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Introduction

Historical context

Bieberbach proved (1910-1912) that any group I" of affine isometries of the n-dimensional Euclidean
space R™ that acts properly discontinuously on R™ contains a finite-index subgroup isomorphic to
Z™, m < n. Moreover, the quotient R"/T" is compact if and only if m = n. In 1964, Auslander
proposed the following conjecture:

Conjecture 1 (Auslander). If I' € GL(n,R) x R™ is a finitely generated group that acts on R”
properly discontinuously and cocompactly, then IT" is virtually solvable.

The conjecture has been proven to be true up to n = 6. In 1977, Milnor asked the following
question [16]:

Q: Is the conjecture true if the cocompactness condition is dropped?

Meanwhile, in 1972, Tits proved that

Theorem (Tits alternative). Let I' C GL(n,F) be a finitely generated group, where F is a field.
Then T is either virtually solvable or it contains a free group of rank >1.

Hence the Tits alternative implies that the answer to Milnor’s question is negative if and only
if there exists a properly discontinuous affine action of a free group (of rank >1).

Margulis spacetimes. In 1983, Margulis came up with examples for n = 3. These were com-
plete non-compact Lorentzian manifolds, called Margulis spacetimes, obtained as a quotient of
the (2,1)-Minkowski space R%! by a free group I', acting properly discontinuously by orientation-
preserving affine isometries. The group of orientation-preserving affine isometries of R%! is given
by SO(2,1) x R®. The special linear group SO(2, 1) is the isometry group of the two-dimensional
hyperbolic space H?, which lies in the Minkowski space. Its Lie algebra s0s 1, equipped with its
Killing form, is isomorphic to R?!. The linear action of SO(2,1) on R%! coincides with its adjoint
action on s0g ;. Consequently, the tangent bundle T(SO(2, 1)) is isomorphic to SO(2,1) x R®. We
shall denote by G the isomorphic groups SO(2,1), PGL(2,R) and by g, their Lie algebra.

Recent developments
Affine deformations. Consider the representation py : I' <= G x g ~ T(G) of a discrete not

virtually solvable I' acting properly discontinuously on R?!, like in the examples of Margulis.
Fried and Goldman [8] proved that by projecting I' onto its first coordinate, we virtually get

9
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the holonomy representation p : m(S) — G of a finite-type complete hyperbolic surface S. The
projection onto the second coordinate u : I' — g is a p-cocycle: for every v,7" € I', u satisfies
u(yy") = uly) + p(y) - u(y’). It gives an infinitesimal deformation of p. The group I' can thus
be written as T := {(p(7),u(7)) | ¥ € m1(S)}, which gives an affine deformation of p. In the
paper (9], the authors Goldman, Labourie and Margulis have studied affine deformations of free,
discrete subgroups of G. An infinitesimal deformation u of p is said to be proper if T(»%) acts
properly discontinuously on R?1. It has been proved in the paper [9] that for p convex cocompact,
the corresponding u is proper if and only if w or —u uniformly lengthens all closed geodesics:

dl, (p)(u)
ver~{1d}  1y(p)

where [, is the length function. In both cases, the set of all such infinitesimal deformations forms
an open, convex cone; the cone corresponding to the first case is called the admissible cone.

>0 (1)

Strip deformations of compact surfaces. In the paper [5], the authors Danciger-Guéritaud-
Kassel study admissible deformations of finite-type hyperbolic surfaces with non-empty boundary
and without punctures, using strip deformations, first introduced by Thurston in [19]. A strip is
the region in H? bounded by two geodesics whose closures are disjoint. An arc on such a surface S
is an embedding of [0, 1] into S with its endpoints on its boundary 95 such that it is not isotopic
to a part of the boundary. Using the isotopy classes of these arcs, one can construct a simplicial
complex called the arc complex which depends only on the topology of the surface. A k-simplex of
this complex is generated by the isotopy classes of a family of k + 1 pairwise disjoint and distinct
arcs. The pruned arc complex is a subspace formed by taking the union of the interiors of all
those simplices ¢ such that the arcs corresponding to the 0O-skeleton of ¢ decompose the surface
into topological disks. A strip deformation is the process of cutting the surface along an embedded
arc and gluing in a strip, without shearing. The authors uniquely realised (Theorem 4.4.1) an
admissible deformation of the surface by performing strip deformations along positively weighted
arcs, corresponding to a point in the pruned arc complex.

Drumm [6] constructed fundamental domains of some Margulis spacetimes with a convex co-
compact linear part using specially crafted piecewise linear surfaces called crooked planes. The
Crooked Plane Conjecture says that every Margulis spacetime is amenable to such a treatment.
Charette, Drumm and Goldman proved this conjecture for rank two free groups in [3|. The general
case (with convex cocompact linear part) follows from [5] which provides a dictionary between strip
deformations and crooked planes.

Main results of the thesis

Surfaces with undecorated spikes. The main aim of this thesis is to generalise the parametri-
sation to include (possibly non-oriented) hyperbolic surfaces with spikes on their boundary. These
complete non-compact surfaces are limits of a compact surface with convex polygonal boundary
where the vertices become ideal. The admissible cone in this case is simply defined to be the set of
all infinitesimal deformations that induce an admissible deformation of the convex core So of the
spiked surface. This cone is an affine R?-bundle over the admissible cone of S, where @ is the
total number of spikes.

The arc complex of a surface with spikes is spanned by the isotopy classes of arcs; this time
we allow the arcs that separate off a disk from the surface, as long as the disk contains at least



CONTENTS 11

two spikes. In other words, we rule out the arcs that are isotopic to a horoball neighbourhood of
a spike. Again, we define the pruned arc complex to be a subspace of the arc complex formed by
taking the union of all those simplices ¢ such that the arcs corresponding to the 0-skeleton of o
decompose the surface into topological disks.

We parametrise (Theorem 6.1.1) the admissible cone using the pruned arc complex by perform-
ing strip deformations along a family of weighted embedded arcs that decompose the surface in
topological disks, like in the compact case.

Theorem. Let Sy, be a hyperbolic surface with spikes equipped with a metric m € D(Ssp). Let
A\(SSP) be its pruned arc complex. Choose m-geodesic representatives from the isotopy classes of
arcs. Then, the projectivised infinitesimal strip map Pf : VZ(SSP) — PH(T5,,D(Ssp)) is a homeo-
morphism on its image PT(A(m)), where A(m) denotes the admissible cone over m.

Surfaces with decorated spikes. Next, we decorate all the spikes of such a surface with pairwise
disjoint horoballs. A horoball connection is a geodesic arc on the surface that joins two decorated
spikes. Its length is given by the geodesic segment intercepted by the two horoballs decorating its
endpoints.

We define the admissible cone of a decorated surface to be the set of all infinitesimal deformations
that uniformly lengthen every horoball connection. More precisely, every element (m,v) in the
tangent space over a decorated metric m satisfies:

- dlam)()

11

>0,
BEH l/g(l))

where 7 is the set of all horoball connections. Note that an admissible deformation also uniformly
lengthens every closed loop of the surface, i.e., it satisfies (1), because we can always find a horoball
connection that remains inside a very small neighbourhood of such a loop for arbitrarily long time
and has bounded length outside. Thus the admissible cone in this case can be seen as a R?@-bundle
over the admissible cone of the convex core So, whose fibres are open convex subsets, where @ is
the total number of spikes.

On the decorated surface, we consider more arcs than in the undecorated case. In addition to
the arcs already mentioned, we allow two new types: finite arcs that are isotopic to a horoball
neighbourhood of a spike, and infinite arcs that are embeddings of [0, c0) such that the finite end
is on the boundary and the infinite end converges to a spike. This time the pruned arc complex
is defined to be the subspace of the arc complex formed by taking the union of all those simplices
o such that the arcs corresponding to the 0-skeleton of ¢ decompose the surface into topological
disks with at most one spike.

The strip added along an infinite arc is the region in H? bounded by two geodesics with the
spike as the common endpoint. A strip deformation along a finite arc is defined as in the previous
case. Again, we give a parametrisation (Theorem 6.1.2) of the admissible cone of a surface with
decorated spikes, using its pruned arc complex.

Theorem. Let Sfp be a hyperbolic surface with decorated spikes equipped with a decorated metric
m € @(Sgp). Let .,Zl\(Sgp) be its pruned arc complex. Choose m-geodesic representatives from the iso-

topy classes of arcs. Then, the projectivised infinitesimal strip map Pf : .2(5;‘1)) — PH(T,,9(SL))
is a homeomorphism onto its image PT(A(m)), where A(m) denotes the admissible cone over m.
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Decorated Margulis Spacetimes. In the final chapter, we interpret admissible deformations of
surfaces with decorated spikes as Margulis spacetimes with a certain type of decoration by lightlike
lines (photons), one photon per spike. In this context, the above theorem provides fundamental
domains of the Margulis spacetimes, adapted to the photons.

Full parametrisation. Ideal polygons and once-punctured polygons are two types of non-compact
hyperbolic surfaces in which every simple closed curve is either homotopic to a point or to a punc-
ture. Their arc complexes are known to be spheres of dimension one less than the dimension of
their respective deformation spaces. We show (Theorems 5.0.1 and 5.0.2) that the arc complex
parametrises the entire positively projectivised deformation space in these cases.

Theorem. Let I be the topological surface of an ideal polygon HS (n > 4) or a once punctured
polygon 112 (n > 2). Let m € D(II) be a metric. Choose m-geodesic representatives from the
isotopy classes of arcs. Then, the projectivised infinitesimal strip map Pf : A(I1) — P+ (T,,D(I1))
is a homeomorphism.

Decorated Polygons A convex decorated polygon in H? is a generalisation of a compact hyper-
bolic polygon whose vertices are allowed to be hyperbolic (truncations of hyper-ideal points) and
parabolic (ideal points decorated with horoballs). We show the deformation space of such a polygon
to be homeomorphic to an open ball. Finally, we prove (Theorem 5.0.3) that the subset of the
space of all infinitesimal deformations, consisting of those which lengthen every diagonal and edge,
is parametrised by the pruned arc complex of the surface.

Theorem. Let 112 (n > 3) be a decorated polygon equipped with a hyperbolic metric m € D(II2).
Choose m-geodesic representatives from the isotopy classes of arcs. Then the infinitesimal strip
map Pf, when restricted to the pruned arc complex A(II%), is a homeomorphism onto its image
P+ (A(m)), where A(m) denotes the admissible cone over m.

As a consequence of this, we get that the pruned arc complex of such a polygon is homeomorphic
to an open ball.

Theorem. The pruned arc complez A(II®) of a decorated n-gon II® (n > 3) is homeomorphic to
an open ball of dimension 2n — 4.

Plan of the thesis

The thesis is divided into seven chapters. Chapter 1 recapitulates the necessary vocabulary from
hyperbolic, Lorentzian and projective geometry. Chapter 2 introduces every type of surface men-
tioned above along with their deformation spaces and admissible cones. In Chapter 3, we discuss
the arcs and the arc complexes of the different types of surfaces and study their topology. Chapter
4 gives the definitions of the various strip deformations along with examples. It also contains some
estimations that will be required in the proofs. Chapter 5 contains the proofs of the parametrisation
theorems for ideal, punctured, decorated polygons. In Chapter 6, we prove the parametrisation the-
orems for general surfaces with decorated and undecorated spikes. Finally, Chapter 7 talks about
decorated Margulis spacetimes and how it is determined by an admissible deformation.



Chapter 1

Preliminaries

1.1 Pseudo-Riemannian manifolds

1.1.1 Scalar products

Let R™ be the usual n-dimensional real vector space and let (-, -}, 4 be the following non-degenerate
symmetric bilinear form of signature (p,q) € N? with p + ¢ = n:
for x =(21,...,20),y = (Y1,...,yn) € R™,

p p+q
(X, ¥)pq = inyi - Z LjYj-
1=1 Jj=p+1

The associated quadratic form is denoted by || - ||,.°. The space R” together with this quadratic
form is denoted by RP?. When ¢ = 1, the bilinear form is called Lorentzian scalar product and the
space RP'! is known as the Minkowski space of dimension p + 1. We are primarily interested in the
space R%! which we shall discuss further in the next section.

The isometry group of RP? is given by O(p,q) = {A € GL(n,R) | AL, ,A* =T, 4, } where

I, = [Hg ° } .
q

A totally positive (resp. negative) subspace of RP? is a vector subspace of RPT¢ on which the
restriction of the quadratic form is positive (resp. negative) definite.

A maximal totally positive or negative subspace has the largest possible dimension, along all
such subspaces. A maximal positive (resp. negative) subspace of RP'? has dimension p (resp. q).
The set of all maximal totally positive (resp. negative) subspaces is denoted by P (resp. N).

In RP?) it is possible to consistently orient all maximal totally positive subspaces. This is true
for all maximal totally negative subspaces as well.

The group of orientation preserving isometries Isom™ (RP-9) is given by the subgroup

SO(p, q) := O(p,q) N SL(n, R).

An element of this group either preserves or reverses the two consistent orientations on the two
sets P, N. This group has two connected components — the one that preserves the orientations of
these two sets individually is denoted as SO™ (p, q).

13
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1.1.2 Manifolds of constant sectional curvature

A pseudo-Riemannian manifold M is a differentiable manifold equipped with a smooth metric
tensor g such that g : T,M x T, M — R, is a non-degenerate scalar product, for every =z € M.
The signature of this scalar product is the same for all tangent spaces and is called the metric
signature. Clearly, all Riemannian manifolds are pseudo-Riemannian. A Lorentzian manifold is a
pseudo-Riemannian manifold in which the metric tensor is a Lorentzian scalar product on every
tangent space. Like in the case of Riemannian manifolds, a pseudo-Riemannian manifold comes
with a Levi-Civita connection that lets us define the curvature tensor and geodesics.

Example 1.1.1. e The space RP? is a complete flat pseudo-Riemannian manifold. In partic-
ular, the Minkowski space RP'! is a Lorentzian manifold.

e Consider the space RP9t!. Define the generalised hyperbolic space as the subspace
HP = {x € RP | |x]7 g0y = 1}

The metric induced by || - || _ on this space is has signature (p,q). We have the following

special cases:

p,q

p = 0: This is the unit sphere of dimension ¢, denoted by S?; the quadratic form induced
by || - [lg,411 is minus one times the usual metric on the sphere.

g = 0: This is a two-sheeted hyperboloid. The future-pointing sheet is the classical
hyperbolic space, HP.

— p = 1: This is a one-sheeted hyperboloid, which we projectivise, like in the previous case,
to get the de Sitter space, dS9T1 with minus its usual Lorentz metric.

— ¢ = 1: This is a connected quadric, which we projectivise, like in the previous case, to
get the Anti-de Sitter space, AdSP+!.

e The de Sitter space dS? (resp. the Anti-de Sitter space AdS?) is a complete Lorentzian
manifold with constant positive (resp. negative) sectional curvature.

The space RP? can be regarded as an affine space with its group of affine transformations
Aff(RP?) := O(p, q) x RPTY,

An affine pseudo-Riemannian manifold is a differentiable manifold obtained by quotienting RP-4
with a discrete subgroup of Aff(RP9) that acts properly discontinuously on RP4.

1.2 More on Minkowski space

In this section, we shall further study Minkowski space but shall restrict ourselves to the case where
p = 2. In the rest of the thesis, we shall refer to its norm and scalar product as || - || and (-, "),
respectively.
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Vectors. There is the following classification of points in the Minkowski space: a non-zero vector
v € R%! is said to be

e space-like if and only if ||v|? > 0,

e light-like if and only if ||v||* = 0,

e time-like if and only if ||v||? < 0.

A vector v is said to be causal if it is time-like or light-like. A causal vector v = (z,y, z) is called
positive (resp. negative) if z > 0 (resp. z < 0). Note that by definition of the norm, every causal
vector is either positive or negative. The set of all light-like points forms the light-cone, denoted by

L:={v=(z,9,2) € R® | 22 +¢* - 2% = 0}.

The positive (resp. negative) cone is defined as the set of all positive (resp. negative) light-like
vectors.

Subspaces. A vector subspace W of R?! is said to be
o space-like if WNC = {(0,0,0)},
o light-like ift W N C = span{v} where v is light-like,
o time-like if W contains at least one time-like vector.

A subspace of dimension one is going to be called a line and a subspace of dimension two a plane.
The adjective "affine" will be added before the words "line" and "plane" when we are referring to
some affine subspace of the corresponding dimension.

Duals. Given a vector v € R%!, its dual with respect to the bilinear form of R*! is denoted v-.
For a light-like vector v, the dual is given by the light-like hyperplane tangent to C along span {v}.
For a space-like vector v, the dual is given by the time-like plane that intersects C' along two light-
like lines, respectively generated by two light-like vectors v; and va such that span {v} = vi Nvs.
Finally, the dual of a time-like vector v is given by a space-like plane. One way to construct it is
to take two time-like planes Wi, W, passing through v. Then the space v is the vectorial plane
containing the space-like lines Wit and Wst.

1.3 The Hyperbolic Plane

In this section we will discuss the hyperbolic plane and notions related to it that will be used
extensively in the following chapters.

1.3.1 The different models

There are different models for the hyperbolic plane. Each one has its own advantages and disad-
vantages. We shall be using the hyperboloid model inside the Minkowski space, two disk models
and the upper half-plane model.
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Hyperboloid model. The classical hyperbolic space of dimension two H? can be identified with
the upper sheet of the two-sheeted hyperboloid {v = (z,y,2) € R*»! | ||v||? = —1}, along with the
restriction of the bilinear form. It is the unique (up to isometry) complete simply-connected Rie-
mannian 2-manifold of constant curvature equal to -1. Its isometry group is isomorphic to SO(2, 1)
and the identity component SOO(Q, 1) of this group forms the group of its orientation-preserving
isometries; they preserve each of the two sheets of the hyperboloid individually. If the hyperbolic
distance between two points u,v € H? is denoted by dyz(u, v), then cosh dy2(u,v) = —(u,v). The
geodesics of this model are given by the intersections of time-like hyperplanes with HZ.

Klein’s disk model. This model is the projectivisation of the hyperboloid model.

Let P: R>!\ {0} — RP? be the projectivisation of the Minkowski space. The projective plane
RP? can be considered as the set A URP', where A := {(z,y,1)|z,y € R} is an affine chart and
the one-dimensional projective space represents the line at infinity, denoted by l.,. The P-image of
a point v € R*! is denoted by [v]. A line in A, denoted by [, is defined as ANV where V is a
two-dimensional vector subspace of R?!, not parallel to A.

In the affine chart A, the light cone is mapped to the unit circle and the hyperboloid is embedded
onto its interior. This is the Klein model of the hyperbolic plane, denoted by D and whose boundary
at infinity, denoted by 0,,ID is the unit circle. This model is non-conformal. The geodesics are
given by open finite Euclidean straight line segments, denoted by [, lying inside D, such that the
endpoints of the closed segment [ lie on d5,D. The distance metric is given by the Hilbert metric
dp (w1, w2) = 3 log[p, w1;wa, q], where p and ¢ are the endpoints of 7, [ being the unique hyperbolic
geodesic passing through wy,wy € D, and the cross-ratio [a,b;c,d] is defined as %. The
group of orientation-preserving isometries is identified with PSU(1,1). A point p is called real
(ideal, hyperideal) if p € D (resp. p € 0D, p € <T> U A\D).

The dual of [ is the point (0,0,1) in A. The dual of any other projective line <T> =ANVis
given by the point A N VL. The dual p* of a point p € RP? is the projective line A N span {p}L.
If [ is a hyperbolic geodesic, then I+ is defined to be [ 1; it is given by the intersection point in
RP? of the two tangents to J, D at the endpoints of I.

Notation: We shall use the symbol -+ for referring to the duals of both linear subspaces as well
as their projectivisations.

Poincaré’s unit disk model. Again, we start with the unit disk, but this time we endow it
2 2

with the metric tensor g = %. This is a conformal model. Like in the previous case, the

boundary at infinity 0., is given by the unit circle. The geodesics are the diameters of the unit

circle and arcs of circles that intersect the unit circle perpendicularly.

Upper Half-plane Model. The subset {z = 2 + iy € C|y > 0} of the complex plane is the
upper half-space model of the hyperbolic space of dimension 2, denoted by U. The geodesics are
given by semi-circles whose centres lie on R or straight lines that are perpendicular to R. We shall
call the former as horizontal and the latter as vertical geodesics. The boundary at infinity 0,,U is
given by R U {oo}. The orientation-preserving isometry group is given by PSL(2,R) that acts by
Mébius transformations on U.

Notation: We shall denote by G the isomorphic groups Isom(H?),SO(2, 1), PGL(2,R) and by g
the Lie algebra of G.
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Figure 1.1: Concentric horoballs

Figure 1.2: Length of horoball connections

1.4 Horoballs and decorated geodesics

An open horoball h based at p € 0,,D is the projective image of H(v) = {w € H? | (w,v) > —1}
where v is a future-pointing light-like point in P~ {p}. If k > k’ > 0, then H(kvo) C H(k'vy). See
Fig. 1.1.

The boundary of an open horoball h(p) C D based at p € 5D is called a horocycle. 1t is the
projective image of the set

h(v) :={w c H? | (w,v) = —1}.

In the projective disk model, it is a Euclidean ellipse inside D, tangent to J.ID at p. In the
upper half-plane model, horocycles are either Euclidean circles tangent to a point on the real line
or horizontal lines which are horocycles based at co. In the Poincaré disk model, a horocycle
is an Euclidean circle tangent to do.ID at [p]. A geodesic, one of whose endpoints is the centre
of a horocycle, intersects the horocycles perpendicularly. Note that any horoball is completely
determined by a future-pointing light-like vector in R?! and vice-versa. From now onwards, we
shall use either of the notations introduced above to denote a horoball. Finally, the set of all
horoballs of H? forms an open cone (the positive light cone).

Given an ideal point p € 0D, a decoration of p is the specification of an open horoball centred
at p. A geodesic, whose endpoints are decorated, is called a horoball connection. The following
definition is due to Penner [18].
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The length of a horoball connection joining two horoballs vy, vy is given by

B <V1’V2>)_

1
= =1
=g (=

It is the signed length of the geodesic segment intercepted by the corresponding horocycles. In
particular, is the horoballs are not disjoint, then the length of the horoball connection is negative.

1.5 Killing Vector Fields of H?

The Minkowski space R is isomorphic to (g, x) where g is the Lie algebra of G := PGL(2,R) and
K is its Killing form, via the following map:

v=(x,y,z)»—>V:< Y CL‘+Z>.

rT—z -y
The Lie algebra g is also isomorphic to the set 2" of all Killing vector fields of H?:

VH[XU: U— TU ]

p— %(etv “P)li=0
Next, one can identify R?! with 2 via the map:

[XU: H? — THQ}
V=

p— VAP
where A is the Minkowski cross product:

(1,1, 21) A (T2, Y2, 22) = (—Y122 + 21Y2, —21%2 + T122, T1Y2 — Y122).

Finally, in the upper half space model U, one can identify 2~ with the real vector space Ra[z]
of polynomials of degree at most 2:

P() — {z — P(Z)aaz}

The discriminant of a polynomial in Ry[z] corresponds to the quadratic form || - || in R%!. So the
nature of the roots of a polynomial determines the type of the Killing vector field. In particular,
when

e P(z2) =1, the corresponding Killing vector field is parabolic, fixing oo;

e P(z) = z, the corresponding Killing vector field is hyperbolic, fixing 0, oc;

e P(z) = 22, the corresponding Killing vector field is parabolic, fixing 0.
Properties 1.5.1. Using these isomorphisms, we have that

e A spacelike vector v corresponds, in 2", to an infinitesimal hyperbolic translation whose axis
is given by vt NHZ2. If v and v~ are respectively its attracting and repelling fixed points in
C™, then (v, v,v™) are positively oriented in R%!.
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e A lightlike vector v corresponds, in 2, to an infinitesimal parabolic element that fixes the
light-like line span {v}.

e A timelike vector v corresponds, in 2, to an infinitesimal rotation of H? that fixes the point

vY__ in HZ.
—lIvll

Properties 1.5.2.

1. Given a light-like vector v € R%1, the set of all Killing vector fields that fix span {v} is given
by its dual v-. In RP2, the set of projectivised Killing vector fields that fix [v] € 0,,D is
given by the tangent line at [v].

2. The set of all Killing vector fields that fix a given ideal point p € J,,ID and a horocycle in D
with centre at p is given by span {v}, where v € P~1(p) in R%!.

3. The set of all Killing vector fields that fix a given hyperbolic geodesic [ in D is given by
P14,

1.6 Some Useful Results

1.6.1 Projective Geometry

Definition 1.6.1. Let [ be a projective line segment contained i@ with endpoints, denoted by
l

A,B. Then the two projective triangles formed by A+, B+ and
intersecting D, are said to be based at .

, with their disjoint interiors

Properties 1.6.2. Let [ be a projective line segment contained in D. Then, any projective line I
that intersects I, is disjoint from [ if and only if its dual I’ Lisa space-like point contained in the
interior of the bigon equal to the union of the two triangles based at [.

Proof. Let the endpoints of [ be denoted by A, B. There are three possibilities for [ — either a
geodesic segment (both A, B € D) or [ is a geodesic (A, B € 05D ), or a geodesic ray (A or B on
00D, the other inside D). It is enough prove the lemma for first case, the two others being limit
cases of the first.

Let I” be another projective line that intersects ID. Let X,Y be the respective dual points
ZJ',T’L. Since both the line segments intersect D, neither X nor Y can line inside I. Then, [ and I’
intersect each other at a point U € D if and only if U = Xy,

Using a hyperbolic isometry, we can assume that both the points A, B lie on the horizontal axis,
on either side of the origin. Then the line segment [ is given by the closed interval [a,b] x 0, where
A = (a,0),B = (b,0), with a < 0 < b. Owing to this choice of A, B, the duals A+, B+ are vertical
lines passing through (%, 0), (%, 0), respectively, with their point of intersection X lying on the line
at infinity i:o) The union A of the two projective triangles based at [ is given by the open vertical
strip bounded by these two verticals, that contains ). Now the line segment XY is a vertical line
passing through (y,0), where y is the horizontal coordinate of Y. The coordinates of the dual point

XV is given by (%, 0). Then [ and I’ intersect each other if and only if

a <

S| =

1
<bs -—<yory>
a
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@
o
pel

Figure 1.3: Properties 1.6.2

< -
In other words, the line !’ is disjoint from the segment [ if and only if Y is a space-like point inside
A. O

1.6.2 Calculations in U

Lemma 1.6.3. Let v = (a1,b1) and v2 = (az,b2) be two geodesics in the upper half-plane model
of H? where a1,bi,as,by are real numbers satisfying

ay < by < as < bs.
Let v be the unique common perpendicular to v, and 2. If © denotes the centre of the semi-circle

containing vy, then
asbs — a1by

_a2+b2—a1—b1.

Proof. Let g = <1: Z) € PGL(2,R) be the inversion with respect to the semi-circle v. Then, by
definition of inversion, we have
T oo =rr+s=0,

ar—b=pa; +q=abr+bis,
b—a= pby +q=aibir +ays,

,_\AA,_\
— = = =
N I
rEo

c— d = pas + q = asbar + bas.
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Y3

Figure 1.4: Common perpendiculars

, where "—" refers to the action of g. From eq.(1.2) and (1.3), we get that p = —s and from the
eqs.(1.1), (1.2) and (1.4), we get that

—S ang—albl
r=—= .
r as + by —a; — by

O

Lemma 1.6.4. Let y1,7v2,73 be three pairwise disjoint semi-circular, possibly asymptotic geodesics
in U such that none of them separates the remaining two geodesics from each other. For i € Zs, let
Bi be the common perpendicular to v;—1 and v;+1, whenever possible. Let x; be the centre of ~y; for
i1 =1,2,3. Let y; be the centre of B; or the common endpoint of vi—1,7viy1 fori=1,2,3. Then the
following equation holds:

T1 — T2 _ Y1 — Y2
T2 — 3 Y2 — Y3
i.e., [00, 21,22, 23] = [00,y1,Y2,Y3] - (1.6)

Proof. Label the endpoints of 71, 72,73 by {a,b}, {c,d}, {e, f} such that

a<b<c<d<e<f.
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Then from Lemma (1.6.3), we get that

_a+b _ef—cd
Ty = 9 ylie—i—f—c—d’ (17)
c+d ef —ab
= = — 1.8
T2 2 ) Y2 e+f_a_b7 ( )
e+ f cd — ab
= = - " 1.
Zs3 2 ) Yys c—l—d—a—b’ ( 9)
Using these coordinates, we calculate the right hand side of (1.5):
o ef —cd B ef —ab
o y2_6+f—c—d e+ f—a—>
_able+f—c—d)+cdla+b—e—f)+ef(ct+d—a—Db)
- (e+f—c—d)fe+f—a—D) ’
o ef —ab B cd — ab
& y3_e+ffafb c+d—a—">
_able+f—c—d)+cdlat+b—e—f)+ef(ctd—a—Db)
B (e+f—a—b)(c+d—a—Db) '
Hence,
y1—y2 _ (c+d—a—b) x1—x9
= = ) 1.10
y2-ys (e+f—a—0b) x—us (1.10)
O

Lemma 1.6.5. Let y1,y2,ys be as in the hypothesis of the previous lemma. Then we have ys < ya < y1.
In order to prove this, we need the following lemma:

Lemma 1.6.6. Let v1 := (a,b) and v2 := (b, ¢) be two asymptotic geodesics in U. Let v3 := (e, f)
be another geodesic ultraparallel to v1,7v2 such that

a<b<ec<e<f (1.11)

Let B, B2 be the common perpendiculars to the pairs v2,7vs and ~v1,7v3. Let y; be the centre of the
semi-circle B;, for i =1,2. Then we have y1 > yo.

Proof. From Lemma (1.6.3), we know that,

ef —bc ef —ab

yl:e+ffbfc’ e+ f—a—b

Calculating their difference, we get that,

ef —bc ef —ab
e—|—f—b—cie—|—f—a—b
_ef(c—a)+bcla+b—e—f)+able+ f—b—c)
- (e+f-b—c)le+f—a—b)

Y1 — Y2 =
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Using the hypothesis (1.11), we know that the denominator of y; — y2 is positive. So it suffices to
check the sign of the numerator.

ef(c—a)+bcla+b—e—f)+able+f—b—c)=ef(c—a)+b{cla+b—e—f)+ale+f—b—c)}
—ef(c—a)+b{elb—e— ) —alb— e~ )}

(c—a)lef +b(b—e—[))

= (c—a)le=b)(f ).

By eq(1.11), we have that the numerator is positive. Hence, y1 > ya. O

Proof of Lemma 1.6.5. Firstly, 1 < xo < x3. Then from (1.5) we get that, y; — y2 and ya — y3
have the same sign. So we shall calculate the sign of only one of them. Let # be the common
perpendicular to v3 and v := (b, ¢). Let 3’ be the centre of the semi-circle 5. Then using Lemma
(1.6.6) for the geodesics v, 72,73, we get that y' < y;. Again, by using the same Lemma for the
geodesics 7v1,7,73, we get that yo < y'. Hence, y1 > 1o. O

1.7 Simplicial Complex and PL-manifolds

The link of a simplex o in a simplicial complex X, denoted by Link(o, X), is the unique subcomplex
of X such that the union of all simplices in X containing o is given by ¢ X Link(o, X). The
codimension of a simplex o of a simplicial complex X is defined as codim (0) := dim X — dimo.

Definition 1.7.1. A simplicial complex is a d-manifold with boundary if the link of every 0-simplex
is either S¥~1 or B?~! and there exists a 0-simplex whose link is B¢~

Definition 1.7.2. A PL-manifold X is said to PL-collapse on to another PL-manifold Y if there ex-
ists a PL n-ball B” and another PL n—1 ball B»~! C OB" such that X = YUB" and B"~! = YNB".

Definition 1.7.3. (Simplicial) Collapsibility of a simplicial complex is defined recursively in the
following way:

1. The void complex @) and any O-simplex {0, v} is collapsible.

2. If a simplicial complex contains a non-empty face o such that its link and face-deletion are
collapsible, then X is collapsible.

Definition 1.7.4. The face-deletion of simplex o in a simplicial complex X, denoted by fdel(c, X),
is the subcomplex of X that contains all simplices that do not contain o.

Lemma 1.7.5. Let X be a simplicial complex. Let a be a 0-simplex such that Link(a, X) is closed
ball. Then the X PL-collapses to the face-deletion of a.

Proof. Take Y = fdel(a, X). The two balls required are Star(a, X) and Link(a, X). O
Properties 1.7.6. The following are true:
(a) Every simplex is simplicially collapsible.

(b) Every contractible simplicial complex of dimension one is collapsible.
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(¢) For every d > 0, a closed PL d-ball is PL-collapsible.

(d) [Welker]If at least one of two simplicial complexes X, Y is collapsible, then their join X XY
is collapsible.

Definition 1.7.7. A subcomplex L of a simplicial complex K is called an induced subcomplex of
K if whenever the 0-skeleton of a simplex o of K is contained in the O-skeleton of L, the entire
simplex o is also contained in L.

Theorem 1.7.8. Let K be a combinatorial manifold with boundary. Suppose OK is an induced
subcomplex of K. Let L be the simplicial complement of OK. Then, K collapses on to L.

Theorem 1.7.9. Any PL-collapsible d-manifold with boundary is a closed PL d-ball.



Chapter 2

The Surfaces

In this chapter, we will introduce the different types of finite hyperbolic surfaces along with their
deformation spaces. The first section gives a recap on compact orientable and non-orientable
surfaces with non-empty boundary. In the second section, we shall construct hyperbolic surfaces
with spikes. Finally, in the third section we will talk about hyperbolic polygons whose vertices are
allowed to be real, ideal and hyperideal.

2.1 Compact surfaces with boundary

2.1.1 Orientable Surfaces

Any orientable compact surface is of the form S, := S?#((T?)#9)#((D?)#") where
e S? is a sphere of dimension 2,
e T? is the topological surface of R?/Z?,
e D is a closed 2-disk,

e the variable g € N is called the genus of the surface and is additive under the connected sum,
ie, Sg#Sy = Sgtgq-

e the variable n € N denotes that number of boundary components.
Next, we shall look at some examples and their common names.
Example 2.1.1. When n = 0, the surface is called closed.
Example 2.1.2. Suppose that g = 0.
1. When n = 1, we get back the disk D.
2. When n = 2, we get an annulus.
3. When n = 3, the surface is called a pair of pants.
Example 2.1.3. When g = 1,n = 1, we shall call the surface a one-holed torus.

The Euler characteristic of such a surface is given by x(Sq.n) =2 —2g — n.

25
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Figure 2.1: A one-holed torus and a torus

2.1.2 Non-orientable surfaces
Any closed non-orientable surface is of the form T}, ,, = (RP?)#"4£((D?)#") where
e RP? is the projective plane,

e the variable h € N here is again additive under the connected sum; the surface corresponding
to h = 0 is the 2-sphere, which is orientable; so when we write T}, ,,, we implicitly assume
that h > 0. Also, we have the equality 1}, #S, = Thyog4, for any h > 0.

Example 2.1.4. When h = 1,n =1, we get the Mdbius strip.
Example 2.1.5. When h = 2,n =0, we get the Klein’s bottle.

2.1.3 Compact hyperbolic surfaces

We are primarily interested in those compact surfaces S which are hyperbolic and have non-empty
boundary. From the Uniformisation Theorem, we know that the Euler characteristic of such a
surface, denoted by x(.59), is negative. The following is the list of all the connected orientable and
non-orientable surfaces that aren’t hyperbolic, and hence excluded from the discussion:

So,0 : a sphere S?, So,2 : annulus,
Si0: atorus T? Ti; : a closed Mgbius Strip
T1 : a projective plane RP2, T5, : Klein’s bottle.

A complete finite-area hyperbolic metric with totally geodesic boundary on a compact hyperbolic
surface S = Sy, or Ty, , (n > 0) is given by the following information:

e A discrete faithful representation, called a holonomy representation
p:m(S) — PGL(2,R),

that maps each b; to a hyperbolic element. When S = S, ,,, the image p(71(5)) is a Fuchsian
subgroup of PSL(2,R).

e A developing map dev : S —s H?2, such that the following diagram commutes: for all
S 7T1(S)
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&3 (=

Figure 2.2: Mo6bius strip and a one-holed Mgbius strip

Figure 2.3: Universal cover of one-holed torus

for all v € m1(S). Here, S is the universal cover of S, on which an element v € 7,(S) acts by
deck transformations.

It follows from these conditions that the group I' := p(m1(S)) is a discrete finitely generated free
group of PGL(2,R) containing only hyperbolic elements. The dev-image is a simply-connected
region in H? bounded by infinite geodesics corresponding to the lifts of its boundary components
9;S, for every ¢ = 1,...,n. These geodesics are pairwise disjoint in H2. The deformation space
D(S) of the surface is the set of conjugacy classes of all possible holonomy representations. It is a
connected component of the set

{[p] : p is discrete, faithful; Vi, p(b;) is hyperbolic} C Hom(m(S), PGL(2,R))/PGL(2,R),

where the action of PGL(2,R) is by conjugation.

Let S be a compact hyperbolic surface endowed with a metric m = [p] € D(S). Given an
element [y] € m1(S) \ {Id}, there exists a unique closed m-geodesic in this homotopy class, denoted
by 7.
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Definition 2.1.6. The length function is defined in the following way:

L: D(5) — Rug
tr(p(vq))
[)] — 2arccosh (%)

The following is a well-known result (for e.g. see [7]) which is usually proved using Fenchel-
Nielson coordinates:

Theorem 2.1.7. Let S. be a compact hyperbolic surface with geodesic boundary.

1. If S, = Sy n, then its deformation space ©(Sy.r) is homeomorphic to an open ball of dimension
6g — 6 + 3n.

2. If Sc = T, then its deformation space © (Th, ) is homeomorphic to an open ball of dimension
3h — 6+ 3n.

2.2 Surfaces with non-decorated spikes

These surfaces have been studied before in various contexts — Penner [18] gave a cell decomposition
of their deformation spaces, Harer [11] has determined the topology of their arc complex (see
Chapter 3 for more details), McShane [15] has determined the orthospectrum of a one-holed polygon,
Parlier and Pournin [17] have studied the diameters of their flip graphs.

In the following we will start with the description of the simplest surface of this type and then
gradually increase the topological complexity to obtain more generic examples.

The smaller surfaces

Ideal Polygons. An ideal n(> 1)-gon, denoted by HS , is the topological surface of a disk B2
with n points removed from its boundary. When n(> 3), we can put a hyperbolic metric on it by
taking the convex hull in D of n distinct points on J,,D. The n ideal points are called vertices and
they are marked as x1,...,2z,. The edges are the infinite geodesics of D joining two consecutive
vertices. The restriction of the hyperbolic metric to an ideal polygon gives it a complete finite-area
(equal to 7(n — 2)) hyperbolic metric with geodesic boundary. Its fundamental group is trivial. It
is our first example of a hyperbolic surface with spikes. Fig. 2.4 shows an ideal pentagon in the

projective model D.

Ideal once-punctured polygons. For n > 2, an ideal once-punctured n-gon, denoted by 112 is
another non-compact complete hyperbolic surface with geodesic boundary, obtained from an ideal
(n 4+ 2)-gon, by identifying two consecutive edges using a parabolic element T" € PSL(2,R) that
fixes the common vertex. The resulting surface has a missing point which we shall call a puncture.
The fundamental group 71 (I1Y) of the surface is generated by the homotopy class of a simple closed
loop that bounds a disk containing this puncture inside the surface. If p : 7 (II)) — PSL(2,R) is
the holonomy representation, then p(m (II9)) ~ Z, with p(y) = T. The edges in this case are the
connected components of the boundary of the surface. The vertices are the ideal points. Fig. 2.5
shows the construction of a punctured triangle IS’ from an ideal pentagon 1_[5O7 by identifying the
two blue edges. The rightmost panel depicts the surface in a "polygonal" way.
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Figure 2.4: An ideal pentagon

|

Figure 2.5: An ideal once-punctured triangle and its universal cover

General Surfaces
In this part, we shall construct a "big" hyperbolic surface with undecorated spikes from a compact
surface S, by gluing one-holed polygons along its boundary components.

Definition 2.2.1. Let S. be Sy, or T}, 1, with m > 0. Consider k(> 0) ideal polygons Hr?ﬂ . ,Hr?k,

with n; > 1. Then, the surface Sy, obtained by taking the connected sum SC#Hgl# e #H,?k is
called a surface with spikes.

The vertices of the ideal polygons used in the construction are called spikes. The total number
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of spikes of such a surface is given by @ := Ele n;. The connected components of the boundary
of Sy, are either homeomorphic to the circle S (boundary component of S.) or to open intervals
(boundary of ideal polygons). The total number of connected components is m + Q.

Given an orientable (resp. non-orientable) surface with spikes such that 6g — 6 +3n +Q > 0
(resp. 3h — 6+ 3n + @ > 0), we can put a complete finite-area hyperbolic metric on it.

The following are some examples of "small" hyperbolic surfaces:

2
4
N\

Figure 2.6: A fundamental domain for an ideal one-holed square

Example 2.2.2. The orientable surface IBSQ#HHO, for n > 0, is called an ideal one-holed n-gon
and denoted by II®. Its boundary consists of one simple closed curve, denoted by v and n open
intervals. Its fundamental group 71 (I12) is generated by the homotopy class of v and is isomorphic
to Z. Next, we put a hyperbolic structure on it in the following way:

Let g € PSL(2,R) be a hyperbolic element with axis as a bi-infinite geodesic, denoted by I. See
Fig. 2.6. It divides the boundary circle J,ID into two open intervals. Choose a point z; in any
one of them and take (n — 1) distinct points o, ..., z, on the same interval between z; and its
image ¢ - ¢1. Mark all the points of their (g)-orbit. All of them lie on the same side of [ as the
initial points. Join consecutive pairs using infinite geodesics. Drop two perpendiculars from x; and
g - x1 and identify them using g. The quotient is a complete finite-area hyperbolic surface with
geodesic boundary and the underlying topological surface is homeomorphic to that of an ideal once-
punctured n-gon. If p : 71 (IIY) — PSL(2, R) is the holonomy representation, then p(y) = g. The
images of the ideal points x1,...,x, in the quotient are called vertices, and those of the bi-infinite
geodesics as well as the closed boundary geodesic are called edges.

Example 2.2.3. The orientable surface S := 82#1'[7?1 #H,?2 for ny,me > 0 is called a (n1,n2)-
spiked annulus. Any connected component of its boundary is homeomorphic to an open interval. It
contains exactly one isotopy class of simple curves [y], where 7 is a non-trivial simple closed curve.
Its fundamental group is again isomorphic to Z. Take an ideal n-gon in D, where n = ny + no + 2.
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Figure 2.7: A fundamental domain for a (1,2)-spiked annulus

Its vertices are denoted by z1,...,x, in the anti-clockwise direction. Let l1,ls be the edges joining
the pairs of vertices (2,41, Zn,4+2) and (x,, 1), respectively. Let g € PSL(2,R) be a hyperbolic
isometry whose axis intersects both [; and ls at the same angle, and whose translation length is
given by the distance between the two points of intersection. Then the quotient surface S = Hg / ~,
where for every z € l1, z ~ ¢- 2, is a complete finite-area hyperbolic surface with geodesic boundary,
homeomorphic to a (nj, ng)-spiked annulus. Its holonomy representation p : m1(S) — PSL(2,R)
maps the generator [v] to g.

Figure 2.8: A fundamental domain for a 3-spiked Mdbius strip

Example 2.2.4. The non-orientable surface RP2#HS , for n > 0, is called a spiked Mdbius strip.
Its orientation double cover is a (n,n)-spiked annulus. Similar to the previous example, we consider
an ideal n + 2-gon with marked vertices z1, ..., xy 2. See Fig. 2.8. Take any two edges l3, 2 of the
polygon that don’t have any common endpoint. Let r € PGL(2,R) be the hyperbolic reflection along
the common perpendicular to /1, ls and g € PSL(2,R) be a hyperbolic isometry whose axis intersects
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I; and Iy such that the angles of intersections are complementary. Let h := rg € PGL(2,R). The
quotient H,? / ~, where for every z € l;, z ~ h - z, is a complete finite-area hyperbolic metric with
geodesic boundary and is homeomorphic to a spiked Mdbius strip with n marked spikes.

Definition 2.2.5. The smallest closed convex subset of a surface with spikes S which contains all
closed geodesics of S is called the convez core of the surface and denoted by So.

If S is a surface with spikes obtained from a compact surface S., with m boundary components,
and k ideal polygons, then its convex core is usually a compact surface of the same genus with
(k+m) boundary components, each of which is homeomorphic to S'. The list of exceptions is given
below.

Example 2.2.6. The following is a list of all hyperbolic surfaces whose convex cores are not
hyperbolic surfaces:

e Ideal polygons Hg and ideal punctured polygons I1® have empty convex cores.

e The convex cores of a spiked Mobius strip, one-holed polygons and a spiked annulus are both
homeomorphic to a circle.

Label the boundary components of the convex core as Ji,...,0,+k. These are called the
peripheral loops of the surface S. FEach peripheral loop is either isotopic to a boundary compo-
nent of the compact surface S, or it separates a one-holed m-gon (called a crown) from S, where
m € {ny...,n,}. There are k such crowns, which are labelled as C1, ..., C.

Notation 2.2.1. For every i = 1,...,n, define ¢; = 0 if the i-th peripheral loop is isotopic to a
boundary component of S. and g; = nj, if the i-th peripheral loop separates a one-holed n;-gon,
for some j € {1,...,k}. Define the spike vector ¢ := (q1,...,¢qn). Finally, an orientable (resp.
non-orientable) surface with genus g (resp. h), n peripheral loops and spike vector ¢ is denoted by
ST, (resp. Ty .)

Notation 2.2.2. Now we define the above notation for the exceptional cases that do not have
hyperbolic convex cores. For ideal g-gons, (¢ > 4), we shall use the notation Sé?l). For (q1,q2)-

spiked annulus, we shall use Séfg"”). Finally, for a Mobius strip with ¢(> 1) spikes, we shall use

o)

Next, we shall construct a hyperbolic metric on a general hyperbolic surface with spikes. We
shall assume that the convex core of the surface is hyperbolic since we have already treated the cases
where it is not hyperbolic. The surface with spikes and its convex core have the same homotopy
type. In particular, m1(So) = m1(Ssp). Let ([p],dev) be a hyperbolic structure on So. The
holonomy representation p of S. gives a holonomy representation of S,,. Next, we will construct
the embedding R’ of the universal cover of Sy, in . Start with the simply connected region
R = dev(%) in D bounded by pairwise disjoint lifts of d;, 2 = 1,...,n. We choose @ distinct
points on do.D in the following way— whenever ¢; > 0, take ¢; ideal points z* = (zf,...,z} ) on
the same side of a lift of the peripheral loop 8;. Denote by x = (z!,...,2") € (9-D)? the n-tuple
of vectors. Join consecutive pairs x;,z;41, j = 1,...,¢; — 1, by infinite geodesics. Then, R is
the region bounded by the infinite geodesics corresponding to boundary components. It contains
dev(So). See Fig. 2.10.

A metric on a surface with spikes S5, can be seen as an ordered pair (p,x). Two pairs
(p,x), (p',x") are said to be equivalent if there exists an element g € PGL(2,R) such that for
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Figure 2.9: The universal cover of Sy 3

all v € m(9), p'(7) = gp(7y)g~* and x’ = g - x. Hence, elements in the deformation space are
equivalence classes of such pairs. The following theorem about the dimension of the deformation
space of a surface with non-decorated spikes is analogous to Theorem 2.1.7.

Theorem 2.2.7. Let S, be a hyperbolic surface with () non-decorated spikes.

1. If Sgp = Sg)n, then its deformation space ’D(S’gn) is homeomorphic to an open ball of dimen-

sion 6g — 6+ 3n + Q.

2. If Sgp = Tg’n, then its deformation space Q(Tg’n) 18 homeomorphic to an open ball of dimen-
sion 3h — 6+ 3n + Q.

Deformation space of one-holed polygons We conclude this section by parametrising a sub-
space D of the deformation space D (II?) of one-holed polygons, which is defined in the following
way: let (p,x) be a metric on II? and let p(m (IIY)) = g € PSL(2,R), a hyperbolic element. Then
two metrics (p,x), (p/,x’) are said to be equivalent if there exists an element h € PGL(2,R) such
that for all v € m(I12), p'(v) = hp(y)h~ !, x' = h - x and the axis of h is distinct from that of g.
Then ®g is defined to be the set of all such equivalence classes.

2.2.1 The hyperbolic surfaces with decorated spikes

Definition 2.2.8. A hyperbolic surface with decorated spikes is a surface obtained from a hyper-
bolic surface of type S{ , or T;in by decorating each spike by a horoball. Such a surface is denoted

by Sgﬁ (when orientable) and Tg’g (when non-orientable).
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Figure 2.10: The universal cover of Sé?él’o)

We shall use the symbol S;Lp for referring to both cases at once.

The deformation space @(Sgp) of such a surface is the trivial R(;?o bundle over ©(S,,) where
the fibre over a point in the base space is given by the Busemann functions of the horoballs based
at the @ spikes of the surface Ssp.

Definition 2.2.9. A horoball connection on a surface S;Lp is a geodesic path joining two not nec-
essarily distinct decorated spikes.

It is the image in the quotient of a bi-infinite geodesic in I joining a pair of decorated ideal
vertices in D. Next we define its length.

Definition 2.2.10. Let 8 be a horoball connection with a lift E in the universal cover. The
endpoints of the latter are two ideal points pi, ps decorated with two horoballs hq, ho. Then the
length of 8 is given by the lambda length of hy, ho. (See Definition (?7)).

We have the following length function for horoball connections:

lp: D(Sh) — R
m — )\(hl,hg).

In Chapter 6, we shall be interested in the deformations such that the lengths of all horoball
connections increase uniformly. The set of all horoball connections is denoted by #. Using Theorem
2.2.7, we have that

Theorem 2.2.11. Let Sgp be a hyperbolic surface with QQ decorated spikes.
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1. If Sgp = Sg:ﬁ, then its deformation space @(S‘gf;ﬁ:) is homeomorphic to an open ball of dimen-

sion 6g — 6 + 3n + 2Q.

2. If S;‘p = T,?”Z, then its deformation space ’D(Tgi’) is homeomorphic to an open ball of dimen-
sion 3h — 6 + 3n + 2Q).

2.2.2 Trivial Bundles

Let S;, be a hyperbolic surface with undecorated spikes with convex core So. Let S gp be the surface
Ssp along with horoball decorations around every spike. Then we have that

D(So) ¢ D(Ssp) <2 D(SH),

where p; is trivial R? bundle map and the fibers of p, are convex subsets.

2.3 Hyperbolic polygons
In this section, we study the following objects:

e General compact polygons: These are hyperbolic polygons with real or truncated hyperideal
vertices.

e Decorated polygons: These can have real, truncated hyperideal and ideal vertices that are
decorated with horoballs.

All of these polygons are constructed, in the following section, from polygons in RP? satisfying
certain properties.

2.3.1 Convex Polygons in RP?

Start with a convex n-gon P, in RP? such that each edge intersects ID. In the following we define
the truncation of a vertex of P, and a truncated vertex:

e Let p be a hyperideal vertex of the polygon P, with the dual time-like line p* intersecting
only the two edges [,1’ adjacent to p in P,. The hyperbolic line segment v supported on the
line p* and intercepted between the two edges [ and I’ is called a truncated hyperideal vertex,
and the removal of the triangle, formed by [,!’ and v, from the original polygon P, is called
the truncation of the hyperideal vertex p.

e Suppose that p is an ideal vertex of P, and consider a horoball h based at p. Then the
truncation of p with respect to the horoball h is the removal of the interior of h along with p.

An ideal vertex v is said to be decorated if a horoball, based at v is added. Among these polygons
we shall consider only those which satisfy the following property:

Property: The lengths of every truncated hyperideal vertex is positive. (2.1)
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Figure 2.11: Non-example and example for Property 2.3.1

Remark 2.3.1. Property (2.1) implies that after every truncation of a hyperideal vertex, the remain-
ing (truncated) vertices and edges of the polygon are entirely contained in one of the half spaces
formed by the infinite geodesic carrying this segment or they are contained in complement of the
horoball used for the truncation.

Fig. 2.11 shows one non-example (left) and one example (right) of convex polygons in RP2.
In the non-example, after the truncation of the hyper-ideal vertex E, the length of the edge EF
becomes negative.

Next, we shall define the different types of hyperbolic polygons whose deformation spaces we
shall be parametrising using their respective arc complexes.

Compact Hyperbolic polygons. Starting from a convex polygon without any ideal vertices,
one can construct a compact hyperbolic polygon by truncating hyperideal vertices whenever there
are any. The topological surface of the resulting polygon shall be denoted by IIf,, where n is the
total number of vertices of the original polygon. Fig. 2.12 shows a compact quadrilateral with two

truncated hyperideal and two real vertices.

Decorated Polygons. The hyperbolic polygon obtained by truncating every hyperideal vertex
and decorating every ideal vertex of a convex polygon satisfying Property (2.1) is called a decorated
polygon and the underlying topological surface shall be denoted by TI2.

Note that a decorated polygon with no ideal vertices is just a compact polygon. A decorated
polygon with only ideal vertices is called a decorated ideal polygon.

Given a decorated polygonal surface TI?, the term generalised vertez shall be used to refer to
a real vertex or the truncation of a hyperideal vertex or a decorated ideal vertex. A generalised
vertex is said to be of

e hyperbolic type if it is the truncation of a hyperideal point,
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ES

Figure 2.12: A compact quadrilateral

e parabolic type if it is a decorated ideal vertex,
e clliptic type if it is a real point.

Let V = (v1,...,v,) be the cyclically anti clock-wise ordered n-tuple of the generalised vertices of
II2. The type of V is defined to be the type of each vertex in the given order.

2.3.2 Deformation space of polygons

In this section, we shall prove that the deformation spaces of the different types of polygons, up to
isometry, defined in the previous subsection are open balls.

For an ideal or punctured polygon, its deformation space is defined to be the set of all complete
finite-area hyperbolic metrics with geodesic boundary, up to isometries that preserve the markings
of the vertices.

Theorem 2.3.1.  The deformation space ®(II) of an ideal polygon 11 = HWQ, n > 3, is homeo-
morphic to an open ball B" 3.

Proof. Let x1,...,2, € RU{oo} denote the cyclically ordered vertices of an ideal polygon. Since
G = PGL(2,R) acts triply transitively on 0D, there exists a unique g € G that maps (1, x2, x3) to

(00,0, 1). Therefore, a metric on an ideal n-gon is determined by the real numbers x4, . . ., z,. Hence,
the deformation space (1Y) = {(z4,...,2,) ER"3:1 <24 <...<zy,} is homeomorphic to
D"-3. O

Theorem 2.3.2. The deformation space D(I1) of a punctured polygon Tl = TIY, n > 1, is
homeomorphic to an open ball B~ L.

Proof. From the construction of a punctured n-gon from an ideal (n + 2)-gon, and the above
discussion, we have that (1) ~ B" L. O
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Next we shall define the deformation space for decorated polygons, I® with n > 3.

Let P; and P be two decorated polygons with generalised vertex set Vi = (vq,...,v,) and
Vo = (p1,..., ftn) such that for every i = 1,...,n, v; and p; are of the same type. Then P; is
said to be equivalent to P, if and only if there exists an isometry v € Isom™* (D) such that for
every 4, ¥(v;) = p;. In the case of parabolic vertices, the horoballs are mapped to each other via
the isometry . The set of all equivalence classes is called the deformation space of the decorated
polygon II® with the given type of vertices, and is denoted by D (I1%).

Theorem 2.3.3.  The deformation space D(IQ) of a decorated polygonal surface IS (n > 3),
with a given type V of generalised vertices, is homeomorphic to an open ball of dimension 2n — 3.

Proof. The theorem is proved by inducting on the total number of generalised vertices n.

For n = 3, there are six different combinations possible for the vertices of a decorated triangle.
In each case we start with two generalised vertices vy and s of specified types and then determine
a region K C RP? such that a point p lies inside K if and only if p or its truncation can be the third
vertex v3 of a decorated triangle whose other two vertices are v1 and vs. We show that the initial
two points can be determined, up to isometries that preserve the markings, by using exactly one
parameter that varies in an open interval. Finally, we show that K is homeomorphic to an open
ball of dimension two, when v3 is hyperbolic or elliptic. If v3 is parabolic, we show that K is an
open arc contained in d,,D. A point in K is then decorated using a horocycle; this gives a trivial
bundle K’ of dimension two over a contractible space of dimension one.

Without loss of generality, we assume that the three vertices are cyclically ordered in the trigono-
metric sense as v; — vy — v3. For ¢ = 1,2, 3, the edge opposite to the vertex v; is labeled as e;.

[

Figure 2.13: Base step Case (a)
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(a)

Suppose that v; and s are both of hyperbolic type (Fig. 2.13(a)). Then they are the
truncations of two hyperideal points p; and po respectively. They are supported on the
hyperbolic geodesics [; := p;= ND and Iy := p;+ ND, respectively. The endpoints of I, are
labeled as w1, us and those of I as vy, vs such that these four ideal points are ordered in the
anti-clockwise manner, as uj,us,v2,v1. Using the triple transitivity of the action of G on
JooD, we can fix any three of these points and choose the fourth one from an open interval,
contained in Oy ID. The line @, supporting the edge e3 passes through the hyperideal points
p1,p2. Using Remark 2.3.1 for the geodesics l1,lo we get that the third vertex r3 must
be contained in one of the two disjoint open projective triangles bounded by <e_?,), l1, s,
intersecting D; we dengte by A the one which is in accordance with the chosen ordering
vy — g —v3. Let ty, ta be the tangents at u; and vy from p; and py respectively, to O D.
Then from Lemma 1.6.2, their point of intersection p lies inside A. Let P be the pentagon
bounded by the lines [y, ls, €3, t1, to lying in A.

Now, by applying Lemma (1.6.2) to the geodesic with endpoints u1,v1, we get that the third
vertex v3 is hyperbolic if and only if it is the truncation of a hyperideal point lying in the
region P. Hence the region K is given by P ~ D. If v3 is of parabolic type, then K is given
by the open contractible arc ujv; := P N 0xcD. The horoball decoration gives a trivial line
bundle over uiv;. Finally, any point in K := PN can be a valid elliptic vertex and these are
the only possibilities. So in all the three cases, the set K is homeomorphic to an open 2-ball.

Suppose that v and v are both of parabolic type. Then these are two ideal points p; and po
decorated with horoballs hy and hg, respectively. See Fig. (2.14). Using the triple-transitivity
of the action of G on 0, D, we can suppose that p; = (—1,0), p2 = (1,0). Again, e3 denotes the
common edge to the two vertices, whose length [(e3) is given by the lambda length between
the horoballs h; and hy chosen to decorate the initial vertices. This accounts for one real
parameter.

Let ?1) and ﬁ be the tangents to the circle at p; and po respectively. Again, the third
vertex 3 is contained inside exactly one of the two disjoint triangles bounded by %1, to ,<e_3>.
Otherwise, a point outside these two triangles, intersects the geodesic carrying es, by Property
(1.6.2). The triangle in accordance to the chosen ordering of the vertices, is denoted again by
A and shaded green in the figure.

Now, from Property 1.6.2, the dual to any hyperideal point in A is disjoint from e3. So we
get that v3 is hyperbolic if and only if it is the truncation of a point inK := A ~ D. In the
figure, the triangle has been constructed using one such hyperbolic vertex, truncated from the
hyperideal vertex ps. In this case, all the edges ey, e2, e3 have positive length which is given
by the hyperbolic length of the green segments. If it is of parabolic type, then we first choose
any point p3 from the arc p1ps := AN D on the circle and then choose any horoball based
at p. So the set K in this case is a trivial R-bundle over the contractible one-dimensional
space p1pe2. Finally, the third vertex vs is elliptic if and only if it is a point in K := AND. In
the figure, such a point v has been used to complete the triangle. Once again, all the lengths
are positive.

Next, suppose that v; and v, are both of elliptic type. See Fig. (2.15). Using the transitive
action of G on D, we can assume that v is the origin (0,0). Up to a rotation around the
origin, the vertex v, can be considered to be on the open line segment with endpoints on (0, 0)
and (1,0) inside D. So the two vertices are determined by the hyperbolic distance between
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Figure 2.14: Base step Case (b)

vy and vo, which varies in the interval (0, 00). The edge €3 joining the two real points 7 and

vs when extended, meets the dual lines vy

.o at hyperideal points. Then the region where

Figure 2.15: Base step Case (c)
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the third vertex must lie is the projective triangle A bounded by v, vo" and €3 which is in
accordance with the ordering. Using Property 1.6.2, we get that the v3 can be hyperbolic if
and only if its dual is a point in K = A ~ D. In the figure, one such hyperbolic v5 has been
drawn. Next, the vertex vz is parabolic if and only if its center is a point in K = A N 05 D.
Finally, vs is elliptic if and only if it is a point in K = AND.

Next, we suppose that v is of hyperbolic type and v is of parabolic type. See Figure (2.16).
The vertex v; is carried by a geodesic | whose endpoints are denoted by wu,v; its dual is a
space-like point p;. The second vertex v, an ideal point ps, decorated with a horocycle h.
Due to the given ordering of the initial vertices, the cyclic ordering in the trigonometric sense
of these three ideal points is u — v — p. Using triple transitivity of the action of G on 05D,
we can fix u,v and ps. Then, the vertices are completely determined by the radius of h;
this accounts for one real parameter. The edge €3, when extended, passes through [ and p.

Figure 2.16: Base step Case (d)

The property (1.6.2) implies that the rest of the polygon is contained entirely in one of the
projective triangles based at [. In this case, it is the projective triangle, denoted by Apjuv
that contains ps. Next we draw tangents t1, to, t3 to JsoDD at u,v and po, respectively. Let
q1,q2 be the intersection points t; N t3, ta N t3, respectively. Then due to convexity, the
third vertex r3 must lie inside exactly one of the two triangles Aqipips and Agopips that
intersects ID. The trigonometric ordering v; — v5 — v3 forces v3 to lie inside the former. Let
A = Apjuv N Agipipe. Then A is a pentagon, which is shaded green in the figure.

Suppose that vg is of hyperbolic type. Then it is carried by a geodesic which is disjoint from [
and e3. So the dual point v3~ is a hyperideal point in the triangle Apqu. From above we also
know that v3- € K := Apqu ~ Ag. Then v3 lies inside A if and only if v3 is a hyperideal
point inside K, which is homeomorphic to an open disk. If v3 is of parabolic type, then the
centre of the horocycle carrying this vertex can be any point from the open arc K = ANd,.D.
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Like before, the radius of the horocycle based at such a point can vary in an open interval
such that the horocycle does not intersect any other vertex or edge. Finally, the vertex vy is
elliptic if and only if it is a point inside K = A\ Ay, which is homeomorphic to an open disk.

Next, we suppose that vy is parabolic and vy is elliptic. See Figure (2.17). Let h be the
horocycle carrying vy with centre at p; € 9,,D. Since vy is elliptic, it is a point py in D and
its dual vo" is a space-like line. The edge &3 passes through p and v,. Using the transitive
action of G on D, we fix vy to be the origin (0,0) of the disk and rotate the closed disk D to
have p = (1,0). Then the only parameter that determines the two generalised vertices is the
horoball A which determines the length of the edge €3. Let 't be the tangent to the unit circle
at p;. Then the third vertex is contained in the interior of exactly one of the two triangles

Figure 2.17: Base step Case (e)

bounded by ?, Q, vp. This is because any point outside or on the boundary of these two
triangles is either space-like or ideal. If it is hyperideal then its dual segment either intersects
ez or h. If it is ideal, then it is equal to p which makes the triangle degenerate. Denote by
A that triangle which is in accordance with the ordering v, 1o, v3.Let be the tangent to
h from vs5. Label the points ? Nh, ? N 0D and ? N E) by a,b and c respectively. Then
any line joining 15 and a point in the closed region Ag bounded by T, h and ?, contained
in A, intersects h. So vz is completely contained inside A ~\ Ag.

Suppose that vz is of hyperbolic type. Then it is carried by a geodesic which is disjoint from
h and es. So the dual v3* is a hyperideal point in the triangle Apgu. From above we also
know that v3- € K := Apqu ~ Ag. Then vg lies inside A if and only if v3* is a hyperideal
point inside K, which is homeomorphic to an open disk.

If v3 is of parabolic type, then the centre of the horocycle carrying this vertex can be any
point from the open arc ub of 0. Like before, the radius of the horocycle based at such a



2.3. HYPERBOLIC POLYGONS 43

point can vary in an open interval such that it does not intersect any other vertex or edge.
Finally, if v3 is of elliptic type then it can be any point inside A \ Ag, which is homeomorphic
to an open disk.

(f) Finally, we suppose that 14 is hyperbolic and vy is elliptic. The vertex vy is carried by a
geodesic | whose endpoints are denoted by u,v. We fix v5 to be the origin of the disk and
rotate D to fix v. Then the two vertices are determined by the position of v which varies
in an open interval in 95D ~\ {u}. The third edge €3 when extended, passes through the
hyperideal point ;- and intersects the hyperideal line 15+ at a hyperideal point p. Let T
be the tangent to O, ID at w. It intersects o at a hyperideal point g. The third vertex
v3 is contained in the open quadrilateral () bounded by ?, vt 1 ,%} such that its closure
contains u. If v3 is of hyperbolic then K is given by the hyperideal points of @. If v3 is of
parabolic type, then K is given by the trivial bundle over the arc K := Q N 0, D. Finally v3
is elliptic if and only if it is a point of K := @Q N D.

This concludes the base step.

Suppose that the statement is true for n = 3,...,k. In the induction step, there are three
possibilities for the new vertex—elliptic, parabolic or hyperbolic. Without loss of generality, we
assume that the elliptic vertices are added on at the end. So if the (k + 1)-th vertex is non-elliptic
then so are all of the previous ones.

Let HI?—H be the polygon obtained from H? by adding a vertex v between two vertices v; and
Vit1; let € be the edge joining them. Let e be the infinite geodesic carrying €. It divides D into
two half spaces: the one containing Hg is denoted by H7, and the other half space, denoted by Hs,

must contain the new vertex v. Let ¢/,¢” be the edges joining ;40,141 and v;, v;_; respectively.

Let A be the triangle bounded by the projective lines ?, e’ , e” that intersects Hy. Then Property

2.3.1 applied to the new polygon H?H gives that the truncated vertex v is entirely contained in
the interior of Ho N A. Suppose that v; and v;41 are both elliptic. See Fig. (2.18). Then, these
are also the intersection points e N e’ and e N €', respectively. Also, owing to the order chosen,
the new vertex v is of elliptic type. In the figure, the region H, is shaded yellow and the triangle
A is shaded blue.Then the polygon H?_H is convex if and only if v is a point in Hy N A, which is
homeomorphic to an open ball (shaded green in the figure). So using the induction hypothesis, we
have that D(IIY, ;) ~ D(IIY) x D? ~ B2+~1,

Next, we suppose that v; is parabolic and v;41 is hyperbolic. Then v; is an ideal point p
decorated with a horoball i and v;;; is the truncation of a hyperideal point ¢, supported on the
infinite geodesic I, whose endpoints are ideal points u,v € 0,,D. The edge € joining these two
vertices is a geodesic ray with the finite endpoint on [ and the infinite end converging to p. It is
carried by the straight line containing p, q. Let t,, ¢, are tangents to the boundary of the unit circle
at u,v. Using the convexity condition (2.3.1) on v;41, we have that the polygon II2 as well as the

k + 1-th vertex v are both contained in that associated triangle Aquv based at [ that contains the
point p. The projective line €', carrying the edge ¢’ that joins the two vertices v;i0,1;11, passes
through g. Similarly, the projective line e’ carrying the edge e” that joins the two vertices v;, v;_1,
passes through p. As in the previous case, we shall denote by A the projective triangle bounded
by the three lines ?, e’ , e” that intersects the half plane Hs. So, v € A. Now, the new vertex v
is elliptic if and only if it is a real point in the interior of R := Hy N A N Aquv, which is a open
disk of dimension 2. Next, we have that the new vertex can be parabolic if and only if it is an <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>