithm, instead, the better performance can be explained
by the fact that the GP models are created and trained by relying on the entirety of the available
data (i.e., the data set in the variable-size design space) and can therefore better exploit the
available information. On the other hand, the IO of each sub-problem relies on GP which are
created by relying only on data sets specific to each sub-problem, and rely therefore on a lower
amount of information. As a consequence, the resulting modeling performance of the problem
functions is expected to be less accurate.

When considering the relative performance between the 2 proposed methods (and their vari-
ants), the results show a better convergence of the variable-size design space kernel based BO
algorithm with respect to the SOMVSP, in terms of both convergence rate, as can be seen in
Figure 5.6, as well as optimum value at convergence, as is shown in Figure 5.7. As previously
mentioned, this can be explained by the fact that the variable-size design space BO can rely
on the entirety of the available data, whereas the SOMVSP only performs optimizations with
respect to sub-problem specific data sets. Therefore, even in the case in which the SOMVSP has
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Figure 5.6: Comparison of the convergence rate of various VSDSP optimization algorithms during the BO
of the mixed-variable Goldstein function over 10 repetitions. The continuous lines represent the SOMVSP
alternatives, the dashed lines represent the variable-size design space kernel BO alternatives and the dotted

lines represent the independent optimization of each sub-problem.
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Figure 5.7: Comparison of the convergence value of different VSDSP optimization algorithms on the
variable-size design space Goldstein function over 10 repetitions.

identified the optimal sub-problem and discarded all the others, the variable-size design space
BO may still converge faster thanks to the information it can extrapolate from the data samples
belonging to non-optimal sub-problems.

When analyzing the results provided by the different SOMVSP variants, a difference in conver-
gence rate can be noticed for different values of a (but identical kernels). Indeed, the optimizations
performed with a value of a = 2 provide a faster convergence when compared to the ones obtained
with a value of a = 3. This is related to the fact that lower values of a result in a more frequent
discarding of sub-problems, which can then result in a better allocation of the computational
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Figure 5.8: Comparison of the convergence value of different VSDSP optimization algorithms on the
variable-size design space Goldstein function over 10 repetitions. Focus on the variable-size design space

kernel based BO algorithms.

resources. However, lower values of a can also cause the proposed algorithm to discard the opti-
mal sub-problems during the early stages of the optimization, when insufficient data is provided
in order to make accurate choices. This phenomenon can, for instance, be noticed in the larger
variance of the results obtained with the CS kernel and a value of a = 2 when compared to the
ones obtained with the CS kernel and a value of a = 3. In order to better illustrate the effect
of considering different values of a, the evolution of the remaining number of sub-problems along
the optimization for different kernels is shown in Figure 5.9. As previously discussed, it can be
seen that lower values of a result in a faster discarding of sub-problems (if the same kernel is
considered). Furthermore, it can also be noticed that relying on the LV kernel tends to result in a
faster discarding of problems when compared to the CS, which is related to the different accuracy
of the model of error, as is mentioned in Chapter 3. Finally, the figure also shows that from half
of the optimization onward, all of the compared SOMVSP variants tend to have discarded all the
problems but one.

When analyzing the results provided by the variable-size design space kernel based BO vari-
ants, the first noticeable result is a considerably faster convergence of the DVW variant when
compared to the SPW one. Indeed, the DVW variant consistently converges around the 10th
infilled point, whereas the SPW variant requires more or less half of the allocated budget in order
to yield the same performance. This difference is related to the fact that the DVW kernel is
defined in such a way that it can rely on the variables shared between the different sub-problems
in order to better model the considered function, while the SPW kernel only computes the co-
variance between samples defined in different sub-problems through their dimensional variable
values. This difference becomes more noticeable when the CS discrete kernel is considered, due to
the fact that it relies on a single covariance value between all of the sub-problems. However, note
that this is not true for the DVW kernel, as in this case the covariance between sub-problems
is computed as the product between the covariances between the values of the two dimensional
variables. Finally, no significant difference of performance between the variable-size design space
kernel based BO variants can be noticed from the values at convergence shown in Figure 5.8, with
the exception of a slightly larger variance for the CS based SPW kernel. This can be explained
by the fact that all of these compared methods are provided with enough function evaluations in
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Figure 5.9: Comparison of the number of remaining sub-problems along the optimization process for
different parameterizations of the SOMVSP on the variable-size design space Goldstein function over 10

repetitions.

order to properly refine the incumbent solution.

In order to better compare the performance of the different variable-size design space kernel
based BO variants, the optimizations presented in the paragraph above are repeated by providing
a smaller initial data set (i.e., 52 data samples, 1 per dimension of each sub-problem) and a lower
number of additional function evaluations (i.e., 52 data samples). The results obtained over 10
repetitions are provided in Figures 5.10 and 5.11.
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Figure 5.10: Comparison of the convergence rate of different VSDSP optimization algorithms during
the BO of the mixed-variable Goldstein function over 10 repetitions. Focus on the the variable-size design

space kernel BO alternatives.
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Figure 5.11: Comparison of the convergence value of different VSDSP optimization algorithms on the
variable-size design space Goldstein function over 10 repetitions. Focus on the the variable-size design

space kernel BO alternatives.

As can be expected, the convergence rate obtained in this case is slower if compared to the
previously considered optimizations. This can be explained by the fact that smaller initial data
sets usually result in GP models characterized by a lower modeling accuracy. As a consequence, a
larger number of function evaluations is necessary in order to sufficiently refine the models before
being able to identify the global optimum neighborhood. Furthermore, the obtained results also
show that the relative performance between the DVW and the SPW kernels remains the same
when considering smaller initial data sets, as the DVW kernel provides a considerably faster
convergence rate. As for the previous optimizations, this is due to the fact that the DVW kernel
can rely on a larger amount of information in order to compute the covariance between data
samples characterized by different dimensional variable values.

5.4.3 Multi-stage launch vehicle architecture optimization

The second variable-size design space problem which is considered in this chapter is the pre-
liminary optimization of a multi-stage launch vehicle architecture. This design problem requires
to simultaneously determine the optimal number of stages characterizing the system (i.e., 2 or
3) and determine the most suitable type of propulsion (i.e., solid or liquid) for each stage. Given
that each propulsive alternative is characterized by different continuous and discrete design vari-
ables as well as different constraints, the resulting optimization problem presents a variable-size
design space. The objective function allowing to assess the performance of the system is defined
as the Gross Lift-Off Weight (GLOW), which is computed as the sum of the payload mass MPL,
as well as the dry mass (Md) and propellant mass (Mprop) of each stage:

GLOW = MPL +
nstages

∑
i=1

(
Mdi + Mpropi

)
(5.25)

The target mission for which the launch vehicle is designed is the injection of a 500 kg payload
into an 800 km Low Earth Orbit (LEO) [130]. A velocity increment ∆V of 7500 m/s is required
in order to reach the considered LEO. However, due to gravity losses, the actual required velocity
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increment is increased by a fixed margin. Given that a multi-stage architecture is considered, the
total velocity increment ∆V is computed as the sum of the velocity increments provided by all of
the stages:

∆V =
nstages

∑
i=1

∆Vi (5.26)

Similarly to the launch vehicle propulsion performance optimization problem described in Chapter
4, the ∆Vi associated to a given stage is computed through the Tsiolkovsky rocket equation:

∆Vj = g0 Isp ln

(
Mij

M f j

)
= g0 Isp ln

(
MPL + ∑

nstages
j=i (Mdj + Mpropj)

∑
nstages
j=i+1(Mdj + Mpropj) + Mdi

)
(5.27)

The specific impulse Isp as well as the initial and final masses are computed differently depending
on whether solid or liquid propulsion is considered. Furthermore, in order to ensure the feasibility
of the proposed design, each stage must be characterized by a thrust-to-weight ratio (TW) larger
than 1 in order to obtain a positive acceleration. In other words, each stage must provide a thrust
sufficient to lift the total mass comprising both the considered stages and the ones above:

TWi > 1→ Ti > g

(
MPL +

nstages

∑
j=i

(Mdj + Mpropj)

)
(5.28)

5.4.3.1 Liquid propulsion

Each liquid propulsion stage is characterized by 2 continuous design variables, namely the
stage specific propellant mass Mprop and the thrust value T, as well as one discrete design variable
characterizing the type of engine Typeeng to be included in the design. Additionally, if the
considered liquid propulsion stage is also the first stage of the launch vehicle, an additional discrete
design variable representing the number of engines Ne must be considered. The continuous and
discrete design variables characterizing each liquid propulsion stage are detailed in Table 5.2.
Note that the continuous variable bounds vary as a function of the position of the considered
architecture as well as on the overall system architecture.

Variable Nature Levels
T - Engine thrust [kN] continuous [-]
Mprop – Propellant mass [kg] continuous [-]
Typeeng - Type of engine discrete type 1, type 2, type 3
Ne - Number of engines discrete 1,2

Table 5.2: Variables characterizing each liquid propulsion stage

A schematic representation of the dependencies between the different disciplines characterizing
the liquid propulsion stage as well as the continuous and discrete design variables they depend
on is provided in Figure 5.12

5.4.3.2 Solid propulsion

The solid propulsion module is similar to the one used for the launch vehicle propulsion perfor-
mance optimization problem described in Chapter 4. Each solid propulsion stage is characterized
as a function of 4 continuous design variables, namely the nozzle throat diameter Dt, the nozzle
exit diameter De, the combustion chamber pressure Pcomb and the propellant mass Mprop. Addi-
tionally, the solid propulsion stage also depends on three discrete design variables: the type of
propellant Typeprop, the type of material Typemat and the type of engineTypeeng. Furthermore, if
the first stage is considered, a discrete variable Nb characterizing the number of boosters attached
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Figure 5.12: Schematic MDO representation of the liquid propulsion stage.

to the stage is also taken into account. The continuous and discrete design variables character-
izing each solid propulsion stage are detailed in Table 5.3. Note that the continuous variable
bounds vary as a function of the position of the considered architecture as well as on the overall
system architecture.

Variable Nature Levels
Dt - Nozzle throat diameter [m] continuous [-]
De - Nozzle exit diameter [m] continuous [-]
Pcomb – Chamber pressure [bar] continuous [-]
Mprop – Propellant mass [kg] continuous [-]

Typeprop - Type of propellant discrete Butalite, Butalane,
Nitramite, pAIM-120

Typemat - Type of material discrete Aluminium, Steel
Typeeng - Type of engine discrete type 1, type 2, type 3
Nb - Number of booster discrete 1,…,8

Table 5.3: Variables characterizing each solid propulsion stage

A schematic representation of the dependencies between the different disciplines characterizing
the solid propulsion stage as well as the continuous and discrete design variables they depend on
is provided in Figure 5.13

5.4.3.3 Variable-size design space problem formulation

The multi-stage launch vehicle architecture optimization described above can be formulated
under the form of a variable-size design space problem by considering 3 dimensional variables, each
one representing the type of propulsion to be included in one of the 3 considered stages. In order
to simplify the problem, the unfeasible configurations are not taken into account, thus reducing
the total number of sub-problems from 12 to 6. The remaining configurations are schematically
represented in Figure 5.14.

The resulting dimensional variables w1, w2, w3 are respectively characterized by 2, 2 and 3
levels. w1 and w2 have the purpose of determining whether the first and second stage are charac-
terized by liquid or solid propulsion, whereas w3 determines whether the first stage is characterized
by solid propulsion, liquid propulsion (i.e., 3 stage architecture) or whether it is not included in
the architecture (i.e., 2 stage architecture).

The resulting VSDSP is characterized by a total of 18 continuous variables, 14 discrete vari-
ables and 3 dimensional variables, thus resulting in 29136 discrete categories. Furthermore, the
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Figure 5.13: Schematic MDO representation of the solid propulsion stage.

Figure 5.14: Considered launch vehicle architectures (S: Solid propulsion, L: Liquid propulsion).

problem problem is subject to 19 constraints. It can be formulated as follows:

min GLOW(S1, L1, S2, L2, S3, L3, w1, w2, w3) (5.29)
w.r.t. S1, L1, S2, L2, S3, L3, w1, w2, w3

s.t.: g∆V(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0
gTWi(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3
gg1i

(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3

gg2i
(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3

gg3i
(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3

gg4i(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3
gei(S1, L1, S2, L2, S3, L3, w1, w2, w3) ≤ 0 for i = 1, 2, 3

where Sn and Ln respectively represent the design variables associated to the n-th solid and liquid
propulsion stages, respectively. It is important to note that some constraints, such as the thrust-
to-weight ratio (gTW) and the geometrical (gg) constraints, must be separately considered for
each stage that is included in the launch vehicle architecture. A synthesis of the characteristics
of the six sub-problems comprising the considered multi-stage launch vehicle architecture design
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problem is presented in Table 5.4. Furthermore, the value range of the feasible objective function
for each sub-problem is shown in Figure 5.15. Differently than for the variable-size design space
Goldstein function, not all the feasible objective function ranges of the different sub-problems
overlap. For instance, the best feasible performance value of the triple solid propulsion stage
(SSS) is considerably larger than any feasible performance of the triple liquid propulsion stage
(LLL). It is expected that the optimization algorithms should mostly explore the areas of the
design space associated to the sub-problems SL, LL and LLL.

Sub-problem SL LL SSS SSL SLL LLL
N◦ continuous variables 6 4 12 10 8 6
N◦ discrete variables 5 3 10 8 6 4
N◦ discrete categories 48 32 27648 1152 192 64
N◦ constraints 8 3 19 14 9 4

Global VSDSP
N◦ continuous variables 18
N◦ discrete variables 14
N◦ dimensional variables 3
N◦ discrete categories 29136
N◦ constraints 19

Table 5.4: Defining characteristics of the sub-problems comprising the multi-stage launch vehicle archi-
tecture optimization problem. (S: Solid propulsion, L: Liquid propulsion)
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Figure 5.15: Value range of the feasible objective function for each sub-problem of the multi-stage launch
vehicle architecture design problem.

5.4.3.4 Optimization results

The compared algorithms are initialized with a total data set of 122 data samples. Subse-
quently, the optimizations are performed by relying on 58 additional function evaluations. Please
note that because of the complexity of the considered problem, the SOMVSP methods are only
applied with values of a equal to 3, in order to reduce the chances of having optimal sub-problems
discarded. The results obtained over 10 repetitions are provided in Figures 5.16 and 5.17.



122 Chapter 5. Bayesian optimization of variable-size design space problems

0 5 10 15 20 25 30 35 40 45 50 55
Infilled data samples

8

9

10

N
 fe

as
ib

le
 

 so
lu

tio
ns

60

80

100

120

140

160

180

200

220

Be
st

 fe
as

ib
le

 v
al

ue
 [1

03  k
g]

BA CS, a=3
IO CS
BA LV, a=3
IO LV
CS SPW
LV SPW
CS DVW
LV DVW

Figure 5.16: Comparison of the convergence rate of various discrete kernels during the BO of the multi-
stage launch vehicle architecture design over 10 repetitions. The bottom part of the plots represents the

number of repetitions which have found a feasible solution at a given iteration.

A global analysis of the presented results shows that both the SOMVSP methods and the
variable-size design space kernel based methods provide better optimization results when com-
pared to the independent optimization of each sub-problem. This difference can be seen in terms
of convergence speed as well as final optimal value obtained at the end of the optimization pro-
cess. Indeed, when considering the results obtained at the end of the optimization process, it
can be noticed that the independent optimization of each sub-problem is often not sufficient in
order to identify the neighborhood of the global optimum, whereas for most of the repetitions,
the proposed methods are able to do so. This can be explained by the fact that the proposed
methods allow to better exploit the information provided by the initial data set in order to iden-
tify the most promising areas of the design space, as well as providing a more efficient and focused
use of the available computational budget. In order to better compare the performance of the
proposed methods, the convergence rate obtained with the SOMVSP and with the variable-size
design space kernel BO are separately presented in Figures 5.18 and 5.19.

Similarly to what is obtained for the variable-size design space Goldstein test-case, Figure
5.19 shows a better performance of the Dimensional Variable-Wise approach when compared to
the Sub-Problem-Wise approach in terms of convergence speed. This difference is due to the
fact that the DVW kernel enables to exploit a larger amount of information when computing
the covariance between samples which belong to different sub-problems. Furthermore, a slightly
better performance of the LV kernel with respect to the CS one can be identified when considering
the variable-size design space kernel approach, as it allows to model more complex trends by
relying on a larger number of hyperparameters. An opposite trend can instead be identified when
analyzing the results obtained with the SOMVSP method variants as well as for the independent
optimization of each sub-problem. Indeed, for these approaches the CS kernel yields a faster and
more consistent convergence if compared to the LV kernel. This can be explained by the fact that
both approaches rely on the independent optimization of each sub-problem, which is performed
with a considerably smaller amount of data. This makes the training of the LV hyperparameters
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Figure 5.17: Comparison of the convergence value of different VSDSP optimization algorithms for the
BO of the multi-stage launch vehicle architecture design over 10 repetitions.
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Figure 5.18: Comparison of the convergence rate of different VSDSP optimization algorithms during
the BO of the multi-stage launch vehicle architecture design over 10 repetitions. Focus on the SOMVSP
methods. The bottom part of the plots represents the number of repetitions which have found a feasible

solution at a given iteration.

more challenging, thus resulting in less accurate surrogate models.
A second noticeable difference between the two families of VSDSP optimization methods is

related to the speed at which the the compared algorithms are able to identify the feasible areas
of the search space. Indeed, it can be seen that for the repetitions which are not initialized with a
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Figure 5.19: Comparison of the convergence rate of different VSDSP optimization algorithms during the
BO of the multi-stage launch vehicle architecture design over 10 repetitions. Focus on the variable-size
design space kernel methods. The bottom part of the plots represents the number of repetitions which

have found a feasible solution at a given iteration.

feasible value within the data set, the SOMVSP methods are able to identify the feasible domain
more rapidly if compared to the variable-size design space kernel based algorithms. This can be
better explained by analyzing the number of remaining sub-problems along the SOMVSP process,
as shown in Figure 5.20. It can be seen that for both the considered SOMVSP variants, all of the

0 5 10 15 20 25 30 35 40 45 50 55
Infilled data samples

1

2

3

4

5

6

N
 R

em
ai

ni
ng

 su
b-

pr
ob

le
m

s

BA CS, a=3
BA LV, a=3

Figure 5.20: Comparison of the remaining number of sub-problems along the optimization process for
different SOMVSP algorithms during the BO of the multi-stage launch vehicle architecture design over 10

repetitions.

sub-problems but one are discarded at the first iteration of nearly every repetition. Subsequently,
having to deal with a single mixed-variable problem rather than with the global VSDSP allows
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the SOMVSP to more easily identify the feasible areas of the design space, thus explaining the
faster identification of the feasible areas of the design space.

The obtained results show that two families of VSDSP optimization algorithms yield similar
convergence speeds, with a slight better performance for variable-size design space kernel based
BO. However, Figure 5.17 shows that the SOMVSP methods provide a less robust convergence
towards the actual optimum of the considered problem with respect to the initial data set. This
can be explained with the help of Figure 5.21, in which the sub-problems towards which the
different algorithms converge over the 10 repetitions are shown. It can be seen that the variable-
size design space kernel based BO methods consistently convergence towards the triple liquid
propulsion sub-problem, which contains the global optimum (see Figure 5.15). The SOMVSP
methods, instead, also happen to converge towards non optimal sub-problems, such as the 2-stage
solid/liquid propulsion architecture (SL) and the 2-stage liquid propulsion architecture (LL).

By combining the information provided by Figure 5.20 and Figure 5.21, it can be deduced that
the SOMVSP method variants are not provided with sufficient data samples at the beginning of
the optimization process. As a consequence, the sub-problems surrogate models are not accurate
enough and the optimal sub-problems are discarded during the initial phases of the process,
thus resulting in optimization runs which do not converge to the global optimum. A larger
size initial data set could theoretically improve the robustness of the proposed method with
and ensure a convergence towards the correct sub-problem. However, this would be incoherent
with the scope of the thesis, which is related to the optimization of computationally intensive
problems. Alternatively, the maximum accepted EV value (t) for the challenging constraints
could manually be tuned in order to allow for a larger violation tolerance at the beginning of the
optimization process, and subsequently be reduced once sufficient data is provided. However, this
would require prior information on the considered problem and time-consuming tuning in order
to ensure a consistent and fast convergence of the optimization process.

5.4.4 Result synthesis

The results obtained for the optimization of the variable-size design space Goldstein function
and the multi-stage launch vehicle architecture design show that the two alternative methods
proposed in order to solve VSDSP provide overall a considerably faster and more consistent
convergence towards the problem optimum when compared to the independent optimization of
each sub-problem. This difference is due to the fact that the proposed methods allow to exploit
more efficiently the information provided by the initial data set, and are therefore able to focus
the available computational budget towards the areas of interest of the design space. Additionally,
the results show a slightly better performance of the variable-size design space kernel approach
when compared to the SOMVSP one, both in terms of convergence speed and robustness with
respect to the initial data set. Again, this can be explained by the fact that the variable-size
design space kernel based BO can exploit the entirety of the data set in order to identify the
most promising areas of the design space, whereas the GP models used by the SOMVSP are
independently defined over the various sub-problems and rely therefore on smaller data sets.
However, the results also show that if the considered SOMVSP can be initialized with a suitable
data set, in terms of size and available information, it is able to efficiently identify and discard
the majority of non-optimal sub-problems. In this case, the SOMVSP is only required to solve a
limited number of lower dimension mixed-variable problems rather than the global VSDSP, and
can therefore easily identify the areas of interest of the variable-size design space without actually
having to explore it all.

The proposed variable-size design space kernel based methods (i.e., SPW and VDW) present
a fast convergence speed as well as a good robustness with respect to the initial data set for both
considered test-cases. Furthermore, the obtained results also show that between the two variants,
the dimensional variable-wise decomposition yields a faster convergence speed due to the fact that



126 Chapter 5. Bayesian optimization of variable-size design space problems

SL LL SSL SLL LLL SSS
0

5

10
BA CS, a = 3

SL LL SSL SLL LLL SSS
0

5

10
IO CS

SL LL SSL SLL LLL SSS
0

5

10
BA LV, a = 3

SL LL SSL SLL LLL SSS
0

5

10

N
 O

pt
im

a 
pe

r s
ub

-p
ro

bl
em

IO LV

SL LL SSL SLL LLL SSS
0

5

10
CS SPW

SL LL SSL SLL LLL SSS
0

5

10
LV SPW

SL LL SSL SLL LLL SSS
0

5

10
CS DVW

SL LL SSL SLL LLL SSS
0

5

10
LV DVW

Figure 5.21: Sub-problems towards which the compared VSDSP algorithms convergence over the 10
repetitions of the multi-stage launch vehicle architecture design optimization.

a larger amount of information can be exploited when computing the covariance between samples
which belong to different sub-problems. The sub-problem-wise decomposition approach, instead,
only relies on a kernel defined with respect to the (scalar) dimensional variable levels in order
to compute the same type of covariance value. A second noticeable trend when analyzing the
results obtained with variable-size design space kernel based BO methods is that, when confronted
with problems characterized by large discrete combinatorial spaces, the LV kernel tends to yield
a faster convergence towards the problem optimum when compared to the CS one, as is for
instance shown for the multi-stage launch vehicle architecture design test-case. This difference
in performance is related to the limited modeling capabilities of the CS kernel when modeling
discrete or dimensional variables characterized by a large number of levels. For example, the
CS kernel based SPW approach relies on a single covariance value between any pair of different
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sub-problems, which tends to be overly simplistic when dealing with complex variable-size design
space functions.

The proposed SOMVSP method shows a promising convergence speed as well, if compared to
the independent optimization of each sub-problem. However, the obtained results also indicate
that this approach is less robust with respect to the initial provided data set, which results in a
larger variance of the determined optimum values. This can be explained by the fact that the
SOMVSP relies on independent GP models for each sub-problem, which are created by relying on
small-sized data sets. As a consequence, the surrogate model that are used in order to determine
how promising each sub-problem is might be inaccurate, thus resulting in the premature discard-
ing of the optimal sub-problem. This issue can be particularly problematic when confronted with
problems characterized by a large number of constraints, such as the multi-stage launch vehicle
architecture design. Indeed, in these cases the feasible domain of the design space can become
challenging to model and identify, which subsequently leads the SOMVSP algorithm to make
the wrong choices with respect to the budget allocation and sub-problem discarding. This issue
could be partially avoided by providing larger data sets at the beginning of the process and/or
by having the EV threshold vary along the optimization as a function of the constraint models
accuracy. However, these solutions would be computationally expensive and/or would require
problem specific and time consuming tuning. Finally, the results obtained for the variable-size
design space Goldstein function show that lower values of the SOMVSP parameter a result in a
faster discarding of sub-problems, which in turn yields a faster convergence. However, low values
of a can also cause the premature discarding of optimal sub-problems during at first phases of
the optimization process, during which the surrogate models are created with a limited amount
of data.

5.5 Conclusions
In this chapter, two alternative extensions of the mixed-variable Bayesian optimization method

presented in Chapter 4 are proposed in order to perform the optimization of variable-size design
space problems. The first approach, referred to as SOMVSP, is a budget allocation strategy
based on the independent BO of each sub-problem characterizing the considered VSDSP. The
second approach, instead, is based on the definition of a variable-size design space kernel allowing
to compute the covariance between samples characterized by partially different sets of variables.
The two proposed VSDSP optimization methods are tested on an analytical test-case as well as
on an engineering related problem, namely the architecture design of a multi-stage launch vehicle.
Overall, the obtained results show that the proposed algorithms provide a better optimization
performance in terms of convergence speed as well as robustness with respect to the initial data
set when compared to the independent optimization of each sub-problem, which is the standard
approach when dealing with variable-size design space problems within the framework of com-
plex system design. Furthermore, it is shown that for the considered test-cases, the variable-size
design space kernel BO approach performs better when compared to the SOMVP due to the fact
that the considered GP models are constructed by relying on the entirety of the data set, thus
providing a more accurate modeling of the objective and constraint functions. The SOMVSP
also provides a good convergence speed if compared to the independent optimization of each sub-
problem. However, it presents a larger variance in terms of the results obtained at the end of the
optimization process. Indeed, the obtained results show that the global optimum is not identified
at every optimization repetition of the SOMVSP variants. This phenomenon is explained by the
fact that when insufficient data is provided to the optimization algorithm, inaccurate modeling
can result in the discarding of the sub-problem containing the global optimum. Additionally,
the discarding of the sub-problems is performed by considering different scenarios of the feasible
predicted optimum, which is determined by relying on the nominal prediction of the constraint
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function values. This can further increase the likelihood of optimal sub-problems being discarded
in cases in which the constraints are inaccurately modeled or when dealing with a large number of
constraints. As a consequence, it could be valuable to develop alternative definitions of the best,
worst and nominal case scenarios which include a margin of safety with respect to the predicted
constraint function values in order to improve the robustness of the SOMVSP with respect to the
initial data set.

The optimization algorithms proposed in this chapter provide a solution for the optimization
of variable-size design space problems by requiring a relatively limited number of function eval-
uations. As a consequence, they allow dealing with complex system design problems which
depend on technological choices and which are characterized by computationally intensive simu-
lation codes in their most general formulation (i.e., without simplifications and/or assumptions).
Among the two alternative proposed approaches, the variable-size design space kernel based BO
is more suitable when dealing with purely black-box problems for which no prior information is
known, as it requires no user-defined parameterization and is more robust to the initial data set.
The SOMVSP, instead, can be efficiently used in order to identify a limited number of promising
system architectures, which can then be independently analyzed, and if necessary optimized.



CHAPTER6
Conclusions and perspectives

6.1 Conclusions
In this thesis, the possibility of including the presence of discrete technological choices within

a Bayesian optimization framework is discussed, thus allowing to perform the modeling and
optimization of constrained mixed-variable problems and constrained variable-size design space
problems. The driving purpose of the presented research is enabling the identification and def-
inition of optimal architectures within the early stages of the design of a complex system while
requiring a limited number of computationally intensive numerical simulations. Throughout this
work, the design of launch vehicles is considered as an illustrative example in order to better
highlight the advantages and limitations of the proposed algorithms and methods. However, it
is important to note that they are applicable to a much wider class of complex system design
problems. The most notable results and conclusions which can be drawn from the presented work
are discussed in the following paragraphs.

First, it is shown that a complex system design problem characterized by the presence of techno-
logical choices can be generalized under the form of a so-called variable-size design space prob-
lem. These particular problems present a simultaneous dependence on 3 different types of design
variables: continuous, discrete and dimensional. Dimensional variables are similar to discrete
variables, with the main distinction being that depending on their value, the number and type
of continuous and discrete variables the problem functions depend on can vary, as well as the
number and type of constraints the problem is subject to. The presented review of the literature
discussing the algorithms allowing to solve this particular type of problem shows that none of
the existing methods provides a reliable and efficient solution when confronted to computation-
ally intensive problems due to the large number of required function evaluations as well as the
inadequate handling of constraints. As a consequence, the necessity of relying on Bayesian opti-
mization in order to avoid these limitations is identified.

In order to analyze the possibility of performing the Bayesian optimization of variable-size de-
sign space problems, the Gaussian process based surrogate modeling of (fixed-size) functions
depending on continuous and discrete variables is first discussed. It is shown that a kernel in the
mixed-variable design space can be defined as a product between purely continuous and purely
discrete kernels. A unifying formalism allowing to construct valid kernels in the discrete design
space is presented, and is subsequently used in order to compare the existing discrete kernels
from a theoretical perspective for modeling purposes. The actual modeling performance of these
kernels is then tested on several benchmark functions with different characteristics. Overall, the
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obtained results show that performing the surrogate modeling of mixed-variable functions by rely-
ing on a single mixed-variable kernel rather than on multiple independent continuous ones allows
to provide a considerably more accurate modeling. Furthermore, the results indicate that no
universally better discrete kernel parameterization exists, as their relative modeling performance
varies depending on the considered mixed-variable function characteristics, such as the discrete
design space combinatorial size, the function scedasticity and the presence of linear and/or neg-
ative correlation trends. Furthermore, the obtained kernels relative performance is also heavily
influenced by the amount of data provided for the creation of the surrogate model as a function of
the number of hyperparameters to be trained. Finally, it is worth noticing that because of the way
they are constructed, part of the discussed discrete kernels results in a more challenging model
training when compared to purely continuous Gaussian processes due to the necessity of a good
initialization of the hyperparameter values. In these cases, a multiple random initialization of the
acquisition function is required, thus considerably increasing the model training computational
overhead.

Having analyzed the Gaussian process based surrogate modeling of mixed-variable functions, the
possibility of relying on such models in order to perform the Bayesian optimization of (fixed-
sized) constrained mixed continuous/discrete problems is subsequently discussed. It is shown
that acquisition functions commonly used for purely continuous problems, such as the expected
improvement, are still valid in the mixed-variable case under the condition of considering a valid
kernel, with the only additional requirement of performing the acquisition function optimization
in the mixed-variable design space. The results obtained by testing the proposed algorithm on
several benchmark problems show the benefits of relying on a single mixed-variable kernel rather
than on multiple independent continuous ones in terms of both convergence speed and optimal
solution value. Furthermore, a considerably better optimization performance with respect to stan-
dard heuristic algorithms is also shown. Additionally, the results indicate that the dependence
of the optimization performance on the considered discrete kernel parameterization is less impor-
tant when compared to the previously discussed modeling context. Indeed, simpler and linear
kernels tend to provide similar convergence speeds when compared to more complex ones thanks
to a larger robustness to local over-fitting phenomena. For the same reasons, in some particular
engineering related test-cases characterized by linear trends and low amounts of available data,
these linear kernels provide better results than more complex and non-linear kernels. Finally, it is
worth mentioning that the majority of the objective and constraint functions considered in order
to test the optimization performance of the proposed algorithm present relatively smooth trends.
On the other hand, due to the very nature of Gaussian process surrogate modeling, the presented
method might yield slower and/or less consistent results when confronted with non stationary
objective and constraints as a result of a less accurate modeling of these functions.

In the last part of the thesis, the possibility of extending the proposed mixed-variable Bayesian
optimization algorithm in order to solve variable-size design space problems is discussed. More
specifically, two alternative approaches are proposed. The first one is based on the simultaneous
optimization of several fixed-size mixed-variable sub-problems coupled with a budget allocation
strategy, allowing to focus the computational effort onto the most promising sub-problems and
discard the least promising ones. The second proposed approach is instead based on the definition
of a Gaussian process kernel allowing to compute the covariance between samples characterized
by partially different sets of variables by performing a hierarchical grouping of the design vari-
ables. By defining this kernel, it is then possible to perform the direct Bayesian optimization
of variable-size design space problems, with the additional challenge of dealing with acquisi-
tion functions defined within the same variable-size design space. The benchmarking of the two
proposed optimization algorithms on two different test-cases shows that both methods allow to
provide a considerably faster convergence to the optimum when compared to the independent
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optimization of each sub-problem. Depending on the characteristics of the considered optimiza-
tion problem, and more specifically on the difference in terms of feasibility domain and objective
function value between the various sub-problems, the relative performance of the two proposed
approaches varies. In general, the results indicate that the budget allocation strategy provides
a useful tool for comparing and selecting the most promising system architectures when a clear
difference in performance between the various sub-problems exists. Instead, the variable-size de-
sign space kernel based Bayesian optimization represents a more robust approach when dealing
with sub-problems with similar performances and/or inaccurately modeled constraints.

Overall, the Bayesian optimization algorithms proposed for both fixed-size and variable-size de-
sign space problems provide a considerably faster convergence towards the considered problem
optimum (in terms of number of functions evaluations) when compared to standard engineering
approaches as well as reference heuristic algorithms. They represent therefore a promising tool
for the design optimization of complex systems in the presence discrete technological choices and
computationally intensive objective and/or constraint functions as they would allow to reduce the
amount of time required in order to define a baseline architecture. Alternatively, they could also
enable the exploration of a larger number of possible system architectures and configurations.
However, it is also important to note that Gaussian process surrogate modeling suffers from the
curse of dimension, and tends to be inadequate when confronted with optimization problems
characterized by a a large number of design variables and/or large amount of training data.

6.2 Perspectives
Different possible improvements and/or extensions of the work presented in this thesis can

be identified. First of all, the proposed mixed-variable and variable-size design space Bayesian
optimization algorithms are only defined within the context of single-objective optimization prob-
lems. However, real-life design optimization problems are usually characterized by the presence
of multiple antagonistic objectives, such as the simultaneous requirement of low production costs
and high performance. For this reason, it could be valuable to assess the possibility of adapting
and extending existing multi-objective acquisition functions, such as the expected hypervolume
improvement, in order to enable the optimization of multi-objective mixed-variable problems and
variable-size design space problems.

The proposed formulation of the variable-size design space kernel allowing to compute the co-
variance between data samples characterized by partially different sets of variables is based on
the assumption that the dimensional variable design space does not vary as a function of the
dimensional variables themselves. Indeed, based on this assumption, the hierarchical grouping of
continuous and discrete design variables with respect to the dimensional ones can be performed.
However, in some particular cases this assumption may not be true, which would then require
to handle the presence of nested dimensional variables. For this reason, a generalization of the
variable-size design space kernel based Bayesian optimization algorithm allowing to solve this
particular type of problems could allow to further widen its possible applications and relax the
constraints on the problem formulation.

In order to reduce their global computational cost, real-life complex system design problems often
require to rely on different sets of samples that characterize the same measurable quantity but
which are computed with different fidelities (i.e., different levels of approximation). Additionally,
these different data sets can sometimes be characterized by partially different continuous and dis-
crete design variables. Typically, higher fidelity computations tend to depend on a larger number
of design variables. By its very nature, the proposed variable-size design space kernel provides a
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solution for the modeling of such multi-fidelity problems. It could therefore be interesting to an-
alyze the possibility of performing mixed-variable multi-fidelity modeling by relying on Gaussian
processes (e.g., co-Kriging) coupled with the proposed mixed-variable and variable-size design
space kernels.

Real-life complex system design problems are usually characterized by several interacting dis-
ciplines which tend to have antagonistic effects on the system performance and can therefore
result in conflicting decisions and/or unfeasible solutions. For this reason, multidisciplinary op-
timization problems are normally solved with the help of Multidisciplinary Design Optimization
(MDO) formulations, which provide efficient ways of handling the couplings between disciplines
and therefore facilitate the research of the optimal compromise. Like other approaches, MDO for-
mulations tend to provide poor results when confronted with computationally intensive problems
due to the large number of function evaluations required in order to determine feasible compro-
mises between disciplines. For this reason, it could be valuable to study the possibility of coupling
the Bayesian optimization algorithms presented in this thesis with existing MDO formulations in
order to reduce the computational effort required to solve MDO problems.

Finally, it can be noticed that the methods and algorithms proposed in this thesis all provide
a solution for global optimization problems without any requirement of prior knowledge for the
initialization of the optimization process. As a consequence, they allow to efficiently determine
the discrete and dimensional categories which characterize the optimal solution as well as the
location of the global optimum continuous neighborhood in said categories. For these reasons,
the performance of the proposed algorithms when dealing with real design optimization problems
could be further improved if they were to be coupled with local continuous optimization methods,
such as gradient-based algorithms, thus allowing to refine the incumbent solution in the continu-
ous design space and provide a convergence towards the actual global optimum of the considered
problem.
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APPENDIXB
Proof of validity of the mixed-variable noise
handling kernel

In order to take into account the possible presence of noisy data, it is common practice to
add a noise handling term to the global kernel defined as:

σ2
nδn({x, z}, {x′, z′}) (B.1)

where σ2
n is a noise handling hyperparameter (usually proportional to the noise magnitude) and

δn is a kernel function similar to the Kronecker delta defined as:

δn({x, z}, {x′, z′}) =
{

1 if {x, z} = {x′, z′}
0 if {x, z} 6= {x′, z′}

(B.2)

The validity of this approach is ensured under the condition that δn({x, z}, {x′, z′}) is a valid
kernel on the mixed-variable design space. Similarly to what is done in Chapter 3, δn(·) can be
decomposed into a product of a purely continuous kernel and a purely discrete kernel:

δn({x, z}, {x′, z′}) = δnx(x, x′)δnz(z, z′) (B.3)

where:

δnx(x, x′) =

{
1 if x = x′

0 if x 6= x′
(B.4)

and

δnz(z, z′) =

{
1 if z = z′

0 if z 6= z′
(B.5)

The valid construction of δnx(·) can be derived by representing it as a squared exponential kernel
and by considering a limit value of the length scale hyperparamter θ which tends to infinity:

δnx(x, x′) = lim
θ→∞

exp(−θ||x− x′||2) (B.6)

The kernel defined above returns a value of 1 only if x and x′ are identical, and 0 otherwise.
In order to validate the construction of δnz(·), a similar approach as for the CS kernel presented

in Section 3.5.1 can be followed. More specifically, a one-hot encoding of the discrete variable
vector z is considered. Let z be characterized by m categories and let φ(·) be a mapping of the
discrete input space onto a m-dimensional Hilbert space: φ(z) : Fz → Rm. The mapping is defined
in such a way that the only non-zero coordinate of the image in the Hilbert space corresponds to
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the dimension associated to the mapped category. An example of the mapping described above
for a generic discrete variable characterized by 4 categories is provided below:

z ∈ {z1, z2, z3, z4} →


φ(z = z1) = [1, 0, 0, 0]
φ(z = z2) = [0, 1, 0, 0]
φ(z = z3) = [0, 0, 1, 0]
φ(z = z4) = [0, 0, 0, 1]

A valid construction of δnz(·) can then be obtained by defining the inner product on the m-
dimensional Hilbert space as the scalar product:

δnz(z, z′) = 〈φ(z), φ(z′)〉 = φ(z) · φ(z′) (B.7)

which returns a value of 1 only if z and z′ belong to the same category, and 0 otherwise.
It is therefore shown that δn({x, z}, {x′, z′}) is valid by construction. By consequence, this

noisy data handling approach can be extended to the mixed-variable case without requiring
additional adaptations.



APPENDIXC
Variable-size design space Goldstein function

The variable-size design space variant of the Goldstein function which is considered for the
testing discussed in Chapter 5 is characterized by a global design space with 5 continuous design
variables, 4 discrete design variables and 2 dimensional design variables. Depending on the
dimensional variable values, 8 different sub-problems can be identified, with total dimensions of
6 or 7, ranging from 2 continuous variables and 4 discrete variables to 5 continuous variables and
2 discrete variables. All of the sub-problem are subject to a variable-size design space constraint.

The resulting optimization problem can be defined as follows:

min f (x, z, w) (C.1)
w.r.t. x = {x1, . . . , x5} with xi ∈ [0, 100] for i = 1, 5

z = {z1, . . . , z4} with zi ∈ {0, 1, 2} for i = 1, 4
w = {w1, w2} with w1 ∈ {0, 1, 2, 3} and w2 ∈ {0, 1}

s.t.: g(x, z, w) ≤ 0

where:

f (x, z, w) =



f1(x1, x2, z1, z2, z3, z4) if w1 = 0 and w2 = 0
f2(x1, x2, x3, z2, z3, z4) if w1 = 1 and w2 = 0
f3(x1, x2, x4, z1, z3, z4) if w1 = 2 and w2 = 0
f4(x1, x2, x3, x4, z3, z4) if w1 = 3 and w2 = 0
f5(x1, x2, x5, z1, z2, z3, z4) if w1 = 0 and w2 = 1
f6(x1, x2, x3, x5, z2, z3, z4) if w1 = 1 and w2 = 1
f7(x1, x2, x4, x5, z1, z3, z4) if w1 = 2 and w2 = 1
f8(x1, x2, x3, x5, x4, z3, z4) if w1 = 3 and w2 = 1

(C.2)

and:

g(x, z, w) =


g1(x1, x2, z1, z2) if w1 = 0
g2(x1, x2, z2) if w1 = 1
g3(x1, x2, z1) if w1 = 2
g4(x1, x2, z3, z4) if w1 = 3

(C.3)

The objective functions f1(·), . . . , f8(·) are defined as follows:
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f1(x1, x2, z1, z2, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−
5.62199x2x3x4 · 10−5

(C.4)

where x3 and x4 are defined as a function of z1 and z2 according to the relations defined in Table
C.1.

z1 = 0 z1 = 1 z1 = 2
z2 = 0 x3 = 20, x4 = 20 x3 = 50, x4 = 20 x3 = 80, x4 = 20
z2 = 1 x3 = 20, x4 = 50 x3 = 50, x4 = 50 x3 = 80, x4 = 50
z2 = 2 x3 = 20, x4 = 80 x3 = 50, x4 = 80 x3 = 80, x4 = 80

Table C.1: Characterization of the variable-dimension search space Goldstein function sub-problem N◦1
discrete categories

f2(x1, x2, x3, z2, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−
5.62199x2x3x4 · 10−5

(C.5)

where x4 is defined as a function of z2 according to the relations defined in Table C.2.

z2 = 0 z2 = 1 z2 = 2
x4 = 20 x4 = 50 x4 = 80

Table C.2: Characterization of the variable-dimension search space Goldstein function sub-problem N◦2
discrete categories

f3(x1, x2, x4, z1, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−
5.62199x2x3x4 · 10−5

(C.6)
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where x3 is defined as a function of z1 according to the relations defined in Table C.3.

z1 = 0 z1 = 1 z1 = 2
x3 = 20 x3 = 50 x3 = 80

Table C.3: Characterization of the variable-dimension search space Goldstein function sub-problem N◦2
discrete categories

f4(x1, x2, x3, x4, z3, z4 = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−
5.62199x2x3x4 · 10−5

(C.7)

f5(x1, x2, z1, z2, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−

5.62199x2x3x4 · 10−5 + 5 cos(2π
x5

100
)− 2

(C.8)

where x3 and x4 are defined as a function of z1 and z2 according to the relations defined in Table
C.4.

z1 = 0 z1 = 1 z1 = 2
z2 = 0 x3 = 20, x4 = 20 x3 = 50, x4 = 20 x3 = 80, x4 = 20
z2 = 1 x3 = 20, x4 = 50 x3 = 50, x4 = 50 x3 = 80, x4 = 50
z2 = 2 x3 = 20, x4 = 80 x3 = 50, x4 = 80 x3 = 80, x4 = 80

Table C.4: Characterization of the variable-dimension search space Goldstein function sub-problem N◦5
discrete categories

f6(x1, x2, x3, z2, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−

5.62199x2x3x4 · 10−5 + 5 cos(2π
x5

100
)− 2

(C.9)
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where x4 is defined as a function of z2 according to the relations defined in Table C.5.

z2 = 0 z2 = 1 z2 = 2
x4 = 20 x4 = 50 x4 = 80

Table C.5: Characterization of the variable-dimension search space Goldstein function sub-problem N◦6
discrete categories

f7(x1, x2, x4, z1, z3, z4) = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−

5.62199x2x3x4 · 10−5 + 5 cos(2π
x5

100
)− 2

(C.10)

where x3 is defined as a function of z1 according to the relations defined in Table C.6.

z1 = 0 z1 = 1 z1 = 2
x3 = 20 x3 = 50 x3 = 80

Table C.6: Characterization of the variable-dimension search space Goldstein function sub-problem N◦7
discrete categories

f8(x1, x2, x3, x4, z3, z4 = 53.3108 + 0.184901x1 − 5.02914x3
1 · 10−6 + 7.72522xz3

1 · 10−8−
0.0870775x2 − 0.106959x3 + 7.98772xz4

3 · 10−6+

0.00242482x4 + 1.32851x3
4 · 10−6 − 0.00146393x1x2−

0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3+

0.0038428x2x4 − 0.000198969x3x4 + 1.86025x1x2x3 · 10−5−
1.88719x1x2x4 · 10−6 + 2.50923x1x3x4 · 10−5−

5.62199x2x3x4 · 10−5 + 5 cos(2π
x5

100
)− 2

(C.11)

The constraints g1(·), . . . , g4(·) are defined are defined as follows:

g1(x1, x2, z1, z2) = −(x1 − 50)2 − (x2 − 50)2 + (20 + c1 ∗ c2)
2 (C.12)

where c1 and c2 are defined as a function of z1 and z2 according to the relations defined in Table
C.7.

g2(x1, x2, z2) = −(x1 − 50)2 − (x2 − 50)2 + (20 + c1 ∗ c2)
2 (C.13)

where c1 = 0.5 and c2 is defined as a function of z2 according to the relations defined in Table
C.8.

g3(x1, x2, z1) = −(x1 − 50)2 − (x2 − 50)2 + (20 + c1 ∗ c2)
2 (C.14)
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z1 = 0 z1 = 1 z1 = 2
z2 = 0 c1 = 3, c2 = 0.5 c1 = 2, c2 = 0.5 c1 = 1, c2 = 0.5
z2 = 1 c1 = 3, c2 = −1 c1 = 2, c2 = −1 c1 = 1, c2 = −1
z2 = 1 c1 = 3, c2 = −2 c1 = 2, c2 = −2 c1 = 1, c2 = −2

Table C.7: Characterization of the variable-dimension search space Goldstein function constraint

z2 = 0 z2 = 1 z2 = 2
c2 = 0.5 c2 = −1 c2 = −2

Table C.8: Characterization of the variable-dimension search space Goldstein function constraint

where c2 = 0.7 and c1 is defined as a function of z1 according to the relations defined in Table
C.9.

z1 = 0 z1 = 1 z1 = 2
c1 = 3 c1 = 2 c1 = 1

Table C.9: Characterization of the variable-dimension search space Goldstein function constraint

g4(x1, x2, z3, z4) = −(x1 − 50)2 − (x2 − 50)2 + (20 + c1 ∗ c2)
2 (C.15)

where c1 and c2 are defined as a function of z3 and z4 according to the relations defined in Table
C.10.

z3 = 0 z3 = 1 z3 = 2
z4 = 0 c1 = 3, c2 = 0.5 c1 = 2, c2 = 0.5 c1 = 1, c2 = 0.5
z4 = 1 c1 = 3, c2 = −1 c1 = 2, c2 = −1 c1 = 1, c4 = −1
z4 = 2 c1 = 3, c2 = −2 c1 = 2, c2 = −2 c1 = 1, c2 = −2

Table C.10: Characterization of the variable-dimension search space Goldstein function constraint







Résumé
Dans le cadre de la conception de systèmes complexes, tels que les aéronefs et les lanceurs, la présence de

fonctions d’objectifs et/ou de contraintes à forte intensité de calcul (e.g., modèles d’éléments finis et analyses mul-
tidisciplinaires) couplée à la dépendance de choix de conception technologique discrets et non ordonnés entraîne
des problèmes d’optimisation difficiles. De plus, une partie de ces choix technologiques est associée à un certain
nombre de variables de conception continues et discrètes spécifiques qui ne doivent être prises en considération que
si des choix technologiques et/ou architecturaux spécifiques sont faits. Par conséquent, le problème d’optimisation
qui doit être résolu afin de déterminer la conception optimale du système présente un espace de recherche et un
domaine de faisabilité variant de fa��con dynamique.

Les quelques algorithmes existants qui permettent de résoudre ce type particulier de problèmes ont tendance à
exiger une grande quantité d’évaluations de fonctions afin de converger vers l’optimum réalisable, et sont donc
inadéquats lorsqu’il s’agit de résoudre des problèmes à forte intensité de calcul qui peuvent souvent être rencontrés
dans le cadre de la conception de systèmes complexes. Pour cette raison, cette thèse explore la possibilité de
résoudre des problèmes à espace de conception contraint à variables mixtes et de taille variable. Les approches
développées s’appuient sur des méthodes d’optimisation à base de modèles de substitution créés à l’aide de proces-
sus Gaussiens, également connues sous le nom d’optimisation Bayésienne. Plus spécifiquement, 3 axes principaux
sont discutés. Premièrement, la modélisation de substitution par processus Gaussien de fonctions mixtes contin-
ues/discrètes et les défis qui y sont associés sont discutés en détail. Un formalisme unificateur est proposé afin de
faciliter la description et la comparaison entre les noyaux existants permettant d’adapter les processus Gaussiens à
la présence de variables discrètes non ordonnées. De plus, les performances de modélisation de ces différents noyaux
sont testées et comparées sur un ensemble de benchmarks analytiques et de conception ayant des caractéristiques
et des paramétrages différents.

Dans la deuxième partie de la thèse, la possibilité d’étendre la modélisation de substitution mixte continue/discrète
à un contexte d’optimisation Bayésienne est discutée. La faisabilité théorique de cette extension en termes de mod-
élisation des fonctions objectif et de contrainte ainsi que de définition et d’optimisation de la fonction d’acquisition
est démontrée. Différentes alternatives possibles sont considérées et décrites. Enfin, la performance de l’algorithme
d’optimisation proposé, avec diverses paramétrisations des noyaux et différentes initialisations, est testée sur un
certain nombre de cas-test analytiques et de conception et est comparée aux algorithmes de référence.

Dans la dernière partie de ce manuscrit, deux approches permettant d’adapter les algorithmes d’optimisation
Bayésienne mixte continue/discrète discutés précédemment afin de résoudre des problèmes caractérisés par un es-
pace de conception de taille variable (i.e., variant dynamiquement au cours de l’optimisation) sont proposées. La
première adaptation est basée sur l’optimisation parallèle de plusieurs sous-problèmes couplée à une allocation
de budget de calcul basée sur l’information fournie par les modèles de substitution. La seconde adaptation, au
contraire, est basée sur la définition d’un noyau permettant de calculer la covariance entre des échantillons appar-
tenant à des espaces de recherche partiellement différents en fonction du regroupement hiérarchique des variables
dimensionnelles. Enfin, les deux alternatives sont testées et comparées sur un ensemble de cas-test analytiques et
de conception.

Globalement, il est démontré que les méthodes d’optimisation proposées permettent de converger vers les optima des
différents types de problèmes contraints considérablement plus rapidement par rapport aux méthodes existantes.
Elles représentent donc un outil prometteur pour la conception de systèmes complexes.



Abstract
Within the framework of complex system design, such as aircraft and launch vehicles, the presence of computa-

tionally intensive objective and/or constraint functions (e.g., finite element models and multidisciplinary analyses)
coupled with the dependence on discrete and unordered technological design choices results in challenging optimiza-
tion problems. Furthermore, part of these technological choices is associated to a number of specific continuous and
discrete design variables which must be taken into consideration only if specific technological and/or architectural
choices are made. As a result, the optimization problem which must be solved in order to determine the optimal
system design presents a dynamically varying search space and feasibility domain.

The few existing algorithms which allow solving this particular type of problems tend to require a large amount
of function evaluations in order to converge to the feasible optimum, and result therefore inadequate when dealing
with the computationally intensive problems which can often be encountered within the design of complex systems.
For this reason, this thesis explores the possibility of performing constrained mixed-variable and variable-size design
space optimization by relying on surrogate model-based design optimization performed with the help of Gaussian
processes, also known as Bayesian optimization. More specifically, 3 main axes are discussed. First, the Gaussian
process surrogate modeling of mixed continuous/discrete functions and the associated challenges are extensively
discussed. A unifying formalism is proposed in order to facilitate the description and comparison between the
existing kernels allowing to adapt Gaussian processes to the presence of discrete unordered variables. Furthermore,
the actual modeling performances of these various kernels are tested and compared on a set of analytical and design
related benchmarks with different characteristics and parameterizations.

In the second part of the thesis, the possibility of extending the mixed continuous/discrete surrogate modeling to
a context of Bayesian optimization is discussed. The theoretical feasibility of said extension in terms of objective/-
constraint function modeling as well as acquisition function definition and optimization is shown. Different possible
alternatives are considered and described. Finally, the performance of the proposed optimization algorithm, with
various kernels parameterizations and different initializations, is tested on a number of analytical and design related
test-cases and compared to reference algorithms.

In the last part of this manuscript, two alternative ways of adapting the previously discussed mixed continu-
ous/discrete Bayesian optimization algorithms in order to solve variable-size design space problems (i.e., problems
characterized by a dynamically varying design space) are proposed. The first adaptation is based on the parallel
optimization of several sub-problems coupled with a computational budget allocation based on the information
provided by the surrogate models. The second adaptation, instead, is based on the definition of a kernel allowing
to compute the covariance between samples belonging to partially different search spaces based on the hierarchical
grouping of design variables. Finally, the two alternatives are tested and compared on a set of analytical and design
related benchmarks.

Overall, it is shown that the proposed optimization methods allow to converge to the various constrained prob-
lem optimum neighborhoods considerably faster when compared to the reference methods, thus representing a
promising tool for the design of complex systems.
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