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General Introduction of the Thesis

This doctoral dissertation is a research project under an industrial agreement of training
through research (CIFRE) between Vekia SAS, Lille and the University of Lille. At the
university the research was carried out with the ORKAD research team of the OPTIMA
thematic group in the CRIStAL laboratory.

Vekia is a start up in Lille of around 40 people, founded in 2008. It was built on the
idea of using Artificial Intelligence (AI) to automatically and optimally manage the supply
chain of large firms and achieve “the right stock in the right place at the right time”. The
importance of having an efficient supply chain makes the products of Vekia an important
response to a critical problem. This is true for organizations as well as in a global context
(ecology, transport-related savings). Historically, major customers of Vekia were from the
retail industries (textiles, DIY stores, etc.). Today, Vekia aims to extend into other sectors
such as pharmaceutical and spare parts distribution. For all of its customers, Vekia offers
SaaS (software as a service) solutions, which make it possible to anticipate the needs at
the various entities of the Supply Chain. The major function of the solutions is to suggest
optimized order quantities at the downstream entities to the upstream entities. However, the
solutions also include numerous alerts, monitoring or piloting tools which assist the users in
better decision making. Vekia’s value proposition has several aspects such as: a promise of
superior quality of replenishment, AI solutions with a wide variety of data inputs, simplified
management and automation of repetitive tasks. Ultimately, Vekia aims to operate the most
complex supply chains almost independently.

ORKAD is a research team from the OPTIMA thematic group of the CRIStAL labo-
ratory (Univ. Lille, CNRS, Centrale Lille - UMR 9189). The main goal of the ORKAD
team is to simultaneously exploit combinatorial optimization and knowledge extraction to
solve optimization problems. Although the two scientific fields have developed more or less
independently, the synergy between combinatorial optimization and knowledge extraction
offers an opportunity to improve the performance and autonomy of optimization methods
thanks to knowledge and, on the other hand, to efficiently solve the problems of knowledge
extraction thanks to operational research methods. Approaches adopted are mainly based
on combinatorial mono and multi-objective optimization. The ORKAD team carries out its
work both academically, as well as in cooperation with hospitals in the region and companies.

In this dissertation, we mainly address inventory control problems from practical point of
view. Managing inventory is one of the major activities in supply chains. It has a significant
share in the direct costs and it also affects the costs of other activities such as logistics and
facility planning. The prime objective of inventory management is to match the demand
and supply in a cost effective way. However, there are three key challenges in achieving
this. Firstly, we encounter numerous types of inventory optimization problems in practice.
Developing new solutions for each one of them is practically not feasible. Secondly, demand,
lead time, supply and information records are some of the major sources of uncertainty.
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This can lead to excess inventory costs and lower service levels. The third challenge is
the complexity of resulting optimization problems. With uncertain parameters, inventory
optimization problems usually take the form of multi-stage stochastic optimization problems.
They are often intractable.

The main decisions taken by the inventory manager are, when to order?, how much to
order? and from where to order? Vekia’s cloud-based SaaS solutions suggest optimized de-
cisions in real time to the inventory managers. These solutions must have four properties:
to provide best quality solutions, to consume less computational time, to be able to handle
large volume of data and to be readily reconfigurable. Therefore, the objective of this thesis
can be succinctly put as “to develop a fast inventory optimization methods that are able to
accommodate multiple sources of uncertainty, scalable and extendable to include new prob-
lem parameters”. We study the single-item and multi-item replenishment problems under
real-world constraints. Some of the limitations of existing methodologies are: assumptions
regarding the underlying distribution of the uncertain parameter, inefficiency in dealing with
non-stationary demand, and not being flexible enough to include additional problem specifics.
In addition, in the multi-item aspect, we also focus on the promotional ordering problem
which has not been studied in the presence of multi-item packings. In this dissertation, we
prove that such problems are NP-hard. Apart from developing optimization methods for
replenishment problems, we also analyze the performance assessment aspect of real inventory
management systems. Based on the above problem statements we list the objectives of this
dissertation as follows.

1. To propose a classification scheme for inventory optimization problems.
2. To identify a set of key performance indicators and propose a performance assessment

method for inventory management systems.
3. To propose a flexible inventory management framework that encompasses various in-

ventory optimization problems.
4. To propose methodologies for single-item replenishment problems that can be readily

industrialized and extended to include additional problem specifics.
5. To examine the impact of multiple suppliers scenario on the decisions of single-item

inventory systems.
6. To propose a methodology for the promotional multi-item replenishment planning prob-

lem.
7. To test the proposed methodologies on real-world datasets and propose extensions for

industrialization.

The above objectives are individually addressed in different chapters. We explain the
arrangement of the thesis and contents of each chapter next.

Arrangement of the Dissertation

This dissertation consists of two parts. The first part has three chapters that explain some
preliminary concepts, state-of-the-art, propose classification scheme and performance evalua-
tion method. The second part has the remaining five chapters where we propose the solution
methods for various problems. The contents of this dissertation are summarized in Figure 1.
Chapter 1 gives a general context of supply chains and inventory optimization problems. We
also analyze their impact in the real-world. We provide a general overview of Vekia, and its
vision and mission. We also discuss the problem statement and research methodology.
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General Introduction of the Thesis

An overview of literature on replenishment planning, inventory optimization problem
classification and performance assessment is provided in Chapter 2. We determine the state-
of-the-art literature and identify the gaps. Then in the later part of Chapter 2, we propose
a classification scheme for inventory optimization problems. Our work on classification is
built on de Kok et al. (2018) and is inspired from Graham’s notation (Graham et al., 1979).
Additionally, we give due consideration to replenishment planning and problem parameters.

Figure 1: Arrangement of the dissertation.

Chapter 3 lists various key performance indicators (KPIs) to measure the performance of
inventory management systems effectively. Those KPIs are derived from various surveys. We
also identify challenges while measuring performances of real-world systems and propose a
simulation methodology address those. Our proposed performance assessment methodology
is novel which enables comparison with existing inventory management systems as well.

In Chapter 4, we propose a modular inventory management framework with each mod-
ule addressing a particular class of problems. Then, we define the inventory optimization
problems addressed in this dissertation in detail. We list their variants/ extensions as well.

Chapter 5 addresses the single-item replenishment problem and we build on Levi et al.
(2007a), Levi et al. (2006), Levi et al. (2007b) and Özen et al. (2012). We propose a novel
sampling-based approach to address the problem. The model is based on sample average
approximation of the real cost function. We consider a periodic review inventory policy. We
also propose an improved heuristic for faster computation. The proposed model is extended
to include batch size constraint.

Chapter 6 considers the extensions to the problem considered in Chapter 5. We propose
a dynamic programming approach with fewer states to generate approximated better quality
solutions in case of non-stationary demand. Then, we address the supplier selection problem.
We analyze two approaches: common supplier selection and dynamic supplier selection, and
compare their cost performance. We also develop approximate methods for integrated sup-
plier selection. Parts of this work (Sahu et al., 2020b) has been presented in the international
conference on operations research and enterprise systems (ICORES) 2020.

Chapter 7 addresses the replenishment problems with multiple items. In particular, we
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focus on the promotional ordering problem with multiple items and packings containing
multiple items. We first propose a multi-objective approach with lost sale and excess inventory
as the two competing objectives. This work (Sahu et al., 2018) has been presented in the
international conference on information systems, logistics and supply chain (ILS), 2018. Then,
for practical purpose we also propose a single objective approach. In the presence of prepacks
the resulting optimization problem is NP-hard. We propose a metaheuristic to obtain near
optimal solutions in reasonable time.

Finally in Chapter 8, we provide some industrial extensions to the discussed problems.
We conclude and identify some future research areas.

xix
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Preliminaries, State-of-the-Art,
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Chapter 1

Context and Motivations

Abstract: Supply chains have a profound impact on the global economy. With surveys sug-
gesting almost $460 billion worth of goods moving each year in France only, supply chains also
significantly affect the people and the environment. We chose to study the replenishment plan-
ning problem in supply chains in this dissertation. This chapter provides a general context of
the research and explains the motivations behind selecting the problem. First, we elaborate on
the importance of supply chains and the challenges faced during general supply chain planning.
Then, we introduce Vekia which funded this research and present its mission and objectives. In
the aspect of supply chain planning, we analyze three decision levels: strategic, tactical and op-
erational and classify various decisions accordingly. We emphasize the replenishment planning
problems and explain their associated challenges. We also discuss the limitations of existing so-
lution methods. At the end, we explain the general organization of this dissertation and outline
our contributions.

1.1. Introduction

The global economy relies heavily on consumer goods of all kinds: food, textiles, electronics,
equipment, automobiles, etc. The supply chain is the business function that drives the
physical flow of these finished consumer goods or their components. It comprises two major
classes of activities, i.e., demand planning and supply planning. In addition, it includes
sub-activities like logistics (warehouses, transportation and packaging, etc.), finance (billing
and payment), and information technology (stock status, ordering and tracking, etc.). Its
efficient functioning has a direct impact on the finances of the company, as well as globally
on performance of the economy, on the environment (transport, storage and destruction of
expired stock, etc.) and on the working conditions of the personnel. In France, the supply
chain represents 1.8 million direct jobs, and contributes 10% of the gross domestic product
(GDP) (MTESFrance, 2019).

As mentioned previously, demand planning and supply planning are the two major ac-
tivities enabling supply chain functioning. Demand planning deals with prediction of future
demands, which would be used in the later phases of supply chain planning. For most accu-
rate forecasts, it uses advanced analytical approaches including machine learning and artificial
intelligence to examine historical sales data, current demand signals, customer orders, ship-
ments, macro-economic data as well as other exogenous data such as weather and market
indicators. After the predictions are made, alignment of that demand becomes necessary
across different functional area. This is accomplished by a managerial process called sales

3
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and operation planning (S&OP). Finally, supply planning deals with decisions regarding op-
timal production quantity, orders, inventory levels and replenishment quantities. Efficient
demand and supply planning involves optimization of associated cost parameters and due
consideration of practical constraints.

Given the importance of this sector and its cost implication, many private and public
actors have carried out work aimed at maximizing their operational efficiency. Some existing
challenges are:

1. The development of archiving and data processing systems, which allow the storage
of billions of unit of transactions (Big Data), stock positions, orders, sales, etc., now
provides astronomical amounts of data that should be used.

2. The increased competitive pressure on companies requires increased efficiency, in par-
ticular by limiting the excess inventory and avoiding stock-outs. It is a very complex
subject in the context of variable demand that is known in advance only in an uncertain
way.

3. The complexities of the supply chain as a result of constantly increasing number of
product references (today several hundreds of thousands or even millions), storage sites
(several hundred to several tens of thousands) and variability demand (commercial
operations in distribution, powerful and fast mode effects), etc.

4. The extension of the supply chain: upstream supply has been globalized for about 15
years and today we are witnessing a globalization of downstream supply to consumers
with players like Decathlon or Amazon that cover many countries.

As a consequence, companies with a supply chain business model have an immediate need to
improve their performance in this context. The main objectives are

1. Inventory management considering uncertain future demand and practical constraints
such as, transport capacity constraints, preparation or manufacturing costs, potential
turnover, etc.

2. Computation of production quantities or order quantities in a very limited computation
time (from less than a second to a few hours in case of less frequent planning), on a
very large number of items.

3. The ability to explain these recommendations to their users.

1.2. About Vekia

Vekia1 provides cloud-based software as a service (SaaS) forecasting and replenishment so-
lutions to various clients that work in the supply chain domain. Those clients comprise
different industry verticals such as retail, pharmaceutical, telecommunication, manufacturing
and spare parts service. The primary objective stems from the desire to automate supply
chain planning such that the decisions are optimized.

1.2.1. Solutions

Solutions provided by Vekia are broadly of two categories: demand forecasting and replen-
ishment planning. The demand forecasting solutions produce forecasts using historical and

1https://www.vekia.fr
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exogenous data. The replenishment planning solutions use those forecasts to determine the
optimal inventory levels across different nodes (locations) in the supply chain.

Classical supply chain planning consists of three stages, forecasting→ planning→ opera-
tions, each having their own objectives. These stages use different sets of algorithms to find
the best local solutions (i.e. the optimized solution for the respective stages). The forecasting
stage mostly uses statistical or machine learning techniques, the planning stage utilizes opti-
mization techniques and the operation stage evaluates the practical viability of the proposed
solutions, and then determines a feasible solution. For practical purposes, only a planning
decision has tangible effects on a supply chain. However, stages in classical planning do not
consider optimal conditions and practical feasibility together, giving rise to solutions which
are locally optimal but globally might not be so.

The objective of the forecasting stage is to produce the best possible estimates of future
demand. Traditionally, time series techniques were used to generate forecasts. However, more
recently, machine-learning algorithms have replaced these practices with increased accuracy.
Forecasts are made at different granularities (product group, time, etc.), and horizons based
on needs. They are usually single valued (mean or median forecast) and optionally coming
with simple uncertainty measures. Choosing these values essentially amounts to a form of
premature decision making, which triggers some information loss when compared to the full
underlying probabilities of each possible sale.

Inventory optimization comes next. Depending on the entity (store, warehouse, etc.),
an ideal inventory level and ordering frequency are determined based on the forecast. The
maximum order quantities are also decided. These define the optimal inventory policy. Yet
practical constraints such as packaging, transportation capacity, etc. are not considered at
this stage, which may lead to infeasible decisions at the operations stage. Additionally, so-
lution providers usually rely on deterministic forecasting or a simple parametric estimate, as
it is computationally simple. This method does not provide optimal solutions due to uncer-
tainty associated with future estimates. In the third stage, practical replenishment decisions
are made considering all the practical constraints. The outputs of this stage may contradict
the solutions obtained in the previous stages, and therefore can lead to sub-optimality.

1.2.2. Vision

Although the above three stages are practically sound to implement, their inherent sub-
optimality must be addressed. The primary objective of any supply chain is to maximize
profitability. In the context of inventory optimization, profitability can be improved by
increasing the availability of products at the least possible cost. The classical planning per-
spective that follows forecasting→ planning→ operations has different objectives at different
stages. While forecasting focuses on minimizing the deterministic forecast error, the plan-
ning stage focuses on maximizing service level or minimizing cost or maximizing profit and
the operations stage focuses on practical viability. Separation of the planning and operation
stage stems from the complexity of the supply chain and the results can be detrimental to
the global profit. Those complexities are discussed below.

Uncertainty: Having a perfect demand forecast is impossible. We may use the most
sophisticated machine learning and artificial intelligence algorithms to estimate the future
demand, but it still might be different when put into action. The deterministic forecast can
be the mean, median or any suitable estimation of the actual demand. However, this value,
along with lead time, product returns, future events and recorded values, is uncertain. This
makes the classical inventory optimization inherently sub-optimal. The classical approach
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relies on safety stock to deal with any uncertainty. However, use of safety stock is not always
practical as it significantly increases inventory and is a reactive approach.

Practical constraints: Any decision made at the operations stage must satisfy a set of
physical and managerial constraints. While some constraints reflect the physical limitations of
various supply chain entities like finite capacity of a warehouse or a store or a transportation
vehicle, others can arise because of economies of scale and ease of practicality. For example,
lot sizes are determined based on the economic viability of the products and by the ease of
transportation of products packed in pallets. Purchase orders may also be subject to the
MOQs (minimum order quantities) of the supplier. Managerial constraints can include the
budget allocation to different departments that limit the purchase order. Sometimes it can
be an arbitrary quantity. Temporal constraints, like lead-time and product life expectation,
can also affect a decision. However, all of these constraints are usually not considered in the
planning stage. This translates either into two independent optimizations or sometimes a
completely manual operations stage. In the classical approach, some constraints are incorpo-
rated in the planning stage and the practical constraints are incorporated in the operation
stages and the forecasting stage does not consider any of these constraints.

Multiple objectives: As supply chains evolve, so do their objectives. Today, supply
chains do not have one single objective. While they must generate maximum profit, they
should also minimize the environmental impact and maintain an adequate service level, among
other things. This transforms the classical single objective optimization problem into a multi-
objective one. An optimal value of one objective may lead to an unsatisfactory value of
another one.

Forecasting has been given the prime importance in supply chain operations for very
long time. However, recent focus on decision and demand driven planning has shifted some
of the focus to the real-world decisions. There are various reasons for this shift in focus.
The first one can be attributed to the limitations of forecasting methods. Even the best
of the forecasting methods cannot be 100% accurate. Performance improvement by higher
forecast accuracy is limited by the inventory optimization method. Secondly, any supply
chain planning procedure must consider practical constraints so that the plan generated by
it is actually feasible. An infeasible plan is of no use.

Depending on the client, the concerned supply chain network can be single or multi-
echelon and the flow patterns could also be different. After generating the forecast using
advanced machine learning and artificial intelligence techniques, the relevant replenishment
quantity is suggested. Hence, the economic importance of the project is tremendous, as any
research should not only be academically novel, but also practically applicable. Although,
profit remains the prime objective of the supply chain business, nowadays, multiple objectives
are simultaneously targeted. This defines the multi-objective requirement. Alongside, the
ability to handle large amounts of data is also there.

In this thesis, we develop optimization methods to meet some of the needs stated above by
taking into account both the complexity of the problem and the uncertainties on the available
information. This dissertation has the following objectives:

1. To propose several models to formalize different inventory optimization problems en-
countered at Vekia.

2. To propose resolution methods for the problems formalized above.

3. To propose an evaluation framework for replenishment planning systems.

4. To develop an adaptive industrialization framework.
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1.3. Context of Supply Chain Planning

Before delving into the details of the concerned problem, we provide some context of the
process of supply chain planning. As any inventory optimization problem falls into a broader
class of supply chain planning, it must be understood from the strategic point of view. In
this section we discuss general supply chain management and its decision levels.

1.3.1. Supply Chain Management

The supply chain drives physical goods from the supplier (or the point of origin) to the end
consumer. Those goods pass through a system of suppliers, manufacturing facilities, storage
facilities, transportation modes and retailers. Depending upon the industry involved and the
domain area, it can either be responsible for transforming raw materials into finished goods,
passing them to the end consumer or simply distribute the finished goods.

Figure 1.1: A general structure of current supply chains.

The term supply chain network (SCN) is often used to describe the structure of most of
the supply chains (Chopra et al., 2013). As previously mentioned, a supply chain consists
of entities such as suppliers, manufacturers, warehouses and retailers, etc. These, along with
the pattern of flow of physical goods among them, constitute the supply chain network. In
a hierarchical setting, each level in the supply chain is called an echelon. For example, in
Figure 1.1, the supplier, the central distribution center, the regional distribution center and
the retailer, each constitutes an echelon. A supply chain network also consists of the links
that join the facilities together to bring a product from one echelon of the supply chain to
the other (Firoozi, 2018).

In addition to the flow of physical goods (products), information also passes from one
echelon to another echelon as presented in Figure 1.1. Mapping both information and product
flows gives a comprehensive picture of the supply chain network. Physical goods can be in
the form of raw materials, semi-finished products or finished products. Similarly, information
flow consists of the demand from the end customer to preceding entities and the inventory
related information.

Even though this general structure of supply chains is widely adopted, in the future, with
the development of new technologies they will look different (as illustrated in Figure 1.2). We
expect supply chains of the future to be more connected and enabling centralized decision
making. Development of Internet of Things (IoT), barcode, Radio frequency identification
(RFID) and additional collaborative planning options is also enabling efficient information
sharing.

Supply chain management (SCM) is an effective method to integrate both information
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and material flows seamlessly across the supply chain. Simchi-Levi et al. (2000) define supply
chain management as “the integration of key business processes among a network of interde-
pendent suppliers, manufacturers, distribution centers, and retailers in order to improve the
flow of goods, services, and information from original suppliers to final customers, with the
objectives of reducing system-wide costs while maintaining required service levels”. Supply
chain management integrates the strategies across suppliers, manufacturers, warehouses, and
retailers. It aims to make physical goods available in the right quantities, at the right loca-
tions, at the right time at a minimum related costs. Supply chain management is the global
approach that is involved with different types of decisions across different entities.

The results of an innovative supply chain management strategy are impressive. Amazon
is a great example of an efficient supply chain management on its multi-echelon supply chain
network. The revenue of Amazon has reached almost $136 billion in 2016. In fact, Amazon
is the fastest company to reach $100 billion in sales revenue, taking only 20 years. The
combination of sophisticated information technology, an extensive network of warehouses
and excellent transportation makes Amazon’s supply chain one of the most efficient among
in the world (Leblanc, 2017).

Figure 1.2: A general structure of future supply chains.

1.3.2. Decision Levels

Decisions in supply chain management fall under three categories: strategic decisions, tactical
decisions, and operational decisions. In Figure 1.3, various planning decisions are mapped
according to the above three categories (Firoozi, 2018). Those decision levels are discussed
below in detail.
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Strategic Decisions

Strategic decisions are usually taken considering the long term (usually considering a few
years) objectives. For example, the decisions regarding what the supply chain’s configuration
will be, how resources will be allocated, and what processes each stage will perform cannot
be taken on a short notice. This is because, those decisions involve physical changes in
the supply chain and usually have very high cost implications. Thus, while making these
decisions, companies must take into account uncertainty in anticipated market conditions
over the next few years. Facility location and supplier selection are some of the examples.

Tactical Decisions

After strategic decisions, tactical decisions are taken considering medium term objectives.
Supply chain functions involving market selection, market-location mapping, and inventory
policy selection fall under this category. Tactical decisions have a major impact on the op-
erational decisions of the next level. They can be changed on short notice and the financial
implications involved with such changes are generally minimal, and sometimes, can be bene-
ficial. However, process change and change management are some of the potential challenges
involved with such alteration.

Figure 1.3: Supply chain planning: Decisions across different levels and functional areas.

Operational Decisions

Operational supply chain decisions are short-term, having a time horizon of a week or day.
Customer order fulfillment, daily flow management, pick list generation at a warehouse or
delivery schedule setting for trucks are some of the examples.
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Inventory management is an important problem both at tactical and operational levels.
At a tactical level it deals with the problem of positioning inventories across different lo-
cations and at different times. At an operational level, however, the problem is more of a
replenishment planning type which decides the shipment quantity and in some cases also
decides the suppliers. In the upcoming section, we discuss the overall inventory management
problem in the context of this dissertation.

1.3.3. Inventory Management

Inventory is kept at various locations of the supply chain to serve as a decoupling point. It
can be in the form of raw materials, work in process or finished goods (Silver et al., 1998).
Inventory and related operations contribute a significant portion of supply chain cost. The
inventory policies followed by an organization also decide the effectiveness and responsiveness
of its supply chain.

The most challenging matter in inventory management is finding the fundamental trade-
off between responsiveness and efficiency while making inventory decisions. An increase in
inventory levels generally increases the responsiveness of the supply chain to the customer.
It also facilitates a reduction in production and transportation costs per unit, because of
improved economies of scale. However, this also increases the inventory holding costs (Chopra
et al., 2013).

On a tactical level, the following medium-term inventory related decisions are taken: ma-
terial requirement planning, sourcing and inventory policy selection, etc. On an operational
level, the replenishment quantities for different entities are decided based on the upper level
tactical decisions and practical constraints. Supplier selection is sometimes considered in
operational level as well. This aspect is more prominent in case of retail supply chains.

Inventory optimization is formally defined as the method of balancing capital investment
constraints or objectives and service level goals while taking demand and supply constraints
into account. It has been studied extensively over the last century. The earliest model for the
economic order quantity (EOQ) was proposed in 1913 by Harris (1913). It is a deterministic
model, that finds some applications even today. Harris (1913) considered constant demand
rate throughout the year, inventory holding cost and fixed order cost. Also, no shortage was
allowed. With the evolution of supply chains, the complexity has also increased. This makes
these simpler models less cost effective. In addition, the enormous variety of problems needed
separate and sophisticated mathematical formulations and superior optimization methods.
We discuss the different problem in detail in upcoming chapters.

Application Sectors

In the context of Vekia, inventory management problems are different depending on the sec-
tor of application: such as retail, consumer goods, spare parts, home service, automobile,
telecommunication, etc. Even though fundamentally inventory management strives to mini-
mize costs or maximize profits, depending upon the application, the specifics of the problem
can change. This has led to development of highly customized mathematical models and
optimization algorithms.

Retail industries manage one of the most complex supply chains, primarily due to the
sheer number of items they sell. They operate n-echelon supply chains where, n is 2 to 3 in
most cases. This indicates the presence of regional distribution centers (RDCs) and central
distribution centers (CDCs) respectively. A representative multi-echelon supply chain is
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depicted in Figure 1.4. Different varieties of items bring separate sets of challenges. Normally,
retailers have a larger number of suppliers, and with more suppliers, inventory optimization
becomes more difficult. Additionally, most retailers handle items with less shelf life, which
need different inventory optimization approaches.

Consumer goods supply chains differ from retail supply chains by number of echelons and
involvement of manufacturing facilities. Most consumer good supply chains are B2B, whereas
in retail, it is B2C.

In case of spare parts supply chains, service level is usually more important than cost. In
case of internal spare parts supply chains, the cost implications of not meeting the desired
service level are even higher. Furthermore, most of the unfulfilled demand is backordered.

Automobile and telecommunication industries usually involve bulky items with lower
quantities. For example, in the case of telecommunication industries, fiber optic cable is
one product which can be ordered as different rolls of predefined cable length. However,
those cable lengths can also be customized as per requirement. In such a case, even if there is
no concept of unfulfilled demand, any improper inventory management can lead to overstock
at certain locations and project delay at others.

Figure 1.4: A 3-echelon retail supply chain.

1.4. Motivations

Our motivations for choosing inventory management as our research area come from the fol-
lowing: its impacts on supply chain profitability, diversity of such problems and challenges
in solving them, limitations of existing methods and the futuristic view of inventory manage-
ment.

1.4.1. Impacts of Inventory Management

Most businesses understand the need to maximize their working capital. Beyond funding
growth and reducing reliance on debt or other forms of external financing, increasing cash
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availability can help organizations strengthen their balance sheet and enhance operational
performance. Yet a gap exists for many businesses between recognizing the imperative for
working capital optimization and understanding what steps to take to improve liquidity. A
company must balance the needs of the customer with the goals of the company in an in-
tegrated inventory management model where the right inventories are in the right place, at
the right time. What is needed, is a disciplined process whereby the level of investment in
inventory is in line with the expected level of customer service to be provided. To maintain
optimal inventory levels, organizations need robust systems to accurately track and maintain
control of inventory levels. Internal processes are required to manage vendors and customers,
the supply chain, and to maintain control of the inventory. Such processes will enable or-
ganizations to track inventory performance, monitor demand patterns, maintain accurate
inventory measurements, and ensure suppliers adhere to their commitments. These efforts
must be underpinned by the adoption of a cash management culture. When it comes to
inventory, this means managers must prevent buyers from over-purchasing for fear of losing a
sale. Instead, they must put disciplined processes in place to ensure orders are based on real
demand, enabling the company to maintain minimal inventory levels without compromising
customer service.

Replenishment planning have two basic objectives: minimize variable and operational
costs, and maximize service level. Supply chains incur real costs in purchasing products,
storing them, transporting them and disposing them. Moreover, indirect costs are paid for
losing sales or not maintaining some minimum stock thresholds. Depending on the sector
of application (and the problem type), the objective of a replenishment planning problem
can be achieving service level with minimum cost or minimizing overall cost or maximizing
profitability or achieving equilibrium while fulfilling operational constraints. Moreover, re-
plenishment planning can also have multiple objectives. Environmental considerations such
as carbon emission, energy consumption, and capacity utilization are usually considered as
additional objective (s).

Replenishment planning problems are either solved as profit maximization or cost min-
imization problems. Costs are either in form of real expenses or penalties. Real expenses
include purchase costs, inventory holding costs and transportation costs etc. Penalties include
backorder penalty, lostsale penalty or penalties for not fulfilling some constraints.

1.4.2. Problem Diversity and Challenges

Inventory management has a vast variety of optimization problems. The specifics depend on
the industry, problem type, availability of information, IT infrastructure of the organization,
etc.

Different industries encounter different inventory optimization problems. For example,
retail industries have different sets of constraints and objectives than that of spare parts indus-
try. Shelf-lives of different products across retailers are also different. While a supermarket
has food items with the shortest shelf-lives, the electronics goods or kitchen appliances have
some of the longest shelf-lives. Retail fashion industries have a lot of new products coming
in at short intervals as well as seasonality of existing products.

The same industry might have different inventory optimization problems. For example,
a retailer can have regular multi-period inventory optimization problems as well as a single-
period inventory optimization problem during promotions. A supplier supplying multiple
products can pose a joint replenishment problem (JRP) in addition to single product replen-
ishment problems for other suppliers.
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Information availability is another factor affecting adoption of inventory optimization
models. Probabilistic consideration of demand is a more cost optimal approach while optimiz-
ing inventory. However, if the actual distribution is not known then, either an approximation
is used or the single-valued mean demand is considered for planning. Also, even if the prob-
abilistic demand information is available, it is less useful without an effective optimization
method that can use such information.

Finally, IT infrastructure of an organization also limits what kind of inventory manage-
ment system can be adopted. However, with recent developments in cloud services and SaaS
solutions, this constraint is becoming less relevant. Even though some concerns remain about
the storage of data and its ownership by the SaaS provider or the organization itself.

1.4.3. Limitations of Existing Methods

Inventory optimization problems have been studied quite extensively in the literature. But,
existing optimization methods are customized for the specific problems. General frameworks
in this context are rare or even non-existent. We have previously outlined the variety of inven-
tory optimization problems depending upon the application sector. Furthermore, a general
optimization method for all of these problems is computationally expensive. This leads to
the need for new methods/ frameworks that are more generalized and computationally less
expensive.

Apart from specificity, most methods described in the literature do not reflect practical
concerns faced by users and the constraints about information generation. For example,
presence of multiple batch sizes (pack sizes), non-parametric demand distribution, mix of
lost sale and backorder or inaccuracy in inventory record are usually not taken into account.
Other practical limitations include lower scalability and inability to being integrated into the
existing system or into a centralized system.

Inventory optimization problems are generally considered hard to solve. In the case
of deterministic demand, lot-sizing problems are NP-hard for single item. For stochastic
demand, it is often intractable for greater number of periods due to the curse of dimensionality.

Practical constraints are drastically different from those considered in the literature.
Hence, very few works have been successfully adopted in practice. Our aim is to develop
methods that are not only mathematically rigorous but also practically useful.

1.4.4. Supply Chain Planning in Future

The success of any inventory optimization method is highly dependent on how the inventory
is managed from the business point of view. The current state of inventory management
in most organizations is decentralized. Moreover, there are three distinct levels of decision
making: strategic, tactical and operational as mentioned earlier. However, surveys con-
clude some sweeping changes to supply chain planning (Deloitte, 2019) in the future. Those
changes include no planning and continuous re-planning scenarios as explained in upcoming
paragraphs.

Nowadays, most supply chain plans are not capable of reflecting reality very well. With
fast changing scenarios, most plans become outdated at the very moment they are prepared.
With new information they are either infeasible or too inaccurate, and therefore, are ignored
by many stakeholders. Hence there is a real need to ask whether to plan at all. The difference
between strategic and operational plan was described earlier. In the future organizations are
expected to move towards more demand driven planning where they would just use the

13



Chapter 1. Context and Motivations

forecast to determine target resource levels and then wait for the actual demand to arise. In
such a case, supply chain planning will be replaced by configuration, where the main planning
activity is to set up our supply system such that it adapts well to the actual demand. On
the contrary, it is also possible to get rid of discrete planning events completely. It will be
replaced by plans that are generated every second in the response to new information as it
materializes.

1.5. Problem Statement and Research Methodology

In this section, we present the broad research question and outline our research methodol-
ogy. Previously, we have listed the challenges associated with managing inventory nowadays
and also how the inventory management process would evolve in the future. The main chal-
lenge we address in this dissertation is developing solution methods for “the sheer variety
of inventory optimization problems under uncertainty”. Traditionally, customized methods
have been developed for different problems. They lack flexibility while dealing with different
problems. Moreover, some common shortcomings include assumptions regarding parametric
distributions for uncertain parameters and limited number of constraints, etc.

Figure 1.5: Industrial implementation plan.

Our methodology can be summarized as follows. For the large variety of problems, we
first propose a classification scheme and a modular inventory management system (IMS)
framework. Each module in the framework addresses a particular class of problems, and it
is flexible to incorporate changes in problem specifics. We propose sampling-based methods
that do not assume any form of distributions or dependencies to address uncertainty. Our
initial analysis has been conducted for uncertain demand. However, the proposed methods
can readily incorporate uncertainty in lead time, delivered quantities, inventory record and
item quality, etc.

We divide the inventory optimization problems into two broad groups: long term and short
term problems. The long-term group covers most strategic planning problems and some of
the tactical ones. For example, multi-echelon strategic stock placement and supplier selection
fall under this category. Under the short-term category day-to-day operational replenishment
plans are covered. We focus mainly on problems faced by retail industries. The problems
are again divided into two parts: single-item replenishment planning (SRP) problems and
multi-item (joint) replenishment planning (JRP) problems. In the case of single-item, two
independent problems are identified. The first one deals with the replenishment decisions
where there is only one supplier, i.e. the decisions are indifferent to the purchase cost (Chap-
ter 5). The second one deals with the case where multiple suppliers are present and the unit
price for the item and supply constraints are different (Chapter 6). Multi-item problems are
those in which the cost function for a single item cannot be independently determined for
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each item. We first analyze the problem of promotional ordering (Chapter 7), which is anal-
ogous to single period newsvendor problem but, with some supply constraints. In addition,
we propose a classification method for inventory optimization problems (Chapter 2) and also
develop a performance evaluation framework (Chapter 3). Various industrial extensions are
proposed in Chapter 8.

The industrial implementation plan (see Figure 1.5) consists of three action points. We
first classify the replenishment problem using available information. Then, a suitable opera-
tional model is chosen as per the problem class. The operational model takes available data
and upper level long term planning parameters as inputs.

1.6. Conclusions

In this chapter, we have provided a general context of this thesis. First, we have given an
overview of Vekia. It provides cloud based SaaS solutions to supply chain industries. Its
vision regarding inventory management is to achieve more demand-driven supply chain plan-
ning and automating the process. Then, we have presented a general description of supply
chains and supply chain planning process. We have also discussed the three levels of plan-
ning: strategic, tactical and operational. This dissertation principally addresses inventory
optimization problems. We have introduced inventory management briefly and explained
how it varies across industries in this chapter. Our motivations behind selecting the problem
were classified under impact, problem diversity and existing limitations. We have also given
a brief perspective into supply chain planning in the future. At last, we have presented the
problem statement and the research methodology.

In the next chapter, we shall present an overview of literature in the field of inventory
optimization, classification of inventory optimization problems and performance assessment.
We also propose a classification scheme for inventory optimization problems.
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Chapter 2

State-of-the-Art and Classification of Inventory
Optimization Problems

Abstract: The first chapter gave a brief outline of the research. It summarized the context,
problem statement and research methodology of this thesis. In this chapter, we aim to provide
an elaborate review of literature pertaining to replenishment planning, inventory optimization
problem classification and performance assessment. At the end of the literature review, we also
analyze the literature. As mentioned in the last chapter, in practice, we encounter various types
inventory optimization problems. Industrial customization for each specific problem is difficult.
Therefore, we also aim to develop a classification scheme for those problems, and hence, making
it possible to incorporate common solution methods. This classification scheme is used through-
out the dissertation to present the different problems under study.

2.1. Introduction

Given the importance of inventory management for supply chains, we aim to provide a prac-
tical framework and its associated optimization methods in this dissertation. In order to
develop a common approach, different inventory optimization problems need to be classified
into groups and a standard nomenclature has to be developed for a formal identification of
each problem.

Inventory optimization has been studied extensively over the last century. Various models
have been proposed considering a diverse variety of inputs and application areas. As of
now, a generalized solution method which can be practically implemented does not exist.
Development of such an approach will first require the detailed definition of the problems
that it is going to solve. Since the exact definitions are specific to the concerned problems,
their number would explode while incorporating every real-world problem. This gives rise to
the need of a standard classification scheme for the existing inventory optimization problems.

The rest of this chapter is arranged as follows. We first provide an elaborate review of
state-of-the-art methods for the studied problems in Section 2.2. Then, in Section 2.3, we pro-
pose a classification method for inventory optimization problems along with the motivations
behind the work and some examples. Our contributions in this regard are the following.

1. We propose a classification scheme for inventory optimization problems.

2. We provide a brief literature review of inventory optimization in general.
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2.2. State-of-the-Art: Inventory Optimization

We address inventory optimization problems in a very broad sense. Our contributions are in
these three areas: classification of inventory optimization problems, performance assessment
of inventory management systems and single echelon inventory optimization. A summary of
reviewed literature areas is presented in Figure 2.1. Each of these problems is reviewed from
the following perspectives.

1. How well the approach addresses the real-world challenges?
2. What is its accuracy and how much runtime does it require?
3. Has it been tested using real data?

Figure 2.1: Summary of reviewed literature.

The upcoming sections are structured in the following way. First, in Section 2.2.1, we provide
a general introduction to inventory optimization problems, their importance and their current
state of application in industries. Then, we review the different classification methodology
for inventory optimization models and their applicability in Section 2.2.2. Performance eval-
uation methods are discussed next in Section 2.2.3. Afterwards, a major part of the review,
Section 2.2.4, is dedicated to single echelon inventory optimization problems as we address
mostly issues pertaining to this in this dissertation. We also provide a brief review of multi-
echelon inventory optimization problems in Section 2.2.5. Analysis of this literature is given
in Section 2.2.6.

2.2.1. General Inventory Optimization

The costs related to inventory management amount to 8-12% of total sales (CoresightRe-
search, 2019). Effective inventory management can reduce the inventory levels by up to 25%.
Because of such a huge economic impact, inventory optimization has been studied over the
last century and more rigorously so over the last five decades. This section presents a prelimi-
nary discussion about the problems addressed in this dissertation and inventory optimization
in general.
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The primary objective of inventory optimization is to minimize the total inventory related
cost. However, with recent changes in business trends, the inventory optimization process
is viewed from service and environmental perspectives as well. There are three basic cost
components: inventory holding cost, shortage cost and fixed order cost. Apart from these,
additional costs can be considered depending upon the specific problem. As the name sug-
gests, the inventory holding cost is the cost incurred due to storage of unsold products. The
rate may vary and it is largely decided by the product, location and the business. The yearly
inventory holding cost is usually in the range of 7-16% of procurement costs (Brown, 2011).
Shortage costs are of two types: lost sale cost and backorder cost. Lost sale refers to the
situation when the unfulfilled demand is lost completely, i.e., it does not appear as additional
demand in the future. On the contrary, backorder refers to the case when the unfulfilled
demand is not lost but appears as additional demand in the future. If the unfulfilled demand
is fully backordered, then it appears as the additional demand of the next period. The actual
cost incurred during a shortage is due to the loss to brand value or the compensation given to
the customer or both. The fixed order cost is paid each time an order is placed. Usually, it is
independent of the order volume and represents the administrative and/ or order preparation
cost.

The cost components above are applicable in most inventory optimization problems, be
it single-echelon or multi-echelon. Single-echelon problems allow to consider each location in-
dependently. Whereas, in case of multi-echelon problems, interdependency between different
locations makes the problems very difficult.

From a mathematical point of view, inventory optimization problems are either deter-
ministic or stochastic. Deterministic models consider the available information to be perfect.
Difficulty in these models may arise due to their combinatorial nature (if any) but, they are
relatively simple compared to their stochastic counterparts. When demand is constant and
deterministic, a static economic order quantity (EOQ) model (Harris, 1913) can be used.
An order of quantity equal to EOQ is placed periodically. For time varying deterministic
demand, lot-sizing models are used.

In practical situations, however, deterministic information is seldom available. Informa-
tion related to demand, lead time, item quality, etc. is always uncertain. Hence, stochastic
models have gained more importance in recent years as they model more realistic situations.
While deterministic models can be viewed as solving a single situation, stochastic models
give a more comprehensive optimization considering several possible scenarios. The major
sources of uncertainty in a supply chain include demand, lead time, inventory record, received
product quality, etc. Even if stochastic inventory models are more realistic, their cost func-
tions are very difficult to evaluate analytically (Zheng, 1992). Therefore, instead of elegant
dynamic mathematical models, researchers focused on determining optimal policy structures
(Scarf, 1959; Clark and Scarf, 1960; Karlin, 1960; Veinott, 1966). The most common is the
base stock policy. It can have many forms depending upon problem parameters, such as (s,
S), (R, S), etc. Computation methods for such policy parameters are given in Zheng and
Federgruen (1991) and Feng and Xiao (2000) for stationary demand. Similarly, for the non-
stationary (s, S) policy Askin (1981) and Bollapragada and Morton (1999) provide simple
heuristics. More recently, Xiang et al. (2018) provide a linear programming approach for
non-stationary demand.

Real-world inventory optimization problems have many parameters. Different configura-
tions of those parameters yield different types of problems and, therefore, require different
solution methods. Developing customized solutions for such a huge variety of problems is
not practical. Hence, method can be developed for a class of problems. Literature in this
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area is scarce. Those who have addressed it, rarely take solution development into account
specifically.

Performance assessment has not received considerable attention in academic literature
but, it is one of the fields that has profound impact on decision making during real-world
implementing an inventory management system (IMS). This affects the implementation of
decisions taken by the IMS as well. Performance assessment consists of two major activities.

1. Selecting the suitable key performance indicators (KPIs) and
2. Defining the computation procedure of those KPIs.

Different businesses require different sets of KPIs for their effective performance evalua-
tion. For example, service level does not have equal importance in retail and pharmaceutical
businesses. Inventory turnover also falls in the same category. Once the suitable KPIs are
decided, the procedure to compute them must be specified. One of the major challenges faced
by retailers while adopting a new IMS is how to compare the existing system to the new one.

There are three categories of performance metrics typically involved in evaluating an
inventory system: financial, operational, and service (Petropoulos et al., 2019). Costs and
profitability related metrics come under the financial category. Operational metrics consist
of inventory quantity, inventory turnover, variance, etc. Finally, service level, fill rate and
availability come under the service category.

2.2.2. Classification of Inventory Optimization Problems

Classification of inventory optimization problems can help structuring the problems and it can
also influence industrial solution development. However, we found limited literature in this
area. In this section, we discuss those articles, their adopted methodology and applicability.

Notation and classification of supply chain related problems are addressed in Gayraud
et al. (2015) and de Kok et al. (2018). The analysis of Gayraud et al. (2015) is confined
to network design problems. They propose an approach analogous to Graham’s notation
(Graham et al., 1979) for scheduling problems with three fields α|β|γ. The α, β and γ
fields express the general network structures, management rules and performance criteria
respectively. Each of these fields has sub-fields. Since, they only consider network design
problems, the actual structure of the network becomes a decision variable and therefore,
not included in the notation. They only consider one source of uncertainty and do not
consider any inventory policy. Also, they do not consider service quality aspects of inventory
optimization such as service level, lost sale or backorder.

de Kok et al. (2018) focus on multi-echelon inventory optimization only. Their review
is more elaborate. They also propose a notation scheme and have more fields compared
to Gayraud et al. (2015). They consider different network types except a few (separation
of general type networks and logistic networks). However, they do not consider number of
products, time period or supplier selection aspects. These are necessary to solve an inventory
optimization problem. Paterson et al. (2011) provide a review of inventory models with
transshipment. They also provide a short classification method for such problems.

2.2.3. Performance Assessment of IMSs

Performance assessment is as important as designing the inventory management/ optimiza-
tion system. It consists of two major activities (see Section 2.2.1). In the context of inventory
management, selecting the wrong KPIs can result in choosing the wrong IMS. Even after
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choosing the right KPIs, in practice, their exact computation faces several challenges. In this
section, we present the work already done in these areas.

Shepherd and Günter (2010), Estampe et al. (2013) and Kurien and Qureshi (2011) are
some of the recent studies on supply chain performance measurement. Estampe et al. (2013)
presented a characterization of various supply chain evaluation models. They provided a
table comprising various models organized by their origin, the type of analysis used, rel-
evant conditions and constraints, the degree of conceptualization and the indicators being
proposed. Supply chain operation reference (SCOR) (APICS) planning practices have seen
wide adoption in recent days. The linkage between SCOR practices and supply chain per-
formance is studied by Lockamy III and McCormack (2004). More prominently, a supply
chain performance metric framework is proposed by Gunasekaran et al. (2004). They di-
vided supply chain activities into four main stages: planning, sourcing, manufacturing and
delivery. Our study is focused on planning and delivery aspects. Cuthbertson and Piotrowicz
(2008) discussed the key dimensions of supply chain performance: sustainability, efficiency
and effectiveness, responsiveness, and flexibility. All these dimensions can also be used in the
context of inventory management performance. However, efficiency and effectiveness, and
responsiveness are, in our view most relevant. Adivar et al. (2019) proposed additional seven
perspectives: customers, operations, sourcing, finance, information sharing and information
technology, transportation, environment for performance assessment in retail supply chains.
They also propose some next generation KPIs in the context of retail supply chains.

Shepherd and Günter (2010), Gopal and Thakkar (2012) and Maestrini et al. (2017) pro-
vide a comprehensive review about supply chain performance management systems (SCPMS).
Stangl and Thonemann (2017) analyze some equivalent inventory metrics and how they af-
fect the decision making process of managers. Protopappa-Sieke and Seifert (2010) study the
relationships between financial and operational metrics of inventory control.

2.2.4. Single-Echelon Inventory Optimization

Inventory optimization problems and practices vary greatly depending upon the concerned
supply chain network. Literature focuses on determining the optimized replenishment quan-
tity and time for single-echelon supply chains. On the other hand, for multi-echelon networks,
literature focuses on finding the optimal policy structures or “installation stock” quantities.
In this section, we discuss various works on single-echelon inventory optimization.

Single-echelon inventory optimization problems can be further divided into two categories:
problems with only one item (product) and joint replenishment problems (problems with
multiple items).

Single-Item Inventory Optimization

Inventory optimization problems involving only one item have been studied extensively. In
this dissertation, we focus on problems with stochastic demand only. In practice, to make
globally optimized replenishment decisions, planners consider various factors, such as number
of possible orders during the planning horizon, order batch-size, transportation modes and
costs, transportation capacities, discounts, suppliers, etc. Based on all these parameters, two
broadly distinct streams of research emerge: single-period models and multi-period models.

As the name suggests, the single-period models have a planning horizon length equal to
one period, i.e., only one order is placed for the whole planning horizon. The most basic
single-period stochastic model is the classical newsvendor problem (Qin et al., 2011) and the
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majority of single-period inventory models are its extensions.
Promotional events and new product launches are some of the real-world instances where

application of the newsvendor problem is evident. Qin et al. (2011) provide an extensive
review of newsvendor extensions in the context of supplier costs, buyer risk profile and mod-
eling customer demand. The cases of supplier discount and capacity constraint are addressed
in Mohammadivojdan and Geunes (2018). Retailers frequently encounter situations where
the suppliers offer the products in fixed batch sizes. More commonly, one product can have
multiple batch sizes. While a single batch-size alone does not pose any major challenge as
the cost function is convex, problems with multiple constraints or multiple batch-sizes are
more complex. Batch-size related problems are better explored in multi-period problems.

The earliest models of multi-period stochastic inventory optimization consider demand
to be stationary. It has been studied since the 1950s. The earliest literature in the field are
Scarf (1959); Clark and Scarf (1960); Karlin (1960); Veinott (1966). Veinott (1966) study the
structure of optimal policy. Interestingly, the structure of the optimal policy is very simple,
i.e., of (s, S) type. The policy defines two inventory levels: the reorder level s, and the order
up to level S. When the inventory level reaches or goes below the reorder level an order is
placed to raise the inventory position to S. The optimal parameters can be found by using
policy iteration, but it is time consuming. Simpler methods to compute the stationary (s, S)
policy are given by Zheng and Federgruen (1991) and Feng and Xiao (2000). Similarly for the
non-stationary (s, S) policy Askin (1981) and Bollapragada and Morton (1999) provide simple
heuristics. More recently Xiang et al. (2018) proposed a mixed integer linear programming
approach to compute the approximate non-stationary (s, S) policy. The heuristic provided
therein, although computationally less expensive than dynamic programming, is still not
suitable for real-world size problems.

Both the cases of stationary and non-stationary demand rely on the complete knowledge
of the underlying probability distribution. Although the non-stationary case is more ap-
pealing for practical applications, the methodologies developed in this area can only provide
myopic policies at a reasonable computation time. Other practical limitations arise due to
the presence of batch-sizes. Widely used policies in the presence of batch-size, such as (R,
Q), (R, nQ) and (s, nQ) (Q = Batch size, s, R = Reorder points) are themselves not optimal.

Multi-period inventory models with finite horizon length have also been studied exten-
sively. For a finite planning horizon T̂ , replenishment and inventory decisions can be taken
for time period t ∈ {1, 2, ..., T̂} (Refer Figure 2). However, due to the well known curses
of dimensionality (Defourny et al., 2012), multi-stage decision making models for T̂ ≥ 3 are
extremely hard to solve. On the contrary, solutions for smaller T̂ is too myopic to be imple-
mented in a real-world setting Rahdar et al. (2018). Rahdar et al. (2018) proposed a tri-level
model for multi-stage inventory optimization problem considering a rolling horizon for a sin-
gle product at a single installation with both demand and lead time as source of uncertainty.
Also, they do not consider capacity constraints. In practice however, installations of infinite
capacity do not exist.

To summarize, under practical application conditions, the solution methods for the SRP
problems face the following challenges: application to non-stationary demand, consideration
of practical constraints and the curses of dimensionality. The proposition of Xiang et al.
(2018) for non-stationary demand requires complete knowledge of demand distribution and it
is applicable for planning horizons which are short. Any update in the demand information
requires re-evaluation. The static dynamic uncertainty strategies proposed in Rossi et al.
(2015) and Özen et al. (2012) to address the problem can only perform faster computation.
They still require the complete demand distribution and lack the flexibility to incorporate
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batch-size and other constraints. To alleviate the curses of dimensionality, Bertsimas and
Thiele (2006) propose a robust optimization approach. It does not require the complete
demand distribution and works on a suitable uncertainty budget. However, it yields more
cost if the demand information is accurate. The approach can be cumbersome to apply in
lost sale scenarios and for longer planning horizon. The approach provided in Rahdar et al.
(2018) also alleviates the curses of dimensionality but, still they require complete demand
information and do not consider practical constraints. Levi et al. (2007a) and Neely and
Huang (2010) propose sampling-based (distribution free) approaches which are useful for
practical applications. However, they still rely on dynamic programming and the approach
is computationally expensive.

Integrated inventory optimization supplier selection models has been gaining significance
recently. A comprehensive review has been given by Yao and Minner (2017). The recent
work of Firouz et al. (2017) addressed a supplier selection in a supply chain network with
multiple warehouses and multiple suppliers. Replenishment mode also included proactive
transshipments. The suppliers varied by price, capacity, quality, and disruption characteris-
tics. They assume stationary, parametric demand. Cheaitou and Van Delft (2013) studied
a dual sourcing model where the suppliers were differentiated by their lead times. They
provided theoretical bounds and heuristic approximations for the optimal policy in such sit-
uations. On the other hand, Fox et al. (2006) analyzed a dual sourcing model where the
suppliers vary by their fixed and variable costs only. They proved that, under such situations
and for log-concave demand density a reduced form of (s, S) type inventory policy is opti-
mal. Zhang et al. (2012) relaxed some of the constraints of Fox et al. (2006) and partially
characterized the optimal inventory policy. They also considered simultaneous sourcing from
multiple suppliers for the same item. One of the major shortcomings we found is that, neither
of the batch-size or minimum order quantity constraint is considered. Similarly, authors did
not take into the service level or the notion of robust solution which is important in case of
inaccurate forecasts.

Multi-Item Inventory Optimization

Multi-item inventory optimization are also frequently encountered in practice. Moreover,
almost all real-world inventory optimization problems consist of multiple items and the items
are assumed to be independent if the interaction is negligible.

The multi-item newsvendor problem has been studied extensively with extensions that are
fit for application purposes. Customer demand, supplier pricing policy, and buyer risk profile
are some of the key areas where extensions have been made. We will discuss various extensions
of the classical newsvendor model. Most of literature assume a parametric distribution of
demand and focus on obtaining a closed form expression of the optimal ordering quantity. The
multi-item newsvendor problem without any constraint can be solved independently for each
item, but with constraints it becomes hard to solve. Problem formulation also depends on the
application area. Multi-item newsvendor problem with a single constraint was first considered
by Hadley andWhitin (1963). It was extended by Lau and Lau (1995) and Lau and Lau (1996)
to address general demand distributions and multiple constraints. These are also applicable
when the demand uncertainty can be described by discrete or interval scenarios. Multi-item
newsvendor models have been studied in the context of budget constraint (Vairaktarakis,
2000), capacity constraint (Erlebacher, 2000), budget constraint and fixed ordering costs
(Moon and Silver, 2000), budget constraint and supplier discount (Zhang, 2010) initial stock
of units (Silver and Moon, 2001), random yield scenarios (Abdel-Malek et al., 2008), price
discount (Jucker and Rosenblatt, 1985), supplier quantity discounts (Khouja, 1995), (Khouja
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and Mehrez, 1996), and price elasticity (Khouja, 2000). To our knowledge, only Taleizadeh
et al. (2008) consider multi-item newsvendor problem with packaging constraints, albeit for
most of retail supply chains packaging consideration is prevalent. Recently, Dong (2018)
studies the multi-item newsvendor problem with a global budget constraint and propose a
robust optimization approach. Chernonog and Goldberg (2018) consider bounded demand
distributions. While the assumption regarding parametric distribution of demand is common
in the literature, in practical situations, the distribution is not truly known.

Multi-period inventory optimization problems with multiple items is called the joint re-
plenishment problem (JRP) (Balintfy, 1964). With stochastic demand it is called stochastic
JRP (SJRP). The periodic JRP is strongly NP-hard for infinite horizon and NP-hard for
finite horizon (Cohen-Hillel and Yedidsion, 2018). No such proof is available yet for the
SJRP. However, it is commonly regarded as very hard due to its huge state space. Structural
results for SJRP show that it does not follow a simple policy even for two item case (Ignall,
1969). For stationary demand Viswanathan (1997), Johansen and Melchiors (2003), Özkaya
et al. (2006) and Feng et al. (2015) propose inventory policies. However, those policies do not
consider batch-size or lost sales. Moreover, renewed policy evaluation is required with the
evolution of demand. Very recently Yang and Kim (2018) proposed an adaptive JRP policy
for non-stationary demand for single buyer.

2.2.5. Multi-Echelon Inventory Optimization

In the multi-echelon setting, inventory control models are studied for both deterministic and
stochastic input parameters. Some of the earliest research published in this area are Clark
and Scarf (1960) and Simpson Jr (1958). These two papers establish two different streams
of stochastic inventory control for multi-echelon supply chains: the stochastic service model
(SSM) and the guaranteed service model (GSM). Both approaches solve the problem of safety
stock allocation and inventory policy parameters.

Stochastic Service Model

In the SSM approach, the system deals with all demand conditions having no theoretical
upper limit. For any demand condition, if sufficient inventory is available at the upstream
stage, they are immediately delivered. However, for any shortfall, the downstream stage
has to wait for the unavailable items leading to stochastic delay. Echelon order-up-to (s, S)
type policies are proven to be optimal in n-echelon serial systems in Clark and Scarf (1960).
This holds true for constant lead times, discrete time, and with or without fixed ordering
cost. Under stochastic lead times, order-up-to policy is proven optimal by Muharremoglu
and Tsitsiklis (2008). For capacitated n-echelon serial systems with identical capacity limits
Janakiraman and Muckstadt (2009) derive the optimal policy structure. For n-echelon con-
vergent (assembly type) systems with constant delay and no fixed order costs, Rosling (1989)
proves optimality of echelon order-up-to policies. For n-echelon divergent (distribution type)
networks Diks and De Kok (1998) prove its optimality. However, for divergent systems the
assumption of free transshipment is essential, which was provided by Eppen (1981).

That being said, optimal policy for n-echelon general type networks has not been found
yet. Only optimal policies for special structures have been identified by Nadar et al. (2014)
and Benjaafar et al. (2011) for two-echelon systems. All of the above literature are applicable
for systems with infinite capacity. However, serial or infinite capacity systems do not exist in
practice. Finite capacity adds considerable complexities to multi-echelon inventory systems.
As of now there are no analytical results that enable the calculation of optimal policies for
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finite capacity multi-echelon systems. Nevertheless, for such scenario, Glasserman and Tayur
(1994) and Glasserman and Tayur (1995) use Infinitesimal Perturbation Analysis (IPA) to
compute the gradient of the cost function as a function of base stock levels. The reason for the
complexity of n-echelon inventory analysis is the interdependency between echelon inventory
positions and echelon stocks of different items at different points in time. For serial systems,
the mutual dependencies can be expressed as recursive equations that link inventory positions
across echelons. They are generalized into distribution type systems. However, under finite
capacity the inventory position of an item at a point in time depends on the echelon stock of
its predecessors over multiple points in time. Hence, we lose the Markov property (de Kok
et al., 2018).

Guaranteed Service Models

The GSM approach assumes a bounded demand. The inventory model with GSM was origi-
nally proposed by Simpson Jr (1958), but the GSM notion was formally coined by Graves and
Willems (2000). The bounded demand assumption enables calculation of optimal base stock
policy even in multi-echelon setting. However, finding the right upper bound can be tedious
in some practical scenarios. This limits the GSM. Nevertheless, due to their tractability,
GSM models have been studied extensively post 2000.

The GSM model deals with strategic safety stock placement at different installations
of the supply chain. It assumes a base stock type policy across the network. After the
initial work of Graves and Willems (2000) for strategic safety stock deployment in multi-
echelon supply chains under relaxed assumptions, Graves and Willems (2005), Graves and
Willems (2008), and Graves and Schoenmeyr (2016) extended the work to new products,
non-stationary demand, and with capacity constraints respectively. Minner (1997) presented
a dynamic programming approach for inventory control in serial, assembly, and distribution
type networks. Minner (2012) presented a heuristic for the previous problem, and Minner
(2001) provided inventory control solution for reverse logistics networks. Lesnaia (2004) pro-
vided optimal safety stock solution for general multi-echelon networks. Humair and Willems
(2006) introduced clusters of commonality (CoC) in supply chain networks, and provided so-
lution for networks having CoC. Magnanti et al. (2006), Shu and Karimi (2009), Humair and
Willems (2011), Li and Jiang (2012), and Grahl et al. (2016) presented heuristic approaches
for safety stock deployment in GSM framework for general acyclic networks.

Models which are divergent from the classical SSM and GSM approaches have been stud-
ied very recently. Ease of practical application and tractability are some of the reasons. We
will discuss some of those approaches next. While SSM and GSM approaches are pivotal to
inventory optimization literature, in recent years, there has been growing interest on hybrid
models, robust optimization models, rolling horizon models, multi-period newsvendor models,
and multi-objective models. There are very few papers that discuss the comparative effec-
tiveness of SSM and GSM approaches under different application settings. Also, for general
multi-echelon networks there has been no solution under the SSM approach. Klosterhalfen
and Minner (2007) presented a comparative study of SSM and GSM approaches. Kloster-
halfen and Minner (2010) analyzed SSM and GSM approaches for distribution networks.
They show that the cost difference between the approaches can be at most 4%, and the GSM
approach is superior for moderate flexibility costs, large warehouse processing times and high
retailer service levels.

Klosterhalfen et al. (2013) presented an integrated hybrid-service (HS) approach. Instead
of every stage of the supply chain operating on SSM or GSM, in HS approach each stage
has a choice to choose either SSM or GSM depending upon the flexibility involved, and
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demand. The HS model mitigated the risk of choosing either of the pure models. Hence,
the HS model performs at least as the better between SSM and GSM. Bertsimas and Thiele
(2006) introduced robust optimization techniques to supply chain inventory control problems.
Interestingly, they yield similar optimal policies as with dynamic programming (SSM, GSM,
and HS), but with less computational efforts for large scale problems. However, there is an
additional robustness cost.

2.2.6. Position of Our Work

In the previous sections, we have presented some of the relevant works pertaining to our
research. In this section, we summarize the contributions of those works and identify the gaps
that still exist. We demonstrate where our contributions are able to fill the gaps and position
our work with respect to the state-of-the-art. The contributions are relative positioning
of our research are presented in Table 2.1) for the single-item replenishment planning and
single-item replenishment planning with supplier selection problems.

Our work in this dissertation addresses the following. First, we propose a classification
scheme for inventory optimization problem. We identify Gayraud et al. (2015) and de Kok
et al. (2018) as the state-of-the-art in this area. They address network optimization and
multi-echelon inventory optimization respectively. Our work addresses general inventory
optimization models from a practical replenishment planning viewpoint. We focus on problem
parameters that are needed for developing solution instead of classifying existing problems.

Secondly, for performance assessment, we identify Stangl and Thonemann (2017) and
Petropoulos et al. (2019) as the the state-of-the-art literature. We list the key performance
indicators presented in those works. We found one key challenge while assessing the per-
formance of a new IMS with respect to an existing IMS. The two systems cannot be tested
under identical conditions in reasonable time. In current market situations, users require a
numerical assessment before adopting a new system. Hence, we also propose a novel assess-
ment methodology based on a simulation approach that enables relative comparison under
identical conditions.

For the part of solution development, we have addressed three base problems: single-
item replenishment planning (SRP), single-item replenishment planning with supplier selec-
tion (SRPSS) and promotional joint replenishment planning (PJRP). All of them are under
stochastic demand scenario. For the SRP problem, Levi et al. (2007a), Özen et al. (2012),
Rossi et al. (2015) and Xiang et al. (2018) are identified as the state-of-the-art literature.
We analyze them under three parameters: dealing with stochasticity, flexibility of proposed
method and ease of industrialization. Levi et al. (2007a), Özen et al. (2012), Rossi et al.
(2015) and Xiang et al. (2018) all consider only demand to be stochastic. Levi et al. (2007a)
alone consider a distribution free approach. The remaining assume the demand to follow a
fully known parametric distribution. None of them considers additional stochastic parame-
ters. In terms of flexibility, we analyze the ease and possibility of the method being extended
to include additional constraints and parameters. Similarly, for the SRPSS problem, we con-
sider Fox et al. (2006), Zhang et al. (2012), Cheaitou and Van Delft (2013)Firouz et al. (2017)
as the state-of-the-art. We summarized our contributions and that of the state-of-the-art in
Table 2.1 on the SRP and SRPSS problems.

Our works in regards to the SRP and SRPSS problems differ from the identified state-
of-the-art literature in all three aspects namely: dealing with stochasticity, flexibility of the
proposed methods and ease of industrialization. For the base problems, we consider only the
external demand to be stochastic. However, the method is readily adaptable to stochastic
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lead times and delivery quantities. Our proposed approaches are sampling-based. So, they do
not require the complete distributions of the stochastic parameters. In addition, our proposed
methods can be easily extended to include practical constraints such as batch-size, minimum
order quantity and service level. Moreover, the methods can be used in problems with lost
sales and non-stationary demand. Also, they can be extended to have robust solutions in
case of higher uncertainty. The proposed methods are computationally less expensive and
scalable, hence, suitable for industrialization.

The PJRP problem is novel. We found only one work Taleizadeh et al. (2008), that
considers batch-size for the multi-item newsvendor problem. The PJRP problem differs due
to the presence of prepacks (multi-item packagings). Gao et al. (2014a) is the only work to
consider prepacks but for multi-period problems. Also they do not consider a mix of prepacks
for a single item. Our application condition also differs due to the absence of financial
information. Our solution approach is two-fold. We first propose a multi-objective approach
for small to medium problem instances to obtain multiple Pareto optimal solutions. Then, for
industrial size problems, we propose a single-objective approach along with a metaheuristic.
Our approach has been also validated on a real-world case study.

2.3. Classification Scheme for Inventory Optimization Prob-
lems

We found two recent articles; Gayraud et al. (2015) and de Kok et al. (2018), that have
discussed classification and typology of different inventory optimization problems in logistics
and multi-echelon networks respectively. Both have classified only existing problems in the
literature based on some problem dimensions. One major aspect they miss is the length of
the planning horizon of the concerned problem which is essential for solving any inventory
optimization problem. Beside, they also do not consider the current trends of said problems
in the industry. For example, most retailers are now adopting an integrated approach where
supplier selection and inventory optimization are accomplished together. This indicates a
major shift from discrete planning levels towards a more continuous (fluid) planning. In this
dissertation, we focus on the specificities of inventory optimization problems from a practical
viewpoint.

In the context of inventory optimization, there are two classes of decisions: static inventory
quantities at a location in the supply chain and the flow of inventory between two locations.
While the former can be otherwise stated as the decisions regarding safety stock quantities
and/ or target stock quantities, the latter is termed as replenishment planning. Although
there is a wide range of inputs that are considered while solving an inventory optimization
problem, they can stem from six basic components, which are:

1. the supply chain network in consideration and its dynamics,

2. temporal aspects,

3. customer and external aspects,

4. objective of optimization,

5. internal control measures and

6. problem parameters.
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Table 2.1: State-of-the-art and position of our work.
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The rest of this section is arranged as the following. In Section 2.3.1, we discuss the
motivations and objectives behind classifying inventory optimization problems. Next, we
elaborate on the classification scheme in Section 2.3.2. In Section 2.3.3, we illustrate the
scheme with some examples from the recent literature.

2.3.1. Motivations and Objectives

Several review papers have addressed and structured different fields of inventory optimization.
However, unlike other fields of operations management and operations research, inventory op-
timization still lacks a standard classification. de Kok et al. (2018) identified the absence of
a structured classification of model assumptions in case of multi-echelon stochastic inventory
optimization. They also recorded a basic definition of such method: “A classification method
that enables a fast and well-accepted terminology for core assumptions of a model and its
underlying system”. In other areas of operations management and operations research, classi-
fication schemes are common. For example, Buzacott and Shanthikumar (1993) and Kendall
(1953) for queuing models, Dyckhoff (1990) and Wäscher et al. (2007) for cutting and pack-
ing problems, Graham et al. (1979) for scheduling models, Brucker et al. (1999) for project
planning, Boysen et al. (2007) for assembly line balancing problems, and Copil et al. (2017)
for lot-sizing and scheduling problems. As mentioned earlier, the aim of this dissertation is
two-fold. The first one is to build a common framework for inventory management problem
across various domains. A classification scheme is necessary to avoid excessive customization.
The objectives of our classification are as follows.

1. To state all important dimensions of modeling assumptions (for example, the struc-
ture of the system, the demand processes, the replenishment processes, the objectives,
constraints, etc.) so that problems and methods can be compared appropriately.

2. To be able to characterize real-world supply chain problems, therefore, enabling a gen-
eralized solution development.

2.3.2. Classification Scheme

We have identified six major dimensions of an inventory optimization problem. They are:

1. Supply chain network,
2. Temporal aspects,
3. Customer and external factors,
4. Optimization objectives
5. Internal control measures and
6. Problem parameters.

Each of these dimensions are presented by a field in the classification scheme. Each of the
dimensions has sub-dimensions that are presented by sub-fields. The proposed classification
scheme is defined in Figure 2.2. The fields are separated by || and the sub-fields are separated
by a semicolon (;). If any of the sub-fields is not applicable or its value is unknown for the
concerned problem then, it is denoted by “φ”. Otherwise, the sub-fields are denoted by the
notations given in Table 2.2.
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Figure 2.2: Proposed classification scheme.

An inventory optimization problem can be denoted by the above scheme, by specifying
the corresponding notation for each sub-dimension. All dimensions along with their sub-
dimensions are elaborated next.

Field 1: Supply Chain Network

The nature of supply chain network greatly influences the solution method that needs to be
adopted. For example, solution method for a single echelon supply chain differs from that of a
supply chain with multiple echelons or a logistical supply chain. Latest inventory management
practices do not keep safety stock in case of single echelon supply chains, however, it is needed
in case of multi-echelon supply chain for smooth operation. According to arrangement of
echelons, supply chain networks can be broadly divided into three types: single-echelon (1),
multi-echelon (N) and logistic (L).

Multi-echelon supply chains also differ by their structure. Some common structures are
convergent (assembly type, Figure 2.3a, C), divergent (distribution type, Figure 2.3b, D),
general-acyclic (convergent-divergent without cycles, Figure 2.3c, Ga), general-cyclic (convergent-
divergent with cycles, Figure 2.3d, Gc), and serial supply chains (Figure 2.3e, S) etc.

(a) Convergent SCN. (b) Divergent SCN. (c) General acyclic SCN.

(d) General cyclic SCN. (e) Serial SCN. (f) Logistic SCN.

Figure 2.3: Different types of supply chain networks.

29



Chapter 2. State-of-the-Art and Classification of Inventory Optimization Problems

Field 2: Temporal Aspects

The time axis in an inventory optimization problem can be considered continuous (C) or
discrete (D). From a practical viewpoint, time is always considered to be discrete. Hence,
continuous review inventory policies find little application in practice. That being said,
another temporal consideration is delay or lead time. It is considered either deterministic
(D), stochastic (S) or zero (0). Most research considers it to be deterministic. However,
surveys of logistic providers suggest, in practice, it is more often stochastic and different from
what is posted in the management information system (MIS).

Field 3: Customer and External Factors

Customer and external factors pertains to the dimensions that are external to the system.
Demand is the first sub-field. It can be considered in three different ways: deterministic
(D), stochastic-stationary (S) and stochastic-non-stationary (N). The behavior of an external
customer in case of unfulfilled demand constitutes the second factor. The options are lost
sale (L), backorder (B) and zero shortage (0). Lost sale refers to the case where the unfulfilled
demand is lost completely and it does not appear along with future demand. Backorder refers
to the case where the unfulfilled demand is not lost but, appears as the additional demand of
the upcoming periods. Full backorder means the unfulfilled demand of the particular period
appears as the additional demand of the next period. In some practical situations there
can also be the case where the demand is partly lost and partly backordered (M). In case
of deterministic demand, all the four options are applicable. However, in case of stochastic
demand zero shortage is an impractical approach, and only lost sale, backorder or a mix of
lost sale and backorder approach is adopted. In addition to the above, the presence of a
service level constraint can be divided into α−service level (X) or β−service level (Y).

Field 4: Optimization Objectives

Most inventory optimization methods aim to minimize total cost (C) or maximize profit (P).
Recently, some problems are considered with multiple objectives (M) where, the target is to
obtain the efficient frontier (Pareto optimal points).

Field 5: Internal Control Measures

This factor represents the business aspects. It covers the inventory policy followed (if any),
lot-sizing, coverage periods, minimum order quantities, etc. Even if these measures do not
give the globally optimal solutions, they are implemented to ensure a smooth operation or
sometimes they are dictated by external suppliers or customers. Broadly, the inventory policy
followed can be divided into periodic review (P), continuous review (C) and dynamic (D).
Similarly, presence of lot-size can be of the form unit-size (U), single lot-size of non-unit
quantity (S) and multiple lot-sizes of non-unit quantities (M).

Field 6: Problem Parameters

Apart from the above dimensions, problem parameters such as number of products, number
of suppliers and time horizon are also needed to formulate the problem. In case of single-
item (S), inventory optimization problems are relatively simple than their multi-item (J)
counterparts (joint replenishment problems). The optimal inventory policy structure and
its efficient evaluation methods are available for most single product cases. However, for
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the joint replenishment planning, optimal inventory policy structures are available for very
few practical cases and its practical evaluation method is still being studied and developed.
Similarly, single-supplier (S) and multi-suppliers (M) problems require very different solution
methods. This is also true in case of single-period (S) and multi-period (M) problems. All
fields and their respective sub-fields and their notations are summarized in Table 2.2.

Table 2.2: Proposed notations for different sub-field types used for the classification scheme.

Field
(Dimension)

Sub-field
(Sub-dimension)

Specifics Notation

Supply chain network Echelons Single 1
Multiple N
Logistic L

Structure Serial S
Convergent C
Divergent D
General acyclic Ga
General cyclic Gc

Special measure Transshipment T
Sub-contracting S

Temporal aspects Lead time Deterministic D
Stochastic S
Zero 0

Time axis Continuous C
Discrete D

External factor Demand Deterministic D
Stochastic (Stationary) S
Stochastic (Non-stationary) N

Shortage Lost sale L
Backorder B
Lost sale and backorder M
Zero 0

Service level Service level (α) X
Service level (β) Y

Optimization objective − Cost C
Profit P
Multiple M

Control measures Inventory policy Periodic review P
Continuous review C
Dynamic D

Lot size Unit U
Single S
Multiple M

Problem parameter Items Single S
Joint (Multiple) J

Suppliers Single S
Multiple M

Time horizon Single period S
Multi-period M

2.3.3. Classification Examples

In this section, we use the classification scheme defined in Figure 2.2 and codify the inven-
tory optimization problems discussed in this dissertation. They are presented in Table 2.3.
The columns “Problem”, “Shortage” and “Batch-size” describe the problem and the column
“Notation” describes the code as per the proposed classification scheme.

The stochastic single-item replenishment planning problem for one store can be written
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as 1;φ||0;D||S;L||C||D; U||U;S;M. The supply chain is single-echelon and does not have any
multi-echelon structure, hence, the first field is denoted by 1;φ. The lead time is assumed
to be zero and time axis is considered to be discrete. The second field is denoted by 0;D.
Demand is stochastic and stationary. Unfulfilled demand is lost completely and there is no
service level constraint. The third field is therefore noted by S;L;φ. The objective is cost
minimization. Inventory control policy is dynamic and the batch-size is one unit. The fourth
and fifth fields are respectively C and D;U. The problem parameters are as follows. The
problems addresses a single item, single supplier and multiple time periods. The sixth field
is therefore S;S;M.

2.3.4. Recent Practices in Inventory Management

Inventory management practices across industries are evolving, largely driven by the ad-
vances in IT capabilities. Development of more connected systems enabling implementation
of central planning solutions. As per Pettey (2019), eight emerging technology trends are
changing supply chain practices. They are, artificial intelligence, advanced analytics, inter-
net of things, autonomous things, supply chain digital twin, robotic process automation,
immersive experience and blockchain. They are discussed in detail hereafter.

Artificial Intelligence

Artificial intelligence (AI) supports the vision for a broader supply chain automation of an
organization. There can be three levels of automation: semiautomated, fully automated or a
mix of both. It depends on the application conditions. AI solutions are helping in automat-
ing various supply chain processes through self-learning and natural language. The most
impacted processed are demand forecasting, production planning or predictive maintenance,
etc. AI in supply chain consists of technologies that seek to emulate and surpass human
performance by improving service levels, deliveries, last mile routing, etc.

Table 2.3: Examples of classification using the proposed scheme.

Problem Shortage Lot-size Notation
Single-item ordering with
sample forecasts

Lost sale Unit 1;φ;φ||0;D||S;L;φ||C||D;U||U;S;M
Lost sale Single 1;φ;φ||0;D||S;L;φ||C||D;S||U;S;M
Backorder Unit 1;φ;φ||0;D||S;B;φ||C||D;U||U;S;M
Backorder Single 1;φ;φ||0;D||S;B;φ||C||D;S||U;S;M

Single-item ordering with
sample forecasts
and supplier selection

Lost sale Unit 1;φ;φ||0;D||S;L;φ||C||D;U||U;M;M
Lost sale Single 1;φ;φ||0;D||S;L;φ||C||D;S||U;M;M
Backorder Unit 1;φ;φ||0;D||S;B;φ||C||D;U||U;M;M
Backorder Single 1;φ;φ||0;D||S;B;φ||C||D;S||U;M;M

Multi-item ordering with
sample forecasts

Lost sale Unit 1;φ;φ||0;D||S;L;φ||C||D;U||J;S;M
Lost sale Single 1;φ;φ||0;D||S;L;φ||C||D;S||J;S;M
Backorder Unit 1;φ;φ||0;D||S;B;φ||C||D;U||J;S;M
Backorder Single 1;φ;φ||0;D||S;B;φ||C||D;S||J;S;M

Multi-item ordering with
sample forecasts
and supplier selection

Lost sale Unit 1;φ;φ||0;D||S;L;φ||C||D;U||J;M;M
Lost sale Single 1;φ;φ||0;D||S;L;φ||C||D;S||J;M;M
Backorder Unit 1;φ;φ||0;D||S;B;φ||C||D;U||J;M;M
Backorder Single 1;φ;φ||0;D||S;B;φ||C||D;S||J;M;M

Multi-item promotional
ordering with
probabilistic forecast and
prepacks

Lost sale Unit 1;φ;φ||0;D||S;L;φ||C||D;S||J;S;S
Lost sale Single 1;φ;φ||0;D||S;L;φ||C||D;M||J;M;S
Backorder Unit 1;φ;φ||0;D||S;L;φ||M||D;S||J;S;S
Backorder Single 1;φ;φ||0;D||S;L;φ||M||D;M||J;M;S
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Advanced Analytics

Even before AI, the impact of advanced analytics on supply chain decision-making and per-
formance is significant. Related practices are being deployed in real time. Item quality testing
and dynamic replenishment are some of the areas. The availability of supply chain data from
Internet of Things (IoT), point of sales and external sources helps to understand the current
environment to better predict future scenarios. This also helps in making better decisions.

Internet of Things

Incorporation of IoT has improved the end-to-end visibility of supply chains profoundly. With
the ability of tracking each item in real time, IoT adoption is seeing a growing trend. The
IoT can have a broad impact on asset utilization, uptime, customer service, supply chain
performance, product availability and reliability.

Autonomous Things

Autonomous things are often physical devices operating in the real world, such as robots
carrying out various jobs and cameras assisting in checking inventory quality. They are
enabling new business scenarios and optimizing existing ones. The rapid growth in the
number of interconnected, intelligent things has augmented this trend.

Digital Supply Chain Twin

A digital twin is defined as the digital representation of a real-world system. A supply chain
digital twin is a digital counterpart of a supply chain presenting the relationships between all
its impacting entities. It improves the end-to-end visibility of the actual supply chain. This
also improves decision-making speed.

Robotic Process Automation

Robotic Process Automation (RPA) devices eliminate keying errors, enhance process speeds,
reduce costs and link applications. RPA has been effective in simple use cases, especially in
the absence of APIs or other means for automated data integration.

Immersive Experience

Supply chain leaders can use immersive experience platforms such as virtual reality (VR)
and augmented reality (AR) to save time, and make repetitive tasks easy. For an example,
using AR to provide renderings of equipment to visualize the footprint in a defined space
to compare different configuration options or using voice-controlled personal assistants to
remotely check product features or appointments.

Blockchain

Blockchain could potentially fulfill some long-standing challenges across global supply chains.
Current blockchain offerings for supply chain include a loose portfolio of technologies and
processes that spans database, verification, security, analytics, and contractual and identity
management concepts. Blockchain is also being offered as a service or development option
across supply chain solutions with objectives such as automation, traceability and security.
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2.4. Conclusions

In this chapter, we provided the state-of-the-art literature pertaining to our research. We
analyzed the literature in four broad fields: inventory optimization problem classification,
inventory management system performance evaluation, single-echelon inventory optimization
and multi-echelon inventory optimization. In this dissertation we address the first three areas.
We identified the shortcomings in the literature and positioned our work in that respect.

Afterwards, we also presented a classification scheme for general inventory optimization
problems. For practical purposes we focused on six major dimensions of an inventory opti-
mization problem. Those dimensions were then incorporated into the classification scheme
along with their sub-dimensions as fields and sub-fields respectively.

In the next chapter, we discuss about assessing the performance of real-world inventory
management systems along with their key performance indicators.
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Chapter 3

Performance Assessment of Inventory Management
Systems

Abstract: This chapter addresses the issue of performance assessment of inventory manage-
ment systems (IMSs). Performance assessment is essential while selecting a new IMS and also
during day-to-day operations. It broadly comprises two activities: selection of key performance
indicators (KPIs) and computation of those KPIs. Selection of suitable KPIs is moportant as
improper choice may result in selecting a wrong IMS and the associated cost implications can
be very high. Further, computation of those selected KPIs can be very challenging for real-world
IMSs. This is due to the unavailability of identical testing conditions for the existing and new
IMSs, and very high duration for a field testing. In this chapter, we prepare a list of KPIs that
are suitable for IMSs in retail, spare parts and industrial supply chains. These industries are
chosen from the business perspective of Vekia. We then propose a simulation method called the
∆−Method, to compute the previously defined KPIs while assessing a new IMS with respect to
an existing one. Part of this chapter has been presented (Sahu et al., 2020a) in the 34th annual
conference of the Belgian Operational Research Society (ORBEL-2020) (CW1.).

3.1. Introduction

The current competitive environment has challenged organizations to make their supply
chains balanced between flexibility, speed, quality and responsiveness at the low cost (Martin
and others, 2010). Inventory management is one of the key activities in managing a supply
chain and its performance is closely linked to that of the latter. The traditional financial
metrics can give misleading signals of continuous improvement in innovation in supply chains
(Kaplan, 2009). Therefore, several authors have proposed non-financial metrics in addition
to the financial ones for supply chain performance assessment (Gunasekaran et al., 2001;
Beamon, 1999). For inventory management as well, Petropoulos et al. (2019) have suggested
metrics under financial, operational and service category. This can give a holistic view of
overall performance.

Apart from evaluating the health of the system, performance assessment is also considered
as one of the important aspects of inventory management due to the following. Organizations
must evaluate the IMS while implementing an IMS or selecting a new IMS. And, a new
system can only be adopted if it fares better compared to the other competing systems
(when there are multiple competing systems) or it performs better than the existing one.
Performance assessment is also necessary for technology vendors such as Vekia as it helps
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decide an appropriate value proposition.

Performance assessment comprises two major activities. They are:

1. Selection of appropriate KPIs.
2. Computation of selected KPIs.

Each business can have a different set of KPIs that reflects its priorities. For example,
service level measures are more suitable performance indicators for a home service business
than inventory turnover. On the other hand, retail businesses prefer inventory turnover over
service level. After the selection of suitable KPIs, their computation method must also be
formalized.

In this chapter, we list the critical KPIs pertaining to inventory management and propose
a simulation method to compute them in practical situations. The upcoming sections of
this chapter are arranged as follows. In Section 3.2, we briefly discuss the motivations and
objectives of this chapter. Section 3.3 reviews some preliminary concepts. We review the
existing KPIs across different businesses and provide a comprehensive list of the KPIs in
Section 3.4. In Section 3.5, we present the evaluation framework for the KPIs. We provide
the conclusions in Section 3.6.

3.2. Motivations and Objectives

From the year 2000, researchers’ focus on the domain of supply chain performance measure-
ment approaches and techniques has increased remarkably (Balfaqih et al., 2016). Initial
literature focused on developing integrated evaluation frameworks and categorization of per-
formance measures. Over the recent years, however, more attention has been given to the
identification of KPIs, implementation of those performance measures and measurement of
environmental impacts of supply chains. This, in our view, is due to the shift in business
conditions and the resulting changes in the researchers’ view of supply chain performance.

Identification of appropriate KPIs for the concerned business model is important as the
performance measurement system of an organization has a significant role in managing busi-
nesses and supply chains. As per Kaplan and Norton (1996), “No measures, no improvement”.
This statement is relevant for an in-use IMS as well as when migrating into a new one. It is
critical to measure the right thing at the right time so that, decisions can be taken timely.
Some drawbacks of performance measurement systems, as pointed out by Balfaqih et al.
(2016) are the lack of connection between organizations’ strategies and the KPIs used, the
lack of linking KPIs to customer value, the biased concentration on financial metrics and the
existence of several conflicting performance measures (Brewer, 2000).

Lack of standard and comprehensive performance measures for inventory management
forces organizations to adhere to legacy systems. Performance evaluation, therefore, appears
as a obvious need for designing/modifying/improving the IMS for an organization. But,
in practice, assessing an IMS’s performance is very situation-specific and complicated. We
explain it in the following paragraph.

Historical closing inventory and sales data are two important and basic data points needed
to assess the inventory management performance of an organization. This can be obtained
from ERP systems and can be used to compute the inventory turnover and other KPIs.
However, organizations face difficulties in assessing the service performance where the actual
demand/orders are not recorded, for example, in retail stores. We can compute some KPIs
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for the existing system. However, this is not true in the case where the organization wants
to adopt a new system or it wants to compare some competing systems. In order to compute
the KPIs for new systems, either the organization can follow AB testing (Gilotte et al., 2018)
or it can conduct a simulation study on synthetic dataset. In case of AB testing, the time
required to obtain enough data for reliable computation of KPIs is very high (spanning upto a
year). This procedure also has the risk of financial losses if the new system does not perform
well. On the other hand, simulation yields approximate results and it usually does not take
forecast error into account. Additionally, simulations on synthetic data are usually run in a
different time frame than the existing system. This causes non-identical test conditions.

The major use case of the research in this chapter is to assist clients in selecting a new
IMS. In this context Galasso et al. (2016) pose some questions. The efficacy of the process
depends on the capacity of the decision maker to assess

1. the current performance, i.e. What happened until today? What is the current pro-
gression (in a broader sense)? and

2. the possible IMSs and their related impact, i.e. What will happen and what are the
consequences?

In addition, we pose some other questions and address them in this chapter.

1. Are the values of the performance measures computed/simulated during different time
frames comparable?

2. How can we reliably compare the existing system and the new system in the same time
frame?

3. How can we compare multiple new systems with inaccuracies in forecasts?

Currently, KPIs are subjective to industry practices. As a solution provider, it is impor-
tant for Vekia to suggest some standard KPIs to its clients that are relevant to the respective
industries as well as give clear interpretable performance measures. Computation of those
KPIs and assisting the clients in the same are also important. The objectives of this chapter
are outlined as such.

1. Propose and standardize KPIs for inventory management in supply chains.
2. Propose a framework to enable a priori computation and comparison of those KPIs

corresponding to different IMSs (existing and new) under the same application condi-
tions.

3.3. Preliminaries

In this section, we review some preliminary concepts of IMSs. First, we discuss the workflow
of an IMS. Afterwards, we discuss the dynamics and parameters of an inventory system.

The primary functions of an IMS are demand forecasting and order proposition (or replen-
ishment planning). Both can be presented as separate systems inside an IMS (see Figure 3.1).
The forecasting system takes historical and future organizational data, and exogenous data
as inputs, then provides demand forecasts (either in deterministic or in probabilistic form)
as output. These forecasts are then used in the replenishment planning system along with
other constraints to optimize the order quantities.
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Figure 3.1: Workflow of an inventory management system. Generally IMSs comprise two sub-
systems: forecasting system and replenishment planning system. The forecasting systems uses his-
torical sales and exogenous data to predict future demand using machine learning algorithms. The
replenishment planning system uses those forecasts and the ordering constraints to suggest opti-
mized replenishment decisions.

The dynamics of an inventory system (see Figure 3.2) refers to the detailed step-by-step
operations involved. They can be explained as followed. At the beginning of time t, opening
inventory is st−1, which is the closing inventory of the previous time period t− 1. First, the
order supposed to be delivered at time t, Qt is received and the inventory position is raised
to st−1 +Qt. Then demand for the period t, Dt is realized. If the demand Dt is less than the
inventory position then, a positive inventory st is left at the end of time t. Otherwise, if the
demand is more than the inventory position the system encounters lost sales LSt.

Figure 3.2: The dynamics of an inventory system. Various basic events of an inventory system are
depicted. The flow of events are, recording opening inventory, order delivery, demand realization,
and recording closing inventory or shortages.

Performance assessment is always relative (see Figure 3.3), i.e. the value of a KPI cannot
be interpreted in isolation as good or bad. Either it must be assessed against its previous
value or its corresponding values obtained using the new IMSs must be compared depending
upon the situation.

Definitions

Some definitions used throughout this chapter are presented in the following paragraph.
In Figure 3.2, at any time t, the planner takes a decision regarding the order quantity

considering the demand in the future and the inventory position. Here, the inventory position
is defined as the on-hand inventory plus the order receivables minus the reserved quantity.
Shortage happens when the demand received is higher than the inventory position. Lost sale
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Figure 3.3: Relative assessment of two inventory management systems. The comparison can be
done between two new IMSs or between new and existing systems.

is the part of demand that is not fulfilled and lost completely, i.e. the unfulfilled demand
does not appear as the additional demand in the future. On the other hand, backorder is the
part of demand that is not fulfilled but, it appears as the additional demand in the future.
The inventory quantity for a item typically follows a pattern as mentioned in the Figure 3.4.
For simplicity, a constant demand rate is depicted. It starts with some positive inventory
and it decreases with each fulfilled demand. Depending on the inventory policy, orders are
placed at specific intervals or at a specific inventory threshold reorder level or in a dynamic
manner.

Figure 3.4: Evolution of inventory with time

3.4. KPIs for Inventory Management Systems

The overall performance of any IMS can be expressed as a set of KPIs. Those KPIs can be
broadly divided into three categories (Petropoulos et al., 2019). They are:

1. Financial
2. Operational
3. Service

As the name suggests, financial KPIs describe the economic performance of inventory
management. Operational KPIs reflect how efficiently the operations are managed related to
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inventory and service KPIs give a picture about how well the customer demand is fulfilled.
Operational and service KPIs are essential to assess the performance from practical point
of view. Ideally, the financial KPIs should complement the operational and service ones.
Performance of any inventory system can be expressed through any KPI belonging to either
of the above categories. However, their computation and relevance depends on the problem
specifics. For example, KPI computation methodology for a single period inventory system
might not be valid in multi-period case. Next, we specify different KPIs under each category.

3.4.1. Financial KPIs

Under financial KPIs, we list three KPIs: value chain profitability (VCP), total inventory
value (TIV) and inventory turnover (ITO) (Rao and Rao, 2009).

Supply chain profitability (SCP) (Gawankar et al., 2013), also known as supply chain
surplus, is a common term that represents value addition by the supply chain function of an
organization. Its operational concept is, “sharing the profit that remains after subtracting
costs incurred in the production and delivery of products or services”. The value chain is
a set of activities that an organization carries out to create value for its customers. Porter
(1985) proposed a general-purpose value chain that companies can use to examine all of their
activities, and see how they are connected. Common activities can be classified as Inbound
logistics, Operations, Outbound logistics, Sales and marketing, and Services. We propose
value chain profitability (VCP), which is similar to the SCP but, limited in scope. While SCP
is the surplus revenue after deducting the whole supply chain cost, VCP is the profitability
of part of the system (value chain), say, inbound logistics or outbound logistics. These are
two major activity classes, that always comprise inventory control. In the profitability model
(See Figure 3.5) VCP does not consider investments. VCP can be mathematically expressed
as

VCP = Revenue− Cost incurred (3.1)

Figure 3.5: Profitability model

Computation of VCP requires the values of total revenue and total cost. Total revenue is
equal to the number of units sold times the unit selling price of the respective items. Total
cost comprises various components. They are purchase cost of the goods, transportation cost,
fixed ordering cost, penalties, inventory holding cost and obsolescence cost, etc. VCP can
be calculated at the end of each review period. However, in the presence of fixed costs the
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frequency can be different for different costs. For example, inventory cost can be computed on
daily basis but transportation cost cannot be correctly estimated. Therefore, VCP calculation
over a longer horizon gives a better picture. VCP can be computed as follows.

VCP = R− (CoG+TC+FC+L+OC+HC) (3.2)

Figure 3.6: Components value chain profitability

The notations are presented in Figure 3.6. The cost of shortage is not added as it is not
a real cost that is paid by an organization. However, when VCP is calculated the effect of
shortage is reflected in the revenue generated. Interpretation of VCP is quite straightforward.
It represents profit. Therefore, when two IMSs are compared, the system having more VCP
can be regarded as better.

The total inventory value (TIV) is defined as the monetary value of total closing inventory
of a period. It can be computed for the whole supply chain or for a location (warehouse,
retailer, etc.). It represents the value of total capital blocked. In the case of non-stationary
demand (eg: promotions, seasonal demand, etc.) TIV can vary as per demand. However, in
case of stationary demand, it remains more or less the same. This also reflects the effectiveness
of inventory classification methods. For example, in the common ABC classification, products
are classified as per their annual consumption value. Class-A products are subjected to tighter
inventory controls. In practice, they should represent the least of the inventory items but
comparatively high inventory value.

Computation of TIV requires the closing inventory record and unit purchase price for
each item. However, the average TIV over a longer horizon should be computed for a valid
assessment. For comparison, two IMSs should start from same TIV. The system that gener-
ates lower TIV can be regarded as better if and only if it does not generate significantly lesser
sales than the other. The TIVs at two different times of the same IMS cannot be compared
as it may be the result of non-stationary demand or inventory policy.

Inventory turnover (ITO) (Rao and Rao, 2009) is defined as the ratio of total cost of
goods sold to the average value of the stock held during that period. ITO gives an indication
about the pace of inventory movement. For example, during one month 100€ worth goods
are sold, and during that time 10€ worth of inventory is held on an average. This results in
IT= 10. This means that during a month the inventory is rotated ten times or an item spends
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1
10 month in inventory. Calculation of ITO requires closing inventory record and sales record
of each item along with their buying cost. When comparing two replenishment planning
systems, the system that generates higher ITO is better. This is because a higher ITO means
items spend less time in inventory and hence, incurring lower inventory costs.

ITO should be calculated on a higher granular level because, depending upon the inventory
holding cost or logistical availability the inventory quantity is decided. Therefore it can be
misleading to compare performances of locations based on their ITO. Generally a warehouse
will have less ITO that a store. Hence, overall ITO calculation of the whole network can give
a better picture about the health of the organization. Similarly, ITO calculation for a group
of items makes sense if inventory is suitably classified (e.g. ABC, VED, etc.).

3.4.2. Operational KPIs

Under operational KPIs, we list four KPIs: inventory level (IVL), inventory variance (IVV),
order quantity variance (ORV) and inventory quality ratio (IQR).

The total inventory level (IVL) is defined as the closing inventory quantity for a period
in number of units. It can be measured for the whole supply chain or at a location similar
to TIV. It follows a similar profile to TIV in time. IVL is useful to assess the inventory
performance of a supply chain, particularly when dealing with perishable products.

Computation of IVL requires closing inventory record of each item at each installation at
the end of each time period. For a valid interpretation, we can consider the average IVL over
a horizon. While comparing two IMSs, they should start from the same IVL. The system that
generates lower IVL can be regarded as better if and only if it does not generate significantly
lesser sales than the other. However, it is possible that individual IVLs of different items
are different for the two systems while having the same total IVL. In this case the different
classes or groups of the items must be taken into consideration.

Inventory variance (IVV) (Petropoulos et al., 2019) can be interpreted as an indicator
of operational efficiency. Organizations prefer to have gradual and minimal changes in the
quantity of inventory held in the system. Erratic changes in inventory can result in over or
under utilization of resources associated with inventory management. The closing inventory
level stays nearly constant for stationary demand barring any special case such as very large
packaging or large lead time, etc. In case of non-stationary demand also, gradual change is
desired in order to avoid difficulties in facility planning. For example, a plan for promotion
should be done in advance. A steep increase in inventory is not desirable as it may pose
challenge towards warehouse operations planning. Also, sometimes, a huge order quantity
may not be fulfilled by the supplier due to capacity and transportation constraints. As IVV
represents the fluctuation in the inventory levels, the IMS that has lower IVV is better. Even
though IVV is not considered as part of the objective during optimization of orders, it is
expected of a good IMS.

If a steep rise in inventory with large order quantities in a short time horizon is feasible,
the cost performance of such system will be better than that with anticipatory planning.
In such scenarios, IVV may not be a suitable KPI. But this needs to be agreed upon by
the stakeholders. IVV at any location (store or warehouse) gives a performance indication of
that location. Overall variance can ignore the variances at individual locations and, therefore,
cannot be properly interpreted. IVV is more applicable in retail supply chains because of
their fast moving nature. In case of slow moving supply chains, it is of lesser significance.

Order quantity variance (ORV) (Cannella and Ciancimino, 2010) is of similar significance
as inventory variance. Fluctuating order quantities are undesirable. Resource utilization
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Table 3.1: Inventory classification as per IQR

Overall classification Sub category Description
Active
(Inventory ≤ Target)

Deficit
(Inventory
<Min. Target)

Inventory that is below the targeted minimum
level. Deficit inventory should not be considered
healthy, because it poses a stock-out risk. From
an IQR metric point of view, deficit inventories
are considered active.

Healthy
(Inventory ≥
Min. Target)

Inventory is actively moving, and on-hand in-
ventory value and level are within defined target
levels.

Excess
(Inventory > Target)

Surplus
(In Fast-moving
products)

Surplus inventory is the portion of actively mov-
ing inventory that exceeds the defined target
level.

Slow-moving There is forecast demand or usage for the prod-
uct, but the on-hand level exceeds the six-month
supply (six months is an example, because it is
commonly used).

Non-moving There is no forecast demand over the next 12
months (12 months is an example, because it is
commonly used).

and supplier constraints can limit the order quantity. Calculation of order variance over the
horizon length requires record of order quantities in each period. ORV at any location (store
or warehouse) gives a performance indication of that location. Overall variance can ignore
the variances at individual locations, and therefore, cannot be properly interpreted. ORV is
better suited to retail supply chains because of its fast moving nature.

Inventory quality ratio (IQR) (Pettey, 2019) is a KPI that reflects the inventory perfor-
mance with respect to the pre-defined standards of the organization. It is the ratio of total
value of “active” inventory to the value of total inventory held at any time. Some inventory
terms are defined next. Active inventory is defined as the inventory whose days-of-supply
(DOS) is under the defined target. Anything above the target is called excess inventory.
IQR is an inventory performance measure that evaluates current inventory value against fu-
ture demand in terms of usage value. Under IQR, the categorization of inventory is presented
in Table 3.1.

Computation of IQR requires the pre-defined desired DOS levels for each item. Two
different levels are widely used: Target DOS and minimum DOS. After these two elements
are defined, IQR can be calculated based on in-hand inventory at any time. Apart from on
hand inventory record, standard unit cost of each item, forecast horizon and demand forecast
information are also required.

IQR is a performance measure with respect to own a business’ standards. Hence, the
standards should not be chosen arbitrarily, which may render the IQR calculation useless.
A higher IQR is considered better during comparison. IQR can be computed for a whole
supply chain if such inventory targets are defined. However, it may not give a clear idea
about where to focus for improvement. A granular computation at warehouse or store levels
can give a better actionable picture. As IQR considers a group of items together, it cannot
be computed for a single item. As IQR needs clear inventory targets, it is usually difficult to
compute in retail. However, for manufacturing and spare part supply chains it can be well
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defined.

3.4.3. Service KPIs

Under service KPIs, we list three KPIs: α-service level (ASL), β-service level (BSL) and
availability (AVL).

α-Service level (ASL) (also called Type-1 or Cycle service level) (Beyer et al., 2016) is the
probability of satisfying all demand during the concerned period. This service level represents
the frequency of out-of-stock situations without any regard to the shortage quantities. In
backorder environments α−service level can be referred as “on time in full (OTIF)” indicating
proportion of instances where demand is completely fulfilled.

In practice, α-service level can be computed approximately from the number of shortages.
The ratio of the number of shortages to the total number of days gives the α-service level.
When two IMSs are compared, the system that generates higher α is considered better.
However, a service level measure cannot be analyzed independently as the marginal cost of
higher service level increases with the increase in service level. α-service level is applicable
for all supply chains.

Table 3.2: Summary of KPIs

Caregoty KPI Reference Usefulness
Financial Value chain prof-

itability (VCP)
Proposed Retail

Inventory turnover
(ITO)

Rao and Rao (2009) Retail, spare parts, industrials

Tolal inventory value
(TIV)

General Retail, spare parts, industrials

Operational Inventory level
(IVL)

General Retail, spare parts, industrials

Inventory variance
(IVV)

Petropoulos et al.
(2019)

Retail, spare parts, industrials

Order quantity vari-
ance (ORV)

Cannella and
Ciancimino (2010)

Retail, spare parts, industrials

Inventory quality
rario (IQR)

Pettey (2019) Retail, spare parts, industrials

Service α-service level (ASL) Beyer et al. (2016) Retail
β-service level (BSL) Beyer et al. (2016) Spare parts, industrials
Availability (AVL) Van Houtum and

Kranenburg (2015)
Spare parts

β-Service level (BSL) (also called Type-2 service level or fill rate) (Beyer et al., 2016) can
be defined as the proportion of demand fulfilled. Contrary to α-service level, it considers the
actual shortage quantities.

In practice, computation of β-service level requires information about the real demand.
However, real demand is accurately known only if it is recorded before fulfillment. Otherwise
obtaining such information is hard. During comparison of two IMSs, the system generating
higher β is considered better. As β-service level uses real demand information, it is more
suited for manufacturing and spare parts supply chains.

Availability (AVL) (Van Houtum and Kranenburg, 2015) is another measure of service
quality that defines the proportion of all items having non-zero inventory during a particu-
lar period. Generally, availability is determined for fast-moving items in spare parts supply
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chains. This measure, however, does not concern the actual quantity of inventory. Mathe-
matically availability

Computation of availability needs precise definition of the concerned set of items. Without
that, it may be counter productive. That is, an increase in availability can be detrimental to
overall performance (specifically the total cost). After defining the set of items the calculation
of availability becomes simpler. It requires record of inventory at the beginning of each period.
During comparison, a higher availability is considered better. This KPI is more suited for
spare parts supply chains.

Strategically, sometimes, the storage locations for different items may vary. For example,
in case of a very low demand (slow-moving) items, it is better to store them at a central
location than at each retailer to increase availability. Although the retailer availability might
be low but, the overall availability can be equivalent at a lower inventory cost. It is called
inventory pooling. Availability is widely applicable in spare parts supply chains. In retail it
can be defined for class-A items. In manufacturing supply chains it is generally not suited.

We summarize the KPIs discussed in the previous section in Table 3.2. Next, we dis-
cuss the challenges involved in computing those KPIs in practice and propose a simulation
methodology.

3.5. Computation Methodology

In this section, we discuss the second aspect of performance assessment, i.e., computation
methods for the selected KPIs. Computation methods also hold key importance as only
accurate and relevant computations would result in an appropriate action plan.

Comparison of performance can be of two types depending on the systems to be compared.
It can be between an existing IMS and a new IMS, or between two new IMSs. The former
comparison can be made using AB testing (Gilotte et al., 2018) and regular simulations.
AB testing refers to a small scale implementation of the new IMS at selected locations and
then monitoring the performance for a certain duration (can span upto a year). Regular
simulations are not suitable in such situations because of difficulties in exact replication of
past events. While in the second case both systems can be compared using regular simulation
techniques. The previously defined KPIs can be used to assess performance. We propose a
simulation method that we call the ∆-method for the former case.

∆-Method

The proposed method is applicable for situations where there is already an existing IMS and
the organization wants to adopt a new one. In such situations AB testing can take longer
and regular simulation cannot ensure an identical testbed since the existing system cannot
be simulated. One of the major data points missed while simulating the new system with
past data is the real demand. Without it, the shortages cannot be estimated.

Significance of ∆: In the absence of information about real demand regular simulations
are not well-suited. Here, ∆ comes into the picture, and that enables us to perform an accu-
rate “relative comparison” of two systems without knowing the real absolute performances.
This also mitigates the possibility of any selection bias in favor of an existing system while
estimating the real demand.

Let us first define ι as the assumed proportion of shortage during a specific period. The
idea here is to find out “if the existing system is unable to fulfill ι proportion of the demand,
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Figure 3.7: Shortages are expected where inventory and sales are close.

then what proportion of the demand will be left unfulfilled by the new system?” Let VT be
the total sales during a horizon of length T . If the existing system has lost ι portion, then
the demand will be VT

1−ι . Our assumption is if the inventory position is comparatively higher
than the real sales quantity then there is no shortage (see Figure 3.7). But, if the inventory
position is very close or equal to the real sales quantity then some demand is lost. Now, we
do not know exactly how much demand is not satisfied during that time, but we know the
time and we know over a horizon how much demand is not satisfied.

Let ∆t be a random positive value for time t. If the inventory position is comparatively
higher than the sales at time t then there is no lost sale and we set ∆t = 0. When the
inventory position is close or equal the sales quantity there are some shortages, i.e., ∆t > 0.
∆t is chosen such that the sum of ∆t over the horizon is approximately equal to the total
shortages. As the values of ∆t are generated randomly, we require enough samples of the
demand curve for a conclusion. The same process can be repeated for different values of ι
and the relative performance can be assessed. The step-by-step simulation is described next
and illustrated in Figure 3.8.

1. Choose a suitable starting period in the past and a horizon length (should not be less
that 60 days).

2. Collect the past sales and other required features for generating forecast for the selected
horizon.

3. Collect the values of parameters which are necessary for running the replenishment
planning system.

4. Run the forecasting system and replenishment planning system to get the optimal order
quantities.

5. Once the order quantity is known, calculate the total delivery quantity.
6. Update the inventory position.
7. Initialize the demand process based on the ∆-method. Draw a demand sample from the

underlying distribution. If the demand received is higher that the inventory position
then the excess demand unfulfilled. Otherwise complete demand is satisfied.

8. Compute the closing inventory. For a higher initial inventory position we end up with
positive inventory. On the other hand, a lower that demand initial inventory position
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will lead to zero closing inventory position for lost sales case and negative inventory
position for backorder case.

9. This closing inventory becomes the opening inventory for the next period. Repeat steps
2-8 until the end of the horizon.

10. Compute the KPIs based on the recorded data points.

Figure 3.8: Flowchart for the proposed simulation method.

47



Chapter 3. Performance Assessment of Inventory Management Systems

3.6. Conclusions

This chapter has two major aspects. First, we reviewed and proposed KPIs for inventory
management systems. Those KPIs reflect the performance of both forecasting and replen-
ishment planning systems together. Those KPIs are classified under three major categories:
financial, operational and service. Under financial KPIs, we described the value chain prof-
itability (VCP), total inventory value (TIV) and inventory turnover (ITO). The inventory
level (IVL), inventory variance (IVV), order variance (ORV) and inventory quality ratio
(IQR) were described under operational KPIs. Service KPIs included α-service level (ASL),
β-service level (BSL) and availability (AVL).

Secondly, we also analyzed the challenges while computing the above KPIs in real-world
scenarios. While two new IMSs can be compared using regular simulation techniques, as-
sessing a new system with respect to an existing one comes with two major limitations. An
accurate method for such situations, AB testing requires longer duration to obtain results.
In most cases it can span upto a year. Moreover, this method also has financial risks since
it is actually implemented. On the other hand regular simulations do not ensure an identical
testbed. We proposed a simulation method that we call the ∆−method. It is capable of
evaluating KPIs of existing and new systems under identical conditions in the past. This
method does not require lengthy computation horizon as AB testing. Also, this method does
not have a risk of financial losses.

This chapter concludes the first part of this dissertation. In the second part we focus on
developing optimization methods for replenishment planning problems. In the next chapter,
we propose a sampling-based method for the single-item replenishment planning problem.
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Chapter 4

Problem Definitions and Modular Framework

Abstract: In this chapter, we define various inventory optimization problems
that are to be addressed by Vekia. Their solution methods are proposed later in
the dissertation. Tactical and operational problems are broadly divided into two
categories: single-item replenishment planning problems and multi-item (joint)
replenishment planning problems. They can be further sub-divided based on the
length of planning horizon (and the corresponding number of replenishment de-
cisions), i.e. single period, multi-period (definite periods) and long-term. We
also discuss the replenishment problems during promotional events and supplier
selection aspect. Extensions of the basic problems are also proposed to address
practical situations. All the above problems are arranged as a modular inventory
management framework, with each module addressing a particular variety of prob-
lems. The framework also includes strategic multi-echelon inventory optimization
and other long-term planning problems.

4.1. Introduction

Inventory optimization problems have been extensively studied in the past. In Chapter 2,
we proposed a classification scheme for various inventory optimization problems. Using that
scheme, we also defined the problems addressed in this dissertation (see Table 2.3). Those
problems are of two broad classes based on the number of items involved in planning: problems
with only one item and problems with multiple items. Depending upon the situation, the
planning horizon can span just one period or multiple periods. Therefore, formally, the broad
categories of the problems are as followed.

1. Optimization problems involving a single item.

(A) Multi-period single-item replenishment planning (SRP).
(B) Multi-period single-item replenishment planning with supplier selection (SRPSS).

2. Optimization problems involving multiple items.

(A) Single period promotional joint replenishment planning (PJRP).
(B) Multi-period joint replenishment problems (JRP).
(C) Multi-period joint replenishment problems with supplier selection (JRPSS).
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In this dissertation, we consider a general multi-echelon supply chain. We assume a
decentralized approach of managing the inventory, where each location in the supply chain
can be controlled independently. Each location encounters one or more of the previously
mentioned problems. They are the decisions in operational level and require to be solved
frequently. In order to be efficient on global cost parameter as well, a central multi-echelon
optimization and a long term optimal parameter setting problem are also proposed. The
framework is presented in Figure 4.2.

The rest of this chapter is arranged as follows. In Section 4.2, we arrange various types
of relevant inventory optimization problems in a modular inventory management framework,
explain its different modules and their interrelationship. The problems corresponding to the
modules are defined next in Section 4.3 and Section 4.4. Then we analyze possible industrial
extensions in Section 4.5. We provide the conclusions in Section 4.6.

4.2. Solution Design Framework

Depending on the organization, the type of supply chain and the type of inventory opti-
mization problem can vary. From a solution design point of view, a modular approach can
be configured to address most of the problems with each module addressing a sub-problem.
In this section, first we will explain the general nature of those underlying problems then
arrange them into a modular framework.

4.2.1. The Supply Chain Network and Planning Problems

A general supply chain can have multiple levels of storage. In Figure 4.1, a typical supply
chain network is depicted where each location (manufacturing, warehouse or retail store) can
serve as a point to store inventory.

Figure 4.1: A generalized depiction of multi-echelon supply chain.

During day-to-day operations, replenishment process can be defined as the operation of
each location to order items from its predecessors (suppliers). Generally those decisions are
taken considering the future demand, in-hand inventory level and the operational constraints.
The standardized planning involved in this process is called replenishment planning. The
common method is as follows. In the beginning of each time period, the manager takes note
of the inventory in hand. He generates the demand forecasts for future periods (definite). He
then places an order at the supplier(s) considering the operational constraints and the costs.
Those orders are delivered immediately. At the end of each time period, inventory holding
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cost is paid on the closing inventory and for any shortage, the shortage penalty is paid. For
every order places a fixed cost is also paid.

4.2.2. Modular Inventory Management Framework

The process described before is a generalized replenishment planning process. The actual
planning requires the details of the underlying problems. The proposed inventory manage-
ment framework has three categories of problems: strategic planning, operational planning
and emergency planning. Figure 4.2 illustrates the framework with each module represented
by a rectangle. The shaded rectangles are the problems that are addressed during this re-
search. The work on the problem in the hashed rectangle is ongoing and remaining problems
are planned for future research.

Figure 4.2: Proposed inventory management framework.

Out of the three categories of problems, we focused only on the operational planning part.
Those problems may be divided into two categories:

1. Single-item problems and
2. Multi-item problems.

Two types of single-item problems are addressed during this research. The first one is
the basic version, single-item replenishment planning (SRP) is the well known inventory
control problem where orders are optimized for one item without taking any supplier aspects
into account. Cost components include the inventory holding cost, shortage cost and fixed
order cost. When supplier selection is also a part of the problem, we define it as single-
item replenishment planning with supplier selection (SRPSS). In addition to previous cost
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parameters, supplier selection also requires supplier specific costs such as unit purchase price,
supplier specific fixed costs, etc.

Multi-item problems differ from the single-item ones due to the presence of first degree
interaction between the items. We address three types of multi-item problems. The basic
version with multiple items and a common fixed cost called the joint replenishment plan-
ning (JRP). The second one called the joint replenishment planning with supplier selection
(JRPSS). It is an extension of JRP to include supplier selection. The third one is a single-
period problem, that is encountered frequently by retailers during promotions called the
promotional joint replenishment problem (PJRP).

In Figure 4.2, arrows suggest a generalized relationship from solution development point
of view. The SRP is a sub-problem of the SRPSS and the JRP. The PJRP is a sub-problem
of the JRP and the JRP is a sub-problem of JRPSS. In the upcoming section we explain each
of the above problems in more detail.

4.3. Single-Item Inventory Optimization

The inventory control problem for the single-item case is one of the most studied problems
in inventory optimization literature. As the name suggests, the ordering decisions for just
one product are optimized. Even though very few practical situations deal with only one
item, in most multi-item cases, the whole problem can be assumed to be an aggregation of
independent problems concerning each item.

(a) Depiction of the complete
problem where multiple items are
ordered from a single supplier.

(b) The problem in Figure 4.3a is
separable for each item in case of
SRPs.

Figure 4.3: Single supplier single item replenishment problem.

4.3.1. Single-item Replenishment Problem (SRP)

In Figure 4.3a, a common case of multiple items ordered from a single supplier is depicted.
The replenishment problems for each item can be considered independent and can be formu-
lated and optimized separately. In Figure 4.3b, independent control of each item is depicted.
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The basic problem can be defined in the following way. Each location plans for several
items (in some cases that can exceed one million) to be ordered. For the sake of simplicity, we
consider that the global constraints such as total budget and supplier capacity are not violated
and we are able to plan independently for each entity. Without any common constraint linking
the items, the replenishment problems can be separable for each item. At the beginning of a
time period, the inventory manager decides the replenishment quantity and the time. For an
item at a given store, the forecast is updated at the beginning of each period. The forecast
information is available up to the end of the planning horizon. The ordering decisions are
made considering the forecasts during the rolling horizon, in-hand inventory level and the
associated cost parameters. When an order is placed, the quantity ordered is delivered
immediately. Any excess demand is fully backordered i.e. any unsatisfied demand appears
as additional demand of the next period. A fixed order cost is paid for each non-zero order
placed. Inventory holding cost is paid for each unit of inventory carried from one period to
another. For any backorder, a backorder penalty per unit is also paid.

The basic problem has stationary demand and unit order batch size without any addi-
tional supplier constraints. It can be denoted by the notations introduced in Chapter 2
as 1;φ;φ||0;D||S;B;φ||C||D;U||S;S;M. However, the supplier can also impose a batch size
constraint. Additional sources of uncertainty may include lead time and inventory record
accuracy. This problem can be extended to include other practical constraints, such as, min-
imum order quantity, minimum inventory quantity and service level, etc. During shortage,
the associated demand could be lost completely (as in case of retail supply chains). There
can also be a mix of backorder and lost sale in case of shortage. Non-stationary demand is
another practical scenario. In this dissertation, we also differentiate the SRP problem based
on number of suppliers as it requires additional cost parameters. Further details about the
problem are discussed in the upcoming section.

4.3.2. Single-item Replenishment Problem with Supplier Selection (SRPSS)

Previous single supplier model is simple with only one set of cost parameters. However,
usually buyers adopt multiple-supplier strategy. This is mainly to mitigate uncertainty or
to respect existing service level agreements. An inventory model with multiple suppliers is
depicted in Figure 4.4. Retailers plan their inventory with a short review period. Availability
of multiple suppliers for the same item poses greater challenges for cost effective operation.
Since the total cost (and thereby the profitability) is closely related to the purchase price of
an item, an integrated planning method becomes essential. The decision regarding supplier
selection must be taken with due consideration to its cost implications. Capacity limitations
and service level agreements (SLA) are some additional factors that make multi-supplier
planning models essential.

Multi-supplier models in retail can have two basic supply chain network structures. First,
a single echelon supply chain with multiple retailers and multiple suppliers. The second type
of network structure has multiple retailers at different places along with a central warehouse.
The central warehouse in turn, orders from multiple suppliers. We can generalize it to a
single entity (retailer or warehouse) having multiple suppliers. Each entity has independent
ordering strategy. The process for one entity is presented in Figure 4.4a. The ordering
decisions for different items can also be taken independently. This results in each item being
able to be ordered from multiple suppliers (see Figure 4.4b). The problem is called a single-
item replenishment problem with supplier selection (SRPSS). For the basic problem, suppliers
differ by the price they charge per unit item and fixed cost charged per order. Similar to
the single-item case, the costs incurred are fixed ordering cost, inventory cost and shortage
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(a) Depiction of the complete
problem where multiple items are
ordered from multiple suppliers.

(b) The problem in Figure 4.4a is
separable for each item, and each
item can be ordered from multiple
suppliers.

Figure 4.4: Multi-supplier single item replenishment problem.

cost, with the additional purchase costs. Any order placed by the entity to any supplier is
delivered immediately.

The basic SRPSS can be denoted as 1;φ;φ||0;D||S;B;φ||C||D;U||S;M;M. Extensions to the
basic SRPSS are similar to that of the basic SRP. Different shortage consideration and non-
stationary demand are item specific extensions. However, supplier specific extensions such as
different batch sizes and different minimum order quantities can also be adopted.

4.4. Multi-Item Inventory Optimization

In practice, most inventory optimization problems concern multiple items. However, un-
like the previously discussed problems, if the concerned items have a first order interaction
between themselves, their control should not be performed independently. First order inter-
action takes place between items if one or more than one of the following conditions exist(s):
common fixed ordering cost (when the fixed order cost is independent of the quantities or
the variety of items in an order), common transportation means, common transportation
cost, discounts on total purchase amount of all items or on the total quantity (this is also
applicable for a class of items), etc.

We first define the joint replenishment problem (JRP) and present its extensions. Then,
we define the joint replenishment problem with supplier selection (JRPSS). At last, we pro-
pose a promotional ordering problem involving multiple items, i.e. promotional joint replen-
ishment problem (PJRP).

55



Chapter 4. Problem Definitions and Modular Framework

4.4.1. Joint Replenishment Problem (JRP) with Single Supplier

The joint replenishment problem (JRP) consists of integrated inventory control of multiple
items which are connected through a joint fixed cost or a joint transportation mode. In
general, a location orders multiple items from multiple suppliers. The classical JRP is sepa-
rable for each supplier when the items do not overlap (see Fig 4.5a). The problem for each
supplier is depicted in Fig 4.5b. The supplier charges a fixed cost for each order irrespective
of its contents. Inventory is reviewed periodically and order is placed considering the future
demands and in-hand inventory positions. Inventory holding costs are charged on the closing
inventory of each period and any shortages incur shortage penalties. For the basic problem,
the demand for different items are stochastic and stationary. Batch size is one and all the
cost parameters are linear.

The basic JRP can be denoted as 1;φ;φ||0;D||S;B;φ||C||D;U||J;S;M. Extensions include
uncertain lead times, inventory quantities and supplier delivery quantities, non-stationary
demand, non-unit batch size, presence of minimum order quantities and different shortage
consideration (backorder and lost sale).

(a) Depiction of the complete
problem where multiple items are
ordered from multiple suppliers.

(b) The problem in Figure 4.5a is
separable for suppliers, and each
supplier provides a group items.

Figure 4.5: Joint replenishment problem with a single supplier.

4.4.2. Joint Replenishment Problem with Supplier Selection (JRPSS)

The joint replenishment problem can be generalized to have multiple suppliers, defined as
joint replenishment problem with supplier selection (JRPSS). For a location, the JRPSS is
the most complex form of inventory control. The problem arises when the entity has multiple
suppliers for multiple items and the items across the supplier overlap. In other words one
item has multiple suppliers and the supplier can supply multiple items.

Figure 4.6 depicts the general structure of a joint replenishment problem with multiple
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suppliers at a location. The location encounters stochastic demands for multiple items. The
inventory manager reviews the inventory level of each item at the end of each period, then,
looking at the demands ahead, he places order at the suppliers. The orders are delivered
immediately. Similar to the JRP the inventory holding costs and the shortage costs are
incurred. Other cost parameters are supplier specific: fixed order costs and unit price per
item. Also, supplier specific constraints include batch size and minimum order quantity. The
basic JRPSS can be denoted as 1;φ;φ||0;D||S;B;φ||C||D;U||J;M;M.

Figure 4.6: Joint replenishment planning with supplier selection.

4.4.3. Promotional Joint Replenishment Problem (PJRP)

Nowadays, promotional events to boost sales are becoming common. Particularly in retail,
its effect is more evident. Inventory planning during a promotional event involves a new
set of items that are to be sold in the promotion and usually only one order is placed for
them. Therefore, the problem is similar to the well known newsvendor problem (single-period
ordering) with multiple items. In this dissertation we do not consider a joint constraint such
as net budget or volume, however, our major focus is on dealing with the presence of multi-
item pack (a prepack). The problem is briefly defined below.

We study a single echelon supply chain network with multiple entities (retailers). The
inventory control processes at those entities are considered independent since no global budget
constraint is present. The organization follows a decentralized planning approach, where, each
entity plans its orders. In practice the entities seldom has the central financial data. This
makes planning with financial parameters inviable. There are multiple suppliers, however,
none has any capacity constraint. So, we consider them as one supplier supplying all the
items. Each item can only be ordered as the multiple of its batch size (a pack) as defined
by the supplier. There are two distinct type of packs (See Fig 4.7). First, single-item packs,
where, the pack contains only one type of item. Second, multi-item packs, where, the pack
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contains multiple items of supplier defined quantities (equal or unequal). Order for an item
can contain either single-item packs or multi-item pack or a mix. The basic PJRP can be
denoted as 1;φ;φ||0;D||S;L;φ||C||D;S||J;S;S.

Figure 4.7: Illustration of differentiation between single-item pack and multi-item pack during
promotional ordering.

4.5. Industrial Extensions

In reality, inventory optimization problems are very different from those solved in the lit-
erature and briefly presented above. They vary by the type of input parameters, type of
constraints and application condition. There are some subjective aspects as well. For exam-
ple, a managers intuition about demand instead of machine generated forecast and the ease
of implementation of an outcome also impact the solution methods.

For both single-item and multi-item inventory optimization problems, common industrial
extensions are presence of lost sale, a mix of lost sale and backorder during shortage, service
level constraint, tackling forecast inaccuracy, multiple batch sizes, non-stationary demand,
supplier discounts, capacity constraints, etc.

4.6. Conclusions

In this chapter, we discussed various problems encountered at Vekia, and most of them are
addressed in this dissertation. The problems were arranged to form a modular inventory
management framework. It can fit to many problem classes during solution development.
Broadly, two classes of problems were discussed: single-item inventory optimization problems
and multi-item inventory optimization problems (joint replenishment problems). For single-
item problems, we focused only on multi-period problems. Further, they were classified into
single-supplier and multi-supplier problems. Similarly, multi-item problems are classified into
single-period (promotional), multi-period with single supplier and multi-period with multiple
suppliers. All the above problem classes were defined for a single location (or retailer) as we
consider them to be independent. We also discussed their possible extensions.

In the next chapter, we propose a sampling-based optimization method for the basic
SRP problem. The method can be extendable to include additional problem parameters and
practical constraints.
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Chapter 5

Sampling-based Replenishment Planning in
Single-Item Inventory Systems

Abstract: In this chapter, we propose an innovative and practical replenishment
planning method for the single item inventory system. The method is distribution-
free and uses samples of future demand. The corresponding replenishment deci-
sions are implemented in a rolling horizon manner. We first investigate two
different mathematical models for the replenishment planning problem with back-
order: expected cost approach, robust cost approach and propose a novel approach,
namely, coverage period cost approach. Then, we formulate an exact algorithm
and also propose an approximation heuristic for the immediate expected cost ap-
proach. Numerical analyses on synthetic and benchmark datasets show that the
proposed heuristic performs well, both in terms of solution quality and runtime.
It can be used for both stationary and non-stationary demand distributions. Var-
ious extensions are also proposed to reflect its readiness for practical applica-
tion. Those extensions include batch-size constraint, higher realized demand un-
certainty and minimum order quantity, etc.

5.1. Introduction

The single-item replenishment planning (SRP) problem is one of the most widely studied
inventory optimization problems in the literature. This has great strategic significance for
both distribution and retail firms. While the initial studies focused on deriving solutions for
the standard problem, recent literature gives importance to real-world problem parameters
and execution time. As discussed in Chapter 2, this type of problem can have many variants
due to changes in the network structure, temporal aspects, consideration of demand, shortage,
etc. This large variety of problems can be present within one organization. An inventory
management system must be able to cope with such situation. Dedicated frameworks for
each of these problems might yield better result individually, however, this approach may
pose challenges during solution development and servicing.

Since in a real-world setting, situations having deterministic demand are scarce, we fo-
cus solely on the problems assuming the demand to be stochastic. Replenishment planning
with stochastic parameters falls under the class of multi-stage stochastic problems (MSSP)
(Homem-de Mello and Bayraksan, 2014). For stationary demand and full backorder, the sem-
inal paper by Scarf (1959) proves that the optimal inventory policy is of (s, S) type where S
denotes the order up to level and s denotes the reorder level. However, the practical applica-
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bility of a (s, S) type inventory policy is severely limited by its simple application conditions.
Real-world conditions are different from what is regularly assumed in the literature: non-
stationary demand, non-parametric demand distribution, order batch size and incomplete
demand information to name a few. The non-stationary (s, S) policy (Xiang et al., 2018) is
computationally expensive as it requires repeated computations of policy parameters. The
comparative measures of various well-known methods for stochastic replenishment planning
are given in Table 5.1. Both optimal and approximate methods suffer from either very limited
application scope or high computation time.

Table 5.1: A comparative representation of application conditions of various replenishment
planning methods in single-item inventory systems and their qualitative performance indicators.
NS(s, S) Policy: Non-stationary (s, S) policy with policy parameters determined by a heuristic, DP:
Dynamic Programming, Offline Time: Computation time for policy parameters, Online Time: Com-
putation time for actual orders from the policy or the method.

Method Demand Distribution Type Batch Size Offline Time
(Online Time) Optimality

Stationary/
Non-stationary

Parametric/
Non-parametric

Independent/
Non-independent

(s,S)Policy Stationary Parametric Independent Unit Medium(Low) Optimal
(R,Q)Policy Stationary Parametric Independent Any Medium(Low) Approximate
(s,Q)Policy Stationary Parametric Independent Any Medium(Low) Approximate
(s,nQ)Policy Stationary Parametric Independent Any Medium(Low) Approximate
NS(s,S)Policy Both Parametric Independent Unit Medium(Low) Approximate
DP Both Both Both Any -(Very High) Optimal

The solution methods for any problem under the class of MSSP depend on the availability
of information. They can be classified into two broad categories: probabilistic approach and
scenario-based approach (Pan and Nagi, 2010). The probabilistic approach can be used when
the complete probability distributions of the underlying uncertain parameters are available.
An example of probabilistic approach is stochastic programming. Even in the presence of
multiple sources of uncertainty, stochastic programming is an effective tool to find the optimal
solution. If the complete probability distribution is not known, the scenario-based approach
can be adopted. The scenario-based approach is a distribution-free method that involves
characterizing the uncertainty by a set of scenarios that represent a number of potential future
states. The sampling-based approach (Levi et al., 2006) can be considered as a variant of the
scenario-based approach. During the course of this dissertation we propose such approaches
for replenishment planning.

In this chapter, we study the multi-period stochastic inventory system involving a single
product and propose a near-optimal replenishment planning methodology. Afterwards, we
also propose various extensions for different application conditions. Our contributions in this
regard are the following:

1. We examine two mathematical models: expected cost approach and robust cost ap-
proach, and propose a novel approach, namely, coverage period cost (CPC) approach
for the replenishment planning problem in a stochastic inventory system using samples.

2. We propose a heuristic for online computation of order quantities with much less com-
putational effort than dynamic programming or policy evaluation.

3. We propose various extensions to the above methodology to address batch-size, higher
realized uncertainty and minimum order quantity.

The rest of this chapter is organized in the following way. In Section 5.2, we briefly discuss
the context of the problem and our motivation behind the problem and the methodology.
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Then, we provide a brief review of related literature in Section 5.3. Some preliminary concepts
are discussed in Section 5.4. The mathematical models are presented in Section 5.5 and
the main heuristics are given in Section 5.6. While Section 5.7 presents the experimental
protocol, in Section 5.8, we provide the results of our experiments. Extensions to the main
heuristics and their results are presented in Section 5.9. At last, in Section 5.10, we provide
the conclusions and discuss some future perspectives.

5.2. Context and Motivations

In this section, we provide a brief description of the problem and discuss our motivations
behind using a sampling-based approach.

5.2.1. Context

We study a single-echelon supply chain where each store is controlled independently. This
decentralized planning may not be the most cost efficient approach, however, from a practical
point of view, it is more manageable. It is also near-optimal if the localized solutions are
coherent with the global objectives. For simplicity, we consider that the global constraints
such as total budget and supplier capacity are not violated and we are able to plan indepen-
dently for each store. In each store, there are several items (in some cases that can exceed
one million) to be ordered and the ordering process for each item is also independent. This
constitutes multiple SSRPs. The specifics of the underlying processes are as follows.

For an item at a given retailer, the forecast is updated at the beginning of each period.
The forecast is generated up to the end of the planning horizon. The ordering decisions are
made considering the demand forecasts during the rolling horizon (see Section 5.4), current
inventory level and the associated cost parameters. When an order is placed, the quantity
ordered is delivered immediately. Any excess demand is fully backordered, i.e., any unsatisfied
demand appears as additional demand of the next period. A fixed order cost is paid for each
non-zero order placed. Inventory holding cost is paid for each unit of inventory carried from
one period to another. For any backorder, a backorder penalty per unit is also paid. The
supplier can also impose a batch size constraint. We consider the external demand to be the
only source of uncertainty. Using the classification scheme from Chapter 2, the base problem
can be defined as:
1;φ;φ||0;D||S;B;φ||C||P;U||S;S;M. This basic structure can have extensions, such as with lost
sales, single batch size, deterministic or stochastic lead time. For example:
1;φ;φ||0;D||S;L;φ||C||P;U||S;S;M
1;φ;φ||0;D||S;B;φ||C||P;S||S;S;M
1;φ;φ||D;D||S;B;φ||C||P;U||S;S;M.

5.2.2. Motivations

Even if the SRP problem has been studied widely in the literature, none of the existing
methods can be universally applied or easily adaptable to the real-world conditions. In
Table 5.1, we have summarized the limitations of existing well-known methods.

Solving the SRP problem using traditional methods comes with two limitations. First,
due to the curse of dimensionality (Defourny et al., 2012) the MSSPs are hard to solve when
the number of stages is large (usually for ≥ 3). On the other hand, a smaller number of stages
can yield myopic results (Rahdar et al., 2018). Non-stationary (s, S) policies require dynamic
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computation of the policy parameters (which is computationally expensive), parametric and
independent demand distributions. For any MSSP, it often becomes very difficult to enumer-
ate all the possible outcomes with increasing number of stages. This, as a prerequisite for the
computation of the expectations in stochastic programming, makes the approach difficult to
adopt. In such cases, sampling techniques are natural tools to use (Shapiro, 2003). The other
motivation for adopting a sampling-based method comes from their ease of use in practical
applications. Standard forecasting methods are capable of producing probabilistic forecasts.
However, handling multi-dimensional distributions is very hard in parametric forms and some
forecasting methods naturally yield samples. Therefore, direct use of multi-dimensional sam-
ples addresses both of the above concerns.

5.3. Related Literature

Related literature comprises two major research fields. First is stochastic inventory opti-
mization, and second is sample-based optimization. In this section, we discuss separately
the research already done in these two topics that are pertinent to our problem. Since our
work focuses on sample-based inventory optimization, we review the literature on this topic
as well.

5.3.1. Stochastic Inventory Optimization

Single item inventory optimization under stochastic demand has been studied since the 1950s.
The earliest literature in the field (Scarf, 1959; Clark and Scarf, 1960; Karlin, 1960; Veinott,
1966) study the structure of optimal policy. Interestingly, the structure of the optimal policy
is very simple, i.e. of (s, S) type. The policy defines two inventory levels: the reorder level
s, and the order up to level S. When the inventory level reaches or goes below the reorder
level an order is placed to raise the inventory position to S. The optimal parameters can
be found by using policy iteration, but it is time consuming. Simpler methods to compute
the stationary (s, S) policy are given by Zheng and Federgruen (1991) and Feng and Xiao
(2000). Similarly for the non-stationary (s, S) policy Askin (1981) and Bollapragada and
Morton (1999) provide simple heuristic. More recently Xiang et al. (2018) proposed a mixed
integer linear programming approach to compute the approximate non-stationary (s, S) pol-
icy. The heuristic provided therein, although computationally less expensive than dynamic
programming, is still not suitable for real-world size problems.

Both the cases of stationary and non-stationary demand rely on the complete knowledge
of the underlying probability distribution. Although the non-stationary case is more ap-
pealing for practical applications, the methodologies developed in this area can only provide
myopic policies at a reasonable computation time. Other practical limitation arises due to
the presence of batch-size. Widely used policies in the presence of batch-size, such as (R, Q),
(R, nQ) and (s, nQ) (Q = Batch-size, s, R = Reorder points) are themselves not optimal.

As discussed in the motivations, under practical assumptions, the MSSP suffers from the
curse of dimensionality (Defourny et al., 2012). Bertsimas and Thiele (2006), Levi et al.
(2007a), Neely and Huang (2010) and Rahdar et al. (2018) proposed different methods to
avoid the problem and approximate the solution. Also, Rossi et al. (2015) and Özen et al.
(2012) explore static dynamic uncertainty strategy to address the problem. However, all
of the methods mentioned above assume the demand to be independent across time. Our
proposed method provides an approximate solution to the MSSP while making no assump-
tions regarding stationarity or independence of underlying demand distributions. It can also
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be extended to include the batch size constraint and to address more uncertain demand
realizations. Moreover, runtime increases linearly with the length of the planing horizon.
Applicability of our proposed method is summarized in Table 5.2.

5.3.2. Sampling-Based Stochastic Optimization

As the total number of outcomes increases, sample-based stochastic optimization becomes
more practical. A detailed survey of Monte-Carlo sample-based methods for stochastic op-
timization can be found in Homem-de Mello and Bayraksan (2014). This method has been
successfully used in many practical problems, for example vehicle routing (Kenyon and Mor-
ton, 2003; Verweij et al., 2003), engineering design (Royset and Polak, 2004), supply chain
network design (Santoso et al., 2005), power generation and transmission (Jirutitijaroen and
Singh, 2008), asset liability management (Hilli et al., 2007), and machine learning (Byrd et
al., 2011).

Approaches for sample-based stochastic optimization include sample average approxi-
mation (SAA) and stochastic approximation (SA). SAA works by replacing the stochastic
programming problem by its sample approximation, which is a deterministic optimization
problem. The SA approach on the other hand works on sequential approximation strategy,
where approximation and sample generation are carried out alternatively. For MSSPs like
stochastic inventory optimization, Shapiro (2003) outlined the need for conditional sampling.
This makes the number of samples required for the MSSP grow exponentially with the num-
ber of periods (stages). Some methods to address this issue are dual dynamic programming
(Shapiro, 2011), and ReSa (Reduced Sampling) (Hindsberger and Philpott, 2014).

Table 5.2: Applicability and qualitative performance of the proposed coverage period cost (CPC)
approach.

Parameter Sub-Parameter Options Applicability Remarks
Demand Temporal change Stationary X

Non-stationary X Extension
Distribution Parametric X

Non-parametric X
Temporal dependency Independent X

Dependent X
Batch size Size Unit X

Non-unit X Extension
Numbers allowed Single X

Multiple X Extension
Shortage − Backorder X

Lost sale X Extension
Uncertainty − Equal X

Increased X Extension
MOQ − − X Extension
Runtime − Online − Low

Offline NA

5.3.3. Sampling-Based Stochastic Inventory Optimization

In most of real-life scenarios the explicit demand distributions are hardly known or very
complex to work with (Levi et al., 2006). Under such assumptions, sampling-based methods
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are suitable. Sampling-based methods have been used for stochastic inventory optimization
in two contexts. First for the single-period (newsvendor) problem and second for the multi-
period problem. The SAA approach performs well for the single-period problem (Homem-de
Mello and Bayraksan, 2014). Levi et al. (2006) and Levi et al. (2007b) are some of the initial
works on distribution free approaches to address inventory optimization problems. Levi et
al. (2007b) addressed both the newsvendor problem and its multi-period extension. For the
multi-period model they proposed a dynamic programming algorithm that gives approximate
base stock policies. They assumed the demand to be independently (not necessarily identi-
cally) distributed. For faster runtime they also proposed a myopic method that only evaluates
the optimal cost for one period. Even though this method is computationally simple, the
solution quality can be far from the optimal.

Halman (2015) provided a fully polynomial time approximation scheme for stochastic
dynamic program with samples. Their method can also be applied to approximate the so-
lutions given by Levi et al. (2006) and Levi et al. (2007b). In order to deal with industrial
size problems, our analysis differs in two aspects. First, instead of a multi-stage problem
we analyze the cost of the first period only. Second, we provide a close-form approximation
and the computational complexity of the final algorithm is of the order equal to the number
of stages. Moreover, we also focus on solution flexibility so that it can be easily extended
to include additional practical constraints. The applicability of the proposed approach is
summarized in Table 5.2. The base problem can be defined as the single-item replenish-
ment problem with full backorder unit batch size. The proposed method can be applied to
non-parametric demand as well. For non-stationary demand, lost sales, non-unit batch size,
multiple batch size and increased uncertainty (inaccurate forecast), extensions can be used.
The detail applicability of our proposed method is given in Table 5.2.

5.4. Preliminaries

Before going into the detailed formulations, we discuss some preliminaries. All of our proposed
methods are implemented in a rolling horizon approach, in which demand for the duration of
the rolling horizon is considered for ordering decisions instead of the whole planning horizon.
We elaborate the rolling horizon method in the upcoming paragraph. In addition, we also
present the notations and dynamic programming formulation of the concerned problem.

Rolling Horizon: A rolling horizon approach (Rahdar et al., 2018) is necessary primarily
because of two reasons: the scarcity of demand information far in the future and the curse of
dimensionality. These are two concerns that must be considered while designing a stochastic
inventory optimization solution. While the former affects the solution quality, the latter
affects the runtime required to find a solution. When demand upto a longer horizon is
used, it yields good quality solutions. However, due to scarcity and inaccuracy of such
information as well as the curse of dimensionality, a compromise can be made if the decisions
are implemented in a rolling horizon manner. Under this approach, demand information up
to T (rolling horizon length) periods is available. The total length of planning horizon T̂ can
extend up to infinity. The decision is taken in each period considering the demand up to T
periods and initial inventory level s0. Depending upon the adopted method multiple ordering
decisions may be evaluated during each period, but only the first one is implemented. The
process is then repeated with updated forecast for the next period and so on. This way the
rolling horizon approach can be utilized when the demand distributions are dependent. The
benefits of this approach include exploitation of the future demand information and reduction
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in problem size. The rolling horizon approach is depicted in Figure 5.1.

t = 1

t = 2

t = t

t = T̂ − T

s0
q1

q2

qt

qT̂−T

t = T̂
T

Figure 5.1: Illustration of an ordering mechanism with a rolling horizon length T and planning
horizon length T̂ . During each time period t order quantities are determined considering the open-
ing inventory level and demand over a t to t+ T window.

Dynamic Programming: The multi-period stochastic inventory optimization problem
with rolling horizon approach is a multi-stage stochastic problem that can be solved optimally
with dynamic programming. This also requires the end state to be known and demands across
time to be independent. The infinite horizon cost calculation is proposed in Scarf (1959).
The structure of the obtained policy is simple only if the underlying demand distribution is
a parametric one. In case of non-independent distributions it becomes very hard to express
them and to find an optimal solution. The dynamic program is as follows (refer to table 5.3
for notations). Let Ct(st−1) be the expected total cost of an optimal policy over time periods t
to T for initial inventory position st−1. Then the functional equation of the dynamic program
will be

Ct(st−1) = min
qt

{
E
[
H(st−1 + qt − dt)+ +W [−st−1 − qt + dt]+ +Kαt+

Ct+1(st−1 + qt − dt)
]} (5.1)

5.5. Sampling-based Optimization Models

Although, solving the above dynamic program can give us the desired result, in practice it is
computationally prohibitive. In this section, we investigate various optimization models that
use probabilistic forecast as samples. The first model minimizes the expected cost for the
horizon over the set of samples. The second model minimizes the maximum cost of the horizon
over different samples in the sample set. Finally, we propose a mathematical formulation for
the expected cost during the first period and propose to minimize this expected cost to
obtain near-optimal order quantities. We use a dynamic programming approach to compare
the results of the previously stated methods.

Forecasts as Samples: For an item i, we consider N samples and each sample j ∈ {1..N}
is a demand trace that can be represented by a vector xj of size T , where T is the length
of the rolling horizon. Figure 5.2 depicts a set of three samples with T = 10. The samples
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drawn can be from any underlying distribution as the optimization method does not assume
any specific property.

Table 5.3: Parameters and variables for the optimization models.

Sets
Z Set of samples, index for sample z ∈ {1, ..., Z}
T Set of time periods, index for periods t ∈ {1, ..., T}

Parameters
Pz Occurrence probability of sample z, ∈ [0, 1]
Fzt Demand forecast for sample z at time t, ∈ R+

K Fixed ordering cost per order, ∈ R+

H Inventory holding cost per unit, per unit time period, ∈ R+

W Backorder cost per unit, ∈ R+

A Discount factor, ∈ (0, 1]
M A suitably large positive number

Decision Variables
qt Order quantity at time t, ∈ Z+

Internal Variables
dt Random demand variable at time period t, ∈ Z+

szt Inventory for sample z at the end of period t, ∈ R
lzt Backorder quantity for sample z at time t, ∈ R+

cz Total cost of sample z, ∈ R+

αt Binary, 1 if fixed cost is charged at time t and 0 otherwise ∈ Z+

m Worst case cost ∈ R+
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Figure 5.2: Illustration of demand samples. We present three distinct demand samples, which are ran-
dom realizations of the demand during time t = 1 to T = 10.
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5.5.1. Expected Cost Approach (ECA)

The ECA aims to minimize the expected cost of ordering decision q across all samples. Here,
we consider the problem from a static uncertainty strategy and evaluate a set of decisions
along time. The optimization model is as follows.

minimize
Z∑
z=1

Pzcz (5.2)

subject to

sz0 = s0 ∀z ∈ Z (5.3)

szt ≥ sz0 +
t∑

x=1
qx −

t∑
x=1

Fzx ∀z ∈ Z, t ∈ T (5.4)

lzt ≥
t∑

x=1
Fzx −

t∑
x=1

qx − sz0 ∀z ∈ Z, t ∈ T (5.5)

qt ≤ αtM ∀t ∈ T (5.6)

cz =
T∑
t=1

(αtK + sztH + lztW )At ∀z ∈ Z (5.7)

szt ≥ 0 ∀z ∈ Z, t ∈ T (5.8)
lzt ≥ 0 ∀z ∈ Z, t ∈ T (5.9)

Constraint (5.3) refers to the initial state of inventory. Constraint (5.4) computes the
positive inventory quantity during each period and constraint (5.5) computes the backorder
quantity. When the unmet demand is fully backordered, it appears as the additional demand
in the following period. Therefore, it is necessary to consider the cumulative demand and
orders and not only the ones for the current period. Constraint (5.6) ensures the binary
indicator αt to be equal to one for any non-zero order quantity. The individual sample costs
are calculated as per constraint (5.7). Constraints (5.8) and (5.9) are positivity constraints.

5.5.2. Robust Cost Approach (RCA)

The RCA is similar to the ECA except it aims to minimize the maximum cost across samples.
Formally,

minimize m (5.10)

subject to (5.3)-(5.9) and

m ≥ Pzcz ∀z ∈ Z (5.11)

An additional constraint (5.11) is used to determine the maximum (worst case) cost m
across samples.

67



Chapter 5. Sampling-based Replenishment Planning in Single-Item Inventory Systems

t = 1

t = 2

t = t

t = T̂ − T

s0
q1

q2

qt

qT̂−T

t = T̂

T

Ω

Cost computation
for first period

Figure 5.3: Illustration of an ordering mechanism with the IECA.

5.5.3. Immediate Expected Cost Approach (IECA)

We propose an approach based on the notion of coverage period cost (CPC). We define the
coverage period as the time horizon between two consecutive orders. The CPC is defined as
the expected cost incurred during the coverage period. CPC included inventory holding cost,
shortage cost (backorder or lost sale cost) and fixed order cost. Let us consider a case with
the opening inventory equal to s0. The future demand from t = T 1 to t = T 2 is expressed
in terms of samples. The choice of length of horizon T depends upon the accuracy level of
forecasts as well as the quality of required results. Given that all samples constitute only non-
negative values of demand, we can determine the inventory traces for the future starting with
an inventory level s0. The resulting process for T 1 = 1 and T 2 = 10 is depicted in Figure 5.4.
For each trace z ∈ Z, we can determine the projected inventory values. Therefore, it is
possible to calculate the inventory quantities and the backorder quantities for each sample
and each order quantity. Furthermore, this enables us to calculate the cost for any coverage
period T 1 to T 2. We aim to find out the order quantity that minimizes the expected cost
for the first period taking in that coverage period. We denote the expected cost during the
coverage period as C̃(s0, q, T

1, T 2) name it the coverage period cost (CPC). The minimum
coverage period cost (MCPC) of the horizon t = T 1 to t = T 2 is equal to C̃∗(s0, q, T

1, T 2).
Mathematically,

C̃(s0, q, T
1, T 2) =

Z∑
z=1

Pz

[ t=T 2∑
t=T 1

(
H
[
s0 + q −

t∑
τ=1

Fzτ
]+

+W
[ t∑
τ=1

Fzτ − s0 − q
]+)+Kα

] (5.12)

α =
{

1 , if q > 0
0 , otherwise

(5.13)

C̃∗(s0, q, T
1, T 2) = min

q

Z∑
z=1

Pj

[ t=T 2∑
t=T 1

(
H
[
s0 + q −

t∑
τ=1

Fzτ
]+

+W
[ t∑
τ=1

Fzτ − s0 − q
]+)+Kα

] (5.14)
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Figure 5.4: Illustration of changes in inventory quantities for the different forecast samples as de-
picted in Figure 5.2.

We propose an immediate expected cost (IEC) defined as the portion of coverage period
cost incurred during the period immediately after the order. Since we follow a static-dynamic
uncertainty strategy, we have one ordering epoch at the beginning of each time period. The
corresponding order size may be zero during the evaluation, however, there is a possibility
of ordering. Therefore, we propose to minimize the IEC as it is the cost that is impacted
the most and cannot be changed once the time period has passed. We call this approach as
immediate expected cost approach (IECA). In order to evaluate the IEC, let us consider the
ordering process at t = 1 for a coverage period length Ω. If an order of quantity q is placed
and delivered at the beginning of t = 1 and initial inventory is s0 then, the total cost during
the coverage period, for Ω ∈ {1, 2, 3, ..., T}, will be equal to

C̃(s0, q, 1,Ω) =
Z∑
z=1

Pz

[ Ω∑
t=1

(
H
[
s0 + q −

t∑
τ=1

Fzτ
]+ +W

[ t∑
τ=1

Fzτ − s0 − q
]+)+Kα

]
(5.15)

α =
{

1 , if q > 0
0 , otherwise

(5.16)

We will denote C̃(s0, q, 1,Ω) by C̃Ω(s0, q) for simplicity. As per definition, the IEC is the
cost incurred during period t = 1. We differentiate two scenarios. Under stationary demand
scenario, the demand distribution remains the same through out the rolling horizon. The
cost during the period t = 1 will be equal to the average per period cost during the rolling
horizon. Mathematically, it will be equal to

DΩ(s0, q) = 1
Ω C̃Ω(s0, q) (5.17)
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When the demand is non-stationary we approximate the expected cost for the first period as

DΩ(s0, q) =
N∑
z=1

Pz

[ 1
Ω

Ω∑
t=1

(
H
[
s0 + q −

t∑
τ=1

Fzτ
]+ +W

[ t∑
τ=1

Fzτ − s0 − q
]+)+RΩKα

]
(5.18)

where RΩ =
∑N
i=1 Fz1∑N

z=1
∑Ω
t=1 Fzt

(5.19)

We propose to minimize DΩ(s0, q) over Ω ∈ {1...T} and q ∈ {0, 1, 2, ...}. Mathematically,

q∗,Ω∗ = arg min
q,Ω

DΩ(s0, q) (5.20)

As we adopt a rolling horizon approach, only the first order is placed. A new order can be
placed in each time period. Therefore, the immediate time period that follows an order is the
most affected one. The central idea is to favor this period by minimizing its expected cost.

Some observations from equations (5.15) and (5.18) are as follows. For any order quantity
q ≥ 0, Kα is a constant. For any time period t ∈ {1, ...,Ω} the sum of inventory holding
cost and backorder cost can be either positive or equal to zero. Therefore, for any q the
total cost can either increase with increase in T or remain equal. Similarly, the nominator
term of RΩ is a constant and the denominator term is non-decreasing in Ω. Therefore, RΩ
is non-increasing in Ω for any q.

5.6. Heuristic Approaches

The ECA and RCA optimization models with short rolling horizon can be solved using any
commercial solver. With longer rolling horizon, computations can be very time consuming.
Since the mathematical formulation of the ECA and RCA follow static uncertainty strategy,
their solutions are not cost-optimal. Heuristics for these models are desirable only if they
have the potential to provide good quality solutions when compared with the global optimum.
From the numerical analysis, however, the performances of ECA and RCA were found to be
far from the optimum. Hence, we do not consider the heuristic approach for these models.
On the contrary, we propose an enumerative search heuristic to solve (5.20) for the IECA
model. In this section we explain the enumerative heuristic as well as propose an improved
approximation heuristic for better computation time.

5.6.1. Enumerative Search Heuristic

The proposed enumerative search heuristic EH-IECA evaluates the cost function (5.17) for
all possible combinations of q and Ω and selects the pair that gives the minimum cost. The
heuristic is formally presented as Algorithm 1.

The complexity of Algorithm 1 is in the order of O(T |Q|), where Q is the set of all possible
order quantities i.e. {0, 1, ...qmax}. The choice of Q depends on the magnitude of the demand
distribution. In the next sub-section, we will present an improved version of the algorithm
based on the structural property of the cost function.
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Algorithm 1: Enumerative Search Heuristic (EH-IECA)
Input : F, H,W,K, T, s0
Output: q∗

1 initialization Ω = 1, qmax = maxz
∑T

t=1 Fzt, q
∗ = 0, v′ =∞, v =∞

2 repeat
3 Compute DΩ(s0, q), ∀q ∈ {0, 1, 2..., qmax}
4 v′ ← minqDΩ(s0, q)
5 if v′ < v then

v ← v′

q∗ ← arg minq∈{0,1,2...,qmax}DΩ(s0, q)
end

6 Ω← Ω + 1
until Ω = T ;

5.6.2. Convexity Results and Optimized Heuristic

Let us consider a sample Fz = {Fz1, Fz2, ..., FzT } and a coverage period Ω. The total cost
during t = 1 to t = Ω for any order quantity q ≥ 1 is plotted in Figure 5.5. It represents
the curves for different samples with initial inventory s0 = 0. Intuitively we believe the cost
function for any sample is convex and attains a minimum. Therefore, if the minimizing value
of q can be found out for each Ω ∈ {1, 2, ..., T} then, the requirement of enumeration for each
value of q in Algorithm 1 can be substantially reduced. In this subsection we shall prove that
the cost function (5.17) is indeed convex for q ≥ 1 for any Ω ∈ {1, 2, ..., T} and present an
approximation method to find the minimizing q. We also present a modified heuristic based
on these results called Optimized Heuristic-Expected Immediate Cost Approach (OH-IECA),
whose pseudo-code is presented in Algorithm 2.

Figure 5.5: Illustration of cost as a function of order quantities for 100 randomly generated sam-
ples of length 10, mean 5, inventory holding cost 1 and backorder cost 5.

Proof of Convexity

For any sample z, let us represent the total cost for a coverage period Ω by Ξz(s0,Ω, q),
where s0 is the initial inventory quantity and q is the order quantity. Recalling the total cost
function (5.15), we get

C̃Ω(s0, q) =
Z∑
z=1

PzΞz(s0,Ω, q) (5.21)
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where

Ξz(s0, q,Ω) =
Ω∑
t=1

(
H
[
s0 + q −

t∑
τ=1

Fzτ
]+ +W

[ t∑
τ=1

Fzτ − s0 − q
]+)+Kα (5.22)

=
ζz∑
t=1

H

(
s0 + q −

t∑
τ=1

Fzτ

)
+

Ω∑
t=ζz+1

W

( t∑
τ=1

Fzτ − s0 − q
)

+Kα (5.23)

= X(s0,Ω, q) + Y (s0,Ω, q) +Kα (5.24)

In equation (5.23), ζj ∈ {1, 2, ...Ω} is such that the cumulative demand up to ζj is less than
or equal to s0 + q (i.e. demand satisfied) and from ζj + 1 onwards backorder is encountered.
In order to prove the convexity of Ξz(s0, q,Ω) for q ≥ 1, we consider the different terms of
(5.23) separately. Let the first term be X and the second term be Y . X represents the total
inventory holding cost and Y represents the total backorder cost. The third term Kα is
constant. For q ≥ 1 it is equal to K, otherwise it is equal to 0. Therefore, for computational
purposes we consider the cost function in two different zones. First for q ≥ 1 and second for
q = 0. For the no order case (q = 0), we will have a unique value of the cost function. In the
following parts we prove the convexity of the cost functions for q ≥ 1.

Since ∑ζz
t=1 Fzt ≤ s0 + q, X is always positive or zero. Therefore, any increase in q will

augment the value of X. Similarly, ∑ζ̂j
t=1 Fzt ≥ s0 + q, for ζ̂z ∈ {ζz + 1, ...,Ω}, Y is always

positive. Therefore, any increase is q will either reduce Y or keep it unchanged.

Property 1: X, Y and Ξz are piecewise linear convex functions in q for any s0, Ω and
q > 0.

Proof. See Appendix A

Corollary 1: C̃Ω(s0, q) and DΩ(s0, q) are piecewise linear convex in q for any s0, Ω and
q > 0.

Proof. It is straightforward from (5.21). Since C̃Ω(s0, q) is the weighted sum of Ξz, and Ξz is
convex ∀z ∈ Z from Property 1, it is also piecewise linear convex. DΩ(s0, q) is obtained by
multiplying a positive real number, hence, it is also piecewise linear convex.

Optimized Heuristic

The upcoming analysis is conducted at constant s0 and Ω unless otherwise stated. The
minimizing ζz and q for Ξz are given in equation (5.25) and (5.26). Here, dxe is the smallest
integer greater than or equal to x. See Appendix B for explanation of (5.25).

ζ∗z = arg min
ζ

Ξz(s0,Ω, q) =
⌈ WΩ
H +W

⌉
(5.25)

q∗z =
ζ∗z∑
t=1

Fzt (5.26)

Since DΩ(s0, q) is also convex in q > 0 for fixed Ω, we can find the minimizing q, i.e.

q∗Ω = arg min
q
DΩ(s0, q) (5.27)

72



5.7. Experimental Protocol

Algorithm 2: Optimized Heuristic (OH-IECA)
Input : F, H,W,K, T, s0
Output: q∗

1 Initialize Ω← 1, u←∞, u′ ←∞, q∗ ← 0
2 repeat
3 Compute q∗Ω using (5.31)
4 Compute Costs DΩ(s0, q

∗
Ω) and DΩ(s0, 0)

5 u′ ← minq∈{q∗Ω,0}(DΩ(s0, q))
6 if u′ < u then

u← u′

q∗ ← arg minq∈{q∗Ω,0}(DΩ(s0, q))
end

7 Ω← Ω + 1
until Ω = T ;

To find the value of q that minimizes DΩ(s0, q) for any s0 and Ω, let us consider the following.
From equation (5.25), as ζ∗z does not depend on the demand for each period, all ζ∗z are equal
∀z ∈ Z. Therefore, due to convexity, the overall optimal order quantity q∗ must lie between
minz q∗z and maxz q∗z . Let qx(.) denote the xth quantile of a given sample. Using the results
for single sample, we propose to use the following approximations.

ζ∗ ≈ WΩ
H +W

(5.28)

ζ∗l =
⌊ WΩ
H +W

⌋
(5.29)

ζ∗h =
⌈ WΩ
H +W

⌉
(5.30)

q∗Ω ≈ qmin(1, ζ∗−ζ∗
l

)(Fzζ∗h) +
Z∑
z=1

ζ∗l∑
t=1

PzFzt (5.31)

It is noteworthy that the previous analysis is valid for q ≥ 1. Since, for q = 0 the value
of Kα = 0, convexity does not hold true. To address this, we also evaluate the immediate
period cost if the order quantity is zero. The procedure followed is formalized as Algorithm 2
and depicted in Figure 5.6. The complexity of Algorithm 2 is of the order O(2T ), and it does
not depend anymore on the magnitude of the demand distribution.

5.7. Experimental Protocol

In this section, we present the experimental protocol for detailed numerical experiments
using proposed formulations and heuristics. We propose two performance indicators whose
values are determined through simulations during the experiments. The first one is the cost
incurred during the rolling horizon, the second one is an approximation of the expected
per-period cost in an infinite horizon setting. While assessing the performance of a general
stochastic inventory optimization problem, the demand can be considered to be stationary
or non-stationary. For a stationary consideration, we can evaluate the total expected cost
for a problem with finite horizon and the per period expected cost with infinite horizon
(at least approximately) through simulations. However, for non-stationary demand infinite
horizon cost computation (which will approach infinity) is impossible due to unavailability of
demand information.
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Figure 5.6: Steps of the OH-IECA. For different values of Ω, the optimal order quantity and the
optimal cost can be determined using (5.31) and (5.15) respectively. Then the order quantity with
the minimum immediate period cost (5.17) is chosen.

.

In Section 5.5, we have presented three different approaches based on demand samples for
the SRP problem. The expected cost approach (ECA) is an adaptation of the SAA approach
with static uncertainty strategy. The robust cost approach (RCA) is a min-max approach
for robust optimization. The proposed immediate expected cost approach with optimized
heuristic (OH-IECA) minimizes only the expected cost for the first period.

Our application conditions can be explained in the following way. At an ordering period
t, sales information upto period t−1 is available. Future demand information up to T periods
are then generated in terms of samples. However, the end state after T periods is not known.
DP provides the optimal solution on an infinite horizon setting. On a finite horizon setting,
it is optimal only if the end state is known or constrained. Therefore, in our analysis, we use
its results as a base to compare the OH-IECA with the ECA and RCA. Our test problems
also assume independently distributed demand to enable the use of DP approach. Then,
we compare the best of them to the optimal policies of some benchmark problems in the
literature. Following are the performance indicators used in our analysis.

1. Horizon cost criterion Ch: It is the expected total cost up to the end of the planning
horizon. This can be obtained both for stationary and non-stationary demand cases.

2. Infinite horizon cost criterion C∞: It is the expected cost per period. This can only be
obtained for the stationary demand case in infinite horizon setting.

The procedure to compute Ch is as follows. The order quantity is decided as per the above
four procedures (DP, ECA, RCA, OH-IECA). Then the demand is realized as per the forecast
distribution (or from a different distribution). The costs of excess inventory or backorders
are then computed. The inventory carried forward to the next time period is computed. This
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becomes the opening inventory for next period. This procedure is repeated until the end
of the planning horizon. Although there can be infinitely many realizations, we repeat the
whole process 106 times to obtain the expected cost. To compute C∞, a similar procedure
is followed but, instead of computing the cost until the end of rolling horizon, the ordering
cycle is repeated until 106 time periods. Afterwards the average cost is determined. Let qπt
be the order quantity under procedure π ∈ {DP, ECA, RCA, OH-IECA} at the beginning of
time t. The realized demand d̃t is drawn at random during each iteration from the underlying
distribution.

Chπ = E
{ T∑
t=1

(
H(s+

t−1 + qπt − d̃t)+ +W (−st−1 − qπt + d̃t)+ + αtK
)}

(5.32)

C∞π = lim
τ→∞

1
τ

{ τ∑
t=1

(
H(s+

t−1 + qπt − d̃t)+ +W (−st−1 − qπt + d̃t)+ + αtK
)}

(5.33)

st = st−1 + qπt − d̃t (5.34)

αt =
{

1, if qπt > 0
0, otherwise

(5.35)

The problem instances are detailed in Table 5.4. There, H, W and K stand for the inventory
holding cost, the backorder penalty cost and the fixed order cost respectively. For each
problem instance, we assume independent demand distributions (Poisson) with arrival rate
λ. We use CPLEX 12.7.1 to compute the optimal solutions in both the ECA and RCA
models. All of the experiments are conducted on a Dell Latitude E5470 with 8GB memory.

Table 5.4: Problem instances for performance comparison.

H W K λ

1 10 0 [5, 10, 15, 20, 50]
1 10 10 [5, 10, 15, 20, 50]
0.1 1 10 [5, 10, 15, 20, 50]

5.8. Results of Numerical Experiments

The detailed numerical results about the four proposed approaches are presented in this
section. We conduct four different analyses. First, we compare the approaches by horizon
cost criterion Ch and then by infinite horizon cost criterion C∞. We also compare their
runtime. Finally, we test the methods under several values of standard deviation of the
realized demand.

5.8.1. Approximation Accuracy for the OH-IECA

In Section 5.6, we have presented an approximation Equation (5.31) for the optimal order
quantity for the cost function (5.15). Before going into the detailed results, we present the
approximation quality of equation (5.31). We use the excess cost over the optimal cost of
Equation (5.15) as the evaluation criterion. Figure 5.7 presents the distribution of percentage
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excess cost in 105 random problem instances. On average the excess cost is 0.227% of the
optimal cost. For 86.87% of the instances the excess cost is less than or equal to 0.50% of
the optimal cost. The maximum percent excess cost was found to be 1.63%.

Figure 5.7: Illustration of distribution of percentage excess cost in 100,000 random problem in-
stances. The average error is 0.227%.

5.8.2. Tests on Synthetic Problem Instances

The numerical results are divided into two parts. First, in Tables 5.5, 5.6, and 5.7, results
are presented for tests with equal predicted and realized variance. Then we test the methods
with higher actual variance, and the results are presented in Table 5.8. In the aforementioned
tables, comparison is done by finding the ratio of the performance parameter using the
concerned approach to the best performance parameter among all of the approaches for
each problem instance, i.e. Chπ

Chmin
and C∞π

C∞min
, where Chmin = minπ Chπ and C∞min = minπ C∞π .

The horizon cost criterion Ch and the infinite horizon cost criterion C∞ are presented in
Tables 5.5 and 5.6 respectively. For the horizon cost criterion, the performances of DP and
OH-IECA are very close. While the average ratio of ChOH−IECA to the minimum Chπ among
the approaches is 1.014, the average ratio of ChDP to the minimum Chπ among the approaches
is 1.004. The maximum ratio of ChOH−IECA to the minimum Chπ is 1.076. Similarly, for
the infinite horizon cost criterion C∞π , the solutions obtained using DP and OH-IECA are
equivalent. Both of the approaches have average ratio of C∞π to the minimum C∞π is 1.002.
The maximum ratio of C∞OH−IECA to the minimum C∞π among the approaches is 1.014.
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Table 5.5: Comparative performance of different approaches for different problem instances for
horizon cost criterion. (Ratio of Chπ to Chmin).

H W K λ
ChDP
Ch
min

ChECA
Ch
min

ChRCA
Ch
min

ChOH−IECA
Ch
min

1 10 0 5 1.000 1.109 1.109 1.001
10 1.000 1.082 2.274 1.016
15 1.000 1.185 1.052 1.003
20 1.003 1.118 1.869 1.000
50 1.000 1.067 2.049 1.002

1 10 10 5 1.000 1.040 1.013 1.003
10 1.014 1.024 1.020 1.000
15 1.002 1.080 1.022 1.000
20 1.001 1.053 1.397 1.000
50 1.000 1.038 1.594 1.001

0.1 1 10 5 1.000 1.102 1.020 1.076
10 1.000 1.022 1.083 1.001
15 1.000 1.027 1.031 1.052
20 1.038 1.000 1.062 1.055
50 1.004 1.010 1.211 1.000

Average 1.004 1.063 1.320 1.014

In the above problems, DP does not produce the optimal results because of the absence
of end conditions, nevertheless, the DP results serve as useful baseline for comparison. Under
runtime parameter, the OH-IECA outperforms the other three approaches. While the average
runtime for the OH-IECA is only 7 milliseconds, DP takes more than 3 minutes. The ECA
and the RCA take about 2 to 3 seconds. Therefore, we obtain more than 99.99% reduction
over DP in runtime with equivalent performance using the OH-IECA.

Table 5.6: Comparative performance of different approaches for the problem instances for infinite
horizon cost criterion. (Ratio of C∞π to C∞min).

H W K λ
C∞DP
C∞
min

C∞ECA
C∞
min

C∞RCA
C∞
min

C∞OH−IECA
C∞
min

1 10 0 5 1.002 1.109 1.109 1.000
10 1.000 1.081 2.273 1.014
15 1.000 1.187 1.052 1.002
20 1.001 1.114 1.867 1.000
50 1.000 1.066 2.052 1.003

1 10 10 5 1.000 1.056 1.014 1.009
10 1.000 1.016 1.012 1.006
15 1.000 1.078 1.022 1.001
20 1.001 1.052 1.395 1.000
50 1.000 1.040 1.599 1.002

0.1 1 10 5 1.020 1.046 1.030 1.000
10 1.003 1.000 1.262 1.003
15 1.009 1.001 1.020 1.000
20 1.000 1.009 1.027 1.001
50 1.001 1.003 1.190 1.000

Average 1.002 1.057 1.328 1.002
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Table 5.7: Runtime for different approaches (in Seconds).

Runtime (in Seconds)
H W K λ DP ECA RCA OH-IECA
1 10 0 5 229.920 2.820 4.280 0.009

10 202.724 2.780 2.830 0.008
15 205.850 2.750 3.210 0.007
20 209.174 2.720 2.860 0.007
50 215.153 3.220 3.810 0.007

1 10 10 5 216.044 2.960 3.770 0.007
10 209.489 3.030 2.940 0.007
15 198.881 3.660 4.040 0.007
20 198.972 2.990 4.310 0.007
50 195.048 4.480 3.830 0.007

0.1 1 10 5 294.668 2.780 3.170 0.009
10 284.111 2.990 3.370 0.007
15 282.327 3.000 3.240 0.007
20 298.658 3.090 3.690 0.006
50 295.803 3.690 3.400 0.007

Average 235.788 3.131 3.517 0.007

We also test the performance when the standard deviation of realized demand is higher
than that of what has been predicted and considered for inventory decisions. The average
values of C∞π

C∞min
are presented in Table 5.8 and Figure 5.8. The detailed results are provided in

Table 2 of Appendix C. While the ECA and the RCA do not perform well in Ch and C∞ when
the standard deviation is unchanged, the performance of the RCA shows some improvement
with increase in the standard deviation of realized demand. Meanwhile, the performances
of DP and the OH-IECA deteriorate marginally with an increase in the standard deviation.
The OH-IECA still outperforms the ECA and the RCA. Therefore, we select the OH-IECA
for further performance assessment.

Table 5.8: Average values of C∞π
C∞
min

at different variance levels. σ = Forecast standard deviation.
σ̂ = Realized standard deviation. Detail results are given in Table 2 in Appendix C.

σ̂/σ
C∞DP
C∞
min

C∞ECA
C∞
min

C∞RCA
C∞
min

C∞OH−IECA
C∞
min

1.00 1.002 1.057 1.328 1.002
1.05 1.009 1.111 1.440 1.006
1.25 1.012 1.132 1.423 1.009
1.50 1.015 1.137 1.381 1.013
2.00 1.016 1.130 1.296 1.025

78



5.8. Results of Numerical Experiments

1 1.2 1.4 1.6 1.8 21

1.02

1.04

σ̂/σ

C
∞ π
/C
∞ m
in

DP
OH-IECA

Figure 5.8: Illustration of performances of DP and the OH-IECA for different uncertainty levels.

Table 5.9: Comparative performance of the OH-IECA for the benchmark problems in Veinott Jr
and Wagner (1965). C∗ is the optimal cost for the problem instance. C∞OH−IECA is the infinite ex-
pected per period cost using the OH-IECA. CoV indicates the coefficient of variation for that cost.
∆C(%) is the average excess cost of using the OH-IECA over the optimal cost. min.∆C(%) is the
minimum cost difference during the simulations and max.∆C(%) is the maximum cost difference
obtained during the simulations.

H W K λ C∗ C∞OH−IECA CoV ∆C(%) min.∆C(%) max.∆C(%)
1 9 64 21 50.40590 50.77660 0.01170 0.735 0.000 4.304

22 51.63222 51.81350 0.00720 0.351 0.000 3.181
23 52.75658 52.90170 0.00415 0.275 0.000 1.753
24 53.51777 53.74510 0.00520 0.425 0.000 2.721
51 71.61085 71.76700 0.00436 0.218 0.000 2.169
52 72.24602 72.38810 0.00370 0.197 0.000 1.447
55 74.14860 74.38540 0.00999 0.319 0.000 4.771
59 76.67902 76.89960 0.00687 0.288 0.000 2.181
61 77.92867 77.92868 0.00383 0.000 0.000 1.718
63 78.28676 79.21260 0.00799 1.183 0.000 4.550
64 78.40221 79.26510 0.00737 1.101 0.000 2.921

5.8.3. Tests on Benchmark Problem Instances

In the previous problem instances, the solutions obtained with dynamic programming are not
optimal since the end state in not known. We conduct those experiments to be more closer
to practical situations. In such situations, end conditions are usually not known, forecast
information is reliably available only for short periods, and the decisions are implemented in
a longer time horizon.

In order to deeper analyze the performance, we test the OH-IECA on the problems
described in Veinott Jr and Wagner (1965). Veinott Jr and Wagner (1965) determined the
optimal policies and their infinite horizon expected per period cost. We compute the expected
cost per period if the OH-IECA was followed and compare it with the optimal cost. We also
compute the coefficient of variation (CoV) of the expected cost, the average difference from
the optimal cost, the minimum as well as the worst case cost. All of our results are obtained
from running 106 simulations. For the heuristic, we use 100 samples with T = 10 drawn at
random.

Table 5.9 illustrates the results obtained for the benchmark problems if the demand
realization follows the same distribution as the forecast. C∗ is the optimal per period cost
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(following the optimal policy). The average optimality gap is 0.463%. As we run multiple
iterations ant take the average cost, we also indicate the minimum and maximum cost over the
iterations. The coefficient of variation is near 1%. With more number of samples this can be
further reduced. In Table 5.10, we present the performance if the realized standard deviation
is 0%, 5%, 25%, 50% and 100% higher. The optimal policies from Veinott Jr and Wagner
(1965) and the ordering approach using OH-IECA are compared. Table 5.10 presents the
average cost difference between the two approaches under different circumstances. A positive
difference indicates that the cost obtained using the optimal policy is lower than that obtained
using OH-IECA. A negative difference indicates that the OH-IECA performs better.

Table 5.10: Comparative performance of the optimal policy and the OH-IECA on the benchmark
problems given in Veinott Jr and Wagner (1965) for different realizations of the standard deviation.
σ = Forecast standard deviation and σ̂ = Realized standard deviation. The percentage excess cost
of the OH-IECA over the cost obtained with the optimal policy is presented.

H W K λ
∆C(%) at σ̂/σ =

1.000 1.050 1.250 1.500 2.000
1 9 64 21 0.735 0.818 1.322 2.189 2.826

22 0.351 0.623 1.803 2.685 4.561
23 0.275 0.931 0.965 1.235 0.412
24 0.425 1.104 1.396 1.465 0.967
51 0.218 0.759 0.563 0.863 0.639
52 0.197 0.867 0.554 0.636 0.605
55 0.319 0.868 0.896 0.836 0.825
59 0.288 0.770 1.110 1.596 2.590
61 0.000 0.387 0.816 1.408 4.215
63 1.183 0.720 0.563 -0.038 -1.873
64 1.101 0.668 0.169 0.069 -1.631

Average 0.463 0.774 0.923 1.176 1.285

5.8.4. Tests on Non-stationary Demand

We select 11 (P1 to P11) non-stationary demand datasets (see Table 5.11.) from Özen et
al. (2012). The fixed order costs are set at K = {0, 25, 50}, the inventory costs are set at
h = {0.1, 0.5, 1} and the backorder costs are set at W = {5, 10, 20}. Therefore, we test
3 × 3 × 3 = 27 instances for each of the demand data. The numerical results of OH-IECA
for these non-stationary problem instances are given in Table 5.12. The average optimality
gap obtained is 7.3% for the 11 problem instances. The proposed methodology is extended
in Chapter 6 to give better performance.

Table 5.11: Problem instances with non-stationary demand.

Instance Time periods
1 2 3 4 5 6 7 8 9 10 11 12

P1 50 50 50 50 50 50 50 50 50 50 50 50
P2 68 83 88 83 69 50 31 17 12 17 32 50
P3 10 45 87 91 82 86 75 40 24 34 21 5
P4 3 9 16 28 34 37 43 59 70 91 99 111
P5 111 99 91 70 59 43 37 34 28 16 9 3
P6 27 22 94 27 17 74 120 12 50 28 19 110
P7 5 5 5 5 5 5 5 5 5 5 5 5
P8 7 8 9 8 7 5 3 2 1 2 3 5
P9 1 5 9 9 8 9 8 4 3 2 1 1

P10 1 2 2 3 4 5 5 6 7 8 8 9
P11 9 8 8 7 6 5 5 4 3 2 2 1
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Table 5.12: Percentage optimality gap of OH-IECA with respect to dynamic programming in case
of non-stationary demand.

H W K P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
0.10 5 0 1.98 3.61 3.96 2.11 6.61 2.58 8.11 9.26 24.36 24.62 7.70
0.10 10 0 2.29 6.35 3.66 6.43 9.25 8.39 6.71 18.02 27.76 28.22 13.56
0.10 20 0 10.69 10.30 15.55 10.88 9.85 6.57 13.05 25.43 32.35 40.99 19.75
0.50 5 0 1.69 2.86 0.89 1.87 2.28 0.93 3.88 7.36 18.66 20.06 7.01
0.50 10 0 2.57 2.85 2.18 3.62 2.86 2.41 2.08 13.36 23.12 21.75 8.35
0.50 20 0 3.48 3.58 5.07 2.35 2.75 6.09 8.52 13.44 26.41 22.89 9.65
1.00 5 0 0.84 1.78 1.61 3.77 0.12 2.64 1.94 5.92 16.94 15.92 5.65
1.00 10 0 1.41 0.18 0.43 1.93 1.66 0.47 2.32 7.16 18.14 20.83 6.25
1.00 20 0 0.73 2.24 3.28 2.51 0.31 2.46 3.18 10.15 24.19 19.17 8.85
0.10 5 25 2.45 3.62 2.34 3.59 5.59 4.87 17.81 14.38 14.24 13.69 5.84
0.10 10 25 5.19 5.40 0.10 4.38 9.05 8.25 17.17 13.28 16.20 16.29 1.00
0.10 20 25 8.35 8.53 3.29 3.71 13.6 13.48 15.06 5.26 12.63 20.35 7.92
0.50 5 25 0.27 0.62 0.00 1.15 1.69 4.18 1.48 4.67 11.47 12.80 2.30
0.50 10 25 0.98 1.59 1.36 0.77 1.96 3.17 1.55 6.42 18.68 12.12 3.61
0.50 20 25 1.37 2.38 5.04 0.71 2.38 3.66 2.17 8.76 15.39 6.56 5.78
1.00 5 25 0.00 0.56 0.89 2.09 0.90 0.03 0.76 8.23 17.14 14.84 4.18
1.00 10 25 0.40 1.01 0.93 0.75 1.07 1.38 2.18 6.48 15.10 16.29 2.26
1.00 20 25 0.95 1.05 2.38 0.73 2.03 2.32 1.57 6.42 14.25 12.20 4.47
0.10 5 50 2.51 4.34 4.66 1.01 8.20 5.04 37.94 27.56 10.76 11.52 21.03
0.10 10 50 4.81 3.93 2.63 6.10 11.38 4.60 34.64 25.04 11.86 23.01 11.01
0.10 20 50 7.68 4.22 1.81 9.63 15.45 6.90 31.43 22.99 13.38 27.79 3.57
0.50 5 50 0.69 2.21 2.69 0.68 1.99 4.21 4.48 3.28 11.59 10.42 9.22
0.50 10 50 0.93 1.97 0.94 1.46 1.84 2.21 5.84 3.83 11.72 8.77 3.44
0.50 20 50 1.09 2.33 0.66 2.25 3.66 6.63 4.28 2.55 17.06 4.19 5.18
1.00 5 50 0.25 0.72 0.57 0.54 1.06 2.71 0.94 8.81 17.27 14.78 6.69
1.00 10 50 0.19 1.22 0.63 1.29 1.23 3.89 1.02 4.64 12.40 13.20 2.34
1.00 20 50 0.31 1.48 1.73 0.69 2.21 4.00 1.23 7.27 18.01 12.73 3.31

Average 2.37 2.99 2.56 2.85 4.48 4.22 8.56 10.73 17.44 17.25 7.03

5.9. Extensions

The proposed method requires minimal modifications to address problems with batch-size
constraints, robust solutions or minimum order quantity. It is also flexible to incorporate lost
sale and service level constraint. For lost sales, the cost function remains convex and similar
closed form approximation can be obtained for samples. We plan to incorporate lost sales
and service level constraint during industrialization. We explain the extensions for batch-size
constraints, robust solutions, minimum order quantity below.

5.9.1. Addressing Batch Size Constraint

In practice we often encounter replenishment problems with batch-size or pack-size con-
straints. In this part, the aim is to study how the proposed method can be used in in such
situations. In the literature, problems with batch size are dealt by finding the optimal pa-
rameters of some standard inventory policies. Those policies can be of (r, Q), (r, nQ) or (s,
nQ) type. However, those policies are not optimal themselves. In the presence of batch-size
constraint, the changes to our proposed heuristic are presented in Algorithm 3. Since for a
coverage period the cost function is convex, we choose the two adjoining points of the min-
imum that are divisible by the given batch size. Then we follow the method as earlier to
obtain the minimum cost over all the possible coverage periods.
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Algorithm 3: Optimized Heuristic (OH-IECAb) with Batch Size
Input : F, H,W,K, T, s0, b = Batch Size
Output: q∗

1 Initialize Ω← 1, u←∞, u′ ←∞, q∗ ← 0
2 repeat
3 Compute q∗Ω using (5.31)
4 Compute q∗1 = b q

∗

b
cb and q∗2 = d q

∗

b
eb

5 Compute Costs DΩ(s0, q
∗
1), DΩ(s0, q

∗
2) and DΩ(s0, 0)

6 u′ ← minq∈{q∗1 ,q∗2 ,0}(DΩ(s0, q))
7 if u′ < u then

u← u′

q∗ ← arg minq∈{q∗1 ,q∗2 ,0}(DΩ(s0, q))
end

8 Ω← Ω + 1
until Ω = T ;

Table 5.13: Comparative performance of the proposed heuristic for the benchmark problems in the
presence of different batch sizes (Percentage excess cost over dynamic programming).

K H W λ
∆C(%) at Batch size =

40 25 10 8 5 4 1
1 9 64 21 -1.490 0.062 0.275 0.581 0.437 0.434 0.735

22 -1.412 0.025 0.794 0.052 0.400 0.408 0.351
23 -1.346 -0.223 0.480 0.196 0.090 0.124 0.275
24 -1.107 -0.068 -0.251 0.020 0.080 0.041 0.425
51 -0.119 -0.674 0.294 -0.055 0.225 0.177 0.218
52 0.051 -0.981 0.262 0.267 -0.092 0.241 0.197
55 0.743 0.167 0.303 0.159 0.063 0.058 0.319
59 0.316 0.668 0.206 0.342 0.390 0.370 0.288
61 -0.336 0.021 0.573 0.207 0.362 0.869 0.000
63 -0.378 0.316 0.300 0.409 0.496 0.511 1.183
64 -0.117 0.250 0.136 0.629 0.529 0.644 1.101

Average -0.473 -0.040 0.307 0.256 0.271 0.353 0.463

We compared solutions obtained using OH-IECAb with those obtained using dynamic
programming. The cost differences are presented in Table 5.13. The tests are conducted
with batch sizes 40, 25, 10, 8, 5 and 4 considering practical packaging situations. In the
absence of any knowledge about the end state, dynamic programming does not provide the
optimal solution. It is coherent with practical situations as the end state is usually unknown.
With higher batch size dynamic programming requires more rolling horizon length to produce
better solution. As the rolling horizon length is fixed at 10 periods, it can be observed from
Table 5.13 that OH-IECAb performs better with increase in batch size.

5.9.2. Robust Solution

When the realized demand has higher variance, we proposed to include a robustness factor
r ∈ [0, 1) to improve the performance. The robustness factor is part of the approximation
given below. This modified approximation is then used in either OH-IECA (Algorithm 2) or
OH-IECAb (Algorithm 3) depending on the presence of batch size.

q∗Ω ≈ qmin(1, ζ∗−ζ∗
l

+r)(Fzζ∗h) +
Z∑
z=1

ζ∗l∑
t=1

PzFzt (5.36)
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Table 5.14: Average performance of the proposed heuristic for the benchmark problems at differ-
ent realizations of the standard deviation and at different value of robustness factor r. (Percentage
excess cost over optimal (s, S) policy) for the benchmark instances.

σ̂/σ
r 1 1.05 1.25 1.50 2.00

0.00 0.463 0.774 0.923 1.176 1.285
0.05 0.503 0.519 0.440 0.330 -0.140
0.10 0.658 0.408 0.196 -0.084 -0.950
0.20 5.007 3.759 1.853 0.231 -1.865
0.30 5.707 4.319 2.124 0.390 -1.441
0.50 5.601 4.205 2.005 0.335 -1.551

In Table 5.14 the average optimality gaps for the eleven problem instances are presented
for various values of robustness factor r at different realization of standard deviation. The
results show that a higher robustness factor provides better results if the realized demand is
more uncertain.

5.9.3. Addressing Minimum Order Quantity

Suppliers often quote a minimum order quantity to the retailer. The retailer, in such cases,
can only place orders whose quantity is higher than or equal to the minimum order quantity.
The modified heuristic OH-IECAm to address this constraint is presented in Algorithm 4.

Algorithm 4: Optimized Heuristic (OH-IECAm) minimum order quantity
Input : F, H,W,K, T, s0,m = Minimum Order Qunantity
Output: q∗

1 Initialize Ω← 1, u←∞, u′ ←∞, q∗ ← 0, q̃ ← 0
2 repeat
3 Compute q∗Ω using (5.31)
4 if q∗Ω < m then

Compute Costs DΩ(s0, 0), DΩ(s0,m)
5 if DΩ(s0, q

∗) > DΩ(s0,m) then
q̃ ← m
u′ ← DΩ(s0,m)

end
else

q̃ ← m
u′ ← DΩ(s0,m)

end
end
else

q̃ ← q∗Ω
u′ ← DΩ(s0, q

∗
Ω)

end
6 if u′ < u then

u← u′

q∗ ← q̃
end

7 Ω← Ω + 1
until Ω = T ;
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5.10. Conclusions

In this chapter, we studied the single item multi-period stochastic inventory system and
propose a near optimal replenishment planning procedure that works with various practical
constraints. The studied problem is a multi-stage stochastic optimization problem. Some
limitations of existing solution methods are as follows. Due to the curse of dimensionality,
exact methods such as dynamic programming and stochastic programming cannot be used.
Optimal policy parameters for the infinite horizon problem can be obtained efficiently with
existing methods, however, they work only for parametric and stationary demand distribu-
tions. Other practical constraints such as presence of batch size are not considered by such
methods. Moreover, when the demand is non stationary, we need to evaluate the policy
parameters repeatedly and they can be computationally expensive.

We analyzed two different approaches in which future demand is expressed as random
sample traces and ordering decisions are placed as per a rolling horizon approach. The first
approach: expected cost approach (ECA) minimizes the expected rolling horizon cost by
considering a static uncertainty strategy. The second approach: robust cost approach (RCA)
minimizes the maximum cost across samples. It also follows a static uncertainty strategy.
We proposed another approach which we call the immediate expected cost approach (IECA),
that minimizes the cost for the immediate period after the order.

The first two approaches can be solved using a standard solver. For the IECA, we first
proposed an enumerative search heuristic with complexity of the order of O(T |Q|). We have
provided some convexity properties for the cost function and then proposed an improved
approximation heuristic OH-IECA based on it. The complexity of the improved heuristic is
of the order O(2T ).

We tested the effectiveness of the proposed ECA, RCA and OH-IECA by conducting a
comparative study taking the solution obtained using dynamic programming as a baseline.
We proposed two performance evaluation criteria: horizon cost criterion and infinite horizon
cost criterion. Apart from those, we also examined the runtime required by each approach.
Tests on synthetic data show that the OH-IECA provides equivalent solutions to that of dy-
namic programming in terms of cost. Moreover, its execution time is almost instantaneous.
While DP requires more than 3 minutes, the OH-IECA takes about 7 milliseconds. There-
fore, we selected the OH-IECA for further analysis with benchmark problems provided in
Veinott Jr and Wagner (1965). The OH-IECA gives 0.463% excess cost over the optimal
policy on average. We also analyzed the situation when the variance of realized demand
is higher than that of the forecast. In such situation, the OH-IECA still performs close to
the optimal policy with the average excess cost equal to 1.285% when the realized standard
deviation is twice that of the forecast.

The proposed method requires little modification to include batch sizes. In the presence
of batch size the optimal orders can be obtained using dynamic programming. For the
benchmark problems, we test our method for batch sizes 40, 25, 10, 8, 5 and 4. The average
excess cost is less that 1% in each case.

In this chapter we addressed replenishment planning in the multi-period stochastic in-
ventory system from various practical viewpoints, such as non-parametric, non-independent
and non-stationary demand distributions as well as the presence of batch sizes. The pro-
posed method is also computationally much less expensive than dynamic programming and
dynamic policy calculation. In the next chapter, we propose to use this approach in a dy-
namic programming setting to optimize the total cost over the whole rolling horizon without
any substantial increase in computation time. Such an approach has the potential to provide
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even better performance for non-stationary demand and to incorporate supplier selection.
Other possible extensions that are relevant during industrialization include lostsale scenario
where the cost function remains convex, presence of service level constraint and stochastic
joint replenishment planning.
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Chapter 6

Sampling-based Replenishment Planning in
Non-Stationary Multi-Supplier Inventory Systems

Abstract: In this chapter, we extend the replenishment planning method pro-
posed in Chapter 5 to obtain better performance with non-stationary demand and
to include supplier selection. Existing methods of dealing with non-stationary
demand are computationally expensive and less flexible to incorporate additional
problem parameters. Supplier selection too, has significant practical implication
due to the presence of supplier specific cost parameters and constraints. For ex-
ample, unit price and fixed cost constitute a significant portion of total inventory
cost. We propose a dynamic programming formulation with reduced state space
for inventory systems with non-stationary demand. A similar formulation is also
proposed for problems with multiple suppliers. We propose and study two solution
approaches regarding supplier selection: common supplier selection and dynamic
supplier selection. We also conduct numerical experiments to test their efficacy.
Parts of this chapter (Sahu et al., 2020b) has been presented in the international
conference on operations research and enterprise systems (ICORES) 2020.

6.1. Introduction

In most practical situations, demand is non-stationary. Solving the single-item replenish-
ment planning (SRP) problem with non-stationary demand falls in the class of multi stage
stochastic programming (MSSP) (Homem-de Mello and Bayraksan, 2014). In this chapter,
we propose an extension to the method described in Chapter 5 to obtain approximate so-
lution of the SRP problem. Additionally, the proposed method is modified to address the
single-item replenishment planning with supplier selection (SRPSS) problem.

Integrated replenishment planning with supplier selection is one of the core problems
faced by retailers. With growing competitiveness in the current market, inclusion of purchas-
ing price and thereby supplier selection in inventory optimization becomes very important.
The inherent MSSP problem for the multi-period inventory optimization problem is very
difficult to solve optimally due to the well known curse of dimensionality Defourny et al.
(2012). Supplier selection adds additional decision or action states and further increases the
complexity. In this chapter, we first analyze the economic benefits of a dynamic supplier
selection approach and afterwards develop an approximate method to solve this problem.

Supplier selection has received considerable attention in the inventory optimization liter-
ature post 2003. Initially, supplier selection or multiple sourcing options have been seen as
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a measure of supply chain risk mitigation. However, in addition to that, multiple suppliers
can have significant monetary benefits in terms of costs. Most of the replenishment planning
models with multiple suppliers optimize the total cost. This cost is the summation of the
replenishment costs, inventory holding costs and shortage costs. Replenishment costs consist
of purchasing cost of the item, and fixed order/setup costs for placing an order. Typically,
the fixed order cost is independent of order quantity and charged for every order placed.
The purchasing cost can be different for each supplier and influenced by any discounting
schemes. Shortage costs represent the costs paid by the buyer when it is unable to fulfill its
demand. It can be either for backordering, lost sales or a mix of both. Additionally, costs
such as disposal costs for perishable items, miscellaneous operational costs (i.e. investments,
operations, maintenance costs) are also taken into account in some works of the literature.
A detailed review of supplier selection problems can be found in Yao and Minner (2017).

Retailers plan their inventory with a short review period. Availability of multiple sup-
pliers for the same item poses greater challenges for cost effective operation. Since the total
cost (and thereby the profitability) is closely related to the purchase price of an item, an
integrated planning method becomes essential. A single supplier for the planning horizon
is more practical than dynamic supplier selection. However, any decision must be taken
with due consideration to its cost implications. Our contributions with regard to SRP with
non-stationary demand and SRPSS are the following.

1. We propose a dynamic programming approach with smaller state space than the con-
ventional one for the SRP problem with non-stationary demand.

2. We examine the cost impact of a dynamic supplier selection approach over selecting a
common supplier for the whole planning horizon.

3. We extend the previous approach for SRP with non-stationary demand and propose
a practical framework for dynamic supplier selection and replenishment planning with
stochastic demand.

The rest of this chapter is organized as follows. In Section 6.2, we discuss some preliminary
concepts regarding the chapter. Then we propose formulations for the SRP problem with non-
stationary demand in Section 6.3 as the extension of minimum coverage period cost (MCPC)
approach in Chapter 5. In Section 6.4, we present the context of multi-supplier inventory
models, the framework for comparison between dynamic supplier selection and selecting a
common supplier for the whole planning horizon. We also propose a near-optimal method for
supplier selection which can be used for real-world applications. In Section 6.5 we present the
results of the experiments and discuss their relevance. We conclude the chapter and propose
some future research directions in Section 6.6.

6.2. Preliminaries

For this chapter, two preliminary concepts are required. First, we present various control
strategies for multi-period stochastic inventory optimization problems. The second one is
rolling horizon framework, for which we refer to Section 5.4.

The control strategy or the uncertainty strategy for the multi-period stochastic inventory
optimization problem is defined based on two conditions: when the decisions regarding the
order timings (schedule) are taken, and when the corresponding order quantities are decided.
Those control strategies are broadly divided into three categories: static, static-dynamic,
and dynamic uncertainty (Rossi et al., 2015). When the decision maker determines both the
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ordering schedule and the order quantities at the very beginning of the planning horizon, it
falls under the static uncertainty strategy. In case of the static-dynamic uncertainty strategy,
timing of inventory reviews are fixed at the beginning of the planning horizon and the asso-
ciated order quantities are decided only when orders are issued. The dynamic uncertainty
strategy allows the decision maker to decide dynamically at each time period whether or not
to place an order and how much to order. This strategy is known to be cost-optimal (Scarf,
1959). Our proposed methodology follows a static-dynamic uncertainty strategy. This is due
to difficulty in practical implementation of a dynamic uncertainty strategy.

Table 6.1: Parameters and variables for the optimization models.

Sets
Z Set of samples, index for sample z ∈ {1, ..., Z}
T Set of time periods, index for periods t ∈ {1, ..., T}

Parameters
Pz Occurrence probability of sample z, ∈ [0, 1]
Fzt Demand forecast for sample z at time t, ∈ R+

K Fixed ordering cost per order, ∈ R+

H Inventory holding cost per unit, per unit time period, ∈ R+

W Backorder cost per unit, ∈ R+

A Discount factor, ∈ (0, 1]
M A suitably large positive number

Decision Variables
qt Order quantity at time t, ∈ Z+

Internal Variables
dt Random demand variable at time period t, ∈ Z+

szt Inventory for sample z at the end of period t, ∈ R
lzt Backorder quantity for sample z at time t, ∈ R+

cz Total cost of sample z, ∈ R+

αt Binary, 1 if fixed cost is charged at time t and 0 otherwise ∈ Z+

m Worst case cost ∈ R+

6.3. SRP with Non-Stationary Demand (Single-Supplier)

In this section, we focus on the solution method for the single-supplier SRP problem with non-
stationary demand. For details of the SRP problem we refer to Chapter 5. First, we compute
different ordering options in a multi-period inventory system then propose a reduced-state
dynamic program (RDP) to obtain the optimized cost for the horizon.

Problem Class

The problem we consider has a single-echelon supply chain network, zero lead time and
stochastic non-stationary demand. Excess demand is backordered completely. Also, one
item is ordered from a single supplier in a multi-period ordering. This basic problem can be
denoted using the nomenclature given in Chapter 2:
1;φ;φ||0;D||N;B;φ||C||P;U||S;S;M

This basic structure can have extensions, such as with lost sales, single batch size, deter-
ministic or stochastic lead time. For example:
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1;φ;φ||0;D||N;L;φ||C||P;U||S;S;M
1;φ;φ||0;D||N;B;φ||C||P;S||S;S;M
1;φ;φ||D;D||N;B;φ||C||P;U||S;S;M.

6.3.1. Ordering Options

The central idea behind RDP is the use of different “ordering blocks”. We explain them next.
The notations used are presented in Table 6.1. Let us consider a rolling horizon of length T .
An order can be placed at any time t ∈ {1, 2, ..., T}. If the order is placed at the beginning
of time t = 1, the order can have coverage period up to the end of period t ∈ {1, 2, ..., T}.
If we go further in time, at time t = 2, we can have different ordering options based on the
state of the inventory.

Recall our initial definition of a coverage period in Chapter 5, that states that the delivered
quantity suffices till the end of that coverage period. Our aim is to limit the number of states
for which we compute the order quantities. In the spirit of the coverage period, there can be
two options. First, we order a positive quantity that lasts till the end of the coverage period.
Second, we order zero units, so that we observe backorders at the end of the coverage period.
In the first case, we approximate the inventory to be equal to zero. For the second case,
we consider the total backorders to be equal to the expected demand unfulfilled. We define
F̂ T

2

T 1 = ∑T 2

t=T 1 F̄t where F̄t = ∑
z PzFzt. Then, the possible inventory states at t = T will be

{0, F̂ T−1
T−1 , F̂

T−1
T−2 , ..., F̂

T−1
1 }. Similarly at t = T − 1, it will be {0, F̂ T−2

T−2 , F̂
T−2
T−3 , ..., F̂

T−2
1 } and

so on. We denote the possible set of states at time t by Bt.
Hence, if an ordering decision is made at time t = 2 of the same rolling horizon, the order

quantity for any supplier can have coverage period up to end of time period t ∈ {2, 3, ..., T}
with an initial inventory in B2. Similarly, if an ordering decision is made at time t of the
same rolling horizon, the order quantity can have coverage period up to {t, t+ 1, ..., T} with
initial state in Bt. From the above we have, at t = 1, there are T ordering options, at t = 2,
there are (T − 1) ordering options and so on. At t = T , there is only one ordering option.
Additionally, no order option can also be adopted. Recalling the notations from Chapter 5,
the coverage period cost (CPC) is denoted by C̃(sT 1 , q, T 1, T 2) for the coverage period T 1

to T 2 (T 2 ≥ T 1), order quantity q and opening inventory sT 1 . The optimal CPC (i.e. the
MCPC) is denoted by C̃∗(sT 1 , q, T 1, T 2). Mathematically, they are defined as follows.

C̃(sT 1 , q, T 1, T 2) =
Z∑
z=1

Pz

[ T 2∑
t=T 1

(
H
[
sT 1 + q −

t∑
τ=1

Fzτ
]+

+W
[ t∑
τ=1

Fzτ − sT 1 − q
]+)+Kα

] (6.1)

α =
{

1 , if q > 0
0 , otherwise

(6.2)

C̃∗(sT 1 , q, T 1, T 2) = min
q

Z∑
z=1

Pz

[ T 2∑
t=T 1

(
H
[
sT 1 + q −

t∑
τ=1

Fzτ
]+

+W
[ t∑
τ=1

Fzτ − sT 1 − q
]+)+Kα

] (6.3)

From the analysis given in the paragraph above, all possible ordering options during a rolling
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Figure 6.1: Figure demonstrating different possible coverage periods depending upon the order
time. The rolling horizon length is 8. At the beginning of t = 1, coverage period can be chosen be-
tween t = 1, 2, ..., 8. Similarly, at the beginning of t = 2, the coverage period can be chosen between
t = 2, 3, ..., 8 and so on.

horizon of length T are given in Table 6.2.

Table 6.2: Different MCPC computations.

t = 1 t = 2 ... ... t = T − 1 t = T

C̃∗(s0, q, 1, 1) C̃∗(B2, q, 2, 2) ... ... C̃∗(BT−1, q, T − 1, T − 1) C̃∗(BT , q, T, T )
C̃∗(s0, q, 1, 2) C̃∗(B2, q, 2, 3) ... ... C̃∗(BT−1, q, T − 1, T )
... ... ... ...
... ... ... ...
C̃∗(s0, q, 1, T − 1) C̃∗(B2, q, 2, T )
C̃∗(s0, q, 1, T )

6.3.2. Reduced-state Dynamic Program (RDP)

C̃∗(sT 1 , q, T 1, T 2) denotes the MCPC during the coverage period T 1 and T 2 provided, there
is only one order at the beginning of T 1 and none until end of T 2. To find the optimal cost
during the rolling horizon, we propose a dynamic programming formulation with reduced
state space to solve the multi-stage problem with the cost components as given in Table 6.2.
Since we use the CPC, by definition, any order suffices till the end of the coverage period and
a new order can be computed for initial inventory in Bt. The proposed dynamic program is
a backward recursion method. At the beginning of last time period T of the rolling horizon,
there is only one ordering option arg minq C̃(s,q, T, T ) for each inventory state in BT . The
corresponding cost is

YT (sT−1 ∈ BT ) = C̃∗(sT−1, q, T, T ) (6.4)

At the beginning of time t = T − 1, we have two options for each state. The first one is to
have one order having coverage period T − 1 to T , and the second one is to have two orders
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at T − 1 and T . The best option is the one that gives the least cost.

YT−1(sT−2 ∈ BT−1) = min
{(
C̃∗(sT−2, q, T − 1, T − 1) + YT (ŝT−1)

)
,

C̃∗(sT−2, q, T − 1, T )
} (6.5)

where

ŝT−1 =
{
sT−2 − F̂ T−1

T−1 if q∗T−1 = 0
0 otherwise

(6.6)

Similarly, at the beginning of t = T − 2, we have three options to choose from.

YT−2(sT−3 ∈ BT−2) = min
{(
C̃∗(sT−3, q, T − 2, T − 2) + YT−1(ŝT−2)

)
,(

C̃∗(sT−3, q, T − 2, T − 1) + YT (ŝT−1)
)
,

C̃∗(sT−3, q, T − 2, T )
} (6.7)

At t = 1,

Y1 = min
{(
C̃∗(s0, q, 1, 1) + Y2(ŝ1)

)
,(

C̃∗(s0, q, 1, 2) + Y3(ŝ2)
)
, ...,

(
C̃∗(s0, q, 1, T − 1) + YT (ŝT−1)

)
,

C̃∗(s0, q, 1, T )
} (6.8)

Therefore, Y1 corresponds to the minimum cost for the rolling horizon. The replenishment
quantity is equal to its corresponding order quantity q∗. The above analysis addresses the
situation where we have only one supplier. In the next section, we extend this methodology
to include multiple suppliers differentiated by their fixed order cost, unit price and minimum
order quantity, etc.

6.4. SRP with Supplier Selection (SRPSS)

In this section, we discuss the case of multi-supplier inventory optimization problems. First,
we describe a practical scenario then propose our modeling approaches.

6.4.1. Context and Motivations

Here we elaborate on the SRPSS problem. The problem is motivated by a real-world retailer.
It has multiple point of sales at different places along with a central warehouse. We consider
one item for replenishment. Future demand is non-stationary. Because of economy of scale,
all retailers receive the goods from the central warehouse. The central warehouse in turn
orders from the external suppliers (see Figure 6.2). The demand information known at the
retailer is stochastic. Therefore, the demand at the central warehouse can also be interpreted
as a stochastic process. For each item there are multiple suppliers. Those suppliers differ by
the price they charge per unit item, available batch sizes, lead time and fixed cost charged
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Figure 6.2: The supply chain network under study.

per order. The fixed cost is charged for the transportation and administrative expenses. The
retailer aims to minimize total cost incurred during a product life cycle. The usual costs
incurred are purchase cost, fixed ordering cost, inventory cost and shortage cost. Any order
placed by the warehouse to any supplier is delivered immediately without any lead time.
Any product left over after the end of the planning horizon can still be used. Therefore, the
salvage value is not taken into consideration. Only inventory cost is charged at the end of
the planning horizon.

Two approaches arise from the viewpoint of ease of practical application. First, when
the retailer chooses only one supplier for the planning horizon (usually shorter than the
product life cycle), and orders from that suppliers only. This approach is easier to implement
in practice and the computation process of order quantities is comparatively less expensive
than its multi-supplier counterpart. The second approach is to select suppliers dynamically
during each ordering decision. This approach is computationally more expensive than the
previous one due to the increase in the number of possible decisions in a dynamic programming
setting. Beside, this approach is difficult to implement in practice. However, dynamic supplier
selection has the potential to be more economical. In this chapter, we aim to first analyze
the economic benefits of different supplier selection approaches and propose a cost benefit
analysis to the retailer keeping in mind that the practical difficulties can be offset by higher
economic gain.

The methods discussed in the previous paragraph give rise to MSSPs. Those MSSPs can
become intractable with an increase in number of time periods (stages) and with an increase in
number of suppliers. Previous methods given in Cheaitou and Van Delft (2013), Berling and
Martínez-de Albéniz (2015) and Berling and Martínez-de Albéniz (2016) consider demand
distributions to be independent across time. In practice we often encounter dependent or
correlated demand and distributions not following parametric distributions. Such application
conditions require new methods. The aim of this chapter is to develop a general framework
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for the replenishment planning problem with multiple suppliers, that can be implemented in
practice.

6.4.2. Problem Formulation

In this section, we propose optimization models for the single-item replenishment problem
with supplier selection. The discussed problem has J suppliers. We propose two strategies.

1. Common supplier selection (CSS): When we select only one supplier (best as per cost)
for the whole planning horizon.

2. Dynamic supplier selection (DSS): Under this strategy different choices of suppliers can
be made during any ordering epoch.

Under the CSS strategy, the multi-stage optimization problem has ordering options concern-
ing only one supplier. On the contrary, under the DSS strategy, an order can be placed at any
supplier. We formulate the exact optimization problem for both CSS and DSS approaches.
Afterward, we present an approximate optimization framework based on CPC. We consider
a planning horizon of length T̂ , rolling horizon length T and and J suppliers. Suppliers are
denoted by j ∈ {1, 2, ..., J}. Additional notations are summarized in Table 6.3.

Table 6.3: Notations for the parameters and variables.

Sets
J Set of suppliers j ∈ {1, ..., J}

Parameters
dt Random demand at time t, ∈ R+

Uj Unit purchase price from supplier j, ∈ R+

Kj Fixed cost of ordering per order from supplier j, ∈ R+

Decision Variables
qjt Order quantity from supplier j at time t, ∈ Z+

αjt Binary indicator for positive order from supplier j at time t, ∈ {0, 1}
st Inventory at the end of time t, ∈ Z+

6.4.3. Common Supplier Selection

The multi-period stochastic inventory optimization problem with a common supplier for
every period is a finite-stage MSSP. It can be solved optimally with dynamic programming
(Özen et al., 2012). This requires the end state to be known and demands across time to
be independent. The optimal cost can be found for each supplier independently. Then the
supplier having the minimum cost for the planning horizon can be selected. The functional
equation of the resulting dynamic program is as follows. With Cjt (st−1) being the optimal
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cost for supplier j with state st−1 at time t, and qjt being the actions

Cjt (st−1) = min
qjt

{
E
[
H(st−1 + qjt − dt)+

+W [−st−1 − qjt + dt]+ +Kjαjt+
J∑
j=1

Ujqjt + Ct+1(st−1 + qjt − dt)
]} (6.9)

αjt =
{

1 if qjt > 0
0 otherwise

(6.10)

The first, second, third and fourth terms represent the expected inventory holding costs,
expected shortage costs, fixed order cost and purchase costs respectively for period t. The
last term represents the minimum expected cost for the next period. The above equation can
be solved optimally by value iterations (Puterman, 2014). A solution instance where only
one supplier S is selection for the planning horizon, is illustrated in Figure 6.3.

Figure 6.3: An example of solution using the CSS approach.

6.4.4. Dynamic Supplier Selection

The dynamic supplier selection problem is quite similar to the common supplier problem
except, it has several sets of possible actions. In the case of common supplier selection, we
considered the set of possible actions qjt for each supplier j separately. However, in case of
a dynamic supplier selection, we consider all possible actions from all possible suppliers in a
single dynamic program. The functional equation is given below. With Ct(st−1) being the
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optimal cost with state st−1 at time t, and qjt being the actions

Ct(st−1) = min
qjt,j∈J

{
E
[
H(st−1 +

J∑
j=1

qjt − dt)+

+W [−st−1 −
J∑
j=1

qjt + dt]+ +
J∑
j=1

Kjαjt+

J∑
j=1

Ujqjt + Ct+1(st−1 +
J∑
j=1

qjt − dt)
]}

(6.11)

In the above program, we do not consider the capacity constraint for the suppliers. Inclusion
of the capacity constraint can affect the ordering decisions, and we plan to study this in
future research. Dynamic supplier selection can be achieved using the above formulation.
Choice of supplier at an ordering epoch is affected by the inventory position, unit purchase
price, fixed order cost and minimum order quantities, etc. An example of solution using the
DSS approach is illustrated in Figure 6.4. During an ordering epoch, the selected supplier is
shaded. Different suppliers can be selected at different times.

Figure 6.4: An example of solution using the DSS approach.

6.4.5. RDP Framework for the SRPSS

The dynamic programs presented previously can become intractable when the number of
periods is high. In this section, we present an approximation framework to alleviate the
curse of dimensionality without compromising the solution quality substantially. Recalling
the solution procedure from Section 5.5.3 based on MCPC, we add additional decisions based
on suppliers.

Let us consider a rolling horizon of length T . An order can be placed at any time
t ∈ {1, 2, ..., T}. When the decision is taken at time t = 1, order can be placed at any one of
the suppliers j ∈ {1, 2, ..., J}. The order quantity for any supplier can have coverage period
up to {1, 2, ..., T}. If we go further in time at t = 2, we can have different ordering options
based on the state of inventory. However, our initial definition of the coverage period states
that the delivered quantity suffices till the end of that coverage period. Therefore, for each
time period t > 1, we compute the optimal order quantity and cost assuming the inventory
state in Bt. Hence, if an ordering decision is made at time t = 2 of the same rolling horizon,
the order quantity for any supplier can have coverage period up to {2, 3, ..., T}. Similarly, if
a ordering decision is made at time t of the same rolling horizon, the order quantity for any
supplier can have coverage period {t, t + 1, ..., T}. From the above, at t = 1, there are JT
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ordering options, at t = 2, there are J(T − 1) ordering options and so on. At t = T , there
are J ordering options. Additionally, no order option can also be adopted.

Let C̃∗j (sT 1−1, q, T
1, T 2) represent the MCPC for supplier j, for the coverage period T 1 to

T 2 (T 2 ≥ T 1). From the analysis given in the paragraph above, all possible ordering options
during a rolling horizon of length T are similar to that given in Table 6.2. Mathematically,
C̃∗j (sT 1−1, q, T

1, T 2) is defined as follows.

C̃∗j (sT 1−1, q, T
1, T 2) = minE

T 2∑
t=T 1

{
H[sT 1−1 + qjT 1 −

t∑
τ=T 1

dτ ]+

+W [−sT 1−1 − qjT 1 +
t∑

τ=T 1

dτ ]+

+ UjqjT 1 + αjT 1Kj

}
(6.12)

αjT 1 =
{

1 if qjT 1 > 0
0 otherwise

(6.13)

After the computation of all MCPCs, we can solve the multi-stage problem for the whole
rolling horizon using a dynamic programming as follows. For CSS,

YjT (sT−1 ∈ BT ) = C̃∗j (sT−1, q, T, T ) (6.14)

YjT−1(sT−2 ∈ BT−1) = min
{(
C̃∗j (sT−2, q, T − 1, T − 1) + YjT (ŝT−1

)
,

C̃∗j (sT−2, q, T − 1, T )
} (6.15)

Yj1 = min
{(
C̃∗j (s0, q, 1, 1) + Yj2(ŝ1)

)
,
(
C̃∗j (s0, q, 1, 2) + Yj3(ŝ2)

)
, ...,

(
C̃∗s (s0, q, 1, T − 1) + YjT (ŝT−1)

)
, C̃∗s (s0, q, 1, T )

} (6.16)

The above formulation is a backward recursion. At t = T , we have the option of ordering only
to cover the period T . Therefore, its expected minimum cost is the MCPC for that supplier
with coverage period T . Similar computations are done for all suppliers and the supplier with
least Yj1 is chosen. Under DSS approach, the following dynamic program is adopted.

YT (sT−1 ∈ BT ) = min
j
C̃∗j (sT−1, q, T, T ) (6.17)

YT−1(sT−2 ∈ BT−1) = min
{

min
j

(
C̃∗j (sT−2, q, T − 1, T − 1) + YT (ŝT−1

)
,

min
j
C̃∗j (sT−2, q, T − 1, T )

} (6.18)
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Y1 = min
{

min
j

(
C̃∗j (s0, q, 1, 1) + Y2(ŝ1)

)
,min

j

(
C̃∗j (s0, q, 1, 2) + Y3(ŝ2)

)
, ...,

min
j

(
C̃∗j (s0, q, 1, T − 1) + YT (ŝT−1)

)
,min

j
C̃∗j (s0, q, 1, T )

} (6.19)

6.5. Numerical Experiments

In the previous section, we have explained a dynamic programming based approximate solu-
tion approach for the SRP with non-stationary demand and for the SRPSS. Experiments are
conducted in three phases:

1. Experiments to assess the performance of the proposed method for SRP with non-
stationary demand.

2. Experiments to assess the comparative performances of CSS and DSS approaches in
SRPSS.

3. Experiments to assess the performance of the proposed method for SRPSS.

6.5.1. Experimental Protocol

Our test-bed for the SRP is as follows. At the beginning of time period t = 1, the demand
information up to period T̂ is available. The decision maker uses this demand informa-
tion, current inventory and cost parameters to compute the order quantities. We conduct a
simulation to compute the expected cost using RDP. The steps are as follows:

S1. Select rolling horizon length T , initial inventory s0, inventory holding cost H, backorder
cost W and fixed order cost K. Set time t = 1.

S2. At time t compute the optimized order quantity for the initial inventory, cost parameters
and demand samples from t to t+ T .

S3. The order is received instantly. Update the inventory position as initial inventory plus
the order quantity.

S4. Generate random demand dt from the demand distribution during t. Compute the
resulting fixed order cost, inventory holding cost and backorder cost.

S5. Update the inventory level. This is the initial inventory for the next time period t+ 1.

S6. Repeat S2 to S5 until t = T̂ . Compute the total cost from t = 1 to t = T̂ . Repeat the
simulation 103 times and compute the average cost. 103 simulations are chosen as we
observe less than 0.01% absolute change in the average value.

We conduct tests assuming that the demand follows a Poisson distribution. The mean de-
mands for the problem instances are presented in Table 5.11 in Chapter 5 for the SRP with
non-stationary demand. We repeat them again in Table 6.4. For each of the instances P1 to
P11, the inventory holding cost H = {0.1, 0.5, 1}, backorder cost W = {5, 1020} and fixed or-
der cost K = {0, 25, 50}. We compare the expected costs obtained using RDP to the optimal
cost obtained using dynamic programming.

97



Chapter 6. Sampling-based Replenishment Planning in NS & MS Inventory Systems

Table 6.4: Problem instances for the SRP with non-stationary demand. The table presents the
expected demands for 12 periods. For each of the instances P1 to P11, the inventory holding cost
H = {0.1, 0.5, 1}, backorder cost W = {5, 1020} and fixed order cost K = {0, 25, 50}.

Instance Time periods
1 2 3 4 5 6 7 8 9 10 11 12

P1 50 50 50 50 50 50 50 50 50 50 50 50
P2 68 83 88 83 69 50 31 17 12 17 32 50
P3 10 45 87 91 82 86 75 40 24 34 21 5
P4 3 9 16 28 34 37 43 59 70 91 99 111
P5 111 99 91 70 59 43 37 34 28 16 9 3
P6 27 22 94 27 17 74 120 12 50 28 19 110
P7 5 5 5 5 5 5 5 5 5 5 5 5
P8 7 8 9 8 7 5 3 2 1 2 3 5
P9 1 5 9 9 8 9 8 4 3 2 1 1

P10 1 2 2 3 4 5 5 6 7 8 8 9
P11 9 8 8 7 6 5 5 4 3 2 2 1

For the SRPSS, the problem instances are presented in Table 6.5. We take a planning
horizon length of T̂ = 20 periods and rolling horizon length T = 20 periods1. Demand is
assumed to follow a stationary Poisson distribution with λ = 5. There are 2 suppliers. Their
corresponding fixed costs, unit prices and minimum order quantities are given in Table 6.5.
Similar to the SRP, for the SRPSS, we conduct simulations to compute the expected costs.
For the CSS approach, the procedure is as follows:

C1. Select rolling horizon length T , initial inventory s0, inventory holding cost H, backorder
costW and fixed order costs K, purchase costs U and minimum order quantities MOQ.

C2. For each supplier, compute the minimum cost in Equation 6.16. Choose the supplier
having minimum cost for the whole planning horizon and select its fixed order cost,
purchase cost and minimum order quantity. Repeat the next steps for that supplier.

C3. Set time t = 1.

C4. At time t compute the optimized order quantity for the initial inventory, cost parameters
and demand samples from t to t+ T .

C5. The order is received instantly. Update the inventory position as initial inventory plus
the order quantity.

C6. Generate random demand dt from the demand distribution during t. Compute the
resulting purchase cost, fixed order cost, inventory holding cost and backorder cost.

C7. Update the inventory level. This is the initial inventory for the next time period t+ 1.

C8. Repeat C4 to C7 until t = T̂ . Compute the total cost from t = 1 to t = T̂ . Repeat the
simulation 103 times and compute the average cost.

For the DSS approach, the procedure is as follows.

D 1. Select rolling horizon length T , initial inventory s0, inventory holding cost H, backorder
costW and fixed order costs K, purchase costs U and minimum order quantities MOQ.

1We take the length of planning and rolling horizons of same length to have the least cost for the whole
planning horizon. A shorter rolling horizon will lead to higher cost for the planning horizon
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D 2. Set time t = 1.

D 3. At time t compute the optimized order quantity for the initial inventory, cost parameters
and demand samples from t to t = t+ T using the minimum cost in Equation 6.19.

D 4. The order is received instantly. Update the inventory position as initial inventory plus
the order quantity.

D 5. Generate random demand dt from the demand distribution during t. Compute the
resulting purchase cost, fixed order cost, inventory holding cost and backorder cost.

D 6. Update the inventory level. This is the initial inventory for the next time period t+ 1.

D 7. Repeat C 3 to C 6 until t = T̂ . Compute the total cost from t = 1 to t = T̂ . Repeat
the simulation 103 times and compute the average cost.

Table 6.5: Problem instances for the SRPSS.

H W K1 K2 U1 U2 MOQ1 MOQ2
1 10 50 50.00 10 10.00 0 0
1 10 50 55.00 10 9.52 0 0
1 10 50 60.50 10 9.07 0 0
1 10 50 66.55 10 8.64 0 0
1 10 50 73.21 10 8.23 0 0
1 10 50 80.53 10 7.84 0 0
1 10 50 88.58 10 7.46 0 0
1 10 50 97.44 10 7.11 0 0
1 10 50 107.18 10 6.77 0 0
1 10 50 117.90 10 6.45 0 0

1 10 50 50.00 10 10 5 5
1 10 50 55.00 10 10 5 10
1 10 50 60.50 10 10 5 15
1 10 50 66.55 10 10 5 20
1 10 50 73.21 10 10 5 25
1 10 50 80.53 10 10 5 30
1 10 50 88.58 10 10 5 35
1 10 50 97.44 10 10 5 40
1 10 50 107.18 10 10 5 45
1 10 50 117.90 10 10 5 50

1 10 100 100 10 10.00 5 5
1 10 100 100 10 9.52 5 10
1 10 100 100 10 9.07 5 15
1 10 100 100 10 8.64 5 20
1 10 100 100 10 8.23 5 25
1 10 100 100 10 7.84 5 30
1 10 100 100 10 7.46 5 35
1 10 100 100 10 7.11 5 40
1 10 100 100 10 6.77 5 45
1 10 100 100 10 6.45 5 50

Some preliminary assessments are as follows. There are three parameters specific to
suppliers, fixed order costs Kj , unit prices Uj and minimum order quantitiesMOQj . Varying
just one parameter will yield solutions with only one supplier selected. This is because, at
any ordering epoch the same supplier will have the least cost. Therefore, we may obtain
a difference between the CSS and DSS approaches only when two or more parameters are
varied at the same time. In our analysis, we vary two parameters at a time Kj and Uj , Kj

and MOQj , Uj and MOQj . Also, their variations must be coherent, i.e. the supplier with
lower fixed order cost would have higher unit price, the supplier with lower fixed order cost
would have higher minimum order quantity and the supplier with lower unit price would have
higher minimum order quantity.
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Table 6.6: Percentage optimality gap of RDP with respect to dynamic programming in case of
non-stationary demand.

H W K P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
0.1 5 0 4.61 5.56 0.97 4.21 4.11 3.37 0.29 4.44 1.73 0.02 0.8
0.1 10 0 11.68 0.67 1 0.81 3.31 3.79 0.71 0.13 3.57 3.77 3.21
0.1 20 0 8.15 15.1 13.09 11.16 7.55 5.31 14.11 2.59 1.37 1.71 35.64
0.5 5 0 3.71 4.53 2.28 0 1.46 5.05 1.93 1.04 4.05 2.88 4.64
0.5 10 0 0 5.31 2.05 0.94 0.49 4.46 3.93 2.99 4.32 3.95 3.03
0.5 20 0 0.76 1.12 1.22 0.13 1.66 3 3.1 0.3 6.62 3.4 9.49
1 5 0 3.84 0.6 1.35 0.24 7.73 1.49 5.21 4.32 2.69 3.2 0.45
1 10 0 0.94 0.11 0.04 3.73 1.37 1.94 2.98 2.26 5.65 0 5.03
1 20 0 6.72 3.44 1.01 4.14 8.57 1.65 0.33 0 2.3 5.98 2.83

0.1 5 25 1.87 5.81 5.73 0 2.93 2.7 0.97 1.48 3.89 0.44 0.26
0.1 10 25 4.74 3.92 5.21 5.05 4.21 3.47 3.51 3.24 9.16 0.89 5.66
0.1 20 25 3.09 5.13 7.7 3.19 2.81 2.49 3.01 4.2 10.49 3.26 7.85
0.5 5 25 0.89 0.75 2.3 1.23 3.05 2.73 1.07 4.41 7.5 0.13 7.17
0.5 10 25 0.03 0.26 2.5 1.11 5.44 4.51 0.43 4.54 7.49 0.28 2.58
0.5 20 25 3.15 1.42 2.15 0 1.93 4.37 0.7 4.93 5.71 2.29 2.02
1 5 25 0 0.11 0.96 0 1.91 0.32 0.41 4.21 7.23 1.17 5.58
1 10 25 0.11 0.36 0.39 0.56 2.14 0.83 1.58 3.4 5.85 0.09 1.87
1 20 25 0.9 0.93 0.7 1.26 0.72 2.4 1.33 1.27 4.38 1.57 3.75

0.1 5 50 0 0 3.91 0 0 0 1.55 2.74 3.66 0.14 8.61
0.1 10 50 0 1.58 2.27 0 1.79 0 0.64 0.18 4.39 1.41 20.8
0.1 20 50 0 4.71 5.75 0 8.15 8.69 0.81 3.93 1.74 0.91 2.24
0.5 5 50 0.13 2.4 1.84 1.7 4.09 3.6 1.48 6.38 12 0.73 10.01
0.5 10 50 0.26 2.46 3.42 1.1 5.06 1.58 1.79 3.42 7.99 0.93 4.43
0.5 20 50 0.08 2.04 3.15 0.13 4.59 2.86 1.45 6.14 6 0.9 4.69
1 5 50 0.61 0.65 1.42 0.22 3.06 0.91 2.27 8.43 9.97 4.6 10.96
1 10 50 0.26 1.48 1.95 1.05 2.36 3.21 1.59 4.08 7.95 0.19 6.7
1 20 50 0.23 1.55 0.64 0.48 2.86 2.9 0.76 3.65 5.29 0.05 6.23

Average 2.1 2.67 2.78 1.57 3.46 2.88 2.15 3.28 5.67 1.66 6.54

6.5.2. Numerical Results

The results are divided into two parts. First, we present the results of solving the SRP with
non-stationary demand using the RDP. Then we focus on the SRPSS. There, we first present
the comparative analysis between the CSS and DSS approaches and then we examine the
efficacy of the RDP for the problem.

Table 6.6 presents the optimality gap of the RDP on the SRP problem with non-stationary
demand. The overall average gap is 3.2%, which outperforms the OH-IECA (in Chapter 5)
with overall average gap 7.3%. Detailed comparison is depicted in Figure 6.5.

Next, we examine the results for the SRPSS. The cost performances of the CSS and
DSS approaches are given in Table 6.7. CCSS and CDSS are the expected optimal costs
using dynamic programming. We observe some difference in the optimal costs between those
approaches for the chosen problem parameters. In all the cases, the DSS approach either
outperforms the CSS approach or performs identically. The average gain is 0.43%.

In the second part, we present the results using our proposed RDP method in Table 6.8 for
the same problem instances. We get major gain in terms of runtime. For a planning horizon
of 20 periods, DP takes on average 2821 seconds while with RDP, the average runtime 0.006
seconds. The average gaps are 3.93% and 2.92% respectively for the CSS and DSS approaches.
In all the instances the DSS approach outperforms the CSS approach, with average gain of
1.41%.

When the suppliers are equivalent in terms of two of the three parameters, both ap-
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proaches yield equal cost. Only when suppliers are different in at least two parameters, do
we observe a difference in costs. The results from Table 6.7 show that the cost difference is
higher when the input costs differ more across suppliers.

Figure 6.5: Comparative performances of OH-IECA and RDP approaches for the SRP with non-
stationary demand. The average optimality gap for OH-IECA is 7.3% and that of SDP is 3.2%.

Table 6.7: Comparison between CSS and DSS approaches for the SRPSS using DP.

H W K1 K2 R1 R2 MOQ1 MOQ2 CCSS CDSS Gain
1 15 50 50.00 10 10.00 0 0 1469.95 1469.95 0.00 %
1 15 50 55.00 10 9.52 0 0 1444.42 1444.24 0.01 %
1 15 50 60.50 10 9.07 0 0 1422.59 1422.09 0.04 %
1 15 50 66.55 10 8.64 0 0 1404.22 1403.32 0.06 %
1 15 50 73.21 10 8.23 0 0 1388.77 1387.39 0.10 %
1 15 50 80.53 10 7.84 0 0 1375.79 1373.72 0.15 %
1 15 50 88.58 10 7.46 0 0 1365.35 1362.67 0.20 %
1 15 50 97.44 10 7.11 0 0 1358.31 1355.24 0.23 %
1 15 50 107.18 10 6.77 0 0 1355.32 1351.72 0.27 %
1 15 50 117.90 10 6.45 0 0 1356.34 1352.29 0.30 %

1 15 50 50.00 10 10 50 50 1656.53 1656.53 0.00 %
1 15 50 55.00 10 10 50 45 1632.36 1629.16 0.20 %
1 15 50 60.50 10 10 50 40 1637.06 1624.00 0.80 %
1 15 50 66.55 10 10 50 35 1613.70 1609.51 0.26 %
1 15 50 73.21 10 10 50 30 1584.32 1583.88 0.03 %
1 15 50 80.53 10 10 50 25 1598.04 1597.80 0.01 %
1 15 50 88.58 10 10 50 20 1618.77 1615.97 0.17 %
1 15 50 97.44 10 10 50 15 1643.15 1619.69 1.45 %
1 15 50 107.18 10 10 50 10 1656.53 1622.84 2.08 %
1 15 50 117.90 10 10 50 5 1656.53 1628.22 1.74 %

1 15 100 100 10 10.00 5 5 1649.55 1649.55 0.00 %
1 15 100 100 10 9.52 5 10 1603.23 1603.23 0.00 %
1 15 100 100 10 9.07 5 15 1560.39 1559.82 0.04 %
1 15 100 100 10 8.64 5 20 1520.39 1518.46 0.13 %
1 15 100 100 10 8.23 5 25 1483.05 1479.79 0.22 %
1 15 100 100 10 7.84 5 30 1451.28 1446.28 0.35 %
1 15 100 100 10 7.46 5 35 1448.06 1432.43 1.09 %
1 15 100 100 10 7.11 5 40 1434.38 1418.86 1.09 %
1 15 100 100 10 6.77 5 45 1406.27 1390.45 1.14 %
1 15 100 100 10 6.45 5 50 1395.62 1384.97 0.77 %

Average 0.43%
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Table 6.8: Comparison between CSS and DSS approaches for the SRPSS using RDP.

K1 K2 R1 R2 MOQ1 MOQ2 ĈCSS Gap ĈDSS Gap Gain
50 50 10 10 0 0 1500.16 2.06 % 1500.16 2.06 % 0.00 %
50 55 10 9.52 0 0 1523.55 5.48 % 1504.48 4.17 % 1.27 %
50 60.50 10 9.07 0 0 1510.16 6.16 % 1481.58 4.18 % 1.93 %
50 66.55 10 8.64 0 0 1470.87 4.75 % 1464.41 4.35 % 0.44 %
50 73.21 10 8.23 0 0 1451.49 4.52 % 1447.68 4.35 % 0.26 %
50 80.53 10 7.84 0 0 1452.5 5.58 % 1403.26 2.15 % 3.51 %
50 88.58 10 7.46 0 0 1430.02 4.74 % 1427.28 4.74 % 0.19 %
50 97.44 10 7.11 0 0 1436.12 5.73 % 1408.21 3.91 % 1.98 %
50 107.18 10 6.77 0 0 1404.84 3.65 % 1397.93 3.42 % 0.49 %
50 117.90 10 6.45 0 0 1414.45 4.28 % 1394.39 3.11 % 1.44 %

50 50 10 10 50 50 1669.20 0.76 % 1669.2 0.76 % 0.00 %
50 55 10 10 50 45 1672.75 2.47 % 1666.34 2.28 % 0.38 %
50 60.50 10 10 50 40 1669.29 1.97 % 1644.59 1.27 % 1.50 %
50 66.55 10 10 50 35 1658.44 2.77 % 1649.99 2.52 % 0.51 %
50 73.21 10 10 50 30 1630.89 2.94 % 1612.91 1.83 % 1.11 %
50 80.53 10 10 50 25 1657.62 3.73 % 1638.48 2.55 % 1.17 %
50 88.58 10 10 50 20 1689.76 4.39 % 1689.59 4.56 % 0.01 %
50 97.44 10 10 50 15 1696.26 3.23 % 1649.46 1.84 % 2.84 %
50 107.18 10 10 50 10 1677.77 1.28 % 1644.19 1.32 % 2.04 %
50 117.90 10 10 50 5 1681.25 1.49 % 1660.21 1.96 % 1.27 %

100 100 10 10 5 5 1663.79 0.86 % 1663.79 0.86 % 0.00 %
100 100 10 9.52 5 10 1659.93 3.54 % 1647.90 2.79 % 0.73 %
100 100 10 9.07 5 15 1705.55 9.30 % 1669.93 7.06 % 2.13 %
100 100 10 8.64 5 20 1636.56 7.64 % 1614.79 6.34 % 1.35 %
100 100 10 8.23 5 25 1572.02 6.00 % 1544.63 4.38 % 1.77 %
100 100 10 7.84 5 30 1553.86 7.07 % 1479.70 2.31 % 5.01 %
100 100 10 7.46 5 35 1482.09 2.35 % 1447.04 1.02 % 2.42 %
100 100 10 7.11 5 40 1484.47 3.49 % 1475.31 3.98 % 0.62 %
100 100 10 6.77 5 45 1455.33 3.49 % 1395.35 0.35 % 4.30 %
100 100 10 6.45 5 50 1429.03 2.39 % 1403.10 1.31 % 1.85 %
Average 3.93% 2.92% 1.41%

6.6. Conclusions

In this chapter, we addressed the single-item replenishment problem (SRP) with non sta-
tionary demand and the integrated replenishment planning and supplier selection (SRPSS)
problem. The first problem can be formulated as a multi-stage stochastic problem. We ex-
tended the works on coverage period cost from Chapter 5 to formulate a dynamic program
with smaller state space. The proposed method was tested for full backorder scenario with
average optimality gap of 3-4%. The proposed method can also be adapted for the extensions
of the basic problem to address lost sales and batch sizes.

The second problem is also a multi-stage stochastic program. Due to the curse of dimen-
sionality, it is intractable for medium to large size problems. For its practical importance
and complexity, it has received considerable attention in the literature post 2003, however,
mostly as a measure of risk mitigation. Nowadays, multi-brand retailers face the problem
during their day to day operation. This gives rise to the need of its study as an economic
option and the development of faster optimization method. We first conducted the finan-
cial benefit analysis of dynamic supplier selection versus selecting a common supplier for the
planning horizon. Then we proposed an approximation framework for both approaches.

A common supplier for the whole planning horizon is a practically more appealing fea-
ture. However, the dynamic supplier selection results in higher economic benefits. Both of
the aforementioned problems are multi-stage stochastic optimization problems. However, the
latter one is relatively more complex due to its increased number of possible actions. Numeri-
cal analysis suggest that the dynamic supplier supplier selection approach always outperforms
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the approach with one common supplier, especially when the inventory holding costs and the
backorder costs are very different, and when the suppliers impose a minimum order quantity
constraints. Finding the optimal solutions of any of the above approaches is time consuming.
Hence, we developed an approximation framework based on dynamic programming.

The framework works in two stages. The first stage gives the optimal order quantity and
cost for discrete coverage period. We then end up with T (T+1)

2 different costs for a rolling
horizon of length T . Afterwards, a dynamic programming approach optimizes the total cost
for the rolling horizon. We conducted numerical analysis to attest the performance of our
proposed method. For the synthetic instances the approach provides near optimal solution
at a fraction of the computation time. On average the optimality gap is 3.5%. The average
computation time is 6 milliseconds for the RDP.

In industrial context we intend to test the method in lost sale environments and when
the suppliers give quantity discounts which are some of the common practices nowadays in
retail. Also, deeper analysis can be done to suggest when the economic benefits of a dynamic
supplier selection problems outweighs the practical benefits of selecting a common supplier.

In the next chapter, we discuss the replenishment planning problem in the inventory
systems with multiple items or joint replenishment problems (JRPs). We focus on the problem
during promotions when items are ordered in terms of packs containing multiple items.

103



Chapter 7

Promotional Replenishment Planning in Multi-item
Inventory Systems

Abstract. In this chapter, we address the replenishment planning problem dur-
ing retail promotions. The simplest version could be formulated as a single period
newsvendor problem. However, inaccurate forecast, limited access to financial
information and packaging constraints are some of the major limitations encoun-
tered while solving practical problems. We address all of the above three limita-
tions and propose two approaches depending upon the importance and the way to
consider those limitations. Thus, first we formulate a multi-objective optimization
problem with lost sales and leftover inventory as two major conflicting objectives.
We propose a 2-stage method to solve the problem. The first stage defines various
service level thresholds through inventory classification. The second stage solves
the optimization problem with an ε-constraint like method. We propose the use of
discrete probabilistic forecast, and compare the results with those obtained using
point forecast. The results for a real world problem indicate that both solutions
outperform the existing ordering policy and the probabilistic approach outperforms
the later. Results from the probabilistic approach show 39% reduction in lost sales
and 27% reduction in leftover inventory. We then propose the second approach
for practical prudence where, we reformulate the problem to minimize leftover in-
ventory at different service levels. We also propose a metaheuristic to obtain good
solutions to real-world size problems in real time. Initial parts of this work (Sahu
et al., 2018) have been presented in the international conference on information
systems, logistics and supply chain (ILS), 2018.

7.1. Introduction

Nowadays, retailers are conducting frequent promotional events to improve their sales. These
events are aimed at increasing footfalls and sales volume, however, they can also pose greater
challenges towards inventory management. This can be attributed to multiple factors such
as the volume of operation which can be many-fold of the normal level and surge in item
variety.

Two factors contribute the most to inventory control performance: forecast accuracy and
inventory optimization model. Even though an improved forecast accuracy can contribute
substantially towards reducing inventory and logistical costs, accurate point forecast remains
a challenge today. Forecasting the demand during promotions comes with even more un-
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certainty. Predicting the right demand at each retailer is crucial for the success of every
retailing company because it helps towards better inventory management, results in better
distribution of items across retailers, and minimizes over and under stocking at each retailer.
Thereby, it minimizes losses and most importantly maximizes sales and customer satisfaction
Linoff and Berry (2011). Literature addressing ordering problems can be divided into two
groups depending upon whether they consider demand to be deterministic or stochastic. In
case of stochastic demand, it can be either stationary or non-stationary. However, in practice
it becomes very difficult to express the demand process as a standard distribution accurately
(Ren et al., 2017; Rahdar et al., 2018). We propose to use probabilistic forecast and express
the demand as a set of discrete scenarios.

During sales promotions, the replenishment planning can pose challenges to inventory
management as it can be constrained by the planning approach, availability of information
and distribution constraints. Due to geographical limitations retailers often prefer decentral-
ized planning. However, planners at different locations have limited access to central financial
data regarding item costs, storage costs etc. Hence, inventory optimization with cost param-
eters becomes impractical. In practice, supplier and retailers often deploy single-item and
multi-item prepacks. A prepack can be defined as a collection of items used in retail distribu-
tion. The purpose is to facilitate the distribution process by grouping multiple units of one
or more items. This also reduces the distribution costs (Gao et al., 2014b). This however
makes the replenishment planning more complex and limits flexibility.

With all the challenges described above, the objective of replenishment planning (during
sales promotions) is to balance between inventory and service level. While higher inventory
can result in higher service level at higher holding cost, lower inventory can lead to lost sales
at lower holding cost. All planning decisions are made around 6-12 weeks in advance and
orders are placed at the suppliers. Therefore, the retailers can effectively place only one order
for one promotion. This problem is similar to the single period newsvendor problem (Arrow
et al., 1951). If the retailer orders less than the demand, then it loses sales. On the contrary
excess order can lead to higher inventory. In case of perishable items, the salvage value is also
lower. Non-perishable items can cause higher holding cost. Specifically during promotions,
improper order placement can cause customer dissatisfaction and excess holding cost. In the
context of retail sales promotions, our contributions are as follows.

1. We propose a mathematical model for promotional ordering with non-stationary de-
mand, limited financial information, and packaging constraints.

2. We propose a 2-stage method to solve the promotional ordering problem.

3. We propose an additional formulation and a metaheuristic adapted to real-world pro-
motional problems.

The upcoming sections are arranged as follows. In the Section 7.2, we describe the problem
and introduce some business rules for practical usability. A brief literature review is given
in Section 7.3. Then, in Section 7.4, we formulate the multi-objective optimization problem.
We describe our methodology to solve the ordering problem in Section 7.5. We present a
real-world case study in Section 7.6 to validate our approach. The reformulated problem
and the corresponding metaheuristic are proposed in Section 7.7. Its numerical analysis and
another case study are presented in Section 7.9 and Section 7.10. At last in Section 7.11, we
summarize the main conclusions.
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7.2. Problem Description

The promotional ordering problem may be seen as an extension of the classical newsvendor
problem. The major differences can be expressed in three groups that will be detailed af-
terwards. They are: 1. Demand consideration, 2. Availability of financial information and
3. Presence of multiple prepack constraints.

The classical newsvendor problem assumes a parametric distribution of demand. In prac-
tice however, the exact probability distribution of the demand process remains unknown.
Inventory planning is done with the information about forecast. It is inherently assumed
that the probability density function of the demand and the forecast are the same. This
leaves room for the forecast error to be a major challenge to inventory optimization. A
second fact is that it is often very difficult to express the actual demand distribution as a
standard one. In this chapter, we express the forecast as a set of scenarios having definite
probability. We propose to use the service level in quantity context (β-service level) (Beyer
et al., 2016; Bowersox et al., 2002), i.e. service level is the percentage of demand satisfied.

The second difference is about availability of relevant financial information. In general,
during inventory planning financial information such as buying prices, profitability of items,
inventory holding costs, shortage costs and salvage values etc. are considered. But in practice
obtaining these information for a complete set of new items having customized packaging is
often impossible or very tedious. In case of decentralized planning, financial information is
often not available to the planner.

The third difference is regarding packaging types for the items. During retail sales pro-
motions orders are placed as multiple of specific prepacks due to economies of scale and
packaging constraints at the suppliers. This also decreases the distribution costs. Selection
of best prepacks can be formulated as a mixed integer linear problem (MILP). It is analogous
to the classical Knapsack problem which is well known to be NP-hard. The presence of these
constraints in the newsvendor problem makes it even more difficult.

The problem is motivated by a real situation in a multi-national retail firm. It considers
promotional ordering across multiple retailers of a supply chain network with single supplier
as shown in Figure 7.1. The supplier does not have any capacity constraint. The sales fore-
casts are generated centrally and communicated to the retailers. The retailers then validate
the forecast and plan their replenishment accordingly. The firm follows a decentralized in-
ventory planning approach where planning for one or a set of retailers is done by one planner
depending upon geography. Multiple orders are not allowed. Financial information regarding
item costs, storage costs and salvage values is not available to the planner. The retailer sells
multiple items and each item can be ordered through any one or more of available the packing
choices. There are 3 distinct packing types for each item, and the packing choices available
can be one or many of those. The 3 distinct packing (see Figure 4.7) types are:

T1. Individual units;
T2. Single-item prepack, which contains only one type of item;
T3. Multi-item prepack, which contains more than one type of items.

Business Rules. Although a global optimization can give the best result for a set of input
conditions, the output may not be practically feasible. Therefore, to make the output more
realistic and acceptable for practical use, we formulate certain business rules in consultation
with the retail firm. These business rules are then included in the optimization model. We will
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Figure 7.1: Supply chain network structure under study.

explain the incorporation of the rules in the next section. The business rules are mentioned
below.

R1. Larger packagings are easier to handle, therefore should be given priority.
R2. All critical items must meet their respective minimum service level criterion.
R3. If an item has non-zero forecast it must be ordered in non-zero quantities.
R4. Maximum number of pack types that can be ordered per item per retailer is Γ.

Problem Class

The problem we consider has a single-echelon supply chain network, deterministic lead time
and stochastic non-stationary demand. Excess demand is lost completely and the retailer
must satisfy a minimum service level. We have multiple objectives, a dynamic inventory
policy and multiple lot sizes. Also, multiple items are ordered from a single supplier in a
single period ordering. This basic problem can be denoted using the nomenclature given in
Chapter 2:
1;φ||D;D||N;L;Y||M||D;M||J;S;S

This basic structure can have extensions, such as with back order, single batch size or a
single objective. For example:
1;φ||D;D||N;B;Y||M||D;M||J;S;S,
1;φ||D;D||N;L;Y||M||D;S||J;S;S and
1;φ||D;D||N;L;Y||C||D;M||J;S;S.

7.3. Literature Review

The promotional ordering problem involving multiple items is similar to the multi-product
newsvendor (MPNV) problem for which a large amount of literature exists. The MPNV
problem determines the optimal order quantities (or α-service level) for all items subject to
certain constraints. It was introduced in Hadley and Whitin (1963) with a single budget
constraint. More recently, Chernonog and Goldberg (2018) solve the MPNV problem with
bounded demand. The problem we consider does not focus on finding the optimal α-service
level for each product based on inventory holding cost and shortage cost, instead, it focuses on
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optimal combinations of prepacks for a deterministic demand that is a function of the service
level. Presence of multiple items in one ordering unit has been addressed as product bundling
(Sheikhzadeh and Elahi, 2013) and prepack (Gao et al., 2014a) in the literature. While the
prime objective of product bundling is to provide a discounted price of one item based on
order quantity of other items, the use of prepacks primarily aims at minimizing the logistics
costs. Product bundling also considers the possibility of the items also being sold as bundles
in contrast to unit-wise selling of items in prepacks. Product bundling with price discount
is considered in Rosenthal et al. (1995), who provide a mixed integer linear programming
(MILP) approach for vendor selection. McCardle et al. (2007) provide analytical results on
the optimal bundle prices, order quantities, and profits for deterministic demand. Ernst and
Kouvelis (1999) study the optimal structure of stocking policy in the single period newsboy
type problem in the presence of product bundles. However, their study is limited to selection
of only one type of bundle for the ordering decision. They also assume that the bundles are
sold to the customer in as-is condition. Gao et al. (2014a) study the optimal policy structure
in the multi-period case, where items can be bought as units and/or prepacks and can be sold
as units. They also consider only one type of prepack. Our research varies from the above in
many aspects. We aim to address the situation where multiple prepacks for the same item
can be ordered. One item may or may not be ordered by units. The actual choice depends
on the suppliers’ offerings.

We also develop an iterated local search (ILS) (Lourenço et al., 2003) approach to solve
the problem. Our solution approach encounters a general multidimensional knapsack prob-
lem (MDKP) (Puchinger et al., 2010) in each iteration, and even the optimal solution of
the MDKP included cannot ensure the optimal solution to the initial problem unless some
conditions are satisfied (refer to Section 7.7.2). Even though the 0-1 MDKP has been ex-
tensively studied, studies on the general MDKP are scarce (Akçay et al., 2007). Due to
the nature of our problem and practical limitations, we only focus on literature which gives
timely solutions. Akçay et al. (2007) provide a primal effective capacity heuristic (PECH)
for the problem, which is greedy by principle. They also introduce a parameter to adjust the
greediness. Although no clear relationship exists between the greediness and quality of the
solution, a more greedy approach provides faster solutions. The PECH outperforms the two
best known algorithms, the genetic algorithm in Chu and Beasley (1998) and the LP-based
algorithm in Pirkul and Narasimhan (1986) in terms of computational effort. In our problem
however, the final quality of the solution depends on the perturbations and the local search.
Good perturbations are required to ensure the possibility that the optimal solution can be
obtained from the incumbent solution, and an effective local search is required to obtain good
solutions.

7.4. Mathematical Formulation

Probabilistic Forecast. In the classical single period newsvendor problem, demand is ex-
pressed as a random variable with a probability density function. However, in practice it
is often difficult to express the demand probability density function accurately. In case of
the multi-period newsvendor problem several works focus on demand estimation. Bensous-
san et al. (2007) use dynamic programming and probability theory, Levi et al. (2007c) use
monte-carlo simulations, and Levina et al. (2010) use online learning method. Kim et al.
(2015) express non-stationary demand for multi-period newsvendor problem as discrete sce-
narios. We use the same approach, but for single-period model. The uncertainty is discretized
into a set of scenarios, which denote the possible realizations of the random event and its
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Table 7.1: Parameters and variables for the optimization model.

Sets
K Set of retailers, k ∈ K = {1, ...,K}
N Set of items, i ∈ N = {1, ..., N}
M Set of prepacks, m ∈M = {1, ...,M}
Z Set of scenarios, z ∈ Z = {1, ..., Z}

Parameters
SLki Minimum required service level at retailer k for item i
Pz Occurrence probability of scenario z
Fkiz Demand forecast at retailer k for item i in scenario z
Rim Quantity of item i contained in prepack m
rim 1 if item i contained in prepack m, 0 otherwise

Decision Variables
Qkm Order quantity at retailer k for prepack m

Internal Variables
qki Order quantity at retailer k for item i
Ikiz Leftover inventory at retailer k for item i in scenario z
Dkiz Demand fulfilled at retailer k for item i in scenario z
Akm 1 if order quantity at retailer k for prepack m is non-zero, 0 otherwise

corresponding probability. Scenario-based models make stochastic constraints into regular
constraints (Kim et al., 2015). We generate a forecast for each retailer-item combination. F̄ki
defines the point forecast for retailer k and item i. The probabilistic forecast is described by
a set of discrete scenarios Z for each retailer-item combination. The number of scenarios for
each retailer-item is Z and z ∈ Z = {1, ..., Z} describes the index of scenarios. Pz defines the
probability of occurrence of scenario z and Fkiz the expectation of dki under scenario z, i.e.
Pr(dki = Fkiz) = Pz, where dki is the demand at retailer k for item i.

Optimization Model. We develop the optimization model for a set of retailers. The model
has three objectives. They are:

O1. To minimize lost sales;
O2. To minimize the leftover inventory;
O3. To minimize the total number of prepacks ordered.

Objective O3 reflects business rule R1. Indeed, minimizing the total number of prepacks will
force the model to choose larger prepacks. Table 7.1 contains the parameters and variables
for the optimization model.

Objectives

The first objective is to minimize total lost sales. Let Q represent the set of feasible solutions
and Q be the vector representing the decision variables Qkm, then the first objective is

min
Q∈Q

O1(Q) =
∑
k∈K

∑
i∈N

∑
z∈Z

Pz(Fkiz −Dkiz) (7.1)
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The second objective is to minimize the leftover inventory

min
Q∈Q

O2(Q) =
∑
k∈K

∑
i∈N

∑
z∈Z

PzIkiz (7.2)

The third objective is to minimize the total quantity of prepacks ordered

min
Q∈Q

O3(Q) =
∑
k∈K

∑
m∈M

Qkm (7.3)

subject to

qki =
∑
m∈M

QkmRim ∀k, ∀i (7.4)

Ikiz +Dkiz = qki ∀k, ∀i,∀z (7.5)
Dkiz ≤ Fkiz ∀k, ∀i,∀z (7.6)
qki ≥ SLki

∑
z∈Z

FkizPz ∀k, ∀i (7.7)

Akm =
{

1 if Qkm > 0
0 if Qkm = 0

∀k, ∀m (7.8)

qki

{
≥ 1 if ∑z∈Z PzF̄ki > 0
≥ 0 if ∑z∈Z PzF̄ki = 0

∀k, ∀i (7.9)∑
m∈M

rimAkm ≤ Γ ∀k, ∀i (7.10)

Qkm ≥ 0 ∀k, ∀m (7.11)
qki ≥ 0 ∀k, ∀i (7.12)
Ikiz ≥ 0 ∀k, ∀i,∀z (7.13)

Constraint 7.4 is a material balance equation indicating the equivalent purchase of items
from order quantity of prepacks. Constraints 7.5 and 7.6 are used to calculate the leftover
inventory and demand fulfilled at a given order quantity. Constraint 7.7 indicates that all
items must meet the minimum service level criteria. This is required to follow business
rule R2. In the following Section 7.5, we explain the details of inventory classification and
minimum service level allocation. Constraint 7.8 is for calculating the binary variable Akm
indicating whether the prepack m is ordered for retailer k. Constraint 7.9 ensures that
the order quantities for items having non-zero forecast are non-zero (See Business rule R3).
These two constraints 7.8 and 7.9 may be easily linearizable, but above presentation is easy
to understand. Constraint 7.10 limits the number of prepacks ordered per item per retailer
to Γ (See Business rule R4). Constraints 7.11, 7.12 and 7.13 are non-negativity constraints.
The optimization model is denoted as M-0.

Also, it is noteworthy that, here we define the leftover inventory as the excess quantity
above the forecast quantity. The phenomenon is depicted in Figure 7.2. Any order quantity
qi for item i will constitute leftover inventory if it is more that the forecast quantity Fkzi.
This is justified because of the use of Type-2 service level (β service level). In this context,
it is assumed that any order quantity up to the forecast quantity can be sold, and it will not
create any leftover inventory after the promotion. Therefore, we will obtain excess inventory
if and only if the order quantity is more than the forecast quantity.

110



7.5. Methodology

Figure 7.2: Illustration of the nature of inventory computation. In Case 1, the order quantity qi for an
item i is greater than its forecast Fkiz. It results in excess inventory qi − Fkiz as indicated in the shaded
porting. This is because, in such cases 100% demand can be fulfilled. However, if the order quantity is less
than or equal to the forecast quantity then, the excess inventory is zero as a maximum demand equal to the
order quantity can be fulfilled. On the contrary, in Case 2, the shortfall from the forecast indicates the lost
sales even if it fulfills the service level constraint.

7.5. Methodology

To deal with this promotional replenishment planning problem, we propose a methodology
consisting of two stages:

1. Inventory classification and Minimum service level determination;
2. Multi-Objective optimization with probabilistic forecast.

7.5.1. Inventory Classification and Minimum Service Level Allocation

Inventory classification plays an important role in inventory management. It helps in defin-
ing inventory priorities clearly. The ABC and VED classifications are widely accepted. In
our approach, we propose a mix of both approaches to classify the items depending upon
individual forecast quantity and criticality. After classification, we define a threshold service
levels based on inventory classes. It will be used as the minimum required service level in the
optimization problem.

General ABC classification (Torabi et al., 2012; Millstein et al., 2014) is based on volume.
We demonstrate an example in Figure 7.3. The high volume items contributing upto 50% of
the cumulative volume are classified as Class-A items. The next high volume items contribut-
ing upto 80% of the cumulative volume constitute Class-B items. The remaining items fall in
Class-C. While ABC classification is a quantitative approach, VED classification (Gupta et
al., 2007; Molenaers et al., 2012) is qualitative. The criticality of the items is defined by the
retail firm (Business rule R2). Items in the “Vital” class are most critical. The “Essential”
class contains items which are relatively less critical, and the least critical items are grouped
into the “Desired” class.

We use ABC and VED classifications simultaneously to exploit the benefits of both ap-
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Figure 7.3: Illustration of ABC classification. X-axis represents items, and Y -axis represents cu-
mulative volume after the items are sorted in descending order of sales volume. The interval from
the origin to point A on the X-axis represents high volume items constituting 50% volume, i.e.
class-A items. The interval from point A to point B on the X-axis represents the next high volume
items constituting from top 50% to 80% volume, i.e. class-B items. All the remaining items belong
to class-C.

proaches. It is logical for a retailer to achieve maximum service level for class-A and vital
items. Therefore, for our case study we define certain minimum service level thresholds for
these classes of items. Table 7.2 contains the minimum service level threshold for different
classes of items used in our case study. For items which are not in class-A and are not Vital,
there are no minimum service level thresholds. The service levels for them are decided by
the optimization problem.

Table 7.2: Minimum service level thresholds for different classes of items. In this example, 95% of
minimum service level is required for Class-A and Vital items. Differentiated service levels are used
for other classes.

ABC Class
VED Class A B C
Vital 95% 90% 85%
Essential 90% 85% 80%
Desired 85% 80% 75%

7.5.2. Multi-Objective Optimization with probabilistic forecast

In Section 7.4, we described the multi-objective optimization model. From the first stage
we get the minimum service level, which is required by Constraint 7.7. As objective O3 is
not one of the major objectives, we add objectives O3 to O1 and formulate a bi-objective
optimization model. To solve the bi-objective optimization problem, we use an ε-constrained
Deb (2014) like method. This procedure overcomes some of the convexity problems of the
weighted sum technique. This involves minimizing one objective and expressing the other
objectives in the form of inequality constraints. We limit objective O2(Q) i.e. total leftover
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inventory, and minimize O1(Q) +O3(Q). Mathematically we express it as

min
Q∈Q

[O1(Q) +O3(Q)] (7.14)

s.t. O2(Q) ≤ ε (7.15)

By solving 7.14 for different values of ε we obtain several Pareto optimal solutions. The
suitable operating point can be selected by the user depending upon their lost sales and
leftover inventory targets. Figure 7.4 describes the whole methodology through a flowchart.

Figure 7.4: Flowchart illustrating the proposed methodology. Inputs are forecast and packaging
constraints. ABC-VED classification is used to define minimum service level. The problem is for-
mulated as a mixed integer linear programming (MILP) model, and an ε-constrained like method is
used to generate Pareto optimal solutions.

7.6. Case Study 1

7.6.1. Input Data and Experimental Setting

To test our methodology, we use the promotional data of a multi-national firm which needs
to control its inventory at the retailers. The firm sells a variety of goods during a promo-
tional event, which can either be completely new items or regular items. We summarize the
components of the firm’s supply chain in Table 7.3. There are no capacity constraints at the
suppliers. There are multiple packaging choices for a single item. The firm can order only
once for each promotion.

113



Chapter 7. Promotional Replenishment Planning in Multi-item Inventory Systems

Table 7.3: Supply chain components.

Distribution structure
Number of retailers 106

Promotion components
Number of items 717
Number of prepacks 1202

Table 7.4: Problem size and computational time

Integer Variables
Deterministic, 106 stores 406,828
20 scenarios, 106 stores 1,850,866
Computation time
Deterministic, 106 stores 18 Minutes
20 scenarios, 106 stores 74 Minutes

We use the past sales data and promotional characteristics from all items to compute two
types of forecast. First a point forecast, which is the single valued expectation of demand. Let
us name the approach of using the point forecast in optimization as deterministic approach.
Second is a probabilistic forecast described by a discrete distribution. Then a number of
distinct scenarios are extracted from the probabilistic forecast. Let us name the approach of
using probabilistic forecast for optimization as probabilistic approach. For the discussed case,
we consider 20 scenarios. In each scenario the demand forecast is non-negative. The value of
Γ in Equation 7.10 (see Business rule R4) is set equal to 2 in the studied case. As explained in

Table 7.5: Service level thresholds for different class of items.

ABC Class
VED Class A B C
Vital 95% 95% 95%
Essential 95% None None
Desired 95% None None

the Section 7.5, we use an ε-constraint like method to solve the multi-objective optimization
problem. Therefore, we constrain O2(Q) at different values and optimize O1(Q)+O3(Q) using
CPLEX 12.7.1 with 8GB memory. The details of the problem size and the computational
time are summarized in Table 7.4. The service level thresholds are presented in Table 7.5.

Figure 7.5: Flowchart illustrating the method used to evaluate the quality of solutions. We com-
pare each solution with the corresponding real sales. If the order quantity obtained from the solu-
tion is higher than the real sales then it results in leftover inventory and if it is lower than the real
sales then it results in lost sales.

Hence, from the optimization we obtain several Pareto optimal solutions in both the
deterministic and probabilistic approaches. Each solution provides the suitable order quantity
for the given leftover inventory constraint. In order to evaluate the quality of a solution, we
use the actual sales data. Figure 7.5 illustrates the methodology followed to evaluate the
solutions. Let us represent real sales for retailer k and item i as Gki. If the order placed qki is
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greater than or equal to the real sales Gki, then the lost sales is zero and the leftover inventory
is the difference between order quantity and sales quantity, qki − Gki. On the contrary, if
the order quantity qki is less than the real sales Gki, then the lost sales is calculated as the
difference between real sales and order quantity, Gki− qki. The leftover inventory in this case
is zero. Total lost sales and total leftover inventory is obtained by summing each of these
quantities for all retailers. For each Pareto optimal solution the values of total lost sales
and total leftover inventory are calculated and plotted in Figure 7.6. From the plot leftover
inventory vs lost sales, the performance is assessed. We choose to plot only O1(Q) and O2(Q)
because of their higher importance than O3(Q) and to obtain a 2D representation (easier to
read). The third objective which reflects business rule R1, will be discussed in Table 7.6.

7.6.2. Results and Interpretation

Figure 7.6 plots the total lost sales and leftover inventory across all retailers. Our objec-
tive is to minimize both. The circles indicate performance of the solutions obtained using
the deterministic approach and the triangles indicate the performance of solutions obtained
using the probabilistic approach. It is observed from Figure 7.6 that, each of the triangles
outperforms at least one circle on both lost sales and leftover inventory. Moreover, none
of the circles outperform any triangle on both lost sales and leftover inventory. Therefore,
the probabilistic approach completely dominates the deterministic approach. Another ob-
servation that can be made is that, the solutions from the deterministic and probabilistic
approaches perform equivalently (or converge) with decreasing leftover inventory. However,
with increasing leftover inventory the solutions from probabilistic approach perform better
and better.

Table 7.6: Comparison of solution performances.

Lost Sales Left-over Inventory Larger Prepacks(%)
Retailer Current Det.

Appr.
Prob.
Appr.

Current Det.
Appr.

Prob.
Appr.

Det.
Appr.

Prob.
Appr.

S1 1946 854 911 10698 5223 4928 91% 91%
S2 1171 316 235 4056 2499 2454 95% 95%
S3 1456 1056 899 6928 4505 4242 90% 90%
S4 5602 1738 1503 10185 12075 10610 97% 92%
S5 2066 1526 1293 10942 5106 5059 97% 96%
S6 2973 1949 1871 12089 7116 6919 99% 97%
S7 1805 1215 1033 7390 5317 5075 91% 90%
S8 710 1015 882 7626 3724 3595 88% 88%
S9 1574 2440 2318 16003 4367 4395 96% 95%
S10 3406 2128 1614 16233 8004 8051 96% 93%
Average 2271 1424 1256 10215 5797 5533 94% 93%
Gain 37% 45% 43% 46%

The performance of the solution currently used by the retailer is indicated by point A in
Figure 7.6. Point B represents the ideal point that could be obtained if the exact demand was
known in advance. Let us note that even in this case the leftover inventory cannot reach 0 due
to packaging constraints. As seen from the figure, the solutions obtained from deterministic
and probabilistic approaches perform better than the solution currently used by the retailer.
When we compare the order quantity with real sales, deterministic approach gives 43% less
lost sales than existing planning for the same inventory level. For the same lost sales level,
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Figure 7.6: Performance of the models. The circles indicate the results from the deterministic ap-
proach. The triangles represent the results from the probabilistic approach. Point A indicates per-
formance of the solution currently used by the firm. Point B indicates the ideal solution if the exact
demand is known in advance. Results of top 10 retailers presented in Table 7.6 correspond to points
x (Prob. Appr.) and y (Det. Appr.).

it gives 36% less leftover inventory. The probabilistic approach gives 55% less lost sales than
the existing planning for the same inventory level. For the same lost sales level, it gives 37%
less inventory.

For deeper analysis of results, we select the 10 retailers having the highest sales volume
and present the values of different objectives in Table 7.6. These results correspond to points
x and y in Figure 7.6. The third objective O3, which reflects Business rule R1 is presented
as the percentage of larger prepacks in the order for better comparison. We focus on the first
2 objectives as they are more relevant financially. From Table 7.6 we can see that for several
retailer (S2, S3, S5, S6, S7), the probabilistic approach performs better simultaneously for
both, lost sales and leftover inventory. As far as S1, S4, S8 and S10 are concerned, the
probabilistic approach performs better for only one of the two criteria, whereas for S9, the
two other approaches manage to outperform the probabilistic one.

But the values obtained are close, and on average, the probabilistic approach manages to
outperform the others for both criteria. Performance of both approaches are comparable for
the third criterion. However, in the probabilistic approach the quantity is a little less. This
can be attributed to additional procurement of smaller prepacks to reduce lost sales.

7.7. Problem Reformulation

Previously, we have presented a multi-objective model and a solution method for the pro-
motional replenishment planning. The three objectives: lost sales quantity, O1, leftover
inventory, O2 and number of prepacks, O3 were organized into a bi-objective optimization
model. A case study of less-than-real problem size was solved using CPLEX 12.7.1. In the
following section, we consider real-world problems that can be of larger size. Therefore, we
propose another formulation of the problem in which, we drop O3 and reformulate O1 as a
service level constraint. This allows to design a single-objective metaheuristic able to deal
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with larger size problems.

7.7.1. Optimization Model

We present an alternative MILP model for the problem described in Section 7.2 taking the
demand to be equal to the expected demand, F̄ki = ∑

z∈Z PzFkzi. This results in a determin-
istic optimization problem. The objective is to minimize the total leftover inventory while
satisfying the service level. The parameter and variables for the optimization model are the
ones already presented in Table 7.1. The optimization problem is formulated as follows.

minimize
∑
k∈K

∑
i∈N

Iki (7.16)

subject to

qki =
∑
m∈M

RimQkm ∀i ∈ N , k ∈ K (7.17)

Iki ≥ qki − F̄ki ∀i ∈ N , k ∈ K (7.18)

qki ≥ SLkiF̄ki ∀i ∈ N , k ∈ K (7.19)
qki, Iki ≥ 0 ∀i ∈ N , k ∈ K (7.20)
Qkm ≥ 0 ∀m ∈M, k ∈ K (7.21)

Constraints 7.17 and 7.19 are equivalent to constraints 7.4, 7.7 respectively. Constraint 7.18
is equivalent to constraints 7.5 and 7.6. Above optimization problem is separable for each
retailer since we do not have any global budget constraint. Therefore, we can drop the
subscript k for retailers. We refer to Equations 7.16-7.21 as model M-1.

7.7.2. Complexity Analysis

In this section, we determine the complexity of the above optimization problem under 100%
service level, i.e. SLiF̄i = F̄i. We analyze the process of obtaining the optimal solution of
M-1 (with each retailer considered independently) starting from any feasible solution and
assess the complexity. Let Q be a feasible solution so that each of its m-th element Qm
represents the order quantity of prepack m. Also, Q is chosen such that Qm is greater than
or equal to the optimal solution Q∗m, ∀m ∈M. Then

qi =
∑
m∈M

RimQm ∀i ∈ N (7.22)

Îi = [qi − F̄i]+ ∀i ∈ N (7.23)

where, [x]+ = 0 for x ≤ 0 and [x]+ = x for x > 0. The effective order quantities qi can be
lower than the forecast F̄i depending upon the service level SLi. For cases where SLi = 1,
∀i, qi ≥ F̄i.

To reduce the total leftover inventory ∑i Îi, we can remove prepacks from the feasible
solution Q (not optimal) in such a way that the modified order quantities for the items qi do
not go below their respective forecast quantities F̂i. Hence, a prepack m can only be removed
if the leftover inventory of each of its items is greater than or equal to its pack quantity Rim.
Let Um be the number of items contained in prepack m, i.e. Um = ∑

i∈N Rim. Then, unit
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removal of prepack m will reduce the left-over inventory by Um. Let lm be the net removal
quantity of prepack m. The following optimization problem M-2 maximizes the reduction
quantity from the total leftover inventory generated by the current solution Q.

maximize
∑
m∈M

Umlm (7.24)

subject to

lm ≤ Qm ∀m ∈M (7.25)∑
m

Rimlm ≤ Îi ∀i ∈ N (7.26)

lm ≥ 0 ∀m ∈M (7.27)

Proposition 1: The optimal solution of M-1 is Q∗ = Q−L∗, where Q is a feasible solution
such that, each of its elements is greater than or equal to the optimal solution, and L∗ is the
optimal solution of M-2.

Proof. The proof is straightforward. The total leftover inventory for the feasible current
solution Q is ∑i Îi = ∑

i Ii +∑
m Umlj by definition, and ∑i Îi is a positive constant for any

Q. Maximization of the second term in the right-hand side will ensure minimization of the
first term and vice-versa since they satisfy the same set of constraints. Therefore, the optimal
solution of M-1 can be obtained by subtracting the optimal solution of M-2 from the current
solution Q.

To obtain the optimal solution, Qm must be greater than or equal to Q∗m. Under such
a condition M-1 is as hard as M-2. However, if the condition is not satisfied for the initial
feasible solution, we will require solving M-2 in each iteration. Hence, it can be concluded
that M-1 is at least at hard as M-2. M-2 is a general multidimensional knapsack problem
(MDKP) ofM dimensions with Um as unit rewards and Îi as available resources. The general
MDKP is strongly NP-hard (Puchinger et al., 2010).

7.8. Metaheuristic Approach

Using the proposed mathematical formulation, solving medium to large size instances requires
long computational time. In practice, we encounter problems of enormous size due to the
large variety of items. For example, hard discount stores offer only 500 - 600 items (e.g.
Aldi), whereas, hypermarkets offer over 100,000 items and department stores offer more
than one million items (e.g. Macy’s in New York) (Dujak et al., 2017). Although, the
retailer does not require to solve the problem very frequently, for large size problems the
solution with a commercial solver becomes intractable. Therefore, in this section, we propose
a metaheuristic for practical purposes. The proposed metaheuristic has three steps. In the
first step, a feasible initial solution is generated using a greedy approach, then, it is improved
using a local search. At last, perturbations are applied to the local optimum to move in the
search space. The perturbations and local search are repeated alternatively until the stopping
criterion is met. The solution to problem M-1 can be expressed as a vector Q of size M as
defined in Section 7.7.2. Each element of the vector Q corresponds to the order quantity of
the respective prepack. An example for the solution is depicted in Figure 7.7.
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Q1 Q2 Q3 ... Qm ... QM

Figure 7.7: Representation of a solution of problem M-1 with M prepacks as a vector of size M .

7.8.1. Initial Solution

Our methodology requires an initial feasible solution for further improvements. While a naive
solution can be obtained by setting very high values for Qm, this will result in high leftover
inventory and further improvements may need a longer computational time. We propose two
greedy heuristics to generate good quality initial solutions, GH1 and GH2. The main idea be-
hind GH1 is to select an item randomly, then increase the order quantity of its largest prepack
one by one until the service level constraint is fulfilled. It is elaborated in Appendix D. A
better heuristic, GH2 (Algorithm 5), is also proposed which had lower complexity than GH1.
It is also a greedy heuristic that chooses the prepacks which would create the minimum excess
inventory in each iteration. The items are not selected randomly but, by their largest re-
maining quantities. Also, the prepacks are ordered as per a penalty involving excess inventory.

Algorithm 5: Greedy Heuristic 2 (GH2)
Input : R,F,SL
Output: P

1 initialization P← 0, Li ← SLiF̄i, ∀i ∈ N
repeat

2 select item î = arg maxi Li, i ∈ N
selectM∗ = {m∗ : Rîm∗ > 0}

3 calculate penalty score ηîm, ∀m ∈M∗
4 find m̂ = arg minm ηîm,m ∈M∗

calculate increment quantity ζ
Qm̂ ← Qm̂ + ζ

5 update qi,∀i ∈ N
Li ← Li − qi, ∀i ∈ N

until Li ≤ 0,∀i ∈ N ;

GH2 works in the following way:

2.0. GH2 generates a feasible solution by taking the prepack configurations, item forecasts
and service levels as inputs.

2.1. Initialize by setting the values of order quantity Qm to zero, and values of remaining
quantity Li their respective service level targets.

2.2. Select the item î with maximum remaining quantity and then define the set of all
prepacks containing î asM∗.

2.3. Compute the penalty score ηîm = ∑
i:Rim>0[Rim − Li]+/Rîm for each prepack in the set

M∗.
2.4. Select the prepack having minimum penalty score and increase its order quantity by ζ.

The increment quantity ζ is the maximum quantity of the selected prepack that can be
ordered without exceeding the remaining forecast quantity of the selected item or one,
i.e. ζ = max(1, b LîRîm

c).
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2.5. Update the order quantities qi and the remaining quantities Li.
2.6. Repeat 2.3-2.5 until the remaining quantity for each item reaches zero or becomes

negative.

The number of iterations per item is at most two in case of GH2 due to the increment
quantity ζ. Hence, the complexity of GH2 is O(2N).

7.8.2. Local Search

After the initial solution is constructed using GH2, we propose to use a local search method-
ology for its further improvement. For practical usability, the search space is restricted to
feasible solutions space Q only. This enables us to select a solution at any point in time.
Before going into the details of the local search procedure, some notations are introduced.
The neighborhood operator is denoted by V and the neighborhood is by V(.). w(.) denotes
the fitness function that is formulated as follows.

w(Q) =
∑
i

[∑
m

RimQm − Fi
]+

(7.28)

LS1 (Algorithm 6) describes a simple local search procedure. It randomly selects a neigh-
bor solution (detailed description of the neighborhood is given next). If the selected solution
satisfies all the constraints and has a better fitness, then the solution is updated and the
whole process is repeated until the whole neighborhood of any incumbent solution is ex-
plored. LS1 works using the first improvement strategy. The local optimum can be defined
as any incumbent solution whose neighborhood does not contain any better solution than
itself. Mathematically, the local optimum Qv = Q if w(Q̂) ≥ w(Q), ∀Q̂ ∈ V(Q).

Algorithm 6: Local Search (LS1)
Input : P,R,F,SL,V
Output: Qv

1 Initialization Qv ← Q
2 m← Random[1, |V(Qv)|], Q̂ ∈ V(Qv)
3 for i ∈ {m,m+ 1, ..., |V(Q∗)|, 1, 2, ...,m− 1} do
4 if Q̂i ∈ Q & w(Q̂i) < w(Qv) then

Qv ← Q̂i

Repeat 2
end

end

Description of the Neighborhood

We consider several neighborhood operators. Their respective neighborhoods are as follows.

Case V = {−1}: Neighborhood of any incumbent solution Q is represented in Figure 7.8
for V = {−1}. In such cases, a neighbor can be defined with Qm ← Qm − 1 for any m ∈M.
Hence, there is a maximum of M neighbors for any incumbent solution barring any m for
which Qm = 0. Zero values in a solution reduce the size of the neighborhood as negative
order quantities are infeasible.

Case V = {−1,+1}: Similarly, for V = {−1,+1} (Refer to Figure 7.9), a neighbor can be
Qm ← Qm − 1 and Qm ← Qm + 1 for any m. Hence, there is a maximum of 2M neighbors.

120



7.8. Metaheuristic Approach

Q1 Q2 Q3 ... Qm ... QM

Q1 Q2 Q3 ... Qm-1 ... QM

Figure 7.8: Neighborhood representation with V = {−1}.

The +1 operator is particularly useful in case when SLi < 1 for any i, as it helps exploring
a larger search space.

Q1 Q2 Q3 ... Qm ... QM

Q1 Q2 Q3 ... Qm-1 ... QM

Q1 Q2 Q3 ... Qm+1 ... QJ

Figure 7.9: Neighborhood representation with V = {−1,+1}.

Impact of Service Level

The service levels have a unique impact on the solution methodology due to our leftover
inventory calculation procedure. V = {−1} is particularly useful when SL = 1 for all items.
Such a case results in a situation, where removal of any prepack from an incumbent solution
either reduces inventory (improves fitness) or violates the service level constraints. In that
case, the neighborhood operator, V = {−1} is very interesting as it automatically ensures
better fitness if a neighbor is feasible. In this particular case, as soon as a new feasible
solution is found it has to be accepted by a first improve local search (without any need for
evaluation), as we are sure that it improves the fitness. Only the local optima need to be
evaluated. This makes the local search very efficient. This is, however, not the case when the
service level is less than 100% for at least one item. In such cases, removal of any prepack
without violating the service level constraints may or may not result in better fitness. This
can be explained as follows. When the order quantity of at least one of the items present
in the selected prepack is above its forecast quantity, a feasible removal of such prepack will
improve the fitness. But, if all items of a prepack are ordered below the forecast quantity, a
feasible removal of that prepack will not improve the solution.

7.8.3. Guided Search Heuristic

The local search procedure explained in Algorithm 6 adopts a first improvement strategy. It
selects the first neighbor of any incumbent solution randomly and applies a first improvement
strategy, i.e. selects the neighbor randomly that improves the fitness. In this section, we
propose a “best-max” improvement strategy. It can be explained as follows.

We define “best-max” improvement strategy as selecting the neighbor that provides the
maximum fitness improvement then applying the neighborhood operator maximum possible
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times at that point. For example, if reducing the prepack m in Q by one unit give the best
improvement then, we reduce prepack m until the point it generates infeasible solutions.
Afterwards we select the next best neighbor and repeat the process. We refer to the heuristic
as the Guided Search Heuristic (GSH).

Algorithm 7: Guided Search Heuristic (GSH)
Input : Q,R,F,SL
Output: Q∗

1 initialization Q∗ ← Q, Lm = 0, ∀m ∈M, qi = ∑
mRimQm,∀i ∈ N

2 χm = Qm − Lm
3 X1

i = [qi − F̄iSLi]+,∀i ∈ N
X2
i = [qi − F̄i]+,∀i ∈ N

4 Y 1
m = mini

⌊
X1
i

Rim

⌋
,∀m ∈M, Rim > 0

Y 2
m = mini

⌈
X2
i

Rim

⌉
,∀m ∈M, Rim > 0

5 Zm = ∑
i min (X2

i , Rim),∀m ∈M
repeat

6 m̂ = arg maxm {Zm|Y 2
mχm > 0}

am̂ ← min(χm̂,max(1, Y 1
m̂))

Lm̂ ← Lm̂ + am̂
7 X1

i ← [X1
i − Lm̂Rim̂]+,∀i ∈ N

X2
i ← [X2

i − Lm̂Rim̂]+,∀i ∈ N
Y 1
m ← mini

⌊
X1
i

Rim

⌋
,∀m ∈M, Rim > 0

Y 2
m ← mini

⌈
X2
i

Rim

⌉
,∀m ∈M, Rim > 0

Zm ←
∑
i min (X2

i , Rim),∀m ∈M
χm ← Qm − Lm, ∀m ∈M

until maxm Y 1
mχmZm = 0;

8 Q∗ ← Q− L

The formal representation of GSH is set out in Algorithm 7. It operates as follows.

4.0. The GSH takes the incumbent solution, prepack configuration, forecasts and service
levels as inputs.

4.1. The initialization phase sets the value of the initial feasible solution L (a vector of size
M whose elements are Lm) of optimization problem M-2 (see Section 7.7.2) to zero,
and determines the prepack volume Um for each prepack.

4.2. Calculate the maximum slack quantities χm. For any incumbent solution, it is equal to
the respective order quantities as the initiation quantity.

4.3. Determine two resource levels X1 and X2. X1 is defined as the excess quantity ordered
for an item above its service level threshold. And, X2 is defined as the excess quantity
ordered for an item above its forecast. This is due to the nature of our inventory
calculation. As our expected sale quantity is the forecast F̄i for each item i, any order
quantity below it and above the service level threshold SLiF̄i will not amount to any
increase in excess inventory. A service level below 100% is rational for items which are
not “important” (see Section 7.5.1).

122



7.8. Metaheuristic Approach

4.4. Determine the respective prepack reduction levels for the excess quantities X1 and X2.
Those levels are Y1 and Y2. The notation dxe denotes the smallest integer exceeding
x, and the notation bxc denotes the largest integer not exceeding x. Hence, Y1 can be
defined as the maximum quantity of order that can be subtracted from the incumbent
solution without violating the service level constraints. Similarly, Y2 can be defined as
the minimum quantity of order that can be subtracted from the incumbent solution to
reach exactly or just below the forecast quantity.

4.5. Determine the unit inventory reduction potential Z. Z can be defined as the quantity of
inventory reduction per unit reduction of any prepack. For example, reduction in order
quantity of any prepack m by one unit will reduce the inventory by Rim if the item i
is ordered in excess of Rim. Otherwise, the inventory reduction quantity will be only
the excess, i.e. X2

i . For any order quantity below forecast, any reduction in prepack
order quantity will not reduce inventory. Therefore, the net reduction potential for any
prepack m is the sum of minimum of Rim and X2

i .
4.6. Select the prepack with maximum inventory reduction potential and positive slack

quantity χm. Determine the maximum possible reduction quantity and update the
value of the reduction quantity for the prepack.

4.7. Update the slack quantity, resource levels, reduction levels and inventory reduction
potential as in 4.3 to 4.5. Then repeat 4.6. until no more reductions can be made or
all of the resources are consumed. This gives the final value of L.

4.8. Subtract L from the current solution Q to generate the output solution Q∗.

7.8.4. Perturbation and Iterated Local Search

It is established in the complexity analysis in Section 7.7.2 that our approach requires each
order quantity Qm in the current feasible solution Q to be greater than or equal to the optimal
order quantity Q∗m. The proposed greedy heuristic GH2 used to construct an initial solutions
does not necessarily satisfy this condition. The GSH produces better solutions by reducing
the order quantities of the initial solutions. Therefore, they both cannot ensure that their
outputs satisfy the previous condition. Therefore, we propose to apply random perturbations
that increase the order quantities from the local optima to generate new feasible solutions.
The perturbation methodology is formally presented in Algorithm 8.

Algorithm 8: Random Perturbation (RP)
Input : Q, θ, γ,
Output: Q∗

1 initialization Q∗ ← Q, i← 1
2 repeat

select m ∈M pertubation position randomly
Qm ← Qm + θ
i← i+ 1

until i = γ;

Random Perturbation (RP) uses two parameters, θ indicating the perturbation size and
γ indicating number of perturbation. For any solution Q, γ random positions are selected
and increased by θ. The perturbations are comprised of only addition operations on a cur-
rent feasible solution. Therefore, the new solutions obtained after the perturbations are also
feasible. We expect the higher values of θ and γ to help us explore farther in the solution
space. We propose to use RP and GSH alternatively to improve the solution. This procedure
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constitutes an iterated local search approach. We set time as stopping criterion. The iterated
guided search heuristic (IGSH) is presented in Algorithm 9.

Algorithm 9: Iterated Guided Search Heuristic (IGSH)
Input : Q,R,F,SL, θ, γ
Output: Q∗

1 initialization Q∗ ← Q
2 repeat

Q′ ← RP(Q, θ, γ)
Q′′ ← GSH(Q′,R,F,SL)

3 if w(Q′′) ≤ w(Q∗) then
Q∗ ← Q′′

end
4 Q← Q′′
until stopping criterion met;

As seen from the heuristics explained above, at no point during the execution of the
heuristics we operate on infeasible solution space. This is a particularly appealing feature
that enables its practical implementation. The stopping criterion can be set at any suitable
time and the solution can be used.

Table 7.7: Instance sizes and parameters for numerical analysis. N is the number of items, M is
the number of prepacks, R̃ is the number of item-prepack combinations, and SL is the vector of
service levels. The forecast values F and pack contents R, and SL are chosen randomly from the
given uniform distributions.

No. N M R̃ F R SL

A 10 10 50 U(100, 200) U(1, 20) 1
B U(100, 200) U(1, 20) U(0.8, 1)
C U(100, 500) U(1, 20) 1
D U(100, 500) U(1, 20) U(0.8, 1)
E U(100, 1000) U(1, 20) 1
F 20 20 50 U(100, 200) U(1, 20) 1
G U(100, 200) U(1, 20) U(0.8, 1)
H U(100, 500) U(1, 20) 1
I U(100, 500) U(1, 20) U(0.8, 1)
J U(100, 1000) U(1, 20) 1
K 30 30 100 U(100, 200) U(1, 20) 1
L U(100, 200) U(1, 20) U(0.8, 1)
M U(100, 500) U(1, 20) 1
N U(100, 500) U(1, 20) U(0.8, 1)
O U(100, 1000) U(1, 20) 1
P 50 50 450 U(100, 200) U(1, 20) 1
Q U(100, 200) U(1, 20) U(0.8, 1)
R U(100, 500) U(1, 20) 1
S U(100, 500) U(1, 20) U(0.8, 1)
T U(100, 1000) U(1, 20) 1
U 50 50 451 U(200, 500) U(1, 10) 1
V U(200, 500) U(1, 10) U(0.8, 1)
W U(100, 1000) U(1, 10) 1
X U(100, 1000) U(1, 10) U(0.8, 1)
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7.9. Numerical Study for the Metaheuristic

In order to validate the methodology, an extensive numerical study has been conducted with
synthetic as well as real datasets. In case of synthetic datasets, different heuristics and
parameters were used to assess their performance. Then, those results were used to select
the heuristics and parameters for the experiments with real data sets. The experiments
conducted with synthetic data sets are presented in the upcoming subsections. There are two
objectives for the experiments with synthetic data.

1. The first is to assess the performance of heuristics used to generate initial solutions,
GH1 (see Appendix D) and GH2.

2. The second is to assess the performance of IGSH and the effects of the perturbation
parameters.

The synthetic problem instances are presented in Table 7.7. The values of F,R and SL
are chosen randomly from uniform distributions with the specified ranges. Each problem
instance is defined by the number of items N , number of prepacks M , composition of a
per-pack R, forecast F and service levels SL. We introduce a binary parameter rim, that is
equal to 1 if Rim is greater than zero, and equal to 0 otherwise. We define instance size as
(N,M, R̃), where R̃ = ∑

i

∑
m rim. R̃ ≥ M since each prepack contains at least one item. R̃

is important in defining the difficulty in solving the problem. For example, if the problem
contains prepacks of type T1 and T2 (see Section 7.2) only, then it can be solved for individual
items with less computational effort. In such cases, R̃ = M . However, in cases where R̃ > M ,
the problem is more complex. Instances A-O are classified as small instances, and P-X are
medium to large instances.

The performance is assessed by comparing the results with the optimal solution obtained
using CPLEX 12.7.1. All of the runs were conducted using a Dell Latitude E5470 computer
with 8GB memory. The performance criteria measured is defined as the percentage gap
between the solution obtained and the optimal solution. If w∗ and wh are fitnesses (see
Equation 7.28) of the optimal solution and the solution obtained using heuristic respectively
then, the performance criterion ∆ can be expressed as below. In case of stochastic output ∆
represents the mean value of ∆ across multiple runs.

∆ = wh − w∗

w∗
× 100 (7.29)

∆ = 1
totalruns

totalruns∑
b=1

∆b (7.30)

7.9.1. Comparative Performances on GH1 and GH2

GH1 and GH2 are used for generating feasible initial solutions. Experiments were conducted
to assess the quality of initial solutions generated by each of the above heuristics, and also
to determine whether the quality of initial solution affects the quality of final solution.

Experimental Protocol

We first analyzed the performance of GH1 and GH2 on randomly generated instances pre-
sented in Table 7.7. The output of GH1 can vary depending on the generation of random
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numbers. Therefore, twenty independent runs were conducted for each instance and the op-
timality gap for each run was computed. Then the average performance was assessed. But,
the output of GH2 is not stochastic and hence, multiple runs were not required. We also
recorded the average runtime for each of the heuristics. Secondly, we generated the final
solutions using the IGSH after generating the initial solutions using GH1 and GH2. This
was done to test whether the initial solution quality affect the final solution. Similar to the
earlier case, we took the average of twenty different runs.

Table 7.8: Performances of heuristics used for generating the initial solutions (GH1 and GH2).
∆ is the mean percentage gap between the initial solution and the optimal solution. t represents the
runtime in seconds.

t(sec.) ∆ t(sec.) ∆
S.No. N M R̃ GH1 GH1 GH2 GH2

A 10 10 50 3.67 426.00 0.80 152.79
B 3.33 368.63 0.87 39.66
C 4.49 113.86 0.85 39.00
D 4.16 105.90 0.78 35.48
E 9.31 119.39 0.88 79.27
F 20 20 50 6.36 105.98 1.26 48.53
G 5.36 65.55 1.23 108.42
H 12.93 54.41 1.24 53.16
I 11.45 69.54 1.36 52.34
J 19.44 170.16 1.30 72.44
K 30 30 100 11.22 27.72 1.72 22.75
L 9.79 19.18 1.73 31.68
M 21.49 18.63 1.67 6.93
N 18.78 17.65 1.76 13.22
O 45.18 12.41 1.74 9.94
P 50 50 450 8.21 175.52 2.39 155.92
Q 7.67 192.03 2.42 168.28
R 15.07 173.94 2.44 79.94
S 11.74 171.76 2.45 89.77
T 21.12 271.10 2.61 121.96
U 50 50 451 26.37 330.11 2.80 180.91
V 25.45 392.97 2.70 198.47
W 42.48 136.96 2.68 98.48
X 34.09 153.18 2.82 84.41

Average 15.79 153.86 1.77 80.99
Gain over GH1 - - 89% 47%

Results and Discussion

In Table 7.8 we present the performances of heuristics GH1 and GH2 for initial solutions. In
most of the instances the solution generated by GH1 is of inferior quality than that generated
by GH2. Also, GH1 is significantly slower than GH2. The average time taken by GH2 for
generating an initial solution is 89% lower than that taken by GH1 on average. It can also be
observed that GH1 takes more and more time for the same instance size with increase in the
forecast quantity. On the other hand, the runtime of GH2 is not affected by increase in the
forecast quantity. The fitness of the solutions generated using GH2 is 47% better on average.
The interest here is to examine the impact of selection GH1 or GH2 on the final runtime and
final quality of the solution. Hence, only GH2 was chosen for the forthcoming experiments.

Table 7.9 represents the optimality gaps of the final solution obtained using the IGSH after
GH1 and GH2. We fixed the perturbation parameters for the IGSH as θ = 5, γ = 10. As the
IGSH is stochastic, the average performances across twenty different iterations are compared.
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Figure ?? presents the spreads of the fitnesses of the solutions in form of box-plots. One way
ANOVA tests are conducted for each of the instances as well as on the average performance
of all instances with a 95% significance level. The null hypothesis is defined as “the mean
performances of both approaches are equal”, and is rejected when p-value was less than or
equal to 0.05. Although, the quality of final solutions obtained from both approaches are
not very different, the difference is significant and we cannot conclude that both approaches
perform equally. For individual instances a choice between GH1 and GH2 can be made based
on solution quality and runtime. We expect the runtime to be a significant factor if the total
runtime is very short. Individually in 21 out of 24 instances IGSH with GH2 gave better
quality solutions. In 12 of the instances we reject the null hypothesis. However, GH2 is
always faster than GH1 (see Table 7.8). Hence we selected GH2 for further used.

Figure 7.10: Effect of initial solution on final quality on instances A-O.

Figure 7.11: Effect of initial solution on final quality on instances P-X.
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Table 7.9: Effect of initial solution on the quality of final solution. ∆ is the mean percentage gap
between the initial solution and the optimal solution. t represents the runtime in seconds. σ is the
standard deviation of ∆ for 20 iterations. The p−value is calculated using one way ANOVA be-
tween the observations obtained using IGSH-GH1 and IGSH-GH2.

S.No. t(sec.) ∆(σ) ∆(σ) p−Value Choice
IGSH-GH1 IGSH-GH2

A 60 0.81(0.02) 0.32(0.01) 0.28 GH2
B 60 0.00(0.00) 0.00(0.00) GH2
C 60 0.55(0.00) 0.39(0.00) 0.03 GH2
D 60 0.00(0.00) 0.00(0.00) GH2
E 60 0.20(0.00) 0.28(0.00) 0.49 GH1
F 60 0.00(0.00) 3.35(0.03) <0.01 GH1
G 60 0.99(0.02) 1.59(0.03) 0.19 GH2
H 60 2.69(0.00) 0.95(0.01) <0.01 GH2
I 60 5.82(0.01) 0.62(0.01) <0.01 GH2
J 60 2.09(0.00) 1.34(0.00) <0.01 GH2
K 60 0.45(0.00) 0.44(0.00) 0.04 GH2
L 60 0.51(0.00) 0.48(0.00) 0.87 GH2
M 60 0.50(0.00) 0.23(0.00) <0.01 GH2
N 60 0.57(0.00) 0.46(0.00) 0.02 GH2
O 60 0.18(0.00) 0.27(0.00) 0.03 GH1
P 300 6.65(0.03) 7.26(0.03) 0.96 GH2
Q 300 12.03(0.04) 10.33(0.04) 0.13 GH2
R 300 6.73(0.01) 6.52(0.02) 0.19 GH2
S 300 5.82(0.02) 5.79(0.02) 0.23 GH2
T 300 5.71(0.01) 5.73(0.02) 0.03 GH2
U 300 5.72(0.02) 6.79(0.02) 0.40 GH2
V 300 6.77(0.01) 6.64(0.01) 0.09 GH2
W 300 5.03(0.01) 3.46(0.01) <0.01 GH2
X 300 4.92(0.02) 4.08(0.01) 0.68 GH2

Avg. 3.11 2.80 0.02 GH2

7.9.2. Performance of IGSH

Experiments were conducted to assess the performance of IGSH. GH2 was selected for gener-
ating the initial solutions and IGSH was run with different perturbation parameters to assess
the quality of final solutions.

Experimental Protocol

In previous experiments fixed values for the perturbation size θ and the number of perturba-
tions γ were used. In order to assess their effects and also the robustness of the meta-heuristic,
experiments were conducted with different values of perturbation parameters. The values of
γ were set at 3, 5, 10, 15, and 20. For each value of γ, the values of θ were set at 2, 3,
and 5. Therefore, 15 different configurations of IGSH for each problem instance were tested.
Similar to the earlier case, 20 iterations were run for each configuration and the value of ∆
(see Equation 7.29, 7.30) was calculated.

Results and Discussion

Experimental results for smaller instances (A-O) and medium to large instances (P-X) are
presented in Table 7.10 and 7.11 respectively. For smaller instances, the optimal solution can
be obtained using using CPLEX in reasonable time. In such instances IGSH gives close to

128



7.9. Numerical Study for the Metaheuristic

optimal solutions with the largest gap being 2% without any significant difference in runtime.
However, in case of medium to larger instances, the runtime required to obtain the optimal
solution using CPLEX extends up to 8 hours. In such cases, IGSH provides solutions which
are within 8% of the optimal solution within 300 seconds.

Table 7.10: Effect of perturbation size θ and number of perturbations γ. Problem instances A-O.
The statistically best results are indicated in bold font.

S.No. t(sec.) θ ∆(%)
γ = 3 γ = 5 γ = 10 γ = 15 γ = 20

A 60 2 2.41 0.08 0.08 0 0
60 3 0.48 0.40 0.08 0.27 0.36
60 5 0.89 0.58 0.32 0.24 0.73

B 60 2 0 0 0 0 0
60 3 0 0 0 0 0
60 5 0 0 0 0 0

C 60 2 0.66 0.29 0.44 0.40 0.52
60 3 0.62 0.51 0.60 0.62 0.63
60 5 0.54 0.30 0.39 0.50 0.51

D 60 2 0 0 0 0.47 0.19
60 3 0.20 0 0 0 0.55
60 5 0.16 0 0 0 0

E 60 2 7.74 1.64 0.58 0.34 0.47
60 3 2.22 0.48 0.15 0.23 0.46
60 5 1.55 0.23 0.28 0.27 0.85

F 60 2 5.76 6.06 6.08 5.77 6.32
60 3 4.50 6.31 4.78 4.65 3.16
60 5 5.53 4.47 3.35 3.01 1.56

G 60 2 8.15 7.73 7.99 8.15 8.15
60 3 7.46 7.75 7.75 6.55 5.75
60 5 5.95 5.22 1.59 1.48 0.84

H 60 2 0.51 0.54 0.56 0.64 0.82
60 3 0.46 0.50 0.69 1.26 1.28
60 5 0.61 0.58 0.95 1.02 1.33

I 60 2 0.28 0.49 0.42 0.53 0.76
60 3 0.15 0.39 0.39 0.62 1.05
60 5 0.57 0.26 0.62 0.51 1.13

J 60 2 2.02 1.55 2.20 2.03 2.00
60 3 0.42 0.93 1.71 1.85 2.01
60 5 0.37 1.10 1.34 1.93 2.01

K 60 2 1.57 1.35 0.80 0.79 0.72
60 3 1.40 0.93 0.77 0.61 0.67
60 5 1.30 0.96 0.44 0.47 0.56

L 60 2 1.78 1.29 0.67 0.70 0.75
60 3 1.55 0.93 0.73 0.64 0.71
60 5 1.32 0.69 0.48 0.56 0.57

M 60 2 0.68 0.47 0.30 0.38 0.59
60 3 0.51 0.39 0.27 0.35 0.34
60 5 0.39 0.33 0.23 0.24 0.33

N 60 2 0.99 0.75 0.70 0.57 0.64
60 3 1.00 0.71 0.49 0.46 0.50
60 5 0.88 0.58 0.46 0.42 0.41

O 60 2 1.67 0.94 0.68 0.63 0.56
60 3 2.22 0.72 0.49 0.40 0.37
60 5 0.95 0.62 0.27 0.25 0.21
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Table 7.11: Effect of perturbation size θ and number of perturbations γ. Problem instance P-X.
The statistically best results are indicated in bold font.

S.No. t(sec.) θ ∆(%)
γ = 3 γ = 5 γ = 10 γ = 15 γ = 20

P 300 2 14.69 5.55 4.37 5.37 5.29
300 3 13.48 6.21 3.76 5.08 6.88
300 5 14.15 7.00 7.26 8.99 10.44

Q 300 2 21.24 12.05 7.48 8.35 9.12
300 3 23.68 11.46 7.36 9.14 11.68
300 5 25.84 13.88 10.33 13.05 14.52

R 300 2 12.45 7.95 6.48 6.05 7.16
300 3 12.35 7.21 5.21 5.73 6.37
300 5 11.80 8.13 6.52 7.27 9.14

S 300 2 10.91 6.78 5.45 6.22 7.31
300 3 10.07 7.03 5.53 5.59 6.02
300 5 11.48 8.05 5.79 6.45 9.43

T 300 2 31.61 15.95 4.65 5.46 6.82
300 3 25.00 9.19 5.63 5.86 7.24
300 5 23.36 9.43 5.73 6.87 8.22

U 300 2 28.90 14.11 5.12 5.95 7.29
300 3 23.21 11.49 5.47 5.39 6.74
300 5 23.76 12.86 6.79 6.54 7.63

V 300 2 18.36 10.62 5.89 7.61 7.79
300 3 17.86 9.21 6.19 7.05 7.65
300 5 18.41 10.34 6.64 8.02 10.44

W 300 2 16.06 6.45 4.16 4.15 5.15
300 3 13.14 5.75 4.05 4.38 4.88
300 5 12.13 4.90 3.46 4.23 5.36

X 300 2 12.66 6.73 4.06 4.25 5.07
300 3 9.81 5.46 4.09 4.19 5.99
300 5 9.17 5.57 4.08 4.87 5.70

Table 7.12: Overall performance of different perturbation parameters across problem instances
A-P. The best results are indicated in bold font.

θ
Average Rank, Instances A-O

γ = 3 γ = 5 γ = 10 γ = 15 γ = 20
2 10.80 7.86 7.26 8.06 9.20
3 9.33 7.60 5.66 6.20 8.20
5 9.46 5.13 4.06 4.06 5.93

As seen from Table 7.10 and Table 7.11, different perturbation parameters yield final
solutions which are of varying fitness. This is because of the effect of those parameters on
the capability to explore new search space. In our case, although we could not quantify the
relationship between θ or γ and ∆, some clear observations can be made from the results
presented in Table 7.10 and Table 7.11. For a fixed θ, an increase in γ improves the solution
quality up to some extent and then deteriorates. Similarly, for a fixed γ, an increase in θ
first improves and then deteriorates the solution quality. We plan to explore automatic or
adaptive parameter selection in our future research.

To determine the relative effectiveness of different values of perturbation parameters, the
rank of each combination based on its ∆ has been determined. The details are presented
in Table 7.12 for smaller instances and in Table 7.13 for medium to larger instances. A
lower rank means it has better ∆ (i.e. lower excess inventory). We observe that, in each of
the problem instance one of the combinations of the perturbation parameters gives the best
fitness. γ = 10, 15, θ = 5 perform best for smaller instances, and γ = 10, θ = 2, 3 perform
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best for medium to larger instances.

Table 7.13: Overall performance of different perturbation parameters across problem instances
P-X. The best results are indicated in bold font.

θ
Average Rank, Instances P-X

γ = 3 γ = 5 γ = 10 γ = 15 γ = 20
2 14.55 10.33 2.00 4.00 6.89
3 13.56 8.77 2.00 3.77 7.00
5 13.89 10.11 4.78 7.56 10.78

Below in Figure 7.12, convergence curves for problem instances A and X are plotted as
examples of small and large instances. The plots for remaining instances are provided in
Appendix E. It can be seen that the initial rate of convergence is fast and gradually slows
down.

Figure 7.12: Convergence curves for problem instances A and X.

7.10. Case Study 2

In this section, we present a case study about a multinational retailer firm, that encounters
the problem discussed above during promotions. The firm conducts multiple promotional
activities throughout the year. In each of those promotions, the firm sells more than 10,000
items in about 500 retailers. For validation purposes the retailer provided us with a subset
of those items. The suppliers of the concerned firm provide multiple packaging options for
the items and determine the configuration of the prepacks. The suppliers also require about
12 weeks of lead time to fulfill the orders. Hence, the firm effectively places only one order
for every promotion. It tries to minimize its leftover inventory after each promotion without
loosing sales.

7.10.1. Data and Experimental Protocol

The dataset is detailed in Table 7.14. There are 408 retailers and each of them sells 843
items during a promotion. For the 843 items, there are 1238 prepacks and 1538 item-prepack
combinations. Each retailer has the same packaging choices.

The parameter values for IGSH were set at γ = 10 and θ = 5. Similar to earlier analysis,

131



Chapter 7. Promotional Replenishment Planning in Multi-item Inventory Systems

20 different runs were used to assess performance. As the problems were independent for
each retailer, each of them was solved separately using IGSH and CPLEX, and the overall
performance was compared. ∆ and total runtime reduction were calculated.

Table 7.14: Parameters for the case study.

Network structure
Number of retailers 408

Promotional components
Number of items 843
Number of prepacks 1238
Number of item-prepack combinations 1538
Prepack size [1, 504]
Total forecast (Units) 2,770,518

Metaheuristic parameters
γ 10
θ 5

7.10.2. Results and Discussion

The results are analyzed in two parts. First, the results are analyzed for each retailer. The
retailer specific results are presented in Table 7.15. The following values are calculated. The
mean percentage gap over different runs is calculated for each retailer and denoted by ∆k

(refer to Equation 7.30. Here, it is used with the subscript for retailer). The average mean
gap ∆ is defined as the average value of ∆k. The average minimum ∆min is defined as the
average value minimum ∆ for each retailer across 20 runs. At last, the average maximum
∆max is defined as the average values of maximum ∆ for each retailer across 20 runs. The
notation b is used for individual runs.

∆ = 1
K

∑
k∈K

∆k (7.31)

∆min = 1
K

∑
k∈K

[
min

b∈{1..20}
∆kb

]
(7.32)

∆max = 1
K

∑
k∈K

[
max

b∈{1..20}
∆kb

]
(7.33)

On average IGSH gives solutions within 4.79% of the optimum. The minimum performance
gap is 1.79% on average and the maximum performance gap is 7.58% on average. The
minimum value of mean percentage gap is 0.30% and the maximum value of mean percentage
gap is 21.63%. In 85 out of 408 retailers, the mean gaps are within 2% of the optimal solution
and in 287 retailers our mean results are within 5% of the optimal solution. Figure 7.13 depicts
the histogram for mean performances for all of the 408 retailers.

We also analyze the overall performance across all retailers and the runtime. The results
are summarized in Table 7.16. The overall results are obtained by summing the individual
results of each retailer. The optimal solution gives 1,357,025 units of excess inventory, which
is 48.98% of the total demand. Meanwhile, the solution obtained using IGSH gives 1,419,012
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units of excess inventory, which is 51.21% of the total demand. In absolute terms, the IGSH
gives 4.56% higher excess inventory than the optimal solution. With CPLEX the runtime is
about 51 hours. Although, this seems to be a reasonable computation time considering less
frequent promotions, for the complete dataset it becomes intractable. We also obtain 94.93%
reduction in runtime for the 408-retailer use case.

Table 7.15: retailer specific results of the case study.

retailer specific results
∆ 4.79%
∆min 1.79%
∆max 7.58%

Minimum ∆k 0.30%
Maximum ∆k 21.63%

Number of retailers with ∆k ≤ 2% 85 (20.83%)
Number of retailers with ∆k ≤ 5% 278 (68.13%)
Number of retailers with ∆k ≤ 10% 360 (88.23%)

Figure 7.13: Histogram of ∆k for different retailers of the case study

7.11. Conclusions

In this chapter, we addressed the promotional ordering problem for retail supply chains as
an extension of the general newsvendor problem. We considered a real world problem, where
during a promotional event the retailer has the option of ordering the items in different
prepacks and there is lack of financial information. We considered the demand to be stochastic
and introduce the use of a discrete probabilistic forecast similar to scenarios in the single
period newsvendor problem to address uncertainty. We also described some business rules
for real world applications. These business rules guarantee that the proposed solution will
be manageable by retailers. They address basic distribution priority for larger pack sizes,
consider criticality of items while ordering and limit the type of prepacks per item.
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Table 7.16: Overall results of the case study.

Overall results
w(CPLEX) 1,357,025

(48.98%)
w(IGSH) 1,419,012

(51.21%)
Overall ∆(%) 4.56
Reduction in runtime (%) 94.93

First, we formulated the problem as a three-objective MILP model and incorporated the
business rules as objectives and constraints. We then proposed a 2-stage methodology to solve
the optimization problem. In the first stage, we used an ABC-VED inventory classification
method to define minimum service levels thresholds for different classes of items at different
retailers. In the second stage, we transformed the tri-objective optimization model to a
bi-objective model. Then we solved it using an ε-constrained like method.

We applied our methodology to a real world use case. Results show that the probabilistic
approach always outperforms the deterministic approach and both approaches outperform
the solution currently used by the firm. At lower leftover inventory levels both approaches
converge. However, the probabilistic approach performs much better when the limit on
leftover inventory level increases.

Secondly, to be more prudent in practical application we reformulated the problem to
minimize the leftover inventory at a given service level. Complexity analysis of the problem
suggests that, the solution method encounters a multi-dimensional knapsack problem due to
the presence of multi-item prepacks. Therefore, the problem is difficult to solve optimally for
practical purposes.

We have provided an iterated guided search approach to obtain near optimal solutions.
The methodology uses a greedy heuristic to generate initial solutions and a guided search
heuristic for obtaining the local optimum. Perturbations are applied to the local optimum to
explore the search space. Our methodology ensures the whole search to be conducted in the
feasible space only to enable practical usage.

We first conducted extensive numerical analysis on random realistic problem instances.
The proposed metaheuristic provides solutions within a 2% optimality gap within 60 seconds
for small instances, and within a 8% gap for medium to large instance. We also tested our
methodology on a real test case of 408 retailers. In that case we obtain an overall gap of
4.56% with less than a 10% gap in 88.23% of the retailers.

In this dissertation we have addressed the single-item stochastic replenishment problem,
its extension to supplier selection and multi-item promotional ordering. The promotional
ordering is a single-period problem. We plan to conduct additional research in the area of
multi-item replenishment with multiple time periods. Its deterministic version is proven to
be strongly NP-hard. We have already conducted preliminary studies on our proposed use
of a learning based stochastic local search. The prosed approach used the properties of local
optima to construct new solutions so to navigate the search space in less time. Our initial
results are promising and the approach already outperforms existing best known methods.
In the next chapter, we discuss some of the industrial aspects of our research and conclude
this dissertation.
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Chapter 8

Extensions, Industrialization, Conclusions and
Perspectives

Stochastic replenishment planning is a challenge when we consider real-world conditions.
The optimal polices are known only for limited cases. Moreover, only 5% of the literature
in this area has been useful in practice. Apart from replenishment planning, two other areas
related to inventory optimization which are important in practice are: classification of those
problems and performance assessment. And, they are not widely investigated as well. Our
work in this dissertation addresses the above three research topics.

This chapter is arranged as follows. In Section 8.1, we summarize our contributions and
provide the conclusions. As the proposed solution methods are shown to be effective for the
“base” problems, in Section 8.2, we various possible extensions to those methods and detail
the industrialization status of our proposed works. In the end, we provide the perspectives
about future related research areas in Section 8.3.

8.1. Summary of the Main Contributions

In this dissertation, we have addressed three broad research areas related to inventory opti-
mization.

1. Problem classification.

(a) Proposition of a classification scheme for inventory optimization problems .

2. Performance evaluation.

(a) Selection of suitable key performance indicators (KPIs) for industrial inventory
management systems (IMS) and proposition of a simulation framework for perfor-
mance assessment.

3. Replenishment planning methods.

(a) Proposition of sampling-based optimization method for single-item replenishment
planning problems.

(b) Proposition of generalized sampling-based method for single-item replenishment
planning with supplier selection.

(c) Proposition of of scenario based optimization method for promotional joint replen-
ishment problems with prepacks and development of metaheuristics.
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Indeed in Chapter 2, we proposed a classification scheme for inventory optimization problems.
We took inspirations from Graham’s notations (Graham et al., 1979) for scheduling problems.
The proposed scheme has six fields and each fields has sub-fields. Depending on the specific
type of sub-field the problem are named. Then in Chapter 3, we listed some of the important
KPIs for inventory management systems. We categorized those KPIs under three groups:
financial, operational and service. Evaluation of those KPIs for a single IMS is simple in
practice provided all the required data is recorded. However, comparative evaluation of two
or more IMSs is difficult. Comparison with an existing IMS lacks identical problem setting
or requires a longer time horizon. In Chapter 3, we also proposed a simulation method (∆-
method) (Sahu et al., 2020a) to have an effective comparative assessment of multiple IMSs.
In Chapter 4, we defined the replenishment planning problems in detail. Various types of
problems were identified and organized to form a modular IMS framework. Form Chapter 5
onwards, we focus on actual solution methods.

In Chapter 5, we proposed a sampling-based method for the stochastic single-item re-
plenishment planning problem. Our proposed method optimizes the approximate expected
cost for the first period in the planning horizon. We call this method as immediate expected
cost approach (IECA). We first proposed an enumerative heuristic for the optimal immediate
expected cost. Then we proved the convexity of cost function and proposed an improved
heuristic (OH-IECA) based on this property. Numerical results suggest that OH-IECA gives
0.463% excess cost over the optimal for the benchmark instances in Veinott Jr and Wagner
(1965). The proposed method is also useful in case of non-stationary demand but, gives com-
paratively higher cost. We also proposed its extensions in the presence of minimum order
quantity and higher variance. The proposed method requires little modification to include
batch-size. For stationary demand, the optimality gap in the presence of batch size is less
than 1%. Moreover, the proposed method requires very less computational effort, about 7
milliseconds as compared to 3 minutes with dynamic programming.

In Chapter 6, we addressed the single-item replenishment planning problem with non-
stationary demand and the single-item replenishment planning and supplier selection prob-
lem. We extended the works from Chapter 5 to formulate a dynamic program with fewer
state space. The proposed method was tested for full backorder scenario with average op-
timality gap of 3-4%. The proposed method can also be adapted for the extensions of the
basic problem to address lost sales and batch sizes. The second problem addressed was also a
multi-stage stochastic program. We proposed two approaches for supplier selection: common
supplier selection and dynamic supplier selection (Sahu et al., 2020b). We first conducted the
financial benefit analysis of dynamic supplier selection versus selecting a common supplier for
the planning horizon. Then we proposed an approximation framework for both approaches.
A common supplier for the whole planning horizon is a practically more appealing feature.
However, the dynamic supplier selection results in higher economic benefits. Both of the
aforementioned problems are multi-stage stochastic optimization problems. Numerical anal-
ysis suggest that the dynamic supplier supplier selection approach always outperforms the
approach with one common supplier, especially when the inventory holding costs and the
backorder costs are very different, and when the suppliers impose a minimum order quantity
constraints. Finding the optimal solutions of any of the above approaches is time consum-
ing. Hence, we developed an approximation framework based on dynamic programming.
The proposed solution framework works in two stages. The first stage gives the optimal
order quantity and cost for discrete coverage period. Afterwards, a dynamic programming
approach optimizes the total cost for the rolling horizon. Numerical analysis for synthetic
instances suggests an average the optimality gap is 3.5%. The average computation time is
6 milliseconds.
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8.2. Extensions and Industrialization

In Chapter 7, we addressed the promotional ordering problem for retail supply chains
(Sahu et al., 2018) as an extension of the general newsvendor problem. We considered the
demand to be stochastic and introduce the use of a discrete probabilistic forecast similar to
scenarios in the single-period newsvendor problem to address the uncertainty. We first formu-
lated the problem as a multi-objective MILP model and then proposed a 2-stage methodology
to solve the optimization problem. In the first stage, we use ABC-VED inventory classifi-
cation method to define minimum service levels thresholds. Then in the second stage, we
transformed the multi-objective optimization model to a bi-objective model. Then we solved
it using an ε-constrained like method. Results show that the probabilistic approach always
outperforms the deterministic approach. At lower leftover inventory levels both approaches
converge. However, the probabilistic approach performs much better when the limit on left-
over inventory level increases. Analysis on a case study suggests 43-55% reduction in lost
sales for same inventory levels and 36% reduction in leftover inventory for the same lost
sales level. On the second part, we then reformulated the problem to minimize the leftover
inventory at a given service level. Complexity analysis suggested that, the solution method
encounters a multi-dimensional knapsack problem due to the presence of multi-item prepacks.
We then developed an iterated guided search approach to obtain near optimal solutions. The
methodology uses a greedy heuristic to generate initial solutions and a guided search heuris-
tic for obtaining the local optimum. During numerical analysis on random realistic problem
instances, the proposed metaheuristic provided solutions within a 2% optimality gap within
60 seconds for small instances, and within a 8% gap for medium to large instance.

8.2. Extensions and Industrialization

The parameters associated with real-world replenishment problems vary from those consid-
ered for the mathematical modeling. This is to simplify the solution procedure. In this
section, we present some of the possible extensions to the solution methods presented earlier
in this dissertation. They are summarized in Table 8.1. The status of their industrialization
at Vekia is also indicated.

Most extensions are proposed for the single-item replenishment planning (SRP) and the
single-item replenishment planning with supplier selection (SRPSS) problems. The proposed
base models for the SRP problem address zero lead time, stationary and non-stationary de-
mand, backorder, unit batch size and equal uncertainty. Extensions can address deterministic
and stochastic lead times, lost sale, a mix of lost sales and backorder, service level constraints,
increased uncertainty, minimum and maximum stock constraints and minimum order quan-
tity (MOQ) constraint. Similarly for the SRPSS, major extensions are to include stochastic
lead times and lost sales.

8.3. Perspectives

Based on numerical analysis in each chapter and how we imagine future supply chain opti-
mization processes at Vekia, we identify the opportunities for future research as the following.

The proposed sampling-based method for the SRP problem is highly flexible, however, like
in the literature, it is build on a major assumption. The method assumes that the demand
forecast is accurate, i.e., we draw random samples from the forecast. It can be adapted only
if the actual uncertainty is higher. Unfortunately, almost all forecasts come up with some
errors. These errors have a major impact on the replenishment quality. Our current research
is focused on including the effect of forecast error in replenishment planning or to tune

137



Chapter 8. Extensions, Industrialization, Conclusions and Perspectives

the replenishment planning process based on forecast error. This would be a particularly
interesting topic as this would lead to a segregation of the effect of forecast accuracy and
efficient optimization on the final cost.

Table 8.1: Possible extensions and industrialization status. The three problems: single-item re-
plenishment planning (SRP), single-item replenishment planning with supplier selection (SRPSS)
and the promotional joint replenishment problem (PJRP) are under industrialization. The “Base
model” refers to the problem defined in this dissertation without any extension.

Concerned
Problem

Problem Parameter Option Base Model/
Extension

Industrialization
Status

SRP Lead time Zero Base model Yes
Deterministic Extension Yes
Stochstic Extension Ongoing

Demand Stationary Base model Yes
Non-Stationary Base model Yes

Shortage Backorder Base model Yes
Zero Extension Ongoing
Lost sale Extension Yes
Mixed Extension Ongoing

Service level Alpha Extension Ongoing
Beta Extension Yes

Batch size Unit Base model Yes
Single Extension Yes
Multiple Extension Ongoing

Uncertainty Equal Base model Yes
Increased Extension Ongoing

Min. stock No Base model Yes
Yes Extension Yes

Max. stock No Base model Yes
Yes Extension Yes

MOQ No Base model Yes
Yes Extension Yes

SRPSS Lead time Zero Base model Yes
Deterministic Extension Yes
Stochstic Extension Ongoing

Demand Stationary Base model Yes
Non-Stationary Base model Yes

Shortage Backorder Base model Yes
Lost sale Extension Yes

Service level Alpha Extension Ongoing
Beta Extension Yes

Batch size Unit Base model Yes
Single Extension Yes

Min. stock No Base model Yes
Yes Extension Yes

Max. stock No Base model Yes
Yes Extension Yes

MOQ No Base model Yes
Yes Extension Yes

PJRP - - Base model Ongoing

In most real-world problems, we encounter non-stationary demand. With our proposed
one-step method IECA we obtain a relatively higher optimality gap. Even though using the
RDP in Chapter 6 we can have a lower gap, further research is needed to have a one-step
method.

Supplier selection is another interesting topic of research. We have showed that a dynamic
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supplier selection approach is cost effective. However, practical ease must also be taken care
of. We also have not addressed the effect of discount on supplier selection. That might
hold important outcomes since it is widely used by the suppliers. Next, for the promotional
ordering problem, we have addressed a novel problem even if the use of prepacks is very
much evident nowadays. Future research can investigate the effect of presence of prepacks
on multi-period replenishment planning.

Apart from the PJRP prblem, the JRP problems are very much evident in multi-period
planning scenario. Examples of some use case are: presence of joint fixed cost, multi-item
quantity discount, multi-item discount based on purchase amount, multi-item truckload opti-
mization, etc. We have conducted some preliminary research on the multi-period JRP prob-
lem. Initial results with a synchronized neighborhood operator (SNO) (Sahu and Veerapen,
2019) has shown some promising results by outperforming the existing best know methods.
This requires further research.

Finally, very few of the supply chain networks are single-echelon. Our next focus is to
implement the proposed work in a multi-echelon setting. This has two reasons. First one is
that, capacitated multi-echelon inventory optimization is notoriously hard to solve. With real-
world constraints, it is even more so. The second reason is user preference. Although, a multi-
echelon approach can be cost effective, it requires fully centralized planning. However, recent
trend suggests, organizations still want to retain some decentralized control. Therefore, the
optimal degree of centralization is also another interesting area of research. Different modes
of fulfillment are emerging nowadays. One such mode is transshipment. It has tremendous
potential to improve service level. Proactive transshipment may incur higher transportation
cost but, organization can explore this option to reduce their overall cost. Transshipment
can be seen as an alternative to ordering from a supplier with higher lead time. This will
not only improve service quality (with lower lead time) but also, reduce the inventory held
in the supply chain. Future research could explore the possibility of incorporating the same
into regular replenishment planning.

With the current crisis due to COVID-19, organizations are seeing unprecedented disrup-
tions in their supply chains. One way to mitigate the risk of such disruptions is to carefully
integrate them into their supply chain planning. However, it remains extremely difficult to
predict such events. Another way organizations can mitigate the effect is to increase visibility
and gain the ability to simulate the effects of such events. Supply chain digital twin is one ap-
proach that seems extremely appealing. Not only can it simulate the effect of various actions,
it can also help analyze the current processes. This, in turn can also improve visibility.

Lastly, coming to the use of artificial intelligence (AI) in supply chain planning, we foresee
a substantial impact. While AI has proven to be very efficient in providing reliable future
information so that the planning can be done in advance, and accurately, the users often
require an explanation of the proposed solution. The demand for explainable artificial in-
telligence (XAI) is growing day-by-day. Particularly in case of inventory management, AI
and optimization methods have been proven to be helpful in lowering the inventory cost and
increasing the service level. Other areas where these could be helpful include, predictive
tracking, prediction and optimization of perishable inventory, etc. Automating the planning
process is another benefit which is seeing increasing importance today.
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A. Proof for Property 1

Property 1: X, Y and Ξz are piecewise linear convex functions in q for any s0, Ω and
q > 0.

Proof. Here we prove that the functions have increasing slopes. Let

X0 =
ζ0∑
t=1

H

(
s0 + q −

t∑
τ=1

Fτ

)
(1)

X1 =
ζ1∑
t=1

H

(
s0 + q + 1−

t∑
τ=1

Fτ

)
(2)

X2 =
ζ2∑
t=1

H

(
s0 + q + 2−

t∑
τ=1

Fτ

)
(3)

∆1 = X1 −X0 (4)
∆2 = X2 −X1 (5)

The following inequalities hold true regarding the above equations.

X2 ≥ X1 ≥ X0 (6)
ζ2 ≥ ζ1 ≥ ζ0 (7)

∆1 ≥ 0 (8)
∆2 ≥ 0 (9)

The relationships between ∆1 and ∆2 are as follows

ζ1 ≥ ∆1 ≥ ζ0 (10)
ζ2 ≥ ∆2 ≥ ζ1 (11)

Therefore,

∆2 ≥ ∆1 (12)

This implies that X has an increasing slope and therefore, it is convex.
Similarly, let

Y0 =
T∑

t=ζ0+1
W

( t∑
τ=1

Fτ − s0 − q
)

(13)

Y1 =
T∑

t=ζ1+1
W

( t∑
τ=1

Fτ − s0 − q − 1
)

(14)

Y2 =
T∑

t=ζ2+1
W

( t∑
τ=1

Fτ − s0 − q − 2
)

(15)

∆1 = Y1 − Y0 (16)
∆2 = Y2 − Y1 (17)
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A. Proof for Property 1

The following statements can be made about the above equations.

Y2 ≤ Y1 ≤ Y0 (18)
ζ2 ≥ ζ1 ≥ ζ0 (19)

∆1 ≤ 0 (20)
∆2 ≤ 0 (21)

The relationships between ∆1 and ∆2 are as follows

T − ζ1 ≤ −∆1 ≤ T − ζ0 (22)
T − ζ2 ≤ −∆2 ≤ T − ζ1 (23)

Therefore,

∆2 ≥ ∆1 (24)

This implies that Y has an increasing slope and therefore, it is convex.
Kα is constant and equal to K for q > 0.
As Ξz = Xz + Yz +Kα, it is also convex.
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B. Explanation of Equation 5.25

Proof. Recalling the equation

ζ∗z = arg min
ζ

Ξz(s0,Ω, q) =
⌈ WΩ
H +W

⌉
(25)

Ξz(s0, q,Ω) =
ζz∑
t=1

H

(
s0 + q −

t∑
τ=1

Fzτ

)
+

Ω∑
t=ζz+1

W

( t∑
τ=1

Fzτ − s0 − q
)

+Kα (26)

0 2 4 6 8 100

5

10

15

20

ζ∗j

ζj

Co
st

Figure 1: Illustration of demand samples. We present three distinct demand samples, which are random
realizations of the demand during time t = 1 to T = 10.

As the above cost function is not differentiable everywhere, we find the minimum by finding
the inflection point, i.e. the maximum q where the slope is less than or equal to zero. ζz can
only take discrete values. The slope of the cost function is constant between two consecutive
ζz. We can write

q∗ = arg min Ξz(s0, q,Ω) (27)
= min q|

(
Ξz(s0, q + 1,Ω)− Ξz(s0, q,Ω)

)
≥ 0 (28)

Let us consider the case where

Ξz(s0, q + 1,Ω)− Ξz(s0, q,Ω) = 0 (29)

Solving (29) we get

W (Ω− ζz)−Hζz = 0 (30)

ζz = WΩ
H +W

(31)

The above equation does not necessarily yield an integer value for ζz. Since ζz takes only
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B. Explanation of Equation 5.25

integer values, one of the following choices of ζ∗z corresponds to the optimal order quantity
q∗z : ζ∗z =

⌊
ζz
⌋
, ζ∗z =

⌈
ζz
⌉
. Here, dxe is the smallest integer greater than or equal to x and bxc

is the largest integer less than or equal to x. Let

A1 =
⌊
ζz
⌋

(32)

A2 =
⌈
ζz
⌉

(33)

B1 =
A1∑
t=1

Fzt (34)

B2 =
A2∑
t=1

Fzt (35)

Figure 2 illustrates the cost components for different choices of ζ∗z for Ω = 6 and arbitrarily
chosen W

W+H . Let G = ζz − A1 be the fractional part. Then choosing the optimal period

Ω

ζz = WΩ
H+W

Fz1 Fz2 Fz3 Fz4 Fz5 Fz6

A1 = 4 A2 = 5

G

ζ∗j =
⌊
ζz

⌋
, B = B1

Inventory
Backorder

Fz2 + ..+ Fz4 Fz3 + Fz4 Fz4 0 0 0
0 0 0 0 Fz5 Fz5 + Fz6

ζ∗z =
⌈
ζz

⌉
, B = B2

Inventory
Backorder

Fz2 + ..+ Fz5Fz3 + ..+ Fz5 Fz4 + Fz5 Fz5 0 0
0 0 0 0 0 Fz6

ζ∗z = ζz, B = B1 + GFz5
Inventory
Backorder

Fz2 + .. + GFz5 Fz3 + .. + GFz5 Fz4 + GFz5 GFz5 0 0
0 0 0 0 (1− G)Fz5 (1− G)Fz5 + Fz6

Figure 2: Illustration of cost components when we choose ζ∗z =
⌊
ζz

⌋
, ζ∗z =

⌈
ζz

⌉
or ζ∗z = ζz.

equal to A1 will have a gain by reduction in inventory holding cost and a loss by increase in
backorder penalty. The net increase in cost will be

W (Ω−A1)GFzA2 −HA1GFzA2 (36)
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Similarly, if we choose the time period to be equal to A2, we will have an increase in inventory
holding cost and a decrease in backorder penalty. The net increase in cost will be

HA1(1− G)FzA2 −W (Ω−A1)(1− G)FzA2 (37)

If we replace A1 in Equation 36 by ζz = WΩ
H+W , we get

= W (Ω− WΩ
H +W

)GFzA2 −H
WΩ

H +W
GFzA2 (38)

= W (HΩ +WΩ−WΩ
H +W

)GFzA2 −H
WΩ

H +W
GFzA2 (39)

= WHΩ
H +W

GFzA2 −
HWΩ
H +W

GFzA2 (40)

= 0 (41)

Since A1 ≤ ζz, in Equation 36

W (Ω−A1)GFzA2 ≥W (Ω− ζz)GFzA2 (42)
HA1GFzA2 ≤ HζzGFzA2 (43)

From Equation 41, 42 and 43

W (Ω−A1)GFzA2 −HA1GFzA2 ≥ 0 (44)

Similarly, if we replace A1 in Equation 37 by ζz = WΩ
H+W , we get

= H
WΩ

H +W
(1− G)FzA2 −W (Ω− WΩ

H +W
)(1− G)FzA2 (45)

= HWΩ
H +W

(1− G)FzA2 −W (HΩ +WΩ−WΩ
H +W

)(1− G)FzA2 (46)

= HWΩ
H +W

(1− G)FzA2 −
HWΩ
H +W

(1− G)FzA2 (47)

= 0 (48)

Since A1 ≤ ζz, in Equation 37

HA1(1− G)FzA2 ≤ Hζz(1− G)FzA2 (49)
W (Ω−A1)(1− G)FzA2 ≥W (Ω− ζz)(1− G)FzA2 (50)

From Equation 48, 49 and 50

HA1(1− G)FzA2 −W (Ω−A1)(1− G)FzA2 ≤ 0 (51)

For any order quantity B such that B1 < B < B2, using Equation 44 and 51 we can conclude
that

C̃Ω(s0, B) ≤ C̃Ω(s0, B1) (52)
C̃Ω(s0, B2) ≤ C̃Ω(s0, B) (53)

Any increase in q beyond B2 will also have increase in inventory cost and a reduction in
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B. Explanation of Equation 5.25

backorder cost. The net change will be

HA2 −W (Ω−A2) ≥ 0 ∀A2 ≥
WΩ

H +W
(54)

(55)

Therefore,

q∗Ω = B2 (56)

ζ∗z = A2 =
⌈ WΩ
H +W

⌉
(57)
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C. Additional Results from Chapter 5

Table 2: Comparative performance of different approaches for the problem instances when the re-
alized standard deviation is higher than predicted. σ = Forecast standard deviation. σ̂ = Realized
standard deviation. It presents the ratio of C∞π to the minimum C∞ among the approaches.

DP
vs.

ECA
vs.

RCA
vs.

OH-IECA
vs.

H W K λ σ̂/σ Minimum Minimum Minimum Minimum
1 10 0 5 1.05 1.000 1.273 1.269 1.007

1.25 1.000 1.304 1.302 1.008
1.50 1.004 1.271 1.284 1.000
2.00 1.000 1.247 1.241 1.017

10 1.05 1.044 1.208 2.830 1.000
1.25 1.098 1.303 2.728 1.000
1.50 1.125 1.329 2.491 1.000
2.00 1.134 1.307 2.117 1.000

15 1.05 1.000 1.302 1.110 1.004
1.25 1.006 1.334 1.131 1.000
1.50 1.009 1.322 1.148 1.000
2.00 1.000 1.276 1.131 1.008

20 1.05 1.000 1.210 2.150 1.006
1.25 1.000 1.246 2.068 1.003
1.50 1.004 1.260 1.955 1.000
2.00 1.000 1.222 1.701 1.001

50 1.05 1.000 1.133 2.296 1.025
1.25 1.000 1.182 2.245 1.044
1.50 1.000 1.213 2.079 1.065
2.00 1.000 1.185 1.814 1.051

1 10 10 5 1.05 1.004 1.105 1.000 1.022
1.25 1.018 1.118 1.000 1.036
1.50 1.023 1.118 1.000 1.036
2.00 1.044 1.162 1.000 1.061

10 1.05 1.039 1.071 1.050 1.000
1.25 1.012 1.046 1.011 1.000
1.50 1.006 1.036 1.000 1.050
2.00 1.000 1.038 1.002 1.051

15 1.05 1.002 1.136 1.046 1.000
1.25 1.003 1.158 1.061 1.000
1.50 1.002 1.183 1.078 1.000
2.00 1.003 1.177 1.074 1.000

20 1.05 1.001 1.095 1.535 1.000
1.25 1.000 1.130 1.558 1.003
1.50 1.000 1.149 1.567 1.003
2.00 1.002 1.149 1.478 1.000

50 1.05 1.000 1.070 1.719 1.012
1.25 1.000 1.112 1.754 1.023
1.50 1.000 1.133 1.725 1.033
2.00 1.000 1.147 1.630 1.049

0.1 1 10 5 1.05 1.029 1.035 1.036 1.000
1.25 1.029 1.033 1.034 1.000
1.50 1.032 1.033 1.032 1.000
2.00 1.036 1.023 1.034 1.000

10 1.05 1.001 1.001 1.025 1.000
1.25 1.003 1.002 1.023 1.000
1.50 1.001 1.001 1.020 1.000
2.00 1.000 1.001 1.017 1.004

15 1.05 1.010 1.003 1.017 1.000
1.25 1.009 1.000 1.012 1.001
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C. Additional Results from Chapter 5

1.50 1.011 1.002 1.010 1.000
2.00 1.015 1.002 1.000 1.002

20 1.05 1.000 1.013 1.036 1.008
1.25 1.000 1.006 1.031 1.008
1.50 1.000 1.001 1.024 1.008
2.00 1.008 1.000 1.025 1.013

50 1.05 1.001 1.007 1.481 1.000
1.25 1.002 1.012 1.392 1.000
1.50 1.000 1.011 1.302 1.001
2.00 1.001 1.008 1.183 1.000
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D. Additional Heuristic for Chapter 7

Algorithm 10: Greedy Heuristic 1 (GH1)
Input : R,F,SL
Output: Q

1 initialization Q← 0, Li ← SLiFi, ∀i ∈ N
repeat

2 select item î randomly : î ∈ N
defineM∗ = {m∗ : Rîm∗ > 0}
repeat

3 m̂ = arg maxmRîm,m ∈M∗
4 if Rîm̂ ≤ Lî OR |M∗| = 1 then

Qm̂ ← Qm̂ + 1
qi ←

∑
m∈MQmRim, ∀i ∈ N

Li ← Li − qi,∀i ∈ N
5 else

remove m̂ fromM∗
end

end
until Lî ≤ 0;
remove î from N

until |N | = 0;

The detailed description of GH1 is as follows.

1.0. GH1 generates a feasible solution by taking the prepack configurations, item forecasts
and service levels as inputs.

1.1. Initialize by setting the values of order quantity Qm to zero, and values of remaining
quantity Li their respective service level targets.

1.2. Select an item î at random from the set N and then define the set of all prepacks
containing item î asM∗.

1.3. Select the prepack m̂ from the setM∗ that contains the maximum quantity of item î.
1.4. If the quantity of item î contained in selected prepack m̂ does not exceed its remaining

quantity, or if the selected prepack is the last remaining prepack inM∗, then increase
the order quantity of prepack m̂ by one. Then, update order quantities qi and remaining
quantities Li.

1.5. Else, remove the selected prepack m̂ fromM∗.
1.6. Repeat 1.3-1.5 until the remaining quantity for item î reaches zero or becomes negative.

Then, remove î from N .
1.7. Repeat 1.2-1.6 until N is empty.

The complexity of GH1 depends on the forecast quantities and the prepack sizes. Let
ni = F̄i

min(Rim) , ∀i and n̂ = max ni. Then, the maximum number of iterations required by
GH1 is bounded by O(n̂N). One drawback of the above methodology is that, once an item
is ordered to fulfill its service level, it still has the chance to be ordered more while other
retailers are being ordered since they may share common prepacks.
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