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Préface

J’ai longtemps hésité sur la forme que je devais donner ¢ ce mémoire. Devais-je présenter
tous mes travauz ou seulement une partie d’entre eur? Comme la logique a été une constante
tout au long de mes recherches ce mémoire a failli s’appeler De la logique du calcul au calcul
de la logique, la premiére partie de ce titre faisant référence a la période que j’ai dédiée a
Uétude du A-calcul comme modéle logique de la programmation fonctionnelle et la deuziéme
partie faisant allusion auz logiques du raisonnement de la vie courante.

Pourtant j’ai choisi de présenter in ertenso seulement les travauz concernant la derniére
période de mon activité scientifigue fondamentalement pour les raisons suivantes :

1. Garder un mazimum de cohérence. Les chapitres présentés ici gardent une unité dans la
thématique.

2. A cause des perspectives. Ces chapitres posent des questions et ouvrent la voie a des
développements futurs qui semblent assez prometteurs.

Ce mémoire est donc essentiellement la réunion de 5 articles dans le domaine des logiques
non monotones et la théorie de la révision des croyances. Ces travaur correspondent auz
4 derniéres années des mes recherches. Dans lappendice D on trouvera un historique des
publications constituant le ceeur de ce travail.

Bien que j’aie delibéremment omis de présenter in extenso mes recherches concernant le
A-calcul et la partialité on trouvera dans le chapitre 1 une rapide trace de mon itinéraire
scientifigue. Dans Uappendice E on pourra trouver mon Curriculum Vitae dans une forme
standard.
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Chapitre 1

Itinéraire scientifique

Les origines

Vers la fin des mes études de la licence de mathématiques en 1978 & Caracas, une question
revenait sans cesse qui se déclinait sous plusieurs formes : quelle était la validité de toutes
les théories étudiées? Quelle était la validité des raisonnements employés? Ainsi pour essayer
de trouver une réponse a ces questions de fondement je me suis tourné naturellement sur la
logique. Ceci avec autant plus de force que je n’avais pas eu ’occasion de suivre des cours de
logique et qu’il me semblait important de comprendre certains probléemes dont je n’avais que
vaguement entendu parler : la cardinalité du continuum et l'incomplétude de ’arithmétique.
J’ai di commencer par le commencement guidé par le Dr. Carlos Di Prisco, maitre patient et
exemplaire a qui je dois le goiit pour la recherche.

J’ai ensuite suivi des études de troisieme cycle a ’Université de Paris 7. D’abord un DEA de
logique sous la direction du Professeur Gabriel Sabbagh (1980) et ensuite j’ai preparé une thése
de troisiéme cycle sous la direction de Jean-Pierre Ressayre. Je me suis intéressé a 1’étude d’une
hiérarchie de théories des ensembles faibles ou le théoréme de récursion n’est valide que jusqu’a
une certaine complexité des formules. Nous avons établi des résultats d’existence de certaines
extensions élémentaires [94] et des résultats d’indépendance [87] & I’aide des indicatrices dans
le style de Kirby et Paris. Ces résultats et quelques autres sont réunis dans mon mémoire de
thése soutenue en 1983 [86].

La période allant de 1983 & 1985 fut une époque de mutation dans ma recherche. En effet
je travaillais & cette période comme professeur a I’'Université Simén Bolivar 4 Caracas. De par
ma spécialité en logique j’ai dii enseigner un cours sur les fondements logiques de l'intelligence
artificielle aux étudiants du Mastere en Informatique. Le contenu de ce cours portait sur le
A-calcul, le principe de résolution de Robinson et les logiques modales. Ces thémes qui ne
m’etaient pas familiers je les découvrai avec beaucoup de plaisir. A ce moment-la j’ai voulu
approfondir davantage sur les fondements de ’informatique, des langages de programmation
et du calcul.

La logique du calcul

En 1985 je retourne a Paris avec l'intention de travailler avec des spécialistes des langages
fonctionnels. A Paris il y avait & I’époque une équipe (FORMEL) de renommeée internationale
réunissant des chercheurs de ’Inria (G. Huet), de Paris 7 (G. Cousineau) et de ’Ecole Normale

1



2 Itinéraire scientifique

Supérieure (P.-L. Curien) dont le théme était justement les langages fonctionnels tant d’un
point de vue pratique que théorique. Je commengai 4 travailler avec Pierre-Louis Curien
autour du A-calcul comme un outil pour raisonner sur ’équivalence des programmes. En 1986
je présentai un travail sur le A-calcul polymorphe comme mémoire de DEA d’Informatique!
[88].

Un des problemes importants quand on raisonne sur des programmes (et sur des calculs) est
de savoir quand deux programmes doivent &tre considérés comme égaux. Nous pensons que le
comportement entrée-sortie ne suffit pas. En particulier il y a des programmes qui ne terminent
pas et qui ont des comportements assez différents. Par exemple un programme peut boucler
sans saturer la mémoire tandis qu’un autre la saturera. Le A-calcul comme paradigme des
langages fonctionnels permet de comprendre de facon assez claire ces phénomenes. Nous nous
sommes penchés sur I’étude des extensions du A-calcul qui permettent d’étudier 1’équivalence
de programmes de maniere assez fine. Nous avons ainsi étudié le A-calcul partiel et des A-calculs
partiels typés.

L’idée essentiel du A-calcul partiel est de considérer qu’un programme est un couple : un
A-terme plus une mémoire qui sert a garder la trace du calcul. Nous introduisons des regles
pour manipuler la mémoire. En particulier lorsqu’un programme termine la mémoire doit étre
vide. Le calcul que nous proposons est proche de celui de Moggi [75].

Nous montrons que ce calcul a une présentation équationnelle (sémantique algébrique) [89].
Nous montrons aussi que la partie du calcul qui concerne la manipulation de la mémoire est
décidable [90]. Nous remarquons qu’aucune technique standard ne marche dans ce cas et que
ce probléme était ouvert depuis plusieurs années.

Une autre question que nous avons résolue est celle de savoir quel est le modéle opérationnel
standard de ce calcul. Nous prouvons que c’est le A-calcul par valeur paresseux. C’est un
résultat qui utilise un lemme de contexte loin d’étre trivial. Nous donnons une preuve de ce
résultat dans [91].

Ces résultats constituent ’essentiel de mon mémoire de thése en informatique [92).

En 1988 je commence a travailler a I’Université de Lille I. A partir de ce moment je com-
mence a diriger une petite équipe au sein du Laboratoire d’Informatique Fondamentale de Lille
autour des thémes en rapport avec le A-calcul tout en conservant les rapports que j’avais avec
Péquipe FORMEL, notamment la participation & un projet européen sur le A-calcul typé.

J’ai dirigé pendant la période de 1988 a 1993 trois mémoires de DEA et une these. D’abord
en 89 le mémoire de Gabriel Desmet sur des implantations du A-calcul par valeur (dont une
stratégie s’avérera plus tard étre le modéle naturel du A-calcul partiel). Ensuite les mémoires
d’Olivier Dubuisson et Thiery Peltier : une étude théorique et pratique du A-calcul avec
substitutions explicites (un raffinement du A-calcul partiel introduit par Curien). Finalement
la thése de Christian Even dont la problématique générale était 1’étude des liens entre le A-
calcul partiel, les algébres combinatoires partielles et la théorie des catégories, ainsi que la
confluence du calcul.

Parmi les résultats saillants de cette période notons I’équivalence entre le A-calcul partiel
et les algébres combinatoires partielles, question soulevée par Moggi et ouverte jusqu’a notre
travail [25]. La confluence du A-calcul partiel paresseux [93] et ’extension du théoreme de
Scott-Koymans au cadre partiel [26]

! J’ai aussi dii passer quelques examens!



Le calcul de la logique

A partir de la rentrée 93 suite a une politique du LIFL consistant a renforcer les équipes de
taille importante j’'intégre 1’équipe Méthéol (Méthodes et outils logiques pour la programma-
tion) dirigée par Jean-Paul Delahaye. Je m’intéresse particulierement a des aspects liés au
raisonnement non monotone. Depuis lors je dirige un groupe de travail? intégré en plus de moi
méme par Hassan Bezzazi et Stéphane Janot, Maitres de conférences & I'Université de Lille II
et Lille I respectivement, de Sébastien Konieczny, thésard BDI CNRS-Région, dont je dirige
la thése. En plus de ce "noyau dur”, divers étudiants de DEA ont travaillé avec nous. Ainsi
j’ai dirigé les mémoires de DEA de :

e Omar Malah. Sur lalgorithme de calcul de la cldture rationnelle et ses implantations.
Université de Lille 1. 1994.

e Sébastien Konieczny. Sur une archictecture pour la coopération en utilisant des opéra-
teurs de changements de croyances. Université de Lille 1. 1996.

e Christophe Parent. Une étude des algorithmes pour la recherche des explications. Uni-
versité de Lille 1. 1997.

Pendant cette période nous avons eu des collaborations internationales et nationales. En
particulier avec le Professeur Carlos Uzcategui de I’Université des Andes (Mérida, Venezuela),
avec le Professeur Jorge Lobo de Bell Labs (New-York, anciennement Professeur a I’université
d’lllinois), avec le Dr. David Makinson. Nous participons au nouveau PRC I3, groupe Modéles
du raisonnement. Nous participons au programme de la région Ganymeéde dont le theme central
est la coopération. Nous avons aussi des rapports avec le Centre de Recherches en Informatique
de Lens (CRIL) qui participe également au programme Ganymeéde.

Mes travaux de cette période sont le cceur de ce mémoire. Ils sont présentés dans le chapitre
suivant.

Zvoir I’appendice F et aussi http://www.lifl.fr/ GNOM
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Chapitre 2

Présentation

2.1 Généralités

Ce mémoire réunit quelques contributions au domaine de l’intelligence artificielle. Particu-
lierement nous nous intéressons aux fondements logiques du “raisonnement du sens commun”.
Nous aborderons ici quelques aspects d’essentiellement deux domaines :

e Raisonnement non monotone

e Théorie du changement de la connaissance

Dans beaucoup de situations de la vie courante nous manipulons des informations in-
complétes, approximatives voire contradictoires et pourtant les conclusions que nous pouvons
extraire sont cohérentes. De méme nous devons incorporer de nouvelles informations, qui
pourraient contredire notre connaissance préalable, tout en gardant la cohérence de 1’ensemble
actuel des connaissances. Illustrons ces deux types de situations avec des exemples trés simples.

Exemple 2.1 Supposons qu’un agent rationnel est en train de raisonner sur les bons cafés.
Cet agent aime les cafés sucrés. Ainsi il pense que si ’on ajoute du sucre au café il sera bon.
Or cet agent n’a pas le goiit trop denaturé et lorsque 1’on ajoute du sucre et du poivre il va
trouver que le café n’est pas bon. Il est tres facile de noter que classiquement on obtient des
contradictions lorsque 'on est en présence d’un café sucré et poivré en méme temps car il sera
bon et mauvais en méme temps. Pourtant ’agent rationnel de notre exemple ne conclut pas
n’importe quoi car “sa logique” n’est pas classique.

Pour modéliser ce genre de raisonnement dans lequel les conséquences ne sont pas forcément
préservées par ajout de nouvelles hypotheses ont surgi des formalismes dit non monotones.

Exemple 2.2 Supposons maintenant un autre agent avec un état de connaissances du monde
qui se résume a deux faits : le café est bon, le café est sucré; et & une régle : si un café est
sucré et poivré alors il n’est pas bon. Or peu apreés il apprend que le café est poivré. Comment
peut-il changer sa connaissance dans le but d’incorporer cette nouvelle information, garder
la cohérence et en méme temps perdre le moins possible des informations qu’il possedait ?
Plusieurs solutions peuvent se présenter, par exemple le nouvel état des connaissances pourrait
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étre que le café est sucré, bon et poivré (pas de régle) ou bien que le café est bon, poivré et la
régle ou bien d’autres alternatives.

Modéliser la rationalité de ces mécanismes de prise en compte de nouvelles informations
est le but de la théorie de changement.

2.1.1 Sur le raisonnement dynamique

Il est bien connu que la logique classique est monotone, i.e. lorsque I'on considere deux en-
sembles d’hypothéses ¥ et ¥/ si ¥ est contenu dans ¥’ alors les conséquences de ¥ seront
aussi contenues dans les conséquences de ¥'. Si nous dénotons par Cn(I') 'ensemble des
conséquences classiques de I' la propriété précédente peut s’ecrire :

NCY = Cn(S) CCn(X)

ce qui veut dire que ’opérateur Cn est monotone par rapport a linclusion. Autrement dit si
I’on ajoute des hypothéses toute conséquence ancienne doit rester; on ne peut pas changer les
inférences par ajout d’une nouvelle information. Dans ce sens la logique classique est statique.

Dans les problemes qui nous occuppent cette propriété est absente. On doit, au contraire,
comme on ’a vu a travers les exemples changer les “vieilles” inférences ou modifier les con-
naissances. C’est pour cela que nous parlerons des logiques du raisonnement dynamique pour
englober les phénomeénes que nous étudions. On verra plus tard qu’il y a des raisons plus
profondes pour inclure le raisonnement non monotone dans les logiques dynamiques.

2.1.2 Sur notre approche

Nous avons déja dit que ce qui nous occupe est le raisonnement dynamique, i.e. le raisonnement
non monotone et la théorie du changement.

Concernant le raisonnement non monotone deux thémes sont étudiés :

e Les mécanismes de déduction de conséquences 3 partir d’un ensemble des connaissances.

e Les mécanismes de recherche des ezplications a partir d’un ensemble d’informations.
Concernant la théorie du changement de la connaissance deux thémes sont aussi étudiés :

e Coment changer linformation de facon cohérente lorsqu’une nouvelle information arrive
avec priorité pour la nouvelle information.

e Comment extraire une information cohérente de plusieurs sources d’information égale-
ment prioritaires.

Nous utilisons une approche logique dans 1’étude des problémes qui nous concernent. En
particulier notre langage sera celui de la logique propositionnelle. Néanmoins ce n’est pas
dans les buts de ce mémoire de prouver la pertinence des approches logiques a l'intelligence
artificielle. Depuis bient6t 40 ans beaucoup de travaux ont été faits [77] montrant que les
approches logiques sont bien féconds en au moins trois aspects :
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e en tant qu’outil d’analyse,
e en tant qu’outil de représentation et

e en tant qu’outil de calcul.

Nous pensons que notre approche, qui continue d’autres approches logiques, a des apports dans
ces trois aspects.

Beaucoup de cadres logiques ont été proposés pour résoudre les problémes liés a la non
monotonie. On peut citer les logiques non monotones modales [74, 76, 11], les logiques des dé-
fauts [97, 6, 72], la circonscription [73], les systémes d’héritage [111], les logiques préférentielles
[49], des logiques probabilistes [83, 38], des logiques possibilistes [21]. Une étude comparative
de ces formalismes est hors des buts de ce mémoire. On peut consulter {13] pour une étude
comparative de la plupart de ces logiques.

Pour ce qui concerne les parties de notre travail ayant trait au raisonnement non monotone
nous avons choisi I'approche de ’étude systématique des relations binaires | entre des for-
mules vues comme des relations de conséquence non monotones. Cette étude est faite via les
propriétés structurelles de la relation, les “regles d’inférence”. Ceci est I’approche des relations
de conséquence non monotones suivant la tradition de Kraus, Lehmann et Magidor [49, 55] et
Makinson [67, 69].

Pour ce qui concerne les parties de notre travail ayant trait a la théorie du changement
nous avons choisi le paradigme de Alchourrén, Girdenfors et Makinson [1].

Une des caractéristiques communes a ces deux approches réside dans I’étude abstraite des
propriétés syntaxiques assez générales aussi bien pour les relations de conséquence non mono-
tones que pour les mécanismes de changement de la connaissance. Cela permet d’analyser
des classes des relations de conséquence, de les comparer en établissant les propriétés com-
munes, les différences, voire certaines hierarchies. Il en va de méme pour les mécanismes de
changement. Un point intéressant qui découle évidemment de la géneralité de ces approches
" est qu’elles peuvent é&tre utilisées pour extraire des propriétés d’une logique non monotone
particuliere ou d’un mécanisme de changement particulier. Ainsi par exemple supposons que
’on considére une relation de conséquence |~ associée 4 une logique non monotone particuliere.
Supposons aussi que ’on arrive a prouver que la relation | satisfait les régles préférentielles
(voir chapitre 3) alors on aura automatiquement certaines régles nouvelles pour la logique que
’on étudie, v.g. on pourra dire que toute régle dérivée de la logique préférentielle sera valable
pour la logique que l'on considére. Similairement si ’on considére un opérateur de changement
dont on prouve qu’il est un opérateur de révision on aura automatiquement que l’opérateur
particulier satisfait toute propriété associée aux opérateurs de révision. Bien que cette obser-
vation puisse paraitre triviale elle est fort utile lorsque la logique non monotone que ’on étudie
ou l'opérateur ont des définitions complexes et sont d’une manipulation ardue.

Une autre caractéristique commune des deux approches est qu’elles possédent des séman-
tiques trés propres et d’une certaine fagon voisines. La proximité des sémantiques est une
des voies qui permet de voir d’une maniére simple les rapports étroits entre les relations de
conséquence non monotones et les opérateurs de changement.

Par ailleurs notons que 'uniformité de ces sémantiques permet une étude assez systéma-
tique des relations de conséquence ainsi que des opérateurs de changement. En fait on peut
penser d’une facon approximative que les sémantiques sont données par des ordres de formes
diverses. Or des “déformations” sur les ordres vont siirement produire des changements dans la
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syntaxe. Peut-on capturer complétement ce type de “déformations” par des propriétés struc-
turelles ? Réciproquement des changements dans la syntaxe pourront-ils étre capturés par des
“déformations” de la structure ordonnée ?

De plus la simplicité des sémantiques donne une vision assez claire des propriétés que
Pon étudie. En méme temps cela aide énormement a la recherche de contre-exemples & des
propriétés syntaxiques, voire a les prouver clairement et simplement la oti les preuves au niveau
de la syntaxe sont obscures et complexes.

Un autre aspect important des sémantiques des deux approches est qu’elles donnent une
vision unificatrice du raisonnement dynamique que nous étudions. En effet les sémantiques
sont grosso modo des ordres sur des modeles (valuations) qui nous disent quels sont les bons
modéles d’une formule. Ainsi les conséquences (non monotones) d’une formule o seront les
formules vraies classiquement dans les bons modeéles de a. De méme pour les mécanismes de
changement : les formules résultantes du changement seront celles qui sont vraies dans les
bons modéles d’une certaine formule (P'information nouvelle pour le cas de la révision). Ces
similitudes au niveau de la sémantique permettent d’établir des liens assez précis [70, 31] entre
les relations de conséquence et les mécanismes de changement de la connaissance.

2.2 Les problemes abordés : un peu d’histoire et motivations

Un effort considérable a été fait depuis les années 80 pour trouver d’abord des formalismes
qui rendent compte de maniére assez précise des problémes liés au raisonnement dynamique
et ensuite pour trouver un cadre unificateur. Le travail de D. Makinson [69] concernant des
propriétés communes de plusieurs formalismes non monotones est particulierement important
et nous a beaucoup influencé. Ainsi dans ce mémoire nous abordons 1’étude des mécanismes
du raisonnement dynamique d’un point de vue général des formalismes : nous examinons les
propriétes structurelles d’une logique via les propriétés de la relation de conséquence qu’elle
induit. Cela est une tradition qui remonte a Tarski [109] et qui a été developpée trés finement
par Gentzen [39] avec son calcul des séquents. Cette approche qui s’est révélée tres fructueuse
en informatique (au moins dans deux domaines : la théorie des types et la mécanisation du
raisonnement) a été reprise par Gabbay [35] (& ma connaissance le premier) pour étudier les
logiques non monotones. Il propose un ensemble de régles dans le style du calcul des séquents
comme étant I'ensemble minimal des régles qu’une logique non monotone doit posséder. Ces
régles sont un sous-ensemble de ce qu’aujourd’hui on appelle la logique cumulative [67] (voir
chapitre 3).

A la fin des années 80 on a commencé a établir des sémantiques dites préférentielles pour
le raisonnement non monotone. Les premiers travaux dans ce sens sont ceux de Shoham
[105, 106], ceux de Makinson [67] et Kraus, Lehmann et Magidor [48]. L’idée des structures
sémantiques considérées (préférentielles) est intuitivement la suivante : une structure séman-
tique M est un ordre (W, <) ot W est un ensemble des modéles d’une logique donnée (prenons
la logique classique pour simplifier), c’est-a-dire que I'on dispose d’une relation de conséquence
sémantique = telle que ’on peut déterminer si M = o pour tout M dans W et toute formule
a. L’ordre < représente une relation de préférence ou de plausibilité entre structures. Ainsi
M < N signifiera que M est préféré a ou plus plausible que N. Finalement on dit que M
satisfait apv( si les modeéles préférés de o sont aussi modéles de 3, plus précisément si

min(a) C mod(f)
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min(a)déf{MGW:M}:ozetN<M¢N|;éa}

mod() def {NeW:N 3}

Les premiers résultats de complétude pour ce genre de sémantique sont de Makinson [67]
et de Kraus, Lehman et Magidor [49]. Ici il faut dire que les sémantiques considérées ne sont
pas exactement les mémes. Makinson considére une sémantique trés proche de celle que ’on
vient de décrire plus haut mais sans exiger que la relation < soit un ordre. Par contre Kraus,
Lehmann et Magidor considérent bien des ordres mais pas directement sur des valuations mais
sur un ensemble S de points qu’ils appellent des états et une application 2 de cet ensemble
d’états dans les valuations. Ainsi les structures KLM (pour Kraus-Lehmann-Magidor) sont de
la forme (S, 1, <) avec (S, <) un ordre et pour ces structures on définit min(a) et mod(8) de
la fagon suivante

a.

min(a) 2 {seS:is)Eaets <s=1s) £ a}

mod(f3) of {s € §:1(s) E B}

Comme auparavant, une structure KLM satisfera apg si min(a) C mod(3).

.

i

Nous remarquerons que ces deux types d’approches ont leurs sources dans la sémantique
des “mondes possibles” de Kripke utilisée pour étudier les logiques modales. Plus précisément
la premiére approche se rapporte a [51] et la deuxiéme a [50]. Dans [19] des relations entre
les deux approches sont étudiées, en particulier comment voir une structure KLM comme une
structure MAK (pour Makinson), plus simple, mais avec une relation de plausibilité moins
bien structurée. Nous reviendrons sur ce probléme dans la section 2.3.2.

Un des aspects importants de I’approche de la sémantique KLM est qu’elle permet une
étude systématique des relations de conséquence non monotones. En effet dans [49] est prouvé
un théoréme de représentation pour les relations préférentielles (voir la section 3.2) : une
relation pv est préférentielle ssi il existe un modéle préférentiel M = (S,1, <) qui représente v,
i.e.

apf & min(a) C mod(f) (2.1)

ou un modéle préférentiel est une structure KLM avec une propriété additionnelle pour 1’ordre
<, la propriété de “smoothness” (voir 3.2). Ainsi, une question naturelle qui se pose quand on
consideére une relation de conséquence qui satisfait certaines propriétés est la suivante : quelle
sont les propriétés sur < qui caractérisent |~ au sens de ’équivalence 2.1 7 Cette question a
été étudiée avec succes pour les relations suivantes :

Les relations rationnelles [55],

les relations disjonctives rationnelles [30],

e les relations préférentielles qui satisfont la régle de la rationalité de la négation [32],

les relations rationnelles transitives [9] et

d’autres relations qui satisfont des régles plus fortes que la monotonie rationnelle [7]

Le chapitre 3 est justement la présentation de ces derniers résultats.
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Un des points importants que ’on utilise pour développer des arguments au niveau de la sé-
mantique d’une fagon simple est de se rendre compte que beaucoup de relations de conséquence
admettent des représentations injectives. Ceci signifie qu’il y a un modéele préférentiel qui les
définit ol ’on peut identifier un état & une seule valuation. C’est par exemple le cas des rela-
tions rationnelles. Ainsi suite a différents théorémes de représentation {49, 55, 30, 7] nous avons
essayé dans le chapitre 4 de donner une méthode uniforme et directe pour la construction d’un
modele qui représente une relation de conséquence. La méthode est uniforme puisque la méme
construction couvre les cas allant des relations préférentielles avec une propriété additionnelle
introduite par Freund [30] jusqu’aux relations rationnelles transitives. La méthode est directe
car on définit ordre sur les valuations juste avec la relation de conséquence que l’on veut
représenter. Ceci est a comparer aux autres méthodes utilisées pour prouver les théoremes de
représentation ol l’on définit d’abord une relation d’ordre entre les formules d’oli ’on extrait
une relation d’ordre sur les valuations.

Sur la logique de 1’abduction, c’est-a-dire les mécanismes de recherche des explications a
une observation donnée, beaucoup d’efforts ont été faits depuis les travaux de Peirce [84]. En
particulier récemment I’approche relationnelle (i.e. ’étude des propriétés d’une relation binaire
entre des formules) de Flach [29] s’est avérée trés éclairante. Il a proposé une série de régles
qu’une relation abductive doit posséder pour avoir un bon comportement. La justification des
postulats qu’il donne est intuitive. Notons aussi qu’il prouve un théoréme de représentation
pour ce genre de relations, qui reflete le fait qu’il doit y avoir des liens plus profonds entre
les relations abductives et les relations de conséquence non monotones. Nous avons poussé
I’étude des relations abductives dans cette direction dans le chapitre 5 en montrant qu’il y
a une dualité entre les relations de conséquence non monotones et les relations d’abduction.
La dualité que I'on trouve peut étre interprétée comme un fondement a laffirmation que le
raisonnement sur les explications, I’abduction, est de la déduction non monotone a [’envers.

Ceci est & comparer avec le travail de Cialdea-Mayer et Pirri [66] intitulé “Abduction is
not Deduction-in-Reverse”. Le cadre que l’'on considére est plus restreint que le leur. En
particulier elles considerent une relation de préférence pour choisir les bonnes explications.
Nous montrons, a l'aide des techniques qui s’inspirent de nos théoremes de représentation, que
cette relation est en fait implicite dans les régles qu’une relation abductive doit posséder.

Concernant les mécanismes de changement de la connaissance, un des aspects fondamen-
taux de ’approche d’Alchourrén, Géardenfors et Makinson [1] est qu’elle capture au niveau
des postulats I'idée de changement minimal : lorsque K est une théorie (un ensemble clos par
déduction logique) qui est notre état de croyances et o est une nouvelle information on notera
K * o la théorie qui résulte de réviser K par o selon 'opérateur # (la méthode qui décrit
comment changer les connaissances). K % a sera la théorie de K U {a} lorsque la nouvelle
information n’entre pas en conflict avec ’ancienne, i.e. si K U {a} est consistant. Dans le cas
contraire, K * o sera la théorie de K’ U {a} avec K’ C K sélectionnée par la méthode qui est
supposée choisir le K’ le “plus proche possible” de K. Grace aux théorémes de représentation
des opérateurs qui obéissent aux postulats AGM on peut voir qu’il y a une grande variété des
notions de “proximité” qui nous permettent de choisir K’'. Or dans tous les cas, quelle que soit
la méthode pour choisir K’ on doit savoir au préalable si K U {a} est consistent. Cela revient
a résoudre une instance du probleme de la satisfaction. 1l est bien connu que méme dans le cas
fini la complexité de ce probléme est trés grande car il est NP-complet. Par ailleurs beaucoup
de méthodes pour calculer K’ sont aussi de trés haute complexité algorithmique (voir [23]).
Dans le souci de pallier & ces problémes de complexité nous avons proposé dans le chapitre 6
quelque méthodes syntaxiques pour réviser non des théories mais des “bases de connaissances”
pour lesquelles la facon de représenter la connaissance est trés importante. D’autre part nous
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affaiblissons les mécanismes de déduction ainsi que la forme des formules que nous consid-
érerons pour rendre les calculs traitables. Dans cette “logique restreinte” nous définissons des
mécanismes de changement apparentés a la full meet contraction. Par ailleurs en nous inspi-
rant des liens entre opérateurs de révision et relations rationnelles, nous définissons d’autres
mécanismes syntaxiques de révision toujours dans une “logique” trés affaiblie. Nous donnons
une méthode générale pour relativiser les postulats AGM pour la révision et ceux de Katsuno
et Mendelzon pour la mise-a-jour au cadre logique faible dans lequel on travaille.

La plupart des mécanismes de changement considérés jusqu’a présent concernent le change-
ment d’une information ancienne a la lumiére d’une information nouvelle en donnant priorité
a la nouvelle information. En fait peu importe de savoir qui est la nouvelle ou la vieille infor-
mation ce qui est crucial est de savoir quelle information est prioritaire. Or que faire quand
les deux informations sont également prioritaires 7 QOu encore, que faire si au lieu de deux
sources d’information nous disposons de n sources d’information également prioritaires avec
n > 2 7 Quelques éléments de réponse ont été donnés par Revesz [99, 100] et par Liberatore
and Shaerf [58, 59]. Nous apportons aussi quelques élements de réponse dans le chapitre 7 en
utilisant ’approche structurelle AGM, c’est-a-dire en présentant une série de postulats sur la
rationalité de 'information produite par plusieurs sources d’information.

2.3 Panoramas

2.3.1 Panorama sur le chapitre 3

Il est bien connu qu’en présence des régles préférentielles, systeme P (voir section 3.2}, la tran-
sitivité est équivalente a la monotonie [33]. Une question naturelle est donc la suivante : quelle
régle nous permettra d’avoir un peu de transitivité sans avoir la monotonie ? Une premiere
réponse qui vient a I’esprit est d’imposer des conditions sur ’application de la transitivité (de
méme que la monotonie prudente et la monotonie rationnelle sont des applications restreintes
de la monotonie). Dans cette optique une régle qui semble couler de source est la suivante :

apB By ol
apy

Cette régle appelée transitivité rationnelle a été introduite dans [9]. Elle nous dit que lorsque
P’on est en situation d’appliquer la transitivité on a bien la conclusion attendue a moins que
cette conclusion nous apporte une contradiction flagrante.

RT

Notons qu’a la différence des régles préférentielles, la regle précédente est “non-Horn”. En
fait quand on ’énonce sous une forme positive elle est équivalente a :

B By

afvy ou apv—y

c’est-a-dire une regle non déterministe.

L’ajout de certaines régles non-Horn au systeme P a déja été étudié dans la littérature. Par
exemple ’ajout de la monotonie rationnelle (RM) a été étudié par Lehmann et Magidor [55] d’un
point de vue sémantique et aussi calculatoire. L’ajout de la regle de la disjonction rationnelle
(DR) a été étudié par Freund [30] d’un point de vue sémantique. L’ajout de la négation
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rationnelle (NR) a été étudié par Freund et Lehmann [32] d’'un point de vue sémantique.
Makinson dans [69] étudie aussi ces régles d’un point de vue syntaxique. D’ailleurs Makinson
étudie aussi d’autres regles non-Horn, notamment la régle de préservation de la détermination :

apf anyhp
anypvB

DP

Cette regle est une forme faible de monotonie. Nous prouvons qu’elle est équivalente a RT.

On savait que modulo le systéme P les implications suivantes sont vraies : DP = RM,
RM = DR, DR = NR. De plus que les réciproques des deux derniéres implications ne sont pas
vraies. Un des buts de ce chapitre est d’établir les relations précises entre ces régles et d’autres
regles qui surgissent naturellement quand on considere RT. Un outil important est d’établir un
théoréme de répresentation correspondant aux relations préférentielles qui satisfont RT (alias

DP).

Tres naturellement liées a RT nous considérons les régles suivantes appelées respectivement
contraposée rationnelle et faible détermination :

apB —Bha

RC ——
-Bh—a

Thoa aftp

WD ——
ab-p

RC fut introduite dans [9] et WD fut formulée par Freund dans des communications avec
l’auteur.

Nous prouvons que chacune de ces regles est équivalente 2 RT modulo le systeme P plus la
regle RM.

Le premier résultat de ce chapitre peut étre résumé dans le diagramme suivant qui nous
donne les liens entre ces nouvelles regles :

M

DP = RT = {RM, RC} = {RM, WD}

]
o N e
o | N

NR

Plus précisément ce diagramme nous dit qu’une régle implique une autre si et seulement si I’on
peut suivre un chemin avec les fleches de la premiére a la derniére. Les parties positives de ce
résultat sont prouvées syntaxiquement. Les parties négatives sont prouvées sémantiquement.
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Le résultat suivant dans ce chapitre est la preuve d’un théoréme de représentation pour
les relations préférentielles satisfaisant RT. Elles sont caractérisées par des modeéles dits quasi-
linéaires, i.e. 'ordre de ensemble d’états est de la forme suivante :

un état qui n’est pas minimal est comparable a tout autre état. Pour prouver ce résultat
nous prouvons d’abord par des méthodes purement sémantiques que toute relation rationnelle
peut é&tre représentée par un modeéle injectif ou toute valuation satisfait les conséquences non
monotones d’une formule. Ce résultat apparaissait déja dans le travail de Freund [30] mais
prouvé par des méthodes différentes.

Ce type de caracterisation sémantique meéne naturellement a considérer certaines struc-
tures qui sont des restrictions ou des déformations des ordres quasi-linéaires. Par exemple on
considére des ordres presque-linéaires, i.e. de la forme

3

N

c’est-a-dire un ordre quasi-linéaire avec au plus deux états minimaux. Les modéles préférentiels
avec ce type d’ordre sur les états caractérisent les relations satisfaisant les régles suivantes de
fragmentation disjonctive et de fragmentation conjonctive :

opBvy oftB oty
By

FD

anBby afly Bpty
ap—p

FC

Sachant que les modeéles préférentiels oli ’'ordre est linéaire caracterisent les relations préféren-
tielles satisfaisant la régle du tiers exclu conditionnelle (CEM) (c’est un résultat implicite dans
les travaux de Stalnaker et Lewis sur la logique des conditionnels, dont nous donnons une
preuve assez simple) et qu’il n’ y a pas de rapports entre la monotonie et les régles FD, FC et
CEM, nous pouvons compléter notre premier diagramme de la facon suivante :
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On doit remarquer que jusqu’a présent toutes les regles utilisées pour augmenter le systéme
P sont non-Horn. Il semblerait que les regles Horn que ’on peut ajouter seraient moins utiles.
Néanmoins nous introduisons un groupe des regles Horn plus faible que la monotonie et qui
s’avérent intéressantes. Ce sont les régles de conjonction insistante

apB yhB
anyB

Cl

et de n-monotonie
aiboi(@) ... ain...nagbon(P)
OUA .. . AR ACpp1 O (D)

ol o;(¢) est ¢ si ¢ est impair et —¢ si ¢ est pair et remarquons que la conclusion de la régle
utilise o, au lieu de 0,41

n-M

Avec ces nouvelles relations nous prouvons que nous pouvons compléter le diagramme de
liens entre les notions introduites de la fagon suivante :

cl ./ l.M J :;Mz FC
2_M¢. op o <
_Mk RM / \o RC

Nous finissons ce chapitre prouvant que les relations preférentielles qui satisfont la n-
monotonie et la monotonie rationnelle se caractérisent par des modéles rangés avec au plus n
rangs.

2.3.2 Panorama sur le chapitre 4

Nous avons déja mentionné I'importance d’avoir des modéles préférentiels représentant une re-
lation de conséquence ot la structure est simple. Nous avons en particulier utilisé les représenta-
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tions dites injectives ol I’on peut identifier chaque état d’un modéle préférentiel & une valuation
unique. Ceci fut exploité dans le chapitre 3. Ainsi une question qui vient naturellement est la
suivante : existe-t-il une propriété logique, une regle, qui caractérise les relations préférentielles
admettant des représentations injectives ?7

Remarquons que Kraus, Lehmann et Magidor [49] ont noté qu’il y a des relations préféren-
tielles qui n’admettent pas de représentations injectives. Schlechta a donné une esquisse de
preuve de ce fait dans [104] et nous donnons une preuve in extenso de ce fait y compris dans
le cas infini dans la section 3.2.

Un résultat intéressant concernant les relations de conséquence qui admettent des représen-
tations injectives est dii & Freund [30]. Il prouve que, dans le cas fini, une relation préférentielle
kv admet une représentation injective si et seulement si elle satisfait la propriété suivante :

C(avp) C Cn(C(a) U C(B))

Nous appelons cette propriété W-DR (weak disjunctive rationality) car elle est plus faible
que DR qui dit justement

Clavf) S C(a) U C(B)

Malheureusement il y a une réelle différence entre le cas fini et le cas infini. En particulier
nous montrons que, dans le cas infini, la propriété W-DR ne caractérise pas l’existence de
représentations injectives au sens KLM, c’est-a-dire celles ou la relation entre les valuations est
un ordre strict qui est smooth. Néanmoins nous prouvons que cette propriété caractérise les
relations préférentielles qui admettent une représentation injective au sens MAK, c’est-a-dire
celle ou la seule propriété exigée pour la relation entre les mondes est le fait d’étre smooth.

Lorsque ’on analyse les preuves des théorémes de représentation pour les relations préféren-
tielles, rationnelles et disjonctives rationnelles dans [49, 55, 30] on remarque que la construction
de 'ordre dans les modeéles se fait en deux temps : d’abord on définit un ordre sur les for-
mules et ensuite & P’aide de cet ordre on batit ’ordre sur les états ou sur les valuations. Or
une question qui semble naturelle de se poser est la suivante : étant donnée une relation de
conséquence pv y-a-t-il une fagon canonique et directe de définir un ordre sur les valuations
pour obtenir une représentation 7 Nous pensons que la réponse est positive et que les résultats
dans ce chapitre sont en grande partie une justification de cela.

Pour définir un tel ordre on remarque d’abord que les seules valuations qui ont de 'information
sont les valuations dites normales, c’est-a-dire celles pour lesquelles il existe des formules dont
la valuation satisfait leurs conséquences non monmonotones. Plus précisément N est normal
s’il existe « tel que N | C(«). Nous proposons un ordre <. entre les valuations normales,
appelé 'ordre essentiel, qui est défini trés simplement :

M<. N ssi Va(NEC(a) =M a)

autrement dit M <. N si et seulement si la théorie classique de M, dénotée Th(M) (i.e.
Th(M) = {a: M |= a}), n’intersecte pas la théorie non monotone de N, dénotée T(M) (i.e.
T(M) ={a: MEC(a)}).

Nous prouvons que cette relation essentielle est en fait la plus générale qui représente une
relation de conséquence |~ lorsque cette derniére satisfait W-DR.

Pour préciser ces idées fixons une relation de conséquence p. Soit S ’ensemble de valuations
normales et soit < un ordre strict sur S qui a la propriété d’étre smooth, i.e. pour chaque
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formule o si M € mod(o) NS alors soit M est minimal dans mod(a) NS ou bien il existe un
N € mod(a)N S tel que N < M et N est minimal dans mod(a) N S. Avec ces données nous
dirons que (S, <) est une représentation standard de pv lorsque ’on a I’égalité suivante pour
toute formule a :

mod(C(a)) = min(mod(a) N S, <) (2.2)

et nous dirons aussi que dans ce cas < est un ordre standard représentant ). Nous faisons
la distinction entre un ordre standard représentant b et une relation standard <’ définie sur
S représentant fv. Dans ce dernier cas la seule chose que I'on exige de <’ est que 1’équation
2.2 soit satisfaite, mais on n’exige pas de propriétés particuliéres pour <’. Par exemple on
n’exige pas que <’ soit transitive ou qu’elle soit smooth. Notons qu’une relation standard qui
représente pv est un modéle MAK lorsqu’elle est smooth.

Notre premiere observation est que pour n’importe quelle relation standard < représentant
k on a <C<,.. Et le résultat central est que toute relation préférentielle satisfait W-DR si et
seulement si <. est une relation standard qui la représente et qui est smooth. En fait, dans le
cas fini, <. est un ordre mais dans le cas infini la relation <. n’est pas forcément transitive.

Nous prouvons ensuite que pour les relations disjonctives rationnelles (P4 DR), rationnelles
(P + RM) et rationnelles transitives (P + RT) la paire (5, <.) est en fait un modéle au sens
KLM (c’est-a-dire <. est un ordre smooth) qui les représente. Nous donnons des preuves
directes de ces résultats qui ont I’avantage de montrer certaines propriétés de la relation <.
Mais remarquons que l’on peut donner des preuves indirectes en utilisant des résultats de
Freund [30]. En effet, Freund définit une relation <g qui est un ordre standard qui représente
une relation disjonctive rationnelle. Et l’on peut prouver que pour les relations disjonctives
rationnelles la relation essentielle et ’ordre de Freund coincident, i.e. <.=<g.

Nous abordons aussi dans ce chapitre 1’étude de 1’unicité des représentations standards.
Plus précisément la question a laquelle nous voudrions répondre est la suivante : quelles
propriétés doit avoir une relation de conséquence b pour que dans le cas ou elle admet une
représentation standard elle soit unique ?

On sait que dans le cas fini toute représentation standard est unique. Dans le cas infini
nous avons dégagé une propriété topologique des représentations qui nous donnera 'unicité.

On considere la topologie suivante sur ’ensemble de valuations : les ouverts de base sont
les ensembles mod(a) pour toute formule a. Ensuite, pour une relation de conséquence donnée
on considere la topologie induite sur S, ’ensemble de valuations normales. On dira qu’une
relation < sur S est close vers le bas si pour chaque N € S l'ensemble {M € S: M < N} est
un fermé. On montre que la relation essentielle est close vers le bas et que si ’on prend une
relation standard < représentant pv, qui de plus est close vers le bas alors <=<.. Comme
corollaire on obtient que la relation essentielle est I’unique relation standard close vers le bas
représentant une relation préférentielle qui satisfait W-DR.

A T’aide de ces outils topologiques on peut prouver assez facilement que pour une relation
rationnelle ’ordre essentiel sera l’'unique ordre modulaire qui la représente.

Pour finir ce chapitre nous donnons quelques exemples et contre-exemples qui montrent
les problemes qui se présentent dans le cas infini. Notamment nous construisons une relation
préférentielle qui admet un modeéle injectif qui ne satisfait pas W-DR. Nous montrons aussi
Pexistence d’une relation préférentielle avec un modéle standard (en particulier W-DR est
satisfaite) mais la relation essentielle n’est pas transitive bien qu’elle la représente au sens de
I’équation 2.2.
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2.3.3 Panorama sur le chapitre 5

Nos principales motivations dans ce chapitre sont :

e Trouver quelles sont les propriétés logiques du raisonnement sur les explications.
e Etablir des liens entre I’'abduction et la déduction (a ’envers).

o Etabir des liens entre différents criteres de préférence pour sélectionner des explications
et des propriétés purement logiques de ’'abduction.

Pour ce faire nous adoptons, suivant Flach [29], le point de vue relationnel qui s’est déja
avéré trés puissant et fructueux dans I’étude de 'inférence non monotone. Nous considérons
donc des relations binaires entre des formules propositionnelles. Ces relations binaires seront
généralement notées > . Lorsque a > v nous dirons que a est bien expliqué par v ou bien que
~ est une bonne explication de a. Nous cherchons quelles sont les propriétés structurelles de
la relation > pour qu’elle soit une “bonne” relation d’explication. Notons que cette approche
a déja été suivie par Zadrozny [114], Flach [29], Cialdea et Pirri [66] et Aliseda [2]. Une des
différences essentielles entre notre approche et les leurs est que leurs justifications des postulats
de rationalité (des régles structurelles) est essentiellement intuitive par contre nous donnons
des outils logiques pour analyser le bon comportement des postulats.

Nous nous placons dans un cadre assez traditionnel du raisonnement abductif dans lequel
on assume qu’il y a une relation causale entre une observation que 'on veut expliquer et
ses explications. L’idée de base pour modéliser ’abduction est la déduction a l’envers plus
d’autres conditions. Plus précisément on suppose que ’on a une théorie de base ¥ a la lumiere
de laquelle on doit expliquer une observation a. Les candidats a étre des explications de o
seront les formules v consistantes avec X telles que X U {y} I a. En général tous les candidats
a étre des explications de « ne sont pas de bonnes explications. Parmi ces candidats les bonnes
explications seront justement les v telles que o &> 7.

A chaque relation d’explication on peut associer naturellement une relation de conséquence :
les conséquences d’une formule seront les conclusions de sa meilleure explication. Plus pré-
cisément supposons que D> est une relation d’explication. On lui associe la relation (v, de la
facon suivante

ap,, B si ZU{y}F B pour tout v tel que a > 7. (2.3)

Cette relation a déja été suggérée par Levesque [56] comme une nouvelle opération déductive
pouvant étre utile pour faire des “expériments” contrafactuels. Néanmoins la motivation pour
introduire cette définition vient de Lobo et Uzcitegui [65]. Ils définissent des relations assez
semblables & h,, pour étudier le raisonnement abductif. L’idée centrale dans la recherche
des régles structurelles des relations d’explication sera de considérer les liens entre > et
b, En particulier nous voulons que les régles satisfaites pour une relation > impliquent
un bon comportement de la relation fv,,. Par exemple quels postulats sur > permettront
que la relation de conséquence associée soit cumulative, préférentielle, disjonctive rationnelle,
rationnelle.

Cette approche justifiera d’une facon formelle la plupart des postulats introduits dans
d’autres approches et nous permettra de dégager des régles de coupure pour les relations
d’abduction. Ces régles de coupure sont en quelque sorte les regles duales de différentes regles
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de monotonie faible. Notamment nous introduisons les régles de coupure prudente explicative
(E-C-Cut), coupure rationnelle explicative (E-R-Cut) et coupure explicative(E-Cut) énoncées
par la suite ot la notation v by a signifie SU{y} + a:

(@anp)oy , Yola>d = 6Fs (]

E-C-Cut:
aly
E-R-Cut: (@AB) >y ;3 [apd&bts b
. aly
E-Cut: Koﬁl_ﬂlZl

By

Ces regles sont le pendant de la monotonie prudente, la monotonie rationnelle et de la mono-
tonie respectivement.

Dans la premiere partie de ce chapitre nous isolons des ensembles de postulats pour les
relations d’explication qui seront en correspondance avec la hiérarchie des relations de con-
séquence non monotone (v.g. cumulative, preférentielle, disjonctive rationnelle, rationnelle).
[llustrons ceci avec les regles correspondantes aux relations préférentielles. Supposons que >
satisfait la coupure prudente explicative (E-C-Cut) déja mentionnée plus ’équivalence logique
a gauche (LLE), la monotonie prudente explicative (E-CM), et la conjonction a droite (RA) ot
LLE;, E-CM et RA sont les régles suivantes :

Feaeord |, aby

LE;:
LLE, e
al>y ;v B
E-CM:
(@aAB) >y
RA: aby ;Y sy ;Y e L

a7y

Alors la relation v, associée 3 > sera préférentielle.

Réciproquement si I’on suppose que ’'on est en train de raisonner avec une relation de
conséquence p qui nous donne les conséquences normales d’une observation on peut définir
une relation d’explication D associée 4 pv en posant

aby ¥ yHsl &Cla) CCn(SU{}) (2.4)

On aura alors que la relation d’explication > a de bonnes propriétés si la relation pv est
adéquate, c’est-a-dire si elle satisfait

C(o) =[}{Cn (EU{}): Cla) S Cr(ZU {7})} (2:5)

Par exemple si pv est préférentielle et adéquate la relation > satisfera les régles LLE; +E-CM +
E-C-Cut + RA.
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Nous avons vu comment associer une relation de conséquence b, a une relation d’explication
> . Nous avons aussi vu comment associer une relation d’explication > 4 une relation
de conséquence . Or, une question qui semble naturelle est de savoir quand une relation
d’explication est de la forme >. Plus précisément lorsque nous partons de > et réalisons le
cheminement suivant :

b ~ l\'ab ~ D
est-ce que > =05 ?

En général cette égalité n’est pas vraie. Lorsque cela arrive on dira que la relation
d’explication D est causale. D’apres les définitions ceci peut simplement s’exprimer de la
facon suivante :

ap v iff Cop(a) CCnr(EZUx) (2.6)

Un corollaire assez immédiat de la causalité est que l'on peut obtenir des théorémes de
représentation a la KLM pour les relations d’explication qui satisfont cette propriété.

Nous avons réussi a caractériser la causalité. Dans le cas fini par deux simples regles : la
conjonction & droite (RA), déja mentionnée plus la régle d’affaiblissement a droite (E-RW)

E-RW: aby ;abd

ap (yVi)
En contraste dans le cas infini la causalité est caractérisée par RA plus une propriété de na-
ture un peu plus complexe. Nous appelons cette propriété I’axiome de causalité. En termes
topologiques cet axiome dit que si la collection de bonnes explications de a est dense au dessous
de v (dans le réticulé des formules) alors v est une bonne explication de a.

Une des facons les plus naturelles de définir une relation d’explication est de supposer que
Pon dispose d’une relation de préférence < entre les formules. Alors les bonnes explications
d’une observation o seront les éléments <-minimaux de I’ensemble des candidats a étre des
explications de a. Rappelons que certains types d’ordre entre les formules caractérisent cer-
taines classes de relations de conséquence. Par exemple des ordres possibilistes [22] et des
ordres d’expectatives [37] caractérisent les relations rationnelles, les ordres préférentiels [30]
caractérisent les relations préférentielles. Ainsi on peut se demander quels types “d’ordre”
caractériseront les différentes classes de relations d’explications que nous avons introduites.
L’étude de cette question est un des apports de ce chapitre. En fait nous réussissons a prou-
ver des théoremes de représentation en termes d’ordres pour certaines classes de relations
d’explication. Le corollaire de ces résultats est que dans les propriétés structurelles d’une
relation d’explication on peut trouver implicitement ’ordre qui sert a choisir les bonnes expli-
cations. Ceci est & comparer avec I’approche de Cialdea-Mayer et Pirri [66] ou elles utilisent
un ordre explicite pour présenter les propriétés structurelles d’une relation d’explication.

Les idées que nous utilisons dans cette étude s’inspirent de celles utilisées dans le chapitre
4. Deux choses seront importantes :

e Savoir quelles sont les formules qui jouent le role des valuations normales.

e Définir un ordre (ou une relation) directement a partir de &>, qui joue le réle de la relation
essentielle associée a une relation de conséquence.
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Concernant le premier point nous avons le concept de formules admissibles : ce seront celles
qui sont une bonne explication de quelque formule. Plus precisément v est admissible ssi il
existe o telle que o > 7.

Concernant le deuxieme point on définit une relation <. entre les formules de la fagon
suivante : si v est admissible et é n’est pas admissible alors on pose v <. d; si v et § sont
admissibles alors on pose v <. § ssi Cn(ZU{y}) N {B:6> 6} = 0. Notons ’analogie entre
cette définition et celle de <. Ici ’ensemble Cn(X U {v}) joue le réle de Th(v) et ’ensemble
{B : B> 6} joue le role de T'(0) (la théorie non monotone de §).

A Taide de ces outils nous prouvons une serie de théoremes de représentation du type
suivant :

Pour une relation d’explication > sont équivalentes :
P q

(i) La relation > satisfait LLE; + E-CM 4 E-C-Cut + RA 4 E-R-Cut + E-Cong.

(i) Il existe une relation de préférence modulaire et smooth < satisfaisant la “continuation
vers le haut™! telle que pour tout o on a

a>y ssi vy € min(Ezpla(a), <)

Le sens (ii)=>(i) est une simple vérification. Pour la réciproque on démontre que <. a les
propriétés requises.

2.3.4 Panorama sur le chapitre 6

Nous avons déja évoqué les motivations pour étudier des opérateurs de changement définis
d’une maniere syntaxique (et en fait trés dépendants de la représentation de la connaissance).
Elles résident principalement dans le but de diminuer la complexité algorithmique des calculs
sous-jacents a la définition des opérateurs.

Les idées que nous manipulons ici sont trés simples et elles remontent d’une part aux
travaux de Fagin et al. [28, 27], Ginsberg [40] et Nebel [79]. Quand on veut réviser une base B
(non nécessairement close par déduction classique) par une nouvelle information ¢ on calcule
I’ensemble M des sous-ensembles de B maxiconsistants avec ¢ et le résultat de la révision sera
alors

[ Cn(X)u{g}

XeM

Nous allons faire quelques variations sur cette idée qui consisteront essentiellement dans
les points suivants :

o Affaiblir la logique (l'opérateur C'n). La seule régle d’inférence que l’on considére est le
modus ponens mais on n’a pas d’axiomes logiques. Ainsi par exemple on pourra inférer
B de o et @ — B mais de ce méme ensemble on ne pourra pas inférer -3 — —a.

e Restreindre la nature des objets que 'on représente. On ne considérera que des for-
mules (régles) du type Iy Ala A---Al, — l,4; ol les [; sont des littéraux, i.e. des
variables propositionnelles ou des négations des variables propositionnelles. Ces regles

Cette propriété nous dit que Vv,7',6 (yWe L & v 4 & §<y =48 <+)
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seront écrites (suivant la tradition de la programmation logique) l1,ls,...,l, = l,41.
Lorsque n = 0, c’est-a-dire la régle n’a pas de prémisses la formule se réduit a un littéral
(un fait). Nous définissons ’ensemble de conséquences d’un ensemble P des régles comme
le plus petit ensemble de littéraux contenant les littéraux (les faits) de P et qui est clos
par modus ponens par rapport aux régles de P. Cet ensemble sera dénoté Cy(P).

Maintenant nous fixons un ensemble de regles P qui sera considéré comme la théorie de
base pour notre raisonnement. On suppose que I’on a un ensemble de faits (ou plutét de multi-
ensembles de faits) qui sont notre état actuel de croyances (les multi-ensembles correspondront
a une disjonction). Ce que nous voulons faire est de changer (ou de mettre a jour) 1’état actuel
des connaissances par une nouvelle information dont la nature est trés simple : un ensemble
de faits. Dans le cas ol l'information actuelle est un simple ensemble de faits L le résultat de
la mise & jour par L' sera? le multi-ensemble

(Lyul',...,L,uL"

ou {Ly,...,L,} est ’ensemble des sous-ensembles de L qui sont maximaux et consistants avec
P UL’ (on ne trouve pas deux littéraux opposés dans C.(L; U P U L')). Ce résultat sera noté
L op L' et nous appelerons op opérateur d’actualisation factuelle.

Dans le cas oti I'information actuelle F est un multi-ensemble (L4,..., L,) nous définissons
F op L' additivement, i.e.

FoplLl = (L1 op L,) U (L2 op L') ---u4 (Ln op L')
ou U est la réunion de multi-ensembles®.

Afin d’analyser les propriétés de rationalité de ce type d’opérateur nous devons donner un
sens au multi-ensembles. Nous considérerons ses conséquences (toujours par rapport a un P
fixé). Pour cela nous voyons un multi-ensemble comme une disjonction. Plus précisément si
F ={Li,...,Ly,) nous posons

Cr(F)= () Cr(Li U P)

i=1

Par ailleurs nous relativisons les postulats AGM pour la révision et ceux de Katsuno et
Mendelzon pour la mise i jour au cadre syntaxique restreint dans lequel nous travaillons.
Nous prouvons que ’opérateur op est en fait un opérateur de mise a jour syntaxique. Ici nous
insistons sur le fait que Fop L’ est bien un multi-ensemble (L,..., L,) et non ses conséquences
Cg({L1,...,Lyn)). Faire cette distinction est la clé du bon comportement de ’opérateur. Par
contre au niveau des postulats le role de Cy,. est crucial car les postulats sont énoncés justement
par rapport a la notion de conséquence.

Nous donnons un algorithme pour calculer op. Mais a nouveau ici nous ne pouvons échap-
per a la NP-complétude car nous devons, dans une étape de 'algorithme, calculer un ensemble
minimal de couverture.

Une autre idée pour définir des opérateurs de changement consiste a hiérarchiser ’information
de la base actuelle P. Mais d’ou peut-on extraire la hiérarchie ? Nous pensons que la représen-
tation de l'information de B a implicitement une hiérarchie. En effet on peut voir la base P

2Ceci est approximatif, pour la définition précise voir la section 6.2.1.
3Ceci est 4 nouveau approximatif, voir la section 6.2.1 pour la définition précise.
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comme un ensemble d’informations conditionnelles. Ceci permettra de définir une hiérarchie
de la base qui s’inspire directement du calcul de la cléture rationnelle d’une base conditionnelle
(voir [55]). Ce qui est important ici est que dii & la nature des objets que I'on manipule on
peut faire ce calcul en temps polynomial.

La hiérarchie associée a P est simplement Py, P;,...P, ou Py = P et P,y contient les
éléments de P; qui sont exceptionnels au sens de Lehmann et Magidor [55]. L’idée est que plus
I’indice ¢ de la hiérarchie est grand plus les objets qui sont dans les premisses de P; sont rares.

Nous définissons la révision rangée d’une base P par une base P’, noté P o.; P’ comme
P, U P’ ol i est le premier indice tel que Cg(P; U P') est consistant.

Nous prouvons que cet opérateur a de bonnes propriétés structurelles. Notamment il est
un opérateur de révision syntaxique. En outre cet opérateur est calculatoirement traitable.
Mais nous montrons aussi quelques exemples ou I’opérateur o,; exclut plus de formules qu’on
ne le voudrait.

Pour essayer de réparer ce “mauvais comportement” nous étudions trois variations na-
turelles de o,;. Ces opérateurs ont un mauvais comportement au niveau calculatoire (calcul
d’ensemble minimal de couverture sous-jacent). Concernant leur rationalité seulement un
d’entre eux est un opérateur de révision syntaxique : il est défini a I'aide de fonctions de
sélection (“maxichoice”) particuliéres.

Nous terminons ce chapitre en montrant un exemple d’une telle fonction de sélection.

2.3.5 Panorama sur le chapitre 7

Dans ce chapitre nous nous intéressons a une axiomatisation des opérateurs de fusion. L’idée
intuitive que nous avons des opérateurs de fusion est la suivante : en entrée on a une “collec-
tion” d’informations provenant de sources distinctes, en sortie on doit avoir une information
cohérente qui soit le plus en accord avec la “collection” d’informations selon certains critéres
qui peuvent étre différents selon les cas : par exemple minimiser ’'insatisfaction individuelle
ou minimiser I'insatisfaction globale.

Les premieres tentatives de fusionner l'information viennent de la communauté de bases
de données mais avec un oubli des sources d’information. Par exemple on réunit toutes les
informations et comme résultat on donne l’intersection de maxiconsistants. Plus récemment
Revesz [99, 100], Lin and Mendelzon [62, 61] et Liberatore et Schaerf [58, 59] proposent des
postulats qui essayent de capturer 1’idée de fusion sans 1’oubli des sources d’information. Revesz
a une notion d’opérateurs de model fitting qui correspond a une fusion avec des contraintes
d’intégrité. Lin et Mendelzon proposent des opérateurs de majorité. A la différence de ces deux
approches Liberatore et Schaerf proposent des opérateurs qui prennent en compte seulement
deux sources d’information. Leurs opérateurs se définissent de la facon suivante : la fusion
de ¢ et 1 sera (¢ * ¥)v(¢¥ * ¢) ol * est un opérateur de révision avec certaines propriétés.
En particulier le résultat de fusionner ¢ et ¢ a la Liberatore et Schaerf sera une formule qui
implique toujours ¢v).

Nous voyons cette derniere restriction comme une limitation car dans beaucoup de situa-
tions il sera raisonnable de trouver que le résultat de la fusion n’implique pas cette disjonction
d’informations. Par exemple on peut imaginer que ’on est en train de raisonner sur la hauteur
d’un avion en vol. Un observateur ¢ croit le voir & 1 Km au dessus du sol; un autre observateur
¥ croit le voir 2 3 Km au dessus du sol. Dans ce cas il pourrait étre raisonnable de penser que
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I’avion se trouve a 2 Km au dessus du sol ce qui n’implique pas ¢vi).

Nous proposons une axiomatique pour la fusion pure. En particulier nous n’imposons pas
ce genre de contraintes (d’intégrité) sur le résultat. Bien que cela puisse étre vu comme une
faiblesse de notre approche il n’est pas difficile d’imaginer comment généraliser notre approche
au cas ol ’on doit satisfaire des contraintes d’intégrité.

On peut dire que malgré ’absence de contraintes d’intégrité notre travail continue et étend
Papproche de Revesz. En particulier nous introduisons trois postulats qui semblent jouer un
réle important pour pouvoir étudier la nature des opérateurs de fusion. D’abord un postulat
d’indépendance de la syntaxe qui tient compte de I’origine des informations; ensuite un postulat
d’équité et finalement un postulat de (faible) indépendance de la majorité.

Pour avoir une idée plus claire de nos postulats nous devons préciser un petit peu plus
la nature des objets que nous manipulons. Nous considérons que les opérateurs de fusion
agissent sur des ensembles de connaissances qui sont en fait des multi-ensembles de formules,
cela correspond aux sources d’information. Le fait de considérer un multi-ensemble est trés
important car il se pourrait que plusieurs sources d’information véhiculent le méme contenu et
alors le résultat d’une fusion peut sensiblement changer selon le nombre de ces sources.

Nos opérateurs de fusion agissent donc sur des ensembles de connaissances et en résultat
ils nous fournissent une formule.

On dira que deux ensembles de connaisances E; et F; sont équivalents, E} <> Ej, ssi il
existe une bijection f de E,; sur E- telle que - f(¢) & ¢. En particulier le nombre de “sources
d’information” de F; et E5 est le méme.

Les postulats de base d’un opérateur A de fusion sont les suivants :

(A1) A(F) est consistant.

(A2) Si A E est consistant , alors A(E) = AFE
(A3) Si E) +» Ey, alors - A(E,) 4> A(E»R)

(Ad4) If ¢ A @' n’est pas consistant, alors A(¢ U ¢') If ¢

(A5) A(E) AA(E) - A(E; U Ey)

(A6) Si A(E;) A A(E3) est consistant, alors A(E; U E3) - A(E1) A A(E3)

Al, A2 et A3 sont assez intuitifs. A3 est le postulat d’indépendence de la syntaxe. A4 est
le postulat d’équité : I’opérateur ne doit pas privilégier une opinion par rapport a une autre
lorsque ces opinions se trouvent en opposition. A5 et A6 ensemble expriment que si deux
sous-groupes sont d’accord apres fusion alors le résultat de la fusion globale est justement ce
en quoi les deux sous-groupes sont d’accord.

Nous distinguons ensuite les opérateurs majoritaires des opérateurs qui sont insensibles
(faiblement) a la majorité.

Pour les majoritaires le postulat est évident :
(M7) Vo¢3n A(EUQP™)F ¢

Pour les insensibles a la majorité il est moins évident car ’axiome qui pourrait paraitre
naturel
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(AT") VéVn A(EUS") = A(EU )

est en fait inconsistant avec les postulats de base.

Nous proposons une forme affaiblie :

(A7) VoI o ¥ Vr A(UY™) =A(sUY)

Ce postulat nous dit que dans beaucoup des cas le résultat ne dépend pas de la fréquence
d’une opinion.

On montre facilement qu’en présence du postulat d’équité A7 et M7 ne peuvent é&tre sat-
isfaits en méme temps.

Nous prouvons que les postulats de base plus M7 est un ensemble de postulats consistant.
De méme que les postulats de base plus A7 est un ensemble de postulats consistant. Pour ce
faire nous construisons des opérateurs qui ressemblent a certaines fonctions de la théorie de
la décision multicritére mais dans un cadre complétement qualitatif (en fait sémantique). En
particulier pour le deuxieme des résultats nous construisons un opérateur qui est une sorte de
mazimin géneralisé.

Une observation intéressante est la traduction de ces postulats en termes sémantiques.
Cela donne une représentation en termes d’ordres qui malgré sa trivialité a le mérite de faire
apparaitre de maniere claire des analogies entre cette approche et la théorie du choix social.
Etablir des liens de fagon précise entre ces deux théories est une de nos tiches en perspective.



Chapitre 3

Beyond rational monotony: some
strong non-Horn rules for
nonmonotonic inference relations

Lehmann, Magidor and others have investigated the effects of adding the non-Horn rule of rational
monotony to the rules for preferential inference in nonmonotonic reasoning. In particular, they have
shown that every inference relation satisfying those rules is generated by some ranked preferential model.

We explore the effects of adding a number of other non-Horn rules that are stronger than or in-
comparable with rational monotony, but which are still weaker than plain monotony. Distinguished
among these is a rule of determinacy preservation, equivalent to one of rational transitivity, for which
we establish a representation theorem in terms of quasi-linear preferential models. An important tool
in the proof of the representation theorem is the following purely semantic result, implicit in work of
Freund, but here established by a more direct argument: every ranked preferential model generates the
same inference relation as some ranked preferential model that is collapsed, in the sense of being both
injective and such that each of its states is minimal for some formula.

We also consider certain other non-Horn rules which are incomparable with monotony but are
implied by conditional excluded middle, and establish a representation result for a central one among
them, which we call fragmented disjunction, equivalent to fragmented conjunction, in terms of almost
linear preferential models.

Finally, we consider briefly some curious Horn rules beyond the preferential ones but weaker than
monotony, notably those which we call conjunctive insistence and n-monotony.

Keywords: nonmonotonic reasoning, rational monotony, preferential models.

3.1 Introduction and Overview

The postulates for preferential inference, as formulated by Kraus, Lehmann and Magidor [49]
are intended to gather together some properties for inference relations that may be regarded
as in principle desirable, even when the inference relations are not monotonic. They are all
Horn conditions, that is of the form: if such and such pairs are in the relation, so too is such
another pair. Lehmann and Magidor [52] and [55] have also studied the effects of adding to
the preferential postulates a further rule, non-Horn in character, called rational monotony.
As usually formulated with a negative premise, it is: if a3 and not aj—vy, then anryppB.
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Equivalently, with positive premises but disjunctive conclusion, it is: if e~ then either arypf
or apo—y. In the two papers mentioned, it is shown that every inference relation satisfying the
preferential rules is determined by some model of a certain kind, also called preferential, and
that every inference relation satisfying in addition rational monotony is determined by some
ranked preferential model.

It is known that rational monotony implies certain other non-Horn conditions of interest,
notably disjunctive rationality, which in turn implies negation rationality - see for example the
brief accounts in Makinson [69] and Lehmann and Magidor [55], or the more extensive work
in Freund [30]} and Freund and Lehmann [32] which provide a semantic characterization of
inference relations satisfying these two rules. It is natural to ask whether there are any other
rules of interest, stronger than or incomparable with rational monotony, but still weaker than
plain monotony.

Makinson [69] drew attention to one such rule, called determinacy preservation, showing
that it lies between monotony and rational monotony, but without investigating it semanti-
cally. Bezzazi and Pino Pérez [9] began a semantic investigation of two other rules, rational
transitivity and rational contraposition. In this paper we study these and related conditions
more systematically, establishing interrelations and providing semantic characterizations.

It turns out, as we shall show, that given the preferential rules, rational transitivity and
determinacy preservation are equivalent, and are in turn equivalent to the combined force
of rational monotony with rational contraposition, as also to the combined force of rational
monotony with another rule that we shall consider. Rational transitivity alias determinacy
preservation thus appears to occupy a rather pivotal position in this region. We show that
any inference relation satisfying that rule in addition to preferential ones, is determined by a
preferential model that is in a certain sense quasi-linear. The proof makes use of Lehmann
and Magidor’s representation theorem for rational monotony, but also of an important tool
of a purely semantic nature. This is the result, implicit in Freund [30], that every ranked
preferential model determines the same inference relation as some ranked preferential model
that is collapsed, in the sense of being both injective and such that each state is minimal for
some formula.

We also consider certain non-Horn rules that are not implied by monotony, and which for
this reason are perhaps intuitively less interesting, but which are nevertheless weaker than the
well-known rule of conditional excluded middle of Stalnaker [107], also called full determinacyin
Makinson [69]: if not a8 then ajv—3. We isolate two such rules of particular formal interest,
which we call disjunction fragmentation and conjunction fragmentation. We prove that they
are equivalent and then we establish a representation theorem for preferential relations satis-
fying disjunction fragmentation (conjunction fragmentation), using the same semantic tool as
for rational transitivity above.

All of the rules so far mentioned as potential additions to those for preferential inference, are
non-Horn. Curiously, Horn rules appear to be less plentiful as potential additions. However in
a final section we identify some such rules, weaker than monotony but not implied by rational
monotony, represent some of them semantically, and raise a number of open questions.

We presume some familiarity with the main lines of at least one of Kraus, Lehmann and
Magidor [49], Lehmann and Magidor [55], Makinson [69].



3.2. Background 27

3.2 Background

In this section we recall some basic definitions and results from Kraus, Lehmann and Magidor
[49] and Lehman and Magidor [55], which will be used in the paper.

We consider formulae of classical propositional calculus built over a set of elementary
formulae denoted Var plus two constants T and L (the formulae true and false respectively).
Let £ be the set of formulae. If Var is finite we will say that the language £ is finite. Let
U be the set of valuations (or worlds), i.e. functions v : Var U {T, L} — {0, 1} such that
v(T) =1 and v(L) = 0. We use lower case letters of the Greek alphabet to denote formulae,
and the letters v, v}, vg,... to denote worlds. As usual, - o means that « is a tautology and
v = a means that v satisfies o where compound formulae are evaluated using the usual truth-
functional rules. We consider certain binary relations between formulae. These relations will
be called inference relations and will be written .

Definition 3.1 A relation |~ is said to be preferential iff the following rules hold

opB Faey
REF — LLE
apa T8
o FB oy apf aby
RW AND ———
apy apBry
afy Bhoy apfB  aby
OR — ™M ——
avfipy anyhB

These rules are known as the rules of the system P. The abbreviations above are read as follows:
REF -reflexivity, LLE -left logical equivalence, RW -right weakening, CM -cautious monotony.
AND and OR are self-ezplanatory.

A relation pv is said to be rational iff it is preferential and the following rule (rational

monotony) holds
aff ahy

anypB

RM

Definition 3.2 A structure M is defined by a triple (S,1,<) where S is a set (of arbitrary
items, called states), < is a strict order (i.e. transitive and irreflezive) on S and +: S — U
is a total function (the interpretation function). If the function ¢ is injective the structure is
said also to be injective.

Let M = (S, 1, <) be a structure. We adopt the following notations: if T' C S, then min(7T)
is the set of all minimal elements of T’ with respect to <, i.e. min(T) = {t € T : =3¢/ (t' € T and t' < t)};
modpm(a) = {s € S :1(s) E a}; minp(a) denotes min(mod pm(a)).

Definition 3.3 A structure M = (S, 1, <) is said to be a preferential model iff for any formula
o the following property (smoothness) holds

Vs € modam(a) \ minp(a) 3s' € minpm(a) s’ <s
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A structure M = (S,1, <) is said to be a ranked model iff it is a preferential model and
there ezists a strict linear order (2, <) and a function r : S — Q such that for any s,s' € S,
s < s iff r(s) < r(s).

Definition 3.4 Let M = (S,1,<) be a preferential model. The inference relation g is

defined by the following
ap B & minp(a) C moda(B)

The following (representation) theorem is due to Kraus, Lehmann and Magidor [49].

Theorem 3.5 | is a preferential relation iff there is a preferential model M = (S,1, <) such
that ;opq = b, If the language is finite then S can be chosen finite.

The following (representation) theorem is due to Lehmann and Magidor [55].

Theorem 3.6 |~ is a rational relation iff there is a ranked model M = (S,1, <) such that
boam = v If the language is finite then S can be chosen finite.

Proposition 3.7 If |~ is a preferential relation then the following rules hold

anBhy anBhy app
S —/ aT ———
apfB =y apy
If v is a rational relation then the following rules hold
avify ably afB anyhB
DR —— NR —m———
By anypB

For the proofs see [49] for S and CUT and see [69] or [55] for DR and NR. The abbreviations
above are read as follows: S -Shoham rule (this abbreviation is taken from [49]; note that this
rule corresponds to the hard half of the deduction theorem for classical +), DR -disjunctive
rationality, NR -negation rationality. The term CUT is self-explanatory, but it should be noted
that this form of cut, which plays an important role in nonmonotonic logic, is weaker than the
forms of cut usually studied in Gentzen-style formulations of classical and intuitionistic logic.
The latter imply transitivity of the inference relation; the former does not.

Notation: If n is a natural number, 7 will denote the set {0, 1, ..., n} linearly ordered with the
natural order <. If A is a set, the cardinality of A will be denoted by |A]. When M = (S, ¢, <)
is a preferential model, € S and o a formula, if there is no ambiguity we shall write ¢ | a,
mod(a) and min(a) instead of «(v) = @, moda(a) and min (@) respectively.

Observation 3.8 It is known that there are preferential models whose inference relation is
not generated by any injective one. A simple finite example was given en passant by Krauss,
Lehmann and Magidor at the end of section 5.2 of [{9]. The language is assumed to have
just two elementary sentences p,q. The states are s; (0 < 1 < 3) with sp < s2 and 51 < s3,
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and s = pa—gq, s1 | —pa—q, whilst 55,53 = paq. Kraus, Lehmann and Magidor leave the
verification of the ezample as an exercise; a verification is sketched by Schlechta in section 1
of [104]. Because of its relation with the theme of this paper, we give the verification in full,
using moreover an infinite language so as to make it clear that the example is not an artifact
of a limited number of elementary sentences.

Let p; (j € J) be all the other elementary sentences and make them behave just like p, i.e.
put s; = p; iff si = p. Let |~ the inference relation determined by this preferential model. Then
clearly we have the following: (1) (paq)v—gho—g, whilst (2) (paq)v(pa—q)—q (witness s3) and
(3) (pAg)v(—pA—q)lt—q (witness s3). Moreover (4) pa—p;vL. We claim that any injective
preferential model whose inference relation agrees with this one on (1) and (4), disagrees with
it on (2) or (3).

Consider any injective preferential model M = (S,1,<) and suppose that (1) and () hold.
In the case that paghvL clearly we have (paq)v(pa—gq)r—gq and also (pag)v(—pa—g)—g, so
we may suppose without loss of generality that paqltl. Then there is a state s € S with
s | paq so s = (pag)v—q. By (1) s € min((paq)v—q) so there isat € S witht < s and
t € min((prg)v—q) so by (1) again t = —~q. Now either t = p ort |= —p. Consider the
latter; the argument for the former is similar. Suppose for reductio that (3) holds, i.e. there
isu € S with u € min((paq)v(—pa—q)) end u |= q. Then u |= p. Moreover for all j € J, we
have u [= pj, for otherwise there is ¢ € J such that u |= pa—p; so there is uw with v’ < u and
u’ € min(pa—p;) contradicting (4). Similarly s = p; for all j € J. Since s,u |= pagap; for all
j € J we have 1(s) = t(u) so by injectivity s = u. Thus s € min((pag)v(-pa—q)), contradicting
t<sandt k= —-prgq.

3.3 Some strong non-Horn conditions

Rational monotony of course is a restricted form of, and thus implied by, plain monotony (M):
o8
anypB

M

One of our purposes in this paper is to examine some interesting non-Horn conditions,
stronger than rational monotony (or in some cases, independent of it) but still weaker than
monotony. In other words, we wish to investigate the enclosed area of the following diagram

Y

¢ RM

Four rules that arise in this connection are determinacy preservation, rational transitivity,
rational contraposition, and weak determinacy.
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Determinacy preservation (DP), briefly considered by Makinson [69], is the rule
o anyh-p
anypp

DP

This rule evidently is a weak form of monotony. It can also seen as a weak form of Stalnaker’s
rule [107] of conditional excluded middle (if ¢}te) then ¢pv): a consequence of a formula is
either conserved when we add a new hypothesis or we get the negation of this consequence.

Rational transitivity (RT), introduced by Bezzazi and Pino Pérez [9], is the rule
apf By apby
aby

Obviously this rule is a weak form of transitivity. The intuition behind this rule is the following:
when the premises of transitivity hold we get the usual conclusion except when its ‘opposite’
holds. Note that this rule is also a weak form of conditional excluded middle.

RT

Rational contraposition (RC), also introduced by Bezzazi and Pino Pérez [9], is the rule
apf Bhra

Obviously this rule is a weak form of contraposition. The intuition behind this rule is the
following: when the premise of contraposition holds we get the usual conclusion except when
its ‘opposite’ holds. This rule is again a weak form of conditional excluded middle.

RC

Weak determinacy (WD), formulated by Michael Freund in correspondence with the au-
thors, is the rule
Tha alts

afp

This rule says that any formula a that is ‘exceptional’ in the sense of Lehmann and Magidor
[55], i.e. such that Th—e, is complete in the sense that for every formula, either it or its
negation is a consequence of the exceptional formula. Given the preferential rules, this is a
special case of both monotony and conditional excluded middle.

wD

Definition 3.9 A relation |~ is said to be determinacy preserving iff it is preferential and the
rule DP holds.

A relation v is said to be rational transitive iff it is preferential and the rule RT holds.

In this section we compare the strength of the rules DP, RT, RC, WD with each other as
well as RM on the lower side and M on the upper side. The general picture turns out as follows:

Proposition 3.10 Given the preferential rules P, the rules DP and RT are equivalent, and
are itmplied by monotony. They are also equivalent to the pair { RM, RC} and also to the pair
{RM, WD}. Moreover, given P, RC implies both WD and NR. However given P, none of the
following implications hold: RM to WD, RC to DR, WD to NR.
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Recalling from [69] that M quite trivially implies DP but not conversely, and that RM
implies DR which implies NR but neither conversely, proposition 3.10 gives us the following
diagram, where one condition implies another, given P, iff one can follow arrows from the
former to the latter.

M

{ DP = RT = {RM,RC} = {RM, WD}

Zil/ o

This proposition suggests a central role for DP alias RT. We verify the components of the
proposition separately. The positive parts are first proven syntactically, the negative parts are
then established semantically.

Observation 3.11 P+ RT & P+ DP

Proof (=) Suppose apy and anfi—y. We want to show anfiy. By preferentiality,
anfpa. Thus we have anfiva, abvy and anBlt—~y. So by RT anfivy as desired.

(<) Suppose ap-(, By and afb—y. We want to show abvy. Now, anfpi—y for otherwise
since a3 we would have by cut that ap-—y contrary to supposition. Hence since Sy we have
by DP anfvy, and so since af~( we have by cut that alvy as desired. i

Observation 3.12 P+ RT = RM. That is, a rational transitive relation is indeed a rational
relation.

Proof This is a corollary of observation 3.11 and the fact that P+ DP = RM proven in [69].
Here we give a direct proof. Assume opf and app—~y. We will show anyhB. First we show
anypl—B. Suppose that it is not true, i.e. anyp—f. Then, by S, apy — —B. Since apf,
by AND and RW we get apv—y, a contradiction. Second, we have anypo because of REF and
RW. Finally, since anypa, aB and anyll—f, we conclude using RT. 1

Observation 3.13 P+ DP = RC

Proof Suppose apfB; we want to show that either —fh—a or —fpa.

Case 1: Suppose T S. Now by preferentiality from apf we have Thra — 3. Hence, applying
RM (which we noted follows from DP) we have Ta—fpa — B so by preferentiality =fh—a as
desired.

Case 2: Suppose ThB. Then by preferentiality TH—f — —a so by the hypothesis DP either
TA-Bh—=f = —a or Ta=fph—(—6 — —a).

Subcase 2.1: Suppose Ta—fShr—f — —a. Then by preferentiality —~fi—o as desired.
Subcase 2.1: Suppose Ta=fBph—(—8 — —a). Then by preferentiality ~Gpa as desired.
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Observation 3.14 P+ RC= WD

Proof Let v be an inference relation satisfying the preferential rules, and suppose that it fails
WD.

Since |~ fails WD, there are a, § with Th—a, aptf, alt—B. Since Tr—a we have by
preferential rules that Th—av—(3, and so combining this with Th—a again we have by CM
that ~av—ppr—o.

On the other hand, since aft3 we have by preferential rules that aptanfB and so =—ap—(—av-p3).
Also since alt—( we have by preferentiality that afft—av—3 and so ——apt—-av-p.

Putting these three facts together we see that RC fails. 1
Observation 3.15 P+ RM+ WD = DP

Proof Suppose apf and anyhe—f; we want to show arypp. If Th—(any) then the second
hypothesis with WD give us what we want. On the other hand, if TH—(any) then noting from
the first hypothesis that Tha — 3 we get by RM that Ta(any)ra — B so by preferential rules,
anypB as desired. .

Observation 3.16 P4+ RM+ RC = DP

Proof This follows immediately from observations 3.14 and 3.15. For another verification,
suppose that apvf. We want to show that either anyhf or anyh—B. Now either ap—y or

apb—y.
Case 1: Suppose alt—y. Then by the hypothesis RM we have anyhf as desired.

Case 2: Suppose afv—y. Then by preferentiality (rule S) Tha — —v i.e. Th—(aay) so by
NR which holds by proposition 3.7 either Br—(any) or =3h—(any), and in each of these two
subcases RC tells us that either anypf or anyph—p3, as desired. 1

Observation 3.17 P+ RC= NR

Proof We have already that P+ RC implies WD (observation 3.14). So it will be enough to
prove the following two facts:

Fact 1. P+ RC = RC*, where RC" is the following rule
anfhy an—y B
an—yp-p

Fact 2. P+ RCT + WD = NR

Proof of fact 1: Suppose RC holds, and suppose anfp~y. Then by preferential rules, arfryv-a,
so by RC either —~(yv—a)p—(anf) or =(yv-a)panf. In the former case we have by preferential
rules an—ypav—f, so by preferential rules again an—yh—f as desired. In the latter case we
have by preferential rules an—ypanf so an~yhf as desired.
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Proof of fact 2: Suppose RCt and WD hold, and suppose a~3; we want to show that either
anypB or an—ypfB. Since apvS we have by preferential rules that Th—-avB3. Hence by WD
either ~(mavfB)py or ~(—avf)h—y, ie. either an—Shvy or an—Bh—y.

Case 1. Suppose an—f~. Then by RCT, either an—ypfB or an—~yh—p. In the former subcase
we are done. In the latter subcase by preferential rules (rule S) apoyv—p which combined with
apf gives apy. But this again combined with a3 gives, by CM, aayh3 and in this subcase
we are also done.

Case 2. Suppose ar—Br—y. Then by RC*, either anyB or aryh—fB. In the former subcase
we are done. In the latter subcase by preferential rules we have a3 — —y which combined
with al~f gives again by preferential rules ajv—y. From this, we conclude as above using CM
that an—yphG and we are also done. 1

Given the above positive parts of proposition 3.10, it suffices to show the following negative
ones: P+ RM #A WD, P+ RC # DR, P+ WD # NR.

Observation 3.18 Let M = (S,1, <) be any preferential model with S = {so, s1, $2,83}, < =
{(s0, 52), (51,53)} and 1(sz) = 1(s3). Then popq satisfies RC.

Proof Assume apbf and —fh—a. We want to show —fha. It will be enough to see that
mod(a) = S. Note that min(—~83) N mod(a) # @ because ~Bl—a. But neither so nor s; can be
in min(—8)Nmod(a) for otherwise as sy and s; are minimals we would have at 3 contradicting
our assumption af~fB. So, either s, or s3 is in min(—f3) N mod(c), so since v(sz) = 1(s3) we
have both s3, s3 € mod(—~B)Nmod(a). This and ap~B imply by smoothness that so, s; € min(c).
Thus mod(a) = S, as desired. .

Note that the hypothesis :(s;) = i(s3) is necessary in this observation. We can easily
find a preferential model M = (S,1, <) with S = {so, 51, 52, 53}, < = {(s0, 52), (51,53)} and
1(s2) # 1(s3) which does not satisfy RC.

Observation 3.19 P+ RC# DR

Proof Consider a model as in the previous observation with 1(sp) = t(s3) = {p, ¢}, 1(s0) =
{p,r}, 1(s1) = {q,r} (we give the valuations as for a Herbrand model, that is identifying the
subset of variables with its characteristic function). Graphically

St p,q,Te = ® S53: p,q,7Tr

S0 - p,q,Te ® 51: 7p,q,T

By observation 3.18 RC holds in M but it is clear that plr (witness s3), qhtr (witness s;) and
pvghr so DR fails. 5

Observation 3.20 P+ RM # WD
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Proof Let L be the set of all formulae built from the elementary formulae p and q. Consider
the following model M = (S, 1, <) where S = {so, 51, 52}, <= {(s0, 51), (50, $2)}, 1(s0) = {p, ¢},
(s1) = {q} and +(s2) = 0. Graphically

It is clear that M is ranked, so it satisfies RM. However it fails to satisfy WD since Thp
whilst —pltq and —~phl—gq. 5

: —'l 'ﬂq

Observation 3.21 P+ WD # NR

Proof Let M be the model represented by the following schema:

S4: p,mqge =

o

So: P,q

-p,9q

-

: -

.
[

- P,g

ie. M = (S,1,<) with S = {so,...,ss}, < the transitive closure of the relation {(so, 52), (2, $4), (51, 53), (s:
W(so) = {p,q}, (s1) = {p}, +(s2) = 1(s3) = {q} and 2(s4) =1(s5) = 0.

NR fails in this model because Thvp, qitp (witness s3), ~ghtp (witness sy). But WD is satisfied
in this model. Suppose that Th—a, altB, afe~B. Then there must be u € min(a) N mod(—f)
and v € min(a) N mod(B) and u,v € {s3,53,54,55}. But it is clear that each choice of u,v
here gives a contradiction. For example if u = s, and v = s5 then since 1(s3) = 1(s3) we have
v ¢ min(a) giving a contradiction. .

Observations 3.19 and 3.21 have been established using non-injective preferential models
as examples. In the case of 3.19, at least, there is no injective model that does the job. For by
3.17, any injective model of P 4+ RC is an injective model of P + NR, and it has been shown by
Freund and Lehmann [32], that every injective model of P 4+ NR is a model of DR.

It is immediate that transitivity (T) of |~ implies RT. However, the converse does not
hold: given that P+ RT < P + DP shown above, and the well-known facts (see e.g. [69]) that
P+ T = M whilst P+ DP # M, we have P+ RT # T. A direct verification can also be made
with an appropriate two-state model (see corollary 3.33).

As already remarked, DP, RT, RC and WD are weakened forms not only of monotony
but also of Stalnaker’s rule of conditional excluded middle which, unlike the principles so
far considered, is not implied by monotony but has figured in philosophical discussion of
counterfactuals (e.g. [43, 57, 81]). We shall study some other rules in the vicinity of conditional
excluded middle in section 3.7.

3.4 Collapsed models

Our goal in section 3.5 will be to prove a representation theorem for P + RT (equivalently
P 4+ DP). As a preliminary, we shall show in this section that every ranked preferential model
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is equivalent (in the sense of generating the same inference relation) to one that is both injective
and parsimonious, in the sense that every one of its states is minimal in at least one formula.
This result is indeed implicit in Freund [30] in the more general case of relations satisfying
P + DR, but using different arguments. Our procedure for transforming a ranked model into
one with these characteristics is quite straightforward. We proceed in two steps. First, at each
level of the model we identify the states of that level that are labelled with the same valuation.
Second, we suppress all states that are not minimal in some formula.

Definition 3.22 A model M = (S, 1, <) is said to be horizontally injective iff for all distinct
s,t€S,ifs £t andt £ s then i(s) # 1(¢).

Note that for ranked models, being horizontally injective actually means injectivity by
levels.

Lemma 3.23 For any ranked model M = (S,1, <) there exists a horizontally injective ranked
model M' = (S',7, <’} such that bpm = oarr.

Proof We define an equivalence relation on S as follows
s=35 & r(s)=r(s) and 1(s) = (')
Put S’ = S/ = (the quotient of S by =). As usual let [s] denote the equivalent class of s. Define
r:S8 — Q, < CS5xS and : §' — U as follows: r'([s]) = r(s), [s] <" [§] if s < &,
and V' ([s]) = u(s). It can be easily verified that r', <’ and v are well defined, i.e. their definition
does not depend on the choice of the representative of [s]. It is also clear that for all j € Q, '
restricted to S; = {[s] € §' : r([s]) = j} is injective. Notice that
1< [s1es<ser(s) <r$) e r(s]) < r([s)

So, the model M' defined by M’ = (S',7, <" is a ranked model. Moreover, we have oy =
ko, since clearly for all s € S and all o, € L, s € modm(B) iff [s] € moda(B), and also
s € minp(a) iff [s] € minpp (). :

Definition 3.24 A model M = (5,1, <) is said to be parsimonious iff for every state s € S
there is a formula o such that s € minp ().

Proposition 3.25 If M = (5,1, <) is a preferential model then there exists a preferential
model M' = (S’,, <"} such that S’ C S and the following properties hold

1. M’ is parsimonious.
2. If M is ranked so is M.
3. Whenever s,t € S with neither s <’ t nort <'s, if /(s) = /(t) then 1(s) = 2(t).

4 bm =
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Proof It is quite simple. It is enough to suppress the states which are not minimals for any
formula. Essentially the same trick has been used by Pavlos Peppas [85] in the contezt of
systems-of-spheres models for belief revision. Define S'= S\ {s: —3a s € minp(e)}. Let
and <’ be the restrictions of 1 and < to S'. Put M' = (S',v/, <'). By definition of M’, it is
obvious that

minp (o) = minpp (o) ()

Hence smoothness of M implies smoothness of M'. So, M’ is a preferential model which, by
its construction, is parsimonious. Clearly if M is ranked so is M'. Property 3 is trivially
verified by definition of M'. Finally, let us verify apmfB < apoaf.

(«<): Suppose that minpe(a) C modar(B). We want to show minp(a) C modp(B). This
follows from (x) and the fact that modag: (B) C modaq(B).

(=): Suppose that mina(a) C moda(B). By definition of S' minp(a) C moday(B) because
modpy (8) = {s € modp(B) : Iy s € minm(7)}. So, by (x), minpy (a) C moday(B), ie. aff.
[ |

Remark 3.26 When the ranked model M = (S,1, <) is finite (notice that by theorem 3.6
every rational relation over a finite language is represented by a finite model), i.e. S is finite,
then S’ in the previous lemma can be constructed by an algorithm. In order to see this, first
remark that when S is finite, we can suppose the rank function is of the form r : S — 7.
Then define Sy = {s€ S:r(s)=0} and fork =1 ton, S, = {s € S : r(s) = k and there
erists @ with s € minp(a)}. Finally put S' = Up_(S;.

Theorem 3.27 (Collapsing) If M = (S, 1, <) is a ranked model then there ezists a parsimo-
nious, injective ranked model M’ = (S’,+/, <") such that bopg = popg-

Proof Let M' = (S’,7, <) be the model obtained from M = (S, 1, <) by application of lemma
3.283 and then proposition 3.25. Clearly M’ is parsimonious and ranked, and also bbp = oprr-
It remains to check injectivity. Now by lemma 3.23 and part (3) of proposition 3.25, M’ is
horizontally injective. Clearly parsimony implies that M’ is ‘vertically injective’ in the sense
that s <' t implies v(s) # (t). Finally, horizontal and vertical injectivity clearly imply in-
Jectivity. 2

The model M’ obtained from a ranked model M by successive application of lemma 3.23,
and proposition 3.25 will be called the collapse of M. Clearly a model is equal to its collapse
iff it is both parsimonious and injective. As a corollary of theorem 3.27 we have the following
result:

Corollary 3.28 Every rational inference relation is generated by some collapsed ranked pre-
ferential model.

Proof Immediate from the Lehmann-Magidor representation theorem (theorem 3.6) and theo-
rem 3.27. n

Remark 3.29 (i) In the proof of theorem 3.27 we have applied lemma 3.23 and then proposi-
tion 3.25 but the same result is obtained if we reverse the order.
(1i) It is not hard to see that in the finite case (finite language), if a model is injective then
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each state is minimal for some formula, so the model is parsimonious. But this is not true in
general for infinite languages. For instance consider an injective ranked model with two levels:
one world in the upper level and the rest of the worlds in the lower level; then there is no
formula for which the upper world is minimal.

Remark 3.30 Theorem 3.27 and its corollary 3.28 are implicit in Freund [30] but in reverse
order of demonstration and by quite a different strategy. Freund shows that if pv is a rational
inference relation (indeed more generally, any preferential inference relation satisfying DR)
then we can construct its ‘associated standard model’, which is a model generating pv, that is
ranked (or, under the hypothesis of DR, that is ‘filtered’ in the sense of his definition 5.1) and
has additional properties including the following:

1. Every state u is ‘~-consistent’ in the sense (Freund [30], section 2.1) that there is a
formula a with u |= C(a), where as usual C(a) = {8 : apB};

2. The model is ‘standard with respect to |~ in the sense (Freund [30], definition 3.2) that
it is injective and for every formula o and state u, u = C(a) iff u € min(o).

Property 2 explicitly implies injectivity, and the two properties taken together clearly imply
parsimony. Conversely, parsimony and injectivity together imply properties 1 and 2, if we
assume that the model is ranked: property 1 is immediate from parsimony recalling that u €
min(a) immediately implies u = C(c) in every preferential model, whilst to derive property 2
it suffices to show that whenever u ¢ min(a) then u [ C(a). Suppose u ¢ min(a). If u = o
then we are done, so suppose that u = a. Then there is v < u with v € min(a). By parsimony,
there exists B such that u € min(B) and thus by rankedness for any v' € min(a), v' = —0.
Thus =3 € C(a) and so since u |= B we have u £ C(a), establishing property 2.

Evidently, each approach has its advantages, depending in part on the purposes for which
is used. Since our approach covers only ranked models and thus rationally monotone inference
relations, unless it can be generalized it is useless for Freund’s purpose, which is to represent
preferential inference relations satisfying DR. On the other hand, it provides a simple and
natural way of proving representation theorems for conditions such as rational transitivity that
are stronger than rational monotony (e.g. theorems 3.38, 3.68 and 3.7/ below) and a very direct
argument for results of independent model-theoretic interest such as lemma 3.23, proposition
3.25, theorem 3.27 and its corollary 3.28.

3.5 Representation

The goal of this section is to characterize the ranked models that generate rational transitive
relations. Our argument exploits corollary 3.28

Definition 3.31 A preferential model (not necessarily injective) M = (S,1, <) is said to be
quasi-linear iff it is ranked and it has at most one state at any level above the lowest. In other
words quasi-linear means ranked and whenever r < s, r <t then eithers =t ors <t ort < s.
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Quasi-linear models have the following graphical shape:

Proposition 3.32 If M = (S,:,<) is quasi-linear then the relation b = |aq is rational
transitive.

Proof M is ranked so b is a rational relation. We have to prove that |~ satisfies RT. So,
suppose apf, vy and alf—y. We want to show apy. We consider two cases. First, suppose
that min(ca) is contained in the lowest level. As also al~f, necessarily min(a) C min(3). But
min(B) C mod(y) because Bhvy. Therefore, min(o) C mod(y), i.e. apy.

Second, suppose min(a) is not contained in the lowest level. Then min(a) is a singleton
because M is quasi-linear; suppose min(a) = {s}. Then s [£ —y because alf—y. Thus s = v,

so apy. 5
Corollary 3.33 There are rational transitive inference relations which are not transitive.

Proof Consider a language L built on the propositional variables p, q and r. Define M =
(S,2,<) where S = {so,s1}, so < s1 t(s0) = {q,r}, ¢(s1) = {p,q}. By proposition 3.32 the
relation v = fpq is a rational transitive relation. But we can easily verify, ppvgq, gbr and
phir. So b~ is not a transitive relation. .

Observation 3.34 Suppose that the language is finite and M = (S, 1, <) is an injective ranked
model which is not quasi-linear. Then | = v does not satisfy RT.

Proof As M is not quasi-linear, necessarily there are three different states sy, sy and s3 in S
such that s, is in the lowest level, s, and s3 are in the same level and s; < s; fori = 2,3. Leta,
B and v be formulae such that mod(a) = {s2, s3}, mod(B) = {s1, s2, s3} and mod(y) = {s1, s2}-
By finiteness and injectivity such a, 3 and v clearly exist. Then, it is clear that apG, Sy
whilst apf—y and ally. Therefore M does not satisfy RT. .

Remark 3.35 When the language ts infinite the above observation does not hold. This can
be seen by the following example. Let M be a ranked model whose states are worlds, with two
levels: vg and vy in the upper level and the rest of the valuations in the lower level, i.e. the order
is v < v; for all valuations v # v;, ¢+ = 1,2. By definition M is not quasi-linear. However,
bom satisfies RT (and indeed, satisfies transitivity and monotony) because for any formula o,
minp(a) lies in the lowest level.

But if instead of injectivity in the observation 3.34 we require that the model M be collapsed
then a similar argument can be used to extend observation 3.3/ to the case of infinite languages.
More precisely we have the following proposition:
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Proposition 3.36 Suppose M = (S,1,<) is a collapsed ranked model which is not quasi-
linear. Then v = v does not satisfy RT.

Proof As M is not quasi-linear, necessarily there are three different states sy, s and s3 in S
such that s; is in the lowest level, sy and s3 are in the same level and s, < s; for i =2,3. We
need to find formulae a, B,y with a3, By, al—y, apty. By parsimony there are formulae
& (i = 1,2,3) with s; € min(¢;) and by injectivity there are formulae v;; (1,7 = 1,2,3
and 1 # j) with s; € mod(v;;) and s; ¢ mod(v;;). Put a = ¢avds, B = (d2ves)v(d1ath12)
and v = (¢1at12)v(P3npsz). Then it is clear that a F B so apvf; and using rankedness
min(B8) C mod($1a12) so Bhvy; whilst again using rankedness sz € min(a) but s; ¢ mod(7y)
so aply and finally s3 € min(a) but s3 € mod(7y) so ap—y. a

Propositions 3.32 and 3.36 immediately imply:

Theorem 3.37 Let M be a collapsed ranked model. Then M is quasi-linear iff ;v aq is rational
transitive.

This with corollary 3.28 immediately imply the promised representation theorem for ratio-
nal transitive relations:

Theorem 3.38 | is a rational transitive relation iff there is a quasi-linear model M such
that b = oy

Putting together theorem 3.38 and proposition 3.10 we clearly have:

Theorem 3.39 The following conditions are equivalent for any preferential inference relation
ko

1. |~ is determined by some quasi-linear model.

2. v is determinacy preserving.

3. I is rational transitive.

4. b~ satisfies both RM and RC.

5. b satisfies both RM and WD.
Remark 3.40 The above results leave open the question of representation theorems for the
weaker postulate sets P+ RC and P+ WD. It may be noted that the techniques used above
do not appear to carry over in a straightforward way to those systems. Lemma 3.23 (used for
theorem 3.27 and thus corollary 3.28 and thus theorem 3.38) is here proven only for ranked

preferential models, and even if the less direct techniques of Freund [30] are used (cf. remark
3.30) their scope covers only postulate systems at least as strong as P+ DR.
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3.6 Preferential Orderings and Rational Transitivity

After seeing Bezzazi and Pino Pérez [9] Michael Freund (personal communication) conjectured
theorem 3.49 below, which characterizes rational transitive relations in terms of properties
of their preferential orders defined as in [30]. The purpose of this section is to prove that
characterization. This gives us another way to obtain the representation theorem 3.38. The
results of the subsequent sections do not depend upon this one.

Definition 3.41 Let v be a preferential inference relation. Let o and (8 be formulae. The
preferential order associated with I~ is defined by

a<f & avfph-p

The relation < is not a strict order because irreflexivity does not quite hold (for instance
1 < 1). Nevertheless by tradition we conserve the name of preferential order for it.

The following lemma from [30] helps understand better the meaning of this relation:

Lemma 3.42 1. a<f & ap—f and avfpo
2. apf & a< anf

3. a < B iff in every preferential model M = (S,1, <) defining |~ the following property
holds: for every element s € mod(3) there exists t € mod(a) such thatt < s.

It is easy to show the following corollary of point 3 of this lemma:

Lemma 3.43 Let f~ be a rational relation defined by a preferential ranked model M = (S,1, <)
with r : S — Q the ranking function (Q linearly ordered by <). For any formula o define
its level, £(a), as oo if apvL and otherwise its level is the unique a € Q such that there exists
s € minp(a) with r(s) = a. Then, the level is well defined and o < 8 iff £(a) <1 £(B).

We remark that the relation < of [55] (definition A3, first defined in [52]) is equivalent to
that of definition 3.41 in the case of rational inference relations; the idea behind these ‘orders’
has roots in Lewis [57]. In [30] Freund called preferential order any relation < on formulae
satisfying the following four properties:

Po: a< L
Py: If o+ G, then
(a) a<y = B<y
(b) 6<B = d<a
Py: @ < v and a < 6 implies o < yvé
P3: av8 < B implies a <

Freund proves that the ‘order’ associated with a preferential inference relation by definition
3.41 satisfies these properties. Conversely the inference relation v associated with a relation
< satisfying these properties by putting ap~g iff @ < aa—f is a preferential inference relation;
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moreover the order associated with this inference relation by definition 3.41 coincides with <.
Thus < satisfies properties Po-Pj3 iff it is the preferential order associated with some preferential
inference relation in the sense of definition 3.41.

We recall the definition of modular relation (see [55]):

Definition 3.44 A relation < on E is said to be modular iff there exists a linear order < on
some set ) and a function r : E — Q such that a < b & r(a) < r(b).

The following characterization of modularity is well-known and easy to verify.

Lemma 3.45 An order < on E is modular iff for any a,b,c € E if a and b are incomparables
and a < c then b < c.

The following proposition is due to Freund (personal communication).

Proposition 3.46 |~ is a rational relation iff the preferential order between formulae asso-
ciated by definition 3.41 with |~ is modular over the set of h-consistent formulae, i.e. those
formulae o with aptl.

Proof The only if part follows from the representation theorem 3.6 and lemma 3.43. More
precisely, by the representation theorem 3.6 there ezists a ranked model M = (S,1,<) with
r: S — Q the ranking function (Q linearly ordered by <) such that v = poaq. Define the
function £ mapping a formula o to its level (). This mapping and lemma 3.43 prove that <
is modular.

Conversely, suppose that the preferential order between formulae < is modular. Assume
apB and aff—y. We want to show that anyB. By part 2 of lemma 3.42, this last expression
15 equivalent to any < anya- B and the assumptions are equivalent to o < an—f3 and a £ any.
Note that either any < o or any £ a. In the first case we use Freund’s property P, (b) to
obtain any < anya-pB. In the second case, a and any are incomparables because o £ any
using part 2 of lemma 3.42 again. So by modularity, any < an—f because a < ar—fp. Now,
as before using the property P; (b), we obtain any < arya—f. i

The following lemma will be useful:

Lemma 3.47 Let |~ a preferential relation and < its associated preferential order. For any
formulae o and B if o < 3 then T < 3

Proof Note that at- T. Suppose a < 3. Then by P, (a) we have T < 3. .

The quasi-linear property, QLP in short, for an order < associated to an inference relation
k- is the following property: for any formulae & and 3, if T < a then either a < for f < &
or a is p-equivalent to 3, i.e. apf and fhva.

Proposition 3.48 Let M = (S,1,<) be a ranked collapsed model and put v = ropq. If the
preferential order associated with v satisfies the property QLP, then the model M is quasi-
linear.
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Proof Suppose that M is not quasi-linear. We want to show that the preferential order
does not satisfy QLP. As M is not quasi-linear, there are three different states sy, s2 and
sz tn S such that sy is in the lowest level, s, and s3 are in the same level and s; < s; for
t = 2,3. By parsimony there are formulae ¢, and ¢3 with s2 € min(¢2) and s3 € min(¢s). By
injectivity there exists a formula ¢ such that s; € mod({) and s3 € mod(—(). Put a = ¢2n(,
et 8 = ¢zn—(. Note that a £ § and B £ o because their minimal states lie in the same level.
Moreover, s, € minp(a) but s3 & minp(0), so « and (8 are not fv-equivalent. But it is clear
that, T < «. Hence the preferential order < does not satisfy QLP. s

Note that the argument in this proof “translates” the one of proposition 3.36.
g prop

Theorem 3.49 (Conjectured by Freund, personal communication): Let |~ be a preferential re-
lation. Then [~ satisfies RT iff the preferential order < associated with |~ satisfies the property
QLP.

Proof The only if part is deduced from theorem 3.38 as follows. Suppose that b is rational
transitive. Then by theorem 3.38 there is a quasi-linear model M such that v = bopq. We
know that M is ranked i.e. M = (S,1,<) with r : S — Q the ranking function (Q linearly
ordered by <) Now, if a £ B and B £ a we have by lemma 3.43 £(a) = £(8) = a € Q. But
if T < o then by quasi-linearity and lemma 3.43 there is at most one state s € S such that
r(s) = a. So, minpm(0) = minp(B) = {s} or minp(a) = minpm(B) = 0. Hence, in either
case, minp (@) = minpg(B), ie. a is [~-equivalent to 3.

Now we prove the if part. Suppose that |~ is a preferential relation which satisfies QLP.
We want to show that |~ satisfies RT. By theorem 3.38, it will be enough to see that pv is
represented by a quasi-linear model. In order to do that, we first show that < is modular.
Suppose that a £ (3, B £ o, and o < v. We want to show that 3 < v. By lemma 3.47, T < 7.
So, by QLP, 3 < vy or v < 3 or 4 and 3 are |~-equivalent. But we shall see that the last two
cases lead to a contradiction.

Case 1: Suppose that v < 3. Then by transitivity of < we have o < 3, a contradiction.

Case 2: Suppose that v and (3 are pv-equivalent. Then, in any model M representing v we
have minp(y) = minpq(B). So by the lemma 3.42 using o < v we conclude that a < 3. We
find again a contradiction.

Therefore the only possibility is 8 < v as desired. As < is modular, by the proposition 3.46,
the relation |~ is rational. So there is a ranked model M representing it, and by theorem 3.27
we can suppose that M is collapsed. Thus by proposition 3.48, M is quasi-linear. Therefore
k satisfies RT. .

Remark 3.50 We can give a different proof of theorem 8.49 which does not use the repre-
sentation theorem 3.38. Moreover this proof provides an alternative argument for theorem
3.38.

Proof Here we give only a skeich. The argument uses Freund’s notion of ‘standard model’.
The only if part, i.e. that RT implies QLP, is proven as follows. Suppose that T < «, i.e.
Th—a. If T8, ie. T £ 3, then B lies at the lowest level. So § < a. If Th—f we have the
following situation: avBpT, Thv—o and Th—p. Then, by RT we have avfi-a, or avfp—f,
or (when these two possibilities fail) we have both avfBiva and avBhfB. So, B < o or a < 8
or @ and B are pv-equivalents.
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The if part, i.e. that QLP implies RT, is proven as follows. By proposition 3.32 it is enough
to show that |~ is represented by a quasi-linear model. The relation v is rational because < is
modular as remarked earlier. So, by the theorem 6.3 of [30], |~ is generated by its associated
standard model (cf. remark 3.30) which is ranked. Moreover, this canonical model is quasi-
linear: suppose the canonical model is not quasi-linear, i.e. there are two different worlds, m
and n, both in a non-minimal level. We want to show that the condition QLP does not hold.
By standardness (the canonical model is standard), there are formulae o, 8 (not necessarily
different) such that m = C(a), n | C(8), m € min(a) and n € min(B). But, m # n implies
that there is a formula v such that m = v and n |= —y. Put a; = any and B = fa—~y. It
is clear that m € min{oy) and n € min(B,), so the minimal elements of oy and B, are at the
same level. Therefore ay £ By and By £ a;. But it is also clear that m ¢ min(B;) so a; and
B1 are not p~-equivalent. Thus to see that the property QLP does not hold for a; and (B it
is enough to observe that T < o because the minimal elements of a are in a level above the
lowest one. x

3.7 Some Non-Horn rules incomparable with monotony

We consider some non-Horn rules that are stronger than rational monotony, but are not implied
by monotony and for this reason are perhaps less interesting than those we have considered so
far. We show how they may be characterized by certain subclasses of quasi-linear models.

Definition 3.51 A preferential relation |~ is said to be completely determinated iff the fol-
lowing rule holds

oblps
-
In other words for any o and 3, af~8 or ap—g.

CEM

This rule is called conditional excluded middle in Stalnaker [107] and also called full determi-
nacy in Makinson [69).

Remark 3.52 1. CEM = DP.
2. P+ M#% CEM.

3. P+ CEM# M.

Proof 1. This is immediate. Note that, as a consequence, by proposition 3.10 (see diagram),

CEM + P implies each of RM, DR, NR, RC, WD.

2. This is well known. Take, for instance, v to be the classical consequence relation. This
relation obviously satisfies P and M but does not satisfy CEM.

3. Also well known. To recall: take the preferential structure with just two states, one less than
the other. Every model on this structure satisfies P and CEM, whilst an appropriate model on
it (e.g. the one used in the proof of corollary 3.33) fails to satisfy M. 1
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Definition 3.53 A preferential model (not necessarily injective) M = (S,1,<) is said to be
linear ¢ff it is ranked and has at most one state at each level, i.e. iff it is of the shape:

The following theorem can be extracted from work of Stalnaker and Lewis on the logic of
counterfactual conditionals, but we give a direct verification here.

Theorem 3.54 A preferential inference relation |~ is completely determinated iff there ezists
a linear model M such that fopq = pv.

Proof The if part is evident. We prove the only if part. Suppose that b is completely
determinated. Then by remark 3.52 and proposition 3.10, |~ satisfies RM. By the Lehmann-
Magidor representation theorem 3.6, v can be represented by a ranked preferential model, which
by theorem 3.27 we may suppose collapsed. To show that the model is linear, it suffices to show
that there are no two distinct states on the same level. Suppose for reductio that s, t are on the
same level and s # t. By parsimony there are formulae o, § with s € min(a) and t € min(f).
By injectivity there is an elementary formula p with s € mod(p) and t € mod(p). Then clearly,
using rankedness of the model, we have {s,t} C min{av), so avBip and avBh—p, contrary
to complete determination. 5

Definition 3.55 A preferential model is said to be almost linear iff it is ranked and has at
most one state at any rank above the lowest and at most two states at the lowest level. In other
words, iff it is quasi-linear and has at most two states in the lowest level.

One may wonder whether these models satisfy any interesting new rules. And if so, whether
we can characterize those rules by almost linear models. Both answers are positive, as we shall
now show. We consider the following two rules

Fragmented Disjunction:

apBvy ofpB aply

—Bby
that is, if apfBvy then either apf or afy or -fhvy. Its “dual” rule is

FD

Fragmented Conjuction:

anfby apby By

y—:
that is, if aa8hy then either apy or Sy or ap—g.

FC

Proposition 3.56 P+ FD = FC

Proof Suppose FC fails, i.e. that anfBpy, apty, By and alt—B. From the first we have (by
S and RW) ap—Bvy and from the third (by LLE) we have ——Bhty. But these together with
the second and fourth show the failure of FD. .



3.7. Some Non-Horn rules incomparable with monotony 45

Proposition 3.57 P+ FC= RM

Proof Suppose afvB, aft—~y. We want to show that anyhB. We consider two cases: apy
and aply. In the first case we have anyhf by CM. Now consider the case afty. By preferen-
tiality (REF and RW) we have

(anB)r(any)vanbry (3.1)

We cannot have anfhanfny, otherwise by preferentiality (CUT and RW) we have opvy a
contradiction. Thus

anftanBay (3.2)

We cannot have anfBp—(any), otherwise by preferentiality (RW) we would have arfia — —y
and again by preferentiality (CUT,REF,AND and RW) we have o~v—y a contradiction. Thus

anfp—(anry) (3.3)
By FC, it follows from 3.1, 3.2 and 3.3 that anypanfry so by RW anypp. .

Proposition 3.58 P+ FC= FD

Proof Suppose that FD fails, i.e. ap0vy, apeB, ally and =Bpty. From the first two hypothe-
ses (by RM which holds by proposition 3.57) we have an—fifBvy. By REF and RW we have
an—fBpr—f3 so by AND and RW we have an—fBhy. We have also, from the second, apt——g.
But these last two together with the third and fourth hypotheses show the failure of FC. 2

From propositions 3.56 and 3.58 we have immediately:
Corollary 3.59 Given P, FD < FC
Proposition 3.60 If M is an almost linear model then | aq verifies FD and FC.

Proof By corollary 3.59 it suffices to consider FD. Let M = (S,1,<) be an almost linear
model and put v = ~aq. Suppose that |~ does not verify FD, i.e. that avBvy, altS abty and
—fpy. From the last three, there are states sy, sy and s3 such that s; € min(a) N mod(—(),
sy € min(a) N mod(—y), s3 € min(—B) N mod(—y). Then s; and s; are on the same level and
are distinct (for using afvPvy we have s; € mod(y)), and so, by quasi-linearity, they are on
the lowest level. Since s; € mod(—3), necessarily min(—f) is included in the lowest level. So s3
is also on the lowest level. Since af~fvy we have also s; € mod() and s3 € mod(—c). Hence
81, s2 and s3 are mutually distinct states on the lowest level, contradicting almost linearity. g

Remark 3.61 Clearly, P+ M does not imply FD; we need only note that classical consequence,
which satisfies monotony fails not only CEM as already observed in remark 3.52 but also FD.
The same also follows from the fact that are flat models (no states less than any other) that
fail FD. For instance consider the model M = (S,1, <) consisting of just three states sy, s
and s3 all of the same and hence lowest level. Choose a, 3 and « three distinct elementary
propositions and put 1(s1) | ar—fBAy, 1(s2) | anBa—y and i(s3) = —~an-fBr—y. Then clearly
FD fails. Actually we can put this observation in more general form:
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Proposition 3.62 If M is an injective quasi-linear model which is not almost linear then FD

(and FC) fails.

Proof Assume that M = (S,1,<) is an injective quasi-linear model which is not almost
linear. Then there are three different states sy, s, and s3 on the lowest level. Using injectivity,
there are formulae oy, o, o3 such that a; € mod(s;) iff i = j (fori,5=1,2,3). Now trivially
ajvog b ajvog so ayvashiaivas. But ajvashay (witness s;) and ajvashtas (witness sy ),
and —aihlas (witness s3), so that FD fails. :

We now compare the strength of the rules FD and FC with those implied by monotony that
were studied in section 3.3.

Theorem 3.63 Given P we have CEM = FC, FD = DP, but neither converse holds.

Before proving the theorem, we combine the information that it contains with corollary 3.59,
remark 3.61, and proposition 3.10, to get the following diagram:

As before, we verify the positive parts of the theorem syntactically and the negative parts
semantically. We begin with the positive parts

Proposition 3.64 P+ CEM = FC

Proof Suppose anfiy but ahly and Bhvy; we want to show ap—B. Suppose for reductio
that aff—pB. Then by CEM, a8 and so by the first premise using CUT, apy contradicting
the second premise. '

Note that we also have an easy semantical proof of this proposition using theorem 3.54 and
proposition 3.60.

Proposition 3.65 P+ FD = DP

Proof We have already shown (proposition 3.57 and corollary 3.59) that P+ FD = RM, and
we know from theorem 3.10 that P+ RM+ RC = DP, so we need only show P+ FD = RC.
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Recall that by preferentiality, whenever ¢h L then ¢hip so by CM papL so by S ypo — L
50 phg.

Assume P+ FD. Suppose that RC does not hold, i.e. ap8, —fB~a and —fka. We
want to get a contradiction. By supraclassicality (i.e. the rule o + 8 = afvB, derivable
from the preferential postulates REF and RW) we have =fp(—-fra)v(—fra). We have also
=B ~Br-a and —fl-fra. So by FD —(-fr-a)p—fra. So by LLE avfBpan—f. Thus
avlBpba and avBh-B. So, by CM (avB)aap—B. So, by LLE afv—B. But this together with
apB implies (by AND) apv L. By the fact recalled at the beginning of the proof, we get ~fh—a,
a contradiction as desired. .

Proposition 3.66 P+ FC# CEM

Proof Take an almost linear model of only one level, containing two states both of which
satisfy a but just one of which satisfies 3. Clearly this fails CEM, but by proposition 3.60 it
satisfies FC. .

Proposition 3.67 P+ DP % FD
Proof Immediate form remark 3.61 and the fact that trivially M = DP. :

Theorem 3.68 Let v be a preferential relation. Then | verifies FD (or FC) iff there erists
an almost linear model M = (S, 1, <) such that p = g

Proof The if part is proposition 3.60. We prove the only if part. By proposition 3.65 and
theorem 3.38, there erists a quasi-linear model M such that v = faq. By collapsing, we can
assume that M is injective. So by proposition 3.62, M is almost linear. :

3.8 Some Horn rules between Preferential Inference and Monotony

Up to now all the rules studied as potential additions to those of preferential inference, are
non-Horn. One may wonder if there are ‘interesting’ Horn rules beyond those of preferential
inference, but still weaker than monotony. One such rule may be called Conjunctive Insistence:

ohB Y8
anyhB

cl

Proposition 3.69 Monotony implies Cl but the converse does not hold even if we suppose
CEM. The preferential rules plus CEM do not imply Cl. Moreover Cl does not imply NR or
wpD.

Proof Clearly Cl is implied by monotony. To see that monotony is not implied by Cl even
with CEM recall again the model in the proof of corollary 3.33 and of remark 3.52 (3). We
know that this model satisfies P and CEM but fails M. We complete the proof by showing that
every model with this structure satisfies Cl.
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Suppose that anfBhly in a model with this structure; we need to show that either affy or
Bhy. By the hypothesis there is a state s € min(anfB) satisfiying —.
Case 1: Suppose s is of level zero. Then s € min(a) Nmin(B) and so in fact we have both aply
and Bpby.
Case 2: Suppose s is of level one. Since s € min{(anf) the unique state t < s of level zero fails
to satisfy at least one of «, B. But in this case s € min(a) or s € min(f) giving us in this case

ally or Bity.

Cl is not implied by preferential rules plus CEM - consider for instance a ranked preferential
structure with just three states at three levels, with an appropriate distribution of truth values
as in the following figure:

\; S2: pyq,T
J $1: P, q,T
® S p,q,r

Clearly here pir, qgbor but paghir. Note that this model is also linear, so that indeed P plus
CEM does not imply Cl.

We prove now that Cl does not imply NR (which is enough to show that Cl does not imply
any of DR, RM,RC, DP, FD, CEM). Consider the model defined by the following figure:

°
°
Clearly this fails NR, for ppr whilst paglir (witness s;) and pa—ghir (witness s3). However,
it satisfies Cl. Suppose for reductio that apy, By but anfBhly. From the last assumption,
there is a s € min(anfB) such that s = —y. Since apvy, By, s E o, s E B, s = v there are

u,u’ < s with v € min(a), ' € min(B). But there is at most one state less than s, so u = v’
s0 u = anf contradicting the minimality of s in mod(anf).

S2: p,q,re $3: p,—q,r

So: p,q, e s : pq, T

The same model shows that P + Cl # WD; we have Th—(pa—r), parptq (witness s3),
prorhbog (witness s3). s

We suspect that there are not ‘very many’ Horn rules which, like Cl, are implied by pre-
ferential rules with monotony but are not implied by the preferential rules alone. There are
some, however, of technical more than conceptual interest. Consider the infinite series of rules
of n-monotony (n > 1), n-M in short, constructed as follows:

o1fve

M —
Q1NC2 l’\-'d)

ajbvd  ajnazd

A1 ANO2NO3 }'v—'gb

2-M

and in general
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a1pvo (@) ... aaa...aapbo,(P)

Q1A .. AR AOp 1] |"‘0'n(¢)

n-M

where each 0;(¢) is either ¢ or ¢ according as 7 is odd or even, and noting that the conclusion-
rule uses o, rather than o,4;. This rule is evidently reminiscent of the alternating sequence
of statements in the party example in section 1.2 of Lewis [57]: ‘If Otto had come, it would
have been a lively party; but if both Otto and Anna had come, it would have been a dreary
party; but if Waldo had come as well, it would have been lively; but ...” Of course, that is
an infinite list of conditional expressions, and not a list of Horn rules about them. The rule
number n is a scheme, one of whose instances in effect takes the first n Lewis statements as
its n premises, and puts as conclusion a statement that is like Lewis’ statement n+ 1 but with
opposite consequent.

Clearly, 1-M is plain monotony. Moreover we have the following:

Observation 3.70 1. For all n, P+ n-M implies (n + 1)-M.
2. For alln, P+ (n+ 1)-M does not imply n-M, even if CEM is also assumed.
3. P+ Cl implies 2-M.
4. P+2-M does not imply Cl, even if FD is also assumed.

Proof Here we give only an outline.

1. Simply treat ayraz as a single formula in the premises of the rule of (n + 1)-M, relabel
letters, and apply the rule of n-M to the last n premises.

2. It is easy to see that (a) any ranked model with at most n levels satisfies n-M, (b) there
is a linear preferential model with n + 1 levels that fails n-M. These two facts give the desired
result, using theorem 3.54.

3. Let v be a preferential relation that fails 2-M; we want to show that it fails Cl. Since it
fails 2-M, there are formulae o, as, a3, ¢ with ayv@, aynazp—g, ajraznazpe—d. We need to
find formulae 3,7, 8 with N6, Y6, Bayhd. Put B = ajn(—azves), ¥ = agaas, 6 = —apv-g.

To show that B4, i.e. that oy a(—azvas)azv—¢ note that since ayrazbv—¢ we have ag pbagv-e,
so since ajp¢ we have ajp—ag by preferential rules, so that by further preferential rules,

a1 agvas and also o vagv—g, so finally by the preferential rule CM, oqA(—agvas)—azv—e

as desired. To show that Y4, i.e. that ayjnogv—aav—¢ simply apply the preferential rule RW to

the assumption oynash—¢. Finally, to show that Bayld, i.e. that aya(—azvas)a(ograsz)fav—e,
suppose the contrary and apply LLE to get ayrnasnazh—asv=¢ so that aynaznazp—¢ contrary

to hypothesis.

4. To prove this part, it suffices by proposition 3.60 and 2(a) above, to find an almost linear
model with two levels that fails Cl. Clearly the following model will do: the language is built
over the elementary formulae p, q,r; the lowest level has two states sy, sy with 1(s1) = {p,r},
1(s2) = {g,r}, whilst the next level has one state only s3 with 1(s3) = {p, q}, so ppr, gqpr,

pAgher. "

We note that since by proposition 3.69, P + Cl & NR|WD, points 1 and 3 above tells us
that P 4+ n-M # NR|WD, whenever n > 1.
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We may thus extend our diagram as follows:

Contrasting with point 4 of observation 3.70 we have:
Observation 3.71 P+ 2-M+ CEM = (I

Proof It is possible to verify this semantically, but the following is a direct syntactic proof.
Suppose P+2-M+-CEM. Let a, B, ¢ be formulae. Suppose afvé, fv¢; we want to show anfiive.
We divide the argument into two cases.

Case 1. Suppose avfBha <> ¢ and avfBppB & ¢. Since apvg, B¢ we have by OR avpi~e,
so by preferentiality, avBhanB. Now using CM we have (avfB)r(anfB)t¢, ie. anfi¢ as
desired.

Case 2. Suppose avfha < ¢ or avfiB < ¢. We consider the former; the latter is
similar. By CEM, avfBph—(a & ¢). But also since ap¢ we clearly have ava « ¢, ie.
(avB)rapva < ¢. Hence by 2-M we have ((avB)ra)aBba < ¢, i.e. anfiva & ¢, so anfive
as desired. .

3.8.1 Semantics for n-Monotony

Let M = (S,t, <) be a preferential model. Define the height of M to be the maximal length
of any chain of states s;,...,s, with s; < s3 < --- < s,. If there is no maximal length, put
the height of the model to be co. The following observations generalize points 2(a) and 2(b)
in the proof of observation 3.70.

Observation 3.72 FEvery preferential model of height < n satisfies n-M.

Proof Consider a preferential model that fails n-M. We show that it has height > n + 1.
Since n-M fails in the model, there are formulae o, .. .apn, apy1, ¢ with

o e (1)
[ 3YA2%) l'\'“l¢ (2)

G1A - "G (@) (n)
Q1IN . .  AQp At PO () (n+1)
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where each o;(¢) is ¢ or —¢ according as i is odd or even. From (n+ 1) there is a state spi1
with Spt1 € MIN(OgA .. . AQpt1) but 2(sp+1)  0n(@). But by (n), spy1 € min(aia...Aay), SO
there is s, < Sp41 With s, € min(aya...Aay) and 1(s,) = 0,(¢). Continuing down like this
we get a Sequence Sp41 > Sp > -+ - > 51 of length n+ 1 of states of the model, so that its height
is > n+ 1. i

Observation 3.73 Every parsimonious ranked model of height > n fails n-M.

Proof Consider any parsimonious ranked model. Let |~ be the inference relation generated
by the model. Since the model is of height > n there is a sequence of states si,...,Sn,Sp+1
with 81 < s3 < -+ < Sp41. By parsimony there exists a sequence of formulae 7, . .., Yny1 with
s; € min(y;) fori =1,...,n+ 1. We define the formulae a; for i = 1,...,n+ 1 and ¢ as
follows:

n+1 2k<n n+1
o= \/ o=V (rzer1~ A 7))
k=i E>0 j=2k+2
Then we have:
1. For every ¢ = 1,...,n and for every state u at the same level as s;, u = —vyx for any

k=:4+1,...,n+1.
2. min(a;) = min(y;) foranyi=1,...,n+ 1.
3. Fajnaon---ro; oy foreveryi=1,...,n+1.

The points 1 and 2 are easy consequences of rankedness and point 3 is evident by definition of
a;. From points 1 and 2 is easy to see that a;po;(@) foranyi=1,...,n+ 1. Thus we have

a o
Q1A f‘“""¢

Q1A . . A Tn(H)

QA .. . A0 AQn 41Ot (F)

From this it is evident that to show that n-M fails it is enough to see that
QA .. A0 AQ 1 on(P). From points 2 and 3, oqn...AGpAGLy 1S v-consistent and since
QYA .. AQRAQn+1OR11(0), necessarily oga .. .AapAOp41Pon(P), as desired. 1

Theorem 3.74 Let |~ be any preferential inference relation. Then the following conditions
are equivalent:

1. |~ satisfies n-M and RM (resp. RT, FD).

2. |~ is generated by some ranked (resp. quasi-linear, almost linear) preferential model of
height < n.

Proof For the implication 2 = 1, apply observation 3.72 together with theorem 3.6 (resp.
3.32, 3.60). For the implication 1 = 2, apply observation 3.73 together with corollary 3.28
(plus 3.36, 3.62 respectively). '
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Conjecture and open questions
We conclude with a conjecture and some open questions.

Conjecture: There are no Horn-rules with a single premise which, given the preferential
rules, are implied by monotony, but do not imply monotony, and are not implied by the
preferential rules alone (recall that Cl has two premises, and n-monotony has n premises).

Open questions:

1. Determine whether the non implication P + WD # NR can be witnessed by injective
preferential models (cf. observation 3.21)

2. Determine whether the construction used to prove lemma 3.23 can be adapted for a class
of preferential models broader than the ranked ones -e.g. to the class of all models that
are filtered in the sense of Freund [30] (cf. the discussion in remark 3.30).

3. Find appropriate classes of preferential models to provide representation theorems for
RC, WD, CI (cf. the discussion in remark 3.40).
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Chapitre 4

On representation theorems for
nonmonotonic inference relations

One of the main tools in the study of nonmonotonic consequence relations is the representation of such
relations in terms of preferential models. In this paper we give an unified and simpler framework to
obtain such representation theorems.

4.1 Introduction

A consequence relation |~ is a binary relation between formulas on a classical propositional
language. We are interested in nonmonotonic consequence relations, i.e. those relations that
do not satisfy the monotonicity rule: If apy then a A Bhy. Several systems of postulates
(cumulative, preferential, rational and others) for classifying nonmonotonic consequence rela-
tions has been investigated [49, 55, 37, 33, 30, 7]. One of the main features of these systems
is the amount of monotony that is required from the consequence relation. The study of non
monotonic reasoning has been motivated by problems arising in artificial intelligence (knowl-
edge representation, belief revision, etc). There is a vast literature concerning nonmonotonity,
for the particular approach dealt with in this paper we refer the reader to [69, 49] and the
references therein.

An important tool for the study and classification of nonmonotonic consequence relations
is the representation of such relations in terms of preferential models. A preferential model M
is a triple (5,1, <), where S is a set of states, ¢ is function assigning to each state a valuation
and < is a strict partial order over S. M is said to be a model of b when apg iff :(s) = 3
for all s which are <-minimal among all states ¢ such that :(t) = a (the details are given in
§3.2). A consequence relation pv is preferential relation if and only if it is of the form kg
for some preferential model M ([49]). If |~ is rational then the model can be found ranked
([55]). Disjunctive relations were studied in [30] and shown to be those relations represented
by filtered models. When the relation also satisfies rational transitivity then M can be found
quasi-linear ([9, 7]). These results are referred to as representation theorems and they can be
regarded as a sort of a soundness and completeness theorems. These representations, besides
providing a semantic interpretation of pv, are also quite useful to establish most properties of
k- by model theoretic arguments instead of proof theoretic ones.

In this paper we give simpler proofs of representation theorems for injective relations. The
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key idea is the notion of the essential relation <. (defined in §4.3) associated with a preferential
consequence relation . We will show that if v is preferential and disjunctive, then <. is a
transitive strict order defined on a set of valuations such that the models of {8 : af3} are
the <.-minimal valuations that satisfy «. In other words, <. provides a representation of
k. We will show also that if v is disjunctive (resp. rational, rational transitive), then <. is
filtered (resp. ranked, quasi-linear). Most of these results were known but they were proved
by quite different means (see [49, 55, 30, 37, 8]). We think our proofs are easier and in a
sense “canonical”. One interesting feature of our approach is that <. provides a direct way
of “ordering” the valuations without using an auxiliary order over formulas, as is the case of
other proofs of representation theorems. Freund introduced a property (that we denote by
W-DR) weaker than disjunctiveness. We show that if |~ is preferential and satisfies W-DR,
then <. represents h. In §4.5 we address the question of uniqueness of these representations.
In particular, we will compare our results with Freund’s and show that <. coincides with
Freund’s relation when DR holds. We will see in §4.6 that in spite of the fact that in some
cases <. is not transitive, it still provides a good representation of some preferential relations
for which other methods do not work. We also present an example showing that W-DR is not
a necessary condition for having an injective model.

4.2 Preliminaries

We recall some basic definitions and results from Kraus, Lehmann and Magidor [49], Lehmann
and Magidor [55] and Freund [30] which will be used in the paper.

We consider formulas of classical propositional calculus built over a set of variables denoted
Var plus two constants T and L (the formulas true and false respectively). Let £ be the set
of formulas. If Var is finite we will say that the language £ is finite. Let &/ be the set of
valuations (or worlds), i.e. functions M : Varu {T, L} — {0,1} such that M(T) =1 and
M(1) = 0. We use lower case letters of the Greek alphabet to denote formulas, and the
letters M, N, P, My, Mj, ... to denote worlds. As usual, - o means that « is a tautology and
M | o means that M satisfies @ where compound formulas are evaluated using the usual
truth-functional rules. We consider certain binary relations between formulas. These relations
will be called consequence relations and will be written .

Definition 4.1 A relation b is said to be cumulative iff the following rules hold

REF Va[ apa]

LLE Va,,@,'y[a}vﬂ& Faey=yp6]
RW vlabB & FB =y = apy]
cuT Va,ﬂ, [anBby & apbB = apy ]
™ Vo, B,v [ a8 & aby = anyB]

These rules are known as the rules of the system C. The abbreviations above are read
as follows: REF -reflexivity, LLE -left logical equivalence, RW -right weakening, CM -cautious
monotony. CUT is self-explanatory, but it should be noted that this form of cut, which plays
an important role in nonmonotonic logic, is weaker than the form of cut usually studied in
Gentzen-style formulations of classical and intuitionistic logic. The latter implies transitivity
of the consequence relation; the former does not.
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It is well known [49] that the following rules (And, Reciprocity) are derivable from system
C:

AND Vo, 8,7 [ e & abvy = apfnay ]
RECIP Vo, 8,7 [ a8 & Biva & oy = By ]

Definition 4.2 A relation | is said to be preferential iff it is cumulative and satisfies the
following rule (or):

OR Vo, B,7 [ apy & By = avBiey]

A relation |~ is said to be disjunctive rational iff it is preferential and the following rule
(disjunctive rationality) holds

DR Va, 8,y [avBby & afly = By ]

A relation |~ is said to be rational iff it is preferential and the following rule (rational
monotony) holds

RM Va, 8,7 [ a8 & abt—y = anyhB]

It is well known [49, 69] that given the preferential rules (system C plus OR), RM implies
DR and also that any preferential relation satisfies the following rule

S Vo, 8,7 [anBhy = abf — 7]

Let |~ be a consequence relation. As usual, Cy.(a) = {8 : ap8}. If there is no ambiguity
we shall write C(a) instead of Cj.(@). If U (@) is a set of formulas (a formula) then Cn(U)
(Cn(a)) will denote the set of classical consequences of U (a).

We recall the definition of preferential models.

Definition 4.3 A structure M is a triple (S,1, <) where S is a set (called the set of states),
< is a strict order (i.e. transitive and irreflexive) on S and 1 : S — U is a function (called
the interpretation function).

Let M = (S,1,<) be a structure. We adopt the following notations: if T C S, then
min(T) = {t €T : -3 € T, t' <t}, i.e. min(T) is the set of all minimal elements of T with
respect to <; moda(a) = {s € S :1(s) = a}; minp(a) = min(mod p(a)).

Definition 4.4 Let M = (5,1, <) be a structure and T C S. We say that T is smooth if it
‘satisfies the following
Vs € T\ min(T) 3s' € min(T) s’ <s

M is said to be a preferential model if modp (o) is smooth for any formula a.
Each preferential model has an associated consequence relation given by the following:

Definition 4.5 Let M = (S,1,<) be a preferential model. The consequence relation popq is
defined by the following

abmB & minp(a) C mod(B) (4.1)
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The following representation theorems are one of the basic tools in the study of nonmono-
tonic consequence relations. The if part of them are not difficult to establish. The main subject
of this paper consists in providing, for a large class of preferential relations, a ‘canonical’ way
of proving the only if part.

Theorem 4.6 (Krauss, Lehmann and Magidor [{9]) A consequence relation |~ is preferential
iff there is a preferential model M such that v = .

A structure M = (S, 1, <) is said to be a ranked model if it is a preferential model and there
exists a strict linear order (2, <) and a function r : S — Q such that for any s,s' € S, s < &'
iff r(s) < r(s').

Theorem 4.7 (Lehmann and Magidor [55]) A consequence relation |~ is rational iff there is
a ranked model M such that b = poaq.

In general, it is not easy to grasp the intuition behind the set of states S and the interpre-
tation function :. A special case, which is intuitively easy to handle, is when the function 1 is
injective (in this case, M is said to be an injective model). If a preferential model is injective
one does not need to mention the interpretation function i, instead one can assume that S is
a set of valuations and < is a strict smooth order over S, so + would be the identity function.
In this case the notion of a smooth relation says that for every M € S and for every formula
aif M = o and M is not in min(mod(a) N S, <), then there is N € S such that N < M
and N € min(mod(a) N S, <) (where the notion of a <-minimal element is defined as in the
paragraph following 4.3). The relation < is understood as a preference relation over valuations.
Thus (4.1) says that to compute the consequences of a formula o we need to look only at the
preferred valuations of o according to <, i.e. those valuations belonging to min(mod(a) N .S).

Freund [30] studied a family of consequence relations admitting injective models. ! He
observed that one can always assume that § is certain collection of valuations which we define
next

Definition 4.8 Let |~ be a consequence relation. A valuation N is called normal w.r.t. |~ if
there is a formula o such that N = C(a).

If there is not ambiguity we shall say that an interpretation is normal instead of normal
with respect to v (in [30] normal valuations were called -consistent). Freund showed (see
remark 3.1 in [30]) that if [~ is represented by an injective model then it can also be represented
by an injective model where the set S is the collection of all normal valuation w.r.t. . We
will state his result next

Theorem 4.9 (Freund [30]) Let |~ be a consequence relation and S the collection of normal
valuation w.r.t v. Then |~ is represented by an injective model iff there is a smooth strict
order < over S such that

apf & min(mod(a) N S, <) C mod(B) (4.2)

! According to the referee the first study of consequence relations having injective models is due to Satoh
[102].
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From this point on we will assume without explicitly mention it that an injective model
has the corresponding partial order defined on S.

Let us observe that (4.2) can be restated in the following way: min(mod(a) N S, <) C
mod(C(a)). Some consequence relations admit an injective representation where the equality
holds. They were called standard in [30], the formal definition is the following

Definition 4.10 Let  be a consequence relation and S the collection of normal valuations
w.r.t po. We say that |~ is represented by a standard model if there is a smooth strict order
< over S such that

mod(C'(e)) = min(mod(a) N S, <)

Such order < will be called a standard order that represents ~.

4.3 The essential relation and the main representation theorem

It is not difficult to show that if the language is finite the notions of an injective and a standard
model coincide (see [30] pag. 236) but this is not the case if the language is infinite (an example
will be given in §4.5). Freund characterized some preferential relations that admit a standard
representation. In the case of a finite language his characterization is quite easy to state. The
following property is called Weak Disjunctive Rationality

W-DR C(avf) C Cn(C(a)uC(B))

Freund showed that for a finite language, a preferential relation admits an injective (thus
standard) model iff it satisfies W-DR. In order to deal with an infinite languages, Freund
introduced a property stronger than W-DR which is based in the notion of a trace of a formula.

In this section we will prove the main result of this paper which is a general representation
theorem for consequence relations that satisfy W-DR. For that end we will introduce the
essential relation which plays a key role in the proof. We will show that this relation can
be considered the canonical relation that represents a given preferential consequence relation
that satisfies W-DR. The essential relation seems easier to handle than the relation defined by
Freund. We will see in §4.5 that they are equal under some conditions. However, we will also
give an example of a preferential relation v represented by our relation but not by Freund’s.
The idea behind the definition of the essential relation seems to be quite general and turns out
to be also useful in a different context (see [95]).

Notation: Given a consequence relation b we will always denote by S(bv) the collection
of normal valuation w.r.t v, when there is no ambiguity about which consequence relation
is used we will just write S. If M is a valuation, Th(M) will denote the theory of M, i.e.

Th(M) = {a : M = o}. For a fixed consequence relation |~ and a valuation M, T |'”(M ) will
denote the set {a: M = C(a)}, i.e. a sort of “nonmonotonic theory” of M. If there is no

ambiguity we write T (M) instead of T}"(M )-

Definition 4.11 Let |~ be a consequence relation. The essential relation is defined by the
following: Let N and M normal valuations,

M<.N& Va(NEC(a)= MEa)
In other words, M <. N iff Th(M)NT(N)=90.
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The essential relation is not in general transitive (we will see an example in §4.6). It is not
difficult to show that transitivity of < is not necessary in order to get the easy half of 4.6 (but
smoothness can not be avoided). This was already observed in [49] (pag. 193) and we state it
for later reference.

Lemma 4.12 ([49]) Let < be a binary irreflezive (but not necessarily transitive) smooth rela-
tion over a set T of valuations. Define a consequence relation by of~3 iff min(mod(a) N T, <
) C mod(B). Then b is preferential. 5

Since the usual definition of a standard model requires transitivity of the relation, it is
quite natural to ask when is <. transitive. In §4.5 we will show that if |~ is disjunctive, then
<. is transitive and in §4.6 we give an example of a preferential relation satisfying W-DR for
which <. is not transitive. However, for a finite language <. is transitive for |~ preferential.
We thank the referee for pointing out that in this case our original assumption (W-DR) was
superfluous and suggesting lemma 4.13 below.

As we said in the introduction, previous proofs of representation theorems usually have
used an order among formulas as a tool to define the preferential model. For a finite language
the essential relation is very much related to one of such orders. Let us recall the definition of
< given by Freund

o< B iff aV BB

In the particular case where |~ is rational, this relation coincides with the one that was
defined in [49] and it is quite related also to the expectation ordering of [37].

Assuming the language is finite we fix for every valuation N a formula 7y such that
mod(yy) = {N}. Observe that a valuation N is normal iff yy[¢ L.

Lemma 4.13 Suppose the language is finite and |~ is preferential. Let N and M be normal
valuations. Then M <. N iff yp < ¥n- In particular, <. is transitive.

Proof: The order < can be characterized in term of a preferential model given by 4.6. Fix
a preferential model M = (T, 1, <) such that b = pvaq. Recall that for a given formula o, we
denote by modaq(c) the set {s € S : ¢(s) = a}. In [30] (see lemma 4.1) was shown that

a < B iff for all t € modaq(B) there is s € moda(a) such that s < ¢.
Notice that s € mod s (yy) iff 2(s) = N. So it suffices to show the following fact

M <. N iff for each t € T such 2(t) = N there is s € T such that s <t and 2(s) = M

Suppose that M <. N. Lett € T be such that ¢(¢) = N. Consider the formula a = vy V7.
Then t € moda(a) but t can not be minimal in moda(a) otherwise we would have that
N E C(a) and M |= a. Therefore there is s € mod apq(a) which is minimal and s < t. Clearly
i(s) € {N, M} and since :(s) = C(a) then as before ¢(s) # N.

Suppose now that M £, N and let a be a formula such that N = C(a) and M [ a. Since
the language is finite, there is ¢t € T such that ¢ is minimal in modm(a) and 2(t) = N. Since
M [= a, then 1(s) # M for all s < ¢.
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Since < is transitive, then it follows that <. is also transitive. But this can be verified
directly using the previous characterization. .

When W-DR holds we will give later a different proof of the previous lemma which does
not use 4.6 (see 4.22).

We will see that under the presence of W-DR the relation <. is smooth and represents | in
the sense that equation in 4.10 holds. For this reason we will use the following notion, which
is more permissive than that of a standard model.

Definition 4.14 Let b a consequence relation and < a binary relation over S. We say that
< is a standard relation that represents v if the following holds

mod(C(c)) = min(mod(a) N S, <) (4.3)

We emphasize that we do not ask the relation to be a strict smooth order, but in most

interesting cases the relation will be smooth. We show next that (4.3) implies that pv satisfies
W-DR.

Lemma 4.15 Suppose |~ is a consequence relation and < is a standard relation that represents

f. Then v satisfies W-DR.

Proof: Let N | C(a) UC(B), we have to show that N &= C(aV §). Since < is standard
and N is normal then from (4.3) we have that N € min(mod(a)) N min(mod(B8)). It is easy to
check that N € min(mod(a V 3)). .

The following observation shows that the essential relation associated with v is finer than
any standard relation representing |~.

Lemma 4.16 Let |~ be a consequence relation and < a standard relation that represents .
Then for all normal valuations N and M, if N < M, then N <. M.

Proof: Suppose N and M are normal valuations such that N£ .M. That is to say, there is
a such that N = o and M | C(a). Since < is standard and M is normal then from (4.3) we
have that M € min(mod(a) N S, <), therefore N £ M. 2

The following observation is obvious and says that <. satisfies one half of (4.3) without
any hypothesis about .

Lemma 4.17 Let |~ be a consequence relation. If M |= C(a) then M € min(mod(a)N S, <.).
|

The following observation is well known [69]
Lemma 4.18 Let |~ be a cumulative relation. If o~ then C(a) = C(anB). 2

Lemma 4.19 Let |~ be a preferential relation. If M |= a and M |= C(B) then M | C(anfB).
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Proof: Suppose aanfy. We want to show that M = 4. By the S rule, Sfva — 7, since
M &= C(B) then M = a — 7. Since M | o, then M = 4. i

Since we are dealing with non monotonic consequence relations we can not expect the set
T(M) to be closed under A (not even in the case of a rational consequence relation). On the
other hand, in general, T (M) is not closed under V. The next lemma establish under which
condition T'(M) is closed under V.

Lemma 4.20 | satisfies W-DR if and only if for any M, T(M) is closed under the connective
v, i.e. for any By, B2 € T(M), (B1vB2) € T(M).

Proof: Suppose that 81,8, € T(M), so M & C(B;) for i = 1,2. Thus M = Cn(C(B1) U
C(B2))- By W-DR, C(B1vfB2) C Cn(C(B1)UC(B2)), then we have M = C(B1vfs), i.e. (Bi1vB2) €
T(M). The other direction is also straightforward. .

The following result is the basic representation theorem in this paper. All others represen-
tation theorems that we will show are based on it and will only add that <. has nicer properties
(like being transitive, filtered, modular or quasi-linear) when the preferential relation ( sat-
isfies some extra postulates besides W-DR. This theorem is a generalization of Freund’s main
representation theorem (see his theorem 4.11 in [30]).

Theorem 4.21 Let  be a consequence relation. Then |~ is a preferential relation satisfying
W-DR if, and only if <. is a smooth standard relation representing |~.

Proof: The if part follows from 4.12 and 4.15. For the only if part we start by showing that
< is irreflexive. If M is normal then there exists & such that M | C(a), so Th(M)NT(M) 2

{a}#0,ie M £. M.

Now we show that <. is smooth. Let M € mod(a) NS. We want to show that either
M ¢ min(mod(a) N S, <.) or there exists N € min(mod(a) N S, <,) with N <. M. We
consider two cases: M | C(a) or M [£ C(a). In the former case, by lemma 4.17, we
have M € min(mod(a) N 5,<.). In the latter case define U = C(a) U {=f: € T(M)}.
We claim that U is consistent. Otherwise by compactness there are ay,..., o, in C(a) and
B1s- -+, Bnin T(M) such that {ay,...,am,—b1,...,08x} b L. Hence oyn---nay, & Biv---vi,.
Put 8 = Byv---vB,. By AND, apoja---aapy,, so by RW, aG. Hence, by lemma 4.18,
C(a) = C(anf). By lemma 4.20, 8 € T(M). Thus by lemma 4.19, M = C(anrf), i.e.
M = C(a), a contradiction. Now consider N such that N = U. By definition of U, N |= C(«)
so by lemma 4.17, N € min(mod(a) N S, <.). Also by definition of U it is clear that N <. M.

To see that <. is a standard relation that represents p it suffices to show that if M ¢
min(mod(a) N S, <.) then M = C(a), the other direction is given by 4.17. But this was
already shown above, since we have proved that if M = C(a), then M ¢ min(mod(a) NS, <.).

Remark 4.22 For a finite language and in the presence of W-DR the proof of the transitivity
of <. follows from the previous result. In fact, suppose that M <. N and N <. P; we want
to show that M <. P. Consider the formula @ = v, vyyvyr. Note that mod(a) = {M, N, P}.
By the assumptions, M is the only element of {M, N, P} which can be minimal in mod(a).
Therefore by the smoothness of mod(a), M <. P. ‘ '
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Putting together 4.12, 4.15, 4.21 and 4.22 we obtain the following result which is essentially
the same result of Freund (see his theorem 4.13 in [30]) but with a different proof.

Theorem 4.23 Assume the language is finite. Then | is a preferential relation satisfying
W-DR if and only if <. is a standard order that represents . 1

4.4 Disjunctive, Rational and other relations

In this section we will use the main result of §4.3 to give give simple and uniform proofs of
representation theorems for Disjunctive, Rational and other consequence relations. We start
with those relations satisfying disjunctive rationality DR. The next remark is trivial but useful

Lemma 4.24 DR is equivalent to saying that C(avB) C C(a)UC(B) for all formulas a and
B. In particular, any consequence relation satisfying DR satisfies W-DR. 2

Lemma 4.25 The following properties are equivalent for a cumulative relation p:

(i) The relation |~ satisfies DR.

(i) For any valuations M, N and for any formulas o, if M = C(a) and N |= C(B) then
M | C(avp) or N |= C(avf).

Proof: (i = it) Suppose M & C(a) and N | C(8). For reductio, suppose M [ C(avf)
and N [t C(avfB). Then there are formulas v;,v2 € C(avf) such that M | v; and N £ 7s.
By AND, y1a72 € C(avB), so by 4.24 y1av2 € C(a) or y1ay2 € C(B). But in both cases we
get a contradiction because neither M nor N are models of y;A7y2.

(22 = t) Suppose v € C(avf). We want to show that ¥ € C(a) or v € C(8). Suppose not.
Then there are valuations M, N such that M = C(a), N = C(8), M £ v and N £ v. By
(i), M E C(avB) or N = C(avf). But in both cases we get a contradiction because neither
M nor N are models of v. a

The following relation between valuations was defined in [65]. We came up with the defi-
nition of <. by trying to extend the results in [65] to the case of an infinite language and to a
larger class of consequence relations.

Definition 4.26 Let | a consequence relation. We define the relation <, over the normal
valuations by:

M<, NaVa¥g [ M EC(a) &« NEC(B) = M EC(avf) & N £ Clavp) |

The relation <, is quite more intuitive and we show next that it is equal to <. under the
presence of DR.

Lemma 4.27 Let b a disjunctive rational relation. Then <. is equal to <,.
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Proof: (<. C <y) Suppose M <. N, M E C(a), N = C(B8). We want to show that
M E C(avB) and N = C(avp). Since M = o, M = avf and M <. N, then N £ C(avp).
Therefore by proposition 4.25, M = C(avf).

(<y C <) Suppose M <, N. We want to show that Th(M) N T(N) = 0. Suppose not,
then there is a formula 8 such that M = 8 and N | C(B). Let a be a formula such that
M E C(a). By lemma 4.19, M = C(anB); and since M <, N, then N [ C((anrB)vf). But
F ((anB)vB) ¢ B, so N £ C(f), a contradiction. 1

Lemma 4.28 If the relation v is disjunctive rational then <. is transitive.

Proof: Suppose N <. M and M <. P but N £, P. Let & be such that P E C(0)
and N | a. Let 3 be such that M = C(f), then it follows from the definition of <. that
P C(aVp)and M = C(aV B). By 4.25 |~ does not satisfy DR. 1

The following definition is due to Freund [30]

Definition 4.29 An order < over valuations is filtered iff for any formula a and any valua-
tions M, N € mod(c) such that M ¢ min(a) and N ¢ min(a) there erists P € min(c) such
that P < M and P < N.

Lemma 4.30 If |~ is disjunctive rational then <. is filtered.

Proof: The argument is very close to that in the proof of the smoothness of <. (cf. proof of
proposition 4.21). By hypothesis and lemma 4.17, M }£ C(e) and N £ C(a). Put U = C(a)U
{-8:8eTM)}U{~y:v€T(N)}. We claim that U is consistent. Suppose not, then by
compactness there are &y, ..., am in C(a), B1,...,0, in T(M) and 71, ..., 7, in T(N) such that
{01,y @my=P1y--es=Br,=71,-- -, e} B L. Hence ayn---Aam b Byiv---vBpvyiv:--vy,.
Put 8 = Biv---vB, and v = y1v---v¥.. By AND, apoya---nra, and by RW, apGvy.
By observation 4.20, 8 € T(M) and v € T(N). Thus by proposition 4.25 M = C(Bvy) or
N = C(Bvy). Without lost of generality suppose that M = C(Bv7y) (the other case is similar).
By lemma 4.19, M = C(an(Bvy)) and since afvBvvy, then by lemma 4.18, C(a) = C(ar(Bvy)),
hence M = C(a), a contradiction. Hence U is consistent. Let P be a model of U. By definition
of U, PE=C(a), P<. M and P <. N. So by 4.17 P € min(a) .

Freund [30] has shown that a consequence relation is disjunctive rational if and only if it
has a standard filtered model. The next theorem is the hard half of his result with a different
proof. The theorem follows from 4.21, 4.28, and 4.30.

Theorem 4.31 Let | be a disjunctive rational relation. Then <. is a standard filtered order
representing fv. -

Now we look at the properties that <., would have in the presence of rational monotony
RM. It is not difficult to check the well known fact (see [49]) that any rational relation satisfies
DR. Thus, if |~ is rational then <. is filtered and in particular transitive. We have already
mentioned that rational relations are represented by ranked models (see 4.7). A preferential
model is ranked when the order relation is modular. We recall the definition of modular relation
(see [55)):
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Definition 4.32 A relation < on E is said to be modular iff there exists a strict linear order
< on some set Q and a functionr : E — Q such that a < b & r(a) < r(b).

The following characterization of modularity is well-known and easy to verify.

Lemma 4.33 An order < on E is modular iff for any a,b,c € E if a and b are incomparable
and a < ¢ then b < c. :

The following result is well known and we include its proof for the sake of completeness.
Lemma 4.34 Let v be a rational relation. If a -, then C(anf) = Cn(C(a) U {8})

Proof: Let § € C(o) then by RM we have § € C(aaB). Thus Cn(C(a) U {B}) C C(anrB).
For the other inclusion, if aafpé then by the rule S we have apf — 6. Therefore § €

Cn(C(a) U {B})- '
The next result shows that under the presence of RM it is quite easy to check that N <. M.

Lemma 4.35 Let |~ be a rational relation and N, M be normal models. Then N <. M if and
only if there are a and § formulas such that N = C(a), M E C(B) and N = C(avp) but
M [ C(avp).

Proof: The only if part comes from 4.27 (recall that rational relations are in particular
disjunctive rational). For the if part, suppose that such @ and § exist, we will show that
N <, M. Let v and ¢é be any formulas such that N = C(y) and M |= C(8). From proposition
4.25 we get that yvé jo—(avf) and also avf fo—(yvd). Hence from lemma 4.34 we get that

C((avB)a(yvé)) Cn(C(yvé) U {avB})
Cn(C(avB) U {yvd})

and from this the result follows because N = Cn( C(avB) U {yvé}) so N = C(vyvé) and since
M [ Cn(C(avB) U {yvé}) and M = avp, we have M £ C(yvé). i

A straightforward consequence of this lemma is the following

Lemma 4.36 Let v be a rational relation and N, M be normal models. N£ M and ML N
if and only if N, M |= C(yvé) for all formulas v and & such that N = C(vy), M =C(8). g

Lemma 4.37 If the relation |~ is rational then <. is modular.

Proof: Let M, N, P be normal valuations. Suppose N¢, M, M£_N and M <. P. By 4.33
it suffices to show that N <. P. Let a, 3,y be formulas such that M & C(a), N & C(B)
and P = C(y). Since M and N are incomparable, by lemma 4.36 we have M = C(avf3) and
N k= C(avpB). We claim that P £ C(avfvy) and N | C(avfvy), which implies, by lemma
4.35, that N <. P. To prove the claim it suffices (by lemma 4.25) to see that P & C(avfvy).
Since M <. P and M |= C(avp) and P k= C(y), then P [£ C(avBvy). '

Now putting together 4.31 and 4.37 we get the following well known theorem which has
been proved in many different ways ([55, 37, 30]). We will see in §4.5, that <. is in fact the
unique standard modular order that represents a given rational relation.



64 On representation theorems for nonmonotonic inference relations

Theorem 4.38 If v is a rational relation then <. is a standard and modular relation that
represents . ‘

To finish this section we will comment about a postulate stronger than rational monotony.
A relation |~ is rational transitive, if it is preferential and the following rule (RT) holds

arfB By offy
apvy

It is known that rational transitive consequence relations satisfies RM and that rational tran-
sitive consequence relations are represented by ‘quasi-linear’ standard relations (a relation <
is quasi-linear if M is a valuation that is not minimal then for any valuation N different of M
we have N < M or M < N) (see [9, 7]). If |~ is rational transitive then <. is quasi-linear (this
follows from proposition 5.6 of [8]).

RT

4.5 Uniqueness of representation.

In this section we will address the problem of when a consequence relation has a unique
representation. We will also compare our relation <. with that introduced by Freund [30]. In
particular, we will show that they coincide if DR holds.

Let us make first some simple observations to put the question in the right setting. By 4.9
we know that an injective model for a consequence relation b can be assumed to be defined
without loss of generality on the set S of all normal valuations w.r.t. . In other words,
there are consequence relations p that can be represented (as in 4.5) by various order relations
defined on different sets of valuations. But there is always at least one such relation defined
on the entire set S. It is nothing strange that there are so many representations, just recall
that only countable many valuations are needed to define the semantic counterpart = of the
classical entailment relation }-. Taking these considerations into account, the question we want
to address is whether for a given preferential relation v (admitting an injective model) there
is a unique order on S representing . In this generality, this uniqueness seems to be quite
rare when the language is infinite (it holds when it is finite). So we will mainly be interested
in the following more restrictive question: if there is a standard model, when is it unique?

It is well known that a subset T of the collection of valuations U suffices to define the
classical relation |= iff T is topologically dense in I/ with respect to a natural topology associated
with U. This topology turns out to be quite useful in relation with the problems we address
in this section. Its use will make some proofs short and simple, and more important, we will
show that <. has a topological property that makes it unique among other standard relation.

We will use the natural topology on the set of valuations coming from the identification of
a valuation with the characteristic function of a set of propositional variables. In other words,
each valuation N is viewed as a function N : Var — {0,1}. The collection of all such functions
is usually denoted by {0,1}V*". This set is endowed with the usual product topology where
{0,1} is given the discrete topology. We will assume that Var is countable, so {0,1}V%" is a
metric space (in fact, homeomorphic to the classical Cantor space). The topology on {0, 1}V
is then defined by declaring mod(a) as the basic open sets for every formula e (in fact, mod(a)
is also closed). We will regard S as a topological space by using its subspace topology. The
well known basic facts about this topology that will be needed in the sequel are stated in the
following lemma.
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Lemma 4.39 (i) Let N and N; with 1« > 1 be valuations. The following two conditions are
equivalent: (a) N; converges to N. (b) for all formula o, N |= « if and only if there is a j
such that N; = a for all i > j.

(ii) A set F C S is closed in S iff given N; € F converging to a normal valuation N, then
NekF.

(1)) If F C S is closed in S and N € S\ F, then there is a formula o such that N = o
and Pl a for all P € F.

(iv) Let C be a set of formulas and V C mod(C). Then Th(V) = Cn(C) iff V is topo-
logically dense in mod(C) (i.e. for all M € mod(C) and all formula o with M = o, there is
N €V such that N = a). .

It is convenient to have a quick way of checking when an injective representation is in fact
standard. The following lemma will be useful.

Lemma 4.40 Let < be a relation over S representing p.

(i) If N € min(mod(a)NS, <) and N |= C(a), then there is a sequence N; € min(mod(a)N
S, <) converging to N.

(ii) < is standard iff min(mod(a) N S, <) is topologically closed for all a. In particular, if
min(mod(a) N S, <) is finite for all a, then < is standard.

Proof: From 4.39(ii) we have that mod(C(a)) is closed and by 4.39(iv) we have that
min(mod(a) N S, <) is dense in mod(C'(a). From this the result follows. a

We will introduce next a property that <. has and in fact it is the unique standard relation
(with this property) that represents h.

Definition 4.41 Let < be a binary relation over S, we will say < is downward-closed is for
all N in S the set {M € S: M < N} is (topologically) closed in S.

Lemma 4.42 Let v be a consequence relation. Then <. is downward-closed.

Proof: Let N, M, M; be normal valuations with M; converging to M. Suppose that M; <, N
for all :. We will show that M <. N. Let o be a formula such that N |= C(a), then by
assumption M; | —a. Since M; converges to M, then M |= —a, t.e. M <. N. :

Lemma 4.43 Let | be a consequence relation. Suppose that < is a standard relation that
represents Iv. If < is downward-closed then <=<,.

Proof: From 4.16 we already know that < C <.. For the other direction, let N, M be normal
valuations such that M ¢ N. We will show that M £. N. Since F={P € S: P< N}is
closed and M ¢ F, then by 4.39(iii) there is a formula & such that M | o« and P ¢ o for
all P € F. Let 8 be such that N | C(B). It suffices to show that N = C(a V f). Since <
is standard and represents p, then N € min(mod(8) N S,<). Hence P [~ 3 for all P < N.
On the other hand, by the choice of @, we also have that P [~ « for all P < N. Therefore
N € min(mod(aV ) NS, <) and since < represents p then N = C(aV ). 2

From the previous results we immediately get the following
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Theorem 4.44 Let |~ be a preferential relation satisfying W-DR. Then <. is the unique
downward-closed standard relation that represents p. 2

A valuation N € S is said to be isolated in S, if there is a formula o such that mod(a)NS =
{N}. We will say that S is discrete if every N € S is isolated in S. These notions correspond
to the topological notion of an isolated point and discrete space. In particular, every finite set
is discrete. In every discrete space the only converging sequences are the eventually constant
sequences, therefore every relation over a discrete space is trivially downward-closed. On the
other hand, by using the same argument as in the proof of 4.22 it can be easily checked that
if S is discrete and |~ satisfies W-DR, then <. is transitive. Moreover, by 4.40(i) we have also
that any injective model defined on a discrete set is necessarily standard. Thus we have the
following generalization of an analogous result known for finite languages.

Corollary 4.45 Let |~ be a preferential consequence relation satisfying W-DR. If the collection
of normal valuations is discrete, then <. is the unique (and in fact standard) order representing

. '
The following result might be known but it is now quite easy to show

Corollary 4.46 Let |~ be a rational relation. Then <. is the unique standard modular order
representing .

Proof: It suffices to show that every modular standard order representing |~ is downward-
closed. Let < be such modular relation and M, N, N; be normal valuations with N; converging
to N and N; < M for all i. Let o, 8 be formulas such that M = C(a) and N | C(B8). It
suffices to show that M £ C{aV ). Since in this case, there must exists a normal valuation
P < M such that P |= 8. Since N = C(f) and < is modular, standard and represents p then
N < M. To see that M [~ C(aV ) we need to show that M ¢ min(mod(aV #)N S, <). Since
N k& 8 and N; converges to N, then there is (in fact, infinitely many) ¢ such that N; = 8.
Since N; < M, then M is not minimal in mod(a V 3). :

We will use the results presented in this section to compare <. with the relation <g defined
by Freund [30]. Let |~ be a preferential relation. We say that a is pv-consistent if o}t L. The
trace of a formula o is denote by a® and is defined as the set of all formulas 8 such that
aV g 3. The relation <s is defined over S by

M <s N <= Va p-consistent (N o™ = M ¥ o)

For pv preferential, Freund showed that <g is transitive and irreflexive and also that C(a) =
Cn({a}Ua™) for all . Now it is easy to verify that <5 C <. and that <g is a downward-closed
relation.

A consequence relation is said to have the (**) property if the following holds for every
pair of po-consistent formulas o and f3:

C(av B) =Cn(at U Bt U{avs})

The (**) property seems to be tailor-made for getting part (i) of the following result
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Theorem 4.47 (Freund [30]) (i) A preferential relation | has the (**) property iff <s is a
standard order representing |~.

(ii) Every disjunctive relation has the (**) property.
(iii) The (**) property implies W-DR and they are equivalent when the language is finite.
(iv) DR is strictly stronger than W-DR. -

We will show in the next section (see 4.51) that (**) is strictly stronger than W-DR for an
infinite language. Since <g is downward-closed and transitive then from 4.21, 4.44 and the
previous theorem we conclude the following

Theorem 4.48 Let |~ be a preferential relation satisfying W-DR. Then |~ has the (**) prop-
erty iff <e=<g. In particular, if v has the (**) property, then <. is transitive. 2

4.6 Two examples and final comments

In this section we present two examples and make some final comments. Our first example
shows that W-DR is not a necessary condition for having an injective model. In particular, by
4.15, we conclude that the property of having a standard model is strictly stronger than that
of having an injective one. This result stands in contrast to what happens when the language
is finite (see 4.23). Our second example shows that the (**) property is strictly stronger than
W-DR and also that <. is not necessarily transitive.

Example 4.49 (A preferential relation not satisfying W-DR and with an injective model)Let
{p1, P2,y Pn,- - -} denote the set of propositional variables. Let P be the valuation identically
equal to one, i.e. P |= p; for all i. Let Q be the valuation satisfying @ = p; and Q E —p;
for ¢ > 1. Let N be the valuation identically equal to zero, that is to say, N | —p; for
all 2. Let N; and M; be such that N; E =p1 A---A—-p; and N; Ep; forall j > i, M; &
—pr A~ -A=pPi Apiy1 Apiye and M; = p; for all j > i+2. Notice that both sequences converge
to N.

We define a strict order < over S = {N, P,Q, N;, M;} by letting P< N,Q < N, P < N;,
Q < M;, N; < N and M; < N for all 7« > 1. Let | be the preferential consequence relation
defined by (S, <). It is easy to check that S is the collection of all normal valuations w.r.t. .
First we prove that every valuation in S is normal. Note that min(mod(—p1)NS, <) = {N;, M; :
i > 1} so N; and M; are normal for all 7 and since mod(C(—p;)) is closed then N = C(-p,).
Notice that N € min(mod(—p;) N S, <) and therefore < is not standard. It is not difficult to
see that P = C(p1Ap2) and Q | C(pia—p2). Conversely, suppose that R = C(a). We want
to show that R € S. We know that C(a) = Th(min(mod(a) N S)). By 4.40 there exists a
sequence R; € min(mod(a) N S) converging to R. But it is easy to see that S is closed, so
ReS.

We will show that v does not satisfies W-DR. For this end, it suffices to find two formulas
o and B such that N | C(a) UC(B) but N £ C(a Vv B). Let a = —p; V (p1 A —p2) and
B =-p1V (p1 A p2). It is easy to verify that
min(mod(a)N S, <) = {Q}U{N;:i>1}
min(mod(8) NS, <) = {PlU{M;:i>1}
min(mod(aV B)NS,<) = {P,Q}.
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Therefore N = C(a) UC(8), but N £ C(aV B). .

Since having a standard representation is a more restrictive condition we expected that it
might imply that in this case <. should be transitive. In other words, if |~ admits a standard
representation (in particular, W-DR holds) then <. must be transitive (and thus it would be
a standard order representing ). Our second example shows that this is not the case.

Example 4.50 A preferential relation |~ with a standard model (in particular W-DR holds)
and <. not transitiveLet {py,ps,-- -, Pn, - - -} denote the set of propositional variables. We will
define valuations N, M, P, N; and M; (for ¢ > 1) viewing them as characteristic functions
(i.e. as sequences of 0 and 1):

M, = <0,0,---,0,1,1,1,---> It starts with i ceros and then follows only 1’s
N; = «0,0,---,0,1,0,1,---> It starts with ¢ ceros, then follows 1, 0 and then only 1’s
P = «1,0,1,0,---> 1,0 periodically repeated.
M = <0,0,---> Only 0’s
N = <11,---> Only 1’s

The order among this valuation is the transitive closure of the following pairs

2
ANNANNNA

2

+

-

In particular we have that N; < P and also that N; < N; and N; < M; for all ¢ < j. Notice
that M £ P. Let S = {N,M,P} U {N;,M;:i>1}. Since < is clearly wellfounded then
it is smooth. Let p be the preferential relation defined by (S, <). We claim that S is the
collection of normal valuation w.r.t. f~. First, we show that the elements of S are normal.
Notice that every valuation isolated in S is clearly normal. Since M is the only not isolated
point of S it suffices to check that M is a normal valuation. In fact, it is easy to verify that
M € min(mod(—p;) N S, <). Conversely, suppose R = C(a). We want to show that R € S.
To see that it is enough to prove that min(mod(a) N S, <) is finite for every formula o and
then we apply 4.40. This also shows that < is standard. Suppose that a uses only the letters
P1,- -+, Ps- We consider two cases: (a) min(mod(a) NS, <) C {M, N, P}. In this case we are
obviously done. (b) Suppose that N; = a or M; |= o for some i. If N; = « for some ¢, then it
is easy to verify that

min(mod(a) NS, <) C {M,N}YU{N,;,M;:j <1} (4.4)

and we will be done. Suppose then that M; = o for some i. Let v = =p; A = pa A -+ A —ps,
then N;, M; | v for all 7 > s. Observe that if M; = « for some 7 > s, then v F o, thus N; E o
and therefore by (4.4) we are done. From this it follows that min(mod(a) N S, <) is finite for
all a.

Since < is standard then from 4.15 we know that |~ satisfies W-DR and therefore by 4.21
<. is also a standard relation representing . By 4.16 we have that < C <.. However, <, is
not transitive. We have that N <. M (as N < M) and we claim that M <. P but N £, P.
In fact, it is easy to check that N, P = C(p;) and therefore N £, P. On the other hand, M;
converges to M, M; < P and since <. is downward-closed (by 4.42) then M <. P. 2
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We will see below that in spite of the fact that <. might not be transitive it provides a
very good representation of v even in some cases where other methods do not work.

Proposition 4.51 The (**) property is strictly stronger than W-DR. Moreover, there is a
preferential relation represented by <. but not by <g.

Proof: We will show that the consequence relation | given in 4.50 does not have the (**)
property. Recall that b was defined by a strict order that in fact is a standard model of .
In particular, | satisfies W-DR. Since | is preferential then <gs is transitive. But <. is not
transitive, thus <. # <gs. Therefore, by 4.48 k- does not have the (**) property. Moreover, by
4.47 (i) we conclude that <g does not represent p, but by 4.21 <, does (even though (S, <.)
is not a standard model of kv because it is not transitive). 1

A final question: is there a postulate that characterize when a preferential relation has
an injective model or a standard model? By the example 4.49 we know that W-DR is not a
necessary condition to have an injective model. The example 4.50 shows that the (**) property
is not a necessary condition (but it is sufficient) to have a standard model. None of our examples
have ruled out that W-DR suffices to obtain an standard model. Given a preferential relation
p satisfying W-DR by 4.16 we know that any (if it exists) standard order representing p has to
be contained in <.. Thus we have to remove from <. some pairs in order to make it transitive.
It is quite natural to use the following strategy to get an injective (hopefully standard) model
of pv: start with <. and remove all instances of non transitivity and get <XC<.. It is quite
curious that this process indeed leads to a transitive relation. In principle, one would expect
that after a pair is removed other instances of non transitivity might appear. But this is not
the case with <.. However, it is not clear that this ‘pruned” relation < still represents
(we even don’t know if <} is smooth). These two families of consequence relations seem so
complex that we will not be surprised if there is no such a characterization (at least in terms
of the type of postulates used so far to classify consequence relations).
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Chapitre 5

Jumping to explanations vs.
Jumping to conclusions

Abduction is usually defined as the process of inferring the best explanation of an observation. There
are many information processing operations that can be viewed as a search for an explanation. For
instance, diagnosis, natural language interpretation and plan recognition. This paper is concerned about
the following aspects of abduction: (i) what are the logical properties of abduction when it is regarded
as a form of inference?, (ii) how close is abduction to reversed deduction? and (iii) since preference
criteria for selecting explanations are so fundamental to abduction, how is (i) and (ii) related to the
selection mechanism?

In the logic-based approach to abduction, the background theory is given by a consistent set of
formulas . The notion of an explanation is defined by saying that a formula v (consistent with I) is
an explanation of a if U {4} F a. An explanatory relation is a binary relation > among formulas
where the intended meaning of a >+ is “y is a preferred explanation of o”. To each explanatory relation
is associated a consequence relation |~,, defined as follows: al|~ 3 if XU {v} F § for each v such that
ab Y.

The study of the logical properties of explanatory reasoning is approached by a systematic analysis
of lv,,. We show that there are rationality postulates for abduction (i.e. constrains on the explanatory
relation >) that are, in a very precise sense, equivalent to rationality postulates (in the Krauss-Lehmann-
Magidor tradition) for non-monotonic reasoning (i.e. for the relation |~ ). This tight correspondence
between postulates for explanatory reasoning and non-monotonic reasoning will make apparent a strong
duality between these two forms of inference. Isolating the postulates and showing this duality are one
of the main contributions of the paper. We argued that abduction is reversed non-monotonic reasoning.
It is also shown that “good” explanatory relations are given by preference relations over formulas.

Keywords: Abduction; explanatory and non-monotonic reasoning, nonmonotonic consequence relations;
preferential orders.

5.1 Introduction

Abduction is usually defined as the process of inferring the best explanation of an observation.
There are many information processing operations that can be viewed as a search for an
explanation, and thus, as operations that perform some form of abduction. (a) Diagnosis is
the typical example of abduction. When a system (an electrical circuit, a trade market or
something as complex as a living being) is ill-functioning or not functioning as expected, we
seek for explanations that will help to return the system to its normal state. If there is more
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than one explanation, usually some relevance or simplicity criterion is invoked to guide the
selection of the best explanation. (b) We might need to explain an observation (input) « in
order to give a meaning to it, because a itself is just a string of symbols. For instance, when
reading a text we come across a word o that we do not know, we look up in a dictionary to
give a meaning to it. If a has several senses, we select one of them according to the context.
(c) We can also use abduction when trying to make a plan to achieve a goal or to decide how to
continue an activity. For example, in order to decide what to do after an experiment is made
(maybe to confirm or disprove a conjecture), the output data has to be analyzed and then, in
the best case, it will be explained by the background theory.

A traditional model of abductive reasoning assumes a deductive relationship between the
explanandum (or fact to be explained) and its explanations. The basic idea is to model
abduction as reversed deduction plus some additional conditions. In this logic based approach
to abduction, the background theory is given by a consistent set of formulas (which will be
denoted by T) and a formula v is said to be an explanation of a (w.r.t. X) if ¥ U {v}
entails . To avoid trivial explanations it is also required that an explanation has to be a
formula consistent with ¥. Since abduction is the process of inferring the “best” explanation,
this notion of explanation captures only possible or candidate explanations of «. Thus some
additional conditions are needed to define the key notion of “preferred explanations”. This
paper is concerned about the following three aspects of abduction: (i) What are the logical
properties of abduction when it is regarded as a form of inference?, (ii) How close is abduction
to reversed deduction? and (iii) Since preference criteria for selecting explanations are so
fundamental to abduction, how is (i) and (ii) related to the selection mechanism? Let us see
these three aspects separately.

(i) Several people have studied the logical properties of abductive reasoning: Zadrozny [114],
Flach [29], Cialdea-Pirri [66] and Aliseda [2]. They have approached the problem by isolating
rationality postulates or rules that abductive reasoning should conform to. As Zadronzny
put it, abduction is an inference process that preserves sets of explanations. The structural
properties we are looking for should provide a clear picture of the peculiar features that truly
makes abduction a form of logical inference. The following are two basic questions related to
this aspect:

a) How explanations can be combined to get new explanations? For instance, if v is a
preferred explanation of a and 7' entails v, should ' be considered also a preferred
explanation of a? Another example, if v is a preferred explanation of a and also of
B3, is v a preferred explanation of a vV 37 A related question is: How much a change
of the observation affects its explanations? For instance, suppose that v is a preferred
explanation of a A . Is v also a preferred explanation of a?

b) Should changes on the background theory be allowed in other to explain an observation?
and how much a change of the background theory affects explanations? For instance,
suppose that v is a preferred explanation of o w.r.t. ¥. Should v be also a preferred
explanation of @ but now w.r.t. S U {8}?

Several sources of motivating ideas have been used for isolating the structural properties
that will account for these basic questions. First of all, there is a vast literature on differ-
ent areas of application of abduction: philosophy of science, linguistic, artificial intelligence,
computer science, etc. All of them provide a large variety of examples where to look at for
regularity patterns. A second source of ideas is, of course, found on the structural properties
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of logical deduction (both classical and non-classical). It has been studied which of them could
be considered valid for explanatory reasoning and how to modify those which are not valid in
the context of abduction. For a comprehensive overview of abduction we refer the reader to
[2, 82] and also to [114, 29, 66]. The main idea for isolating our rules for explanatory reasoning
will be explained in the following.

The examples given at the beginning of the introduction suggest that an important aspect
of abduction is the set of conclusions to which the best explanation leads to. In other words,
the consequences implied by the best explanation might be, in some cases, as relevant as
the explanation itself. These considerations suggest that a measure of the “rationality ” of an
abductive method is given by the “rationality” of its “abductive consequences”. More precisely,
we view abduction as a binary relation between an observation and its preferred explanations.
Following Flach’s approach we work with a binary relation at>+ between formulas which is read
as saying v ts a preferred explanation of o.. A rationality postulate for ezplanatory reasoning
is a property of > saying that this relation is “well-behaved”.

To each explanatory relation > we associate a consequence relation: given an observation
o, we infer from a the common consequences of all preferred explanations of a. More formally,
we define a consequence relation v, by

ap, B8 if ZU{y}F B for every v such that o> v. (5.1)

We read afv,,B as “normally, when « is observed then 3 should also be present”. In other
words, § is a concomitant feature of any situation where a usually occurs.

The definition of v, is quite natural and, in fact, Levesque already suggested the idea of
defining such consequence relation as a new deductive operation that would be useful when
doing counterfactual experiments (see the concluding remarks of [56]). But the motivation to
introduce this definition came from [65] where a consequence relation quite similar to v, was
used to model abductive reasoning. Moreover, the results of [65] shows that v, has very nice
formal properties. The key idea to isolate the postulates for explanatory reasoning introduced
in §5.2 is based in the interplay between > and pv,,. We would like |, to be a bona fide
consequence relation and for this end we have searched for postulates for > mainly guided by
the well known rationality postulates for consequence relations studied by Krauss, Lehmann
and Magidor [49], Gardenfors and Makinson [37] and many others [49].

We think that the use of the KLM methodology for isolating the postulates is not only an
heuristic device but it also provides a fair enough justification for the postulates. The results
of our analysis will give a formal justification for most of the postulates introduced by previous
approaches and, in addition, it will shed new light on some aspects of abduction that we think
have not been studied (this will be clarified in the following paragraphs).

In relation to b) it is clear that these questions implicitly have the assumption that the
background theory is also a parameter and thus that abduction is a ternary relation. This issue
was addressed by Cialdea-Pirri and Aliseda who presented rules that allows some changes
on ¥. However, they considered only changes that consists of adding new formulas to X.
This restriction is quite natural, since more substantial changes (like contracting or revising
Y) are not a trivial matter as it is by now well known from the theory of belief revision
developed by Gardenfors and others [1, 36). In this paper the background theory will be fixed
and therefore only formulas consistent with ¥ can be explained. This can be considered a
weakness since it has been argued that the more interesting observation are those which are not
consistent with the theory (“surprising observations”). Boutilier and Becher [12] have presented
a view of abduction based on the AGM theory for belief revision [1] by exploting the idea that
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observations inconsistent with the background theory can be explained by revising the theory
in order to make the observation either true or at least possible. At a first glance our approach
seems to be incompatible with the belief revision approach. The incompatibility occurs because
in belief revision £ is considered a belief set and therefore as something defeasible, but we will
give ¥ the role of a system description which is independent of the beliefs of the agent. The
agent’s believes are about which parts of the system are responsible for the observation but
not about how the system is built. In other words, X represents the known laws of the world
and base on them we explain an observation !. In spite of all this apparent differences, we will
show in §5.4 that our approach also has an “epistemic” reading in the sense of belief revision.

(i) Zadronzny, Cialdea-Pirri and Aliseda argued that abduction is a different form of
reasoning and should not be reduced to reversed deduction. Flach’s postulates reduces ex-
planatory reasoning to reversed deduction (essentially because he did not include preference
in his formalism). Nevertheless, his result goes in a direction similar to ours. The exact rela-
tionship between abduction and reversed deduction is however vague and, to our knowledge,
has not being clarified in a formal way. We will say that an explanatory relation is causal if
the following condition holds

ap v iff Cy(a) CCn(EUY) (5.2)

Where Coi(a) = {8 : afv,,8} and b, is defined as in (5.1) and Cn(X) is the set of classical
consequences of X (for X a set of formulas or a formula).We will argue in §5.3 that (5.2) can
formally be regarded as saying that > and pv,, are dual objects and therefore that causal
explanatory reasoning is non-monotonic reasoning-in-reverse. We will see several example of
explanatory relations based on belief revision which are not causal (in our sense). These
examples will show that the main feature of causal explanatory relations is that they are based
on a non defeasible notion of explanation (as opposite to those notions based on belief).

(i) As we have said the most distinct feature of abduction is the emphasis it makes on
preferred explanations rather than possible explanations. Most formalism we have mentioned
include the notion of preference as an external requirement. Preference criteria for selecting
the best explanation are regarded as qualitative properties (a sort of a simplicity criteria 2)
which are not reducible to logical ones. Moreover, in those formalism, the preference relation
(for instance an order over formulas) is explicitly mentioned in the postulates that intend to
capture the notion of “best” explanation. Cialdea and Pirri’s approach tries to use preference
criteria for selecting explanations based on logic but their results does not fully accomplish this
goal since the preference relation has to be represented in a separated theory. We will show
that preference criteria are implicit in the logical properties of abduction and therefore they
do not need to be explicitly included as part of the postulates. In other words, the structural
properties of explanatory reasoning implicitly include an order encoding which are the preferred
explanations. More formally, we will show that (under some conditions) for every explanatory
relation > there is an order relation < such that o > v iff v is a <-minimal explanation of
a. The properties of < are studied and shown to have a close connection with the postulates
satisfied by »> .

The paper is organized as follows. In §5.2 we will introduce and study the postulates for
explanatory relations. In §5.3 we will present the results showing the tight relationship between
our postulates and the rationality postulates for consequence relations in the KLM style. Also,

!A different but related problem is to repair ¥ after some unexplainable fact is observed (or when the
explanation are shown to be incorrect by other means). We think this problem is very close related with
inductive reasoning and deserve a separated study.

20ccam’s razor: “ Entia praeter necessitatem non sunt multiplicanda.”
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we will introduce the notion of causal explanatory relation and show that they are the formal
counterpart of non-monotonic consequence relations. In §5.4 we will see how our approach
is viewed from the belief revision perspective. In §5.5 we will show the results concerning
preference relations for defining explanatory reasoning. In §5.6 we will make precise comments
about the work of Flach, Cialdea-Pirri and Aliseda. In §5.7 we will make some final remarks.
Lists of the main postulates for consequence relations and explanatory relations used in the
paper will be found in appendixes A.l and A.2 respectively. A summary of the main results
from sections §5.2 and §5.3 will be given in appendix B. The proofs will be given in section
5.8.

A preliminary version of this paper appeared as a technical report of LIFL 1997 (Lille,
France) and part of it was presented at WOLLIC97 (Brazil) and at NMR’98 (Italy).

5.2 Reasoning with explanations

The background theory denoted by X, will be a consistent set of formulas in a classical propo-
sitional language. We will use the following notation: « 5z 3 when T U {a} 8.2 We could
have avoid the use of ¥ and F5 and instead use a semantic entailment relations |= satisfying
the standard requirements (like compactness and the properties of V and A). This way the
background theory would be taken for granted and the notion of explanation would be some-
what elliptical. But we have chosen to keep X for several reasons. First of all, because it is
customary in most presentation of abduction to have a background theory. Secondly, because
many examples are naturally presented with a background theory that constrains the notion
of explanation. And third, because by keeping X we leave open the question regarding the
properties of abduction when the background theory is also considered a parameter.

We now introduce the notion of an explanation of a formula with respect to .

Definition 5.1 For every formula a, the collection of explanations of a w.r.t. ¥ is denoted
by Ezpla(a) and is defined as follows:

Ezpla(a)={y:vWsl & vFsa}

Notice that we have ruled out trivial explanations by asking that v has to be consistent
with . We are interested in studying the relation “y is a preferred explanation of o, which
will be denoted by aI>+v. In explanatory reasoning the input is an observation and the output
is an explanation, that is the reason to write o> v with a as input and ¥ as output. Our next
definition capture the ideas mentioned in the introduction.

Definition 5.2 Let ¥ be a background theory. An ezplanatory relatzon for ¥ will be any
binary relation > such that for every a and 7,

aby = vbgl and yhsa

We read o > v as saying that v is a preferred ezplanation (with respect to ) of a. The
associated consequence relation is defined as follows

ap . B8 % v bg B for all v such that a > 7.

3Readers familiar with [65] should note that in that paper -z denotes a different relation.
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We read alv,, 8 as “normally, when o is observed then 3 should also be present”. The collection
of all abductive consequence of an observation Cyp(cx) is defined as follows

Cab(a) = {IB : OZI’Vab,B}

As we said in the introduction our initial and motivating idea was that |~ can be used
heuristically to isolate the logical properties of explanatory relations. These properties will be
called postulates for ezplanatory reasoning. We would like pv,, to be a bona fide consequence
relation and for this end we have searched for the postulates mainly guided by the well known
KLM rationality postulates for consequence relations [49] (a list of the main postulates for
consequence relations is given in appendix A.1) The first thing we need is, of course, that pv ;
has to be reflexive, i.e. afv o for all . This is obvious from the fact that when o > v then
v ks o. Notice also that if a -y 3 then al~,,8. In particular, if o bz, then apv,, 1.

A very natural assumption is to consider that explanatory relations are independent of the
syntax. In our context this is expressed by the rules Left Logical Fquivalence (LLEy) and Right
Logical Fquivalence (RLEg). Notice that these rules are somewhat stronger than the usual
rules for consequence relations, since our notion of logical equivalence uses F5 instead of .

Fraed , aby

LLE;: prES

Fey e 5 aby
ol

RLE;:

Next we introduce a postulate called Ezplanatory Cautious Monotony (E-CM), since it has
the form of a monotonicity rule on the left.

aby ;v B

E-CM: @rB) >

This rule says that a preferred explanation v of a simple observation o will be a preferred
explanation of any observation more complex than « (like a A ) which is also entailed by ~.
This seems quite natural because if we have decided that v is a preferred explanation of & and
we know further that vy implies 3, then based on a larger set of observations (like a A g) it is
reasonable to think that v is a preferred explanation of a A B (this situation will be natural
when prefered explanations are choosen used some ‘orders’ between the explanations, cf. 5.41).

Now we will introduce the Ezplanatory Cut rules. These rules play an important role in
our setting and, as we will see, there is a duality between monotony rules for consequence
relations and cut rules for explanatory reasoning. Explanatory Cut rules relate the preferred
explanations of an observation o A 8 and the preferred explanations of a. If we have certain
complex observation (like a A 3), then we might have an explanation for it which is not a pre-
ferred explanation for a simpler observation (like &). The observation of two facts (symptoms)
together or simultaneously “forces” to select an explanation which might not be considered
a preferred explanation when only one of the facts is observed. A Cut rule will say that a
preferred explanation of the more complex observation (a A §) might also be, in some cases, a
preferred explanation of the simpler or incomplete observation (a). In other words, Cut rules
allow to keep a preferred explanation even when the set of observations is not longer complete.
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One could get an idea of the usefulness of an Explanatory Cut rule by looking at a diagnosis
process: if we know a fairly complete list of a patient’s symptoms, then we might be able to
decide which is the most likely illness that caused them. However, what if we know only few of
the symptoms? An Explanatory Cut rule says that in some cases this incomplete information
suffices. These rules are the key fact for encoding preference criteria.

We will consider in this paper three Cut rules: Explanatory Cautious Cut, Explanatory
Rational Cut and Explanatory Cut. We start with Ezplanatory Cautious Cut which is the
weakest of all Cut rules.

(anp)>y, Yo[a> b = k53]
aby

E-C-Cut:

The meaning of E-C-Cut is more easily grasp by analyzing its contrapositive: suppose (a A 8)>+
and a [¥v, then there exists § such that o> 8 and § I/; 8. In particular, it says that if we are
able to find a good explanation for a A3, then we should also be able to find a good explanation
for o (but maybe a different one).

The following observation shows why we have imposed some restrictions in the hypothesis
of E-C-Cut. Suppose E-CM and also that the following rule hold:

(A B) >y (5.3)
aly
Then we also have
ab Y, '_E :B
_— 5.4
= (5.4)

In fact, it follows from E-CM and the hypothesis of (5.4) that (a A 8) & v, hence from the
proposed rule (5.3) we obtain 3 > 7. Notice also that (5.4) clearly implies (5.3).

We consider the rule (5.4) to be too strong to model the relation “y is a preferred explana-
tion of ”. When + is a preferred explanation of a, and & is a more specific observation than 8
(i.e. a I B), then the preferred explanations of # might not include v, because we might need
“less” to explain § than to explain o (an extreme case is when 3 is a consequence of £). We
will present examples of natural explanatory relations which does not satisfy (5.3) and we will
see that (5.3) implies |v,, to be monotonic.

Among our cut rules, this rule is essentially the only Cut rule we have seen in the literature.
In most cases, it is presented by requiring that > being transitive.

In general ©> is not reflexive, because a formula might not be a preferred explanation of
itself (this was already noticed in {66, 29]), however there is a version of reflexivity that holds
in most cases.

aby

E-Reflexivity: >
T

Suppose that E-CM and E-C-Cut hold. Let a >+, then by E-CM we have (YA a) > ~. Itis
easy to check that the hypothesis of E-C-Cut are satisfied and hence v > 7. So we have shown
the following
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Proposition 5.3 Let > an ezplanatory relation satisfying E-CM and E-C-Cut. Then E-
Reflexivity holds.

The following result shows that the postulates for explanatory relations considered so far
are the counterpart of cumulative consequence relations, i.e. relations satisfying the following
rules:REF (reflexivity) o  oLLE (left logical equivalence) o |~ S & + a + v = v | BRW
(right weakening) a v B & FB vy =>ap vy CUT aAf vy & a8 = o~ yCM (cautious
monotony) ap & apy=>aAy S

Theorem 5.4 Suppose > satisfies LLEy, E-CM and E-C-Cut, then v, is cumulative.

Now will address the problem of how explanatory relations treat disjunctions. We will
start by analyzing the right side. In [56] it was argued that if & has more than one preferred
explanation, then the disjunction of all of them is the explanation that fully and non-trivially
accounts for a. The consequence relation pv,; is capturing this intuition, since to compute the
abductive consequences of « is irrelevant whether the collection of preferred explanations of a
is closed under disjunctions. These considerations suggest the following postulate.

a7y ;abé

E-RW:
ap (yVvi)

E-RW will be called Ezplanatory Right Weakening. It is the only rule that we will consider
that allows to weakening a preferred explanation.

The next postulate is Right Or
ROR: If a > (yVp) then either a > vy or b p.

A stronger version of this postulates is the following

ab>(yVp) ;v L

E-Disj:
alby

Notice that E-Disj is the converse of E-RW.

The following postulate is the key fact to obtain that {v , is preferential, 4.e. if in addition
to cumulative rules pv , satisfies the rule Or: for any formulas o, 8 and v if al~,,y and Bhv g,y
then oV Biv,,y. This postulate will be called Right And (RA) since it gives some amount of
monotony on the right. A similar postulate has been considered by Flach in [29].

aby ;Y ey YW L

RA: y
aby

RA says that any explanation more “complete”(stronger, more specific) than a preferred
explanation of « is also a preferred explanation of a. This postulates says that explananda are
not defeasible. The importance of RA is shown in the following



5.2. Reasoning with explanations 79

Proposition 5.5 Let > be an explanatory relation satisfying RA. Then
(i) > satisfies RLE; and ROR.
(i) if a > v and vy > 8, then a > 8. In other words, D> is transitive.

(iii) Suppose > also satisfies E-=CM. If a >+ and v /s —~f, then there is ¥’ 5 v such that
a D>y and v’ 5 B, hence (o AB) > v'. In words, if v is a preferred explanation of a and 7y
does not ruled out 3, then we can extend v to a preferred explanation of a and 3.

(iv) E-Disj together with RLEs is equivalent to RA.

Definition 5.6 An ezplanatory relation is said to be E-preferential if satisfies LLE;, E-CM,
E-C-Cut and RA.

The following result shows the relationship between the preferred explanation of a disjunc-
tion a V B and the preferred explanations of @ and §.

Proposition 5.7 Let > be a E-preferential explanatory relation. Then

{yvi(@avB)py}C{rv:apy}u{v:o1}U{r: Fev e (M V™), ab1,B> 72}

It is interesting to observe the analogy between 5.7 and the fact that for a preferential
consequence relation C(a) NC(B8) C C(aV B). In other words, the sets {y: a > v} and C(a)
seem to play dual roles.

The following result is a straightforward consequence of 5.7.

Corollary 5.8 Suppose that > is a E-preferential explanatory relation then the following
holds: if (aV 8) > v and a Iy, then there isy' such that 5> (v A%'). o

The next result says that E-preferential explanatory relations captures our initial motiva-
tion for introducing the postulates.

Theorem 5.9 If > is an E-preferential explanatory relation, then v, is preferential.

We will continue using the properties of v, as a guideline for isolating rationality postulates
for abduction. We will consider next the following postulates: Weak Disjunctive Rationality
(W-DR): C(aV ) € Cn(C(a) U C(B)), for every formulas o and §;Disjunctive Rationality
(DR): if @V B b~ p then either o |~ p or B8 p~ p for any «, B and p;and Rational Monotony (RM):
.These rules has been studied both from a semantics point of view [30, 55] and a syntactical
point of view [69]. The new postulates for > will be related to properties satisfied by the
preferred explanations of a disjunctive formula. Which is not surprising, since W-DR, DR and
RM impose constrains to the set of consequences of a disjunctive formula.

The next postulate is Left Or

aby ; B>y

LOR:
(avpB) >y
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The intuition behind LOR is the following. Suppose that when we observe either ¢ or § (no
matter which one) we are willing to accept that v is a very likely explanation for both of them.
Now we are told that one of them is observed (but maybe it is not known which one). Is it
rational to conclude that + is still a very likely explanation of that observation (i.e. a very likely
explanation of a vV §)? The new postulate implies that the answer is yes. It is interesting to
notice that LOR was considered by Flach and Aliseda as a principle for confirmatory induction
rather than for explanatory inference.

The dual of LOR is Weak Disjunctive Rationality (W-DR).Freund [30] proved that, in the
case of finite languages, a preferential relation satisfies W-DR iff it can be represented by an
injective preferential model, i.e. if there is a partial order < over the collection of valuations
of the language such that mod(C(«)) is given by the <-minimal model of mod(a), where if A
is a set of formulas or a formula mod(A) is the set of models of A.

Theorem 5.10 Suppose the language is finite and let > be an E-preferential ezplanatory
relation that satisfies LOR. Then b, is preferential and satisfies W-DR.

Remark: We don’t know if theorem 5.10 holds when the language is infinite.

It is easy to see that DR is equivalent to saying that for every a and 8, C(aV 8) C
C(a)UC(p). Hence, DR is stronger than W-DR. The corresponding postulate for explanatory
relations is the following:

aby ; f>é
(avpB)>yor (avVp) s

E-DR:

Proposition 5.11 Let > be an ezplanatory relation satisfying E-DR. Then > satisfies LOR
and b, satisfies DR.

As a corollary of 5.9 and 5.11 we have

Theorem 5.12 Let > be an E-preferential explanatory relation that satisfies E-DR. Then
b, s preferential and satisfies DR. [

A relation p is called Rationalif it is preferential and satisfies Rational Monotony (RM).The
corresponding postulate for abduction has the form of a Cut rule which is stronger than
E-C-Cut. We will call it Fzplanatory Rational Cut (E-R-Cut).

(@AB) >y ;3 [a>b&étz G
aly

E-R-Cut:

We will see later that E-R-Cut implies that preferred explanations (i.e. those formulas
such that a b+ for some @) are linearly pre-order. Moreover, when the underlying language is
finite, E-R-Cut turns out to be equivalent to assigning a natural number to each formula and
thus the preferred explanation of o are those explanations of o with minimal value.

To get a little intuition about this postulate we can paraphrase one of its equivalent forms
as follows: if v is a good explanation of a A B but it is not a good explanation of a then any
good explanation of « is consistent with —4.
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Theorem 5.13 Let > be an E-preferential ezplanatory relation that satisfies E-R-Cut. Then
b, is rational.

We will see next that E-R-Cut gives a fine structure to the set {y: (aV 8) > ~v}.

Proposition 5.14 Suppose > is an E-preferential explanatory relation that satisfies E-R-Cut.
Then for every a and 3 one of the following holds:

(a) {v:(aVvpB)>v}={r:a>7}
b) {y:(avB)>yt={y:8>7}

() {v:a>y}u{y:Bpv} C {yv:(avP>7} C
{r:apy}u{y:Bo}u{y:iFe 7 (6Vp) & o> & B p)}

Remark: The second C in (c) above could be an equality if > satisfies E-RW . In fact, in
case 3 in the proof of 5.14 we show that if a > 4 and B> p then (aV ) > 6 and (o V B) > p,
therefore by E-RW we get that (aV §) > (0V p). In this case, 5.14 is the analogous of the
following well known fact about rational relations (which was found first in the context of
belief revision [36, 70]): If |~ is rational then for every & and 8 one of the following holds: (a)
C(aVvp)=C(a), (b) Clavp)=C(B), (c) ClaVvh) = C(a)NC(B). The proof of 5.14 follows
closely the proof of this fact about |~ ;. 5

It is well known that any rational relation satisfies DR [69]. We will show next the corre-
sponding result for E-DR (it will be used later in the paper). ‘

Proposition 5.15 Suppose > is E-preferential and satisfies E-R-Cut. Then it also satisfies
E-DR.

We consider next the role of full Monotony. It turns out that full Monotony is implied the
strongest cut rule which we call E-Cut.

E-Cut: (ernf)e>ry
B>y

As we have noticed before, E-Cut is equivalent, under the presence of E-CM, to the following:

a7y ;abs B
By

(5.5)

Theorem 5.16 Suppose > satisfies E-Cut then |~,, is monotonic.
On the light of the previous results we will complete the definition 5.6 as follows

Definition 5.17 Let ¥ be a background theory and 1> be an explanatory relation. We say
that > is E-cumulative if it satisfies E-CM, E-C-Cut and LLE;. > is E-preferential if it
is E-cumulative and in addition satisfies RA. > is E-rational if it is E-preferential and in
addition satisfies E-R-Cut.
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We are about to finish the presentation of the postulates for explanatory reasoning. There
is however one natural question that we have not considered yet. When an observation has a
preferred explanation? The following postulate, that we call Fzplanatory Consistency Preser-
vation, says that « has a preferred explanation iff it is consistent with X. Our last results are
somewhat technical but they will be needed in the sequel.

E-Cong : If; —a iff there is v such that > v

The corresponding postulate for consequence relations will be called Consistency Preser-
vation (with respect to X).

Cony, : For every formula a, (i) o L iff by = and (ii) for every 0 € &, a |~ 0.

Part (ii) in Cony was included since it necessarily holds for ;. The following observation
is obvious.

Proposition 5.18 Let > be an ezplanatory relation satisfying E-Cons , then v, satisfies
Cong. O

Under E-Cony E-R-Cut is stronger than E-C-Cut. More precisely we have the following
Proposition 5.19 Any explanatory relation satisfying E-Cong and E-R-Cut satisfies E-C-Cut.

As a corollary of 5.19 and 5.15 we have the following result:

Proposition 5.20 Suppose that > satisfies LLEz, E-CM, RA, E-R-Cut and E-Cong. Then it
also satisfies E-DR.

As a corollary of 5.13, 5.19 and 5.18 we have the following result:

Proposition 5.21 Let > be an ezplanatory relation that satisfies LLEs, E-CM, E-R-Cut,
E-Cong, and RA.Then v, is rational and satisfies Cons. 5

Proposition 5.22 Suppose > satisfies E-Cut and E-Cong, then |~ , =Fy.

5.2.1 Two examples

We will present examples of E-preferential and E-rational explanatory relations. Both examples
are based on preferential models. Preferential models are the main tool for representing and
studying non-monotonic consequence relations (see [49] and the references therein). Given an
order of the models of ¥ we define a notion of preferred explanation. The intuition is that to
explain an observation we only look at the closest worlds where the observation hold. It is not
by accident that we use preferential models. In fact, explanatory relations defined in this way
are quite universal in the sense that many explanatory relations are of that form. This will be
addressed in §5.3.
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We could have presented the examples just as a formal manipulation of symbols, but instead
we choose to provide a context where to interpret the symbols. This kind of interpretations
(that makes the reading more enjoyable) have a drawback: important aspects of the context are
not included into the formalism used to model it; so one get the impression that the formalism
is an over simplification of the problems under consideration. OQur examples mainly pretend
to illustrate some of the concepts we have introduced.

Example 1: Consider the following scenario. A message consisting of a finite sequence of 0
and 1 is sent by either one of two independent senders A and B. Messages sent by A always
start with 0 and messages sent by B always start with 1. Sometimes only a portion of the
message is received and thus it is necessary to recover the lost part. The person in charge
of recovering messages, after many years of persistent work, has developed a quite simple
preference criterion for guessing the correct message. He has observed that normally both A
and B send messages starting with a constant sequence and moreover the sequence has even
length. Since the senders are independent of each other he has not preference about who send
the message. To make the example manageable we will assume that all messages have length
4. We will analyze later in the paper a similar example allowing messages of any length.

The preference criterion can then be represented as follows:

{0100, 0101, 0110, 0111, 0001 } {1000, 1001, 1010, 1011, 1111}

{0000, 0010, 0011} {1111, 1100, 1101}

Where the messages at the bottom are more preferred than those at the top, but there is no
relation between a message starting with 0 and a message starting with 1.

Let the letters a, b, ¢ and d represent, in that order, the four digits of a message. The
language £ is the propositional language in the variables a, b, ¢ and d and ¥ is the empty
set (any message can be either sent or received and there is no logical connection between the
digits of a given message). Every message is a valuation of £ and therefore the preference
relation described is a partial order over the collection of all interpretations of the language.
This partial order will be denoted by <. Notice that all valuations at the bottom (or top) are
mutually incomparable. Given a formula o we define its minimal models as usual:

min(a)={N: NEa& MFEaforal M < N}
Now we define an explanatory relation > as follows:
aby p= Mod(vy) C min(a)

for any pair of consistent formulas « and y. We interpret min(a) as containing those messages
encoded by a that have the most preferred features. Thus our definition says that v is a
preferred explanation for « if every message encoded by < is one of the preferred messages
encoded by a. This is not quite the same as saying that every preferred message encoded by
7 is also one of the preferred messages encoded by a. The last statement holds if we ask that
min(y) C min(a). This alternative will be considered later.

It is easy to show that afv, B iff N |= G for all N € min(a). This can be stated equivalently
as Mod(C,s(e)) = min(a). Readers familiar with the theory of non-monotonic consequence
relations will realize the motivation for our definition. We will make this connection clear in
the forthcoming sections.
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It is not difficult to show that > is a preferential explanatory relation. We will not proved
this now since it is a consequence of a general result that will be shown later. We will compute
some preferred explanations.

Suppose that the portion of the message we were able to get is expressed by the formula
d (i.e. we only know that the fourth digit is 1). Then it is easy to check that the most likely
sent messages are 0011, 1101 or 1111. Thus the preferred explanation of d are =a A=bAcAd,
aANbA—-cAd,aAbA cAdand the disjunction of them. In particular, > is not reflexive, for
instance d ¥d. Notice that di~ ,(ma A =b V a A b), which reflects the agent’s preferences.

Let us suppose that in addition we know that the second digit was 0. Now the observation
is encoded by —b A d. In this case the most likely sent messages are 0011, 1001 and 1011.
The formulas encoding these messages together with their disjunction are all the preferred
explanation of =b A d. Notice that E-R-Cut fails. In fact, 1001 is a preferred explanation of
dA—b which is not a preferred explanation of d but there is a preferred explanation of d (namely
0011) that implies —b.

We have already suggested that there are others natural alternatives to define > based
on a preferential model. For example, requiring that min(y) C min(a) instead of Mod(y) C
min(a). The main difference of this alternative definition with respect to the one given above
is that the former is reflexive and fails to satisfy RA but the later is not. This will be treated
in section §5.4. .

Example 2: Leonidas, an old taxi driver, retired two month ago after 50 years of work.
He lent his car to Julio, a cousin of him.Every time Leonidas has an opportunity he enjoyed
himself by guessing which streets his cousin have driven his car by. Leonidas just needs to ask
a couple of questions and then he is able to tell very precisely the exact route Julio took. He
uses to say, making fun of Julio, “my car is more like a metro train that needs no driver and
you are in the car not really to drive it but only to collect the fare”. Once he got into a big
trouble by trying to impress his cousin with his divining skills. He could not help himself and
approached a young couple that just got off the car. Very politely he addressed them with his
usual questions. “Did you pass by Cafe Kawi?, “Did you pass by Cine Paraiso? The young
couple got into a awful argument. The outburst, Leonidas and Julio thought, had nothing to
do with the question they were asked. He said “we did pass by Cafe Kawi but not by the movie
theater” and she replied, “as usual, you were absent mind, thinking about god knows what! We
did not pass by the Cafe but we did pass by the theater”. That day Julio made his uncle swear
that he will never again bother his customers with such nagging questions. The old taxi driver
slowly walked away, then turned his head and smiling said to Julio “You did pass by the movie
theater, anyway”. The reason for Leonidas’s success in guessing the routes was that he has
given Julio very precise indications about which were the best routes for avoiding traffic and
finding good customers. He said to Julio: “Always try to pass by either one of the two metro
station Chacaito or La Hoyada. In case this is not possible, then try to pass by either Cafe
Kawi or Cine Paraiso. If neither of these two alternatives are possible, do whatever you feel
like”. Julio always follows Leonidas’s advice to the letter.

The street map of the area covered by Leonidas’s car is indicated below.
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P — (24 ~ (B84 ¢ H 4th St.
l t 3 T

13) —= (23 —= (33) — (43) 3rdSt.
d T { T

(1,2) — (2.2) K «— (42) 2ndSt.
4 T { T
C - (1) = (31) = (41)  1lthSt.

1th Ave. 2nd Av. 3rd Av. 4th Av.

Chacaito station is at C, La Hoyada station is at H, Cafe Kawi is at K and Cine Paraiso is
at P.

To model this example we introduce one propositional variable z; ; for each one of the 16
corners in the map. The models of ¥ will be paths without cycles through this map. X should
contains formulas ensuring that each of its model consists of only one connected path.lt is
also convenient to add another 32 new variables to denote the starting and ending points. Let
s;; denote that the starting point was at (7,j) and similarly e; ; for the ending point. Some
constrains about the starting and ending points must be added to . *

Leonidas’s preferences are given by a three level preferential model.

Ly = Mod(ZU{z1,1V z44})
L, Mod(ZU {~z11 A —z44,232V 214})
L, = Mod(Z)\(LoU L)

This gives a total pre-order (i.e. a transitive and reflexive relation) of Mod(X). The explanatory
relation O is defined as in example 1. A general result, which will be proved later, guarantees
that > is E-rational, satisfies E-RW and, since ¥ = Lo UL; UL, then > also satisfies E-Cong.

Let us suppose that the couple got in the car at (3,4) and off the car at (2,2). Let o be
(z32A—2z14 V 232 A 21 4) AS3 4/ €22. Since o has models in Lg, then a preferred explanation
of a must be a formula 4 such that mod(y) C Lo and v b5 a. It is clear that any path
starting at (3.4) and ending at (2,2) can not pass by H. Hence any preferred explanation of «
necessarily is a path passing by C. From this it is easy to check that there is only one solution
and it includes P. Notice that there are several formulas describing this unique solution. For
instance, s34 A 213 A 22,1 A e22. We do not need to mention all corners in this path. Some of
them will be forced to be in the path by the rules of . Observe that the preferred explanations
of o are exactly the preferred explanations of ~k A p A s34 A €32 (here recall 5.14).

Let 3 be the following “observation” s; 1 Az2 2 Az23Aep4 A=k A—z34. Any path satisfying
B starts at (2,1), then it can not pass by C and since it does not pass by (3.4) then it can
not pass by H. In fact, we have that 3 Fy —z; 4 A mz32 A =211 A —244. This says that all
models of 3 belong to Ly. Therefore the preferred explanations of 3 are formulas all whose
models must be in L. What if we do not know the starting point? For instance, let a be

*For instance, 21,1 = (22,1 Ve1,1) and zz2 — (222, V 23,1 V e32) must be in T. The first formula says that
if a path pass through (1,1) then either it ends at (1,1) or goes to (2,1). An analogous interpretation for the
second formula. Also formulas like €11 — (=223 Vs1,1) and es2 = (—22,2 A =z3,1) V s32 must be in E. These
formula guarantee that the path ends at (1, 1) and (3, 2) respectively. Finally Vi,; V.",," si,j A€ j» ensures that
there is a starting and ending point in each path. To ensure uniqueness of the starting and ending point we add
Si; —> zijj A-sy o and e;; = zij A—ep o for all 1,4, 5, 5’ with i #4¢ and j # j5'.
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239 N 233\ egq N -k A —z34. This is a weaker observation and moreover o has models in Lo
(for instance a path starting at C, then it goes to (2,1), then goes through 2nd Ave. and finally
stops at (2,4)). Hence none of the preferred explanations of 3 is a preferred explanation of c.
This example shows that some parts of an observation are more important (because they are
more preferred) than others and therefore cut rules must be constrained.

Let now ' be the following formula: s3; A 223 A ez 4 A 7k A 23 4. We claim that the
preferred explanations of 3’ are exactly the preferred explanations of 3. In fact, it is easy
to check that there are preferred explanations of 3’ that implies z2 2 . Then by E-R-Cut we
conclude that any preferred explanation of § is also a preferred explanation of 3’. This says
that in this case z; 2 is irrelevant and therefore can be ignored.

To relate the meaning of E-R-Cut with the ranked model that defines the explanatory
relation, let us suppose that (A B) > 4. The constrain in E-R-Cut says that there must exist
6 such that o> 6 and é i B. This implies that min(a) are at the same level as min(a A §),
therefore v remains a preferred explanation for a. a

5.3 Explaining our reasoning

In the previous section we have shown that each explanatory relation has associated a con-
sequence relation which reflects many properties of the explanatory relation. The intuition
was: if you tell me how to exzplain an observation, then I will tell you which are its usual or
normal consequences. In this section we will address the converse of the previous statement:
If you know which are the normal consequences of an observation, can you explain it? In this
setting there are two obvious thing one has to remark. The first one is that we are viewing the
process of getting conclusions out of an observation and the process of explaining it as dual
processes. But then it is natural to ask: are these two processes one the inverse of the other?
In this section we will address also this question. We will introduce a notion of causal ezplana-
tory relations which corresponds to explanatory mechanisms that can be formally regarded as
performing reversed non-monotonic deduction.

The normal consequences of an observation will be given by a consequence relation . We
will assume that every such |~ is reflexive, i.e. a |~ a for all @. The first thing we must answer
is under which conditions |~ is of the form |v,. It is obvious from the definition of pv , that
the question is then when the following holds:

C(a)=({Cn (BU{r}): C(e) CCn(BU{7})} (5.6)
We formally introduce this condition in the following definition.

Definition 5.23 A consequence relation |~ is said to be adequate with respect to £ if (5.6)
holds for every formula a.

If > is an explanatory relation then, from the definition of hv;, it is clear that |, is
adequate with respect to ¥. The classical entailment relation F is adequate with respect to
{T} and Iy is adequate with respect to X. If there is no danger of confusion we will just say
adequate instead of adequate with respect to %.
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Given an adequate w.r.t. ¥ consequence relation |~ it is clear that a v o for all o € X.
Moreover, if o XL, then there must exist v consistent with ¥ such that v 5 a. In particular,
if & L then a is consistent with ¥. Hence |~ almost satisfies Cony except that it might
happen that o L for some « consistent with . Also observe that an adequate consequence
relation satisfies the following form of supraclassicality: if a by 3, then a |~ §.

The notion of an adequate consequence relation is relevant only if the language is infinite.
In fact, for a finite language, it is not hard to show that every consequence relation satisfying
the following mild conditions is adequate: (i) C(a) = Cn(C(a)) and (ii) a v o for all @ and
all o € £. However, for infinite languages there are even rational relations satisfying Cony
which are not adequate (see example 5 in §5.3.2).

It is clear from (5.6) what should be the definition of the explanatory relation associated
with a consequence relation.

Definition 5.24 Let |~ be a consequence relation |~. We associate with |~ a binary relation
> as follows:

aby Y Yol &Cl@) CCr(ZU{r)) (5.7)

Notice that > is indeed an explanatory relation (using that p is reflexive). We have put a
tilde above the symbol > to remind the reader that this explanatory relation is defined using
a consequence relation |~. Suppose that | satisfies the following form of supraclassicality: if

o ts B, then a p~ S.

Then it is clear that if a>v then ¥ b @. However, in general v b a does not imply ab7y
as we will see in the examples. This suggests an alternative definition which will be treated in
§5.4.

The following result is easy to show.
Proposition 5.25 Every adequate consequence relation is of the form v ;.

The next theorem shows the correspondence between the postulates satisfied by |~ and
those satisfied by .

Theorem 5.26 Let |~ be an adequate consequence relation, then

1. & satisfies RA and RLE;.

If v satisfies LLE, then > satisfies LLE;.

If |~ satisfies Cong, then > satisfies E-Cony.

If v satisfies CM, then B satisfies E-C-Cut.

If v satisfies the S-rule, i.e. a A B |~ p implies o |~ 3 — p, then B satisfies E-CM.

S A A

If |~ satisfies W-DR, then > satisfies LOR.

=

If |~ is preferential and satisfies DR, then > satisfies E-DR.
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8. If b~ satisfies RM, then > satisfies E-R-Cut.

9. If |~ is monotone, then > satisfies E-Cut.

Remark: The hypothesis that |~ is adequate was used only to show that = v ;, E-Cong
and E-C-Cut.

It is interesting to notice that we needed the S-rule, which is part of the preferential system,
to get that > satisfies E-CM which is part of the cumulative system for explanatory relations.
Also notice that we did not include the corresponding result for |~ cumulative. We will handle
this case only for finite languages.

Proposition 5.27 Suppose the language is finite. Let |~ be a cumulative relation such that
o~ o for all o and all 0 € £. Then there is an exzplanatory relation > satisfying, LLE;,
RLEs, E-CM and E-C-Cut such that = v ;.

5.3.1 Causal explanatory relations and reversed deduction

In the previous section we have shown that many consequence relations are of the form v ;.
In this section we will address the dual question for explanatory relations. Namely, which
explanatory relations are of the form 5? Let > be an explanatory relation and v, its
associated consequence relation. Let S be the explanatory relation associated to pv,,. Then
the question is whether > is equal to > . Consider the following condition on > .

ab v iff Cop(a) € Cr(EU7) (5.8)

Then our question can be equivalently stated as: Which explanatory relations satisfy (5.8)7
First let us notice that in (5.8) the direction from left to right always holds. So the direction
from right to left is what (5.8) really ask for.

Condition (5.8) says that > can be recuperated from (v, and thus explanatory reasoning
based on D> can be viewed as performing a sort of reversed deduction with respect to b~ ,. We
will give more evidence about the last claim later in this section. The failure of (5.8) means
that even if we know that an agent is reasoning abductively, we might not be sure which
explanatory relation the agent is using. In other words, looking only at jv,, we can not tell
what are the agent’s preferred explanations. We will isolated (5.8) in the following definition.

Definition 5.28 An explanatory relations is said to be causal if it satisfies (5.8).

In the following sections we will show some examples of explanatory relations which are
far from being causal relations. These relations use a notion of explanation based on belief
revision. Notice that fv,, =ty for any explanatory relation satisfying full reflexivity (i.e. aD> o
for every « consistent with ), thus such relations can not be causal unless they are trivial.

So far we have not presented any semantic characterization of explanatory relations. It
is not difficult to see that some causal explanatory relations can be easily characterized in
terms of preferential models. Cumulative, preferential and rational relations are represented
by cumulative, preferential and ranked models respectively (see [49, 55, 30, 96]). Those models
can also be used to represent causal explanatory relations. In fact, from (5.8) it follows that
one can check whether o > v holds by looking at the model that represents kv ,. To give an
example we state the theorem corresponding to E-rational causal relations.
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Theorem 5.29 Let > be a E-rational causal relations satisfying E-Cons. Then there is a
ranked model (Mod(X), <) such that the following holds for every v consistent with ¥

aby iff Mod(Z2U {v}) C min(a)

Now we will address the question of when a relation is causal. The first observation is that
any relation of the form 5> trivially satisfies E-RW and RA. We will need a bit more than these
two postulates to get a characterization of causal relations.

The following postulate is called causality aziom .

C Let a and v be formulas consistent with X. If for all § such that § /z L and é 5 v there
is p such that a>p and pty 8, then a > vy

This postulates says that if any consistent extension of v can also be extended to a preferred
explanation of a, then 7 itself is a preferred explanation of o. °.

Theorem 5.30 Let > be an explanatory relation. The following are equivalent.
(i) > is causal.

(i) > satisfies RA and C.

If the language is finite, causal explanatory relations are characterized by RA and E-RW.
We will present a more general result that also applies to infinite languages. For that end we
will require that every observation has at most finitely many preferred explanations. First, we
introduce an auxiliary notion.

Definition 5.31 A set of formulas A is said to have an upper bound (in A w.r.t £) if there
are finitely many formulas oy, ...,a, € A such that foralla € A, ats (a1 V---V &) (i.e
ay V---V a, is an upper bound of A in the lattice of formulas modulo ).

Definition 5.32 An ezplanatory relation > is said to be logically finite on the right and
denoted by RLF, if for every formula o the set {vy : a > v} has an upper bound.

The previous notion can be stated equivalently in terms of models, as we show next.

Lemma 5.33 Let A be a set of formulas. The following statements are equivalent:

(i) A has an upper bound in A w.r.t. .
(1) mod(Naes Cr(EU{e})) = Usea mod(E U {a}).

Notice that if the language is finite then every explanatory relation obviously satisfies RLF.

5In topological terms, this postulates says that if the collection of preferred explanations of « is dense below
¥ (in the lattice of formulas), then « is a preferred explanation of .
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Proposition 5.34 Let > be an ezplanatory relation satisfying RA, E-RW and RLF. Then >
s causal.

We will show in §5.3.2 an example of a causal explanatory relations which does not satisfy
RLF.

Corollary 5.35 Suppose the language is finite. Let > be explanatory relation. Then > is
causal iff it satisfies E-RW and RA. 1

What kind of relations are not causal? The examples that we will present in §5.4 use a
notion of explanation based on belief revision which is the typical notion that does not satisfy
RA; so by 5.30 thay are not causal.

5.3.2 More examples

It is easy to verified that the explanatory relations given in §5.2.1 are both causal. Example
1 is of the form > for |~ a preferential consequence relation since we used a partial order to
define the preferential model. In example 2 the preference relation is a total pre-order and
hence the consequence relations is rational and the associate explanatory relation is E-rational.

Example 3: This example is a minor modification of one given in [65]. Consider the following
scenario: Lisa lives in a high-rise and parks her car in the 16-floor parking garage of her
building. One morning, Lisa was looking for her car and did not find it where she thought
she left it the night before. She considered the possibility that she was in the wrong floor and
went to the next floor. There was also the possibility that the car was stolen and she must
had called the police, but Lisa looked for the elevator and went to the next floor instead before
taking the extreme decision of calling the police. We could model part of her background
theory as follows: Let the language consist of the propositional variables {c,r,s, f, p}, where
r stands for right_floor, c for car, s for stolen_car, f for go_to_next_floor and p for call_police.
The background theory ¥ will be the following:

e
s — ¢
¥ =
= =¥ I
§ =» p

Lisa’s preference are linearly pre-ordered. She prefers “worlds” where her car has not been
stolen. In case the car is not found, she would think that she is not at the right place. So she
has a three level preferential model:

Lo = {{r,c}}

Ly {rhAf )

L, Hr} {r o} A, f1iArs e, £} {r, e, 0}, {r, 5,0}, {r, f, P},
{r,s,p, f}, {r,c,p, f}, {s,p, f}}

Notice that mod(X) = Lo U Ly U Ly. Lo contains the initial states, in this case {r,c}. This is
what Lisa expected before arriving to the parking place: the car will be there and she will not
need to do anything else.
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Let ~ be the rational consequence relation associated to this ranked model. That is to say
a b B iff min(a) C Mod(G).

Let > be the explanatory relation associated to . Notice that mod(X) = Lo U Ly U L.
We have that mod(C(~c)) = {{f},{f,p}}- It is easy to check that Mod(X U {-r}) =
{5}, {f,p}, {s,p, f}}. Thus —¢ F—r, but it is clear that —cB>(—r A —s) (notice that in this
example X is playing a role). So —r is not enough to explain why the car was not found. Since
—r A =s v f, then Lisa will go to the next floor. Notice also that s € Fzpla(—c), however
—¢ s because mod(Z U {s}) € mod(C(—c)) (Lisa does not wish to think that the car was
stolen as an explanation for not finding it). Observe also that s |~ —¢, so it is not sufficient
that 4 |~ @ in order that a>+. Finally, to illustrate how > treats a disjunction, let us observe
that C(—cV s) = C(=c) and thus (—¢V s)B>(-r A —s) but notice that s f(—r A —s). 1

Example 4: This example is similar to example 1 given in §5.2.1 but now we will allow
messages of any length but only one sender. Again the preference criterion is simple: messages
starting with an even number of 0 are the most preferred ones. To make easier the presentation
let v, be, for each n > 1, the formula encoding the message of 2n + 1 digits such that the first
2n digits are equal to 0 and the 2n + 1 digit is equal to 1. Our language will be propositional
on the countable set of variables {p;, p2, p3,---,} and T will be the empty set®. Let

Lo = U MOd(7n)
n>1

and L, consists of the rest valuations. We have then a two level ranked model. Let |~ be
the rational consequence relation defined by this model and let > be explanatory relation
associated with pv. We will show that > is not logically finite on the right. In fact, suppose
that the only portion of the message we were able to get only consists of ceros. Let us say
a = —p3 A —ps. Then it is easy to check that mod(y,) C min(a) for all n > 6. Thus aby,
for all n > 6 and therefore no preferred explanation of « is an upper bound for all preferred
explanations of a. This shows that > is not logically finite on the right, but it is a causal
explanatory relation by definition. :

On the other hand, if the portion of the message contains at least one 1, then there is
an upper bound for the set of preferred explanation for that message. For instance, let 8 be
—p2 Aps be the incomplete message we received. Then vy; Aps and -, are preferred explanations
for 5. In other words, the beginning ofthe most likely messages sent were 00101, 00111 and
00001. In this case the upper bound is (y; A ps) V 72. .

Example 5: We will present examples of an adequate and non adequate relation for an infinite
language.

(i) Let {p; : ¢ > 1} be the variables of the language and X = {p;}. Consider the following two-
level ranked preferential model: at the lowest level there will be only one model, M, defined
by M k= p; for all 7 > 1 and at the second level we put all the other models of ¥ (but not M).
Let |~ be the relation associated with this ranked preferential model. Clearly |~ satisfies Cony.
Let o = py. It is clear that C(a) = Th(M), thus there is no vy (consistent with X) such that
C(a) C Cn(X U {y}). Therefore (5.6) does not hold because its right hand side is empty and
its left hand side is not empty.

(i) Let X be the empty background theory and as in (i) we define a two-level ranked model:
at the lowest level we put all models of p; and at the second level we put the other valuations

SWe could have put & = {-p;} to make this example closer to example 1. But this is not important.
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of the language (i.e. those which do not satisfy p;). Let |~ be the rational relation associated
with this ranked preferential model. We claim that | is adequate. In fact, let a be any
consistent formula. We consider two cases: (a) Suppose o —p;, then it is easy to check that
C(a) = Cn(o). From this it follows that (5.6) holds. (b) Suppose a If —p;, then it is easy to
check that C(a) = Cn(a Ap;) and as before this implies that (5.6) holds. 2

5.4 Connection with belief revision

We will show in this section the connection of our approach with the theory of belief revision.
In particular, we will see the peculiar place that causal explanatory relations occupy when they
are viewed from the perspective of belief revision.

Belief revision is the process of changing the beliefs an agent has in order to incorporate
incoming information (which might contradict the old one). The best known formalism for
belief revision is the so called AGM postulates [1]. Let K be the belief set of an agent (which
we assume to be a propositional theory) and suppose that the new incoming information is
represented by a formula a. The revision of K with « is denoted by K * a. It is natural to
assume that K * o is also a belief set (i.e. closed under logical consequences) and obviously
that o € K xa. The AGM postulates impose other non trivial conditions on * in order to
make minimal the changes it performs in K. For instance, if o is consistent with K then
K *xa = Cn(K U {a}). Girdenfors and Makinson [37] have shown a tight connection of belief
revision with the theory of non-monotonic consequence relations. Given an AGM revision
operator * they define a consequence relation by letting a v 8 if § € K * a. In words, its
says that the agent is willing to conclude 8 from a in the case that 8 belongs to the revised
belief set obtained after « is incorporated into K (using the revision operator ). In [70] it is
shown that |~ is a rational consequence relation in the sense of Kraus-Lehmann and Magidor
[49]. On the other hand, they also have shown that every rational consequence relation
can be represented as a consequence relation of the form jvg. In fact, let |~ be a rational
consequence relation and let K = {a : T p a}. Define * by K*a = C(a). Then * is a revision
operator for K such that |~ is equal to g 7.

The connection between abduction and belief revision was already observed by Gardenfors
[36]. Boutilier and Becher [12] proposed a model of abduction based on the revision of the
epistemic state of an agent. Aliseda [2] and also in [64] consider modeling belief revision with
abduction. The main idea in all these papers is the same. We will follow the terminology
of [12]. They consider various forms of explaining o relative to K and to an arbitrary (but
fix) AGM revision operator. These type of explanations were called epistemic erplanations.
Epistemic explanations capture the intuition that if the ezplanation were believed, so too would
be the observation. More precisely, they introduced the following.

Definition 5.36 & Let x be a AGM revision operator and K be a consistent set of formulas.
An epistemic explanation for a relative to K and % is any consistent formula v such that

"Formally * can not be considered a revision operator because we have given only a description of how to
revise a single knowledge base, namely C(T), and * must be applicable to any knowledge base. Also * might
not satisfy one of the defining condition of an AGM operator. Namely, * might not preserve consistency, it can
happen that a is consistent but K * o is inconsistent. To avoid this problem one has to restrict to rational
consequence relations that preserve consistency: a /L iff o £ 1.

8 This definition corresponds to what Boutilier and Becher called predictive ezplanations. This notion is the
closer to our approach. We will not analyze other alternatives.
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a € Kxvy.

It is not difficult to see that the notion of epistemic explanations will not satisfy the
postulate RA. Because if v is an epistemic explanation of &, then 4 A 4 is not in general an
epistemic explanation of a. The reason is that K x (y A d) is in general very different from
K *v. These notions of epistemic explanations “ cannot be given a truly causal interpretation
because they are simple beliefs that induce belief in the fact to be explained” [12]. The lack of
a causal relationship between an observation and its epistemic explanations is precisely where
our notion of explanation differs from theirs. There is also another very important difference.
The relation “y is an epistemic explanation of o” is not an explanatory relation in our sense.
This is simply because an epistemic explanation might not have any deductive relationship
with the explanandum. However, as revision operator preserves consistency, it is easy to see
that an epistemic explanation has to be at least consistent with the explanandum. °. We will
make a little detour in order to introduce a new concept that covers the notion of epistemic
explanations.

Definition 5.37 A binary relation K is called a weak explanatory relation if for all o and v

oky = 7yAalsl

Remark: Observe that for a weak explanatory relation the consequence relation |, is not
necessarily reflexive. So pv,, might lose one of its more basic features and thus it does not
make too much sense to study kv, in this case. In the examples fv,, will be equal to Fg,
so it is trivial and does not give any information about the weak explanatory relation. All
postulates we have introduced in §5.2 also apply to weak explanatory relations. Some of the
results proved for explanatory relations are valid for weak explanatory relations. For instance
5.19 is valid.

The proof of 5.11 works for weak explanatory relation, so E-DR implies LOR in this case
too.

It is easy to check that any weak explanatory relation satisfying RA is necessary an ex-
planatory relation.

Let’s go back the main theme of this section. Recall the rational consequence relation
Ik associated to an AGM revision operator. The notion of epistemic explanation can the be
restated as follows: 4 is an epistemic explanation for « iff ¥ fvg @. From this it is obvious
what are the logical properties satisfied by epistemic explanation. However, it is convenient to
see which of our postulates for explanatory reasoning are satisfied by epistemic explanations.

Proposition 5.38 Assume that T is the empty set. Let x be an AGM revision operator and
K be a consistent set of formulas. Let K be defined by ak~y if v is consistent and o € K 7.
Then K is a weak explanatory relation that satisfies LLE, RLE;, E-CM, E-RW, ROR, LOR,
E-Cut and full reflexivity (i.e. aka for all consistent o).

Epistemic explanation are very far from being causal in our sense, since neither the causal
axiom C nor RA hold. Also let us remark that since transitivity of |~ implies monotonicity,

9We are assuming here that T is the empty set. This is not a crucial assumption. Our claims can easily
extended to cover the case where ¥ is not trivial
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then notion of epistemic explanation is not transitive. 1°

The notion of epistemic explanation is too permissive. We can restrict it by asking a bit
more from the explanations. Namely, we could say that v is a strong epistemic ezplanation of
aif

KxaCKxy (5.9)

In other words, after revising K with the explanation we obtain all beliefs corresponding to
the revision of K with the observation. If we state this new definition in terms of g we
get the following condition: Ck(a) C Ck(y). Where, as usual, Ck(a) = {f: ok }. It
is convenient to see this condition as defining a notion of an explanation with respect to an
arbitrary consequence relation |~. More precisely, consider the following condition for any 7
such that v L

C(a) S C() (5.10)

This condition was suggested by Flach (Lehmman {54] has some preliminaries results about
it!!). In our setting it is quite natural to require that p satisfies Conz. The next theorem
shows which postulates are satisfied by this weak explanatory relation.

Proposition 5.39 Let |~ be a preferential consequence relation satisfying Cong. Define aky
if (5.10) holds for v consistent with . Then K is a weak explanatory relation and moreover

(i) K is transitive, full reflexive for X-consistent formulas and satisfies LLE;, RLE; E-CM,
E-RW and E-C-Cut.

(i) If in addition |~ satisfies DR, then K satisfies LOR.
(1i) If in addition |~ satisfies RM, then K satisfies E-DR, ROR and E-R-Cut.

The relation K given in 5.39 does not satisfy E-Cut. This relation is also far from being
causal, since neither satisfies C nor RA.

Since K 7 is supposed to be closed under logical consequences and in our setting ¥ C K *7,
then we have that Cn(X U {v}) C K x+v. This suggests another way of strengthening (5.9).
Consider the following notion of explanation

KxaCCn(ZU{y}) (5.11)

This is exactly the defining condition of a causal explanatory relation. Let us see this in detail.

Let ©> be a causal explanatory relation. This means that the following holds
a7y iff Cop(a) CCr(TU7) (5.12)

Suppose also that > is E-rational and satisfies E-Conz. Then by 5.13 we know that |~
is a rational consequence relation satisfying Congz. As before, let * be the revision operator

1%We should mention that the original definition of predictive explanation given by Boutilier and Becher
requieres an additional condition. When the observation « is entailed by K then they ask also that ~y € K *—a
which captures the intuition that if the observation had been absent, so too would be the explanation. With
this new restriction we have that E-C-Cut holds but we do not have neither E-Cut nor E-R-Cut.

1We thank him for letting us have a copy of his manuscript.
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associated with fv,, '?. By definition Cy3(c) is equal to K * o and thus from (5.12) we have
the following

abyiff KxaCCn(ZU¥)
which is exactly (5.11).

The initial knowledge base K is the collection {a: Th ,a}. That is to say

K= ﬂ{Cn(EU{’y} : Ty}

K represents the agent’s belief before any observation is made. It is clear that ¥ C K and
moreover, by E-Cong, we have also that ¥ C K * « for all . It is not hard to check (using
RA) that an observation « is consistent with K iff there is v such that T &> v and o> . Thus
the intuition behind K is that it contains in addition to the background theory those beliefs
initially considered by the agent to be the usual “causes” for explaining normal observations.

To give a clear picture of the meaning of (5.11) we must consider the following condition
Cn(a) CCn(ZU{v}) (5.13)

This corresponds to the notion of explanation given by Flach’s postulates [29] and it is clear
that (5.13) can be viewed as performing an expansion of the knowledge base instead of a
revision.

Notice that (5.11) is stronger than (5.9). Thus any preferred explanation is a strong
epistemic explanation. However, rather than saying that 4 normally implies & (as Boutilier and
Becher did) we say that « implies everything that & normally implies. Condition (5.11) keeps
some of the “epistemic” flavor of the belief revision approach and at the same time retains a
strong causal relationship between an observation and its preferred explanations. Thus (5.11)
is a sort of a middle ground between (5.13) and (5.9). Causal explanatory relations treats
differently observations and explanation. Observations are viewed as beliefs but explanations
are not. This epistemological distinction seems to capture the following idea. We might be
wrong about which is the “real” world (i.e. the preference relation might be incorrect), but we
would like to be right about the causality relation used to ezplain the features of whichever world
we happen to prefer.

The selection mechanism behind causal explanatory relations depends basically on the
observations in the following sense. After we observe o we collect the normal consequences
of a (i.e. we compute C(c) based on either a preferential model or some sort of preferential
order). A preferred causal explanation for a is any formula that together with the background
theory accounts for a and its usual consequences. Thus the preference criteria is used mainly
to compute those other facts (“symptoms”) that usually occur simultaneously with a and thus
should also be present. After doing that, we proceed to explain in the most straightforward
way.

Example: To illustrate the differences between epistemic, strong epistemic and causal expla-
nations let’s go back to Lisa’s example in §5.3.2. In this example K is the theory of {r, ¢} which
correspond to what Lisa expected before arriving to the parking place. The total pre-order
defines a AGM revision operator in the usual way: K * a corresponds to the theory of the
minimal models of a.

12 As we said before, * is not formally an AGM revision operator. However, it still capture the key idea of
belief revision, that is to say, to minimize the changes of K.
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It is easy to verify that f is a strong epistemic explanation of —¢ (but notice that f A ris
not). However, for us f is not even an explanation of —¢ since X U{f} t/ =c. Another instance,
-r is a strong epistemic explanation of —c, it entails —¢ but it is not a preferred explanation in
our sense. On the other hand, —=r A —s is both a preferred explanation and a strong epistemic
explanation of —¢. Finally, r A p A —c is an epistemic explanation of —c¢ but it is not a strong
epistemic explanation of —c. 1

5.5 Ordering the explanations.

As we have said in the introduction the most distinct feature of abduction is the emphasis it
makes on preferred explanations rather than plain explanations. In this section we will focus
on preference criteria for defining explanatory relations. We will show that these preference
criteria are implicitly built in the structural properties of explanatory relations studied in
§5.2. Even though these results seems new in the field of abductive reasoning (all formalism
mentioned include preference as an external requirement), they are quite natural on the light
of the well known facts about non-monotonic reasoning. In fact, it is well known that inference
processes based on orders over formulas are one the “faces” of non monotonic reasoning [68].
For instance possibilistic orders [22] and expectations orders [37] characterize inference rational
relations. Preferential orders [30] characterize preferential relations. We will comment about
their connection with our results.

Perhaps the most natural way of defining an explanatory relation > is through a preference
relation < over formulas. The relation < will tell which formulas in Ezpla(a) are the preferred
ones: those formulas in Ezpla(a) that are <-minimal. Thus a natural question is what type
of orders between formulas correspond to good explanatory relations. One of the purposes of
this section is to answer this question. More precisely, we will address the problem of how
to define explanatory relations based on preference relations over formulas. This will provide
a formalization of the set PE(a) mentioned in the introduction. On the other hand, we are
also interested in representing an arbitrary explanatory relation by means of an order among
formulas.

We will start by making precise some basic notions. If < is an irreflexive binary relation
over aset S and A C S, then a € A is a <-minimal element of A if there is no b € A with
b < a. The minimal elements of a set A will be denoted by min(A, <) and when there is no
confusion about which preference relation < is used we will just write min(A).

The most obvious explanatory relation > associated with < is define as follows:

Definition 5.40 Let < be an irreflezive relation on formulas. The ezplanatory relation ©>
assoctated with < is defined by:

aly =4 v € min(Ezpla(a), <) (5.14)

le. a> vy iff /s =y, v s @ and é t/y a for all § such that & < 7.

Definition 5.40 is the same one given in [56, 66] (but notice that they worked with reflexive
relations). Notice that < is not necessarily transitive, thus the notion of <-minimal element
might not be intuitive. We will be interested mainly in the case where < is at least smooth
(see definition below). We are interested in finding under which conditions there is, for a given
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an explanatory relation o, a relation < such that > satisfies (5.14). In this case we will say
that < represents b .

First we point out a simple fact.

Proposition 5.41 Let < be a binary relation as in 5.40 and 1> be the corresponding explana-
tory relation. Then > satisfies E-Reflexivity and E-CM.

To obtain other postulates we will impose some constrains over <. We formally define the
notion of a preference relation.

Definition 5.42 A preference relation < will be any binary irreflezive relation < over L
which is invariant under logical equivalence w.r.t. X, ie. if a < B and by a & o and
e B B, thenod < (.

The following notion of a smooth relation is inspired by the notion of smoothness used in
the study of consequence relations ([49]).

Definition 5.43 Let < be a reflezive binary relation over a set S. We say that a subset A C S
is smooth if for every a € A either a is minimal in A or there isb € A with b < a and b
minimal in A. A preference relation < as in 5.42 is called smooth, if for every formula o the
set Expla(a) is smooth.

To understand better the meaning of smoothness we remark the following: Let AC B C S,
then it is clear that min(B) N A C min(A). Suppose now that min(B) C A, hence min(B) C
min(A). It is reasonable then to expect that min(A) = min(B). This is true when B is
smooth since, in this case, min(A) C min(B).

Theorem 5.44 If < is a smooth preference relation and > is defined as in (5.40), then >
is an ezxplanatory relation that satisfies LLE;, RLEs, E-CM, E-C-Cut and E-Cony.

It seems natural to expect that under the conditions in the conclusion of 5.44 the relation
> is represented by a smooth preference relation as in 5.40. However, in order to get such
representation we will need more than just E-CM and E-C-Cut. First we introduce an auxiliary
notion.

Definition 5.45 Let > be an explanatory relation. We will say that a formula v is admissible
for > if a> v for some formula a.

The following definition is motivated by the results in [96].

Definition 5.46 Let > be an explanatory relation that satisfies RLEs,. The essential preference
relation associated with > is denoted by <. and defined by:

(a) For é not admissible: v <. § for every admissible .
(b) For v and & admissible: v <. 6 if Cn(EU{y}) N {B:8> 6} = 0.
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The only relevant formulas for the definition of <. are admissible formulas. Since > satisfies
RLEg then <. is invariant under logically equivalence and thus it is indeed a preference relation.
Notice that admissible formulas are consistent with 3. Admissible formulas play in our paper
the same role as normal models in [49, 65]. A concept similar to that of an admissible formula
was defined in [29].

Remark: Suppose < is a preference relation and > is the associated explanatory relation
(5.40). It is easy to verify that if ¥ < 4, then v <. 4. In other words, <, is larger than <.

The proof that <. represents > works for explanatory relations which are logically finite
either on the right (see 5.32) or on the left (see definition below).

Definition 5.47 An ezplanatory relation > is said to be logically finite on the left and
denoted by LLF, if for every admissible formula v the set {a: a >~} has an upper bound.

Definition 5.48 An explanatory relation > is said to be logically finite if it satisfies either
RLF or LLF.

Notice that if the language is finite then every explanatory relation is logically finite. We
will give two example of logically finite relations:

Example 7: Let b be an adequate consequence relation and > be the explanatory relation
defined in 5.24. If > is logically finite on the right, then there is a map F from formulas into
formulas such that C(a) = Cn(XU {F(a)}). In fact, for every a let F(a) be 43 V ---V 7, the
upper bound for {y : o > v} given by 5.32 (if a is inconsistent with X, then we let F(a) be
1). Conversely, it is clear that if such function F exists then > satisfies RLF.

Example 8: We will present an example of a LLF explanatory relation >. We define first an
adequate rational relation p as follows: Consider an infinite language £ = {p;, p2,...}. Let
Ln, = {p1,p2,-..,Pn} and fix m models My,..., M, for the language L,. Let L}---,L} be
a partition of {My,..., My} in k levels and let L = {M},...,M™} fori = 1,...,k. Now
consider the ranked model in the language £ given by & levels Ly, ..., Lg, where M € L; iff the
restriction of M to L, is in L!. Let -y} be formulas in the language £, such that mod(y]) = M;.
Forr=1,...,k we let 3, be the following formula:

ko nyg

i=r j=1
Let ¥ = {$1}. It is not hard to see that the rational relation |~ generated by this model is
adequate (with respect to £). Moreover, this ranked model is standard, i.e. for every formula
a, mod(C(a)) = mod(a) N L;, where i is the first integer j such that mod(a) N L; # 0. It is
easy to check that a formula v is admissible iff C(y) = Cn(Z U {y}). Let v be an admissible
formula, then there is r such that mod(X U {y}) C L,. We claim that 3, is an upper bound
for {a : aB7}. In fact, it is easy to see that mod(8,) = UL, L; and mod(C(8,)) = L,. Hence
B,5v. Now, if a5, then mod(E U {a}) C UL, L;. Thus aF; §,.

Remark: It seems that the idea used in the example 8 above can be generalized to the case
of a finite ¥. In fact, we do not know any example of an adequate consequence relation |~ for
which > is not logically finite. We conjecture that there are none. 1

The next theorem gives a characterization of those logically finite explanatory relations
representable by preference relations.
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Theorem 5.49 Let > be a logically finite explanatory relation. The following are equivalent:

(i) The relation > satisfies E-CM, LLE;, RLE;, E-C-Cut, E-Cons and LOR.

(ii) There is a smooth preference relation < such that
min(Ezpla(a)) N min(Ezpla(f)) C min(Expla(aV B)) (5.15)
and for every formula o the following holds

at>y iff v € min(Ezpla(a), <) (5.16)

We will continue now analyzing the properties that <. has when > satisfies extra axioms.
We will leave the analysis of the effect that RA has on <. to section §5.5.1. This postulate is
related, as we already know from §5.3, with causal explanatory relations.

When © satisfies E-DR, then <. can be described in a different way (a similar idea was
used in [65, 96]). Recall that from 5.11 we know that E-DR implies LOR. We introduce the
following definition '

Definition 5.50 Let > be an ezplanatory relation that satisfies RLEs. Define a binary relation
<y by:

(a) For é not admissible: v <, & for every admissible .
(b) For v and § admissible:

v <8 Y VaVBab 7 & B> = (aVh) > v& (aVB) ¥

Proposition 5.51 Let > be an explanatory relation that satisfies LLE;, RLEs, E-CM, E-C-Cut,
and E-DR. Then <.=<,. Moreover, <, (and therefore <.) is transitive.

Remarks: In [30] it was used a notion of filtered relation. We adapt next this notion to our
context. We say that a preference relation < is filtered if for every a and every v,v’ € Ezpla(a)
such that ¥ € min(Ezpla(e)) and v' € min(Ezpla(a)), there is § € min(Ezpla(a)), such that
0 < vand é < 4'. Using an argument similar to that in the proof of 5.49 it can be proved that
if > is a logically finite explanatory relation that satisfies RLEg, E-CM, E-C-Cut, E-Cong and
E-DR then <, (therefore <.) is filtered. We do not know if the converse is true. 2

5.5.1 Causal orders

Now we will look more closely at the relation <. when > satisfies RA and C.

The following proposition says that if RA holds, then <. satisfies almost all the properties
of a preferential preordering as defined by Freund in [30]. In §5.6 we will compare in more
detail the properties of preferential orders and the essential relation <.

Proposition 5.52 Let > be an ezplanatory relation that satisfies RLE;. Then the following
holds:

BU

LiLLE )
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(i) Letv, ' and & be admissible formulas such that v &+ +'. If v <. 8, then v’ <. 6.
(i) Let~ and § be admissible formulas. If (6 V v) < v, then § <. 7.
(1ii) Suppose that > also satisfies RA. Then we have

(a) Letv, v and & be formulas such that vty L and v+ +'. If§ <. v, then § <. v'.
(b) For any formulas v, v’ and §, if 6 <. v and § <. p, then & <. (Y V p).

Remark: A way of understanding iii(a) is as follows: Assume that > satisfies RLE; and RA.
Let +; and v be two admissible formulas such that 4; V2 is also admissible. Let ' = v, V ¥2.
It is easy to check using 5.52 that v; 4. ¥’ and v’ £, i, i.e. for each 7, 7; and 4’ are <.-
incomparable. But in fact, 5.52 (i) (resp. iii(a)) says more, namely that every formula above
(resp. below) 7; is also above (resp. below) v; V 42. So in some sense 7; V 72 contains the
information ”"coded” by #¥; and ;. Since explanatory relations are defined using <-minimal
explanations it is clear the relevance of iii(a). i

The property iii(a) correspond to RA and we will denote this property by C-U (Continuing
Up).To define it formally, we say that a binary relation < over formulas satisfies C-U if the
following holds:

C-U V7,0 (YWl & vy & d<y =0<7)

Proposition 5.53 If < is a preference relation satisfying C-U then the ezplanatory relation
associated with < (defined in 5.40) satisfies RA.

In the result that follows, it is interesting to notice that the hypothesis of logically finiteness
is not needed. We will use this result in the sequel.

Proposition 5.54 Let > be an E-rational explanatory relation satisfying E-Cony. Then the
following holds: for all admissible formulas v and §,

Y<u b © FadB [apy & 6 & (aVP) D>y & (aVP)¥é] (5.17)
Moreover, <, (and therefore <.) is smooth and represents > .

We will show next that when > satisfies E-R-Cut then <, is modular. We recall the
definition of a modular relation (see [55]):

Definition 5.55 A relation < on a set E is said to be modular iff there exists a linear order
< on some set Q and a function r : E — Q such that a < b iff r(a) < r(b). If < is transitive,
modularity is equivalent to the following property: for all a, b and ¢ in FE if a and b are
<-tncomparable and a < ¢ then b < c.

Proposition 5.56 Let > be an E-rational ezplanatory relation satisfying E-Cong, E-R-Cut.
Then <, is modular and satisfies C-U.
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There is a converse of the previous result:

Proposition 5.57 Let < be a smooth and modular preference relation satisfying C-U, then
the associated erplanatory relation > is F-rational and satisfies E-Cong.

From 5.56 and 5.57 we obtain the following
Theorem 5.58 Let > be an explanatory relation, the following are equivalent:

(i) The relation > is E-rational and satisfies E-Cons.

(i) There is a smooth and modular preference relation < satisfying C-U such that for every
o we have
a7y iff v€ min(Ezpla(a),<)

5.5.2 Too many orders, too much disorder

In this section we will show some examples and see the connection of our results and the
literature.

Since there are various explanatory, preference and consequence relations that have been
used so far, it might be proper to see the relationship among them.

(i) Consider an injective preferential relation p satisfying Cony. Suppose that M = (W, <
) is an injective standard preferential model defining |~ (standard means that for every o,
mod(C(a)) = min(mod(a), <)). There are two natural explanatory relations associated with
k. One is > as defined in 5.24. The other one is given by a preference relation <. associated
with |~ which is given by a <. fif oV 3 |~ —=8. It is known that o p B iff & <. a A —f
(see [30]). Let > be the explanatory relation associated with <. as in 5.40. It is natural
to ask whether > and > are equal. It is not hard to check that > C > . In fact, suppose
aBy then mod(X U {y}) C mod(C(a)). We want to show that vy € min(Ezpla(a),<.). If
§ <~ v and & /5 L then there are models M, M’ € W such that M € min(mod(8) N W, <),
M' € min(mod(y) N W,<) and M < M’. Since mod(Z U {y}) C mod(C(a)) then M' €
mod(C(a)) so M' € min(mod(c), <) and therefore M |= —a. Thus § ¢ Ezpla(c). It follows
that ¥ € min(Ezpla(a), <~). The other inclusion is not true in general (see the example
that follows). However, for a finite language, if @ > v, then there is v’ such that o>y’ and
C(v) = C(y'): Namely, take v’ such that mod(y’) = min(mod(y)).

(i) On the other hand, we have two preference relations <. and <. (where this last one
is the relation associated to >). Since > and B> are not necessarily the same, neither are <.
and <..

Example: Suppose that the language is finite. Let |~ be defined by the following injective
preferential model M = ({M;, M2}, <) where M; < M,. Let ¥ be such that mod(X) =
{M;, M;}, so |~ satisfies Cong. Let v be any formula such that mod(y) = {M1, M3}. Then
v > v because v is minimal for <.. But 4 pv because C(y) € Cn(X U {v}). However note
that for ¥’ such that mod(y’) = {M;} we have yB+’ and C(y) = C(¥’). .
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5.6 Related works

We will comment in this section about the connection of our results and the work of Flach
[29], Cialdea-Pirri [66], Aliseda [2], Zadrozny [114], [65] and Freund [30].

1. Flach’s work [29] is the one which is closer to ours. He presented some postulates for
explanatory and inductive reasoning. Some of our postulates are similar to his. He
studied the relations “y is a possible inductive hypothesis given evidence o” and “ v is
a possible explanation of o” (denoted by o Kv). Below we will compare his postulates
with ours (we state them using our notation).

I1: f a> vy and o Ay b5 B, then (¢ AB) > 5. Since > is an explanatory relation
then by hypothesis v 3 @, hence it is not difficult to see that I1 is, in our context,
equivalent to E-CM.

I2: f a> v and oo Ay by B, then (a A —f3) ¢y. This holds trivially in our case because
our explanations have to be consistent with X.

I3: f > v and a Ay g B, then a> 4 A F. This is a consequence of RLE; and 5.2.
He considered two versions of Reflexivity,

I4: If o> v, then a > a. This will not be valid in our case, because & might not be a
preferred explanation of itself.

I5: If o> v, then v > v. We already have mentioned that this holds for >, when it is
defined as in 5.40 and also if > satisfies E-CM and E-C-Cut.

The other two postulates for induction 16 and I7 correspond to RLEgz and LLE; respec-
tively. There are other postulates studied by Flach that he considers more specific of
explanatory relations.

El: fap d, y> v and v — 4, then a > . This is essentially our RA ,except that we
do not require that vy > .

E2: If y> v and —a ¥y, then & > a. This does not necessarily hold in our case. In our
context, this rule is quite strange because it says that when a formula « is not a
good explanation for itself then any good explanation is a good explanation for the
negation of . This seems to be true only when -, is monotone.

E3: If a> (8 A7), then (8 — o) > 7. This is not necessarily true for > even when |~ is
rational.

E4: If a> v and B> v, then (@ A §) > v. This is a consequence of E-CM.

E5: If a> v and a bz 8, then 8 > . This implies E-Cut and in fact, it is equivalent to
E-Cut under the presence of E-CM.

He then presented five postulates for “confirmatory induction” which does not seem ap-
plicable for explanatory reasoning, except for his postulate C4 which corresponds to our
LOR. For Flach “intuition constitutes the primary source of justification for his ratio-
nality postulates”. Our results confirm that his intuition also has a formal justification.
The more important difference is that he did not consider weaker cut rules than E-Cut
thus his postulates force |~ , to be monotonic. But moreover, his explanatory relation
is restricted to reversed deduction: a K~y iff ¥ F; @. This is his main representation
theorem for explanatory relations.
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2. Cialcea and Pirri [66] defined a relation ¥ F v ~» « to capture the notion that “in the
theory X, v is a good reason for a”. The definition of ~» is based on a preference relation
over formulas like 5.40. They presented some basic postulates and some conditions where
they hold. Our Postulate E-CM is stronger than their And-Right. Their Left Logical
Equivalence is our RLEs. Our Cut rules (E-C-Cut, E-R-Cut and E-Cut) has nothing to do
with their E-Cut. Here there is an important difference between our approach and theirs.
As we said in the introduction, our postulates are concerned with a fixed background
theory X, but they considered postulates concerning properties of abduction when the
background theory changes. For instance, their E-Cut rule says

fXtaand SU{a}Fy~ B, then T+ v~ g
and their E-Monotonicity rule says
fXtaoand EF vy~ B3, then SU{a} v~

These last two postulates are very weak, since they are valid for > regardless of which
preference relation < is used (when > is defined as in 5.40). Another difference with our
paper is that they did not address the problem of whether their postulates will guarantee
that ~ is given by a preference relation.

3. Aliseda’s Ph.D thesis is a comprehensive presentation of abduction from several points
of view. It is a very good source for the vast literature on abduction. We will make
some comments only about the part of her work which is close related to our paper.
Similar to Cialcea and Pirri’s approach, Aliseda regards abduction as a relation with
three parameters: a background theory, an observation and an explanation. Her notation
is ¥ | ¥ = o to express that v is an explanation for @ w.r.t . She presented sets of
rules for formalizing the various versions of abduction she introduced: Plain, Consistent,
Explanatory, Minimal and Preferential abduction. Some of her postulates are not valid
in our context, for instance her Weak Explanatory Reflexivity says

fYX|y=a,then T|a=a

Which is Flach I4 and as we already said it is not valid in our context because in most
cases an observation is not a preferred explanation of itself. She also consider cut and
monotonicity rules, similar to those used by Cialcea and Pirri. However, no cut rule for
observations (as ours) was studied, except the rule of transitivity (which follows from
RA.) This type of rules are missing in all papers we have cited. Preferential abduction
is among all versions she considered the closest to our approach. It naturally requires
that v has to be minimal with respect to a preference relation among formula. The
crucial rule for formalizing Preferential abduction is not viewed as structural rule since it
adds a preference relation that she thought cannot be expressed in terms of the inference
relation itself. But we have shown that preference criteria can be coded by the structural
rules without explicitly mention them.

4. We will comment next about [65]. In logic-based abduction usually together with the
background theory ¥ there is also a distinguished set of atoms Ab called abducibles and
explanations have to be built using only atoms in Ab. The pair (X, Ab) is referred to
as the Abductive framework. In [65] were studied consequence relations based on an ab-
ductive framework. They defined a notion of abducible explanation and used an order
among them to select the preferred ones. They defined abductive rational consequence
relations, denoted also by hv_;, based on this notion of preferred abducible explanation.



104 Jumping to explanations vs. Jumping to conclusions

These relations are very closed to the rational relations studied by Lehmann and Magidor
in [55]. The definition of our f~,, was motivated by their definition. Abductive conse-
quence relations can also be represented by explanatory relations, but for this case the
explanatory relation is between a formula and an abducible formula (i.e. those formulas
built using only atoms in Ab) and the corresponding preference relation will be over the
set of abducible formulas. There are some extra difficulties that one has to deal with
in this more general setting of abduction. For instance, even for the Ab-rational case
studied in [65], the rule E-Disj fails. This is due to the fact that explanations have to be
built using only abducible atoms, thus a preferred explanation of oV 3 is not necessarily
a preferred explanation of neither & nor 5. For certain abductive consequence relations
p~, it can be shown that if vy is an abducible formula and o>+, then v is also a preferred
explanation of « in the sense of [65]. The role of abducibles formulas in this paper is
quite closed to our admissible formulas. It would be interesting to clarify this analogy.

5. Zadrozny [114] approached abduction from a quite abstract point of view based on the
concept of invariant of reasoning. Abduction is viewed as an inference process that
preserves sets of explanations. It is not clear the relation with our results, but it seems
an interesting topic of research. He has some rules similar to ours but his presentations
is quite complex. His explanation systems are formulated using higher-order logic as a
metalanguage.

6. Possibility and Expectation orders. We will comment next about [30]. In that article
Freund characterize preferential consequence relation in terms of ‘preferential orders’.
He called preferential order any relation < on formulae satisfying the following four
properties:

Po: a< L

Py: If ot 3, then (a) a<y = f(<v¥u
(b) d<B = é<a

P2: o < yand o < é implies @ < yV 4

Ps: aVv 3 < B implies a <

Now observe that <, satisfies Po when the formula « is admissible and, except for P, (b),
the others properties are also satisfied by <. (this follows from 5.52). However from 5.52
and 5.53 it is clear that C-U and P;(b) play dual roles.

5.7 Conclusions

We have analyzed three aspects of explanatory reasoning: Its logical properties, its relation
with reversed deduction and the role of selection criteria. The logical properties have been
isolated in a fairly complete list of postulates. Our list extends and confirm the intuition of
previous approaches (Flach, Cialdea-Pirri and Aliseda). The key idea was to use v, as an
heuristic device for isolating the logical properties of an explanatory relation . It is important
to point out the special role that explanatory cut rules play in our presentation. We have not
seen these rules in other formalism and they are the key feature for encoding preference criteria.

When we started this research we were focused on getting pv,, to be nice in the KLM sense.
Moreover, we thought that an explanatory relation > and its associate consequence relation
b, Were somewhat interchangeable. But this turns out to be true only for those explanatory
relations that we have called causal. Our results gave an answer to one of our initial question:
Causal explanatory reasoning is non-monotonic reasoning in reverse.
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Selection mechanisms are a fundamental part of abduction. However, most formalism have
treated them as external devices which work on top of the logical part of abduction. We have
shown that preference criteria are built in the structural properties of explanatory relations.

Causal explanatory relations have also a interpretation in terms of belief revision. The
key feature that distinguish causal explanations from other notions of explanations is the
fact that causal explanatory relations treat observations and explanations in a different way.
Observations are viewed as beliefs and therefore as something defeasible. On the other hand,
explanations are not treated as beliefs and thus the logical connection between an observation
and its preferred explanations is retained in a very strong form. The underlying idea of causal
explanatory relations is the following. After observing a, we collect the concomitant facts that
are normally present (i.e. we compute C(a)). Then a preferred causal explanation of  is any
formula that entails o and its usual consequences. In other words, rather than saying that v
normally implies a we say that 4 implies everything that @ normally implies.

It turns out that there are explanatory relations for which |~,, does not give any infor-
mation at all, however, they can be classified using our postulates. So the set of postulates
for explanatory relations coming out of our analysis are more general than we thought at the
beginning. It is well known that non-monotonic consequence relations, revision operators and
preference orders (like expectation, posibilistic, preferential orders) are essentially the same
formal objects. We can say, as a summary, that explanatory relations can be added to this list
of tools for studying common sense reasoning.

Finally, we will mention two possible lines of research related to our results. The first one is
to study more carefully the hierarchy we have presented for classifying the logical properties of
abduction. Specially relevant is to determine up to which extend this hierarchy classifies (non
causal) weak explanatory relations. The second one is related to the role of the background
theory. Usually it is said there are three kinds of reasoning processes: deductive, abductive
and inductive. We have shown that abduction is very tightly related to a “non-monotonic-
deduction”. On the other hand, inductive reasoning (when it is understood as the process
of inferring general rules out of specific observations) did not play any role in our setting.
This is probably due to the fact that we have fixed the background theory. There are many
situations where ¥ is the natural outcome of an inductive reasoning process. As we said in
the introduction, Cialdea-Pirri and Aliseda presented a view of abduction as a relation with
three parameters: an observation, an explanation and a background theory. We think that an
extension of our results to allow the change of the background theory will provide some hints
for a better understanding of inductive reasoning,.
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5.8 The proofs of results of this chapter

Proof of theorem 5.4: Suppose > is a relation as in the hypothesis. We will show that |~ ,
is cumulative. From LLEgfor > we easily get that |v,, satisfies Left Logical Equivalence and
from the definition of v, (5.2) it is obvious that Reflexivity and RW holds. It remains to be
checked the rules Cut and Cautious Monotony.

Let’s suppose that afv, 8, then the second condition in the rule E-C-Cut is satisfied, i.e.
Vé[a> 6§ =ty 6 — B]. Therefore from E-C-Cut and E-CM we easily conclude {y:a>7v} =
{7: (e AB)>~}and hence C(aAB) = C(a) (where as usual for a fixed consequence relation
and any formula é, C(9) is the set {# : 6 |~ 6}). That is to say, v, satisfies Cut and Cautious
Monotony. m]

Proof of proposition 5.5: (i) That RLE; holds is straightforward. To see that ROR holds,
suppose that a > (yV p). First note that either (y V p) t/s =y or (v V p) t/z —p, otherwise
(yV p) Fg (myA=-p) so (yVp) kg L, which is a contradiction since > is an explanatory
relation. Therefore by RA either o> (Y V p) Ay or @ > (yV p) A p so by RLE; either a > 7y or
ol p.

(ii) and (iii) are straightforward.

(iv) The proof that RA implies E-Disj is as in (i) above.Conversely suppose that > satisfies
E-Disj and RLEg, we want to show that RA holds. Let a, v and ¥’ be such that a > v, ¥’ F5 v
and v’ /5 L. Since 7' Fz v, we have b5 v & (' V ¥) so by RLE; a > (V7). Since by
hypothesis 7' I/; L then by E-Disj we have 1> ' 1

Proof of proposition 5.7: Suppose (a; V a2) > v and a; Py for : = 1,2. We claim that
v e o; for i = 1,2. Otherwise by E-CM we have for some 7 € {1,2}, (s Vo) Aa; > v
and therefore by LLE we conclude a; > 4 which is a contradiction. Let y; = ¥ A a;. Since
v bz (a1 V a2), then it is clear that v is equivalent modulo £ to 7; V 72. On the other hand,
¥i bz o; and v; /s L for ¢ = 1,2 (otherwise v by o; for some i). Finally by RA we have that
(o1 V a2) > v; and by E-CM and LLEs we conclude o; > 7; for ¢ = 1, 2. O

Proofof theorem 5.9: We already know from 5.4 that |~,, is cumulative, so it remains to be
shown that pv , satisfies the rule Or. Let’s suppose that ajv,,p and Sfv,,p, we will show that
aV Bh,p. Let v be such that (o V 8) > v, we have to show that v k5 p. By proposition 5.7
we have to consider three cases: (a) a > . Since ah;p then we have v 5 p. (b) B> v. We
conclude that g p as in the first case. (c) There are 4; and v, such that Fz v & (71 V 72)
with a > 71 8> 7. Then, by hypotheses we have v; b5 p for t = 1,2. Since b5z v & (71 V ¥2)
we conclude v Fy p. |

Proof of theorem 5.10: By 5.9 we know that |v_, is preferential. So it remains to be shown
that v, satisfies W-DR. We define an auxiliary function F that maps formulas into formulas
as follows: F(a)=V{v: a7} in case there is ¥ such that o> v, otherwise we let F(a) =L.
Notice that apv 0 iff F(a) by 8. To see that W-DR holds it clearly suffices to show that
Fla) AF(B) s F(a v 8). Let o> and B> 4, it is enough to verify that when vy A § is
consistent with X, then (aVf) > (yA ). Since /g v = -6, from RA we easily conclude
al> (yAd) and B> (v AJ), therefore from LOR we obtain (aV 8) > (y A §). o

Proof of proposition 5.11: It is clear that E-DR implies LOR. To check that E-DR implies
that pv,, satisfies DR, suppose that aV g ,p and o f,,p. We have to show that Bhv,,p. Let
4 be such that 8> 4, it suffices to check that § -3 p. Since a f~_,p, then there is 7 such that
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a > v and v i/; p. By E-DR either (aV 8) >y or (aV 3) > 4. Since aV b, p and v Ifs p, we
conclude (aV B) > 6. Therefore é 5 p. a

Proof of theorem 5.13: By 5.9 |~,, is preferential. Thus it suffices to show that fv , satisfies
Rational Monotony. Let «, 8 and p be formulas such that alv,p and o fv ;8. Let v be
such that (a A 8) >, we want to show that v Iz p. Since @ f~,,— (3, then by definition of b,
there is & such that o> é and é I/ —3. By RA (see 5.5.iii)there is &’ - § such that o> ¢ and
0’ 5 B. Therefore by E-R-Cut we conclude that a &> 7. Since abv,p, then v F5 p. o

Proof of proposition 5.14: We will consider three cases.

(Case 1) Suppose that (aV3)pv 0. In particular, we have that for all (aV 8)>v, v b5 8.
We will show that (b) holds. Let v be such that (oo V 3) > . Then by our hypothesis vy 5 3.
By E-CM (a Vv B8) A B> v and by LLE B> +. On the other hand, let v be such that 8>+, then
by E-CM (aV B) A B> 7. Since (a V B)pv,,—a, then it follows from E-C-Cut that (aV ) > 7.

(Case 2) Suppose that (o V B)b,;,—f. Then as in case 1 it follows that (a) holds.

(Case 3) Suppose that (aV 8) fv,,—e and (aV B) fv ,—B. We will show that (c) holds.
By 5.7 it suffices to show that {y :a>y}U{y : B> v} C {y : (V) > v} By hypothesis
there is 4’ such that (aV 3) >+’ and 7' I/x —a. By RA we can assume that v/ b5 a. Let v
be such that >+, then by E-CM (aV ) Aa > 4. Using 4’ and E-R-Cut we conclude that
(e V B) > 7. It can be shown analogously that if 8 > «, then (aV 8) > 7. a

Proof of proposition 5.15: Suppose a > v and S 6 and (aV §) Fd, we want to show
that (aV B) > v. Since F 8 < (o V §) A8 and B 1> § then it follows from E-R-Cut that for
all ¥ if (aV B) > 7/, then 4/ I/z B. Since o>y we have (aV 8) A a > 7. Suppose, towards a
contradiction, that (aV ) ¥y. By E-C-Cut there is 4 such that (a VvV §) >4’ and ' /g a. By
RA (5.5) there is v” such that (a V 8) > " and ¥” 5 a. Finally, since - a ¢ (@ V 8) A @ and
a D> v, then by E-R-Cut we conclude that (aV 3) > v a contradiction. o

Proof of theorem 5.16: Suppose ap~ ,p, i.e. for all v if o > v then v F5 p. Let § be any
formula such that (o A 8) > 6. By E-Cut we have a > § so § k5 p. Thus (a A B)v 0. a

Proof of proposition 5.19: Suppose that (o A §) > v and also that é k5 3 for all § such
that a > 4. It suffices to show that there is 4 such that a > 4. Since (a A ) > v then (by the
definition of an explanatory relation) « is consistent with X, therefore by E-Cony there is &
such that a D> 4. "

Proof of proposition 5.22: It is obvious that if a b5 8 then afv ;3. On the other hand, if
a lfs B, then a A =B t/z L. Thus by E-Cony there is v such that (a A —8) > v. Therefore by
E-Cut o > 7, hence a f~ ;8. O

Proof of proposition 5.25: Let > be the explanatory relation associated with p and let
b, be the consequence relation associated with . We will show that |~ is equal to pv,,. By
definition of v, and the hypothesis that |~ is adequate we have

Cap(e) = N{Cn(ZEU{7}: a7}
= QEC)H(Z U{y}: Cla) CCn(EU {71} &vW:Ll}

Observe that these equalities are valid even in the case that there is no 4 such that aby
(equivalently, when C(a) contains all formulas). .

Proof of theorem 5.26:
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1. It is obvious from the definition of > that it satisfies RA and RLE;.
2. It is obvious that if |~ satisfies LLE then > satisfies LLE;.

3. Suppose that |~ satisfies Cong, then > satisfies E-Cong follows easily from the hypothesis
that |~ is adequate.

4. Suppose that p~ satisfies CM. To see that > satisfies E-C-Cut let us suppose that
(o A B)>7 and also that § 5 8 for all § such that a>8. We have to show that aby.
Suppose a | p, it suffices to show that v -y p. Since |~ is adequate, from the second
part of the hypothesis of E-C-Cut we conclude that o |~ 8. Therefore by CM we have
C(a) CC(aA B), since C(aA B) € Cn (2U {7}), then the result follows.

5. Suppose that |~ satisfies the S-rule. To see that > satisfies E-CM let o>~ and v 3 8.
We want to show that (e A 8)>+. Since v is consistent with ¥, it suffices to show that
C(aAB)CCn (XU{y}). Let A S |~ p, then by the S-rule o |~ 8 — p. Since ab,
then vy 8 — p. Hence v kg p.

6. Suppose [~ satisfies W-DR. We will show that > satisfies LOR. Suppose a>+ and 857.
By W-DR we have that C(aV 8) C Cn (C(a) UC(B)). Then it is clear that (aV 3)>7.

7. Suppose [~ is preferential and satisfies DR. We will show that > satisfies E-DR. Suppose
aby, fbp and (aV ) Pv. Then there is 6 such that a vV 8 |~ 6 and v I/z 6. Since
aby and C(aV B) C C(a) U C(B) we have § € C(B). Now consider any ¢’ such that
8 € C(aV B). We want to show that p by §’. By preferentiality § A §' € C(aV B). But
0 A& ¢ Cla), otherwise v 5 8 A &' and therefore v 5 § which is a contradiction. Then
by DR §A 4 € C(B). Hence p b5 6§ A ¢ and thus pty §'.

8. Suppose |~ satisfies RM. We will show that > satisfies E-R-Cut. Suppose (a A 3)>v and
there is  such that a>4 with § by 8. From the last assumption and the definition of >
we conclude that a [¢ -8. Therefore by RM we have C(a) C C(a A §), and the result
follows.

9. Suppose that |~ is monotone. Since |~ is monotone, then C(a) C C(a A 8). Therefore,
if (& A B)>+ then aby. This says that B satisfies E-Cut.

Proof pf proposition 5.27: For every o, let F(a) be a formula such that C(a) = Cn(F(a)).
Let us define > as follows: a > v if 4 /5L and v = F(a). It is obvious that > is indeed an
explanatory relation satisfying RLEs. Let pv,, be the consequence relation associate with > .
It is easy to see that |~ is equal to pv ;. Now we will check the other postulates. It follows that
LLEs (for o) follows from LLE for p~. To see that E-CM holds, suppose a >4 and 7y 5 3. We
need to show that (a A B) > v. By hypothesis F(a) 5 G, then it follows that o |~ 8. Since
is cumulative, then C(a) = C(aA§). From this it follows that F(a) = F(a A ) and therefore
(a A B) > 4. The proof that E-C-Cut holds is similar. 1

Proof of theorem 5.30: ((i) = (4¢)). It is obvious that any causal relation satisfies RA. To
check the causal axiom let o and v be two formulas consistent with ¥. Suppose that for all §
consistent with ¥ such that é k5 « there is p such that p 5 § and a> p. We want to show that
Cap(0) € Cn(Z2U {v}). Let aj~v,,8 and suppose toward a contradiction that v /s . There
is & consistent with X such that § b5 v and é Fx —3. Let p be such that o > p and p 5 6.
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Therefore p 5 —3. On the other hand, since afv,, 3, then p Fy 8. Thus p b5 L which is a
contradiction.

((#2) = (7)). Suppose that > satisfies RA and C. It suffices to show that if v I/ L and
Cas(a) CCn(Z U {v}), then a > v. Let § be any formula consistent with X such that & -z 7.
Then there must exist p such that o> p and p I/x -6 (otherwise =6 € Cy(a) which is not
possible). Let p’ be a formula consistent with ¥ such that p’ -z pAé. By RA we conclude that
a b p'. Therefore by C we get that o > 7. s

Proof of lemma 5.33: It is straightforward that (i) implies (ii). For the other direction,
notice that (ii) implies that (,c4 Cn(EU {a}) U {-a : o € A} is inconsistent. Therefore by
compactness, there are o1, ..., a, € A, such that (ay V---V ay) € N,esa Cn(XU {a}). From
this (i) easily follows. a

Proof of proposition 5.34: It suffices to show that > satisfies CA. Let v1,...,7% be an
upper bound for {y:a D> v}. Let § =, V---V y;. By E-RW we have that o> 6. Let o and
v be formulas consistent with X. Suppose that for all § such that § /; L and & 5 v there is
p such that a > p and p 5 6. We want to show that o > v. Suppose that a ¥+ towards a
contradiction. Then by RA we have that v ty 6. Therefore there is § consistent with X such
that 0 Fz v A =8 and by hypothesis there is p such that a > p and p b5 6. Thus p Fy —6 which
contradicts that 6 is an upper bound. 1

Proof of proposition 5.38: Since * preserves consistency, then it is clear that K is a
weak explanatory relation (as defined in 5.37). It is obvious that LLEs, RLEg, E-Cut and full
reflexivity holds. Notice that LOR follows from E-Cut and LLEs.To check E-CM, assume that
ak~ and also that v+ 3. Then 4,a € K x+. Thus a A8 € K *+. Finally, E-RW follows from
the Or rule for vk and ROR follows from DR for k. :

Proof of proposition 5.39: From Con; it follows that K is a weak explanatory relation.
(i) It is clear that K is transitive, reflexive for X-consistent formulasand satisfies LLEs, RLE;.
E-RW follows easily from the Or rule. To check E-CM, let us assume that ak~y and v 5 G.
Let a A B |~ p, then by the S-rule we have that a i 8 — p. By hypothesis C(a) C C(y), thus
v p~ B — p. By preferentiality and Cons from v b5 3 is easy to obtain v |~ 8. Hence by RW
v b p. Therefore C(a A 3) C C(y). To check E-C-Cut, assume that a A Sk~ and also that
d 5 B for all § such that aké. In particular, since K is reflexive, we have that o 5 3. Thus
a b B and therefore C(a) = C(a A B).

(if) DR says that C(a Vv ) C C(a) U C(B) from which it is obvious that LOR holds.

(iii) Suppose that v is rational. We will use the following well known fact about rational
relations. For every pair of formulas o and § one of the following holds: (i) C(aV 8) = C(a),
(ii) C(aV B) = C(P) (iii) C(a Vv B) = C(a) N C(B). From this is obvious that E-DR and
the postulate stated in (3) hold. It remains to be checked that E-R-Cut holds. Suppose that
a A Bk« and also that there is ¢ such that aké and § Fy 5. By RM it suffices to show that
o [~ —B. Assume a p —f towards a contradiction.Since akd, then § |~ —3. Since § 5 G,
then by preferentiality and Cong é i 3. Which together with Cony contradicts the fact that
4 is X-consistent. '

Proof of proposition 5.41: To see E-Reflexivity just notice that if @ > v then it is obvious
that v € min(Ezpla(y)), <).To check that E-CM holds, suppose o > v and v F5 3, then
v € min(Ezpla(a)) N Ezpla(a A B) C min(Ezpla(a A B)). x

Proof of theorem 5.44: That LLE; and RLE; hold follows from the fact that < is logically
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invariant. We already have shown in 5.41 that E-CM holds. To see that E-Cong holds, suppose
thaty is consistent with ¥ then Ezpla(a) is not empty. By smoothness there is vy such that
a > v. To see that E-C-Cut, suppose that the premises in the rule E-C-Cut holds. Hence
min(Ezpla(a)) C Ezpla(f) and since Ezpla(a A B) C Ezpla(e), then min(Ezpla(a)) C
min(Ezpla(a A p)). Since Fzpla(a) is smooth we conclude min(Ezpla(a)) = min(Ezpla(aA
B)) and this finishes the proof. a

Proof of theorem 5.49: (i7) = (7). By 5.44 we only need to show that > satisfies LOR.
But this follows immediately from (5.15).

() = (47). We will show that <. works. We already have observed that since > satisfies
RLEs then <. is a preference relation. First, notice that (5.15) follows immediately from (5.16)
and LOR.

We will show that (5.16) holds. Let us suppose that o > vy and let 6 € Ezpla(a), then
a €Cnrn(ZU{6}) N {B: B>~} Therefore § £, v and v € min(Ezpla(a)). This shows that
the only if in (5.16) holds.

Fix a formula o consistent with ¥ and let §’ be any formula in Ezpla(o/). We will show
that if o/ (#¢’, then there is v such that o' > v and v <. &’. In particular, this will prove that
<. is smooth and also that the other direction in (5.16) holds. Suppose o' §é&'. If §' is not
admissible, then there is nothing to show because of the definition of <. and E-Cong. Hence
we will assume that 8’ is admissible. By E-Cong there is 4 such that &' > 7, so let

Cor=[HCrn (ZU{y}): &/ >~}

and
S=CyuU{-8:8> 4}

We claim that S is consistent. In fact, suppose, towards a contradiction, that S is inconsistent.
By compactness there are §8;’s for ¢ = 1,...,n such that §; > ¢’ and (B, V---V B,) € CL.
Let 8 = 1V :--V B,. By LOR we know that 3 > ¢’. By E-CM we have that (&/ A 8) &> §'.
Since 8 € C,, then by E-C-Cut we conclude & > &, which is a contradiction. Therefore S is
consistent.

Since b is logically finite there are two cases to be considered:

(a) > satisfies RLF, i.e. for every formula o the set A = {y: a > v} has an upper bound.
Let 4; € A, i < n be an upper bound for A. It is easy to check that

Co=(UCn (EU{r}):veA}={Cn (EU{x}):i<n}=Cn (ZU{(nV- -7}

Let N be a model of S, then there is ¢ such that N = X U {v;}. As N is also a model of
{=6 : B> &'}, then it is clear that v; <. &'

(b) © satisfies LLF, i.e. for every admisible formula v the set {8 : 8 > v} has a upper
bound. Since ¢’ is admisible, let 5y, ..., 3, be such that ;> 46’ and S+ B3, V---V G, for every
B such that > ¢'. Let 8/ = BV ---V B,, then by LOR =3’ € S. Since S is consistent then
B’ € C,, hence there is ¥ such that o/ > v and v /5 B’. Therefore v t/5 G, for all § such that
B> o, e vy =<0 o

Proof of proposition 5.51: (<.C<,): Let v, be admissible formulas with v <. §. Let o, 8
be such that o>y and 8> 6. We want to show that (a Vv 8) > v and (aV 3) 6. By E-DR
it suffices to show that (a Vv ) (¥é. But this follows directly from the definition of <. and the
fact that v,8 € Fzpla(aV §) and v <. 4.
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(%uC=e): Let 4,8 be admissible formulas with ¥ <, §. Suppose, towards a contradiction,
that there is 8 such that 8> é and 4 ; 3. Let a be any formula such that « > 7. Since
v Fz B, then by E-CM we have (e A B) > 4. Since - ((a A B) V B) «> B and v <, 4, then (by
LLEs) we conclude that § ¥4, which is a contradiction.

To see that <, is transitive, let v; be formulas such that v; <, 72 and v; <, 3. Without
lost of generality we can assume that each +; is admissible. Let o; be formulas such that
a; > v;. By E-DR it suffices to show that (a3 V a3) bvy3. Suppose, towards a contradiction,
that (ay V a3) > v3. Since 7z <, 73, then by definition of <, we have (a1 V a2 V a3) > 72
and {(a; Va2V a3) Pvs. Since y; <, 72, then analogously we have (a; V a2 V a3) > v and
(01 V a2 V a3) 72, which is a contradiction. a

Proof of proposition 5.52: To see (ii), suppose 6 #£. v and let B be such that é 5 3
and 8> v. Then clearly ¥V é k5 B8 and thus (y V §) 4. 4. The proof of (i) is similar. For
(ilia), suppose that 6 <. v. Thus by definition ¢ is admissible. If 4’ is not admissible then by
definition § <. 4'. Now suppose that v’ is admissible and also, towards a contradiction, that
d £ v'. Let B be such that 8>+’ and § &3 (. Since v b5 4" and v t/y L, we have by RA that
B> v and therefore § £, v. To see (iiib), assume § <. v and § <. p. By this assumption and
by definition of <. ¢ is admissible. If (v V p) is not admissible then there is nothing to show.
Assume (v V p) is admissible and suppose, towards a contradiction, that é§ £. (yV p). Let 3 be
such that é -z 5 and B> (yV p), then by 5.5 either 3> v or 8> p. Since § 5 3, then either
§ £ v or 6 £ p, a contradiction. .

Proof of proposition 5.53 Suppose that a > v, v/ Fg 4 and 7' I/z L. We want to show
that o > v/, i.e. ¥/ € min(Ezpla(a), <). Since ¥’ I/z L then it is clear that v’ € Ezpla(a).
For reductio, assume there is 6 € Ezpla(a) such that § < 4'. Since v’ -5 v we have, by C-U ,
d < v contradicting the minimality of v in Ezpla(c). o

Proof of proposition 5.54: The = direction comes directly from the definition of <,. For
the other direction, let o and 3 be as in the right hand side of (5.17) and o’ and 8’ be formulas
such that o’ > and 3’ > 6. We need to show that (¢’ V 8') > v and (o' Vv §') I¥4. By 5.15 we
know that > satisfies E-DR, hence it suffices to show that (o' v §’) ¥é. Suppose, towards a
contradiction, that (o vV ') > é. By E-CM we have (¢/ V #') A (aV 8) > 4. And by hypothesis
(aV B) > v and clearly v Fz (o' V 3'), hence by E-R-Cut (o V 8) > 4, which contradicts the
choice of a and .

To see that <, is smooth, we first recall thatby 5.15 > satisfies E-DR and therefore by
5.51 <,==. As in the proof of 5.49 we have that if o > v then v € min(Fzpla(ca), <.). For
the other direction, let § € Ezpla(a) such that o p6. We will find v such that o > v and
v <, 0. This will show that <, is smooth and also that it represents > . We can assume
without loss of generality that § is admissible and thus let 8 be such that 8 > 6. Hence by
E-CM (a A B) > 6. By E-Cong there is 7 such that a > 4. Since a is logically equivalent to
(aAB)Va, then ((a AB)V a)¥é and ((a A B)V o) > 7. From (5.17) we conclude that v <, 4.
This finishes the proof. 2

Proof of proposition 5.56: Let v, 6 and p be formulas such that v £, 4, § £, v and
v <. p. We want to show that § <, p. Without lost of generality we can assume that v, é
and p are admissible. Let o, 3, w formulas such that a >, 8 > 6 and w > p. Since vy and
§ are <,-incomparable then from 5.54 it follows that (e V ) > v and (aV ) > 4. Again by
5.54 it suffices to show that (aV SV w) > ¢ and (aV fVw) ¥p. By E-DR, which is true by
5.15,it is enough to show that (aV 8V w) p. Since v <, p, then by definition of <, we have
(aVBVw)>vand (aV BV w)¥p. Finally that <, satisfies C-U follows from 5.53. O
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Proof of proposition 5.57: From 5.44 we know that > satisfies LLE;, RLEs, E-CM, E-C-Cut
and E-Cony. From 5.53 we obtain RA. It remains to be shown that E-R-Cut holds. Let «, 3, ¥
and 6 formulas such that (¢ A ) >, a> 6 and 6 F; 3. We need to show that &> v. Suppose,
towards a contradiction, that o ¥+v. Since vy by «, then by smoothness and the definition of
>, there is ¢’ such that a > ¢’ and 6’ < 4. Since o> § then § £ 8 and §' £ 4. By E-CM
(a A B) > 6 and by modularity, § < -, which contradicts the hypothesis that (a A8)>7v. g



Chapitre 6

Analysing rational properties of
change operators based on forward
chaining |

We propose an abstract framework to analyse the rationality of change operators defined in a syntactical
way. More precisely we propose “syntactical” postulates of rationality stemming from AGM ones. Then
we introduce five change operators based on forward chaining. Finally we apply our abstract framework
to analyse the rationality of our operators.

Introduction

Revision is the process of according an old knowledge base with a new evidence. In order to
have a good behaviour, a revision operator must obey a minimal set of rationality requirements.
For example it must obey the principle of primacy of update that demands the new evidence to
be true in the new knowledge base, and the principle of minimal change that imposes that the
new knowledge base has to be as close as possible to the old one. These properties are intuitive
requirements one can expect from revision operators. These operators and their properties have
been formally studied in philosophy, artificial intelligence and databases [1, 36, 45] and several
operators have already been proposed [14, 27, 112, 113, 101].

In general, revision is a complex process [24, 60] and is not efficiently computable. The
problem is that revision operators usually handle theories closed under logical consequences.
Then, the computation of (all the consequences of) the new theory according to the old one and
to the new information is generally prohibitive. One solution is to work with theories that are
not closed under logical consequences [34, 42, 41, 78, 80, 110] and to take their logical closure
only when one needs them. Of course such an approach is syntax sensitive. Another solution
is to work in a restrained framework, a “weaker” (tractable) logic, instead of the classical one.
It is a combination of these two approaches that is proposed here.

In this paper, we investigate five change operators based on forward chaining. The use
of forward chaining provides us with an efficient way to compute the revision of a knowledge
base.

Furthermore these operators are readily suitable for expert systems based on the same kind
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of inference. Thus, we have an easy way to include non-monotonic reasoning in such systems.
Such operators may have numerous other applications, in diagnosis systems for example.

For some operators, our approach is close to REVISE [16] and Revision Programming [71]
but is simpler, since we use only forward chaining on propositional formulae; in particular, we
don’t assume negation by failure.

We propose five knowledge change operators. The first one, called factual update, updates
a set of facts with another set of facts coding a new evidence, according to a set of rules which
can be seen as integrity constraints of the system. The other operators revise programs by
programs. More precisely the second one, called ranked revision, is based on a hierarchy over
the rules which denotes how ezceptional the rules are, and when a new evidence arrives, it
finds the least exceptional rules consistent with this new information. The third one, called
hull revision, extends the result of ranked revision to a set which remains consistent with the
new information. The fourth operator, extended hull, combines the approaches of hull revision
and factual update operators. The fifth operator, called selection hull, is actually a family of
operators defined by selection functions.

One of the main contributions of this work is the study of the rationality properties of
these operators. To do that we introduce syntactical relativizations of the main postulates
proposed in the literature for theory change. We prove that factual update can be seen as
an update operator, i.e. satisfying a syntactical version of Katsuno and Mendelzon postulates
[46]. In the same way, ranked revision and selection hull (when the selection function used
to define it has good properties) can be seen as revision operators, according to Alchourrén-
Girdenfors-Makinson (AGM) postulates {1, 36]. Concerning hull revision and extended hull
revision, although they seem to be rational extensions of the ranked operator, we prove that
only some basic postulates of change hold.

The paper is organized as follows: section 6.1 contains the basic definitions of our abstract
framework; in section 6.2.1 we define factual revision (an algorithm to compute it is given in the
appendix); section 6.2.2 is devoted to definitions of ranked revision, hull revision and extended
hull revision; in section 6.3 we study the properties of these knowledge change operators. In
section 6.4 we introduce the selection hull operators. Finally, we conclude with some remarks
and some perspectives for future work.

6.1 Preliminaries

Our framework is finite propositional logic.

A literal (or fact) is an atom or a negation of an atom. The set of literals will be denoted Lzt.
A rule is a formula of the shape [y Alp A---Al, = l,41 where [; is a literal for: = 1,...,n41.
A rule as before will be denoted 1y,{3,...,1, = l,41. We admit rules of the form — [ which
actually code facts.

Let R and L be a finite set of rules and a finite set of literals (both possibly empty)
respectively. A program P is a set of the form RU L and we will say that the elements of R are
the rules of P and the elements of L are the facts of P. The set of programs will be denoted
by Prog

Let P = RUL be a program. We define the set of consequences by forward chaining of P,
denoted C(P), as the smallest set of literals L' such that:(i) L C L'. ii) If I1,ls,...,1, =
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isin Rand l; € L' fori = 1,...,n then [ € L'.(iii) If L’ contains two opposite literals then
L'= Lt

A program P is said to be consistent iff Cf.(P) # Lit.

Let P and L be a program and a finite set of literals respectively. L is said to be P-consistent
iff P U L is consistent (with respect to forward chaining).

In the sequel w will denote the set of positive integers.

6.1.1 Revision and update postulates

We begin this section by recalling the rationality postulates that have been proposed [1, 36,
45, 46] in the area of revision theory, i.e. properties that an operator has to satisfy in order
to have a “good” behaviour as a change operator. Then we will give a relativization of these
notions to a syntactical abstract framework.

First let’s consider the postulates for revision operators. Let ¢ be a formula representing
a knowledge base and let u be a formula representing a new piece of information. ¢ o u will
denote a formula representing the changes that p produces on ¢. The operator o is a revision
operator [1, 45] if it satisfies the following postulates:

(R1) F (pop) — p.

(R2) If ¢ A p is consistent then F (pop) & (¢ A u).

(R3) If p is consistent then ¢ o u is consistent.

(R4) IfF (1 ¢ @2) and F (g1 < p2) then F (1 0 1) & (@2 0 p2).
(R5) F((pop)N@) = (o (kAd)).

(R6) If (pop) A @ is consistent then - (g o (LA @) = ((¢op) A ¢).

The intuitive meaning of these postulates is the following: the new piece of information
must be true in the new knowledge base, which is required by (R1). (R2) states that if the
new piece of information is consistent with the old knowledge base then the revision is reduced
to the addition of the new piece of information to the old knowledge base. (R3) assures that
if the new piece of information is consistent then the new knowledge base must be consistent.
(R4) is the so called Dalal’s principle of irrelevance of syntax and says that the result of the
revision depends neither on the syntax of the new piece of information nor on the one of the
knowledge base. (R5) and (R6) assure that the result of the revision is “closest” to the old
base and that this notion of closeness behaves well. For more explanations on the meaning of
these postulates see [36, 45].

Revision is adequate to model change of belief about a static world but, as shown in [46],
is not able to cope with change in a dynamic world. Katsuno and Mendelzon have defined
update operators for this case. The rationality postulates for update operators they propose
are given next.

The operator o is an update operator [46] if it satisfies the following postulates:

(U1) F(pop) — p.
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(U2) If - @ — p then - (pop) & .

(U3) If both ¢ and p are consistent then ¢ o p is also consistent.

(U4) If bk (1 4> ¢2) and F (u1 <> p2) then F (¢1 0 p1) < (92 0 p2)-
(US) F (pom) Ad) = (po (A 9)).

(U6) If - (pop) = p2 and F (@ o pa) — p1 then k(o pg) (¢ o p2).
(UT7) If ¢ is complete then k= ({(¢o p1) A (pop2)) = (o (1 V pa)).

(U8) F((pr1Vepz)op) < ((prop)V (p20u).

These postulates are close to those for revision. Postulates (U1)-(U5) correspond to pos-
tulates (R1-R5) and the intuitive meaning of these postulates is: (U1l) is exactly (R1),i.e.
the new piece of information must be true in the new knowledge base, (U2) states that if
the new piece of information is weaker than the knowledge base then updating by this new
piece of information has no effect on the knowledge base. Notice that if the knowledge base
is consistent then (U2) is weaker than (R2). (U3) assures that if the new piece of information
and the old knowledge base are consistent then the new knowledge base is consistent. (U4)
is exactly (R4), the principle of irrelevance of syntax. (U5) is exactly (R5). It assures that
the notion of “minimal change” behaves well. (U6) says that if y; is true when we update the
knowledge base by p2 and if p; is true when we update the knowledge base by u;, then the
two updates are equivalent. (U7) states that for a complete knowledge base the conjunction
of two updates contains the information of the update by the disjunction of the two pieces of
information. (U8) is the disjunction rule: from a semantical point of view a knowledge base
can be considered as the sum of all its possible worlds, so (U8) states that updating this sum
is the sum of updating. This assures that each possible world of the knowledge base is given
independent consideration.

Note that in revision and update postulates the notions of consequence, consistency and
equivalence are the classical ones. We will investigate the instantiation of these postulates to
different “logics”. This point is essential in this paper because when manipulating syntactical
objects (such as databases) we have to define some abstract notions of consequence, conjunc-
tion, disjunction in order to be able to analyse the properties of the operators. Particularly,
we will focus in this paper on a “forward chaining logic”.

More precisely, a first case of this sort of instantiation concerns the postulates for revision.
This is done in next definition.

Definition 6.1 Suppose that we are manipulating objects of a set Q (a set of “formulas” or
“knowledge bases”), a set T C Q and a set L (the “deducible atoms”) such that P(L) C Q.
Consider we have a map C : @ — P(L) (C is a consequence operator for the chosen logic).
Finally suppose we have a function (a change operator) a : QxI' — Q and a function (the
“conjunction”) ® : QxI' — Q, such that @ : IT'x[' — T, i.e. the restriction of ® to couples in
' takes its values in I'. Then a is said to be a syntactical revision operator (with respect
to C and ®) if the following postulates hold:

(SR1) C(Y) CC(XaY).
(SR2) IfC(X®Y) # L then C(XsY) =C(X ®Y).
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(SR3) IfC(Y) # L then C(XaY) # L.
(SRB) C(Xa(Y ®2)) CC((XaY)® Z).
(SR6) IfC((XaY)® Z) # L then C((XaY) ® Z) C C(Xa(Y ® Z)).

Let us remark that the postulates (SRi) are the natural counterparts of postulates (Ri)
when we interpret ® as the conjunction of formulas and thinking X consistent iff C(X) # L.

There is no postulate corresponding to (R4) (alias U4), the postulate of irrelevance of
syntax, because the operators we will define are in general syntax-sensitive. Nevertheless in
our abstract setting we could define the counterpart of (R4) in the following way:

(IS) K C(X)=C(Y) and C(Z) = C(W) then C(X aZ) = C(Y aW).

Unfortunately this does not hold for our operators as we will see in observation 6.23.

The second case of instantiation we consider concerns the postulates for update. This is
the object of next definition.

Definition 6.2 Consider two sets 2 and L such that there isa setT' C P(L) withT C Q. LetC
be a function C : @ — P(L). Suppose we have a function (a change operator) a : QxI' — Q.
Now suppose that we have an associative “connector” (our “disjunction”) @ :I'xI' — T such
that C(X ®Y) = C(X)NC(Y), i.e. the behaviour of @ with respect to C is like a disjunction. We
also suppose we have a function ® : QxI' — Q, such that @ : I'xI' — T', i.e. the restriction
of ® to couples in T takes its values in I'. The operator a is said to be a syntactical update
operator with respect to C, ® and @ if the following postulates hold:
(SU1) C(Y) CC(XaY).
(SU2) IfC(Y) CC(X) then C(XaY) = C(X).
(SU3) IfC(X)# L and C(Y) # L then C(XaY) # L.
(SUS) C(Xa(Y ®Z)) CC((XaY)® Z).
(SU6) IfC(Y1) CC(XaY2) and C(Y2) C C(XaY)) then C(X aY1) = C(XaY3).
(SU8) C((X ®Y)aZ) =C((XaZ)® (Y a2)).

The postulates (SU1) are the natural counterparts of postulates (Ui) (notice that we have
asked the “connector” @ to have the behaviour of a disjunction with respect to the notion

of consequence C). Remark also that there is no postulate corresponding to (U7) because in
general the image of a couple of elements of I' under & will not belong to I'.

As for syntactical revision operators, there is no postulate corresponding to U4.

6.2 Some syntactical change operators

The purpose of this section is to define some change operators essentially based on forward
chaining. The first one, factual update, updates a set of facts by a set of facts coding a change
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in the world according to a set of integrity constraints. The following three ones, namely
ranked revision, hull revision and extended hull revision are based on a ranking of sentences
of the programs. We will analyse the rational properties they satisfy in section 6.3.

6.2.1 Factual update

Let P be a fixed program which in this context can be seen as our background theory or
our integrity constraints. Let L be a set of facts which can be seen as our beliefs about the
world. We would like to define the change produced by a set of facts L’ coding a new piece of
information about the world. The following definition describes the result of this change:

Lt if L or L' is not P-consistent
LopL =
(Lyul’,...,L,UL"Yy  otherwise
where {Ly,...,L,} is the set of subsets of L which are maximal and P U L’-consistent.

So more generally than a set of facts L we are considering unordered tuples of sets of facts
(Ly, ..., Ly) called flocks in the literature [27]. Such flocks can be also seen as multisets.

We define the concatenation of flocks ‘-’ in the obvious way:

(L, Loy (b DY Ly, Lo L L)

and we define the change produced in a flock by a new piece of information by the following

sef Lit if L’ or all the L; are not P-consistent
<L1, ...,Ln> op L' :e:
(Liyop L") - (Liy op L')---(L;, op L) otherwise

where {L;,,...,L; } is the set of all sets in {Ly,..., L,} which are consistent with P.

In order to investigate the relation between op and the postulates of change we need to
define the intensional content (the consequences) of a flock F = (Ly,..., L,). So we define the
consequences by forward chaining (with respect to P) of such a flock, denoted C£(F), by the
following:

C}Z(]:) = ﬁ CfC(L,' U P)

i=1

So, we adopt here a sceptical point of view, since the consequences of a flock are the facts
that are true in every elements of the flock.

In section 6.3 we will show that op is a syntactical update operator.

Example 6.3 We consider the program P and the set of literals L, defined by P = {a,b— ¢ ; a,d — ¢}
and L = {a,b,d}. Put L' = {~c}. L' is not PU L consistent and then some facts must be
“retracted” from the old base L. Then it is easy to see that

Lop L'= ({a} U {_'c}v {b7 d} U {—'C}>

For the sake of completeness we give in the appendix an algorithm to compute L op L'.
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6.2.2 Ranked revision, hull revision and extended hull revision

In the case of factual update the program is fixed and we restrain the new piece of information
to be a set of facts. When it is not the case a natural question that one may ask is how to
change a program when a new piece of information arrives. The aim of this section is to give
an answer to this question even when the new piece of information is a program.

The change operators introduced in this section are inspired by the duality existing between
revision and rational inference relations [31, 70]. So the first operator can be seen as the
‘relativization’ of the rational closure [55] to the forward chaining logic. The second operator
is an extension of the first one and it is aimed to satisfy a little bit more of transitivity [9, 7].

Definition 6.4 (Exceptional sets of literals and rules) Let P be a program. A set of
literals L is said to be exceptional with respect to P iff L is not P-consistent and a rule L — [
of P is said to be exceptional in P iff L is exceptional in P.

Notice that, when the body of a rule is empty, this rule will be exceptional iff P is not
consistent. In this case all the rules are exceptional.

A similar definition of exceptionality for a formula can be found in [55].

Definition 6.5 (Base) Let P be a program. Let (P;);c,, be the decreasing sequence defined by:
Py is P and P4, is the set of all exceptional rules of P;. Since P is finite there is a smallest
integer ng such that for all m > no we have P, = P,,. If P,, # 0 we say that (P, ..., Py,,0)
is the base of P. If P,, = 0 we say that (P, ..., P,,) is the base of P.

Thus a program P has intrinsically a hierarchy, its base, in which the greater n is, the more
exceptional the information in P, is.

Definition 6.6 (Rank function) Fiz a program P and let (P, ..., P,) be the base of P. Let
p : Prog — w be the rank function defined as follows: p(P') = min{i € w : P’ is P;-consistent}
if P is consistent, otherwise p(P') = n. It is a fact that if P’ C P" then p(P') < p(P").

Notice that actually the rank function has two parameters. Thus in the notation Pypr),
p(P’") denotes the rank of P’ with respect to P.

The rank of a new program P’ denotes how this program is exceptional according to the
old program P.

Definition 6.7 (Ranked revision) Let P and P’ be two programs. We define the ranked
revision of P by P', denoted P o.; P’, as follows:

Po,; P = Pp(P’) upP

In other words we take from the base of P the first program (the least exceptional) that agrees
with the new piece of information.

We will now slightly generalize the ranked revision operator, and define the hull revision
operator from the definition of the “hull of P” ((h(P)).
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Let Ip(P’') be the set of maximal subsets of P which are consistent with P’ and which
contain P,(p:). Define h : Prog — P(P) by h(P') = N\ Ip(P')

Definition 6.8 (Hull revision) The hull revision of a program P by a program P’ denoted
P oy P' is defined as follows

Po, PP =h(P)UP

Remark 6.9 By the definitions it is easy to see that
Ct(P oyt P') C Cp(Pop P)

Thus one can say that oy, is a conservative extension of o.r. It keeps information that does not
come into account in the contradiction.

Remember that in the definition of hull revision of P by P’ we first calculate the set Ip (FP’)
of subsets of P maxiconsistent with P’ and containing P,(pr); then we take a very sceptical
approach putting P o, P’ = (N Ip(P')) U P’. What we want now is to be more permissive
and we are going to manipulate Ip(P’) as a flock. The ideas here are very close to the ones of
factual update (cf section 6.2.1).

First given two programs P and P’ we are going to define Po., P'. Let Ip(P’) be as before.
Then we put:

(HhUP,...,H,UP) if Ip(P')={H,,...,H,}
Po., P' =
P’ if Ip(P')=0

Remark that the result is a flock of programs.

Now suppose that F is a flock of programs, say F = (Q1, ...,Qn). Then we define F o, P
by putting
foeth (QloehP)'(Q2°ehP)"'(Qn°ehP)

where as in section 6.2.1 ‘-’ is the concatenation of flocks.

IfF ={(Qi,-..,Qn)is aflock of programs we define Cs(F) by putting C 1(F) = =1 Cr(Q:)-

Remark 6.10 Notice that with this definition o, is a conservative extension of op, i.e. Cp.(P op P') C
C(P ocp P'). For this reason the operator oy, is called extended hull revision .

We will identify a program P with the flock (P).

In section 6.3 we will show that o, is a syntactical revision operator and that the operators
op, and o, enjoy some of the properties of syntactical revision operators.

6.2.3 Examples of ranked revision, hull revision and extended hull revision.

In this subsection we give examples that illustrate the behaviour of ranked revision, hull, and
extended hull operators and at the same time the differences between them.
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In the following examples we are interested in facts one can infer from Po P’, i.e. the facts
l € Cp(PoP') when o is ok, op or o. For simplicity we will take for P a set of rules with
non empty body and P’ a set of facts.

Example 6.11 Consider P={b— f; b— w; 0 —b; o = —f} whereb, o, f, w stand respec-

tively for birds, ostriches, fly and have wings. It is easy to see that the base is < Py, Py, Py >
where

P={b>f;bow;0—b; 0= ~f}
Ph={o—>b; o—>~f}
P,=90

Notice that p(b) = 0 so Ip(b) = Py = P and therefore
Por {b} = Pop {b} = Po.s {b} = PU {b}
ColP ork {b)) = {6, f, w}
Thus on this example the three operators have ezactly the same behaviour.
For the same P, an easy computation shows that p(o) = 1. Since the set
{o=b; 0--f; b>w}

is the unique eztension of P, consistent with {0} we have h(0) = {o—b; 0= ~f ; b — w}
so

Pop{o}=Pop{o}={o—=b; 0o ~f; b= w}U{o}
Since p(0) = 1 we have P o, {0} ={0—b; o— —f}U{o}. Therefore
Cr(Pop {o}) = Cr(P ocr {0}) = {b,0,~f, w}

but Cp(P orr {0}) = {b,0,~f}. Thus this example shows that hull revision and eztended hull
revision keep more information from the old program than ranked revision.

Another classic taxonomic example (the calculations are left to the reader) is given by

Example 6.12 P={m =5 s; c—> m; ¢ — —=s; n — ¢ ; n — s} where m,s,c,n stand
respectively for mollusc, shell, cephalopod and nautili. The base is < Py, Py, Py, P3 > where

Ph={m—os;com;ca-s;n—=c; n—>s}
P={com;co-s;n—c; n—s}
Po={n—c; n—s}

P3=®

We have
Cp(Pon {n}) = {n,c,s,m} = Cp(P oc {n})
and
Cr(Pork {n}) = {n,c, s}
this shows that the hull (and extended hull) revision allows more inferences than ranked revision.

In some other cases the revisions coincide, for instance

Cr(Pon {c,—n}) = Cr(P oen {¢,~n}) = {c,~n,m,~s} = Cp(P o {c, ™n})
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Now we consider an example showing that in general the extended hull revision allows more
inferences than the hull revision

Example 6.13 Take the following program
P={a,b—c;a-~c—d; b-c—d;a;b}

Put P' = {—c}. The base of P is (P, P\, P;) with

Po={a,b—=c; a,~c—d; b-c—d; a; b}
P, ={a,~c—d; b-c—d}
P,=0

Clearly p(P') = 1 and Ip(P') = {PLU{a,b— ¢,a}, P, U{a,b— ¢,b}, LU {a,b}}. Thus
h(P') = Py and therefore d  Cs.(P oy P') = Cf(Py U —c). Whereas d € Cp(P o.n P') because
for any Q € Ip(P') we have d € Cp(Q U {—c}).

6.2.4 Computing hull revision and extended hull revision

In this subsection we show how, via a simple coding, we can compute the hull revision by using
the factual revision defined in section 6.2.1.

The base < Fy, ..., P, > of P is easily computed.

To compute the class of maximal subsets of P which are consistent with L and which
contain P,(pry we use the update algorithm given in the appendix in the following way.

Let ¢/ : P — {r1,...,rn} and ¢ : P' — {q1,...,qx} be two bijections where the r;
and the g; are new atoms. Define £: PUP' — {ry,...,rn}U{q1,...,qc} by &(r) = £'(r) if
r € R and £(r') = £'(r') if ' € P'. Let M(P) be the modification of P in the following way:
each rule L — | of P is replaced by the rule r,L — [ where r = ¢(L — [). Analogously, let
M(P’) be the modification of P’ in the following way: each rule L — [ of P’ is replaced by the
rule r, L — | where r = {(L — [). Note that the maximal subsets of P which are consistent
with P’ and which contain P,(pr) are then those corresponding to the maximal subsets of the
base of facts £(P) computed as being its possible updatings with respect to M(P)U M(P') by
£(P") U £(P,(pr))- More precisely we have:

Pop P' =7 (I(P) om(pyum(pry (E(P) UL(P,p1)) 1}
In an analogous way
P oeh P' = €7 [U(P) opg(pyum(pr) (E(P') UL(Bypry)) ]
In order to illustrate this method take the following example:

Example 6.14 P = {b — f;b = w;0 — b;o — —f}. Let P' = {o}. Define £ : PU
P — {1,2,3,4,5} such that M(P) = {1,b =& f; 2,b > w; 3,0 > b; 4,0 > —f} and
M(P') = {5 = o}. We have seen above that P,piy = {0 — b;0— —f} s0 £(P,pny) = {3,4}.
Therefore

E(P) om(pyum(pry (P ) UL(Pypry)) = {1,2,3,4} op(pyum(pr {51 U {3, 4}
({2,3,4,5})
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and so Cp.(Pop P') = Cp(€71({2,3,4,5})) = Cr({o —= b;0 = =f;6 — w; 0}) = {0, b, = f, w}.

6.3 Change properties for ¢p, 0., o5 and o

In this section we analyse the rationality of our operators.

More exactly we will show that factual update can be seen as an update operator in
our relativized version of the Katsuno-Mendelzon postulates and that ranked revision can be
considered as a revision operator in in our relativized version of the Alchourrén-Géardenfors-
Makinson postulates. And we give some properties satisfied by hull revision and extended hull
revision.

We begin with an observation the proof of which is straightforward.

Observation 6.15 The functions Cj, and C¥, are idempotent and monotonic, i.e. C(C(X)) =
C(X) and C(X) CC(XUY). Thusif X CC(Y) thenC(X) CC(Y) forC =Cp orC = C}Z
and X andY in the appropriate domains. .

We will show that op is a syntactical update operator. In order to do that we must give
the instantiations for £, @, C @ and ® used in definition 6.2. We do that in next definition.

Definition 6.16 £ = Lit; I' = P(L); Q is the set of flocks in which each element is in T.
We identify L € T with the flock (L). With this identification we have I' C Q. The function
C:Q — P(L) is defined by C = C}z. The function & : QxQ — S is defined by F, & F2 =
F1 - F2 (notice that this definition satisfies the requirement C(Fy @ F,) = C(F1) NC(F2). The
function @ : QxI' — Q is defined in the following way:

(Ly,...,Lay®L=(L UL,...,L,UL)

Notice that with the previous identification we have L ® L' = L U L', that is ® satisfies the
requirement that its restriction to couples of I' takes its values in T'.

With this definition we can state the following theorem:

Theorem 6.17 The operator op is a syntactical update operator. More precisely, taking L,
I, Q, C and ® as in definition 6.16 the postulates SU1, SU2, SU3, SU5, SU6 and SU8
hold.

Proof: SU1: We want to show that C(L") C C(F op L"), i.e. that CE(L') is a subset of

C}:(}' op L'). If L' is P-inconsistent or all the elements of F are P-inconsistent, the result
follows trivially.

Now suppose that F op L' = (Ly,...,L,). By definition of op, we have L' C L; for
i=1,...,n. Therefore L' C ﬂ?=1C'}Z(L,-) = CF(F op L'). We conclude using observation 6.15

SU2: Suppose that C}Z(L') C CE(F). We want to show that C’f’;(}') = CIP;(]-' opL'). If
CP(F) = Lit or CE(L') = Lit then the result follows trivially from definitions. Thus, assume
that CL(F) # Lit and CE(L') # Lit By the assumption, we can suppose that F = (L, ..., Ly)
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and F op L' = (L;, op L") ---(L;y op L") where the set {L;, ...L;,} is the maximal subset
of {L...Ly} such that each L;; is P-consistent. Since CE(L') C CE(Li;) we have that
Li;op L' = L;; UL’ and by observation 6.15 that CL(L;;UL’) = C}Z(Lij). Thus

k n
CR(FopL'y=CE(L;,uL',...,Li, ULy = (| CL(L:,) = [ CE(L:) = CE(F)

j=1 =1

where the next to last equality is due to the fact that if L; is different of all L;; then C}Z(L,-) =
Lat.

SU3: It is straightforward by definition of op.

SUS5: We want to show that CE(F op (L ® L')) C CE((F op L) ® L'). First we prove the
result when F is a flock with one element, say 7 = (H). If H is P-inconsistent or LU L’ is
P-inconsistent the result is quite straightforward. Now suppose that both H and PU P’ are
P-consistent. By definition we have

Hop(L®L) = (L4uLul),...,.L,ULUL"
(HopL)®L' = (KiUL,...,K,UL)®L'
= (KiULUlL',...,K,ULUL')

where L; is a maximal subset of H such that L; U L U L' is P-consistent, for : = 1,...,n,
K; is a maximal subset of H such that K; U L is P-consistent, for j = 1,...,p. Notice
that either C}Z(Kj ULUL') = Lit or there exists an m such that K; = L,,. Therefore if
le ﬂ?___l Cfc(PU L;,uL'uU L”) then [ € ﬂ§=1 Cfc(PU K,'J- uL'u L").

Now we prove the general case. Suppose F = (Ly,...,L,). If F is P-inconsistent or
L U L' is P-inconsistent the result is straightforward. Thus assume that 7 and PU P’ are
P-consistent. Then

Fop(L®L) = (Liyop(LUL"))---(L;s, op (LUL"))
(fop L’)@L' = ((L,‘1 OPL‘--L,',‘ op L))®L’
= ((Liyop L)®L')---((Liy op L) ® L')

where {L;,...,L; } is the maximal subset of {L;,...,L,} such that each element is P-
consistent. By the first case we have

CE((Li;op (L®L')) CCHL((Li;op L)® L) forj=1,....k

Therefore CE((Fop (L® L)) CCE((Fop L)® L').

SU6: Suppose C}Z(Lz) C CP(Fop L) and C’}Z(Ll) - C}Z(}' op Ly). We want to show
that CfP;(f opLy) = Cﬁ(}' op L2). When one of F, L;, Ly is P-inconsistent the result is
trivial. So suppose all three of them P-consistent.

First we suppose that F = L. By the assumption it is clear that L, C C’IZ(L op Ly) and
Ly CCE(Lop Ly) Put
LopL, = (L},...,Ll)QL;
LopL, = (L} ...,[2)Q® L,
where L} is a maximal subset of L such that L} U L, is P-consistent for: = 1,...,n; and L? is

a maximal subset of L such that LJZ- UL, is P-consistent for j = 1,...,n,. From the hypothesis
it is easy to see that:(a) L, UL? is P-consistent for j = 1,...nz and(b) L, U L} is P-consistent
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fori=1,...n;. From (b) we have Vi € {1,...,n;} 3 € {1,...,n2} such that L} C L]2~ and
from (a) we have V j € {1,...,n,} 3¢ € {1,...,n1} such that L? C L!. But this implies, by
maximality of sets L} and L?, that ny = mq and there is a permutation o of {1,...,n;} such
that L} = L? ... Without loss of generality we can suppose that o is the identity. Finally note
that
a
CE(LY,...,LL)® L) = C{’;((L}, ooy LL )Y ® (L1 U L))
CL(Lh.... 12) © (LU L)

= Cfc((Lf, . L2)Y® Ly)

The first and third equalities follow from the hypothesis and observation 6.15.

Now we prove the general case. Put 7 = (Hj, ..., H,) and suppose C'}Z(Lz) - C}Z (Fop Ly)
and CE(Ly) C CE(F op L3). Then

FoplL;, = (HjloPLi)"'(ijoPLi) i=1,2

But it is easy to see that L; C C}Z(Hjm op Lg) and Ly C C;:(Hjm op Ly) form = 1,...,k.
Then, because of the first case, CE(Hj,, op L1) = CL(Hj,, op L2) and therefore CE(F op L) =
CL(F op L2).

SUS8: It is trivially verified because of definitions. :

We will show now that o,; is a syntactical revision operator and that the operator o
has some of the properties of syntactical revision operators. In order to do that we give the
instantiations of the sets £, Q and the functions C and ® used in 6.1.

Definition 6.18 £ = Lit. Q =T = Prog. Clearly P(L) C Q. The consequence operator C :
Q — P(L) is defined by C = Cp.. The function ® : xQ — Q is defined by PQ P’ = PUP'.

Theorem 6.19 The operator o, is a syntactical revision operator. More precisely, taking L,
Q, C and ® like in definition 6.18, the postulates SR1, SR2, SR3, SR5 and SR6 hold.

The operator oy, satisfies the postulates SR1, SR2 and SR3 but it does not satisfy SR5
nor SR6.

Proof: First we will do the verifications for o;, concerning the postulates SR1, SR2, SR3
(the postulates for o, are verified in an analogous way). Then we will verify SR5 and SR6
for o,r. Finally we will show counterexamples to SR5 and SR6 for op.

SR1: We want to show that C.(P') C Cf(P o P'). This is clearly true because Po, P' =
h(PYU P".

SR2: Suppose that C(P ® P') # L, i.e. C(PUP') # Lit. We want to show that
Poy P'= PU P'. This is straightforward because Cs. (P U P') # Lit implies p(P') = 0.

SR3: Suppose C(P') # L, i.e. P' is consistent. We want to show that P o P’ is also
consistent, i.e. C(P oy P’} # L. This is true because P o, P' = h(P') U P’ and h(P') is by
definition contained in a set consistent with P'.

SR5 and SRS for o.;: We suppose that C((P o,x P') @ P") # L, i.e. (Po,x P’YUP" is
consistent (otherwise SR5 is trivial). We want to prove that C((P oqx P') ® P") = C(P o
(P'® P")). In order to do that it is enough to show that Po,t (P'UP") = (Po,;x P')UP". By
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hypothesis (P,pryUP')UP" is consistent. Thus p(P'UP") < p(P’) and then p(P'UP") = p(P’).
From this we conclude easily.

In order to show that SR5 does not hold for oy it is enough to consider the following
example: the program P is defined by P = {b — w,w — v, v’ = f,o = b0 = ~f}.
The base is in this case (P, Py, P;) with By = P, P, = {o > b,0— ~f} and P, = 0. Put
P' = {o} and P” = {w'}. It is not hard to establish that Ah(P') = P, and A(P'U P") =
PoU{b— w,w— w'}. Thus Cp((Por PY)UP") = {o,uw',b,~f} and Cp(P o (P'UP")) =
{o,w’,b,~f, w}. Therefore Cf(P op (P'UP")) € Cs((P oy P')UP"), that is SR5 does not
hold.

To prove that SR6 does not hold for o, we consider the following example: Put P =
{ro,r1,r2} wherero =a — ¢, r1 = e — —¢c, 7y = b — —c. Put P/ = {a,e} and P" = {b}. The
base for P is (P,0). Then it is easy to see that P,(pry = P,(piupry = 0 and

Ip(P") = {{ro,r2},{r1,m2}} and
Ip(PPUP") = {{ro},{r1,r2}}

Thus A(P') = {r2} and h(P' U P") = 0. Therefore ~¢ € Cf((Po, P')UP") and —c ¢
Cy.(P on (P'UP")), so R6 fails. .

Now, in order to analyse the postulates of syntactical revision satisfied by o.z, we need to
state in a very precise way what are the sets and functions of definition 6.1. This is the subject
of the next definition.

Definition 6.20 We put £ = Lit; € is the set of flocks of programs; I' = Prog; notice that
with the above identification we have I' C Q; o, : QxI' — Q as defined above; the function
® : QxI' — Q is defined by:

(QI)"WQTL)@P:(QlUP,...,QnUP>

Notice that the restriction of @ to couples of elements in ' takes its values in T'; and finally
we define C : Q@ — P(L) by putting C = Cf..

The extended hull revision operator satisfies some of our syntactical postulates. More
precisely we have the following theorem:

Theorem 6.21 The operator oy, satisfy SR1, SR3 and SR5, when we take the definitions
of 6.20. It satisfies a weak version of SR2: if P is consistent with all the elements of F then
Foe, P=FQP.

Proof: SR1 is proved in an analogous way than the same postulate (SU1) for the operator
op (see the proof of theorem 6.17).1.5mm] SR3 and the weak form of SR2 are straightforward
from definitions.1.5mm] Now we prove SR5. First, we consider the case F = P. Then we
want to prove that C(P oc (P'® P")) CC((P oer P') ® P"). Suppose that

Pog, PP ={(QUP,...,Q,UP)
Poep (PPQ P'Y=Poep (PUP")=(H,UP' UP",...,H,UP UP")

Then (Po, P)QP" = (QiUP' UP",...,QnU P UP"). f Cp((P oer P') ® P") = Lit we are
done. Otherwise there is a Q; such that Q;UP’'UP" is consistent. But since Q); is a subset of P
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maxiconsistent with P’ and containing FP,(p/) necessarily p(P’) = p(P'UP"). Now we claim that
foralli=1,..., neither Q;UP'UP" is inconsistent or thereis a j < k such that Q; = H;. Tosee
that suppose that Q;UP'UP" is consistent then Q; is a subset maximal consistent with P'UP"
containing P,(pry = F,(prupn), i€ Qi = H; for a j, by definition of sets H, for ¢ = 1,...,k.
Finally from the claim we get easily (i, Cr.(H; U P'UP") C N, Cr(Q: U P UP"), i.e.
C(P o (P' @ P")) C C((P ous P') @ P").

The general case, when F = (P, ..., F,), follows from the first case by definition of o
and using the same trick that we used in the proof of SU5 in theorem 6.17. 1

Observation 6.22 The postulates SR2, SU2, SU6 and SR6 don’t hold for o.,,.

Proof: We build counterexamples for each of those postulates.

For SR2: Take F = ({a}, {-b}) and P = {b}. Then
Cr(F ® P) = Cr({{a, b}, {-d,})) = {a, b}
So F ® P is consistent. But Cy(F oer, P) = Cp(({a, b}, {b})) = {b}; so SR2 fails.
For SU2: Take P = {a} and P’ = {a = b}. Then 0 = Cy(P’') C Cp(P) = {a}. But
Ct(P oenh P') = Cp(P U P') = {a, b}; so SU2 fails.
For SU6: Take P, = {a = b}, P, = {c — d} and Q = {a}. Clearly Cp(P1) = C(P2) =0,
so the hypothesis of SU6 is true. But

Cre(Qoer 1) = Cr(QU P) = {a,8} # {a} = C(QU ) = Ce(Q ocr P2)

For SR6: The same counterexample given in the proof of theorem 6.19 to show that SR fails
for oy, works in this case. a

Observation 6.23 All the operators previously defined are syntaz-sensitive, i.e. (IS) fails for
the operators op, o,r, o and ogp,.

Proof: First we give a counterexample for op. Put P = {a — b}. Define L; = {a,b}
and L, = {a}. Put L' = {~a}. Clearly CE(L;) = C}’;(Lg) = {a,b}. It is easy to see that

Ly op L' = {b,—a}. Thus CE(L; op L") = {b,~a}. But it is easy to see that Ly op L' = {-a}
so CF(Lz op L') = {~a}. Therefore C{(Ly op L) # CE(Ly op L').
Now we give a counterexample for o,t, op and og. Put P, = {a — b}, P, = {a = ¢} and

P’ = {a}. Then Cr(P) = 0 = Cp(P2). But Cp(PLo P') = Cp(PLUP) = {a,b} # {a} =
Cfc(Pz U P') = Cfc(Lz o P’) for any o € {o,.k, Oh, Oeh}. 1

6.4 Still another operator: selection hull

In the previous section we have seen that the two sceptical approaches to extend the ranked
revision fail to be syntactical revision operators. In this section we give another extension of
ranked revision based on the idea of using a selection function.

Let S be a function mapping sets of programs into programs, i.e. S : P(Prog) — Prog.
We will say that S is a selection function iff the following properties hold:
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i) S@=0
(ii) ¥ D # 0 then S(D) € D

Let us remark that this kind of selection functions are known as maxichoice functions in
the literature [1, 36].

Let P and P’ be two programs. Let Ip(P') be as defined in section 6.2.2, i.e. the set of
subsets of P which are maxiconsistent with P’ and which contain P,p1)- Let S be a selection
function. We define the operator o, by the following:

Pog, P = S(IP(P/)) UP

We will take the same instantiations as in definition 6.18 in order to analyse the postulates
satisfied by o,.

The following definition gives us a class of selection functions for which the operator o,y is
a syntactical revision operator.

Definition 6.24 A selection function S is said to be sensible iff the following property holds:
for any programs P, P' and P" '

Ip(P)NIp(P' UP"Y #0 = S(Ip(P') = SUIp(P U P")

Theorem 6.25 If S is an sensible selection function then oy is a syntactical revision operator
when we consider L, Q, T, C and ® as in definition 6.18.

Proof: SR1 and SR3 follow easily from definition of o,;,. The verification of SR3 is also
easy using the property (ii) of selection function. Now we prove SR5 and SR6. Actually
with the hypothesis on S we are going to prove that if (P oy, P') U P” is consistent then
(Pos, P'YUP" = P oy, (P'UP") which is obviously stronger than SR5 and SR6.

Suppose that I(P') = {Q}U D, and S(I(P')) = Q. By hypothesis QU P' U P” is consistent
so p(P') = p(P'U P") and Q € I(P'UP"). Therefore I(P' U P") = {Q} U D,. Since
p(P’") = p(P'UP") and P’ C P'U P” we have that for any R in D, there exists R’ in D; such
that R C R'. Then by the property assumed for S we have S(I(P'U P")) = Q; and from this
we conclude. 1

We remark that the property required for S in definition 6.24 can be explained in an
intuitive way: if you are choosing among elements of {Q} U D, and your preference is @Q, it
means that you think @ is the set which best fits P, then in the situation where you are
choosing among elements of {Q} U D, with elements of D, contained in elements of D, you
must reasonably choose Q.

Notice also that with this definition o,y is a conservative extension of o, i.e. Cg(P oer, P') C

C:(P osp P'). Thus we have
Cre(Pork P') € Cp(Pop P') € Cr(Poeh P') C Cre(P ogh P')

A natural question one can ask is if there are selection functions with the property required
in theorem 6.25. We show next a method for building such selection functions.
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6.4.1 Building sensible selection functions

An easy way to build a sensible selection function is to use a linear ordering among propositions,
that codes agent preferences in the program.

Let |Q| be the cardinality of a set Q. Let {ry,...,7,} be an enumeration without repetition
of rules and facts. Let 7 be a function (weighting) = : {ry,...,r,} — w such that n(r;) = 2.
We extend in a natural way = to P(Prog) by putting

k
7!'({7‘,'1, .- -vrik}) = Z 2%

i=1
Notice that if P, P’ € Prog and P # P’ then n(P) # = (P’).

Let <, the lexicographical order on w?. Then define S : P(Prog) — Prog by S(8) = 0
and if D is nonempty

S(D)=Qif Qe Dand VR e D (R#Q = (IBl,x(R)) <¢ (10}, v(@)))

That is S chooses among the sets of greatest cardinality the set with higher weighting.

Because of definition of 7 it is quite easy to see that S is a sensible selection function.

Conclusion

We have proposed in this paper a methodological framework in order to analyse rational
properties for syntactical change operators. We have also introduced five knowledge change
operators based on forward chaining. The ideas behind the definition of these operators are
very natural and simple. In most of the cases, they are connected with well known methods
[27, 5, 71]. The originality of our work relies on the definition of the rank function for the
revision operators and concerning the factual update on the fact that we consider the flocks
with a logical content: their consequences by forward chaining. This point -endowing the result
of an operator with a logical content- is particularly important because it makes possible the
analysis of the operators in our abstract framework.

The following table summarizes the main results:

Operator Satisfied postulates Unsatisfied postulates
op SU1+SU2+SU3+SU54+SU6+SUT7+SUS
Ork SR1+SR2+SR3+SR5+SR6
oh SR1+SR2+4SR3 SR5+SR6
Och SR1+SR3+SR5 SR2+SU24+SR6+SU6
Osh SR1+SR2+SR3+SR5+SR6

Thus three of our operators have desirable properties. In particular factual update is a
syntactical update operator according to our version of Katsuno and Mendelzon postulates.
Ranked revision and selection hull are, syntactical revision operators according to our version
of Alchourrén-Gardenfors-Makinson postulates. The other operators, hull and extended hull
revision, don’t have good rational properties. Nevertheless they extend ranked revision in order
to keep more information from the old program and thus seem to be less drastic than ranked
revision.
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These operators based on forward chaining are easily computable. Notice that, in par-
ticular, the operator of ranked revision is polynomial. The factual update operator, from
a complexity point of view, is exponential (actually it is NP-complete since it requires the
computation of all minimal hitting sets).

The operators based on hull revision are more complicated but can be computed with the
help of the two others.

An interesting further work is to investigate the properties of our operators with respect
to some relativisation of iteration postulates [18, 53]. Another interesting point to develop is
the extension of these operators to the first order. By the way, our results can be translated
in an obvious way to Datalog without negation by failure.



Chapitre 7

On the logic of merging

This work proposes an axiomatic characterization of merging operators. It underlines the differences
between arbitration operators and majority operators. A representation theorem is stated showing that
each merging operator corresponds to a family of partial pre-orders on interpretations. Examples of
operators are given. They show the consistency of the axiomatic characterization. A new merging
operator Agaaz is provided. It is proved that it is actually an arbitration operator.

7.1 Introduction

In a growing number of applications, we face conflicting information coming from several
sources. The problem is to reach a coherent piece of information from these contradicting ones.
A lot of different merging methods have already been given [10, 62, 4, 5, 108]. Instead of giving
one particular merging method we propose, in this paper, a characterization of such methods
following the rationality of the postulates they satisfy. We shall call merging operators those
methods that obey a minimal set of rational merging postulates. Then we shall investigate
two subclasses of merging operators: arbitration operators and majority operators.

Merging operators are useful in a lot of applications: to find a coherent information in a
distributed database system, to solve a conflict between several people or several agents, to
find an answer in a decision-making committee, to take a decision when information given by
some captors is contradictory, etc.

This work is related to the AGM (Alchourrén, Gardenfors, Makinson) framework of revision
theory [1, 36, 45]. Revision is the process of according a knowledge base in the view of a new
evidence. One basic assumption of revision is that the new information is more reliable that
the knowledge base, but it is not always the case. We can distinguish 3 cases:

e The new piece of information is more reliable than the knowledge base: it is the assump-
tion made in the revision theory so we can revise our knowledge base by the new piece
of information.

e The new piece of information is less reliable than the knowledge base: a drastic point of
view could be to ignore this unreliable piece of information but if we want to be more
constructive we can take this piece of information into account if it is consistent with the
knowledge base and ignore it only if it is inconsistent with our belief. Another interesting
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way would be to reverse the revision, i.e. to revise the new piece of information by the
knowledge base.

e The new piece of information is as reliable as the knowledge base: here we can’t give the
preference to one of the two items of knowledge, so we have to find something else. This
is the aim of merging operators.

The intuitive difference between arbitration and majority operators is that arbitration oper-
ators reach a consensus between the protagonists’ views by trying to satisfy as much as possible
all the protagonists, whereas majority operators elect, in a sense, the result of the merging
by taking the majority into account. In other words arbitration operators try to minimize
individual dissatisfaction, whereas majority operators try to minimize global dissatisfaction.
One of our main concerns in this work is to state these intuitions in a formal way.

Some operators quite close to merging operators have already been formally studied. Revesz
defined in [99, 100] model-fitting operators which can be considered as a generalization of
revision for multiple knowledge bases. Revesz also defined arbitration operators from model-
fitting operators. We make a criticism about Revesz’s postulates: they do not distinguish
between majority and arbitration.

Liberatore and Schaerf have proposed postulates to characterize arbitration [58, 59]. Their
definition has a strong connection with revision operators, but the major drawback, in our
opinion, is that those operators arbitrate only two knowledge bases. Furthermore they select
some interpretations in the two knowledge bases as the result of the arbitration. We consider
that we can’t ignore interpretations which do not belong to these knowledge bases, consider
the following example:

Example 7.1 Suppose that we want to speculate on the stock exchange. We ask two fi-
nancial ezxperts about four shares A,B,C,D. We denote 1 if the share rises and 0 if it falls
(we suppose that its value can’t be stable). These agents have the same ezpert level and
so they are both equally reliable. The first one says that all the shares will rise: ¢ =
{(1,1,1,1)}, the second one thinks that all the shares will fall: ¢, = {(0,0,0,0)}. The
Liberatore and Schaerf operators will arbitrate these opinions and give the following result:
R = {(0,0,0,0),(1,1,1,1)}. So it means that either o, is totally wrong or it’s v2 who is
completely mistaken. But intuitively, if the two experts are equally reliable, there is no reason
to think that one of them has failed more than the other: they both have to be at the same
“distance” of the truth. So they are certainly both wrong on two shares and the result has
to be: R = {(0,0,1,1),(0,1,0,1),(0,1,1,0),(1,0,0,1),(1,0,1,0), (1,1,0,0)}. So two of the
shares will rise and two will fall but we don’t know which ones.

In our opinion Liberatore and Schaerf’s operators have to be seen as selection operators
and have to be used in applications which require the result be one of the possibilities given by
the protagonists. For example, if the result of the arbitration is a medical treatment, we can’t
“merge” several therapies and so we have to use Liberatore and Schaerf operators. Liberatore
and Schaerf’s operators take, in a sense, the interpretation as unit of change, we propose to
take the propositional variable as such a unit, as Dalal says in [15]: “Change in truth value of
a single symbol can be considered as the smallest unit of change”, we want to apply this to
arbitration.

Lin and Mendelzon proposed a theory merging by majority operator [62, 61] which solves
conflicts between knowledge bases by taking the majority into account. Their theory merging
operators are what we call majority operators.
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The paper is organized as follows: in section 2 we give some definitions and state some
notations. In section 3 we propose postulates for merging operators, majority operators and
arbitration operators and we study the relationships between some of the postulates. In section
4 we give a model-theoretic characterization of those operators. In section 5 we give some
examples of merging operators, especially we show that an operator, called Agaroz, is an
arbitration operator. Finally, in section 6 we give some conclusions and discuss open problems.

7.2 Preliminaries

We consider a propositional language £ over a finite alphabet P of propositional letters. An
interpretation is a function from P to {0, 1}. The set of all the interpretations is denoted W.
An interpretation [ is a model of a formula if and only if it makes it true in the usual classical
truth functional way. Let ¢ be a formula, Mod(y) denote the set of models of . And let
M be a set of interpretations, form(M) denote a formula which set of models is M. When
M = {I} we will use the notation form(I) for reading convenience.

A knowledge base K is a finite set of propositional formulae which can be seen as the
formula ¢ which is the conjunction of the formulae of K. By abuse, we will use K to denote
the formula . We will note K a knowledge base the sole model is I.

Let K,,..., K, be n knowledge bases (not necessarily different). We call knowledge set
the multi-set E consisting of those n knowledge bases: E = {K},..., K,}. We note A E the
conjunction of the knowledge bases of F, i.e. AE = K; A---A K,. The union of multi-sets
will be noted U.

Remark 7.2 Since an inconsistent knowledge base gives no information for the merging pro-
cess, we’ll suppose in the rest of the paper that the knowledge bases are consistent.

K will denote the set of consistent knowledge bases and £ will denote the set of non empty
finite multi-sets with elements in K.

Let’s denote S the set of sets of interpretations without the empty set, i.e. § = P(W)\ {0};
and let’s denote M the set of finite non empty multi-sets with elements in S. Elements of S
and M will be denoted by the letters S and M respectively with possibly subscripts. So a
typical element M € M will be of the shape {Sy,...,S,}. Let M = {Sy,...,S.}, we define
(N M in the usual way: T e M iffvVS; e M I€S;.

Definition 7.3 A knowledge set E is consistent if and only if A E is consistent. We will use
Mod(FE) to denote Mod(A E).

Definition 7.4 Let E;, Fy be two knowledge sets. F, and E, are equivalent, noted FE, <
E,, iff there exists a bijection f from E; = {K},..., K.} to E; = {K2,...,KZ%} such that
FfK)e K.

Note that the relation < is an equivalence relation on knowledge sets. As usual, we denote
by £/« the quotient of £ by the relation <. Thus the function 2 : £/ + — M, defined by
([{Ky,-..,K:}le) = {Mod(K)),...,Mod(K,)} is a bijection. By abuse we will write :(E)
instead of +([F]s).
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A pre-order over W is a reflexive and transitive relation on W. Let < be a pre-order over
W, we define < as follows: I < Jiff I<JandJ £ 1. And~asI~Jif I<JandJ <.
Let I be an interpretation, we wrote I € min(<) iff AJ € Ws.t. J < 1.

By abuse if R is in K (respectively in §) then R will denote also the multi-set {R} which is
in & (resp. in M). For a positive integer n we will denote R™ the multi-set {R,..., R}. Thus

R*"=RU...UR,.

n

An operator A will be a function mapping knowledge sets into knowledge bases. In the rest
of the paper we will distinguish between operator and merging operator: the former when no
special properties are satisfied the later to indicate that the operator satisfies the postulates
of definition 7.5. Let K, E and A be a knowledge base, a knowledge set and an operator
respectively. We define the sequence (A™(E, K))n>1 by the following:

ANE,K) = A(EUK)
and A" = A(A™(E,K)UK)

7.3 Postulates

In this section, we are going to propose a characterization of merging operators, i.e. we give
a minimal set of properties an operator has to satisfy in order to have a rational behaviour
concerning the merging. Let F be a knowledge set, and let A be an operator which assigns to
each knowledge set E a knowledge base A(E).

Definition 7.5 A is a merging operator if and only if it satisfies the following postulates:

(A1) A(E) is consistent

(A2) If E is consistent, then A(F) = A\ FE

(A3) If E1 & E,, then - A(E;) « A(E3)

(A4) If K A K' is not consistent, then A(KU K'Y/ K

(A5) A(Ey) ANA(E2) F A(ELU Ey)

(A6) If A(E1) A A(Ey) is consistent, then A(Ey U E3) b A(Eq) A A(E,)

These six postulates are the basic properties a merging operator has to satisfy, the intuitive
meaning of the postulates is easy to understand: we always want to extract a piece of infor-
mation from the knowledge set, what is forced by (Al) (Notice that, as assumed in remark
7.2, all the knowledge bases of the knowledge set are consistent). If all the knowledge bases
agree on some alternatives, (A2) assures that the result of the merging will be the conjunction
of the knowledge bases. (A3) states that the operator A obeys a principle of irrelevance of
syntax, i.e. if two knowledge sets are equivalent in the sense of definition 7.4, then the two
knowledge bases resulting from the merging will be logically equivalent. (A4) is the fairness
postulates, the point is that when we merge two knowledge bases, merging operators must not
give preference to one of them. We will see (theorem 7.11) that (A4) is the clue for distin-
guishing arbitration operators from majority operators. (A5) expresses the following idea: if
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a group E; compromises on a set of alternatives which I belongs to, and another group E,
compromises on an another set of alternatives which contains I, so I has to be in the chosen
alternatives if we join the two groups. (A5) and (A6) together state that if you could find
two subgroups which agree on at least one alternative, then the result of the global arbitration
will be exactly those alternatives the two groups agree on. The postulates (A5) and (A6) have
been given in [100] by Revesz for weighted model fitting operators.

Observation 7.6 By definition, merging operators are commutative, i.e. the result of a merg-
ing does not depend on any order of elements of the knowledge set.

Let’s now turn our attention to the difference between majority and arbitration operators.
We give here a postulate that renders the behaviour of majority operators, that is to say that
if an opinion has a large audience, then it will be the opinion of the group:

(M7) VK 3n A(EUK™FK

Thus we define majority operators by the following:
Definition 7.7 A merging operator is a majority operator if it satisfies (MT7).

Besides, arbitration operators are those operators which are, in a large extent, majority
insensitive. We first give a postulate which seems to be a good characterization of arbitration
operator:

(AT) VK Vn A(EUK™) = A(EUK)

This postulate states that the result of an arbitration is fully independent from the fre-
quency of different views. Unfortunately the set of postulates {Al,..., A6, A7’} is not consis-
tent. The proof of this result has been pointed out by P. Liberatore (personal communication):

Theorem 7.8 There is no merging operator satisfying (A7').

Proof: Let E; = {K,~K} and E; = {K} be two knowledge sets. By (A7’) we have that
A(E UE3) = A(E,). By (A4) we have also that A(E) i K and A(E}) I/ ~K. Furthermore by
(A2) we deduce A(E;) = K. So A(E;)AA(E,) is consistent and by (A6) we have A(E UE,)
A(E1)ANA(Ey), it can be rewritten as A(E;) - A(E1)AK. Then A(FE,) F K, which contradicts
(44). '

Thus if we want to have a postulate expressing majority insensitivity while being consistent
with (A1 — A6) we must weaken (A7’). We propose the following alternative:

(A7) VK’ 3K K'W K ¥n A(K'UK™) = A(K' U K)

(AT) states that, to a large extent, the result of the arbitration is independent from the
frequency of the different views.

And we define arbitration operator in the following way:

Definition 7.9 A merging operator is an arbitration operator if it satisfies (AT).
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Now we investigate some relations between the postulates.
Theorem 7.10 If an operator satisfies (Al), then it can’t satisfy both (A7) and (MT).

Proof: From (A7) and (M7) we deduce that for any arbitrary F
VKAEUK)EK (%)

Take K’ such that K A K'+ L. Now putting F = K’, by (%), we have A(K'UK)F K. In a
symmetrical way we have A(K UK') - K'so A(KUK')F- KA K’ and then A(KUK') - L
which contradicts (A1). -

A merging operator can’t be an arbitration operator and a majority operator, more precisely
we have the following:

Theorem 7.11 If an operator satisfies (A4), then it can’t satisfy both (A7) and (MT).

Proof: From (A7) and (M7) we deduce easily VK’ 3K K' i/ K A(K'UK) F K. Let’s
choose K/ = K1 = form(I), then 3K K;l/ K A(K;UK) F K. But K/ K is equivalent to
K1 A K I L and so by (44) we have that A(K; U K) i/ K. Contradiction. '

So, although it seems very weak, the fairness postulate (A44) play a very important role,
since it allows us to differentiate arbitration operators and majority operators.

In addition to these basic postulates we can find various other properties, we investigate
some of them below.

An interesting property for a merging operator is the following which we call the iteration
property:

(Ax) InA™(E,K)F K

The intuitive idea is that, since the merging operators give, in a sense, the average knowl-
edge of a knowledge set, if we always take the result of a merging and iterate with the same
knowledge base, we have to reach this knowledge base after enough iterations. But, even if
it seems to be a reasonable requirement, we don’t know if all merging operators obey (Ai),
more exactly we suspect that those operators satisfying (A;;) are topological operators, i.e.
operators defined from a distance.

Now let’s turn our attention to the two properties of associativity and monotony. We claim
that they are not desirable for merging operators and we show that merging operators do not
satisfy any of them. First let’s give a formal definition of associativity and monotony:

(ASS) A(El u A(Ez)) = A(El ] Eg)

Associativity seems to be an interesting property since it would allow sub-merging within
the knowledge set. So merging could be implemented more easily and more efficiently.

(Mon) Ky K., ... ,Kot K' then A(KyU...UK,) FAK|U...UK")

The monotony property expresses that if a knowledge set E; is “stronger” than a knowledge
set Eq, then the merging of F; has to be logically stronger than the merging of F,.
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Theorem 7.12 If an operator satisfies (A2) and (A4), then it doesn’t satisfy (Mon).

Proof: Let I,J be two different interpretations. Let K; = K{ = form(I), K2 = form(J),
and Kj = form(I,J), so we have Ky - K} and K; + K}. From (A2) A(K}{U K}) = form(I)
and from (A4) A(K; U K3) i/ form(I). So we have A(K; U K3) i A(K] U K3). a

So it is clear that monotony is not satisfied by merging operators, it is not exactly the
same with associativity, we show that it is not satisfied by majority operators and that it is
not compatible with the iteration property:

Theorem 7.13 If an operator satisfies (A2) (A4) and (M7), then it can’t satisfy (Ass).

Proof: Let’s take K and K ; two different complete formulae, by (M7) we have that 3nA (KU
K7%) + Kj. By (Ass) we have that A(K;U K7) = A(K7U A(K?%)). But by (A2) we have
A(K%) = K. So we obtain that A(K;U Kj) - K. What contradicts (A44). .

Theorem 7.14 If an operator satisfies (A2) and (A4), then it can’t satisfy both (A;) and
(Ass).

Proof: (Ai) 3n A™(E,K) F K, but by (Ass) we find that A®(E,K) = A(EU K") =
A(E U A(K™)) and by (A2) we have that A(EU A(K™)) = A(FE U K). So we have that
A(FUK) F K, what, taking E = K’ with K’ A K I 1, contradicts (A4). a

So, if we want some additional property for a merging operator, we have to choose be-
tween iteration and associativity. We claim that iteration is a desirable property for merging
operators, so associativity is not.

7.4 Semantical characterizations

In this section we give a model-theoretic characterization of merging operators first in terms of
functions on sets of interpretations and then in terms of family of orders. More exactly we show
that each merging operator corresponds to a function from multi-sets of sets of interpretations
to sets of interpretations and then we show that each merging operator corresponds to a
family of partial pre-orders on interpretations. The semantical characterization of the merging
operators in terms of pre-orders is very close to the axiomatic characterization. This is due
to the fact that we can’t have a definition of the pre-order as subtle as in the case of belief
revision. But this semantical characterization is very useful in the proofs and is a starting
point for generalizing merging operators (e.g. when one considers the set of alternatives as a
parameter).

First we define what is a merging function:

Definition 7.15 A function § : M — S is said to be a merging function if the following
properties hold for any M, My, Mz € M and S,5' € S:

1 If1 €M, then I € 6(M)
2.IfNM#0and I ¢ M, then I ¢ §(M)
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3. IfSNS' =0, then 5(SUS') € S
4. If I € 6(My) and I € 6(M;), then I € 6(M; U My)
5. If (M) N6 (M3) # 0 and I & 6(M,), then I & §(M; U M>)

A majority merging function s a merging function that satisfies the following:
6. Y\MeMVSeSInsMuS*)CS

A fair merging function is a merging function that satisfies the following:
7.V5'€eS3ISeS S'ZSYn(S'US™)=6(S"US)

It is easy to see, via the bijection ¢ of section 7.2 that the properties 1 —5 are the semantical
counterparts of postulates (A1— A6) (notice that postulate (A;) corresponds to the fact § ¢ S),
property 6 corresponds to postulate (M7) and property 7 corresponds to postulate (A7). More
precisely we have the following representation theorem which proof is straightforward:

Theorem 7.16 An operator A is a merging operator (it satisfies (Al — A6)) if and only if
there exists a merging function 6 : M — S such that

Mod(A(E)) = 6(x(E)).
Furthermore A ts a majority merging operator iff § is a majority merging function; and A is

an arbitration operator iff 6 is a fair merging function.

As in the AGM framework for revision, we can suppose the existence of some relation
which intuitively represents how credible each interpretation is for some given knowledge set.
We will see that there is a close relationship between merging function and these relations on
knowledge sets. First we define what a syncretic assignment is:

Definition 7.17 A syncretic assignment is an assignment which maps each knowledge set E
to a pre-order <g over interpretations such that for any E, E1, E; € £ and for any K, K' € K:

1. If I € Mod(E) and J € Mod(E), then I ~g J

IfI € Mod(E) and J ¢ Mod(E), then I <g J

IfEy & Es, then <p,=<g,

If Mod(K) N Mod(K') = 0, then min(<gxux+) € Mod(K)

If I € min(<g,) and I € min(<g,), then I € min(<g,uE,)

;B W e

If min(<g,) N min(<g,) # 0 and I ¢ min(<g,), then I € min(<g,uE,)
A majority syncretic assignment is a syncretic assignment which satisfies the following:

7. VE € VK € K 3n min(<guk») C Mod(K)
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A fair syncretic assignment is a syncretic assignment which satisfies the following:
8. VK' 3K if Mod(K') € Mod(K), then Vn min(<gwg») = min(<gwk)

If we have an assignment that maps each knowledge set E to a pre-order <g on W, then
we can define a function 6 : M — S by the following: let M € M and let E € £ be such that
(E)= M, put

§(M) = min(<Eg) (7.1)

If the assignment satisfies property 3 above then ¢ is well defined.

Conversely, if we have a function § : M — S we can define a corresponding family of
relations on interpretations as VE € &:

<g=B((E)) x W\ SEENIU I, I\ T € W) (7.2)

It is easy to show that if we have a (majority, fair) syncretic assignment, then the merging
function obtained by equation 7.1 is a (majority, fair) merging function. Conversely, if we have
a (majority, fair) merging function, then the family of relations obtained by equation 7.2 is
a (majority, fair) syncretic assignment. This observation together with theorem 7.16 gives us
straightforwardly the following:

Theorem 7.18 An operator is a merging operator (respectively majority merging operator or
arbitration operator) if and only if there ezists a syncretic assignment (respectively majority
syncretic assignment or fair syncretic assignment) that maps each knowledge set E to a pre-
order <g such that

Mod(A(F)) = min(<Eg).

As pointed out by D. Makinson (personal communication), this definition of merging oper-
ators from such assignments can be compared to the framework of social choice theory [47, 3].
The aim of social choice theory is to aggregate individual choices into a social choice, i.e. to
find, for a given set of agents (corresponding to our knowledge sets) with individual preference
relations, a social preference relation which reflects the preferences of the set of agents. This
allows the definition of a welfare function selecting from a set of alternatives those that best
fit the social preference relation.

7.5 Some merging operators

In this section we show the consistency of our merging postulates by giving three examples of
operators. The first one is not a merging operator but it illustrates an approach to arbitration
operators. The second one is a majority merging operator and the last one is a true arbitration
operator.

For the following operators we will use the Dalal’s distance [15] to calculate the distance be-
tween two interpretations: let I, J be interpretations, dist(I,J) is the number of propositional
letters the two interpretations differ.
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We also define the distance between an interpretation and a knowledge base as the minimum
distance between this interpretation and the models of the knowledge base, that is:

dist(I, p) = min jeprod(,)dist(l, J)

Finally we define the distance between two knowledge bases by the following:
dist((p, (,9’) = minIeModw) JeMod(go')diSt(I’ J)

The first operator we consider is the Aps,, operator. It comes from an example of model
fitting operator given by Revesz in [100]. It is close to the minimax rule used in decision theory
[103]. The idea is to find the closest information to the overall knowledge set. Therefore it
seems to be a good arbitration operator. But, as we will see, it doesn’t satisfy all the postulates.

Definition 7.19 Let ¢ be a knowledge base and E be a knowledge set:

distprez (I, E) = maxdist(1, o)
p€eE

So, we define the following order:
I <M J iff distprao(I, E) < distpre-(J, E)
and Mod(Apqz(E)) = min(<Hew)

The second operator we consider is the Ay operator. This is a majority merging operator
as we will see below. Lin and Mendelzon give it as an example of what they called operators of
theory merging by majority in [62]. Independently Revesz gives it as an example of weighted
model fitting in [99]. The ¥ operator comes from a natural idea: the distance between an
interpretation and a knowledge set is the sum of the distances between this interpretation and
the knowledge bases of the knowledge set.

Definition 7.20 Let E be a knowledge set and let I be an interpretation we put:

distg(I,E)= > _ dist(I, ¢)
pEE

I <% J iff dists(I, E) < distz(J, E)
and Mod(Ax(E)) = min(<E)

Next we present a new merging operator: Agpqer (stands for Generalized Max). The
operator Agym.z is an arbitration operator and is a refinement of the Ay, operator.

Definition 7.21 Let E be a knowledge set. Suppose E = {¢1,...,¢n}. For each interpreta-
tion I we build the list (df...dL) of distances between this interpretation and the n knowledge
bases in E, i.e. dJI- = dist(I, ;). Let Ly be the list obtained from (df ...dL) by sorting it in
descending order. Define distgarar (I, E) = L. Let <j.,; be the lezicographical order between
sequences of integers. Now we put:

I <8Me2 J iff distgraz(I, E) <ier distaaraz(J, E)

and Mod(AGgpaz(E)) = min(<EMae)
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We will illustrate the behaviour of these three operators on the database class example
given by Revesz in [99]:

Example 7.22 Consider a database class with three students: E = {1, @2, ¢3}. The teacher
can teach SQL, Datalog and O,. He asks his students in turn to choose what to teach to satisfy
the class best. The first student wants to learn SQL or Oz: ¢ = (S V O) A—=D. The second
wants to learn Datalog or O but not both: o3 = (FSADA-O)V(=SA-DAO). The third wants
to learn the three languages: p3 = (SADAO). Considering the propositional letters S, D and O
in that order we have: Mod(¢1) = {(1,0,0),(0,0,1), (1,0,1)}, Mod(¢2) = {(0,1,0),(0,0,1)},
MOd(SOS) = {(1’ la 1)}

The following table contains all distances relevant to computations in order to calculate
Apaz(E), Ax(E) and Agmaz(E).

w1 @2 3 distmax disty distgmax

0,000 1 1 3 3 5 (3,1,1)
(0,0,1) 0 0 2 2 2 (2,0,0)
(0,1,0) 2 0 2 2 4 (2,2,2)
0,1,1) 1 1 1 1 3 (1,1,1)
(1,0,0) 0 2 2 2 4 (2,2,0)
(1,0,1) 0 1 1 1 2 (1,1,0)
(1,1,0) 1 1 1 1 3 (1,1,1)
L) 1 2 0 2 3 (2,1,0)

As the min in the column of distara, is 1 we have Mod(Apm..(E)) = {(0,1,1),(1,0,1),(1,1,
thus the teacher has to teach two of the three languages to best satisfy the class when the cri-
terion to solve conflicts is Apr,.. Similarly as the min in the column of disty is 2 we have
Mod(Ag(E)) = {(0,0,1), (1,0,1)}, thus the teacher has to teach both SQL and O, or O, alone
to best fit the class when the criterion to solve conflicts is Ay. Finally as the min in the column
of distagy,.. 15 (1,1,0) we have Mod(Agmaz(E)) = {(1,0,1)}, thus the teacher has to teach
SQL and O, to best satisfy the class when the criterion to solve conflicts is AgMaz-

(=]

As we can expect the result of the merging highly depends on the operator we choose.
Note in particular that the Apz,, operator has selected interpretations that satisfy as much
as possible each student, whereas the Ay operator has selected interpretations that satisfy
the majority of students. Notice also that in this example the Agps.. Operator selects the
interpretation chosen by both Aps,, and Ay operators, showing its good behaviour.

We will see now the logical properties of these three operators.

We first show that Ajpz,. is not a merging operator.

Theorem 7.23 A, satisfies postulates (Al — A5), (A7) and (Ai:) but it doesn’t satisfy
(46).

Proof: The proof of (Al — A3) and (A5) is straightforward. To prove that (A4) is satis-
fied suppose K A K' -+ L. We consider two cases: dist(K,K’) = 1 or dist(K,K') > 1 If
dist(K,K') = 1 then 3I € Mod(K),3J € Mod(K') such that dist(I,J) = 1, so as dist(I,J)
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is minimum I € Mod(A(K U K')) and J € Mod(A(K U K")), so A(KU K') i/ K. Otherwise
dist(K,K') > 1, and then 3I € Mod(K),3J € Mod(K') VI’ € Mod(K),YJ' € Mod(K")
dist(1,J) < dist(I',J’) and dist(I,J) > 1. But it is easy to see that if dist(I,J) = a > 1 then
there exists L € W such that dist(L,I) < a and dist(L,J) < a, so distpre-(L, KUK') < a.
Therefore L <¥22., I so I ¢ Mod(A(K U K'")), so A(KUK') If K. (A7) is satisfied because

max dist(I, ) = A% dist(I, ). So A(EUK™) = A(E, K). As (A7) is satisfied, (A7) is

p€EUK
satisfied. In order to show that (A6) is not satisfied consider the example 7.22 and observe that

if we take By = {¢1} and E2 = {¢2, ¢3}, then A(E1)AA(E2) = form({(1,0,1)})is consistent,
and A(Ey U Ey) = form({(0,1,1),(1,0,1),(1,1,0)}), so A(Ey U E3) If A(E1) A A(E).

It remains to show that (A4;;) holds. First, by induction on dist(K, K') we prove that
3n such that Ajy, (K, K)F K (%)

If dist(K,K’) = 0 the proof is straightforward. Suppose dist(K,K’) = 1. Then 3I €
Mod(K)3J € Mod(K') dist(I,J) = 1. So I € Apez(K, K') and then, by (A2), A}, (K, K) =
AMaz(AMoc(K', K), K) = Apaz(K', K)AK. So A3, (K',K) + K. Suppose that dist(K, K') >
1. Put a = dist(K', K), i.e. 3 € Mod(K) 3J € Mod(K’) dist(I,J) = a. Let a/2 be the
integer part of the quotient of @ by 2. Since I and J disagree on a letters, we can find an
interpretation I’ such that I’ agrees with I on the letters on which I and J agree, and I’ agrees
with J on a/2 letters on which I and J disagree and I’ agrees with I for the a/2 remaining let-
ters if a is even and for the a/2 + 1 remaining letters if a is odd. So we have dist(I’,K) < a/2
and dist(I',K’) < a/2 if a is even or dist(I',K') < a/2+ 1 if a is odd. If a is even then
distpre(I', {K,K'}) < a/2, s0 if J' € Mod(Apaz(K, K')) then distare.(J', {K,K'}) < a/2.
So we have that if dist(K, K') = a with a > 1 then dist(K, Apr,.(K, K')) < a/2. By induction
hypothesis there exists n such that A%, (Am..(K,K'),K) F K that is AL (K, K) + K.
The case where a is odd is similar. Now (A;;) follows from (x) by putting K’ = A(EUK). 4

The operator Ay is a majority merging operator as stated in the following theorem.
Theorem 7.24 Ay satisfies postulates (Al — A6), (M7) and (A;).

Proof: We will prove that the assignment F r—)SE is a majority syncretic assignment. Then
by theorem 7.18 we conclude that Ay satisfies (A1 — A6) and (M7). Let’s verify the conditions
of a majority syncretic assignment:

1. If I € Mod(E) and J € Mod(E), then dists(I, E) = 0 and dists(J,E) = 0, s0 [ ~g J.
If I € Mod(E) and J ¢ Mod(E), then dists(I, E) = 0 and distg(J,E) > 0,50 [ <g J.

Straightforward.

Ll S

Suppose K A K’ + L, so dist(K,K') > 0. So 3] € Mod(K),3J € Mod(K') VI' €
Mod(K),VJ' € Mod(K') dist(I,J) < dist(I',J') and dist(I,J) = a > 1. It is easy
to see that @ = min{dists(L, KUK'): L € W} thus I € Mod(A(K U K')) and J €
Mod(A(KUK"),so A(AKUK')/ K.

5. If I € min(<g,) and I € min(<g,), then VJ dists(I, E;) < dists(J, E1) and dists (I, E;) <
dists(J, Ey). So VJ dists(I, Ey) + dists (I, E) < dists(J, E1) + dists(J, E5). By def-
inition of dists is easy to see that for any L, E, E, disty(L, EU E') = dists(L, F) +
distg(L, E'). Then VJ dists (I, EyU E3) < dists(J, E; U E3). So I € min(<Eg,uE,)-
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6. If min(<g,) Nmin(<g,) # 0, then 3J s.t. J € min(<g,) and J € min(<g,). Suppose
I ¢ min(<g,), then distz(J, E1) < distg(I, E1) and distg(J, E2) < dists(I, E3). So
dists(J, Ey) + disty(J, Ey) < distg(I, Ey) + distg(I, E;). Then distg(J, E1 U Ep) <
dists(I, E;U E3). Then I ¢ min(<g,uEg,)-

7. We have to find a n such that min(<gygn) € Mod(K). Consider z = %a)./{)( disty (I, F),

i.e. z is the distance of the furthest interpretation from F. We choose n = z + 1, it is
easy to see that if ] € Mod(K) then dists(I,EUK"™) < n. And if I € Mod(K) then
distg(I, ELUK™) > n. So if I € min(<gykn) then I € Mod(K).

Now we prove that (A;;) holds. We want to show that 3n AL(K', K) + K. Let a be the
distance between K and K’. Take I € Mod(K) and J € Mod(K') such that dist(I,J) = a. It
is easy to see that ¢ = min{dists(L, K UK'): L € W} thus I € Mod(A(K U K')) and then
Ax(Ax(K'UK), K)F K. Therefore 3n A%(K', K)F K. And with K’ = Ag(E U K) we have
In AL(E, K)+ K. .

Now, we will state some lemmas in order to prove that Agar., has desirable properties.

Definition 7.25 Let Ly and L, be two lists of n numbers sorted in descending order. We
define L1 © L, the list obtained by sorting in descending order the concatenation of Ly with L,.

Lemma 7.26 Let Ly, L}, L2, L} be 4 lists of integers sorted in descending order. If Ly <jer L
and Ly <iep LY then Ly ® Lg <iep L] ® L.

Proof: Suppose that L; < L] and Ly < L. Itis easy to see that the two following inequalities
hold: Ly ® Ly <jez LY ® L2 and Ly ® Ly <je; Ly ® L}. So by transitivity Ly ® Ly <. L] © L}.
[ |

Lemma 7.27 Let Ly, L}, L2, L), be 4 lists of integers sorted in descending order. If Ly <jer L)
and Ly <jez LY, then Ly ® Lo <iep LY © LY.

Proof: With the assumptions it is easy to see that Ly ©® Ly <o L] ® Ly and L] © Ly <ier
L ® LY,. We conclude by transitivity of <;e,. .
The operator Agpaqz is a true arbitration operator as showed in the following theorem.

Theorem 7.28 The operator Agapqr Satisfies postulates (Al — A6) and (Ai). Furthermore
AGMaz satisfies (A7) iff card(P) > 1. But it doesn’t satisfy (A7').

Proof: In order to show that GMaxz satisfies (A1 — A7) we use the representation theorem
and we show that the assignment E —<$™7 is a fair syncretic assignment.

1. If I € Mod(E) and J € Mod(E), then VK; € E I € Mod(K;) and J € Mod(K;), then
Ly=(0,...,0)and L; = (0,...,0) ,s0 I ~g J.

2. If I € Mod(E) and J ¢ Mod(E), then Ly = (0,...,0) and Ly # (0,...,0),s0 I <g J.

3. If By ¢ Ej, then is obvious that <g, =<g,.
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. This property is proved in a similar way as (A4) for Aprq, (theorem 7.23).
. If I € min(<g,) and I € min(<g,), then VJ € W LF' <., L5 and L% <., L5, So,

by lemma 7.26, we have VJ LEI"‘E2 <lez Lf“"E’. Then I € min(<g,ug,)-

I m1n(<E12:r] m1n(<52) # 0 and I ¢ min(<g,), let J € mmg; ) N min <E2) SO

LE <iez LT' and LJ <lex LEz, and by lemma 7.27 follows LElu 2 < tez Ly EiUE: Then
I ¢ mm(SElLlEz)

Consider a knowledge base K’'. We will show that if there are 2 or more propositional
variables then there exists a K s.t. K’ I/ K and Vn min(<gwgn) = min(<gwk)-
We consider 2 cases, first if card(Mod(K')) > 1 then let I € Mod(K'), we choose
K = form(I). So, by condition 1 and 2, min(<gwk) = {I} and Vn min(<gwgn) = {[}.
Hence Vn min(<grxn) = min(<guk)- Second, if card(Mod(K")) = 1, let Mod(K') =
{J}, we choose K = form(I) s.t. dist(I,J) = 2, this is possible because there are at
least two propositional variables. So there exists I’ s.t. dist(I’,I) = 1 and dist(I',J) = 1.
So min(<gwugn) = {I' : dist(I',]) = 1 and dist(I’,J) = 1} otherwise if 3J’ such that
dist(J',K) = 0 then dist(J',K') > 2 or if dist(J',K') = 0 then dist(J',K) > 2, and
so Ly < Ly. So Vn min(<grygn) = {I' : dist(I',]) = 1 and dist(I',J) = 1}. Then
Vn min(<guxn) = min(<gyk). Conversely suppose that P = {p}. Put K’ = p. Then
the only consistent K (up to logical equivalence) such that K’ tf K is K = —p but
AgMer(K' U K™) = —p for any n > 2 whereas Agproc(K'UK) =-p V p.

To show that Agare. doesn’t satisfy (A7’) consider the following example: Suppose that

P = {p,q} and that K/ = -pA—q and K = -pAgq. It is easy to see that Agpre-(KUK') = —p
whereas Agpaz(K'UK™) = -pA g for any n > 2.

Finally the proof that the postulate (A;) holds for Agpres goes exactly the same way that

for Aps.z (theorem 7.23). -

Actually GMaz operator is a refinement of the Maz operator. More precisely we have the

following observation the proof of which is straightforward:

Observation 7.29 Agp.(E) F Apraz(E).

We end this section with the following table which sums up the properties of operators

defined above. It is filled using the results of this section together with some results of section
3. The symbol y (respectively —) in a square means that the corresponding operator satisfies
(resp. does not satisfy) the corresponding postulate.

Al A2 A3 A4 A5 A6 A7 AT M7 Ay

Maez v v v v v - v v =y
Y v v v v v v - - v v
GMazr v v v v v v v = =y

7.6 Conclusion and future work

We have proposed in this paper a set of postulates that a rational merging operator has to sat-
isfy. We have made a distinction between arbitration operators striving to minimize individual
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dissatisfaction and majority operators striving to minimize global dissatisfaction. The fairness
postulate is the key postulate in this distinction. We have shown that our characterization
is equivalent to a family of pre-orders on interpretations. We show the consistency of the
axiomatic characterization by giving examples of operators. In particular, we have proposed a
new rational merging operator called Agasq, and shown that it is an arbitration operator.

Actually, in a committee, all the protagonists do not have the same weight on the final
decision and so one needs to weight each knowledge base to reflect this. The idea behind
weights is that the higher weight a knowledge base has, the more important it is. If the
knowledge bases reflect the view of several people, weights could represent, for example, the
cardinality of each group. We want to characterize logically the use of this weights. Majority
operators are close to this idea of weighted operators since they allow to take cardinalities into
account. But a more subtle treatment of weights in merging is still to do, in particular the
notion of weighted arbitration operators is missing.

In this work the result of a merging is a subset of the set of all interpretations but a lot
of systems have to conform to a set of integrity constraints, for that reason it is interesting to
be able to merge some knowledge sets in the presence of these constraints [63]. And so one
has to restrain the result of the merging to be a subset of the set of allowed interpretations.
Suppose that these integrity constraints are denoted by the knowledge base IC. If we consider
a weighted rational merging, a way to incorporate integrity constraints is to add IC to E with
a weight “infinity”. Thus we would ensure that the interpretations selected were models of IC.
Intuitively, it amounts to consider a person in the committee whose view is unquestionable
and therefore one has to choose among the alternatives given by that person.

But the best way to include integrity constraints seems to be to select the minimal models
in the models of the IC base rather than in W. Intuitively, we restrict the choices of interpre-
tations to those which satisfy IC. It is in a sense what Revesz called model fitting operators
(100].

In that paper we use only the Dalal’s distance to define the distance between two interpre-
tations, it would be interesting to study operators defined with other distances, in particular
distances which give partial orders.

Notice also that the three merging operators defined in the paper are based on the Dalal’s
distance. But if one chooses an other distance between interpretations and keeps the same
definitions, then one obtains other merging operators. So, more exactly, we have defined in
this paper three families of merging operators, function of the definition of the distance between
interpretations. It would be interesting to find what the minimum conditions on that distance
are to ensure that the operators satisfy the axiomatic characterization.

Two other points of interest are to study merging operators which are not defined from a
distance and to study syntactic definition of merging operators.
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Chapitre 8

Remarques finales et perspectives

Ci-dessous nous donnons quelques remarques et commentaires sur nos résultats et ensuite
nous énoncerons quelques points qui nous semblent importants de développer dans des travaux
futurs.

8.1 Remarques finales

Nous voulons commencer en insistant sur le fait qu’au centre de ces travaux se situe la logique
préférentielle et quelques-unes de ses extensions notamment la logique rationnelle avec son
“dual” le cadre AGM pour la révision de la connaissance.

Nous avons étudié dans le chapitre 3 différentes extensions de la logique préférentielle.
Certaines avec des regles non-Horn plus fortes que la monotonie rationnelle d’autres avec des
régles Horn qui sont incomparables a la monotonie rationnelle. Pour cela nous nous sommes
servis des outils syntaxiques et sémantiques. En particulier des théorémes de représentation,
certains bien connus d’autres que nous avons établis.

Une caractéristique importante des théoremes de représentation, en dehors de leur intérét
intrinseque comme puissants outils de raisonnement, est que leur nature “géometrique” per-
met d’introduire des “déformations” qui sont une excellente heuristique pour la recherche des
nouveaux postulats pour les relations de conséquence non monotones.

Dans le chapitre 4 la notion de relation essentielle <. entre valuations, associée a une
relation de conséquence non monotone, s’est avérée fort utile pour donner des preuves uniformes
des théorémes de représentation. Cette méme idée a été exploitée au chapitre 5 dans le cadre
des relations d’abduction pour construire des ordres sur les formules qui nous donnent les
meilleures explications.

Toujours dans le chapitre 4 nous avons cherché a caractériser ’existence des modeles injec-
tifs d’une relation préférentielle. Nous montrons que la caractérisation dans le cas fini par la
régle W-DR due a Freund marche partiellement dans le cas infini. Plus précisément nous prou-
vons, qu’en présence de W-DR, la relation essentielle définit un modéle MAK qui représente la
relation de conséquence non monotone de départ.

Or les problemes que ’on rencontre dans le cas infini (notamment que la relation <. ne
soit pas, en général, transitive) sont dus & des comportements des “approximations” d’une
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valuation. Ceci meéne a considérer naturellement des notions topologiques sur les valuations
qui donnent une lumiére nouvelle sur les représentations. Ces notions sont trés utiles pour
caractériser I'unicité de certaines représentations et aussi dans la recherche de contre-exemples.

Dans le chapitre 5 nous avons aussi utilisé la logique préférentielle et ses extensions pour
faire une étude systématique de ’abduction. En effet, nous proposons des postulats pour les
relations abductives qui s’avéreront étre duaux d’une facon assez précise de ceux de familles
de relations non monotones bien connues. On peut voir cette dualité comme une justifica-
tion de nos postulats pour ’abduction. Or, on peut aussi donner des justifications intuitives
des postulats pour P’abduction et voir les liens étroits entre abduction et les relations de
conséquence non monotones comme un argument renfor¢ant la these que la logique préféren-
tielle (et quelques-unes de ses extensions) joue un réle central dans le cadre du raisonnement
dynamique.

Nous montrons aussi dans le chapitre 5 que le raisonnement abductif peut étre vu comme
du raisonnement non monotone a ’envers.

Une remarque importante concernant nos postulats pour ’abduction est qu’ils sont as-
sez puissants pour définir un ordre <. sur les formules qui permet de récupérer la relation
d’abduction : les bonnes explications d’une observation o seront les éléments minimaux, par
rapport a <., parmi l’ensemble des candidats a étre de bonnes explications.

Dans le chapitre 6 nous avons utilisé la dualité existante entre les relations rationnelles
et les opérateurs de révision pour définir des opérateurs syntaxiques avec le but de diminuer
la complexité du traitement et de garder de bonnes propriétés logiques. Pour ce faire nous
avons d’une part affaibli la logique et d’autre part donné une méthodologie pour relativiser
les postulats AGM de la révision et ceux de KM de la mise-a-jour au cadre syntaxique dans
lequel on travaille. Plusieurs opérateurs ont été définis. En particulier les opérateurs op, o,k
et oy, (actualisation factuelle, révision rangée et révision avec sélection respectivement). Ces
trois opérateurs ont de bonnes propriétés logiques. Notamment le premier est un opérateur de
mise-a-jour syntaxique et les deux derniers sont des opérateurs de révision syntaxique. Mais
du point de vue de la complexité le seul opérateur dont les calculs restent polynomiaux est
celui de la révision rangée, opérateur qui s’inspire du calcul de la cléture rationnel d’une base
conditionnelle définit par Lehmann et Magidor [55].

Dans le chapitre 7 nous abordons le probléme de la fusion de bases de connaissances selon un
point de vue qualitatif, plus précisément avec des représentations logiques. Une caractérisation
des opérateurs de fusion en termes de postulats de rationalité est proposée. Pour ce faire nous
introduisons deux notions importantes :

e La notion de groupe (knowledge set) qui n’est autre chose qu’un multi-ensemble de for-
mules

e La notion de groupes équivalents. Deux groupes sont équivalents s’il y a une bijection
entre ces groupes telle que les formules en correspondance sont logiquement équivalentes.

A Paide de ces notions nous formulons les postulats qu’un opérateur doit posséder pour avoir
un comportement rationnel par rapport a la fusion. Notamment nous proposons un postulat
d’équité qui dit intuitivement que dans un groupe de deux individus le résultat de la fusion
ne priviligiera aucun des deux individus. Ce postulat sera essentiel pour distinguer entre
opérateurs de fusion majoritaires et opérateurs de fusion consensuels (arbitration operators).
Il est important de remarquer que ’on ne peut pas réduire la notion de groupe a la notion
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d’ensemble de formules car alors on perd la cohérence des postulats. Des exemples d’opérateurs
montrant la cohérence des postulats sont donnés. En particulier nous introduisons ’'opérateur
AgMez €t montrons que c’est un exemple d’opérateur d’arbitrage. Didier Dubois nous a
communiqué que c’est un opérateur déja introduit en théorie de la décision il y a quelques
années et qui a aussi récemment été redécouvert par Héléne Fargier [20].

La simple traduction des postulats en termes sémantiques donne un théoréme de représen-
tation trivial mais quand méme utile pour la construction d’opérateurs de fusion. Un autre
intérét de cette traduction est qu’elle laisse entrevoir des rapports étroits entre la théorie de la
décision qualitative et la logique de la fusion.

8.2 Perspectives

1. Nous avons introduit plusieurs régles dans le chapitre 3 pour lesquelles la sémantique
n’as pas été établie ou pas compleétement. En particulier les régles Cl et n-M pour n > 2.
Dans un premier temps nous pensons que démarrer 1’étude dans le cas fini avec en plus la
régle W-DR (i.e. l'injectivité) simplifie énormement la tiche et doit donner des résultats
immédiats. Par exemple pour Cl les modéles sont plats (monotonie) ou sinon ils se
reduisent a deux points ’'un plus petit que 'autre.

Un autre point concernant ce chapitre est de savoir s’il y a une notion naturelle de cloture
rationnelle transitive. Par exemple & partir de B = {a;6; : i € Z} on peut construire,
“en orientant” la régle RT, une relation | de la facon suivante. D’abord on définit
ko comme la cléture rationnelle de B si elle existe, sinon c’est la cloture préferentielle.

Ensuite on pose
Mrsr = (e U{(@7) s obv,Bb,7 & atb— 1P

ot KF dénote la cloture préférentielle de K. Finalement on pose

= U b

new

Est-ce que cette relation a de bonnes propriétés? Il est facile de voir quelle est rationnelle
transitive. Mais la question est de savoir §’il y a une notion simple pour laquelle elle soit
la meilleure.

2. Concernant la caractérisation des relations préférentielles admettant des modeéles injectifs
(KLM) la question reste encore ouverte. Néanmoins nous savons que s’il y a un ordre
< représentant injectivement la relation de conséquence |~ il doit étre contenu dans
<. Ainsi nous avons essayé “d’élaguer” la relation <. afin d’obtenir un ordre <} qui
représente p. Plus précisément on définit <* de la fagon suivante :

=< \{N,P):IMM <. N<. P& M £. P}

C’est-a-dire on enléve de <. certains des couples ou la prémisse de la transivité est vraie
et la conclusion est fausse. Curieusement la relation obtenue est transitive. Le probleme
est que nous ne savons pas si elle est encore smooth ni si elle représente la relation v de
départ.

3. Concernant nos relations abductives plusieurs problémes non encore résolus nous sem-
blent importants. Le premier est de nature calculatoire et en paraphrasant le titre de
[55] (What does a conditional base entail?) il peut s’énoncer par la question suivante
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‘Que doit impliquer une base abductive?’ Plus précisément si I’on a une base abductive
By ={0; > vi: i € I} quelle est la meilleure relation explicatoire qui la contient et com-
ment la calculer? Notons que la régle E-C-Cut ne passe pas forcément aux intersections
et pour cette raison on ne peut méme pas parler de plus petite relation E-préférentielle
contenant By.

Un autre probléme intéressant concerne le réle de la théorie ¥ dans la notion de relation
d’explication. Nous avons assumé que la théorie ¥ était fixée. Or il se pourrait qu’il y
ait des situations ol ’on doit changer ¥. Quels seraient les postulats lorsque ¥ est un
parametre? Serait-ce encore de I’abduction ou plutét de Vinduction?

Nous avons esquissé des rapports entre nos relations d’abduction et des relations d’abduction
épistémiques. Mais nous n’avons pas étudié en détail ces dernieres. C’est une étude qui
devrait étre faite du point de vue de la dualité entre la révision et ces relations et aussi
de la représentation de ces relations en termes d’ordres de préférence entre les formules.

4. Pour les opérateurs définis dans le chapitre 6 un calcul exact de la complexité reste a faire,
ainsi qu’une analyse expérimentale des opérateurs moins complexes doit étre réalisée. Un
prototypage en Prolog de ces opérateurs a déja été fait par S. Janot mais des essais sur
des bases de grande taille restent encore a étre effectués.

Nous pensons que les idées du traitement syntaxique des opérateurs de révision devraient
pouvoir s’adapter a I’étude des opérateurs de fusion du chapitre 7.

5. Une extension naturelle et puissante des opérateurs de fusion est de considérer que le
résultat doit obéir a certaines contraintes. Nous avons commencé a étudier ce type
d’opérateurs de fusion. Ils sont en fait une extension du cadre AGM pour la revision
et admettent des théoréemes de représentation non triviaux. Avec le parametre addi-
tionnel des contraintes (d’intégrité) on peux exprimer de facon plus positive I'idée d’un
comportement consensuel.

Un des problémes intéressants est celui de la construction de tels opérateurs. Les méth-
odes qui semblent les plus naturelles pointent sur le role essentiel de la notion de distance
afin d’obtenir des opérateurs possédant de bonnes propriétés.

Nous pensons que les rapports étroits entre la fusion et la théorie qualitative de la décision

q ]
que le théoréme de représentation laisse entrevoir, pourront étre établis d’une fagon assez
précise.



Appendice A

Postulates for consequence and
explanatory relations

A.1 Rationality Postulates for Consequence Relations

To make easier the reading of the paper we will include a list of all rationality postulates for
consequence relations used in the paper.

REF (reflexivity) apa

LLE (left logical equivalence) appB& Faey = ypg

RW (right weakening) eapB&E Sy = apy

cuT aNBpvy&apf = apy

CM (cautious monotony) apB&apby = aAypp

OR apby&Bhy = aVBby

S aABplyY = apB-oy

DR (disjunctive rationality) aVBpkhp = apporfpp
RM (rational monotony) app&all-f = aAfpp

M (monotony) apby = aABpby

An inference relation |~ is said to be cumulative if it satisfies the rules REF, LLE, RW, CUT
and CM. A consequence relation is called preferential if it satisfies, in addition to cumulative
rules, the rule OR and it is called rational if it is preferential and satisfies RM. |~ is monotone
if it satisfies Mono. A consequence relation satisfies W-DR if C(a V 8) C Cr(C(a) U C(8)),
for every formulas o and 3. We used also Cony (X-consistency preservation) which is a variant
of a postulate introduced in {37): for all @, a L iff 5 —a and if 6 € £, then a v 0.

A.2 Rationality Postulates for Explanatory Relations

We list below all postulates for explanatory relations that we have introduced in this paper.
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152 Postulates for consequence and explanatory relations
E-RW aby&a>é = ab(yVvé)
E-CM yoa&kytbs B = (aAfB)D>y
E-C-Cut (aAB) >y &V (abé=>dF:6) = aby
E-Reflexivity aby = Yyb¥
LLEg (Froaod)&ary = any
E-Cong He-a & Fyaby
RA ab v &Y Fev& Y el = abdy
RLE; (FeyeyY&aby = aby
E-Disj YWl & ptlsl&ar (yVp) = abv&kabp
LOR aby& By = (aviby
E-DR a>v&B>é = (avl)pyor(aVvp) >
E-R-Cut (aAB)>v&FS[add&éts ] = aby
E-Cut (aAB)>y = B>y



Appendice B

Relationships between explanatory
and consequence relation

> "ab
= Adequate
E-Cony = Cong
LLEs+ E-CM+4 E-C-Cut = Cumulative
LLEz+ E-CM+ E-C-Cut+ RA = Preferential
LLE;+ E-CM+ E-C-Cut+RA+ LOR+ finite language | = | Preferential + W-DR
LLEz+ E-CM+ E-C-Cut+RA+ E-DR = Preferential + DR
LLEz+ E-CM+ E-C-Cut+RA+ E-R-Cut => Rational
E-Cut = Monotonic

From explanatory relations to consequence relations

> b adequate
E-Cong < Cong
LLEz+ E-CM+ E-C-Cut+ RA = Preferential
LLEz+ E-CM+ E-C-Cut+RA+ LOR < | Preferential + W-DR
{LE;+ E-CM+ E-C-Cut+RA+ E-DR | « Preferential + DR
LLEs+ E-CM+ E-C-Cut+RA+ E-R-Cut | « Rational
E-Cut <= Monotonic

From consequence relations to explanatory relations
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Appendice C

Update algorithm

Let P be a fixed program which in this context can be seen as our background theory or
our integrity constraints. Let L be a set of facts which can be seen as our beliefs about the
world. We would like to define the change produced by a set of facts L’ coding a new piece of
information about the world. The following definition describes the result of this change:

Lit if L or L' is not P-consistent
LopL' =
(Lyul,...,L,UL" otherwise

where {Li,...,L,} is the set of subsets of L which are maximal and P U L'-consistent.

This is computed in two steps: first, we compute sets of facts that lead to inconsistency,
called contradictory sets. Then, given the set SC of contradictory sets, we compute the minimal
hitting sets of SC. The maximal subsets of L such that L U L'is P-consistent are the sets
L\ H, where H is a minimal hitting set of SC.

First step. A contradictory set C' is a subset of L corresponding to a way of proving a pair
of opposite literals from PULU L’ : C is a contradictory set if C is a subset of L and there
exists a minimal subset P’ of P such that P"UC U L’ is not consistent and, for each [ in C, {
appears in the body of a rule of P'.

We assume that, for every atom a that appears in the knowledge base, we have an implicit
rule a,—a — 1.

To compute the contradictory sets when updating L with L', we build a contradiction tree
Ty 1, starting from L : a node is a pair(L;C), where L is a list of literals to prove to obtain
contradiction and C is a partial contradictory set. We start with the node (L;{} ) . Let
N = (I1,15, ..., 15;C) be a node of T, 1s. The successors of N are computed as follows:

e iflyj € L' orl; € Porifl; is already in C, then (I3,...,1,;C) is the only successor of N

e else for each rule g1, 92,...,9, = 11, (91,92, - , 9ps l2, ... , In 5 C is a successor of N and if
ly € L, then (I2,...,1,;CU{l;})) is a successor of N.

A branch terminates with an empty list of literals or with a node that cannot be developed.
If a branch ends with (@; C), then C is a contradictory set of facts. Note that if we suppose that
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L' is consistent with P, we can’t obtain (0;0). T, ;+ doesn’t give only the minimal contradictory
sets, but all the ways to entail a pair of opposite literals from P and LU L'.

Example. We consider the program P and the set of literals L, with P = {a,b = ¢; a,d — ¢}
and L = {a,b,d}. When updating L with {-c}, we obtain two contradictory sets {a,d} and
{a,b}. Fig 1 shows the contradiction tree (to simplify, we consider only the rule —¢,c =1 at
the first step, since the only pair of contradictory literals that actually appears in this case is
¢, —c).

Li{}
{e:meki{}
{e}i{}
{a,8}; {} {a,d}; {}
{b}; {a} {d}; {a}
{}: {a,b} {}i{a, d}

Fig 1. Contradiction tree
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Second step. The contradiction tree produces a set of contradictory sets SC = {C}, ...,Cy}-
To update L with L’ we compute all the maximal subsets S of L such that SUL’ is P-consistent.
The subsets S of L are obtained by removing from L at least one element of each contradictory
set: if H is a set of facts such that, for each element C; of SC, SNC; # 0, then (L\ H)UL'
is consistent. H is usually called a hitting set of SC. To find the maximal consistent subsets
of L, we need all the minimal hitting sets (by set inclusion) of SC.

The figure 2 illustrates the algorithm we implemented in Prolog to compute the minimal
hitting sets.

SC = {{a, b}, {a, e}, {b, c}, {c, e}} (a8}
J(@) = {a b1} 76 = HatH

{a, e} {a,e}

Jb)={}

a
J(a) = {{a7 b}v {a, e}}
J(e) = {{a,e}}
{b,¢c} fail {b,c}
J(e) = {{b,c}}

J(b) = {{a, b}, {b,c}}

{C, 6} {C’ 6} {c’ e}

J(a) = {{a,e}}
J((®) = {{b,c}} b e

J(b) = {} N J@=0 J(e) = {{a,e}, {c.e}}

c

fail fail O {a,c} O {b,e}

Minimal Hitting sets: {a,c} , {b,€e}

This algorithm is very close to the one given by Reiter in [98]. Let SC = {Cy, Cy, ..., C,}.
We try to construct a hitting set of SC by examining the elements of SC one by one: if the
current set C; is not already hit by the partial hitting set HS, we add one of the literals of
C; in HS. To know if a hitting set is minimal, we maintain a set of justifications J(I) for each
literal [ of the hitting set: J(I) contains all the sets of literals that are hit only by I. When a
new literal / must be added to the hitting set, the justification sets are updated by removing
all the sets containing . If one of the justification sets becomes empty, the current hitting set
is not minimal anymore and so the construction fails.

Concerning the relationships between our algorithm and Reiter’s notice that we construct
the same kind of HS-tree, where nodes are labeled with elements of SC and edges are labeled
with elements of the hitting sets. The main difference is the use of justification sets instead of
tree pruning. Tree pruning is used in Reiter’s algorithm in order to compute not all the hitting
sets but only the minimal ones. In our algorithm, this is done with justification sets and each
minimal hitting set is computed in a unique branch.
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Databases. H. Decker, B. Freitag, M. Kifer and A. Voronkov, Eds. Lecture Notes in Com-
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[9] S. KoNIECZNY AND R. PINo PEREZ. On the logic of Merging. In Proceedings of the Sizth
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e Le cours d’informatique Théorique aux étudiants du “Master en Ciencias de la
Computacion”. Notamment un cours intitulé Elements théoriques pour l'Intelligence
Artificielle. Le contenu de ce cours portait sur le Principe de Résolution, le A-calcul
et la Logique Modale. ’

3. Pendant un an (86-87) en tant que Maitre de Conférences Associé en Informatique a
I’Ecole Normale Supérieure (Ulm) j’ai eu a assurer les séances des TD et des TP du
cours d’Informatique 1 du M.M.F.A.I. (Magistere de Mathématiques Fondamentales et
Appliquées et d’Informatique). Le contenu du cours portait sur ’environnement in-
formatique, Lisp, Prolog, Algorithmique et structures des données et Mécanisation du
raisonnement.

4. Pendant un an (87-88) en tant Maitre de Conférences Associé en Informatique a I’Université
Paris 13 j’ai été chargé de :

e Le cours de Logique et Mécanisation du Raisonnement de la Licence en Informa-
tique.

e Les TD des cours de Langages Formels et de Compilation de la Maitrise en Infor-
matique.

5. Depuis 1988 année ol j’ai commencé a travailler a ’Université Lille 1 en tant que Maitre
de Conférences j’ai été chargé des cours suivants :

e A TEUDIL (Ecole Universitaire d’Ingénieurs de Lille) :
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(a) Algorithmique et Structures de Donnés (année 88-89). Cours de la premiére
anné IMA.

(b) Techniques de Base en Intelligence Artificielle (année 88-89). Cours de la deux-
ieme anné IMA.

(¢) Mathématiques pour I'Informatique (années 89-91). Cours de la premiére année
IMA. Ce cours dont j’ai fait un polycopié a été congu par moi méme et j'en ai
la responsabilité depuis sa création en 1989.

(d) Informatique Théorique (années 89-91). Cours de la deuxiéme année IMA.

(e) TP de Compilation et de Techniques de base en Intelligence Artificielle (depuis
93).

(f) TP d’algorithmique en langage C (1998).

(g) TP de Bases de données en SQL (1998).

e Cours sur le A-calcul dans le cadre du DEA d’Informatique (89-93).

e Conférences de formation dans le cadre du DEA d’Informatique sur la théorie de la
révision et la logique non monotone (Depuis 94)

e Cours de DEA sur les relations de conséquence non monotones et le raisonnement
révisable (1998).

Activités de recherche

Mots clés : Logiques pour lintelligence artificielle, raisonnement non-monotone, théorie de la
révision de la connaissance, mise-a-jour, abduction, fusion, arbitrage, lambda-calcul, partialité

I. Je fais ici un résumé historique succinct concernant mes recherches jusqu’a I’année 1993.
Pour les derniéres années voir ’appendice F.

De 1980 a 1983 des recherches en logique : théorie généralisée de la récursivité, problemes
d’indépendence et techniques de théorie des modeéles. Ces recherches ont été faites au sein de
I’équipe de logique de Paris 7 (thése de 3eme cycle).

De 1983 a 1985 suite des recherches sur les travaux de ma thése et début de recherches sur
les fondements logiques de la programmation (principe de résolution de Robinson d’une part et
le A-calcul d’autre part). Ces recherches ont été faites 4 ’Université Simén Bolivar a Caracas.

De 1985 a 1993 des recherches sur la logique des langages fonctionnels en particulier sur la
sémantique opérationnelle et dénotationnelle du A-calcul et de quelques variantes de celui-ci.
D’abord au Laboratoire d’Informatique de I’Ecole Normale Supérieure (LIENS) URA CNRS
1327 et a partir de 1988 au Laboratoire d’Informatique Fondamentale de Lille (LIFL) URA
CNRS 369.

Pendant la période de 88 & 93 j’animai une petite équipe au LIFL sur cette thématique.
Le théme central de cette équipe était plus particulierement le A-calcul partiel. Cet outil offre
un cadre théorique pour les preuves d’équivalence de programmes fonctionnels éxécutés par le
mécanisme d’appel par valeur. Parmi les résultats obtenus de cette époque nous pouvons citer

e Equivalence entre le A-calcul partiel et les catégories cartésiennes fermées partielles (pcce
en abregé). Ce résultat est basé sur une présentation équationnelle des pecc due a Curien
et Obtulowicz.
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e Décidabilité d’une sous-théorie du A-calcul partiel. Ce travail joint & des résultats de E.
Moggi permet de prouver la cohérence du calcul.

Construction d’un modéle standard du A-calcul partiel.

Liens entre le A-calcul partiel et la logique partielle.

Construction d’algebres combinatoires partielles extensionnelles.

Une partie de ces travaux a constitué mon mémoire de thése en informatique, soutenue en
1992 & I'Université de Paris 7.

J’ai aussi pendant cette période dirigé la these de C. Even. II ’a soutenue en février 1993
a I’Université de Lille 1.

I1. Depuis 1993 je dirige un groupe de travail sur la théorie de la révision des croyances , le
raisonnement non monotone et la représentation des connaissances au sein de I’équipe Méthéol
du LIFL (voir ’appendice F pour plus de détails concernant la recherche des 5 derniéres
années).

Travaux et publications

Chapitre de livre

1. H. Bezzazi, S. Janot, S. Konieczny and R. Pino Pérez. Analysing rational properties
of change operators based on forward chaining. In Transactions and Change in Logic
Databases. H. Decker, B. Freitag, M. Kifer and A. Voronkov, Eds. Lecture Notes in
Computer Science, vol. 1472 (in press). 1998.

Revues internationales

2. R. Pino Pérez. Decidability of the Equational Restriction Theory in the Partial A-
calculus. Theoretical Computer Science. Vol. 67 pp 129-139. 1989.

3. C.Even and R. Pino Pérez. Extension of Scott-Koymans theorem to partial framework.
The Bulletin of Symbolic Logic, vol 1 n° 4, pp. 489-490, 1995.

4. H. Bezzazi, D. Makinson and R. Pino Pérez. Beyond Rational Monotony: Some
strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and
Computation, vol. 7, pp 605-631. 1997.

5. R. Pino Pérez and C. Uzcitegui. On representation theorems for nonmonotonic infer-
ence relations. Journal of Symbolic Logic. A paraitre.

Congres, Colloques et Ateliers internationaux avec comité de lecture et actes

6. R. Pino Pérez and J.P. Ressayre. Definable Ultrafilters and Elementary End Exten-
sions. In Methods in Mathematical Logic: proceedings of the 6th Latin American Sym-
posium of Mathematical Logic. Caracas, Venezuela, August 1-6 1983. C. di Prisco Ed.
Lecture Notes in Mathematics Vol. 1130, 1985. pp. 341-350.
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10.

11.

12.

13.

. R. Pino Pérez. An Extensional Partial Combinatory Algebra based on A-terms. In Pro-

ceedings of the 16th International Symposium on Mathematical Foundations of Computer
Science 1991, MFCS’91. Kazimierz Dolny, Poland, September 9-13, 1991. A.Tarlecki Ed.
Lecture Notes in Computer Science, vol. 520. 1991. pp. 387-396.

. C. Even and R. Pino Pérez. A,-calculus and algebras with partial elements. In Pro-

ceedings of the XII International Conference of the Chilean Computer Science Society.
Santiago, Chile, October 14-16, 1992. S. Mujica and A. Vifia Eds. Sociedad Chilena de
Ciencias de la Computacién, 1992. pp. 71-84.

. R. Pino Pérez and C. Even. An abstract property of confluence applied to the study of

the Lazy Partial Lambda Calculus. In Proceedings of the 3th International Symposium
on Logical Foundations in Computer Science, Saint Petersburg, Russia. July 11-14, 1994.
A. Nerode and Yu. Matiyasevich Eds. Lecture Notes in Computer Science 813,
1994. pp. 278-290.

H. Bezzazi and R. Pino Pérez. Rational Transitivity and its models. In Proceedings of
the 26th International Symposium on Multiple- Valued Logics, Santiago de Compostela,
Spain. May 29-31, 1996. IEEE Computer Society Press, 1996. pp. 160-165.

H. Bezzazi, S. Janot, S. Konieczny and R. Pino Pérez. Forward chaining and change
operators. In Proceedings of DYNAMICS’97 Workshop on (Trans)Actions and Change in
Logic Programming and Deductive Databases held in conjonction with the International
Logic Programming Symposium, ILPS’97. Port Jefferson, New York, USA, October 1997.
pp. 135-146.

S. Konieczny and R. Pino Pérez. On the logic of Merging. In Proceedings of the Sizth
International Conference on Principles of Knowledge Representation And Reasoning,
KR’98. Trento, Italy. June 2-5, 1998, pp 488-498.

C. Uzcategui and R. Pino Pérez. Abduction vs. Deduction in Nonmonotonic Reason-
ing. In Proceedings of the Seventh International Workshop on Nonmonotonic Reasoning,
NR’98. Trento, Italy. May 30-June 1, 1998, pp 42-54.

Congreés, Colloques et Ateliers internationaux avec comité de lecture sans
actes

14.

15.

16.

17.

R. Pino Pérez. Non standard Methods in Set Theory. Travail présenté au Logic
Colloquium’84. Manchester. 1984. 8 pages.

R. Pino Pérez. A Strict Partial Combinatory Algebra which modelizes Partial Lambda
Calculus. Présenté a I’atelier de travail du Projet Stimulation sur le A-calcul typé. Paris
1-6 février 1991. 12 pages.

S. Konieczny and R. Pino Pérez. On the difference between arbitration and majority
merging. Proceedings of WOLLIC’97 Workshop on Logic, Language, Information and
Computation. Fortaleza, Brasil, August 1997. 15 pages.

R. Pino Pérez and C. Uzcitegui. Jumping to explanations vs jumping to conclusions.
Le résumé est dans Proceedings of WOLLIC’97, 4th Workshop on Logic, Language,
Information and Computation. Fortaleza, Brasil, August 1997.
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18. S. Konieczny and R. Pino Pérez. An analysis of merging from a logical point of view.
Travail présenté dans le XI Simposio Latinoamericano de Légica Matemdtica. Mérida,
Venezuela, julio 1998.

Rapports de Recherche soumis a publication

19. R. Pino Pérez and C. Uzcategui. Jumping to explanations vs jumping to conclusions.
Rapport de recherche LIFL, No IT-301, Université de Lille I, 1997. 29 pages. En révision
dans le AI Journal. (La version soumise a 45 pages)

20. S. Konieczny and R. Pino Pérez. Merging with integrity constraints. Rapport de
recherche LIFL No 99-01, Université de Lille I, 1999. Soumis & Ecsqaru’99.

Monographies de recherche

21. R. Pino Pérez. Il ,-collection, indicatrices et ultrafiltres définissables. Thése de Troisiéme
Cycle en Logique Mathématique. Université Paris VII. 1983.

22. R. Pino Pérez. Le modéle de projections finitaires et ’égalité de Types dans une classe
de Modéles du A-calcul polymorphe. Mémoire de DEA en Informatique. Université Paris
7. 1986.

23. R. Pino Pérez. Contribution a I’étude du Lambda Calcul Partiel. These de Doctorat
en Informatique. Université Paris VII. 12 novembre 1992.

Rapports de Recherche

24. R. Pino Pérez. Le lambda calcul partiel. Rapport de recherche LIENS No 87-11. Ecole
Normale Supérieure. Paris. 1987. 24 pages.

25. R. Pino Pérez. A standard model for the partial lambda calculus. Rapport de recherche
du LIFL, No IT-170. Université de Lille I. 1989. 11 pages.

26. R. Pino Pérez. Semantics of Partial Lambda Calculus. Rapport interne LIFL, No
IT-212. Université de Lille I. 1991. 14 pages.

Monographies de type pédagogique

27. R. Pino Pérez. Introduccion a la Légica de primer orden. Université Simén Bolivar.
Caracas. 1985.

28. R. Pino Pérez. Cours de Logique. Trois volumes. Vol. 1: Calcul des Propositions.
Vol. 2: Calcul des Prédicats. Vol.3: La méthode de Résolution. Vers une mécanisation
du raisonnement. . Université Paris 13. 1987.

29. R. Pino Pérez. Mathématiques pour I'Informatique. EUDIL. Université de Lille 1.
1990.

30. R. Pino Pérez. Ldgica parcialidad y computabilidad. Notes d’un cours donné comme
conférencié invié a un symposium sur les fondements logiques de l'informatique organisé
par 'Institut Vénézuélien de la Recherche Scientifique (IVIC) en février 1992.
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31. R. Pino Pérez. Lambda Calcul. Notes de cours de DEA. Université de Lille 1. 1992.

Participation aux séminaires

80-83 Séminaire de Logique de I’Université Paris 7.
83-85 Séminaire de Logique de Caracas (Université Central, Université Simén Bolivar et IVIC)
85-86 Séminaire de Logique de I’Université Paris 7.

86-88 Séminaire de Logique et sémantique de la programmation. Ecole Normale Supérieure-
Université de Paris 7. Séminaire sur le A-calcul typé Université de Paris 7.

88-93 Groupe de travail sur le A-calcul. Université de Lille 1.

94-97 Groupe GNOM et CALC (anciennement ALP). Université de Lille 1.

Organisation des séminaires

e Organisation du séminaire de Logique de Caracas pendant deux ans (83-85) en collabo-
ration avec le Dr. Carlos Di Prisco.

e De 88 a 93, organisation du Groupe de travail sur le A-calcul a I’Université de Lille 1.

e Depuis 94, organisation du Groupe de travail GNOM sur la théorie de la révision, les
relations de conséquence non classique et la représentation des connaissances (voir pro-
gramimes annexes).

Direction des recherches

e Direction du mémoire de DEA d’Informatique de Gabriel Desmet. Université de Lille 1.
1989.

e Direction du mémoire de DEA d’Informatique de Olivier Dubuisson. Université de Lille
1. 1991.

o Direction du mémoire de DEA d’Informatique de Thierry Peltier. Université de Lille 1.
1991.

e Direction de la thése de Christian Even. Université de Lille 1. 1993.

e Direction du mémoire de DEA d’Informatique de Omar Malah. Université de Lille 1.
1994.

e Direction du mémoire de DEA d’Informatique de Sébastien Konieczny. Université de
Lille 1. 1996.

e Direction du mémoire de DEA d’Informatique de Christophe Parent. Université de Lille
1. 1997.
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e Direction de la thése de Sébastien Konieczny. Université de Lille 1. Soutenance prevue
en 99.

e Direction du groupe GNOM au sein de Méthéol au Laboratoire d’Informatique Fonda-
mentale de Lille, URA CNRS 369. Voir I’appendice F.

Participation aux jurys de théses

1. These de Nathalie Devesa. Proposition d’un schéma d’évaluation paralléle du langage
fonctionnel FP sur un réseau de processeurs. Université de Lille 1. Le 16 janvier 1990.

2. Theése de Hassan Bezazzi. Types de données et recurrence bien fondée dans un systéme
de programmation par preuves. Université de Lille 1. Le 4 juillet 1990.

3. Theése de Christian Even. Autour du Lambda Calcul Partiel. Université de Lille 1. Février
1993.

4. These de Nadia Benani. Proposition d’un modéle d’évaluation paralléle pour les langages
fonctionnels sans variables. Université de Lille 1. Novembre 1994.

Responsabilités

1. Evaluation des recherches :
e ‘Referee’ d’articles pour le revue Journal of IGPL dont le titre est depuis peu Logic
Journal of IGPL et est publié par Oxford University Press.

e ‘Referee’ d’articles pour des congrés internationaux notamment Caap (97, 96),
STACS (99).

e ‘Referee’ d’articles pour des congrés nationaux notamment RFIA (Reconnaissance
de Formes et Intelligence Artificielle 98).

e ‘Reviewer’ de Mathematical Reviews.
2. Membre élu de la CSE de la section 27 de "Université de Lille I (91-97) .

3. Responsable pédagogique de la deuxiéme anné de ’option informatique du département
IMA de I’Ecole Universitaire d’Ingénieurs de Lille de 1995 a 1997.

Collaborations Internationales

1. Nous collaborons avec le Professeur Carlos Uzcategui, de 'Université des Andes (Mérida,
Venezuela). Dans le cadre de cette collaboration le Professeur Uzcitegui a été invité au
LIFL a travailler dans notre groupe pendant 4 mois de ’année 96.

2. Nos avons entamé une collaboration avec le Professeur Jorge Lobo de Bell Labs (New
York)!. Dans le cadre de cette collaboration le Professeur Lobo a été invité au LIFL &
travailler dans notre groupe pendant 2 mois a la fin du printemps 98.

! Anciennement Professeur & I’Université d’Illinois (Chicago).
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Collaborations Nationales

1. En tant que composante du projet LOGIDIS (Logique distribuée et coopération) nous
participons au programme interlaboratoires de la région, Ganymede, dont le théme cen-
tral est le travail coopératif.

2. Nous avons des rapports privilégiés avec le Centre de Recherches en Informatique de
Lens (CRIL) qui participe également au programme Ganymeéde. Les thémes sur lesquels
nous collaborons se situent autour des logiques non monotones, lesquelles sont en relation
étroite avec la théorie de la révision de la connaissance.

3. Nous travaillons avec le Dr. David Makinson (UNESCO), un des pionniers dans la théorie
de la révision. Dans ce cadre nous avons fait un article en collaboration.

4. Participation au PRC-I3 (créé en 1997), groupe modeles du raisonnement.

Invitations

o Invité par I'Institut Venezuelien des Recherches Scientifiques (IVIC) et par I’Université
Centrale de Venezuela a donner une série de conférences sur le A-calcul pendant la pre-
miére quinzaine de février 92.

e Invité par L’Universié d’Asuncién au Paraguay a donner un cours d’informatique théorique
pendant le mois de septembre de 1993.

e Invité une semaine en décembre 1997 par I’Université des Andes, Mérida, Venezuela pour
des collaboration scientifiques avec le Professeur C. Uzcategui.

e Invité a donner une conférence dans le Eleventh Latin American Symposium on Mathe-
matical Logic. 6-12 Juillet 1998, Mérida, Venezuela.

e Invité a donner une conférence dans le meeting FUSION, Condom, France, 28 novembre
au ler décembre 1998.

Distinctions

e Boursier Gran Mariscal de Ayacucho: 1974-1978 (Universidad Simén Bolivar).
e Boursier Foninves: 1980-1983 (Universidad Paris 7).

o Allocataire de la prime d’encadrement doctoral et de recherche de 1993 a4 1997.

e Participation dans le programme TALVEN de 'UNESCO.
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Appendice F

Rapport d’activités de I’équipe
GNOM (Groupe NOn Monotone),
Années 93-98

Composition

e Ramoén Pino Pérez, Maitre de Conférences, Université Lille I (responsable).
e Hassan Bezzazi, Maitre de Conférences, Université Lille II.

e Stéphane Janot, Maitre de Conférences, Université Lille I.

e Sébastien Konieczny, Thésard (bourse BDI CNRS-Région), Université Lillel.
e Omar Malah!, Thésard, Université Lillel.

Mots clés : révision, fusion, arbitrage, abduction, mise d jour de la connaissance, coopération,
raisonnement non monotone.

Thématique

Le théme de recherche de cette équipe est I’étude de la dynamique de 'information. En partic-
ulier nous nous intéressons a la théorie de la révision de la connaissance et au raisonnement non
monotone. Ce sujet se situe dans le domaine de I’Intelligence Artificielle et a des connexions
étroites avec les sciences cognitives, la logique et les bases de données.

La question a laquelle la théorie de la révision de la connaissance veut répondre peut se
résumer trés succinctement de la facon suivante: que faut-il faire pour ajouter une nouvelle
information 2 une base de connaissances de telle sorte que ’on puisse garder le maximum de
Pancienne information tout en restant cohérent?

Dans des situations diverses, les données (les informations) sont dans un flux continu,
elles sont dynamiques : de nouvelles données apparaissent et I’ancienne connaissance devient,
dans beaucoup de cas, obsolete ou pour le moins révisable. Une théorie de la connaissance
dynamique est donc importante si I’on veut rendre compte du changement dans les systemes

!Suite & des problémes de financement Malah n’a pas pu continuer en thése 1 la rentrée 96. Il a créé une

PME.
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a bases de connaissances.

Depuis les travaux de Gardenfors et Makinson? il est bien connu qu’il existe une dual-
ité entre certains opérateurs de révision et certaines logiques non monotones. Ainsi ’étude
des logiques non monotones et de leurs propriétés donne des informations importantes sur la
maniere de réviser et sur les algorithmes sous-jacents pour calculer les révisions. Un de nos
buts est donc de comprendre mieux les opérateurs de révision via I’analyse des propriétés de
logiques telles que la logique rationnelle introduite par Lehmann et Magidor®.

Un cadre ou les informations sont intrinsequement dynamiques est celui ou plusieurs agents
rationnels coopérent (échangent de 'information). Dans ce contexte il faut avoir des mécan-
ismes précis qui décrivent le résultat de ce processus. La théorie de la révision de la connaissance
s’avere un outil conceptuel treés riche pour modéliser ces mécanismes. Ainsi un autre de nos buts
est I’étude de ces outils issus de la théorie de la connaissance révisable. Parmi eux on trouve :
la révision (proprement dite), I’arbitrage, ’abduction et la mise a jour. Trés sommairement la
révision correspond a privilégier la nouvelle information et a minimiser les changements que
I’on doit opérer dans ’ancienne information. L’arbitrage doit trouver I'information qui soit
le plus en accord avec un ensemble d’informations. L’abduction (et d’une certaine maniere la
mise a jour) consiste a trouver les informations les plus pertinentes a ajouter en vue de produire
une information donnée.

Il s’agit pour nous de dégager les situations ou ces outils sont pertinents, sa possibilité de
réelle utilisation informatique (problemes de faible complexité algorithmique) et d’introduire
des nouvelles notions en théorie de la connaissance pour traiter des situations qui sortent du
cadre des opérateurs de révision, d’abduction, d’arbitrage et de mise a jour.

Un dernier point auquel on s’intéresse ce sont les différentes facons d’agencer ces outils
pour avoir des systémes cohérents dans un cadre ou plusieurs agents doivent coopérer (on peut
imaginer un groupe d’experts qui collaborent dans la résolution d’un probléme). On essaie de
dégager les meilleures techniques, ainsi que le cadre précis ou ces techniques sont applicables.
Des plate-formes mises en ceuvre en Bivouac et en Prolog permettront d’évaluer ces différentes
techniques.

Résultats

Dans le volet théorique de notre travail nous citons :
e Les travaux de Bezzazi et Pino Pérez [2] sur la modélisation de la transitivité dans

un cadre non monotone.

e Les travaux de Bezzazi, Makinson et Pino Pérez [3] sur la modélisation des relations
de conséquence non monotones qui satisfont des regles non-Horn plus fortes que la monotonie
rationnelle.

e Les travaux de Pino Pérez et Uzcategui [6] sur des nouvelles techniques de représenta-
tion des relations non monotones.

e Les travaux de Pino Pérez et Uzcdtegui [7] sur les rapports existant entre le raison-
nement abductif et les relations non monotones. Ces résultats sont tres encourageants car cela

2P. GARDENFORS, D. MAKINSON Relations between the logic of theory change and nonmonotonic logic.
In The Logic of Theory Change, Workshop, Konstanz, FRG, Octuber 1989. Lecture Notes in Artificial
Intelligence 465, pp. 185-205.

3D. LEHMANN, M. MAGIDOR, What does a conditional knowledge base entail? Artificial Intelligence 55
pp- 1-60, 1992
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va permettre d’appliquer les algorithmes issus des relations non monotones (v.g. des relations
rationnelles) au diagnostic.
e Les travaux de Konieczny et Pino Pérez [10] sur la logique de la fusion.

Dans le volet pratique, nous pouvons citer :
e Les travaux de Malah {1] sur des implantations d’un des algorithmes de calcul des

faits déductibles dans des systemes d’inférence non monotones.

e Les travaux de Konieczny [4] et [5] sur une architecture pour la coopération basée sur
des opérateurs de révision.

e Les travaux de toute ’équipe [9] concernant des operateurs de révision basés sur le
chainage avant.

Perspectives

Le futur de ce travail nous le situons dans une double perspective : d’une part les contributions
théoriques & la théorie de la révision vont élargir le champ d’application de ces techniques.
D’autre part, un des buts de notre groupe étant la réalisation d’une plate-forme modulaire
rendant possible le choix du type de révision selon le contexte du probleme, ce prototype
permettra de développer des applications dans les domaines de la prise de décision lorsque
plusieurs experts communiquent; en particulier dans le domaine médical et juridique.

Plus précisément nous envisageons :

A court terme :

- Putilisation des résultats de Bezzazi et Pino Pérez dans le but de définir un algorithme pour
calculer la "meilleure” relation rationnelle transitive contenant une base de connaissance finie;
- continuer des investigations sur ’abduction. Nous pensons que ’on peut extraire des travaux
de Pino Pérez et Uzcitegui des algorithmes destinés a la recherche des meilleures explications.
Ceci a des retombées importantes dans le domaine de la planification et du diagnostic.

A moyen terme:

- la réalisation d’un systéme expert modulaire ou 'on puisse faire de I'inférence rationnelle,
réviser une base de connaissance, mettre i jour d’une base de connaissance et finalement
synthétiser I'information de plusieurs bases de connaissance.
-la réalisation d’un systéme expert qui modélise la coopération entre agents rationnels.

A plus long terme :

-dans le domaine de la dualité révision vs. logique non monotone, nous voulons étudier les
opérateurs de révision qui se dégageraient de la programmation logique.

- de trouver des liens (équivalences) qui existeraient entre certaines techniques numériques
pour faire de la synthése de linformation et des techniques symboliques (logiques, comme
’arbitrage). Remarquons que des résultats qui mettent en rapport la logique rationnelle et la
logique des possibilités ont été trouvés par Dubois et Prade *.

Collaborations Internationales

1. Nous collaborons avec le Professeur Carlos Uzcategui, de I’Université des Andes (Mérida,
Venezuela). Dans le cadre de cette collaboration le Professeur Uzcategui a été invité au

‘D. DuBois, H. PrRADE, Possibilistic Logic, preferential models, non-monotonicity and related issues. In
Proceedings IJCAI’91 , 1991.
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LIFL a travailler dans notre groupe pendant 4 mois de I’année 96. Deux travaux ont été
rédigés suite a cette visite. Un troisieme est en cours de rédaction.

2. Nos avons entamé une collaboration avec le Professeur Jorge Lobo de Bell Labs (New
York)®. Dans le cadre de cette collaboration le Professeur Lobo a été invité au LIFL a
travailler dans notre groupe pendant 2 mois a la fin du printemps 98.

Collaborations Nationales

1. En tant que composante du projet LOGIDIS (Logique distribuée et coopération) nous
participons au programme interlaboratoires de la région, Ganymede, dont le théme cen-
tral est le travail coopératif. Le sujet de la these de S. Konieczny est dans le cadre de ce
projet. Cette these est cofinancée par la région.

2. Nous avons de rapports privilégiés avec le Centre de Recherches en Informatique de Lens
(CRIL) qui participe également au programme Ganymede. Les thémes sur lesquels nous
collaborons se situent autour des logiques non monotones, lesquelles sont en relation
étroite avec la théorie de la révision de la connaissance.

3. Nous travaillons avec le Dr. David Makinson (UNESCO), un des pionniers dans la théorie
de la révision. Dans ce cadre nous avons fait un article en collaboration.

4. Participation au PRC-I3 (créé en 1997), groupe modéles du raisonnement.

Publications

[1] O. MALAH (1994) Un algorithme pour le calcul de la cléture rationnelle. Mémoire de DEA
d’informatique. Université de Lille I. Septembre 1994.

[2] H. BEzzAzI, R. PINOo PEREZ (1996), Rational Transitivity and its models. Proceedings of
the 26th International Symposium on Multiple- Valued Logics, Santiago de Compostela, Spain.
May 29-31. IEEE Computer Society Press, 1996.

[3] H. BezzAazi,D. MakINsoN, R. PiNo PEREZ (1996), Beyond Rational Monotony: Some
strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Com-
putation, vol. 7, pp 605-631. 1997.

[4] S. KoNIECZNY (1996) Révision de la connaissance et coopération. Mémoire de DEA
d’informatique. Université de Lille 1. Juillet 1996.

[5] S. KoNIECZNY (1996) Vers un modeéle de la coopération. In Actes du 6éme colloque de
I’Association pour la Recherche Cognitive. Décembre 1996.

[6] R. PiNno PEREZ, C. UzCATEGUI. On representation theorems for nonmonotonic inference

relations. Journal of Symbolic Logic. A paraitre. (Une version courte est parue comme
Rapport de recherche LIFL, No IT-300, Université de Lille I, 1997).

[7] R. PiNno PEReZ, C. UzZCATEGUI. Jumping to explanations vs jumping to conclusions.
Rapport de recherche LIFL, No IT-301, Université de Lille I, 1997. Soumis a AI Journal.

® Anciennement Professeur a I'Université d’Illinois (Chicago).
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[8] S. KoNiEczNY AND R. PINo PEREZ. On the difference between arbitration and ma-
jority merging. Proceedings of WOLLIC’97 Workshop on Logic, Language, Information and
Computation. Fortaleza, Brasil, August 1997.

[9] H. Bezzazi, S. JaNoT, S. KoNIEczNY AND R. PINo PEREz. Forward chaining and
change operators. Proceedings of DYNAMICS’97 Workshop on (Trans)Actions and Change
in Logic Programming and Deductive Databases held in conjonction with the International
Logic Programming Symposium ILPS’97. Port Jefferson, New York, USA, October 1997. pp.
135-146.

[10] S. KoNIECZNY AND R. PiNo PEREZ. On the logic of Merging. In Proceedings of the Sizth
International Conference on Principles of Knowledge Representation And Reasoning, KR’98.
Trento, Italy. June 2-5, 1998, pp 488-498.

[11] R. Pino PErez aND C. UZCATEGUL Abduction vs. Deduction in Nonmonotonic Rea-
soning. In Proceedings of the Seventh International Workshop on Nonmonotonic Reasoning,
NR’98. Trento, Italy. May 30-June 1, 1998, pp 42-54.

[12] H. BEezzAzIl. Stratified forward chaining. In Proceedings of the Seventh International
Workshop on Nonmonotonic Reasoning, NR’98. Trento, Italy. May 30-June 1, 1998.

[13] H. BezzAzl, S. JANOT, S. KONIECZNY AND R. PINO PEREzZ. Analysing rational prop-
erties of change operators based on forward chaining. In Transactions and Change in Logic
Databases. H. Decker, B. Freitag, M. Kifer and A. Voronkov, Eds. Lecture Notes in Com-
puter Science, vol. 1472, pp 317-339. 1998.

[14] S. KoNIECczNY Operators with memory for iteration. Rapport de recherche LIFL No
IT-314, Université de Lille I, 1998.

[15] S. KoNiECczNY AND R. PiNO PEREz. Merging with integrity constraints. Rapport de
recherche LIFL No 99-01, Université de Lille I, 1999. Soumis 3 Ecsqaru’99.

[16] S. BENFERHAT, S. KONIECZNY, O. PAPINI ET R. PINo PEREZ. Révision itérée basée
sur la primauté forte des observations. Soumis aux Journées Modeéles de Raisonnement
du PRC-13, 22-23 Mars 1999.
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