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Chapter 1

Introduction

1.1 The challenges in the design of complex sys-
tems

In engineering, the design of complex systems, such as spacecraft and aircraft, consists
of a long process of analysis and optimization that allows the designer to specify the
design variables most adequate to the purpose of the designed system. On of the
critical challenges arises in the late phase of this process where high-fidelity models
are deployed to integrate all the disciplines of interest simultaneously [Balesdent et al.,
2012b]. For instance, in the design of aerospace systems, the multi-disciplinary models
include multiple disciplines such as structure, propulsion, aerodynamics, trajectory,
and costs (Fig. 1.2). The simultaneous integration of all these disciplines makes it
possible to interestingly exploit the different interactions between them. However, this
comes with an important computational burden. In fact, one evaluation of such a
model comes back to an internal loop between the different disciplines. Furthermore,
some disciplines are inherently computationally expensive. For instance, the structure
and aerodynamic disciplines can constitute a computational bottleneck due to methods
such as finite element analyses [Segerlind, 1976] and computational fluid dynamics
[Anderson and Wendt, 1995]. Moreover, these disciplines typically rely on legacy
codes that may not provide analytical forms of the functions involved. Therefore, the
design of complex systems is based on the analysis and optimization of computationally
intensive black-box functions. The optimization is performed with respect to different
constraints that express the physics to which the design variables are subjected or some
specifications imposed by the designer. Another characteristic of these optimization
problems is that usually multiple objectives are optimized. In fact, considering only one
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Fig. 1.1 The different phases for the design of a complex system.

objective may result in limited performance in other disciplines. Hence, the objectives
have to be taken into account simultaneously within the optimization problem. The
resolution of these optimization problems is difficult in the context of complex systems.
In fact, due to the black-box aspect, the exact optimization approaches based on
the analytical form of the functions and the gradients is challenging. Moreover, the
high-computational cost makes the use of meta-heuristics that require a large number
of evaluations not suitable.

In addition to the computationally intensive and black-box aspects, the design of
such systems takes into account complex physical phenomena inducing abrupt change
of physical properties, here referred as non-stationary behavior. This is usually the case
in the modeling of constrained optimization problems. In fact, the objective function
and the constraints may have an inconsistent behavior and discontinuities between the
feasible and non-feasible regions of the design space [Gramacy and Lee, 2008].

The design of complex systems goes through different phases. The computationally
expensive black-box physical models are usually in the late phases of design that are
the detailed phase and manufacturing phase (Fig. 1.1). These models are accurate
to the detriment of computational cost. The early phases of design, however, are in
general characterized by models that are not sufficiently representative of the final
system. Such models are called low-fidelity models and have the advantage to be
computationally efficient. One of the challenges of the design engineer is to use these
different levels of fidelity obtained throughout the design phases to obtain a trade-off
between computational costs and accuracy. Considering these different levels of fidelity
in a given framework is called multi-fidelity modeling [Fernández-Godino et al., 2016].

Other challenges arise in the design of complex systems. For instance, the imperfect
knowledge of the different physics behaviors makes it necessary for the designer to
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Fig. 1.2 Example of a launch vehicle multi-disciplinary design.

account for different sources of uncertainty. Uncertainty quantification is a key topic in
reliability and risk analysis as well as sensitivity analysis [Sudret, 2007; Ghanem et al.,
2017; Brevault et al., 2020b]. Another challenge comes from the nature of the design
variables. In fact, the design of complex systems may include discrete technological and
architectural choices, hence, increasing the difficulty of the optimization. Moreover, the
number of design variables involved in the modeling of a complex system is typically
large, inducing a high-dimensional design space.

Recently, these various challenges have been partially addressed by machine learning
methods. In fact, the recent advances in machine learning have brought design
engineering into an era of data-driven approaches.
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1.2 Machine learning for the analysis and optimiza-
tion of complex systems

Machine learning encompasses different methods that allow to discover statistical
relationships in observed data and to use these found patterns to predict unobserved
data [Bishop, 2006; Alpaydin, 2020]. During this last decade, machine learning has
gained large popularity across diverse fields including engineering [Fuge et al., 2014;
Mosavi et al., 2017; Bock et al., 2019; Brunton and Kutz, 2019]. This gain in popularity
is mainly due to deep learning [Goodfellow et al., 2016] and the astonishing possibilities
that it now offers thanks to the advances in high-performance computing and the use
of large data sets. In fact, problems that seem not possible to be solved by traditional
machine learning models are now classic routines for deep learning models [Lee et al.,
2018].

In engineering, machine learning models have been widely used even before the deep
learning revolution. Actually, due to the computationally expensive black-box aspect
of the physical models involved in the design of complex systems, machine learning
models are used to avoid an excessive number of expensive evaluations [Simpson et al.,
2001; Wang and Shan, 2007; Forrester et al., 2008]. Regression and classification
machine learning models, called also in this context surrogate models or meta-models,
perform supervised learning to predict the behavior of the physical model in new design
variables. This is performed by inferring from a set of observations the statistical
relationship between the design variables, considered as the inputs of the model, and
their evaluations through the engineering model, considered as the outputs. The set
of evaluations used to train the machine learning model is obtained via design of
experiments approaches [Anderson and Whitcomb, 2000]. Diverse machine learning
models have been used as surrogate models in the literature. Simple regression models
such as linear regression and their polynomial expansion [Ostertagová, 2012], kernel
methods as support vector machines [Filippone et al., 2008; Cholette et al., 2017],
decision trees [Agrawal et al., 2014], ensemble approaches including random forests
and gradient boosting [Moore et al., 2018], artificial neural networks [Rafiq et al., 2001;
Simpson et al., 2001], Bayesian models such as Gaussian processes [Kleijnen, 2017], and
also recently the deep learning generalization of these models as deep neural networks
[Dimiduk et al., 2018; Hegde, 2019] and deep Gaussian processes [Hebbal et al., 2020;
Radaideh and Kozlowski, 2020]. The deep learning models, thanks to their increased
power of representation emulate highly varying and non-stationary functions.
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These surrogate models are used for optimization purposes of the physical model
in unconstrained or constrained cases [Jones et al., 1998; Sasena, 2002] and single or
multi-objective configurations [Emmerich et al., 2006]. For analysis tasks, surrogate
models also provide interesting applications. Actually, machine learning models with
multi-source input information called multi-task models have been used to handle the
multi-fidelity information obtained during the design process [Kennedy and O’Hagan,
2000; Le Gratiet and Garnier, 2014; Perdikaris et al., 2017; Cutajar et al., 2019].
Moreover, machine learning models and specifically probabilistic machine learning
models including Gaussian processes and Bayesian neural networks, are well-suited for
representing multiple sources of uncertainty (e.g., the uncertainty on the design variables
and the noise in measurement), by physically realistic priors and likelihood distributions.
This makes Bayesian models interesting to use for reliability and sensitivity analysis
[Dubourg et al., 2011; Sudret, 2012; Nanty et al., 2016]. Some machine learning models
have been extended to handle categorical design variables that occur in the design of
complex systems [Pelamatti et al., 2019].

Certainly not as much as supervised learning, unsupervised machine learning is also
used in design engineering. One of its most popular application is for dimensionality
reduction to avoid the curse of dimension. This is achieved by methods such as principal
component analysis [Ivosev et al., 2008], factor analysis [Yu et al., 2008] where the
design space is projected to a low-dimensional sub-space that is sufficient to explain
the statistical relationship between the design variables and their evaluations.

The third class of approaches in machine learning that is semi-supervised learning
has been applied to engineering design problems through reinforcement learning [Lee
et al., 2019]. In fact, reinforcement learning has successfully been applied to single and
multi-objective optimization [Van Moffaert and Nowé, 2014]. Through trial-and-errors,
it explores the design space and obtains feed-back on the performance evaluation to
find the optimal long-term policy.

These different applications of machine learning to the analysis and optimization
problems occurring in the design of complex systems are summarized in Fig. 1.3.
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1.3 Motivations and outline of the thesis

A wide range of machine learning methods can be applied in the analysis and optimiza-
tion of complex systems. In this thesis, the focus is on Gaussian processes [Williams
and Rasmussen, 2006], a popular class of Bayesian models, that is extensively used in
engineering design. In fact, for optimization of computationally black-box function,
multi-fidelity analysis, and uncertainty quantification, Gaussian Processes are one
of the most used approaches in the literature [Forrester et al., 2008; Sullivan, 2015;
Fernández-Godino et al., 2016]. However, methods based on Gaussian processes still
present limitations for handling some specific problems that occur in the design of
complex systems. This thesis addresses three of these limitations:

• Bayesian optimization of non-stationary problems

Bayesian optimization [Močkus, 1975] is an iterative algorithm that starts with
an initial design of experiments, then, the most promising data-points are added
iteratively using an acquisition function. This acquisition function is based on
the predictive distribution obtained by a Bayesian model trained on the data
set. Gaussian processes as Bayesian models are the classic approach for Bayesian
optimization [Jones et al., 1998]. However, Gaussian processes are not suitable
to handle non-stationary problems due to stationary covariance functions [Xiong
et al., 2007; Gramacy and Lee, 2008]. The existing approaches to overcome
this limitation of Gaussian processes such as parametric non-linear mapping,
direct formulation of a non-stationary covariance function, and local stationary
covariance functions may not be adapted to the scarce data context and the
high-dimensionality problems that occur in the design of complex systems.

• Multi-objective Bayesian optimization with correlated objectives

Multi-objective Bayesian optimization is the extension of Bayesian optimization
in the case of multiple objectives [Emmerich et al., 2006]. It considers for each
objective an independent Bayesian model, then a multi-objective infill criterion
such as the expected hyper-volume improvement [Emmerich and Klinkenberg,
2008], also computed with the assumption of independence between objectives,
is used to add the most promising data-point. However, training the models
independently does not take into account a potential correlation between the
objectives. Actually, in a multi-objective context, the different objectives are
usually antagonistic. For instance, in the design of a space launch vehicle, the
gross lift-off weight and the change in velocity ∆V are negatively correlated.
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Therefore, modeling independently each objective in the context of multi-objective
Bayesian optimization may not take into account all the information provided by
the data.

• Multi-fidelity analysis for problems with different input space domain
definitions

Different multi-fidelity models are based on multi-source Gaussian processes that
model jointly the different levels of fidelity [Fernández-Godino et al., 2016]. This
allows enriching the high-fidelity model with low-fidelity data to improve its
prediction accuracy. These models consider the design space identically defined
for the different fidelity physical models. However, in the design of complex
systems, this is not usually the case. Actually, in the low-fidelity levels for
the sake of simplification of the physical model, some design variables may be
abstracted or a different parameterization may be used. This yields to a different
input space for each fidelity physical model, hence, the classic Gaussian process
multi-fidelity models can not be directly used.

This thesis aims to develop new algorithms and models based on the hierar-
chical generalization of Gaussian processes called deep Gaussian processes
[Damianou and Lawrence, 2013] to overcome the limitations of regular Gaus-
sian processes in the analysis and optimization of complex systems

Thesis objective

This is accomplished through contributions at three levels:

• A framework for the coupling between Bayesian optimization and deep Gaussian
processes is proposed to handle non-stationary problems. This framework adapts
deep Gaussian processes from a training and architecture perspectives to the
iterative structure and infill criteria of Bayesian optimization. This framework
has been initially proposed in a conference paper and developed more thoroughly
in a journal article:

– Efficient global optimization using deep Gaussian processes. Hebbal, A.,
Brevault, L., Balesdent, M., Taibi, E. G., & Melab, N. In IEEE Congress
on evolutionary computation (CEC) 2018 (pp. 1-8).
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– Bayesian optimization using deep Gaussian processes with applications to
aerospace system design. Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.
G., & Melab, N. In Optimization and Engineering, 1-41. Springer, 2020.

A generalization of this coupling to non-stationary problems in the context of
multiple objectives has been addressed in a conference paper:

– Multi-objective optimization using deep Gaussian processes: application to
aerospace vehicle design. Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.
G., & Melab, N. In AIAA Scitech 2019 Forum (p. 1973).

• A multi-objective deep Gaussian process-based model is developed to model jointly
multiple objectives in the context of multi-objective optimization. This model
exhibits complex correlations between the different objectives in order to improve
the prediction accuracy in the objective space. Moreover, a computation approach
is proposed to compute the expected hyper-volume improvement without the
assumption of independence between the objectives and also for non-Gaussian
predictive distributions. This contribution has been partly communicated in a
conference:

– A deep Gaussian process based model for multi-objective optimization.
Hebbal, A., Brevault, L., Balesdent, M., Talbi, E., & Melab, N. In the 13th
International Conference on Multiple Objective Programming and Goal
Programming (MOPGP) 2019.

• At the multi-fidelity level, firstly, a more elaborated training approach is developed
for the existing multi-fidelity deep Gaussian process model [Cutajar et al., 2019]
that improves its learning capacity. Next, an extensive analytical and aerospace
benchmark is used to evaluate the different Gaussian process-based multi-fidelity
approaches. The second part of the multi-fidelity contributions addresses the issue
of different input space domain definitions for the different fidelities. For that,
a multi-fidelity deep Gaussian process model for different input space domain
definitions is developed. This novel model embeds a Bayesian non-parametric
mapping between the input spaces within the multi-fidelity model, allowing a
joint optimization of the multi-fidelity model and the input mapping. These
contributions have been proposed through one NeurIPS workshop and two journal
papers:
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– Multi-fidelity modeling using DGPs : Improvements and a generalization to
varying input space dimensions. Hebbal, A., Brevault, L., Balesdent, M.,
Talbi, E., & Melab, N. 4th workshop on Bayesian Deep Learning (NeurIPS
2019).

– Multi-fidelity modeling with different input domain definitions using deep
Gaussian processes. Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.,
& Melab, N. Structural and Multidisciplinary Optimization Journal. (Ac-
cepted).

– Overview of Gaussian process based multi-fidelity techniques with variable
relationship between fidelities, application to aerospace systems. Brevault,
L., Balesdent, M., & Hebbal, A. Aerospace Science and Technology, 106339.
Vol.107, Elsevier (2020)

The efficiency of each algorithm and model developed is assessed and compared to
the existing approaches on analytical and aerospace engineering design problems in a
numerical experiment section.

The structure of this manuscript (illustrated in Fig. 1.4) is organized in three
main parts. The first part is concerned with reviewing the background on which the
contributions are based and also the state-of-the-art approaches in the optimization
and analysis of complex systems. This first part is constituted of two chapters. Its
first chapter (Chapter 2) introduces the cornerstone of the thesis that is the deep
Gaussian process model through a pedagogical path starting from Bayesian linear
regression until reaching the different inference approaches and applications of deep
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Gaussian processes in the literature. The next chapter (Chapter 3) is devoted to
the Gaussian process-based approaches in the optimization and analysis of complex
systems. This chapter displays the existing approaches based on Gaussian processes
to handle non-stationarity, multi-objective Bayesian optimization, and multi-fidelity
analysis.

Part II and part III of this manuscript are the contribution parts of the thesis. Part
II is organized into two chapters devoted to the contributions on Bayesian optimization.
Its first chapter (Chapter 4) proposes a framework for coupling deep Gaussian processes
and Bayesian optimization in order to address the non-stationarity limitations of regular
Gaussian processes. While its second chapter (Chapter 5) concerns the contributions
on multi-objective Bayesian optimization taking into account the potential correlation
between objectives.

Part III is devoted to the contributions on multi-fidelity analysis. A single chapter
(Chapter 6) constitutes this part. It is organized into two main sections that are the
contributions on multi-fidelity analysis with identically defined input spaces and the
contributions on multi-fidelity analysis with different input space definitions.

The list of contributions published as journal articles and book chapters and the
list of communications during the thesis are presented in Appendix A. The standard
Gaussian identities used for Gaussian processes are displayed in Appendix B. The
analytical problems used for the numerical experiments are presented in Appendix C.
The numerical setup used throughout this thesis is detailed in Appendix D.
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Chapter 2

From Linear models to Deep
Gaussian Processes

“The Future of Statistics: A Bayesian 21st Century”
D. V. Lindley (1975)

• Introduction of the concepts of Bayesian modeling and review of Bayesian
inference approaches.
• Introduction of Gaussian processes and taxonomy of sparse adaptation of
Gaussian processes.
• Introduction of deep Gaussian processes and review of deep Gaussian
process inference approaches and applications.

Chapter goals

CH2

This chapter of literature-review serves as an introduction to the methodological
means that are used to solve the problems addressed in this thesis. A pedagogical path
is followed, starting from a basic linear regression model until reaching the cornerstone
of this thesis: deep Gaussian processes. For that, the Bayesian modeling perspective
is motivated in Section 2.1, with an emphasis on the different inference approaches
developed in the literature. This first section allows us to go from a frequentist linear
regression model to a Bayesian one. Then, Gaussian processes are introduced in
Section 2.2 as a non-parametric extension of Bayesian linear regression. This second
section aims to describe the different concepts of a Gaussian process, its limits and
also its relations with other machine learning models. From there, deep Gaussian
processes, a layer-wise hierarchical generalization of Gaussian processes are presented
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in Section 2.3. This section is devoted to the definition of deep Gaussian processes,
as well as to the different inference approaches developed for this model, and to its
applications in the literature. This section sets the theoretical basis of the core elements
of this thesis that are deep Gaussian processes. In fact, the methods developed in
Chapter 4, Chapter 5, and Chapter 6 for the analysis and optimization of complex
systems are all based on deep Gaussian processes. Moreover, these contributions are
put into perspective within the different applications of this model in the literature.

2.1 Bayesian modeling

The task of a model in machine learning, in its essence, is to predict a response of
interest given available data (called observations or training data). In contrast with a
physical model, which is based on physical equations to give a response, a machine
learning model (henceforth referred simply as model) executes the prediction task based
on statistical patterns deduced (inferred) from the available data. Therefore, there is
no guarantee that the response of the model for a new set of data would be accurate
with respect to the exact response of interest. In that case, an important information
for the user of the model is the degree of precision of this prediction. However, it is
not an information that is intrinsic to classical machine learning models. Consider for
instance a linear regression model (Fig. 2.1). The prediction obtained using this model
does not match the exact function and the model does not give information about
when its prediction is close to the exact function (over-confident prediction) and when
it is far from it (under-confident prediction). However, a desirable output of the model
would be a degree of belief associated to its prediction, which may depend on the
spatial distribution of the training data in the input space. In fact, a prediction at a
new data-point that is similar to a set of training data-point would have a high degree
of belief (a low level of uncertainty). While, for a new data-point which is completely
different than the training data-set, its prediction would have a low degree of belief
associated to it (a high level of uncertainty). This type of uncertainty is due to our lack
of knowledge (episteme in latin) about the latent (non-observed) function that we aim
to approximate, and is therefore called epistemic uncertainty. In the same category
of uncertainty, there is the model uncertainty i.e. uncertainty on its parameters and
uncertainty on its structure to best explain the data. These uncertainties are reduced
when a better knowledge of the latent function is acquired by gathering more training
data. Another type of uncertainty is the one due to aleatoric sources as the error in
measurements, this type of uncertainty induces noise in the training data.
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Fig. 2.1 A linear regression using the canonical polynomial basis function of degree
10 trained using the ordinary least square estimate (Eq. (2.6)). (left), There are
no training data corresponding to the input range [1,2], however the model gives
prediction without information about its confidence. (right) by introducing a noise in
the observations, the prediction over-fit (a complex fit of the training data). This is
due to the point estimate of the parameters that best explains the data.

One way to express all these forms of uncertainty is to rely on the tools of probability
theory [Jaynes, 2003; Murphy, 2012; Ghahramani, 2015]. The basic idea in a nutshell,
is that given a model M, each source of uncertainty (i.e. the parameters w, the
structure, the noise) is expressed with a probability distribution. Then, based on
the training data (X,y), these distributions are updated by applying Bayes rule.
Finally, the distribution at unobserved locations X∗ is predicted using simple sum and
product rules of probability (Fig. 2.2). This approach to modeling with a probabilistic
perspective is called Bayesian modeling.

2.1.1 An illustrative integration of Bayesian concepts into a
model

In this section, in order to introduce some definitions and concepts with an illustrative
example, the Bayesian concepts are used with a linear regression model.
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Set a prior over parameters
and a likelihood function

Bayes rule to obtain
the posterior distribution

Marginalization of parameters to
obtain the predictive distribution

Determine a model

Expression of
prior knowledge

Inference p(w|y,X,M) =

Prediction p(y∗|X∗,y,X,M) =

M
Prior: p(w|M)

Likelihood: p(y|w,X,M)

p(y|w,X,M)p(w|M)
p(y|X,M)

∫
w
p(y∗|w,X∗,y,X,M)

p(w|y,X,M)dw

Fig. 2.2 General framework of a Bayesian regression model.

Consider a regression problem Preg defined by the couple of training inputs/outputs
(X,y), the size of the data-set (number of observations) n, and the dimension of the
input data (number of features) d.

The maximum likelihood estimate procedure

A linear regression model M with a basis function expansion and a Gaussian noise is
defined as:

y(x) = w⊺ϕ(x)+ ϵ (2.1)

where w is the vector of parameters of size m, ϕ(x) is the vector of basis functions of
size m such as polynomial or multivariate Gaussian basis functions, and ϵ is a white
Gaussian noise with variance σ2 i.e. ϵ∼N (0,σ2). For the sake of simplicity and for
illustrative purposes σ2 is assumed known. A likelihood function p(y|X,w,σ2,M) is
defined as the distribution of the observations conditioned on the parameters of the
model. Assuming independent and identically distributed (i.i.d) training data, the
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likelihood can be written as:

p(y|X,w,σ2) =
n∏

i=1
N
(
y(i)|w⊺ϕ(x(i)),σ2In

)
(2.2)

where In is the identity matrix of size n and the mention of the dependence on the
model M is dropped for notation simplicity. Maximizing this likelihood function with
respect to the parameters of the model w yields to their estimation. This procedure is
called a Maximum Likelihood Estimate (MLE):

ŵ = argmax
w

n∏
i=1
N
(
y(i)|w⊺ϕ(x(i)),σ2In

)
(2.3)

To simplify the expression of the Gaussian density, the likelihood is composed with the
natural logarithm to obtain the log likelihood which conserves the maximum since the
logarithm is a monotonically increasing function:

ŵ = argmax
w

log
(
p
(
y|X,w,σ2

))
= argmax

w
− n2 log

(
2πσ2

)
− 1

2σ2

n∑
i=1

(
y(i)−w⊺ϕ(x(i))

)2 (2.4)

Therefore, the maximization of the likelihood comes back to the minimization of the
Residual Sum of Squares (RSS):

RSS =
n∑

i=1
(y(i)−w⊺ϕ(x(i)))2 (2.5)

The RSS in the case of linear regression is convex, therefore, the minimization can be
performed by equalizing the gradients of the RSS to zero, which gives the ordinary
least square estimate:

w = (Φ⊺Φ)−1Φ⊺y (2.6)

where Φ corresponds to the values of all basis functions for all the training inputs i.e.
Φi,j = ϕj

(
x(i)

)
. Hence, a point estimate of the linear regression model parameters is

obtained using a MLE procedure. This estimate has some interesting properties, such
as consistency and analytical tractability [Wald, 1949]. However, being a frequentist
approach, the MLE considers the parameters fixed and does not include an uncertainty
quantification measure that provides information about where the model is confident
and where it is not. Moreover, since only the parameter values that best explain the
training data are chosen, this approach is prone to over-fitting i.e. a complex fit of
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Fig. 2.3 A Bayesian linear regression using the canonical polynomial basis function
of degree 10. The prediction is obtained by marginalizing out the weights following
Eq. (2.8). (left) the prediction obtained by the model is associated with an uncertainty
estimate. This uncertainty increases when the prediction is not confident, hence taking
into account the lack of information about the input range [1,2]. (right) the Bayesian
model avoids over-fitting by averaging over all possible parameter values.

the training data which breaches the trade-off training error (error on the fit of the
training data) and generalization error (error on the fit at unobserved locations) in
favor of the former (Fig. 2.1). Other pathological behaviors of frequentist estimators
such as the confidence interval construction and the violation of the likelihood principle
are intensively discussed in [Lindley, 1972, 1975; Berger et al., 1988; Jaynes, 2003].

The Bayesian perspective

In contrast with a frequentist approach, a Bayesian approach considers the model
parameters as random variables rather than fixed real values. The steps of the Bayesian
approach summarized in Fig. 2.2 are followed in this section. First, the determination
of the prior knowledge has to be expressed through the likelihood and the prior
distributions.

Likelihood
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The likelihood encodes the uncertainty of the data that is not explained by the
parameters of the model e.g., the noise of the observations. A Gaussian distribution is
often used:

p(y|X,w) =N (y|Φw,σ2In)

The Gaussian form is practical for analytical tractability as it will be illustrated in
the derivation of the posterior. However, for specific cases, other distributions are
used. For instance, to gain robustness in the case of outliers in the data, heavy-tailed
distributions are preferred such as t-student and to handle noise depending on the
location of the data x, heteroscedasticity is introduced i.e. a noise variance function
σ2(·) depending on the input location.

Prior
The prior distribution is what actually differentiates the Bayesian from the frequen-

tist. The prior over the parameters w encodes our beliefs a priori to the observations.
Even when there is no strong belief a priori, the prior has practical advantages. For
instance, the prior usually expresses a preference for simpler models and therefore
avoids over-fitting (Occam’s razor effect [Jefferys and Berger, 1992; Wolpert et al.,
1995; Rasmussen and Ghahramani, 2001; Ghahramani, 2005]). Nevertheless, certain
strong assumptions might drive the model from the desirable fit of the data. Hence,
flexible distributions with a high entropy (important variance) are usually preferred.
In the following, a Gaussian prior distribution is used on the parameters w:

p(w) =N (w|0,Σprior)

More sophisticated non-informative priors such as Jeffreys priors ([Jaynes, 1968; Ibrahim
and Laud, 1991; Tuyl et al., 2008]) can be used. Heavy tails distributions can be
naturally preferred when there is important uncertainty on the prior. Also, to conceive
more flexible priors, parameterized priors are used. Those parameters are called
hyper-parameters and can be learned via a maximum likelihood estimate on the data
(Empirical Bayes approach [Jamil and ter Braak, 2012]). In this case, the prior depends
on the training data. A more Bayesian treatment considers a prior on the prior, i.e. a
prior over the hyper-parameters (Hierarchical Bayes approach [Allenby et al., 2005]).

Inference
Bayes rule is the bread-and-butter of Bayesian statistics. In the inference step, the

posterior is inferred using Bayes rule.
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p(w|X,y) = p(y|X,w)p(w)
p(y|X)

= p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

(2.7)

Inference of the parameters comes back to the transformation of the prior information
(prior) by combining it with the likelihood of the data (likelihood) and taking into
account all the possible outcomes of the parameters (marginal likelihood also called
the evidence) into a posterior knowledge (posterior).

The marginal likelihood and the posterior are analytically tractable for a Gaussian
likelihood and a Gaussian prior (see Appendix B):

p(w|X,y) =N
( 1
σ2 ΣposteriorΦy,Σposterior

)
(2.8)

with Σposterior =
(

1
σ2 ΦΦ⊺ +Σ−1

prior
)−1

. In this case, the Gaussian prior is said to be
conjugate for the Gaussian likelihood i.e. the posterior and the prior have the same form
for the chosen likelihood. However, for more sophisticated priors this may not be the
case, and in the non-conjugate case the analytic tractability is lost and approximation
approaches are used (Section 2.1.2).

Prediction
For the prediction task at a location x∗, a marginalization over all the possible

values of the parameters w is done in order to obtain a posterior prediction y∗|x∗,X,y
with:

p(y∗|x∗,X,y) =
∫
p(y∗ |w,x∗,X,y)p(w |X,y)dw

=
∫
N
(
y∗ |w⊺ϕ(x∗ ),σ2

)
N
(

w
∣∣∣∣ 1
σ2 ΣposteriorΦy,Σposterior

)
dw

=N
(
y∗
∣∣∣∣ 1
σ2ϕ(x∗)⊺ΣposteriorΦy,σ2 +ϕ(x∗)⊺Σposteriorϕ(x∗)

) (2.9)

It is interesting to observe that the variance obtained on the prediction is constituted
of two terms. The first term σ2 is due to the likelihood and it takes into account
the noise of the observations. The second term encodes a variance depending on
how similar x∗ is to our training data. That second term, is what makes Bayesian
statistics interesting in applications where the information about the confidence of a
prediction is important (e.g., scarce training data, heterogeneous response). Moreover,
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by averaging over all possible parameter values and not taking the parameter values
that best explain the training data, the Bayesian approach is more robust against
over-fitting ([Rasmussen and Ghahramani, 2001; Neal, 2012]).

In addition, Bayesian statistics offer a natural way to compare between models
based on the Occam’s Razor principle: “All things being equal, the simplest solution
tends to be the best one”. In fact, the marginal likelihood p(y|X,Mi) for a model Mi

is a measure that can be used to compare between models {M1, . . . ,Ms}. It penalizes
complex models since their probability density is largely spread over the support of
the data, and simple models since their probability density is too narrow ([Jefferys and
Berger, 1992; Wolpert et al., 1995; Rasmussen and Ghahramani, 2001; Ghahramani,
2005]).

Graphical representation

A directed graph G = (V ,E) can be used to represent the interactions between the
different random variables involved in a model [Bishop, 2006]. V stands for a set of
vertices, which correspond to the random variables involved in the model. Observed
random variables such as the observations y are represented with shaded circular nodes,
while unobserved (latent) random variables such as the parameters w in Bayesian
regression are represented with unshaded circular nodes. Deterministic variables, such
as hyper-parameters or observed inputs, are also represented as vertices, but using
squared nodes. Dashed squared nodes corresponds to observed deterministic variables,
while the unshaded ones corresponds to unobserved deterministic variables. E stands
for the set of directed edges that connect between the vertices. An edge goes from A

to B if B is conditioned on A. A missing edge represents conditional independence.
Boxes called plates are used to represent i.i.d. data with a specified size. For instance,
in Fig. 2.4, a graphical representation of the frequentist approach to regression, the
classical Bayesian approach, the empirical Bayesian approach, and the Hierarchical
Bayesian approach are represented. This graphical representation enables one to
synthesize a machine learning model and will be of use when introducing the reviewed
Bayesian models in this chapter and also the developed models in the contribution
chapters (Chapter 4, Chapter 5, and Chapter 6).

2.1.2 Review on approximate inference techniques

In the illustrative example used previously, the prior was conjugate to the likelihood
which is computationally convenient. However, for more sophisticated priors/likelihoods,
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Fig. 2.4 Graph representation of different models. (top left) MLE representation, the
parameters w are point-estimated and so is the prediction y∗ . (top right) A standard
Bayesian graph representation, the parameters w are given a prior distribution, which
yields to a posterior predictive distribution p(y∗|y,X). (below left) An empirical
Bayes graph representation, the prior on the parameters w is parameterized and the
hyper-parameters θ as estimated by an MLE procedure. (below right) A hierarchical
Bayes graph representation, the prior on the parameters w is parameterized and the
hyper-parameters θ are given a prior distribution which yields to a fully Bayesian
treatment of the model.

it is usually not the case, which makes the integral computation of the marginal
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likelihood analytically not tractable. In that case, approximation approaches are used.
In the next paragraphs, the main approximate inference methods are described.

Maximum a Posteriori

Due to the computational burden of the marginal likelihood, the Maximum A Posteriori
(MAP) estimate considers only the mode of the posterior distribution. This is practical
since the marginal likelihood does not depend on the parameters w. Hence, the MAP
computation comes back to a simple optimization problem:

ŵMAP = argmax
w

p(y|X,w)p(w)
p(y|X)

= argmax
w

p(y|X,w)p(w)
(2.10)

However, the computationally appealing aspect of the MAP is overtaken by its point
estimate nature. Indeed, as the MLE, the MAP is a point estimate, and consequently
does not provide a measure of uncertainty and might results in over-fitting. Another
critic of the MAP is the use of the mode, in fact, the mode is variant to reparametrization
and is not a representative statistic unlike the median or the mean ([Murphy, 2012]).

Laplace approximation

Instead of considering a point estimate corresponding to the mode of the posterior
(MAP), Laplace approximation ([De Bruijn, 1981; Tierney and Kadane, 1986]) provides
an intuitive way to approximate the posterior with a distribution around its mode. To
do so, a second order Taylor series expansion is performed around the mode ŵMAP of
the energy function of the parameters e(w) =− logp(y,w|X):

e(w)≈ e(ŵ)+(w− ŵMAP)⊺∇e(w)|ŵMAP + 1
2(w− ŵMAP)⊺ ∂

2e(w)
∂w∂w⊺ |ŵMAP(w− ŵMAP)

(2.11)
The first order gradient term is equal to zero when evaluated in the mode, therefore,
the equation is simplified to:

e(w)≈ e(ŵ)+ 1
2(w− ŵMAP)⊺A(w− ŵMAP) (2.12)

where A corresponds to the Hessian matrix of the energy function. By combining
the energy function with the exponential function, the posterior distribution can be
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rewritten as follows:

p(w|y,X)≈ 1
p(y|X) ×p(y,ŵMAP)exp

(
−1

2(w− ŵMAP)⊺A(w− ŵMAP)
)

(2.13)

Notice that this expression corresponds to a non-normalized multivariate Gaussian
distribution centered around the MAP estimate and with covariance matrix equal to
the inverse of the Hessian A−1. Laplace approximation consists in approximating
the marginal likelihood p(y|X) such as the approximated posterior is a normalized
multivariate Gaussian. Thus, the following approximation is achieved:

p(y|X)→ p(y,ŵMAP)2π
m
2 |A|− 1

2

where m is the number of parameters. Accordingly, the obtained posterior is Gaussian.
This approximation is based on the fact that with a large amount of data compared to
the number of parameters, the posterior of the parameters is approximately Gaussian
around the MAP based on Bernstein-von Mises theorem [Freedman et al., 1999].
Consequently, with not enough data the Gaussian approximation around the MAP can
be of poor quality. Moreover, as the MAP, it suffers from the use of the approximation
around the mode, which may not be a suitable statistic of the distribution. Another
problematic aspect of Laplace approximation is the computation of the Hessian that
can be computationally expensive, especially in high-dimensional parameter space.

Variational Inference

One way to approximate the true posterior p̃(w) = p(w|X,y), is to choose an approxi-
mation q(w) from a family of distributions that is the most similar to the intractable
true posterior i.e. that minimizes a distance measure between the two distributions.
To measure a distance between probability distributions, the Kullback-Leibler (KL)
[Kullback and Leibler, 1951] divergence is usually used [Hobson and Cheng, 1973]. KL
divergence measures the dissimilarities between two distributions. It can be interpreted
as the information lost using the approximation distribution instead of the true pos-
terior. KL is not a symmetrical measure, in fact, it comes back to the computation
of an expectation with respect to p̃, KL[p̃||q] (forward KL) or q(·), KL[q||p̃] (reverse
KL). A popular set of approaches called Variational Inference (VI) [Jordan et al., 1999;
Blei et al., 2017] consists in minimizing the KL divergence from p̃ to a parameterized
distribution qθq (reverse KL). In this context, qθq is called variational distribution and
the parameters θq are called variational parameters. qθq is chosen from a family of
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parameterized distributions Q and the minimization of the KL divergence comes back
to finding the parameters θ̂q within this family of distributions that lead to the best
matching between the posterior and the variational distributions:

θ̂q = argmin
θq

KL(qθq ||p̃)

= argmin
θq

∫
w
qθq(w) log

qθq(w)
p̃(w) dw

(2.14)

In VI, KL is computed from p̃ to q (for the sake of brevity q corresponds to qθq) in order
to avoid the expectation with respect to the intractable true posterior p̃. The family of
distribution Q is based on a trade-off between expressiveness power and tractability.
The exponential family or mixture of exponentials are usually used [Jaakkola and
Jordan, 1999; Blei et al., 2017]. However, Eq. (2.14) still got the true posterior term.
To completely remove p̃ from the expression, Bayes rule is used, and since the marginal
likelihood is constant, it yields to:

θ̂q = argmin
θq

∫
w
q(w) log q(w)

p(y,w)dw+
∫

w
q(w) logp(y|X)dw

= argmin
θq

∫
w
−q(w) logp(y|w)dw+KL[q||p]+C

= argmin
θq

Eq [− logp(y|w)]+KL[q||p]

(2.15)

This minimization can also be interpreted as a maximization of a lower bound on
the logarithm of the true marginal likelihood called Evidence Lower Bound (ELBO).
In fact, by introducing the approximation q and using Jensen inequality, the following
is obtained:

logp(y) = log
∫

w
p(y|w)p(w)dw

= log
∫

w

q(w)
q(w)p(y|w)p(w)dw

≥ L=
∫

w
q(w) log

(
p(y|w)p(w)

q(w)

)

L=
∫

w
q(w) log(p(y|w))+ q(w) log p(q(w)

q(w) dw

= Eq [logp(y|w)]−KL[q||p]

(2.16)
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where L is the ELBO. The obtained expression is interesting to analyze. In fact, the
maximization of the ELBO (minimization of the KL divergence) comes back to the
maximization of a first term, that improves the fit of the data using q(w) and the
minimization of a second term, that avoids over-fitting by assuring that q(w) is as
similar as possible to the prior (regularization term). Therefore, an automatic Occam’s
razor effect is intrinsic to VI by penalizing distributions q(w) that are too complex
compared to our prior beliefs.

For the form of the approximation distributions, usually, a fully factorized distribu-
tion over the parameters is used q(w) =∏m

i=1 q(wi). This approach is called a mean
field approximation. More sophisticated approaches can be used, as hierarchical mean
field approximations. For instance, in deep structures, the correlation layer-wise of
the parameters are kept in the approximation. However, sophisticated forms of the
variational distributions often yield to an analytically non-tractable expectation term.
To overcome this issue, different works are built on the idea of Monte-Carlo sampling
to approximate the derivative of the expectation [Graves, 2011; Kingma and Welling,
2013; Titsias and Lázaro-Gredilla, 2014; Paisley et al., 2014; Schulman et al., 2015]. A
variance analysis of these different estimators used in VI is presented in [Gal, 2016].

Stochastic optimization has been used to optimize the ELBO [Hoffman et al., 2013].
This optimization can be tricky since it is performed with respect to the variational
parameters. Specifically, the variational distribution parameter space has a Riemannian
structure defined by the Fisher information [Amari, 1998]. In fact, optimizing with
respect to the parameters of a distribution makes the parameter space not euclidean,
hence, the ordinary gradient is not a suitable direction to follow [Amari, 1998]. In this
case, the natural gradient which comes back to the ordinary gradient rescaled by the
inverse Fisher information matrix, is the steepest descent direction.

Recently, to overcome the limitation of an explicit form of the variational distribu-
tion, [Mescheder et al., 2017] proposed VI with implicit posteriors. More specifically,
the variational posterior is defined by a parameterized black-box procedure. The
implicit form leads to an intractable KL divergence between the prior and posterior
distributions in Eq. (2.15). The idea then, is to express this intractable term as the
optimization result of a discriminative network [Goodfellow et al., 2014]. Therefore, the
VI optimization problem comes back to two nested optimization problems, which are
formulated as a game theory problem [Gibbons, 1994] and where the Nash-equilibrium
corresponds to the global optimum of the ELBO.

One of the drawbacks of VI is that it tends to underestimate the variance of the
approximate posterior [Murphy, 2012; Blei et al., 2017]. This is due to the objective
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function of VI (reverse KL) where the expectation is computed under q(w). This
objective penalizes regions where q(w) is high, while regions where q(w) is very low
have no consequences on the objective function.

Expectation Propagation

In contrast to VI approaches that consider the minimization of the reverse KL diver-
gence, the Expectation Propagation (EP) [Minka, 2001, 2013] aims to minimize the
forward KL divergence. Since the forward KL is intractable, EP approximates the
joint distribution p(y,w).

Given the joint distribution p(y,w) =∏n
i=0 ti(w) where t0(w) = p(w) and ti(w) =

p(y(i)|w) for i= 1, . . . ,n. The idea of EM is to approximate each ti with a t̂i, hence,
defining an approximated distribution of the joint distribution that is q(w) =∏n

i=0 t̂i(w).
Each t̂i for i= 1, . . . ,n can be interpreted as an approximate contribution term of data-
point i to the likelihood. The family of distributions of t̂i is the exponential family so
that

∫
w q(w)dw and q(w)∫

w q(w)dw which respectively approximate the marginal likelihood
and the posterior distribution are analytically tractable (exponential families are close
under multiplication). The approximation is performed through a loop procedure:

1. Initialize t̂i to constant densities.

2. Until convergence (defined by a threshold change in the parameters of each
density), choose a j ∈ 1, . . . ,n then:

q← argmin
q′

KL[q−jtj ||q′]

3. return q

where q−j(w) = ∏
i̸=j t̂i(w) is called the cavity distribution. Hence, the update at

each iteration allows to update a t̂j so that q(w) is as close as possible to the true
distribution with respect to the term tj i.e. tj(w)∏i̸=j t̂i(w). EP may seem similar to
the Assumed Density Filtering approach (ADF) [Ranganathan, 2004]. However, in ADF
the joint distribution p(y,w) is kept exact and the evidence is approximated iteratively
by considering at each iteration another ti, hence creating an order dependence. EM
is free from the order constraint and multiple loops can be performed until reaching
convergence.

This loop procedure can be relaxed by considering each data-point contribution to
the likelihood equal to the average of contributions ¯̂t. Thus, the approximation comes
back to q(w) = t0tni and instead of optimizing n densities only one is considered. This
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tied factor constraint is used in Stochastic EP (SEP) [Li et al., 2015]. In addition to
the steps described previously in the case of EP, SEP adds a final step consisting in
a moment update of the average contribution: ¯̂t← ¯̂t1−β ¯̂tβupdated where β is a chosen
learning rate. However, by reducing the complexity of the EP, the tied factor constraint
yields to less accurate posterior approximations.

Markov Chain Monte Carlo

The different approaches described above are deterministic approaches (VI can have
a stochastic term if the log expectation term is approximated using Monte Carlo
approaches). Another set of fully stochastic methods aims to sample from the true
posterior using Markov Chain Monte Carlo (MCMC) [Neal, 1993]. MCMC techniques
consist in approaching the true intractable distribution p̃ by sampling in the parameter
space (Monte Carlo aspect) through a chain of distributions (Markov chain), so that the
set of samples obtained at the end of the chain is representative of the true distribution
(p̃ is said to be the stationary distribution of the Markov chain). The construction of
this chain is based on the definition of a transition from one state of the parameters
to the next (in a Markov chain the current state depends only on the previous one).
So, the different MCMC approaches differ in the construction of the transition in
this chain i.e. how to walk in the state space (hence the name random walk). In
this construction, some desirable properties are expected from the transition so that
from any initial state with enough samples one can approach the true distribution
[Neal, 1993]. Gibbs sampling [Gelfand et al., 1990] is a popular sampling approach
when the conditional density of each parameter alone can be sampled analytically. For
a joint posterior distribution of different variables, it consists in sampling from the
posterior distribution of one variable while conditioning on all the others and so on for
all the variables using multiple passes through. A more general MCMC approach is
the Metropolis Hastings (MH) algorithm [Hastings, 1970; Chib and Greenberg, 1995],
the transition is defined by a distribution η(·) known as the proposal distribution (for
instance, a random Gaussian walk η(w(i+1)|w(i)) =N (w(i+1)|w(i),Σ) ). It is called
proposal distribution because it proposes a move that is not necessarily accepted. In
fact, the sample obtained with this jump is accepted with a probability p(wnew|y)

p(wold|y) and
is rejected otherwise. Notice that the ratio uses the posterior intractable distribution,
however, since it is a ratio, the marginal likelihood is eliminated and it comes back to
the ratio of the joint distribution of the prior and the likelihood that is analytically
tractable. This walk in the parameter space is interesting, samples are pushed in
regions of higher posterior probability i.e. regions with important information about
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the probability density. This intelligent sampling reflects the interest of using MCMC
in a high-dimensionnal parameter space where the volume within which lies the samples
is much more important than the concentration volume of the target density. Instead
of considering a random proposal distribution, Metropolis adjusted Langevin algorithm
[Atchadé, 2006] relies on the information about the differential geometry of the target
distribution (that are obtainable up to a constant) to make a move based on Langevin
dynamics. However, using the information about the gradient directly to sample
an approximate from the target distribution will lead to over-sampling around the
mode which is sensitive to re-parametrization. In Hamiltonian Monte Carlo (HMC)
[Duane et al., 1987; Neal et al., 2011] by an analogy with Hamiltonian mechanics,
the walk follows the Hamilton’s equations. To do so, the state space is augmented
into a phase space, with the introduction of auxiliary momentum vector θ conjugated
to the parameter vector w that plays the role of the generalized coordinates. Hence,
the gradient is used to update the momentum vector instead of the parameter vector.
The conditional distribution over the momentum p̃(θ|w) (corresponding to the kinetic
energy of the system) has to be specified, and also the discretization times used in
the Hamiltonian equations which can be tricky i.e. if badly chosen can result in poor
approximation. Moreover, the gradient of the joint likelihood-prior distribution has
to be computed over all the data set, which can be computationally expensive. In
order to overcome the computational burden of the gradient computation in HMC,
[Chen et al., 2014] used stochastic gradient with some adaptations of HMC to limit
the undesirable effects of the noisy gradients.

The different approaches described above are summarized in table 2.1, with an
emphasis on the advantages and the drawbacks of each family of methods.

2.2 Gaussian Processes (GPs)

Bayesian linear regression, described previously, uses a parameteric function ϕ(x)⊺w
and the parameters w are inferred following Bayesian inference. Instead of considering
a distribution over parameters to describe a parametric function, a distribution over
function may be used. A distribution over function defines a stochastic process. In
this section, Gaussian processes, one of the most popular stochastic processes are
introduced.
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Table 2.1 Non-exhaustive summary of some approximate Bayesian inference approaches
with a brief description of their respective concept, advantages and drawbacks.

Approach Concept Advantages Drawbacks
MAP esti-
mate

Mode of the pos-
terior

Easy to compute Not Bayesian, patholo-
gies of the mode

Laplace
Approxi-
mation

Gaussian approx-
imation around
the MAP

for n→∞ posterior→
Gaussian

Computation of the
Hessian, scarce data
case, pathologies of the
mode

Variational
Inference

Minimization of
the reverse KL

Flexible, ELBO, differ-
ent variants

Mean-field approxima-
tions, under-estimate
the variance, log expec-
tation term

Expectation
Propaga-
tion

Minimization of
the direct KL

Highly parallelizable,
the exponential family,
Fast to converge

Multi-modal posterior,
scarce data case,
high-dimensionnal
problems

Monte-
Carlo
Markov-
Chain

Sampling
through a
defined Markov
chain

Easy to implement,
Adaptation to prob-
lems

Computationally
intensive, stopping
criteria

2.2.1 Definitions

A Gaussian Process (GP) [Williams and Rasmussen, 2006] f is a stochastic process
indexed by a set X⊆Rd: {f(x) : x ∈X} such as any finite number of random variables
of the process has a joint Gaussian distribution:

∀n′ ∈ N∗,∀X′ =
[
x′(1), . . . ,x′(n′)

]⊤
∈ X,f(X′)∼N

(
µ
(
X′
)
,k
(
X′,X′

))
(2.17)

with f(X′) =
[
f
(
x′(1)

)
, . . . ,f

(
x′(n′)

)]⊤
. A GP is completely defined by its mean and

covariance functions and is noted f(·)∼ GP (µ(·),k(·, ·)), with µ(·) the mean function
and k(·, ·) the covariance function also called kernel.

GPs are a popular approach for regression and it is used in multiple scientific fields.
Especially in the geostatistical community, where it is known as Kriging [Matheron,
1967; Oliver and Webster, 1990]. A graphical representation of a GP is presented in
Fig. 2.5.

Given the regression problem Preg, a GP prior is considered f(·)∼GP
(
µ(·),kθ(·, ·)

)
to express the prior belief of the response. The prior mean function µ(·) can take a
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x(i)

y(i)

i = 1, . . . ,n

f θ

∞

Fig. 2.5 Graphical representation of a Gaussian process with a parameterized prior
with parameters θ estimated using a MLE procedure. The GP prior is defined over an
infinite number of inputs, hence, there are infinite GP nodes one for every possible
input, and is called Gaussian random field.

form that describes the trend of the exact unknown function if information about the
trend is available (universal Kriging) otherwise a constant mean function µ may be
considered (ordinary Kriging). The prior covariance function kθ(·, ·) parameterized
with a parameter vector θ represents the prior belief of the unknown function to be
modeled (e.g., smoothness, periodicity, stationarity, separability). Samples from two
different covariance functions are illustrated in Fig. 2.6. A likelihood function is defined
to take into account the noise in the observations such as the relationship between the
latent (non-observed) function values f = f(X) and the observed response y is given
by: p(y|f) =N (y|f,σ2In). Using Bayes rule, the marginal likelihood is obtained based
on multivariate Gaussian identities (Appendix B):

p(y|X) =
∫

f
p(y|f)p(f|X)df

=
∫

f
N
(
y|f,σ2In

)
N
(
f|µ(X),kθ(X,X)

)
df

=N
(
y|µ(X),kθ(X,X)+σ2In

) (2.18)

To construct priors that are more adapted to the data, the hyper-parameters of
the covariance function θ, the constant mean function µ (ordinary kriging), and the
Gaussian noise variance σ2 are estimated through a maximization of the marginal
likelihood (empirical Bayes):

θ̂, µ̂, σ̂ = arg max
θ,µ,σ

N
(
y
∣∣∣1µ,kθ(X,X)+σ2In

)
(2.19)
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Fig. 2.6 The confidence interval and samples from a zero-mean GP (left) with a squared

exponential kernel (also known as RBF) kθ(x,x’) = exp
(
−

d∑
i=1

θi.|xi−x′
i|2
)

(right)

with a 3/2 Matérn kernel kθ(x,x’) =
(

1+
√

3
d∑

i=1
θi.|xi−x′

i|
)

exp
(
−
√

3
d∑

i=1
θi.|xi−x′

i|
)

where 1 denotes an n-vector of ones. The posterior predictive distribution is obtained
in new locations X∗ =

[
x∗(1), . . . ,x∗(n∗)

]⊤
through two steps. Firstly, using the property

of a GP, Eq.(2.17), that is the joint distribution of the predicted outputs f∗ = f(X∗)
and the observed outputs y is Gaussian: y

f∗

∼N
1µ̂,

kθ̂(X,X)+ σ̂2In ,kθ̂(X,X∗)
kθ̂(X∗,X) ,kθ̂(X∗,X∗)

 (2.20)

Then, the posterior predictive distribution is obtained by conditioning the prior distri-
bution on the observations, which comes back to the conditional distribution of a joint
Gaussian distribution:

f∗|X∗,y,X∼N
(
f̂(X∗),Σ̂(X∗)

)
(2.21)
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Fig. 2.7 The posterior mean, uncertainty measure and one-dimensional samples from
the posterior of a GP (left) with a squared exponential kernel (right) with a 3/2 Matérn
kernel (left).

where f̂(X∗) and Σ̂(X∗) are respectively the mean and the covariance of the posterior
distribution and are defined as:

f̂(X∗) = 1µ̂+kθ̂(X∗,X)
(
kθ̂(X,X)+ σ̂2In

)−1
(y−1µ̂) (2.22)

Σ̂(X∗) = kθ̂(X∗,X∗)−kθ̂(X∗,X)
(
kθ̂(X,X)+ σ̂2In

)−1
kθ̂(X,X∗) (2.23)

It is interesting to notice that the prediction depends on the inverse of kθ̂(X,X)
(called the Gram matrix) which grows with the amount of the training data, illustrating
the non-parametric aspect of GPs. This gives GPs more flexibility, however, the
inversion of the matrix can quickly become a computational burden for large data-set
(see Section 2.2.2).

Estimating the hyper-parameters is called the learning step, while the conditioning
on the observations to obtain the posterior distribution is the inference step. Instead
of using an empirical Bayesian approach to deal with the hyper-parameters, a fully-
Bayesian approach can be used. In fact, in [Snoek et al., 2012] the hyper-parameters
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of the kernel have been marginalized out and an MCMC approach was used to get the
posterior distribution.

In the previous definition of GPs, the single-output regression framework has been
used. However, GPs are also used for the approximation of vector-valued functions.
In that case, it is called multi-output GPs [Alvarez et al., 2011]. The inference and
learning steps for multi-output GPs follow the same equations introduced in this
section.

In the presented GP regression model, a Gaussian likelihood function has been used.
It is motivated by its conjugancy with the prior GP, yielding to an analytical form of
the posterior as described previously. However, in some specific cases, one may prefer
another form for the likelihood distribution. For instance, in [Vanhatalo et al., 2009]
to deal with outliers in the training data a t-student likelihood was used which better
handles the outliers than Gaussian likelihood due to its heavier tails. In [Goldberg
et al., 1998], a heteroscedastic Gaussian likelihood has been proposed. It is practical
to use for problems where the error of measurements depends on the observed values.

Henceforth, for notation simplifications, the dependence of the prior covariance
function on θ is dropped, and k(X,X′) is written KX,X′ . Moreover, without loss of
generality, the prior GP is considered with a zero constant mean function µ= 0.

2.2.2 Sparse Gaussian Processes

The major drawback in GP concerns the handling of large data-sets. In fact, the
training and prediction using GPs involves the inversion of the Gram matrix, that
is the covariance matrix of the whole data-set KXX ∈ Rn×n. This inversion has a
cubic complexity O(n3), which rapidly becomes computationally overwhelming. To
overcome this limit of GPs, Sparse Gaussian Processes (SGPs) consisting of low rank
approximation of the covariance matrix KXX have been developped. SGPs augment
the latent space with a set of inputs/outputs called inducing input-output variables.
Specifically, a set of m<<n inducing pair of input-output variables Z =

{
z(1), . . . ,z(m)

}
and u = f(Z) =

{
u(1), . . . ,u(m)

}
are introduced in order to reduce the time complexity

of GPs from O(n3) to O(nm2). Different approaches that have been developed to
determine this sparse approximation are described in the next paragraphs.
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Prior approximation

One direction of approaches modifies the prior in order to get rid of KXX. For that,
the induced variables are marginalized:

p(f|X) =
∫

u
p(f|X,Z,u)p(u|Z)du

=
∫

u
N
(
f|KXZK−1

ZZu,KXX−KXZK−1
ZZKZX

)
N (u|0,KZZ)du

=N (f|0,KXX−KXZK−1
ZZKZX +KXZK−1

ZZKZX)
=N (f|0,K̃+KXZK−1

ZZKZX)

(2.24)

where K̃ corresponds to the difference between KXX and the Nyström approximation
KXZK−1

ZZKZX. In order to obtain an approximation which reduces the time com-
plexity, an approximation q(f|X,Z,u) = N

(
f|KXZK−1

ZZu, Q̃
)

is considered where Q̃
approximates K̃ with a simpler form. Therefore, the prior itself is changed with this
approximation as follows:

q(f|X) =N
(
f|0, Q̃+KXZK−1

ZZKZX
)

(2.25)

Notice that by marginalizing over u, only the inducing inputs Z have to be determined.
This is usually performed using a MLE procedure. Different choices of Q̃ have been
proposed. The Projected Latent Variables (PLV) [Seeger et al., 2003] approximates
KXX with the Nyström approximation i.e. Q̃ = 0. In [Snelson and Ghahramani,
2006], the Fully Independent Training Conditional (FITC) approach considers Q̃ as a
diagonal matrix corresponding to the difference between the diagonals of the covariance
matrix KXX and its Nyström approximation i.e. Q̃= diag(K̃). Using the Woodbury
matrix identity [Woodbury, 1950], the computation of the inverse of the obtained
approximations comes back to that of a matrix of size m×m. Notice that increasing
the size of the inducing variables leads to the recovery of the exact GP model. However,
when m << n the prior of the GP is changed and there is no guarantee that the
approximate marginal likelihood represents the true GP.

Variational Sparse GP

Another direction of approaches for Sparse Gaussian Processes considers a variational
framework to infer the inducing variables. The variational formulation allows to keep
the exact GP prior [Titsias, 2009]. For that, u is assumed to be a sufficient statistic for
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f i.e. p(f|u,y) = p(f|u). Then, the following variational approximation is considered:

q(f,u|y) = p(f|u)q(u)

where q(u) is a free variational Gaussian distribution over the inducing variables. By
marginalizing over u and using the same trick as in Eq. (2.15) a first lower-bound on
the marginal likelihood is obtained:

p(y|X)≥ L1 = Eq(u) [logp(y|u,X,Z))−KL(q(u)||p(u))

In this equation while the KL term is analytically computable for a Gaussian variational
distribution, the log expectation term is not tractable. Therefore, in order to maximize
the lower bound, MCMC approaches can be used to estimate the log expectation term
[Hensman et al., 2015]. To avoid sampling, a loosen analytical lower-bound is achieved
by considering a lower-bound on log (p(y|u,X)) that is obtained by marginalizing over
f and using the assumption of statistic sufficiency of u for f:

logp(y|u,X,Z)≥ Ep(f|u,X,Z) [p(y|f)]

The advantage of this bound is that it has an analytical form and that it is fully factor-
izable over the observations [Hensman et al., 2013]. Moreover, taking the expectation
of this achieved lower bound with respect to q(u) maintains those desirable properties.
Hence, the following fully factorizable analytical bound on the marginal likelihood is
obtained:

p(y|X)≥ L2 =
n∑

i=1
G(i)−KL(q(u)||p(u)) (2.26)

where G(i) are analytical terms obtained for each observation i ∈ {1, . . . ,n} depending
on y(i),x(i),Z, and θ. Notice here that the optimization is done according to the
deterministic parameters that are the kernel parameters θ and the induced inputs Z
and also according the variational parameters θq(u) of q(u). This can lead to difficulty
in the optimization of the lower-bound since θq(u) are defined in a non-euclidean space
[Salimbeni et al., 2018]. To tighten the bound and collapse q(u), the bound can be
maximized analytically according to θq(u), and the optimal value of θq(u) can then be
injected into Eq. (2.26) to obtain an expression of a lower bound L3 depending only on
the hyper-parameters of the kernel and the inducing inputs [Titsias, 2009]. However,
the obtained lower-bound in that case is not factorizable over observations.
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Inter-domain sparse GP

In the direct approaches or the variational ones, the inducing inputs Z share the
same input space as the observed inputs X. This formulation may lead to important
inaccuracy in high-dimensionnal input spaces withm<<n. This is due to the important
distances between the limited number of inducing inputs in high-dimensionnal spaces
that leads to negligible correlation between the inducing variables. To overcome this
complication, [Lázaro-Gredilla and Figueiras-Vidal, 2009; Lázaro-Gredilla et al., 2010]
proposed inter-domain GPs. The concept is to choose a domain where the function can
be better described than the actual input space and overcome the limitation of local
influence in the original input space. The chosen space can have a different dimension
d′ than the actual input space of dimension d. Thus, the inducing inputs are defined
on Rd′ and the expression of the inducing inputs and the inducing outputs are defined
via the following transformation:

u(z) =
∫
Rd
f(x)ψ(x,z)dx

where ψ(x,z) is a chosen transformation. This yields to a different expression of the
covariance matrix of KZZ and KZX. [Lázaro-Gredilla and Figueiras-Vidal, 2009] used
the FITC approach with a Fourier projection of the inducing variables. While in
[Hensman et al., 2017], a Fourier transformation has been proposed for a variational
sparse GP labeled Variational Fourier Features for Gaussian Processes. In [Dutordoir
et al., 2020], a more big-data friendly variational sparse GP projection based on
Spherical Harmonic features has been developed. Fig. 2.8 summarizes the different
mentioned approaches. Wilson and Nickisch [2015] proposed a structured kernel
interpolation that unifies and generalize the inducing inputs framework. This allowed
the authors to introduce KISS-GP a highly scalable inducing points GP approach.

2.2.3 Gaussian Processes and other models

GPs can be derived from different machine learning models, which gives them different
possible interpretations depending on the perspective taken. The introduction to GPs
followed in this thesis started from a linear regression model. Then, the Bayesian
concepts were introduced to obtain a Bayesian linear regression model. Finally, going
non-parametric by describing a prior over functions instead of one over weights gave
rise to a Gaussian process regression model. This is well described by the cube of
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Fig. 2.8 Summary of the presented Sparse GP approaches.

Ghahramani (Fig. 2.9) (it also includes the classification part that is beyond the topic
of this thesis).

From Bayesian linear regression to GPs

Let reconsider a Bayesian linear regression model. The prediction distribution given
by this model is given in Eq. (2.9). This prediction can be "kernalized" i.e. expressed
with a kernel, by defining the following kernel:

k(x,x′) = ϕ(x)⊺Σposteriorϕ(x′)
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Fig. 2.9 The Ghahramani cube summarizes the different relations between linear regres-
sion, Bayesian linear regression, kernel methods, GP regression, and their classification
equivalents. The transition from a regression approach to another goes through either
kernalization, Bayesian approach, or the combination of the two.

In fact, by replacing this kernel definition in Eq. (2.9), the prediction comes back to
the same expression as the one obtained by the posterior predictive distribution of a
zero mean Gaussian Process in Eq. (2.22). However, the interesting observation is that
this kernel defines a degenerate covariance matrix KXX with a number of eigenvalues
equal at most to the number of parameters. This highlights the limited flexibility of a
parametric model compared to a GP.

From Reproducing Kernel Hilbert Space to GP

Consider an input space X and a positive definite kernel k(·, ·) on X, a Hilbert space Hk

of functions over X, with a defined inner-product < ·, ·>Hk
is said to be a Reproducing
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Kernel Hilbert Space (RKHS) with reproducing kernel k(·, ·) if these two conditions
are satisfied:

• ∀x ∈ X,k(·,x) ∈Hk

• ∀(x,f) ∈ X×Hk,f(x) =< f,k(·,x)>Hk

RKHS have some interesting properties e.g., a bijection exists between the set of
positive definite kernels k(·, ·) and the set of RKHS for wich k(·, ·) is the reproducing
kernel, the functions of the RKHS for which k(·, ·) is the reproducing kernel share
the same properties as k(·, ·) (differentiability, smoothness, etc.) [Christmann and
Steinwart, 2008]. Different works have been developed around the connection between
RKHS and GPs, yielding to interesting results in both directions [Hofmann et al., 2008;
Alvarez et al., 2011; Anjyo and Lewis, 2011]. To illustrate a brief connection between
the two approaches, a kernel ridge regression over a RKHS is considered. It consists in
minimizing a square loss function plus a regularization term σ2 over a RKHS:

f = argmin
f∈Hk

1
n

n∑
i=1

(
f(x(i))−y(i))2

)
+σ2||f ||2Hk

(2.27)

where ||f ||Hk
is the norm of a function with respect to the defined inner-product over

Hk. The norm plays the role of a regularization term by penalizing complex functions
with respect to the kernel. Using the representer theorem [Dinuzzo and Schölkopf,
2012], it can be shown that only one solution exists that is:

f̂(x) = kxX(KXX +σ2In)−1y (2.28)

Notice that the obtained solution corresponds to the mean prediction of a GP in
Eq. (2.22) (MAP estimate of a GP) where σ2 can be interpreted as the variance of
a Gaussian noise. The interesting conclusion from this connection is that the mean
prediction (MAP estimate) of a GP belongs to the RKHS of the prior kernel used.
However, sampling from the GP posterior does not guarantee samples from the RKHS.

From Neural Networks to GP

Another model from which Gaussian processes can be derived are Artificial Neural
Networks (ANN). ANNs have been widely used in the machine learning community
for a broad spectrum of applications [Basheer and Hajmeer, 2000; Bishop, 2006]. To
illustrate the connections of ANNs to GPs, consider a multi-layer perceptron with one
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hidden layer. The prediction is obtained with the following:

f(x) = b+
s∑

i=1
wiτ(x,hi)

where b corresponds to a bias term, s the number of hidden units, wi to the weight of
the output of the hidden unit i, hi to the input/feature weights of unit i, and τ(·) is
the activation function. As it is now settled from the previous sections, to get a GP
one has to think Bayesian and non-parametric, in other words, includes priors and get
rid of weights.

For that purpose, a factorizable Gaussian prior over the bias and the output weights
with zero mean and variance σ2 and an unspecified prior on the inputs weights are
considered, yielding to a Bayesian Neural Network (BNN) [Neal, 2012]. Based on
the central limit theorem for a large enough sum i.e. a large number of hidden
units (a very wide hidden layer), there is a joint Gaussian distribution for any set
of function evaluations of the ANN hence defined. The infinite sum gets rid of the
weight parameters wi and the bias b. Therefore, a non-parametric model with a joint
Gaussian distribution for any set of outputs is defined, thus the equivalence with a GP.
This connection between the two approaches was first presented in [Neal, 1995]. This
connection certainly illustrates the power of representation of a GP since the power of
representation of an ANN increases with its number of units.

The other direction, going from a GP to an ANN is also possible with a slight
detour to kernel approaches. In fact, Mercer theorem [Carmeli et al., 2005] postulates
that any positive-definite kernel can be represented by the inner product of features
k(x,x′) =<ϕ(x),ϕ(x′)>. Therefore, to obtain an ANN from a GP, one has to get the
features from the kernel and use them as activation functions.

Other works investigate these connections between GPs and ANNs and its hierar-
chical generalization called Deep Neural Networks (DNNs) [Lee et al., 2017; Matthews
et al., 2018; Yang, 2019; Agrawal et al., 2020]. DNNs have gained a lot of popularity
these last years. Their prowess in resolving some problems this last decade that were
not possible for other models has been overwhelming [Goodfellow et al., 2016]. One
can also think of the same hierarchical generalization to GPs due to their connection
with ANNs illustrated previously. This deep generalization has been introduced in
[Damianou and Lawrence, 2013] and it is called Deep Gaussian processes. Inspired
by the cube of Ghahramani, a spectrum illustrating the connections between the
ANN, BNN, GPs, and their hierarchical generalization DNN, Deep BNN (DBNN), and
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Deep Gaussian Processes (DGPs) is presented in Fig. 2.10. In the next section, this
hierarchical generalization of GP is introduced.

Wide

Bayesian
Deep

DNN

DBNN

DGP

ANN

BNN

GP

Fig. 2.10 The spectrum expresses the relationship between shallow artificial neural
networks (ANN), Bayesian neural networks (BNN), Gaussian processes (GPs), and their
hierarchical generalization. The transition from one approach to another goes through
either Bayesian approach, wider architecture, deeper architecture or the combination
of the three.

2.3 Deep Gaussian Processes (DGPs)

This section serves as the introduction of the central machine learning model on which
the contributions of this thesis are based. First, Deep Gaussian Processes (DGPs)
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are introduced and defined in Section 2.3.1. Then, a unified view of DGP inference
is presented in Section 2.3.2. Finally, an overview of applications of DGPs in the
literature is exposed in Section 2.3.3 with a perspective view of the contributions of
this thesis within these applications.

2.3.1 Definitions

A Deep Gaussian Process (DGP) is a nested structure of GPs considering the rela-
tionship between the inputs and the final output as a functional composition of GPs
(Fig. 2.11)

y = f[l−1](. . . f[i](. . .(f[1](f[0](x)+ϵ[0])+ϵ[1])+ϵ[i])+ ϵ[l−1]) (2.29)

where l is the number of layers and f[i](·) is an intermediate GP. Each layer i is
composed of an input node H[i] of dimension d[i], an output node H[i+1] of dimension
d[i+1] and a multi-output GP f[i](·) mapping between the two nodes, getting the
recursive equation: H[i+1] = f[i]

(
H[i]

)
. A Gaussian noise ϵ[i] ∼N (0,σ2

[i]) is introduced
such as H[i+1] = f[i](H[i])+ϵ[i]. The one column matrix H[l] = f[l−1]

(
H[l−1]

)
refers to

an unobserved noiseless version of y. An exploded view showing the multidimensional
aspect of DGPs is illustrated in Fig. 2.12.

X H[1]

f[0] ∼ GP(0, KXX) + ϵ[0]

H[2]

f[1] ∼ GP(0, KH[1]H[1] ) + ϵ[1]

... H[l−1] y

f[l−1] ∼ GP(0, KH[l−1]H[l−1] ) + ϵ[l−1]

Fig. 2.11 A representation of the structure of a DGP

This hierarchical composition of GPs presents better results than regular GPs in
the approximation of complex functions [Damianou and Lawrence, 2013; Dai et al.,
2015; Salimbeni and Deisenroth, 2017]. In fact, DGPs allow a flexible way of kernel
construction through input warping and dimensionality expansion to better fit data
(see Chapter 4 for more details).

In GP regression models, the hyper-parameters involved are the kernel parameters,
the mean function parameters and the likelihood parameters. The optimization of
these hyper-parameters in the training of GPs is analytically tractable for a Gaussian
likelihood function. In DGPs, in addition to the hyper-parameters considered for each
layer, non-observable variables H[1], . . . ,H[i], . . . ,H[l] are involved. Hence, the marginal
likelihood for DGP can be written as:
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X

H[1],1

...
f[0] +ϵ[0]

H[1],d[1]

H[2],1

...

H[2],d[2]

f[1]

... ...

H[l−1],1

H[l−1],

d[l−1]

y

f[l−1] + ϵ[l−1]

Fig. 2.12 An exploded view of the structure of a DGP

p(y|X) =
∫

H[1]
. . .
∫

H[l]
. . .
∫

H[l]
p
(
y,H[1], . . . ,H[i], . . . ,H[l]|X

)
dH[1] . . .dH[i] . . .dH[l]

=
∫

{H[i]}l
1
p
(
y,{H[i]}l1|X

)
d{H[i]}l1

=
∫

{H[l]}l
1
p(y|H[l])p(H[l]|H[l−1]) . . .p(H[1]|X)d{H[i]}l1 (2.30)

where {H[i]}l1 is the set of non-observable (latent) variables {H[1], . . . ,H[l]}.

The computation of this marginal likelihood is not analytically tractable. Indeed,
p(H[i+1]|H[i]) non-linearly involves the inverse of the covariance matrix KH[i]H[i] , which
makes the integration of the conditional probability p(H[i+1]|H[i]) with respect to H[i]
analytically not tractable.

2.3.2 Advances in Deep Gaussian Processes inference

To overcome this issue, the marginal likelihood is approached using approximate
inference techniques. Several approaches based on variational inference, expectation
propagation, Markov chain Monte-Carlo have been developed and are discussed in this
section.
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Direct variational inference approach

In [Damianou and Lawrence, 2013], a variational approach is followed to obtain a lower
bound on the marginal likelihood. For that, a variational distribution on the latent
variables q

({
H[i]

}l

1

)
is introduced, and by applying the results of variational inference

(see Section 2.1.2) the following result is obtained:

logp(y|X) ≥ Eq

log

p(y,
{
H[i]

}l

1
|X)

q
({

H[i]
}l

1

)



≥ Eq

[
log

(
p
(

y|
{
H[i]

}l

1
,X
))]

+Eq

log

p
({

H[i]
}l

1
|X
)

q
({

H[i]
}l

1

)

 (2.31)

≥ Eq

[
log

(
p
(

y|
{
H[i]

}l

1
,X
))]
−KL

(
q
({

H[i]
}l

1

)
||p
({

H[i]
}l

1
|X

))

The second term in Eq.(2.32) is the KL divergence between the variational distribution
and the prior distribution of the latent variables. The KL divergence is analytically
tractable if the prior and the variational distributions on the latent variables are
restrained to Gaussian distributions. However, the first term is still analytically
intractable since it involves the integration of the inverse of the covariance matrices
with respect to the latent variables. To overcome this issue, [Damianou and Lawrence,
2013] followed the work of [Titsias and Lawrence, 2010] in the context of Bayesian
Gaussian process latent variable model by introducing a set of inducing variables
to obtain an analytical tractable lower bound based on the sparse variational GP
described previously (Section 2.2.2). Specifically, in each layer of a DGP, a set of

inducing variables is introduced Z[i] =
[
z(1)

[i] , . . . ,z
(m[i])
[i]

]⊤
, z(j)

[i] ∈ Rd[i] ,∀j ∈ {1, . . . ,m[i]}
and U[i] = f[i−1]

(
Z[i]

)
(Fig. 2.13) (notice here that since the intermediate layers are

multi-output GPs, U[i] are matrices ∈Rm[i]×d[i] and not vectors, except in the last layer
where U[l] corresponds to a one column matrix). Henceforth, for notation simplicity,
the number of induced inputs in each layer is considered equal to m.

Now that the latent space has been augmented with the inducing variables, the
posterior of the joint distribution of the latent variables p

({
H[i],U[i]

}l

1
|y,X

)
is ap-

proximated by a variational distribution q
({

H[i],U[i]
}l

1

)
with the assumption of
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X H[1]

f[0] +ϵ[0]

U[1]Z[1]

H[2]

f[1] +ϵ[1]

U[2]Z[2]

... H[l−1] y

f[l−1] +ϵ[l−1]

U[l]Z[l]

Fig. 2.13 Representation of the introduction of the inducing variables in DGPs

independency between layers:

q
({

H[i],U[i]
}l

1

)
=

l∏
i=1

q
(
H[i]

)
q
(
U[i]

)
=

l∏
i=1

q(H[i]
) m∏

j=1
q
(

u(j)
[i]

) (2.32)

Moreover, for the sake of analytical tractability, the variational distributions are
restrained to the Gaussian family. Then, by following the same derivation as in
Eq.(2.32) it holds:

logp(y|X)≥ Eq({H[i]}l
1,{U[i]}l

1)

log
p
(
y,{H[i]}l1,{U[i]}l1|X,{Z[i]}l1

)
q({H[i]}l1,{U[i]}l1)


≥ Eq({H[i]}l

1,{U[i]}l
1)
[
p
(
y,{H[i]}l1|{U[i]}l1|

)]
−

l∑
i=2

KL
[
q(H[i])||p(U[i])

]
+

l∑
i=1

1
q(H[l])

(2.33)

The KL term and the last term that corresponds to the entropy are analytically tractable
for Gaussian distributions. The expectation term can be further bounded by an
analytical expression for kernels that are feasibly convoluted with the Gaussian density
such as the Automatic Relevance Determination (ARD) squared exponential kernel.
Therefore, a fully analytical lower bound on the marginal likelihood is obtained. The
maximization of the lower bound depends on the model parameters {θ[i]}l1,{σ[i]}l1, the
induced inputs {Z[i]}l1, and the variational parameters {θq(U[i]),θq(H[i])}l1. In the case of
a mean and covariance parametrization of the variational distributions, the variational
parameters can be expressed as: θq(U[i]) =

[
Ū[i],Γ[i]

]⊺
and θq(H[i]) =

[
H̄[i],Λ[i]

]⊺
where

q(U[i]) =N
(
U[i]|Ū[i],Γ[i]

)
and q(H[i]) =N

(
H[i]|H̄[i],Λ[i]

)
.

By equalizing the derivative of the ELBO in Eq. (2.33) with respect to {θq(U[i])}l1 to
zero, an optimal analytical form of {q(U[i])}l1 is obtained. By injecting this expression
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into the expression of the ELBO, {q(U[l])}l1 is collapsed, and a lower bound depending
only on the model parameters {θ[i]}l1,{σ[i]}l1, the induced inputs {Z[i]}l1, and the
variational parameters of the hidden layers introduced {θq(H[i])}l1. This lower bound is
tighter than the full lower bound, however, as in the case of sparse variational GPs,
the factorization over the observations is lost.

The major drawback of this approach is the assumption of independency between
layers in the formulation of the variational distribution of the latent variables q({H[i])}l1).
This assumption prevents efficient exploitation of the deep architecture of DGPs.

Variatianal Auto-encoded Deep GP

Instead of considering the variational posteriors {q(H[i])}l1 as independent, [Dai et al.,
2015] considered a chain of transformations linking the observed variables y to the
variational parameters. More specifically, the mean and covariance parametrization
is considered i.e. θq(H[i]) =

[
H̄[i],Λ[i]

]⊺
where q(H[i]) = N

(
H[i]|H̄[i],Λ[i]

)
, then the

mean H̄[i] is considered as a transformation of the mean of the next layer variational
posterior H̄[i] by a parameterized function ψ[i](·), and so on until reaching the final
layer that is a transformation of the observed values y by ψ[l](·):

H̄[i] =ψ[i](H̄[i+1]),∀i= 1, . . . , l−1
H̄[i] =ψ[l](y)

(2.34)

Therefore, instead of optimizing with respect to the mean of the variational distributions,
the optimization is performed with respect to the parameters of the functions {ψ[i](·)}l1.
This is interesting when dealing with large sized data, since the parameters of the
transformation are independent to the number of observations, hence, reducing the
complexity of the optimization problem. Moreover, it creates a relationship between the
variational means which is a desirable feat for the exploitation of the DGP architecture.
In [Dai et al., 2015], the transformation functions are chosen to be parameterized by a
Multi-Layer Perceptron (MLP) with tangent activation functions. This choice enables
to take advantage of the different approaches for the initialization of the parameters
of MLP and avoids to initialize directly the means of the variational distributions.
However, while creating a chain relationship between the mean of the variational
distributions, the covariance matrices are still considered independent which may not
be adapted due to the deep structure of DGPs.
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Random feature expansions for deep Gaussian processes

In [Cutajar et al., 2017], an inference approach for DGPs that couples between random
feature expansion for GPs [Rahimi and Recht, 2008] and variational inference is
developed. Similarly to the inter-domain sparse GP presented in Section 2.2.2, the
random feature expansion yields to a low-dimensional representation of a covariance
function feature map. This allows to approximate a GP by a two-layer weight-space
approximation involving the random features obtained and a Gaussian prior over
the weights. Using this approximation in each layer of a DGP yields to a Bayesian
deep neural network approximation with Gaussian priors over the weights. This
highlights once more the relationship between DGPs and DNNs. In fact, a Bayesian
DNN can be seen as a parametric approximation of a DGP. Once the Bayesian DNN
approximation obtained, a stochastic variational inference is used. For that, a Gaussian
variational distribution that factorizes over layers and weights is considered, then, the
ELBO is obtained as described in Section 2.1.2. This approach overcomes the issue of
the variational distribution of the latent GPs that factorizes across layers present in
[Damianou, 2015], by using a DNN approximation and a variational inference on the
weights that are naturally independent. However, in addition to the approximation
induced by the variational inference there is also the approximation induced by the
DNN representation. Moreover, the covariance functions must have an analytical
spectral density.

The Doubly Stochastic approach

The doubly stochastic approach proposed by [Salimbeni and Deisenroth, 2017] drops
the assumption of independence between layers and the special form of kernels. Indeed,
the posterior approximation maintains the exact model conditioned on U[i]:

q
(
{H[i],U[i]}l1

)
=

l∏
i=1

p(H[i]|H[i−1],U[i])q(U[i]) (2.35)

However, the analytical tractability of the lower bound obtained in the direct variational
inference approach is not maintained. The variational lower bound is then rewritten
as follows (the mention of the dependence on X and Z[i] is omitted for the sake of
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simplicity):

L = Eq({H[i],U[i]}l
1)

log
p
(
y,{H[i]}l1,{U[i]}l1

)
q({H[i]}l1,{U[i]}l1)


= Eq({H[i],U[i]}l

1)

log
p
(
y|{H[i]}l1,{U[i]}l1

)∏l
i=1 p(H[i]|H[i−1],U[i])p(U[i])∏l

i=1 p(H[i]|H[i−1],U[i])q(U[i])



= Eq({H[i],U[i]}l
1)

log

∏n
j=1 p

(
y(j)|h(j)

[l]

)∏l
i=1 p(U[i])∏l

i=1 q(U[i])


L =

n∑
j=1

E
q
(

h
(j)
[l]

) [logp
(
y(j)|h(j)

[l]

)]
−

l∑
i=1

KL
[
q(U[i])||p(U[i])

]
(2.36)

Keeping {U[i]}l1 in this formulation of the ELBO instead of collapsing them allows
factorization over the data y which enables parallelization. The computation of this
bound is done by approximating the expectation with Monte Carlo sampling, which is
straightforward using the propagation of each data-point x(j) through all the GPs:

q
(
h

(j)
[l]

)
=
∫ l−1∏

i=1
q
(

h(j)
[i] |U[i],h

(j)
[i−1],Z[i−1

)
dh(j)

[i] (2.37)

with h(i)
[0] = x(i). The optimization of this formulation of the bound is done according

to the kernel parameters {θ[i]}l1, the inducing inputs {Z[i]}l1, and the variational
parameters of the inducing variables

{
θq(U[i])

}l

1
.

Expectation Propagation

An expectation propagation inference approach (Section 2.1.2) for DGPs was proposed
in [Bui et al., 2016]. The proposed inference goes through three steps. First, the FITC
method described previously (Section 2.2.2) is used to introduce the latent induced
variables in each layer of the DGP:

p(H[i]|U[i],H[i−1]) =
n∏

j=1

d[i]∏
r=1
N (h(j)

[i],r|kh(j)
[i−1],Z[i−1]

K−1
Z[i−1],Z[i−1]

u[i],r

kh(j)
[i−1],h

(j)
[i−1]
−kh(j)

[i−1],Z[i−1]
K−1

Z[i−1],Z[i−1]
kZ[i−1],h

(j)
[i−1]

+σ2
[i−1])

(2.38)
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Then, a stochastic EP approach is followed in order to approximate the marginal
likelihood:

q
(
{U[i]}l1

)
= p

(
{U[i]}l1

) ¯̂t
n

(2.39)

where ¯̂t is the approximated average contribution in the EP. The approximated marginal
likelihood obtained following this approach involves the term:∫

{U[i]}
q−j({U[i]}l1)p(y(j)|{U[i]}l1)d{U[i]}l1 (2.40)

which is not tractable for l > 1. In fact, the computation of this term yields to
marginalization over the latent variables {H[i]}l1 which propagated through the DGP
leads to complex distributions in the integrand.

The third step of the proposed approach is to approximate the complex distri-
butions by Gaussian distributions using matching moments. Therefore, a sequential
approximation procedure is used where at each layer the distribution of the latent
variables is approximated by a Gaussian and is propagated to the next layer and so
on [Hernández-Lobato and Adams, 2015]. This procedure requires a special form of
the kernel function in order to compute the moments of these distributions (the kernel
must have analytic expectations under a Gaussian e.g., exponential quadratic, linear).

Hamiltonian Monte-Carlo

In the previous approaches the posterior distribution p({U[i]}l1|y) is approximated
by a Gaussian distribution. The analysis of the posterior distribution p({U[i]}l1|y) in
[Havasi et al., 2018], however, demonstrates non-Gaussian and multi-modal behavior.
Therefore, [Havasi et al., 2018] propose an MCMC approach to deal with the inference
in DGP based on Stochastic Gradient Hamiltonian Monte-Carlo (SGHMC). Moreover,
a Markov Chain Expectation Maximization algorithm is developed for the optimization
of the hyper-parameters.

Implicit Posterior Variational Inference

Following the analysis of the posterior in [Havasi et al., 2018], an implicit posterior
variational inference (IPVL) approach for DGP inference is developed in [Haibin et al.,
2019]. In fact, the proposed variational inference approach does not assume a Gaussian
variational posterior for the induced variables. Moreover, the assumption of a factorized
form over the layers of the induced variables is also relaxed. The proposed methodology
draws posterior samples using a black-box generator parameterized by a parameter
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vector θB−B and depending on the corresponding induced inputs. However, in the
ELBO, the KL divergence between the prior and the approximated posterior can not
be computed due to the implicit definition of the latter. To overcome this limitation,
it is shown that the KL term can be expressed as an optimization result with respect
to the parameters of a considered artificial neural network θANN . This yields to two
optimization problems, the optimization of the ELBO with respect to the parameters of
the DGP and θB−B and the optimization of the ANN parameters θANN . Afterwards,
the problem is casted into a game-theory problem where two players are considered
in which each optimization problem corresponds to a strategy. It is shown then that
the Nash-equilibrium of this game is a global optimizer of the ELBO and the optimal
value θ∗

B−B yields to the true posterior. Therefore, a best-response dynamics algorithm
[Roughgarden, 2010] is used where each player improves its strategy using a stochastic
gradient ascent update to obtain a Nash-equilibrium.

Sequential Inference

In [Wang et al., 2016], a sequential inference approach for DGP based on sampling is
proposed. More specifically, an online setting is considered where the training data is
taken sequentially. For each data input/output pair

(
x(i),y(i)

)
, an estimation of the

latent variables {h(i)
[l] }Ll=1 is performed using sequential Monte Carlo sampling and each

sample is weighted by the corresponding likelihood (state estimation step). Notice that
it is only a point estimate of the latent variables, which does not propagate uncertainty.
Once the latent variables are estimated, the posterior mean and covariance of each GP
is updated based on a sparse online approximation.

Fig. 2.14 summarizes the different inference approaches of DGP discussed, with an
emphasis on the particularity of each one. Table. 2.2 shows for each approach which
model approximation and which inference approach are used.
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Table 2.2 Model approximations and inference approaches for DGP training methods

Approach Inference
approach

Approximation
approach

Damianou and Lawrence
[2013]

Variational
inference

Variational sparse
GPs

Dai et al. [2015] Variational
inference

Variational sparse
GPs

Salimbeni and
Deisenroth [2017]

Variational
inference

Variational sparse
GPs

Haibin et al. [2019] Variational
inference

Variational sparse
GPs

Cutajar et al. [2017] Variational
inference

Random
feature-based GP

Bui et al. [2016] Expectation
propagation

Fully independent
training conditional

GPs
Havasi et al. [2018] Markov-Chain

Monte-Carlo
Variational sparse

GPs
Rossi et al. [2020] Markov-Chain

Monte-Carlo
Variational sparse

GPs
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2.3.3 Applications of Deep Gaussian Processes

Deep Gaussian processes emerged from the machine learning community, therefore, the
first applications of DGPs concerned different problems in this field of research. For
instance, DGPs showed a great potential in computer vision applications such as object
detection and image classification [Damianou, 2015; Kumar et al., 2018; Blomqvist
et al., 2019]. Adaptation of DGPs to computer vision yielded to convolutional kernels
for DGPs [Kumar et al., 2018] and DGPs with convolutional structure [Blomqvist et al.,
2019]. In [Kandemir, 2015], DGPs with a two-layer structure were used as transfer
learning models, resulting in an asymmetric transfer strategy which outperforms state-
of-the-art transfer learning models. DGPs were also adapted to speech synthesis
[Koriyama and Kobayashi, 2019], where a DGP was incroporated into a statistical
parametric speech synthesis model. The experimentations showed a better efficiency
and robustness of DGPs compared to feed-forward DNNs. An autoencoder DGP model
for novelty detection was proposed in [Domingues et al., 2018], it achieves competitive
results to deep learning approaches. Inverse reinforcement learning has also witnessed
the efficiency of a DGP [Jin et al., 2015], where it was used to learn latent rewards
from limited data with complex feature representations.

DGPs are gaining popularity across other research fields. Since its potential in
different machine learning problems, DGPs were naturally used in medicine for disease
identification and diagnosis [Kandemir, 2015; Alaa and van der Schaar, 2017; Feng
et al., 2018]. In [Kandemir, 2015], a DGP transfer learning model was used for cross-
tissue tumor detection. In [Alaa and van der Schaar, 2017], a multi-task deep GP
was developed for survival analysis with competing risks, where each task corresponds
to a cause specific survival time. A supervised DGP were proposed in [Feng et al.,
2018] for the classification of fetal heart rate tracings based on the pH values of the
fetuses. Moreover, an unsupervised DGP was also developed for dimensional reduction
of fetal heart rate signals. Another field of application of DGPs is ecological studies.
For instance, in [Jančič et al., 2018], DGPs have been applied to atmospheric data
with radionuclides in order to be used as part of a an assessment modeling system for
nuclear plants.

Recently, an interest of DGP has arisen in engineering applications. In fact, due to
their flexibility and power of representation in addition to the uncertainty quantification,
DGPs have desirable feats as surrogate-models. Moreover, unlike the previous applica-
tions, engineering problems often involve computationally expensive simulation yielding
to small-sized data-sets. DGPs prove to be efficient in this configuration [Damianou,
2015; Bui et al., 2016; Salimbeni and Deisenroth, 2017]. [Dutordoir et al., 2017] used
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Deep Gaussian Processes in regression for non-stationary data where standard GPs
are not suitable due to stationary covariance functions (see Section 3.1). It is used to
approximate the lift of a Langley glide-back booster given the speed at re-entry and
the angle of attack. Due to the transition from subsonic to supersonic non-stationarity
is involved and DGPs show better performance than GP. In [Radaideh and Kozlowski,
2020], DGPs were used for modeling nuclear reactor simulation codes such as reactor
fuel performance and reactor kinetic parameters and also for uncertainty quantification
tasks such as uncertainty propagation and variance decomposition. A contaminant
source localization application of DGP have been investigated in [Park et al., 2018],
where a multi-output DGP is proposed to approximate a multi-zone computational
fluid dynamics model. [Zhao et al., 2019] used DGP regression to predict the eddy
current losses of a large turbine generator with a 6-dimensional input space formulation.
The results obtained outperform GPs with different kernels and different machine
learning models used for comparison such as support vector regression and AdaBoost.
Moreover, the prediction obtained proves to be significantly close to the finite element
simulation with an important saving in computational time. To deal with different
levels of code fidelity, [Cutajar et al., 2019] proposed a multi-fidelity DGP where each
layer corresponds to a fidelity level, resulting in a fusion of information across the
different fidelities. DGPs were used for modeling aerodynamic flow quantities of interest
such as the lift and drag coefficients given the flight conditions and the aerodynamic
shape of the aircraft [Rajaram et al., 2020]. The results obtained are compared to the
ones obtained by standard GPs, and proves the better accuracy of DGPs, however, the
DGPs comes with a computational burden due to the approximate inference approaches
used for training (Section 2.3.2) compared to GPs.

The contributions of this thesis fall within this continuity of work on DGPs in
engineering applications and more specifically in the analysis and optimization of
complex systems. The use of DGPs for non-stationarity elucidated in [Dutordoir
et al., 2017] is investigated deeper in the context of Bayesian Optimization (BO)
in Chapter 4 and adaptations are proposed to couple between DGPs and BO. In
Chapter 5, the context of multiple objectives is considered. To take into account
the correlation between the objectives, a multi-objective DGP model (MO-DGP) is
developed where the layers of the DGP correspond to the objectives and are codependent.
In Chapter 6, the multi-fidelity model proposed by [Cutajar et al., 2019] is improved by
proposing another optimization framework for the model. Moreover, a new multi-fidelity
model is developed for multi-fidelity problems characterized by different input space
parametrizations. The developed model embeds a non-parametric Bayesian mapping



60 From Linear models to Deep Gaussian Processes

from one fidelity input space to another, hence the name multi-fidelity embedded
mapping model (MF-DGP-EM).

As mentioned in the introduction of this chapter, approaches based on DGPs are
developed in this thesis to address different axes of the analysis and optimization of
complex systems. While this chapter has served as an introduction to DGPs and
their rich background from Bayesian modeling to Gaussian Processes, the next chapter
introduces these different analyses and optimization problems for which the DGP based
approaches are developed in the contribution chapters. More specifically, a review on
non-stationary approaches for GPs as well as on single and multi-objective Bayesian
optimization, and on multi-fidelity GP approaches is presented in the next chapter.



Chapter 3

Gaussian Process applications to
the analysis and optimization of
complex systems

“One of the characteristic features of mathematical models is that the same model, in
a sense to be explained, can occur in, and be successfully employed in, fields with quite

different subject matters.”
P. Humphreys (2002)

• Review and classification of the different Gaussian processes adaptations
to non-stationary problems.
• Description of single-objective Bayesian optimization.
• Review of multi-objective Bayesian optimization for independent and
correlated objective models.
• Review of Gaussian process-based multi-fidelity approaches with an em-
phasis on the case where model input variables are defined on different
spaces.

Chapter goals

CH3

The design analysis and optimization of complex systems often require compu-
tationally intensive simulation codes that involve black-box functions. For instance,
within the context of multidisciplinary design optimization problems, disciplinary codes
are often modeled as black-box functions and an evaluation requires an iterative loop
between these disciplines (e.g., structure using finite element analysis, aerodynamics
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using computational fluid dynamics for aerospace systems), inducing a computational
burden [Balesdent et al., 2012b]. The analysis and optimization of such problems rely-
ing only on the simulation codes are difficult since only a few evaluations are available
due to limited duration and computational budget. To avoid running excessively a
computationally intensive function f(·), a limited number of evaluations n is used as
training data (Design of Experiment DoE): X =

[
x(1), . . . ,x(n)

]⊤
, x(i) ∈ X⊂ Rd,∀i ∈ {1, . . . ,n}

y =
[
y(1) = f

(
x(1)

)
, . . . ,y(n) = f

(
x(n)

)]⊤
, y(i) ∈ Y⊂ R,∀i ∈ {1, . . . ,n}

(3.1)
Then, a regression model (called surrogate model, response surface model or meta-
model) is used. Different surrogate models can be used in the analysis and optimization
of complex systems (Chapter 1). Due to their interesting properties, Gaussian Processes
(GPs) (Chapter 2) are a popular approach to address different problems in the analysis
and optimization of complex systems [Wang et al., 2005; Wang and Shan, 2007; Forrester
et al., 2008; Archetti and Candelieri, 2019]. This chapter presents a review of GPs in
engineering design that covers the problems which are addressed in the contribution
chapters of this thesis. The objective of this chapter is to set a unified view of the existing
GP adaptations to each application before presenting the novel approaches proposed in
the next chapters. Specifically, Section 3.1 reviews GP adaptations to non-stationary
problems and Section 3.2 presents the Bayesian optimization framework, preparing
the ground for Chapter 4. Next, Section 3.3 introduces multi-objective Bayesian
optimization and its generalization to models taking into account the correlation
between objectives, serving as a background for Chapter 5. Finally, Section 3.4 reviews
the related existing works to the contributions of Chapter 6, covering GP literature for
multi-fidelity analysis with an emphasis on the case where each fidelity is defined on
its own input-space.

3.1 Non-stationary Gaussian Processes

The question of non-stationarity is discussed in different fields of research. In climate
science due to dramatic changes in precipitation, the stationarity assumption is dropped
for modeling climate phenomena [Cordery and L.Yao, 1993; Milly et al., 2008; Garg
et al., 2012]. In signal processing and finance among other fields, non-stationary
models are often used to fit time series over a long period of time [Konda, 2006].
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Also in geostatistics, non-stationarity occurs when dealing with a region with different
landscapes and topographic features [Atkinson and Lloyd, 2007].

In engineering design, due to the abrupt change of a physical property in one of the
disciplines involved in the design process, the response of interest may vary with different
degrees of smoothness from one region of the design space to another. Specifically,
aerospace design engineering involves different disciplines that can induce non-stationary
phenomena. For example in aerodynamics, Computational Fluid Dynamics (CFD)
problems often have different specific flow regimes due to separation zones, circulating
flows, vortex bursts, transitions from subsonic to transonic, supersonic, and hypersonic
flow regimes. In propulsion, the combustion involves irreversible thermodynamics
transformations that are characterized by sudden and rapid changes (e.g., sudden state
change of the matter, spontaneous chemical reactions, spontaneous mixing of matter
of different states). There can also be non-stationarities in the structure discipline, for
example in the stress-strain curve of a material, the elastic region, the strain hardening
region, and the necking region present different behaviors.

Standard GP regression is based on the a priori that the variation of the output
depends only on the variation of the corresponding inputs and not in the considered
region. This is induced by the use of stationary covariance functions that depends only
on a distance in the input space:

∀x,x′,λ ∈ Rd,k(x+λ,x’+λ) = k(x,x’) = k∗
(
∆Mahalanobis(x,x′)

)
(3.2)

with:
∆Mahalanobis(x,x′) =

√
(x−x′)T Σ−1(x−x′) (3.3)

where k∗(·) is a scalar function defined on R, ∆Mahalanobis(·, ·) refers to the Mahalanobis
distance, and Σ is a d×d positive definite matrix. This a priori is generally valid for
functions where there is no change in the smoothness of the function considered along the
design space. However, this is not suitable for functions with abrupt and local variations.
In fact, stationary covariance functions have a constant parameter called length-scale
encoded in Σ that controls the variations of the response. For instance, for Automatic
Relevance Determination (ARD) kernels [Williams and Rasmussen, 2006], the length-

scale of each dimension θlsi
is encoded in a diagonal matrix Σ = diag

([
1

θ2
ls1
, . . . , 1

θ2
lsd

])
.

The length-scale θlsi
will take high values for strong correlations i.e. regions with

low variations and will take low values for weak correlations i.e. regions with high
variations.
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As a representative example, the modified Xiong function [Xiong et al., 2007] (cf.
Eq.(C.1) in Appendix C, Fig. 3.1), has two regions with different levels of variation.
It presents one region where the function varies with a high frequency x ∈ [0,0.3]
and the other where the function varies slowly x ∈ [0.3,1]. This makes the classical
GP regression not suitable for this function (Fig. 3.1). As it can be seen in this
case, the learning process results in a length-scale value that is consistent in the high
frequency region but not in the low frequency region. This yields to a GP model
that continues to oscillate and can not capture the two trends of this function. To
overcome this issue, different GP adaptations to non-stationarity have been proposed.
These adaptations can be classified into three main classes: direct formulation of a non-
stationary covariance function, local stationary covariance functions, and input-space
warping approaches.
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Fig. 3.1 Approximation of the modified Xiong-function, a non-stationary 1-dimensional
function, by a standard GP model. GP can not capture the stability of the region
[0.4,1] and continues to oscillate.

3.1.1 Direct formulation of non-stationary kernels

Most of the methods in the literature that use a direct formulation of a non-stationary
covariance function follow the work of [Higdon et al., 1999]. The main idea is to
use a convolution product of a spatially-varying kernel function to define a class of
non-stationary kernels:

kNS(x,x′) =
∫
Rd
kS(x,v)kS(x′,v)dv (3.4)
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where kS(x,x′) = kS
∗ (∆Mahalanobis(x,x′)) is a stationary kernel function and x,x′ are

locations in Rd. The analytical form of the non-stationary covariance resulting from
the convolution of Gaussian kernels is derived in [Higdon et al., 1999]. This approach
has been extended in [Paciorek and Schervish, 2006] where the analytical form of the
non-stationary covariance function resulting from the convolution of any stationary
kernel is given:

kNS(x,x′) = |Σx|
1
4 |Σx′ | 14

∣∣∣∣Σx +Σx′

2

∣∣∣∣−
1
2
kS

∗ (∆NS(x,x′)) (3.5)

where:

∆NS(x,x′) =
√

(x−x′)T
(Σx +Σx′

2

)−1
(x−x′) (3.6)

and Σx = Σ(x) is a d×d matrix-valued function which is positive definite for all x
in Rd. In the stationary case, Σ(·) is a constant arbitrary matrix. The interesting
observation is that in the resulting non-stationary covariance function kNS(·, ·), the
Mahalanobis distance ∆Mahalanobis(·, ·) is not used within the stationary covariance
function kS

∗ (·). Instead, a distance measure ∆NS(x,x′) with the average of the kernel
matrices Σ(·) in the two locations x and x′ is used. Therefore, the local characteristics
of the two locations encoded in their respective kernel matrices influence the covariance
value yielding to a non-stationary model. The special case of a non-stationary Matérn
covariance function is derived in [Paciorek and Schervish, 2006] using Eq. (3.5). The
construction of the kernel matrix Σ(·) for each x in the domain is performed via an
eigendecomposition, which can be difficult when increasing the input-space dimension.
[Gibbs, 1998] proposed a simpler parameterization by choosing the matrix Σ(x) as a
diagonal matrix of length-scales parameterized using a set of basis functions. Hence,
length-scales depending on the location of x are obtained. In [Plagemann et al., 2008],
a Gaussian Process Local Length-scales (GP-LL) model is developed. It consists
in augmenting the latent space with a set of locations Xθls =

[
x(1)
θls
, . . . ,x(mls)

θls

]
and

their corresponding length-scales Θls =
[
θ

(1)
ls , . . .θ

(mls)
ls

]
where mls is a determined

number of length-scale locations. A GP prior fΘls(Xθls) = Θls is then placed over Θls.
The learning of the hyper-parameters as well as the latent variables Θls and Xθls is
performed by a Maximum A Posteriori (MAP) procedure of the latent length-scales
p
(
Θls|y,X,Xθls

)
. Once this optimization is performed, the inference of the GP f(·) is

carried out classically to obtain a predictive mean response and associated variance.
In Fig. 3.2, three length-scale locations are used to approximate the modified Xiong-
function. In the learning process, the length-scale values adapt to the variations of the
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Fig. 3.2 Approximation of the modified Xiong-function by a Gaussian Process Local
Length-scales (GP-LL) model. (left) The prediction of the GP-LL model captures the
non-stationarity behavior by using an input dependent length-scale. (right) The input
dependent length-scale is learned using a GP with 3 training locations that are also
optimized. The length-scale decreases in regions of high-variations and increases in
regions of low-variations.

target function yielding to high-values in regions with low-variations and low-values in
regions with high variations, in contrast with a stationary kernel where the value of the
length-scale is constant. However, using a MAP estimate does not take into account the
uncertainty of the latent length-scales and may under-estimate the overall predictive
uncertainty. To overcome this issue, [Heinonen et al., 2016] proposed sampling the
exact posterior using Hamiltonian Monte Carlo (HMC) (see Chapter 2, Section 2.1.2)
instead of using a MAP estimate of the latent length-scales. However, this class of
approaches may not be suitable for high-dimensional problems due to the high number
of parameters required [Paciorek and Schervish, 2006; Plagemann et al., 2008].

3.1.2 Local stationary covariance functions

The local stationary approaches are based on the idea that non-stationary functions
have a local stationary behavior. In [Haas, 1990] a moving window approach is proposed
where the training and prediction regions move along the input space using a stationary
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covariance function. This window has to be restrained enough so that the function is
stationary within it. Other methods consist in dividing the input space into various
subsets and using a different model for each subset [Tresp, 2001; Rasmussen and
Ghahramani, 2002; Gramacy and Apley, 2015; Krityakierne and Ginsbourger, 2015],
this is also known as mixture of experts. Specifically, in a GP mixture of expert (MoE)
mclusters independent GPs are considered (experts) and the likelihood is modeled as a
probabilistic mixture over all possible assignments of the data to the experts:

p(y|X,{θ(j)}mclusters
j=1 ) =

n∏
i=1

mclusters∑
j=1

p(y(i)|C = Cj ,x(i),θ(j))p(C = Cj |x(i),θC) (3.7)

where θ(j) are the parameters of expert j, C determines which cluster is active, and θC

is the vector of parameters of the gating network that is the function that assigns a
probability to an expert given the input. Therefore, learning in GPs MoE comes back
to learning the hyper-parameters of each GP as well as the parameters of the gating
network. Since the models are considered independent, the posterior predictive variable
y∗|y,X of a MoE GP in a location x∗ is a linear combination of each expert posterior
predictive variable, thus, maintaining the Gaussian distribution form of the predictive
posterior. In [Tresp, 2001] where the GPs MoE were first introduced, in addition to the
GP experts, the gating functions are considered as GPs in order to define a soft-max
gating network and the learning is performed using an Expectation-Maximization
algorithm [Moon, 1996]. A gating network based on Dirichlet Process and a kernel
classifier is developed in [Rasmussen and Ghahramani, 2002], this allows a flexible
number of experts that depends on the size of the data and also that each expert
uses its own set of data. The learning is performed using MCMC approaches (Gibbs
sampling for the conditional distribution of the state variable C and HMC for the
GP hyper-parameters). A generative formulation of this approach (considering the
joint distribution inputs, outputs) has been proposed in [Meeds and Osindero, 2006]
and then improved in [Gadd et al., 2020] by using the enriched Dirichlet process.
[Gramacy and Lee, 2008] proposed a tree-based approach where the input space is
divided into rectangular sub-spaces yielding to a hierarchical tree structure where
multiple splits of the input space occur at each level of the tree until reaching the leaves
which correspond to the different GPs. The tree is constructed using well-established
techniques on Bayesian classification and regression trees to split, grow, or prune the
tree, and the inference is performed using MCMC approaches. In [Bettebghor et al.,
2011], a mixture of a portfolio of models including GPs and other regression models,
such as, artificial neural network and moving least squares, is developed. As in [Tresp,
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2001], an Expectation-Maximization algorithm for Gaussian mixture models is used
to subdivide the input space. The parameters obtained by the algorithm are used
to combine the different models. The interest of the developed framework is that it
uses different classes of models. However, the choice of which expert to use is based
on cross-validation which is not usually practical when dealing with computationally
intensive problems.

Recently, approaches based on Sum-Product Networks (SPN) have been adapted
to GPs [Trapp et al., 2020]. An SPN-GP corresponds to an acyclic directed graph
containing different types of nodes: sum nodes, product nodes, split nodes, and GPs
leave nodes. A sum node computes a weighted sum over its children (mixture), the
product node computes the Cartesian product of the outputs in the case of multi-
output GPs (output independence), and the split nodes divide the input space (input
independence). The response of an SPN-GP is obtained by propagating the input
through the leaves until reaching the root. The SPN-GP, unlike the previously described
MoE, allows exact inference of the posterior distribution. In Fig. 3.3, an SPN-GP
model is used to approximate the modified Xiong-function. The formulation involves a
sum of three nodes with their respective weights and each of these nodes subdivides
the input space into two regions governed each by its own GP.

These approaches present some limitations. Indeed, in computationally expensive
problems, data are sparse and using a local surrogate model with sparser data may be
problematic.

3.1.3 Warped GPs

These approaches first introduced by [Sampson and Guttorp, 1992], also called non-
linear mapping, consist in deforming the input space to express the non-stationarity
using a stationary covariance function. Specifically, a stationary covariance func-
tion kS(·, ·), and a function ψ(·) : Rd→ Rd are considered, then, the non-stationary
covariance function is obtained by simply combining ψ(·) and kS(·, ·):

kNS(x,x′) = kS(ψ(x),ψ(x′)) (3.8)

The difficult task in this class of approaches is the determination of ψ(·). Gibbs
approach that was described in the direct formulation methods [Gibbs, 1998] can
also be obtained via input warping. It consists in considering a mapping ψGibbs(·) as
a multidimensional integral of non-negative density functions {ηGibbs

i (·)}di=1. These
density functions are defined as a weighted sum of mrbf positive Gaussian radial basis
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Fig. 3.3 Approximation of the modified Xiong-function by a Sum-Product Network
GP (SPN-GP) model. (left) The prediction of the SPN-GP model captures the non-
stationarity behavior by using a mixture of GPs each with its own length-scale. (right)
Illustration of the structure of the SPN with the sum node represented by + with
weights w over its children and the split nodes represented by |.

functions.
ψGibbs

i (x) =
∫ x1

0
· · ·
∫ xd

0
ηGibbs

i (v)dv1 . . .dvd (3.9)

ηGibbs
i (v) =

mrbf∑
j=1

w
(j)
i ϕ

(j)
rbf(v), i= 1, . . . ,d (3.10)

where ψGibbs(·) = [ψGibbs
1 (·), . . . ,ψGibbs

d (·)], v = [v1, . . . ,vd], ηGibbs
i (·) is the ith coordinate

of the density function, ϕ(j)
rbf(·) is a fixed Gaussian radial basis function, and w

(j)
i is

the weight of the jth basis function in the ith coordinate of the density function. The
drawback of this approach is that the number of radial basis functions mrbf needed to
capture the non-stationarity increases with the dimension of the space d, inducing an
over-parameterized structure of the covariance function in high-dimensional situations
[Xiong et al., 2007]. To overcome this issue, the non-linear mapping approach proposed
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by [Xiong et al., 2007] assumes independency between each dimension of the mapping,
this reduces the multivariate density function in Eq. (3.9) to a univariate one.

ψXiong
i (x) =

∫ xi

0
ηXiong

i (vi)dvi (3.11)

Furthermore, the density function is defined as a sum of mhlinear piece-wise linear
functions hlinear(·):

ηXiong
i (vi) =

mhlinear∑
j=1

h
(j)
linear,i(vi), i= 1, . . . ,d (3.12)

where:
h

(j)
linear,i(xi) = a

(j)
i xi + b

(j)
i ,xi ∈ [δ(j−1), δ(j)] (3.13)

a
(j)
i , b

(j)
i are respectively the slope and the intercept of the linear function h(j) at the ith

coordinate and (δ(0), . . . , δ(m)) are a series of knots evenly placed along each dimension.
This approach allows a better scalability to high dimensional design spaces. However,
the deformation is done only along canonical axes which may not be adapted to handle
non-stationarity behavior following non-canonical axes. [Marmin et al., 2018] addressed
this issue by introducing a parameterized matrix A. This allows a linear mapping of
the input space before undergoing the non-linear mapping of ψ(·).

kNS(x,x′) = kS(ψ(A.x),ψ(A.x′)) (3.14)

[Snoek et al., 2014] proposed an input warping using a Beta cumulative distribution
function as a mapping.

ψSnoek
i (x) = ΦBeta(xi;αi,βi)

∝
∫ xi

0
vαi−1(1−v)βi−1dv

(3.15)

where ΦBeta is the Beta cumulative distribution function and αi and βi are the
parameters of the Beta distribution. The interesting characteristic of this approach is
its low parameterization form. In fact, the Beta distribution is defined only by two
parameters and its cumulative distribution can express a wide variety of monotonic
functions. A log-normal prior is also placed on the parameters αi and βi and an MCMC
approach is followed for inference. In Fig. 3.4, this approach is used to approximate
the modified Xiong-function. The function captures well the non-stationary behavior
by stretching the input space region with high-variations.
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Fig. 3.4 Approximation of the modified Xiong-function by a Non-Linear Mapping
GP(NLM-GP) model. (top left) The warping function of the NLM using the cumulative
distribution of the Beta distribution. (top right) The region of high-variation of the
modified Xiong-function is stretched yielding to relatively stabilized variations along
the mapped input space. (bottom) The prediction obtained by the NLM-GP captures
the non-stationarity of the modified Xiong-function.

The non-linear mapping approaches use a parameterized function to map the original
input space to a mapped space with non-stationary behavior. However, the choice of
a parameterized function is not an easy task and can be problem-dependent [Xiong
et al., 2007], moreover, it does not include uncertainty information. In Chapter 4, Deep
Gaussian Processes (DGPs, Chapter 2, Section 2.3) are proposed to overcome these
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limitations of the non-linear mapping for handling non-stationarity. Deep Gaussian
Processes were first used to handle non-stationarity in [Dutordoir et al., 2017]. In fact,
DGPs can be seen as an unparameterized version of input-warping where the first layers
of DGPs stretch the input-space to allow better representation of the non-stationarity.
Moreover, being fully Bayesian models, DGPs allow the uncertainty to be propagated
through these input-warping layers.

To summarize these different approaches, the three classes of non-stationary GPs
are depicted in Fig. 3.5.

Modeling expensive black-box functions given a DoE with these approaches allows
one to exhibit possible non-stationary behaviors and to analyze the regions of the
design space that show important variations relatively to other regions. However, in
some applications, in addition to the analysis of the expensive black-box functions
given a DoE, the final objective is to obtain the optimum of that function with a
minimum number of evaluations. For that, Bayesian optimization is a popular approach.
The next section introduces this approach of optimization in the context of expensive
black-box function.
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Fig. 3.5 Summary of the presented non-stationary GP approaches.

3.2 Bayesian Optimization (BO)

Given computationally intensive and black-box functions as objective f : X⊆ Rd→ R
and nc constraints gj : X⊆Rd→R, j ∈ {1, . . . ,nc}, the following minimization problem
(Pmin) is defined (minimization is considered without loss of generality):

(Pmin)
∣∣∣∣∣∣ Minimizex y = f(x)

subject to gj(x) ≤ 0, ∀j ∈ {1, . . . ,nc}
(3.16)

When dealing with expensive and black-box functions relying on legacy codes
that do not provide analytical forms of the functions or the gradients (e.g., coupled
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multi-disciplinary analysis [Balesdent et al., 2012b]), the use of exact optimization
approaches is often not tractable [Wang and Shan, 2007; Forrester et al., 2008; Archetti
and Candelieri, 2019]. Furthermore, the high computational cost makes the use
of algorithms that require a large number of evaluations (gradient approximation,
evolutionary algorithms, etc.) not suitable. Moreover, the objective and constraint
functions involved often have non-linear landscapes with multiple local optima, hence,
making the optimization problem more complex to solve.

One popular way to deal with expensive black-box function optimization is Bayesian
Optimization (BO) [Močkus, 1975]. BO algorithms are iterative sampling procedures
based on Bayesian models. To avoid running excessively the computationally intensive
functions, Bayesian models emulate the statistical relationships between the design
variables and the responses (objective function and constraints) given the DoE:

(DoE)


X =

[
x(1), . . . ,x(n)

]⊤
, x(i) ∈ X⊂ Rd,∀i ∈ {1, . . . ,n}

y =
[
y(1) = f

(
x(1)

)
, . . . ,y(n) = f

(
x(n)

)]⊤
, y(i) ∈ Y⊂ R,∀i ∈ {1, . . . ,n}

cj =
[
c

(1)
j = gj

(
x(1)

)
, . . . , c

(n)
j = gj

(
x(n)

)]⊤
, ∀j ∈ {1, . . . ,nc}

(3.17)
Different surrogate models can be used in design optimization [Wang and Shan, 2007;
Forrester et al., 2008; Viana et al., 2013]. The most popular BO algorithms are based
on GP regression [Jones et al., 1998; Shahriari et al., 2015; Bouhlel et al., 2018; Frazier,
2018; Archetti and Candelieri, 2019]. The main advantage of a GP is that in addition
to the prediction, it provides an uncertainty estimation of the surrogate model response
that is obtained analytically and can be used for optimization purposes (Chapter 2,
Section 2.2).

3.2.1 Bayesian Optimization Framework

BO algorithms are sequential design algorithms. The design space is filled sequentially
with new candidates to improve the current minimum in the DoE:

ymin = min
{
f
(
x(i)

)
|i ∈ {1, . . . ,n} and ∀j ∈ {1, . . . ,nc},gj

(
x(i)

)
≤ 0

}
(3.18)

This sequential aspect of BO algorithms consists of two iterative operations. The
first one is the modeling of the expensive black-box functions (f(·),g1(·), . . . ,gnc(·))
involved in the optimization problem based on the DoE X and the corresponding exact
evaluations y,c1, . . . ,cnc using GPs to obtain posterior mean prediction and associated
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variance
((
f̂(·), ŝ2

f (·)
)
,
(
ĝ1(·), ŝ2

g1(·)
)
. . . ,

(
ĝnc(·), ŝ2

gnc
(·)
))

. These latter are cheaper to
evaluate, which enables a larger number of evaluations than the exact functions.

The second operation consists in determining the most promising candidate to add
to the current DoE in order to improve the current minimum ymin using the information
given by the GPs. This is achieved by optimizing an acquisition function (also called
infill sampling criterion) on the design space, which is a performance measure of the
potential of a candidate from a minimization point of view. Once the most promising
point is added to the data-set, it is evaluated on the exact expensive functions and the
surrogate models are updated, and so on until a stopping criterion is reached (Fig. 3.6).
Hence, the two key aspects in BO algorithms are the surrogate model and the infill
sampling criterion.

Initial DoE

Evaluation of
the data-set on
the objective
function and
constraints

X

Stopping
Crite-
rion

y,ci

Training the
GP models for
the objective
function and
constraints

No Optimization
of the infill

criterion

f̂ , ĝ

Addition of the
most promising

point to the
data-set

xnew

X

ŝf , ŝg

End
Yes

Fig. 3.6 Framework of Bayesian optimization with Gaussian process. It consists of two
iterative procedures, 1) training Gaussian process models 2) optimization of an infill
criterion to add the most promising candidate to the data-set. The stopping criterion
is often chosen to be the number of evaluations of the expensive functions.
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3.2.2 Infill criteria

For selecting infill sample candidates, a variety of criteria has been developed [Picheny
et al., 2013]. Each criterion performs a trade-off between exploration i.e. investigating
regions where the variance of the GP model is large and exploitation i.e. investigating
regions where the GP prediction is minimal. One of the most used criteria is the
Expected Improvement (EI) [Schonlau et al., 1996; Jones et al., 1998]. It takes
into account the improvement induced by a candidate x that is defined as: I(x) =
max{0,ymin−f(x)}. EI is then computed as the expectation of the improvement with
respect to the posterior distribution:

EI(x) =Ep(f(x)|y,x,X) [I(x)]∫
R

max{0,ymin−f(x)}p(f(x)|y,x,X)df(x)
(3.19)

For Gaussian posterior distributions the EI has a fully analytical form:

EI(x) = (ymin− f̂(x))ΦN (0,1)

ymin− f̂(x)
ŝf (x)

+ ŝf (x)ϕN (0,1)

ymin− f̂(x)
ŝf (x)

 (3.20)

where ϕN (0,1)(·) and ΦN (0,1)(·) are respectively the Probability Density Function (PDF)
and the Cumulative Distribution Function (CDF) of the standard univariate Gaussian
probability distribution. Two important terms constitute the EI formula. The first
part of the sum is the probability of improvement P(I(x)≥ 0) multiplied by a factor
(ymin− f̂(x)) that scales the EI value on the supposed improvement value. The second
part of the sum takes into account the uncertainty. It tends to be large when the
uncertainty on the prediction is high. So, the EI is large for regions of improvement
(exploitation) and also for regions of high uncertainty (exploration) as illustrated in
Fig. 3.7. The maximization of the EI can be performed using multi-start gradient-based
optimization algorithms, Monte-Carlo simulations or evolutionary algorithms [Frazier,
2018]. Fig. 3.8 shows the different added points to the data-set along the iterations of
BO using the EI. Other infill criteria have been developped such as the Watson and
Barnes 2nd (WB2) [Watson and Barnes, 1995] which shifts the EI with the GP mean
prediction, hence, avoiding the large areas of the design space where the EI is null. The
scaled WB2 (WB2S) [Bartoli et al., 2019] scales the EI with a factor to better handle
the influence between the EI and the GP mean prediction in the infill. The EI has
also been adapted to handle multiple points through the q-EI criterion [Ginsbourger
et al., 2010; Chevalier et al., 2014], it allows parallel evaluation and determination
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of multiple added points at each iteration. Thompson sampling has been used as an
acquisition function [Basu and Ghosh, 2017]. It consists in drawing a sample from the
posterior distribution and choosing the index of the minimum of this sample as an
infill candidate. Other methods can also be mentioned as confidence bound criteria
[Cox and John, 1997] or information theory based infill criteria [Hernández-Lobato
et al., 2014]. Recently, portfolio methods combining these different infill criteria have
been developed [Hoffman et al., 2011; Shahriari et al., 2014]. This large variety of
methods shows that there is no single infill criterion that performs better over all
problem instances [Picheny et al., 2013].

To handle constraints in BO, different techniques have been proposed [Sasena, 2002;
Parr et al., 2012]. The direct method [Sasena et al., 2001] consists in optimizing the
infill criterion under the posterior mean prediction of the constraints:∣∣∣∣∣∣ Maximizex EI(x)

subject to ĝi(x) ≤ 0, i= 1, . . . ,nc

(3.21)

The drawback of this approach is that it does not take into account the uncertainty
of the constraint models. The Expected Violation (EV) strategy [Audet et al., 2000]
considers the optimization of the infill criterion under the constraint of an expected
violation inferior to a threshold:∣∣∣∣∣∣ Maximizex EI(x)

subject to EVi(x) ≤ ti, i= 1, . . . ,nc

(3.22)

where EVi(·) is the expected value of the violation of constraint i and ti is a given
threshold. In the Gaussian prediction case EVi(·) takes a similar form to that of the
EI (can be seen as the EI of −gi(·) for a min = 0):

EVi(x) = (0− ĝi(x))ΦN (0,1)

(
0− ĝi(x)
ŝgi(x)

)
+ ŝgi(x)ϕN (0,1)

(
0− ĝi(x)
ŝgi(x)

)
(3.23)

The optimization of infill criteria under constraints restrains the choice of optimizers.
The Probability of Feasibility (PoF) method [Schonlau et al., 1996] instead of considering
the optimization of an infill criterion subject to constraints, optimizes freely the product
of the infill criterion with the probability of feasibility of the constraints:

Maximizex EI(x)×PoF (x) (3.24)
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Fig. 3.7 (left) First iteration of BO for an initial DoE of 4 points. A GP model is
fitted and the expected improvement criterion is maximized. (right) Second iteration
of BO after adding the point that maximizes the expected improvement at the previous
iteration to the DoE.

with
PoF (x) =

nc∏
i=1

P(gi(x)< 0) (3.25)

For multiple constraints the PoF can quickly collapse to zero making the optimization
task difficult. The augmented Lagrangian approach has also been proposed in the BO
context to transform the constrained problem to an unconstrained one [Picheny et al.,
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2016]. Other approaches based on feasibility probabilities and upper trust bounds can
be used for constrained BO [Priem et al., 2019].

3.2.3 Bayesian Optimization with non-stationary GPs

To handle non-stationarity in BO, the approaches presented in Section 3.1 can be used
within the BO framework. However, the direct formulation of non-stationary kernels is
challenging to use in high-dimensional spaces as described previously. For the local
stationary covariance approaches, [Bartoli et al., 2017] used a similar mixture of experts
approach to the one developed in [Bettebghor et al., 2011]. Gaussian processes with
partial least squares method [Bouhlel et al., 2016] are used as experts to allow a better
modeling in high-dimensional spaces. However, the mixture of experts may not be
adapted to the scarce data context due to the use of a subset of data for each expert.

The non-linear mapping approaches for non-stationary GPs (Section 3.1.3) are well
adapted to scarce data and high-dimensional problems [Toal and Keane, 2012; Snoek
et al., 2014] which make them interesting to use for BO instead of regular GPs in the
case of non-stationary problems. This coupling has been studied by [Toal and Keane,
2012] using Xiong non-linear mapping [Xiong et al., 2007]. This allowed the authors
to set up a new approach mixing regular GP with non-linear mapping when dealing
with BO called Adaptive Partial Non-Stationary (APNS). [Snoek et al., 2014] uses the
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cumulative distribution of the Beta distribution as a mapping for input warping GPs
in a BO framework and shows improved results compared to BO with regular GPs.

These approaches are used as a reference in the experimentations for the proposed
BO framework with deep Gaussian processes in Chapter 4, which can be seen as
a non-parameterized Bayesian generalization to the non-linear mapping. For now,
only one objective has been considered, however, in different optimization problems,
multiple antagonistic objectives can be formulated. The specificities of multi-objective
optimization are introduced in the next section as well as multi-objective Bayesian
optimization.

3.3 Multi-objective Bayesian optimization

Engineering design optimization problems can ideally be modeled as multi-objective and
multi-disciplinary optimization problems. For instance, different conflicting objectives
need to be considered for aerospace vehicle design such as the payload mass, the
gross lift-off weight, the availability, or the production cost. In [Castellini et al., 2011;
Arias-Montano et al., 2012], a rich taxonomy of the applications of multi-objective
optimization in aerospace engineering is presented. These multi-objective problems
are characterized by no objectives that are optimized under nc constraints in a d-
dimensional design space (minimization is considered without loss of generality):

(PCMO)
∣∣∣∣∣∣ Minimizex y = f(x) = [f1(x), . . . ,fno(x)]

subject to gi(x) ≤ 0, i= 1, . . . ,nc

(3.26)

where PCMO stands for Constrained Multi-Objective problem, x = (x1, . . . ,xd)∈X⊆Rd,
and y = (y1, . . . ,yno) ∈ Y⊆ Rno . y is called the objective vector and Y the objective
space.

In the case of multiple objectives, since the objective evaluation of each input data
point is a vector, the DoE objective evaluations are denoted by a matrix Y. The DoE
is rewritten in the multi-objective case as follows:

(DoE)


X =

[
x(1), . . . ,x(n)

]⊤
, x(i) ∈ X⊂ Rd,∀i ∈ {1, . . . ,n}

Y =
[
y(1), . . . ,y(n)

]⊤
, y(i) ∈ Y⊂ Rno ,∀i ∈ {1, . . . ,n}

cj =
[
c

(1)
j = gj

(
x(1)

)
, . . . , c

(n)
j = gj

(
x(n)

)]⊤
, ∀j ∈ {1, . . . ,nc}
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One of the most used approaches to solve these problems are Multi-Objective
Evolutionary Algorithms (MOEAs) [Deb, 2001]. Among the most popular MOEAs,
NSGA-II (Non-dominated Sorting Genetic Algorithm II) [Deb et al., 2000] or SMPSO
(Speed-constrained Multi-objective Particle Swarm Optimization) [Nebro et al., 2009]
can be cited. The advantage of these algorithms is that the use of a population-based
search and diversity mechanisms makes them less prone to be trapped in local minima.
Moreover, the use of simple operators for crossover and mutation allows the handling
of highly non-linear or non-differentiable functions [Talbi, 2009; Talbi et al., 2012].
However, MOEAs tend to need a consequent number of evaluations to converge to the
exact Pareto front. This may make MOEAs not suitable for computationally expensive
functions, where the concern is to minimize the number of evaluations. To overcome
this issue, Bayesian optimization has been adapted to multi-objective optimization
[Beume et al., 2007] by using new infill sampling criteria based on the concept of
Pareto-dominance as the Expected hyper-volume Improvement (EHVI) [Emmerich
et al., 2006]. In this section, first, some notions about multi-objective optimization are
introduced, then, the multi-objective BO based on independent models is described,
finally, the case of correlated-objective modeling in multi-objective BO is considered.

3.3.1 Definitions

Pareto dominance

The Pareto dominance is a binary relation between two input design vectors. An input
design vector x is Pareto dominant with respect to another input design vector x′

(noted x≺ x′) if and only if :

∀i ∈ {1, ...,no};fi(x)≤ fi(x′),
∃j ∈ {1, ...,no};fj(x)< fj(x′)

(3.27)

For notation simplicity, this notation is generalized to objective vectors y and y′ to
express the Pareto dominance.

Pareto optimal set

The Pareto optimal set P also called the Pareto front, is defined as the set of the
non-dominated objective vectors:

P = {y ∈ Y|∄y’ ∈ Y : y’≺ y} (3.28)
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The approximation of the Pareto front P ′ for a set of solutions S is defined as:

P ′ = {y ∈ S|∄y’ ∈ S : y’≺ y} (3.29)

Fig 3.9 illustrates the exact Pareto front in a two-objective case as well as the approxi-
mated Pareto front for a set of solutions S.

f1

f 2

Set of solutions
Approximated Pareto Front
Exact Pareto Front

Fig. 3.9 Illustration of the Pareto front and the approximated Pareto set in a two-
objective space.

Hyper-volume

Consider an unconstrained multi-objective problem and B a finite hyper-volume of the
objective space where all possible solutions lie. B =

{
y ∈ Rno ;ylb ≤ y≤ yup

}
where

ylb and yup are chosen lower and upper bounds respectively (e.g., the ideal and nadir
points). The dominated hyper-volume of the DoE is defined as follows:

HY =
{
y ∈B;∃i ∈ {1, . . . ,n},y(i) ≺ y

}
(3.30)

So HY is the subset of B whose points are dominated by the DoE (Fig. 3.10).
Let x(n+1) be a new data-point added to the DoE and Ynew =

[
Y,y(n+1)

]⊤
the

DoE evaluation matrix plus the objective evaluation of the new data-point. Since
HY ⊂HYnew , the hyper-volume improvement by adding x(n+1) to the DoE is given
by: IY(xn+1) = |HYnew \HY| where | · | is the standard Lebesgue measure. The
hyper-volume indicator is widely used as a quantitative measure of the quality of an
approximated Pareto front [Zitzler et al., 2002; Bradstreet, 2011; Auger et al., 2012].
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Fig. 3.10 Illustration of the dominated hyper-volume by an approximated Pareto front

In fact, the hyper-volume takes into account the three characteristics that express the
quality of an approximated Pareto front [Zitzler et al., 2002]:

• The distance from the exact Pareto front, the nearer it is, the better the solutions
are.

• The diversity of the solutions in the front. The solutions must cover a large zone
in the objective space, and not be located in some restricted area.

• The number of solutions. More solutions give more trade-offs, thus, more liberty
for the decision maker.

The closer the approximated Pareto set is to the exact one, the larger is the
improvement in hyper-volume. Moreover, the more diverse the population is, or
the more points in the approximated Pareto set are, the larger the improvement is
(Fig. 3.11). This shows that the hyper-volume indicator is suited to compare between
approximated Pareto fronts.

3.3.2 Multi-Objective Bayesian Optimization with indepen-
dent models

Bayesian optimization has been extended to solve multi-objective problems [Emmerich
et al., 2006]. A variety of approaches has been proposed for Multi-Objective Bayesian
Optimization (MO-BO) which can be classified into the aggregation-based methods
(using BO on a weighted sum of objective functions) [Knowles, 2006; Zhang et al., 2010]
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Loss in hyper-volume
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Fig. 3.11 The hyper-volume indicator expresses the three quality characteristics of an
approximated Pareto front. (left) Improvement of the hyper-volume by approaching
the exact Pareto front. (middle) Loss in hyper-volume by using a non-diversified
approximated Pareto front. (right) Improvement of the hyper-volume by adding a
point to the approximated Pareto front.

and the dominance-based approaches (using new infill sampling criteria based on the
concept of Pareto-dominance) [Emmerich et al., 2006; Svenson and Santner, 2016]. In
this section, the second class of approaches is presented. It follows the same structure
as single-objective BO, with the difference that for each objective an independent
surrogate model is created and an infill sampling criterion based on the concept of
Pareto-dominance such as the expected hyper-volume improvement [Emmerich et al.,
2006] is used.

Definition of the Expected Hyper-Volume Improvement

The Expected Hyper-Volume Improvement (EHVI) was first introduced by [Emmerich
et al., 2006]. Instead of using exact objective evaluations to assess the improvement in
hyper-volume of a candidate, which is computationally expensive, the GP posterior of
the objectives are used. Since GP predictions are random variables, an expectation
value of the hyper-volume improvement is computed. Specifically, for an input data-
point, x, the EHVI is the expected value of hyper-volume improvement by adding this
point to the data-set:

EHV I(x) = Ep(f(x)|Y,x,X) [IY(x)]

= Ep(f(x)|Y,x,X)

[∣∣∣∣H[Y,f(x)]⊤ \HY

∣∣∣∣]
=
∫

B\HY

[∣∣∣∣H[Y,v]⊤ \HY

∣∣∣∣]p(f(x)|Y,x,X)df(x)

(3.31)
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The final equation comes from the fact that the integrand is non-null only in the
non-dominated region by the DoE i.e. B \HY. The EHVI is optimized to find the
most promising candidate to improve the actual dominated hyper-volume. In the
constrained case, the EHVI has to be coupled to constrained infill criteria such as the
Probability of Feasibility or the Expected Violation in the same way as the Expected
Improvement (Section 3.2.2).

Computation of the EHVI

Several methods [Emmerich and Klinkenberg, 2008; Bader and Zitzler, 2011; Yang
et al., 2019] have been proposed to compute the EHVI, however, the computational
complexity increases exponentially with the number of objectives. In this thesis,
without loss of generality, the number of objectives is restrained to two objectives.

To compute the EHVI in the two-objective case, the approach developed in [Em-
merich et al., 2016] is followed. For that purpose, the DoE approximated Pareto front is
considered as sorted in a decreasing order of the first objective y1. The DoE objective
evaluations of the approximated Pareto front are augmented by y(0) = (yup

1 ,ylb
2 ) and

y(np+1) = (ylb
1 ,y

up
2 ), where np is the number of approximated Pareto front solutions.

Then, the non-dominated space by the DoE B \HY is divided into np + 1 disjoint
rectangles R(i) =

[(
y

(i)
1 ,ylb

2

)
,
(
y

(i−1)
1 ,y

(i)
2

)]
, i∈ 1, . . . ,np +1 (Fig. 3.12). Therefore, the

improvement can be expressed as follows:

I(x∗) =
∣∣∣∣H[Y,f(x)]⊤ \HY

∣∣∣∣
=
∣∣∣∣∣∣H[Y,f(x)]⊤

⋂np+1⋃
i=1

R(i)

∣∣∣∣∣∣
=

np+1∑
i=1

∣∣∣∣H[Y,f(x)]⊤
⋂
R(i)

∣∣∣∣
(3.32)

Then, injecting this improvement expression into Eq. (3.31) yields to:

EHV I(x) =
∫

B\HY

np+1∑
i=1

∣∣∣∣H[Y,f(x)]⊤
⋂
R(i)

∣∣∣∣p(f(x)|Y,x,X)df(x)

=
np+1∑
i=1

∫ y
(i−1)
1

ylb1

∫ y
(i)
2

ylb2

∣∣∣∣H[Y,f(x)]⊤
⋂
R(i)

∣∣∣∣p(f(x)|Y,x,X)df(x)
(3.33)
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Fig. 3.12 Illustration of the partition of the non-dominated hyper-volume into disjoint
rectangles.

where the second equality comes from the fact that H[Y,f(x)]⊤
⋂
R(i) is non-empty

only if f(x) dominates the upper right corner of R(i) that is
(
y

(i−1)
1 ,y

(i)
2

)
. In the

presented MO-BO framework, an independent GP is used for each objective function,
hence, p(f(x)|x,y,X) = p(f1(x)|y1,x,X)p(f2(x)|y2,x,X). Based on this independency
assumption, the following is obtained:

EHV I(x) =
np+1∑
i=1

∫ y
(i)
1

ylb1

∫ y
(i)
2

ylb
2

(
y

(i−1)
1 −y(i)

1

)
p(f1(x)|y1,x,X)(

y
(i)
2 −f2(x)

)
p(f2(x)|y2,x,X)df1(x)df2(x)+

np+1∑
i=1

∫ y
(i−1)
1

y
(i)
1

∫ y
(i)
2

ylb
2

(
y

(i−1)
1 −f1(x)

)
p(f1(x)|y1,x,X)(

y
(i)
2 −f2(x)

)
p(f2(x)|y2,x,X)df1(x)df2(x)

=
np+1∑
i=1

(
y

(i−1)
1 −y(i)

1

)ΦN (0,1)

y(i)
1 − f̂1(x)
ŝf1(x)

−ΦN (0,1)

ylb
1 − f̂1(x)
ŝf1(x)


(
ξ(y(i)

2 ,y
(i)
2 , f̂2(x), ŝf2(x))− ξ(y(i)

2 ,ylb
2 , f̂2(x), ŝf2(x))

)

+
np+1∑
i=1

(
ξ(y(i−1)

1 ,y
(i−1)
1 , f̂2(x), ŝf2(x))− ξ(y(i−1)

1 ,y
(i)
1 , f̂1(x), ŝf1(x))

)
(
ξ(y(i)

2 ,y
(i)
2 , f̂2(x), ŝf2(x))− ξ(y(i)

2 ,ylb
2 , f̂2(x), ŝf2(x))

)
(3.34)
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where the first equality comes from the property of additivity of integration on intervals:∫ y
(i−1)
1

ylb1 =
∫ y

(i)
1

ylb1 +
∫ y

(i−1)
1

y
(i)
1

and the second equality comes from the computation of the
following integral:

ξ(a,b,µ,σ) =
∫ b

−∞
(a−fi(x)) 1

σ
ϕN (0,1)

(
fi(x)−µ

σ

)
dfi(x)

= σϕN (0,1)

(
b−µ
σ

)
+(a−µ)ΦN (0,1)

(
b−µ
σ

) (3.35)

Therefore, the EHVI is fully analytical in the case of two objectives. This derivation
of the EHVI is based on the assumption of independent models for each objective.
However, in multi-objective problems, the objectives are often negatively correlated.
Considering each objective independently may be sub-optimal [Shah et al., 2015].

3.3.3 Multi-objective Bayesian Optimization taking into ac-
count correlation between objectives

Instead of modeling each objective using independent GPs, [Shah and Ghahramani,
2016] proposed to use a correlated GP for the different objectives. For that, a linear
model of coregionalization is considered [Alvarez et al., 2011]. Specifically, a multi-
output kernel function K(·, ·) is defined as the following combination of mlmc kernels
{ki(·, ·)}mlmc

i=1 :

K(x,x′) =
mlmc∑
i=1

Biki(x,x′) (3.36)

{Bi}mlmc
i=1 are Rno×no matrices called coregionalization matrices. The coregionaliza-

tion matrices encode the correlation between the outputs such as cov (fi(x),fj(x′)) =
K(x,x′)i,j while the kernels express the correlation in the input space. [Shah and
Ghahramani, 2016] use mlmc = no for the number of kernels and coregionalization
matrices. This allows a model of the objective functions which takes into account
the correlations between the different objectives. More details on the linear model of
coregionalization are presented in Section 3.4.1.

However, with a correlated objective model, the assumption of independency used
to compute the EHVI in Eq. (3.34) does not hold. This is due to the analytical
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intractability of the following integrals:

ϖ1(x) =
∫ y

(i−1)
1

ylb
1

∫ y
(i)
2

ylb
2

(
y

(i−1)
1 −y(i)

1

)(
y

(i)
2 −f2(x)

)
p(f(x)|Y,x,X)df(x)

ϖ2(x) =
∫ y

(i−1)
1

y(i)

∫ y
(i)
2

y2=ylb2

(
y

(i)
1 −f1(x)

)(
y

(i)
2 −f2(x)

)
p(f(x)|Y,x,X)df(x)

(3.37)

To overcome this issue, in [Shah and Ghahramani, 2016], first, the bounds of the
integrals are transformed to R2 by introducing the indicator function I[·]:

ϖ1(x) =
∫ +∞

−∞

∫ +∞

−∞
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y
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1

)
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](
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)
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p(f(x)|Y,x,X)df(x)

ϖ2(x) =
∫ +∞
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∫ +∞

−∞

(
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1 −f1(x)

)
I
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(3.38)

Then, the piece-wise linear functions (y(i)
1 −f1(x))I

[
y(i) ≤ f1(x)≤ y(i−1)

1

]
,(y(i)

2 −

f2(x))I
[
ylb

2 ≤ f2(x)≤ y(i)
2

]
and the constant piece-wise function (y(i−1)

1 −y(i)
1 )I

[
y

(i−1)
1 ≤ y(i)

1

]
are approximated by scaled Gaussian densities using moment matching. The result
from this approximation is that the integrands in Eq.(3.37) come back to a product
of multivariate Gaussians since the prediction of the model is Gaussian. Therefore,
the integrand is approximated by a scaled multivariate Gaussian (See Eq. (B.6), Ap-
pendix B). Hence, the integral over R2 using this approximation is equal to the product
of the scaling constants.

In Chapter 5, the quality of this approximation of the correlated EHVI is numerically
studied on a benchmark of representative functions. Moreover, instead of using a
linear coregionalization model which can exhibit only linear correlations between the
objectives, a novel multi-objective model is proposed based on deep Gaussian processes.

3.4 Multi-Fidelity with Gaussian Processes

In design engineering problems, as described in the previous sections of this chapter,
the exact evaluation of a quantity of interest, also called High-Fidelity (HF) evaluation,
relies on computationally intensive simulation codes which limit the size of the available
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data-set. The analysis of complex systems using uncertainty propagation, sensitivity
analysis or optimization requires repeated model evaluations at different locations
in the design space which typically cannot be afforded with HF physical models.
Moreover, using a surrogate model based only on the high-fidelity data can result
on a poor prediction of the model because of the few available evaluations. Multi-
fidelity approaches [Fernández-Godino et al., 2016; Peherstorfer et al., 2018] are used to
overcome this issue by enhancing the high-fidelity data with Low-Fidelity (LF) physical
model evaluations that are computationally cheaper to obtain but are less accurate. In
fact, unlike in the previous sections of this chapter where only a HF physical model
is considered, in multi-fidelity, there are different sources of information about the
same response of interest but with different degrees of accuracy and computational
cost (fidelities). Multi-fidelity approaches consist in managing these different levels
of fidelity in order to achieve a trade-off between computational cost and prediction
accuracy. Building other sources of information less costly of the HF physical model
can be accomplished by three main modeling approaches [Fernández-Godino et al.,
2016]:

• numerical relaxation, for instance, in a simulation code that requires an optimiza-
tion sub-problem to be solved, a low number of iterations in the optimization
process is chosen for the low-fidelity model. In [Jonsson et al., 2015], for the shape
optimization of trawl-doors a low-fidelity CFD model similar to the high-fidelity
CFD model is used but with a relaxed flow solver convergence criteria, this results
in a LF model 78 times faster than the HF model.

• different assumptions about the physical model by neglecting some physical
effects. For instance, in [Iyappan and Ganguli, 2020] a Euler-Bernoulli beam
finite element model [Reddy, 1993] is considered as the low-fidelity model to
compute the load-carrying and deflection characteristics of a short beam. The
effects of rotary inertia and shear deformation are neglected in this model and the
cross-section remains perpendicular to the bending axis. While in the high-fidelity,
the Timoshenko beam theory [Reddy, 1993] is used, which takes into account
the effects of rotary inertia and shear deformation and the cross-section has no
longer to be perpendicular to the bending axis for short and small beams.

• different levels of space or time discretization. For example, in [Brooks et al.,
2011], for the aerodynamic shape optimization of a transonic compressor rotor,
in the low-fidelity model a coarse mesh refinement is used to solve the Reynolds-



90 GPs applications to the analysis and optimization of complex systems

Averaged steady Navier-Stokes (240000 nodes), while in the high-fidelity model,
a fine mesh grid is used (740000 nodes).

Multi-fidelity modeling is a popular research topic both in the engineering and
machine learning communities. In fact, different models have been developed based on
Gaussian processes [Kennedy and O’Hagan, 2001; Le Gratiet and Garnier, 2014; Raissi
and Karniadakis, 2016; Perdikaris et al., 2017; Cutajar et al., 2019], artificial neural
networks [Kim et al., 2007; Minisci and Vasile, 2013] or support vector machines [Shi
et al., 2019] and applied to a broad spectrum of engineering applications including
aerodynamics [Kuya et al., 2011; Shah et al., 2015], electronics [Bekasiewicz and Koziel,
2015], thermodynamics [Reeve and Strachan, 2017], or mechanics [Vitali et al., 2002].
However, a rarely investigated case is when the input space definition is different in
each fidelity. In fact, in practice for the sake of simplicity, the LF model may not
consider some input variables or use a different modeling parameterization than the
HF model. In this section, a review of literature on the different multi-fidelity models
based on Gaussian processes is provided (Section 3.4.1) as well as a review on the
methods used to handle the case where different input space parameterizations are
considered for each fidelity (Section 3.4.2).

3.4.1 Multi-fidelity with identical input spaces

Due to their attractive features, GPs have been extended to multi-fidelity modeling
which resulted on popular multi-fidelity models based on GPs. In engineering design
field, linear models such as the Linear Model of Coregionalization (LMC) [Alvarez
et al., 2011] or the Auto-Regressive (AR1) model [Kennedy and O’Hagan, 2000] are
usually used [Laurenceau and Sagaut, 2008; Kuya et al., 2011; Toal and Keane, 2011;
Keane, 2012; Toal et al., 2014; Fernández-Godino et al., 2016; Bailly and Bailly, 2019].
These approaches are presented as well as other approaches developed in the machine
learning field [Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014; Perdikaris
et al., 2017; Cutajar et al., 2019] to account for more complex dependencies between
the available fidelities.

Let (Xt,yt) be the couple of inputs/outputs of each fidelity t ∈ {1, . . . ,nfi}, where
nfi is the number of fidelities sorted in an increasing order of fidelities i.e. (X1,y1)
corresponds to the lowest fidelity data-set and (Xnfi ,ynfi) to the highest fidelity data-set.
Let d and nt be respectively the dimension of the input data and the size of the training
data at fidelity t.
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Fig. 3.13 Linear Model of Coregionalization schematic view

Linear Model of Coregionalization (LMC)

Instead of considering a set of nfi independent GPs, one may consider a single multi-
output GP of nfi outputs [Alvarez et al., 2011]. Within the context of multi-fidelity,
each output nfi of this vector-valued GP corresponds to a fidelity.

For multi-output GPs, the covariance function takes its values in Rnfi×nfi and can
be expressed as:

K(x,x′) =


k1,1(x,x′) . . . k1,nfi(x,x′)
k2,1(x,x′) . . . k2,nfi(x,x′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

knfi,1(x,x′) . . . knfi,nfi(x,x′)

 (3.39)

where ki,j(·, ·) corresponds to the covariance function between the outputs i and j.
In LMC, the outputs are expressed as linear combinations of mlmc independent GPs
(Figure 3.13):

ft(x) =
mlmc∑
i=1

at,i× ζi(x) (3.40)

with ζi(·) a GP of mean zero and covariance matrix cov (ζi(x), ζi(x′)) = ki(x,x′).
Moreover, ζi(·) and ζj(·) may share the same covariance function ki(x,x′). It is
therefore possible to rewrite Eq.(3.40) by regrouping the GPs with the same covariance
function:

ft(x) =
mlmc∑
i=1

ri∑
j=1

aj
t,i× ζj

i (x) (3.41)

The GP of fidelity t is expressed as a sum of mlmc groups i of ri independent
GPs ζj

i (·) that share the same covariance function ki(x,x′). Therefore, due to the
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independence of the GPs ζj
i (·) it is possible to express the covariance function between

two outputs cov (ft(x),ft′(x′)) = kt,t′(x,x′) as:

kt,t′(x,x′) =
mlmc∑
i=1

ri∑
j=1

aj
t,ia

j
t′,i×ki(x,x′) =

mlmc∑
i=1

bit,t′×ki(x,x′) (3.42)

with bit,t′ =
ri∑

j=1
aj

t,ia
j
t′,i.

Eventually, the kernel matrix K(x,x′) may be written:

K(x,x′) =
mlmc∑
i=1

Biki(x,x′) (3.43)

with Bi a coregionalization matrix and its components bit,t′ . The rank of the matrix
Bi is defined by ri corresponding to the number of independent latent functions that
share the same covariance function ki(x,x′). The inference in LMC follows the same
procedure as described in Chapter 2, Section 2.2, with the supplementary consideration
of the coregionalization matrix in the expression of the Gram matrix.

A limitation of LMC for multi-fidelity applications is that it considers all the outputs
with the same weight, meaning that they provide the same level of information, it is
referred to as a symmetrical approach. By treating the outputs equally, symmetric
covariance functions are implemented in order to capture the output correlations
through the share of useful information across the outputs as much as possible. However,
in the multi-fidelity framework, asymmetrical information are available. Indeed, to
improve the predictions of the expensive high-fidelity output fnfi(·) information is
transferred from the inexpensive lower fidelity outputs. The multi-fidelity modeling
utilizes the correlated inexpensive lower-fidelity information to enhance the expensive
high-fidelity modeling. The GP-based approaches presented next account for this
asymmetrical information.

Auto-Regressive model (AR1)

The Auto-Regressive (AR1) method is one of the most used approaches for multi-fidelity
modeling in engineering design problems [Laurenceau and Sagaut, 2008; Kuya et al.,
2011; Toal and Keane, 2011; Keane, 2012; Toal et al., 2014; Fernández-Godino et al.,
2016; Bailly and Bailly, 2019]. It relies on a linear autoregressive information fusion
scheme introduced by [Kennedy and O’Hagan, 2000], assuming a linear dependency
between the different model fidelities.
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Fig. 3.14 AR1 schematic view

The auto-regressive denomination of this approach comes back from the fact that at
each level, the GP ft(·) is completely determined given the previous fidelity GP ft−1(·).
Specifically, AR1 assigns a GP prior to each fidelity model t where the higher-fidelity
model prior ft(·) is equal to the lower-fidelity prior ft−1(·) multiplied by a scaling
factor ρ(x) plus an additive bias function γt(·) (Fig. 3.14):

ft(x) = ρt−1(x)ft−1(x)+γt(x) (3.44)

ρt−1(x) is a scale factor and quantifies the correlation between the fidelities yt and
yt−1, and γt(·) is a GP with mean µγt and covariance function kγt(·, ·). ρt−1(·) is often
assumed as a constant function [Fernández-Godino et al., 2016], meaning that:

ft(x) = ρt−1ft−1(x)+γt(x) (3.45)

The relationship of the AR1 model in Eq. (3.44) is derived from the assumption that
cov (ft(x),ft−1(x′)|ft−1(x)) = 0, ∀x ̸= x′. It means that if ft−1(x) is known, nothing
more can be learned for ft(·) from any simulation of the cheaper code ft−1(x′) for
∀x′ ̸= x. Two main alternative numerical schemes exist for AR1 GPs inference: a
fully coupled one proposed by [Kennedy and O’Hagan, 2000] and a recursive inference
introduced by [Le Gratiet and Garnier, 2014].

[Kennedy and O’Hagan, 2000] derived the posterior distribution of the highest
fidelity fnfi(·) by marginalizing out all the fidelity observations. Based on standard
Gaussian identities, a Gaussian posterior distribution is obtained involving the inversion
of a covariance matrix of size ∑nfi

t=1nt×
∑nfi

t=1nt, hence inducing a computational



94 GPs applications to the analysis and optimization of complex systems

complexity of O
(∑nfi

t=1nt

)3
. To reduce this computational complexity, [Le Gratiet and

Garnier, 2014] instead of directly conditioning the highest fidelity on all the other
fidelities, followed a recursive approach. Specifically, the GP prior ft−1(·) in Eq.(3.44)
is replaced by the GP posterior f̃t−1 = ft−1|yt−1,Xt−1 of the previous inference level.
This results in nfi standard GP regressions and offers a decoupled inference approach,
reducing the training complexity of the model from O

(∑nfi
t=1nt

)3
to O

(∑nfi
t=1 (nt)3).

Under the assumption of nested DoE structure, meaning that the DoE of higher fidelity
is a subset of the DoE of lower fidelity, this inference scheme is equivalent to the fully
coupled one proposed by [Kennedy and O’Hagan, 2000].

By doing so, the multi-fidelity GP posterior predictive distribution p(ft|yt,Xt, f̃t−1)
for t = 1, . . . ,nfi for each level t is defined by the standard GP prediction equations
given the previous level t−1:

f̂t(x) = ρt−1f̂t−1(x)+µγt +kγt(x,Xt)K−1
γt

(Xt,Xt)
(
yt−ρt−1f̂t−1(x)−µγt

)
(3.46)

ŝ2
t (x) = ρt−1ŝ

2
t−1(x)+kγt(x,x)−kγt(x,Xt)K−1

γt
(Xt,Xt)kγt(Xt,x) (3.47)

where f̃t(x) ∼ N (f̂t(x), ŝ2
t (x)). AR1 has been extended for scalability purpose to

account for high dimensional problems (for instance with Proper orthogonal decom-
position [Xiao et al., 2018] or Nystrom approximation of sample covariance matrices
[Zaytsev and Burnaev, 2017]).

As it can be seen in Eq.(3.44), AR1 only assumes a certain linear relationship
between the fidelities. Moreover, AR1 may be seen as a particular case of co-kriging
using LMC for a particular value of the coregionalization matrix. This linear mapping
between the fidelities may be a limitation for some engineering design problems where
this dependence structure is not appropriate. Other approaches have been developed
to account for non-linear dependencies between the fidelities.

Non-linear Auto-Regressive multi-fidelity Gaussian Process (NARGP)

In order to generalize the AR1 approach, [Perdikaris et al., 2017] proposed a non-linear
mapping between the fidelities called Non-linear Auto-Regressive (NARGP):

ft(x) = ϱt−1 (ft−1(x))+γt(x) (3.48)

with ϱt−1(·) a mapping function between two successive fidelity models with an assigned
GP prior. As ft−1(·) is a GP, ϱt−1 (ft−1(·)) is a composition of two GPs which comes
back to a deep Gaussian process. NARGP avoids a DGP formulation due to the non-
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tractability of its exact inference (Chapter 2, Section 2.3). Instead, NARGP follows the
same recursive inference strategy proposed for AR1 [Le Gratiet and Garnier, 2014]. It
also requires to satisfy the same hypotheses, especially on the nested DoE assumption.
In the inference, the GP prior of ft−1(·) is replaced with the GP posterior f̃t−1(·)
obtained with the previous fidelity level. Following this assumption and considering an
independence hypothesis between γt(·) and ϱt−1(·), NARGP model may be expressed
by:

ft(x) = φt

([
x, f̃t−1(x)

])
(3.49)

with φt ∼ GP
(
0,kt

(
[x, f̃t−1(x)], [x′, f̃t−1(x′)]

))
.

The authors proposed a specific covariance function for φt(·) that reflects the
non-linear structure:

kt

(
[x, f̃t−1(x)], [x′, f̃t−1(x′)]

)
= kρt−1(x,x′)×kft−1

(
f̃t−1(x), f̃t−1(x′)

)
+kγt−1(x,x′)

(3.50)
where kρt−1(·, ·) and kγt−1(·, ·) are covariance functions with respectively an input space-
dependent scaling effect and an input space-dependent bias effect, whilst kft−1(·, ·) is
the covariance function between the evaluated outputs at the previous layer. Hence,
NARGP extends the capabilities of AR1 and enables to capture non-linear, non-
functional and space-dependent cross-correlations between the low and high-fidelity
models [Perdikaris et al., 2017].

NARGP resumes to a disjointed architecture in which a GP for each fidelity is
fitted in an isolated hierarchical manner. Therefore, inference in NARGP comes back
to inference of nfi GPs in a sequential manner from the lower to the higher fidelity.
However, this means that GPs at lower fidelities are not updated once they have been
trained given the higher fidelities. To avoid this limitation, [Cutajar et al., 2019]
proposed to extend NARGP to a deep Gaussian process by keeping the exact form of
Eq (3.48).

Multi-Fidelity Deep Gaussian Process (MF-DGP)

A functional composition of GP priors is obtained by keeping the exact relationship
in Eq. (3.48). This functional composition of GPs gives rise to a Deep Gaussian
Process (DGP) with nfi layers as described in Chapter 2, Section 2.3. In the classic
formulation of DGPs for regression, the intermediate layers are latent and serve as
Bayesian non-parametric mappings to capture complex and non-stationary responses
(Chapter 4). However, in this formulation of DGPs, the intermediate layers have a
physical signification. In fact, each layer corresponds to a fidelity and is connected to
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Fig. 3.15 Graphical representation of MF-DGP model for three fidelities (the lower
fidelity represented in blue, the medium fidelity in green, and the high fidelity in red).
Each layer of the DGP corresponds to a fidelity.

a couple of observed inputs/outputs. Moreover, the GP at each layer depends not only
on the input data at this fidelity but also on all the previous fidelity evaluations for the
same input data. To this end, ft

[i] denotes the evaluation at layer i of Xt the input data
at fidelity t (Fig. 3.15). This formulation of DGPs in the context of multi-fidelity is
called Multi-Fidelity Deep Gaussian Process (MF-DGP) [Marmin and Filippone, 2018;
Cutajar et al., 2019]. MF-DGP like NARGP imposes the definition of a combination
of covariance functions at each layer taking into account the correlation between the
inputs as well as the correlation between the outputs as expressed in Eq. (3.50)

The MF-DGP inference follows the variational approximation presented in [Sal-
imbeni and Deisenroth, 2017] (see Chapter 2, Section 2.3.2). At each layer, a set
of inducing inputs / outputs (Z[i],u[i]) are introduced and the following variational
approximation is considered:

q
(
{{ft

[i]}ti=1}nfi
t=1,{u[i]}nfi

i=1
)

=
nfi∏
t=1

t∏
i=1

p(ft
[i]|u[i],{Xt, ft

[i−1]},Z[i−1])×
nfi∏
i=1

q(u[i]) (3.51)

where q(u[i]) is the approximated variational distribution of u[i]. Following a classical
variational approach (Chapter 2, Section 2.1.2), the variational evidence lower bound
(ELBO) is then obtained:

L=
nfi∑
t=1

nt∑
i=1

E
q(f (i),t

[t] )

[
logp(y(i),t|f (i),t

[t] )
]
−

nfi∑
t=1

KL
[
q(u[t])||p(u[t]|Z[t−1])

]
(3.52)

This bound is optimized with respect to the inducing inputs {Z[t]}nfi
t=1, the variational

parameters {θq(u[t])}
nfi
t=1, and the GP hyperparameters at each layer {θ[t]}nfi

t=1. However,
optimizing the variational parameters using ordinary gradient may be not appropriate
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Fig. 3.16 Classication of GP-based multi-fidelity approaches.

(Chapter 2, Section 2.1.2). Moreover, in the case of MF-DGP, the inputs at each layer
are a combination of inputs in the original input space with the outputs of the previous
layer (see Fig. 3.15), hence, optimizing freely the inducing inputs is not adequate.
An optimization framework of MF-DGP is proposed in Chapter 6 to overcome these
limitations.

For the considered GP-based multi-fidelity approaches described above, a classifica-
tion is illustrated in Figure 3.16. The main distinctions correspond to the symmetrical
or asymmetrical treatment of the fidelity information and the linear or non-linear rela-
tionship between the fidelities. In the first part of Chapter 6, a numerical comparison
between these different approaches, as well as the proposed improved MF-DGP, on
analytical and physical problems in different scenarios is carried out.
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Fig. 3.17 A one-section wing characterized by 3 design variables: its root chord (RC),
tip chord (TC), and the sweep angle (β) (left) can be used as a low-fidelity model of a
two-section wing characterized by 6 design variables: its root chord (RC), tip chord of
the first section (TC1), tip chord of the second section (TC2), sweep angle of the first
section (β1), sweep angle of the second section (β2) and the relative span of the first
section (α) (right).

3.4.2 Multi-fidelity with variable input space parameteriza-
tion

The majority of multi-fidelity approaches assume that fidelities share the same input
space. However, in practice, this is not always the case. In fact, due to either different
modeling approaches from one fidelity to another, or omission of some variables in
the lower-fidelity models, the input spaces may have distinct parameterization forms
and/or dimensionality. For instance, in aerodynamics, to model multiple-section wing,
simplified planform characterization can be used considering one section with average
chords and sweep angles (Fig. 3.17).

In the literature, the main multi-fidelity approaches that address this issue belong
to the space mapping multi-fidelity class [Bandler et al., 2004]. The space mapping
multi-fidelity methods act on the inputs rather than the outputs of the models. The
basic concept is to transform the high-fidelity inputs using a parametric function
in order to minimize a distance between the corresponding low-fidelity outputs of
this mapping and the exact high-fidelity outputs [Bandler et al., 2004]. In the space
mapping approaches two fidelities are considered, hence, instead of using the nfi levels
of fidelity notation, the couple of high-fidelity and low-fidelity inputs/outputs data are
respectively noted (Xhf ,yhf ) and (Xlf ,ylf ) for the space mapping approaches:

β̂ = argmin
β

m∑
i=1

(
||y(i)

hf −f exact
lf

(
ψβ(x(i)

hf )
)
||
)

(3.53)
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where m denotes the size of the set of mapped points which is a subset of the HF
data chosen based on trust region optimization algorithms, ψβ(·) corresponds to the
mapping, and β to its vector of parameters (in most applications ψβ(·) is considered
linear). The space mapping has been extensively used for multi-fidelity [Bandler et al.,
2004, 2006; Robinson et al., 2008; Koziel, 2010] and different parametric mappings have
been used, for instance, aggresive space mapping [Rayas-Sanchez, 2016] and neural
networks [Rayas-Sánchez, 2004].

The space mapping approaches were first used in the case of variable-size input
parameterization in [Robinson et al., 2008]. However, they are used in an optimization
context, and the mapping is performed around the optimum candidates and is updated
at each iteration of the trust-region optimization. This is not suited from a modeling
point of view where the analysis of the high-fidelity function is performed for the whole
input space.

A nominal mapping ψ0(·), based on practical insights of the multi-fidelity problem,
is usually required. It expresses the assumed relationship between the different input
spaces. In some cases, this nominal mapping is trivial. For instance, if the set of high
and low-fidelity inputs are from the same set of physical equations, the low-fidelity
inputs can then be a subset of the high-fidelity ones. Usually, the nominal mapping is
problem specific and is defined based on expert opinion. A multi-fidelity approach as a
bias correction [Li et al., 2016] (BC) can then be used based on this nominal mapping:

fhf (x) = flf (ψ0(x))+γ(x),∀x ∈ Rd (3.54)

The Input Mapping Calibration (IMC) [Tao et al., 2019] is an approach that seeks
to obtain a potentially better mapping than the nominal mapping. As the space
mapping approach, it consists in finding a parametric mapping ψβ(·). However, here
the mapping is considered for the whole input space and the parameters of the mapping
are obtained by minimizing the difference between the LF and HF model outputs on
the HF data points plus a regularization term τ(β,β0) based on the nominal mapping
parameters β0:

β̂ = argmin
β

nhf∑
i=1

(
y

(i)
hf −f exact

lf

(
ψβ

(
x(i)

hf

)))2
+ τ(β,β0)

 (3.55)

where nhf corresponds to the number of HF training data points. The high-fidelity
input data is then projected with the obtained mapping on the low-fidelity input
space, and a multi-fidelity model with the same input spaces can be used (Fig. 3.18).
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This optimization of the mapping parameters is done previously to the training of the
multi-fidelity model, which prevents the parameters of the mapping to be updated, once
the multi-fidelity model is optimized. Besides, the optimization is done using the exact
low-fidelity model, which is considered as computationally free to evaluate, however, in
many applications, it may not be the case. Moreover, the correlations over the original
HF input space are not taken into account, since the multi-fidelity model is trained
only on the lower-fidelity input space. Finally, the mapping parameters are estimated
based on the concept that the low-fidelity model shares a similar trend with the
high-fidelity one. This is the case in some applications as microwave applications where
space mapping has emerged. However, in many multi-fidelity problems, minimizing
the distance between the outputs does not guarantee an appropriate mapping (See
Chapter 6).

Step 1

Step 2

Xlf Xhf

ylf yhf

Multi-fidelity model

ψβ(Xhf )β optimization

Fig. 3.18 Graphical representation of the IMC approach.

Up until now, the mapping from the high to the low-fidelity inputs is based on
parametric deterministic functions and is usually trained sequentially with the multi-
fidelity model. In Chapter 6, a novel approach to handle multi-fidelity modeling in the
case of different input space parameterizations is proposed based on a non-parametric
Bayesian mapping which is learned and is embedded in the multi-fidelity model.

3.5 Conclusion

This chapter reviewed the existing Gaussian process-based approaches for problems
relative to the analysis and optimization of complex systems. In fact, non-stationarity,
optimization of computationally expensive black-box functions, multiple antagonistic
objectives to consider, and different levels of fidelities of code available, are recurrent and
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major investigated axes in the analysis and optimization of complex systems. Gaussian
process-based approaches have been continuously developed for these problems in
the literature these last two decades. These different approaches are summarized in
the next paragraphs with their respective limitations that introduce the contribution
chapters of this thesis.

For non-stationarity, three class of approaches adapt GPs to problems with input-
dependent variations: direct formulation of non-stationary kernels, local stationary
covariance functions, and non-linear mapping approaches. In this manuscript, non-
stationarity is considered in the context of Bayesian optimization where data is scarce
and may be high-dimensional. A direct formulation of non-stationary kernels in high-
dimensional spaces is difficult due to the high-parametrization of the non-stationary
kernels, while local stationary covariance functions may not be adapted to a configura-
tion where data is scarce due to partition of the training data. Non-linear mapping
approaches have been used in the context of Bayesian optimization. However, using
parameterized functions as mappings may limit the flexibility of this class of approaches.
For that, in Chapter 4, we propose to couple deep Gaussian processes (which use
the hidden layers as non-parametric Bayesian mappings) to Bayesian optimization
in order to address computationally expensive black-box optimization problems with
non-stationary behaviors.

Bayesian optimization has been adapted to multiple objectives by using Pareto-
dominance based infill crtieria such as the expected hyper-volume improvement. In
the classic formulation of multi-objective Bayesian optimization, the objectives are
considered independent, however, often the objectives show negative correlation and
assuming independence may yield to loss of information. An adaptation of multi-
objective Bayesian optimization to take into account these correlations have been
developed using the linear model of coregionalization. However, this model considers
only linear correlations between the objectives. The contribution of Chapter 5 addresses
this issue by developing a new model based on deep Gaussian processes called multi-
objective deep Gaussian process model which can exhibit non-linear correlation between
the objectives.

Different Gaussian process-based multi-fidelity approaches have been developed.
These methods are used in the context of the same input space definition for all the
fidelities. However, in some applications, different parameterizations are used for
each fidelity input space. To handle these applications, multi-fidelity space mapping
approaches are usually used. However, they are based on deterministic parameterized
mapping functions. Therefore, they have limited flexibility and may be problem-
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dependent. To overcome this issue, in Chapter 6, another model is developed based
on multi-fidelity deep Gaussian process model. This model called multi-fidelity deep
Gaussian process embedded mapping, includes a Bayesian non-parametric mapping
between the input spaces of the different fidelities within the multi-fidelity deep Gaussian
process model, thus, allowing a joint optimization of the multi-fidelity model and the
input mappings.
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Single and Multi-Objective
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Gaussian Processes





Chapter 4

Bayesian Optimization with Deep
Gaussian Processes for
Non-Stationary Problems

“Experience with real-world data, however, soon convinces one that both stationarity
and Gaussianity are fairy tales invented for the amusement of undergraduates.”

Thomson (1994)

• Coupling of Bayesian optimization and deep Gaussian processes to handle
computationally intensive black box and non-stationary constrained opti-
mization problems.
• Assessment of this coupling with respect to state-of-the-art non-stationary
approaches on analytical test problems.
• Application of this coupling on an extensive benchmark including repre-
sentative aerospace optimization design problems.

Chapter contributions

CH4

Bayesian Optimization (BO) is a widely used approach to handle the optimiza-
tion of computationally intensive and black-box problems (Chapter 3, Section 3.2).
Generally, BO is based on Gaussian Process (GP) regression as a Bayesian model.
The advantage of GP is that it gives an analytically tractable Gaussian predictive
posterior distribution and its non-parametric form allows flexible modeling capabilities
(Chapter 2, Section 2.2). However, standard GPs are used with a stationary covariance
function i.e. they are based on the relative distance between the inputs and do not
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depend on the respective regions where the inputs lie. This induces some difficulties
for GPs to handle some optimization problems in engineering design [Xiong et al.,
2007]. In fact, in multiple engineering design problems, the response of interest varies
with different degrees of smoothness depending on the input values. For instance, the
design of a rocket booster involves different discipline behaviors depending on the
input region e.g. the transition from subsonic to supersonic induces abrupt changes in
the aerodynamic discipline [Gramacy and Lee, 2008]. The different approaches that
have been developed to overcome this issue and adapt GPs to non-stationarity can
be classified into three categories: direct formulation of a non-stationary covariance
function [Higdon et al., 1999; Paciorek and Schervish, 2006; Plagemann et al., 2008;
Heinonen et al., 2016], local stationary covariance function [Haas, 1990; Tresp, 2001;
Rasmussen and Ghahramani, 2002; Bettebghor et al., 2011; Trapp et al., 2020], and
non-linear mapping [Sampson and Guttorp, 1992; Gibbs, 1998; Xiong et al., 2007;
Snoek et al., 2014; Marmin et al., 2018] (Chapter 3, Section 3.1 for details on these
approaches). The non-linear mapping approach, consisting of a warping of the input
space, has been used in a BO framework [Toal and Keane, 2012; Snoek et al., 2014],
showing interesting performance in the context of optimization where data is scarce and
eventually high-dimensional. However, parametric functions as mapping are problem
dependent and do not provide intrinsically a measure of uncertainty about the mapping.
One way to overcome this issue is to use a non-parametric Bayesian mapping. For
that, GPs are natural candidates. Using GPs as input warping for a GP yields to a
functional composition of GPs that is a Deep Gaussian Process (DGP) (Chapter 2,
Section 2.3). Therefore, DGPs allow an automatic non-parametric Bayesian mapping
of the input space.

The capacity of a DGP to handle non-stationarity has been first elucidated by
[Damianou, 2015], where it has been used to fit a step function. This type of functions
characterized by a flat region broken with a discontinuity are common in optimization
problems due to some constraints where there is an abrupt transition from feasible to
unfeasible regions of the input space. In [Damianou, 2015], it is shown that unlike GPs
for which modeling this discontinuity is difficult, DGPs based on their intermediate
layers are able to capture the discontinuity. This confirms the deep learning theory
intuition, that is, it offers the possibility to capture multiple variations through the
composition of multiple functions. This composition allows to use simple functions to
learn a highly varying function [LeCun et al., 2015]. In Fig. 4.1, unlike a regular GP, a
2-layer DGP (henceforth, a DGP with l hidden layers is referenced as a l-layer DGP)
is able to capture the non-stationarity of the modified Xiong function (see Eq. C.1,
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Appendix C for its definition). Therefore, a hierarchical composition of GPs presents
better results than a shallow GP in the approximation of complex functions as described
in [Damianou and Lawrence, 2013; Dai et al., 2015; Salimbeni and Deisenroth, 2017;
Dutordoir et al., 2017]. In fact, a DGP allows a Bayesian and flexible way of kernel
construction through input warping and dimensionality expansion to better fit the
response in a scarce data context [Damianou and Lawrence, 2013].
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Fig. 4.1 Approximation of the modified Xiong-function, a non-stationary 1-dimensional
function by a 2-layer DGP model. The model captures the non-stationarity of the
exact function.

The coupling of DGPs and BO has been briefly introduced previously in [Dai
et al., 2015], and it was directly applied on an analytical 2D problem. However, some
issues may arise from this coupling that have not been investigated yet. In fact, as
shown in Section 4.1.1, one of the limitation of the current training of DGPs is the
under-estimation of the predictive uncertainty which can be penalizing when used
within a BO framework. Additionally, a DGP has an architecture to be defined with
respect to the data in hand, and given the BO iterative structure a trade-off between
complexity and power of representation may be made at each iteration of the algorithm.
Moreover, in contrast with a GP, the predictive distribution of a DGP is not necessary
Gaussian, therefore, some infill criteria in BO such as the EI can not be directly used
(Fig 4.2).

In this chapter, the key contribution is to investigate the application of DGPs for
non-stationarity optimization problems in a BO framework. For that, an improved
training technique is proposed to obtain a better predictive uncertainty as well as
a more adapted training of DGP in the BO framework. Moreover, the influence of
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DGP training
Section 4.1.1

Training time

BO iterative strategy
Under-estimation
of uncertainty

Criteria based on Gauss-
ian predictive distribution

Which structure for
the DGP architecture?

Uncertainty
quantification
Section 4.1.1

DGP architecture
Section 4.1.2

Infill criteria
Section 4.1.3

BODGP

Coupling of BO and DGPs
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✗
✗

✗

Fig. 4.2 The coupling of BO and DGP arises some issues within DGPs from the training,
the predictive uncertainty, the DGP architecture perspectives, and within BO from
the infill criteria perspective.

DGP architecture is investigated within the perspective of BO. The infill criteria used
in BO are also discussed when coupled with DGPs. These different investigations
allow us to propose an algorithm for BO coupled with DGPs for the optimization of
non-stationary problems. Eventually, the proposed framework for DGP and BO is
numerically evaluated on a benchmark of analytical test problems and representative
aerospace design problems.

This chapter is organized in two main sections. In Section 4.1, a framework
for coupling BO and DGPs is proposed. The proposed framework is based on an
investigation covering several aspects, such as the training approach of DGP in the
context of BO, uncertainty quantification, architecture of the DGP and infill criteria.
Section 4.2 presents experimentations on analytical optimization problems and on
aerospace optimization test problems, to assess the performance of BO & DGP compared
to relevant existing approaches.
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4.1 Bayesian Optimization using Deep Gaussian Pro-
cesses

In this section, a deep investigation is followed in order to highlight the different
challenges that may rise in the BO & DGP coupling and to propose contributions to
overcome them. This concerns the training approach for the DGP, the uncertainty
quantification of DGP, the infill criteria, the induced variables in each layer and the
architecture of the DGP (number of layers, number of units, etc.). In this section,
different analytical functions are used to illustrate the analyses made. These functions
are described in Appendix C.

4.1.1 Training

Different inference approaches have been developed for DGP as reviewed in Chapter 2,
Section 2.3.2. The doubly stochastic inference approach proposed in [Salimbeni and
Deisenroth, 2017] is preferred in the present study since it keeps the dependence
between layers and does not assume a particular form of the kernels used. The loss of
analytical tractability may be compromising, since a Monte Carlo sampling approach is
required. However, the form of the Evidence Lower Bound (ELBO) is fully factorizable
over the data set allowing important parallelization.

In this section, an optimization approach of the ELBO based on natural gradient
[Amari, 1998] is proposed which is adapted to the context of BO since it enables a more
adapted predictive uncertainty quantification of the model and reduces the number of
optimization iterations needed in the training. Empirical experimentations are carried
out to demonstrate these improvements compared to the classical training approach
based on ordinary stochastic gradient [Salimbeni and Deisenroth, 2017].

Optimization of the ELBO in the context of BO

The ELBO for a DGP configuration of l layers obtained using the doubly stochastic
inference approach can be written as follows (details on this derivation are presented
in Chapter 2, Section 2.3.2)

L=
n∑

j=1
E

q
(

h
(j)
[l]

) [logp
(
y(j)|h(j)

[l]

)]
−

l∑
i=1

KL
[
q(U[i])||p(U[i])

]
(4.1)

The ELBO is usually optimized using an ordinary stochastic gradient descent [Salimbeni
and Deisenroth, 2017] with respect to the hyper-parameters of the GPs {θ[i]}l1, the
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induced inputs {Z[i]}l1, and also the variational parameters {θq(U[i])}l1 of the variational
distributions {q(U[i]) =N (U[i]|Ū[i],Γ[i]}l1. The ordinary gradient descent considers
the steepest direction with respect to the euclidean distance:

Θt+1 = Θt−γt∇ΘL|Θ=Θt (4.2)

where Θt is the set of all the parameters of the ELBO L, γt the step size, and t denotes
the iteration number of the ordinary gradient algorithm. In the case of the ELBO,
since the variational parameters define a distribution, the parameter space is not
characterized by an euclidean norm. The ordinary gradient descent in this case is not a
suitable direction to follow in optimization. To illustrate this, consider two uni-variate
Gaussian distributions parameterized by their mean and variance p1(v) =N (v|µ1,σ2

1)
and p2(v) =N (v|µ2,σ2

2). A similar change dσ2 in the variance will update equivalently
the distributions in terms of euclidean distance. However, the obtained distributions
p1,updated and p2,updated are not equivalently updated in terms of KL divergence that
is a measure usually used to quantify dissimilarities between distributions:

KL[pi||pi,updated] = log

√
σ2

i +dσ2

σi

+ σ2
i

2(σ2
i +dσ2) −0.5 (4.3)

This equation shows that the dissimilarity induced between the original distribution
and the updated one depends on the original variance of the distribution. For a low
variance, the update yields to a large dissimilarity, while for a high variance the same
update yields to a low dissimilarity. Moreover, changing the parameterization (for
instance, using the precision (inverse of the variance) instead of the variance) yields to
a different result.

This non-adaptation of ordinary stochastic gradient to the parameter space may
induce several issues. In fact, since the direction proposed by the ordinary gradient does
not point to the steepest descent, the training may take a large number of iterations.
Secondly, even if it is expected to have an under-estimation of the predictive uncertainty
when using variational inference (Chapter 2, Section 2.1.2), this under-estimation can
be further aggravated due to a poor optimization of the ELBO. In fact, in the expression
of the ELBO in Eq. (4.1), the minimization of the second term, corresponding to the KL
divergence, which is particularly difficult for ordinary gradient, has a direct incidence
on the predictive uncertainty. In fact, the prediction for locations X∗ using a DGP
is obtained by sampling samples from the first layer, through the inner layers, until
reaching the final layer, using the variational posterior distribution at each layer i,
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q
(
F∗

[i]|F∗
[i−1], |Ū[i],Γ[i],Z[l],X∗

)
=N

(
F∗

[i]|𭟋𭟋𭟋[i],Σ[i]
)

with F∗
[0] = X∗ and :

𭟋𭟋𭟋[i] = K̃Ū[i] (4.4)

and
Σ[i] = K[i]

(
F∗

[i−1],F
∗
[i−1]

)
− K̃[i]

(
K
(
Z[i],Z[i]

)
−Γ[i]

)
K̃⊺

[i] (4.5)

with
K̃[i] = K[i]

(
F∗

[i−1],Z[i]
)

K[i]
(
Z[i],Z[i]

)−1
(4.6)

where K[i](·, ·) corresponds to the kernel function at layer i. In Eq. (4.5) the red colored
term shows the importance of the calibration of the variational distribution q(U[i]) =
N
(
U[i]|Ū[i],Γ[i]

)
with respect to the prior distribution p(U[i]) =N

(
U[i]|0,K(Z[i],Z[i])

)
for the predictive uncertainty estimation. This calibration is performed by the trade-off
between the minimization of the KL term and the maximization of the expectation
term in Eq. (4.1). Therefore, the importance of an adapted optimization algorithm to
avoid poor predictive uncertainty estimation.

To overcome these issues, the differential geometry of the distribution parameter
space (its local curvature) is taken into account. For that, a distribution parameter
space is characterized as a Riemannian manifold endowed with the Fisher information
metric that is called statistical manifold. The Fisher information metric is a measure
of the curvature of the distribution parameter space and is defined for a distribution
q(U[i]) as:

Fθq(U[i])
=−Eq(U[i])

[
∇2
θq(U[i])

logq(U[i])
]

The Fisher information is invariant to parameterization and depends only on the
distribution. The steepest direction of a loss function defined on a statistical manifold
is given by the ordinary gradient rescaled by the inverse Fisher information matrix and
is called natural gradient [Amari, 1998]:

θt+1,q(U[i]) = θt,q(U[i])−γtF−1
θt,q(U[i])

∇θq(U[i])
L|θq(U[i])

=θt,q(U[i])

= θt,q(U[i])−γt∇̃θq(U[i])
L|θq(U[i])

=θt,q(U[i])

(4.7)

where ∇̃θq(U[i])
L|θq(U[i])

=θt,q(U[i])
= F−1

θt,q(U[i])
∇θq(U[i])

L|θq(U[i])
=θt,q(U[i])

. Therefore, the
optimization update comes back to the computation of the Fisher information ma-
trix at each iteration. Since {q(U[i])}l1 are considered as Gaussian distributions,
the Fisher information matrix has a simple form when using the natural parame-
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terization θq(U[i]) =
[
Γ−1

[i] Ū[i],−1
2Γ−1

[i]

]
[Hensman et al., 2013]. In fact, the Fisher

information matrix comes back to the gradient of the expectation parameters with
respect to the natural parameters

∂νq(U[i])
∂θq(U[i])

where the expectation parameters are

νq(U[i]) =
[
Ū[i],Ū[i]Ū

⊺
[i] +Γ[i]

]
.

Natural gradient has been used in the case of conjugate variational inference
in GP [Hensman et al., 2013] and also in the non-conjugate case [Salimbeni et al.,
2018]. In these works, it is shown that natural gradient performs better in the case
of ill-conditioned posteriors where ordinary gradient is not able to converge. These
ill-conditioned cases are recurrent in BO due to sequential addition of data in a
non-uniform way.

Following these works, a generalization of natural gradients to the training of
DGP is proposed. For this, for each layer, a natural gradient descent is performed
for the variational parameters. More specifically, a loop is performed between an
optimization step with the natural gradient to perform the optimization with respect
to the parameters of the variational distributions {q(U[i])}l1 while fixing the other
parameters, and an optimization step using a stochastic gradient descent optimizer
(Adam optimizer [Kingma and Ba, 2014]) to perform the optimization with respect to
the Euclidian space parameters {θ[i]}l1,{Z[i]}ll (Fig. 4.3). Using the natural gradient
for all the distributions of the inner layers in the case of DGPs is tricky. Indeed, the
Fisher information matrix of the inner layer variational distributions may show high
ill-conditioning behavior. This is illustrated in Fig 4.4 where the condition number (the
ratio between the highest eigenvalue by moduli and the lowest eigenvalue by moduli)
of the Fisher information matrix of the distribution parameter space increases from
the last to the first layer of the DGP. This ill-conditioning of the first layers may lead
to amplification of the round-off error when inverting the Fisher information matrix.
Additionally to the numerical issue, an important condition number implies large
statistical fluctuations [Vallisneri, 2008]. It is therefore more cautious to use smaller
steps when optimizing the parameter values of the inner layers to avoid instability.
This is shown in Fig 4.5 where a smaller step size for the inner layers compared to the
last layer yields to a stabilized convergence of the parameter value. Thus, a simple
scheme is proposed where the step-size is constrained to a decreasing order from the
last to the first layer.

In the context of BO, this optimization procedure has to be repeated after each
added point using an initialization scheme for the parameters (random initialization,
Latin Hyper-cube Sampling (LHS), data-dependent initialization [Ulapane et al., 2020]),
which may be time consuming. In fact, these strategies do not take into account the
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Adam step with step size γAdam

w.r.t
{θt,[i]}l1,{Zt,[i]}ll

Natural gradient with step size
γnat

0 w.r.t
θt,q(U[0])

Natural gradient with step size
γnat

l w.r.t
θt,q(U[l])

...

Fig. 4.3 Loop procedure for the optimization of the ELBO. The loop consists of an
optimization step using an ordinary stochastic gradient (Adam optimizer) for the
deterministic parameters {θt,[i]}l1,{Zt,[i]}ll and an optimization step using the natural
gradient for the variational parameters θt,q(U[0]) of each layer i. The step size of the
natural gradient are taken in this order γNat

0 ≤ . . .≤ γNat
i ≤ . . .≤ γNat

l to avoid overly
large step in the first layers.
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Fig. 4.4 Evolution of the condition number of the Fisher information matrix of the
variational parameter space at each layer of a 2 layer-DGP. The inner layers show
ill-conditioning behavior compared to the last layer.

data-additive structure of BO i.e., after adding one data-point to the data-set the
optimum of the parameters may not move much from its previous location. Hence, to
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Fig. 4.5 Evolution of the first natural parameter of three induced variables (one at each
layer) throughout the training of a 2-layer DGP. (left) The evolution of the parameters
when using a step-size of 0.1 for the different layers shows that the parameter of the
last layer quickly stabilizes unlike the two first layer parameters. (right) The evolution
of the parameters when using a step-size of 0.1 for the last layer and 0.01 for the two
inner layers shows that when reducing the step size of the inner layers the optimization
is more stable.

take advantage of BO, the optimization can be initialized using the optimal values of
the previously trained DGP model. As shown in Fig. 4.6, this allows faster convergence.
However, this can make the optimization converge to a poor local optimum. Therefore, a
complete training of the model is recommended after a certain number of BO iterations
depending on the problem at hand. Moreover, using the previous parameter values
requires that the number of parameters does not change from one iteration to another.
Hence, the architecture of BO has to be fixed when initializing from the previous DGP
model, otherwise if the architecture changes in the next iteration the initialization has
to be done from scratch or a specific initialization for the added parameters have to be
proposed. How to choose this architecture is discussed in details in Section 4.1.2.

The pseudo algorithm (Algorithm 1) describes the proposed training strategy of
the DGP model within the context of BO.
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Fig. 4.6 Comparison of the evolution of the optimization of the ELBO in the case
of using the standard initialization procedure (in blue) and in the case of using the
previous model optimal parameters as the initialization (in orange). A 2 layer-DGP is
used on a data set with a size of 100 points on the Trid function. Using the previous
model allows better and faster convergence.

Experimental comparison on the DGP training

Comparison with respect to ELBO convergence
The evolution of the ELBO using three different optimization approaches is presented
in Fig. 4.7 for three different problems (Appendix C). The optimization using the
proposed optimization procedure named as Nat Grads in Fig. 4.7 gives the best results
compared to the classical approach using only stochastic gradient (Adam). In fact,
natural gradient for all the layers is faster and converge to a better value than the
other two approaches. For the Hartmann 6d and the Trid functions, the size of the
step of the natural gradient for the first layers is reduced compared to the step size of
the last layer, in order to avoid overlarge step size.

Comparison with respect to prediction accuracy and uncertainty quan-
tification
A test set to estimate the Root Mean Square Error (RMSE) and the Mean Negative test
Log-Likelihood (MNLL) is used to assess the prediction and the uncertainty estimator
performance of the models trained by the proposed optimization approach (DGP Nat)
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Algorithm 1: DGP model training
1 Require: X,y.
2 Require: The number of induced variables, m.
3 Require: The number of layers, l.
4 Require: The number of loop iterations, iter.
5 Require: The step sizes γAdam, γNat

i ,∀i= 0, . . . , l
6 Require: {θ∗

[i]}l1, {Z∗
[i]}l1, {θ∗

q(U[i])}
l
1 previous model optimal hyper-parameters

and variational parameters to initialize from if available.
7 if {θ∗

[i]}l1, {Z∗
[i]}l1, {θ∗

q(U[i])}
l
1 available then

8 Initialize parameters:
9 {θ0,[i]}l1←{θ∗

[i]}l1
10 {Z0,[i]}l1←{Z∗

[i]}l1
11 {θ0,q(U[i])}l1←{θ∗

q(U[i])}
l
1

12 else
13 Initialize using another procedure (random initialization, principal

component analysis, etc.)
14 end
15 ELBO0←X,y,{θ0,[i]}l1,{Z0,[i]}l1,{θ0,q(U[i])}l1
16 t← 0
17 while t < iter do
18 {θt+1,[i]}l1,{Zt+1,[i]}l1←

Adam optimizer step(ELBOt,{θt,[i]}l1,{Zt,[i]}l1,γAdam)
19 θt+1,q(U[i])← Nat grad optimizer step(ELBOt,θt,q(U[i]),γ

Nat
[i] ),∀i= 1, . . . , l

20 t← t+1
21 end
22 return DGP (X,y,{θt−1,[i]}l1,{Zt−1,[i]}l1,{θt−1,q(U[i])}l1)

compared to a classic training of DGP using only stochastic gradient descent (DGP
Adam) and to standard GPs (Table 4.1). In order to highlight the increase in represen-
tation accuracy by composition, the same kernel (RBF also called squared exponential)
is used for all the models. The models optimized by the proposed optimization ap-
proach (DGP Nat) provide the best results. It is interesting to notice that the models
optimized by the Adam algorithm on all the variables give comparable results on the
prediction. However, when optimizing the variational variables with ordinary stochastic
gradient, it happens that the predictive uncertainty is under-estimated as illustrated
in Fig. 4.8 where the uncertainty collapses to very low values. This explains the poor
value obtained of the test log-likelihood in the case of the DGP model optimized by
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Fig. 4.7 Comparison of the evolution of the optimization of the ELBO on three different
problems using three different optimizations: the proposed approach using the natural
gradient for all the variational parameters and the Adam optimizer for the deterministic
parameters (Nat Grads), an alternative optimization using the natural gradient for
the variational parameters of the last layer and the Adam optimizer for the rest of
the parameters (Nat Grads last layer), and an optimization using the Adam optimizer
for all the parameters (Only Adam optimizer). γadam is the step size of the Adam
optimizer and γnat

[i] is the step size of the natural gradient for the variational parameters
at layer i.

only an Adam optimizer compared to the ones given by a DGP trained by the proposed
approach.

In the context of BO, this uncertainty measure is crucial for the construction of
infill criteria. An underestimated uncertainty will favor the BO algorithm sampling
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Table 4.1 Comparison of the Root Mean Squared Error (RMSE) and the Mean Negative
test Log-Likelihood (MNLL) and their standard deviations (std) on three different
problems with a training data size of density 10 (n= 10×d where n is the data size
and d the input dimension of the function) over 50 repetitions and a test set of 1000
data points using a Latin Hypercube Sampling (LHS). GP: Gaussian Process with an
RBF kernel. DGP Adam: DGP with 2 hidden layers with all its parameters optimized
by an Adam optimizer. DGP Nat: DGP with 2 hidden layers with all the variational
parameters optimized by a Natural gradient and the hyper-parameters by an Adam
otimizer.

Function Approach mean
RMSE

std
RMSE

mean
test log-

likelihood

std test
log-

likelihood
TNK GP 0.18832 0.0305 8866.59 20166.95

constraint DGP
Adam

0.17746 0.0482 467207 400777

DGP
Nat

0.1659 0.013 3671 1766.48

Hartmann GP 0.3010 0.0311 566.27 451.798
6d DGP

Adam
0.3166 0.0252 2595.70 2393.99

DGP Nat 0.2921 0.0200 1386.12 1111.29
Trid GP 12934 965 10912 114

DGP
Adam

11978 496.71 12690 808

DGP
Nat

11151 388 10342 109

around the current minimum limiting thereby its exploration capabilities. Hence, a
combination of the natural gradient on all the variational parameters and the Adam
optimizer on the hyper-parameters is used in BO & DGP for training the models
enabling a better uncertainty quantification and a faster training.

4.1.2 Architecture of the DGP

The architecture of the DGP is a key question when using a DGP in BO. The
configuration of the architecture of the DGP includes the number of layers, the number
of units in each inner layer (i.e. the input dimension of the inner layers) and the
number of induced variables in each layer (Zl).

Increasing the number of these architecture parameters enables a more powerful
ability of representation. However, these variables are directly related to the computa-
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Fig. 4.8 Standard deviation on the prediction given by a 2 layer-DGP model on the
TNK constraint function. The markers represent the positions of the training points.
(left) standard deviation given by a model optimized using natural gradient on all the
variational parameters and Adam on the deterministic parameters. (right) standard
deviation given by a model optimized using ordinary stochastic gradient (Adam) for
all the parameters. An underestimation of the uncertainty happens in the second
approach.

tional complexity of the algorithm. Indeed, the computational complexity of a BO with
DGP is given by O(j×s× t×n× (m2

[1]d[1] + . . .+m2
[i]d[i] + . . .+m2

[l]d[l])) where j is the
number of added points in BO, s the number of propagated samples, t the number of
optimization steps in the DGP training, n the size of the data set, l the number of
layers, m[i] the number of induced inputs at the layer i and d[i] the number of units at
the layer i. The total number of parameters to optimize depends on the structure. In
fact, it includes the kernel hyper-parameters of each GP of size ∑l

i=1(d[i] +2) (for an
ARD kernel), the induced inputs at each layer ∑l

i=1m[i]×d[i], as well as the variational
parameters ∑l

i=1(m[i]+m[i](m[i] +1)/2). Moreover, the number of optimization steps
t needed usually increases according to the number of optimized parameters.

Within the context of BO, the overhead computational cost of DGP training has to
be limited compared to the exact evaluation of the objective and constraint functions
(see Section 4.2 for computational times). Usually, in the early iterations of BO since few
data is available there is not enough information to use complex models which are more
time consuming, therefore a standard GP may be sufficient. Then, along the iterations
by adding more data to the DoE, more complex and non-stationary distribution of the
data can be encountered, hence, the number of layers is increased in order to enhance
the power of representation of the model. In the deep learning theory, the structure of
deep architecture is an active topic [Bengio, 2012; LeCun et al., 2015; Goodfellow et al.,
2016] where the goal is to obtain a trade-off between generalization-error and training-
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error. These works highlight the fact that there is no structure of a deep architecture
for all problems and rather that these structures are problem dependent. For a DGP,
it is also difficult to specify its depth and width for a specific problem without using
computationally expensive approaches such as cross-validation. However, the difference
of DGPs from standard deep neural networks is their Bayesian formulation. This allows
DGPs to avoid over-fitting even with complex structures. However, complex structures
yield to a high-dimensional parameter space making the training task difficult. Hence,
the trade-off in DGP must be done between the power of representation of the structure
and its complexity. As discussed in Chapter 2, Section 2.2.3 a layer of DGP can be seen
as an infinitely wide neural network, this highlights the power of representation of each
layer of a DGP and therefore its depth is relatively less important than standard deep
neural networks. In fact, in the experimentation section (Section 4.2) a two-layer DGP
shows enough power of representation to represent different non-stationarity behaviors.

It is interesting to observe that the number of inducing variables is the preponderant
term in the complexity of the BO with DGP. Induced inputs were first introduced
in the framework of sparse GPs (Chapter 2, Section 2.2.2). By choosing a number
of induced inputs m with m<< n and n the number of data points, the complexity
of the inference becomes O(nm2) instead of O(n3). This allows computational speed
ups in the training of the model. In sparse GP, increasing the number of inducing
inputs increases the accuracy until reaching m= n when the full GP model is recovered.
In DGPs, the interpretation of the induced inputs is more complicated. Firstly, it is
essential to use induced inputs to obtain the Evidence Lower Bound for the inference in
DGP. Secondly, the variables H[i], i= 1, . . . , l are random variables and not deterministic
as X. So, it is possible to gain more precision even if m[i] > n, since an infinite number
of points is needed to define a distribution.

However, the functional composition of GPs within a DGP makes each layer an
approximation of a simpler function. In Fig. 4.9, a 2-layer DGP is used to approximate
the modified Xiong function with 15 induced inputs (marked by blue triangles) in
each layer, the input-output of each layer and the position of the induced inputs are
plotted. The intermediate layers try to deform the input space by stretching it, in order
that the last layer approximates a stationary function, achieving an unparameterized
mapping. Hence, the inner layers have a less complex behavior than the whole model.
It is interesting to notice that in the inner layers, the induced inputs positions are
overlapping, meaning that only a reduced number of induced inputs can capture the
features of the inner layers, hence, allowing computational speed ups.
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To adapt the number of induced variables to the training framework proposed in
Section 4.1.1 for DGP within BO, the number of induced inputs is fixed along BO to
the total number of data-points at the end of the algorithm. This allows the number
of parameters to be constant along the BO algorithm and hence allowing the use
of the previous optimal values of the model parameters at the next iteration of BO.
Moreover, in the early iterations of BO, the latent variables H[i], i= 1, . . . , l have an
important variance, hence a higher number of induced inputs compared to the observed
data-points allows a gain in precision in the beginning of BO.

4.1.3 Infill criteria

To use DGP in BO, it is essential to adapt the considered infill criteria to DGP. In
fact, some infill criteria can not be used directly with DGP. For example, the popular
Expected Improvement (EI) formula in Eq.(3.20) is based on the fact that the prediction
is Gaussian. However, in DGP the prediction does not necessary follows a normal
distribution. The EI is the expected value of I(x) = max(0,ymin−f(x)). Therefore,
the direct approach is to use sampling techniques to approximate this expectation value
(Eq.(3.19)). A computation of EI using MCMC has been previously used in [Snoek
et al., 2012] for a full Bayesian treatment of the hyper-parameters. However, in the
case of DGP, sampling has to be used to address the non-Gaussianity of the predictive
distribution. This concerns also other infill criteria, for instance infill criteria formula
used to handle constraints such as the Probability of Feasibility (PoF) Eq. (3.25) and
the Expected Violation Eq. (3.23) (EV) formula are based on the Gaussian distribution
of the model. Therefore, for a candidate x and a constraint DGP model g(·), to compute
the PoF, sampling on the indicator function of feasibility I(g(x)≤ 0) is performed,
and to compute the EV, sampling on the violation V(x) = max(0,g(x)) is performed.

In some cases sampling can be avoided, in fact, as observed in Fig. 4.9, the inner
layers are often simple functions, almost linear, with a last layer that approximates a
deformed stationary function. This allows the prediction from the composition of GPs
to be reasonably considered as Gaussian most of the time (see Fig. 4.10). Hence, to
predict using DGPs, a Gaussian approximation can be made after verification of its
Gaussian behavior, in order to directly use the analytical formula of the infill criteria
used for GPs.

Infill criteria such as EI are highly multi-modal, especially in high-dimensional
problems. For this reason, an evolutionary algorithm such as a differential evolution
algorithm [Price et al., 2006] can be preferred for the optimization of the infill criterion.
The DGP allows parallel prediction which makes it possible to evaluate the infill
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Fig. 4.9 The input-output signal of each layer of a 2 layer-DGP used to approximate
the modified Xiong function. DGPs allow unparameterized non linear mapping. The
intermediate layers stretch the input space, in order that the last layer approximates
a stationary function. The combination of the inner layers gives a non-stationary
function. The markers represent the induced input locations. (top left) first layer, (top
right) second layer, (lower left) output layer, (lower right) DGP prediction.

criteria for all the population of the optimization algorithm simultaneously. The result
obtained using the evolutionary algorithm can then be optimized by a local optimizer.
This hybridization has been preferred in this study to the use of multiple local searches
whose number increases exponentially with the dimension of the problem.
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Fig. 4.10 50 000 samples drawn on the value of the prediction of a 2-layer DGP model
in three different locations (triangles in top left figures). In the top right and lower left
figures, the predictions are almost Gaussian. In the lower right figure, the distribution
of the prediction is slightly asymmetric, but it is still well approximated by a Gaussian
distribution.

4.1.4 Synthesis of DGP adaptations proposed in the context
of BO

To summarize the proposed adaptations of DGP to BO, Algorithm 2 describes the
steps previously discussed. The Expected Improvement is used as the infill criterion,
but other infill criteria may be used. If approximation of the DGP prediction by a
Gaussian is not valid, sampling techniques are used to compute the infill criterion.
Some empirical rules can be used to determine the number of points in the initial DoE
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and the number of added points during the BO algorithm depending on the dimension
of the problem d (for the experimentations in Section 4.2, for all the problems an initial
DoE of size 5×d is considered and 10×d points are added in the BO process). The
size of the induced variables is fixed along all the BO iterations to the total number
of points at the end of the BO. This allows the models to keep the same number of
parameters along the iterations, making it possible to initialize them from the previous
models. Moreover, as discussed previously, setting the number of induced variables to
a number larger than the number of points in the training data set for DGP may allow
a better representation. The model is trained using the described loop of a natural
gradient step for the variational parameters of all layers and an Adam optimization
step for the deterministic parameters. The model at a given iteration of the BO process
is updated from the model optimal parameter values at the previous BO iteration for a
certain number of consecutive iterations allowing speed ups in the DGP training, and
then initialized from scratch every nupdate iterations to avoid being tricked in some
bad local minima. These different adaptations for the BO and DGP coupling are
summarized in Fig. 4.11.

In Algorithm 2, the unconstrained optimization problem case is considered. However,
the generalization to the constrained case is straightforward, since it comes back to
create DGP models also for the constraints and to use sampling for a constrained infill
criterion as the Probability of Feasibility or the Expected Violation.
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Algorithm 2: Unconstrained BO with DGP algorithm
1 Require: Expensive black-box objective function of dimension d to optimize,

fexact

2 Require: Number of initial points n in data set.
3 Require: Number of total added points nadd.
4 Require: Number of layers l (default l = 2).
5 Require: Number of loop iterations in the training of the DGP model iter.
6 Require: Number of consecutive DGP updates using the previous model

optimal values nupdate.
7 X0← LHS(d,n) (or another design of experiments method)
8 y0← fexact(X0) (evaluate)
9 m← n+nadd (set the number of induced variables to the final number of

points)
10 t← 0
11 model0←DGP model training Algorithm 1(X0,y0,m, l, iter) (optimize

model from scratch)
12 while t≤ nadd do
13 t← t+1
14 x(t)← argmax(EImodelt−1(x)) (use sampling to estimate the EI, in the

constrained case the PoF or the EV are also estimated)
15 y(t)← fexact(x(t)) (evaluate)

16 Xt←
[
Xt−1
x(t)

]
(add a row to the matrix)

17 yt←
[
yt−1
y(t)

]
(add an element to the vector)

18 if t ̸≡ 0( (mod nupdate)) then
19 modelt←

DGP model training Algorithm 1(Xt,yt,m, l, iter,modelt−1)
(optimize model using the optimal parameter values of the previous
model as initialization)

20 else
21 modelt←DGP model training Algorithm 1(Xt,yt,m, l, iter)

(optimize model from scratch)
22 end
23 end
24 return Xt,yt
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Fig. 4.11 Proposed adaptation for the coupling of BO and DGP for non-stationary
problems. It includes a DGP training approach to accelerate the training and to
obtain a well-calibrated predictive uncertainty quantification, infill criteria estimated
by sampling instead of exact analytic equations, and a default 2 layer-DGP architecture.
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4.2 Experimentations

In this section, experimentations are carried out in order to evaluate the performance
of BO with DGPs. Firstly, analytical test functions are considered to compare BO &
DGP with repetitions to evaluate the robustness to the initial DoE. Then, the most
competitive algorithms are applied to two aerospace vehicle design test problems.

4.2.1 Analytical test problems

Experimentations on three different analytical optimization problems (Appendix C)
have been carried out to assess the performance of the proposed framework of BO &
DGP detailed in the previous section. The first test case is a 2-d constrained problem is
used to compare different architectures of DGPs in the BO process in order to highlight
the trade-off between model complexity and the time budget available. The other
two optimization problems are used to compare BO & DGP to state of the art BO
algorithms with models that also use a non-linear mapping to handle non-stationarity
(NS kriging [Xiong et al., 2007], APNS [Toal and Keane, 2012], Bayesian NLM [Snoek
et al., 2014]) in two different scenarios. The first one (Trid 10d) is when a regular BO
with GP algorithm has issues to reach the optimum and the second one (Hartmann-6d)
is when a regular BO with GP algorithm is able to reach the optimum. This allows
to evaluate the robustness of the algorithm on the characteristics of the problem in
hand, and its application to a problem with no assumption about its stationarity. The
same BO loop is used for the different models experimented. The results of a random
optimization (random grid search) with the same number of evaluations as BO are
also presented for the analytical functions to highlight the difficulty of the problems
in the context of a limited budget of evaluations. Details on the numerical setup are
presented in Appendix D.

Test case 1: 2-d constrained problem

The function to optimize is a simple two dimensional quadratic function. The constraint
is non-stationary and is feasible when equal to zero. An important discontinuity between
the feasible and non feasible regions breaks the smoothness of the constraint (Fig. 4.12).
Therefore, the problem is challenging for standard GP, since the optimal region is
exactly at the boundary of the discontinuity, requiring an accurate modeling of the
non-stationarity. This type of functions characterized by a flat region broken with a
discontinuity are common as constraints in engineering design problems due to abrupt
transition from feasible to unfeasible regions of the input space.
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Fig. 4.12 Objective and constraint functions 2d problem. The constraint is non-
stationary. An important discontinuity separates between the feasible and unfeasible
space, making it difficult for a classic GP to model.

A DoE of 10 initial data points is initialized using a Latin Hypercube Sampling.
Then, 20 points are added using the Expected Violation criterion (EV) to handle the
constraint. A standard Gaussian Process with a RBF kernel is used to approximate
the objective function. The DGPs are considered with a RBF kernel in each layer and
are trained using 5000 optimization steps of Algorithm 1. To assess the robustness of
the BO algorithms, 50 repetitions are performed from different randomized LHS DoEs.

The convergence plots of the BO algorithms with GP, DGP 2, 3, 4 and 5 layers
are displayed in Fig. 4.13. As expected, the BO with GP is not well-suited for this
problem. At the end of the algorithm, the median is still far from the actual minimum
and there is an important variation. This is due to the fact that the GP can not
capture the discontinuity and the feasible tray region of the constraint and considers a
large area as unfeasible (Fig. 4.15). However, BO with DGP accurately capture the
frontier between the feasible and unfeasible regions (Fig. 4.16), which makes it able
to give efficient results with a median at the end of the optimization algorithms near
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Fig. 4.13 Plot of convergence of BO using different architectures of DGPs with 5000
training steps for 50 different initial DoE and a standard GP. The markers indicate
the median of the minimum obtained while the error-bars indicate the first and third
quartiles.

to the actual minimum and better robustness to the initial DoEs. Furthermore, the
3-layer DGP provides the best results as can be analyzed from the mean and standard
deviation of best found points given in Table 4.2. Increasing the number of layers
deteriorates the quality of the results. This is explained by the fact that 5000 steps
in the training of DGPs with more than three layers in this case is insufficient. In
fact, in this configuration, the number of parameters to optimize increases by 274
parameters by adding another layer i.e., while for the 2-layer DGP with a DoE of
20 points the number of parameters is 822, for the 3-layer DGP it is 1096, for the
4-layer DGP it is 1370, and for the 5-layer DGP it is 1644. This makes it necessary
to increase the number of optimization steps in the training of deeper models, since
the parameter space increases in dimensionality. However, increasing the number of
layers and the number of steps induces additional computational time (Fig. 4.14) which
quickly becomes a large burden for high dimensional problems. Consequently, for the
remaining test cases only a DGP with two layers is considered.
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Table 4.2 Performance of BO (values of the minimum found) with standard GP
and different DGP configurations on the constrained 2d problem. 50 repetitions are
performed.

Algorithm
average

minimum
obtained

standard
deviation on
the minimum

obtained

average
optimality gap

BO & GP 0.09356 0.0605 0.03336
BO & DGP 2 L 0.08468 0.059793 0.02448

BO & DGP 3 L 0.073918 0.04293 0.01371
BO & DGP 4 L 0.08066 0.05073 0.02046
BO & DGP 5 L 0.08204 0.05707 0.02184

Random
optimization 0.26320 0.10808 0.20120

Global minimum 0.0602 - -
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Fig. 4.14 Average time in one iteration of BO according to the number of layers in
DGP at the start of the algorithm (data set of 10 points) and at the exhaustion of
the evaluation budget (data set of 30 points). A GP is faster than the other DGP
architectures due to its fast training, however, it has poor modeling performance in
non-stationary problems.
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sible region, and the discontinuity is mod-
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Test case 2: Trid function

The Trid function is considered in 10 dimensions Eq.(C.3) in Appendix C. It is an
unconstrained optimization problem. The range of variation of the 10d Trid function
values is large. It varies from 105 to its global minimum f(x∗) = −210 (Fig. C.3 in
Appendix C). This large variation range makes it difficult for BO with stationary GP
to find the global minimum.

The results of BO with a DGP of 2 hidden layers are compared to the Bayesian
input warping used by Snoek et al. (Bayesian NLM) and to the results found in [Toal
and Keane, 2012] (NS kriging and APNS with the tuning of the algorithms involved
by the authors of the paper) over 50 different repetitions with different initial DoEs
(Table 4.3). The initial DoEs are initialized with a Latin Hypercube Sampling with 50
initial points, and 100 points are added during the BO using the EI criterion.

The minimum given by BO & GP, NS kriging (non-stationary kriging) and APNS
(Adaptive Partial Non-Stationary kriging) for this problem are not close to the global
minimum. Moreover, there is a high variation in the obtained minimum values, showing
the difficulty of these approaches to handle this optimization problem. BO & Bayesian
NLM and BO & DGP provide the best results. A slight advantage for BO & DGP
is observed compared to BO & Bayesian NLM with an average minimum obtained
−206.739 which is very close to the actual global minimum −210 with a standard
deviation of 1.5521, hence illustrating the robustness of the proposed approach.
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Table 4.3 Performance of BO (values of the minimum found) with standard GP, non-
stationary kriging with two knots (NS kriging), adaptive partial non-stationary kriging
(APNS), Deep Gaussian Processes with two hidden layers (DGP) on the Trid function.

Algorithm
average

minimum
obtained

standard
deviation on
the minimum

obtained

average
optimality gap

BO & GP -20.730 75.654 189.27
BO & NS

kriging -57.727 59.920 152.273

BO & APNS -49.112 62.746 160.888
BO & Bayesian

NLM -203.71 30.79 6.29

BO & DGP -206.739 1.5521 3.261
Random

optimization 7086.5 1747.7 7296.5

Global minimum -210 - -

Test case 3: Hartmann-6d function

The Hartmann-6d is a 6d function Eq.(C.4) in Appendix C. It is an unconstrained
optimization problem. The Hartmann-6d is smooth and does not show non-stationary
behavior (Fig. C.4). The interest of this function is that BO coupled with some non-
stationary approaches can not reach its global minima while BO & classic GP presents
good performance on it [Toal and Keane, 2012]. Hence, using BO with DGP on this
function allows to demonstrate the robustness of this non-stationary BO algorithm on
stationary functions. This is representative of real industrial cases when there is no
information about the stationarity of the problem at hand.

The results of BO with a DGP of 2 hidden layers are compared to the Bayesian
input warping used by Snoek et al. (Bayesian NLM) and to the results found in [Toal
and Keane, 2012] (NS kriging and APNS with the tuning of the algorithms involved
by the authors of this paper) over 50 different repetitions with different initial DoEs
(Table 4.4). The initial DoEs are initialized using a Latin Hypercube Sampling with 30
initial points and 60 points are added during the BO process using the EI criterion.

The results obtained by BO & NS kriging and APNS are relatively far from the
global optimum and show larger variation of found optimum. The stationary GP gives
better and more robust results, since it is adapted to the stationary behavior of the
Hartmann function. However, the minimum obtained by BO & DGP is closer to the
global optimum and the optimization is more robust to the initial DoE than standard
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Table 4.4 Performance of BO (values of the minimum found) with standard GP, non-
stationary kriging with two knots (NS kriging), adaptive partial non-stationary kriging
(APNS), and Deep Gaussian Processes with two hidden layers (DGP) on the Hartmann
6d function.

Algorithm
average

minimum
obtained

standard
deviation on
the minimum

obtained

average
optimality gap

BO & GP -3.148 0.275 0.174
BO & NS

kriging -2.818 0.570 0.504

BO & APNS -3.051 0.415 0.271
BO & Bayesian

NLM -3.1713 0.3256 0.1507

BO & DGP -3.250 0.098 0.072
Random

optimization -1.9760 0.4268 1.3459

Global minimum -3.322 - -

GP even if the function is stationary. Moreover, BO & DGP presents also better results
compared to Bayesian NLM. This shows the interest of using the BO & DGP even
for functions without any information on their stationary behavior unlike BO & NS
kriging and APNS that are ill-suited for stationary functions.

4.2.2 Application to industrial test case: design of aerospace
vehicles

In this subsection, experimentations on two industrial test cases are presented. The
first test case is a 4d booster optimization design problem. The complexity is increased
in the second test case by considering the optimization of a three stage sounding rocket
with 15 design variables. BO with a two layer DGP is applied and compared to GP
using the same kernels (RBF) to highlight the increase of the representation accuracy
by composition of the same GPs, and based on the experimentations done on the
analytical test cases, the Bayesian NLM which gave competing results to DGP is chosen
for comparison. BO with GPs is also applied, it corresponds to the reference approach
usually applied in these problems.
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Engineering test case 1: optimization of a solid propellant booster

To confirm the interest of the application of BO with DGP, an aerospace vehicle design
optimization problem is considered. It consists of the maximization of the velocity
increment (∆V ) of a solid-propellant booster. It is a representative physical problem
for solid booster design with simulation models fast enough to compute the exact
minimum to compare and illustrate the efficiency of the proposed algorithm.

The optimization of ∆V for a solid propellant booster is considered (Fig. 4.17).
Four design variables are involved:

• Propellant mass: 5 t<mprop < 15 t

• Combustion chamber pressure: 5 bar< pc < 100 bar

• Throat nozzle diameter: 0.2 m< dc < 1 m

• Nozzle exit diameter: 0.5 m< ds < 1.2 m

Nine constraints are also considered including a structural one limiting the combustion
pressure according to the motor case, 6 geometrical constraints on the internal vehicle
layout for the propellant and the nozzle, a jet breakaway constraint concerning the
nozzle throat diameter and the nozzle exit diameter, and a constraint on the maximal
Gross Lift-Off Weight (GLOW) allowed. The optimization problem may be written as:

Minimize: −∆V (x)
w.r.t: x = [mprop,pc,dc,ds]

s.t:


1 structural constraint
6 geometrical constraints
1 jet breakaway constraint
1 constraint on the maximal GLOW allowed

This problem involves non-stationarity behaviors due to some constraints. In fact,
the constraints may have a different behavior in the feasible and unfeasible regions.
Moreover, the objective function which is the velocity increment may have a tray region
when it is equal to zero, due to insufficient initial thrust (Fig. 4.18).

The initial DoE are set using a Latin Hypercube Sampling of 30 points and 50
points are added with BO using EI for the objective function and EV for the constraints.
To assess the robustness of the results, 10 repetitions are performed.

The plots of convergence of the BO algorithms are displayed in Fig. 4.19. After
adding 50 points, all the algorithms reach the global minimum. However, BO with
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Fig. 4.17 Optimization problem of a solid-propellant booster engine. The formulation
of the problem involves different disciplines (propulsion, geometry, structural sizing
and performance). The problem considers the maximization of the velocity increment
subject to 9 constraints.

DGP presents faster convergence than the competing algorithms. BO with DGP shows
robust results near the global optimum 4738m/s after only 6 iterations, while the BO
with GP is not stabilized until 24 iterations (Table 4.5). BO with Bayesian non linear
mapping (NLM) gives better results than BO with GP but it is still slower than BO
with DGP in the first iterations of BO.

Table 4.5 Performance of the algorithms after 12 added points, after 24 added points
and after 50 added points.

After 6 added points After 24 added points After 50 added points
Algorithm Mean Std Mean Std Mean Std
BO & GP -4543 145 -4709 41.33 -4725 10.63

BO & NLM -4624 92.80 -4721 17.53 -4734 8.77
BO & DGP -4670 74.53 -4718 22.53 -4736 7.49

The convergence speed is important in case of expensive black-box functions. Indeed,
one evaluation of the objective function or the constraints can cost multiple hours,
even multiple days. Hence, BO with DGP is interesting even for problems where BO
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A sectional view of the velocity increment (m/s) according
to the exit diameter of the nozzle ds and the Propellant

mass mprop.

A sectional view of a geometric constraint (normalized
values) according to the diameters of the nozzle dc and ds.

Fig. 4.18 Sectional views of the non-stationary behaviors of some functions involved in
the booster problem
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Fig. 4.19 Convergence curve of −∆V of BO with GP, BO with Bayesian NLM and
BO with a 2-layer DGP. BO with DGP gives the better result in term of speed of
convergence.
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with GP can reach the global minimum, due to its speed of convergence which can
reduce drastically the number of evaluations needed to converge.

Engineering test case 2: three stage sounding rocket

The last test case of the study is the optimization of the design of a three stage sounding
rocket with 15 design variables. The goal of the design problem is to find the optimal
architecture of the rocket able to maximize the final altitude hmax that can be reached
by the rocket after the propelled phase to release the payload experiments given a
constraint on the GLOW < 3 t. The first stage of this vehicle is a solid propellant one
whereas the second and third stages use liquid propellant (LOx/RP1, Liquid Oxygen
and Rocket Propellant 1).

The performance of the launch vehicle are estimated through the use of multidisci-
plinary design process composed of trajectory, structure, aerodynamics and liquid and
solid propulsions. The design process is implemented using openMDAO [Gray et al.,
2019]. The N2 Chart of the overall design problem is represented in Figure 4.20.

Fig. 4.20 N2 Chart of the three stage sounding rocket design process (left) and
illustration of the rocket with in red the first stage, in orange the second stage, in blue
the third stage and in green the fairing (right)

The dimensionality of this test case has been increased with respect to the previous
test cases in order to assess the performance of BO & DGP in complex test case. The
optimization problem involves 15 design variables and is subjected to 12 constraints.
The design variables are the following :
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• the diameters of the different stages: 0.7m ≤ d1 ≤ 1.1m, 0.5m ≤ d2 ≤ 0.8m,
0.5m≤ d3 ≤ 0.8m,

• the propellant masses of the different stages: 0.5 t≤m1 ≤ 4 t, 0.4 t≤m2 ≤ 1.2 t,
0.2 t≤m3 ≤ 0.5 t,

• the chamber pressures of the different stage engines: 25bar≤ pc1 ≤ 50bar, 5bar≤
pc2 ≤ 15bar, 5bar≤ pc3 ≤ 15bar,

• the throat and exit nozzle diameters of the first stage: 0.1m ≤ dc1 ≤ 0.3m,
0.5m≤ ds1 ≤ 0.9m,

• the mass flow rates of the stages 2 and 3: 10kgs−1 ≤ q2 ≤ 30kgs−1, 5kgs−1 ≤
q3 ≤ 20kgs−1,

• the oxidizer to fuel ratio of the stages 2 and 3: 3.2≤OF2 ≤ 4, 3.2≤OF3 ≤ 4.

The inequality constraints are relative to the integrity of the first stage (structural
and geometrical constraints about the solid propellant stage), the maximal axial load
factor that can be endured by the three different stages and the maximal GLOW
allowed. The optimization problem may be formulated as follows:

Minimize: −hmax(x)
w.r.t: x = [d1,d2,d3,m1,m2,m3,pc1 ,pc2 ,pc3 ,dc1 ,ds1 , q2, q3,OF2,OF3]

s.t:


1 structural constraint
8 constraints on the integrity of the first stage
3 constraints on the maximal axial load factor
1 constraint on the maximal GLOW allowed

The objective and constraints show non-stationary behaviors according to different
variables as illustrated in Fig. 4.21. In fact, there is an abrupt change between the
feasible and unfeasible regions of several constraints. Furthermore, the objective
function which is the maximum altitude has a tray region equal to zero when the
sounding rocket can not lift off and go up abruptly once there is enough initial thrust
compared to its GLOW.

Since in a 15 dimensional design space the optimization of the EI can be problematic,
WB2S criterion [Bartoli et al., 2019] is preferred in this test case and the EV is used for
the constraints. The initial DoE are set using a Latin Hypercube Sampling of 75 points
and 80 points are added. The functions involved in this problem are computationally
expensive, hence, only 5 repetitions are performed to assess the robustness.



4.2 Experimentations 139

A sectional view of the final altitude hmax according to
the exit nozzle diameter ds1 and to the chamber pressure

pc1 of the first stage.

A sectional view of the constraint of the maximal axial
load factor of the three stages according to the combustion
pressure pc1 and the propellant mass m1 of the first stage.

Fig. 4.21 Sectional views of some non-stationary behaviors involved in the 3 stages
sound rocket problem

The plots of convergence of the BO algorithms are displayed in Fig. 4.22. The
optimization problem is very constrained as can be concluded from the initial DoEs
where there is no feasible solution. The challenge in the early iterations of the BO
algorithms is to find feasible solutions, which makes the accurate modeling of the
constraints extremely determinant. At this level, BO with DGP does better than
the two other algorithms. In fact, BO with DGP obtains a feasible solution after a
maximum of 18 added points for the different repetitions, however, it takes for BO
with NLM and BO with GP respectively 29 and 34 iterations to reach the feasible
design space. After the exhaustion of the evaluation budget (80 added points) there
is a notable difference between the three different algorithms. In fact, BO with DGP
dominates completely BO with GP (worst final optimal value obtained by BO with
DGP is better than the best final optimal value obtained by BO with GP). Moreover,
BO with DGP gives a better average on the minimum obtained and is more robust
than BO with NLM as can be seen when analyzing the standard deviation of the
results (Table 4.6). Thus, BO with DGP provides better results compared with the
other algorithms in this test problem where the design space is large 15d and under
strong constraints.

The evolution of the altitude, the mass, the load factor and the velocity according
to time for the optimal sounding rocket design obtained by BO with DGP is given in
Figure 4.23.
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Fig. 4.22 Convergence curve of the negative altitude −hmax of BO with GP, BO with
Bayesian NLM and BO with a 2 layers DGP. BO with DGP gives the better result in
term of speed of convergence and dispersion of the results
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Table 4.6 Comparison of the performance of BO with GPs, Bayesian NLM and DGP
with 2 layers in terms of the speed to reach the feasibility design space and of the
quality of the optimal value obtained after adding 80 points.

Algorithm
Max number
of iterations
for feasibility

Average
optimal value

obtained
(-km)

Standard
deviation on
the optimal

value obtained
BO & GP 34 -191.747 km 6969

BO & NLM 29 -195.406 km 10325
BO & DGP 18 -200.110 km 6183
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Fig. 4.23 Illustrations of optimal trajectory, Altitude, Relative Velocity, Mass and Axial
Load factor as functions of time for the optimal solution given by the BO & DGP
algorithm.
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4.3 Conclusion

The application of DGP to Bayesian optimization has been discussed in this chapter.
This coupling requires some adaptations of the handling of DGPs and BO. For that, a
framework for BO & DGP has been developed. This framework, proposes adaptations
of DGPs for BO (training approach, uncertainty quantification, architecture of the
DGP) and also of BO for DGPs (the iterative structure of BO, infill criteria). These
adaptations were described and illustrated through some analytical examples. Following
these propositions, BO with DGP was assessed on analytical test optimization problems.
The experimentations showed its better efficiency and robustness compared with
standard BO & GP and approaches using non-linear mapping to handle non-stationarity.
Finally, this algorithm was applied to aerospace engineering design problems. This
illustrated its efficiency on constrained problems and also proved the dimension scaling
of BO with DGP up to 15d. Moreover, these test cases also highlighted a better handling
of the constraints by BO with DGPs, where it reaches the feasible domain faster than
the compared algorithms and obtains a better optimal value at the exhaustion of the
evaluation budget available.

The contribution of this chapter is to couple between BO and DGP and also to
highlight the tangible interest of this coupling. In fact, the results of this coupling are
compared to state-of-the-art algorithms in BO for non-stationary functions and its
application on real industrial optimization problems. This chapter also provides some
design choices for the coupling of BO with DGP based on experimentation analysis.
However, these experimentations are not generalizable, and theoretical analysis is
needed. Thus, the discussion presented in this chapter on the design choices for the
coupling of BO with DGP leads to interesting theoretical research tracks. An important
one is how does the natural gradient optimization method of DGP affect its uncertainty
model as experienced in this study. Moreover, infill criteria such as Thompson Sampling
or criteria using information theory may be more adapted to DGP than the EI. More
parallelism can also be integrated at different levels of the coupling of BO with DGP.

In this chapter, only the single objective case has been taken into account. How-
ever, in design optimization problems, often different objectives are considered [Arias-
Montano et al., 2012]. Moreover, these different objectives are antagonistic and solving
the optimization problem comes back to finding trade-off between these objectives.
The approach of BO described in this chapter can be used by considering each ob-
jective independently and using a multi-objective infill criteria such as the expected
hyper-volume improvement [Hebbal et al., 2019]. However, considering each objective
independently may be sub-optimal [Shah and Ghahramani, 2016]. In the next chapter,
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a multi-objective deep Gaussian process model is proposed that enables a joint modeling
of the different objectives, thus, exhibiting an objective correlation instead of the classic
approach of modeling independently each objective.





Chapter 5

Multi-Objective Bayesian
Optimization taking into account
correlation between objectives

“ There are no solutions; there are only trade-offs.”
Thomas Sowell

• Development of a novel model called the Multi-Objective Deep Gaussian
Process (MO-DGP) for jointly modeling of correlated functions.
• Exhibition of the limits of the existing approach to compute the correlated
Expected Hyper-Volume Improvement, and proposition of a novel computa-
tional approach.
• Application of the proposed model and the Expected Hyper-Volume Im-
provement computational approach to an extensive benchmark including a
representative aerospace multi-objective optimization design problem.

Chapter contributions

CH5

For engineering design problems, single objective optimization may result in an over-
optimized objective to the detriment of other performance. Indeed, multiple objectives
have to be taken into account in order to find a trade-off between the different criteria
of interest [Arias-Montano et al., 2012; Brevault et al., 2020a]. For instance, in the
design of an aerospace launch vehicle, different objectives may be considered such as
the minimization of the gross-lift-off-weight, the maximization of the payload mass,
and the maximization of the change in velocity. The trade-offs between these objectives
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called Pareto dominant solutions are obtained using multi-objective optimization
algorithms [Deb, 2001; Talbi et al., 2012]. In the context of black-box computationally
intensive objectives, Multi-Objective Bayesian Optimization (MO-BO) is the extension
of Bayesian Optimization (BO) to the multi-objective case [Emmerich et al., 2006].
This consists in using infill criteria that take into account multiple objectives such as
the Expected Hyper-Volume Improvement (EHVI) [Emmerich and Klinkenberg, 2008],
while using Bayesian models such as Gaussian Processes (GPs) independently for each
objective (see Chapter 3, Section 3.3 for details). The contribution of the previous
chapter that is Deep Gaussian Processes (DGPs) for the optimization of non-stationary
functions can be extended to the multi-objective case by using an independent DGP
for each objective and considering the EHVI as an infill criterion [Hebbal et al., 2019].

The limitation of MO-BO is that modeling each objective independently does
not take advantage of the potential correlation between the objectives. In fact, in a
multi-objective optimization setting, the objectives are usually antagonistic especially
around the Pareto front, that is the set of the Pareto dominant solutions. Moreover,
in addition to the modeling, the computation of the infill criteria such as the EHVI
also considers the objectives as independent. To overcome these limitations, [Shah and
Ghahramani, 2016] proposed to model the different objectives jointly using a Linear
Model of Coregionalization (LMC) where each output corresponds to an objective, and
the coregionalization matrix is used to encode the correlation between the objectives.
Moreover, an approximation scheme is developed to compute a correlated-objective
EHVI (see Chapter 3, Section 3.3.3 for details). This approach, while it overcomes
the limitation of independency between the objectives in MO-BO, still presents some
limitations. In fact, using LMC considers only the linear correlation between the
objectives, hence, more complicated correlations may not be exhibited using this
model. Moreover, the approximation scheme used to compute the correlated EHVI
approximates piece-wise linear functions and step functions with Gaussian distributions.
This may yield to limited approximation of the correlated EHVI.

The contribution of this chapter is at two levels of the MO-BO framework that are
the model used and the computation of the infill criterion. At the first level, a novel
model based on DGPs is proposed that takes into account correlations between the
objectives to improve its predictive capability. At the second level, an investigation
is carried out on the computation of EHVI while taking into account the correlation
between the objectives in order to propose an adapted approach to compute the
correlated EHVI. The performance of the proposed model and the proposed approach
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to compute the correlated EHVI is assessed on analytical test problems as well as on
an aerospace optimization problem.

This chapter is organized in three main sections. In the first section (Section 5.1), the
proposed model is developed with a focus on its training and its predictive capabilities.
The second section (Section 5.2) discusses the computation of the EHVI in the context
of correlated objectives and a novel approach to compute the correlated EHVI is
proposed. The final section (Section 5.3) presents an analytical benchmark as well as a
representative aerospace multi-objective design problem to evaluate the performance of
the proposed model with respect to the approach proposed by [Shah and Ghahramani,
2016] as well as classic MO-BO algorithms.

5.1 Multi-Objective Deep Gaussian Process Model
(MO-DGP)

In this section, the Multi-Objective Deep Gaussian Process model (MO-DGP) is
proposed to take into account the correlation between the objectives. An inference
approach for MO-DGP is developed, and its prediction capability is compared to
independent models for each objective and to the Linear Model of Coregionalization
(LMC). The notations used in Chapter 3, Section 3.3 are adopted in the remaining of
this chapter. A multi-objective problem is considered characterized by no objectives
potentially optimized under nc constraints in a d-dimensional design space (minimiza-
tion is considered without loss of generality). Let X be the input data of size n and
(y1, . . . ,yno

) its evaluations on the different no objectives.

5.1.1 Model specifications

The classic approach for MO-BO is to consider a Bayesian model for each objective
independently [Emmerich et al., 2006; Zhang et al., 2010; Emmerich et al., 2016; Yang
et al., 2019]. This is illustrated in Fig. 5.1 where a GP is used for each objective.
However, the objectives are usually antagonistic especially around the Pareto front.
Therefore, taking into account this correlation instead of considering them independent
may result in a better learning of these objectives. The proposed MO-DGP model
aims to exhibit this correlation by modeling jointly these objectives. Compared to the
use of DGP in Chapter 4, where the functional composition of GPs was used to model
non-stationary behavior, in this chapter, DGP are used to model correlation between
objective functions.
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f1 fno

y1 yno

...

...

Fig. 5.1 Illustration of the indepen-
dent modeling of the objectives in
a MO-BO framework. An indepen-
dent Bayesian model is used for
each objective i for 1≤ i≤ no.

X

f[1] f[3]

y1 y3

f[2]

y2

Fig. 5.2 Illustration of the MO-DGP model in
the case of three objectives. The objectives fi

for 1 ≤ i ≤ no are connected by non-oriented
edges (colored blue) and constitute a clique (all
the nodes are adjacent).

MO-DGP considers a DGP model of no layers where a layer i corresponds to the
objective i and is conditioned on the observed values of this objective yi. Instead of
classic DGPs which are represented as directed graphs with a Markov-Chain structure
meaning that a layer i depends only on the previous one, in MO-DGP, the unobserved
nodes f[i] are connected with non-oriented edges and constitute a clique meaning that
each layer i interacts with every other layer j (Fig. 5.2). In fact, there is no prior
known structure about the interaction between the objectives to consider an oriented
direction between them. Therefore, non-oriented edges are used to connect between
the layers. Notice that, unlike DGPs, MO-DGP cannot be written as a functional
composition of GPs since there is no actual starting function. Moreover, in each layer
the input is augmented with the outputs of all the other layers. Therefore, the input
space dimension of each layer is d+no−1.

The covariance function for each GP has to take into account the augmented input
space. The proposed kernel inspired by [Perdikaris et al., 2017] allows to exhibit the
correlation between the objectives as follows:

ki

(
[x, f̃[−i](x)], [x′, f̃[−i](x′)]

)
= kρi(x,x′)×kf[i]

(
f̃[−i](x), f̃[−i](x′)

)
+kγi(x,x′) (5.1)
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where f̃[−i](x) stands for the vector-valued evaluation of x by all the GP posteriors
f̃[j] expect f̃i. kρi(·, ·) and kγi(·, ·) are covariance functions with respectively an input
space-dependent scaling effect and an input space-dependent bias effect, whilst kf[i](·, ·)
is the covariance function between the evaluated posteriors of the other objectives.

5.1.2 Inference in MO-DGP

For the inference in MO-DGP, first, the doubly stochastic approach proposed in
[Salimbeni and Deisenroth, 2017] is followed (see Chapter 2, Section 2.3.2). For that,
at each GP layer, a set of input/output induced variables {Z[i],u[i]}no

i=1 is introduced
and the evidence of the model is written as follows:

p({yi}no
i=1|X) =

∫ ∫
p({yi}no

i=1,{f[i]}no
i=1,{u[i]}no

i=1|X,{Z[i]}no
i=1)d{f[i]}no

i=1d{u[i]}no
i=1

=
∫ ∫ no∏

i=1

[
p(yi|f[i])

]
×p({f[i]}no

i=1|{u[i]}no
i=1, [X, f[−i]],Z[i])

×
no∏
i=1

[
p(u[i]|Z[i])

]
d{f[i]}no

i=1d{u[i]}no
i=1

(5.2)

where f[i] represents the layer i GP evaluation of X. Then, the following variational
approximation is considered:

q
(
{f[i]}no

i=1,{u[i]}no
i=1
)

= p({f[i]}no
i=1|{u[i]}no

i=1, [X, f[−i]],Z[i])×
no∏
i=1

q(u[i]) (5.3)

Notice here that unlike the variational approximation presented in [Salimbeni and
Deisenroth, 2017] where the chain rule is used for p({f[i]}no

i=1), in MO-DGP, the {f[i]}no
i=1

are connected by non-oriented edges, thus, there is no starting point to use the chain
rule to express the joint distribution by conditional distributions. Therefore, the joint
distribution is kept in the variational approximation. This variational approximation
is introduced in the evidence in Eq. (5.2) as follows:

p({yi}no
i=1|X) =

∫ ∫ no∏
i=1

[
p(yi|f[i])

]
×p({f[i]}no

i=1|{u[i]}no
i=1, [X, f[−i]],Z[i])

×
no∏
i=1

[
p(u[i]|Z[i])

]
×
q
(
{f[i]}no

i=1,{u[i]}no
i=1
)

q
(
{f[i]}no

i=1,{u[i]}no
i=1
)d{f[i]}no

i=1d{u[i]}no
i=1

(5.4)
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Then, by introducing the log and using Jensen inequality, the log evidence of the model
is bounded by an Evidence Lower bound (ELBO):

logp({yi}no
i=1|X)≥LMO-DGP

LMO-DGP =
∫ ∫

q
(
{f[i]}no

i=1,{u[i]}no
i=1
)
×

log
∏no

i=1
[
p(yi|f[i])

]
×p({f[i]}no

i=1|{u[i]}no
i=1, [X, f[−i]],Z[i])

∏no
i=1

[
p(u[i]|Z[i])

]
q
(
{f[i]}no

i=1,{u[i]}no
i=1
)


d{f[i]}no

i=1d{u[i]}no
i=1

(5.5)

Replacing the variational approximation by its expression in Eq. (5.3) allows to simplify
the expression of this lower bound:

LMO-DGP =
∫ ∫

p({f[i]}no
i=1|{u[i]}no

i=1, [X, f[−i]],Z[i])

×
no∏
i=1

[
q(u[i])

]
× log

∏no
i=1

[
p(yi|f[i])p(u[i]|Z[i])

]
∏no

i=1 q(u[i])

d{f[i]}no
i=1d{u[i]}no

i=1

(5.6)

Then, by separating the log expressions and identifying the expectation term and the
KL divergence term, the factorized expression of the ELBO over the observed variables
is obtained:

LMO-DGP =
no∑
i=1

n∑
j=1

E
q({f

(j)
[k] }no

k=1) log
(
p
(
y

(j)
i |f

(j)
[i]

))
−

no∑
i=1

KL
[
q
(
u[i])||p(u[i]|Z[i]

)]
(5.7)

The main difference with the ELBO obtained in regular DGPs is that the expectation
term in this ELBO is computed with respect to the joint distribution q({f (j)

[k] }
no
k=1)

since the chain rule cannot be used. While the conditioned sampling from a layer
given the other layers is straightforward by using the posterior predictive distribution
of a Gaussian process, sampling from the joint distribution of all the layers is more
challenging. In fact, every layer interacts with every other layer, hence, there is no
starting layer, unlike regular DGPs. To overcome this issue, Gibbs sampling can be
used [Geman and Geman, 1984; Gelman et al., 2013]. In fact, Gibbs sampling allows
to obtain samples from a joint distribution, which is difficult to directly sample from,
by using the conditional distributions. Practically, given the DoE (X,y1, . . . ,yno

), the
layer evaluations f[1], . . . , f[no] are initialized to some value f[1],{0}, . . . , f[no],{0}(e.g., 0 for
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normalized data), where the subscript {j} stands for the iteration number j of the Gibbs
sampling procedure. Now that all layers output have a specific value, one can use the
distribution of each layer conditioned on all the other layers output. More specifically,
s samples (f[1]

[1],{1}, . . . , f
[s]
[1],{1}) are drawn (in parallel) following q(f[1]|f[2],{0}, . . . , f[no],{0})

(where the superscript [t] stands for the sample number t), then using the updated
values of layer 1 a sample is drawn from q(f[2]|f[t]

[1],{1}, f[3],{0}, . . . , f[no],{0}) for 1≤ t≤ s,
and so on until reaching the final layer. This loop over the different layers is repeated
until stabilization of the distribution (and therefore the samples). The expectation term
is then estimated by averaging over the samples obtained at the final loop iteration.
This is summarized in Algorithm 3 where nGibbs corresponds to the number of loops
in the Gibbs sampling procedure. This enables to estimate the ELBO and therefore
perform its optimization with respect to the inducing inputs {Z[i]}no

i=1, the parameters
{θq(u[i])}

no
i=1 of the variational distributions {q(u[i]) =N (u[i]|ū[i],Γ[i])}no

1 , and the GP
hyperparameters at each layer {θ[i]}no

i=1. The challenging part of the MO-DGP training
is the optimization of the induced inputs {Z[i]}no

i=1. In fact, the induced inputs lie in
the augmented input space of dimension d+no−1 where the no−1 last components
depend on the d first ones making it not suitable to optimize them freely. To overcome
this issue, the last no−1 dimensions of the inducing inputs are not considered in the
optimization, and rather inferred by propagation through the other layers of the d first
dimensions that are optimized freely. More details on this procedure are developed in
Section 6.1.1.

The complexity of this ELBO is O
(
s×nGibbs×

∑no
i=1n

3
i

)
. In the numerical experi-

ments performed in Section 5.3, for a number of samples s= 1000, a number of loops
nGibbs = 4 is found to be sufficient for the stabilization of the samples.

5.1.3 MO-DGP prediction

To predict the response of the different objectives for a new data-point x∗ using MO-
DGP, Gibbs sampling is used as described in Algorithm 3. Instead of the DoE X, it is
performed on the new data-point x∗.

MO-DGP, by jointly modeling the different objectives, improves the prediction
capability compared to independent modeling. To illustrate this feature of MO-DGP,
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Algorithm 3: Sampling algorithm from the joint distribution q({f[i]}no
k=1)

1 Initialize: f[t]
[1],{0}, . . . , f

[t]
[no],{0} 1≤ t≤ s

2 for j = 1 . . . nGibbs do
3 f[t]

[1],{j} ∼ q(f[1]|f[t]
[2],{j−1}, f

[t]
[3],{j−1} . . . , f

[t]
[no],{j−1}) 1≤ t≤ s

4 f[t]
[2],{j} ∼ q(f[2]|f[t]

[1],{j}, f
[t]
[3],{j−1} . . . , f

[t]
[no],{j−1}) 1≤ t≤ s

...
5 f[t]

[i],{j} ∼ q(f[i]|f[t]
[1],{j}, . . . , f

[t]
[i−1],{j}, f

[t]
[i+1],{j−1}, . . . , f

[t]
[no],{j−1}) 1≤ t≤ s

...
6 f[t]

[no],{j} ∼ q(f[no]|f[t]
[1],{j}, f

[t]
[2],{j} . . . , f

[t]
[no−1],{j}) 1≤ t≤ s

7 end
8 return {f[t]

[1],{nGibbs}, . . . , f
[t]
[no],{nGibbs}}st=1

the following two-objective toy-problem is considered:

min [f1(x),f2(x)]
s.t. 0≤ x≤ 1
with f1(x) = exp(cos(15(2x−0.2)))−1
and f2(x) =−xexp(cos(15(2x−0.2)))−1

(5.8)

The objective space of this two-objective problem is represented in Fig. 5.3. This figure
illustrates the negative correlation between the two objectives. The modeling of these
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Exact evaluation of the objectives

Fig. 5.3 Objective space of the two-objective problem defined in Eq. (5.8)
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Fig. 5.4 Prediction of MO-DGP (colored red), independent GPs (colored green), and
LMC (colored orange) on the objective space of the defined problem in Eq. (5.8). (left)
Prediction with a DoE size of 10 data-points, MO-DGP captures well the Pareto front
compared to the two other models. (right) Prediction with a DoE size of 15 data-points,
the prediction of the three models is improved, however, LMC and GPs still provides
an inaccurate approximated Pareto front.

objectives (without considering the optimization problem solving) is performed with
two different sizes of Design of Experiments (DoE) of availability of data (10 and 15
observations) using independent GPs, LMC, and MO-DGP (Fig. 5.4). With only 10
data-points, MO-DGP well captures the exact Pareto front compared to the two other
models. When increasing the number of data-points, the prediction performance over
all the objective space is improved for the three models. However, the approximated
Pareto fronts obtained by the independent GPs and LMC are still inaccurate with
respect to the exact Pareto front.

5.2 Computation of the Expected Hyper-Volume
Improvement (EHVI)

To integrate MO-DGP within a BO-MO framework, it has to be coupled to a multi-
objective infill criterion. One of the widely used infill criteria is the Expected Hyper-
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Volume Improvement (EHVI). The EHVI considers the Lebesgue measure of the
expected hyper-volume dominated by the approximated Pareto front obtained by the
Bayesian models Eq. (3.31). In the remaining of this chapter, the two-objective case is
considered where the expression of the EHVI can be written as follows (see Chapter 3,
Section 3.3 for details):

EHV I(x) =
np+1∑
i=1

∫ y
(i)
1

ylb
1

∫ y
(i)
2

ylb
2

(
y

(i−1)
1 −y(i)

1

)(
y

(i)
2 −f2(x)

)
p(f(x)|Y,x,X)df(x)+

np+1∑
i=1

∫ y
(i−1)
1

y(i)

∫ y
(i)
2

y2=ylb
2

(
y

(i)
1 −f1(x)

)(
y

(i)
2 −f2(x)

)
p(f(x)|Y,x,X)df(x)

(5.9)

where np is the size of the approximated Pareto front, ylb
i and yub

i are respectively a
chosen lower-bound and upper-bound on objective i, and y(1), . . . ,y(np) are the DoE
approximated Pareto front evaluations sorted in a decreasing order of the first objective,
y(0) = [yub

1 ,ylb
2 ]⊺, and y(np+1) = [ylb

1 ,y
ub
2 ]⊺. This expression is analytically tractable

when considering the objectives as independent. However, this is not the case when
using a joint model for the objectives such as MO-DGP or LMC.

5.2.1 Approximation of piece-wise functions with Gaussian
distributions

To compute the EHVI when using a joint model with a Gaussian predictive dis-
tribution for the objectives, [Shah and Ghahramani, 2016] proposed an approxi-
mation approach. This approximation fully described in Chapter 3, Section 3.3.3,
consists in rewriting the bounds of the integrals in Eq. (5.9) on R by introducing
the indicator function I[·], then, in approximating the piece-wise linear functions
(y(i)

1 − f1(x))I
[
y(i) ≤ f1(x)≤ y(i−1)

1

]
,(y(i)

2 − f2(x))I
[
ylb

2 ≤ f2(x)≤ y(i)
2

]
and the con-

stant piece-wise function (y(i−1)
1 −y(i)

1 )I
[
y

(i−1)
1 ≤ y(i)

1

]
by Gaussian distributions using

moment matching. Next, since the predictive distribution is considered as Gaussian,
the integrands come back to the product of two multi-variate Gaussians which is a
scaled multi-variate Gaussian distribution. Therefore, the expression in Eq. (5.9) comes
back to integrals of scaled Gaussian distributions on their full support that is equal to
the scaling factor.

The limit of this approximation approach is that the estimation of a piece-wise linear
and constant functions by Gaussian distributions may be inaccurate, as displayed in



5.2 Computation of the Expected Hyper-Volume Improvement (EHVI) 155

−15 −10 −5 0
0

5

10

Objective 2

Approximated function
Exact function

−30 −25 −20 −15 −10 −5 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Objective 1

Fig. 5.5 Piece-wise functions are approximated by Gaussian distributions using moment
matching, (left) a piece wise linear function approximated by a Gaussian distribution,
(right) a piece wise constant function approximated by a Gaussian distribution.

Fig. 5.5, yielding to a limited approximation of the correlated EHVI. To illustrate this,
consider the previous multi-objective problem in Eq. (5.8) and a LMC model trained on
a DoE of 10 observations. The predictive distribution given by the LMC model is a two-
variate Gaussian distribution with a correlation between the two objectives determined
by the LMC oregionalization matrix. To assess the quality of this approximation,
the obtained correlated EHVI is compared to the independent EHVI using the same
approximation, and to the exact independent EHVI in Fig. 5.6. This allows to identify
the part of the approximated correlated EHVI induced by the approximation from the
one induced by taking into account the correlation between the objectives. As it can
be seen in Fig. 5.6, the approximation itself induces a more important change in value
than the correlation. In fact, the difference between the exact independent EHVI and
the approximated independent EHVI is larger than the one between the latter and the
approximated correlated EHVI. Moreover, the input variable value corresponding to
the maximum of the EHVI given by the approximated EHVI differs from the one given
by the exact independent EHVI due to the approximation and not the correlation
between the objectives. Therefore, the approximation may lead to less interesting data
point to be added to the DoE. Moreover, increasing the integral bounds on which
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the EHVI is computed makes the approximation coarser since the segments on which
the approximation is performed are wider and therefore the approximation error is
larger. This is illustrated in the right figure of Fig. 5.6, where the same EHVI is
computed on larger bounds. Since in BO the initial DoE is small, the segments on
which the approximation is performed are wide, this may yield to large errors in the
approximation.

Hence, this example illustrates the limits of this approximation in the context of
MO-BO at two levels. The first one is that the approximation itself may lead to a
different maximum of the EHVI and hence a non-desirable added-point to the data-set.
Second, the approximation is deteriorated when the objective space is populated with
only a few solutions, which is usually the case in MO-BO.

One may argue that using a mixture of Gaussian distributions would give a better
approximation. In fact a mixture of Gaussian distributions will better approximate
the piece-wise functions as illustrated in Fig. 5.7 in which a mixture of four Gaussian
distributions is used. The parameters of the Gaussian distributions are optimized in
order to minimize the quadratic error between the approximation and the exact piece-
wise functions. The approximation of the EHVI is improved as illustrated in Fig. 5.8.
However, it still depends on the segments on which the approximation is performed,
an using wider segments yields to larger errors in the approximation. Moreover, the
parameters of the Gaussians are obtained using multiple optimization for each segment
which is time consuming.

Another limitation of this approach to compute the EHVI is that it assumes that
the predictive distribution of the model is Gaussian. While the predictive distribution
of LMC is Gaussian, it is not necessary the case for MO-DGP as illustrated in Fig. 5.9.
In the next subsection, a more accurate approach to compute the correlated EHVI is
proposed which does not assume a particular form of the predictive distribution.

5.2.2 Proposed computational approach for correlated EHVI

Instead of approximating the piece-wise functions, another way to compute the EHVI
would be to approximate the density of the predictive distribution. To estimate a
density, there are extensive works in the literature [Silverman, 1986; Sheather, 2004;
Scott, 2015; Wand and Yu, 2020]. One of the most popular approaches is Kernel
Density Estimation (KDE) [Parzen, 1962; Simonoff, 2012]. For a set of s samples of
dimension no, (f[1], . . . , f[s]) drawn from an unknown distribution with density p(f(x)),
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Fig. 5.6 Comparison on the design space of three different computations of the EHVI
for the multi-objective problem in Eq. (5.8) with a DoE of 10 data-point. The blue
colored curve corresponds to the exact computation of the EHVI with the assumption
of independence between the objectives, the orange colored curve corresponds to
the approximated computation of the EHVI with the assumption of independence
between the objectives and the dashed green curve corresponds to the approximated
computation of the EHVI with correlation between the objectives. In the right figure,
the bounds on which the EHVI is computed are widened to show the degradation of
the approximation with respect to the wideness of the bounds.

the KDE is defined as follows:

p̂(f(x)) = 1
s

s∑
i=1

kB
(
f(x)− f[i]

)
(5.10)

where kB is a kernel function to be specified and B is a positive definite no×no matrix
called the bandwidth [Jones et al., 1996].
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Fig. 5.7 Piece-wise functions (colored blue) are approximated by Gaussian distributions
(colored orange) using moment matching and a mixture of four Gaussian distributions
(colored red) by minimizing the error between the exact function and the mixture with
respect to the parameters of the distributions, (left) the approximation of a piece wise
linear function, (right) the approximation of a piece wise constant function

Using the KDE to estimate p(f(x)|Y,x,X) in the expression of the EHVI in Eq. (5.9)
yields to the following expression:

EHV I(x) =
np+1∑
i=1

∫ y
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ylb
1

∫ y
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(5.11)
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Fig. 5.8 Comparison on the design space of five different computations of the EHVI
for the multi-objective problem in Eq. (5.8) with a DoE of 10 data-point. Despite the
approximation of the piece-wise functions being better using the mixture of Gaussians,
the corresponding approximation of the EHVI (colored red with the assumption of
independency and dashed purple with correlated objectives) did not improve.

where f[t], j = 1, . . . , s are samples drawn from the predictive distribution of the model
p(f(x)|Y,x,X). To obtain an analytical tractable form of the EHVI, the multivariate
normal kernel kB(f(x)− f[t]) = 1√

(2π)no |B|
exp −1

2

(
f(x)− f[t]

)⊺
B−1

(
f(x)− f[t]

)
is used,

where |B| corresponds to the determinant of B. For the bandwidth matrix B, the
Silverman rule [Silverman, 1986] is used that is:

√
Bii = σi

(
4

s(no +2)

) 1
no+4

√
Bit = 0 for i ̸= t

(5.12)

where σi is the standard deviation of the marginal predictive distribution of the
objective i. This allows to obtain a diagonal covariance matrix for the Gaussian kernel
and therefore to estimate the predictive distribution as a mixture of the product of
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Fig. 5.9 Samples drawn in the objective space from, (left) the predictive posterior
distribution of LMC which is a multivariate Gaussian distribution, (right) the predictive
posterior distribution of MO-DGP which is not necessary Gaussian.

univariate Gaussian distributions:

p̂(f(x)) =1
s

s∑
j=1

kB
(
f(x)− f[t]

)

=1
s

s∑
j=1

1√
(2π)no |B|

exp−1
2
(
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)⊺
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f(x)− f[t]

)

=1
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no∏
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1√
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)⊺
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[i]

)

=1
s

s∑
j=1

no∏
i=1

ϕN (f [t]
[i] ,Bii)

(
f[i](x)

)
(5.13)

To illustrate this approximation, in Fig. 5.10, the predictive distribution of MODGP in
Fig. 5.9 is estimated using Eq. (5.13), yielding to an accurate fit of the true distribution.

By injecting the estimate obtained in Eq. (5.13) in the expression of the EHVI
in Eq. (5.11) which is considered in the two-objective case (no = 2), the following is
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Fig. 5.10 KDE of the posterior predictive distribution of MO-DGP, whose samples are
drawn in Fig. 5.9.

obtained:
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The computation of the EHVI comes back to the computation of the following integral∫ b
−∞(a−ft(x)) 1√
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(
ft(x)−f

[t]
t√
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dft(x) which can be computed as follows:

ξ(a,b,µ,σ) =
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Therefore, the final expression of the EHVI comes back to:
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(5.16)

By using a well established approach that is KDE for the estimation of the predictive
distribution instead of approximating the piece-wise functions, this method to compute
the EHVI is more accurate and is suitable for non-Gaussian predictive distributions.
The accuracy of this approach is illustrated in Fig. 5.11. In the left figure, the correlation
given by the predictive distribution (for instance, for x∗ = 0.85, the full predictive

covariance matrix is
 0.867 −0.811
−0.811 0.921

, see Fig. 5.12) of the model induces a difference

between the EHVI computed with the assumption of independency and the one without
this assumption. In the right figure, by changing the DoE, the predictive distribution
of the LMC model provides a weak covariance between the objectives (for instance, for

x∗ = 0.85 the full predictive covariance matrix is
0.0104 −0.003
−0.003 0.0096

, see Fig. 5.12),

inducing a similar EHVI in the case of the assumption of independency to the one
when the correlation is taken into account. However, it is interesting here to notice
that the correlated EHVI using KDE comes back to the exact EHVI, highlighting the
low bias in this approximation.
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Fig. 5.11 Comparison on the design space of four different computations of the EHVI
for the multi-objective problem in Eq. (5.8) with a DoE of 10 data-points. The blue
colored curve corresponds to the exact computation of the EHVI with the assumption
of independence between the objectives, the orange colored curve corresponds to
the approximated computation of the EHVI [Shah and Ghahramani, 2016] with
the assumption of independence between the objectives and the dashed green curve
corresponds to the approximated computation [Shah and Ghahramani, 2016] of the
EHVI with correlation between the objectives, and the dashed red curve corresponds
to the proposed approach to compute the EHVI using KDE. In the right figure, a
different DoE is used to train the LMC model, the obtained correlation in the predictive
distribution using this DoE is not decisive and it can be seen that the EHVI using
KDE comes back to the exact independent EHVI highlighting its accuracy.

The EHVI is directly used for unconstrained multi-objective problems. In the case
of multi-objective problems with constraints, the EHVI is coupled with a constrained
infill-criterion such as the Probability of Feasibility (PoF) and the Expected Violation
(EV) in the same way as the Expected Improvement (EI) (these infill criteria are
detailed in Chapter 3, Section 3.2.2.)

The two developed approaches that are MO-DGP to jointly model the objectives
and the computational method for the correlated EHVI intervene at two different levels
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Fig. 5.12 Samples obtained by a LMC model trained on the two different DoEs (Fig. 5.11)
in the objective space for a test point x∗ = 0.85, with the full predictive distribution
(red coded) used to compute the correlated EHVI, and with the predictive distribution
using only the diagonal covariance (blue code) used to compute the independent EHVI.
(left) The off-diagonal terms of the the predictive distribution covariance matrix given

by the LMC model
(

0.867 −0.811
−0.811 0.921

)
induce a difference between the the correlated

and the independent EHVI (left figure in Fig. 5.11). (right) The weak covariance

of the predictive distribution given by the LMC model
(

0.0104 −0.003
−0.003 0.0096

)
induces a

correlated EHVI similar to the independent EHVI (right figure in Fig. 5.11).

of the MO-BO algorithm. The next section, is devoted to numerical experiments to
evaluate these two methodological approaches in MO-BO.

5.3 Numerical Experiments

In this section, experimentations are carried out in order to evaluate the performance
of MO-BO with MO-DGP. A benchmark of analytical functions and a representative
aerospace problem are considered to compare different MO-BO algorithms including
the proposed MO-BO with MO-DGP. Each MO-BO algorithm consists in a coupling
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between a model and a computational approach of the EHVI (Table 5.1). Moreover,
NSGA-II [Deb, 2001] a classic multi-objective evolutionary algorithm, is also run with
the same number of evaluations as the MO-BO algorithms to highlight the interest of
BO.

Table 5.1 The different MO-BO algorithms compared. For each MO-BO algorithm, a
model (MO-DGP, independent GPs, or LMC) is coupled with a computational approach
for the EHVI (independent objectives, correlated EHVI using KDE, correlated using
the Gaussian approximation in [Shah and Ghahramani, 2016]).

Model EHVI computation
MO-DGP Independent
MO-DGP Correlated EHVI using KDE

GPs Independent
LMC Independent
LMC Correlated EHVI using KDE

LMC Correlated using the Gaussian approximation in [Shah
and Ghahramani, 2016] (Correlated GA)

For each problem of input dimension d, an initial DoE of 5×d is initialized using
random Latin Hyper-cube Sampling (LHS) and a maximum of 10×d data-points are
added using the MO-BO algorithms. To assess the robustness of the algorithms, 20
repetitions with different initial DoEs are performed. Details on the numerical setup
are presented in Appendix D.

The obtained results are displayed using a table for each problem where the average
and standard deviation (std) of the final Hyper-Volume (HV) (the higher the better) for
each algorithm are presented. The hyper-volume indicator evolution over the iterations
of the algorithms is also displayed using convergence curves with quartile bars. This
allows to assess the speed of convergence of each algorithm, the quality of the final
approximated Pareto front obtained, and the robustness to the initial DoE. Moreover,
for each algorithm the final approximated Pareto front corresponding to the median
repetition in terms of hyper-volume is plotted to assess the quality of the approximated
fronts with respect to the exact Pareto front.

In the first part of this section, the different algorithms are compared on uncon-
strained analytical test functions. In the second part, a representative two-objective
constrained aerospace problem is used to show the applicability of the proposed
approach on representative physical problem.
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Table 5.2 Performance of MO-BO on the 1-d test problem (values of the final hyper-
volume obtained and its standard deviation on 20 repetitions) using MO-DGP, indepen-
dent GPs, or LMC as a model, and with EHVI computed either with the assumption
of independence or with correlation.

Model EHVI
computation average HV HV standard

deviation
MO-DGP Independent 0.508 0.014
MO-DGP Correlated KDE 0.500 0.022

GPs Independent 0.484 0.034
LMC Independent 0.484 0.029
LMC Correlated KDE 0.479 0.027
LMC Correlated GA 0.478 0.054

NSGA-II 0.420 0.047

5.3.1 Analytical functions

A 1d test problem

In this section, the one-dimensional two-objective problem presented in Eq. (5.8)
is optimized. The two objectives are negatively correlated in the objective space
(Fig. 5.4). The hyper-volume is computed in the objective space within the rectangle
([ -1,-4],[2.5,-0.5]).

The final hyper-volume for each algorithm is presented in Table 5.2 (for the sake
of of clarity, the plots of LMC with correlated EHVI using GA are not represented,
since it gives similar results to LMC with correlated EHVI using KDE). MO-BO
with MO-DGP out-performs MO-BO with the other models in terms of the final HV
(average HV for MO-BO with MO-DGP/EHVI computed independently: 0.508, and
average HV for MO-BO with GPs and LMC: 0.484) and the robustness to the DoE
(std dev of HV for MO-BO with MO-DGP/EHVI computed independently: 0.014, and
std dev for MO-BO with GPs: 0.034 and with LMC: 0.029). Taking into account the
correlation in the computation of the EHVI does not improve the results neither for
MO-DGP nor for LMC where the final HV stays roughly the same (average HV for
MO-BO with MO-DGP/EHVI correlated: 0.500).

The evolution of HV with respect to the number of added points is displayed in
the graphic at the top of Fig. 5.13. It is interesting to notice that with only 6 added
points, the results of MO-BO with MO-DGP is already better than the final results
obtained by the other models. This highlights its speed of convergence compared to the
other algorithms which is important in the case of expensive function evaluations. It
illustrates also the interest of learning jointly the different objectives with a single multi-
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task DGP model. The graphic at the bottom of Fig. 5.13 displays the approximated
Pareto front for the median repetition in terms of hyper-volume for different algorithms
(for the sake of clarity, for the LMC only the approximated front obtained by the
independent EHVI is displayed). The different solutions of the approximated Pareto
front obtained by MO-BO with MO-DGP are well spreaded around and are all of rank
1 meaning they belong to the exact Pareto front. Alternatively, GP and LMC solutions
are not all of rank 1.

Kursawe problem

The Kursawe is a 3-d two-objective problem [Kursawe, 1990]. The two objectives are
defined as follows:

min [f1(x),f2(x)]
s.t. −5≤ xi ≤ 5 i= 1, . . . ,3
with f1(x) =∑2

i=1
(
−10exp

(
−0.2

√
x2

i +x2
i+1
))

and f2(x) =∑3
i=1

(
|xi|0.8 +5sin

(
x3

i

)) (5.17)

From the analytic expression of the two objectives in Eq. (5.17), there is no clear
correlation between the two objectives. The hyper-volume is computed in the objective
space within the rectangle ([ -22,-14],[-5,5]).

The final hyper-volume for each algorithm is presented in Table 5.3. For this
problem, MO-BO with independent GPs performs better than all the other algorithms
(average HV for MO-BO with independent GPs: 0.372, average HV for MO-BO with
MO-DGP 0.350, average HV for MO-BO with LMC: 0.273). The deterioration of the
results by the joint objective models that are MO-DGP and LMC may be explained
by the fact that there is not a correlation in the objective space between the two
objectives. Still, MO-BO with MO-DGP gives competitive results to MO-BO with
GPs in this case compared to MO-BO with LMC. As in the previous test problem,
the approach of computation of the EHVI is not decisive (average HV for MO-BO
with MO-DGP/ EHVI computed independently: 0.350, average HV for MO-BO with
MO-DGP/ correlated EHVI 0.354). For the same number of function evaluations
NSGA-II achieves in average a HV of 0.173 which highlights the difficulty of the
problem.

The evolution of HV with respect to the number of added points is displayed in the
graphic at the top of Fig. 5.14. MO-BO with LMC struggles from the early iterations
to improve the hyper-volume while MO-BO with independent GPs dominates the other
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Fig. 5.13 Convergence curve and approximated Pareto fronts for the 1-d test problem,
(top) hyper-volume evolution of each algorithm with respect to the number of added
points with the MO-BO framework, (bottom) approximated Pareto front obtained in
the median repetition in terms of hyper-volume of the different algorithms.
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Table 5.3 Performance of MO-BO on Kursawe problem (values of the final hyper-volume
obtained and its standard deviation on 20 repetitions) using MO-DGP, independent
GPs, or LMC as a model, and with EHVI computed either with the assumption of
independence or with correlation.

Model EHVI
computation average HV HV standard

deviation
MO-DGP Independent 0.350 0.060
MO-DGP Correlated KDE 0.354 0.076

GPs Independent 0.372 0.072
LMC Independent 0.273 0.078
LMC Correlated KDE 0.260 0.096
LMC Correlated GA 0.255 0.090

NSGA-II 0.173 0.0322

algorithms. The graphic at the bottom of Fig. 5.14 displays the approximated Pareto
front for the median repetition in terms of hyper-volume for different algorithms. Even
after adding 30 data-points to the DoE, hence, increasing its size to 45 data-points, the
approximated Pareto front of the different algorithms does not exceed 6 data-points.
The MO-BO with GPs is able to capture the three discontinued parts of the exact
Pareto-front with at least one data-point in each part. However, MO-BO with MO-
DGP has more difficulty to capture the bottom part of the exact Pareto-front. MO-BO
with LMC is unable to obtain a solution in the exact Pareto front.

DTLZ1-modified problem

A modified version of the DTLZ1 which is a multi-dimensional multi-objective problem
[Deb et al., 2005] is considered in this section. This modified version of DTLZ1 yields
to a concave Pareto front which is more difficult to approximate. The problem is
considered with 5 dimensions and two objectives with the following expressions:

min [f1(x),f2(x)]
s.t. 0≤ xi ≤ 1 i= 1, . . . ,5
with f1(x) =−0.5x1 (1+h(x))
and f2(x) =−0.5(1−x1)(1+h(x))
and h(x) = 100

(
5+∑5

i=1
(
(x1−0.5)2− cos(2π(xi−0.5))

))
(5.18)

This expression highlights the negative-correlation between the two objectives which
depends on h(x). The hyper-volume is computed in the objective space within the
rectangle ([ -600,-600],[25,25]).
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Fig. 5.14 Convergence curve and approximated Pareto fronts for the Kursawe problem,
(top) hyper-volume evolution of each algorithm with respect to the number of added
points with the MO-BO framework, (bottom) approximated Pareto front obtained in
the median repetition in terms of hyper-volume of the different algorithms.
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Table 5.4 Performance of MO-BO on the modified DTLZ 1 problem (values of the final
hyper-volume obtained and its standard deviation on 20 repetitions) using MO-DGP,
independent GPs, or LMC as a model, and with EHVI computed either with the
assumption of independence or with correlation.

Model EHVI
computation average HV HV standard

deviation
MO-DGP Independent 0.381 0.0031
MO-DGP Correlated 0.382 0.0035

GPs Independent 0.365 0.0041
LMC Independent 0.378 0.0039
LMC Correlated 0.360 0.0736

NSGA-II 0.223 0.0275

The final hyper-volume for each algorithm is presented in Table 5.4. The MO-BO
with a joint modeling approach (MO-DGP and LMC) out-performs MO-BO with
independent GPs in terms of the final HV (average HV for MO-BO with MO-DGP:
0.381, and average HV for MO-BO with LMC: 0.378, an with GPs: 0.365) and the
robustness to the DoE (std dev of HV for MO-BO with MO-DGP: 0.0031, and std
dev for MO-BO with LMC: 0.0039, and with GPs: 0.0041). This illustrates the large
correlation between the objectives that improves the modeling when using a joint
model. Moreover, MO-DGP performs better than LMC which is explained by a more
sophisticated exhibition of the correlation between the objectives. Taking into account
the correlation between the objectives in the computation of the EHVI for MO-BO
with MO-DGP does not change the final results. However, for MO-BO with LMC
the final HV obtained is lower and less robust to the initial DoE. This is due to the
off-diagonal values of the predicted covariance matrix that are not well-predicted.

The evolution of HV with respect to the number of added points is displayed in the
graphic at the top of Fig. 5.15. From the 20-th added data-point, MO-BO with MO-
DGP has already stood-out from the other algorithms. Actually, it is faster in terms
of speed of convergence, with 25 added data-points it already outperforms MO-DGP
with GPs. An interesting remark is that while MO-BO with LMC gives comparable
results to MO-BO with MO-DGP at the end of the iterations, it is slower in terms of
speed of convergence. In fact, its is outperformed by MO-BO with independent GPs in
the early iterations. This may be explained by the fact that it need more data-points
to learn the correlation between the objectives than MO-DGP as illustrated in Fig. 5.9.
The graphic at the bottom of Fig. 5.15 displays the approximated Pareto front for
the median repetition in terms of hyper-volume for different algorithms. The different
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Fig. 5.15 Convergence curve and approximated Pareto fronts for the modified DLTZ1
problem, (top) hyper-volume evolution of each algorithm with respect to the number
of added points with the MO-BO framework, (bottom) approximated Pareto front
obtained in the median repetition in terms of hyper-volume of the different algorithms.
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Table 5.5 Performance of MO-BO on ZDT 6 problem (values of the final hyper-volume
obtained and its standard deviation on 20 repetitions) using MO-DGP, independent
GPs, or LMC as a model, and with EHVI computed either with the assumption of
independence or with correlation.

Model EHVI
computation average HV HV standard

deviation
MO-DGP Independent 0.350 0.063
MO-DGP Correlated 0.265 0.1075

GPs Independent 0.315 0.0699
LMC Independent 0.061 0.0655
LMC Correlated 0.046 0.0669
LMC Correlated GA 0.043 0.0676

NSGA-II 0. 0.0

solutions of the approximated Pareto fronts reaches the exact Pareto front. Therefore,
the differences in terms of hyper-volume are mainly due to the diversity and number
of solutions in the approximated Pareto front.

Zitzler–Deb–Thiele 6 problem

The Zitzler–Deb–Thiele 6 (ZDT 6) problem is a 10-dimensionnal two-objective problem
[Deb et al., 2005]. The expression of the two objectives is as follow:

min [f1(x),f2(x)]
s.t. 0≤ xi ≤ 1 i= 1, . . . ,10
with f1(x) = 1− exp(−4x1)sin6(6πx1)
and f2(x) = φ(x)h(f1(x),φ(x))

and φ(x) = 1+9
(∑10

i=2 xi

9

)0.25

and h(f1(x),φ(x)) = 1−
√

f1(x)
φ(x)

(5.19)

In this problem, the correlation between the two objectives is more complicated than
in the 1-D test problem and in the modified DTLZ 1 where the two objectives are the
product of the same function. In fact, in this problem the second objective is written
as a functional composition of the first objective and a second function φ(x). The
hyper-volume is computed in the objective space within the rectangle ([0,0],[1.1,1.1]).

The final hyper-volume for each algorithm is presented in Table 5.5. The high-
dimensionality of the problem makes it difficult to optimize with few function evalua-
tions. In fact, with the 150 function evaluations NSGA-II is unable to obtain a solution
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that lies in the considered rectangle for the hyper-volume in the 20 repetition runs.
In the MO-BO algorithms, MO-DGP with EHVI computed independently gives the
best results both in terms of the final HV (average HV : 0.35) and the robustness to
the DoE (std dev of HV: 0.063). It is followed next by MO-BO with GPs (average
HV: 0.315, std dev of HV: 0.069). In this problem, taking into account the correlation
in the computation of the EHVI for MO-BO with MO-DGP degrades severely the
performance, which drops to an average HV of 0.265. This may be explained by
the fact that in the context of few data (50→ 130 data-points) compared to the
dimension of the problem (10), the two first moments of the marginals of the predictive
distribution, which are sufficient to compute the independent EHVI, need less data
to be well predicted than the full predictive distribution used to computed the EHVI
correlated. MO-BO with LMC performs poorly (average HV of 0.061), this is due to
the complicated correlation between the objectives that cannot be captured by the
linear relations involved in LMC. Moreover, the remark stated previously about the
full predictive distribution needing more data to be well-predicted is also observed here,
since the LMC with correlated EHVI (average HV 0.046) deteriorates the performance
of LMC with independent EHVI.

The evolution of HV with respect to the number of added points is displayed in
the graphic at the top of Fig. 5.16. The different MO-BO with joint modeling of
the objectives (MO-DGP and LMC) have a slow start in the early iterations. This
is due to the difficulty to exhibit the correlations between the objectives with few
data. However, with enough data, MO-BO with MO-DGP using EHVI computed
independently goes ahead MO-BO with GPs. Moreover, in terms of robustness to the
initial DoE, MO-DGP using EHVI computed independently offers better results than
MO-BO with independent GPs. MO-BO with MO-DGP using EHVI correlated is
slower due to the reasons stated previously. The graphic at the bottom of Fig. 5.16
displays the approximated Pareto front for the median repetition in terms of hyper-
volume for different algorithms. The MO-BO with LMC struggles to obtain solutions
within the rectangle on which the EHVI is computed. The approximated Pareto front
by MO-DGP with EHVI computed independently is well spread around all the exact
Pareto front, while the one obtained by MO-DGP with EHVI correlated does not reach
the lower part of the exact front.
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Fig. 5.16 Convergence curve and approximated Pareto fronts for the modified ZDT 6
problem, (top) hyper-volume evolution of each algorithm with respect to the number
of added points with the MO-BO framework, (bottom) approximated Pareto front
obtained in the median repetition in terms of hyper-volume of the different algorithms.
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5.3.2 Multi-objective aerospace design problem

To confirm the interest of the MO-BO with MO-DGP for engineering applications, a
representative aerospace vehicle design optimization problem is considered consisting
of a two-objective constrained optimization of a solid-propellant booster.

Problem formulation

The optimization of two objectives for a solid propellant booster is considered (Fig 5.17).
The objectives are :

• Minimization of the Gross Lift-off Weight (GLOW)

• Maximization of the change in velocity (∆V )

In addition, four design variables are considered:

• Propellant mass: 2t≤mprop ≤ 20t

• Combustion chamber pressure: 5bar≤ pc ≤ 500bar

• Throat nozzle diameter: 0.2m≤ dc ≤ 1m

• Nozzle exit diameter: 0.5m≤ ds ≤ 1.5m

The two objectives are directly correlated through Tsiolkovsky equation:

∆V = g0× Isp× log
(

GLOW

GLOW −mprop

)
(5.20)

where g0 is the standard gravity and Isp is the specific impulse. Different constraints are
also considered including a structural one limiting the combustion pressure according
to the motor case, 6 geometrical constraints on the internal vehicle layout for the
propellant and the nozzle, and a jet breakaway constraints concerning the throat nozzle
diameter and the nozzle exit diameter. Making a total of 8 constraints.

Minimize: −∆V (x)
Minimize: GLOW (x)
w.r.t: x = [mprop,pc,dc,ds]

s.t:


1 structural constraint
6 geometrical constraints
1 jet breakaway constraints

(5.21)
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Fig. 5.17 Optimization problem of a solid-propellant booster engine. The formulation
of the problem involves different disciplines (propulsion, geometry, structural sizing
and performance). The problem considers the maximization of the velocity increment
and minimization of the GLOW subject to 8 constraints.

Results

The different MO-BO algorithms used previously are applied to this problem with the
considerations of the different constraints. In fact, in addition to the models for the
objectives, a GP is used for each constraint. The EHVI is coupled to the Probability
of Feasibility to handle the constraints (see Chapter 3, Section 3.2.2).

The final hyper-volume for each algorithm is presented in Table 5.6. The constraints
make it difficult for an evolutionary algorithm such as NSGA-II to obtain results for
few function evaluations (average HV of 0.087). For the MO-BO algorithms, MO-BO
with joint modeling for the objectives (MO-DGP and LMC) outperforms MO-BO with
independent GPs in terms of final HV (average HV for MO-DGP 0.473, for LMC
0.465, and for GPs 0.435) and also in terms of robustness to the DoE (HV std dev for
MO-DGP 0.033, for LMC 0.0244, and for GPs 0.091). Therefore, the joint models are
able to capture the physical correlation between the change in velocity (∆V ) and the
gross lift-off weight. The correlation between the objectives is not complex enough to
make a notable difference between LMC and MO-DGP as in ZDT 6 or the 1D test
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Table 5.6 Performance of MO-BO on the aerospace test problem (values of the final
hyper-volume obtained and its standard deviation on 20 repetitions) using MO-DGP,
independent GPs, or LMC as a model, and with EHVI computed either with the
assumption of independence or with correlation.

Model EHVI
computation average HV HV standard

deviation
MO-DGP Independent 0.473 0.033
MO-DGP Correlated KDE 0.469 0.0243

GPs Independent 0.435 0.0910
LMC Independent 0.465 0.0244
LMC Correlated KDE 0.457 0.0483
LMC Correlated GA 0.452 0.0541

NSGA-II 0.087 0.0852

problem. For MO-BO with the correlated EHVI, the results are roughly the same
using MO-DGP, however, when using LMC the results are less robust to the initial
DoE with an increase of the HV std dev to 0.483. This means that the full predictive
distribution given by MO-DGP is more adapted than the one obtained by LMC.

The evolution of HV with respect to the number of added points is displayed in the
graphic at the top of Fig. 5.18. In the case of EHVI computed independently, the final
result given by LMC is comparable to the one obtained by MO-DGP, however, LMC is
slower to converge. In fact, with 20 added data-points MO-BO with MO-DGP already
out-stands itself from the other algorithms. When computing the EHVI correlated,
the improvement is slower in the early iterations. As stated previously, this is due
to the fact that the full predictive distribution needs more data to be well-predicted.
The graphic at the bottom of Fig. 5.18 displays the approximated Pareto front for
the median repetition in terms of hyper-volume for different algorithms. In terms
of diversity and number of solutions in the approximated Pareto front the different
algorithms show comparable results. However, MO-BO with GP struggles to reach its
solutions to the exact Pareto front compared to the MO-BO with a joint model for the
objectives where the majority of the solutions are on the exact Pareto front.

5.3.3 Synthesis of the results

The results obtained in these numerical experiments allowed us to draw conclusions in
terms of the chosen model and also the approach to compute the EHVI in MO-BO.

• In terms of the chosen model:
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Fig. 5.18 Convergence curve and approximated Pareto fronts for the aerospace problem,
(top) hyper-volume evolution of each algorithm with respect to the number of added
points with the MO-BO framework, (bottom) approximated Pareto front obtained in
the median repetition in terms of hyper-volume of the different algorithms.
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– MO-BO with MO-DGP: for problems with correlations between the
objectives (1D problem, DTLZ 1, and the aerospace problem) and even
with complex correlations (ZDT 6) the model is able to take advantage
of this correlation and outperforms the other algorithms in terms of the
final HV obtained, the robustness to the initial DoE, and to the speed of
convergence. For the problem where there is no correlation between the
objectives (Kursawe) it still gives comparable results to MO-BO with GPs.
However, the major drawback of MO-DGP compared to the other models is
its complexity and training time.

– MO-BO with LMC: for problems with correlations between the objec-
tives (1D problem, DTLZ 1, and the aerospace problem) the model gives
competitive results to MO-BO with MO-DGP, but, with a slower speed
of convergence. For complex correlations between the objectives (ZDT 6)
and no correlation (Kursawe), it is largely outperformed by MO-BO with
MO-DGP and with independent GPs.

– MO-BO with independent GPs: is the classic approach and as expected
it performs decently in the different configurations. However, not taking
into account correlations between the objectives makes it at a disadvantage
to the compared algorithms in multiple problems (1D problem, DTLZ 1,
and the aerospace problem) resulting in less performing results.

• In terms of the EHVI computational approach:

– For the different test problems, using the correlated EHVI in an algorithm
did not improve clearly the performance. However, it happened that it
deteriorates the performance. This is explained by the fact that, unlike inde-
pendent EHVI which uses the two first moments of the marginal predictive
distribution, the correlated EHVI uses the full predictive distribution which
may need more data-points to be well predicted.

– Taking into account the correlation in the EHVI for MO-BO with MO-DGP
yields to comparable results for the different test problems except for ZDT
6. However, for MO-BO with LMC, the results when using the correlated
EHVI are deteriorated more frequently (ZDT 6, DTLZ 1, aerospace problem,
Kursawe). This means that the full predictive distribution obtained by
MO-DGP is better calibrated than the one obtained by LMC.

– The correlated EHVI computed using KDE and the one computed using the
Gaussian approximation proposed in [Shah and Ghahramani, 2016] yields
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approximatively to the same result (for Gaussian predictive distributions
obtained by LMC) with a slight advantage to the approach using KDE.

5.4 Conclusions

Multi-objective optimization considers antagonistic performance to optimize. In this
context, there is usually a strong negative correlation between the objectives especially
around the Pareto front. However, classic MO-BO approaches consider the objectives
independently and do not take advantage of potential correlations. Moreover, the
popular infill criterion used that is the EHVI is computed with the assumption of
independency between the objectives.

In this chapter, a DGP based model which allows a joint modeling of the objectives
in order to exhibit a potential correlation has been developed. In addition, an accurate
computing approach for the EHVI without the assumption of objective independency
is proposed.

Unlike in Chapter 4, where the intermediate layers of DGPs are hidden and used as
non-parametric Bayesian mapping of the input space to handle non-stationary problems,
in this chapter, MO-DGP is a DGP based-model where each layer corresponds to
an objective, therefore, inducing interpretability for the intermediate layers and also
making DGP a multi-task model. Moreover, the nodes are connected with undirected
nodes and are fully connected with each others. While this increases the complexity
of the model, it also increases its power of representation. In fact, each layer takes
the other objectives as inputs to improve its prediction. The ELBO of this model has
been derived and a Gibbs sampling approach is proposed for estimating it. This model
proves to better predict correlated functions than independent GPs or LMC.

To use MO-DGP within a MO-BO framework, it has to be coupled with the EHVI.
The EHVI has been adapted to the case of correlated objectives in [Shah and Ghahra-
mani, 2016]. However, this computational approach is based on an approximation
which is usually not tight and induce important dissimilarities. Moreover, it is not
adapted to the case where the predictive distribution of the model is not a multi-variate
Gaussian which is usually not the case for MO-DGP. Instead, another computational
approach has been proposed for the EHVI where it is the predictive distribution that
is approximated using KDE. This computational approach proves to be more accurate.

Experimentations on analytical and on an aerospace design problem were carried
out to prove the interest of using MO-DGP and the correlated EHVI within a MO-BO
framework. These numerical experiments highlight the fact that MO-BO with MO-
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DGP outperforms MO-BO with independent GPs and with LMC over different test
problems in terms of the final hyper-volume obtained, the robustness to the initial
DoE, and the speed of convergence. However, the correlated EHVI does not prove to
be decisive. This is caused by the fact that the full predictive distribution needs more
data to be well-approximated.

In this chapter, only the two-objective case was considered. MO-DGP is formulated
for multiple objectives and it can be used for more than two. However, it is not
conceivable to use it in a many-objective context due to its complexity. Therefore,
it would be interesting to see if the interest of MO-DGP shown in the two-objective
case is confirmed in the three-objective case. For the EHVI, the computing approach
followed is specific to the two-objective case. However, there are exact approaches to
compute the EHVI in the case of more objectives with the assumption of independency
[Hupkens et al., 2015]. To compute the correlated EHVI in that case, the proposed
approach using KDE to approximate the predictive distribution still holds.

In the numerical experiments carried in this chapter, the correlated EHVI does
not improve the obtained results. Numerical experiments with larger initial DoEs
would allow the model to better approximate the full predictive distribution, hence,
the correlated EHVI may be more decisive in this context.

MO-DGP model was used in the context of multi-objective optimization. However,
it can also be seen as a general multi-task model where there is no known hierarchy
between the functions in order to improve the prediction and uncertainty quantification
that would be used in a context of analysis.

For known hierarchy between the functions, one of the classic approaches are multi-
fidelity modeling and DGP can also be used in this context as it is developed in the
next part of this thesis.



Part III

Multi-fidelity analysis





Chapter 6

Multi-fidelity analysis using Deep
Gaussian Processes

“ The question you need to ask is not "Is the model true?" (it never is) but "Is the
model good enough for this particular application?".”

Alberto Luceño and Maria del Carmen Paniagua-Quiñones (2009)

• Proposition of an improved training technique for the multi-fidelity deep
Gaussian process model.
• Benchmark of Gaussian process-based multi-fidelity approaches with iden-
tically defined fidelity input spaces on aerospace test cases.
• Proposition of a deep Gaussian process multi-fidelity model for different
input domain definitions.
• Assessment of the proposed model performance on analytical test cases
and engineering design problems.

Chapter goals

CH6

The analysis of complex systems is usually characterized by different levels of
analysis in terms of the design variables taken into account and the complexity of the
response to be modeled. These levels of analysis depend on the considered design phase.
In the early design stage, the analysis is not as thorough as in the detailed design
phase or the manufacturing phase. This yields to the use of different physical models,
each one characterized by its own accuracy and computational cost. Generally, the
more precise is the model, the more computationally intensive it is. In the early design
phase, computationally efficient (but imprecise) physical models called Low-Fidelity
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(LF) models are often used in order to explore a large design space. In the detailed
design phase, High-Fidelity (HF) models are employed to capture complex physical
phenomena and to refine the response obtained but with an intensive computational
cost.

In the previous part of this manuscript, only the HF data were used to construct
the machine learning regression models. However, due to the computational cost of the
HF model, its data are scarce and may be insufficient to capture the response of the
unobserved function in the whole design space. To overcome this issue, multi-fidelity
methods enrich the HF data with LF data. Actually, the correlations between the LF
and HF models are exhibited within a multi-fidelity model enabling the improvement
of the high-fidelity prediction.

Gaussian Processes (GPs) are a popular approach for multi-fidelity modeling (see
Chapter 3, Section 3.4). One of the recent multi-fidelity approaches based on GPs is
the Multi-Fidelity Deep Gaussian Process (MF-DGP) [Cutajar et al., 2019]. It has
the advantage of describing non-linear correlation between fidelities by considering a
DGP in which each layer corresponds to a fidelity level. MF-DGP is based on the
sparse DGP approximation proposed in [Salimbeni and Deisenroth, 2017]. However,
one of the limitations of MF-DGP is that the inputs of the intermediate layers are
the combination of the data-set in the original input space with their corresponding
function evaluation. Therefore, freely optimizing the inducing inputs is not adequate,
as they are related by a deterministic mapping (corresponding to the engineering
model). In [Cutajar et al., 2019], the inducing inputs are fixed to arbitrary values,
limiting the power of representation of the model. Another limitation of MF-DGP as
well as the other GP-based approaches presented in Chapter 3, Section 3.4.1 is that it
assumes that the input spaces of all the fidelities are identically defined in terms of
input variables. However, this is not always the case. Actually, due to either different
modeling approaches from one fidelity to another, or an omission of some variables in
the lower fidelity models for instance, the input spaces may differ in the form of the
parameterization and also in the dimensionality.

The contribution of this chapter is two-fold: addressing the limits of the induced
inputs optimization in MF-DGP and proposing a DGP-based model for multi-fidelity
in the case of different input spaces. Specifically, the chapter is decomposed into two
main sections. In the first section (Section 6.1), a new training approach for MF-DGP
is proposed to train the inducing inputs. Then, this improvement of MF-DGP is
evaluated with respect to the different approaches reviewed in Chapter 3, Section 3.4.1
on an extensive benchmark of analytical and aerospace design problems. In the second
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section (Section 6.2), a new model based on MF-DGP is proposed for multi-fidelity
problems with different input spaces. This is accomplished by a new model formulation
of MF-DGP incorporating a mapping between the different fidelity input spaces in
a non-parametric way. Similarly, the proposed approach is compared to literature
techniques on analytical and engineering design problems.

6.1 Multi-fidelity with identically defined fidelity
input spaces

In this section, the input spaces of all fidelities are identically defined in terms of input
variables. The first subsection (Section 6.1.1) develops a training approach for the
inducing inputs of MF-DGP in order to improve its modeling capability. In the second
subsection (Section 6.1.2), analytical and aerospace benchmark problems are presented
to compare the proposed MF-DGP improvement to the standard MF-DGP and also to
the other GP based multi-fidelity approaches presented in Chapter 3, Section 3.4.1 in
different scenarios of availability of HF data and dimensionality of the inputs.

6.1.1 Improvement of Multi-Fidelity Deep Gaussian Process
Model (MF-DGP)

Let (Xt,yt) be the couple of inputs/outputs of each fidelity t ∈ {1, . . . ,nfi}, where
nfi is the number of fidelities sorted in an increasing order of fidelities i.e. (X1,y1)
corresponds to the lowest fidelity data-set and (Xnfi ,ynfi) to the highest fidelity data-set.
Let d and nt be respectively the dimension of the input data and the size of the training
data at fidelity t.

MF-DGP [Cutajar et al., 2019] described in details in Chapter 3, Section 3.4.1,
is a DGP in which each layer corresponds to a fidelity. Moreover, the GP at each
layer t depends not only on the input data at this fidelity Xt but also on the previous
fidelity GP t− 1 evaluation of the same input data Xt (Fig. 3.15). Therefore, the
input dimension for all the layers, except the first one, are augmented by the output
scalar response of the previous layer. The structure of this augmented input space
[Xt,ft−1(Xt] is particular since its last dimension depends on the d first dimensions.
This yields to a difficulty when training MF-DGP. Actually, MF-DGP inference follows
the variational approximation used in [Salimbeni and Deisenroth, 2017], which leads to
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the following ELBO:

L=
nfi∑
t=1

nt∑
i=1

E
q(f (i),t

[t] )

[
logp(y(i)

t |f
(i),t
[t] )

]
−

nfi∑
t=1

KL
[
q(u[t])||p(u[t]|Z[t−1])

]
(6.1)

where f (i),t
[j] ) is the evaluation of the observation i of the inputs at fidelity t (Xt) by

the GP at layer j (f[j](·)), KL corresponds to the KL divergence, and the bound is
optimized with respect to the inducing inputs {Z[t]}nfi

t=1, the variational parameters
{θq(u[t])}

nfi
t=1 of the variational distributions {q(u[t]) =N (u[t]|ū[t],Γ[t]}nfi

1 , and the GP
hyperparameters at each layer {θ[t]}nfi

t=1. However, the induced inputs at a layer t
for 2 ≤ t ≤ nfi lie in the augmented input space. Therefore, freely optimizing these
inducing inputs does not take into account the specificity of the augmented input space
where the last dimension depends on the d first components (Fig. 6.1). To avoid this
issue, [Cutajar et al., 2019] proposed to fix the inducing inputs during the training
to arbitrary values. By choosing the d first components of the arbitrary induced
inputs from the observed inputs at the previous layer and the last component as the
corresponding output, this approach keeps a dependence between the coordinates of
the induced inputs. However, not optimizing the induced inputs limits the capacity of
the model.

An optimization framework is proposed in order to optimize the inducing inputs in
the augmented input space and hence increasing the learning capability of MF-DGP.
For that, the augmented inducing inputs {Z[t]}nfi

t=2 are constrained as follows:

Z[t] =
[
Z[t],1:d, f̂[t−1]

(
Zt−1

[t]

)]
;∀2≤ t≤ nfi (6.2)

where f̂[t−1](·) corresponds to the posterior mean of the previous layer and Zi
[t] is

defined with the following recursive equation:

Zi
[t] =

[
Z[t],1:d, f̂[i−1]

(
Zi−1

[t]

)]
;∀2≤ i≤ t and 2≤ t≤ nfi (6.3)

and
Z1

[t] = Z[t],1:d (6.4)

This constraint allows to express Z[t],d+1 as a function of Z[t],1:d and hence collapses the
d+1 coordinate of the inducing inputs. This is accomplished by propagating Z[t],1:d
from the first layer whose input space is not augmented (of dimension d) then using at
each inner layer the previous posterior mean evaluation to augment Z[t],1:d as expressed
in Eq. (6.3) until reaching the layer of fidelity t (Fig. 6.2). Therefore, it allows the



6.1 Multi-fidelity with identically defined fidelity input spaces 189

X2X1 X3X2

f2,3
[2] f3

[3]f1,2,3
[1]

y1 y2 y3

Z[2],1:dZ[2],d+1 Z[3],1:dZ[3],d+1Z[1],1:d

Fig. 6.1 Representation of the induced inputs in MF-DGP. The regular lines and double
lines correspond respectively to the observed inputs and induced input dependences.
Except for the first layer, the induced inputs lie in an augmented input space of d+1
dimensions where the d+1 coordinate depends on the d first coordinates making it non-
suitable to freely optimize the induced inputs. [Cutajar et al., 2019] fix Z[t],1:d = Xt−1
and Z[t],d+1 = yt−1 along the training.

dependence in the augmented inducing input space to be kept during the training by
optimizing only the first d coordinates and inferring the d+ 1 component using the
propagation mechanism (Eq. (6.2), Eq. (6.3)).

X2X1 X3X2

f2,3
[2] f3

[3]f1,2,3
[1]

y1 y2 y3

Z[2],1:d Z[3],1:d

f̂[1]
(
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)
f̂[2]

([
Z[i],1:d, f̂[1](Z[i],1:d)

])

Z[1],1:d

Fig. 6.2 Graphical representation of the proposed induced input optimization framework
for MF-DGP. Z[t],d+1 is collapsed by constraining it to the result of the propagation
of Z[t],1:d through the posterior mean prediction f̂i(·) of the previous fidelity layers
1≤ i≤ t. This allows to freely optimize the d first coordinates of the inducing inputs
while keeping a dependence with the d+1 component.

Algorithm 4 summarizes the proposed optimization of the ELBO for the MF-DGP
using the optimization framework for the inducing inputs, as well as using the optimizer
based on the natural gradient described in Chapter 4, Section 4.1.1.
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Algorithm 4: MF-DGP ELBO optimization
1 Initialization of the number of maximum iterations. maxiter
2 Initialization of the hyperparameters of the kernels {θ[t]}nfi

t=1.
3 q(u[t])←N

(
yt,Γ[t]

)
,∀1≤ t≤ nfi. For optimization stability, Γ[t] is initialized

at low values.
4 Z[t],1:d←Xt,∀1≤ t≤ nfi
5 j← 0
6 while 0≤ j ≤ maxiter do
7 Z1

[t]← Z[t],1:d;∀1≤ t≤ nfi

8 Zi
[t]←

[
Z[t],1:d, f̂i−1

(
Zi−1

[t]

)]
;∀2≤ i≤ t and 2≤ t≤ nfi

9 Z[t]←
[
Z[t],1:d, f̂[t−1]

(
Zt−1

[t]

)]
;∀2≤ i≤ nfi

10 ELBO,{Z[t],1:d}nfi
t=1,{θ[t]}nfi

t=1 =
Adam step

(
ELBO,{θ[t]}nfi

t=1,{Z[t],1:d}nfi
t=1}

)
11 ELBO,{θq(u[t])}

nfi
t=1← Natural step

(
ELBO,{θq(u[t])}

nfi
t=1
)

12 j← j+1
13 end
14 return ELBO,{Z[t],1:d}nfi

t=1,{θ[t]}nfi
t=1,{θq(u[t])}

nfi
t=1

In the next section, MF-DGP using this optimization approach of the inducing
inputs along with the use of natural gradients for the variational distributions is
compared to regular MF-DGP and other multi-fidelity GP approaches on analytical
multi-fidelity problems as well as a benchmark of aerospace problems.

6.1.2 Numerical experiments of the improved MF-DGP on
analytical and aerospace multi-fidelity problems

MF-DGP trained using Algorithm 4, henceforth, referenced as MF-DGP improved is
compared to regular MF-DGP to highlight the increase of its learning capacity as well
as the other multi-fidelity approaches presented in Chapter 3, Section 3.4.1. The multi-
fidelity methods are compared with respect to the three metrics used throughout this
manuscript: the coefficient of determination (R2), the Root Mean Square Error (RMSE)
and the Mean Negative test LogLikelihood (MNLL). A large HF test set is used to
compute the metrics. For GP-based multi-fidelity methods, it is important to compare
the prediction accuracy metrics (R2 the higher, the better and RMSE, the lower, the
better) and the predictive uncertainty of the multi-fidelity model to accurately explain
the test set (MNLL, the lower, the better). Indeed, the predictive uncertainty of
GP-based techniques is often used either for model refinement, uncertainty propagation
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or optimization (as seen in Bayesian Optimization in Chapter 4). Therefore, the
multi-fidelity model has to be accurate both in terms of prediction and of uncertainty
model associated to the prediction.

Analytical numerical experiments

The proposed approach has been compared with other GP multi-fidelity based ap-
proaches AR1, NARGP, and regular MF-DGP in the same benchmark of 4 analytical
functions used in [Cutajar et al., 2019] (Currin, Park, Borehole, Branin, see Ap-
pendix C). To assess the robustness of the methods, 20 repetitions on different Design
of Experiments (DoE) have been performed. The obtained results are displayed on
Table 6.1. The improved MF-DGP shows the best results in prediction accuracy and
in uncertainty quantification with a large robustness to different DoE. On the Borehole
problem, it gives comparable results to the AR1. This is explained by the fact that
the Borehole problem shows strong linearity between the fidelities. The results given
by the improved MF-DGP are better than the regular MF-DGP on the four problems,
in prediction accuracy, uncertainty quantification, and robustness to DoE, illustrating
the improvement of the learning capacity of MF-DGP.

In the next section, experimentation on aerospace multi-fidelity applications using
GP-based multi-fidelity approaches including the improved MF-DGP is carried out in
different scenarios of data availability in order to conclude on the efficiency of each
approach with respect to the problem at hand and the considered scenario.

Application to an aerospace multi-fidelity benchmark

Seven techniques are compared: a GP using only the HF dataset (GP HF), the auto-
regressive model (AR1) with inference scheme introduced by Kennedy and O’Hagan
[Kennedy and O’Hagan, 2000], the co-kriging linear model of corregionalization (LMC),
the non-linear auto-regressive multi-fidelity gaussian process without nested DoE
(NARGP) and with nested DoE (NARGP-nest), multi-fidelity Deep Gaussian Process
(MF-DGP) (more details on these approaches in Chapter 3, Section 3.4.1 ), and
multi-fidelity Deep Gaussian Process with the proposed improvements (MF-DGP
improved).

For the considered problems, several sizes of design experiments are considered for
the HF dataset to analyze the influence availability of HF data. In order to assess
the robustness of the methods to the LF and HF datasets, the experimentations are
repeated on 20 different DoEs using Latin Hypercube Sampling (LHS) for each size of
the dataset. For the nested DoE of NARGP-nest, the same DoE as other techniques
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Table 6.1 Performance of the different multi-fidelity models on 4 different problems
using 20 repetitions with different DoE. R2 refers to the R squared error, MNLL to the
mean negative test log likelihood, RMSE to the root mean squared error, and std to
the standard deviation. Currin and Park (d= 2) problems are modeled with 12 input
data on the LF and 5 input data on the HF. Borehole (d= 8) is modeled with 60 input
data on the LF and 5 input data on the HF. Branin (d= 2) is used with 80 input data
on the lower fidelity, 30 on the medium fidelity and 5 input data on the higher fidelity.

Approach AR1 NARGP
Functions R2 MNLL RMSE std

RMSE
R2 MNLL RMSE std

RMSE
Currin 0.8994 46.400 0.7355 0.2131 0.8743 123.398 0.8147 0.2572
Park 0.9831 299.463 0.5809 0.2100 0.8792 213.759 1.0986 1.2420

Borehole 0.9998 -3.777 0.0047 0.00097 0.9968 -2.503 0.0226 0.0120
Branin 0.1944 15810.3 0.1765 0.0658 0.0241 4285.26 0.2034 0.0344

Approach MF-DGP MF-DGP improved
Functions R2 MNLL RMSE std

RMSE
R2 MNLL RMSE std

RMSE
Currin 0.8856 1.6834 0.7427 0.3398 0.9148 1.4165 0.6735 0.2056
Park 0.8436 1.1616 1.1364 1.496 0.9852 0.8807 0.5693 0.0969

Borehole 0.9986 -2.006 0.0168 0.0032 0.9994 -2.733 0.0107 0.0016
Branin 0.3592 3.5977 0.1541 0.0665 0.5865 5.0382 0.1256 0.0480

are considered except that the HF DoE is included in the LF DoE. To have the same
number of samples in LF DoE, the same number of HF samples are removed from LF
DoE.

The obtained results are presented through numerical tables and boxplot figures.
The tables present the mean value and the standard deviation for R2, RMSE and
MNLL considering 20 repetitions from different LHS for the training multi-fidelity
set. Moreover, an indicator providing the improvement of RMSE of the multi-fidelity
techniques with respect to the single fidelity GP HF is added. A negative value means
that the multi-fidelity technique improves the RMSE compared to GP HF by an amount
of x%.

All GP-based multi-fidelity techniques are implemented with a squared exponen-
tial kernel. Co-kriging with LMC is based on a coregionalization matrix of rank 2
(corresponding to two independent latent functions).

Single-Stage-To-Orbit trajectory simulation

Problem definition
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This trajectory problem is based on the "Time-Optimal Launch of a Titan II"
example defined by Longuski et al. [Longuski et al., 2014]. It is an optimal control
problem which consists in finding the pitch angle profile for a Single-Stage-To-Orbit
(SSTO) launch vehicle that minimizes the time required to reach orbit injection under
considering a constant thrust. A 2D Cartesian simulation with a planar trajectory, non
rotating Earth is considered. The corresponding equations of motion are derived from
[Balesdent et al., 2012a]. The target final orbit is a circular orbit at the altitude of
185km.

The trajectory simulation is carried out using Dymos [Falck and Gray, 2019] which
is an open-source tool for solving optimal control problems involving multidisciplinary
systems. It is built on top of the OpenMDAO framework [Gray et al., 2019; van Gent
and La Rocca, 2019]. It uses pseudospectral collocation method that is classically
used to solve such a type of problems [Li et al., 2020]. A high order Gauss-Lobatto
collocation method [Herman and Conway, 1996] is used to solve this optimization
problem. Gauss-Lobatto is a generalization of the Hermite-Simpson optimization
scheme developed by Herman and Conway [Herman and Conway, 1996]. In this
approach, for solving optimal control problem, polynomials are considered to represent
the state variable time history over segments (subintervals) of the total time of interest.
The polynomial family follows the Gauss-Lobatto rules. Each segment is discretized
according to the Legendre-Gauss-Lobatto polynomial nodes. The value of each state
variable and each control variable at each state discretization node is a design variable.
The higher the number of segments, the higher the accuracy of the optimal control
solving but the higher the number of design variables in the optimization problem and
therefore the associated computational cost.

For the SSTO problem, two fidelity models are considered. The input space is
composed of five design variables: the thrust, the specific impulse, the diameter of the
launch vehicle, the initial mass of the vehicle and the coefficient of drag (Table 6.2).
The considered output is the fuel burnt mass during the flight.

Table 6.2 SSTO input design variable definition

Input variables Domain of definition
Thrust (T) [1800, 2400]kN
Specific impulse (Isp) [210, 330]s
Launch vehicle diameter (d) [2.5, 4.4]m
Launch vehicle initial mass (m0) [120, 124]t
Coefficient of drag (Cd) [0.1, 0.9]
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The two fidelities are distinguished by the number of segments of the Gauss-Lobatto
collocation. The LF model assumes a low number of segments numsegments = 4
corresponding to a discretization scheme enabling fast optimal control solving but
limited simulation accuracy. The HF model assumes a higher number of segments
numsegments = 15 providing a high accuracy for the trajectory simulation but a more
complex and more computationally intensive optimal control problem to be solved.
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Fig. 6.3 Illustrations for SSTO trajectory with Low Fidelity (LF) and High Fidelity
(HF) models

The difference between LF and HF models are illustrated on Figures 6.3a and 6.3b
representing the altitude as a function of time and the pitch angle as a function of
range. The LF model provides a reasonable approximation of the HF model but with
substantial simplification in the trajectory.

Results
Boxplots illustrating the results for SSTO problem are displayed in Figure 6.4. In

addition, results including the different comparison metrics are provided in Table 6.3.
The non-linear multi-fidelity techniques perform less accurately compared to linear
approaches for a small number of samples in the HF DoE. For instance, for a HF
sample size of 5 points, AR1 and LMC provide the same prediction accuracy (R2 of
0.993) and LMC provides the best model of prediction uncertainty (MNLL of −5.03 for
LMC compared to −3.33 for AR1). While the improved MF-DGP provides the best
results among the non-linear approaches both in prediction accuracy (R2 of 0.949) and
uncertainty quantification (MNLL of −3.615), the regular MF-DGP performs poorly
with a R2 of −7.865. For HF sample size of 10 and 20, both NARGP and NARGP-nest
degrade the RMSE performance compared to GP HF. Furthermore, once enough HF
samples are available for regular MF-DGP, it provides comparable prediction accuracy
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as MF-DGP improved and as linear approaches (R2 of 0.986 for AR1 compared to 0.982
for MF-DGP) but the MF-DGP approaches provide a better uncertainty quantification
(MNLL of −5.038 for MF-DGP improved compared to 2.92 for AR1). Considering the
results with a DoE for HF of 20 samples, this test case is a representative illustration of
the trade-off between the prediction accuracy and the quality of the uncertainty model
for the prediction. AR1 tends to provide a better prediction against the HF test set,
however, the quality of the uncertainty model associated to MF-DGP improved is better
and therefore future use of such a model for optimization, uncertainty propagation or
refinement strategies might present more advantages. Eventually, considering the best
multi-fidelity model for each size of HF samples, the addition of HF samples reaches a
limit in terms of RMSE improvement compared to GP HF, as for 5 HF samples the
best improvement is of 83% while for 20 HF samples it decreases to 19%.

Table 6.3 Summary of the results obtained on the SSTO problem

Function Method R2 (std) RMSE (std) MNLL (std) Evolution of DOE size
RMSE wrt GP HF (LF, HF)

SSTO

GP HF
0.642(0.425) 9.123e-3(5.248e-3) 7.566e+2(1.367e+3) - 100, 5
0.969(0.041) 2.757e-3(1.442e-3) 1.064e+1(1.748e+1) - 100, 10
0.972(0.068) 2.036e-3(2.095e-3) 4.044(8.781) - 100, 20

LMC
0.993(0.002) 1.464e-3(2.187e-4) -5.027(9.996e-2) −83% 100, 5
0.891(0.438) 2.727e-3(5.141e-3) -3.973(4.730) −1% 100, 10
0.975(0.061) 1.925e-3(2.004e-3) -4.266(3.153) −5% 100, 20

AR1
0.993(0.001) 1.462e-3(5.668e-5) -3.326(2.460) −83% 100, 5
0.991(0.007) 1.583e-3(4.667e-4) -3.227(2.874) −42% 100, 10
0.986(0.028) 1.639e-3(1.283e-3) 2.919(6.476) −19% 100, 20

NARGP
0.951(0.032) 3.754e-3(1.051e-3) 1.312e+1(7.274e+1) −58% 100, 5
0.958(0.052) 3.227e-3(1.655e-3) 8.761(2.934e+1) +17% 100, 10
0.971(0.069) 2.127e-3(2.115e-3) 7.208(1.143e+1) +4% 100, 20

NARGP-nest
0.949(0.033) 3.808e-3(1.134e-3) -7.133e-1(1.262e+1) −58% 100, 5
0.961(0.044) 3.129e-3(1.462e-3) 4.939(2.128e+1) +13% 100, 10
0.974(0.062) 2.102e-3(1.896e-3) 5.533(1.192e+1) +3% 100, 20

MF-DGP
-7.865(28.921) 2.651e-2(4.518e-2) -2.675(9.035e-1) 190% 100, 5
0.968(0.071) 2.521e-3(1.893e-3) -4.640(4.315e-1) −8% 100, 10
0.982(0.035) 1.876e-3(1.426e-3) -5.014(5.717e-1) −8% 100, 20

MF-DGP improved
0.949(0.153) 2.66e-3(2.9e-3) -3.615(3.99e-1) −71% 100, 5
0.968(0.088) 2.36e-3(2.11e-3) -4.48(4.23e-1) −14% 100, 10
0.983(0.034) 1.832e-3(1.415e-3) -5.038(5.554e-1) −10% 100, 20

SuperSonic Business Jet multidisciplinary problem

Problem definition
For the second aerospace design application, a multidisciplinary design is considered

of a SuperSonic Business Jet (SSBJ) based on the problem defined by Sobieszczanski et
al. [Langley et al., 1998]. The multidisciplinary analysis is composed of four disciplinary
modules: structures, aerodynamics, propulsion and performance estimation. All the
disciplines are modeled with an analysis level typical for an early conceptual design
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Fig. 6.4 Boxplots of R2, RMSE and MNLL for SSTO problem. From let to the right:
GP HF, AR1, NARGP, NARGP nested, LMC, MF-DGP, MF-DGP improved.

stage. The aircraft simulation allows to estimate its range through the Breguet range
equation. Each discipline implements early design models (analytical formula). The
structure discipline computes the stresses undertaken by the wings of the aircraft and
the mass of the different components of the vehicle (e.g., fuselage, wing, fuel). It
takes as inputs the definition of the characteristics of the wings (thickness to chord
ratio, aspect ratio, sweep angle), the lift coefficient (from the aerodynamics discipline)
and the engine mass (from the propulsion discipline). The aerodynamics discipline
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computes the lift and drag of the vehicle. It takes as inputs the wing characteristics,
flight conditions and the size of engine from the other disciplines. The propulsion
discipline aims at defining the dimension, mass and consumption of the engine from the
flight conditions and drag of the vehicle. Finally, the performance discipline computes
the range of the vehicle from the outputs of the other disciplines: the lift over drag
ratio, the engine consumption, the cruise Mach number, the altitude and the weights
of the aircraft. The range is considered as the output of the design process for the
training of the multi-fidelity surrogate model. For more details on SSBJ simulation,
refer to [Langley et al., 1998]. The SSBJ problem is simulated using OpenMDAO
framework [Gray et al., 2019]. As the SSBJ is a multidisciplinary problem, it requires a
multidisciplinary analysis (MDA) in order to satisfy the coupling consistency between
the different disciplines. This MDA can be performed using Fixed-Point-Iteration that
is an iterative process between the different disciplines. This process is considered as
converged when the discrepancy of the output disciplines between two iterations is
less than a given tolerance ϵ. The lower the tolerance, the higher the accuracy of the
response but the higher the duration of the MDA. For that context, two tolerances
ϵlf > ϵhf have been considered to define the two fidelities of the design process. The
low-fidelity considers a coarse convergence of the MDA (only one iteration) whereas
the high-fidelity considers a very restrictive tolerance and requires a dozen of iterations
between the disciplines. The design input parameters are defined in Table 6.4.

Table 6.4 SSBJ input design variable definition

Input variables Domain of definition
Thickness to chord ratio [0.025, 0.085]
Altitude [20, 50]km
Mach number [1.0, 2.0]
Aspect ratio [1.5, 6.0]
Wing sweep [20, 70]deg
Wing surface area [93, 163]m2

Results
Boxplots illustrating the results for SSBJ test case are displayed in Figure 6.5.

Furthermore, numerical results including the comparison metrics are provided in Table
6.5. Similarly to the previous test case, linear approaches (AR1 and LMC) provide
more accurate results considering the limited HF sample size case (for 5 points, R2
of 0.963 for LMC) and regular MF-DGP gives poor results compared to MF-DGP
improved. However, by slightly increasing the number of HF samples from 5 to 10, the
prediction accuracy of MF-DGP becomes comparable to MF-DGP improved. Over
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all the models, once MF-DGP improved gets enough HF data it provides the best
results in terms of prediction accuracy (for 10 samples, R2 of 0.97, for 20 samples,
R2 of 0.982) and uncertainty quantification (for 10 samples, MNLL of −1.929, for 20
samples, MNLL of −2.15).

Table 6.5 Summary of the results obtained on the SSBJ problem

Function Method R2 (std) RMSE (std) MNLL (std) Evolution of DOE size
RMSE wrt GP HF (LF, HF)

SSBJ

GP HF
0.131(0.336) 2.300e-1(4.591e-2) 3.298e+3(9.908e+3) - 100, 5
0.48(0.329) 1.727e-1(5.192e-2) 2.223e+2(6.797e+2) - 100, 10
0.836(0.074) 9.980e-2(2.000e-2) 1.404(2.947) - 100, 20

LMC
0.963(0.014) 4.753e-2(9.139e-3) -1.514(1.762e-1) −79% 100, 5
0.968(0.015) 4.367e-2(9.459e-3) -1.762(3.060e-1) −74% 100, 10
0.980(0.005) 3.541e-2(4.494e-3) -1.550(5.549e-1) −64% 100, 20

AR1
0.957(0.024) 5.067e-2(1.334e-2) 1.953(3.185) −77% 100, 5

0.970(0.008) 4.298e-2(5.946e-3) 3.726e-1(1.647) −75% 100, 10
0.980(0.006) 3.513e-2(4.680e-3) -5.478e-1(1.467) −64% 100, 20

NARGP
0.716(0.433) 1.093e-1(7.774e-2) 2.201e+3(9.555e+3) −52% 100, 5
0.875(0.143) 7.791e-2(4.308e-2) 9.731e-1(2.269) −54% 100, 10
0.904(0.105) 7.003e-2(3.430e-2) 2.588e-1(2.109e+00) −29% 100, 20

NARGP-nest
0.791(0.273) 9.819e-2(5.988e-2) 2.791(6.395) −57% 100, 5
0.921(0.073) 6.499e-2(2.835e-2) -4.889e-1(2.018) −62% 100, 10
0.950(0.039) 5.296e-2(1.911e-2) -1.257(1.358) −47% 100, 20

MF-DGP
0.679(0.433) 1.110e-1(8.951e-2) 1.129e+1(2.936e+1) −51% 100, 5
0.966(0.012) 4.569e-2(7.180e-3) -1.750(1.303e-1) −73% 100, 10
0.974(0.012) 3.945e-2(8.025e-3) -1.931(1.525e-1) −60% 100, 20

MF-DGP improved
0.857(0.334) 6.740e-2(6.73e-2) 10.16e+1(3.988e+1) −70% 100, 5

0.970(0.012) 4.223e-2(9.004e-3) -1.929(1.840e-1) -76% 100, 10
0.982(0.0038) 3.337e-2(3.677e-3) -2.15(1.229e-1) -66% 100, 20

It is interesting to notice that LMC tends to perform as well as AR1 technique
in terms of prediction accuracy but presents better results regarding the uncertainty
model. The differences between the two approaches are in the symmetrical (LMC)
and asymmetrical (AR1) fusion schemes. Multi-fidelity problems are asymmetrical by
nature (information provided by HF are more accurate than by LF) so AR1 should
be more suited for such a type of problems. However, it appears that LMC provides
robustness to DoE and accurate predictions that are similar to AR1 or even better,
but also provides an accurate uncertainty model for the prediction.

Aerostructural problem

Problem definition
The aerostructural problem is based on OpenAeroStruct [Jasa et al., 2018] which is

a tool that performs aerostructural simulation and optimization using OpenMDAO
[Gray et al., 2019]. It couples a vortex-lattice method (VLM) [Anderson, 1991] and a
finite-element method (FEM) using six degree-of-freedom spatial beam elements with
axial, bending, and torsional stiffness to simulate aerodynamic and structural analyses
using lifting surfaces [Jasa et al., 2018]. The aerodynamics submodel involves VLM to
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Fig. 6.5 Boxplots of R2, RMSE and MNLL for SSBJ problem. From let to the right:
GP HF, AR1, NARGP, NARGP nested, LMC, MF-DGP, MF-DGP improved.

estimate the aerodynamic loads acting on the lifting surfaces. Provided a structured
mesh defining a lifting surface, the aerodynamic properties are estimated using the
circulation distribution. The lifting surface is modeled using horseshoe vortices to
represent the vortex system of a wing. A vortex filament implies a flow field in the
surrounding space. The strength of a vortex filament is its circulation, which induces
lift on a surface.

For the structural submodel, a FEM technique is involved using spatial beam
elements, resulting in six degree-of-freedom per node. The spatial beam element is a
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combination of beam, torsion and truss elements, therefore it simultaneously carries
axial, bending, and torsional loads.

In OpenAeroStruct, the structures and aerodynamics are two separate submodels
that receive inputs and compute outputs. The aerodynamics submodel takes a mesh as
an input and outputs aerodynamic loads, whereas the structural group takes as input
aerodynamic loads and outputs structural displacements. The load and displacement
exchange is simplified as the same spanwise discretization is used for the aerodynamic
and structural submodels. A Gauss-Seidel algorithm [Salkuyeh, 2007] is used to solve
the multidisciplinary analyses and satisfy the interdisciplinary couplings.

For the multi-fidelity modeling problem, two fidelities are considered to estimate
the lift coefficient CL of a wing. The difference between the models consists in the
mesh refinement, a sparse mesh for the LF model and a dense mesh for the HF model
(Figure 6.6).

HF mesh LF mesh

Dihedral
angle

Root chord

Sweep 
angle

Span

Root chord

Tip chord

Taper ratio

Fig. 6.6 Geometrical parameter definition and HF/LF meshes for the aerostructual
problem
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The input space is composed of eight design variables: the angle of attack, the
span, the sweep angle, the dihedral angle, the taper ratio, and the root chord at three
location along the space (Table 6.6). The geometrical input parameters are illustrated
in Figure 6.6.

Table 6.6 Aerostructural input design variable definition

Input variables Domain of definition
Angle of attack [1.0, 5.0]deg
Span [5.0, 10.0]m
Sweep angle [0., 20.]deg
Dihedral angle [0., 20.]deg
Taper ratio [0.7, 1.4]
Root chord at three locations [1.0, 5.0]3m

Results
Boxplots illustrating the results for the aerostructural test case are displayed in

Figure 6.7. Furthermore, numerical results including the comparison metrics are
provided in Table 6.7. These last experimentations confirm the previous results, that
are with enough HF data, MF-DGP improved outperforms the other multi-fidelity
methods both in terms of prediction accuracy (improvement of the GP HF RMSE by
76% for 10 HF samples, by 57% for 20 HF samples compared to 67% and 57% for
LMC respectively) as well as the predictive uncertainty (MNLL of −3.2 for MF-DGP
improved compared to −2.77 for LMC). Moreover, even if regular MF-DGP performs
better than the other models, improved MF-DGP increases the accuracy of the model.

Table 6.7 Summary of the results obtained on the OpenAeroStruct problem

Function Method R2 (std) RMSE (std) MNLL (std) Evolution of DOE size
RMSE wrt GP HF (BF, HF)

OAS

GP HF 0.613(0.379) 4.891e-2(1.842e-2) 4.298e+1(6.880e+1) - 160, 10
0.939(0.028) 2.032e-2(4.372e-3) -9.421e-3(4.046) - 160, 20

LMC 0.958(0.044) 1.609e-2(6.403e-3) -2.774(3.113e-1) −67% 160, 10
0.983(0.009) 1.059e-2(2.441e-3) -2.575(9.259e-1) −47% 160, 20

AR1 0.956(0.022) 1.721e-2(4.192e-3) 7.482(8.182) −64% 160, 10
0.982(0.008) 1.102e-2(2.346e-3) -2.040e-1(1.712) −45% 160, 20

NARGP 0.914(0.085) 2.272e-2(9.700e-3) -1.004(4.699) −53% 160, 10
0.963(0.026) 1.534e-2(5.092e-3) -2.379(1.190) −25% 160, 20

NARGP-nest 0.921(0.084) 2.147e-2(9.738e-3) -1.221(4.731) −56% 160, 10
0.956(0.036) 1.635e-2(6.425e-3) -2.258(1.149) −19% 160, 20

MF-DGP 0.973(0.018) 1.331e-2(3.934e-3) -2.986(3.612e-1) −72% 160, 10
0.987(0.007) 9.453e-3(2.008e-3) -3.354(2.363e-1) −53% 160, 20

MF-DGP improved 0.980(0.009) 1.114e-2(2.72e-3) -3.199(2.630e-1) −76% 160, 10
0.989(0.003) 8.707e-3(1.120e-3) -3.463(1.591e-1) −57% 160, 20
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Fig. 6.7 Boxplots of R2, RMSE and MNLL for OpenAeroStruct problem. From let
to the right: GP HF, AR1, NARGP, NARGP nested, LMC, MF-DGP, MF-DGP
improved.

Results synthesis

Some general trends can be drawn about the multi-fidelity GP-based approaches
studied in this section. When a limited number of HF samples is available due to
the computational cost associated to such models, multi-fidelity techniques allow to
reduce the prediction error compared to a single high-fidelity GP model. When the
number of available HF samples increases, the relative improvement of multi-fidelity
methods compared to single fidelity approach decreases up to a point where low-fidelity
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information do not offer improvement to the prediction accuracy and therefore a single
fidelity model is preferable.

Moreover, when a very limited number of HF samples with respect to the problem
dimension is considered, linear mapping between fidelities (AR1 and LMC) tends to
provide better results than non-linear mapping approaches (NARGP and MF-DGP)
which are more difficult to train when not enough HF information is available to
model this relationship. Indeed, the non-linear multi-fidelity techniques, due to their
higher complexity of definition (nested composition of Gaussian processes), offer higher
capability of modeling but with a higher number of hyperparameters to be tuned.
Still, when there is not enough HF information (5 HF samples for the SSTO and
SSBJ problems) MF-DGP improved provides competitive results to the other models
unlike regular MF-DGP which provides poor results in these cases. With enough HF
data (10 and 20 data points) in the three described problems, MF-DGP improved
provides the best results compared to the other models, over the three investigated
metrics that are, prediction accuracy, predictive uncertainty, and robustness to the
DoE. However, the main drawback of the improved MF-DGP is its computational
complexity. In fact, besides the inherent complexity to train a DGP, the improved
MF-DGP, at each iteration of the training, propagates the induced inputs throughout
all the previous layers which is computationally expensive. Still, since the HF is
considered computationally expensive, the training time of the improved MF-DGP is
far lower than the evaluation time of an HF data point.

6.2 Multi-fidelity with different input domain def-
initions

The previously presented multi-fidelity problems and the used methods considered
the input spaces of the different fidelities as identically defined. However, in several
engineering multi-fidelity problems, each fidelity may be defined on its own input space.
In fact, to overcome the issue of high-dimensional HF design-spaces which require a
large size of training data to be approximated, the LF model may consider only a
subset of design variables. For that, the variables that have less influence may be
neglected and not taken into account in the LF model yielding to a different input-space
between the fidelity models. This allows a reduction of the complexity of the problem
at the cost of the accuracy. For instance, when modeling the stress or the aerodynamic
forces on a thick-surface (such as an aircraft wing), in a first approximation, the
thickness of this surface may be neglected, thus, the studied structure is considered as
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Fig. 6.8 A multi-fidelity problem where the input spaces are not identically defined.
(left) Wing represented as a 2D object in low-fidelity. (right) Wing represented as a
3D object in high-fidelity.

two-dimensional in the LF model (Fig 6.8). Another way of reducing the dimensionality
of the problem, is by averaging the effects of some variables to create a small-sized set
of variables. Unlike the case where some variables are abstracted, in this framework,
the variables describing the LF model are not a subset of the HF variables. For
instance, in aerodynamics, to model a multiple-section wing, simplified plan-form
characterization can be used considering only one section with average chords and
sweep angles (Section 6.2.4). Moreover, each fidelity may use different physical theories
(e.g., Euler-Bernoulli beam theory vs. Timoshenko-Ehrenfest beam theory), different
frames of reference (e.g., inertial frame vs. local frame), or different coordinate systems
(e.g., Cartesian coordinates vs. spherical coordinates vs. cylindrical coordinates).
These specificities for each fidelity may result in different parameterizations of the
input variables and therefore different input-spaces. For instance, for geometrical input
variables, in one fidelity a Cartesian formulation can be used, whilst in the other fidelity,
a spherical formulation is preferred.

The classic approach to deal with such variable input spaces is to use a nominal
mapping from the HF to LF input space based on practical insights of the multi-fidelity
problem. [Tao et al., 2019] developed an Input Mapping Calibration approach (IMC)
that seeks to improve the nominal mapping using a calibrated parametric mapping
(see Chapter 3, Section 3.4.2 for details on IMC and other input mapping approaches).
However, in IMC as well as in the classic input mapping approaches, the optimization
of the mapping parameters is done previously to the training of the multi-fidelity
model, hence, preventing the mapping to be updated once the multi-fidelity model is
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trained. Moreover, the multi-fidelity model uses only the projection of the HF data on
the lower-fidelity input space obtained by the mapping, hence, it does not take into
account the correlations in the original HF input space.

In this section, a model is developed based on MF-DGP that embeds a non-
parametric Bayesian mapping within the multi-fidelity model (Section 6.2.1, 6.2.2).
The associated inference approach is detailed in Section 6.2.3. This proposed model
called Multi-Fidelity Deep Gaussian Process Embedded Mapping (MF-DGP-EM) is
then assessed on analytical and engineering multi-fidelity problems (Section 6.2.4) and
its computational aspects are investigated (Section 6.2.6).

6.2.1 Multi-fidelity Deep Gaussian Process Embedded Map-
ping (MF-DGP-EM)

A multi-fidelity problem is considered in which each fidelity t is defined by its own
input space of dimension dt. Therefore, classic GP approaches including MF-DGP can
not directly be used. To overcome this issue, multi-output GPs

(
H[t](·)

)
1≤t≤nfi−1

are
introduced in MF-DGP to map between the input-spaces of two successive fidelities t
and t+1. For t= 1, . . . ,nfi−1 a multi-output GP H[t](·) : Rdt+1 → Rdt , maps from the
input-space of fidelity t+1 of dimension dt+1 to the lower space fidelity t with dimension
dt. The input mapping GPs H[t](·) are conditioned on the nominal mapped values Xt+1

t

(Section 6.2.2 for details on the nominal mapped values). The model obtained is a two-
level DGP, where the first level maps between the different fidelity input-spaces and the
second level propagates the fidelity evaluations (Fig. 6.9). Hence, the mapping between
the input-spaces of the fidelities is defined within the multi-fidelity model. As the auto-
regressive model [Kennedy and O’Hagan, 2001], non-linear auto-regressive [Perdikaris
et al., 2017], and MF-DGP, the defined model has a regressive structure, meaning
that information is considered in a non-symmetrical way. Therefore, MF-DGP-EM
requires a known hierarchy of the fidelity levels. Moreover, in the case of MF-DGP-EM,
the input-spaces may have different dimensionalities. The dimensionality is usually
decreasing from the higher to the lower fidelities, thus, the input mapping GPs perform
dimensionality reduction from the high-fidelity to the low-fidelity input-spaces.

This proposed model allows a concurrent optimization of the mapping and the
multi-fidelity model. Besides, compared to IMC, only the input data nominal mapping
values are used instead of nominal mapping functions over the whole input-space. This
allows a more flexible mapping adequate in the case of computationally expensive
mappings. Moreover, using GPs in the first level of the model enables a non-parametric
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Fig. 6.9 Graphical representation of MF-DGP-EM with different input-spaces. Xt

and yt represent respectively the input data and the response at fidelity t. Xt+1
t

corresponds to the nominal mapped values of the input data Xt+1 to the lower fidelity
t. Ht

[i] represents the GP mapping of the input data from fidelity t to the input-space
of the fidelity i. ft

[i] represents the evaluation at layer i of the inputs at fidelity t. The
propagation of the inputs and evaluations is color-coded to indicate the associated
fidelity. The blue, green, and red colors represent respectively the low, medium, and
high fidelity levels. MF-DGP-EM embeds two DGP levels, a first level going from
the highest fidelity to the lowest one maps between the input-spaces through the
GP mappings {H[t]}nfi−1

t=1 . The second level, as MF-DGP, propagates the GP fidelity
evaluations from the lowest to the highest fidelity through the fidelity GPs {f[t]}nfi

t=1.

mapping and induces uncertainty quantification on the latter, which differs from the
space mapping approach that requires a deterministic parametric form of the mapping
to be used. It avoids over-fitting compared to parametric mapping. Finally, this model
keeps the original input-space correlations, since Xi is used as input for f[i](·).

6.2.2 The input mapping GPs

The input mappings are performed with multi-output GPs that transform the input
data from the higher-fidelity input-space into the lower-fidelity input-space. The input
mapping GPs are conditioned on mapped nominal values of the training set. The
nominal mapping is obtained based on physical insights of the relationship between
the fidelities. For example, if the low-fidelity variables are a subset of the high-fidelity
variables, the nominal mapping is simply the identity. However, it can be more
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complicated. For instance, it can map the design variables of the high-fidelity into the
low-fidelity space to obtain an identical defined quantity of interest (e.g., the volume
defined by the HF variables equals to the volume defined by the mapped HF variables)
this may induce computationally expensive input mappings. The proposed model is
convenient in this case i.e., the nominal mapping is not known in the whole input-space
but only for the training HF data. In the case where the nominal mapping is uncertain
due to lack of physical insight in the relationship between the input-spaces of the
different fidelities, a white kernel can be added to the covariance function in order to
take into account this uncertainty.

When mapping from a high-fidelity to a low-fidelity input space, the relevance of
the HF variables is not isotropic. In fact, some variables are abstracted or averaged
with small weights in the LF. For that, an Automatic Relevance Determination (ARD)
kernel is preferred for the input mapping GPs. Meaning that, in the mapping each
variable has its own length-scale parameter. Therefore, the variables neglected are
automatically given high length-scale values. The specific form of the ARD kernel
(e.g., squared exponential, Matérn) depends on the problem in hand. Without loss of
generality, due to its low hyper-parameterization and smoothness properties, an ARD
squared exponential kernel is used in this work.

6.2.3 The Evidence Lower Bound

As in regular DGPs and MF-DGP, the computation of the marginal likelihood of
MF-DGP-EM:

p
(
ynfi , . . . ,y1,X

nfi
nfi−1, . . . ,X

2
1|Xnfi , . . . ,X1

)
(6.5)

is analytically non-tractable. Approximations are necessary to obtain a lower bound
on this marginal likelihood which is then maximized to train the multi-fidelity model.

As in MF-DGP, the DGP inference followed is the doubly stochastic inference
scheme presented in [Salimbeni and Deisenroth, 2017]. At each layer i, a set of inducing
inputs / outputs (Z[i],u[i]) are introduced for the fidelity GP f[i](·), and similarly for
each mapping H[i](·), a set of inducing inputs / outputs (W[i],V[i]) are introduced.
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Then, the following variational approximation is considered:

q (F ,U ,H,V) =
nfi∏
t=1

t−1∏
i=1

[
p(ft

[i]|u[i];
[
Ht

[i], f
t
[i−1]

]
,Z[i−1]) p

(
Ht

[i]|V[i];Ht
[i+1],W[i+1]

)]

×
nfi∏
t=1

p(ft
[t]|u[t];

[
Xt, ft

[t−1]
]
,Z[t−1])×

nfi∏
i=1

q(u[i])×
nfi−1∏
i=1

q(V[i])

(6.6)

where q(·) is the variational distribution of the latent variables and:

F = {{ft
[i]}ti=1}nfi

t=1

= {{f1
[1]},{f2

[1], f
2
[2]}, . . . ,{ft

[1], . . . , f
t
[t]}, . . . ,{fnfi

[1] , . . . , f
nfi
[nfi]}}

U = {ul}nfi
i=1

= {u[1], . . . ,u[nfi]}
H = {{Ht

[i]}t−1
i=1}nfi

t=2

= {{H2
[1]}, . . . ,{Ht

[1], . . . ,H
t
[t−1]}, . . . ,{Hnfi

[1] , . . . ,H
nfi
[nfi−1]}}

V = {V[i]}nfi−1
i=1

= {V[1], . . . ,V[nfi−1]}

(6.7)

By marginalizing the latent variable, the log evidence of the model is given by:

logp
(

{yt}nfi
t=1,{Xt

t−1}nfi
t=2|{Xt}nfi

t=1,
)

= log
∫ ∫ ∫ ∫

p
(

{yt}nfi
t=1,{Xt

t−1}nfi
t=2,F ,U ,H,V|{Xt}nfi

t=1
)

dFdUdHdV

(6.8)

Then, the variational approximation used in Eq. (6.6) q (F ,U ,H,V) is introduced
as follows:

logp
(

{yt}nfi
t=1,{Xt

t−1}nfi
t=2|{Xt}nfi

t=1
)

= log
∫ ∫ ∫ ∫

p
(

{yt}nfi
t=1,F ,U ,H,V|{Xt}nfi

t=1,{Xt
t−1}nfi

t=2
) q (F ,U ,H,V)

q (F ,U ,H,V)
dFdUdHdV

(6.9)

A lower bound on the log evidence of the model is obtained using Jensen inequality
which relates a concave function of an integral (the logarithm in this case) to the
concave function of the integral:

logp
(
{yt}nfi

t=1,{Xt
t−1}nfi

t=2|{Xt}nfi
t=1
)
≥ L

L=
∫ ∫ ∫ ∫

q (F ,U ,H,V)× log
p
(
{yt}nfi

t=1,{Xt
t−1}nfi

t=2,F ,U ,H,V|{Xt}nfi
t=1
)

q (F ,U ,H,V) , dFdUdHdV

(6.10)
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Then, by replacing the variational distribution by its expression in Eq. (6.6) and
canceling out equivalent terms in the numerator and denominator, the following
expression is obtained (the dependence on {Xt}nfi

t=1 is dropped for notation simplicity):

L=
∫ ∫ ∫ ∫

q (F ,U ,H,V) log
(

(p({yt}nfi
t=1|F)p({Xt

t−1}nfi
t=2|H)×p(U)×p(V)

q(U)× q(V)

)
dFdUdHdV

(6.11)
Next, the log expression is separated into a sum of four terms:

L=
∫ ∫ ∫ ∫

q (F ,U ,H,V) log(p({yt}|F))+

q (F ,U ,H,V) log
(
p({Xt

t−1}nfi
t=2)

)
+

q (F ,U ,H,V) log
(
p(U)
q(U)

)
+

q (F ,U ,H,V) log
(
p(V)
q(V)

)
dFdUdHdV

(6.12)

The first term does not depend on the variables H,U and V , thus, it comes back to:

L1 =
∫
q (F) log

(
p({yt}nfi

t=1|F)
)

dF (6.13)

For the second term of the sum, the log expression does not depend on the variables
F ,U and V , thus, the second term comes back to:

L2 =
∫
q (H) log

(
p({Xt

t−1}nfi
t=2|H)

)
dH (6.14)

For the third term, the log expression does not depend on the variables F ,H and V,
thus, the third term comes back to:

L3 =
∫
q (U) log

(
p(U)
q(U)

)
dU (6.15)

For the fourth term, the log expression does not depend on the variables F ,H and U ,
thus, the fourth term comes back to:

L4 =
∫
q (V) log

(
p(V)
q(V)

)
dV (6.16)
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By injecting these terms in eq. (6.12) and identifying the expectation and KL divergence
terms, then factorizing over the training data-set, the final expression is obtained:

L=
nfi∑
t=1

nt∑
i=1

E
q(f (i),t

[t] )

[
logp

(
y

(i)
t |f

(i),t
[t]

)]
+

nfi−1∑
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nt∑
i=1

E
q(H(i),t+1

[t] )

[
logp

(
X(i),t+1

t |H(i),t+1
[t]

)]
−

nfi∑
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KL
[
q
(
u[t]

)
||p
(
u[t];Z[t−1]

)]
−

nfi−1∑
t=1

KL
[
q
(
V[t]

)
||p
(
V[t];Z[t+1]

)]
(6.17)

The Kulback-Leibler divergence is analytically tractable for Gaussian distribu-
tions [Kullback and Leibler, 1951]. The expectation term is approximated using
Monte-Carlo sampling with s samples. Therefore, the complexity of the model for
a number of induced inputs equal to the number of observations at each layer is
O
(
s×

(
n3

1 +∑nfi
t=2

(
dt×n3

t

)))
. The difference with regular MF-DGP with complexity

O
(
s×

(∑nfi
t=1

(
n3

t

)))
comes from the fact that MF-DGP-EM uses GP input mappings

that are multi-output.

Prediction

The prediction of a test data X∗
t belonging to the input-space of fidelity t using the

two-level MF-DGP-EM is a two-step process. First, the test data X∗
t are propagated

through the first level of the MF-DGP-EM allowing the projection of the test data on
the lower-fidelity inputs spaces to obtain H∗

[t−1], . . . ,H
∗
[1]. Then, propagation through

the second level is carried out to obtain the evaluation at the different fidelities. Hence,
a prediction of X∗

t with fidelity t is:

q(f∗
[t]) = 1

s

s∑
j=1

q
(
f∗
[t]|q(u[t]),{[H∗

[t], f
∗
[t−1]]},Z[t−1]

)
(6.18)

where s is the number of propagated samples.
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6.2.4 Numerical experiments on multi-fidelity problems with
different input space domain definitions

To evaluate the performance of the proposed model MF-DGP-EM, numerical experi-
ments are carried out in this section. Firstly, analytical test problems are considered.
The first analytical test case is an illustrative example to compare the different ap-
proaches and also to point out the efficiency of MF-DGP-EM on problems where
classical fixed input-space parametrization approaches are used (MF-DGP). The two
remaining analytical test problems address the cases where different dimensions and
parametrizations are considered for each input-space. Two physical test problems are
also presented: a structural multi-fidelity problem and an aerodynamic multi-fidelity
problem. The prediction accuracy is assessed using the R squared metric (R2) and the
Root Mean Square Error (RMSE). The test Mean Negative Log-Likelihood (MNLL)
metric is used to validate the uncertainty quantification on the prediction which is
important for the trade-off between exploration and exploitation for adaptive design of
experiments and optimization. The final part of this section discusses the computational
aspect of MF-DGP-EM with respect to the compared approaches.

Details on the numerical setup are presented in Appendix D.

Analytical problems

Illustrative test problem
For this toy problem, the non-linear multi-fidelity problem proposed in [Perdikaris

et al., 2017] is used. The high-fidelity function fhf (·) is defined as a function of the
low-fidelity function flf (·):

fhf (x1) = x1 exp
(
flf (2x1−0.2)

)
−1 (6.19)

where flf is:
flf (x1) = cos(15x1) (6.20)

where 0≤ x1 ≤ 1.
This multi-fidelity problem has been used previously in [Perdikaris et al., 2017] and

[Cutajar et al., 2019] in the context of multi-fidelity modeling with the same input
variable parametrization. However, one can argue that this problem can be interpreted
as a multi-fidelity problem with different input-space parametrizations. In fact, based
on Eq. (6.19) the nominal mapping g0(·) between the two input spaces can be defined
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as:
g0(xhf ) = 2xhf −0.2 (6.21)

This nominal mapping is compared to the IMC mapping. The IMC approach is
used to obtain a calibrated mapping that tries to minimize the distance between the
outputs of the two fidelities according to the following equation:

β̂ = argmin
β

nhf∑
i=1

(
yhf

(i)−f exact
lf

(
ψβ

(
xhf

(i)
)))2

+ τ(β,β0)
 (6.22)

where nhf corresponds to the number of HF training data points, ψβ to parametric
mapping parameterized by a set of parameters β, and τ(β,β0) to a regularization
term based on the parameters β0 of the nominal mapping. For this problem, a linear
parametric mapping is considered for the IMC. Moreover, 14 HF training data points
are sampled using LHS. The obtained mapping by IMC ψ(·) is the following:

ψ(xhf ) = 0.0715xhf +0.65924 (6.23)

The IMC is compared to the nominal mapping in Fig. 6.10. The IMC minimizes
the distance between the outputs of the HF and LF following Eq. (6.22). However, in
doing so, it maps the HF input-space to a small range interval in the LF input-space
[0,1]→ [0.659,0.730]. To analyze this mapping in the HF output space, Fig. 6.11
represents the exact output of the HF, the output of the LF composed with the
nominal mapping, and the output of the LF composed with the IMC. The IMC results
in a quadratic mean trend of the HF observations and looses the sinusoidal feature of
the LF. To analyze the repercussions of such a behavior from a multi-fidelity model
prediction accuracy point of view, a HF GP model prediction (Fig. 6.12) is compared
to a bias correction approach (Eq. (3.54)) used with the nominal values (BC nominal)
and a bias correction approach used with the IMC mapping (Fig. 6.13). The BC IMC
(RMSE: 0.482) deteriorates the prediction accuracy obtained by a GP model using
only the HF data (RMSE: 0.311) because of the non-adequate projection from the
HF to the LF. However, the BC nominal improves the prediction accuracy (RMSE:
0.265) since the LF encodes exactly the oscillation phase information about the HF
(Fig. 6.11).
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Fig. 6.10 Parametric linear mapping ob-
tained by IMC compared to the nominal
mapping in the input-space.
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Fig. 6.11 The input mapping results in the
output space. The IMC output minimizes
the distance from the HF training data
points, however, the correlation LF and
HF is lost.
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Fig. 6.12 The prediction and uncertainty
obtained by a GP model of the HF. GP HF
metrics: R2 : 0.756, RMSE: 0.311, MNLL:
-0.106
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Fig. 6.13 The prediction and uncertainty obtained by a bias correction approach using
nominal mapping values (top left) and by a bias correction approach using IMC values
(top right). MF-DGP (bottom left) and by MF-DGP-EM (bottom right). MF-DGP-EM
takes into account the relationship between the input-spaces which improves the results.
BC nominal metrics: R2 : 0.824, RMSE: 0.265, MNLL: 0.638. BC IMC metrics: R2 :
0.416, RMSE: 0.482, MNLL: 0.938. MF-DGP metrics: R2: 0.840, RMSE: 0.255, MNLL:
0.231. MF-DGP EM metrics: R2 : 0.984, RMSE: 0.077, MNLL: -1.921.
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MF-DGP-EM using the nominal mapped values of the HF training data and
standard MF-DGP that considers the same input variable parametrization, are also
compared in Fig. 6.13. For these two models, the exact LF model is not used and
30 training LF points are sampled using LHS. The MF-DGP-EM can embed the
information of the input-space mapping to improve the prediction accuracy and
uncertainty quantification (RMSE: 0.077, MNLL: −1.921) of the MF-DGP (RMSE:
0.255, MNLL: 0.231). This result is interesting since the MF-DGP-EM was applied
to a problem that was previously treated as a multi-fidelity problem with the same
input-space parametrization. Therefore, when there is some information about the
input-space relationship between the different fidelities, the modeling can be improved
using MF-DGP-EM even in problems with the same input dimensions.

As in this case, in the next problems, the different fidelities may not share the same
trend. Moreover, the LF is not considered necessarily computationally free. Hence, for
comparison, the BC approach with nominal mapping is preferred to the IMC approach.

Varying input-space test problems

To assess the efficiency of the proposed MF-DGP-EM, a comparison is carried out by
modeling the high-fidelity using a GP (GP-HF) and to Bias Correction approach (BC)
with nominal mapping [Li et al., 2016]. This comparison with BC is interesting since
in this approach, the nominal mapping functions are used to define the relationship
between the fidelities, in contrast with MF-DGP-EM where only nominal mapped
values of the training HF data are known and the mapping has yet to be learned. Two
problems described in the following are used for this analytical comparison.
Problem 1: The first test case is based on the Park multi-fidelity problem [Xiong
et al., 2013]. The low-fidelity model is considered only with two variables (Eq. (6.24)
and Eq. (6.25)). This problem depicts the case where some variables are neglected in
the low-fidelity model for simplicity. The nominal mapping is naturally the identity
mapping of the HF variables (Eq. (6.26)).
The high-fidelity function is four-dimensional with an input domain [0,1]4:

fhf (x1,x2,x3,x4) =x1
2

(√
1+(x2 +x2

3)x4
x2

1
−1

)

+(x1 +3x4)exp(1+sin(x3))
(6.24)
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Fig. 6.14 Graphical representation of MF-DGP-EM for Problem 1. The fidelity GPs
f[1](·) and f[2](·) are conditioned respectively on the LF and HF observations. The
input mapping GP H[1](·) is conditioned on the nominal mapping defined in eq. (6.26)
X⊺

hf A0 +b0.

The low-fidelity function is two-dimensional with an input domain [0,1]2:

flf (x1,x2) =
(

1+ sin(x1)
10

)
fhf (x1,x2,0.5,0.5)−2x1

+x2
2 +0.75

(6.25)

The nominal mapping is a linear mapping X⊺A0 +b0 with:

A0 =


1 0
0 1
0 0
0 0

and b0 = [0,0] (6.26)

The configuration of MF-DGP-EM for this problem is illustrated in Fig. 6.14. Since
only two fidelity levels are considered, the first level DGP comes back to a multi-output
GP.

Problem 2 : The second test case is a problem describing the situation in which
the fidelities are parameterized in different input-spaces (cartesian and spherical
parametrizations), in addition to different dimensionalities (Eq. (6.27) and Eq. (6.28)).
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Table 6.8 Performance of the different multi-fidelity models on Problem 1
(Eqs. 6.24, 6.25) using 20 repetitions with different LHS generated DoE. Three scenarios
on the available HF information are experimented (4, 6, and 8 input data on the HF).
30 training data points are used for the LF and 1000 test data points to compute the
metrics in the HF space.

Analytical Problem 1
HF DoE size Algorithms R2 (std) RMSE (std) MNLL (std)

HF model 0.4381 (0.4511) 3.1673 (1.3076) 3974.3 (16921.3)
4 data points BC model 0.7877 (0.3718) 1.8324 (1.0386) 2428.4 (4192.4)

MF-DGP-EM 0.9187 (0.1505) 1.1020 (0.6964) 15.756 (47.556)
HF model 0.9112 (0.1046) 1.2378 (0.5670) 1.5146(0.5407)

6 data points BC model 0.9185 (0.0398) 1.2545 (0.3581) 921.27 (2775.2)
MF-DGP-EM 0.9731 (0.0200) 0.7146 (0.2230) 3.8986 (5.4270)

HF model 0.9037 (0.1686) 1.1389 (0.8453) 19.105 (75.129)
8 data points BC model 0.9476 (0.0489) 0.9351 (0.4686) 13.875 ( 33.041)

MF-DGP-EM 0.9874 (0.0093) 0.4784 (0.1803) 1.3614 (1.5949)

The high-fidelity function is three-dimensional with an input domain [0,1]3:

fhf (r,θ,ϕ) =3.5
(
r cos

(
π

2ϕ
))

+2.2
(
r sin

(
π

2 θ
))

+0.85
(∣∣∣∣r cos

(
π

2 θ
)
−2r sin

(
π

2 θ
)∣∣∣∣)2.2

+ 2cos(πϕ)
1+3r2 +10θ2

(6.27)

The low-fidelity function is two-dimensional with an input domain [0,1]2:

flf (x1,x2) = 3x1 +2x2 +0.7(|x1−1.7x2|)2.35 (6.28)

The nominal mapping values are based on the transformation of the training high-fidelity
points using:

x1 = r cos
(
π

2ϕ
)

(6.29)

x2 = r sin
(
π

2 θ
)

(6.30)

To assess the performance of the algorithms on different scenarios depending on the
available HF information, three different sizes of the HF DoE are experimented (4, 6,
and 8 HF data points). The robustness concerning the distribution of the HF data
points in the input-space is evaluated using 20 repetitions with different LHS for each
size of the DoE. For all the scenarios, the number of LF training data points is fixed
to 30 training data points. Fig. 6.15 and Fig. 6.16 present the results obtained by the
different models.
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Table 6.9 Performance of the different multi-fidelity models on Problem 2
(Eqs. 6.27, 6.28) using 20 repetitions with different LHS generated DoE. Three scenarios
on the available HF information are experimented (4, 6, and 8 input data on the HF).
30 training data points are used for the LF and 1000 test data points to compute the
metrics in the HF space.

Analytical Problem 2
HF DoE size Algorithms R2 (std) RMSE (std) MNLL (std)

HF model 0.2549 (0.3998) 1.5514 (0.4380) 8016.6 (31752)
4 data points BC model 0.6248 (0.2189) 1.0940 (0.3336) 193.68 (732.25)

MF-DGP-EM 0.4509 (0.4411) 1.2813 (0.5226) 14.110 (17.801)
HF model 0.4958 (0.4079) 1.2187 (0.5225) 468.17 (1545)

6 data points BC model 0.7412 (0.2343) 0.8742 (0.3718) 93.985 (262.30)
MF-DGP-EM 0.7946 (0.1996) 0.7850 (0.3158) 4.6228 (4.4710)

HF model 0.7867 (0.2299) 0.7959 (0.3320) 9.1492 (33.817)
8 data points BC model 0.8821 (0.0431) 0.6302 (0.1171) 4.4421 (7.3884)

MF-DGP-EM 0.9111 (0.0465) 0.5372(0.1459) 3.9798(4.1756)

On Problem 1 (Table 6.8), MF-DGP-EM is more efficient and robust to the DoE
in each scenario than the other algorithms. In fact, with a DoE size of only 4 data
points for HF, the MF-DGP-EM obtains better and more robust results both in terms
of prediction accuracy (RMSE: 1.10, with a std of 0.69) and uncertainty quantification
(MNLL: 15.75, with a std of 47.55) compared to the BC approach (RMSE: 1.83, with
a std of 1.04, MNLL: 3974, with a std of 16921 ) and the GP HF (RMSE: 3.17, with
a std of 1.31, MNLL: 2428, with a std of 4192 ). The BC approach improves the
prediction accuracy of the GP HF in the case where there is not enough information
in the HF (4 data points). However, the relative improvement with respect to GP HF
decreases when the number of HF data points crosses the threshold of 6 data points
(BC RMSE for 6 HF data points: 1.25 and for 8 HF data points: 0.93, GP HF RMSE
for 6 HF data points: 1.24 and for 8 HF data points: 1.14). This is not the case for
the MF-DGP-EM which continues to improve the prediction accuracy even when the
HF information increases (MF-DGP-EM RMSE for 6 HF data points: 0.71 and for 8
HF data points: 0.48). The uncertainty quantification obtained by BC is less accurate
than the other approaches in the three scenarios (MNLL for 4 HF data points: 3974,
for 6 HF data points: 921 and for 8 HF data points: 19.10).

For Problem 2 (Table 6.9), it is interesting to observe that in the scenario of 4
data points, the MF-DGP-EM, whilst showing improvement compared to the GP
HF in terms of prediction accuracy (MF-DGP RMSE: 1.28, GP HF RMSE: 1.55), it
is not as good as the BC approach (RMSE: 1.09). This is due to the difficulty to
learn the mapping with only 4 training data points. However, in terms of uncertainty
quantification, MF-DGP-EM gives the better results in the three scenarios (MNLL for
4 HF data points: 14.11, for 6 HF data points: 4.62 and for 8 HF data points: 3.97)
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compared to either the BC approach (MNLL for 4 HF data points: 193.68, for 6 HF
data points: 93.98 and for 8 HF data points: 4.44) or the GP HF (MNLL for 4 HF
data points: 8016, for 6 HF data points: 468 and for 8 HF data points: 9.14). This is
because even if there is not enough information to learn the input mapping (the case
of 4 HF data points), the uncertainty quantification on this mapping is well balanced
which enables the uncertainty on the prediction to be better. By increasing the HF
data size (6 and 8 data points), the MF-DGP-EM better learns the mapping between
the input-spaces and gives also the better results in terms of prediction accuracy
(RMSE for 6 HF data points: 0.78 and for 8 HF data points: 0.54) compared to the
BC approach (RMSE for 6 HF data points: 0.87 and for 8 HF data points: 0.63) and
the GP HF approach (RMSE for 6 HF data points: 1.22 and for 8 HF data points:
0.79).

In conclusion of these two first numerical experiments, the MF-DGP-EM presents
generally better results in terms of prediction accuracy, uncertainty quantification, and
robustness to the DoE when the mapping relationship is well learned.

Structural problem

The first physical problem is a structural modeling problem. The objective is to
model the maximum distortion criterion (also known as von Mises yield criterion) of a
cantilever beam with a rectangular hole inside. This criterion expresses the needed
elastic energy of distortion for the yielding of the structure to begin. The Euler-
Bernoulli beam theory [Bauchau and Craig, 2009] is used for the low and high-fidelity
models.

In the low-fidelity a standard solid rectangular cantilever beam (Fig. 6.17) char-
acterized by its length L, its width d, and the applied force at its extremity F is
considered (3 LF variables). In this case, the computation of the maximum distortion
is computed analytically using the von Mises equation:

σV M =
√

(σax +σb)2 +3τ2
sh (6.31)

where σax is the axial stress, σb the bending stress and τsh the shear stress. For this
simplified cantilever beam problem, the maximal von Mises (VM) stress is reached at
the basis of the beam (meaning at x= 0 on Fig. 6.18). At the basis, the axial stress is
null, the shear stress is given by τsh = F

l2 and the bending stress is equal to σb = 6F ×L
d3 .

Therefore, given the parameters F, L and d, it is possible to easily estimate analytically
the maximal VM within the beam.
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Fig. 6.15 Performance of the different models (GP HF for the high-fidelity GP, BC for
the Bias correction approach, and MF-DGP-EM for the proposed model) on Problem
1 with 3 sizes of DoE (4, 6, and 8 data points on the HF and 30 data points on the
LF) using 20 LHS repetitions.

In the high-fidelity, a rectangular cantilever beam with a rectangular bore along its
horizontal axis is considered (Fig. 6.18). The HF variables are the length and width of
the cantilever beam, the applied force at its end, and also the width and length of the
rectangular bore (5 HF variables).

The maximum distortion can not be computed analytically in the case of the beam
considered in the HF model. It is necessary to follow a finite element (FE) analysis
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Fig. 6.16 Performance of the different models (GP HF for the high-fidelity GP, BC for
the Bias correction approach, and MF-DGP-EM for the proposed model) on Problem
2 with 3 sizes of DoE (4, 6, and 8 data points on the HF and 30 input data on the LF)
using 20 LHS repetitions.

approach. In this case, Caculix solver [Dhondt, 2017] is used. A FE analysis can
be computationally expensive according to the mesh refinement used (Fig. 6.19 and
Fig. 6.20). Hence, only a few evaluations of the HF are available. In the present case,
the LF model provides an appropriate approximation of the HF model with a reduced
computational cost, which makes interesting the use of multi-fidelity approaches to
enrich the HF with LF information. However, the classical multi-fidelity approaches
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F

L

d

x

Fig. 6.17 low-fidelity beam representation.
A standard solid rectangular cantilever
beam characterized by its length L, its
width d, and the applied force at its ex-
tremity F .

Fig. 6.18 high-fidelity beam representa-
tion. A rectangular cantilever beam with
a rectangular bore along its horizontal
axis.

Fig. 6.19 Mesh grid used for the FE anal-
ysis of the high-fidelity cantilever beam.

Fig. 6.20 Obtained distortion along the
cantilever beam using the FE analysis.

can not be used because of the difference in dimensionality between the input-spaces
of the HF and LF models (3 for the LF and 5 for the HF). Hence, MF-DGP-EM is
used and compared to the BC approach and to using only the HF information (GP
HF). Since in this case the LF design variables are included in the HF design variables,
the nominal mapping is the identity with omission of 2 variables (the length and the
width of the rectangular bore). The performance of the models is assessed on different
scenarios of the available HF information. In fact, three different sizes of the HF
DoE are experimented (4, 6, and 8 data points). The robustness with respect to the
distribution of the HF data points in the input-space is evaluated using 20 repetitions
with different LHS for each size of the DoE. For all the scenarios, the number of LF
training data points is fixed to 30 training data points.

The results obtained are presented in Table 6.10 and illustrated in Fig. 6.21. In terms
of prediction accuracy, the GP-HF is outperformed by the multi-fidelity approaches in
the three scenarios which highlights the relevance of the low-fidelity model. With a
DoE size of only 4 data points for HF, the BC approach outperforms the MF-DGP-EM
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Table 6.10 Performance of the different multi-fidelity models on the structural problem
(Section 6.2.4) using 20 repetitions with different LHS generated DoE. Three scenarios
on the available HF information are experimented (4, 6, and 8 input data on the HF).
30 training data points are used for the LF and 1000 test data points to compute the
metrics in the HF space.

Structural problem
HF DoE size Algorithms R2 (std) RMSE (std) MNLL (std)

HF model 0.1977 (1.1167) 0.8751 (0.4474) 7668.9 (21292)
4 data points BC model 0.8702 (0.1793) 0.3471 (0.1063) 11542 (38744)

MF-DGP-EM 0.4997 (0.2110) 0.8309 (0.4070) 4.2601(7.0356)
HF model 0.6760 (0.4672) 0.5934 (0.2483) 53.055 (117.96)

6 data points BC model 0.9320 (0.0130) 0.3103 (0.0814) 14866 (62243)
MF-DGP-EM 0.9204 (0.0402) 0.3281 (0.1156) 13.200 (18.66)

HF model 0.8032 (0.2375) 0.3895 (0.1750) 14.131 (30.054)
8 data points BC model 0.9179 (0.0782) 0.2496 (0.0793) 76.925 (170.36)

MF-DGP-EM 0.9400 (0.0362) 0.2285 (0.0768) 5.7554 (7.308)

approach in terms of prediction accuracy (BC: RMSE: 0.35, with a std of 0.10, MF-
DGP-EM: RMSE: 0.83, with a std of 0.4). This can be explained by the fact that the
relationship between the two fidelities is well approximated by a linear function, which
makes it easier for the BC approach to capture the HF with only few information. By
increasing the size of the training HF data (6 and 8 data points), the MF-DGP-EM gives
comparable results to the BC approach in terms of prediction accuracy (MF-DGP-EM
for 6 HF data points RMSE: 0.33 and for 8 HF data points RMSE: 0.23; BC for 6 HF
data points RMSE: 0.31 and for 8 HF data points RMSE: 0.25). However, as observed
in the analytical test problems, one of the main advantages of the MF-DGP-EM is the
quality of the uncertainty quantification. In fact, even if the prediction accuracy is
not as good as the one obtained by the BC approach (case of 4 HF data points) the
added uncertainty on the nominal mapping allows the MF-DGP-EM to obtain better
results in terms of uncertainty quantification (MF-DGP-EM MNLL: 4.26; BC MNLL:
11542 in the case of 4 HF data points). The BC approach gives less accurate results in
the three scenarios when it comes to uncertainty quantification (MNLL for 6 HF data
points: 14866 and for 8 HF data points: 76.9).

Aerodynamic problem

In this problem, the objective is to model the lift coefficient (CL) of a winged reusable
launch vehicle composed of a core, two wings, and two canards [Brevault et al.,
2020a] (Fig. 6.22 and Fig. 6.23). The Vortex Lattice Method (VLM), is used for the
computation of CL using openVSP and VSPAERO [Gloudemans et al., 1996]. It is a
computational fluid dynamics numerical approach that models lifting surfaces, using
discrete vortices to compute lift and induced drag. The span of the main wings and
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Fig. 6.21 Performance of the different models (GP HF for the high-fidelity GP, BC
for the Bias correction approach, and MF-DGP-EM for the proposed model) on the
structural test problem with 3 sizes of DoE (4, 6, and 8 data points on the HF and 30
data points on the LF) using 20 LHS repetitions.

the canards are fixed for the two fidelities and flight conditions of Mach number equal
to 0.5 and angle of attack of 2 degrees are considered.

In the low-fidelity, wings and canards with only one section are considered. The
variables involved in this case are:

• root chord (RCm) of the main wings,
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Fig. 6.22 low-fidelity winged reusable vehicle representation

Fig. 6.23 high-fidelity winged reusable vehicle representation

• tip chord (TCm) of the main wings,

• sweep angle (βm) of the main wings,

• root chord (RCc) of the canards,

• tip chord (TCc) of the canards,

• sweep angle (βc) of the canards.

Thus, the input-space of the LF is 6-dimensional. As mentioned previously, some LF
models, even though they are less computationally expensive than the HF, they are
still not computationally free. This is the case in this problem where the low-fidelity
configuration requires a simplified CFD analysis for the computation of CL based
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Fig. 6.24 A one-section wing characterized by 3 design variables: its root chord (RC),
tip chord (TC), and the sweep angle (β) (left) can be used as a low-fidelity model of a
two-section wing characterized by 6 design variables: its root chord (RC), tip chord of
the first section (TC1), tip chord of the second section (TC2), sweep angle of the first
section (β1), sweep angle of the second section (β2) and the relative span of the first
section (α) (right).

on VLM. In the high-fidelity configuration, wings and canards with two sections are
considered and meshes have been densified (number of tessellated curves has been
doubled). The variables involved in this case are (Fig. 6.24):

• root chord (RCm) of the main wings,

• tip chord (TCm1) of the first section of the main wings,

• tip chord (TCm2) of the second section of the main wings,

• sweep angle (βm1) of the first section of the main wings,

• sweep angle (βm2) of the second section of the main wings,

• relative span αm of the first section of the main wings,

• root chord (RCc) of the canards,

• tip chord (TCc1) of the first section of the canards,

• tip chord (TCc2) of the second section of the canards,

• sweep angle (βc1) of the first section of the canards,

• sweep angle (βc2) of the second section of the canards,

• relative span αc of the first section of the canards.
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Table 6.11 Performance of the different multi-fidelity models on the aerodynamic
problem (Section 6.2.4) using 20 repetitions with different LHS generated DoE. Three
scenarios on the available HF information are experimented (10, 15, and 20 input data
on the HF). 120 training data points are used for the LF and 250 test data points to
compute the metrics in the HF space.

Aerodynamic problem
HF DoE size Algorithms R2 (std) RMSE (std) MNLL (std)

HF model 0.0856 (0.5964) 0.0475 (0.0154) 33.92 (34.519)
10 data points BC model 0.7284 (0.2160) 0.0258 ( 0.0085) 23.232 (25.911)

MF-DGP-EM 0.7646 (0.2796) 0.0230 (0.0105) -2.0030 (0.7456)
HF model 0.6358 (0.2400) 0.0300 (0.0098) 4.227 (8.0840)

15 data points BC model 0.7522 (0.1932) 0.0248 (0.0079) 6.062 (5.6046)
MF-DGP-EM 0.8498 (0.1386) 0.0189 (0.0071) -2.3094 (0.645)

HF model 0.8349 (0.0769) 0.0207 (0.0043) -0.2532 (1.6970)
20 data points BC model 0.8000 (0.1562) 0.0222 (0.0072) 1.7964 (2.3597)

MF-DGP-EM 0.8685 (0.1277) 0.01764 (0.0069) -2.144 (0.9646)

Fig. 6.24 illustrates the two fidelity configurations. The input-space of the HF is
12-dimensional. Moreover, the mesh is refined in the HF with a doubled number of
tessellated curves compared to the LF. This makes the computation of CL in the HF
case numerically costly but more accurate than the LF configuration. This restrains
the number of evaluations of the HF model, which makes multi-fidelity approaches
interesting to enrich the HF with LF information. HF and LF models have different
input-space dimensions (6 for the LF and 12 for the HF). MF-DGP-EM is used and
compared to the BC approach and to a GP using only the HF information (GP HF).
A possible nominal mapping between the input-spaces of the HF and LF is a mapping
that for a set of HF design variables maps a LF design variables with the same canards
and main wings surface:

RCbf =RChf

TCbf = TChf1 +(1−αhf )TChf2 +(αhf −1)RChf

βbf = αhfβhf1 +(1−αhf )βhf2

(6.32)

The performance of the models is assessed on different scenarios of the HF informa-
tion available. In fact, three different sizes of the HF DoE are experimented (10, 15,
and 20 data points) and to evaluate the robustness with respect to the distribution of
the HF data points in the input-space, the numerical experiments have been repeated
on 10 different LHS for each size of the DoE. For all the scenarios the number of LF
training data points is fixed to 120 training data points.
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Fig. 6.25 Performance of the different models (GP HF for the high-fidelity GP, BC
for the Bias correction approach, and MF-DGP-EM for the proposed model) on the
aerodynamic test problem with 3 sizes of DoE (4, 6, and 8 data points on the HF and
30 input data on the LF) using 20 LHS repetitions.

The obtained results are presented in Table 6.11 and illustrated in Fig. 6.25. MF-
DGP-EM presents a better prediction accuracy and uncertainty quantification even
with only 10 data points in the HF dimension (RMSE: 0.023, MNLL: −2.00) compared
to the GP HF (RMSE: 0.0475, MNLL: 34.) and the BC model (RMSE: 0.0258, MNLL:
23). Increasing the size of the HF training data allows the nominal mapping to be
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better learned in the case of MF-DGP-EM which enables a more significant difference
between the MF-DGP-EM and the BC model in terms of prediction accuracy in the
case of 15 and 20 HF training data points (MF-DGP-EM RMSE for 15 HF data points:
0.0189 and for 20 HF data points 0.01764; BC RMSE for 15 HF data points: 0.0248
and for 20 HF data points 0.0222). Some conclusions from the other experiments are
also confirmed in this problem. For instance, the BC approach obtains a less accurate
uncertainty quantification than the other approaches (MNLL for 15 HF data points
6.06 and for 20 data points 1.79) and its prediction accuracy stagnates after exceeding
a threshold in the size of the training HF data (BC RMSE for 20 data points: 0.0222,
GP HF RMSE for 20 data points: 0.0207). Also, the uncertainty quantification of the
MF-DGP-EM is better compared to the other approaches even when the HF available
information is not enough (10 data points).

6.2.5 Synthesis of the numerical experiments

These different results show the interest of using MF-DGP-EM, especially when the
nominal mapping is not known for all the input space but only for the training HF data.
It presents a prediction accuracy with robustness to the DoE that spares an excessive
number of evaluations of the HF. Also, in the different problems, the uncertainty
associated to the prediction of MF-DGP-EM is better valued than the other approaches
even in the case when the HF information is scarce. This can be explained by the
uncertainty quantification on the nominal mapping of MF-DGP-EM. This makes the
MF-DGP-EM more interesting to use in applications where there is a trade-off between
exploitation and exploration to be made such as optimization or design of experiments
applications.

6.2.6 Computational aspects of MF-DGP-EM

The ELBO in eq. (6.17) is computed using Monte-Carlo sampling that propagates s
samples throughout the MF-DGP-EM to compute the expectation terms. This makes
the evaluation of the ELBO at each iteration computationally over-whelming compared
to GP-HF and BC that are trained by optimizing analytical expressions. In fact,
the computational complexity of MF-DGP-EM is O

(
s×

(
n3

1 +∑nfi
t=2

(
dt×n3

t

)))
(for a

number of induced variables at each layer equal to the number of observations at the
corresponding fidelity level), while GP-HF and BC are of computational complexity
On3

fi. Moreover, the parameter space of MF-DGP-EM is highly-dimensional compared
to GP-HF and BC. In fact, while the parameter space of GP-HF and BC contains
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only the kernel hyper-parameters of size dnfi +2 (length-scale for each dimension in the
case of ARD kernels, likelihood variance, and kernel variance), the parameter space of
MF-DGP-EM contains additionally to the kernel hyper-parameters of the GP fidelities
of size ∑nfi

t=1(dt + 2), the kernel hyper-parameters of the GP input-mappings of size∑nfi
t=2(dt + 2), the induced inputs of the fidelity GPs of size ∑nfi

t=1nt× dt and of the
input-mapping GPs of size ∑nfi

t=2nt×dt, as well as the variational parameters of the
GP fidelities of size ∑nfi

t=1(nt +nt(nt + 1)/2) and of the input-mapping GPs of size∑nfi
t=2 dt× (nt +nt(nt +1)/2) (multi-output aspect). Table 6.12 illustrates the number

of parameters of each approach in the case of a low-dimensional problem (Problem 1,
Section 6.2.4) and a high-dimensional one (the aerodynamic problem, Section 6.2.4))
and the computational time needed for training the compared. While it takes less than
4 seconds to train GP-HF and BC using gradient descent in the different cases, it takes
up to 580 seconds to train MF-DGP-EM using stochastic gradient (see Appendix C for
details on the numerical setup) for the aerodynamic problem with 20 HF training data.
This shows the heavy computational aspect of MF-DGP-EM compared to GP-HF
and BC. Therefore, the interest of MF-DGP-EM is for cases where the high-fidelity
is computationally intensive with evaluations that might take several hours or even
days (complex computationally fluid dynamics or finite element analysis calculations
for instance). Compared to alternative approaches, the computational cost overhead is
large but the proposed approach offers modelling possibilities that cannot be reached
by existing techniques (due to the nested training of the mapping and the multi-fidelity
model).
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Table 6.12 Number of parameters and time needed for training of each model for
Problem 1 with 30 LF two-dimensional input data and three scenarios on the available
HF information (4, 6, and 8 input data for , 4-dimensional HF) and the aerodynamic
problem with 120 LF 6-dimensional input data and three scenarios on the available HF
information (10, 15, and 20 input data for a 12-dimensional the HF). Details on the
optimization setup for the algorithms are presented in Appendix D. The computational
time is on a Tesla P100 GPU and using Tensorflow.

Analytical Problem 1
HF DoE size Algorithms Number of parameters Time for training (seconds)

HF model 6 ≈ 0.5s
4 data points BC model 6 ≈ 0.5s

MF-DGP-EM 673 ≈ 232s
HF model 6 ≈ 0.55s

6 data points BC model 6 ≈ 0.55s
MF-DGP-EM 754 ≈ 245s

HF model 6 ≈ 0.62s
8 data points BC model 6 ≈ 0.62s

MF-DGP-EM 855 ≈ 280s
Aerodynamic Problem

HF DoE size Algorithms Number of parameters Time for training (seconds)
HF model 14 ≈ 1.8s

10 data points BC model 14 ≈ 1.8s
MF-DGP-EM 9221 ≈ 500s

HF model 14 ≈ 0.55s
15 data points BC model 14 ≈ 0.55s

MF-DGP-EM 10251 ≈ 530s
HF model 14 ≈ 3.4s

20 data points BC model 14 ≈ 3.4s
MF-DGP-EM 11606 ≈ 580s
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6.3 Conclusion

This chapter addressed multi-fidelity analysis using Gaussian processes with a two-fold
objective, to improve a state-of-the-art approach that is MF-DGP for identically defined
fidelity input spaces and also to propose a novel method for different input domain
definitions.

The first contribution consisted of a training approach for MF-DGP to optimize
the inducing inputs. This allowed to overcome the previous limitation of MF-DGP
and increased its power of representation. Experiments on analytical problems and
on an aerospace multi-fidelity benchmark have demonstrated the improvements of
its prediction accuracy, uncertainty quantification and robustness to DoE. Besides
dominating regular MF-DGP, the improved MF-DGP usually provides the best results
among the compared approaches. In the case of insufficient HF data, improved MF-
DGP still gives competitive results unlike regular MF-DGP which tends to provide
limited accuracy results in these cases.

The second contribution considered the case of multi-fidelity problems with varying
input-space parameterization. The different definitions of input spaces in multi-fidelity
is common in physical and industrial applications. However, they are often addressed
with models not specific to the problematic and appropriate models are scarce in the
literature. In this chapter, a new model for this multi-fidelity problem is developed.
The proposed model embeds into the existing MF-DGP, a mapping between the
input-spaces using multi-output Gaussian processes. The proposed model allows a
joint optimization of the input-space mapping and the multi-fidelity model, keeping
the correlations in the original high-fidelity input-space, and allowing an uncertainty
quantification of the input-space mapping. The efficiency of the proposed model has
been assessed on analytical test problems and also on physical test problems. MF-DGP-
EM outperforms the compared approaches in terms of prediction accuracy, uncertainty
quantification, and robustness to the DoE in the majority of the problems and the
scenarios of availability of HF data considered. Moreover, MF-DGP-EM is applicable
in cases where the nominal mapping is not known for all the input-space but only for
the training HF data.

The proposed model has been applied only in the case of two fidelities. However,
it can be applied to more fidelities. Hence, experiments for three different fidelities
with different input parameterizations may be interesting to assess the behavior of the
model in more complicated configurations but may induce a computational burden
during the training of the model.
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The context of multi-fidelity modeling for the analysis of complex systems has
been considered in this study. The natural next extension of this work is to address
the multi-fidelity optimization topic with varying input-space dimensions. In this
perspective, this model can be coupled to Bayesian optimization algorithms or to space
mapping multi-fidelity optimization approaches.





Chapter 7

Conclusions and perspectives

7.1 Conclusions

This thesis proposed approaches to overcome three main issues related to Gaussian
Processes (GPs) in the analysis and optimization of complex systems that are Bayesian
optimization for non-stationary problems, multi-objective Bayesian Optimization (BO)
taking into account correlations between objective functions, and multi-fidelity analysis
with different input domain definitions. This has been accomplished through the
hierarchical generalization of Gaussian processes, Deep Gaussian Processes (DGPs).
In each proposed approach, the layers of DGPs have been used in a particular way as
summarized in the following.

7.1.1 Contributions on Bayesian optimization for non-stationary
problems

To address the issue of Bayesian optimization for non-stationary problems, the proposed
approach is to use DGPs within a BO framework. In this case, DGPs are used classically
i.e. the observed outputs are considered as a functional composition of GPs (Fig. 7.1).
The intermediate layers play the role of Bayesian non-parametric mappings of the
input space. This allows to stretch the input space in order to better capture the non-
stationarity of the response. For this coupling of BO with DGPs, a specific framework
has been proposed. In addition to adapting the training of DGPs to the iterative
structure of BO, this framework includes a training approach based on natural gradient
to obtain a better predictive uncertainty which is crucial in BO. Moreover, given the
non-Gaussianity of the predictive distribution of DGPs, sampling is proposed for infill
criteria such as the Expected Improvement and the Probability of Feasibility. The
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X H[1]

f[0] ∼ GP(0, KXX) + ϵ[0]

H[2]

f[1] ∼ GP(0, KH[1]H[1] ) + ϵ[1]

... H[l−1] y

f[l−1] ∼ GP(0, KH[l−1]H[l−1] ) + ϵ[l−1]

Fig. 7.1 Classic DGP with hidden layers as Bayesian non-parametric mappings of the
input space to handle non-stationarity.

architecture of DGPs in the context of BO has also been investigated through numerical
experimentations. The proposed framework of BO with DGPs has been compared to
state-of-the-art non-linear-mapping approaches for GPs to handle non-stationarity on
analytical and aerospace design problems. The framework of BO with DGPs achieves
the best results in terms of the final optimum obtained, the speed of convergence, and
the robustness to the Design of Experiments (DoE).

7.1.2 Contributions on multi-objective Bayesian optimization
with correlated objectives

To take into account a potential correlation between the objectives in a multi-objective
BO algorithm, a novel model called Multi-Objective Deep Gaussian Process (MO-DGP)
has been developed. In this model, each layer of the DGP is conditioned on the observed
values of an objective. Therefore, each layer may be interpreted as an objective model.
Moreover, the different layers constitute a clique within the DGP and are connected
with undirected edges (Fig. 7.2). This allows interactions between the different layers
without a specific hierarchy. However, this comes with a challenge in the inference where
the expectation term of the evidence lower bound is computed with respect to the joint
variational distribution of the layers. To compute this term, a Gibbs sampling approach
is proposed. In addition to the model, a computational approach for the EHVI based on
kernel density estimation is proposed without the assumption of independence between
the objectives and of the Gaussianity of the predictive distribution. The efficiency
of the developed model and the computational approach for the EHVI in a multi-
objective BO algorithm is assessed on analytical and aerospace design multi-objective
optimization problems with respect to multi-objective BO with independent GPs and
multi-objective BO with the linear model of coregionalization. By taking advantage
of the correlations between objectives, MO-DGP is able to improve multi-objective
BO in terms of the final hyper-volume obtained, the speed of convergence, and the
robustness to the initial DoE for multi-objective problems with correlated objectives.
However, it has been demonstrated that the correlated EHVI is not decisive in the
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X

f[1] f[3]

y1 y3

f[2]

y2

Fig. 7.2 Multi-Objective Deep Gaussian Process model. Each layer correspond to an
objective and constitutes a clique with undirected edges.

improvement of the multi-objective BO algorithms. This is explained by the fact that
the full predictive distribution needs more data to be well approximated.

7.1.3 Contributions on multi-fidelity analysis

For multi-fidelity analysis, firstly the case of identically defined input spaces for the
different fidelities has been considered. The goal was to improve the existing model
Multi-Fidelity Deep Gaussian Process (MF-DGP) in which the inducing inputs were set
to arbitrary values during the optimization. This has been accomplished by proposing
a training approach for the inducing inputs. This method takes into account the
augmented input space in which the inducing inputs lie. For that, the last dimension
of the inducing inputs is not considered in the optimization. In fact, it is inferred by
propagating the first dimensions, which are freely optimized, through the previous
layers. This improvement of MF-DGP is assessed with respect to regular MF-DGP and
Gaussian-based multi-fidelity approaches on a benchmark of analytical and aerospace
design problems in different scenarios of data availability. The improved MF-DGP
provides the best results in terms of prediction accuracy, uncertainty quantification,
and robustness to the data-set. For the second part of the contributions on multi-
fidelity analysis, the case of a different input-space domain definition for each fidelity
is considered. For this, a novel model is developed. This model is a two-level DGP,
in which the first level maps between the different input spaces and the second level
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Fig. 7.3 Multi-Fidelity Deep Gaussian Process Embedded Mapping model. Two DGP
levels are used where the first level maps between the input spaces of the different
fidelities and the second level propagates the input through the fidelity layers.

propagates the input through the different fidelity levels (Fig 7.3). This enables a
joint optimization of the input mappings and the multi-fidelity model, thus, the name
of the model Multi-Fidelity Deep Gaussian Process Embedded Mapping (MF-DGP-
EM). Moreover, using GPs as input mappings allows a non-parametric and Bayesian
mapping which is more flexible than classical parametric mapping optimized disjointly
from the multi-fidelity model. This proposed model is assessed on analytical and
engineering design problems in different scenarios of data availability with respect
to classic approaches. MF-DGP-EM shows promising results in terms of prediction
accuracy and uncertainty quantification especially in the case of scarce data.

7.2 Perspectives

Different improvements and extensions of the approaches developed in this thesis can
be identified.

7.2.1 Improvements and extensions of the framework BO &
DGPs

As discussed in Chapter 4, one of the crucial aspects of the integration of DGP in
BO is the predictive uncertainty. In the proposed framework, using natural gradient



7.2 Perspectives 239

proves to improve the obtained predictive uncertainty quantification. However, using
variational inference in the inference of DGP may still yield to an under-estimation
of the uncertainty. To overcome this issue, recently some inference approaches for
DGP have emerged using Hamiltonian Monte-Carlo [Havasi et al., 2018] and also
using implicit posterior variational inference [Haibin et al., 2019] that may obtain a
better-calibrated inference for DGPs.

One of the limits identified in the natural gradient optimization of the DGP
variational parameters is the ill-conditioning of the Fisher information matrices of the
inner layers. In the proposed framework, it has been addressed by small steps in the
optimization procedure. However, more sophisticated approaches may be used based
on approximate Fisher information methods [Ly et al., 2017] or classic conditioning
techniques used for kernel machines [Cutajar et al., 2016].

The framework BO-DGP is used in the case of real valued design variables. However,
the design of complex systems may include discrete technological and architectural
choices. BO with GPs has been used in the case of categorical variables through
formulation of discrete kernels expressed as the product between one-dimensional
kernels [Pelamatti et al., 2019]. An extension of BO-DGP to non-stationary mixed
variable optimization problems can be developed by using discrete kernels at each layer
of the DGP. The optimization of the infill criteria has also to be adapted to the mixed
variable design space.

7.2.2 Improvements and extensions of the proposed algorithm
for MO-BO with correlated objectives

The numerical experiments obtained in Chapter 5 proved that multi-objective BO with
MO-DGP outperforms the compared algorithms when there is correlation between
the objectives over all the objective space. However, in the case when the correlation
is only around the approximated Pareto front (Kursawe problem), MO-DGP gives
comparable results to independent GPs. One way to overcome this issue would be
to take into account only the correlations between the approximated Pareto front at
each iteration when training MO-DGP. Therefore, the structure of the model has to
be changed since the edges between the layers are active only for a subset of training
points.

Another limit identified in the numerical experiments is that the correlated EHVI is
not decisive for the improvement of multi-objective BO. This may be explained by the
fact that the full predictive distribution given by the model needs more data-points to
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be well approximated. Numerical experiments with initial DoE with more data-points
can be used to identify the improvement given by the correlated EHVI in this case.

Since a wide range of problems in the design of complex systems can be formulated
as two-objective problems, in this thesis, only this case has been considered. While
MO-DGP can be directly used for more than two objectives, the expression of the EHVI
considered throughout this thesis is valid only for the two objective case. However,
methods to compute the EHVI for more objectives have been developed in the literature
[Hupkens et al., 2015]. Due to the computational complexity of the inference of MO-
DGP, it is actually challenging to apply it in a many-objective context. A simplification
of the model may be considered in this case. For instance, to use a configuration where
each layer i is connected to only i−1 and i+ 1 using undirected edges which yields to
a circular graph. The transfer of information from layer j to i is done through the GP
propagation throughout the different layers.

MO-DGP was used for the objective functions in multi-objective optimization.
However, in optimization, there may also be inter-correlations between the constraints.
For instance, in the design of an aerospace launch vehicle, the constraint on the
minimum payload carried by the vehicle and the constraint on the minimum attitude
to reach are negatively correlated. In fact, if one of the two constraints is feasible
and largely non-saturated, there is a high probability that the other constraint is
not feasible. Therefore, MO-DGP can be used in this context to take into account
this correlation between the different functions involved (either objective functions or
constraints) in a single or multi-objective problem.

To handle non-stationarity in a multi-objective context, MO-DGP may be coupled
with regular DGPs that stretch the input space using hidden layers as achieved in
Chapter 4. For that, instead of considering for each objective a GP layer, a DGP is
used. The connection between the different objectives is done according to the last
layer of each DGP objective. Therefore, while the hidden layers handle non-stationarity,
the last layers encode the correlation between the objectives.

MO-DGP model may be extended to other problems involving correlated functions
with an unknown hierarchy between them. In fact, it can be used as a multi-task model
for the analysis of complex systems. For instance in reliability analysis, to estimate
the failure probability of different failure modes, MO-DGP may be used where each
layer corresponds to a failure mode, therefore, taking into account the dependencies
between each pair of failure modes.
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7.2.3 Improvements and extensions for multi-fidelity analysis

The first level of the developed model MO-DGP-EM is conditioned on nominal mapping
values between the input spaces. However, for some computationally expensive legacy
codes, these nominal mapping values may be not possible to obtain. A first-level non-
conditioned in MO-DGP-EM would be difficult to train using only the conditioning on
the second level. Another configuration of the model or another inference approach is
necessary to avoid that the posterior distribution of the first level GPs collapses to its
mean function.

For now, the model MO-DGP-EM has been applied only to multi-fidelity problems
with two fidelities. The configuration of the model still holds in the case of multiple
fidelities. Therefore, it would be interesting to confirm its efficiency for three different
fidelities with different input space parameterizations and to evaluate the computational
burden induced by increasing the number of fidelities.

In the presented work on multi-fidelity analysis, only the modeling aspects have
been investigated. The next extension would be to use MO-DGP-EM within a BO
algorithm for optimization purposes in varying input-space dimensions. This may
present some challenges for the optimization of the infill criterion. In fact, unlike
classical BO with multi-fidelity where the criterion is evaluated for different fidelities
but within the same design space, in this case for each fidelity the infill criterion lies
in its own input space. Therefore, a mapping may be needed within the optimization
process.

The considered multi-fidelity organization relies on a hierarchic decomposition in
which each fidelity level corresponds to a physical model. However, in some cases, it
may be more nuanced. For instance, there might be different physical models at the
same level of fidelity and each physical model may be more adapted in a specific region
of the design space (e.g., aerodynamic models dedicated to subsonic or hypersonic
regimes). For instance, different physical models at the low-fidelity each adapted to its
own design space region and one high-fidelity model may be considered. To address
this multi-fidelity formulation, a three-layer DGP may be considered. The first layer
would be a multiple-unit layer where each unit is conditioned on the observations of
a specific low-fidelity physical model. The relevance of each output of the first layer
depends on a specific region of the input space, inducing non-stationarity behavior.
Therefore, the second layer is a hidden layer that plays the role of a non-linear mapping
of the input space as in Chapter 4. The last layer is a one-unit layer augmented with
the outputs of the previous layer and conditioned on the high-fidelity observations.
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7.2.4 Extensions of deep Gaussian processes to other prob-
lems in the design of complex systems

In this thesis, DGPs have been applied through different methods to BO for non-
stationary problems, multi-objective BO with correlated objectives, and multi-fidelity
analysis. Other problems that occur in the design of complex systems might take
advantage of the deep and Bayesian structure of DGPs. For instance, for reliability
analysis, MO-DGP in which each layer corresponds to a failure mode might be used.
Moreover, the predictive distribution of DGPs proves to be better calibrated than GPs
for complex models making it interesting to use for sensitivity analysis and uncertainty
quantification problems. In fact, the DGP predictive distribution can be propagated to
the sensitivity index estimates. Therefore, using DGPs for design strategies adapted
to sensitivity analysis may be interesting.

A computational limitation of DGPs occurs in the handling of high-dimensional
problems, due to the necessity to increase the size of the DoE, which results in a more
complex inference. In this thesis, a constrained optimization problem with 15 design
variables remains the problem with the highest dimension considered. However, in
the design of complex systems,problems with higher dimensions may be considered.
Therefore, the size of the DoE for analysis and the number of added points in a BO
context are larger. To overcome this issue, it would be interesting to couple DGPs
with dimension reduction approaches such as partial least squares for GPs [Bouhlel
et al., 2016].
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Appendix B

Multivariate Gaussian Identities

This appendix summarizes some of the most used multivariate Gaussian equations in
this thesis. Details on the demonstrations of these relations can be found in [Petersen
et al., 2008; Murphy, 2012].

B.1 Marginals and conditionals of a multivariate
Gaussian

Given a joint Gaussian distribution f = (f1, f2) with f∼N (µ,Σ) where:

µ=
µ1

µ2

 and Σ =
Σ11 Σ12

Σ21 Σ22

 (B.1)

Then, the marginals are given by:

p(f1) =N (f1|µ1,Σ11)
p(f2) =N (f2|µ2,Σ22)

(B.2)

and the conditional is given by:

p(f1|f2) =N (f1|µ1|2,Σ1|2)
µ1|2 = µ1 +Σ12 +Σ−1

22 (f2−µ2)
Σ1|2 = Σ11−Σ12Σ−1

22 Σ21

(B.3)
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B.2 Bayes rule for linear Gaussian systems

For a given system y = Aw + b, and the following prior p(w) =N (w|µw,Σw) and
likelihood p(y|w) =N (y|Aw+b,Σy), the posterior is given by:

p(w|y) =N (w|µw|y,Σw|y)
Σ−1

w|y = Σ−1
w +A⊺Σ−1

y A

µw|y = Σw|y
(
A⊺Σ−1

y (y−b)+Σ−1
w µw

) (B.4)

and the marginal likelihood is given by:

p(y) =N (y|Aµx +b,Σy +AΣwA⊺) (B.5)

B.3 Product of two multivariate Gaussians

Given two multivariate Gaussian densities p1(x) =N (x|µ1,Σ1) and p2(x) =N (x|µ2,Σ2),
then, the product of these densities comes back to a scaled multi-variate Gaussian
density:

p1(x).p2(x) = c×.N (x|(x|µ×,Σ×)
c× =N (µ1|µ2,Σ1 +Σ2)
µ× = (Σ−1

1 +Σ−1
2 )−1(Σ−1

1 µ1 +Σ−1
2 µ2)

Σ× = (Σ−1
1 +Σ−1

2 )−1

(B.6)

B.4 Kullback-Liebler divergence between two mul-
tivariate Gaussians

Given two multivariate Gaussian densities p(x) =N (x|m,S) and q(x) =N (x|µ,Σ) of
dimension d, the Kullback–Leibler divergence between the distributions is as follows:

KL[q||p] =
∫
q(x) log

(
q(x)
p(x)

)
dx

= 1
2
(
tr(S−1Σ)

)
+ 1

2
(
(m−µ)⊺S−1(m−µ)

)
− d2 + 1

2 log
(
|S|
|Σ|

) (B.7)

where tr(·) stands for the trace of a matrix, and | · | its determinant.
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B.5 Information form of multivariate Gaussians

Given a multivariate Gaussian distribution f∼N (µ,Σ). The natural parameters are
given by:  Σ−1µ

−1
2Σ−1

 (B.8)

The expectation parameters are given by:

 µ

Σ+µµ⊺

 (B.9)





Appendix C

Analytical problems

In this appendix, the different analytical problems used throughout this thesis are
described.

C.1 Analytical problems in Chapter 4

Modified Xiong function:

f(x) = −0.5
(
sin
(
40(x−0.85)4

)
cos(2.5(x−0.95))+0.5(x−0.9)+1

)
s.t. x ∈ [0,1]

(C.1)

Modified TNK constraint function:

f(x) = 1.6(x0−0.6)2 +1.6(x1−0.6)2−0.2cos
(
20arctan

(
0.3x0

(x1+10−8)

))
−0.4

s.t. x ∈ [0,1]× [0,1]
(C.2)

10d Trid function:

f(x) =∑10
i=1(xi−1)2−∑10

i=2xixi−1

s.t. xi ∈ [−100,100],∀i= 1, . . . ,10
(C.3)

Hartmann-6d function:

f(x) = ∑4
i=1αi exp

(
−∑6

j=1Aij(xj−Pij)2
)

s.t. xi ∈ [0,1],∀i= 1, . . . ,6
(C.4)

with:
α = [1,1.2,3,3.2]⊤
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and

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


and

A=


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



C.2 Analytical problems in Chapter 5

1-d two-objective problem:

min [f1(x),f2(x)],
s.t. 0≤ x≤ 1,
with f1(x) = exp(cos(15(2x−0.2)))−1,
and f2(x) =−xexp(cos(15(2x−0.2)))−1;

(C.5)
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Fig. C.3 Sectional 2d view of the Trid func-
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Kursawe problem:

min [f1(x),f2(x)],
s.t. −5≤ xi ≤ 5 i= 1, . . . ,3,
with f1(x) =∑2

i=1
(
−10exp

(
−0.2

√
x2

i +x2
i+1
))
,

and f2(x) =∑3
i=1

(
|xi|0.8 +5sin

(
x3

i

))
;

(C.6)

Modified DTLZ1 problem:

min [f1(x),f2(x)],
s.t. 0≤ xi ≤ 1 i= 1, . . . ,5,
with f1(x) =−0.5x1 (1+h(x)) ,

f2(x) =−0.5(1−x1)(1+h(x)) ,
and h(x) = 100

(
5+∑5

i=1
(
(x1−0.5)2− cos(2π(xi−0.5))

))
;

(C.7)
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ZDT6 problem:

min [f1(x),f2(x)],
s.t. 0≤ xi ≤ 1 i= 1, . . . ,10,
with f1(x) = 1− exp(−4x1)sin6(6πx1),

f2(x) = φ(x)h(f1(x),φ(x)) ,

φ(x) = 1+9
(∑10

i=2 xi

9

)0.25
,

and h(f1(x),φ(x)) = 1−
√

f1(x)
φ(x) ;

(C.8)

C.3 Analytical problems in Chapter 6

Currin function is a 2-d multi-fidelity function defined by two-levels of fidelity, a
high-fidelity fhf(·) and a low fidelity flf(·):

fhf(x) =
(
1− exp

(
− 1

2x2

)) 2300x3
1+1900x2

1+2092x1+60
100x3

1+500x2
1+4x1+20 ,

flf(x) = 1
4 (fhf(x1 +0.005,x2 +0.05)+fhf(x1 +0.05,max(0,x2−0.05)))

+1
4 (fhf(x1−0.05,x2 +0.05)+fhf(x1−0.05,max(0,x2−0.05))) ,

s.t. 0≤ xi ≤ 1 i= 1,2;
(C.9)
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Park function is a 4-d multi-fidelity function defined by two-levels of fidelity, a
high-fidelity fhf(·) and a low fidelity flf(·):

fhf(x) = x1
2

(√
1+(x2 +x2

3)x4
x2

1
−1

)
+(x1 +3x4)exp(1+sin(x3)) ,

flf(x) =
(
1+ sin(x1)

10

)
fhf(x)−2x1 +x2

2 +x2
3 +0.5,

s.t. 0≤ xi ≤ 1 i= 1, . . . ,4;
(C.10)

Borehole function is a 8-d multi-fidelity problems that represents water flow through
a borehole. It is defined by two-levels of fidelity, a high-fidelity fhf(·) and a low fidelity
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flf(·):
fhf(x) = 2πx3(x4−x6)

log
(

x2
x1

)(
1+ 2x7x3

log(x2/x1)x2
1x8

)
+ x3

x5

,

flf(x) = 5x3(x4−x6)

log
(

x2
x1

)(
1+ 2x7x3

log(x2/x1)x2
1x8

)
+ x3

x5

,

s.t. 0.05≤ x1 ≤ 0.15,
100≤ x2 ≤ 50000,
63070≤ x3 ≤ 115600,
990≤ x4 ≤ 1110,
63.1≤ x5 ≤ 115,
700≤ x6 ≤ 820,
1120≤ x7 ≤ 1680,
9855≤ x8 ≤ 12045;

(C.11)

The three-levels Branin function is a 2-d multi-fidelity function defined by three-
levels of fidelity, a high-fidelity fhf(·), a medium fidelity fm(·), and a low fidelity
flf(·):

fhf(x) =
(

−1.275x2
1

π2 + 5x1
π +x2−6

)2
+
(
10− 5

4π

)
cos(x1)+10,

fm(x) = 10
√
fhf(x−2)+2(x1−0.5)−3(3x2−1)−1,

flf(x) = fm(1.2(x+2))−3x2 +1,
s.t. −5≤ x1 ≤ 10,

0≤ x2 ≤ 15;

(C.12)



Appendix D

Numerical setup

D.1 General numerical setup

• The Experiments presented in this manuscript were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and in-
cluding CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr).

• All experiments were executed on Grid’5000 using a Tesla P100 GPU.

• The codes involving GPs and DGPs are based on Tensorflow [Abadi et al., 2016],
GPflow [De G. Matthews et al., 2017] (https://github.com/GPflow/GPflow), and
Doubly-Stochastic-DGP [Salimbeni and Deisenroth, 2017] (https://github.com/
ICL-SML/Doubly-Stochastic-DGP) in Python 3.

• The data is always normalized and standardized (zero mean and a variance equal
to 1).

• For all DGPs (in BO with DGPs, MO-DGP, and MF-DGP), ARD RBF kernels
are used with a length-scale and variance initialized to 1 if it does not get an
initialization from a previous DGP.

• The optimization of DGPs is performed following Algorithm 1. Adam optimizer
is set with β1 = 0.8 and β2 = 0.9 and a step size γadam = 0.01. The natural
gradient step size is initialized for the last layer at γnat = 0.1 and the inner layers
at γnat = 0.01

https://github.com/GPflow/GPflow
https://github.com/ICL-SML/Doubly-Stochastic-DGP
https://github.com/ICL-SML/Doubly-Stochastic-DGP
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D.2 Specific numerical setup to Chapter 4

• For BO with DGP, the number of successive updates before optimizing from
scratch is 5.

• The infill criteria are optimized using a parallel differential evolution algorithm
with a population of 400 and 100 generations (https://www.tensorflow.org/
probability/api_docs/python/tfp/optimizer/differential_evolution_minimize).

• BO with Bayesian non-linear mapping is set using the numerical setup proposed
in [Snoek et al., 2014].

• For DGP with BO, the inducing inputs at the different layers are initialized to
[X,0]⊺, where 0 is the null matrix of size nfinal−n×d, n the current size of the
DoE, nfinal is the final size of the data-set at the end of the BO algorithm.

• DGP with BO is optimized in two stages. In the first one, 5000 Adam optimiza-
tion steps are performed while fixing the variational parameters. Then, 20000
iterations of Algorithm 1 are performed.

D.3 Specific numerical setup to Chapter 5

• The number of Gibbs sampling iterations used is 4 and in each iteration 1000
samples are drawn.

• LMC is used with a coregionalization matrix of rank 2.

• The Python package Platypus [Hadka, 2015] (https://github.com/Project-Platypus/
Platypus) was used for NSGA-II. It is used with its default parameters proposed
in [Deb et al., 2000] with a population of 5 candidates. The population evolves un-
til reaching 15×d evaluations of the objective functions, where d is the dimension
of the input space.

• For MO-DGP, the inducing inputs at the different layers are initialized to X.

• The mean of the variational distribution of the inducing variables for the layer i
is initialized at yi.

• MO-DGP is optimized in three stages. In the first one, 3000 Adam optimization
steps are performed while fixing the variational parameters and the inducing

https://www.tensorflow.org/probability/api_docs/python/tfp/optimizer/differential_evolution_minimize
https://www.tensorflow.org/probability/api_docs/python/tfp/optimizer/differential_evolution_minimize
https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus
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inputs. In the second one, the inducing inputs are also optimized using 3000
Adam optimization steps. Then, 15000 iterations of Algorithm 1 are performed.

D.4 Specific numerical setup to Chapter 6

• The python package Emukit [Paleyes et al., 2019] is used for the multi-fidelity
models AR1 and NARGP (https://github.com/EmuKit/emukit).

• For MF-DGP-EM, the inducing inputs of the fidelity GP at layer t are initialized
to Xt, and for the input mapping GP at layer t they are initialized at Xt+1.

• The mean of the variational distribution of the inducing variables for layer t is
initialized at yt, and for the input mapping GP at layer t at Xt+1

t .

• MF-DGP-EM is optimized in three stages. In the first one, 3000 Adam optimiza-
tion steps are performed while fixing the variational parameters and the inducing
inputs. In the second stage, the inducing inputs are also optimized using 3000
Adam optimization steps. Then, 15000 iterations of Algorithm 1 are performed.

https://github.com/EmuKit/emukit




Abstract

In engineering, the design of complex systems, such as aerospace launch vehicles, involves the
analysis and optimization of problems presenting diverse challenges. Actually, the designer
has to take into account different aspects in the design of complex systems, such as the
presence of black-box computationally expensive functions, the complex behavior of the
optimized performance (e.g., abrupt change of a physical property here referred as non-
stationarity), the multiple objectives and constraints involved, the multi-source information
handling in a multi-fidelity framework, and the epistemic and aleatory uncertainties affecting
the physical models. A wide range of machine learning methods are used to address these
various challenges. Among these approaches, Gaussian Processes (GPs), benefiting from
their Bayesian and non-parametric formulation, are popular in the literature and diverse
state-of-the-art algorithms for the design of complex systems are based on these models.

Despite being widely used for the analysis and optimization of complex systems, GPs,
still present some limitations. For the optimization of computationally expensive functions,
GPs are used within the Bayesian optimization framework as regression models. However, for
the optimization of non-stationary problems, they are not suitable due to the use of a prior
stationary covariance function. Furthermore, in Bayesian optimization of multiple objectives,
a GP is used for each involved objective independently, which prevents the exhibition of
a potential correlation between the objectives. Another limitation occurs in multi-fidelity
analysis where GP-based models are used to improve high-fidelity models using low-fidelity
information. However, these models usually assume that the different fidelity input spaces
are identically defined, which is not the case in some design problems.

In this thesis, approaches are developed to overcome the limits of GPs in the analysis and
optimization of complex systems. These approaches are based on Deep Gaussian Processes
(DGPs), the hierarchical generalization of Gaussian processes.

To handle non-stationarity in Bayesian optimization, a framework is developed that
couples Bayesian optimization with DGPs. The inner layers allow a non-parametric Bayesian
mapping of the input space to better represent non-stationary functions. For multi-objective
Bayesian optimization, a multi-objective DGP model is developed. Each layer of this model
corresponds to an objective and the different layers are connected with undirected edges to
encode the potential correlation between objectives. Moreover, a computational approach for
the expected hyper-volume improvement is proposed to take into account this correlation at
the infill criterion level as well. Finally, to address multi-fidelity analysis for different input
space definitions, a two-level DGP model is developed. This model allows a joint optimization
of the multi-fidelity model and the input space mapping between fidelities.

The different approaches developed are assessed on analytical problems as well as on
representative aerospace vehicle design problems with respect to state-of-the-art approaches.



Résumé

En ingénierie, la conception de systèmes complexes, tels que les lanceurs aérospatiaux, implique
l’analyse et l’optimisation de problèmes présentant diverses problématiques. En effet, le concepteur
doit prendre en compte différents aspects dans la conception de systèmes complexes, tels que la
présence de fonctions coûteuses en temps de calcul et en boîte noire , la non-stationnarité des
performances optimisées, les multiples objectifs et contraintes impliqués, le traitement de multiples
sources d’information dans le cadre de la multi-fidélité, et les incertitudes épistémiques et aléatoires
affectant les modèles physiques. Un large éventail de méthodes d’apprentissage automatique est utilisé
pour relever ces différents défis. Dans le cadre de ces approches, les Processus Gaussiens (PGs),
bénéficiant de leur formulation Bayésienne et non paramétrique, sont populaires dans la littérature et
divers algorithmes d’état de l’art pour la conception de systèmes complexes sont basés sur ces modèles.

Les PGs, bien qu’ils soient largement utilisés pour l’analyse et l’optimisation de systèmes complexes,
présentent encore certaines limites. Pour l’optimisation de fonctions coûteuses en temps de calcul et
en boite noire, les PGs sont utilisés dans le cadre de l’optimisation Bayésienne comme modèles de
régression. Cependant, pour l’optimisation de problèmes non stationnaires, les PGs ne sont pas adaptés
en raison de l’utilisation d’une fonction de covariance stationnaire. En outre, dans l’optimisation
Bayésienne multi-objectif, un PG est utilisé pour chaque objectif indépendamment des autres objectifs,
ce qui empêche de prendre en considération une corrélation potentielle entre les objectifs. Une autre
limitation existe dans l’analyse multi-fidélité où des modèles basés sur les PGs sont utilisés pour
améliorer les modèles haute fidélité en utilisant l’information basse fidélité, cependant, ces modèles
supposent généralement que les différents espaces d’entrée de fidélité sont définis de manière identique,
ce qui n’est pas le cas dans certains problèmes de conception.

Dans cette thèse, des approches sont développées pour dépasser les limites des PGs dans l’analyse et
l’optimisation de systèmes complexes. Ces approches sont basées sur les Processus Gaussiens Profonds
(PGPs), la généralisation hiérarchique des PGs.

Pour gérer la non-stationnarité dans l’optimisation bayésienne, un algorithme est développé
qui couple l’optimisation bayésienne avec les PGPs. Les couches internes permettent une projection
Bayésienne non paramétrique de l’espace d’entrée pour mieux représenter les fonctions non stationnaires.
Pour l’optimisation Bayésienne multiobjectif, un modèle de PGPs multiobjectif est développé. Chaque
couche de ce modèle correspond à un objectif et les différentes couches sont reliées par des arrêtes
non orientés pour coder la corrélation potentielle entre objectifs. De plus, une approche de calcul de
l’expected hyper-volume improvement est proposée pour prendre également en compte cette corrélation
au niveau du critère d’ajout de point. Enfin, pour aborder l’analyse multi-fidélité pour différentes
définitions d’espace d’entrée, un PGP à deux niveaux est développé. Ce modèle permet une optimisation
conjointe du modèle multi-fidélité et du mapping entre les espaces d’entrée des différentes fidélités.

Les différentes approches développées sont évaluées sur des problèmes analytiques ainsi que sur des
problèmes de conception de véhicules aérospatiaux et comparées aux approches de l’état de l’art.
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