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Introduction 
 

The fashion industry plays a vital role in daily life since it produces what people 

wear. Likewise, it makes a substantial contribution to global economics since the 

entire industry is very large which is related to the international clothing supply chain 

from raw materials to garments.  

In the mass production era, a great quantity of garments has been produced in 

batch for a large population rather than meeting the requirements of a specific 

consumer in terms of individual body characteristics and personal fashion 

preferences, as what occurs in the craft production era. Craft production, mainly 

targeting individuals, performs a perfect fit, and allows any desired designs manually 

with very high costs, while mass production, serving a large population, features a 

low cost but a poor fit and very limited variants. Due to the ever-changing fashion 

trend and consumers’ increasing personal demands, mass customization has become a 

promising strategy in the garment industry by combining mass production and craft 

production modes. It can improve the personalization level towards craft production, 

and meanwhile, control the manufacturing cost, the production speed, and the product 

quality towards mass production (Yang, Kincade & Chen-Yu, 2015). 

To the best of our knowledge, there have been numerous scientific reports on 

mass customization in the garment industry.  The majority of the current work deals 

with garment design (Ulrich, Jo Anderson-Connell & Wu, 2003; Dai et al., 2006; Lee 

& Park, 2009; Satam, Liu & Lee, 2011; Vogiatzis et al., 2012; Xu et al., 2017), while 

the minority concerns garment manufacturing (Lu et al., 2010; Watcharapanyawong, 

Sirisoponsilp & Sophatsathit, 2011). As pointed out by Jiao, Zhang & Pokharel 

(2007), mass customization increases the number of variants in production, also 

decreases the number of items produced per variant, with significant impacts on 

garment manufacturing. In the whole garment manufacturing, cutting is the initial and 

one of the most complicated stages. It seriously affects the downstream links, i.e., 

sewing, finishing, and packaging. The cost that occurs in cutting is critical, as fabric 
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usually occupies more than 50% of the total manufacturing cost (Wong & Leung, 

2008). In addition, cutting can be considered as the decoupling point in the 

customized garment production, that a garment customization in manufacturing is 

essentially realized through patterns variations, directly conducted by the cutting-

related processes (e.g., sizing, cutting order planning, and marker making). In this 

research, focusing on the garment cutting-related processes, we propose several mass 

customization strategies, and then apply some appropriate optimizations techniques in 

order to make the customization more efficient, and finally validate the proposed 

strategies and techniques through representative case studies. The proposed strategies 

and techniques can effectively facilitate the implementation and development of 

garment mass customization by taking into account the criteria of personalization 

levels and manufacturing costs. 

In this context, Chapter 1 provides the state of the art, which is composed of two 

parts. The first part begins with garment manufacturing, including concepts and 

current status of garment manufacturing and garment mass customization. It 

especially focuses on the garment cutting process and the cutting-related processes, 

i.e., sizing, cutting order planning, and marker making. The second part describes 

various optimization techniques applied to garment manufacturing, including 

operation research methods, heuristics, meta-heuristics, and hybrid techniques, where 

the three popular soft computing technologies (namely, genetic algorithm, fuzzy logic, 

and neural network) and hybrid intelligence are addressed in detail. Based on the 

literature survey, we identify the main drawbacks of the current methods in garment 

mass customization and set up new orientations for developing more appropriate and 

effective methods. 

Taking into account the state of the art, we give the general structure of the thesis 

as follows (see Figure 0.1).  
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Figure 0.1 General structure of Chapters 2-5. 

 

In Chapter 2, from the perspective of pattern variations, several practical mass 

customization strategies on custom-fit (pattern size) and co-design (pattern material 

and shape), namely, the two main categories of garment customization (Yang, 

Kincade & Chen-Yu, 2015), are developed from classical production practices in mass 

production. An analysis of the personalization levels and the cutting-related costs is 

demonstrated for evaluating the efficiency of these strategies. The analysis result can 

be considered as a reference for apparel companies to make their mass customization 

plans according to their specific conditions. 

In Chapters 3, 4, and 5, we propose several optimization techniques for 

improving three vital cutting-related processes, i.e., sizing, cutting order planning, and 

marker making, respectively. Considering that the fit customization is a fundamental 

need for users, and the simplicity and cost minimization in the course of pattern 

development and garment manufacturing, we use additional sizes for the 

customization in the three chapters. The mass customization strategies proposed in 

Chapter 2 and the optimized processes shown in Chapters 3, 4, and 5 have all been 

validated through a case study of women’s basic straight skirt manufacturing. 

Chapter 3 presents a fit-oriented sizing system with additional sizes adapted 
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from a traditional mass production sizing system. In this system, a Genetic Algorithm 

(GA) is used to find the global optimum within an acceptable computation time. The 

objective function is a newly proposed criterion comprehensive fit (CF) representing 

the overall garment fit of the whole target population. 

In cutting, a cutting order plan determines the set of lays and corresponding 

markers used in batch cutting. As a classical cutting approach that is widely employed 

in mass production due to its high efficiency, batch cutting is herein adopted in mass 

customization by considering marker variations. Marker variations mainly exist in the 

differences in marker lengths and marker cutting lengths (Haque, 2016), and have an 

economic impact on the cutting order planning. However, in the previous study, the 

cutting order planning is accomplished with the ignorance of marker variations 

(Degraeve & Vandebroek, 1998; Rose & Shier, 2007; Fister, Mernik & Filipic, 2008). 

Consequently, in Chapters 4, a cost-oriented cutting order planning system with 

marker variations is established for an accurate economy performance (cost) 

evaluation of the proposed mass customization sizing system. An expanded Integer 

Programming (IP) model is developed to generate a cutting order plan with the lowest 

overall cutting cost (including the costs of fabric, spreading operation, and cutting 

operation). Moreover, by applying the sizing system and the cutting order planning 

system to the case study of Chapter 4, the indirect relation between the fit 

(personalization) and the overall cutting cost (cost) is revealed through the direct 

relations between sizing and fit, and between cutting and cost. The relation is 

discerned and a better compromise between personalization (i.e., the fit) and the cost 

(i.e., the cutting cost) can be obtained. 

Adding more garment sizes in mass customization will lead to an exponential 

increase of marker number, which is determined by the possible garment size 

combinations. It induces a heavy and complex workload of marker making, because, 

in the current garment production, markers are generally made in a semi-automatic 

way with commercialized software. In addition, there exist some implicit relation 

between the overall marker length of a given size combination and that of each 

contained garment size, due to the geometrical arrangement. Therefore, a marker 
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length estimation model is built in Chapter 5, where the Multiple Linear Regression 

(MLR) and Radial Basis Function Neural Network (RBF NN) have been applied to 

estimate the most appropriate marker lengths considering different sets of garment 

sizes (regarding mass production and mass customization) and different marker types 

(namely, mixed marker and group marker). The theoretical maker lengths can be used 

as the target values for the guidance and evaluation of marker making and the input of 

the cutting order planning system for cutting cost estimation.  
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Chapter I: 
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Chapter 1  State of the Art 

 

In this chapter, we first give a comprehensive literature survey on the 

development of modern garment manufacturing, including its basic concepts, 

industrial practice, related bottle-necks, and potential opportunities. The key issues 

and trends of mass customization in the complex garment manufacturing have been 

systematically analyzed. Especially, we focus on the cutting process and cutting-

related processes, including sizing, cutting order planning, and marker making. 

Next, we review the potential optimization techniques that can be used for 

improving the current garment manufacturing. These optimization techniques can be 

classified into three main categories, i.e., exact methods, approximate techniques, and 

hybrid approaches. Considering that soft computing technologies have been 

successfully applied to different industrial sectors, we mainly focus on the three most 

popular techniques (i.e., genetic algorithm, fuzzy logic, and neural network) and their 

hybrid applications in garment manufacturing. 

In order to realize mass customization meeting consumers’ personalized and 

diversified requirements with a quick reactivity and minimal cost/price, practical mass 

customization strategies regarding garment manufacturing should be developed based 

on the industrial practice. Furthermore, garment manufacturing processes should be 

largely improved by massively applying optimization techniques. Especially, the most 

complex processes related to fabric cutting, i.e., sizing, cutting order planning, and 

marker making, that are determinative to the cost, should be optimized in the context 

of mass customization. 

 

1.1 Garment manufacturing 

Garment manufacturing contains a set of processes permitting transforming 

fabrics into garments. Facing consumers’ strong demands on higher personalization, 

lower cost, and sound quality, there is an emerging trend of garment mass 
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customization because it enables the personalized products offering at an acceptable 

price. The two cutting-related processes, i.e., the cutting order planning and marker 

making, are usually considered as the most complicated processes in the whole 

garment manufacturing. Therefore, significant mass customization progress in these 

processes is highly expected. Besides, the sizing process, which determines the 

development and production of garment patterns, should be addressed forward. 

 

1.1.1 Garment manufacturing processes 

The garment manufacturing is usually considered as a lengthy and complicated 

process (Nayak & Padhye, 2017). Consequently, the breakthrough in garment 

production at technical and organizational levels can ultimately help mass 

customization in this industrial sector in both theory and practice. 

 

1.1.1.1 Content of garment manufacturing processes 

Considering that (natural or synthetic) fibers, yarns, fabrics, and garments 

constitute four product stages of the textile manufacturing processes, we study in this 

thesis the garment manufacturing processes only, namely, the transformation of two-

dimensional fabrics into three-dimensional garments. It consists of four main 

sequential processes, i.e., fabric cutting, sewing, finishing/ironing, and packing 

(Figure 1.1). 

 

 

Figure 1.1 Workflow of the garment manufacturing processes. 

 

The processes of cutting and sewing are the two key elements in garment 
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manufacturing due to their relatively complex technologies and long time-consuming 

compared with the other two processes. Cutting is the upstream process of sewing, 

and sewing is served by cutting. In terms of work division, cutting is to cut cut-pieces 

from fabric rolls, while sewing is to assembly cut-pieces into a garment. Then the 

garment will be delivered from the final workstation of the assembly line in sewing to 

the finishing station for ironing processing, and finally, be packed into boxes in the 

last packaging process. In industrial practice, finishing and packing are placed in the 

same working area. 

 

1.1.1.2 Research issues on garment manufacturing 

Each process of garment manufacturing is composed of several steps. Table 1.1 is 

a classification scheme illustrating all the steps and corresponding technical details. 

 

Table 1.1 Classification scheme of technical details in garment manufacturing. 

Process Step Technical detail 

Cutting 

production planning 
cutting order planning 

lay planning 

marker making 

spreading and cutting sequencing 

spreading operation roll sequencing 

cutting operation - 

sorting and bundling - 

Sewing 

production planning 

sewing order planning 

sewing line design 
layout design 

sewing assembly line 

balancing 
quality control 

product inspection 

defect prediction 

sewing operation fabric handling 

Finishing finishing operation fabric folding 

Packing packing operation product packaging 

Management 
production planning 

order planning 

resource allocation 

quality control production monitoring 

 

1.1.1.2.1 Cutting 
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Cutting has a crucial impact on garment manufacturing that it is the first and 

leading process of all manufacturing processes affecting the following processes 

(Vilumsone-Nemes, 2018). The cutting cost accounts for a dominant fraction in the 

total garment manufacturing cost, because the fabric cost is usually more expensive 

than the other expenses and that the fabric consumption mainly occurs in the cutting 

process. The main work in cutting contains a set of operations including spreading, 

cutting, as well as sorting and bundling, which is guided by a good production plan. 

The Cutting Order Planning (COP), and the Spreading and Cutting Sequencing (SCS) 

constitute the production planning of cutting. The COP determines the layouts of lays 

and corresponding markers (M'Hallah & Bouziri, 2016), while SCS defines the 

working sequencing of the spreading and cutting operations (Wong, Chan & Ip, 

2000a). During the spreading operation, the sequencing of fabric rolls is also an 

important issue to be determined for fabric saving (Hui, Ng & Chan, 2000). 

 

1.1.1.2.2   Sewing 

Sewing is the most critical and intricacy process of garment manufacturing, 

which deals with a number of various operations, operators, and machines. It is 

manual work in most of the factories (Zoumponos & Aspragathos, 2008). The 

production planning in the sewing process consists of the sewing order planning and 

sewing assembly line design. The sewing order planning provides a production 

schedule for sewing orders to be put into production in turns within a limited time 

with the least inventory. The design of an assembly line considers two parts, i.e., the 

layout design and Sewing Assembly Line Balancing (SALB). An assembly line is a 

sequence of workstations equipped by operators who have the required skills and 

technological capabilities and machines with the required functions and connected by 

means of conveyance. The shape, the direction, the conveyor, the system type are 

elements considered in terms of the layout design. Garment assembly lines could be in 

different shapes like straight line, Z-shaped line, U-shaped line, or in a loop (Lin, 

2009). Operators could face the same or opposite direction. Center tables or tools like 

trolley, basket, or hanger are used for material handling in different sewing systems, 
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for example, the Progressive Bundle System (PBS) and the Unit Production System 

(UPS). Line balancing is to distribute tasks evenly to workstations with machines 

equipped, which is vital for efficiency (Hui et al., 2002; Wong, Mok & Leung, 2006; 

Eryuruk, Kalaoglu & Baskak, 2008; Guo et al., 2008a, 2008b, 2008c; Zeng, Wong & 

Leung, 2012). In a sewing line, each operator operates the given tasks in workstations 

equipped with machines for sewing or ironing as materials moving across the 

workstations. Before putting into production, the sewing line supervisors tackle the 

resources allocation problem with material, operator and machine to achieve a 

balanced loading. Since cut-pieces are assembled into garments in this process, a strict 

quality monitoring should be conducted here. Therefore, the product inspection and 

defect prediction are used for quality control. 

 

1.1.1.2.3   Finishing and packing 

Finishing, also called ironing, enables to straighten garments for packing. The 

main issue of the finishing process is fabric folding (Dai et al., 2004). 

Packing consists of a series of actions, i.e., sorting, piling, and packing. The 

product packaging is the main issue of the packing process. 

 

1.1.1.2.4 Management 

The order planning, resource allocation, and production monitoring of overall 

management are performed for a smooth workflow and a stable product quality. 

Some trends occurring in the garment manufacturing processes can be 

summarized using three keywords, i.e., “customized”, “agile”, and “green”. Facing 

the ever-increasing demand on customization from consumers, the proposed concept 

“mass customization” is to introduce customized products into the production 

processes which previously were designed for mass production (Zulch, Koruca & 

Borkircher, 2011). Advanced techniques like artificial intelligences have become 

attractive and powerful tools (Guo et al., 2011) having a great impact on automation 

and computerization of the garment industry (Nayak & Padhye, 2018). Emerging 

mobile technologies, such as Radio Frequency Identification (RFID), wireless sensor 
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networks, as well as cloud computing are applied to enhance communications in 

supply chains, or even between and in manufacturing departments (Ngai et al., 2014). 

Sustainability is a hot topic that efforts are made for increasing the usage of renewable 

sources and reducing water waste and carbon emission (Nayak, Akbari & Far, 2019). 

 

1.1.2 Mass customization in garment manufacturing 

There is an emerging trend of garment mass customization facing to consumers’ 

strong demands on higher personalization, lower cost, and sound quality (Anderson‐

Connell, Ulrich & Brannon, 2002; Fogliatto, Da Silveira, & Borenstein, 2012; Nayak 

et al., 2015). 

 

1.1.2.1 Evolvement and features of garment production paradigm 

The oxymoron “mass customization” was first coined by Davis (1987) in his 

book Future Perfect and popularized by the seminal work of Pine (1993). 

It is well known that “economy of scale” and “economy of scope” is a pair of 

conflicts. It has been well documented in the existing literature that mass 

customization provides significant strategic advantages in price and customization 

(Kumar, 2004; Alptekinoglu & Corbett, 2008). Mass customization is established by 

combining mass production and craft production, as shown in Figure 1.2. The former 

features the high production efficiency and the latter represents the high degree of 

product variety, aiming to produce adequately diversified products at reasonable 

prices. 
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Figure 1.2 Relation of the three production paradigms. 

 

Due to the increasing consumers’ demand for product variation, the garment 

industry like other classical industrial sectors is undergoing a revolution from mass 

production to mass customization (Dong et al., 2012; Hu, 2013; Nayak & Padhye, 

2015). Features of the three production paradigms in the garment industry are 

displayed in Table 1.2. Craft production mainly targets individuals for “economy of 

scope”. It performs a perfect fit and allows any wanted designs but costs high. Mass 

production serves a large population for “economy of scale”. It brings low cost but a 

poor fit and lack of wanted designs. Mass customization allows personalization 

towards craft production. Meanwhile it can control cost, speed, and quality towards 

mass production. In other words, mass customization provides both cost advantages 

and satisfaction of consumers’ personalized needs at the same time (Yang, Kincade & 

Chen-Yu, 2015). 

 

Table 1.2 Differences among various production paradigms 

Production 

paradigm 
Manufacturing strategy 

Personalization 

Degree 
Cost 

mass production made-to-order/stock common cheap 

mass customization 
made-to-measure/ 

configurate-to-order 
customized acceptable 

craft production bespoke individualized expensive 

 

1.1.2.2 Content of garment customization 
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Customization of garment includes two aspects, namely, custom-fit (Hu et al., 

2009; Mpampa, Azariadis & Sapidis, 2010; Tao et al., 2018) and co-design 

(Teichmann, Scholl-Grissemann & Stokburger-Sauer, 2016; Li & Chen, 2018), as 

shown in Figure 1.3. The fit-related customization refers to adjusting the pattern size 

using key dimensions, in order to close the gap between individual body dimensions 

and dimensions of the assigned garment size, and the design-related customization 

refers to satisfying personalization demands through changes of fabric materials or 

construction of new pattern shapes. 

 

 

Figure 1.3 Specific contents of garment customization. 

 

1.1.2.3 Research issues on garment mass customization 

From the beginning of the 21st century, mass customization of garments has 

become a very popular topic and attracted great attention from academic researchers 

to industrial companies (Senanayake & Little, 2010). Researches have been made in 

various aspects of garment mass customization, including customer relationship, 

customized product design, production process, supply chain management, and price 

issue. The key issues are demonstrated in Table 1.3. 
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Table 1.3 Classification scheme of issues on garment mass customization. 

Issue Sub-issue 

Customer 

relationship 

customer perspective (preference, willingness, motivation, 

satisfaction)  

e-commerce (user-interface/web design, co-design system, 

recommendation system) 

Product 

design 

advanced design technologies (3D scan, VR, CAD, AI) 

customization design system 

Production 

process 

advanced manufacturing technologies (CAM, digital printing) 

production methods (postponement, modularity/product family, 

batch/mass manufacturing, concurrent engineering) 

Supply chain 

management 

information network 

logistics 

Price 
personalization and cost analysis 

pricing strategy 

 

1.1.2.3.1 Customer relationship 

Western societies now have entered an “experience economy” (Pine & Gilmore, 

1999) that consumers increasingly derive value from experiences. Companies should 

emphasize not only on product and production, but also improving customer 

satisfaction and safeguarding a tight customer relationship. Accordingly, on one hand, 

investigations have been implemented on customer perspectives to explore customer 

motivations, willingness (Fiore, Lee & Kunz, 2004) and preferences (Lee et al., 2002; 

Deng, Hui & Hutchinson, 2010) to mass customized garments. On the other hand, to 

promote consumers’ participation in product design in e-commerce, research attention 

is laid on user-interface (Hankammer et al., 2016; Tangchaiburana & 

Techametheekul, 2017) and recommendation function (Vogiatzis et al., 2012) of 

customer-interaction web-designs. These works could aid in the development of more 

effective marketing efforts, a better understanding of consumers’ needs and ideas, and 

gaining a rich customer experience in the application of mass customization in the 

garment industry. 

 

1.1.2.3.2 Product design 

Advanced design technologies including 3D anthropometry/scan, Virtual Reality 
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(VR), Computer-Aided-Design (CAD), and Artificial Intelligence (AI) have been 

widely applied in the product design process in order to satisfy consumers’ needs, 

especially for fit satisfaction. 

Anthropometric data automatically derived from a 3D scan (Daanen & Hong, 

2008; Su, Liu & Xu, 2015) are used to produce individual patterns for improving the 

garment fit. VR is employed to build 3D body models (Cho et al., 2005; Zhou et al., 

2016) and 3D garment models (Cho et al., 2005; Au & Ma, 2010; Tao & Bruniaux, 

2013; Thomassey & Bruniaux, 2013; Zhu et al., 2017; Tao et al., 2018) especially for 

displaying the wearing effect in a collaborative design process. The product design 

with CAD tools allows mass customization through automatic alteration of patterns 

based on individual body measurements (Istook, 2002; Yang, Zhang & Shan, 2007; 

Huang et al., 2012; Han, Kim & Park, 2015). Two AI applications have been found in 

the product design of mass customization, that Fuzzy Logic (FL) was used in a 

method of ease allowance generation for garment personalized design in (Chen et al., 

2008) and a GA was proposed for the production decision making in (Xu et al., 2017). 

Establishing customized design systems is another hot issue during product 

development. These proposed systems deal with customer integration (May‐Plumlee 

& Little, 2006; Li & Chen, 2018), the adaptation of advanced technologies like 3D 

scan, CAD, and laser-cutting machine (Lu et al., 2010, Satam, Liu & Lee, 2011), and 

product modularity (Pan, 2016). 

 

1.1.2.3.3 Production process 

The optimization of manufacturing in garment mass customization has not been 

holistically tackled in industrial and academic practices. 

Advanced technologies such as CAM (Dong et al., 2012), and digital printing 

(Ren, Chen & Li, 2017) are mentioned to be used in the implementation of garment 

mass customization. 

Duray (2002) suggested that mass customization processes, which are designed to 

be close to the existing mass production processes, usually lead to a good financial 

performance. Thus, mass production cost-effective expertise and methods of 
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production should be considered, like the batch manufacturing and sizing systems 

(Duray, 2002; Mpampa, Azariadis & Sapidis, 2010). Additionally, postponement 

(Weskamp et al., 2019), and modularity (Wang et al., 2014) are two effective 

strategies to achieve mass customized garments. Postponement customizes products 

by delaying product differentiation. In garment mass production, it is an efficient way 

to make a pattern quickly by controlling an underlying the structure identified as a 

foundation for multiple styles. Thus, in garment mass customization, for each model, 

the variations can be made based on foundation. Modularity‐based manufacturing is 

the application of unit standardization or substitution principles to create modular 

components and processes that can be configured into a wide range of end products to 

meet specific consumer needs (Tu et al., 2004). In garment mass customization, 

modularity is the use of pre-cut and pre-assembled pieces, i.e., modules, for 

production (Yang, Kincade & Chen-Yu, 2015). 

 

1.1.2.3.4 Supply chain 

Setting up smooth flows of information and goods is a key research emphasis in 

garment manufacturing supply chain in the context of mass customization. 

Shang et al. (2013) created a communication platform using the network, cloud 

technology, and other technologies to meet the demands of information flow and 

logistics in garment mass customization. Yinan, Tang & Zhang (2014) proposed that 

organizational flatness should facilitate effective lateral communication among supply 

chain partners in order to increase coproduction capacity. 

 

1.1.2.3.5 Cost and selling price 

Cost/price is a vital topic in mass customization strategy. The variety and depth of 

customizations determine the manufacturing complexity, which affects the 

manufacturing cost. The related work includes handling the le dilemma between 

personalization and cost, as well as setting a proper pricing strategy. As such, the 

relation between personalization level and cost are discussed in (Jost & Susser, 2019). 

 



 

32 

 

1.1.3 Cutting process 

The cutting process is in the first phase of garment production, in which the 

production cost is the highest. The corresponding production methods and techniques 

need to be adjusted or even changed for mass customization. 

 

1.1.3.1 Content of the garment cutting process 

In a garment-cutting process, the garment patterns are cut out based on the 

standard sizes generated from a sizing system. As shown in Figure 1.4, cutting 

contains a series of steps starting with the production planning which includes the 

Cutting Order Planning (COP) and Spreading and Cutting Sequencing (SCS). The 

COP consists of lay planning and marker making, followed by the spreading 

operation, the cutting operation, and the sorting and bundling operations. 

 

 

Figure 1.4 Workflow of the cutting process of garment manufacture. 

 

The COP (or also called the cutting scheduling) is conducted once production 

orders are received. It is a basic and crucial step of the cutting process and the premise 

of Spreading and Cutting Sequencing (SCS). The COP and the SCS provide a 

guidance of the following operations: spreading, cutting, sorting and bundling. The 
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purpose of the COP is to propose an optimal lay plan and its corresponding markers 

satisfying the constraints of order content, production conditions, delivery time, etc. A 

lay/stack consists of a certain number of fabric plies. A maker shows the layout of 

patterns which will be cut out from the lay. 

The SCS refers to the balancing of spreading and cutting operations aiming to 

eliminate the idle time and satisfy the time constraint within the spreading and cutting 

capacity. 

As the setup option of the cutting process, the spreading operation contains 

several actions: spread fabric rolls, cut fabric into pieces, superpose these pieces into 

lays on a cutting table, and finally spread the marker across the top fabric ply. 

Following the cutting route generated according to the pattern layout on the 

marker, cut-pieces are cut out from fabric lays and then sorted and bundled for 

assembling use. 

The cutting process should first fulfill the quantities of the cut-pieces required by 

the orders. In addition, it is subject to physical constraints in terms of fabrics and 

cutting devices: the fabric type/the cloth thickness and the cutting knife depth that 

determine the maximum ply count, the cutting table length that determines the 

maximum marker length, as well as the fabric width that determines the marker width. 

Figure 1.5 gives a sketch showing all the steps included in the garment cutting 

process. First, in the cutting production planning step, we generate a lay plan and a 

marker of COP, a Gantt chart of the SCS. Under these three instructions, the cutting 

related operations (i.e., spreading, cutting, sorting and bundling) are then performed. 
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Figure 1.5 Sketch of the key steps in the garment cutting process. 

 

1.1.3.2 Research subjects of garment cutting process 

 

Table 1.4 Subjects and corresponding objectives on improvement of garment cutting 

process. 

Step/subject Objective 

production 

planning 

COP 
lay planning 

overproduction, setup cost, 

fabric cost, marker cost, 

machine and labor cost 

marker making marker length, cutting length 

SCS makespan 

operations 

spreading 
fabric roll 

sequencing 
fabric consumption 

cutting - 

sorting and bundling - 
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Researchers have paid much attention to the steps and related objectives of the 

cutting process listed in Table 1.4. 

 

1.1.3.2.1 Lay planning 

This is a step for planning lays with specific ply numbers for cutting out the 

required garment pieces satisfying orders while minimizing the total cost. The most 

concerned cost-related factors include fabric, spreading and cutting operations, and 

excess production. 

In the past 30 years, lay planning has received continuous attention. Exact 

methods, i.e., enumeration (Rose & Shier, 2007), Integer Programming (IP) 

(Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans, 2002), and artificial 

intelligence-based algorithms, i.e., heuristics (Jacobs-Blecha et al., 1997), meta-

heuristics (Martens, 2004; Fister, Mernik & Filipic, 2008; Wong & Leung, 2008), and 

hybrids (Fister, Mernik & Filipic, 2010), were used to solve this cutting stock 

problem. One of the earliest researches was conducted by Farley (1988). He utilized 

an Integer Programming (IP) and a Quadratic Programming (QP), in which the 

sewing capacity constraint was considered. Publications boomed between 1995 and 

2010. Degraeve & Vandebroek (1998) proposed a Mixed Integer Programming (MIP), 

based on which, IP models were introduced in (Degraeve, Gochet & Jans, 2002) and a 

GA was applied afterward in (Martens, 2004). Apart from IP, an exact enumerative 

approach (Rose & Shier, 2007) was another developed exact method. Evolutionary 

algorithms were the most employed algorithm (Fister, Mernik & Filipic, 2008; Wong 

& Leung, 2008; Fister, Mernik & Filipic, 2010). Besides, Ant Colony algorithm 

(ACO) and Simulated Annealing (SA) were also adopted in (Yang, Huang & Huang, 

2011) and (M'Hallah & Bouziri, 2016) respectively. 

 

1.1.3.2.2 Marker making 

The fabric cost comprises a great part of the production cost in garment 

manufacturing, while maker making is always the major determinant of fabric 

utilization. Marker making aims to pack a given set of patterns within a rectangular 



 

36 

 

surface of a fixed width in such a way as to minimize the length required. 

Since the 1990s the problem of marker making has attracted considerable 

attention. The irregular garment patterns are represented first by a geometric approach 

(Heckmann & Lengauer, 1995) and later by a digitized approach (Wong & Leung, 

2009). The placements of irregular shapes representing garment patterns are produced 

and optimized by using computer graphics techniques (Ko & Kim, 2013), exact 

algorithm (Heckmann & Lengauer, 1998), heuristics (Amaral, Bernardo & Jorge, 

1990; Jaidormrong, Chaiyaratana & Hassamontr, 2003, July; Awais & Naveed, 2015), 

and meta-heuristics including Simulated Annealing (SA) (Heckmann & Lengauer, 

1995; Javanshir et al., 2010), Genetic Algorithms (GAs) (Bounsaythip & Maouche, 

1997, October), and Neural Networks (NNs) (Wong & Guo, 2009). 

 

1.1.3.2.3 Spreading and cutting sequencing 

The cutting process has to fulfill the quantities of the cut-pieces required by the 

downstream sewing lines in time, in which the optimal schedule of the spreading and 

cutting operations is a key issue. Otherwise, a bad schedule will lead to a poor work 

balance with an idle time of spreading and cutting machines. 

Wong and his partners made efforts for dealing with the spreading and cutting 

problem in the first decade of the 21st century. In an endeavor to achieve a full 

utilization of the spreading and cutting capacity, they formulated a spreading and 

cutting sequencing model and applied GAs to search for the optimal configuration 

(Wong, Chan & Ip, 2000a, 2000b; Wong, 2003c; Wong et al., 2005, 2006; Kwong, 

Mok & Wong, 2006; Mok, Kwong & Wong, 2007) and used a queue theory which 

could achieve similar results (Wong, 2003a). Additionally, they adopted a fuzzy set 

theory for uncertainties in the real-life manufacturing environment (Wong, 2003b; 

Wong et al., 2005; Kwong, Mok & Wong, 2006; Mok, Kwong & Wong, 2007). 

 

1.1.3.2.4 Fabric roll sequencing 

The variance of fabric yardage between fabric rolls induce the fabric loss during 

fabric spreading. Therefore, more attempts have been made to handle the fabric-roll 
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sequencing for each cutting lay. 

A few studies were made for sequencing the fabric rolls around the year of 2000. 

Ng, S. F. first presented a theoretical model using exact methods (Ng, Hui & Leaf, 

1998) to calculate the fabric loss and conducted a comprehensive survey of the actual 

loss incurred in practice later (Ng et al., 2001). Based on Ng’s work (Ng, Hui, Lo & 

Chan, 2001), Hui, afterward, applied Genetic Algorithms (GA) to search for an 

optimal fabric-roll plan (Hui, Ng & Chan, 2000). 

 

1.1.4 Sizing 

Sizing aims at generating standard garment sizes. It is a link in the production 

design and development section, preceding cutting. A garment sizing system 

facilitates pattern development in both design and manufacturing processes and size 

assignments to individuals.  

 

1.1.4.1 Overview of sizing 

Garment sizing systems are constructed for the development of standard garments 

used in mass production. The standard sizes generated from sizing systems provide 

guidance when garment patterns are cut out in the garment cutting process. Sizing 

means deriving a set of sizing systems according to anthropometric data of the 

population in order to standardize garment sizes, and hence consumer satisfaction 

with garment fit. The garment fit is determined by the correspondence of certain body 

measurements to values for which the garment is intended. Objectives of sizing 

mainly concern the improvement of garment fit and the control of production cost 

including increasing the population accommodation rate, reducing the size number, or 

improving the overall fit in accommodated individuals. Efforts to advanced sizing 

system development are made for solving problems like improper fit for consumers, 

inconvenient for production, and endless trails for finding the right size. 

The construction of garment sizing systems is composed of three steps (Gupta & 

Gangadhar, 2004): 1) the development of sizing systems based on population groups, 
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2) the validation of sizing systems, and 3) the designation of garment sizes. Figure 1.6 

demonstrates the traditional processes of building sizing systems in mass production. 

 

 
Figure 1.6 Flowchart of building sizing systems in traditional garment mass 

production. 

 

In the developing phase, garment sizes are generated in four steps. The first is the 

collection of anthropometric data including important dimensions for pattern making 

like height, waist height, hip height, waist girth, and so forth. The second is the 

determination of key dimensions, i.e., primary and secondary dimensions. The third is 

the division of the population into homogenous groups according to body 

characteristics, i.e., key dimension measurements and figure types. And the final step 

is the generation of linear size systems that range from very small to very large for 

population groups. In the validation phase, the evaluation of garment sizes regarding 

size number, accommodation, and fit satisfaction is facilitated with parameters of size 

roll, coverage/accommodation range, and aggregate loss respectively. In the 

designation phase, the labeling of garment sizes is conducted by using Arabic 

numerals, English letters, or their combinations. 
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1.1.4.2 Research progress of sizing 

The research on garment sizing started early from the 1950s (Staples & DeLury, 

1949; Emanuel et al., 1959) and continues with now (Hu et al., 2019). In the 

beginning, the studies dealt with military uniforms (Emanuel et al., 1959; Robinette, 

Churchill & McConville, 1981; Mellian, Erwin & Robinette, 1990; Robinette, Mellian 

& Ervin, 1991). Sizing standards, for instance ISO 3637, ASTM D5585, BS EN 

13402, etc., were made to provide scientifically derived reliable information on body 

shapes and sizes for producers in order to develop patterns in garment manufacturing. 

To achieve an improved sizing methodology, various technologies were applied in the 

literature like exact methods (Tryfos, 1986; Gupta & Gangadhar, 2004; Gupta et al., 

2006; Mpampa, Azariadis & Sapidis, 2010), data mining (Ibanez et al., 2012; Hsu & 

Wang, 2004; Hrzenjak, Dolezal & Ujevic, 2014), and soft computing (Vadood, 

Esfandarani & Johari, 2015; Hu et al., 2019). 

The linear structure is considered as the traditional layout of sizes widely applied 

in garment manufacturing practice. The comparison with other structures, i.e., two-

tiered and unconstrained structures, was made in (Ashdown, 1998). Due to the various 

body proportions, linear sizing systems that range from very small to very large sizes 

cannot accommodate all body types. The unconstrained sizing systems bring a larger 

coverage and a better fit but usually cause difficulties in pattern grading and size 

designation. 

The performance of sizing systems was evaluated in various aspects in terms of 

accommodation, size number, fit, and population distribution related to sizes. The 

aggregate loss (Tryfos, 1986) became a commonly used criterion for evaluation of 

garment sizing systems (McCulloch, Paal & Ashdown, 1998; Gupta & Gangadhar, 

2004; Chung, Lin & Wang, 2007; Ibanez et al., 2012; Vadood, Esfandarani & Johari, 

2015). A garment sizing system with a higher coverage rate and a smaller size number 

was preferred. McCulloch, Paal & Ashdown (1998) proposed a nonlinear 

programming approach that was able to identify the accommodated individuals 

simultaneously with the selection of the prototype body size. Pei et al. (2017) 

https://en.wikipedia.org/w/index.php?title=ISO_3637&action=edit&redlink=1
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proposed a complete workflow to improve body size charts without changing the 

number of sizes in the range, namely, equalizing the number of people accommodated 

by each size within the range. In addition, an even population distribution to sizes is 

regarded as a good performance in sizing (Ashdown, 1998). 

Some optimization techniques were proposed to create a sizing system for a 

better fit, such as integer programming (Tryfos, 1986), and a nonlinear optimization 

approach (McCulloch, Paal & Ashdown, 1998). 

Statistical analysis methods, i.e., multivariate analysis (Xia & Istook, 2017), 

Principal Component Analysis (PCA) (Zakaria et al. 2008; Salehi Esfandarani & 

Shahrabi, 2012; Hrzenjak, Dolezal & Ujevic, 2014; Widyanti et al., 2017), Factor 

Analysis (FA) (Zakaria et al. 2008; Hrzenjak, Dolezal & Ujevic, 2014), and Analysis 

of Variance (ANOVA) (Hsu, 2009; Hsu & Wang, 2004), were most widely employed 

for analyzing body dimensions. 

The classification issue of dividing the population into homogeneous subgroups 

based on some key body dimensions was widely discussed in the literature. Emanuel 

et al. (1959) formulated standard sizes for all body types by first classifying bodies 

having similar body weight and height into different categories. Hsu (2008) proposed 

a bust-to-waist girth ratio approach for identifying female body shapes in order to 

develop body measurement charts. Data mining technologies were applied especially 

during this decade. In (Hsu & Wang, 2004), the classification and regression tree 

(CART) technology was used to mine data in order to identify and classify significant 

patterns in the body shapes of soldiers and establish standard-sizing systems. A two-

stage cluster analysis approach was used to develop sizing systems (Chung, Lin & 

Wang, 2007; Hsu, 2009). The approach used the Ward’s minimum variance method to 

determine the number of figure types, and subsequently, applied the K-means cluster 

analysis to group the homogeneous individuals into each figure type. In (Zakaria et al. 

2008), the K-means cluster method was used to segment the children into distinct 

clusters, which were validated by a decision tree. These segmented groups were then 

converted into size tables for a certain group of girls aged between 7 and 12 years old. 

A K-mean algorithm was also used in (Salehi Esfandarani & Shahrabi, 2012) to 
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change the heterogeneous population to a homogenous population in building sizing 

systems for Iranian males. A trimmed version of the Partitioning Around Medoids 

(PAM) algorithm jointly with Weighted Averaging Operators (OWA) was proposed to 

develop an efficient apparel sizing system (Ibanez et al., 2012). With applications of 

artificial intelligence in the garment industry, neural networks were also widely used 

for building sizing systems in recent studies. Vadood, Esfandarani & Johari (2015) 

presented a sizing chart for Iranian male suites where different body types are 

clustered using the Kohonen neural network. Hu et al. (2019) applied a GA with the 

Support Vector Clustering (SVC) model to develop an upper garment size system with 

an increased fit and a reduced size number. The SVC technique was used to classify 

sizes, and the GA technique determines the optimal parameter values of the model. 

 

1.1.5 Cutting order planning 

The cutting order planning includes lay planning and marker making. Usually 

addressed in the literature is the lay planning problem only, taking identical marker 

lengths. Lay planning aims at arranging garment patterns in layers of fabrics with 

limited height. The optimization of lay plans is beneficial to the minimization of the 

total garment manufacturing cost in terms of cutting, i.e., fabric, spreading and cutting 

operations, and excessive production. 

 

1.1.5.1 Overview of cutting order planning 

The research on cutting order planning from the earliest study to the present has 

lasted for about thirty years. More attention has been made to made-to-order 

production. Unlike those with large quantities in mass production, there is a 

significant trend of fast fashion orders with small lot sizes. Integer programming, 

heuristics, enumeration, and graph theory are the approaches applied in the literature 

for solving the NP-hard problems, among which IP and heuristic algorithms are 

especially attracted by scholars. In this area, some classical work provided a solid 

foundation. The studies of Farley, Elomri, and Degraeve first introduced IPs to solve 
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the cutting order planning problem, while heuristic algorithms were earliest used by 

Jacobs-Blecha. An IP is appropriate to represent the problem at a basic level (Figure 

1.7). The main objective to achieve was to reduce various costs, i.e., fabric cost, labor 

cost, and machine cost, or cost-related components: number of markers, number of 

lays, and number of excessive products. The assumptions made in the modeling 

process either considered setting some parameters with different specific values as 

constants, such as material price and length of different markers, or required certain 

markers or lays to be full. For certain specific situations, modifying the model and 

adding more constraints can be conducted for finding the solutions. Additionally, for a 

shorter computation time, heuristics, and AIs can be applied. Among all the 

contributors, researchers from KU Leuven have a significant contribution with three 

representative papers (Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans, 

2002; Martens, 2004) published in high-impact journals. “European Journal of 

Operational Research” and “International Journal of Production Economics” are the 

top most relevant journals in this area (Martens, 2004, Wong & Leung, 2008). 
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Figure 1.7 Frame of an integer programming model for the cutting order planning. 

 

1.1.5.2 Research progress of cutting order planning 

One of the first initial attempts of developing mathematical-programming models 

for solving the cutting stock problem in the garment industry was presented by Farley 

(1988). Both integer and quadratic formulations were introduced under the constraints 

with unique characteristics that occur in the laying, cutting and sewing operations to 

satisfy the objective of maximizing the annual contribution margin accruing from its 

production and sale of garments. The quadratic model is made for eliminating the 

integer variables and reducing the problem to a manageable size but it cannot 

guarantee the global optimum. Both models include various parameters that must be 
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selected by the user and determined by practical experience. Especially, an explicit 

distinction between two broad garments categories (i.e., stock garments and made-to-

order garments), was made and two kinds of fabric lay  (i.e., step lay and rainbow lay) 

are discussed and analyzed in this study. For stock garments, holding stock is 

allowable, and for made-to-order garments, overproduction should be kept at a 

minimum. A step lay is possible to combine into one lay stack of different heights, 

and a rainbow lay is also possible for one stencil cut in different colors or of different 

fabric types. 

Elomri et al. (1994) and Degraeve & Vandebroek (1998) separately made further 

studies on the same topic afterward. 

In 1994, Elomri combined linear and non-linear programming in order to obtain 

sufficient precision in a very short time and with small memory requirements when 

solving the cutting problem which consists of choosing the patterns in the library, 

permitting to satisfy the client order with minimum cutting operating cost. The 

problem was solved by building the matrix form of the system constraints and putting 

the discontinuous economic function between two linear functions. The economic 

function defined in this study is a sum of several values related to the various 

operations of the cutting process, namely, costs regarding laying, cutting, fabric and 

material wastage, the time spent at the beginning and end of each laying, as well as 

the cost for taking away the cut-pieces and so forth. Some steps with low costs, such 

as costs for separating lots of articles and changing rolls, can be neglected. 

In Degraeve’s paper, a Mixed Integer Programming (MIP) model was proposed. 

It searched for an optimal set of markers, each giving a combination of articles to be 

cut in one operation and the corresponding stack heights, in which the total production 

costs can be optimized by minimizing the number of the cutting operations without 

performing excessive production. In order to restrict the solution space, the objective 

function was altered by fixing the number of different markers. It is the first paper 

from KU Leuven on the cutting order planning problem. 

Later in 2002 and 2004, the research team of KU Leuven published the other two 

papers. One proposed two new IP models, and the other applied GAs to solve large 
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real-life problems. Both studies extended the objective function to the total cost. 

In (Degraeve, Gochet & Jans, 2002), two improved alternative IP models were 

proposed for the same layout problem described in (Degraeve & Vandebroek, 1998). 

The objective is to minimize the total production quantity with a fixed number of 

markers. One of the new models eliminated alternative optima among markers by 

imposing an ordering of the sizes within each marker. The other imposed a lower 

bound on the number of stencils needed in one marker in order to eliminate 

unnecessary variables. The computational results indicated a general outperformance 

of the alternative models compared with the originally proposed model. In addition, 

the model has been extended to a case with the objective of minimizing total cost, 

which is composed of fabric cost, spreading cost, cutting cost, and setup cost. 

Martens (2004) built two GAs based on two alternative IPs, including NLIP and 

LIP models, proposed in (Degraeve & Vandebroek, 1998) that generate optimal or 

near-optimal solutions on small problem instances and solve large, real-life layout 

cases in an acceptable amount of time. The evaluation result showed that GA1 can 

find better solutions for a wide number of layout problems in a much smaller amount 

of time than GA2. 

Heuristics were first mentioned to solve the garment cutting stock problem in 

1997 (Jacobs-Blecha et al., 1997). Jacobs-Blecha proposed a mathematic model 

aiming to minimize the total cost regarding fabric, cutting, spreading, and marker 

making that the addressed COP problem was performed independently of the 

downstream production considerations. Three greedy heuristics, including two 

constructive: Savings and Cherry Picking, and one improvement algorithm, were 

developed as computationally efficient procedures solving the COP problem to figure 

out size combination of markers and find low fabric cost solutions because of the 

significantly large impact of the cost of fabric on the total cost of the cut order 

planning process. Among the heuristics, Savings performed better than the Cherry-

Picking algorithm and at least as good as the commercial packages, the improvement 

algorithm helped to optimize fabric utilization when applied to all solutions. 

Algorithms of EAs (excluding GAs) and other meta-heuristics or hybrid 
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algorithms were developed afterward.  

Wong & Leung (2008) proposed a genetic optimization approach using adaptive 

ESs in order to genetically synthesize the cutting order plan and complete the order 

with minimized total cost which emphasizes on fabric cost and extra products under 

the time constraint predetermined by the downstream assembly departments. 

This paper focused on transforming marker optimization into the 0/1 knapsack 

problem and designed evolutionary algorithms searching for an optimal minimum 

combination of markers to accomplish a work order which outperformed those 

existing deterministic algorithms, i.e., greedy heuristics. There lied a premise of this 

study that in practice, the minimum number of markers was the most often used 

optimization criterion that could be used as an approximation for minimizing real 

costs and was suitable for mathematical treatment. 

Two years later in (Fister, Mernik & Filipic, 2010), Fister proposed a Hybrid Self-

Adaptive Evolutionary Algorithm (HSA-EA) which improves the results of the 

previous simple evolutionary algorithms (Fister, Mernik & Filipic, 2008). In contrast, 

it successfully dealt with the objective of minimum preparation cost representing 

material, marker making, spreading and cutting costs which was identified and 

mathematically expressed instead of the minimum number of markers. The HAS-EA 

was a self-adaptive evolutionary algorithm hybridized using construction heuristics 

and improved with local search heuristics where the former solves the problem 

traditionally and the latter directs each solution into a local optimum. As especially 

shown in numerical experiments in this study, the material cost was much higher than 

the costs of marker making, spreading and cutting combined that it was the crucial 

objective for this production. 

In the study of (Yang, Huang & Huang, 2011), Yang proposed a heuristic model 

considering setup, excess, and cloth layer costs. The ACIP model was a combination 

of Ant Colony Optimization (ACO) and an Integer Programming (IP) that ACO was 

applied for selecting the appropriate combination of cutting patterns and an IP model 

was developed for identifying the number of layers of cloth for each cutting pattern 

and computing the total cost. 
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In (M'Hallah & Bouziri, 2016), lay planning and marker making was combined 

into a single problem with the objective of minimizing fabric length solved using five 

constructive heuristics, and three meta-heuristics (i.e., a stochastic local improvement 

heuristic based on Simulated Annealing (SA), a global improvement heuristic based 

on Genetic Algorithms (GA), and a hybrid heuristic denoted genetic annealing. 

Different from current industrial practice, the study regarded the length of the layout 

of a section was known in advance, and it did depend on its combination of sizes. 

In addition to mainstream integer programming methods and heuristic algorithms, 

enumeration and graph theory have also been applied in some research projects. 

Rose presented a practical two-stage enumerative approach satisfying all 

demands exactly with the minimum number of lays (Rose & Shier, 2007). One 

variation of the two-stage approach would place a limit on the number of unique 

optimal solutions generated for consideration that for some instances, the number of 

optimal solutions could be prohibitively large. Besides, the hypothesis that all 

multiple-ply markers are full should be made to guarantee an optimal solution. 

In (Nascimento et al., 2010), the cutting order planning problem was modeled 

with the non-convex objective function including the various cost components 

including setup cost of lays, spreading setup cost, spreading cost, cutting cost, cost of 

folding losses, cost of imperfect template fit, inventory cost and markdown or 

obsolescence costs. So, an innovative state-space approach using heuristic rules was 

proposed to solve the problem where each possible schedule is modeled as a node in 

an initially unknown graph, the objective is to search for the lowest-cost schedule, and 

heuristic procedures are used for shortening processing times. 

 

1.1.6 Marker making 

The fabric cost is the major cost item in clothing products, while maker making is 

always the major determinant of material utilization. Additionally, considering the 

marker variances (i.e., maker length and cutting length) in cutting order planning can 

comparatively lead to a low-cost cutting plan. Thus, the optimization of marker 
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making proves effective. 

 

1.1.6.1 Overview of marker making 

The marker making is laying out garment patterns within a rectangular surface 

with a fixed width, which is determined by equipment effective width, fabric width, 

and ease allowance. In the literature, the marker making problem is regarded as a 

Cutting Stock Problem (CSP), also is called an irregular object packing problem, an 

irregular nesting problem, or, to specify, a Two-Dimensional Layout (TDL) 

optimization problem. The principal purpose is to gain the best fabric utilization 

without overlap. The efficiency of a marker is therefore represented by the required 

marker length. The most restrictive constraint is the limitation of allowed rotation 

angles for the stencils. If needed, the symmetry and rapport constraints should be 

obeyed that a dependency between the placement positions of different patterns will 

be created. In the marker making process, there are three steps, i.e., pattern 

presentation, layout determination, and pattern compaction (Jaidormrong, 

Chaiyaratana & Hassamontr, 2003). As shown in Figure 1.8, in the first step, patterns 

in irregular shapes are represented by polygons, namely, the geometric representation, 

or by two-dimensional matrices, namely, the digitized representation, the next step is 

to generate layouts for these patterns, and finally adjust each pattern position and 

maximize the fabric utilization further. 

 

 

Figure 1.8 Sketch of steps in the marker making process. 
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1.1.6.2 Research progress of marker making 

One of the earliest studies was made by Amaral, Bernardo & Jorge (1990). Since 

then, continuous researches for solving the complex garment marker making problem 

have been conducted. The pattern representation and layout optimization are the two 

key sub-problems in this domain. Patterns in irregular shapes were mainly enclosed 

by geometric shapes at the beginning. Later with the development of digital 

technologies, the grid approximation was introduced by Wong. Under this technique, 

each garment pattern is divided into a finite number of equalized cells. The layouts 

were produced and optimized by using exact methods and advanced computing 

algorithms for a reduction of the overall calculation time. The most adopted 

algorithms are heuristics and evolutionary algorithms. Besides, simulated annealing, 

neural networks are mentioned as well. In the literature, Wong from the Hong Kong 

Polytechnic University made a relatively in-depth study using the proposed grid 

approximation-based representation and meta-heuristics, i.e., Evolutionary Strategy 

(ES) and Neural Network (NN). 

Amaral is one of the first to take the step of realizing the fully automatic 

placement of garment patterns. In the study (Amaral, Bernardo & Jorge, 1990), he 

proposed a sliding algorithm for the interactive placement of irregular shapes used in 

the GIZ graphic editor and developed a heuristic approach which uses the sliding 

algorithm for an automatic marker making. All the garment patterns in irregular-

shapes are circumscribed by polygons with fewer points and placed following a 

greedy strategy by the sliding algorithm to achieve considerable material savings. The 

described algorithms were indicated to be applicable in a general way to the irregular 

shapes in the garment industry. Another attempt made with heuristics was reported in 

a conference paper (Jaidormrong, Chaiyaratana & Hassamontr, 2003, July). The 

design and development of a software tool using a top-down design paradigm was 

described where a heuristic search strategy is developed for layout determination on 

plain fabric, fabric with horizontal or vertical stripes, and fabric with checkered 

patterns. 
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In (Heckmann & Lengauer, 1995), Heckmann introduced a meta-heuristic: a 

Simulated Annealing (SA)with a fully dynamic statistical cooling schedule to solve 

this layout problem. For each garment pattern, a polygonal enclosure was calculated 

and used to represent it. Three years later in (Heckmann & Lengauer, 1998), he 

proposed two upper-bound procedures, where original garment patterns were 

represented by polygonal approximations. For the upper bounds he used greedy 

strategies based on hodographs and a global optimization based on simulated 

annealing. For the lower bounds he used branch-and-bound methods for computing 

optimal solutions of placement subproblems that determine the performance of the 

overall subproblem. There was room for improvement in the runtime and the outputs. 

Another usage of SA in solving this problem was described in (Hwan & Jin, 

2002). In this study, the rectilinear polygon approximation technique was used that 

fabric patterns, usually in non-convex shapes, were approximated as rectilinear 

polygons and at first allocated in random positions using the Multi-BSG algorithm 

(Sakanushi, Nakatake & Kajitani, 1998). Then, the most efficient marker was 

searched fast using a stochastic simulated annealing method. 

In 1995 and 1997 IEEE conferences of International Conference on Systems, 

Man, and Cybernetics, Bounsaythip first used evolutionary algorithms (EA) to deal 

with the cutting nesting problem where patterns in polygons were circumscribed by 

bounding rectangles. The reduced-combs encoding method was used to find the 

smallest enclosing rectangles conveniently. 

In (Yeung & Tang, 2003), Yeung used a combination of a Genetic Algorithm 

(GA) and the novel heuristic “Lowest-Fit-Left-Aligned” (LFLA) heuristic approach 

with which the complex two-dimensional strip-packing problem was transformed into 

a simple permutation problem to be effectively solved and the searching domain was 

reduced. It was shown from the simulation results that the optimal results could be 

obtained in a reasonably short period. 

Vorasitchai tried to improve applications of GAs to solve the nesting problem by 

finding good parameter settings for the specific garment cutting layout problem 

(Vorasitchai & Madarasmi, 2003). 
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Between 2009 and 2010, Wong proposed to use the grid approximation (Ismail & 

Hon, 1992) instead of the traditional geometric approach for pattern representation, 

and concentrated on the application of meta-heuristics, i.e., Evolutionary Algorithms 

(EAs) and Neural Network (NNs), to the irregular garment patterns packing problem. 

Wong & Leung (2009) hybridized a Heuristic packing (HP) approach based on the 

grid approximation with an integer representation-based (µ+λ) evolutionary strategy 

(ES). Wong et al. (2009) hybridized a two-stage packing approach based on grid 

approximation with an integer representation-based Genetic Algorithm (GA). Wong & 

Guo (2009) proposed a hybrid approach combining a grid approximation-based 

representation, a learning vector quantization Neural Network (NN), a heuristic 

placement strategy, and an integer representation-based (μ+λ) Evolutionary Strategy 

(ES). 

The other methods were also proposed. Especially, image processing, 3D 

simulation, computer graphics techniques have been used for solving cutting nesting 

problems. In Ko’s work (Ko & Kim, 2013), a pattern nesting process for garments 

made of fabrics with complex figures was developed. In this study, image processing 

techniques were used to detect repeated graphical units from digitalized images of 

fabrics. Then, a three-dimensional simulation was used to design garments by taking 

these graphical units as texture maps. Next, a simple nesting method was used for 

placing patterns one by one according to their sizes. Finally, the patterns of garments 

were arranged on the fabric automatically so that the continuity of the graphical 

figures can be preserved while minimizing the loss of fabrics. 

In addition, a linear programming approach was mentioned in (Awais & Naveed, 

2015). In the study, a width-packing heuristic was used for shapes grouping, a column 

generation method was introduced for mapping groups onto the stock, and a linear 

programming approach was applied for selecting the minimum number of stock sheet 

layouts. 

 

1.2 Optimization techniques in garment manufacturing 
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In the previous section, research progresses made in garment manufacturing 

processes, i.e., sizing, cutting order planning, and marker making, have been reviewed 

in detail. In this section, we first summarize the commonly used optimization 

techniques by category and emphasis on the most popular ones and their classic 

applications in garment manufacturing. 

 

1.2.1 Overview of optimization techniques 

The application of optimization techniques plays an increasingly critical role in 

industry development, including fashion sector as well (Majumdar et al., 2010; Guo et 

al., 2011; Hui, Fun & Ip, 2011; Gersak, 2013; Ngai et al., 2014; Nayak & Padhye, 

2015; Xu, Thomassey & Zeng, 2018, 2020). Through analysis of the literature, the 

commonly used types of optimization techniques are demonstrated in Figure 1.9. 

 

 

Figure 1.9 Classification of optimization techniques. 

 

The optimization techniques used in the literature include exact methods, 

heuristics, meta-heuristics, and hybrid techniques. Exact methods are always the 

initial choices for solving problems with an optimal solution, among which, integer 

programming (IP) tends to be the most widely used. Enumerative approach has been 
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adopted as well. Heuristics, including constructive and improvement are employed for 

searching for a satisfactory solution. A heuristic technique is any approach to 

problem-solving, learning, or discovery that employs a practical method not 

guaranteed to be optimal or perfect, but sufficient for the immediate goals. Where 

finding an optimal solution is impossible or impractical, heuristic methods can be 

used to speed up the process of finding a satisfactory solution. Soft computing, 

belonging to meta-heuristics, is widely applied for finding a good solution with less 

computational effort by searching over a large set of feasible solutions. Genetic 

Algorithm (GA), Fuzzy Logic (FL), and Neural Network (NN) are the most 

mentioned optimization techniques in the literature. Besides, Simulated Annealing 

(SA) and Ant Colony algorithm (ACO) are also popular. In addition, hybrid methods 

integrating the former technologies are favored by many researchers in recent years. 

 

1.2.2 Application of specific optimization techniques in garment manufacturing 

The applications of several specific optimization techniques are demonstrated as 

follows. Among these methods, three soft computing methods, i.e., genetic algorithm, 

fuzzy logic, and neural network are discussed in detail separately due to their 

outstanding performances. 

  

1.2.2.1 Exact methods 

According to the literature, exact methods are applied for solving various garment 

manufacturing issues. The initial and wide usage is in the cutting order planning. 

Regarding the cutting order planning, IP is the first and most employed 

mathematical technology. Farley made integer and quadratic formulations with the 

overall objective to maximize long-run profitability (Farley, 1988). Elomri used a 

combined linear/non-linear programming approach which consists of choosing the 

patterns in the library with the objective of minimizing cutting operating cost (Elomri 

et al., 1994). Degraeve proposed a mixed integer programming model and based on 

which he produced the other two alternative IPs (Degraeve & Vandebroek, 1998; 
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Degraeve, Gochet & Jans, 2002). Yang used IP in a combination with ACO 

considering setup, excess, and cloth layer costs (Yang, Huang & Huang, 2011). 

Besides IP, Rose & Shier (2007) developed an enumerative approach, and Nascimento 

et al. (2010) adopted graph theory. 

For marker making problem, branch-and-bound methods were used for 

computing optimal solutions of placement subproblems that determine the 

performance of the overall subproblem in (Heckmann & Lengauer, 1998) to minimize 

the length of the marker surface.  

For solving SCS problem, IP and queue theory were mentioned in (Wong et al., 

2001; Wong, 2003a) to evaluate the configuration of spreading and cutting machines 

installed in the cutting department. 

Recursion and logarithm regression were used for QC in the garment sewing 

process. Lee used a recursive process mining algorithm to obtain a set of decision 

rules for fuzzy association rule mining, where the rules are used for determining the 

related product quality production process parameters (Lee et al., 2013b). 

Hui used multiple regression with a common logarithm method and a NN to 

predict the seam performance of woven fabrics (Hui & Ng, 2009). Compared with the 

NN, the regression models were found quicker to construct, more transparent, and less 

likely to overfit the minimal amount of data available. 

 

1.2.2.2 Heuristics 

The majority application of heuristics regarding garment manufacturing is found 

in COP problems, i.e., lay planning and marker making. 

Heuristics were firstly used by Jacobs-Blecha to solve the cutting order planning 

problem (Jacobs-Blecha et al., 1997). He proposed three greedy heuristics including 

two constructive, i.e., Savings and Cherry Picking, and one improvement. These 

heuristics have been proved to be computationally efficient procedures to figure out 

the size combination of markers and find low fabric cost solutions. Among the 

heuristics, Savings performed better than the Cherry-Picking algorithm and at least as 

good as the commercial packages, while the improvement algorithm helped to 
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improve fabric utilization when applied to all solutions. Nascimento et al. (2010) 

developed an innovative state-space approach to solve the cutting order planning 

problem with graph theory where heuristic rules were introduced to select the most 

promising color-size combination for expansion so that processing durations were 

shortened. The other application of heuristics to the cutting order planning was 

mentioned in (M'Hallah & Bouziri, 2016), where lay planning and marker making 

were combined into a single problem to minimize fabric length. The problem was 

solved by using constructive heuristics with metaheuristics, i.e., a stochastic local 

improvement heuristic based on SA, a global improvement heuristic based on GA, 

and a hybrid heuristic denoted genetic annealing. 

Amaral proposed a heuristic approach for the automatic placement of garment 

patterns (Amaral, Bernardo & Jorge, 1990), where garment patterns were placed 

following a greedy strategy by the sliding algorithm to achieve considerable material. 

Fabric patterns approximated as rectilinear polygons were allocated in random 

positions using the Multi-BSG algorithm (Sakanushi, Nakatake & Kajitani, 1998), 

which is a heuristic, and then, the most efficient marker was searched using a 

stochastic SA (Hwan & Jin, 2002). In (Yeung & Tang, 2003), Yeung used a 

combination of a GA with the novel heuristic approach “Lowest-Fit-Left-Aligned” 

with which the complex marker making problem was transformed into a simple 

permutation problem that the searching domain was reduced. The design and 

development of a software tool using a top-down design paradigm was described in 

(Jaidormrong, Chaiyaratana & Hassamontr, 2003, July), where a heuristic search 

strategy is developed for layout determination on various special fabrics like plain 

fabric, fabric with horizontal or vertical stripes, and fabric with checkered patterns. In 

(Wong & Leung, 2009), they hybridized a heuristic grid approximation-based packing 

approach with an integer representation-based (µ+λ) evolutionary strategy (ES) to 

obtain the optimal marker with the minimal marker length. The heuristic pattern 

classification approach, inspired by experienced packing planners, was proposed for 

reducing the search space size. In addition, to solve the two-dimensional irregular 

shapes cutting stock problem a width-packing heuristic was used for shapes grouping, 
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a column generation method for mapping groups onto the stock in (Awais & Naveed, 

2015), then, a linear programming approach was used for selecting the minimum 

number of stock sheet layouts. 

For predicting seam quality, Pavlinic used regression trees, where heuristic was 

applied for smaller and more accurate trees (Pavlinic et al., 2006). 

 

1.2.2.3 Genetic algorithm 

Genetic Algorithm (GA), developed by Holland (1992) in 1975, is based on the 

principle of the natural evolution of species. By exchanging intergroup information, 

GA is powerful for its high ability in both local and global searching. It generates a 

whole population instead of just one possible solution in order to avoid getting stuck 

within a local optimum. Due to its advantage of easy implementation with optional 

coding methods and quick convergence by evaluating only a small fraction of the 

design domain, GA is always used to solve intractable discrete optimization problems. 

A GA works on a population of so-called chromosomes which represent possible 

solutions to a specific optimization problem (Martens, 2004). As can be seen, a 

general GA is displayed in Figure 1.10. In the first step, the initial population of 

chromosomes is generated and coded as parent chromosomes. The fitness function or 

a penalty function is used for the determination of suitable chromosomes. Then, 

operators, i.e., crossover and mutation are employed for the creation of offspring 

chromosomes. It turns to the second step until the stop criteria are reached. Finally, 

chromosomes with a superior fit are returned as the optimal solution. 

 



 

57 

 

 
Figure 1.10 Sketch of a general genetic algorithm. 

 

There has been an increasing trend of GA applications in dealing with the 

production scheduling and sequencing problems in the garment manufacturing 

process, especially in the cutting and the sewing processes. 

In the decade from 2000 to 2010, there were considerable GAs applied to the 

cutting process. 

Martens made an early attempt of applying GA in the cutting order planning 

(Martens, 2004). Based on two alternative integer programming (IP) models, a pair of 

GAs was proposed for minimizing the computation time. The good usage of EAs in 

finding the optimal cutting lay plan was proved in later continuous researches (Fister, 

Mernik & Filipic, 2008; Wong & Leung, 2008; Fister, Mernik & Filipic, 2010). 

Yeung LHW proposed a hybrid method combining GA and the “Lowest-Fit-Left-

Aligned” algorithm (LFLA) with which maker making of garment cutting process 

was converted into a simple permutation problem and the optimal results can be 

obtained in a reasonably short period (Yeung & Tang, 2003). Vorasitchai emphasized 

the parameter setting in the GA specific to the marker making (Vorasitchai & 

Madarasmi, 2003, May). An integer-representation based GA was proposed for an 
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optimal marker (Wong et al., 2009). 

Between 2000 and 2007, Wong and his team made applications of GA to balance 

the SCS and minimize the makespan. GA was applied to determine the number of 

spreading tables to be installed in a computerized fabric-cutting system (Wong, Chan 

& Ip, 2000b). GA was afterward employed to obtain a shorter completion time, a 

higher machine utilization, and higher cut-piece fulfillment rates in a traditional 

manual system, a computerized system and a manual–computerized system (Wong, 

Chan & Ip, 2000a; Wong, 2003a, 2003c; Wong et al., 2005), with the JIT philosophy 

(Wong, Chan & Ip, 2001; Kwong, Mok & Wong, 2006) or considering different types 

of existing uncertainties (Wong, 2003b). Moreover, Wong, Leung & Au (2004) 

proposed a GA for a Real-time Segmentation Rescheduling (RSR) of cutting related 

operations including marker-making, spreading, cutting, and bundling in a dynamic 

apparel manufacturing environment. Some partners addressed fault-tolerant fabric 

cutting schedules using this AI technology to satisfy resource-competing requests 

from downstream operating units to minimize the makespan (Kwong, Mok & Wong, 

2006, Mok, Kwong & Wong, 2007). 

GA was also applied to determine an optimal sequence of fabric rolls for each 

cutting lay during the fabric spreading operation to maximize the fabric saving in 

(Hui, Ng & Chan, 2000). 

GAs have been widely applied to the sewing process as well. 

Lin (2009) used a hierarchical order-based GA to quickly identify an optimal 

layout in a U-shaped sewing line with a single-row machine layout for effective 

moving distance of cut-pieces at lower production costs. 

The Sewing Assembly Line Balancing (SALB) problem was addressed by 

researchers using EAs to minimize makespan and idle time. GAs were used to solve 

flexible assembly lines balancing problem where the flexible operation assignment is 

allowed, that one operation can be assigned to multiple workstations or multiple 

operations can be assigned to one workstation (Hajri-Gabouj, 2003; Guo et al., 2008a, 

2008b; Guo et al., 2009). A GA was adopted to solve the SALB problem in UPS by 

periodically re-adjusting operator assignment and found the optimal number of task 
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skills that each sewing operator should possess was three (Wong, Mok & Leung, 

2006). GAs were developed in (Chen et al., 2012; Mok et al., 2013) for the automatic 

job allocation which can make an even workload allocation among machines based on 

the difference between labor skill levels. By applying an EA, Zeng investigated the 

operator allocation problems with job sharing and operator revisiting for the balance 

control of a complicated hybrid assembly line (Zeng, Wong & Leung, 2012). 

The early completed jobs should be kept in a finished goods inventory before the 

delivery dates, while jobs that are completed after their due dates may incur penalty 

costs. Therefore, in a Just-In-Time (JIT) manufacturing environment, jobs are 

preferred to be completed in time. A GA was used to achieve an ideal schedule in 

which all jobs are finished exactly on the assigned due dates (Wong & Chan, 2001). 

To generate the optimal order scheduling solution in a real-life, make-to-order 

production with various uncertainties, Guo proposed a GA-based approach with the 

objectives to maximize the total satisfaction level of all orders and minimize their 

total throughput time (Guo et al., 2008c). 

 

1.2.2.4 Fuzzy logic 

Fuzzy Logic (FL) (Zadeh, 1965, 1996, 1997), opposite to Boolean logic, in which 

the truth values of variables may only be the integer values 0 or 1, is a form of many-

valued logic in which the truth values of variables may be any real number between 0 

and 1 both inclusive. It has become a successful modeling tool for complex problems 

that can be controlled by humans but difficult to define precisely. Imprecise 

information as those resulting from inexact measurements or gained from imperfectly 

codifying expert knowledge can be incorporated into a fuzzy modeling. FL systems 

possess characteristics of simplicity and flexibility that the application of FL is in a 

simplified platform and takes a relatively short period of development time. 

Decision making in manufacturing includes uncertainties and imprecision. FL has 

the capability of dealing with data that are vague and lack certainty, representing 

uncertainties such as variations in human operator performance, inaccuracies of 

process equipment, and volatility of environmental conditions (Azadegan et al., 
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2011). 

FL could deal with the dynamic and fuzzy factors in the real garment 

manufacturing environment such as machine breakdowns, late receipt of fabric rolls, 

insertion of rush orders, etc. It helps robotic handling in sewing, SCS in cutting, 

resource allocation, and QC. 

In the sewing department, FL was employed for automatic fabric handling to 

handle with the varieties during conducting a robot guiding non-rigid fabrics. 

Koustoumpardis developed a hierarchical robot control system including a fuzzy 

decision mechanism where the fuzzy rules and the membership functions are 

determined according to the experts’ knowledge, combined with a neuro-controller to 

regulate the tensional force applied to the fabric during the robotized sewing process 

(Koustoumpardis & Aspragathos, 2003). Later, he investigated the robotized sewing 

of two plies of fabrics (Koustoumpardis & Aspragathos, 2014). Zoumponos presented 

a robot end-effector path-planning algorithm based on FL for the robotic laying of 

fabrics on a worktable that possesses the characteristics of flexibility and low 

computational cost (Zoumponos & Aspragathos, 2008). Later, he introduced visual 

servoing the he presented a new fuzzy visual servoing strategy based on the 

knowledge of easily measured fabric shape features for the folding of rectangular 

fabric strips by robotic manipulators (Zoumponos & Aspragathos, 2010). Also, FL 

and visual servoing were adopted by Zacharia. Zacharia developed a flexible 

automation system tolerating deformations that may appear during robot handling of 

fabrics due to buckling without the need for fabric rigidification based on FL 

(Zacharia et al., 2009). Zacharia (2009) made an extended research focusing on 

operations with curved-edge fabrics and correcting the distortions presented during 

robot handling of fabrics. 

The research group of Wong has applied FLs in solving the fabric-cutting 

balancing problem. 

Firstly, a fuzzy capacity-allocation model was proposed to solve the line-

balancing problem in a computerized cutting system with consideration of the level of 

Work-In-Progress (WIP), i.e., number of fabric lays, on each spreading table and the 
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degree of deviation between the planned starting time and actual starting time of 

spreading of each fabric lay on a particular spreading table as fuzzy input variables 

(Wong, 2003b). It was indicated that the WIP level could be controlled, and the 

machine idle-time and makespan could be shortened in a dynamic cutting room. 

They used FL for production order fuzzy due time and GA to generate fabric 

cutting schedules in a just-in-time (JIT) production environment, which improve the 

internal satisfaction of downstream production departments and reduce production 

costs through shortening operator idle time (Wong et al., 2006; Mok, Kwong & 

Wong, 2007). As an extension, they considered three uncertainty factors, i.e., operator 

skill level, fabric characteristics, cutting pattern on a marker for fuzzy job processing 

time (Kwong, Mok & Wong, 2006). 

Regarding resource allocation, Hui, P. L. proposed a rule-based operator-

allocation system using FL where the knowledge of experienced supervisors was 

captured to determine the right number of operators to be moved in and out of sewing 

sections to insure overtime balance (Hui et al., 2002). Hajri-Gabouj (2003) relaxed 

the mathematical model to overcome the nonlinearity and the complexity using fuzzy 

penalty functions to handle task-operator-machine assignment problem with 

multilevel objectives, i.e., minimizing the total execution time, neither predefining 

inter-operator communication costs nor a prefixed number of machines and operators. 

Lee presented a resource allocation system integrating RFID technology for real-time 

data capturing and FL concept for machinery resource allocation planning according 

to expertise knowledge stored as fuzzy rules (Lee et al., 2013a, 2014). 

In the QC area, FL was used to find the relationships between production process 

parameters and product quality, where a set of decision rules was derived for fuzzy 

logic that will determine the quantitative values of the process parameters (Lee et al., 

2013b, 2016). The study provides knowledge support for parameter settings of 

machinery resources. Shu, M. H. developed a demerit-fuzzy rating mechanism and 

monitoring scheme to improve online surveillance of manufacturing processes (Shu et 

al., 2014). 
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1.2.2.5 Neural network 

Neural Network (NN) was first introduced in (McCulloch & Pitts, 1943). It was 

inspired by both biological neural networks that constitute animal brains and 

mathematical theories of learning, and it can be used as a universal function 

approximator that learns from observations (training samples), generally without task-

specific programming. NN is a highly connected network of processing nodes 

(artificial neurons) arranged in 3 or more layers. It learns from historical examples 

known as training data. During the training, the weights connecting the neurons 

present in different layers are optimized in such a fashion that the error signal reduces 

in each iterative step. Once sufficiently trained, NN can be used to solve unknown 

instances of the problem due to its non-parametric nature and ability to describe 

complex decision regions. 

An artificial NN is demonstrated in Figure 1.11, as an interconnected group of 

nodes, where each circular node represents an artificial neuron and an arrow 

represents a connection from the output of one artificial neuron to the input of 

another. NN parameters, i.e., network weights and bias are adapted through a learning 

process, a continuing process of stimulation by the environment in which the network 

is embedded (Guo et al., 2011). NN has been used on a variety of tasks in 

manufacturing, such as prediction, pattern recognition, generalization, fault tolerance, 

and high-speed information processing. 

 

 
Figure 1.11 Structure of a basic neural network. 
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In the garment manufacturing process, NN is mainly used for solving prediction 

problems, process control problems, and model identification problems in Quality 

Control (QC), robotic fabric handling, maker making, and so forth. 

NN has been widely applied for the prediction of fabric sewing performance, 

seam quality inspection, fabric and garment classification, and sewing thread 

consumption prediction. In (Lin, 2004), a Back-Propagation (BP) NN was used to 

establish a translation model between fabric and thread composition properties and 

sewing quality. Hui investigated the use of extended normalized radial basis function 

NN to study the correlations between fabric mechanical properties and the seam 

appearance quality to construct the model for predicting seam, which was proved to 

outperform the previous BP NN (Hui & Ng, 2005). The same author proposed a BP 

NN for fabric sewing performance prediction which was classified in terms of four 

main factors, i.e., pucker, needle damage, fabric distortion, and fabric overfeeding 

based on 21 physical and mechanical properties (Hui et al., 2007). Afterward, he used 

a BP NN with a weight decay technique to predict the seam performance of 

commercial woven fabrics measured by the ratings of three indices, i.e., seam 

puckering, seam flotation, and seam efficiency (Hui & Ng, 2009). Pavlinic also 

investigated the relation between fabric mechanical properties and the quality of seam 

appearance, which was defined by seam puckering and work-piece flotation. 

Regression trees (CART) and k-Nearest Neighbors (k-NN) were used in the study to 

construct the predictive model, where the latter method is more appreciate (Pavlinic et 

al., 2006). Later, the same author developed a subjective evaluation system of 

garment appearance quality by studying the correlations between fabric mechanical 

parameters and the grade of garment appearance quality using k-NN (Pavlinic & 

Gersak, 2009). Especially for knitted fabric, in (Yuen et al., 2009a), four characteristic 

variables were collected and input into a BPNN to classify the sample images. 

Similarly, Yuen used a three-layer BPNN to deal with intelligent classification of 

fabric stitches or seams of semi-finished and finished garments (Yuen et al., 2009b). 

Besides, NN was employed in sewing thread consumption prediction as well (Jaouadi 
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et al., 2006). 

Regarding the robotized sewing issue, Koustoumpardis developed a neuro-

controller to regulate the tensional force for the feeding of single-piece fabric to the 

sewing machine (Koustoumpardis & Aspragathos, 2003). In a latter research 

(Koustoumpardis & Aspragathos, 2014), he controlled the force applied by the robotic 

manipulator with NN in order to join two pieces of fabric. Zacharia (2009) dealt with 

the curved edges of real cloth parts by NN which learns from the information obtained 

from the fabrics used for the training process and then responds to new fabrics. 

To solve the marker making problem, Wong & Guo (2010) constructed an 

irregular object packing approach where a learning vector quantization NN was 

developed as a classification heuristic by a set of examples that were inspired by 

experienced packing planners to diminish the size of a search space by dividing the 

objects into three classes, i.e., BIG, SMALL and OTHER. 

In (Zou et al., 2006), a BP NN was used to simulate the experience and 

technology of fashion designers for establishing a model to identify body type. 

 

1.2.2.6 Hybrid methods 

For decision-making in real-world garment production, there are multiple 

production objectives to achieve simultaneously. There exists a situation that one 

single technology is not able to fully solve the problem, as such a hybrid intelligence 

for utilizing an integration of technologies makes sense. 

The hybrids mentioned in the literature on the garment manufacturing are 

demonstrated bellow in terms of these four combinations, i.e., exact method and 

heuristic, exact method and meta-heuristic, heuristic, and meta-heuristic, and a hybrid 

of meta-heuristics. 

The combinations of exact method and heuristic were found in (Nascimento et 

al., 2010) and (Lee et al., 2013b). An innovative state-space approach hybridizing a 

graph theory-based model and a heuristic algorithmic solution to identify the least-

cost lay plan was proposed by Nascimento. Lee presented a radio frequency 

identification-based recursive process mining system using FL to find the 
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relationships between production process parameters and product quality. 

A combination of exact method with meta-heuristic, i.e., an IP model with an 

ACO, was proposed in (Yang, Huang & Huang, 2011) to identify good combinations 

of markers and determine the number of plies that satisfy demand with the minimal 

excess production. 

Researchers preferred using the combinations of heuristic and meta-heuristic to 

solve the marker making problem. Hwan Sul, I. first allocated patterns in random 

positions using the heuristic Multi-BSG algorithm, and then, the optimal marker with 

the highest efficiency was searched using a SA method (Hwan & Jin, 2002). In 

(Yeung & Tang, 2003), Yeung used a combination of a “Lowest-Fit-Left-Aligned” 

heuristic approach with a GA to transform the complex two-dimensional strip-packing 

problem into a simple permutation problem so that the marker making was effectively 

solved and the searching domain was reduced. In the study (Wong & Leung, 2009), he 

hybridized a heuristic packing approach based on grid approximation with an integer 

representation-based (µ+λ) evolutionary strategy (ES). In another study of him (Wong 

& Guo, 2010), he proposed combined a grid approximation-based representation, a 

learning vector quantization NN, a heuristic placement strategy, and an integer 

representation-based (μ+λ) ES. 

Hybrids of meta-heuristics were adopted in all aspects of the garment 

manufacturing process, i.e., cutting, sewing, and QC. Bounsaythip hybridized GA 

with SA to find the optimal pattern layout on the marker (Bounsaythip, Maouche & 

Neus, 1995, October). The combinations of GA and FL were adopted to solve the 

spreading and cutting sequencing problem by Wong’s research group in (Kwong, Mok 

& Wong, 2006; Wong et al., 2005; Mok, Kwong & Wong, 2007) with shorter 

makespans. For the SALB problem, Hajri-Gabouj (2003) developed a GA with fuzzy 

penalty relaxation to realize flexible assignments in sewing lines with multilevel 

objectives. The combinations of FL and NN were used by Koustoumpardis to handle 

fabric handling in sewing operation. He combined a hierarchical robot control system 

containing a fuzzy decision mechanism with a neuro-controller (Koustoumpardis & 

Aspragathos, 2003). His extended work on robotized sewing of two-ply fabrics using 
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the same optimization techniques was described in (Koustoumpardis & Aspragathos, 

2014). Zacharia (2009) presented the design and tune of the adaptive neuro-fuzzy 

inference systems for robot guiding fabrics with curved edges based on visual 

servoing and a learning technique that combines FL, NN, and GA. For QC, Yuen 

integrated GA and BP NN for knitted garment defects classification (Yuen et al., 

2009a). Lee et al. (2016) proposed the hybridization of fuzzy association rule mining 

and variable-length GAs for a better determination of process settings for improving 

the garment quality. 

 

1.3 Conclusion 

Facing the increasing demand of consumers on the product personalization and 

meanwhile the control of product price, the garment mass customization emerges as 

the product of the time. The garment mass customization aims to resolve the le 

dilemme between personalization and cost, and it brings the possibility of offering 

personalized products at an acceptable price. Nevertheless, the implementation of 

mass customization in the current production structure is a complex issue but also an 

opportunity and a challenge to the apparel industry. 

There have been a number of reports regarding garment mass customization, of 

which the majority deals with design, while a few concerns manufacturing. In the 

long-range garment manufacturing processes, the complicated cutting process plays a 

key role in cost control, as fabric usually occupies more than 50% of the total 

manufacturing cost. In addition, cutting can be considered as the decoupling point in 

the customized garment production, that a garment customization in manufacturing is 

essentially realized through patterns variations, directly conducted by the cutting-

related processes (namely, sizing, cutting order planning, and marker making). 

Therefore, in this research, we will develop practical mass customization strategies 

regarding the three cutting-related processes and apply appropriate optimization 

techniques to enhance the efficiency. 

The main idea of this dissertation work is shown in Figure 1.12. The work starts 
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with developing practical mass customization strategies regarding custom-fit and co-

design. It then addresses the development of a sizing system and a cutting order 

planning system (marker making is further studied) for decision making in garment 

production. In addition, it contains exploring the implicit relationship between the 

personalization (the fit) and the cost (the cutting cost) through the known relations 

(Figure 1.13) including the relation between the sizing and the fit, the relation 

between the cutting and the cutting cost, and the relation between fit and cost. 

 

 

Figure 1.12 Structure of dissertation work. 

 

Customization of garment contains two categories, namely, custom-fit and co-

design. The customization of fit should be conducted in the upstream processes (the 

sizing and the cutting) before sewing, whereas the customization of design can be 

performed downstream (e.g. postponement strategy). Researchers have attempted 

advanced technologies in this regard, such as recommendation systems, the virtual 

reality, the 3D body scanning, and CAD automatic patternmaking systems, to realize 

the personalized pattern design and the automatic single-ply cutting. So far, the costs 

are still high because advanced technologies always work with the support of 

expensive equipment. Duray (2002) suggested that mass customization processes that 
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more closely matched existing mass processes in the plant led to superior financial 

performance. Thus, the efforts should be made to selectively retain the expertise and 

methods in cost-effective mass production for mass customization upgrading, like 

sizing systems and batch manufacturing. In Chapter 2, we develop mass 

customization strategies in the two categories, i.e., co-design and custom-fit, taking 

into account efficient industrial practices like sizing systems and batch manufacturing 

in the cutting-related processes. 

Compared with the design, the fit is an essential issue of garment customization 

and gains much concern for it is a fundamental need of users. Limited and outdated 

sizes for ready-to-wear garments are usually considered as the primary source of ill-

fitting in mass production. Introducing additional garment sizes is a feasible solution 

for fit improvement, which enables to establish a new mass customization sizing 

system to solve this problem. In Chapter 3, we build a fit-oriented sizing system with 

adding new sizes for the greatest overall fit satisfaction of the target population. 

Customization increases the number of material variants in production, 

significantly affecting the manufacturing process. Specifically, the increased size 

number in mass customization makes for variety in marker. However, to the best of 

our knowledge, the cutting order planning is normally accomplished with the 

ignorance of marker variations. Nevertheless, especially for small series production 

and mass customization, marker variations should be taken into consideration in the 

cutting order planning to accurately evaluate the cutting cost. In Chapter 4, we build 

a cost-oriented cutting order planning system with marker variations for the most 

economical cutting order plan. 

Adding more sizes in mass customization leads to an exponential increase of 

garment size combinations for markers, which induces a heavy and complex workload 

of marker making. In this context, due to the complexity of the problem, the classical 

marker making methods using the existing commercialized software are less 

performant in terms of efficiency and accuracy. Considering that there exists some 

implicit relation between the overall marker length of a given size combination and 

that of each contained garment article size, the marker prediction could be simpler and 
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faster. In Chapter 5, we build a marker prediction model for the estimation of marker 

lengths and afterward the estimation of cutting cost. 

The personalization and the cost are essential criteria in mass customization. 

There is hardly any simple or direct relation between them. However, both are tightly 

related to the manufacturing process, referring primarily to the sizing and the cutting, 

which offers the feasibility to build an indirect relation, shown in Figure 1.13. The 

direct relation between the sizing and the fit as well as between the cutting and the 

cutting cost can be revealed by the establishment of an optimized sizing system and 

cutting-order-planning system, and is illustrated, by the aid of the black solid line. In 

addition, the sizing and cutting are interconnected due to the patterns. As a result, the 

indirect relation can be also built, as indicated by the dotted lines, including the 

relationship between fit and cost, i.e., design-to-cost relation. 

 

Figure 1.13 Relation among personalization, cost, sizing, and cutting. 

 

The proper operation methods should be found for the research orientations as 

described above. According to the literature survey, the optimization techniques for 

garment manufacturing include exact methods, heuristics, meta-heuristics, and hybrid 

methods. The exact methods are always the first choices for finding out an optimal 

solution, among which, Integer Programming (IP) tends to be the most widely used. 

Apart from exact methods, heuristics (constructive and improvement) are also 

employed for searching for a satisfactory solution. Meta-heuristics are applied for 

finding a good solution with a less computational effort by searching over a large set 

of feasible solutions. In detail, Genetic Algorithm (GA), Fuzzy Logic (FL), and 
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Neural Network (NN) are the most frequently mentioned advanced technologies in 

the literature. Later, the hybrid methods that combine the aforementioned methods are 

favored by many researchers due to the outperformance. 

In order to further optimize the garment manufacturing process in the context of 

mass customization, we make efforts to seek the proper application of optimization 

techniques. Finding the best set of additional garment sizes is a combinatorial 

optimization problem, and that the computational load grows exponentially with the 

number of additional garment size. In terms of the big solution population in the mass 

customization sizing system, in Chapter 3 a GA is used due to the advantage of easy 

implementation and quick convergence to a global optimum. IP was proved to be a 

suitable tool for solving cutting order planning problems with small-size orders 

(Elomri, et al. 1994; Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans, 2002). 

Based on the previous IPs, an extended IP, in which the marker variations are 

formulated, is used for working out the cost-oriented cutting order plan in Chapter 4. 

The marker prediction problem can be regarded as a regression problem. It is not 

dependent on time, and no analytical mathematical model can be available. Multiple 

Linear Regression (MLR), Radial Basis Function NN (RBF NN) are applied in the 

marker length estimation model in Chapter 5, and their performances are evaluated 

and compared. 
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Chapter 2  Garment Mass 

Customization Strategies for Cutting-

related Processes 

 

This chapter aims to propose several new practical strategies based on pattern 

variations for upgrading the cutting-related processes (the sizing process and the 

cutting process) in the garment mass customization environment (Figure 2.1 Topic of 

Chapter 2), in terms of personalization and cost. 

 

 

Figure 2.1 Topic of Chapter 2. 

 

This chapter is organized as follows. In Section 2.1, the strategies of garment 

mass customization are presented in two different categories, i.e., custom-fit and co-

design.  It is followed by the definition of personalization levels, i.e., custom-fit level 

and co-design level, as well as the calculation of cutting-related costs. Section 2.2 

presents the implementation of these strategies through a case study of women’s basic 

straight skirt, and further illustrates the results and related discussions. Finally, 

Section 2.3 gives a conclusion and perspectives for future work. 
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2.1 Strategies related to cutting in garment mass customization 

As pointed out by Jiao, Zhang & Pokharel (2007), the customization increases the 

number of variants in production, also decreases the number of items produced per 

variant, with significant impacts on the manufacturing process. In the context of mass 

customization for garment manufacturing, we propose four strategies for upgrading 

the complex cutting-related processes. Two proposed strategies are related to custom-

fit and two others to co-design. The criteria of personalization and cutting costs will 

be formalized and then evaluated in order to make further optimization of the cutting-

related processes. 

 

2.1.1 Mass customization strategies based on pattern variations 

Four mass customization strategies regarding custom-fit and co-design are 

developed. Two of them are related to pattern size, and two others to pattern material 

and pattern shape, centered on the cutting-related processes in the garment 

manufacturing. The details about these proposed strategies are discussed in the 

following texts. 

 

2.1.1.1 Strategies for custom-fit 

Since fit is a fundamental need for users, a satisfactory fit in mass customization 

is consequentially of great concern (Hu et al., 2009; Mpampa, Azariadis & Sapidis, 

2010). The strategies regarding custom-fit are associated with the pattern sizes, of 

which the main idea is to enhance the fit satisfaction of the targeted consumers by 

adjusting the sizing system. Consumers’ satisfaction with fit is difficult to reach a 

higher level due to the limited and outdated sizes of ready-to-wear garments. To 

generate appropriate sizes for the target population in mass customization, 

optimization techniques are designed by considering the enhancement of number or 

the capacity of size (Gill, 2008). 
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2.1.1.1.1 Increment of size number 

The proposed strategy for custom-fit can be realized by updating a sizing system 

for mass customization containing a larger number of sizes. In this case consumers 

can be better served with more choices and the garment fit is improved. Considering 

whether to remain the original mass production sizes in the new sizing system, there 

are two main strategies: 1) remain original mass production sizes and add additional 

sizes; 2) completely abandon the existing sizes and use newly generated sizes. The 

former updating approach is the focus of the research displayed in Figure 2.2, in 

which a mass customization sizing system is demonstrated with additional sizes (grey 

rectangles) and the original mass production sizes (black rectangles). 

 

 
Figure 2.2 Mass customization strategies for custom-fit: Addition of pattern size via 

additional sizes. 

 

2.1.1.1.2 Expansion of size capacity 

In addition, the size capacity can be also increased as the proposed strategy for 

custom-fit can enhance the fit satisfaction by adjusting the pattern size through a 

structure processing, for instance, embedding some special structures with high 

flexibility, including darts, elastic materials, belts and so forth. As depicted in Figure 

2.3, the original mass production sizes (black rectangles) are discarded and replaced 

by the expanded sizes (grey rectangles), which enable the sizes to serve a larger 

percentage of the target population. However, this strategy can only bring slight and 
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limited effects on the expansion of size capacity due to its small change-range and 

narrow applicability. Therefore, in practical production, the two strategies of 

increment in size number and capacity are recommended to be utilized 

simultaneously. 

 

 
Figure 2.3 Mass customization strategies for custom-fit: Expansion of pattern size via 

expanded sizes. 

 

2.1.1.2 Strategies for co-design 

Apart from the increasing demand for garment fit, participation in design, 

including garment style, garment detail, fabric type, fabric color etc., called co-design 

(collaborative design), is highly desired by consumers in the garment industry 

(Teichmann, Scholl-Grissemann & Stokburger-Sauer, 2016). Pattern material and 

pattern shape are two points corresponding to the co-design in the manufacturing 

stage. Thus, we propose two mass customization strategies in terms of co-design, 

regarding pattern material and pattern shape respectively. 

 

2.1.1.2.1 Fabric variation 

"Rainbow spreading" is a typical strategy in garment production (Farley, 1988). It 

consists of lays with materials in different colors vertically. This strategy can be 

extended to endow the same kind of article with greater variability (e.g. color, 

composition, or texture). However, we need to be aware that not every garment 
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production order needs a great diversity of fabrics, leading to a risk of overproduction. 

If we allow multiple fabrics to compose a ply horizontally during the spreading 

operation (rainbow ply), the variability can be applied to different articles. To explain 

more vividly, Figure 2.4 shows the feasibility of the strategy of combining the 

"rainbow spreading" with "rainbow ply". Patterns of the same article are grouped into 

one section on the marker, so that a single ply can be composed of different fabric 

pieces for cutting out. In this figure, it shows that the shaded area (full lay in mass 

production) is bigger than the area with lines which represent fabrics (step lay in mass 

customization). Therefore, we can conclude that overproduction can be effectively 

suppressed. Meanwhile, the personalized needs of pattern material can be well 

satisfied by using this strategy. In the future of mass customization, with the fast 

development of computerization and automation in industry, it is highly expectable 

that the horizontal strategy "rainbow ply" will be widely promoted, contributing to the 

updating towards mass customization. 

 

 

Figure 2.4 Mass customization strategies for co-design: Variation of pattern material 

via "rainbow-ply" spreading. 

 

2.1.1.2.2 Module variation 

In addition to fabric variation, the personalization in module variation is also 

feasible concerning the pattern shape. The variation of the garment module contains a 
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slight modification of the main module (bodice) or a type alteration of specific moduli 

(e.g. collar, sleeve, pocket, waistband). It can be realized through conducting lean 

cutting with second cuts (first cut in terms of the common outline, then the second cut 

for cutting out all the variants) or even making extra markers for a wide module 

variety. When adopting a stepwise cutting, the key point is to generate the markers for 

stepwise cutting with the common outline of the related variants for the first cuts, 

shown in Figure 2.5. 

 

 

Figure 2.5 Mass customization strategies for co-design: Variation of pattern shape via 

stepwise cutting. 

 

2.1.2 Definition of personalization level 

The personalization level indicates the degree of customization for consumers. 

The fit is related to the distance between boy dimensions and the garment dimensions 

(Gupta & Zakaria, 2014). The design is related to the depth and width of the 

personalization (Tangchaiburana & Techametheekul, 2017). For the two categories of 

mass customization strategies that are mentioned above, we use custom-fit level and 

co-design level to specifically represent the personalization level, namely, the level of 

mass customization. 
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2.1.2.1 Custom-fit level 

Fit is a complex concept having different definitions reported in the literature, 

and the most commonly used evaluation criterion is the aggregate loss (Ashdown, 

2007; Gupta & Zakaria, 2014; Zakaria, 2016). The aggregate loss gives an objective 

assessment measuring the average distance between the body dimensions of samples 

and the dimensions of assigned sizes. However, this criterion may not have a precise 

or even proper presentation of fit. It is ascribed that it is very hard to normalize the 

effect of each key dimension on fit to consumers, and consumers’ subjective feelings 

of fit are not in a simple linear correlation with distance. Therefore, we propose a new 

criterion of fit, namely, the custom-fit level, which contains a part of the objective 

assessment, measuring the average distance between the body dimensions and the 

dimensions of assigned garment sizes, combined with a subjective assessment. 

Figure 2.6 demonstrates an example of custom-fit level definition with three 

sizes which are presented in different colors. Five custom-fit levels are weighting 0, 2, 

5, 8, and 10. D (Dp and Ds) refers to the dimension (the primary dimension and the 

secondary dimension) of the size, and IntD (IntDp and IntDs) refers to the interval 

value (interval value of the primary dimension and that of the secondary dimension) 

(EN 13402-2, 2002). The two-dimensional space of the key dimensions is divided into 

sections by sizes differentiated with specific colors. Samples from the target 

population whose body dimensions fall into a certain section is assigned with the 

corresponding size. For each section, it is further divided into several subsections. 

Each subsection is marked with an exact weight, reflecting the objective difference 

between body dimensions of the sample and dimensions of the assigned size, 

simultaneously altered by consumers’ subjective evaluation, which is related to their 

experience and feeling. The section with a weight of 10 is where the size locates, for 

any sample whose body dimensions are exactly in the intervals of this size dimensions, 

the fit is perfect. For the sample whose one body dimension is larger than the 

corresponding dimensions of all the sizes, its weight is 0, which means the sample 

cannot be accommodated. If one of the body dimensions is in the interval, and the 
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other is just in a distance of the interval, its weight is 8; one of the body dimensions is 

in the interval, and the other is far from a distance of the interval, its weight is 5; for 

the rest situation, the weight is 2. The weights can be further set differently according 

to the consumer’s subjective preference for any dimension. For instance, if they have 

a preference for the primary dimension, for the cases that one of the body dimensions 

is in the interval, and the other is just in a distance of the interval, its weight can be set 

to 8 when the body dimension is in the interval of the primary dimension, and to a 

smaller number like 7 when the body dimension is in the interval of the secondary 

dimension. 

 

 

Figure 2.6 An example of custom-fit level definition. 

 

2.1.2.2 Co-design level 

Compared to the custom-fit level, there is hardly any literature concerning the 

definition of the co-design level. In detail, co-design is associated with the type and 

complexity of the requested design. Herein, the definition of the co-design level is 

based on the selected co-design points x, and related to the difficulty and cost of the 

individual co-design during manufacturing, which can be labeled as complexity 

coefficients Cx∈ [0, 1]. As illustrated in Equation (2.1), the co-design level is 

evaluated by the sum value of the complexity coefficients of all the participating co-

design points, as semi-quantitative characterization. 
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co − design level = ∑ 𝐶𝑥 × 𝐸𝑥 

𝐸𝑋 = {
1               if 𝑋 is selected
0        if 𝑋 is not selected

 

(2.1) 

For instance, for different co-design points, materials (complexity coefficient 

Cm=α) and pockets like patch pocket, slant pocket and welt pocket (complexity 

coefficient CPP=β, CPS=γ, and CPW=δ), if the consumer selects a certain material and 

patch pockets, the co-design level is α+β, or if he selects a certain material and welt 

pockets, the co-design level is α+δ. 

 

2.1.3 Estimation of cutting-related costs 

Personalization levels and costs are tightly correlated, because the variety and 

depth of customizable options cause the manufacturing complexity thereby affect the 

costs. The majority of the garment manufacturing cost occurs in the garment cutting-

related processes (Degraeve & Vandebroek, 1998; Vilumsone-Nemes, 2018). Costs 

relative to the garment cutting process can be divided into two groups, of which one 

group is caused by consumptions of materials (i.e., fabrics and markers) while the 

other is induced by operations (i.e., spreading, cutting as well as sorting and bundling). 

Labor cost and equipment costs are included in the calculation of operation costs, and 

it is worth noting that herein the power cost is classified into the equipment costs in 

order to simplify variables. The following equations provide each relationship of key 

factor(s) and the related cost. Instead of calculating the exact values of each cost, 

values of main factors can be used to represent the corresponding costs, in order to 

reveal the relative relationship briefly. 

 

  2.1.3.1 Fabric cost (Cf): 

𝐶𝑓 = ∑ 𝑃𝑓 × 𝐿𝑓 

(2.2) 

where Pf represents the price per unit length of fabric, Lf the used length. 

The fabric cost depends on the length of fabrics required for the cutting only. 



 

82 

 

 

  2.1.3.2 Marker cost (Cm): 

𝐶𝑚 = ∑ 𝑃𝑚 × 𝐿𝑚 × 𝛼𝑚 

(2.3) 

where Pm represents the price per unit length of marker, Lm the used marker length, 

and αm is the complexity of marker construction. 

The marker cost depends on the used marker length and the complexity of 

marker making. The automation and paperless technologies will help to obtain the 

simplicity and low cost in marker making. 

 

  2.1.3.3 Spreading cost (Cs):  

𝐶𝑠 = (𝑃𝑜 + 𝑃𝑠𝑚) × 𝑇𝑠 

𝑇𝑠 = ∑ 𝐿𝑓 𝑉𝑠⁄ + 𝑁𝑝 × 𝑇𝑠𝑝 

(2.4) 

where Po represents the cost per unit time of operator, Psm the cost per unit time of 

spreading machine, Ts the spreading time, Vs spreading speed, Np ply number, and Tsp 

the time for per pause during spreading. 

The spreading cost depends on several elements, i.e., the operator, the spreading 

machine, plies in the lays. 

 

  2.1.3.4 Cutting cost (Cc): 

𝐶𝑐 = (𝑃𝑜 + 𝑃𝑐𝑚) × 𝑇𝑐 

𝑇𝑐 = ∑ 𝐿𝑐 𝑉𝑐⁄ + 𝑇𝑐𝑝 

(2.5) 

where Pcm represents the cost per unit time of cutting machine, Tc the cutting time, Vc 

the cutting speed, Lc the cutting length, and Tcp the time of pause during cutting. 

The cutting cost depends on several elements, i.e., the operator, the cutting 

machine, markers of lays, lays. 
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2.1.3.5 Sorting and bundling cost (Csb): 

𝐶𝑠𝑏 = 𝑃𝑜 × 𝑆𝑝 × 𝑇𝑔 × (1 + 𝛼𝑠𝑏) 

𝛼 = 𝑁𝑝𝑠 𝑆𝑝⁄  

(2.6) 

where Sp represents the production size (total garment number), Tg the time of sorting 

and bundling operations spent on each garment article, and 1+αsb the degree of 

difficulty, where αsb means the sorting and bundling complexity, which is determined 

by Nps the pattern set number and Sp. 

The sorting and bundling cost depend on the production size, the sorting and 

bundling complexity. In general, it is comparatively much lower than the other 

cutting-related costs. 

To comprehensively compare these cost changes, an in-depth analysis of the key 

factors for each cost is discussed through a case study in the next section. 

 

2.2  Case study 

To evaluate the performances (i.e., personalization and cost) of the above mass 

customization strategies, we present a case study containing 6 experiments for 

production of a women’s basic straight skirt, updated from mass production to mass 

customization for a simulated order of 451 consumers. 



2.2.1 Design of experiments 

The details of the case study including the descriptions of objects, contents, and 

constraints are described in this subsection. 

 

2.2.1.1 Study objects 

The comparison of mass production and mass customization is carried out in the 

case study with a basic straight skirt for a target population of 451 consumers. 

 

2.2.1.1.1 Product 
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Normally, women’s skirts have relatively limited and simple patterns with fewer 

variants than other types of lower body garments, e.g. pants, certainly as well as the 

upper body garments. More specifically, the basic straight skirt is commonly used on 

official occasions, conventionally with the need of large output and further 

customization. Therefore, the basic straight skirt can be a typical and concise 

example. Herein, a women’s basic straight skirt, which represents a commonly used 

clinging garment is selected in our study, whose sketch is shown in Figure 2.7. The 

corresponding primary and secondary dimensions are hip girth and waist girth. 

 

 

Figure 2.7 Prototype of a women’s basic straight skirt. 

 

2.2.1.1.2 Anthropometry data 

A set of real body-dimension data measured from the target population of 451 

French women, between the ages of 25 and 40, has been collected by using 3D 

scanning and prepared as data sources in the experiments. 

 

2.2.1.2 Contents 

We designed experiments for both mass production and mass customization with 

the previously proposed four strategies in order to evaluate the performances and to 
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make comparisons as well. One of these experiments is conducted in the production 

mode of mass production, five other experiments demonstrate the corresponding 

production upgrade strategies towards mass customization, shown in Figure 2.8. 

First, the experiment MP for mass production is conducted with an existing size 

chart of this skirt type from a garment company in the real market on s.Oliver website 

(https://www.soliver.eu/sizetables/size-table-women-

GENERAL_SIZETABLE_WOMEN.html).  Afterward, the other five experiments are 

made for each evolutionary process of mass customization, of which two for custom-

fit and three for co-design. The related progressive relationship can be observed in 

Figure 2.8. 

 

 
Figure 2.8 Flowchart of experiment implementation with mass customization 

strategies. 

 

For custom-fit, the first mass customization experiment is defined as MC(FG), 

and we generate a set of additional sizes by using a translation of the existing sizes, 

shown in Figure 2.10, with size number doubled from the existing mass production 

sizes. Compared with creating a novel set of sizes for mass customization, the strategy 

has the advantage of simplicity, reflected in a slight change in pattern development 

and product manufacturing. In addition, it exhibits the benefit of sustainability, 

namely, an increase of pattern utilization (dart variations are based on existing 
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patterns, no new patterns are created), and flexibility in the switch between mass 

production and mass customization. The second experiment for custom-fit is an 

optimization of the experiment MC(FG) by dart modification for mass customization, 

defined as MC(FL). We apply darts with three sizes, namely, small, medium and large, 

to expand the capacity of the existing sizes, as illustrated in Figure 2.11. 

As for the co-design part, customizations are conducted on the pattern material or 

the pattern shape. Pattern shape variation contains variations of the main module, i.e., 

the front and back patterns, and of specific small moduli, e.g. the waistband, the 

pocket, and the vent. In the study, three detailed experiments are designed, with the 

variations of fabric color, pocket type, and skirt length evolved from the experiment 

MC(FL) and defined as MC(DFC), MC(DPT), and MC(DSL) respectively. 

In addition, all the details related to the experiments are summarized in Table 2.1. 

 

Table 2.1 Details of experiments applied with mass customization strategies 

Experiment Description Strategy 

mass 

production 
MP no customization use existing size chart from a real market 

mass 

customization 

MC(FG) general fit improvement 
generate additional size, retaining sizes in 

experiment MP 

MC(FL) local fit improvement 
apply multi-sized darts to sizes in 

experiment MC(FG) 

MC(DFC) design of fabric color 
allow multi-fabric spreading with sizes in 

experiment MC(FL) 

MC(DPT) design of pocket type 
distribute pocket patterns in markers with 

sizes in experiment MC(FL) 

MC(DSL) design of skirt length 
use superimposed pattern outline for maker 

making with sizes in experiment MC(FL) 

 

To further conduct the experiments, we simulate one order of customized 

products for 451 people of the database. In the custom-fit experiments, we assign the 

most suitable size in the defined sizing chart according to the body dimensions of 

each consumer. In the co-design experiments, an equal division of design options is 

set. As shown in Figure 2.9, random distributions of single-point co-design selection 

in experiments MC(DFC), MC(DPT), and MC(DSL) are made for the 451 samples. In 

this case, the assignment of samples to each co-design element is mostly uniform. In 

detail, for fabric, there are 3 fabric types, i.e. FB001, FB002, and FB003, 34% of the 
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consumers for FB001, 31% for FB002, and 35% for FB003; for pocket type, 37%, 

32%, and 31% of the consumers for patch pocket, slash pocket, and without pocket 

respectively. For skirt length, the percentages of the three skirt lengths are almost 

identical approaching 33%. 

 

 

Figure 2.9 Random distributions of co-design selection in MC(DFC), MC(DPT) and 

MC(DSL). 

 

2.2.1.3 Constraints 

The production constraints which have been considered in this case study are 

listed below. 

 

  a) To realize the concept of “manufacturing on demand”, customized products 

are produced for individuals in mass customization, and excess products are valueless. 

To keep the constraint consistent, no excess production is considered in experiments, 

neither for the experiment MP. 

b) In order to produce the exact quantities on demand, lay plans are made with 

step lays, where the layout of the articles on one marker is sequenced in ascending or 

descending order of ply number. 

c) The cutting scope is set as follows: 

Determined by specific cutting equipment in the industrial production, the 

maximum length of fabric is 3 m, and the maximum height of lay is 30 mm. The 

fabric thickness is set as 1 mm. Assuming that each layer of ply is tightly stacked, so 

the maximum ply number is set to be 30. Considering the maximum length of fabric 
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(3m), the maximal marker length with 3 articles is nearly this value. Thus, the 

maximum article number on each marker is set to be 3. 

d) In industrial practice, allocating mixed combinations of small sizes and large 

sizes in the same lays is given high priority for a balance of multi-size distribution to 

markers, which would contribute to the marker efficiency and finally benefit the 

reduction of fabric cost (Vilumsone-Nemes, 2018). Herein, the size matching strategy 

is adopted. 

 

2.2.2 Implementation of the experiments 

The mass customization strategies, i.e., generating additional sizes, embedding 

various sizes of darts, spreading rainbow plies and operating second cuts are applied 

in the experiments MC(FG), MC(FL), MC(DFC), MC(DPT) and MC(DSL) for 

production of a women’s basic straight skirt to cater for consumers’ personalized 

demands. 

 

2.2.2.1 General fit improvement (MC(FG) 

As illustrated in Figure 2.8, it is serial of experiments in which the latter is 

updated from the former, herein the experiment MC(FG) is based on the experiment 

MP and will be useful to generate the experiment MC(FL). Therefore, in the 

experiment about size number increment MC(FG), the new sizes are designed with 

enough interval to the original sizes instead of being bound, for the flexibility of dart 

variation of the following experiments. Afterward, in the experiment about the 

expansion of size capacity MC(FL), multi-sized darts will fill up the reserved interval 

to make them interconnected. 

The first step of fit customization is to generate a set of additional sizes through a 

translation of the existing mass production sizes in the mass customization experiment 

MC(FG), as shown in Figure 2.10. For the existing mass production sizes, the 

minimum interval of the secondary dimension (Ds) is defined as Min (INT). 

According to the relative positions of the regression curve line (blue line) and original 

sizes (grey rectangles), additional sizes are determined by an upwards translation of 
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original mass production sizes with the distance of 3 times of Min (INT), leaving the 

blank areas of 2Min(INT) for the dart setting of the next experiment. For instance, by 

translating the original medium size M (its primary dimension and secondary 

dimension are set to (MDp, MDs)), the corresponding additional size is generated as 

M* (MDp, 3*Min(INT)+MDs). 

 

 
Figure 2.10 Size distribution in the mass customization by adding sizes (MC(FG)). 

 

From the area enclosed by a solid gray line to the area enclosed by a red dotted 

line, it is indicated that a larger portion of the target population is accommodated after 

the application of additional sizes (red rectangles). By adding size numbers to engulf 

more points (samples), we can conclude that the coverage range can be expanded and 

a global garment fit can be significantly improved. 

 

2.2.2.2 Local fit improvement (MC(FL)) 

Waist girth is the dimension that can be adjusted by darts (Figure 2.7). After 

realizing a general optimized coverage (a larger portion of the target population is 

accommodated in the previous experiment MC(FG)) of the consumer body dimensions, 

the second step of fit customization is to extend the interval of waist girth via darts in 
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multiple sizes in the experiment MC(FL). We set the darts with the consideration of 

the shape stabilization of the garment and the maximal coverage range at the same 

time. Firstly, dart sizes should be appropriate and not produce a disturbing effect on 

the garment shape; secondly, we take full advantage of multi-sized dart in order to 

bring a maximal coverage range. Therefore, based on the experiment MC(FG) shown 

in Figure 2.11, since the skirt has four darts, in this case, Min (ITV)/4 is set as the 

value of the interval of the dart. We set the new dart sizes as follows: 

𝐷𝑠𝑖𝑧𝑒+= 𝐷𝑠𝑖𝑧𝑒 + 𝑀𝑖𝑛(𝐼𝑇𝑉)/4 

𝐷𝑠𝑖𝑧𝑒−= 𝐷𝑠𝑖𝑧𝑒 − 𝑀𝑖𝑛(𝐼𝑇𝑉)/4 

                                        (2.7) 

Where Dsize refers to the original dart size, Dsize+ refers to the large dart size, and 

Dsize- refers to the small dart size. 

To visualize the upgrading of the system via the second experiment concerning 

the custom-fit, Figure 2.11 exhibits the size distribution of mass customization by 

multi-sized darts (MC(FL)). In total, there are three dart sizes: small, medium 

(original), and large dart. Due to the dart size which is set in this specific case, the 

small dart is not a real dart but just a decorative thread. From the figure, it can be 

concluded that the application of multi-sized darts combined with the increment of 

size numbers results in further enhancement of the accommodation rate, and 

intuitively the higher proportion of the population with a perfect fit. 
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Figure 2.11 Size distribution of mass customization by multi-sized darts (MC(FL)). 

 

2.2.2.3 Design of fabric color (MC(DFC)) 

To provide a customization of pattern material for the skirt, multi-fabric 

spreading is applied to support the fabric variation with rainbow plies. The principle 

of this strategy is trying to keep the same fabric in a ply, and otherwise permit 

rainbow plies containing multiple fabrics, which can be consulted in Figure 2.4.  

 

Table 2.2 One spread contained in the cutting order planning result of MC(DFC) 

Ply Fabric 
Size 

XXS* XXXL XXL* 

1 - 2 FB001 2 2 2 

3 - 4 FB002 2 2 2 

5 FB003 1 1 1 

6 - 9 FB001 - 4 4 

10 - 12 FB002 - 3 3 

13 - 14 FB002 - 2 0 

13 - 14 FB001 - 0 2 

15 - 18 FB003 - 4 4 

19 - 20 FB001 - - 2 

21 - 25 FB003 - - 5 

Ply number 5 18 25 
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Displayed in Table 2.2 is one of the spreads within the cutting order planning 

result of the experiment MC(DFC), where the fabrics are named FB001, FB002, and 

FB003. It is noticed that the Ply 13 and 14 contain 2 different types of fabrics FB001 

and FB002, which are different from other plies. The arrangement can be realized by 

the “rainbow ply” strategy. 

 

2.2.2.4 Design of pocket type (MC(DPT)) 

For the straight skirt used in this study, the main moduli are comprised of the 

front pattern and the back pattern, while specific moduli include the waistband, the 

pocket, the vent, and so forth. Experiments that regard co-designs of a main module 

(MC(DSL)) and a specific module (MC(DPT)) are carried out through the variation of 

skirt length and pocket type respectively in the following texts. 

  For the co-design of pocket type (MC(DPT)), attempts are made to occupy the 

spare room of lays with the small patterns of pockets first for a maximal cost-saving. 

Considering the material shade problem, the bundling problem, separate marker is 

seldom made for small pattern pieces, such as, collars, pockets, or cuffs (Vilumsone-

Nemes, 2018). The advanced fabric dying technology (Yang & Huda, 2003, Yang & 

Naarani, 2004) improves the color consistency along the fabric so that patterns of the 

same article can be placed separately. With the development of item tracking 

technology (Preradovic et al., 2009, Ngai et al., 2012), small patterns can be well 

arranged during their transportation process. It can be inferred that it will no longer be 

a limiting condition for the garment production with a series of development. So far, 

there are few works of literature demonstrate the efficiency of marker making if a 

separate marker is permitted. Therefore, the following discussion is based on this 

assumption. 

The main strategy is to make the groupage of the small patterns to form the close 

arrangement. It is worth noting that pattern set sequences should be considered based 

on pocket types for second cuts of the front pattern. Arrangement of the appropriate 

locations of pocket patterns on existing markers (areas which are highlighted with 

dotted lines in Figure 2.12 is a challenging job. If no sufficient place is left in the 
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existing lays for the groupage of patterns, an extra marker should be adapted for the 

rest patterns. 

 

 

Figure 2.12 Different layouts of pocket patterns on an existing marker for MC(DPT). 

 

2.2.2.5 Design of skirt length (MC(DSL)) 

For the co-design of skirt length, the purpose of the cutting order planning is to 

figure out the differentiated edge of various patterns for second cuts that are used in 

marker making, instantiated in Figure 2.5. As shown in Figure 2.13, a marker is made 

with a superimposed outline of patterns that are adapted for three different skirt 

lengths. For instance, the areas marked by a dotted line, a grey shadow, and a solid 

line represent patterns of the same size 3XL* with skirt lengths of 50 cm, 60 cm, and 

65 cm, respectively. Similarly, pattern sequences based on skirt lengths are 

determined for more facile operations of second cuts. 
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Figure 2.13 Marker with a superimposed outline of patterns for MC(DSL). 

 

2.2.3 Results and discussion 

Based on the mass customization strategies presented in the experimental part, we 

discuss below the corresponding results regarding personalization levels and cutting-

related costs. 

 

2.2.3.1 Results on personalization level 

The distributions of custom-fit levels and co-design levels of the experiments are 

displayed in the following texts in order to evaluate their performances. 

 

2.2.3.1.1 Results of custom-fit 

The distributions of custom-fit levels in the three experiments MP, MC(FG), and 

MC(FL) are displayed in Figure 2.14. It is shown in Figure 2.14 (a), and both of the 

experiments MC(FG) and MC(FL) have a good performance for improvement of 

garment fit. As a result, the proportion of low custom-fit levels (i.e., unwearable and 

moderate) is gradually reduced and almost eliminated, and higher custom-fit levels 
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gradually dominate. In detail, the unwearable rate is evolved from 26% to 15% in the 

experiment MC(FG) and from 15% to 10% in the experiment MC(FL). In addition, the 

moderate rate is changed from 25% to 4% in the experiment MC(FG) and from 4% to 

1% in the experiment MC(FL). Obviously, additional sizes in the experiment MC(FG) 

mainly provide a good fit, multi-sized darts in the experiment MC(FL) enhances the 

sizing system with a better custom-fit from good to perfect (Figure 2.14 (a)). 

To be more specific, it can be observed in Figure 2.14 (b) that a significant 

increase from 48% to 81% is achieved in the experiment MC(FG), and subsequently a 

further optimization is obtained via multi-sized darts in the experiment MC(FL) 

towards 89%. The global fit improvement experiment MC(FG) plays the role of 

dramatically decreasing the rate of low custom-fit levels, and the local fit 

improvement experiment MC(FL) offers a further optimization to make sure that the 

target population has a dominant fraction in a perfect fit (83%). In summary, an 

integration of additional sizes and multi-sized darts efficiently contribute to a global 

and high custom-fit level. 

 

 
Figure 2.14 Custom-fit level distributions in experiments MP, MC(FG), and MC(FL). 

 

2.2.3.1.2 Results of co-design 

The following experiments are concerned about the co-design part, based on the 

completion of the aforementioned custom-fit experiments. Compared with the serial 

design of the two experiments of custom-fit, the co-design experiments are conducted 

in parallel. One co-design point is selected among the following three elements, i.e., 
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fabric color, pocket type, and skirt length. The difficulties in realizing these designs in 

manufacturing are hard to be precisely normalized. Thus, the corresponding co-design 

levels of each co-design point for the whole population are assumed as the same in 

this study, not avoiding making the semi-quantitative comparison. 

 

2.2.3.2 Results on cutting-related cost 

The five cutting-related costs (regarding fabric, marker, operations of cutting, 

spreading, as well as sorting and bundling) are not directly calculated but represented 

by corresponding main factors. Based on Section 2.1.3, it can be concluded that the 

key factors have a strong positive correlation with the cutting-related costs. Therefore, 

the fabric length stands for the fabric cost (Cf), marker length for marker cost (Cm), 

spreading length and ply number for spreading operation cost (Cs), cutting length for 

cutting operation cost (Cc), degree of difficulty for sorting and bundling cost (Csb). 

 

 

Figure 2.15 Cutting-related costs in different experiments. 

 

Figure 2.15 shows the cutting-related costs in experiments under different mass 

customization circumstances where the costs in the experiment MP are set 100% for 

comparison. The material-related costs are composed of fabric cost and marker cost. 

There is almost no change in the fabric length, indicating that the fabric cost is not 

altered significantly. Compared with the fabric cost, the marker cost is significantly 
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impacted due to the incorporation of the mass customization. The increase is mainly 

reflected in the lift in the marker length approaching over 120%. In addition, it is 

indicated that if the material cost is relatively stable once the first experiment of mass 

customization upgrade is carried out. 

The operation-related costs include three parts, i.e., spreading cost, cutting cost, 

and sorting & bundling cost. The spreading cost is determined by the fabric length as 

well as the number of plies. There is almost no change in fabric length, while the 

number of plies is increased to some extent over 110%, mainly due to the application 

of “rainbow plies”, leading to more time in the spreading pause. As a result, the 

benefit of the fabric variability will bring about a slight increase in the spreading cost. 

Similar to the material cost, the spreading cost retains the same standard once the first 

mass customization experiment is conducted. However, the cost of cutting and cost of 

sorting & bundling exhibit the different trends, of which the related cost is gradually 

enhanced. In detail, the two main steps, custom-fit and co-design have a distinct 

influence upon the related cost. As for the cutting-related process, the custom-fit 

experiment and co-design of fabric color have the same influence, and afterward, the 

co-design of pocket type and skirt length will bring more difficulty in the cutting-

related processes, of which the cost is over 160%. As for the sorting & bundling cost, 

the custom-fit experiment has no significant impact on the degree of difficulty, while 

the co-design has a visible influence which elevates the related cost. Generally 

speaking, the spreading cost mainly originates from the material usage, while the 

other two operation costs dominantly rely on the complexity of the garment, which 

corresponds with the mass customization updating. 

 

2.2.3.3 Relationship between personalization levels and costs 

Based on Figure 2.15, the cost growth ratio (cost growth of each step divided by 

the cost of the previous step) in each step is summarized in Table 2.3. In order to 

clarify the important parameters determining the total cost, the growth ratio which is 

over 5% is listed in the flowchart of the upgrading process in Figure 2.16. In this 

section, the relationship between the personalization levels (regrading custom-fit and 
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co-design) and the costs (regarding fabric, marker, spreading, cutting, and sorting and 

bundling) will be discussed. 

 

Table 2.3 Comparison between production modes by costs 

Cost 
Corresponding 

factor 

Growth ratio (%) 

FG-MP FL-FG DFC-FL DPT-FL DSL- FL 

Fabric fabric length a 0 -1 2 1 3 

Marker marker length b 29 -2 0 2 2 

Spreading 
spreading length c 0 -1 2 1 3 

number of plies d 13 1 4 0 0 

Cutting cutting length e 33 0 1 22 22 

Sorting & bundling degree of difficulty f 2 7 19 19 19 

 

 

Figure 2.16 Flowchart of upgrading experiments with cost growth ratios. 

 

As summarized in Figure 2.16, the cost growth ratios vary in upgrading 

experiments. In the aspect of custom-fit, additional sizes in the experiment MC(FG) 

expand the coverage range and improve the global garment fit. Due to the doubling of 

size numbers, the cost increment lies in operation cost in cutting (33%) followed by 

spreading cost (13%), as well as material cost in marker (29%). In the following 

experiments, most of the cost growth occurred in the operation part instead of the 
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material part. In the experiment MC(FL), the multi-sized darts contribute to the 

outstanding local improvement. Using multi-sized darts in the experiment MC(FL) is 

more powerful in local improvement of custom-fit level, reflected in a transition of 

custom-fit level from good to perfect. As for the cost in this experiment compared 

with the experiment MC(FG), the cost is not altered significantly and the extra cost 

mainly exists in the sorting & bundling part with 7%. It proves that the two strategies 

concerning the custom-fit improvement will cause varied cost growth in different 

parts and extent. Briefly speaking, the strategy in the experiment MC(FG) 

significantly ameliorate the custom-fit level of garments, but simultaneously bring 

about the issue of cost growth in material and operation. In contrast, the strategy in 

the experiment MC(FL) provides a further improvement in custom-fit level without 

significant cost growth. Additional sizes with a support of multi-sized darts lead to a 

better performance for the balance of fit and cost. 

In the aspect of co-design, all the co-design experiments cause a 19% cost growth 

in sorting & bundling. It can be ascribed to the increment of the complexity 

accompanied by the increase of the co-design level. In addition, for the experiments 

MC(DPT) and MC(DSL), there is a 22% of cost growth in the cutting operation. It 

originates from the second cuts for the complex objects. Furthermore, some extra 

markers in the experiment MC(DPT) are also needed for holding the pocket patterns, 

which also raises the cost of the cutting operation. Compared with the two 

experiments, the experiment MC(DFC) concerning the fabric color does not have an 

obvious effect on the cutting operation cost. Similarly, the increment of the co-design 

level also brings about some extent of cost growth mainly reflected in the operation 

part. Different strategies for the co-design improvement have different impacts on 

cost as well. 

In summary, an increase of personalization (custom-fit and co-design) level can 

be achieved by a well-arranged multi-fabric spreading at a reasonable extra cost, of 

which each item is less than 33%. Based on the inference, the garment company can 

make a better decision to choose the targeted upgrading route, in order to control the 

cost to meet the demanded levels of custom-fit and co-design. The cost growths in 
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mass customization experiments dominantly lie in the operation part. However, with 

the development of automation, the proportion of the operation cost to the material 

cost will be gradually decreased in the future, which is beneficial for the cost control 

of the mass customization. 

It gives strong evidence that in the garment manufacturing domain, mass 

customization is a very promising tool for garment manufacturers to balance the 

contradiction between personalization and cost to stand in the fierce market 

competition facing the consumers’ increasing demand for customized products. 

 

2.3 Conclusion 

In this chapter, we demonstrate practical mass customization strategies in terms 

of custom-fit and co-design for cutting-related processes (the sizing process and 

cutting process). A case study of women’s basic straight skirt has been selected for 

validation in terms of personalization and cost using the proposed criteria. The results 

show that the proposed strategies can effectively help to make a tradeoff between 

personalization and cost. 

The two custom-fit strategies, i.e., an increment of size number by generating 

additional sizes and an expansion of size capacity by setting multi-sized darts, have 

shown a good performance with controllable extra costs. The additional sizes and 

multi-sized darts improve the custom-fit level globally and locally, respectively. The 

related cost growth differs between the two strategies, which is feasible to be 

simultaneously utilized. 

The two co-design strategies, pattern material (fabric) variation using “rainbow 

plies” has no obvious increase in the cutting-related costs, while pattern shape 

(including pocket type and skirt length) variation using second cuts or even extra 

markers brings about further lift. It is interesting that the cost growth does not lie in 

the fabric cost, but the marker and operation-related costs. It is expectable that with 

the aid of highly automated devices and intelligent computing technologies, the mass 

customization strategies especially the co-design part can take full economic 
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advantages in the future. 

This is a pioneering study of developing garment mass customization strategies 

particularly concerning the manufacturing process. The customization levels are 

demonstrated and the sources of the extra costs are calculated in detailed items. It 

helps enterprises to conduct the precise customization expectation and cost control, 

and finally make proper production strategy to accomplish the upgrading task of 

garment mass customization. 

For a better application of the proposed strategies in practical production, it is 

necessary to make the formulation and optimization of each specific cutting-related 

process (e.g. sizing, cutting order planning, and marker making). Since the fit is a 

fundamental need of users, and considering the good performance in the global fit 

improvement and an acceptable extra cost, we will continue to introduce additional 

sizes (increment of size number) in the next Chapters 3 to 5. However, the 

generation of new sizes will be achieved via a genetic algorithm, rather than a simple 

upwards translation of original mass production sizes in this chapter, in order to 

achieve a higher generality and flexibility. In addition, a mathematical modeling of 

the relationship between personalization and cost will be carried out. It is fundamental 

for developing the pricing strategy for mass customization to help the company to 

gain an advantage in the fierce market competition. 
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Chapter   III: 

Optimization of Garment Sizing in 

the Context of Mass Customization   



 

104 

 

  



 

105 

 

Chapter 3  Optimization of Garment 

Sizing in the Context of Mass 

Customization 

 

The previous chapter proposes four practical mass customization strategies for 

the cutting-related processes and evaluates the personalization and economic 

performances. Since the garment fit is the basic need for consumers, and In Chapter 2, 

we already validated that the introduction of additional sizes can bring a global 

improvement of garment fit for the target population with a controllable extra cutting 

cost. In this chapter, we present a fit-oriented garment sizing system for garment mass 

customization (Figure 3.1 Topic of Chapter 3), which adopts a Genetic Algorithm 

(GA) to optimize the generation of additional sizes. The system is validated with a 

good performance of personalization (fit) through a case study of women’s basic 

straight skirt as well. As shown in Figure 1.12, the optimization of the sizing process 

is discussed in detail in this chapter. In Chapter 4 and Chapter 5, the optimization of 

the other two cutting-related processes, i.e., cutting order planning and marker making 

will be discussed. 

 

 

Figure 3.1 Topic of Chapter 3. 
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This chapter is presented as follows. In Section 3.1, we first introduce the concept 

and structure of the GA-based fit-oriented sizing system with additional sizes by 

adaptation from a traditional mass production sizing system. In section 3.2, a case 

study of a basic straight skirt is given to validate the effectiveness of the proposed 

system. Finally, we give some concluding remarks and overall insight in section 3.3. 

 

3.1 Fit-oriented sizing system for garment mass customization 

As mentioned earlier, to develop a cost-efficient mass customization strategy, it is 

recommended to adopt a classical mass production process (Duray, 2002). 

Accordingly, the proposed fit-oriented sizing system for mass customization, 

illustrated in Figure 3.2, is established by developing a series of additional sizes based 

on a mass production sizing system with standard sizes. The upper portion of this 

figure shows the flowchart of establishing a garment sizing system in mass production 

(Gupta & Zakaria, 2014), and the lower portion gives the adaptation procedure to 

generate mass customization sizes, in which the classical mass production sizes are 

also retained. 
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Figure 3.2 Flowchart of the proposed fit-oriented sizing system. 
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The inputs of this sizing system are taken from the following main sources, i.e., 

the target population, the garment, the company, as well as the sizing standard as 

references. Initially, the key body (control) dimensions and the corresponding 

intersize intervals are determined (size step is the increment between adjacent sizes). 

For any fixed size roll, a size range achieving the highest accommodation rate is 

determined. That is, for the total number of garment sizes, the system determines the 

largest set of values along the key dimension to be covered in the size chart to 

maximize the portion of the population provided for by the sizing system. Generally, 

there would be more than one solution. Therefore, an aggregate loss (i.e., the 

quadratic average of log differences between the body dimensions of consumers and 

the assigned garment size dimensions) is used as a criterion for evaluating these size 

ranges, and the solution with the lowest aggregate loss is adopted. Finally, after 

designation (i.e., the set of descriptions or names of garment sizes), the optimal size 

scenario for this size roll can be determined. In the same way, the output provides the 

optimal mass production size scenarios for all defined size rolls. On the basis of the 

produced classical sizes from the mass production sizing system, the proposed mass 

customization sizing system permits improving the garment fit by applying additional 

sizes. At this stage, the key issue is the selection of the most relevant additional sizes. 

Adding one size in the sizing system will certainly give rise to additional costs in the 

garment manufacturing, especially in the cutting process. Therefore, it is crucial that 

each added size provides the highest profit in terms of fit. In this system, the 

optimization of adding sizes is performed using a Genetic Algorithm (GA), where the 

Comprehensive Fit (CF) is taken as the fitness function. The set of additional sizes 

that has the highest CF is selected for the next step (size designation). At this point, 

the optimal mass customization size scenario is generated. 

Section 3.1.1 and Section 3.1.2 present the steps and algorithms adopted for 

standardizing garment sizing (considering the portion of the mass production sizing 

system and the portion of the mass customization sizing system respectively). 

 

3.1.1 Sizing system development 
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In this section, we give the procedures of building a mass production sizing 

system as well as building a mass customization sizing system which is based on the 

former procedure. 

 

3.1.1.1 Sizing system development for mass production 

A mass production sizing procedure can be realized by performing the following 

steps. 

 

⚫ Key dimension (D) identification 

Two key body dimensions are selected, considering a specific target population, 

characterized by its region, age and gender, and a required garment, represented by its 

type, style, and model. These key dimensions are denoted as the primary dimension 

(Dp) and the secondary dimension (Ds). Height (H), chest/bust girth (CG/BG), waist 

girth (WG), and hip girth (HG) are the commonly used key body dimensions in 

garment sizing standards (EN 13402-2, 2002; International Organization for 

Standardization, 1991). 

 

⚫ Intersize interval (IntD) determination 

The distance between two neighboring size values is called intersize interval and 

is used in the determination of the size range (Figure 3.3). Based on experience and 

the concept of “interval of indifference” (Koblyakova, 1980), for each key dimension, 

we can first get the value range of its intersize interval, usually composed of a set of 

specific integer numbers (Gill, 2008). 

Then, the interval values (IntDi, i=s or p) are evaluated with a linear regression 

(O'brien & Shelton, 1941) of the two key dimensions (Ds=α+Dp*β) by this equation, 

namely, 

𝑉𝑖𝑛𝑡 = 𝑚𝑖𝑛 [|(𝛽 − ∫ 𝐷𝑠 ∫ 𝐷𝑝⁄ )|] 

 (3.1) 

when Vint reaches its minimum, the proportion of the key dimensions is the closest to 
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the slope β, which indicates that the vast majority of the target population is 

accommodated by the sizing system. 

 

 
Figure 3.3 Sketch of size range determination. 

 

• Size roll (S) determination 

A suitable number of sizes, namely, size roll, is responsible for a good 

compromise between the company and consumer in terms of personalization and cost 

(Zakaria, 2016). More precisely, the size roll in mass production should be neither too 

small nor too large in order to control the production and the distribution costs, 

meanwhile enhancing the satisfaction of shopping experience. 

 

• Size range (R) determination 

The range Ri=[minRi, maxRi] (i=s or p), covers all feasible values of the key 

dimension. As shown in Figure 3.3, a standard size range linearly varies from very 

small to very large (Ibanez et al., 2012), and is determined when the maximum 

portion of the target population is accommodated by a fixed size roll S and the 

intersize interval IntDi, namely, 

𝑚𝑎𝑥𝑅𝑖 − 𝑚𝑖𝑛𝑅𝑖 = ∫ 𝐼𝑛𝑡𝐷𝑖 × 𝑆 

 (3.2) 

• Coverage range/accommodation rate calculation 

The coverage range refers to the number of samples whose measurements are 
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within the size range. Similarly, the accommodation rate refers to these samples in the 

percentage of the whole population, and the value is typically between 65% and 85% 

(Gill, 2008). 

• Aggregate loss calculation 

As the general criterion evaluating sizing systems (Gupta & Gangadhar, 2004), 

the aggregate loss represents the averaged distance between the body dimensions of 

the instances Di and the dimensions of the assigned garment sizes, Ai. The following 

equation explains how to calculate this average Euclidian distance (d), 

𝑑 = √∑(𝐷𝑖 − 𝐴𝑖)2 

 (3.3) 

 

Gupta & Zakaria (2014) defines the ideal aggregate loss (i.e., the benchmark for 

an accurate size) as follows, √2 ∗ 2.54 = 3.58 cm. A smaller aggregate loss means a 

shorter distance between the body and the assigned garment size, in which case the 

garment is expected to have a better fit, and therefore the performance of the sizing 

system can be validated. 

 

⚫ Size designation 

This is the final step in the sizing system development procedure, aiming to 

transmit the size information expressed by codes that provide the best selection of the 

garment fit to the consumers. Arabic numerals or alphabet are common codes used in 

the size designation. The corresponding codes and the body dimensions are defined 

for each garment size in order to compose a size chart (EN 13402-3, 2003; 

International Organization for Standardization, 1977). 

According to the size range and the interval, the garment size dimensions (Ap, As) 

are defined as follows, 

(𝐴𝑝, 𝐴𝑠) = (𝑚𝑖𝑛𝑅𝑝 + (2𝑁𝑠 − 1) × ∫ Dp 2,⁄ 𝑚𝑖𝑛𝑅𝑠 + (2𝑁𝑠 − 1) × ∫ 𝐷𝑠 2⁄ ) 

 (3.4) 

where Ns refers to the sequence number of sizes in the size roll. 
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The median size (e.g. M) is set in accordance with the median instance of the 

population, when the Euclidian distances of garment size dimensions Ai to the median 

values of body dimensions Di(medium) of the target population is minimized, namely, 

𝐸𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛 ∑ [(𝑚𝑖𝑛𝑅𝑖 + (2𝑁𝑠 − 1) × ∫ 𝐷𝑖 2⁄ ) − 𝐷𝑖(𝑚𝑒𝑑𝑖𝑢𝑚)]
2

 

 (3.5) 

3.1.1.2 Sizing system development for mass customization 

 A newly proposed mass customization sizing system is realized with a series of 

additional sizes generated on the basis of the classical mass production sizes by 

performing the following steps, 

 

⚫ Size roll determination 

In order to provide an appropriate customization and meanwhile limit the rise of 

complexity mainly in the manufacturing and the pattern-developing process as well, 

we consider that the maximal number of additional sizes in mass customization equals 

the size roll in mass production. Thus, in our case study, the size rolls vary from 7 (in 

the mass production environment) to 14 (in the mass customization environment with 

7 additional sizes) respectively in the two sizing systems. 

 

⚫ Additional size generation 

With consideration of the feasibility and the efficiency in the pattern developing 

and the garment manufacturing process, the additional sizes are set by remaining the 

primary dimension the same and only varying the secondary dimension of the 

corresponding mass production sizes. Concretely, the additional sizes are created 

through a translation of classical mass production sizes along the secondary 

dimension (Figure 3.4 (a)). The mass customization strategy of setting additional sizes 

enables the size system to obtain various value combinations of key dimensions in 

order to permit the variety of figure types in the target population, namely, the 

variation of ratios between key body dimensions (Fan, Yu & Hunter, 2004). In 

contrast, a mass production sizing system based on proportional sizing cannot reflect 
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the variety of body shapes within a single garment size in a target market (Ashdown 

et al., 2001). 

 

 
Figure 3.4 (a) Sketch of additional-size generation; (b) Example of fit definition. 

 

⚫ Comprehensive fit (CF) calculation 

The comprehensive garment fit is the criterion that is used for the optimization 

and the evaluation of the mass customization sizing system in this chapter. The 

garment fit is generally defined by the relation between garment size dimensions and 

body dimensions (Ashdown, 2007). The aggregate loss that is used for the sizing 

system evaluation in mass production (as mentioned above), is the most commonly 

used criterion to represent the garment fit in the literature (Ashdown, 2007; Gupta & 

Zakaria, 2014; Zakaria, 2016). However, consumers’ subjective feeling on fit may not 

necessarily be in a simple linear correlation with the average distance between the 

garment size dimensions and the body dimensions, and the importance of key 

dimensions to fit varies with individual opinions as well. Therefore, we define the 

criterion CF to assess the overall fit impact of the mass customization sizing system 

on the target population. The graph (b) in Figure 3.4 gives an example of the fit 

definition with seven fit levels from ill-fit to perfect-fit and the correspondent weights 

from 0 to 10 according to consumers’ subjective common satisfaction of fit that is 

related to a specific garment size. CF is defined as the weighted average of the whole 

target population’s satisfaction on garment fit: 
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𝐶𝐹 = ∑ 𝑃𝑧 × 𝑊𝑧 

 (3.6) 

where z is a specific custom-fit level with the corresponding weight Wz, Pz refers to 

the percentage of the target population that is accommodated in the area with the 

custom-fit level z, 𝑧 ∈ [1, 𝑁𝑓𝑙] , Nfl is the number of various custom-fit levels, as 

shown in Figure 3.4 (b), Nfl =7. 

 

⚫ Size designation 

As additional sizes may not have the same isometric change in key body 

dimensions as classical mass production sizes, we propose to use the exact values of 

the key body dimensions in the format Dp/Ds to offer consumers directly the 

information about the corresponding body dimensions for a specific garment size. 

 

3.1.2 Algorithm applications in sizing systems 

In this study, we apply two enumeration algorithms and a genetic algorithm for 

solving the sizing problems in mass production and mass customization respectively, 

as shown in Figure 3.2. 

 

3.1.2.1 Enumeration algorithm for mass production 

The enumeration algorithms are used in the development of a mass production 

sizing system by listing all the possible items when calculating the accommodation 

rate and the aggregate loss in order to find the best sizing scenario (Gupta & Zakaria, 

2014). 

 

3.1.2.2 Genetic algorithm for mass customization 

The enumeration algorithms have good performances for mass production due to 

its light computational load. However, when applying them to build mass 

customization sizing systems, it becomes more complicated because finding the best 

set of additional garment sizes is a combinatorial optimization problem, and the 
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computational load grows exponentially with the number of additional garment sizes. 

In this case, GA developed by (Holland, 1973) is considered as an efficient tool with a 

high local and global searching ability used for modeling and solving complex 

discrete optimization problems. The application of GAs has the advantage of easy 

implementation and quick convergence to a global optimum by evaluating only a 

small fraction of the design domain (Lee, 2018). In our study, the procedure of the GA 

used to generate the optimal additional size combination for mass customization is 

demonstrated in Figure 3.5 and the specific steps are described as follows: 

 

 

Figure 3.5 Flowchart of the applied genetic algorithm. 

 

In Figure 3.5, Ps is the maximal integer number presenting the possibilities of 

additional sizes, Vna is the design variable representing a specific additional garment 

size and Na is the sequence number of this additional size. A further demonstration of 

the applied GA is bellowed. 

 

⚫ Encoding 
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In general, the real-encoding method is adopted for solving constrained 

optimization problems, while the integer-encoding method for combinatorial 

optimization problems. For this combinatorial optimization problem, a problem of 

searching for the best set of additional garment sizes, each denoted by a design 

variable (Vna), representing a possible additional garment size in its specific location 

(Figure 3.6), is coded on a specific integer number. The GA decodes the chromosome 

of individuals in order to obtain its phenotypic values (i.e., the exact set of additional 

garment sizes) corresponding to the decision variable values (referred to Figure 3.5). 

Having decoded the chromosome representation into the decision variable domain, 

the set of additional sizes is known so that the fitness of each individual can be 

evaluated. 

 

 

Figure 3.6 Possible additional sizes encoded in the genetic algorithm. 

 

⚫ Initial population 

An initial population composed of a fixed number of individuals (e.g. max (min 

(10×Na, 100), 40) where Na is the additional size number) is generated randomly in a 

double vector form. Rank scaling is selected for more diverse populations because it 

removes the effect of the spread of the raw scores. 
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⚫ Constraints 

The constraints of variables in the GA determine the upper and lower bounds of 

the predicted number of possible additional garment sizes. Each variable is in the 

range of 1 to Ps, Ps is the total possible locations of additional sizes (Figure 3.6). 

 

⚫ Fitness function 

The CF is taken as the fitness function of the GA in our study. 

 

⚫ Operators 

The selection of the individuals is realized with a Stochastic Universal Sampling 

(SUS) strategy. The SUS strategy uses a single random value to sample all of the 

solutions by choosing them at evenly spaced intervals and thus reduces the unfair 

nature of fitness-proportional selection methods (Baker, 1987, July). Crossover and 

mutation are likely to produce illegal solutions. As an initial attempt, we use scattered 

and gaussian respectively in the crossover function and mutation function with this 

integer problem. The obtained results prove the good performance of the GA. The 

population generation with this proposed GA is shown in Figure 3.7. 
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Figure 3.7 Population generation with operators in the genetic algorithm. 

 

⚫ Termination criteria 

Under some trial tests, the stopping criteria for this GA are set. First, the GA is 

allowed to run at a maximum number of iterations (e.g. 300). Second, if the average 

change in the fitness function values over a certain number of generations (e.g. 50) is 

less than a pre-defined threshold (tolerance), the algorithm stops. 

 

A comparison of the proposed GA and enumeration algorithm for generating the 

number of 1 to 3 additional garment sizes shows that the GA has better performances 

in terms of solution quality and computation time. 

 

3.2 Case study 

Consumer satisfaction with the overall fit at the lower body (e.g., a skirt) is 
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generally lower than that at the upper body and the total body (LaBat & DeLong, 

1990). The basic straight skirt is a clinging skirt type commonly used in formal 

occasions, which elicits a more stringent evaluation of fit at the lower body. In this 

context, this garment type has the motivation of generating more sizes for a better fit. 

As it is composed of several simple patterns, it is relatively more feasible and more 

realistic in the product development and manufacturing processes. In this section, a 

case study of women’s basic skirt production is used to validate the proposed system 

and to analyze the relationship between personalization and cost. The key body 

dimensions are the waist girth (WG) and the hip girth (HG), where the latter is taken 

as the primary dimension. We perform a sizing treatment for different production 

modes (i.e., mass production, craft production, and mass customization). Then, the 

corresponding cutting costs are calculated, and an analysis of fit and cutting cost is 

made to evaluate the performance of mass customization that is supported by the 

proposed optimization techniques under the concept of “design to cost”. 

 

3.2.1 Experiment design 

The size charts are designed for mass production and mass customization, while 

craft production uses personalized patterns that each individual is served with a 

specific size. The experiment design, the data collection, the parameter setting, and 

the used analytical methods are described as follows. 

 

3.2.1.1 Data collection 

The anthropometric measurements used in sizing come from a population of 451 

French women aging from 20 to 40. To evaluate our system in a scenario close to 

reality, the data sample is split into two datasets: 

- A training dataset that is composed of 301 instances is randomly selected from 

the population. Both the sizing systems for mass production and mass customization 

are built with this dataset. 

- A testing dataset, composed of the remaining 150 instances, serves as the real 
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consumer demand in the mass customization and craft production sizing scenarios. In 

mass production, the consumer demand is set to be an integral multiple of 150 ranging 

from 0 to 15000 (100 times 150). 

In addition, the real patterns for all garment sizes are developed using the 3D 

garment software, i.e., Lectra Modaris. 

 

3.2.1.2 Parameter setting 

Parameter setting in sizing is mainly based on industrial practice. The intersize 

interval can be the same magnitude across all the sizes or vary across the size range 

(Winks & Winks, 1997). Based on the intersize intervals in the European standard 

(EN 13402-3, 2003) and the binary linear regression analysis of the relationship 

between the two key body dimensions (viz. HG and WG), where β equals to 1.13, to 

simplify the operation, in the case study, interval of hip girth (IntHG) is set to be 5, 

interval of waist girth (IntWG) be 6. 

 

3.2.1.3 Analytical method 

The comparisons of fit are made among the three different production modes, i.e., 

craft production, mass production, and mass customization. The variation tendencies 

of the comprehensive fit with the additional size number are described using modal 

values. A related analysis has been conducted to unveil the relation between the 

comprehensive fit and the additional size number. 

 

3.2.2 Results and discussion 

For mass production and mass customization, we produce sets of sizes and 

calculate the Comprehensive Fits (CFs) by using the proposed fit-oriented sizing 

system. Next, in Chapter 4, we use an extended IP model to figure out the 

corresponding unit cutting costs using measured personal body dimensions of the 

instances. For craft production, as specific garment patterns are generated for each 

personalized individual, the value of CF is regarded as 10. 
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The following section illustrates the sizing results and the CFs under different 

production modes (viz. mass production, mass customization, and craft production) of 

garment manufacturing. 

 

3.2.2.1 Sizing results 

In the mass production environment, we introduce a number of different size rolls 

and select the one which provides the best performance according to the indices of 

accommodation rate and aggregate loss. Then, we introduce a number of additional 

sizes to the previous mass production sizing system in order to obtain the highest 

value of CF and establish the mass customization sizing system. 

For mass production, the reasonable accommodation rate between 65% and 85% 

is obtained with size rolls, i.e., 5, 6, or 7. The sizing system with a size roll of 7 

corresponds to the highest accommodation rate, and thus it is used to represent the 

performance of mass production in our analysis and for the comparison. With the 

exact size ranges and intervals, the size dimensions of each size are calculated by 

using Equation 3.4. We define the size whose dimensions are the closest to the 

median dimension values as size M, referring to Equation 3.5. Table 3.1 shows the 

mass production size chart with a size roll of 7. 

 

Table 3.1 Size chart with size roll of 7 in mass production 

Size 
HG 

(cm) 
R HG 

(cm) 
IntHG 

(cm) 
WG 

(cm) 
R WG 

(cm) 
IntWG 

(cm)  

XXS 89 [86.5, 91.5] 

5 

67 [64, 70] 

6 

XS 94 [91.5, 96.5] 73 [70, 76] 

S 99 [96.5, 101.5] 79 [76, 82] 

M 104 [101.5, 106.5] 85 [82, 88] 

L 109 [106.5, 111.5] 91 [88, 94] 

XL 114 [111.5, 116.5] 97 [94, 100] 

XXL 119 [116.5, 121.5]  103 [100, 106]  

 

As aforementioned, the additional sizes for mass customization can be made by 

varying the secondary dimensions (WG) of the classical mass production sizes while 

keeping invariant for their primary dimensions (HG). The body dimensions of the 
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instances on the left and bottom decide the limitations of WG for a given HG range. 

By setting the maximal additional size number to be 7, we make experiments adapted 

from the original mass production sizing system (the black rectangles in Figure 3.8 

(a)). Figure 3.8 (b)-(h) give the distributions of additional sizes determined (red 

rectangles) by using a Genetic Algorithm (GA) with an increasing additional size 

number ranging from 1 to 7. 

 

 
Figure 3.8 Size distributions with the additional size number ranging from 0 to 7. 

 

Table 3.2 Size chart with size roll of 14 in mass customization 

HG 

(cm) 

  WG   

Original waist  Larger waist  Smaller waist 

WG= 

(cm) 
Size 

code 
 WG+ 

(cm) 
Size 

code 
 WG- 

(cm) 
Size code 

89 67 1  - -  - - 

94 73 2  83 7*  - - 

99 79 3  91 3*  72 5* 

104 85 4  95 6*  77 1* 

109 91 5  102 4*  - - 

114 97 6  - -  - - 

119 103 7  109 2*  - - 
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Table 3.2 shows the mass customization size chart with a size roll of 14. The size 

codes of the additional sizes are marked with *. 

 

3.2.2.2 Comprehensive fits (CFs) 

The same custom-fit level definition as demonstrated in Figure 2.6 (b) and CF 

calculation by Equation 3.6 are used in mass production as well as in mass 

customization. In this case, a total of 7 custom-fit levels named unfit, ill-fit, minus 

medium-fit, medium-fit, minus good-fit, good-fit, perfect-fit are assigned with the 

weights of 0, 2, 4, 5, 7, 8, and 10 respectively (see Figure 2.6 (b)). Then, the CFs are 

calculated by Equation 3.6. The CF of mass production is 6.88. The CF of mass 

customization increases from 7.10 to 8.20 when adding new sizes. The high 

correlation coefficient (r) of 0.9978 indicates that there is a perfect uphill linear 

relationship between the CF and the additional size number. The increasing rate 

progressively decreases with the number of additional sizes (as shown in Figure 3.9). 

 

 
Figure 3.9 The comprehensive-fit trend with the additional size number ranging from 

0 to 7. 

 

Table 3.3 gives the evaluation results of the mass customization sizing systems 

with various size rolls. It shows that adding more sizes brings not only an increase in 

the CF but also a decrease in the aggregate loss. However, the accommodation rate 

can be further improved when maintaining the size roll to be a stable value. For 
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instance, the sizing system can improve the accommodation rate when the size roll is 

always higher than 9. 

According to the changing values of the three indices for the sizing system 

evaluation (CF, aggregate loss, and accommodation rate), it is demonstrated that, as 

expected, the CF increases, the aggregate loss decreases, and a higher percentage of 

the population can be achieved when the size roll grows. The changes of the CF are 

more sensitive than those of the aggregate loss. Therefore, the proposed criterion, the 

CF, is proved to be capable of representing the performance of personalization (fit) 

correctly and accurately. 

 

Table 3.3 Sizing-system evaluation results with various size rolls in mass 

customization 

Size 

roll 

Comprehensive 

fit CF 

Size range R (cm) Accommodation 

rate (%) 

Aggregate 

loss (cm) RHG RWG 

7 6.8804 [86.5, 121.5] [64, 106] 86.05 5.55 

8 7.0997 [86.5, 121.5] [64, 106] 86.05 5.07 

9 7.3156 [86.5, 121.5] [64, 112] 88.70 5.05 

10 7.5183 [86.5, 121.5] [64, 112] 88.70 4.88 

11 7.7143 [86.5, 121.5] [64, 112] 88.70 4.58 

12 7.8904 [86.5, 121.5] [64, 112] 88.70 4.18 

13 8.0498 [86.5, 121.5] [64, 112] 88.70 4.01 

14 8.1993 [86.5, 121.5] [64, 112] 88.70 3.91 

 

In summary, the additional sizes mainly provide a better garment fit towards the 

consumer population, and can support additional consumers to some extent as well. 

Furthermore, the proposed CF has a good performance in representing the fit with the 

whole target population. 

 

3.3 Conclusion 

In this chapter, optimization has been made for the sizing of the garment 

manufacturing processes in mass customization. To be more specific, we have 

proposed a fit-oriented sizing system and a new criterion called Comprehensive Fit 

(CF) for evaluating the fit. The sizing strategy for mass customization is to create 
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additional garment sizes based on the mass production sizing system, because the 

procedure is easier and can reduce the extra cost in new pattern development and 

manufacturing processes as well. A Genetic Algorithm (GA) has been applied to 

locate the appropriate additional garment sizes, with the CF defined as the objective 

function. To demonstrate the efficiency of the proposed mass customization sizing 

system (the custom-fit strategy by using additional sizes), we present a case study of 

women’s straight skirt. The results show that the system can effectively improve the 

garment fit for a target population. 

The proposed system provides an effective way for garment manufacturers to 

provide custom-fit products. For further improvement and extension, a fit-related 

pricing strategy for the sizing system can be developed to provide consumers with 

accurate prices for each specific personalization. 

It is worth noting that the variation of patterns induced by the enlarged size 

quantity in mass customization has a great impact on the cutting process. To specify, 

the increased size number in mass customization leads to the enhanced variety in 

marker, which influences the marker length and marker cutting length. A more precise 

cutting order plan can be realized, by using the actual values of the two marker 

parameters to consider their differences. The corresponding optimization of cutting 

order planning in garment mass customization will be addressed in the next chapter, 

aiming to evaluate the economic performance of this mass customization strategy, and 

reveal the relation between personalization and cost. 
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Chapter 4  Optimization of Garment 

Cutting Order Planning in the 

Context of Mass Customization 

 

In this chapter, as markers vary greatly (regarding the marker length and the 

cutting length) with various size combinations especially when using additional 

sizes, we present a cost-oriented garment Cutting Order Planning (COP) system 

for garment mass customization, in which marker variations are considered 

(Figure 4.1). An expanded Integer Programming (IP) model is developed to 

generate the optimal cutting order plan with the lowest overall cutting cost 

(including the costs of fabric, spreading operation, and cutting operation) for 

evaluating the economic performance (the overall cutting cost) of the proposed 

mass customization sizing system in the previous chapter. Furthermore, the 

balance between fit and cost is addressed. 

 

 

Figure 4.1 Topic of Chapter 4. 

 

This chapter is presented as follows. In Section 4.1, the COP problem is 
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defined and the related optimized IP mathematical model with marker variations is 

formulated. A further extension of the case study in 0 is given in Section 4.2 as an 

implementation of the COP system. The relations between the fit and the cutting cost 

for various sizes have been analyzed to reveal the underlying relationship between 

personalization and cost. The paper is finally concluded with a summary and overall 

insights detailed in Section 4.3. 

 

4.1 Cost-oriented cutting-order-planning system for garment mass 

customization 

The garment production planning in the cutting room, usually considered as an 

NP (non-deterministic polynomial-time)-hard problem (Fowler, Paterson & Tanimoto, 

1981; Nascimento et al., 2010; M'Hallah & Bouziri, 2016), mainly deals with lays and 

markers in the context of layout and sequence. The aim of the Cutting Order Planning 

(COP) is to find an optimal layout subject to the constraints, in terms of order, fabric, 

equipment, and pattern, permitting to minimize a number of cutting-related costs. In 

the mass production domain, each ply of lays is complete that residual products (i.e., 

the cut-pieces of garment articles) are inevitable, and the COP is made by using the 

estimated values of marker lengths and marker cutting lengths. As the standard costs 

in mass production are not available in mass customization, the economic profit is 

strongly related to the complexity of the production plan and the accuracy of cost 

estimation. In this context, excess garment products are not expected, so that step lays 

are implemented to reach an explicit low cutting cost. As shown in Figure 4.2, in the 

proposed cost-oriented COP model, lay planning is complemented with specific 

markers considered in order to obtain the optimal cutting plan with the lowest cutting 

cost. 
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Figure 4.2 Flowchart of the proposed cost-oriented cutting-order-planning model. 

 

Section 4.1.1 and Section 4.1.2 present the three modules in the cost-oriented 

COP model (i.e., lay planning, marker making, and calculation of cutting-related 

costs) and the establishment of a corresponding expanded IP model to work out 

the optimal cutting order plan for mass customization, respectively. 

 

4.1.1 Modules of the proposed cutting-order-planning model 

The three modules (lay planning, marker making, and calculation of cutting-

related costs) in the COP model are detailed in this section. 
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4.1.1.1 Module of lay planning 

Lay planning determines parameters (i.e., the contained garment articles, the ply 

number) of lays for an order. The order is produced either by forecast or by demand, 

indicating the required quantity of garment articles to produce for each garment size 

with different fabrics. One of the constraints in lay planning is that the order demand 

should be adequately met. The ply number is limited by the operational cutting height 

(Hc) and fabric thickness (Tf). This constraint is shown in Equation (4.1), 

𝑚𝑎𝑥𝑃𝑁𝑙 = ⌊𝐻𝑐 𝑇𝑓⁄ ⌋ 

 (4.1) 

where maxPNl represents the maximum ply number per lay. 

Lay planning and marker making are both interrelated (illustrated in Figure 4.2 

and Figure 4.3 (a)). The spreading surface is in line with the marker surface. Their 

widths and lengths are subject to fabric width, ease allowance, cutting window length, 

and pattern attributes. Size combinations in the lays, also considered in the marker 

making module, should be subject to these side-length restrictions. Lay planning 

without regard to actual markers is a rough cost estimation, and the optimal layout can 

be hardly found. As shown in the literature, the lay planning problem can be solved 

assuming that for each garment article their marker lengths are set to a fixed constant, 

and the same situation with the cutting lengths, while in fact, these parameter values 

differ considerably between markers. The marker variation and the industrial 

application are explained in detail in the following marker making module. 
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Figure 4.3 (a) Sketch of a set of lay and marker; (b) Sketch of different lays and 

markers. 

 

For large order sizes in a mass production situation, each ply tends to use the 

whole length of the marker, and it is easy to reach a high marker utilization and 

gain economy in scale. Nevertheless, the ladder-shaped step lay (Farley, 1988) is 

preferred when it comes to quite small order sizes like in a mass customization 

situation, in which excess garment products are not expected. 

 

4.1.1.2 Module of marker making 

A marker determines the length and the width of the fabric pieces in the 

corresponding lays for cutting out the patterns of the contained garment articles. 

The marker size mainly depends on the fabric width and the cutting window 

length of the cutting table. The maximal marker width is relative to the effective 

width of the cutting table, the fabric width, and the fabric ease allowance 

(Vilumsone-Nemes, 2018), where usually enough fabric allowance is made 
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among patterns and slice sections. Indeed, the effective width always exceeds the 

fabric width, thus, the calculation of the maximal marker width (maxWm) is 

determined by fabric width (Wf) and fabric allowance (Ea) according to the following 

equation: 

𝑚𝑎𝑥𝑊𝑚 = 𝑊𝑓 − 𝐸𝑎 

 (4.2) 

There are various marker types in garment production (Haque, 2016). Each type 

of marker has its advantages and disadvantages, which should be noticed for a proper 

implementation in COP. For instance, for the same size combination, the mixed 

marker, patterns of all garment articles contained are mixed on the marker, is 

generally better in terms of efficiency than the group marker, in which patterns of 

each garment article are arranged in an individual section of the marker. Mixed 

markers are commonly applied in mass production due to the high efficiency. In small 

series production, excess products are undesired, group markers used with step lays. 

The sketches of these two types of markers are shown in Figure 4.3 (b). 

 

4.1.1.3 Module of cutting cost calculation 

The costs in respect of the cutting process can be classified into two types: one 

(including fabric and marker costs) is relative to the consumption of materials, and the 

other (including spreading, cutting, as well as sorting and bundling costs) is relative to 

the conduction of operations. Of all the five costs arising from the cutting process, the 

marker cost will become significantly lower with the automation of production, and 

the sorting and bundling cost is considerably lower than the others. Thus, in this study, 

we consider that the total cutting-related cost mainly concerns the fabric consumption 

and the operations of spreading and cutting. 

The COP related parameters are necessary in the calculation of the cutting-related 

cost, as shown in the lower half portion of Figure 4.2. The production size, the lay 

number, and the ply number are available in the lay plan, while the marker number, 

the marker length, and the marker cutting length can be extracted from the marker 

parameters. The corresponding computational formulas concerning the fabric 



 

135 

 

consumption and the operations of spreading and cutting are given below.  

1) Fabric cost (Cf): 

𝐶𝑓 = ∑ 𝑃𝑓 × 𝐿𝑓 

(4.3) 

where Pf is the fabric price per unit length, Lf the used fabric length. 

 

2) Spreading cost (Cs):  

𝐶𝑠 = (𝑃𝑜 + 𝑃𝑠𝑚) × 𝑇𝑠 

𝑇𝑠 = ∑ 𝐿𝑓 𝑉𝑠⁄ + 𝑁𝑝 × 𝑇𝑠𝑝 

(4.4) 

where Po stands for the operator cost per hour, Psm the spreading machine cost per 

hour, Ts the number of hours for spreading, Vs the spreading speed, Np the ply number, 

and Tsp the number of hours for each pause during spreading. 

 

3) Cutting cost (Cc): 

𝐶𝑐 = (𝑃𝑜 + 𝑃𝑐𝑚) × 𝑇𝑐 

𝑇𝑐 = ∑ 𝐿𝑐 𝑉𝑐⁄ + 𝑇𝑐𝑝 

(4.5) 

where Pcm stands for the cutting machine cost per hour, Tc the number of hours for 

cutting, which is determined by the cutting length (Lc) and the cutting speed (Vc), and 

Tcp the number of hours for the pause during cutting. 

 

4.1.2 Formulation of the cutting-order-planning problem in mass customization 

Lay planning is one part of the cutting stock problem (Farley, 1988), and can 

be solved by mathematical methods (Farley, 1988; Degraeve & Vandebroek, 

1998; Degraeve, Gochet & Jans, 2002) with the aid of soft computing 

technologies (Martens, 2004; Fister, Mernik & Filipic, 2010; Yang, Huang & 

Huang, 2011), which is introduced in detail in Section 1.1.5. Integer 

Programming (IP) is proved to be an effective tool for the COP (Degraeve & 
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Vandebroek, 1998), the basis of other researches (Degraeve, Gochet & Jans, 2002; 

Martens, 2004). Considering the previously described differences of the COP in mass 

production and mass customization, we propose an expanded IP model on the basis of 

the Zeger Degraeve’s mixed integer programming model (MIP) (Degraeve & 

Vandebroek, 1998) in order to tackle the lay planning problem with both step lays and 

full lays. Compared to the existing IP in the literature, the additional value of the 

expanded IP model lies in that the specific marker lengths and cutting lengths of the 

actual markers are taken into consideration. A comprehensive cutting cost, composed 

of various costs (i.e., fabric consumption, operations of spreading and cutting), is 

taken as the objective of this COP model. Below is the detailed IP model for solving 

this COP problem under the mass customization environment: 

 

Given: 

S set of sizes 

ODs order demand for size s, s∈S 

M set of markers 

SNsm copies of size s in marker m, s∈S, m∈M 

maxSNm maximum number of sizes in marker m, s∈S, m∈M, is constant 

SNssm existence of size S in subsection of marker m, m∈M, = 1, when exists, = 

0, otherwise 

Lm length of marker m, m∈M 

Lsm length of each subsection of marker m, m∈M 

Ls length of selvage, is constant, 0.02-0.04 cm (Gersak, 2013) 

CLm cutting length of marker m, m∈M 

L set of lays 

maxPNl maximum ply number of lay l, l∈L is constant 

Vm existence of marker m, m∈M, = 0, TPNm = 0, PNm1 = 0, = 1, otherwise 

PNl ply number of lay l, l∈L, ≤ maxPNl, = TPNm⁄Um , PNm1⁄Um, m∈M 

Pf fabric price per unit length 

Po operator cost per hour 

Vs spreading speed 

Vc cutting speed 

Tsp number of hours for each pause during spreading 

Tcp number of hours for the pause during cutting 

 

Assumption: 
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Equipment investment cost is not included in the calculation because it is 

relatively small in comparison with other costs. 

 

Variables: 

TPNm total ply number of lays with marker m, m∈M 

PNsm ply number of subsections with marker m, m∈M, on a downward trend 

Um copies of lays with marker m, m∈M, Um –1 ≤ TPNm⁄maxPNl ≤ Um, Um–

1 ≤ PNm1⁄maxPNl ≤ Um 

 

Constraints: 

1) satisfaction of demands for each size, garments arranged in full lays and 

in step lays should meet the order demand 

∑ 𝑆𝑁𝑠𝑚𝑇𝑃𝑁𝑚

𝑚∈𝑀

+ ∑ ∑ 𝑆𝑁𝑠𝑠𝑚𝑃𝑁𝑠𝑚

𝑚𝑎𝑥𝑆𝑁𝑚

1𝑚𝜖𝑀

≥ 𝑂𝐷𝑠 

(4.6) 

2) lay number determined by ply number 

𝑈𝑚 − 1 ≤ 𝑇𝑃𝑁𝑚 𝑚𝑎𝑥𝑃𝑁𝑙⁄ ≤ 𝑈𝑚 

(4.7) 

𝑈𝑚 − 1 ≤ 𝑃𝑁𝑚1 𝑚𝑎𝑥𝑃𝑁𝑙⁄ ≤ 𝑈𝑚 

(4.8) 

3) diminishing subsection heights in step lays 

𝑃𝑁1 ≥ 𝑃𝑁2 ≥. . . ≥ 𝑃𝑁𝑚𝑎𝑥𝑆𝑁𝑚
 

(4.9) 

 

Objective function: 

𝑀𝑖𝑛 ∑ (𝑤𝑢 × 𝑈𝑚+𝑊𝑡𝑝𝑛 × 𝑇𝑃𝑁𝑚 + 𝑊𝑝𝑛 × ∑ 𝑃𝑁𝑠𝑚

𝑚𝑎𝑥𝑆𝑁𝑚

1

)

𝑚∈𝑀

 

𝑊𝑒(𝑊𝑢, 𝑊𝑡𝑝𝑛, 𝑊𝑝𝑛) = 𝑓(𝑆𝑁𝑠𝑚, 𝐿𝑚, 𝐶𝐿𝑚, 𝑆𝑁𝑠𝑠𝑚, 𝐿𝑠𝑚, 𝐿𝑠, 𝑃𝑓, 𝑃𝑜, 𝑉𝑠, 𝑉𝑐 , 𝑇𝑠𝑝, 𝑇𝑐𝑝) 

(4.10) 

where We refers to weight in the objective function and Wu, Wtpn, Wpn are the weights 

for each specific variable. 
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4.2 Case study 

We made an extension of the case study in Chapter 2, that the proposed COP 

system is applied to calculate the overall cutting costs when applying sizes generated 

in Chapter 2. Moreover, the relationship between the overall cutting cost and the 

number of additional garment sizes is studied through this case study. 

 

4.2.1 Experiment design 

The batch cutting is applied in the cutting processes of mass production and mass 

customization, while the single-piece cutting is applied in the cutting process of craft 

production. Correspondingly, the unit cutting costs for mass production and mass 

customization are figured out by using the proposed cost-orient Cutting-Order-

Planning (COP) model, while for craft production, the cost is estimated in the single-

piece manufacturing environment. In regard to the experiment design, the data 

collection, the parameter setting, and the used analytical methods are described as 

follows. 

 

4.2.1.1 Data collection 

The anthropometric measurements used in sizing come from a population of 451 

French women aging from 20 to 40. To evaluate our system in a scenario close to 

reality, the data sample is split into two datasets. 

-As mentioned in Chapter 2, a training dataset is composed of 301 instances that 

are randomly selected from the population. Both the sizing systems for mass 

production and mass customization are built using this dataset. Also, this training 

dataset is used for the forecasting of the order quantity by sizes, which is taken as a 

constraint of the IP model in the COP of the mass production scenario. 

-The same testing dataset, composed of the remaining 150 instances used in 

Chapter 2, also serves as the real consumer demand in the COP of the mass 

customization and the CF scenarios. 
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Patterns for all garment sizes created in Chapter 2 are used in this section. 

Markers for all the size combinations are drawn using the software Lectra 

Diamino Fashion. The data extracted (including the marker length and the cutting 

length) from these markers are used in COP. 

 

4.2.1.2 Parameter setting 

Parameter setting in the COP is based on the related literature and the 

production experience. In our experiment, we take a Vector 2500 Techtex 

produced by Lectra as the cutting equipment. The parameters associated with the 

cutting operation are set as follows. The effective width is 1.80 m, the cutting 

window length is 1.75 m and the operational cutting height is 2.5 cm. The values 

of parameters on spreading and cutting operations that are set in our experiment 

are given in Table 4.1. 

 

Table 4.1 Parameter setting in relevance with spreading and cutting operations 

 

In order to propose different scenarios, we consider five classes of fabric 

whose prices vary from the low cost of 0.2 €/m to the luxury cost of 20 €/m. The 

length of the selvage is 0.02 m for each fabric lay. We also set three levels of 

operator cost, i.e., 5 €/h, 10 €/h, and 20 €/h, to simulate different production 

situations. The spreading operation is automatic with the speed of 2400 m/h, and 

the time for each spreading pause is 1/60 h. Two cutting process modes are 

considered, i.e., the automatic cutting with a speed of 2400 m/h, and the manual 

cutting with 400 m/h. As the cutting pause is relatively short compared with the 

Parameter in cutting order planning Set value 

fabric price Pf (€/m) 0.2 1 5 10 20 

length of selvage ls (m) 0.02 

operator cost Po (€/h) 5 10 20 

spreading speed Vs (m/h) 2400 

time per spreading pause Tsp (h) 1/60 

cutting speed Vc (m/h) 2400 400 

time per cutting pause Tcp (h) 0 
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time consumed in the entire cutting operation, it is considered as null in our 

experiment. In total, 30 different scenarios are considered. 

 

4.2.1.3 Analytical method 

Comparisons of the cutting costs are made among the three different production 

modes, i.e., craft production, mass production, and mass customization. The variation 

tendencies of unit cutting cost with additional size numbers in mass customization and 

craft production, the unit cutting cost in mass production with the order size are 

described. Additionally, the related analysis has been conducted to unveil the relation 

between the unit cutting cost and the additional size number, and the relation between 

the unit cutting cost and the comprehensive fit. 

 

4.2.2 Results and discussion 

For craft production, we take the average values of marker related parameters 

(i.e., the marker length and the cutting length) in mass customization as the estimated 

values in the single-piece cutting. For mass production and mass customization, the 

variance of markers is considered in the COP to calculate the corresponding unit 

cutting costs in the batch cutting. 

The following section illustrates the results of sizing, the CFs, the unit cutting 

costs, and gives an analysis of the relation of the fit and the cutting cost with different 

garment production modes (viz. mass production, mass customization, and craft 

production). 

 

4.2.2.1 Cutting order planning and cutting costs 

The production mode differs, the COP varies in details. The proposed Integer 

Programming (IP) model is conducted to find appropriate combinations of lays and 

markers and to figure out the unit cutting costs for mass production and mass 

customization scenarios. With the order size of mass production ranging from 0 to 

13400, in which the maximal value 13400 is determined by 100 times 134 (the basic 

forecasted order size for the consumer demand of 150, according to the size 
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distribution in mass production with a roll size of 7), the COP results (Figure 4.4) 

show that the larger the order size is, the lower the cutting cost will be. However, 

when the order size is large enough (above 6000 in our experiments), the cutting 

cost tends to be stable at a specific value. We use the cutting-cost values of the 

order size 10000 as the stable values to represent the cutting costs in mass 

production. In mass customization, the order size is the exact number of 134 for 

the consumer demand of 150, the cutting costs are calculated with the increase of 

additional sizes from 1 to 7. For craft production, we regard the cutting operation 

as a simple-ply cutting and use the average marker length of a single garment 

article for the cutting cost calculation. 

 

 

Figure 4.4 Cutting cost trend in mass production. 

 

Table 4.2 Cutting costs in mass production 

Cutting 

speed (m/h) 

Operator cost 

Po (€/h) 

Unit cutting cost (€) 

Fabric price Pf (€/m) 

0.2 1 5 10 20 

2400 

5 0.17 0.66 3.15 6.25 12.46 

10 0.21 0.71 3.19 6.30 12.51 

20 0.30 0.79 3.28 6.38 12.59 

400 

5 0.17 0.67 3.15 6.26 12.47 

10 0.22 0.71 3.20 6.30 12.51 

20 0.31 0.80 3.29 6.39 12.60 
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Table 4.2 indicates the cutting costs in mass production. The manual cutting and 

a higher operator cost result in increases in the cutting cost, but a higher fabric price is 

obviously much more effective, and a strong positive correlation between the fabric 

price and the unit cutting cost can be found. 

Table 4.3 gives the estimated unit cutting costs of craft production. As expected, 

the cutting costs in craft production are much higher than those in mass production 

(Table 4.2) due to the manual operation and short markers. It is shown that fabric 

price also plays an absolutely important role on the unit cutting cost like that in mass 

production. 

 

Table 4.3 Cutting costs in craft production 

 

In mass customization, the correlation coefficients show a strong linear 

relationship between the unit cutting cost and the additional size number. However, 

the unit cutting cost slightly fluctuates that there exist some turns of trends (Figure 4.5) 

in the corresponding unit-cutting-cost curves when applying various values of 

production parameters, i.e., the fabric price and the cutting speed, while the operator 

cost has no impact on this trend (Figure 4.6). 

The trend of the unit cutting cost varies when the cutting speed differs or the 

fabric price varies. When the number of additional sizes increases, the unit cutting 

cost decreases if the cutting operation is automatic (Figure 4.5 (a)) or the fabric is 

expensive (Figure 4.5 (d)). Otherwise, when the cutting operation is manual and the 

fabric is at a quite low price, the unit cutting cost increases (Figure 4.5 (b)). As a high 

fabric price has a significant impact while a low cutting speed has a slight effect on 

Cutting 

speed (m/h) 

Operator cost 

Po (€/h) 

Unit cutting cost (€) 

Fabric price Pf (€/m) 

0.2 1 5 10 20 

2400 

5 0.29 1.07 4.94 9.79 19.47 

10 0.40 1.17 5.05 9.89 19.58 

20 0.60 1.37 5.25 10.09 19.78 

400 

5 0.37 1.15 5.02 9.87 19.55 

10 0.55 1.33 5.20 10.05 19.73 

20 0.91 1.69 5.56 10.40 20.09 
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raising the weight of fabric price in the objective function of the COP model, the 

above phenomenon, in fact, results from the decrease of fabric usage when more 

additional garment sizes are adopted. One reason for this decrease is that the 

newly generated additional sizes would occupy less area on markers than the 

original sizes, resulting in a reduction in fabric usage. The other reason is that the 

additional sizes can bring more possible size combinations with shorter markers 

and finally reduce the fabric usage. 

 

 
Figure 4.5 Partial cutting costs in mass customization (operator cost=10 €/h). 

 

It is seen that a higher operator cost also causes a small increase in unit 

cutting cost, but does not affect its variation trend (Figure 4.6). This is because 

the operator cost accounts for a small weight in the objective function of the 

overall cutting cost. 
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Figure 4.6 Partial cutting costs in mass customization (cutting speed=2400 m/h, 

fabric price=5 €/m). 

 

To summarize, if a manual cutting operation is applied, and the used fabric is 

cheap, the unit cutting cost will increase with additional sizes. Otherwise, if the 

cutting operation is automatic, the cost of cutting operation will decrease so that the 

proportion of fabric usage is relatively much larger, and therefore, the unit cutting 

cost decreases because of a strong positive correlation with the fabric cost. In addition, 

the cutting cost varies slightly with different sizing scenarios, where the details in the 

cost trends would depend on the garment type. Especially for mass customization, it is 

meaningful that at a certain point, the unit cutting cost decreases when the additional 

size quantity slightly increases, which is economically beneficial in garment mass 

customization. Additionally, mass customization can enlarge the user population to 

some extent. 

 

4.2.2.2 Analysis of relation between comprehensive fit and unit cutting cost 

The idea is to gain the fit and cost tradeoff under the concept of “design to cost” 

by using the proposed system that enables the garment manufacturing to control the 

cost, especially the cutting cost, during the design stage. An analysis of the unit 

cutting cost variation trend with the CF in mass customization is described in this 

section. 
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The correlation coefficients indicate that the CF has a strong linear 

relationship with the unit cutting cost in mass customization. Similar to the tends 

of the unit cutting cost when the number of additional sizes increases, there are 

two opposite trends of the unit cutting cost when the CF increases (Figure 4.7). 

Figure 4.7 (a) is with an automatic cutting and Figure 4.7 (b) with a manual 

cutting. The appropriate sizing scenarios (red points) which are lower in the unit 

cutting cost but higher in the CF can be found in these curves. In Figure 4.7 (a), 

there is only one good solution when the CF = 8.2 with the best personalization 

level and the cheapest cost, while in Figure 4.7 (b), there are several good 

solutions, the first, fourth and sixth points, with better tradeoffs of personalization 

and cost. The results enable the decision-maker to find the best scenario 

according to the personalization or cost required in garment mass customization. 

It is also worth noting that the details in this cost/fit trend would differ among 

various garment types. 

 

 

Figure 4.7 Cutting cost trends in mass customization according to comprehensive fit 

for two different cutting speeds (fabric price=1 €/m, operator cost=10 €/h). 

 

With a comparison of mass production, mass customization, and craft 

production on the CF and the unit cutting cost (Figure 4.8), we find that the mass 

customization strategy can efficiently improve the CF with a slight increase in 

unit cutting cost compared to a significant cost increase in craft production. In the 
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current industrial and business situation, automation in production has been widely 

accepted by companies and luxury fabrics are largely preferred by more consumers, 

so the proposed system providing the local optimums (Figure 4.5 (a)(c)(d), Figure 4.7 

(a)) is extremely significant to the garment mass customization tendency. 

 

 
Figure 4.8 Cutting costs for various production modes (automatic cutting, fabric 

price=20 €/m, operator cost=10 €/h). 

 

Having mastered how the cutting cost varies with the CF, we can select 

appropriate sizing scenarios according to a compromise between the unit cutting cost 

and the CF, which evolve in the two opposite trends, according to the specific 

production situation (in terms of the fabric cost and cutting speed). In practice, 

compared with the significant-high unit cutting cost in craft production, a slight 

increase of the unit cutting cost brought by mass customization can be much more 

acceptable for garment manufacturers. And, more remarkable in mass customization, 

there are also local optimums that provide the best tradeoffs between personalization 

and cost, from which both the company and consumers can get benefits in the end. 

 

4.3 Conclusion 

In this chapter, optimization has been made for the Cutting Order Planning (COP) 

of the garment manufacturing process with consideration of the greater marker 

variance brought by mass customization. As a result, a cost-benefit analysis has been 
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available for decision-makers in the garment industry towards mass 

customization. To be more specific, we propose a COP system, in which the 

expanded Integer Programming (IP) model has been built to determine the COP 

solution yielding the least costly cutting process with precise data of marker 

parameters (i.e., the marker length and the marker cutting length). With the 

accurate cutting costs form the COP system and the garment fits from the sizing 

system, we evaluate the cost/personalization ratios in various production 

situations. 

To demonstrate the efficiency of the proposed sizing system in Chapter 3, 

we present a specific case study of women’s straight skirts, in which the 

underlying relationship between personalization and cost was explored. It is 

found that the relationship between the cutting cost and the number of additional 

garment sizes is nonlinear and fluctuating, strongly influenced by a combination 

of different factors such as the fabric price, labor cost, and cutting speed. Local 

optima can arise, of which the identification is crucial for developing mass 

customization by obtaining a better compromise between the personalization (e.g., 

the Comprehensive Fit (CF)) and the cost (e.g., the cutting cost). 

Thereupon, with the concept of “design-to-cost”, the proposed system 

provides a reference for the garment industry to handle the tradeoff between 

personalization and cost in mass customization, in order to meet consumers’ 

growing demand of personalization at an acceptable cost. It provides garment 

manufacturers with guidance on developing effective manufacturing strategies for 

the production mode transformation from mass production to mass customization. 

Additionally, as an attempt of the automation and intellectualization in garment 

manufacturing, it is in the spectrum of Industry 4.0. 

The efficiency of the proposed COP system relies on obtaining the accurate 

marker-related data, i.e., the marker length and the marker cutting length. The 

wider garment size roll, especially in mass customization, leads to a greater 

marker variance. However, the semi-automatic work of making all the markers in 

the current practical production is of low efficiency in time and accuracy. 
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Consequently, we consider using the marker prediction to solve this issue in the next 

chapter. 
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Chapter   V: 

Optimization of Garment Marker 

Making in the Context of Mass 

Customization 
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Chapter 5  Optimization of Garment 

Marker Making in the Context of 

Mass Customization 

 

The large number of sizes in garment mass customization leads to an 

exponential increase of size combinations (markers), which induces a larger 

workload of marker making. In the current production, creating all the markers 

using a commercialized marker making software in a semi-automatic way for all 

the size combinations is a tedious and heavy work. In contrast, the application of 

machine learning technologies to marker prediction is expected to be beneficial 

in both time and accuracy. In this chapter, the marker making optimization 

(Figure 5.1) is performed by using the marker length estimation with machine 

learning methods, i.e., Multiple Linear Regression (MLR) and Radial Basis 

Function Neural Network (RBF NN). Finally, the cutting costs, as in the 

experiments of the previous chapter, are estimated using the predicted marker 

lengths in order to evaluate the prediction performance. 

 

 

Figure 5.1 Topic of Chapter 5. 
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This chapter is presented as follows. Firstly, section 5.1 describes the problem 

and the model of marker length estimation. The prediction methods for marker length 

estimation and the related performance measurement are introduced. Afterward, in 

Section 5.2, a comparison of prediction performance between the two different 

machine learning methods is made through a case study of a basic straight skirt. 

Finally, a conclusion is given in Section 5.3. 

 

5.1 Marker length estimation for garment mass customization 

Marker making is a subprocess inside the garment cutting process. It aims to 

layout garment patterns within a rectangular surface with a fixed width in high 

efficiency. The identification of the accurate marker parameters is needed (e.g. the 

marker length, the cutting length, and the cutting route) for making the best plan of 

the cutting process. When the number of garment sizes increases in the mass 

customization environment, the marker quantity rises sharply due to the much larger 

number of size combinations. Therefore, the acquisition of these marker parameters 

for a precise cutting plan by creating all the markers in the traditional semi-automatic 

way leads to a heavy workload. The marker length estimation problem can be 

regarded as a regression problem, where the marker lengths of the contained garment 

article sizes are taken as inputs and the overall marker length for their combinations as 

output. In this context, we originally apply machine learning-based methods to predict 

accurate marker lengths. 

Section 5.1.1 presents the marker length estimation problem and the 

corresponding prediction model, while Section 5.1.2 demonstrates the two algorithms 

applied in the prediction model. 

 

5.1.1 Marker length estimation problem 

In the marker making, several sets of patterns (each set belongs to one specific 

size of garment article), are placed within a rectangular surface called a marker. 
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Regardless of the impact of marker type, different size combinations of garment 

articles result in differences between markers. A simple equation for intuitive 

judgment can be given in Equation (5.1). The marker quantity m can be 

expressed below, 

 

𝑚 = ∑ 𝑎𝑠𝑚𝑎𝑥𝑆𝑁
𝑠=1                                                    (5.1) 

 

where s represents the number of garment sizes that are contained in the marker, 

maxSN represents the maximal size number in the marker depending on the cutting 

equipment, a represents the total optional size number. 

It can be found that the marker quantity m is conspicuous with exponential 

growth if the total size number sharply rises. If these total optional sizes are of a 

larger number (in the mass customization environment), the creation of all the 

markers by the semi-automatic method (creating markers manually with CAD 

software) will be time-consuming with limited accuracy. 

Marker parameters (i.e., characteristics of garment articles contained in the 

marker and those of the marker itself) are adopted for marker prediction, as 

shown in Figure 5.2. In the marker prediction problem, the independent variables 

are characteristics of garment articles that are contained in the marker, such as 

marker length of each single article and the dimensions of each article, while the 

dependent variables are characteristics of the marker itself, i.e., the overall 

marker length and marker cutting length. Combined with the real production, the 

marker lengths of each single garment article that is contained in the marker are 

accessible and facile to be considered, and consequently, are taken as the 

independent variables for predicting the overall marker lengths, i.e., the 

corresponding dependent variables. 
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Figure 5.2 Marker parameters adopted for marker prediction. 

 

5.1.2 Algorithm applications in marker length estimation model 

The techniques of Multiple Linear Regression (MLR) and Radial Basis Function 

Neural Network (RBF NN) have been applied to the marker length estimation model, 

where the marker length of each contained article is taken as input (X) and the overall 

marker length as output (Y). The stratified 10-fold cross-validation is used to find the 

proper hyperparameters of the two models, degree of X or number of neurons. Then 

the prediction performances are compared by using the mean square error. 

 

5.1.2.1 Prediction method 

For the marker making problem, the underlying regularity is complex to be built. 

Some machine learning techniques will Radial Basis Function Neural Network (RBF 

NN). The marker length estimation problem can be regarded as a regression problem, 

where the marker length of each contained garment article is taken as input (X) and 

the overall marker length as output (Y), as shown in Figure 5.2. For this specific 

problem, it is not dependent on time, and there is no available analytical model. 

Multiple Linear Regression (MLR) is a statistical technique that uses several 

explanatory variables to predict the outcome of a response variable. Polynomial 

regression is applied in the experiment as a special case of MLR, in which the 

relationship between the independent variable vector (X) and the dependent variable 

(Y) is modeled as an nth (n=1-10) degree polynomial in X, from linear to non-linear. 

Compared with a simple linear regression, polynomial regression basically fits a wide 
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range of curvature with the inferential framework of multiple regression, and a 

broad range of function can be fit under it, so as to provide the best 

approximation of the relationship between dependent and independent variables. 

Furthermore, RBF NN is an artificial neural network using radial basis functions 

as activation functions, where the output of the network is a linear combination 

of radial basis functions of the inputs and neuron parameters (Murray, 1995, 

Mujtaba, 2001, Cheng & Lee, 2001). The advantage of RBF NN is its superiority 

compared with the Back-Propagation (BP) neural network in approximation 

ability, classification ability, as well as learning speed. In general, the structure 

and training are simple, and the learning convergence speed is fast. It is a 

universal approximator for any linear and nonlinear functions, and overcome the 

problem of local minimum. Taking into account the above points, the two 

machine learning techniques are selected as the applied methods for solving the 

marker length estimation problem in our study (Figure 5.3). 

 

 

Figure 5.3 Applied prediction methods. 
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5.1.2.2 Performance validation 

The stratified 10-fold cross-validation process is used in this study to learn the 

models. The stratified K-fold cross-validation is a variation of K-fold that returns 

stratified folds that are made by preserving roughly the same percentage of samples 

for each class (Diamantidis, Karlis & Giakoumakis, 2000). K is set to 10 for 

evaluating the prediction error rate of the models in order to find the best selection of 

appropriate parameters  (regression degree and neuron number). 

To measure the performances of marker length estimation by the applied 

methods (MLR and RBF NN), we use the Mean Square Error (MSE) to measure the 

deviation. The MSE, as a measure of the quality of an estimator, reflects the squares 

of the distance between the predicted value and the original data. The calculation of 

MSE is illustrated in Equation (5.2). 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥(𝑘) − �̂�(𝑘))2𝑛

𝑘=1                                     (5.2) 

 

where 𝑥(𝑘) presents the k original data, �̂�(𝑘) the k presents the predicted value, n 

presents the total number of testing data. The values are always non-negative, and it 

means a better performance in estimation when it is closer to zero. 

 

5.2 Case study 

Three garment size sets aimed at shifting from mass production to mass 

customization are adopted for constructing the experimental markers. The markers are 

of two types, i.e., mixed marker and group marker, generated via Lectra CAD 

software. Thus, the experimental marker lengths can be measured. Due to the semi-

automatic operation, the same marker making experiments based on the 

commercialized software are conducted at least three times to ensure accuracy. The 

prediction models with methods of multiple linear regression (MLR) with the degree 

of X from 1 to 10, and radial basis function neural network (RBF NN) with the 

neuron number varying from 1 to 40 are tested. By varying the regression degree and 
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neuron number, we can observe the effects of underfitting and overfitting and find the 

appropriate degree of X for MLR and neuron number for RBF NN. 

Considering the effects of the three size sets and of the two marker types, we 

realize a comparison of prediction performances between the models using these two 

machine learning methods. 

 

5.2.1 Experiment design 

In this study, we adopted three size sets of the basic straight skirt, namely, 7 

original sizes (MP sizes), 7 additional sizes (MC sizes), and the combination of all the 

14 sizes (MP+MC sizes). The experimental marker lengths of the mixed markers and 

the group markers containing two of these sizes are collected for measuring the 

prediction performances, which maintains the continuity of our previous study. The 

MLR method and RBF NN method are applied to the prediction models separately. 

The hyperparameters of the two models, namely the degree of X and number of 

neurons, are optimized with a stratified 10-fold cross-validation process. 

 

5.2.1.1 Data collection 

There are 7 basic sizes for mass production (MP sizes), 7 additional sizes which 

are newly introduced for mass customization (MC sizes), and in total 14 sizes for 

mass customization (MP+MC sizes), produced in Chapter 3. In order to maintain the 

continuity of our previous study, the initial attempt in this study is to estimate the 

marker lengths of markers that contain two garment articles. Thus, two types of 

markers, i.e., mixed marker and group marker, are made by using the commercialized 

software Lectra Diamino for all the pair-wise garment articles with the garment sizes 

taken from these size sets. 

As mentioned above, the marker quantity increases exponentially with the total 

size number (5.1). The total size numbers are 7 for mass production and 14 for mass 

customization, and the garment article number placed on one marker is set to 2 in this 

study. Consequently, there are 49 (72) and 196 (142) combinations of two garment 

articles for mass production and mass customization, respectively. They (49 and 196) 
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are exactly the total marker numbers, which also reflects the heavy marker making 

workload. In addition, marker type is considered so that the mixed marker and the 

group marker are both applied in the marker making for all the combinations of 

garment article sizes. 

As introduced in Section 5.1.2.1, input X represents the marker length of each 

single garment article that o is contained in the marker (X1: size of garment article 1, 

X2: size of garment article 2), and output Y represents the overall marker length with 

the same size combination. Through the aforementioned experimental work of marker 

making, the related information (marker parameters) can be extracted and 

summarized. Afterward, the relationship between X (X1 and X2) and Y is correlated 

via three-dimensional (3D) surface plots (Figure 5.4), where X are differentiated by 

different size sets, i.e., MP sizes, MC sizes and MP+MC sizes, while Y are altered by 

different combination modes, i.e., mixed marker and group marker. 

Figure 5.4 shows marker length distributions of two-article markers (both mixed 

marker and group marker) with different size sets (MP sizes, MC sizes, and MP+MC 

sizes). The size numbers of the three size sets are 7, 7, and 14 respectively, so that the 

corresponding numbers of size combinations are 72, 72, and 142. Therefore, the 3D 

surface plots are composed of 49, 49, and 196 dots, respectively. 

As shown in Figure 5.4, all the dots approximately distribute on a plane in each 

3D plot, signifying a certain degree of regularity and predictability. Meanwhile, the 

dot distributions also show different degrees of irregularity, which will examine the 

prediction ability of the two machine learning techniques, i.e., MLR and RBF NN. 
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Figure 5.4 Marker length distributions of two-article markers with different size sets 

(MP sizes, MC sizes, and MP+MC szies). 

 

For the mixed markers, as shown in Figure 5.4, the distributions of mixed marker 

lengths are axisymmetric (the axis of symmetry is: size of article1=size of article2) 

due to the interchangeable input elements. This is because all patterns are mixed on 

mixed markers. Namely, mixed markers that contain the same garment articles have 

the same overall marker lengths. In contrast, for the group markers, as illustrated in 

Figure 5.4, the distributions of group marker lengths exhibit asymmetries. That is 
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because patterns of each garment article are concentrated in one specific section of 

group markers, so that the exchange of the garment articles leads to some extent of the 

variation of the overall marker length. Namely, the placement sequence of garment 

articles in group markers slightly affects the overall marker lengths. Figure 5.5 gives 

an example, where one garment article of the size MP3 and another of the size MC6 

are arranged into two group markers with different sequences and a mixed marker. It 

can be found that the sequence of garment articles leads to the difference of marker 

length, 1.302 and 1.527 m. In contrast, the mixed marker can realize a tighter 

arrangement of patterns with a minimum marker length of 1.273 m. 
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Figure 5.5 Marker lengths of different-typed markers with the same garment size 

combination (MP3 and MC6) 

 

5.2.1.2 Parameter setting 

Two prediction models are used to carry out the prediction using the MLR 

method and RBF NN method separately. The hyperparameters of the two models, the 

degree of X or number of neurons, are optimized with a stratified 10-fold cross-
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validation process.  

The obtained deviations for the MLR model, evaluated with the Mean Square 

Error (MSE) test (5.2), are summarized in Figure 5.6. In detail, it includes the MSE of 

marker length estimation using the MLR method, the X degree ranges from 1 to 10, 

for the two types of markers, i.e., mixed marker and group marker, with three size 

sets, i.e., MP sizes, MC sizes and MP+MC sizes. It can be observed that with the X 

degree of MLR varies, the MSE is accordingly changed with fluctuating curves, 

where underfitting and overfitting occur. The lower X degree indicates a 

comparatively better performance in the prediction. 

For both mixed marker and group marker, when the X degree of MLR model 

equals 1 (linear), the MSE is relatively high, especially for group markers. It indicates 

that the relationship between X and Y is nonlinear. Specifically, for mixed marker, the 

MSEs can reach a very low value when the X degree is set to 2-4. It is worth noting 

that MSEs with MC sizes are more sensitive to those with other size sets, proving that 

a suitable X degree of MLR model can lead to a much better prediction accuracy. 

Compared with mix marker, all the MSEs of MLR models for group marker exhibit 

some extent of fluctuation, indicating a higher difficulty in prediction. Similar to 

mixed marker, X degrees of 3-5 with relatively low MSEs are recommended to be 

utilized. The reason for the increment of MSE with a high X degree can be ascribed to 

overfitting, trapped into local optimum. Therefore, it is not recommended to set the X 

degree of MLR model to a very high value, but to determine in accordance with the 

inflection point. In summary, for the MRL model, a relatively lower value for X 

degree, which can lead to a satisfactory MSE value, is recommended. It ensures a 

higher accuracy, and prevents overfitting at the same time. 
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Figure 5.6 MSE of marker length estimation with MLR (X degree 1-10). 

 

The obtained deviations for the RBF NN model, evaluated with Mean Square 

Error (MSE) test (5.2), are summarized in Figure 5.7. In detail, it includes the MSE of 

marker length estimation using the RBF NN method, the neuron number ranges from 

1 to 40, for the two types of markers, i.e., mixed marker and group marker, with three 

size sets, i.e., MP sizes, MC sizes and MP+MC sizes. In comparison of the two 

different marker types, the prediction for group marker using the BRF NN method 

requires a larger neuron number, so it can be concluded that the difficulty in 

prediction is still higher for group marker than mixed marker. In addition, an 

appropriate neuron number should be found for prediction with MC sizes, for the 

corresponding MSE is more sensitive to neuron number. Similar to the MLR model, 

for the RBF NN model, a large neuron number will tend to occur overfitting, while on 

the contrary, a small neuron number cannot lead to a satisfactory accuracy. This is 

exactly the significance of adopting the related parameters (i.e., X degree and neuron 

number) of MLR as well as RBF NN models with different values. 
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Figure 5.7 MSE of marker length estimation with RBF NN (neuron number 1-40). 

 

In order to compare the prediction performances of the models using the MLR 

and RBF NN methods, the lowest MSE value of each prediction model is listed in 

Figure 5.8. Taken as a whole, after the selection of appropriate parameter value (X 

degree and neuron number), the MSE can reach a very low value, which indicates that 

both methods have good performances in marker length estimation. The performances 

by using the two methods are similar (MSEs are small and mainly concentrated 

between 0.0005 and 0.005), of which the prediction performance of the RBF NN 

model is slightly better than that of the MLR model (mostly a smaller MSE value for 

RBF NN compared to that for MLR). For different size sets, using RBF NN can 

conventionally achieve a more universal satisfactory estimation, as well for MC sizes 
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only. For the two marker types, MSEs with mixed markers are all less than 10-3, while 

those with group markers are all more than 10-3. It shows that the prediction accuracy 

of mixed marker has an obvious superiority than that of group marker by using the 

two machine learning methods. 

 

 

Figure 5.8 Comparison of prediction performances using MLR and RBF NN methods 

for different types of markers with different size sets. 

 

Another interesting finding is, for the same marker type and prediction method, 

the prediction performance of marker that contains MP sizes (in a linear distribution) 

is the best compared with the other two conditions (MC sizes and MP+MC sizes). It 

can be deduced that the prediction performance is related to the regularity of garment 

sizes. Specifically, the higher regularity degree the garment sizes have, the better 

prediction performance the model has. It provides the suggestion that the sizing 

system can take the regularity into consideration, for example, introducing additional 

sizes that exhibit a linear relationship. The regular garment sizes will bring the 

convenience in product development and production. Also, the productivity can be 

enhanced as a result. 

In general, the X degree of MLR and the neuron number of RBF NN should be 

set to higher values for group marker than for mix marker, and with MC sizes or 

MP+MC sizes than with MP sizes. It indicates that a more complex relationship exists 

underneath for MC sizes, as well as for group marker. Besides, it is also positively 

correlated to the prediction difficulty and deviation, that even though a higher X 



 

166 

 

degree and a larger neuron number are adopted, there are still obvious errors and 

deviations in prediction with the introduction of MC sizes. And, the same situation 

occurs with the utilization of a group marker instead of a mixed maker. 

 

5.2.2 Results and discussion 

In this section, in order to further evaluate the performance and validate the 

prediction of two machine learning-based models, the distances between the predicted 

values and the corresponding experimental values are demonstrated and the cutting 

costs that calculated with the two sets of data are compared. 

 

5.2.2.1 Prediction performances 

A testing data set is adopted and a comparison between the predicted marker 

lengths and the experimental ones is made. Figure 5.9 shows the prediction 

performances of the MLR (black dots) and RBF NN (red dots) models using MLR 

and RBF NN for mixed marker and group marker with MP sizes, MC sizes, and 

MP+MC sizes. The performance for a certain size combination is indicated by the 

distance between the dot and the standard line y=x (in blue), where the predicted 

value equals the real value (experimental value). That is, the closer to the standard 

line the dots are, the better prediction performance we can obtain. 

As mentioned before, the MLR and RBF NN parameters have been optimized 

for the minimum MSEs (enclosed in parentheses in Figure 5.9), which can be 

consulted in Figure 5.8.  

For both MP sizes and MC sizes, the dots that are located near the standard lines 

when each of the two size sets is used alone for prediction, showing a relatively good 

prediction accuracy for both mixed marker and group marker. However, when utilized 

simultaneously (MP+MC sizes), which are adapted for mass customization, the 

prediction difficulty is fiercely increased, especially with group marker. 
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Figure 5.9 Comparison of predictions between MLR and RBF NN models for 

different types of markers with different size sets. 

 

5.2.2.2 Cutting costs with estimated marker lengths 

The prediction performance is also evaluated by calculating the cutting costs as 

in the experiments of the previous chapter with the predicted marker lengths by using 

the two machine learning-based methods. The impact of the error in marker length 

estimation brings to that in cutting cost estimation is assessed, in order to check 

whether the marker prediction enables the COP to help achieve accurate cutting costs 

and make proper decisions in garment production. 

The predicted marker lengths are of two-article markers. However, for craft 

production, the cutting operation is performed with a simple-ply cutting in the COP. 

Consequently, the calculation of cutting costs in craft production does not require 

predicted marker lengths. 

The cutting costs in mass production and mass customization are calculated as 

the same as in Chapter 4 but with the predicted values of marker lengths. For the 
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scenarios with different parameters in Table 4.1, The rangeabilities and MSEs of the 

estimated unit cutting costs using the predicted marker lengths by using MLR and 

RBF NN are listed in Table 5.1 and Table 5.2. 

As shown in Table 5.1, even though the estimated marker length has a wide 

rangeability between 10% to 20%, the corresponding predicted unit cutting cost has 

just a narrow rangeability between 0 % to 2%. This means that the cutting cost is not 

that sensitive when applying predicted marker lengths. It is also shown in Table 5.2, 

for the cutting cost estimation using predicted marker lengths, both methods have 

satisfied performances with MSEs all below 0.001. 

Moreover, both MLR and RBF NN have good performances of marker length 

estimation and cutting cost prediction with no significant differences, nevertheless, 

the prediction performance is better when using MP sizes than using MP+MC sizes, 

where the former size set has a higher regularity (in linear). 

 

Table 5.1 Comparisons of marker length and cutting cost by rangeability 

Production mode 

(Size set) 

Marker length Unit cutting cost 

MLR 

(%) 

RBF NN 

(%) 

MLR 

(%) 

RBF NN 

(%) 

mass production 

(MP sizes) 
[-8.45, 7.95] [4.01, -7.90] [0.07, 0.26] [-0.03, 0.06] 

mass customization 

(MP+MC sizes) 
[-16.74, 13.57] [-16.32, 13.02] [-1.47, 0.96] [-1.63, 0.88] 

 

Table 5.2 Comparisons of marker length and unit cutting cost by MSE 

Production mode 

(Size set) 

Marker length Unit cutting cost 

MLR RBF NN MLR RBF NN 

mass production 

(MP sizes) 
0.0004 0.0006 0.0003 0.0000 

mass customization 

(MP+MC sizes) 
0.0025 0.0023 0.0065 0.0080 

 

In mass customization, the unit cutting cost varies slightly when the number of 

additional sizes increases as previously mentioned in Chapter 4. Figure 5.10 

demonstrated the trends of the unit cutting cost with additional MC sizes. It is seen 

that when using the predicted marker lengths for the cutting cost calculation in mass 
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customization, the results enable the COP to indicate the accurate trends of unit 

cutting cost changing with the increasing number of additional sizes, however, there 

exist negative bias. 

 

 

Figure 5.10 Partial cutting costs in mass customization with experimental and 

predicted marker lengths (operator cost=10 €/h) 

 

It indicates that, though there are impacts of negative bias, the marker length 

estimation results with machine learning methods enable the COP to predict the 

precise trends of unit cutting cost with the additional sizes in mass customization and 

work well with the more regular sizes in mass productions. 

Figure 5.11 gives trends of the marker length prediction error with the additional 

sizes in mass customization (Figure 5.11 (a)), the cutting cost prediction error with the 

additional sizes (Figure 5.11 (b)), and the ratio of cutting cost prediction error to 

marker length prediction error with the additional sizes (Figure 5.11 (c)). The trend of 

marker length prediction error is comparatively smooth and lightly decreases in the 
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final phase. The cutting cost prediction error has a gradual downward trend with the 

additional size, and further declines seem likely. Similarly, the ratio of cutting cost 

prediction error to marker length prediction error is mostly less than 1 and becomes 

smaller with the additional mass customization sizes. 

 

 

Figure 5.11 Partial cutting cost prediction errors, marker length prediction errors, 

ratios of cutting cost prediction error/marker length prediction error in mass 

customization (cutting speed=2400 m/h, fabric price=1 €/m, operator cost=10 €/h)) 

 

It is found that the cutting cost prediction error is mostly smaller than marker 

length prediction error, and the more accurate prediction result can be achieved when 

using more additional sizes. This is because a larger amount of data with more 

additional sizes can train the prediction model more efficiently and lead to more 

accurate prediction results. 

 

5.3 Conclusion 
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In this chapter, we originally carried out the marker length estimation with the 

aid of machine learning technologies. In the upgrading of garment production from 

mass production to mass customization, which results in a sharp increase of size 

combinations (marker variance), so it is of great importance to release the heavy labor 

workload of the tedious and inaccurate marker making work. Two machine learning 

techniques, i.e., Multiple Linear Regression (MLR) and Radial Basis Function Neural 

Network (RBF NN) are applied to predict the overall marker lengths. Two marker 

types are addressed, i.e., mixed marker and group marker. Three garment size sets are 

adopted, for mass production (MP sizes) and mass customization (MC sizes, and 

MP+MC sizes). These different conditions are beneficial for investigating the 

performance of marker length estimation when facing the challenge of mass 

customization upgrading. 

In general, RBF NN slightly outperforms MLR in marker length prediction, 

which is well capable of dealing with more universal marker prediction work. The 

higher irregularity of the MC sizes results in the poorer marker prediction 

performance, which indicates that a higher size regularity, like linear sizes, tends to a 

better prediction performance. The marker prediction of group marker is more 

complex compared to that of mixed marker, which indicates that marker length 

estimation of group marker is harder. For estimating accurate unit cutting costs, the 

marker length estimation with machine learning methods can help in both mass 

production and mass customization, and work more efficiently with relatively regular 

sizes. Additionally, it is capable of providing the accurate trends of unit cutting cost 

with the additional sizes in mass customization but is with bias. 

In summary, both methods are generally performant in marker length estimation, 

of which RBF NN can be slightly more powerful, especially for predictions of 

markers with more complex size combinations (sizes in mass customization). The 

estimated marker lengths can be basically used for making an accurate prediction of 

unit cutting costs in both mass production and mass customization. 

Meanwhile, we need to explore more possibilities to improve the performance. 

For instance, the dimensions of each article could be taken into the input, or the 
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higher size regularity can be considered in sizing, which enables to improve the 

predictability and even better serve the down streaming process, like cutting and 

sewing. 
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Chapter VI: 

General Conclusion and Future 

Work
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Chapter 6  General Conclusion and 

Future Work 

 

Mass customization features an integration of wide product variety and high 

production efficiency, which meets the increasing demand of consumers on product 

personalization with reduced product cost. The upgrading of the production processes 

for promoting the revolution from mass production to mass customization is a 

complex issue, but also an opportunity as well as a challenge for the apparel industry. 

In this thesis, focusing on the garment cutting-related processes, we have proposed a 

series of practical mass customization strategies that are concerned with the garment 

cutting process, and realized production optimizations of three specific cutting-related 

processes, namely, sizing, cutting order planning, and marker making (see Figure 6.1). 
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Figure 6.1 General scheme of this thesis. 

 

The practical mass customization strategies have been developed regarding two 

categories, i.e., custom-fit (pattern size) and co-design (pattern material and shape). 

The increment of size number with additional sizes and expansion of size capacity 

with multi-sized darts are the mass customization strategies regarding the custom-fit, 

while the fabric variation with a “rainbow plies” spreading and module variation with 

a stepwise cutting are those regarding the co-design. The effectiveness of the 

strategies is evaluated on both personalization and cost. The two custom-fit strategies 

improve the custom-fit level globally and locally, respectively, and both behave well 

with controllable extra costs. The cost growth differs between the two strategies, 

which are recommended to be simultaneously utilized. The co-design of material 

(fabric) with “rainbow plies” brings about no obvious increase in the cutting-related 

cost, while that of shape (pocket type and skirt length) brings about further lift of cost 
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due to second cuts or even extra markers. Due to the necessity (the fit is the basic 

need of consumers) and potential (good personalization and economic performances), 

the custom-fit strategy by using additional sizes is adopted in the subsequent 

optimizations of the three cutting-related processes. i.e., sizing, cutting order 

planning, and maker making. 

A fit-oriented sizing system has been built with the introduction of additional 

garment sizes and retaining original mass production sizes. The additional sizes are 

adapted from the original mass production sizes due to a reduction of difficulty and a 

limitation of extra cost in new pattern development and garment manufacturing. In the 

sizing system, a Genetic Algorithm (GA) is applied to locate the appropriate 

additional garment sizes, with the Comprehensive Fit (CF), a new criterion for 

evaluating the garment fit, defined as the objective function. The system is proved to 

effectively improve the garment fit for a target population. 

A cost-oriented Cutting Order Planning (COP) system has been established with 

consideration of marker variance brought by a marked increase of size number in 

mass customization. An expanded Integer Programming (IP) is used for the COP to 

determine the optimal solution yielding the least costly cutting process with precise 

data of marker parameters (i.e., the marker length and the marker cutting length). 

By analyzing the results generated from the proposed systems (sizing and COP), 

the underlying relationship between the CF (personalization) and the unit cutting cost 

(cost) has been explored. It is found that the relationship between the cutting cost and 

the number of additional garment sizes is nonlinear and fluctuating, strongly 

influenced by a combination of different factors such as the fabric price, labor cost, 

and cutting speed. Local optima can arise, of which the identification is crucial for 

developing mass customization by obtaining a better compromise between 

personalization (the fit) and cost (the cost). 

Due to the more complex size combinations in the mass customization 

environment, it is of great importance to release the heavy labor about tedious and 

inaccurate marker making work. As a result, marker length estimations for both mixed 

marker and group marker containing sizes from different size sets, i.e., mass 
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production (MP sizes), mass customization (MC sizes and MP+MC sizes), have been 

conducted with the aid of machine learning techniques, i.e., Multiple Linear 

Regression (MLR) and Radial Basis Function Neural Network (RBF NN). Both 

machine learning methods are proved to be generally efficient in marker length 

estimation, of which RBF NN is slightly more powerful especially for the prediction 

of more complex size combinations. 

1. Contributions 

The main contributions of my thesis are summarized below. 

⚫ Based on the industrial practice, we have developed the mass customization 

strategies to meet consumers’ growing demand for personalization at an 

acceptable cost. This is a pioneering work in garment manufacturing. The 

realization of a semi-quantitative analysis of the relation between 

personalization and cost is also original. It can help enterprises to conduct the 

precise customization expectation and cost control, and finally work out a 

proper production strategy to accomplish the upgrading task towards garment 

mass customization. 

⚫ We have built the fit-oriented sizing system which is optimized by a genetic 

algorithm. It is an effective way by using a practical and flexible sizing 

process for garment manufacturers to provide custom-fit products. 

⚫ We have also built the cost-oriented Cutting Order Planning (COP) system 

solved by an extended integer programming. It takes into account the marker 

variance that is greater in mass customization, providing a precise calculation 

of cutting-related costs for mapping out the efficient production plan. 

⚫ With the results obtained from the proposed sizing and COP systems, the 

relation of cutting cost and garment fit in various garment production modes, 

i.e., mass production, craft production, and mass customization, have been 

analyzed in a case study of a basic straight skirt. It is shown that the trend of 

cost changes with an increasing fit is fluctuating (not linear as expected), 

strongly influenced by the machine speed and material price, where local 

optima may occur. This provides support for manufacturers to make 
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decisions to achieve better compromises between personalization and cost in 

real production. 

⚫ We have applied two machine learning techniques, i.e., Multiple Linear 

Regression (MLR) and Radial Basis Function Neural Network (RBF NN) to 

estimate the overall marker lengths of markers in various garment production 

modes with various sets of garment sizes and different marker types. The 

experimental results show that both proposed approaches are performant in 

estimating the overall marker lengths, and work better with mixed markers 

and comparatively regular sizes. In addition, although some extent of bias 

exists, the estimated marker lengths are feasible to be used instead of real 

experimental data for making a relatively accurate prediction of cutting costs 

in production planning. 

2. Limitations and perspectives 

Limitations and perspectives of this research are pointed out as follows. 

⚫ In the case study of this research, the selected garment type is a basic straight 

skirt, which is comparatively simpler in design and production. And a few 

options of customization (three for fabric type, three for pocket type, three 

for skirt length) are discussed in the preliminary design of mass 

customization. In further research, we will select more types of garments as 

the object of the study. Apart from other types of skirts, it could be a shirt, 

pants, or a suit, and provide a wider range of customization options to study 

the diversity in a real market. 

⚫ In the case study of this research, a small database containing 451 French 

women between the ages of 25 and 40, collected by using 3D scanning, is 

applied. The body dimensions differ significantly in different ethnic groups 

and regions in practice. For a more general application in future work, we 

will adopt a much bigger anthropometric database of information about 

various populations in different regions. 

⚫ Increasing the size number with additional sizes, one of the proposed four 

mass customization strategies, is implemented automatically in the proposed 
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sizing system by using a GA. In future research, the implementations of the 

other three strategies will also be conducted automatically with the aid of 

computer algorithms. 

⚫ The future in-depth study can be carried out in improving the production 

optimizations of cutting-related processes. To be specific, an additional 

heuristic algorithm will be developed to improve the performance of GA with 

a shorter computation time. Apart from the cost, the time is also a key 

criterion in mass customization, which will be formulated in the IP for 

estimating the cutting-related production time. Apart from the marker length 

of each garment article, their dimensions will be taken as an additional input 

x in the marker length estimation model using MLR and RBF NN for a 

higher accuracy. 

⚫ This research mainly focuses on cutting, and the closely related upstream 

process sizing. The future work will be extended to the downstream 

processes, i.e., sewing, ironing, finishing, and packing, to make the research 

completer and more applicable to the actual garment production. In addition, 

a pricing strategy based on personalization can be developed to provide 

consumers with accurate prices for each specific personalization. Finally, we 

will link all the studied processes to establish an advanced optimization and 

decision-making system for the whole garment manufacturing process 

towards the upgrading to mass customization. 
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Abstract 

The work aims to make optimizations of garment production and resolve the dilemma 

between personalization and cost in the context of mass customization. Firstly, practical mass 

customization methods regarding cutting-related processes (including sizing) are proposed 

adapted from the industrial practice of traditional mass production. Due to the good 

performances of personalization and cost, additional sizes are adopted in the further 

optimizations of specific cutting-related processes, i.e., sizing, cutting order planning, and 

marker making with exact methods and artificial intelligence techniques. A genetic algorithm 

is used for the best set of additional sizes, an integer programming is employed for the best 

cutting order plan (i.e., the lay planning with the corresponding markers), a multi-linear 

regression, and a neural network are applied to estimating marker lengths. The proposed mass 

customization methods are proved to be efficient. The underneath indirect relationship 

between personalization and cost is established. With the help of the optimized cutting-related 

processes, the balance of personalization and cost is demonstrated. The estimation of marker 

length reduces the marker making workload and provides marker lengths for cutting cost 

estimation with a high efficiency and an acceptable accuracy. All the above enable the 

garment production to shift from mass production to mass customization. 

Keywords: Mass customization; Cutting-related processes; Integer programming, genetic 

algorithm, machine learning; Garment production. 

 

Résumé 

Ce travail vise à optimiser la production de vêtements et à résoudre le dilemme entre le 

personnalisation et le coût dans le contexte de la personnalisation de masse. Tout d'abord, des 

méthodes pratiques de coupe (incluant la définition des tailles) pour la personnalisation de 

masse issues des pratiques industrielles de production sont proposées. Des tailles 

additionnelles, sélectionnées pour leurs bonnes performances de personnalisation et de coût, 

sont utlisées pour optimiser les processus de coupe, à savoir le taillant, le matellassage et 

placement, par des méthodes exactes et d'intelligence artificielle. Un algorithme génétique est 

utilisé pour construire l'ensemble de tailles optimisant le bien aller, une optimisation linéaire 

en nombres entiers est utilisée pour définir la planification de la coupe la moins coûteuse, une 

régression multi-linéaire et un réseau neuronal sont appliqués pour estimer la longueur des 

placements. Ces différentes méthodes proposées pour améliorer la personnalisation de masse 

se sont avérées efficaces. La relation indirecte entre le degré de personnalisation et le coût de 

la coupe est établie. Ces methodes ont également permis de définir les meileures compromis 

entre la satisfaction consommateur et les coûts de production. Le modèle de prévision de la 

longueur de placement permet de réduire la charge de travail pour le calcul de placement et 

fournit ainsi les longueurs de placements utiles pour estimer les coûts avec une efficacité 

élevée et une précision acceptable. L'ensemble de ces travaux contribue à la transition de la 

production de masse de vêtements vers personnalisation de masse. 

Mots clés: Personnalisation de masse; Processus de coupe de vêtements; Optimisation 

linéaire en nombres entiers, algorithme génétique, apprentissage automatique; Production de 

vêtements. 


	source: Thèse de Yanni Xu, Université de Lille, 2020
	d: © 2020 Tous droits réservés.
	lien: lilliad.univ-lille.fr


