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Abstract

Prognosis and Health Management (PHM) is a very useful tool for improving the overall safety,
reliability and cost of a system. Fault diagnosis and prognosis are two pillars of a successful
PHM. Both have their own challenges and are mostly studied independent of each other. There-
fore, performing both fault diagnosis and prognosis using a common metric can greatly ease
the overall implementation of PHM process and hence make the system more safe and reliable.
This work proposes an innovative integrated framework for performing fault diagnosis and prog-
nosis using a common metric i.e. Energy Activity (EA). The underlying framework is in the
first step validated using simulated spring-mass-damper system. The proposed framework is
further improved to addresses a major challenge to PHM i.e. robustness of decision considering
both system parameter uncertainties and measurement uncertainties. The improved framework
is successfully applied to a real hydraulic two-tank system test bed system under uncertain
conditions.

Key words: Prognosis, Fault Diagnosis, Prognosis and Health Management (PHM), Bond
Graph, End of Life (EOL), Remaining Useful Life (RUL)
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Abstract

Les approches ”Prognosis and Health Management” sont très utiles pour améliorer la sécurité
globale, la fiabilité et le coût d’un système. Le diagnostic et le pronostic des pannes sont les
deux piliers pour la conception d’un système sûr de fonctionnement. Chacun d’eux a ses propres
défis et est pour la plupart du temps, étudié indépendamment l’un de l’autre. Par conséquent,
effectuer à la fois le diagnostic et le pronostic des pannes à l’aide d’une métrique commune peut
grandement faciliter le processus global d’implémentation des méthodes PHM et donc rendre
le système plus sûr et plus fiable. Ce travail propose un nouveau formalisme intégrée pour
effectuer le diagnostic et le pronostic des pannes en utilisant une métrique commune, à savoir
l’activité énergétique (EA). La méthodologie développée est appliquée à un système ressort-
masse-amortisseur. Les outils proposés sont enrichis pour relever un défi majeur pour le PHM,
à savoir la robustesse de la décision en tenant compte à la fois des incertitudes paramétriques
et de de mesure. La méthodologie complète est dans une deuxième phase appliquée avec succès
à un système hydraulique de régulation de niveau dans des conditions incertaines.

Mots clés: Prognosis, Fault diagnosis, Prognosis et Health Management (PHM), Bond
Graph, End of Life (EOL), Remaining Useful Life (RUL)

v



vi



Contents

Acknowledgements i

Abstract iii

Abstract v

1 General Introduction 1
1.1 Introduction to maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fault Detection and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Prognosis and Health Management . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Contribution positioning in framework of group activities . . . . . . . . . . . . . 10
1.8 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Manuscript organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.10 Disseminated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 State of Art 13
2.1 Prognostics and Health Management (PHM) . . . . . . . . . . . . . . . . . . . . 13
2.2 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Plant Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Fault Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Failure criteria: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Data filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Analysis: Diagnostic-Prognostic Relation . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Data driven diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Model Based diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Experience based approaches . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Data driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Physics based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.4 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Integrated diagnosis and prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Selection of prognosis parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Conclusion to chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Energy Activity 39
3.1 Introduction Energy Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Difference between Energy and Energy Activity . . . . . . . . . . . . . . . . . . . 39
3.3 Indexes of Energy Activity in Bond Graph framework . . . . . . . . . . . . . . . 41

3.3.1 Energy Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



3.3.2 Energy Activity Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Junction Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Overall Junction Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Junction Activity Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.6 Relative Activity at Junction . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Energy Activity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Model reduction using Energy Activity Index . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Physical interpretation of Energy Activity . . . . . . . . . . . . . . . . . . 49

3.6 Frequency domain formulation of Energy Activity Index . . . . . . . . . . . . . . 53

3.7 Adaptive fault thresholds using RAJ . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Pseudo Energy Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 PHM process using Energy Activity 57

4.1 Offline Phase: Fault Signature Database . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Fault Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Simulated Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Offline Phase: Fault Database generation and Neural Network Training . 63

4.3.4 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 PHM of uncertain system: Application to two tank system. 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Robust PHM using Energy Activity . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Fault Detection analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Energy Activities for fault detection . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 82

5.3.4 Implementation on a two tank system . . . . . . . . . . . . . . . . . . . . 83

5.4 PHM of two tank system using Energy Activity . . . . . . . . . . . . . . . . . . . 89

5.4.1 Failure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.4 Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.5 Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions and Prospective 97

6.1 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Benefits of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.2 Limitation of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



A Bond Graph 103
A.1 Bond Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.1.3 Two port passive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.1.4 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Modelling uncertainty in Bond Graph elements . . . . . . . . . . . . . . . . . . . 109
A.3 Fault detection using Analytical Redundancy Relations in Bond Graphs . . . . . 110

A.3.1 ARR generation in bond graph . . . . . . . . . . . . . . . . . . . . . . . . 112
A.3.2 Generation of robust ARR . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B Interval Arithmetic 115
B.1 Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2 Precautions while using interval arithmetic . . . . . . . . . . . . . . . . . . . . . 116
B.3 Interval extension functions in bond graph . . . . . . . . . . . . . . . . . . . . . . 116

ix



x



List of Figures

1.1 Maintenance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Schematic of Condition Based Maintenance. . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of FDI process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview of prognosis process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Advantages of prognosis in product life cycle [130] . . . . . . . . . . . . . . . . . 8
1.6 Overview of PHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Proposed diagnosis-prognosis information exchange . . . . . . . . . . . . . . . . . 10

2.1 PHM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Plant description levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Fatigue crack graoth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Schematic of hidden markov process with three states. . . . . . . . . . . . . . . . 19
2.5 Types of malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Data driven diagnosis approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Classification of Prognosis approaches. . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Weibull curve (bathtub curve) for failure rate over time. . . . . . . . . . . . . . . 28
2.9 Classification of data driven prognosis methods. [158] . . . . . . . . . . . . . . . 29
2.10 Physics based prognosis techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Classes of hybrid prognosis approach. . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Decision making based on Remaining Useful Life. . . . . . . . . . . . . . . . . . . 35

3.1 Difference between energy and Energy Activity. . . . . . . . . . . . . . . . . . . . 41
3.2 Junction activity calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Simple electric circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Bond graph model of electrical circuit. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Energy Activity of elements in circuit. . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Energy Activity Index of elements in circuit. . . . . . . . . . . . . . . . . . . . . 48

4.1 Generation of fault signature database. . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 General overview of the online PHM process. . . . . . . . . . . . . . . . . . . . . 59
4.3 Spring Mass Damper System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Bond Graph of Spring Mass Damper System. . . . . . . . . . . . . . . . . . . . . 62
4.5 Fault as a variation in spring stiffness. . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Frequency map of residual at spring under various faulty components. . . . . . . 64
4.7 Fault detection using residuals based on EA. . . . . . . . . . . . . . . . . . . . . 65
4.8 Time-Frequency map of Short Time Fourier Transformation. . . . . . . . . . . . 66
4.9 Calculated Parameter variation Rate. . . . . . . . . . . . . . . . . . . . . . . . . 67
4.10 Calculation of End of Life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.11 Error in calculated spring stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 PHM using Energy Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Schematic diagram of a two tank system. . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Two tank system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Bond graph models of two-tank system. . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 LFT-Bond Graph model of 2 tank system. . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Energy Activity Index for various components in ideal condition. . . . . . . . . . 83
5.7 Various types of faults measured as percentage change in ideal flow. . . . . . . . 84

xi



5.8 Residuals generated for different types of faults using ARRs from LFT-Bond Graph. 85
5.9 Detection of different types of faults using Energy Activity in differential form. . 86
5.10 Detection of different types of faults using Energy Activity in integral form. . . . 87
5.11 Detection of different types of faults using Energy Activity in dual (differential

+ integral) form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.12 Flow through valve 1 and Energy Activity for two tank system undergoing leakage

in tank 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.13 Flow through valve 1 and Energy Activity for two tank system with faulty pump. 90
5.14 Calculated EA for fault detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.15 Valve degradation from prognosis. . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.16 Measured height in tank 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 General structure of a bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Comparison of integral and differential causality.. . . . . . . . . . . . . . . . . . . 108
A.3 Circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.4 Bond Graph of the electrical system . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.5 Uncertainty modelling of an R-element in resistive causality. . . . . . . . . . . . . 110
A.6 Uncertainty modelling of an R-element in conductive causality. . . . . . . . . . . 111
A.7 Spring Mass Damper System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.8 Bond Graph of Spring Mass Damper System in integral causality. . . . . . . . . . 112
A.9 Bond Graph of Spring Mass Damper System in differential causality. . . . . . . . 112
A.10 Bond graph model for robust fault detection. . . . . . . . . . . . . . . . . . . . . 113

B.1 Uncertainty modelling of an R-element in interval form. . . . . . . . . . . . . . . 117

xii



List of Tables

2.1 Subclasses of data-driven + physics based hybrid prognosis. . . . . . . . . . . . . 32
2.2 Selection of prognosis parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Element power calculation using bond graph. . . . . . . . . . . . . . . . . . . . . 43
3.2 Numeric component values of circuit elements. . . . . . . . . . . . . . . . . . . . 46
3.3 Energy activity calculation using bond graph. . . . . . . . . . . . . . . . . . . . . 47
3.4 Physical interpretation of low activity. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Ideal value of system components. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Value limits of system components. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Flow and effort calculation using sensor information. . . . . . . . . . . . . . . . . 64
4.4 Calculated End of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Effort and flow expressions for calculation of Energy Activity in differential form. 80
5.2 Effort and flow expressions for calculation of Energy Activity in integral form. . . 81
5.3 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Fault detection time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 System parameters at failure limits. . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 End of Life estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 Effort and Flow in various domains. . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



xiv



Chapter 1

General Introduction

Contents

1.1 Introduction to maintenance . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Fault Detection and Identification . . . . . . . . . . . . . . . . . . . . 5

1.4 Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Prognosis and Health Management . . . . . . . . . . . . . . . . . . . . 7

1.6 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Contribution positioning in framework of group activities . . . . . . 10

1.8 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Manuscript organisation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 Disseminated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction to maintenance

Maintenance is one of the most crucial and one of the most under-recognised phase in the
working of any plant. This is partly due to the fact that as long as the system remains in
a good operating condition, the importance of maintenance is not recognised. However, the
importance of this activity can be fully understood when any system goes to failure leading
to financial loss on account of loss in revenue, loss in working hours, loss due to inventory
accumulation etc. Many times, especially in an assembly line, a failure in any one stage leads
to halt in the whole manufacturing line and leads to loss in production.. Therefore a great
amount of brain power is used for optimization of maintenance activities. Over the years many
strategies of maintenance have been developed. The various strategies of maintenance can be
understood using fig 1.1.

The first strategy of maintenance is called Corrective Maintenance. Under this strategy,
maintenance is performed only after a system or a subsystem experiences failure and ceases
to work. This strategy has high monitory loss associated with it because a failure in crucial
components can be very expensive. Therefore, this strategy is generally used in systems or
machines which are in surplus and experience failures rarely.

The second and most commonly used strategy for maintenance is called Preventive main-
tenance. In this strategy, we do not wait for a system failure and the various components in
the system undergo maintenance action at regular intervals of time. The time period of main-
tenance action is fixed either by the component manufacturer or by experience. This strategy
is planned by considering a very conservative estimate of the machine life cycle, therefore the
monetary losses by using this strategy is majorly due to the cost of the maintenance action
itself and scheduling instead of losses due to failure.

The third and the upcoming strategy is Condition based maintenance. This strategy
neither waits for failure nor recommends maintenance at regular intervals. In this strategy, the
condition of machine is constantly monitored and as soon as a fault is observed, maintenance

1



activity is performed. Therefore, the cost associated with this strategy is lower than both
corrective and preventive maintenance.

Based on the extent of utilization, Condition based maintenance can be categorised into
three levels

• Monitored Maintenance: This is the very basic level of condition based maintenance. At
this level, only fault symptoms can be recognised and machine maintenance is performed
when these symptoms are observed. This requires the least amount of monitoring equip-
ment and hence the monitoring cost is the least. However, it has the highest maintenance
cost among the three levels.

• Isolated Maintenance: This is the second level of condition based maintenance. At this
level, the root cause of fault is isolated and maintenance action is recommended only for
the faulty component. This requires a higher amount of sensors for proper fault isolation,
therefore, has a higher set-up cost. However, higher set-up cost can be recovered by
reduced maintenance cost.

• Identified Maintenance: This is the deepest level condition based monitoring. In addition
to the outputs provided by isolated maintenance, this level also recognises the type of
fault and recommends a suitable maintenance action. This level requires accurate data
analytic databases and tools however no extra hardware is usually required.

The various strategies of maintenance can be understood using an example. Let’s consider
a simple rotary pump. According to corrective maintenance strategy, all maintenance actions
are performed when the pump stops working. In preventive maintenance, a maintenance time
period is fixed and all the maintenance actions are performed after this time period irrespective
of the working condition of the pump. In monitored maintenance, a minimum number of sensors
are placed in the system for condition monitoring e.g. flow sensor at the output. Therefore
whenever the flow reduces from a predetermined level all maintenance actions are performed
on the pump. In isolated maintenance, additional sensors are placed in the system like current
sensor in the coil and r.p.m sensor at the shaft. Additional sensors allow for proper fault
isolation. For e.g. if the fault is isolated in the shaft bearing then the other components of
the pump do not require any maintenance action. This saves both maintenance time and cost.
Continuing further, if identified maintenance is used, in addition to the previous, the system also
informs about the type of fault. Using the previous example, the identified maintenance system
can indicate a misalignment in the bearing which can be rectified by hammering, without the
need of replacing the whole bearing. Hence, reducing the maintenance cost even further.

A lot of improvement in the available maintenance strategies is evident from the above
example. A further monitory improvement is possible if maintenance scheduling can be opti-
mized. Even at the identified maintenance level, the user only has information regarding the
current state of the system, hence to reduce major losses, immediate intervention is required
for maintenance. Sometimes the immediate intervention can incur losses of it’s own, hence,
optimized scheduling of the maintenance activity is the next step forward in the progression of
maintenance strategies. For optimal scheduling, the point of actual failure of machine is more
important than the current fault level. If the time of failure is known, then the maintenance
action can be scheduled more conveniently. This is the basis of Predictive Maintenance.
In this maintenance strategy, the end of life of the machine under the current faulty state is
predicted. This is usually achieved using information from Identified Maintenance stage and
physical laws governing the fault progression.

Before continuing further it is important to distinguish between fault and failure. Failure
is a state of the system when the system fails to perform its intended operation. On the other
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Figure 1.1: Maintenance Strategies

hand a fault is a state of a component when it interacts with the remaining components in sub
optimal manner. Fault in a component can remain steady or increase i.e. continue to deviate
more from the optimum state. A system with a faulty component can still function however
only till a certain extent of fault. A fault in a component can evolve and progress, leading
to the failure of system. For realisation of predictive maintenance, both the current state of
health and the future state of health of system should be known. The field of study which deals
with the current health estimation of the system is called Fault Detection and Identification
(FDI) and the field of study dealing with the evolution of current health state in future is called
Prognostics.

1.2 Definitions

Maintenance: Maintenance being a general term is used by practitioners of every field.
Therefore, everyone has a general idea regarding maintenance. However, European Federation of
Maintenance Societies defines it as ”All actions which have the objective of retaining or restoring
an item in or to a state in which it can perform its required function. The actions include
the combination of all technical and corresponding administrative, managerial, and supervision
actions.”

Some of the parameters used in maintenance system evaluation are:

Availability: It is the probability that of a system to operate satisfactorily at any point of
time. It is measured using Mean Time To Repair (MTTR)

MTTR =
1

µ
where µis rate of repair

Reliability: It is the ability of a system to complete a required task under stated conditions.
It is measured using Mean Time Before Failure (MTBF)

MTBF =
1

la
where la is rate of failure
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Figure 1.2: Schematic of Condition Based Maintenance.

Condition based Maintenance (CBM): Condition based maintenance can be described
in short as ’maintenance according to requirement’. It is a maintenance strategy under which
maintenance is scheduled by first analyzing the current state of system using system outputs
and other sensor data and then using this information to calculate the time for maintenance
and also the specific component that needs it.

Prognostics and Health management (PHM): Prognostics and health management
(PHM) is an engineering approach which allows real-time health assessment and prediction of
future state of a system while in operation. CBM is achieved using the concepts of PHM. PHM
used the data collected by CBM system for appropriate maintenance decision.

Fault: According to ISO 10303-226, a fault is defined as an abnormal condition or defect
at the component, equipment, or sub-system level which may lead to a failure. For this thesis
a system component is considered faulty if the numerical value of it’s corresponding physical
parameter deviates from its intended value. For e.g. a spring considered as faulty if it’s stiffness
deviates from it’s intended value.

It should be noted that a system under fault is not a system in failure.
Failure: A system succeeds if it able to fulfill it’s desired functionality, similarly a system

fails when it fails in it’s functionality. Therefor, a system failure is the state of the under which
it is unable to function according to it’s intended requirements.

Diagnosis: The word ’Diagnosis’ is derived from medical field meaning the identification
of the nature of an illness or other problem by examination of the symptoms. In this thesis
Diagnosis refers to Diagnosis of the system for faults. A fault diagnosis is achieved by three
sequential steps:

1. Fault Detection

2. Fault Isolation

3. Fault Identification

As an example let’s consider diagnosis of a simple motor driven wheel, fault detection tells
us if there is any fault in the system. If there is a fault, fault isolation tells us the location of
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Figure 1.3: Overview of FDI process

the fault for e.g, if the fault is located in the motor or the bearing or the tyre. If the fault is
isolated in the bearing, Fault identification tells us about the nature of the fault i.e. if there is
a crack or if there a change in the rolling friction etc.

Prognosis: ISO13381-1 defines prognostics as: ”the estimation of time to failure and risk for
one or more existing and future failure modes”. While diagnosis deals with the fault currently
in the system, prognosis deals with prediction of the system behavior in future from its current
faulty state till failure. Prognosis is generally used to calculate the remaining useful life of the
system.

Degradation Model:Every component in any physical system continues to degrade con-
tinuously. However, a fault might accelerate this degradation. A degradation model is a mathe-
matical tool to map the trend of degradation w.r.t time. A degradation model of any component
can either be known beforehand or can be approximated on the go by PHM system. The current
state of the system is extrapolated using the degradation model to calculate the end of life of
the system.

End of Life (EOL): End of Life is the instant of time at which the system reaches failure.
Remaining Useful Life (RUL): At any instant after the detection of fault, remaining

useful life of the system is defined as the time between that instant and EOL.
Residuals: Residuals are signals that carry fault information. These are calculated by ob-

serving the deviation between the actual signal generated from the system and the corresponding
signal generated from simulation of fault free model.

1.3 Fault Detection and Identification

Fault detection and identification as the name suggests concerns with the accurate and timely
detection of faults occurring in the system. The objective of FDI is to answer three basic
questions:

1. Is the system under fault now?

2. If the system is under fault, where is the fault located i.e. which is the component under
fault?
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3. Once the location of the fault has been identified, what is the nature of the fault i.e. is it
constant or increasing?

The above questions are answered by the following three activities of the FDI process [134]:

1. Fault Detection: This is the first activity of FDI. It answers the first question and
informs if the system is currently under fault. Main performances at this step are false
alarms and miss detection.

2. Fault Isolation: This activity starts after a fault has been detected in the system. It
addresses the second question and informs about the location of fault i.e. the component
responsible for the abnormal or sub-optimal system behavior. At this stage logic decision
based on repertoried signatures are used

3. Fault Identification: This is the final activity of FDI and addresses the third question.
This activity informs us about the nature of the fault.The previous steps are performed
online while this stage is realized offline.

In general, the overall process for model based diagnosis consists of two steps before an
alarm is generated (fig 1.3):

1. Residual generation: As discussed above, model based diagnosis based on the recreation of
the known system information from the system outputs. The information recreated from
the system outputs is compared to the known system information. The difference between
the recreated system information and known system information is called residual. A near
zero residual indicates a fault free system. However, if the residual deviates more than a
pre-determined threshold, a fault is indicated.

2. Evaluation: The generated residual is examined to determine the presence or the location
of the fault. Evaluation step incorporates also incorporates the various model uncertainties
and measurement noise before coming up with a final decision on the fault.

1.4 Prognosis

By standard ISO13381-1, prognosis is defined as ”the estimation of time to failure and risk for
one or more existing and future failure modes”. In essence, prognosis is the process predicting
the time when the system will be unable to perform it’s intended function with some required
efficiency.

While utilizing prognosis as a part of a maintenance strategy, the purpose of prognosis is to
find the condition of End of Life (EOL) and end of life time (teol). The end of life time should be
calculated as soon as possible so that the remaining useful life is increased. This allows better
decision on maintenance activity.

It must be realised that prognosis is much more complicated than FDI. This is primarily
because in addition to the model and measurement uncertainties that are considered by FDI,
prognosis should also include the effects of future uncertainties that have not yet been accounted
for.

In addition to the above, a key element to prognosis process is the definition of the fail-
ure law undertaken by a failing component and definition of a failure limit in a manner that
can be utilised by the prognosis process. The system performance is measured continuously
using sensors placed on the system. The system performance measures and various definitions
concerning the system failure are fed to a prognosis algorithm. The prognosis algorithm can
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Figure 1.4: Overview of prognosis process

predicts the end of life of the system under the current working conditions. This process can
be understood using fig 1.4.

However, prognosis has far reaching advantages (fig 1.5). The major advantages of prognosis
are [130]:

1. Improved system design: Continuous monitoring of the system and prognosis can be used
to redesign components to improve the overall system design, improve prediction model
and preliminary logistics in the early phase of the system application.

2. Improved production: In manufacturing system the end product quality depends highly
on the optimum working conditions of the system. Quality loss can accumulate quickly
when the system works under sub-optimal condition. Prognosis of working conditions can
be used to avoid this loss.

3. Benefits system operation: With continuous monitoring and good prognosis of the system
the operation safety, reliability, availability, service life increases and system downtime,
intermittent failures, false alarms decreases thereby improving the system operation.

4. Improved logistics: With a prognosis system in place CBM can be practiced. This saves
a lot of logistic cost due to decrease in redundant inspections, unscheduled maintenance
requirement etc.

5. Benefits in phase out and disposal: prognosis can be used to increase the working life of
the system. Over time this reduces waste, improves system recovery and enables green
manufacturing.

1.5 Prognosis and Health Management

Prognosis and health management (PHM) is the overall framework which allows for application
of condition based maintenance.

A concise overview of the PHM process is given by fig 1.6. The main component of PHM
are as follows:
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Figure 1.5: Advantages of prognosis in product life cycle [130]

Figure 1.6: Overview of PHM
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• Data processing : System is characterised by a set of physical values that have to follow
predefined trajectories expressed by system input-output relations. Data processing ex-
tracts from the sensor signals the relevant information used for further analysis and system
control.

• Diagnosis: System health estimation groups the FDI procedures allowing to estimate the
health state of the system (faulty or non faulty). These procedures consist in three steps.

– Fault Detection: Fault detection investigates the consistency between the actual
values of the system outputs provided by the sensors and the predicted values of
these outputs obtained from the reference system model.

A fault is detected as soon as this consistency, expressed on the form of mathematical
expressions called residuals, is not respected. Equation 1.1 gives the general form of
a residual where Ymeasured is the actual value of the system output Y and Yestimated
is its estimated value predicted by the model or other reference tables.

Residual = Ymeasured − Yestimated (1.1)

– Fault Isolation: Fault isolation consists in finding the faulty component using sensor
information and, for examples, logic procedures, signal processing or reference tables.

– Fault Identification: Fault identification gives an interpretation of the nature and
the cause of the fault.

• Prognosis: Prognosis is a dynamic estimate of the degradation of the system. This deals
with calculation of the End of Life of a system, a point in time at which the fault increases
to its maximum limit resulting in system failure. Remaining Useful Life (RUL) of the
system is expressed by equation 1.2 where tfailure is the predicted time where the system
cannot continue to operate due to complete failure and tcurrent is the time at which the
RUL is calculated.

RUL = tfailure − tcurrent (1.2)

• Decision making : Detecting the occurring fault and estimating the RUL of the system can
help in both protecting the system components, the system environment and/or ensuring
the continuity of service when possible.

Decision making can range from immediate human intervention to implementation of
fault tolerant control by putting in priority users safety measures, system protection and
continuity of service.

1.6 Thesis objective

Fault diagnosis and prognosis are the most fundamental building blocks of the PHM process.
There are different schools of thought concerning relationship between diagnosis and prognosis
[158] [64] [44]. The most widely accepted relationship assumes diagnosis as pre-requisite for
prognosis and for most of PHM systems, prognosis follows diagnosis. However, despite this
precedence constraint, diagnosis and prognosis are traditionally developed independently of each
other, using well established but different techniques. So, merging both diagnosis and prognosis
becomes then a real challenge, justifying the need of a common metric. Many attempts have
been made to establish a common parameter for both diagnosis and prognosis. Integration of
FDI and prognosis has been attempted using model based approaches [94] [59] [63] [111] which
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Figure 1.7: Proposed diagnosis-prognosis information exchange

utilise the mathematical description of the underlying physical phenomena in the system for FDI
and prognosis, data based approaches [156] [139] [57] [79] which utilise data based techniques
like fuzzy logic and neural networks without utilising the behavioral or physical models and
hybrid approaches [141] which utilise a combination of both physics models and historical data.

In general but specifically in model based approaches, study of FDI being much more estab-
lished has always pushed researchers to extend the use of a known fault diagnosis parameter for
prognosis despite a fundamental difference between the two. Indeed, the study of FDI always
assumes that the initial conditions of system are unknown. This is not the case for prognosis.
For prognosis, initial conditions for the system are known fully or partially [94]. For FDI, the
system analysis concerns detection of fault and the time of initiation of fault is not known,
therefore, analytical redundancy FDI method uses dynamic equations in derivative causality
while initial conditions are not known in real process. On the other hand, for prognosis the
analysis concerns the prediction of the evolution of system from it’s ideal state to failure state.
Hence, the initial running condition, i.e. the ideal system conditions are known. This is the
reason why, contrary to traditional approaches which consist in trying to extend the tools devel-
oped for fault diagnosis purpose, to prognosis, it is proposed to exploit the additional knowledge
given by the system initial conditions by using the metrics suited for prognosis to fault diagno-
sis. This proposed knowledge exchange in an integrated diagnosis and prognosis framework is
summarised in fig 1.7.

The main goal of the thesis therefore, is to find a suitable model based prognosis
parameter which can be extended and developed to improve the fault diagnosis
capability of a system. The processes can then be combined to create an integrated
fault diagnosis and prognosis framework for PHM.

1.7 Contribution positioning in framework of group activities

MOCIS (Méthodes et Outils pour la Conception Intégrée de Systèmes) research group has a lot
of experience in model based system engineering. The research group has contributed heavily in
previous decades to the development of model based FDI. Since 2015, the focus of the research
group on model based prognosis has increased. Model based prognosis algorithms for prognosis
were developed using extended kalman filters and particle filters. With the recent restructuring
of group from MOCIS to PERSI (PERennisation des Systèmes Industriels) the focus of the
research group towards prognosis is bound to increase. This thesis is a an attempt to improve
the PHM process by using a common metric from both diagnosis and prognosis.
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1.8 Main contributions

The main contributions of this work are as follows:

• A hybrid framework using energy activity for integrated fault diagnosis and prognosis is
introduced. The framework is composed of a model based fault detection, a data based
fault isolation and a model based prognosis.

• The hybrid framework is improved so as to accommodate model and measurement uncer-
tainties. This is a crucial task to have a robust framework for real applications.

• The most optimum form of energy activity for PHM is discussed.

• The traditionally used differential equations are often incapable for detection of minute
and incipient faults under uncertain conditions. The advantage of using integral equa-
tions similar to energy activity for countering the misdirection problem of such faults is
highlighted.

1.9 Manuscript organisation

This thesis is organised in the following chapters.

• The second chapter presents the general overview and state of art about the PHM pro-
cess. A special focus is given on all the previously proposed techniques for diagnosis and
prognosis stages of the PHM process. This chapter also allows for positioning the work
compared to the existing framework of PHM.

• The third chapter focuses on the conceptual understanding of the concept of energy ac-
tivity, which is the backbone of the integrated fault diagnosis and prognosis framework
presented in this thesis. The chapter presents both the mathematical foundation and the
physical interpretation of energy activity.

• The fourth chapter introduces to the integrated fault diagnosis and prognosis framework
using energy activity. The various stages of the framework are discussed in detail. The
proposed approach is simulated on a spring-mass-damper system.

• The fifth chapter expands on the methodology proposed in the previous chapter. The
framework proposed in fourth chapter is improved so as to handle model and measure-
ment uncertainties. Under the mentioned uncertainties the advantages of using energy
activity for fault detection are highlighted and the optimum form of energy activity for
the proposed framework is discussed. The modified framework is tested on a two-tank
system.

• The sixth chapter summarises the conclusions, limitations and future prospects of the
current work.

1.10 Disseminated Results

The results of the thesis were disseminated through the following publications:

International Journals
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1. Manarshhjot Singh, Anne-Lise Gehin, Belkacem Ould-Bouamama. Fault diagnosis
and prognosis in uncertain systems using Energy Activity. in review process,
IEEE Transactions on Reliability.

2. Manarshhjot Singh, Anne-Lise Gehin, Belkacem Ould-Bouamama. Robust detec-
tion of minute faults in uncertains ystems using Energy Activity. in review pro-
cess, IEEE Transactions on Mechatronics.

International Conferences

1. Manarshhjot Singh, Anne-Lise Gehin, Belkacem Ould-Bouamama. Prognosis and
Health Management using Energy Activity. IFAC World Congress (2020), pp.
10445-10452.

2. Manarshhjot Singh, Belkacem Ould-Bouamama, Anne-Lise Gehin.Bond graph
model for prognosis and health management of mechatronic systems based on energy
activity. International Conference on Systems and Control. pp. 430-434.
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This chapter explores in detail the overall PHM process. The various stages of the
PHM process, their requirements and their relationship with the other processes is dis-
cussed.

2.1 Prognostics and Health Management (PHM)

The detailed PHM process is shown in figure 2.1. The PHM process consists of four
major constituents:

1. System: This stage requires the understanding of the overall plant that is being
analysed and some prior understanding about the nature, sources and consequences
of faults that can occur in the system.

2. Data Processing: This stage deals with acquiring the relevant information from
the system under consideration and processing it such that the information can be
used for analysis.
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Figure 2.1: PHM Process

3. Analysis: This is the most fundamental and stage in the PHM process. Discussion
on the various existing techniques for analysis forms the majority of this chapter.
This stage consists of diagnosis and prognosis, the two main pillars for PHM how-
ever, they are fundamentally different from each other. While diagnosis is a static
indicator of the system, prognosis is a dynamic indicator.

4. Results: The results of analysis do not conclude the PHM process. Based on the
findings of the analysis an optimum decision must be proposed by the system. This
constitutes the final step of PHM

2.2 System

As discussed in the previous section, Health Management (HM) and Prognosis are the two
pillars of PHM architecture. Both HM and prognosis are fields of study on their own.
Many techniques for HM and prognosis have been developed for both individual and
combined application. A careful analysis of these techniques reveal that there is no single
technique which is capable of performing a specific task for all system applications. Every
technique has some advantages and limitations. Therefore, proper section of techniques
for HM and prognosis is a critical decision. This decision depends highly on the system
itself. So, an understanding of system description is crucial.

Two major ingredients required to describe the system are:

1. Plant Description: It groups a hierarchical and a behavioral description of the sys-
tem.
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Figure 2.2: Plant description levels.

2. Fault Description: This deals with the faults in a plant, their propagation and
conditions for system failure.

2.2.1 Plant Description

Plant description is crucial for PHM. The nature of the system that is under study gives
an insight for the nature of faults it can undergo. Therefore, the study of plant is a crucial
step. Two aspects which must be described about the plant are:

1. Description level

2. Description model

2.2.1.1 Description Level

Modern machines are complex integration of different components interacting with each
other. Therefore, proper understanding of level of a component in a plant hierarchy can
be very beneficial. Based on the complexity, the plant can have the following levels on
which the individual units can interact.

1. Sub-component level

2. Component level

3. Assembly level

4. Machine/System level

5. System of Systems level

The above are ordered in increasing order in their hierarchy i.e. from the most fun-
damental level to the highest level. Components of lower level are assembled to form
subsystems of higher level and so on. Components of lower level can themselves be seen
as a group of sub-components. This can be understood using the fig 2.2. The ball/rollers,
inner/outer race etc, are the sub components of a component i.e. bearing. The bearing is
part of as assembly i.e. engine. The assemblies of the system i.e. transmission line, power
system, steering line etc form a machine/system i.e. a car. A collection of cars can work
interactively to form a system of systems. It is crucial to understand these hierarchical
levels of plant so that different information about different levels could be incorporated
while designing the PHM architecture.
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The actual physical phenomena of degradation like crack initiation and propagation
are applicable at the sub-component level (or component level if sub-components do not
exist). However, the plant model might not be fully known at this level. As the level
of hierarchy increases, so does our understanding of the dynamic models, in general.
Therefore, a more accurate plant description is known at levels for which failure models
are not applicable. Also, a failure at higher level might occur before the actual failure
at the sub-component level, on account of a loss in minimum performance threshold.
The failure model is usually needed to map the degradation of components lower in the
hierarchy to loss in performance measured in upper hierarchy levels. Hence, taking into
account the different levels in plant can have far reaching benefits for PHM.

2.2.1.2 Description Model

The description model of plant holds the mathematical description of the relationship
between the system inputs and system outputs. Many methods for modelling the different
aspects of a model have been developed over the years. These methods can be broadly
classified into the following types:

1. Finite Element Models: The Finite Element (FE) is a very popular technique for
modelling complicated systems. These models discretise the system domain into
limited (finite) elements. The elements are connected to each other by nodes. Many
different solving methods like Finite Element Method (FEM), Finite Volume Method
(FVM), Finite Difference Method (FDM), Boundary Element Method (BEM) have
been developed to model different domains. For eg, FEM has proven to be a very
successful method for structural analysis and FVM has proven to be a very successful
method for fluid flow analysis. The biggest advantages of these models if their
ability to capture the smallest geometrical properties and ability to solve a wide
variety of complicated physics equations, including the acutal equations of physics
of failure defined at sub component level. The biggest limitation for this method
lies in the model size. As numerous equations need to be solved for the simplest of
systems, this makes the solution process slow therby limiting real time application.
Upcoming solvers like Extended-FEM (xFEM) allow for quick and accurate solution
of discontinuous functions, thereby allowing this modelling technique to capture
crack propagation and fracture mechanics. This makes it suitable especially for
prognosis. [132]

2. Quantitative Models: Quantitative models capture the plant behaviour by repre-
senting it’s constituents at the same or different hierarchy levels using variables
and thereby formulating a mathematical relationship between them. The number
of equations in this model is equal to the order of the model. Hence, these are
faster to obtain and to solve than the Finite Element models. Also, they are highly
accurate is the physical behaviour of the different components is fully known. The
major disadvantage of these models is that many times the values of the character-
istic parameters of the components are not known accurately. The most popular
techniques for development of quantitative models include state-sapce representa-
tion, Lagrangian [4] , Hamiltonian [137] and Bond Graph [97] technique.

3. Qualitative Models: Qualitative models do not capture the physical behaviour of
the plant but just an empirical relation between the inputs and outputs of the
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system is developed. Qualitative models can be developed using either statistical
techniques like markov, semi-markov, hidden markov process or using AI techniques
like Artificial Neural Networks. The biggest advantage is that the most complicated
physical behavior of the plant can be captured easily. The biggest limitation is the
requirement of large amount of performance data for accurate capture of plant
behaviour. The qualitative models represent even the most complicated system in
simple relations hence they have been used extensively for real time applications.

2.2.2 Fault Description

As the final objective of the PHM architecture is fault prognosis, which is a dynamic
component, some information about the possible faults in system and their behaviour is
a must. The fault information that can be categorised as follows:

1. Degradation model: This tells us how the fault progresses in a component.

2. Fault interaction model: This tells us how the a fault in one component affects the
other components in the plant.

3. Failure criteria: This tells us the the fault should be considered a failure.

2.2.2.1 Degradation model

Degradation model deals with the increment in fault given that the operating conditions
of the plant remain the same. This is a crucial information as it gives us the trend
of fault magnitude development. There can be many causes of degradation like aging,
corrosion, wear etc. Based on the cause of degradation, the fault increment rate is
affected. Therefore, in general any degradation model can be categorised as linear or
convex or concave [94]. Degradation models can be physics based or data based.

Physics based degradation models: Physics based model use the concepts of physics
of failure like fracture mechanics for finding a description of fault development. Most of
physics based degradation models assume crack as fault and crack propagation as failure
[120]. Crack propagation can be considered a three phases process given in figure 2.3.
The first phase is called initiation, followed by propagation phase and finally fast crack
propagation phase.

Some common physics based degradation models are:

1. Paris-Erdogan Law[103]: It is the most common degradation equation expressed
as:

da

dN
= C.(∆K)n (2.1)

a is the crack length, N is the number of cycles, ∆K is the stress intensity factor
and C & m are the Paris’ constants. The equation is valid in the propagation phase.

2. Foreman equation[40]: This is a modified form of Paris-Erdogan law which is
applicable to both propagation and fast crack propagation phase.

da

dN
=

B.(∆K)m

(1−R)(Klc −∆K)
(2.2)

here, R is the ratio of minimum to maximum stress in a load cycle, B is a parameter.
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Figure 2.3: Fatigue crack graoth.

3. McEvily Equation[93]: This variation of Paris-Erdogan law incorporates degra-
dation in the crack initiation phase. The equation had two to differentiate between
short and long cracks. For short cracks the equation is given as:

da

dN
= D(Kmax −Ko −∆Kth)

2 (2.3)

where, D is a material constant, Kmax is the maximum load, Ko is the crack-tip
open load, ∆Kth is the fatigue threshold. For long cracks, the equation is given as:

da

dN
= D[Kmax − (1− e−kl)Kopmax −∆Kth]

2 (2.4)

where, k is a parameter, l is the length of parameter, Kopmax is the crack opening
level for long cracks.

4. Coffin-Manson model[25]: This is used to model crack growth due to cyclic
variation in temperature.

N = A · f−a ·∆T−b · exp(EA
k
· 1

Tmax
) (2.5)

where, N is the number of cycles before failure, f is frequency of thermal loading,
A is a coefficient, ∆T is the range of temperature in a cycle, b is temperature range
of the component, EA is the energy of activation, Tmax is the highest temperature
reached in cycle, k is the Boltzman’s constant.

Data based degradation models: Many a times the degradation behaviour of the fault
does not match the above mentioned models. In such a case, data is used to fit a failure
model to the observations. Baysian statistical models are generally used for modelling
the degradation from data. The commonly used statistical models are:

1. Markov Chain: The degradation can be modelled as a markov process if the
system is fully observable, The underlying assumption for Markov process is that
the probability distribution of state at any particular instant depends on the state
at the previous instant.
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Figure 2.4: Schematic of hidden markov process with three states.

A Markov chain representing a sequence of states w1, w2, ..wn can be modelled as:

P (w1, w2, ...wn) =
n∏
a=1

P (wa|wa−1) (2.6)

assuming that

P (wa|wa−1, ...w1) ≈
n∏
a=1

P (wa|wa−1) (2.7)

2. Hidden Markov model[160][99]: A hidden markov model can be imagined as a
Bayesian network with finite states, linked with a markov chain. This allows the user
to model multiple stages of degradation. Hidden-Markov model can be used when
states of the system are partially observable. Hidden markov models require a large
amount of data for training. A hidden markov model is denoted by λ(π,A,B) where
π is the probability distribution of the initial state, A is the probability distribution
among the states, B is the probability distribution of observations. A schematic
concept of hidden markov process is shown in fig 2.4.

2.2.3 Failure criteria:

Defining a failure criteria (a.k.a End of Life definition) in measurable terms is one of the
most difficult and one of the most crucial components of fault description. Failure criteria
defines the point at which the system fails. The failure criteria can be defined in many
ways based. Two of the most popular methods for defining failure criteria are [62]:

1. Threshold on mission conformity: This criteria assumes that a system fails when it
fails to deliver the necessary threshold of performance parameter. This performance
can be defined by the system manufacturer or the user based on parameters like
running cost [17] or by industry standards [11]
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2. Definitive EoL threshold: This criteria considers a system failure when the system
fails to perform a task under safe conditions. This criteria is difficult to define as the
safety conditions of similar systems may vary according to application conditions
[108] and safety norms of where the system is located.

Once the failure criteria is selected, this criteria must be mapped to some index that
is defined from the system measurements.

2.3 Data Processing

Data processing involves all the processes that may be required for gathering information
from the system and providing it in a form that can be used for fault diagnosis and
prognosis. Data processing in itself is a very vast study but for PHM data processing
generally has two major functions:

• Data filtration

• Feature extraction

2.3.1 Data filtration

Data deals with reading the correct and relevant information from system. The irrelevant
components of the signal are filtered out and the components of signal that are of interest
are retained. Some common data filters used in PHM are:

• Low Pass Filter: The sensors for any measurement are selected considering the
Shannon sampling theorem. According to this theorem, a continuous-time signal
can be sampled and perfectly reconstructed if the waveform is sampled over twice
as fast as it’s highest frequency component. Therefore selected sensor operates at
a frequency at least twice of the frequency of the signal that is being measured.
Hence, the measurement noise, an inherent component of any sensor also has a high
frequency. This noise can be removed from the signal using a low pass filter which
allows low frequency components of the signal to pass.

• High Pass Filter: In addition to the measurement noise, the sensor may also undergo
a bias or a drift. This slowly deviates the measured values from the real values of
the outputs being measured. In such a situation, a high pass filter is used.

• Averaging Filter: The averaging filter is a smoothing filter used to smooth the signal
obtained from the sensors. Average (or mean) filtering is a method of ’smoothing’
the signal by reducing the amount of intensity variation between neighbouring mea-
surements. The average filter works by moving through the signal measurement by
measurement, replacing each value with the average value of neighbouring measure-
ments, including itself.

• Median Filter: Median filter is very similar to averaging filter in operation and
purpose i.e. smoothing. The difference is operation lies in the fact that median
value of neighbouring measurements is performed instead of average value. The
median filter is used to filter out sharp peaks from the signal.
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2.3.2 Feature Extraction

Many time the measured outputs are not in a form that can be used directly for fault
detection or prognosis. The specific information required for analysis must be extracted
from the measurement. Some common feature extraction methods used in PHM are:

• Fourier Transformation: A lot of the mathematical tools used for signal analysis
use trigonometric relations. If the output signal being measured does not follow
the trend of one of the standard trigonometric functions then these mathematical
tools can not be applied. Also, many time the analysis depends on the frequency
information of the outputs, which can not be measured directly. In order to solve
both above, fourier transformation of the output signal is performed. The fourier
transformation provides the individual frequency components of the signal.

• Short Time Fourier Transformation: For output signal changing over time, the
fourier transformation can not capture the change. For this, short time fourier
transformation is used. The Short-time Fourier transform (STFT), is a Fourier-
related transform used to determine the sinusoidal frequency and phase content of
local sections of a signal as it changes over time. In practice, the procedure for
computing STFTs is to divide a longer time signal into shorter segments of equal
length and sunsequently compute the Fourier transform separately on each shorter
segment.

• Wavelet Transformation: A wavelet is a mathematical function used to divide a
given function or continuous-time signal into different scale components. Usually
one can assign a frequency range to each scale component. Each scale component
can then be studied with a resolution that matches its scale. The wavelet transform
is useful in detection of abnormal operating conditions based on decomposition
of the power signals into different ranges of frequencies. This usually provides us a
time-frequency multi-resolution analysis that greatly useful for identifying any short
of abrupt variations in measurement.

2.4 Analysis: Diagnostic-Prognostic Relation

As discussed earlier, diagnostic and prognostic are the pillars of PHM. Together, diagnosis
and prognosis constitute the analysis part of the PHM process. Diagnosis is a static
indicator of the system while prognosis is the dynamic indicator of the system. In other
words, diagnosis informs us about the current state of the system including the presence
and location of the fault. On the other hand, prognosis indicates the evolution of the
system in time. The study of diagnosis is very well established and is independently
called Fault Detection and Isolation (FDI) but the study of prognosis is relatively new
and not as developed as diagnosis. Due to this difference in experience with diagnosis
and prognosis a fixed consensus has not been developed on the relationship between
diagnosis and prognosis, mainly because the prognosis process itself and it’s role has not
been clearly defined. Three schools of thought for the relationship between diagnosis and
prognosis exist.

1. Diagnosis precedes prognosis : This is the most common and the most widely ac-
cepted relationship between diagnosis and prognosis. The purpose of prognosis is
to predict the time of failure. According to this, initially ,the system must checked

21



(a) Abrupt Fault (b) incipient Fault (c) Intermittent Fault

Figure 2.5: Types of malfunction

for faults with diagnosis techniques. Once the fault is detected, the function of
prognosis is to study the evolution of the detected fault. Therefore, diagnosis is
considered as a prerequisite for prognosis. [64]. This school of thought, being most
widely accepted forms the basis of this thesis.

2. Prognosis precedes diagnosis : A common alternative to the above is the concept
of performing prognosis before diagnosis. This thought is proposed because system
can degrade without occurrence of fault. The purpose of prognosis is to predict
the occurrence of fault. According to this, the object of prognosis is to study
continuously the system and predict the potential faults. The purpose of fault
diagnosis is to accurately detect and isolate the fault before any secondary damage
or failure to the system. [158]

3. Prognosis without diagnosis : This is a rare thought and is can considered as a special
case of prognosis preceding diagnosis. This is beneficial in special cases when the
occurrence of a fault causes an immediate failure. Therefore, the diagnosis in such
a case is of no use. [44]

2.5 Diagnosis

The diagnostic stage deals with the malfunctions in the system. The malfunction can
manifest in the following forms (fig 5.7):

• Abrupt: the malfunction occurs step-wise. Discrete components usually undergo
such malfunctions.

• Incipient: Such a malfunction gradually increases in magnitude over time. Such
malfunctions usually occur in continuous systems undergoing degradation.

• Intermittent: Such malfunctions occur and resolve on their own. The extent and
frequency of occurrence of a malfunction is not fixed. Such malfunctions usually
occur due to changes in the working environment of the system.

Based on the part of the system where they occur, the malfunctions can be categorised
as [18]:

• Actuator malfunction: A malfunction in the system inputs.

• Process malfunction: A malfunction in the system itself.
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Figure 2.6: Data driven diagnosis approaches

• Sensor malfunction: A malfunction in output measurement.

Diagnostic approaches are categorised depending on the source of the rules that govern
the diagnostic process.The approaches for diagnosis can be:

• Data-driven approaches: Utilizing the available data to develop rules governing the
diagnosis system.

• Model based approaches: Utilizing the knowledge of system to develop the rules
governing the diagnosis system.

2.5.1 Data driven diagnosis

For data driven approaches, based to method of handling the data, the approach can
be sub-classified as statistical approach or artificial intelligence approach (see fig 2.6).
Statistical approaches, use statistical tools on recorded data to map the fault conditions
to the recorded data. These rules are used for subsequent diagnosis process.

Statistical techniques can be classified into three main groups:

• Statistical Process Control : In these techniques, deviations of a signal is measured
from an ideal. If the signal deviates more than a pre-defined range, a fault is flagged.
[118], [42]

• Hypothesis Testing : This is a very widely used technique in which a fault detection
is proposed as a hypothesis testing problem. The presence of a fault is proposed as
a null hypothesis H0 and the absence of fault is proposed as hypothesis H1. The
null hypothesis is either accepted or rejected taking into account the various outputs
from the system. [66] [125]
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• Multivariate techniques : Multivariate techniques are useful when a large number of
parameters are being measured in a system. Multivariate statistical techniques are
usually applied in two methods i.e. reduction and classification. These methods
can be used individually for diagnosis but are often joined in conjunction for rapid
performance.

The first method, reduction, transforms a high dimensional data set into a reduced
size so as to make it more visual and manageable for the subsequent phase. The
most widely used technique for order reduction is Principal Component Analysis
(PCA). PCA is based on orthogonal decomposition of the co-variance matrix of
variables along directions that exhibit maximum variation of data. The data set
from PCA can be directly used for diagnosis by comparing the future observations
to the created data set using various statistical measures such as T 2 and Q statistics
[134]. Time varying (dynamic) processes can be captured using two-dimensional
PCA [153].

The second multivariate method is classification. Classification methods find dis-
tinct features in the signals so as to differentiate between non faulty state and
the different types of faults. Clustering analysis, groups signals into different fault
categories based on similarity of characteristics. This analysis results in several het-
erogeneous groups of homogeneous content. The clustering can be based on many
possible metrics such as quotient distance [50], itakura distance [82], feature vector
correlation coefficient [102] etc.

Another classification method is Support Vector Machine (SVM). In SVM, the data
is classified by optimizing the boundary that separates the data sets. The boundary
is placed such that the distance of the point closet to the boundary is maximised.
Standard SVM can be used directly [37], or by incorporating loss functions for
improved accuracy [146]. Dual feature SVM can use the first and second derivative
information of the degradation profile for early fault detection [104].

After the classification is performed, the new measurement are categorised into one
of the classified regions. This can be achieved using k-nearest neighbours technique
[159].

Artificial Intelligence techniques make a relation (mathematical or not) between the
inputs and the outputs. This relation can be used for fault diagnosis. Artificial intelli-
gence methods have shown improved performance oven conventional approaches, however,
a major challenge for using this approach is the lack of efficient procedure to create the
training data set and lack of specific knowledge to train the model. Artificial intelligence
techniques include, artificial neural networks (ANNs), expert systems, fuzzy logic sys-
tems, fuzzy-neural systems and evolutionary algorithms. For fault diagnosis, ANNs and
expert systems are most commonly used techniques. Artificial neural networks mimic
the learning behaviour of human brain. A neural network consists of simple processing
elements connected in a layered structure. The processing elements consists of weights
and biases. The numeric value of weights and biases is optimized so that the input-output
relation is satisfied. ANNs have been used extensively for fault diagnosis [70], [127], [138],
[161]. Expert systems [16] use expert knowledge about the system in form of a computer
program. Three major reasoning methods employed for expert systems are rule based
method [32], case based method [140], and model based method [69].
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2.5.2 Model Based diagnosis

Model based diagnosis utilizes a description of the system, usually developed using the
laws of physics, in order to perform diagnosis. The system description can include but not
limited to structural, functional and behavioral information among the constituents of the
system. The underlying assumption in model based diagnosis is that the rules defining
the proper functioning of the system can be checked using the outputs from the system.
In case of a discrepancy in recreation of these a fault is signalled. However, the full
model of a system is rarely know in advance. This is especially true for complex systems.
Hence, the system model must recognise and incorporate the unknown information about
system as uncertainties. Incorporation of uncertainties exposes the diagnosis process to
three types of errors as follows

1. Missed detection: These occur when the system is under fault but due to over-
estimation of uncertainty, the discrepancy in measurement is attributed to model
uncertainty instead of the fault. Hence, an alarm is not raised even when the system
is under fault. Therefore, missed detection can compromise the safe functioning of
the system.

2. False detection: These are a complete opposite to missed detection. These occur
when the system is not under fault but due to underestimation of uncertainty, the
discrepancy in measurement is attributed to model fault instead of the uncertainty.
Hence, an alarm is raised even when the system is not under fault. Therefore, false
detection can increase the overall cost of the system due to frequent interventions.

3. Misdetection: This occurs when the presence of fault is accurately detected but the
location or nature of fault is not identified correctly, thereby affecting the subsequent
prognosis and decision making.

Model based diagnosis requires some a priori information about the system to generate
and evaluate residuals. Based on how the type of information, model based diagnosis can
be either qualitative or quantitative.

Qualitative models of system describe the system structure, causal relationship
etc among the various components of the system. Qualitative models are used when
numerical information about the system is unavailable. Many tools for qualitative analysis
have been proposed like digraphs, signed digraphs, qualitative bond graphs, qualitative
simulations using fuzzy logic etc. As the model does not incorporate the numerical values,
the diagnosis system becomes less sensitive to measurement noise [45].

Quantitative models describe a numerical relation between system inputs, system
parameters and system outputs. Generation of residuals using quantitative models is
relatively easy and use of such residuals for fault diagnosis is well developed. Residual
generation using observer quantitative models falls under one of the three approaches:

• Observer based approach: Observers are dynamic systems that reconstruct the
states in the state space model of the system using the measured inputs and out-
puts. Using observers, the state of the system can be measured fully or partially.
Observers can be used in deterministic or stochastic setting. [41]

• Parameter estimation approach: Parameter estimation approach assumes that faults
in the system occur due to changes in system parameters. Therefore, continuous
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monitoring and estimation of system parameters allows the detection of faults as
deviation of parameters from ideal. [56] [2]

• Analytical Redundancy Relations approach: Analytical Redundancy Relations are
certain numeric constrains that are applied between the system inputs and outputs,
owing to the structural of the dynamic model. The structural constrains follow some
governing physical law like ohm’s law, law of conservation of mass etc. [128] [6]

After the residuals are generated, these residuals are evaluated such that the various
uncertainties and measurement noise are incorporated in the final decision. In other
words, the fault detection should be robust. Two approaches are used for making the
detection process robust i.e. Active approach and passive approach. Active approach is
applied during the residual generation stage. In this approach, the generated residuals
are sensitive to faults but insensitive to uncertainties. Passive approaches are applied
in the evaluation stage. In this approach, the uncertainty is propagated to generated
residual. The residual is allowed to deviate within thresholds calculated by incorporating
the uncertainty in the model.

Other special methods of fault detection using finite element analysis [133], energy
analysis [20], [92], eigenvalue/eigenvector analysis [110],[39] etc have been developed but
their application remains very limited.

2.6 Prognosis

Prognosis is the most important and often the most difficult part of the PHM process. The
objective of prognosis is to predict the remaining useful life of the system. A universally
accepted consensus on classification of prognosis approaches has not been achieved but
attempts have been made by [64]. In this section the prognosis techniques are also
classified as:

1. Experience based approaches

2. Data driven approaches

3. Physics based approaches

The application of various prognosis techniques can be understood using the figure
2.7. Experience based approaches are applicable in a wide variety of applications but
suffer on account of accuracy. Experience based approaches are followed by data driven
approaches which is further followed by physics based approaches.

2.6.1 Experience based approaches

As the name suggests, these approaches try to correlate the expert knowledge to the
actual observation, and thus, depend highly on the previous experiences with the system.
Statistical information about failures frequency, collected over time forms the basis of
this approach. Therefore, calculation of Mean Time between Failure (MTBF) is a very
important aspect of this approach. Experience based approaches are generally categorised
as follows:
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Figure 2.7: Classification of Prognosis approaches.

2.6.1.1 Expert Systems

Expert systems are based on the heuristic facts that the system experts have gained
over years of experience. These are a often a complex web of if-then and if-then-else logic
statements [5] but can also use fuzzy logic techniques [91]. Therefore, the generation of an
accurate and extensive knowledge base is crucial. These approaches being combinatorial
in nature, can get too large too fast. So, these approaches are usually limited by the
number of inputs and outputs in the system. Another limitation of these approaches is
the high dependence on occurrence and correct recording of as event in the past. A new
type of fault can not be handled by these approaches easily.

2.6.1.2 Life Expectancy Modeling

Many times the system data collected over time fits very nicely in a statistical form. This
is because even though the mathematical nature if the system is not fully known, it can
be observed form the outputs. These observations can be assumed to replicate in similar
types of failures thereby can be described using a probability density function [120]. This
makes the prognosis process easier because most of the times the observations can be
fitted easily using an linear, exponential, normal, gausian and weibull function. Also,
there exist many techniques like least square methods, maximum likelihood method etc.,
that can be used for the recorded data on the selected curve.

Weibull function, also known as the bathtub curve, is often used as it can accommodate
the chances of failure over the different phases of the product life as shown in fig 2.8. The
First phase has very high chances of failure at the start but the chances of failure decrease
sharply over time. This due to the wearing of the components when the system start.
The next phase is indicated by very low chances of failure. The last phase is indicates
by gradual increase in the chances of failure over time. This phase is due to the fatigue
and degradation of components over time. As degradation keeps on increasing, so does
the chances of failure.

2.6.2 Data driven approaches

Data driven approaches for fault prognosis are extensively explored. Data driven ap-
proaches usually follow one of the two following strategies. The first strategy is a two
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Figure 2.8: Weibull curve (bathtub curve) for failure rate over time.

step process. Firstly, the data is processed for appropriate dimension reduction algorithms
and/or feature extraction to map the system outputs to degradation of the system. Sec-
ondly, the signals are extrapolated till they reach the pre-defined failure threshold.The
second strategy comprises of direct mapping of system outputs to the degradation of
the system. While the first strategy usually employs statistical techniques, the second
strategy employs machine learning and artificial intelligence techniques.

A thorough survey of the different data driven approaches is provided in [158]. In
the survey, the different data driven techniques, suitable to different types of systems are
discussed (figure 2.9). The types of system discussed are as follows:

• Dynamic system: Most of data-driven prognosis methods either neglect the dynamic
characteristics of the system or accommodate it by increasing the sampling interval.
This leads to loss of partial dynamic fault information and an in effect the effect of
noise on the data. This reduces the fault prognosis performance.

State estimation methods can be used for such systems. These methods do not
predict the health status directly but estimate the state variables which are used
to estimate performance degradation. Common methods for state estimation in-
clude hidden markov model [126][80], particle filters [150], fuzzy logic [24] etc. An-
other method for prognosis of dynamic systems is regression analysis method. This
method establishes a quantitative relationship between variables. Auto Regression
(AR) was used for prognosis in [71] and [157].

• Nonlinear systems : Non linearity generally arises from linear combination or linear
equations of system’s dynamics. They are more difficult to predict that linear
system. Most of the linear methods of prognosis assume a linear behavior of system
within some range to perform prognosis but this affects the overall accuracy of the
final results.

Kernel based methods are widely used for prognosis of non-linear systems. A ker-
nel function is mapped to the variable space and a higher-dimension kernel space.
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Figure 2.9: Classification of data driven prognosis methods. [158]

This allow the linear methods to be applicable to non-linear systems. Kernels can
be combined with PAC (KPCA) [149], support vector machines [29] etc for fault
prognosis. Particle filtering methods [155] and neural networks [120] have also been
employed for prognosis of nonlinear systems .

• Non-Gaussian system fault prognosis : Most prognosis systems assumes that the
system conforms to Gaussian distribution. Non-Gaussian systems are those whose
outputs do not conform to the Gaussian distribution. Systems usually become non
gaussian when they can not be completely isolated form the external environment
factors.

Independent Component Analysis (ICA) [90][89] and Gaussian Matrix Models [144]
are usually used for prognosis of non-gaussian systems.

• Time varying and multimode systems : A majority of prognosis methods assume that
fault occurs in a single component with a single fault mode. This means that the
degradation phenomenon is stable. This is not applicable when the system running
under varying change. Also, one fault can give rise to a subsequent fault. Therefore,
stable degradation models are not applicable for modern systems.

As a single fault mode can not achieve accurate prediction, simplest solution involves
using multiple degradation models for prediction [135]. Switching kalman filters can
also be used to handle mode changes [73]. For slow changing systems, adaptive and
recursive method are more suitable [31][145][112]. Isolation estimation methods can
achieve fault prognosis for multiple faults simultaneously [155].

• Non-stationary systems : Under perfect operating conditions the process variables
of an industrial system should remain stationary at the point of best performance.
However, the process variables can drift from their intended value due to a variety
of reasons even when not under fault. Therefore, a prognosis algorithm that does
not consider this variation is not reliable for prognosis of a non-stationary system.

Successful prognosis of non-stationary systems was performed using hidden markov
method [35] [107], support vector machine [142] [21], sequential monte carlo tech-
nique [98] and gaussian process regression [52] [51].
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Figure 2.10: Physics based prognosis techniques

2.6.3 Physics based approaches

Physics based approaches uses the physical knowledge of the system and the process to
perform prognosis. Prognosis through physics based approach are the most expected to be
the most accurate. They also allow for a logical and deeper understanding of the prognosis
process. However, there are many challenges to physics based approaches. In many
cases, all the model parameters governing the underlying process are not recognised. To
calculate the actual values of the model parameters that are used for creating the system
model, specifically designed experimental and empirical data are required. In addition
to the information of the system, failure modes under different faults are also required.
This makes the physics based approaches very difficult and costly in implementation.

Classification of physics based methods is shown in figure 2.10. Based on the type
of model used, physics based methods can by of two types i.e. methods based on first
principles of physics and methods based of statistical models.

When available, physics-based models derived from first principles of physics and
proper understanding of underlying mechanisms tend to significantly outperform other
models [87]. In these methods, changes in model output is as described using residuals
which have a direct physical meaning [120]. These residuals can be directly used and
extrapolated in time to perform fault prognosis. A prognosis method based on extrap-
olation of analytical redundancy relations was proposed by [94] for a known fault trend
evolution. The known system model can be dissociated into fast and slow component
and extensive work has been done on such dissociation techniques [100][129]. The slow
and gradual degradation of the system can be modeled as a ’slow-time’ process which is
coupled with the ’fast-time’ system. In [12] and [27] battery degradation was monitored
using this approach. Certain application specific methods can be used when the complete
information about the system is available. In [88] stiffness based prognosis model of sus-
pension system was developed and vibration response was analysed to perform prognosis.
It should be noted that first principle models may not be available to complex systems.
In addition, a physics-based model is often built case by case. Hence, it is not generally
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Figure 2.11: Classes of hybrid prognosis approach.

applicable to different systems easily.
Statistical models are usually applied when degradation model is available. Statistical

models are exploited while continuous monitoring of the system. The system states are
continuously monitored. Therefore, new data is added to the statistical model recursively.
This can lead to increased accuracy of the prognosis process with time. Variants of kalman
filters are like simple kalman filter [19], switching kalman filter [74] [26] , extended kalman
filter[9][123] [67], particle filters [28] [61] [113] [141] have been used with high success.

Unlike the first principle models based prognosis approaches, the FEM approach acts
on component level and not system level. New line finite element method is a very old
and reliable method of simulating various phenomenons of physics. FEM is considered
very reliable as it requires very basic equations for any physical phenomenon. For purpose
of prognosis and RUL estimation extended finite element method (XFEM) can be used.
This method utilises principles of fracture mechanics for simulating the growth of a crack
from initiation to failure. The highly accepted paris crack growth model is usually used.
XFEM was used for modelling the crack growth phenomenon directly [136] [65] [121] [22]
[147]. XFEM models are highly dependent on the geometry of the component. Therefore,
a manufacturing defect can lead to errors. Also, this method is demands an accurate
estimation of crack initiation point which is very difficult. The biggest limitation of using
XFEM approach lies in the fact that this approach has only been used for failures related
to mechanical crack formation. Prognosis of other forms of degradation can not been
studied.

2.6.4 Hybrid approaches

Many times, due to the limitations discussed, one particular approach can not be applica-
ble with high accuracy. This is usually because a large amount of data is not available for
experience based and data driven approaches, and incomplete knowledge of the underly-
ing process does not allow the high accuracy prognosis using physics based approaches.
In such a case, a combination of approaches is used for prognosis. This is called hybrid
approach. Hybrid prognosis approaches have be classified into five classes by [72] as
shown in figure 2.11.

1. Class I - Experience based + Data driven: Expert systems cannot directly deal with
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Table 2.1: Subclasses of data-driven + physics based hybrid prognosis.

Subclass Role of data-driven model Role of physics based model

A System model RUL prediction

B RUL prediction System model

C Future measurement RUL prediction

D RUL prediction RUL prediction

continuous variables as the output of expert systems is usually a discrete event. This
limits the application of expert systems for RUL estimation. Data-driven models
can easily handle continuous data and learn to correlate and the underline structure
only from data. Hence, this class of hybrid approach can provide the opportunity
of integrating domain knowledge into data-driven models for system state or health
level estimation, based on which RUL can be calculated. Such hybrid framework
was used in [119].

2. Class II - Experience based + Physics based : Approaches in this class integrate both
experience based models and physics-based models. In this prognosis set-up, the
output of the experience-based model is often used as an auxiliary to improve the
physics-based model. The experience-based model can also be used to estimate the
system health state based on which RUL can be predicted. This hybrid approach
was used in [10] and [131] for prognosis.

3. Class III - Data driven + Data driven: There are two approaches for this category
of hybrid prognosis. In the first approach, a data-driven model is used to estimate
the internal system state (e.g., crack growth rate) when it is not possible to measure
it directly using sensors. The estimated system state can be used to extrapolate the
future state of the system to predict RUL, which is calculated using another data-
driven model. Data-driven health state estimation methods and prediction methods
have been extensively studied in the past so this approach can be easily adopted,
and sometimes without additional data requirements. This hybrid approach was
used in [151] [54] and [81]

In the second approach, different competing data-driven models can be developed
for RUL prediction. The results of different models can be aggregated to improve the
prediction performance by a carefully designed fusion mechanism. Many techniques
have been used for fusion of results from multiple data driven methods like Kalman
filter [106] [48], Weight Application to Failure Times (WAFT) method [43], majority
voting[36] etc.

4. Class IV - Data driven + Physics based : This class of hybrid prognosis is extensively
practiced and is much more developed than the others. Based on the roles played
by the data driven model and physics based models, this class of hybrid prognosis
is categorised further into the sub classes listed in Table 2.1.

• Subclass A: Use of data driven model as measurement model and
physics based model for RUL calculation: The internal state of the system
might not be directly accessible for sensor measurements. In such a situation,
these are inferred from measurements to estimate the internal system state
indirectly. These predictions are used for RUL estimation using a physics-based
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model. The mapping from the measurement to the internal system state is also
called the measurement equation in literature. Using a data-driven model to
map from measurements to the internal state allows the use of a mathematically
sound physics-based model to predict the RUL. The date-driven measurement
model implicitly incorporates uncertainty into the physics-based model, but it
also avoids error accumulation due to the formulations similar to Paris’ Law
[95]. This subclass is also used in [95] [115] [55].

• Subclass B: Data driven model to replace physics based model for
fault propagation: This is similar to the previous sub-class, but instead
to replacing the mathematical model for state estimation, the mathematical
model for RUL calculation is replaced with a data driven model. This hybrid
approach is used if the derivation of the physics-based model is complex or
when it is prohibitive to estimate the parameters of a fault growth model or
both. Limitations to this are in the availability of data. If the data is not
sufficient, it introduces uncertainties in the prediction. This subclass is also
used in [15] [13].

• Subclass C: Use a Data-Driven Model to Predict future measure-
ments and Use a physics based model to predict RUL: This type of
hybrid approach addresses the high dependency on availability of data when
updating a physics-based prediction model during long-term prediction using
a data-driven model to predict future measurement. If the future measure-
ment can be accurately predicted by the data-driven model, it can correct the
physics-based model in long-term prediction, especially when the degradation
doesn’t follow the fault growth model. However, if the data-driven prediction
performs poorly, the prediction result are severely affected, and it could be
worse than the physics-based model prediction. Therefore, the challenge is to
ensure the accuracy of the data-driven model, and fusion mechanism that can
be designed to balance the both types of prediction models. This subclass is
used in [77]. This type of hybrid approach further addresses the issue of data
availability when updating a physics-based prediction model during long-term
prediction using a data-driven model to predict future measurement

• Subclass D: Use of Data driven model and physics based model for
prediction and subsequent fusion of results: This hybrid approach calcu-
lates the RUL of the system simultaneously using two prognostics models, i.e.,
a physics based model and a data driven model. The final RUL is calculated
by fusing the results of both prognostics models. This improve the accuracy of
RUL prediction and narrow the confidence boundaries. This subclass is used
in [46] [47].

5. Class V - Experience based + Data Driven + Physics based : This class of hybrid
prognosis intends to utilize the strengths of all the basic prognosis approaches i.e.
experience based, data driven and physics based approaches. Even though this class
of hybrid prognosis is highly desirable, it is very rarely used. In [3], this class of hy-
brid prognosis was achieved using Dynamic Bayesian Networks. Dynamics Bayesian
networks were used for fuse heterogeneous information like expert opinion, experi-
mental data, operation data and mathematical model for detecting fault, whereas
particle filter was for prognosis. Heterogeneous information was also fused using
probabilistic update process in [101]. In [148], fusion of homogeneous information
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was achieved. For prognosis, an optimal linear combination of RUL calculated from
various individual algorithms for accurate prediction. The major challenge to this
class of hybrid prognosis is the heterogeneous information fusion.

2.7 Decision Making

Decision making is the final step for the PHM process. Traditionally the use of PHM was
limited to the application of CBM. However, overtime it’s potential outside CBM has been
realised. A big contribution to this change in perspective is attributed to developments
in decision making process. For applications in CBM, the only possible decision is the
scheduling of maintenance actions. With developments in decision making process other
decisions like implementation of fault tolerant control, mission rescheduling etc can also
be considered. The final decision is highly dependent on the RUL [62] [124]. The final
decision that is taken can be categorised as follows [8]:

• Maintenance Decision: These are the decisions regarding intervention in the
process for performing maintenance action. The intervention could be immediate or
scheduled anytime before the end of life. These decision is not only very important
but also application and industry specific as this is usually accompanied by a system
shut down to perform maintenance. These decisions are wildly studied in several
industrial domains like transport [114], manufacturing [34] [78].

• Operation Decision: Operation decisions concern with changing the operating
conditions of the system so as to avoid failure. These can be sub-categorised as
follows:

– Production and task assignment: In this category of decision the sys-
tem schedule of completion of the task is altered according to the recognised
degradation and the RUL. This was considered the best decision in situations
discussed in [124].

– Control decision:In this category, the control law governing the system is
modified and the degradation of the system is incorporated in the control law
itself. This allows the system to function properly even under degrading con-
ditions [109] [68].

– Logistics:In this category of decision the systems supporting the degrading
system such as raw material are rescheduled according to the new system dy-
namics of the degrading system. Logistic decisions take into consideration the
health condition of the system, the lead time of ordering and the storage levels
to optimize the cost [75].

• Mixed decisions: These decisions concern with the optimum combination of main-
tenance and operating decision.

The role of RUL is very crucial in the decision making process. The final decision
applied depends almost entirely on RUL. The RUL can be used by the decision algorithms
in the following ways:

• As a classification criteria between the selection of various applicable decisions.

• As a variable for defining the new control law if control decision is selected.
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Figure 2.12: Decision making based on Remaining Useful Life.

• As a threshold of maintenance action.

• As a penalty in the objective function to reduce the lost remaining useful life due
to early maintenance.

The most common decisions based on the RUL can be understood by fig 2.12.
For a very small RUL the where a critical failure can not be stopped the system

functioning is interrupted immediately. Immediately stopping a system might be difficult
and could bring about problems of it’s own. Therefore, if the RUL is a little higher, a
fault tolerant control is initiated to safely bring the system to stop.

For medium RUL where there is no immediate danger to the system or surrounding,
maintenance must be initiated instead of stopping the system. Maintenance team might
not be remotely available, so the system and it’s associated components can be recon-
figured to continue working in the faulty condition till the maintenance team arrives. If
the RUL is longer, immediate maintenance is not required. Instead the maintenance is
properly planned and the system continues to work in the current state.

For very long RUL, the maintenance is not required. Instead the system remains
untouched and continues to work in the faulty state. The system mission time is updated
for the faulty working conditions of the system.

2.8 Integrated diagnosis and prognosis

In most commonly used frameworks, prognosis immediately follows diagnosis. Prognosis
depends on the results of diagnosis and the both are therefore highly co-relative.

In most of consulted literature, the diagnosis and prognosis techniques are selected
independent of each other’s consideration. Success has been achieved in many cases but
an additional challenge in such a situation is the data fusion between the diagnosis and
prognosis process. Therefore, a common technique for diagnosis and prognosis can help
with the challenge of data fusion.

This fact has been realised and a few attempts have been made to use common
techniques for both fault diagnosis and prognosis. Most of the techniques for integrated
fault diagnosis and prognosis employ purely data driven techniques [156] [152] [143].
However, a challenge for purely data based techniques is that for a new system, failure
data is not available.

Model information is therefore preferred for integrated fault diagnosis and progno-
sis. In [105] the FEM based vibration spectrum was generated and compared with the
vibration spectrum of real system for fault diagnosis. Prognosis was performed using
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crack growth equation. In [14] particle-filters and bayesian estimation were used for both
diagnosis and prognosis. In [141] diagnosis was performed using wavelet transformation
and prognosis was performed using particle filters. In [111] bond graph model based
techniques were used for diagnosis. Diagnosis was followed by parameter updating of sys-
tem parameters and subsequent prognosis. In [154] bond graph based global analytical
redundancy relations were used for fault diagnosis and prognosis of hybrid systems.

Independent study of fault diagnosis i.e. FDI is more developed than prognosis. This
is probably the reason that the above mentioned works a particular technique of model
based diagnosis was pushed to perform prognosis. However, the working conditions of
FDI and prognosis are very different. For FDI, the system analysis concerns detection
of fault and the time of initiation of fault is not known, therefore, analytical redundancy
FDI method uses dynamic equation in derivative causality while initial conditions are
not known in real process. On the other hand, for prognosis the analysis concerns the
prediction of the evolution of system from it’s ideal state to failure state. Hence, the
initial running condition, i.e. the ideal system conditions are known. Hence, in the whole
framework of PHM the initial conditions are known fully of partially in order to perform
prognosis. This information of initial conditions is always negated when FDI techniques
are used for diagnosis. Therefore, if fault diagnosis is performed incorporating the initial
conditions, it can lead to improvements in the diagnosis process and therefore the overall
PHM framework.

In this thesis a prognosis parameter which utilizes the initial condition information is
pushed for diagnosis and an integrated PHM framework is developed.

2.9 Selection of prognosis parameter

The available literature, [62] suggests the following traits for a good and successful model
based prognosis parameter:

1. Should be applicable in multiple domains like mechanical, chemical etc.

2. Should be a monotonic indicator making it easy to fix failure limit and extrapolation.

3. Should always increase with time.

For the above mentioned work, total energy in the system was selected as a prognosis
parameter as total energy is a monotonic indicator, is applicable in multiple domains and
always increases with time.

However, total energy is not a suitable parameter for the current work. The total
energy can only be associated to whole system, it is difficult to apply it at component
level in order to not only detect the fault, but to also isolate it. Therefore, another variant
of energy must be selected.

In addition to the above mentioned traits, it is observed that parameter with com-
ponent of time in it’s mathematical definition will make it easier to extrapolate while
finding the RUL.

The variants of energy and their suitability to be time-dependent and continuously in-
creasing functions are given in Table 2.2. The variants of energy compared are Lagrangian
(difference between generalised kinetic energy and potential energy), Hamiltonian (alge-
braic sum of generalised kinetic and potential energy), Power (rate of energy change) and
Energy Activity (index of total energy interaction).
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Table 2.2: Selection of prognosis parameter

Lagrangian Hamiltonian Power Energy Activity

Increases - - - +

Time - - + +

As Energy Activity (EA) seems to be the most suitable parameter to implement
prognosis, it is used, in the presented work, to complete the two major steps of the PHM
process, i.e. diagnosis and prognosis.

Calculation of EA depends on the calculation of power. As bond graph modelling tool
is based on the analysis of power exchange dynamics in the system, bond graph is the
most suited tool for using EA.

2.10 Conclusion to chapter

In this chapter a comprehensive details about the PHM process is provided. It is re-
alised that fault diagnosis and prognosis are the pillars on which the entire PHM rests.
In literature there are a number of approaches developed for both fault diagnosis and
prognosis.

These approaches can be broadly categorised as model based, data based or hybrid
approaches. All model based, data based and hybrid approaches offer some common
advantages and suffer from some common disadvantages, weather they are applied for
fault diagnosis or prognosis. Model based techniques offer high accuracy as they utilise the
basic principles of physics for evaluation and do not need any experimental data neither
in normal nor in failure mode.. The major limitation of model based approaches is the
requirement of a complete and accurate model which is usually not available. Data based
approaches are very successful because these approaches are based only on the real data
representing the influence of all the unknown parameters that might not be considered
using model based approaches. The biggest limitation for data based approaches is the
requirement of large amount of data, Hence, this approach might not be suitable for a
system under development for which data is not available. Hybrid approaches integrate
the physics based information and data based information for analysis and are therefore
very successful even with a small amount of available data. The hybrid approaches are
limited by the fusion of physics based information and data information which is a very
difficult task.

From literature a need for an integrated framework for fault diagnosis and prognosis
using a common parameter is realised. Contrary to the traditional integration techniques
of using diagnosis approaches for prognosis, it is realised that a prognosis approach should
be used for diagnosis to create an integrated framework. The suitable traits of a model
based prognosis parameter are observed from literature and Energy Activity is realised
as a suitable parameter for integrated fault diagnosis and prognosis, and is therefore used
for the work presented in this thesis.
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Energy Activity
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This chapter provides a deeper insight to Energy Activity. The proper understanding
of energy activity is crucial for proper understanding of this thesis. The basic concept,
variations, applications and physical inferences of Energy Activity are discussed in detail.

3.1 Introduction Energy Activity

The word ’activity’ in Energy Activity can be imagined as active participation during a
fixed period. An element’s energy activity can thus be inferred as a measure of participa-
tion of that particular element in the dynamics of the system during a fixed time period.
Historically, the concept of energy activity has been used successfully for creation of re-
duced model while conserving the overall dynamics of the system [85]. The underlying
concept was that components which are less active participate very less in the dynamics
of the system. Therefore, these elements can be removed from the system in order to
create a reduced order proper model.

3.2 Difference between Energy and Energy Activity

In any physical system, all the components, irrespective of their domain, interact among
each other through energy exchange. This energy exchange is responsible for the overall
dynamic behavior of the system. Energy is what enables a change in the system. Each
domain of physics has it’s own domain specific definition of energy change.
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For eg. in electrical systems, energy change is defined using eq 3.1

Energy = I × V × t (3.1)

where I is the current, V is the voltage and t is time.
Similarly, in linear mechanical systems, the total energy change is the sum of the kinetic
energy change and potential energy change. Total is defined by eq 3.3.

Energy = KE + PE (3.2)

Energy =
1

2
m∆V 2 +mg∆h (3.3)

where m is the mass, ∆~V is the velocity and g is the acceleration due to gravity and ∆h
is the height of the mass.

However, the definition of energy change is always derived from work-energy principle,
irrespective of the domain of application. The work-energy principle states that the
change in energy is equal to the total work done by internal and external forces acting
on the system, and is defined by equation 3.4. Under standard conventions, work done
by the system decreases the stored energy and the work done on the system increases the
stored energy.

∆Energy =
∑

WorkFext+Fint (3.4)

Also, power is defined as the rate of work done, hence, the rate of energy change in
the system. Therefore, energy change can be expressed using power as given by eq 3.6

Power =
dE

dt
(3.5)

∆Energy =

∫ a+∆t

a

(Power)dt (3.6)

While energy is a physical phenomenon, energy activity on the other hand is a math-
ematical concept with a physical inference. As discussed, the work done on the system
increases the energy and the work done by the system decreases the energy. This is not
the case for energy activity. Energy activity is the total work interaction by the system.
In other words, weather the work is done by the system or work in done on the system, it
always adds to the energy activity. Hence, the energy activity will always increase. The
above concept can be expressed mathematically using eq 3.7.

Energy Activity =

∫ a+∆t

a

|Power| dt (3.7)

Energy Activity (EA) was introduced to achieve physical model reduction [84]. EA of
a component is the total energy interaction (both storage and release) that the component
has with the system over some defined time period. The fundamental difference between
energy and energy activity is that, the energy activity of the component can only increase
with time, whereas this is not always true for energy. The difference between the two can
be understood using fig 3.1. Fig 3.1b and 3.1c show the energy and EA variation for any
system component undergoing a variation of power shown in fig 3.1a.
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(a) Power variation in an element.

(b) Energy variation.

(c) Energy Activity variation.

Figure 3.1: Difference between energy and Energy Activity.

3.3 Indexes of Energy Activity in Bond Graph framework

The bond graph of a system (see Annex 1) is a graph, G(N,B), with N nodes and
B: bond. Nodes are associated with physical energy phenomena (dissipation, storage,
transformation). Two power variables (generalised effort e(t) and generalised flow f(t))
are associated with each a bond. Power in a bond is the product of it’s corresponding
generalised effort and flow . Energy activity is the time integral of the magnitude of
power. As bond graph modelling is based on power, therefore bond graph is the most
suitable tool for calculation of energy activity. It must however be noted that energy
activity can also be evaluated using other modelling techniques but that might require
additional mathematical operations [85].
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3.3.1 Energy Activity

While using bond graph as modeling tool, power associated in any element in the system
is defined as the product of the generalised flow and a generalised effort. EA can therefore
be defined using equations 3.8 and 3.9.

In equation 3.8, f and e are the generalized flow and effort respectively. The relation
between the generalised flow and effort for any element is defined by it’s Constitutive
Relationship (CR) which represents the physical law governing the component behavior.

In equation 3.9 S is the signal input from the system to the component. Based on the
causality (derivative or integral) imposed on the component, S can represent either flow
or effort signal. Function g is the Constitutive Relationship (CR) i.e. the equation 3.9
expresses the relation between the component input and output. It corresponds to the
physical law applied by the component. It uses the numeric component value φ.

EA =

∫ a+∆t

a

|e(t).f(t)| dt (3.8)

EA =

∫ a+∆t

a

|S.φg(S)| dt (3.9)

For example, in a linear mechanical system, inertial element is used to model the
mass. For inertial element in a linear mechanical system, in preferred integral causality,
the signal input to the element is the resultant force acting on the mass and output is
the velocity of the mass. The governing equation for inertial element in preferred integral
causality is given as

f(t) =
1

φI

∫ t

0

e(t)dt

For linear mechanical system the generalised flow (f) is the velocity of the mass,
generalised effort (e) is the resultant force acting on the mass and the numeric component
value (φI) is the magnitude of the mass. The energy activity of an inertial element in
preferred integral causality can therefore be calculated as:

EA =

∫ a+∆t

a

|e(t).f(t)| dt =

∫ a+∆t

a

∣∣∣∣e(t). 1

m

∫ t

0

e(t)dt

∣∣∣∣ dt (3.10)

Comparing eq 3.10 with eq 3.9, in the given condition the signal input S is the
generalised effort (e), φ is 1/m, and g(S) is

∫ t
0
edt.

For energy storing elements (I and C), the function g can be either integral or dif-
ferential in nature. The form used for calculation, depends on which power variable (e
or f) is obtained using sensor information. The function g for C and I elements in both
integral and differential form are given by equations 3.11 and 3.12 respectively. For the
current work, equations in integral form are used.

e(t) = φC

∫ t

0

f(t)dt

f(t) =
d

dt
(φ−1

C e(t))

(3.11)
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Table 3.1: Element power calculation using bond graph.

Element Known variable Constitutive equation Power

f(t) e(t) = φR(f(t)) f(t)φR(f(t))

e(t) f(t) = φ−1
R (e(t)) e(t)φ−1

R (e(t))

f(t) e(t) = φc
∫
f(t)dt f(t)φc

∫
f(t)dt

e(t) f(t) = d
dt(φ

−1
C e(t)) e(t) d

dt(φ
−1
C e(t))

e(t) f(t) = φI
∫
e(t)dt f(t)φc

∫
f(t)dt

f(t) e(t) = d
dt(φ

−1
I f(t)) f(t) d

dt(φ
−1
I f(t))

f(t) = φI

∫ t

0

e(t)dt

e(t) =
d

dt
(φ−1

I f(t))

(3.12)

The function g for energy dissipating elements (R) is algebraic however the form used
depends on the power variable known. The different forms are given in equation 3.13.

e(t) = φRf(t)

f(t) = φ−1
R e(t)

(3.13)

Table 3.1 denotes the constitutive relationship, power and energy activity expressions
for I, C and R elements under different causality.

3.3.2 Energy Activity Index

Energy Activity Index (EAI) [85] of any component, calculated during a time interval,
is the fraction of the energy activity of that component, in the total energy activity of
the system during the same time. Hence, energy activity index analysis gives us the
relative comparison of the activity of different components in the system. The expression
used for the calculation of energy activity index of component i in a system containing n
components is given by eq 3.14. EAI has been developed for model reduction [85], and
fault detection [122] of systems.

EAIi =
EAi∑n
i=1EAi

(3.14)

3.3.3 Junction Activity

While EA and EAI can be calculated using modeling techniques other than bond graph,
Junction Activity (JA) and Junction Activity Index (JAI) are forms that are calculated
specifically using bond graph. However, like EA and EAI, JA also has an associated
physical meaning.
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Figure 3.2: Junction activity calculation.

Junction activity [60] in bond graph is the total activity change at a junction due to
all the components connected to the system through the same power conserving junction.
there are two types of junctions used in bond graphs i.e. 1 junction and 0 junction. A 1
junction represents an equality of flow i.e. all the components connected to a common 1
junction receive equal generalised flow from the system. Similarly, 0 junction represents
an equality of effort. So, all the components connected to a common 0 junction receive
equal generalised effort from the system.

Hence, junction activity is the combined activity change brought about by all the
components which receive similar information from the system. JA calculated at ith

junction, consisting of j elements is calculated using eq 3.15.

JAi =

j∑
a=1

sign(a)EAA =

j∑
a=1

sign(a)

∫ a+∆t

a

|eafa| dt (3.15)

For example, considering a bond graph as shown in fig 3.2 the JA for the 1-junction
can be calculated as follows.

JA =

∫ a+∆t

a

|e1f1| dt−
∫ a+∆t

a

|e2f2| dt+

∫ a+∆t

a

|e3f3| dt−
∫ a+∆t

a

|e4f4| dt (3.16)

3.3.4 Overall Junction Activity

The overall junction activity [60] is the total of all the junction activities in a bond graph
model. The overall junction activity is different from the total EA of the system because
JA is ”defined as the ’signed’ algebraic sum of activities of all the elements connected to
the power conserving junction of the bond graph model”[60].

The overall junction activity of a system containing k junctions is given by eq 3.17.

Overall Junction Activity =
k∑
a=1

JAa (3.17)
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3.3.5 Junction Activity Index

Junction Activity Index (JAI) [60] is similar to EAI in the context that both give a
indicate a relative contribution and not absolute. While EAI indicates the relative con-
tribution of one component in the overall activity of the system, JAI indicates the relative
contribution of a junction in the overall junction activity in the system.

The overall junction activity indicates the total energy restituted to the system.
Therefore, The JAI for any junction , represents the portion of the total restituted energy
that is contributed through that junction. It is can be inferred that a low junction ac-
tivity index indicates that the junction has smaller contribution to the overall restituted
energy to the system. JAI of a junction i in a system with k junctions is indicated by eq
3.18

JAIi =
JAi∑k
a=1 JAk

(3.18)

3.3.6 Relative Activity at Junction

The Relative Activity at Junction(RAJ)[60] is the equivalent of EAI, defined in the sub
environment of a particular junction of bond graph model rather than the whole system.
Therefore, RAJ of an energy element is the ratio of its activity to the summation of
the activities of all the energetic elements at that junction. The RAJ indicates the
energetically active elements connected on a specific junction. The RAJ of an element i,
connected to a junction with j elements is given by eq 3.19.

RAJi =
EAi∑j
a=1EAa

(3.19)

3.4 Energy Activity calculation

This depicts the procedure of calculation EA from a bond graph model of a system. This
thesis uses only EA and EAI, therefore, only calculations of EA and EAI are discussed.
The other variants of energy activity are not discussed as they are outside the scope of
the current work.

The process of EA calculation can be understood by using a system as shown in fig
3.3. The bond graph of the system under consideration is shown in fig 3.4. The system
consists of a voltage source (µ). An inductor I1 and a resistance R1 are connected in
series. The circuit also consists of a capacitor C2 and resistance R2 connected in parallel.
The numeric values of the system components are tabulated in table 3.2.

Fig 3.4 shows the bond graph model of the system using the preferred integral causal-
ity.

The structural properties of the system represented by the bond graph model using
the 1 junction and 0 junction are given by eq 3.20.

1− junction
{
e1 − e2 − e3 − e4 = 0

f2 = f3 = f4

0− junction
{
f4 − f5 − f6 = 0
e4 = e5 = e6

(3.20)
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Figure 3.3: Simple electric circuit

Table 3.2: Numeric component values of circuit elements.

Component Symbol Value

Voltage µ 240 · sin(377 · t) V

Inductor L1 1.1 H

Resistance R1 5 Ω

Capacitor C1 2e-7 F

Resistance R2 35 Ω

Figure 3.4: Bond graph model of electrical circuit.
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Table 3.3: Energy activity calculation using bond graph.

Effort Flow Power EA

L1 e3 f3 e3 · f3

∫ t
0 |e3 · f3| dt

R1 e2 f2 e2 · f2

∫ t
0 |e2 · f2| dt

C1 e6 f6 e6 · f6

∫ t
0 |e6 · f6| dt

R2 e5 f5 e5 · f5

∫ t
0 |e5 · f5| dt

The constitutive relation for the components in integral causality are as follows:

f3 =
1

L1

∫
e3dt

e2 = R1 · f2

e6 = C1

∫
f6dt

f5 = R2 · e5

(3.21)

Using equations 3.21 and 3.20 the generalised effort and generalised flow in all the
elements can be calculated. The EA for all elements can then be calculated as shown in
table 3.3.

For element component values given in table 3.2, EA is calculated upto 100s. The
Energy activity for various element is shown in fig 3.5

Energy Activity Index The energy activity index of components can be found using
the results of EA. EA for various components is found as follows

EAIL1 =
EAL1

EAL1 + EAR1 + EAC1 + EAR2

EAIR1 =
EAR1

EAL1 + EAR1 + EAC1 + EAR2

EAIC1 =
EAC1

EAL1 + EAR1 + EAC1 + EAR2

EAIR2 =
EAR2

EAL1 + EAR1 + EAC1 + EAR2

(3.22)

The evolution of energy activity index over 100s is show in fig 3.6. From fig 3.5 and
3.6 some aspects of the behavior of EA and EAI can be observed. The EA of components
can not decrease. However, the EAI of the components can decrease but remains within
a range of 0 and 1.

3.5 Model reduction using Energy Activity Index

Model reduction methods include all the techniques which allow for the generation of
a reduced model of a system. A reduced model of a full model is any mathematical
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(a) Energy activity at I1. (b) Energy activity at R1.

(c) Energy activity at C2. (d) Energy activity at R2.

Figure 3.5: Energy Activity of elements in circuit.

(a) Energy activity index at I1. (b) Energy activity index at R1.

(c) Energy activity index at C2. (d) Energy activity index at R2.

Figure 3.6: Energy Activity Index of elements in circuit.
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description which provides nearly the same numerical results but with greatly reduced
computation requirements. Most of the model reduction techniques involve mathemat-
ical reduction or truncation of governing equations [53][23]. However, when considering
physical systems, the concept of reduced model is often replaced by the concept of Proper
model. A proper model of a system is one that has the minimum complexity that is re-
quired for performance and control specifications. A proper model is obtained by selective
inclusion of only the physically meaningful components in the system.

As discussed previously, the EAI is a relative measure of energy interaction of various
components in the system. Therefore, EAI is used for deducing the components that
can be neglected from the system in order to create a proper model. The basic steps for
model reduction are as follows [85]:

1. Creation of the system bond graph model.

Energy activity can be calculated using any technique of dynamic modelling. How-
ever, as bond graph provide a graphic of various elements involved in dynamic
interaction, so bond graph is most suited tool for creating a proper model.

2. Simplification of bond graph model.

The bond graph model created from the physical model might not be fully suitable
for calculation of EA. This is because, in order to eliminate non performing elements
and preserve the overall junction structure of the model, the energy elements must
be directly connected to any of the junctions. So, the bond graph model is simplified
such that all the energy elements are connected to the junctions directly.

3. Evaluation of EA and EAI of various elements.

EA and EAI of all the elements in the system are calculated for a fixed time interval.

4. Removal of non significant elements.

The elements with small EAI are considered as elements with non significant contri-
bution to the system during the selected time period of simulation. These elements
are removed from the system and the remaining system is the proper model.

3.5.1 Physical interpretation of Energy Activity

The physical interpretation of model reduction using EA is given by [86]. The first
observation that must be made is that a low EA over some time corresponds to overall
low power associated with the element during that time.

For any element with low EA, let the low EA be εEA. Since the argument of integration
is always a positive quantity, a small value of integral indicates a small value of integration
argument. This small integration argument can be assumed as εP .

EA =

∫ T

0

|P (t)| dt = εEA ⇔ |P (t)| = εP (3.23)

The sign associated with power only indicates the direction of power transfer. As
the direction of power has no effect on EA, it can be assumed that power always has
a positive sign due to direction of transfer. Therefore 3.23 indicates that the power
magnitude associated to the element is small.
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P (t) = ε (3.24)

The interaction of element with the system can occur in two ways i.e. either through
a 1 junction or through a 0 junction. Therefore, these must be studied independently.

0 Junction: For an element placed on a zero junction, a low EA indicates low element
power (eq 3.23 and 3.24). As power is product of generalised effort and flow, a low
power indicates that either the generalised effort or flow is very low. For the purpose
of understanding the physical implication of low activity, it is assumed that only the
particular element in question has low EA. This condition assures that the generalised
effort is not low, as this would render other elements connected at the junction as low
activity elements. Therefore, a low activity element on a 0 junction indicates a low
generalised flow and high generalised effort.

P = ef = ε

e >> ε

f =
ε

e
= εf

(3.25)

The influence of the above can now be studied on all three passive power elements i.e.
I, C and R.

1. Generalised Inductance (I)

The constitutive relationship is considered in integral form. This is because the
real system behavior also follows integral causality. For constitutive relationship of
generalised inductance in integral causality, the generalised component values (φI)
is the reciprocal of the actual component parameter value(Zi). For the element, CR
is given as:

f =
1

φI

∫
e(t)dt (3.26)

Therefore, substituting the expression of f from eq 3.25, and evaluating the expres-
sion for φI

φI =

∫
e(t)dt

f
=
e
∫
e(t)dt

ε
(3.27)

As effort is assumed as not low, the integral of effort indicates that the φI is very
high. Therefore, for an I element placed at a 0 junction to have low activity, it’s
component value should be very high.

2. Generalised Capacitance (C):

Here also, the constitutive relationship is considered in integral form. For constitu-
tive relationship of generalised capacitance in integral causality, the generalised com-
ponent values (φC) is the reciprocal of the actual component parameter value(ZC).
For the element, CR is given as:

e =
1

φC

∫
f(t)dt (3.28)
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Therefore, substituting the expression of f from eq 3.25, and evaluating the expres-
sion for φC

φC =

∫
f(t)dt

e
=

1

e

∫
ε

e
dt (3.29)

As effort is assumed as not low, the integral of effort in denominator indicates that
the φC is very low. Therefore, for a C element placed at a 0 junction to have low
activity, it’s component value should be very low.

3. Generalised Resistance (R):

The constitutive relationship for the element is algebraic.

f =
1

φR
e (3.30)

Therefore, substituting the expression of f from eq 3.25, and evaluating the expres-
sion for φR

φR =
e2

ε
(3.31)

As effort is assumed as not low, the square of effort indicates that the φR is high.
Therefore, for a R element placed at a 0 junction to have low activity, it’s component
value should be very high.

1 Junction: Similar to previous, for an element placed on a zero junction, a low EA
indicates low element power (eq 3.23 and 3.24). As power is product of generalised effort
and flow, a low power indicates that either the generalised effort or flow is very low. In
this case under the same condition as the previous discussion, a low activity element on
a 1 junction indicates a low generalised effort and high generalised flow.

P = ef = ε

f >> ε

e =
ε

f
= εe

(3.32)

The influence of the above can now be studied on all three passive power elements i.e.
I, C and R.

1. Generalised Inductance (I)

The constitutive relationship for I element is given as

f =
1

φI

∫
e(t)dt (3.33)

Therefore, substituting the expression of f from eq 3.32, and evaluating the expres-
sion for φI

φI =

∫
e(t)dt

f
=

1

f

∫
ε

f
dt (3.34)

As flow is assumed as not low, the above expression indicates that the φI is very
high. Therefore, for an I element placed at a 1 junction to have low activity, it’s
component value should be very low.
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Table 3.4: Physical interpretation of low activity.

Element Junction
Component value

for low activity

Domain specific interpretation

Mechanical Electrical Hydraulic

I
0 High Grounded body Open circuit Zero flow

1 Low Massless body Short circuit Zero pressure drop

C
0 Low Rigid connection Open circuit Zero flow

1 High Broken connection Short circuit Zero pressure drop

R
0 High Rigid connection Open circuit Zero flow

1 Low Broken connection Short circuit Zero pressure drop

2. Generalised Capacitance (C):

Here also, the constitutive relationship is considered in integral form. For the ele-
ment, CR is given as:

e =
1

φC

∫
f(t)dt (3.35)

Therefore, substituting the expression of f from eq 3.32, and evaluating the expres-
sion for φC

φC =

∫
f(t)dt

e
=
f

ε

∫
f(t)dt (3.36)

Therefore, for a C element placed at a 1 junction to have low activity, it’s component
value should be very high.

3. Generalised Resistance (R):

The constitutive relationship for the element is algebraic.

f =
1

φR
e (3.37)

Therefore, substituting the expression of f from eq 3.32, and evaluating the expres-
sion for φR

R =
ε

f 2
(3.38)

Therefore, for a R element placed at a 1 junction to have low activity, it’s component
value should be very low.

The condition for numeric value of a components corresponding to low EA for under
different conditions are given in table 3.4. The table also has domain specif conditions
which correspond to the corresponding condition of numeric component value.
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3.6 Frequency domain formulation of Energy Activity Index

The frequency domain formulation of EA and EAI is explored in [83]. The frequency
interpretation of EA and EAI can be calculated by considering a general dynamic system.
Any dynamic system with states given by a vector x, input given by the vector u and
outputs given by a vector y can be represented as:

ẋ = Ax+Bu

y = Cx+Du
(3.39)

where A, B, C and D are the state space matrices representing the system. For bond
graph models, the state space matrices can be calculated using the junction structure of
the system model. The state space matrices can be calculated as given is eq 3.40, where
Jij represents kinematic interconnection between i and j multiports. The multiports can
be of tree categories i.e. energy storage (S) corresponding to BG elements I and C, energy
dissipator (L) corresponding to BG elements R or energy source (U) corresponding to BG
elements SE and SF. The matrices S and L are diagonal matrices with numeric values of
energy storage and energy dissipation parameters.

A = (JSS + JSL · L · (Ikr×kr − JLL · L)−1 · JLS) · S
B = JSU + JSL · L · (I − J−1

LL · JLU

C =

[
IkR×kR

(IkR×kR − JLL · L)−1 · JLU

]
· S

D =

[
0n×m

(IkR×kR − JLL · L)−1 · JLU

] (3.40)

As discusses previously, the constitutive relationship for energy storage elements (I
and C) can be defined using differential or integral forms. Using the differential form,
the power defined for various elements as follows.

PI = eI · fI = φI · fI · ḟI
PC = eC · fC = φC · eC · ˙eC

PR = eR · fR = φR · f 2
R

(3.41)

The above can be simplified when using output information conforming to the causal
structure of various elements i.e. generalised flow as outputs from I elements and gener-
alised effort as outputs from C elements.

y =


fI
...
eC
...
fR


The power equations for energy storage and dissipation elements can be rewritten as

eq 3.42

PI/C = φI/C · yI/C · ˙yI/C

PR = φR · y2
R

(3.42)
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Using eq 3.42, the energy activity is defined as:

EAI/C =

∫ a+∆t

a

∣∣PI/C∣∣ dt = φI/C

∫ a+∆t

a

∣∣yI/C · ˙yI/C
∣∣ dt

EAR =

∫ a+∆t

a

|PR| dt = φR

∫ a+∆t

a

|yR · ẏR| dt
(3.43)

Once the EA equation is defined, the inputs are considered. As superposition principle
is applicable, the response from only one input is analysed. For the analysis the jth system
input is given by eq 3.44. A sinusoidal input is considered because any input response
can be created using a combination of sinusoidal inputs using principle of superposition.

uj(t) = Uj · sin(ωt) (3.44)

where Uj is the amplitude and ω is the frequency of excitation. The output at the ith

sensor due to jth can be expressed as

yij(t, ω) = Uj · Yijsin(ωt+ θij(ω)) (3.45)

where

Yij = |Gij(j · ω)|
G(s) = C · (A− sI)−1 ·B +D

δij(ω) = ∠Gij(j · ω)

(3.46)

Eq 3.46 can be substituted in eq 3.43. The integration window must also be decided.
The integration window is set for one time period of the input. Therefore, the steady
state EA can be calculated as shown below.

EAssij (ω) =
φi · U2

j · Y 2
ij(ω) · ω

2

∫ a+ 2π
ω

a

|sin(2(ωt) + δij(ω))| dt

EAssij (ω) = φi · U2
j · Y 2

ij(ω)

∫ a+ 2π
ω

a

|sin(2(ωt) + δij(ω))| dt
(3.47)

The definite integral is evaluated analytically. The definite integral for energy storage
elements evaluates to 4/ω and that for energy dissipators evaluates to π/ω. The EA
expression for one input cycle then reduces to eq 3.48.

EAssij (ω) = 2 · φi · U2
j · Y 2

ij(ω)

EAssij (ω) =
π · φi · U2

j · Y 2
ij(ω)

2

(3.48)

Once the expressions for EA are calculated, the expressions for EAI under the same
conditions, for energy storing and dissipating elements is shown given by eq 3.49

EAIssij (ω) =
2 · φi · Y 2

ij(ω)

2
∑kI+kC

a=1 φi · Y 2
ij(ω) + π

ω

∑kR
a=1 φi · Y 2

ij(ω)

EAIssij (ω) =
π
ω
· φi · Y 2

ij(ω)

2
∑kI+kC

a=1 φi · Y 2
ij(ω) + π

ω

∑kR
a=1 φi · Y 2

ij(ω)

(3.49)
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Eq 3.48 and eq 3.49 represents the steady state EA and EAI for ith element due to jth

sinusoidal input. a general input response can be calculated by representing the input as
addition of multiple sine waves. Similarly, multi input response can also be found using
the principle of superposition.

3.7 Adaptive fault thresholds using RAJ

Previous work [60] used the concept of EA for reducing missed detection of system faults
by generation of multiple thresholds for fault detection residual.

Fault in a system can be assumed as a deviation in numeric component value leading
to non-optimal system behavior. However, the numeric component value can also devi-
ate due to uncertainty in the component value. The uncertainties are incorporated by
generating residual envelops instead of a single residual i.e. an upper and lower limit of
residual is generated and a deviation outside these indicates a fault. A situation might
occur that a fault might occur in a component but the fault is not detected because the
residual do not deviate enough to overcome the bounds set due to uncertainty. This leads
to faults being missed from detection.

Fault Detection and Isolation based on Bond Graph model has been widely developed
[117] [7]. The methodology is based on structural and causal properties of bond graph
model. Fault indicator (named Analytical Redundancy Relation ARR) which are rela-
tionships where all the variables are known, is systematically generated from the bond
graph based on covering causal path for unknown variable elimination. The ARR can-
didate are associated with a junction (i.e. conservative law equation). To improve the
robustness with respect to parameter uncertainties of the diagnosis algorithms, the bond
graph LFT (Linear Fractional Transformation) has been developed further [33].

However, not all elements have same probability of deviation from it’s ideal value.
Therefore, multiple envelops should be generated according to the possibility of influence
on the residuals. The sequence for which the element uncertainty should be included
in the fault analysis is given by their relative contribution to the residual. Based on
developed energy activity theory and LFT diagnosis bond graph, the Relative Activity
Junction can be considered as the ARR candidate.

Instead of generating a single threshold as in case of LFT bond graphs, multiple
thresholds are generated when generating ARRs with relative activity [60]. At first, rela-
tive activity of all the uncertain elements is calculated. In order to generate the multiple
thresholds, the uncertainty of all the uncertain elements is not considered collectively.
Instead, different elements uncertainties are considered to generate different thresholds.
The inclusion of elements in a particular threshold depends on it’s relative activity. For
eg, in an ARR with n uncertain elements, n thresholds are generated. The ith threshold
is generating by considering the first i elements with least relative activity. Generation
of multiple thresholds reduces instances on missed detection.

3.8 Pseudo Energy Activity

It must be noted that when a system undergoes a fault, the fault itself can be attributed
to the change in the intended component value φ of the system. Therefore, for a system
under fault, the EA of a component calculated using eq 3.9 might not represent the actual
EA of the component. This is because, for the faulty component the actual component
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value drifts from nominal one (ie. energy activity inhealthy mode). Therefore, for the
current work, pseudo EA is used. Pseudo EA is calculated as shown in eq 3.50. For the
calculation, the component value is assumed to be constant even after detection of fault.
The fault information relayed through S (always from sensor) is used for fault detection
and prognosis. Hereafter, for the context of this work, EA always refers to pseudo-EA
and EAI is calculated using pseudo-EA.

EApseudo = φideal

∫ a+∆t

a

|S.g(S)| dt (3.50)

3.9 Conclusion of the chapter

The chapter introduces to the concept of Energy Activity. The physical and mathematical
interpretation of various variants of energy activity are introduced and explained. The
interpretation of energy activity in both time and frequency domain are explained. The
time domain interpretation of energy activity is the the basis of the current thesis.
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Chapter 4

PHM process using Energy Activity
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In this chapter a general overview of the proposed integrated framework for fault
diagnosis and prognosis using energy activity is proposed. The proposed framework
consists of an offline phase for generation of a fault signature database, and an online
phase for continuous fault diagnosis and prognosis. The proposed framework is discussed
in detail and is simulated on a spring-mass-damper system.

4.1 Offline Phase: Fault Signature Database

A fault in the system is attributed to the change in the numeric value of one of a parameter
of a component of the system but the system structure remains the same. Therefore,
the magnitude and frequency of energy exchange and hence the EA among the various
components change. The change depends on the both the location and intensity of fault.
It must be noted that the magnitude of change is also dependent on the energy input.
For eg, for a linear system, a fault that changes the component value by 1%, changes
the EA of the component by 5J in 10 sec. For the same system, if the energy input is
doubled, a fault equivalent to component value change of 0.5% will also bring a change
of 5J in 10 sec. Therefore, a reliable fault signature can not use EA. This is due to
the fact that EA presents an absolute picture of the system. Hence, to make the fault
signature independent of the energy input to the system, EAI as it is a relative index and
is independent of the input.

A residual based on the EAI is used for generating the fault signature database that
is used for fault isolation. This residual is the difference between the EAI for a faulty
system and an ideal fault free-system. As discussed above the frequency and magnitude of
energy exchange changes with fault location. In order to utilise the frequency component
of the residual properly, fourier analysis of the residual is performed.

The database is generated by simulations itself. A fault is simulated by changing the
value of a component parameter. Therefore to have an exhaustive database, a range of
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fault for every component is decided. A fault-free system is simulated in parallel with
the faulty system. The location of the peaks is recorded in the frequency domain. The
noise peaks due to numerical errors i.e. peaks at high frequency and low amplitude can
be removed directly using a thresholding filter. Fig 4.1 shows the procedure of generating
the fault database.

The fault database is created under the following conditions:

• At a time only one component can have fault.

• Fault is introduced at the start of the simulation.

• For every iteration the fault magnitude remains the same.

Figure 4.1: Generation of fault signature database.

4.2 Online Phase

The general overview of the online PHM process using Energy Activity is shown in figure
4.2. The overall online process is divided into three steps i.e. fault detection, fault
isolation, prognosis.

4.2.1 Fault Detection

The process starts by generating a virtual system which is simulated continuously in
parallel with the real system. The virtual system remains in fault-free conditions. The
measured outputs from the real system are fixed by design. Therefore, similar outputs
from the virtual system are used for the remainder of the process. Energy Activity from
both the real and virtual system must be calculated using similar system outputs. These
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Figure 4.2: General overview of the online PHM process.

energy activities are compared against each other to detect the occurrence of fault. The
EA calculated from outputs of the virtual system is called ’reference’ EA. The reference
EA can be calculated directly as discussed in the previous chapter. The EA calculated
using the outputs from the real system are called ’real’ EA. For calculation of the Energy
Activities associated with real components, the output signals must be de-noised. The
energy activity of various components corresponding are calculated and subsequently
compared to generate the residuals. This residual is used for detection of the presence
of a fault. A non-zero residual indicates a deviation of performance of real system from
virtual (ideal) system. Therefore, a non zero residual indicates a fault.

The residual for fault detection is given by:

Residual = EAreal − EAvirtual =

∫ t

0

|Sreal.g(Sreal)| dt−
∫ t

0

|Svirtual.g(Svirtual)| dt (4.1)

where S is the component input signal measured from real and virtual sensors to
measure the real EA and virtual EA respectively. For integrated diagnosis and prognosis,
information about the system initial state available for prognosis should be used for
diagnosis. Therefore, for diagnosis the EA should be calculated from start to the current
time. Hence, the integration limits change from 0 to t. A non-zero residual indicates a
fault in the system.

4.2.2 Fault Isolation

Once fault is detected, fault isolation must be performed so as to identify the faulty
component. For fault isolation, the fault database generated by the offline phase is
used. As already discussed, the fault database consists of the fourier transformation of
the EAI residuals. Therefore, once the fault is detected, EAI for various components is
calculated. A residual of EAI is then calculated similar to residual based on EA used for
fault detection, i.e., the residual of EAI is the difference of EAI of a real system and EAI
of a faulty system.

Fourier transformation of this residual is then performed in order to use fault signature
database. In a real system, fault can occur after some period of fault-free operation.
Hence, the residuals change from zero to non-zero after some time. In such a case, a direct
fourier transformation does not properly capture the change in behavior of residuals. In
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order to apply fourier transform continuously, Short Time Fourier Transformation(STFT)
is used. In short time fourier transformation [76], the residual signal is divided into small
windows of equal duration, and subsequently fourier transformation is applied on it.
Using the short time fourier transformation, a time frequency map is obtained for the
residual signals. The time step window for performing the STFT is equal to that used for
generating the fault database. This assures that the neural network is able to recognise
the pattern properly. The time window of short time fourier transformation should also
be more than the time period over which the energy activity is calculated. Also, the
window for short time fourier transformation should be equal in the offline and online
phase.

Fault isolation is performed using classification. The fault signatures generated using
STFT are compared against the fault database and the system condition is classified. Any
classification algorithm can be used but for this thesis, neural networks are used. The
main motivation for choosing neural network lies in the process of database generation. As
discussed previously, the process database is generated offline by simulation. Therefore,
for application to a real system with many uncertainties a robust classification algorithm
is required. Hence, neural network are chosen for the current work. However, other
robust algorithms for classification can also be explored.

4.2.3 Fault Prognosis

After fault isolation is complete, the prognosis of the system is performed in order to
find the RUL. RUL is the time remaining before the system fails. Hence, a crucial task
for prognosis is the setting of failure criteria. For the current work, the failure criteria is
defined as the allowable deviation in numeric component value of a system component.
For fault prognosis using EA, the rate of change of this numeric value of component is
calculated and extrapolated using a known degradation law.

The fault prognosis using EA is entirely model based and the mathematical form of
EA can be used to calculate the variation in the numeric value of faulty component,
assuming that the allowable limits of a parameter and the degradation law are known.

In order to estimate the dynamics of the degradation (i.e. the time variation in the
value of parameter), the time derivative of the EA is required. The EA of a component
over time is a function of time and the component input signal which itself is a function of
the numeric values of of the signals associated with the different components with which
it is connected. Therefore, eq 4.2 is used to calculate the EA evolution under faulty
condition. It must be noted that the EA under consideration can be of a component
other than that undergoing a fault. This is because a fault can only redistribute the
energy in components. Therefore, an element that handles a lesser amount of energy due
to fault is accompanied by one or more components which handle a larger amount of
energy (or vice versa) due to the same fault. Hence, fault is visible. However, for the
purpose of prognosis the EA under analysis must be defined at an R-element. This is
because it is easier to handle the absolute function while analysing the R-element.

EA = f(S(φ), t) =

∫ t

a

|S(φ).θR · g(S(φ))| dt (4.2)

where S is the component input signal obtained using sensor information, θR is the
ideal value of the element, φ is the actual numeric value of the component degrading
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under fault, g is the constitutive relationship of the component, a is the time at which
fault is isolated and prognosis begins, t is the current time.

From equation 4.2 the following can be calculated

dEA =
∂EA

∂S

∂S

∂φ
dφ+

∂EA

∂t
dt (4.3)

dEA

dt
=
∂EA

∂S

∂S

∂φ

dφ

dt
+
∂EA

∂t
(4.4)

∂φ

∂t
=

dEA
dt
− ∂EA

∂t
∂S
∂φ
· ∂EA
∂S

(4.5)

• dEA
dt

is the time derivative of the Energy Activity calculated from the real system.

• ∂EA
∂t

represents the variation of the Energy Activity only in time, i.e. due to no
change in φ. This term can be calculated as the time derivative of the Energy
Activity of the fault free system.

• ∂S
∂φ

represents the variation of the input signal of the component due to the modifi-

cation of component parameter value. As the dynamic model of the component is
known as a pre-requisite this value can be calculated easily.

• ∂EA
∂S

depends on the nature of relation g explained in the previous chapter.

For any R-element, constitutive relationship g is always algebraic and from equation
4.2

EAR =

∫ t

a

|S · θRS| = θR

∫ t

a

S2dt (4.6)

where θR is the numeric component value of the R element.
Therefore sensitivity of EA to component input signal is given by,

∂EA

∂S
= θR

∫ t

a

∂S2

∂S
dt = 2θ

∫ t

a

Sdt (4.7)

Hence, for an R-element, eq 4.5 can be written as

∂φ

∂t
=

dEA
dt
− ∂EA

∂t

2θ
∫ b
a
Sdt · ∂EA

∂S

(4.8)

Equation 4.8 can now be integrated as shown in equation 4.9 to have an estimation
of fault parameter from sensor data.

φ =

∫
dφ

dt
dt+ φideal (4.9)

The continuous calculation can then be extrapolated according to a known degradation
trend. If a degradation trend is unknown, then a polynomial equation can be used to
extrapolate the component value. The Remaining Useful Life can be easily calculated if
the safe limits of the component values are known beforehand The trend of component
degradation is extrapolated to find the point in time when the component value reaches
the allowable limit. This point is called the End of Life. The time difference between
present and end of life is the Remaining Useful Life.
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Table 4.1: Ideal value of system components.

Element Value in SI

Force (F) 10
Spring stiffness (k) 100

Mass (M) 10
Damping coefficient (b) 0.5

4.3 Application

The PHM process discussed in the previous section is simulated on a simple system in
order to understand the process and checking the working of the process under ideal
conditions.

4.3.1 System

In order to check the proposed methodology, a simulation is performed using a simple
spring-mass-damper system. The system is shown in figure 4.3. The pre-requisites i.e.
the dynamic model using bond graph, the ideal component values and component safe
working limits are given by figure 4.4, table 4.1 and table 4.2 respectively.

Figure 4.3: Spring Mass Damper System.

Figure 4.4: Bond Graph of Spring Mass Damper System.

4.3.2 Simulated Fault

During the simulation, a fault condition is indicated by deviation in one of the component
value from ideal. For the purpose of the simulation, the fault magnitude is modelled as
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Table 4.2: Value limits of system components.

Element Lower safe limit Upper safe limit

Spring 85 105
Mass 9 11

Damper 0.4 0.6

Figure 4.5: Fault as a variation in spring stiffness.

change in component value. Fault is introduced in the spring. The variation in spring
stiffness is shown in figure 4.5. A fault is introduced at 5 seconds which continues to
decrease the spring stiffness. At 50s from the start of simulation, a corrective action is
simulated and spring stiffness starts to increase to recover its initial value at 100s.

4.3.3 Offline Phase: Fault Database generation and Neural Network Training

The first step is to pre-train a neural network. The procedure explained in figure 4.1 is
used to train the neural network. The fault range for training the neural network are
those given in table 4.2. For creating the fault signature database for and subsequent
training of the neural network, the fault range of every component is divided into 20
equal intervals. The residual base on difference of EAI in real and virtual system are
calculated and fourier transformation of the residuals is performed.

The frequency maps of residuals calculated at spring, due to faults in various com-
ponents are shown in fig 4.6. The × marks represent the peaks of the residuals fourier
transformation. The different colors of the marks indicate the different fault intensities.
The following can be observed:

• For a faulty component, the frequency peaks fall at nearly the same frequency, irre-
spective of the fault magnitude. This indicates that the change in energy exchange
rate among components under faulty conditions is almost the same in the given
fault range i.e. the residual frequency components change very little due to the
magnitude of fault.

• The frequency at which the peaks occur is different for different faulty components.
This indicates that different component faults generate residuals of different com-
ponent frequencies.

From the above it can be concluded that the proposed method of fault isolation by
classification based on frequency map is valid.
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(a) Fault in Spring (b) Fault in Mass (c) Fault in Damper

Figure 4.6: Frequency map of residual at spring under various faulty components.

Table 4.3: Flow and effort calculation using sensor information.

Element Generalised flow Generalised effort

Spring s k
∫
s.dt

Mass s mds
dt

Damper s b.s

The residual based on difference of EAI in real and virtual system is calculated at
all possible locations for which calculation of EA is possible with the received sensor
information. For the system under consideration, residuals at all the elements i.e. mass,
spring and damper are calculated. A neural network for classification is trained on MAT-
LAB. The neural network structure is optimised using trial and error. A network of 5
hidden layers is selected. 70% of the available database is used for training while 15% of
database is used for validation and testing each.

4.3.4 Online Phase

The online phase includes fault detection, fault isolation and prognosis.

4.3.4.1 Fault Detection

Fault detection is based on the residuals generated using eq 4.1. In this system there
is only one measured quantity i.e. the velocity of the mass. According to the BG pre-
sented by fig 4.4 the component signal input for the R and C element is generalised flow.
Therefore, the generalised flow for R and C is given using the sensor information, and the
generalised effort is given by the constitutive relationship in integral and algebraic form.
However, for the I element, the signal input (generalised effort) is not known using sen-
sors. Therefore for calculation of EA in this case, generalised flow is obtained by sensor
information and generalised effort is obtained by expressing the constitutive relationship
in differential form. The effort and flow used for calculation of EA in various components
is given in table 4.3.

The fault is introduced after 5 sec from the start of the simulation. The residuals
generated for fault detection for the first 10 sec are shown in fig 4.7. It can be observed
that fault are detected using all three indicators very quickly.
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(a) Fault detection using EA at spring

(b) Fault detection using EA at mass

(c) Fault detection using EA at damper

Figure 4.7: Fault detection using residuals based on EA.
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Figure 4.8: Time-Frequency map of Short Time Fourier Transformation.

4.3.4.2 Fault Isolation

The Time-Frequency map obtained from the Short Time Fourier Transformation is ap-
plied on the obtained residual. The Time-Frequency map is shown in figure 4.8. The
data entries corresponding to each time interval are given as input to the neural network
trained in the previous step. The neural network is able to correctly predict the fault
location as spring.

4.3.4.3 Fault Prognosis

The change in spring stiffness φ introduces a change in the component input S, which
affects the Energy Activity. The equation 4.8 is used for evaluating the spring stiffness
change rate. The calculated stiffness change rate is passed through a median filter in
order to remove sharp peaks due to numerical anomalies. The stiffness change rate after
filtering is shown in fig 4.9. This change rate is integrated over time to find the actual
spring stiffness. The calculated variation of spring stiffness is shown in figure 4.10. The
error in the calculated spring stiffness is shown in fig 4.11. From the figure it is evident
that the spring stiffness is calculated with good accuracy.

At any time when the fault is observed the trend of the parameter variation can be
extrapolated using a polynomial equation. For the current example a first order poly-
nomial is used. The point of failure i.e. End of Life is reached when the extrapolation
trend reaches the allowed limit of the component value. The Remaining Useful Life is
continuously monitored. Once the corrective action is applied the calculation of Remain-
ing Useful Life is continued. This represents the amount of time for which the corrective
action can be applied before the component value overshoots the allowable limits. Cal-
culation of End of Life is shown in figure 4.10.
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Table 4.4: Calculated End of Life

Cause of variation End of Life Time (from starting time)

Fault 55s
Corrective action 113s

Figure 4.9: Calculated Parameter variation Rate.

Figure 4.10: Calculation of End of Life.
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Figure 4.11: Error in calculated spring stiffness.

4.4 Conclusion of the chapter

In this paper a model based method for Prognosis and Health Management is proposed
using Energy Activity. Both the diagnosis and prognosis processes are completed using
variants of Energy Activity as a metric. Diagnosis is achieved by using a combination
of Neural Network and Short Time Fourier Transformation. Given that the dynamic
model of the system is known, the neural network is trained using fault simulations and
does not require failure data. The prognosis process is completed using the mathematical
nature of Energy Activity for energy dissipators. This can also be a limitation for the
proposed process as the prognosis process can not utilize the energy storing elements.
The proposed method is simulated for finding the end of life of a spring mass damper
system undergoing a fault. The method is able to predict the fault location correctly and
recreate the parameter values of the component under fault with good accuracy.

68



Chapter 5

PHM of uncertain system:
Application to two tank system.
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In the previous chapter the basic framework for using EA as a common metric for
PHM is proposed. The discussion in the previous chapter was limited for ideal system.
A detailed analysis for implementing the proposed framework in real system with various
uncertainties is presented in this chapter.

In any model based PHM system, there can be the following uncertainties:

• Model Uncertainty : For any real system all the model parameters are not known
with high accuracy. Therefore, a big source of uncertainty lies in the model infor-
mation.

• Measurement Uncertainties : Another source of uncertainty lies in the measurement.
Any sensor placed on any real system provides output with some inherent noise.
Therefore, there is an uncertainty associated with the measured signal itself.

• Process Uncertainties : Once the fault is detected in the system, the prognosis is
performed for find the end of life. This calculation always assumes the current
approximated degradation to continue. However, it is possible that an unknown
and unpredictable event occurs between the point of calculation and end of life.
This event can alter the degradation rate thereby changing the remaining useful
life.
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In this thesis only model uncertainties and measurement uncertainties are addressed. The
uncertainty analysis focuses on two aspects of the framework:

1. Accommodating the model and measurement uncertainties in the whole PHM pro-
cess.

2. A detailed study of fault detection under uncertain conditions is also used to:

(a) Establish the advantage of using EA for fault detection over existing model
based FDI methods.

(b) Select the preferred constitutive relationship for calculation of EA for PHM.

In this chapter the above are discussed in detail and applied to real a two tank system
test-bench for validation.

5.1 Introduction

As discussed in the previous chapter, the proposed framework consists of parallel calcu-
lation of EA and EAI for generating residuals used at the various stages of PHM. The
framework proposed previously needs to be modified to accommodate the model and
measurement uncertainties before it can be applied to any real system. For handling
uncertainties, the following are assumed for proper implementation of the framework.

Offline phase

1. Only one component can undergo a fault at a time.

2. Fault is introduced at the start of the simulation.

3. For every iteration the fault magnitude remains the same.

Online Phase

1. The noise to signal ratio low and noise characteristics are known [58].

2. Fault occurs in the system components or inputs but not in the detectors.

3. The degradation law for different components is known.

4. The component value be uncertain within a known range.

5. A drift in the component values after the beginning of the process, even within the
limits of uncertainty, indicates fault/degradation.

5.2 Robust PHM using Energy Activity

5.2.1 Offline Phase

The offline phase includes the generation of a fault signature database and training of a
neural network in order to achieve fault isolation using classification. The offline phase
is unaffected by uncertainties. This is because the offline phase does not use any previ-
ous failure data but requires simulations based on the ideal system component values.
Therefore, the offline phase remains unchanged.
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Figure 5.1: PHM using Energy Activity

5.2.2 Online Phase

The online phase deals with the real system. Hence, the online phase must be able
to accommodate the model and measurement uncertainties. These uncertainties should
be accommodated for fault detection, fault isolation and prognosis processes. It should
be noted that the above mentioned are achieved by comparing the residuals from the
real system to the corresponding residuals from the virtual systems. In this thesis, the
model and measurement uncertainty are handled by accommodating components of the
residuals from the virtual system. The signals and components of the residuals from the
real system remain unaffected.

5.2.2.1 Fault Detection

Quick and accurate fault detection is one of the most important requirements of PHM.
For detecting fault in any real system, the detection method must be able to handle
system uncertainties and sensor noise.

5.2.2.1.1 Model uncertainty accommodation

While using Energy Activity for PHM, the measured EA must be compared to that cal-
culated from an ideal system simulation. The deviation of calculated EA from simulated
EA indicates a fault. Therefore, it is very important that the simulated model must ac-
commodate the uncertainty in the component values of various elements of the system. In
model based analysis, the uncertainty usually occurs because the numeric component val-
ues of the system is not known with full accuracy. However, a range of possible deviation
of these component values from ideal are often known. Hence, under fault free conditions,
the numeric component values can only deviate unto a certain range from ideal. This
known range should be accommodated when generating the virtual components for fault
detection.
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The simulated system should thus provide a range of EA instead of a single value.
The deviation of real EA outside this renage indicates a fault. This range of EA is
calculated using Interval Extension Function (IEF) as discussed in chapter 1. Under
nominal behavior, an envelop around a calculated quantity can be defined by the range
of the quantity calculated using IEF [60]. The bounds are therefore generated by solving
the system under IEF.

For IEFs, the uncertain variables (various component values in this case) in the equa-
tion are replaced be an interval range. Therefore, the result is a range instead of a single
fixed quantity. This accommodates the model uncertainty in PHM analysis [1], [116].
The equations are then solved using the basic principles of interval arithmetic [49]. An
uncertain variable x with minimum possible value xmin and maximum possible value xmax
is represented as:

[x] = [xmin, xmax] (5.1)

Therefore, the simulated EA for any component φ can be solved as

|EAvirtual| = [φ]

∫ a+∆t

a

|S([Φ]).g(S([Φ]))| dt (5.2)

Φ is the set of component values of all the components in the system and φ is the
component value of the component for which EA is being calculated.

A detailed analysis of the methods and advantages of using EA for fault detection
under uncertain conditions is provided in the next section.

5.2.2.1.2 Measurement uncertainty accommodation

Fault Detection is performed by continuous evaluation of EA in time domain. Therefore,
measurement uncertainty (noise) is adjusted in the calculation of EA.

EA =

∫ a+∆t

a

|e(t).f(t)| dt (5.3)

EA =

∫ a+∆t

a

|S(t).φ.g(S(t))| dt (5.4)

where S power variable input to the component. S is always obtained from a measured
quantity, therefore, for noise accommodation, S is replaced with S + ∆S, where ∆S is
the noise component of the measurement.

EA = φ

∫ a+∆t

a

|[S(t) + ∆S(t)].[g(S(t) + ∆S(t))]| dt (5.5)

Assuming an LTI behavior of the system for the duration of calculation of Energy
Activity, the eq 5.5 can be expanded as shown in eq 5.6,

EA = φ

∫ a+∆t

a

| S(t).g(S(t)) + ∆S(t).g(S(t))

+ S(t).g(∆S(t))

+ ∆S(t).g(∆S(t)) | dt

(5.6)
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For measurements with high signal to noise ratio, ∆S(t).g(∆S(t)) can be neglected
from eq 5.6. So, EA can be calculated using eq 5.7.

EA = φ

∫ a+∆t

a

| S(t).g(S(t)) + ∆S(t).g(S(t)) + S(t).g(∆S(t)) | dt (5.7)

Comparing the above equation with

|a| − |b| ≤ |a+ b| ≤ |a|+ |b|

where

a = S(t).g(S(t))

b = ∆S(t).g(S(t)) + S(t).g(∆S(t))

It is noted that the integral of |a| is the EA of system without measurement uncer-
tainties as given in eq 5.4. Therefore, inequality relation can be applied to eq 5.7 in the
form shown by eq 5.8.

EAL < EA < EAU (5.8)

where

EAL = EAmin − φ
∫ a+∆t

a

|∆S(t).S(s(t))| −

|S(t).g(∆S(t))| dt
(5.9)

EAU = EAmax + φ

∫ a+∆t

a

|∆S(t).g(S(t))|+

|S(t).g(∆S(t))| dt
(5.10)

EAmax and EAmin are the maximum and minimum allowed Energy activity after
accommodating the uncertainty in the system component values using IEF.

∆S is the error in the component input due to noise. As noise can be either positive
or negative, the r.m.s. value of error is noise is used for calculation. EAL and EAU are
the final lower and upper thresholds for fault detection after accommodating both model
and measurement uncertainty.

5.2.2.2 Fault Isolation

Fault isolation is initiated after a fault is detected. Fault isolation depends on the STFT
of residuals based on EAI. Even under faulty conditions the EAI of an element varies
slower than EA for the corresponding element. This makes the EAI less sensitive to
model uncertainty than EA. Also, as isolation requires STFT of the residuals, so the high
frequency measurement noise must be handled. Therefore, for fault isolation measure-
ment uncertainty is accommodated.

The measurement uncertainty is accommodated by injecting the noise virtually in
the virtual outputs. As it is assumed that certain characteristics of noise are known, a
Gaussian noise of similar traits is added to virtual output. These noisy virtual outputs
are used for calculation of virtual EA and virtual EAI. It is possible that occasionally,
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the sensor noise in the real system deviates from it’s characteristics for some time. This
has minuscule effect on the final calculations because, EA and EAI are calculated over a
range of time and not instantaneously. The effect of such local deviations has minuscule
effect when considering a larger time window.

The virtual EA is calculated using injected noise (∆s) as follows:

EAvirtual = φideal

∫ a+∆t

a

|(S + ∆s).g(S + ∆s)| dt (5.11)

5.2.2.3 Prognosis

Once fault isolation is achieved, the mathematical form of EA can be used to calculate the
real variation in the fault parameter, and furthermore the remaining useful life, assuming
that the allowable limits of a parameter and degradation law are known for the recognised
failure mode.

In order to estimate the dynamics of the degradation (i.e. the time variation in the
value of parameter), the time derivative of the EA is required. Therefore, the prognosis
is dependent on the rate of change of EA and not the actual value of EA.

∂φ

∂t
=

dEA
dt
− ∂EA

∂t
∂S
∂φ
· ∂EA
∂S

(5.12)

This is captured using eq 5.12, as discussed in the previous chapter. This equation
must now be modified to accommodate model and measurement uncertainties. In this
equation there are three sources of information.

1. From real system: The component dEA
dt

is calculated using the real EA. As discussed
earlier, the components from real system remain unaffected.

EAreal = f(S, t) (5.13)

2. From virtual system: The component ∂EA
∂t

is calculated using the virtual EA. As
for prognosis, the measurement uncertainties are accommodated to virtual EA by
virtual noise injection.

EAvirtual = f(S(φ) + ∆s, t) (5.14)

3. From physical model: The denominator of the equation is entirely obtained using
the information of the dynamic model. Therefore, model uncertainties are accom-
modated in this component using IEFs.

The final prognosis equation is given by eq 5.15[
∂φ

∂t

]
=

dEA
dt
− ∂EA

∂t[
∂S
∂φ

]
·
[
∂EA
∂S

] (5.15)

• dEA
dt

is the time derivative of the Energy Activity calculated from the real system.

• ∂EA
∂t

represents the variation of the Energy Activity only in time, i.e. due to no
change in φ. This term can be calculated as the time derivative of the Energy
Activity of the fault free system.
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•
[
∂S
∂φ

]
represents the IEF of variation of the input signal of the component due to

the modification of component parameter value. As the dynamic model of the
component is known as a pre-requisite this value can be calculated easily.

•
[
∂EA
∂S

]
is and IEF that depends on the nature of relation g in the equation 3.9.

For an R-element in LTI system, g is algebraic and from equation 3.13

EA = θR

∫ b

a

S2dt (5.16)

Therefore, [
∂EA

∂S

]
= [θR]

∫ b

a

∂S2

∂S
dt = 2 [θR]

∫ b

a

Sdt (5.17)

5.3 Fault Detection analysis

Accurate and timely detection of fault (i.e. a deviation of the system from it’s desired
operating conditions) is the one of the key objectives of any Fault Diagnosis and Isolation
(FDI) system. The FDI framework should be able to detect the fault at the earliest.
An early detection of fault enables a wider variety of response actions for the fault.
The post fault detection decision depends on the Remaining Useful Life of the system
[62]. Therefore, an early detection of faults can give more options for response for e.g.
implementing fault tolerant control or scheduling maintenance or immediate intervention.
This can be a of great advantage if the system under consideration is critical to safety.

Model based approaches [96] [38] use mathematical models derived from governing
laws of physics. These approaches are preferred because they give a basic understanding
about the functioning of the system and hence can be used with accuracy in any working
conditions. The model can either be qualitative or quantitative [134]. Based on the the
model, certain equations called residuals are generated which can capture the operating
state of various components of the system. One of the major limitation for model based
approach is that many times all the system component values are not known with high
accuracy which is a necessity for proper detection and decision.

EA, a model based metric, can be used for faster fault detection. The proposed metric
has the following properties which make it a better choice for fault detection:

1. History: Most of the residuals used for fault detection are found using Analytical
Redundancy Relations (ARR) and observers. These methods only use the instanta-
neous information about the system to detect fault. It is proposed that development
of metric which can use both the current and previous information about the state
of the system can be a better solution to reduce missed alarms.

Instantaneous nature of existing model based FDI techniques is attributed to the
conditions in which FDI is assumed to function. For FDI the initial condition is
assumed to be unknown as FDI is only concerned with detection of faults at the
current moment. Therefore, the absence of initial conditions compels the use of
differential equations for FDI. However, the initial conditions are known fully or
partially for prognosis. This knowledge allow the utilisation of integral constitutive
relationship for fault detection leading to more influence of history in fault detection.
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2. Energy Based: The proposed metric is a parameter based on energy and has
a physical significance. Therefore, it is easier to understand and better suited to
multi-domain systems.

3. Isolation from uncertain components: The proposed metric depends only on
various values detected using sensors and the component value of only the compo-
nent for which it is calculated. Whereas, traditional methods use equations that
depend on sensor values in conjunction with the component values of various compo-
nents, including uncertain ones. The isolation of the metric from multiple uncertain
component values reduces the propagated uncertainty.

As discussed previously, fault in a bond graph is represented as a deviation from
nominal value (nominal operating mode) of its parameter represented by bond graph
element (R,C, I, TF and GY). Depending upon their nature, the faults can be categorised
in three types [59].

• Abrupt Fault: This fault occurs in a step-wise fashion and stays present. This
fault is usually observed in components which can not vary continuously but in
discrete steps.

• Intermittent Fault: This fault occurs and disappears suddenly. The fault mag-
nitude and duration do not have a fixed pattern and vary randomly. This type of
fault is usually caused due to environmental interference.

• Incipient Fault: This fault causes a gradual drift in the component value. This
fault occurs due to gradual degradation of the system over time.

In this section, fault detection method using Energy Activity (EA) is developed, eval-
uated and compared against the ARR method. The proposed method is implemented
on a real system. Before the actual implementation of the various proposed methods,
system simulation is performed for comparison among themselves and with existing tech-
nique i.e. ARR. The major advantage of performing a simulation is that, it allows us
to have a clear insight about the underlying methods without any external influence of
the noise and other environmental factors. The best performing method in simulation is
then further developed for practical implementation in order to accommodate noise from
the sensors.

5.3.1 Energy Activities for fault detection

EA is calculated using the constitutive relationship (CR) between the component input
signal and component output signal. For energy storing elements CR can be either in
the differential or integral form. Energy activity calculated using CR in differential form
captures the history of how fast the component signal has changed. On the other hand,
EA calculated using integral form captures the history total change in the component
signal. This situation is analogous to control systems which use PD controllers which are
based on rate of error to generate the control signal and PI controllers which are based on
total error to generate the control signal. In control systems, PI and PD controllers led
to the development of PID controllers. Similarly the logical step in fault detection should
also be to develop an EA metric which has both differential and integral components.
This is achieved adding both the differential and integral forms of EA. From here on, the
EA metric containing both the differential and integral form will be referred as dual-EA.
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Figure 5.2: Schematic diagram of a two tank system.

The equations representing the differential, integral and dual-EA are given by eq 5.18,
5.19 and 5.20 respectively. The variables ki and kd in eq. 5.20 are the gains associated
with integral and differential component of the equation.

EAdiff = φ−1

∫ a+∆t

a

∣∣∣∣S.dSdt
∣∣∣∣ dt (5.18)

EAinteg = φ

∫ a+∆t

a

∣∣∣∣S.∫ t

0

Sdt

∣∣∣∣ dt (5.19)

EAdual =kiφ

∫ a+∆t

a

∣∣∣∣S.∫ t

0

Sdt

∣∣∣∣ dt+
kdφ

−1

∫ a+∆t

a

∣∣∣∣S.dSdt
∣∣∣∣ dt (5.20)

5.3.2 System Simulation

The Energy Activity forms discussed are simulated on a two-tank hydraulic test bench-
mark system. The fault detection performance of the proposed methods are also compared
with each other and with residuals generated using ARRs. The schematic diagram of the
system is represented by fig 5.2. The system consists of two tanks joined to each other
through a valve 1. Valve 2 is placed between tank 2 and outlet. Continuous and constant
fluid input is maintained using a fluid inlet pump (QP ). The flow rate through valve 1
(Qv1), flow rate through valve 2 (Qv2) is measured using sensors. The diameter of tanks
are known, hence, compliance of tank 1 (CT1) and tank 2 (CT2) is known.

As discussed earlier, any physical system has certain components whose physical pa-
rameters are not known with high accuracy. However, the uncertainty related to these
components can be approximated. In the current system, the flow coefficient for valves 1
and 2, are not known with high accuracy. However, the flow coefficients have an assumed
value of 3.85× 10−6 and 2.85× 10−6 respectively with an uncertainty of ±5% each. The
parameters for the remaining components of the system are known with accuracy. The
system parameters used for simulation are given in table 5.3

The system bond graphs in integral and differential form, for the simulated system
is shown in fig 5.4a and fig 5.4b respectively. Recall that in diagnosis bond graph (fig.
5.4b, devoted for FDI) sensors (detectors) are dualized into SS Source of signal while
they become source of information for ARR generation using covering causal path. The
generalised flow in hydraulic system represents the volume flow rate of the fluid and the
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Figure 5.3: Two tank system

generalised effort represents pressure. For system in integral form, the system equations
are solved in the integral form, hence, flow is imposed on the tanks and effort is calculated.
On the contrary, for system in differential form, the system equations are generated in
the differential form, therefore, effort is imposed and flow is calculated.

ARRs in bond graphs are calculated by creating the system in preferred differential
causality. The system measurements from the real system are imposed (called duality of
sensors). The structural relationship at the junction is then monitored. The equation
for checking the structure is called an ARR. To accommodate known uncertainty in the
model, LFT-bond graph is usually used [33]. The known uncertainty is added to the
component input using a virtual detector. This allows the calculation of the bounds of
ARR due to uncertainty. The LFT bond graph used for calculation of ARRs and the
corresponding residual bounds is shown in fig 5.5.

There are two types of detectors attached to the system. Efforts associated with the
fluid level in tank 1 and 2 are measured using detectors De1 and De2 respectively. The
volume flow rate of fluid through valve 1 and valve 2 are measured using virtual detectors
Df1 and Df2. The ARRs require the system in differential causality and dualised sensors.
Therefore, for the current system, ARRs are evaluated using De1 and De2.

The generated ARRs are as follows:

ARR1 :QP − CT1
d

dt
De1−

Cv1sign(De1 −De2)
√
|De1 −De2| = 0

(5.21)

ARR2 :Cv1sign(De1 −De2)
√
|De1 −De2|−

CT2
d

dt
De2 − Cv2

√
De2 = 0

(5.22)

For evaluation of EA, the choice of measured quantity and hence the selection of
sensors depends on the form of EA (differential, integral or dual). EA in differential
forms requires the measurement of the power variable which is independent when the
constitutive relationship is in the differential form. For e.g. EA in differential form for
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(a) Integral form

(b) Differential form

Figure 5.4: Bond graph models of two-tank system.

Figure 5.5: LFT-Bond Graph model of 2 tank system.
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tank 1 is calculated as follows:

e = De1

f = CT1
d

dt
De1

EA = CT1

∫ a+∆t

a

∣∣∣∣De1.
dDe1

dt

∣∣∣∣ dt
(5.23)

The flow and efforts calculated using constitutive relationship in differential form for
all the elements in the system is given in table 5.1. It is noted that in this form, only
sensors De1 and De1 are required.

Table 5.1: Effort and flow expressions for calculation of Energy Activity in differential form.

Flow Effort

Tank 1 CT1
d
dtDe1 De1

Valve 1 Cv1sign(De1 −De2)
√
|De1 −De2| De1 −De2

Tank 2 CT2
d
dtDe2 De2

Valve 2 Cv2

√
De2 De2

Similarly, EA in differential forms requires the measurement of the power variable
which is independent when the constitutive relationship is in the differential form. For
e.g. EA in differential form for tank 1 is calculated as follows:

f = QP −Df1

e =
1

CT1

∫
(QP −Df1)dt

EA =
1

CT1

∫ a+∆t

a

∣∣∣∣(QP −Df1).

∫ t

0

(QP −Df1)dt

∣∣∣∣ dt
(5.24)

The flow and efforts calculated using constitutive relationship in integral form for all the
elements in the system is given in table 5.2. It is noted that in this form only sensors
Df1 and Df2 are required.

The EA in dual form is the summation of the previously discussed forms on EA i.e.
differential and integral. Therefore, for evaluation of EA in dual form all the sensors i.e.
De1, De2, Df1 and Df2 are required.

The system is simulated under the under validated system parameter values. The
system parameters are validated using a real system and are given in table 5.3.

The system is simulated to under go a leakage in Tank 1. A leak in the tank cor-
responds to a reduction in the nominal flow delivered by the pump. This reduction is
expressed as a percentage of total volume delivered. The amount of leakage i.e. the
magnitude of fault is considered very small. The fault magnitude variation over time
under the different types of faults (abrupt, intermittent and incipient) is shown in fig
5.7. Fig 5.7a represents the abrupt fault in the system. To simulate this condition, the
flow is decreased by 2% after 50s from start and this change is maintained throughout

80



Table 5.2: Effort and flow expressions for calculation of Energy Activity in integral form.

Flow Effort

Tank 1 QP −Df1
1

CT1

∫
(QP −Df1)dt

Valve 1 Df1
Df21
Cv21

Tank 2 Df1 −Df2
1

CT2

∫
(Df1 −Df2)dt

Valve 2 Df2
Df22
Cv22

Table 5.3: System Parameters

System Component Parameter Value (SI)

Pump Flow rate (QP ) 0.0001

Tank1 Area (CT1) 0.0076

Valve 1 Flow coefficient (Cv1) 3.85× 10−6 ± 5%

Tank 2 Area (CT2) 0.0079

Valve 2 Flow coefficient (Cv2) 2.85× 10−6 ± 5%
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the remaining time. Fig 5.7b represents the intermittent fault in the system. The fault
occurs randomly and vanishes after some time. The magnitude and duration for any fault
step are not fixed. Fig 5.7c represents an incipient fault in the system. The fault starts
at 75s from the start of simulation and gradually increases to 2% at 1000s.

Also, it is discussed in the previous section that Energy Activity for the most active
component should be used for fault detection. For the parameters given in Table 5.3, the
Energy Activity Index for an ideal system is measured for 1000s. The variation of EAI of
various components in the system is shown in fig 5.6. From the figure it is evident that
tank 1 is the most active in the system. Therefore, Energy Activity evaluated at tank 1
is used for fault detection. Equations used for fault detection using differential, integral
and dual form are eq 5.18, 5.19 and 5.20. For the purpose of current simulation ki and kd
in eq 5.20 are both set to 1, thereby giving equal weights to both differential and integral
components.

For the simulation using LFT-bond graph, it is noted that ARR1 (eq 5.22) is sensitive
to the flow inlet to the system. ARR1 is used for the simulation.

5.3.3 Simulation Results and Discussion

The system undergoes 3 types of faults i.e. abrupt, intermittent and incipient. For each
fault the system is simulated for 1000s. The residual trends for fault detection using
ARR method, Energy Activity in differential form, Energy Activity in integral form and
Energy Activity in dual form are given by fig 5.8, 5.9, 5.10 and 5.11 respectively. For each
of these figures, sub-figure a, b and c show the generated residual for abrupt, intermittent
and incipient respectively. The time taken for detection on various faults using the above
mention methods is tabulated in table 5.4.

From table 5.4, it is observed that the residuals generated using ARR are unable to
generate an alarm during the first 1000s of simulation. From fig 5.8, it can be observed
that, the residuals do conform to the fault signal for all the three types of faults. However,
an alarm is not generated because the residuals are not high enough to overcome the
bounds due to uncertainty. Fig 5.8c shows a continuous drift in the generated residual
so the method will be able to detect the fault but the fault magnitude will increase by
that time which is not desirable.

From table 5.4, it is observed that the differential form of Energy Activity is able to
detect intermittent faults during the stipulated time. However, the other faults are not
detected in time. This is attributed to the fact that the change in EA depends on the
rate of change of detected values. Therefore, as long as the system is not in a steady
state, the calculated EA changes and it stabilises when equilibrium is reached under
faulty conditions. For intermittent faults (fig 5.9b), due to numerous changes brought
about by reoccurring faults, the total change in EA is big enough for detecting the fault.
When system is under an abrupt fault (fig 5.9a), change is sensor values i.e. energy
distribution occurs only once. Therefore, if the change brought about during the fault is
not big enough, the fault is not detected. Fig 5.9c shows the EA under incipient fault. A
drift in calculated EA is observed but is very small owing to the small rate of parameter
degradation.

From table 5.4, it is observed that the Energy Activity in integral form is able to
detect all three types of faults successfully, within the stipulated time. This is because
in it’s integral form EA captures the total energy change in a component. Therefore, the
generated residual continues to deviate even when the system is stable. The amount of
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Figure 5.6: Energy Activity Index for various components in ideal condition.

deviation caused is also proportional the amount of error. Therefore, abrupt fault with a
higher magnitude is captured in lesser time than the gradually increasing incipient fault.

From table 5.4, it is observed that the dual-Energy Activity is also able to successfully
detect all the three types of faults within the stipulated time. However, compared to
EA in integral form, the dual form is faster to detect the abrupt fault but slower to
detect intermittent and incipient faults. A possible reason can be that for incipient and
intermittent faults the differential increase in residuals due to summation of differential
and integral components is slower than the increase in the detection range. On the other
hand, a fast change due to high magnitude jump and retention of the fault causes a faster
change in the differential component for the abrupt fault. This fast change, added to the
integral component propels the net residual beyond the allowed limits quickly to generate
the alarm.

Table 5.4: Fault detection time.

Detection time for fault (sec)

Abrupt fault Intermittent fault Incipient fault

ARR >1000 >1000 >1000

EA differential >1000 912 >1000

EA integral 141 547 521

EA dual 122 696 691

5.3.4 Implementation on a two tank system

The proposed fault detection method is implemented on a two tank system (fig 5.3) for
checking the accuracy in working conditions. From the various simulations performed,
Integral form of EA is used for the final application. As the real system measurements
are never noise free, the calculation of Energy Activity are made robust as discussed
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(a) Abrupt Fault

(b) Intermittent Fault

(c) Incipient Fault

Figure 5.7: Various types of faults measured as percentage change in ideal flow.
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(a) Abrupt Fault

(b) Intermittent Fault

(c) Incipient Fault

Figure 5.8: Residuals generated for different types of faults using ARRs from LFT-Bond Graph.
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(a) Abrupt Fault

(b) Intermittent Fault

(c) Incipient Fault

Figure 5.9: Detection of different types of faults using Energy Activity in differential form.
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(a) Abrupt Fault

(b) Intermittent Fault

(c) Incipient Fault

Figure 5.10: Detection of different types of faults using Energy Activity in integral form.
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(a) Abrupt Fault

(b) Intermittent Fault

(c) Incipient Fault

Figure 5.11: Detection of different types of faults using Energy Activity in dual (differential +
integral) form.
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(a) Measured and Simulated flow through valve 1.

(b) Calculated Energy Activity

Figure 5.12: Flow through valve 1 and Energy Activity for two tank system undergoing leakage
in tank 1.

previously.

The method is checked for two types of faults i.e. an actuator fault and a system fault.
The actuator fault is introduced by changing the flow input to the system and system
fault is introduced by opening the leakage valve in the tank 1. For both the above, small
incipient faults are introduced. The system is considered immune from intermittent faults
from the environment. The r.m.s error for measurement is known (4.48 ∗ 10−7 m3/s).

Measured flow through valve 1 (fig 5.12a) and Energy Activity calculated at tank 1 (fig
5.12b) for a two tank system undergoing leakage in tank 1 is shown in fig 5.12. A leakage
in tank represents a system fault. Similarly, for a system with actuator fault i.e. faulty
pump is shown in fig 5.13. From the above figures, it is evident that minute incipient
faults that are missed in traditional FDI processes like ARRs are detected successfully
using EA in integral form.

5.4 PHM of two tank system using Energy Activity

The leakage and actuator faults discussed in the previous section are genuine problems
however, prognosis, which differentiates PHM from FDI is more suited for degradation.
As discussed earlier, degradation corresponds to incipient faults. Therefore, once the
form most suited form for EA is established, PHM is performed for the system under
valve degradation. Also, a pre-requisite for PHM is the definition of failure, which is also
performed.
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(a) Measured and Simulated flow through valve 1.

(b) Calculated Energy Activity

Figure 5.13: Flow through valve 1 and Energy Activity for two tank system with faulty pump.

5.4.1 Failure Definition

At first, the point of failure for the system is fixed. The system is assumed to fail when
the height of fluid in tank 1 rises more than an allowed upper threshold or dips below
an allowed lower threshold. Under ideal conditions the tank is assumed to have a fluid
height of 30.5 cm. The system fails when the fluid height increases more than 35 cm or
reduces below 25 cm.

Once the failure is defined, the modes of failure for the system are recognised. The
first mode of failure is due to an actuator fault i.e. change in volume flow rate of pump.
The second mode of failure is valve degradation i.e. loosening or blockage in valve leading
to change in flow coefficient for any of the valve. The third possible mode of failure is a
leakage in tank. The leakage in tank 1 can be modelled as a reduction in flow from inlet
pump and a leakage in tank 2 can be modelled as undesired opening of valve 2.

The failure criteria is then mapped to all the component values of the system. For
eg, to model actuator failure limit, the fluid inlet corresponding to the upper and lower
allowed threshold is calculated. These limits are calculated assuming the ideal component
values of the system. As the dynamic model is available for the system, this model can
be used to find the failure limits under ideal working conditions. The calculated failure
criteria for various components are given in table 5.5.

The system undergoes gradual degradation inciting the loosening of valve 1.

The equations used for evaluation of Energy activity are given in table 5.2.
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Table 5.5: System parameters at failure limits.

Ideal Value Upper Limit Lower Limit

Pump 1.25× 10−4 1.3439× 10−4 1.1338× 10−4

Valve 1 3.85× 10−6 5.3319× 10−6 3.2069× 10−6

Valve 2 2.85× 10−6 3.3060× 10−6 2.565× 10−06

5.4.2 Offline Phase

The modes of failure are recognised. The various failures can be modelled as a fault
in either the inlet pump or valve 1 or valve 2, hence, the leakages in tanks are also
attributed to change in valve coefficients during prognosis. However, the degradation law
and residual evolution in these components might be different, therefore, the simulation
for all the components under fault needs to be performed to create a fault database.

The leakage in tank 1 is simulated by considering a leakage valve in parallel with valve
1. Similarly, leakage in tank 2 is simulated by considering a leakage valve in parallel with
valve 2. Therefore, the total flow coefficient is the sum of flow coefficient of the actual
valve and the leakage valve in parallel to it. For simulation of actual valve degradation,
the flow coefficients for valve 1 and valve 2 are changed from their respective lower limits
to upper limits. However, for simulation of leakage, the flow coefficients for the leakage
valve is varied from 0 to the range of allowed flow coefficients for the real valve parallel
to it.

5.4.3 Fault Detection

As discussed in previous section, for fault detection of uncertain systems with noisy
signals, the uncertainty in system parameters and noise characteristics should be known.
For the current system, the parameter uncertainties are given in table 5.3 and the r.m.s.
value of noise of flow sensors is 4.48× 10−7 m3/s.

The time period for which the EA is calculated is very important. A larger time
window allows smaller faults to be detected as it allows for concatenation of small vari-
ations over time in order to overcome limits. However, a longer proportion of fault free
operation in the time window also depreciates the effect fault in EA thereby making fault
detection difficult. Therefore, for fault detection, the integration window was limited to
100 sec. Hence, the equation used for calculation of EA is given by eq 5.25.

EA = [φ]

∫ t

t−100

|S.g(S)| dt (5.25)

The fastest detection is done by the EA calculated at tank 1. The EA calculated and
fault detection is given in fig 5.14. The fault is successfully detected at 335 sec after the
start.

5.4.4 Fault Isolation

For the current system, in ideal situation fault can be isolated by simple comparison
of flow rate measured at the valves. For eg, an unequal flow measurement in valve 1
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Figure 5.14: Calculated EA for fault detection.

and valve 2 indicates a leakage in tank 2. However, under slow degradation, the actual
changes in flow are masked by sensor noise. Therefore, fault can not be isolated directly.

For fault isolation, before the start of experiment, a fault database of residuals (using
EAI) is created using simulated system. STFT is performed on the residuals and neural
network is trained for classification of faults. The STFT is performed over a time window
of 50 sec. Therefore, once the fault is detected the equation for calculation of real EA
changes to:

EA = [φ]

∫ t

t−50

|S.g(S)| dt (5.26)

The fault is isolated to occur in the valve 1 of the system. The fault is isolated at 485
sec (i.e. after 3 cycles of STFT). The STFT for residuals calculated at tank 1 are shown
in fig ??. STFT for residuals generated at all the components is used for fault isolation.

5.4.5 Prognosis

It is noted that constitutive relationship for R element is not linear.

f = CV .sign(∆e)
√

∆e (5.27)

However, the sign(∆e) term in the equation just assures the proper direction of flow.
Assuming that there is no reversal of flow, eq 5.28 can be used instead of eq 5.27.

f = CV
√

∆e (5.28)

Therefore, eq 5.17 is not applicable. However, eq 5.15 is always applicable. Therefore
both ∂EA

∂S
and ∂S

∂φ
must be calculated.

For valve 1:

S = e1 − e2 ∴
∂S

∂CV 1

=
∂e1

∂CV 1

− ∂e2

∂CV 1

(5.29)

where

e1 = CT1

∫ t

0

fpdt− CT1CV 1

∫ t

0

√
e1 − e2dt

and
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e2 = CT2CV 1

∫ t

0

√
e1 − e2dt− CT2CV 2

∫ t

0

√
e2dt

Hence,
∂e1

∂CV 1

= −1(CT1

∫ t

0

√
Sdt+ CT1CV 1

∫ t

0

1

2
√
S

∂S

∂CV 1
dt) (5.30)

and

∂e2

∂CV 1

=CT2

∫ t

0

√
S + CT2CV 1

∫ t

0

1

2
√
S

∂S

∂CV 1
dt

− CT2CV 2

∫ t

0

1

2
√
e2

∂e2

∂CV 1
dt)

(5.31)

∂S
∂CV 1

can be calculated by substituting eq 5.30 and eq 5.31 in eq 5.29.
∂EA
∂S

can be calculated as follows:

EA =

∫ t

t−50

|e.f | dt =

∫ t

t−50

∣∣∣S.CV 1

√
S
∣∣∣ dt (5.32)

As it is assumed that there no reversal of flow. This is possible when fluid level in
tank 1 remains higher than that of tank 2. In this situation, e1 − e2 > 0 always holds.
Hence, both generalised effort and generalised flow associated with valve 1 are positive.
Therefore, the absolute sign in eq 5.32 can be removed without affecting it’s value.

EA =

∫ t

t−50

S.CV 1

√
Sdt (5.33)

Therefore,

∂EA

∂S
=

3

2
CV 1

∫ t

t−50

1√
S
dt (5.34)

It must be noted that similar to fault detection, in order to accommodate model
uncertainty, IEF are used to calculate an upper and lower limit of a range of possible
degradation rates. The effects of noise are minimised using a median filter. The degra-
dation rate of is then fitted. From literature it is a common practice to use a linear
degradation for faults in valves [94]. This corresponds to a constant degradation rate.
The prognosis is run for some more duration till the a constant degradation rate trend
is visualised. The calculated upper and lower degradation rates are 6.737 × 10−10 and
3.527× 10−10 (fig 5.15) respectively.

The range of end of life according to the prognosis are as follows:

tmineol =
Cfail
V 1 − Cmax

V 1
∂CV 1

∂t

max + timedetection

tmaxeol =
Cfail
V 1 − Cmin

V 1

∂CV 1

∂t

min + timedetection

The minimum and maximum end of life time are estimated as 2177 sec and 4994 sec
respectively. The system is allowed to run till failure to validate the range. The measured

93



Figure 5.15: Valve degradation from prognosis.

Figure 5.16: Measured height in tank 1.

height of fluid level in tank 1 is given fig 5.16. It is observed that the failure alarm is
activated at 2986 sec. Hence, the proposed methodology is able to correctly predict the
time of failure.

5.5 Conclusion of the chapter

The chapter improves the previously introduced framework for integrated fault diagnosis
and prognosis to accommodate model and measurement uncertainties. The model uncer-
tainties are measurement uncertainties are incorporated in the framework using Interval
Extension of Functions and known model noise information.

The in depth analysis of fault diagnosis using energy activity in uncertain systems
establishes the advantages of using integral function and initial conditions for fault diag-
nosis. With the availability of initial conditions the system is able to detect minute faults

Table 5.6: End of Life estimation.

Estimation
Actual

Minimum Maximum

End of Life 2177 sec 4994 sec 2989 sec
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that are not detected using traditional methods of fault diagnosis.
The complete framework is tested for fault diagnosis and prognosis in a two-tank

benchmark system. The framework is able to timely detect the occurrence of fault and
predict accurately the range of end of life.

95



96



Chapter 6

Conclusions and Prospective
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6.1 General Conclusion

The primary purpose of this thesis is to introduce a new approach for creating the inte-
grated fault diagnosis and prognosis by extending a parameter fit for prognosis for diag-
nosis instead of the traditionally used approach of using diagnosis technique for prognosis.
The primary motivation for the use a prognosis parameter for diagnosis lies in the avail-
ability of initial conditions (full or partial) which can be used in the diagnosis process
thereby improving the diagnosis and hence the overall PHM process.

Energy Activity(EA) is recognised as a suitable metric for the integrated framework
of fault diagnosis and prognosis. This is due to the following properties:

1. EA can never decrease over time therefore is suited for as a prognosis parameter as
suggested in previous literature.

2. EA is a parameter with a physical meaning and is therefore gives an intuitive sense
for application.

3. EA is a variant of energy and is therefore suited for multi-domain application.

4. EA can be defined for every component therefore fault isolation is possible.

EA is the integral of absolute product of generalised effort and generalised flow. There-
fore a modelling technique that can directly deal with these is suitable for the frame-
work proposed in this thesis. Bond graph and Energetic Macroscopic Representation are
two most suited techniques as both use generalised effort and flow for modelling. Bond
graph is structural approach while energetic macroscopic representation is a functional
approach. A structural approach can be highly beneficial in the modelling and anal-
ysis process therefore, bond graph is used for the development and application of the
framework.

The framework consists of two phases i.e. an offline phase for generation of fault
signature database and an online phase for fault diagnosis and prognosis of the system.

In the offline phase a faulty system and a fault free system are simulated in parallel.
Virtual measurements corresponding to that from the real system are obtained for com-
parison. Simulations are done for a range of faults in every component. Fault is simulated
one component at a time. The residual EAI for the components is not directly usable.
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To obtain a fault signature, the frequency components of the residuals are obtained. The
frequency signatures for all the fault simulations are used to train a classification neural
network to be applicable in the online phase.

In the online phase a virtual, fault free system is run in parallel to the real system.
The online phase consists of three sequential steps i.e. fault detection, fault isolation and
prognosis. Fault detection is model based and is performed by comparing the energy
activities of the real and virtual system. Fault isolation is data based. Once a fault is
detected, the fault isolation is performed. The residuals based on energy activity index
are classified using the neural network. Once the fault is classified, model based fault
prognosis is performed. Prognosis equation depends on the component undergoing a
fault. Therefore, prognosis uses the results of fault isolation and system dynamic model
to predict the degradation rate. This degradation rate can be used along with the known
degradation law to obtain the remaining useful life

The framework is also updated to incorporate model and measurement uncertainties.
The model uncertainties are incorporated using interval extension of functions. The
measurement uncertainties are incorporated by injecting noise with similar traits in the
virtual system.

6.1.1 Benefits of the method

A careful analysis of the proposed work highlights the following benefits of the proposed
framework of integrated fault diagnosis and prognosis using Energy Activity:

1. A common parameter can be used for both fault diagnosis and prognosis therefore
solving a common problem of data fusion between fault diagnosis and prognosis
algorithms.

2. As the framework is based on an energy metric, it can be used for multi-domain
systems.

3. The historic information in EA allows for better fault detection and problem of
missed detection is solved.

4. The initial condition information available during prognosis is used during diagnosis
thereby further improving the diagnosis capabilities.

5. The proposed framework is able to handle model and measurement uncertainties.

6. The offline phase does not require actual failure data as the failures can be easily
simulated if an accurate model is available.

6.1.2 Limitation of the methods

A careful analysis of the proposed work highlights the following benefits of the proposed
framework of integrated fault diagnosis and prognosis using Energy Activity:

1. The framework is not able to handle sensor faults.

2. The ability of framework to handle coupled energy systems needs to be checked as
EA is not well developed for coupled energy systems.

3. The framework requires a prior knowledge of failure limits and degradation law.
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4. The framework is developed under single fault assumption therefore, the framework
can not handle multiple faults in the system.

5. The performance of framework under uncertain model conditions depends on inter-
val extension functions. The range of these functions depends highly on the form of
equation used.

6. The prognosis algorithm is applied in an R-element. The R-elements represent the
energy losses. The numeric component value of these elements can be difficult to
find in many situations.

7. The prognosis equation selected and the end of life that is estimated depends on
accurate fault isolation which depends data based. This is the weakest point in the
algorithm with no feedback mechanism in the framework to check the accuracy of
fault isolation or the accuracy of the degradation law.

6.2 Future Works

Based on the above discussion it is observed that the framework has lots of room for
improvement. The following are suggested topics which can be used to improve the
proposed framework.

1. The data based fault isolation remains the weakest point of the proposed framework
therefore the following are proposed to improve the fault isolation:

(a) The concept of Junction Activity and Junction Activity Index can be utilized
to generate a fault signature matrix to improve fault isolation.

(b) The frequency formulation of EA can be used to directly generate fault signa-
tures in the offline phase instead of simulation.

(c) For the current work the neural network architecture was selected based on trial
and error. A comprehensive study of best suited neural network architecture
can be done to improve the performance of fault isolation.

(d) In the current proposition, the fault isolation in online phase only accommo-
dates measurement uncertainties. A drawback of not accommodating model
uncertainties evident by a delay between fault detection and fault isolation
under uncertain conditions. Therefore, model uncertainties should be accom-
modated in the offline phase of fault isolation.

2. The ability of the proposed algorithm to detect minute faults depends highly on
the time window if the initial states of the system is not known. A longer time
window allows more time for the fault to concatenate and generate alarm but it
also increases the thresholds which most be overcome to generate an alarm. This
trade-off can be fixed by finding an optimum window of integration used for fault
detection.

3. Multiple thresholds using relative activity can be generated to improve fault detec-
tion.

4. Just as the neural network is trained for fault isolation, a neural network can be
trained for also approximating the extent of fault. This can act as a feedback for
prognosis algorithm.

99



5. A mathematical framework is proposed to make the framework entirely model based.
For a system with n elements and m sensors:

EA =


EA1

EA2

....
EAn


n×1

(6.1)

The input signals to all the elements in the system can be represented with a vector
S. Components of S are a function of the system parameters Φ.

Sn×1 =
[
M
]
n×m


s1 = f1(Φ)
s2 = f2(Φ)

....
sm = fm(Φ)


m×1

(6.2)

Φ can be represented as a vector containing the numeric component values of indi-
vidual components.

Φ =


φ1

φ2

....
φn


n×1

(6.3)

For any system
EA = f(Φ, t) (6.4)

dEA =
∂EA

∂S

∂S

∂Φ
dΦ +

∂EA

∂t
dt (6.5)

dEA

dt
=
∂EA

∂S

∂S

∂Φ

dΦ

dt
+
∂EA

∂t
(6.6)

dΦ

dt
=
[
∂EA
∂S

∂S
∂Φ

]−1 [dEA
dt
− ∂EA

∂t

]
(6.7)

Here dEA
dt

is calculated using the live date calculation.

∂EA
∂t

is calculated using reference Energy activity.

∂S
∂Φ

is a jacobian calculated from model information.

∂EA
∂S

is a jacobian calculated as follows

Case 1 For energy storage element in derivative causality with numeric component
value θ.

EA =

∫ b

a

∣∣∣∣s.θds

dt

∣∣∣∣ dt (6.8)

EA =
θ

2

∫ b

a

∣∣∣∣ds2

dt

∣∣∣∣ dt (6.9)
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˙EAt=b =

(
θ

2

∣∣∣∣ds2

dt

∣∣∣∣)
b

(6.10)

˙EAt=b =

(
c
θ

2

ds2

dt

)
b

(6.11)

where

c =

{
1, ds2

dt
≥ 0

−1, ds2

dt
< 0

(6.12)

continuing from eq. 6.11

d ˙EA

ds
= c

θ

2

d

ds

(
ds2

dt

)
= c

θ

2

d

dt

(
ds2

ds

)
(6.13)

d

ds

(
dEA

dt

)
=

d

dt

(
dEA

ds

)
= cθ

ds

dt
(6.14)

Integrating w.r.t time
dEA

ds
= θ

∫ b

a

(
c
ds

dt

)
dt (6.15)

As the signal processing is done on live data hence, the expression is not reduced
further.

Case 2 For energy storage element in integral causality with numeric component
value θ.

EA =

∫ b

a

∣∣∣∣sθ(∫ b

a

sdt+ I

)∣∣∣∣ dt (6.16)

EA =

∫ b

a

csθ

(∫ b

a

sdt+ I

)
dt (6.17)

where

c =

1, s
(∫ b

a
sdt+ I

)
≥ 0

−1, s
(∫ b

a
sdt+ I

)
< 0

(6.18)

continuing from equation 6.17

∂EA

∂s
= θ

∫ b

a

[
c
∂

∂s

(
s

(∫ b

a

sdt+ I

))]
dt (6.19)

∂EA

∂s
= θ

∫ b

a

c
∂

∂s

(
s

∫ b

a

sdt+ sI

)
dt (6.20)

∂EA

∂s
= θ

∫ b

a

c

(∫ b

a

sdt+ s
∂
∫ b
a
sdt

∂s
+ I

)
dt (6.21)

∂EA

∂s
= θ

∫ b

a

c

(∫ b

a

sdt+

∫ b

a

∆sdt+ I

)
dt (6.22)
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∂EA

∂s
= θ

∫ b

a

c

(∫ b

a

(s+ ∆s) dt+ I

)
dt (6.23)

Case 3 For energy dissipator with numeric component value θ.

EA =

∫ b

a

|s.θs| dt =

∫ b

a

∣∣θs2
∣∣ dt (6.24)

As s2 is always positive and θ is a physical parameter the absolute sign can be
removed.

EA =

∫ b

a

θs2dt (6.25)

∂EA

∂s
= θ

∫ b

a

∂s2

∂s
dt (6.26)

∂EA

∂s
= 2θ

∫ b

a

sdt (6.27)
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Appendix A

Bond Graph

A.1 Bond Graph

Bond Graph is a graphic tool that can be used to model and analyse any type of dynamic
system. ’Bond’ graph is named so because in this framework, the system is represented
as a set of bonds representing the various elements in the system. Bond graph models
work on the law of conservation of energy. This can be of great advantage for modelling
multi-domain systems. However, as the dynamics of the system need to be studied, the
rate of change of energy i.e. power is used to model the system.

In the bond graph framework, energy is measured as a product of a physical phe-
nomenon bringing about a change in the system called generalised effort (e) and the
total observed change called generalised displacement (Q). Similarly, power is defined
as a product of a physical phenomenon bringing about a change in the system called
generalised effort (e) and the rate of observed change called generalised flow (f). The
effort and flow entities in various physical domains is shown in Table A.1.

In bond graph framework the different inputs and system elements interact with each
other through two types of junctions i.e. 1−junction or 0−junction while also maintaining
the causal relationship. The causal relationship is indicated by a causal stroke. The
causal stroke represents the direction of flow of information about the effort. Hence, the
direction without the causal stroke represents the direction of flow of information about
the flow. The direction of power flow is indicated by a half arrow on the bond representing
interaction between system and element. The general structure of a bond is shown in fig
A.1.

A.1.1 Junctions

As discussed previously the different elements of the system interact with each other
through junctions. In bond graph there are two types of junctions i.e. 1−junction and
0−junction. Each of the junction represent a specific physical condition that is being

Table A.1: Effort and Flow in various domains.

Domain Effort flow

Mechanical Force Velocity
Torque Angular Velocity

Electrical Voltage Current
Hydraulic Pressure Volume flow rate
Thermal Temperature Entropy change rate

Pressure Volume change rate
Chemical Chemical potential Mass flow rate

Enthalpy Mass flow rate
Magnetic Magnetic-motive force Magnetic flux rate
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Figure A.1: General structure of a bond.

imposed on the interacting elements. It must also be noted that the power at a junction
is conserved irrespective of it’s type.

A.1.1.1 1-junction

A 1−junction represents an equality of generalised flow among the elements i.e. all the
bonds the join at a 1−junction have same flow associated with them. Therefore, the
following can be inferred:

• The flow in the n bonds attached to the junction is the same i.e.

f1 = f2 = f3... = fn (A.1)

• As the power at the junction is conserved:

e1f1 + e2f2 + e3f3...+ enfn = 0

as the flow in all bonds are equal therefore,

e1 + e2 + e3...+ en = 0 (A.2)

It can be concluded that 1−junction is also an effort sum junction.

• As the flow is same in the bonds there should be only one source of flow information.
Therefore the causal stroke of all but one bonds is directed towards the 1−junction.

A physical condition representing 1-junction is electrical components attached in se-
ries. In this case the generalised flow i.e. current is same in all the elements.

A.1.1.2 0-junction

A 0−junction represents an equality of generalised effort among the elements i.e. all the
bonds the join at a 0−junction have same flow associated with them. Therefore, the
following can be inferred:

• The effort in the n bonds attached to the junction is the same i.e.

e1 = e2 = e3... = en (A.3)
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• As the power at the junction is conserved:

e1f1 + e2f2 + e3f3...+ enfn = 0

as the effort in all bonds are equal therefore,

f1 + f2 + f3...+ fn = 0 (A.4)

It can be concluded that 0−junction is also a flow sum junction.

• As the effort is same in the bonds there should be only one source of effort infor-
mation. Therefore the causal stroke of only one bonds should directed towards the
1−junction.

A physical condition representing 1-junction is electrical components attached in par-
allel. In this case the generalised effort i.e. voltage across the elements is same in all the
elements.

A.1.2 Elements

Elements in the bond graph represents the various components. Just like power in bond
graph framework is defined as a product of generalised flow and effort irrespective of the
physical domain, the elements that interact in the bod graph framework are also limited
depending on the type of behaviour irrespective of the physical domain. The mathemat-
ical relationship that governs the behaviour an element is called it’s Constitutive Law
(CL). The elements in bond graph can be categorised into two categories i.e. single port
elements and two port element. Single port elements can be either active or passive.

A.1.2.1 Active single port elements

’Active’ single port elements are those which bring the energy into the system. They are
also called ’Source’ elements. They represent the energy sources like battery or actuators
like motors. Source elements are of two types

1. Source of Flow (SF): As the name suggests they convey information of flow to any
part of the system. No effort information is exchanged. Hence, the CL for SF is

f(t) = SF (A.5)

e = 0 (A.6)

2. Source of Effort (SE): Corresponding to SF, they convey information of effort to
any part of the system. No flow information is exchanged. Hence, the CL for SE is

e(t) = SE (A.7)

f = 0 (A.8)
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A.1.2.2 Passive single port elements

’Passive’ elements are those which do not generate energy. So, they are the elements of
the system which enable the system to function by interacting with the energy provided
to the system in a set pattern. Passive elements are of three types i.e.

1. Compliance element (C ): A compliance element is one which takes flow information
as input from the system, to return effort to the system, when the element is in
integral causality. The compliance element stores generalised potential energy.

Therefore when the element is in integral causality, the CL is given by:

e = C

∫
fdt (A.9)

and for a compliance element in differential causality, the CL is given by:

f =
1

C

de

dt
(A.10)

2. Inertia element (I ): An inertia element is one which takes effort information as
input from the system, to return flow to the system, when the element is in integral
causality. The inertia element stores generalised kinetic energy.

Therefore when the element is in integral causality, the CL is given by:

f =
1

I

∫
edt (A.11)

and for a compliance element in differential causality, the CL is given by:

e = I
df

dt
(A.12)

3. Resistance element (R): Unlike compliance and inertia elements, the resistance ele-
ment can only dissipate the energy instead of storing it in any form. Therefore, the
CL for resistance element is fundamentally different form compliance and inertia
i.e. CL for resistance in algebraic in nature instead of differential/integral. The CL
for resistance element is given as:

e = R.f or f =
1

R
e (A.13)

when the input to the resistance element is generalised flow, the element is said
to be in resistive causality. Similarly when the input to the element is generalised
effort, then the element is said to be in conductive causality.

I, C and R can be constants, linear or non-linear functions. For modelling of multi-
physical energy interactions, I, C and R can be square matrix instead of simple functions.
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A.1.3 Two port passive elements

Two port elements are different from the previously mentioned single port passive ele-
ments (SE, SF, I, C, R) because unlike the others they interact with the system through
two ports i.e. they are not connected to system through one port but two ports. There-
fore, they can physically interact with two different points in the system. Also unlike
single port passive elements, the constitutive relationship for these is not affected by
causality change.

Energy flows into the transforming element with a particular combination of gener-
alised effort and flow, the energy leaves the element with a different combination. There-
fore, they transform the distribution of generalised effort and flow from one part of the
system to another.

1. Transformer element (TF): The transformer element is used when the similar energy
variables (effort or flow) at both the ends of the element are governed by a physical
element. In other words, if the generalised flow at the both ends are governed by
a physical component, a transformer element is used. For eg, in linear mechanical
systems, a lever governs the velocity transformation from one end to the other. So,
a transformer element is used.

The transformer is defined using a modulus. The modulus is defined as the ratio of
the generalised flow at energy exit to the generalised flow at energy inlet. The flow
equations for a transformer with modulus a, is given as:

f2 = a.f1 (A.14)

where f1 and f2 are the generalise flow at the energy inlet point and energy outlet
point of the transformer.

As the total energy is conserved by the transformer, the relation between generalised
efforts is given as

e2 =
1

a
e1 (A.15)

where e1 and e2 are the generalise effort at the energy inlet point and energy outlet
point of the transformer.

2. Gyrator element (GY): The gyrator element is used when the dissimilar energy
variables (effort or flow) at both the ends of the element are governed by a physical
element. In other words, if the generalised effort at one end is governed by gener-
alised flow at the other end by a physical component, a transformer element is used.
For eg, in a simple DC motor, the current (flow variable) in the coil governs the
torque (effort variable) in the shaft through some motor parameter.

The gyrator is usually using a modulus. The gyrator modulus is defined as the ratio
of the generalised flow at energy exit to the generalised effort at energy inlet. The
governing equations for a gyrator with modulus µ, is given as:

e2 = µ.f1 (A.16)

where f1 and e2 are the generalise flow at the energy inlet point and generalised
effort outlet point of the gyrator respectively.
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(a) I element in Integral causality. (b) I element in Differential causality.

Figure A.2: Comparison of integral and differential causality..

Figure A.3: Circuit diagram

As the total energy is conserved by gyrator, the relation between the remaining
energy variables associated with gyrator is given as

f2 =
1

µ
e1 (A.17)

where e1 and f2 are the generalise effort at the energy inlet point and generalised
flow outlet point of the gyrator respectively.

A.1.4 Causality

It has already been discussed that bond graph is used as a tool for modeling dynamic
systems. In bond graph modeling, there are two type of energy storing elements that are
responsible for the dynamic behavior of the system i.e. I and C element.

The system equations which represent the dynamic behavior of the system can be
captured by generating the system equations either in the differential form or in the
integral form. The form used for calculating the dynamics is represented using the causal
stroke shown in fig A.1. The causal stroke in the bond represents the flow of effort
information. For example, consider the two types of information transfer in an inertial
element shown in fig A.2. For arrangement in fig A.2a, the element receives effort from
the system as input and returns flow as output to the system. Hence, for an effort input
and flow output in the I-element, the constitutive relationship is given by eq A.11. As
this is in integral form, the energy exchange arrangement shown in fig A.2a shows the I
element in integral causality. Similarly, the information exchange for I element with the
constitutive relationship in in form shown by eq A.12 is represented by fig A.2b.

A.1.5 Example

A bond graph model can be understood using the following example. Figure A.3 gives an
example of electrical system which needs to be modelled. The bond graph of the model
is shown in fig A.4.
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Figure A.4: Bond Graph of the electrical system

The structural relationship at the junctions i.e. equations representing the structural
relation between various elements are given as:

1− junction
{
e1 − e2 − e3 − e4 = 0

f2 = f3 = f4

0− junction
{
f4 − f5 − f6 = 0
e4 = e5 = e6

These equations indicate that the element R1 and I1 are joined on a 1 junction. This
means that they have the same generalised flow, i.e. current. This is true as these
elements are connected in series arrangement.

Another sub-circuit, consisting of elements R2 and C2 is connected in series with
R1 and I1. The elements of sub-circuit itself are arranged in parallel arrangement. As
a parallel arrangement of components indicates equal applied voltage (i.e. generalised
effort), these elements are joined using a 0 junction.

The constitutive relationships i.e. the equations governing the interaction of compo-
nents with the system, as represented by the bond graph are given as:

R1 : e2 = R1f2

R2 : f2 =
1

R1

e5

L1 : e3 = L1
df3

dt

C1 : f5 = C1
de5

dt

The above set of equations have all the necessary information to analyse the circuit.

A.2 Modelling uncertainty in Bond Graph elements

Uncertainty in any system component θ can be modelled as either an additive uncertainty
or a multiplicative uncertainty.

θ = θn ±∆θ

θ = θn(1 + δθ)
(A.18)
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(a) Certain R-
element

(b) Uncertain R-element

Figure A.5: Uncertainty modelling of an R-element in resistive causality.

where θn is the nominal value of the parameter, ∆θ is the additive uncertainty and δθ is
the multiplicative uncertainty.

Uncertainty in elements can be included in the bond graph models. Multiplicative
uncertainty is included by using virtual sensor and a modulated source.

Considering an uncertain R-element, if the element is in resistive causality, the con-
stitutive relationship is given as follows.

eR = RfR

eR = Rn(1 + δR)fR

eR = Rnf + δRRnfR = en + eun

(A.19)

where en and eun are the nominal and uncertain components of the generalised effort.
The constitutive relationship in eq A.19 can be represented on the bond graph using

a modulated source MSe and virtual effort sensor De as shown in fig A.5
Similarly, for an uncertain R-element in conductive causality, the constitutive rela-

tionship and corresponding bond graph implementation is given by eq A.20 and fig A.6
respectively.

fR =
1

R
eR

fR =
1

Rn

(1 + δ1/R)eR

fR =
eR
Rn

+
δ1/ReR
Rn

= fn + fun

(A.20)

A.3 Fault detection using Analytical Redundancy Relations in
Bond Graphs

The operational safety of a system is based on fault detection and isolation (FDI) process.
FDI consists of the comparison of the actual behaviour of the system with reference.
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(a) Certain R-
element

(b) Uncertain R-element

Figure A.6: Uncertainty modelling of an R-element in conductive causality.

Figure A.7: Spring Mass Damper System.

Different approaches for the FDI procedures have been developed, depending on the kind
of knowledge used to describe the system model. Structural monitorability analysis is
based on fault signatures deduced from Analytical Redundancy Relations (ARRs)

ARRs are generated when the system is in the preferred differential causality. The
structural relationship, constitutive relationship and the measured values are used to
generate the ARRs directly from the bond graph model. The number of ARRs is equal
to the number of sensors placed on the system.

The measurements from a system using a sensor are used by dualising the sensors
in preferred differential causality. This means that a sensor in a bond graph model
with preferred integral causality becomes a simulated source in a bond graph model
with preferred differential causality. Therefore, the measured quantity is imposed on the
system model in differential causality.

The above can be understood using a simple example of a spring mass damper system.
For a spring mass damper system shown in fig A.7, the system bond graph model in
preferred integral causality is shown in fig A.8 and system bond graph model in preferred
differential causality is shown in A.9. It can be observed that the sensor (Df) for flow
measurement in preferred integral causality is dualised to become a simulated source of
flow (SSf) in preferred differential causality. Therefore, the flow that is measured in the
real system can be imposed to perform FDI.
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Figure A.8: Bond Graph of Spring Mass Damper System in integral causality.

Figure A.9: Bond Graph of Spring Mass Damper System in differential causality.

A.3.1 ARR generation in bond graph

In order to perform FDI, ARRs are generated using the model in preferred differential
causality. ARRs are derived using the structural relationship of the bond graph model.
For the above example, the structural relationship is given as shown below.

e1 − e2 − e3 − e4 = 0 (A.21)

All the generalised efforts in the structural relationship A.21 are not known but can
be calculated using the constitutive relationship of the elements. For the given system,
the constitutive relationships are given as follows.

e1 = F (t)

e2 =
1

m

df2

dt

e3 = k

∫
f3dt

e4 = bf4

(A.22)

Substituting eq A.22 in eq A.21, the structural relationship can be expressed as follows.

F (t)− 1

m

df2

dt
− k

∫
f3dt− bf4 = 0 (A.23)
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Figure A.10: Bond graph model for robust fault detection.

Finally, all the measured quantities are included to get the final ARR. In the current
model the flow in the model is imposed by the measured quantity. The final ARR is
obtained as follows.

ARR = F (t)− 1

m

ds

dt
− k

∫
sdt− bs = 0 (A.24)

The ARR is solved continuously to perform FDI. A non-zero value of the ARR indi-
cated the presence of a fault.

A.3.2 Generation of robust ARR

In order to generate robust ARRs uncertainties are also modelled in the bond graph
model in preferred differential causality. The bond graph model for spring mass damper
system for robust fault detection is given in fig A.10.

The ARR is then generated for the model.

ARR = F (t)−
(

1

m

ds

dt
+ wm

)
−
(
k

∫
sdt+ wk

)
− (bs+ wr) = 0 (A.25)
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As the uncertain components (wm, wk, wr) are know within a range and can be either
positive or negative, the above equation can be rearranged as follows.

ARR = F (t)− 1

m

ds

dt
− k

∫
sdt− bs ≤ |wm + wk + wr| (A.26)
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Appendix B

Interval Arithmetic

B.1 Interval Arithmetic

Interval arithmetic is a technique that is used to put bounds on errors in any mathe-
matical calculation. Numerical methods that use interval arithmetic offer reliable, and
mathematically correct results. In interval arithmetic, instead of representing a value as
a single number, the value is recognised as a range of possibilities.

For example, manufacturing processes are always have some error associated with
them. A metal component can never be manufactured for any exact dimension. There-
fore, the manufacturing drawings always mention a range of tolerated dimensions.

This section introduces the basics of interval arithmetic. The details of interval arith-
metic can be found in [30].

As already discussed, in interval arithmetic, values are represented as an interval.
Interval is defined as set of real numbers x|xm ≤ x ≤ xM . Here, xm is the minimum
possible value of x, called the infinum. Also, xM is the maximum possible value of x
called the supernum.

The interval x is denoted as:

x = [xm, xM ] (B.1)

The basic properties of an interval [xm, xM ] are as follows:

• for any interval
xm ≤ x ≤ xM

• The midpoint of an interval is given as:

mid(x) =
1

2
(xm + xM)

• width of interval is given as:

width(x) = xM − xm

For any two intervals [xm, xM ] and [ym, yM ]:

• Addition: x+ y = [xm + ym, xM + yM ]

• Subtraction: x− y = [xm − yM , xM − ym]

• Multiplication: x × y = [min(A),max(A)], where A = [xm × ym, xm × yM , xM ×
ym, xM × yM ]

• Division: 1
x

= [ 1
xM
, 1
xm

]
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• Calculus operations like differentiation and integration can be performed using the
above basic principles.

Interval extension functions are functions whose value result is given by an interval
range rather than an exact value.

Natural interval extension of an function is achieved by replacing the real values in
the function by their corresponding intervals.

Rational interval function is an interval-valued function whose values are defined by
a specific finite sequence of interval arithmetic operations.

B.2 Precautions while using interval arithmetic

With careful analysis of interval arithmetic, the following are observed:

• Arithmetic inverse does not hold.

addition 6= substraction−1

division 6= multiplication−1

• Another point of concern with natural extension of functions. These extensions are
dependent on the form of the function used.

For e.g. considering the natural extension of f(x) = x(x+ 1) for x = [−1, 1]

if f(x) = x(x+ 1); [f ] = [−2, 2]

f(x) = xx+ x; [f ] = [−2, 2]

f(x) = x2 + x; [f ] = [−1, 2]

B.3 Interval extension functions in bond graph

As the interval extension of functions are used incorporate the modelling uncertainties,
therefore the constitutive relationship of various elements can be modelled using natural
interval extension to accommodate the system parameter uncertainties. The process is
very similar to that explained in section A.2.

Considering an uncertain R-element in resistive causality. The constitutive relation-
ship for the element is given by eq B.2, where e is the generalise effort, f is the generalised
flow and R is the numeric component value of the element.

e = Rf (B.2)

The natural interval extension of the above can be derived as shown in eq B.3.

[eRm, eRM ] = [Rm, RM ][fRm, fRM ]

[eRm, eRM ] = Rn(1 + [δRm, δRM ])[fRm, fRM ]

[eRm, eRM ] = [Rn, Rn][fRm, fRM ] + [δRm, δRM ]Rn[fRm, fRM ]

[eRm, eRM ] = en + eun

(B.3)
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(a) Resistive R-element in interval form.

(b) Conductive R-element in interval form.

Figure B.1: Uncertainty modelling of an R-element in interval form.

Similarly, the natural interval extension of R-element in conductive causality can be
derived as shown in eq B.4.

[fRm, fRM ] =
1

[Rm, RM ]
[eRm, eRM ],

[fRm, fRM ] =
1

Rn

(1 + [δ(1/R)m, δ(1/R)M ])[eRm, eRM ]

[fRm, fRM ] =
[eRm, eRM ]

Rn

+
[δ(1/R)m, δ(1/R)M ][eRm, eRM ]

Rn

= fn + fun

(B.4)

The bond graph implementation of interval extension of R-elements in resistive and
conductive causality are given in fig B.1a and fig B.1b respectively.

117



118



Bibliography
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[72] Linxia Liao and Felix Köttig. “Review of hybrid prognostics approaches for remaining
useful life prediction of engineered systems, and an application to battery life prediction”.
In: IEEE Transactions on Reliability 63.1 (2014), pp. 191–207.

[73] Chi Keong Reuben Lim and David Mba. “Switching Kalman filter for failure prognostic”.
In: Mechanical Systems and Signal Processing 52 (2015), pp. 426–435.

[74] Chi Keong Reuben Lim and David Mba. “Switching Kalman filter for failure prognostic”.
In: Mechanical Systems and Signal Processing 52-53 (2015), pp. 426–435. issn: 0888-3270.

[75] Xiao Lin et al. “Condition based spare parts supply”. In: Reliability Engineering &
System Safety 168 (2017), pp. 240–248.

[76] Hongmei Liu, Lianfeng Li, and Jian Ma. “Rolling bearing fault diagnosis based on STFT-
deep learning and sound signals”. In: Shock and Vibration 2016 (2016).

[77] J Liu et al. “A data-model-fusion prognostic framework for dynamic system state fore-
casting”. In: Engineering Applications of Artificial Intelligence 25.4 (2012), pp. 814–823.

[78] Qinming Liu et al. “Manufacturing system maintenance based on dynamic program-
ming model with prognostics information”. In: Journal of Intelligent Manufacturing 30.3
(2019), pp. 1155–1173.

[79] Ruonan Liu, Boyuan Yang, and Alexander G Hauptmann. “Simultaneous Bearing Fault
Recognition and Remaining Useful Life Prediction Using Joint-Loss Convolutional Neural
Network”. In: IEEE Transactions on Industrial Informatics 16.1 (2019), pp. 87–96.

[80] Tongshun Liu, Kunpeng Zhu, and Liangcai Zeng. “Diagnosis and prognosis of degrada-
tion process via hidden semi-markov model”. In: IEEE/ASME Transactions on Mecha-
tronics 23.3 (2018), pp. 1456–1466.

[81] Zhijuan Liu et al. “A hybrid LSSVR/HMM-based prognostic approach”. In: Sensors 13.5
(2013), pp. 5542–5560.

[82] Xinsheng Lou and Kenneth A Loparo. “Bearing fault diagnosis based on wavelet trans-
form and fuzzy inference”. In: Mechanical systems and signal processing 18.5 (2004),
pp. 1077–1095.

[83] Loucas S Louca. “A frequency-based interpretation of energy-based model reduction of
linear systems”. In: Journal of Dynamic Systems, Measurement, and Control 138.12
(2016).

[84] Loucas S Louca, Jeffrey L Stein, and Gregory M Hulbert. “A physical-based model
reduction metric with an application to vehicle dynamics”. In: IFAC Proceedings Volumes
31.17 (1998), pp. 585–590.

123



[85] Loucas S Louca, Jeffrey L Stein, and Gregory M Hulbert. “Energy-based model reduction
methodology for automated modeling”. In: Journal of dynamic systems, measurement,
and control 132.6 (2010).

[86] Loucas S Louca and JL Stein. “Ideal physical element representation from reduced bond
graphs”. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering 216.1 (2002), pp. 73–83.

[87] Jianhui Luo et al. “Model-based prognostic techniques [maintenance applications]”. In:
Proceedings AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference.
Ieee. 2003, pp. 330–340.

[88] Jianhui Luo et al. “Model-based prognostic techniques applied to a suspension system”.
In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
38.5 (2008), pp. 1156–1168.

[89] Jie Ma, Gang Li, and Donghua Zhou. “Fault prognosis technology for non-Gaussian
and nonlinear processes based on KICA reconstruction”. In: The Canadian Journal of
Chemical Engineering 96.2 (2018), pp. 515–520.

[90] Jie Ma et al. “Reconstruction-based fault prognosis for flue gas turbines with indepen-
dent component analysis”. In: Asia-Pacific Journal of Chemical Engineering 9.2 (2014),
pp. 205–213.

[91] A Majidian and MH Saidi. “Comparison of fuzzy logic and neural network in life pre-
diction of boiler tubes”. In: International Journal of Fatigue 29.3 (2007), pp. 489–498.

[92] Henri-Jean Marais, George Van Schoor, and Kenneth R Uren. “Energy-based fault de-
tection for an autothermal reformer”. In: IFAC-PapersOnLine 49.7 (2016), pp. 353–358.

[93] AJ McEvily, D Eifler, and E Macherauch. “An analysis of the growth of short fatigue
cracks”. In: Engineering Fracture Mechanics 40.3 (1991), pp. 571–584.

[94] Kamal Medjaher and Noureddine Zerhouni. “Residual-based failure prognostic in dy-
namic systems”. In: IFAC Proceedings Volumes 42.8 (2009), pp. 716–721.

[95] Subhasish Mohanty et al. “Mixed Gaussian process and state-space approach for fatigue
crack growth prediction”. In: International workshop on structural heath monitoring.
Vol. 2. Citeseer. 2007, pp. 1108–1115.

[96] Aslan Mojallal and Saeed Lotfifard. “Multi-physics graphical model-based fault detection
and isolation in wind turbines”. In: IEEE transactions on smart grid 9.6 (2017), pp. 5599–
5612.

[97] Amalendu Mukherjee, Ranjit Karmakar, and Arun Kumar Samantaray. Bond graph in
modeling, simulation and fault identification. IK International New Delhi, 2006.

[98] Kevin Murphy and Stuart Russell. “Rao-Blackwellised particle filtering for dynamic
Bayesian networks”. In: Sequential Monte Carlo methods in practice. Springer, 2001,
pp. 499–515.

[99] Hasan Ocak and Kenneth A Loparo. “HMM-based fault detection and diagnosis scheme
for rolling element bearings”. In: (2005).

[100] Aˆ Y Orbak et al. “Model reduction in the physical domain”. In: Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
217.6 (2003), pp. 481–496.

124



[101] Rolf F Orsagh, Jeremy Sheldon, and Christopher J Klenke. “Prognostics/diagnostics for
gas turbine engine bearings”. In: ASME Turbo Expo 2003, collocated with the 2003 Inter-
national Joint Power Generation Conference. American Society of Mechanical Engineers
Digital Collection. 2003, pp. 159–167.

[102] M Ch Pan, Paul Sas, and Hendrik Van Brussel. “Machine condition monitoring us-
ing signal classification techniques”. In: Journal of Vibration and Control 9.10 (2003),
pp. 1103–1120.

[103] Pe Paris and Fazil Erdogan. “A critical analysis of crack propagation laws”. In: (1963).

[104] Jong I Park et al. “Dual features functional support vector machines for fault detection
of rechargeable batteries”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 39.4 (2009), pp. 480–485.

[105] Romano Patrick et al. “An integrated approach to helicopter planetary gear fault diag-
nosis and failure prognosis”. In: 2007 IEEE Autotestcon. IEEE. 2007, pp. 547–552.

[106] Leto Peel. “Data driven prognostics using a Kalman filter ensemble of neural network
models”. In: 2008 International Conference on Prognostics and Health Management.
IEEE. 2008, pp. 1–6.

[107] Ying Peng and Ming Dong. “A hybrid approach of HMM and grey model for age-
dependent health prediction of engineering assets”. In: Expert Systems with Applications
38.10 (2011), pp. 12946–12953.

[108] Marie-Cécile Pera et al. Electrochemical components. John Wiley & Sons, 2013.

[109] Eduardo Bento Pereira, Roberto Kawakami Harrop Galvão, and Takashi Yoneyama.
“Model predictive control using prognosis and health monitoring of actuators”. In: 2010
ieee international symposium on industrial electronics. IEEE. 2010, pp. 237–243.

[110] V Fernão Pires, JF Martins, and AJ Pires. “Eigenvector/eigenvalue analysis of a 3D
current referential fault detection and diagnosis of an induction motor”. In: Energy con-
version and management 51.5 (2010), pp. 901–907.

[111] Om Prakash and AK Samantaray. “Model-based diagnosis and prognosis of hybrid dy-
namical systems with dynamically updated parameters”. In: Bond graphs for modelling,
control and fault diagnosis of engineering systems. Springer, 2017, pp. 195–232.

[112] Om Prakash et al. “Adaptive prognosis for a multi-component dynamical system of
unknown degradation modes”. In: IFAC-PapersOnLine 51.24 (2018), pp. 184–191.

[113] Karkulali Pugalenthi and Nagarajan Raghavan. “A holistic comparison of the different
resampling algorithms for particle filter based prognosis using lithium ion batteries as a
case study”. In: Microelectronics Reliability 91 (2018), pp. 160–169.

[114] L. R. Rodrigues et al. “Use of PHM Information and System Architecture for Optimized
Aircraft Maintenance Planning”. In: IEEE Systems Journal 9.4 (2015), pp. 1197–1207.

[115] Yasmine Rosunally et al. “Prognostics framework for remaining life prediction of cutty
sark iron structures”. In: Proc. Annu. Conf. Prognost. Health Management Soc. 2009.
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