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Introduction

The fashion industry plays a vital role in daily life since it produces what people
wear. Likewise, it makes a substantial contribution to global economics since the
entire industry is very large which is related to the international clothing supply chain
from raw materials to garments.

In the mass production era, a great quantity of garments has been produced in
batch for a large population rather than meeting the requirements of a specific
consumer in terms of individual body characteristics and personal fashion
preferences, as what occurs in the craft production era. Craft production, mainly
targeting individuals, performs a perfect fit, and allows any desired designs manually
with very high costs, while mass production, serving a large population, features a
low cost but a poor fit and very limited variants. Due to the ever-changing fashion
trend and consumers’ increasing personal demands, mass customization has become a
promising strategy in the garment industry by combining mass production and craft
production modes. It can improve the personalization level towards craft production,
and meanwhile, control the manufacturing cost, the production speed, and the product
quality towards mass production (Yang, Kincade & Chen-Yu, 2015).

To the best of our knowledge, there have been numerous scientific reports on
mass customization in the garment industry. The majority of the current work deals
with garment design (Ulrich, Jo Anderson-Connell & Wu, 2003; Dai et al., 2006; Lee
& Park, 2009; Satam, Liu & Lee, 2011; Vogiatzis et al., 2012; Xu et al., 2017), while
the minority concerns garment manufacturing (Lu et al., 2010; Watcharapanyawong,
Sirisoponsilp & Sophatsathit, 2011). As pointed out by Jiao, Zhang & Pokharel
(2007), mass customization increases the number of variants in production, also
decreases the number of items produced per variant, with significant impacts on
garment manufacturing. In the whole garment manufacturing, cutting is the initial and
one of the most complicated stages. It seriously affects the downstream links, i.e.,

sewing, finishing, and packaging. The cost that occurs in cutting is critical, as fabric

13
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usually occupies more than 50% of the total manufacturing cost (Wong & Leung,
2008). In addition, cutting can be considered as the decoupling point in the
customized garment production, that a garment customization in manufacturing is
essentially realized through patterns variations, directly conducted by the cutting-
related processes (e.g., sizing, cutting order planning, and marker making). In this
research, focusing on the garment cutting-related processes, we propose several mass
customization strategies, and then apply some appropriate optimizations techniques in
order to make the customization more efficient, and finally validate the proposed
strategies and techniques through representative case studies. The proposed strategies
and techniques can effectively facilitate the implementation and development of
garment mass customization by taking into account the criteria of personalization
levels and manufacturing costs.

In this context, Chapter 1 provides the state of the art, which is composed of two
parts. The first part begins with garment manufacturing, including concepts and
current status of garment manufacturing and garment mass customization. It
especially focuses on the garment cutting process and the cutting-related processes,
i.e., sizing, cutting order planning, and marker making. The second part describes
various optimization techniques applied to garment manufacturing, including
operation research methods, heuristics, meta-heuristics, and hybrid techniques, where
the three popular soft computing technologies (namely, genetic algorithm, fuzzy logic,
and neural network) and hybrid intelligence are addressed in detail. Based on the
literature survey, we identify the main drawbacks of the current methods in garment
mass customization and set up new orientations for developing more appropriate and
effective methods.

Taking into account the state of the art, we give the general structure of the thesis

as follows (see Figure 0.1).

14

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

Practical mass customization strategies
based on pattern variations

! }

Custom-fit Co-design
Pattern size Pattern material and shape

T Chap.4 : .
Sizing Marker making
Fit-oriented sizing system Marker length estimation model
1 IP
Sizes — Lays and markers Marker lengths
J l |
Fit Cutting cost

| i

Relation between
personalization and cost

Figure 0.1 General structure of Chapters 2-5.

In Chapter 2, from the perspective of pattern variations, several practical mass
customization strategies on custom-fit (pattern size) and co-design (pattern material
and shape), namely, the two main categories of garment customization (Yang,
Kincade & Chen-Yu, 2015), are developed from classical production practices in mass
production. An analysis of the personalization levels and the cutting-related costs is
demonstrated for evaluating the efficiency of these strategies. The analysis result can
be considered as a reference for apparel companies to make their mass customization
plans according to their specific conditions.

In Chapters 3, 4, and 5, we propose several optimization techniques for
improving three vital cutting-related processes, i.¢., sizing, cutting order planning, and
marker making, respectively. Considering that the fit customization is a fundamental
need for users, and the simplicity and cost minimization in the course of pattern
development and garment manufacturing, we use additional sizes for the
customization in the three chapters. The mass customization strategies proposed in
Chapter 2 and the optimized processes shown in Chapters 3, 4, and 5 have all been
validated through a case study of women’s basic straight skirt manufacturing.

Chapter 3 presents a fit-oriented sizing system with additional sizes adapted
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from a traditional mass production sizing system. In this system, a Genetic Algorithm
(GA) is used to find the global optimum within an acceptable computation time. The
objective function is a newly proposed criterion comprehensive fit (CF) representing
the overall garment fit of the whole target population.

In cutting, a cutting order plan determines the set of lays and corresponding
markers used in batch cutting. As a classical cutting approach that is widely employed
in mass production due to its high efficiency, batch cutting is herein adopted in mass
customization by considering marker variations. Marker variations mainly exist in the
differences in marker lengths and marker cutting lengths (Haque, 2016), and have an
economic impact on the cutting order planning. However, in the previous study, the
cutting order planning is accomplished with the ignorance of marker variations
(Degraeve & Vandebroek, 1998; Rose & Shier, 2007; Fister, Mernik & Filipic, 2008).
Consequently, in Chapters 4, a cost-oriented cutting order planning system with
marker variations is established for an accurate economy performance (cost)
evaluation of the proposed mass customization sizing system. An expanded Integer
Programming (IP) model is developed to generate a cutting order plan with the lowest
overall cutting cost (including the costs of fabric, spreading operation, and cutting
operation). Moreover, by applying the sizing system and the cutting order planning
system to the case study of Chapter 4, the indirect relation between the fit
(personalization) and the overall cutting cost (cost) is revealed through the direct
relations between sizing and fit, and between cutting and cost. The relation is
discerned and a better compromise between personalization (i.e., the fit) and the cost
(i.e., the cutting cost) can be obtained.

Adding more garment sizes in mass customization will lead to an exponential
increase of marker number, which is determined by the possible garment size
combinations. It induces a heavy and complex workload of marker making, because,
in the current garment production, markers are generally made in a semi-automatic
way with commercialized software. In addition, there exist some implicit relation
between the overall marker length of a given size combination and that of each

contained garment size, due to the geometrical arrangement. Therefore, a marker
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length estimation model is built in Chapter S, where the Multiple Linear Regression
(MLR) and Radial Basis Function Neural Network (RBF NN) have been applied to
estimate the most appropriate marker lengths considering different sets of garment
sizes (regarding mass production and mass customization) and different marker types
(namely, mixed marker and group marker). The theoretical maker lengths can be used
as the target values for the guidance and evaluation of marker making and the input of

the cutting order planning system for cutting cost estimation.
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Chapter I:
State of the Art
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Chapter 1 State of the Art

In this chapter, we first give a comprehensive literature survey on the
development of modern garment manufacturing, including its basic concepts,
industrial practice, related bottle-necks, and potential opportunities. The key issues
and trends of mass customization in the complex garment manufacturing have been
systematically analyzed. Especially, we focus on the cutting process and cutting-
related processes, including sizing, cutting order planning, and marker making.

Next, we review the potential optimization techniques that can be used for
improving the current garment manufacturing. These optimization techniques can be
classified into three main categories, i.e., exact methods, approximate techniques, and
hybrid approaches. Considering that soft computing technologies have been
successfully applied to different industrial sectors, we mainly focus on the three most
popular techniques (i.e., genetic algorithm, fuzzy logic, and neural network) and their
hybrid applications in garment manufacturing.

In order to realize mass customization meeting consumers’ personalized and
diversified requirements with a quick reactivity and minimal cost/price, practical mass
customization strategies regarding garment manufacturing should be developed based
on the industrial practice. Furthermore, garment manufacturing processes should be
largely improved by massively applying optimization techniques. Especially, the most
complex processes related to fabric cutting, i.e., sizing, cutting order planning, and
marker making, that are determinative to the cost, should be optimized in the context

of mass customization.

1.1 Garment manufacturing

Garment manufacturing contains a set of processes permitting transforming
fabrics into garments. Facing consumers’ strong demands on higher personalization,

lower cost, and sound quality, there is an emerging trend of garment mass
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customization because it enables the personalized products offering at an acceptable
price. The two cutting-related processes, i.e., the cutting order planning and marker
making, are usually considered as the most complicated processes in the whole
garment manufacturing. Therefore, significant mass customization progress in these
processes is highly expected. Besides, the sizing process, which determines the

development and production of garment patterns, should be addressed forward.

1.1.1 Garment manufacturing processes

The garment manufacturing is usually considered as a lengthy and complicated
process (Nayak & Padhye, 2017). Consequently, the breakthrough in garment
production at technical and organizational levels can ultimately help mass

customization in this industrial sector in both theory and practice.

1.1.1.1 Content of garment manufacturing processes

Considering that (natural or synthetic) fibers, yarns, fabrics, and garments
constitute four product stages of the textile manufacturing processes, we study in this
thesis the garment manufacturing processes only, namely, the transformation of two-
dimensional fabrics into three-dimensional garments. It consists of four main
sequential processes, i.e., fabric cutting, sewing, finishing/ironing, and packing

(Figure 1.1).

% 8 U i

Garment manufacturing process

raw

material — Yarn = fabric == cutting — sewing — finishing — packing = garment

= @ S

Figure 1.1 Workflow of the garment manufacturing processes.

The processes of cutting and sewing are the two key elements in garment
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manufacturing due to their relatively complex technologies and long time-consuming
compared with the other two processes. Cutting is the upstream process of sewing,
and sewing is served by cutting. In terms of work division, cutting is to cut cut-pieces
from fabric rolls, while sewing is to assembly cut-pieces into a garment. Then the
garment will be delivered from the final workstation of the assembly line in sewing to
the finishing station for ironing processing, and finally, be packed into boxes in the
last packaging process. In industrial practice, finishing and packing are placed in the

same working area.

1.1.1.2 Research issues on garment manufacturing
Each process of garment manufacturing is composed of several steps. Table 1.1 is

a classification scheme illustrating all the steps and corresponding technical details.

Table 1.1 Classification scheme of technical details in garment manufacturing.

Process Step Technical detail
. . lay planning
cutting order plannin
production planning 9 P 9 marker making
spreading and cutting sequencin
Cutting - . preading — g_ quencing
spreading operation roll sequencing
cutting operation -
sorting and bundling -
sewing order planning
roduction plannin - : layout design
P P 9 sewing line design - you 9 -
i sewing assembly line
Sewing - -
uality control product inspection
q defect prediction
sewing operation fabric handling
Finishing  finishing operation fabric folding
Packing packing operation product packaging
order plannin
production planning P g
Management resource allocation

quality control production monitoring

1.1.1.2.1 Cutting
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Cutting has a crucial impact on garment manufacturing that it is the first and
leading process of all manufacturing processes affecting the following processes
(Vilumsone-Nemes, 2018). The cutting cost accounts for a dominant fraction in the
total garment manufacturing cost, because the fabric cost is usually more expensive
than the other expenses and that the fabric consumption mainly occurs in the cutting
process. The main work in cutting contains a set of operations including spreading,
cutting, as well as sorting and bundling, which is guided by a good production plan.
The Cutting Order Planning (COP), and the Spreading and Cutting Sequencing (SCS)
constitute the production planning of cutting. The COP determines the layouts of lays
and corresponding markers (M'Hallah & Bouziri, 2016), while SCS defines the
working sequencing of the spreading and cutting operations (Wong, Chan & Ip,
2000a). During the spreading operation, the sequencing of fabric rolls is also an

important issue to be determined for fabric saving (Hui, Ng & Chan, 2000).

11122 Sewing

Sewing is the most critical and intricacy process of garment manufacturing,
which deals with a number of various operations, operators, and machines. It is
manual work in most of the factories (Zoumponos & Aspragathos, 2008). The
production planning in the sewing process consists of the sewing order planning and
sewing assembly line design. The sewing order planning provides a production
schedule for sewing orders to be put into production in turns within a limited time
with the least inventory. The design of an assembly line considers two parts, i.e., the
layout design and Sewing Assembly Line Balancing (SALB). An assembly line is a
sequence of workstations equipped by operators who have the required skills and
technological capabilities and machines with the required functions and connected by
means of conveyance. The shape, the direction, the conveyor, the system type are
elements considered in terms of the layout design. Garment assembly lines could be in
different shapes like straight line, Z-shaped line, U-shaped line, or in a loop (Lin,
2009). Operators could face the same or opposite direction. Center tables or tools like

trolley, basket, or hanger are used for material handling in different sewing systems,
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for example, the Progressive Bundle System (PBS) and the Unit Production System
(UPS). Line balancing is to distribute tasks evenly to workstations with machines
equipped, which is vital for efficiency (Hui et al., 2002; Wong, Mok & Leung, 2006;
Eryuruk, Kalaoglu & Baskak, 2008; Guo et al., 2008a, 2008b, 2008c; Zeng, Wong &
Leung, 2012). In a sewing line, each operator operates the given tasks in workstations
equipped with machines for sewing or ironing as materials moving across the
workstations. Before putting into production, the sewing line supervisors tackle the
resources allocation problem with material, operator and machine to achieve a
balanced loading. Since cut-pieces are assembled into garments in this process, a strict
quality monitoring should be conducted here. Therefore, the product inspection and

defect prediction are used for quality control.

1.1.1.2.3 Finishing and packing

Finishing, also called ironing, enables to straighten garments for packing. The
main issue of the finishing process is fabric folding (Dai et al., 2004).

Packing consists of a series of actions, i.e., sorting, piling, and packing. The

product packaging is the main issue of the packing process.

1.1.1.2.4 Management

The order planning, resource allocation, and production monitoring of overall
management are performed for a smooth workflow and a stable product quality.

Some trends occurring in the garment manufacturing processes can be
summarized using three keywords, i.e., “customized”, “agile”, and “green”. Facing
the ever-increasing demand on customization from consumers, the proposed concept
“mass customization” is to introduce customized products into the production
processes which previously were designed for mass production (Zulch, Koruca &
Borkircher, 2011). Advanced techniques like artificial intelligences have become
attractive and powerful tools (Guo et al., 2011) having a great impact on automation
and computerization of the garment industry (Nayak & Padhye, 2018). Emerging

mobile technologies, such as Radio Frequency Identification (RFID), wireless sensor
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networks, as well as cloud computing are applied to enhance communications in
supply chains, or even between and in manufacturing departments (Ngai et al., 2014).
Sustainability is a hot topic that efforts are made for increasing the usage of renewable

sources and reducing water waste and carbon emission (Nayak, Akbari & Far, 2019).

1.1.2 Mass customization in garment manufacturing

There is an emerging trend of garment mass customization facing to consumers’
strong demands on higher personalization, lower cost, and sound quality (Anderson-
Connell, Ulrich & Brannon, 2002; Fogliatto, Da Silveira, & Borenstein, 2012; Nayak
etal.,2015).

1.1.2.1 Evolvement and features of garment production paradigm

The oxymoron “mass customization” was first coined by Davis (1987) in his
book Future Perfect and popularized by the seminal work of Pine (1993).

It is well known that “economy of scale” and “economy of scope” is a pair of
conflicts. It has been well documented in the existing literature that mass
customization provides significant strategic advantages in price and customization
(Kumar, 2004; Alptekinoglu & Corbett, 2008). Mass customization is established by
combining mass production and craft production, as shown in Figure 1.2. The former
features the high production efficiency and the latter represents the high degree of
product variety, aiming to produce adequately diversified products at reasonable

prices.
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Variety

CP, 1850
MC, 1980

MP, 1913

i Volume

Figure 1.2 Relation of the three production paradigms.

Due to the increasing consumers’ demand for product variation, the garment
industry like other classical industrial sectors is undergoing a revolution from mass
production to mass customization (Dong et al., 2012; Hu, 2013; Nayak & Padhye,
2015). Features of the three production paradigms in the garment industry are
displayed in Table 1.2. Craft production mainly targets individuals for “economy of
scope”. It performs a perfect fit and allows any wanted designs but costs high. Mass
production serves a large population for “economy of scale”. It brings low cost but a
poor fit and lack of wanted designs. Mass customization allows personalization
towards craft production. Meanwhile it can control cost, speed, and quality towards
mass production. In other words, mass customization provides both cost advantages
and satisfaction of consumers’ personalized needs at the same time (Yang, Kincade &

Chen-Yu, 2015).

Table 1.2 Differences among various production paradigms

Produgtlon Manufacturing strategy Personalization Cost
paradigm Degree
mass production made-to-order/stock common cheap

made-to-measure/
configurate-to-order
craft production bespoke individualized expensive

mass customization customized acceptable

© 2020 Tous droits réservés.
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Customization of garment includes two aspects, namely, custom-fit (Hu et al.,
2009; Mpampa, Azariadis & Sapidis, 2010; Tao et al., 2018) and co-design
(Teichmann, Scholl-Grissemann & Stokburger-Sauer, 2016; Li & Chen, 2018), as
shown in Figure 1.3. The fit-related customization refers to adjusting the pattern size
using key dimensions, in order to close the gap between individual body dimensions
and dimensions of the assigned garment size, and the design-related customization
refers to satisfying personalization demands through changes of fabric materials or

construction of new pattern shapes.

* Custom-fit (size-related) * Co-design (style-related)

1. Patternsize 1.  Pattern fabric/material

body dimensions (height, bust/chest composition, color, texture...
girth, waist girth, hip girth, ...) 2. Pattern shape
main module (bodies, sleeves,
collars...),

alternative module (pockets,
buttons, zippers...)

Figure 1.3 Specific contents of garment customization.

1.1.2.3 Research issues on garment mass customization

From the beginning of the 21st century, mass customization of garments has
become a very popular topic and attracted great attention from academic researchers
to industrial companies (Senanayake & Little, 2010). Researches have been made in
various aspects of garment mass customization, including customer relationship,
customized product design, production process, supply chain management, and price

issue. The key issues are demonstrated in Table 1.3.
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Table 1.3 Classification scheme of issues on garment mass customization.

Issue Sub-issue

customer perspective (preference, willingness, motivation,
Customer satisfaction)
relationship ~ e-commerce (user-interface/web design, co-design system,
recommendation system)
Product advanced design technologies (3D scan, VR, CAD, Al)

design customization design system
advanced manufacturing technologies (CAM, digital printing)

production methods (postponement, modularity/product family,
batch/mass manufacturing, concurrent engineering)
Supply chain _ information network

management  logistics
personalization and cost analysis
pricing strategy

Production
process

Price

1.1.2.3.1 Customer relationship

Western societies now have entered an “experience economy” (Pine & Gilmore,
1999) that consumers increasingly derive value from experiences. Companies should
emphasize not only on product and production, but also improving customer
satisfaction and safeguarding a tight customer relationship. Accordingly, on one hand,
investigations have been implemented on customer perspectives to explore customer
motivations, willingness (Fiore, Lee & Kunz, 2004) and preferences (Lee et al., 2002;
Deng, Hui & Hutchinson, 2010) to mass customized garments. On the other hand, to
promote consumers’ participation in product design in e-commerce, research attention
is laid on wuser-interface (Hankammer et al, 2016; Tangchaiburana &
Techametheekul, 2017) and recommendation function (Vogiatzis et al., 2012) of
customer-interaction web-designs. These works could aid in the development of more
effective marketing efforts, a better understanding of consumers’ needs and ideas, and
gaining a rich customer experience in the application of mass customization in the

garment industry.

1.1.2.3.2 Product design

Advanced design technologies including 3D anthropometry/scan, Virtual Reality
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(VR), Computer-Aided-Design (CAD), and Artificial Intelligence (AI) have been
widely applied in the product design process in order to satisfy consumers’ needs,
especially for fit satisfaction.

Anthropometric data automatically derived from a 3D scan (Daanen & Hong,
2008; Su, Liu & Xu, 2015) are used to produce individual patterns for improving the
garment fit. VR is employed to build 3D body models (Cho et al., 2005; Zhou et al.,
2016) and 3D garment models (Cho et al., 2005; Au & Ma, 2010; Tao & Bruniaux,
2013; Thomassey & Bruniaux, 2013; Zhu et al., 2017; Tao et al., 2018) especially for
displaying the wearing effect in a collaborative design process. The product design
with CAD tools allows mass customization through automatic alteration of patterns
based on individual body measurements (Istook, 2002; Yang, Zhang & Shan, 2007;
Huang et al., 2012; Han, Kim & Park, 2015). Two Al applications have been found in
the product design of mass customization, that Fuzzy Logic (FL) was used in a
method of ease allowance generation for garment personalized design in (Chen et al.,
2008) and a GA was proposed for the production decision making in (Xu et al., 2017).

Establishing customized design systems is another hot issue during product
development. These proposed systems deal with customer integration (May-Plumlee
& Little, 2006; Li & Chen, 2018), the adaptation of advanced technologies like 3D
scan, CAD, and laser-cutting machine (Lu ef al., 2010, Satam, Liu & Lee, 2011), and

product modularity (Pan, 2016).

1.1.2.3.3 Production process

The optimization of manufacturing in garment mass customization has not been
holistically tackled in industrial and academic practices.

Advanced technologies such as CAM (Dong et al., 2012), and digital printing
(Ren, Chen & Li, 2017) are mentioned to be used in the implementation of garment
mass customization.

Duray (2002) suggested that mass customization processes, which are designed to
be close to the existing mass production processes, usually lead to a good financial

performance. Thus, mass production cost-effective expertise and methods of
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production should be considered, like the batch manufacturing and sizing systems
(Duray, 2002; Mpampa, Azariadis & Sapidis, 2010). Additionally, postponement
(Weskamp et al., 2019), and modularity (Wang et al., 2014) are two effective
strategies to achieve mass customized garments. Postponement customizes products
by delaying product differentiation. In garment mass production, it is an efficient way
to make a pattern quickly by controlling an underlying the structure identified as a
foundation for multiple styles. Thus, in garment mass customization, for each model,
the variations can be made based on foundation. Modularity-based manufacturing is
the application of unit standardization or substitution principles to create modular
components and processes that can be configured into a wide range of end products to
meet specific consumer needs (Tu ef al., 2004). In garment mass customization,
modularity is the use of pre-cut and pre-assembled pieces, i.e., modules, for

production (Yang, Kincade & Chen-Yu, 2015).

1.1.2.3.4 Supply chain

Setting up smooth flows of information and goods is a key research emphasis in
garment manufacturing supply chain in the context of mass customization.

Shang et al. (2013) created a communication platform using the network, cloud
technology, and other technologies to meet the demands of information flow and
logistics in garment mass customization. Yinan, Tang & Zhang (2014) proposed that
organizational flatness should facilitate effective lateral communication among supply

chain partners in order to increase coproduction capacity.

1.1.2.3.5 Cost and selling price

Cost/price is a vital topic in mass customization strategy. The variety and depth of
customizations determine the manufacturing complexity, which affects the
manufacturing cost. The related work includes handling the le dilemma between
personalization and cost, as well as setting a proper pricing strategy. As such, the

relation between personalization level and cost are discussed in (Jost & Susser, 2019).
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1.1.3 Cutting process
The cutting process is in the first phase of garment production, in which the
production cost is the highest. The corresponding production methods and techniques

need to be adjusted or even changed for mass customization.

1.1.3.1 Content of the garment cutting process

In a garment-cutting process, the garment patterns are cut out based on the
standard sizes generated from a sizing system. As shown in Figure 1.4, cutting
contains a series of steps starting with the production planning which includes the
Cutting Order Planning (COP) and Spreading and Cutting Sequencing (SCS). The
COP consists of lay planning and marker making, followed by the spreading

operation, the cutting operation, and the sorting and bundling operations.
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Production Lay planning
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Marker making
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Figure 1.4 Workflow of the cutting process of garment manufacture.

The COP (or also called the cutting scheduling) is conducted once production
orders are received. It is a basic and crucial step of the cutting process and the premise
of Spreading and Cutting Sequencing (SCS). The COP and the SCS provide a

guidance of the following operations: spreading, cutting, sorting and bundling. The
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purpose of the COP is to propose an optimal lay plan and its corresponding markers
satisfying the constraints of order content, production conditions, delivery time, etc. A
lay/stack consists of a certain number of fabric plies. A maker shows the layout of
patterns which will be cut out from the lay.

The SCS refers to the balancing of spreading and cutting operations aiming to
eliminate the idle time and satisfy the time constraint within the spreading and cutting
capacity.

As the setup option of the cutting process, the spreading operation contains
several actions: spread fabric rolls, cut fabric into pieces, superpose these pieces into
lays on a cutting table, and finally spread the marker across the top fabric ply.

Following the cutting route generated according to the pattern layout on the
marker, cut-pieces are cut out from fabric lays and then sorted and bundled for
assembling use.

The cutting process should first fulfill the quantities of the cut-pieces required by
the orders. In addition, it is subject to physical constraints in terms of fabrics and
cutting devices: the fabric type/the cloth thickness and the cutting knife depth that
determine the maximum ply count, the cutting table length that determines the
maximum marker length, as well as the fabric width that determines the marker width.

Figure 1.5 gives a sketch showing all the steps included in the garment cutting
process. First, in the cutting production planning step, we generate a lay plan and a
marker of COP, a Gantt chart of the SCS. Under these three instructions, the cutting

related operations (i.e., spreading, cutting, sorting and bundling) are then performed.
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PRODUCTION PLANNING
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Figure 1.5 Sketch of the key steps in the garment cutting process.

1.1.3.2 Research subjects of garment cutting process

Table 1.4 Subjects and corresponding objectives on improvement of garment cutting
process.

Step/subject Objective
overproduction, setup cost,
lay planning fabric cost, marker cost,
production COP machine and labor cost
planning marker making marker length, cutting length
SCS makespan
. fabric roll . .
spreading ) fabric consumption
sequencing
operations cutting _

sorting and bundling -

© 2020 Tous droits réservés.
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Researchers have paid much attention to the steps and related objectives of the

cutting process listed in Table 1.4.

1.1.3.2.1 Lay planning

This is a step for planning lays with specific ply numbers for cutting out the
required garment pieces satisfying orders while minimizing the total cost. The most
concerned cost-related factors include fabric, spreading and cutting operations, and
excess production.

In the past 30 years, lay planning has received continuous attention. Exact
methods, i.e., enumeration (Rose & Shier, 2007), Integer Programming (IP)
(Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans, 2002), and artificial
intelligence-based algorithms, i.e., heuristics (Jacobs-Blecha et al., 1997), meta-
heuristics (Martens, 2004; Fister, Mernik & Filipic, 2008; Wong & Leung, 2008), and
hybrids (Fister, Mernik & Filipic, 2010), were used to solve this cutting stock
problem. One of the earliest researches was conducted by Farley (1988). He utilized
an Integer Programming (IP) and a Quadratic Programming (QP), in which the
sewing capacity constraint was considered. Publications boomed between 1995 and
2010. Degraeve & Vandebroek (1998) proposed a Mixed Integer Programming (MIP),
based on which, IP models were introduced in (Degraeve, Gochet & Jans, 2002) and a
GA was applied afterward in (Martens, 2004). Apart from IP, an exact enumerative
approach (Rose & Shier, 2007) was another developed exact method. Evolutionary
algorithms were the most employed algorithm (Fister, Mernik & Filipic, 2008; Wong
& Leung, 2008; Fister, Mernik & Filipic, 2010). Besides, Ant Colony algorithm
(ACO) and Simulated Annealing (SA) were also adopted in (Yang, Huang & Huang,
2011) and (M'Hallah & Bouziri, 2016) respectively.

1.1.3.2.2 Marker making
The fabric cost comprises a great part of the production cost in garment
manufacturing, while maker making is always the major determinant of fabric

utilization. Marker making aims to pack a given set of patterns within a rectangular
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surface of a fixed width in such a way as to minimize the length required.

Since the 1990s the problem of marker making has attracted considerable
attention. The irregular garment patterns are represented first by a geometric approach
(Heckmann & Lengauer, 1995) and later by a digitized approach (Wong & Leung,
2009). The placements of irregular shapes representing garment patterns are produced
and optimized by using computer graphics techniques (Ko & Kim, 2013), exact
algorithm (Heckmann & Lengauer, 1998), heuristics (Amaral, Bernardo & Jorge,
1990; Jaidormrong, Chaiyaratana & Hassamontr, 2003, July; Awais & Naveed, 2015),
and meta-heuristics including Simulated Annealing (SA) (Heckmann & Lengauer,
1995; Javanshir et al., 2010), Genetic Algorithms (GAs) (Bounsaythip & Maouche,
1997, October), and Neural Networks (NNs) (Wong & Guo, 2009).

1.1.3.2.3 Spreading and cutting sequencing

The cutting process has to fulfill the quantities of the cut-pieces required by the
downstream sewing lines in time, in which the optimal schedule of the spreading and
cutting operations is a key issue. Otherwise, a bad schedule will lead to a poor work
balance with an idle time of spreading and cutting machines.

Wong and his partners made efforts for dealing with the spreading and cutting
problem in the first decade of the 21st century. In an endeavor to achieve a full
utilization of the spreading and cutting capacity, they formulated a spreading and
cutting sequencing model and applied GAs to search for the optimal configuration
(Wong, Chan & Ip, 2000a, 2000b; Wong, 2003c; Wong et al., 2005, 2006; Kwong,
Mok & Wong, 2006; Mok, Kwong & Wong, 2007) and used a queue theory which
could achieve similar results (Wong, 2003a). Additionally, they adopted a fuzzy set
theory for uncertainties in the real-life manufacturing environment (Wong, 2003b;

Wong et al., 2005; Kwong, Mok & Wong, 2006; Mok, Kwong & Wong, 2007).

1.1.3.2.4 Fabric roll sequencing
The variance of fabric yardage between fabric rolls induce the fabric loss during

fabric spreading. Therefore, more attempts have been made to handle the fabric-roll

36

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

sequencing for each cutting lay.

A few studies were made for sequencing the fabric rolls around the year of 2000.
Ng, S. F. first presented a theoretical model using exact methods (Ng, Hui & Leaf,
1998) to calculate the fabric loss and conducted a comprehensive survey of the actual
loss incurred in practice later (Ng et al., 2001). Based on Ng’s work (Ng, Hui, Lo &
Chan, 2001), Hui, afterward, applied Genetic Algorithms (GA) to search for an
optimal fabric-roll plan (Hui, Ng & Chan, 2000).

1.1.4 Sizing

Sizing aims at generating standard garment sizes. It is a link in the production
design and development section, preceding cutting. A garment sizing system
facilitates pattern development in both design and manufacturing processes and size

assignments to individuals.

1.1.4.1 Overview of sizing

Garment sizing systems are constructed for the development of standard garments
used in mass production. The standard sizes generated from sizing systems provide
guidance when garment patterns are cut out in the garment cutting process. Sizing
means deriving a set of sizing systems according to anthropometric data of the
population in order to standardize garment sizes, and hence consumer satisfaction
with garment fit. The garment fit is determined by the correspondence of certain body
measurements to values for which the garment is intended. Objectives of sizing
mainly concern the improvement of garment fit and the control of production cost
including increasing the population accommodation rate, reducing the size number, or
improving the overall fit in accommodated individuals. Efforts to advanced sizing
system development are made for solving problems like improper fit for consumers,
inconvenient for production, and endless trails for finding the right size.

The construction of garment sizing systems is composed of three steps (Gupta &

Gangadhar, 2004): 1) the development of sizing systems based on population groups,
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2) the validation of sizing systems, and 3) the designation of garment sizes. Figure 1.6

demonstrates the traditional processes of building sizing systems in mass production.

anthropometric
data _ - -
key dimension(s) =S -
population
group(s) | :
garment size(s)
Step 1 D, A
. . . " L
Height W{nst H1p Walst Hlp el
Height Height Girth Girth . . ., .
(1) Height B size
159.5 99.2  77.3 799 100.6 ) Weight |
166.8 1048 774 707 94 3 Chest/Bust Girth Eﬂ accommodated range
R 8§ ——
: : : &) Hip Girth ”
| D
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Step 2 size roll coverage/accommodation aggregate loss
=size number range (d)
d= jZ(body di ions — size di ion)?
Y
International  I1SO 3637 XS, S, M, L, XL
Step 3 Us ASTM D5585-95  2.4.6,8, 10,12

- EU EN 13402-3 34,36, 38, 40, 42, 44
Stze abermg Chinese  GB/T 1335.2 150/76A, 155/80A. 160/84A, 165/88A, 170/92A

Figure 1.6 Flowchart of building sizing systems in traditional garment mass
production.

In the developing phase, garment sizes are generated in four steps. The first is the
collection of anthropometric data including important dimensions for pattern making
like height, waist height, hip height, waist girth, and so forth. The second is the
determination of key dimensions, i.e., primary and secondary dimensions. The third is
the division of the population into homogenous groups according to body
characteristics, i.e., key dimension measurements and figure types. And the final step
is the generation of linear size systems that range from very small to very large for
population groups. In the validation phase, the evaluation of garment sizes regarding
size number, accommodation, and fit satisfaction is facilitated with parameters of size
roll, coverage/accommodation range, and aggregate loss respectively. In the
designation phase, the labeling of garment sizes is conducted by using Arabic

numerals, English letters, or their combinations.
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1.1.4.2 Research progress of sizing

The research on garment sizing started early from the 1950s (Staples & DeLury,
1949; Emanuel et al., 1959) and continues with now (Hu et al, 2019). In the
beginning, the studies dealt with military uniforms (Emanuel et al., 1959; Robinette,
Churchill & McConville, 1981; Mellian, Erwin & Robinette, 1990; Robinette, Mellian
& Ervin, 1991). Sizing standards, for instance ISO 3637, ASTM D5585, BS EN
13402, etc., were made to provide scientifically derived reliable information on body
shapes and sizes for producers in order to develop patterns in garment manufacturing.
To achieve an improved sizing methodology, various technologies were applied in the
literature like exact methods (Tryfos, 1986; Gupta & Gangadhar, 2004; Gupta et al.,
2006; Mpampa, Azariadis & Sapidis, 2010), data mining (Ibanez ef al., 2012; Hsu &
Wang, 2004; Hrzenjak, Dolezal & Ujevic, 2014), and soft computing (Vadood,
Esfandarani & Johari, 2015; Hu et al., 2019).

The linear structure is considered as the traditional layout of sizes widely applied
in garment manufacturing practice. The comparison with other structures, i.e., two-
tiered and unconstrained structures, was made in (Ashdown, 1998). Due to the various
body proportions, linear sizing systems that range from very small to very large sizes
cannot accommodate all body types. The unconstrained sizing systems bring a larger
coverage and a better fit but usually cause difficulties in pattern grading and size
designation.

The performance of sizing systems was evaluated in various aspects in terms of
accommodation, size number, fit, and population distribution related to sizes. The
aggregate loss (Tryfos, 1986) became a commonly used criterion for evaluation of
garment sizing systems (McCulloch, Paal & Ashdown, 1998; Gupta & Gangadhar,
2004; Chung, Lin & Wang, 2007; Ibanez et al., 2012; Vadood, Esfandarani & Johari,
2015). A garment sizing system with a higher coverage rate and a smaller size number
was preferred. McCulloch, Paal & Ashdown (1998) proposed a nonlinear
programming approach that was able to identify the accommodated individuals

simultaneously with the selection of the prototype body size. Pei et al. (2017)
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proposed a complete workflow to improve body size charts without changing the
number of sizes in the range, namely, equalizing the number of people accommodated
by each size within the range. In addition, an even population distribution to sizes is
regarded as a good performance in sizing (Ashdown, 1998).

Some optimization techniques were proposed to create a sizing system for a
better fit, such as integer programming (Tryfos, 1986), and a nonlinear optimization
approach (McCulloch, Paal & Ashdown, 1998).

Statistical analysis methods, i.e., multivariate analysis (Xia & Istook, 2017),
Principal Component Analysis (PCA) (Zakaria et al. 2008; Salehi Esfandarani &
Shahrabi, 2012; Hrzenjak, Dolezal & Ujevic, 2014; Widyanti et al., 2017), Factor
Analysis (FA) (Zakaria et al. 2008; Hrzenjak, Dolezal & Ujevic, 2014), and Analysis
of Variance (ANOVA) (Hsu, 2009; Hsu & Wang, 2004), were most widely employed
for analyzing body dimensions.

The classification issue of dividing the population into homogeneous subgroups
based on some key body dimensions was widely discussed in the literature. Emanuel
et al. (1959) formulated standard sizes for all body types by first classifying bodies
having similar body weight and height into different categories. Hsu (2008) proposed
a bust-to-waist girth ratio approach for identifying female body shapes in order to
develop body measurement charts. Data mining technologies were applied especially
during this decade. In (Hsu & Wang, 2004), the classification and regression tree
(CART) technology was used to mine data in order to identify and classify significant
patterns in the body shapes of soldiers and establish standard-sizing systems. A two-
stage cluster analysis approach was used to develop sizing systems (Chung, Lin &
Wang, 2007; Hsu, 2009). The approach used the Ward’s minimum variance method to
determine the number of figure types, and subsequently, applied the K-means cluster
analysis to group the homogeneous individuals into each figure type. In (Zakaria ef al.
2008), the K-means cluster method was used to segment the children into distinct
clusters, which were validated by a decision tree. These segmented groups were then
converted into size tables for a certain group of girls aged between 7 and 12 years old.

A K-mean algorithm was also used in (Salehi Esfandarani & Shahrabi, 2012) to
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change the heterogeneous population to a homogenous population in building sizing
systems for Iranian males. A trimmed version of the Partitioning Around Medoids
(PAM) algorithm jointly with Weighted Averaging Operators (OWA) was proposed to
develop an efficient apparel sizing system (Ibanez et al., 2012). With applications of
artificial intelligence in the garment industry, neural networks were also widely used
for building sizing systems in recent studies. Vadood, Esfandarani & Johari (2015)
presented a sizing chart for Iranian male suites where different body types are
clustered using the Kohonen neural network. Hu et al. (2019) applied a GA with the
Support Vector Clustering (SVC) model to develop an upper garment size system with
an increased fit and a reduced size number. The SVC technique was used to classify

sizes, and the GA technique determines the optimal parameter values of the model.

1.1.5 Cutting order planning

The cutting order planning includes lay planning and marker making. Usually
addressed in the literature is the lay planning problem only, taking identical marker
lengths. Lay planning aims at arranging garment patterns in layers of fabrics with
limited height. The optimization of lay plans is beneficial to the minimization of the
total garment manufacturing cost in terms of cutting, i.e., fabric, spreading and cutting

operations, and excessive production.

1.15.1 Overview of cutting order planning

The research on cutting order planning from the earliest study to the present has
lasted for about thirty years. More attention has been made to made-to-order
production. Unlike those with large quantities in mass production, there is a
significant trend of fast fashion orders with small lot sizes. Integer programming,
heuristics, enumeration, and graph theory are the approaches applied in the literature
for solving the NP-hard problems, among which IP and heuristic algorithms are
especially attracted by scholars. In this area, some classical work provided a solid

foundation. The studies of Farley, Elomri, and Degraeve first introduced IPs to solve
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the cutting order planning problem, while heuristic algorithms were earliest used by
Jacobs-Blecha. An IP is appropriate to represent the problem at a basic level (Figure
1.7). The main objective to achieve was to reduce various costs, i.e., fabric cost, labor
cost, and machine cost, or cost-related components: number of markers, number of
lays, and number of excessive products. The assumptions made in the modeling
process either considered setting some parameters with different specific values as
constants, such as material price and length of different markers, or required certain
markers or lays to be full. For certain specific situations, modifying the model and
adding more constraints can be conducted for finding the solutions. Additionally, for a
shorter computation time, heuristics, and Als can be applied. Among all the
contributors, researchers from KU Leuven have a significant contribution with three
representative papers (Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans,
2002; Martens, 2004) published in high-impact journals. “European Journal of
Operational Research” and “International Journal of Production Economics” are the

top most relevant journals in this area (Martens, 2004, Wong & Leung, 2008).
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Notations:

S set of sizes, S = {1,...,s}

d, demand for size s

L length of the cutting table

H maximal ply number of a lay

Lo pattern length of size s on marker m

M set of markers M = {1,..., m}

Ay number of copies of size s in markerm, s € S, m € M

Vi =1 if marker m is used, 0, otherwise, m € M

b~ ply number of marker m; m € M

C the cutting cost

E excess products

Main constraints: Main objective functions:

1. satisfy the order demand for each size 1. minimum the cutting cost
m

Z asmzmym 2 dS C = f (lsm’ aSln’ YIII' Zln)

1

2. do not exceed the length of the cutting table 2. minimum excess products
S

z lsmasmYm S L E = min(ZaSIIIYInZln - dS)

1

3. do not exceed the maximal height of a lay
ZnYm < H

4. some integrality constraints
ag, is integer, z, is integer

Figure 1.7 Frame of an integer programming model for the cutting order planning.

1.1.5.2 Research progress of cutting order planning

One of the first initial attempts of developing mathematical-programming models
for solving the cutting stock problem in the garment industry was presented by Farley
(1988). Both integer and quadratic formulations were introduced under the constraints
with unique characteristics that occur in the laying, cutting and sewing operations to
satisfy the objective of maximizing the annual contribution margin accruing from its
production and sale of garments. The quadratic model is made for eliminating the
integer variables and reducing the problem to a manageable size but it cannot

guarantee the global optimum. Both models include various parameters that must be
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selected by the user and determined by practical experience. Especially, an explicit
distinction between two broad garments categories (i.e., stock garments and made-to-
order garments), was made and two kinds of fabric lay (i.e., step lay and rainbow lay)
are discussed and analyzed in this study. For stock garments, holding stock is
allowable, and for made-to-order garments, overproduction should be kept at a
minimum. A step lay is possible to combine into one lay stack of different heights,
and a rainbow lay is also possible for one stencil cut in different colors or of different
fabric types.

Elomri ef al. (1994) and Degraeve & Vandebroek (1998) separately made further
studies on the same topic afterward.

In 1994, Elomri combined linear and non-linear programming in order to obtain
sufficient precision in a very short time and with small memory requirements when
solving the cutting problem which consists of choosing the patterns in the library,
permitting to satisfy the client order with minimum cutting operating cost. The
problem was solved by building the matrix form of the system constraints and putting
the discontinuous economic function between two linear functions. The economic
function defined in this study is a sum of several values related to the various
operations of the cutting process, namely, costs regarding laying, cutting, fabric and
material wastage, the time spent at the beginning and end of each laying, as well as
the cost for taking away the cut-pieces and so forth. Some steps with low costs, such
as costs for separating lots of articles and changing rolls, can be neglected.

In Degraeve’s paper, a Mixed Integer Programming (MIP) model was proposed.
It searched for an optimal set of markers, each giving a combination of articles to be
cut in one operation and the corresponding stack heights, in which the total production
costs can be optimized by minimizing the number of the cutting operations without
performing excessive production. In order to restrict the solution space, the objective
function was altered by fixing the number of different markers. It is the first paper
from KU Leuven on the cutting order planning problem.

Later in 2002 and 2004, the research team of KU Leuven published the other two

papers. One proposed two new IP models, and the other applied GAs to solve large
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real-life problems. Both studies extended the objective function to the total cost.

In (Degraeve, Gochet & Jans, 2002), two improved alternative IP models were
proposed for the same layout problem described in (Degraeve & Vandebroek, 1998).
The objective is to minimize the total production quantity with a fixed number of
markers. One of the new models eliminated alternative optima among markers by
imposing an ordering of the sizes within each marker. The other imposed a lower
bound on the number of stencils needed in one marker in order to eliminate
unnecessary variables. The computational results indicated a general outperformance
of the alternative models compared with the originally proposed model. In addition,
the model has been extended to a case with the objective of minimizing total cost,
which is composed of fabric cost, spreading cost, cutting cost, and setup cost.

Martens (2004) built two GAs based on two alternative IPs, including NLIP and
LIP models, proposed in (Degraeve & Vandebroek, 1998) that generate optimal or
near-optimal solutions on small problem instances and solve large, real-life layout
cases in an acceptable amount of time. The evaluation result showed that GA1 can
find better solutions for a wide number of layout problems in a much smaller amount
of time than GA2.

Heuristics were first mentioned to solve the garment cutting stock problem in
1997 (Jacobs-Blecha et al., 1997). Jacobs-Blecha proposed a mathematic model
aiming to minimize the total cost regarding fabric, cutting, spreading, and marker
making that the addressed COP problem was performed independently of the
downstream production considerations. Three greedy heuristics, including two
constructive: Savings and Cherry Picking, and one improvement algorithm, were
developed as computationally efficient procedures solving the COP problem to figure
out size combination of markers and find low fabric cost solutions because of the
significantly large impact of the cost of fabric on the total cost of the cut order
planning process. Among the heuristics, Savings performed better than the Cherry-
Picking algorithm and at least as good as the commercial packages, the improvement
algorithm helped to optimize fabric utilization when applied to all solutions.

Algorithms of EAs (excluding GAs) and other meta-heuristics or hybrid
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algorithms were developed afterward.

Wong & Leung (2008) proposed a genetic optimization approach using adaptive
ESs in order to genetically synthesize the cutting order plan and complete the order
with minimized total cost which emphasizes on fabric cost and extra products under
the time constraint predetermined by the downstream assembly departments.

This paper focused on transforming marker optimization into the 0/1 knapsack
problem and designed evolutionary algorithms searching for an optimal minimum
combination of markers to accomplish a work order which outperformed those
existing deterministic algorithms, i.e., greedy heuristics. There lied a premise of this
study that in practice, the minimum number of markers was the most often used
optimization criterion that could be used as an approximation for minimizing real
costs and was suitable for mathematical treatment.

Two years later in (Fister, Mernik & Filipic, 2010), Fister proposed a Hybrid Self-
Adaptive Evolutionary Algorithm (HSA-EA) which improves the results of the
previous simple evolutionary algorithms (Fister, Mernik & Filipic, 2008). In contrast,
it successfully dealt with the objective of minimum preparation cost representing
material, marker making, spreading and cutting costs which was identified and
mathematically expressed instead of the minimum number of markers. The HAS-EA
was a self-adaptive evolutionary algorithm hybridized using construction heuristics
and improved with local search heuristics where the former solves the problem
traditionally and the latter directs each solution into a local optimum. As especially
shown in numerical experiments in this study, the material cost was much higher than
the costs of marker making, spreading and cutting combined that it was the crucial
objective for this production.

In the study of (Yang, Huang & Huang, 2011), Yang proposed a heuristic model
considering setup, excess, and cloth layer costs. The ACIP model was a combination
of Ant Colony Optimization (ACO) and an Integer Programming (IP) that ACO was
applied for selecting the appropriate combination of cutting patterns and an IP model
was developed for identifying the number of layers of cloth for each cutting pattern

and computing the total cost.
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In (M'Hallah & Bouziri, 2016), lay planning and marker making was combined
into a single problem with the objective of minimizing fabric length solved using five
constructive heuristics, and three meta-heuristics (i.e., a stochastic local improvement
heuristic based on Simulated Annealing (SA), a global improvement heuristic based
on Genetic Algorithms (GA), and a hybrid heuristic denoted genetic annealing.
Different from current industrial practice, the study regarded the length of the layout
of a section was known in advance, and it did depend on its combination of sizes.

In addition to mainstream integer programming methods and heuristic algorithms,
enumeration and graph theory have also been applied in some research projects.

Rose presented a practical two-stage enumerative approach satisfying all
demands exactly with the minimum number of lays (Rose & Shier, 2007). One
variation of the two-stage approach would place a limit on the number of unique
optimal solutions generated for consideration that for some instances, the number of
optimal solutions could be prohibitively large. Besides, the hypothesis that all
multiple-ply markers are full should be made to guarantee an optimal solution.

In (Nascimento et al., 2010), the cutting order planning problem was modeled
with the non-convex objective function including the various cost components
including setup cost of lays, spreading setup cost, spreading cost, cutting cost, cost of
folding losses, cost of imperfect template fit, inventory cost and markdown or
obsolescence costs. So, an innovative state-space approach using heuristic rules was
proposed to solve the problem where each possible schedule is modeled as a node in
an initially unknown graph, the objective is to search for the lowest-cost schedule, and

heuristic procedures are used for shortening processing times.

1.1.6 Marker making

The fabric cost is the major cost item in clothing products, while maker making is
always the major determinant of material utilization. Additionally, considering the
marker variances (i.e., maker length and cutting length) in cutting order planning can

comparatively lead to a low-cost cutting plan. Thus, the optimization of marker
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making proves effective.

1.1.6.1 Overview of marker making

The marker making is laying out garment patterns within a rectangular surface
with a fixed width, which is determined by equipment effective width, fabric width,
and ease allowance. In the literature, the marker making problem is regarded as a
Cutting Stock Problem (CSP), also is called an irregular object packing problem, an
irregular nesting problem, or, to specify, a Two-Dimensional Layout (TDL)
optimization problem. The principal purpose is to gain the best fabric utilization
without overlap. The efficiency of a marker is therefore represented by the required
marker length. The most restrictive constraint is the limitation of allowed rotation
angles for the stencils. If needed, the symmetry and rapport constraints should be
obeyed that a dependency between the placement positions of different patterns will
be created. In the marker making process, there are three steps, i.e., pattern
presentation, layout determination, and pattern compaction (Jaidormrong,
Chaiyaratana & Hassamontr, 2003). As shown in Figure 1.8, in the first step, patterns
in irregular shapes are represented by polygons, namely, the geometric representation,
or by two-dimensional matrices, namely, the digitized representation, the next step is
to generate layouts for these patterns, and finally adjust each pattern position and

maximize the fabric utilization further.
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Figure 1.8 Sketch of steps in the marker making process.
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1.1.6.2 Research progress of marker making

One of the earliest studies was made by Amaral, Bernardo & Jorge (1990). Since
then, continuous researches for solving the complex garment marker making problem
have been conducted. The pattern representation and layout optimization are the two
key sub-problems in this domain. Patterns in irregular shapes were mainly enclosed
by geometric shapes at the beginning. Later with the development of digital
technologies, the grid approximation was introduced by Wong. Under this technique,
each garment pattern is divided into a finite number of equalized cells. The layouts
were produced and optimized by using exact methods and advanced computing
algorithms for a reduction of the overall calculation time. The most adopted
algorithms are heuristics and evolutionary algorithms. Besides, simulated annealing,
neural networks are mentioned as well. In the literature, Wong from the Hong Kong
Polytechnic University made a relatively in-depth study using the proposed grid
approximation-based representation and meta-heuristics, i.e., Evolutionary Strategy
(ES) and Neural Network (NN).

Amaral is one of the first to take the step of realizing the fully automatic
placement of garment patterns. In the study (Amaral, Bernardo & Jorge, 1990), he
proposed a sliding algorithm for the interactive placement of irregular shapes used in
the GIZ graphic editor and developed a heuristic approach which uses the sliding
algorithm for an automatic marker making. All the garment patterns in irregular-
shapes are circumscribed by polygons with fewer points and placed following a
greedy strategy by the sliding algorithm to achieve considerable material savings. The
described algorithms were indicated to be applicable in a general way to the irregular
shapes in the garment industry. Another attempt made with heuristics was reported in
a conference paper (Jaidormrong, Chaiyaratana & Hassamontr, 2003, July). The
design and development of a software tool using a top-down design paradigm was
described where a heuristic search strategy is developed for layout determination on
plain fabric, fabric with horizontal or vertical stripes, and fabric with checkered

patterns.
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In (Heckmann & Lengauer, 1995), Heckmann introduced a meta-heuristic: a
Simulated Annealing (SA)with a fully dynamic statistical cooling schedule to solve
this layout problem. For each garment pattern, a polygonal enclosure was calculated
and used to represent it. Three years later in (Heckmann & Lengauer, 1998), he
proposed two upper-bound procedures, where original garment patterns were
represented by polygonal approximations. For the upper bounds he used greedy
strategies based on hodographs and a global optimization based on simulated
annealing. For the lower bounds he used branch-and-bound methods for computing
optimal solutions of placement subproblems that determine the performance of the
overall subproblem. There was room for improvement in the runtime and the outputs.

Another usage of SA in solving this problem was described in (Hwan & Jin,
2002). In this study, the rectilinear polygon approximation technique was used that
fabric patterns, usually in non-convex shapes, were approximated as rectilinear
polygons and at first allocated in random positions using the Multi-BSG algorithm
(Sakanushi, Nakatake & Kajitani, 1998). Then, the most efficient marker was
searched fast using a stochastic simulated annealing method.

In 1995 and 1997 IEEE conferences of International Conference on Systems,
Man, and Cybernetics, Bounsaythip first used evolutionary algorithms (EA) to deal
with the cutting nesting problem where patterns in polygons were circumscribed by
bounding rectangles. The reduced-combs encoding method was used to find the
smallest enclosing rectangles conveniently.

In (Yeung & Tang, 2003), Yeung used a combination of a Genetic Algorithm
(GA) and the novel heuristic “Lowest-Fit-Left-Aligned” (LFLA) heuristic approach
with which the complex two-dimensional strip-packing problem was transformed into
a simple permutation problem to be effectively solved and the searching domain was
reduced. It was shown from the simulation results that the optimal results could be
obtained in a reasonably short period.

Vorasitchai tried to improve applications of GAs to solve the nesting problem by
finding good parameter settings for the specific garment cutting layout problem

(Vorasitchai & Madarasmi, 2003).
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Between 2009 and 2010, Wong proposed to use the grid approximation (Ismail &
Hon, 1992) instead of the traditional geometric approach for pattern representation,
and concentrated on the application of meta-heuristics, i.e., Evolutionary Algorithms
(EAs) and Neural Network (NNs), to the irregular garment patterns packing problem.
Wong & Leung (2009) hybridized a Heuristic packing (HP) approach based on the
grid approximation with an integer representation-based (u+A) evolutionary strategy
(ES). Wong et al. (2009) hybridized a two-stage packing approach based on grid
approximation with an integer representation-based Genetic Algorithm (GA). Wong &
Guo (2009) proposed a hybrid approach combining a grid approximation-based
representation, a learning vector quantization Neural Network (NN), a heuristic
placement strategy, and an integer representation-based (pu+A) Evolutionary Strategy
(ES).

The other methods were also proposed. Especially, image processing, 3D
simulation, computer graphics techniques have been used for solving cutting nesting
problems. In Ko’s work (Ko & Kim, 2013), a pattern nesting process for garments
made of fabrics with complex figures was developed. In this study, image processing
techniques were used to detect repeated graphical units from digitalized images of
fabrics. Then, a three-dimensional simulation was used to design garments by taking
these graphical units as texture maps. Next, a simple nesting method was used for
placing patterns one by one according to their sizes. Finally, the patterns of garments
were arranged on the fabric automatically so that the continuity of the graphical
figures can be preserved while minimizing the loss of fabrics.

In addition, a linear programming approach was mentioned in (Awais & Naveed,
2015). In the study, a width-packing heuristic was used for shapes grouping, a column
generation method was introduced for mapping groups onto the stock, and a linear
programming approach was applied for selecting the minimum number of stock sheet

layouts.

1.2 Optimization techniques in garment manufacturing
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In the previous section, research progresses made in garment manufacturing
processes, i.e., sizing, cutting order planning, and marker making, have been reviewed
in detail. In this section, we first summarize the commonly used optimization
techniques by category and emphasis on the most popular ones and their classic

applications in garment manufacturing.

1.2.1 Overview of optimization techniques

The application of optimization techniques plays an increasingly critical role in
industry development, including fashion sector as well (Majumdar ef al., 2010; Guo et
al., 2011; Hui, Fun & Ip, 2011; Gersak, 2013; Ngai et al., 2014; Nayak & Padhye,
2015; Xu, Thomassey & Zeng, 2018, 2020). Through analysis of the literature, the

commonly used types of optimization techniques are demonstrated in Figure 1.9.

| Optimization Techniques |

lApproximate I

Nféta—
heuristic

Heuristic

Figure 1.9 Classification of optimization techniques.

The optimization techniques used in the literature include exact methods,
heuristics, meta-heuristics, and hybrid techniques. Exact methods are always the
initial choices for solving problems with an optimal solution, among which, integer

programming (IP) tends to be the most widely used. Enumerative approach has been
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adopted as well. Heuristics, including constructive and improvement are employed for
searching for a satisfactory solution. A heuristic technique is any approach to
problem-solving, learning, or discovery that employs a practical method not
guaranteed to be optimal or perfect, but sufficient for the immediate goals. Where
finding an optimal solution is impossible or impractical, heuristic methods can be
used to speed up the process of finding a satisfactory solution. Soft computing,
belonging to meta-heuristics, is widely applied for finding a good solution with less
computational effort by searching over a large set of feasible solutions. Genetic
Algorithm (GA), Fuzzy Logic (FL), and Neural Network (NN) are the most
mentioned optimization techniques in the literature. Besides, Simulated Annealing
(SA) and Ant Colony algorithm (ACO) are also popular. In addition, hybrid methods

integrating the former technologies are favored by many researchers in recent years.

1.2.2 Application of specific optimization techniques in garment manufacturing

The applications of several specific optimization techniques are demonstrated as
follows. Among these methods, three soft computing methods, i.e., genetic algorithm,
fuzzy logic, and neural network are discussed in detail separately due to their

outstanding performances.

1.2.2.1 Exact methods

According to the literature, exact methods are applied for solving various garment
manufacturing issues. The initial and wide usage is in the cutting order planning.

Regarding the cutting order planning, IP is the first and most employed
mathematical technology. Farley made integer and quadratic formulations with the
overall objective to maximize long-run profitability (Farley, 1988). Elomri used a
combined linear/non-linear programming approach which consists of choosing the
patterns in the library with the objective of minimizing cutting operating cost (Elomri
et al., 1994). Degraeve proposed a mixed integer programming model and based on

which he produced the other two alternative IPs (Degraeve & Vandebroek, 1998;
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Degraeve, Gochet & Jans, 2002). Yang used IP in a combination with ACO
considering setup, excess, and cloth layer costs (Yang, Huang & Huang, 2011).
Besides IP, Rose & Shier (2007) developed an enumerative approach, and Nascimento
et al. (2010) adopted graph theory.

For marker making problem, branch-and-bound methods were used for
computing optimal solutions of placement subproblems that determine the
performance of the overall subproblem in (Heckmann & Lengauer, 1998) to minimize
the length of the marker surface.

For solving SCS problem, IP and queue theory were mentioned in (Wong ef al.,
2001; Wong, 2003a) to evaluate the configuration of spreading and cutting machines
installed in the cutting department.

Recursion and logarithm regression were used for QC in the garment sewing
process. Lee used a recursive process mining algorithm to obtain a set of decision
rules for fuzzy association rule mining, where the rules are used for determining the
related product quality production process parameters (Lee ef al., 2013b).

Hui used multiple regression with a common logarithm method and a NN to
predict the seam performance of woven fabrics (Hui & Ng, 2009). Compared with the
NN, the regression models were found quicker to construct, more transparent, and less

likely to overfit the minimal amount of data available.

1.2.2.2 Heuristics

The majority application of heuristics regarding garment manufacturing is found
in COP problems, i.e., lay planning and marker making.

Heuristics were firstly used by Jacobs-Blecha to solve the cutting order planning
problem (Jacobs-Blecha et al., 1997). He proposed three greedy heuristics including
two constructive, i.e., Savings and Cherry Picking, and one improvement. These
heuristics have been proved to be computationally efficient procedures to figure out
the size combination of markers and find low fabric cost solutions. Among the
heuristics, Savings performed better than the Cherry-Picking algorithm and at least as

good as the commercial packages, while the improvement algorithm helped to
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improve fabric utilization when applied to all solutions. Nascimento et al. (2010)
developed an innovative state-space approach to solve the cutting order planning
problem with graph theory where heuristic rules were introduced to select the most
promising color-size combination for expansion so that processing durations were
shortened. The other application of heuristics to the cutting order planning was
mentioned in (M'Hallah & Bouziri, 2016), where lay planning and marker making
were combined into a single problem to minimize fabric length. The problem was
solved by using constructive heuristics with metaheuristics, i.e., a stochastic local
improvement heuristic based on SA, a global improvement heuristic based on GA,
and a hybrid heuristic denoted genetic annealing.

Amaral proposed a heuristic approach for the automatic placement of garment
patterns (Amaral, Bernardo & Jorge, 1990), where garment patterns were placed
following a greedy strategy by the sliding algorithm to achieve considerable material.
Fabric patterns approximated as rectilinear polygons were allocated in random
positions using the Multi-BSG algorithm (Sakanushi, Nakatake & Kajitani, 1998),
which is a heuristic, and then, the most efficient marker was searched using a
stochastic SA (Hwan & Jin, 2002). In (Yeung & Tang, 2003), Yeung used a
combination of a GA with the novel heuristic approach “Lowest-Fit-Left-Aligned”
with which the complex marker making problem was transformed into a simple
permutation problem that the searching domain was reduced. The design and
development of a software tool using a top-down design paradigm was described in
(Jaidormrong, Chaiyaratana & Hassamontr, 2003, July), where a heuristic search
strategy is developed for layout determination on various special fabrics like plain
fabric, fabric with horizontal or vertical stripes, and fabric with checkered patterns. In
(Wong & Leung, 2009), they hybridized a heuristic grid approximation-based packing
approach with an integer representation-based (pu+A) evolutionary strategy (ES) to
obtain the optimal marker with the minimal marker length. The heuristic pattern
classification approach, inspired by experienced packing planners, was proposed for
reducing the search space size. In addition, to solve the two-dimensional irregular

shapes cutting stock problem a width-packing heuristic was used for shapes grouping,
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a column generation method for mapping groups onto the stock in (Awais & Naveed,
2015), then, a linear programming approach was used for selecting the minimum
number of stock sheet layouts.

For predicting seam quality, Pavlinic used regression trees, where heuristic was

applied for smaller and more accurate trees (Pavlinic et al., 2006).

1.2.2.3 Genetic algorithm

Genetic Algorithm (GA), developed by Holland (1992) in 1975, is based on the
principle of the natural evolution of species. By exchanging intergroup information,
GA is powerful for its high ability in both local and global searching. It generates a
whole population instead of just one possible solution in order to avoid getting stuck
within a local optimum. Due to its advantage of easy implementation with optional
coding methods and quick convergence by evaluating only a small fraction of the
design domain, GA is always used to solve intractable discrete optimization problems.

A GA works on a population of so-called chromosomes which represent possible
solutions to a specific optimization problem (Martens, 2004). As can be seen, a
general GA is displayed in Figure 1.10. In the first step, the initial population of
chromosomes is generated and coded as parent chromosomes. The fitness function or
a penalty function is used for the determination of suitable chromosomes. Then,
operators, i.e., crossover and mutation are employed for the creation of offspring
chromosomes. It turns to the second step until the stop criteria are reached. Finally,

chromosomes with a superior fit are returned as the optimal solution.
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Figure 1.10 Sketch of a general genetic algorithm.

There has been an increasing trend of GA applications in dealing with the
production scheduling and sequencing problems in the garment manufacturing
process, especially in the cutting and the sewing processes.

In the decade from 2000 to 2010, there were considerable GAs applied to the
cutting process.

Martens made an early attempt of applying GA in the cutting order planning
(Martens, 2004). Based on two alternative integer programming (IP) models, a pair of
GAs was proposed for minimizing the computation time. The good usage of EAs in
finding the optimal cutting lay plan was proved in later continuous researches (Fister,
Mernik & Filipic, 2008; Wong & Leung, 2008; Fister, Mernik & Filipic, 2010).

Yeung LHW proposed a hybrid method combining GA and the “Lowest-Fit-Left-
Aligned” algorithm (LFLA) with which maker making of garment cutting process
was converted into a simple permutation problem and the optimal results can be
obtained in a reasonably short period (Yeung & Tang, 2003). Vorasitchai emphasized
the parameter setting in the GA specific to the marker making (Vorasitchai &

Madarasmi, 2003, May). An integer-representation based GA was proposed for an
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optimal marker (Wong et al., 2009).

Between 2000 and 2007, Wong and his team made applications of GA to balance
the SCS and minimize the makespan. GA was applied to determine the number of
spreading tables to be installed in a computerized fabric-cutting system (Wong, Chan
& Ip, 2000b). GA was afterward employed to obtain a shorter completion time, a
higher machine utilization, and higher cut-piece fulfillment rates in a traditional
manual system, a computerized system and a manual-computerized system (Wong,
Chan & Ip, 2000a; Wong, 2003a, 2003¢; Wong et al., 2005), with the JIT philosophy
(Wong, Chan & Ip, 2001; Kwong, Mok & Wong, 2006) or considering different types
of existing uncertainties (Wong, 2003b). Moreover, Wong, Leung & Au (2004)
proposed a GA for a Real-time Segmentation Rescheduling (RSR) of cutting related
operations including marker-making, spreading, cutting, and bundling in a dynamic
apparel manufacturing environment. Some partners addressed fault-tolerant fabric
cutting schedules using this Al technology to satisfy resource-competing requests
from downstream operating units to minimize the makespan (Kwong, Mok & Wong,
2006, Mok, Kwong & Wong, 2007).

GA was also applied to determine an optimal sequence of fabric rolls for each
cutting lay during the fabric spreading operation to maximize the fabric saving in
(Hui, Ng & Chan, 2000).

GAs have been widely applied to the sewing process as well.

Lin (2009) used a hierarchical order-based GA to quickly identify an optimal
layout in a U-shaped sewing line with a single-row machine layout for effective
moving distance of cut-pieces at lower production costs.

The Sewing Assembly Line Balancing (SALB) problem was addressed by
researchers using EAs to minimize makespan and idle time. GAs were used to solve
flexible assembly lines balancing problem where the flexible operation assignment is
allowed, that one operation can be assigned to multiple workstations or multiple
operations can be assigned to one workstation (Hajri-Gabouj, 2003; Guo ef al., 2008a,
2008b; Guo et al., 2009). A GA was adopted to solve the SALB problem in UPS by

periodically re-adjusting operator assignment and found the optimal number of task
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skills that each sewing operator should possess was three (Wong, Mok & Leung,
2006). GAs were developed in (Chen et al., 2012; Mok et al., 2013) for the automatic
job allocation which can make an even workload allocation among machines based on
the difference between labor skill levels. By applying an EA, Zeng investigated the
operator allocation problems with job sharing and operator revisiting for the balance
control of a complicated hybrid assembly line (Zeng, Wong & Leung, 2012).

The early completed jobs should be kept in a finished goods inventory before the
delivery dates, while jobs that are completed after their due dates may incur penalty
costs. Therefore, in a Just-In-Time (JIT) manufacturing environment, jobs are
preferred to be completed in time. A GA was used to achieve an ideal schedule in
which all jobs are finished exactly on the assigned due dates (Wong & Chan, 2001).
To generate the optimal order scheduling solution in a real-life, make-to-order
production with various uncertainties, Guo proposed a GA-based approach with the
objectives to maximize the total satisfaction level of all orders and minimize their

total throughput time (Guo ef al., 2008c).

1.2.2.4 Fuzzy logic

Fuzzy Logic (FL) (Zadeh, 1965, 1996, 1997), opposite to Boolean logic, in which
the truth values of variables may only be the integer values 0 or 1, is a form of many-
valued logic in which the truth values of variables may be any real number between 0
and 1 both inclusive. It has become a successful modeling tool for complex problems
that can be controlled by humans but difficult to define precisely. Imprecise
information as those resulting from inexact measurements or gained from imperfectly
codifying expert knowledge can be incorporated into a fuzzy modeling. FL systems
possess characteristics of simplicity and flexibility that the application of FL is in a
simplified platform and takes a relatively short period of development time.

Decision making in manufacturing includes uncertainties and imprecision. FL has
the capability of dealing with data that are vague and lack certainty, representing
uncertainties such as variations in human operator performance, inaccuracies of

process equipment, and volatility of environmental conditions (Azadegan et al.,
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2011).

FL could deal with the dynamic and fuzzy factors in the real garment
manufacturing environment such as machine breakdowns, late receipt of fabric rolls,
insertion of rush orders, etc. It helps robotic handling in sewing, SCS in cutting,
resource allocation, and QC.

In the sewing department, FL. was employed for automatic fabric handling to
handle with the varieties during conducting a robot guiding non-rigid fabrics.

Koustoumpardis developed a hierarchical robot control system including a fuzzy
decision mechanism where the fuzzy rules and the membership functions are
determined according to the experts’ knowledge, combined with a neuro-controller to
regulate the tensional force applied to the fabric during the robotized sewing process
(Koustoumpardis & Aspragathos, 2003). Later, he investigated the robotized sewing
of two plies of fabrics (Koustoumpardis & Aspragathos, 2014). Zoumponos presented
a robot end-effector path-planning algorithm based on FL for the robotic laying of
fabrics on a worktable that possesses the characteristics of flexibility and low
computational cost (Zoumponos & Aspragathos, 2008). Later, he introduced visual
servoing the he presented a new fuzzy visual servoing strategy based on the
knowledge of easily measured fabric shape features for the folding of rectangular
fabric strips by robotic manipulators (Zoumponos & Aspragathos, 2010). Also, FL
and visual servoing were adopted by Zacharia. Zacharia developed a flexible
automation system tolerating deformations that may appear during robot handling of
fabrics due to buckling without the need for fabric rigidification based on FL
(Zacharia et al., 2009). Zacharia (2009) made an extended research focusing on
operations with curved-edge fabrics and correcting the distortions presented during
robot handling of fabrics.

The research group of Wong has applied FLs in solving the fabric-cutting
balancing problem.

Firstly, a fuzzy capacity-allocation model was proposed to solve the line-
balancing problem in a computerized cutting system with consideration of the level of

Work-In-Progress (WIP), i.e., number of fabric lays, on each spreading table and the
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degree of deviation between the planned starting time and actual starting time of
spreading of each fabric lay on a particular spreading table as fuzzy input variables
(Wong, 2003b). It was indicated that the WIP level could be controlled, and the
machine idle-time and makespan could be shortened in a dynamic cutting room.

They used FL for production order fuzzy due time and GA to generate fabric
cutting schedules in a just-in-time (JIT) production environment, which improve the
internal satisfaction of downstream production departments and reduce production
costs through shortening operator idle time (Wong et al., 2006; Mok, Kwong &
Wong, 2007). As an extension, they considered three uncertainty factors, i.e., operator
skill level, fabric characteristics, cutting pattern on a marker for fuzzy job processing
time (Kwong, Mok & Wong, 2006).

Regarding resource allocation, Hui, P. L. proposed a rule-based operator-
allocation system using FL where the knowledge of experienced supervisors was
captured to determine the right number of operators to be moved in and out of sewing
sections to insure overtime balance (Hui et al., 2002). Hajri-Gabouj (2003) relaxed
the mathematical model to overcome the nonlinearity and the complexity using fuzzy
penalty functions to handle task-operator-machine assignment problem with
multilevel objectives, i.e., minimizing the total execution time, neither predefining
inter-operator communication costs nor a prefixed number of machines and operators.
Lee presented a resource allocation system integrating RFID technology for real-time
data capturing and FL concept for machinery resource allocation planning according
to expertise knowledge stored as fuzzy rules (Lee et al., 2013a, 2014).

In the QC area, FL was used to find the relationships between production process
parameters and product quality, where a set of decision rules was derived for fuzzy
logic that will determine the quantitative values of the process parameters (Lee et al.,
2013b, 2016). The study provides knowledge support for parameter settings of
machinery resources. Shu, M. H. developed a demerit-fuzzy rating mechanism and
monitoring scheme to improve online surveillance of manufacturing processes (Shu et

al., 2014).
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1.2.2.5 Neural network

Neural Network (NN) was first introduced in (McCulloch & Pitts, 1943). It was
inspired by both biological neural networks that constitute animal brains and
mathematical theories of learning, and it can be used as a universal function
approximator that learns from observations (training samples), generally without task-
specific programming. NN is a highly connected network of processing nodes
(artificial neurons) arranged in 3 or more layers. It learns from historical examples
known as training data. During the training, the weights connecting the neurons
present in different layers are optimized in such a fashion that the error signal reduces
in each iterative step. Once sufficiently trained, NN can be used to solve unknown
instances of the problem due to its non-parametric nature and ability to describe
complex decision regions.

An artificial NN is demonstrated in Figure 1.11, as an interconnected group of
nodes, where each circular node represents an artificial neuron and an arrow
represents a connection from the output of one artificial neuron to the input of
another. NN parameters, 1.e., network weights and bias are adapted through a learning
process, a continuing process of stimulation by the environment in which the network
is embedded (Guo et al., 2011). NN has been used on a variety of tasks in
manufacturing, such as prediction, pattern recognition, generalization, fault tolerance,

and high-speed information processing.
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Figure 1.11 Structure of a basic neural network.
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In the garment manufacturing process, NN is mainly used for solving prediction
problems, process control problems, and model identification problems in Quality
Control (QC), robotic fabric handling, maker making, and so forth.

NN has been widely applied for the prediction of fabric sewing performance,
seam quality inspection, fabric and garment classification, and sewing thread
consumption prediction. In (Lin, 2004), a Back-Propagation (BP) NN was used to
establish a translation model between fabric and thread composition properties and
sewing quality. Hui investigated the use of extended normalized radial basis function
NN to study the correlations between fabric mechanical properties and the seam
appearance quality to construct the model for predicting seam, which was proved to
outperform the previous BP NN (Hui & Ng, 2005). The same author proposed a BP
NN for fabric sewing performance prediction which was classified in terms of four
main factors, i.e., pucker, needle damage, fabric distortion, and fabric overfeeding
based on 21 physical and mechanical properties (Hui et al., 2007). Afterward, he used
a BP NN with a weight decay technique to predict the seam performance of
commercial woven fabrics measured by the ratings of three indices, i.e., seam
puckering, seam flotation, and seam efficiency (Hui & Ng, 2009). Pavlinic also
investigated the relation between fabric mechanical properties and the quality of seam
appearance, which was defined by seam puckering and work-piece flotation.
Regression trees (CART) and k-Nearest Neighbors (k-NN) were used in the study to
construct the predictive model, where the latter method is more appreciate (Pavlinic et
al., 2006). Later, the same author developed a subjective evaluation system of
garment appearance quality by studying the correlations between fabric mechanical
parameters and the grade of garment appearance quality using k-NN (Pavlinic &
Gersak, 2009). Especially for knitted fabric, in (Yuen et al., 2009a), four characteristic
variables were collected and input into a BPNN to classify the sample images.
Similarly, Yuen used a three-layer BPNN to deal with intelligent classification of
fabric stitches or seams of semi-finished and finished garments (Yuen et al., 2009b).

Besides, NN was employed in sewing thread consumption prediction as well (Jaouadi
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et al., 20006).

Regarding the robotized sewing issue, Koustoumpardis developed a neuro-
controller to regulate the tensional force for the feeding of single-piece fabric to the
sewing machine (Koustoumpardis & Aspragathos, 2003). In a latter research
(Koustoumpardis & Aspragathos, 2014), he controlled the force applied by the robotic
manipulator with NN in order to join two pieces of fabric. Zacharia (2009) dealt with
the curved edges of real cloth parts by NN which learns from the information obtained
from the fabrics used for the training process and then responds to new fabrics.

To solve the marker making problem, Wong & Guo (2010) constructed an
irregular object packing approach where a learning vector quantization NN was
developed as a classification heuristic by a set of examples that were inspired by
experienced packing planners to diminish the size of a search space by dividing the
objects into three classes, i.e., BIG, SMALL and OTHER.

In (Zou et al., 2006), a BP NN was used to simulate the experience and

technology of fashion designers for establishing a model to identify body type.

1.2.2.6 Hybrid methods

For decision-making in real-world garment production, there are multiple
production objectives to achieve simultaneously. There exists a situation that one
single technology is not able to fully solve the problem, as such a hybrid intelligence
for utilizing an integration of technologies makes sense.

The hybrids mentioned in the literature on the garment manufacturing are
demonstrated bellow in terms of these four combinations, i.e., exact method and
heuristic, exact method and meta-heuristic, heuristic, and meta-heuristic, and a hybrid
of meta-heuristics.

The combinations of exact method and heuristic were found in (Nascimento et
al., 2010) and (Lee ef al., 2013b). An innovative state-space approach hybridizing a
graph theory-based model and a heuristic algorithmic solution to identify the least-
cost lay plan was proposed by Nascimento. Lee presented a radio frequency

identification-based recursive process mining system using FL to find the
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relationships between production process parameters and product quality.

A combination of exact method with meta-heuristic, i.e., an IP model with an
ACO, was proposed in (Yang, Huang & Huang, 2011) to identify good combinations
of markers and determine the number of plies that satisfy demand with the minimal
excess production.

Researchers preferred using the combinations of heuristic and meta-heuristic to
solve the marker making problem. Hwan Sul, 1. first allocated patterns in random
positions using the heuristic Multi-BSG algorithm, and then, the optimal marker with
the highest efficiency was searched using a SA method (Hwan & Jin, 2002). In
(Yeung & Tang, 2003), Yeung used a combination of a “Lowest-Fit-Left-Aligned”
heuristic approach with a GA to transform the complex two-dimensional strip-packing
problem into a simple permutation problem so that the marker making was effectively
solved and the searching domain was reduced. In the study (Wong & Leung, 2009), he
hybridized a heuristic packing approach based on grid approximation with an integer
representation-based (u+A) evolutionary strategy (ES). In another study of him (Wong
& Guo, 2010), he proposed combined a grid approximation-based representation, a
learning vector quantization NN, a heuristic placement strategy, and an integer
representation-based (u+A) ES.

Hybrids of meta-heuristics were adopted in all aspects of the garment
manufacturing process, i.e., cutting, sewing, and QC. Bounsaythip hybridized GA
with SA to find the optimal pattern layout on the marker (Bounsaythip, Maouche &
Neus, 1995, October). The combinations of GA and FL were adopted to solve the
spreading and cutting sequencing problem by Wong’s research group in (Kwong, Mok
& Wong, 2006; Wong et al., 2005; Mok, Kwong & Wong, 2007) with shorter
makespans. For the SALB problem, Hajri-Gabouj (2003) developed a GA with fuzzy
penalty relaxation to realize flexible assignments in sewing lines with multilevel
objectives. The combinations of FL and NN were used by Koustoumpardis to handle
fabric handling in sewing operation. He combined a hierarchical robot control system
containing a fuzzy decision mechanism with a neuro-controller (Koustoumpardis &

Aspragathos, 2003). His extended work on robotized sewing of two-ply fabrics using
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the same optimization techniques was described in (Koustoumpardis & Aspragathos,
2014). Zacharia (2009) presented the design and tune of the adaptive neuro-fuzzy
inference systems for robot guiding fabrics with curved edges based on visual
servoing and a learning technique that combines FL, NN, and GA. For QC, Yuen
integrated GA and BP NN for knitted garment defects classification (Yuen et al.,
2009a). Lee et al. (2016) proposed the hybridization of fuzzy association rule mining
and variable-length GAs for a better determination of process settings for improving

the garment quality.

1.3 Conclusion

Facing the increasing demand of consumers on the product personalization and
meanwhile the control of product price, the garment mass customization emerges as
the product of the time. The garment mass customization aims to resolve the le
dilemme between personalization and cost, and it brings the possibility of offering
personalized products at an acceptable price. Nevertheless, the implementation of
mass customization in the current production structure is a complex issue but also an
opportunity and a challenge to the apparel industry.

There have been a number of reports regarding garment mass customization, of
which the majority deals with design, while a few concerns manufacturing. In the
long-range garment manufacturing processes, the complicated cutting process plays a
key role in cost control, as fabric usually occupies more than 50% of the total
manufacturing cost. In addition, cutting can be considered as the decoupling point in
the customized garment production, that a garment customization in manufacturing is
essentially realized through patterns variations, directly conducted by the cutting-
related processes (namely, sizing, cutting order planning, and marker making).
Therefore, in this research, we will develop practical mass customization strategies
regarding the three cutting-related processes and apply appropriate optimization
techniques to enhance the efficiency.

The main idea of this dissertation work is shown in Figure 1.12. The work starts
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with developing practical mass customization strategies regarding custom-fit and co-
design. It then addresses the development of a sizing system and a cutting order
planning system (marker making is further studied) for decision making in garment
production. In addition, it contains exploring the implicit relationship between the
personalization (the fit) and the cost (the cutting cost) through the known relations
(Figure 1.13) including the relation between the sizing and the fit, the relation

between the cutting and the cutting cost, and the relation between fit and cost.

Custom-fit
Chap.2 Pattern size
Co-design
additional Pattern material and shape
sizes
v '
fit-oriented sizing cost-oriented cutting order planning (COP)
Chap.3 Chap.4 lay planning <+ MLR
| Chap.5 .~ RBFNN
GA — patterns ~
IP
l y
sizing scenario with optimal cutting order plan with optimal
garment fit cutting cost

e

personalization (fit)/cost (cutting) analysis |

Figure 1.12 Structure of dissertation work.

Customization of garment contains two categories, namely, custom-fit and co-
design. The customization of fit should be conducted in the upstream processes (the
sizing and the cutting) before sewing, whereas the customization of design can be
performed downstream (e.g. postponement strategy). Researchers have attempted
advanced technologies in this regard, such as recommendation systems, the virtual
reality, the 3D body scanning, and CAD automatic patternmaking systems, to realize
the personalized pattern design and the automatic single-ply cutting. So far, the costs
are still high because advanced technologies always work with the support of

expensive equipment. Duray (2002) suggested that mass customization processes that
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more closely matched existing mass processes in the plant led to superior financial
performance. Thus, the efforts should be made to selectively retain the expertise and
methods in cost-effective mass production for mass customization upgrading, like
sizing systems and batch manufacturing. In Chapter 2, we develop mass
customization strategies in the two categories, i.e., co-design and custom-fit, taking
into account efficient industrial practices like sizing systems and batch manufacturing
in the cutting-related processes.

Compared with the design, the fit is an essential issue of garment customization
and gains much concern for it is a fundamental need of users. Limited and outdated
sizes for ready-to-wear garments are usually considered as the primary source of ill-
fitting in mass production. Introducing additional garment sizes is a feasible solution
for fit improvement, which enables to establish a new mass customization sizing
system to solve this problem. In Chapter 3, we build a fit-oriented sizing system with
adding new sizes for the greatest overall fit satisfaction of the target population.

Customization increases the number of material variants in production,
significantly affecting the manufacturing process. Specifically, the increased size
number in mass customization makes for variety in marker. However, to the best of
our knowledge, the cutting order planning is normally accomplished with the
ignorance of marker variations. Nevertheless, especially for small series production
and mass customization, marker variations should be taken into consideration in the
cutting order planning to accurately evaluate the cutting cost. In Chapter 4, we build
a cost-oriented cutting order planning system with marker variations for the most
economical cutting order plan.

Adding more sizes in mass customization leads to an exponential increase of
garment size combinations for markers, which induces a heavy and complex workload
of marker making. In this context, due to the complexity of the problem, the classical
marker making methods using the existing commercialized software are less
performant in terms of efficiency and accuracy. Considering that there exists some
implicit relation between the overall marker length of a given size combination and

that of each contained garment article size, the marker prediction could be simpler and
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faster. In Chapter 5, we build a marker prediction model for the estimation of marker
lengths and afterward the estimation of cutting cost.

The personalization and the cost are essential criteria in mass customization.
There is hardly any simple or direct relation between them. However, both are tightly
related to the manufacturing process, referring primarily to the sizing and the cutting,
which offers the feasibility to build an indirect relation, shown in Figure 1.13. The
direct relation between the sizing and the fit as well as between the cutting and the
cutting cost can be revealed by the establishment of an optimized sizing system and
cutting-order-planning system, and is illustrated, by the aid of the black solid line. In
addition, the sizing and cutting are interconnected due to the patterns. As a result, the
indirect relation can be also built, as indicated by the dotted lines, including the

relationship between fit and cost, i.e., design-to-cost relation.

design-to-cost

i N I
size o I
> ~
custom-fit attern ~ cutting cost
ersonalization S P cost
p ~
S cutting
AN order plan
~ .
~ lay planning

cutting
marker making

Figure 1.13 Relation among personalization, cost, sizing, and cutting.

The proper operation methods should be found for the research orientations as
described above. According to the literature survey, the optimization techniques for
garment manufacturing include exact methods, heuristics, meta-heuristics, and hybrid
methods. The exact methods are always the first choices for finding out an optimal
solution, among which, Integer Programming (IP) tends to be the most widely used.
Apart from exact methods, heuristics (constructive and improvement) are also
employed for searching for a satisfactory solution. Meta-heuristics are applied for
finding a good solution with a less computational effort by searching over a large set

of feasible solutions. In detail, Genetic Algorithm (GA), Fuzzy Logic (FL), and

69

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

Neural Network (NN) are the most frequently mentioned advanced technologies in
the literature. Later, the hybrid methods that combine the aforementioned methods are
favored by many researchers due to the outperformance.

In order to further optimize the garment manufacturing process in the context of
mass customization, we make efforts to seek the proper application of optimization
techniques. Finding the best set of additional garment sizes is a combinatorial
optimization problem, and that the computational load grows exponentially with the
number of additional garment size. In terms of the big solution population in the mass
customization sizing system, in Chapter 3 a GA is used due to the advantage of easy
implementation and quick convergence to a global optimum. IP was proved to be a
suitable tool for solving cutting order planning problems with small-size orders
(Elomri, et al. 1994; Degraeve & Vandebroek, 1998; Degraeve, Gochet & Jans, 2002).
Based on the previous IPs, an extended IP, in which the marker variations are
formulated, is used for working out the cost-oriented cutting order plan in Chapter 4.
The marker prediction problem can be regarded as a regression problem. It is not
dependent on time, and no analytical mathematical model can be available. Multiple
Linear Regression (MLR), Radial Basis Function NN (RBF NN) are applied in the
marker length estimation model in Chapter 5, and their performances are evaluated

and compared.
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Chapter II:
Garment Mass Customization
Strategies for Cutting-related

Processes
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Chapter 2 Garment
Customization Strategies for Cutting-
related Processes

Mass

This chapter aims to propose several new practical strategies based on pattern

variations for upgrading the cutting-related processes (the sizing process and the

cutting process) in the garment mass customization environment (Figure 2.1 Topic of

Chapter 2), in terms of personalization and cost.

Chap.2

mass customization strategies for
cutting-related processes

|

Chap.3

optimization of sizing

|

Chap .4

optimization of cutting order planning

Chap.5

optimization of marker making

Co-deign

Pattern size
size number size capacity
-
i
- Ak
Pattern material Pattern shape

rainbow-ply spreading

stepwise cutting

Figure 2.1 Topic of Chapter 2.

This chapter is organized as follows. In Section 2.1, the strategies of garment

mass customization are presented in two different categories, i.e., custom-fit and co-

design. It is followed by the definition of personalization levels, i.e., custom-fit level

and co-design level, as well as the calculation of cutting-related costs. Section 2.2

presents the implementation of these strategies through a case study of women’s basic

straight skirt, and further illustrates the results and related discussions. Finally,

Section 2.3 gives a conclusion and perspectives for future work.

73

Thése de Yanni Xu, Université de Lille, 2020

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

2.1 Strategies related to cutting in garment mass customization

As pointed out by Jiao, Zhang & Pokharel (2007), the customization increases the
number of variants in production, also decreases the number of items produced per
variant, with significant impacts on the manufacturing process. In the context of mass
customization for garment manufacturing, we propose four strategies for upgrading
the complex cutting-related processes. Two proposed strategies are related to custom-
fit and two others to co-design. The criteria of personalization and cutting costs will
be formalized and then evaluated in order to make further optimization of the cutting-

related processes.

2.1.1 Mass customization strategies based on pattern variations

Four mass customization strategies regarding custom-fit and co-design are
developed. Two of them are related to pattern size, and two others to pattern material
and pattern shape, centered on the -cutting-related processes in the garment
manufacturing. The details about these proposed strategies are discussed in the

following texts.

2.1.1.1 Strategies for custom-fit

Since fit is a fundamental need for users, a satisfactory fit in mass customization
is consequentially of great concern (Hu et al., 2009; Mpampa, Azariadis & Sapidis,
2010). The strategies regarding custom-fit are associated with the pattern sizes, of
which the main idea is to enhance the fit satisfaction of the targeted consumers by
adjusting the sizing system. Consumers’ satisfaction with fit is difficult to reach a
higher level due to the limited and outdated sizes of ready-to-wear garments. To
generate appropriate sizes for the target population in mass customization,
optimization techniques are designed by considering the enhancement of number or

the capacity of size (Gill, 2008).
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2.1.1.1.1 Increment of size number

The proposed strategy for custom-fit can be realized by updating a sizing system
for mass customization containing a larger number of sizes. In this case consumers
can be better served with more choices and the garment fit is improved. Considering
whether to remain the original mass production sizes in the new sizing system, there
are two main strategies: 1) remain original mass production sizes and add additional
sizes; 2) completely abandon the existing sizes and use newly generated sizes. The
former updating approach is the focus of the research displayed in Figure 2.2, in
which a mass customization sizing system is demonstrated with additional sizes (grey

rectangles) and the original mass production sizes (black rectangles).

A

target population

5 I original sizes
EJB additional sizes

[
»

D,

Figure 2.2 Mass customization strategies for custom-fit: Addition of pattern size via
additional sizes.

2.1.1.1.2 Expansion of size capacity

In addition, the size capacity can be also increased as the proposed strategy for
custom-fit can enhance the fit satisfaction by adjusting the pattern size through a
structure processing, for instance, embedding some special structures with high
flexibility, including darts, elastic materials, belts and so forth. As depicted in Figure
2.3, the original mass production sizes (black rectangles) are discarded and replaced
by the expanded sizes (grey rectangles), which enable the sizes to serve a larger

percentage of the target population. However, this strategy can only bring slight and
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limited effects on the expansion of size capacity due to its small change-range and
narrow applicability. Therefore, in practical production, the two strategies of
increment in size number and capacity are recommended to be utilized

simultaneously.

D, a

target population
™ get pop
L B original sizes
E‘i}n expanded sizes
D

P

Figure 2.3 Mass customization strategies for custom-fit: Expansion of pattern size via
expanded sizes.

2.1.1.2 Strategies for co-design

Apart from the increasing demand for garment fit, participation in design,
including garment style, garment detail, fabric type, fabric color etc., called co-design
(collaborative design), is highly desired by consumers in the garment industry
(Teichmann, Scholl-Grissemann & Stokburger-Sauer, 2016). Pattern material and
pattern shape are two points corresponding to the co-design in the manufacturing
stage. Thus, we propose two mass customization strategies in terms of co-design,

regarding pattern material and pattern shape respectively.

2.1.1.2.1 Fabric variation

"Rainbow spreading" is a typical strategy in garment production (Farley, 1988). It
consists of lays with materials in different colors vertically. This strategy can be
extended to endow the same kind of article with greater variability (e.g. color,

composition, or texture). However, we need to be aware that not every garment
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production order needs a great diversity of fabrics, leading to a risk of overproduction.
If we allow multiple fabrics to compose a ply horizontally during the spreading
operation (rainbow ply), the variability can be applied to different articles. To explain
more vividly, Figure 2.4 shows the feasibility of the strategy of combining the
"rainbow spreading" with "rainbow ply". Patterns of the same article are grouped into
one section on the marker, so that a single ply can be composed of different fabric
pieces for cutting out. In this figure, it shows that the shaded area (full lay in mass
production) is bigger than the area with lines which represent fabrics (step lay in mass
customization). Therefore, we can conclude that overproduction can be effectively
suppressed. Meanwhile, the personalized needs of pattern material can be well
satisfied by using this strategy. In the future of mass customization, with the fast
development of computerization and automation in industry, it is highly expectable
that the horizontal strategy "rainbow ply" will be widely promoted, contributing to the

updating towards mass customization.

ﬂ S 2%3 OI%D Dl ------- fabric X ﬂ article A
QQCD O I:l Q fabric Y O article B
<> ﬂ& Ol:l —-—-= fabric Z [ ] articleC

Figure 2.4 Mass customization strategies for co-design: Variation of pattern material
via "rainbow-ply" spreading.

2.1.1.2.2 Module variation
In addition to fabric variation, the personalization in module variation is also

feasible concerning the pattern shape. The variation of the garment module contains a
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slight modification of the main module (bodice) or a type alteration of specific moduli
(e.g. collar, sleeve, pocket, waistband). It can be realized through conducting lean
cutting with second cuts (first cut in terms of the common outline, then the second cut
for cutting out all the variants) or even making extra markers for a wide module
variety. When adopting a stepwise cutting, the key point is to generate the markers for
stepwise cutting with the common outline of the related variants for the first cuts,

shown in Figure 2.5.

g g2
2

original marker marker for stepwise cutting

YAVRY
000
GOED

original pattern intermediates variants cut pieces

Figure 2.5 Mass customization strategies for co-design: Variation of pattern shape via
stepwise cutting.

2.1.2 Definition of personalization level

The personalization level indicates the degree of customization for consumers.
The fit is related to the distance between boy dimensions and the garment dimensions
(Gupta & Zakaria, 2014). The design is related to the depth and width of the
personalization (Tangchaiburana & Techametheekul, 2017). For the two categories of
mass customization strategies that are mentioned above, we use custom-fit level and
co-design level to specifically represent the personalization level, namely, the level of

mass customization.
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2.1.2.1 Custom-fit level

Fit is a complex concept having different definitions reported in the literature,
and the most commonly used evaluation criterion is the aggregate loss (Ashdown,
2007; Gupta & Zakaria, 2014; Zakaria, 2016). The aggregate loss gives an objective
assessment measuring the average distance between the body dimensions of samples
and the dimensions of assigned sizes. However, this criterion may not have a precise
or even proper presentation of fit. It is ascribed that it is very hard to normalize the
effect of each key dimension on fit to consumers, and consumers’ subjective feelings
of fit are not in a simple linear correlation with distance. Therefore, we propose a new
criterion of fit, namely, the custom-fit level, which contains a part of the objective
assessment, measuring the average distance between the body dimensions and the
dimensions of assigned garment sizes, combined with a subjective assessment.

Figure 2.6 demonstrates an example of custom-fit level definition with three
sizes which are presented in different colors. Five custom-fit levels are weighting 0, 2,
5, 8, and 10. D (Dp and Ds) refers to the dimension (the primary dimension and the
secondary dimension) of the size, and IntD (IntDp and IntDs) refers to the interval
value (interval value of the primary dimension and that of the secondary dimension)
(EN 13402-2, 2002). The two-dimensional space of the key dimensions is divided into
sections by sizes differentiated with specific colors. Samples from the target
population whose body dimensions fall into a certain section is assigned with the
corresponding size. For each section, it is further divided into several subsections.
Each subsection is marked with an exact weight, reflecting the objective difference
between body dimensions of the sample and dimensions of the assigned size,
simultaneously altered by consumers’ subjective evaluation, which is related to their
experience and feeling. The section with a weight of 10 is where the size locates, for
any sample whose body dimensions are exactly in the intervals of this size dimensions,
the fit is perfect. For the sample whose one body dimension is larger than the
corresponding dimensions of all the sizes, its weight is 0, which means the sample

cannot be accommodated. If one of the body dimensions is in the interval, and the
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other is just in a distance of the interval, its weight is 8; one of the body dimensions is
in the interval, and the other is far from a distance of the interval, its weight is 5; for
the rest situation, the weight is 2. The weights can be further set differently according
to the consumer’s subjective preference for any dimension. For instance, if they have
a preference for the primary dimension, for the cases that one of the body dimensions
is in the interval, and the other is just in a distance of the interval, its weight can be set
to 8 when the body dimension is in the interval of the primary dimension, and to a
smaller number like 7 when the body dimension is in the interval of the secondary

dimension.

. perfect fit
m good fit

5 moderate fit
2 ill fit

0 unwearable

>

. . D,
. different sizes P

Figure 2.6 An example of custom-fit level definition.

2.1.2.2 Co-design level

Compared to the custom-fit level, there is hardly any literature concerning the
definition of the co-design level. In detail, co-design is associated with the type and
complexity of the requested design. Herein, the definition of the co-design level is
based on the selected co-design points x, and related to the difficulty and cost of the

individual co-design during manufacturing, which can be labeled as complexity
coefficients Cx € [0, 1]. As illustrated in Equation (2.1), the co-design level is

evaluated by the sum value of the complexity coefficients of all the participating co-

design points, as semi-quantitative characterization.

80

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

co — design level = Z Cy X E,

B = {1 if X is selected
X 0 if X is not selected

(2.1)

For instance, for different co-design points, materials (complexity coefficient
Cm=a) and pockets like patch pocket, slant pocket and welt pocket (complexity
coefficient Cpp=p, Cps=y, and Cpw=9), if the consumer selects a certain material and
patch pockets, the co-design level is o+f, or if he selects a certain material and welt

pockets, the co-design level is o+9.

2.1.3 Estimation of cutting-related costs

Personalization levels and costs are tightly correlated, because the variety and
depth of customizable options cause the manufacturing complexity thereby affect the
costs. The majority of the garment manufacturing cost occurs in the garment cutting-
related processes (Degraeve & Vandebroek, 1998; Vilumsone-Nemes, 2018). Costs
relative to the garment cutting process can be divided into two groups, of which one

group is caused by consumptions of materials (i.e., fabrics and markers) while the

other is induced by operations (i.e., spreading, cutting as well as sorting and bundling).

Labor cost and equipment costs are included in the calculation of operation costs, and
it is worth noting that herein the power cost is classified into the equipment costs in
order to simplify variables. The following equations provide each relationship of key
factor(s) and the related cost. Instead of calculating the exact values of each cost,
values of main factors can be used to represent the corresponding costs, in order to

reveal the relative relationship briefly.

2.1.3.1 Fabric cost (Cy):

(2.2)

where Prrepresents the price per unit length of fabric, Ly the used length.

The fabric cost depends on the length of fabrics required for the cutting only.
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2.1.3.2 Marker cost (Cy):
Cm=ZPm><Lm><am
(2.3)
where P, represents the price per unit length of marker, L, the used marker length,
and a,, is the complexity of marker construction.
The marker cost depends on the used marker length and the complexity of

marker making. The automation and paperless technologies will help to obtain the

simplicity and low cost in marker making.

2.1.3.3 Spreading cost (Cs):
Cs= (P + Py) X Ty
Ts = ZLf/VS + N, X T
(2.4)
where P, represents the cost per unit time of operator, Py, the cost per unit time of
spreading machine, 7 the spreading time, V spreading speed, N, ply number, and Ty,
the time for per pause during spreading.

The spreading cost depends on several elements, i.e., the operator, the spreading

machine, plies in the lays.

2.1.3.4 Cutting cost (Ce):
C.=P,+P,,) XT,
To= D Le/Ve+ T
(2.5)
where P., represents the cost per unit time of cutting machine, 7. the cutting time, V.
the cutting speed, L. the cutting length, and 7, the time of pause during cutting.

The cutting cost depends on several elements, i.e., the operator, the cutting

machine, markers of lays, lays.

82
© 2020 Tous droits réservés. lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

2.1.3.5 Sorting and bundling cost (Cyp):
Cop = Py X Sp X Ty X (1 + agp)
a = N,s/S,

(2.6)
where S, represents the production size (total garment number), 7, the time of sorting
and bundling operations spent on each garment article, and 1+ag the degree of
difficulty, where oz means the sorting and bundling complexity, which is determined
by Nps the pattern set number and S),.

The sorting and bundling cost depend on the production size, the sorting and
bundling complexity. In general, it is comparatively much lower than the other
cutting-related costs.

To comprehensively compare these cost changes, an in-depth analysis of the key

factors for each cost is discussed through a case study in the next section.

2.2 Case study

To evaluate the performances (i.e., personalization and cost) of the above mass
customization strategies, we present a case study containing 6 experiments for
production of a women’s basic straight skirt, updated from mass production to mass

customization for a simulated order of 451 consumers.

2.2.1 Design of experiments
The details of the case study including the descriptions of objects, contents, and

constraints are described in this subsection.
2.2.1.1 Study objects
The comparison of mass production and mass customization is carried out in the

case study with a basic straight skirt for a target population of 451 consumers.

2.2.1.1.1 Product
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Normally, women’s skirts have relatively limited and simple patterns with fewer
variants than other types of lower body garments, e.g. pants, certainly as well as the
upper body garments. More specifically, the basic straight skirt is commonly used on
official occasions, conventionally with the need of large output and further
customization. Therefore, the basic straight skirt can be a typical and concise
example. Herein, a women’s basic straight skirt, which represents a commonly used
clinging garment is selected in our study, whose sketch is shown in Figure 2.7. The

corresponding primary and secondary dimensions are hip girth and waist girth.

I\ =i 1. f :
. - =
walst TTTTTTTTT e o - |
line : | a ]
c ¥ low-waist
abdomen ~========= — === = D--

line zipper < \V WL/ . .

e 'L/HL i W

A . -
R / i WB ]
line
B F | skirt
[ length
knee ==------- H=H"x
w=wy
ne I3 skirt length versus D -- HL/SL
h

Figure 2.7 Prototype of a women’s basic straight skirt.

2.2.1.1.2 Anthropometry data
A set of real body-dimension data measured from the target population of 451
French women, between the ages of 25 and 40, has been collected by using 3D

scanning and prepared as data sources in the experiments.

2.2.1.2 Contents
We designed experiments for both mass production and mass customization with

the previously proposed four strategies in order to evaluate the performances and to
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make comparisons as well. One of these experiments is conducted in the production
mode of mass production, five other experiments demonstrate the corresponding
production upgrade strategies towards mass customization, shown in Figure 2.8.

First, the experiment MP for mass production is conducted with an existing size
chart of this skirt type from a garment company in the real market on s.Oliver website
(https://www.soliver.eu/sizetables/size-table-women-

GENERAL SIZETABLE WOMEN.html). Afterward, the other five experiments are
made for each evolutionary process of mass customization, of which two for custom-

fit and three for co-design. The related progressive relationship can be observed in

Figure 2.8.
experiment of mass production m
= === experiments of mass customization ----m-----------------------------------;
1
1
1
: Fq |
1
1 .
| general fit improvement :
1
1
| custom-fit !
i Fg, Fr . |
1
! Fr |
1
: local fit improvement (based on Fg) :
1
1 / \ :
! 1
! 1
! 1
1
. 1
| co-design Dec Dsr Dy, i
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: Dgc, Dpr, Dgp design of fabric color (based on Fy) design of pocket type (based on Fy) design of skirt length (based on Fy) :
1
1

Figure 2.8 Flowchart of experiment implementation with mass customization
strategies.

For custom-fit, the first mass customization experiment is defined as MC(Fg),
and we generate a set of additional sizes by using a translation of the existing sizes,
shown in Figure 2.10, with size number doubled from the existing mass production
sizes. Compared with creating a novel set of sizes for mass customization, the strategy
has the advantage of simplicity, reflected in a slight change in pattern development
and product manufacturing. In addition, it exhibits the benefit of sustainability,

namely, an increase of pattern utilization (dart variations are based on existing
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patterns, no new patterns are created), and flexibility in the switch between mass
production and mass customization. The second experiment for custom-fit is an
optimization of the experiment MC(Fg) by dart modification for mass customization,
defined as MC(FL). We apply darts with three sizes, namely, small, medium and large,
to expand the capacity of the existing sizes, as illustrated in Figure 2.11.

As for the co-design part, customizations are conducted on the pattern material or
the pattern shape. Pattern shape variation contains variations of the main module, i.e.,
the front and back patterns, and of specific small moduli, e.g. the waistband, the
pocket, and the vent. In the study, three detailed experiments are designed, with the
variations of fabric color, pocket type, and skirt length evolved from the experiment
MC(FL) and defined as MC(Dkc), MC(Dpt), and MC(DsL) respectively.

In addition, all the details related to the experiments are summarized in Table 2.1.

Table 2.1 Details of experiments applied with mass customization strategies

Experiment Description Strategy
prolzlljz'fion MP no customization use existing size chart from a real market

generate additional size, retaining sizes in
experiment MP
apply multi-sized darts to sizes in

MC(Fg) general fit improvement

MC(FL) local fit improvement

experiment MC(Fg)
mass . . allow multi-fabric spreading with sizes in
customization MC(Drc)  design of fabric color experiment MC(Fr)

distribute pocket patterns in markers with
sizes in experiment MC(Fr)
use superimposed pattern outline for maker
making with sizes in experiment MC(FL)

MC(Dpr)  design of pocket type

MC(Dst)  design of skirt length

To further conduct the experiments, we simulate one order of customized
products for 451 people of the database. In the custom-fit experiments, we assign the
most suitable size in the defined sizing chart according to the body dimensions of
each consumer. In the co-design experiments, an equal division of design options is
set. As shown in Figure 2.9, random distributions of single-point co-design selection
in experiments MC(Drc), MC(Dpr), and MC(DsL) are made for the 451 samples. In
this case, the assignment of samples to each co-design element is mostly uniform. In

detail, for fabric, there are 3 fabric types, i.e. FB0O0O1, FB002, and FB003, 34% of the
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consumers for FB001, 31% for FB002, and 35% for FB003; for pocket type, 37%,
32%, and 31% of the consumers for patch pocket, slash pocket, and without pocket
respectively. For skirt length, the percentages of the three skirt lengths are almost

identical approaching 33%.

MC(Dge) MC(Dypy) MC(Dyg;)
FB003 FB0O1 slash without long short
35% 34% 329 31% 34% 33%
FB002 patch normal
31% 37% 33%

Figure 2.9 Random distributions of co-design selection in MC(Drc), MC(Dpt) and
MC(Ds).

2.2.1.3 Constraints
The production constraints which have been considered in this case study are

listed below.

a) To realize the concept of “manufacturing on demand”, customized products
are produced for individuals in mass customization, and excess products are valueless.
To keep the constraint consistent, no excess production is considered in experiments,
neither for the experiment MP.

b) In order to produce the exact quantities on demand, lay plans are made with
step lays, where the layout of the articles on one marker is sequenced in ascending or
descending order of ply number.

¢) The cutting scope is set as follows:

Determined by specific cutting equipment in the industrial production, the
maximum length of fabric is 3 m, and the maximum height of lay is 30 mm. The
fabric thickness is set as 1 mm. Assuming that each layer of ply is tightly stacked, so

the maximum ply number is set to be 30. Considering the maximum length of fabric
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(3m), the maximal marker length with 3 articles is nearly this value. Thus, the
maximum article number on each marker is set to be 3.

d) In industrial practice, allocating mixed combinations of small sizes and large
sizes in the same lays is given high priority for a balance of multi-size distribution to
markers, which would contribute to the marker efficiency and finally benefit the
reduction of fabric cost (Vilumsone-Nemes, 2018). Herein, the size matching strategy

is adopted.

2.2.2 Implementation of the experiments

The mass customization strategies, i.e., generating additional sizes, embedding
various sizes of darts, spreading rainbow plies and operating second cuts are applied
in the experiments MC(Fg), MC(FL), MC(Drc), MC(Dpr) and MC(Dsr) for
production of a women’s basic straight skirt to cater for consumers’ personalized

demands.

2.2.2.1 General fit improvement (MC(Fg)

As illustrated in Figure 2.8, it is serial of experiments in which the latter is
updated from the former, herein the experiment MC(Fg) 1s based on the experiment
MP and will be useful to generate the experiment MC(FL). Therefore, in the
experiment about size number increment MC(Fg), the new sizes are designed with
enough interval to the original sizes instead of being bound, for the flexibility of dart
variation of the following experiments. Afterward, in the experiment about the
expansion of size capacity MC(Fr), multi-sized darts will fill up the reserved interval
to make them interconnected.

The first step of fit customization is to generate a set of additional sizes through a
translation of the existing mass production sizes in the mass customization experiment
MC(Fg), as shown in Figure 2.10. For the existing mass production sizes, the
minimum interval of the secondary dimension (Ds) is defined as Min (INT).
According to the relative positions of the regression curve line (blue line) and original

sizes (grey rectangles), additional sizes are determined by an upwards translation of
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original mass production sizes with the distance of 3 times of Min (INT), leaving the
blank areas of 2Min(INT) for the dart setting of the next experiment. For instance, by
translating the original medium size M (its primary dimension and secondary
dimension are set to (MDp, MDy)), the corresponding additional size is generated as

M* (MDj, 3*Min(INT)+MDj).

130 === :
125 ) 3*Min (INT)
\

135 .

120 \ SEST
\ : / R
115 '._\ : ./
110 = ESSE
i ‘. - 13 ..'_ - e o\ // ==
\ et '%w/ % Tt
100 SERRAE N | dlation |
Ve e s translation |
95 \ : £

waist girth (cm)
o
N

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
hip girth (cm)

- sample Woriginal size W additional size

Figure 2.10 Size distribution in the mass customization by adding sizes (MC(Fg)).

From the area enclosed by a solid gray line to the area enclosed by a red dotted
line, it is indicated that a larger portion of the target population is accommodated after
the application of additional sizes (red rectangles). By adding size numbers to engulf
more points (samples), we can conclude that the coverage range can be expanded and

a global garment fit can be significantly improved.

2.2.2.2  Local fit improvement (MC(F1))

Waist girth is the dimension that can be adjusted by darts (Figure 2.7). After
realizing a general optimized coverage (a larger portion of the target population is
accommodated in the previous experiment MC(Fg)) of the consumer body dimensions,

the second step of fit customization is to extend the interval of waist girth via darts in
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multiple sizes in the experiment MC(FL). We set the darts with the consideration of
the shape stabilization of the garment and the maximal coverage range at the same
time. Firstly, dart sizes should be appropriate and not produce a disturbing effect on
the garment shape; secondly, we take full advantage of multi-sized dart in order to
bring a maximal coverage range. Therefore, based on the experiment MC(Fg) shown
in Figure 2.11, since the skirt has four darts, in this case, Min (ITV)/4 is set as the
value of the interval of the dart. We set the new dart sizes as follows:
Dgizet+= Dgize + Min(ITV) /4
Dyize—= Dsize — Min(ITV) /4
(2.7)

Where Dsize refers to the original dart size, Dyi..+ refers to the large dart size, and
Diyize- refers to the small dart size.

To visualize the upgrading of the system via the second experiment concerning
the custom-fit, Figure 2.11 exhibits the size distribution of mass customization by
multi-sized darts (MC(Fr)). In total, there are three dart sizes: small, medium
(original), and large dart. Due to the dart size which is set in this specific case, the
small dart is not a real dart but just a decorative thread. From the figure, it can be
concluded that the application of multi-sized darts combined with the increment of
size numbers results in further enhancement of the accommodation rate, and

intuitively the higher proportion of the population with a perfect fit.
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Figure 2.11 Size distribution of mass customization by multi-sized darts (MC(FL)).

2.2.2.3 Design of fabric color (MC(Drc))

To provide a customization of pattern material for the skirt, multi-fabric
spreading is applied to support the fabric variation with rainbow plies. The principle
of this strategy is trying to keep the same fabric in a ply, and otherwise permit

rainbow plies containing multiple fabrics, which can be consulted in Figure 2.4.

Table 2.2 One spread contained in the cutting order planning result of MC(Dkc)

. Size

Ply Fabric XXS* XXXL XXL*
1-2 FBO001 2 2 2
3-4 FB002 2 2 2
5 FB003 1 1 1
6-9 FBO0O1 i 4 4
10 - 12 FB002 i 3 3
13-14 FB002 i 2 0
13-14 FBOO1 i 0 2
15-18 FB003 i 4 4
19-20 FBOO1 i i 2
21-25 FB003 i i 5
Ply number 5 18 25
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Displayed in Table 2.2 is one of the spreads within the cutting order planning
result of the experiment MC(Drc), where the fabrics are named FB001, FB002, and
FBO003. It is noticed that the Ply 13 and 14 contain 2 different types of fabrics FB0O1
and FB002, which are different from other plies. The arrangement can be realized by

the “rainbow ply” strategy.

2.2.2.4 Design of pocket type (MC(Dpr))

For the straight skirt used in this study, the main moduli are comprised of the
front pattern and the back pattern, while specific moduli include the waistband, the
pocket, the vent, and so forth. Experiments that regard co-designs of a main module
(MC(DsL)) and a specific module (MC(Dpr)) are carried out through the variation of
skirt length and pocket type respectively in the following texts.

For the co-design of pocket type (MC(Dpr)), attempts are made to occupy the
spare room of lays with the small patterns of pockets first for a maximal cost-saving.
Considering the material shade problem, the bundling problem, separate marker is
seldom made for small pattern pieces, such as, collars, pockets, or cuffs (Vilumsone-
Nemes, 2018). The advanced fabric dying technology (Yang & Huda, 2003, Yang &
Naarani, 2004) improves the color consistency along the fabric so that patterns of the
same article can be placed separately. With the development of item tracking
technology (Preradovic et al., 2009, Ngai et al., 2012), small patterns can be well
arranged during their transportation process. It can be inferred that it will no longer be
a limiting condition for the garment production with a series of development. So far,
there are few works of literature demonstrate the efficiency of marker making if a
separate marker is permitted. Therefore, the following discussion is based on this
assumption.

The main strategy is to make the groupage of the small patterns to form the close
arrangement. It is worth noting that pattern set sequences should be considered based
on pocket types for second cuts of the front pattern. Arrangement of the appropriate
locations of pocket patterns on existing markers (areas which are highlighted with

dotted lines in Figure 2.12 is a challenging job. If no sufficient place is left in the
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existing lays for the groupage of patterns, an extra marker should be adapted for the

rest patterns.

Figure 2.12 Different layouts of pocket patterns on an existing marker for MC(Dpr).

2.2.2.5 Design of skirt length (MC(Dst))

For the co-design of skirt length, the purpose of the cutting order planning is to
figure out the differentiated edge of various patterns for second cuts that are used in
marker making, instantiated in Figure 2.5. As shown in Figure 2.13, a marker is made
with a superimposed outline of patterns that are adapted for three different skirt
lengths. For instance, the areas marked by a dotted line, a grey shadow, and a solid
line represent patterns of the same size 3XL* with skirt lengths of 50 cm, 60 cm, and
65 cm, respectively. Similarly, pattern sequences based on skirt lengths are

determined for more facile operations of second cuts.
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Figure 2.13 Marker with a superimposed outline of patterns for MC(DsL).

2.2.3 Results and discussion
Based on the mass customization strategies presented in the experimental part, we
discuss below the corresponding results regarding personalization levels and cutting-

related costs.

2.2.3.1 Results on personalization level
The distributions of custom-fit levels and co-design levels of the experiments are

displayed in the following texts in order to evaluate their performances.

2.2.3.1.1 Results of custom-fit

The distributions of custom-fit levels in the three experiments MP, MC(Fg), and
MC(FL) are displayed in Figure 2.14. It is shown in Figure 2.14 (a), and both of the
experiments MC(Fg) and MC(Fr) have a good performance for improvement of
garment fit. As a result, the proportion of low custom-fit levels (i.e., unwearable and

moderate) is gradually reduced and almost eliminated, and higher custom-fit levels
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gradually dominate. In detail, the unwearable rate is evolved from 26% to 15% in the
experiment MC(Fg) and from 15% to 10% in the experiment MC(FL). In addition, the
moderate rate is changed from 25% to 4% in the experiment MC(Fg) and from 4% to
1% in the experiment MC(FL). Obviously, additional sizes in the experiment MC(Fg)
mainly provide a good fit, multi-sized darts in the experiment MC(Fr) enhances the
sizing system with a better custom-fit from good to perfect (Figure 2.14 (a)).

To be more specific, it can be observed in Figure 2.14 (b) that a significant
increase from 48% to 81% is achieved in the experiment MC(Fg), and subsequently a
further optimization is obtained via multi-sized darts in the experiment MC(FL)
towards 89%. The global fit improvement experiment MC(Fg) plays the role of
dramatically decreasing the rate of low custom-fit levels, and the local fit
improvement experiment MC(FL) offers a further optimization to make sure that the
target population has a dominant fraction in a perfect fit (83%). In summary, an
integration of additional sizes and multi-sized darts efficiently contribute to a global

and high custom-fit level.

ver) S
26% 25% Mer) (IS <
150
fo% MP 189
0%0%0% o105 e EEE
-

unwearable ill fit moderate perfect 20%  40%  60%  80%  100%
MP ®sMC(Fg) mMC {FL) mgood mperfect
(a) (b)

Figure 2.14 Custom-fit level distributions in experiments MP, MC(Fg), and MC(FL).

2.2.3.1.2 Results of co-design

The following experiments are concerned about the co-design part, based on the
completion of the aforementioned custom-fit experiments. Compared with the serial
design of the two experiments of custom-fit, the co-design experiments are conducted

in parallel. One co-design point is selected among the following three elements, i.e.,
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fabric color, pocket type, and skirt length. The difficulties in realizing these designs in
manufacturing are hard to be precisely normalized. Thus, the corresponding co-design
levels of each co-design point for the whole population are assumed as the same in

this study, not avoiding making the semi-quantitative comparison.

2.2.3.2 Results on cutting-related cost

The five cutting-related costs (regarding fabric, marker, operations of cutting,
spreading, as well as sorting and bundling) are not directly calculated but represented
by corresponding main factors. Based on Section 2.1.3, it can be concluded that the
key factors have a strong positive correlation with the cutting-related costs. Therefore,
the fabric length stands for the fabric cost (Cr), marker length for marker cost (Cn),
spreading length and ply number for spreading operation cost (Cs), cutting length for

cutting operation cost (Ce), degree of difficulty for sorting and bundling cost (Csb).

| material || operation
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%ﬂ 100 = o ey g = e e e e e e gy e e e e e e e e e e e e -
g =0
2
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0
fabric length marker length spreading number of plies cutting length  degree of difficulty
length/fabric length
Fabric Marker Spreading Cutting Sorting & bundling

MC(E¢) #MC(Fy) 8MC(Dsc) ®MC(Dy;) WMC(Dg;)

Figure 2.15 Cutting-related costs in different experiments.

Figure 2.15 shows the cutting-related costs in experiments under different mass
customization circumstances where the costs in the experiment MP are set 100% for
comparison. The material-related costs are composed of fabric cost and marker cost.
There is almost no change in the fabric length, indicating that the fabric cost is not

altered significantly. Compared with the fabric cost, the marker cost is significantly
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impacted due to the incorporation of the mass customization. The increase is mainly
reflected in the lift in the marker length approaching over 120%. In addition, it is
indicated that if the material cost is relatively stable once the first experiment of mass
customization upgrade is carried out.

The operation-related costs include three parts, i.e., spreading cost, cutting cost,
and sorting & bundling cost. The spreading cost is determined by the fabric length as
well as the number of plies. There is almost no change in fabric length, while the
number of plies is increased to some extent over 110%, mainly due to the application
of “rainbow plies”, leading to more time in the spreading pause. As a result, the
benefit of the fabric variability will bring about a slight increase in the spreading cost.
Similar to the material cost, the spreading cost retains the same standard once the first
mass customization experiment is conducted. However, the cost of cutting and cost of
sorting & bundling exhibit the different trends, of which the related cost is gradually
enhanced. In detail, the two main steps, custom-fit and co-design have a distinct
influence upon the related cost. As for the cutting-related process, the custom-fit
experiment and co-design of fabric color have the same influence, and afterward, the
co-design of pocket type and skirt length will bring more difficulty in the cutting-
related processes, of which the cost is over 160%. As for the sorting & bundling cost,
the custom-fit experiment has no significant impact on the degree of difficulty, while
the co-design has a visible influence which elevates the related cost. Generally
speaking, the spreading cost mainly originates from the material usage, while the
other two operation costs dominantly rely on the complexity of the garment, which

corresponds with the mass customization updating.

2.2.3.3 Relationship between personalization levels and costs

Based on Figure 2.15, the cost growth ratio (cost growth of each step divided by
the cost of the previous step) in each step is summarized in Table 2.3. In order to
clarify the important parameters determining the total cost, the growth ratio which is
over 5% is listed in the flowchart of the upgrading process in Figure 2.16. In this

section, the relationship between the personalization levels (regrading custom-fit and
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co-design) and the costs (regarding fabric, marker, spreading, cutting, and sorting and

bundling) will be discussed.

Table 2.3 Comparison between production modes by costs

Cost Corresponding Growth ratio (%)
factor Fc-MP  Fi-Fc  Drc-Fr Dpr-Fu Dsi- Fo
Fabric fabric length a 0 -1 2 1 3
Marker marker length b 29 -2 0 2 2
. spreading length c 0 -1 2 1 3
Spreading .
number of plies d 13 4 0 0
Cutting cutting length e 33 1 22 22
Sorting & bundling degree of difficulty f 2 7 19 19 19
&
e
\0\}(\6\‘ Drc
%0{0‘\
o
33% cutting (¢)
29% marker (b) 22% cutting (e)
13% spreading (d) 7% sorting & bundling (f) 19% sorting & bundling (f)

(e ] ——— [R]

[ s |

Figure 2.16 Flowchart of upgrading experiments with cost growth ratios.

As summarized in Figure 2.16, the cost growth ratios vary in upgrading
experiments. In the aspect of custom-fit, additional sizes in the experiment MC(Fg)
expand the coverage range and improve the global garment fit. Due to the doubling of
size numbers, the cost increment lies in operation cost in cutting (33%) followed by
spreading cost (13%), as well as material cost in marker (29%). In the following

experiments, most of the cost growth occurred in the operation part instead of the
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material part. In the experiment MC(FL), the multi-sized darts contribute to the
outstanding local improvement. Using multi-sized darts in the experiment MC(FL) is
more powerful in local improvement of custom-fit level, reflected in a transition of
custom-fit level from good to perfect. As for the cost in this experiment compared
with the experiment MC(Fg), the cost is not altered significantly and the extra cost
mainly exists in the sorting & bundling part with 7%. It proves that the two strategies
concerning the custom-fit improvement will cause varied cost growth in different
parts and extent. Briefly speaking, the strategy in the experiment MC(Fg)
significantly ameliorate the custom-fit level of garments, but simultaneously bring
about the issue of cost growth in material and operation. In contrast, the strategy in
the experiment MC(FL) provides a further improvement in custom-fit level without
significant cost growth. Additional sizes with a support of multi-sized darts lead to a
better performance for the balance of fit and cost.

In the aspect of co-design, all the co-design experiments cause a 19% cost growth
in sorting & bundling. It can be ascribed to the increment of the complexity
accompanied by the increase of the co-design level. In addition, for the experiments
MC(Drt) and MC(DsL), there is a 22% of cost growth in the cutting operation. It
originates from the second cuts for the complex objects. Furthermore, some extra
markers in the experiment MC(Der) are also needed for holding the pocket patterns,
which also raises the cost of the cutting operation. Compared with the two
experiments, the experiment MC(Drc) concerning the fabric color does not have an
obvious effect on the cutting operation cost. Similarly, the increment of the co-design
level also brings about some extent of cost growth mainly reflected in the operation
part. Different strategies for the co-design improvement have different impacts on
cost as well.

In summary, an increase of personalization (custom-fit and co-design) level can
be achieved by a well-arranged multi-fabric spreading at a reasonable extra cost, of
which each item is less than 33%. Based on the inference, the garment company can
make a better decision to choose the targeted upgrading route, in order to control the

cost to meet the demanded levels of custom-fit and co-design. The cost growths in
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mass customization experiments dominantly lie in the operation part. However, with
the development of automation, the proportion of the operation cost to the material
cost will be gradually decreased in the future, which is beneficial for the cost control
of the mass customization.

It gives strong evidence that in the garment manufacturing domain, mass
customization is a very promising tool for garment manufacturers to balance the
contradiction between personalization and cost to stand in the fierce market

competition facing the consumers’ increasing demand for customized products.

2.3 Conclusion

In this chapter, we demonstrate practical mass customization strategies in terms
of custom-fit and co-design for cutting-related processes (the sizing process and
cutting process). A case study of women’s basic straight skirt has been selected for
validation in terms of personalization and cost using the proposed criteria. The results
show that the proposed strategies can effectively help to make a tradeoff between
personalization and cost.

The two custom-fit strategies, i.e., an increment of size number by generating
additional sizes and an expansion of size capacity by setting multi-sized darts, have
shown a good performance with controllable extra costs. The additional sizes and
multi-sized darts improve the custom-fit level globally and locally, respectively. The
related cost growth differs between the two strategies, which is feasible to be
simultaneously utilized.

The two co-design strategies, pattern material (fabric) variation using “rainbow
plies” has no obvious increase in the cutting-related costs, while pattern shape
(including pocket type and skirt length) variation using second cuts or even extra
markers brings about further lift. It is interesting that the cost growth does not lie in
the fabric cost, but the marker and operation-related costs. It is expectable that with
the aid of highly automated devices and intelligent computing technologies, the mass

customization strategies especially the co-design part can take full economic
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advantages in the future.

This is a pioneering study of developing garment mass customization strategies
particularly concerning the manufacturing process. The customization levels are
demonstrated and the sources of the extra costs are calculated in detailed items. It
helps enterprises to conduct the precise customization expectation and cost control,
and finally make proper production strategy to accomplish the upgrading task of
garment mass customization.

For a better application of the proposed strategies in practical production, it is
necessary to make the formulation and optimization of each specific cutting-related
process (e.g. sizing, cutting order planning, and marker making). Since the fit is a
fundamental need of users, and considering the good performance in the global fit
improvement and an acceptable extra cost, we will continue to introduce additional
sizes (increment of size number) in the next Chapters 3 to 5. However, the
generation of new sizes will be achieved via a genetic algorithm, rather than a simple
upwards translation of original mass production sizes in this chapter, in order to
achieve a higher generality and flexibility. In addition, a mathematical modeling of
the relationship between personalization and cost will be carried out. It is fundamental
for developing the pricing strategy for mass customization to help the company to

gain an advantage in the fierce market competition.
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Chapter III:
Optimization of Garment Sizing in

the Context of Mass Customization

103
© 2020 Tous droits réservés. lilliad.univ-lille.fr



Thése de Yanni Xu, Université de Lille, 2020

104
© 2020 Tous droits réservés. lilliad.univ-lille.fr



Thése de Yanni Xu, Université de Lille, 2020

Chapter 3 Optimization of Garment
Sizing in the Context of Mass
Customization

The previous chapter proposes four practical mass customization strategies for
the cutting-related processes and evaluates the personalization and economic
performances. Since the garment fit is the basic need for consumers, and In Chapter 2,
we already validated that the introduction of additional sizes can bring a global
improvement of garment fit for the target population with a controllable extra cutting
cost. In this chapter, we present a fit-oriented garment sizing system for garment mass
customization (Figure 3.1 Topic of Chapter 3), which adopts a Genetic Algorithm
(GA) to optimize the generation of additional sizes. The system is validated with a
good performance of personalization (fit) through a case study of women’s basic
straight skirt as well. As shown in Figure 1.12, the optimization of the sizing process
is discussed in detail in this chapter. In Chapter 4 and Chapter 5, the optimization of
the other two cutting-related processes, i.e., cutting order planning and marker making

will be discussed.

Chap.2
o . mass production . .
mass customization strategies for P enumeration algorithm
cutting-related processes g |
| accommodation rates |
Chap.3 optimal sizing scenario of ‘ -
mass production __—
s . s e \. J
optimization of sizing
mass customization ‘ v
sizing genetic algorithm (GA)
Chap.4 |
L . . chensive fit (CF
optimization of cutting order planning ‘ compre cnzm it (CF) ‘
N
l optimal sizing scenario of —=—--
mass customization _==-
Chap.5

optimization of marker making

Figure 3.1 Topic of Chapter 3.
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This chapter is presented as follows. In Section 3.1, we first introduce the concept
and structure of the GA-based fit-oriented sizing system with additional sizes by
adaptation from a traditional mass production sizing system. In section 3.2, a case
study of a basic straight skirt is given to validate the effectiveness of the proposed

system. Finally, we give some concluding remarks and overall insight in section 3.3.

3.1 Fit-oriented sizing system for garment mass customization

As mentioned earlier, to develop a cost-efficient mass customization strategy, it is
recommended to adopt a classical mass production process (Duray, 2002).
Accordingly, the proposed fit-oriented sizing system for mass customization,
illustrated in Figure 3.2, is established by developing a series of additional sizes based
on a mass production sizing system with standard sizes. The upper portion of this
figure shows the flowchart of establishing a garment sizing system in mass production
(Gupta & Zakaria, 2014), and the lower portion gives the adaptation procedure to
generate mass customization sizes, in which the classical mass production sizes are

also retained.
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Figure 3.2 Flowchart of the proposed fit-oriented sizing system.
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The inputs of this sizing system are taken from the following main sources, i.e.,
the target population, the garment, the company, as well as the sizing standard as
references. Initially, the key body (control) dimensions and the corresponding
intersize intervals are determined (size step is the increment between adjacent sizes).
For any fixed size roll, a size range achieving the highest accommodation rate is
determined. That is, for the total number of garment sizes, the system determines the
largest set of values along the key dimension to be covered in the size chart to
maximize the portion of the population provided for by the sizing system. Generally,
there would be more than one solution. Therefore, an aggregate loss (i.e., the
quadratic average of log differences between the body dimensions of consumers and
the assigned garment size dimensions) is used as a criterion for evaluating these size
ranges, and the solution with the lowest aggregate loss is adopted. Finally, after
designation (i.e., the set of descriptions or names of garment sizes), the optimal size
scenario for this size roll can be determined. In the same way, the output provides the
optimal mass production size scenarios for all defined size rolls. On the basis of the
produced classical sizes from the mass production sizing system, the proposed mass
customization sizing system permits improving the garment fit by applying additional
sizes. At this stage, the key issue is the selection of the most relevant additional sizes.
Adding one size in the sizing system will certainly give rise to additional costs in the
garment manufacturing, especially in the cutting process. Therefore, it is crucial that
each added size provides the highest profit in terms of fit. In this system, the
optimization of adding sizes is performed using a Genetic Algorithm (GA), where the
Comprehensive Fit (CF) is taken as the fitness function. The set of additional sizes
that has the highest CF is selected for the next step (size designation). At this point,
the optimal mass customization size scenario is generated.

Section 3.1.1 and Section 3.1.2 present the steps and algorithms adopted for
standardizing garment sizing (considering the portion of the mass production sizing

system and the portion of the mass customization sizing system respectively).

3.1.1 Sizing system development
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In this section, we give the procedures of building a mass production sizing
system as well as building a mass customization sizing system which is based on the

former procedure.

3.1.1.1 Sizing system development for mass production
A mass production sizing procedure can be realized by performing the following

steps.

® Key dimension (D) identification

Two key body dimensions are selected, considering a specific target population,
characterized by its region, age and gender, and a required garment, represented by its
type, style, and model. These key dimensions are denoted as the primary dimension
(Dp) and the secondary dimension (Ds). Height (H), chest/bust girth (CG/BG), waist
girth (WG), and hip girth (HG) are the commonly used key body dimensions in
garment sizing standards (EN 13402-2, 2002; International Organization for
Standardization, 1991).

® Intersize interval (/ntD) determination

The distance between two neighboring size values is called intersize interval and
is used in the determination of the size range (Figure 3.3). Based on experience and
the concept of “interval of indifference” (Koblyakova, 1980), for each key dimension,
we can first get the value range of its intersize interval, usually composed of a set of
specific integer numbers (Gill, 2008).

Then, the interval values (IntD;, i=s or p) are evaluated with a linear regression
(O'brien & Shelton, 1941) of the two key dimensions (Ds=a+D,*p) by this equation,

namely,

Vs = min (5= [ 22/ [ 0,
3.1)

when Vi, reaches its minimum, the proportion of the key dimensions is the closest to
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the slope S, which indicates that the vast majority of the target population is

accommodated by the sizing system.

« population
I original MP size
R=IntD*S

optimal size range

¢ initial size range

Ry=IntDp*S D,

Figure 3.3 Sketch of size range determination.

e Size roll (S) determination

A suitable number of sizes, namely, size roll, is responsible for a good
compromise between the company and consumer in terms of personalization and cost
(Zakaria, 2016). More precisely, the size roll in mass production should be neither too
small nor too large in order to control the production and the distribution costs,

meanwhile enhancing the satisfaction of shopping experience.

e Size range (R) determination

The range Ri=[minR;, maxR;] (i=s or p), covers all feasible values of the key
dimension. As shown in Figure 3.3, a standard size range linearly varies from very
small to very large (Ibanez et al., 2012), and is determined when the maximum
portion of the target population is accommodated by a fixed size roll S and the

intersize interval IntD;, namely,
maxR; — minR; = flntDi XS
(3.2)

e (Coverage range/accommodation rate calculation

The coverage range refers to the number of samples whose measurements are
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within the size range. Similarly, the accommodation rate refers to these samples in the
percentage of the whole population, and the value is typically between 65% and 85%
(Gill, 2008).

e Aggregate loss calculation

As the general criterion evaluating sizing systems (Gupta & Gangadhar, 2004),
the aggregate loss represents the averaged distance between the body dimensions of
the instances D; and the dimensions of the assigned garment sizes, 4;. The following

equation explains how to calculate this average Euclidian distance (d),

a=[>w-ay

(3.3)

Gupta & Zakaria (2014) defines the ideal aggregate loss (i.e., the benchmark for
an accurate size) as follows, v2 = 2.54 = 3.58 cm. A smaller aggregate loss means a
shorter distance between the body and the assigned garment size, in which case the
garment is expected to have a better fit, and therefore the performance of the sizing

system can be validated.

® Size designation

This is the final step in the sizing system development procedure, aiming to
transmit the size information expressed by codes that provide the best selection of the
garment fit to the consumers. Arabic numerals or alphabet are common codes used in
the size designation. The corresponding codes and the body dimensions are defined
for each garment size in order to compose a size chart (EN 13402-3, 2003;
International Organization for Standardization, 1977).

According to the size range and the interval, the garment size dimensions (A4p, As)

are defined as follows,
(4, 45) = (mian + (2Ng — 1) x f D,/2,minRs + (2Ng — 1) X f D /2)

(3.4)

where N refers to the sequence number of sizes in the size roll.
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The median size (e.g. M) is set in accordance with the median instance of the
population, when the Euclidian distances of garment size dimensions 4; to the median

values of body dimensions Di(medium) of the target population is minimized, namely,

EDmin = minz [(mian- + (2Ng — 1) % f Di/2> — DL-(medium)]2

(3.5)

3.1.1.2 Sizing system development for mass customization
A newly proposed mass customization sizing system is realized with a series of
additional sizes generated on the basis of the classical mass production sizes by

performing the following steps,

® Size roll determination

In order to provide an appropriate customization and meanwhile limit the rise of
complexity mainly in the manufacturing and the pattern-developing process as well,
we consider that the maximal number of additional sizes in mass customization equals
the size roll in mass production. Thus, in our case study, the size rolls vary from 7 (in
the mass production environment) to 14 (in the mass customization environment with

7 additional sizes) respectively in the two sizing systems.

® Additional size generation

With consideration of the feasibility and the efficiency in the pattern developing
and the garment manufacturing process, the additional sizes are set by remaining the
primary dimension the same and only varying the secondary dimension of the
corresponding mass production sizes. Concretely, the additional sizes are created
through a translation of classical mass production sizes along the secondary
dimension (Figure 3.4 (a)). The mass customization strategy of setting additional sizes
enables the size system to obtain various value combinations of key dimensions in
order to permit the variety of figure types in the target population, namely, the
variation of ratios between key body dimensions (Fan, Yu & Hunter, 2004). In

contrast, a mass production sizing system based on proportional sizing cannot reflect
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the variety of body shapes within a single garment size in a target market (Ashdown

etal.,2001).

10 perfect fit

population
I original sizes

I additional sizes

ill fit

v

p B different sizes P
(a) (b)
Figure 3.4 (a) Sketch of additional-size generation; (b) Example of fit definition.

® Comprehensive fit (CF) calculation

The comprehensive garment fit is the criterion that is used for the optimization
and the evaluation of the mass customization sizing system in this chapter. The
garment fit is generally defined by the relation between garment size dimensions and
body dimensions (Ashdown, 2007). The aggregate loss that is used for the sizing
system evaluation in mass production (as mentioned above), is the most commonly
used criterion to represent the garment fit in the literature (Ashdown, 2007; Gupta &
Zakaria, 2014; Zakaria, 2016). However, consumers’ subjective feeling on fit may not
necessarily be in a simple linear correlation with the average distance between the
garment size dimensions and the body dimensions, and the importance of key
dimensions to fit varies with individual opinions as well. Therefore, we define the
criterion CF to assess the overall fit impact of the mass customization sizing system
on the target population. The graph (b) in Figure 3.4 gives an example of the fit
definition with seven fit levels from ill-fit to perfect-fit and the correspondent weights
from 0 to 10 according to consumers’ subjective common satisfaction of fit that is
related to a specific garment size. CF is defined as the weighted average of the whole

target population’s satisfaction on garment fit:
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CF = Z B, X W,
(3.6)

where z is a specific custom-fit level with the corresponding weight W, P. refers to

the percentage of the target population that is accommodated in the area with the
custom-fit level z, z € [1, Nﬂ], Ny is the number of various custom-fit levels, as

shown in Figure 3.4 (b), Ny =7.

® Size designation

As additional sizes may not have the same isometric change in key body
dimensions as classical mass production sizes, we propose to use the exact values of
the key body dimensions in the format Dpy/Ds to offer consumers directly the

information about the corresponding body dimensions for a specific garment size.

3.1.2 Algorithm applications in sizing systems
In this study, we apply two enumeration algorithms and a genetic algorithm for
solving the sizing problems in mass production and mass customization respectively,

as shown in Figure 3.2.

3.1.2.1 Enumeration algorithm for mass production

The enumeration algorithms are used in the development of a mass production
sizing system by listing all the possible items when calculating the accommodation
rate and the aggregate loss in order to find the best sizing scenario (Gupta & Zakaria,

2014).

3.1.2.2 Genetic algorithm for mass customization

The enumeration algorithms have good performances for mass production due to
its light computational load. However, when applying them to build mass
customization sizing systems, it becomes more complicated because finding the best

set of additional garment sizes is a combinatorial optimization problem, and the
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computational load grows exponentially with the number of additional garment sizes.
In this case, GA developed by (Holland, 1973) is considered as an efficient tool with a
high local and global searching ability used for modeling and solving complex
discrete optimization problems. The application of GAs has the advantage of easy
implementation and quick convergence to a global optimum by evaluating only a
small fraction of the design domain (Lee, 2018). In our study, the procedure of the GA
used to generate the optimal additional size combination for mass customization is

demonstrated in Figure 3.5 and the specific steps are described as follows:

chromosome encoding and population initialization
(double vectors, rank scaling )

Additional size NO. 1 2 Naoy N,
Variable in GA Vi Vs Va1 Via
Integer code (<= P,) 1 49 . 12 168

fitness function
(comprehensive fit

CF) yes

ino

selection
(stochastic universal sampling SUS//roulette)

]

Crossover
(scattered)

stopping criteria:

l 1) maximum number of generations
mutation 2) stall generations
(gaussian)

[optimal sizing scenario of MC}

Figure 3.5 Flowchart of the applied genetic algorithm.

In Figure 3.5, P is the maximal integer number presenting the possibilities of
additional sizes, V. is the design variable representing a specific additional garment
size and NV, is the sequence number of this additional size. A further demonstration of

the applied GA is bellowed.

® Encoding
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In general, the real-encoding method is adopted for solving constrained
optimization problems, while the integer-encoding method for combinatorial
optimization problems. For this combinatorial optimization problem, a problem of
searching for the best set of additional garment sizes, each denoted by a design
variable (V,.), representing a possible additional garment size in its specific location
(Figure 3.6), is coded on a specific integer number. The GA decodes the chromosome
of individuals in order to obtain its phenotypic values (i.e., the exact set of additional
garment sizes) corresponding to the decision variable values (referred to Figure 3.5).
Having decoded the chromosome representation into the decision variable domain,

the set of additional sizes is known so that the fitness of each individual can be

evaluated.
P,

140 N

130

120 —

110 =
100 __:‘z =__
5—’ 20 = _’-5-__- === -
2 50 e =

70

60

50

80 85 S0 o5 100 105 110 115 120 125 130 135 140 145 150

location of encoding the locations
additional size with integers

Figure 3.6 Possible additional sizes encoded in the genetic algorithm.

® [nitial population

An initial population composed of a fixed number of individuals (e.g. max (min
(10xNg, 100), 40) where N, is the additional size number) is generated randomly in a
double vector form. Rank scaling is selected for more diverse populations because it

removes the effect of the spread of the raw scores.
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® C(Constraints
The constraints of variables in the GA determine the upper and lower bounds of
the predicted number of possible additional garment sizes. Each variable is in the

range of 1 to Ps, Ps is the total possible locations of additional sizes (Figure 3.6).

® Fitness function

The CF is taken as the fitness function of the GA in our study.

® QOperators

The selection of the individuals is realized with a Stochastic Universal Sampling
(SUS) strategy. The SUS strategy uses a single random value to sample all of the
solutions by choosing them at evenly spaced intervals and thus reduces the unfair
nature of fitness-proportional selection methods (Baker, 1987, July). Crossover and
mutation are likely to produce illegal solutions. As an initial attempt, we use scattered
and gaussian respectively in the crossover function and mutation function with this
integer problem. The obtained results prove the good performance of the GA. The

population generation with this proposed GA is shown in Figure 3.7.
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Figure 3.7 Population generation with operators in the genetic algorithm.

® Termination criteria

Under some trial tests, the stopping criteria for this GA are set. First, the GA is
allowed to run at a maximum number of iterations (e.g. 300). Second, if the average
change in the fitness function values over a certain number of generations (e.g. 50) is

less than a pre-defined threshold (tolerance), the algorithm stops.

A comparison of the proposed GA and enumeration algorithm for generating the
number of 1 to 3 additional garment sizes shows that the GA has better performances

in terms of solution quality and computation time.

3.2 Case study

Consumer satisfaction with the overall fit at the lower body (e.g., a skirt) is

118

© 2020 Tous droits réservés. lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

generally lower than that at the upper body and the total body (LaBat & DeLong,
1990). The basic straight skirt is a clinging skirt type commonly used in formal
occasions, which elicits a more stringent evaluation of fit at the lower body. In this
context, this garment type has the motivation of generating more sizes for a better fit.
As it is composed of several simple patterns, it is relatively more feasible and more
realistic in the product development and manufacturing processes. In this section, a
case study of women’s basic skirt production is used to validate the proposed system
and to analyze the relationship between personalization and cost. The key body
dimensions are the waist girth (WG) and the hip girth (HG), where the latter is taken
as the primary dimension. We perform a sizing treatment for different production
modes (i.e., mass production, craft production, and mass customization). Then, the
corresponding cutting costs are calculated, and an analysis of fit and cutting cost is
made to evaluate the performance of mass customization that is supported by the

proposed optimization techniques under the concept of “design to cost”.

3.2.1 Experiment design

The size charts are designed for mass production and mass customization, while
craft production uses personalized patterns that each individual is served with a
specific size. The experiment design, the data collection, the parameter setting, and

the used analytical methods are described as follows.

3.2.1.1 Data collection

The anthropometric measurements used in sizing come from a population of 451
French women aging from 20 to 40. To evaluate our system in a scenario close to
reality, the data sample is split into two datasets:

- A training dataset that is composed of 301 instances is randomly selected from
the population. Both the sizing systems for mass production and mass customization
are built with this dataset.

- A testing dataset, composed of the remaining 150 instances, serves as the real

119

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

consumer demand in the mass customization and craft production sizing scenarios. In
mass production, the consumer demand is set to be an integral multiple of 150 ranging
from 0 to 15000 (100 times 150).

In addition, the real patterns for all garment sizes are developed using the 3D

garment software, i.e., Lectra Modaris.

3.2.1.2 Parameter setting

Parameter setting in sizing is mainly based on industrial practice. The intersize
interval can be the same magnitude across all the sizes or vary across the size range
(Winks & Winks, 1997). Based on the intersize intervals in the European standard
(EN 13402-3, 2003) and the binary linear regression analysis of the relationship
between the two key body dimensions (viz. HG and WG), where B equals to 1.13, to
simplify the operation, in the case study, interval of hip girth (IntHG) is set to be 5,

interval of waist girth (IntWQG) be 6.

3.2.1.3 Analytical method

The comparisons of fit are made among the three different production modes, i.e.,
craft production, mass production, and mass customization. The variation tendencies
of the comprehensive fit with the additional size number are described using modal
values. A related analysis has been conducted to unveil the relation between the

comprehensive fit and the additional size number.

3.2.2 Results and discussion

For mass production and mass customization, we produce sets of sizes and
calculate the Comprehensive Fits (CFs) by using the proposed fit-oriented sizing
system. Next, in Chapter 4, we use an extended IP model to figure out the
corresponding unit cutting costs using measured personal body dimensions of the
instances. For craft production, as specific garment patterns are generated for each

personalized individual, the value of CF is regarded as 10.
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The following section illustrates the sizing results and the CFs under different
production modes (viz. mass production, mass customization, and craft production) of

garment manufacturing.

3.2.2.1 Sizing results

In the mass production environment, we introduce a number of different size rolls
and select the one which provides the best performance according to the indices of
accommodation rate and aggregate loss. Then, we introduce a number of additional
sizes to the previous mass production sizing system in order to obtain the highest
value of CF and establish the mass customization sizing system.

For mass production, the reasonable accommodation rate between 65% and 85%
is obtained with size rolls, i.e., 5, 6, or 7. The sizing system with a size roll of 7
corresponds to the highest accommodation rate, and thus it is used to represent the
performance of mass production in our analysis and for the comparison. With the
exact size ranges and intervals, the size dimensions of each size are calculated by
using Equation 3.4. We define the size whose dimensions are the closest to the
median dimension values as size M, referring to Equation 3.5. Table 3.1 shows the

mass production size chart with a size roll of 7.

Table 3.1 Size chart with size roll of 7 in mass production

se HG RHG IntHG WG RWG INtWG
(cm) (cm) (cm) (cm) (cm) (cm)
XXS 89  [86.5, 91.5] 67 [64, 70]
XS 94  [915,96.5] 73 [70, 76]
S 99  [96.5, 101.5] c 79 [76, 82] 6
M 104 [101.5,106.5] 85 [82, 88]
L 109 [106.5, 111.5] 91 [88, 94]
XL 114 [1115,116.5] 97 [94, 100]
XXL 119 [116.5, 121.5] 103 [100, 106]

As aforementioned, the additional sizes for mass customization can be made by
varying the secondary dimensions (WGQG) of the classical mass production sizes while

keeping invariant for their primary dimensions (HG). The body dimensions of the
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instances on the left and bottom decide the limitations of WG for a given HG range.
By setting the maximal additional size number to be 7, we make experiments adapted
from the original mass production sizing system (the black rectangles in Figure 3.8
(a)). Figure 3.8 (b)-(h) give the distributions of additional sizes determined (red
rectangles) by using a Genetic Algorithm (GA) with an increasing additional size

number ranging from 1 to 7.
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Figure 3.8 Size distributions with the additional size number ranging from 0 to 7.

Table 3.2 Size chart with size roll of 14 in mass customization

WG
HG Original waist Larger waist Smaller waist
(cm) WG= Size WG+ Size WG-  Size code
(cm) code (cm) code (cm)
89 67 1 - - - -
94 73 2 83 7* - -
99 79 3 91 3* 72 5%
104 85 4 95 6* 77 1*
109 91 5 102 4% - -
114 97 6 - - - -
119 103 7 109 2% - -
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Table 3.2 shows the mass customization size chart with a size roll of 14. The size

codes of the additional sizes are marked with *.

3.2.2.2 Comprehensive fits (CFs)

The same custom-fit level definition as demonstrated in Figure 2.6 (b) and CF
calculation by Equation 3.6 are used in mass production as well as in mass
customization. In this case, a total of 7 custom-fit levels named unfit, ill-fit, minus
medium-fit, medium-fit, minus good-fit, good-fit, perfect-fit are assigned with the
weights of 0, 2, 4, 5, 7, 8, and 10 respectively (see Figure 2.6 (b)). Then, the CFs are
calculated by Equation 3.6. The CF of mass production is 6.88. The CF of mass
customization increases from 7.10 to 8.20 when adding new sizes. The high
correlation coefficient (r) of 0.9978 indicates that there is a perfect uphill linear
relationship between the CF and the additional size number. The increasing rate

progressively decreases with the number of additional sizes (as shown in Figure 3.9).

6.88

0 1 2 3 4 5 6 7

additional size number
Figure 3.9 The comprehensive-fit trend with the additional size number ranging from
Oto7.

Table 3.3 gives the evaluation results of the mass customization sizing systems
with various size rolls. It shows that adding more sizes brings not only an increase in
the CF but also a decrease in the aggregate loss. However, the accommodation rate

can be further improved when maintaining the size roll to be a stable value. For
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instance, the sizing system can improve the accommodation rate when the size roll is
always higher than 9.

According to the changing values of the three indices for the sizing system
evaluation (CF, aggregate loss, and accommodation rate), it is demonstrated that, as
expected, the CF increases, the aggregate loss decreases, and a higher percentage of
the population can be achieved when the size roll grows. The changes of the CF are
more sensitive than those of the aggregate loss. Therefore, the proposed criterion, the
CF, is proved to be capable of representing the performance of personalization (fit)

correctly and accurately.

Table 3.3 Sizing-system evaluation results with various size rolls in mass
customization

Size  Comprehensive Size range R (cm) Accommodation Aggregate
roll fit CF RHG RWG rate (%) loss (cm)
7 6.8804 [86.5,121.5] [64, 106] 86.05 5.55
8 7.0997 [86.5, 121.5]  [64, 106] 86.05 5.07
9 7.3156 [86.5,121.5] [64, 112] 88.70 5.05
10 7.5183 [86.5, 121.5] [64, 112] 88.70 4.88
11 7.7143 [86.5,121.5] [64, 112] 88.70 4.58
12 7.8904 [86.5, 121.5] [64, 112] 88.70 4.18
13 8.0498 [86.5,121.5] [64, 112] 88.70 4.01
14 8.1993 [86.5, 121.5]  [64, 112] 88.70 3.91

In summary, the additional sizes mainly provide a better garment fit towards the
consumer population, and can support additional consumers to some extent as well.
Furthermore, the proposed CF has a good performance in representing the fit with the

whole target population.

3.3 Conclusion

In this chapter, optimization has been made for the sizing of the garment
manufacturing processes in mass customization. To be more specific, we have
proposed a fit-oriented sizing system and a new criterion called Comprehensive Fit

(CF) for evaluating the fit. The sizing strategy for mass customization is to create
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additional garment sizes based on the mass production sizing system, because the
procedure is easier and can reduce the extra cost in new pattern development and
manufacturing processes as well. A Genetic Algorithm (GA) has been applied to
locate the appropriate additional garment sizes, with the CF defined as the objective
function. To demonstrate the efficiency of the proposed mass customization sizing
system (the custom-fit strategy by using additional sizes), we present a case study of
women’s straight skirt. The results show that the system can effectively improve the
garment fit for a target population.

The proposed system provides an effective way for garment manufacturers to
provide custom-fit products. For further improvement and extension, a fit-related
pricing strategy for the sizing system can be developed to provide consumers with
accurate prices for each specific personalization.

It is worth noting that the variation of patterns induced by the enlarged size
quantity in mass customization has a great impact on the cutting process. To specify,
the increased size number in mass customization leads to the enhanced variety in
marker, which influences the marker length and marker cutting length. A more precise
cutting order plan can be realized, by using the actual values of the two marker
parameters to consider their differences. The corresponding optimization of cutting
order planning in garment mass customization will be addressed in the next chapter,
aiming to evaluate the economic performance of this mass customization strategy, and

reveal the relation between personalization and cost.
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Chapter 1V
Optimization of Garment Cutting
Order Planning in the Context of

Mass Customization
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Chapter 4 Optimization of Garment
Cutting Order Planning the
Context of Mass Customization

in

In this chapter, as markers vary greatly (regarding the marker length and the
cutting length) with various size combinations especially when using additional
sizes, we present a cost-oriented garment Cutting Order Planning (COP) system
for garment mass customization, in which marker variations are considered
(Figure 4.1). An expanded Integer Programming (IP) model is developed to
generate the optimal cutting order plan with the lowest overall cutting cost
(including the costs of fabric, spreading operation, and cutting operation) for
evaluating the economic performance (the overall cutting cost) of the proposed
mass customization sizing system in the previous chapter. Furthermore, the

balance between fit and cost is addressed.

Chap.2 lay

mass customization strategies for
cutting-related processes
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Chap.5
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‘ optimal order plan scenario }

Figure 4.1 Topic of Chapter 4.

This chapter is presented as follows. In Section 4.1, the COP problem is
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defined and the related optimized IP mathematical model with marker variations is
formulated. A further extension of the case study in 0 is given in Section 4.2 as an
implementation of the COP system. The relations between the fit and the cutting cost
for various sizes have been analyzed to reveal the underlying relationship between
personalization and cost. The paper is finally concluded with a summary and overall

insights detailed in Section 4.3.

4.1 Cost-oriented cutting-order-planning system for garment mass

customization

The garment production planning in the cutting room, usually considered as an
NP (non-deterministic polynomial-time)-hard problem (Fowler, Paterson & Tanimoto,
1981; Nascimento ef al., 2010; M'Hallah & Bouziri, 2016), mainly deals with lays and
markers in the context of layout and sequence. The aim of the Cutting Order Planning
(COP) is to find an optimal layout subject to the constraints, in terms of order, fabric,
equipment, and pattern, permitting to minimize a number of cutting-related costs. In
the mass production domain, each ply of lays is complete that residual products (i.e.,
the cut-pieces of garment articles) are inevitable, and the COP is made by using the
estimated values of marker lengths and marker cutting lengths. As the standard costs
in mass production are not available in mass customization, the economic profit is
strongly related to the complexity of the production plan and the accuracy of cost
estimation. In this context, excess garment products are not expected, so that step lays
are implemented to reach an explicit low cutting cost. As shown in Figure 4.2, in the
proposed cost-oriented COP model, lay planning is complemented with specific
markers considered in order to obtain the optimal cutting plan with the lowest cutting

cost.
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Figure 4.2 Flowchart of the proposed cost-oriented cutting-order-planning model.

Section 4.1.1 and Section 4.1.2 present the three modules in the cost-oriented
COP model (i.e., lay planning, marker making, and calculation of cutting-related
costs) and the establishment of a corresponding expanded IP model to work out

the optimal cutting order plan for mass customization, respectively.

4.1.1 Modules of the proposed cutting-order-planning model
The three modules (lay planning, marker making, and calculation of cutting-

related costs) in the COP model are detailed in this section.
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4.1.1.1 Module of lay planning

Lay planning determines parameters (i.e., the contained garment articles, the ply
number) of lays for an order. The order is produced either by forecast or by demand,
indicating the required quantity of garment articles to produce for each garment size
with different fabrics. One of the constraints in lay planning is that the order demand
should be adequately met. The ply number is limited by the operational cutting height
(H.) and fabric thickness (7). This constraint is shown in Equation (4.1),

maxPN, = |H./Ty]
(4.1)
where maxPN; represents the maximum ply number per lay.

Lay planning and marker making are both interrelated (illustrated in Figure 4.2
and Figure 4.3 (a)). The spreading surface is in line with the marker surface. Their
widths and lengths are subject to fabric width, ease allowance, cutting window length,
and pattern attributes. Size combinations in the lays, also considered in the marker
making module, should be subject to these side-length restrictions. Lay planning
without regard to actual markers is a rough cost estimation, and the optimal layout can
be hardly found. As shown in the literature, the lay planning problem can be solved
assuming that for each garment article their marker lengths are set to a fixed constant,
and the same situation with the cutting lengths, while in fact, these parameter values
differ considerably between markers. The marker variation and the industrial

application are explained in detail in the following marker making module.
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Figure 4.3 (a) Sketch of a set of lay and marker; (b) Sketch of different lays and

markers.

For large order sizes in a mass production situation, each ply tends to use the

whole length of the marker, and it is easy to reach a high marker utilization and
gain economy in scale. Nevertheless, the ladder-shaped step lay (Farley, 1988) is
preferred when it comes to quite small order sizes like in a mass customization

situation, in which excess garment products are not expected.

4.1.1.2 Module of marker making

A marker determines the length and the width of the fabric pieces in the

corresponding lays for cutting out the patterns of the contained garment articles.
The marker size mainly depends on the fabric width and the cutting window
length of the cutting table. The maximal marker width is relative to the effective
width of the cutting table, the fabric width, and the fabric ease allowance

(Vilumsone-Nemes, 2018), where usually enough fabric allowance is made
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among patterns and slice sections. Indeed, the effective width always exceeds the

fabric width, thus, the calculation of the maximal marker width (maxW,) is

determined by fabric width (W)) and fabric allowance (E,) according to the following
equation:

maxWy, = Wy — E,

4.2)

There are various marker types in garment production (Haque, 2016). Each type

of marker has its advantages and disadvantages, which should be noticed for a proper

implementation in COP. For instance, for the same size combination, the mixed

marker, patterns of all garment articles contained are mixed on the marker, is

generally better in terms of efficiency than the group marker, in which patterns of

each garment article are arranged in an individual section of the marker. Mixed

markers are commonly applied in mass production due to the high efficiency. In small

series production, excess products are undesired, group markers used with step lays.

The sketches of these two types of markers are shown in Figure 4.3 (b).

4.1.1.3 Module of cutting cost calculation

The costs in respect of the cutting process can be classified into two types: one
(including fabric and marker costs) is relative to the consumption of materials, and the
other (including spreading, cutting, as well as sorting and bundling costs) is relative to
the conduction of operations. Of all the five costs arising from the cutting process, the
marker cost will become significantly lower with the automation of production, and
the sorting and bundling cost is considerably lower than the others. Thus, in this study,
we consider that the total cutting-related cost mainly concerns the fabric consumption
and the operations of spreading and cutting.

The COP related parameters are necessary in the calculation of the cutting-related
cost, as shown in the lower half portion of Figure 4.2. The production size, the lay
number, and the ply number are available in the lay plan, while the marker number,
the marker length, and the marker cutting length can be extracted from the marker

parameters. The corresponding computational formulas concerning the fabric
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consumption and the operations of spreading and cutting are given below.

1) Fabric cost (Cy):

(4.3)
where Ps is the fabric price per unit length, L the used fabric length.
2) Spreading cost (Cs):
Cs = (P, + Pypy) X T
T, = sz/VS + N, X Ty
(4.4)

where P, stands for the operator cost per hour, Psm the spreading machine cost per
hour, Ts the number of hours for spreading, Vs the spreading speed, Np the ply number,

and Tsp the number of hours for each pause during spreading.

3) Cutting cost (Ce):
C.=(Py+ P.p) XT,
Te= ) Le/Ve+ Ty
(4.5)
where Pcm stands for the cutting machine cost per hour, Tc the number of hours for

cutting, which is determined by the cutting length (Lc) and the cutting speed (V¢), and

Tcp the number of hours for the pause during cutting.

4.1.2 Formulation of the cutting-order-planning problem in mass customization
Lay planning is one part of the cutting stock problem (Farley, 1988), and can

be solved by mathematical methods (Farley, 1988; Degraeve & Vandebroek,

1998; Degraeve, Gochet & Jans, 2002) with the aid of soft computing

technologies (Martens, 2004; Fister, Mernik & Filipic, 2010; Yang, Huang &

Huang, 2011), which is introduced in detail in Section 1.1.5. Integer

Programming (IP) is proved to be an effective tool for the COP (Degraeve &
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Vandebroek, 1998), the basis of other researches (Degraeve, Gochet & Jans, 2002;
Martens, 2004). Considering the previously described differences of the COP in mass
production and mass customization, we propose an expanded IP model on the basis of
the Zeger Degraeve’s mixed integer programming model (MIP) (Degraeve &
Vandebroek, 1998) in order to tackle the lay planning problem with both step lays and
full lays. Compared to the existing IP in the literature, the additional value of the
expanded IP model lies in that the specific marker lengths and cutting lengths of the
actual markers are taken into consideration. A comprehensive cutting cost, composed
of various costs (i.e., fabric consumption, operations of spreading and cutting), is
taken as the objective of this COP model. Below is the detailed IP model for solving

this COP problem under the mass customization environment:

Given:

S set of sizes

OD:s order demand for size s, SES

M set of markers

SNsm copies of size s in marker m, sSES, meM

maxSNm maximum number of sizes in marker m, s€S, m& M, is constant

SNssm existence of size S in subsection of marker m, m& M, = 1, when exists, =
0, otherwise

Lm length of marker m, meM

Lsm length of each subsection of marker m, meM

Ls length of selvage, is constant, 0.02-0.04 cm (Gersak, 2013)

Clm cutting length of marker m, meM

L set of lays

maxPNi  maximum ply number of lay I, €L is constant

Vi existence of marker m, mEM, =0, TPNm =0, PNm1 = 0, = 1, otherwise

PN, ply number of lay I, €L, < maxPN), = TPNwUm , PNmUm, MEM

Ps fabric price per unit length

Po operator cost per hour

Vs spreading speed

Ve cutting speed

Tsp number of hours for each pause during spreading

Tep number of hours for the pause during cutting

Assumption:

136

lilliad.univ-lille.fr



Thése de Yanni Xu, Université de Lille, 2020

Equipment investment cost is not included in the calculation because it is

relatively small in comparison with other costs.

Variables:

TPNm total ply number of lays with marker m, meM

PNsm ply number of subsections with marker m, m& M, on a downward trend

Um copies of lays with marker m, m&M, Um —1 < TPNwmaxPN; < Um, Um—
1 < PNmymaxPN; < Un

Constraints:

1) satisfaction of demands for each size, garments arranged in full lays and

in step lays should meet the order demand

maxSNpy,
Z SN, TPN,, + Z Z SNggmPNgp, = 0D,
meM meM 1
(4.6)
2) lay number determined by ply number
Upyn—1<TPN,/maxPN; < Uy,
4.7)
Upn — 1< PN,,;/maxPN; < Uy,
(4.8)
3) diminishing subsection heights in step lays
PNy = PN, >...=> PNpgysn,,
(4.9)
Objective function:
maxSNy,
Min z Wy X UptWepn X TPNyy + Wy, X Z PN,,,
meM 1
We (Wy, Wepn, W) = f (SNsim, Lin, CLun, SNssiy Lsm Ls, Py, Po, Vo, Ve, Tsp Tep)
(4.10)

where W, refers to weight in the objective function and Wy, Wipn, Wpn are the weights

for each specific variable.
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4.2 Case study

We made an extension of the case study in Chapter 2, that the proposed COP
system is applied to calculate the overall cutting costs when applying sizes generated
in Chapter 2. Moreover, the relationship between the overall cutting cost and the

number of additional garment sizes is studied through this case study.

4.2.1 Experiment design

The batch cutting is applied in the cutting processes of mass production and mass
customization, while the single-piece cutting is applied in the cutting process of craft
production. Correspondingly, the unit cutting costs for mass production and mass
customization are figured out by using the proposed cost-orient Cutting-Order-
Planning (COP) model, while for craft production, the cost is estimated in the single-
piece manufacturing environment. In regard to the experiment design, the data
collection, the parameter setting, and the used analytical methods are described as

follows.

4.2.1.1 Data collection

The anthropometric measurements used in sizing come from a population of 451
French women aging from 20 to 40. To evaluate our system in a scenario close to
reality, the data sample is split into two datasets.

-As mentioned in Chapter 2, a training dataset is composed of 301 instances that
are randomly selected from the population. Both the sizing systems for mass
production and mass customization are built using this dataset. Also, this training
dataset is used for the forecasting of the order quantity by sizes, which is taken as a
constraint of the IP model in the COP of the mass production scenario.

-The same testing dataset, composed of the remaining 150 instances used in
Chapter 2, also serves as the real consumer demand in the COP of the mass

customization and the CF scenarios.
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Patterns for all garment sizes created in Chapter 2 are used in this section.
Markers for all the size combinations are drawn using the software Lectra
Diamino Fashion. The data extracted (including the marker length and the cutting

length) from these markers are used in COP.

4.2.1.2 Parameter setting

Parameter setting in the COP is based on the related literature and the
production experience. In our experiment, we take a Vector 2500 Techtex
produced by Lectra as the cutting equipment. The parameters associated with the
cutting operation are set as follows. The effective width is 1.80 m, the cutting
window length is 1.75 m and the operational cutting height is 2.5 cm. The values
of parameters on spreading and cutting operations that are set in our experiment

are given in Table 4.1.

Table 4.1 Parameter setting in relevance with spreading and cutting operations

Parameter in cutting order planning Set value
fabric price Pr(€/m) 0.2 1 5 10 20

length of selvage /s (m) 0.02
operator cost P, (€/h) 5 10 20

spreading speed Vs (m/h) 2400

time per spreading pause T, (h) 1/60
cutting speed V. (m/h) 2400 400

time per cutting pause 7, (h) 0

In order to propose different scenarios, we consider five classes of fabric
whose prices vary from the low cost of 0.2 €/m to the luxury cost of 20 €/m. The
length of the selvage is 0.02 m for each fabric lay. We also set three levels of
operator cost, i.e., 5 €/h, 10 €/h, and 20 €/h, to simulate different production
situations. The spreading operation is automatic with the speed of 2400 m/h, and
the time for each spreading pause is 1/60 h. Two cutting process modes are
considered, i.e., the automatic cutting with a speed of 2400 m/h, and the manual

cutting with 400 m/h. As the cutting pause is relatively short compared with the
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time consumed in the entire cutting operation, it is considered as null in our

experiment. In total, 30 different scenarios are considered.

4.2.1.3 Analytical method

Comparisons of the cutting costs are made among the three different production
modes, i.e., craft production, mass production, and mass customization. The variation
tendencies of unit cutting cost with additional size numbers in mass customization and
craft production, the unit cutting cost in mass production with the order size are
described. Additionally, the related analysis has been conducted to unveil the relation
between the unit cutting cost and the additional size number, and the relation between

the unit cutting cost and the comprehensive fit.

4.2.2 Results and discussion

For craft production, we take the average values of marker related parameters
(i.e., the marker length and the cutting length) in mass customization as the estimated
values in the single-piece cutting. For mass production and mass customization, the
variance of markers is considered in the COP to calculate the corresponding unit
cutting costs in the batch cutting.

The following section illustrates the results of sizing, the CFs, the unit cutting
costs, and gives an analysis of the relation of the fit and the cutting cost with different
garment production modes (viz. mass production, mass customization, and craft

production).

4.2.2.1 Cutting order planning and cutting costs

The production mode differs, the COP varies in details. The proposed Integer
Programming (IP) model is conducted to find appropriate combinations of lays and
markers and to figure out the unit cutting costs for mass production and mass
customization scenarios. With the order size of mass production ranging from 0 to
13400, in which the maximal value 13400 is determined by 100 times 134 (the basic

forecasted order size for the consumer demand of 150, according to the size
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distribution in mass production with a roll size of 7), the COP results (Figure 4.4)
show that the larger the order size is, the lower the cutting cost will be. However,
when the order size is large enough (above 6000 in our experiments), the cutting
cost tends to be stable at a specific value. We use the cutting-cost values of the
order size 10000 as the stable values to represent the cutting costs in mass
production. In mass customization, the order size is the exact number of 134 for
the consumer demand of 150, the cutting costs are calculated with the increase of
additional sizes from 1 to 7. For craft production, we regard the cutting operation
as a simple-ply cutting and use the average marker length of a single garment

article for the cutting cost calculation.

S
2
§ ) representative value remain stable
E
0 2000 4000 6000 8000 10000 12000 14000
order size
Figure 4.4 Cutting cost trend in mass production.
Table 4.2 Cutting costs in mass production
Cutting Operator cost Unlt.cuttl.ng cost (€)
Fabric price Pr (€/m)
speed (m/h) P, (€/h) 02 1 5 10 20
5 0.17 0.66 3.15 6.25 12.46
2400 10 0.21 0.71 3.19 6.30 12.51
20 0.30 0.79 3.28 6.38 12.59
5 0.17 0.67 3.15 6.26 12.47
400 10 0.22 0.71 3.20 6.30 12.51
20 0.31 0.80 3.29 6.39 12.60
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Table 4.2 indicates the cutting costs in mass production. The manual cutting and
a higher operator cost result in increases in the cutting cost, but a higher fabric price is
obviously much more effective, and a strong positive correlation between the fabric
price and the unit cutting cost can be found.

Table 4.3 gives the estimated unit cutting costs of craft production. As expected,
the cutting costs in craft production are much higher than those in mass production
(Table 4.2) due to the manual operation and short markers. It is shown that fabric

price also plays an absolutely important role on the unit cutting cost like that in mass

production.
Table 4.3 Cutting costs in craft production
Cutting Operator cost Unlt.cuttl-ng cost (€)
speed (m/h) Po (€/h) Fabric price Ps (€/m)
0.2 1 5 10 20
5 0.29 1.07 4.94 9.79 19.47
2400 10 0.40 1.17 5.05 9.89 19.58
20 0.60 1.37 5.25 10.09  19.78
5 0.37 1.15 5.02 9.87 19.55
400 10 0.55 1.33 5.20 10.05 19.73
20 0.91 1.69 5.56 10.40  20.09

In mass customization, the correlation coefficients show a strong linear
relationship between the unit cutting cost and the additional size number. However,
the unit cutting cost slightly fluctuates that there exist some turns of trends (Figure 4.5)
in the corresponding unit-cutting-cost curves when applying various values of
production parameters, i.e., the fabric price and the cutting speed, while the operator
cost has no impact on this trend (Figure 4.6).

The trend of the unit cutting cost varies when the cutting speed differs or the
fabric price varies. When the number of additional sizes increases, the unit cutting
cost decreases if the cutting operation is automatic (Figure 4.5 (a)) or the fabric is
expensive (Figure 4.5 (d)). Otherwise, when the cutting operation is manual and the
fabric is at a quite low price, the unit cutting cost increases (Figure 4.5 (b)). As a high

fabric price has a significant impact while a low cutting speed has a slight effect on
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raising the weight of fabric price in the objective function of the COP model, the
above phenomenon, in fact, results from the decrease of fabric usage when more
additional garment sizes are adopted. One reason for this decrease is that the
newly generated additional sizes would occupy less area on markers than the
original sizes, resulting in a reduction in fabric usage. The other reason is that the
additional sizes can bring more possible size combinations with shorter markers

and finally reduce the fabric usage.

automatic cutting (2400 m/h) manual cutting (400 m/h) cheap
fabric
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Figure 4.5 Partial cutting costs in mass customization (operator cost=10 €/h).

It is seen that a higher operator cost also causes a small increase in unit
cutting cost, but does not affect its variation trend (Figure 4.6). This is because

the operator cost accounts for a small weight in the objective function of the

overall cutting cost.

143

© 2020 Tous droits réservés. lilliad.univ-lille.fr



Thése de Yanni Xu, Université de Lille, 2020

3.330
3.310
3.290
3.270
3.250
3.230

3.210 ""’\‘\_,_,\_‘\.
3.190 =
3.170 -
3.150 .—/-.\’\’—.\‘\.

3.130

unit cutting cost (€)

additional size number

—e—operator cost 5~ —e—operator cost 10 operator cost 20

Figure 4.6 Partial cutting costs in mass customization (cutting speed=2400 m/h,

fabric price=5 €/m).

To summarize, if a manual cutting operation is applied, and the used fabric is
cheap, the unit cutting cost will increase with additional sizes. Otherwise, if the
cutting operation is automatic, the cost of cutting operation will decrease so that the
proportion of fabric usage is relatively much larger, and therefore, the unit cutting
cost decreases because of a strong positive correlation with the fabric cost. In addition,
the cutting cost varies slightly with different sizing scenarios, where the details in the
cost trends would depend on the garment type. Especially for mass customization, it is
meaningful that at a certain point, the unit cutting cost decreases when the additional
size quantity slightly increases, which is economically beneficial in garment mass
customization. Additionally, mass customization can enlarge the user population to

some extent.

4.2.2.2 Analysis of relation between comprehensive fit and unit cutting cost

The idea is to gain the fit and cost tradeoff under the concept of “design to cost”
by using the proposed system that enables the garment manufacturing to control the
cost, especially the cutting cost, during the design stage. An analysis of the unit
cutting cost variation trend with the CF in mass customization is described in this

section.
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The correlation coefficients indicate that the CF has a strong linear
relationship with the unit cutting cost in mass customization. Similar to the tends
of the unit cutting cost when the number of additional sizes increases, there are
two opposite trends of the unit cutting cost when the CF increases (Figure 4.7).
Figure 4.7 (a) is with an automatic cutting and Figure 4.7 (b) with a manual
cutting. The appropriate sizing scenarios (red points) which are lower in the unit
cutting cost but higher in the CF can be found in these curves. In Figure 4.7 (a),
there is only one good solution when the CF = 8.2 with the best personalization
level and the cheapest cost, while in Figure 4.7 (b), there are several good
solutions, the first, fourth and sixth points, with better tradeoffs of personalization
and cost. The results enable the decision-maker to find the best scenario
according to the personalization or cost required in garment mass customization.
It is also worth noting that the details in this cost/fit trend would differ among

various garment types.

automatic cutting (2400 m/h) manual cutting (400 m/h)
e e
j=It] &n
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z r T T T T 1 : r T T T T T 1
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comprehensive fit (CF) comprehensive fit (CF)
(@) (b)

Figure 4.7 Cutting cost trends in mass customization according to comprehensive fit
for two different cutting speeds (fabric price=1 €/m, operator cost=10 €/h).

With a comparison of mass production, mass customization, and craft
production on the CF and the unit cutting cost (Figure 4.8), we find that the mass
customization strategy can efficiently improve the CF with a slight increase in

unit cutting cost compared to a significant cost increase in craft production. In the
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current industrial and business situation, automation in production has been widely
accepted by companies and luxury fabrics are largely preferred by more consumers,
so the proposed system providing the local optimums (Figure 4.5 (a)(c)(d), Figure 4.7

(a)) is extremely significant to the garment mass customization tendency.

19.576

unit cutting cost (€)

MP MC CP

Figure 4.8 Cutting costs for various production modes (automatic cutting, fabric
price=20 €/m, operator cost=10 €/h).

Having mastered how the cutting cost varies with the CF, we can select
appropriate sizing scenarios according to a compromise between the unit cutting cost
and the CF, which evolve in the two opposite trends, according to the specific
production situation (in terms of the fabric cost and cutting speed). In practice,
compared with the significant-high unit cutting cost in craft production, a slight
increase of the unit cutting cost brought by mass customization can be much more
acceptable for garment manufacturers. And, more remarkable in mass customization,
there are also local optimums that provide the best tradeoffs between personalization

and cost, from which both the company and consumers can get benefits in the end.

4.3 Conclusion

In this chapter, optimization has been made for the Cutting Order Planning (COP)
of the garment manufacturing process with consideration of the greater marker

variance brought by mass customization. As a result, a cost-benefit analysis has been
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available for decision-makers in the garment industry towards mass
customization. To be more specific, we propose a COP system, in which the
expanded Integer Programming (IP) model has been built to determine the COP
solution yielding the least costly cutting process with precise data of marker
parameters (i.e., the marker length and the marker cutting length). With the
accurate cutting costs form the COP system and the garment fits from the sizing
system, we evaluate the cost/personalization ratios in various production
situations.

To demonstrate the efficiency of the proposed sizing system in Chapter 3,
we present a specific case study of women’s straight skirts, in which the
underlying relationship between personalization and cost was explored. It is
found that the relationship between the cutting cost and the number of additional
garment sizes is nonlinear and fluctuating, strongly influenced by a combination
of different factors such as the fabric price, labor cost, and cutting speed. Local
optima can arise, of which the identification is crucial for developing mass
customization by obtaining a better compromise between the personalization (e.g.,
the Comprehensive Fit (CF)) and the cost (e.g., the cutting cost).

Thereupon, with the concept of “design-to-cost”, the proposed system
provides a reference for the garment industry to handle the tradeoff between
personalization and cost in mass customization, in order to meet consumers’
growing demand of personalization at an acceptable cost. It provides garment
manufacturers with guidance on developing effective manufacturing strategies for
the production mode transformation from mass production to mass customization.
Additionally, as an attempt of the automation and intellectualization in garment
manufacturing, it is in the spectrum of Industry 4.0.

The efficiency of the proposed COP system relies on obtaining the accurate
marker-related data, i.e., the marker length and the marker cutting length. The
wider garment size roll, especially in mass customization, leads to a greater
marker variance. However, the semi-automatic work of making all the markers in

the current practical production is of low efficiency in time and accuracy.
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Consequently, we consider using the marker prediction to solve this issue in the next

chapter.
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Chapter V:

Optimization of Garment Marker
Making in the Context of Mass

Customization
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Chapter 5 Optimization of Garment
Marker Making in the Context of
Mass Customization

The large number of sizes in garment mass customization leads to an
exponential increase of size combinations (markers), which induces a larger
workload of marker making. In the current production, creating all the markers
using a commercialized marker making software in a semi-automatic way for all
the size combinations is a tedious and heavy work. In contrast, the application of
machine learning technologies to marker prediction is expected to be beneficial
in both time and accuracy. In this chapter, the marker making optimization
(Figure 5.1) is performed by using the marker length estimation with machine
learning methods, i.e., Multiple Linear Regression (MLR) and Radial Basis
Function Neural Network (RBF NN). Finally, the cutting costs, as in the
experiments of the previous chapter, are estimated using the predicted marker

lengths in order to evaluate the prediction performance.

Chap.2 X v
mass customization strategies for Characteristics of articles Marker
cutting-related processes contained in the marker | characteristics
[ marker length of each single | overall marker
article length
M dimensions of each article cutting length
Chap.3
optimization of sizing Marker
length
prediction characteristics of articles contained in the marker:
marker length of each single article
Chap.4
optimization of cutting order planning l
Multi linear regression(MLR)
Radial basis function neural network (RBF NN)
Chap’s ‘ marker characteristics: ‘
optimization of marker making overall marker length

Figure 5.1 Topic of Chapter 5.
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This chapter is presented as follows. Firstly, section 5.1 describes the problem
and the model of marker length estimation. The prediction methods for marker length
estimation and the related performance measurement are introduced. Afterward, in
Section 5.2, a comparison of prediction performance between the two different
machine learning methods is made through a case study of a basic straight skirt.

Finally, a conclusion is given in Section 5.3.

5.1 Marker length estimation for garment mass customization

Marker making is a subprocess inside the garment cutting process. It aims to
layout garment patterns within a rectangular surface with a fixed width in high
efficiency. The identification of the accurate marker parameters is needed (e.g. the
marker length, the cutting length, and the cutting route) for making the best plan of
the cutting process. When the number of garment sizes increases in the mass
customization environment, the marker quantity rises sharply due to the much larger
number of size combinations. Therefore, the acquisition of these marker parameters
for a precise cutting plan by creating all the markers in the traditional semi-automatic
way leads to a heavy workload. The marker length estimation problem can be
regarded as a regression problem, where the marker lengths of the contained garment
article sizes are taken as inputs and the overall marker length for their combinations as
output. In this context, we originally apply machine learning-based methods to predict
accurate marker lengths.

Section 5.1.1 presents the marker length estimation problem and the
corresponding prediction model, while Section 5.1.2 demonstrates the two algorithms

applied in the prediction model.
5.1.1 Marker length estimation problem

In the marker making, several sets of patterns (each set belongs to one specific

size of garment article), are placed within a rectangular surface called a marker.

152

lilliad.univ-lille.fr



© 2020 Tous droits réservés.

Thése de Yanni Xu, Université de Lille, 2020

Regardless of the impact of marker type, different size combinations of garment
articles result in differences between markers. A simple equation for intuitive
judgment can be given in Equation (5.1). The marker quantity m can be

expressed below,

_ \'maxSN ,s
m = Zszl a

where s represents the number of garment sizes that are contained in the marker,

maxSN represents the maximal size number in the marker depending on the cutting

equipment, a represents the total optional size number.

It can be found that the marker quantity m is conspicuous with exponential
growth if the total size number sharply rises. If these total optional sizes are of a
larger number (in the mass customization environment), the creation of all the
markers by the semi-automatic method (creating markers manually with CAD
software) will be time-consuming with limited accuracy.

Marker parameters (i.e., characteristics of garment articles contained in the
marker and those of the marker itself) are adopted for marker prediction, as
shown in Figure 5.2. In the marker prediction problem, the independent variables
are characteristics of garment articles that are contained in the marker, such as
marker length of each single article and the dimensions of each article, while the
dependent variables are characteristics of the marker itself, i.e., the overall
marker length and marker cutting length. Combined with the real production, the
marker lengths of each single garment article that is contained in the marker are
accessible and facile to be considered, and consequently, are taken as the
independent variables for predicting the overall marker lengths, i.e., the

corresponding dependent variables.
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X Y Marker lengths of each
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article
1 1.12(1.20(1.22 | 1.54 ... 4.56
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106 1.511.67| - - .. 3.01
testing 107 1.50 | 1.87 | - - .| 3.19

Figure 5.2 Marker parameters adopted for marker prediction.

5.1.2 Algorithm applications in marker length estimation model

The techniques of Multiple Linear Regression (MLR) and Radial Basis Function
Neural Network (RBF NN) have been applied to the marker length estimation model,
where the marker length of each contained article is taken as input (X) and the overall
marker length as output (Y). The stratified 10-fold cross-validation is used to find the
proper hyperparameters of the two models, degree of X or number of neurons. Then

the prediction performances are compared by using the mean square error.

5.1.2.1 Prediction method

For the marker making problem, the underlying regularity is complex to be built.
Some machine learning techniques will Radial Basis Function Neural Network (RBF
NN). The marker length estimation problem can be regarded as a regression problem,
where the marker length of each contained garment article is taken as input (X) and
the overall marker length as output (Y), as shown in Figure 5.2. For this specific
problem, it is not dependent on time, and there is no available analytical model.
Multiple Linear Regression (MLR) is a statistical technique that uses several
explanatory variables to predict the outcome of a response variable. Polynomial
regression is applied in the experiment as a special case of MLR, in which the
relationship between the independent variable vector (X) and the dependent variable
(Y) 1s modeled as an nth (n=1-10) degree polynomial in X, from linear to non-linear.

Compared with a simple linear regression, polynomial regression basically fits a wide
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range of curvature with the inferential framework of multiple regression, and a
broad range of function can be fit under it, so as to provide the best
approximation of the relationship between dependent and independent variables.
Furthermore, RBF NN is an artificial neural network using radial basis functions
as activation functions, where the output of the network is a linear combination
of radial basis functions of the inputs and neuron parameters (Murray, 1995,
Mujtaba, 2001, Cheng & Lee, 2001). The advantage of RBF NN is its superiority
compared with the Back-Propagation (BP) neural network in approximation
ability, classification ability, as well as learning speed. In general, the structure
and training are simple, and the learning convergence speed is fast. It is a
universal approximator for any linear and nonlinear functions, and overcome the
problem of local minimum. Taking into account the above points, the two
machine learning techniques are selected as the applied methods for solving the

marker length estimation problem in our study (Figure 5.3).

(1) Multi linear regression (MLR)/polynomial regression
Y=BX+e

(2) Radial basis function neural network (RBF NN)

input layer hidden layer output layer

characteristics of articles : i marker characteristics

contained in the marker | bi
; olas weight

wetght@ bias

Figure 5.3 Applied prediction methods.
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5.1.2.2 Performance validation

The stratified 10-fold cross-validation process is used in this study to learn the
models. The stratified K-fold cross-validation is a variation of K-fold that returns
stratified folds that are made by preserving roughly the same percentage of samples
for each class (Diamantidis, Karlis & Giakoumakis, 2000). K is set to 10 for
evaluating the prediction error rate of the models in order to find the best selection of
appropriate parameters (regression degree and neuron number).

To measure the performances of marker length estimation by the applied
methods (MLR and RBF NN), we use the Mean Square Error (MSE) to measure the
deviation. The MSE, as a measure of the quality of an estimator, reflects the squares
of the distance between the predicted value and the original data. The calculation of

MSE is illustrated in Equation (5.2).

MSE =1

= 237 (x(k) — 2(K))? (52)
where x (k) presents the k original data, (k) the k presents the predicted value, n
presents the total number of testing data. The values are always non-negative, and it

means a better performance in estimation when it is closer to zero.

5.2 Case study

Three garment size sets aimed at shifting from mass production to mass
customization are adopted for constructing the experimental markers. The markers are
of two types, i.e., mixed marker and group marker, generated via Lectra CAD
software. Thus, the experimental marker lengths can be measured. Due to the semi-
automatic operation, the same marker making experiments based on the
commercialized software are conducted at least three times to ensure accuracy. The
prediction models with methods of multiple linear regression (MLR) with the degree
of X from 1 to 10, and radial basis function neural network (RBF NN) with the

neuron number varying from 1 to 40 are tested. By varying the regression degree and
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neuron number, we can observe the effects of underfitting and overfitting and find the
appropriate degree of X for MLR and neuron number for RBF NN.

Considering the effects of the three size sets and of the two marker types, we
realize a comparison of prediction performances between the models using these two

machine learning methods.

5.2.1 Experiment design

In this study, we adopted three size sets of the basic straight skirt, namely, 7
original sizes (MP sizes), 7 additional sizes (MC sizes), and the combination of all the
14 sizes (MP+MC sizes). The experimental marker lengths of the mixed markers and
the group markers containing two of these sizes are collected for measuring the
prediction performances, which maintains the continuity of our previous study. The
MLR method and RBF NN method are applied to the prediction models separately.
The hyperparameters of the two models, namely the degree of X and number of

neurons, are optimized with a stratified 10-fold cross-validation process.

5.2.1.1 Data collection

There are 7 basic sizes for mass production (MP sizes), 7 additional sizes which
are newly introduced for mass customization (MC sizes), and in total 14 sizes for
mass customization (MP+MC sizes), produced in Chapter 3. In order to maintain the
continuity of our previous study, the initial attempt in this study is to estimate the
marker lengths of markers that contain two garment articles. Thus, two types of
markers, i.e., mixed marker and group marker, are made by using the commercialized
software Lectra Diamino for all the pair-wise garment articles with the garment sizes
taken from these size sets.

As mentioned above, the marker quantity increases exponentially with the total
size number (5.1). The total size numbers are 7 for mass production and 14 for mass
customization, and the garment article number placed on one marker is set to 2 in this
study. Consequently, there are 49 (7%) and 196 (14%) combinations of two garment

articles for mass production and mass customization, respectively. They (49 and 196)
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are exactly the total marker numbers, which also reflects the heavy marker making
workload. In addition, marker type is considered so that the mixed marker and the
group marker are both applied in the marker making for all the combinations of
garment article sizes.

As introduced in Section 5.1.2.1, input X represents the marker length of each
single garment article that o is contained in the marker (X;: size of garment article 1,
X>: size of garment article 2), and output Y represents the overall marker length with
the same size combination. Through the aforementioned experimental work of marker
making, the related information (marker parameters) can be extracted and
summarized. Afterward, the relationship between X (X; and X3) and Y is correlated
via three-dimensional (3D) surface plots (Figure 5.4), where X are differentiated by
different size sets, i.e., MP sizes, MC sizes and MP+MC sizes, while Y are altered by
different combination modes, i.e., mixed marker and group marker.

Figure 5.4 shows marker length distributions of two-article markers (both mixed
marker and group marker) with different size sets (MP sizes, MC sizes, and MP+MC
sizes). The size numbers of the three size sets are 7, 7, and 14 respectively, so that the
corresponding numbers of size combinations are 72, 72, and 14°. Therefore, the 3D
surface plots are composed of 49, 49, and 196 dots, respectively.

As shown in Figure 5.4, all the dots approximately distribute on a plane in each
3D plot, signifying a certain degree of regularity and predictability. Meanwhile, the
dot distributions also show different degrees of irregularity, which will examine the

prediction ability of the two machine learning techniques, i.e., MLR and RBF NN.
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Figure 5.4 Marker length distributions of two-article markers with different size sets

(MP sizes, MC sizes, and MP+MC szies).

For the mixed markers, as shown in Figure 5.4, the distributions of mixed marker
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lengths are axisymmetric (the axis of symmetry is: size of articlel=size of article2)
due to the interchangeable input elements. This is because all patterns are mixed on
mixed markers. Namely, mixed markers that contain the same garment articles have
the same overall marker lengths. In contrast, for the group markers, as illustrated in

Figure 5.4, the distributions of group marker lengths exhibit asymmetries. That is
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because patterns of each garment article are concentrated in one specific section of
group markers, so that the exchange of the garment articles leads to some extent of the
variation of the overall marker length. Namely, the placement sequence of garment
articles in group markers slightly affects the overall marker lengths. Figure 5.5 gives
an example, where one garment article of the size MP3 and another of the size MC6
are arranged into two group markers with different sequences and a mixed marker. It
can be found that the sequence of garment articles leads to the difference of marker
length, 1.302 and 1.527 m. In contrast, the mixed marker can realize a tighter

arrangement of patterns with a minimum marker length of 1.273 m.
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Marker type:

Mixed marker

Contained sizes:
- MP3 (light grey)
MC6 (dark grey)

Marker length (m):
1.273

Marker type:
Group marker 2-1

Contained sizes:
MP3 (light grey)
MC6 (dark grey)

Marker length (m):
1.302

Marker type:
Group marker 2-2

Contained sizes:

MP3 (light grey)
MC6 (dark grey)

Marker length (m):
1.527

Figure 5.5 Marker lengths of different-typed markers with the same garment size
combination (MP3 and MC6)

5.2.1.2 Parameter setting
Two prediction models are used to carry out the prediction using the MLR
method and RBF NN method separately. The hyperparameters of the two models, the

degree of X or number of neurons, are optimized with a stratified 10-fold cross-
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validation process.

The obtained deviations for the MLR model, evaluated with the Mean Square
Error (MSE) test (5.2), are summarized in Figure 5.6. In detail, it includes the MSE of
marker length estimation using the MLR method, the X degree ranges from 1 to 10,
for the two types of markers, i.e., mixed marker and group marker, with three size
sets, i.e., MP sizes, MC sizes and MP+MC sizes. It can be observed that with the X
degree of MLR varies, the MSE is accordingly changed with fluctuating curves,
where underfitting and overfitting occur. The lower X degree indicates a
comparatively better performance in the prediction.

For both mixed marker and group marker, when the X degree of MLR model
equals 1 (linear), the MSE is relatively high, especially for group markers. It indicates
that the relationship between X and Y is nonlinear. Specifically, for mixed marker, the
MSE:s can reach a very low value when the X degree is set to 2-4. It is worth noting
that MSEs with MC sizes are more sensitive to those with other size sets, proving that
a suitable X degree of MLR model can lead to a much better prediction accuracy.
Compared with mix marker, all the MSEs of MLR models for group marker exhibit
some extent of fluctuation, indicating a higher difficulty in prediction. Similar to
mixed marker, X degrees of 3-5 with relatively low MSEs are recommended to be
utilized. The reason for the increment of MSE with a high X degree can be ascribed to
overfitting, trapped into local optimum. Therefore, it is not recommended to set the X
degree of MLR model to a very high value, but to determine in accordance with the
inflection point. In summary, for the MRL model, a relatively lower value for X
degree, which can lead to a satisfactory MSE value, is recommended. It ensures a

higher accuracy, and prevents overfitting at the same time.
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Figure 5.6 MSE of marker length estimation with MLR (X degree 1-10).

The obtained deviations for the RBF NN model, evaluated with Mean Square
Error (MSE) test (5.2), are summarized in Figure 5.7. In detail, it includes the MSE of
marker length estimation using the RBF NN method, the neuron number ranges from
1 to 40, for the two types of markers, i.e., mixed marker and group marker, with three
size sets, i.e., MP sizes, MC sizes and MP+MC sizes. In comparison of the two
different marker types, the prediction for group marker using the BRF NN method
requires a larger neuron number, so it can be concluded that the difficulty in
prediction is still higher for group marker than mixed marker. In addition, an
appropriate neuron number should be found for prediction with MC sizes, for the
corresponding MSE is more sensitive to neuron number. Similar to the MLR model,
for the RBF NN model, a large neuron number will tend to occur overfitting, while on
the contrary, a small neuron number cannot lead to a satisfactory accuracy. This is
exactly the significance of adopting the related parameters (i.e., X degree and neuron

number) of MLR as well as RBF NN models with different values.
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Figure 5.7 MSE of marker length estimation with RBF NN (neuron number 1-40).

In order to compare the prediction performances of the models using the MLR
and RBF NN methods, the lowest MSE value of each prediction model is listed in
Figure 5.8. Taken as a whole, after the selection of appropriate parameter value (X
degree and neuron number), the MSE can reach a very low value, which indicates that
both methods have good performances in marker length estimation. The performances
by using the two methods are similar (MSEs are small and mainly concentrated
between 0.0005 and 0.005), of which the prediction performance of the RBF NN
model is slightly better than that of the MLR model (mostly a smaller MSE value for
RBF NN compared to that for MLR). For different size sets, using RBF NN can

conventionally achieve a more universal satisfactory estimation, as well for MC sizes
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only. For the two marker types, MSEs with mixed markers are all less than 107, while
those with group markers are all more than 107, It shows that the prediction accuracy
of mixed marker has an obvious superiority than that of group marker by using the

two machine learning methods.

Mixed marker Group marker
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Figure 5.8 Comparison of prediction performances using MLR and RBF NN methods
for different types of markers with different size sets.

Another interesting finding is, for the same marker type and prediction method,
the prediction performance of marker that contains MP sizes (in a linear distribution)
is the best compared with the other two conditions (MC sizes and MP+MC sizes). It
can be deduced that the prediction performance is related to the regularity of garment
sizes. Specifically, the higher regularity degree the garment sizes have, the better
prediction performance the model has. It provides the suggestion that the sizing
system can take the regularity into consideration, for example, introducing additional
sizes that exhibit a linear relationship. The regular garment sizes will bring the
convenience in product development and production. Also, the productivity can be
enhanced as a result.

In general, the X degree of MLR and the neuron number of RBF NN should be
set to higher values for group marker than for mix marker, and with MC sizes or
MP+MC sizes than with MP sizes. It indicates that a more complex relationship exists
underneath for MC sizes, as well as for group marker. Besides, it is also positively

correlated to the prediction difficulty and deviation, that even though a higher X
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degree and a larger neuron number are adopted, there are still obvious errors and
deviations in prediction with the introduction of MC sizes. And, the same situation

occurs with the utilization of a group marker instead of a mixed maker.

5.2.2 Results and discussion

In this section, in order to further evaluate the performance and validate the
prediction of two machine learning-based models, the distances between the predicted
values and the corresponding experimental values are demonstrated and the cutting

costs that calculated with the two sets of data are compared.

5.2.2.1 Prediction performances

A testing data set is adopted and a comparison between the predicted marker
lengths and the experimental ones is made. Figure 5.9 shows the prediction
performances of the MLR (black dots) and RBF NN (red dots) models using MLR
and RBF NN for mixed marker and group marker with MP sizes, MC sizes, and
MP+MC sizes. The performance for a certain size combination is indicated by the
distance between the dot and the standard line y=x (in blue), where the predicted
value equals the real value (experimental value). That is, the closer to the standard
line the dots are, the better prediction performance we can obtain.

As mentioned before, the MLR and RBF NN parameters have been optimized
for the minimum MSEs (enclosed in parentheses in Figure 5.9), which can be
consulted in Figure 5.8.

For both MP sizes and MC sizes, the dots that are located near the standard lines
when each of the two size sets is used alone for prediction, showing a relatively good
prediction accuracy for both mixed marker and group marker. However, when utilized
simultaneously (MP+MC sizes), which are adapted for mass customization, the

prediction difficulty is fiercely increased, especially with group marker.
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Figure 5.9 Comparison of predictions between MLR and RBF NN models for
different types of markers with different size sets.

5.2.2.2 Cutting costs with estimated marker lengths

The prediction performance is also evaluated by calculating the cutting costs as
in the experiments of the previous chapter with the predicted marker lengths by using
the two machine learning-based methods. The impact of the error in marker length
estimation brings to that in cutting cost estimation is assessed, in order to check
whether the marker prediction enables the COP to help achieve accurate cutting costs
and make proper decisions in garment production.

The predicted marker lengths are of two-article markers. However, for craft
production, the cutting operation is performed with a simple-ply cutting in the COP.
Consequently, the calculation of cutting costs in craft production does not require
predicted marker lengths.

The cutting costs in mass production and mass customization are calculated as

the same as in Chapter 4 but with the predicted values of marker lengths. For the
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scenarios with different parameters in Table 4.1, The rangeabilities and MSEs of the
estimated unit cutting costs using the predicted marker lengths by using MLR and
RBF NN are listed in Table 5.1 and Table 5.2.

As shown in Table 5.1, even though the estimated marker length has a wide
rangeability between 10% to 20%, the corresponding predicted unit cutting cost has
just a narrow rangeability between 0 % to 2%. This means that the cutting cost is not
that sensitive when applying predicted marker lengths. It is also shown in Table 5.2,
for the cutting cost estimation using predicted marker lengths, both methods have
satisfied performances with MSEs all below 0.001.

Moreover, both MLR and RBF NN have good performances of marker length
estimation and cutting cost prediction with no significant differences, nevertheless,
the prediction performance is better when using MP sizes than using MP+MC sizes,

where the former size set has a higher regularity (in linear).

Table 5.1 Comparisons of marker length and cutting cost by rangeability

Production mode Marker length Unit cutting cost
(Size set) MLR RBF NN MLR RBF NN
(*0) (%) (%) (%)
ma(s,f’,lggidzﬁt)'o” [-8.45,7.95]  [401,-7.90]  [0.07,0.26]  [-0.03, 0.06]
m?,fj;fﬁ;%ﬂ'izzaez;m [-16.74,1357] [-16.32,13.02] [-1.47,096]  [-1.63, 0.88]

Table 5.2 Comparisons of marker length and unit cutting cost by MSE

Production mode Marker length Unit cutting cost
(Size set) MLR RBF NN MLR RBF NN
mass production 0.0004 0.0006 0.0003 0.0000
(MP sizes)
mass customization
(MP+MC sizes) 0.0025 0.0023 0.0065 0.0080

In mass customization, the unit cutting cost varies slightly when the number of
additional sizes increases as previously mentioned in Chapter 4. Figure 5.10
demonstrated the trends of the unit cutting cost with additional MC sizes. It is seen

that when using the predicted marker lengths for the cutting cost calculation in mass
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customization, the results enable the COP to indicate the accurate trends of unit

cutting cost changing with the increasing number of additional sizes, however, there

exist negative bias.
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Figure 5.10 Partial cutting costs in mass customization with experimental and
predicted marker lengths (operator cost=10 €/h)

It indicates that, though there are impacts of negative bias, the marker length
estimation results with machine learning methods enable the COP to predict the
precise trends of unit cutting cost with the additional sizes in mass customization and
work well with the more regular sizes in mass productions.

Figure 5.11 gives trends of the marker length prediction error with the additional
sizes in mass customization (Figure 5.11 (a)), the cutting cost prediction error with the
additional sizes (Figure 5.11 (b)), and the ratio of cutting cost prediction error to
marker length prediction error with the additional sizes (Figure 5.11 (c)). The trend of

marker length prediction error is comparatively smooth and lightly decreases in the
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final phase. The cutting cost prediction error has a gradual downward trend with the
additional size, and further declines seem likely. Similarly, the ratio of cutting cost
prediction error to marker length prediction error is mostly less than 1 and becomes

smaller with the additional mass customization sizes.
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Figure 5.11 Partial cutting cost prediction errors, marker length prediction errors,
ratios of cutting cost prediction error/marker length prediction error in mass
customization (cutting speed=2400 m/h, fabric price=1 €/m, operator cost=10 €/h))

It is found that the cutting cost prediction error is mostly smaller than marker
length prediction error, and the more accurate prediction result can be achieved when
using more additional sizes. This is because a larger amount of data with more
additional sizes can train the prediction model more efficiently and lead to more

accurate prediction results.

5.3 Conclusion
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In this chapter, we originally carried out the marker length estimation with the
aid of machine learning technologies. In the upgrading of garment production from
mass production to mass customization, which results in a sharp increase of size
combinations (marker variance), so it is of great importance to release the heavy labor
workload of the tedious and inaccurate marker making work. Two machine learning
techniques, i.e., Multiple Linear Regression (MLR) and Radial Basis Function Neural
Network (RBF NN) are applied to predict the overall marker lengths. Two marker
types are addressed, i.e., mixed marker and group marker. Three garment size sets are
adopted, for mass production (MP sizes) and mass customization (MC sizes, and
MP+MC sizes). These different conditions are beneficial for investigating the
performance of marker length estimation when facing the challenge of mass
customization upgrading.

In general, RBF NN slightly outperforms MLR in marker length prediction,
which is well capable of dealing with more universal marker prediction work. The
higher irregularity of the MC sizes results in the poorer marker prediction
performance, which indicates that a higher size regularity, like linear sizes, tends to a
better prediction performance. The marker prediction of group marker is more
complex compared to that of mixed marker, which indicates that marker length
estimation of group marker is harder. For estimating accurate unit cutting costs, the
marker length estimation with machine learning methods can help in both mass
production and mass customization, and work more efficiently with relatively regular
sizes. Additionally, it is capable of providing the accurate trends of unit cutting cost
with the additional sizes in mass customization but is with bias.

In summary, both methods are generally performant in marker length estimation,
of which RBF NN can be slightly more powerful, especially for predictions of
markers with more complex size combinations (sizes in mass customization). The
estimated marker lengths can be basically used for making an accurate prediction of
unit cutting costs in both mass production and mass customization.

Meanwhile, we need to explore more possibilities to improve the performance.

For instance, the dimensions of each article could be taken into the input, or the
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higher size regularity can be considered in sizing, which enables to improve the
predictability and even better serve the down streaming process, like cutting and

sewing.
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Chapter VI:
General Conclusion and Future

Work
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Chapter 6 General Conclusion and
Future Work

Mass customization features an integration of wide product variety and high
production efficiency, which meets the increasing demand of consumers on product
personalization with reduced product cost. The upgrading of the production processes
for promoting the revolution from mass production to mass customization is a
complex issue, but also an opportunity as well as a challenge for the apparel industry.
In this thesis, focusing on the garment cutting-related processes, we have proposed a
series of practical mass customization strategies that are concerned with the garment
cutting process, and realized production optimizations of three specific cutting-related

processes, namely, sizing, cutting order planning, and marker making (see Figure 6.1).
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Practical mass customization strategies

based on pattern variations
Custom-fit Co-design
- Pattern size Pattern material and shape
strategies
size number size capacity rainbow-ply spreading stepwise cutting
2
Sizing Marker making
Fit-oriented sizing system Marker length estimation model
Sizes Lays and markers Marker lengths
(additional sizes — (marker lengths,
optimizations retained sizes) - marker cutting lengths)
X Y
= -
- overall
X marker length of cach marker
Fit Cuttmg cost article single size length
comprehensive fit c_umng-relat_ed costs_
(fabric +spreading +cutting) g
CF = Z Pox W, | l :n =9
l g0
Relation between LD
personalization and cost 5
=

MP MC CP

Figure 6.1 General scheme of this thesis.

The practical mass customization strategies have been developed regarding two
categories, i.e., custom-fit (pattern size) and co-design (pattern material and shape).
The increment of size number with additional sizes and expansion of size capacity
with multi-sized darts are the mass customization strategies regarding the custom-fit,
while the fabric variation with a “rainbow plies” spreading and module variation with
a stepwise cutting are those regarding the co-design. The effectiveness of the
strategies is evaluated on both personalization and cost. The two custom-fit strategies
improve the custom-fit level globally and locally, respectively, and both behave well
with controllable extra costs. The cost growth differs between the two strategies,
which are recommended to be simultaneously utilized. The co-design of material
(fabric) with “rainbow plies” brings about no obvious increase in the cutting-related

cost, while that of shape (pocket type and skirt length) brings about further lift of cost
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due to second cuts or even extra markers. Due to the necessity (the fit is the basic
need of consumers) and potential (good personalization and economic performances),
the custom-fit strategy by using additional sizes is adopted in the subsequent
optimizations of the three cutting-related processes. i.e., sizing, cutting order
planning, and maker making.

A fit-oriented sizing system has been built with the introduction of additional
garment sizes and retaining original mass production sizes. The additional sizes are
adapted from the original mass production sizes due to a reduction of difficulty and a
limitation of extra cost in new pattern development and garment manufacturing. In the
sizing system, a Genetic Algorithm (GA) is applied to locate the appropriate
additional garment sizes, with the Comprehensive Fit (CF), a new criterion for
evaluating the garment fit, defined as the objective function. The system is proved to
effectively improve the garment fit for a target population.

A cost-oriented Cutting Order Planning (COP) system has been established with
consideration of marker variance brought by a marked increase of size number in
mass customization. An expanded Integer Programming (IP) is used for the COP to
determine the optimal solution yielding the least costly cutting process with precise
data of marker parameters (i.e., the marker length and the marker cutting length).

By analyzing the results generated from the proposed systems (sizing and COP),
the underlying relationship between the CF (personalization) and the unit cutting cost
(cost) has been explored. It is found that the relationship between the cutting cost and
the number of additional garment sizes is nonlinear and fluctuating, strongly
influenced by a combination of different factors such as the fabric price, labor cost,
and cutting speed. Local optima can arise, of which the identification is crucial for
developing mass customization by obtaining a better compromise between
personalization (the fit) and cost (the cost).

Due to the more complex size combinations in the mass customization
environment, it is of great importance to release the heavy labor about tedious and
inaccurate marker making work. As a result, marker length estimations for both mixed

marker and group marker containing sizes from different size sets, i.e., mass
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production (MP sizes), mass customization (MC sizes and MP+MC sizes), have been
conducted with the aid of machine learning techniques, i.e., Multiple Linear
Regression (MLR) and Radial Basis Function Neural Network (RBF NN). Both
machine learning methods are proved to be generally efficient in marker length
estimation, of which RBF NN is slightly more powerful especially for the prediction
of more complex size combinations.
1. Contributions
The main contributions of my thesis are summarized below.
® Based on the industrial practice, we have developed the mass customization
strategies to meet consumers’ growing demand for personalization at an
acceptable cost. This is a pioneering work in garment manufacturing. The
realization of a semi-quantitative analysis of the relation between
personalization and cost is also original. It can help enterprises to conduct the
precise customization expectation and cost control, and finally work out a
proper production strategy to accomplish the upgrading task towards garment
mass customization.
® We have built the fit-oriented sizing system which is optimized by a genetic
algorithm. It is an effective way by using a practical and flexible sizing
process for garment manufacturers to provide custom-fit products.
® We have also built the cost-oriented Cutting Order Planning (COP) system
solved by an extended integer programming. It takes into account the marker
variance that is greater in mass customization, providing a precise calculation
of cutting-related costs for mapping out the efficient production plan.
® With the results obtained from the proposed sizing and COP systems, the
relation of cutting cost and garment fit in various garment production modes,
1.e., mass production, craft production, and mass customization, have been
analyzed in a case study of a basic straight skirt. It is shown that the trend of
cost changes with an increasing fit is fluctuating (not linear as expected),
strongly influenced by the machine speed and material price, where local

optima may occur. This provides support for manufacturers to make
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decisions to achieve better compromises between personalization and cost in
real production.

We have applied two machine learning techniques, i.e., Multiple Linear
Regression (MLR) and Radial Basis Function Neural Network (RBF NN) to
estimate the overall marker lengths of markers in various garment production
modes with various sets of garment sizes and different marker types. The
experimental results show that both proposed approaches are performant in
estimating the overall marker lengths, and work better with mixed markers
and comparatively regular sizes. In addition, although some extent of bias
exists, the estimated marker lengths are feasible to be used instead of real
experimental data for making a relatively accurate prediction of cutting costs
in production planning.

Limitations and perspectives

Limitations and perspectives of this research are pointed out as follows.

In the case study of this research, the selected garment type is a basic straight
skirt, which is comparatively simpler in design and production. And a few
options of customization (three for fabric type, three for pocket type, three
for skirt length) are discussed in the preliminary design of mass
customization. In further research, we will select more types of garments as
the object of the study. Apart from other types of skirts, it could be a shirt,
pants, or a suit, and provide a wider range of customization options to study
the diversity in a real market.

In the case study of this research, a small database containing 451 French
women between the ages of 25 and 40, collected by using 3D scanning, is
applied. The body dimensions differ significantly in different ethnic groups
and regions in practice. For a more general application in future work, we
will adopt a much bigger anthropometric database of information about
various populations in different regions.

Increasing the size number with additional sizes, one of the proposed four

mass customization strategies, is implemented automatically in the proposed
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sizing system by using a GA. In future research, the implementations of the
other three strategies will also be conducted automatically with the aid of
computer algorithms.

The future in-depth study can be carried out in improving the production
optimizations of cutting-related processes. To be specific, an additional
heuristic algorithm will be developed to improve the performance of GA with
a shorter computation time. Apart from the cost, the time is also a key
criterion in mass customization, which will be formulated in the IP for
estimating the cutting-related production time. Apart from the marker length
of each garment article, their dimensions will be taken as an additional input
x in the marker length estimation model using MLR and RBF NN for a
higher accuracy.

This research mainly focuses on cutting, and the closely related upstream
process sizing. The future work will be extended to the downstream
processes, i.e., sewing, ironing, finishing, and packing, to make the research
completer and more applicable to the actual garment production. In addition,
a pricing strategy based on personalization can be developed to provide
consumers with accurate prices for each specific personalization. Finally, we
will link all the studied processes to establish an advanced optimization and
decision-making system for the whole garment manufacturing process

towards the upgrading to mass customization.
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Abstract

The work aims to make optimizations of garment production and resolve the dilemma
between personalization and cost in the context of mass customization. Firstly, practical mass
customization methods regarding cutting-related processes (including sizing) are proposed
adapted from the industrial practice of traditional mass production. Due to the good
performances of personalization and cost, additional sizes are adopted in the further
optimizations of specific cutting-related processes, i.e., sizing, cutting order planning, and
marker making with exact methods and artificial intelligence techniques. A genetic algorithm
is used for the best set of additional sizes, an integer programming is employed for the best
cutting order plan (i.e., the lay planning with the corresponding markers), a multi-linear
regression, and a neural network are applied to estimating marker lengths. The proposed mass
customization methods are proved to be efficient. The underneath indirect relationship
between personalization and cost is established. With the help of the optimized cutting-related
processes, the balance of personalization and cost is demonstrated. The estimation of marker
length reduces the marker making workload and provides marker lengths for cutting cost
estimation with a high efficiency and an acceptable accuracy. All the above enable the
garment production to shift from mass production to mass customization.

Keywords: Mass customization; Cutting-related processes; Integer programming, genetic
algorithm, machine learning; Garment production.

R&aume

Ce travail vise aoptimiser la production de v&ements et aré&oudre le dilemme entre le
personnalisation et le coG dans le contexte de la personnalisation de masse. Tout d'abord, des
méthodes pratiques de coupe (incluant la définition des tailles) pour la personnalisation de
masse issues des pratiques industrielles de production sont proposées. Des tailles
additionnelles, s&ectionnées pour leurs bonnes performances de personnalisation et de coQ,
sont utlisées pour optimiser les processus de coupe, asavoir le taillant, le matellassage et
placement, par des méhodes exactes et d'intelligence artificielle. Un algorithme généique est
utilis€pour construire I'ensemble de tailles optimisant le bien aller, une optimisation linéire
en nombres entiers est utilisé& pour définir la planification de la coupe la moins coteuse, une
régression multi-lin&ire et un réeau neuronal sont appliqués pour estimer la longueur des
placements. Ces diffé&entes mé&hodes proposées pour am@diorer la personnalisation de masse
se sont avéées efficaces. La relation indirecte entre le degréde personnalisation et le cott de
la coupe est éablie. Ces methodes ont éalement permis de définir les meileures compromis
entre la satisfaction consommateur et les cots de production. Le modée de prévision de la
longueur de placement permet de rédluire la charge de travail pour le calcul de placement et
fournit ainsi les longueurs de placements utiles pour estimer les cots avec une efficacité
deveée et une preision acceptable. L'ensemble de ces travaux contribue ala transition de la
production de masse de v&ements vers personnalisation de masse.

Mots clé: Personnalisation de masse; Processus de coupe de v&ements; Optimisation
lin&ire en nombres entiers, algorithme généique, apprentissage automatique; Production de
v&ements.
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