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Abstract

Extension properties of holomorphic mappings with values in complex
Hilbert manifolds

Our thesis contains the following two principal results. First is the existence of 1-
complete neighborhoods. Namely:
Let ∆k ⊂ Ck be the unit polydisk and let f : ∆k → X be an imbedding to a complex
Hilbert manifold. We prove that for any 0 < r < 1 there exists a fundamental system of
1-complete neighborhoods of f(∆̄k

r). This result has several interesting consequences.
Let’s state one of them.

Let H(r) = {(z1, z2) ∈ ∆2 | |z2| < r or 1 − r < |z1| < 1} be the Hartogs figure of
radius r ∈]0, 1[ in C2. We say that a finite dimensional complex manifold X is Hartogs
if every holomorphic map f : H(r) → X extends holomorphically to ∆2. If the same
is true for a complex Hilbert manifold X then we say that X is Hilbert-Hartogs. We
prove that a holomorphic map from a domain D in a Hilbert manifold X to a Hilbert-
Hartogs manifold Y extends holomorphically to a neighborhood of a pseudoconcave
boundary point of D.

Our second main result concerns generalized loop spaces of finite dimensional com-
plex manifolds. Remark that they naturally carry the structure of complex Hilbert
manifolds. We denote the space of Sobolev maps W k,2 from a compact real manifold
S to a complex manifold X as W k,2(S,X).

We prove that the loop space W k,2(S,X) of a Hartogs manifold X is Hilbert-
Hartogs.
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Résumé

Extension de fonctions holomorphes à valeurs dans des variétés de Hilbert

Cette thèse contient les deux principaux résultats suivants. Le premier est l’existence
d’un système fondamental de voisinages 1-complet:
Soit ∆k ⊂ Ck le polydisque unité et soit f : ∆k → X un plongement dans une variété
de Hilbert complexe. Nous prouverons que pour tout 0 < r < 1, il existe un système
de voisinages 1-complet pour f(∆̄k

r). Ce résultat a de nombreuses conséquences. Nous
allons en énoncer un en particulier.

Soit H(r) = {(z1, z2) ∈ ∆2 | |z2| < r ou 1−r < |z1|} la figure de Hartogs de rayon r
dans C2, r ∈]0, 1[. Une variété complexe de dimension finie X est dite Hartogs si toute
fonction holomorphe f : H(r)→ X s’étend holomorphiquement à ∆2. Si la même chose
est vrai pour une variété de Hilbert X , nous disons que X est Hilbert-Hartogs. Nous
prouverons qu’une fonction holomorphe f : D ⊂ X → Y sur un domaineD, avec X une
variété de Hilbert et Y une variété Hilbert-Hartogs, se prolonge holomorphiquement
au voisinage d’un point pseudoconcave du bord du domaine D.

Le second résultat principal concerne les espaces des lacets généralisés sur des
variétés complexes de dimension finie. Nous pouvons d’abord remarquer qu’ils ont une
stucture de variétés de Hilbert complexes. Notons l’espace des fonctions d’une variété
réelle compacte S vers une variété complexe X qui sont de classe de Sobolev W k,2 par
W k,2(S,X).

Nous prouverons alors que l’espace des lacets généralisé W k,2(S,X) d’une variété
de Hartogs X est une variété Hilbert-Hartogs.
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Introduction

Several complex variables is a domain younger than complex analysis in one variable.
One of the precursors is K. Weierstrass around 1879 with his work on "Some theorems
on the theory of analytic functions of several variables". Another founder of several
complex variables is H. Poincaré who proved that a meromorphic function on C2 wich
is locally the quotient of two holomorphic functions of two complex variables is the
quotient of two holomorphic functions defined on C2. P. Cousin generalized this result
to several variables. Later in 1907, Poincaré wrote a paper that should be considered
as the beginning of the study of biholomorphic maps. During the same period around
1906 F. Hartogs [H] worked on analytic continuation and proved in his thesis an ana-
lytic continuation of holomorphic functions from the Hartogs figure or Hartogs "pot"
to the bidisk ∆2. He used the Cauchy formula. Later E. Levi generalised this result to
meromorphic functions. Complex analysis in several variables takes another direction
due to the works of E. Cartan, K. Oka and others establishing a link between sev-
eral complex variables and algebra, topology, algebraic geometry and some domains
in physics. More recently in [Iv2] S. Ivashkovich studied extension properties of mero-
morphic maps with values in Kähler manifolds and proved the analytic continuation
of such maps from the Hartogs figure to the unit polydisk. Following this idea one can
ask the question about analytic continuation of holomorphic mappings from Hartogs
figures with values in infinite dimensional complex manifolds.

This thesis focuses on the study of extension properties of holomorphic maps with
values in complex Hilbert manifolds. The study is motivated by the fact that nowadays
even if there are plenty of results on several complex variables the literature on infinite
dimensional complex analysis is not rich. Many statements can be deduced from the
finite dimensional case but there are some that do not generalize easily and others
that stay unknown. An example of the difficulty to generalise is Royden’s lemma. H.
Royden proved in [Ro] the following statement:

Let X be a complex manifold of dimension n and let f : ∆̄q → X be a holomorphic
imbedding of a neighborhood of the closed unit polydisk in Cq to X for q ∈ [[1, n− 1]].
Then there exists a holomorphic imbedding F : ∆̄q × ∆̄n−q → X extending f , i.e.
F |∆̄q×{0} = f .

The proof crucially uses results on Stein manifolds. But there is no Stein theory in
the infinite dimensional case yet. Even a local solvability of the ∂̄-equation in Hilbert
case is not clear. Nevertheless we can prove a weaker version of this result in the case
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of Hilbert manifolds. All Hilbert manifolds in this thesis are modeled over l2 and are
supposed to be second countable, i.e. their topology has a countable base. Here l2

stands for the Hilbert space of square summable complex sequences with its standard
Hermitian scalar product < z,w >= ∑

k zkw̄k. The first result of our thesis is the
following

Theorem 0.1. Let φ : ∆̄q → X be an imbedded analytic q-disk in a complex Hilbert
manifold X . Then φ(∆̄q) has a fundamental system of 1-complete neighborhoods.

This theorem is interesting on its own and it also plays an improtant technical role
in the proof of several results of our thesis. In particular it gives an opportunity to
use the techniques of analytic continuation on Hilbert manifolds. Let recall first that
the Hartogs figure in C2 is the following domain

H(r) = (∆×∆r) ∪ (A1−r,1 ×∆). (1)

Here ∆r denotes the disk of radius r in C centered at zero, ∆ the unit disk and
A1−r,1 = ∆ \ ∆̄1−r the annulus for r ∈]0, 1[.

Definition 0.1. We say that a complex manifold X is Hartogs if every holomorphic
mapping f : H(r)→ X extends to a holomorphic mapping f̃ : ∆2 → X from the unit
bidisk to X. If the same is true for a complex Hilbert manifold X we say that X is
Hilbert-Hartogs.

Holomorphic mappings with values in Hilbert-Hartogs manifolds possess much
stronger extension properties than what postulated in their definition. Consider an
infinite dimensional analog of a Hartogs figure

H∞(r) := (∆×B∞(r)) ∪ (A1−r,1 ×B∞)

where B∞ is the unit ball in l2 and B∞(r) the ball of radius r in l2 centered at the
origin.

Theorem 0.2. Let X be a Hilbert-Hartogs manifold. Then for every r > 0 every
holomorphic mapping f : H∞(r) → X extends to a holomorphic mapping f̃ : ∆ ×
B∞ → X .

The proof of this theorem as well as that of theorem 3.1 in chapter 3 rely heavily on
the existence of 1-complete neighborhoods as in theorem 0.1. There is a link between
the Hartogs extension property of a Hilbert manifold Y and extension properties of
mappings from a domain D in a complex Hilbert manifold X , which is pseudoconcave
in some of its boundary points, to Y . Theorem 0.2 permits us to prove the following
statement.
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Corollary 0.1. If a domain D in a complex Hilbert manifold X is pseudoconcave
at a boundary point p then every holomorphic map f : D → Y to a Hilbert-Hartogs
manifold Y extends holomorphically to a neighborhood of p.

Now we are going to state the second main result of our thesis. Let S be a n-
dimensional real compact manifold without boundary. Denote byW k,2(S,X) the space
of maps from S to X of Sobolev classW k,2. One usually callsW k,2(S,X) a generalized
loop space. We take k > n

2 + α with α ∈]0, 1[ in order for maps from W k,2(S,X)
to be at least continuous. L. Lempert showed that this mapping space inherits a
natural complex structure from the ground manifold. More precisely it is shown in
[L1] that the generalized loop space of Sobolev class W k,2(S,X ) is a complex Hilbert
manifold. In fact starting from a map f ∈ W k,2(S,X) we construct the pullback bundle
f ∗TX → S. A neighborhood of the zero section of the pullback bundleW k,2(S, f ∗TX)
defines naturally a coordinate neighborhood of f in W k,2(S,X). Thus it provides the
structure of a complex Hilbert manifold on W k,2(S,X). We prove that

Theorem 0.3. A generalized loop space of a complex Hartogs manifold is a Hilbert-
Hartogs manifold.

One finds Hilbert-Hartogs manifolds more often than one could expect and we will
end our exposition with a list of examples of Hibert-Hartogs manifolds. l2 is obviously
Hilbert-Hartogs. Let X be a complex submanifold of l2. Then X is also Hilbert-Hartogs.

Furthermore we can prove that if the base space and the fiber of a Hilbert fibration
are Hilbert-Hartogs then the total space is Hilbert-Hartogs, too. If Y → X is an
unramified covering between Hilbert manifolds then X is Hilbert-Hartogs if and only
if Y is. If for example Λ = spanZ{e1, ie1, e2, ie2, ...} is the integer lattice in l2, then
T∞ := l2/Λ is Hartogs.

Remark that all connected Riemann surfaces except projective line are Hartogs. In
fact consider the map

f : C2\{(0, 1
2)} → P1

(z1, z2) 7→ [z1 : z2 − 1
2 ].

One can see that the map f restricted to the Hartogs figure H(r) with r = 1/4 does
not extend to the whole bidisk ∆2. Now take X a compact Riemann surface different
from P1. By the uniformization theorem its universal cover Y is either ∆ or C. The
result about coverings implies that X is Hartogs. If X is not compact then X is Stein
and therefore Hartogs.

Now, Theorem 0.3 provides us a lot of interesting and non trivial examples of
infinite dimensional Hilbert-Hartogs manifolds. For example let S = S1 be the circle
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and X be a connected Riemann surface. Theorem 0.3 implies that all loop spaces
W 1,2(S1, X) for X 6= P1 are Hilbert-Hartogs.

The results of this thesis are pulished in two papers "On Hilbert-Hartogs manifolds."
[A-Z] and "Loop Spaces as Hilbert-Hartogs Manifolds" [A-I].

This thesis is organized as follows. In chapter one we recall briefly the analysis on
complex Hilbert space and complex Hilbert manifolds and the basics on fiber bundles.
In particular we recall the construction of the partition of unity and its consequences.
In the second chapter we prove the existence of a fundamental system of 1-complete
neighborhoods. In the third chapter we introduce the notion of Hartogs manifold and
exploiting the existence of the fundamental system of 1-complete neighborhoods we
prove several properties of these manifolds. In the last chapter we recall the complex
Hilbert structure on loop spaces and we prove that loop spaces of Hartogs manifolds
are Hilbert-Hartogs.



Introduction (French)

L’analyse complexe à plusieurs variables est un domaine beaucoup plus récent que son
homologue à une variable. L’un des précurseurs est K. Weierstrass par ses travaux sur
"Some theorems on the theory of analytic functions of several variables" aux alentours
de 1879. Un autre des fondateurs de ce domaine est H. Poincaré qui prouva qu’une
fonction, étant localement le rapport de deux fonctions holomorphes à deux variables,
est le quotient de deux fonctions holomorphes entières, c’est-à-dire définies sur C2. P.
Cousin généralisa ce dernier résultat aux cas des fonctions holomorphes à plusieurs
variables. Plus tard, en 1907, Poincaré écrivit ce que l’on pourrait considérer comme
le commencement de l’étude des biholomorphismes. Durant la même période, F. Har-
togs [H] travailla sur le prolongement analytique et donna une preuve rigoureuse, dans
sa thèse, du prolongement analytique sur le bidisque ∆2 de fonctions holomorphes
définies sur une figure de Hartogs ou autrement appélée "marmite" de Hartogs. Dans
ce but, il utilisa essentiellement la formule de Cauchy. Ensuite, E. Levi généralisa ce
résultat aux fonctions méromorphes. L’analyse complexe à plusieurs variables prend
un nouveau tournant avec les travaux de E. Cartan, K. Oka et bien d’autres établis-
sant un lien avec l’algèbre, la topologie, la géometrie algébrique et certains domaines
de la physique. Plus récemment dans [Iv2], S.Ivashkovich étudia certaines propriétés
d’extension d’application à valeur dans des variétés kählerienne et prouva le prolonge-
ment analytique de ces applications définies sur une figure de Hartogs vers le poly-
disque unité. En poursuivant cette idée, il est possible de réfléchir à la question du
prolongement analytique d’une fonction holomorphe définie sur une figure de Hartogs
et à valeurs dans une variété complexe de dimension infinie.

Cette thèse porte sur des propriétes d’extension de fonctions holomorphes dans
des variétés de Hilbert complexes. L’étude est motivée par le fait qu’actuellement,
comparée à la richesse de la littérature sur l’analyse complexe à plusieurs variables,
il n’existe que très peu de résultats sur les variétés complexes de dimension infinie.
Beaucoup de résultats se déduisent de la même manière que dans le cas d’un nombre
fini de variables complexes. D’autres nécessitent un peu plus de travail et il existe
encore d’autres dont la véracité reste inconnue. Le lemme de Royden est un exemple
de la difficulté à généraliser. H. Royden prouva dans [Ro] l’énoncé suivant:

Soit X une variété complexe de dimension n et soit f : ∆̄q → X un plongement
holomorphe d’un voisinage du polydisque fermé de Cq dans X, avec q ∈ [[1, n − 1]].
Alors, il existe un plongement holomorphe F : ∆̄q × ∆̄n−q → X qui étend f , c’est-à-
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dire F |∆̄q×{0} = f .
La preuve utilise un résultat sur les variétés de Stein. Cependant, il n’y a pas encore

d’analogue en dimension infinie des variétés de Stein. Même une résolution locale du
problème de ∂̄ en variété de Hilbert n’est pas claire. Néanmoins, nous pouvons prouver
une version plus faible de ce résultat dans le cadre des variétés de Hilbert. Toutes
les variétés de Hilbert dans cette thèse sont modelées sur l2 et sont supposées avoir
une topologie à base dénombrable. Ici l2 correspond à l’espace de Hilbert des suites
complexes de carrés sommables munit de sa structure hermitienne complexe, c’est-à-
dire munit de son produit hermitien < z,w >= ∑

k zkw̄k. Le premier résultat de cette
thèse est le suivant:

Théorème 0.1. Soit φ : ∆̄q → X un q-disque analytique plongé dans une variété
de Hilbert complexe X . Alors φ(∆̄q) possède un système fondamental de voisinages
1-complet.

Ce théorème est intéressant en soit et il joue aussi un important rôle technique
dans plusieurs preuves des résultats de cette thèse. En particulier, il permet d’utiliser
des techniques de prolongements analytiques dans des variétés de Hilbert. Dans la
continuité des travaux de F. Hartogs, nous avons étudié les propriétés d’extension des
variétés de Hartogs. Rappelons d’abord qu’une figure de Hartogs dans C2 est

H(r) := (∆×∆r) ∪ (A1−r,1 ×∆).

Ici ∆r correspond au disque de rayon r dans C centré en zéro, ∆ le disque unité et
A1−r,1 = ∆\∆̄1−r à l’anneau pour r ∈]0, 1[.

Définition 0.1. Une variété complexe X est dite Hartogs si pour toute application
holomorphe f : H(r) → X s’étend à une application holomorphe f̃ : ∆2 → X définie
sur le bidisque unité ∆2 et à valeurs dans X.

Si une variété X de Hilbert vérife cette condition, nous dirons alors que c’est une
varété Hilbert-Hartogs.

Nous prouvons qu’une application holomorphe à valeurs dans une variété Hilbert-
Hartogs possède des propriétés d’extension beaucoup plus fortes que ce qui est donné
dans la définition. Considérons l’analogue d’une figure de Hartogs en dimension infinie

H∞(r) := (∆×B∞(r)) ∪ (A1−r,1 ×B∞)

où B∞ est la boule unité de l2 et B∞(r) est la boule dans l2 de rayon r centrée à
l’origine.
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Théorème 0.2. Soit X une variété de Hilbert-Hartogs. Alors, pour tout r > 0, toute
application holomorphe f : H∞(r) → X s’étend en une application holomorphe f̃ :
∆×B∞ → X .

La preuve de ce théorème ainsi que le théorème 3.1 dans le chapitre 3 sont fondées
sur l’existence d’un système de voisinages 1-complet comme pour celle du théorème
0.1. Il y a une relation entre la propriété d’extension de Hartogs d’une variété de
Hilbert Y et les propriétés d’extensions d’applications d’un domaine D d’une variété
de Hilbert X qui est pseudoconcave en des points du bord et à valeurs dans Y . Le
théorème 0.2 permet de prouver le résultat suivant.

Corollaire 0.1. Si un domaine D dans une variété de Hilbert complexe X est pseudo-
concave en un point p de la frontière ∂D alors toute application holomorphe f : D → Y
dans une variété Hilbert-Hartogs s’étend holomorphiquement à un voisinage de p.

Nous allons maintenant énoncé le deuxième résultat principal de notre thèse. Soit S
une variété réelle compacte de dimension n sans bord. Notons par W k,2(S,X) l’espace
des applications de S vers X de classe de Sobolev W k,2. L’espace W k,2(S,X) est
habituellement appelé un espace des lacets généralisé. Nous choisissons k > n

2 +α avec
α ∈]0, 1[ afin que les applications deW k,2(S,X) soient au moins continues. L. Lempert
a prouvé que des espaces de ce type héritent de la structure complexe de la variété
d’arrivé. Plus précisement, dans [L1], il est prouvé qu’un espace des lacets généralisé de
classe de Sobolev W k,2 est une variété de Hilbert complexe. En effet, en partant d’une
application f ∈ W k,2(S,X), nous pouvons construire le tiré en arrière du fibré tangent
au dessus de S, c’est-à-dire f ∗TX → S. Un voisinage de la section nulle dans l’espace
des sections du tiré en arrière du fibré tangeantW k,2(S, f ∗TX) définie un voisinage des
coordonnées de f ∈ W k,2(S,X). Ainsi on obtient une structure de variété complexe
sur W k,2(S,X). Nous démontrons que

Théorème 0.3. L’espace des lacets généralisé d’une variété de Hartogs complexe est
une variété Hilbert-Hartogs.

Les variétés Hilbert-Hartogs apparaissent beaucoup plus souvent que ce que nous
pouvons attendre et nous allons finir notre exposé par des exemples de variétés Hilbert-
Hartogs. l2 est évidemment Hilbert-Hartogs. Soit X une sous-variété complexe de l2.
Alors X est aussi Hilbert-Hartogs.

Plus encore, nous pouvons démontrer que que si l’espace de base et la fibre d’une
fibration de Hilbert est Hilbert-Hartogs alors l’espace total de la fibration est aussi
Hilbert-Hartogs. Si Y → X est un revêtement non-ramifié entre des variétés de Hilbert,
alors X est Hilbert-Hartogs si et seulement si Y l’est aussi. Si Λ est le réseau d’entier
dans l2 défini par Λ := spanZ{e1, ie1, e2, ie2, ...}, alors T∞ := l2/Λ est Hilbert-Hartogs.
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En outre, remarquons que toutes les surfaces de Riemann connexe à l’exception
des droites projectives sont Hartogs. Effectivement, considérons l’application

f : C2\{(0, 1
2)} → P1

(z1, z2) 7→ [z1, z2 − 1
2 ].

Nous pouvons observer que l’application restreinte à la figure de Hartogs H(r) avec
r = 1/4 ne s’étend pas à tout le bidisque ∆2. Désormais, soitX une surface de Riemann
compacte connexe différente de P1. Son recouvrement universel Y , par le théorème
d’uniformisation, est ∆ ou C. L’énoncé sur les recouvrements, cité précedemment,
permet de déduire que X est Hartogs. Si X n’est pas compacte, alors X est Stein et
donc est Hartogs.

Le théorème 0.3 donne aussi de nombreux exemples intéressants et non triviaux
de variétés de dimension infinie qui sont Hilbert-Hartogs. Par exemple, soit S = S1 le
cercle et soit X une surface de Riemann connexe différente de P1. L’espaceW 1,2(S1, X)
est Hilbert-Hartogs.

Les résultats de cette thèse sont publiés dans l’article "On Hilbert-Hartogs mani-
folds" [A-Z] et dans l’article "Loop spaces as Hilbert-Hartogs" [A-I].

Cette thèse est organisée comme suit. Le premier chapitre est un bref rappel des
résultats d’analyse complexe dans des espaces de Hilbert, des variétés de Hilbert et
quelques notions de base sur les fibrés. En particulier, nous rappelons la construction
d’une partition de l’unité et ses conséquences. Dans le second chapitre, nous prou-
vons l’existence d’un système fondamental de voisinages 1-complet. Dans le troisième
chapitre, nous introduisons la notion de variété de Hartogs et en exploitant l’existence
d’un système fondamental de voisinages 1-complet, nous prouvons plusieurs propriétés
de ces variétés. Dans le dernier chapitre, nous rappelons la structure de variété de
Hilbert complexe des espaces des lacets et nous expliquons comment l’espace des lacets
d’une variété de Hartogs est Hilbert-Hatogs.



Chapter 1

Preliminaries

1.1 Complex analysis in Hilbert spaces

In this chapter we recall the notion of holomorphic maps in Hilbert spaces. We will
state only results that will be used in this thesis. For more details we refer to [Mu]. To
avoid any specific consideration we restrict ourself to the separable Hilbert space l2.

The notation N corresponds to the positive integers {1, 2, ...} and N0 to the nonneg-
ative intergers {0, 1, 2, ...}. The notation l2 stands for the Hilbert space of sequences
of complex numbers z = {zk}∞k=1 such that ||z||22 := ∑

k |zk|2 < ∞ with the standard
Hermitian scalar product < z,w >= ∑

k zkw̄k and standard basis {e1, e2, ...}. We take
also a Hilbert space F with its norm || · ||F . We write the norms || · ||2 or || · ||F simply
by || · || when it is clear from the context.

Definition 1.1. Let U be an open subset of l2. We say that a map f : U → F

is C-differentiable ( R-differentiable) at z ∈ U if there exists a continuous C-linear
(R-linear) map T : l2 → F such that

f(z + h) = f(z) + T(h) + o(||h||)

where o(||h||)
||h|| → 0 as h→ 0. We write T = dfz and call dfz the differential of f at z.

Definition 1.2. We say that a map f : U → F is holomorphic on U if f is C-
differentiable at every point z ∈ U .

Remark 1.1. We denote by O(U, F ) the set of all holomorphic maps from U to F .
In the case of functions we denote O(U,C) simply by O(U).

Analogously to the finite dimensional case we can separate the differential in a
C-linear part ∂fz and C-antilinear part ∂̄fz. For z ∈ l2 we can write z = x + iy with
x, y real sequences in l2 and the differential of f at the point z can be written for
h = u+ iv ∈ l2 with u = Re(h) and v = Im(h) as:

dfz(h) =
∞∑
k=1

∂f

∂xk
(z)uk +

∞∑
k=1

∂f

∂yk
(z)vk.

19
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Taking the complex coordianate i.e in terms of h and h̄, we can write it as

dfz(h) =
∞∑
k=1

∂f

∂zk
(z)hk +

∞∑
k=1

∂f

∂z̄k
(z)h̄k.

where ∂f
∂zk

= 1
2

(
∂f
∂xk
− i ∂f

∂yk

)
and ∂f

∂z̄k
= 1

2

(
∂f
∂xk

+ i ∂f
∂yk

)
. The first sum is denoted by

∂fz(h) and corresponds to the C-linear part of the differential and the second one is
denoted by ∂fz(h) and corresponds to the C-antilinear part. From this last observation
one can compute easily the equalities

∂fz(h) = 1
2 (dfz(h)− i dfz(ih)) and ∂̄fz(h) = 1

2 (dfz(h) + i dfz(ih)) . (1.1)

Those equalities are also convenient because one can express the linear part and the
antilinear part without fixing coordinates on a basis.

Clearly we have dfz(h) = ∂fz(h) + ∂̄fz(h). We can characterize holomorphic maps
as follows:

Theorem 1.1. Let f : U → F be a R-differentiable map from an open set U ⊂ E.
Then f is holomorphic in U if and only if ∂̄fz = 0 for all z ∈ U .

This theorem is an analogon of the Cauchy-Riemann conditions for holomorphic
maps where the antilinear part vanishes.

Morever, in the finite dimensional case, we have that an analytic map is the same
as a holomorphic map. We will see further that the equivalence is preserved in the
infinite dimensional case. Recall the following

Definition 1.3. A homogeneous continuous polynomial of degree m is a map Pm :
l2 → F such that there exists a continuous multilinear map B ∈ Lc(l2 × ...× l2︸ ︷︷ ︸

m

, F )

satisfying for all x ∈ E Pm(x) = Bxm, here Bxm := B(x, ..., x︸ ︷︷ ︸
m

).

Definition 1.4. Let U be an open subset of l2. A mapping f : U → F is said to be
analytic if for each a ∈ U there exist a ball B(a, r) ⊂ U and a sequence of continuous
m-homogeneous polynomials Pm such that

f(x) =
∞∑
m=0

Pm(x− a) (1.2)

uniformly for x ∈ B(a, r).

Remark 1.2. The sequence Pm which appears above is uniquely determined by f and
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a. That is why we shall write it as Pm = Pmf(a) for every m ∈ N0. Then the series

∞∑
m=0

Pmf(a)(x− a)

is called the Taylor series of f at a.

As it was already mentioned holomorphy and analyticity are equivalent also in
infinite dimension. The first implication "analyticity" =⇒ "holomorphy" is almost
clear since the homogeneous continuous polynomial P 1f(a) is C-linear by definition.

Analogously to the notion of separate holomorphic maps in Cn one defines the
notion of Gâteaux-holomorphy as follows.

Definition 1.5. Let U be an open subset of l2. A mapping f : U → F is said to be
G-holomorphic (G for Gâteaux) if for all a ∈ U and b ∈ l2 the mapping λ 7→ f(a+λb)
is holomorphic on the open set {λ ∈ C | a + λb ∈ U}. We shall denote by OG(U, F )
the vector spaces of all G-holomorphic mappings from U into F .

It is clear that a holomorphic map is continuous and is G-holomorphic. To obtain
the equivalence between analyticity and holomorphy, we shall show that a continuous
and G-holomorphic map is analytic. This result is deduced from the Cauchy integral
formula.

Theorem 1.2. Let U be an open subset of l2 and let f be a G-holomorphic map in
OG(U, F ). Let a ∈ U , t ∈ l2 and r > 0 such that a + ξt ∈ U for all ξ ∈ C such that
|ξ| 6 r. Then for each λ ∈ ∆(0, r) we have the Cauchy integral formula

f(a+ λt) = 1
2πi

∫
|ξ|=r

f(a+ ξt)
ξ − λ

dξ.

Proof. Take ψ ∈ Lc(F,C) a continuous linear form on F and consider the function
g(ξ) = ψ ◦ f(a + ξt). Then g is holomorphic on a neighborhood of the closed disc
∆̄(0, r). From the standard Cauchy formula we obtain that

ψ ◦ f(a+ λt) = g(λ) = 1
2πi

∫
|ξ|=r

g(ξ)
ξ − λ

= 1
2πi

∫
|ξ|=r

ψ ◦ f(a+ tξ)
ξ − λ

dξ

for each λ ∈ ∆(0, r). It gives the result since Lc(F,C) separates the points of F , i.e. if
x 6= y in F then there exists ψ ∈ Lc(F,C) such that ψ(x) 6= ψ(y).

From theorem 1.2 we compute that for λ ∈ ∆(0, r) and ∀ξ ∈ ∂∆(0, r)

f(a+ ξt)
ξ − λ

= f(a+ ξt)/ξ
1− λ/ξ =

∞∑
m=0

λm
f(a+ ξt)
ξm+1 .
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Then the integration over |ξ| = r and the Cauchy formula give

f(a+ λt) =
∞∑
m=0

λm
(

1
2πi

∫
|ξ|=r

f(a+ tξ)
ξm+1 dξ

)
.

By compairing with the Taylor expansion formula we deduce the identity

Pmf(a)(t) = 1
2πi

∫
|ξ|=r

f(a+ tξ)
ξm+1 dξ

for r > 0 such that a+ ξt ∈ U for all ξ ∈ ∆̄(0, r).
One can remark that the coefficients of the series on the right hand side given

by the integral is a homogeneous polynomial that is obviously continuous since f is
continuous.

Proposition 1.1. Let U be an open subset of l2 and let f : U → F be G-holomorphic.
For a ∈ U and m ∈ N, let Pm

a : l2 → F be defined by

Pm
a (t) = 1

2πi

∫
|ξ|=r

f(a+ ξt)
ξm+1 dξ

where r > 0 is chosen so that a+ ξt ∈ U for all ξ ∈ ∆̄(0, r). Then:

i) Pm
a (t) is independent from the choice of r,

ii) Pm
a is m-homogeneous, i.e

∀t ∈ l2,∀µ ∈ C, Pm
a (µt) = µmPm

a (t).

Proof.
i) Let t ∈ l2 and 0 < s < r be such that a + ξt ∈ U for all ξ ∈ ∆(0, r). We have

that ∞∑
m=0

λm
∫
|ξ|=r

f(a+ ξt)
ξm+1 dξ = 2πif(a+ λt) =

∞∑
m=0

λm
∫
|ξ|=s

f(a+ ξt)
ξm+1 dξ

for every λ ∈ ∆(0, s). By identification we conclude that

∫
|ξ|=r

f(a+ ξt)
ξm+1 dξ =

∫
|ξ|=s

f(a+ ξt)
ξm+1 dξ

and then Pm
a is independent of r.

ii) For t ∈ l2 and µ ∈ C consider for r small enough the series expansion for every
λ ∈ ∆(0, r)

∞∑
m=0

λm
∫
|ξ|=s

f(a+ ξµt)
ξm+1 dξ = 2πif(a+ λµt) =

∞∑
m=0

λmµm
∫
|ξ|=s

f(a+ ξt)
ξm+1 dξ.
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Then by identification we see that Pm
a is m-homogeneous.

Theorem 1.3. Let U be a open subset of l2. Then for each mapping f : U → F the
following conditions are equivalent :

1) f is analytic,
2) f is holomorphic,
3) f is continuous and G-holomorphic.

Proof. 1) =⇒ 2) is clear from the definition.
2) =⇒ 3) is also clear.
3) =⇒ 1): Let f : U → F be a G-holomorphic and continous map. Let a ∈ U and
r > 0 such that B(a, r) ⊂ U . Take t ∈ E with ||t|| 6 1. From the G-holomorphy one
can write the expansion

f(a+ λt) =
∞∑
m=0

λm
(

1
2πi

∫
|ξ|=r

f(a+ ξt)
ξm+1 dξ

)
.

Since f is continuous there is a ball B̄(a, s) ⊂ B(a, r) and a constant c > 0 such that
for every x ∈ B(a, s) the map is bounded by c i.e. ||f(x)|| < c. Then the homogeneous
continuous polynomials are uniformly bounded∥∥∥∥∥ 1

2πi

∫
|ξ|=r

f(a+ ξt)
ξm+1 dξ

∥∥∥∥∥ 6 1
2πi

∫
|ξ|=r

||f(a+ ξt)||
rm+1 dξ 6

c

rm+1 .

This last means that for x ∈ B(a, s) the map f is analytic.

Generally in this text we prove that a map is holomorphic by proving the continuity
and the G-holomorphicity i.e. using 3) =⇒ 2).

Remark 1.3. The continuity of a G-holomorphic map to be holomorphic is important.
Consider the Hilbert space l2 and the subspace CN

0 of finite sequences, i.e (ak)k such
that ak = 0 for k > k0. Here k0 depends on the sequence. Define the linear form
φ : CN

0 → C with φ(a) = ∑
k kak. We can extend it by zero on l2, i.e. we take an

algebraic complementM to CN
0 and set φ|M = 0. Then the sequence a(p) ∈ (l2)N defined

by a(p) = {1, 1
2 , ...,

1
p
, 0, 0, ...} converges to the harmonic sequence a = {1, 1

2 ,
1
3 , ...} ∈ l

2

but for all p ∈ N
φ(a(p)) = p −→

p→+∞
+∞.

Therefore φ is not bounded on l2. But for any a, b ∈ l2 and λ ∈ C such that a+λb ∈ U
we have λ 7→ φ(a + λb) = φ(a) + λφ(b) and so the map is G-holomorphic but not
holomorphic.
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Many properties of holomorphic mappings can be derived from the corresponding
properties of holomorphic functions of finitely many complex variables. Let us give
some of them. The following weak uniqueness theorem can be derived from the finite
dimensional case.

Proposition 1.2. Let U be a connected open subset of l2 and let f ∈ O(U, F ). If f is
identically zero on a non-empty open set V ⊂ U then f is identically zero on all of U .

Proof. Let A the set of all points a ∈ U such that f is identically zero on a
neighborhood of a. Clearly A is nonempty because it contains V and A is obviously
open. Let (an)n∈N be a sequence in A wich converges to a point b ∈ U . Choose r > 0
such that B(b, r) ⊂ U and choose N ∈ N such that aN ∈ B(b, r). Let denote rN < r

the radius of the ball B(aN , rN) where f is identically zero. Let ψ ∈ Lc(F,C) be a
continuous linear form, x ∈ B(b, rN) and consider the function of one complex variable

g(λ) = ψ ◦ f(x+ λ(aN − b)).

The function g is holomorphic and is identically zero on a neighborood of 1 due to the
definition of aN and g(1) = ψ ◦f(aN +x− b). By the identity principle of one complex
variable the function g is identically zero. Since Lc(F,C) separates the points of F we
conclude that f(x) = 0 for all x ∈ B(b, rN) and hence b ∈ A. A is open and closed in
U connected then A = U .

Proposition 1.3. Let U be a connected open subset of l2 and let f ∈ O(U). If there
exists a ∈ U such that |f(x)| 6 |f(a)| for every x ∈ U then f is constant on U .

Proof. One can find a proof in [Mu]. We will give the proof later because it can
be deduced from the Maximum Principle for plurisubharmonic functions stated in the
next chapter.

Lemma 1.1. (Schwarz) Let U = B(a, r) ⊂ l2 and let f ∈ O(U, F ). Suppose that
||f(z)|| 6 c for every x ∈ B(a, r) and suppose there exists m ∈ N such that P jf(a) = 0
for every j < m. Then

||f(x)|| 6 c

(
||x− a||

r

)m
for every x ∈ B(a, r).

Proof. Let x ∈ B(a, r) and ψ ∈ Lc(F,C) be a continuous linear form such that
||ψ|| = 1. Consider then the function g of one complex variable given by:

for 0 < |λ| < r

||x− a||
, g(λ) = ψ ◦ f(a+ λ(x− a))

λm
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and g(0) = ψ ◦ Pmf(a)(x− a). The Taylor series of f at a converges to f on the ball
B(a, r). So one can write g as

g(λ) =
∞∑
j=m

λj−mψ ◦ P jf(a)(x− a)

on the disc ∆
(
0, r
||x−a||

)
. It means that g is holomorphic on that disc. Let s be a real

number such that ||x− a|| < s < r. Since ||f || 6 c on B(a, r) it follows that

for |λ| = s

||x− a||
, |g(λ)| 6 c

(
||x− a||

s

)m
.

By the maximum modulus principle this inequality is true also for |λ| 6 s/||x − a||.
Then taking λ = 1 we get that

|ψ ◦ f(x)| 6 c

(
||x− a||

s

)m
.

To conclude we let s→ r and we use a consequence of the Hahn-Banach Theorem:
if x0 6= 0 then it exists ψ ∈ F ′ such that ||ψ|| = 1 and ψ(x0) = ||x0||.

Proposition 1.4. Let U be an open subset of l2 and let f ∈ OG(U, F ). Then f is
continuous if and only if f is locally bounded.

Proof. Let f : U → F be Gâteaux-holomorphic and locally bounded. Let a ∈ U

choose r > 0 and c > 0. Such that ||f(x)|| 6 c for all x ∈ B(a, r). By applying the
Schwarz lemma to the mapping f(x)− f(a) we obtain that

∀x ∈ B(a, r), ||f(x)− f(a)|| 6 2c ||x− a||
r

.

Then f is continuous on a.

1.2 Complex Hilbert manifolds

In this section we denote by X a Hausdorff topological space which is second countable.
The latter means that the topology of X has a countable base.

Definition 1.6. A Hausdorff topological space X is called a complex Hilbert manifold
modeled over l2 if it carries an atlas {(Uα, φα, Vα)}α∈A that satisfies the following:

• {Uα}α∈A is an open covering of X and {Vα} are open subsets of l2,
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• For α ∈ A, φα : Uα → Vα is a homeomorphism from Uα to Vα,

• For α, β ∈ A such that Uα∩Uβ 6= ∅ the transition maps φα ◦φ−1
β : φβ(Uα∩Uβ)→

φα(Uα ∩ Uβ) are holomorphic.

Uα is called a coordinate chart and φα(x) a local coordinate of x.
Since we suppose X second countable we can prove following [Mu] the existence

of a partition of unity subordinated to an open covering of {Ωα}α of an open set
Ω ⊂ X . The second countability allows us to suppose that A is countable. Consider
the subspace Q0[i]N of l2 which consists of finite sequences of complex numbers with
rational real and imaginary part

Q0[i]N := {(zn = xn+iyn)n∈N ∈ CN | (xn), (yn) ∈ QN & ∃n0 ∈ N,∀n > n0, xn = yn = 0}.

For every x ∈ Q0[i]N ∩ φα(Ωα) there exists εx such that B(x, 2εx) ⊂ φα(Ωα). Then

{φ−1
α (B(x, εx)) | x ∈ Q0[i]N ∩ φα(Ωα)}

is a countable covering of Ωα and since A is countable one obtains a countable covering
{Bn}n∈N of X subordinated to {Ωα}α∈A. By the axiom of choice there is a function
τ : N → A such that Bn = φ−1

τ(n)(B(xn, εn)) ⊂ Ωτ(n). Construct a sequence of smooth
functions 0 6 fn 6 1 defined on Ωτ(n) such that

for x ∈ X , fn(x) =

1 if ||φτ(n)(x)− xn|| < εxn

0 if ||φτ(n)(x)− xn|| > 2εxn .
(1.3)

We can extend the functions fn by zero to X . Then define another sequence (ψn)n by
ψ1 = f1,

ψn = fn
∏n−1
j=1 (1− fj) if n > 2.

(1.4)

Clearly 0 6 ψn 6 1 on X and supp(ψn) ⊂ Ωτ(n) for every n. Furthermore one can
prove by induction that

ψ1 + ...+ ψn = 1−
n∏
j=1

(1− fj). (1.5)

Notice that

• From (1.5) it follows that ψ1 + ...+ ψn = 1 on Bn because fn = 1 on Bn.

• From the definition of (ψk) we see that ψk = 0 on Bn for every k > n.
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The first item guarantees that ∑n∈N ψn(x) = 1 for every x ∈ X and the second
one gives that (ψn) is locally finite on X . Construct then the partition of unity {ηα}α
subordinated to {Ωα}α∈A by:

ηα =


∑
τ(n)=α ψn if α ∈ τ(N),

0 otherwise.
(1.6)

Remark 1.4. From the partition of unity subordinated to an atlas of a complex
Hilbert manifold X one can construct an inner product gx(·, ·) on the tangent spaces
TxX smoothly depending on x as follows

∀x ∈ X ∀v, w ∈ TxX gx(v, w) =
∑
α∈A

ηα(x) < (dφα)x(u), (dφα)x(v) >.

This inner product defines on every TxX ∼= l2 a norm equivalent to the standard one on
l2, providing thus X with the structure of a Riemann Hilbert manifold. For a peicewise
smooth path γ : [a, b]→ X its length is defined as

L(γ) =
∫ b

a
‖γ′(t)‖ dt.

Then, supposing that X is connected, one defines the distance function on X :

d(x, y) := inf{L(γ) : γ is a peicewise smooth path joining p with q}.

We refer to [Lg], Proposition 6.1, for the proof that d is in fact a distance which induces
the original topology of X .

Example 1.1. An example of a complex Hilbert manifold is the projective space P(l2).
Define the equivalence relation R on l2\{0} by

∀x, y ∈ l2\{0}, xRy ⇐⇒ ∃λ ∈ C, y = λx.

Then we define the projective space by P(l2) := (l2\{0}) /R. For z ∈ l2\{0} we denote
by [z] the corresponding point in P(l2). To show that this space is a complex Hilbert
manifold we need to construct an atlas.

Consider Ωj := {[z] ∈ P(l2) | zj 6= 0} and let φj : Ωj → l2 be defined by φj([z]) =
{ zk
zj
}k∈N\{j}. Then {Ωj}j∈N is an open covering of P(l2), {φj}j∈N are homeomorphisms,

and the transition maps φl ◦ φ−1
j : φj(Ωj)→ φl(Ωl) given by

φl ◦ φ−1
j (z) =

(
z0

zl
,
z1

zl
, ...,

zj−1

zl
,

1
zl
,
zj
zl
, ...,

zl−1

zl
,
zl+1

zl
, ...
)
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are holomorphic on φj(Ωj).

In order to describe all the tools used in this thesis we give the definition of Hilbert
bundles.

Definition 1.7. A fiber bundle (E ,B, π,F) consist of

• a topological space E called the total space,

• a topological space B called the base space,

• a continuous surjective map π : E → B called the projection map,

• a topological space F called the fiber.

The map π is asked to satisfy the following constraint:
there exists a collection {(Uα, hα)}α∈A called a trivialisation cover, where the col-

lection {Uα}α∈A is an open cover of B and for each α ∈ A a homeomorphism

hα : π−1(Uα)→ Uα ×F

such that the following diagram is commutative:

π−1(Uα) hα //

π

&&

Uα ×F
pr1
��
Uα

∀(b, v) ∈ Uα ×F , π ◦ h−1
α (b, v) = b.

In the diagram pr1 denotes the projection on the first factor. We call the fiber over
b ∈ B the set Fb := π−1({b}) ≈ F . When E ,B and F are Hilbert manifold and π is
a smooth surjective submersion we call (E ,B, π,F) a Hilbert fiber bundle. When F is
discrete we say that E is an unramified cover of B.

One can add a special structure of the bundle that we call S-bundle for S a structure
like smooth, holomorphic or Sobolev structures. As in this thesis we work with complex
manifolds and holomorphic maps we will be more specific by defining an holomorphic
Hilbert bundle.

Definition 1.8. (E ,B, π,F) is called a holomorphic Hilbert fiber bundle if E, F and B
are complex Hilbert manifolds and π : E → B is a holomorphic surjective submersion
map satisfying a local trivialisation condition i.e.
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there exists a collection {(Uα, hα)}α∈A called a trivialisation cover where the col-
lection {Uα}α∈A is an open cover of B and for each α ∈ A, a biholomorphism

hα : π−1(Uα)→ Uα ×F

such that the following diagram is commutative:

π−1(Uα) hα //

π

&&

Uα ×F
pr1
��
Uα

∀(b, v) ∈ Uα ×F , π ◦ h−1
α (b, v) = b.

Example 1.2. The first example one can give of a Hilbert bundle is the trivial bundle.
Let B and F be Hilbert manifolds and consider the total space E := B × F and the
projection map given by the natural projection on the first factor.

When we take two local trivialisations (Uα, hα) and (Uβ, hβ) we have that

hαβ := hα ◦ h−1
β : (Uα ∩ Uβ)×F → (Uα ∩ Uβ)×F

is a biholomorphism that acts on the fiber F . Then the collection of {hαβ} satisfies a
cocyle condition:

• for any α ∈ A, hαα = IdUα×F on Uα ×F ,

• for any α, β ∈ A, h−1
αβ = hβα on (Uα ∩ Uβ)×F ,

• for any α, β, γ ∈ A, hαβ ◦ hβγ ◦ hγα = IdUαβγ×F on Uαβγ × F where Uαβγ =
Uα ∩ Uβ ∩ Uβ.

All these biholomorphisms are called transition maps and form the structure group of
the fiber F . Given a collection of transition maps {hαβ} one can retrieve a bundle with
these transition maps. An outline of this construction is as follows: Let E be defined
by

E :=
⋃
α∈A

Uα ×F

equipped with the natural product topology. Define an equivalence relation in E by
setting

(b, v) ∼ (c, w) for (b, v) ∈ Uβ ×F and (c, w) ∈ Uα ×F

if and only if
c = b and w = hαβ(b, v).
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The fact that this is a well-defined equivalence relation is a consequence of the
cocyle condition given previously. Then consider Ẽ := E/ ∼ equipped with the quotient
topology. Let π : Ẽ → B be the mapping which sends a representative (b, v) of a point
of Ẽ into the first coordinate. Then Ẽ is a fiber bundle.

From the definition of a fiber bundle one can see that a group appears describing
the matching conditions between overlapping local trivialization charts. In fact the
mapping hαβ : (Uα ∩ Uβ)×F → (Uα ∩ Uβ)×F can be written by

hαβ(x, v) = (x, tαβ(x)v)

where x 7→ tαβ(x) is a continuous map. For any x ∈ X, the set {tαβ(x)} forms a group
G that acts continuously on the fiber π−1({x}) ≈ F and is called the structure group.
When the structure group have specific properties, one can define the following.

Definition 1.9. Let G be a topological group. A principal G-bundle is a fiber bundle
(E ,B, π,F) together with a continuous action G×E → E that preserves the fibers and
such that is free and transitive on the fibers Fb, i.e every b ∈ B has a neighborhood
U ⊂ B and there is a trivialization U × G → E|U under wich the action of g ∈ G on
U ×G,

U ×G 3 (β, h) 7→ (β, gh) ∈ U ×G

and on E|U correspond.

Since the group action is free and transitive we can identify the fiber F with the
group G. From the definition, the elements {tαβ} satisfy the same cocycle conditions
as {hαβ}.

Definition 1.10. Let (E ,B, π,F) and (E ′,B, π′,F ′) be two Hilbert bundles. A bundle
homomorphism is a morphism Φ : E → E ′ such that it preserves the fibers, i.e. for any
b ∈ B, Φ maps the fiber Fb to F ′b.

E Φ //

π

��

E ′

π′��
B

Then a bundle isomorphism is a bundle homomorphism which is an isomorphism
between the total spaces. By abuse of language a fiber bundle is said to be trivial if
there is a bundle isomomorphism between the fiber bundle and the trivial bundle. In
the context of holomorphic Hilbert bundles we require that every isomorphism is a
biholomophism to say that a bundle is holomorphically trivial.
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Definition 1.11. Let (E,F, π,B′) be a fiber bundle and f : B → B′ a map. The
"pullback" bundle of E is defined by the set

f ∗E := {(b, e) ∈ B′ × E | f(b) = π(e)}

equipped with the projection pr : f ∗E → B given by pr(b, e) = b. One obtains that
(f ∗E,F, pr, B) is a fiber bundle called the pullback bundle.

f ∗E E

B B′

pr π

f

When the fiber F is a vector space, we call E a vector bundle.
A section of a fiber bundle (E ,B, π,F) is a continuous map σ : B → E that satisfies

the condition
π ◦ s = IdB.

It means that σ sends a point b in the base space into the fiber over that point, i.e
π−1({b}). In the literature the space of sections is denoted oftenly by Γ(B, E) and when
the sections are holomorphic we denote it by O(B, E). Since fiber bundles do not have
in general globally defined sections we deal with local sections over an open set U ⊂ B.

Definition 1.12. A local section of a fiber bundle (E ,B, π,F) over an open set U ⊂ B
is a continuous map σ : U → E satisfying the condition

π(σ(x))) = x for all x ∈ U.

Definition 1.13. Let X and Y be two topological spaces. Let f : X → Y and g : X →
Y be two continuous functions. We say that f and g are homotopic if there exists a
continuous function H : X × [0, 1]→ Y such that H(·, 0) = f and H(·, 1) = g.

We say that a topological space X is contractible if the identity map Id : X → X

is homotopic to some constant map.

Theorem 1.4. (Kuiper cf [Ku]) For any infinite dimensional separable Hilbert space
H the group GL(H) of invertible linear operators on H is contractible.

The idea of the proof is to squeeze the space to a finite dimensional simplex and
to glue carefully using a partition of unity, see [Ku].

This theorem implies that any vector bundle over a compact space X with GL(H)
as structure group is topologically trivial. The idea is to use the following lemma.
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Lemma 1.2. A G-principal bundle (E, π, F,B) is trivial if and only if it admits a
global section.

Proof. If E ∼= B×F then any constant section s : B → B×F can do it. Reciprocally,
let s : B → E be a global section. Fix some y ∈ F and define φ : E → B × F

by φ(e) = (π(e), ge(y)) where ge is the element of the structure group G that acts
on F such that ge(s ◦ π(e)) = e. This ge continuously depend on e since in local
trivialization equation ge(s ◦ π(e)) = e becomes ge · (s ◦ π(e)) = e and can be solved as
ge = (s ◦ π(e))−1e. Since G acts continuously and freely φ is an isomorphism.

Let (E, π, F,B) be a fiber bundle with contractible fiber F . We have a homotopy
H : F × [0, 1] → F such that H(·, 0) = IdF and H(·, 1) = f an element of F . Let
us consider the fiber bundle E × [0, 1]. Then we can define a section sα on the chart
Uα × [0, 1] by

sα(b, t) = h−1
α

(
b,H

(
hα ◦ s(b), t

))
.

Since on Uα ∩ Uβ the sections sα(·, 1) coincide with sβ(·, 1) one can define a global
section on B. Then E×{1} is trivial. Considering now the map p1 : B×[0, 1]→ B×{1}
and p0 : B × [0, 1]→ B × {0} we have that

E × {0} ≈ p∗0(E) ≈ p∗1(E) ≈ B × F × {1}.

Then the fiber bundle is trivial.

1.3 Trivialization of a 1-cochain

To finish this chapter the last tool we need is the notion of a cochain. Let D be a
complex manifold and U := {Uj}j∈J be a covering of D by open subsets. There is a
notion of p-cochain for any integer p but as in the latter we just need the case p = 0
and 1 we just give it for those special cases.

Remark 1.5. In this thesis we will essentially work with holomorphic G-valued maps
with G = (L(l2),+) the group of operators in l2 with the addition operations or with
G = (GL(l2), ◦) the group of invertible operators of l2 with the composition.

Definition 1.14. Let C0(U ,G) be the multiplicative group of all collections {fj}j∈J
of holomorphic functions fj ∈ G(Uj). The collection {fj}j∈J is called 0-cochain on U
with coefficent in the sheaf G of GL(l2)-valued holomorphic maps.



1.3. TRIVIALIZATION OF A 1-COCHAIN 33

Definition 1.15. We define a 1-cochain C1(U ,G) as a collection {fij} where fij ∈
G(Ui ∩ Uj). We denote by Z1(U ,G) the group of 1-cochains satisfying the cocycle con-
dition:

• for any i, j ∈ J such that Ui ∩ Uj 6= ∅ we have fji = f−1
ij on Ui ∩ Uj,

• for any i, j, k ∈ J such that Ui ∩ Uj ∩ Uk 6= ∅ we have fij ◦ fjk = fik.

where f−1
ij corresponds to the inverse of fij in the group (GL(l2), ◦), i.e. fij ◦ f−1

ij = Id
with Id : Ui ∩ Uj → GL(l2) the constant map equal to IdGL(l2). We call an element of
Z1(U ,G) a 1-cocycle or simply a cocycle.

Definition 1.16. The coboundary homomorphism δ : C0(U ,G) → C1(U ,G) is defined
by

δ({fj}j∈J) := {fi ◦ f−1
j }.

Remark 1.6. For this last case we can give the same previous definitions by replacing
the group (GL(l2), ◦) by the group (L(l2),+).

One can remark that δ(C0(U ,G)) ⊂ Z1(U ,G). Then we can define the first Cech
cohomology group H1(U ,G) of the covering U with coefficients in the sheaf G by the
quotient

H1(U ,G) := Z1(U ,G)/δ(C0(U ,G)).

Definition 1.17. A finite dimensional complex manifold X is called a Stein manifold
if it satisfies the following conditions:

i) X is holomorphically convex i.e for every compact subset K ⊂ X, K̂ is also
compact where K̂ := {x ∈ K | ∀f ∈ O(X), |f(x)| 6 supK |f |},

ii) X is holomorphically separable, i.e for x, y ∈ X if x 6= y then there exists
f ∈ O(X) such that f(x) 6= f(y),

iii) For any x ∈ X there exist function f1, ..., fn ∈ O(X), n = dim(X), whose
differentials dfj are C-linearly independant at p.

Roughly speaking Stein manifolds generalize the notion of domain of holomorphy
that corresponds to the biggest domain where one can extend a holomorphic map.
Stein manifolds have some good properties and generalise the euclidian case Cn.

In the following chapters, we will need at some point to trivialize cocycles. This
is a result due to Grauert [G]. The first stage is the one dimensional case known as
Cartan’s lemma.
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Theorem 1.5. (Cartan’s lemma [Bu]) Let a < c < b < d and h < l be real numbers.
Consider the closed rectangles R1 = [a, b]× [h, l] and R2 = [c, d]× [h, l] and let R0 :=
R1 ∩R2 = [c, b]× [h, l]. Let f be a GL(l2)-valued holomorphic map on a neighborhood
of R0. Then there exist f1 and f2 GL(l2)-valued holomorphic maps defined respectively
on R1 and R2 such that

f(z) = f1(z) ◦ f2(z)−1 for z ∈ R0.

  

a bc d

h

l

R₁ 

R₂ 

R₀ 7 cm

7 cm

One can extend this result to cubes in Cn and now from the contractibility of the
structure group GL(l2), see theorem 1.4, and the result of Grauert [G] stating the
correspondance between holomorphic and topological vector bundles we can state the
following theorem that reflects a specifically infinite dimensional feature of Hilbert
bundles, see [Bu].

Theorem 1.6. Let D be a Stein manifold and E a holomorphic GL(l2)-principal bundle
over D. Then E is holomorphically trivial and moreover if U = {Uα} is a locally
finite Stein covering of D then for every cocyle f ∈ Z1(U ,G) there exists a cochain
c ∈ C0(U ,G) such that δ(c) = f .

Here G is the sheaf of holomorphic mappings with values in the group of invertible
operators on l2. For the proof we refer to [Bu].



Chapter 2

Existence of 1-complete
neighborhoods

2.1 Plurisubharmonic functions

Definition 2.1. Let D be a topological space. A function f : D → [−∞,∞[ is said to
be upper semicontinuous if the set {m ∈ D | f(x) < c} is open for each c ∈ R.

Definition 2.2. Let U be an open subset of l2. A function f : U → [−∞,∞[ is said
to be plurisubharmonic if f is upper semicontinuous and

f(a) 6 1
2πi

∫ 2π

0
f(a+ eiθb)dθ

for each a ∈ U and b ∈ l2 such that a+ ∆̄b ⊂ U .

We shall denote by PSH(U) the set of plurisubhamonic functions and by PSHc(U)
the set of plurisubharmonic continuous functions on U . We simply say subharmonic
functions for the one dimensional case.

Example 2.1. For f ∈ O(U) we have that <e(f),=m(f), |f | belong to PSH(U).

Proposition 2.1. Let U be an open subset of l2.

i) If f, g ∈ PSH(U) and α, β are non-negative constants then αf +βg ∈ PSH(U).

ii) If fj ∈ PSH(U) for every j ∈ J such that supj∈J fj < ∞ on U and is upper
semicontinuous on U then supj∈J fj ∈ PSH(U).

iii) Let f : U → [−∞,∞[ be upper semicontinuous. Then f is plurisubharmonic
if and only if the restriction of f to U ∩ H is plurisubharmonic for each finite
dimensional subspace H of l2.

Proof. see [Mu]

Theorem 2.1. (Maximum principle for plurisubharmonic function)
Let U be a connected open set in l2 and let f ∈ PSH(U).

35
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i) If there exists a ∈ U such that f(x) 6 f(a) for every x ∈ U then f(x) = f(a)
for every x ∈ U .

ii) If f ≡ −∞ on a non empty open susbet of U then f ≡ −∞ on U .

Proof.

i) Let us consider the set A := {x ∈ U | f(x) = f(a)}. The set A coincide U\{x ∈
U | f(x) < f(a)}. Since f is upper semicontinuous it is closed.

Let b ∈ A and let r > 0 such that B(b, r) ⊂ U . Take x in B(b, r) such that
f(x) < f(a). The upper semicontinuity of f allows to find ε > 0 such that
B(x, ε) ⊂ B(a, r) and f(y) < f(a) for every y ∈ B(x, ε). Then

1
2πi

∫ 2π

0
f
(
b+ eiθ(x− b)

)
dθ <

1
2π

∫ 2π

0
f(a)dθ = f(a) = f(b)

This is a contradiction. Then B(b, r) ⊂ A and A is open, hence A = U .

ii) Let A be the set of all a ∈ U such that f ≡ −∞ on a neighborhood of a. By
hypothesis A is a non empty open set. Let (an)n∈N be a sequence in A which
converges to a point a ∈ U . Take r > 0 such that B(a, r) ⊂ U and then take
N ∈ N such that aN ∈ B(a, r) and choose ε > 0 such that B(aN , ε) ⊂ B(a, r)
and f ≡ −∞ on B(aN , ε). Since x + (aN − a) ∈ B(aN , ε) for x ∈ B(a, ε), it
follows that

f(x) 6 1
2π

∫ 2π

0
f
(
x+ eiθ(aN − a)

)
dθ = −∞.

Therefore f(x) = −∞ for x ∈ B(a, ε). So a ∈ A and A is closed. Therefore
A = U .

Let f : U → F be a holomorphic map from an open connected subset U of l2 to a
complex Hilbert space F . By corollary 31.6 in [Mu], ||f || is PSH on U . This implies the
maximum principle for Hilbert valued holomorphic maps. Let V be an open bounded
subset of l2 and f be an F -valued holomorphic map defined in a neighborhood of V̄ ,
then

sup
z∈V
||f(z)||F = sup

z∈∂V
||f(z)||F . (2.1)

When the plurisubharmonic functions are of class C2, one can characterize them with
the second differential. Let recall first what is a function of class C2.

Definition 2.3. Let U be an open set of l2. A function f : U → R is said to be
twice R-differentiable if f is R-differentiable and the differential df : U → Lc(l2,R) is
differentiable as well. Here Lc(l2,R) denotes the space of continuous R-linear forms
on l2.
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Then the differential of the mapping df at point a ∈ U is called the second differ-
ential of f at a and will be denoted by d2fa. A function f is said to be in C2(U,R)
if the map a 7→ d2fa is continuous. Thus d2fa can be regarded as an element of
Lc(l2,Lc(l2,R)) which is isometric to Lc(l2 × l2,R) provided the spaces in question
equipped with the natural norms. More precisely, for A ∈ Lc(l2,Lc(l2,R)) set

||A||op = sup
‖x‖l2=1

‖Ax‖op = sup
‖x‖l2=1

sup
‖y‖l2=1

| < y,Ax > | = sup
‖x‖,‖y‖l2=1

| < y,Ax > |, (2.2)

and for A ∈ Lc(l2 × l2,R) the standard norm is, see [Mu]

‖A‖ = sup
‖x‖l2 ,‖y‖l2=1

|Axy|. (2.3)

We see that (2.2) and (2.3) are equal because we view an operator A as a bilinear
form Axy =< y,Ax >. Moreover an analog of the Schwarz theorem gives that d2fa is
symmetric.

Theorem 2.2. Let U be an open set of l2 and f : U → R be a twice differentiable
function. Then the bilinear function d2fa is symmetric for each a ∈ U , i.e

∀v, w ∈ l2, d2fa(v, w) = d2fa(w, v).

Proof. see [Mu].

Then one can write the expansion of order two for a function f ∈ C2(U,R)

∀a ∈ U,∀v ∈ l2, f(a+ v) = f(a) + dfa(v) + 1
2 d2fa(v, v) + o(‖v‖2).

The characterization of subharmonicity in the one dimensional case is given by the
following.

Proposition 2.2. Let U be an open subset of C. Then for each function f ∈ C2(U,R)
the following condition are equivalent:

i) f is subharmonic on U ,

ii) 4 ∂2f
∂z∂z̄

= ∂2f
∂x2 + ∂2f

∂y2 > 0 on U ,

iii) For each a ∈ U the integral

M(r) = 1
2π

∫ 2π

0
f(a+ reiθ)dθ (r > 0)

is an increasing function of r.
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Proof.
i) =⇒ ii): Let ∆̄(a, r) ⊂ U be the complex disk centered in a with radius r. We

define a function u : [0, r]→ R by

u(ε) =
∫ 2π

0

(
f(a+ εeiθ)− f(a)

)
dθ.

Since f is subharmonic u(ε) > 0 for every ε ∈ [0, r]. We compute the expansion of u
at 0 :

u(ε) =
∫ 2π

0 2<e
(
∂f
∂z

(a)εeiθ
)
dθ +

∫ 2π
0 <e

(
∂2f
∂z2 (a)ε2ei2θ

)
dθ +

∫ 2π
0

∂2f
∂z∂z̄

(a)ε2dθ + o(ε2)

= 2π ∂2f
∂z∂z̄

(a)ε2 + o(ε2). Then ∂2f
∂z∂z̄

(a) > 0 for every a ∈ U .
ii) =⇒ iii) : By deriving under the integral, one can compute M ′ and M ′′ and see

that
M ′′(r) + 1

r
M ′(r) = 4

∫ 2π

0

∂2f

∂z∂z̄
(a+ reiθ)dθ > 0.

Thus (rM ′(r))′ > 0 and r 7→ rM ′(r) is an increasing function. Since M ′(0) > 0 we
can conclude that M ′(r) > 0 for every r > 0.

iii) =⇒ i): It is clear.

The item ii) points out the term ∂2f
∂z∂z̄

. In order to generalize this to several variables
one can take the complex Hessian of f in a ∈ U ⊂ l2 which is given in the standard
basis of l2 by the Hermitian matrix

Hf (a) :=
(

∂2f

∂zj∂z̄k
(a)
)
j,k∈N

.

One can define a Hermitian quadratic form associated to this Hermitian matrix
called the Levi form.

Definition 2.4. Let U be an open set of l2 and f ∈ C2(U,C). The Levi form of f at
point a ∈ U is defined by:

∀v ∈ l2, Lf,a(v) = (∂∂̄f)a(v, v).

Moreover one can compute for f ∈ C2(U,R) and g ∈ O(V, l2) with g(V ) ⊂ U ⊂ l2 that

Lf◦g,a(v) = ∂∂̄(f ◦ g)a(v, v) = (∂∂̄f)g(a)
(
∂gav, ∂gav

)
= Lf,g(a)(∂gav). (2.4)

Let U be an open subset of a Hilbert manifold X and (Ωα, φα) be an atlas of X .
Let f be in C2(U,R) and (Ωα, φα) be a chart containing a point a. Since φβ ◦ φ−1

α

is holomorphic for any chart Ωβ containing a, we can choose f, g, v and a replaced
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respectively by f ◦ φ−1
α , φβ ◦ φ−1

α ,(dφα)av and φα(a) in equation 2.4 to obtain:

Lf◦φ−1
α ,φα(a)

(
(dφα)av

)
= Lf◦φ−1

β
◦φβ◦φ−1

α ,φα(a)

(
(dφα)av

)
= Lf◦φ−1

β
,φβ(a)

(
d(φβ ◦ φ−1

α )φα(a)(dφα)av
)

= Lf◦φ−1
β
,φβ(a)

(
(dφβ)av

)
.

Remark 2.1. For U an open subset of a Hilbert manifold X and f ∈ C2(U,R) the
Levi form is given by

∀a ∈ U ∀v ∈ TaX Lf,a(v) = (∂∂̄f)a(v, v).

Proposition 2.3. Let U be an open subset of l2 and let f ∈ C2(U,R). Then f is
plurisubharmonic on U if and only if the Levi form Lf,a is positive for each a ∈ U , i.e

Lf,a(v) > 0 for each a ∈ U and v ∈ l2.

Proof. Given a ∈ U and v ∈ l2 we define the function u(ξ) = f(a + ξv) for
ξ ∈ ∆(0, r) a suitable disk in C. Then

∂2u

∂ξ∂ξ̄
(ξ) = (∂∂̄f)a+ξv(v, v) = Lf,a+ξv(v).

We can conclude by theorem 2.2 that if Lf,a+ξv is positive then f is subharmonic
for any direction and the plurisubharmonic. Conversly the plurisubharmonicity of f
implies that for all a and v the term ∂2u

∂ξ∂ξ̄
is positive so the Levi form is positive.

Definition 2.5. Let U be an open subset of l2. A function f ∈ C2(U,R) is said to
be strictly plurisubharmonic on U if the Levi form Lf,a is positive definite for every
a ∈ U , i.e

Lf,a(v) > 0 for each a ∈ U and v ∈ l2\{0}.

We have the following lemma in the finite dimensional case.

Lemma 2.1. Let U be an open subset of Cn, and let f be a strictly plurisubharmonic
function on U of class C2. Then there exists a positive function c ∈ C0(U,R) such that

Lf,a(v) > c(a)||v||2 ∀v ∈ l2.

Proof. Let (Uj)j∈N be an increasing sequence of relatively compact open sets whose
union is U . Since f is strictly plurisubharmonic on each Uj+1 ⊃ Uj , it follows that for



40 CHAPTER 2. EXISTENCE OF 1-COMPLETE NEIGHBORHOODS

every j ∈ N
cj := inf{Lf,a(v) | a ∈ Ūj, v ∈ l2 with ‖v‖ = 1} > 0.

Now one can construct continuous functions (ηj)j∈N such that

∀j ∈ N, ηj ≡ 1 on Uj and supp(ηj) ⊂ Uj+1.

Define functions (ψj)j∈N by
ψ1 = η1,

ψn = ηn
∏n−1
j=1 (1− ηj) if n > 2.

and consider the function
c := 1∑

j∈N
1
cj
ψj
.

Then the function c is continuous and

∀a ∈ Uj+1\Uj,∀v ∈ l2\{0}, Lf,a
(
v

‖v‖

)
> cj > c(a).

Unfortunately, this lemma is not true on l2. Take for example the function f defined
by f(z) = ∑∞

j=1
|zj |2
j

for z ∈ l2. The Levi form on a point a ∈ l2 is

∀v ∈ l2, Lf,a(v) =
∞∑
j=1

1
j
|vj|2,

and this cannot be bound from below by c||v||2.
To finish this section we recall that a function u : U → R with U ⊂ X an open

subset of a complex Hilbert manifold X is called strictly plurisubharmonic if for every
coordinate chart φj : Ωj → Uj ⊂ l2 the composition u◦φ−1

j is strictly plurisubharmonic
in Uj.

2.2 Pseudoconvexity and pseudoconcavity

In the theory of functions of several complex variables pseudoconvex sets are important
as they help to characterize domains of holomorphy.

Definition 2.6. Let D be a domain with C2 boundary in a complex Hilbert manifold
X . Let a ∈ ∂D and U ⊂ X be a neighborhood of a. A function f : U → C of class C2
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with ∇af 6= 0 is called a local defining function if the set D near a is given by:

D ∩ U = {z ∈ U | f(z) < 0}.

Definition 2.7. D is called pseudoconvex at a boundary point a if there exists a local
defining function near a such that the Levi form is non negative defnite. D is called
strongly pseudoconvex if the Levi form for some local defining function at a boundary
point a is positive definite.

This notion does not depend on local coordinates.

Definition 2.8. D is called pseudoconvex if it is pseudoconvex at all boundary points.

Definition 2.9. D is called q-pseudoconcave at a boundary point a if there exists a
q-dimensional subspace V ⊂ T ca∂D on which the Levi form of some defining function
is negative definite.

In order to define 1-complete neighborhoods, we introduce first some terminology.
By a closed coordinate ball we shall mean a closed subset B̄ of X such that there exists
coordinate chart (Uα, φα, Vα) with

1) B̄ ⊂ Uα and B̄∞ ⊂ Vα where B̄∞ is the closed unit ball in l2,

2) B̄ = φ−1
α (B̄∞).

In this situation B := φ−1
α (B∞) will be called an open coordinate ball or simply a

coordinate ball.

Definition 2.10. Let K be a compact in X . By a 1-complete neighborhood of K we
understand an open set U ⊃ K such that

i) U is contained in a finite union of open coordinate balls centered at points of K,
i.e.

U ⊂
n⋃

α=1
Bα with Bα = φ−1

α (B∞) and φ−1
α (0) = kα ∈ K,

ii) U possesses a strictly plurisubharmonic exhaustion function ψ : U → [0, t0), i.e.

– for every t < t0 one has that ψ−1 ([0, t)) ⊂ U .

We highlight the fact that all closures are taken in the topology of X .
The usual definition of a 1-complete manifold V in finite dimension is that there

should exist a strictly psh. function ψ on V such that for every c ∈ R the set
ψ−1((−∞, c)) is relatively compact in U . Equivalently one can say that there should
exist a str.psh. ψ : U → [0,+∞) such that for every c ∈ R+ the set ψ−1([0, c)) is
relatively compact in U . If ψ takes values in [0, t0) one can compose it with 1

t0−t to
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get a exhaustion function from U → [0,+∞). As for relative compactness condition

it can be replaced by the following condition in the case when we are dealing with
neighboorhoods of a compact set, say K, in some finite dimensional X. Take first a
relatively compact neighborhood U of K and then say that U is 1-complete if there
exist a str.psh. ψ : U → [0,+∞) such that for every c ∈ R+ the closure in X of the
set ψ−1([0, c)) is contained in U . In Hilbert case “relative compactness” U is replaced
by the condition that U is contained in a finite union of interiors of closed coordinate
balls.

Therefore for the neighborhoods of compacts our definition agrees with the stan-
dard one in finite dimensional case.

2.3 Main theorem

The first main theorem of this thesis is the existence of one complete neighborhoods,
i.e Theorem 2.3 from the introduction. This will be done following the original idea of
H. Royden from [Ro].

By an analytic q-disk in a complex Hilbert manifold X we understand a holo-
morphic mapping φ of a neighborhood of a closure of a relatively compact strongly
pseudoconvex domain D b Cq into X . We shall denote the image φ(D̄) by Φ. We say
that Φ is imbedded if φ is an imbedding in a neighborhood of D̄.

We choose r > 0 such that φ extends as an imbedding to a 2r-neighborhood of D,
i.e to D2r := {z ∈ Cq : d(z,D) < 2r}.

Theorem 2.3. Let φ : D̄ → X be an imbedded analytic q-disk in a complex Hilbert
manifold X . Then φ(D̄) has a fundamental system of 1-complete neighborhoods.

Remark 2.2. This theorem holds true for polydiscs as well. The point is that we
suppose that φ is holomorphic in a neighborhood of the closure of a relatively compact
domain D. Now suppose that the closure of a relatively compact pseudoconvex (but
not necessarily strongly) domain B b Cq possesses a fundamental system of str. ps.
convex neighborhoods, say {Dk} (a polydisc is certainly such). If φ : B̄ → X is a
holomorphic imbedding in a neighborhood of B̄ then it will be such in a neighborhood
of all D̄k for k >> 1. Now given a neighborhood U of φ(B̄) take k such that φ(D̄k) ⊂ U

and find by Theorem 2.3 a 1-complete neighborhood Vk of φ(D̄k) such that Vk ⊂ U .
Then {Vk} will be a fundamental system of 1-complete neighborhoods of φ(B̄).

Step 1: Redressing of the coordinates
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Lemma 2.2. Let φ : Bq(a, ε)→ X be a holomorphic map of a ball centered at a ∈ Cq

into a complex Hilbert manifold X such that daφ : Cq → TbX is injective, here b = φ(a).
Then one can find a coordinate chart (V, h) in a neighborhood of b such that:

i) V is mapped by h onto a neighborhood V ′ of the point (a, 0) ∈ l2 with h(b) =
(a, 0). If z = (z1, ..., zq), w = (wq+1, , , , ) are standard coordinates in l2 then
V ′ = {(z, w) ∈ l2 : ||z − a|| < δ, ||w|| < δ} for an appropriate δ > 0.

ii) The map h ◦ φ : φ−1(V )→ V ′ is given by (h ◦ φ)(z1, ..., zq) = (z1, ..., zq, 0, ...).

Proof. Take some coordinate chart (V1, h1) in a neighborhood of b in X . Choose a
frame {vi}∞i=1 in l2 in such a way that:

(a) daφ(ei) = vi, i = 1, ...q, for the standard basis e1, ..., eq of Cq,

(b) span {v1, ..., vq} is orthogonal to span {vq+1, ...}.

Let z′ = (z′1, ..., z′q), w′ = (w′q+1, ...) be affine coordinates in l2 which correspond to
the frame {vi} and such that h1(b) = (a, 0) in these coordinates. Write h1◦φ = (φ1, φ2)
in coordinates (z′, w′). One has d(z′1,...,z′q)

d(z1,...,zq)(0) = 1q due to (a). By the implicit function
theorem there exist neighborhoods U 3 a in Cq and V2 3 a in L = span{v1, ..., vq}
such that φ1 : U → V2 is a biholomorphism. U can be taken of the form {||z−a|| < δ}
for an appropriate δ > 0.

Therefore φ(U) is a graph w′ = ψ(z′) over V2. Make a coordinate change h2 :
(z′ , w′)→ (z′′ = z

′
, w
′′ = w

′−ψ(z′)) to get that (h2◦h1)◦φ has the form z → (φ1(z), 0).
Finally make one more coordinate change (z′′ , w′′) → (z = φ−1

1 (z′′), w = w
′′) to get

the final chart (V, h) with (h ◦φ)(z) = (z, 0). V ′ can be taken to have the form U ×V3

where V3 = {w, ||w|| < δ} for an appropriate δ > 0 (for that one might need to shrink
V2 and therefore U). Lemma 2.2 is proved.

Remark 2.3. U was chosen to be a ball. Note that it can be chosen to be a cube as
well. Remark also that V ′ can be taken in the form of a product V ′ = U × V ′′, where
V ′′ is a Hilbert ball (V ′′ = V3 in the notations of the proof of Lemma 2.2).

Step 2: Trivializaion of the infinitesimal neighborhood.
Denote by Dr := {z ∈ Cq | d(z,D) < r} the r-neighborhood of D. Cover φ(Dr)

with a finite collection of coordinate neighborhoods {(Vα, hα)}Nα=1 with centers at aα as
in Lemma 2.2. Denote by zα, wα the corresponding coordinates in V ′α = Uα× V

′′
α ⊂ l2.

Note that zα glues to a global coordinate z on D. Denote by Jα,β the Jacobian matrix
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of the coordinate change (zα, wα) = (hα ◦ h−1
β )(zβ, wβ). Since hα ◦ h−1

β (z, 0) = (z, 0) we
see that the jacobian Jα,β of φα ◦ φ−1

β has the form

Jα,β(z, 0) =
Iq Aα,β(z)

0 Bα,β(z)

 . (2.5)

By construction the operator valued functions Bα,β form a multiplicative cocycle, i.e
they are the transition functions of an appropriate vector l2-bundle overDr (the normal
bundle to f(Dr)). Indeed
Iq Aα,β(z)

0 Bα,β(z)

 ·
Iq Aβ,γ(z)

0 Bβ,γ(z)

 =
Iq Aβ,γ(z) + Aα,β(z)Bβ,γ(z)

0 Bα,β(z)Bβ,γ(z)

 =
Iq Aα,γ(z)

0 Bα,γ(z)


(2.6)

This bundle is trivial by Theorem 1.6 and therefore one can find holomorphic operator
valued functions Bα : Uα → End(l2) such that Bα,β = Bα ◦ B−1

β on Uα ∩ Uβ. Make a
coordinate change in Vα as follows: z̃α = zα and w̃α = Bα(zα)−1wα. Then in the new
coordinates the Jacobian matrix of the coordinate change (when restricted to wβ = 0)
will have the form

Jα,β(z; 0) =
Iq Aα,β(z)

0 I∞

 (2.7)

for some Aα,β(z). Notations for coordinates (zα, wα) and charts (V ′α = Uα × V
′′
α , hα)

will be not change at this stage.

  

-1

β

Figure 2.1: z = (z1, ..., zq) serves as common coordinate for all charts in this step.
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Transition mappings between new coordinate charts have the form


zα = zβ +

∞∑
n=1

Anα,β(wβ),

wα = wβ +
∞∑
n=2

Bn
α,β(wβ),

(2.8)

where Anα,β (resp. Bn
α,β) are holomorphic functions of zβ = z ∈ Uα ∩ Uβ with values in

the spaces of continuous n-homogeneous vector valued polynomials on wβ. We shall
use the standard notations as follows, see [Mu]. For a n-homogeneous polynomial
Bn we denote as B̂n the (unique) symmetric n-linear form defining Bn, i.e. such that
Bn(w) = B̂n(w, ..., w︸ ︷︷ ︸

n−times

) =: B̂wn. According to the same standard notations when writing

B̂nulvk one means B̂n(u, ..., u︸ ︷︷ ︸
l−times

, v, ..., v︸ ︷︷ ︸
k−times

), n = l + k. Our goal in what follows is to

eliminate the terms Bn
α,β. Note that on Uα ∩ Uβ ∩ Uγ one has

wα = wβ +
∞∑
n=2

Bn
α,β(wβ) = wγ +

∞∑
n=2

Bn
β,γ(wγ)+

+
∞∑
n=2

Bn
α,β

(
wγ +

∞∑
m=2

Bm
β,γ(wγ)

)
= wγ +

∞∑
n=2

Bn
α,γ(wγ).

Therefore
∞∑
n=2

Bn
α,γ(wγ) =

∞∑
n=2

Bn
β,γ(wγ) +

∞∑
n=2

Bn
α,β

(
wγ +

∞∑
m=2

Bm
β,γ(wγ)

)
. (2.9)

This gives for every degree N ≥ 2 of homogenuity the following finite relation between
homogeneous polynomials of degree N

BN
α,γ(wγ) = BN

β,γ(wγ) +
∑

(m−1)k+n=N
Ck
n−kB̂

n
α,βw

n−k
γ Bm

β,γ(wγ)k. (2.10)

In the right hand side of 2.10 we have the term BN
β,γ(wγ) and terms in the sum with

k ≥ 0. Each of this terms should have the right degree of homogenuity equal to N ,
which gives only a finite number of possibilities for k,m and n. Note that if N = 2
then, since n,m ≥ 2, the only possibility in 2.10 is k = 0 and therefore we get a cocyle
condition

B2
α,γ(wγ) = B2

β,γ(wγ) +B2
α,β(wγ). (2.11)

Remark 2.4. It is worth to point out at this stage that we do not have the cocycle
condition for higher N -s. For them we have only relation 2.10.

Now solve the additive Cousin problem B2
α,β = B2

β − B2
α for the acyclic covering
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{Uα} of D and make the following (quadratic in w) change of variables
z̃α = zα

w̃α = wα +B2
α(wα).

(2.12)

It is not difficult to check that relation 2.8 becomes
z̃α = z̃β +

∞∑
n=1

Ãnα,β(w̃β),

w̃α = w̃β +
∞∑
n=3

B̃n
α,β(w̃β)

(2.13)

with appropriate Ãnα,β and B̃n
α,β.

Now we can trivialize the infinitesimal neighborhood to all orders. From 2.10 we
see that if Bn

α,β = 0 for all n < N and all α, β then {BN
α,β} is an additive cocyle, which

can be resolved as BN
α,β = BN

β −BN
α and then the coordinate change

zα = zβ

w̃α = wα +BN
α (z)(wα).

(2.14)

will give us coordinates in which the transition functions will take the form

zα = zβ +

∞∑
n=1

Anα,β(wβ),

wα = wβ +
∞∑

n=N+1
Bn
α,β(wβ).

(2.15)

Cq-valued functions Anα,β(zβ) are holomorphic in z ∈ Uα ∩Uβ with values in the space
of continuous homogeneous polynomials of degree n in w-s. They satisfy the additive
cocycle condition for every fixed n ≤ N .

For every fixed n ≤ N we solve Anα,β = Anβ − Anα and in every chart V ′α make the
coordinate change:


z̃α = zα −

N∑
n=1

Anα(zα)(wα)

w̃α = wα.
(2.16)

We get that in new coordinates the coordinate changes vanish to order N , i.e. have
the form 

zα = zβ +
∞∑

n=N+1
Anα,β(wβ),

wα = wβ +
∞∑

n=N+1
Bn
α,β(wβ).

(2.17)

In steps 1 and 2 we constructed a covering {Vα} of a neighborhood V of φ(D̄) by
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coordinate charts with coordinate mappings hα : Vα → V ′α such that V ′α = Uα × V
′′
α ,

where Uα is a covering of D̄ with coordinates zα and V
′′
α are open sets in l2 with

coordinates wα. Finally the coordinate changes have the form 2.17. We take N = 3 in
the sequel, i.e. coordinates match to order three.

Let ρα be nonnegative C∞ functions with support contained in Vα such that∑α ρα =
1 in a neighborhood of φ(D̄). Define the following (vector valued) functions on the
manifold X 

u = ∑
α
ραzα,

w = ∑
α
ραwα.

(2.18)

In Vα we have 
u− zα = ∑

β
ρβ(zβ − zα) = O(w4

α),

w − wα = ∑
β
ρβ(wβ − wα) = O(w4

α).
(2.19)

Since D is a strongly pseudoconvex domain there exists a strictly plurisubharmonic
exhaustion function θ of class C2 defined in a neighborhood of D̄ such that

D = {z ∈ Cq | θ(z) < 1} and θ−1({0}) = {0} ⊂ D.

Since u and w are differentiable coordinates in a neighborhood V of φ(D̄) we can
shrink V in such a way that the image of V under (u,w) is W × B∞(δ) with W a
neighborhood of D̄. Set ξ2 = ‖w‖2 = ∑ |wk|2. Then in Vα ∩ V we have due to 2.19

|uk − zα,k| = O(ξ4), |wk|2 − |wα,k|2 = O(ξ5).

Indeed, the first one is clear and the second one comes from

|wk|2 = |wα,k +O(w4
α,k)|2 = |wα,k|2 + |O(w5

α,k)|+ |O(w8
α,k)| = |wα,k|2 +O(ξ5). (2.20)

For a given 0 < λ < 1 consider the following function

ψλ : W ×B∞(δ) −→ R
(x, y) 7→ θ(x) + λ−2||y||2

(2.21)

We can observe that since θ is smooth then ψλ is smooth too. On Vα ∩ V we have

g(zα, wα) := ψλ(u,w)− ψλ(zα, wα) = θ(u)− θ(zα) + λ−2
(
||w||2 − ||wα||2

)
= dθzα(u− zα) + o(‖u− zα‖) + λ−2∑

k |wk|2 − |wα,k|2

= O(∑k |uk − zα,k|) + λ−2O(∑k |wk|2 − |wα,k|2) = O(w4
α) + λ−2O(w5

α).

Therefore the Hessian of g, i.e. the difference with respect to the coordinates
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(zα, wα) corresponds to

∂2g

∂zα,j∂z̄α,k
= O(w4

α) + λ−2O(w5
α), ∂2g

∂zα,j∂w̄α,k
= O(w3

α) + λ−2O(w4
α),

∂2g

∂wα,j∂z̄α,k
= O(w3

α) + λ−2O(w4
α), ∂2g

∂wα,j∂w̄α,k
= O(w2

α) + λ−2O(w3
α).

So the Hessian of g consists of terms O(ξ2) + λ−2O(ξ3). The Hessian Hψλ(zα,wα) of

ψλ(zα, wα) is an infinite matrix of the form
Hθ 0

0 λ−2I∞

 where Hθ is the Hessian of

θ and I∞ is the identity matrix.

The Hessian Hψλ(u,w) of ψλ(u,w) satisfies

Hψλ(u,w) =
Hθ 0

0 λ−2I∞

+O(ξ2) + λ−2O(ξ3) = Hψλ(zα,wα) +O(ξ2) + λ−2O(ξ3).

Let µ > 0 be such that Hθ(u, 0)(v′, v′) > µ||v′||2 for all u ∈ W and all v′ ∈ Cq,
see lemma 2.1. This gives us the bound Hψλ(u,w)(v, v) > µ||v′||2 + λ−2||v′′||2 for all
u,w ∈ W × B∞(δ) provided δ > 0 small enough and all (v′, v′′) ∈ Cq ⊕ l2. Therefore
ψλ(u,w) is strictly plurisubharmonic in V .

For λ > 0 small enough set

Vλ := {(u,w) | ψλ(u,w) < 1 + λ}.

Notice that V̄λ = {(u,w) | ψλ(u,w) 6 1 +λ} and this set is contained in a finite union
of coordinate balls by construction. One has obviously that Vλ ⊃ φ(D̄) and ⋂λ>0 Vλ =
φ(D̄). But this is not enough for Vλ be a fundamental system of neighborhoods of the
compact φ(D̄).

For example, Nk = {z ∈ l2 : |z1|, ..., |zk| < 1/k} satisfy ⋂∞1 Nk = 0, but they do
not form a fundamental system of neighborhoods for the norm topology of l2 .

Let us prove that nevertheless in our case Vλ is a fundamental system of neighbor-
hood of φ(D̄). Indeed, the str. psh function has the form

ψλ(u,w) = θ(u) + λ−2 ‖w‖2 , (2.22)

where u is the coordinate on D and w is the (non-holomorphic) normal coordinate.
Therefore

Vλ := {(u,w) : ψλ(u,w) < 1 +λ} ⊂ {(u,w) : θ(u) < 1 +λ, ‖w‖2 < λ2(1 +λ)} (2.23)
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is contained in the tubular max{λ, λ2(1 + λ)}-neighborhood of φ(D̄), i.e. is contained
in a given neighborhood of φ(D̄) provided λ > 0 is small enough. The latter is true
because φ(D̄) is compact.

What is left to prove is that ψλ(u,w) is a strictly plurisubharmonic exhausting
function on Vλ, i.e. each Vλ is 1-complete. More precisely, we need to prove that
ψ = ψλ and U = Vλ and K = φ(D̄) satify the definition 2.10. Indeed, for every
t < 1 + λ, ψ−1([0, t)) ⊂ Vλ = ψ−1([0, 1 + λ)). Theorem is proved.
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Chapter 3

Hartogs manifolds and
Hilbert-Hartogs manifolds

3.1 The notion of a Hilbert-Hartogs manifold

We denote as H1
q (r) the q-concave Hartogs figure in Cq+1, i.e. the following domain

H1
q (r) = (∆q ×∆r) ∪ (Aq1−r,1 ×∆). (3.1)

Here ∆r denotes the disk of radius r in C centered at zero, ∆ the unit disk, ∆q
r the

polydisk in Cq and Aq1−r,1 = (∆\ ∆̄1−r)q the ring domain. The precise value of r ∈]0, 1[
is usually irrelevant. If something holds for some 0 < r < 1 then the same usually holds
for all other 0 < r′ < 1. The envelope of holomorphy of H1

q (r) is the unit polydisk
∆q+1.

Definition 3.1. We say that a complex manifold X is q-Hartogs if every holomorphic
mapping f : H1

q (r)→ X extends to a holomorphic mapping f̃ : ∆q+1 → X.

If the same holds for a complex Hilbert manifold X we say that X is q-Hilbert-
Hartogs. 1-Hartogs manifolds are called simply Hartogs.

First, we can observe that Hartogs manifolds have better extension properties on
Hartogs figures than it is postulated in their definition. Let us make a first step in
studying this.

For positive integers q, n and real r ∈]0, 1[ we call a Hartogs figure of bidimension
(q, n) or a q-concave Hartogs figure in Cq+n the domain

Hn
q (r) := (∆q ×∆n(r)) ∪

(
Aq1−r,1 ×∆n

)
. (3.2)

The envelope of holomorphy of Hn
q (r) is ∆q+n.

If holomorphic maps with values in Hilbert manifold X holomorphically extend
from Hn

q (r) to ∆q+n we shall say that X possesses a holomorphic extension property
in bidimension (q, n).

We shall prove that the holomorphic extendability in bidimension (q, 1), i.e. being
q-Hartogs, implies the holomorphic extendability in all bidimensions (q, n) for n ≥ 1

51
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and moreover holomorphic extendability in bidimension (q, n) implies holomorphic
extendability in all bidimensions (p,m) with p ≥ q and m ≥ n. The proof follows the
lines of Lemmas 2.2.1 and 2.2.2 in [Iv4].

Theorem 3.1. If a complex Hilbert manifold X possesses a holomorphic extension
property in bidimension (q, n) for some q, n ≥ 1 then X possesses this property in
every bidimension (p,m) with p ≥ q,m ≥ n.

Proof. Let us denote by Z the coordinates Z := (z, zq+1, w) with z ∈ Cq, zq+1 ∈ C and
w ∈ Cn. We shall prove our theorem by induction. Let us increase q first. Notice that

Hn
q+1(r) ⊃

⋃
zq+1∈∆

Hn
q (r)× {zq+1},

here Hn
q (r) := {(z, w) : ‖z‖ < 1, ‖w‖ < r or 1 − r < ‖z‖ < 1, ‖w‖ < 1} with

||z|| = maxj=1,...,n |zj| and ||w|| = maxj=1,...,n |wj|.
Therefore a given holomorphic mapping f : Hn

q+1(r)→ X to a q-Hartogs manifold
extends along these slices to a map f̃ : ∆q × ∆ × ∆n → X . We need to prove that
f̃ is holomorphic as function of the couple (z, zq+1, w). This will prove that our X is
(q + 1)-Hartogs.

Continuity of f̃ . First we need to prove that this extension f̃ is continuous. Let a se-
quence Zk = (zk1 , ..., zkq , zkq+1, w

k
1 , ..., w

k
n) converge to Z0 = (z0

1 , ..., z
0
q , z

0
q+1, w

0
1, ..., w

0
n) ∈

∆q+1+n. Take R ∈]0, 1[ such that ‖z0‖ , |z0
q+1|, ‖w0‖ < R and the same for ||zk||, |zkq+1|

and ||wk|| with k big enough. Consider the following imbedded (q + n)-disk φ0 in the
Hilbert manifold Y := Cq+1+n ×X :

φ0(z, w) =
{(

z, z0
q+1, w, f̃(z, z0

q+1, w)
)

: z ∈ ∆̄q(R), w ∈ ∆̄n(R)
}
,

i.e. φ0 is the map to the graph of the restriction of f̃ to the (q+n)-disk ∆̄q(R)×{z0
q+1}×

∆̄n(R) ⊂ ∆q+1+n. Denote by Φ0 the image of φ0, i.e. the graph of f̃ |∆̄q(R)×{z0
q+1}×∆̄n(R).

Furthermore, set

φk(z, w) =
{(

z, zkq+1, w, f̃(z, zkq+1, w)
)

: z ∈ ∆̄q(R), w ∈ ∆̄n(R)
}
,

and denote by Φk its image, i.e. the graph of f̃ |∆̄q(R)×{zkq+1}×∆̄n(R).

It will be convenient for the future references to formulate the next step of the
proof in the form of a lemma. In the proof of this lemma we shall use the Riemann
Hilbert structure on X , see Remark 1.4.

Lemma 3.1. Let φn : D̄ → X be a sequence of analytic q-disks in a Hilbert manifold
X and let Φn be their graphs, here D b Cq. Suppose that there exists an analytic disk
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φ0 : D̄ → X with the graph Φ0 such that for any neighborhood V ⊃ Φ0 one has Φn ⊂ V
for n >> 1. Then φn converges uniformly on D̄ to φ0.

Proof. Since φ0 is uniformly continuous on D̄ for a given ε > 0 we can find δ > 0
such that if ||u− v|| < δ then d(φ0(u), φ0(v)) < ε. Here d is some Riemannian metric
on X . In addition we can assume that δ < ε. Take N such that for ∀n ≥ N one has
Φn ⊂ Φδ

0, where Φδ
0 is a δ-neighborhood of Φ0 with respect to the product metric on

Z := Cq ×X . Fix u ∈ D̄. For every n ≥ N there exists vn ∈ D̄ such that the distance
between (u, φn(u)) and (vn, φ0(vn)) is less than δ. But then the distance between u

and vn is less than δ, i.e. ||u − vn|| < δ. Therefore d(φ0(u), φ0(vn)) < ε. This proves
that the distance between (u, φn(u)) and (u, φ0(u)) is not more than ε+ δ < 2ε.

The same holds for u1 ∈ D̄ in a neighborhood of u with the same N . Using
compactness of D̄ we find N such that d(φn(u), φ0(u)) < ε for all u ∈ D̄ and all
n > N .

To apply this lemma in our setting notice that by Theorem 2.3 for a given neigh-
borhood V of Φ0 there exists a 1-complete neighborhood Vλ with Φ0 ⊂ Vλ ⊂ V .
Denote by ψλ : Vλ → [0, 1 + λ) the corresponding strictly plurisubharmonic ex-
haustion function. Notice furthermore that for zkq+1 close enough to z0

q+1 the graph
of f̃ over Hn

q (r) × {zkq+1} belongs to Vλ. Therefore its graph over the whole poly-
disk ∆̄n+q(R)× {zkq+1} × ∆̄n(R) belongs to Vλ by the maximum principle. Indeed, fix
τ < 1 + λ such that Vλ(τ) := {ψλ < τ} is still a neighborhood of Φ0. We know that
Vλ(τ) ⊂ Vλ. Consider the family of polydiscs ∆q

t (R) := ∆q(R)×{zkq+1}×{w(t)} where
w(t) is a curve in ∆n(R) starting at 0 and going to the boundary. Note that for t close
to 0, ∆q

t (R) ⊂ Hq
n(r)× {zkq+1} and therefore Γf̃ |∆q

t (R) ⊂ V(τ). The same is true for all
t for the graph of f̃ restricted to a neighborhood of the boundary of ∆q

t (R).
Let t1 be the maximal number in [0, 1] such that f̃ |∆q(R)×{zkq+1}×{w(t1)} ⊂ V̄λ(τ), i.e.

(ψλ ◦ f̃)|∆q(R)×{zkq+1}×{w(t)} ≤ τ . Suppose t1 < 1, then we can find t1 < t2 < 1 as close
to t1 as we wish such that

max(ψλ ◦ f̃)|∆q(R)×{zkq+1}×{w(t2)} > τ. (3.3)

But f̃∆q(R)×{zkq+1}×{w(t2)} is close to f̃∆q(R)×{zkq+1}×{w(t1)} when t2 is close to t1, because f̃
is holomorphic (therefore continuous) when restricted to ∆q ×{zkq+1}×∆n. Therefore
it stays in Vλ. So the restriction (ψλ◦ f̃)|∆q(R)×{zkq+1}×{w(t2)} is well defined. And now 3.3
contradicts to the maximum principle for the psh function (ψλ ◦ f̃)|∆q(R)×{zkq+1}×{w(t2)}

since
max(ψλ ◦ f̃)|∂∆q(R)×{zkq+1}×{w(t2)} ≤ τ. (3.4)
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Figure 3.1: Extension on the slice zkq+1.

Therefore t1 = 1 and consequently Φk ⊂ Vλ. Therefore the question of continuity
is reduced to Lemma 3.1 just proved. Remark that we even do not need the strict
plurisubharmonicity of ψλ.

  

Figure 3.2: Analytic (q + n)-disc Φ0 is not shown here, only its 1-complete neighbor-
hoods Vλ(τ) ⊂ Vλ. It is shown however how analytic (q + n)-disc Φk, the graph of
the restriction f̃ |∆q(R)×{zkq+1}×∆n(R)}, may behave when zkq+1 → z0

q+1. But if so, then
analytic q-discs f̃ |∆q

t (R) drawn on this picture as ∆̃q
t (R) slide out of Vλ(τ). And this

is not possible, because they “slide continuously” (not leaving the bigger 1-complete
neighborhood Vλ at once) and their boundaries stay in Vλ(τ).

Holomorphy of f̃ . Holomorphy becomes now a local question. Let denote by Z0 =
(z0, z0

q+1, w
0, 0, ..., 0) a point in ∆q+2 × {0}. We shall prove that f̃ is holomorphic

in a neighborhood of Z0. The rest can be done by an obvious induction. Let Z1 =
(z0, z0

q+1, 0) be the projection of Z0 to Cq+1. Since Z1 ∈ Hq+1
n our mapping f̃ is

holomorphic in a neighborhood of Z1. Denote by I = [0, w0
1] the closed interval in the
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(q + 2)-th coordinate plane from 0 to the point w0
1 - the first coordinate of Z0. By W

denote the set of t ∈ I such that f̃ is holomorphic in a neighboroohd of t. Z1 ∈ I,
i.e. is non-empty and is obviously open. All we need to prove is that I is closed. Let
t1 be a cluster point of W . By continuity of f̃ we can find a poydisk neighborhood U
containing t1 and a coordinate chart (Ω, ψ) such that f̃(U) ⊂ Ω. Since t1 is a cluster
point of W we can find t0 ∈ W ∩ U . After shrinking if necessary we find ourselves
in the following situation. For ε > 0 small enough and appropriate simply connected
neighborhoods V0 3 t0 and V0 ⊂ V1 ⊃ [t0, t1] we have the following:

i) (ψ ◦ f̃)|V0×∆q+n(ε) → Ω is holomorphic,

ii) for every fixed p = (z, zq+1, w2, ..., wn) the restriction (ψ◦f̃)|V0×{p} is holomorphic
on V1.

By the classical Hartogs theorem f̃ is holomorphic on ∆q+n × V1. Therefore W = I.
This proves the holomorphy of f̃ in a neighborhood of ∆q+1 ×∆ × {(w0

2, ..., w
0
n)} for

every (w0
2, ..., w

0
n) ∈ ∆n+1.

The extension on the Hartogs figure Hn+1
q (r) follows the same lines and can be

done also in two steps. Set

En+1
q (r) = Hn

q (r)×∆(r),

and remark that En+1
q (r) ⊂ Hn+1

q (r). Extend f from En+1
q (r) to ∆q+n ×∆(r) exactly

as above. Then extend f from ∆q+n ×∆(r) to ∆q+n+1 again in the same way.

3.2 Hartogs property and pseudoconcavity

There is a link between the Hartogs phenomena and concavity.
A complex Hilbert manifold X satisfies the q-Levi extension condition if for any

domain D ⊂ Cn with C2 boundary such that ∂D is q-pseudoconcave at p any holo-
morphic map f : D → X extends holomorphically to a neighborhood of p. We shall
prove that X being q-Hartogs is equivalent to having q-Levi extension property. But
first let us make the following observation.

Remark 3.1. We can replace the polydisks in the definitions of Hartogs figures by
the balls of the corresponding dimension, i.e. we can take

Hn
q (r) = (Bq ×Bn(r)) ∪ ((Bq\Bq(r))×Bn).

Now we can state the corresponding theorem.
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Theorem 3.2. A complex Hilbert manifold X satisfies the q-Levi extension condition
if and only if X is q-Hartogs.

Proof. q-Hartogs ⇒ q-Levi extension.

  

eq+1eq+1

D

0

Figure 3.3: q-Hartogs figure in a neighborhood of p.

Let X be q-Hartogs and consider a domain D ⊂ Cn. Let U an open set in Cn such
that U ∩ D = {z ∈ U | u(z) < 0} with ∇u 6= 0. Then there exist vj ∈ T0∂D ⊂ Cn

such that Lu,p(vj) < 0 for j = 1, ..., q. After a complex linear change of coordinate we
can suppose that p = 0 and

v1 = e1, v2 = e2, ... , vq = eq,∇up = eq+1.

We can define the following figure: φ : H1
q (r)×∆n−q−1 → Cn

φ : z 7→ ηz1e1 + ...+ ηzqeq + (ηεzq+1 − r′)eq+1 + δzq+2eq+2 + ...+ δznen. (3.5)

We can choose ε, r′, δ and η such that φ(H1
q (r) ×∆n−q−1) ⊂ U ∩D and ηε > r′.

The latter insures that the image of the polydisk φ(∆n) contains the origin.
Now for any f : D → X the map f |φ(H1

q (r)×∆n−q−1) extends to φ(∆q+1 × ∆n−q−1)
because X is q-Hartogs. So it extends to a neighborhood of p = 0. Therefore X satifies
the q-Levi extension condititon.

q-Levi extension ⇒ q-Hartogs. This direction can be proved by representing Bq × ∆
as an increasing union of pseudoconcave domains starting from Hq

1(r).
Suppose X satisfies the q-Levi extension condition and let f : H1

q (r) → X be a
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0

Figure 3.4: Exhaustion of the polydisk by a family of pseudoconcave Dα,ε starting from
the Hartogs figure. The “flat” part of the boundary G1 := ∂Bq × ∆̄ doesn’t play any
role, only the concave one, i.e., G2 = ∂Dα,ε ∩

(
Bq× ∆̄

)
. Through this concave part we

extend mappings from Dα,ε to Dβ,ε for β < α.

holomorphic map. Consider for α ∈ [1,∞[ and ε ∈]0, 1[ the following function

uα,ε(z) = |zq+1|2 − (1− ε)||z′||2α − ε (3.6)

where z′ = (z1, ..., zq) and let Dα,ε = {z ∈ Bq ×∆ | uα,ε(z) < 0}. One can see that

• For a fixed ε0 ∈]0, 1[ small enough there exists α0 ≥ 1 such that Dα0,ε0 ⊂ H1
q (r),

• Dα,ε is strictly pseudoconcave for all ε ∈]0, 1[ and α ∈ [1,∞[ at all points of
G2 = ∂Dα,ε ∩

(
Bq × ∆̄

)
.

Let Γε0 = {α ≥ 1 | f extends to Dα,ε0}. Then Γε0 is nonempty (because α0 ∈ Γε0)
and closed. As X satisfies the q-Levi extension condition Γε0 is open. Therefore f
extends to D1,ε0 . Now let Γ = {ε < 1 | f extends to D1,ε}. For the same reasons as
above Γ is nonempty and closed. It is also open because X satisfies the q-Levi extension
condition. Hence f extends holomorphically to D1,1:

D1,1 = {z ∈ Bq ×∆ | |zq+1|2 − 1 < 0} = Bq ×∆. (3.7)

We proved that f extends from H1
q (r) to Bq ×∆. Therefore X is q-Hartogs.
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3.3 Extension from infinite dimensional domains

Let us define the infinite dimensional q-concave Hartogs figureH∞q (r) ⊂ l2 for r ∈ [0, 1]
by

H∞q (r) = (∆q ×B∞(r)) ∪ (Aq1−r,1 ×B∞)

Theorem 3.3. Let X be a q-Hartogs Hilbert manifold. Then for every r > 0 every
holomorphic mapping f : H∞q (r) → X extends to a holomorphic mapping f̃ : ∆q ×
B∞ → X .

Proof. We identify Cq with l2q = span {e1, ..., eq} ⊂ l2. For a unit vector v ∈ l2

orthogonal to Cq set Lv := span {e1, ..., eq, v}. Remark that Lv ∩H∞q (r) = H1
q (r) and

therefore given a holomorphic mapping f : H∞q (r)→ X its restriction to Lv ∩H∞q (r)
holomorphically extends to Lv∩(∆q×B∞). We conclude that for every line < v >⊥ Cq

the restriction f |Lv holomorphically extends onto Lv ∩ (∆q×B∞), giving an extension
f̃ of f onto ∆q×B∞. This extension is correctly defined because for unit vectors v 6= w

orthogonal to Cq the spaces Lv and Lw intersect only by Cq.

Let us prove the continuity of f̃ . Consider the sequence (Zn)n>1 defined by Zn =
(zn, wn) such that Zn → Z0 = (z0, w0). Here z0, zn ∈ ∆q and w0, wn ∈ B∞. Take R
such that 1− r < R < 1 and ||zn||, ||wn|| < R for all n ∈ N as well as ||z0||, ||w0|| < R.
Let φn : ∆̄q(R)× ∆̄→ X be the analytic disk defined by φn(z, η) = f̃(z, ηwn) and φ0

be defined by φ0(z, η) = f̃(z, ηw0).
Theorem 2.3 gives a 1-complete neighborhood V of the graph of Φ0. For wn close

enough to w0 the graph Φn of φn over Lwn ∩H∞q (r) is contained in V because Lwn ∩
H∞q (r) ⊂ H∞q (r) where f̃ is holomorphic. In exactly the same manner as in the proof
of Theorem 3.1 we have that by the maximum principle the graph Φn of φn over the
whole set ∆̄q(R)×∆̄ is contained in V . Then by Lemma 3.1 (φn)n converges uniformly
to φ0, i.e. we have f̃(z, ηwn) ⇒

n→∞
f̃(z, ηw0) on ∆̄q(R)× ∆̄. So taking z = zn and η = 1

gives f̃(zn, wn) −→
n→∞

f̃(z0, w0). Therefore f̃ is continuous.

What is left to prove is that this extension is Gâteaux differentiable. Take some z0 ∈
∆q ×B∞ and fix some direction v at z0. Let l := {z0 + tv : t ∈ C} be the line through
z0 in the direction v. Find (at most) two vectors w1, w2 such that e1, ..., eq, w1, w2 is
the orthonormal basis of the subspace L containing Cq, z0 and l.

Let Lw1,w2 = Cq⊕ span{w1, w2}. Remark that Lw1,w2 ∩H∞q (r) = H2
q (r) and there-

fore the theorem 3.1 is applicaple. It gives us the holomorphy of f̃ |(∆q×∆2)∩Lw1,w2
and

therefore the differentiability of f̃ in the direction v.

Every continuous Gâteaux differentiable map is holomorphic, see Theorem 1.3 and
therefore Theorem 3.3 is proved.
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As an important consequence we obtain the following statement.

Corollary 3.1. If a domain D in a complex Hilbert manifold X is q-pseudoconcave
at a boundary point p then every holomorphic map f : D → Y to a q-Hartogs Hilbert
manifold Y extends holomorphically to a neighborhood of p.

Proof. The problem is local in X and therefore we can assume that X = l2. The q-
pseudoconcavity of the point p ∈ ∂D implies that there exists U ⊂ l2 a neighborhood
of p such that U ∩ D = {z ∈ U | u(z) < 0} with ∇u 6= 0. Take vj ∈ Tp∂D ⊂ l2 such
that Lu,p(vj) < 0 for j = 1, ..., q. After a complex linear change of coordinates we can
suppose that p = 0 and v1 = e1, v2 = e2, ... , vq = eq,∇up = eq+1. We define the
following figure φ : H∞q (r)→ l2 by

z 7→ ηz1e1 + ...+ ηzqeq + (ηεzq+1 − r′)eq+1 + δ
∞∑

s=q+2
zses. (3.8)

We choose ε, r′, δ and η such that φ(H∞q (r)) ⊂ U ∩ D and ηε > r′ to insure that
the image of the polydisk φ(∆q ×B∞) contains the origin.

Consider now the map f ◦ φ : H∞q (r)→ Y . By theorem 3.3 the map f ◦ φ extends
to f̃ : ∆q × B∞ → Y and then f̃ ◦ φ−1 gives the desired extension on a neighborhood
of p.

3.4 Mappings to Hilbert fiber bundles

Proposition 3.1. a) If X is a Hilbert manifold and Y is some unramified cover of
X then X and Y are q-Hartogs or not simultaneously.

b) If the fiber F and the base B of a complex Hilbert fiber bundle (E ,F , π,B) are
q-Hartogs then the total space E is also q-Hartogs.

Proof. a) Suppose that X is q-Hartogs. We shall show that Y satisfies the Levi
extension condition: for any domain D in Cq+1 with C2 boundary such that ∂D is
q-Levi pseudoconcave at p ∈ ∂D. Let f : D → Y be holomorphic. As X is q-Hartogs
we can extend π ◦ f to an open neighborhood V of p with π the projection map. Take
a neighborhood U ⊂ V of p such that there is a trivialisation:

h = (π, b) : π−1(U)→̃U × F.

As F is a discrete set we can extend f on a neighborhood of h−1(U × {b ◦ f(p)}) ⊂ Y
Hence f satisfies the q-Levi extension condition and is q-Hartogs.
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Reciprocally, suppose that Y is q-Hartogs. Let D be a domain in Cq+1 with C2

boundary such that ∂D is q-Levi pseudoconcave at p and f : D → X be holomorphic.
For p ∈ ∂D, it exists p ∈ Y such that π(p) = f(p). We take a neighborhood V of p
that is biholomorphic to π(V ) because π is locally a biholomorphism. Then, (π|V )−1◦f
extends to a neighborhood of p. Hence we compose the last extension by π and it gives
an extension of f to a neighborhood of p. X satisfies the q-Levi extension condition so
is q-Hartogs.

b) We shall show that E satisfies the Levi extension condition. Let D be a domain
in Cq+1 with C2 boundary such that ∂D is q-Levi pseudoconcave at p. Let f : D → E
be holomorphic. As B is q-Hartogs, we can extend π ◦ f to an open neighborhood V
of p. Take a neighborhood U ⊂ V of p such that there is a trivialisation:

h = (π, pr) : π−1(U)→̃U ×F .

Then pr ◦f extends to a neighborhood of p as F is q-Hartogs. So E satisfies the q-Levi
extension condition and is q-Hartogs.

Example 3.1. From this proposition one can derive several examples of Hilbert-
Hartogs manifolds. If for example Λ = spanZ{e1, ie1, e2, ie2, ...} is the integer lattice
in l2 then T∞ := l2/Λ is Hartogs. In fact consider the map f : H(r) → l2. Since f is
holomorphic the Cauchy integral gives an extension to the ∆2

1−ε for all ε > 0:

f(z1, z2) := 1
2πi

∫
|ξ1|=|ξ2|=1−ε

f(ξ1, ξ2)
(ξ1 − z1)(ξ2 − z2)dξ1dξ2.

This extension is clearly defined by the fact that (∂∆1−ε)2 ⊂ H(r). Therefore l2 is Har-
togs. Since l2 is an unramified cover of T∞ the latter is Hartogs as well by Proposition
3.1. From the last proposition 3.1 T∞ is also Hartogs.

Example 3.2. Hilbert fiber bundles with Hartogs fibers over connected Riemann sur-
faces different from P1 are also Hilbert-Hartogs. Indeed as it was explained in the
introduction such Riemann surfaces are Hartogs. Therefore the complex Hilbert fiber
bundles with Hartogs fibers over them are Hilbert-Hartogs by the proposition just
proved. As for Riemann sphere P1 it was explained that it is not Hartogs, see intro-
duction. Now take the Hopf surface H = C2\{0}/{z ∼ 2z}. It is naturally fibered over
P1 with fiber being a torus and the latter is Hartogs. But H is not Hartogs because
the natural projection π : C2\{0} → H does not extend to the origin, its limit set at
zero is the whole H.



Chapter 4

Loop spaces as complex Hilbert
manifolds

4.1 Weak derivative

Hilbert-Hartogs manifolds appear more often than one may expect. We will prove a
theorem that gives us a way to construct loop spaces that are Hilbert-Hartogs. Working
with mapping spaces we need to choose a class of smoothness that we will use.

For an open Ω ⊂ Rn and for p ∈ [[1,∞[[ let Lp(Ω) be the standard Lebesgue space
with the norm ||u||Lp = (

∫
Ω |u(x)|pdµ(x))1/p. In the special case of p = 2 L2(Ω) has

the structure of a Hilbert space with the scalar product: ∀u, v ∈ L2(Ω) < u, v >L2 :=∫
Rn u(x)v(x)dµ(x). Now we introduce the concept of weak derivative which allows us
to define properly Sobolev spaces.

Definition 4.1. Let Ω ⊂ Rn be open. We denote by C∞0 (Ω,C) the set of test functions
(or smooth functions with compact support) on Ω as

C∞0 (Ω,C) := {u ∈ C∞(Ω,C) | supp(u) ⊂ Ω is compact} .

An example of a test function on Rn is the function

u(x) =
 exp

(
1

||x||2−1

)
for ||x|| < 1

0 for ||x|| > 1.

The idea of considering this space lies in the following lemma.

Lemma 4.1. The space of test functions is dense in Lp, i.e. C∞0 (Ω,C) = Lp(Ω).

This can be proved as follows. Let v be in Lp(Ω). We consider the convolution of
v with the function uε(x) := 1

εn
u
(
x
ε

)
provided u was taken such that

∫
Rn u(x)dx = 1

vε(x) :=
∫

Ω
v(x− y)uε(y)dµ(y).

So we have vε ∈ C∞0 (Ω,C) and vε → v in Lp(Ω).

61
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From the integrability and using the integration by part, it allows us to define a
notion of derivation called weak derivative.

Working on Lp spaces many functions are not differentiable Functions of Lp spaces
are not all differentiable. Although, the integrability allows us to use integration by
parts (the boundary values vanish since the support of u is a compact subset of Ω)
to have the concept of weak derivatives. Let Ω ⊂ Rn be an open set, f ∈ C1(Ω̄) and
u ∈ C∞0 (Ω,C). Then

∫
Ω

∂f

∂xi
(x)u(x)dµ(x) = −

∫
Ω
f(x) ∂u

∂xi
(x)dµ(x).

Similarly we obtain for m-times conitnuously differentiable functions f ∈ Cm(Ω̄):
∫

Ω
Dαf(x)u(x)dµ(x) = (−1)|α|

∫
Ω
f(x)Dαu(x)dµ(x)

where Dα = ∂|α|

∂x
α1
1 ...∂xαnn

with α ∈ Nn a multi-index and |α| := α1 + ...+ αn 6 k.
We can now drop the assumption f ∈ Cm to state:

Definition 4.2. Let Ω ⊂ Rn be open, α ∈ Nn and f ∈ L2(Ω). Then g ∈ L2(Ω) is
called the weak α-th derivative of f if

∀u ∈ C∞0 (Ω,C)
∫

Ω
g(x)u(x)dµ(x) = (−1)|α|

∫
Ω
f(x)Dαu(x)dµ(x).

Remark 4.1. Using the scalar product of the Hilbert space L2(Ω) we can write the
equality simply by

< g | u >L2= (−1)|α| < f | Dαu >L2 .

Remark 4.2. The weak derivative coincides with the classical derivatives for differ-
entiable functions. Moreover the weak derivative g of a function f is unique. Suppose
h is another weak derivative of f . Then < g− h | u >= 0 for all u ∈ C∞0 (Ω,C) and by
lemma 4.1 we obtain that g − h = 0, almost everywhere.

From now on we denote the weak derivative of f by D(α)f . We may define a space
of weakly differentiable functions.

Definition 4.3. Let Ω ⊂ Rn be open. The Sobolev class W k,2(Ω) or W k,2(Ω,C) is
defined to be

W k,2(Ω) :=
{
f ∈ L2(Ω) | ∀α ∈ Nn, |α| 6 k, D(α)f ∈ L2(Ω)

}
.
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Proposition 4.1. The space W k,2(Ω) endowed with the scalar product

∀f, g ∈ W k,2(Ω), < f | g >Wk,2=
∑
|α|6k

< D(α)f | D(α)g >L2

is a Hilbert space.

Proof. Obviously < · | · >Wk,2 is a scalar product. The difficulty is to prove that
W k,2(Ω) is complete for this norm. Let (fn)n∈N be a Cauchy sequence with respect to
the norm || · ||2Wk,2 := ∑

|α|6k ||Dα · ||2L2 . The sequences D(α)f are Cauchy sequences in
the Hilbert spaces L2(Ω) so there is fα such that D(α)fn → fα. Let denote by f0 the
function fα for |α| = 0. For every u ∈ C∞0 (Ω,C) we have

< fα | u > = < lim
n→∞

D(α)fn | u > = lim
n→∞

< D(α)fn | u >
= lim

n→∞
(−1)|α| < fn | Dαu > = (−1)|α| < f0 | Dαu >

=< D(α)f0 | u > .

So f0 ∈ W k,2(Ω) because D(α)f0 = fα ∈ L2(Ω) and fn → f0 with respect to || · ||Wk,2 .

A function f ∈ L2 has a certain decrease at infinity. For the Sobolev space
W k,2(Rn), we also have that weak derivatives have a certain decrease at infinity. The
Fourier transform allows us to translate derivatives into multiplication with polyno-
mials. That is why we can characterize the class W k,2 by the Fourier transform.

4.2 The Fourier transform

Definition 4.4. The Fourier transform of a function u ∈ L1(Rn) is defined by

Fu(ξ) = û(ξ) := 1
(
√

2π)n
∫
Rn
u(x)e−i<x,ξ>dµ(x).

In order to obtain relavant properties on the Fourier transform, we need some
better hypothesis on the function u. That is why when one works with this transform
it is more appropriate to define it on the Schwarz space:

Definition 4.5. The Schwarz space denoted by S(Rn) is defined as following.

S(Rn) :=
{
u ∈ C∞(Rn) | sup

Rn
|xβDαu| < +∞ for all α, β ∈ Nn

}
.

In the literature a function from the Schwarz space is sometimes called smooth rapidly
decreasing functions or simply Schwarz function.

Example 4.1. The function γ(x) = e−x
2 and every test function are Schwarz func-

tions.
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Remark 4.3. Clearly S(Rn) ⊂ Lp(Rn) for p ∈ [1,∞[. Since C∞0 (Rn,C) is a subset of
S(Rn) we have that S(Rn) is dense in Lp(Rn).

One important property of S(Rn) is the fact that the Fourier transform F :
S(Rn)→ S(Rn) is an isomorphism.

Lemma 4.2. Let u ∈ S(Rn) and α a multi-index. Then

a) Fu ∈ C∞(Rn) and Dα(Fu) = (−i)|α|F(xαu),

b) F(Dαu) = i|α|ξαFu.

Proof. a) We have

Dα(Fu)(ξ) = ∂|α|

∂ξα
1√
2πn

∫
Rn
u(x)e−i<x,ξ>dx (∗)= 1√

2πn
∫
Rn
u(x)∂

|α|

∂ξα
e−i<x,ξ>dx

= (−i)|α| 1√
2πn

∫
Rn
u(x)xαe−i<x,ξ>dx = (−i)|α|F(xαu)(ξ).

The equality (∗) is ensured by the dominated convergence theorem. As F(xαu) is
continuous for every α ∈ Nn Fu is C∞.

(b) By integration by parts and the fact that u rapidly decreases one obtains

F(Dαu)(ξ) = 1√
2πn

∫
Rn

(Dαu)(x)e−i<x,ξ>dx = (−1)|α|√
2πn

∫
Rn
u(x) ∂

∂xα
e−i<x,ξ>dx

= (−1)|α|(−i)|α|ξα(Fu)(ξ) = i|α|ξα(Fu)(ξ).

Proposition 4.2. F : S(Rn) −→ S(Rn), i.e. if u ∈ S(Rn) then Fu ∈ S(Rn).

Proof. See [T].

We can compose the Fourier transform and show that for u ∈ S(Rn)

∀x ∈ Rn (FFu)(x) = u(−x).

It means that F2 is a reflection. Moreover F4 = IdS(Rn). This gives the following
proposition.

Proposition 4.3. We can define the inverse Fourier transform by

F∗u(ξ) := 1
(
√

2π)n
∫
Rn
u(x)ei<x,ξ>dµ(x).
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Then F is an isomorphism on the Schwarz space S(Rn) and we have the identity

FF∗ = F∗F = Id on S(Rn).

Furthermore we have the so-called Plancherel equation

∀ u, v ∈ S(Rn), < Fu | Fv >L2=< u | v >L2 . (4.1)

Remark 4.4. By the density of the space C∞0 of compact support smooth functions
on the Schwarz space we can extend the Fourier transform to the Hilbert space L2(Rn).
Then F extends to a linear operator F : L2(Rn)→ L2(Rn).

The Plancherel equation implies that F is an isometric isomorphism: ‖Fu‖L2 =
‖u‖L2 for u ∈ S(Rn) and by density for u ∈ L2(Rn).

Lemma 4.3. (Formula for W k,2). Let u be in W k,2(Rn). Then for all α ∈ Nn with
|α| 6 k

F(D(α)u) = i|α|ξαFu.

Proof. For v ∈ S(Rn) and using (4.1) we have
< F(Dαu) | Fv >=< Dαu | v >= (−1)|α| < u | Dαv >= (−1)|α| < Fu | F(Dαv) >

= (−1)|α| < Fu | i|α|ξαFv >
=< i|α|ξαFu | Fv >.

Since the Fourier transform is a bijection on S(Rn) we have that

∀v ∈ S(Rn), < w | v >=< F(D(α)u)− i|α|ξαFu | v >= 0.

where w = F(D(α)u) − i|α|ξαFu. As C∞0 (Rn) ⊂ S(Rn) the previous inequality is true
also for all v ∈ C∞0 (Rn). We still do not know if the function w is in L2(Rn). So we
consider w in a ball Br ⊂ Rn of radius r.

∀v ∈ C∞0 (Br), < w | v >L2(Br)= 0.

Then w = 0 almost everywhere in every ball Br of radius r > 0.

Remark 4.5. Compared to lemma 4.2, we only showed an analog of the second for-
mula. In fact, for a function u ∈ W k,2(Rn) we only know that Fu ∈ L2(Rn) and the
derivative of Fu does not need to exist.

From lemma 4.3 one can deduce the characterisation of Sobolev map by the Fourier
transform.
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u ∈ W k,2(Rn)⇐⇒ ∀α ∈ Nn, |α| 6 k, D(α)u ∈ L2(Rn)
⇐⇒ ∀α ∈ Nn, |α| 6 k, ξαFu ∈ L2(Rn)
⇐⇒ (1 + ‖ξ‖)kFu ∈ L2(Rn)

It allows to extend the definition of Sobolev spaces for any positive k ∈ R+

W k,2(Rn) = {u | (1 + ‖ξ‖)kFu ∈ L2(Rn)}. (4.2)

A standard result about Sobolev spaces is the Sobolev embedding theorem.

Theorem 4.1. Let Ω ⊂ Rn be open and let k,m ∈ N be such that k > n
2 + m.

If u ∈ W k,2(Ω) then there exists a function v ∈ Cm(Ω) that is equal to u almost
everywhere.

Roughly speaking for k > n
2 +m we have W k,2(Ω) ⊂ Cm(Ω).

Many other results are considered under the name "Sobolev embedding theorem"
and for completeness we just state them:
i) If k ≥ n

2 + α with 0 < α < 1 then W k,2(Rn) ⊂ Cα(Rn) (α-Hölder continuous) and
this inclusion is a compact operator. In particular W n,2(Rn) ⊂ C0(Rn).
ii) If 0 ≤ k < n

2 then W k,2(Rn) ⊂ L
2n

n−2k (Rn).

From (4.2) one can derive that if f, g ∈ W k,2(Rn) then fg ∈ W k,2(Rn) provided
k > n

2 . This enable us to define correctly a W k,2-vector bundle over an n-dimensional
real manifold provided k > n

2 . By that we mean that the transition functions of
the bundle are in W k,2. Moreover this implies that for a polynomial P (t1, .., tl) and
f1, ..., fl ∈ W k,2 one has P (f1, ..., fl) ∈ W k,2. And this implies via the Weierstrass
approximation theorem that for F ∈ Ck one has F (f1, .., fl) ∈ W k,2. Therefore we can
speak about Sobolev W k,2 mappings between smooth manifolds and pullback bundles
under such mappings. Condition k > n

2 will be always assumed from now on.
For the proof of the Theorem 4.1 and more details on i) and ii) we refer to [T].

4.3 Generalized loop spaces

Let S be a compact, connected, n-dimensional real manifold without boundary. Let X
be a finite dimensional complex manifold. In order to speak about the Sobolev space
W k,2(S,X) it is convenient to suppose that X is embedded smoothly to some RN . If
X is not compact we suppose that this imbedding is proper.

We define W k,2(S,X) as the Sobolev space of maps g : S → X of class W k,2.
Following [L1], we endow this space with the Sobolev topology and complex structure
as follows. A neighborhood of g ∈ W k,2(S,X) is obtained by the following construction.
Cover g(S) ⊂ X by finitely many coordinate charts (Xi, αi) of X with αi : Xi → Cn
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and similarly cover S by coordinate charts (Vi, βi) making sure that g(V̄i) ⊂ Xi. In
Hilbert spaces W k,2(Vi,Cn) choose neighborhoods Ui of αi ◦ g ◦ β−1

i .

Definition 4.6. A neighborhood of g ∈ W k,2(S,X) is defined as

{h ∈ W k,2(S,X) | αi ◦ h ◦ β−1
i ∈ Ui for all i}. (4.3)

This construction endows W k,2(S,X) with the W k,2-topology and makes it a topo-
logical space. Now in order to obtain a complex manifold structure we need to construct
charts on W k,2(S,X). For a set U ⊂ S ×X and s ∈ S we write

U s := {x ∈ X | (s, x) ∈ U} and εs : U s → U

x 7→ (s, x).

Lemma 4.4. Given g ∈ W k,2(S,X), there is a W k,2-diffeomorphism G between a
neighborhood U ⊂ S ×X of the graph of g and a neighborhood of the zero section in
g∗TX such that

i) G(., g(.)) is the zero section of g∗TX;

ii) Gs = G ◦ εs maps U s biholomorphically on a convex neighborhood of 0 ∈ Tg(s)X;

iii) dF s
g(s) is the identity map.

Proof. We recall the argument from [L1] just pointing out the smoothness of G.
Let (Ωj, φj) be an atlas of the complex manifold X. Then the sets Sj = g−1(Ωj) ⊂ S

form an open covering of S. Consider Uj ⊂ Sj × X a neighborhood of the graph of
g|Sj . We can construct locally the diffeomorphism Gj by

Gj : Uj −→ g∗TX

(s, x) 7→
(
s, (dφ−1

j )φj(g(s))
(
φj(x)− φj(g(s))

))
.

Notice that Gj is of class W k,2 because such is g. It remains to glue all the Gj. Take
{ηj} a Ck-partition of unity subordinated to the covering {Sj} and define G(s, x) =∑
j ηj(s)Gj(s, x) and choose the restriction of G to a suitable U ⊂ ⋃j Uj.
For g ∈ W k,2(S,X) choose U andG as in the previous lemma. Those h ∈ W k,2(S,X)

whose graph Γh := {(s, h(s)) | s ∈ S} is contained in U form a neighborhood
U ⊂ W k,2(S,X).

U :=
{
h ∈ W k,2(S,X) | Γh ⊂ U

}
.

For h ∈ U associate a section ψ(h) ∈ W k,2(g∗TX) by putting ψ(h)(s) = G(s, h(s)).
Thus ψh,G is a homeomorphism between U and an open set of W k,2(g∗TX). The
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link to another homeomorphism ψ′ = ψ′g′,G′ associated with g′ ∈ W k,2(S,X) and
corresponding G′ is by the fact that G′ ◦G−1 defines a bundle morphism between open
fiber subundles of g∗TX and g′∗TX holomorphic on the fibers. Thus it induces the
map ψg′,G′ ◦ ψ−1

g,G between open subsets of W k,2(g∗TX) and W k,2(g′∗TX). So we can
observe that ψg′,G′ ◦ ψ−1

g,G is holomorphic. Thus all the charts (U , ψ) associated with
different g,G are compatible and define a complex manifold structure on W k,2(S,X).
Thus W k,2(S,X) has the structure of a complex Hilbert manifold.

Another way to understand this complex structure on W k,2(S,X) is to describe
analytic disks in W k,2(S,X).

Lemma 4.5. Let D and X be finite dimensional complex manifolds and let S be an
n-dimensional compact real manifold without boundary. A mapping F : D × S → X

represents a holomorphic map from D to W k,2(S,X) (denoted by F∗) if and only if the
following holds:

i) for every s ∈ S the map F (·, s) : D → X is holomorphic;

ii) for every z ∈ D one has F (z, ·) ∈ W k,2(S,X) and the

correspondence D 3 z → F (z, ·) ∈ W k,2(S,X) is continuous with respect to the Sobolev
topology on W k,2(S,X) and the standard topology on D.

Proof. The problem is local in D and therefore F can be supposed to be defined
for z close to z0 ∈ D and s ∈ S mapping every {z} × S to an neighborhood of 0 in a
complex Hilbert space andW k,2(S,

(
F (z0, •)

)∗
TX). After this reduction the statement

of this lemma becomes obvious.
For more details we refer to [L1].

4.4 Loop spaces of Hartogs manifolds are Hilbert-
Hartogs

In this chapter we shall prove the second main result of this thesis, namely the following
theorem.

Theorem 4.2. A generalized loop space of a q-Hartogs complex manifold is a q-Hartogs
Hilbert manifold.

Proof. The proof will be achieved in a number of steps.

Step 1. Localisation in holomorphic variable.
Since q-Hartogs extension property of a Hilbert manifold is equivalent to that of

q-Levi it is enough to prove the latter. Let D be a domain in Cq+1 with smooth
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Figure 4.1: Hartogs figure near a pseudoconcave point

boundary, which is strongly pseudoconcave at its boundary point p. Let furthermore
F : D × S → X be a mapping to a q-Hartogs manifold such as in Lemma 4.5.

All we need is to find an extension of F to a mapping F̃ : U × S → X, where U is
a neighborhood of p, such that it obeys the conditions of Lemma 4.5 as well.

Take a q-Hartogs figure H in D near p such that its associated polydic Ĥ contains
a neighborhood V of p and we take as U a polydisc ∆q+1

R (p) such that its closure is
contained in this V , see the picture 4.1. The natural coordinates on Ĥ we denote by
(z, t). Since X is q-Hartogs we have that for every s ∈ S mapping F (·, s) : D → X

holomorphically extends to Ĥ, i.e. to a fixed neighborhood V of Ū . Denote by F̃ :
V × S → X this extension.

Step 2. Continuity in classical topology.

We shall prove that mapping F̃ is continuous with respect to the natural topologies
on V, S and X. For that it is sufficient to prove that for any sequence sn → s0 ∈
S F (∗, sn) converges uniformly on Ū to F (∗, s0). Consider the analytic (q + 1)-disc
F̃ (·, s0) : Ū → X in X. Denote by G0 := ΓF (·,s0) its graph in V ×X. Due to Lemma
3.1 all we need to prove is that for any sequence sn ∈ S converging to s0 the graphs
Gn := ΓF (·,sn) over Ū enter to a given neighborhood of G0. By Royden’s lemma there
exists a polydisc neighborhood, sayW , of the graph of F (·, s0) over the whole polydisc
Ĥ. In fact over an any given relatively compact subpolydisc of Ĥ and so one may
need to shrink H and therefore U on this step. For every s ∈ S denote by g(z, t, s) =
(z, t, F (z, t, s)) the mapping to the graph of F (·, s). We have a sequence of holomorphic
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mappings
g(·, sn)|Ĥ∩D : Ĥ ∩D → W ∼= ∆N for n >> 1,

uniformly converging to g(·, s0) on compacts of Ĥ ∩ D. But then their holomorphic
extensions to Ĥ will still take values in W and uniformly converge on compacts of Ĥ
by maximum principle. Therefore graphs Gn converge over Ū to the graph G0. The
step is proved.

Step 3. Continuity in Sobolev topology.
Again fix some s0 ∈ S and take some ε > ε1 > 0. Furthermore take a cut-off

function ρ0 equal to 1 in B(s0, ε1), non-negative everywhere and supported in B(s0, ε).
Here by B(s0, ε) and B(s0, ε1) we denote the coordinate balls centered at s0 ∈ S. Take
ε > 0 small enough to ensure that F̃ |Ĥ×B(s0,ε) is contained in some coordinate chart X0

of X and denote by α0 the corresponding coordinate map to Cm where m = dimX. Set
Fρ0 = ρ0

(
α0 ◦ F̃

)
. Again in order to achieve that one should shrink H and therefore

U if necessary.
Consider our map Fρ0 : Ĥ ×B(s0, ε)→ Cm and notice that:

i) for every (z, t) ∈ H the map Fρ0(z, t, ∗) is inW k,2(B(s0, ε),Cm) and has compact
support.

ii) (z, t) 7→ Fρ0(z, t, ∗) is a continuous map from H to W k,2(B(s0, ε),Cm) with
respect to the standard topology on H and Sobolev topology on W k,2(B(s0, ε),Cm),

iii) moreover, for every s ∈ B(s0, ε) mapping Fρ0(z, t, s) is holomorphic on the
associated polydisc Ĥ (not only on the Hartogs figure H).

These items hold true because a multiplication by a smooth cut-off function pre-
serves the Sobolev class and continuity in Sobolev topology on H, where we had this
continuity for F . Also, since this cut-off function depends only on the space variable
s it doesn’t spoils the holomorphicity in (z, t). According to Lemma 4.5 items i) and
ii) mean that Fρ0(z, t, ∗) is a holomorphic mapping from H to W k,2(B(s0, ε),Cm), the
latter being a complex Hibert space. Holomorphic mappings from the Hartogs fig-
ure H = H1

q (r) to a complex Hilbert space holomorphically extend to the associated
polydisc Ĥ. Denote for the moment by F̂ρ0 this extension. And now remark that for
every s our extension F̂ρ0(∗, s) coincides on Ĥ with Fρ0(∗, s) as it is given in iii) . This
is obvious since both F̂ρ0(∗, s) and Fρ0(∗, s) are holomorphic on Ĥ for a fixed s and
coincide on H. Therefore they coincide everywhere by the uniqueness theorem.

Remark 4.6. The fact that a holomorphic map F : H(r) → F with values in a
complex Banach space F holomorphically extends to ∆2 can be found in [Ra]. But
in the case of a l2 it is particularly simple. Take a composition wj ◦ F of F with any
coordinate function and extend it to ∆2 by the classical Hartogs theorem. Then use
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the plurisubharmonicity of ρ(w) := ∑
j |wj|2 to prove that the extension

z → {(wj ◦ F )(z)}j

thus obtained is locally bounded in ∆2.

Since ρ0 is equal to 1 on B(s0, ε1) we proved that for (z, t) ∈ Ĥ the restriction
F (z, t, ∗)|B(s0,ε1) ∈ W k,2(B(s0, ε1), X0) and it continuously depends on (z, t). Since S is
compact one can cover it by a finite number of balls {B(sj, ε1)}s∈J and take ε > ε1 such
that F̃ |Ĥ∩B(sj ,ε) takes its values in some chart Xj of X for any j ∈ J . Take a cut-off
function ρj equal to 1 in B(sj, ε1) and supported in B(sj, ε) and set Fρj = ρj.(αj ◦ F̃ ),
where αj : X → Cm is a coordinate map. As above we obtain continuity of every
Fρj and therefore of F (z, t, ∗)|B(sj ,ε1) together with their holomorphicity and therefore
continuity on Ĥ.

By the defintion of Sobolev topology, see Definition 4.6, we get that for all (z, t) ∈
∆q
R × ∆R, F (z, t, ∗) is in W k,2(S,X) and the correspondance (z, t) → F (z, t, ∗) is

continuous in Sobolev topology. Theorem is proved.
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