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Abstract

The advent of delivering new features faster has led many software projects to change
their development processes towards more rapid release models where releases are
shipped using release cycles of weeks or days. The adoption of rapid release practices
has significantly reduced the amount of stabilization time, the time it takes for a
software product’s failure rate to reach close to the steady-state, available for new
features. This forces organizations to change their development process and tools to
release to the public, in a timely manner and with good quality. Rapid releases are
claimed to offer a reduced time-to-market and faster user feedback; end-users bene-
fit of faster access to functionality improvements and security updates and improve
turnaround time for fixing bad bugs. Despite these benefits, previous research has
shown that rapid releases often come at the expense of reduced software reliability.
Despite the increasing adoption of rapid releases in open-source and commercial soft-
ware, the effects of this practice on the software development process are not well
understood.
The goal of this thesis is to provide a deeper understanding of how rapid releases
impact different parts of the open-source software development process. We present
empirical evidence about the short and long-term impact of rapid releases on the bug
handling and testing process in open source organizations; and the plan and tools
needed for successful adoption of rapid releases. This thesis presents an empirical
case study of rapid releases in Eclipse and Mozilla Firefox projects. We follow a
mixed-methods approach where we analyze software repositories, containing different
types of data such as source code, testing data and software issues; and we conduct
a survey with Eclipse developers. This helps understand the evolution and changes
of the software development process, the plans and practices needed for successful
adoption of rapid releases, and identifying several future research directions calling
for further investigation.
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Chapter 1
Introduction

The goal of this thesis is to provide a deeper understanding of how rapid re-
leases impact different parts of the open-source software development process. This
chapter introduces the thesis context and concepts necessary to develop the back-
ground knowledge that will help the reader to understand the remainder of this the-
sis. In Section 1.1, we present the thesis context. We stated our thesis statement in
Section 1.2. In Section 1.3, we summarize the thesis contribution. Finally, Section 1.4
presents the how the dissertation is organized.
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1.1 Thesis Context
In large collaborative software projects with many features and requirements, and
involving hundreds of people working on the same massive piece of code, develop-
ment teams formalize what should be done (good practices) or not (bad practices)
and generally define the plan of the software development process, what features to
include in the software product and when to release a new version of the software
product [10]. In this context, the software development process is defined as the way
in which the software product is developed, from its definition to its delivery and
maintenance. Software development processes aim to help project teams in organiz-
ing and structuring software projects. This process usually includes a set of methods,
tools, and practices.
It is estimated that 80% of the software development effort is spent on software
maintenance [100]. In the light of the sheer size and complexity of today’s software
systems, it is no wonder that software maintenance, especially bug handling activity,
has become a challenging task [141]. The bug handling process is a part of software
development and maintenance process. An efficient bug handling process, a process
to correct software bugs, is critical for the success of software projects. In the last
decades, while society has been increasingly relying on software, the cost of software
maintenance, compared to the global cost of software, has grown [30]. Software
maintenance refers to modifying and updating a software product after its delivery
to correct faults and improve performance. In recent years, software maintenance
has become more challenging due to the increasing number of bugs in large-scale and
complex software programs [141]. Maintenance refers to an activity that occurs at
any time after the implementation of the new development project, while the software
evolution is defined as examining the dynamic behaviour of systems, i.e., how they
change [49]. It is important to study the software evolution to better understand the
software development process [86]. Software evolution analysis deals with software
changes, their causes, and their effects. Such analysis uses all types of software
repositories to perform historical analysis. Such data involve the release history with
all the source code and the change information, bug report data, and data extracted
from the running system. In particular, the analysis of release, source code and issue
data have gained in importance as they leverage valuable information to analyze the
evolution of software [33]. Software Organizations improve the quality, speed, and
efficiency of building or updating software using the release management process. It is
the process of planning, scheduling, and managing a software build through the stages
of developing, testing, deploying and supporting the release [39]. Release management
usuallystarts at the first stage of the development cycle, where managers layout a
release policy, a document that defines the scope, principles, and end goals for the
release management process. Release managers establish release plans based on the
release policy. These plans are broad guidelines for delivering releases. Every major
release provides a significant amount of new or modified functionalities compared
to the previous release and bug fixes. Due to today’s competitive business world,
software organizations must deliver new features and bug fixes fast to gain and sustain
the satisfaction of users [13]. As a result, many large software projects have switched
from a more traditional release cycle (e.g., 12–18 months to deliver a major release),
to shorter release cycles (e.g., weeks) [27]. Large projects such as Google Chrome,
Mozilla Firefox, and Facebook have adopted shorter release cycles [4]. For example,
Firefox adopted a shorter release cycle to speed up the delivery of its new features
[116]. This has been partly done to compete with Google Chrome’s rapid release
model. In this dissertation, we focus on the phenomenon of rapid releases which
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refer to releases that occur in release cycles that last weeks or days. Rapid release
cycles claim various benefits to both companies and end-users. They offer a reduced
time-to-market and faster user feedback [16, 79]; end-users benefit because they have
faster access to functionality improvements and security updates [80] and improve
turnaround time for fixing bad bugs [16]. Despite these benefits, research has shown
that rapid releases often come at the expense of reduced software reliability [28, 63]
and important repercussions on software quality [80]. Adopting rapid release policies
can impact different parts of the software development process, such as the testing
and maintenance parts.

1.2 Thesis Statement
Despite that rapid releases are increasingly being adopted in open-source and com-
mercial software, it is not well studied what the effects are of such practice [69]. It
is essential to understand its effects on the software process as it forces organizations
to change their development process and tools to release their software, in a timely
manner and with a good quality [22]. This thesis’ overall objective is to empirically
understand the short and long-term impact of rapid releases on different parts of the
development process of open source software (OSS). Such understanding can provide
valuable insights to help OSS organizations to consider what preparation and ad-
justment to their release management process may be necessary when switching to
shorter release cycles. Such insights can also open up research directions that can help
open source foundation and commercial organizations; and practitioners on how to
plan and adopt rapid releases and how to migrate to a rapid release model properly.
It can also bring a better understanding and generalization of release practices. We
will, therefore study the following thesis statement in this dissertation:

By empirically studying rapid releases in large and mature open-source software
projects, we provide valuable insights in the advantages and disadvantages of
the adoption of rapid releases, and the release management plans and tools
needed for successful adoption.

To validate the aforementioned thesis statement, we will rely on a mixed-methods
research approach. Mixed methods research is a methodology that consists of collect-
ing, analyzing, and integrating quantitative (e.g., case studies) and qualitative (e.g.,
surveys and interviews) research [120]. Mixed methods incorporate the strengths of
both qualitative and quantitative research methods to overcome the weaknesses and
limitations of the particular methods [29, 107]. Usually, the results of the qualitative
study are used to support the findings of quantitative study [34]. More specifically,
this thesis uses case studies and surveys as two complementary methods to quanti-
tatively and qualitatively assess the usefulness of our research. As part of our case
study, we analyzed different types of various kinds of development artifacts such as
bug-tracking repositories, testing data commit and release histories; we conducted a
survey with Eclipse developers to support our analysis. In each of Chapter 4 and 5,
we provide more detail on our case study plan and the data collection process.

1.3 Contribution
The empirical results that will be presented and discussed in this dissertation show
the impact of adopting rapid releases, providing software organizations and practi-
tioners with valuable insights on the advantages and disadvantages of rapid releases
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and actionable information that help them to make informed decisions on whether
and when to safely switch to a rapid release model. Various software repositories,
containing different types of data, can help in studying and understanding the evo-
lution and changes of the software development process. Among the available data
sources, we decide to focus on source code, testing data and software issues. Source
code plays a key role in software maintenance activities. Software issues and testing
provide valuable information about software quality. The main contributions of this
dissertation are:

• Quantitative analysis: We empirically examine the short-term and long-term
impact of the rapid releases on the software maintenance process, specifically
the bug handling process (Chapter 4).

• Quantitative analysis: We study the impact of rapid releases on some common
software development practices of large open source projects Eclipse and Mozilla
Firefox (Chapter 4 & 5).

• Qualitative analysis: We carry out a survey among software maintainers in
order to assess the impact of rapid releases on software maintenance (Chapter
4).

• For all case studies, we provide guidelines for future rapid releases adopters on
how and whether to switch to a rapid release model (Chapter 4 & 5).

1.4 Dissertation Structure
The dissertation is organized as follows:
After this introduction, chapter 2 presents the terminology and concepts that develop
the background required to understand the remainder of the dissertation. We present
background information on the software development process and release management
and the bug handling process. Chapter 3 reviews the existing literature on rapid
releases and, in particular, bug fixing process in rapid releases.
Chapter 4 presents an empirical study of the bug handling activity in the Eclipse core
projects where we study the evolution of the bug handling process and the impact of
the transition to a rapid release cycle. The content of this chapter is mainly based on
our previous publications in the International Conference on Software Maintenance
and Evolution 2019 (ICSME) proceedings [2], and in the Journal of Systems and
Software 2020 (JSS) [3].
Chapter 5 presents our study on revisiting the impact of rapid releases on the Mozilla
Firefox project. We study the impact of switching to more rapid releases on different
activities in the software development process, such as the bug handling process and
testing activity.
Finally, Chapter 6 concludes this dissertation by summarizing our contributions, lim-
itations and discussing future work.
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Chapter 2
Background

This chapter introduces the terminology and concepts necessary to develop the
background knowledge that will help the reader to understand the remainder of this
thesis. In Section 2.1, we present techniques, tools and practices that are relevant to
understand the development process of many software projects, especially the Eclipse
and Mozilla Firefox projects. We introduced concepts related to release management
and release models in Section 2.2. In Section 2.3, we introduce bug reporting, the
bug handling process and explain the Bugzilla tracking system. Finally, Section 2.4
summarizes the chapter.
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2.1 Software Development Process
A software development process defines the methods and procedures that organiza-
tions and individuals have to follow to create software products and services [98].
Ultimately, the purpose of a software process is to provide a roadmap for the devel-
opment of high-quality software products that meet the needs of their stakeholders
within a balanced schedule and budget [137]. It focuses on the creation and mainte-
nance of tasks rather than the output or the end product. Thus, a typical software
process should aim to solve the potential and future problems of software develop-
ment in terms of planning and budgeting. A broad definition of the software de-
velopment process includes development, deployment and maintenance of a software
product, which should include a set of policies, organizational structures (e.g., task
definitions), human activities, technologies, and procedures [43]. Among the many
software development approaches proposed in the literature, the most well-known
ones are the traditional waterfall model and more recent agile approaches [92].
The four basic software development process activities of specification, development,
validation and evolution are organized differently in different development processes
[122] (see Fig. 2.1). In the waterfall model, they are sequentially organized, while
in evolutionary development, such as agile methods, they are interleaved. The way
in which these activities are carried out depends on the type of software, individuals
and organizational structures involved.

1. Software specification or requirements management is the process of under-
standing and defining the functional and non-functional requirements required
for the system and determining the operational and developmental constraints
of the system. The requirements engineering process produces a software re-
quirements document that corresponds to the system specifications.

2. Software design and implementation is the process by which a system spec-
ification is converted into an executable system by system design. A software
design is a description of the architecture of the software to be implemented, the
data that is part of the system, the interfaces between the system components
and, sometimes, the algorithms used.

3. Software validation aims to demonstrate that a system meets its specifi-
cations and customer expectations. It involves checking the processes at ev-
ery stage of the software process. Most validation costs are incurred post-
implementation when system operation is tested.

4. Software evolution, in particular software maintenance, is the term used in
software engineering to refer to the process of developing software initially, then
it is repeated updating for various reasons. The goal of software evolution would
be to implement potential major changes to the system. The existing system
is never complete and keeps evolving [75]. As it evolves, it becomes more and
more complex. The primary goals of software evolution are to ensure system
reliability and flexibility.
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Figure 2.1: Software development activities.

We present a few definitions, which help readers understand different artifacts and
practices in the software development process:

- Source code: computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler, or other translators [56].

- Issue: uniquely identifiable entry in an issue-tracking system that describes a
problem or an enhancement [56].

- Software feature: software characteristic specified or implied by requirements
documentation [56].

- Commit: the smallest increment a developer contributes to the code base of a
project, and it is recorded into the version control system [67].

- Patch: a modification to a source code to resolve functionality issues, improve
security and add new features [105].

- Channel: an approach to distributing products and services from the original
supplier to the end-user organization [56].

- Stabilization: is the process of getting a release branch into a releasable state;
that is, of deciding which changes will be in the release, which will not, and
shaping the branch content accordingly [42].

- Feature freeze: no new functionality can be added [56].
Building and maintaining a high-quality software system is a complex task that re-
quires the cooperation of many members in different software teams. Different indi-
viduals have different roles within the project. Individuals may have more than one
role (e.g., an individual can be both a reviewer and a committer), but the roles are
distinct. Below we describe some roles in developing a software product:

- Stakeholder: an individual or organization having a right, share, claim, or
interest in a system or in its possession of characteristics that meet their needs
and expectations [56].

- Developer: an individual that performs development activities (including re-
quirements analysis, design, writing source code and testing) during the software
development process [56].

- Committer: a developer with commit privileges [56].
- Maintainer: an individual that performs maintenance activities [56].
- Reviewer: an individual that performs reviewing activities to find and resolve
issues in the software [56].

- Code sheriff: an individual that aids developers to easily, quickly, and seam-
lessly land their code in the proper location(s) and ensure that the code does
not break the automated tests [118].
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- Contributor: an individual that contributes code, documentation, tests, ideas
to software project [56].

- End-users: the personnel who use the system for their specific business purpose
[56].

During the development process, software teams will generate a large number of arti-
facts, such as source code files, documentation, reported errors, technical discussions,
etc. Software development teams rely on software tools to manage these artifacts and
keep track of their complete change history. Several types of collaborative tools have
been developed and widely used by software developers [82]. Example of software
tools that are relevant in our work are:

Version Control Systems (VCS) manage the code base of a software system and
store every version of the source code. These tools permit developers to work simul-
taneously on the same code files. They also provide conflict resolution mechanisms
when there are overlaps between the changes of developers. Commit is the smallest
unit of modification recorded into the VCS. Each commit has a unique identifier, the
information of the developer who submitted the commit, the date of submission, the
commit message, the list of the affected files, the patch, etc. Examples of version
control systems are SVN1 and Mercurial2.

Issue Tracking Systems (ITS) allow the recording and tracking of software issues
reported by end-users and developers. Also, they enable developers to collaboratively
fix the reported issues and keep track of their progress and status. Issue reports
include feature requests, software bugs, enhancements and refactoring actions. When
an issue report represents a software bug, we refer to it as a bug report. In the
remaining of this thesis, we also refer to issue tracking systems bug tracking sys-
tems. A bug tracking system is a software tool that keeps track of reported software
bugs in software development projects. Examples of bug tracking systems are the
open source system like Bugzilla3 and the commercial system Mantis4.

2.2 Release Management
Release Management is a fundamental approach for successful open source projects.
Release management includes the planning, implementation and monitoring of soft-
ware development processes. Release Managers are individuals who manage the
software by administrating the release process, proposing release schedules, and en-
suring that new releases progress timely [126]. A release is typically a named set of
software components and supporting documentation that is subject to change man-
agement and is upgraded, maintained and tested as a whole. A release has a release
policy that defines the methods of how the release will be built, configured, and
installed into the production environment [71]. In general, the release management
process involves the following steps [15]:

- Requirements Gathering and Planning: When a new release is prepared,
requirements and improvements needed to fix the current product are gathered.

1https://subversion.apache.org/
2https://hg.mozilla.org/
3https://www.bugzilla.org/
4https://www.mantisbt.org/

https://subversion.apache.org/
https://hg.mozilla.org/
https://www.bugzilla.org/
https://www.mantisbt.org/
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The plan breaks the release into stages, sets up the overall workflow, and outlines
who is responsible for each task.

- Release Building: The building process of the new release is started when
the release requirements are identified and planned. It consists of the main
activities used in the software development process.

- Acceptance Testing: The system release build is subjected to a comprehen-
sive testing procedure when it is ready. The program is reviewed to verify if it
works correctly and lives up to the requirements and dependencies.

- Release Preparation: The verified release is packaged and prepared as a
final product to be delivered after checking if it meets the minimum standards
of acceptance and business requirements as detailed in the release plan.

- Release Deployment: The release is deployed to the customer.

The system requirements evolve over time, so a release plan has to be defined that
allows for changes and the gradual introduction of requirements. Release planning
steers the project by defining milestones for when new releases have to be delivered.
This forces the community to integrate their finalized code into the new releases.
We present different types of releases, release channels and strategies to manage the
release process in Section 2.2.1, Section 2.2.2 and Section 2.2.3, respectively.

2.2.1 Software Release Basics

In this section, we present the different release types delivered during the software
development process. A build is an executable code that is handed over to the tester
to test the functionality of the developed part of the project. Version is an instance of
the software product that contains substantial and significant enhancements or other
substantial change in functionality or performance compared to the previous version
[45]. Whereas a release is a version of a software system that is tested and fully
functional and has been made available to users for testing or public consumption
[56]. Milestones are releases that include specific sets of functions and are released as
soon as the functionality is complete [132]. Release engineering involves building
fast and reliable pipelines to transform source code into viable products. Release
engineering focuses on the purely technical aspects of the software release. In a
nutshell, release engineering deals with the technical aspects of getting a release from
development to production [112]. During software development, different types of
releases are delivered [106]: There are two main types of release: internal/external
testing releases and external product releases. For instance, the development
organization may release a product internally to the testing group or may release a
product to the user community for beta testing:

1. Internal and external testing releases: The software is tested to ensure
that it works as intended before being available for public users. To this end,
most organizations use alpha versions, beta versions and release candidates [35]:

(a) Alphas are used for internal acceptance testing where developers generally
test the fix/change that has been produced.

(b) Betas can be considered as a form of external User Acceptance Testing,
which is performed by users and communities. It starts when the software
is declared to be “feature complete”, but may contain some known or
unknown issues, such as performance or crashing issues.
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(c) A Release candidate is a version of the software that is considered to be
as the final software release. In this phase, no features are developed or
enhanced; only issue fixes are allowed.

2. External product releases: Most organizations follow three levels of product
releases (semantic versioning): major releases, minor releases, and patches
[102]. Major and minor releases are designed to be external product releases
that are persistent and supported for a period of time.

(a) A major release represents the official version of a software product.
(b) A minor release is off-schedule and represents the same basic product

but with enhanced features, performance, or quality.
(c) A patch release corresponds to a developmental configuration that is

intended to be transient. It is produced to fix specific bugs or to add
minor functionality.

Other types of external product releases are:

(d) A service release (SR) contains bug fixes and may contain a small num-
ber of new features or new functionality.

(e) An update release is a minor service release and contains only bug or
security fixes.

2.2.2 Release Channels

Many modern software projects support pipelined software development which in-
volves teams working in parallel on different release channels (e.g., Chrome and An-
droid Studio) [19, 104]. They use channels to slowly roll out updates to users, starting
with daily channel builds (least stable), all the way up to the stable channel releases.
The pre-release channels are intended for users who want to experience the latest
features and improvements [5]. This gives developers time to test their code on up-
coming versions before they are delivered to end-users. The early channels are not
recommended for typical end-users because they can have stability issues. Example
of the common types of release channels are presented below:

• Daily channel: This channel is cutting edge as it receives daily updates of
new features as soon as they are built. This channel is vulnerable to issues and
errors since features are added even before being tested.

• Dev channel: This channel’s releases are selected from older canary releases
that have been tested for a while. Like the canary channel, this channel is
used to test and show people the newest features as soon as possible. It is still
unstable and subject to bugs. Updates are typically released weekly or monthly.

• Beta channel: If a user is interested in using the new features, with minimal
risk, the beta channel is the place to be. Beta channel releases usually contain
all the features that a team has decided to add, but it is still expected to have
some bugs and performance issues.

• Release (or: Stable) channel: This channel’s releases have been fully tested
and are the most reliable. Most users use this channel for production use. Stable
releases follow the official release schedule for major version releases.
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2.2.3 Release Management Strategies

There are different strategies to manage the release process. Release strategies can
be classified as feature-based, time-based or a hybrid of both [88]. Feature-based
releases are delivered when a set of predefined goals has been achieved (e.g., when a
set of features has been implemented or a set of reported bugs have been fixed). Time-
based releases are delivered according to fixed time intervals, with whatever features
are ready when the release date comes. A common type of time-based release strategy
is the use of regular cycles where releases are delivered at regular intervals.
The release cycle consists of all the stages from the start of the development of a new
version of a product until its release to users, including the release of minor versions
containing bug fixes or minor enhancements. When the release strategy is selected,
the release cycle time is to be chosen. The release cycle time is defined as the time
between the start of the development of a software product and its actual release [90].
Michlmayr et al. [90] identified five factors that affect the choice of release interval:
regularity and predictability; nature of the project and its users; commercial factors;
cost and effort; and network effects.

Traditional Releases Rapid Releases

Release criteria feature-based time-based
Time between releases a year or more weeks or few months
New features next major release next rapid release
Supported versions many one or two
Bug fixes bug fix release next rapid release

Table 2.1: Comparison between traditional and rapid releases.

A release model is a simplified description of a release process, i.e., of the activities
carried out during the release cycle [123]. Table 2.1 highlights the aspects of two
release models, traditional releases and rapid releases. Traditional releases follow a
feature-based release strategy where every major release is delivered about one year
or more after the previous release. Rapid releases follow a time-based release strategy
where the time is reduced to a few weeks or months. There is a stabilization period in
both release models, which occurs just before the release, it is called feature freeze.
During this period, all work on adding new features is suspended, moving the effort
to test and fix bugs to improve quality and stability. Under traditional releases, new
features are implemented for the next release only. However, bug fixes are backported
to older releases to guarantee that the old version users will get bug fixes in a timely
manner [123]. Under rapid releases, it is usual to support only the latest version
since releases are more frequent. The rapid release model allows the organization to
deliver new features to users earlier. On the other hand, traditional releases may be
appropriate when stability is more important than new features.
The ability to release rapidly was the second most mentioned benefit of agile software
development, and it was practiced by 2 out 3 of respondents [16]. It was perceived that
rapid releases enable easier progress tracking, easier monitoring of the quality of the
software, more rapid feedback, a reduction of turnaround time and hence easier bug
fixing. Agile software development highlights the importance of rapid releases, as one
of its principles states “Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale” [14]. Rapid releases
are claimed to offer a reduced time-to-market and faster user feedback [63]; end-
users benefit from faster access to functionality improvements and security updates
[80]; and improve turnaround time for fixing bad bugs [16]. Shorter time-to-market
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allows projects that adopt rapid releases can compete better with other projects and
respond faster to customers’ changing needs [68]. Michlmayr and Fitzgerald [89]
found that a reduced release cycle time can attract collaborators where the majority
are volunteers motivated by the challenges associated with shorter release activities.
However, Kerzazi and Khomh [60] stated that a release process needs to be automated
and optimized in order to support rapid release cycles. Therefore, rapid release cycles
are often adopted through modern release engineering practices such as Continuous
Integration (CI), Continuous DElivery (CDE) and Continuous Deployment (CD) as
they are an enabler for rapid releases:
Continuous Integration (CI) is a development practice that requires developers to
integrate code into a shared repository several times a day. This practice aims to test
the code frequently throughout the development process so that possible issues are
identified and corrected early.
Continuous Delivery (CDE) is an extension of CI where developed code is con-
tinuously delivered as soon as it is considered ready for being shipped. It involves
continuous integration, automation testing and deployment of automation processes,
which allow rapid and reliable development and delivery of software with the least
manual overhead.
Continuous Deployment (CD) is the next logical step after continuous delivery.
It is the process of deploying the code directly to the production stage as soon as
it is developed. In CD, all changes that pass the automated tests are automatically
deployed to the production stage.

Organizations improve the quality, speed, and efficiency of building or updating soft-
ware by focusing on release management. Release management is planning, schedul-
ing, and managing a software build through the stages of developing, testing, de-
ploying and supporting the release. This section presents the definition of release
management, different types of releases, release channels, and strategies to manage
the release process.

2.3 Bug Handling
Software development teams use specific processes to support their daily activities
such as coding, testing, bug fixing, issue tracking, code reviewing and continuous
integration. For each of these activities, dedicated tools and processes are being
used that may vary from one development community to another, as well as from
one period to another. A typical example of this is the well-known bug handling
activity that is an essential activity to ensure software quality. It is estimated that
80% of the software development effort is spent on software maintenance [100]. In
recent years, software maintenance has become more challenging due to the increasing
number of bugs in large-scale and complex software programs [141]. There are four
types of maintenance: corrective, adaptive, perfective, and preventive. Bug fixing is
a corrective maintenance action. A well-structured bug management process makes
life easy for software practitioners to deal better with software bugs. In Section 2.3.1,
we present a few definitions. In Section 2.3.2, we define what a bug report. In
Section 2.3.3, we discuss different phases in the life cycle of a software bug. In
Section 2.3.4, we present the Bugzilla tracking system. In our analysis, in Chapter 4
and 5, we relied on data retrieved from Bugzilla.
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2.3.1 Definitions

In this section, we present a few definitions, which will help readers understand the
following sections:

Defect: An imperfection or deficiency in a work product where that work product
does not conform to its specifications and needs to be repaired or replaced [56].

Error: The difference between a computed, observed, or measured value or con-
dition and the true, specified, or theoretically correct value or condition [56].

Fault: A manifestation of an error in the software. An incorrect step, process, or
data definition in a computer program [56].

Failure: The inability of a system to perform a required function or its inability to
perform within previously specified limits; an externally visible deviation from
the system’s specification [56].

The use of these terms differs with respect to each organization or software project.
Therefore, in this dissertation, we use the common term “bug” as an umbrella word
because of its intuitiveness and widespread usage, with the following definition:

Bug: A deviation between the expected behavior of program execution and what
actually happened [91].

2.3.2 Bug Report

A bug report contains various fields to describe what is relevant to a specific bug.
This information is important for getting a rough idea of what the bug is about.
However, not all the fields are compulsory. A description of some fields of a bug
report are summarised in Table 2.2.

Field Description

ID The bug ID.
Description Descriptive information that helps in the debugging process such as the reported

error message, the steps to reproduce the error, etc.
Product The product which is affected by the bug
Reporter The person who reported the bug.
Creation date The date and time of bug creation.
Assignee The person in charge of resolving the bug.
Version The version of the software the bug was found in (e.g. 3.2, 4.5).
Severity The estimated bug impact as perceived by the bug reporter (e.g., enhancement,

trivial, minor, normal, major, critical, blocker).
Status It defines exactly what state the bug is in (e.g., new, fixed and closed).
Resolution The latest resolution status of a resolved bug (e.g., fixed, duplicate).

Table 2.2: Typical fields that can be found in bug report.

Bug reports are filed on the bug tracking system. Fig. 2.2 shows an example of
Eclipse project bug report on Bugzilla. The pre-defined fields of a bug report provide
a variety of categorical data about the report. Field values such as the report identifier
number, creation date, and reporter, are set when the report is created. Other values,
such as the product, component, version, priority, and severity are filled out by the
reporter when the bug is created, but the values might change over the lifetime of
the report. Other fields may also change over time, such as the person to whom the
bug is assigned, or the current status of the report. Also, the contact information
of the people involved in the activity of the bug is included. These variable fields
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represent the different ways that a bug report can be categorized in the development
process. The free-form text contains the report title, a complete bug summary, and
additional comments. Typically, the bug description contains a detailed description of
the bug’s effects and any necessary details for the bug to be replicated by a developer.
The additional comments include discussions on potential approaches to fixing the
bug and references to other bugs that include or appear to be duplicate reports of
additional details about the bug. Reporters and developers can provide attachments
to reports to provide non-textual additional information. The activity log provides
a historical record of how the report has changed over time, for example, when the
report has been reassigned, or when its priority has been changed.

Figure 2.2: Example of bug report on Bugzilla tracking tool (bug
ID=510161).

2.3.3 Bug Handling Process

Software bugs are introduced in software during the different phases of the software
development process. The goal of bug handling process is to determine these bugs
in the software and to fix them. The bug handling process is shown in Figure 2.3.
During the this process, a bug undergoes three phases to be fixed:
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Figure 2.3: Bug Handling Process.

1. Bug understanding: The purpose of this task is to understand the content
of a given bug report to describe the important contents, filter the duplicates
and predict the characteristics (e.g., priority, severity and status) of reported
bugs. The challenge occurs when a huge amount of bug reports is submitted
every day. It can lengthen the fixing time and affect the quality of this task
execution.

2. Bug triaging: It is concerned with the assignment of bugs to the appropriate
developers for fixing. The developer responsible for this activity is called triager.
Triagers are supposed to assign the appropriate developers to fix the given bugs
and then mark the status of the corresponding bug report to ‘Assigned’. Triagers
might assign improper developers to do bug fixing tasks if there was no good
understanding of the bug or poor knowledge of developer skills. This will lead
to the bug re-assignment(s) (i.e., bug tossing). Several automatic bug triaging
approaches have been proposed to recommend the best developers for fixing a
bug [7, 8, 119, 136].

3. Bug fixing: The assigned developer is responsible for fixing the reported bugs.
The developer needs to find the source code files where the bug is and develop
or update code as a part of the bug-fixing process. Manual bug localization is
time-consuming and expensive. Thus, methods for automatically locating bugs
from bug reports are highly desirable. Therefore, researchers have developed
automatic tools to locate the given bugs [65, 111, 133, 134].

To facilitate this bug handling process, developers rely on dedicated collaborative bug
tracking tools. Our empirical analyses in Chapters 4 and 5 are based on data extracted
from Bugzilla. In the following section, we introduce Bugzilla and its lifecycle.
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2.3.4 Bugzilla Issue Tracking System

Bugzilla is one of the most well-known open-source bug tracking tools. Bugzilla tends
to follow a dedicated process to support bug fixing. Our case studies in Chapter 4
and 5 use Bugzilla as their bug tracking system. Figure 2.4 shows the bug life cycle
supported by Bugzilla. A bug’s life starts with the UNCONFIRMED status. Each bug
has a unique numeric identifier assigned to it, called the bug ID, after reporting.
Each bug has associated a set of attributes such as severity, priority, version, when
it was discovered, who reported it and so on. Once the new bug is confirmed as a
real problem its status changes to NEW. The status of a bug becomes ASSIGNED when
a developer takes charge of fixing the bug. Once a bug resolution is carried out,
the bug status changes into RESOLVED. The Resolution takes values such as FIXED,
INVALID, WONTFIX, WORKSFORME, DUPLICATE and MOVED. Bug resolutions are subject
to the scrutiny of a Quality Assurance (QA) team. VERIFIED bugs are bugs that have
an approved resolution. Eventually, a bug reaches the CLOSED status. As shown in
Figure 2.4, loops may exist and a bug’s life can be much more complex. For example,
a bug can be REOPENED because it needs more work.

Figure 2.4: Example of the Bugzilla 3.6 bug life cycle.

Each bug report is accompanied by a history containing all events that occurred
during the bug’s life cycle (e.g., a reporter created the bug, the bug was assigned
to someone, the status and resolution type of a bug were changed, etc.). Table 2.3
provides a fictitious example of what a bug report history on Bugzilla typically looks
like. The first column shows the email of the person Who performed the change, the
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second column When this change occurred, the third column What was changed, and
the last two columns show the old value that was Removed and the new value that
was Added to replace the old value. For instance, the first modification was performed
by Donald at 9.23 AM EDT on the 4th of October 2016. Donald changed the value of
the Assignee field to daisy@domain.org and the status value from NEW to ASSIGNED.

Who When What Removed Added

donald@domain.org 2016-10-04 cc dagobert@domain.org
09:23:28 Assignee daisy@domain.org

Status NEW ASSIGNED
daisy@domain.org 2016-10-06 Version 4.5 4.5.1

11:02:01 Attachment #111253 0 1
daisy@domain.org 2016-10-25 Severity normal critical

11:05:34 Status ASSIGNED RESOLVED
Resolution — FIXED

Table 2.3: Fictitious example of bug report history in Bugzilla.

2.4 Summary
In this chapter, we have introduced the terminologies and preliminary concepts that
help in forming the foundation to understand the thesis. At the beginning of the chap-
ter, we have presented the software development process and different terminologies
of software engineering. Then, we have presented different strategies of release man-
agement. Finally, we have introduced the anatomy of the bug report and its life
cycle.
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Chapter 3
Related Work

Due to today’s competitive business world, software organizations must deliver
new features and bug fixes fast to gain and sustain the satisfaction of users [13]. In
light of this, many large software projects switch from a more traditional release cycle
to rapid release cycles. This thesis’s aims to empirically understand the impact of
rapid releases on different parts of the software development process.
In this chapter, we present a non-exhaustive summary of the related research to this
thesis. The chapter is divided into two sections. In the first section, we discuss some
closely related research focusing on different activities of the bug handling process.
The second section addresses the work on rapid releases and the bug handling process
in relation to rapid releases.
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3.1 Bug Handling Process

3.1.1 Bug triaging

Saha et al. [110] extracted code change metrics, such as the number of changed files,
to identify the reasons for delays in bug fixes, and to improve the overall bug fixing
process in four Eclipse Core projects: JDT, CDT, Plug-in Development Environment
(PDE), and Platform. Their results showed that a significant number of long-lived
bugs could be reduced through careful triaging and prioritization if developers could
predict their severity, change effort, and change impact in advance.
Zhang et al. [140] studied factors affecting delays incurred by developers in bug fixing
time. They analyzed three Eclipse projects: Mylyn, Platform and PDE. They found
that metrics such as severity, operating system, description of the issue and comments
are likely to impact the delay in starting to address and resolve the issue.
Hooimeijer and Weimer [55] analyzed the correlation between bug triaging time and
the reputation of a bug reporter. They designed a model that uses bug report fields,
such as bug severity and submitter’s reputation, to predict whether a bug report will
be triaged within a given amount of time in the Mozilla Firefox project.

3.1.2 Bug Resolution

Panjer [99] carried out a case study on Eclipse projects and showed that the most
influential factors affecting bug fixing time are found in initial bug report fields (e.g.,
severity, product, component and version) and post-submission information (e.g.,
comments).
Giger et al. [44] found that the assigned developer, bug reporter and month when the
bug was reported to have the strongest influence on the bug fixing time in Eclipse,
Mozilla and Gnome. Marks et al. [81] studied different features of a bug report in
relation to bug fixing time using bug repository data from Mozilla and Eclipse. The
most influential factors on bug fixing time were bug location and bug reporting time.
Zou et al. [143] investigated the characteristics of bug fixing rate and studied the
impact of a reporter’s different contribution behaviors on the bug fixing rate in Eclipse
and Mozilla. Among others, they observed an increase in fixing rate over the years
for both projects. On the other hand, the observed rates were not high, especially for
Mozilla.
Rwemalika et al. [108] studied the characteristics and differences between pre-release
bugs and post-release bugs in 37 industrial Java projects. They found that post-
release bugs are more complex to fix since they require modification of several source
code files, written in different programming languages and configuration files.
Lamkanfi et al. [73] proposed a dataset that provides a comprehensive information
bundle on the historical evolution of the most relevant attributes from the Eclipse
and Mozilla project bug reports. Such dataset motivates the bug analysis and the
reproducibility and comparison of the bug detection models in Eclipse and Mozilla.
Lamkanfi and Demeyer [72] observed that open source data on bug resolution times
could be heavily distorted and include nonrealistic data with resolution times of less
than a minute. They found that such outliers may confuse data mining techniques
and produce distorted results. Thus, removing such data would improve the result of
the model.
Athanasiou et al. [9] proposed a model using source code metrics to assess test
code quality. They calibrated that model with 86 open source and commercial Java
systems for the ratings of a system’s test code to reflect its quality compared to those
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systems. They showed that there is a high correlation between test code quality and
throughput and productivity of issue handling.

All these studies are valuable in understanding the overall bug fixing process, factors
affecting bug fixing time, bug fixing time estimation and triaging automation. In our
study in Chapter 4, we focus on the bug triaging and fixing time and bug resolution
and fixing rate. We are not aware of any related study comparing these metrics
before and after the release is delivered and how they evolve over successive releases
considering the bug severity level. Moreover, we study the impact of feature freeze
periods on the bug handling process.

3.2 Rapid Releases

3.2.1 Benefits and Challenges of Adopting Rapid Releases

According to a recent literature review by Mäntylä et al. [80], rapid releases are fol-
lowed in multiple domains including finance, automotive, telecom, space and energy.
Prior research studied the benefits and challenges of adopting rapid releases. Such
releases are claimed to offer reduced time-to-market and faster user feedback [63].
End-users may benefit from this because they get faster access to functionality im-
provements and security updates [80]. Moreover, Zimmermann [142] has shown that
the adoption of a shorter release cycle has successfully managed to provide more sta-
ble versions, with less breaking changes, that are easier to upgrade. In our study in
Chapters 4 and 5, we will analyze the impact of rapid releases on the bug handling
process.
Joshi et al. [57] introduced a publicly available dataset consisting of 994 open source
projects on GitHub featuring rapid releases. This dataset and its documentation
and scripts aim to facilitate future empirical research in release engineering and agile
software development.
Kerzazi and Khomh [60] examined over 14 months of release data from 246 rapid
Firefox releases to determine the several types of factors that affect release time. They
identified three factors: technical factors (e.g., code merging and integration and
automated tests), organizational factors (e.g., design and management of branches
and release planning) and interactional factors (e.g., coordination policies amongst
teams). Their analysis reveals that testing is the most time-consuming activity in
the release process (86%). Their analysis shows that the time spent on code merging,
stabilizing and packaging activities account for only 6%, 6% and 2% of the cycle
time, respectively. Moreover, they note that a lack of socio-technical congruence
among teams can delay releases. Socio-technical congruence refers to the alignment
between the technical dimension of work and the social relationship between team
members [23].
Maleknaz et al. [96] analyzed (among others) the release cycle times of 6,003 mobile
apps on Google Play as a treatment to predict as an outcome the customer satisfaction
expressed through an app rating. To do so, they introduced a generic analytical
approach called the Gandhi-Washington Method (GWM). For the specific scenario of
mobile app rating, the method consists of encoding and summarising the sequence of
release cycle times of each app using regular expressions over the alphabet S (short
release cycle), M (medium release cycle), L (long release cycle); followed by statistical
tests over those generated expressions to determine causal effects on the outcome
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variable. They found that apps with sequences of long releases followed by sequences
of short releases have the highest median app rating. Apps with sequences of long
followed by sequences of medium releases get a lower median rating. Finally, apps
with sequences of long releases exclusively get the lowest median rating.
Castelluccio et al. [22] investigated the reliability of the Mozilla uplift process. Patch
uplift is the practice where patches that fix critical issues or implement high-value fea-
tures are promoted directly from the development channel to a stabilization channel
because they cannot wait for the next release. This practice is risky because the time
allowed for the stabilization of the uplifted patches is short. The authors examined
patch uplift operations in rapid release pipelines and formulated recommendations to
improve their reliability. They investigated the decision making process of patch up-
lift at Mozilla and observed that release managers are more inclined to accept patch
uplift requests that concern certain specific components and/or that are submitted
by certain specific developers.

3.2.2 Rapid Releases and Software Quality

Khomh et al. [63] empirically studied the effect of rapid releases on Mozilla Firefox
software quality. They quantified quality in terms of runtime failures, the presence
of bugs and outdatedness of used releases. Related to our work, they compared the
number of reported, fixed and unconfirmed bugs and the fixing time during both the
testing period, i.e., the time between the first alpha version and the release, and the
post-release period. They found that fewer bugs are fixed during the testing period
and that bugs are fixed faster under a rapid release model. In a follow-up work [64],
the authors reported that, although post-release bugs are fixed faster in a shorter
release cycle, a smaller proportion of bugs is fixed compared to the traditional release
model. Interviews conducted with six Mozilla employees revealed that they could
be “less effective at triaging bugs with the rapid release" and that more beta testers
using the rapid releases can generate more bugs.
Da Costa et al. [28] studied the impact of Mozilla’s rapid release cycles on the
integration delay of addressed issues. They showed that the rapid release model does
not integrate addressed issues more quickly into consumer-visible releases compared
to the traditional release model. They also found that issues are triaged and fixed
faster in rapid releases. In a follow-up work [27] they reported that triaging time is
not significantly different among the traditional and rapid releases.
Baysal et al. [12] found that bugs were fixed faster in versions of Firefox using a
traditional release model than in Chrome rapid releases, but this was not statistically
significant.
Clark et al. [24] empirically analyzed the security vulnerabilities in Firefox and found
that a rapid release cycle does not result in higher vulnerability rates. The authors
also found that frequent releases increase the time needed by attackers to learn the
software code, in contrary to the popular belief that frequent code changes result in
less secure software.
Mäntylä et al. [80] analyzed the impact on software testing efforts when switching to
rapid releases in a case study for Firefox. They found that tests have a smaller scope
and are performed more continuously with less coverage under rapid releases. They
also found that the number of testers decreased in rapid releases, which increased the
test workload.
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In the literature, several benefits of rapid releases were mentioned: rapid feedback,
improved quality focus of the developers and testers, easier monitoring of progress
and quality, customer satisfaction, shorter time-to-market, and increased efficiency
due to increased time-pressure. Despite these benefits, previous research has shown
that rapid releases often come at the expense of reduced software reliability, longer
integration delays, accumulated technical debt and increased time pressure. Most
of the studies done on rapid release were performed on the Firefox project which
switches its release cycle in 2012 from 12-18 months to 6-weeks release. However, in
our study in Chapter 5, we revisit some of the previous work, such as [64] and [80]
to study the effect of rapid releases on software quality and testing. However, we
study these activities before and after the recent changes in the release policies(i.e.,
the removal of Aurora and the switch to 4-weeks cycle).

3.3 Summary
In this chapter, we have reviewed previous research that has inspired much of the
work presented within this dissertation. We covered two main areas: the bug handling
process and rapid releases. We first reviewed the research from the area of the bug
handling process, including previous research efforts related to bug fixing and bug
triaging. We then reviewed the related work on Rapid releases and its impact on the
different activities in the software development process.
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Chapter 4
Impact of Release Policies on Bug
Handing Activity

Software organizations must deliver new features and bug fixes fast to gain and
sustain the satisfaction of users due to today’s competitive business world [13]. As
a result, many large software projects have adopted rapid releases policies. This can
impact different parts of the software development process. Software maintenance is
one of the significant activity in the software development process. Rapid releases
might impact software maintenance activity as there is less time to handle bugs.

This chapter presents an empirical study of the impact of adopting rapid re-
leases on the bug handling process. Given that releases are delivered more often, and
the community may have less time to address unresolved bugs.

The content of this chapter is mainly based on our previous publication in the
International Conference on Software Maintenance and Evolution 2019 (ICSME) [2]
and an article in the Journal of Systems and Software 2020.
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4.1 Introduction
Continuous software engineering is a common practice for large collaborative software
projects [18]. Every major release provides a significant amount of new or modified
functionalities compared to the previous release. Developers strive to resolve as many
bugs as possible before the next release deadline [97]. More and more large software
projects are switching to a rapid release cycle [28] to reduce their time-to-market [131].
Rapid release policies might, however, negatively affect the number of bugs being
handled, since releases are delivered more often, and the community may have less
time to address unresolved bugs. A good preparation is, therefore, of paramount
importance to increase the success of adopting a rapid release policy.
Another common practice of large software projects is to impose a feature freeze when
approaching the next release deadline [41, 87]. During the feature freeze period that
lasts until the release date, all work on adding new features is suspended, shifting
the effort towards fixing bugs, and carrying out a series of test-and-fix iterations to
improve quality and stability. Each such iteration results in a new so-called release
candidate.
Following the Goal-Question-Metrics (GQM) approach [130], we study the evolution
of Eclipse – a large and long-lived open source project – with the aim to analyse
its bug handling process for the purpose of assessing the impact of rapid releases
and feature freeze periods from the point of view of maintainers in the context of
bug handling. Software maintenance is part of the software development process.
In maintenance, bug fixing comes as a priority to run the software. This chapter
discusses the possible advantages and disadvantages of the rapid release on the bug
handling activity. This overall objective is divided into two main goals, each composed
of two research questions that will guide the case study design and empirical analysis:

Goal 1: The first research goal aims to study if the transition to rapid releases
resulted in less time for the community to handle bugs before the release, leading to
potentially more post-release bugs in need of resolution. To do so, we analyse if the
bug handling activity is different before and after each release, and whether and how
this changed after the transition to rapid releases. Our investigation will be guided
by two research questions:

RQ1.1: How does the bug handling rate evolve across releases? We em-
pirically analyse if the bug handling rate increases for successive releases. We
also investigate the bug handling rate before and after each release, as well as
if any notable difference could be observed for the rapid releases.

RQ1.2: How does the bug handling time differ across releases? Since
maintainers strive to deliver project releases with as few bugs as possible, we
study whether bug handling activity before an upcoming release leads to faster
bug triaging and fixing times than after the release. We thus investigate the
differences between these two periods in terms of days elapsed to triage and fix
bugs.

Goal 2: The second research goal aims to study to which extent bug handling activity
is affected by the presence of feature freezes, and whether the transition to rapid
releases has lead to an observable difference as their shorter duration can potentially
affect the bug handling activity. Our investigation will be guided by two research
questions:
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RQ2.1: How does the feature freeze period impact bug handling rate?
This research question analyses the bug handling rate before and during the
feature freeze period of each considered release, the effort spent in these periods,
and whether all of this has changed for rapid releases.

RQ2.2: How does the feature freeze period impact bug handling time?
This research question focuses on bug handling time before and during the
feature freeze period of each considered release. We study whether bugs are
indeed triaged and fixed faster during such feature freeze periods. We also
study whether the triaging and fixing time of bugs targeting the current release
increases during these periods, since maintainers may prefer to focus on bugs
of the upcoming release rather than on those targeting the current release that
has already been delivered.

This chapter presents our longitudinal case study of the bug handling process for the
Eclipse Core projects over a 15-year period. We analyse 17 consecutive major releases
(from 3.0 till 4.10) and study how the bug handling time and rate differ before and
after an upcoming scheduled release; and how it evolves over time. We rely on four
measurements to quantify bug handling: triaging and fixing time and resolution and
fixing rate. We focus on a specific and important aspect in the evolution of Eclipse
Core, namely how the transition to a rapid release policy during the 4.x series has
influenced the bug handling process. To do so, we compare the bug handling activity
of seven annual releases (4.2 – 4.8) against seven quarterly releases (4.9 – 4.15), based
on a dataset of over 36K bug reports from Bugzilla. We follow a mixed-method
approach, by quantitatively analyzing the impact of rapid releases on bug handling
activity, and supporting this analysis with qualitative anecdotal evidence about the
perceived benefit of the transition by consulting five Eclipse Core maintainers. In
addition, we analyze the effect of the feature freeze period of each release on bug
handling, and whether and how this has changed after the adoption of a rapid release
policy. We additionally study to which extent the bug severity plays a role in each
research question as more severe bugs can be expected to be prioritized and thus
handled more quickly [74]. This effect might be reduced in rapid releases where
there may not be enough time to handle all pending bugs, potentially leading to an
increased backlog for less severe bugs.

4.2 Methodology
This section presents the setup of our empirical study, the selected case study, the data
extraction process, the metrics that will be used to answer the research questions,
and the process we have followed to receive qualitative feedback from five Eclipse
maintainers. The dataset and scripts used for the current study are publicly available
in a replication package on Zenodo [62].

4.2.1 Selected Case Study

For our empirical study we have selected Eclipse as a case study because it is a long-
lived open source ecosystem, with a large community of contributors. It has fixed
durations for both annual or rapid releases, allowing to make fair comparisons across
successive releases. More importantly, during its 4.x release series it has switched in
2018 from a yearly to a quarterly (i.e., every 13 weeks) release policy.
Eclipse is an open source ecosystem that has been widely studied in software evolution
research [21, 84] and in research about bug handling in particular [70, 99]. Eclipse is
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a large and mature project with a long release history and associated bug reporting
activity hosted through the Bugzilla bug tracking platform [37].
The development of Eclipse is subdivided into the Core projects and the plugins.
Eclipse 3.0 is the first release coordinated and shipped by the independent Eclipse
Foundation; previous releases were coordinated and controlled by IBM. The Core
projects have a stable development community and a regular release process. We
focus only on bugs related to the Core projects, since the plugins do not follow the
same regular release policy and their bug handling activity can be affected by the
absence of factors such as continuous bug monitoring and continuity of the plugin
development. The Core projects of Eclipse are Platform, JDT, Equinox and PDE [48].
We do not consider the e4 and Incubator projects in our analysis because: (i) e4 is
an incubator for community exploration of future technologies of Eclipse and uses
a different versioning scheme than the other projects; (ii) Incubator contained only
very few reported bugs (49), all with an unspecified version of the Eclipse release.
In our preliminary analysis in Section 4.7, we start from release 3.0 to study how the
Eclipse Core projects have evolved over time. The main research goals and associated
research questions that will be explored in Section 4.8 (RQ1.1, RQ1.2) and Section 4.9
(RQ2.1, RQ2.2) focus on the 4.x release series, starting with release 4.2 in June 2012.
We exclude the 3.x series because it is not able to provide us any actionable results
given that it concerns old data based on a different bug handling process. Indeed,
the analysis presented in Section 4.7 has revealed that bug handling metrics values
for the 3.x series are quite different from the recent 4.x series, implying that the way
in which bugs were handled during the 3.x series do not reflect the current practices
of Eclipse Core maintainers.
The 4.x release series starts with release 4.2 in June 2012. Until release 4.8 in June
2018, Eclipse followed an annual “simultaneous release” scheme1 where in June a
new release was delivered simultaneously for every Core project. Each release until
4.5 was followed by two “service releases” in September and February, respectively.
Releases 4.6 and 4.7 had three “update releases” in September, December and March.
Since release 4.9, Eclipse has switched from an annual to a quarterly release policy
(i.e., every 13 weeks) without intermediate update releases.

M1 M4 M5 M6 M7

RC4

RC3

RC2

RC1M2 M3

quiet
week

7 Milestones 
(6~7 weeks interval)

4 Release Candidates 
(1~2 weeks interval)

Feature
freeze

release

Figure 4.1: Annual release schedule for releases 4.2 till 4.8 of Eclipse
Core projects.

The Eclipse Core project release schedule is composed of several successive milestone
builds (M1, M2, etc.), followed by a feature freeze period after the last milestone,
during which maintainers are no longer allowed to introduce new features, and have
to concentrate instead on fixing bugs for the release under development. During

1This terminology is used by the Eclipse foundation to reflect a coordinated release effort
including the Eclipse Platform and other Eclipse projects. See https://wiki.eclipse.org/
Simultaneous_Release.

https://wiki.eclipse.org/Simultaneous_ Release
https://wiki.eclipse.org/Simultaneous_ Release
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M1 RC2RC1M2 M3

3 Milestones 
(3-week interval)

2 Release Candidates 
(1-week interval)

Feature
freeze

release

quiet
week

Figure 4.2: Quarterly release schedule for releases of Eclipse Core
projects since 4.9.

this freeze period, a number of successive release candidates (RC1, RC2, etc.) are
created. Fig. 4.1 shows the annual release schedule, including 7 milestones occurring
at roughly 6-week intervals, followed by 4 release candidates during the feature freeze
period. The quarterly release schedule (Fig. 4.2) is composed of 3 milestones occurring
at 3-week intervals, followed by 2 weekly release candidates during the feature freeze
period. In both annual and quarterly releases, the last week before a release is always
a quiet week during which there are no further builds. This week is reserved for final
in-depth testing and preparation for the release.

4.2.2 Extracting and Processing Bug Report Data

Our empirical analysis is based on bug report data extracted from Bugzilla for each
release of each Eclipse Core project. A typical bug report contains a wide variety of
fields. A description of those fields that are relevant in the context of our empirical
analysis is summarised in Table 2.2.
The Severity of bugs is reported by their owners based on their personal perspective.
The Eclipse community considers seven levels 2: enhancement, trivial, minor, nor-
mal, major, critical and blocker. We excluded 28,579 bugs marked as enhancement
from our analysis since feature enhancements are considered to be new functionality
requests rather than bugs [109].
To extract the bug histories of all reported Eclipse bugs we used the Bugzilla API3.
Since we focus on Eclipse Core projects only, we only considered bug reports for which
the Product field was tagged with Platform, JDT, Equinox or PDE. We extracted
215,591 bug histories corresponding to these projects. Our dataset was fetched on 27
July 2020, and the earliest and latest dates of reported bugs in our dataset correspond
to 11 October 2001 and 27 July 2020, respectively.
In a next step, we filtered bugs based on their Version field. As our goal is to study
the bug resolution process in relation to each Eclipse release, we only considered those
bug reports whose version corresponds to an actual Eclipse release ranging between
3.0 and 4.15. To this end, we excluded 3,296 bugs with unspecified Version field
and 33,701 bugs corresponding to versions outside of the specified version range. We
restricted ourselves to values that actually correspond to valid Eclipse releases; e.g.,
the valid version values of the 4.7 release found in our dataset were 4.7, 4.7.1, 4.7.1a,
4.7.2, 4.7.3 and 4.7.0 Oxygen. From the remaining bugs, we excluded 2,569 bugs that
corresponded to versions that are not listed in the official releases of Eclipse, i.e., 4.0
and 4.1. Our final dataset consists of 143,606 bug reports, of which 107,397 (i.e.,
74.8%) belonging to the 3.x version range, and 36,209 (i.e., 25.2%) belonging to the

2https://wiki.eclipse.org/Eclipse/Bug_Tracking#Severity
3https://bugzilla.readthedocs.io/en/latest/api/core/v1/bug.html#search-bugs

https://wiki.eclipse.org/Eclipse/Bug_Tracking#Severity
https://bugzilla.readthedocs.io/en/latest/api/core/v1/bug.html#search-bugs
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4.x version range. While the analysis in Section 4.7 focuses on all these bugs, the
research questions in Section 4.8 and Section 4.9 focus only on the 4.x release range
during which the transition to a faster release cycle took place. Within this range,
there are 29,831 bug reports for annual releases (4.2→4.8) and 6,378 bug reports for
quarterly releases (4.9→4.15).
For the remainder of the analysis, we partitioned all reported bugs into groups ac-
cording to their major release number. For example, group 4.2 contains all reported
bugs whose Version field prefix is 4.2. The aforementioned processing steps mitigate
several threats that could bias the results of our study.
As pointed out by Tu et al. [127], incorrect use of bug tracking data may threaten
the validity of research findings because the values of bug report fields (e.g., Version,
Status, Severity) may change over time. They recommend researchers who rely on
such data to mitigate data leakage risks by fully understanding their application
scenarios, the origin and change of the data, and the influential bug report fields. We
therefore assessed this threat for the bug report fields Version and Status in Eclipse.4
Examining the bugs that changed their Version field during the bug fixing cycle, we
found 1,437 bugs that were reassigned to different releases throughout their history,
out of which 1,291 bugs that were reassigned to different major releases. We handle
such bugs by considering them only for the last major release they affected as in-
cluding the same bugs in multiple releases would bias the results for our pre-release
analysis. From these bugs, only 21 out of 1,233 RESOLVED bugs are resolved in mul-
tiple major Eclipse releases, thus the impact on our analysis is minimal. In all our
research questions, we consider the impact of bug severity on prioritization of bugs.
We used the categorization strategy of Gomes et al. [47] to aggregate bugs into two
groups: severe (including blocker, critical, and major severity) and non-severe (in-
cluding normal, minor and trivial severity). The threats related to changes in the bug
severity field during the bug history was examined, and we found 2,290 bug reports
that changed their severity over time, out of which 1,503 bugs being reassigned to dif-
ferent severity category. In those cases, we used the latest severity category assigned
to each bug, as changes in the severity level indicate that prior severity levels were
not accurate.
A reported bug is considered as resolved if somewhere in the bug history the Status
field is changed to RESOLVED. The corresponding resolution date can be found in the
When column of the bug history. The Resolution field allows to mark a RESOLVED bug
as FIXED and the fixing date can be found in the When column of the bug history.
Since the value of the Status field can be modified multiple times, we register the last
date that the bug was marked as RESOLVED. We opt for this strategy as the presence
of multiple resolutions of the same bug implies that resolutions prior to the last one
were not satisfactory.
Similarly, the Status field allows to mark a reported bug as ASSIGNED, and the as-
signment date can be found through the When column of the bug history. In case
of multiple reassignments of a bug to different developers, we register the first as-
signment date, reflecting the moment when the bug was triaged for the first time.
Note that the Eclipse community has been assigning bugs using an alternative pro-
cess since 20095: it is possible to use an assigned to task without using the Status
field. This assignment method always assigns bugs to an email address in the form
[component_name]-triaged@eclipse.org. We identified and marked as ASSIGNED
5,449 bugs corresponding to this case.

4For the Severity field we already discussed earlier in this subsection how we coped with this
threat.

5https://wiki.eclipse.org/Platform_UI/Bug_Triage

https://wiki.eclipse.org/Platform_UI/Bug_Triage
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4.2.3 Proposed Bug Handling Metrics

This section introduces all formal notations and metrics that are needed to address
the different research questions presented in Section 4.1. We introduce the following
notations to refer to the sets of bugs considered during our analysis:

• Breport is the set of all reported bugs

• Bassign ⊆ Breported is the set of all ASSIGNED bugs

• Bresolve ⊆ Breported is the set of all RESOLVED bugs

• Bfix ⊆ Bresolve is the set of all FIXED bugs

• The superscript notation Br allows to constrain these sets to bugs targeting a
specific release r. For example, B4.7

resolve contains all RESOLVED bugs for which
the Version field refers to release 4.7.

Based on these sets, we define functions returning the dates corresponding to specific
activities in the history of a given bug report:

• Dreport : Breport → Date returns the creation date of a bug report.

• Dassign : Bassign → Date returns the first date the bug report Status field has
been set to ASSIGNED.

• Dresolve : Bresolve → Date returns the last date the bug report Status field has
been set to RESOLVED.

• Dfix : Bfix → Date returns the last date the bug report Status field has been set
to RESOLVED with value FIXED for the Resolution field.

Using the above sets and functions, we define four metrics that will be used to answer
our research questions. We define bug triaging time Ttriage and bug fixing time
Tfix as follows:

∀b ∈ Bassign : Ttriage(b) = Dassign(b)−Dreport(b)

∀b ∈ Bfix : Tfix(b) = Dfix(b)−Dreport(b)

Given a date range d = [d1, d2[, we define

Bresolve(d) = {b ∈ Bresolve | Dresolve(b) ∈ d}

and similarly for Breport(d) and Bfix(d). Using this notation, we define bug reso-
lution rate ResRate as the proportion of reported bugs that has been RESOLVED in
the considered date range, and bug fixing rate FixRate as the ratio of FIXED over
reported bugs:

ResRate(d) = |Bresolve(d)|
|Breport(d)|

FixRate(d) = |Bfix(d)|
|Bresolve(d)|

The following example illustrates these two metrics. Suppose 30 bugs are reported
during date range d, of which 20 bugs are RESOLVED and 12 of those RESOLVED bugs
are actually FIXED. Then ResRate = 20

30 = 0.66, and FixRate = 12
20 = 0.6.
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4.2.4 Applying the Metrics to Specific Eclipse Releases

Since our empirical analysis aims to relate bug handling activity to specific time pe-
riods, such as the period separating two successive releases, the feature freeze period,
and the development period preceding the feature freeze, we introduce functions and
sets enabling us to work with such information.
Let R = {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
4.10, 4.11, 4.12, 4.13, 4,13, 14,5} be the ordered set of considered Eclipse releases.
We define the following functions:

• date: R→ Date returns the date of a given release

• prev: R/{3.0} → R returns the previous release of a given release

• next: R/{4.15} → R returns the next release of a given release

• freeze: R → Date returns the start of the feature freeze period for a given
release

Given a release r ∈ R, we can focus the analysis on only those bugs targeting
release r, based on the value of their Version field in the bug report. To do so, we
introduce different release-dependent data ranges:

• d<freeze(r) = [date(prev(r)), date(freeze(r))[ is the development period of re-
lease r

• d>freeze(r) = [date(freeze(r)), date(r)[ is the feature freeze period of release r

• dbefore(r) = [date(prev(r)), date(r)[ = d<freeze(r) ∪ d>freeze(r)

• dafter(r) = [date(r), date(next(r))[
Based on these data ranges, we restrict the set of reported bugs Breport (see Sec-
tion 4.2.3) as follows:

• Bbefore
report(r) = {b ∈ Br

report | Dreport(b) ∈ dbefore(r)}

• Bafter
report(r) = {b ∈ Br

report | Dreport(b) ∈ dafter(r)}

• B<freeze
report (r) = {b ∈ Br

report | Dreport(b) ∈ d<freeze(r)}

• B>freeze
report (r) = {b ∈ Br

report | Dreport(b) ∈ d>freeze(r)}

In a similar way, we restrict the sets Bassign, Bresolve and Bfix.
With these notations, we can compute the resolution rate before and after each release,
as well as during the development period or the freeze period of any given release,
restricted to only those bugs targeting release r, by using

ResRate(dbefore(r)) ResRate(dafter(r))

ResRate(d<freeze(r)) ResRate(d>freeze(r))

In a similar way, we restrict the fixing rate to a specific period related to a given
release r.
To focus on bugs belonging to specific severity groups, we use the auxiliary function
severity : Breport → {normal,high} to return the severity group (as explained in
Section 4.2.2) of a given bug. Given a set of bugs B and a severity group s, we define
B |s= {b ∈ B | severity(b) = s} as the subset of all bugs in B belonging to this
severity group. Using this definition, we can for example define Bbefore

report |high (r) and
similar for all other possible variations.
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4.3 Statistical Methods
Our quantitative analysis in this chapter will rely on a range of statistical tools. Most
of our analysis aims to compare two populations by testing if their distributions are
different. We test all statistical hypotheses for different significance levels α. We
reject a null hypothesis if p < α, and denote this with * if α = 0.05, ** if α = 0.01,
and *** if α = 0.001.
Since software engineering data often do not meet the normality assumption [77],
and this is the case for Eclipse bug data in particular [95], we select appropriate
non-parametric tests that do not require this assumption [54]. Normality is tested
for both populations that are compared using the Kolmogorov–Smirnov test. In
case both populations are normally distributed, we compare their distributions and
mean values with a two-sided t-test if the populations are related; otherwise, we use
the Welch t-test if the samples are independent or of unequal size. For non-normal
distributions, we use the Wilcoxon rank sum test if the samples are related; otherwise,
we use the Mann–Whitney U test.
We compute the effect size using Cliff’s delta d [25, 52] and interpret the results
using [52]. In all cases where the null hypothesis is rejected; the sign of d allows us
to determine which of both distributions is higher than the other one.
The analysis of RQ1.2, reported in Section 4.8, uses the technique of survival analysis
(a.k.a. event history analysis or duration modeling) to model the expected time du-
ration until the occurrence of a specific event of interest with the aim to estimate the
survival rate of a given population [1]. Survival analysis is frequently used in medical
sciences (e.g., to study the effect of a particular treatment on patients suffering from
a disease), economics and sociology. It has also been applied in software evolution
research [31, 113]. Survival analysis models take into account the fact that some
observed subjects may be “censored”, either because they leave the study during the
observation period, or because the event of interest was not observed for them during
the observation period. A common non-parametric statistic used to estimate survival
functions is the Kaplan-Meier estimator [58]. To compare survival curves, we use the
log-rank test [17] to test the null hypothesis that there is no difference between the
populations in the probability of an event at any time point.
The analysis of RQ2.2 reported in Section 4.9, uses boxen plots [53] to show the
distributions of dataset. These plots visualise different quartile values and convey
precise estimates of head and tail behavior.

4.4 Feedback from Eclipse Maintainers
In order to verify if the empirical results we obtained correspond to the perception
of the Eclipse community, we complemented the quantitative analysis with a small
qualitative analysis by consulting Eclipse Core maintainers that actively experienced
the transition from the yearly to the quarterly release cycle. We identified maintainers
that were active in bug fixing activities, both before and after the change in release
policy by manually analysing their presence and historical activity in the extracted
bug tracker data.
Four out of five of the respondents reported they have at least been contributing
to Eclipse Core for five years, while the remaining one has been contributing for
two years. Using an online form (see Appendix A), we solicited their experience
on the transition to a rapid release cycle and how they perceived this has impacted
the bug handling process. The first three questions (#3–#5) collected demographic
information. Questions #6–10 focused on the impact of switching to a rapid release
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cycle, by means of open questions about the Eclipse preparation and difficulties they
faced during the transition. Questions #11–17 inquired about the quantitative results
we obtained for RQ1.1 to RQ2.2, in order to check whether our results confirm with
their perception about the transition to a rapid release cycle. Moreover, we asked
questions to (1) check if there were any other important changes in the Eclipse release
process and if changes in tooling may have affected the effectiveness of bug handling
and related activities; (2) ask their opinion if the community needs more contributors
to be involved in bug handling; and (3) check if and how the transition to quarterly
releases impacted the pressure on the developers. Finally, questions #17–20 informed
about the perceived benefit of rapid releases in general, the respondent’s preference
of the type of release cycle (fixed or variable), and any advice for future adopters of
rapid releases.

4.5 Bug Handling Process Discovery
Process mining is a research discipline that sits between machine learning and data
mining on the one hand, and process modeling and analysis on the other hand. The
idea of process mining is to discover, monitor and enhance real processes by extracting
knowledge from event logs available in today’s Information Technology systems [129].
Event logs are the starting point of all process mining techniques that use them to
discover, verify or extend models for the process. In some cases, these models are used
to gain insight, document, or analyze the process. Each event in such a log refers to an
activity (i.e., a well-defined step in a process) and is related to a particular case (i.e., a
process instance). The events belonging to a case are ordered and describe one “run”
of the process. Also, the process mining techniques use supplementary information
such as the “resource” (e.g., person) executing or initiating the activity and the
timestamp of the event. For process discovery, there are many process mining tools
such as ProM6 (open source) and Disco7(commercial) used to obtain process model.
We exploit Disco to mine the process map and other statistical information (e.g.,
absolute frequency of activities) for the Eclipse bug handling process. Disco miner
is based on the proven framework of the Fuzzy Miner, process discovery algorithms,
with an entirely new set of process metrics(e.g., process case duration) and modeling
strategies 8. It is used to discover the runtime process from the actual event log
generated during the progression of a bug.
We extract Status, Resolution, Assignee, Version and Timestamp from the bug history
to derive the process map. Fig. 4.3 displays the snapshot of bug history in Bugzilla
of Eclipse’s bug (ID=40495). The bug report history serves as the process event
log generated by the bug tracking system. In our analysis in Section 4.6, Bug ID
is selected as a case to associate all activities of the same bug ID and hence, we
can visualize the lifecycle of a bug. We record creation timestamp with the activity
NEW. For open bugs, the status can be NEW, UNCONFIRMED, ASSIGNED and REOPENED,
which is captured as an activity. For closed bugs, VERIFIED, CLOSED and RESOLVED
statuses are captured as they are as an activity. The resolution activity often refers
to FIXED, INVALID, WONTFIX, DUPLICATE, WORKSFORME and INCOMPLETE resolutions.
The timestamp corresponding to activity is obtained from the When field of the bug
history as can be seen on the right of Fig. 4.3 to order the activities in the sequence
of their actual execution (while generating the process map via Disco). The one who

6https://www.promtools.org/
7https://www.fluxicon.com/
8https://fluxicon.com/disco/files/Disco-Tour.pdf

https://www.promtools.org/
https://fluxicon.com/disco/files/Disco-Tour.pdf
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A SNAPSHOT OF ECLIPSE BUG HISTORY - ID: 40495

Figure 4.3: Snapshot of the bug history (event log) of bug 40495 of
ECLIPSE in Bugzilla and corresponding process map.

did the activity is treated as a resource and is retrieved from the who field of bug
history.
One of the major challenges in software process mining is to produce a log conforming
to the input format of the process mining tool [50]. Therefore, data preprocessing is
required. Preprocessing steps performed are as follows:

• Activities with timestamp, bug ID and associated resource make the event log
for process map generation.

• NEW event is not stored in bug history, so it is added to the event log with
creation timestamp.

• Initial state of the bug is not captured in history if no activity leading to change
in status and resolution is performed. For such cases, only NEW (with creation
timestamp) is stored in the event log and not the initial state. Otherwise, the
initial state is also stored with the same timestamp as Reported. For instance,
the process map from the history of a bug is shown on the right of Fig. 4.3.

4.6 Applying Process Mining on Bug Handling Process
As mentioned in Section 4.2.2, Eclipse bug handling activity follows the Bugzilla life
cycle shown in Fig. 2.4. To analyse the Eclipse bug cycle process, we apply Disco to
the event logs (containing the bug report history) retrieved from Bugzilla.
We do this separately for the bug reports corresponding to the Eclipse annual releases
and the Eclipse quarterly releases, respectively. An event log containing 29,831 cases
(i.e., bugs) is given as an input to Disco to obtain the bug handling process for annual
releases. Fig. 4.4a shows the obtained process map based on the bug reports of the
annual releases. An event log containing 6,378 cases (i.e., bugs) is given as an input
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to Disco to obtain the bug handling process in the quarterly releases. Fig. 4.4b shows
the obtained process map based on the bug reports for quarterly releases.

NEW
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(a) Annual releases
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1,197
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271

302

(b) Quarterly releases

Figure 4.4: Process maps computed based on the event logs of the
extracted Bugzilla bug reports for the Eclipse annual and quarterly

releases.

The process 6 nodes, each corresponding to an activity (i.e., step in the bug handling
process) for both annual and quarterly releases, and a directed edge that represents
the transition between two activities (nodes). The number associated with each node
corresponds to the absolute frequency of occurrence of all activities, and the number
associated with each edge indicates the absolute frequency of occurrence of each
transition. The shade of each node reflects its frequency (i.e., the darker, the more
frequent). The shade and thickness of each edge reflect its frequency (i.e., the darker
and thicker, the more frequent). For example, the transition NEW → RESOLV ED
is more frequent than transition NEW → ASSIGNED, so it is thicker.
Contribution guidelines embody a software project’s contribution process, however,
most active projects that use CI do not follow their own guidelines (if they have
any) [38]. In order to determine how faithfully Eclipse bug reports are actually
following the recommended Bugzilla life cycle shown in Fig. 2.4, we used an algorithm
proposed by Gupta et al. [50] to compute the degree of conformance (a.k.a. fitness).
Conformance checking aims to detect inconsistencies between a design-time process
model (here, the Bugzilla life cycle) and the as-is process model extracted from the
runtime event logs (here, the bug life cycles extracted for the Eclipse annual and
quarterly releases, respectively). The higher the fitness, the better the design-time
process model describes the recorded run-time process. A fitness of 1 indicates that
the design-time process model reproduces every trace in the event log, a value of 0
means that the design-time process model cannot repeat any of the run-time cases. We
obtained a high fitness of 0.72 for annual Eclipse releases and an even higher fitness of
0.86 for quarterly Eclipse releases. This shows that the Eclipse bug handling process
mostly conforms to the recommended Bugzilla process model.
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As a second analysis, we aimed to determine if the Eclipse Core bug handling process
has changed after the transition from annual to quarterly releases. To do so, we
carried out a χ2-test. The null hypothesis H0 states that there is no statistically
significant difference between the absolute frequency of bug statuses (node values in
the process maps) for the annual and quarterly releases process. We could reject
H0 with high confidence (p = 0), signifying that the differences between bug status
frequencies of annual and quarterly releases are statistically significant. Given that
such a difference has been found between annual and quarterly releases, Section 4.8
and Section 4.9 will explore how other aspects might have change such as the bug
handling (e.g., in terms of bug handling rate and time) between both types of releases.

4.7 Quantitative Analysis of the Evolution of Eclipse
Bug Handling Activity

Thus, before starting to study the actual research questions presented in Section 4.1
we carry out a preliminary analysis of how Eclipse bug handling evolved over time
since release 3.0. In order to assess the efficiency of the bug handling [78], for each
considered release, we computed Br

report, Br
resolve, Br

fix and Br
assign, without any restric-

tion on the date range. Fig. 4.5 shows these statistics and reveals that the number
of reported bugs targeting a given release (blue line) is monotonically decreasing all
along the 3.x range of annual releases. Starting from annual release 4.2, the number
of bug reports appears to become stable. For the quarterly releases starting from 4.9,
the numbers are still stable, but much lower than for the annual releases. This can
be due to their shorter duration or less code churn.
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Figure 4.5: Number of bugs targeting a specific release. The black
vertical dashed line indicates the switch from Eclipse 3.x to 4.x. The
black vertical dashed line indicates the transition from an annual to a

quarterly cycle since 4.9.9

Fig. 4.6 shows the evolution of ResRate and FixRate per considered release r. We
observe a decreasing resolution rate, while the fixing rate is increasing across releases.
For the 3.x release range, ResRate decreases from 0.97 to 0.67, while FixRate increases

9In all our figures, the black vertical line signifies the switch from Eclipse 3.x to 4.x and the green
vertical dashed line signifies the transition from an annual to a quarterly cycle.
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Figure 4.6: Resolution and fixing rates per targeted Eclipse release.
The red vertical line indicates the last release where REMIND/LATER
resolution was used. The yellow vertical line corresponds to the intro-

duction of the AERI error reporting tool.

from 0.50 to 0.72. Starting from release 3.6, FixRate is consistently higher than
ResRate, and the difference between both rates continues to become more pronounced
over time.
The observed change in behaviour since release 3.6 can be explained by the practice
of “resolving” a bug by giving it the LATER or REMIND status in the Resolution field,
corresponding to the desire to postpone the bug resolution.10 This practice was fairly
common early on in the 3.x release range, but gradually declined and is no longer used
since release 3.6 (red vertical line in Fig. 4.6). By analyzing the delays of a follow-up
resolution of the REMIND and LATER bugs (3,633 bugs), we find that the majority of
them (56%) lingered for more than 3 years before getting their final resolution. We
study these events by applying survival analysis to model the expected time duration
for a bug to be subsequently resolved without REMIND/LATER resolution. The event
of interest is the time when a bug has been RESOLVED, and the duration is computed
from the first time the bug was marked as LATER or REMIND until the first resolution
that is different from LATER and REMIND. The Kaplan-Meier survival curves in Fig. 4.7
visualise the survival model. We observe that, for more than 50% of the bugs that
were marked as LATER or REMIND, it takes more than 1,220 days to actually resolve
them later on (see red dashed lines in Fig. 4.7). The follow-up resolution statuses
are, in decreasing order of frequency: WONTFIX (1,257 bugs), INVALID (1,058 bugs),
FIXED (495 bugs), DUPLICATE (253 bugs), WORKSFORME (242 bugs) and NOT_ECLIPSE
(11 bugs). 317 of the REMIND/LATER bugs (i.e., 8.7%) are not resolved with another
resolution until today. We checked if the severity group (non-severe or severe) of the
bugs marked as LATER/REMIND influences the resolution time but we did not observe
any such effect.
Coming back to Fig. 4.6, for the 4.x annual release range we observe a stability in
the rates up until release 4.5, after which ResRate continues to decrease and FixRate
continues to increase. This change coincides with the introduction of an Automated
Error Reporting Client (called AERI)11 since June 2015 (yellow vertical line). AERI

10See https://www.eclipsezone.com/eclipse/forums/t83053.html
11See https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php

https://www.eclipsezone.com/eclipse/forums/t83053.html
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
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Figure 4.7: Kaplan-Meier survival curves modeling the time duration
until a bug marked as LATER or REMIND gets resolved at some later time.

facilitates reporting errors as users do not need to create Bugzilla entries and ‘it
automatically uploads issues to a central server, providing valuable information as to
where issue may exist in Eclipse’.12
In turn, users can provide comments with their reports which are helpful when fixing
bugs. According to Sewe’s report on AERI [115], commented bug reports are more
than twice as likely to be fixed compared to those without user comments because
this helps the project developers reproduce the issue.
The bug handling metrics reported in Figures 4.5 and 4.6 for the 3.x series are quite
different from the recent 4.x series, implying that the way in which bugs were handled
during the 3.x series does not reflect the current practices of Eclipse Core maintainers.
Because of this, Sections 4.8 and 4.9 only focus on the 4.x series during which the
transition to rapid releases happened.

Summary: The resolution rate tends to decrease over releases, while the fixing
rate is increasing over time. The decrease of resolution rate can be explained
by the drop-off of resolving a bug by giving it LATER or REMIND status. The
introduction of AERI was also considered beneficial by the Eclipse community
as the fixing rate increases.

4.8 Impact of Rapid Releases on the Bug Handling Pro-
cess of Eclipse

Our first research goal aims to study if Eclipse’s transition to rapid releases resulted in
less time for the community to handle bugs before the release, leading to potentially
more post release bugs in need of resolution. In this section, we analyse if the bug
handling activity is different before and after each release, and whether and how this
changed after the transition to rapid releases. Our investigation is guided by the first
two research questions (RQ1.1 and RQ1.2).
The quantitative results that will be presented throughout this section will be cor-
roborated by the feedback we received from the five consulted Eclipse maintainers
(cf. Section 4.4).

12https://www.infoq.com/news/2015/03/eclipse-mars-reporting/
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4.8.1 RQ1.1 How does the bug handling rate evolve across releases?

In this research question, we study the difference in bug resolution and fixing rate
before and after each release. We intuitively expect that contributors handle bugs
more intensively in the period before than after the upcoming release date, as they
strive to not deliver a buggy release.
First, we compute, for each release r in the 4.x series, the resolution rate before and
after the release, i.e., ResRate(dbefore(r)) and ResRate(dafter(r)). Fig. 4.8 suggests a
slightly decreasing rate after the different releases while the rate is fluctuating before
the release. A linear regression analysis confirms this trend for the resolution rate
after each release (R2 = 0.74). The regression analysis could not reveal any linear
trend for the resolution rate before each release because of a too small R2 value
(0.0018).
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Figure 4.8: Evolution of ResRate and FixRate before and after each
4.x release. The yellow vertical line corresponds to the introduction of

the AERI error reporting tool.

The resolution rates before and after each release fluctuate between 0.4 and 0.6.
This signifies that around 1 out of 2 bugs do not get resolved. We used a Wilcoxon
rank sum test to verify the null hypothesis H0r

1 stating that there is no statistically
significant difference between the resolution rates before and after the release. We
could not reject H0r

1 so we have no evidence that the resolution rates before and after
each release are different.
Next, we computed the fixing rate before and after each release r, i.e., FixRate(dbefore(r))
and FixRate(dafter(r)). Fig. 4.8 suggests that the fixing rate before each release is
higher than after the release. Using the Wilcoxon rank sum we test the null hy-
pothesis H0f

1 stating that there is no statistically significant difference between fixing
rates before and after a release. H0f

1 was rejected (p < 0.05) with large effect size
(d = 0.54). This shows that the bug fixing rate before the release date is higher than
after that date. A linear regression analysis confirms an increasing linear trend for
fixing rate before each release (R2 = 0.89) as well as after each release (R2 = 0.74).
Four out of five of the consulted Eclipse Core maintainers stated that they do not
really differentiate between bugs before and after the release. The received responses
were based on a 5-point Likert scale, i.e., participants rated factors using ranks from
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1 (strongly disagree) to 5 (strongly agree). This complies with our observation that
there is no difference between resolution rate before and after release. However, as
we see in Fig. 4.8, a higher proportion of bugs is fixed before compared to after the
release.
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Figure 4.9: Evolution of the number of reported bugs per severity
group.

We also investigated if maintainers differentiate between bugs according to their sever-
ity. Fig. 4.9 shows that the number of reported non-severe bugs decreases over time
to become stable after the transition to a quarterly release cycle. We also computed
ResRate(dbefore(r)) and ResRate(dafter(r)) per severity group (severe and non-severe)
and found a decreasing evolutionary trend for both, similar to what was observed in
Fig. 4.8.13 Using the Wilcoxon rank sum we test the null hypotheses H0r

1 |non−severe

and H0r
1 |svvere stating that there is no statistically significant difference between res-

olution rates before and after a release for non-severe and severe bugs, respectively.
We could not reject the null hypothesis for either group, however.
When computing the bug fixing rates FixRate(dbefore(r)) and FixRate(dafter(r)) per
severity group, we found an increasing evolutionary trend, similar to what was ob-
served in Fig. 4.8. Using the Wilcoxon rank sum, we test the null hypotheses
H0f

1 |non−severe and H0f
1 |severe stating that there is no statistically significant dif-

ference between the fixing rates before and after a release for non-severe and severe
bugs respectively. Both H0f

1 |non−severe and H0f
1 |severe were rejected (p < 0.05 and

p < 0.01 respectively) with a large effect size (d = 0.53 and d = 0.7 respectively).
This confirms that, for both severity groups, the bug fixing rate before the release
date is higher than after that date. This signifies that maintainers strive to fix as
many bugs as possible of either severity group for the next release.
Finally, we study if any difference could be observed between the two bug severity
groups in terms of resolution and fixing rate. We first assess whether a difference
between non-severe and severe bugs can be observed before a release. We carry out
a first Wilcoxon rank sum test with null hypothesis H0r

1 |before stating that, before a
release, there is no difference in resolution rates between non-severe and severe bugs.
Similarly, for fixing rate we carry out a test with null hypothesis H0f

1 |before. We
could not reject H0r

1 |before and H0f
1 |before, hence there is no statistical evidence of

a difference between bug severity groups.
We performed the same hypothesis test to check for a difference in resolution rate
and in fixing rate between bug severity groups after a release. The respective null

13The results per severity group can be found in our replication package [62].
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hypothesis H0r
1 |after for resolution rate can be rejected for p < 0.05 with large effect

size (d = 0.48), and for fixing rate the null hypothesis H0f
1 |after can be rejected for

p < 0.01 with large effect size (d = 0.6). This implies that after the release, the bug
resolving and bug fixing rates for non-severe bugs are higher than for severe bugs.
Overall, our results show that there is a tendency to resolve more non-severe than
severe bugs after the release. Regarding our findings, we asked the five Eclipse main-
tainers if they differentiate between bugs according to their severity when handling
bugs, but this was not the case. One consulted maintainer stated that long release
cycles lead to a higher amount of bugs that are not important or relevant to the
bug reporter anymore because users found a workaround, or because the tooling has
changed since. With shorter cycles, this is no longer the case, so it becomes less
relevant for maintainers to distinguish between important and less important bugs.

Summary: The resolution rate tends to decrease over releases, but there is no
significant difference before and after each release. The fixing rate is higher
before than after a release. There is no significant change in bug handling rate
behavior after the switch to quarterly releases. There is a tendency to resolve
more non-severe than severe bugs after the release. However, Eclipse maintainers
mentioned that they do not tend to differentiate between bugs based on their
severity.

4.8.2 RQ1.2 How does the bug handling time differ before and after
each release?

We expect that bug handling activity is more intense before a release than after it, as
maintainers strive to deliver project releases with as few bugs as possible. Hence, we
expect to see faster bug triaging and fixing times before the release. In this question,
we investigate the differences between these two periods in terms of days elapsed to
triage and fix bugs.

Triaging time analysis For each release r in the 4.x series of Eclipse Core, we
compute bug triaging time Ttriage(b) before a release for the population of bugs
Bbefore
report(r)∩Bbefore

assign (r) that were reported and assigned during that period; and simi-
larly after a release for the population Bafter

report(r)∩Bafter
assign(r). We use survival analysis

on these populations to model the expected time duration Ttriage(b) until bug b gets
assigned for the first time. Fig. 4.10 and Fig. 4.11 show the Kaplan-Meier survival
curves for annual and quarterly releases, respectively, together with their confidence
intervals, before and after the release date. We observe that for some releases, triag-
ing time is different before than after that release. For instance, triaging time before
the release is higher than after for releases 4.2 and 4.3, while the opposite is true
for release 4.6. However, for most of the releases, the survival curves are partially
overlapping. We also observe that the difference between the survival curves tends to
decrease over successive releases. We use a log-rank test to verify the null hypothesis
H0t

2 stating that there is no difference between the survival distributions of the triag-
ing time before and after a release. Table 4.1 reports for which releases H0t

2 can be
rejected. We observe that H0t

2 is rejected for all annual releases except 4.6 and 4.7,
while it is not rejected for any of the quarterly releases. Hence, for annual releases
triaging times of the bugs before a release were different than after the release, while
this is no longer the case for the quarterly releases. The transition from an annual
to a quarterly release policy appears to have been beneficial, since such a difference
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Figure 4.10: Kaplan-Meier survival curves with 95% confidence in-
terval (indicated by the shaded areas) for triaging time before and

after each *annual* release.
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Figure 4.11: Kaplan-Meier survival curves with 95% confidence in-
terval (indicated by the shaded areas) for triaging time before and

after each *quarterly* release.

in triaging time is no longer observed. We also studied the impact of bug severity on
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release triaging time (H0t
2)

Eclipse 4.x annual releases
4.2 R∗∗∗

4.3 R∗

4.4 R∗

4.5 R∗∗∗

4.6 –
4.7 –
4.8 R∗

Eclipse 4.x quarterly releases
4.9 –
4.10 –
4.11 –
4.12 –
4.13 –
4.14 –
4.15 –

Table 4.1: Log-rank test for difference between the survival distri-
butions of triaging time before and after each release. – indicates
that the null hypothesis could not be rejected. Whenever it could
be rejected (R), the number of stars denotes the significance level α

(*=0.05; ** =0.01; *** =0.001).

triaging time but the results were the same as what has been reported in Table 4.1.
Hence, bug severity does not seem to have a measurable effect on bug triaging time.
To study the impact of quarterly releases on the bug handling process, we analyzed
the bug triaging time before and after switching to the quarterly releases. We used
survival analysis to model the expected time duration Tassign(b) until bug b is triaged.
Fig. 4.12 presents the survival curves for bug triaging time for all the annual releases
(blue line) and for the quarterly releases (orange line). The figure shows that the bugs
are triaged slightly faster after the switch to quarterly releases. For example, 90%
of bugs of the quarterly releases are triaged within 50 days while it took more than
100 days to triage 90% of the annual release bugs (see red dashed lines in Fig. 4.12).
With a statistical log-rank test, we verify that there is a difference between the bug
triaging time before and after the quarterly releases (p < 0.01).
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Figure 4.12: Kaplan-Meier survival curves for bug triaging time for
annual and quarterly releases.

Summary: For annual releases, bugs tend to get triaged faster before than after
the release. The transition from an annual to a quarterly release policy appears
to have been beneficial, since such a difference in triaging time is no longer
observed. The bug severity does not seem to have a measurable effect on bug
triaging time before and after the release. Moreover, bugs are triaged faster
after the switch to quarterly releases.

Fixing time analysis Similar to the triaging time analysis, we compute bug fixing
time Tfix(b) before a release for the population of bugs Bbefore

report(r) ∩Bbefore
fix (r) that

were reported and fixed during that period; and similarly after a release for the
population Bafter

report(r) ∩Bafter
fix (r). We use survival analysis on these populations to

model the expected time duration Tfix(b) corresponding to the last recorded time that
the bug gets fixed.
Fig. 4.13 and Fig. 4.13 show the Kaplan-Meier survival curves for the bug fixing time
for annual and quarterly releases, respectively. The graphs reveal at most a small
difference in the time to fix a bug before and after a release. It seems to take slightly
less time to fix a bug before compared to after a release. With a log-rank test we
verify hypothesis H0f

2 that there is no difference between the fixing time survival
distributions before and after a release. We can reject H0f

2 for releases 4.4 and 4.5
only. There is no difference between fixing time before and after the release except
for releases 4.4 and 4.5.
We also studied the impact of bug severity on fixing time but the results were essen-
tially the same as what has already been reported in Table 4.2. Hence, bug severity
does not seem to have a measurable effect on bug fixing time.
To study the impact of the release cycle on the bug handling process, we analyzed
the bug fixing time before and after switching to quarterly releases. We used survival
analysis to model the expected time duration Tfix(b) until a bug b is fixed. Fig. 4.15
compares the survival curves for bug fixing time for all the annual releases (blue line)
and for the quarterly releases (orange line). The figure shows that bugs are fixed
faster for quarterly releases. With a log-rank test, we verify that there is a difference
between the bug fixing time before and after the quarterly releases (p < 0.001). When
consulting Eclipse maintainers about this phenomenon, three out of five believed
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release fixing time (H0f
2)

Eclipse 4.x annual releases
4.2 –
4.3 –
4.4 R∗∗∗

4.5 R∗∗∗

4.6 –
4.7 –
4.8 –

Eclipse 4.x quarterly releases
4.9 –
4.10 –
4.11 –
4.12 –
4.13 –
4.14 –
4.15 –

Table 4.2: Log-rank test for difference between the survival distribu-
tions of fixing time before and after each release. – indicates that the
null hypothesis could not be rejected. Whenever it could be rejected
(R), the number of stars denotes the significance level α (*=0.05; **

=0.01; *** =0.001).
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Figure 4.13: Kaplan-Meier survival curves with 95% confidence in-
terval (indicated by the shaded areas) for fixing time before and after

each *annual* release.
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Figure 4.14: Kaplan-Meier survival curves with 95% confidence in-
terval (indicated by the shaded areas) for fixing time before and after

each *quarterly* release.

that bugs are fixed faster in the quarterly releases, which is in conformance with our
quantitative analysis.
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Figure 4.15: Kaplan-Meier survival curves for bug fixing time for
annual and quarterly releases.

Summary: There is no difference between the bug fixing time before and after
the release. The bug severity does not seem to have a measurable effect on bug
fixing time before and after the release. Bugs are fixed faster after the transition
to the quarterly releases, and this result was confirmed by the consulted Eclipse
maintainers.
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4.9 Impact of Feature Freezes on Bug Handling in Eclipse
Our second research goal aims to study to which extent bug handling activity is
affected by the presence of feature freezes, and whether the transition to rapid releases
has lead to an observable difference as their shorter duration can potentially affect the
bug handling activity. Our investigation is guided by two research questions (RQ2.1
and RQ2.2).
The quantitative results that will be presented throughout this section will be cor-
roborated by the feedback we received from five consulted Eclipse maintainers (cf.
Section 4.4).

4.9.1 RQ2.1 How does the feature freeze period impact bug handling
rate?

This question studies the bug handling rate before and during the feature freeze
period of each considered release. As explained in Section 4.2.1, during the feature
freeze period, Eclipse Core project maintainers stop introducing new features, and
concentrate only on fixing bugs to stabilize the upcoming release. As visualized in
Fig. 4.1, for the annual releases of the 4.x series this period varied between 1 to 3
months.14 For the quarterly releases, the feature freeze period starts 3 weeks before
the release date.15
As maintainers focus on bug fixing in the feature freeze period, we study if there
is a difference in the bug resolution and fixing rate in the development period and
during the feature freeze. We group our results in two date ranges based on when the
resolution or fixing took place: (1) during the development period d<freeze(r) of the
next release r; and (2) during the feature freeze period d>freeze(r) of the next release
r. For each release in the 4.x series and each period we compute the resolution rate
as well as the fixing rate.
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Figure 4.16: Evolution of ResRate during the development and fea-
ture freeze period for each 4.x release.

Fig. 4.16 shows that the resolution rate is fluctuating during the development period
and the feature freeze period. A regression analysis could not reveal any linear trend
for ResRate(d<freeze(r)) (R2 = 0.07) nor for ResRate(d>freeze(r)) (R2 = 0.19) because

14https://www.eclipse.org/eclipse/development
15https://wiki.eclipse.org/SimRel/Simultaneous_Release_Cycle_FAQ

https://www.eclipse.org/eclipse/development
https://wiki.eclipse.org/SimRel/Simultaneous_Release_Cycle_FAQ
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Figure 4.17: Evolution of FixRate during the development and fea-
ture freeze period for each 4.x release.

of a very small R2 value. We used a Wilcoxon rank sum test to verify the null hypoth-
esis H0r

3 |freeze stating that there is no statistical difference between the resolution
rates before and during the freeze period. We could reject H0r

3 |freeze (p < 0.001)
with the largest possible effect size (d = 1), since for any given release the resolution
rate is higher during the development period than during the freeze period.
Fig. 4.17 shows that the fixing rate is increasing over releases during the development
period and feature freeze period. A linear regression analysis confirms an increasing
linear trend for FixRate(d<freeze(r)) (R2 = 0.9) as well as for FixRate(d>freeze(r))
(R2 = 0.58). Both curves are overlapping over all releases; we do not observe any
difference between FixRate(d<freeze(r)) and FixRate(d>freeze(r)). Using the Wilcoxon
rank sum we test the null hypothesis H0f

3 |freeze stating that there is no statistically
significant difference between fixing rates before and during the feature freeze period.
H0f

3 |freeze could not be rejected (p = 0.78), indicating that no difference can be
reported between the bug fixing rate in the development and feature freeze period.
The feature freeze period aims to focus on fixing bugs and improving the overall
stability of the upcoming release. We, therefore, hypothesize that more effort is
spent on fixing bugs during this period than during the development period. We
quantify the bug fixing effort as the weekly average number of fixed bugs in the
considered period. Taking a weekly average allows us to account for the shorter total
duration of the feature freeze and development periods for quarterly than for annual
releases. Fig. 4.18 clearly suggests that bug fixing effort is higher during the feature
freeze period than during the development period except for releases 4.4 and 4.12.
In release 4.4, Java 8 was supported and we find that a large number of bugs was
reported and fixed for JDT,16 that worked on Java 8 tooling in Eclipse.17 This can
explain the high effort during the development period for release 4.4. We attribute
the low observed effort for the feature freeze period of release 4.12 to a low number
of bugs that were reported for this release. A Wilcoxon rank sum test confirms our
observation. We could reject the null hypothesis H0effort3 , stating that there is no
statistically significant difference between the bug fixing effort in the development

16https://projects.eclipse.org/projects/eclipse/reviews/4.4.0-release-review
17https://eclipsesource.com/blogs/2014/03/25/eclipse-support-for-java-8/

https://projects.eclipse.org/projects/eclipse/reviews/4.4.0-release-review
https://eclipsesource.com/blogs/2014/03/25/eclipse-support-for-java-8/
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Figure 4.18: Comparison of bug fixing effort (weekly average number
of fixed bugs) between development period (dashed blue lines) and

feature freeze period (straight red lines) for each release.

and the feature freeze period, with high significance (p < 0.001) and large effect size
(d = -0.8).
In addition to the above, the difference in bug fixing effort between development and
feature freeze periods appears to become more pronounced after the transition from
an annual to a quarterly release cycle. This suggests that the rapid release cycle has
shifted more of the bug handling effort to the feature freeze period. Unfortunately,
we do not have sufficient data points yet to confirm this hypothesis.
Another aspect of the feature freeze period is that more intense testing is being
carried out [138]. These tests lead to more bugs being reported during the feature
freeze period. To verify this, we investigate if maintainers during the feature freeze
period focus more on fixing bugs that were reported during this period as opposed
to during the development period. Considering the bugs targeting the next release
r, and considering only those bugs fixed during the feature freeze period d>freeze(r),
we group them into two categories based on when they have been reported: during
the development period d<freeze(r) or during the feature freeze period d>freeze(r).
Fig. 4.19 shows that more bugs reported in the feature freeze period (red line) are
being fixed compared to those having been reported during the development period
(blue line). We verified this using a Wilcoxon rank sum test with null hypothesis
H0f

3 |freeze stating that, for the number of bugs fixed during the feature freeze period,
there is no statistically significant difference between the ones created in the feature
freeze period and those created in the development period. We could rejectH0f

3 |freeze

with high significance (p < 0.001) and the largest possible effect size (d = 1).

Summary: There is no observable difference in fixing rate between the devel-
opment period and feature freeze period of each release. However, the feature
freeze period focuses more on bugs being reported in that same period than on
bugs reported earlier. As expected, more effort is spent on fixing bugs during
the feature freeze period than during the development period, and this difference
in effort appears to have increased for quarterly releases.
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Figure 4.19: Evolution of number of fixed bugs during the feature
freeze period for each 4.x release. The red line corresponds to bugs
reported in the feature freeze period and the blue line to bugs reported

in the development period.

4.9.2 RQ2.2 How does the feature freeze period impact bug handling
time?

During the feature freeze period, maintainers focus on testing and bug fixing before
delivering the next release. This research question studies if, during the development
period d<freeze(r) and the feature freeze period d>freeze(r) of the next release r, there is
a difference in resolution time and fixing time for bugs corresponding to the current
release prev(r) and bugs corresponding to the next release r. On the one hand,
maintainers are still involved in handling bugs of the current release prev(r) since it
may still have unresolved bugs after its release date, and new additional bugs may
have been reported by its users after the release. On the other hand, maintainers will
also be involved in handling bugs of the next release r for which they aim to resolve
as much bugs as possible before its release date.

current release
4.5

development period of 4.6 feature freeze 
period of 4.6

feature
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next release
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Figure 4.20: Categories of bugs considered for RQ2.2

Fig. 4.20 visually represents all these cases, assuming for the sake of the example that
next release r = 4.6 and current release prev(r) = 4.5. The reported bugs for current
release 4.5 are represented as white circles, and those for next release 4.6 as white
rectangles. In the analysis for RQ2.2 we distinguish between four categories of bugs:
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C1 All bugs of current release prev(r) reported during development period d<freeze(r)
of the next release r.

C2 All bugs of current release prev(r) reported during feature freeze period d>freeze(r)
of the next release r.

N1 All bugs of next release r reported during its development period d<freeze(r).

N2 All bugs of next release r reported during its feature freeze period d>freeze(r).

For each release r, and for each of these four categories, we compute triaging time
Ttriage(b) for each bug b ∈ B<freeze

assigned(r) and b ∈ B>freeze
assigned(r). We compute, in a similar

way, bug fixing time Tfix(b) for each bug b ∈ B<freeze
fix (r) and b ∈ B>freeze

fix (r).
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Figure 4.21: Boxen plots of triaging time distributions during the
development and feature freeze period for each release.
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Figure 4.22: Boxen plots of fixing time distributions during the de-
velopment and feature freeze period for each release.
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triaging time fixing time
release H0t

4a H0t
4b H0t

4c H0f
4a H0f

4b H0f
4c

Eclipse 4.x annual releases
4.3 S∗ S∗∗ N∗ M∗∗∗ S∗∗∗ S∗∗∗

4.4 – – – L∗∗∗ M∗∗∗ N∗∗∗

4.5 L∗∗∗ S∗∗ – M∗∗∗ S∗ –
4.6 M∗∗∗ S∗ – L∗∗∗ L∗∗∗ –
4.7 S∗ – – L∗∗∗ L∗∗∗ –
4.8 – – S∗∗ L∗∗∗ M∗∗∗ –

Eclipse 4.x quarterly releases
4.9 – – – L∗∗∗ – –
4.10 – – – L∗∗∗ L∗∗∗ S∗

4.11 – – – S∗∗ – S∗∗

4.12 – – M∗ – – S∗

4.13 – – – S∗∗ – S∗∗

4.14 – – S∗ M∗∗ – –

Table 4.3: Mann-Whitney U test for difference between develop-
ment and feature freeze period for triaging time and fixing time.
– indicates that the null hypothesis could not be rejected. Whenever
it could be rejected, cell values summarise the significance level α (*
=0.05; ** =0.01; ***=0.001) and the effect size: N(egligible), S(mall),

M(edium), L(arge).

(a) Comparing bugs during the feature freeze period During the feature
freeze period d>freeze(r) we compare the triaging and fixing time of bugs of the current
release (C2) to those of the next release (N2). We visually observe that during
this feature freeze period, bugs for the next release are triaged (Fig. 4.21) and fixed
(Fig. 4.22) faster than for the current release. This can be explained by the fact that
the feature freeze period aims to triage and fix the bugs of the next release fast and
to deliver the release with as few bugs as possible.
For triaging time, Mann-Whitney U tests (see Table 4.3) confirm that the null hy-
pothesis H0t

4a, stating that the time to triage bugs of the current and next release is
not different during the feature freeze period, can be rejected for all annual releases
except 4.4 and 4.8. For the quarterly releases, H0t

4a could not be rejected. Similarly,
for fixing time we verify the null hypothesis H0f

4a that the time to fix bugs of the
current and next release is the same during the feature freeze period. H0f

4a can be
rejected for all releases except 4.12 (see Table 4.3) with small effect size for release
4.11 and 4.13, medium for releases 4.3, 4.5 and 4.14, and large for the others. Our
results indicate that bugs of the next release are fixed faster in the feature freeze
period compared to the bugs of the current release.

(b) Comparing bugs of the current release during development and feature
freeze period of the next release We investigate the differences in triaging and
fixing time of bugs of the current release prev(r) between the development period
d<freeze(r) (C1 in Fig. 4.21) and the feature freeze period d>freeze(r)(C2 in Fig. 4.21)
of the next release r. We observe a longer triaging and fixing time during the feature
freeze period than during the development period. These results indicate that bugs
triaged and fixed during the feature freeze period have been open for a long time and
that maintainers tend to focus on bugs that had lived for a long time in the current
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release before releasing the next one. A possible explanation can be that maintainers
tend to resolve and close bugs of current release before to deliver it in the next one.
For triaging time, Mann-Whitney U tests (see Table 4.3) verify the null hypothesis
H0t

4b, stating that there is no difference in triaging time of bugs of the current release
between the development period and the feature freeze period. H0t

4b can be rejected
with small effect size for all annual releases except 4.4, 4.7 and 4.8. For the quarterly
releases, the null hypothesis could not be rejected. For fixing time, the null hypothesis
H0f

4b, stating that there is no difference in fixing time of bugs of the current release
between the development period and the feature freeze period, can be rejected for
all annual releases. For the quarterly releases, the null hypothesis cannot be rejected
except for 4.10.
Therefore, for all annual releases, bugs of the current release took longer to fix during
the feature freeze period compared to the development period. This is not the case
anymore for the quarterly releases.

(c) Comparing bugs of the next release during its development and feature
freeze period We investigate the differences in triaging and fixing time of bugs
of the next release r between its development period d<freeze(r) (N1 in Fig. 4.21)
and its feature freeze period (N2 in Fig. 4.21). For bug triaging time, we do not
observe a difference between the feature freeze period and the development period.
Maintainers appear to triage bugs of the next release as soon as possible, regardless of
the considered period. Mann-Whitney U tests (Table 4.3) verify the null hypothesis
H0t

4c, stating that there is no difference in triaging time of the next release between
the development period and the feature freeze period. H0t

4c cannot be rejected for
the annual releases except for 4.3 and 4.8. Even for those releases where H0t

4c can be
rejected, the effect size is negligible or small (for 4.8). For the quarterly release, H0t

4c

cannot be rejected for the releases except for 4.12 and 4.14 with a medium and small
effect respectively. This implies that there is little or no difference in bug triaging time
of the next release between the development period and the feature freeze period.
For bug fixing time, we visually observe a longer time during the feature freeze period
than during the development period. We verified the null hypothesis H0f

4c, stating
that there is no difference in bug fixing time of the next release during the development
period and the feature freeze period. H0f

4c can be rejected only in release 4.3 and
4.4 for annual releases. The hypothesis was rejected for the quarterly releases except
4.9 and 4.14. For all releases where H0f

4c can be rejected, the effect size is small
except for 4.4 it is negligible. This implies that, with the exception of those releases,
there is very little difference in the time to fix bugs of the next release between the
development period and the feature freeze period.
We also tested all the previous hypotheses after grouping per bug severity level, but
we found similar results to those in Table 4.3.18 It takes less time to triage and fix
bugs of the next release compared to the current release during the feature freeze
period . Bugs of the current release took longer to fix during the feature freeze period
compared to the development period for annual releases but it is not the case for the
quarterly releases. The feature freeze period does not affect the triaging and fixing
time of bugs for the next release. As a result, the bug severity does not seem to
impact the results.
In contrast to our quantitative findings, four out five of the consulted Eclipse main-
tainers stated that bugs are prioritized according to their severity.

18The analysis per severity result can be found in our replication package [62].
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Summary: It takes less time to triage and fix bugs of the next release compared
to the current release during the feature freeze period of the next release. Bugs
of the current release that are triaged and fixed during the feature freeze period
have stayed open longer compared to those in the development period for the
annual releases while this is not the case anymore for the quarterly releases. The
feature freeze period does not affect the triaging and fixing time of bugs for the
next release. The severity of the bugs handled does not influence the results.

4.10 Discussion
Evolution of the bug handling process of Eclipse.
Changes in the bug handling process can have a direct impact on the efficiency of
bug handling activities such as triaging, fixing and resolving bugs. As an example,
as illustrated in Section 4.7, the Eclipse Core project developers, since June 2010,
stopped using resolution statuses such as LATER or REMIND that signal that the bug will
be processed later on. This decision led to a natural decrease in the resolution rate,
while the fixing rate increased. In fact, these resolutions appeared to be problematic
for the Mozilla community as well19 and although these resolutions remained available
later on, they no longer appeared in the default list of resolutions since Bugzilla 4.0,
that was released on 15 February 201120. Another example of such changes is the
introduction of automated tools that helped the community in handling bugs. The
introduction of an Automated Error Reporting client (AERI) was also considered as
beneficial by the Eclipse community. AERI facilitates reporting errors as users do not
need to create Bugzilla entries; such entries are handled by the Eclipse community
based on the reports they receive. In turn, users can provide comments with their
reports which are helpful when fixing bugs; according to [115] commented bug reports
are more than twice as likely to be fixed compared to those without user comments.
Our empirical analysis has confirmed the positive effects of AERI on the bug fixing
rate.

Guideline: Before changing their bug handling process, project communities
should carefully assess the pros and cons of such changes upfront, plan ahead
these changes to avoid negative impacts, and measure after changing the process
if the targeted improvements have been reached. Researchers need to be aware of
such changes in the bug handling process when carrying out empirical studies,
since the effect of these changes may play an important role in the obtained
results, as we have clearly observed with our Eclipse case study.

Bug handling during feature freeze period. We observed a clear difference in
bug handling activity between the feature freeze period and development period of
releases. The results of RQ2.2 revealed that, during feature freeze, maintainers focus
more on triaging and fixing bugs of the next release than on those of the current
release. Also, the results of RQ2.1 showed that maintainers focus more on fixing bugs
reported during the feature freeze period than on bugs reported earlier. While the
consulted Eclipse maintainers claimed to tackle bugs of high priority during feature
freeze, we observed the same proportion of severe bugs being fixed as was the case
during the development period. Moreover, bugs of the current release that are triaged

19A relevant discussion between Mozilla developers can be found at https://
bugzilla.mozilla.org/show_bug.cgi?id=35839

20https://www.bugzilla.org/releases/4.0/release-notes.html

https://bugzilla.mozilla.org/show_bug.cgi?id=35839
https://bugzilla.mozilla.org/show_bug.cgi?id=35839
https://www.bugzilla.org/releases/4.0/release-notes.html
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during the feature freeze period have been open for a long time. This can happen
because long-lived and possibly complex bugs are planned to be fixed for the next
release.

Recommendation: Intuitively, one might expect feature freeze periods to impose
extra stress during rapid releases, since they tend to be relatively short and, in
addition, they take away an important part of the time that could otherwise
be devoted to the development of new features. Nevertheless, feature freeze
periods need to be preserved, since they allow to spend more focused effort
fixing bugs for the upcoming release. In addition to this, as recommended by
Eclipse maintainers, rapid release adopters should invest in test automation
especially in presence of rapid releases.

Benefits and challenges in switching to a more rapid release policy. All five
consulted Eclipse maintainers found the transition to a quarterly release cycle very
beneficial w.r.t. the time it takes for bugs to be fixed and new features to reach users.
They also indicated that it helped to reduce stress and increase community growth.
One maintainer stated “Now, if I miss a deadline, it’s not the end of the world, and
I don’t have to rush as much..." and another one said “Bug fixes get out in a timely
manner. No more backporting of bugfixes from master to a service release." Over-
all, the consulted maintainers claimed not to have faced many difficulties because of
the transition, and they agreed that faster releases lead to faster feature and bug
fix integration, increasing user benefit and making development more efficient. On
the downside, they mentioned that beta testing on a release decreased due to less
milestone releases per cycle (3 as opposed to 7 for the annual releases, cf. Fig. 4.1 &
Fig. 4.2) and lack of time to contribute larger features. They also found it harder to
keep development environments up-to-date and expressed the need to reorder tasks
so that more release engineering work can be automated. They highlighted the im-
portance of a good management of their platform, as well as the fact that instability
and regressions might occur.
Khomh et al. [63, 64] studied the effect of the transition to a rapid release cycle on
the bug handling activity in a different project, Mozilla Firefox. Considering a period
of two years of bug activity, they found this transition to lead to shorter bug fixing
times, but on the downside less bugs were being triaged and fixed in a timely fashion.
Our results for the more recent switch of Eclipse to a quarterly release schedule
partially align with these findings, as we also observed less bugs being triaged and
fixed after the transition Section 4.7. Different from Firefox, however, we observed an
increased fixing rate after the transition (RQ1.1) and bugs being fixed faster (RQ1.2).
A possible explanation for this difference is that Firefox developers were not given
enough time to prepare for the transition to smaller release cycles [64]. In contrast, the
Eclipse community has been preparing the transition for over a year [11] by starting
to introduce intermediate quarterly “update” releases since Eclipse 4.6 in 2016. Two
of the consulted Eclipse maintainers clearly indicated that these update releases were
part of the preparation. Carefully planning the transition to quarterly releases was
therefore essential to its successful adoption.
As part of the preparation towards a more rapid release cycle, the consulted Eclipse
maintainers highlighted the importance of a good testing plan. Adopters of rapid
releases should carry out tests all along the release development cycle, not only during
the feature freeze period. They should also heavily invest in adequate automated
tooling and support processes, especially for continuous integration and deployment,
to make it “just work”.
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Kula et al. [69] studied the effect of rapid release in ING, a large Netherlands-based
internationally operating bank that develops in-house software solutions. They re-
ported that ING introduced the Continuous Delivery as a Service project to automate
the complete software delivery process to make shorter release cycles practical. ING
put a continuous delivery pipeline in place for all teams to enforce an agile develop-
ment process and reduce their testing and deployment effort.
It is important to highlight that there are limitations related to the nature of the
case studies. For instance, different communities are involved in our two case studies
Eclipse and Firefox. Since Eclipse is an integrated software development environment,
it can be regarded as software whose main users are software developers themselves.
In contrast, Firefox is a web browser, so its main users are unlikely to be developers.
This difference in user communities is likely to play a role in bug handling activities.
Given that Eclipse users are developers themselves, they are more likely to write
good bug reports as they are more familiar with bugs. This makes it easier for
maintainers to resolve them, as compared to bugs being reported by end users that
are not developers, as is most often the case for Firefox.

Lesson learned: In the context of ever more projects moving to faster release
cycles [57, 80], the findings for Mozilla Firefox and Eclipse highlight that care-
ful preparation and planning is key for a successful transition to faster release
cycles. It enables the developer community to become more effective in bug
handling activities, provided the presence of a good testing plan, a good release
management policy, and adequate automated tooling and support processes.
Other projects can benefit from these lessons learned.

What is the most adequate release duration? Projects that have adopted a
rapid release policy have done so with cycles of different durations. For example,
Eclipse opted for a 13-week cycle, while Mozilla Firefox opted for a much shorter 4-
week cycle. It remains an open question what constitutes the most optimal duration,
and the answer will be specific to each project. We consulted the Eclipse maintainers
about their opinion and four out of five responded that 13 weeks is an adequate
duration, mentioning benefits such as “short enough for features and bugfixes to get to
users at adequate speed" and “long enough to allow using single stream of development
thus saving the team for branch merging". However, one of these respondents was
concerned that “a lot of process time goes into building and shipping each version,
and too little time is devoted to automated testing". Another respondent would favour
an even higher release frequency, but acknowledges that this “would require way more
automation, standardization, etc. of all the releases train projects, and that seems
impossible with the rather loosely coupled projects at eclipse.org". In contrast, yet
another maintainer signaled that even 13 weeks is already a very short period of
time. In future research we aim to investigate how the type of release cycle (fixed or
variable) can impact the bug handling activity.

Conclusion: The 13-week release cycle of Eclipse appears to be a good compro-
mise; further shortening the release duration may be challenging and the added
value of doing so is yet unknown.

4.11 Threats to Validity
Following the structure recommended by [135], we discuss the threats that may have
affected the validity of our findings, and how we have tried to mitigate them.
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A threat to construct validity in our study concerns the bug assignment identifi-
cation. We minimized this threat by identifying bug assignments based on both
the Status field (ASSIGNED) and the alternative practice of assigning bugs through
[component_name]-triaged@eclipse.org (cf. Section 4.2.2).
A possible threat to internal validity is that our analysis only relied on Bugzilla bug
reports. However, we verified that all Eclipse Core bugs are handled through Bugzilla;
even the bugs submitted using AERI are stored in Bugzilla. Another threat stems
from bugs not having a Version field, or having a Version field not corresponding
to any of the considered releases. We excluded such bugs as it is not possible to
automatically deal with such cases. A third known threat [127] concerns the presence
of multiple occurrences of the same activity in a bug report, such as a bug that may
be reassigned, a bug that may have had multiple resolutions or fixes, the Version
field value that changes over time, and the Severity level that may be modified. We
mitigated this threat by considering only the date of the first assignment (reflecting
the moment when the bug was triaged for the first time), the date of the last reso-
lution/fixing activity (reflecting the fact that prior resolutions/fixes of the bug were
not satisfactory), the last reported Version field value, and the latest Severity level
of the bug.
We quantified the possible bias stemming from bugs tagged with different major ver-
sions throughout their history. We found that 4,266 bugs were reassigned to different
releases throughout their history, out of which 3,973 bugs were reassigned to different
major releases. From these bugs, only 21 out of 2,741 RESOLVED bugs are resolved in
multiple major Eclipse releases, thus the bias they introduce is insufficient to alter
our findings.
Concerning possible bias due to changes in the bug severity, we found 2,016 bug
reports that changed their severity over time, out of which 1,421 bugs (5% w.r.t the
total number of considered bugs in the 4.x series) being reassigned to a different
severity category, thus the impact on our analysis is minimal.
A fourth threat concerns our study in RQ2.1 and RQ2.2. We study the fixed bugs
targeting only the upcoming release during its feature freeze, however, other bugs
are fixed during this period that target other releases than the upcoming one. We
measured the percentage of fixed bugs that target the upcoming release compared to
the ones targeting other releases. We find that the majority of the fixed bugs during
the feature freeze period of an upcoming release target it, thus, the impact of such
threat is likely to be minimal.
A fifth threat concerns the presence of Eclipse Genie, an automated bot, that closes
bugs that have not had any activity for a long time. It closes bugs assuming that
the problem got resolved, was a duplicate of something else, or became less pressing
or maybe it is still relevant but has not been triaged yet. This bot is used so that
these bugs will not appear open anymore for maintainers. Starting from 2020, Genie
closes bugs from the 4.x annual releases that have been open for a long time. In our
analysis, bugs that are closed by Genie are not considered as resolved. Thus, our
quantitative analysis is not affected by the presence of Genie.
Regarding external validity, we cannot generalize our results as we only analyzed a
single case study of Eclipse. While the followed methodology is applicable to other
systems, the obtained findings are not generalizable. Smaller and less mature projects
are likely to reveal other evolutionary characteristics in their bug fixing behavior.
Even for Eclipse itself, the findings are only valid for the Core projects that have a
large number of bugs and an active developer community. The analysis and findings
will differ for smaller and/or peripheral projects within Eclipse that have different
versioning, release policies and evolutionary dynamics.
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We mitigate threats to reliability validity by providing a publicly available replication
package [62] and a detailed description of the followed methodology in Section 4.2.

4.12 Conclusion
In this work, we aim to study the impact of rapid releases on different parts of
the software development processes. Software maintenance is one of the significant
parts in the software development process. Bug handling comes as a priority in
the software maintenance. In this chapter, we conducted an empirical study of bug
handling activity in the Eclipse Core projects. We focused the study on the 4.x
release range, featuring a transition to a more rapid release cycle as of release 4.9.
We compared seven annual releases before this transition to seven quarterly releases
after the transition. We evaluated the evolution of bug triaging time, bug fixing time,
bug resolution rate and bug fixing rate. We compared these metrics before and after
each release date. We also studied the impact of the feature freeze period on these
metrics. Our finding highlights that:
For the annual releases, the number of reported bugs per release is decreasing over
time, and for the quarterly releases it is stabilising at a low value, suggesting that
the Eclipse bug handling process is mature and of high quality. This difference is
no longer observed for the quarterly releases, mostly because of a smaller number of
reported bugs. We also could not observe a difference between bugs reported before
and after a release in term of triaging and fixing time.
While the bug resolution rate is decreasing over time to rather low values (< 50%,
implying that less than 1 out of 2 bugs gets resolved for recent releases) the fixing
rate is becoming very high (close to or above 90%). This improved efficiency seems to
be due to a combination of a well-managed bug handling policy and the introduction
of the automated AERI error reporting tool.
We observed more intense bug handling activity during the feature freeze periods,
where bugs are triaged and fixed faster, and priority is being given to fixing bugs
of the next release as opposed to bugs of the current release. During these periods,
more effort is being spent on bug fixing, and this is maintained after the transition
to quarterly releases. In our study, we did not find any measurable effect of the bug
severity on the bug handling process.
The transition from an annual to a quarterly release cycle has allowed the Eclipse Core
projects to have a more stable bug handling process, since some observed differences
in triaging and fixing times and rates before and after annual releases are no longer
present for the quarterly releases. Moreover, we did not observe any negative effect
of the switch to quarterly releases. We therefore believe that the transition to a more
rapid release cycle has been beneficial to Eclipse in terms of bug handling activity.
This was confirmed by feedback from five consulted Eclipse maintainers. It remains
an open question if even faster release cycles would continue to yield further benefits
or on the contrary would have negative consequences.
The story of Eclipse has shown that feature freeze periods and faster release cycles can
be beneficial for well-managed software projects, provided that Eclipse has already
put in place a well-defined bug handling process. Switching to more rapid releases
requires careful planning and tracking the transition, and being aware of the possible
pitfalls. Adopters of rapid releases should test and fix bugs as soon and as frequently
as possible. They should raise awareness to their developer community, invest in the
most appropriate tooling and support processes, and automate as much as possible.
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Chapter 5
Revisiting the Impact of Rapid Releases
on Software Development Activities

Many large software projects adopted rapid releases policies to deliver new
features and bug fixes fast to gain and sustain the satisfaction of users. These policies
can impact different activities of the software development process. For example,
rapid releases might impact software maintenance activity as there is less time to
handle bugs. This chapter presents an empirical study of the impact of switching to
a more rapid release cycle in the Mozilla Firefox project. We revisit previous studies
on the impact of rapid releases on the bug handling process and testing process. In
addition, we study its impact on the patch uplift process.
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5.1 Introduction
The advent of rapid release practices has significantly reduced the amount of stabiliza-
tion time available for new features, forcing companies to use innovative techniques
to ensure that important features are made public, timely and of good quality. While
rapid release cycles allow for faster feedback from users and are easier to plan be-
cause of their smaller scope, they also significantly impact software quality. On the
one hand, enterprises currently lack time to stabilize their software [117], and cus-
tomer support costs increase due to frequent upgrades [59].
Porter et al. [101] noted that with short release cycles, testers have less time to
test all possible configurations of a released product, which can negatively impact the
quality of the software. On the other hand, other studies have reported positive effects
of rapid releases on software testing and quality in the context of agile development,
where testing has become more focused [76]. Software testing is an import part of the
software development process, and it plays a major role in quality assurance. Mozilla
Firefox switched from traditional to rapid releases in 2011. This switch has been
widely studied in previous research. Mäntylä et al. [80] found that rapid releases in
Firefox have more tests executed per day but with less coverage. They also observed
that the number of testers decreased in rapid releases, increasing the test workload.
Khomh et al. [64] found that bugs that are associated with crash reports tend to be
fixed more quickly in the rapid Firefox releases than the traditional ones.
To optimize the process to cope with short release cycles, and make it more reliable
for all users, over the years Firefox developed a release process that includes four ‘pre-
release’ channels: a development channel known as Nightly, two stabilization channels
(Aurora and Beta), and a main Release channel. Features for a new release are
developed on the Nightly channel over six weeks. Afterwards, the code is transferred
to Aurora, where it is tested by Mozilla developers and contributors, for six weeks,
and then to Beta where a selected group of external users tests it. Finally, mature
Beta features are imported into the main Release channel and delivered to end-users.
However, release cycle time has required to subvert the model regularly over the years
by uplifting new features to meet market requirements. Besides, Aurora channel was
not meeting the expectations as a first stabilization channel. Thus, in April 2017,
Firefox removed the Aurora stabilization phase from the process. In 2019, Firefox
had many requests to bring features to market sooner. Moreover, as they believe
that shorter release cycles provide greater flexibility to support product planning and
priority changes due to business or market requirements, Firefox decided to move to
a four-week release cycle in the first quarter of 2020. They claim that they can be
more agile and ship features faster while applying the same rigour and due diligence
required for a stable, high-quality release.
The release process of Firefox is frequently subverted by urgent patches, implementing
high-value features or critical fixes, that cannot wait for the next release cycle. These
patches are directly promoted from the development channel to stable channels (i.e.,
Aurora, Beta, and main Release), a practice called patch uplifting. Patch uplifting is
risky because the time to stabilize the patches is shortened. Therefore, it is important
to carefully select the patches that are uplifted and ensure that developers review them
properly, to reduce the risk of regressions. There is a set of rules in place at Mozilla
to control this uplift process. However, despite these rules, multiple uplifted patches
still introduce regressions in the code. It is important to study to which extent a
rapid release cycle impacts this practice.
In this chapter, we revisit the impact of rapid releases on the software development
process in Mozilla Firefox. Different from previous studies, we study the recent
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removal of Aurora channel to the recent switch four weeks release cycle. Following
the Goal-Question-Metrics approach, we study the evolution of the Mozilla Firefox
project with the aim to analyze its bug handling process, testing process and patch
uplift process for the purpose of assessing the possible consequences of rapid release
from the point of view of developers in the context of software development. In this
thesis, we aim to provide valuable insights into the advantages and disadvantages
of adopting rapid releases and the release management plans and tools needed for
successful adoption. For this, the overall objective of this chapter is to understand
whether and how transitioning to a more rapid release model can impact different
aspects of the development process of Firefox. The objective is divided into two main
goals, each composed of several research questions that will guide the case study
design and empirical analysis:

Goal 1: The first research goal aims to study if and how the transition to more
rapid releases impacts the software quality and the testing workload. Given
the fact that developers have less time to stabilize their releases in rapid release
models, this might result in more post-release bugs which might affect the software
quality and user experience. Moreover, the testing phase is a vital point during the
software development process, and it might be impacted because of the less time
available to test all features. Hence, we analyze if there is a change in the number of
post-release bugs and testing activity after the switch to more rapid releases. Four
research questions will guide our investigation:

RQ1.1: How does switching to more rapid releases impact the number
of post-release bugs?
Shorter release cycles could negatively impact the quality of software systems
since there seems to be less time for testing. Many reported bugs are likely to
remain unfixed until the next release, which in turn might expose users to more
post-release bugs. In this question, we analyze the daily number of reported
post-release bugs, the proportion of fixed bugs, the fixing time and how and
whether this changes when switching to more rapid releases.

RQ1.2: How does switching to more rapid releases affect the number
of manually performed tests? This question analyzes possible correlations
between reducing the release cycle and testing activity. Since the short release
cycle time seems to leave less time for developers to test the system, QA teams
may decide to reduce the amount of testing for their rapid releases versions in
order to cope with their tight schedule. In this research question, we verify this
by investigating the testing effort performed for each release model in terms of
the number of test and test coverage.

RQ1.3: How does switching to more rapid releases affect the number of
testers working on a project?
Mäntylä et al. [80] found that the number of testers decreased after the switch
from traditional to rapid releases in 2012 with an increase in the test workload.
The rapid succession of releases may make it harder or easier to retain testers,
and we expect that testers have less workload. In this question, we investigate
how the number of testers evolves after Firefox switched to more rapid releases.

RQ1.4: How does the frequency of intermittent test failures change after
switching to more rapid releases? Intermittent tests fail non-deterministically.
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For example, a test may both pass and fail when performed in a different mo-
ment on the same build even though there are no changes in the tested code. As
a result, developers cannot trust an intermittent test. Many intermittent test
failures could be avoided by good test writing principles. Mozilla has a problem
with intermittent failures that occur at an ever-increasing rate. One possible
solution for such frequently failing tests is to disable them, but this means re-
ducing the test coverage. Intermittent failures can be an indicator of testing
quality. In this research question, we analyze the frequency of intermittent
failures over time and if this changes with a shorter release cycle.

Goal 2: The second research goal aims to study to which extent the patch
uplifting practice is affected by switching to more rapid release cycles
as the latter may impact the acceptance rate and effectiveness of the uplifts. Our
investigation will be guided by two research questions:

RQ2.1: How does the number of accepted and rejected uplifts evolve over
time?
As the time to stabilize a channel is shorter after reducing the release cycle, the
release manager is likely to become more strict in enforcing the uplift rules. In
this question, we analyze whether and how the number of accepted and rejected
uplifts changes after reducing the release cycle. We expect fewer patches to be
accepted after switching to rapid releases as the release manager will probably
be more strict.

RQ2.2: How effective are the patch uplifts and how does this change
with more rapid releases?
The fact that reviewers in rapid releases have less time to review patches before
uplifting might cause regressions later in the code. It is important to study
whether and how shorter release cycles impact the number of regressions caused
by uplifts. There is less time to review a patch in more rapid releases, so we
expect to find more regressions caused by these uplifts.

5.2 Methodology
In Section 5.2.1, we introduce the selected case study that we have selected for em-
pirically evaluating our research questions. Then, in Section 5.2.2, we present the
experimental design, the data extraction process and the metrics that will be used to
answer our research questions. The datasets and scripts generated for this study are
publicly available in a replication package in [61].

5.2.1 Selected Case Study: Mozilla Firefox

For our empirical study, we have selected Mozilla Firefox as a case study because it
is a long-lived open source project, with a large community of contributors. Firefox
is a free open source web browser developed by the Mozilla Foundation. Firefox
reduced its release cycle multiple times through its lifecycle. It has been studied
widely in studies about software evolution [6, 12] and the impact of rapid releases
[27, 64, 80]. Firefox version 1.0 was released on November 2004 and Firefox followed
a traditional release model until version 4.0 (March 2011). Starting with version 5.0,
Firefox adopted a rapid release model to accelerate the delivery of its new features.
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Then, the process shifted to a four-week cycle with the release of Firefox 71 on March
10, 2020.

5.2.1.1 Mozilla’s Development Process

In 2011, Firefox followed a pipelined release process, with four release channels [94].
The four channels available are Nightly (a.k.a “Central"), Aurora, Beta, and Release
(RC) of 6 week intervals (see Fig. 5.1). The Nightly channel gets new features once
they are ready, and it has the lowest stability of the four channels. The Aurora
channel gets new features on a regular basis, but some of them might be disabled if
it appears to require more work. The Beta channel receives only new features that
are scheduled for the next Firefox release. New features are rarely directly added to
the Aurora or Beta channels. The number of users on each channel increases about
ten times as the changes make their way through the release process, and features on
each channel require an accompanying improvement in the stability.
Aurora was created in 2011 to provide more user feedback after Firefox shifted from
version 5 to the rapid release cycle. It was initially intended to be the first stabilization
channel to provide further user feedback. This original intent never materialized. The
release cycle time has required Firefox to regularly subvert the model over the years
by uplifting new features to meet market requirements. In order to address the
complexity and cycle duration issues, in April 2017, the release management team, in
coordination with Firefox product management and engineering, decided to remove
the Aurora stabilization phase from the cycle reducing the release cycle by 6-8 weeks
[93] (see Fig. 5.2). The Aurora cycle was used to finalize some features. Instead,
features will be stabilized during the Nightly cycle. To improve the overall quality of
Nightly, Firefox follows a few initiatives:

Nightly merge criteria: New end-user facing features landing in Nightly builds
should meet Beta-readiness criteria 1before being pushed to Beta channel.

Static analyzers: To detect issues at the review phase, static analyzers are inte-
grated as part of the workflow. They are able to identify potential defects but
also limit the technical debt.

Code coverage: Code coverage results are used to analyze the quality of the test
suite and the risk introduced by the change.

Risk assessment: Identify the potential risks carried by changes before they
even land by correlating various data sources (VCS, Bugzilla, etc.). The idea
is to identify the functions where a modification has more chance to induce
regression(s).

1See a list of criteria that evaluate feature readiness to merge to Beta in [93]
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Figure 5.1: Development and Release Process of Mozilla Firefox for
releases 5 till 53.
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Figure 5.2: Development and Release Process of Mozilla Firefox for
releases 54 till 70, after the removal of Aurora channel.

Starting from Firefox 71, a new major Firefox release is shipped every 4 weeks2.
Fig. 5.3 shows the current development and release process of Mozilla Firefox. Fire-
fox’s release management team believes that a shorter release cycle provides greater
flexibility to support product planning and priority changes due to business or market
requirements. With four-week cycles, they can be more agile and ship features faster
while applying the same rigor and due diligence needed for a high-quality and stable
release.
Fig. 5.4 shows the timeline of the major releases of Firefox. In this chapter, we will
refer to the release model with 6-weeks interval till release 53 (before the removal
of Aurora) by RR6, the 6-weeks release model until release 71 by RR6-A and the
release model of 4-weeks by RR4.

2https://hacks.mozilla.org/2019/09/moving-firefox-to-a-faster-4-week-release-
cycle/

https://hacks.mozilla.org/2019/09/moving-firefox-to-a-faster-4-week-release-cycle/
https://hacks.mozilla.org/2019/09/moving-firefox-to-a-faster-4-week-release-cycle/
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5.2.1.2 Firefox Testing & Quality Assurance

Mozilla’s QA team leads software quality assurance activities throughout Mozilla and
plays a key role in the delivery of a variety of software products on time. In every
Mozilla project, they explore new functionality, write and run tests, discover and file
bugs, build and maintain tools, collect and analyze metrics. As was the case for
Eclipse in Chapter 4, all Mozilla projects use Bugzilla for reporting and handling
bugs.
For manual testing, TestRail is a test case management tool used by most Mozilla QA
teams to catalogue and monitor test cases during the lifetime of a project. TestRail
is the unique source of truth for all testing data (test plans, reports, failures, etc.)
and is thus an important component in the overall software life cycle at Mozilla.
Fig. 5.5 shows a test plan for Firefox 71. Typically, when a project starts, a QA/Test
Engineer will create a test plan for the feature/project. This process will begin once
the product manager has a clear idea of what needs to be built. The test plan must be
reviewed and approved before any code is written. Once the engineer feels confident
in the test plan, he/she enters the test plan into Testrail. When a testable build is
ready (Nightly, Beta, Release), the test plan may be executed using the “test run”
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feature of TestRail. A test run captures the results of the execution of all test cases
against a version of the product and allows the creation of reports to distribute to
stakeholders.

Figure 5.5: Screenshot of a test plan on TestRail.

5.2.1.3 Mozilla’s Patch Uplifting Process

The majority of the development work is done in the Nightly channel, where patches
can be committed after a regular review process. To keep the channels as stable as
possible as code committed to Aurora and Beta gets closer to be released, a differ-
ent process for committing patches has been installed for the stabilization channels:
patch uplifting. Patches with important features or severe issue fixes that cannot
wait for the next major release are promoted directly from the development channel
to one of the stable channels, omitting the stabilization phase on one or more chan-
nel(s). The lifecycle of an uplifted patch goes through a series stages: developers
write a patch, which gets reviewed by one or more reviewers. The patch is committed
to the Nightly channel after a successful review. If developers believe that the patch
is critical (e.g., it fixes a frequent crash), they can request to uplift the patch to one
(or more) of the stable channels. Release managers, who are independent and dif-
ferent from the reviewer, are responsible for deciding which patches can be uplifted.
After careful consideration of the risks involved, they accept or reject the patch uplift
request.
The more a channel is stable, the higher is the approval bar for uplift requests. Below
we present a selection of the uplifting rules on the different channels3.

Aurora: Uplifts to the Aurora channel are less critical because they still have
considerable time for stabilization. Thus, the rules are not very strict: no
new features are accepted; no disruptive refactorings; no massive code should
change; no user-visible strings changes unless the localization team is aware of
them and has approved them.

Beta: Uplifts to the Beta channel are more critical because they have less
time for stabilization. In addition to the rules defined for Aurora, the uplifted
changes to the Beta channel should be (1) ideally reproducible by QA, so that

3https://wiki.mozilla.org/Release_Management/Uplift_rules
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they can easily be verified; (2) they should have been verified on Aurora/Nightly
first and should have demonstrated a decrease in crash or reproducibility, and
(3) should not include changes to the user-visible strings in the application. The
uplifted changes can lead to performance improvements, fixes to top crashes,
and fixes for recent regressions. The release managers become more strict in
enforcing these rules as the release date comes closer.

Release: In general, uplifts to the Release channel are not recommended unless
an issue cannot wait till the next major release. Possible uplifts can be fixes for
major top crashes with evidence of impact provided, security issues, functional
regressions with a broad impact or problem in a major feature. Once a patch
is accepted for uplift, code sheriffs or the developers themselves can commit it
to the stabilization channel(s) where the patch was approved.

5.2.2 Data Processing

Fig. 5.6 shows an overview of our data collection or data processing approach. We
describe each step of the approach below. Many Firefox Desktop bugs will either be
filed in the Firefox product or the Core product4.
We retrieved 268,603 issues reported for Firefox and Core products between Febru-
ary 2014 (release date of Firefox 27) and October 2020 (release date of Firefox 83),
available in Mozilla’s Bugzilla bug tracker. Our dataset was fetched on 17 Oct 2020,
and the earliest and latest dates of reported issues in our dataset correspond to 1 Jan
2014 and 5 Oct 2020, respectively. We differentiate issues that are related to faults,
from new feature requests or improvements using the strategy of Castelluccio et al.
[22]. To automatically identify fault-related issues (bugs), they use a keyword-based
heuristic to search for information in the title, description, flags, and user comments
of each issue report. Their list of keywords includes: “crash”, “regression”, “failure”,
“leak”, “steps to reproduce (STR)”, and “hang”. The total number of bugs we get is
175,458.
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Figure 5.6: Overview of our data collection and processing approach

4https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox

https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox
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Post-release bugs: To determine the post-release bugs, we filtered bugs based on
their Version field. However, given that the version field is not mandatory in Bugzilla,
not all the reported bugs are assigned to a version. For the bugs with specified version,
there is only a major release number (50.0–83.0) with no explicit information of the
individual release (alpha, beta, minor) each bug was related to. We found 112,209
bugs with unspecified Version field. To get the version of the unspecified bugs, we
used the “Tracking Flags” field. Tracking flags are used by developers, triagers, QA
and the release management teams to keep track of bugs whose fixes are slated to go
into a particular product release. The tracking status flag shows the release where
the bug is present or the release(s) that are affected by it. We linked 14,364 bugs to
the release where they are found. The total number of bug reports with specified and
unspecified versions are 96,636 and 77,613, respectively. Fig. 5.7 shows the evolution
of reported bugs with specified and unspecified versions. For the analysis in RQ1.1,
we exclude the bugs with unspecified versions because we focus on post-release bugs.
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Figure 5.7: The distribution of specified and unspecified bugs over
time

Intermittent Test Failures: Intermittent (aka flaky5) failures are test failures
which happen intermittently, in a seemingly random way. It is often a test that
passes fine locally on a machine, but when ran thousands of times on various CI
environments (some of them under heavy load), it may start to fail randomly. Many
of such failures could be avoided by good test writing principles [26]. Mozilla has a
problem with intermittent failures that occur at an ever-increasing rate [124]. Thus,
they initiated the Stockwell project to help reduce the intermittents failures. This
project defines a scenario where very frequently failing tests get disabled. This should
ideally be avoided because this means reducing the test coverage 6.
These intermittent failures are tracked in Bugzilla. When a test starts being inter-
mittent a bug is filed in Bugzilla (usually by a Mozilla code sheriff). Once the bug
exists for a given test failure, all further similar failures of that test will be reported
as comments within that bug. These reports are usually posted weekly and look like
this:

“6 failures in 4850 pushes (0.001 failures/push) were associated with this bug
in the last 7 days7.”

5Intermittent failures are also referred to as flaky failures in research [36]
6https://firefox-source-docs.mozilla.org/devtools/tests/debugging-

intermittents.html
7See example https://bugzilla.mozilla.org/show_bug.cgi?id=1593230#c4

https://firefox-source-docs.mozilla.org/devtools/tests/debugging-intermittents.html
https://firefox-source-docs.mozilla.org/devtools/tests/debugging-intermittents.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1593230#c4
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Sometimes, tests start failing more frequently, and these reports are then posted daily.
The information on Bugzilla is limited to the number of failures/frequency of failures
(overall, per-platform and channel) for intermittently failing tests. We processed all
the comments of the bugs related to the intermittent failures for all the retrieved
bugs. We found 30,957 out of 175,458 bugs (17.6 %) related to intermittent failures.

Manual Testing Data We used the TestRail API 8 to extract the test plans, test
runs and test execution result data for official Firefox versions 50 to 83. We consider
data only since November 2016, since a test case manager called MozTrap9 was used
before this date and it was replaced by TestRail because of its slow maintenance10.
Overall, we identified 2,240 unique test plans with 19,197 test runs for a total of
299,416 test executions across 4 years of testing (11/2016–11/2020). During this
time frame, the Firefox project made 36 major releases, of which 5 RR6, 17 RR6-
A and 14 RR4 releases reported their testing activity into the TestRail system. In
TestRail, all test runs provide the following information: major version number of
the release (50.0–83.0), unique identifier, summary, defect identifier (if any), creator
identifier, the test plan the test belongs to (if any), and links to the correspond-
ing test execution results. Each test execution contains the following information:
status (“pass”/“fail”/“test unclear or broken”), test case identifier, time-stamp, plat-
form (e.g., Windows), operating system (e.g., Windows XP), build identifier, creator
identifier, referenced bugs (if any), comments (if any) and the test logs (if any).
However, there was no explicit information of the individual release (alpha, beta,
release-candidate, major or minor) each test execution was related to.

Patch Uplift Analysis: Mozilla developers request for patch uplifts on Bugzilla.
Fig. 5.8 shows a fragment of an issue report history for where a developer requests for
a patch uplift. Developers use customized Bugzilla flags for their requests. These flags
have the form approval-mozilla-CHANNEL, where CHANNEL can be Aurora, Beta,
or Release. The postfix of the flag is set to a question mark (?) when a developer
asks for an uplift. The release managers will make a risk assessment to accept (set
the flag to +) or reject the uplift (set the flag to -). We rely on these flags to identify
uplifted patches. We relied on the methodology of Castelluccio et al. [22] to identify
and analyze the patches. At Mozilla, release managers usually inspect all patches
in an issue report before deciding whether they can be uplifted together. Thus, we
consider uplift characteristics at the issue level. If an issue contains multiple patches,
we bundle the patches together. We computed the number of patches that were
uplifted each month, starting from September 2014 to February 2020. We extracted
several metrics from Bugzilla reports: information about the review process (e.g., how
long a review took, how many reviewers inspected a patch), information about the
uplifting process (e.g., whether an uplift was accepted, how long before a release did
the manager decide to accept or reject an uplift request) and the developer assigned
to an issue.

8https://www.gurock.com/testrail/docs/api
9https://wiki.documentfoundation.org/MozTrap

10https://groups.google.com/g/mozilla.dev.quality/c/Sa75hV8Ywvk

https://www.gurock.com/testrail/docs/api
https://wiki.documentfoundation.org/MozTrap
https://groups.google.com/g/mozilla.dev.quality/c/Sa75hV8Ywvk
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Figure 5.8: Fragment of an issue report for where a developer re-
quests for patch uplift

To capture the characteristics of patches that were uplifted, we computed the 11
metrics defined in [22] to find the characteristics of patches in the issue reports that
include patch uplift requests. These metrics are presented in Tables 5.1, 5.2 and 5.3.
These metrics correspond to the following five dimensions:

Developer experience and participation metrics (m1 - m5): The rationale for
computing these metrics is that patches written or reviewed by experienced developers
may have a higher chance to be accepted for uplift, and may be less fault-prone. Long
comments and long review durations may indicate the complexity of an issue and
developers’ uncertainty about it, which may explain its rejection or fault-proneness.

Metric mi Description

Developer experience m1 Number of previous commits of the developer requesting the patch uplift in
the issue report.

Reviewer experience m2 Number of previous commits of the reviewer reviewing the patch in the issue
report.

Number of comments m3 Number of comments in the issue report requesting a patch uplift.

Comment words m4 Average number of words in the comments to the issue requesting a patch
uplift.

Review duration m5 Time period (in days) from a patch’s submission in an issue until its approval.

Table 5.1: Developer experience and participation metrics (m1 - m5)
for each issue report.

Uplift process metrics (m6 - m8): We computed metrics capturing the uplifting
process for the following reasons. Release managers may be more inclined to accept
patches with higher landing delta (as the more time a patch has been on the Nightly
channel, the more time Nightly users have tested it). Patches with low release delta
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are likely to be refused uplifts since patches that are developed closer to the date
of release might pose more risk (as there is less time to fix potential regressions).
Patches with low response delta may also be rejected (since developers have less time
to evaluate the risks associated with the patch). Patches with low landing delta, low
release delta, and low response delta may also lead to faults if uplifted.

Metric mi Description

Landing delta m6 Time elapsed (in days) between when the patch was applied to the Nightly
version and when the developer asked for approval of an uplift.

Release delta m7 Time elapsed (in days) between when the developer asked for approval for the
uplift and the date of the following release.

Response delta m8 Time elapsed (in days) between when the developer asked for approval for the
uplift and the date of the following release.

Table 5.2: Uplift process metrics (m6 - m8) for each issue report.

Code complexity (m9 - m11): Previous works, such as [66], have shown that com-
plex code is likely to introduce faults. We calculated code complexity metrics to
understand how uplifting decisions and their success are affected by the complexity
of the uplifted patches.

Metric mi Description

Patch size m9 Number of lines in a patch (excluding test patches).

Prior changed times m10 Number of previous commits that modified the same files that the patch is
modifying.

Test patch size m11 Number of lines in a test patch.

Table 5.3: Code complexity metrics (m9 - m11) for each issue report.

5.2.3 Statistical Methods

The quantitative analysis in this chapter will rely on a range of statistical tools. Most
of our analysis aims to compare two populations by testing if their distributions are
different. We test all statistical hypotheses for different significance levels α. We
reject a null hypothesis if p < α, and denote this with * if α = 0.05, ** if α = 0.01,
and *** if α = 0.001.
Since software engineering data often do not meet the normality assumption [77], we
select appropriate non-parametric tests that do not require this assumption [54]. Nor-
mality is tested for both populations that are compared using the Kolmogorov–Smirnov
test. For non-normal distributions we use the Wilcoxon rank sum test if the samples
are related; otherwise, we use the Mann–Whitney U test. Since we perform more
than one comparison on the same dataset, to reduce the chances of obtaining false
positive results, we use Bonferroni correction to control the family wise error rate
[32]. Concretely, we calculate the adjusted p-value, which is multiplied by the num-
ber of comparisons. Whenever we obtain statistically significant differences between
metric values, we compute the effect size using Cliff’s delta d [25, 52] and interpret
the results using [52]. In all cases where the null hypothesis is rejected, the sign of d
allows us to determine which of both distributions is higher than the other one.
The analysis of RQ1.1, reported in Section 5.3, uses the technique of survival anal-
ysis to model the expected time duration until the occurrence of a specific event of
interest with the aim to estimate the survival rate of a given population [1]. A com-
mon non-parametric statistic used to estimate survival functions is the Kaplan-Meier
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estimator [58]. To compare survival curves, we use the multivariate log-rank analysis
using non-parametric ANCOVA based on the test statistic with equal weights to test
the null hypothesis that there is no difference between the populations in the proba-
bility of an event at any time point [114]. This test is a generalization of the log-rank
test and it can deal with n>2 populations (and should be equal when n=2).
The analysis of RQ1.1 and RQ1.2 reported in Section 5.3, uses boxen plots [53] to
show the distributions of the dataset. These plots visualize different quartile values
and convey precise estimates of head and tail behavior.

5.3 Impact of Rapid Releases on Quality Assurance
Our first research goal aims to study if and how the transition to more rapid releases
impacts the software quality in terms of the number post-release bugs. Developers
have less time to stabilize their releases in rapid release models. This might result in
more post-release bugs which might affect the software quality and user experience.
Moreover, the testing phase is a vital point during the software development process,
and it might be impacted because of the less time available to test all features. Hence,
we analyze if there is a change in the number post-release bugs and testing activity
after the switch to more rapid releases. Our investigation will be guided by four
research questions:

5.3.1 RQ1.1 : How does switching to more rapid releases impact the
number of post-release bugs?

Developers seem to have less time for testing when speeding the release cycle; thus, we
expect that reported issues are likely to remain unfixed until the next release, which
in turn might expose users to more, and more serious, post-release bugs. Moreover,
we might expect that the developers now have less time to fix the same stream of
bugs. Similarly, since the next release follows hot on the heels of the current release,
bugs reported by end users for the current release might not be fixed immediately.
Hence, in this research question, we investigate the daily number of reported bugs
and the speed at which post-release bugs are fixed in the different release cycles.
We compare the number of reported and fixed post-release bugs reports between the
different release cycles groups (i.e., RR6, RR6-A and RR4). Note that we cannot
perform this comparison directly. Herraiz et al. [51] have shown that the number of
reported post-release bugs of a software system is related to the number of deploy-
ments, since a larger number of deployments increases the likelihood of users reporting
a higher number of bugs. As the number of deployments is affected by the length of
the period during which a release is used, and this usage period is directly related to
the length of the release cycle, we need to normalize the number of post-release bugs
of each release to control for the usage time. Khomh et al. [63] proposed a way to
control for this, namely by dividing the number of reported post-release bugs of each
major release by the time in days between its release date and the next major release
date. They report that it makes sense because they found that the number of crash
reports for an old release quickly drops once a new release becomes available. For
instance, if release 51.0 is released 42 days after release 50.0, we divide the number
of post-release bugs of release 51.0 by 42.
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Figure 5.9: Number of reported of post-bugs for each release. The
green vertical dashed line indicates the date of exclusion of the Aurora
channel. The red dashed line correspond to the date of switching to

the four-week release cycle (RR4).11

Reported Post-release Bugs. Fig. 5.9 shows the absolute number of post-release
bugs for major releases. We observe that there are more post-release bugs after
the removal of Aurora. Then the RR4 releases have fewer numbers of post-release
bugs than the remaining releases. However, when we normalize by the time in days
between successive releases, Fig. 5.10a shows that releases with the highest number
of post-release bugs reported per day belong to RR6 releases. Fig. 5.10b shows the
distribution of the normalized number of post-release bugs for RR6, RR6-A and RR4
releases. The median number of daily reported bugs is very similar for RR4 and
RR6. Overall, the median number of post-release bugs of RR6 releases is similar
to the number of post-release bugs for RR4 releases. We test the following null
hypotheses using the Wilcoxon rank sum test for each two-pair release cycle groups:

• H1
01 : There is no significant difference between the daily number of reported

post-release bugs of RR6 releases and RR6-A releases.

• H1
02 : There is no significant difference between the daily number of reported

post-release bugs of RR6-A releases and RR4 releases.

• H1
03 : There is no significant difference between the daily number of reported

post-release bugs of RR6 releases and RR4 releases.

Using Wilcoxon rank sum test, we cannot reject H1
01, H1

02 and H1
03. The bug reporting

activity is not different in the three release models.
11In all our figures, the green vertical dashed line indicates the date of exclusion of Aurora channel

and the red dashed line correspond to the date of switching to 4-weeks release cycle.
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Figure 5.10: Distribution (A) and Boxenplot (B) of the normalized
number of reported post-bugs per day.

Fixed Post-release Bugs. We found that when we control for the time in between
releases, there is no significant difference between the number of post-release bugs
reported per day of RR6 releases and RR4 releases. However, since a shorter release
cycle time allows less time for testing, we might expect that the developers now have
less time to fix the same stream of bugs. Similarly, since the next release follows hot
on the heels of the current release, bugs reported by end users for the current release
might not be fixed immediately. Hence, in this question, we investigate the proportion
of post-release bugs fixed and the speed at which post-release bugs are fixed in the
different release models. For each major release, we compute the following metrics:

- # Fixed Bugs: the number of post-release bugs that are closed with the status
field set to FIXED.

- Fix Time: the duration of the fixing period of a FIXED post-release bug, i.e.,
the difference between the bug creation time and the last fixing time.
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Similar to the number of reported bugs, the number of fixed bugs also depends on the
length of the release cycle. Since we are mainly interested in how many post-release
bugs are fixed relative to all reported post-release bugs, we use a proportion (i.e.,
percentage) in this case. Hence, we test the following null hypotheses to compare
the efficiency of post-release bug fixing activities of the three releases in each of the
release models (RR6, RR6-A and RR4):

• H1
04 : There is no significant difference between the proportion of fixed post-

release bugs of RR6 and RR6-A releases.

• H1
05 : There is no significant difference between the proportion of fixed post-

release bugs of RR6-A and RR4 releases.

• H1
06 : There is no significant difference between the proportion of fixed post-

release bugs of RR6 and RR4 releases.

Using Wilcoxon rank sum test we can reject H1
04 (p < 0.001), H1

05 (p < 0.01) and
H1

06 (p < 0.001) with large effect size. This confirms our observation in Fig. 5.11, a
smaller proportion of bugs is fixed when switching to a more rapid release.
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Figure 5.11: Boxenplots of the proportion of fixed post-release bugs.

For each release model, we compute bug fixing time for the releases that are related to
it. We use survival analysis on these populations to model the expected time duration
until the bug gets fixed for the last time. Fig. 5.12 shows the Kaplan-Meier survival
curves for specific releases, together with their confidence intervals, before and after
the release date. The graph reveals that there is a small difference between the fixing
time of bugs in RR6 and RR6-A. However, we observe that bugs of RR4 are fixed
faster than the bugs of RR6 and RR6-A. For example, the red dotted line reveals
that it takes around 40 days to fix 80% of all post-release bugs in RR4, while this is
more than twice as long for RR6-A (100 days) and even longer for RR6 (125 days).
To assess and compare the speed at which post-release bugs are fixed under different
release models, we test the following null hypothesis:

• H1
07 : There is no significant difference between the survival distribution of Fix

Time values for post-release bugs related to RR6, RR6-A and RR4 releases.
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We use a multivariate log-rank test log-rank test to verify the null hypothesis H1
07.

H1
07 can be rejected (p < 0.001), thus, there is a statistical difference between the bug

fixing time between different release model. Bugs of RR4 release are fixed faster than
bugs of RR6 and RR6-A. Bugs of RR6-A are fixed faster than bugs of RR6. The
fixing time is decreasing over time.
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Figure 5.12: Kaplan-Meier survival curves with 95% confidence in-
terval (indicated by the shaded areas) for fixing time of post-release

bugs for releases in each release models.

Summary: The reporting activity in the different release models is similar in
terms of number of reported bugs. Bugs are fixed significantly faster in the
more rapid release model, however, a smaller proportion of bugs is actually
fixed for them.

5.3.2 RQ1.2: How does switching to more rapid releases affect the
number of manually performed tests?

Shorter release cycle time might allow less time for developers to test the system,
QA teams could decide to reduce the amount of testing for their faster releases in
order to cope with their tight schedule. In this research question, we verify this by
investigating the amount of testing effort performed for the three release models RR6,
RR6-A and RR4 of Firefox. For each version of Firefox in our data set, we compute
the number of tests executed. The number of tests executed captures the amount of
testing performed per release. Fig. 5.13 shows that the number of executed test is
increasing over time. A linear regression analysis confirms an increasing linear trend
for the amount of testing performed per release (R2 = 0.76).
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Figure 5.13: Number of performed tests over time.

Fig. 5.14 shows the number of tests performed per release. We observe that the num-
ber of performed tests increases from release 49 to reach its highest value during the
RR6-A cycle, and then it becomes stable during the RR4 release cycle. We normal-
ized the data to get the number of performed tests per day. Fig. 5.15 shows that the
RR4 release model executes almost twice as many tests per day (median) compared
to RR6-A model i.e., RR4 releases run more tests in a shorter time frame. Also,
the releases in RR6-A model execute almost twice as many tests per day (median)
compared to RR6 models. We test the following null hypothesis to compare the total
number of test performed for each release models:

• H2
01 : There is no difference between the number of tests performed per day for

RR6 and RR6-A releases.

• H2
02 : There is no difference between the number of tests performed per day for

RR6-A and RR4 releases.

• H2
03 : There is no difference between the number of tests performed per day for

RR6 and RR4 releases.

The Wilcoxon rank sum reject H2
01 (p < 0.01), H2

02 (p < 0.001) and H2
03 (p < 0.01).

Therefore, the test confirms our observation. The effect size was large (d > 0.8) in
all cases. Based on the effect size sign, we conclude that more tests are performed in
shorter release cycles.
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Figure 5.14: Number of performed tests per release.
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Figure 5.15: Boxenplot of the number of performed tests per day.

The number of unique test cases executed captures the functional coverage of the
tests per release. Functional coverage is the degree to which the different features in
a software version are tested by a test suite. Our only measure of functional coverage
is the number of unique test cases executed (the more unique test cases are being
executed, the higher the functional coverage). We measure the number of unique test
cases executed for each major release; then we normalized it by the length of the
release cycle to compare the number of unique test cases per day executed by each
release. For this, we test the following null hypotheses to compare the number of test
cases for RR6, RR6-A and RR4 releases:

• H2
04 : There is no difference between the number of test cases executed per day

for RR6 and RR6-A releases.

• H2
05 : There is no difference between the number of test cases executed per day

for RR6-A and RR4 releases.
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• H2
06 : There is no difference between the number of test cases executed per day

for RR6 and RR4 releases.

We can reject H2
04 (p < 0.01), H2

05 (p < 0.001) and H2
06 (p < 0.01). The effect size

was large (d > 0.9) in all cases. Based on the effect size sign, we conclude that more
unique test cases are executed in shorter release cycles. Thus, the faster release cycle
has higher coverage.

Summary: The amount of test executions per day is significantly higher, with
higher functional coverage, in the more rapid releases of Mozilla Firefox.

5.3.3 RQ1.3: How does switching to more rapid releases affect the
number of testers working on a project?

Given that we observe that more tests are executed during shorter release cycles, we
want to investigate if the same number of testers is performing the work or if the
rapid releases make it harder to attract testers. Fig. 5.16 reveals that the number of
unique testers that performed the test executed for the releases is increasing in RR6
and RR6-A releases before the RR4 releases. Starting from release 66, the number of
testers appears to become stable.
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Figure 5.16: Number of testers per release.

When normalizing the number of testers by the release cycle, we found that the
number of testers per day increases over releases of RR6 and RR6-A; and it becomes
stable for RR4 (see Fig. 5.17a). Finally, Fig. 5.17b shows the distribution of the
number of individuals per day testing the RR6, RR6-A and RR4 releases.
We observe that RR6 releases have a median of 3 testers per day compared to 6.5
testers per day for RR-A releases and 12 testers per day for RR4. We test the following
null hypotheses to compare the number of testers for RR6, RR6-A and RR4 releases:

• H3
01 : There is no difference between the number of testers per day for RR6 and

RR6-A releases.

• H3
02 : There is no difference between the number of testers per day for RR6-A

and RR4 releases.

• H3
03 : There is no difference between the number of testers per day for RR6 and

RR4 releases.
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The Wilcoxon rank-sum test yields a statistically significant result, i.e., we can reject
H3

01 (p < 0.05), H3
02 (p < 0.001) and H3

03 (p < 0.01) with large effect size. Although
the number of tests executed is higher in more rapid releases. RQ1.2 has revealed
that the testers’ workload did not change since the tests are performed by a higher
number of testers. These results show that the average workload per individual tester
did not increase with the switch to more rapid releases.
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Figure 5.17: Distribution (A) and Boxenplot (B) of the number of
testers per day

Summary: After the switch of Mozilla Firefox to more rapid releases, more
testers are contributing to the testing activity.

5.3.4 RQ1.4 : How does the frequency of intermittent test failures
change after switching to more rapid releases?

Good test writing principles could avoid many intermittent test failures. Mozilla has a
problem with intermittent failures that occur at an ever-increasing rate. One possible
solution for such frequently failing tests is to disable them, but this means reducing
the test coverage. Intermittent failures can be an indicator of testing quality. We
measured the frequency of intermittent failures over time and if this changes with
a shorter release cycle. Fig. 5.18 shows the number of intermittent failures over
time in the Aurora, Beta and Release channel. We observe a temporary increase in
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the intermittent failures in the Beta channel after the removal of Aurora. However,
everything goes back to its previous range after 4 months. We did not observe any
change in the Release channel. The increase in the intermittent failures in Beta can be
described as a transitional period as they lost a stability channel. Also, this increase
of intermittent in Beta can be explained by that bugs in Aurora have been carried
over to Beta.
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Figure 5.18: Number of intermittent test failures per channel.

Summary: After the switch of Mozilla Firefox to more rapid releases, we did
not find any permanent change in the intermittent failures.

5.4 Impact of Rapid Releases on Patch Uplifts

5.4.1 RQ2.1: How does the number of accepted and rejected uplifts
evolve over time?

To study the patch uplift process, we need to consider a period during which the
practice was well established at Mozilla. Castelluccio et al. [22] found that starting
from September 2014, uplift practice was well established at Mozilla, so we decided to
limit our dataset to only bug reports after September 2014. Between September 2014
and August 2016, we study in total 33,664 issue reports, in which there are 15,946
uplift requests: 1,019 to Release, 9,035 to Beta, and 5,892 to Aurora. Fig. 5.19
shows the distribution of the number of uplifts in three of Firefox's release channels
during this period, and each time point corresponds to a period of one month. We
observe a temporary increase in the number of accepted patches after the removal
of Aurora in the Beta channel while the number of accepted patches in the Release
channel maintains its stability. We find a short impact of the removal of Aurora on
the number of accepted uplifts on the Beta channel. In general, we did not observe
any change in the number of accepted patches when moving to a more rapid release
mode.
Fig. 5.20 shows the distribution of the number of rejected uplifts in three of Firefox's
release channels during this period and each time point corresponds to a period of
one month. Fig. 5.20 does not show a clear trend, except that there are fewer patch
uplifts rejected after the removal of the Aurora in the Beta channel.
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Figure 5.19: Number of uplifts during each month on each channel.
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Figure 5.20: Number of uplifts rejected over time

Using the metrics from Table 5.1, 5.2 and 5.3, we statistically compare 11 numerical
characteristics of patch uplift candidates that was accepted on each channel in the
different release models. For each of the 11 metrics mi, we formulated the following
null hypothesis:

H5
i : There is no difference between the values of mi for patch uplift candidates

that were accepted in p1 and p2, where i ∈ {1, ..., 11} and (p1, p2) ∈ {(RR6,
RR6-A),(RR6-A,RR4),(RR6, RR4)}

Table 5.4 summarizes differences between the characteristics of patches that were
accepted for an uplift in different release models. We show the median value of
accepted uplifts for each metric, as well as the p-value of the Mann Whitney U test
and the effect size. We report the metrics for which there is a statistically significant
difference between accepted on different release model patch uplift candidates. We
only show the Beta and Release channels as the Aurora channel was removed. We
summarize the different results among the channels as follows:
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(p1,p2) Channel Metric p1 p2 p-value Effect size

(RR6,RR6-A)

Beta

Test churn 0 0 2.42e-03 negligible

Prior changes (m10) 193.0 297.0 2.21e-10 negligible

# of comments (m3) 23.0 22.0 1.90e-04 negligible

Developer exp. (m1) 12.0 17.5 1.92e-07 negligible

Reviewer exp. (m2) 0.00e+00 2.0 3.28e-04 negligible

Review duration (m5) 4.93 3.14 2.97e-11 negligible

Comment words (m4) 2.33 0 7.39e-08 negligible

Release
# of comments (m3) 35.5 27.0 0.03 small

Developer exp. (m1) 10.0 19.0 4.14e-03 small

Review duration (m5) 3.73 1.21 1.02e-03 small

(RR6-A, RR4) Beta

Test churn (m11) 0 35.0 2.74e-04 medium

Developer exp. (m1) 17.5 74.0 0.02 medium

Review duration (m5) 3.14 -1.0 2.51e-10 large

Comment words (m4) 0 0 0.04 small

(RR6,RR4) Beta

Test churn (m11) 0 35.0 2.78e-06 medium

Prior changes (m10) 193.0 478.0 0.05 small

Developer exp. (m1) 12.0 74.0 1.43e-03 medium

Review duration (m5) 4.93 -1.0 1.18e-13 large

Comment words (m4) 2.33 0 2.72e-03 medium

Table 5.4: Accepted patch uplift candidates

We observe only a small difference in the developer’s experience and participation met-
rics in terms of developers experience, review duration and the number of comments
between RR6 and RR6-A only. Patches in RR4 are submitted by more experienced
developers with a shorter review duration.
For Beta channel: Accepted patches in RR4 tend to be submitted by more ex-
perienced developers than in RR6-A; however, the median review duration in RR4
is lower. Uplifted patches in RR4 tend to have more complex code in terms of test
patches and prior changes than in RR6-A. We found a similar difference between these
metrics between the accepted patches in RR4 and RR6. Although accepted patches
in RR6 and RR-A have significant differences on some other metrics, the magnitude
of these differences is negligible.

Contrary to what we expect, patches do not take longer to be accepted after switching
to more rapid releases (no statistical difference in the response delta). Also, it seems
that after the switch to more rapid releases, the patches that are being accepted are
frequently submitted by developers with high experience. The reviewing duration is
becoming shorter when moving to more rapid releases.

Summary: After the switch of Mozilla Firefox to more rapid releases, the ac-
cepted patches have a shorted review duration and are being submitted by
developers with high experience.
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5.4.2 RQ2.2 : How effective are the patch uplifts and how does this
change with more rapid releases?

As we found in RQ2.1, the review duration of patches is becoming shorter when
moving to use rapid releases. We want to check if this impacts the effectiveness of
the patch uplift practice by studying if the uplift caused regression(s) later in the
code. To do so, we used the SZZ algorithm [121] to identify patches (these patches
could be fault-fixing patches or patches related to features or improvements) that
introduced faults in the system. First, we used Fischer et al.’s heuristics [40] to map
each studied issue to its corresponding patch(es) (i.e., commits). This heuristic uses
regular expressions to look for issue IDs in commit messages. Mercurial is a source-
code management tool used by Firefox to keep track of changes to the source code.
For each fault-related issue in our dataset, we used the following Mercurial command
to extract the list of files that were changed to fix the issue:

hg log –template {commit},{file_mods},{file_dels}

In this step, we only considered modified and deleted lines, since added lines could not
have been changed by prior commits. We denote an issue’s fault-fixing file by Ffix.
For each changed file ffix ∈ Ffix, we used Mercurial’s annotate command as follow
to check which prior commits changed the lines that were modified by the fault-fixing
commits. The SZZ algorithm assumes that the fault is located in these lines.

hg annotate commit^ -r f_fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates. Then we checked if the
uplift commits are in the fault-inducing candidates to identify uplifted patches that
introduced a regression in the system. We studied the evolution of the number of fault-
inducing uplifts. Fig. 5.21 shows that the high number of regression inducing patches
are the patches requested on Aurora. After the removal of Aurora, the number of
regression is lower in the Beta channel, and it fluctuates between 3 and 18 regressions.
The number of regressions is less after the 4-weeks switch, and the short duration
we study after this switch can explain this. In this question, we did not find any
observable difference in the number of regressions over time. This makes sense as in
RQ2.1 we did not find any difference in the characteristics of accepted patches in the
different release models for the Release channel.
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Figure 5.21: Number of bugs caused by accepted uplifts on each
channel.

Summary: Even though patch requests take less time to review in the more rapid
releases, with reviewers of similar experience as in the slower release cycle, the
number of regressions caused by patch uplifts decreased slightly.

5.5 Discussion
Khomh et al. [63, 64] studied the effect of the transition to a rapid release cycle on
the bug handling activity in Mozilla Firefox. Considering a period of two years of
bug activity of the bug reports linked to crashes, they found this transition to lead
to shorter bug fixing times. However, on the downside, fewer bugs were being fixed
in a timely fashion. Different from their study, we analyzed all types of bugs in the
Firefox project. Our results for the more recent Firefox switch to a 4-week release
cycle partially align with these findings, as we also observed fewer bugs are fixed, and
bugs are fixed faster after the transition.
Mäntylä et al. [69, 80] performed a case study on Firefox and analyzed the results
of six years (2006-2012) of test execution runs. They found that the migration to
the rapid release model has reduced the community participation in manual testing
and made it harder to develop a larger testing community. To maintain with rapid
releases, they had to increase the number of specialized testing resources through
contractors. However, in our study, we found an increase in the test execution with
more individuals contributing to the testing activity after the switch to more rapid
releases. Adopters of rapid releases should invest more in test automation [103]. Our
analysis did not study the automated test; however, we found an increase in manual
testing. One possible hypothesis for this can be explained by the fact that Firefox
switched to a new test case management tool. TestRail replaced Moztrap because
Moztrap maintenance is slow. The instability of the testing environment can hinder
teams. TestRail includes integration with Bugzilla and Github and can automatically
file or comment on bugs. It is very detailed and well separates “runs" from “plans".
These characteristics might be the reason to attract more testers or execute more
tests. Further investigation is required to find if these changes were because of the
testing tool. Changes in the software tools might impact the software development
activity.
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5.6 Threats to Validity
Following the structure recommended by [135], we discuss the threats that may have
affected the validity of our findings and how we have tried to mitigate them.
Construct validity concerns the relation between the theory behind the experiment
and the observed findings. In our case study, releases have varying lengths; thus, it is
not possible to compare metrics in different releases. To enable comparison between
releases of varying lengths, we normalized several metrics, such as the number of
post-release bugs, by the length of the release cycle.
Threats to internal validity concern our selection of subject systems, tools, and anal-
ysis method. A first threat concerns the TestRail database because it only represents
a part of the Firefox testing process, which is aimed at manual testing of risky regres-
sion test cases. Since we did not study the automated test infrastructure, we cannot
provide a complete picture of the Firefox testing process.
A second threat stems from the fact that we ignored bugs not having a Version
field, as well as bugs having a Version field that did not correspond to any of the
considered releases. We excluded such bugs as it was not possible to deal with such
cases automatically.
Threats to external validity concern whether the results and conclusions can be gen-
eralized outside the scope of this study. Our study is limited to Mozilla Firefox, so
we cannot generalize our results. While the followed methodology is applicable to
other systems, the obtained findings are not generalizable. The analysis and findings
are likely to differ for smaller projects with different versioning, release policies and
evolutionary dynamics. Therefore, further studies on different systems are desirable.
However, there are few open sources, large and mature systems that switched to rapid
releases that can be studied.
Threats to conclusion validity concern the relation between the treatment and the
outcome. We reported findings based on statistical significance. We paid attention
not to violate assumptions of the constructed statistical models.
We mitigate threats to reliability validity by providing a publicly available replication
package [61] and a detailed description of the followed methodology in Section 5.2.

5.7 Conclusion
Rapid releases are becoming very popular in software projects due to several reasons,
such as faster time-to-market, faster bug fixes and frequent user feedback. Keeping
the high quality in this fast-paced environment requires a lot of testing before release.
In this chapter, we revisited the impact of rapid releases on the software development
process in Firefox. We analyze Mozilla Firefox’s evolution during the period in which
it shifted from a 6-weeks release model to a 4-weeks model to understand potential
changes in its bug handling process. First, we analyzed the bug handling process in
Firefox. We found that the number of daily reported post-release bugs in the different
release models is similar. Bugs are fixed significantly faster in the more rapid release
model, however, a smaller proportion of bugs is actually fixed for them.
Second, we studied the effect of switching to more rapid releases on Firefox’ system
testing. By analyzing data from the TestRail testing tool. We found that more test
is executed per day in the more rapid releases with higher functional coverage. Also,
more testers are contributing to the testing activity after the switch to more rapid
releases. This shows a positive impact of the rapid release on the testing activity.
Third, we studied to which extent the patch uplifting practice is affected by switching
to more rapid release cycles as the latter may impact the uplifts’ acceptance rate and
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effectiveness. We found that release managers tend to accept patches submitted by
developers with high experience under more rapid release models. Also, the accepted
patches in more rapid releases have a shorter review duration; however, not a different
response delta. An investigation should be done to understand this delay in response
to accept a patch. Even though patch requests are reviewed for a shorter time in the
more rapid releases with reviewers of similar experience compared to the slower one,
the number of regressions caused by patch uplifts decreased slightly.
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Chapter 6
Conclusion

At the beginning of this dissertation, we presented the research context, re-
search statement and research goals of the dissertation. The main goal of this thesis is
to provide a deeper understanding of how rapid releases policies impact different ac-
tivities of the development process of large and mature open-source software projects.
In this chapter, we summarize the contributions of this thesis and sum up the other
limitations of our research. Then we suggest extensions to this research. Finally, we
present future research opportunities opened by the contributions of this thesis.
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6.1 Contributions

Thesis statement: By empirically studying rapid releases in large and mature
open-source software projects, we provide valuable insights in the advantages
and disadvantages of the adoption of rapid releases, and the release manage-
ment plans and tools that are needed for a successful adoption.

The overarching goal of this thesis is to better understand the impact of rapid releases
on the software development process to provide valuable insights in the advantages
and disadvantages of the adoption of rapid releases and the release management plans
and tools that are needed for successful adoption. To do so, we have studied two large
open source projects, Eclipse and Firefox, that adopted rapid releases. To perform
our studies, we leverage data recorded in Issue Tracking Systems, Version Control
Systems and testing tools; and we survey team members of the Eclipse project.

In Chapter 4, we studied the switch of Eclipse core projects from a yearly release cycle
to a quarterly one and its impact on the bug handling process. We carried out a survey
with Eclipse maintainers. We found that the transition has allowed the Eclipse Core
projects to have a more stable bug handling process as some observed differences in
triaging and fixing times and rates before and after annual releases are no longer
present for the rapid releases. We apply process mining to analyze the bug report
history to discover Eclipse’s runtime bug handling process and inconsistencies with
the Bugzilla bug handling process. From our analysis, we believe that the transition
to a more rapid release cycle has been beneficial to Eclipse in terms of bug handling
activity. This was confirmed by feedback from five consulted Eclipse maintainers.
The consulted maintainers indicated that rapid releases helped to reduce stress and
increase community growth. Moreover, we found that feature freeze periods allow
to spend more focused effort fixing bugs for the upcoming releases, especially in the
presence of rapid releases, so it needs to be preserved.
As for the disadvantages of rapid releases, consulted maintainers mentioned that beta
testing on a release decreased due to fewer milestone releases per cycle and lack of
time to contribute larger features. They also found it harder to keep development
environments up-to-date and expressed the need to reorder tasks so that more release
engineering work can be automated. They highlighted the importance of good man-
agement of their platform, as well as the fact that instability and regressions might
occur.
According to our survey results, switching to more rapid releases requires careful plan-
ning and tracking the transition and being aware of the possible pitfalls. Adopters
of rapid releases should test and fix bugs as soon and as frequently as possible as
recommended by consulted Eclipse maintainers. They should raise awareness to their
developer community, invest in the most appropriate tooling and support processes,
and automate as much as possible. Our qualitative analysis highlighted the impor-
tance of a good testing plan as part of the preparation for a more rapid release cycle.
Adopters of rapid releases should carry out tests all along the release development
cycle, not only during the feature freeze period. They should also heavily invest in ad-
equate automated tooling and support processes, especially for continuous integration
and deployment.
In Chapter 5, we revisited the impact of rapid releases on the software development
process in Mozilla Firefox. Different from previous studies, we analyze the evolution
of Firefox during the period in which it shifted from a 6-weeks release model to a 4-
weeks model. We found that daily reported post-release bugs activity in the different
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release models is similar. Bugs are fixed significantly faster in the more rapid release
model, however, a smaller proportion of bugs is actually fixed. Moreover, we found
an increase in the testing activity per day in the more rapid releases with higher
functional coverage. Also, more testers are contributing to the testing activity after
the switch to more rapid releases. This shows a positive impact of the rapid release
on the testing activity.
Overall, we found empirical evidence of the impact of the rapid releases policy on
different activities in the software development process. Software projects should
watch all the aspects of the software development process to identify bottlenecks that
prevent them from being more agile. They could use analytics to measure if the
targeted improvements have been reached after changing the policy and highlight the
unexpected trends to place appropriate mitigations. In addition, researchers need to
be aware of all the changes in the release policy process when carrying out empirical
studies because their analysis result will be impacted.
To be able to reproduce our analysis in Chapters 4 and 5, we have provided replication
packages in [61, 62].

6.2 Limitations
In Chapters 4 and 5, we have presented the limitations related to the empirical
analysis we carried out. We can generalize this to the following four main limitations
of the research that we have carried out:

• One of the main limitations of this thesis is the potential lack of generalization
of the results. Indeed, the empirical studies performed in Chapter 4 and 5 were
only focused on Eclipse and Firefox, two large, long lived and mature open
source projects. To assess whether our findings can be generalized, there is a
need to study other software projects.

• We have applied software analytics to extract insights from a limited set of data
sources containing historical information about large-scale OSS development:
bug repositories, version control systems, and test suites. There are many other
possible sources of development artifacts that we did not consider to support
our analysis. These include mailing lists, configuration management systems,
code review tools, etc. Analyzing these artifacts can help determine if there
have been any other important changes, besides the rapid releases, that may
have affected the effectiveness of software development related activities.

• In our analyses, we cannot be sure that the switch to a more rapid release model
caused the changes we observed in the non-rapid and rapid release metrics. Since
an observational empirical case study is not a controlled experiment, we can-
not interpret our statistical findings in isolation. There may have been hidden
factors that have caused or influenced the observed differences. For instance,
Mäntylä et al. [80] analyzed some potential confounding factors and present
a theoretical model explaining the relationship between the release model, re-
lease length and test effort. Therefore, additional studies are needed before
affirmative conclusions on the effects of a release model on testing effort can be
made.

• We restricted our empirical studies to the set of bugs and tests with known
specified versions. Data collection challenges that are beyond the scope of this
thesis need to be overcome first to allow a complete analysis of the artifacts
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of a software development process of the software project. In particular, it is
difficult to identify the exact software version that is being targeted by a given
bug or test.

• Software tools have played a critical role in the software development process
by improving software quality and productivity. The choice of tools and their
usage have a strong impact on the productivity of developers and the efficiency
of the development process. For instance, the choice of the bug tracker can have
an impact on the bug handling process. Both case studies in our case studies
used Bugzilla as a bug tracker. Zimmermann et Casanueva [142] studied the
impact of switching bug trackers from Bugzilla to GitHub and found that switch
to induce an increase in bug reporting, particularly from principal developers
themselves, and more generally an increased engagement with the bug tracking
platform. This shows that the choice of bug tracker impacts the bug handling
process. Thus, our results might not be generalizable to projects using a dif-
ferent bug tracking tool. The impact of important changes in the environment
has rarely been studied, whether it is the bug tracking tool or a policy, etc.
Therefore, it is important to study the combined impact of all the used tools,
policies, and changes over time to understand and improve the evolution of the
software development process.

6.3 Possible Research Extensions
In Chapter 4 and Chapter 5, we studied the impact of the rapid release on bug

handling activity and testing activity. However, our study did not cover the resources
available for each release and its evolution over time. For instance, the number of
contributors for each release and even for each product. The latter can impact the
productivity of the team and thus the number of resolved bugs, for example. Also,
the availability of developers who are most suitable for fixing bugs or performing
tests, etc. For instance, if a key developer was on vacation during a release, that
will influence the scope that is scheduled for that release. Moreover, we need to
study the size of the features planned for a release and the complexity of the features
implemented for a release. The size and complexity of the implemented features
might impact the different activities in the software development process. Analyzing
version control repositories for code churn and vulnerabilities is common in today’s
software engineering research. Code churn has been used in several prediction models
and often appears among the stronger correlations with faults and vulnerabilities [83].
We intuitively expect that the more complex the feature is, the harder it is to test
it and thus to find or fix bugs related to this feature. If more features are being
implemented in a release, we expect to see more bugs and a higher bug resolution
workload, possibly resulting in a longer bug fixing time.

A possible extension to our work is to study how the rapid releases have impacted
other components in the ecosystem. In a large complex software system, components
and plugins most likely get outdated at a certain point [139] and with the emergence
of rapid releases, this might lead to components to tend to be outdated longer and
more. For instance, Eclipse core follows the rapid release model; however, plugins
do not follow the same regular release policy. It would be useful to study how the
adoption of rapid release impacts the plugins developed for Eclipse and if this result
in its plugins to become more out of date. Also, it is useful to study how quickly
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technical debt will ramp-up when release cycles are so short and can end-users keep
up with the faster delivered new releases.

6.4 Future Work
The studies that were performed in the context of this thesis pave the way for several
future work possibilities. We outline avenues of future research below:

Expand the case studies. As future work on the selected case studies, we propose
to compare the effect of changes in release policy between the Eclipse Core and other
Eclipse sub-projects and plugins. One could compare the findings for Eclipse with
other competing projects, such as Netbeans, that is of the same nature and share
similar functionalities and maturity. Similarly, one could compare Firefox with the
open-source Chrome browser. Also, surveying and interviewing members of large and
diverse open-source communities would help to get deeper insights on the impact of
rapid releases on their activities.

Replication. It would be useful to replicate the empirical studies performed in this
thesis on other projects of different scale, type and functionalities etc. For instance, it
is important to compare large software projects like Eclipse and Firefox with younger
and less mature OSS projects with less established policies and practices. This will
hopefully allow for reaching more generalizable conclusions about the impact of rapid
releases. Our research was validated by conducting empirical studies on open-source
systems. Conducting case studies of commercial systems could help understand the
difference in the impact of rapid releases between open and closed source systems.
However, the study of the software development process in closed-source systems
depends on the available data and repositories. Also, the study requires a high level
of understanding of the process and how it is recorded by tools.

Technical aspects of collaborative software development. More research is
needed to better understand the impact of changes in the release cycle on other aspects
of collaborative software development. For example, how do rapid releases impact the
presence of technical debt [128], social debt [125], automated testing and quality, and
so on? Moreover, it is necessary to study the technology that was being used by the
project. For instance, the presence of automatic bug assignment tools can influence
the efficiency of the bug handling activity under the rapid release model. A deeper
understanding of the impact of rapid releases on these aspects will allow software
organizations and developer communities to make informed decisions on whether and
when to switch to a rapid release model safely.

Social aspects of collaborative software development. As a complement to
the current research that focused mostly on technical aspects, it would be very useful
to conduct action research to investigate the social interaction of software development
teams. For example, interesting future research would be to study the impact of rapid
release policies on the involvement, productivity and collaboration of developers.
There are challenges in this analysis, such as the unavailability and inaccessibility
of data (e.g., privacy issues). Another possible challenge in such an analysis is that
the historical data of the project’s evolution is distributed over a multitude of data
sources, captured by different tools [46]. The same person often uses different ac-
counts in different tools to develop and evolve the ecosystem (e.g., bug trackers, code
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reviewing systems, continuous integration tools, version control systems, etc.). There
are no strict rules in many open source ecosystems that describe how the account
identities must be created [46]. Thus, the merging of identities based on different
names or logins and that belong to the same person is a non-trivial process. This
process must be carried out to better understand the behaviour of the actual contrib-
utors involved in a software project as it can involve many contributors. Moreover,
an important issue is preserving privacy as software ecosystem data typically contains
information about contributors involved in development and maintenance [85].

Tooling In our work, we extracted information about several aspects of the soft-
ware development process and the impact of the rapid release policy on it. It would
be useful to continue to investigate how such analytics can be used to support bet-
ter decision making [20]. In particular, we can investigate the ability of predictive
analytics to predict future trends and patterns. For instance, we can develop a pre-
dictive model of community contributions on the collaborative development tools,
recommending the best “next action” for a developer to become more productive in
completing tasks such as bug fixing, feature prioritization and testing. This would
make the activities more effective with the rapid release policy.
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Appendix A
Online Form

Impact of quarterly release cycle on
Eclipse Core

This survey is jointly conducted by the University of Lille (France) and the Uni-
versity of Mons (Belgium) with the goal to understand the evolution of the bug
handling process in large open source ecosystems such as Eclipse. The principal
contact person for this study is Zeinab Abou Khalil, PhD researcher (supervised by
Prof. Tom Mens and Prof. Laurence Duchien). She can be reached by email at
zeinab.aboukhalil@umons.ac.be
There are 19 questions in this survey. We estimate that it will take up to 20 minutes
of your time to complete the survey. Thanks in advance for participating!

A.1 Pre-requisites

A.1.1 By checking this box, you give your explicit consent to allow us to use your
responses for research purposes only. All data will be treated anonymously.
The survey results will not be used in any way for commercial purposes.*

� I agree

A.1.2 Are you/or have you been involved in Eclipse Core?*

◦ Yes

◦ No

A.2 Demographics

A.2.1 For how many years have you been actively contributing to Eclipse Core?*

◦ less than 1 year

◦ 1 year

◦ 2 years
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◦ 3 years

◦ 4 years

◦ 5 year or more

A.2.2 What is/are your current role(s) within Eclipse Core?*

A.2.3 To which Eclipse Core project(s) are you/have been an active contributor?*

� Platform

� JDT

� PDE

� e4

� Incubator

� Equinox

other:

A.3 Transition to quarterly release cycle

Since the 2018-09 release (Eclipse 4.9), the cadence changed from one annual
main release plus 3 update/service releases to a quarterly (13-week) release
cycle.

A.3.1 How beneficial did you consider the transition to a quarterly release cycle?*

◦ Extremely beneficial

◦ Very beneficial

◦ Somewhat beneficial

◦ Not so beneficial

◦ Not at all beneficial

A.3.2 What are the most important advantages you experienced after the transi-
tion to a quarterly release cycle?*
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A.3.3 What are the most important disadvantages you experienced after the tran-
sition to a quarterly release cycle?*

A.3.4 Did you face any difficulties during Eclipse’s transition from a yearly to a
quarterly release cycle? If yes, which one(s)?*

A.3.5 How did the Eclipse project(s) you were involved in prepare for the transi-
tion?*

A.4 Please provide your opinion on the following statements for
the *annual* Eclipse releases.

(i.e., until Eclipse 4.8)

Strongly
Agree Agree

Neither
agree
nor

disagree

Disagree Strongly
disgree

No
answer

Bugs are prioritized
according to their severity

Pre-release bugs are
prioritized over the post-
release bugs

A.5 Please provide your opinion on the following statements for
the *quarterly* Eclipse releases.

(i.e., starting from Eclipse 4.9)
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Strongly
Agree Agree

Neither
agree
nor

disagree

Disagree Strongly
disgree

No
answer

Bugs are prioritized
according to their severity

Pre-release bugs are
prioritized over the post-
release bugs

Bugs are fixed faster than in
the annual releases

A.6 Based on your experience

A.6.1 During the bug fixing process, there are typically two ways to resolve a bug:
(1) A reported bug is explicitly assigned to someone before it gets resolved;
(2) A reported bug gets resolved without explicit assignment to someone.
Which of these ways are used in the Eclipse project(s) you are involved in
and why?*

A.6.2 Do you think that 13 weeks is an adequate duration between releases, or
should it be adapted? Why?*

A.6.3 Do you think the community needs more contributors to the bug fixing
process because of the transition to quarterly releases?*

◦ Yes

◦ No

Make a comment on your choice here:

A.6.4 After the transition to quarterly releases, do you think there is more pressure
on developers in bug fixing?*

◦ Yes

◦ No

Make a comment on your choice here:



Appendix A. Online Form 99

A.6.5 Besides the transition to a more rapid release cycle, have there been any
other important changes in the Eclipse release process and associated tool-
ing that may have affected the effectiveness and effectivity of software devel-
opment related activities? If yes, which ones and what was their intended
goal?

A.6.6 In general, do you think it is beneficial for software projects to adopt a rapid
release cycle? For which reasons?*

A.6.7 According to your personal opinion, is it preferable to have release cycles
with fixed or with variable time intervals? Why?*

A.6.8 Do you have any advice for the new/future adopters of rapid releases?

A.6.9 Please enter your email if you would like to be informed about the results
of our survey. Your information will be treated anonymously and will only
be used for this purpose.



100

Bibliography

[1] Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history
analysis: a process point of view. Springer Science & Business Media, 2008.
doi: 10.1007/978-0-387-68560-1.

[2] Zeinab Abou Khalil et al. “A longitudinal analysis of bug handling across
Eclipse releases”. In: 2019 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE. 2019, pp. 1–12. doi: 10.1109/ICSME.
2019.00010.

[3] Zeinab Abou Khalil et al. “On the impact of release policies on bug handling
activity: A case study of Eclipse”. In: Journal of Systems and Software 173
(2021), p. 110882. doi: 10.1016/j.jss.2020.110882.

[4] Bram Adams and Shane McIntosh. “Modern release engineering in a nutshell–
why researchers should care”. In: 2016 IEEE 23rd international conference on
software analysis, evolution, and reengineering (SANER). Vol. 5. IEEE. 2016,
pp. 78–90. doi: 10.1109/SANER.2016.108.

[5] Devdatta Akhawe and Adrienne Porter Felt. “Alice in warningland: A large-
scale field study of browser security warning effectiveness”. In: 22nd USENIX
Security Symposium (USENIX Security 13). 2013, pp. 257–272.

[6] Wajdi Aljedaani and Yasir Javed. “Bug reports evolution in open source sys-
tems”. In: 5th International Symposium on Data Mining Applications. Springer.
2018, pp. 63–73. doi: 10.1007/978-3-319-78753-4_6.

[7] John Anvik. “Automating bug report assignment”. In: (2006), pp. 937–940.
doi: 10.1145/1134285.1134457.

[8] John Anvik, Lyndon Hiew, and Gail C Murphy. “Who should fix this bug?”
In: Proceedings of the 28th international conference on Software engineering.
ACM. 2006, pp. 361–370. doi: 10.1145/1134285.1134336.

[9] Dimitrios Athanasiou et al. “Test code quality and its relation to issue handling
performance”. In: IEEE Transactions on Software Engineering 40.11 (2014),
pp. 1100–1125. doi: 10.1109/TSE.2014.2342227.

[10] Boris Baldassari. “Mining software engineering data for useful knowledge”.
PhD thesis. 2014.

[11] Mikaël Barbero. Simultaneous release brainstorming. Feb. 2018. url: https:
//www.eclipse.org/lists/eclipse.org-planning-council/msg02927.
html.

https://doi.org/10.1007/978-0-387-68560-1
https://doi.org/10.1109/ICSME.2019.00010
https://doi.org/10.1109/ICSME.2019.00010
https://doi.org/10.1016/j.jss.2020.110882
https://doi.org/10.1109/SANER.2016.108
https://doi.org/10.1007/978-3-319-78753-4_6
https://doi.org/10.1145/1134285.1134457
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1109/TSE.2014.2342227
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html


Bibliography 101

[12] Olga Baysal, Ian Davis, and Michael W Godfrey. “A tale of two browsers”. In:
Proceedings of the 8th Working Conference on Mining Software Repositories.
2011, pp. 238–241. doi: 10.1145/1985441.1985481.

[13] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004. isbn: 0321278658.

[14] Kent Beck et al. “Manifesto for agile software development”. In: (2001).
[15] Becta. Release Management. https://www.hci-itil.com/ITIL_v3/docs/

fits_release.pdf. 2004.
[16] Andrew Begel and Nachiappan Nagappan. “Usage and perceptions of agile

software development in an industrial context: An exploratory study”. In: First
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2007). IEEE. 2007, pp. 255–264. doi: 10.1109/ESEM.2007.12.

[17] J Martin Bland and Douglas G Altman. “The logrank test”. In: Bmj 328.7447
(2004), p. 1073. doi: 0.1136/bmj.328.7447.1073.

[18] Jan Bosch, ed. Continuous Software Engineering. Springer, 2014. isbn: 978-3-
319-36470-4. doi: 10.1007/978-3-319-11283-1.

[19] Vid Bregar. What is the difference between canary, beta, rc and stable re-
leases in android studio? https://android.jlelse.eu/what- is- the-
difference-between-canary-beta-rc-and-stable-releases-in-the-
android-studio-bbbb77e7c3cf. 2017.

[20] Raymond PL Buse and Thomas Zimmermann. “Analytics for software devel-
opment”. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research. 2010, pp. 77–80.

[21] John Businge, Alexander Serebrenik, and Mark van den Brand. “Survival of
Eclipse third-party plug-ins”. In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE. 2012, pp. 368–377. doi: 10.1109/
ICSM.2012.6405295.

[22] Marco Castelluccio, Le An, and Foutse Khomh. “An empirical study of patch
uplift in rapid release development pipelines”. In: Empirical Software Engi-
neering 24.5 (2019), pp. 3008–3044. doi: 10.1007/s10664-018-9665-y.

[23] Marcelo Cataldo et al. “Identification of coordination requirements: implica-
tions for the Design of collaboration and awareness tools”. In: Proceedings of
the 2006 20th anniversary conference on Computer supported cooperative work.
2006, pp. 353–362. doi: 10.1145/1180875.1180929.

[24] Sandy Clark et al. “Moving targets: Security and rapid-release in Firefox”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2014, pp. 1256–1266. doi: 10.1145/2660267.2660320.

[25] Norman Cliff. “Dominance statistics: Ordinal analyses to answer ordinal ques-
tions”. In: Psychological Bulletin 114.3 (Nov. 1993), pp. 4994–509. doi: 10.
1037/0033-2909.114.3.494.

[26] MDN contributors. Avoiding intermittent test failures. https://developer.
mozilla.org/en-US/docs/Mozilla/QA/Avoiding_intermittent_oranges.
Oct. 2019.

[27] Daniel Alencar da Costa et al. “The impact of rapid release cycles on the inte-
gration delay of fixed issues”. In: Empirical Software Engineering 23.2 (2018),
pp. 835–904. doi: 10.1007/s10664-017-9548-7.

https://doi.org/10.1145/1985441.1985481
https://www.hci-itil.com/ITIL_v3/docs/fits_release.pdf
https://www.hci-itil.com/ITIL_v3/docs/fits_release.pdf
https://doi.org/10.1109/ESEM.2007.12
https://doi.org/0.1136/bmj.328.7447.1073
https://doi.org/10.1007/978-3-319-11283-1
https://android.jlelse.eu/what-is-the-difference-between-canary-beta-rc-and-stable-releases-in-the-android-studio-bbbb77e7c3cf
https://android.jlelse.eu/what-is-the-difference-between-canary-beta-rc-and-stable-releases-in-the-android-studio-bbbb77e7c3cf
https://android.jlelse.eu/what-is-the-difference-between-canary-beta-rc-and-stable-releases-in-the-android-studio-bbbb77e7c3cf
https://doi.org/10.1109/ICSM.2012.6405295
https://doi.org/10.1109/ICSM.2012.6405295
https://doi.org/10.1007/s10664-018-9665-y
https://doi.org/10.1145/1180875.1180929
https://doi.org/10.1145/2660267.2660320
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1037/0033-2909.114.3.494
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Avoiding_intermittent_oranges
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Avoiding_intermittent_oranges
https://doi.org/10.1007/s10664-017-9548-7


Bibliography 102

[28] Daniel Alencar da Costa et al. “The impact of switching to a rapid release
cycle on the integration delay of addressed issues: an empirical study of the
Mozilla Firefox project”. In: Proceedings of the 13th International Conference
on Mining Software Repositories. 2016, pp. 374–385. doi: 10.1145/2901739.
2901764.

[29] John w Creswell. Research design: Qualitative, quantitative, and mixed meth-
ods approaches. SAGE Publications, Incorporated, 2009.

[30] Marco D’Ambros. “On the evolution of source code and software defects”.
PhD thesis. Università della Svizzera italiana, 2010.

[31] Alexandre Decan, Tom Mens, and Eleni Constantinou. “On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network”. In: Inter-
national Conference on Mining Software Repositories. ACM, 2018, pp. 181–
191. doi: 10.1145/3196398.3196401.

[32] Alex Dmitrienko and Gary G Koch. Analysis of clinical trials using SAS: a
practical guide. SAS Institute, 2017.

[33] Marco D’Ambros et al. “Analysing software repositories to understand soft-
ware evolution”. In: Software evolution. Springer, 2008, pp. 37–67.

[34] Steve Easterbrook et al. “Selecting empirical methods for software engineer-
ing research”. In: Guide to advanced empirical software engineering. Springer,
2008, pp. 285–311. doi: 10.1007/978-1-84800-044-5_11.

[35] Yusuf Ebrahim. “Lesson 1.1.2 Software release life cycle (Lessons in software
design architecture and development 1.0: Selby Mvusi and beyond)”. In: Jan.
2019, pp. 10 –20.

[36] Moritz Eck et al. “Understanding flaky tests: the developer’s perspective”.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering. 2019, pp. 830–840. doi: 10.1145/3338906.3338945.

[37] Eclipse Foundation. Eclipse Bugzilla repository. 2019. url: https://bugs.
eclipse.org.

[38] Omar Elazhary et al. “Do as i do, not as i say: Do contribution guidelines match
the github contribution process?” In: 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE. 2019, pp. 286–290. doi:
10.1109/ICSME.2019.00043.

[39] Everything You Need to Know to Master Release Management. https://www.
smartsheet.com/release-management-process. 2020.

[40] Michael Fischer, Martin Pinzger, and Harald Gall. “Populating a release his-
tory database from version control and bug tracking systems”. In: International
Conference on Software Maintenance, 2003 (ICSM). IEEE. 2003, pp. 23–32.
doi: 10.1109/ICSM.2003.1235403.

[41] Brian Fitzgerald. “Open source software: Lessons from and for software engi-
neering”. In: Computer 44.10 (2011), pp. 25–30. doi: 10.1109/MC.2011.266.

[42] Karl Fogel. Stabilizing a Release - Chapter 7. Packaging, Releasing, and Daily
Development. https://producingoss.com/en/stabilizing-a-release.
html.

[43] Alfonso Fuggetta. “Software process: a roadmap”. In: Proceedings of the Con-
ference on the Future of Software Engineering. 2000, pp. 25–34.

https://doi.org/10.1145/2901739.2901764
https://doi.org/10.1145/2901739.2901764
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1145/3338906.3338945
https://bugs.eclipse.org
https://bugs.eclipse.org
https://doi.org/10.1109/ICSME.2019.00043
https://www.smartsheet.com/release-management-process
https://www.smartsheet.com/release-management-process
https://doi.org/10.1109/ICSM.2003.1235403
https://doi.org/10.1109/MC.2011.266
https://producingoss.com/en/stabilizing-a-release.html
https://producingoss.com/en/stabilizing-a-release.html


Bibliography 103

[44] Emanuel Giger, Martin Pinzger, and Harald Gall. “Predicting the fix time of
bugs”. In: International Workshop on Recommendation Systems for Software
Engineering. ACM. 2010, pp. 52–56. doi: 10.1145/1808920.1808933.

[45] Glossary. https://www.lawinsider.com/documents/jAFKJMPI4St.
[46] Mathieu Goeminne. “Understanding the evolution of socio-technical aspects in

open source ecosystems”. In: 2014 Software Evolution Week-IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE). IEEE. 2014, pp. 473–476. doi: 10.1109/CSMR-WCRE.2014.6747221.

[47] Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes.
“Bug report severity level prediction in open source software: A survey and
research opportunities”. In: Information and software technology 115 (2019),
pp. 58–78. doi: 10.1016/j.infsof.2019.07.009.

[48] Christopher Guindon. Core – The Eclipse Foundation. url: https://www.
eclipse.org/eclipse/platform-core/.

[49] Anita Gupta. “The profile of software changes in reused vs. non-reused in-
dustrial software systems”. PhD thesis. Norwegian University of Science and
Technology, 2009.

[50] Monika Gupta and Ashish Sureka. “Nirikshan: Mining bug report history for
discovering process maps, inefficiencies and inconsistencies”. In: Proceedings of
the 7th India Software Engineering Conference. 2014, pp. 1–10. doi: 10.1145/
2590748.2590749.

[51] Israel Herraiz et al. “Impact of installation counts on perceived quality: A case
study on debian”. In: 2011 18th Working Conference on Reverse Engineering.
IEEE. 2011, pp. 219–228. doi: 10.1109/WCRE.2011.34.

[52] Melinda R Hess and Jeffrey D Kromrey. “Robust confidence intervals for effect
sizes: A comparative study of Cohen’sd and Cliff’s delta under non-normality
and heterogeneous variances”. In: annual meeting of the American Educational
Research Association. Citeseer. 2004, pp. 1–30.

[53] Heike Hofmann, Hadley Wickham, and Karen Kafadar. “Letter-Value plots:
Boxplots for large data”. In: Journal of Computational and Graphical Statistics
26.3 (2017), pp. 469–477. doi: 10.1080/10618600.2017.1305277.

[54] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric statis-
tical methods. Third. Vol. 751. John Wiley & Sons, 2015. doi: 10 . 1002 /
9781119196037.

[55] Pieter Hooimeijer and Westley Weimer. “Modeling bug report quality”. In:
International Conference on Automated Software Engineering (ASE). ACM.
2007, pp. 34–43. doi: 10.1145/1321631.1321639.

[56] ISO Iso. “iec/ieee international standard-systems and software engineering–
vocabulary”. In: ISO/IEC/IEEE 24765: 2017 (E) (2017).

[57] Saket Dattatray Joshi and Sridhar Chimalakonda. “RapidRelease-A dataset
of projects and issues on Github with rapid releases”. In: 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE.
2019, pp. 587–591. doi: 10.1109/MSR.2019.00088.

[58] Edward L Kaplan and Paul Meier. “Nonparametric estimation from incom-
plete observations”. In: Journal of the American statistical association 53.282
(1958), pp. 457–481.

https://doi.org/10.1145/1808920.1808933
https://www.lawinsider.com/documents/jAFKJMPI4St
https://doi.org/10.1109/CSMR-WCRE.2014.6747221
https://doi.org/10.1016/j.infsof.2019.07.009
https://www.eclipse.org/eclipse/platform-core/
https://www.eclipse.org/eclipse/platform-core/
https://doi.org/10.1145/2590748.2590749
https://doi.org/10.1145/2590748.2590749
https://doi.org/10.1109/WCRE.2011.34
https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.1002/9781119196037
https://doi.org/10.1002/9781119196037
https://doi.org/10.1145/1321631.1321639
https://doi.org/10.1109/MSR.2019.00088


Bibliography 104

[59] Mike Kaply. Why Do Companies Stay on Old Technology? https://mike.
kaply.com/2011/06/23/why-do-companies-stay-on-old-technology/.
June 2011.

[60] Noureddine Kerzazi and Foutse Khomh. “Factors impacting rapid releases:
an industrial case study”. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. 2014, pp. 1–
8. doi: 10.1145/2652524.2652589.

[61] Zeinab Abou Khalil. Revisiting the impact of rapid releases on software de-
velopment activities [Replication Package]. Dec. 2020. doi: 10.5281/zenodo.
4323237.

[62] Zeinab Abou Khalil, Eleni Constantinou, and Tom Mens. On the impact of
release policies on bug handing activity: A case study of Eclipse [Replication
Package]. Apr. 2020. doi: 10.5281/zenodo.3762771.

[63] F. Khomh et al. “Do faster releases improve software quality? An empirical
case study of Mozilla Firefox”. In: orking Conf. Mining Software Repositories.
IEEE, 2012, pp. 179–188. doi: 10.1109/MSR.2012.6224279.

[64] Foutse Khomh et al. “Understanding the impact of rapid releases on software
quality”. In: Empirical Software Engineering 20.2 (2015), pp. 336–373. issn:
1573-7616. doi: 10.1007/s10664-014-9308-x.

[65] Dongsun Kim et al. “Where should we fix this bug? a two-phase recommen-
dation model”. In: IEEE transactions on software Engineering 39.11 (2013),
pp. 1597–1610. doi: 10.1109/TSE.2013.24.

[66] Dongsun Kim et al. “Which crashes should i fix first?: Predicting top crashes
at an early stage to prioritize debugging efforts”. In: IEEE Transactions on
Software Engineering 37.3 (2011), pp. 430–447. doi: 10.1109/TSE.2011.20.

[67] Carsten Kolassa, Dirk Riehle, and Michel A Salim. “The empirical commit
frequency distribution of open source projects”. In: Proceedings of the 9th In-
ternational Symposium on Open Collaboration. 2013, pp. 1–8. doi: 10.1145/
2491055.2491073.

[68] Sue Kong, Julie E Kendall, and Kenneth E Kendall. “The challenge of im-
proving software quality: Developers’ beliefs about the contribution of agile
practices”. In: AMCIS 2009 Proceedings (2009), p. 148.

[69] Elvan Kula et al. “Releasing fast and slow: an exploratory case study at ING”.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering. 2019, pp. 785–795. doi: 10.1145/3338906.3338978.

[70] Amit Kumar and Avdhesh Gupta. “Evolution of developer social network and
its impact on bug fixing process”. In: India Software Engineering Conference.
ACM. 2013, pp. 63–72. doi: 10.1145/2442754.2442764.

[71] Antti Lahtela and Marko Jäntti. “Challenges and problems in release man-
agement process: A case study”. In: 2011 IEEE 2nd International Conference
on Software Engineering and Service Science. IEEE. 2011, pp. 10–13. doi:
10.1109/ICSESS.2011.5982242.

[72] Ahmed Lamkanfi and Serge Demeyer. “Filtering bug reports for fix-time analy-
sis”. In: 2012 16th European Conference on Software Maintenance and Reengi-
neering. IEEE. 2012, pp. 379–384. doi: 10.1109/CSMR.2012.47.

https://mike.kaply.com/2011/06/23/why-do-companies-stay-on-old-technology/
https://mike.kaply.com/2011/06/23/why-do-companies-stay-on-old-technology/
https://doi.org/10.1145/2652524.2652589
https://doi.org/10.5281/zenodo.4323237
https://doi.org/10.5281/zenodo.4323237
https://doi.org/10.5281/zenodo.3762771
https://doi.org/10.1109/MSR.2012.6224279
https://doi.org/10.1007/s10664-014-9308-x
https://doi.org/10.1109/TSE.2013.24
https://doi.org/10.1109/TSE.2011.20
https://doi.org/10.1145/2491055.2491073
https://doi.org/10.1145/2491055.2491073
https://doi.org/10.1145/3338906.3338978
https://doi.org/10.1145/2442754.2442764
https://doi.org/10.1109/ICSESS.2011.5982242
https://doi.org/10.1109/CSMR.2012.47


Bibliography 105

[73] Ahmed Lamkanfi, Javier Pérez, and Serge Demeyer. “The eclipse and mozilla
defect tracking dataset: a genuine dataset for mining bug information”. In:
2013 10th Working Conference on Mining Software Repositories (MSR). IEEE.
2013, pp. 203–206. doi: 10.1109/MSR.2013.6624028.

[74] Ahmed Lamkanfi et al. “Predicting the severity of a reported bug”. In:Working
Conference on Mining Software Repositories. IEEE. 2010, pp. 1–10. doi: 10.
1109/MSR.2010.5463284.

[75] Meir M Lehman. “On understanding laws, evolution, and conservation in
the large-program life cycle”. In: Journal of Systems and Software 1 (1979),
pp. 213–221. doi: 10.1016/0164-1212(79)90022-0.

[76] Jingyue Li, Nils B Moe, and Tore Dybå. “Transition from a plan-driven process
to scrum: a longitudinal case study on software quality”. In: Proceedings of the
2010 ACM-IEEE international symposium on empirical software engineering
and measurement. 2010, pp. 1–10. doi: 10.1145/1852786.1852804.

[77] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. “Power laws in
software”. In: ACM Transactions on Software Engineering and Methodology
(TOSEM) 18.1 (2008), pp. 1–26. doi: 10.1145/1391984.1391986.

[78] Bart Luijten, Joost Visser, and Andy Zaidman. “Assessment of issue handling
efficiency”. In: 2010 7th IEEE Working Conference on Mining Software Reposi-
tories (MSR 2010). IEEE. 2010, pp. 94–97. doi: 10.1109/MSR.2010.5463292.

[79] Mika V Mäntylä et al. “On rapid releases and software testing”. In: 2013 IEEE
International Conference on Software Maintenance. IEEE. 2013, pp. 20–29.
doi: 10.1109/ICSM.2013.13.

[80] Mika V. Mäntylä et al. “On rapid releases and software testing: a case study
and a semi-systematic literature review”. In: Empirical Software Engineering
20.5 (Oct. 2015), pp. 1384–1425. issn: 1573-7616. doi: 10.1007/s10664-014-
9338-4.

[81] Lionel Marks, Ying Zou, and Ahmed E Hassan. “Studying the fix-time for
bugs in large open source projects”. In: International Conference on Predictive
Models in Software Engineering. ACM. 2011. doi: 10.1145/2020390.2020401.

[82] Robert Martignoni. “Global sourcing of software development-a review of tools
and services”. In: 2009 Fourth IEEE International Conference on Global Soft-
ware Engineering. IEEE. 2009, pp. 303–308. doi: 10.1109/ICGSE.2009.47.

[83] Andrew Meneely et al. “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits”. In: 2013 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. IEEE. 2013,
pp. 65–74. doi: 10.1109/ESEM.2013.19.

[84] T. Mens, J. Fernandez-Ramil, and S. Degrandsart. “The evolution of Eclipse”.
In: International Conference on Software Maintenance. Sept. 2008, pp. 386–
395. doi: 10.1109/ICSM.2008.4658087.

[85] Tom Mens. “An ecosystemic and socio-technical view on software maintenance
and evolution”. In: 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE. 2016, pp. 1–8. doi: 10.1109/ICSME.
2016.19.

[86] Tom Mens et al. “Challenges in software evolution”. In: Eighth International
Workshop on Principles of Software Evolution (IWPSE’05). IEEE. 2005, pp. 13–
22. doi: 10.1109/IWPSE.2005.7.

https://doi.org/10.1109/MSR.2013.6624028
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1145/1852786.1852804
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1109/MSR.2010.5463292
https://doi.org/10.1109/ICSM.2013.13
https://doi.org/10.1007/s10664-014-9338-4
https://doi.org/10.1007/s10664-014-9338-4
https://doi.org/10.1145/2020390.2020401
https://doi.org/10.1109/ICGSE.2009.47
https://doi.org/10.1109/ESEM.2013.19
https://doi.org/10.1109/ICSM.2008.4658087
https://doi.org/10.1109/ICSME.2016.19
https://doi.org/10.1109/ICSME.2016.19
https://doi.org/10.1109/IWPSE.2005.7


Bibliography 106

[87] Martin Michlmayr. “Quality improvement in volunteer free and open source
software projects: Exploring the Impact of Release Management”. PhD thesis.
University of Cambridge, Mar. 2007.

[88] Martin Michlmayr. “Quality improvement in volunteer free software projects:
Exploring the impact of release management”. In: Proceedings of the First
International Conference on Open Source Systems. 2005, pp. 309–310.

[89] Martin Michlmayr and Brian Fitzgerald. “Time-based release management
in free and open source (FOSS) projects”. In: International Journal of Open
Source Software and Processes (IJOSSP) 4.1 (2012), pp. 1–19.

[90] Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol. “Why and how
should open source projects adopt time-based releases?” In: IEEE Software
32.2 (2015), pp. 55–63. doi: 10.1109/MS.2015.55.

[91] Martin Monperrus. “Automatic software repair: a bibliography”. In: ACM
Computing Surveys (CSUR) 51.1 (2018), pp. 1–24. doi: 10.1145/3105906.

[92] Joseph Morris. Software industry accounting. John Wiley & Sons, 2001.
[93] Mozilla. https://release.mozilla.org/firefox/release/2017/04/17/

dawn-project-faq.
[94] Mozilla.github.io. Mozilla Firefox Development Specifics. https://mozilla.

github.io/process-releases/draft/development_specifics/.
[95] A. Murgia et al. “On the distribution of bugs in the Eclipse system”. In: IEEE

Transactions on Software Engineering 37.06 (Nov. 2011), pp. 872–877. doi:
10.1109/TSE.2011.54.

[96] Maleknaz Nayebi, Guenther Ruhe, and Thomas Zimmermann. “Mining treatment-
outcome constructs from sequential software engineering data”. In: IEEE Trans-
actions on Software Engineering (2019). doi: 10.1109/TSE.2019.2892956.

[97] Malanga Kennedy Ndenga et al. “Performance and cost-effectiveness of change
burst metrics in predicting software faults”. In: Knowledge and Information
Systems 60.1 (2019), pp. 275–302. doi: 10.1007/s10115-018-1241-7.

[98] RV O’Connor. “Human aspects of information technology development”. In:
International Journal of Technology, Policy and Management 8.1 (2008).

[99] Lucas D Panjer. “Predicting Eclipse bug lifetimes”. In: International Workshop
on Mining Software Repositories. IEEE Computer Society. 2007. doi: 10.
1109/MSR.2007.25.

[100] Strategic Planning. “The economic impacts of inadequate infrastructure for
software testing”. In: National Institute of Standards and Technology (2002).

[101] Adam Porter et al. “Techniques and processes for improving the quality and
performance of open-source software”. In: Software Process: Improvement and
Practice 11.2 (2006), pp. 163–176. doi: 10.1002/spip.260.

[102] Tom Preston-Werner. Semantic Versioning 2.0.0. https://semver.org/.
2013.

[103] Nikhil Rathod and Anil Surve. “Test orchestration a framework for continuous
integration and continuous deployment”. In: 2015 international conference on
pervasive computing (ICPC). IEEE. 2015, pp. 1–5. doi: 10.1109/PERVASIVE.
2015.7087120.

[104] Margaret Rouse. Chrome Release Channels - The Chromium Projects. https:
//www.chromium.org/getting-involved/dev-channel. 2020.

https://doi.org/10.1109/MS.2015.55
https://doi.org/10.1145/3105906
https://release.mozilla.org/firefox/release/2017/04/17/dawn-project-faq
https://release.mozilla.org/firefox/release/2017/04/17/dawn-project-faq
https://mozilla.github.io/process-releases/draft/development_specifics/
https://mozilla.github.io/process-releases/draft/development_specifics/
https://doi.org/10.1109/TSE.2011.54
https://doi.org/10.1109/TSE.2019.2892956
https://doi.org/10.1007/s10115-018-1241-7
https://doi.org/10.1109/MSR.2007.25
https://doi.org/10.1109/MSR.2007.25
https://doi.org/10.1002/spip.260
https://semver.org/
https://doi.org/10.1109/PERVASIVE.2015.7087120
https://doi.org/10.1109/PERVASIVE.2015.7087120
https://www.chromium.org/getting-involved/dev-channel
https://www.chromium.org/getting-involved/dev-channel


Bibliography 107

[105] Margaret Rouse.What Is Software Patch/Fix? https://searchenterprisedesktop.
techtarget.com/definition/patch. 2020.

[106] Walker Royce. Software project management. Pearson Education India, 1998.
[107] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case

study research in software engineering”. In: Empirical software engineering
14.2 (2009), p. 131.

[108] Renaud Rwemalika et al. “An industrial study on the differences between
pre-release and post-release bugs”. In: International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2019, pp. 92–102. doi: 10.1109/
ICSME.2019.00019.

[109] R. K. Saha et al. “Are These Bugs Really “Normal”?” In: Working Conference
on Mining Software Repositories. 2015, pp. 258–268. doi: 10.1109/MSR.2015.
31.

[110] Ripon K Saha, Sarfraz Khurshid, and Dewayne E Perry. “Understanding the
triaging and fixing processes of long lived bugs”. In: Information and software
technology 65 (2015), pp. 114–128. doi: 10.1016/j.infsof.2015.03.002.

[111] Ripon K Saha et al. “Improving bug localization using structured information
retrieval”. In: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2013, pp. 345–355. doi: 10.1109/ASE.
2013.6693093.

[112] Vishal Sahasrabuddhe. Release Engineering vs. Release Management. https:
//devops.com/release- engineering- vs- release- management/. Jan.
2016.

[113] Ioannis Samoladas, Lefteris Angelis, and Ioannis Stamelos. “Survival analy-
sis on the duration of open source projects”. In: Information and Software
Technology 52.9 (2010), pp. 902–922. doi: 10.1016/j.infsof.2010.05.001.

[114] Benjamin R Saville, Amy H Herring, and Gary G Koch. “A robust method
for comparing two treatments in a confirmatory clinical trial via multivariate
time-to-event methods that jointly incorporate information from longitudinal
and time-to-event data”. In: Statistics in medicine 29.1 (2010), pp. 75–85. doi:
10.1002/sim.3740.

[115] Andreas Sewe. One Year of Automated Error Reporting. June 2016. url:
https://www.eclipse.org/community/eclipse_newsletter/2016/july/
article3.php.

[116] Stephen Shankland. Rapid-release Firefox meets corporate backlash. http://
cnet.co/ktBsUU. June 2011.

[117] Stephen Shankland. Rapid-release Firefox meets corporate backlash. https:
/ / www . cnet . com / news / rapid - release - firefox - meets - corporate -
backlash/. June 2011.

[118] Sheriffing. https://wiki.mozilla.org/Sheriffing. Sept. 2020.
[119] Ramin Shokripour et al. “Why so complicated? simple term filtering and

weighting for location-based bug report assignment recommendation”. In: 2013
10th Working Conference on Mining Software Repositories (MSR). IEEE.
2013, pp. 2–11. doi: 10.1109/MSR.2013.6623997.

[120] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering. Springer, 2007.

https://searchenterprisedesktop.techtarget.com/definition/patch
https://searchenterprisedesktop.techtarget.com/definition/patch
https://doi.org/10.1109/ICSME.2019.00019
https://doi.org/10.1109/ICSME.2019.00019
https://doi.org/10.1109/MSR.2015.31
https://doi.org/10.1109/MSR.2015.31
https://doi.org/10.1016/j.infsof.2015.03.002
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2013.6693093
https://devops.com/release-engineering-vs-release-management/
https://devops.com/release-engineering-vs-release-management/
https://doi.org/10.1016/j.infsof.2010.05.001
https://doi.org/10.1002/sim.3740
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
http://cnet.co/ktBsUU
http://cnet.co/ktBsUU
https://www.cnet.com/news/rapid-release-firefox-meets-corporate-backlash/
https://www.cnet.com/news/rapid-release-firefox-meets-corporate-backlash/
https://www.cnet.com/news/rapid-release-firefox-meets-corporate-backlash/
https://wiki.mozilla.org/Sheriffing
https://doi.org/10.1109/MSR.2013.6623997


Bibliography 108

[121] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. “When do changes
induce fixes?” In: ACM sigsoft software engineering notes 30.4 (2005), pp. 1–5.
doi: 10.1145/1082983.1083147.

[122] Software processes. http : / / moodle . autolab . uni - pannon . hu / Mecha _
tananyag/szoftverfejlesztesi_folyamatok_angol/ch03.html.

[123] Rodrigo Rocha Gomes Souza. “Inappropriate software changes: Rejection and
rework”. In: (2015).

[124] Stockwell. https://wiki.mozilla.org/Auto-tools/Projects/Stockwell.
Feb. 2019.

[125] Damian A Tamburri et al. “Social debt in software engineering: insights from
industry”. In: Journal of Internet Services and Applications 6.1 (2015), pp. 1–
17. doi: 10.1186/s13174-015-0024-6.

[126] The essential guide to release management. https://www.smartsheet.com/
release-management-process. 2020.

[127] Feifei Tu et al. “Be careful of when: an empirical study on time-related misuse
of issue tracking data”. In: Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM. 2018, pp. 307–318. doi: 10.1145/3236024.3236054.

[128] Michele Tufano et al. “When and why your code starts to smell bad”. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. IEEE. 2015, pp. 403–414.

[129] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement
of business processes. Vol. 2. Springer, 2011.

[130] Rini Van Solingen et al. “Goal question metric (gqm) approach”. In: Encyclo-
pedia of software engineering (2002). doi: 10.1002/0471028959.sof142.

[131] VersionOne. 7th annual state of agile survey. 2013. url: https : / / www .
stateofagile.com/#ufh-i-338592786-7th-annual-state-of-agile-
report/473508.

[132] Arun Vijayaraghavan. Software Releases. https://focustesting.wordpress.
com/2010/01/10/software-releases/. Jan. 2010.

[133] Shaowei Wang and David Lo. “Version history, similar report, and struc-
ture: Putting them together for improved bug localization”. In: Proceedings of
the 22nd International Conference on Program Comprehension. ACM. 2014,
pp. 53–63. doi: 10.1145/2597008.2597148.

[134] Shaowei Wang, David Lo, and Julia Lawall. “Compositional vector space mod-
els for improved bug localization”. In: 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE. 2014, pp. 171–180. doi: 10.1109/
ICSME.2014.39.

[135] C. Wohlin et al. Experimentation in Software Engineering - An Introduction.
Kluwer, 2000. doi: 10.1007/978-1-4615-4625-2.

[136] Xin Xia et al. “Dual analysis for recommending developers to resolve bugs”.
In: Journal of Software: Evolution and Process 27.3 (2015), pp. 195–220. doi:
10.1002/smr.1706.

[137] Sami Zahran. Software process improvement: practical guidelines for business
success. Addison-wesley, 1998.

https://doi.org/10.1145/1082983.1083147
http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch03.html
http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch03.html
https://wiki.mozilla.org/Auto-tools/Projects/Stockwell
https://doi.org/10.1186/s13174-015-0024-6
https://www.smartsheet.com/release-management-process
https://www.smartsheet.com/release-management-process
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1002/0471028959.sof142
https://www.stateofagile.com/#ufh-i-338592786-7th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-338592786-7th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-338592786-7th-annual-state-of-agile-report/473508
https://focustesting.wordpress.com/2010/01/10/software-releases/
https://focustesting.wordpress.com/2010/01/10/software-releases/
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1109/ICSME.2014.39
https://doi.org/10.1109/ICSME.2014.39
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1002/smr.1706


Bibliography 109

[138] Andy Zaidman et al. “On how developers test open source software systems”.
In: arXiv preprint arXiv:0705.3616 (2007).

[139] Ahmed Zerouali et al. “A formal framework for measuring technical lag in
component repositories—and its application to npm”. In: Journal of Software:
Evolution and Process 31.8 (2019), e2157. doi: 10.1002/smr.2157.

[140] Feng Zhang et al. “An empirical study on factors impacting bug fixing time”.
In: Working Conference on Reverse Engineering. IEEE. 2012, pp. 225–234.
doi: 10.1109/WCRE.2012.32.

[141] Tao Zhang et al. “A literature review of research in bug resolution: Tasks, chal-
lenges and future directions”. In: The Computer Journal 59.5 (2016), pp. 741–
773. doi: 10.1093/comjnl/bxv114.

[142] Théo Zimmermann and Annalí Casanueva Artís. “Impact of switching bug
trackers: a case study on a medium-sized open source project”. In: 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 13–23. doi: 10.1109/ICSME.2019.00011.

[143] Weiqin Zou et al. “An empirical study of bug fixing rate”. In: Computer Soft-
ware and Applications Conference (COMPSAC). IEEE. 2015, pp. 254–263.
doi: 10.1109/COMPSAC.2015.57.

https://doi.org/10.1002/smr.2157
https://doi.org/10.1109/WCRE.2012.32
https://doi.org/10.1093/comjnl/bxv114
https://doi.org/10.1109/ICSME.2019.00011
https://doi.org/10.1109/COMPSAC.2015.57

	Title
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Thesis Context
	Thesis Statement
	Contribution
	Dissertation Structure

	Chapter 2 : Background
	Software Development Process
	Release Management
	Bug Handling
	Summary

	Chapter 3 : Related Work
	Bug Handling Process
	Rapid Releases
	Summary

	Chapter 4 : Impact of Release Policies on Bug Handing Activity
	Introduction
	Methodology
	Statistical Methods
	Feedback from Eclipse Maintainers
	Bug Handling Process Discovery
	Applying Process Mining on Bug Handling Process
	Quantitative Analysis of the Evolution of Eclipse Bug Handling Activity
	Impact of Rapid Releases on the Bug Handling Process of Eclipse
	Impact of Feature Freezes on Bug Handling in Eclipse
	Discussion
	Threats to Validity
	Conclusion

	Chapter 5 : Revisiting the Impact of Rapid Releases on Software Development Activities
	Introduction
	Methodology
	Impact of Rapid Releases on Quality Assurance
	Impact of Rapid Releases on Patch Uplifts
	Discussion
	Threats to Validity
	Conclusion

	Chapter 6 : Conclusion
	Contributions
	Limitations
	Possible Research Extensions
	Future Work

	Appendix A : Online Form
	push0 g 0 Gpop[t]-8479768sp ++1in+Pre-requisitesgray!30push0 g 0 Gpoptowidthheightdepth
	push0 g 0 Gpop[t]-8479768sp ++1in+Demographicsgray!30push0 g 0 Gpoptowidthheightdepth
	push0 g 0 Gpop[t]-8479768sp ++1in+Transition to quarterly release cyclegray!30push0 g 0 Gpoptowidthheightdepth
	push0 g 0 Gpop[t]-8479768sp ++1in+Please provide your opinion on the following statements for the *annual* Eclipse releases.gray!30push0 g 0 Gpoptowidthheightdepth
	push0 g 0 Gpop[t]-8479768sp ++1in+Please provide your opinion on the following statements for the *quarterly* Eclipse releases.gray!30push0 g 0 Gpoptowidthheightdepth
	push0 g 0 Gpop[t]Based on your experiencegray!30push0 g 0 Gpoptowidthheightdepth

	Bibliography

