
Certain Query Answering on
Hyperstreams

PhD Thesis
to obtain the title of PhD of Science of the doctoral school Sciences pour

l’Ingénieur at Université de Lille

Specialty : Computer Science

defended on July 24, 2020 by

Momar Ndiouga Sakho

Thesis advisors: Joachim Niehren and
Iovka Boneva

Committee :

Reviewers : Sebastian Maneth - Universität Bremen
Sylvain Schmitz - Université de Paris

Advisor : Joachim Niehren - Inria Lille
Co-advisor : Iovka Boneva - Université de Lille
President : Mathieu Giraud - CNRS, Université de Lille
Examiner : Olivier Gauwin - Université de Bordeaux

Requêtes Logiques sur les
Hyperflux

Thèse
pour l’obtention du grade de Docteur de l’École Doctorale Sciences pour

l’Ingénieur à l’Université de Lille

Spécialité : Informatique

soutenue le 24 juillet 2020 par

Momar Ndiouga Sakho

Direction de thèse: Joachim Niehren et
Iovka Boneva

Jury :

Rapporteurs : Sebastian Maneth - Universität Bremen
Sylvain Schmitz - Université de Paris

Directeur de thèse : Joachim Niehren - Inria Lille
Co-encadrante : Iovka Boneva - Université de Lille
Président : Mathieu Giraud - CNRS, Université de Lille
Examinateur : Olivier Gauwin - Université de Bordeaux

Abstract: Hyperstreams are collections of streams with references. The hope is
that structured data on a hyperstream can be monitored with lower latency than
when communicated on a stream, since data on hyperstreams may be received in
parallel rather than in a purely sequential manner. In order to show this, however,
it is necessary to develop algorithms for answering logical queries on hyperstreams,
given that the existing algorithms are restricted to streams. Therefore, we study
the question of whether certain query answering (CQA) on hyperstreams is feasible
in theory and practice.
We study the complexity of CQA on hyperstreams. We first show that CQA is
closely related to the problems of regular pattern matching and inclusion, and thus
to the problem of transition inhabitation for automata for words and trees. This
permits us to classify the complexity of CQA for various classes of automata and
hyperstreams. We obtain polynomial time results for linear hyperstreams without
compression and queries defined by deterministic stepwise hedge automata. For the
general case, the complexity goes up to ExpTime.
We then develop an efficient approximation algorithm for CQA on hyperstreams.
This algorithm has large coverage in that it applies to arbitrary hyperstreams and
classes of query automata, and runs in polynomial time. However, it may not always
detect the certain query answers with lowest latency.
The third contribution is an algorithm for CQA on streams that runs in combined
linear time in the case of boolean queries. This algorithm is efficient in practice also
in the monadic case, in contrast to all previous proposals. We show this experi-
mentally by applying the algorithm to the navigational queries of the usual XPath
benchmark, on which all previous approximation-free approaches to CQA failed.
Deterministic stepwise hedge automata enable this algorithm.
Keywords: Certain Query Answering, Hyperstreaming, Automata, Complexity,
Pattern Matching

Résumé: Les hyperflux sont des collections de flux de données avec références.
Sachant qu’ils permettent la réception de données en parallèle plutôt que de manière
purement séquentielle, l’on peut espérer que des données structurées transmises par
leur biais puissent être traitées avec une latence moindre qu’avec un flux. Nous pro-
posons ainsi de développer des algorithmes d’évaluation de requêtes logiques sur les
hyperflux de données. Pour ce faire, nous nous intéressons à la faisabilité théorique
et pratique d’un algorithme de décision du problème de certitude d’une réponse
(CQA) sur les hyperflux.
Nous étudions la complexité du CQA sur les hyperflux. Nous montrons d’abord que
le CQA est intimement lié à des problèmes de correspondance de motifs dans les
langages réguliers, et donc aux problèmes d’habitation des transitions d’automates
de mots et d’arbres. Cela nous permet d’établir une classification de la complexité
du CQA pour des classes d’automates et d’hyperflux variées. Nous obtenons des
résultats en temps polynomial pour les hyperflux linéaires sans compression et les
requêtes définies par des automates déterministes pour forêts. Pour le cas général,
la complexité atteint ExpTime.
Nous développons ensuite un algorithme efficace pour l’approximation du CQA sur
les hyperflux. Cet algorithme a une grande couverture, du fait qu’il s’applique à des
hyperflux et des classes d’automates arbitraires, et s’exécute en temps polynomial.
Cependant, il ne détecte pas toujours les réponses certaines avec une latence mini-
male.
La troisième contribution est un algorithme pour le CQA sur les flux, qui s’exécute
en temps polynomial dans le cas de requêtes booléennes. Cet algorithme est aussi
efficace en pratique pour le cas monadique, à l’inverse de toutes les précédentes
propositions. Nous le montrons expérimentalement en appliquant l’algorithme
aux requêtes navigationnelles XPath habituellement prises pour référence, avec
lesquelles toutes les approches précédentes de CQA sans approximation ont échoué.
L’utilisation d’automates spéciaux pour les forêts a permis la mise en place dudit
algorithme.
Mots-clés: Certain Query Answering, Hyperstreaming, Automates, Complexité,
Correspondance de motifs

iii

Acknowledgements

The writing and defense of this thesis happened at a time when the Covid-19 pan-
demic was affecting the life of almost everybody in the world. Sebastian Maneth
and Sylvain Schmitz accepted to review this document in conditions that were far
from being ideal, and for this reason I would like to thank them from the bottom of
my heart. I am also grateful to Mathieu Giraud for having accepted to be part of
the jury committee, and to Olivier Gauwin, whose work on stream processing paved
the way for me.

During my thesis, I was very lucky and had the great honor to be supervised by
Iovka Boneva and Joachim Niehren. Thank you Iovka for your kindness, patience,
rigor and the help you gave me. You always kept your good mood, even after
having read my proofs :) Thank you Joachim, for trusting me and giving me the
opportunity to work with you. You have been a real mentor and friend to me
during this adventure, and none of this would have been accomplished without your
availability and support.

Many thanks to all the members of the Links team, with whom I spent great
moments and also learned a lot. Special thanks to Sylvain and his family who
kindly made their garden available right after my defense. I’ll highlight my fellow
PhD students Tom, Lily, Paul, Jose, Nicolas and Antonio, with whom I had lots of
laughters. Antonio has also been very helpful for the experiments.

Last, but not least, I would like to thank all the people that are very special to
me. All my friends that I met in Lille, Lyon, Dakar, Louga and everywhere else.
My two fathers, for their advice and support. My mother, who has made so many
sacrifices that allowed me to be the person I am today. My brothers and sisters, for
simply being who they are. My wife Borso, who lived all this adventure with me,
and whose presence and love help me greatly to overcome the difficulties of life.

iv

Funding Acknowledgements

Special acknowledgements to the ANR Agreg project and the Region Hauts-de-
France that funded my Phd project. I am also grateful to the Inria research center
of Lille, where I had an excellent working environment.

Contents

Notations ix

1 Introduction 1
1.1 Communication over Streams . 1

1.1.1 Complex Event Processing . 2
1.1.2 Query Languages . 3
1.1.3 Certain Query Answering (CQA) 5
1.1.4 Quality Criteria . 7

1.2 Problem: CQA on Hyperstreams . 8
1.2.1 Hyperstreams . 8
1.2.2 Finding Certain Query Answers 10

1.3 Contributions . 11
1.3.1 Small Deterministic Automata for Regular Path Queries . . . 11
1.3.2 Efficient CQA Algorithm on Streams 13
1.3.3 Complexity of CQA on Hyperstreams 13
1.3.4 An Approximation Algorithm for CQA on Hyperstreams . . 14

1.4 Further Related Work . 15
1.5 Publications . 17
1.6 Organization of the thesis . 17

2 Preliminaries 19
2.1 Words, Trees, Nested Words and Languages 19

2.1.1 Words . 19
2.1.2 Trees . 20
2.1.3 Nested Words . 21

2.2 Patterns . 21
2.2.1 Definition . 21
2.2.2 Identification to Logical Structures 22

2.3 Queries . 23
2.3.1 V-Structures and Sequenced V-Structures 23
2.3.2 Certain answers and non-answers 25

2.4 Automata and Regular Expressions 26
2.4.1 Word Automata . 26
2.4.2 Stepwise Tree Automata (STAs) 27
2.4.3 Nested Word Automata (NWAs) 28

vi Contents

2.4.4 Nested Regular Expressions 31
2.5 FXP . 35

3 Small Deterministic Automata for Navigational Queries 37

3.1 Introduction . 37
3.2 From FXP to Nested Regular Expressions 38
3.3 Stepwise Hedge Automata (SHAs) 42

3.3.1 Evaluation on Nested Words 45
3.3.2 Relation to STAs and NWAs 46
3.3.3 Determinization . 47
3.3.4 Completeness and Pseudo-Completeness 49
3.3.5 Universality and Intersection Nonemptiness Problems 50

3.4 Compiler from nRegExp to SHAs . 52
3.5 Reducing the size of (d)SHAs . 53

3.5.1 Symbolic Apply Rules . 54
3.5.2 Cleaning Methods for Determinized SHAs 56

3.6 Experimental Results for XPath Queries 59

4 Certain Query Answering on Streams 61

4.1 Modeling Streams of Hedges . 61
4.1.1 ... As String Patterns With Parentheses 62
4.1.2 ... As Nested Patterns . 62

4.2 About CQA Algorithms on Streams 63
4.3 A Streaming Algorithm for Boolean CQA 65
4.4 Certain Query Answering for Monadic Queries 70

4.4.1 Position-annotated patterns 71
4.4.2 Main differences with Boolean CQA 72
4.4.3 Description of the Algorithm 74
4.4.4 Correctness and Complexity of the Algorithm 79

4.5 Experiments . 87

5 Hyperstreams and Certain Query Answering 89

5.1 Hyperstreams . 89
5.1.1 Hyperstreams of Nested Words 90
5.1.2 Hyperstreams of Ranked Trees With Context Variables 92

5.2 Certain Query (Non) Answering on Hyperstreams 96
5.2.1 Definitions . 96
5.2.2 From the Non-Boolean Cases to the Boolean Cases 97

Contents vii

6 Complexity of Certain Query Answering 103
6.1 Introduction . 103
6.2 Σ-Algebras . 107
6.3 Inhabitation for Tree Automata . 107

6.3.1 Tree Automata . 108
6.3.2 Intersection NonEmptiness 109
6.3.3 Tree Inhabitation . 110
6.3.4 Context Inhabitation . 112

6.4 Evaluation of Compressed Tree Patterns over Ntas 122
6.5 Regular Matching and Inclusion . 122

6.5.1 Lower Bounds . 123
6.5.2 Upper Bounds . 125

6.6 Adding Regular Constraints . 127
6.7 Encoding Patterns for Unranked Trees 133
6.8 Linearity Restriction . 136

7 Approximating CQA on Hyperstreams 139
7.1 Transitions for SHAs . 139
7.2 Eliminating Hard Constraints: Linear Certainty 141
7.3 Safety Approximations . 143

7.3.1 Safety Approximation by Accessibility 144
7.3.2 Safety Approximation by Accessibility and Self Loops 145

7.4 Strong Certainty . 146
7.4.1 Parameterized Strong Certainty 146
7.4.2 Examples of Concrete Strong Certainty 150

7.5 Outlook . 155

8 Conclusion 157

Appendices 159
.1 Navigational Forward XPath Queries of [Franceschet] 161
.2 Additional Forward XPath Queries 161
.3 Deterministic NWAs for the expression ch∗(a+ b) 162

Bibliography 165

Some Notations

Σ Alphabet
Σ∗ Set of words over alphabet Σ

w Nested word
w̃ Position-annotated nested word
nWordsΣ Set of nested words over Σ

nPatternsΣ Set of nested patterns over Σ

nLinPatternsΣ Set of linear nested patterns over Σ

s Stream
s̃ Position-annotated stream
G Hyperstream
nStreamsΣ Set of streams of nested words over Σ

TΣ Set of ranked trees over some ranked alphabet Σ

HΣ Set of hedges over some alphabet Σ

UΣ Set of unranked trees over Σ

HypΣ Set of nested hyperstreams over Σ

LinHypΣ Set of linear nested hyperstreams over Σ

ε Empty word
Q Query
V Set of pattern variables
W Set of query variables
Q Set of states of automata
I Set of initial states
Qh Set of hedge states
Qt Set of tree states
F Set of final states
∆ Transition relation
α Candidate
[] Empty candidate
CW ′(ρ) Set of candidates of the pattern ρ with query variables in W ′

µ Assignment of pattern variables

Chapter 1

Introduction

Contents
1.1 Communication over Streams 1

1.1.1 Complex Event Processing 2

1.1.2 Query Languages . 3

1.1.3 Certain Query Answering (CQA) 5

1.1.4 Quality Criteria . 7

1.2 Problem: CQA on Hyperstreams 8

1.2.1 Hyperstreams . 8

1.2.2 Finding Certain Query Answers 10

1.3 Contributions . 11

1.3.1 Small Deterministic Automata for Regular Path Queries . . . 11

1.3.2 Efficient CQA Algorithm on Streams 13

1.3.3 Complexity of CQA on Hyperstreams 13

1.3.4 An Approximation Algorithm for CQA on Hyperstreams . . 14

1.4 Further Related Work . 15

1.5 Publications . 17

1.6 Organization of the thesis . 17

1.1 Communication over Streams

Interaction is essential for humans, computers, and intelligent systems. A typical
form of interaction is the continuous communication of data and knowledge over
streams. In social networks, for instance, human users produce and send data and
knowledge over Twitter streams. Or else, mediator systems for newspapers may filter
and send articles in topics of interest to a stream in a navigator. We are particularly
interested in communication of semi-structured data. Stream processing systems
must then detect complex events on the streams efficiently and react to them with
low latency. Furthermore, they may read the events on the stream only once, and

2 Chapter 1. Introduction

(1,MSFT, 1024, 1111)(1, APPL, 562, 666)(2, GOGL, 1234, 1244) . . .

Figure 1.1: Stream of stock quotes

<measure><timestamp>42.42</timestamp>39</measure>
<measure><timestamp>42.51</timestamp>40.5</measure>
<measure><timestamp>42.63</timestamp>41</measure>
. . .

Figure 1.2: Stream of semi-structured data

may buffer only a fraction of them at any time point, depending on the size of the
available memory of the machine.

1.1.1 Complex Event Processing

Complex event processing (CEP) [Mozafari et al. 2012, Grez et al. 2019] requires to
monitor semi-structured data streams for complex events that can be defined by
some logical query. Most typically, the data on the stream may be produced by
sensors measuring physical values such as temperature or humidity.

We consider semi-structured data streams as incomplete semi-structured
databases with an open end, that may be instantiated incrementally. In this man-
ner, logical queries as for semi-structured databases can be used to define complex
events. An incomplete semi-structured database may be simply an open list of text
tuples, to which new text tuples may be added at any time. The example in Fig-
ure 1.1 which is adapted from [Hallé 2017] shows a semi-structured data stream
originating from stock markets. The elements of the tuples are respectively – from
the first to the last – a timestamp, stock symbol, minimum price and closing price
of a stock quote.

Semi-structured data can also be formatted in more standard formats like Xml

or Json. For instance, a CEP system may be asked to detect overheating in a room
using the Xml stream of Figure 1.2, in which are written the temperatures measured
in that room. Overheating is here a complex event, which could be defined in this
case as a sequence of measures where the temperature is higher than 40◦ C, during
at least 10 seconds.

A task for which CEP systems are commonly used for is monitoring streams,
where the input stream is queried and eventually transformed. Monitoring streams
of semi-structured data requires to filter complex events on the streams, and

1.1. Communication over Streams 3

measure

timestamp

42.42

39

measure

timestamp

42.51

41.5

measure

timestamp

40.63

41

fir
st
-c
hi
ld

text

tex
t

fir
st
-c
hi
ld

text

te
x
t

fir
st
-c
hi
ld

text

te
x
t

next-sibling next-sibling next-sibling

Figure 1.3: Representation of the Xml stream of Figure 1.2 as a data graph

to produce output from them, which may be sent over complex event streams
to external applications. The complex events are output after the filtering and
processing of input events. For instance, a network monitoring system could
search for complex events representing intrusion attempts, and then send mes-
sages with the details of the intrusion attempts to the network administrator when-
ever it detects them. The conversion from the input to the output streams can
be defined by query-based rewrite rules, for instance in a query-based transfor-
mation language for Xml stream processing, such as Xslt [Kay 2004], CDuce

[Benzaken et al. 2003, Castagna et al. 2015], or XFun [Labath & Niehren 2015].

1.1.2 Query Languages

We argued that semi-structured data streams extend on sequences of text tuples.
More generally, we will consider streams as sequences of data trees which are also
called data hedges. A data hedge in turn can be seen as an edge-labeled data graph,
as illustrated in Figure 1.3. Therefore, classical logical languages for querying data
graphs can be used for defining complex events on streams. This is the approach
that we follow in this thesis. Alternatively, various special purpose CEP systems
were proposed, many of which support (sliding) window techniques for defining
complex events [Carney et al. 2002, Chandrasekaran et al. 2003, Abadi et al. 2005,
Suhothayan et al. 2011, Hallé 2017].

As it was noticed in [Mozafari et al. 2012], a query language for CEP should be
powerful enough to express the Kleene-star and capture complex events involving
an unbounded number of data elements. The same observation was remade more
recently in [Grez et al. 2019]. Instead of defining an ad hoc language as done there,
nested regular path queries [Martens & Trautner 2018] are a natural candidate for

4 Chapter 1. Introduction

this purpose. Regular path queries are regular expressions built from edge labels,
that allow to navigate in graphs having labeled edges. In addition, one needs also to
be able to filter data trees for which there exists some particular paths. The addi-
tion of such filters with the usual Boolean connectives, i.e. conjunction, disjunction,
negation, leads to the language of nested regular path queries [Libkin et al. 2013]. In-
deed this language was already introduced in the seventies [Fischer & Ladner 1979]
under the name of propositional dynamic logic (PDL). More concretely, nested reg-
ular path queries are the programs of PDL while the filters are the formulas of
PDL.

A data hedge can be turned into a data tree by adding an artificial root node
on top. We note that this requires the admission of unranked data trees, given that
the length of the stream cannot be bounded. Therefore, it is natural to use nested
regular path queries but interpreted on unranked data trees for defining complex
events. In other words, PDL on unranked data trees is the query language of our
choice. This query language is essentially the same as the navigational core of
XPath 3.0, that was introduced and standardized by the W3C for querying Xml

documents.

The navigational core of XPath 1.0 was formalized under the name CoreXPath
in [Gottlob et al. 2003]. In contrast to nested regular path queries, CoreXPath does
not admit the Kleene star P ∗ for any path query P . The navigational core of XPath

3.0, however, should permit the Kleene star given that XPath 3.0 can express it,
even though still quite indirectly by using recursive functions.

The basic steps of CoreXPath are self, child, following-sibling, descendant =

child+, preceding-sibling = following-sibling−1, parent = child−1, and ancestor =

parent+. These steps are graphically illustrated in Figure 1.4. From these steps, one
can define XPath’s following axis by the regular path query:

ancestor/following-sibling/(descendant ∪ self).

On our example streams in Figure 1.2, the following navigational XPath query
selects all the timestamp elements below measure nodes having temperature values
greater than or equal to 40◦ C.

descendant::measure[number(text()) >= 40]/child::timestamp.

When it comes to stream processing, one often restricts the nested regular path
queries to forwards steps only [Olteanu 2007b, Olteanu 2007a, Sebastian 2016]. In
the case of CoreXPath, only the following steps are allowed to build the path

1.1. Communication over Streams 5

Figure 1.4: Graphic illustration of XPath axes, taken from
[Genevès & Layaïda 2006]

queries: self, child, descendant, following-sibling. What is ruled out is backwards
steps P−1. It should be noticed that the XPath axis following uses the backwards
step ancestor = (child−1)+ in its definition, so it is not purely forward.

Besides nested regular path queries, XPath supports further expressiveness rel-
evant to CEP. In particular, there are non navigational filters with data joins
[P/text() = P ′/text()] by which to compare the data values of nodes reached over
the path queries P and P ′ respectively. However, such queries are no more regular,
so they can no more be defined by nested regular path queries.

Furthermore, aggregation is supported by XPath to count the number of query
answers or to compute some statistics.

1.1.3 Certain Query Answering (CQA)

Streams can be seen as incomplete databases in which the open end can be instan-
tiated continuously. The standard notion of answers to a logical query, however,
is defined for logical structures, that is for complete databases. For incomplete
databases [Libkin 2015], the notion of certain query answers was widely studied in-
stead. These are query answers that are valid for all completions of an incomplete
database.

For instance, consider the nested regular path query below, that selects all a-

6 Chapter 1. Introduction

events on the streams that are followed by some b-event, but not necessarily imme-
diately:

following-sibling :: a[following-sibling :: b]

On the following stream with open end X, all a-events but the last five are certain
answers of the above query:

aabaabaaaaaX

The last five a-events, however, are not certain, since they are not selected on the
completion of the stream where X = ε so that no further event can be added.
The b-events, in contrast are certain non-answers for this query. The last five a-
events are called alive, since they are neither certain query answers nor certain
query nonanswers. The alive answer candidates must be buffered by any algorithm
computing the certain query answers on a stream.

Certain query answering (CQA) on streams is the problem of selecting the
certain query answers on a stream as early as possible. It was introduced in
[Gauwin et al. 2009, Gauwin 2009] under the name of earliest query answering. In
order to solve the online version of CQA, one must be able to decide the decision
version of CQA, i.e., given a stream, an event of the stream, and a query, whether
the event is a certain query answer of the query on the stream.

It turned out that the decision version of CQA is a computationally hard
problem even for tiny fragments of CoreXPath [Gauwin & Niehren 2011] and
also not feasible from the perspective of online verification [Benedikt et al. 2008,
Kupferman & Vardi 2001]. This is basically a universality problem, since it implies
reasoning about all completion of the stream.

On the positive side, CQA can be done in polynomial time for queries on streams
defined by deterministic nested word automata (NWA) [Gauwin et al. 2009]. In
theory, every nested regular path query can be compiled to an NWA, which can
then be determinized. In practice, however, the determinization takes hours, and
the results are huge, even for simple XPath queries such as child :: a/child :: b

[Debarbieux et al. 2015]. Furthermore, the streaming algorithm for deterministic
NWAs requires quadratic time per step depending on the size of the automata,
which is by far too slow given that the automata are huge.

As a consequence, practical approaches to answering path queries on streams
cannot compute the CQAs as early as possible for general nested regular path
queries. Two solutions to this difficulty were proposed.

1. In CEP systems [Mozafari et al. 2012, Grez et al. 2019] the query languages
are restricted such that the certainty of an answer candidate depends only on

1.1. Communication over Streams 7

the past of the stream but not on the future. For instance,

following-sibling :: a[descendant :: b]/following-sibling :: c

is such a query. Whether a c-event is selected only depends on whether there
exists a preceding-sibling a-event that has a b-descendant, also seen before the
c-event.

2. In Xml stream processing, the CQAs of a XPath query are approximated
as long as the stream is open. Examples for tools based on early CQA al-
gorithms that are not earliest as Olteanu’s SPEX [Olteanu 2007b] and Sebas-
tian’s QuiXPath [Debarbieux et al. 2015]. SPEX compiles the queries from
Forward CoreXPath to networks of nondeterministic transducers, while Se-
bastian compiles them to nondeterministic NWAs. Determinization is avoided
by both approaches, so that CQA remains hard for queries defined by the
class of finite state machines used there.

It is also interesting to note that sliding window approaches to CEP can detect
complex events with the delay bounded by the window’s size. Furthermore, for
queries defined by deterministic NWAs, it can be decided in PTime whether they
have k-bounded delay [Gauwin et al. 2011], so whether they can be answered with
some algorithm with a sliding window of size k. Finally, it is possible to define the
sliding window queries as part of the nested regular path queries, if one wants to
bound the delay artificially.

In the present thesis we do not want to admit so hard restrictions of class of com-
plex events as adopted by CEP. Therefore, we are ready to accept approximations of
certain query answering, for general nested regular path queries with forward steps
only. As concrete query languages we therefore adopt forward navigational XPath

3.0.

1.1.4 Quality Criteria

We next discuss the main quality criteria for algorithms querying streams. These are
online algorithms that receive the input stream incrementally. Therefore, the usual
complexity measures for offline algorithms and problems are no more appropriate.
Instead we are interested in criteria such as low latency beside of high-time efficiency,
low memory consumption. Of course, which quality can be reached depends on the
query language that is chosen. The higher its coverage the better.
Low latency. The latency of the selection of a certain query answer is the number of
events that passed since the answer became certain and its selection. The QuiXPath

8 Chapter 1. Introduction

[Debarbieux et al. 2015] tool has a very low latency in practice, but cannot always
select with zero latency. Similarly, the SPEX tool also has low latency in practice,
but only for queries without negation.
Large coverage. The QuiXPath tool covers a large part of XPath 3.0, including
the non-navigational and functional programming aspect of the language. In that
aspect QuiXPath outperforms all other tools, whose coverage remains quite limited.
High time efficiency. The per-event time spent by the query answering al-
gorithm on the stream is an important quality criterion. Experience has shown
that the per-event time complexity for queries represented by automata should
be at most linear in the size of the nondeterministic automaton. In particular,
a quadratic per-event time complexity depending on the size of the determinis-
tic NWA is too slow, as obtained by the approximation-free CQA algorithm from
[Gauwin et al. 2009]. Another important aspect is the usage of projection, so that
only relevant events that may change the state are to feed to the automaton evaluator
[Sebastian & Niehren 2016, Benzaken et al. 2013]. Furthermore, the time for pars-
ing the stream should not be included in the measurement [Debarbieux et al. 2015].
This is particularly important if many queries are to be answered on a same stream.
Low memory consumption. Streaming query answering algorithms must mem-
orize the alive answer candidates at every event, but may also need to buffer some
more candidates if the certainty of some answers or nonanswers could not be de-
tected as soon as possible. So the lower the latency of selection and rejection, the
lower is the memory consumption.

1.2 Problem: CQA on Hyperstreams

A frequently blocking aspect for query answering on streams is whether the set of
certain query answers may be produced in any arbitrary order, or whether one needs
to return it as a list in a fixed order. We argue that this problem can be solved by
outputting hyperstreams, which however then requires to develop CQA algorithms
for hyperstreams.

1.2.1 Hyperstreams

Returning the set of certain query answers in a fixed order has the advantage that
the set is presented in a unique manner. However, fixing an order may quickly spoil
the latency of the whole algorithm, since a single certain query answer with a large
delay may delay all other certain query answers, that can be output only after it.

In the context of XPath, this problem is well known. The answers sets can be

1.2. Problem: CQA on Hyperstreams 9

temp

time

3.1

celsius

21.3

temp

time

3.9

celsius

41.4

hum

time

4.1

percent

60.3

temp

time

4.7

celsius

39.3

temp

time

5.5

celsius

39.3

hum

time

5.6

percent

18.4

Figure 1.5: A data hedge produced by two sensors.

presented in any order when XPath is used within XQuery transformations, while
it must be presented in the order of the input document when within XPath is
used within Xslt transformations. So even though standardized, XPath has two
different semantics.

In the context of CEP, this problem is equally relevant. To see this, we consider
an example where two streams originating from some sensors need to be merged
in some order. We argue that this order should not be fixed, if the merged stream
is to be produced with low latency. Let’s consider the example with two sensors
sending timestamped information from [Grez et al. 2019]. The first sensor measures
the temperature and the second the humidity in some room. Once merged into a
single stream it is easier to raise fire alarms based on both informations.

The complete sequence of events that are eventually sent by the sensors is given
in increasing temporal order in Figure 1.5. Each event is a data tree whose data
values are strings over UTF-8. Each node of a data tree carries two data values, its
label and its value. The root node of the first event has label temp and the empty
value. Its leftmost child has the label time and the value 3.1. Its next sibling in turn
has label celsius and value 21.3. Now suppose that the events on the temperature
stream were delayed for some technical reason, so that the last available event has
timestamp 3.9, while all humidity events are available. Furthermore, we assume
that the events on both streams always arrive in the order of increasing timestamps.
How could we then merge the two streams into a single one? If the merger wants to
produce a merged stream in which the order of the timestamps is increasing, then it
cannot output the already available humidity events with timestamps 4.1 and 5.6.
So it will either have to buffer them, which increases the latency and the memory
consumption, or discard these events at the cost of losing data.

We subscribe to a third solution which is to produce hyperstreams as output as
proposed by [Labath & Niehren 2013]. These are multiple streams with references,
of which another variant was introduced in [Maneth et al. 2015]. In the example,
we would like to output the hyperstream in Figure 1.6 as the result of the merging
process. This hyperstream, named U , has three hedge variables: X stands for
all temperature events with timestamps in the interval]3.9, 4.1], variable Y for all

10 Chapter 1. Introduction

U =

temp

time

3.1

celsius

21.3

temp

time

3.9

celsius

41.4

X

hum

time

4.1

percent

60.3

Y

hum

time

5.6

percent

18.4

Z

Figure 1.6: A hyperstream for the merged stream with temperature events until
time 3.9 and humidity events until time 5.6.

U =

temp

time

3.1

celsius

21.3

temp

time

3.9

celsius

41.4

X

hum

time

4.1

percent

60.3

Y

hum

time

5.6

percent

18.4

Z

Y =

temp

time

4.7

celsius

39.3

Y ′

X = ε

Figure 1.7: Closing X and instantiating Y

temperature events in the interval]4.1, 5.6], and Z for all temperature events with
timestamps in the interval]5.6,∞[. These hedge variables are actually references to
streams containing data trees.

The merger will know later that there is no temperature event in]3.9, 4.1[, and
that the first temperature event in]4.1, 5.6] is the one with timestamp 4.7 in Fig-
ure 1.5. This is achieved by binding the values of the variables as in Figure 1.7. The
symbol ε is used to denote the empty data hedge and the variable Y ′ refer to all the
eventual temperature events with timestamp in]4.7, 5.6]. The variables U,X and Y
are called bound since they have patterns associated to them. The variables Y ′ and
Z are called free since they are not bound. This hyperstream is compression-free,
since each of the bound variable appears at most once in the right-hand sides of the
equations. It is linear in that each of its free variables appear at most once in the
right-hand sides of the equations.

1.2.2 Finding Certain Query Answers

A natural question is: given a query and a hyperstream, how to find its certain query
answers on the hyperstream? For instance, one may be interested into detecting
fire alarms on the hyperstream obtained from the merge of the temperature and

1.3. Contributions 11

humidity streams. This could be formulated into a query that selects all nodes x of
the data hedge described by the hyperstream, for which there is a node y such that
x is a temperature event with more than 40◦ C and y a humidity event with less
than 20 percent, such that y follows x or vice-versa. Considering an Xml stream
that represents the data hedge in Figure 1.6, the following XPath query expresses
the complex event:

Q = Q1 union Q2

Q1 = /child :: temp[F1][following-sibling :: hum[F2]]

Q2 = /child :: hum[F2]/following-sibling :: temp[F1]

F1 = child :: celsius[number(text()) > 40]

F2 = child :: percent[number(text()) < 20].

Fire alarms should be detected independently of how the free variables Y ′ and
Z will be instantiated. Thus the temperature event with timestamp 3.9 is a certain
answer of query Q on the hyperstream in Figure 1.6, since it has 41.4◦ C and is
followed by the humidity event with timestamp 5.6 having a percentage of 18.4.

1.3 Contributions

We now expose the main contributions of this dissertation. While searching for
efficient algorithms for answering regular path queries on hyperstreams, we found
some new results improving the state of the art on CQA on streams to our own
surprise.

1.3.1 Small Deterministic Automata for Regular Path Queries

The only previous algorithms for CQA on streams without approximation
[Gauwin et al. 2009] applies to queries defined by deterministic NWAs. The first rea-
son why this algorithm could not be applied in practice is related to the determiniza-
tion algorithm for NWAs from [Alur & Madhusudan 2009, Debarbieux et al. 2015],
see also Section 2.4.3. The NWAs obtained from the navigational XPath queries
of the XPathMark benchmark with the compiler from [Debarbieux et al. 2015,
Sebastian 2016] are often not deterministic and can not be determinized with this
algorithm neither. For simple queries of the benchmark, the determinization al-
gorithm produces huge automata, while for others its termination could not be
observed after few hours.

Our first contribution that we published in [Boneva et al. 2020] shows that
all navigational forward XPath queries from the XPathMark benchmark can be

12 Chapter 1. Introduction

compiled to small deterministic NWAs nevertheless. The trick is to use step-
wise hedge automata (SHAs) as intermediates. These are a variant of step-
wise tree automata [Carme et al. 2004] that we introduce. SHAs are a mixture
of standard tree automata and finite state automata on words (Nfas), avoiding
the trouble with the notion of determinism of the quite different notion hedge
automata from [Comon et al. 2007, Murata 2000, Thatcher 1967] pointed out in
[Martens & Niehren 2007] (see also Section 3.3.3). SHAs have a natural notion
of bottom-up and left-to-right determinism, mixing the notions of bottom-up deter-
minism of tree automata with the notion of left-to-right determinism for Nfas. In
contrast to NWAs, however, they do not support any form of top-down determinism.

It turns out that the determinization algorithm for NWAs from
[Alur & Madhusudan 2009, Debarbieux et al. 2015] behaves very badly for NWAs
that do nontrivial work in a top-down manner. What this means can be formalized
syntactically by not having the single-entry property. In contrast, all NWAs
obtained by compilation from SHAs have the single-entry property (up to minor
details). A different compiler to that from [Debarbieux et al. 2015] for mapping
path queries to NWAs can be obtained by compiling them in a first step to SHAs
as intermediates, and then compiling the SHAs obtained to NWAs. The NWAs ob-
tained this way have the single-entry property. Using this different compiler indeed
solves the problem, since the the NWAs obtained thereby can be determinized in
practice by the algorithm [Alur & Madhusudan 2009, Debarbieux et al. 2015].

An alternative solution can be obtained by determinizing the SHA obtained from
the path queries directly, and then compiling them to NWAs while preserving the
determinism. This alternative solution has the advantage that it permits to apply
unique minimization to the deterministic SHAs, while unique minimization is not
available for deterministic NWAs [Alur et al. 2005].

A further difficulty that we needed to overcome here is worth mentioning.
The NWAs used by [Debarbieux et al. 2015] are symbolic, using descriptors for
the complex labels of Xml nodes. These descriptors needed to eliminated be-
fore determinization, increasing the size of the NWAs considerably. We show
in this thesis that we can compile path queries to NWAs with else rules, by
adapting the previous compiler. We then lift the determinization algorithm of
[Alur & Madhusudan 2009, Debarbieux et al. 2015] to NWAs with else rules, thus
avoiding any size increase all over. See Section 2.4.3 for further details.

1.3. Contributions 13

1.3.2 Efficient CQA Algorithm on Streams

The second problem with the approximation-free CQA algorithm on Xml streams
from [Gauwin et al. 2009] is its high polynomial time complexity. Given a query
defined by a deterministic NWA this CQA algorithm requires quadratic time per
event in the size of the NWA.

Now that we have deterministic NWAs of small size for the queries of interest,
one can hope to make this algorithm run in practice. The quadratic running time,
however, is still too big. To see this we note that the sizes of the deterministic
automata for the queries A1-A8 for the XPathMark benchmark is roughly between
400 and 2500. Therefore quadratic factor per event will be between 4002 = 160.000

and 62.500.000.000, which clearly is too big.
We contribute in Chapter 4 a new algorithm that we did not yet submit to a

conference. This algorithm can find the certain query answers of a monadic query
defined by a deterministic SHA in combined linear time in the size of the automaton
and the stream, plus a polynomial time depending of the number certain query
answers. The per-event time of our streaming algorithm is linear in the number
of states of the SHA, if the polynomial time for the actual creation of the certain
queries answers is taken apart. The number of states for the automata obtained
for the XPathMark benchmark is between 38 and 124, so the factor per event is
reasonably small for our new algorithm.

The shift of the model of deterministic automata from NWAs to SHAs is one
of the keys that led us to the finding of the new algorithm for CQA, the first ef-
ficient algorithm without approximation. It makes us believe that CQA may be
feasible in practice, in contrast to what we believed before. This conjecture still
needs to be proven experimentally. We implemented a prototype of our algorithm,
but it needs more work to become competitive with the best existing streaming
algorithm for XPath queries from [Sebastian 2016]. In particular, we need to de-
velop and integrate a projection technique for SHAs for replacing those for NWAs
[Sebastian & Niehren 2016].

1.3.3 Complexity of CQA on Hyperstreams

As the third contribution, we determine the complexity of the decision version
of CQA problem for hyperstreams [Boneva et al. 2019]. We show that CQA is
Exp-complete, if queries are represented by nondeterministic SHAs, and Pspace-
complete in the case of SHAs. We also obtain a positive result for linear hyper-
streams without compression, where CQA is in PTime.

Establishing the lower bounds is not very difficult, when knowing the complexity

14 Chapter 1. Introduction

classes of standard automata problems, in particular of the universality problem and
of tree automata and of finite state automata. Also the nonemptiness problems for
a number of automata is relevant here. For the upper bounds some more work is
needed. A hyperstream can be identified with a compressed pattern P for data
hedges, whose variables do also denote data hedges. Let Inst(P) be the set of all
completions of hyperstream P , that is the set of ground instances of the pattern.

We first reduce CQA for general queries to CQA for Boolean queries. For the
latter, CQA can be identified with the problem of regular pattern inclusion, i.e.
whether Inst(P) ⊆ L(A) for a given compressed pattern for unranked trees P and
an SHA A with language L(A). Via determinization regular pattern matching can be
reduced to the problem of regular pattern matching, i.e. whether Inst(P)∩L(A) 6= ∅.

What is more tedious is to deal with the unrankedness of data hedges, and
that pattern variables also match data hedges and not only unranked trees. The
automata for the data hedges are then taken from the class of SHAs. The general
idea to get rid of the unrankedness is to use a reduction to the case of ranked
trees. But then variables for hedges have to be replaced by variables for contexts.
Furthermore, one has to deal with the fact, that not all ranked trees are encodings
of unranked trees. We do so by considering an generalized CQA problem, where
one can express regular constraints on the values of the variables.

1.3.4 An Approximation Algorithm for CQA on Hyperstreams

The last contribution is the first algorithm that approximates CQA on hyperstreams
for queries defined by SHAs. Our algorithm is in polynomial time for compression-
free hyperstreams, and correct in that it computes only certain query answers at
any event. It applies to the general case, where the CQA problem is Exp-complete.
However when restricted to the simpler case where the hyperstreams are linear and
compression-free and that SHAs are deterministic, it is complete in that it outputs
all certain query answers at every event.

As a first approximation we make the hyperstreams linear by replacing all occur-
rences of free variables in the hyperstream by fresh variables. In the third approxi-
mation we make hyperstreams compression free, by replacing its bound variables by
fresh bound variables. For the second approximation step, we introduce the notion
of strong certainty by exploiting the accessibility relation of the SHAs S defining
the query, mainly in the same manner than in the efficient streaming algorithm for
SHAs. The idea is to distinguish sets of states q of S that are safe for a hyperstream
in that S must reach some final state when starting with q for all completions of
the hyperstream. For instance, consider the hyperstream X = Y P where Y is a free

1.4. Further Related Work 15

variable and P a pattern. If Q is safe for P then the set of states that are safe for
X is:

safe(Q) = {q | not exists q′ 6∈ Q. acc(q, q′)}

where acc is the accessibility relation of the SHA S. The idea of safe states was first
introduced in [Gauwin et al. 2009, Gauwin 2009] but there with respect to NWAs
instead of SHAs. The set safe(Q) can be computed in linear time if S is a SHA. In
contrast if S was an NWA, then it requires quadratic time for each Q after a shared
cubic time precomputation.

It remains to solve the problem of strong certainty for linear and compression-free
hyperstreams. This is done by evaluating the hyperstream in the nesting monoid of
the SHA, whose domain consists of the functions mapping sets of states to sets of
states. Free variables such as Y are interpreted by the function safe in the nesting
monoid. The concatenation operator of the hyperstreams is then interpreted as
function composition in the nesting monoid. And finally, we define how a tree
pattern < P > that is constructed by the nesting operator can be interpreted in the
nesting monoid.

What remains to be done is to turn the decision algorithm for CQA on hyper-
streams into an online algorithm, while generalizing on the online algorithm that we
developed in the case of simpler streams.

1.4 Further Related Work

Nested regular path queries and first-order logic. Nested regular path queries
on unranked data trees can express all first-order queries built from atomic formulas
descendant(x, y), following-sibling(x, y), and text(x) = ’constant’. To see this,
we note that the language of nested regular path queries for unranked data trees is
basically the same as the navigational core of XPath 3.0 which is known to subsume
the above first-order logic [Marx 2004]. This is in contrast to CoreXPath, where the
Kleene star is not permitted. And the Kleene star is needed to express first-order
queries such as (child :: a)∗ that are called conditional axes by Maarten Marx.

Conversely, nested regular path queries can express some queries which are not
first-order definable, such as (child :: a/child :: a)∗. These queries are still definable
in the monadic second-order logic, but not all of monadic second-order logic is
captured by nested regular path queries [Bojańczyk et al. 2006, Samuelides 2007].

XPath. We also mention that XPath queries with data joins cannot be defined
in the above first-order logic, but can be defined in the first-order logic in which
comparison of data values text(x) = text(y) are admitted as atomic formulas. When

16 Chapter 1. Introduction

doing so, no more all first-order queries can be defined by nested regular path queries.
This lack of expressiveness is solved in XPath 3.0 by the addition of variables,
existential quantifiers, and universal quantifiers, since XPath 2.0 [Filiot et al. 2007].

XPath fragments other than CoreXPath have been explored
[Benedikt & Koch 2008]. Most of these fragments were only studied in the-
ory, and the percentage of the real-world most used queries that they contain is not
really clear. Recently [Baelde et al. 2019] designed a benchmark for the XPath

most used queries in practice, extracted from projects with Xslt or XQuery

components. They show that these fragments – including CoreXPath – cover only a
small part of the XPath queries written in those projects. However, they proposed
some extensions to these fragments that do not really affect their satisfiability but
extends their coverage a lot.

Certain query answering on streams. In the context of stream processing,
certain query answers were called answers that are safe for selection and certain
query non-answers were called safe for rejection [Gauwin & Niehren 2011]. Cer-
tain query non-answers were studied for fast failure [Benedikt et al. 2008] and for
reducing the memory consumption of streaming systems. As for CQA, certain
query nonanswers on streams has been shown to be computationally hard even for
queries defined in tiny fragments of first-order logic [Gauwin & Niehren 2011]. It
was also shown to be hard in the context of online verification [Benedikt et al. 2008,
Kupferman & Vardi 2001].

Streams with references. Similar objects to hyperstreams have been studied
before. For instance, the idea of producing trees with references arose in the con-
text of Active Xml [Abiteboul et al. 2008], but even much earlier in functional
programming languages with futures [Halstead 1985, Niehren et al. 2006].

Hyperstreams with compression. Our notion of hyperstreams admits compres-
sion, when bound references are used multiply, similarly to singleton context-free
tree grammars [Plandowski 1995]. When programming with streams, it seems nat-
ural that references to streams can be used more than once. For instance, if a latex
document is input of which the layout and the table of content are output, an ex-
ample that stems from [Labath & Niehren 2013]. Or consider a transformation as
in [Maneth et al. 2015] that reads a list on the input stream X and outputs a pair
<< X >< X >> with twice the input. In this case, outputting the pair on a hy-
perstream with compression is very natural. The shared occurrences of the bound
variable X of the output are then instantiated incrementally with reading the input.

1.5. Publications 17

1.5 Publications

Two of the four contributions of this thesis have been peer-reviewed and published in
the proceedings of international computer science conferences. Three publications
were obtained of which two are included in this thesis. They can be found in the
following chapters:

Chapter 3 Our work on the compilation of nested regular path queries to small
deterministic [Boneva et al. 2020] got accepted at the International Computer
Science Symposium in Russia (CSR’2020).

Chapter 6 Our study of the complexity of regular pattern matching and inclu-
sion for compressed tree patterns with context variables [Boneva et al. 2019]
is published in the proceedings on the International Conference on Language
and Automata Theory and Applications (LATA’2019).

Not included Before studying the complexity of CQA on hyperstreams in the case
of data trees in Chapter 6 we considered the case of words. We determined
the complexity of regular pattern matching and regular pattern inclusion on
compressed string patterns [Boneva et al. 2018]. These results were published
in the proceedings of the International Conference on Reachability Problems
(RP’2018) but not included in this thesis.

1.6 Organization of the thesis

Chapter 2 introduces the main concepts that will be used throughout this thesis. It
defines the notions of nested words, patterns and queries, but also different classic
automata models such as finite-state automata, nested word automata and stepwise
tree automata. Regular expressions for nested words are discussed there, as well as
the query languages XPath and Fxp.

In Chapter 3 we present our model of stepwise hedge automata, and study it
under different aspects. In particular we show how it is related to the previously
introduced automata model. We also provide a compiler from nested regular expres-
sions to stepwise hedge automata, and later show how to obtain small deterministic
stepwise hedge automata. Finally we show experimentally that deterministic nested
word automata obtained for nested regular expressions can be very small when they
are built from stepwise hedge automata.

We present our new algorithm for certain query answering on streams in Chap-
ter 4. We prove the correctness of this algorithm and establish its worst-case running
time.

18 Chapter 1. Introduction

Hyperstreams are formally introduced in Chapter 5. Then in Chapter 6, we study
the complexity of certain query answering on compressed tree patterns with context
variables. The latter are a type of hyperstreams into which general hyperstreams of
hedges can be converted.

Finally in Chapter 7, we get back to the more general hyperstreams of hedges,
and study different approximations of the certain query answering problem. We
introduce linear certainty and strong certainty, and show in which cases they fit the
most.

Chapter 2

Preliminaries

Contents
2.1 Words, Trees, Nested Words and Languages 19

2.1.1 Words . 19

2.1.2 Trees . 20

2.1.3 Nested Words . 21

2.2 Patterns . 21

2.2.1 Definition . 21

2.2.2 Identification to Logical Structures 22

2.3 Queries . 23

2.3.1 V-Structures and Sequenced V-Structures 23

2.3.2 Certain answers and non-answers 25

2.4 Automata and Regular Expressions 26

2.4.1 Word Automata . 26

2.4.2 Stepwise Tree Automata (STAs) 27

2.4.3 Nested Word Automata (NWAs) 28

2.4.4 Nested Regular Expressions 31

2.5 FXP . 35

2.1 Words, Trees, Nested Words and Languages

2.1.1 Words

An alphabet Σ is a set of elements called symbols. A word w of length n ≥ 0 over Σ is
an element of Σn. As usual, we write a1 . . . an to denote the word (a1, . . . , an) ∈ Σn,
and Σ∗ =

⋃
i≥0

Σn for the set of words over Σ. The empty word ε is the word of

length 0. The concatenation of two words w = a1 . . . an and w′ = b1 . . . bm is the
word a1 . . . anb1 . . . bm and is noted w·w′ or ww′ when w and w′ are clearly separated
in the context. A language of words is a set of words. For instance, Σ∗ is a language
of words.

20 Chapter 2. Preliminaries

b

c a

a

b

a

Figure 2.1: Graphical representation of the hedge in Example 1

2.1.2 Trees

In contrast to words that only have a horizontal structure, trees permit vertical
structuring.

2.1.2.1 Ranked Trees

Ranked trees are trees where every symbol has a fixed number of subtrees. A ranked
signature Σ = (Σ, arity) is a tuple where Σ is an alphabet, and arity : Σ → N a
function associating a natural with each symbol of Σ. For a symbol f ∈ Σ, we call
this natural its arity. For all m ≥ 0, we write Σ(m) to denote the set of symbols
in Σ with arity m, that is Σ(m) = {f ∈ Σ | arity(f) = m}. A symbol of arity 0 is
called a constant.

The set TΣ of ranked trees over Σ is defined using the following abstract syntax:

t ∈ TΣ ::= f(t1, . . . , tn)

where f ∈ Σ(n) for some n ≥ 0 and t1, . . . , tn ∈ TΣ.
In the above definition, t1, . . . , tn are the children of the tree f(t1, . . . , tn). Any

atomic tree a() ∈ TΣ will be identified with the constant a ∈ Σ(0).

2.1.2.2 Hedges And Unranked Trees

Unranked trees do not have the limitation in the number of children, to which ranked
trees are subjected. Moreover, they can be concatenated in order to form hedges.
Let Σ be an alphabet. The set of hedges HΣ is obtained from the abstract syntax

H,H ′ ∈ HΣ ::= ε | 〈aH〉 | HH ′

The set of unranked trees UΣ is the subset of hedges of the form 〈aH〉.

Example 1 Let Σ = {a, b, c}. The hedge 〈a〈b〈a 〉〉〉 〈b〈c〉〈a 〉〉 is graphically repre-
sented in Figure 2.1.

2.2. Patterns 21

2.1.3 Nested Words

Nested words are words having both a linear and hierarchical – or nesting – structure.
Let 〈 and 〉 be symbols that we respectively call opening parenthesis and closing

parenthesis. A nested word over some alphabet Σ disjoint from {〈, 〉} is a word
generated by the following abstract syntax:

w,w′ ∈ nWordsΣ ::= ε | a | 〈w〉 | w · w′ where a ∈ Σ

A language of nested words is a set of nested words, and the set of nested words
over Σ is denoted by nWordsΣ.

Our definition of nested words restricts the more general one that can usually
be found [Alur & Madhusudan 2009]. First, we only consider the well-nested forms,
that is, only nested words where every opening parenthesis is properly closed and
every closing parenthesis is properly opened. Second, the only markers of the nesting
structure are 〈 and 〉, and not elements of general alphabets.

Nested words are a generalization of words and hedges. Any hedge over some
alphabet Σ can be identified with the nested word where all the occurrences of 〈a
for a ∈ Σ are replaced by 〈a. For instance, a hedge 〈a〈b〉〉〈c〉 is considered as equal
to the nested word 〈a〈b〉〉〈c〉. For this reason, we consider hedges and unranked
trees as nested words, and will write them using the syntax of nested words.

2.2 Patterns

2.2.1 Definition

Let V be a set of elements that we call pattern variables, and Σ an alphabet. A
nested (word) pattern over Σ is a nested word over Σ]V. The set of nested patterns
over Σ is denoted nPatternsΣ. The set of pattern variables appearing in a pattern
ρ is denoted fv(ρ). A nested pattern is called linear if all of its free variables occur
at most once in its definition. The set of linear nested patterns over Σ is denoted
nLinPatternsΣ. String patterns over Σ are the restriction of nested words over Σ]V
to words over Σ] V.

Let µ be an assignment from V to nPatternsΣ. An instance of a pattern in
nPatternsΣ is a nested pattern defined by the function J·Kµ so that for all ρ, ρ′ ∈
nPatternsΣ, w ∈ nWordsΣ, X ∈ V:

JXKµ = µ(X)

JwKµ = w

Jρρ′Kµ = JρKµJρ′Kµ

22 Chapter 2. Preliminaries

〈〉

a 〈〉

b

〈〉

c

〈〉

a X

Figure 2.2: Relations between the positions of ρ = 〈a〈b〉〈c〉〉〈aX〉

Let ρ be a nested pattern. A ground instance of ρ is a nested word JρKµ where
µ : fv(ρ) → nWordsΣ maps every pattern variable of ρ to some nested word. We
write Inst(ρ) = {JρKµ | µ : fv(ρ)→ nWordsΣ} to denote the set of ground instances
of ρ.

2.2.2 Identification to Logical Structures

Nested patterns can also be represented as logical structures, using the standard
first-child and next-sibling relations.

Example 2 Figure 2.2 shows a nested pattern as a logical structure. Its domains
are positions represented by circles, while the different relations between the positions
(first-child, next-sibling, child) are represented by arcs between circles. The position
with no arc pointing to it is called the root.

Let Σ be an alphabet and ρ ∈ nPatternsΣ a nested pattern. The set of positions
of ρ, written Pos(ρ), is a set of elements on which the binary relations fcρ and
nsρ are defined. These relations are respectively called first-child and next-sibling.
Another useful binary relation is the child relation, defined as chρ = fcρ◦(nsρ)∗. Let
π, π′ ∈ Pos(ρ) be two positions of ρ. We call π the parent of π′ if (π, π′) ∈ chρ. In
this case, π′ is also the child of π. We call π the previous sibling of π′ if (π, π′) ∈ nsρ.
We also say that π′ is the next-sibling of π in this case. The child and next-sibling
relations impose every position to have exactly one parent and at most one next
sibling, except a special node that we call the root position that has no parent –
but may have a next sibling. The root position has no previous sibling neither. We
denote it by root(ρ).

A label of ρ is an element of Σρ = Σ ∪ fv(ρ). Any label ` defines the set
labρ` ⊆ Pos(ρ) of positions. Furthermore, for any position π ∈ Pos(ρ), there exists
at most one label ` called the label of π, that satisfies π ∈ labρ` . A node is a position
with no label. The set of nodes of ρ is written Nodes(ρ), while the set of labeled
positions of ρ is LPosΣρ(ρ). We finally denote the set of positions labeled only by
elements of some set Σ′ ⊆ Σρ by LPosΣ′(ρ).

2.3. Queries 23

We now show how the positions and labels are related to ρ. For any patterns
ρ′, ρ′′ and label a ∈ Σ ∪ fv(ρ),

ρ = ε iff Pos(ρ) = fcρ = nsρ = ∅ and ∀` ∈ Σρ.labρ` = ∅

ρ = a iff

{
Pos(ρ) = {root(ρ)}, {root(ρ)} = labρa, fcρ = nsρ = ∅
and ∀` ∈ Σρ \ {a}.labρ` = ∅

ρ = 〈ρ′〉 iff

{
Pos(ρ) = {root(ρ)}] Pos(ρ′), nsρ = nsρ

′
,

fcρ = fcρ
′ ∪ {(root(ρ), root(ρ′))} and ∀` ∈ Σρ.labρ` = labρ

′

`

ρ = ρ′ρ′′ iff

Pos(ρ) = Pos(ρ′)] Pos(ρ′′), ∀` ∈ Σρ.labρ` = labρ

′

` ∪ labρ
′′

` ,

fcρ = fcρ
′] fcρ

′′
, ∃!π ∈ Pos(ρ′).(root(ρ′), π) ∈ (nsρ)∗,

π has no next-sibling and nsρ = nsρ
′ ∪ nsρ

′′ ∪ {(π, root(ρ′))}

Example 3 Consider for instance the nested pattern ρ = 〈a〈b〉〈c〉〉〈aX〉 graph-
ically represented in Figure 2.2. Its positions are represented as circles, and the
colored circles are the nodes. The elements of the first-child relation are linked by
doubled arrows, pointing to the child. The tuples in the next-sibling relation are
linked by dashed arrows, originating from the previous sibling. We also added the
child relation, whose elements are linked by dotted arrows – pointing to the child.
Furthermore, for all ` ∈ Σρ, labρ` is the set of positions – circled nodes – where ` is
written.

We also define the descendant dsρ = (chρ)+ and following-sibling fsρ = (nsρ)+

relations. Furthermore, we allow additional properties not related to fcρ and nsρ to
be defined on patterns. For this, we define a set Lρ of properties `ρ ⊆ Pos(ρ). If
Lρ 6= ∅, we say that ρ has complex labels.

2.3 Queries

2.3.1 V-Structures and Sequenced V-Structures

We consider an infinite set W of elements called query variables, totally ordered by
≤W . Let Σ be an alphabet, ρ a pattern over Σ, and α a partial function from W to
the set LPosΣ(ρ) of labeled positions of ρ where the label is an element of Σ.

We write ρ∗α to denote the pattern over Σ×2W where any position π ∈ Pos(ρ)

labeled by some a ∈ Σ is replaced by a new position π′ labeled by (a, α−1(π)),
while the other positions are not changed. ρ ∗ α is called a W-structure over Σ

[Straubing 1994].

24 Chapter 2. Preliminaries

〈〉

a 〈〉

b

〈〉

c

〈〉

a X

π1

π2 π3

π4 π6

π5

π7

π8 π9

Figure 2.3: Pattern structure with node names

Example 4 Consider the nested pattern ρ = 〈a〈b〉〈c〉〉〈aX〉 represented in
Figure 2.3 where the positions are written next to the circles that represent them.
Let x, y ∈ W be variables and α a function that maps x to π4 and y to π8. Then
ρ ∗ α = 〈(a, ∅)〈(b, {x})〉〈(c, ∅)〉〉〈(a, {y})X〉.

Let n ≥ 0 and W ′ = {x1, . . . , xn} (W a finite set of query variables satisfying
the order x1 ≤W x2 ≤W . . . ≤W xn. Let Σ′ ⊆ Σ be a subset of Σ and α : W ′ →
LPosΣ′(ρ) a total function from W ′ to the positions labeled by elements of Σ′. We
write ¬W ′ to designate the set {¬x | x ∈ W ′}. We define ρ?α as the nested pattern
over Σ ∪W ′ ∪ ¬W ′ where every position π ∈ LPosΣ′(ρ) is replaced by a set of new
positions {π0, π1 . . . πn} such that:

• π0 is labeled by a ∈ Σ iff π is labeled by a

• for all 1 ≤ i ≤ n, πi is labeled by xi if α(xi) = π and by ¬xi otherwise

• for all 0 ≤ i < n, (πi, πi+1) ∈ nsρ?α

• if π has a parent π′, then

{
(π′, π0) ∈ chρ?α if π′ 6∈ LPosΣ(ρ)

(π′n, π0) ∈ chρ?α otherwise

• if π has a next sibling π′, then

{
(πn, π

′) ∈ chρ?α if π′ 6∈ LPosΣ′(ρ)

(πn, π
′
n) ∈ chρ?α otherwise

• if π has a previous sibling π′, then

{
(π′, π0) ∈ nsρ?α if π′ 6∈ LPosΣ′(ρ)

(π′n, π0) ∈ nsρ?α otherwise

ρ ? α is called a sequenced W ′-structure with respect to Σ′. If Σ′ is not specified,
then the sequenced W ′-structures are built with respect to Σ.

Example 5 Back to Example 4, assume that x ≤W y and let Σ′ = {a, b}. The
sequenced W ′-structure ρ ? α with respect to Σ′ equals

〈a ¬x ¬y 〈b x ¬y〉 〈c〉〉 〈a ¬x y X〉

2.3. Queries 25

.

Lemma 1 For all W ′ ⊆ W, any sequenced W ′-structure contains exactly one oc-
currence of each element of W ′.

The property expressed in Lemma 1 is called the canonicity of W ′-structures.

2.3.2 Certain answers and non-answers

LetW ′ (W be a finite set of query variables, and ρ ∈ nPatternsΣ a nested pattern.

Definition 1 A candidate of ρ with (query) variables in W ′ is a partial function
from W ′ to Pos(ρ).

We write [x1/π1, . . . , xn/πn] to denote any candidate α mapping variables in
W ′ to positions, where {x1, . . . , xn} is the subset of W ′ for which α is defined and
α(xi) = πi for all 1 ≤ i ≤ n. The set of candidates of ρ with variables in W ′ is
denoted by CW ′(ρ). A candidate is called complete if it’s a total function.

Definition 2 A query Q with alphabet Σ and (query) variables in W ′ is a function
that associates any nested word w ∈ nWordsΣ with a subset of CW ′(w).

The set of query variables of a query Q is also written fv(Q). The language
of Q, denoted L(Q), is the set of sequenced fv(Q)-structures over Σ that equals
{w ? α | w ∈ nWordsΣ, α ∈ Q(w)}.

A boolean query Q over Σ is a query with no variables, that is fv(Q) = ∅. Let
Q be a boolean query over Σ. Therefore, for any nested word w ∈ nWordsΣ, the
only candidate that may be part of Q(w) is the empty candidate, written []. Remark
that the language of Q is a set of nested words, that is L(Q) ⊆ nWordsΣ, and that
if w 6∈ L(Q), then Q(w) = ∅ 6= {[]}.

We next formalize the notions of certain query answers and non-answers
on nested patterns. For streams, these definitions coincide with the notions
of earliest query answers from [Gauwin & Niehren 2011] and fast-failure from
[Benedikt et al. 2008], respectively.

Let Q be a query over Σ and ρ ∈ nPatternsΣ a pattern.

Definition 3 A candidate α of ρ is a certain query answer for Q if for all assign-
ment µ : fv(ρ)→ nWordsΣ, the instance JρKµ ? α is in L(Q).

Definition 4 A candidate α of ρ is a certain query nonanswer for Q if for all
assignment µ : fv(ρ)→ nWordsΣ, the instance JρKµ ? α is not in L(Q).

Remark that a certain query answer is always a complete candidate, while a
certain nonanswer can be of any type.

26 Chapter 2. Preliminaries

2.4 Automata and Regular Expressions

We now recall the models of word automata, stepwise tree automata and nested
word automata.

2.4.1 Word Automata

Definition 5 A (nondeterministic) finite-state automaton (Nfa) F is a tuple F =

(Q,Σ,∆, I, F) where Q is a set of states, Σ an alphabet, I, F ⊆ Q are respectively
the sets of initial states and final states, and ∆ ⊆ Q × Σ ∪ {ε} × Q is a transition
relation.

The Nfa F is said deterministic, or a Dfa, if I is a singleton and ∆ can be repre-
sented as a function from Q × Σ to Q. Let q1, q2 ∈ Q be states of F . The set of
words that can be read by F from q1 to q2, written Lq1,q2(∆), is defined by

Lq1,q2(∆) = {ε | if q1 = q2 or (q1, ε, q2) ∈ ∆} ∪ {a ∈ Σ | (q1, a, q2) ∈ ∆}
∪
⋃
q3∈Q Lq1,q3(∆) · Lq3,q2(∆)

where Lq1,q3(∆) · Lq3,q2(∆) stands for the concatenation of the sets Lq1,q3(F) and
Lq3,q2 for some state q3. The language of F is defined as the set of words that can
be read from some initial state of F to some final F , and is denoted by:

L(F) =
⋃

q1∈I,q2∈F
Lq1,q2(F).

Given the alphabet Σ, a regular expression over Σ is an expression satisfying the
following abstract syntax:

reg, reg′ ::= ∅ | ε | a | reg + reg′ | reg · reg′ | reg∗

where a ∈ Σ. It is well-known that any regular expression defines a language
recognized by an Nfa, and vice-versa.

Let F = (Q,Σ,∆, I, F) and F ′ = (Q,Σ,∆, I, F) be Nfas. The product of
F and F ′ is the automaton (×F ,F ′) = (Q × Q′,Σ,∆F×F ′ , I × I ′, F × F ′) where
∆F×F ′ = {((q1, q

′
1), a, (q2, q

′
2)) | (q1, a, q2) ∈ ∆ and (q′1, a, q

′
2) ∈ ∆′}. Note that

F×F ′ recognizes the intersection of the languages of F and F ′, that is, L(F×F ′) =

L(F) ∩ L(F ′).
For every F = (Q,Σ,∆, I, F), one can obtain a Dfa detF recognizing the

same language than F . The process for obtaining detF is called determinization.
The easiest way for obtaining detF is to set detF = (2Q,Σ,det ∆, {I}, {Q′ ⊆ Q |

2.4. Automata and Regular Expressions 27

q〈〉

q2

q1

b, c

q1, q2

q1, q2

a

Figure 2.4: Example of dSTA over {a, b, c}

Q′ ∩ F 6= ∅}) and det ∆ = {(Q′, a,Q′′) | Q′, Q′′ ⊆ Q and ∃q′ ∈ Q′, q′′ ∈ Q′′ |
(q′, a, q′′) ∈ ∆}.

2.4.2 Stepwise Tree Automata (STAs)

We now recall stepwise tree automata STAs1, that allow to recognize languages
of (unranked) trees. The definition that we give here is adapted to our syntax of
unranked trees, seen as nested words.

Definition 6 A (nondeterministic) stepwise tree automaton [Carme et al. 2004] is
a tuple T = (Q]{q〈〉},Σ,∆Σ,∆Q, F) where Q is a set of states and q〈〉 the tree initial
state, Σ an unranked alphabet, F ⊆ Q the set of final states, ∆Σ ⊆ {q〈〉} × Σ × Q
the set of initial transitions and ∆Q ⊆ Q×Q×Q the transition relation.

A STA is called deterministic, or a dSTA, if ∆Σ can be written as a function from
{q〈〉}×Σ to Q, and ∆Q as a function from Q×Q to Q. For all a ∈ Σ, q1, q2, q3 ∈ Q,
we write q〈〉

a−→ q whenever (q〈〉, a, q) ∈ ∆Σ, and q1@q2 → q3 if (q1, q2, q3) ∈ ∆Q.
Also, for all q ∈ Q, we define the tree language of q as

Lq(T) = {〈a〉 | q〈〉
a−→ q ∈ ∆Σ} ∪ {〈f t1 . . . tn〉 | ∃q0, q1, . . . , qn ∈ Q .q〈〉

f−→ q0 ∈ ∆Σ,

ti ∈ Lqi(T) and qi−1@qi → qi+1 ∈ ∆Q for all 0 < i < n}.

The language of T , written L(T), is the set of unranked trees that are in the tree
language of some final state, that is:

L(T) =
⋃
q∈F

Lq(T).

Figure 2.4 illustrates a deterministic STA over {a, b, c} with states {q〈〉, q1, q2}

and final state q2. The tree initial state is denoted by
〈〉−→ q〈〉. The dSTA defines

the initial transitions q〈〉
a−→ q2, q〈〉

b−→ q1 and q〈〉
c−→ q1. The other transitions are

1STAs were called stepwise hedge automata in [Comon et al. 2007]

28 Chapter 2. Preliminaries

q1@q1 → q1, q1@q2 → q1, q2@q1 → q2, and q2@q2 → q2. The set of trees that it
recognizes are all the trees of the form 〈aw〉 where w ∈ HΣ.

As for word automata, one can define the product and the determinization of
STAs, by process that are quite similar. Note that there also exist regular expressions
for tree languages [Comon et al. 2007].

2.4.3 Nested Word Automata (NWAs)

Nested word automata (NWAs) are pushdown automata reading nested words,
whose stacks are visible: they push a single stack symbol when reading an opening
parenthesis, pop a single stack symbol when reading a closing parenthesis, and don’t
alter or inspect the stack otherwise.

Our notion of NWA is symbolic [D’Antoni & Alur 2014] for dealing with
large or infinite alphabets, and supports factorization in the spirit of
[Champavère et al. 2009].

Definition 7 An NWA is a tuple N = (Qh, Qt,Σ,Γ,∆, I, F) consisting of a possibly
infinite set Σ of internal symbols, finite sets Qh and Qt of states of type hedge and
tree respectively, sets of initial and final states I, F ⊆ Qh, a finite set Γ of stack
symbols, and a finite set ∆ of transition rules of the forms:

hedge rules a∆,_∆, ε∆ ⊆ Qh ×Qh where a ∈ Σ

opening rules 〈∆
γ ⊆ Qh ×Qh where γ ∈ Γ

hedge ending rules tree∆ ⊆ Qh ×Qt
closing rules 〉∆

γ ⊆ Qt ×Qh

Our NWAs are symbolic, in that they come with else rules, i.e elements of
(q, q′) ∈ _∆ that we will denote by q

_−→ q′.
The NWAs proposed by [Debarbieux et al. 2015] were also symbolic in order to

describe the complex labels of nodes of Xml documents, which are tuples of:

1. subsets of query variables,

2. an XML type (element, attribute, document, comment, or text)

3. XML names,

4. XML namespaces.

Such descriptors needed to be removed before determinization, leading to an consid-
erable size increase. We therefore use a simpler notion of NWAs this thesis, where
the symbolic description are reduced to else rules.

2.4. Automata and Regular Expressions 29

5

8

6

7

1

3

2

4

9

10

1112

〈 ↓2
ε

ε

〉 ↑1

_

〉 ↑1

tree

_

〈 ↓1

ε

ε

b

a

ε

ε

ε

tree
〉 ↑2

_

〈 ↓3

〉 ↑3

tree

Figure 2.5: Nested word automaton nwa(ch∗(a+ b)).

Consider a query with the query variables in {x, y, z}. The complex label of a
book -node that is selected by variables x can then be described by:

elem&book&_&{V ⊆ {x, y, z} | x ∈ V }

An example for a complex label satisfying this descriptor is the tuple
(elem, book, inria, {x, z}). We now consider this complex label as the word
elem.book.inria.x.¬y.z while imposing an order on the variables. The above de-
scriptor can then be replaced by the following regular expression, where _ may
stands for arbitrary letters:

elem.book._.x.(y + ¬y).(z + ¬z)

Such descriptors can be compiled quite naturally to an Nfa with else rules.

An example for an NWA is given in a graphical syntax in Figure 2.5. Tree states
are drawn in circles that are filled in light gray q , while hedge states are in unfilled
circles q . Initial states are drawn as→ q and final states as q . Hedge rules that

have the form (q1, q2) ∈ oδ where o ∈ Σ∪ {_, ε, tree} are denoted by q1
o−→ q2. They

are either label, else, epsilon, or tree rules depending of the type of letter o. Opening
rules (q1, q2) ∈ 〈∆

γ are represented as q1
〈↓γ−−→ q2 and closing rules (q1, q2) ∈ 〉∆

γ as

q1
〉↑γ−−→ q2.

Our notion of NWA supports factorization in the spirit of
[Champavère et al. 2009]. It is obtained by distinguishing two types of states
q ∈ Qh and p ∈ Qt, and adding explicit type coercion rules q tree−−→ p. Semantically,
both kinds of states could be merged when replacing the type coercion rules by the
epsilon rule q ε−→ p, but at the cost of introducing additional nondeterminism. This

30 Chapter 2. Preliminaries

may lead to quadratically larger deterministic automata when determinizing, as
illustrated in Example 6.

The language of nested words between two states q1, q2 ∈ Qh is defined as the
least language such that:

Lq1,q2(∆) = {ε | if q1 = q2 or q1
ε−→ q2 ∈ ∆} ∪

⋃
q3∈Qh Lq1,q3(∆) · Lq3,q2(∆)

∪ {a | if q1
a−→ q2 ∈ ∆ or (q1

_−→ q2 ∈ δ and ¬∃q′2. q1
a−→ q′2 ∈ ∆)}

∪ {〈h〉 | ∃q′1, q′2 ∈ Qh.∃q3 ∈ Qt.∃γ ∈ Γ. q1
〈↓γ−−→ q′1, h ∈ Lq′1,q′2(Delta),

q′2
tree−−→ q3 ∈ ∆ and q3

〉↑γ−−→ q2 ∈ ∆}.

The language of the NWA then is L(N) =
⋃
q1∈I,q2∈F Lq1,q2(∆) .

Furthermore, we write NWAΣ to denote the set of NWAs over Σ.

Definition 8 An NWA is deterministic if I is a singleton or empty, ε∆ is empty,
for all a ∈ Σ a∆ and _∆ are partial functions from Qh to Qh, for all q ∈ Qh and
γ ∈ Γ there exists a most one q′ ∈ Qh such that q′ ∈ 〈∆

γ , and for all γ ∈ Γ, 〉∆
γ is a

partial function from Qh to Qt.

We determinize our NWAs by adapting the determinization procedures presented
in [Debarbieux et al. 2015, Alur & Madhusudan 2009], while taking into account
hedge ending and else rules, and generating only accessible states. Given an NWA
N = (Qh, Qt,Σ,Γ,∆, I, F), the difficulty is to deal with concurrent opening rules

q
〈↓γ1−−−→ q1 and q

〈↓γ2−−−→ q2 in ∆ during determinization without mixing up the stack
symbols γ1 and γ2. Therefore, we use binary relations as states of the determinized
automaton det(N) = (Qdet

h , Qdet
t ,Σ,Γdet ,∆det , Idet , F det), that is Qdet

h = 2Qh×Qh ,
Qdet
t = 2Qh×Qt . The only initial state is the identity relation idI which relates

all initial states of N to themselves, i.e., Idet = {idI}. The set of final states is
F det = {τ ∈ Qdet

h | τ ∩ (I × F) 6= ∅}. Schemas generating the transition rules in
∆det are given in Figure 2.6. For a relation τ ∈ Qdet

h ∪Qdet
t , we write lab(τ) = {a ∈

Σ | ∃(q, q′) ∈ τ, q′′ ∈ Q.q′ a−→ q′′ wrt. ∆}. We also write τ ◦ τ ′ to define the relational
composition of τ and τ ′, i.e τ ◦ τ ′ = {(q1, q3) | ∃q2 ∈ Qh .(q1, q2) ∈ τ and (q2, q3) ∈
τ ′}. These schemas generate transition rules for the accessible relations only.

Example 6 The NWA of Figure 2.7 is obtained by determinization. Here factor-
ization avoids a quadratic blow up. This can be observed at state 14, which has 3

incoming tree-edges and 10 outgoing closing edges. Without factorization, the 3 tree
edges could be replaced by 3 ε-edges whose elimination during the determinization
would have produced 30 closing edges.

2.4. Automata and Regular Expressions 31

τ ∈ Qdet
h

τ
−→ τ ◦∆ ∈ ∆det

τ ∈ Qdet
h Q′ = {q′ | ∃(_, q) ∈ τ. q 〈↓γ−−→ q′ ∈ ∆}

τ
〈↓τ−−→ idQ′ ∈ ∆det

τ ∈ Qdet
h

τ
tree−−→ τ ◦ tree∆ ∈ ∆det

τ ∈ Qdet
t 〈τ〉∆ = ∪γ∈Γ〈∆

γ ◦ τ ◦ 〉
∆
γ

τ
〉↑τ ′−−→ τ ′ ◦ 〈τ〉∆ ∈ ∆det

τ ∈ Qdet
h a ∈ lab(τ) τ ′ = {(q, q′) ∈ _∆ |6 ∃q′′.q a−→ q′′ ∈ ∆}

τ
a−→ τ ◦ (a∆ ∪ τ ′) ∈ ∆det

Figure 2.6: Determinization of NWAs.

Regarding intersections – and unions –, products of NWAs are defined analo-
gously to Nfas, with the stack symbols in addition.

We finally introduce some notations for referring to sets of NWAs. The set of
dNWAs over Σ is denoted by dNWAΣ. A class of NWAs is a function that maps
any alphabet Σ to a set of NWAs over Σ. We define the classes NWA and dNWA
that map any alphabet Σ with NWAΣ, respectively dNWAΣ.

2.4.4 Nested Regular Expressions

We present nested regular expressions (NREs), that were introduced under the
name regular expression types in the context of XDuce [Hosoya & Pierce 2003] up
to minor details. A NRE over alphabet Σ has the following abstract syntax:

E,E′ ::= ε | a | ¬Σ′ | ∅ | E · E′ | E + E′ | E&E′ | E∗ | E | 〈E〉 | µa.E

where a ∈ Σ and Σ′ ⊆ Σ is finite. We restrict the recursive expressions µa.E such
that all occurrences of a in E are nested below parentheses. The sets of free and
bound symbols fn(E) and bn(E) are defined as usual where µa.E binds symbol a
with scope E and there is no other binder.

Compared to the regular expression types in [Hosoya & Pierce 2003], there are
two differences. First, our NREs treat labels as internal symbols instead of labels
of parentheses. Second, they provide recursion through the µ-operator instead of
using recursive equation systems. Even though not needed from the view point of
expressiveness, we allow conjunctions E&E′ to simplify the compilation of CoreX-
Path expressions with filters to NREs. NREs having no subexpressions E&E′ are
called conjunction-free (CF-NREs). Any NRE describes a language of nested words

32 Chapter 2. Preliminaries

4

20

8

2

18

10

22

24

12

6 14 16

a

b

_
_

_

_

〈 ↓ 1

〈 ↓ 8

〈 ↓ 6

〈 ↓ 5

〈 ↓ 9

〉 ↑ 6

〉 ↑ 8

〉 ↑ 5

〉 ↑ 1

tree

tree

〉 ↑ 4

〉 ↑ 9

〉 ↑ 7

〉 ↑ 3

_

_

_
〈 ↓ 7

〈 ↓ 3

b

a

_

〈 ↓ 14

_

〈 ↓ 2

〉 ↑
2

〉 ↑ 3

〉 ↑ 2

〉 ↑ 9

〉 ↑ 7

〉 ↑ 4

tree

tree

_

〉 ↑ 10

〉 ↑ 6

〉 ↑ 8

〉 ↑ 1

〉 ↑ 5

〉 ↑ 10

〈 ↓ 10

Figure 2.7: Determinized NWA with factorization

that is defined by structural induction as follows:

L(ε) = {ε} L(a) = {a} L(¬Σ′) = Σ \ Σ′

L(E · E′) = L(E) · L(E′) L(E) = nWordsΣ \ L(E)

L(E + E′) = L(E) ∪ L(E′) L(E&E′) = L(E) ∩ L(E′)

L(〈E〉) = {〈h〉 | h ∈ L(E)} L(µa.E) = ∪n≥0L(µna.E)

L(E∗) = L(E)∗ L(∅) = ∅

A negation ¬Σ′ stands for Σ \ Σ′. This is useful for dealing with infinite alphabets
and with large finite alphabets. For all expressions E,E1 and E2, the notation
E[E1/E2] stands for the expression E where all the occurrences of E1 have been
replaced by E2. The semantics of a µ-operator is then defined using the shortcuts
µ0a.E = E[a/∅] and µna.E = E[a/µn−1a.E] for all n ≥ 1. Note that µa. b · a · c+ ε

would define the string language {bn · cn | n ≥ 0} which is not regular. But this
expression is ruled out since the µ-bound name a is not nested below parentheses.

In the context of Xml queries, we can express the child and descendant-or-self

2.4. Automata and Regular Expressions 33

axes of XPath expressions by using the following NREs:

ch(E) =df T · 〈E〉 · T T =df µx. (〈x〉 + ¬∅)∗

ch∗(E) =df µx. (E + ch(x)) where x 6∈ fn(E)

ch+(E) =df µx. (ch(E) + ch(x)) where x 6∈ fn(E)

Thereby, the XPath expression a[following-sibling ::b]/descendant::c can be ex-
pressed as a NRE, in which x ∈ Σ serves as the selection variable, while the negation
¬{x} expresses nonselection.

〈elem · a · ¬{x} · ch+(〈elem · c · x · T 〉)〉 · T · 〈elem · b · ¬{x} · T 〉 · T

Our next objective is to distinguish NREs that can be evaluated deterministically
in polynomial time, for instance by compilation to deterministic NWAs. For this,
we consider the language of NREs nregexp(ch, T) extended by the constant T and
the unary constructor ch.

Definition 9 An expression of nregexp(ch, T) is deterministic if it does not contain
a subexpression of any of the forms: E1 + E2, E∗, T · E, µa.E.

Note in particular that ch(a) is a deterministic expression of nregexp(ch, T). In
contrast, the semantically equivalent expression T.〈a〉.T is not deterministic. Simi-
larly, T is deterministic while the equivalent expression µx.(〈x〉 + ¬∅)∗ is not. The
expression ch∗(E) is not deterministic since its definition relies on the µ-operator.

NREs have the same expressiveness. We next discuss on a compiler from ex-
pression an E of nregexp(T, ch) to an NWA nwa(E) that preserves determinism.

For instance, the NWA for the expression ch∗(a + b) is shown in Fig-
ure 2.5. For regular expressions without nesting, the compiler is based on
Glushkov’s construction recursively on the structure of the expression while elim-
inating ε-edges on the fly. Such construction is known to preserve determin-
ism [Brüggemann-Klein & Wood 1998]. For deterministic expressions ch(E), we
adapt ideas from [Debarbieux et al. 2015]. As for conjunctions, product of au-
tomata are used. It remains to discuss the compilation of expressions µa.E. We
first note that we can assume w.l.o.g. that a occurs at most once in E by us-
ing the golden lemma of the µ-calculus [Arnold & Niwiński 2001], stating for all
names a1, . . . , an and expressions E′′ in which a1, . . . , an can appear free that
µa1.µan. E

′′ ≡ µa.E′′[a1/a, . . . , an/a]. Our construction guarantees that all
transitions of the form q

a−→ q′ in nwa(E) will start with the same state q. A natural
construction would remove the transitions q a−→ q′ from nwa(E) and add ε-rules from
q to all the initial states of nwa(E), and from all final states of nwa(E) to q′. Un-

34 Chapter 2. Preliminaries

1 2

3

〈 ↓ γ1
_

tree

〈 ↓ γ2
〉 ↑ γ2
_

〉 ↑ γ1

Figure 2.8: Typing NWA

q0 q1 q2 q3
〈 ↓ γ

a
tree 〉 ↓ γ

Figure 2.9: Automaton for the
〈a∗〉 expression.

q0 q1 q2 q3
〈 ↓ γ tree 〉 ↓ γ

ε

ε
ε

Figure 2.10: Bad automaton for µa.〈a∗〉

fortunately, the resulting automaton would not be correct. Correctness is achieved
by typing the states of the automaton by the NWA N presented on Figure 2.8. Au-
tomaton N evaluates in state 2 all (sub)-trees, and in state 1 all non nested parts of
its input. Let P be the product automaton of nwa(E) and N , in which we remove
transition (q, 2)

a−→ (q′, 2) and add ε-rules from state (q, 2) to all states in I × {2},
and from all states in F × {2} to (q′, 2), where I and F are respectively the set of
initial and final states of nwa(E). Then P recognizes L(µa.E).

Example 7 For illustration, we consider the NRE E = µa.〈a∗〉 whose NWA is
given in Figure 2.9. Simply adding epsilon edges to capture the operator µa will not
work though. It will lead to the wrong automaton in Figure 2.10. This automaton
will wrongly accept the hedge 〈〉〈〉, since this hedge does not belong to L(E).

Figure 2.11 illustrates the product automaton for E obtained by our construction,
where only accessible states are kept.

The correctness would fail if permitting µa. b · a · c. We can only sketch the
correctness argument. It depends on that the µ-bound name a must appear below
parenthesis in E. Therefore, nwa(E) has a stack symbol γ that will be pushed on
all paths from some initial state leading to q, and popped on all paths from q′ to
some final state. Thus, no successful run of nwa(µa.E) may use an added ε-edge

(q0, 2) (q1, 2) (q2, 3) (q3, 2)

(q0, 1) (q3, 1)

〈 ↓ (γ, γ2) tree 〉 ↓ (γ, γ2)

ε

ε ε

〈 ↓ (γ, γ1) 〉 ↓ (γ, γ1)

Figure 2.11: Good automaton for µa.〈a∗〉

2.5. FXP 35

from some final state leading to q′ before using an added ε-edge from some initial
state leading to q. Regarding complexity, a naive implementation would lead to
automaton P with size exponential in the number of nested µ-expressions. The
exponential blow-up is avoided as instead of constructing the product by N for
every µ-expression, it is enough to introduce two versions of every newly introduced
state with types 1 and 2, respectively.

Theorem 1 For any CF-NRE E where all the subexpressions E′ are such that
E′ is deterministic, we can construct in time O(|E|2) an NWA A while preserving
determinism such that L(A) = L(E).

This quadratic time result generalizes on a previous result for the Glushkov con-
struction [Brüggemann-Klein 1993]. Because of automata products used to build
them, NREs having conjunctions may in the worst case yield NWAs with an ex-
ponential size. Furthermore, having a subexpression E where is not deterministic
necessarily leads to the determinization of the automaton for E – before comple-
menting it –, which could induce an exponential blow-up. As a consequence of
Theorem 1 small deterministic CF-NREs where the complementation operation is
not used above nondeterministic expressions can be compiled to small deterministic
NWAs.

2.5 FXP

Fxp is a fragment of the λXP language defined in [Sebastian 2016]. It is used as a
core language for compiling forward CoreXPath, extended with string comparisons.
In this thesis, we use a lighter version of Fxp, where the following axis is omitted.
We’ll see in Section 3.2 the reason of this restriction.

The version of Fxp that we consider has the abstract syntax presented in Fig-
ure 2.12. It is parameterized by an alphabet Σ, a finite set Υ of words, a set of
query variables W ′ ⊆ W and a set L of label properties ` that can be interpreted
over positions. Besides of the usual boolean connectives, it defines formulas with
axes for testing the existence of paths, and label formulas for testing whether a
label property – or a variable assignment – is satisfied. It also defines the string
comparisons equalsv, containsv, starts-withv and ends-withv for all word v ∈ Υ.

The models of Fxp formulas are nested words w ∈ nWordsΣ seen as relational
structures, with complex labels that define the label properties `w for all ` ∈ L. We
consider that the properties laba for all a ∈ Σ are included in L. The nested words w
must also define unary predicates equalswv , containswv , starts-withwv and ends-withwv

for all word v ∈ Υ. A position π and a partial function fromW ′ to the set of positions

36 Chapter 2. Preliminaries

Formulas F ::= F ∧ F | F ∨ F | ¬F | true | A(F) | B(F) | Ov
Forward Axes A ::= ch | ds | fs
Label Formulas B ::= isx | ` | B&B
Comparisons O ::= equals | contains | starts-with | ends-with

Figure 2.12: Abstract syntax of the restricted Fxp language, where x ∈ W ′, v ∈ Υ
is a word and ` ∈ L

JtrueKw,π,α =df 1 JF ∧ F ′Kw,π,α =df JF Kw,π,α ∧ JF ′Kw,π,α

Jisx(F)Kw,π,α =df

{
JF Kw,π,α if α(x) = π
0 otherwise JF ∨ F ′Kw,π,α =df JF Kw,π,α ∨ JF ′Kw,π,α

J`(F)Kw,π,α =df `
w(π) ∧ JF Kw,π,α J¬F Kw,π,α =df ¬JF Kw,π,α

JOvKw,π,α =df

{
1 if π ∈ Owv
0 otherwise JA(F)Kw,π,α =df ∃π′.Aw(π, π′) ∧ JF Kw,π′,α

JB&B′(F)Kw,π,α =df JBKw,π,α ∧ JB′Kw,π,α ∧ JF Kw,π,α

Figure 2.13: Semantics of Fxp formulas

of the nested word are also part of the model. Thus, a formula F is evaluated to a
boolean with respect to a nested word w over Σ, a node π ∈ Pos(w) and a variable
assignment α : W ′ → Pos(w). We write JF Kw,π,α to denote its semantics, given in
Figure 2.13.

Chapter 3

Small Deterministic Automata for
Navigational Queries

Contents
3.1 Introduction . 37

3.2 From FXP to Nested Regular Expressions 38

3.3 Stepwise Hedge Automata (SHAs) 42

3.3.1 Evaluation on Nested Words 45

3.3.2 Relation to STAs and NWAs 46

3.3.3 Determinization . 47

3.3.4 Completeness and Pseudo-Completeness 49

3.3.5 Universality and Intersection Nonemptiness Problems 50

3.4 Compiler from nRegExp to SHAs 52

3.5 Reducing the size of (d)SHAs 53

3.5.1 Symbolic Apply Rules . 54

3.5.2 Cleaning Methods for Determinized SHAs 56

3.6 Experimental Results for XPath Queries 59

3.1 Introduction

Whether an answer is certain is computationally hard for tiny syntactic fragments
of CoreXPath [Benedikt et al. 2008, Gauwin & Niehren 2011], but can be done in
polynomial time for queries defined by deterministic NWAs [Gauwin et al. 2009]. A
natural question is therefore, whether it is possible to compile CoreXPath queries
as in the XMark benchmark of [Franceschet] to deterministic NWAs of reasonable
size. Unfortunately, the existing compilers fail to do so [Debarbieux et al. 2015],
since they are based on NWA determinization for dealing with disjunction, negation,
and recursive steps. Thereby they produce huge deterministic automata even for

38 Chapter 3. Small Deterministic Automata for Navigational Queries

very simple CoreXPath queries from the benchmark, or do not terminate after some
hours.

In this chapter, we consider NREs for defining queries on nested words, since
there exist compilers that can map the CoreXPath queries to NREs of reasonable
size, under the condition that the path query contains only forwards steps.

However, the NREs obtained by compilation from CoreXPath queries are rarely
deterministic, so neither are the NWAs obtained from them by direct compila-
tion. Neither can we apply NWA determinization to them as argued above. We
show that deterministic NWAs can be obtained nevertheless based on stepwise
hedge automata (SHAs), that we introduce. SHAs combine stepwise tree automata
[Carme et al. 2004] for unranked trees with finite state automata on words (Nfas).
They can be determinized in a bottom-up and left-to-right manner, simply by com-
bining the determinization procedures for tree automata and for Nfas. Furthermore,
we can compile deterministic SHAs to deterministic NWAs in polynomial time. Con-
versely, NWAs can be compiled to SHAs in polynomial time too, but at the cost of
introducing nondeterminism.

By composing these compilers and determinization algorithms, NREs can be
compiled to deterministic NWAs in the following two manners. The first method is
to compile the NRE to an SHA, from there to an NWA, which is then determinized.
The second way consists of compiling the NRE to an SHA, determinize it, and
convert the result to a deterministic NWA. In an experimental study, we consider a
collection of NREs that we constructed automatically from CoreXPath queries in
the XMark benchmark. It turns out a little surprisingly that both above algorithms
yield a satisfactory solution: they produce small deterministic NWAs for all NREs
in our collection. The sizes of the deterministic may differ, sometimes in favor of the
one or the other algorithm. We also discuss, why the NWA determinization behaves
reasonably for the NWAs obtained from SHAs, while it behaved so badly for NWAs
obtained directly from NREs. The reason seems to be that the former NWAs in
contrast to the latter have the single entry property, which basically states that the
NWA performs all its work in a bottom-up and left-to-right manner, and none when
moving top-down. This conjecture is supported by practical evidence rather than
some formal statement.

3.2 From FXP to Nested Regular Expressions

We show in this section that Fxp formulas can be compiled to NREs expressions.
These expressions would then recognize languages of sequenced W-structures.

Let Σ be an alphabet, Υ a finite set of strings, W ′ ⊆ W a set of query variables

3.2. From FXP to Nested Regular Expressions 39

enc(`) = exp(`) enc(ds(F)) = ch+(enc(F))
enc(`&`′) = enc(`)&enc(`′) enc(ch(F)) = 〈anylabvarΣ,W ′ · T · enc(F) · T 〉 · T
enc(Ov) = exp(Ov) enc(F ∧ F ′) = enc(F)&enc(F ′)
enc(ns(F)) = 〈T 〉 · enc(F) enc(F ∨ F ′) = enc(F) + enc(F ′)

enc(fs(F)) = T · enc(F) enc(¬F) = enc(F)

Figure 3.1: Fxp to NREs compiler for all `, `′ ∈ L, v ∈ Υ and Fxp formulas F, F ′

and L a set of label properties `, that is assumed to contain at least all the laba for
a ∈ Σ ∪ W ∪ W ′. We convert any Fxp F formula to a nested regular expression
enc(F) recognizing sequenced W ′-structures. Our compiler has two parameters:

• a function exp that associates any label property and string comparison with
a nested regular expression

• and a constant nested regular expression anylabvarΣ,W ′ that is used as a wild-
card for labels and variables.

The Fxp to NREs compiler is given in Figure 3.1. The parameters indicate
how the label properties, variables and string comparisons are represented in the
sequenced W ′-structures.

It should be noticed that the nested regular expressions that are obtained by
compilation are not enough. Indeed, their languages may accept elements that are
not canonic (see Lemma 1). Furthermore, there should be a schema indicating
clearly how nested words with complex labels should be encoded into sequenced
W ′-structures. For this reason, the NREs expressions obtained in Figure 3.1 should
be intersected with other nested regular expressions that allow to restrict their
languages to sets of W ′-structures correctly encoded.

Example 8 Consider the case of Fxp queries on Xml documents. Nodes of Xml

documents have, in addition to their labels, properties such that their type. An Xml

document can thus be considered as a nested word with complex labels, where the
properties added to the structures are about the types of the Xml nodes.

Let Σ = {temp}, Υ = {40}, W ′ = {x}. The following Fxp query selects all the
positions of type element and labeled by temp, and having a child position of type
text labeled by 40:

F = elem&temp&isx ∧ ch(text(equals40))

An example of nested word that satisfies this property is the tree w = 〈temp〈40〉〉

40 Chapter 3. Small Deterministic Automata for Navigational Queries

〈〉

temp 〈〉

40

π1

π2
π3

π4

Figure 3.2: Initial structure

〈〉

temp 〈〉

40

π1

π2
π3

π4

〈〉

π0

Figure 3.3: With fake root node

(represented in Figure 3.2) over Σ∪Υ together with its position π1 and the candidate
α that maps x to π1.

To express the fact that its node π1 is of type element and that its node π3 is
of type text, we define the properties elemw = {π1} and textw = {π3}. Xml also
imposes trees to have a fake root of type document, different from the actual root
of the tree. So we add a new node π0, set it as the new root – π1 becomes the child
of π0 – and add the property docw = {π0}. This is illustrated in Figure 3.3.

The information about the type of the node appears only at the logical level. We
can make it appear in the nested word itself, by creating a new nested word where
the Xml types are added to the labels. An example for this would be the nested word
w′ = 〈doc〈elem · temp〈text ·40〉〉〉 over the alphabet Σ′ = {doc, elem, temp, text , 40}.
Moreover, given a candidate α : W ′ → LPosΣ(w′), we can obtain a sequenced W-
structure where positions labeled by the elements of W ′ – and ¬W ′ – can only be
found after positions labeled by elements of Σ. For instance, let α′ be the candidate
that maps x to π′1. The sequenced W ′-structure w′ ? α′ = 〈doc〈elem · temp · x ·
〈text · 40〉〉〉 represented in Figure 3.4 could be in the language of the nested regular
expressions into which F will be compiled.

However there may be many other sequenced W ′-structures into which w is con-
verted. In order to have only one possible correspondence for a given nested word,
we set a nested regular expression defining the set of accepted regular expressions.
This will limit the number of correspondences to one. The expression obtained by
compilation of F will then be intersected – by the conjunction operator – with the
schema expression. The schema expression must also ensure the canonicity of the
accepted W ′-structure, as expressed in Lemma 1.

We show an example of definitions of nested regular expressions for the param-
eters of F :

3.2. From FXP to Nested Regular Expressions 41

〈〉

temp 〈〉

40

π1

π2
π3

π4

〈〉

π0

elem

π5

text

π6

x

π7

Figure 3.4: With properties expressed as labels

• exp(elem) = 〈elem ·_ ·_ · T 〉 · T

• exp(temp) = 〈_ · temp ·_ · T 〉 · T

• exp(text) = 〈text ·_ · T 〉 · T

• exp(equals40) = 〈text ·_ · 4 · 0〉 · T

• exp(x) = 〈_ ·_ · x · T 〉 · T

• anylabvarΣ,W ′ = _ ·_ ·_ ·+_ ·_

where _ stands for ¬∅, that is any symbol in Σ ∪ W ′ ∪ ¬W ′. Note that the lan-
guages of these NREs expressions contain nested words that are not sequenced W ′-
structures. To avoid this, we can take the conjunction of the NREs expressions
obtained from Fxp formulas with another NREs that defines the language of se-
quenced W ′-structures.

To establish the soundness of this compilation, we need to define the notion of
hedge rooted at some node. For any nested word w over some alphabet Σ and node
π ∈ Nodes(w), the hedge of w rooted by π, written hedge(w ? α)≥π, is the nested
word restricted to the portion of w where the positions are

• π, or

• descendant of π, or

• following siblings of π, or

• descendant of the following siblings of π.

42 Chapter 3. Small Deterministic Automata for Navigational Queries

〈〉 〈〉

b 〈〉

c

〈〉 〈〉

a b

π0

π1 π2

π3 π4

π5

π6

π7 π8

Figure 3.5: Restriction of a nested word to a hedge

Example 9 The restriction of the nested word in Figure 3.5 rooted by π1 is the
hedge nested word where the circles representing the positions have thick borders.

Proposition 1 (Soundness) Any Fxp formula F can be converted to a nested
regular expression E over Σ∪W ′∪¬W ′ such that for all nested word w ∈ nWordsΣ,
position π ∈ Pos(w) and candidate α :W ′ → Pos(w), JF Kw,π,α = true iff hedge(w ?
α)≥π ∈ L(E).

Given a position π of a hedge, the following axis of Fxp considers not only the
descendant of the following sibling of π, but also the descendant of the following-
sibling of the ancestors of π – where an ancestor is a parent, or a parent of a parent,
etc. The structures formed by such set of nodes are unfortunately not nested words.
In Figure 3.5 for instance, adding the nodes π6, π7 and π8 to the restriction rooted
by π2 would lead to something which is not a nested word. For this reason, we ruled
out the following axis in the version of Fxp that we consider.

3.3 Stepwise Hedge Automata (SHAs)

We propose SHAs as an extension of stepwise tree automata [Carme et al. 2004] to
recognize not only unranked trees but also hedges and generally nested words.

Our notion of SHAs will be symbolic in using else rules, and factorized in the
sense of [Champavère et al. 2009]: there are two types of states for hedges and trees
and an operator for explicit type coercion. We also propose a novel treatment of
internal letters inspired by nested word automata, so that SHAs generalize both on
stepwise tree automata and on Nfas.

Definition 10 A SHA is a tuple S = (Qh, Qt,Σ,∆, I, F) such that Qt and Qh are
finite set of tree states respectively hedge states, Ω ⊆ Qt, Σ an alphabet of internal

3.3. Stepwise Hedge Automata (SHAs) 43

10 〈T〉

8

16

18
19

14 15

17

20

9 〈a|b〉

5

3

1 2

4

6 12

ε

ε

ε
ε

a

b

〈T〉

_
〈a|b〉

ε

ε

ε

tree

tree

_

〈T〉
〈a|b〉 _

a

b〈T〉

_
〈T〉

_

〈T〉

_

〈T〉

_

〈T〉

〈〉

〈〉

Figure 3.6: Stepwise hedge automaton sha(ch∗(a+b)): the stepwise tree automaton
part is on the left and middle, and the Nfa part on the right.

letters (that may be infinite), I, F ⊆ Qh subsets of initial and final states respectively,
and ∆ a finite set of

tree initial rules 〈〉∆ ⊆ Qh
tree final rules q

tree−−→ p

named internal rules q
a−→ q′

else internal rules q
_−→ q′

epsilon rules q
ε−→ q′

apply rules q
p−→ q′

for a ∈ Σ, q, q′ ∈ Qh and p ∈ Qt. All the rules of ∆ minus the tree initial and the
tree final rules constitute the subset of hedge rules of ∆. Note that tree initial rules
are actually hedge states. For this reason, we also call them tree initial states by
abuse of language.

The set of SHAs over Σ is denoted by SHAΣ.
An example for a SHA is given in graphical syntax in Figure 3.6. It recognizes

all hedges which are either just a or b or contain some tree node that contains either
just a or b. In the graphical syntax, the states of type tree q ∈ Qt are drawn in
circles filled in light gray q , while the states of type hedge q′ ∈ Qh are drawn in
unfilled circles q′ . The right part of the graph is an Nfa which uses tree states as
additional edge labels, while the left part is a stepwise tree automaton, and defines
the tree languages of these tree states.

Let ∆h be the restriction of ∆ to the hedge rules. Then, (Qh,Σ]Qt,∆h, I, F) is a
standard Nfa with ε-rules, which is symbolic [D’Antoni & Alur 2014] in providing
else rules for dealing with large or infinite alphabets in addition. Therefore, we
denote the initial states q ∈ I by → q and the final states q ∈ F by q . A rule

with an internal letter (q1, q2) ∈ a∆ is denoted by q1
a−→ q2 wrt ∆ stating that a

44 Chapter 3. Small Deterministic Automata for Navigational Queries

hedge in state q1 can be extended by the internal letter a leading to a hedge in state
q2. Similarly, an epsilon rule (q1, q2) ∈ ε∆ is denoted by q1

ε−→ q2, and an else rule
(q1, q2) ∈ _∆ is denoted by q1

_−→ q2. In the same spirit, an apply rule (q1, q2) ∈ q∆

is denoted by q1
q−→ q2 wrt. ∆, stating that a hedge in state q1 can be extended by

a tree in state q leading to a hedge in state q2.

A tree initial state q ∈ 〈〉∆ is graphically denoted by
〈〉−→ q and a tree final rule

(q, p) ∈ tree∆ by q tree−−→ p.

Any letter a ∈ Σ defines two binary relations over Qh. The set of pairs (q, q′)

such that the SHA in state q, reaches q′ after having read a, that is

a∆ = {(q, q′) | q a−→ q′ ∈ ∆} ∪ {(q, q′) | q _−→ q′ ∈ ∆ and 6 ∃q′′ ∈ Qh.q
a−→ q′′ ∈ ∆}

and the set of pairs for which the SHA cannot read a,

¬a∆ = {(q, q′) | q _−→ q′ ∈ ∆ and ∃q′′ ∈ Qh | q
a−→ q′′ ∈ ∆}.

Also, any tree state p ∈ Qt defines a binary relation over Qh, which can be in-
terpreted as the set of pairs (q, q′) for which the SHA in state q, can read a tree
evaluated in state p before reaching state q′, that is

@∆
p = {(q, q′) | q p−→ q′ ∈ ∆}.

We define the apply relation as

@∆ =
⋃
p∈Qt

@∆
p .

Intuitively, a tree 〈h〉 can be evaluated to state p ∈ Qt if h can be evaluated

starting with some tree initial state
〈〉−→ q1 to some state q2 such that q2

tree−−→ p. More
formally, the hedge languages Lq1,q2(∆) between any two hedge states q1, q2 ∈ Qh
are defined as follows:

Lq1,q2(∆) = {ε | if q1 = q2 or q1
ε−→ q2 ∈ ∆} ∪

⋃
q3∈Qh Lq1,q3(∆) · Lq3,q2(∆)

∪ {a | (q1, q2) ∈ a∆}
∪

⋃
(q1,q2)∈@∆

p
Lp(∆)

This definition is mutually recursive with the definition of the tree languages Lp(∆)

of all tree states p ∈ Qt:

Lp(∆) = {〈h〉 | ∃q ∈ 〈〉∆, q′ ∈ Qh. h ∈ Lq,q′(S), q′
tree−−→ p}.

3.3. Stepwise Hedge Automata (SHAs) 45

The hedge language L(S) that is recognized by S is
⋃
q1∈I,q2∈F Lq1,q2(∆).

We now define the binary relations acc∆
h×κ ⊆ Qh ×Qκ for κ ∈ {h, t}.

The hedge state to hedge state accessibility relation acc∆
h×h consists of the set

of pairs of hedge states q, q′ ∈ Qh for which Lq,q(∆) 6= ∅. It relates all the hedge
states between which some nested word can be read.

The hedge state to tree state accessibility relation acc∆
h×t is formed by the pairs

of hedge state q ∈ Qh and tree state p ∈ Qt for which there exists a hedge state
q′ ∈ Qh satisfying the following conditions:

• q′ tree−−→ p ∈ ∆

• Lq,q′(∆) 6= ∅

Of course, the accessibility relations can be computed efficiently, using a simple
reachability algorithm on the graph representing the SHA.

Lemma 2 For all state type κ ∈ {h, t}, acc∆
h×κ can be computed in polynomial time.

3.3.1 Evaluation on Nested Words

We show how an SHA operates on nested words via the following example.

Example 10 Let Σ be the alphabet formed by all the characters that can be encoded
by UTF-8, and a nested word w = ac〈b〉 that we evaluate on the SHA in Figure 3.6,
to which we refer by S. Let ∆ be the transition relation of S. The evaluation starts
at the initial states of S, that is I = {1, 3, 5, 6}. The only states of I from which the
letter a can be read are 3 (because of the internal rule 3

a−→ 4) and 5 (because of the
else rules 5

_−→ 5 and 5
_−→ 6). Note that the else rule 5

_−→ 5 and 5
_−→ 6 wouldn’t

be eligible for reading a if there were an internal rule 5
a−→ q for some hedge state

q. Now, reading a from states 3 and 5 brings A to states 4, 5 and 6. From these
states, the SHA has to read the letter c. This brings it to states 5 and 6 using the
else rules 5

_−→ 5 and 5
_−→ 6 – states 4 and 6 has no outgoing transition. We now

have to read the tree nested word w′ = 〈b〉 from states 5 and 6. To evaluate w′,
the automaton takes some tree initial rule while not forgetting the hedge states – 5

and 6 – in which it was before reading the hedge b and taking a tree rule. The hedge
states in tree initial rules are 8 and 10. Reading b from state 10 – using the else rule
10

_−→ 10 – doesn’t change the state of S, and taking a tree rule brings S to the tree
state 〈T 〉. On the other hand, from state 8, S can reach states 14, 16, 18, 19 with no
input by taking epsilon rules. Then it reads b from one of those states and goes into
states 17 (from 16), 18 and 19 (from 18). Then from state 17, S takes the epsilon
rule and enters state 9, before reading a tree rule into state 〈a|b〉. Note that neither

46 Chapter 3. Small Deterministic Automata for Navigational Queries

18 nor 19 can reach a tree state while only reading b. So the tree states into which
w′ is evaluated are 〈T 〉 and 〈a|b〉, that is w′ ∈ L〈T 〉(∆) ∩ L〈a|b〉(∆). Recall that S
was in states 5 and 6 before reading w′. From state 5, it can read a tree evaluated
into the tree state 〈T 〉 and reach the states 5 and 6. From state 6, it can read a tree
evaluated in state 〈a|b〉 and enters the state 12. So w ∈ L5,12(∆), and since 5 is an
initial state and 12 a final state, w is accepted by S.

3.3.2 Relation to STAs and NWAs

Clearly, STAs can be seen as SHAs with restricted capabilities, recognizing only
trees. Any STA can be converted to a SHA by simply adding a tree state q′ for
each non tree initial state q. The tree state q′ will then replace q in all the left hand
sides of rules where the latter appears. Finally, the final states are the tree states
introduced for the final states of the STA.

Concerning NWAs, they can be converted to SHAs, and vice versa.

3.3.2.1 From SHAs to NWAs

Given a SHA S = (Qh, Qt,Σ,∆, I, F), we can compile it to an NWA nwa(S) =

(Qh, Qt,Σ,Γ,∆
′, I, F) such that Lq1,q2(S) = Lq1,q2(nwa(S)). We set Γ = Qh,

_δ = _∆, aδ = a∆ for all a ∈ Σ, εδ = ε∆, treeδ = tree∆:

q1
q−→ q2 ∈ ∆ p ∈ 〈〉∆

q1
〈↓q1−−→ p ∈ δ and q

〉↑q1−−→ q2 ∈ δ

Clearly, if S is deterministic then so is nwa(S), since p is unique in this case in
particular. One might be tempted to restrict the above construction rule to states
p such that Lq(S[〈〉∆/{p}]) 6= ∅ where the set of tree initial states 〈〉∆ is replaced
by {p}. However, this would lead to huge blow-up when determinizing these NWAs,
basically since this change spoils the single-entry property discussed in Definition 16.

3.3.2.2 From NWAs to SHAs

Conversely, NWAs can be compiled to SHAs, but at the cost of introducing non-
determinism, since an NWA may traverse the branches of a tree top-down, while
a stepwise must traverse them bottom-up. For this, the stepwise guesses the state
in which the NWA will arrive from above and then evaluates the subtree start-
ing with this state, while verifying the correctness of the guess later on. Let A =

(Qh, Qt,Σ, δ, I, F) be an NWA. We build a SHA sha(A) = (Qsh, Q
s
t ,Σ,∆

s, Is, F s)

where Qsh = Qh × Qh, Qst = Qh × Qt, Is = {(q, q) | q ∈ I}, F s = I × F and ∆s

3.3. Stepwise Hedge Automata (SHAs) 47

o ∈ Σ ∪ {tree,_, ε} q1
o−→ q2 ∈ ∆ q ∈ Qh

(q, q1)
o−→ (q, q2) ∈ ∆s

q1
〈↓γ−−→ q2 ∈ ∆

〈〉−→ (q2, q2) ∈ ∆s

q1
〈↓γ−−→ q2 ∈ ∆ q3 ∈ Qt q3

〉↑γ−−→ q4 ∈ ∆ q ∈ Qh

(q, q1)
(q2,q3)−−−−→ (q, q4) ∈ ∆s

Figure 3.7: NWA to stepwise conversion.

is the smallest satisfying the rule schemas in Figure 3.7. The construction is such
that L(A) = L(sha(A)).

3.3.3 Determinization

Stepwise hedge automata have a natural notion of determinism, generalizing both
on that of stepwise tree automata and on Nfas, in contrast to the earlier notion of
hedge automata in [Comon et al. 2007, Thatcher 1967].

Definition 11 A SHA S = (Qh, Qt,Σ,∆, I, F) is deterministic if 〈〉∆ and I are
both singletons or empty, ε∆ is empty, for all a ∈ Σ and p ∈ Qt, a∆, p∆, _∆ are
partial functions from Qh to Qh, and tree∆ is a partial function from Qh to Qt.

The set of dSHAs over some alphabet Σ is denoted by dSHAΣ. Naturally,
dSHAΣ ⊆ SHAΣ. We next show that

Proposition 2 Any SHA can be made deterministic in at most exponential time
such that the hedge language is preserved.

In a first step we eliminate ε-rules as usual for NFAs in cubic time. Given
a stepwise hedge automaton S = (Qh, Qt,Σ,∆, I, F) without ε-rules, we define
an equivalent deterministic stepwise hedge automaton det(A) = (Qdet

h , Qdet
t ,Σ,

∆det , Idet , F det) such that Qdet
h = 2Qh , Qdet

t = 2Qt , Idet = {I} and F det = {Q′ ⊆
Qh | Q′ ∩ F 6= ∅}. There is a unique tree initial state in 〈∆det

= {〈∆} and no ε-rule
in ε∆det

= ∅. Furthermore, for all Q1 ⊆ Qh, and Q′ ⊆ Qt, we build new transitions

48 Chapter 3. Small Deterministic Automata for Navigational Queries

1

5

6

7
10 9

8

0

2

3

4

11

a

b

8

8

9

8

9 tree

9

8, 9

__

8

_

_
_

tree

tree

tree

tree

9 a

b

8

8 9

9

9

8

8, 9
_

_

_

_

_
9

8

〈〉

0 = {1, 3, 5, 6}
1 = {8, 10, 14,

16, 18, 19}
2 = {2, 5, 6}
3 = {4, 5, 6}
4 = {5, 6}
5 = {9, 10, 15, 18, 19}
6 = {9, 10, 17, 18, 19}
7 = {10, 18, 19}
8 = {〈T〉}
9 = {〈T〉, 〈a|b〉}
10 = {9, 10, 18, 19, 20}
11 = {5, 6, 12}

Figure 3.8: The determinized SHA det(step(ch ∗ (a+ b)))

in ∆det using the following inference rules:

Q2 = {q2 | ∃q1 ∈ Q1, q ∈ Q′. q1
q′−→ q2 ∈ ∆}

Q1
Q′−→ Q2 ∈ ∆det

a ∈ Σ {q | ∃q1 ∈ Q1.q1
a−→ q ∈ ∆} 6= ∅ Q2 = {q2 | ∃q1 ∈ Q1.(q1, q2) ∈ a∆}

Q1
a−→ Q2 ∈ ∆det

Q2 = {q2 | ∃q1 ∈ Q1, q1
tree−−→ q2 ∈ ∆}

Q1
tree−−→ Q2 ∈ ∆det

Q2 = {q2 | ∃q1 ∈ Q1, q1
_−→ q2 ∈ ∆}

Q1
_−→ Q2 ∈ ∆det

We can show for all subsets of hedge states Q1, Q2 ⊆ Qh and subset of tree
states Q′ ⊆ Qt that LQ1,Q2(∆det) =

⋃
q1∈Q1,q2∈Q2

Lq1,q2(∆) and that LQ′(∆det) =⋃
q′∈Q′ Lq′(S). Hence L(det(S)) =

⋃
Q′∈F det LI,Q′(∆

det) and thus L(det(S)) =⋃
q1∈I,q2∈F Lq1,q2(∆) = L(S).

For instance, the SHA in Figure 3.8 is obtained by determinization of the au-
tomaton in Figure 3.6. It consists of a Dfa on the right and a deterministic stepwise
tree automaton on the left.

The problematic notion of determinism of the hedge automata from
[Martens & Niehren 2007, Comon et al. 2007, Thatcher 1967] is avoided by SHAs.
The notion of determinism of hedge automata is rather like a notion of unambigu-
ity. And for unambiguous automata, unique minimization fails as well as efficient
complementation or universality testing.

3.3. Stepwise Hedge Automata (SHAs) 49

3.3.4 Completeness and Pseudo-Completeness

We now introduce the notion of completeness, followed by a refined version of it.
Let S = (Qh, Qt,Σ,∆, I, F) be SHA.

Definition 12 S is called complete if for all hedge state q ∈ Qh, the following
conditions hold:

1. for all letter a ∈ Σ, there exists q′ ∈ Qh such that (q, q′) ∈ a∆

2. if q is accessible from a tree initial state q〈〉 ∈ 〈〉∆, there exists a tree state
p ∈ Qt such that q tree−−→ p ∈ ∆

3. for all tree state p ∈ Qt, there exists a hedge state q′ ∈ Qh such that (q, q′) ∈
@∆
p .

If S is not complete, then it’s qualified as incomplete. Any SHA can be made
complete in polynomial time by first adding new states called sink states and new
transitions to the sink states.

The notion of completeness is used to ensure that every input can be evaluated
by the automaton without ever blocking, that is without being in a situation where
no transition can be taken. This is a very important property that we seek for in
our approximation algorithms of Cqa.

A direct consequence of completeness is that:

Lemma 3 If S is complete, then
⋃
p∈Qt

Lp(∆) = UΣ.

Deciding whether or not an automaton is complete can be done by just using the
syntactical properties of the automaton. However, completing a SHA increases its
size. On the other hand, it’s a very strong property, since it requires all the possible
runs on the nondeterministic SHA to not block. One could have a looser version, as
in the closely related notion of pseudo-completeness.

Definition 13 S is called pseudo-complete if for all hedge state q ∈ Qh, the fol-
lowing conditions hold:

1. for all letter a ∈ Σ, there exists q′ ∈ Qh such that (q, q′) ∈ a∆ and

2. for all nested word w ∈ nWordsΣ, there exists a tree state p ∈ Qt and a hedge
state q′ ∈ Qh such that 〈w〉 ∈ Lp(∆) and (q, q′) ∈ @∆

p .

The first condition for pseudo-completeness is completely syntactical. It can
be ensured by enforcing every hedge state to have an else rule that leaves it. The

50 Chapter 3. Small Deterministic Automata for Navigational Queries

second condition, however, is not syntactical. Nevertheless, it is possible to ensure
pseudo-completeness in a purely syntactical manner.

Call T the automaton represented by the connected component to the left in
Figure 3.6. Then

Lemma 4 S is pseudo-complete if the following conditions hold:

• for all q ∈ Qh and all letter a ∈ Σ, there exists q′ ∈ Qh such that (q, q′) ∈ a∆

and

• S contains an automaton equivalent to T modulo renaming of states.

It is also of interest to notice that:

Lemma 5 If S is pseudo-complete, then det(S) is complete.

Actually, a more interesting property is ensured by the presence of T . Indeed, a
SHA that contains T can evaluate any tree nested word without ever blocking.

Lemma 6 If S contains T , then
⋃

Q∈Qt
LQ(∆det) = UΣ.

Remark that the stepwise automaton represented by the connected component
to the left in Figure 3.8 can evaluate any tree nested word.

It is finally interesting to notice that when a SHA is deterministic and reduced
(that is all its tree states are accessible), completeness and pseudo-completeness
are equivalent notions. Thus, it is more interesting to determinize pseudo-complete
SHAs, as they yield complete dSHAs while having smaller sizes than dSHAs obtained
by determinizing complete SHAs.

3.3.5 Universality and Intersection Nonemptiness Problems

We show that the classic decision problems of universality and intersection
nonemptiness for SHAs have the same complexity than on the stepwise tree au-
tomata – and the classical tree automata.

A class of SHAs is a function that maps any alphabet Σ to a set of SHAs over
Σ. We define the classes SHA and dSHA that map any alphabet Σ with SHAΣ,
respectively dSHAΣ.

Let S be a SHA over some alphabet Σ. The language of S is said universal if
L(A) = nWordsΣ. We also say by abuse that S is universal. For any class of SHAs
A ∈ {SHA, dSHA}, we define the universality problem:

3.3. Stepwise Hedge Automata (SHAs) 51

Univ(A).

Input: An alphabet Σ and a SHA S ∈ AΣ

Output: Whether L(S) is universal.

For any class of SHAsA ∈ {SHA, dSHA}, the intersection nonemptiness problem
is the following.

Inter(A).

Input: An alphabet Σ and a finite number of SHAs S1, . . . , Sn ∈ AΣ

Output: Whether L(S1) ∩ . . . ∩ L(Sn) 6= ∅

The complexities of the different problems presented above are established in
the following statements.

Proposition 3 Univ(SHA) is Exp-complete while Univ(dSHA) is in PTime.

Proof: For the upper bound, remark that deciding the universality of a SHA is
equivalent to checking whether the complement of its language is empty. The latter
can be done in linear time in the size of the automaton to check. If the automaton
is deterministic, one can construct an automaton recognizing the complement of its
language in linear time, by just completing the dSHA and switching its final and non
final states. It the automaton is nondeterministic, then an exponential algorithm
can be obtained by first determinizing the input automaton, complementing it before
finally testing whether no final state is accessible.

The lower bound of univSHA follows from the fact that the universality problem
of stepwise tree automata can be reduced in polynomial time to the universality
problem of SHAs. Universality for stepwise tree automata is known to be Exp-
hard. �

Proposition 4 Inter(dSHA) is Exp-hard, while Inter(SHA) is in Exp.

Proof: Recall that the problem of intersection nonemptiness of a sequence of deter-
ministic stepwise tree automata is Exp-hard. The latter problem can be reduced in
polynomial time to Inter(dSHA), and gives us the lower bound of Inter(dSHA).
An algorithm for Inter(SHA) consists in determinizing the input automata in ex-
ponential time, building their product – still in exponential time – before testing
whether a final state is accessible. �

52 Chapter 3. Small Deterministic Automata for Navigational Queries

3.4 Compiler from nRegExp to SHAs

A tree (sub)expression of an NRE E is an expression of the form E′ = 〈E′′〉 ap-
pearing in E, where E′′ is another subexpression of E. Clearly, languages of tree
expressions are tree nested words. Any expression E can be compiled to a SHA
sha(E) = (Qh, Qt,Σ,∆, I, F) such that Qt = {E′ | E′ tree subexpression of E}
and LE′(∆) = L(E′) for all tree states E′ ∈ Qt. In other words, the tree
subexpressions E′ of E will be identified with the tree states of sha(E). The
SHA sha(E) can be partitioned into disjoint SHAs sha(E) = Atop ∪

⋃
E′∈Qt A

E′

such that Atop = (Qtoph , Qt,Σ,∆
top, I, F) is called the top-level automaton and

AE
′

= (QE
′

h , Qt,Σ,∆
E′ , ∅, ∅) are tree subexpressions automata for all E′ ∈ Qt. The

set of tree initial states of the top automaton 〈〉∆top

is set to ∅. Note that the tran-
sitions relation ∆ is decomposed thereby into independent connected components.
The automaton Atop can be identified with an Nfa with signature Σ ∪ Qt given
that it has no tree initial state. The automata AE′ are stepwise tree automata that
recognize the tree language L(E′) when taking E′ as final state. For this, they may
have tree initial states, but will not have any initial nor final states.

The construction of automaton sha(E) is by induction on the structure of E.
We sketch some of the more interesting cases.

Case E = E′ · E′′. We use Glushkov’s construction for composing the top-level
Nfas of sha(E′) and sha(E′′). The stepwise tree automata A〈E′′′〉 of the
subexpressions of type tree are preserved. If some subexpression 〈E′′′〉 occurs
more than once, then only a single copy of A〈E′′′〉 is kept.

Case E = ¬{a1, . . . , an}. We use an else transition from an initial to a final state
in combination with a1, . . . , an-transitions from the initial state into a sink.
This is illustrated in Figure 3.9.

Case E = 〈E′〉. We construct sha(E) from sha(E′). The initial states of sha(E′)

are turned into tree initial states. We then add a new tree state 〈E′〉 and
connect it to all final states of sha(E′) by a hedge ending rule q tree−−→ 〈E′〉.
Furthermore, the previously final state q becomes non final. Finally we add a

new initial state qi, a new final state qf and a transition rule →qi
〈E′〉−−−→ qf .

Case E = µa.E′. The main idea of the construction is similar to the case of
NWAs. The correctness argument is quite different though. It depends
on the fact, that we have independent automata for the top-level and all
the tree subexpressions. That this invariant can be maintained in polyno-
mial time requires an additional argument. We can assume without loss of

3.5. Reducing the size of (d)SHAs 53

1

2

3

a1,
. . .

, an

_

Figure 3.9: Construction of sha(¬{a1, . . . , an})

generality that a occurs at most once in E′, by the golden lemma of the
µ-calculus [Arnold & Niwiński 2001], It states that for all names a1, . . . , an

and expressions E′′ in which a1, . . . , an can appear free, the equivalence
µa1.µan. E

′′ ≡ µa.E′′[a1/a, . . . , an/a] holds.

By using ε-rules instead of Glushkov’s construction, we can preserve the in-
variant that there will be at most one pair (q, q′) such that q a−→ q′ in sha(E′).
Furthermore, these transitions cannot be on top level, given that the occur-
rence of a in E′ must be nested below parentheses. The automaton sha(E) is
obtained from sha(E′) by adding a fresh initial state qi and a fresh final state
qf , a ε-rule from q to qi and from qi to all initial states of sha(E′), and ε-rules
from all final states of sha(E′) to qf , and from qf to q′. The construction is
correct since the µ-bound name a is nested below parenthesis in E′. Therefore,
it can be shown that the ε-edges introduced can not be used to do unwanted
order in successful runs.

Proposition 5 For any CF-NRE E where all the subexpressions E′ are such that
E′ is deterministic, we can construct in time O(|E|2) a SHA sha(E) such that
L(sha(E)) = L(E).

However, the construction does not preserve determinism. For the deterministic
NRE 〈a1 · 〈a2 · . . . · 〈an〉 . . . 〉〉, one would have a SHA having a tree initial state for
each of the 〈ai . . . 〉 subtree, implying nondeterminism. This is in contrast to the
compiler to NWAs, which can rely on top-down determinism that is unavailable for
SHAs though. Furthermore, as for NWAs, conjunctions may cause an exponential
blow-up of the produced SHA.

3.5 Reducing the size of (d)SHAs

The size of automata greatly impacts on the performances of the algorithms that use
them. In this section, we first present a technique for having smaller representations
of smaller size. Then we introduce other techniques for eliminating useless rules and
states that could be generated during the determinization of a SHA.

54 Chapter 3. Small Deterministic Automata for Navigational Queries

3.5.1 Symbolic Apply Rules

With their symbolic rules, our SHAs actually describe automata of bigger sizes.
Indeed, given that the alphabets they accept are possibly infinite, we would have
needed to add an infinite number of rules if not for else rules. This concept of
symbolic rules can also be used for tree states, when the automaton has some special
properties that we detail further.

Even if the input alphabet is infinite, the rules of SHAs only are only defined for
a finite subset of the alphabet. The SHAs deal with the remaining symbols via else
rules. Thus for a given SHA, every state has a set of letters of interest, that represent
the letters of the alphabet for which the state has explicit outgoing transitions. For
instance, in Figure 3.8, the letters of interest of 0 and 1 are a and b. Having a set of
letters of interest doesn’t imply that any letter that is not in that set can’t be read
from the state. Back to Figure 3.8, we see that any other letter in the alphabet that
is different from a and b can be read from 1 using the else rule 1

_−→ 7.

This concept can be applied to tree states, especially when the automaton is
deterministic and complete. Each state will have its tree states of interest, and will
thus define symbolic apply rules, also called apply else rules, for the other tree states.
These apply else rules will merge all the apply rules of states that are not of interest.

Definition 14 A SHA with symbolic apply rules is a tuple S =

(Qh, Qt,Ω,Σ,∆, I, F) where Ω ⊆ Qt and ∆ contains the rules of the under-

lying SHA (Qh, Qt,Σ,∆, I, F), plus apply else rules of the form q
@_−−→ q′ for hedge

states q, q′ ∈ Qh. Furthermore, the states in Ω are such that
⋃
p∈Ω

Lp(∆) = UΣ.

The elements of Ω are called else states. Unlike else rules, apply else rules
describe finite sets of apply rules for which the tree state is an else state. For every
apply else rule q

@_−−→ q′ ∈ ∆, the set of described apply rules is

{q p−→ q′ | p ∈ Ω and 6 ∃q′′ ∈ Qh.q
p−→ q′′ ∈ ∆}.

SHAs with symbolic apply rules update the relations defined by their underlying
SHAs, in particular those defined for tree states. Thus any tree state p ∈ Qt defines
a binary relation @∆

p over Qh such that:

@∆
p = {(q, q′) | q p−→ q′ ∈ ∆} ∪ else_@∆

p ,

3.5. Reducing the size of (d)SHAs 55

10 〈T〉

8

16

18
19

14 15

17

20

9 〈a|b〉

5

3

1 2

4

6 12

ε

ε

ε

ε

a

b

_

_
〈a|b〉

ε

ε

ε

tree

tree

_

_ 〈a|b〉 _

a

b_

_
_

_

_

_

_
_

_

〈〉

〈〉

Figure 3.10: SHA with symbolic apply rules

where

else_@∆
p =

{
{(q, q′) | q @_−−→ q′ ∈ ∆ and 6 ∃q′′ ∈ Qh.q

p−→ q′′ ∈ ∆} if p ∈ Ω

∅ otherwise

The relation @∆ is of course extended with the elements brought by else_@∆
p

for tree states p ∈ Qt.
The SHA in Figure 3.6 can be turned into a SHA with symbolic apply rules.

Indeed, since it contains T – and L〈T 〉(∆) = UΣ – we can set Ω = {〈T 〉}. The
resulting SHA is illustrated in Figure 3.10, where the apply else rules are represented
by dark blue lines with the symbol _ over them. Each rule q

@_−−→ q′ actually denotes

the rule q
〈T 〉−−→ q′.

The determinization algorithm have to be adapted a little bit for handling
apply else rules. Let S = (Qh, Qt,Ω,Σ,∆, I, F) be a SHA with symbolic ap-
ply rules, and Su = (Qh, Qt,Σ,∆, I, F) its underlying SHA. We note Sdet =

(Qdet
h , Qdet

t ,Ωdet ,Σ,∆det , Idet , F det) where Qdet
h , Qdet

t , Idet , F det are obtained as in
the same way than for Sdet

u . For ∆det , we add the following rules to those used
to build Sdet

u . For all subset of hedge states Q1 ⊆ Qh and subset of tree states
Q ⊆ Qt, write apply(Q1, Q) = {q | ∃q1 ∈ Q1, p ∈ Q.q1

p−→ q ∈ ∆} and

applyelse(Q1) = {q | ∃q1 ∈ Q1.q1
@_−−→ q ∈ ∆}: then

true

Q1
@_−−→ applyelse(Q1) ∈ ∆det

apply(Q1) 6= ∅ Q2 = {q2 | ∃q1 ∈ Q1, p ∈ Q.(q1, q2) ∈ @∆
p } Q2 6= applyelse(Q1)

Q1
Q−→ Q2 ∈ ∆det

Finally, we set Ωdet = {Q ⊆ Qt | Q ∩ Ω 6= ∅}.

56 Chapter 3. Small Deterministic Automata for Navigational Queries

1

5

6

7
10 9

8

0

2

3

4

11

a

b

_

_
9

_

9 tree

9

_

__

_
_

_
_

tree

tree

tree

tree

9 a

b

_
_ 9

9

9

_

__
_

_

_

_
9

_

〈〉

Figure 3.11: A dSHA with symbolic apply rules

We present in Figure 3.11 the dSHA with symbolic apply rules obtained by
determinizing the SHA with apply else rules in Figure 3.10. Notice that both states
10 and 11 had 2 loops, and they now have only one loop. We’ll see in the experiments
how apply else rules help reduce the size of the dSHAs.

3.5.2 Cleaning Methods for Determinized SHAs

The determinization of SHAs (and automata in general) generates a lot of useless
rules and states. A first and straightforward optimization that can be done when
determinizing a SHA is to only generate accessible states. But there are other
states and rules that we can avoid to generate, especially when we have additional
information about the language that is accepted by the SHA. A language L is a
schema of a language L′ if L′ ⊆ L. Let S be a SHA that we want to determinize.
When a schema is given, then it is not necessary to generate states and rules that
allow to read inputs that are not in the schema.

3.5.2.1 Canonicity Cleaning

Let W ′ (W be a finite subset of query variables. If SHA represents a query with
query variables in W ′, then its language is a subset of the language of sequenced
W ′-structures. In a sequenced W ′-structure, every element of W ′ appears exactly
once.

Definition 15 A SHA is called (W ′-)canonic if it recognizes a language of W ′-
structures and, for all variable in x ∈ W ′, there exists no inputs having different
number of occurrences of x that can be evaluated to the same state.

Canonic automata have somehow states that are typed by the query variables, as
each state q defines the set of variables that a sequenced W ′-structure should have
in order be evaluated to q. Furthermore, since they accept only W ′-structures, they

3.5. Reducing the size of (d)SHAs 57

23

16

13

12

19 8

18

11

22

9

28
20

10

2

5

21

26 7

27

14

4

1

3

6

24 17

b

d

c

a

e

¬x

x

x

¬x

¬x

x

¬x

x

_

_

_

_

_

4

1

3

2

4

6 1
5

tree

tree

tree

tree tree

tree

tree

tree

7〈〉

_

Figure 3.12: SHA on sequenced x-structures overs some alphabet containing at least
a, b, c, d and e

should not allow to read inputs where one element inW ′ is read more than once. We
use the latter remark to build determinized SHAs that are not necessarily canonic,
but never allow to read a variable more than once. This may reduce the size of
dSHAs (built from SHAs) drastically.

Let S = (Qh, Qt,Ω,Σ,∆, I, F) be an automaton recognizing a language of se-
quencedW ′-structures, and write Qall = Qh∪Qt. We first define a binary predicate
mark∆ ⊆ Qall × W ′ that associates a state q with a variable x only if q can be
reached from some initial state or tree initial state without reading x on the input.
Formally,

• for all hedge state q ∈ Qh and variable x ∈ W ′, if there exists a state q′ ∈
I∪〈〉∆ and a sequencedW ′-structure w ∈ Lq′,q(∆) that contains no occurrence
of x, then (q, x) ∈ mark∆

• for all tree state p ∈ Qt and variable x ∈ W ′, a sequenced W ′-structure
w ∈ Lp(∆) that contains no occurrence of x, then (p, x) ∈ mark∆.

Example 11 Let W ′ = {x}, and consider the automaton in Figure 3.12, which
reads sequenced W ′-structures. We call it S and note ∆ its transition relation. All
the states in S that can be reached while not reading x are colored in pink. Thus,
the mark∆ relation is formed of all the pairs pink-colored state with the variable x.
Note that 1, 5 and 6 are tree states – not in their usual color.

58 Chapter 3. Small Deterministic Automata for Navigational Queries

The mark∆ can be computed by some inference rules, that somehow propagate
the membership to the relation, starting from the initial states and the tree initial
states, as following:

q ∈ I ∪ 〈〉∆ x ∈ W ′

(q, x) ∈ mark∆

(q, x) ∈ mark∆ q′ ∈ Qall o ∈ Σ ∪ {ε, tree} (q, q′) ∈ o∆

(q′, x) ∈ mark∆

(q, x) ∈ mark∆ (p, x) ∈ mark∆ q′ ∈ Qh (q, q′) ∈ @∆
p

(q′, x) ∈ mark∆

Once the mark∆ predicate is built, we can derive the set of states for which any
sequenced W ′-structure that are evaluated to them must contain at least an occur-
rence of a variable. In other words, we define the relation safevar∆ ⊆ Qall × W ′

that associates any state q with a variable x only if there is no sequenced W ′-
structure with zero occurrence of x that can be evaluated to q. Clearly, safevar∆ =

(Qall ×W ′) \mark∆. In the SHA of Figure 3.12, safevar∆ consists of the set of all
pairs of non pink-colored state with the variable x.

Finally, we use the safevar∆ during the determinization process. This is done
by allowing no rule that will cause some variable to be read more than once. Let
Q ⊆ Qh be a hedge state in Sdet and Q ⊆ Qt be a tree state of Sdet . We adapt the
determinization rules so that:

• for all x ∈ W ′, if there is a hedge state q ∈ Q such that (q, x) ∈ safevar∆,
then no rule leaving Q x−→ Q′′ will be created, for all Q′′ ⊆ Qh.

• for all x ∈ W ′, if there is a hedge state q ∈ Q such that (q, x) ∈ safevar∆ and
a tree state q′ ∈ Q′ such that (q′, x) ∈ safevar∆, then there will be no apply
rule in ∆det involving both Q and Q′.

This refinement doesn’t change the language of W ′-structures of Sdet , while
avoiding the creation of a lot of useless states and rules.

3.5.2.2 Schema Cleaning by Intersections

When the schema is given with by the means of a dSHA S′ that recognizes it, then
we can build the deterministic SHA recognizing the intersection of the schema and
the language of S. This can be done in multiple manners, e.g. by first determinizing
SHA and intersecting it with S′. But intersections are costly and the resulting dSHA

3.6. Experimental Results for XPath Queries 59

can be very big. Instead, we can use this very big dSHA to produce a smaller one
that integrates some information from the schema.

Note Sdet × S′ the product automaton recognizing L(Sdet) ∩ L(S′). Its states
are tuples (Q,Q′) where Q is a state of S and q a state of the schema automaton
S′. We build a dSHA S′′ from Sdet × S′ by only keeping the first components of
the pairs of states of Sdet ×S′, that is the states of Sdet . Doing so allows to reduce
a lot of transitions generated during the determinization of S, and that were not
allowed by the schema.

3.6 Experimental Results for XPath Queries

The original goal of this chapter is to show that deterministic automata of reason-
able size can be obtained for nested regular path queries. Deterministic NWAs are
particularly targeted, since they empower some of the previous approaches of CQA

and CQnA on streams. We show in this section that using SHAs in the process
of building dNWAs allow to have smaller dNWAs– in contrast to dNWAs produced
by determinizing the NWAs obtained by compilation of NREs. Of course, this also
implies that the dSHAs obtained from NREs are not huge.

We now compare the sizes of deterministic NWAs that we can obtain by com-
posing the various compilers in different orders.

We test the A1, . . . , A8 XPath queries (see Appendix .1) in the usual XPath

benchmark [Franceschet], which contain not only forward child, descendant and
following-sibling axes, but also filters and path compositions. Note that the queries
A4 until A8 contain filters, which are mapped to NREs with conjunctions. We
compiled these queries automatically to nested regular expressions, then compiled
these expressions to deterministic NWAs, by composing the various compilers pre-
sented earlier in all reasonable manners. A1 is the only query for which we obtain
a deterministic regular expression. But since we replaced ch(E) systematically by
T ·〈E〉·T in our experiments, all nested regular expression become nondeterministic.

The overall size of the resulting automata and the number of their rules are
given in Figure 3.13. We can see that determinization applied to the NWAs for
these expressions fails. Only 2 out of 8 automata have a size less than 400000, and
for the others, the determinization run out of time. In contrast, 3 of the 4 other
methods – that use stepwise hedge automaton intermediately – produce reasonable
small deterministic NWAs.

This is not a coincidence. Intuitively, the reason is that NWAs obtained from
stepwise hedge automata do all work bottom-up, where NWAs obtained directly
from the regular expression do a considerable amount of work top-down. In terms

60 Chapter 3. Small Deterministic Automata for Navigational Queries

det(nwa(.)) nwa(det(det(nwa(nwa(det(det(nwa(
sha(.))) sha(.))) sha(nwa(.)))) sha(nwa(.))))

A1 398 (37) 302 (62) 398 (37) 398 (37)
A2 362600 (6782) 668 (57) 4889 (221) 1648 (127) 4105 (148)
A3 318704 (8216) 469 (44) 542 (66) 625 (56) 907 (62)
A4 487 (42) 335 (67) 487 (42) 487 (42)
A5 676 (55) 1054 (110) 856 (67) 1192 (73)
A6 548 (45) 332 (62) 548 (45) 548 (45)
A7 468 (41) 285 (54) 468 (41) 468 (41)
A8 2520 (124) 1236 (137) 1804 (118)

Figure 3.13: Deterministic NWAs for XPath benchmark: size (#states).

det(nwa(.)) nwa(det(det(nwa(nwa(det(det(nwa(
sha(.))) sha(.))) sha(nwa(.))) sha(nwa(.))))

ch3[a] 19828 (1281) 85 (13) 157 (30) 192 (24) 352 (32)
ch4[a] 177 (21) 206 (39) 664 (56) 2200 (88)
ch5[a] 457 (37) 255 (48) 3336 (168)
ch7[a] 4825 (133) 353 (66)
ch9[a] 451 (84)

Figure 3.14: Deterministic NWAs queries chn[a] for n = 3, 4, 5, 7, 9: size (#states).

of [Alur et al. 2005] this restriction can be characterized syntactically by the single-
entry property:

Definition 16 An NWA N has the single-entry property, if there exists a single
state qentry ∈ Qh such that all opening rules of N have the form q

〈↓q−−→ qentry.

It can be shown that nwa(S) has the single-entry property for all SHAs S for which
the p’s are unique in the construction rule of 3.3.2.1, i.e. such that 〈〉 −→ p (see
Figure 2 in Appendix .3).

For the fourth method in the last column, NWA-determinization didn’t termi-
nate on nwa(sha(nwa(A8))) after a few hours.

We also tested our algorithms on collections of XPath queries with a scalable
parameter, such as the queries chn(a) for increasing n. This series is known to require
many states for deterministic bottom-up evaluation. Indeed, the determinization
for stepwise hedge automata nwa(det(sha)) leads to a size explosion. The method
det(nwa(sha(.))), however, still yields small deterministic automata! Generally this
method produced satisfactory results in all our experiments. In quite some cases,
however, nwa(det(sha(.))) still behaves better.

Chapter 4

Certain Query Answering on
Streams

Contents
4.1 Modeling Streams of Hedges 61

4.1.1 ... As String Patterns With Parentheses 62

4.1.2 ... As Nested Patterns . 62

4.2 About CQA Algorithms on Streams 63

4.3 A Streaming Algorithm for Boolean CQA 65

4.4 Certain Query Answering for Monadic Queries 70

4.4.1 Position-annotated patterns 71

4.4.2 Main differences with Boolean CQA 72

4.4.3 Description of the Algorithm 74

4.4.4 Correctness and Complexity of the Algorithm 79

4.5 Experiments . 87

It is clear from the results of Chapter 3 that stepwise hedge automata are a good
intermediate model for obtaining deterministic nested word automata of reasonable
size for nested regular path queries. In fact, dSHAs produced by determinizing
SHAs obtained from NREs are also of reasonable size. We could thus also use them
for CQA and CQnA on streams.

In this chapter, we present an algorithm empowered by dSHAs that decides
CQA with a lower per-event time complexity than the approaches using NWAs.

4.1 Modeling Streams of Hedges

We show in this section two methods for representing streams of hedges. The dif-
ference between these methods comes from some assumptions that can be made on
the content of the stream, in particular the parts representing trees.

62 Chapter 4. Certain Query Answering on Streams

X0 〈aX1 〈a〈bX2 〈a〈b〉X3 〈a〈b〉〉X4 〈a〈b〉〉〈cX5 〈a〈b〉〉〈c〉X6 〈a〈b〉〉〈c〉

Figure 4.1: Instantiations steps of a stream represented as a string pattern with
parentheses

4.1.1 ... As String Patterns With Parentheses

In this approach, the stream is modeled as a pattern over Σ ∪ {〈, 〉}. The elements
of the known part of the stream are concatenated as they are received, while a single
pattern variable represents the future elements to come. Figure 4.1 illustrates how
the hedge 〈a〈b〉〉〈c〉 over the alphabet Σ = {a, b, c} is received as a stream with
this model. It starts with a single variable X0, that is instantiated with elements
of {〈e | e ∈ Σ} ∪ {〉} until the penultimate step, where the pattern variable X6 is
instantiated into the empty word.

Because they can be instantiated separately, the opening and closing parentheses
seem to be independent. In [Gauwin et al. 2009] and [Sebastian 2016], streams were
modeled in this way, and NWAs were used to process them.

4.1.2 ... As Nested Patterns

One assumption that can be made by a streaming algorithm on hedges is that
trees can always be represented by nested words, as seen in the subsection 2.1.3.
This means that opening and closing parentheses do not have to be instantiated
separately, as it is sure that every opening parenthesis will have its matching closing
parenthesis. We show in Figure 4.2 how the hedge 〈a〈b〉〉〈c〉 is streamed in such
model.

The stream starts with X0 and evolves respectively into 〈aX2〉X1,
〈a〈bX3〉X ′2〉X1, 〈a〈b〉X ′2〉X1, 〈a〈b〉〉X1, 〈a〈b〉〉〈cX4〉X ′1, 〈a〈b〉〉〈c〉X ′1 and finally
〈a〈b〉〉〈c〉. In this model variables can only be instantiated into nested words: cor-
responding opening and closing parentheses cannot be dissociated. Furthermore,
due to the top-down-left-right traversal of the hedges, an order is imposed on the
instantiations of variables. For instance X ′2 cannot be instantiated before X3 is
completely instantiated, and X1 cannot be instantiated before X ′2 and X3.

We note nStreamsΣ the subset of nPatternsΣ that is constituted by the nested
patterns representing streams.

4.2. About CQA Algorithms on Streams 63

X0

〈〉

a

X1

X2

〈〉

a

X1

〈〉

b

X′
2

X3

〈〉

a

X1

〈〉

b

X′
2

〈〉

a

X1

〈〉

b

〈〉

a 〈〉

b

〈〉

c X4

X′
1 〈〉

a 〈〉

b

〈〉

c

X′
1

〈〉

a 〈〉

b

〈〉

c

Figure 4.2: Instantiations steps of a stream of hedge as a nested pattern

4.2 About CQA Algorithms on Streams

A query answering algorithm is an algorithm that takes as input a query and a
hedge, and outputs all the nodes of the hedge that satisfy the property expressed in
the query. In the case of a boolean query, it just answers yes or no, depending on
whether the hedge satisfies the query. Query answering algorithms can be grouped
into two categories: in-memory and streaming algorithms. We focus on streaming
algorithms in this section. Streaming algorithms read their input in only one pass.
There are some criteria that are used in order to measure the quality of a streaming
algorithm, among which:

• Latency: the responses of the algorithm are to be output at the earliest possible
event.

• Memory consumption: the size of the buffer used by the algorithm should be
the smallest possible. This implies that the elements that should no longer be
kept into memory have to be discarded.

• Time efficiency: the number of operations per event of the algorithm should
be reasonable.

In the case of a query answering algorithm working on streams, latency implies
that an answer to the query should be output as soon as there are enough information
to do so. Query answering algorithms meeting this requirement are called Certain
Query Answering (CQA) algorithms. The low memory consumption requirement
combines both CQA and the ability to remove from the buffer as soon as possible

64 Chapter 4. Certain Query Answering on Streams

any element that will never be part of the output of the query. Such elements
are called certain non-answers. Thus, in order to have a minimal latency, a query
answering algorithm must be both a CQA and a Certain Query Non-Answering
(CQnA) algorithm.

Some CQA or approximation of CQA algorithms have been proposed for naviga-
tional XPath queries. These algorithms assume that the queries are represented by
automata, that are either deterministic or that are determinized while reading the in-
put hedge. Gauwin et al. proposed an exact algorithm for CQA [Gauwin et al. 2009]
whose time efficiency is in O(m|h||A|2 + |E(A)|+n) where m is the maximal number
of candidates that are simultaneously alive, h is the input hedge, A the input dNWA
representing the query, E(A) a dNWA that is built on the fly from A and the input
tree, and n the total number of candidates created while reading the input tree. The
number of operations per event is quadratic in the size of the input dSHA, which
is too much in practice. The dNWA E(A) that is built by the algorithm is used in
order to keep information that facilitate deciding CQA. When considering approx-
imations of CQA, [Debarbieux et al. 2015] proposed a very efficient algorithm that
runs in O(|Q||h|+ |det(A, h)|+n) where Q is the number of states of the input NWA
representing the query, h the input tree, det(A, h) the on-the-fly determinization of
A wrt. h and n the total number of candidates created when running the algorithm
on its input. Unlike the algorithm of Gauwin, the input NWA is not necessarily
deterministic. It’s dynamically determinized, while taking care of only producing
the part of the its deterministic version that is useful to evaluate the input tree.
The approximation that results of this algorithm is good enough to be exact for all
navigational XPath queries that have only positive filters, that is no negation.

In this chapter, we present a new and more efficient algorithm for CQA on
streams that applies to queries defined by dSHAs.

We have seen in chapter 3, that bottom-up deterministic dSHAs are suitable
for representing regular path queries on data trees. This is in contrast to previous
approaches on Xml stream processing, where various nondeterministic machines
where used for representing XPath queries (see e.g. SPEX transducer networks
approach [Olteanu 2007b] and the NWA approaches from [Debarbieux et al. 2015]
and [Mozafari et al. 2012]).

However, streams of hedges are received in a top-down left-to-right order, and
not in bottom-up. One way to reconcile the two evaluation methods is to compile a
dSHA into a dNWA, which can be done in linear time, and then to run this dNWA
on the stream. When doing this in a naive manner, however, most of the evaluation
work would be done late, which is incompatible with CQA. Indeed, when evaluating
subtrees in a top-down left-to-right order, SHAs (and NWAs obtained from SHAs)

4.3. A Streaming Algorithm for Boolean CQA 65

do not consider the information gathered before entering the subtrees. For instance,
if the query asking whether there is some tree rooted by a letter a with a subtree
rooted by a letter b were represented by a dSHA, then the dSHA would accept
a satisfactory input only after having closed the subtree rooted by b – because of
the bottom-up evaluation. In contrast, a CQA algorithm would accept the input as
soon as the b letter is read. So we need to do more effort to obtain a CQA algorithm
for dSHAs.

One proposal would be to apply the CQA algorithm for dNWAs of Gauwin
[Gauwin et al. 2009], which is based on the usage of the hedge accessibility relation
of dNWAs. This algorithm has the advantage to run in polynomial time. Unfortu-
nately, however, it requires quadratic time in the size of the dNWA for each event
on the stream, which is far too much in practice. In order to avoid this complexity
problem, we propose an alternative CQA algorithm in the next sections, that runs
in combined linear time for Boolean queries, and which can be lifted to nonBoolean
queries with additional polynomial time costs that depend only on the number of
query answers, but not on the size of the stream.

4.3 A Streaming Algorithm for Boolean CQA

We start with a CQA algorithm for Boolean queries represented by dSHAs. In order
to simplify the situation we consider the problem of certain co-accessibility.

Existence of certainly co-accessible states.
Input: A dSHA S, a subset Q of hedge states of S, and a stream s with the
same signature as S.
Output: Whether there exists a state q ∈ Q such that all the instances of s
will be accepted by S[I/{q}].

This problem is a little more general that what we will need for the boolean
case, so that it will help us to find an algorithm for the nonboolean case too.

For capturing boolean certainty for selection, it is sufficient to restrict Exis-

tence of certainly co-accessible states to singleton sets Q. Indeed, a stream
s is a certain answer for a boolean query Q represented by some dSHA S with ini-
tial state q0 iff the output of Existence of certainly co-accessible states for
S, {q0}, s is true. On the other hand, s is a certain non-answer for Q iff the output
of Existence of certainly co-accessible states for S, {q0}, s is true, where
S is equal to S except that its final states are flipped.

We next present a streaming algorithm detecting certain co-accessibility at the
earliest possible event of the stream. As inputs it receives a dSHA S = (Qh, Qt,_,

66 Chapter 4. Certain Query Answering on Streams

Σ,∆, I, F), a subset of hedge states Q ⊆ Qh, and a hedge s ∈ nStreamsΣ. At the
earliest event of the stream where the co-accessibility of some state in Q becomes
certain, the algorithm will return true and stops. Recall that a state q ∈ Qh is
co-accessible if a final state can be reached from q by the transitions in ∆. Without
loss of generality we can assume that S is complete, given that completion can be
done in linear time (based on applyelse rules).

The idea of the algorithm is to run S on s from the left to the right, while
memoizing at any event the current subset of reached states and a set of target
states that ensure co-accessibility. At the start of the stream, the algorithm tests
whether only states in F are accessible from Q, returns true and stops if this is the
case. This is done by testing if a state in Q is in the set of safe states of F , that
is the states that can only lead to F . Otherwise, the algorithm continues with the
evaluation of the automaton on the stream starting with source states Q and target
states F , that is by calling eval_coacch(s,Q, F). If this evaluation successfully
produces a result, say Q′ ⊆ Qh, then the algorithm returns the truth value of
Q′ ∩ F = ∅. Otherwise, the algorithm raises an exception, which may have value
true or false. This exception is caught and returned, and then the algorithm stops.
So the algorithm either stops at the earliest event where certain co-accessibility
becomes true, or at the end of the stream where co-accessibility may be certainly
true or certainly false.

The algorithm for Existence of certainly co-accessible states is given
in Figure 4.3. For any dSHA S = (Qh, Qt,Ω,Σ,∆, I, F) it executes the definition
of the total function:

Cqa_bool : nStreamsΣ × 2Qh → B

As subroutines it executes the definition of the partial functions:

eval_coaccκ : nStreamsΣ × 2Qh × 2Qκ ↪→ 2Qκ

where κ is a type in {h, t}. This function evaluates a stream, from a set of hedge
states for the source, while targeting a set of states of type κ. The result is a set
of states of type κ that was reached over the stream. Whenever the existence of
a certainly co-accessible state is discovered, the result of function eval_coaccκ is
undefined and an exception with value true is raised. The return value of function
eval_coaccκ is in B when reaching the end of a closed stream.

In the case where the stream is still open with some variable pattern X ∈ V ars,
then X is considered as a future. Futures are a concept in programming languages

4.3. A Streaming Algorithm for Boolean CQA 67

1 Cqa_bool = fun (S,Q, s) // where S = (Qh, Qt,_,Σ,∆, I, F) a complete dSHA ,
Q ⊆ Qh and s ∈ nStreamsΣ

2 i f Q ∩ safe∆
h (F) 6= ∅ then r e t u r n true

3 e l s e t r y r e t u r n eval_coacch(s,Q, F) ∩ F 6= ∅
4 catch ex then r e t u r n ex

5 eval_coacc∆κ = fun (s,Q,R) // where κ ∈ {h, t} , Q ⊆ Qh , R ⊆ Qκ
6 i f Q = ∅ then r a i s e false
7 e l s e case s
8 o f ε then
9 case κ
10 o f h then r e t u r n Q

11 o f t then r e t u r n tree∆(Q)
12 o f as′ where a ∈ Σ and s′ ∈ nStreamsΣ then
13 l e t Q′ = a∆(Q) i n
14 i f Q′ ∩ safe∆

κ (R) 6= ∅ then
15 r a i s e true // c e r t a i n l y i n a c c e s s i b l e
16 e l s e
17 r e t u r n eval_coaccκ(s′, Q′, R)
18 o f 〈s1〉s2 where s1, s2 ∈ nStreamsΣ then
19 l e t P = eval_coacct(s1, 〈〉∆, down∆

κ (Q,R)) i n
20 r e t u r n eval_coaccκ(s2, Q@∆P,R)
21 o f X where X ∈ V then // Wait f o r the i n s t a n t i a t i o n o f X
22 when X i s s′ r e t u r n eval_coaccκ(s′, Q,R)
23

24 safe∆
κ = fun (Q) // κ ∈ {h, t} , Q ⊆ Qκ

25 l e t P = Qh \ (acc∆
h×κ)−1(Qκ \Q) i n

26 r e t u r n (acc∆
h×κ)−1(Q) ∩ P

27 down∆
κ = fun (Q,R) // κ ∈ {h, t} , Q ⊆ Qh , R ⊆ Qκ

28 r e t u r n {p ∈ Qt | (Q@∆p) ∩ safe∆
κ (R) 6= ∅}

Figure 4.3: Algorithm for Existence of certainly co-accessible states.

that allow to do operations on the content of a variable that is not instantiated
yet. They are generally used in a concurrent context, but in our case they will
be a way to wait for the instantiation of the end of the stream. Then whenever
a pattern variable is reached, the algorithm pauses and waits for its instantiation
before resuming.

We now consider a call eval_coaccκ(s,Q,R) where Q ⊆ Qh and R ⊆ Qκ. If Q is
empty, then an exception with value false is raised. This is a direct consequence of
the definition of the Existence of certainly co-inaccessibe states problem.
If the input stream is s = ε then co-accessibility is not certain, since this is an
invariant that our algorithm maintains. Therefore, if κ = h, the set of source states
Q is returned and if κ = t the tree states obtained for the source states tree∆(Q). In
the case where the input stream has the form s = as′, the next source setQ′ = a∆(Q)

is computed. If only states of the target set R are accessible from Q′ then certain
co-accessibility holds and an exception with value true is raised. Otherwise, the

68 Chapter 4. Certain Query Answering on Streams

evaluation continues on stream s′ with the new source states Q′ and the old target
states R. Whether or not some state in Q′ can only access states in R is indicated
by the truth value of Q′ ∩ safe∆

κ (R) 6= ∅. The safe∆
κ function computes, given a set

Q of type κ, the set of states of Qh from which only elements of Q are accessible,
that is

safe∆
κ (Q) = acc∆

h×κ(Q) ∩ P

where P = Qh \ (acc∆
h×κ)−1(Qκ \Q).

The most interesting case is the case where the input stream has a nested sub-
stream, i.e., s = 〈s1〉s2. The algorithm first evaluates the substream s1 starting
with 〈〉∆ as source states and the following set of tree states as target states:

down∆
κ (Q,R) = {p ∈ Qt | (Q@∆p) ∩ safe∆

κ (R) 6= ∅}

A tree state p belongs to this set if there is an apply rule of the form q@p→ q′ ∈ ∆

with q ∈ Q so that q′ can only access R. If the tree states of down∆
κ (Q,R) can

be certainly accessed on s1 from 〈〉∆, then R is certainly accessible from Q on s.
So if the evaluation of s1 successfully returns a set of states P (without detecting
certain co-accessibility), then it has to continue on the stream s2 with the sets of
source states Q@P and of target states R. If certain accessibility of down∆

κ (Q,R)

is detected during the evaluation of s1 from 〈〉∆, then R is certainly accessible from
Q for the evaluation of s. In this case, true is raised and the computation stops.

Proposition 6 (Correctness of the Cqa_bool algorithm) Let s ∈ nStreamsΣ

be a stream, S = (Qh, Qt,_,Σ,∆,_, F) a complete dSHA, and Q ⊆ Qh a set of
hedge states. There exists a state q ∈ Q that is certainly co-accessible by s if and
only if Cqa_bool(S,Q, s) = true.

To prove this proposition, we first introduce some notations. We will write for all
Q′, Q′′ ⊆ Qh, P ⊆ Qt, LQ′,Q′′(∆) =

⋃
q′∈Q′,q′′∈Q′′

Lq′,q′′(∆) and LP (∆) =
⋃
p∈P

Lp(∆).

For the sake of simplicity, we will also write for all q ∈ Qh and Q′ ⊆ Qh, Lq,Q′(∆)

(resp. LQ′,q(∆)) to denote L{q},Q′(∆) (resp. LQ′,{q}(∆)). Now we show that:

Lemma 7 Let κ ∈ {t, h} be a type of state and R ∈ Qκ a set of states of type κ.
Then if κ = h, there exists a state q ∈ Q for which Inst(s) ⊆ Lq,R(∆) if and only
if, when evaluating eval_coacc∆

h (s,Q,R),

• either a set of states Q′ where Q′ ∩R 6= ∅ is returned

• or an exception with value true is raised

4.3. A Streaming Algorithm for Boolean CQA 69

Furthermore, if κ = t, then Inst(〈s〉) ⊆ LR(∆) if and only if, when evaluating
eval_coacc∆

t (s, 〈〉∆, R),

• either a set of states Q′ where Q′ ∩R 6= ∅ is returned

• or an exception with value true is raised

Proof: The proof is by induction on the structure of s.

Case s = ε and κ = h: then Inst(s) = {ε} and eval_coacc∆
h (s,Q,R) = Q. Fur-

thermore, since A admits no epsilon-rule – because of its determinism – there
exists a state q ∈ Q for which ε ∈ Lq,R(∆) iff q ∈ R, that is Q ∩R 6= ∅.

Case s = ε and κ = t: then eval_coacc∆
t (s, 〈〉∆, R) = tree∆(〈〉∆). Furthermore,

since A admits no epsilon-rule, 〈ε〉 ∈ LR(∆) if and only if tree∆(〈〉∆)∩R 6= ∅.

Case s = as′ where a ∈ Σ, s′ ∈ nPatternsΣ: then Inst(s) = {aw | w ∈ Inst(s′)}.
Assume κ = h, so for all q ∈ Q, Inst(s) ⊆ Lq,R(∆) iff

• either all the words starting by a are elements of Lq,R(∆), that is {aw′ |
w′ ∈ nStreamsΣ} ⊆ Lq,R(∆) (i)

• or Inst(s′) ⊆ La∆(q),R(∆) (ii)

Let Q′ = a∆(Q). Since S is complete, then case (i) is satisfied if and only
if there exists a state q′ ∈ Q′ from which only states in R can be reached,
that is the condition Q′ ∩ safe∆

κ (R) 6= ∅ at line 14 is true, and an exception
with value true is raised at line 15. For case of (ii), if (i) is not satisfied, then
the recursive call eval_coacc∆

hedge(s
′, Q′, R) is made, and by the induction

hypothesis, Inst(s′) ⊆ LQ′,R(∆) iff either an exception with value true is
raised, or a set Q′′ satisfying Q′′ ∩R 6= ∅ is returned.

The proof is similar for κ = t.

Case 〈s1〉s2 where s1, s2 ∈ nStreamsΣ: then Inst(s) = {〈w1〉w2 | w1 ∈
Inst(s1), w2 ∈ Inst(s2)}. Let κ = h, D = down∆

κ ({q}, R). So for all q ∈ Q,
Inst(s) ⊆ Lq,R(∆) iff

• either all the nested words starting with some prefix 〈w1〉 ∈ Inst(〈s1〉)
are members of Lq,R(∆), that is {〈w1〉w′ | w1 ∈ Inst(s1) and w′ ∈
nStreamsΣ} ⊆ Lq,R(∆) (i)

• or Inst(s2) ⊆ LQ@∆P ,R(∆), where P = {p ∈ Qt | Lp(∆)∩Inst(〈s1〉) 6= ∅}
(ii)

70 Chapter 4. Certain Query Answering on Streams

By the induction hypothesis, case (i) is satisfied if and only if either the set
eval_coacc∆

t (s1, 〈〉∆, D) is successfully computed and has a non-empty inter-
section with D or an exception with value true is raised during its evaluation.
In case (ii), if case (i) is false, we have by the induction hypothesis that
eval_coacc∆

h (s1, 〈〉∆, D) returns a set P having an empty intersection with D
– an exception with value false will not be raised because this would imply
that P = ∅, which is impossible given that S is complete. Furthermore, by
the induction hypothesis, eval_coacc∆

h (s2, Q@∆P,R) either raises an excep-
tion with value true, or returns a set Q′′ having a non-empty intersection with
R. The case where κ = t is proved similarly.

We won’t deal with the case where s = X ∈ V, since it reduces to the above cases
when X is instantiated.

�

Proof of Proposition 6: The algorithm first computes Q ∩ safe∆
κ (F) at line 2.

If it is non-empty, then any nested word can be evaluated from Q to F , in
particular the instances of s. Otherwise, the algorithm tries to compute Q′ =

eval_coacch(s,Q, F). By Lemma 7, the cases where it succeeds to compute it and
finds that Q′ ∩ F 6= ∅, or fails to do so while catching an exception with value true,
are reached if and only if there exists a state q ∈ Q such that Inst(s) ⊆ Lq,F (∆).
Thus the algorithm returns true if and only if there exists a state q ∈ Q that is
certainly co-accessible by s. �

We next show that Cqa_bool decides the problem of certainty of selection.

Proposition 7 Let Q be a boolean query with alphabet Σ, represented by a complete
dSHA S with set of initial states I. A stream s ∈ nStreamsΣ is certain for selection
for Q if and only if Cqa_bool(S, I, s) = true.

Proof: Let Qh be the set of hedge states of S, F ⊆ Qh its set of final states and
s ∈ nStreamsΣ a stream. Given that S is deterministic, I consists of a single state
q0 ∈ Qh. By Proposition 6, Cqa_bool(S, I, s) equals true if and only if it is certain
that only states in F can be accessed after having read s from q0, which is equivalent
to Inst(s) ⊆ Lq0,F (∆) = L(Q). Thus s is certain for selection for Q if and only if
Cqa_bool(S, I, s) = true. �

4.4 Certain Query Answering for Monadic Queries

We now adapt the algorithm for the boolean case to the monadic case. Let Q a
boolean query over alphabet Σ represented by a complete dSHA S with transitions

4.4. Certain Query Answering for Monadic Queries 71

relation ∆. We consider a stream s ∈ nStreamsΣ. Proposition 7 shows that calling
the Cqa_bool function with the arguments S, I and s is enough for deciding the
certainty of s. For every call eval_coacc∆

κ (s′, Q,R) made during the execution of
Cqa_bool(S, I, s) where s′ ∈ nStreamsΣ is a substream of s and κ a type, Q is nec-
essarily a singleton, thanks to the determinism and the completeness of S. Actually,
every call eval_coacc∆

κ (s′, Q,R) is equivalent to asking the following question: is it
certain that only states in R can be reached by the single state q ∈ Q that bears the
empty candidate [], after having read s′ ? This interpretation follows directly from
the definition of boolean queries, which are queries that select the empty candidate.

Monadic queries select candidates other than the empty candidate. A monadic
query Q with alphabet Σ and query variable x ∈ W should thus associate to x
positions of the input on which it is evaluated. But the associations of variables to
positions are not given in the input, and the automaton S′ associated to Q have
somehow to guess them. This leads to a kind of non deterministic run, even if
S′ is deterministic. More precisely, it is as if S′ were running on multiple inputs
simultaneously, each one corresponding to a different annotation of the variable x.

The Cqa_bool algorithm can be adapted in order to decide whether there is a
candidate that is certain for selection. It will have to work on sets of states, where
each element bears an object describing a set of candidates.

4.4.1 Position-annotated patterns

Before pointing on the differences between the monadic and boolean CQA algo-
rithm, we introduce special nested patterns where positions are part of their labels.

Definition 17 Given an alphabet Σ and a nested pattern ρ ∈ nPatternsΣ, the
position-annotated pattern obtained from ρ is the nested pattern ρ̃ over Σ× Pos(ρ)

such that ch ρ̃ = chρ and ns ρ̃ = nsρ and for every position π ∈ Pos(ρ):

• π ∈ Nodes(ρ) iff π ∈ Nodes(ρ̃)

• for all X ∈ V, π ∈ LPos{X}(ρ) iff π ∈ LPos{X}(ρ̃)

• for all a ∈ Σ, π ∈ labρa iff π ∈ lab ρ̃(a,π)

We write panΣ(ρ) = ρ̃, and aπ to denote the elements (a, π) of Σ× Pos(ρ).

Figure 4.4 illustrates a nested pattern (to the left) with its position-annotated
version (to the right).

72 Chapter 4. Certain Query Answering on Streams

〈〉

a 〈〉

b

〈〉

c

X1

X2

π0

π1 π3

π4 π5

π6

π7 π8

〈〉

aπ1 〈〉

bπ4

〈〉

cπ7

X1

X2

π0

π1 π3

π4 π5

π6

π7 π8

Figure 4.4: A pattern and its position-annotated version

4.4.2 Main differences with Boolean CQA

Carrying candidates in states. In contrary to boolean CQA where only the
empty candidate could be selected, we need in monadic CQA to assign candidates
to states. Thus, from now and for the rest of this chapter, we use the letters Q,P
and their derivatives to refer to functions that map states in Qh ∪ Qt to sets of
candidates. These functions are called run snapshots.

We’ll also need to define the join operation on sets of candidates. The join of
two sets of candidates C1 and C2 is the new set of candidates

C1 ./ C2 = {α1 ∪ α2 | α1 ∈ C1 and α2 ∈ C2 and dom(α1) ∩ dom(α2) = ∅}.

Canonic automata. The input automata that are considered by the monadic
CQA algorithm are canonic, in the sense of Definition 15 in Section 3.5.2.1. Since
exactly one variable can be bound in the monadic case, this implies that every
state of the automata must either carry only monadic candidates, or carry only the
boolean candidate. To obtain such kind of automata for a monadic query Q with
query variables {x}, we can build the product of the complete dSHA obtained by
compilation fromQ – and eventually determinization – with the dSHA in Figure 4.5.

The latter dSHA, denoted one-x , recognizes the language of all sequenced {x}-
structures. We note Qone-x

h = {3, 4, 5} its set of hedge states, Qone-x
t = {0, 1, 2} its

set of tree states and F one-x = {4} its set of final states. Notice that the tree states
0, 1, 2 are respectively the states where tree having respectively 0, 1 or 2 occurrences
of x are evaluated. The hedge state 4 is its only final state given that any hedge
evaluated in 4 has exactly one occurrence of x.

Any dSHA representing a monadic query and obtained by a product with one-x

is called one-x -canonic.
Presence of candidates that are certain for selection. At each event, the
algorithm tests whether there is some candidate that is certain for selection. This
test doesn’t identify which candidates are certain for selection, but just reports the
presence of such candidates. As we will see in Theorem 2, this test is less expensive

4.4. Certain Query Answering for Monadic Queries 73

3 4 1

2

0

5

〈〉

0

_
x

1
tree

0

_

_

_

_

x

_

tree

tree

Figure 4.5: Automaton one-x with set of apply else rules {0, 1, 2}

– in time – than the task of seeking for the candidates that are certain for selection.
The part of the algorithm that is in charge of this test is very similar to the Cqa_bool

function. We thus use it to restrict to the minimum the number of times that the
procedure for retrieving candidates is called.

Searching for and outputting candidates. We introduce a class of objects
named candidate managers, that will carry out the task of gathering and outputting
the candidates that are certain for selection. We use them in a separate thread,
where they perform their task every time the certainty of some candidates is reported
by the CQA algorithm. Their select function is actually responsible for this task.

Killing candidates. In order to not process again candidates that are already
known to be certain for selection or rejection, we use a side-effecting function that
can kill candidates, that is mark them as useless for the operations to come. A dead
candidate is thus a candidate that is to be ignored by the algorithm. A candidate
that is not dead is called alive. For all run snapshot Q, the function adom returns
the set of states that are not associated to a set of dead candidates, that is

adom(Q) = {q | ∃C.(q, C) ∈ Q and ∃α ∈ C. α alive}.

By abuse of language, we also say that a set of candidates is alive if at least one of
its candidates is.

Explicit Stack. The algorithm for boolean CQA is a recursive algorithm, and thus
uses implicitly the recursion stack. For monadic CQA, the algorithm that we will
present will also be recursive, but will have to maintain an explicit stack. Before
entering any subtree in the input, both the run snapshot and the sets of target states
are pushed on the stack. These data will be used to resume runs when closing a
subtree in the input, but also by the candidate manager when it will search and
output the candidates that are certain for selection.

74 Chapter 4. Certain Query Answering on Streams

4.4.3 Description of the Algorithm

The algorithm for monadic CQA is called CQA_sel and presented in Figure 4.6.
It has 5 parameters:

• the query variable x ∈ W

• Qone-x
h , Qone-x

t , F one-x , respectively sets of hedge states, tree states and final
states of one-x

• the dSHA S = (Qh, Qt,Ω,Σ] {x,¬x},∆, I, F) representing the query and
recognizing a language of sequenced {x}-structures. Notice that its signature
includes the query variable x ∈ W and its negation ¬x. S has also to be
complete and one-x -canonic.

• Functions schema-stateκ : Qκ → Qone-x
κ for κ ∈ {h, t} mapping every state of

S to the only state of one-x from which it was built. Since S is the result
of a product involving one-x , the states in Qh can be seen as pairs of states
where one of the components is a state in Qone-x

h . The latter state, that we
call schema state, is returned by the schema-stateκ functions.

• The function hedge-schema-state : Qt → Qone-x
h mapping every tree state p ∈

Qt to the only hedge schema state having a tree transition to schema-statet(p).
Indeed for all tree state qone-x ∈ Qone-x

t there exists exactly one hedge state
q′one-x ∈ Qone-x

h such that q′one-x
tree−−→ qone-x is a transition in one-x .

The input of the algorithm is a stream s ∈ nStreamsΣ. From Line 9 to Line 11
are respectively initialized the run snapshot Q〈〉 = 〈〉∆ × {[]} that maps the tree
initial state of the S to the singleton containing the empty candidate, a stack –
data structure – and a candidate manager. At Line 12 starts the definition of the
main subroutine of the algorithm, the function eval_selκ where κ ∈ {h, t}. It’s
a transposition of the eval_coacc∆

κ algorithm in Figure 4.3 to the monadic case,
but takes as input a position-annotated stream s̃ – instead of a stream –, a run
snapshot Q – instead of set of states – where dom(Q) ⊆ Qh, a set of query-successful
states R ⊆ Qκ and a set T ⊆ Qκ of out-of-schema states. Query-successful states
are constituted of the states that can only lead to final states, while out-of-schema
states consist of the states that will only lead to states whose schema states are non
final.

The definition of certain answers require that all the instantiations of the stream
annotated with some candidate belong to the language of the query. However, in the
case of sequenced {x}-structures, the instances that are considered are constrained

4.4. Certain Query Answering for Monadic Queries 75

1 //Query v a r i a b l e x ∈ W
2 // Se t s Qone-x

h , Qone-x
t and F one-x from one-x

3 //Complete and one-x−canonic dSHA S = (Qh, Qt,_,Σ] {x,¬x},∆, I, F)
4 //Functions schema-stateκ : Qκ → Qone-x

κ f o r κ ∈ {h, t}
5 //Function hedge-schema-state : Qt → Qone-x

h

6

7 CQA_sel =
8 fun (s) // where s ∈ nStreamsΣ

9 l e t Q〈〉 = 〈〉∆ × {[]} i n
10 l e t stack = newstack () i n
11 l e t candidate_manager = th read new_candidate_manager∆(stack) i n
12 l e t eval_selκ =
13 fun (s̃, Q,R, T) // where κ ∈ {h, t} , s̃ ∈ nStreamsΣ×Pos(s) , Q : Qh ↪→ 2Cand ,

R ⊆ Qκ query−s u c c e s f u l s t a t e s , T ⊆ Qκ out−of−schema s t a t e s
14 i f adom(Q) = ∅ then r a i s e false
15 e l s e case s̃
16 o f ε then
17 case κ
18 o f h then r e t u r n fusion(Q)

19 o f t then r e t u r n fusion({(tree∆(q), C) | (q, C) ∈ Q and C alive})
20 o f aπ s̃′ where a ∈ Σ , π ∈ Pos(s) , s̃′ ∈ nStreamsΣ×Pos(s) then
21 l e t Q1 = fusion({(a∆(q), C) | (q, C) ∈ Q and C alive}) i n
22 l e t Q2 = readVar∆(Q1, π, x) i n
23 l e t Ψ = {q ∈ adom(Q2) | schema-stateh(q) ∈ hedge-schema-state(R)} i n
24 i f Ψ ∩ safe∆

κ (R ∪ T) 6= ∅ then
25 candidate_manager . s e l e c t (Q2)
26 r e t u r n eval_selκ(s̃′, Q2, R, T)
27 o f 〈s̃1〉s̃2 where s̃1, s̃2 ∈ nStreamsΣ×Pos(s) then
28 stack . push ((Q ,R ,T))
29 l e t Rd = safe-acc-down∆

κ (Q,R, T) ,
30 Td = safe-down∆

κ (Q,R, T) i n
31 l e t P = eval_selt(s̃1, Q〈〉, Rd, Td) i n
32 l e t _ = stack . pop () i n l e t

Q′ = {(q@∆p, Cq ./ Cp) | (q, Cq) ∈ Q, (p, Cp) ∈ P,Cq, Cp alive and Cq ./ Cp 6= ∅}

33 i n r e t u r n eval_selκ(s̃2, Q
′, R, T)

34 o f X where X ∈ V then
35 when X i s s̃′ r e t u r n eval_selκ(s̃′, Q,R, T)
36 i n
37 t r y
38 l e t s̃0 = th read panΣ(s) i n
39 l e t QI = I × {[]} ,
40 R0 = F ,
41 T0 = Qh \ schema-state−1

h (F one-x) i n
42 r e t u r n eval_selh(s̃0, QI , R0, T0)
43 catch ex then s k i p

Figure 4.6: CQA algorithm for monadic queries.

76 Chapter 4. Certain Query Answering on Streams

1 adom = fun (Q) // Act ive domain o f Q
2 r e t u r n {q | ∃C.(q, C) ∈ Q and C alive}
3

4 readVar∆ = fun (Q, π, x)
5 r e t u r n fusion({(¬x∆(q), C) | (q, C) ∈ Q and C alive}
6 ∪{(x∆(q), C ∪ {[x/π]}) | (q, C] {[]}) ∈ Q})
7

8 fusion = fun (Q) // Q : Qh ↪→ 2Cand

9 r e t u r n {(q,
⋃

(q,C)∈Q C) | q ∈ dom(Q)}
10

11 safe∆
κ = fun (Ψ) // κ ∈ {h, t} , Ψ ⊆ Qκ

12 l e t Ψ′ = Qh \ (acc∆
h×κ)−1(Qκ \Ψ) i n

13 r e t u r n (acc∆
h×κ)−1(Ψ) ∩Ψ′

14

15 safe-down∆
κ = fun (Q,R, T) // κ ∈ {h, t} , Q : Qh ↪→ 2Cand , T ⊆ Qκ

16 r e t u r n {p ∈ Qt | ∃q ∈ adom(Q) ∩ (acc∆
h×κ)−1(R). q@∆p ∈ safe∆

κ (T)}
17

18 safe-acc-down∆
κ = fun (Q,R, T) // κ ∈ {h, t} , Q : Qh ↪→ 2Cand , T ⊆ Qκ

19 r e t u r n {p ∈ Qt | ∃q ∈ adom(Q). q@∆p ∈ safe∆
κ (R ∪ T) ∩ (acc∆

h×κ)−1(R)}

Figure 4.7: Utility functions for the monadic CQA algorithm

to the ones where only one occurrence of x appears, that is the elements of L(one-x).
So in order to decide certainty, instances that are not accepted by one-x do not have
to be accepted by S. This is the reason why the states in R∪T represent the target
states. Thus a candidate at some state q ∈ dom(Q) is certain for selection if R is
accessible from q – instances that are accepted by one-x can be accepted by the
query – and only states in R ∪ T are accessible from q – all the instances will be
accepted by S or rejected by one-x .

The result of a call of eval_selκ is a run snapshot, the one in which s̃ has
been evaluated from Q and sets of target states R and T . Furthermore the return
value of CQA_sel(s) is eval_selh(s̃0, QI , R0, T0), where s̃0 is the position-annotated
equivalent of s, QI = {(q, {[]}) | q ∈ I} is the run snapshot that maps the initial
state of S to the singleton containing the empty candidate, R0 = F and T0 =

Qh \ schema-state−1
h (F one-x) is the set of hedge states of S whose schema states are

not final in one-x . The task of creating s̃0 dynamically from s can be carried out
by another thread.

Now consider a call eval_selκ(s̃, Q,R, T). As for the boolean case, an exception
with value false is raised when there is no state in dom(Q) that carries an alive
candidate. If this condition is not satisfied then the remaining actions of eval_selκ
depend on the form of s̃.

If s̃ is empty, then the result depends on the type κ. If κ is the hedge type,
then Q is returned. For the tree type however, since the tree has to be closed, the

4.4. Certain Query Answering for Monadic Queries 77

candidates of the hedge states in Q are moved to the tree states that they can access.
Using the function fusion defined on run snapshots Q′ so that

fusion(Q′) = {(q,
⋃

(q,C)∈Q′
C) | q ∈ dom(Q′)}

the run snapshot fusion(K) is returned, where K = {(tree∆(q), C) | (q, C) ∈ Q}.
Although Q is a function, the relation K is not necessarily functional, since tree∆ –
and by the way o∆ for all o ∈ Σ∪ {x,¬x} – is not injective. So there may exist two
tuples (q, C), (q, C ′) ∈ K for which C 6= C ′. We thus apply the fusion function on
K before returning it, so that all the sets of candidates associated to the same state
are merged.

In the case where s̃ is prefixed by a node aπ ∈ Nodes(s̃) where a ∈ Σ is a letter
and π a position, we first compute the run snapshot Q1 = fusion({(a∆(q), C) |
(q, C) ∈ Q and C alive}) reached by S when reading a from Q, while omitting states
with dead candidates. Then, since the query is monadic, the algorithm combines
two runs: one where the query variable x is read and another one where it is not
read. This is done when applying the readVar∆ function to Q1, which returns a run
snapshot Q2. Not reading the query variable is simulated by actually reading its
negation ¬x. Next, we check whether or not there is some candidate that is certain
for selection. This is done without retrieving the candidates that are certain for
selection, in a way that is similar to the boolean case, by testing Ψ∩safe∆

κ (R∪T) 6= ∅
where Ψ = {q ∈ adom(Q2) | schema-stateh(q) ∈ hedge-schema-state(R)}. The
safe∆

κ function is defined in Figure 4.7 exactly as in the boolean case. Remark that
a necessary – but not sufficient – condition for a stream representing a sequenced
{x}-structure to be certain for selection for a monadic query is to have read the
variable x once. This is ensured by gathering in Ψ all the states that have the
same schema states as the states in R. If the test returns true, then the algorithm
sends a message to the candidate manager, which searches for the candidates that
are certain for selection and outputs them. After that, the main function takes
the control back and makes a recursive call from the snapshot run, and with the
suffix of s̃. Note that the actions of the candidate manager are side-effecting, since
candidates can be killed by it, and the content of the stack can be modified.

When s̃ is of the form 〈s̃1〉s̃2 where s̃1 are s̃2 position-annotated streams, then the
algorithm pushes (Q,R, T) on the stack, evaluates s̃1 from Q〈〉 with type parameter
t, query-successful states Rd = safe-acc-down∆

κ (Q,R, T) and out-of-schema states
Td = safe-down∆

κ (Q,R, T). The functions safe-acc-down∆
κ and safe-down∆

κ defined
in Figure 4.7 are adaptations of the down∆

κ function to the monadic case. For a new

78 Chapter 4. Certain Query Answering on Streams

1 // Same parameters than CQA_sel
2

3 new_candidate_manager∆ = fun (stack) // Takes a s t a c k as input
4 l e t select = fun (Q)
5 l e t L0 = stack.stackToList() i n
6 l e t Q′ = eval_stack∆(L0, Q) i n
7 l e t M = {α | ∀(q, C) ∈ Q′, α ∈ C ⇒ q ∈ F ∨ schema-stateh(q) 6∈ F one-x} i n
8 output_and_kil l (M) // Side e f f e c t i n g func t i on t ha t ou tpu t s

and k i l l s cand ida t e s
9 l e t L′0 = recompute-targets∆(L0.reverse()) i n
10 stack.refresh(L′0) // s e t the content o f stack to the content o f

L′0
11 i n r e t u r n (select)
12

13 eval_stack∆ = fun (L,Q)
14 case L
15 o f nil then // empty s t a c k
16 r e t u r n fusion({(q′, C) | ∃q ∈ Q. (q, C) ∈ Q, C alive and q′ ∈ acc∆

h×h(q)})
17 o f (Qhead,_,_) :: L′ then
18 l e t Q′ = fusion({(q′, C) | ∃q ∈ Q. (q, C) ∈ Q, C alive and q′ ∈ acc∆

h×t(q)})
i n

19 l e t Q′′ = fusion({(q@∆q′, C ./ C′) | (q, C) ∈ Qhead, (q′, C′) ∈ Q′,
20 C,C′ alive and C ./ C′ 6= ∅}) i n //

Composing Qhead with Q′

21 r e t u r n eval_stack∆(L′, Q′′)
22

23 recompute-targets∆ = fun (L) // l i s t o f t r i p l e s (Q,R,T)
24 case L
25 o f n i l then
26 r e t u r n n i l
27 o f (Q,R, T) :: L′ where R, T ⊆ Qκ and κ ∈ {h, t} then
28 l e t R′ = safe-acc-down∆

κ (Q,R, T) ,
29 T ′ = safe-down∆

κ (Q,R, T) ,
30 Lrec = recompute-targets∆(L′) i n
31 r e t u r n Lrec.append(Q,R′, T ′)

Figure 4.8: Candidate manager

subtree, they allow compute the new sets of target states, using the tree states from
which it is possible to reach only R (resp. to reach only T). Setting P as the result
of the recursive call, the algorithm then pops the stack, composes the run snapshots
Q and P – while taking into account the canonicity of W-structures and omitting
the dead candidates – before making another recursive call on s̃2.

Finally, in the case where s̃ = X ∈ V, the algorithms waits for the instantiation
of the future X into s̃′ before making a recursive call with s̃′, Q and R.

Let’s now discuss a bit about the candidate manager, whose definition is pre-
sented in Figure 4.8. It has the charge of searching and outputting certain for
selection candidates, and runs on a different thread. It is initialized with a reference

4.4. Certain Query Answering for Monadic Queries 79

to a stack. For instance CQA_sel initializes a candidate manager with the stack
that it has declared. Candidates managers declare a side-effecting function select,
which takes a run snapshot as input and outputs the set of all candidates that are
certain for selection. Those candidates are also marked as dead, so that they will
no longer be taken into account by the future process. The select function uses an
eval_stack∆ function, that takes as input a list L of pairs of run snapshots and
target states, and a run snapshot Q. The list L is obtained by transforming the
input stack of the candidate manager into a list whose first element is the top of the
stack. Then according to the form of L, one of the two following cases may occur.

• If L is the empty list, that is when the stack is empty, the run snapshot where
every set of candidate in Q is associated with the set of hedge states accessible
from the state that carries it is returned.

• If L is a list whose head and tail are respectively the triplet (Qhead,_,_) and
the list L′, then the candidates in Q are moved to the tree states accessible
from Q, yielding a run snapshot Q′. Furthermore, Qhead is composed with Q′,
and a recursive call is made with the resulting run snapshot and L′.

Back to the select function, a candidate is output and marked only if all the states
in which it can be evaluated are either final states of S, or states whose schema
states are non final in one-x .

The candidate manager is also responsible for updating the content of the stack,
whenever it is required. Indeed, when candidates are marked, the sets of target
states stored in the stack become obsolescent, since the states used to compute
them may now be associated to dead candidates. This is why the select function
also calls the recompute-targets∆ function, which recompute the values of the target
states after candidates are marked.

4.4.4 Correctness and Complexity of the Algorithm

We show in this part that the CQA_sel algorithm indeed decides certainty for
selection, and that it does it in a quite efficient way.

For this purpose, we will have to study the evolution of run snapshots evolve
during the evaluation of a stream. We will also have to introduce new notations
for manipulating position-annotated streams: this is because the algorithm for the
monadic case is more interested into position-annotated streams than plain streams.
For all run snapshotsQ,Q′ and element e ∈ Σ∪{tree, x,¬x}, we define the operations

e∆rs
(Q) = {(q′, C) | ∃q. e∆(q) = q′ and (q, C) ∈ Q}

80 Chapter 4. Certain Query Answering on Streams

and

Q@∆rs
Q′ = {(q@∆q′, C ./ C ′) | (q, C) ∈ Q, (q′, C ′) ∈ Q′ and C ./ C ′ 6= ∅}.

We recall that Q〈〉 denotes the run snapshot 〈〉∆ × {[]} that associates the set of
tree initial states to the singleton containing the empty candidate.

We now define the evaluation of a position-annotated nested word by a SHA. For
all run snapshot position-annotated nested words w,w′ ∈ nWordsΣ, run snapshot
Q and candidate α ∈ C{x}(w) ∪ C{x}(w′), the evaluation by S from Q and with α is
such that:

JεKSα(Q) = Q

JaπKSα(Q) =

{
{(q, C ∪ {[x/π]}) | (q, C] {[]}) ∈ x∆rs ◦ a∆rs

(Q)} if α(x) = π

(¬x)∆rs ◦ a∆rs
(Q) if α(x) 6= π

J〈w̃〉KSα(Q) = Q@∆rs
Q′ if Q′ = tree∆rs

(Jw̃KSα(〈〉∆ × {[]}))
Jw̃w̃′KSα(Q) = Jw̃′KSα(Jw̃KSα(Q))

Finally, we denote the evaluation of w̃ on S from Q with all the possible candi-
dates by

Jw̃KS(Q) =
⋃

α∈C{x}(w)

Jw̃KSα(Q).

For deciding whether a candidate is returned by a monadic query on some nested
word, it is sufficient to evaluate the position-annotated version of the nested word
on some SHA that represents the query, starting from the initial run snapshot and
with the candidate, before testing whether the a final state carries the candidate in
the returned run snapshot.

Lemma 8 Let Q be a monadic query over Σ with variable {x} ⊆ W represented by
a query SHA S with set of initial states I and set of final states F . Let QI = I×{[]}.
For all nested word w ∈ nWordsΣ :

Q(w) = {α ∈ C{x}(w) | ∃(q, C) ∈ Jw̃KSα(QI). α ∈ C, q ∈ F.}

where w̃ = panΣ(w).

Proof: Let w be a nested word, w̃ = panΣ(w) a position-annotated nested word
and α ∈ C{x}(w) a candidate. We know that α ∈ Q(w) iff w ? α ∈ L(Q), that is
w ? α ∈ L(S). Then we have

Claim 1 w ? α ∈ L(S) iff there exists q ∈ F and a set of candidates C so that
(q, C] α) ∈ Jw̃KSα(QI).

4.4. Certain Query Answering for Monadic Queries 81

The proof of Claim 1 is by an easy induction on the structure of w – and thus on
the structure of w̃.

It follows directly from Claim 1 that Q(w) = {α ∈ C{x}(w) | ∃(q, C) ∈
Jw̃KSα(QI). q ∈ F, α ∈ C}.

�

Next, we show that the eval_selκ function simulates the evaluation of a position-
annotated nested word with all the possible candidates. To do so, we consider a
version of the CQA_sel function where the candidate manager is not used. Thus
no candidates will be killed, and the candidates that could have been reported as
certain for selection at some earlier point of time are still taken into account and
used for further computations. Even if removing such candidates has no effect on
the correctness of the algorithm – as we’ll see –, conserving them into memory makes
the proof much clearer.

From here and until stated otherwise, we consider a version of the eval_selκ
function wherein the statement at Line 25 in Figure 4.6 is removed, or replaced by
some arbitrary neutral statement that has no effect at all on the further steps of the
algorithm.

Lemma 9 For all position-annotated nested word w̃, run snapshot Q, type κ ∈
{h, t} and sets of states R, T ⊆ Qκ:

eval_selκ(w̃, Q,R, T) =

{
fusion(Jw̃KS(Q)) if κ = h

fusion(tree∆rs
(Jw̃KS(Q))) if κ = t

Proof: We start by the following claim:

Claim 2 For all run snapshot Q, stream s and set of candidates M mapping x to
elements of some set K ⊇ C{x}(s), it holds that Js̃KS(Q) ⊇

⋃
α∈M

Js̃KSα(Q).

Proof: The proof of the claim is by induction on s̃. �

Now we prove the lemma by induction on the structure of w̃. The proof is quite
the same regardless the type. We thus only present the cases where the type is
h. Recall that since fusion only turns relational run snapshots into functional run
snapshots, fusion(Q′) = fusion(fusion(Q′)) = fusion(. . . (fusion(Q′)) . . .) for all
run snapshot Q′.

Case w̃ = ε. Then eval_selh(w̃, Q,R) = fusion(Q). Furthermore, Pos(w) = ∅
and so Jw̃KS(Q) = Jw̃KS[] (Q) = Q.

Case w̃ = aπw̃′ where a ∈ Σ, π ∈ Pos(w) and w̃′ is a position-annotated
pattern. Setting Q1 = fusion({(a∆(q), C) | (q, C) ∈ Q}) and Q2 =

82 Chapter 4. Certain Query Answering on Streams

readVar∆(Q1, π, x), we have that eval_selh(w̃, Q,R) = eval_selh(w̃′, Q2, R).
By the induction hypothesis, eval_selh(w̃′, Q2, R) = fusion(Jw̃′KS(Q2)).
On the other hand side, let α0 be the candidate so that α0(x) = π, and
Q′2 =

⋃
α∈C{x}(w)

JaπKSα(Q). Then we have Jw̃KS(Q) = Jw̃′KS(Q′2) ∪ Jw̃′KSα0
(Q′2) =

Jw̃′KS(Q′2) by Claim 2. Remark that JaπKSα0
(Q) = {(q, C ∪ α) | (q, C] {[]}) ∈

x∆rs ◦ a∆rs
(Q)} and for all candidates α ∈ C{x}(w) that are different from α0,

JaπKSα(Q) = (¬x)∆rs ◦ a∆rs
(Q). Then fusion(Q′2) = fusion(JaπKSα0

(Q) ∪
¬x∆rs ◦ a∆rs

(Q)) = Q2. We finally have eval_selh(w̃, Q,R, T) =

eval_selh(w̃′, Q2, R, T) = fusion(Jw̃′KS(Q′2)) = fusion(Jw̃KS(Q)).

Case w̃ = 〈w̃1〉w̃2 where w̃1, w̃2 are position annotated-streams. Then we
have that eval_selh(Q, w̃,R, T) = eval_selh(w̃2, Q1, R, T) where Q1 =

Q@∆rs
P1, P1 = eval_selt(w̃1, Q〈〉, Rd, Td), Rd = safe-acc-down∆

h (Q,R, T)

and Td = safe-down∆
h (Q,R, T). On the other hand, let P2 =⋃

α∈C{x}(w̃)

tree∆rs
(Jw̃1KSα(Q〈〉)). It follows from Claim 2 that P2 =

tree∆rs
(Jw̃1KS(Q〈〉)). Setting Q2 = Q@∆rs

P2, we have by Claim 2 that
Jw̃KS(Q) = Jw̃2KS(Q2) ∪

⋃
α∈C{x}(w1)

Jw̃2KSα(Q2) = Jw̃2KS(Q2). By the induc-

tion hypothesis, P1 = fusion(P2), implying that Q1 = Q2. The induction
hypothesis also implies that eval_selh(w̃2, Q1, R, T) = fusion(Jw̃2KS(Q2)).
So eval_selh(Q, w̃,R, T) = fusion(Jw̃KS(Q)).

�

The explicit stack used by the CQA_sel function plays an important role when
it comes to retrieve the candidates that are certain for selection. We show in the
next proposition an invariant on the elements that are pushed on it.

But first let us define a suffix stream s′ of a stream s as stream whose instances
are all instances of s, that is:

Definition 18 A stream s′ is called a suffix stream of another stream s whenever
Inst(s′) ⊆ Inst(s).

Proposition 8 Let a position-annotated stream s̃ and a natural i > 0 so that
s̃ = w̃0〈 . . . 〈w̃i−1〈s̃i〉Xi−1〉 . . . 〉X1, where w̃0, . . . , w̃i are position-annotated nested
words and X0, . . . , Xi−1 ∈ V pattern variables. For all run snapshot Q, sets of tree
states R, T and suffix stream s̃′i of s̃i, the stack when calling eval_selt(s̃′i, Q,R, T)

has the same content than the list (Qi−1, Ri−1, Ti−1) :: . . . :: (Q0, R0, T0) :: nil,
where Qj = fusion(Jw̃jKS(Q〈〉)), Rj = safe-acc-down∆

t (Qj−1, Rj−1, Tj−1), Tj =

safe-down∆
t (Qj−1, Rj−1, Tj−1) for 0 < j < i, Q0 = fusion(Jw̃0KS(I × {[]})),

R0 = F and T0 = Qh \ schema-state−1
h (F one-x).

4.4. Certain Query Answering for Monadic Queries 83

(Q0 = fusion(Jw̃0KS(QI)), R0 = F, T0 = Qh \ schema-state−1
h (F one-x))

(Q1 = fusion(Jw̃1KS(Q〈〉)), R1 = sad∆
t (Q0, R0, T0), T1 = sd∆

t (Q0, R0, T0))

◦
◦
◦

(Qi = fusion(Jw̃iKS(Q〈〉)), Ri = sad∆
t (Qi−1, Ri−1, Ti−1), Ti = sd∆

t (Qi−1, Ri−1, Ti−1))

Figure 4.9: Content of stack on any call eval_selt(s̃′i+1, Q,R, T) where s̃′i+1 is a
suffix stream of s̃i+1, during the evaluation of w̃1〈 . . . 〈w̃i〈s̃i+1〉Xi〉 . . . 〉X1. Here
sad∆

κ and sd∆
κ stand respectively for safe-acc-down∆

κ and safe-down∆
κ

Proof: Let QI = I × {[]}. Figure 4.9 describes the situation. The proof is by
induction on i.

Case i = 1 , meaning that s̃ = w̃0〈s̃1〉X0. The content of the stack is empty
at the beginning. Then the algorithm calls eval_selh(w̃0, QI , R0, T0) where
R0 = F and T0 = Qh\schema-state−1

h (F one-x). During this call, the algorithm
processes all the symbols in w̃0. After having processed the last symbol of w̃0,
the remaining part of s̃ to process is 〈s̃1〉. In this case, it pushes the triplet
constituted by the returned run snapshot after the last symbol of w̃0, R0 and
T0. Lemma 9 tells us that the returned run snapshot after the last symbol of w̃0

is Jw̃0KS(QI). Then the algorithm calls eval_selt(s̃1, Q〈〉, R1, T1), where R1 =

safe-acc-down∆
h (Jw̃0KS(QI), R0, T0) and T1 = safe-down∆

h (Jw̃0KS(QI), R0, T0).
Thus the content of the stack right after this call is then (Jw̃0KS(QI), R0, T0).
The content of the stack for all the future calls on suffix streams of w̃1 will
remain globally unchanged, even if the stack may grow from time to time on
some nested calls. But then every newly pushed triplet would subsequently
be popped.

case i > 1 . Assume that s̃i = w̃i〈s̃i+1〉Xi, where w̃i is a position-annotated
nested word, s̃i+1 a position-annotated stream and Xi a pattern variable.
So s̃ = w̃1〈 . . . 〈w̃i−1〈w̃i〈s̃i+1〉Xi〉Xi−1〉 . . . 〉X1. Using the induction hy-
pothesis and following the same reasoning than the above case, we can
show that the content of the stack when a call eval_selt(s̃′,_,_,_) is
made for any suffix stream s̃′ of s̃i+1 has the same content than the list
(Qi, Ri, Ti) :: . . . :: (Q0, R0, T0) :: nil, where Qj = fusion(Jw̃jKS(Q〈〉)), Rj =

84 Chapter 4. Certain Query Answering on Streams

safe-acc-down∆
t (Qj−1, Rj−1, Tj−1), and Tj = safe-down∆

t (Qj−1, Rj−1, Tj−1)

for 0 < j < i + 1, Q0 = fusion(Jw̃0KS(QI)), R0 = F and T0 = Qh \
schema-state−1

h (F one-x).

�

So far, the J·KSα(Q) function has been defined for position-annotated nested
words. We now extend it to position-annotated streams, so that for some pattern
variable X ∈ V:

JXKSα(Q) = acc∆rs
(Q).

The notation Js̃KS(Q) is also lifted with respect to the above extension. The next
lemma gives a characterization of the candidates that are certain for selection for a
query Q on a position-annotated stream. It basically states that a necessary and
sufficient condition for a candidate to be certain for selection for a query is that all
the possible runs of the stream annotated with the candidate must either lead to a
final state, or to a state whose schema state is not final for one-x .

Lemma 10 Let s ∈ nWordsΣ be a nested word, s̃ = panΣ(s) its position-annotated
version, α ∈ C{x}(s) a complete candidate and Q a monadic query over Σ with
variables {x} represented by a complete and one-x -canonic dSHA S with set of initial
(resp. final) states I (resp F). α is certain for selection for Q by s iff for all q ∈ Qh,
(∃C ⊆ C{x}(s). (q, C]{α}) ∈ Js̃KSα(I × {[]}))⇒ q ∈ F ∨schema-stateh(q) 6∈ F one-x .

Proof: First let us remark the following equality stating that the set of run snap-
shots obtained by making the union all the run snapshots of all the instances is
equal to the set of run snapshots where every pattern variable is replaced by the
accessibility relation:

Claim 3
⋃
µ∈M

JJs ? αKµKSα(I × {[]}) = Js̃KSα(I × {[]})

Proof: The proof is straightforward. �

Now according to Definition 3, α is a certain answer for Q if for all assignment
µ : fv(s) → nWordsΣ, the instance JsKµ ? α is in L(Q). Let M = {µ : fv(s) →
nWordsΣ∪{x,¬x}} be the set of assignment mapping the free variables of s to nested
words over Σ∪{x,¬x}, andQI = I×{[]}. Since L(Q) is a language of {x}-structures,

4.4. Certain Query Answering for Monadic Queries 85

it follows that α is a certain answer for Q iff⋃
µ∈M

Js ? αKµ ∩ L(one-x) ⊆ L(Q)

⇔ (∀µ ∈M. Js ? αKµ ∈ L(one-x)⇒ Js ? αKµ ∈ L(Q))

⇔ (∀µ ∈M. Js ? αKµ ∈ L(one-x)⇒ ∃(q, C) ∈ QSµ . q ∈ F, α ∈ C) by Lemma 8,
where QSµ = JJs ? αKµKSα(QI)

⇔ (∀µ ∈M. (∃(qone-x , C
′) ∈ Qone-x

µ . qone-x ∈ F one-x , α ∈ C ′))⇒ ∃(q, C) ∈ QSµ . q ∈ F, α ∈ C)

by Lemma 8, where Qone-x
µ = JJs ? αKµKone-x

α (QI) and Ione-x is the set of initial states of one-x

⇔ ∀µ ∈M. ∃(q, C) ∈ QSµ . (q ∈ F ∨ schema-stateh(q) 6∈ F one-x) ∧ α ∈ C
⇔ ∀µ ∈M, q ∈ Qh. ∃C ⊆ C{x}(s). (q, C] {α}) ∈ QSµ ⇒ (q ∈ F ∨ schema-stateh(q) 6∈ F one-x)

by the determinism of S
⇔ ∀q ∈ Qh. ∃C ⊆ C{x}(s). (q, C] {α}) ∈ Js̃KSα(QI)⇒ q ∈ F ∨ schema-stateh(q) 6∈ F one-x

by Claim 3

.
�

We can now show that the select function of the candidate manager outputs and
kills only candidates that are certain for selection.

Proposition 9 (Correctness of the select function of the candidate manager)
Let Q be a monadic query with alphabet Σ and query variables in {x}, s ∈ nStreamsΣ

a stream and α a candidate. Then α is dead if and only if α is certain for selection
for Q.

Proof: Let QI = I × {[]}. It is sufficient to notice that the eval_stack∆ function
defined in the candidate manager computes exactly

⋃
α alive

Js̃KSα(QI), that is, Js̃KS(QI)

restricted to the only candidates that have not been proved to be certain for selection
yet. Thus at Line 7, the select function computes the set of candidates that are
certain for selection by Lemma 10. It then marks and outputs them at Line 8. �

Proposition 9 shows one of the effects of the candidate manager on the algorithm
is to clean the stack and the run snapshot given to the select function by getting
rid of the candidates that are already certain for selection. Thus candidates that
are alive, those for which certainty cannot be decided yet, are not touched by the
candidate manager. The other effect of the candidate manager is to recompute
the target sets. Note that those values may change only if a candidate that is
marked is on the stack. Knowing this, we can now safely put back in place Line 25,
since removing from the run snapshots states associated only to certain for selection
candidates has no impact on the further processing.

Proposition 10 (Correctness and completeness of CQA_sel) When

86 Chapter 4. Certain Query Answering on Streams

CQA_sel is parameterized by a complete and one-x -canonic dSHA S repre-
senting a monadic query Q with query variables in {x}, then a candidate α of a
stream s is killed and output by CQA_sel(s) via its candidate manager if and only
if α is certain for selection for Q on s.

Proof: Given that the algorithms in Figures 4.3 and 4.6 work quite similarly, it can
be derived from Proposition 9 the condition at Line 24 of Figure 4.6 is somehow
equivalent to the condition at Line 14 of Figure 4.3. Recall that the condition
Q′ ∩ safe∆

κ (R) 6= ∅ at Line 14 of Figure 4.3 is true if and only if there is a state in
Q′ from which only states in R can be reached. Thus the condition Ψ ∩ safe∆

κ (R ∪
T) 6= ∅ in Line 24 of Figure 4.6 where Ψ = {q ∈ adom(Q2) | schema-stateh(q) ∈
hedge-schema-state(R)} is in the same way true iff there is a state in adom(Q2)

with a schema state equal to one of the schema states of R, and from which only
states in R are reachable and R ∪ T can be reached. Proposition 8 established that
the target states at some level are derived from the target states of the upper level,
and that the target states at the top-level are the set of final states plus those having
schema states that are not final in one-x . So the condition at Line 24 of Figure 4.6
is true iff and only if there is a state in the active domain of Q2 from which states
that are final or out-of-the-schema can be reached. Thus, by Proposition 10, the
condition at Line 24 of Figure 4.6 is true iff there is a candidate that is certain for
selection and that has not been killed yet. In the case when the condition is true,
the statement at Line 25 is executed, and by Proposition 9, all the candidates that
are certain for selection and that have not been killed so far are killed. �

We finally study the time complexity of the CQA_sel function. Thanks to
its ability of testing whether there are some new candidates that are certain for
selection without actually retrieving any candidate, the algorithm has quite a good
complexity, compared to the other ones of the state of the art.

Theorem 2 (Time complexity) Let s be a stream and Q a monadic query rep-
resented by a complete and one-x -canonic dSHA S. The certainty for selection
of any candidate α ∈ C{x}(s) for Q can be decided at the earliest event in time
O(|s||S|+ |Q(s)||maxdepth(s)||acc∆

h×t|).

Proof: We set S = (Qh, Qt,Σ,∆, I, F), and first study the per-event complexity.
As for the boolean case, the number of operations that is done for each element of s̃
is in O(|A|). We assume that a representation of the join of two sets of candidates
C ./ C ′ can be computed in constant time.

Case s̃ = ε: Then either Line 18 or Line 19 is executed, depending on κ. Each of
them can be done in O(|S|).

4.5. Experiments 87

Case s̃ = aπ s̃′ for aπ ∈ Nodes(s̃): computing Q1 at Line 21, Q2 at Line 22 and
Ψ at Line 23 can be done in time O(|S|). Furthermore, testing in Line 24
whether there is a certain for selection candidate is also in O(|S|). In the case
where the test returns true, an additional cost for gathering and retrieving the
certain for selection candidates will apply. We study this case later.

Case s̃ = 〈s̃1〉s̃2: It takes a number of operations in O(|S|) to compute P at Line 31
and a constant time to push and pop the stack. ThenQ′ at Line 32 is computed
in O(|S|).

Case s̃ = X ∈ V: reduces to one of the above cases.

This shows that there are at least O(|S|) operations for each event, setting the com-
plexity for evaluating the stream and testing the existence of candidates that are cer-
tain for selection to O(|s||S|). Now let’s analyze the complexity of retrieving the can-
didates that are certain for selection. The select function of the candidate manager
is called in this case. This function uses the eval_stack∆ and recompute-targets∆

functions in Figure 4.8 as subroutines, which recursively call themselves as many
times as there are elements in the stack. For instance, let’s consider eval_stack∆.
When L is the empty list, then computing the returned run snapshot at Line 16 can
be done in time O(|acc∆

h×h|). Furthermore, in the case where L = (Qhead,_) :: L′ it
takes O(|acc∆

h×t|) and O(|A|) operations to compute respectively Q′ at Line 18 and
Q′′ at Line 19. Note that |∆| ≤ |acc∆

h×t|. The number of times that the retrieval
of candidates is done depends on the number of solutions |Q(s)| of the query, while
each call to eval_stack∆ takes O(|maxdepth(s)||acc∆|), where maxdepth(s) is the
maximum depth of the input and thus the maximum depth of the stack. The addi-
tional cost is then in O(|Q(s)||maxdepth(s)||acc∆

h×t|). Hence the overall complexity
of this algorithm is in O(|s||S|+ |Q(s)||maxdepth(s)||acc∆

h×t|). �

4.5 Experiments

We have developed a prototype of our boolean and monadic CQA algorithms using
the Scala programming language. It has been tested on the navigational queries
of the benchmark of [Franceschet] and on additional queries with comparisons to
constant values, presented in Section .2 of the appendix.

However it is not optimized enough to be competitive, and for this reason we
have not added its running time for the different tests that we have made.

Chapter 5

Hyperstreams and Certain Query
Answering

Contents
5.1 Hyperstreams . 89

5.1.1 Hyperstreams of Nested Words 90

5.1.2 Hyperstreams of Ranked Trees With Context Variables . . . 92

5.2 Certain Query (Non) Answering on Hyperstreams 96

5.2.1 Definitions . 96

5.2.2 From the Non-Boolean Cases to the Boolean Cases 97

This chapter presents the concept of hyperstream more formally, and introduces
some definitions that we’ll use later. It also defines the certain query answering
problem for hyperstreams.

5.1 Hyperstreams

Hyperstreams are descriptors of patterns. They allow to have references to parts
of a given pattern, and to reuse these references several times. Such patterns with
references can be seen as incomplete versions of singleton context-free grammars
[Plandowski 1995], where the rules of some nonterminals may be missing.

We propose here to represent hyperstreams by particular grammars. For in-
stance, the hyperstream in Figure 5.1 has terminals in {a, b, c} and nonterminals in
{S, X, Y, Z}:

The nonterminals are the references of the hyperstream. The two patterns of
the above hyperstream are given by grammar rules for the references S and X, while
there is no rule for the other two references Y and Z. The missing rules for these
references can be added in the future one by one by the hyperstreaming environment.
A hyperstream is called a singleton context-free grammar – or equivalently a straight
line program [Babai & Szemeredi 1984] – if it has no missing rule. It is well-known

90 Chapter 5. Hyperstreams and Certain Query Answering

S → 〈aX〈bb〉Y 〉aX, X → 〈Y 〉cZa.

Figure 5.1: Hyperstream represented by a grammar

that a singleton context-free grammar defines a word. Well-nesting is an additional
criterion to be checked. The object of interest here is the set of nested words that
can be obtained by completing a hyperstream to a singleton context-free grammar,
or equivalently, the set of instances of the nested pattern.
Sharing. Hyperstreams can be identified with compressed patterns. A nontermi-
nal can occur multiple times in the right-hand sides of rules, allowing to share its
content. The hyperstream in Figure 5.1 for instance represents the nested pattern

〈a〈Y 〉cZa〈bb〉Y 〉a〈Y 〉cZa

in a compressed manner, while sharing the two underlined factors that were replaced
for the two occurrences of X. A hyperstream with no sharing is called compression-
free.
Variables of all Orders. The values associated to nonterminals can be of different
types. They could be for instance restricted to trees, words, hedges or be general
nested words. In Figure 5.1, the values allowed for S and X are general nested
words. However, we could restrict Y to trees and Z to hedges.

It is also possible to have values of higher-order, that are functions or functions
of functions, etc. A second order value could be a function that takes a nested
pattern and returns another nested pattern. For instance, λX.〈XaX〉 is a function
that takes a pattern X and returns a new pattern 〈XaX〉. Note the usage of the λ
symbol for abstraction. This function can be applied to a nested pattern, say 〈b〉c,
and return (λX.〈XaX〉)@(〈b〉c) = 〈〈b〉ca〈b〉c〉. The @ symbol is used to apply the
function.

5.1.1 Hyperstreams of Nested Words

A hyperstream that represents a nested pattern is called a nested hyperstream. For-
mally,

Definition 19 A nested hyperstream is a tuple G = (N,Σ, R, S) such that N (V is
a finite set of nonterminals, alphabet Σ is a finite set, rule set R is a partial function
from dom(R) ⊆ N to nPatternsΣ such that fv(R(X)) ⊆ N for all X ∈ dom(R),
and S ∈ N is the starting symbol. Furthermore, the directed graph which links all
X ∈ dom(R) to all X ′ ∈ fv(R(X)) must be acyclic.

5.1. Hyperstreams 91

c

X2 a

〈〉

b X3

〈〉a

b X3

〈〉 X3

1 2

2 · 1 2 · 2

2 · 2 · 1 2 · 2 · 2

2 · 3 2 · 4 2 · 5

2 · 5 · 1 2 · 5 · 2

2 · 6
c〈

X1︷ ︸︸ ︷
a〈bX3〉X2

X1︷ ︸︸ ︷
a〈bX3〉X3〉︸ ︷︷ ︸

S

Figure 5.2: Pattern pat(G) described by G

The set of nested hyperstreams over Σ is denoted by HypΣ. The set of free
variables of G is fv(G) = N \dom(R). The variables in dom(R) are bound in G. The
size of G is the sum of the sizes of the right-hand sides of the rules plus the number
of its nonterminals: |G| =

∑
X∈dom(R) |R(X)| + |N |. Any nested hyperstream G ∈

HypΣ represents a nested pattern pat(G) ∈ nPatternsΣ in a compressed manner, by
recursively replacing every nonterminal X by its definition R(X):

pat(G) = R(S)[X/pat(G[S/X])].

G is called linear if pat(G) is linear. Note that a linear hyperstream may still use
compression but for describing a linear pattern. The set of linear hyperstreams is
denoted LinHypΣ.

It is called compression-free if for any sequence of distinct variables X1 . . . , Xn ∈
dom(R) the concatenated nested pattern R(X1) . . . R(Xn) is linear.

We will freely identify compression-free nested hyperstreams G with the nested
pattern pat(G), given that G can be converted into pat(G) in linear time (due to
the absence of compression). In this sense, the inclusion nPatternsΣ ⊆ HypΣ holds.

Example 12 Let G = (N,Σ, R, S) be nested hyperstream where N =

{S, X1, X2, X3}, Σ = {a, b, c}, R = {S → c〈X1X2X1X3〉, X1 → a〈bX3〉}. It de-
scribes the pattern represented in Figure 5.2 and is neither compression-free – the
bound variable X1 has two occurrences– nor linear – the free variable X3 occurs
more than once in pat(G).

A class of nested hyperstreams G is a function that maps any signature Σ to a
subset of nested hyperstreams GΣ ⊆ HypΣ. For instance, Hyp, LinHyp, nPatterns
and nLinPatterns are classes of nested hyperstreams.

Note that hyperstreams of words are special hyperstreams where the values of
the nonterminals are restricted to words.
Logical Structure. As for nested patterns, a nested hyperstream can be described
by a logical structure. Unfortunately, the first-child and next-sibling relations will
not be enough. A shared nonterminal could have different next-siblings, and different

92 Chapter 5. Hyperstreams and Certain Query Answering

S

〈〉 a

a X 〈〉

Yb b〈〉 c Z a

1

1

11 2 3

2 3

4 2

2

4

3

1

S → 〈aX〈bb〉Y 〉aX,
X → 〈Y 〉cZa.

Figure 5.3: Logical structure of a hyperstream

parents. Instead, we consider a set of child relations chi indexed by integers i > 0

that indicate the position of the child with respect to its parent.

Example 13 Figure 5.3 shows the logical structure of the hyperstream in Figure 5.1.
The positions labeled by nonterminals are represented by rectangles where the label
is written inside. The chi relations are represented by dotted arrows labeled by i.

For all nested hyperstream G, we enforce the positions of ρ = pat(G) to be defined
as words over the set of naturals N such that:

root(ρ) = 1

∀(π, π′) ∈ chρ, π′ = π · 1
∀(π, π′) ∈ nsρ, ∃π′′ ∈ N∗ and i > 0 such that π = π′′ · i and π′ = π′′ · i+ 1

In Figure 5.2, the positions of pat(G) are marked in red.

5.1.2 Hyperstreams of Ranked Trees With Context Variables

We are going to study hyperstreams of ranked trees in which contexts variables are
allowed. We formalize these objects here after. Throughout this subsection, the
terms trees and ranked trees both refer to ranked trees.

5.1.2.1 Contexts

We consider the two types in T = {tree, context}. We assume that any ranked
signature contains at least one constant and one symbol of arity at least 2.

For defining contexts, we fix an arbitrary nonempty set V tree disjoint from Σ,
whose elements are variables of type tree. We take an approach based on the λ-terms

5.1. Hyperstreams 93

p, p′, p1, . . . , pn ∈ P tree
Σ ::= x | f(p1, . . . , pn) | P@p

P ∈ Pcontext
Σ ::= X | λx.p′ where x occurs exactly once in p′

Figure 5.4: Tree and context patterns where x∈V tree , X ∈Vcontext , f ∈ Σ(n) and
n ≥ 0.

but will not consider values of higher types.

Definition 20 The set of contexts CΣ is the set of all terms λx.t for some ranked
tree t ∈ TΣ∪{x} where x ∈ V tree occurs exactly once in t, and this with arity 0.

We will identify contexts modulo α-renaming so that the choice of variable x
does not matter. This means that the contexts λx.t and λx′.t[x/x′] are equal for all
x, x′ ∈ V tree . The variable serves as the hole marker of the context.

A ranked tree in TΣ is a value of the first-order type tree, and a context in CΣ a
value of the linear second-order type context = tree (tree. This is the subtype of
the more usual function type tree → tree that is restricted to linear functions using
their argument exactly once. Any context λx.t ∈ CΣ denotes a linear function since
x must occur exactly once in t by definition. The set of all values of both types is:

ValΣ = TΣ ∪ CΣ

5.1.2.2 Patterns of Ranked Trees

We next extend ranked trees and contexts to patterns by adding variables of both
types. For this we assume a set V =]τ∈TVτ with two kinds of variables. Variables
x, y, z ∈ V tree have type tree and variables X,Y ∈ Vcontext type context .

Patterns for ranked trees p ∈ P tree
Σ and patterns for contexts P ∈ Pcontext

Σ are
defined in Figure 5.4. The set of all patterns is PΣ =]τ∈TPτΣ. In both kinds of
patterns, tree variables x may now occur freely but can also be bound in the scope of
a λ-binder as before. Context variables X can also occur in both kinds of patterns,
but will always be free. For instance, the tree pattern X@(λy.f(y, a)@x) in Pcontext

Σ

contains the free context variable X, the bound tree variable y and the free tree
variable x. Up to β-reduction this pattern is equal to X@f(a, x) which also belongs
to Pcontext

Σ .
The set of free variables fv(p) and fv(P) and of bound variables bv(p) and bv(P)

are defined as usual for λ-terms. A pattern is called linear if each of its free variables
has at most one free occurrence.

94 Chapter 5. Hyperstreams and Certain Query Answering

The set Pgr,τΣ of ground patterns of type τ ∈ T is the subset of patterns in
PτΣ without free variables. The set of all ground patterns is denoted by PgrΣ =

Pgr,treeΣ ∪Pgr,contextΣ . Clearly, any ranked tree is a ground pattern of type tree and any
context is a ground pattern of type context , i.e., TΣ ⊆ Pgr,treeΣ and CΣ ⊆ Pgr,contextΣ .
The converse is not true. The ground pattern λx.x@f(a) for instance is not a
tree. However, it becomes equal to the tree f(a) by β-reduction. The situation is
similar for ground pattern for contexts, which can always be reduced to a context by
exhaustive β-reduction. The ground context pattern λx.λy.y@f(x) for instance can
be β-reduced to the context λx.f(x). In general, each β-reduction step replaces some
redex of the form (λx.p)@p′ in a bigger pattern by p[x/p′] if x 6∈ bv(p) and otherwise
renames x beforehand. Exhaustive β-reduction can be done in any order, but always
leads to the same result. We denote the β-reduced form of a tree pattern p ∈ Pgr,treeΣ

by normβ(p) and of a context pattern P ∈ Pgr,contextΣ by normβ(P). The overall
reduction requires at most a linear number of steps, since all λ-bound variables in
patterns are constrained to occur exactly once (in the scope of the λ-binder). As a
consequence, we have normβ(Pgr,treeΣ) = TΣ and normβ(Pgr,contextΣ) = CΣ.

A substitution µ : V → PgrΣ on a subset of variables V is called well-typed if it
maps tree variables to Pgr,treeΣ and context variables to Pgr,contextΣ . For any pattern
p ∈ P tree

Σ , the grounding µ(p) ∈ Pgr,treeΣ is obtained from p by replacing free variables
v by µ(v). The set of all instances of p is obtained by β-normalizing all groundings
of p:

Inst(p) = {normβ(µ(p)) | µ : fv(p)→ PgrΣ well-typed}.

Clearly any instance of p is a ranked tree, that is Inst(p) ⊆ TΣ.

Example 14 Consider the tree pattern p = X@(X@x) and the substitution µ

where µ(X) = λx.f(b, x) and µ(x) = a. The β-normal form of µ(p) =

µ(X)@(µ(X)@µ(x)) is the tree normβ(µ(p)) = f(b, f(b, a)) belonging to Inst(p).

5.1.2.3 Compressed Tree Patterns

We now show how to define patterns with grammar compression for both types by
using a variant of singleton tree grammars with contexts. The term compressed tree
pattern is used specially to designate such objects.

Definition 21 A compressed pattern of type τ ∈ T is an acyclic context-free tree
grammar G = (N,Σ, R, S) where N ⊆ V is a finite set of nonterminals, S ∈ N of
type τ is the start symbol, R is a partial well-typed function from N to patterns in
PΣ with free variables in N . The set of all compressed patterns of type τ is denoted
by Pcomp,τ

Σ .

5.1. Hyperstreams 95

@

λx

@

a

x

a

@

b

@

c

S = z

X

Z

y

Y

z → X@a(X@b, Y@c),
X → λx.Z@a(x, y)

Figure 5.5: Graph and rules of the compressed tree pattern G0.

For instance, consider the compressed tree pattern G0 ∈ Pcomp,tree
Σ with the

nonterminals N = {z,X, Y, Z, y}, with S = z and with two rules R(z) =

X@a(X@b, Y@c), and R(X) = λx.Z@a(x, y). We illustrate G0 by the graph in
Figure 5.5. Each nonterminal is annotated to the left of the corresponding node.
Note that the circled empty nodes correspond to the nonterminals without any rule.
The compressed pattern G0 is acyclic, in that no variable on the left hand side of
some rule does appear in any subsequent rule. In other words, the graph of G0 is
a DAG. It should also be noticed that the tree language of the grammar G0 is ∅.
What interests us instead is its tree pattern:

pat(G0) = (λx.Z@a(x, y))@a((λx.Z@a(x, y))@b, Y@c)

The grammar serves to represent this pattern in a compressed manner, by sharing
the context pattern referred to by X. By exhaustive β-reduction of pat(G0) we
obtain the following tree pattern with context variables but without λ-binders:

normβ(pat(G0)) = Z@a(a(Z@a(b, y), Y@c), y)

A compressed tree pattern is called compression-free if the structure of its gram-
mar is a tree, that is, every nonterminal appears at most once in all the right-hand
sides of the rules. We define the free variables of a compressed tree pattern G as
the free variables of pat(G), and the bound variables of G as the nonterminals in
dom(R).

In what follows we will identify tree patterns p ∈ P tree
Σ with the compressed

tree pattern ctpΣ(p) = ({S},Σ, {S → p}, S), which has a single rule mapping a
fixed start symbol S to p. Note that ctpΣ(p) is compression-free. In this sense,
P tree

Σ ⊆ Pcomp,tree
Σ . A compressed tree pattern G is called linear if its tree pattern

pat(G) is linear.

96 Chapter 5. Hyperstreams and Certain Query Answering

5.2 Certain Query (Non) Answering on Hyperstreams

We next formalize the notions of certain query answers and non-answers on hyper-
streams. We fix an alphabet Σ and a finite set W ′ ⊆ W of query variables for this
section.

5.2.1 Definitions

Let Q be a query over Σ with variables in W ′ and G ∈ HypΣ a nested hyperstream.

Definition 22 A candidate α of pat(G) is a certain answer for Q if for all assign-
ment µ : fv(G)→ nWordsΣ, the instance Jpat(G)Kµ ? α is in L(Q).

Analogously,

Definition 23 A candidate α of pat(G) is a certain non-answer for Q if for all
assignment µ : fv(G)→ nWordsΣ, the instance Jpat(G)Kµ ? α is not in L(Q).

Note that the candidate maps the query variables to positions of the pattern
described by the nested hyperstream. This is due to the fact that shared nontermi-
nals define as many positions as they are referred to in a nested hyperstream. In
Figure 5.3, each of the position labeled by X and its children define two positions
in the pattern that is described.

We introduce the problems of certain query answering and non-
answering for classes of nested hyperstreams G and of query automata A ∈
{dSHA, SHA, dNWA,NWA}. For all query automaton, the notation Q(A) denotes
the query whose language equals the language of A. We also write SeqΣ,W ′ to denote
the set Σ ∪W ′ ∪ ¬W ′.

Certain query answering: Certans
Σ,W ′(G,A).

Input: a nested hyperstream G ∈ GΣ, a candidate α ∈ CW ′(pat(G)), and a
query automaton A ∈ ASeqΣ,W′

Output: whether α is a certain answer for query Q(A) on pat(G)

Certain query non-answering: Cert¬ansΣ,W ′(G,A).

Input: a nested hyperstream G ∈ GΣ, a candidate α ∈ CW ′(pat(G)), and a
query automaton A ∈ ASeqΣ,W′

Output: whether α is a certain non-answer for query Q(A) on pat(G)

Remark that certain query answering is equivalent to the regular pattern inclu-
sion, which consists in determining whether a language of nested words (the set

5.2. Certain Query (Non) Answering on Hyperstreams 97

of instances of the pattern described by the hyperstream) is included in a regu-
lar language of nested words (the language of the query). The set of instances of
the pattern described by the hyperstream is not necessarily regular, because of the
sharing possibilities.

On the other hand, certain query non answering is equivalent to the regular
pattern matching problem, which determines whether two languages of nested words
have an empty intersection, given that one of them is regular (the language of the
query) and the other is not (the language of the instances of the pattern described
by the hyperstream).

In Chapter 6, we formally define regular pattern matching and regular pattern
inclusion. We study them in the case of compressed (ranked) tree patterns with
context variables, to which the case of nested hyperstreams will be reduced.

5.2.2 From the Non-Boolean Cases to the Boolean Cases

Boolean CQA and CQnA are the special cases Certans
Σ,∅(G,A) respectively

Certans
Σ,∅(G,A), i.e. where only the empty candidate can be tested for certainty.

We show that the more general problems of certain query answering and certain
query non answering can be reduced to their boolean versions in polynomial time,
by decompressing partially the nested hyperstream.

5.2.2.1 Partial Decompression

Lemma 11 (Partial Decompression Lemma) For any nested hyperstream G ∈
HypΣ and any candidate α ∈ CW ′(pat(G)), we can compute in PTime some G′ ∈
HypSeqΣ,W′

such that pat(G) ? α = pat(G′). In particular, if pat(G) was linear then
pat(G′) is linear.

Let G = (N,Σ, R, S) be a nested hyperstream and α ∈ CW ′(patG) a candidate
of pat(G), fixed in this section. We show that we can compute in PTime a nested
hyperstream Gα over SeqΣ,W ′ such that pat(G)?α = pat(G′). Thus Gα will describe
a sequenced W ′-structure. We assume that S ∈ dom(R) as otherwise the lemma is
trivial.

The main ingredients of the proof will be illustrated on the example
Gex = ({Sex , X1, X2}, {a, b}, Rex , Sex) in Figure 5.6 where Rex (Sex) = X1aX1X1,
Rex (X1) = 〈bX2〉. The pattern pat(Gex) described by Gex is illustrated in Fig-
ure 5.6 (to the right). We also use for the example W ′ = {x} and αex = [x/3 · 1].
Note that the position 3 · 1 in pat(Gex) is shared in G, and that pat(Gex) ? αex =

〈b · ¬x ·X2〉a · ¬x〈b · x ·X2〉〈b · ¬x ·X2〉.

98 Chapter 5. Hyperstreams and Certain Query Answering

Sex

a X1

b X2

〈〉

a

b X2

〈〉

b X2

〈〉

b X2

〈〉

1

1 · 1 1 · 2

2 3

3 · 1 3.2

4

4 · 1 4 · 2

2
1

43

1

1 2

Figure 5.6: Nested hyperstream G and pat(G)

First we introduce new definitions that we’ll use in the sequel. It is clear that
for any non terminal X, there exists at most one position in the nested hyperstream
G labeled by X. We write posG(X) to denote it. For any natural j > 0 and
positions π, π′ ∈ chGj such that π′ is labeled by some element e ∈ Σ ∪N , we write
chlabGj (π) = e. Furthermore, for any position π ∈ Pos(G), the degree of π denoted
by degG(π) is the greatest natural i for which there exists a position π′ ∈ Pos(G)

such that (π, π′) ∈ chGi . We now define the addresses of G that are non-empty
words over the alphabet N of natural numbers, similarly to the standard Dewey
notation for trees but applied to the acyclic graph structure of G. For any position
π ∈ Pos(G) that is either a node or labeled by a nonterminal X ∈ N , the address
of π with respect to G is:

Addr(π) =
{i | 0 < i ≤ degG(π)}
∪{i · d | chlabGi (π) ∈ dom(R) and d ∈ Addr(chGi (π))}

The set of addresses of S is denoted by Addr On the example, d1 = 1, d2 = 3 · 1 · 1
and d3 = 4 · 1 are addresses of Sex .
For any address d ∈ Addr we associate its path that is a word whose letters are pairs
of the form (X, i) for X ∈ dom(R) and 0 < i ≤ degG(posG(X)): path(k1 . . . kn) =

(X1, k1), . . . , (Xn, kn) where X1 = S and for any 2 ≤ i ≤ n,

Xi =

{
chlabGki−1

(π) if π = posG(Xi−1) is labeled by a nonterminal
〈〉 if π = posG(Xi−1) and chGki−1

(π) is a node

On the example, path(d2) = (Sex , 3)(X1, 1)(〈〉, 1). Let PathsΣ be the set of paths
of G that lead to a letter in Σ. We first establish that there is a one-to-one corre-
spondence between PathsΣ and LPosΣ(pat(G)), the positions of pat(G) labeled by

5.2. Certain Query (Non) Answering on Hyperstreams 99

S′
ex

a X′
1

b

〈〉

Sex

a X1

b X2

〈〉

2
3

1

1 1 2

4
1

2

Figure 5.7: 3 · 1 · 1 is sharing-free in G′

elements of Σ.

Claim 4 There is a bijection pospath : LPosΣ(pat(G)) → PathsΣ s.t. for any
m ∈ LPosΣ(pat(G)), pospath(m) can be computed in PTime in the size of G.

This claim exploits the fact that the positions of patterns described by nested hy-
perstreams are words over naturals. Given a word over N, we can compute the
path associated to the address of that word by going through the structure of the
nested hyperstream while counting the number of positions already reached. This
is done in polynomial time since once a nonterminal is entirely traversed, we can
memorize the size of the pattern that it describes. This allows to not go through
the potential exponential size of the whole described pattern. On the example,
path(3 · 1) = (Sex , 3)(X1, 1)(〈〉, 1) is a path (in red).

The next ingredient for the proof of the partial decompression lemma is to show
that given some address, G can be transformed into G′ having the same pattern, but
in which this address is sharing free. An address d · U ∈ Addr is called sharing-free
if there does not exist a different address d′ · U ∈ Addr s.t. path(d) and path(d′)

have the same symbol in their last position.

Claim 5 For any address d ∈ Addr we can compute in PTime in the sizes of G and
d a compressed string pattern G′′ such that pat(G′′) = pat(G) and d is sharing-free
in G′′.

The new nested hyperstream is built by making a copy of G and setting a new
starting symbol, so that the given address is no longer shared. The elements that

100 Chapter 5. Hyperstreams and Certain Query Answering

S′
ex

a X′
1

b

〈〉

Sex

a X1

b X2

〈〉

¬x

x ¬x

2
4

1

1 1 3

5
1

3

3

2 2

Figure 5.8: Adding query variables

are not accessible from the new starting symbol can be ignored. This is illustrated
in Figure 5.7. The new nested hyperstream G′ex has S′ex as its starting symbol, and
the address 3 · 1 · 1 is no longer shared.

Finally, as last ingredient of the proof of the partial decompression lemma, we
show how for a given candidate α, a nested hyperstream over Σ is transformed
to a nested hyperstream on SeqΣ,W ′ in which the positions associated with query
variables by α are sharing-free.

Using the bijection pospath : LPosΣ(pat(G))→ PathsΣ defined in Claim 4:

Claim 6 If all paths in pospath(α(W ′)) are sharing-free in G, we can compute in
PTime a nested hyperstream G′′ over SeqΣ,W ′ such that pat(G′′) = pat(G) ? α.

This is illustrated in Figure 5.8. Note that the addresses are shifted, due to the
elements of W ′ ∪ ¬W ′ that are added.
Proof of Lemma 11. We first compute the set of paths D = pospath(α(W ′))
in PTime by Claim 4. Note that the cardinality of D is at most |W ′|, so it is of
constant size. Then we compute a nested hyperstream G′ with pat(G) = pat(G′)

such that all the addresses corresponding to the paths in D are sharing-free in G′′.
Since there are constantly many such addresses, this can be done in PTime by
iterating Claim 5 a constant number of times. Then using Claim 6 we compute the
nested hyperstream Gα over SeqΣ,W ′ such that pat(Gα) = pat(G′) ?α = pat(G) ?α.

5.2.2.2 Reductions to the Boolean Cases

We finally reduce the general certainty problems to their boolean versions in poly-
nomial time.

5.2. Certain Query (Non) Answering on Hyperstreams 101

Proposition 11 For all B in {ans,¬ans}, all A in {dSHA,SHA,NWA, dNWA}
and all G in {nPatterns,nLinPatterns,Hyp,LinHyp} , there is a PTime reduction
from CertBΣ,W ′(G,A) to CertBSeqΣ,W′ ,∅

(G,A).

Proof: LetG ∈ GΣ be a nested hyperstream and α ∈ CW ′(pat(G)) a candidate of the
pattern described by G. If G ∈ {Hyp,LinHyp}, then by Lemma 11 we can compute
in PTime a nested hyperstream G′ ∈ GSeqΣ,W′ such that pat(G) ? α = pat(G′).
If G ∈ {nPatterns,nLinPatterns}, then the same property holds trivially, since no
decompression is to be done.

In the following, we write StructW
′
to denote the set of all sequenced W ′-

structures. We recall that by Lemma 1, any variable of W ′ has exactly one positive
occurrence in a sequenced W ′-structure.

We start with B = ans. Let A ∈ ASeqΣ,W′ be a query automaton, B a dSHA
or dNWA over SeqΣ,W ′ – depending on whether A is a SHA or an NWA– such that
L(B) = (SeqΣ,W ′)

∗ \ StructW ′ , and C ∈ ASeqΣ,W′ such that L(C) = L(A) ∪ L(B).
In the case where G is a class of nondeterministic automata, i.e. G ∈ {SHA,NWA},
we can chose C to be the union of A and B. On the other hand, when G is a class of
deterministic automata, that is G ∈ {dSHA, dNWA}, C can be built the product of
A and B. The automaton B can be constructed in time O(2|W

′|) which is constant
sinceW ′ is a parameter of the certainty problem rather than being part of its input.
Then α is a certain answer for Q(A) on G iff Inst(G ? α) ∩ StructW

′ ⊆ L(A) iff
Inst(G′) ∩ StructW

′ ⊆ L(A) iff Inst(G′) ⊆ L(A) ∪ L(B) iff Inst(G′) ⊆ L(C) iff the
empty candidate is a certain answer for Q(C) on G′. Based on this fact, the PTime

reduction from Certans
Σ,W ′(G,A) to Certans

SeqΣ,W′ ,∅
(G,A) holds. Also, α is a certain

non-answer of Q(A) on G iff Inst(G ? α) ∩ L(A) = ∅ iff Inst(G′) ∩ L(A) = ∅ iff the
empty Σ-assignment is a certain non-answer of Q(A). Thus Cert¬ansΣ,W ′(G,A) ≤p is
reducible in polynomial time to Cert¬ansSeqΣ,W′ ,∅

(G,A). �

This shows that the non-boolean versions of the certainty problems are not
harder than their boolean counterparts. The next chapters will thus study the
boolean cases.

Chapter 6

Complexity of Certain Query
Answering

Contents
6.1 Introduction . 103

6.2 Σ-Algebras . 107

6.3 Inhabitation for Tree Automata 107

6.3.1 Tree Automata . 108

6.3.2 Intersection NonEmptiness 109

6.3.3 Tree Inhabitation . 110

6.3.4 Context Inhabitation . 112

6.4 Evaluation of Compressed Tree Patterns over Ntas 122

6.5 Regular Matching and Inclusion 122

6.5.1 Lower Bounds . 123

6.5.2 Upper Bounds . 125

6.6 Adding Regular Constraints 127

6.7 Encoding Patterns for Unranked Trees 133

6.8 Linearity Restriction . 136

6.1 Introduction

The following generic problems for patterns were widely studied in the literature:

Pattern matching: Is a given algebraic value an instance of a given pattern?

Pattern unification: Do two given patterns have some common instance?

Regular pattern matching: Does some instance of the given pattern belong to
the given regular language?

104 Chapter 6. Complexity of Certain Query Answering

B18: [Boneva et al. 2018]
C07: [Comon et al. 2007]

Dfas Nfas
MATCH Pspace-c

B18
Pspace-c

B18

INCL Pspace-c
B18

Pspace-c
B18

Figure 6.1: (Compressed) string patterns.

Dfas Nfas
MATCH PTime

B18
PTime

B18

INCL PTime
B18

Pspace-c
B18

Figure 6.2: Linear restriction.

Dtas Ntas
MATCH NP-c

C07,Th 3,Prop 18
Exp-c

C07, Th 3, Prop 18

INCL coNP-c
Th 3, Prop 18

Exp-c
Lem 17, Th 3, Prop 18

Figure 6.3: (Compressed) tree patterns with-
out context variables.

Dtas Ntas
MATCH PTime

Prop 21
PTime
Prop 21

INCL PTime
Lem 16, Prop 21

Exp-c
Lem 17, Th 6

Figure 6.4: Linear restriction.

Dtas Ntas
MATCH Pspace-c

Th 6, Prop 19
Exp-c

Th 6, Prop 19

INCL Pspace-c
Th 6, Prop 19

Exp-c
Th 6, Prop 19

Figure 6.5: (Compressed) tree patterns with
(constrained) context variables.

Dtas Ntas
MATCH PTime

Prop 21
PTime
Prop 21

INCL PTime
Lem 16, Prop 21

Exp-c
Lem 17 , Th 6

Figure 6.6: Linear restriction.

Regular pattern inclusion: Do all instances of the given pattern belong to the
given regular language?

As inputs, these problems receive descriptors of patterns, values, and regular lan-
guages. The problem of string pattern matching is well known to be NP-complete
for Nfas [Angluin 1980] but in PTime for Dfas, with and without compression
[Gascón et al. 2008]. The more general problem of string unification is of quite
different nature. It is known to be in Pspace [Plandowski 2004].

We have shown in a previous work [Boneva et al. 2018] that regular inclusion
and matching for string patterns are Pspace-complete, both for Dfas and Nfas,
with and without compression. See Figure 6.1 for an overview. When restricted to
linear string patterns, the complexity goes down to polynomial time in 3 of the 4
cases, as summarized in Figure 6.2. The problem which remains Pspace-complete
is regular inclusion on linear string patterns for Nfas.

The complexity landscape of regular matching and inclusion for ranked tree pat-
terns without context variables looks quite different to the case of string patterns, see
Figs. 6.3 and 6.4. Here, regular languages are defined by tree automata, which may
either be nondeterministic (Ntas) or (bottom-up) deterministic (Dtas). Regular
matching of ranked tree patterns without context variables for Ntas was named the
ground instance intersection problem in [Comon et al. 2007], where it was shown to
be NP-complete for Dtas and Exp-complete for Ntas. Furthermore it was shown

6.1. Introduction 105

that the restriction to linear patterns is in PTime, both for Dtas and Ntas. Reg-
ular inclusion for ranked tree patterns has not been studied so far to the best of
our knowledge. We show that it is coNP-complete for Dtas and Exp-complete for
Ntas even when restricted to linear tree patterns. Only for Dtas, the problem of
regular inclusion for linear ranked tree patterns is in PTime. Compression can be
added to ranked tree patterns (see Section 5.1.2.3) by using singleton tree grammars
[Schmidt-Schauß 2018]. But as we will see, this doesn’t affect the above results.

The prime reason for the asymmetry of the complexity landscapes in the case of
strings and trees is that string patterns cannot be encoded as tree patterns with a
monadic signature without adding context variables. For instance, the string pattern
aZZbY corresponds to the tree pattern a(Z@(Z@b(Y))) with context variable Z,
tree variable Y and application symbol @. The interest of adding context variables to
ranked tree patterns was already noticed when generalizing string pattern matching
to context pattern matching [Gascón et al. 2008], which are both NP-complete, with
or without compression. The same was noticed when generalizing string unification
to context unification, that are both in Pspace [Jez 2014]. Since we are interested
in a proper generalization of regular matching and inclusion from string to ranked
tree patterns, we propose to study these problems for tree patterns with context
variables.

In this chapter, we relate regular matching of ranked tree patterns to inhabita-
tion problems of tree automata in a systematic manner. The naive semi-decision
procedure for regular matching guesses some context for all the context variables
in the tree pattern and then checks whether the instance of the pattern obtained
thereby matches the regular language, i.e. whether it is recognized by the tree
automaton defining this language. In order to avoid infinite guesses, our decision
algorithm will guess for all context variables a function of type Q → 2Q where Q
is the set of states of the tree automaton, and then test whether this function is
inhabited by some context with respect to the automaton. In order to make this
approach work, we need to study the problem of context inhabitation on its own
right.

Context inhabitation is a special case of second-order linear λ-definability, except
that the input function is represented in a succinct manner. More generally, λ-
definability is known to be decidable up to the order of three [Zaionc 2005], while
it is undecidable in general [Loader 2001, Joly 2003]. Context inhabitation for tree
automata can also be understood as a generalization of transition inhabitation for
word automata, which is sometimes called the membership problem of the transition
monoid [Kozen 1977]. We show that context inhabitation for Ntas is Exp-complete.
The lower bound is obtained by a reduction from the nonemptiness problem of

106 Chapter 6. Complexity of Certain Query Answering

intersections of a finite number of Ntas [Seidl 1990], and the upper bound by an
algorithm using determinization. We then show that context inhabitation for Dtas
is Pspace-complete. We obtain the Pspace upper bound by a nontrivial reduction
to the nonemptiness problem of intersections of a finite number of Dfas (for words)
[Kozen 1977]. The fact that automata on words are enough for this purpose rather
than automata for ranked trees explains the otherwise surprising Pspace upper
bound.

We also study the complexity of regular matching and inclusion for compressed
ranked tree patterns with context variables. All our results are based in a systematic
manner on the close relationship between regular matching of tree patterns with
context variables and context inhabitation for tree automata. They are summarized
in Figs. 6.5 and 6.6. The only change compared to compressed string patterns is
for Ntas, where the complexity increases from Pspace-complete to Exp-complete.
The main reason for this change is that the context inhabitation for Ntas is Exp-
complete. In contrast, for Dtas context inhabitation remains Pspace-complete, so
that there is no difference to the case of Dfas.

Next we extend regular matching and inclusion with regular constraints on the
possible instantiations of the variables of the pattern.

Regular pattern matching with regular constraints: Does some instantia-
tion of the variables satisfying the given regular constraints produce an in-
stance of the given pattern that belongs to the given regular language?

Regular pattern inclusion with regular constraints: Do all instantiations of
the variables satisfying the given regular constraints produce some instance of
the given pattern that belong to the given regular language?

We show that the extended problems with regular constraints can be compiled to the
original problems without constraints in polynomial time. Our reduction preserves
the determinism of the automata and the linearity of the patterns. Therefore all
our complexity results on regular matching and inclusion listed above remain valid
when adding regular constraints.

Finally we show an application of these results to regular matching and inclu-
sion for compressed patterns on unranked trees with tree and hedge variables (but
without context variables). The idea is that unranked tree patterns can be encoded
to ranked tree patterns, while mapping hedge variables to context variables. We
contribute a reduction of unranked regular matching and inclusion to the ranked
case but with regular constraints. In order to deal with the unranked symbols, we
cannot bound the maximal arity of the ranked signature. Therefore we have to con-

6.2. Σ-Algebras 107

sider the uniform variant of all problems, where the signature is part of the input
rather than being fixed as a parameter.

Most of this chapter is dedicated to (compressed) patterns of ranked trees. Thus
we will abuse the term tree to refer to a ranked tree, when it’s clear from the
context.

6.2 Σ-Algebras

We first present the interpretation of the values of types tree and context in ar-
bitrary Σ-algebras (including tree automata, as we will see later on). Trees will
be interpreted as elements of the domain of the Σ-algebra, and contexts as linear
functions on this domain.

Definition 24 A Σ-algebra ∆ = (Σ, D, .∆) consists of a ranked signature Σ, a set
D called the domain, and a mapping .∆ that interprets symbols f ∈ Σ(n) as functions
f∆ : Dn → D. The domain of ∆ is dom∆ = D.

We next define the interpretation of values in a Σ-algebra. The interpretation of a
tree t = f(t1, . . . , tn) ∈ TΣ is the domain element JtK∆ = f∆(Jt1K∆, . . . , JtnK∆). This
interpretation can be extended to trees over the signature Σ∪D by interpreting any
symbol d ∈ D by itself, i.e., d∆ = d. The interpretation of a context C = λx.t ∈ CΣ

is the function JCK∆ : D → D with JCK∆(d) = Jt[x/d]K∆ for all d ∈ D. The elements
of D and functions of type D → D that can be obtained by ∆-interpretation of some
tree or context are called ∆-inhabited :

JValΣK∆ = JTΣK∆ ∪ JCΣK∆

The set TΣ of trees can be identified with the free Σ-algebra (Σ, TΣ, .
TΣ) whose

interpretation function satisfies fTΣ(t1, . . . , tn) = f(t1, . . . , tn) for all symbols f ∈
Σ(n) and trees t1, . . . , tn ∈ TΣ. We note that JTΣKTΣ = TΣ while JCΣKTΣ is a proper
subset of functions of type TΣ → TΣ. In other words, the interpretation over the
Σ-algebra TΣ converts any context C ∈ CΣ into the function on trees JCKTΣ : TΣ →
TΣ that it defines, i.e., if C = λx.t for some tree t in which x occurs once, then
JCKTΣ(t′) = t[x/t′] for all t′ ∈ TΣ.

6.3 Inhabitation for Tree Automata

One of the insights of this chapter will be that inhabitation is closely related to
regular matching and inclusion for tree patterns, depending on the class of tree

108 Chapter 6. Complexity of Certain Query Answering

automata and the type of variables. Therefore, here we study inhabitation problems
of tree automata on their own right.

6.3.1 Tree Automata

We start by recalling the standard notion of tree automata for ranked trees, their
notion of bottom-up determinism, and their relationship to Σ-algebras also in the
nondeterministic case.

Definition 25 A (nondeterministic) tree automaton (Nta) over a ranked signature
Σ is a tuple A = (Q,Σ, F,∆) where Q is a finite set of states, F ⊆ Q is the set of
final states, and ∆ ⊆ ∪n≥0Σ(n) ×Qn+1 is the transition relation.

A rule (f, q1, . . . , qn, q) ∈ ∆ is written as f(q1, . . . , qn) → q. We will identify
any transition relation ∆ of some Nta as a Σ-algebra (Σ, 2Q, .∆), that interprets
function symbols f ∈ Σ(n) as the n-ary functions f∆ that satisfy for any subsets of
states Q1 . . . , Qn ⊆ Q:

f∆(Q1, . . . , Qn) = {q | ∃q1 ∈ Q1 . . . ∃qn ∈ Qn. f(q1, . . . , qn)→ q in ∆}.

It should always be clear from the context whether we consider ∆ as a Σ-algebra or
as a transition relation.

The regular language L(A) recognized by A is defined as the set of all trees in
TΣ whose evaluation in the Σ-algebra ∆ yields some final state in F :

L(A) = {t ∈ TΣ | JtK∆ ∩ F 6= ∅}.

The more general concept of inhabitation from Σ-algebras can now be applied
to tree automata, yielding the following definition:

Definition 26 (Inhabitation) Let A = (Q,Σ, F,∆) be a tree automaton.

• A subset Q′ ⊆ Q is called ∆-inhabited by a tree t ∈ TΣ if Q′ = JtK∆.

• A function S : 2Q → 2Q is called ∆-inhabited by a context C ∈ CΣ if S = JCK∆.

An Nta is called (bottom-up) deterministic or equivalently a Dta if no two
distinct rules of ∆ have the same left-hand side, i.e., if ∆ is a partial function
from

⋃
n≥0

Σ(n) ×Qn to Q. The determinization of an Nta A is the tree automaton

det(A) = (2Q, Σ, det(F),det(∆)) where det(F) = {Q′ ⊆ Q | Q′ ∩ F 6= ∅} and
det(∆) = {f(Q1, . . . , Qn) → f∆(Q1, . . . , Qn) | f ∈ Σ(n), Q1, . . . , Qn ⊆ Q}. It is

6.3. Inhabitation for Tree Automata 109

well known that det(A) is a Dta with L(A) = L(det(A)). Furthermore, for any tree
t ∈ TΣ it holds that JtKdet(∆) = {JtK∆}.

An Nta is called complete if for all f ∈ Σ(n) and q1, . . . , qn ∈ Q, there exists a
state q so that the rule f(q1, . . . , qn)→ q is in ∆.

Let NtaΣ be the set of all Ntas with signature Σ, and DtaΣ the set of all Dtas
with signature Σ. Clearly, DtaΣ ⊆ NtaΣ. A class of automata is a function that
maps any signature Σ to a subset of NtaΣ. In particular, Nta and Dta are classes
of automata mapping signature Σ to the sets of automata NtaΣ and DtaΣ.

In the next subsections, we introduce and study the decision problem of context
inhabitation, and its relationship to the problem of intersection nonemptiness. We
distinguish the cases of Ntas and Dtas. In both cases, we consider the non-uniform
version where the signature Σ is fixed as a parameter of the problem, and the uniform
version where the signature is given with the input.

An overview of the results on context inhabitation is given in Figure 6.8. Con-
text inhabitation for nondeterministic tree automata Inhabcontext

Σ (Nta) is Exp-
complete, while the deterministic restriction, Inhabcontext

Σ (Dta) is Pspace com-
plete. This might be surprising given that intersection nonemptiness is Exp-
complete for tree automata, while it is Pspace-complete for finite automata on
words, in both cases independently of determinism (see Figure 6.7).

Indeed, we will establish a close correspondence for tree automata between the
problem of context inhabitation Inhabcontext

Σ (Nta) and the problem of intersec-
tion nonemptiness InterΣ(Dta). The surprising result will come from another
close relationship between context inhabitation for deterministic tree automata
Inhabcontext

Σ (Dta) and the intersection nonemptiness problem of deterministic finite
automata for words InterΣ(Dfa).

6.3.2 Intersection NonEmptiness

For any class of automata A and any signature Σ, the non-uniform version of inter-
section nonemptiness for a finite number of automata is the following problem.

InterΣ(A).

Input: a finite number of automata A1, . . . , An ∈ AΣ where n ≥ 0.
Output: whether ∩ni=1L(Ai) 6= ∅.

The uniform variant of this problem where the signature Σ is passed as an
input is called Inter(A). Analogous problems can be defined for classes of finite
automata on words, i.e. nondeterministic finite automata (Nfas) and deterministic
finite automata (Dfas).

110 Chapter 6. Complexity of Certain Query Answering

words trees
deterministic Dfas: Pspace-c

[Kozen 1977] Dtas: Exp-c
[Seidl 1990]

nondeterministic Nfas: Pspace-c
[Kozen 1977] Ntas: Exp-c

[Seidl 1990]

Figure 6.7: Emptiness of intersection of a finite number of automata.

Dtas Ntas
Tree PTime

Th 3
Exp-c

Th 3

Context Pspace-c
Th 5

Exp-c
Th 4

Figure 6.8: Inhabitation for Tree Au-
tomata.

In Figure 6.7 we recall the complexities of the problems InterΣ(A) in the cases
of deterministic and nondeterministic automata on trees and words, i.e. for A ∈
{Nta,Dta,Nfa,Dfa}. The results hold both for the uniform and the non-uniform
variants. In the case of trees, the hardness result requires our assumption that the
signature Σ contains at least one constant and one symbol of arity greater than or
equal to 2.

6.3.3 Tree Inhabitation

Before moving to context inhabitation, we reconsider known results on the easier
problem of tree inhabitation, that will be instructive for what follows.

For any class of automata A and any signature Σ, tree inhabitation is the fol-
lowing problem:

Inhabtree
Σ (A).

Input: a tree automaton A = (Q,Σ, F,∆) ∈ AΣ, Q′ ⊆ Q.
Output: whether Q′ is ∆-inhabited by some tree in TΣ.

The uniform variant of this problem where the signature Σ is passed as an input
is called Inhabtree(A). The complexity of tree inhabitation is folklore, in both cases,
uniform or not. An overview of the results is given in Figure 6.8. An algorithm for
solving the problem for Ntas can be based on determinization. This algorithm will
be instructive for context inhabitation as well, so we include it in the proof.

Proposition 12 Tree inhabitation Inhabtree(Nta) is in Exp. The restriction to
deterministic tree automata Inhabtree(Dta) is in PTime.

6.3. Inhabitation for Tree Automata 111

Proof: Let Σ be a ranked signature. If A is a Dta then Q′ ⊆ Q is ∆-inhabited by
some tree, if either Q′ = ∅ and A is not complete, or Q′ is a singleton and the unique
state of Q′ is accessible wrt. ∆. Hence Inhabtree(Dta) is in polynomial time. For
Ntas the Exp upper bound can be obtained by determinization. If A = (Q,Σ, F,∆)

is an Nta then by definition Q′ ⊆ Q is ∆-inhabited by some tree t ∈ TΣ if JtK∆ = Q′.
This is equivalent to that JtKdet(∆) = {Q′}. ThusQ′ is ∆-inhabited iff {Q′} is det(∆)-
inhabited in det(A). This can be tested in polynomial time from det(A), which in
turn can be computed in exponential time from A. Thus Inhabtree(Nta) is in Exp.
�

The worst case exponential blow up coming with determinization cannot be
avoided for solving tree inhabitation of Ntas, as we show next.

Theorem 3 (Folklore) Tree inhabitation Inhabtree
Σ (Nta) is Exp-complete, while

its restriction to deterministic tree automata Inhabtree
Σ (Dta) is in PTime.

Proof: The upper bounds were shown in Proposition 12. The lower Exp lower
bound for Ntas follows from a reduction from intersection nonemptiness of a finite
number of deterministic tree automata InterΣ(Dta), which is well known to be
ExpTime-complete [Seidl 1990]. The relationship to this nonemptiness problem is
instructive for context inhabitation later on, so we also present this reduction.

Let A1, . . . , An be a sequence of Dtas with signature Σ. We want to know
whether ∩ni=1L(Ai) 6= ∅. Suppose that Ai = (Qi,Σ, Fi,∆i). Without loss of gen-
erality, we can assume that each of them has a single final state F i = {qif} 1. Let
A be the disjoint union of all Ai, that is A = (Q,Σ, F,∆) where Q =]ni=1Qi,
∆ =]ni=1∆i and F = {q1

f , . . . , q
n
f }. Since all Ai are deterministic, it holds that (*)

F is ∆-inhabited if and only if
n⋂
i=1

L(Ai) 6= ∅. In order to see (*), let t ∈ TΣ be a

tree. It then holds that:

t ∈
n⋂
i=1

L(Ai) iff for all i ∈ {1, . . . , n} : qif ∈ JtK∆i

iff for all i ∈ {1, . . . , n} : {qif} = JtK∆i (Ai is deterministic)
iff {q1

f , . . . , q
n
f } = JtK∆

iff {q1
f , . . . , q

n
f } is ∆-inhabited by t.

The property (*) shows that InterΣ(Dta) can be reduced to Inhabtree
Σ (Nta) in

polynomial time, so Inhabtree
Σ (Nta) is Exp hard. �

1Otherwise, we fix a nonconstant g ∈ Σ \ Σ(0) and a constant a ∈ Σ(0). We then compute
automata A′i with L(A′i) = g(L(Ai), a, . . . , a). These can be constructed in PTime from Ai such
that they have a unique final state. Furthermore, ∩ni=1L(Ai) 6= ∅ if and only if ∩ni=1L(A′i) 6= ∅.

112 Chapter 6. Complexity of Certain Query Answering

6.3.4 Context Inhabitation

Since the bound variable of a context occurs exactly once, contexts are interpreted
as union homomorphisms in the transition algebras of a tree automata. These will
play a key role for defining the problem of context inhabitation and for studying its
complexity.

Definition 27 A union homomorphism on 2Q is a function S : 2Q → 2Q such that
S(∅) = ∅ and S(Q′ ∪Q′′) = S(Q′) ∪ S(Q′′) for all Q′, Q′′ ⊆ Q.

Lemma 12 For any context C ∈ CΣ and Nta A = (Q,Σ, F,∆) the ∆-inhabited
value JCK∆ is a union homomorphism on 2Q.

Proof: Any context C ∈ CΣ has the form λx.t such that x occurs exactly once in t.
The proof is by induction on the structure of t.

• Case t = x. We then have that JCK∆(Q′) = Jλx.xK∆(Q′) = JQ′K∆ = Q′ for
all Q′ ⊆ Q. In particular JCK∆(∅) = ∅. Furthermore for any two subsets
Q′, Q′′ ⊆ Q, it holds that JCK∆(Q′ ∪Q′′) = Q′ ∪Q′′ = JCK∆(Q′) ∪ JCK∆(Q′′).
Thus JCK∆ is a union homomorphism.

• Case t = f(t1, . . . , tn) and x occurs exactly once in t, say in tk but not
elsewhere.

Let Sk = Jλx.tkK∆ and Qi = JtiK∆ for all i 6= k. Clearly Sk is ∆-
inhabited. We then have by the induction hypothesis that Sk is a union
homomorphism. Furthermore, we have that for all Q′ ⊆ Q, JCK∆(Q′) =

Jλx.f(t1, . . . , tn)K∆(Q′) = Jf(t1, . . . , λx.tk, . . . , tn)K∆(Q′). By definition of
algebra evaluation, we have Jf(t1, . . . , λx.tk, . . . , tn)K∆(Q′) = {q | ∃q1 ∈
Q1, . . . , qk ∈ Sk(Q

′), . . . ,∃qn ∈ Qn. f(q1, . . . , qn) → q in ∆}. This im-
plies that for any two subsets Q′, Q′′ ⊆ Q, JCK∆(Q′ ∪ Q′′) = {q | ∃q1 ∈
Q1, . . . , qk ∈ Sk(Q

′) ∪ Sk(Q′′), . . .∃qn ∈ Qn. f(q1, . . . , qn) → q in ∆} =

JCK∆(Q′)∪ JCK∆(Q′′). In particular, JCK∆(∅) = ∅. So JCK∆ is a union homo-
morphism.

�

The following example shows that Lemma 12 would fail if it were generalized
from contexts to nonlinear second-order λ-terms.

Example 15 Consider N = λx.f(x, x) over the signature Σ = {a, f} where a

is a constant and f a symbol of arity 2, and the Nta A = (Q,Σ, F,∆) with
Q = {q1, q2, qok}, F = {qok} and ∆ = {a → q1, a → q2, f(q1, q2) → qok}.

6.3. Inhabitation for Tree Automata 113

We have JNK∆({q1}) = JNK∆({q2}) = ∅, while JNK∆({q1, q2}) = {qok}. Hence,
JNK∆({q1, q2}) 6= JNK∆({q1}) ∪ JNK∆({q2}), so JNK∆ is not a union homomor-
phism.

Any function s : Q → 2Q defines the union homomorphism ŝ : 2Q → 2Q such
that ŝ(Q′) =

⋃
q∈Q′

s(q) for all Q′ ⊆ Q. Conversely, any union homomorphism is

determined by the images of all singletons.

Lemma 13 (Succinct representations of union homomorphisms) If
S : 2Q → 2Q is a union homomorphism then S = ŝ for the function s : Q→ 2Q such
that s(q) = S({q}) for all q ∈ Q.

Proof:This is straightforward from the definitions. �

As a consequence, the number of union homomorphisms is equal to the number
of functions of type Q → 2Q which is exponential. In contrast the number of
functions of type 2Q → 2Q is doubly exponential. This is the reason why second-
order inhabitation is a more difficult problem than context inhabitation that we
formalize next.

Context inhabitation receives as input a function s : Q→ 2Q that represents the
union homomorphism ŝ : 2Q → 2Q. Note that the representation is exponentially
smaller than the union homomorphism it represents. Using this succinct represen-
tation of a union homomorphism as an input rather than the union homomorphism
itself will permit to relate the complexity of regular matching to context inhabita-
tion.

For any ranked signature Σ and class of automata A, we define the following
decision problem.

Inhabcontext
Σ (A).

Input: an automaton A = (Q,Σ, F,∆) ∈ AΣ and a function s : Q→ 2Q.
Output: whether the union homomorphism ŝ is ∆-inhabited by some context
in CΣ.

The uniform variant of the problem where the signature Σ is given with the input
is denoted by Inhabcontext(A). Based on the properties of union homomorphisms,
we next show that ŝ is ∆-inhabited if and only if its restriction to singletons is.

Proposition 13 Let A = (Q,Σ, F,∆) be an Nta and s : Q → 2Q. Then ŝ is
∆-inhabited iff there exists C ∈ CΣ such that for all q ∈ Q, s(q) = JCK∆({q}).

Proof: The forward implication is straightforward. For the backward direction, let
C ∈ CΣ be a context with s(q) = JCK∆({q}) for all q ∈ Q. Since ŝ is a union homo-

114 Chapter 6. Complexity of Certain Query Answering

morphism, we have for all Q′ ⊆ Q that ŝ(Q′) =
⋃
q∈Q′

s(q) =
⋃
q∈Q′

JCK∆({q}) =

JCK∆(Q′) since JCK∆ is a union-homomorphism by Lemma 12. Thus ŝ is ∆-
inhabited. �

Context inhabitation is a special case of second-order linear λ-definability where
the second-order input function is a union homomorphism, except that the union
homomorphism is represented in a succinct manner. Note that λ-definability is
known to be decidable up to the order of three [Zaionc 2005], while it is undecidable
in general [Loader 2001, Joly 2003]. We now determine the complexity of context
inhabitation for Ntas and then for Dtas.

Proposition 14 Inhabcontext(Nta) is in Exp.

Proof: As in the case of tree inhabitation, the problem can be solved based on
determinization, but in a more tricky manner. Let Σ be a ranked signature, A =

(Q,Σ, F,∆) an Nta where Q = {q1, . . . , qn} and s : Q → 2Q. We fix x ∈ Vtree .
For each i ∈ {1, . . . , n}, let ∆i = ∆ ∪ {x → qi} and Ai = (Q,Σ] {x}, F,∆i). Let
Ã be the product Dta Ã = det(A1) × . . . × det(An) with transition relation ∆̃,
recognizing the intersection of the languages of the Dtas det(Ai). Note that the
number of states of Ã is at most (2n)n = 2n

2 , which is exponential.

Claim 7 Let p ∈ TΣ]{x} be a tree having exactly one occurrence of x. Then JpK∆̃ =

{(s(q1), . . . , s(qn))} if and only if JpK∆i = s(qi) for all 1 ≤ i ≤ n.

Recall that for any context C = λx.p, the set JpK∆i contains all the states to which
C can be evaluated when starting at the hole marker x with state qi. Let B be
the Dta with signature TΣ]{x} recognizing the set of all trees having exactly one
occurrence of x. We assume w.l.o.g. that B has a single final state qf . Now consider
the product Dta Ã × B recognizing the language L(Ã) ∩ L(B) of all the elements
of L(Ã) having exactly one occurrence of x. Then it follows from Claim 7 that
the tuple (s(q1), . . . , s(qn), qf) is an accessible state of Ã × B if and only if there
exists a context λx.p ∈ CΣ such that Jλx.pK∆({qi}) = s(qi). By Proposition 13 the
latter is equivalent to that ŝ is ∆-inhabited. Testing whether (s(q1), . . . , s(qn), qf)

is accessible in Ã×B is in polynomial time in the size of Ã×B, which is in Exp.
�

Theorem 4 Inhabcontext
Σ (Nta) is Exp-complete.

Proof: The Exp upper bound was shown in Proposition 14 even for the uniform
variant of the problem. For Exp-hardness of Inhabcontext

Σ (Nta) for any Σ – with
at least one constant and one symbol of arity at least 2 – we use a reduction from

6.3. Inhabitation for Tree Automata 115

InterΣ(Dta). Let A1, . . . , An be Dtas where Ai = (Qi,Σ, Fi,∆i) for 1 ≤ i ≤ n,
and such that their sets of states are pairwise-disjoint. We consider a fresh constant x
not in Σ, a fresh symbol $ of arity 2, and write Σ′ = Σ∪{x, $}. Let q1, q

f
1 , . . . , qn, q

f
n

be fresh states, i.e. not in Q1 ∪ · · · ∪ Qn. We build the Nta B = (Q,Σ′, F,∆)

obtained by setting Q = Q1 ∪ . . . ∪ Qn ∪ {q1, q
f
1 , . . . , qn, q

f
n}, F = {qf1 , . . . , q

f
n} and

∆ = ∆1 ∪ . . . ∪ ∆n ∪ {x → qi | 1 ≤ i ≤ n} ∪ {$(q, qi) → qfi | q ∈ Fi}. Now let
s : Q→ 2Q be the function so that for all q ∈ Q,

s(q) =

{
{qfi } if q = qi for 1 ≤ i ≤ n
∅ otherwise

Then
n⋂
i=1

L(Ai) 6= ∅ if and only if ŝ is ∆-inhabited. Indeed, there exists a tree

t ∈
n⋂
i=1

L(Ai) iff JtK∆i ∩ Fi 6= ∅ for all 1 ≤ i ≤ n, iff J$(t, x)[x/{q}]K∆ = s(q) for all

q ∈ Q iff Jλx.$(t, x)K∆({q}) = s(q) for all q ∈ Q. By Proposition 13, the latter is
equivalent to ŝ is ∆-inhabited. This concludes the proof of the theorem. �

We finally show that context inhabitation is in Pspace for Dtas, even though
this is a problem concerning automata for trees and not words. Indeed, inhabitation
for Dtas can be reduced to the nonemptiness of intersection for words InterΣ(Dfa),
which is Pspace-complete [Kozen 1977]. The Pspace upper bound holds even for
the uniform variant of the problem. Showing this requires two additional tricks in
the proof, but is worth the effort since the uniform version of context inhabitation
will be needed for solving the uniform version of regular matching, to which the
non-uniform version of regular matching with constraints will be reduced. The
constraints will allow us to solve regular matching in the case of unranked trees, the
original motivation of the present work.

Lemma 14 The problem Inhabcontext(Dta) can be reduced in polynomial time to
its restriction where the input function s : Q→ 2Q always maps to singletons.

Proof: If there exists q ∈ Q such that s(q) contains more than one element then
s cannot be inhabited for any Dta. It remains to remove cases where s(q) = ∅
for some q ∈ Q. The main idea to deal with empty sets is to complete A to A′

by adding a sink state qsink and to replace function s by s′ such that s′(q) = s(q)

if s(q) 6= ∅ and s′(q) = {qsink} otherwise. Inhabitation of s with respect to A is
then equivalent to inhabitation of s′ with respect to A′. However, this construction
may take exponential time in the maximal arity of function symbols of A with is
not fixed for the uniform problem. This problem can be circumvented by a trick,
permitting to complete A only partially.

116 Chapter 6. Complexity of Certain Query Answering

Here is how it works. We consider a Dta A = (Q,Σ, F,∆) and a function
s : Q → 2Q. We construct another Dta A′ = (Q′,Σ′, F ′,∆′) and a function
s′ : Q′ → 2Q

′ \ ∅ such that ŝ is ∆-inhabited if and only if ŝ′ is ∆′-inhabited.
The first idea would be to set A′ as the completion of A. We then have Σ′ = Σ

and Q′ = Q ∪ {qsink} where qsink is some fresh sink state. Furthermore, the set of
rules ∆′ subsumes ∆ and all the rules f(q1, . . . , qn)→ qsink with q1, . . . , qn ∈ Q′ for
which f(q1, . . . , qn) is not a left-hand side of any rule in ∆. The function s′ is defined
such that s′(q) = s(q) if s(q) 6= ∅ and s′(q) = {qsink} otherwise. One can then see
for any context C ∈ CΣ that ŝ is ∆-inhabited by C if and only if ŝ′ is ∆′-inhabited
by C. The size of ∆′ is in O(|∆|+ |Σ||Q|n) where n is the maximal arity of function
symbols in Σ. Unfortunately, the maximal arity is not fixed in the uniform version
since Σ is part of the input. Therefore, this reduction requires exponential space in
the worst case, while polynomial time was claimed.

The second idea is to perform some kind of partial completion, so that only
polynomially many rules need to be added. For this, we define the signature Σ′ =

Σ∪{g} where g is a fresh monadic function symbol. For any context C ∈ CΣ we define
a context in CΣ′ by C ′ = λx.C@g(x). The state set of A′ remains Q′ = Q ∪ {qsink}
where qsink is some fresh state as before. The set of rules ∆′ extends ∆ by the
following rules for all q ∈ Q:

h(q)→

{
qsink if s(q) = ∅
q else

Furthermore, we add the following rule for all rules f(q1, . . . , qn)→ q′ of ∆ and all
1 ≤ i ≤ n:

f(q1 . . . , qi−1, qsink, qi+1, . . . , qn)→ qsink

It can then be shown for any context C ∈ CΣ, that ŝ is ∆-inhabited by C if and only
if ŝ′ is ∆′-inhabited by C ′. Now the construction of A′ is in time O(|A|2 + |s|) which
is polynomial even if the maximal arity of function symbols in Σ is not bounded. �

Proposition 15 Inhabcontext(Dta) is in Pspace.

Proof: Let Σ be a ranked signature, A = (Q,Σ, F,∆) a Dta whereQ = {q1, . . . , qn}
and all the states are accessible, s : Q→ 2Q a function and x a fresh constant not in
Σ. We assume w.l.o.g that s(qi) 6= ∅ for all 1 ≤ i ≤ n (see Lemma 14). If |s(qi)| > 1

for some 1 ≤ i ≤ n, then ŝ is not ∆-inhabited, given that A is deterministic. The
following lines consider the case where all the images by s are singletons. First we
reduce the inhabitation of ŝ to the nonemptiness of the intersection of n + 1 Dtas
A1, . . . , An+1. In a second step, we reduce the nonemptiness of the intersection of

6.3. Inhabitation for Tree Automata 117

A1, . . . , An+1 to the nonemptiness of the intersection of n Dfas A′1, . . . ,Wi.
We write Σx = Σ ∪ {x}. For any i ∈ {1, . . . , n}, let Ai = (Q,Σx, s(qi),∆i) be

the tree automaton on Σx having the same states as A, whose set of final states is
s(qi), and whose transition relation is ∆i = ∆ ∪ {x → qi}. We also write An+1 to
denote the simple Dta that accepts all trees t ∈ TΣx having exactly one occurrence
of x. We first show that

Claim 8 There exists a context λx.p ∈ CΣ such that Jλx.pK∆ = ŝ if and only if
n+1⋂
i=1

L(Ai) 6= ∅.

Proof: On one hand, if there is a context λx.p ∈ CΣ such that Jλx.pK∆ = ŝ, then
by Proposition 13 we have Jp[x/{qi}]K∆ = s(qi) for any 1 ≤ i ≤ n. This implies that
p ∈ L(Ai) for any 1 ≤ i ≤ n, and since λx.p is a context, p contains exactly one

occurrence of x and thus belongs to L(An+1). Hence
n+1⋂
i=1

L(Ai) ⊇ {p} 6= ∅. On the

other hand, assume
n+1⋂
i=1

L(Ai) 6= ∅ and let p ∈
n+1⋂
i=1

L(Ai). Given that p ∈ L(An+1),

it contains exactly one occurrence of x. Furthermore, since the automata Aj are all

deterministic with unique final states s(qj), and p ∈
n⋂
j=1

L(Aj), we have JpK∆i = s(qi)

for 1 ≤ i ≤ n. This implies that Jp[x/{qi}]K∆ = s(qi) for 1 ≤ i ≤ n, and thus
Jλx.pK∆ = ŝ. � According to Claim 8, deciding whether or not ŝ is ∆-inhabited is
equivalent to determining if the Dtas Ai have an nonempty intersection. Next we

show a Pspace algorithm to decide
n+1⋂
i=1

L(Ai) 6= ∅, by reduction to Inter(Dfa).

Let ΣQ be the alphabet that contains the symbol x, and for any rule
f(q′1, . . . , q

′
k−1, q

′
k, q
′
k+1, . . . , q

′
m) → q′′ in ∆ and any 1 ≤ k ≤ m, ΣQ contains the

symbol f(q′1, . . . , q
′
k−1, ?, q

′
k+1, . . . , q

′
m), where m is the arity of f . Formally,

ΣQ = {x} ∪

f(q′1, . . . , q

′
k−1, ?, q

′
k+1, . . . , q

′
m) | m is an arity in Σ,

f ∈ Σ(m), 1 ≤ k ≤ m and ∃q′k, q′m+1 ∈ Q.
f(q′1, . . . , q

′
k−1, q

′
k, q
′
k+1, . . . , q

′
m)→ q′m+1 ∈ ∆

The notation introduced for the elements of ΣQ allows us to distinguish them from
the trees in TΣx∪Q. This is because the elements of ΣQ are considered as atomic
symbols. Now let the alphabet S = ΣQ ∪ {⊥}. For some i ∈ {1, . . . , n} and a
tree t ∈ TΣx ∩ L(An+1) over Σx containing exactly one occurrence of x, we define
inductively the run path rpi(t) of t with respect to the Dta Ai as a word over S

such that:

• if t = x, then rpi(t) = x

118 Chapter 6. Complexity of Certain Query Answering

ff(q2,?)

a bb(?)

xx

Figure 6.9: Run path (in blue) of the tree f(a, b(x)) with respect to A1.

• if t = f(t1, . . . , tk−1, tk, tk+1, . . . , tm) for some arity m ≥ 0, symbol f ∈ Σ(m),
integer k ∈ {1, . . . ,m} so that tk contains the only occurrence of x in t, then

rpi(t) =

rpi(tk)f(q′1, . . . , q

′
k−1, ?, q

′
k+1, . . . , q

′
m) if {q′j} = JtjK∆i for all j 6= k,

1 ≤ j ≤ m and f(q′1, . . . , q
′
k−1, ?, q

′
k+1, . . . , q

′
m) ∈ ΣQ

rpi(tk)⊥ otherwise

Example 16 For instance, consider that Σ = {f (2), b(1), c(1), a(0)} and the tran-
sition relation ∆1 of the Dta A1 is such that ∆1 = {x → q1, a → q2, b(q1) →
q3, f(q2, q3)→ q4}∪∆′ where ∆′ consists of the remaining rules that make ∆1 com-
plete. Then the run path of the tree f(a, b(x)) with respect to A1 is x b(?) f(q2, ?)

as illustrated in Figure 6.9. On the other hand, the run path of f(c(a), b(x)) with
respect to A1 is x b(?) ⊥, as the subtree c(a) cannot be evaluated.

Claim 9 Let t ∈ TΣx ∩L(An+1) be a tree over Σx containing exactly one occurrence
of x. Then rpi(t) = rpj(t) for all i, j ∈ {1, . . . , n}.

Proof: Let i, j ∈ {1, . . . , n}. The proof is by induction on the structure of t.

Case t = x. Then rpi(t) = rpj(t) = x by definition.

Case t = f(t1, . . . , tk, . . . , tm) for some arity m, symbol f ∈ Σ(m), integer k ∈
{1, . . . ,m} so that tk contains the only occurrence of x in t. By definition,

• rpi(t) = rpi(tk)ai

• and rpj(t) = rpj(tk)aj

where ai and aj are such that ai ∈ {f(q′1, . . . , q
′
k−1, ?, q

′
k+1, . . . , q

′
m),⊥},

aj ∈ {f(q′′1 , . . . , q
′′
k−1, ?, q

′′
k+1, . . . , q

′′
m),⊥} for states q′l ∈ Q, q′′l ∈ Q, l 6= k

and l ∈ {1, . . . ,m}. By the induction hypothesis, rpi(tk) = rpj(tk). Further-
more, we show that ai = aj . Let l ∈ {1, . . . ,m} be different from k. Since tl
contains no occurrence of x, we have JtlK∆i = JtlK∆ = JtlK∆j . Two cases may

6.3. Inhabitation for Tree Automata 119

occur, depending on the run of A on tl. Either the run blocks, that is JtlK∆ = ∅,
or it doesn’t, implying that JtlK∆ = {q′l} for some state q′l ∈ Q. Now if for all
l ∈ {1, . . . ,m} different from k, JtlK∆ equals some singleton {q′l} , then by defi-
nition ai = f(q′1, . . . , q

′
k−1, ?, q

′
k+1, . . . , q

′
m) = f(q′′1 , . . . , q

′′
k−1, ?, q

′′
k+1, . . . , q

′′
m) =

aj . And if there is some l ∈ {1, . . . ,m} different from k such that JtlK∆ = ∅,
then by definition ai = ⊥ = aj . In both cases, ai = aj . Thus rpi(t) = rpj(t).

� Next we build Dfas that accept run paths. Let q0 and q⊥ be fresh states, and
note QDfa = Q ∪ {q0, q⊥}. For all 1 ≤ i ≤ n, we build the Dfa Wi having QDfa as
its set of states, S as its alphabet, {q0} as its set of initial states, s(qi) as its set of
final states and δi as its transition function, so that

• δi(q0, x) = qi (1)

• for all f(q′1, . . . , q
′
m) → q′m+1 ∈ ∆i where f ∈ Σ(m) for some arity m,

we have δi(q
′
1, f(?, q′2, . . . , q

′
m)) = q′m+1, δi(q′2, f(q′1, ?, q

′
3, . . . , q

′
m)) = q′m+1,

. . . , δi(q
′
m, f(q′1, . . . , q

′
m−1, ?)) = q′m+1 (2)

• for all q ∈ QDfa, δi(q,⊥) = q⊥ (3)

• for all state q ∈ QDfa and symbol f(q′1, . . . , q
′
i−1, ?, q

′
i+1, . . . , q

′
m) ∈ ΣQ where

m ≥ 0 and 1 ≤ i ≤ m, if no rule in ∆i having f(q′1, . . . , q
′
i−1, q, q

′
i+1, q

′
m) as its

left-hand side exists, then δi(q, f(q′1, . . . , q
′
i−1, ?, q

′
i+1, . . . , q

′
m)) = q⊥ (4).

Note that any Dfa Wi has a size that is polynomial in |A|. Now let p ∈ TΣx ∩
L(An+1) be a tree over Σx containing exactly one occurrence of x.

Claim 10 For all i ∈ {1, . . . , n} and state q ∈ Q, JpK∆i = {q} if and only if rpi(p)

is evaluated to q by the Dfa Wi.

Proof: Let i ∈ {1, . . . , n} and q ∈ Q. The proof is by induction on the structure of
p. The backward direction is shown by contraposition.

Case p=x. Then we have rpi(p) = x. First let’s assume that JpK∆i = {q}. So we
have q = qi, since JpK∆i = JxK∆i = {qi}. Furthermore, Wi in its initial state
q0 reads x and enters by (1) in state qi = q. Thus rpi(p) is evaluated to q by
Wi.

For the backwards direction, assume that JpK∆i 6= {q}. This implies that
JxK∆i = {qi} 6= {q}, that is qi 6= q. On the other hand, starting from q0, Wi

evaluates x to qi 6= q according to (1).

120 Chapter 6. Complexity of Certain Query Answering

Case p = f(p1, . . . , pk) where f ∈ Σ(k) and p1, . . . pk ∈ TΣx . Then there exists a
unique l ∈ {1, . . . , k} such that pl contains exactly one occurrence of x, and
for all j ∈ {1, . . . , k}, if j 6= l then pj ∈ TΣ – that is pj contains only symbols
in Σ.

First assume that JpK∆i = {q}. Then there exist states γ1, . . . , γk s.t. for
all 1 ≤ j ≤ k, JpjK∆i = {γj}. By the induction hypothesis, JplK∆i = {γl}
if and only if rpi(pl) is evaluated to γl by Wi. By definition rpi(p) =

rpi(pl)f(γ1, . . . , γl−1, ?, γl+1, . . . , γk). We also have the equalities JpK∆i =

Jf(p1, . . . , pk)K∆i = {q}. So the rule f(γ1, . . . , γk) → q exists in ∆i. By
(2), we also have δi(γl, f(γ1, . . . , γl−1, ?, γl+1, . . . , γk)) = q. So the Dfa Wi

in state q0 first reads the word rpi(pl) to get in state γl, before finally enter-
ing state q after having read f(γ1, . . . , γl−1, ?, γl+1, . . . , γk). So rpi(p) can be
evaluated to q by Wi.

For the backwards direction, assume that JpK∆i 6= {q}. Two cases may occur:

Case JpK∆i = ∅ . Then

• either JpjK∆i = ∅ for some j ∈ {1, . . . , k} (i),

• or there exist states γ1, . . . , γk s.t. for all j ∈ {1, . . . , k}, JpjK∆i =

{γj}, but there is no rule in ∆i having f(γ1, . . . , γk) as its left-hand
side (ii).

In (i), if j 6= l we have by definition that rpi(p) = rpi(pl)⊥. Ac-
cording to rule (3), whatever the state in which the Dfa Wi is af-
ter having read rpi(pl), Wi goes to state q⊥ when reading ⊥. And
since q⊥ 6= q, the claim holds. On the other hand, if j = l and
Jpj′K∆i = {γj′} for all j′ ∈ {1, . . . , k} different from j, then rpi(p) =

rpi(pl)f(γ1, . . . , γl−1, ?, γl+1, . . . , γk). By the induction hypothesis, Wi

evaluates rpi(pl) to a state that is not in Q. The only states in QDfa

that are not in Q are q0 and q⊥, and given that rpi(pl) 6= ε and q0 has
no looping transition – Wi can’t stay in state q0 after having read pl –, it
follows that the only possible state to which rpi(pl) has been evaluated
by Wi is q⊥. All the transitions in δi that leave q⊥ end up in q⊥ by the
rule (4). Thus Wi evaluates rpi(p) in state q⊥ 6= q, and the claim holds.

In (ii), rpi(p) = rpi(pl)f(γ1, . . . , γl−1, ?, γl+1, . . . , γk). By the induc-
tion hypothesis, Wi evaluates rpi(pl) to state γl. But since no rule
f(γ1, . . . , γk)→ q′ exists in ∆i, Wi in state γl – after having read rpi(pl)

– goes to state q⊥ after reading f(γ1, . . . , γl−1, ?, γl+1, . . . , γk), according
to rule (4). Thus the claim holds.

6.3. Inhabitation for Tree Automata 121

Case JpK∆i = {q′} 6= {q} . Then there exist states γ1, . . . , γk s.t. for all 1 ≤
j ≤ k, JpjK∆i = {γj}. Moreover, there is a rule f(γ1, . . . , γk) → q′ ∈
∆i, but no rule f(γ1, . . . , γk) → q in ∆i. Thus by (2), we have that
δ(γl, f(γ1, . . . , γl−1, ?, γl+1, . . . , γk)) = q′. This implies that the Dfa Wi

in state q0, first reads rpi(pl) to get in state γl, then reads the symbol
f(γ1, . . . , γl−1, ?, γl+1, . . . , γk) to enter state q′ 6= q. Thus the claim holds.

�

We next state:

Claim 11
n+1⋂
i=1

L(Ai) 6= ∅ if and only if
n⋂
i=1

L(Wi) 6= ∅.

Proof: Let p ∈ Σx ∩L(An+1) be a tree containing exactly one occurrence of x. By
Claim 10, for all i ∈ {1, . . . , n}, JpK∆i = s(qi) if and only if rpi(p) is evaluated to
the single element of s(qi) by Wi. So p ∈ L(Ai) if and only if rpi(p) ∈ L(Wi) for
1 ≤ i ≤ n. Claim 9 has established that rpj(p) = rpk(p) for all j, k ∈ {1, . . . , n}. It

then follows that p ∈
n⋂
i=1

L(Ai) if and only if rp1(p) = . . . = rpn(p) ∈
n⋂
i=1

L(Wi). So

n+1⋂
i=1

L(Ai) 6= ∅ if and only if
n⋂
i=1

L(Wi) 6= ∅. � It follows

from Claim 8 and Claim 11 that ŝ is ∆-inhabited if and only if
n⋂
i=1

L(Wi) 6= ∅.

Thus Inhabcontext(Dta) is reducible in polynomial time to Inter(Dfa). Hence
Inhabcontext(Dta) is in Pspace.

�

Theorem 5 Inhabcontext
Σ (Dta) is Pspace-complete.

Proof: The upper bound follows from Proposition 15. The lower bound can be
shown by reduction from the nonemptiness problem of the intersection of a finite
number of Dfas. Any finite word a1, . . . , am−1, am can be encoded by a “string”
tree am(am−1(. . . a1(x) . . .)), where a1, . . . , am are unary symbols and x is a fresh
constant symbol. Similarly, any DfaA can be transformed in linear time to a DtaA′

that accepts exactly the string encodings of words from L(A), and which transitions
are trivial encodings of transitions of A plus an additional transition x → qx for
some fresh state qx. Now given Dfas A1, . . . , An which we assume w.l.o.g. to
have pairwise disjoint sets of states, and single final states, let A′1, . . . , A′n be the
respective corresponding Dtas as described above. We write qfi to denote the only
final state of the Dta A′i, for 1 ≤ i ≤ n. Let B be the union of the A′i excluding the
rules of the form x→ qxi , and ∆ be the transition relation of B. Remark that B is
deterministic. Then the intersection of the languages of A1, . . . , An is non-empty iff

122 Chapter 6. Complexity of Certain Query Answering

ŝ is ∆-inhabited, where ŝ is defined by s(q) = {qfi } if q = qxi for any 1 ≤ i ≤ n, and
s(q) = ∅ otherwise. �

6.4 Evaluation of Compressed Tree Patterns over Ntas

Our next objective is to evaluate compressed tree patterns efficiently over the Σ-
algebra of some Nta for a given variable assignment into this algebra. In particular,
we want to avoid any kind of decompression when doing so.

The precise formalization of this statement needs a little care, since we have
to work with representations of variable assignments as inputs rather than with
variable assignment themselves. Let A = (Q,Σ, F,∆) be an Nta and σ : V →
JValΣK∆ a well-typed variable assignment into the Σ-algebra ∆ = (Σ, 2Q, .∆). The
problem is that the context variables X in V are mapped to union homomorphisms
σ(X) : 2Q → 2Q (see Definition 27) which may be of exponential size, but can be
represented in polynomial space by a function s(X) : Q→ 2Q with σ(X) = ŝ(X).

Definition 28 A function s represents a variable assignment σ : V → JValΣK∆ into
the Σ-algebra of the Nta A = (Q,Σ, F,∆) if dom(s) = dom(σ), σ(X) = ŝ(X) for
all context variables X ∈ dom(s), and σ(x) = s(x) for all tree variables x ∈ dom(s).
In this case, we write σ = ŝ.

A similar result to the following lemma can be found for instance in
[Lohrey et al. 2012].

Lemma 15 For any Nta A = (Q,Σ, F,∆), compressed tree pattern G = Pcomp,tree
Σ ,

and representation s of a variable assignment ŝ into the Σ-algebra ∆ with fv(G) ⊆
dom(s) we can compute the ∆-value of the pattern Jpat(G)K∆,ŝ in polynomial time
from Σ, ∆, G, and s.

Proof: The algorithm evaluates the pattern inductively along the partial order on
the nonterminals of G; the latter exists because G is acyclic. For any v ∈ V , let Gv
be the compressed tree pattern equal to G except that the start symbol is changed to
v. Then we can show for all v ∈ V that Jpat(Gv)K∆,ŝ can be computed in polynomial
time from Σ, ∆, G, and s. In particular this holds for Jpat(G)K∆,ŝ = Jpat(GS)K∆,ŝ.
�

6.5 Regular Matching and Inclusion

We now study the complexity of regular matching and inclusion for classes of com-
pressed tree patterns with context variables.

6.5. Regular Matching and Inclusion 123

A class of compress tree patterns G is a function that maps any signature Σ

to a subset of compressed tree patterns GΣ ⊆ Pcomp,tree
Σ . Typical examples are the

classes P tree and Pcomp,tree given that P tree
Σ ⊆ Pcomp,tree

Σ . To see this recall that
we identify any tree pattern p with the compression-free compressed tree pattern
ctpΣ(p) = ({S},Σ, {S→ p}, S) where S is the fixed start symbol.

For any class G of compressed tree patterns, any class A of Ntas, and for any
ranked alphabet Σ we define two decision problems:

Regular pattern inclusion: InclΣ(G,A).

Input: a compressed tree pattern G ∈ GΣ and a tree automaton A ∈ AΣ.
Output: whether Inst(pat(G)) ⊆ L(A).

Regular pattern matching: MatchΣ(G,A).

Input: a compressed tree pattern G ∈ GΣ and a tree automaton A ∈ AΣ.
Output: whether Inst(pat(G)) ∩ L(A) 6= ∅.

The uniform versions of these problems where the signature Σ is given with the
input are called Incl(G,A) and respectively Match(G,A).

6.5.1 Lower Bounds

We first establish the lower bounds for regular matching by reduction from automata
intersection problems. In the second step, we establish the lower bounds for the dual
problem of regular inclusion. In the deterministic case, the lower bounds for regular
matching can be lifted to regular inclusion based on automaton complementation.
In the nondeterministic case, another lower bound result needs to be established.

Proposition 16 (Regular matching) MatchΣ(P tree ,Nta) is Exp-hard, while
MatchΣ(P tree ,Dta) is Pspace-hard.

Proof: We first notice that MatchΣ(P tree ,Nta) generalizes the ground instance
intersection problem from [Comon et al. 2007] by adding compression and context
variables. The latter problem is known to be Exp-complete for Ntas, so the Exp-
hardness of MatchΣ(P tree ,Nta) follows. In order to clarify the role of nondeter-
minism here, we recall the proof of this result, which is based on a reduction from
intersection nonemptiness of a finite number of Dtas InterΣ(Dta).

The reduction is as follows. Given a sequence of Dtas A1, . . . , An over the same
signature Σ we can construct in P an Nta A over Σ ∪ {f} that recognizes the
language f(L(A1), . . . , L(An)), where f is a fresh function symbol of arity n. The
transition relation of A is the union of the transition relations of A1, . . . , An extended

124 Chapter 6. Complexity of Certain Query Answering

with rules f(qf1 , . . . , q
f
n) → qok where qfi is the final state of Ai, whose uniqueness

can be assumed without loss of generality. Note that A is nondeterministic. We fix
a tree variable x ∈ V arbitrarily. The regular tree pattern matching task

Inst(f(x, . . . , x︸ ︷︷ ︸
n

)) ∩ L(A) = ∅

is then equivalent to the intersection emptiness task L(A1) ∩ . . . ∩ L(An) = ∅.
To finish the reduction, we note that one can reduce the problem with signature
Σ ∪ {f} to the same problem with signature Σ by simulating the new symbol f by
the function symbol of arity at least 2 and the constant available in Σ by assumption.

It should be noticed that A is inherently nondeterministic by construction.
Therefore, this Exp-hardness proof does not apply to MatchΣ(P tree ,Dta). And
indeed, as we will see this problem is not Exp-hard but Pspace-complete.

The Pspace-hardness of MatchΣ(P tree ,Dta) follows from the special case of
regular string matching, which was shown to be Pspace-complete for deterministic
finite automata (Dfas) [Boneva et al. 2018].

�

Lemma 16 (Duality via Complementation) For any class of compressed tree
patterns G, the problems InclΣ(G,Dta) and coMatchΣ(G,Dta) are equivalent
modulo polynomial time reductions.

Proof: For any compressed tree pattern G and Dta A, we have Inst(pat(G)) ⊆
L(A) iff Inst(pat(G)) ∩ L(A) = ∅ iff Inst(pat(G)) ∩ L(A) = ∅, where A is the
complement automaton for A that can be computed in polynomial time since A is
a Dta. �

As a consequence of Lemma 16 the problem InclΣ(G,Nta) is equivalent to
coMatchΣ(G,Nta) modulo Nta determinization, which however requires expo-
nential time. We now show that regular inclusion for Ntas is Exp-hard even for
linear tree patterns. Even the class of tree patterns V tree in which each pattern con-
sists simply of a tree variable is enough. More formally this is the class of compressed
tree patterns such that V treeΣ = {ctpΣ(x) | x ∈ V tree} for all signatures Σ.

Lemma 17 InclΣ(V tree ,Nta) is Exp-hard.

Proof: Let A be an Nta. The instance set of any pattern x ∈ V tree is equal to TΣ.
This set is included in L(A) if and only if A is universal. The universality problem
for Ntas is well known to be ExpTime-complete. �

6.5. Regular Matching and Inclusion 125

Proposition 17 (Regular inclusion) InclΣ(P tree ,Dta) is Pspace-hard, while
InclΣ(P tree ,Nta) is Exp-hard.

Proof: Lemma 16 states that InclΣ(P tree ,Dta) = coMatchΣ(P tree ,Dta)

modulo polynomial time reductions. By Proposition 16, MatchΣ(P tree ,Dta) is
Pspace-hard and since Pspace is closed by complement, coMatchΣ(P tree ,Dta)

is Pspace-hard too. Hence InclΣ(P tree ,Dta) is Pspace-hard.
In the case of Ntas, the Exp-hardness of InclΣ(P tree ,Nta) follows immediately

from Lemma 17. �

6.5.2 Upper Bounds

All upper bounds will be obtained in a systematic manner by some algorithm that in-
stead of guessing trees or contexts in ValΣ will guess ∆-inhabited values in JValΣK∆.
For the guessing, a subroutine will be applied that decides tree or context inhabita-
tion.

We start with a characterization of regular matching and inclusion, on which
our decision procedure will rely.

Lemma 18 (Characterization) Let A = (Q,Σ, F,∆) be an Nta and p ∈ P tree
Σ a

tree pattern.

Regular matching: Inst(p) ∩ L(A) 6= ∅ holds iff there exists some well-typed
variable assignment to ∆-inhabited values σ : fv(p) → JValΣK∆ such that
JpK∆,σ ∩ F 6= ∅.

Regular inclusion: Inst(p) ⊆ L(A) holds iff all well-typed variable assignments to
∆-inhabited values σ : fv(p)→ JValΣK∆ satisfy JpK∆,σ ∩ F 6= ∅.

Proof: We start with the case of regular matching. For the forward direction, we
assume Inst(p) ∩ L(A) 6= ∅. By definition of instances, there exists a well-typed
assignment µ : fv(p) → ValΣ such that normβ(µ(p)) ∈ L(A). Let σ = J.K∆ ◦ µ.
Clearly σ : fv(p) → JValΣK∆ is a well-typed variable assignment. Since JpK∆,σ =

Jµ(p)K∆ = Jnormβ(µ(p))K∆ it follows that JpK∆,σ ∩ F 6= ∅.
For the inverse direction, we fix a well-typed variable assignment to ∆-inhabited

values σ : fv(p)→ JValΣK∆ such that JpK∆,σ∩F 6= ∅. By ∆-inhabitation there exists
a well-typed variable assignment µ : fv(p) → ValΣ such that σ = J.K∆ ◦ µ. Hence,
Jµ(p)K∆∩F 6= ∅, so that Jnormβ(µ(p))K∆∩F 6= ∅. Thus normβ(µ(p)) ∈ L(A), that
is normβ(µ(p)) ∈ Inst(p) ∩ L(A).

The case of regular inclusion is similar. For the forward direction, we assume
Inst(p) ⊆ L(A) and fix a variable assignment to ∆-inhabited values σ : fv(p) →

126 Chapter 6. Complexity of Certain Query Answering

JValΣK∆. By ∆-inhabitation, there exists a variable assignment µ : fv(p) → ValΣ

such that σ = J.K∆ ◦ µ. Since normβ(µ(p)) ∈ Inst(p) it follows from Inst(p) ⊆
L(A) that normβ(µ(p)) ∈ L(A). Therefore, it follows from JpK∆,σ = Jµ(p)K∆ =

Jnormβ(µ(p))K∆ that JpK∆,σ ∩ F 6= ∅.
For the inverse direction, we assume that any variable assignment to ∆-inhabited

values σ : fv(p)→ JValΣK∆ satisfies JpK∆,σ∩F 6= ∅. We fix an element of t ∈ Inst(p),
which must be of the form t = normβ(µ(p)) for some µ : fv(p)→ ValΣ. The variable
assignment σ = J.K∆ ◦ µ then maps to ∆-inhabited values, so that by assumption
JpK∆,σ ∩ F 6= ∅. Since JpK∆,σ = Jµ(p)K∆ = Jnormβ(µ(p))K∆ = JtK∆ it follows that
t ∈ L(A). �

We now show how to decide regular matching and inclusion based on algorithms
with oracles for solving inhabitation problems. Given two complexity classes Ξ1

and Ξ2, we will write Ξ1(Ξ2) for problems solvable in Ξ1 when having an oracle in
Ξ2. We recall in particular that NP(Ξ) ⊆ Exp(Ξ), coNP(Ξ) ⊆ Exp(Ξ) and that
Exp(Exp) ⊆ Exp. As a consequence, NP(Exp) ⊆ Exp and coNP(Exp) ⊆ Exp.
We also equip T with the total order ≤T defined by tree ≤T context .

Proposition 18 Let G be a class of compressed tree patterns and A a class of Ntas.
Let τ be the maximal type of free variables in a pattern in G wrt. ≤T and suppose
that Inhabτ (A) belongs to complexity class Ξ. In this case, Match(G,A) belongs
to NP(Ξ) and Incl(G,A) to coNP(Ξ).

Proof: Let Σ be a ranked signature, G = (N,Σ,_, S) a compressed tree pattern
of type tree in class G, and A = (Q,Σ, F,∆) be a tree automaton in class A.
According to Lemma 18, pat(G) matches L(A) iff some well-typed variable assign-
ment σ : fv(G) → JValΣK∆ satisfies Jpat(G)K∆,σ ∩ F 6= ∅. For all context variables
X ∈ fv(G), the value σ(X) belongs to JCΣK∆ so it is a union homomorphism. There-
fore, σ can be associated to a function s representing it in the sense of Definition 28.
In order to find a suitable value for σ(X), we guess a function s(X) : Q → 2Q of
which there are exponentially many (while the number of functions of type 2Q → 2Q

is doubly exponential) and test whether ŝ(X) is ∆-inhabited. The procedure is
analogous for tree variables x ∈ fv(G), except that sets of states s(x) ⊆ Q are guessed
and tested for inhabitation. The inhabitation test is an instance of Inhabτ (A) which
can be done by an Ξ oracle by assumption. Therefore, the guessing can be done
by an algorithm in NP(Ξ). After having found ∆-inhabited values for all the free
variables of G, the computation of Jpat(G)K∆,σ which equals to Jpat(G)K∆,ŝ can be
done in polynomial time by Lemma 15, so the characterization of regular matching
can be tested by an algorithm in NP(Ξ).

6.6. Adding Regular Constraints 127

For Incl(G,A), the procedure is almost the same, except that by Lemma 18 we
now have to guess a representation of a variable assignment s : fv(G) → JValΣK∆

such that Jpat(G)K∆,ŝ ∩ F = ∅ in order to contradict regular inclusion. This can be
done by an algorithm in coNP(Ξ). �

We next establish the complexity of the regular matching and inclusion problems.

Theorem 6 MatchΣ(Pcomp,tree ,Dta) and InclΣ(Pcomp,tree ,Dta) are Pspace-
complete, while MatchΣ(Pcomp,tree ,Nta) and InclΣ(Pcomp,tree ,Nta) are Exp-
complete.

Proof: The hardness results were shown in Proposition 16 and 17, so only the upper
bounds remain to be proven. Let Σ be ranked signature.

On on hand, since Inhabcontext(Dta) is in Pspace by Theorem 5, it fol-
lows from Proposition 18 that Match(Pcomp,tree ,Dta) is in NP(Pspace) and
thus in NPspace ⊆ Pspace by Savitch’s Theorem [Savitch 1970]. It also fol-
lows that Incl(Pcomp,tree ,Dta) is in coNP(Pspace) which is in coNPspace =

NPspace and thus in Pspace too. This allows to conclude that the problems
MatchΣ(Pcomp,tree ,Dta) and InclΣ(Pcomp,tree ,Dta) are in Pspace.

On the other hand, since Inhabcontext(Nta) is in Exp by Theorem 5, it fol-
lows by Proposition 18 that Match(Pcomp,tree ,Nta) is in NP(Exp) and that
Incl(Pcomp,tree ,Nta) is in coNP(Exp). Hence both problems are in Exp, which
imply that MatchΣ(Pcomp,tree ,Nta) and InclΣ(Pcomp,tree ,Nta) are also in Exp.
�

6.6 Adding Regular Constraints

So far, regular matching and inclusion consider all the possible instances of the
compressed tree pattern given as input, but it may be interesting to consider only
instances satisfying some constraints. This is the case when schemas are defined
for XML documents. In this part, we generalize the regular matching and inclusion
problems by allowing constraints restricting how free variables are instantiated. Let
Σ be a ranked signature and G a compressed tree pattern over Σ. An instantiation
constraint c on G is a total function that maps every free tree variable of G to a
Dta over Σ and every free context variable of G to a Dta over Σ] {xc} where
xc ∈ V tree . Furthermore, Dtas associated with context variables are allowed to
recognize only languages of trees having exactly one occurrence of xc. Note that xc
is used to indicate the position of the hole in the contexts, that is the variable to
be instantiated. A well-typed variable assignment σ : fv(G) → PgrΣ satisfies c if for
every free tree variable x ∈ fv(G), normβ(σ(x)) ∈ L(c(x)) and for every free context

128 Chapter 6. Complexity of Certain Query Answering

variable X ∈ fv(G), normβ(σ(X)@xc) ∈ L(c(X)). We can now define the set of
instances of G that satisfy c as the set:

Inst c(G) = {normβ(σ(pat(G))) | σ : fv(G)→ PgrΣ well-typed and satisfies c}.

For any class of compressed tree patterns G and of Ntas A and any ranked
signature Σ, the problems of regular pattern inclusion and matching with constraints
are the following:

Regular pattern inclusion with constraints: cInclΣ(G,A).

Input: a compressed tree pattern G ∈ GΣ, a tree automaton A ∈ AΣ and an
instantiation constraint c : fv(G)→ DtaΣ ∪DtaΣ]{xc}.
Output: whether Inst c(pat(G)) ⊆ L(A).

Regular pattern matching with constraints:
cMatchΣ(G,A).

Input: a compressed tree pattern G ∈ GΣ, a tree automaton A ∈ AΣ and an
instantiation constraint c : fv(G)→ DtaΣ ∪DtaΣ]{xc}.
Output: whether Inst c(pat(G)) ∩ L(A) 6= ∅.

The uniform versions of these problems, where the signature can vary with the
input, are written cMatch(G,A) and cIncl(G,A). It can easily be seen that
regular matching (resp. regular inclusion) is a special case of regular matching with
constraints (resp. regular inclusion with matching), and that an algorithm for the
general case can be used to solve the special case. What is more interesting is that
regular matching with constraints (resp. regular inclusion with constraints) can also
be reduced to uniform regular matching (resp. uniform regular inclusion), as stated
in the next proposition:

Proposition 19 For any class G of compressed tree patterns and any class of tree
automata A ∈ {Nta,Dta}, cMatch(G,A) and cIncl(G,A) are reducible in poly-
nomial time to respectively Match(G,A) and Incl(G,A).

Proof: Let G be a class of compressed tree patterns, A a class of tree automata,
Σ a ranked signature, G ∈ GΣ a compressed tree pattern, A = (Q,Σ, F,∆) ∈ AΣ

a tree automaton and c an instantiation constraint on G. The general idea is to
build a new compressed tree pattern wherein there are places marked as test zones,
that is, places that tell the automaton where constraints should be tested. Then we
restrict the instances of this compressed tree pattern to the instances that satisfy c

6.6. Adding Regular Constraints 129

@

λx

rootZ

@

holeZ

a

x rooty

a

@

b

rootY

@

holeY

c

S = z

X

Z

y

Y

z → rootX(X@holeX(a(rootX(X@holeX(b)), rootY (Y@holeY (c))))),
X → λx.rootZ(Z@holeZ(a(x, rooty(y))))

Figure 6.10: G′ = markΣ(G) built from the compressed tree patternG in Figure 5.5.

using two new automata, before testing matching and inclusion. We first associate
to every free tree variable x ∈ V tree ∩ fv(G) a fresh unary symbol rootx and to every
free context variable X ∈ Vcontext ∩ fv(G) two fresh unary symbols rootX , holeX .
These symbols, called markers, are used to delimit the test zones. Let Θ = {rootν |
ν ∈ fv(G)} ∪ {holeX | X ∈ fv(G) ∩ Vcontext(G)} be the set of markers. We define
a function markΣ that associates every compressed tree pattern G1 over Σ with a
new compressed tree pattern G2 over Θ that is almost equal to G1, except that

• every occurrence of a free tree variable x ∈ fv(G1) in G1 is replaced by rootx(x)

in G2

• every subterm X@p of G1 where X ∈ fv(G1) is a free context variable and
p ∈ PΣ a pattern is replaced by rootX(X@holeX(p)) in G2

Figure 6.10 illustrates the compressed tree pattern G′ obtained after applying the
markΣ function on the compressed tree pattern of Figure 5.5.

Let the automaton A′ over Θ built from A, so that L(A′) = {markΣ(t) | t ∈
L(A)}. A′ can be built in linear time from A, in a way that preserves an eventual
determinism. We now build a new Nta B that will allow to test the constraints
specified in c. Let qwait be a fresh state. The state qwait is the state in which B

waits before testing a constraint, but also its final state. For every part of its input,
B guesses whether it’s in a test zone, and guesses the constraint to test. Thus, if
B is reading the test zone of some free variable ν ∈ fv(G), it runs the automaton
c(ν). If the constraint in c(ν) is satisfied, B returns to qwait and waits for the next
constraint to test. However, if no constraint is satisfied in a test zone, B blocks
and doesn’t get back to qwait . For all ν ∈ fv(h), define Qν as the set of states
of c(ν) and ∆ν as its transition relation. We set B = (QB,Θ, {qwait},∆B) where
QB = {qwait} ∪

⋃
ν∈fv(G)

Qν . The transition relation ∆B is defined as the union of ∆ν

130 Chapter 6. Complexity of Certain Query Answering

@

λx

rootZ

@

holeZ

a

x rooty

a

@

b

rootY

@

holeY

c

S = z

X

X ′

Z

y

Y

Figure 6.11: Compressed tree pattern built from G′ in Figure 6.10 and used to
build C.

for all ν ∈ fv(G), plus the following updates:

1. for all f ∈ Σ(n) where n ≥ 0, add f(qwait , . . . , qwait︸ ︷︷ ︸
n

)→ qwait to ∆B

2. for allX ∈ fv(G)∩Vcontext , replace the only rule xc → qX by holeX(qwait)→ qX

in ∆B

3. for all ν ∈ fv(G) and final state qfν of c(ν), add rootν(qfν)→ qwait to ∆B.

Note the rule (2) that allows to simulate the reading of xc by constraint automata
of contexts. So xc is not in the signature of B. Furthermore, B checks only whether
the constraints that have been tested are satisfied, but cannot guarantee that all
the constraints are tested. For this, one could have built an automaton that tests
whether all the occurrences of all the variables of G′ are instantiated. However,
the instance set of G′ is not a regular language in general. Instead, a Dta C that
just tests whether all the variables of G′ have one occurrence that is instantiated
is enough. C is built in a way that it recognizes all the trees that have the same
skeleton than G′. By same skeleton, we mean that the language of trees recognized
by C is inspired from the instance set of G, except that all non-linearities in G′ are
removed. By replacing for instance the occurrences of variables – bound or free –
in G′ that are not first occurrences by fresh variables, we have a new compressed
tree pattern whose instance set is a regular language. The Dta C recognizes this
language. We illustrate in Figure 6.11 a compressed tree pattern obtained with
this construction. Notice the new free variable X ′ replacing the second occurrence
of X. Now remark that for some tree t ∈ TΣ, t ∈ Inst c(pat(G)) if and only if
markΣ(t) ∈ Inst(pat(G′)) ∩ L(B) ∩ L(C).

The main problem with our reduction is that B is not deterministic, although it
is built from the Dtas c(ν). In order to solve it, we consider a new ranked signature
Σ′ where symbols f ∈ Σ are associated to the variables ν, such that the tuple (f, ν)

6.6. Adding Regular Constraints 131

is used only in some instantiation of ν. More formally, Σ′ = Θ ∪ Σ ∪ (Σ × fv(G)).
We modify G′, A′, B, and C to take into account the new signature Σ′. For G′

we build a new compressed tree pattern G′′ in linear time, that is equal to it but
has the extended signature Σ′. Note that G′′ preserves an eventual linearity of G.
For B, we construct in linear time a Dta B′ over Σ′ equal to B except that every
rule f(q1, . . . , qn) → q ∈ ∆B – where n ≥ 0 – that originates from a Dta c(ν) for
some ν ∈ fv(G) is replaced by (f, ν)(q1, . . . , qn) → q. This way, the set of rules of
B is partitioned, according to their automata c(ν) of origin. Assuming – w.l.o.g
– that the state sets of the automata c(ν) for ν ∈ fv(G) are disjoint, B′ is indeed
deterministic. Another consequence is that all letters of an instance of a free variable
ν ∈ fv(G) must be annotated by the free variable ν itself. Unlike B, B′ does not
need to guess the constraint to test, as this is now indicated in the input. Finally,
for A′ and C, we build automata A′′ and C ′ over Σ′ – in polynomial time – so that
for any rule f(q1, . . . , qn)→ q – where n ≥ 0 – of their transition relations and any
free variable ν ∈ fv(G), a new rule (f, ν)(q1, . . . , qn)→ q is added.

Now observe that

Claim 12 There exists a bijection ϕ : Inst c(pat(G)) → Inst(pat(G′′)) ∩ L(B′) ∩
L(C ′) such that for all t ∈ Inst c(pat(G)), t ∈ L(A) if and only if ϕ(t) ∈ L(A′′).

Proof: We construct ϕ as the function that transforms an element of t ∈
Inst c(pat(G)) satisfying the constraints in c to an element of t′ ∈ Inst(pat(G′′))

in which all the constraints in c are satisfied – modulo the change of signature from
Σ to Σ′ –, thus implying that t′ ∈ L(B′)∩L(C ′). We first introduce a function annν

for all variable ν ∈ V, such that for all tree variable x, n-ary function symbol f and
trees t1, . . . , tn where n ≥ 0:

annν(x) = holeν(x)

annν(f(t1, . . . , tn)) = (f, ν)(annν(t1), . . . , annν(tn))

Then we define ϕ so that for all well-typed substitution µ : fv(G)→ PgrΣ , the image
of the grounding p = normβ(µ(pat(G)))) is such that

• every subterm of p obtained by instantiating some tree variable x of G is
replaced by rootx(annx(µ(x)))

• every subterm of p obtained by instantiating some context variable X is re-
placed by rootX(annX(t)), where µ(X) = λxc.t

For example, if we set Σ = {f (2), a(0), b(0)}, G = ({z, x,X},Σ, {z → f(x,X@b)}, z),
µ(x) = a and µ(X) = λxc.f(a, xc), then the pattern in Figure 6.12 gives the value
of ϕ(normβ(µ(pat(G)))).

132 Chapter 6. Complexity of Certain Query Answering

f

rootx

(a, x)

rootX

(f,X)

(a,X) holeX

b

Figure 6.12: Example of image value by ϕ

Furthermore, for all t ∈ Inst c(pat(G)), t ∈ L(A) if and only if ϕ(t) ∈ L(A′′). �
Using Claim 12, we show that one can build an automaton D (resp. D′) with

signature Σ′ such that Inst c(pat(G)) ∩ L(A) 6= ∅ (resp. Inst c(pat(G)) ⊆ L(A)) if
and only if Inst(pat(G′′)) ∩ L(D) 6= ∅ (resp. Inst(pat(G′′)) ⊆ L(D′)). This allows
to reduce uniform regular matching (resp. inclusion) with constraints to uniform
regular matching (resp. inclusion).

Claim 13 cMatch(G,A) is reducible in polynomial time to Match(G,A).

Proof: Let t ∈ Inst c(pat(G)) be a constrained instance of G by c. By Claim 12,
t ∈ L(A) iff ϕ(t) ∈ L(A′′). Given that ϕ(t) ∈ Inst(pat(G′′)) ∩ L(B′) ∩ L(C ′), it
follows that Inst c(pat(G))∩L(A) 6= ∅ iff Inst(pat(G′′))∩(L(B′)∩L(C ′)∩L(A′′)) 6= ∅.
One can compute a product automaton D in polynomial time from A′′ and B′ and
C ′ so that L(D) = L(A′′) ∩ L(B′) ∩ L(C ′). Furthermore, if A′′ is deterministic,
then D is also deterministic – knowing that B′ and C ′ are deterministic. Thus
Inst c(pat(G)) ∩ L(A) 6= ∅ iff Inst(pat(G′′)) ∩ L(D) 6= ∅, hence cMatch(G,A) is
reducible in polynomial time to Match(G,A). �

Claim 14 cIncl(G,A) is reducible in polynomial time to Incl(G,A).

Proof: Let t ∈ Inst c(pat(G)) be a constrained instance of G by c. By Claim 12,
t ∈ L(A) iff ϕ(t) ∈ L(A′′). Given that ϕ(t) ∈ Inst(pat(G′)) ∩ L(B′) ∩ L(C ′),
it follows that Inst c(pat(G)) ⊆ L(A) iff Inst(pat(G′′)) ∩ L(B′) ∩ L(C ′) ⊆ L(A′′).
Let the product automaton B′ × C ′ recognizing the language L(B′) ∩ L(C ′).
Then Inst c(pat(G)) ⊆ L(A) iff Inst(pat(G′′)) ∩ L(B′ × C ′) ⊆ L(A′′), that is
Inst(pat(G′′)) ⊆ L(A′′) ∪ L(B′ × C ′) where B′ × C ′ is the automaton recognizing
the complement of L(B′ × C ′). The Dta B′ × C ′ can be complemented in linear
time to obtain B′ × C ′, since it is deterministic. Moreover a product automaton

6.7. Encoding Patterns for Unranked Trees 133

Hedge patterns H,H ′ ∈ PhΓ ::= Y | 〈aH〉 | ε | Z | HH ′

Encoding

JεKcontext = λy.y, JHKtree = JHKcontext@#,
JY Kcontext = Y, JZKcontext = Z,
J〈aH〉Kcontext = λy.a(JHKcontext@#, y),
JHH ′Kcontext = λy.(JHKcontext@(JH ′Kcontext@y)).

Figure 6.13: Encoding of a hedge pattern H ∈ PhΓ into a context pattern
JHKcontext ∈ Pcontext

Σ , where Y ∈ Vu, Z ∈ Vh, a ∈ Γ, and ε is the empty word.

D′ recognizing L(A′′) ∪ L(B′ × C ′) can be built in polynomial time from A′′ and
B′×C ′, so thatD′ is deterministic if A′′ is deterministic. Thus Inst c(pat(G)) ⊆ L(A)

iff Inst(pat(G′)) ⊆ L(D′), hence cIncl(G,A) is reducible in polynomial time to
Incl(G,A). �

The Proposition thus follows from Claims 13 and 14. �

6.7 Encoding Patterns for Unranked Trees

The original motivation of the present work was to understand the problems of
regular matching and inclusion for hyperstreams of hedges. We next show that
these problems can be solved using reductions to the corresponding problems of
(ranked) tree patterns with context variables.

We assume a set of variables for unranked trees Y ∈ Vu and a set of hedge
variables Z ∈ Vh. The set of hedge patterns H ∈ PhΓ with these two types of
variables is then defined by the abstract syntax in Figure 6.13. The set PuΓ of
patterns for unranked trees is the subset of hedge patterns of the forms 〈aH〉 or
Y ∈ Vu. A well-typed variable assignment σ : V → HΓ where V ⊆ Vu] Vh is a
function that maps variables from Vu to unranked trees in UΓ and variables from Vh

to hedges in HΓ. The application σ(H) is the hedge obtained from H by replacing
all variables Y by the unranked tree σ(Y) and all variables Z by the hedge σ(Z).
The instance set of H is denoted Inst(H) = {σ(H) | σ : fv(H) → HΓ well-typed}.
Note that Inst(H) ⊆ UΓ for any unranked tree pattern H ∈ PuΓ .

We next show in Fig. 6.13 how to encode hedge patterns into (ranked) context
patterns over a ranked signature Σ = Σ(2)]Σ(0) where Σ(2) = Γ, Σ(0) = {#} and #

is a fresh symbol not in Γ. Our encoding is an extension of the first-child-next-sibling
encoding [Comon et al. 2007]. For instance, the hedge pattern H0 = 〈aZbcY 〉 is en-
coded into the context pattern JH0Kcontext = λy.a(Z@(b(#, c(#, Y@#))), y). The
concatenation operation on hedges is simulated by the application operation of con-
texts. The set of context variables used in the encoding is Vcontext = Vu] Vh.
Finally, we define for any unranked tree H ∈ PuΓ its encoding as a tree pattern

134 Chapter 6. Complexity of Certain Query Answering

JHKtree ∈ P tree
Σ by JHKtree = JHKcontext@#.

In order to show the soundness of this encoding (Lemma 19 below), we need to
restrict the instantiation operation. Intuitively, we cannot allow arbitrary substi-
tutions to be applied to JHKtree because then the resulting tree pattern might not
be a correct encoding of an unranked tree. A variable assignment σ : V → ValΣ is
called unranked if it maps unranked tree variables to JUΓKcontext and hedge variables
to JHΓKcontext . The unranked-restricted instance set of a tree pattern p is defined by
Instunr (p) = {normβ(σ(p)) | σ : fv(p)→ ValΣ well-typed and unranked}.

Lemma 19 normβ(JInst(H)Ktree) = Instunr (JHKtree) for any H ∈ PuΓ .

Proof: Let H ∈ PuΓ be an unranked tree pattern. The proof is by induction on
the structure of H.

Case H = 〈a〉 where a ∈ Γ. Then the following equalities Inst(H) = {〈a〉}
and JInst(H)Ktree = {λy.a((λy.y)@#, y)@#} hold. This implies that
normβ(JInst(H)Ktree) = {a(#,#)} = Instunr (JHKtree), since H contains no
variable to instantiate.

Case H = Y ∈ Vu . Then Inst(H) = {a(H ′) | a ∈ Γ and H ′ ∈ HΓ} and
JInst(H)Ktree = {(λy.a(JH ′Ktree , y))@# | a ∈ Γ and H ′ ∈ HΓ}. This im-
plies that normβ(JInst(H)Ktree) = {a(normβ(JH ′Ktree),#) | a ∈ Γ and H ′ ∈
HΓ} = Instunr (JHKtree) since no unranked tree 〈aH ′〉 ∈ Inst(H) contains a
variable to instantiate.

Case H = 〈bH ′〉 where b ∈ Γ and H ′ ∈ PhΓ . Then Inst(H) = {〈bH ′′〉 | H ′′ ∈
Inst(H ′)} and JInst(H)Ktree = {(λy.b(JH ′′Ktree , y))@# | H ′′ ∈ Inst(H ′)}.
So normβ(JInst(H)Ktree) = {b(normβ(JH ′′Ktree),#) | H ′′ ∈ Inst(H ′)}. By
the induction hypothesis, normβ(JInst(H ′)Ktree) = Instunr (JH ′Ktree), which
implies that normβ(JInst(H)Ktree) = {b(t,#) | t ∈ Instunr (JH ′Ktree)} =

Instunr (JHKtree).

�

Let Σ = Σ(2) ∪ Σ(0) be a ranked signature constituted of binary symbols taken
from an alphabet Γ and a constant #, that is Σ(2) = Γ, Σ(0) = {#} and # 6∈ Γ.
Let Pcomp,u

Γ ⊆ HypΓ be the set of hyperstreams of unranked trees over Γ. For a
class of automata A ∈ {Dta,Nta} we define the problems of regular matching and
inclusion of hyperstreams of unranked trees:

6.7. Encoding Patterns for Unranked Trees 135

Unranked regular matching: MatchΓ(Pcomp,u,A).

Input: a hyperstream of unranked tree H ∈ Pcomp,u
Γ and an automaton A ∈

AΣ

Output: whether Instunr (JHKtree) ∩ L(A) 6= ∅.

Unranked regular inclusion: InclΓ(Pcomp,u,A).

Input: a hyperstream of unranked tree H ∈ Pcomp,u
Γ and an automaton A ∈

AΣ

Output: whether Instunr (JHKtree) ⊆ L(A).

The uniform versions of these problems where the signature Γ is given with the
input are called Match(Pcomp,u,A) and respectively Incl(Pcomp,u,A). Note that
using tree automata in the above definitions is not a restriction, as it is well known
[Comon et al. 2007] that for any unranked tree language L recognizable by a hedge
automaton, there exists a tree automaton that recognizes the first-child-next-sibling
encoding of the trees in L.

Proposition 20 For any class of automata A ∈ {Dta,Nta} there exist reduc-
tions in polynomial time from Match(Pcomp,u,A) to Match(Pcomp,tree ,A) and
from Incl(Pcomp,u,A) to Incl(Pcomp,tree ,A).

Proof: Let Γ be an alphabet, Σ = Σ(2) ∪ Σ(0) a ranked signature constituted of
binary symbols taken from Γ and a constant #, that is Σ(2) = Γ, Σ(0) = {#} and
6∈ Γ. Let H ∈ Pcomp,u

Γ be a hyperstream of unranked tree, A a class of automata
and A ∈ AΣ a tree automaton. Thanks to Lemma 19, normβ(JInst(H)Ktree) =

Instunr (JHKtree), and thus deciding whether normβ(JInst(H)Ktree) ∩ L(A) 6= ∅ is
equivalent to deciding whether Instunr (JHKtree) ∩ L(A) 6= ∅. Notice that unr is
actually an instantiation constraint. It associates every free tree variable with the
universal Dta over Σ. Context variables are mapped to the Dta that recognizes
all the trees over Σ] {y} having only one occurrence of y, which is furthermore
either the only node of the tree, or the second son of its parent, as enforced by the
encoding. We have thus reduced the problem of regular matching of hyperstreams
of unranked trees to the problem of regular matching with constraints – on ranked
patterns – in polynomial time. Then the regular matching problem with constraints
is reduced to uniform regular matching using Proposition 19. We use an analogous
procedure for the inclusion problem. �

Theorem 7 For any alphabet Γ having at least two symbols, the problems

136 Chapter 6. Complexity of Certain Query Answering

MatchΓ(Pcomp,u,Dta) and InclΓ(Pcomp,u,Dta) are Pspace-complete while
MatchΓ(Pcomp,u,Nta) and InclΓ(Pcomp,u,Nta) are Exp-complete.

Proof: The upper bounds follow via the polynomial time reduction from Proposi-
tion 20 and the complexities in Proposition 18. The lower bounds can be obtained
by reducing the equivalent problems on ranked patterns to the version on hyper-
streams of unranked trees, and further using the results in Propositions 16 and 17.
�

6.8 Linearity Restriction

We now study the complexity of regular matching and inclusion for the class
LinPcomp,tree that maps ranked signatures Σ to the set of linear compressed tree
patterns LinPcomp,tree

Σ .

Proposition 21 Match(LinPcomp,tree ,Nta) is in PTime.

Proof: Let Σ be a ranked signature, G = (N,Σ, R, S) ∈ LinPcomp,tree
Σ a linear

compressed tree pattern and A = (Q,Σ, F,∆) an Nta. Given that the instance
set of the linear pattern pat(G) is regular, one could think of building an Nta that
recognizes Inst(pat(G)), but since pat(G) may be exponential in the size of G, this
approach does not work in polynomial time.

Instead we evaluate the pattern G directly in the Σ-algebra ∆, while mapping
context variables to the accessibility relation of ∆. So let acc∆ : Q → 2Q be the
function that maps every q ∈ Q to the set of states accessible from state q with
respect to ∆. We consider the well-typed assignment s that maps all tree variables
x in fv(G) to s(x) = Q and all context variables X ∈ fv(G) to s(X) = acc∆. The
following then holds:

Claim 15 Inst(pat(G)) ∩ L(A) 6= ∅ if and only if Jpat(G)K∆,ŝ ∩ F 6= ∅.

Proof: For the forward direction, assume Inst(pat(G)) ∩ L(A) 6= ∅. According
to Lemma 18, there exists a well-typed assignment σ : fv(G) → JValΣK∆ such
that Jpat(G)K∆,σ ∩ F 6= ∅. For all tree variable x ∈ fv(G) (resp. context variable
X ∈ fv(G)), the construction of s guarantees that σ(x) ⊆ s(x) = Q (resp. for all
q ∈ Q, σ(X)(q) ⊆ s(X)(q) = acc∆(q)). This implies that Jpat(G)K∆,ŝ ∩ F 6= ∅ too.

For the inverse direction, let pS ∈ P tree
Σ be such that R(S) = pS in G and assume

Jpat(G)K∆,σ̂ ∩ F 6= ∅. We prove the property by induction on the structure of pS.

• Case pS = x ∈ V. Then Jpat(G)K∆,ŝ = s(x) = Q. Since A is reduced and that
all the states of the Nta are accessible, it holds that for all q ∈ Jpat(G)K∆,ŝ

6.8. Linearity Restriction 137

there exists a tree t ∈ TΣ such that q ∈ JtK∆. Let qf ∈ Jpat(G)K∆,ŝ ∩F . There
exists a tree tf ∈ L(A) such that qf ∈ Jtf K∆, hence tf ∈ Inst(pat(G)) ∩ L(A).

• Case pS = X@x. We have Jpat(G)K∆,ŝ = ŝ(X)(s(x)). Let the state qf ∈
ŝ(X)(s(x))∩F be in the intersection of Jpat(G)K∆,ŝ and F . Since s(X) = acc∆,
there is a state qr ∈ Q such that qf ∈ acc∆(qr), and thus a context λx.pf ∈ CΣ

such that qf ∈ Jλx.pf K∆({qr}). Furthermore, qr ∈ s(x) = Q is an accessible
state of A, and so there is a tree tr such that qr ∈ JtrK∆. Notice that qf ∈
J(λx.pf)@trK∆ = Jλx.pf K∆({qr}), and thus (λx.pf)@tr ∈ Inst(pat(G))∩L(A).

• The cases pS = t and pS = X@t where t ∈ TΣ and X ∈ Vcontext are respectively
special instances of the first and second cases.

• Case pS = f(S1, . . . , Sn) where f ∈ Σ(n), S1, . . . , Sn ∈ N \ fv(G) are starting
symbols for some linear compressed tree patterns G1, . . . , Gn ∈ LinPcomp,tree

and for all different i, j ∈ {1, . . . , n}, fv(Gi) ∩ fv(Gj) 6= ∅. Here we have as-
sumed without loss of generality that any compressed tree pattern is built
only from smaller compressed tree patterns. Thus if there were some constant
symbol or free variable v occurring in pS, one could just create a new com-
pressed tree pattern G′ from G where the occurrences of v in S are replaced
by a new nonterminal Sv, and with the additional rule Sv → v. But for the
sake of simplicity, we suppose that G is already in the form we want it to
be. Thus every Si can be considered as the start symbol of the compressed
tree pattern Gi. We have that Jpat(G)K∆,ŝ = Jf(pat(G1), . . . , pat(Gn))K∆,ŝ =

{q | ∃q1 ∈ Jpat(G1)K∆,ŝ, . . . ,∃qn ∈ Jpat(Gn)K∆,ŝ. f(q1, . . . , qn)→ q in ∆}. Let
qf ∈ Jpat(G)K∆,ŝ ∩ F 6= ∅. Then by the induction hypothesis, there exists
t1 ∈ Inst(pat(G1)), . . . , tn ∈ Inst(pat(Gn)) such that qf ∈ Jf(t1, . . . , tn)K∆,ŝ,
and thus f(t1, . . . , tn) ∈ Inst(pat(G)) ∩ L(A). Hence the property holds.

�

Thanks to Claim 15, one can simply test Jpat(G)K∆,ŝ ∩ F 6= ∅ in order to de-
cide whether Inst(pat(G)) ∩ L(A) 6= ∅. By Lemma 15, it takes polynomial time
in the sizes of ∆, G and s to compute Jpat(G)K∆,ŝ. It follows that the problem
MatchΣ(LinPcomp,tree ,Nta) is in PTime. �

We next consider regular inclusion for linear tree patterns. Proposition 21 and
the duality via complementation (Lemma 16) yield for Dtas that regular inclusion
for linear patterns is in PTime too. So it remains to consider the case of regular
inclusion for Ntas. By Lemma 17, this problem is Exp-hard even without con-
text variables and without compression. Therefore regular inclusion for Ntas and
(compressed) linear patterns with or without context variables is Exp-complete.

Chapter 7

Approximating CQA on
Hyperstreams

Contents
7.1 Transitions for SHAs . 139

7.2 Eliminating Hard Constraints: Linear Certainty 141

7.3 Safety Approximations . 143

7.3.1 Safety Approximation by Accessibility 144

7.3.2 Safety Approximation by Accessibility and Self Loops 145

7.4 Strong Certainty . 146

7.4.1 Parameterized Strong Certainty 146

7.4.2 Examples of Concrete Strong Certainty 150

7.5 Outlook . 155

The results in Chapter 6 show that CQA is a very hard problem in general, requiring
most of the time an exponential time. They do not provide solutions but they
indicate the aspects that make the problem hard.

In this chapter, we introduce new approximations of CQA and CQnA for which
the complexity is smaller. Unlike Chapter 6, we will use stepwise hedge automata
to represent languages of hedges. We also restrict the approximations to the simpler
case of boolean queries, to which all the other complex cases can be reduced.

Our study starts by defining transitions for SHAs. Chapter 6 has shown that
they are a central point in the CQA problem. Afterwards, we define safety approxi-
mations. These functions are member of a special monoid, and we use them to define
our approximations of CQA. Finally we illustrate some approximations of CQA,
and show that the choice of the safety approximation impact on their quality.

7.1 Transitions for SHAs

As for Ntas, we introduce transitions for SHAs. Let ∆ be a transition relation with
hedge states Qh and signature Σ. A transition τ is a set of pairs of states. The

140 Chapter 7. Approximating CQA on Hyperstreams

transition of a nested word w ∈ nWordsΣ with respect to ∆ is the set of state pairs
(q, q′) ∈ Qh ×Qh such that w ∈ Lq,q′(∆).

While the set of nested words is infinite, the set of transitions is finite. The most
basic technique of our algorithms will be to replace variables in hyperstreams by
transitions and then evaluate the hyperstream in the transition monoid of a SHA,
the prime example of a nesting monoid. Proposition 22 will show that this can
always be done in polynomial time even for hyperstreams with compression.

Definition 29 A nesting monoid is an algebra (M, ·, e, ν) such that (M, ·, e) is a
monoid (a set M with an associative operator · : M ×M →M with neutral element
e ∈M) and ν : M →M a function called the nesting operator.

Most typically, the set of nested words nWordsΣ is a nesting monoid, where · is
the concatenation and e the empty word, and ν(w) = 〈w〉 the nesting operator. As
a consequence, the set of nested patterns nPatternsΣ is equally a nesting monoid.

Let M = (M, ·, e, ν) and M′ = (M ′, ·′, e′, ν ′) be two nesting monoids. A mor-
phism fromM toM′ is a mapping m : M → M ′ such that m(m1 ·m2) = m(m1) ·′

m(m2) for all m1,m2 ∈ M , m(e) = e′, and m(ν(m)) = ν ′(m(m)). Any function
f : Σ → M can be lifted to a morphism on nesting monoids eval f : nWordsΣ → M

such that for all w,w′ ∈ nWordsΣ and a ∈ Σ:

eval f(ε) = e, eval f(a) = f(a),

eval f(ww
′) = eval f(w) · eval f(w

′) eval f(〈w〉) = ν(eval f(w))

Furthermore, for any substitution σ : V → M and morphism between nesting
monoids m : nWordsΣ → M , there exists a unique morphism between nesting
monoids J·Kσ,m : nPatternsΣ → M such that JXKσ,m = σ(X) for all X ∈ V and
JwKσ,m = m(w) for all w ∈ nWordsΣ.

The set of all transitions TQ = 2Qh×Qh forms a monoid whose neutral element
is the identity transition {(q, q) | q ∈ Qh} and whose composition operator ◦ is the
composition operator of binary relations on Qh. Let ∆ be the transition function of
a SHA with hedge states Qh, tree states Qt and alphabet Σ. We can now turn TQ
into a nesting monoid TQh,∆ = (TQ, ◦, e, ν∆) such that for all τ ∈ TQ:

ν∆(τ) = {(q1, q2) | ∃(q, q′) ∈ τ. q ∈ 〈〉∆, q′ ∈ Qt, q1
q′−→ q2 ∈ ∆}.

The transition trans∆(w) of a nested word w ∈ nWordsΣ is the following element
of TQ:

trans∆(w) = {(q, q′) | w ∈ Lq,q′(∆)}.

7.2. Eliminating Hard Constraints: Linear Certainty 141

Note also that trans∆ is a morphism between the nesting monoids nWordsΣ and
TQh,∆. We next show that nested hyperstreams can be evaluated in the transition
monoid TQh,∆ in polynomial time.

Proposition 22 For any nested hyperstream G ∈ HypΣ and substitution σ :

fv(G) → TQ, the transition Jpat(G)Kσ,trans∆ can be computed in polynomial time
in |G| and |δ|.

Note that pat(G) may be of exponential size in |G| if G is not compression-free.
Therefore, we have to avoid computing pat(G) to prove the proposition in the general
case. This can be done by evaluating G along its DAG structure.
Proof: We can represent transitions as boolean |Qh| × |Qh| matrices and then
perform all operation of the nesting monoid TQh,∆ in polynomial time. In partic-
ular we can compute τ ◦ τ ′ by using boolean matrix multiplication. The proof is
straightforward by induction on the acyclic structure of G. �

7.2 Eliminating Hard Constraints: Linear Certainty

We fix an alphabet Σ for the rest of this chapter.
We saw in Chapter 6 that for hyperstreams, the most influential factor in the com-
plexity of regular matching and inclusion is nonlinearity. That brings us to consider
a new notion of certainty, where the nonlinearities are simply ignored.

For any nested pattern ρ, we define lin(ρ) as the nested pattern that is equal
to ρ except that all the occurrences of variables in ρ that are not first occurrences
are replaced by fresh variables. This way, lin(ρ) is always a linear nested pattern.
For instance, for ρ = aX1〈bX2〉cX1aX2 we have lin(ρ) = aX1〈bX2〉cX ′1aX ′2 where
X ′1 and X ′2 are the fresh pattern variables replacing the second occurrences of X1

respectively X2.

Definition 30 Let Q be a boolean query with alphabet Σ. We call the nested hy-
perstream G a linearly certain query answer (resp. non-answer) for query Q if
lin(pat(G)) is a certain query answer (resp. non-answer) for query Q.

By abuse of language, we say that a nested word w is a certain answer for a
boolean query Q whenever the empty candidate on w is a certain answer for Q.
The next proposition relates linearly certain to certain answers.

Proposition 23 (Soundness) If G is a linearly certain answer (resp. non-
answer) for query Q, then G is a certain answer (resp. non-answer) for query
Q.

142 Chapter 7. Approximating CQA on Hyperstreams

Proof: Let ρ = pat(G). Clearly, Inst(ρ) ⊆ Inst(lin(ρ)). If G is a linearly certain
answer of Q, then Inst(lin(ρ)) ∩ L(Q) = ∅ and it follows that Inst(ρ) ∩ L(Q) = ∅
and so G is a certain non-answer of Q. If G is a linearly certain answer of Q, then
Inst(lin(ρ)) ⊆ L(Q), thus Inst(ρ) ⊆ L(Q), hence G is a certain answer of Q. �

Now define the linear certainty problem.

Definition 31 (Linear Certainty) For any class A of SHAs and any alphabet Σ,
we define the following decision problems:

LinCertans
Σ (A).

Input: A nested hyperstream G ∈ HypΣ and a SHA S ∈ AΣ.
Output: The truth value of whether G is a linearly certain query answer for
L(S).

LinCert¬ansΣ (A).

Input: A nested hyperstream G ∈ HypΣ and a SHA S ∈ AΣ.
Output: The truth value of whether G is a linearly certain query non-answer
for L(S).

The first positive result is that linear certainty makes the finding of certain non
answers easy, no matter if the automaton representing the query is deterministic or
not.

Proposition 24 LinCert¬ansΣ (SHA) is in PTime.

Proof: Let S = (Qh, Qt,Ω,Σ,∆, I, F) be a SHA, G ∈ HypΣ a hyperstream and
σ a substitution that associates to any free variable X ∈ fv(G) of type tree the
transition @∆, while free variables X ∈ fv(G) of type hedge are mapped to the
transition acc∆

h×h. Then the following claim holds:

Claim 16 G is a linearly certain query non-answer of S if and only if
Jpat(G)Kσ,trans∆ ∩ (I × F) = ∅.

The above claim can be shown by an induction on the structure of G. According to
it, we just have to check Jpat(G)Kσ,trans∆ ∩ (I × F) = ∅ in order to know whether
or not G is a linearly certain query non-answer for L(S). This can be done in
polynomial time, using Proposition 22. It follows that LinCert¬ansΣ (SHA) is in
PTime. �

For certain answers, linear certainty doesn’t have a big impact in the case of
queries represented by non deterministic SHAs. Indeed, the problem remains as

7.3. Safety Approximations 143

hard as CQA. This is not surprising, as removing nonlinearities for regular inclu-
sion didn’t change the complexity for queries represented by nondeterministic tree
automata.

Proposition 25 LinCertans
Σ (SHA) is ExpTime-hard.

Proof: The lower bound is obtained by reduction from the problem of universality
for SHAs, which is Exp-complete by Proposition 3. Indeed, the language of trees
of a SHA S with alphabet Σ is universal – that is Ltree(S) = nWords tree

Σ – if and
only if the nested pattern X is a linearly certain query answer of L(S), where
type(X) = tree. Thus LinCertans

Σ (SHA) is Exp-hard. �

Unlike nondeterministic SHAs, linear certainty for dSHAs is an interesting case
in practice. We next show that it’s in PTime. This is an interesting result from
a practical point of view, given that dSHAs of reasonable size can be obtained for
nested regular path queries.

Lemma 20 LinCertans
Σ (dSHA) is reducible in polynomial time to

LinCert¬ansΣ (dSHA).

Proof: We complete S in linear time (by adding symbolic rules) to S′ and comple-
ment S′ to S′ by simply flipping the final states. Then observe that G is a certain
query answer for L(S) if and only if it is a certain query non-answer for L(S′).
And given that S′ can computed in linear time in the size of S, we conclude that
LinCertans

Σ (dSHA) is reducible in PTime to LinCert¬ansΣ (dSHA). �

Proposition 26 LinCertans
Σ (dSHA) is in PTime.

Proof: Due to determinism, LinCertans
Σ (dSHA) can be reduced in polynomial time

to LinCert¬ansΣ (dSHA) by Lemma 20, and this problem is in PTime by Proposition
24. �

7.3 Safety Approximations

Since nested regular path queries are converted to nondeterministic SHAs where the
expressions are nondeterministic, and that determinization of SHAs may sometimes
blow up, it is relevant to have an efficient decision procedure for LinCertans

Σ (SHA).
Unfortunately, this is the one case of the four – LinCertans

Σ (SHA),
LinCertans

Σ (dSHA), LinCert¬ansΣ (SHA), LinCert¬ansΣ (dSHA) – which remains
hard. Therefore, we next search for a refinement of linear certainty for dSHA queries
that can be decided more efficiently, while further approximating the set of linearly

144 Chapter 7. Approximating CQA on Hyperstreams

certain answers. This will lead us to the notion of strong certainty in Section 7.4,
which will be based on an approximation of the set of safe states of a SHA that we
introduce next.

Let ∆ be the transition relation of some SHA with hedge states in Qh and
alphabet Σ. Let SQh = {s | s : 2Qh → 2Qh}. We define the function safe∆ ∈ SQh so
that for all subset Q′ ⊆ Qh of hedge states, the set of safe states safe∆(Q′) contains
all those states from which ∆ may always reach some state in Q′ when reading any
nested word:

safe∆(Q′) = {q | ∀w ∈ nWordsΣ. ∃q′ ∈ Q′. w ∈ Lq,q′(∆)}.

Definition 32 We call an element s ∈ SQh a safety approximation for ∆ if s(Q′) ⊆
safe∆(Q′) for all subsets Q′ ⊆ Qh.

We next show that one can decide the universality of SHAs using safety approx-
imations.

Lemma 21 If s is a safety approximation for ∆ and I, F ⊆ Qh such that I∩s(F) 6=
∅, then any SHA S = (Qh, Qt,Ω,Σ,∆, I, F) satisfies L(S) = nWordsΣ.

Proof: By assumption I is non-disjoint from s(F). Since s is a safety approximation,
it follows that I is non-disjoint from safe∆(F). Hence there exists a state q ∈ I such
that q ∈ safe∆(F). Let w ∈ nWordsΣ be a nested word. We have to show that
w ∈ L(S). Since q ∈ safe∆(F) there exists a state q′ ∈ F such that w ∈ Lq,q′(∆).
Since q ∈ I and q′ ∈ F , it follows that w ∈ L(S). �

7.3.1 Safety Approximation by Accessibility

We next propose two concrete safety approximations. The first will be based on the
accessibility relation computed from a transition relation ∆.

Lemma 22 acc∆
h×h can be computed in polynomial time from ∆.

We define the function safe-acc∆ ∈ SQh such that for all subset of hedge states
Q′ ⊆ Qh,

safe-acc∆(Q′) = {q | ∀q′ ∈ Qh. (q, q′) ∈ acc∆
h×h ⇒ q′ ∈ Q′}

Our next objective is to show that safe-acc∆ is a safety approximation for ∆ under
the condition that ∆ is pseudo-complete (see Definition 13).

Proposition 27 If ∆ is pseudo-complete, then safe-acc∆ is a safety approximation
for ∆.

7.3. Safety Approximations 145

q1
〈〉

q2
〈〉

q3
〈〉

q4

q5

q6 q7

q8 q9

q0 q10 qf

qd

qb

qab

qcd

qΩ

d tree

b

tree

a qb

qΩ, qb

_

tree

c

qd

qΩ, qd

_ tree

_

_

tree

_

_

qab

_

_

qcd

_

_

Figure 7.1: SHA with transition function ∆

Proof: LetQ′ ⊆ Qh be a subset of states. We show that safe-acc∆(Q′) ⊆ safe∆(Q′).
Let q ∈ safe-acc∆(Q′). By definition of safe∆, we have to show for all w ∈ nWordsΣ

that there exists q′ ∈ Q′ such that w ∈ Lq,q′(∆). So let w ∈ nWordsΣ be an arbitrary
nested word. Since ∆ is pseudo-complete, there exists a state q′ ∈ Qh such that
w ∈ Lq,q′(∆). Hence, (q, q′) ∈ acc∆

h×h. Since q ∈ safe-acc∆(Q′) this implies that
q′ ∈ Q′ as required. �

7.3.2 Safety Approximation by Accessibility and Self Loops

The second approximation will be based on the notion of self looping states beside
of state accessibility.

Definition 33 A hedge state q ∈ Qh is self-looping by ∆ if:

• for all a ∈ Σ, (q, q) ∈ a∆ and

• either for all accessible tree state p ∈ Qt – for which there is a state q ∈ 〈〉∆

such that (q, p) ∈ acc∆
h×t – it holds that (q, q) ∈ @∆

p

• or (q, q) ∈ @∆
qΩ

for all else state qΩ ∈ Ω.

We denote the set of self-looping states by ∆ by self -looping(∆). We now define
the transition relation loop(∆), which modifies a transition function ∆ by removing
some transitions of self-looping states to others. We define:

loop(∆) = ∆ \ {q o−→ q′ ∈ ∆ | o ∈ Σ ∪Qt, q self-looping by ∆ and q′ 6= q}

For illustration, the SHA in Figure 7.2 with transition function ∆ becomes the SHA
in Figure 7.1 with transition function loop(∆). The self-looping states of this SHA
are q0, q6, q8, q10 and qf .

146 Chapter 7. Approximating CQA on Hyperstreams

q1
〈〉

q2
〈〉

q3
〈〉

q4

q5

q6 q7

q8 q9

q0 q10 qf

qd

qb

qab

qcd

qΩ

d tree

b

tree

a

qΩ, qab

_

tree

c

qΩ, qcd

_ tree

_

_

tree

_

_

_

_

_

_

Figure 7.2: SHA with transition function loop(∆)

Lemma 23 If ∆ is pseudo-complete then safe-accloop(∆) is a safety approximation
for ∆.

Proof: First notice, that loop(∆) is pseudo-complete if ∆ is, since any run starting
in a self-looping state can be continued in the state. Proposition 27 shows that
safe-accloop(∆) is a safety approximation for loop(∆) so that for all subset of hedge
states Q′ ⊆ Qh:

safe-accloop(∆)(Q′) ⊆ safeloop(∆)(Q′)

Since loop(∆) is a restriction of ∆ it holds that safeloop(∆)(Q′) ⊆ safe∆(Q′). Hence,
safe-acc-loop∆ is a safety approximation for ∆. �

7.4 Strong Certainty

In this section, we show that one can approximate linear certainty using safety
approximations. The complexity of these approximations is lower than the general
complexity of linear certainty. Furthermore, we show how the choice of a safety
approximation impacts the quality of the approximation.

7.4.1 Parameterized Strong Certainty

We now introduce a notion of s-strong certainty for approximating the set of linearly
certain query answers based on an safety approximation s. Note that s-strong
certainty – in contrast to previous certainty notions – will depend on the automaton
defining the query, and not only on the query itself.

For the rest of this section, let ∆ be the transition relation of some SHA with
alphabet Σ, hedge states Qh and tree states Qt. For any nested word w ∈ nWordsΣ

we define an inverse transition i trans∆(w) ∈ SQh such that for all subsets of hedge

7.4. Strong Certainty 147

states Q′ ⊆ Qh:

i trans∆(w)(Q′) = {q ∈ Qh | ∃q′ ∈ Q′. (q, q′) ∈ trans∆(w)}.

This set contains all those states from which Q′ can be reached over w. Clearly,
i trans∆(w)(Q′) can be computed in polynomial time when given ∆, w, and Q′. We
next show that i trans∆ is a morphism between nesting monoids. For this we first
note that SQh is a monoid with function composition as composition operator, and
the identity function as the neutral element. Second, we turn SQh into a nesting
monoid SQh,∆ – that we call the safety monoid. In order to do so, we define the
nesting function ν∆ of the nesting monoid SQh such that for all s ∈ SQh and subset
of states Q′ ⊆ Qh:

ν∆(s)(Q′) = {q ∈ Qh | ∃p ∈ Qt, q′ ∈ Q′.(q, q′) ∈ @∆
p and s(χ∆({p})) ∩ 〈〉∆ 6= ∅}

where
∀Q′′ ⊆ Qt. χ∆(Q′′) = {q ∈ Qh | ∃q′′ ∈ Q′′.q

tree−−→ q′′ ∈ ∆}.

The function χ∆ returns the set of hedge states from which Q′ is reachable by a
tree transition. It is thus equivalent to (tree∆)−1.

Lemma 24 i trans∆ : nWordsΣ → SQh,∆ is a morphism between nesting monoids.

Proof: �

For any element of the safety monoid s we define a constant variable assignment
to this element consts : V → SQh , that is consts(X) = s for all variables X. For
any ρ ∈ nPatternsΣ, we define:

[JρK]s,∆ = JρKconsts,itrans
∆

. We first note that [JρK]s,∆ is preserved by linearisation.

Lemma 25 [JρK]s,∆ = [Jlin(ρ)K]s,∆.

Proof: Since all variables are mapped to the same element of the safety monoid,
the introduction of fresh variables as in lin(ρ) does not affect the value of [JρK]s,∆. �

Definition 34 Let S = (Qh, Qt,Ω,Σ,∆, I, F) be a SHA. We call G ∈ HypΣ a
s-strongly certain answer for query definition S if s is a safety approximation for
∆ and [Jpat(G)K]s,∆(F) ∩ I 6= ∅. We call G a strongly certain answer for S if it is
safe-accloop(∆)-strongly certain answer.

148 Chapter 7. Approximating CQA on Hyperstreams

We next prove the soundness of s-strong certainty by showing that it implies linear
certainty, which we proved to be sound by Proposition 23.

Lemma 26 Let s be a safety approximation of ∆. Then for any ρ ∈ nPatternsΣ

and I, F ⊆ Qh such that I ∩ [JρK]s,∆(F) 6= ∅, the SHA S = (Qh, Qt,_,Σ,∆, I, F)

satisfies Inst(ρ) ⊆ L(S).

Proof: The proof is by induction on the structure of nested patterns ρ ∈ nPatternsΣ.
Let I, F ⊆ Qh such that I ∩ [JρK]s,∆(F) 6= ∅. Let S = (Qh, Qt,_,Σ,∆, I, F). We
have to show that Inst(ρ) ⊆ L(S).

Case ρ = ε. We then have Inst(ρ) = {ε} and [JρK]s,∆(F) = i trans∆(ε)(F) = F . So
I ∩ F 6= ∅, i.e., some final state is initial, which implies that ε ∈ L(S). Thus
Inst(ρ) = {ε} ⊆ L(S).

Case ρ = a ∈ Σ. This implies that Inst(ρ) = {a} and furthermore [JρK]s,∆(F) =

i trans∆(a)(F). So if I∩ i trans∆(a)(F) 6= ∅, then a ∈ L(S) and thus Inst(ρ) =

{a} ⊆ L(S).

Case ρ = Y ∈ V. It follows that Inst(ρ) = nWordsΣ and [JρK]s,∆(F) = s(F) ⊆
safe∆(F). So L(S) = nWordsΣ by Lemma 21.

Case ρ = 〈ρ′〉 where ρ′ ∈ nPatternsΣ. In this case Inst(ρ) = {〈w〉 | w ∈
Inst(ρ′)}. Given that i trans∆ is a morphism between the nesting monoids
nWordsΣ and SQh,∆ – Lemma 24 –, it follows that [JρK]s,∆ = ν∆([Jρ′K]s,∆).
Since we assumed that I ∩ [JρK]s,∆(F) 6= ∅, there exist by definition of ν∆

hedge states q ∈ I, q′ ∈ F and a tree state qt ∈ Qt such that (q, q′) ∈ @∆
qt

and [Jρ′K]s,∆(χ∆({qt})) ∩ 〈〉∆ 6= ∅. Now let I ′ = 〈〉∆ and F ′ = χ∆({qt}).
It follows from the induction hypothesis that Inst(ρ′) ⊆ L(S′) where S′ =

(Qh, Qt,_,Σ, I ′, F ′). Remark that Lqt(∆) = {〈w〉 | w ∈ L(S′)}. And since
Lqt(∆) ⊆ Lq,q′(∆), we finally have that Inst(ρ) = {〈w〉 | w ∈ Inst(ρ′)} ⊆
Lqt(∆) ⊆ Lq,q′(∆) ⊆ L(S).

Case ρ = ρ1ρ2 where ρ1, ρ2 ∈ nPatternsΣ. Then Inst(ρ) = {w1w2 ∈ nWordsΣ |
wi ∈ Inst(ρi)} and [JρK]s,∆(F) = [Jρ1K]s,∆(Q′) where Q′ = [Jρ2K]s,∆(F). By
assumption we have that I is non-disjoint with [JρK]s,∆(F) so Q′ 6= ∅. The
induction hypothesis applied to Q′ = [Jρ2K]s,∆(F) yields that Inst(ρ2) ⊆ L(S2)

where S2 = (Qh, Qt,_,Σ,∆, Q′, F), and applied to [JρK]s,∆(F) = [Jρ1K]s,∆(Q′) it
yields Inst(ρ1) ⊆ L(S1) where S1 = (Qh, Qt,_,Σ,∆, I, Q′). Hence, Inst(ρ) ⊆
L(S).

�

7.4. Strong Certainty 149

Proposition 28 (Soundness) Let s be a safety approximation for the transition
relation ∆ of some SHA S. Then any s-strongly certain query answer for S is a
linearly certain answer for query L(S).

Proof: Let G ∈ HypΣ be a nested hyperstream and S = (Qh, Qt,Ω,Σ,∆, I, F).
Then:

G is a s-strongly certain answer for L(S)

⇔ [Jpat(G)K]s,∆(F) ∩ I 6= ∅ by Definition 34
⇔ [Jlin(pat(G))K]s,∆(F) ∩ (I) 6= ∅ by Lemma 25
⇒ Inst(lin(pat(G))) ⊆ L(S) by Lemma 26
⇔ G is a linearly certain answer for query L(S) by Definition 30

�

The next two propositions show that s-strong certainty has a lower complexity
than linear certainty for any reasonable choice of s, and that it is tractable for nested
patterns – but not for hyperstreams in general.

Proposition 29 If s(Q′) can be computed for all Q′ ∈ Qh with polynomial space
then whether a nested hyperstream G ∈ HypΣ is a s-strongly certain query answer
for a SHA S ∈ SHAΣ with set of hedge states Qh can be decided in Pspace in the
sizes of S and G.

Proof sketch. The idea is that a Pspace algorithm can generate and evaluate the
nested word pat(G) on the fly from the right to the left, even if it is of exponential
size inG. Consider a SHA S = (Qh, Qt,Ω,Σ,∆, I, F) and a nested hyperstreamG =

(N,Σ, R, S) ∈ HypΣ. We want to compute [JGK]s,∆(F). If S /∈ dom(R), that is S is a
free variable of G, we return [JGK]s,∆ = s(F). Otherwise, R(S) is defined. Suppose
that R(S) = 〈XX〉 and let G[X] = (N,Σ, R,X). By definition, [JGK]s,∆(F) =

ν∆(G)(F), and we can compute with polynomial space the following elements. For
each tree state p ∈ Qt, compute the set of hedge states Qp so that there is an apply
rule from a state of Qp to a state of F using p. Then compute the set Q1 of hedge
states that have a tree rule with p. After this, compute Q2 = [JG[X]K]s,∆(Q1) then
Q3 = [JG[X]K]s,∆(Q2), and check whether Q3 has a nonempty intersection with 〈〉∆.
If it is the case, then return Qp, otherwise return ∅. The number of computation
steps is linear in the size of pat(G), which may be exponential in the size of G, but
the space needed for this computation is bounded by a polynomial in the size of G.

Proposition 30 If s(Q′) can be computed for all Q′ ∈ Qh in polynomial time then
for any compression-free hyperstream G ∈ HypΣ and any SHA S with set of hedge

150 Chapter 7. Approximating CQA on Hyperstreams

states Qh, it can be decided in polynomial time whether G is a s-strongly certain
answer for S.

Proof: For compression-free hyperstreams G we can generate pat(G) in liner time
in the size of G. Given that s(Q′) can be computed in polynomial time for any
subset Q′ ⊆ Qh, as well as i trans∆(a)(Q′) for any a ∈ Σ, we can can compute
[Jpat(G)K]s,∆ in polynomial time. �

This shows that the complexity of s-strong certainty lies between P and Pspace

for any reasonable choice of safety approximation s. The precise complexity, how-
ever, depends strongly on the precise choice of s, the structure of the allowed hy-
perstreams and the nature of the automaton (deterministic or not).

7.4.2 Examples of Concrete Strong Certainty

We introduce three approximations and discuss the use cases in which they are
relevant.

7.4.2.1 Safe-Acc-Strong Certainty

We now consider the strong certainty with respect to the safety approximation
safe-acc∆. We show that it captures linear certainty for deterministic SHAs. The
key insight is that the inverse of Lemma 26 holds for deterministic SHAs while it
fails without determinism.

Lemma 27 Let s = safe-acc∆ and S = (Qh, Qt,Ω,Σ,∆, I, F) be a dSHA. For any
ρ ∈ nPatternsΣ, Inst(ρ) ⊆ L(S) implies I ∩ [JρK]s,∆(F) 6= ∅.

Proof: Let ρ ∈ nPatternsΣ be a nested pattern. The proof is by induction on the
structure of ρ. We prove the statement of the lemma for all dSHAs. Now assume
that Inst(ρ) ⊆ L(S) and show I ∩ [JρK]s,∆(F) 6= ∅.

Case ρ = ε. Then ε ∈ L(S) and I ∩ F 6= ∅. Moreover, [JρK]s,∆(F) =

i trans∆(ε)(F) = F and given that I ∩ F 6= ∅, we have [JρK]s,∆(F) ∩ I 6= ∅.

Case ρ = a ∈ Σ. Then a ∈ L(S) and there exists a transition q a−→ q′ ∈ ∆ with q ∈ I
and q′ ∈ F . Note that I = {q} since S is deterministic – I cannot contain
more than one element. Also q′ is unique since S is deterministic, so there
cannot be more than one rule for a starting from q. Hence i trans∆(a)(F) = I,
so I ∩ [JaK]s,∆(F) = I 6= ∅.

Case ρ = Y ∈ V. Then a direct consequence of the initial assumption is that
L(S) = nWordsΣ. In particular I must be nonempty and thus a singleton

7.4. Strong Certainty 151

since S is deterministic, say I = {q} for some hedge state q ∈ Qh. Let
w ∈ nWordsΣ be a nested word. There must exist a state q′ ∈ F such that
w ∈ Lq,q′(∆). Since S is deterministic, there exists no other hedge state
q′′ ∈ Qh such that w ∈ Lq,q′′(∆). Hence q ∈ safe-acc∆(F) = [JY K]s,∆(F), and
it follows that I is non-disjoint to [JρK]s,∆(F).

Case ρ = 〈ρ′〉 where ρ′ ∈ nPatternsΣ. Then [JρK]s,∆ = ν∆([Jρ′K]s,∆) and
Inst(ρ) = {〈w〉 | w ∈ Inst(ρ′)} ⊆ L(S). By determinism there exists
a hedge state q0 ∈ Qh such that I = {q0}. Furthermore, for all w ∈ Inst(ρ′),
there exists a state qw ∈ F such that 〈w〉 ∈ Lq0,qw(∆). Since S is determinis-
tic, this implies that 〈〉∆ = {q〈〉} 6= ∅ where q〈〉 ∈ Qh. Let Qρ′ ⊆ Qh be the
set of states reached by the instances of ρ′ when read from q〈〉. We then have
that Inst(ρ′) ⊆

⋃
q ∈Qρ′

Lq〈〉,q(∆) = L(S′) where S′ is the same automaton than

S except that its set of initial state is 〈〉∆ and its set of final states Qρ′ . By
the induction hypothesis, [Jρ′K]s,∆(Qρ′) ∩ 〈〉∆ 6= ∅. Notice that tree∆(Qρ′) 6= ∅
and that there are states q ∈ F , qt ∈ Qt such that q0

qt−→ q ∈ ∆. This implies
that ν∆([Jρ′K]s,∆)(F) ∩ I 6= ∅, that is [JρK]s,∆(F) ∩ I 6= ∅.

Case ρ = ρ1ρ2 where ρ1 and ρ2 are non-empty nested patterns. This yields
{w1w2 | wi ∈ Inst(ρi)} ⊆ L(S). We set I = {q0}. Due to the determin-
ism of S, we have that for all nested words w1 ∈ Inst(ρ1), w2 ∈ Inst(ρ2),
there exist unique states qw1 ∈ Qh and qw2 ∈ F so that w1 ∈ Lq0,qw1

(∆) and
w2 ∈ Lqw1 ,qw2

(∆). Let Qρ1 =
⋃

w1∈Inst(ρ1)

{qw1} and for all w1 ∈ Inst(ρ1),

let Qw1 = {qw2 ∈ Qh | w2 ∈ Inst(ρ2) and w2 ∈ Lqw1 ,qw2
(∆). Notice

that Qwi are subsets of F . We set Sρ1 = (Qh, Qt,_,Σ,∆, I, Qρ1) and
for all w1 ∈ Inst(ρ1), Sw1 = (Qh, Qt,_,Σ,∆, {qw1}, Qw1). These SHAs
are all deterministic. Clearly, Inst(ρ1) ⊆ L(Sρ1) and for all w1 ∈ ρ1,
Inst(ρ2) ⊆ L(Sw1). By the induction hypothesis, [Jρ1K]s,∆(Qρ1)∩ I 6= ∅ and for
all w1 ∈ Inst(ρ1), [Jρ2K]s,∆(Qw1) ∩ {qw1} 6= ∅. Given that Qwi ⊆ F , it follows
that [Jρ1K]s,∆([Jρ2K]s,∆(F)) ∩ I 6= ∅, that is [JρK]s,∆(F) ∩ I 6= ∅.

�

Proposition 31 Let S be a dSHA whose transition relation is pseudo-complete.
Then any nested hyperstream is a safe-acc strongly certain answer for S if and only
if it is a linearly certain answer for L(S).

Proof: By Proposition 28 safe-acc∆-strong certainty for S and pseudo-completeness
imply linear certainty for L(S). Conversely, if G is a linearly certain answer for L(S)

152 Chapter 7. Approximating CQA on Hyperstreams

dSHAs SHAs
Answers PTime PTime ≤ · ≤ Pspace

Figure 7.3: Strong certainty.

q2
〈〉

q0 q1 qf

qs

qΩ

_

_

tree

_

_

a

_

_

b

_

_

_

_

_

Figure 7.4: Query automaton

then Inst(lin(pat(G))) ⊆ L(S). Let s = safe-acc∆. Since S is deterministic, we can
apply Lemma 27 showing that I is non-disjoint with [Jlin(pat(G))K]s,∆(F). The latter
is equal to [Jpat(G)K]s,∆(F) by Lemma 25, so G is a safe-acc strongly certain answer
for S. �

As a consequence of Propositions 31 and 26 it can be decided in polynomial time
whether a nested hyperstream is a safe-acc strongly certain query answer for a
dSHA.

We would also like to mention that the notion of safe-acc-strong certainty is very
satisfactory for first-order queries with regular paths.

7.4.2.2 (Safe-acc-loop) Strong Certainty

We now show on an example that safe-acc-strong certainty is satisfactory only for
dSHAs on linear hyperstreams, and that it is too weak for nondeterministic SHAs.

This weakness is resolved by safe-acc-loop strong certainty, that we abusively
call strong certainty.

Example 17 Let the SHA S represented in Figure 7.4 with set of else states Ω =

{qΩ}. The alphabet of A contains at least the symbols a and b, and the automaton
recognizes the language of all hedges having a letter a followed – not necessarily
immediately – by a letter b. The letters a and b should not be nested, that is they
are not surrounded by matching opening and closing parentheses. Note that S is
pseudo-complete.

Now consider the linear pattern ρ = X1aX2bX3, which is clearly a certain answer
for L(S), and let us test its safe-acc-strong certainty. Note that the set of initial

7.4. Strong Certainty 153

q2
〈〉

q0 q1 qf

qs

qΩ

_

_

tree

_

_

_

_

_

_

_

_

Figure 7.5: Query automaton for safe-acc-loop

states and final states of S are respectively {q0} and {qf}. Let Qh be the set of hedge
states of S and ∆ its transition relation. We write s = safe-acc∆. Then

[JρK]s,∆({qf}) = [JρK]s,∆(F) = [JX1aX2bX3K]s,∆({qf})
= [JX1aX2bK]s,∆(safe-acc∆({qf})︸ ︷︷ ︸

{qf}

)

= [JX1aX2K]s,∆(i trans∆(b)({qf})︸ ︷︷ ︸
{q1,qf}

)

= [JX1aK]s,∆(safe-acc∆({q1, qf})︸ ︷︷ ︸
{qf}

)

= [JX1K]s,∆(i trans∆(a)({qf})︸ ︷︷ ︸
{qf}

)

We then have that [JρK]s,∆({qf}) = {qf} 6= {q0}, which means that ρ is not a safe-
acc-strongly certain answer for S.

This example exhibits the weakness of safe-acc-strong certainty in some sim-
ple cases of non determinism. Here the problem is due to the fact that q1 6∈
safe-acc∆({q1, qf}), because of the transition leaving q1 and ending in qs. This
transition introduces non determinism in the automaton, and does not have any
impact on the language of S.

This is where safe-acc-loop-strong certainty comes in handy. Figure 7.5 shows the
automaton on which the safe-acc-loop safety approximation operates. This shows
that safe-acc-loop∆({q1, qf}) = {q1, qf}, and thus [JρK]safe-acc-loop∆,∆({qf}) = {q0}.
Hence ρ is a safe-acc-loop-strongly certain answer for S, but not a safe-acc-strongly
certain answer.

154 Chapter 7. Approximating CQA on Hyperstreams

dSHAs SHAs
Answers PTime PTime

Figure 7.6: Pruning strong certainty.

S

a 〈〉

X1 X2

b

a

1

2

1 2 1

1

3

4 S

a 〈〉

X1 X2

b

a

X′
1 X′

2

1

2

1 2 1

1

3

4

Figure 7.7: A hyperstream and its pruned version

7.4.2.3 Pruning strong certainty

Unfortunately, strong certainty does not seem to be tractable for nested hyper-
streams with compression. Indeed, we haven’t found a polynomial-time algorithm
for deciding strong-certainty for hyperstreams with compression. Avoiding the de-
compression of the hyperstream while determining whether it’s strongly certain is
the obstacle to such an algorithm, and we are not sure that it can be circumvented.

One solution to overcome the eventual hardness of strong certainty is to map
nested hyperstreams to compression-free nested hyperstreams, leading to a further
approximation. This can be done simply by only keeping one occurrence for each
shared part, and by replacing the other occurrences by fresh variables. We call
this transformation a pruning. The choice of the first occurrence is arbitrary: we
could have used other criteria for transforming the hyperstream into a compression-
free one. We call a hyperstream G pruning strongly certain for S it its pruning is
strongly certain for S. Since strong certainty can be decided in polynomial time for
compression-free hyperstreams by Proposition 30, pruning strong certainty can be
decided in polynomial time for general hyperstreams (see Figure 7.6).

Example 18 Figure 7.7 illustrates a nested hyperstream with compression (to the
left) and its pruned version (to the right). The second occurrences of X1 and X2 are
replaced by fresh free variables X ′1 and X ′2.

Proposition 32 Let S be a SHA and G a nested hyperstream. Deciding whether
the pruning of G is a strongly certain answer for S can be done in polynomial time.

7.5. Outlook 155

7.5 Outlook

When the hyperstream evolves, it is useful to not do computations that have been
done in the past. Our algorithm keeps in memory the evaluation in the nesting
monoid of the instantiated parts of the hyperstream. However, it does again the
composition at the places of the hyperstream where there are free variables. One
can imagine a version of the algorithm where only necessary compositions are done,
with respect to the ones that were made in the past.

Strong certainty for NWAs could have also been considered. However, because
of their stack symbols that should match for every pair of matching parentheses, we
conjecture that strong certainty runs in exponential time in the depth of the nested
word. This can be the case even for compression-free hyperstreams.

From a practical point of view, it would have been interesting to test our theo-
retical results on a running implementation. Unfortunately we didn’t have the time
to do so, but hope to achieve it soon.

Chapter 8

Conclusion

We have defined, studied and classified different problems of certain query answering
on different kinds of hyperstreams.

For the less general case of streams of hedges, we have designed a new certain
query answering algorithm whose worst-case running time is the lowest of the state
of the art, to the best of our knowledge. This algorithm is based on deterministic
stepwise hedge automata, to which navigational forward path queries were compiled.
Our experiments showed that stepwise hedge automata obtained from forward navi-
gational queries do not blow-up in size when they are determinized, and this justifies
their usage in a CQA algorithm. However, we needed to design an algorithm on top
of stepwise hedge automata in order to be able to compute certain answers. On the
other hand, we provide a way to obtain small deterministic nested word automata
from navigational forward XPath queries, for approaches based on these machines.

In a second step, we study the problems of regular matching and regular inclusion
for compressed patterns of ranked trees with context variables. These problems are
closely related to CQA and CQnA on hyperstreams of nested words. Using tree
automata, we show that they are Exp-hard. We then consider various settings by
changing the type of the variables, not allowing nonlinearities, or restricting the
classes of automata – nondeterministic or deterministic. This allows us to identify
the cases where CQA may be feasible.

Finally, we present different approximations of CQA and CQnA. Nonlinear-
ity was one of the factors of hardness of the problem, at least for deterministic
automata, so we introduced a variant of CQA in which the hyperstream are consid-
ered as linear, even if they are not. As expected, CQnA becomes tractable in this
case, but not CQA for nondeterministic automata. We then introduced the class
of strong certainty approximations. These approximations are parameterized by
special functions called safety approximations. The quality of the approximations
highly depends on the chosen safety approximations and the automaton representing
the query.

Most of our theoretical results need confirmation by experiments. We have
developed a prototype for streaming evaluation, but for lack of time we haven’t
tested it on a large set of examples. Of course, a prototype is needed for testing the

158 Chapter 8. Conclusion

performance of strong certainty in practice. Furthermore, we have not succeeded in
proving that strong certainty is hard for hyperstreams with compression, nor have
found a polynomial time algorithm in this case. This remains an open problem.

For the future, it would be interesting to support queries that are out of the
navigational forward XPath fragment, in order to have a larger coverage for real-
world queries. It may be interesting to consider hyperstreams of graphs. One would
then need a query language for such objects, by extending XPath for instance.

Appendices

.1. Navigational Forward XPath Queries of [Franceschet] 161

.1 Navigational Forward XPath Queries of
[Franceschet]

A1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

A2 //closed_auction//keyword

A3 /site/closed_auctions/closed_auction//keyword

A4 /site/closed_auctions/closed_auction[annotation/description/text/keyword]/date

A5 /site/closed_auctions/closed_auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

A7 /site/people/person[phone or homepage]/name

A8 /site/people/person[address and (phone or homepage) and (creditcard or profile)]/name

.2 Additional Forward XPath Queries

A11 //bidder/personref[@person=’person0’]

A11a //bidder/personref[startswith(@person,’person0’)]

A11b //bidder/personref[contains(@person,’person0’)]

A11c //bidder/personref[ends-with(@person,’person0’)]

A11d //bidder/personref[@person=’person0’]

A12 //@person

A13 /site/regions/africa//@*

A15 /site/regions/*

A16 //closed_auction/annotation//keyword

162 Chapter 8. Conclusion

.3 Deterministic NWAs for the expression ch∗(a + b)

Figure 1: Deterministic NWA det(nwa(ch∗(a+b)) with size 271, obtained by directly
determinizing the NWA in Figure 2.5 which had size 34.

.3. Deterministic NWAs for the expression ch∗(a+ b) 163

Figure 2: Deterministic NWA det(nwa(sha(ch∗(a + b)))) obtained by compiling
ch∗(a+ b) to a SHA, then converting it to an NWA before determinizing it. Its size
is 159.

Bibliography

[Abadi et al. 2005] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing and Stanley B. Zdonik. The Design of the Borealis Stream Processing
Engine. In CIDR, 2005. (Cited on page 3.)

[Abiteboul et al. 2008] Serge Abiteboul, Omar Benjelloun and Tova Milo. The Ac-
tive XML project: an overview. VLDB J., vol. 17, no. 5, pages 1019–1040,
2008. (Cited on page 16.)

[Alur & Madhusudan 2009] Rajeev Alur and P. Madhusudan. Adding nesting struc-
ture to words. Journal of the ACM, vol. 56, no. 3, pages 1–43, 2009. (Cited
on pages 11, 12, 21 and 30.)

[Alur et al. 2005] Rajeev Alur, Viraj Kumar, P. Madhusudan and Mahesh
Viswanathan. Congruences for Visibly Pushdown Languages. In Automata,
Languages and Programming, 32nd International Colloquium, volume 3580
of Lecture Notes in Computer Science, pages 1102–1114. Springer Verlag,
2005. (Cited on pages 12 and 60.)

[Angluin 1980] D. Angluin. Finding patterns common to a set of strings. Journal
of Computer and System Sciences, vol. 21, pages 46–62, 1980. (Cited on
page 104.)

[Arnold & Niwiński 2001] André Arnold and Damian Niwiński. Complete lattices
and fixed-point theorems. In Rudiments of µ-calculus, volume 146 of Studies
in Logic and the Foundations of Mathematics, chapter 1, pages 1–39. North-
Holland, 2001. (Cited on pages 33 and 53.)

[Babai & Szemeredi 1984] L. Babai and E. Szemeredi. On The Complexity Of Ma-
trix Group Problems I. In Proceedings of the 25th Annual Symposium on-
Foundations of Computer Science, 1984, SFCS ’84, pages 229–240, Washing-
ton, DC, USA, 1984. IEEE Computer Society. (Cited on page 89.)

[Baelde et al. 2019] David Baelde, Anthony Lick and Sylvain Schmitz. Decidable
XPath Fragments in the Real World. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS ’19, page 285–302, New York, NY, USA, 2019. Association for Com-
puting Machinery. (Cited on page 16.)

166 Bibliography

[Benedikt & Koch 2008] Michael Benedikt and Christoph Koch. XPath leashed.
ACM Comput. Surv., vol. 41, no. 1, pages 3:1–3:54, 2008. (Cited on page 16.)

[Benedikt et al. 2008] Michael Benedikt, Alan Jeffrey and Ruy Ley-Wild. Stream
Firewalling of XML Constraints. In ACM SIGMOD International Confer-
ence on Management of Data, pages 487–498. ACM-Press, 2008. (Cited on
pages 6, 16, 25 and 37.)

[Benzaken et al. 2003] Véronique Benzaken, Giuseppe Castagna and Alain Frisch.
CDuce: an XML-centric general-purpose language. ACM SIGPLAN Notices,
vol. 38, no. 9, pages 51–63, 2003. (Cited on page 3.)

[Benzaken et al. 2013] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo and
Kim Nguyen. Optimizing XML querying using type-based document projec-
tion. ACM Trans. Database Syst., vol. 38, no. 1, pages 4:1–4:45, 2013. (Cited
on page 8.)

[Biere & Bloem 2014] Armin Biere and Roderick Bloem, editors. Computer aided
verification - 26th international conference, CAV 2014, held as part of the
vienna summer of logic, VSL 2014, vienna, austria, july 18-22, 2014. pro-
ceedings, volume 8559 of Lecture Notes in Computer Science. Springer, 2014.
(Cited on page 168.)

[Bojańczyk et al. 2006] Mikolaj Bojańczyk, Mathias Samuelides, Thomas
Schwentick and Luc Segoufin. Expressive power of pebbles automata.
In International Colloquium on Automata Languages and Programming
(ICALP’06), Lecture Notes in Computer Science, pages 157–168. Springer
Verlag, 2006. (Cited on page 15.)

[Boneva et al. 2018] Iovka Boneva, Joachim Niehren and Momar Sakho. Certain
Query Answering on Compressed String Patterns: From Streams to Hyper-
streams. In Reachability Problems - 12th International Conference, RP 2018,
Marseille, France, September 24-26, 2018, Proceedings, pages 117–132, 2018.
(Cited on pages 17, 104 and 124.)

[Boneva et al. 2019] Iovka Boneva, Joachim Niehren and Momar Sakho. Regular
Matching and Inclusion on Compressed Tree Patterns with Context Variables.
In LATA 2019 - 13th International Conference on Language and Automata
Theory and Applications, Saint Petersburg, Russia, March 2019. (Cited on
pages 13 and 17.)

Bibliography 167

[Boneva et al. 2020] Iovka Boneva, Joachim Niehren and Momar Sakho. Nested
Regular Expressions can be Compiled to Small Deterministic Nested Word
Automata. In 15th International Computer Science Symposium in Russia,
Ekaterinburg, Russia, July 2020. (Cited on pages 11 and 17.)

[Brüggemann-Klein & Wood 1998] Anne Brüggemann-Klein and Derick Wood.
One-Unambiguous Regular Languages. Information and Computation,
vol. 142, no. 2, pages 182–206, May 1998. (Cited on page 33.)

[Brüggemann-Klein 1993] Anne Brüggemann-Klein. Regular Expressions into Fi-
nite Automata. Theoretical Computer Science, vol. 120, no. 2, pages 197–213,
November 1993. (Cited on page 35.)

[Carme et al. 2004] Julien Carme, Joachim Niehren and Marc Tommasi. Querying
Unranked Trees with Stepwise Tree Automata. In 19th International Con-
ference on Rewriting Techniques and Applications, volume 3091 of Lecture
Notes in Computer Science, pages 105–118. Springer Verlag, 2004. (Cited on
pages 12, 27, 38 and 42.)

[Carney et al. 2002] Don Carney, Uundefinedur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime
Tatbul and Stan Zdonik. Monitoring Streams: A New Class of Data Man-
agement Applications. In Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, page 215–226. VLDB Endowment,
2002. (Cited on page 3.)

[Castagna et al. 2015] Giuseppe Castagna, Hyeonseung Im, Kim Nguyen and
Véronique Benzaken. A Core Calculus for XQuery 3.0 - Combining Nav-
igational and Pattern Matching Approaches. In Jan Vitek, editor, Program-
ming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9032 of Lecture Notes in Computer Science, pages 232–256.
Springer, 2015. (Cited on page 3.)

[Champavère et al. 2009] Jérôme Champavère, Rémi Gilleron, Aurélien Lemay and
Joachim Niehren. Efficient Inclusion Checking for Deterministic Tree Au-
tomata and XML Schemas. Information and Computation, vol. 207, no. 11,
pages 1181–1208, 2009. (Cited on pages 28, 29 and 42.)

[Chandrasekaran et al. 2003] Sirish Chandrasekaran, Owen Cooper, Amol Desh-
pande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krish-

168 Bibliography

namurthy, Samuel R. Madden, Fred Reiss and Mehul A. Shah. TelegraphCQ:
Continuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, page 668,
New York, NY, USA, 2003. Association for Computing Machinery. (Cited
on page 3.)

[Comon et al. 2007] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding,
Florent Jacquemard, Denis Lugiez, Sophie Tison and Marc Tommasi. Tree
Automata Techniques and Applications. Available online since 1997: http:

//tata.gforge.inria.fr, October 2007. (Cited on pages 12, 27, 28, 47, 48,
104, 123, 133 and 135.)

[D’Antoni & Alur 2014] Loris D’Antoni and Rajeev Alur. Symbolic Visibly Push-
down Automata. In Biere & Bloem [Biere & Bloem 2014], pages 209–225.
(Cited on pages 28 and 43.)

[Debarbieux et al. 2015] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom
Sebastian and Mohamed Zergaoui. Early nested word automata for XPath
query answering on XML streams. Theor. Comput. Sci., vol. 578, pages
100–125, 2015. (Cited on pages 6, 7, 8, 11, 12, 28, 30, 33, 37 and 64.)

[Filiot et al. 2007] Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot and So-
phie Tison. Polynomial Time Fragments of XPath with Variables. In 26th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 205–214. ACM-Press, 2007. (Cited on page 16.)

[Fischer & Ladner 1979] Michael J. Fischer and Richard E. Ladner. Propositional
Dynamic Logic of Regular Programs. J. Comput. Syst. Sci., vol. 18, no. 2,
pages 194–211, 1979. (Cited on page 4.)

[Franceschet] Massimo Franceschet. XPathMark Performance Test. https://

users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html.
Accessed: 2020-03-27. (Cited on pages vii, 37, 59, 87 and 161.)

[Gascón et al. 2008] Adria Gascón, Guillem Godoy and Manfred Schmidt-Schauß.
Context Matching for Compressed Terms. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA, pages 93–102. IEEE Computer So-
ciety, 2008. (Cited on pages 104 and 105.)

[Gauwin & Niehren 2011] Olivier Gauwin and Joachim Niehren. Streamable Frag-
ments of Forward XPath. In Béatrice B. Markhoff, Pascal Caron, Jean M.

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html

Bibliography 169

Champarnaud and Denis Maurel, editors, International Conference on Im-
plementation and Application of Automata, volume 6807 of Lecture Notes
in Computer Science, pages 3–15. Springer, 2011. (Cited on pages 6, 16, 25
and 37.)

[Gauwin et al. 2009] Olivier Gauwin, Joachim Niehren and Sophie Tison. Earliest
Query Answering for Deterministic Nested Word Automata. In 17th Inter-
national Symposium on Fundamentals of Computer Theory, volume 5699 of
Lecture Notes in Computer Science, pages 121–132. Springer Verlag, 2009.
(Cited on pages 6, 8, 11, 13, 15, 37, 62, 64 and 65.)

[Gauwin et al. 2011] Olivier Gauwin, Joachim Niehren and Sophie Tison. Queries
on XML Streams with Bounded Delay and Concurrency. Information and
Computation, vol. 209, pages 409–442, 2011. (Cited on page 7.)

[Gauwin 2009] Olivier Gauwin. Streaming Tree Automata and XPath. PhD thesis,
Université Lille 1, 2009. (Cited on pages 6 and 15.)

[Genevès & Layaïda 2006] Pierre Genevès and Nabil Layaïda. A System for the
Static Analysis of XPath. ACM Trans. Inf. Syst., vol. 24, no. 4, page 475–502,
October 2006. (Cited on page 5.)

[Gottlob et al. 2003] Georg Gottlob, Christoph Koch and Reinhard Pichler. The
complexity of XPath query evaluation. In 22nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 179–190,
2003. (Cited on page 4.)

[Grez et al. 2019] Alejandro Grez, Cristian Riveros and Martín Ugarte. A For-
mal Framework for Complex Event Processing. In Pablo Barceló and Marco
Calautti, editors, 22nd International Conference on Database Theory, ICDT
2019, March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 5:1–
5:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. (Cited on
pages 2, 3, 6 and 9.)

[Hallé 2017] Sylvain Hallé. From Complex Event Processing to Simple Event Pro-
cessing, 2017. (Cited on pages 2 and 3.)

[Halstead 1985] Robert H. Halstead. Multilisp: A Language for Concurrent Sym-
bolic Computation. ACM Trans. Program. Lang. Syst., vol. 7, no. 4, pages
501–538, October 1985. (Cited on page 16.)

170 Bibliography

[Hosoya & Pierce 2003] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically
typed XML processing language. ACM Trans. Internet Techn., vol. 3, no. 2,
pages 117–148, 2003. (Cited on page 31.)

[Jez 2014] Artur Jez. Context Unification is in PSPACE. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt and Elias Koutsoupias, editors, Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573
of Lecture Notes in Computer Science, pages 244–255. Springer, 2014. (Cited
on page 105.)

[Joly 2003] Thierry Joly. Encoding of the Halting Problem into the Monster Type
& Applications. In Martin Hofmann, editor, Typed Lambda Calculi and
Applications, 6th International Conference, TLCA 2003, Valencia, Spain,
June 10-12, 2003, Proceedings., volume 2701 of Lecture Notes in Computer
Science, pages 153–166. Springer, 2003. (Cited on pages 105 and 114.)

[Kay 2004] Michael Kay. The saxon XSLT and XQuery processor, 2004.
https://www.saxonica.com. (Cited on page 3.)

[Kozen 1977] Dexter Kozen. Lower Bounds for Natural Proof Systems. In 18th
Annual Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 254–266. IEEE Computer
Society, 1977. (Cited on pages 105, 106, 110 and 115.)

[Kupferman & Vardi 2001] Orna Kupferman and Moshe Y. Vardi. Model Checking
of Safety Properties. Formal Methods in System Design, vol. 19, no. 3, pages
291–314, 2001. (Cited on pages 6 and 16.)

[Labath & Niehren 2013] Pavel Labath and Joachim Niehren. A Functional Lan-
guage for Hyperstreaming XSLT. Technical report, INRIA Lille, 2013. (Cited
on pages 9 and 16.)

[Labath & Niehren 2015] Pavel Labath and Joachim Niehren. A Uniform Program-
ming Language for Implementing XML Standards. In SOFSEM 2015: Theory
and Practice of Computer Science - 41st International Conference on Current
Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech
Republic, January 24-29, 2015. Proceedings, pages 543–554, 2015. (Cited on
page 3.)

[Libkin et al. 2013] Leonid Libkin, Wim Martens and Domagoj Vrgoč. Querying
Graph Databases with XPath. In Proceedings of the 16th International Con-

https://www.saxonica.com

Bibliography 171

ference on Database Theory, ICDT ’13, page 129–140, New York, NY, USA,
2013. Association for Computing Machinery. (Cited on page 4.)

[Libkin 2015] Leonid Libkin. How to Define Certain Answers. In Qiang Yang and
Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 4282–4288. AAAI Press, 2015. (Cited on
page 5.)

[Loader 2001] Ralph Loader. The Undecidability of λ-Definability. In Zelëny M. An-
derson C.A., editor, Logic, Meaning and Computation, volume 305. Springer,
2001. (Cited on pages 105 and 114.)

[Lohrey et al. 2012] Markus Lohrey, Sebastian Maneth and Manfred Schmidt-
Schauß. Parameter reduction and automata evaluation for grammar-
compressed trees. J. Comput. Syst. Sci., vol. 78, no. 5, pages 1651–1669,
2012. (Cited on page 122.)

[Maneth et al. 2015] Sebastian Maneth, Alberto Ordóñez Pereira and Helmut Seidl.
Transforming XML Streams with References. In Costas S. Iliopoulos, Si-
mon J. Puglisi and Emine Yilmaz, editors, String Processing and Informa-
tion Retrieval - 22nd International Symposium, SPIRE 2015, London, UK,
September 1-4, 2015, Proceedings, volume 9309 of Lecture Notes in Computer
Science, pages 33–45. Springer, 2015. (Cited on pages 9 and 16.)

[Martens & Niehren 2007] Wim Martens and Joachim Niehren. On the Minimiza-
tion of XML Schemas and Tree Automata for Unranked Trees. Journal of
Computer and System Science, vol. 73, no. 4, pages 550–583, 2007. (Cited
on pages 12 and 48.)

[Martens & Trautner 2018] Wim Martens and Tina Trautner. Evaluation and Enu-
meration Problems for Regular Path Queries. In ICDT, 2018. (Cited on
page 3.)

[Marx 2004] Maarten Marx. Conditional XPath, the First Order Complete XPath
Dialect. In ACP SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 13–22. ACM-Press, 2004. (Cited on page 15.)

[Mozafari et al. 2012] Barzan Mozafari, Kai Zeng and Carlo Zaniolo. High-
performance complex event processing over XML streams. In K. Selçuk Can-
dan, Yi Chen, Richard T. Snodgrass, Luis Gravano, Ariel Fuxman, K. Selçuk
Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano and Ariel Fuxman,

172 Bibliography

editors, SIGMOD Conference, pages 253–264. ACM, 2012. (Cited on pages 2,
3, 6 and 64.)

[Murata 2000] M. Murata. Hedge Automata: a Formal Model for XML Schemata.
Web page, 2000. (Cited on page 12.)

[Niehren et al. 2006] Joachim Niehren, Jan Schwinghammer and Gert Smolka. A
Concurrent Lambda Calculus with Futures. Theoretical Computer Science,
vol. 364, no. 3, pages 338–356, November 2006. (Cited on page 16.)

[Olteanu 2007a] Dan Olteanu. Forward node-selecting queries over trees. ACM
Transactions on Database Systems, vol. 32, no. 1, page 3, 2007. (Cited on
page 4.)

[Olteanu 2007b] Dan Olteanu. SPEX: Streamed and Progressive Evaluation of
XPath. IEEE Trans. on Know. Data Eng., vol. 19, no. 7, pages 934–949,
2007. (Cited on pages 4, 7 and 64.)

[Plandowski 1995] Wojciech Plandowski. The complexity of the morphism equiv-
alence problem for context-free languages. PhD thesis, Warsaw University.
Department of Informatics, Mathematics, and Mechanics, 1995. (Cited on
pages 16 and 89.)

[Plandowski 2004] Wojciech Plandowski. Satisfiability of word equations with con-
stants is in PSPACE. J. ACM, vol. 51, no. 3, pages 483–496, 2004. (Cited
on page 104.)

[Samuelides 2007] Mathias Samuelides. Automates d’arbres à jetons. Theses, Uni-
versité Paris-Diderot - Paris VII, December 2007. (Cited on page 15.)

[Savitch 1970] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, vol. 4,
no. 2, pages 177 – 192, 1970. (Cited on page 127.)

[Schmidt-Schauß 2018] Manfred Schmidt-Schauß. Linear pattern matching of com-
pressed terms and polynomial rewriting. Mathematical Structures in Com-
puter Science, vol. 28, no. 8, pages 1415–1450, 2018. (Cited on page 105.)

[Sebastian & Niehren 2016] Tom Sebastian and Joachim Niehren. Projection for
Nested Word Automata Speeds up XPath Evaluation on XML Streams. In
International Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM), Harrachov, Czech Republic, January 2016. (Cited
on pages 8 and 13.)

Bibliography 173

[Sebastian 2016] Tom Sebastian. Evaluation of XPath Queries on XML Streams
with Networks of Early Nested Word Automata. Theses, Universite Lille 1,
June 2016. (Cited on pages 4, 11, 13, 35 and 62.)

[Seidl 1990] Helmut Seidl. Deciding Equivalence of Finite Tree Automata. SIAM
Journal on Computing, vol. 19, no. 3, pages 424–437, 1990. (Cited on
pages 106, 110 and 111.)

[Straubing 1994] H. Straubing. Finite automata, formal logic, and circuit complex-
ity. Progress in Computer Science and Applied Series. Birkhäuser, 1994.
(Cited on page 23.)

[Suhothayan et al. 2011] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru
Loku Narangoda, Subash Chaturanga, Srinath Perera and Vishaka
Nanayakkara. Siddhi: A Second Look at Complex Event Processing Architec-
tures. In Proceedings of the 2011 ACM Workshop on Gateway Computing
Environments, GCE ’11, page 43–50, New York, NY, USA, 2011. Association
for Computing Machinery. (Cited on page 3.)

[Thatcher 1967] J. W. Thatcher. Characterizing derivation trees of context-free
grammars through a generalization of automata theory. Journal of Com-
puter and System Science, vol. 1, pages 317–322, 1967. (Cited on pages 12,
47 and 48.)

[Zaionc 2005] Marek Zaionc. Probabilistic Approach to the Lambda Definability for
Fourth Order Types. Electr. Notes Theor. Comput. Sci., vol. 140, pages
41–54, 2005. (Cited on pages 105 and 114.)

	Title
	Abstract
	Résumé
	Acknowledgements
	Contents
	Notations
	Chapter 1 : Introduction
	Communication over Streams
	Complex Event Processing
	Query Languages
	Certain Query Answering (CQA)
	Quality Criteria

	Problem: CQA on Hyperstreams
	Hyperstreams
	Finding Certain Query Answers

	Contributions
	Small Deterministic Automata for Regular Path Queries
	Efficient CQA Algorithm on Streams
	Complexity of CQA on Hyperstreams
	An Approximation Algorithm for CQA on Hyperstreams

	Further Related Work
	Publications
	Organization of the thesis

	Chapter 2 : Preliminaries
	Words, Trees, Nested Words and Languages
	Words
	Trees
	Nested Words

	Patterns
	Definition
	Identification to Logical Structures

	Queries
	V-Structures and Sequenced V-Structures
	Certain answers and non-answers

	Automata and Regular Expressions
	Word Automata
	Stepwise Tree Automata (STAs)
	Nested Word Automata (NWAs)
	Nested Regular Expressions

	FXP

	Chapter 3 : Small Deterministic Automata for Navigational Queries
	Introduction
	From FXP to Nested Regular Expressions
	Stepwise Hedge Automata (SHAs)
	Evaluation on Nested Words
	Relation to STAs and NWAs
	Determinization
	Completeness and Pseudo-Completeness
	Universality and Intersection Nonemptiness Problems

	Compiler from nRegExp to SHAs
	Reducing the size of (d)SHAs
	Symbolic Apply Rules
	Cleaning Methods for Determinized SHAs

	Experimental Results for XPath Queries

	Chapter 4 : Certain Query Answering on Streams
	Modeling Streams of Hedges
	... As String Patterns With Parentheses
	... As Nested Patterns

	About CQA Algorithms on Streams
	A Streaming Algorithm for Boolean CQA
	Certain Query Answering for Monadic Queries
	Position-annotated patterns
	Main differences with Boolean CQA
	Description of the Algorithm
	Correctness and Complexity of the Algorithm

	Experiments

	Chapter 5 : Hyperstreams and Certain Query Answering
	Hyperstreams
	Hyperstreams of Nested Words
	Hyperstreams of Ranked Trees With Context Variables

	Certain Query (Non) Answering on Hyperstreams
	Definitions
	From the Non-Boolean Cases to the Boolean Cases

	Chapter 6 : Complexity of Certain Query Answering
	Introduction
	-Algebras
	Inhabitation for Tree Automata
	Tree Automata
	Intersection NonEmptiness
	Tree Inhabitation
	Context Inhabitation

	Evaluation of Compressed Tree Patterns over Ntas
	Regular Matching and Inclusion
	Lower Bounds
	Upper Bounds

	Adding Regular Constraints
	Encoding Patterns for Unranked Trees
	Linearity Restriction

	Chapter 7 : Approximating CQA on Hyperstreams
	Transitions for SHAs
	Eliminating Hard Constraints: Linear Certainty
	Safety Approximations
	Safety Approximation by Accessibility
	Safety Approximation by Accessibility and Self Loops

	Strong Certainty
	Parameterized Strong Certainty
	Examples of Concrete Strong Certainty

	Outlook

	Chapter 8 : Conclusion
	Appendices
	Bibliography

	source: Thèse de Momar Ndiouga Sakho, Université de Lille, 2020
	d: © 2020 Tous droits réservés.
	lien: lilliad.univ-lille.fr

